

Service Manual

Cassette Deck

dbx* Equipped Cassette Deck with
Electronic Multi-Mode Counter

RS-M255X
(Silver Face)

RS-M250 MECHANISM SERIES

This is the Service Manual for the following areas.

- For Asian PX.
- For European PX.

NOTE:

For the products (RS-M255X) delivered to PX, please refer to the table below and the attached Service Manual, since their parts are the same as those of the silver type products delivered to Asia, Latin America, the Middle East and Africa (regions marked **N** in the Service Manual) except for the parts listed in the table.

PARTS COMPARISON TABLE:

Please revise the original parts list in the Service Manual RS-M255X (of the silver type model for **N** mark areas) to conform to the changes shown herein.

If new part numbers are shown, be sure to use them when ordering parts.

Ref. No.	Part Name & Description	Part Numbers		Remarks
		N ... For Asia, Latin America, Middle East and Africa areas. "Silver Type"	F ... For Asian PX. E ... For European PX. "Silver Type"	
G35	Main Name Plate	QGS2985	QGS3036	
A2	Instruction Book	QQT3266	QQT3357	
P1	Inside Carton	QPN4290	QPN4306	

* The term dbx is a registered trademark of dbx Inc.

** 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories.

Technics

Matsushita Electric Trading Co., Ltd.
P.O. Box 288, Central Osaka Japan

Panasonic Tokyo
Matsushita Electric Industrial Co., Ltd.
1-2, 1-chome, Shibakoen, Minato-ku, Tokyo 105 Japan

Service Manual

Cassette Deck
RS-M255X
(Silver Face)
Black Face

dbx Equipped Cassette Deck with
Electronic Multi-Mode Counter

This is the Service Manual for the following areas.
[N] For Asia, Latin America,
Middle East and Africa
areas.
[A] For Australia.

- Please use this manual together with the service manual for model No. RS-M255X (original) order No. ARD82010116C2-29.
 - For schematic diagrams, circuit board (Voltage Regulator Circuit Board), wiring connection diagram (Power Supply) and parts lists, refer to the ones in this Service Manual.
- For other information, refer to both this Service Manual and the original Service Manual.

RS-M250 MECHANISM SERIES Specifications

Track system:	4-track 2-channel stereo recording and playback	Fast forward and rewind time:	Approx. 90 seconds with C-60 cassette tape
Tape speed:	4.8cm/s (1-7/8ips)	Inputs:	MIC: sensitivity 0.25mV, applicable microphone impedance 400Ω – 10kΩ
Wow and flutter:	0.038% (WRMS)	Outputs:	LINE: sensitivity 60mV, input impedance 47kΩ HEADPHONES: output level 125mV (at 8Ω)
Frequency response: Metal tape;	20 – 20,000Hz	Bias frequency:	85kHz
	30 – 17,000Hz ±3dB	Motor:	2-motor system
CrO ₂ tape;	20 – 19,000Hz	Heads:	2-head system
	30 – 16,000Hz ±3dB		1-SX (Sendust Extra) head for record/playback 1-double-gap ferrite head for erasure
Normal tape;	20 – 18,000Hz	Power requirement:	AC; 110/125/220/240V, 50-60Hz preset power voltage 240V
	30 – 15,000Hz ±3dB	Power consumption:	[N] 18W [A] 28W
Dynamic range:	110dB (at 1kHz) with dbx in	Dimensions:	43.0cm(W) × 10.8cm(H) × 33.1cm(D)
Max. input level improvement:	10dB or more improved with dbx in (at 1kHz)	Weight:	6.0kg

Specifications are subject to change without notice.

* The term dbx is a registered trademark of dbx Inc.

** 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories.

Technics

Matsushita Electric Trading Co., Ltd.
P.O. Box 288, Central Osaka Japan

ORDER NO. ARD82040134A3-08

RS-M255X

NOTES: RESISTORS		CAPACITORS	
ERD.....Carbon	ECBA Ceramic	ECG□.....Ceramic	ECD1H103JZ
ERG.....Metal-oxide	ECC□.....Ceramic	ECK□.....Ceramic	C 219, 220 ECCD1H101KC
EFS.....Metal-oxide	ECC□.....Ceramic	ECC□.....Ceramic	C 221, 222, 223, 224 ECEA254R7
ERO.....Metal-film	ECPF□.....Ceramic	ECPF□.....Ceramic	C 225, 226, 227, 228 ECQV05104JZ
ERX.....Metal-film	ERQ.....Fuse type metallic	ECQM.....Polyester film	C 229, 230, 231, 232 ECQM1H332JZ
ERQ.....Fuse type metallic	ERC.....Solid	ECQE.....Polyester film	C 233, 234 ECCD1H331K
ERC.....Solid	ECOF.....Polypropylene	ECOF.....Polypropylene	C 235, 236 ECQV05104JZ
ERF.....Cement	ECE□.....Electrolytic	ECE□.....Electrolytic	C 237, 238 ECQM1H103JZ
	ECEON.....Non polar electrolytic	ECEON.....Non polar electrolytic	C 239, 240 ECQM1H102JZ
	ECOS.....Tantalam	ECOS.....Tantalam	C 241, 242 ECEA16M10R
	QCS.....Tantalam	QCS.....Tantalam	C 243, 244 ECAHS100

REPLACEMENT PARTS LIST

Important safety notice
Components identified by △ mark have special characteristics important for safety.
When replacing any of these components, use only manufacturer's specified parts.

Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.
RESISTORS											
R 1, 2	ERD25TJ273	R 132	ERD25TJ183	R 289, 290	ERD25FJ103	R 419 [A] ERD25FJ121	C 25, 26 ECKD1H392KB	C 217, 218 ECQV05104JZ			
R 3, 4	ERD25TJ474	R 133, 134, 135	ERD25TJ274	R 291, 292	ERD25TJ155	R 420 [N] ERD25FJ821	C 27, 28 ECEA1AS470	C 219, 220 ECCD1H101KC			
R 5, 6	ERD25FJ471	R 137	ERD25TJ123	R 301, 302, 303, 304	ERD25FJ471	R 420 [N] ERD25FJ821	C 29, 30 ECEA50M1R	C 221, 222, 223, 224 ECEA254R7			
R 7, 8	ERD25FJ332	R 138	ERD25FJ562	R 305	ERD50FJ221	R 421 [A] ERD25FJ331	C 31, 32 ECKD1H103ZF	C 225, 226, 227, 228 ECQV05104JZ			
R 9, 10	ERD25FJ680	R 139	ERD25FJ100	R 306, 307	ERD25TJ473	R 421 [A] ERD25FJ331	C 33, 34 ECEA1AS221	C 229, 230, 231, 232 ECQM1H332JZ			
R 11, 12	ERD25FJ103	R 140	ERD25FJ562	R 309	ERD25TJ223	R 422 [A] ERD25TJ223	C 35, 36 ECEA16M10R	C 233, 234 ECCD1H331K			
R 13, 14	ERD25TJ334	R 141	ERD25FJ1R0	R 310	ERD25TJ104	R 423 [A] ERD25TJ123	C 37, 38 ECQV05334JZ	C 235, 236 ECQV05104JZ			
R 15, 16	ERD25FJ472	R 142	ERD25FJ822	R 311	ERD25TJ473	R 424 [A] ERD25FJ560	C 39, 40 ECQM1H392JB	C 237, 238 ECQM1H103JZ			
R 17, 18	ERD25FJ562	R 143	ERD25TJ154	R 312	ERD25FJ183	R 425, 426 [N] ERD50FJ181	C 41, 42 ECQM1H472JZ	C 239, 240 ECQM1H102JZ			
R 19, 20	ERD25TJ225	R 144	ERD25TJ124	R 315	ERD25FJ102	R 425, 426 [N] ERD50FJ181	C 43, 44 ECEA1HS100	C 241, 242 ECEA16M10R			
R 21, 22	ERD25FJ332	R 145	ERD25TJ473	R 316	ERD25FJ103	R 426 [A] ERD50FJ181	C 45, 46 ECQV05104JZ	C 243, 244 ECAHS100			
R 23, 24	ERD25TJ225	R 147	ERD25FJ103	R 318	ERD25FJ472	R 427 [A] ERD25FJ271	C 47, 48 ECFFD473KXY	C 247, 248 ECEA1ES470			
R 25, 26	ERD25FJ101	R 148	ERD25FJ332	R 319	ERD25TJ154	R 428 [A] ERD25FJ392	C 49, 50 ECQM1H104JZ	C 249, 250 ECFD104KXY			
R 29, 30	ERD25FJ103	R 149	ERD25FJ222	R 320	ERD25TJ154	R 429 [A] ERD25FJ562	C 51, 52 ECEA1HS100	C 251, 252 ECQM1H562JZ			
R 31, 32	ERD25FJ681	R 150	ERD25FJ822	R 321	ERD25TJ683	R 430 [A] ERD25FJ271	C 53, 54 ECFFD473KXY	C 253, 254 ECQM1H102JZ			
R 33, 34	ERD25FJ100	R 151	ERD25TJ154	R 322	ERD25TJ563	R 431 [A] ERD25FJ331	C 55, 56 ECEA1AS471	C 255, 256 ECQM1H273JZ			
R 35, 36	ERD25FJ182	R 152	ERD25TJ563	R 323	ERD25TJ224	R 432 [A] ERD25FJ392	C 57, 58 ECQM1H1562JZ	C 257, 258 ECQM1H333JZ			
R 37, 38	ERD25FJ472	R 153	ERD25FJ471	R 324	ERD25TJ224	R 433 [A] ERD25FJ331	C 59, 60 ECQV05224JZ	C 259, 260 ECQM1H683JZ			
R 39	ERD25FJ561	R 154	ERD25FJ122	R 325	ERD25FJ222	R 434 [A] ERD25FJ331	C 61, 62, 63, 64 ECEA1HS100	C 261, 262 ECQM1H273JZ			
R 40	ERD25FJ822	R 155	ERD25FJ102	R 326	ERD25FJ100	R 435 [A] ERD25FJ392	C 65, 66 ECEA25N3R3	C 263, 264 ECQM1H502R47			
R 41, 42	ERD25TJ123	R 156	ERD25FJ102	R 327	ERD25FJ222	R 436 [A] ERD25FJ392	C 67, 68 ECQV05154JZ	C 265, 266 ECQM1H104JZ			
R 43, 44	ERD25FJ151	R 157	ERD25TJ183	R 328	ERD25FJ100	R 437 [A] ERD25FJ392	C 69, 70 ECEA50Z1	C 267, 268 ECQM1H103JZ			
R 45, 46	ERD25FJ102	R 159, 160	ERD25FJ102	R 329	ERD25TJ473	R 438 [A] ERD25FJ392	C 71, 72 ECEA50Z2R2	C 269, 270 ECQM1H273JZ			
R 47, 48	ERD25TJ274	R 161	ERD25TJ223	R 330	ERD25TJ473	R 439 [A] ERD25FJ392	C 73, 74 ECQM1H103ZF	C 271, 272 ECQM1H682MD			
R 49, 50, 51, 52	ERD25TJ105	R 162	ERD25FJ101	R 331	ERD25TJ224	R 440 [A] ERD25FJ392	C 75, 76 ECEA1ES332	C 273, 274 ECQM1H103ZF			
R 53, 54	ERD25TJ473	R 163, 164	ERD25TJ123	R 332	ERD25TJ684	R 441 [A] ERD25FJ392	C 77, 78 ECQM1H153JZ	C 275, 276 ECQM1H103ZF			
R 55, 56	ERD25FJ332	R 165, 166	ERD25FJ562	R 333	ERD25FJ332	R 442 [A] ERD25FJ392	C 79, 80 ECQM1H333JZ	C 277, 278 ECQM1H103ZF			
R 57, 58	ERD25TJ274	R 167	ERD25FJ100	R 334	ERD25TJ473	R 443 [A] ERD25FJ392	C 81, 82 ECQM1H683JZ	C 279, 280 ECQM1H103ZF			
R 59, 60	ERD25TJ184	R 168, 169	ERD25FJ102	R 335	ERD25TJ473	R 444 [A] ERD25FJ					

Ref. No.	Part No.	Ref. No.	Part No.	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description
TRANSISTORS									
Q 1, 2	2SD636	D 1, 2, 11, 12, 13, 14, 15	MA161	E 27	QJT0015	Lug Terminal	M 1	QMA4330	Flywheel Retainer
Q 3	2SB641	D 16	RVDRD6R2EB	E 28	QTH1164	Heat Sink	M 2	QBP1894	Head Base Plate Spring
Q 11, 12, 13, 14	2SK104F	D 17, 18, 19, 20, 21, 22, 201,	XSN3+8S	E 29	XSN3+8S	Screw $\oplus 3 \times 8$	M 3	QBP1895	Cassette Pressure Spring
Q 15, 16	2SD965	202, 203, 204, 301, 302, 303,	XWA3B	E 30	XWA3B	Washer 3 ϕ	M 4	QXG1059	Main Gear
Q 17, 18	2SD965	305, 306	MA161	E 31	XWE3	Washer 3 ϕ	M 5	QDR1146	Supply Reel Table
Q 19	2SA921S	D 401, 402, 403, 404, 405, 406,	QSIFM004F	E 32	N018E	Insulator Plate	M 6	QMB1336	Reel Table Hub
Q 21, 22, 23	2SD1011S	407, 408, 409	QJT1067	E 33	QJS15001T	Insulator Plate	M 7	QML3655	Cam Follower
Q 25	2SB643	△ SM112	QKJ0520	E 34	QJC0050	FL Meter	M 8	QML3660	Idler Select Lever
Q 26	2SD946	D 410, 411	MA1056	E 35	QKJ0521	Check Pin	M 9	QML3661	Erase Safety Lever
Q 27	2SD592NCR	D 412, 413	MA161	E 36	QJ1067	LED Holder-A	M 10	QMZ1283	Flywheel Thrust Retainer
Q 28, 29, 30, 31	2SD636	D 414, 415	MA1150	E 37	QJS15001T	15 Pin Socket	M 11	QDB0306	Capstan Belt
Q 32	2SB641	D 416	MA1033	E 38	QKJ0521	LED Holder-B	M 12	QDB0287	Reel Motor Belt
Q 33, 34, 35, 36, 37, 38, 39,	2SD636	D 501, 502, 503, 504, 505, 506,	XAMQ44P300	E 39	QJC0050	Earth Plate	M 13	QDK1012	Steel Ball
41, 42	2SD636	507, 508, 509, 510, 511, 512,	QJS06001T	E 40	QMA4365	Timer Angle	M 14	QBW2008	Snap Washer
Q 201, 202	2SK104F	D 515	LN41YPHL	E 41	XTN3+6B	Tapping Screw $\oplus 3 \times 6$	M 15	QBW2046	Snap Washer
Q 203, 204	2SD636	D 516	LN31GPHL	E 42	QJP06S001T	6 Pin Socket	M 16	QBN1722	Erase Safety Lever Spring
Q 205, 206	2SD636	D 517	LN21RPHL	E 43	QJP12L001T	12 Pin Post (L-type)	M 17	QBT1725	Lock Lever Spring
211, 212, 213, 214, 215, 216,	D 702	TLR208	E 44	QJP15L001T	15P Post (L-type)	M 18	QBT1927	Head Base Plate Spring	
217, 218, 219, 220	D 703	TLG208	E 45	QNO1070	Nut	M 19	QBT1920	Idler Spring	
25D1010	D 704	TLY208	E 46	QNO1039	Nut	M 20	QBC1373	Reel Table Spring	
O 221, 222, 223	2SD636	E 47	QNO1004	E 48	QJS1923TN	9 Pin Socket	M 21	XTN2+6B	Tapping Screw $\oplus 2 \times 6$
Q 225	2SB641	IC 1, 2	AN6212	E 49	QJS1922TN	6 Pin Socket	M 22	XTN2+6BFZ	Tapping Screw $\oplus 2.6 \times 6$
Q 227	2SD636	IC 3, 4	NE646N	E 50	QJS1921TN	3 Pin Socket	M 23	XTN3+24B	Tapping Screw $\oplus 3 \times 24$
Q 301, 302	2SD636	IC 5, 6	AN6213	E 51	QJT1054	Contact	M 24	XUB4FT	Stop Ring
Q 303, 304	2SB641	IC 7	AN6256	E 52	QJS1922TN	6 Pin Socket			
Q 401	2SD836	IC 8	AN6214	E 53	QJS1921TN	3 Pin Socket			
Q 402	2SC945Q	IC 9	BA336	E 54	XTN3+10BFN	Tapping Screw $\oplus 3 \times 10$			
Q 403	2SA564	IC 10, 202	UPC1252H	E 55	QJ1466RR	Leaf Switch Circuit Board			
Q 404	2SB895	IC 203, 204	UPC1253H	E 56	QJT1089	Contact			
Q 405	2SD946	IC 205, 206	NJM4558DF	X 701	QZE0049	Crystal			
Q 406 [A]	2SC945P	IC 301	AN6870N						
[For Australia.]		IC 302, 303	AN6280						
Q 407	2SD592NCR	IC 304	NJM4556D						
Q 408	2SA683	IC 305	BA6138						
Q 501, 502, 503, 504, 505	2SB643	IC 501	MN1405RH						
Q 506	2SD636	IC 502	AN6270						
Q 508	2SD965	IC 503	DN6838						
INTEGRATED CIRCUITS									

