「推測するな、計測せよ」 ~小さく始める生産性可視化と分析~

2023-05-30 開発生産性を高める~ソウゾウ、Voicyの挑戦と苦労~

株式会社メルカリ 佐藤直人(@naopr)

自己紹介

@naopr (なおぱー)

- Engineering Manager at Mercari
- メルカリShopsの開発を担当
- Love 😺 角 🔟 🍶
- https://twitter.com/naopr

アジェンダ

- Ol メルカリShopsと開発組織
- 02 生産性可視化プロジェクト(PJ-Productivity)の立ち上げ
- 03 生産性可視化までの挑戦と苦労
- ○4 指標の分析と改善の取り組み

メルカリShopsとは

「かんたんで、売れる」スマホ¹つでネットショップを開設できる Eコマースプラットフォーム

メルカリShopsの開発組織

Product Team

- お客さまの課題を解決
- PdM/Designer/QA/SWE/EM

Enabling Team

- Product Teamの技術を強化
- SRE/ML/Architect/EM

| 生産性可視化プロジェクト(PJ-Productivity)の立ち上げ

~リリース2ヶ月後、メルカリOB(mさん)とnaoprの飲み会~

- m「開発組織の生産性可視化やってる会社が増えてきたよねー」
- n「生産性落ちたと思ったときに客観的な数値あるといいよね」
- m「『推測するな、計測せよ』は大事だよね」
- n「ソウゾウも組織が大きくなる前に可視化しておきたいなあ」
- n「mさん、ソウゾウで一緒に生産性可視化やりませんか!」
- → 1ヶ月後 mさん業務委託でソウゾウに入社
- → naoprとmさんの2人でPJ-Productivity立ち上げ

生産性可視化までの挑戦と苦労

1. 外部SaaSの導入を検討

- a. 社内IT・セキュリティチームと相談
- b. 先方とメール・オンライン会議で相談
 - → セキュリティ・コンプライアンス観点の条件が折り合わず見送り

2. 自前での開発を検討

- a. GitHub APIのPull Request関連のものを調査
- b. Googleの提唱しているFour Keys※について調査
 - → 最小工数で取得でき、自分たちにとって意味のある指標を特定

デプロイ数: masterブランチにmergeされた週ごとのPull-reqの数

リードタイム: Pull-reqが作成されてからmasterブランチにmergeされるまでの時間の週ごとの中央値 mercari

Google	2 Sheets
--------	----------

	Α	В	С	D	E	F
1	Title =	Author =	Create a =	Closed : =	GitHub URL =	Team =
2	chore(go): update version	naopr	2022/01/01	2022/01/02	https://github.com/hoge/foo/pull/1	Team A
3	fix(item): fix bug	bob	2022/01/01	2022/01/02	https://github.com/hoge/foo/pull/2	Team B
4	test(auth): add test	bunta	2022/01/01	2022/01/03	https://github.com/hoge/foo/pull/3	Team C

| 指標の分析:相対的な自社の立ち位置

Breaking Down DevOps Performance Metrics

	Elite	High	Medium	Low
Deployment frequency	On-demand (multiple deploys per day)	Between once per day and once per week	Between once per week and once per month	Between once per month and once every six months
Lead time for changes	Less than one day	Between one day and one week	Between one week and one month	Between one month and six months
Time to restore service	Less than one hour	cess than one day	Less than one day	Between one week and one month
Change failure rate	0-15%	0-15%	0-15%	46-60%
	200/	220/	1 10/	120/

2019 Distribution

20%

23%

44%

12%

※ 参照: Google Cloud で実行されている DevOps 組織の有効性を評価する https://cloud.google.com/blog/ja/products/gcp/another-way-to-gauge-your-devops-performance-according-to-dora

| 指標の分析:デプロイ数とリードタイムの大まかな傾向

- 1stリリース時に比べると
 - デプロイ数 減少
 - リードタイム 増加
- 開発チームの人数が増えてるのにデプロイ数が減っている
- リードタイムはチームによる差が大
 - ⇒ 深掘って調査する

| 指標の分析:デプロイ数の変遷(1/3)

指標の分析:デプロイ数の変遷(2/3)

- リリース前のデプロイ数の多さ
 - コードレビューが厳格でない
 - QAせずにデプロイしている
 - 稼働が高い

- 1stリリース後、1月にデプロイ数が減ったのはなぜか
 - 開発チームの人数は増えているのでデプロイ数も増えるはずと思っていた
 - デプロイ数の多い月と少ない月の 2ヶ月分を選んで Pull-reqの内容を全部読んで分類した
 - 1stリリース後の12月までと1月からで明確にPull-reqの傾向が変わっていた

| 指標の分析:デプロイ数の変遷(3/3)

- 1stリリース~12月までのPull-req
 - 機能リリース
 - バグ対応
 - インフラの設定追加
 - team Eのデプロイの大部分がこれ
 - ⇒ 見かけ上のデプロイ数が増えていた

結論

- 12月までのデプロイ数は参考値として扱うべき
- 1月以降はデプロイ数が微増しているので想定通り

指標の分析:リードタイムの変遷(1/3)

指標の分析:リードタイムの変遷(2/3)

- 1stリリース後に急増
 - QAによるもの
- チームによって大きな差がある
 - team B:大
 - o team E:小
 - ⇒ 開発する機能の違い

team A — team B — team C — team E

これだけではよくわからなかったので別の角度から分析した

| 指標の分析:リードタイムの変遷(3/3)

| 改善の取り組み:定量アプローチ

- リードタイムが極端に大きいPull-reqを減らす
 - Why
 - 長期間masterブランチにマージできない Pull-reqはQAコストが大きかったり、master ブランチを取り込む際のコンフリクトが発生しやすい
 - ビッグバンリリースになりやすいので障害のリスクが大きい
 - How
 - 新規マイクロサービスや新規 APIといった既存機能に影響のないバックエンド差分を先に リリースする取り組みを一部チームで始める
 - Result
 - 短期間に劇的にリードタイムが小さくなることはなかった
 - デプロイ作業が増えることへの負荷

改善の取り組み:定性アプローチ

- 開発チームにアンケートを実施
 - 開発に対する満足度をお答えください(5段階評価)
 - なぜそのように感じましたか?
 - 開発をする上で、一番課題に感じてる点は何ですか?
 - より生産性の高い組織にするために足りないものは何でしょうか?
- 寄せられた回答の中から取り組みやすく効果の高いもの3つに絞って改善活動 をスタート
 - サブプロジェクト化して PJメンバー以外にリードしてもらっているものもある

まとめ

- 業務委託メンバーと2人で生産性可視化PJを立ち上げた
- 最小工数で必要最低限の数値から可視化ダッシュボードを実装した
- 可視化したデプロイ数とリードタイムをもとに少しずつ改善を開始した。
- 定量面だけでなく定性面からも改善を行っている

Appendix

- 「推測するな、計測せよ」ソウゾウで始動したエンジニア組織の生産性可視化
 - https://mercan.mercari.com/articles/34283/
- 生産性可視化PJを通して実現したい理想的な開発組織とは
 - https://open.spotify.com/episode/6xJXsNynFv1bvQ8WvYhm4g
- 【続編】「推測するな、計測せよ」エンジニア組織の生産性可視化 ~定量分析で得られた知見、定性分析の開始、そしてチーム拡大へ~
 - https://engineering.mercari.com/blog/entry/20221116-souzoh-productivity/

