ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Estatística Descritiva

Exercício

 Um borracheiro anotou a vida útil dos pneus dos carros de seus clientes

2,4	5,2	3,5	4,9	3,5	6
4,5	3,2	3,7	2,9	4,7	5,2
3,8	5,4	6,2	5,5	4,5	6

 Faça um Diagrama de Ramos e Folhas, calcule a Amplitude e faça a Tabela de Frequência.

Exercício

Diagrama de Ramo e de Folha

Ramo	Folha	Freq
2	4 9	2
3	25578	5
4	5 5 7 9	4
5	2 2 4 5	4
6	0 0 2	3

Exercício

Tabela de Frequência

t	Freq Absoluta	Freq Relativa
2,4 ⊢ 3,375	6	0,33
3,375 ⊢ 4,35	1	0,06
4,35 ⊢ 5,325	6	0,33
5,325 ⊢ 6,3	5	0,28
Total	18	1

•
$$K = \sqrt{18} \cong 4,243$$

• *Amplitude*
$$=\frac{6,3-2,4}{4}=0,975$$

Moda (Mo)

- Moda é o valor que ocorre com maior frequência em uma distribuição de valores.
- Ex 1: A série 7, 8, 9, 10, 10, 10, 11, 12, 13, 15 tem Mo=10.
- Ex 2: 3, 5, 8, 10, 12, 13 é amodal (não tem moda).
- Ex 3: 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9 é bimodal (tem duas modas).

Moda (Mo)

Moda de dados agrupados sem intervalo de classe:

Nº DE MENINOS	f
0	2
1	6
2	10
3	12
4	4
AS with t	$\Sigma = 34$

Mo = 3

(pois 3 tem frequência 12)

Moda (Mo)

- Moda de dados agrupados com intervalo de classe:
- A classe de maior frequência é chamada classe modal. A moda será, então, o ponto médio desta classe.

$$Mo = \frac{\sqrt{* + L^*}}{2}$$

i	ESTATURAS (cm)	fi
1	150 ⊢ 154	4
2	154 ⊢ 158	9
3	158 ⊢ 162	11 ←
4	162 ⊢ 166	8
5	166 ⊢ 170	5
6	170 ⊢ 174	3
		Σ = 40

Mo =
$$\frac{0^* + L^*}{2}$$

Mo = $\frac{158 + 162}{2} = \frac{320}{2} = 160$
Mo = 160 cm

Expressões Gráficas da Moda

Na curva de frequência, a moda é o valor que corresponde, no eixo das abcissas, ao ponto de ordenada máxima. Assim, temos:

Média Variáveis Descritivas

Variáveis descritivas podem, em alguns casos, ser associadas a valores discretos a fim de tornar plausível a realização de operações aritméticas. Baseando apenas na opinião dos colegas, qual deve ser a tendência do resultado?

classe	freq
В	5
М	10
Α	15
Total	30

Média com Variáveis Descritivas

Considerando B = 0; M = 1 e A = 2, temos que:

$$\overline{x} = \frac{5 \cdot 0 + 1 \cdot 10 + 15 \cdot 2}{30} = 1, \overline{3}.$$

Neste caso, temos uma tendência mais favorável a classe M.

 O valor que divide a distribuição de frequências em 2 grupos com mesmo número de elementos estará na posição dada por:

$$\frac{\sum f_i}{2}$$

Neste caso basta identificar a frequência acumulada imediatamente superior à metade da soma das frequências:

Nº DE MENINOS	f	F,	
0	2	2	
1	6	8	
2	10	18	(
3	12	30	
4	4	34	
	$\Sigma = 34$		

$$\frac{\sum f_i}{2} = \frac{34}{2} = 17$$

Mediana = 2 meninos

No caso de existir uma frequência acumulada (Fi), tal que:

$$F_i = \frac{\sum f_i}{2}$$

A mediana será dada por:

$$Md = \frac{x_i + x_{i+1}}{2},$$

 Isto é, a mediana será a média aritmética entre o valor da variável correspondente a essa frequência acumulada e a seguinte.