Ref No.	Part No.	Part Name & Description
ELECTRICAL PARTS		
FUSES		
F 1	QWY4123Z	Record/Playback Head
E 2	QWY2138Z	Erase Head
E 3	[N] △ RJA52YAK	AC Power Cord [For Asia, Latin America, Middle East and Africa areas.]
[A] △ SJA23	AC Power Cord [For Australia.]	
E 4	[N] QTD1129	Cord Bushing [For Asia, Latin America, Middle East and Africa areas.]
[A] QTD1164	Cord Bushing [For Australia.]	
E 5	QIA4402	dbx P.B. Holder
E 6	XTN3+16B	Tapping Screw $\oplus 3 \times 16$
E 7	XTN3+10B	Tapping Screw $\oplus 3 \times 10$
E 8	XTN3+8B	Tapping Screw $\oplus 3 \times 8$
E 9	XTS3+12B	Tapping Screw $\oplus 3 \times 12$
E 10	XTB3+10BFN	Tapping Screw $\oplus 3 \times 10$
E 11	QTD1181	Wire Clamper
E 12	QEJ5003S	Jack Board
E 13	QJP1921TN	3 Pin Post
E 14	QJP1922TN	6 Pin Post
E 15	QJP1923TN	9 Pin Post
E 16	QJP1924TN	12 Pin Post
E 17	QJS1924TNL	12 Pin Socket
E 18	[N] △ QCR0008	Spark Killer [For Asia, Latin America, Middle East and Africa areas.]
[A] △ QCR0011	Spark Killer [For Australia.]	
E 19	SJ1777	Pin Terminal
E 20	XTN3+8B	Tapping Screw $\oplus 3 \times 8$
E 21	QIA4364	Switch Angle
E 22	XSN3+8S	Screw $\oplus 3 \times 8$
E 23	XWA3B	Washer
E 24	[N] △ QTF1007	Fuse Holder [For Asia, Latin America, Middle East and Africa areas.]
[A] △ QTF1054	Fuse Holder [For Australia.]	
E 25	QJS12001T	12 Pin Socket
E 26	XTN3+10B	Tapping Screw $\oplus 3 \times 10$
FUSES		
F 1	△ XBA2E05NS5	Fuse (T 500mA) [For Asia, Latin America, Middle East and Africa areas.]
F 2	△ XBAQ0008	Fuse (T 630mA) [For Australia.]
F 3	△ XBAQ125028	Fuse (T 1.25A) [For Australia.]
F 4	△ XBA0006	Fuse (T 315mA) [For Australia.]
SWITCHES		
S 1	QSR8402	Rotary Switch (NR Selector)
S 401	△ QSW117AS	Push Switch (Power ON/OFF)
S 402	△ QSR1407	Rotary Switch (Voltage Selector)
S 501, 502, 503, 504, 505, 506, 507, 508	QSW1118	Key Board Switch
S 509, 510, 511, 512	QSWY409	Push Switch (Timer Switch)
S 513	QSS1303	Slide Switch (Erase Safety Switch)
S 601	QSB0260	Leaf Switch (Playback Switch)
S 602	QSB0260	Leaf Switch (Mode Sensing Switch)
S 603	QSB0261	Leaf Switch (Stop Switch)
S 604	QSB0260	Leaf Switch (Playback Switch)
S 605	QSB0261	Leaf Switch (Half Detection Switch)
S 606, 607	QSB0266	Leaf Switch (Auto Tape Selector)
JACKS		
J 1	OJA0259	Headphones Jack
J 2	OJA0262	Microphone Jack

Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description
MECHANICAL PARTS								
M 84	QML3717	Tape Detection Lever (for Metal Tape)	G 12	QXB0759	Operation Button (Pause)	G 30	QMK1959	Sub Chassis
M 85	QNM2642	Detection Lever Shaft	G 13	QXB0760	Operation Button (Record)	G 31	QTW1279	Meter Insulating Plate
M 86	XTN2+6B	Tapping Screw $\oplus 2 \times 6$	G 14	QGO1990	Operation Button (Rewind)	G 32	XTB4+10BFN	Screw $\oplus 4 \times 10$
M 87	XWG3	Washer 3 ϕ	M 88	XWG26	"Silver Type"	G 33	QTS1575	Microphone Shield Plate
M 89	XTN26+12B	Washer 2.6 ϕ	M 90	XTN3+6B	"Silver Type"	G 34	QMA4363	Volume Angle
M 91	XTN26+5B	"Black Type"	M 91	XTN26+5B	"Black Type"	G 35	[N] QGS2985	Main Name Plate [For Asia, Latin America, Middle East and Africa areas.]
CABINET PARTS								
G 1	QGCM0058	Case Cover "Silver Type"	G 16	QGO1993	Operation Button (Fast Forward)</td			

CABINET PARTS LOCATION

WIRING CONNECTION DIAGRAM

* For Asia, Latin America, Middle East and Africa areas.

MECHANISM PARTS LOCATION
(DIFFERENCE)

* For Australia.

NOTES:

- BLK Black
- BLU Blue
- BRN Brown
- GRY Gray
- GRN Green
- L.BLU Light Blue
- NIL No Color Mark
- ORG Orange
- PNK Pink
- RED Red
- SLD Shield Wire
- VLT Violet
- WHT White
- YEL Yellow

SCHEMATIC DIAGRAM

MAIN SECTION

NOTES

- () indicates B + (bias).
 - () indicates B - (bias).
 - () indicates the flow of the playback signal (dbx out).
 - () indicates the flow of the playback signal (dbx tape).
 - () indicates the flow of the recording signal (dbx out).
 - () indicates the flow of the recording signal (dbx tape).

○ Voltage values shown in MAIN SECTION.
 NO MARK.... Voltage values at out (NR select switch) mode
 ()..... Voltage values at record mode.
 [] Voltage values at disc (NR select switch) mode

dbx SECTION

NOTES:-

- Voltage values shown in dbx SECTION.
 () Voltage values at out (NR select switch) mode.
 [] Voltage values at disc (NR select switch) mode.
 For measurement use VTVM.

EQUIVALENT CIRCUITS

IC8 AN6214

■ Truth table of IC1, 2 (Positive)

R / P SW	
⑥pin	Operation
H	R E C
L	P B

■ Truth table of IC5, 6 (Positive)

R / P	SW
⑥pin	Operation
H	R E C
L	P B

⑥pin	Operation
------	-----------

H	_____
L	Mute

⑧pin Operation

H	—
L	Cue

SPECIFICATIONS

* Input level controls ... MAX

Output level control	
Playback S/N ratio * Test tape ... QZCFM	Greater than 45 dB
Overall distortion * Test tape ... QZZCRA for Normal ... QZZCRX for CrO ₂ ... QZZCRZ for Metal	Less than 4 %
Overall S/N ratio * Test tape ... QZZCRA	Greater than 43 dB (without NAB filter)

- NOTES:**

 - S1-1—S1-8 NR select switch (shown in OUT position: (1) Dolby NR, (2) OUT, (3) dbx tape, (4) dbx disc)
 - S606 Auto tape select switch (For Normal/CrO₂ tape)
 - S607 Auto tape select switch (For Metal tape)

Mode	S606	S607
Normal	on	on
CrO ₂	on	off
Metal	off	off

- VR1, 2. Input level controls.
 - VR3, 4. Output level control.
 - VR5, 6. Playback gain adjustment VR.
 - VR7, 8. Recording gain adjustment VR.
 - VR9, 10. Bias current adjustment VR.
 - VR201, 202. VCA symmetry adjustment VR.
 - VR203, 204. RMS detector adjustment VR.
 - VR205, 206. dbx standard level adjustment VR (Encode).
 - VR207, 208. dbx standard level adjustment VR (Decode).
 - Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.
 $1K = 1,000 (\Omega)$, $1M = 1,000 k (\Omega)$
 - Capacity are in microfarads (μF) unless specified otherwise.
 $P = \text{Pico-farads}$.
 - The mark (∇) shows test point. e.g. $\nabla = \text{test point 1}$.
 - All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise specified
 - Described in the schematic diagram are two types of numbers; the supply parts number and production parts number for transistors and diodes. One type of number is used for supply parts number and production parts number when they are identical.
e.g. Q1
[2SC1844 (E, F)] ← Production parts number
[2SC1844E] ← Supply parts number
D212
1S2473T77 ← Production parts number.
[MA161] ← Supply parts numbers
 - The supply parts number is described alone in the replacement parts list.
 - **This schematic diagram may be modified at any time with the development of new technology.**

SCHEMATIC DIAGRAM

MECHANISM CONTROL SECTION

EQUIVALENT CIRCUITS
IC301 AN6870

<img alt="Equivalent circuit diagram for IC301 AN6870, showing multiple output channels (A, B, C, D, E, F, G, H) with various gains and filter settings. The diagram includes a V Reg, COMP, HOLD GATE, and various operational amplifiers (OP1, OP2, OP3, OP4, OP5, OP6, OP7, OP8, OP9, OP10, OP11, OP12, OP13, OP14, OP15, OP16, OP17, OP18, OP19, OP20, OP21, OP22, OP23, OP24, OP25, OP26, OP27, OP28, OP29, OP30, OP31, OP32, OP33, OP34, OP35, OP36, OP37, OP38, OP39, OP40, OP41, OP42, OP43, OP44, OP45, OP46, OP47, OP48, OP49, OP50, OP51, OP52, OP53, OP54, OP55, OP56, OP57, OP58, OP59, OP60, OP61, OP62, OP63, OP64, OP65, OP66, OP67, OP68, OP69, OP70, OP71, OP72, OP73, OP74, OP75, OP76, OP77, OP78, OP79, OP80, OP81, OP82, OP83, OP84, OP85, OP86, OP87, OP88, OP89, OP89, OP90, OP91, OP92, OP93, OP94, OP95, OP96, OP97, OP98, OP99, OP99, OP100, OP101, OP102, OP103, OP104, OP105, OP106, OP107, OP108, OP109, OP109, OP110, OP111, OP112, OP113, OP114, OP115, OP116, OP117, OP118, OP119, OP119, OP120, OP121, OP122, OP123, OP124, OP125, OP126, OP127, OP128, OP129, OP129, OP130, OP131, OP132, OP133, OP134, OP135, OP136, OP137, OP138, OP139, OP139, OP140, OP141, OP142, OP143, OP144, OP145, OP146, OP147, OP148, OP149, OP149, OP150, OP151, OP152, OP153, OP154, OP155, OP156, OP157, OP158, OP159, OP159, OP160, OP161, OP162, OP163, OP164, OP165, OP166, OP167, OP168, OP169, OP169, OP170, OP171, OP172, OP173, OP174, OP175, OP176, OP177, OP178, OP178, OP179, OP180, OP181, OP182, OP183, OP184, OP185, OP186, OP187, OP188, OP188, OP189, OP190, OP191, OP192, OP193, OP194, OP195, OP196, OP197, OP198, OP199, OP199, OP200, OP201, OP202, OP203, OP204, OP205, OP206, OP207, OP208, OP209, OP209, OP210, OP211, OP212, OP213, OP214, OP215, OP216, OP217, OP218, OP219, OP219, OP220, OP221, OP222, OP223, OP224, OP225, OP226, OP227, OP228, OP229, OP229, OP230, OP231, OP232, OP233, OP234, OP235, OP236, OP237, OP238, OP239, OP239, OP240, OP241, OP242, OP243, OP244, OP245, OP246, OP247, OP248, OP248, OP249, OP250, OP251, OP252, OP253, OP254, OP255, OP256, OP257, OP258, OP259, OP259, OP260, OP261, OP262, OP263, OP264, OP265, OP266, OP267, OP268, OP268, OP269, OP270, OP271, OP272, OP273, OP274, OP275, OP276, OP277, OP278, OP278, OP279, OP280, OP281, OP282, OP283, OP284, OP285, OP286, OP287, OP288, OP288, OP289, OP290, OP291, OP292, OP293, OP294, OP295, OP296, OP297, OP297, OP298, OP299, OP299, OP300, OP301, OP302, OP303, OP304, OP305, OP306, OP307, OP308, OP308, OP309, OP310, OP311, OP312, OP313, OP314, OP315, OP316, OP317, OP318, OP318, OP319, OP320, OP321, OP322, OP323, OP324, OP325, OP326, OP327, OP328, OP328, OP329, OP330, OP331, OP332, OP333, OP334, OP335, OP336, OP337, OP338, OP338, OP339, OP340, OP341, OP342, OP343, OP344, OP345, OP346, OP347, OP348, OP348, OP349, OP350, OP351, OP352, OP353, OP354, OP355, OP356, OP357, OP358, OP358, OP359, OP360, OP361, OP362, OP363, OP364, OP365, OP366, OP367, OP368, OP368, OP369, OP370, OP371, OP372, OP373, OP374, OP375, OP376, OP377, OP378, OP378, OP379, OP380, OP381, OP382, OP383, OP384, OP385, OP386, OP387, OP388, OP388, OP389, OP390, OP391, OP392, OP393, OP394, OP395, OP396, OP397, OP397, OP398, OP399, OP399, OP400, OP401, OP402, OP403, OP404, OP405, OP406, OP407, OP408, OP408, OP409, OP410, OP411, OP412, OP413, OP414, OP415, OP416, OP417, OP418, OP418, OP419, OP420, OP421, OP422, OP423, OP424, OP425, OP426, OP427, OP428, OP428, OP429, OP430, OP431, OP432, OP433, OP434, OP435, OP436, OP437, OP438, OP438, OP439, OP440, OP441, OP442, OP443, OP444, OP445, OP446, OP447, OP448, OP448, OP449, OP450, OP451, OP452, OP453, OP454, OP455, OP456, OP457, OP458, OP458, OP459, OP460, OP461, OP462, OP463, OP464, OP465, OP466, OP467, OP468, OP468, OP469, OP470, OP471, OP472, OP473, OP474, OP475, OP476, OP477, OP478, OP478, OP479, OP480, OP481, OP482, OP483, OP484, OP485, OP486, OP487, OP488, OP488, OP489, OP490, OP491, OP492, OP493, OP494, OP495, OP496, OP497, OP497, OP498, OP499, OP499, OP500, OP501, OP502, OP503, OP504, OP505, OP506, OP507, OP508, OP509, OP509, OP510, OP511, OP512, OP513, OP514, OP515, OP516, OP517, OP518, OP519, OP519, OP520, OP521, OP522, OP523, OP524, OP525, OP526, OP527, OP528, OP529, OP529, OP530, OP531, OP532, OP533, OP534, OP535, OP536, OP537, OP538, OP538, OP539, OP540, OP541, OP542, OP543, OP544, OP545, OP546, OP547, OP548, OP548, OP549, OP550, OP551, OP552, OP553, OP554, OP555, OP556, OP557, OP558, OP558, OP559, OP560, OP561, OP562, OP563, OP564, OP565, OP566, OP567, OP568, OP568, OP569, OP570, OP571, OP572, OP573, OP574, OP575, OP576, OP577, OP578, OP578, OP579, OP580, OP581, OP582, OP583, OP584, OP585, OP586, OP587, OP588, OP588, OP589, OP590, OP591, OP592, OP593, OP594, OP595, OP596, OP597, OP597, OP598, OP599, OP599, OP600, OP601, OP602, OP603, OP604, OP605, OP606, OP607, OP608, OP608, OP609, OP610, OP611, OP612, OP613, OP614, OP615, OP616, OP617, OP618, OP618, OP619, OP620, OP621, OP622, OP623, OP624, OP625, OP626, OP627, OP628, OP628, OP629, OP630, OP631, OP632, OP633, OP634, OP635, OP636, OP637, OP638, OP638, OP639, OP640, OP641, OP642, OP643, OP644, OP645, OP646, OP647, OP648, OP648, OP649, OP650, OP651, OP652, OP653, OP654, OP655, OP656, OP657, OP658, OP658, OP659, OP660, OP661, OP662, OP663, OP664, OP665, OP666, OP667, OP668, OP668, OP669, OP670, OP671, OP672, OP673, OP674, OP675, OP676, OP677, OP678, OP678, OP679, OP680, OP681, OP682, OP683, OP684, OP685, OP686, OP687, OP688, OP688, OP689, OP690, OP691, OP692, OP693, OP694, OP695, OP696, OP697, OP697, OP698, OP699, OP699, OP700, OP701, OP702, OP703, OP704, OP705, OP706, OP707, OP708, OP708, OP709, OP710, OP711, OP712, OP713, OP714, OP715, OP716, OP717, OP718, OP718, OP719, OP720, OP721, OP722, OP723, OP724, OP725, OP726, OP727, OP728, OP728, OP729, OP730, OP731, OP732, OP733, OP734, OP735, OP736, OP737, OP738, OP738, OP739, OP740, OP741, OP742, OP743, OP744, OP745, OP746, OP747, OP748, OP748, OP749, OP750, OP751, OP752, OP753, OP754, OP755, OP756, OP757, OP758, OP758, OP759, OP760, OP761, OP762, OP763, OP764, OP765, OP766, OP767, OP768, OP768, OP769, OP770, OP771, OP772, OP773, OP774, OP775, OP776, OP777, OP778, OP778, OP779, OP780, OP781, OP782, OP783, OP784, OP785, OP786, OP787, OP788, OP788, OP789, OP790, OP791, OP792, OP793, OP794, OP795, OP796, OP797, OP797, OP798, OP799, OP799, OP800, OP801, OP802, OP803, OP804, OP805, OP806, OP807, OP808, OP808, OP809, OP810, OP811, OP812, OP813, OP814, OP815, OP816, OP817, OP818, OP818, OP819, OP820, OP821, OP822, OP823, OP824, OP825, OP826, OP827, OP828, OP828, OP829, OP830, OP831, OP832, OP833, OP834, OP835, OP836, OP837, OP838, OP838, OP839, OP840, OP841, OP842, OP843, OP844, OP845, OP846, OP847, OP848, OP848, OP849, OP850, OP851, OP852, OP853, OP854, OP855, OP856, OP857, OP858, OP858, OP859, OP860, OP861, OP862, OP863, OP864, OP865, OP866, OP867, OP868, OP868, OP869, OP870, OP871, OP872, OP873, OP874, OP875, OP876, OP877, OP878, OP878, OP879, OP880, OP881, OP882, OP883, OP884, OP885, OP886, OP887, OP888, OP888, OP889, OP890, OP891, OP892, OP893, OP894, OP895, OP896, OP897, OP897, OP898, OP899, OP899, OP900, OP901, OP902, OP903, OP904, OP905, OP906, OP907, OP908, OP908, OP909, OP910, OP911, OP912, OP913, OP914, OP915, OP916, OP917, OP918, OP918, OP919, OP920, OP921, OP922, OP923, OP924, OP925, OP926, OP927, OP928, OP928, OP929, OP930, OP931, OP932, OP933, OP934, OP935, OP936, OP937, OP938, OP938, OP939, OP940, OP941, OP942, OP943, OP944, OP945, OP946, OP947, OP948, OP948, OP949, OP950, OP951, OP952, OP953, OP954, OP955, OP956, OP957, OP958, OP958, OP959, OP960, OP961, OP962, OP963, OP964, OP965, OP966, OP967, OP968, OP968, OP969, OP970, OP971, OP972, OP973, OP974, OP975, OP976, OP977, OP978, OP978, OP979, OP980, OP981, OP982, OP983, OP984, OP985, OP986, OP987, OP988, OP988, OP989, OP990, OP991, OP992, OP993, OP994, OP995, OP996, OP997, OP997, OP998, OP999, OP999, OP1000, OP1001, OP1002, OP1003, OP1004, OP1005, OP1006, OP1007, OP1008, OP1008, OP1009, OP1010, OP1011, OP1012, OP1013, OP1014, OP1015, OP1016, OP1017, OP1018, OP1018, OP1019, OP1020, OP1021, OP1022, OP1023, OP1024, OP1025, OP1026, OP1027, OP1028, OP1028, OP1029, OP1030, OP1031, OP1032, OP1033, OP1034, OP1035, OP1036, OP1037, OP1038, OP1038, OP1039, OP1040, OP1041, OP1042, OP1043, OP1044, OP1045, OP1046, OP1047, OP1048, OP1048, OP1049, OP1050, OP1051, OP1052, OP1053, OP1054, OP1055, OP1056, OP1057, OP1058, OP1058, OP1059, OP1060, OP1061, OP1062, OP1063, OP1064, OP1065, OP1066, OP1067, OP1068, OP1068, OP1069, OP1070, OP1071, OP1072, OP1073, OP1074, OP1075, OP1076, OP1077, OP1078, OP1078, OP1079, OP1080, OP1081, OP1082, OP1083, OP1084, OP1085, OP1086, OP1087, OP1088, OP1088, OP1089, OP1090, OP1091, OP1092, OP1093, OP1094, OP1095, OP1096, OP1097, OP1097, OP1098, OP1099, OP1099, OP10100, OP10101, OP10102, OP10103, OP10104, OP10105, OP10106, OP10107, OP10108, OP10108, OP10109, OP10110, OP10111, OP10112, OP10113, OP10114, OP10115, OP10116, OP10117, OP10118, OP10118, OP10119, OP10120, OP10121, OP10122, OP10123, OP10124, OP10125, OP10126, OP10127, OP10128, OP10128, OP10129, OP10130, OP10131, OP10132, OP10133, OP10134, OP10135, OP10136, OP10137, OP10138, OP10138, OP10139, OP10140, OP10141, OP10142, OP10143, OP10144, OP10145, OP10146, OP10147, OP10148, OP10148, OP10149, OP10150, OP10151, OP10152, OP10153, OP10154, OP10155, OP10156, OP10157, OP10158, OP10158, OP10159, OP10160, OP10161, OP10162, OP10163, OP10164, OP10165, OP10166, OP10167, OP10168, OP10168, OP10169, OP10170, OP10171, OP10172, OP10173, OP10174, OP10175, OP10176, OP10177, OP10177, OP10178, OP10179, OP10180, OP10181, OP10182, OP10183, OP10184, OP10185, OP10186, OP1018

