107 學年度指定科目考試數學甲考科選擇(填)題答案

題號		答案
1		2
2		4
3		3
4		1,4
5		1,3,5
6		2,3
7		1,3,5
8		1,2,5
A	9	1
	10	3
В	11	1
	12	8
	13	5
С	14	2
	15	6

107 學年度指定科目考試 數學甲考科非選擇題參考答案

數學甲的題型有選擇、選填與非選擇題。非選擇題主要評量考生是否能夠清楚表達推理過程,答題時應將推理或解題過程說明清楚,且得到正確答案,方可得到滿分。如果計算錯誤,則酌給部分分數。如果只有答案對,但觀念錯誤,或過程不合理,則無法得到分數。

數學科非選擇題的解法通常不只一種,在此提供多數考生可能採用的解法 以供各界參考。各大題的參考答案說明如下:

第一題

第(1)(2)小題

解法一

正確寫出可決定坐標系的頂點坐標。例如設 A(0,0,0), B(a,0,0), D(0,a,0), E(0,0,a),推得 G(a,a,a), 及平面 BDE 的方程式為 x+y+z=a。

因 A(0,0,0) 到 平 面 x+y+z=a 的 距 離 為 $\frac{a}{\sqrt{3}}$,且 \overline{AG} 為 $\sqrt{3}a$,故 得 證 第 (1) 小 題 。

另外 $\overrightarrow{AG}=(a,a,a)$,與平面 BDE: x+y+z=a的法向量 (1,1,1)平行,故得證第(2)小題。

解法二

利用向量的方法

$$\boxplus \overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} , \overrightarrow{AG} \bullet \overrightarrow{BD} = \overrightarrow{AG} \bullet (\overrightarrow{AD} - \overrightarrow{AB}) = \overrightarrow{AD}^2 - \overrightarrow{AB}^2 = 0 ,$$

同理 $\overrightarrow{AG} \cdot \overrightarrow{BE} = 0$, 因為 \overrightarrow{AG} 與平面 \overrightarrow{BDE} 的兩向量 \overrightarrow{BD} 、 \overrightarrow{BE} 皆垂直,

所以 \overline{AG} 與平面 BDE 垂直,故得證第(2)小題。

 $\Diamond P \land A$ 對平面 BDE 的投影點,因 \overline{AG} 與 \overline{AP} 平行,

且
$$\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$$
,所以 $\overrightarrow{AP} = \alpha(\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE})$ 。

因 P 在平面 BDE 上,得 $\overrightarrow{AP} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE})$ (因為係數和須為 1)。

所以 \overline{AP} 是 \overline{AG} 的三分之一,即A到平面 \overline{BDE} 距離是 \overline{AG} 的三分之一。故得證第(1)小題。

解法三

設正方體的邊長為a。所以四面體ABDE的體積為 $\frac{1}{3} \times \frac{1}{2} a^2 \times a = \frac{1}{6} a^3$ 。

設 A點到平面 BDE 的距離為 h,而三角形 BDE 為邊長為 $\sqrt{2}a$ 的正三角形,其面積 為 $\frac{1}{2} \times \frac{\sqrt{3}}{2} \times 2a^2 = \frac{\sqrt{3}}{2}a^2$ 。 推 得 四 面 體 ABDE 的 體 積 為 $\frac{1}{3} \times \frac{\sqrt{3}}{2}a^2 \times h$,由 $\frac{1}{6}a^3 = \frac{1}{3} \times \frac{\sqrt{3}}{2}a^2 \times h$,可解得高 $h = \frac{1}{\sqrt{3}}a$,而對角線長度 \overline{AG} 為 $\sqrt{3}a$,故得證第(1)小題。

因正四面體 GBDE 的邊長為 $\sqrt{2}a$,其高為 $\sqrt{\frac{2}{3}}\times(\sqrt{2}a)$,即 G 點到平面 BDE 的距離為 $\frac{2}{3}\sqrt{3}a$,加上 A 點到平面 BDE 的距離為 $\frac{1}{3}\sqrt{3}a$,恰等於 A 點到 G 點的距離為 $\sqrt{3}a$,故得證第(2)小題。

第(3)小題

由點到平面的公式,可得 A點到平面 BDE的距離為 $\frac{|2\times 2+2\times 2-6+7|}{\sqrt{2^2+2^2+1^2}}=3$ 。

第(4)小題

解法一

由(2)可知向量 \overrightarrow{AG} 與平面 \overrightarrow{BDE} 垂直,由(1)(3)可知對角線 \overrightarrow{AG} 長度為 $3\times 3=9$,

故 \overrightarrow{AG} = ±3(2,2,-1),故G 可能坐標為(-4,-4,9)或(8,8,3),但A,G 兩點位在平面的兩側,所以G點坐標為(-4,-4,9)。

解法二

設 Q 點為 \overline{AG} 與平面 \overline{BDE} 的交點,因為 \overline{AG} 與平面 \overline{BDE} 垂直,考慮直線 \overline{AQ} 的參

數式
$$\begin{cases} x = 2 - 2t \\ y = 2 - 2t \end{cases}, t \in R$$
$$z = 6 - (-1)t$$

代入BDE平面方程式2x+2y-z=-7得到t=1,所以Q=(0,0,7),

即 \overrightarrow{AQ} =(-2,-2,1)。由(1)(2)小題得到 \overrightarrow{AG} =3(-2,-2,1),

推得 G 點坐標 = (2,2,6)+3(-2,-2,1) = (-4,-4,9)

第二題

第(1)小題

知 f(x)在 x = -2有極小值 -1、在 x = 0有極大值 3。

由首項係數小於 0, 得以下 y = f(x)的圖。

第(2)小題

因為 f(-3)=3、 f(-2)=-1、 f(-1)=1、 f(0)=3、 f(1)=-1

可知 f(x)=0分別在區間 (-3,-2)、 (-2,-1)、 (0,1)各有一個實根。

因為 $a_1 < a_2 < a_3$,故 $-3 < a_1 < -2$ 、 $-2 < a_2 < -1$ 、 $0 < a_3 < 1$ 。

第(3)小題

由(2)知 $-3 < a_1 < -2$ 、 $-2 < a_2 < -1$ 、 $0 < a_3 < 1$,由 a_1, a_2 皆小於極小值 -1,可知水平線 $y = a_1$ 或 $y = a_2$ 與 y = f(x)的圖形皆僅有一交點,又因 a_3 介於極大值 3 與極小值 -1之間,故 $y = a_3$ 與 y = f(x)的圖形有三交點;因此 $f(x) = a_1$, $f(x) = a_2$ 皆恰有一實根,而 $f(x) = a_3$ 有三相異實根。

第(4)小題

 $\pm f(x) = -(x-a_1)(x-a_2)(x-a_3)$

知求解 f(f(x))=0等價於求 $-(f(x)-a_1)(f(x)-a_2)(f(x)-a_3)=0$ 的所有實數解,由(3)知共有 1+1+3=5個相異實根。