Exemplo:

T 4	Ph.	p= 1	- 8	^	~
TA	ĸ	I- I	Λ	h	×
10	ı	-	-7	v.	u

X _i	f	F
12	1	1
14	2	3
15	1	4
16	2	6
17	1	7
20	1	8
	Σ = 8	1

Temos:

$$-\frac{8}{2} = 4 = F_3$$

Logo:

$$Md = \frac{15 + 16}{2} = \frac{31}{2} = 15,5$$

donde:

$$Md = 15,5$$

- 1º. Determinar as frequências acumuladas
- 2º Calcular $\frac{\sum f_i}{2}$
- 3º Marcar a classe correspondente à frequência acumulada imediatamente superior à $\frac{\sum f_i}{2}$ (classe Mediana), em seguida utilizar a fórmula

Med = li +
$$\left| \frac{\left(\frac{n}{2}\right) - fa_{[i-1]}}{fc} \right|$$
. h

Med = $li + \left[\frac{\left(\frac{n}{2}\right) - fa_{[i-1]}}{fc}\right]$. h li é o limite inferior da classe mediana; fa (i-1) é a frequência acumulada da classe anterior à classe da mediana; fc é a frequência simples da classe mediana; h é a amplitude do intervalo da classe mediana

i	ESTATURAS (cm)	f,	F,	
1	150 ⊢ 154	4	4	
2	154 ⊢ 158	9	13	
2	158 ⊢ 162	11	24	← classe mediana
4	162 ⊢ 166	8	32	
5	166 ⊢ 170	5	37	
6	170 ⊢ 174	3	40	
		$\Sigma = 40$		

$$\frac{\sum f_i}{2} = \frac{40}{2} = 20$$

$$Md = i^* + \frac{\left[\frac{\sum f_i}{2} - F(ant)\right]h^*}{f^*}$$

Md = 158 +
$$\frac{(20-13)4}{11}$$
 = 158 + $\frac{28}{11}$ = 158 + 2,54 = 160,54,

Md = 160,5 cm

Exemplo Média, Mediana e Moda

 Suponha que os resumos a seguir correspondem aos salários (em milhares de reais) pagos por duas companhias, digamos A e B.

Companhia	Α	В
média	2,5	2,0
mediana	1,7	1,9
moda	1,5	1,9

Considerando apenas os dados indicados no resumo acima, qual empresa e mais atrativa?

Posição Relativa da Média, Mediana e Moda

- Quando uma distribuição é simétrica, as três medidas coincidem.
- Quando a distribuição é assimétrica, torna-se diferentes essas medidas e a diferença é tanto maior quanto maior é a assimetria.
- $\bar{X} = Md = Mo$, no caso da curva simétrica
- $Mo < Md < \overline{X}$, no caso da curva assimétrica positiva
- $\bar{X} < Md < Mo$, no caso da curva assimétrica negativa

Posição Relativa da Média, Mediana e Moda

Medidas separatrizes

- Medidas separatrizes dividem a sequência ordenada dos dados em partes que contêm a mesma quantidade de elementos.
- A mediana trata de um caso particular pois separa a amostra em duas porções as quais contêm 50% da informação cada. Considerando, por exemplo, o conjunto de dados 1,2,5,5,5,8,10,11,12,12,13,15, temos:

As regras de calculo são análogas as adotadas no caso da mediana;
 basta adapta-las para a porção desejada dos dados.

Quartis - Medidas de Tendência Central

- Ao dividir os dados ordenados em 4 partes de mesmo tamanho, cada um resumira 25% da informação.
- Os elementos Q1, Q2 e Q3 que separam tais grupos são denominados os quartis amostrais.
- Em particular, o segundo quartil Q2 corresponde a mediana

Quartis

- O primeiro quartil (Q1), separa a sequência ordenada deixando 25% de seus valores a esquerda e 75% de seus valores a direita.
- O segundo quartil (Q2) separa a sequencia ordenada deixando 50% de seus valores a esquerda e 50% de seus valores a direita. Note que o Q2 é a Mediana da série.
- O terceiro quartil (Q3) obedece a mesma regra dos anteriores.

Quartis

- O primeiro quartil (Q1), separa a sequência ordenada deixando 25% de seus valores a esquerda e 75% de seus valores a direita.
- O segundo quartil (Q2) separa a sequencia ordenada deixando 50% de seus valores a esquerda e 50% de seus valores a direita. Note que o Q2 é a Mediana da série.
- O terceiro quartil (Q3) obedece a mesma regra dos anteriores.

