Přednáška 3, 17. října 2014

Důsledek (Cantorova věta o vnořených intervalech). $Nechť [a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots$ jsou reálné intervaly. Pak

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

— některé reálné číslo leží ve všech intervalech. Pokud navíc délky intervalů jdou k 0 (tj. pro každé $\varepsilon > 0$ existuje n_0 , že $n > n_0 \Rightarrow b_n - a_n < \varepsilon$), pak navíc

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{\alpha\}$$

— existuje právě jedno reálné číslo, jež leží ve všech intervalech.

 $\frac{Důkaz}{Dnkaz}$. Podle předpokladu máme dány takové dvě posloupnosti reálných čísel (a_n) a (b_n) , že

$$a_1 \le a_2 \le a_3 \le \ldots \le b_3 \le b_2 \le b_1$$
.

Položme

$$\alpha = \sup(\{a_1, a_2, \dots\}) .$$

Množina $\{a_1,a_2,\dots\}$ je jistě neprázdná a shora omezená — každé b_n je její horní mezí — a definice čísla α je proto korektní. Protože α je její horní mezí, pro každé n je $a_n \leq \alpha$. Protože to je nejmenší horní mez, pro každé n je $\alpha \leq b_n$. To přesně znamená, že pro každé n je $\alpha \in [a_n,b_n]$ — α leží v průniku všech intervalů. Je-li $\beta \in \mathbb{R}$ jakékoli jiné číslo, pak $\beta \in [a_n,b_n]$ znamená, že $|\beta-\alpha| \leq b_n-a_n$. Leží-li β ve všech intervalech a jdou-li jejich délky b_n-a_n k 0, pak $|\beta-\alpha| < \varepsilon$ pro každé $\varepsilon > 0$. Tedy $\beta = \alpha$ a průnik je pouze jednoprvkový.

Nespočetnost \mathbb{R} . Množina M je nekonečná, právě když existuje injekce $f: M \to M$, že $f(M) \neq M$. Nekonečná množina M je spočetná, když existuje bijekce $f: \mathbb{N} \to M$. Spočetnost M tedy znamená, že existuje posloupnost $(a_n) = (a_1, a_2, \dots)$ s těmito vlastnostmi:

- 1. pro každé n je $a_n \in M$,
- 2. pro každé $n \neq m$ je $a_n \neq a_m$ a
- 3. pro každé $x \in M$ existuje $n \in \mathbb{N}$, že $a_n = x$.

Podstatný je první a třetí požadavek: když je (a_n) splňuje, vypuštěním duplikací a přeindexováním z (a_n) snadno vyrobíme posloupnost (a'_n) , jež splňuje všechny tři požadavky. Množina je nespočetná, když není spočetná. Uvidíme, že taková je množina \mathbb{R} . Nejprve ale uvedu příklady spočetných množin.

Příklady spočetných množin. Pochopitelně \mathbb{N} sama je spočetná, za bijekci f vezmeme identickou funkci f(n) = n. I množina celých čísel \mathbb{Z} je spočetná: posloupnost $(0, 1, -1, 2, -2, 3, -3, \dots)$ celých čísel vyčerpává celou \mathbb{Z} . Množina dvojic celých čísel $\mathbb{Z} \times \mathbb{Z}$ je též spočetná: označíme-li pro $n \in \mathbb{N}_0$ jako p_n konečný seznam všech dvojic $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ s |a| + |b| = n v nějakém pořadí (např. $p_0 = ((0, 0)), p_1 = ((1, 0), (-1, 0), (0, 1), (0, -1))$), pak posloupnost vzniklá zřetězením těchto seznamů

$$(p_0, p_1, p_2, \dots)$$

postupně projde celou $\mathbb{Z} \times \mathbb{Z}$. Nebo lze pro tento účel použít spirálovitou posloupnost začínající v (0,0), kterou jsem nakreslil na přednášce. Tedy i množina zlomků \mathbb{Q} je spočetná.

Cantorova věta. Následující výsledek německého matematika Georga Cantora (1845–1918) byl bez přehánění matematickým přelomem.

Věta (Cantor, 1873). Množina reálných čísel \mathbb{R} je nespočetná.

