Лемма 1 (о структуре компактного оператора).

- $V:\mathbb{R}^m o \mathbb{R}^m$ линейный оператор
- $\det V \neq 0$

Тогда \exists ортонормированные базисы $g_1 \dots g_m$ и $h_1 \dots h_m$, а также $\exists s_1 \dots s_m > 0$, такие что:

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m s_i \langle x, g_i \rangle h_i$$

 $\mathsf{M} \mid \det V \mid = s_1 s_2 \dots s_m.$

Примечание. Эта лемма из функционального анализа, что такое компактный оператор — мы не знаем.

Доказательство. $W := V^*V -$ самосопряженный оператор (матрица симметрична относительно диагонали).

Из линейной алгебры мы знаем, что такой оператор имеет:

- Собственные числа: $c_1 \dots c_m$ вещественные (возможно с повторениями)
- Собственные векторы: $g_1 \dots g_m$ ортонормированные

Примечание. Пока мы в \mathbb{R}^m (а не в \mathbb{C}^m), * есть транспонирование. В комплексном случае ещё берется сопряжение.

$$c_i \langle q_i, q_i \rangle \stackrel{(1)}{=} \langle W q_i, q_i \rangle \stackrel{(2)}{=} \langle V q_i, V q_i \rangle > 0$$

- 1: т.к. g_i собственный вектор для W с собственным значением c_i .
- 2: из линейной алгебры:

$$W_{kl} = \sum_{i=1}^{m} V_{ik} V_{il}$$
$$\langle Wg_i, g_i \rangle = \sum_{k,l,j} V_{jk} V_{jl} g_k^{(i)} g_l^{(i)} = \langle Vg_i, Vg_i \rangle$$

Таким образом, $c_i > 0$.

$$\begin{split} s_i &:= \sqrt{c_i} \\ h_i &:= \frac{1}{s_i} V g_i \\ \langle h_i, h_j \rangle &\stackrel{\text{def } h_i}{=} \frac{1}{s_i s_j} \langle V g_i, V g_j \rangle \stackrel{\text{(3)}}{=} \frac{1}{s_i s_j} \langle W g_i, g_j \rangle \stackrel{\text{(4)}}{=} \frac{c_i}{s_i s_j} \langle g_i, g_j \rangle \stackrel{\text{(5)}}{=} \delta_{ij} \end{split}$$

- 3: из линейной алгебры, аналогично предыдущему.
- 4: т.к. g_i собственный вектор для W с собственным значением c_i .
- 5: при $i\neq j$ $\langle g_i,g_j\rangle=0$ в силу ортогональности, а при i=j $\langle g_i,g_j\rangle=1$ в силу ортонормированности и $\frac{c_i}{s_is_j}=\frac{c_i}{\sqrt{c_i}\sqrt{c_i}}=1$

Примечание. $\delta_{ij} = egin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$ — символ Кронекера.

Таким образом, $\{h_i\}$ ортонормирован.

$$V(x) \stackrel{\text{def } x}{=} V\left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i\right) \stackrel{\text{(6)}}{=} \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) \stackrel{\text{def } h_i}{=} \sum s_i \langle x, g_i \rangle h_i$$

• 6: в силу линейности V

$$(\det V)^2 \stackrel{(7)}{=} \det(V^*V) \stackrel{\det W}{=} \det W \stackrel{(8)}{=} c_1 \dots c_m$$

- 7: в силу мультипликативности det и инвариантности относительно транспонирования.
- 8: т.к. det инвариантен по базису и в базисе собственных векторов det $W = c_1 \dots c_m$.

$$|\det V| = \sqrt{c_1} \dots \sqrt{c_m} = s_1 \dots s_m$$

Теорема 1 (о преобразовании меры лебега под действием линейного отображения).

• $V: \mathbb{R}^m o \mathbb{R}^m$ — линейное отображение

Тогда $\forall E \in \mathfrak{M}^m \ V(E) \in \mathfrak{M}^m$ и $\lambda(V(E)) = |\det V| \cdot \lambda E$

Доказательство.

