CHEMISTRY MARKING SCHEME SET -56/1/3 Compt. July, 2015

Qu es.	Value points	Marks
1	Hexaamninenickel (II) chloride	1
2	CH ₃ - CH ₂ - CH - CH ₂ - CHO CH ₃	1
3	$ArN_2Cl + H_3PO_2 + H_2O \longrightarrow ArH + N_2 + H_3PO_3 + HCl$ (where Ar is C_6H_5)	1
4	2	1
5	It is a process of removing a dissolved substance from a colloidal solution by means of diffusion through a suitable membrane.	1
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	H - C = C + H $H - H + H$ $Ethene$ $H - H + H$ $H - H + H$	1
7	The external pressure which is applied on solution side to stop the flow of solvent across the semi-permeable membrane.	1
	The osmotic pressure is directly proportional to concentration of the solution. / π = CRT	1
8	The half-life of a reaction is the time in which the concentration of a reactant is reduced to one-half of its initial concentration.	1
	Rate constant is the rate of reaction when the concentration of the reactant is unity.	1

9		1+1
	(F)	
	S Xe	
	но	
	i) ii) F	
10	Disproportionation: The reaction in which an element undergoes self-oxidation and self-	1
	reduction simultaneously. For example –	
	$2Cu^{+}(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$	1
	(Or any other correct equation)	
1.0	OR	
10	i) Due to presence of unpaired electrons in d-orbitals.ii) Due to incomplete filling of d-orbitals.	1 1
11	i)	
	$CH_3CH = CH_2 + H_2O \stackrel{H^+}{\longleftrightarrow} CH_3 - CH - CH_3$	1
	OII	
	CH ₂ CI CH ₂ ONa CH ₂ OH	
	+ NaOH — H ⁺	
	- NaOri -HCI	1
	iii)	
	OCH ₃ OCH ₃	
	Br ₂ in	
	Ethanoic acid +	
	Anisole Br	1
12	COOH	1/2 + 1/2
	A – Benzoic acid	
	CONH ₂	16 +
		1/2 + 1/2
	B – Benzamide	

		1/2 +
	NH ₂	1/2
	C - Aniline	
13	Fat soluble vitamin- Vitamin A, D	1/2+1/2
	Water soluble vitamin-Vitamin B,C	1/2+1/2
	Vitamin K	1
14	i)	1/2 + 1/2
	$CH_2 = CH - CH = CH_2$ and $C_6H_5CH = CH_2$	72
	1, 3-Butadiene Styrene	
	ii)	
	Cl	1/2 +
		1/2
	CH ₂ =C-CH=CH ₂	
	Chloroprene /2-Chloro-1, 3-butadiene	
	,	
	iii)	1/2 +
	$CF_2 = CF_2$	1/2
	Tetrafluoroethene	
15	i) The defect in which equal number of cations and anions are missing from the lattice.	1
	ii) Due to dislocation of smaller ion from its normal site to an interstitial site.	1
16	iii) Anionic vacancies are occupied by unpaired electron. i) $\Delta T_f = K_f m$	1/2
10	$\Delta T_{f} = K_{f} \frac{M_{B} \times 1000}{M_{B} \times W_{A}}$	1/2
	$\Delta \mathbf{r}_{f} - \mathbf{K}_{f} \frac{\mathbf{r}_{g}}{\mathbf{M}_{B} \mathbf{x} \mathbf{w}_{A}}$	
	1.86K kg $mol^{-1} x$ 45g x 1000 g kg ⁻¹	
	$\Delta T_{\rm f} = \frac{1.86K \ kg \ mol^{-1} \ x \ 45g \ x \ 1000 \ g \ kg^{-1}}{60g mol^{-1} \ x \ 600 \ g}$	1
	$\Delta T_f = 2.325 \text{K}$ or 2.325^0C ii) $T_f^0 - T_f = 2.325^0 \text{C}$	1
	O ⁰ C - T _f = 2.325 °C	
	$T_f = -2.325^{\circ} C$ or 270.675 K	1
17	·	1
'	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
	$\kappa_1 = 2.303R[T_1T_2]$	
	$\log \frac{0.07}{0.02} = \left(\frac{E_{\rm a}}{2.303 \times 8.314 \text{JK}^{-1} \text{mol}^{-1}} \right) \left[\frac{700 - 500}{700 \times 500} \right]$	1
	$\log \frac{100}{0.02} = \left(\frac{2.303 \times 8.314 \mathrm{J} K^{-1} \mathrm{mol}^{-1}}{700 \times 500} \right)$	
	$0.544 = E_a \times 5.714 \times 10^{-4}/19.15$	1
	$E_{\rm a} = 0.544 \times 19.15/5.714 \times 10^{-4} = 18230.8 \text{ J}$	1
18	i) The movement of colloidal particles under an applied electric potential towards oppositely	1
	charged electrode is called electrophoresis.	1
	ii) The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid	

