Introduction to the Building Optimization Testing Framework (BOPTEST)

Workshop 1: Introduction to the BOPTEST framework for simulation-based benchmarking of advanced controllers

IBPSA Building Simulation 2021

August 31, 2021

David Blum, Ph.D.

Principal Scientific Engineering Associate
Building Technology and Urban Systems Division
Lawrence Berkeley National Laboratory, USA
dhblum@lbl.gov

Workshop Sponsored By:

Introduction to the Building Optimization Testing Framework (BOPTEST)

- Motivation
- Approach
- Impact
- Progress
- Continued Development

Project Acknowledgements (A→Z)

For direct contributions to software development, testing, and planning:

Institution	Personnel
DeltaQ, Belgium	Roel De Coninck
Devetry, USA	Chris Berger, Philip Gonzalez
Engie Lab, France	Valentin Gavan
ETH Zurich / EMPA, Switzerland	Felix Bunning
IK4 Tekniker, Spain	Jesus Febres, Laura Zabala
KU Leuven, Belgium	Javier Arroyo, Iago Cupeiro, Filip Jorissen, Lieve Helsen
Lawrence Berkeley National Laboratory, USA	David Blum, Michael Wetter
National Renewable Energy Laboratory, USA	Kyle Benne, Nicholas Long, Marjorie Schott
Oak Ridge National Laboratory, USA	Yeonjin Bae, Piljae Im
Pacific Northwest National Laboratory, USA	Yan Chen, Jan Drgona, Sen Huang, Draguna Vrabie
Polytechnic University of Milan, Italy	Ettore Zanetti
SINTEF, Norway	Harald Walnum
Southern Denmark University, Denmark	Konstantin Filonenko, Christian Veje, Tao Yang

Project Acknowledgements

Collaboration organized through:

- IBPSA Project 1
 - https://ibpsa.github.io/project1
 - BIM/GIS and Modelica Framework for building and community energy system design and operation
 - Work Package 1.2 MPC and BOPTEST

Financial support provided in-part by:

- U.S. Department of Energy Building Technologies Office
- Flemish Institute for Technological Research (VITO)
- KU Leuven
- Centres for Environment-friendly Energy Research (FME) Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
- Engie

Motivation

Needs for Improved Controls

- Energy efficiency, grid-interactivity, resiliency
- New system architectures and onsite generation and storage

Challenge 1: Individualized Studies

- Different building, HVAC, climate, study period, performance metrics
- Demonstrated savings/advantages depend on comparative baseline ¹
- → Difficult to answer which approach is most effective and where more work needed

Examples of recent controls development

Challenge 2: Building Emulator Time and Effort

- Real buildings pose operational risks and have slow-changing operating conditions
- Realistic simulations require building modeling expertise and effort
- → Limits rapid prototyping and algorithm development opportunities from outside experts (e.g. process control, optimization, data science)

¹ For example for VAV Systems, range of 12-67% savings of "good practice" controls depending on if compared to "average" or "poor" practices [1]

Goals

- Establish and benchmark state-of-the-art performance of control for building energy systems
- Accelerate building control software development and provide control developers with performance information
- Enable transition and encourage adoption of advanced building control algorithms

Achieved by:

- Developing a <u>software framework</u> for testing and evaluation of advanced building control
- Developing <u>common sets</u> of building emulators, test scenarios, and key performance indicators (KPI)
- User engagement to capture expected use cases and facilitate the utilization in the broad academic and industry R&D communities

Key Performance Indicator Scale

Software Framework

- Simulation management based on Functional Mockup Interface (FMI)
- Docker-based rapid, repeatable deployment locally cross-platform or as web-service
- HTTP-based RESTful API for test set up, emulator-controller co-simulation, and **KPI** reporting **RESTful HTTP API**

pyFMI	Manager		Python Import	iii ii kequest			
pyFMI				API			
i	testcase.py		Python Imports	restapi.py			
† † the system misses							
∐							
Data Manager			Forecaster	KPI Calculator			
data/		forecast/	kpis/				
i	data_mana		forecaster.py	kpi_calculator.py			
a/pyFMI	MI Other Python Packages						
	Pytl	hon					
	Ubu	ıntu					
Docker Software							
RTE	Archi	tec	ture				