Dados não Agrupados

3, 4, 5, 5, 6, 8, 9, 11, 15, 21
$$Q_{2} = 7$$

$$Q_{1} = 5$$

$$Q_{2} = 11$$

- 1) Cálculo da mediana para os 3 quartis. Na realidade serão calculadas "3 medianas" em uma mesma série.
- Calcule os quartis da série: { 5, 2, 6, 9, 10, 13, 15 }
- Ordenação (crescente ou decrescente) dos valores: { 2, 5, 6, 9, 10, 13, 15 }
- O valor que divide a série acima em duas partes iguais e igual a 9, logo a Md = 9 que será = Q2.
- Temos: {2, 5, 6 } e {10, 13, 15 } outros dois grupos de valores iguais proporcionais pela mediana (quartil 2).

2) Cálculo do quartil 1 e 3 \rightarrow calcular as medianas das partes iguais provenientes da verdadeira Mediana da série (quartil 2).

Temos { 2, 5, 6 } a mediana é = 5. Ou seja: será o Q1

E {10, 13, 15 } a mediana é =13. Ou seja: será o Q3

- Calcule os quartis da serie: { 1, 1, 2, 3, 5, 5, 6, 7, 9, 9, 10, 13 }
- Ordenar e Calcular o Quartil 2 = Md = (5+6)/2 = 5,5
- O quartil 1 será a mediana da série à esquerda de Md: { 1, 1, 2, 3, 5, 5 }
- \rightarrow Q1 = (2+3)/2 = 2,5
- O quartil 3 será a mediana da série à direita de Md: {6, 7, 9, 9, 10, 13 }
- \rightarrow Q3 = (9+9)/2 = 9

- Determine a classe que contém o valor quartil a ser calculado.
- A identificação da classe é feita por meio do termo da ordem calculada pela expressão:

$$P_{QK} = \frac{K \sum f_i}{4} (onde \ K = 1, 2 ou 3)$$

 Essa expressão determina a posição do referente quartil ou classe que contém o quartil.

Assim, temos:

$$Q_k = l_{qk} + \left[\frac{K \cdot \sum_{i} f_i}{4} - F_{ant} \right] \cdot a_{Qk}$$

Sendo:

 I_{ok} = limite inferior da classe do quartil considerado.

 \mathbf{F}_{ant} = frequência acumulada da classe anterior à classe do quartil considerado.

 \mathbf{a}_{OK} = amplitude do intervalo de classe do quartil considerado.

 \mathbf{f}_{OK} = frequência simples da classe do quartil considerado.

Para o calculo dos quartis de dados agrupados com intervalos de classe, consideramos a distribuição dos pesos de um grupo de turistas que visita um parque temático em Fortaleza/CE/Julho/06.

i	(kg)	rrequencia (f _i)	acumulada (Fa)
1	10 - 30	10	10
2	30 - 50	24	34
3	50 - 70	57	91
4	70 - 90	44	135
5	90 - 110	29	164
6	110 - 130	16	180

Primeiro, calcula-se a classe a que pertence o quartil Q_1 (k=1), ou seja, a posição:

PQ1 =
$$\frac{1 \cdot \sum f_i}{4} = \frac{180}{4} = 45$$

Observando a **coluna de freqüência acumulada**, verificamos que o quadragésimo quinto **termo** pertence à terceira classe (a freqüência acumulada da teceria classe abrange do 35º termo ao 91º termo).

Sabendo que a classe do primeiro quartil é a terceira classe, podemos verificar qual o **valor numérico** do primeiro quartil utilizando a expressão:

$$Q_1 = l_{Q_1} + \left[\frac{1 \sum_{Q_1} f_1}{4} - F_{ant} \right] \cdot a_{Q_1} = 50 + \left[\frac{45 - 34}{57} \right] \cdot 20 \cong 53,9 \text{kg}$$

2° quartil $\rightarrow \frac{2\sum f_i}{A} = \frac{2 \times 180}{A} = 90$ (o segundo quartil pertence à terceira classe).

$$Q_2 = l_{Q_2} + \left[\frac{2\sum f_i}{4} - F_{ant} \over f_{Q_2} \right] \bullet a_{Q_2} = 50 + \left[\frac{90 - 34}{57} \right] \cdot 20 \cong 69,7 \text{ kg}$$