SCHEMATIC DIAGRAM

POWER SUPPLY SECTION

CIRCUIT BOARD

VOLTAGE REGULATOR CIRCUIT BOARD

TERMINATIONS

8 7 6 5 4 3 2 1

FL METER SECTION

Service Manual

Cassette Deck
RS-M255X

dbx Equipped Cassette Deck with
Electronic Multi-Mode Counter

This is the Service Manual for the following areas.

- For all European areas except United Kingdom.
- For United Kingdom.

RS-M250 MECHANISM SERIES

Specifications

Track system:	4-track 2-channel stereo recording and playback	Fast forward and rewind time:	Approx. 90 seconds with C-60 cassette tape
Tape speed:	4.8cm/s	Inputs:	MIC; sensitivity 0.25mV, applicable microphone impedance 400Ω – 10kΩ
Wow and flutter:	0.038% (WRMS), ±0.13% (DIN)	Outputs:	LINE; sensitivity 60mV, input impedance 47kΩ
Frequency response: Metal tape;	20 – 20,000Hz 25 – 18,000Hz (DIN) 30 – 17,000Hz ±3dB	Bias frequency:	LINE; output level 700mV, load impedance 22kΩ over HEADPHONES; output level 125mV (at 8Ω) 85kHz
CrO ₂ tape;	20 – 19,000Hz 25 – 18,000Hz (DIN) 30 – 16,000Hz ±3dB	Motor:	2-motor system
Normal tape;	20 – 18,000Hz 25 – 16,000Hz (DIN) 30 – 15,000Hz ±3dB	Heads:	2-head system 1-SX (Sendust Extra) head for record/playback 1-double-gap ferrite head for erasure
Dynamic range:	110dB (at 1kHz) with dbx in	Power requirement:	AC; 110/125/220/240V, 50-60Hz Pre-set power voltage 220V 240V for United Kingdom
Max. input level improvement:	10dB or more improved with dbx in (at 1kHz)	Power consumption:	28W
Signal-to-noise ratio:	dbx* in; 92dB Dolby NR in; 68dB (above 5kHz) Dolby NR out; 58dB (signal level = max. input level A weighted, CrO ₂ type tape)	Dimensions:	43.0cm(W) × 10.8cm(H) × 33.1cm(D)
		Weight:	6.0kg

Specifications are subject to change without notice.

* The term dbx is a registered trademark of dbx Inc.

** 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories.

Technics

Matsushita Electric Trading Co., Ltd.
P.O. Box 288, Central Osaka Japan

CONTENTS

ITEM	PAGE	ITEM	PAGE
LOCATION OF CONTROLS AND COMPONENTS	2	• ADJUSTMENT OF dbx SYSTEM	29
OPERATING INSTRUCTION	3	• CHECKING PROCEDURE FOR	
DISASSEMBLY INSTRUCTIONS	6	PROBLEMS	30
• MECHANISM SECTION	7	ELECTRICAL PARTS LOCATION	33
TECHNICAL EXPLANATIONS	8	BLOCK DIAGRAM	35
• DISPLAY SECTION	8	SCHEMATIC DIAGRAM (MAIN SECTION)	37
• CONTROL SECTION	9	SCHEMATIC DIAGRAM (dbx SECTION)	39
• AUTO TAPE SELECTOR	10	CIRCUIT BOARD (MAIN CIRCUIT BOARD)	41
MEASUREMENT AND ADJUSTMENT METHODS		CIRCUIT BOARD (dbx CIRCUIT BOARD)	42
(WITHOUT dbx SYSTEM)	11	SCHEMATIC DIAGRAM (MECHANISM CONTROL	
MN1405RH (IC501) EACH TERMINAL		SECTION/FL METER SECTION)	45
FUNCTION AND WAVEFORM	16	CIRCUIT BOARDS (MECHANISM CONTROL	
OUTLINE OF dbx SYSTEM	22	CIRCUIT BOARD/FL METER CIRCUIT BOARD/	
THE BLOCK DIAGRAM OF dbx SYSTEM	23	QUARTZ CIRCUIT BOARD)	49
MEASUREMENT AND ADJUSTMENT METHODS		SCHEMATIC DIAGRAM	
(FOR dbx SYSTEM)	25	(POWER SUPPLY SECTION)	51
• TROUBLESHOOTING CHART FOR dbx		CIRCUIT BOARDS	
SYSTEM	25	(POWER SUPPLY CIRCUIT BOARDS)	52
• ADJUSTMENT PARTS LOCATION OF dbx		WIRING CONNECTION DIAGRAM	53
SYSTEM	27	CABINET PARTS LOCATION	55
• dbx SYSTEM CHECKING METHOD	28	MECHANISM PARTS LOCATION	56

LOCATION OF CONTROLS AND COMPONENTS

- | | |
|--|--|
| ① Power switch [power (push on)] | [Noise Reduction (Dolby NR • out • dbx tape • dbx disc)] |
| ② Eject button [eject] | |
| ③ Cassette holder | |
| ④ Tape indicator | |
| [Auto Tape Select (Normal • CrO ₂ • Metal)] | ⑬ Record muting button (rec mute (○)) |
| ⑤ Memory repeat button [memory repeat (■ off • — on)] | ⑭ Fast forward button [ff (M • S) (▶▶)] |
| ⑥ Digital multi counter [multi counter] | ⑮ Counter reset button [counter reset] |
| ⑦ Counter mode select button [multi counter mode] | ⑯ Pause button and indicator [pause (II)] |
| ② Tape/time select button [tape/ [time]] | ⑰ Play button and indicator [play (▶)] |
| ③ Set button [set] | ⑱ Stop button [stop (■)] |
| ④ Music select button [music select] | ⑲ Rewind button [rew (M • S) (◀◀)] |
| ⑧ FL (fluorescent level) meter | ⑳ Record button and indicator [rec (○)] |
| ⑨ Input level controls [input level (L ⊕ R)] | ㉑ Headphones jack [phones] |
| ⑩ Microphone jacks [mic (L • R)] | ㉒ Timer start switch [timer (rec • off • play)] |
| ⑪ Output level control [output level] | ㉓ Line output jacks [LINE OUT (R • L)] |
| ⑫ Noise reduction select switch | ㉔ Line input jacks [LINE IN (R • L)] |
| | ㉕ Voltage selector [VOLTAGE SELECTOR] |

OPERATING INSTRUCTION

Digital multi counter

The Digital multi counter can be used in combination with the memory repeat, music select, record muting and pause functions.

(1) Using it as a tape counter

The 3-digit digital counter featured in this unit displays a count which is virtually identical to that of Technics' mechanical counter. With a C-60 tape, the count reaches about 400, with a C-90 tape about 600 and with a C-120 tape about 800. The tape counter is employed to read out the tape position by means of the counter figures and so program search can be performed easily.

Tape counter readout

Setting to "000"

- When the Power switch is pushed and the power switched on, the counter is reset to "000".
- When other displays appear on the Digital multi counter, set to "000" in the sequence given in the table below.

Present display	"000" setting procedure
Tape counter 123 -	Depress the Counter reset button
Remaining time counter 00:00 12:34	1. Depress the Tape/time select button. 2. Depress the Counter reset button.
Skipping programs 00 03	1. Depress the Music select button. 2. When the time display appears, depress the Tape/time select button and switch over to the tape counter display. 3. Depress the Counter reset button

(2) Displaying the remaining tape time

The remaining time on the tape is displayed by setting the time at the beginning of the tape in accordance with the length of the tape, and while the tape is running in the recording mode, the time is counted down.

A 30-minute recording can be made on one side with a C-60 tape. When the remaining time counter is set to "30:00" at the beginning of the tape and recording commenced, the counter will show how many minutes of recording are left on the side of the tape being recorded.

Operate as follows:

1. Prepare to operate
 - Depress the Stop button and stop the tape at its beginning.
 - Set the Memory repeat button to the "off" position.

2. When the counter is functioning as a tape counter or is displaying a different indication, change over to the remaining time counter display in the sequence given in the table below.

Present display	Procedure for selection
Tape counter 000 123	Depress the Tape/time select button.
Skipping programs 00 03	1. Depress the Music select button. 2. When the tape counter display appears, depress the Tape/time select button.

3. Set the time in accordance with the tape length. Every time the Set button is depressed, the counter goes through the following indications: "15:00", "23:00", "30:00", "45:00" and "60:00". Set the time in accordance with the tape length, referring to the table below.

Tape length	Set time	One-side recording time (min.)
C — 30	15:00	15
C — 46	23:00	23
C — 60	30:00	30
C — 90	45:00	45
C — 120	60:00	60

* Some tapes with a non-standard length are sold. When using one of these, set the time to the closest value in the above table.

4. Start the recording

The tape runs and as the amount of tape remaining decreases, the time indicated on the counter also decreases. The figure below shows the relationship between the tape and counter

Notes:

- Do not depress the Fast forward or Rewind button while the remaining tape time is being displayed. This action will cause the counter to function as a tape counter and make it unable to display the correct remaining tape time.
- If the Tape/time select button is depressed when changing over to the remaining time counter, "12:34" or "-0:02" will be displayed. This is not the remaining tape time display.
To find out the precise remaining tape time, it is necessary for the time to be set at the beginning of the tape.

(3) Displaying the record muting time

When the Record muting button is depressed during recording, the Digital multi counter starts counting each passing second and no sound is recorded on the tape.

The function can be used to create unrecorded blanks on

the tape of the required length. Blanks of about 4 seconds are required for the music selector to work accurately.

- Given below is the procedure for creating unrecorded blanks of 4 seconds.

(4) Skipping programs

It is possible to skip up to 20 programs.

Operate as follows:

1. Prepare to operate.

- Set the Memory repeat button to the "off" position.
- Depress the Music select button and make the Digital multi counter indicate "00".

2. Set the number of programs to be skipped.

- Every time the Set button is depressed, the number increases by 1. Set to the desired number.
- To reset the number of programs to be skipped (for instance, "03" has been set although "02" was initially desired), depress the Music select button twice to make the counter display "00", and then depress the Set button to set the desired number.

3. Depress the Fast forward or Rewind button.

- Playback starts automatically as soon as the tape reaches the start of the required program.
- The digital multi counter display decreases by 1 every time a gap between programs is detected, and when playback begins, it changes over to the tape counter function.

Notes:

- The number of programs to be skipped can be set in either the stop or playback mode.

When the Pause or Stop button is depressed immediately after the setting has been made in the playback mode, the setting is released.

When the Pause or Play button is depressed immediately after the setting has been made in the stop mode, the setting may be released.

- When the Stop or Play button is depressed when searching for a program, the skipping program search mode is released.

Counting the number of programs to be skipped

■ When "03" has been set

- When searching for programs in the fast forward mode

- When searching for programs in the rewind mode

■ When "00" has been set

- When the tape is fast forwarded, playback will begin from the program following that now heard.
- When the tape is rewound, playback will begin from the start of the program now heard.

(5) Memory repeat playback

When playing back the whole tape repeatedly

1. Set the tape counter to "000" at the position corresponding to the beginning of the tape.
2. Set the Memory repeat button to the "on" position.
3. Depress the Play button and make the tape run.

When the tape comes to the end, it is rewound automatically and playback begins again automatically from the beginning. This operation is continued 16 times unless the Stop button is depressed.

Note:

- Since "000" is detected at the end of the tape, the number of repeats may be reduced to a minimum of 8, depending on the state of the tape.

Repeat playback from tape beginning to program somewhere on tape

1. Set the tape counter to "000" at the position where the program whose play is to be repeated ends.
2. Rewind the tape to the beginning.
3. Set the Memory repeat button to the "on" position.
4. Depress the Play button and make the tape run. The tape is rewound automatically to the "000" display and the same playback operation as above is repeated automatically for 16 times.

Repeat playback from a program somewhere on tape to tape end

1. Set the tape counter to "000" at the position where the start of the program is located.
2. Set the Memory repeat button to the "on" position.
3. Depress the Play button and make the tape run. The tape is automatically rewound at the end of the tape and the part of the tape from the "000" display to the end is played back repeatedly 16 times automatically.

Note:

- Always set the Memory repeat button to the "off" position after use.

dbx noise reduction system

Features

- Reduced noise over the whole audible frequency range (more than about "30dB" reduction).
- The signal is compressed at a high recording level for recording to enable recording with minimal distortion and a wide dynamic range.
- The linear logarithmic compression and expansion do not make the sound quality undergo change with level mismatching.

Principle of basic operation

The dbx system works to expand the dynamic range by compressing (encoding) the signals and then expanding (decoding) them. As shown in the figure, the input signal level is halved during recording onto the tape. During playback the halved level is doubled to restore the original signal. The figure shows that high signals are greatly expanded (from "+10 dB" to "+20 dB") while low signals are given a low expansion ("−40dB" to "−80dB"). This results in a great improvement in the dynamic range and simultaneously in a great reduction in tape hiss.

"disc" position for "dbx encoded discs"

This unit comes with a "dbx disc" position on the Noise reduction select switch for playing "dbx encoded discs."

Playing "dbx encoded discs"

Operate in the following sequence:

- Set the input selector on the stereo amplifier to the "tape" position and the record selector to the "phono" position. If the amplifier is capable of tape monitor selection, set the tape monitor switch to the "tape" position and the input selector to the "phono" position.
- Set the unit to the stop mode and then set the Noise reduction select switch to the "dbx disc" position.
Disconnect the microphone if one has been connected to the unit.

3. Start operating the turntable.

- Adjust the unit's input level controls so that the Fluorescent level meter illumination indicates around "0 dB".
- Adjust the volume using the control on the stereo amplifier.

Note:

- Do not set the Noise reduction select switch to the "dbx disc" position during tape playback since the sound will then no longer be heard.

Some open-reel type dbx encoded tapes are now available from music stores. These tapes can be played back just like the records by setting the Noise reduction select switch to the "disc" position.

Recording "dbx encoded discs" onto tape

- Set the Noise reduction select switch to the "dbx disc" position.
- Adjust the recording level, following the "Recording level setting" instructions.
- Start the recording.

The sound of the disc is recorded on the tape still in encoded (compressed) form. The decoded (expanded) sound can, however, be monitored (through both the speakers connected to the amplifier and headphones connected to the unit). When playing back a tape which has been recorded in this way, set the Noise reduction select switch to the "dbx tape" position.

* Unlike ordinary records, "dbx encoded discs" have their sound dbx encoded (compressed) when it is cut into the sound grooves. This means that for replay, the sound must be returned to its original form through a decoder (expander). As a result, the noise level is reduced and the dynamic range is increased for a higher record play quality.

