Roger Access Control System

Instrukcja instalacji zestawów MC16-PAC-EX/ST-3-KIT i MC16-PAC-EX/ST-4-KIT

Oprogramowanie firmowe kontrolera: 1.7.4.653 i wyższe

Wersja produktu: 3.0 Wersja dokumentu: Rev. B

 ϵ

Niniejszy dokument zawiera minimum informacji wymaganych do skonfigurowania, podłączenia i zamontowania zestawu. Pełny opis funkcjonalności oraz parametrów konfiguracyjnych elementów zestawu jest dostępny w instrukcjach obsługi dostępnych na stronie www.roger.pl

WSTEP

Zestaw MC16-PAC-EX/ST-3-KIT jest przeznaczony do obsługi trzech przejść a zestaw MC16-PAC-EX/ST-4-KIT czterech przejść w ramach systemu kontroli dostępu RACS 5. Przejścia mogą być kontrolowane jedno lub dwustronnie z wykorzystaniem czytników serii MCT lub czytników z interfejsem OSDP-RS485 w tym czytników serii OSR. Zestaw zawiera odpowiednio kontroler MC16-PAC-EX/ST-3 lub MC16-PAC-EX/ST-4 i ekspander MCX4D oraz metalową obudowę ME-40 z zasilaczem PS4D. Obudowa jest przystosowana do instalacji akumulatora 17Ah w celu zapewnienia zasilania awaryjnego. Wszystkie elementy kontrolowanego przejścia w tym czytniki oraz zamki drzwi można zasilić z zestawu.

KONFIGURACJA Z POZIOMU ROGERVDM

Konfiguracja niskopoziomowa za pomocą programu RogerVDM pozwala zdefiniować podstawowe parametry pracy kontrolera MC16 tj. adres IP i klucz komunikacyjny.

Procedura programowania MC16 (RogerVDM):

- 1. Podłącz kontroler do sieci Ethernet ustawiając adres IP komputera z programem RogerVDM w tej samej podsieci co kontroler z domyślnym adresem 192.168.0.213
- Uruchom program RogerVDM, wybierz urządzenie MC16 v1.x, najnowszą wersję firmware i kanał komunikacyjny Ethernet.
- Wybierz z listy lub wprowadź ręcznie adres IP kontrolera, wprowadź klucz komunikacyjny 1234 i nawiąż połączenie z kontrolerem.
- W menu górnym wybierz Narzędzia, a następnie polecenie Ustaw klucz komunikacyjny by ustawić własne hasło dla kontrolera MC16.
- W polu *Adres IP* zdefiniuj własny adres IP kontrolera.

 Opcjonalnie wprowadź komentarze dla kontrolera i jego obiektów w celu ułatwienia ich identyfikacji w ramach dalszej konfiguracji systemu.
- Opcjonalnie utwórz kopię zapasową ustawień poleceniem Zapisz do pliku...
- Prześlij ustawienie do kontrolera wybierając Wyślij do urządzenia i rozłącz się z nim wybierając w menu górnym *Urządzenie* i następnie *Rozłącz*.

Uwaga: W systemie RACS 5 v2 wstępna konfiguracja niskopoziomowa kontrolera powinna być zrealizowana za pomocą programu RogerVDM, ale po dodaniu kontrolera do systemu modyfikacja konfiguracji niskopoziomowej kontrolera oraz podłączonych do niego urządzeń serii MCT i MCX może być realizowana zdalnie za pomocą programu VISO v2.

KONFIGURACJA Z POZIOMU VISO

Konfiguracja wysokopoziomowa za pomocą programu VISO umożliwia zdefiniowanie logiki działania kontrolera. Więcej informacji na ten temat podano w instrukcji obsługi kontrolera oraz nocie aplikacyjnej AN006.

RESET PAMIĘCI

Reset pamięci kontrolera kasuje wszystkie dotychczasowe nastawy konfiguracyjne i ustawia pusty klucz komunikacyjny oraz domyślny adres IP 192.168.0.213.

Procedura resetu pamieci MC16:

- Odłącz zasilanie kontrolera.
- Zewrzyj linie CLK i IN4.
- Podłącz zasilanie kontrolera, wszystkie diody LED zaczną pulsować i odczekaj co najmniej 6s
- Rozewrzyj linie CLK i IN4, diody LED przestaną pulsować i zaświeci się LED2.
- Odczekai około 1.5 min do momentu aż zaczna pulsować LED5. LED6. LED7 i LED8.
- Zrestartuj kontroler (wyłącz/włącz zasilanie).
- Uruchom program RogerVDM i wykonaj konfigurację niskopoziomową.

AKTUALIZACJA OPROGRAMOWANIA

Nowe oprogramowanie firmowe można wgrać do kontrolera MC16 za pomocą programu RogerVDM lub VISO v2. Plik z aktualnym oprogramowaniem firmowym dostępny jest na stronie www.roger.pl.

cedura aktualizacji oprogramowania MC16 (RogerVDM):

- Nawiąż połączenie z kontrolerem za pomocą programu RogerVDM.
- 2. Zachowaj kopię zapasową ustawień poleceniem Zapisz do pliku...

- 3. W menu górnym wybierz Narzędzia, a następnie Aktualizacja firmware.
- Wskaż lokalizację pliku firmware i wybierz Prześlij.
- Po wgraniu firmware odczekaj aż LED8 zacznie pulsować.
- Wykonaj lub przywróć konfigurację niskopoziomową w ramach programu RogerVDM.

Uwaga: W czasie procesu wgrywania oprogramowania należy zagwarantować ciągłe i stabilne zasilanie urządzenia. Awaria w czasie aktualizacji oprogramowania może skutkować koniecznością naprawy urządzenia w serwisie

ZASILANIE

Zasilanie zestawu zapewnia zasilacz PS4D 13,8VDC/5,4A. W zestawie przewidziano miejsce na standardowy akumulator o pojemności 17Ah, który podłącza się do zacisków BAT+ i BAT- ekspandera MCX4D.

Rvs 1 Zestaw MC16-PAC-FX/ST-3-KIT Jub MC16-PAC-FX/ST-4-KIT

Instalację może wykonywać tylko wykwalifikowana osoba posiadająca odpowiednie zezwolenia i uprawnienia do przyłączania i ingerencji w sieć 230VAC oraz sieci niskonapieciowe.

Przed przystąpieniem do instalacji należy upewnić się, że napięcie w obwodzie zasilającym 230VAC jest odłączone. Wszelkie prace serwisowe wewnątrz obudowy należy wykonywać przy odłączonym zasilaniu 230VAC

Niedopuszczalne jest użytkowanie zestawu bez poprawnie wykonanego i sprawnego technicznie obwodu ochrony przeciwporażeniowei PE.

OCHRONA ANTYSABOTAŻOWA

Obudowa zestawu jest wyposażona w czujnik otwarcia drzwiczek. Czujnik można podłączyć do jednej z linii wejściowych kontrolera (np. IN8) i zacisku GND. W ramach konfiguracji za pomocą programu VISO można linii wejściowej przypisać funkcję ochrony antysabotażowej.

DODATKI

Tabela 1. Opis zacisków kontrolera MC16		
Nazwa	Opis	
BAT+, BAT-	Nie używane w zestawie	
AC, AC	Zasilanie kontrolera	
AUX-, AUX+	Zasilanie kontrolera	
TML-, TML+	Nie używane w zestawie	
IN1-IN8	Linie wejściowe	
GND	Potencjał odniesienia (masa)	
OUT1-OUT6	Tranzystorowe linie wyjściowe 15VDC/150mA	
A1,B1	Magistrala RS485	
CLK, DTA	Nie używane w zestawie	
A2,B2	Nie używane	

	NO1, COM1, NC1	Przekaźnik (REL1) 30V/1,5A DC/AC	
Г	NO2, COM2, NC2	Przekaźnik (REL2) 30V/1,5A DC/AC	

Tabela 2. Opis zacis	acisków ekspandera MCX4D		
Nazwa	Opis		
BAT+, BAT-	Zaciski do podłączenia akumulatora		
VIN+, VIN-	Zasilanie wejściowe 13,8VDC		
AUX+, AUX-	Zasilanie wyjściowe 13,8VDC/0,2A (do ogólnego przeznaczenia)		
VOUT+, VOUT-	Zasilanie wyjściowe 13,8VDC/0,2A (do kontrolera)		
A, B	Magistrala RS485 (do kontrolera)		
Ax, Bx	Magistrala RS485 (do czytników)		
TMLx+, TMLx-	Zasilanie wyjściowe 13,8VDC/0,2A (do czytników)		
VDRx+, VDRx-	Zasilanie wyjściowe 13,8VDC/1,0A (do zamka drzwi)		
LCKx	Tranzystorowa linia wyjściowa 15VDC/1A (zamek drzwi)		
BELLx	Tranzystorowa linia wyjściowa 15VDC/1A (sygnalizator)		
DCx	Linia wejściowa (czujnik otwarcia drzwi)		
DRx	Linie wejściowa (przycisk wyjścia)		

