Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao January 13, 2023

What we have shown last time

Question (Binary linear Diophantine equation)

Given integers a, b, c, find integers x, y such that

$$a \cdot x + b \cdot y = c$$
.

First, the Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

• If this is the case, the **Bézout's identity** gives a pair of integers (x_0, y_0) such that $ax_0 + by_0 = \gcd(a, b)$. Suppose $c = m \gcd(a, b)$. Then (mx_0, my_0) is a solution of our Diophantine equation.

Today's topics

- Homogeneous linear equation
- Least common multiple
- Solution set of the linear Diophantine equation

Homogeneous linear equations

Homogeneous linear equations

We first consider the case c = 0. We say the following equation is **homogeneous**:

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = 0.$$

Before we move to the integer solutions, let's consider the set

$$\{(\mathbf{x},\mathbf{y})\in\mathbb{R}^2\ |\ \mathbf{a}\cdot\mathbf{x}+\mathbf{b}\cdot\mathbf{y}=0\}.$$

Geometrically, it is a line in the plane. Find the integer solutions = find the integer points on the line.

Homogeneous linear equations

By linear algebra, we can parameterize the line:

algebra, we can parameterize the line:
$$\{x,y\} \in \mathbb{R}^2 \mid a \cdot x + b \cdot y = 0\} = \{(\frac{1}{a}t, -\frac{1}{b}t) \mid t \in \mathbb{R}\}.$$
 Line.

Now, the problem becomes:

For which **t**, the pair $(\frac{1}{a}t, -\frac{1}{b}t)$ is a pair of integers?

1. t has to be an integer.

- $\frac{1}{\alpha}t = x$ (=) $t = \alpha x$
- 2. We then must have $a \mid t$ and $b \mid t$.
- 3. Namely, t has to be a common multiple of a, b.

Least common multiple

Least common multiple

Definition 3.1 (Least common multiple)

Let a, b be two nonzero integers. Then a positive integer l is called a **least common multiple** of a and b if it satisfies the following two **defining properties**:

- 1. $a \mid l$ and $b \mid l$, i.e. l is a common multiple of a and b; and
- 2. if m is any common multiple of a and b, then $l \mid m$.

For a given pair (a, b), the least common multiple is unique, we use lcm(a, b) to denote it. In particular, we use lcm(a, b) = l to mean the least common multiple exists and equals to l.

Least common multiple

Theorem 3.2

For any integers a, b, we have $lcm(a, b) = \frac{ab}{gcd(a,b)}$.

Proof. Let l be the right-hand. We need to verify it satisfies the two defining properties. $l = \frac{ab}{prod(a,b)}$

- 1. Since $\frac{a}{\gcd(a,b)}$ and $\frac{b}{\gcd(a,b)}$ are integers, we have $b \mid l$ and $a \mid l$.
- 2. Suppose m is a common multiple of a and b. By $B\'{e}zout$'s identity, we can find integers x, y such that $ax + by = \gcd(a, b)$. Then we have $m \cdot \gcd(a, b) = \max_{a} + \max_{b} by$. Note that ab divides the right-hand side. Hence, we must have $l \mid m$.

Solution set of homogeneous linear Diophantine equation

Theorem 3.3

Let a, b be two nonzero integers. Then the solution set of the homogeneous linear Diophantine equation

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = 0$$

can be parameterized as

$$\left\{\left(\frac{\operatorname{lcm}(a,b)}{a}t,-\frac{\operatorname{lcm}(a,b)}{b}t\right)\,\middle|\,t\in\mathbb{Z}\right\}.$$

Proof. This is because lcm(a, b)t ($t \in \mathbb{Z}$) are all the common multiples of a and b.

Solution set (general case)

Solution set (general case)

Now, we back to the general case:

$$a \cdot x + b \cdot y = c$$
.

Lemma 3.4

Suppose (x_1,y_1) is a solution of above Diophantine equation. Then the solution set $\{(x,y)\in\mathbb{Z}^2\ \big|\ a\cdot x+b\cdot y=c\}$ can be expressed as

$$(x_1, y_1) + \{(x, y) \in \mathbb{Z}^2 \mid a \cdot x + b \cdot y = 0\}.$$

$$\{(x_1, y_1) + (x, y) \mid (x, y) \in \mathbb{Z}^2 \text{ and } ax + by = 0\}$$

Solution set (general case)

Before we move to the proof, let's consider the corresponding proposition in geometry:
The line defined by the equation

$$a \cdot x + b \cdot y = c$$

can be obtained from the line

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = 0$$

by adding a vector $\langle x_1, y_1 \rangle$ from the origin to a point (x_1, y_1) on the first line.