Online Repository of Virtual Test Cases Control Strategy

API Endpoint	Description
GET measurements	Receive available
OFT '	measurement points
GET inputs	Receive available input points
PUT scenario	Set test scenario
PUT initialize	Initialize simulation
PUT step	Set control step
GET forecast	Receive forecasts
POST advance	Advance simulation
	with control input
PUT results	Receive historic point trajectory
GET <i>kpi</i>	Receive KPI values

Key RESTful HTTP API Endpoints

Common Set of Building Emulators

- High-fidelity models with embedded baseline controllers in Modelica exported as FMUs
- All boundary condition data included (e.g. weather, schedules, electricity prices)
- Range of building types, sizes, and systems
- Overwrite supervisory or local-loop control
- Practical control and measurement points
- Documentation

Example Modelica model with read/write points

Hydronic	Air	
Single zone + Radiator	Single zone + FCU	
Single zone + TABS	5-Zone + 1 VAV AHU (distr. only)	
8-Zone + Radiators and split cooling	10-zone + 1 VAV with DX, electric heating (FRP)	
Single zone class + Radiator, AHU	15-Zone + 3 VAV AHU, chiller, boiler	
28-Zone office + TABS, AHU, Geothermal HPs	Single zone retail + RTU	

- Completed and available in repo
- Implemented in Modelica but not finalized in repo
- To be developed

Subset of emulators under IBPSA Project 1

Common Evaluation Design

- Set of KPIs calculated by software framework for every test case
- Definition of testing scenarios for each emulator (e.g. time period and electricity prices)
- Capability for custom KPI calculation through access to test data
- Development of results sharing platform with initial implementation completed
- 1. Energy Use [kWh/m²]
- 2. Energy Cost [\$/m²]
- 3. Emissions [kg CO₂/m²]
- 4. Thermal Discomfort [K h/zone]
- 5. IAQ Discomfort [ppm h /zone]
- 6. Computational Time Ratio [-]

Set of six KPIs evaluated for every test by software framework

Online Repository of Virtual Test Cases

Control Strategy

Mockups of online results sharing dashboard

Impact

Accelerate Controls Development

- In the U.S. for example, improved rule-based controls for commercial buildings can save 2.7 quads/yr (3% 2015 U.S. primary energy) and reduce peak electricity demand by 16% [2]
- Optimization-based controls such as MPC and RL
 - HVAC and lighting energy savings typically range 15-30% [3-7]
 - Peak demand reduction, load shifting, and other grid services [8-9]

Enable Controls Benchmarking

- Common test cases and KPIs allow for comparison of different algorithms from different developers, informing investment by building owners and future R&D focus
- Reported results establish collective baseline for future comparison

Open Opportunities

- Reduce the barriers (risk, effort, cost, modeling expertise) for control algorithm evaluation on realistic test cases
- Encourage control development by experts outside buildings community, such as process controls, optimization, and data science

Impact

Advancing the State of the Art for Evaluation Frameworks

- Integration of high-fidelity building simulation with containerized software deployment capable of being deployed locally or on cloud serving multiple, remote clients
- Use of Modelica and FMI standards for emulator models allow for:
 - Leveraging ~10 years of international, open-source model development under IEA EBC Annex 60 and IBPSA Project 1 as well as tool development in other industries
 - Flexible control points from supervisory set points to local actuator signals
- Provision of forecasts (e.g. weather, electricity prices) enables testing with predictive control algorithms and eventual evaluation under specified uncertainty scenarios

BOPTEST v0.1.0 (https://github.com/ibpsa/project1-boptest)

- Fully functional software framework deployable locally or on cloud as service serving multiple test controller clients (called "boptest-service")
- Four building emulators available (+ three used for development purposes)
- Example test controllers in Python, Julia, and Javascript as well as MPC controller testing from 6 different institutions (IBPSA Project 1) validate the technical approach