- 1. Если $\det V=0$ $\operatorname{Im}(V)$ подпространство в $\mathbb{R}^m\Rightarrow \lambda(\operatorname{Im}(V))=0$ по следствию 6 лекции 15 третьего семестра. Тогда $\forall E\ V(E)\subset \operatorname{Im}(V)\Rightarrow \lambda(V(E))=0$
- 2. Если $\det V \neq 0 \quad \mu E := \lambda(V(E))$ мера, инвариантная относительно сдвигов. Это было доказано в конце прошлого семестра:

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E)+V(a)) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k: \mu = k\lambda$ по недоказанной теореме из прошлого семестра.

8.2.2021

Мы хотим найти k, для этого нужно что-нибудь померять. Померяем что-то очень простое, например $Q = \{ \sum \alpha_i g_i \mid \alpha_i \in [0,1] \}$ — единичный куб на векторах g_i .

$$V(g_i)=s_ih_i$$
. Таким образом, $V(Q)=\{\sum lpha_is_ih_i\mid lpha_i\in [0,1]\}.$

$$\mu Q = \lambda(V(Q)) = s_1 \dots s_m = |\det V| = |\det V| \underbrace{\lambda Q}_{=1}$$

Таким образом, $k = |\det V|$

Интеграл

Измеримые функции

Определение.

- 1. E множество, $E = \coprod_{\text{кон.}} e_i$ разбиение множества.
- 2. $f: X \to \mathbb{R}$ ступенчатая, если:

$$\exists$$
 разбиение $X = \bigsqcup_{ ext{\tiny KOH.}} e_i : orall i \ f \Big|_{e_i} = ext{const}_i = c_i$

Пример.

1. Характеристическая функция множества $E\subset X: \chi_E(x)= egin{cases} 1, & x\in E \\ 0, & x\in X\setminus E \end{cases}$

2.
$$f = \sum_{\text{кон}} c_i \chi_{e_i}$$
, где $X = \bigsqcup e_i$

Свойства.

M3137y2019

- 1. $\forall f, g$ ступенчатые:
 - \exists разбиение X, допустимое и для f, и для g:

$$f = \sum_{\text{кон.}} c_i \chi_{e_i} \quad g = \sum_{\text{кон.}} b_k \chi_{a_k}$$

$$f = \sum_{i,k} c_i \chi_{e_i \cap a_k} \quad g = \sum_{i,k} b_k \chi_{e_i \cap a_k}$$

2. f, g — ступенчатые, $\alpha \in \mathbb{R}$

Тогда f + g, αf , fg, $\max(f,g)$, $\min(f,g)$, |f| — ступенчатые.

Рис. 1: Ступенчатая функция

Определение. $f:E\subset X \to \overline{\mathbb{R}}, a\in \mathbb{R}$

 $E(f < a) = \{x \in E : f(x) < a\}$ — лебегово множество функции f

Аналогично можно использовать $E(f \leq a), E(f > a), E(f \geq a)$

Примечание.

$$E(f \ge a) = E(f < a)^c \quad E(f < a) = E(f \ge a)^c$$
$$E(f \le a) = \bigcap_{b > a} E(f < b) = \bigcap_{n \in \mathbb{N}} E\left(f < a + \frac{1}{n}\right)$$

Определение.

- (X, \mathfrak{A}, μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- $E \in \mathfrak{A}$

f измерима на множестве E, если $\forall a \in \mathbb{R} \ E(f < a)$ измеримо, т.е. $\in \mathfrak{A}$ Вместо "f измерима на X" говорят просто "измерима". Если $X = \mathbb{R}^m$, мера — мера Лебега, тогда f — измеримо по Лебегу.

Примечание. Эквивалентны:

1.
$$\forall a \ E(f < a)$$
 — измеримо

2.
$$\forall a \ E(f \leq a)$$
 — измеримо

3.
$$\forall a \ E(f > a)$$
 — измеримо

4.
$$\forall a \ E(f \geq a)$$
 — измеримо

Доказательство. Тривиально по соображениям выше.

Пример.

1. $E \subset X, E$ — измеримо $\Rightarrow \chi_E$ — измеримо.

$$E(\chi_E < a) = \begin{cases} \varnothing, & a < 0 \\ X \setminus E, & 0 \le a \le 1 \\ X, & a > 1 \end{cases}$$

2. $f:\mathbb{R}^m o \mathbb{R}$ — непрерывно. Тогда f — измеримо по Лебегу.

Доказательство. $f^{-1}((-\infty,a))$ открыто по топологическому определению открытости, а любое открытое множество измеримо по Лебегу.

Свойства.

- 1. f измеримо на $E\Rightarrow \forall a\in\mathbb{R}\;\; E(f=a)$ измеримо. В обратную сторону неверно, пример $-f(x)=x+\chi_{\text{неизм.}}$
- 2. f измеримо $\Rightarrow \forall \alpha \in \mathbb{R} \ \alpha f$ измеримо.

Доказательство.
$$E(\alpha f < a) = \begin{cases} E(f < \frac{a}{\alpha}), & \alpha > 0 \\ E(f > \frac{a}{\alpha}), & \alpha < 0 \\ E, & \alpha = 0, a \geq 0 \\ \varnothing, & \alpha = 0, a < 0 \end{cases}$$

- 3. f измеримо на $E_1, E_2, \dots \Rightarrow f$ измеримо на $E = \bigcup E_k$
- 4. f измеримо на $E, E'_{\text{изм.}} \subset E \Rightarrow f$ измеримо на E' Доказательство. $E'(f < a) = E(f < a) \cap E'$
- 5. $f \neq 0$, измеримо на $E \Rightarrow \frac{1}{f}$ измеримо на E.
- 6. $f \geq 0$, измеримо на $E, \alpha \in \mathbb{R} \Rightarrow f^{\alpha}$ измеримо на E.

Это неверно, т.к. при $f\equiv 0, \alpha=-1$ $\not\exists f^{\alpha}$

Теорема 2. f_n — измеримо на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримо.
- 2. $\overline{\lim} f_n$, $\lim f_n$ измеримо.
- 3. Если $\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$, то h(x) измеримо.

Доказательство.

1. $g=\sup f_n \quad X(g>a)\stackrel{(9)}{=}\bigcup_n X(f_n>a)$ и счётное объединение измеримых множеств измеримо.

9:

• $X(g>a)\subset\bigcup_n X(f_n>a)$, т.к. если $x\in X(g>a)$, то g(x)>a. $\sup_x f_n(x)=g(x)\neq a\Rightarrow \exists n: f_n(x)>a$

•
$$X(g>a)\supset\bigcup_n X(f_n>a)$$
, т.к. если $x\in X(f_n>a)$, то $f_n(x)>a$, следовательно $g(x)>a$.

- 2. $(\overline{\lim} f_n)(x) = \inf_n (s_n = \sup(f_n(x), f_{n+1}(x), \dots))$. Т.к. \sup и \inf измерим, $\overline{\lim} f_n$ тоже измерим.
- 3. Очевидно, т.к. если $\exists \lim$, то $\lim = \overline{\lim} = \underline{\lim}$

Меры Лебега-Стилтьеса

 $\mathbb{R}, \mathcal{P}^1, g: \mathbb{R} \to \mathbb{R}$ возрастает, непрерывно.

 $\mu[a,b):=g(b)-g(a)-\sigma$ -конечный объем (и даже σ -конечная мера на $\mathcal{P}^1)$

Также можно определить для монотонной, но непрерывной g. Тогда в точках разрыва $\exists g(a+0), g(a-0)$. Пусть $\mu[a,b) = g(b-0) - g(a-0)$. Такое изменение нужно, потому что исходное μ не является объемом для разрывных функций.

Применим теорему о лебеговском продолжении меры. Получим меру μ_g на некоторой σ —алгебре. Это мера Лебега-Стилтьеса.

 $\Pi {\it pumep.} \ g(x) = [x],$ тогда мера ячейки — количество целых точек в этой ячейке.

Если μ_q определена на Борелевской σ -алгебре, то она называется мерой Бореля-Стилтьеса.

U