		Т.
	is termed adsorption.	1
	iii) The catalytic reaction that depends upon the pore structure of the catalyst and the size of the	
	reactant and product molecules is called shape-selective catalysis.	
19	i) The impure metal is evaporated to obtain the pure metal as distillate.	1
	ii) This method is based on the principle that the impurities are more soluble in the melt than in	1
	the solid state of the metal.	
	iii) The impure metal is made to act as anode. A strip of the same metal in pure form is used as	
	cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal.	1
	The more basic metal remains in the solution and the less basic ones go to the anode mud.	
	OR	
19	$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$	½ x 4
	(Iron ore)	= 2
	$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$	
	$CaCO_3 \rightarrow CaO + CO_2$	
	(Limestone)	
	CaO + SiO₂ → CaSiO₃	
	(Slag)	
	$FeO + CO \rightarrow Fe + CO_2$	
	$C + CO_2 \rightarrow 2CO$	
	Coke	
	$C + O_2 \rightarrow CO_2$	
	$FeO + C \rightarrow Fe + CO$ (any four correct equations)	
	(any four correct equations) Cast iron has lower carbon content (about 3%) than pig iron / cast iron is hard & brittle whereas	
	pig iron is soft.	1
20	The steady decrease in atomic radii from La to Lu due to imperfect shielding of 4f – orbital.	1
	Consequences –	
	i) Members of third transition series have almost identical radii as coresponding members	
	of second transition series.	
	ii) Difficulty in separation.	1+1
21	a) Linkage isomerism	1
	b) Optical isomerism	1
	c) Cis - trans / Geometrical isomerism	1
22	a) Butan – 2 – ol	1
	b) 2 – bromotoluene	1
	c) 2, 2-dimethylchlorpropane	1
23	i) Aspartame, Saccharin (any one)	1
	ii) No	1
	iii) Social concern, empathy, concern, social awareness (any 2)	2
24	a) i) Carboxylic acids lose carbon dioxide to form hydrocarbons when their sodium salts are	1
	heated with sodalime (NaOH and CaO).	
	NaOH & CaO	
	$R-COONa \longrightarrow R-H + Na_{1}CO_{2}$	
	Heat	
	ii) When the alkyl / acyl group is introduced at ortho and para positions by reaction	
	with alkyl halide / acyl halide in the presence of anhydrous aluminium chloride (a Lewis	
	acid) as catalyst.	

		T
	ii)	
	O_2N_{\searrow}	
	· >=\	
	⟨ ⟨ ⟨	1
	iii) CH ₃ COCI	1
25	$_{\rm a)}$ 3Cu + 8 HNO ₃ (dilute) \rightarrow 3Cu(NO ₃) ₂ + 2NO + 4H ₂ O	1
	$_{ii)}P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1
	b) i) Due to absence of d-orbital, nitrogen cannot expand its valency beyond four.	1
	ii) Because of $p\pi - p\pi$ multiple bonding in dioxygen which is absent in sulphur.	1
	iii) Due to excitation of electron by absorption of radiation from visible region.	1
	OR	
25	_{a) i)} $2Ca(OH)_2 + 2Cl_2 \rightarrow Ca(OCl)_2 + CaCl_2 + 2H_2O$	1
	$_{\rm ii)}$ C + 2H ₂ SO ₄ (conc.) \rightarrow CO ₂ + 2 SO ₂ + 2 H ₂ O	
	b) It is manufactured by Contact Process which involves following steps:i) burning of sulphur or sulphide ores in air to generate SO₂.	
	ii) conversion of SO_2 to SO_3 by the reaction with oxygen in the presence of a catalyst (V_2O_5)	
	iii) absorption of SO_3 in H_2SO_4 to give <i>Oleum</i> ($H_2S_2O_7$). The oleum obtained is diluted to give	
	sulphuric acid	1
	$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$	1
	Reaction condition – pressure of 2 bar and temperature of 720 K	
	Catalyst used is V ₂ O ₅	1
	Yield – 96 – 98% pure	
26	a)i)Molar conductivity of a solution at a given concentration is the conductance of the volume V	1
	of solution containing one mole of electrolyte kept between two electrodes with area of cross	
	section A and distance of unit length.	
	ii) Secondary battery- can be recharged by passing current through it in opposite direction so that	1
	it can be used again.	_
	iii) Galvanic cells that are designed to convert the energy of combustion of fuels like hydrogen,	1
	methane, methanol, etc. directly into electrical energy are called fuel cells.	
	b)i) The amount of chemical reaction which occurs at any electrode during electrolysis by a	1
	current is proportional to the quantity of electricity passed through the electrolyte (solution or	1
	melt).	
	ii) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual	1
	contributions of the anion and cation of the electrolyte.	
	OR	
26	a) Degree of dissociation is the extent to which electrolyte gets dissociated into its constituent	1
	ions.	1
	$\alpha = \frac{\Lambda_m}{2}$	
	A_m	
	b) E^0 cell = $E^0_{Ag+/Ag} - E^0_{Ni2+/Ni}$	
	= 0.80 V - 0.25 V	

= 0.55V	1/2
$\log K_c = \left(\frac{nE^0 cell}{0.050}\right)$	1/2
$\frac{105 \text{Me}}{0.059}$	
$=\frac{2x0.55V}{}$	
0.059	1/
$\log K_c = 18.644$	1/2
$ \log K_c = 18.644 $ $ \Delta G^0 = - \text{ nFE}^0 \text{cell} $	1/2
$= -2x96500 \text{ Cmol}^{-1} \times 0.55 \text{V}$	
$=-106,150 \text{ Jmol}^{-1}$	1
$Max.work = +106150 \text{ Jmol}^{-1} \text{ or } 106.150 \text{ Jmol}^{-1}$	

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani