DATA STRUCTURES LABORATORY

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

SEMESTER - III

Laboratory Code	15CSL38	IA Marks	20
Number of Lecture Hours/Week	01I + 02P	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 02

Course objectives:

This laboratory course enable students to get practical experience in design, develop, implement, analyze and evaluation/testing of

- Asymptotic performance of algorithms.
- Linear data structures and their applications such as Stacks, Queues and Lists
- Non-Linear Data Structures and their Applications such as Trees and Graphs
- Sorting and Searching Algorithms

Descriptions (if any)

Implement all the experiments in C Language under Linux / Windows environment.

Laboratory Experiments:

- 1. Design, Develop and Implement a menu driven Program in C for the following **Array** operations
 - a. Creating an Array of N Integer Elements
 - b. Display of Array Elements with Suitable Headings
 - c. Inserting an Element (ELEM) at a given valid Position (POS)
 - d. Deleting an Element at a given valid Position(**POS**)
 - e. Exit.

Support the program with functions for each of the above operations.

- 2. Design, Develop and Implement a Program in C for the following operationson **Strings**
 - a. Read a main String (STR), a Pattern String (PAT) and a Replace String (REP)
 - b. Perform Pattern Matching Operation: Find and Replace all occurrences of **PAT** in **STR** with **REP** if **PAT** exists in **STR**. Report suitable messages in case **PAT** does not exist in **STR**

Support the program with functions for each of the above operations. Don't use Built-in functions.

- 3. Design, Develop and Implement a menu driven Program in C for the following operations on **STACK** of Integers (Array Implementation of Stack with maximum size **MAX**)
 - a. **Push** an Element on to Stack
 - b. **Pop** an Element from Stack
 - c. Demonstrate how Stack can be used to check *Palindrome*
 - d. Demonstrate Overflow and Underflow situations on Stack

- e. Display the status of Stack
- f. Exit

Support the program with appropriate functions for each of the above operations

- 4. Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, %(Remainder), ^(Power) and alphanumeric operands.
- 5. Design, Develop and Implement a Program in C for the following Stack Applications
 - a. Evaluation of **Suffix expression** with single digit operands and operators: $+, -, *, /, \%, ^{\wedge}$
 - b. Solving **Tower of Hanoi** problem with **n** disks
- 6. Design, Develop and Implement a menu driven Program in C for the following operations on Circular QUEUE of Characters (Array Implementation of Queue with maximum size MAX)
 - a. Insert an Element on to Circular QUEUE
 - b. Delete an Element from Circular QUEUE
 - c. Demonstrate *Overflow* and *Underflow* situations on Circular OUEUE
 - d. Display the status of Circular QUEUE
 - e. Exit

Support the program with appropriate functions for each of the above operations

Continued:

- 7. Design, Develop and Implement a menu driven Program in C for the following operations on **Singly Linked List (SLL)** of Student Data with the fields: *USN*, *Name*, *Branch*, *Sem*, *PhNo*
 - a. Create a SLL of N Students Data by using *front insertion*.
 - b. Display the status of SLL and count the number of nodes in it
 - c. Perform Insertion / Deletion at End of **SLL**
 - d. Perform Insertion / Deletion at Front of SLL(Demonstration of stack)
 - e. Exit
- 8. Design, Develop and Implement a menu driven Program in C for the following operations on **Doubly Linked List (DLL)** of Employee Data with the fields: *SSN*, *Name*, *Dept*, *Designation*, *Sal*, *PhNo*
 - a. Create a **DLL** of **N** Employees Data by using *end insertion*.
 - b. Display the status of **DLL** and count the number of nodes in it
 - c. Perform Insertion and Deletion at End of **DLL**
 - d. Perform Insertion and Deletion at Front of **DLL**
 - e. Demonstrate how this DLL can be used as Double Ended Queue
 - f. Exit

- 9. Design, Develop and Implement a Program in C for the following operationson **Singly Circular Linked List (SCLL)** with header nodes
 - a. Represent and Evaluate a Polynomial $P(x,y,z) = 6x^2y^2z-4yz^5+3x^3yz+2xy^5z-2xyz^3$
 - b. Find the sum of two polynomials POLY1(x,y,z) and POLY2(x,y,z) and store the result in POLYSUM(x,y,z)

Support the program with appropriate functions for each of the above operations

- 10. Design, Develop and Implement a menu driven Program in C for the following operations on **Binary Search Tree (BST)** of Integers
 - a. Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2
 - b. Traverse the BST in Inorder, Preorder and Post Order
 - c. Search the BST for a given element (KEY) and report the appropriate message
 - e. Exit
- 11. Design, Develop and Implement a Program in C for the following operations on **Graph(G)** of Cities
 - a. Create a Graph of N cities using Adjacency Matrix.
 - b. Print all the nodes **reachable** from a given starting node in a digraph using DFS/BFS method
- 12. Given a File of **N** employee records with a set **K** of Keys(4-digit) which uniquely determine the records in file **F**. Assume that file **F** is maintained in memory by a Hash Table(HT) of **m** memory locations with **L** as the set of memory addresses (2-digit) of locations in HT. Let the keys in **K** and addresses in **L** are Integers. Design and develop a Program in C that uses Hash function **H**: **K** →**L** as H(**K**)=**K** mod **m** (remainder method), and implement hashing technique to map a given key **K** to the address space **L**. Resolve the collision (if any) using **linear probing**.

Course outcomes:

On the completion of this laboratory course, the students will be able to:

- Analyze and Compare various linear and non-linear data structures
- Code, debug and demonstrate the working nature of different types of data structures and their applications
- Implement, analyze and evaluate the searching and sorting algorithms
- Choose the appropriate data structure for solving real world problems

Graduate Attributes (as per NBA)

- 1. Engineering Knowledge
- 2. Problem Analysis
- 3. Design/Development of Solutions
- 4. Modern Tool Usage

Conduction of Practical Examination:

- 1. All laboratory experiments (TWELVE nos) are to be included for practical examination.
- 2. Students are allowed to pick one experiment from the lot.
- 3. Strictly follow the instructions as printed on the cover page of answer script
- 4. Marks distribution: Procedure + Conduction + Viva: 20 + 50 + 10 (80)
- 5. Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.