3° quartil $\rightarrow \frac{3\sum f_i}{4} = \frac{3\times180}{4} = 135$ (o terceiro quartil pertence à quarta classe)

$$Q_{3} = I_{Q_{3}} + \left[\frac{3\sum_{Q_{3}} f_{i}}{4} - F_{ant}\right] \bullet a_{Q_{3}} = 70 + \left[\frac{135 - 91}{44}\right] \cdot 20 = 90,0 \text{ kg}$$
Assim temos: $Q_{1} = 53,9 \text{ kg}$; $Q_{2} = 69,7 \text{ kg}$ e $Q_{3} = 90,0 \text{ kg}$

Generalização dos Quantis Amostrais

- Os quatro elementos K_1 ; K_2 ; K_3 e K_4 que separam os dados em **cinco** partes iguais são denominados **quintis** amostrais.
- Analogamente:

i: 10 partes iguais - decis amostrais;

ii: 100 partes iguais - percentis amostrais;

iii : q partes iguais - quantis amostrais (q e um inteiro não-negativo qualquer)

Percentis

- Os percentis dividem uma distribuição de frequência em cem partes iguais. P1(1%), P2(2%), P3(3%), . . . , P99(99%)
- Para determinarmos a classe que contém o i-ésimo percentil, devemos calcular a posição do elemento correspondente ao percentil desejado.
- A fórmula para o cálculo dos i-ésimo percentil (i=1,2,...,99) é:

$$P_{i} = L_{P} + \left(\frac{\frac{i}{100}.n - F_{ant}}{f_{P}}\right).h$$

 $P_i = L_p + \left[\frac{\frac{1}{100} \cdot n - F_{ant}}{f_p} \right] \cdot h$ $L_p = \text{limite inferior da classe que contém o percentil}$ i = número do percentil a ser calculado (1,2,..., 99) n = tamanho da amostra

F_{ant} = frequência acumulada anterior à classe que contém o percentil f_P = frequência simples (ou absoluta) da classe que contém o percentil h = amplitude da classe que contém o percentil

Percentis

Se observarmos que os quartis e decis são múltiplos dos percentis, então basta estabelecer a fórmula de cálculo dos percentis. Todas as outras medidas podem ser identificadas como percentis. A fórmula utilizada é a mesma usada para o cálculo da mediana.

Considere uma tabela de custos:

Custos	Freqüência	Fi	posições
R\$	fi		
450 550	8	8	1ª a 8ª
550 650	10	18	9 ^a a 19 ^a
650 750	11	29	20 ^a a 29 ^a
750 850	16	45	30 ^a a 45 ^a
850 950	13	58	46ª a 58ª
950 1050	5	63	59ª a 63ª
1050 1150	1	64	64 ^a
Total	64	-	

a) Q₁

A posição ocupada pelo primeiro quartil é $\frac{64}{4}$ = 16 a posição, que corresponde a classe 550 |— 650. Aplicando a fórmula:

$$Q_1 = 550 + \left(\frac{\frac{1}{4}.64 - 8}{10}\right).100 = 630 \text{ reais.}$$

b) Q₃

A posição ocupada pelo terceiro quartil é $\frac{3.64}{4}$ = 48 a posição, que corresponde a classe 850 |— 950. Aplicando a fórmula:

$$Q_3 = 850 + \left(\frac{\frac{3}{4}.64 - 45}{13}\right).100 = 873,08 \text{ reais.}$$

c) D₉

A posição ocupada pelo nono decil é $\frac{9.64}{10}$ = 57,6 ~ 58ª posição, que corresponde a classe 850 |— 950. Aplicando a fórmula:

$$D_9 = 850 + \left(\frac{\frac{9}{10}.64 - 45}{13}\right).100 = 946,92 \text{ reais.}$$

d) P₃₈

A posição ocupada pelo 38° percentil é $\frac{38.64}{100}$ = 24,32 ~ 24ª posição, que corresponde a classe 650 |— 750. Aplicando a fórmula:

$$P_{38} = 650 + \left(\frac{\frac{38}{100}.64 - 18}{11}\right).100 = 707,45 \text{ reais.}$$

e) P₂₅

Lembre-se que o 25° percentil corresponde ao primeiro quartil, que calculamos anteriormente. Assim: $P_{25} = Q_1 = 630$ reais.