Tabela 2. Wska	Tabela 2. Wskaźniki LED kontrolera MC16		
Nazwa	Opis		
LED1	Tryb normalny		
LED2	Świeci: Tryb serwisowy (konfiguracja niskopoziomowa) Świeci i zatrzymanie kontrolera: błąd inicjowania danych w pamięci RAM-SPI Pulsowanie (~2Hz): niezgodność firmware lub błąd przy starcie Szybkie pulsowanie (~6Hz): Błąd pamięci RAM-SPI lub Flash		
LED3	Świeci: Brak konfiguracji wysokopoziomowej Pulsowanie: Błąd dostępu do konfiguracji niskopoziomowej		
LED4	Brak/błąd karty pamięci		
LED5	Błąd logu zdarzeń		
LED6	Błąd inicjalizacji, błąd dostępu do danych o poprzednim działaniu licencji lub błędy firmware		
LED7	Świeci: Błąd licencji Pulsowanie: Przekroczony dozwolony okres aktywności (licencja)		
LED8	Pulsowanie: Prawidłowa praca kontrolera		
LED2 świeci + LED3 pulsuje	Aktualizacja firmware		
LED5 - LED 8 pulsują	Zakończenie kasowania pamięci		
LED 1 - LED 2 pulsują	Transmisja z niedozwolonego Serwera komunikacji gdy załączony parametr blokowanie komunikacji z innymi serwerami (nota AN008)		
LED1 – LED 8 pulsują	Założenie jednego z mostków np. CLK + IN4		

Tabela 4. Dane techniczne	
Napięcie zasilania	230VAC, 50/60Hz (-15%÷+10%)
Zasilacz	PS4D 13,8VDC/5,4A
Zabezpieczenie	Rozłącznik bezpiecznikowy 5A/250VAC
Obudowa	Blacha DC01 0,8mm, kolor szary antracyt (RAL7016)
Ochrona antysabotażowa (TAMPER)	Czujnik NO/NC; 50VDC/50mA
Odległości	Magistrala RS485: do 1200m Zasilanie: zgodnie z notą aplikacyjną AN022
Stopień ochrony IP	IP20
Stopień ochrony IK	IK07
Klasa środowiskowa (wg EN 50133-1)	Klasa I, warunki wewnętrzne, temp. +5°C do +40°C, wilgotność względna: 1095% (bez kondensacji)
Wymiary W x S x G	365 x 405 x 121 mm
Waga	4,1 kg
Certyfikaty	CE

Rys. 2 Typowa obsługa przejść z czytnikami serii MCT

Uwagi:

- Zasilanie kontrolera powinno być zrealizowane jak na rys. 2. Jeżeli plus zasilania zostanie podłączony nieprawidłowo tj. do drugiego zacisku AC to wskaźnik LED AC na płytce kontrolera nie będzie się świecił.
- Docelowo wszystkie czytniki MCT podłączone do kontrolera MC16 poprzez ekspander MCX4D muszą mieć unikalne adresy na magistrali RS485 w zakresie ID=101-115 (przyjmując, że ekspander MCX4D działa z adresem domyślnym ID=100). W systemie RACS 5 v2 adresowanie urządzeń MCT/MCX można zrealizować zdalnie z poziomu programu VISO v2 w trakcie uruchamiania systemu.
- W przypadku czytników OSDP, w tym czytników serii OSR konieczne jest zastosowanie interfejsów MCI-3 na magistrali RS485.
- W przypadku przejścia jednostronnie kontrolowanego, do kontrolera podłącza się jeden czytnik w ramach danego przejścia.
- Na schematach przyjęto obsługę przejść z elektrozaczepami. W przypadku zwór elektromagnetycznych należy zmienić polaryzację wyjść LCKx w ramach konfiguracji niskopoziomowej ekspandera MCX4D.
- Na schematach przewidziano obsługę przycisku wyjścia. W przypadku przejścia dwustronnie kontrolowanego przycisk może służyć do awaryjnego otwierania przejścia.
- Jeżeli w zestawie zainstalowany jest akumulator 17Ah to zaleca się ustawienie prądu ładowania na poziomie 600mA za pomocą zworki na ekspanderze MCX4D.
- Jeżeli kontroler MC16 jest zasilany z ekspandera MCX4D, czyli tak jak jest to standardowo w zestawach MC16-PAC-EX/ST-3-KIT i MC16-PAC-EX/ST-4-KIT to niewskazane jest korzystanie z wyjść TML+ i AUX+ kontrolera.

Uwaga: Zasadniczo kontroler MC16 może być użytkowany zarówno w sieci WAN jak i LAN, przy czym gwarancją producenta jest objęta tylko jego praca w wyizolowanej sieci LAN zarezerwowanej wyłącznie dla systemu kontroli dostępu, w którym ma pracować kontroler.

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcii.

Kontakt:

Roger Sp. z o. o. sp. k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133

Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: pomoc.techniczna@roger.pl