Důkaz. Ukážeme, že množina

$$X = \{(a_1, a_2, \dots) \mid a_n \in \{0, 1\}\}$$

všech 0-1 posloupností je nespočetná. Dokážeme přesněji, že neexistuje surjektivní zobrazení $f: \mathbb{N} \to X$. Protože fakticky $X \subset \mathbb{R}$ (uvažte reálná čísla tvaru $0.c_1c_2...$, kde každá desetinná cifra c_n je jen 0 nebo 1), neexistuje ani surjektivní zobrazení $f: \mathbb{N} \to \mathbb{R}$ (každé surjektivní zobrazení $f: \mathbb{N} \to \mathbb{R}$ se "přesměrováním" hodnot $f(n) \in \mathbb{R} \setminus X$ do X lehce změní na surjekci $g: \mathbb{N} \to X$). Žádná posloupnost tak nedokáže vyčerpat ani množinu X ani množinu \mathbb{R} .

Nechť tedy

$$f: \mathbb{N} \to X, \ f(n) = (c_{n,1}, \ c_{n,2}, \ c_{n,3}, \ \dots), \ c_{n,j} \in \{0,1\}$$

je libovolné zobrazení. Pro $x\in\{0,1\}$ označíme jako $\overline{x}=1-x$ (prohození jedničky a nuly) a vezmeme posloupnost

$$p = (\overline{c_{1,1}}, \ \overline{c_{2,2}}, \ \overline{c_{3,3}}, \ \dots) \in X$$
.

Pro každé $n \in \mathbb{N}$ je $\overline{c_{n,n}} \neq c_{n,n}$, tedy $p \neq f(n)$ (posloupnost p se od posloupnosti f(n) liší alespoň na n-tém místě). Neexistuje tedy $n \in \mathbb{N}$, aby f(n) = p. Takže f není zobrazení na.

Posloupnost p jsme dostali z nekonečné tabulky hodnot zobrazení f (posloupnost f(n) je v n-tém řádku) jako změněnou diagonálu tabulky. Důkazová metoda se proto nazývá $diagonální\ metoda$. Lze pomocí ní třeba dokázat, že pro žádnou množinu M neexistuje surjekce

$$f: M \to \{A \mid A \subset M\}$$

z M na množinu všech jejích podmnožin. Množina

$$Y = \{A \mid A \subset \mathbb{N}\}$$

všech podmnožin množiny přirozených čísel se fakticky rovná množině 0-1 posloupností X z důkazu Cantorovy věty: posloupnosti $a:\mathbb{N}\to\{0,1\}$ odpovídá podmnožina $A=\{x\in\mathbb{N}\mid a(x)=1\}=a^{-1}(1)\subset\mathbb{N}$ a naopak z podmnožiny snadno otočením tohoto postupu uděláme posloupnost. Takže i Y je nespočetná.

Cantorova a Dedekindova konstrukce reálných čísel. Stručně teď naznačím dvě známé metody pro sestrojení reálných čísel ze zlomků (naše zavedení pomocí desetinných rozvojů je třetí metoda).

Cantorova metoda. Posloupnost zlomků $(a_n) \subset \mathbb{Q}$ nazveme cauchyovskou (nazváno po francouzském matematikovi Augustinu-Louisi Cauchym (1789–1857)), když pro každé $\varepsilon > 0$ (teď ovšem $\varepsilon \in \mathbb{Q}$) existuje index n_0 , že $m, n > n_0 \Rightarrow |a_m - a_n| < \varepsilon$. Členy posloupnosti se tedy k sobě vzájemně (v tomto přesném smyslu) neomezeně přibližují, "tulí se" k sobě. Dvě posloupnosti zlomků $(a_n), (b_n) \subset \mathbb{Q}$ jsou ekvivalentní, značeno $(a_n) \sim (b_n)$, když pro každé $\varepsilon > 0$ ($\varepsilon \in \mathbb{Q}$) existuje index n_0 , že $n > n_0 \Rightarrow |a_n - b_n| < \varepsilon$. Odpovídající členy obou posloupností se tak k sobě neomezeně přibližují. Relace \sim je relace ekvivalence. Uvažme množinu

$$R = \{\text{cauchyovsk\'e posloupnosti zlomk\'u}\}/\sim$$
.

R se skládá z množin vzájemně ekvivalentních cauchyovských posloupností zlomků. Na množině R lze zavést sčítání a násobení a relaci uspořádání tak, že $(R, +, \cdot, <)$ je uspořádané těleso, které je dokonce úplné (každá neprázdná a shora omezená množina má supremum).

Toto zavedení reálných čísel publikoval jako první v r. 1869 francouzský matematik *Charles Méray (1835–1911)*, o tři roky později v r. 1872 ho nastínil Cantor, jemuž je obvykle nepřesně připisováno, a na základě Cantorových poznámek ho podrobně popsal *Eduard Heine (1821–1881)*.

Dedekindova metoda řezů. Pochází od německého matematika Richarda Dedekinda~(1831–1916), který tuto metodu pro sestrojení $\mathbb R$ zveřejnil též v r. 1872, ale podle vlastních slov na ni přišel již o 14 let dříve. Richarda ma množině $\mathbb Q$ nazveme každou takovou dvojici množin (A,B), že (i) $A \cup B = \mathbb Q$, (ii) $A,B \neq \emptyset$ a (iii) A < B (což znamená, že pro každé $a \in A$ a $b \in B$ je a < b). Nechť

$$R = \{ \text{v} \check{\text{s}} \text{echny } \check{\text{r}} \text{ezy na } \mathbb{Q} \}$$
.

Na množině R lze opět zavést sčítání a násobení a relaci uspořádání tak, že $(R, +, \cdot, <)$ je uspořádané těleso, které je úplné.

Část 2: limita nekonečné posloupnosti

Když $(a_n) \subset \mathbb{R}$ je posloupnost reálných čísel a $a \in \mathbb{R}$ je číslo, pak a je limitou (a_n) , psáno $\lim_{n\to\infty} a_n = a$ či jen $\lim a_n = a$, pokud

$$\forall \varepsilon > 0 \; \exists n_0 : \; n > n_0 \Rightarrow |a_n - a| < \varepsilon \; .$$

(Zde ε bereme z \mathbb{R} , n_0 a n z \mathbb{N} a $\exists n_0 : n > n_0 \Rightarrow \dots$ je totéž jako $\exists n_0 \forall n : n > n_0 \Rightarrow \dots$) Tuto limitu nazýváme podrobněji vlastní limitou a když ji posloupnost (a_n) má, pak též řekneme, že konverguje.

Nevlastní limita posloupnosti (a_n) je $+\infty$ či $-\infty$:

$$\lim a_n = +\infty \iff \forall c \ \exists n_0: \ n > n_0 \Rightarrow a_n > c$$

a podobně lim $a_n = -\infty$, platí-li totéž s $a_n < c$.

Tvrzení (jednoznačnost limity). Každá posloupnost $(a_n) \subset \mathbb{R}$ má nejvýše jednu limitu (vlastní či nevlastní).

 $D\mathring{u}kaz$. Ukážu, že posloupnost nemůže mít dvě vlastní limity, zbývající případy (vlastní a nevlastní limita, dvě nevlastní limity) jsou podobné a přenechané posluchači/čce jako úloha. Nechť lim $a_n = a \in \mathbb{R}$ i lim $a_n = b \in \mathbb{R}$, přičemž a < b. Vezmeme $\varepsilon > 0$ menší než (b - a)/2. Pro nějaký index n_0 by mělo platit $n > n_0 \Rightarrow |a_n - a| < \varepsilon$, tedy $a - \varepsilon < a_n < a + \varepsilon$, tedy $a_n < a + (b - a)/2 = (a + b)/2$. Stejně tak pro nějaký index n_1 by

mělo platit $n > n_1 \Rightarrow |a_n - b| < \varepsilon$, tedy $b - \varepsilon < a_n < b + \varepsilon$, tedy $a_n > b - (b - a)/2 = (a + b)/2$. Pro n větší než n_0 i n_1 tak současně $a_n < (a + b)/2$ i $a_n > (a + b)/2$, což je spor.

Uvedu teď pár příkladů limit. Je jasné, že třeba

$$\lim(1/n) = 0$$
, $\lim n = +\infty$ a $\lim(-1)^n$ neexistuje.

Dokážu, že

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

Pro každé $n \in \mathbb{N}$ je $n^{1/n} \geq 1$. Proto kdyby limita $n^{1/n}$ pro $n \to \infty$ nebyla 1, existovalo by c > 0 a nekonečná rostoucí posloupnost přirozených čísel $1 \leq n_1 < n_2 < \ldots$, že $n_i^{1/n_i} > 1 + c$ pro každé $i \in \mathbb{N}$. Pak ale, podle binomické věty,

$$n_i > (1+c)^{n_i} = 1 + \binom{n_i}{1}c_i + \binom{n_i}{2}c_i^2 + \dots + \binom{n_i}{n_i}c_i^n > n_i(n_i-1)c_i^2/2$$
.

Vydělení n_i dává nerovnost

$$1 > (c^2/2)(n_i - 1)$$
, čili $(2/c^2) + 1 > n_i$,

jež je zjevně nemožná: posloupnost $1 \le n_1 < n_2 < \dots$ není shora omezená. Máme tedy spor a lim $n^{1/n}=1.$

Úloha: Nalezně $te \lim_{n\to\infty} \sqrt[n/2]{n}$.