Proof of the lemma

Suppose (x_2, y_2) is a solution of our Diophantine equation $a \cdot x + b \cdot y = c$, then we have:

Solvet of "general"

$$a \cdot (x_1 - x_2) + b \cdot (y_1 - y_2) = 0.$$

 $c \cdot (x_1 - x_2) + b \cdot (y_1 - y_2) = 0.$

Namely, $(x_1 - x_2, y_1 - y_2)$ is a solution of the corresponding homogeneous Diophantine equation $a \cdot x + b \cdot y = 0$.

Conversely, if (x_2, y_2) is a solution of the corresponding homogeneous Diophantine equation $a \cdot x + b \cdot y = 0$, then we have

$$a \cdot (x_1 + x_2) + b \cdot (y_1 + y_2) = c.$$

Solst of "homo"

+ (x1,71)

= Solset of "goner"

Namely, $(x_1 + x_2, y_1 + y_2)$ is a solution of our Diophantine equation $a \cdot x + b \cdot y = c$.

Solution set (general case) i

Now, we can give a general algorithm

Theorem 3.5

Given integers a, b, c, the solutions of the Diophantine equation

$$a \cdot x + b \cdot y = c$$

can be obtained through the following steps:

- 1. Using division algorithm to find gcd(a, b) and then determine whether the Diophantine equation has an integer solution by whether c is a multiple of gcd(a, b).
- 2. If this is the case, the **Bézout's identity** gives a pair of integers (x_0, y_0) such that $ax_0 + by_0 = \gcd(a, b)$. Suppose $c = m \gcd(a, b)$. Then (mx_0, my_0) is a solution of our Diophantine equation.

Solution set (general case) ii

Theorem 3.5

3. Once we have a solution (x_1, y_1) of our Diophantine equation, the solution set can be expressed as²

$$(x_{1},y_{1}) + \mathbb{Z}(\frac{\operatorname{lcm}(a,b)}{a}, -\frac{\operatorname{lcm}(a,b)}{b}).$$
Namely, the general solution is
$$= \left\{ (x_{1},y_{1}) + \mathbf{t} \left(\frac{\operatorname{lcm}(a,b)}{a}, -\frac{\operatorname{lcm}(a,b)}{b} \right) \right\}$$

$$\left\{ x = x_{1} + \frac{\operatorname{lcm}(a,b)}{a} \mathbf{t} \right\}$$

$$\left\{ y = y_{1} - \frac{\operatorname{lcm}(a,b)}{b} \mathbf{t} \right\}$$

$$(t \in \mathbb{Z}).$$

Proof. The first two are proved in previous lecture, the third is the combination of theorem 3.3 and lemma 3.4.

²Recall the conventions on set notations

An example

Let's continue the example

$$\frac{a}{133x} + 85y = 1$$

We have seen that gcd(133, 85) = 1 and that

$$133 \cdot (-23) + 85 \cdot (36) = 1.$$

Since gcd(133, 85) = 1, we have $lcm(133, 85) = 133 \cdot 85$. Therefore, the general solution is

$$\begin{cases} x = -23 + 85t \\ y = 36 - 133t \end{cases} \quad (t \in \mathbb{Z}).$$

After Class Work

After Class Work

- 1. So far, we have finished chapter 1 of the textbook.
- The analogy and difference between solving linear equations
 (in Linear Algebra course) and solving linear Diophantine
 equations (in Number Theory course) worth thinking.
- 3. We will move to *prime factorization*, please read chapter 2 for next week.
- 4. Please read the *Hasse diagram* part of chapter o.
- 5. Please use knowledge from this week to solve HW 1.

Another proof of theorem 3.3 i

Here we provide another approach to theorem 3.3.

Exercise 3.1

Show that the solution set $S = \{(x, y) \in \mathbb{Z}^2 \mid a \cdot x + b \cdot y = 0\}$ has the following properties:

- 1. $(0,0) \in S$;
- 2. if both $(x_1, y_1) \in S$ and $(x_2, y_2) \in S$, then $(x_1 + x_2, y_1 + y_2) \in S$;
- 3. if $(x, y) \in S$ and $m \in \mathbb{Z}$, then $(mx, my) \in S$.