Recording with Dolby NR

This unit includes the Dolby NR system, which reduces tape noise to a remarkable degree.

Briefly, the system works as follows: At low sound levels (where tape noise is most noticeable), the high-frequency portion of the sound is recorded at a higher level. Tape noise is not amplified.

During playback, the level of only that portion of the signal which was increased at the time of the recording, as well as tape noise, is reduced by a like amount. This causes the signal to be heard at a normal level, and the tape noise to be reduced significantly.

Noise reduction select switch

- dbx tape: Used for dbx recording and for replaying dbx recorded tapes.
- dbx disc: Used for playing dbx encoded discs on a turntable and for recording such discs.
- Dolby NR: Used for recording with the Dolby NR system and replaying tapes which have been recorded with the Dolby NR system.
- Out: Used when noise reduction is not required.

DISASSEMBLY INSTRUCTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Ref. No.	Procedure	To remove	Remove	Shown in fig.
1	1	Case cover	• 4 screws (A)	1
2	2	Bottom cover	• 6 screws (B)	2
3	1→2→3	Front panel	• 4 screws (C)	2, 3
4	1→2→3→4	Sub chassis unit	• 1 screw (D)	3
5	1→2→3→4→5	Push switch circuit board	• 2 screws (E)	4
6	1→2→3→4→6	Key board circuit board	• As shown in fig. 4, pull the claw in the direction of arrow ①, then pull key board circuit board in the direction of arrow ②. Then, it can be removed.	4
7	1→7	dbx circuit board	• 2 red screws (F) • dbx P.B. holder (G) • As shown in fig. 3, pull the claw in the direction of arrow ①, then pull dbx circuit board in the direction of arrow ②. Then, it can be removed.	3 3 3
8	1→2→3→4→7→8	Main circuit board	• 2 volume knobs (H) • 2 select knobs (I) • 2 screws (J) • Meter shield plate (K) • 6 red screws (L) • Earth plate-A (M)	1 5 5 5 6 6
9	1→2→3→4→9	Mechanism unit	• 8 screws (N) • Power button (O)	2, 5 5
10	10	Cassette lid	• As shown in fig. 7, pull in the direction of arrow ①. Then, it can be removed.	7
11	1→2→3→4→9→10 →11	Cassette holder	• While pushing mechanical chassis in the direction of arrow ①, extract cassette holder in the direction of arrow ②.	8
12	1→2→3→4→9→10 →11→12	Mechanism cover	• 3 screws (P)	9
13	1→2→3→4→9→13	Main control circuit board	• 3 screws (Q)	10

• MECHANISM SECTION

(TOP VIEW)

- For repair, measurement or adjustment with the mechanism removed from the unit be sure to ground the lower base plate of the mechanism.
- For grounding, connect a extension cord to the mechanism's lower base plate and TP8 (earth) from main circuit board.
- Without grounding, the auto tape selector does not operate properly.

TECHNICAL EXPLANATION

• DISPLAY SECTION

1. DISPLAY TUBE

Internal display-tube connections are shown below.

Fig. A

2. DIGITAL COUNTER

- During tape counter indication, tape count is displayed by the first three digits (6G, 5G, 4G). The bottom digit (fig. C) is used to indicate tape travel and direction as one of the segments (c), (d), (e) and (g) lights (counterclockwise rotation for PLAY and FF; clockwise for REW).
- For tape remaining time indication, all four digits and “:”, “min” and “sec” are used. For recording muting time indication, display elements are the same.
- Only lower two digits are used to indicate music selection (for jumping up to 20 selections). These functions of the digital counter are controlled by outputs from the microprocessor IC501 via FL driver IC302 and IC303.

NOTES:

Anode: 1–10, (a)–(g), B1–B18, α—γ, colon

Grid: 1G–6G, Gd

Fig. C

Fig. D

3. LEVEL METER

This model uses a level meter IC AN6870N for dynamic lighting indication, featuring a wide range of –40dB to +18dB range.

BLOCK DIAGRAM

Fig. E

CIRCUIT OPERATION

Most conventional level meters using AN6870 (IC301) can only display levels in the range of –20dB to +8dB. RS-M255X using the same AN6870, however, is capable of covering a range of –40dB to +18dB, which is sufficient for the expanded dynamic range of dbx.

A conventional peak meter circuit follows the IC304, which means a limited display range between –20dB and +8dB. To offset this, a 1/2 multiplier circuit is added to the pre-stage to double the display range.

In other words, the dynamic range (58dB) of the input signal to IC305 (BA6138) is compressed to approximately half (multiplied by 1/2) to obtain a 28dB dynamic range for the signal to the meter circuit.

Sound signal (AC signal) is inputted to this IC, which outputs a DC signal converted to half of the input.

Level meter indication	Changes in terminal voltages of IC305		LINE OUT voltage
	Pin ④ or ⑥	Pin ② or ⑧	
+ 12 dB	+ 12 dB	around + 6 dB	+ 12 dB (1600 mV)
0 dB	0 dB	0 dB	0 dB (400 mV)
– 12 dB	– 12 dB	around – 6 dB	– 12 dB (100 mV)

• CONTROL SECTION

RS-M255X contains a microcomputer MN1405RH for various input control buttons, rotation detection, and operation commands. The microcomputer quickly processes signals received from the 19 control switches and a hall IC.

• AUTO TAPE SELECTOR

This unit is equipped with an auto-tape selector system that detects these identification recesses and automatically selects the correct bias and equalization for Normal, CrO₂ and Metal tape varieties.

Thus, the novice user can obtain the correct tape selector setting automatically to ensure proper recording and playback results.

— MECHANICAL SECTION —

— ELECTRICAL SECTION —

MEASUREMENT & ADJUSTMENT METHODS

Tape selector (Tape mode switching)

For measurement adjustment with test tapes without tape detection holes (A and B), switch tape modes as follows.

(For normal tape mode, just insert a normal tape into the cassette holder.)

* Metal tape mode setting:

Metal tape mode is obtained by disconnecting the 3 pin socket **K** from the 3 pin post **K** on the P.C.B. (Printed Circuit Board).

* CrO₂ tape mode setting:

First, disconnect the 3 pin socket **K** in the same way as above. Then, as illustrated in the figure right, connect the terminal-3 of the 3 pin post to the ground with a connection wire.

Fig. 1

NOTES: Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Make sure heads are clean.
- Make sure capstan and pressure roller are clean.
- Judgeable room temperature: $20 \pm 5^\circ\text{C}$ ($68 \pm 9^\circ\text{F}$)
- NR switch: OUT

- Timer start switch: OFF
- Input level controls: Maximum
- Output level control: Maximum

ITEM	MEASUREMENT & ADJUSTMENT
A Head azimuth adjustment Condition: * Playback mode	L-CH/R-CH output balance adjustment 1. Make connections as shown in fig. 2.

Fig. 2

ITEM	MEASUREMENT & ADJUSTMENT
<p>Equipment:</p> <ul style="list-style-type: none"> * VTVM * Oscilloscope * Test tape (azimuth) ... QZZCFM 	<p>2. Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) in fig. 3 for maximum output L-CH and R-CH levels. When the output levels of L-CH and R-CH are not at maximum at the same time, readjust as follows.</p> <p>3. Turn the screw shown in fig. 3 to find angles A and C (points where peak output levels for left and right channels are obtained). Then, locate the angle B between angles A and C, i.e., a point where L-CH and R-CH output levels come together at maximum. (Refer to figs. 3 and 4.)</p> <p>L-CH/R-CH phase adjustment</p> <p>4. Make connections as shown in fig. 5.</p> <p>5. Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) shown in fig. 3 so that pointers of the two VTVMs swing to maximum and a waveform as illustrated in fig. 6 is obtained on the oscilloscope.</p> <p>Fig. 5</p> <p>Fig. 4</p> <p>Fig. 6</p>
<p>B Tape speed</p> <p>Condition:</p> <ul style="list-style-type: none"> * Playback mode * Normal tape mode <p>Equipment:</p> <ul style="list-style-type: none"> * Digital electronic counter * Test tape ... QZZCWAT 	<p>Tape speed accuracy</p> <p>1. Test equipment connection is shown in fig. 7.</p> <p>2. Playback test tape (QZZCWAT 3,000Hz), and supply playback signal to frequency counter.</p> <p>3. Measure this frequency.</p> <p>4. On the basis of 3,000Hz, determine value by following formula:</p> $\text{Tape speed accuracy} = \frac{f - 3,000}{3,000} \times 100 (\%)$ <p>where, f = measured value</p> <p>5. Take measurement at middle section of tape.</p> <p>Standard value: $\pm 1.5\%$</p> <p>Adjustment method</p> <p>1. Playback the test tape (middle).</p> <p>2. Adjust so that frequency becomes 3,000Hz.</p> <p>3. Tape speed adjustment VR shown in fig. 1.</p> <p>Tape speed fluctuation</p> <p>Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows:</p> $\text{Tape speed fluctuation} = \frac{f_1 - f_2}{3,000} \times 1000 (\%)$ <p>f_1 = maximum value, f_2 = minimum value</p> <p>Standard value: Less than 1.0%</p>
<p>C Playback frequency response</p> <p>Condition:</p> <ul style="list-style-type: none"> * Playback mode * Normal tape mode <p>Equipment:</p> <ul style="list-style-type: none"> * VTVM * Oscilloscope * Test tape ... QZZCFM 	<p>1. Test equipment connection is shown in fig. 2.</p> <p>2. Place UNIT into playback mode.</p> <p>3. Playback the frequency response test tape (QZZCFM).</p> <p>4. Measure output level at 12.5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz and 63Hz, and compare each output level with the standard frequency 315Hz, at LINE OUT.</p> <p>5. Make measurement for both channels.</p> <p>6. Make sure that the measured value is within the range specified in the frequency response chart. (Shown in fig. 8.)</p> <p>Fig. 8</p>

ITEM	MEASUREMENT & ADJUSTMENT
<p>D Playback gain</p> <p>Condition: * Playback mode * Normal tape mode</p> <p>Equipment: * VTVM * Oscilloscope * Test tape ... QZZCFM</p>	<p>1. Test equipment connection is shown in fig. 2. 2. Playback standard recording level portion on test tape (QZZCFM 315Hz, 0dB), and using VTVM measure the output level at LINE OUT jack. 3. Make measurement for both channels.</p> <p>Standard value: $0.7V \pm 1\text{dB}$ [around 0.42V: at test points TP5 (L-CH) and TP6 (R-CH)]</p> <p>Adjustment</p> <p>1. If measured value is not within standard, adjust VR5 (L-CH), VR6 (R-CH) (shown in fig. 1). 2. After adjustment, check "Playback frequency response" again.</p>
<p>E Erase current</p> <p>Condition: * Record mode * Metal tape mode</p> <p>Equipment: * VTVM * Oscilloscope</p>	<p>1. Test equipment connection is shown in fig. 9. 2. Place UNIT into metal tape mode. 3. Press the record and pause buttons. 4. Read voltage on VTVM and calculate erase current by following formula:</p> $\text{Erase current (A)} = \frac{\text{Voltage across both ends of R141}}{1 (\Omega)}$ <p>Standard value: $155 \pm 15 \text{mA}$ (Metal position)</p> <p>5. If measured value is not within standard, adjust as follows.</p> <p>Adjustment</p> <p>1. Open the point (B) and short the point (A) on the main circuit board in the circuit board diagram (See page 41). 2. Make measurement for erase current. 3. Make sure that the measured value is within the erase current of 140mA to 170mA. 4. If it is beyond the value, carry out the following adjustments: • If the erase current is less than 140mA, open the point (A). • If the erase current is more than 170mA, short the points (A) and (B).</p>
<p>F Overall frequency response</p> <p>Condition: * Record/playback mode * Normal tape mode * CrO₂ tape mode * Metal tape mode * Input level controls ... MAX * Output level control ... MAX</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω) * Test tape (reference blank tape) ... QZZCRA for Normal ... QZZCRX for CrO₂ ... QZZCRZ for Metal</p>	<p>Note: Before measuring and adjusting, make sure of the playback frequency response (For the method of measurement, please refer to the playback frequency response).</p> <p>Overall frequency response adjustment by recording bias current</p> <p>(Recording equalizer is fixed)</p> <ol style="list-style-type: none"> 1. Make connections as shown in fig. 11. 2. Place UNIT into normal tape mode and load the test tape (QZZCRA). 3. Input a 1kHz, -24 dB signal through LINE IN. Place the set in record mode. 4. Fine adjust the attenuator to obtain 0.7V LINE OUT output. * Make sure that the input signal level is $-24 \pm 4\text{dB}$ with 0.7V output voltage. 5. Adjust the attenuator to reduce the input signal level by 20dB. 6. Adjust the AF oscillator to generate 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz and 10kHz signals, and record these signals on the test tape. 7. Playback the signals recorded in step 6, and check if the frequency response curve is within the limits shown in the overall frequency response chart for normal tapes (fig. 10). (If the curve is within the charted specifications, proceed to steps 8, 9, 10 and 11.) If the curve is not within the charted specifications, adjust as follows; <p>Overall frequency response chart (Normal)</p> <p>Fig. 10</p> <p>Fig. 11</p>

ITEM	MEASUREMENT & ADJUSTMENT	
	<p>Adjustment A: When the curve exceeds the overall frequency response chart specifications (fig. 10) as shown in fig. 12.</p> <p>Fig. 12</p> <ol style="list-style-type: none"> 1) Increase bias current by turning VR9 (L-CH) and VR10 (R-CH). (See fig. 1 on page 11.) 2) Repeat steps 6 and 7 to confirm. (Proceed to steps 8, 9, 10 and 11 if the curve is now within the charted specifications in fig. 10.) 3) If the curve still exceeds the specifications (fig. 10), increase bias current further and repeat steps 6 and 7. <ol style="list-style-type: none"> 8) Place UNIT into CrO₂ tape mode. 9) Change test tape to QZZCRX, and record 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz and 12.5kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart for CrO₂ tapes (fig. 14). 10) Place UNIT into metal tape mode change test tape to QZZCRZ, and record 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz and 12.5kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart for metal tapes (fig. 14). 11) Confirm that bias currents are approximately as follows when the UNIT is set at different tape mode. * Read voltage on VTVM and calculate bias current by following formula: $\text{Bias current (A)} = \frac{\text{Value read on VTVM (V)}}{10 (\Omega)}$ <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> <p>Standard value: around 340 μA (Normal position) around 440 μA (CrO₂ position) around 710 μA (Metal position)</p> <p>: measured at TP1 (L-CH) and TP2 (R-CH)</p> </div>	<p>Adjustment B: When the curve falls below the overall frequency response chart specifications (fig. 10) as shown in fig. 13.</p> <p>Fig. 13</p> <ol style="list-style-type: none"> 1) Reduce bias current by turning VR9 (L-CH) and VR10 (R-CH). 2) Repeat steps 6 and 7 to confirm. (Proceed to steps 8, 9, 10 and 11 if the curve is now within the charted specifications in fig. 10.) 3) If the curve still falls below the charted specifications (fig. 10), reduce bias current further and repeat steps 6 and 7.
	<p>Overall frequency response chart (CrO₂, Metal)</p> <p>Fig. 14</p>	
<p>G Overall gain</p> <p>Condition:</p> <ul style="list-style-type: none"> * Record/playback mode * Normal tape mode * Input level controls ... MAX * Output level control ... MAX * Standard input level; MIC -72±3dB LINE IN ... -24±3dB <p>Equipment:</p> <ul style="list-style-type: none"> * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω) * Test tape (reference blank tape) ... QZZCRA for Normal 	<ol style="list-style-type: none"> 1) Test equipment connection is shown in fig. 15. 2) Place UNIT into normal tape mode, and load the test tape (QZZCRA). 3) Place UNIT into record mode. 4) Supply 1kHz signal (-24 dB) from AF oscillator, through ATT to LINE IN. 5) Adjust ATT until monitor level at LINE OUT becomes 0.7V. 6) Playback recorded tape, and make sure the value at LINE OUT on VTVM becomes 0.7V. 7) If measured value is not 0.7V, adjust VR7 (L-CH), VR8 (R-CH). 8) Repeat from step (2). 	

Fig. 15

ITEM	MEASUREMENT & ADJUSTMENT
<p>H Fluorescent meter</p> <p>Condition: * Record mode * Input level controls ... MAX * Output level control ... MAX</p> <p>Equipment: * VTVM * AF oscillator * ATT</p>	<ol style="list-style-type: none"> 1. Make connections as shown (See fig. 15). 2. Connect a wire between TP301 and ground terminal (See fig. 16). 3. In the recording pause mode, apply 1 kHz (-24 dB) to LINE IN. 4. Adjust ATT so that output level at LINE OUT is 0.7 V. <p>-40dB adjustment</p> <ol style="list-style-type: none"> 5. Adjust ATT so that the level adjusted at step 4 is reduced by 40 dB. 6. At this time, check that -40 dB indicator is lighted halfway (intermediate brightness between full brightness and light-out: See fig. 17). 7. If the indicator is not lighted halfway as described in step 6, adjust VR302. <p>0dB adjustment</p> <ol style="list-style-type: none"> 8. Restore the condition of step 4 (set LINE OUT output level to 0.7 V). 9. At this time, check that 0dB indicator is lighted halfway (intermediate brightness between full brightness and light-out: See fig. 18). 10. If improper, adjust VR301. 11. Repeat adjustments and checks at steps 4, 5, 6, 7, 8, 9 and 10 two or three times. 12. Disconnect the wire between TP301 and ground terminal, which had been connected at step 2.
<p>I Dolby NR circuit</p> <p>Condition: * Record mode * Dolby NR switch ... IN/OUT * Input level controls ... MAX</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600 Ω)</p>	<ol style="list-style-type: none"> 1. Test equipment connection is shown in fig. 20. 2. Place UNIT into record mode, set the Dolby NR switch to OUT position and supply to LINE IN to obtain -34.5 dB at PIN ⑦ [IC3 (L-CH), IC4 (R-CH)] (frequency 5 kHz). 3. Confirm that the value at IN position is 8 (± 2.5) dB greater than the value at OUT position of Dolby NR switch.
<p>J Input scanning time adjustment</p> <p>Condition: * Stop mode</p> <p>Equipment: * Oscilloscope</p>	<ol style="list-style-type: none"> 1. Connect oscilloscope to ⑯ terminal of IC501. 2. Measure the time of input scanning signal with oscilloscope as shown in fig. 20. <p style="border: 1px solid black; padding: 2px; text-align: center;">Standard value: About 10 msec</p> <ol style="list-style-type: none"> 3. If the measured value is markedly different from the signal shown below, make the necessary adjustment with VR501.

