

BGS13S4N9

Wideband RF SP3T Switch

Data Sheet

Revision 1.0 - 2016-04-12 Final

Power Management & Multimarket

Edition 2016-04-12

Published by Infineon Technologies AG 81726 Munich, Germany

©2016 Infineon Technologies AG All Rights Reserved.

LEGAL DISCLAIMER

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History

Document No.: BGS13S4N9 Final v1.0.pdf

Revision History: Final Rev. v1.0

Previous Version: Target, Revision v1.0 - 2015-10-21

Page Subjects (major changes since last revision)

Trademarks of Infineon Technologies AG

 $\mu \mathsf{HVIC}^\mathsf{TM}, \mu \mathsf{IPM}^\mathsf{TM}, \mu \mathsf{PFC}^\mathsf{TM}, \mathsf{AU-ConvertIR}^\mathsf{TM}, \mathsf{AURIX}^\mathsf{TM}, \mathsf{C166}^\mathsf{TM}, \mathsf{CanPAK}^\mathsf{TM}, \mathsf{CIPOS}^\mathsf{TM}, \mathsf{CIPURSE}^\mathsf{TM}, \mathsf{CoolDP}^\mathsf{TM}, \mathsf{CoolGaN}^\mathsf{TM}, \mathsf{COOLIR}^\mathsf{TM}, \mathsf{CoolMOS}^\mathsf{TM}, \mathsf{CoolSiC}^\mathsf{TM}, \mathsf{DAVE}^\mathsf{TM}, \mathsf{DI-POL}^\mathsf{TM}, \mathsf{DirectFET}^\mathsf{TM}, \mathsf{DrBlade}^\mathsf{TM}, \mathsf{EasyPIM}^\mathsf{TM}, \mathsf{EconoBRIDGE}^\mathsf{TM}, \mathsf{EconoPACK}^\mathsf{TM}, \mathsf{EconoPACK}^\mathsf{TM}, \mathsf{EconoPIM}^\mathsf{TM}, \mathsf{EiceDRIVER}^\mathsf{TM}, \mathsf{eupec}^\mathsf{TM}, \mathsf{FCOS}^\mathsf{TM}, \mathsf{GaNpowIR}^\mathsf{TM}, \mathsf{HEXFET}^\mathsf{TM}, \mathsf{HITFET}^\mathsf{TM}, \mathsf{HybridPACK}^\mathsf{TM}, \mathsf{iMOTION}^\mathsf{TM}, \mathsf{IRAM}^\mathsf{TM}, \mathsf{ISOFACE}^\mathsf{TM}, \mathsf{IsoPACK}^\mathsf{TM}, \mathsf{LEDrivIR}^\mathsf{TM}, \mathsf{LITIX}^\mathsf{TM}, \mathsf{MIPAQ}^\mathsf{TM}, \mathsf{ModSTACK}^\mathsf{TM}, \mathsf{my-d}^\mathsf{TM}, \mathsf{NovalithIC}^\mathsf{TM}, \mathsf{OPTIGA}^\mathsf{TM}, \mathsf{OptiMOS}^\mathsf{TM}, \mathsf{ORIGA}^\mathsf{TM}, \mathsf{PowIRaudio}^\mathsf{TM}, \mathsf{PowIRStage}^\mathsf{TM}, \mathsf{PrimePACK}^\mathsf{TM}, \mathsf{PrimeSTACK}^\mathsf{TM}, \mathsf{PROFET}^\mathsf{TM}, \mathsf{PRO-SIL}^\mathsf{TM}, \mathsf{RASIC}^\mathsf{TM}, \mathsf{REAL3}^\mathsf{TM}, \mathsf{SmartLEWIS}^\mathsf{TM}, \mathsf{SOLID} \mathsf{FLASH}^\mathsf{TM}, \mathsf{SPOC}^\mathsf{TM}, \mathsf{StrongIRFET}^\mathsf{TM}, \mathsf{SupIRBuck}^\mathsf{TM}, \mathsf{TEMPFET}^\mathsf{TM}, \mathsf{TRENCHSTOP}^\mathsf{TM}, \mathsf{TriCore}^\mathsf{TM}, \mathsf{UHVIC}^\mathsf{TM}, \mathsf{XMC}^\mathsf{TM}.$

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Trademarks updated November 2015

Data Sheet 3 Revision 1.0 - 2016-04-12

Confidential	Content

C	0	'n	te	n	ts

1	Features	5
2	Product Description	5
3	Maximum Ratings	6
4	Operation Ranges	7
5	RF Characteristics	8
6	GPIO Specification	10
7	Pin Definition and Package Outline	10

List of Figures

2	Pin out (top view))
3	Package Outline (bottom and side view)	1
4	Land pattern and stencil mask	
5	Marking Pattern	
6	Tape and Reel (Reel ϕ 180 mm: 15.000 Pieces/Reel)	
List	of Tables	
1	Ordering Information	5
2	Maximum Ratings, Table I	3
3	Maximum Ratings, Table II	7
4	Operation Ranges	
5	RF Input Power	
6	RF Characteristics	
7	RF Characteristics	9
8	GPIO Truth Table)
9	Pin Configuration	
10	Mechanical Data	
11	Year Date Code	2
12	Week Date Code	

Data Sheet 4 Revision 1.0 - 2016-04-12

BGS13S4N9 Wideband RF SP3T Switch

1 Features

- 3 high-linearity TRx paths with power handling capability of up to 30 dBm
- · Low insertion loss
- Low harmonic generation
- High port-to-port-isolation
- Suitable for Edge / CDMA2000 / LTE / WCDMA applications
- 0.1 to 3.0 GHz coverage
- No decoupling capacitors required if no DC applied on RF lines
- On-chip control logic including ESD protection
- General Purpose Input-Output (GPIO) Interface
- Small form factor 1.1 mm x 1.1 mm x 0.375 mm
- No power supply blocking required
- High EMI robustness
- RoHS and WEEE compliant package

The BGS13S4N9 RF MOS switch is specifically designed for cell phone and mobile applications. Any of the 3 ports can be used as termination of the diversity antenna handling up to 30 dBm.

This SP3T offers low insertion loss and high robustness against interferer signals at the antenna port and low harmonic generation in termination mode. The on-chip controller integrates CMOS logic and level shifters, driven by control inputs from 1.35 V to VDD . The BGS13S4N9 RF Switch is manufactured in Infineon's patented MOS technology, offering the performance of GaAs with the economy and integration of conventional CMOS including the inherent higher ESD robustness. The device has a very small size of only 1.1 x 1.1 mm 2 and a maximum height of 0.375 mm.

No decoupling capacitors are required in typical applications as long as no DC is applied to any RF port.

Table 1: Ordering Information

Туре	Package	Marking
BGS13S4N9	TSNP-9-3	W

Data Sheet 5 Revision 1.0 - 2016-04-12

Figure 1: BGS13S4N9 Block Diagram

3 Maximum Ratings

Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Table 2: Maximum Ratings, Table I at $T_A = 25 \,^{\circ}\text{C}$, unless otherwise specified

Parameter	Symbol Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Frequency Range	f	0.1	_	3.0	GHz	1)
Supply voltage	V _{DD}	-0.5	_	3.6	V	_
Storage temperature range	T _{STG}	-55	_	150	°C	_
Junction temperature	Tj	_	_	125	°C	_
RF input power at all Rx ports	P _{RF_Rx}	_	_	32	dBm	CW
ESD capability, CDM ²⁾	V _{ESD_CDM}	-1000	_	+1000	V	All pins
ESD capability, HBM ³⁾	V _{ESD_HBM}	-1000	_	+1000	V	All pins excluding RFin
		-1000	_	+1000	V	RFin vs. other pins
ESD capability, system level ⁴⁾	V _{ESD_ANT}	-8000	_	+8000	V	ANT versus system GND,
						with 16 nH shunt inductor
						Type LQW15AN16NG80

 $^{^{1)}}$ There is also a DC connection between switched paths. The DC voltage at RF ports V_{RFDC} has to be 0V.

Data Sheet 6 Revision 1.0 - 2016-04-12

²⁾Field-Induced Charged-Device Model JESD22-C101. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

³⁾ Human Body Model ANSI/ESDA/JEDEC JS-001-2012 (R=1.5 kΩ, C=100 pF).

⁴⁾IEC 61000-4-2 (R=330 Ω , C=150 pF), contact discharge.

Table 3: Maximum Ratings, Table II at $T_A = 25\,^{\circ}\text{C}$, unless otherwise specified

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Maximum DC-voltage on RF-	V _{RFDC}	0	_	0	V	No DC voltages allowed on
Ports and RF-Ground						RF-Ports

4 Operation Ranges

Table 4: Operation Ranges

Parameter	Symbol Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Supply voltage	V _{DD}	1.8	-	3.3	V	_
Supply current ¹⁾	I _{DD}	_	80	150	μΑ	_
GPIO control voltage high	V _{Ctrl_H}	1.35	_	V _{DD}	V	_
GPIO control voltage low	V _{Ctrl_L}	-0.3	_	0.43	V	_
GPIO control input capaci-	C _{Ctrl}	_	_	2	pF	_
tance						
Ambient temperature	T _A	-40	25	85	°C	_

¹⁾T_A = −40 °C - 85 °C, V_{DD}= 1.8 - 3.3 V

Table 5: RF Input Power

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Rx ports (50 Ω)	P _{RF_Rx}	_	_	30	dBm	_

Data Sheet 7 Revision 1.0 - 2016-04-12

5 RF Characteristics

Table 6: RF Characteristics at $T_A = -40\,^{\circ}\text{C} - 85\,^{\circ}\text{C}$, $P_{IN} = 0\,\text{dBm}$, Supply Voltage $V_{DD} = 1.8\,V - 3.3\,V$, $Z_0 = 50\,\text{Ohm}$, unless otherwise specified

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Insertion Loss							
		0.10	0.20	0.25	dB	824–915 MHz	
All Rx Ports	IL	0.20	0.30	0.40	dB	1710–1910 MHz	
All DX FUILS	IL.	0.25	0.40	0.60	dB	2170–2500 MHz	
		0.40	0.55	0.65	dB	2700MHz	
Insertion Loss ¹⁾							
		0.15	0.20	0.25	dB	824–915 MHz	
All Rx Ports	IL	0.25	0.30	0.35	dB	1710–1910 MHz	
All DX FUILS	IL.	0.35	0.40	0.50	dB	2170-2500 MHz	
		0.50	0.55	0.65	dB	2700MHz	
Return Loss							
	RL	28	31	33	dB	824–915 MHz	
All Rx Ports		18	20	24	dB	1710–1910 MHz	
All DX FUILS		15	18	20	dB	2170-2500 MHz	
		13	14	16	dB	2700MHz	
Isolation ¹⁾							
		31	33	_	dB	824–915 MHz	
RFin to RF1/RF2/RF3 ²⁾	ISO _{In-RFx}	23	27	_	dB	1710–1910 MHz	
NEIII (U NE I/NEZ/NES /	ISO _{In-RFx}	17	22	_	dB	2170-2500 MHz	
		16	21	_	dB	2700MHz	
RF1 to RF2 / RF2 to RF1 ³⁾		32	34	_	dB	824–915 MHz	
RF1 to RF3 / RF3 to RF1 ⁴)	ISO	21	25	_	dB	1710–1910 MHz	
RF2 to RF3 / RF3 to RF2 ⁵⁾	ISO _{port-port}	17	23	_	dB	2170-2500 MHz	
NF2 (U NF3 / NF3 (U RF2*)		15	19	_	dB	2700MHz	

 $^{^{1)}}T_{A} = 25 \,^{\circ}C, V_{DD} = 3V$ $^{2)}Any RF Port ON$ $^{3)}RF1 ON$

Data Sheet 8 Revision 1.0 - 2016-04-12

⁴⁾RF3 ON

⁵⁾ RF2 ON

Table 7: RF Characteristics at $T_A = -40\,^{\circ}\text{C} - 85\,^{\circ}\text{C}$, $P_{IN} = 0\,\text{dBm}$, Supply Voltage $V_{DD} = 1.8\,V - 3.3\,V$, $Z_0 = 50\,\text{Ohm}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.		ур. Мах.			
P0.1 dB Compression Poi	nt, Extrapolate	ed	'	1	•		
All Rx Ports	P _{0.1dB}	34	_	_	dBm	698–960 MHz	
Harmonic Generation up	to 12.75 GHz						
H2	P _{Harm}	_	-80	-70	dBc	27 dBm, 50 Ω, CW mode	
H3	P _{Harm}	_	-80	-70	dBc	27 dBm, 50 Ω, CW mode	
Intermodulation Distortion	n in Rx Band ¹⁾	(T _A = 25 °C	C)		•		
IMD2	IMD2	_	-110	-100	dBm	Tx = 10 dBm,	
IMD3	IMD3	_	-115	-100	dBm	Interferer = $-15 dBm$, 50Ω	
Switching Time				•	·		
RF Rise Time			0.005			10 % to 90 % RF ON;	
NE DISE TILLE	ise Time $\left \begin{array}{c c}t_{\text{on/off}}\end{array}\right -\left \begin{array}{c c}0.085\end{array}\right -\left \begin{array}{c c}\mu s\end{array}\right $	μS	90 % to 10 % RF OFF				
O. I. DE T				50 % of Ctrl Signal to			
Ctrl to RF Time	t _{Ctrl-RF}	_	0.55	_	μs	90 % of RF Signal	

¹⁾With external shunt inductor

Data Sheet 9 Revision 1.0 - 2016-04-12

6 GPIO Specification

Table 8: Modes of Operation Truth Table

		Control Inputs				
State	Mode	V1	V2	RF1	RF2	RF3
1	Isolation	0	0	off	off	off
2	RFin - RF1	1	0	on	off	off
3	RFin - RF2	0	1	off	on	off
4	RFin - RF3	1	1	off	off	on

7 Pin Definition and Package Outline

Table 9: Pin Configuration

No	Name	Pin Type	Buffer Type	Function				
1	V1	Ţ		Control Pin 1				
2	RF3	I/O		RF-Port3				
3	RF1	I/O		RF-Port1				
4	RFin	I/O		RF-Input				
5	RF2	I/O		RF-Port2				
6	DGND	GND		Digital Ground				
7	VDD	PWR		Power Supply				
8	V2	I		Control Pin 2				
9	GND	GND		Ground				

Figure 2: Pin out (top view)

Data Sheet 10 Revision 1.0 - 2016-04-12

Table 10: Mechanical Data

Parameter	Symbol	Value	Unit	
X-Dimension	X	1.1 ± 0.05	mm	
Y-Dimension	Υ	1.1 ± 0.05	mm	
Size	Size	1.21	mm ²	
Height	Н	0.375 ± 0.025	mm	
Pad-Pitch		0.4	mm	

Figure 3: Package Outline (bottom and side view)

Figure 4: Land pattern and stencil mask

Data Sheet 11 Revision 1.0 - 2016-04-12

Figure 5: Marking Pattern

Table 11: Year date code marking - digit "Y"

The state of the s							
Year	"Y"	Year	"Y"	Year	"Y"		
2000	0	2010	0	2020	0		
2001	1	2011	1	2021	1		
2002	2	2012	2	2022	2		
2003	3	2013	3	2023	3		
2004	4	2014	4	2024	4		
2005	5	2015	5	2025	5		
2006	6	2016	6	2026	6		
2007	7	2017	7	2027	7		
2008	8	2018	8	2028	8		
2009	9	2019	9	2029	9		

Table 12: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	Α	12	N	23	4	34	h	45	v
2	В	13	Р	24	5	35	j	46	x
3	C	14	Q	25	6	36	k	47	у
4	D	15	R	26	7	37	1	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	Т	28	b	39	р	50	9
7	G	18	U	29	c	40	q	51	2
8	H	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	s		
10	K	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

Data Sheet 12 Revision 1.0 - 2016-04-12

Figure 6: Tape and Reel (Reel ϕ 180 mm: 15.000 Pieces/Reel)

Data Sheet 13 Revision 1.0 - 2016-04-12

www.infineon.com