In the language of linear algebra, S is a \mathbb{Z} -submodule of \mathbb{Z}^2 .

Another proof of theorem 3.3 ii

Exercise 3.2

Define a map $S \to \mathbb{N}$ as follows: $(x,y) \mapsto |x|$. Suppose $s \in \mathbb{Z}_+$ is the smallest positive integer in the image of the map and $(x_0,y_0) \in S$ is a preimage of s. Show that $S = \mathbb{Z}(x_0,y_0)$ as follows:

1. Suppose there is $(x_1, y_1) \in S$ which is not a multiple of (x_0, y_0) . Show that there is an integer n such that $ns < |x_1| < (n+1)s$.

- 2. Show that $(x_1 nx_0, y_1 ny_0) \in S$ but $|x_1 nx_0| < s$.
- 3. Conclude that this is a contradiction and hence $S = \mathbb{Z}(x_0, y_0)$.

Terminology i

Terminology

A **group** is a monoid (M, *, e) satisfying

• (*invertibility*) for any element $a \in M$, there is an element $a^{-1} \in M$ such that $a * a^{-1} = a^{-1} * a = e$.

A monoid (M, *, e) is **abelian** if it satisfies

• (commutativity) a * b = b * a for all $a, b \in M$.

An *abelian group* is an abelian monoid which is a group.

Exercise 3.3

Determine whether the following monoids are groups/abelian: (endomaps of a set S, composition, id), (\mathbb{N} , multiplication, 1), (\mathbb{Z} , multiplication, 1), (\mathbb{N} , addition, 0), (\mathbb{Z} , addition, 0).

Terminology ii

Terminology

A \mathbb{Z} -module is an abelian group (M, +, e) together with an action of integers $\rho : \mathbb{Z} \times M \to M$ satisfying

- (associativity) $\rho(mn, a) = \rho(m, \rho(n, a))$ for all $m, n \in \mathbb{Z}$ and $a \in M$;
- (neutrality) $\rho(m, e) = e$ for all $m \in \mathbb{Z}$.

Exercise 3.4 (†)

Show that any abelian group is automatically a \mathbb{Z} -module. (Hint: how to define the action ρ ?)

We usually write m.e or me instead of $\rho(m,e)$ for simplicity.

Terminology iii

Exercise 3.5

Fix a positive integer n and let $(M, +, 0, \rho)$ be a \mathbb{Z} -module. Show that the triple gives a \mathbb{Z} -module:

- the set is $M^n := \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in M\};$
- the operation is componentwise addition:

$$(a_1, \cdots, a_n) + (b_1, \cdots, b_n) := (a_1 + b_1, \cdots, a_n + b_n);$$

- the neutral element is $(0, \dots, 0)$;
- the action is componentwise multiplication:

$$\rho(m,(a_1,\cdots,a_n))=(ma_1,\cdots,ma_n).$$

In particular, we have \mathbb{Z} -module structures on \mathbb{Z}^n , \mathbb{R}^n , etc.

Terminology iv

Terminology

A subset N of a monoid (M, *, e) is a **submonoid** if $e \in N$ and N is closed under the operation: $\forall a, b \in M : a, b \in N \implies a * b \in N$.

A subset N of a group (M, *, e) is a **subgroup** if it is a submonoid and is closed under taking inverse: $\forall a \in M : a \in N \implies a^{-1} \in N$.

A subset N of a \mathbb{Z} -module $(M, +, 0, \rho)$ is a **submodule** if it is a subgroup and is closed under the action:

 $\forall a \in M, m \in \mathbb{Z} : a \in \mathbb{N} \implies ma \in \mathbb{N}.$

Exercise 3.6

Show that a subset N of a \mathbb{Z} -module $(M, +, 0, \rho)$ is a submodule if it is a submonoid and is closed under the action.

Terminology v

Terminology

A \mathbb{Z} -module M is **free of rank one** if there is an element $x_0 \in M$ such that $M = \mathbb{Z}x_0$. Namely, any element of M is a multiple of x_0 .

More generally, fix a natural number n, a \mathbb{Z} -module M is **free of rank** n if there are elements $x_1, \dots, x_n \in M$ such that any element of M can be *uniquely* expressed as a \mathbb{Z} -linear combination of x_1, \dots, x_n .

Example 3.6

- The \mathbb{Z} -module \mathbb{Z}^n is free of rank n.
- Exercise 3.2 shows that the solution set S of $a \cdot x + b \cdot y = 0$ is free of rank one.