Fig. 16

Fig. 17

Fig. 18

Fig. 19

1. Test equipment connection is shown in fig. 20.
2. Place UNIT into record mode, set the Dolby NR switch to OUT position and supply to LINE IN to obtain -34.5 dB at PIN ⑦ [IC3 (L-CH), IC4 (R-CH)] (frequency 5 kHz).
3. Confirm that the value at IN position is 8 (± 2.5) dB greater than the value at OUT position of Dolby NR switch.

1. Connect oscilloscope to ⑯ terminal of IC501.
2. Measure the time of input scanning signal with oscilloscope as shown in fig. 20.

Standard value: About 10 msec

3. If the measured value is markedly different from the signal shown below, make the necessary adjustment with VR501.

Fig. 20

MN1405RH (IC501) EACH TERMINAL FUNCTION AND WAVEFORM

(BOTTOM VIEW)

Terminal No.	Symbol	Name	Function/operation
1.	VSS	GND	
2.	C011	TIMER REC•PLAY Signal output	
3.	C010	FL meter reset	<p>This output is for resetting the Peak Hold of the FL Meter. The pulse 2.5msec. width is transmitted in approx. 2-second cycles, regardless of the mechanism operation.</p>
4.	C09	TIME OUT	<p>Not used.</p> <p>Becomes "H" level only during time indication</p>
5.	C08	No connection	Not used.

Terminal No.	Symbol	Name	Function/operation
6.	C07	Muting	<p>"L" level 0.4 to 0.5 second after "PLAY" finish. "H" level in PAUSE, FF, REW STOP. "L" level approx. 0.4 second after "REC PAUSE" is switched to REC. "L" level approx. 0.4 second after command in case PAUSE mode is set to REC command.</p>
7.	C06	REC indication	<p>"H" level simultaneously with REC indication. "H" level immediately after power is ON in TIMER REC mode. "H" level held if in TIMER REC position, when STOP AUTO RESET mechanism operates.</p>
8.	C05	PLAY indication	<p>"H" level simultaneously with PLAY indication. Same as the above for TIMER PLAY.</p>
9.	C04	PAUSE indication	<p>"H" level simultaneously with PAUSE indication.</p>
10.	C03	FL grid & input SW. scan	<p>ON-cycle 10 msec</p> <p>t₁ t₂ t₃ t₄ t₅ t₆ t₇ t₈ t₉</p> <p>CO4 CO1 CO2 CO3</p> <p>CO0 CO1 CO2 CO3</p> <p>2.5msec</p>
11.	C02	FL grid & input SW. scan	
12.	C01	FL grid & input SW. scan	
13.	C00	FL grid & input SW. scan	

Terminal No.	Symbol	Name	Function/operation
14.	A13	Input switch state reading	Reads switch states corresponding to scanning of CO ϕ — 3 (when the cassette half detection leaf switch (S605) is ON, this terminal is connected to the HALL IC, MUSIC SELECT switch (S512) and SET switch (S511)).
15.	A12	Input switch state reading	Reads switch states corresponding to scanning of CO ϕ — 3 (when the mode leaf switch (S602) is ON, this terminal is connected to the accidental erasing protection leaf switch (S601), memory repeat switch (S509), TAPE/TIME switch (S510) and TIMER PLAY switch (S513)).
16.	A11	Input switch state reading	Reads switch states corresponding to scanning of CO ϕ — 3 (when the play leaf switch (S604) is ON, this terminal is connected to the REC MUTE switch (S508)).
17.	A1 ϕ	Input switch state reading	Reads switch states corresponding to scanning of CO ϕ — 3 (when the stop leaf switch (S603) is ON, this terminal is connected to the counter reset switch (S501)).
			<p>Operation example Counter reset switch (S501) and stop switch (S603) are connected to A10. If only S603 is closed, the waveform is as follows:</p> <p>Cassette half detection switch (S605), HALL IC output, MUSIC SELECT switch (S512) and SET switch (S511) are connected to A13. If all switches are OFF, the following waveform is obtained in FF or REW mode.</p>
18.	Bi3	REW key	Push the switch.
19.	Bi2	FF key	"H" in the normal case, "L" when the switch is pushed.
20.	Bi1	PLAY key	
21.	Bi ϕ	STOP key	
22.	EO ϕ	Brake plunger	<p>"H" during FF/REW operations.</p>
23.	EO1	Trigger plunger	<p>"H" until MODE SW is closed after the input to switch the mechanism, such as PLAY, PAUSE, STOP, etc. has been applied. (Approx. 70ms. depending on the mechanism condition.)</p>

Terminal No.	Symbol	Name	Function/operation
24.	E $\bar{O}2$	Motor CL	<p>Indication</p> <p>"H" until MODE SW is changed from "close" to "open" following the indication that the mechanism mode has been changed.</p> <p>REW indication</p> <p>"H" in REW operation.</p>
25.	E $\bar{O}3$	Motor UNCL	Same as the above in MODE conversion. "H" during FF (Cue).
26.	TST	Chip test	Connected to GND.
27.	RST	RESET	<p>Computer's RESET terminal. Reset is less than 0.8V.</p> <p>Power ON</p>
28.	CSLCT	CSLCT	Connected to GND.
29.	SNS ϕ	Input switch state reading	Reads switch states corresponding to scanning of CO ϕ — 3. (This terminal is connected to REC switch (S503), PAUSE switch (S502), switch detecting pulses between signal portions and TIMER REC switch (S513).)
30.	SNS1	Reference signal reading	Time caount reference signal: approx. 1446 Hz
31.	D $\bar{O}4$	FL counter Segment a	<p>Number indication</p> <p>Running indication</p>
32.	D $\bar{O}1$	FL counter Segment b	
33.	D $\bar{O}2$	FL counter Segment c	
34.	D $\bar{O}3$	FL counter Segment d	
35.	D $\bar{O}4$	FL counter Segment e	
36.	D $\bar{O}5$	FL counter Segment f	
37.	D $\bar{O}6$	FL counter Segment g	<p>Counter number changes when takeup reel table rotates two turns. Each segment of running indication changes when the reel table rotates a half turn.</p> <p>Waveforms change since dynamic lighting is used.</p>

Terminal No.	Symbol	Name	Function/operation
38.	DO7	No connection	Not used.
39.	VDD	Power source	Operated at 4.5V to 6.0V.
40.	OSC	Oscillation terminal	<p>Oscillation is approx. 370 kHz. Because the connection of a probe affects the terminal, nothing should be connected to this terminal for any other measurements. Use COφ to 3 in measuring the computer's velocity; Approx. 100 Hz in STOP condition.</p>

TROUBLESHOOTING OF MAIN CONTROL CIRCUIT

Fault	Probable cause	Microcomputer terminal to check	Relevant mechanism parts	Relevant external parts
Mechanism dose not operate at all.				
FL not lighting	Microcomputer not operating Power not supplied. Clock not oscillating. Reset locked. Microcomputer normal. (Scan normal) Connection to FL Driver.	39 (VDD) 40 (OSC 10 to 13) 27 (RST) 10 to 13 31 to 37		C503, C504 VR501 to R514 C511, C506, Q506, Q401, R513, R512
FL lighting OK. (MODE LED not lighting.)	Half SW. closed.	14 (Ai3)	Half SW.	D502
MODE indicator lighting OK.	Motor circuit faulty.	24, 25	Motor connection	IC502

Fault	Probable cause	Microcomputer terminal to check	Relevant mechanism parts	Relevant external parts
Mechanism defective.				
FF/REW reverse rotation.	Reverse connection of motor.	24, 25	Motor connection	IC502
FF/REW motor rotating, reel not rotating.	Brake plunger not being withdrawn.	22 (EO ϕ)	Brake plunger disconnection, etc.	IC502
CAM continuous rotation in PLAY.	MODE SW. defective.	15 (Ai2)	MODE SW.	D505, D501
Motor rotating in PLAY, but CAM's not switched.	Trigger plunger not operating	23 (EO1)	Trigger plunger	IC502
Motor rotates in reverse and does not stop after switching to PLAY or PAUSE.	PLAY or STOP SW, defective.	16 (Ai1) 17 (Ai ϕ)	STOP PLAY Leaf SW.	D504, Q502 D503, D511
REC IND. does not light up. (Operation is normal)	LED or drive transistor defective.	7 (CO6)		IC502
PLAY IND. does not light up.	- do -	8 (CO5)		IC502
PAUSE IND. does not light up.	- do -	9 (CO4)		IC502
Not counting.	Hall IC faulty, buffer circuit faulty.	14 (Ai3)	Reel magnet	IC503 (Hall IC) Q501, D502
AUTO STOP functioning soon after operation begins.	Same as the above. (Not counting)			
No muting.	Muting output connection etc.	6 (CO7)		
No peak-resetting.	Connection	3 (CO10)		Q301
Accidental erase prevention mechanism not functioning.	Leaf SW	15 (Ai2)	Accidental erasure Leaf SW	D501, 505
Operating during EJECT.	Half detection SW.	14 (Ai3)	Half detection SW.	D502

OUTLINE OF dbx SYSTEM

In 1971, the dbx company of Massachusetts, U.S.A., succeeded in developing a logarithmic compression/expansion system for audio signals which extends across an extremely wide amplitude range and results in a very low distortion rate.

In this system, the dynamic range of the input signal is compressed to 1/2 its original level (measured in decibels), and then recorded. The recorded signal is then expanded (2x) prior to playback, in order to restore it to the original level. By this process, a dynamic range exceeding 100dB can be easily obtained by using an ordinary tape recorder.

This system is referred to as a decilinear noise reduction system, but is generally called the "dbx system", the name being derived from the dbx company.

• The features of the dbx system

1. A significant noise reduction (approximately 30dB or more) is obtained over the entire audible frequency range.

Noise reduction mode	S/N ratio RS-M255X	Remarks
Noise reduction "OUT"	58dB	CrO ₂ tape, peak level
Dolby NR "IN"	66dB	CrO ₂ tape, peak level
dbx "IN"	92dB	CrO ₂ tape, peak level

2. A great improvement in the dynamic range makes it possible to extend the range to 110dB (at 1kHz, CrO₂ tape).
3. The direct logarithmic method of compression and expansion protects against problems caused by level mismatching.
4. Even if phase distortion occurs in the signal transmission system, precise operation is maintained by means of the RMS level detector.
5. A low distortion rate is maintained throughout the frequency range.
 - Improvement of high frequency response. The dbx system solves the problem of deteriorated high frequency at higher input levels which is an inherent fault of cassette tape equipment. The response at approx. 8,000Hz at 10dB input is improved as much as 14dB. As a result, flatter response is obtained at both low and high input levels.

• Remarkable dynamic range of 110dB

About dynamic range:

The dynamic range refers to the output range of an audio transmission system, extending from the lowest recognizable level to the highest possible level produced. Dynamic range is one of the values used to express the degree of fidelity of an audio transmission system.

Overall frequency response (RS-M255X)

Dynamic range: 1 kHz (RS-M255X)

- Compressing the dynamic range to 1/2 before recording, and then expanding it (by 2x) before playback produces the remarkable dynamic range of the dbx system.

The dynamic range of cassette tape with a saturation level of +10dB and a noise level of -45dB (such as Technics CrO₂ position tape) is 55dB. Any sounds with a level greater than +10dB will result in considerable distortion, and any sounds less than -45dB will be inaudible due to the effect of noise, making high-fidelity reproduction impossible.

The dbx system, however, linearly compresses the input level by a ratio of 1/2 in decibels prior to recording it onto the tape. A +20dB sound is thus compressed to +10dB, a -20dB sound is compressed to -10dB, and a -90dB sound is compressed to -45dB.

As a result, a signal with a dynamic range extending from -90dB to +20dB (a 110dB dynamic range) can be contained within a range which extends from -45dB to +10dB (a 55dB dynamic range). Recording onto a cassette tape with a 55dB dynamic range is then possible.

Prior to playback, the exact opposite process occurs and the sound levels are expanded. The +10dB sound is restored to its original level of +20dB, the -10dB sound is restored to -20dB, and the -45dB sound is restored to -90dB.

Therefore, the basic principle of the dbx system, as described above, is to compress the 110dB dynamic range by 1/2 to 55dB prior to recording, and then expand it (by 2x) prior to playback.

dbx system function diagram

Level compression/expansion diagram

THE BLOCK DIAGRAM OF dbx SYSTEM

(Block configuration change for dbx circuit Encode/Decode is electrically performed by switching transistors between blocks.)

ENCODER

- The portion of the dbx system with compresses the volume level of the input signal by 1/2 (measured in decibels), before sending it to the recording system, is called the encoder.

① INPUT BANDPASS FILTER (27Hz—20kHz)

To prevent pulse noise or other types of interference from causing erroneous operation of the dbx system, all signals outside the 27Hz—20kHz audio band range are eliminated here.

② PRE-EMPHASIS

The high frequency range, where hiss noise is prominent, is emphasized here during recording. The end result is that, although the dbx system is effective in reducing noise across entire frequency band, noise in the high frequency range is reduced still more by this pre-emphasis circuitry.

③ VCA (voltage-controlled amplifier/attenuator)

This is an extremely important circuitry in the construction of the dbx system. In response to the incoming DC control voltage, the VCA varies the degree of amplification logarithmically in the same manner as the direct current, resulting in compression and expansion of the input signal's dynamic range.

④ RMS DETECTOR (RMS: root mean square)

This is an important element in the composition of the dbx system, because its circuitry generates a DC voltage (the voltage that controls the degree of amplification in the VCA) in proportion to the size of the input signal.

It does this by detecting the root mean square value of the input signal, and then converting it to a DC voltage in proportion to the logarithm of the detected level.

Erroneous operation due to phase shift is prevented by monitoring of the voltage level derived from the root mean square value.

⑤ WEIGHTING

To prevent the saturation level of the tape deck in high frequencies, this increases the RMS DETECTOR high frequency sensitivity and decreases the VCA high frequency gain. As a result, the linearity of the tape deck is enhanced in the high frequency range.

⑥ RMS FILTER (27Hz to 10kHz)

This filter cuts any signal other than 27Hz to 10Hz that mixes in input signals to prevent the RMS DETECTOR from malfunctioning. Those to be cut include an FM tuner STEREO PILOT signal, tape deck bias leakage and record player motor rotational noise. In addition, the signal in the frequency range (27Hz to 10kHz) passing through the BAND PASS FILTER is comparatively small in level variations when handled by the tape deck.

This ensures correct complementarity in the operation of the RMS DETECTOR and VCA during Encoding and Decoding.

DECODER

As shown in the diagram on the previous page, for playback output, the decoder expands the constantly changing level to double the decibel range.

For example, a -30dB signal is expanded to -60dB, and a level of -45dB becomes -90dB. On the other hand, a playback output +10dB is expanded to +20dB, and a saturation level signal is also correspondingly increased.

In terms of the system's operation, the decoder's function is the exact opposite of the function of the previously mentioned encoder.

MEASUREMENT AND ADJUSTMENT METHODS (FOR dbx SYSTEM)

• TROUBLESHOOTING CHART FOR dbx SYSTEM

The troubleshooting chart for the dbx system is shown in Fig. 1. Please follow the sequence of this chart for checking and repairing the dbx system.

The figures shown in each block indicate the page on which the checking method, adjustment or measurement is explained.

TROUBLESHOOTING CHART FOR dbx SYSTEM

Fig. 1

• ADJUSTMENT PARTS LOCATION OF dbx SYSTEM

Fig. 2

BLOCK DIAGRAM OF dbx SECTION (L-CH ONLY)

Note: Encode/decode selection of the dbx circuit in RS-M255X is done with a control circuit, composed of transistors. (This control circuit is interlocked with S1 (NR selection switch).)

Fig. 3

dbx SYSTEM CHECKING METHOD

NOTES: Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Input level controls: Maximum
- Output level control: Maximum

ITEM	CHECKING METHOD
A Check for expansion Condition: * Stop mode * Input level controls ... MAX * Output level control ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	A Check for expansion 1. Make the connections as shown in fig. 4 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to disc position. 2. Adjust ATT, increase input signal level by 10dB, and make sure that the reading for VTVM increases by 20dB±1dB. 3. Adjust ATT, decrease the input signal level, and make sure that the reading for VTVM decreases by 20dB±1dB.
B Check for standard level of dbx Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	B-1 Check for standard level of dbx in dbx Encode mode 1. Make the connections as shown in fig. 5 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set the unit to record mode, adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. 3. Make sure that the signal level at TP203 (L-CH) and TP204 (R-CH) is 300mV±0.5dB. B-2 Check for standard level of dbx in dbx Decode mode 1. Make the connections as shown in fig. 5 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position and adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) becomes 300mV. 3. Make sure that the signal level at TP203 (L-CH) and TP204 (R-CH) is 300mV±0.5dB.
C Check the frequency response of the dbx circuit Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	C-1 Check the frequency response during decoding 1. Make the connections as shown in fig. 5 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) becomes 300mV. 3. With the signal level at TP203 (L-CH) and TP204 (R-CH) as 0dB, change the signal frequency to 100Hz, 20Hz and 7kHz respectively. Read signal levels at TP203 (L-CH) and TP204 (R-CH) and check that they are within the specifications-1. C-2 Check the frequency response during encoding 1. Make the connections as shown in fig. 5 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to dbx tape position, and the unit to record mode. 3. Adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. 4. With the signal level at TP203 (L-CH) and TP204 (R-CH) as 0dB, change the signal frequency to 100Hz and 7kHz respectively. Read signal levels at TP203 (L-CH) and TP204 (R-CH) and check that they are within the specifications-2.

NOTES:

- If the results of the above checks **A**, **B** and **C** do not satisfy the specifications, perform the following adjustments.
- If the specifications are not satisfied even after the adjustments, follow the checking procedure for problems.
- If the output signal is not produced or is extremely distorted, follow the checking procedure for problems.

Fig. 4

Fig. 5

Specifications-1

Frequency	Signal levels at TP203 and TP204
1kHz	0dB (300mV)
100Hz	-0.5dB±1dB
20Hz	-30dB±5dB
7kHz	+7dB±1dB

Specifications-2

Frequency	Signal levels at TP203 and TP204
1kHz	0dB (300mV)
100Hz	+0.5dB±1dB
7kHz	-3.5dB±1dB

ADJUSTMENT OF dbx SYSTEM

NOTES: When adjusting the circuit of the dbx system, be sure to perform the adjustments in the following order:

① Adjustment of RMS detector. ② Adjustment of VCA. ③ Adjustment of dbx standard level.

Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Input level controls: Maximum

ITEM	ADJUSTMENT
① Adjustment of RMS detector Condition: * Stop mode * Input level controls ... MAX * Noise reduction selector ... disc Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	<p>1. Make the connections as shown in fig. 6, and set the noise reduction selector to disc position. 2. Apply 100Hz -27dB signal from LINE IN. 3. Adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) becomes 300mV. 4. Make sure that the output signal at TP205 (L-CH) and TP206 (R-CH) is at 200Hz sine wave. If the output signal is not sinusoidal as shown in fig. 7, adjust VR203 (L-CH) and VR204 (R-CH) to make it sinusoidal.</p> <p>NOTE: The voltage of the output signal after adjustment is about 0.5mV rms.</p> <p>Fig. 6</p> <p>Fig. 7</p>
② Adjustment of VCA Condition: * Record/stop mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * Oscilloscope * Resistor (100Ω, 3.9Ω)	<p>Preparation before adjustment</p> <ol style="list-style-type: none"> Before adjusting VCA, from the device shown below using resistors of 100Ω and 3.9Ω (See fig. 8). Set NR switch to dbx disc. Remove jumpers [J202 (L-CH) and J224 (R-CH)]. Arrange connections referring to wire connection diagram (fig. 9 and 10), since 0V, +180mV and -180mV (DC) are applied in this order to pin 2 of IC201 (L-CH) and pin 2 of IC202 (R-CH). <p>Fig. 8</p> <p>Fig. 9</p> <p>Fig. 10</p> <p>Connections when applying +180mV and 0V Adjust DC power supply and arrange connections so that +180mV or 0V can be applied to TP203 (L-CH) and TP204 (R-CH).</p> <p>Connections when applying -180mV Adjust DC power supply and arrange connections so that -180mV can be applied to TP203 (L-CH) and TP204 (R-CH).</p>
③ Adjustment of dbx standard level Condition: * Record/stop mode * Input level controls ... MAX	<p>Adjustment procedure</p> <ol style="list-style-type: none"> Apply 0V to pin (2) of IC201 (L-CH) and pin (2) of IC202 (R-CH), and a horizontal line will appear on the screen of the oscilloscope. Use this line as the reference line. Apply +180mV to pin (2) of IC201 (L-CH) and pin (2) of IC202 (R-CH) (See fig. 9), and check that the level is not more than 10mV from the reference line. If improper, adjust VR201 (L-CH) and VR202 (R-CH). In the same way, apply -180mV to pin (2) of IC201 (L-CH) and pin (2) of IC202 (R-CH) (See fig. 10), and check that the level is not more than 10mV from the reference line. If improper, adjust VR201 (L-CH) and VR202 (R-CH). Repeat steps 2 and 3, and adjust VRs so that the levels are within ±10mV when +180mV and -180mV are applied (fig. 11). After adjustment, connect jumpers J202 (L-CH) and J224 (R-CH) (See fig. 2). <p>Fig. 11</p> <p>NOTE: Be sure to perform the standard level adjustment in dbx Encode, followed by the standard level adjustment in dbx Decode.</p>

ITEM	ADJUSTMENT
<p>* Noise reduction selector ... disc/dbx tape</p> <p>Equipment:</p> <ul style="list-style-type: none"> * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω) 	<p>①-1 Standard level adjustment in dbx Encode mode</p> <ol style="list-style-type: none"> 1. Make the connection as shown in fig. 12 and apply 1kHz – 27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set unit to record mode, adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. 3. Adjust VR205 (L-CH) and VR206 (R-CH) so that the output signal level at TP203 (L-CH) and TP204 (R-CH) becomes $300\text{mV} \pm 0.5\text{dB}$. <p>②-2 Standard level adjustment in dbx Decode mode</p> <ol style="list-style-type: none"> 1. Make the connection as shown in fig. 12 and apply 1kHz – 27dB signal from LINE IN, and perform the following adjustments. 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) becomes 300mV. 3. Adjust VR207 (L-CH) and VR208 (R-CH) so that the output signal level at TP203 (L-CH) and TP204 (R-CH) becomes $300\text{mV} \pm 0.5\text{dB}$. <p>NOTES:</p> <ul style="list-style-type: none"> • After adjustments ①, ② and ③, re-check according to "dbx SYSTEM CHECKING METHOD". • If the specifications are not satisfied, perform the adjustments again. <p style="text-align: center;">Fig. 12</p>

CHECKING PROCEDURE FOR PROBLEMS

NOTES: Find defective parts according to the circuit operation checking method given below, and use the results for your reference during repair. Remember to adjust after repair.

Keep good condition, set switches and controls in the following positions, unless otherwise specified

- Input level controls: Maximum

ITEM	CHECKING METHOD
<p>1 Operation check of regulated power supply circuit in dbx circuit</p> <p>Equipment:</p> <ul style="list-style-type: none"> * DC volt meter * Oscilloscope 	<p>1-1 Check of +10.5V voltage</p> <p>Make the connection as shown in fig. 13 and make sure that the emitter voltage of Q401 is around +10.5V.</p> <p>1-2 Check of -10.5V voltage</p> <p>Make the connection as shown in fig. 13 and make sure that the emitter voltage of Q404 is around -10.5V.</p>

ITEM	CHECKING METHOD																																																																																																																																																																																													
2 Check of control circuit in dbx circuit	E.C.B (G.S.D) voltage check of each switching transistor for Encode/Decode The terminal voltage of each switching transistor in Encode/Decode mode are shown in the table below.																																																																																																																																																																																													
Equipment: * DC volt meter	<table border="1"> <thead> <tr> <th rowspan="2">Transistor Ref. No.</th> <th colspan="3">Encode (dbx tape)</th> <th colspan="3">Decode (dbx tape)</th> <th colspan="3">disc</th> </tr> <tr> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> </tr> </thead> <tbody> <tr><td>Q30</td><td>0V</td><td>0.015V</td><td>0.62V</td><td>-0.001V</td><td>1.168V</td><td>0.017V</td><td>0V</td><td>0.58V</td><td>0.018V</td></tr> <tr><td>Q31</td><td>0V</td><td>10.66V</td><td>-0.001V</td><td>-0.001V</td><td>0.006V</td><td>0.65V</td><td>-0.001V</td><td>0.006V</td><td>0.65V</td></tr> <tr><td>Q32</td><td>10.78V</td><td>-10.62V</td><td>10.72V</td><td>10.77V</td><td>10.75V</td><td>10.1V</td><td>10.78V</td><td>10.74V</td><td>10.1V</td></tr> <tr><td>Q33</td><td>-10.72V</td><td>5.97V</td><td>-10.67V</td><td>-10.72V</td><td>-10.70V</td><td>-10.04V</td><td>-10.73V</td><td>-10.70V</td><td>-10.04V</td></tr> <tr><td>Q3</td><td>0.074V</td><td>-0.029V</td><td>0V</td><td>1.69V</td><td>1.64V</td><td>0.99V</td><td>0.055V</td><td>-0.035V</td><td>0V</td></tr> <tr><td>Q11, 12</td><td>-10.8V</td><td>0V</td><td>0V</td><td>0.65V</td><td>0.04V</td><td>0.04V</td><td>0.65V</td><td>0.04V</td><td>0.04V</td></tr> <tr><td>Q13, 14</td><td>0.58V</td><td>0V</td><td>0V</td><td>-10.8V</td><td>0.04V</td><td>0V</td><td>-10.8V</td><td>0.04V</td><td>0V</td></tr> <tr><td>Q201, 202</td><td>-10.8V</td><td>0V</td><td>0V</td><td>+0.43V</td><td>0V</td><td>0V</td><td>-10.8V</td><td>0V</td><td>0V</td></tr> <tr><td>Q205, 206</td><td>0V</td><td>-1.45V</td><td>-10.62V</td><td>-1.42V</td><td>-1.42V</td><td>-0.77V</td><td>-1.42V</td><td>-1.42V</td><td>-0.77V</td></tr> <tr><td>Q207, 208</td><td>-1.45V</td><td>-1.45V</td><td>-0.83V</td><td>0V</td><td>-1.42V</td><td>-10.7V</td><td>0V</td><td>-1.42V</td><td>-10.71V</td></tr> <tr><td>Q209, 210</td><td>0V</td><td>0V</td><td>0.61V</td><td>-0.15V</td><td>0V</td><td>-10.7V</td><td>0V</td><td>0V</td><td>-10.7V</td></tr> <tr><td>Q211, 212</td><td>-0.11V</td><td>0V</td><td>-10.61V</td><td>0V</td><td>0V</td><td>0.63V</td><td>0V</td><td>0V</td><td>0.64V</td></tr> <tr><td>Q213, 214</td><td>0V</td><td>-0.1V</td><td>-10.56V</td><td>0V</td><td>-0.1V</td><td>-10.56V</td><td>-0.29V</td><td>-0.29V</td><td>0.33V</td></tr> <tr><td>Q215, 216</td><td>-0.1V</td><td>-0.1V</td><td>0.47V</td><td>0V</td><td>-0.1V</td><td>-10.65V</td><td>0V</td><td>-0.29V</td><td>-10.65V</td></tr> <tr><td>Q217, 218</td><td>0V</td><td>0.01V</td><td>-10.62V</td><td>0V</td><td>0V</td><td>0.64V</td><td>0V</td><td>0V</td><td>0.64V</td></tr> <tr><td>Q219, 220</td><td>0.01V</td><td>0V</td><td>0.62V</td><td>-1.42V</td><td>0V</td><td>-10.7V</td><td>-1.42V</td><td>0V</td><td>-10.71V</td></tr> <tr><td>Q223, 224</td><td>-10.75V</td><td>-10.54V</td><td>-10.61V</td><td>-10.72V</td><td>10.64V</td><td>-10.62V</td><td>-10.77V</td><td>-10.76V</td><td>-10.12V</td></tr> </tbody> </table>	Transistor Ref. No.	Encode (dbx tape)			Decode (dbx tape)			disc			E (G)	C (S)	B (D)	E (G)	C (S)	B (D)	E (G)	C (S)	B (D)	Q30	0V	0.015V	0.62V	-0.001V	1.168V	0.017V	0V	0.58V	0.018V	Q31	0V	10.66V	-0.001V	-0.001V	0.006V	0.65V	-0.001V	0.006V	0.65V	Q32	10.78V	-10.62V	10.72V	10.77V	10.75V	10.1V	10.78V	10.74V	10.1V	Q33	-10.72V	5.97V	-10.67V	-10.72V	-10.70V	-10.04V	-10.73V	-10.70V	-10.04V	Q3	0.074V	-0.029V	0V	1.69V	1.64V	0.99V	0.055V	-0.035V	0V	Q11, 12	-10.8V	0V	0V	0.65V	0.04V	0.04V	0.65V	0.04V	0.04V	Q13, 14	0.58V	0V	0V	-10.8V	0.04V	0V	-10.8V	0.04V	0V	Q201, 202	-10.8V	0V	0V	+0.43V	0V	0V	-10.8V	0V	0V	Q205, 206	0V	-1.45V	-10.62V	-1.42V	-1.42V	-0.77V	-1.42V	-1.42V	-0.77V	Q207, 208	-1.45V	-1.45V	-0.83V	0V	-1.42V	-10.7V	0V	-1.42V	-10.71V	Q209, 210	0V	0V	0.61V	-0.15V	0V	-10.7V	0V	0V	-10.7V	Q211, 212	-0.11V	0V	-10.61V	0V	0V	0.63V	0V	0V	0.64V	Q213, 214	0V	-0.1V	-10.56V	0V	-0.1V	-10.56V	-0.29V	-0.29V	0.33V	Q215, 216	-0.1V	-0.1V	0.47V	0V	-0.1V	-10.65V	0V	-0.29V	-10.65V	Q217, 218	0V	0.01V	-10.62V	0V	0V	0.64V	0V	0V	0.64V	Q219, 220	0.01V	0V	0.62V	-1.42V	0V	-10.7V	-1.42V	0V	-10.71V	Q223, 224	-10.75V	-10.54V	-10.61V	-10.72V	10.64V	-10.62V	-10.77V	-10.76V	-10.12V
Transistor Ref. No.	Encode (dbx tape)			Decode (dbx tape)			disc																																																																																																																																																																																							
	E (G)	C (S)	B (D)	E (G)	C (S)	B (D)	E (G)	C (S)	B (D)																																																																																																																																																																																					
Q30	0V	0.015V	0.62V	-0.001V	1.168V	0.017V	0V	0.58V	0.018V																																																																																																																																																																																					
Q31	0V	10.66V	-0.001V	-0.001V	0.006V	0.65V	-0.001V	0.006V	0.65V																																																																																																																																																																																					
Q32	10.78V	-10.62V	10.72V	10.77V	10.75V	10.1V	10.78V	10.74V	10.1V																																																																																																																																																																																					
Q33	-10.72V	5.97V	-10.67V	-10.72V	-10.70V	-10.04V	-10.73V	-10.70V	-10.04V																																																																																																																																																																																					
Q3	0.074V	-0.029V	0V	1.69V	1.64V	0.99V	0.055V	-0.035V	0V																																																																																																																																																																																					
Q11, 12	-10.8V	0V	0V	0.65V	0.04V	0.04V	0.65V	0.04V	0.04V																																																																																																																																																																																					
Q13, 14	0.58V	0V	0V	-10.8V	0.04V	0V	-10.8V	0.04V	0V																																																																																																																																																																																					
Q201, 202	-10.8V	0V	0V	+0.43V	0V	0V	-10.8V	0V	0V																																																																																																																																																																																					
Q205, 206	0V	-1.45V	-10.62V	-1.42V	-1.42V	-0.77V	-1.42V	-1.42V	-0.77V																																																																																																																																																																																					
Q207, 208	-1.45V	-1.45V	-0.83V	0V	-1.42V	-10.7V	0V	-1.42V	-10.71V																																																																																																																																																																																					
Q209, 210	0V	0V	0.61V	-0.15V	0V	-10.7V	0V	0V	-10.7V																																																																																																																																																																																					
Q211, 212	-0.11V	0V	-10.61V	0V	0V	0.63V	0V	0V	0.64V																																																																																																																																																																																					
Q213, 214	0V	-0.1V	-10.56V	0V	-0.1V	-10.56V	-0.29V	-0.29V	0.33V																																																																																																																																																																																					
Q215, 216	-0.1V	-0.1V	0.47V	0V	-0.1V	-10.65V	0V	-0.29V	-10.65V																																																																																																																																																																																					
Q217, 218	0V	0.01V	-10.62V	0V	0V	0.64V	0V	0V	0.64V																																																																																																																																																																																					
Q219, 220	0.01V	0V	0.62V	-1.42V	0V	-10.7V	-1.42V	0V	-10.71V																																																																																																																																																																																					
Q223, 224	-10.75V	-10.54V	-10.61V	-10.72V	10.64V	-10.62V	-10.77V	-10.76V	-10.12V																																																																																																																																																																																					
	<p>NOTE:</p> <ul style="list-style-type: none"> If no abnormality is found in steps 1 and 2, check the operation for each part as follows: 																																																																																																																																																																																													
3 Operation check of INPUT BAND PASS FILTER circuit (27Hz—20kHz)	<p>Condition: * Record mode * Input level controls ... MAX * Noise reduction selector ... dbx tape</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)</p> <ol style="list-style-type: none"> Make the connections as shown in fig. 14, and apply 100Hz — 27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. Set the unit to record mode. Adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. Make sure that the emitter signal level of Q203 (L-CH) and Q204 (R-CH) is 300mV. Set the input signal frequency to 5kHz and make sure that the emitter signal of Q203 (L-CH) and Q204 (R-CH) remains at the same level (300mV). 																																																																																																																																																																																													
4 Operation check of VCA circuit and Pre-emphasis/De-emphasis circuit	<p>Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)</p> <p>4-1 Operation check of VCA circuit and Pre-emphasis circuit</p> <ol style="list-style-type: none"> Make the connections as shown in fig. 15, and apply 100Hz — 27dB signal from LINE IN. Short pin ③ of IC201 (L-CH) and IC202 (R-CH) to TP207 (ground) as shown in fig. 16. Set the unit to record mode, and set the noise reduction selector to dbx tape position. Adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. Make sure that the output signals at TP203 (L-CH) and TP204 (R-CH) are sinusoidal. (The operation of VCA can then be checked.) Shift the frequency of input signal to 5kHz, and make sure that the output signal levels at TP203 (L-CH) and TP204 (R-CH) are increased by about 12dB. (The operation of the Pre-emphasis circuit can then be checked.) 																																																																																																																																																																																													

Fig. 14

Fig. 15

Fig. 16

ITEM	CHECKING METHOD						
	<p>4-2 Operation check of VCA circuit and De-emphasis circuit</p> <ol style="list-style-type: none"> The procedure is the same as 1 for the above 4-1 VCA circuit and Pre-emphasis circuit. Short pin ② of IC201 (L-CH) and IC202 (R-CH) to TP207 (ground) as shown in fig. 17. Set the noise reduction selector to disc position. Adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. Make sure that the output signals at TP203 (L-CH) and TP204 (R-CH) are sinusoidal. (The operation of VCA can then be checked.) Change the frequency of input signal to 5kHz and make sure that the output signal level at TP203 (L-CH) and TP204 (R-CH) is decreased by about 12dB. (The operation of the De-emphasis circuit can then be checked.) <p style="text-align: center;">Fig. 17</p>						
<p>5 Operation check of RMS FILTER circuit (27Hz–10kHz)</p> <p>Condition:</p> <ul style="list-style-type: none"> * Stop mode * Input level controls ... MAX * Noise reduction selector ... disc <p>Equipment:</p> <table border="0"> <tr> <td>* VTVM</td> <td>* AF oscillator</td> </tr> <tr> <td>* ATT</td> <td>* Oscilloscope</td> </tr> <tr> <td>* Resistor (600Ω)</td> <td></td> </tr> </table>	* VTVM	* AF oscillator	* ATT	* Oscilloscope	* Resistor (600Ω)		<ol style="list-style-type: none"> Make the connections as shown in fig. 18, and apply 100Hz –27dB signal from LINE IN. Set the noise reduction selector to disc position. Adjust ATT so that the signal level at TP201 (L-CH) and TP202 (R-CH) is 300mV. Make sure that the emitter signal level of Q221 (L-CH) and Q222 (R-CH) is around 300mV. Change the frequency of input signal to 5kHz and make sure that the emitter signal of Q221 (L-CH) and Q222 (R-CH) remains at the same level (300mV). <p style="text-align: center;">Fig. 18</p>
* VTVM	* AF oscillator						
* ATT	* Oscilloscope						
* Resistor (600Ω)							

ELECTRICAL PARTS LOCATION

REPLACEMENT PARTS LIST

Important safety notice
Components identified by Δ mark have special characteristics important for safety.
When replacing any of these components, use only manufacturer's specified parts.

Ref No.	Part No.	Part Name & Description
ELECTRICAL PARTS		
E 1	QWY4123Z	Record/Playback Head
E 2	QWY2138Z	Erase Head
E 3	[D] △ SJA88	AC Power Cord
	[For all European areas except United Kingdom.]	
	[B] △ QFC1205	AC Power Cord
	[For United Kingdom.]	
E 4	QTD1164	Cord Bushing
E 5	QMA4402	dbx P.B. Holder
E 6	XTN3 + 16B	Tapping Screw
E 7	XTN3 + 10B	Tapping Screw
E 8	XTN3 + 8B	Tapping Screw
E 9	XTS3 + 12B	Tapping Screw
E 10	XTB3 + 10BFN	Tapping Screw
E 11	QTD1181	Wire Clamper
E 12	QEJ5003S	Jack Board
E 13	QJP1921TN	3 Pin Post
E 14	QJP1922TN	6 Pin Post
E 15	QJP1923TN	9 Pin Post
E 16	QJP1924TN	12 Pin Post
E 17	QJS1924TNL	12 Pin Socket
E 18	△ QCR0011	Spark Killer
E 19	SJT777	Pin Terminal
E 20	XTN3 + 8B	Tapping Screw
E 21	QMA4364	Switch Angle
E 22	XSN3 + 8S	Screw
E 23	XWA3B	Washer
E 24	△ QTF1054	Fuse Holder
E 25	QJS12001T	12 Pin Socket
E 26	XTN3 + 10B	Tapping Screw
E 27	QJT0015	Lug Terminal
E 28	QTH1164	Heat Sink
E 29	XSN3 + 8S	Screw
E 30	XWA3B	Washer
E 31	XWE3	Washer
E 32	N024B	Insulator Plate
E 33	N018E	Insulator Plate
E 34	QSIFM004F	FL Meter
E 35	QJT1067	Check Pin
E 36	QKJ0520	Led Holder-A
E 37	QJS15001T	15 Pin Socket
E 38	QKJ0521	LED Holder-B
E 39	QJC0050	Earth Plate
E 40	QMA4365	Timer Angle
E 41	XTN3 + 6B	Tapping Screw
E 42	XAMQ44P300	Pilot Lamp
E 43	QJS06001T	6 Pin Socket
E 44	QJP06S001T	6 Pin Post
E 45	QJP12L001T	12 Pin Post (L-type)
E 46	QJP15L001T	15P Post (L-type)
E 47	QNQ1070	Nut
E 48	QNQ1039	Nut
E 49	QNQ1004	Nut
E 50	QJS1923TN	9 Pin Socket
E 51	QJS1922TN	6 Pin Socket
E 52	QJS1921TN	3 Pin Socket
E 53	QJT1054	Contact
E 54	XTN3 + 10BFN	Tapping Screw
E 55	QJ1466RR	Leaf Switch Circuit Board
E 56	QJT1089	Contact

BLOCK DIAGRAM

Part Name & Description
PARTS
Record/Playback Head
Erase Head
AC Power Cord
United Kingdom.] AC Power Cord
Cord Bushing
dbx P.B. Holder
Tapping Screw
Wire Clamper
Jack Board
3 Pin Post
6 Pin Post
9 Pin Post
12 Pin Post
12 Pin Socket
Spark Killer
Pin Terminal
Tapping Screw
Switch Angle
Screw
Washer
Fuse Holder
12 Pin Socket
Tapping Screw
Lug Terminal
Heat Sink
Screw
Washer
Washer
Insulator Plate
Insulator Plate
FL Meter
Check Pin
Led Holder-A
15 Pin Socket
LED Holder-B
Earth Plate
Timer Angle
Tapping Screw
Pilot Lamp
6 Pin Socket
6 Pin Post
12 Pin Post (L-type)
15P Post (L-type)
Nut
Nut
Nut
9 Pin Socket
6 Pin Socket
3 Pin Socket
Contact
Tapping Screw
Leaf Switch Circuit Board
Contact

• MAIN/FL METER SECTION

• POWER SUPPLY SECTION

• MECHANISM CONTROL SECTION

SCHEMATIC DIAGRAM

MAIN SECTION

Component List:

- Q1, 42 2SD636(R,S,T) [2SD636R]
- Q1, 2 2SD636(R,S,T) [2SD636R]
- Q3 2SB641(R,S,T) [2SB641R]
- Q28, 29 2SC945P [2SC945P]
- IC1, 2 AN6212 [AN6212]
- D11 QVD1S2473T [MA161]
- D17 QVD1S2473T [MA161]
- Q32 2SA564(R,S,T) [2SA564]
- Q30 2SD636(R,S,T) [2SD636R]
- Q31, 33 2SC945P [2SC945P]
- Q11, 13 2SK104F [MA161]
- Q15, 16, 17, 18 2SD965 [2SD965]
- Q19 2SA921(R,S) [2SA921S]
- IC3, 4 NE646N [NE646N]
- D1 QVD1S2473T [MA161]
- D12, 13 QVD1S2473T [MA161]
- IC5, 6 AN6213 [AN6213]
- D22 QVD1S2473T [MA161]
- D702 TLR208 [TLR208]
- D703 TLG208 [TLG208]
- D704 TLY208 [TLY208]
- IC7 AN6256 [AN6256]
- IC8 AN6214 [AN6214]
- Q34, 35, 36 2SD636(R,S,T) [2SD636R]
- D20, 21 QVD1S2473T [MA161]
- D16 MA1062LTA or MA1062MTA or MA1062HTA or RVDRD6R2EB [RVDRD6R2EB]
- Q27 2SD592ANCRS [2SD592NCR]
- Q26 2SD946 [2SD946]
- Q14, 15 QVD1S2473T [MA161]
- Q25 2SB643(R,S) [2SB683R]
- Q39 2SD636(R,S,T) [2SD636R]
- D18 QVD1S2473T [MA161]
- Q19 QVD1S2473T [MA161]
- IC9 BA336 [BA336]
- Q37, 38 2SC945P [2SC945P]

dbx SECTION

EQUIVALENT CIRCUITS

Mode	S606	S607
Normal	on	on
CrO_2	on	off
Metal	off	off

- VR1, 2..... Input level controls.
 - VR3, 4..... Output level control.
 - VR5, 6..... Playback gain adjustment VR.
 - VR7, 8..... Recording gain adjustment VR.
 - VR9, 10..... Bias current adjustment VR.
 - VR201, 202..... VCA symmetry adjustment VR.
 - VR203, 204..... RMS detector adjustment VR.
 - VR205, 206..... dbx standard level adjustment VR (Encode).
 - VR207, 208..... dbx standard level adjustment VR (Decode).
 - Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.
1K = 1,000 (Ω), 1M = 1,000 K (Ω)
 - Capacity are in microfarads (μF) unless specified otherwise.
P = Pico-farads.
 - The mark (∇) shows test point, e.g. ∇ = test point 1.
 - All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise specified
 - Voltage values shown in MAIN SECTION.
NO MARK.... Voltage values at out (NR select switch) mode
()..... Voltage values at record mode.
[]..... Voltage values at disc (NR select switch) mode
 - Voltage values shown in dbx SECTION.
()..... Voltage values at out (NR select switch) mode.
[]..... Voltage values at disc (NR select switch) mode.
For measurement use VTVM.
 - (—) indicates B + (bias).
 - (—) indicates B - (bias).
 - (—) indicates the flow of the playback signal (dbx out).
 - (—) indicates the flow of the playback signal (dbx tape).
 - (—) indicates the flow of the recording signal (dbx out).
 - (—) indicates the flow of the recording signal (dbx tape).
 - Described in the schematic diagram are two types of numbers; the supply parts number and production parts number for transistors and diodes. One type of number is used for supply parts number and production parts number when they are identical.
e.g. Q1
2SC1844 (E, F) ← Production parts number
[2SC1844E] ← Supply parts number
D212
1S2473T77 ← Production parts number.
[MA161] ← Supply parts numbers
 - The supply parts number is described alone in the replacement parts list.
 - This schematic diagram may be modified at any time.

SPECIFICATIONS

- | | |
|---|--|
| ZCFM | Greater than 45 dB |
| for Normal
for CrO ₂
for Metal | Less than 4 % |
| ZCRA | Greater than 43 dB
(without NAB filter) |

CIRCUIT BOARDS

a MAIN CIRCUIT BOARD

d dbx CIRCUIT BOARD

TERMINATIONS

NOTES:

- The circuit shown in on the conductor is B + (bias) circuit.
- The circuit shown in on the conductor is B - (bias) circuit.
- Values indicated in are under no signal condition and playback mode with volume control at minimum position otherwise specified.
- Voltage values shown in MAIN CIRCUIT BOARD
NO MARK... Voltage values at Out (NR select switch) mode
()..... Voltage values at record mode
()..... Voltage values at disc (NR select switch) mode
- Voltage values shown in dbx CIRCUIT BOARD
NO MARK... Voltage values at dbx tape (NR select switch) mode
()..... Voltage values at Out (NR select switch) mode.

This circuit board diagram may be modified at any time with the development of new technology.

SCHEMATIC DIAGRAM

MECHANISM CONTROL SECTION

k TIMER CIRCUIT BOARD
Q501 ~ 505
2SB643(Q,R,S)
[2SB643R]

h QUARTZ CIRCUIT BOARD

n MECHANISM CONTROL CIRCUIT BOARD

i HALL IC CIRCUIT BOARD

j REEL MOTOR CIRCUIT BOARD

T REEL MOTOR CIRCUIT BOARD

G TO POWER SUPPLY CIRCUIT BOARD

FL METER SECTION

9 10 11 12 13 14 15 16 17

GRID TERMINATION (FL METER)

FL SECTION

A 9 FL METER CIRCUIT BOARD

D301~303 QVD1S2473T D304 1S2473FV Q303 2SB641(R,S) Q304 2SA564(R,S,T)
 10 305, 306 [MA161] [MA161] [2SB641R] [2SA564R]

EQUIVALENT CIRCUIT
IC 301 AN6870N

- NOTES:**
- VR301... FL meter adjustment VR (For 0 dB indication)
 - VR302... FL meter adjustment VR (For -40 dB indication)
 - VR501... Input scanning time adjustment VR
 - S501... Counter reset switch
 - S502... Pause switch
 - S503... Record switch
 - S504... Stop switch
 - S505... Playback switch
 - S506... Fast Forward switch
 - S507... Rewind switch
 - S508... Record mute switch
 - S509... Memory repeat switch
 - S510... Tape/Time select switch
 - S511... Set switch
 - S512... Music select switch
 - S513... Timer switch (shown in REC position: (1) REC, (2) OFF, (3) PLAY)
 - S601... Accidental erase prevention switch
 - S602... Mode switch
 - S603... Stop switch
 - S604... Playback switch
 - S605... Cassette detection switch
 - Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.
 $1K = 1,000 \Omega$, $1M = 1,000 k\Omega$.
 - Capacity are in microfarads (μF) unless specified otherwise.
 $P = \text{Pico-farads}$.
 - The mark (▼) shows test point. e.g. ▼ = Test point 1.
 - All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position. However, the voltage in record mode is indicated in () when it differs from that in record mode. For measurement, use VTVM.
 - (—) indicates B + (bias)
 - (—) indicates B - (bias)
 - (—) indicates the flow of the playback signal (dbx out)
 - (—) indicates the flow of the recording signal (dbx out)
 - Described in the schematic diagram are two types of numbers; the supply parts number and production parts number for transistors are diodes. One type of number is used for supply parts number and production parts number when they are identical.

- e.g. Q1
 2SC1844(E,F) ← Production parts number
 [2SC1844E] ← Supply parts number
 D301
 QVD1S2473T ← Production parts number
 [MA161] ← Supply parts

- The supply parts number is described alone in the replacement parts list.
 • This schematic diagram may be modified at any time with the development of new technology.

8

7

6

5

4

3

2

1

CIRCUIT BOARDS

n MECHANISM CONTROL CIRCUIT BOARD

h QUARTZ CIRCUIT BOARD

TERMINATIONS

g FL METER CIRCUIT BOARD

- NOTES:**
- The circuit shown in **■** on the conductor is B + (bias) circuit.
 - The circuit shown in **■** on the conductor is B - (bias) circuit.
 - Values indicated in **[]** are under no signal condition and playback mode with volume control at minimum position otherwise specified. However, the voltage in record mode is indicated in **()**. For measurement use VTM.
 - This circuit board diagram may be modified at any time with the development of new technology.

SCHEMATIC DIAGRAM

POWER SUPPLY SECTION

CIRCUIT BOARDS

POWER SUPPLY CIRCUIT BOARD

TRANSFORMER CIRCUIT BOARD

TERMINATIONS

NOT

- The circuit shown in [] on the conductor is + B (bias) circuit.
 - The circuit shown in [] on the conductor is - B (bias) circuit.
 - The circuit shown in [] on the conductor side indicates printed circuit on the back side of the printed circuit board.
 - Values indicated in [] are DC voltage between the ground and electrical parts.
 - The voltage indicates are measured during playback mode.
However, the voltage in record mode is indicates in () when it differs from that in record mode.

- This circuit board diagram may be modified at any time with the development of new technology.

SCHEMATIC DIAGRAM

MAIN SECTION

dbx SECT

Q27 2SD592ANCRS [2SD592NCR] Q26 2SD946 Q14, 15 QVD1S2473T Q25 2SB643(R,S) [MA161] Q39 2SD636(R,S,T) [2SB683R] D18 QVD1S2473T IC9 BA336 Q37, 38 [2SC945P]

IC7 AN6256 IC8 AN6214 Q34, 35, 36 2SD636(R,S,T) [2SD636R] D20, 21 QVD1S2473T D16 MA1062LTA or MA1062MTA or MA1062HTA [RVDRD6R2EB]

dbx SECTION

EQUIVALENT CIRCUITS

NOTES:

- S1-1 ~ S1-8 NR select switch (shown in OUT position: (1) Dolby NR,
(2) OUT, (3) dbx tape, (4) dbx disc)
- S606 Auto tape select switch (For Normal/CrO₂ tape)
- S607 Auto tape select switch (For Metal tape)

Mode	S606	S607
Normal	on	on
CrO ₂	on	off
Metal	off	off

- VR1, 2..... Input level controls.
 - VR3, 4..... Output level control.
 - VR5, 6..... Playback gain adjustment VR.
 - VR7, 8..... Recording gain adjustment VR.
 - VR9, 10..... Bias current adjustment VR.
 - VR201, 202..... VCA symmetry adjustment VR.
 - VR203, 204..... RMS detector adjustment VR.
 - VR205, 206..... dbx standard level adjustment VR (Encode).
 - VR207, 208..... dbx standard level adjustment VR (Decode).
 - Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.
 $1\text{K} = 1,000 (\Omega)$, $1\text{M} = 1,000 \text{ k } (\Omega)$
 - Capacity are in microfarads (μF) unless specified otherwise.
 P = Pico-farads.
 - The mark (∇) shows test point. e.g. $\nabla =$ test point 1.
 - All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise specified
 - Voltage values shown in MAIN SECTION.
 NO MARK..... Voltage values at out (NR select switch) mode
 i..... Voltage values at record mode.
 j..... Voltage values at disc (NR select switch) mode
 - Voltage values shown in dbx SECTION.
 i..... Voltage values at out (NR select switch) mode.
 j..... Voltage values at disc (NR select switch) mode.
 For measurement use VTVM.
 - (→) Indicates B + (bias).
 - (→) Indicates B - (bias).
 - (→) Indicates the flow of the playback signal (dbx out).
 - (→) Indicates the flow of the playback signal (dbx tape).
 - (→) Indicates the flow of the recording signal (dbx out).
 - (→) Indicates the flow of the recording signal (dbx tape).
 - Described in the schematic diagram are two types of numbers; the supply parts number and production parts number for transistors and diodes. One type of number is used for supply parts number and production parts number when they are identical.
 - e.g. Q1
 2SC1844 (E, F) ← Production parts number
 [2SC1844E] ← Supply parts number
 D212
 152473T77 ← Production parts number.
 [MA161] ← Supply parts numbers
 - The supply parts number is described alone in the replacement parts list.
 - This schematic diagram may be modified at any time with the development of new technology.