Example controller interface code in Python

Controller	Energy [kWh/m²]	Cost [\$/m ²]	Emission [kg CO ₂ /m ²]	Thermal Dis. [K h/zone]	IAQ Dis. [ppm h/zone]	Com. Ratio [-]
Baseline	2.226	0.1208	1.466	7.670	1222	1.192E-4
MPC	2.204	0.1186	1.442	23.69	1220	6.484E-3

Continued Development (Through September 2022)

Emulator Development

- Multi-zone emulators with air-based and hydronic-based HVAC systems
- Calibrated test case of ORNL Flexible Research Platform test facility (10-Zone VAV AHU)

Software Development

- Improved user guide and error handling/messaging
- Prototype adding semantic meta-data tagging for control and measurement points
- Forecast uncertainty
- Maintenance and updates to software stack for improved performance
- Results dashboard capable of filtering results by controller and test characteristics

Usage and Stakeholder Engagement

- Additional MPC and RL testing through IBPSA Project 1 and IEA Annex 81
- Responding to feedback from user community

References

BOPTEST Github Repository: https://github.com/ibpsa/project1-boptest

BOPTEST Conference Paper: D. Blum, F. Jorissen, S. Huang, Y. Chen, J. Arroyo, K. Benne, Y. Li, V. Gavan, L. Rivalin, L. Helsen, D. Vrabie, M. Wetter, and M. Sofos. (2019). "Prototyping the BOPTEST framework for simulation-based testing of advanced control strategies in buildings." In Proc. of the 16th International Conference of IBPSA, Sep 2 – 4. Rome, Italy.

IBPSA Project 1: https://ibpsa.github.io/project1/

- [1] X. Pang, M. A. Piette, and N. Zhou (2017). "Characterizing variations in variable air volume system controls." Energy and Buildings, vol. 135, pp. 166–175.
- [2] Fernandez, J., Xie, Y., Katipamula, S., Zhao, M., Wang, W., and Corbin, C. (2017). "Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction." Pacific Northwest National Laboratory Technical Report PNNL-25985.
- [3] Siroky, J., Oldewurtel, F., Cigler, J., and Privara, S. (2011). "Experimental analysis of model predictive control for an energy efficient building heating system." Applied Energy, 9, 3079-3087.
- [4] Oldewurtel, F, Parisio, A, Jones, CN, Gyalistras, D, Gwerder, M, Stauch, V, Lehmann, B, and Morari, M. (2012). "Use of model predictive control and weather forecasts for energy efficient building climate control." Energy and Buildings, 45:15-27.
- [5] Bengea, SC, Kelman, AD, Borrelli, F, Taylor, R, and Narayanan, S. (2014). "Implementation of model predictive control for an HVAC system in a mid-size commercial building." HVAC&R Research, 20(1): 121-135.
- [6] West, S., Ward, J., and Wall, J. (2014). "Trial results from a model predictive control and optimisation system for commercial building HVAC." Energy and Buildings, 72, 271-279.
- [7] Li, P., Vrabie, D., Li, D., Bengea, S., Mijanovic, S., and O'Neill, Z. (2015). "Simulation and experimental demonstration of model predictive control in a building HVAC system." Science and Technology for the Built Environment, 21(6), 721-732.
- [8] Kim, D., and Braun, J. (2018). "Development, implementation and performance of a model predictive controller for packaged air conditioners in small and medium-sized commercial building applications." Energy and Buildings, 178, 49-60.
- [9] Vrettos, E., Kara, E. C., MacDonald, J., Andersson, G., and Callaway, D. S. (2018). "Experimental Demonstration of Frequency Regulation by Commercial Buildings—Part II: Results and Performance Evaluation." IEEE Transactions on Smart Grid, 9(4), 3224-3234.

Introduction to the Building Optimization Testing Framework (BOPTEST)

Thank you!

David Blum, Ph.D.

Principal Scientific Engineering Associate
Building Technology and Urban Systems Division
Lawrence Berkeley National Laboratory, USA
dhblum@lbl.gov

Workshop Sponsored By:

