REFRIGERATOR EQUIPPED WITH LIQUID CRYSTAL DISPLAY

Patent number: JP2000274923 Publication date: 2000-10-06

Inventor: OTSUKA HIROSHI; HASHIMOTO KIYOBUMI; KANEKO

SHUICHIRO; ASAI KATSUHIKO

Applicant: MINOLTA CO LTD

Classification:

- international: F25D23/00; G02F1/13; G02F1/133; G09F9/00;

F25D23/00; G02F1/13; G09F9/00; (IPC1-7): F25D23/00;

G02F1/13; G02F1/133; G09F9/00

- european:

Application number: JP19990077457 19990323 Priority number(s): JP19990077457 19990323

Report a data error here

Abstract of JP2000274923

PROBLEM TO BE SOLVED: To permit the indication of various informations without consuming any electric power for the maintenance of the indication by a method wherein a liquid crystal display, constituted of a liquid crystal having memory property, is arranged. SOLUTION: A refrigerator body 1 is constituted of upper and-lower two chambers while a liquid crystal display 10, constituted of a liquid crystal having memory property, is fitted into a recess on the upper door 3. The liquid crystal display 10 is equipped with a full color reflection type liquid crystal indicating element 100, a front surface illuminating light 11, an optical detection sensor 12, a data receiving unit 13, a card insertion port 14, a letter writing pen 15 and a writing switch 16 for writing a picture, indicated at present, again. A secondary battery is accommodated as the driving power source of the liquid crystal display 10 and the power supply unit of the refrigerator body 1 is used for the charging of the secondary battery while the output contact of a charging control circuit is provided in the recess to supply an electric power by contacting the electrode of the secondary battery with the contact.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出版公開番号 特開2000-274923 (P2000-274923A)

(43)公開日 平成12年10月6日(2000.10.6)

(51) Int.CL7		線別記号	ΡI		ŕ	~73~}*(参考)
F 2 5 D	23/00	301	F 2 5 D	23/00	301Q	2H088
G02F	1/13	505	G 0 2 F	1/13	505	2H093
	1/133	560		1/133	5 6 0	5 G 4 3 5
G09F	9/00	364	G09F	9/00	364K	

審査請求 未請求 請求項の数10 OL (全 18 頁)

(21) 出願番号	特顧平11 —77457	(71)出題人	000006079
			ミノルタ株式会社
(22) 出顧日	平成11年3月23日(1999.3.23)		大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル
		(72)発明者	大学 博司
			大阪府大阪市中央区安土町二丁目3番13号
			大阪国際ピル ミノルタ株式会社内
		(72)発明者	橋本 情文
			大阪府大阪市中央区安土町二丁目3番13号
			大阪国際ピル ミノルタ株式会社内
		(74)代理人	100091432
			弁理士 森下 武一
			最終質に続く

(54) 【発明の名称】 被品ディスプレイを備えた冷蔵庫

(57)【要約】

【課題】 表示の維持に電力を消費することなく、かつ、種々の情報の表示が可能な液晶ディスプレイを備えた冷蔵庫を得る。

【解決手段】 液晶ディスプレイ10を備えた冷蔵庫。 とのディスプレイ10はカイラルネマティック液晶で構成されたメモリ性を有する表示素子100を有している。ディスプレイ10に表示される情報は、カレンダ情報、レシピ情報、伝言情報、庫内在庫情報、鑑賞用画像情報等である。

【特許請求の範囲】

【請求項1】 メモリ性を有する液晶を用いて構成され た液晶ディスプレイを備えたことを特徴とする冷蔵庫。

【請求項2】 前記液晶が室温でコレステリック相を示すカイラルネマティック液晶であることを特徴とする請求項1記載の冷蔵庫。

【請求項3】 前記液晶ディスプレイが冷蔵庫本体に着 脱可能に設けられていることを特徴とする請求項1又は 請求項2記載の冷蔵庫。

【請求項4】 前記液晶ディスプレイの駆動源としての 10 二次電池と、冷蔵庫本体の電源部に接続されており、前 記二次電池の電極に接触可能な接点と、前記二次電池を 充電するための充電回路とを備えたことを特徴とする請 求項1、請求項2又は請求項3記載の冷蔵庫。

【請求項5 】 前記液晶ディスプレイの表示情報が、カレンダ情報、レシビ情報、伝言情報、庫内在庫情報、鑑賞用画像情報、受信情報の少なくともいずれか一つの情報であることを特徴とする請求項1、請求項2、請求項3又は請求項4記載の冷蔵庫。

【請求項6】 前記表示情報を任意の種類のものに切り替える手段を備えたことを特徴とする請求項5記載の冷蔵庫。

【請求項7】 前記液晶ディスプレイの表面にタッチセンサを備えたことを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5又は請求項6記載の冷蔵庫。

【請求項8】 前記液晶ディスプレイへ表示情報を入力 するためのペン入力手段を備えたことを特徴とする請求 項1、請求項2、請求項3、請求項4、請求項5、請求 項6 又は請求項7記載の冷蔵庫。

【請求項9】 前記液晶ディスプレイの駆動回路に電力を供給して液晶ディスプレイに情報を書き込み、前記液晶ディスプレイへの情報書き込みが終了すると、前記駆動回路への電力供給を停止する制御手段を備えたことを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7又は請求項8記載の冷蔵庫。

【請求項10】 電源からの電圧を昇圧して前記液晶ディスプレイの駆動回路に供給する昇圧回路を備え、該昇 圧回路を不作動状態とすることにより前記駆動回路への 40 電力供給を停止することを特徴とする請求項9記載の冷 蔵庫。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、冷蔵庫、特に、種々の情報を表示するための液晶ディスプレイを備えた冷蔵庫に関する。

[0002]

【従来の技術と課題】通常、冷蔵庫の表面は平坦で無模様であるため、メモやレシビをマグネットや粘着テープ 50

で貼り付けたり、ホワイトボードを磁気的に取り付けてスケジュールなどをマーカで書き込むようにしている。しかし、マグネット等での貼り付けでは表示できる情報量に限界があり、ホワイトボードを使用しても同様であるばかりか、情報の消去時に消しかすが飛散したり、手を汚すなどの不具合を生じる。また、表示できる態様も文字や略図程度であり、精密な画像を書き込むのは通常困難である。

【0003】一方、冷蔵庫の表面に液晶ディスプレイを 設ける点については、特開平9-119768号公報、 特開平8-35759公報で提案されている。しかし、 これらで提案されているディスプレイは表示の維持に電力を必要とする非メモリ性の液晶を用いたものである。 冷蔵庫は家電製品のなかでも消費電力が大きく、省エネルギーの観点から消費電力の低減が大きな課題とされている。従って、非メモリ性のディスプレイを付加すると、消費電力がより増大し、時代の要求から離れたものとなる。勿論、非メモリ性の液晶を用いたディスプレイであっても、タイマを組み込んで所定時間経過後に通電 をオフするように構成すれば、省エネルギー化は図られるが、これでは表示画面も消去されてしまうという問題点を有している。

[0004] このような現状に鑑みて、本発明の目的は、表示の維持に電力を消費することなく、かつ、種々の情報の表示が可能な液晶ディスプレイを備えた冷蔵庫を提供することにある。

[0005]

【発明の構成、作用及び効果】以上の目的を達成するた め、本発明に係る冷蔵庫は、メモリ性を有する液晶を用 30 いて構成された液晶ディスプレイを備えている。メモリ 性を有する液晶を用いれば、画面更新時以外には(表示 状態を維持するのに)電力が不要であり、省エネルギー に寄与する。しかも、表示内容を豊富に盛り込むことが でき、任意に書き換え可能であり、ホワイトボードのよ うに消去時に消しかすが飛散する不具合を生じない。 【0006】メモリ性を有する液晶としてはカイラルネ マティック液晶を使用することが好ましい。比較的大型 の画面のディスプレイを安価に製作することができるか **らである。さらに、本発明において、液晶ディスプレイ** は冷蔵庫本体に着脱可能であることが好ましい。電源を 冷蔵庫本体と共用している場合、メモリ性を有すること からディスプレイを本体から取り外しても表示情報が維 持され、任意の場所に移動させることができる。

【0007】 とのような液晶ディスプレイに表示される情報としては、カレンダ情報、レシビ情報、伝言情報、庫内在庫情報、鑑賞画像情報、受信情報を挙げることができる。とれらを任意に切り替えて表示させればよい。入力手段としては、タッチセンサやペン入力手段を設ければよい。

【0008】また、液晶ディスプレイの駆動回路に電力

を供給して液晶ディスプレイに情報を書き込み、液晶ディスプレイへの情報書き込みが終了すると、前記駆動回路への電力供給を停止する制御手段を設けることにより、省エネルギー効果はより高まる。また、液晶ディスプレイの駆動源を二次電池とし、この充電には冷蔵庫本体の電源部を利用してもよい。

[0009]

【発明の実施の形態】以下、本発明に係る液晶ディスプレイを備えた冷蔵庫の実施形態について、添付図面を参照して説明する。

【0010】(冷蔵庫の全体構成)図1、図2において、1は冷蔵庫本体で、上下2室から構成され、2は下原、3は上扉である。10は液晶ディスプレイで、上扉3の凹部4に嵌め込まれている。この液晶ディスプレイ10は、以下に詳述するフルカラーの反射型液晶表示素子100を備え、さらに、前面照明ライト11、光検出センサ12、データ受信部13.カード挿入口14、文字書き込み用のペン15、現在表示している画面を再度書き込むための書き込みスイッチ16が設けられている。また、食品に付されているバーコードを読み取り無20線データとして送信可能なバーコードリーダ17も備えられ、この送信器付きバーコードリーダ17は図2に示すように上扉3に設けたホルダ5に収容されている。また、ペン15は着脱自在であることは勿論である。

【0011】液晶ディスプレイ10は薄板状に構成され、上扉3の凹部4に嵌め込まれる。凹部4を形成するととなく上扉3の表面に直接貼り付けるようにしてもよい。また、完全に固定してもよいが、上扉3に対して着脱可能にセットしてもよい。着脱可能とするには、例えば、図3に示すように、裏面にマグネット20を貼り付30けるか、穴21を形成して上扉3に設けた図示しないバーに吊り下げるようにすればよい。取っ手22を設ければ着脱に便利である。液晶ディスプレイ10を着脱可能とすることにより、液晶ディスプレイ10を掲示板や鑑賞用画像付きの額として、あるいは各種情報のビューワーとして単体で使用することができる。また、液晶ディスプレイ10の修理や交換が容易になる。

【0012】液晶ディスプレイ10の駆動源としては二次電池が内蔵されている。との二次電池の充電には冷蔵庫本体1の電源部が使用され、凹部4には充電制御回路 40の出力接点6(図2参照)が設けられている。二次電池はその電極が接点6に接触し、電力の供給を受ける。

[0013] 液晶ディスプレイ10で表示する情報は種々のものがあり、その代表的なものは、カレンダ情報、レシピ情報、伝言情報、庫内在庫情報、鑑賞用画像情報、鑑賞用画像情報、通信回線からの受信情報である。レシピ情報や鑑賞用画像情報はそれぞれ専用のメモリカードに格納されており、メモリカードを挿入口14に挿入することで、該カードの内容を自動的に読み取り、表示する。換言すれば、挿入口14とそれに挿入されるメモリカードが表示 50 出され必要な画像処理を施したうえでカード読取り/書

情報の切り替え(選択)スイッチとしても機能する。

【0014】(電源/制御回路)図4に冷蔵庫本体1及び液晶ディスプレイ10の電源/制御回路を示す。本体1の回路は、商用電源の配電器31と、この配電器31から電力を供給されるCPU32、充電制御回路33、コンブレッサ等の入出力デバイス34にて構成されている。CPU32は充電制御回路33及び入出力デバイス34と信号を交換し合う。

【0015】液晶ディスプレイ10の回路は、前記充電 10 制御回路33にて充電される二次電池35と、配電器3 6と、この配電器36から電力を供給される中央処理装 置(CPU)40と、入出力デバイス43にて構成され ている。中央処理装置40は入出力デバイス43と信号 を交換し合う。

【0016】図5に液晶ディスプレイ10の回路のより詳細を示す。配電器36はさらにLCDコントローラ52、他の制御回路42、昇圧回路51へも電力を供給する。昇圧回路51は駆動IC53へ所定スペックの電力を供給する。LCDコントローラ52は中央処理装置40と連係して駆動IC53を動作させ、液晶表示素子100を駆動制御する。

【0017】中央処理装置40は、電池35を装着したときまたは電池35が必要量充電されたときから作動し始める。また、昇圧回路51は中央処理装置40からの指令により、オン/オフすることが可能であり、昇圧回路51がオフ状態のとき電力消費をごく小さくすることができる。

【0018】図6に示すように、中央処理装置40は、 各種プログラムやデータを記憶したROM45、表示情 報を含む各種のデータを記憶する不揮発性のRAM46 を備え、光検出センサ12、書き込みスイッチ16から の信号が入力され、さらに、冷蔵庫本体1に設けられて いるデータ送信装置からの信号や前記送信器付きバーコ ードリーダ17からの信号がデータ受信部13を介して 入力される。さらに、液晶表示素子100の表面に設け たタッチパネル140からの信号も入力される。また、 中央処理装置40は以下に説明するカレンダ機能を内蔵 し、かつ、前記挿入口14から挿入されたカードの読み 取り/書き込み装置47、画像処理装置55及び画像メ モリ56と信号を交換する。画像処理装置55はデータ 受信部13やカード読取り/書き込み装置47から送信 される画像データに必要な画像処理を施し画像メモリ5 6に送り、タッチパネル140への書き込み情報も画像 データとして画像メモリ56に送る。この画像メモリ5 6に蓄積されたデータに基づいてLCDコントローラ5 2が駆動IC53を制御し、液晶表示素子100の各走 査電極及び信号電極間に順次電圧を印加し、液晶表示素 子100に画像を書き込む。また、画像メモリ56に記 **憶された画像データは、画像処理装置**55を介して読み き込み装置47に送信される。さらに、中央処理装置4 0は照明制御部48を介して照明ライト11を制御す る。

【0019】ととろで、冷蔵庫本体1には通信(電話) 回線を介して、天気予報、交通情報、イベント情報、回 覧板、広告、電子メール着信などの情報が入力される。 これらの情報は前記データ受信部13に赤外線などの無 線通信手段を使用して入力され、液晶ディスプレイ10 上に表示することができる。従って、冷蔵庫を家庭内に おける各種情報の発信基地として使用することができ る。勿論、液晶ディスプレイ10は書き換えの必要があ る場合以外は電力消費ゼロで表示を保つことができ、冷 蔵庫の消費電力を増大させることはなく、しかも常に商 用電源に接続されている冷蔵庫本体から電力供給を受け られるので書き換えの必要がある場合はいつでも液晶デ ィスプレイ10の駆動回路に電力供給を行うことができ る。

【0020】なお、前記電源/制御回路は冷蔵庫本体1 と液晶ディスプレイ10の回路をそれぞれ独立して構成 したものであるが、液晶ディスプレイ10を冷蔵庫本体 20 1に一体的に組み込み、両者の回路を一体化してもよ 61

【0021】 (表示例) 次に、液晶表示素子100への 種々の表示例を示す。なお、以下の図7~図10に示す 表示例以外に種々の表示例を採用することができる。

【0022】図7は食物在庫管理の表示例であり、これ らは食品に付されているバーコードを前記送信器付きバ ーコードリーダ17で読み取って中央処理装置40へ送 信した内容の一覧表示である。右側にはタッチパネル1 01、上方及び下方へのスクロールキー202,203 が表示される。また、各項目の情報を書き換えるため、 所望の項目の枠内に触れることにより書き換えの対象と なる項目を指定できるようになっている。

【0023】図8はレシピの表示例である。との場合、 キー202、203は、前頁及び後頁へメニューを切換 えるためのUP/DOWNキーとして用いられる。

【0024】図9は伝言板の表示例であり、前記ペン1 5を用いてタッチパネル140上に書き込んだ文字、画 像等を表示している状態を示す。上段に表示されている 40 OKキー204は画面に書き込んだ内容をメモリカード に記憶させるためのものである。キー205は新規書き 込みを実行するとき、キー206は画面消去を実行する ときに使用する。

【0025】図10はカレンダの表示例であり、各キー 201~206は前述したのと同じ機能を有している。 また、各日付けの枠内に情報を記録するため、所望の日 付けの枠内に触れることにより書き込みや消去の対象と なる日付けを指定できるようになっている。

チャートを参照して中央処理装置40による液晶ディス プレイ10の制御手順を示す。

【0027】図11はメインルーチンを示す。液晶ディ スプレイ10に電池35が装填されるか、電池35が必 要量充電されると、中央処理装置40が起動し、まず、 ステップS1で内部RAM、レジスタ、タイマ等を初期 化する。そして、ステップS2で表示1(初期はカレン ダ) を実行し、ステップS3でセンサ12による明るさ 検出を実行する。その後、ステップS4で省電力用タイ 10 マをスタートさせ、ステップS5でスリープモード(省 電モード) にする。

【0028】スリープモードでは、必要最低限な部分を 除いてメモリ、レジスタ、カウンタなどの内部回路への クロックの供給を自ら停止する。これにより、各入出力 デバイスへの電力供給も停止され、消費電力をどく小さ くするようになっている。中央処理装置40がスリーブ モードにある場合、割り込み信号を受けると起床モード に移って所定の処理を実行する。なお、省電力用タイマ は中央処理装置40がスリーブモードにある場合もカウ ントを継続できるようになっている。

【0029】図12は前記ステップS3で実行される明 るさ検出のサブルーチンを示す。ここでは、ステップS 11でセンサ12から液晶表示素子100の周囲の明る さのデータを入力し、ステップS12で酸データに基づ いて液晶表示素子100の画面が明るいか否か(人間の 目で識別できるか否か)を判断する。明るければそのま まリターンし、暗ければステップS13でライト11を 点灯する。

【0030】図13はタイマ割り込みのサブルーチンを 40による他の画面(図8~図9参照)への切替キー2 30 示す。とのサブルーチンは、省電力用タイマが所定時間 (例えば、5分)をカウントすると、中央処理装置40 に割り込みがかかって自動的に開始される。まず、ステ ップS21でライト11が点灯しているか否かを判定 し、点灯していればステップS22でライト11を消灯 する。次に、ステップS23で変数Nに"1"をプラス し、変数Nが"300"を超えるまではステップS27 で全ての割り込みを許可する。さらに、ステップS28 で省電力用タイマをリセットしてスタートさせ、ステッ プS29でスリーブモードに入る。

【0031】変数Nが"300"に到達するのは、省電 カ用タイマのカウントアップ時間が5分に設定されてい る場合、ほぼ1日であり、"300"に到達すると、即 ち、液晶表示素子100に何の変化もなく1日経過する と、ステップS25で現在表示している画面を再度書き 込み、ステップS26で変数Nを"0" にリセットす る。これは1日も経過すると、誰かが知らないうちに液 晶表示素子100に触ってしまい、表示内容が一部損な われている可能性があるため、自動的に修復する目的で 実行される。

【0026】(制御例)以下、図11~図23のフロー 50 【0032】図15、図16は割り込みのサブルーチン

を示す。この割り込みは、タッチパネル140への操作、送信器付きパーコードリーダ17からの赤外線通信によるデータの入力あるいはメモリカードが挿入口14へ挿入されることにより、中央処理装置40が起床状態となって実行される。

【0033】 ここでは、まず、ステップ S30で、先に 図12で説明したのと同様の明るさ検出の処理を行う。 これにより、タッチパネル140への操作、送信器付き バーコードリーダ17からの赤外線通信によるデータの 入力、メモリカード挿入口14への挿入があり、かつ、 周囲が暗い場合には照明が点灯される。そして、操作者 が画面を操作する間に省電力用タイマによる割り込みが 発生しないようにステップS31で省電力用タイマをリ セットしてスタートさせ、ステップS32で液晶ディス プレイ10のキー操作があったか否かを判定する。キー 操作があれば、ステップS33でこの操作による割り込 みを禁止する。次に、ステップS34で、キー操作がタ ッチパネル140への操作であったかどうかを判定し、 そうであればステップS35へ進む。そうでなければ書 き込みスイッチ16が操作されたものと判断し、後で説 20 明するステップS37へ進んで再書き込みを行う。ステ ップS35では前記キー操作が表示切替キー201の操 作であったか否かを判定し、そうであればステップS3 6で表示モードを現在表示されているモードから所定の 順序でサイクリックに変更し、ステップS37で全表示 の再書き込みを実行する。表示モードの変更は1. カレ ンダ、2. 桧、3. 伝言板、4. 食物在庫管理、5. レ シビ、6. 受信情報の順序とされている(ステップS4 9~S54參照)。

[0034]前記ステップS31でスタートさせた省電 30 カ用タイマが所定時間をカウントすると、先に説明した 図13のタイマ割り込みのサブルーチンが実行されて中央処理装置40がスリーブモードになり、照明ライト11を含む各入出力デバイスへの電力供給が停止される。 以下のステップS64等でスタートする省電力用タイマも同様の制御に用いられる。

【0035】ところで、前記ステップS37での再書き込み処理は、キー操作によって液晶画面の一部を押圧すると液晶の表示が乱れるおそれがあるため、この乱れを元に戻すために実行される。通常、TN液晶などのメモ 40 リ性のない液晶による表示は短時間で定期的に画面を更新していくため、このような全表示の再書き込み処理を特に設ける必要はない。但し、本実施形態で使用しているカイラルネマティック液晶は、電力の供給を絶っても表示が維持されるメモリ性を有しているため、短時間で画面を更新せず、表示更新あるいは修復の必要性のあるときのみ全表示の再書き込み(更新)を実行する。即ち、画像書き込み時に昇圧回路51をオンして昇圧動作を行わせ、書き込み終了後にこの昇圧回路51をオフすべく電力供給を停止する。以下のステップS65等で実 50

行する再書き込みも同様である。

【0036】次に、ステップS48で表示すべきモード番号1~6を確認し、その番号に応じてステップS49~S54で所定の表示モードを実行する。即ち、番号1のカレンダモードはステップS49で、番号2の絵モードはステップS50で、番号3の伝言板モードはステップS51で、番号4の食物在庫管理モードはステップS52で、番号5のレシビモードはステップS53で、番号6の受信情報モードはステップS54で、それぞれ実10行される。なお、それらの詳細は後述する。

【0037】一方、キー操作がなければ(S32でNO)、ステップS38でメモリカードが挿入口14に挿入されたか否かを判定する。挿入されたのであれば、ステップS43で読み取り/書き込み装置47からカードの種類を示すデータコードを入力する。そして、ステップS44で設データコードが既にRAM46にメモリされているか否かを判定し、メモリされていれば(同一のデータコードがあれば)ステップS45で表示モード番号をこのカードのデータコードに変更する。この場合は、絵とかレシビとかのカードであり、その表示モード番号に従ってステップS49~S53のいずれかで表示処理が実行される。

[0038] 同一のデータコードがメモリされていなければ (ステップS44でYES)、ステップS46でそのカードの内容を入力して画像メモリ56に記憶し、ステップS47でその内容を液晶表示素子100に表示する。

【0039】一方、カードの挿入でないとき(ステップ S38でNO)、データ受信部13がデータ受信をしたものと判断する。そして、ステップS39で通信回線からの情報受信と判断すれば、ステップS40で表示モード番号を6に変更し、そうでなければ送信器付きバーコードリーダ17からのバーコードの送信と判断し、ステップS41でそのデータ(食物名、個数や重さ、製造年月日、賞味期限等)を追加し、ステップS42で表示モード番号を4に変更する。

【0040】図16及び図17は前記ステップS49で実行されるカレンダ表示のサブルーチンを示す。とのカレンダ表示では図10に示すように切替キー201、UP/DOWNキー202、203に加えて、OKキー204、新規キー205、消去キー206が表示されている。

【0041】 CCでは、まず、ステップS61で月間表示を行い、ステップS62でUP/DOWNキー202、203の操作が行われたか否かを判定する。操作が行われたのであれば、ステップS63で翌月ないし前月の表示に変更し、ステップS64で省電力用タイマをリセットしてスタートさせ、ステップS65で全表示の再書き込みを行う。

」 【0042】次に、ステップS66で消去キー208が

操作されたことを確認すると、ステップS67で画像メ モリ56の記憶内容及び表示を消去する。また、ステッ ブS68で新規キー205が操作されたことを確認する と、ステップS69で新規作成を処理する。なお、これ 5のステップS67、S69での処理は図17を参照し て説明する。

[0043]次に、ステップS70で表示切替キー20 1が操作されたか否かを判定し、操作されなければ、前 記ステップS62へ戻る。操作されたのであれば、ステ ップS71で省電力用タイマをリセットしてスタートさ 10 更し、このサブルーチンを終了する。 せ、ステップS72で表示モード番号を1に変更し、と のサブルーチンを終了する。

【0044】前記ステップS67で実行するメモリ及び 表示消去の処理は、図17(A)に示すように、まず、 ステップS81でペン15による日の指定があるのを待 ち、指定されるとステップS82で指定された日のマス を含む走査ラインのみを駆動して書き換えを行い、指定 された日の枠を太線で表示する。さらに、ステップS8 3で省電力用タイマをリセットしてスタートさせ、ステ ップS84で全表示の再書き込みを行う。このように、 部分的な画面書き換えを行った後に全画面の再書き込み を行うことにより、書き換え部分とそうでない部分との 間で色味が若干異なってしまうといった問題を回避する ことができる。そして、ステップS85でOKキー20 4の操作が確認されると、ステップS86で書き込まれ た表示及び画像メモリ56の記憶内容を消去する。

【0045】前記ステップS69で実行する新規作成の 処理は、図17(B)に示すように、まず、ステップS 91でペン15による日の指定があるのを待ち、指定さ れるとステップS92で指定された日のマスを含む走査 30 ラインのみを駆動して書き換えを行い、指定された日の 枠を太線で表示する。さらに、ステップS93で省電力 用タイマをリセットしてスタートさせ、ステップS94 で全表示の再書き込みを行う。

【0046】さらに、ステップS95でペン15による 文字の書き込みがあるのを待ち、書き込まれるとステッ プS96で省電力用タイマをリセットしてスタートさ せ、ステップS97で書き込み内容を画像メモリ56に 記憶し、その記憶内容に基づいて全表示の再書き込みを 行う。次に、ステップS98でOKキー204の操作が 40 確認されると、ステップS99で新たなデータとしてR AM46の所定領域に記憶したり、メモリカードを装着 している場合はメモリカードに記憶すると共に全表示の 再書き込みを行う。

【0047】図18は前記ステップS50で実行される 桧表示のサブルーチンを示す。ことでは、まず、ステゥ ブS 101で前回表示されていた最新の絵や写真などの 画像の表示が行われる。次に、ステップS102でUP /DOWNキー202、203の操作が行われたか否か を判定する。操作が行われたのであれば、ステップS1 50 5で新たなデータとしてRAM46の所定領域に記憶し

03で予めRAM46やメモリカードにメモリされてい る絵や写真などの表示を順次変更し、ステップS104 で省電力用タイマをリセットしてスタートさせ、ステッ ブS105で全表示の再書き込みを行う。

10

【0048】次に、ステップS106で表示切替キー2 01が操作されたか否かを判定し、操作されなければ、 前記ステップS102へ戻る。操作されたのであれば、 ステップS107で省電力用タイマをリセットしてスタ ートさせ、ステップS108で表示モード番号を1に変

【0049】なお、絵の表示の場合、各キーの表示を小 さくしたり目立たないように表示することにより、絵の 表示をできるだけ妨げないようにしてもよい。タッチバ ネル140の操作によって各キーを表示するようにして もよい。

【0050】図19及び図20は前記ステップS51で 実行される伝言板表示のサブルーチンを示す。この伝言 板表示では図9に示すように切替キー201、UP/D OWNキ-202, 203、OKキ-204、新規キー 205、消去キー206が表示されている。

【0051】 ここでは、まず、ステップS111で前回 表示されていた最新の伝言内容の表示が行われる。次 に、ステップS112でUP/DOWNキー202, 2 03の操作が行われたか否かを判定する。操作が行われ たのであれば、ステップS113で予めRAM46やメ モリカードにメモリされている伝言内容を順次変更し、 ステップS114で省電力用タイマをリセットしてスタ ートさせ、ステップS115で全表示の再書き込みを行

【0052】次に、ステップS116で消去キー206 が操作されたことを確認すると、ステップS117でメ モリ及び表示を消去する。また、ステップS118で新 規キー205が操作されたことを確認すると、ステップ S119で新規作成を処理する。なお、とのステップS 119での処理は図20を参照して説明する。

【0053】次に、ステップS120で表示切替キー2 01が操作されたか否かを判定し、操作されなければ、 前記ステップS112へ戻る。操作されたのであれば、 ステップS121で省電力用タイマをリセットしてスタ ートさせ、ステップS122で表示モード番号を1に変 更し、とのサブルーチンを終了する。

【0054】前記ステップS119で実行する新規作成 の処理は、図20に示すように、まず、ステップS13 1でペン15による文字の書き込みがあるのを待ち、書 き込まれるとステップS132で省電力用タイマをリセ ットしてスタートさせ、ステップS133で書き込み内 容を画像メモリ56に記憶し、その記憶内容に基づいて 全表示の再書き込みを行う。次に、ステップS134で OKキー204の操作が確認されると、ステップS13 たり、メモリカードを装着している場合はメモリカード に記憶すると共に全表示の再書き込みを行う。

【0055】図21は前記ステップS52で実行される食物在庫管理表示(図7参照)のサブルーチンを示す。 ここでは、まず、ステップS141でペンダウンによる操作を待ち、操作が行われると、ステップS142で省電力用タイマをリセットしてスタートさせ、ステップS143で全表示の再書き込みを行う。次に、ステップS144でキー操作を判定し、UP/DOWNキー又は切替キーが操作されたのであれば、前記ステップS141 10へ戻り、それ以外のキーが操作されたのであれば、ステップS145でペンダウンされた場所を識別して指定された項目のマスを含む操作ラインのみを駆動して書き換えを行い、太線で枠を表示する。

【0056】次に、ステップS146でUP/DOWNキー202、203の操作が行われたか否かを判定する。UPキー202が操作されたのであれば、ステップS147で指定された場所の値を増加させ、DOWNキー203が操作されたのであれば、ステップS148で指定された場所の値を減少させるように液晶表示素子1 200を部分的に駆動して書き換えを行う。とこでの処理は使用者が指定した項目の数値を変更するものである。例えば、図7を参照すると、「にんじん」の「個数2」が指示され、DOWNキー203が操作されると、「個数1」に変更される。

【0057】次に、ステップS149で省電力用タイマ をリセットしてスタートさせ、ステップS150で全表 示の再書き込みを行う。さらに、ステップS151でキ ー操作を判定し、UP/DOWNキー又は切替キーが操 作されたのであれば、前記ステップS142へ戻り、そ れ以外のキーが操作されたのであれば、ステップS15 2で表示切替キー201が操作されたか否かを判定し、 操作されなければ前記ステップS146へ戻る。操作さ れたのであれば、ステップS153で表示モード番号を 1に変更し、ステップS154で省電力用タイマをリセ ットしてスタートさせ、このサブルーチンを終了する。 【0058】図22は前記ステップS53で実行される レシビ表示(図8参照)のサブルーチンを示す。ととで は、まず、ステップS161でメニュー1である「カレ ー」のレシピを表示し、ステップS162でUP/DO WNキー202,203の操作が行われたか否かを判定 する。操作が行われたのであれば、ステップS163で 次にメモリされているメニューの表示に変更し、ステッ プS164で省電力用タイマをリセットしてスタートさ せ、ステップS165で全表示の再書き込みを行う。

【0059】次に、ステップS166で表示切替キー201が操作されたか否かを判定し、操作されなければ、前記ステップS162へ戻る。操作されたのであれば、ステップS167で省電力用タイマをリセットしてスタートさせ、ステップS168で表示モード番号を1に変50

更し、とのサブルーチンを終了する。

【0060】図23は前記ステップS54で実行される 受信情報表示のサブルーチンを示す。 ここでは、まず、ステップS171で最新受信情報を表示し、ステップS172でUP/DOWNキー202, 203の操作が行われたか否かを判定する。操作が行われたのであれば、ステップS173で順次表示を変更し、ステップS174で省電力用タイマをリセットしてスタートさせ、ステップS175で全表示の再書き込みを行う。

【0061】次に、ステップS176で表示切替キー201が操作されたか否かを判定し、操作されなければ、前記ステップS172へ戻る。操作されたのであれば、ステップS177で省電力用タイマをリセットしてスタートさせ、ステップS178で表示モード番号を1に変更し、このサブルーチンを終了する。

【0062】(液晶表示素子及びタッチパネル)次に、前記液晶ディスプレイ10に使用されているコレステリック相を示す液晶を内蔵した液晶表示素子100及びタッチパネル140について説明する。

【0063】(構成)図24に反射型液晶表示素子の一例を示す。この液晶表示素子100は曲がりを防止するための硬質材料からなる支持板130上に設けた光吸収層121の上に、赤色の選択反射と透明状態の切り換えにより表示を行う赤色表示層111Rを配し、その上に緑色の選択反射と透明状態の切り換えにより表示を行う緑色表示層111Gを積層し、さらに、その上に青色の選択反射と透明状態の切り換えにより表示を行う青色表示層111Bを積層したものである。

【0064】タッチバネル140は液晶表示素子100の表面に硬質樹脂材料からなる保護層148を介して設置され、保護層148は液晶表示素子100に部分的な圧力が作用するのを防止するために設置されている。このタッチバネル140の構成は従来知られているものであり、透明基板141、142の対向面に帯状の透明電極143、144に設け、マトリクス状のセンサを構成したものである。基板141、142間は粒子状のスペーサ146と周囲のシール材147によって所定の間隙に維持され、空気層145が封入されている。帯状の透明電極143、144が交差する部分がセンシング部であり、このセンシング部は以下に説明する各表示層111R、111G、111Bの各画素に対応している。

【0065】各表示層111R、111G、111B は、それぞれ透明電極113、114を形成した透明基 板112間に樹脂製柱状構造物115、液晶116及び スペーサ117を挟持したものである。透明電極11 3、114上には必要に応じて絶縁膜118、配向制御 膜119が設けられる。また、基板112の外周部(表 示領域外)には液晶116を封止するためのシール材1 20が設けられる。

0 【0066】透明電極113,114はそれぞれ駆動1

C53(131,132)(図5、図6、図27参照) に接続されており、透明電極113,114の間にそれ ぞれ所定のパルス電圧が印加される。この印加電圧に応答して、液晶116が可視光を透過する透明状態と特定 波長の可視光を選択的に反射する選択反射状態との間で表示が切り換えられる。

【0067】各色表示層111R、111G、111B に設けられている透明電極113、114は、それぞれ 微細な間隔を保って平行に並べられた複数の帯状電極よりなり、その帯状電極の並ぶ向きが互いに直角方向とな 10 るように対向させてある。これら上下の帯状電極に順次 通電が行われる。即ち、各液晶116に対してマトリクス状に順次電圧が印加されて表示が行われる。これをマトリクス駆動と称する。このようなマトリクス駆動を各色表示層ごとに順次、もしくは同時に行うことにより液晶表示素子100にフルカラー画像の表示を行う。

【0068】詳しくは、2枚の基板間にコレステリック 相を示す液晶を挟持した液晶表示素子では、液晶の状態 をプレーナ状態とフォーカルコニック状態に切り換えて 表示を行う。液晶がブレーナ状態の場合、コレステリッ 20 ク液晶の螺旋ピッチをP、液晶の平均屈折率をnとする と、波長A=P·nの光が選択的に反射される。また、 フォーカルコニック状態では、コレステリック液晶の選 択反射波長が赤外光域にある場合には散乱し、それより も短い場合には可視光を透過する。そのため、選択反射 波長を可視光域に設定し、素子の観察側と反対側に光吸 収層を設けるととにより、プレーナ状態で選択反射色の 表示、フォーカルコニック状態で黒の表示が可能にな る。また、選択反射波長を赤外光域に設定し、素子の観 察側と反対側に光吸収層を設けることにより、ブレーナ 30 状態では赤外光域の波長の光を反射するが可視光域の波 長の光は透過するので黒の表示、フォーカルコニック状 態で散乱による白の表示が可能になる。

【0069】(フルカラー表示)各色表示層111R, 111G, 111Bを積層した液晶表示素子100は、 背色表示層 1 1 1 B及び緑色表示層 1 1 1 Gを液晶がフ ォーカルコニック配列となった透明状態とし、赤色表示 層111Rを液晶がプレーナ配列となった選択反射状態 とすることにより、赤色表示を行うことができる。ま た、青色表示層111Bを液晶がフォーカルコニック配 列となった透明状態とし、緑色表示層 1 1 1 G及び赤色 表示層111Rを液晶がブレーナ配列となった選択反射 状態とすることにより、イエローの表示を行うことがで きる。同様に、各色表示層の状態を透明状態と選択反射 状態とを適宜選択することにより赤色、緑色、青色、白 色、シアン、マゼンタ、イエロー、黒色の表示が可能で ある。さらに、各色表示層 1 1 1 R、 1 1 1 G、 1 1 1 Bの状態として中間の選択反射状態を選択することによ り中間色の表示が可能となり、フルカラー表示素子とし て利用できる。

【0070】液晶表示素子100における各色表示層111R,111G,111Bの積層順については、図23に示す以外の場合も可能である。しかし、短波長領域に比べて長波長領域の光の方が透過率が高いことを考慮すると、上側の層に含まれる液晶の選択反射波長の方を下側の層に含まれる液晶の選択反射波長よりも短くしておく方が、下側の層へより多くの光が透過するので明るい表示を行うことができる。従って、観察側(矢印A方向)から順に、青色表示層111B、緑色表示層111G、赤色表示層111Rとなることがもっとも望ましく、この状態が最も好ましい表示品位が得られる。

【0071】(表示素子の各種材料)透明基板112としては、無色透明のガラス板や透明樹脂フィルムを使用することができる。透明樹脂フィルムの材料としては、ポリカーボネイト樹脂、ポリエーテルスルフォン樹脂、ポリエチレンテレフタレート樹脂、ノルボルネン樹脂、ポリアリレート樹脂、非晶質ポリオレフィン樹脂、変性アクリレート樹脂等が挙げられる。樹脂フィルムの特性としては、高透光性、光学異方性がない、寸法安定性、表面平滑性、耐摩擦性、耐屈曲性、高電気絶縁性、耐薬品性、耐液晶性、耐熱性、耐湿性、ガスバリヤー性等があり、使用する環境や用途に合わせて必要な特性を持つものを選択すればよい。