SPECIFICATIONS

- | SPECIFICATIONS | | * Input level controls ... MAX
* Output level control ... MAX |
|---|--|--|
| Playback S/N ratio
* Test tape ... QZZCFM | | Greater than 45 dB |
| Overall distortion
* Test tape
... QZZCRA for Normal
... QZZCRX for CrO ₂
... QZZCRZ for Metal | | Less than 4 % |
| Overall S/N ratio
* Test tape ... QZZCRA | | Greater than 43 dB
(without NAB filter) |

CIRCUIT BOARDS

a MAIN CIRCUIT BOARD

d dbx CIRCUIT BOARD

TERMINATIONS

NOTES:

- The circuit shown in on the conductor is B + (bias) circuit.
- The circuit shown in on the conductor is B - (bias) circuit.
- Values indicated in are under no signal condition and playback mode with volume control at minimum position otherwise specified.
- Voltage values shown in MAIN CIRCUIT BOARD
NO MARK... Voltage values at Out (NR select switch) mode
..... Voltage values at record mode
..... Voltage values at disc (NR select switch) mode
- Voltage values shown in dbx CIRCUIT BOARD
NO MARK... Voltage values at Out (NR select switch) mode
..... Voltage values at Out (NR select switch) mode.
For measurement use VTVM.

This circuit board diagram may be modified at any time with the development of new technology.

SCHEMATIC DIAGRAM

MECHANISM CONTROL SECTION

k TIMER CIRCUIT BOARD

Q501 ~ 505
2SB643(Q,R,S)
[2SB643R]IC701
[M54816P]

n MECHANISM CONTROL CIRCUIT BOARD

Rotating Det.

Q508
[2SD965]

HALL IC CIRCUIT BOARD

IC503
[DN6838A]

REEL MOTOR CIRCUIT BOARD

IC502

REEL MOTOR (QXU0250)
TRIGGER PLUNGER
BRAKE PLUNGER

CAPSTAN MOTOR (QXU0280)

D515 D516
[LN41YPHL] [LN31GPHL]D517
[LN21RPHL]D501 ~ 510, 511 ~ 514
QVD1S247T
[MA161]IC501
[MN1405RH]Q506
[2SD636R]IC502
[AN6270]TO AUDIO
MAIN
CIRCUIT
BOARDS ①②③④⑤⑥⑦⑧⑨
TO POWER
SUPPLY CIRCUIT
BOARD

G ③④⑥⑦⑧⑨

FL METER SECTION

g FL METER CIRCUIT BOARD

IC305 [BA6138] IC304 [

SECTION

9 FL METER CIRCUIT BOARD

D301~303 QVD1S2473T
305, 306 [MA161]D304 1S2473FV
[MA161]Q303 2SB641(R,S)
[2SB641R]Q304 2SA564(R,S,T)
[2SA564R]

GRID TERMINATION (FL METER)

EQUIVALENT CIRCUIT

IC301 AN6870N

- NOTES:**
- VR301... FL meter adjustment VR (For 0 dB indication)
 - VR302... FL meter adjustment VR (For -40 dB indication)
 - VR501... Input scanning time adjustment VR
 - S501... Counter reset switch
 - S502... Pause switch
 - S503... Record switch
 - S504... Stop switch
 - S505... Playback switch
 - S506... Fast Forward switch
 - S507... Rewind switch
 - S508... Record mute switch
 - S509... Memory repeat switch
 - S510... Tape/Time select switch
 - S511... Set switch
 - S512... Music select switch
 - S513... Timer switch (shown in REC position: (1) REC, (2) OFF, (3) PLAY)
 - S601... Accidental erase prevention switch
 - S602... Mode switch
 - S603... Stop switch
 - S604... Playback switch
 - S605... Cassette detection switch
 - Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.
 $1K = 1,000 \Omega$, $1M = 1,000 k\Omega$.
 - Capacity are in microfarads (μF) unless specified otherwise.
 $P = \text{Pico-farads}$.
 - The mark (▽) shows test point. e.g. ▽ = Test point 1.
 - All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position. However, the voltage in record mode is indicated in () when it differs from that in record mode. For measurement, use VTVM.
 - (—) indicates B + (bias)
 - (—) indicates B - (bias)
 - (—) indicates the flow of the playback signal (dbx out)
 - (—) indicates the flow of the recording signal (dbx out)
 - Described in the schematic diagram are two types of numbers; the supply parts number and production parts number for transistors are diodes. One type of number is used for supply parts number and production parts number when they are identical.
- e.g. Q1
2SC1844(E,F) ← Production parts number
[2SC1844E] ← Supply parts number
- D301
QVD1S2473T ← Production parts number
[MA161] ← Supply parts
- The supply parts number is described alone in the replacement parts list.
- This schematic diagram may be modified at any time with the development of new technology.

8 7 6 5 4 3 2 1 A

CIRCUIT BOARDS**n MECHANISM CONTROL CIRCUIT BOARD****h QUARTZ CIRCUIT BOARD****g FL METER CIRCUIT BOARD****TERMINATIONS**

1 2 3 4

SCHEMATIC DIAGRAM

POWER SUPPLY SECTION

WIRING CONNECTION DIAGRAM

REPLACEMENT PARTS LIST

Ref No.	Part No.	Part Name & Description
CABINET PARTS		
G 1	QGCM0058	Case Cover "Silver Type"
G 2	QGCM0058K	Case Cover "Black Type"
G 3	OKA1086	Case Foot
	QGK3201	Side Board "Silver Type"
G 4	QBG1736	"Black Type"
G 5	QGK3223D	Side Board "Silver Type"
G 6	QGK3223K	"Black Type"
G 7	QGL1174	P.B Cushion
G 8	QYP0411	Meter Cover
	QYP1084	Filter
	QYP1085	Button Cover Assem
G 9	QGK322B	Front Panel Assemb
	QGK3222K	"Silver Type"
	QGK3222K	"Silver Type"
G 10	QKJ0518	Operation Panel "Black Type"
G 11	QXB0758	Operation Button (Pla
G 12	QXB0759	Operation Button (Pa
G 13	QXB0760	Operation Button (Re
G 14	QGO1990	Operation Button (Re
		"Silver Type"

NOTES:
 BLK Black
 BLU Blue
 BRN Brown
 GRY Gray
 GRN ... Green
 L. BLU...Light Blue
 NIL No Color Mark
 ORG Orange
 PNK.....Pink
 RED Red
 SLD....Shield Wire
 VLTViolet
 WHT.....White
 YELYellow

NOTES:

BLK	Black
BLU	Blue
BRN.....	Brown
GRY.....	Gray
GRN ...	Green
L. BLU ...	Light Blue
NIL	No Color Ma
ORG ...	Orange
PNK.....	Pink
RED	Red
SLD	Shield Wire
VLT	Violet
WHT.....	White
YEL	Yellow

CABINET PARTS LOCATION

REPLACEMENT PARTS LIST

Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description
CABINET PARTS								
G 1	QGCM0058 "Silver Type"	Case Caver	G 15	QGO1990Y "Black Type"	Operation Button (Rec Mute)	G 31	QTW1279	Meter Insulating Plate
	QGCM0058K "Black Type"	Case Cover		QGO1991 "Silver Type"	Operation Button (Fast Forward)	G 32	XTB4 + 8BFN "Silver Type"	Screw $\oplus 4 \times 8$
G 2	QKA1086	Case Foot	G 16	QGO 1991Y "Black Type"	Operation Button (Fast Forward)	G 33	XTB4 + 8BFZ "Black Type"	Screw $\oplus 4 \times 8$
	QGK3201 "Silver Type"	Side Board		QGO1993 "Silver Type"	Operation Button (Rewind)		QTS1575	Microphone Shield Plate
G 3	QGK3201K "Black Type"	Side Board	G 17	QGO1993Y "Black Type"	Operation Button (Rewind)	G 34	QMA4363	Volume Angle
	QBG1736	P.B Cushion		QGO1994 "Silver Type"	Operation Button (Stop)	G 35	[B] QGS2975 [For United Kingdom.]	Main Name Plate
G 4	QGK3223D "Silver Type"	Meter Cover	G 18	QGO1994Y "Black Type"	Operation Button (Stop)	G 36	QBH2012	Cover Cushion
	QGK3223K "Black Type"	Meter Cover		QGO1995 "Silver Type"	Push Button (Counter Reset)	G 38	XTN3 + 10B	Tapping Screw
G 6	QGL1174	Filter	G 19	QYF0542 "Silver Type"	Cassette Lid Assembly	G 39	XTS3 + 12B	Tapping Screw
	QYB0411	Button Cover Assembly		QYF0542K "Black Type"	Cassette Lid Assembly	G 40	XTN3 + 10B	Tapping Screw
G 7	QYP1084 "Silver Type"	Front Panel Assembly	G 20	QYT0636 "Black Type"	Volume Knob-R	ACCESSORIES		
	QYP1085 "Black Type"	Front Panel Assemby		QYT0637 "Black Type"	Volume Knob-L	A 1	RP023A	Connection Card
G 8	QGK3222B "Silver Type"	Operation Panel	G 21	QGT1569 Select Knob	Select Knob	A 2	[D] QQT3217 [For all European areas except United Kingdom.]	Instruction Book
	QGK3222K "Black Type"	Operation Panel		QGO2043 "Black Type"	Function Button	[B]	QQT3218 [For United Kingdom.]	Instruction Book
G 9	QKJ0518	Push Button Holder	G 22	QGO2042 "Black Type"	Timer Button	PACKINGS		
	QXB0758	Operation Button (Play)		QGO1900 "Black Type"	Power Button	P 1	QPN4290	Inside Carton
G 10	QXB0759	Operation Button (Pause)	G 23	QMR1986 "Black Type"	Power Rod	P 2	QPA0654	Cushion-A
	QXB0760	Operation Button (Record)		QJC0049 "Black Type"	Earth Plate-A	P 3	QPA0655	Cushion-B
G 11	QGO1990 "Silver Type"	Operation Button (Rec-Mute)	G 24	QTS1579 "Black Type"	Shield Plate	P 4	XZB50X65A02	Poly Bag
	QGO1990	Operation Button (Rec-Mute)		QTS1576 "Black Type"	Meter Shield Plate	P 5	QPS0618	Pad
G 12	QGO1990	Operation Button (Rec-Mute)	G 25	OKM1512 "Black Type"	Main Case Asembly	P 6	QPC0072	Sheet
	"Silver Type"			QMK1959 "Black Type"	Sub Chassis	P 7	QPA0662	Spacer

1 2 3 4 5 6 7 8 9

MECHANISM PARTS LOCATION

Front Side

Rear Side

SPECIFICATIONS

Pressure of pressure roller	350 ± 50 g
Takeup tension * Use cassette torque meter ... QZZSRKCT	40 ± 15 g-cm
Wow and flutter (JIS) * Use test tape ... QZZCWAT	Less than 0.07% (WRMS)

REPLACEMENT PARTS LIST

Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description
MECHANICAL PARTS																	
M 1	QMA4330	Flywheel Retainer	M 13	QDK1012	Steel Ball	M 27	XTN26+8B	Tapping Screw	M 41	QML3653	Control Lever	M 56	OXI0116	Takeup Idler	M 69	QXH0390	Mechanism Cover
M 2	QBP1894	Head Base Plate Spring	M 14	QBW2008	Snap Washer	M 29	QXD0120	Takeup Reel Table Assembly	M 42	QBT1278	Record Lock Lever Spring	M 57	QXL1408	Swing Gear Lever Assembly	M 70	QXH0390K	Mechanism Cover
M 3	QBP1895	Cassette Pressure Spring	M 15	QBW2046	Snap Washer	M 30	QMK1867	Head Base Plate	M 45	QXA0280	Capstan Motor Assembly	M 58	QXL1409	Fast Wind Arm Assembly	M 71	QXH0390K "Silver Type"	Lamp Lever Spring-B
M 4	QXG1059	Main Gear	M 16	QBN1772	Erase Safety Lever Spring	M 31	QMZ1252	Head Spacer	M 46	QXA1077	Motor Retainer Assembly	M 59	QML3659	Brake Lever	M 72	QXH0390K "Black Type"	Intermediate Lever Sp
M 5	QDR1146	Supply Reel Table	M 17	QBT1725	Lock Lever Spring	M 32	QBC1103	Head Spring	M 47	QDB0286	Takeup Belt	M 60	QBG1132	Brake Rubber	M 73	QBT1691	lock Lever-A
M 6	QMB1336	Reel Table Hub	M 18	QBT1927	Head Base Plate Spring	M 33	XSN2+16	Screw $\oplus 2 \times 16$	M 48	QXP0621	Takeup Pulley	M 61	QXL1411	Lock Lever Assembly	M 74	QBT1566	lock Lever-B
M 7	QML3655	Cam Follower	M 19	QBT1920	Idler Spring	M 34	XWG2	Washer	M 49	XSN26+3	Screw $\oplus 2.6 \times 3$	M 62	QXF0190	Flywheel Assembly	M 75	QX1414	Stop Ring
M 8	QML3660	Idler Select Lever	M 20	QBC1373	Reel Table Spring	M 35	QXA1232	Brake Plunger Assembly	M 50	QXU0250	Reel Motor Assembly	M 63	QMA4358	Center Angle	M 76	QX1507	Eject Rod Assembly
M 9	QML3661	Erase Safety Lever	M 21	XTN2+6B	Tapping Screw	M 36	QML3865	Plunger Lever	M 51	QBN1878	Holder Spring	M 64	QMA4359	Side Angle-R	M 77	XUC25FT	Dumper Gear Holder
M 10	QMZ1283	Flywheel Thrust Retainer	M 22	XTN26+6BFZ	Tapping Screw	M 37	QBT1955	Plunger Spring	M 52	QBP1946	Cassette Lock Spring	M 65	XTN3+6B	Tapping Screw	M 78	QKJ0499	Nut
M 11	QDB0306	Capstan Belt	M 23	XTN3+6B	Tapping Screw	M 38	QXA1222	Side Angle Spring	M 53	QXL1406	Pressure Roller Lever	M 66	XTN3+8B	Tapping Screw	M 79	QDG1254	Screw
M 12	QDB0287	Reel Motor Belt	M 24	XUB4FT	Stop Ring	M 38-1	QBT1755	Side Angle Spring	M 53-1	QBN1771	Pressure Roller Spring	M 67	XTN26+6BFZ	Tapping Screw			
			M 25, 26	XTN3+10B	Tapping Screw	M 39	QXA1076	Trigger Plunger Assembly	M 54	QMN2625	Eccentric Pin	M 68	XTN26+10B	Tapping Screw			
						M 40	QML3651	Trigger Plunger Lever	M 55	QXL1423	Idler Lever Assembly						

Rear Side

No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description	Ref No.	Part No.	Part Name & Description
	XTN26 + 8B	Tapping Screw	M 41	QML3653	Control Lever	M 56	QX0116	Takeup Idler	M 69	QXH0390	Mechanism Cover	M 80	QMH2085	Cassette Holder
	QXD0120	Takeup Reel Table Assembly	M 42	QBT1278	Record Lock Lever Spring	M 57	QXL1408	Swing Gear Lever Assembly	M 70	QXH0390K	"Silver Type"	M 81	XWG26	Cassette Holder
	QMK1867	Head Base Plate	M 45	QXU0280	Capstan Motor Assembly	M 58	QXL1409	Fast Wind Arm Assembly	M 71	QBT1566	"Black Type"	M 82	QMA4072	"Silver Type"
	QMZ1252	Head Spacer	M 46	QXA1077	Motor Retainer Assembly	M 59	QML3659	Brake Lever	M 72	QXL1414	"Black Type"	M 83	QML3716	"Black Type"
	QBC1103	Head Spring	M 47	QDB0286	Takeup Belt	M 60	QBG1132	Brake Rubber	M 73	QXL1507	Lamp Lever Spring-B	M 84	QML3717	Washer
	XSN2 + 16	Screw $\oplus 2 \times 16$	M 48	XQP0621	Takeup Pulley	M 61	QXL1411	Lock Lever Assembly	M 74	XUC25FT	Intermediate Lever Spring	M 85	QNM2642	Auto Tape Selector Angle
	XWG2	Washer	M 49	XSN2 + 3	Screw $\oplus 2.6 \times 3$	M 62	QXF0190	Flywheel Assembly	M 75	QXR0780	Lock Lever-A	M 86	XTN2 + 5B	Tape Detection Lever
	QXA1232	Brake Plunger Assembly	M 50	QXU0250	Reel Motor Assembly	M 63	QMA4358	Center Angle	M 76	QKJ0499	Stop Ring	M 87	XWG3	(for Normal/CrO ₂ Tape)
	QML3865	Plunger Lever	M 51	QBN1878	Holder Spring	M 64	QMA4359	Side Angle-R	M 77	QDG1254	Eject Rod Assembly	M 88	XWG26	Tape Detection Lever
	GBT1955	Plunger Spring	M 52	QBP1946	Cassette Lock Spring	M 65	XTN3 + 6B	Tapping Screw	M 78	XNG26	Dumper Gear Holder	M 89	XTN26 + 12B	(for Metal Tape)
	QXA1222	Side Angle Spring	M 53	QXL1406	Pressure Roller Lever	M 66	XTN3 + 8B	Tapping Screw	M 79	XSN26 + 8B	Dumper Gear			ARD DDK B BK
	GBT1755	Side Angle Spring	M 53-1	QBN1771	Pressure Roller Spring	M 67	XTN26 + 6BFZ	Tapping Screw			Nut			
	QXA1076	Trigger Plunger Assembly	M 54	OMN2625	Eccentric Pin	M 68	XTN26 + 10B	Tapping Screw			Screw			
	QML3651	Trigger Plunger Lever	M 55	QXL1423	Idler Lever Assembly									Printed in Japan