【0072】透明電極113、114としてはITO (Indium Tin Oxide)等の透明電極が使用可能であり、アルミニウム、シリコン等の金属電極、あるいはアモルファスシリコン、BSO (Bismuth Silicon Oxide)等の光導電性膜を使用することもできる。また、最下層の透明電極114については光吸収体としての役割も含めて黒色の電極を使用することができる。

【0073】絶縁膜118はガスバリア層としても機能するように酸化シリコンなどの無機膜あるいはポリイミド樹脂、エポキシ樹脂などの有機膜が用いられ、基板112間のショートを防いだり、液晶の信頼性を向上させる。また、配向制御膜119としてはポリイミドが代表的なものである。

【0074】液晶116としては、室温でコレステリック相を示すものが好ましく、特に、ネマティック液晶にカイラルドーパントを添加することによって得られるカイラルネマティック液晶が好適である。

【0075】カイラルドーパントは、ネマティック液晶 に添加された場合にネマティック液晶の分子を捩る作用 を有する添加剤である。カイラルドーパントをネマティ ック液晶に添加することにより、所定の捩れ間隔を有す る液晶分子の螺旋構造が生じ、これによりコレステリッ ク相を示す。

【0076】カイラルネマティック液晶は、カイラルドーパントの添加量を変えることにより、螺旋構造のビッチを変化させることができ、これにより液晶の選択反射の 被長を制御することができるという利点がある。なお、

一般的には、液晶分子の螺旋構造のピッチを表す用語として、液晶分子の螺旋構造に沿って液晶分子が360度回転したときの分子間の距離で定義される「ヘリカルピッチ」を用いる。

【0077】柱状構造物115に使用する材料としては、例えば、熱可塑性樹脂を用いることができる。これには、加熱により軟化し冷却により固化する材料で、使用する液晶材料と化学反応を起こさないことと適度な弾性を有することが望まれる。

【0078】具体例としては、例えば、ボリ塩化ビニル 10樹脂、ボリ塩化ビニリデン樹脂、ポリメタクリル酸エステル樹脂、ボリアクリル酸エステル樹脂、ボリ酢酸ビニル樹脂、ボリスチレン樹脂、ボリアミド樹脂、ボリエチレン樹脂、ボリブロビレン樹脂、ファ素樹脂、ボリウレタン樹脂、ボリアクリロニトリル樹脂、ボリビニルエーテル樹脂、ボリビニルケトン樹脂、ボリビニルビロリドン樹脂、ボリカーボネイト樹脂、塩素化ポリエーテル樹脂、飽和ポリエステル樹脂等が挙げられる。

【0079】 これらを単独か複数混合するか、または少なくともこれらの1種類か混合物を少なくとも含むよう 20な材料から柱状構造物115を形成すればよい。

【0080】前記物質を公知の印刷方法を用い、図25 に示すように、ドット柱状を形成するようにバターンを用いて印刷する。液晶表示素子の大きさや、画素解像度により、断面形状の大きさや、配列ピッチ、形状(円柱、太鼓状、多角形等)は適宜選択される。また、電極113間に優先的に柱状構造物115を配置すると開口率が向上するのでより好ましい。

【0081】スペーサ117としては、加熱や加圧によって変形しない硬質材料からなる粒子が好ましい。例えば、ガラスファイバを微細化したもの、ボール状の珪酸ガラス、アルミナ粉末等の無機材料、あるいはジビニルベンゼン系架橋重合体やボリスチレン系架橋重合体等の有機系合成球状粒が使用可能である。

【0082】このように、2枚の基板112間のギャップを所定の大きさに保つ硬質のスペーサ117と、表示領域内に所定の配置規則に基づいて配置されて一対の基板112を接着支持する熱可塑性高分子材料を主成分とする樹脂構造物115とを設けることにより、基板112の全域にわたって両基板112を強固に支持すると共 40に、配列ムラがなく、しかも、低温環境下において気泡の発生を抑えることができる。

[0083] (液晶表示素子の製造例) とこで、液晶表示素子100の製造例について簡単に説明する。

[0084]まず、2枚の透明基板上にそれぞれ複数の 帯状の透明電極を形成する。透明電極は、基板上に1T O膜をスパッタリング法等で形成した後、フォトリソグ ラフィ法によりパターニングを行って形成する。

【0085】次に、透明な絶縁膜や配向制御膜を各基板 の透明電極形成面に形成する。絶縁膜及び配向制御膜 は、それぞれ、酸化シリコン等の無機材料やポリイミド樹脂などの有機材料を用いて、スパッタリング法、スピンコート法、あるいはロールコート法など公知の方法によって形成することができる。なお、配向制御膜のは通常ラピング処理は施さない。配向制御膜の働きはまだ明確でないが、配向制御膜の存在により、液晶分子に対してある程度のアンカリング効果を持たせることができるものと考えられ、液晶表示素子の特性が経時的に変化するのを防止することができる。また、これらの薄膜に色素を添加するなどしてカラーフィルタとしての機能を持たせ、色純度やコントラストを高めるようにしてもよい。

【0086】とうして透明電極、絶縁膜、及び配向制御膜が設けられた一方の基板の電極形成面に樹脂構造物を形成する。樹脂構造物は、樹脂を溶剤に溶解したペースト状の樹脂材料を、スクリーン版やメタルマスク等を介してスキージで押し出して平板上に載置した基板に印刷を行う印刷法、ディスペンサ法やインクジェット法などの、樹脂材料をノズルの先から基板上に吐出して形成する方法、あるいは、樹脂材料を平板あるいはローラ上に供給した後、これを基板表面に転写する転写法などにより形成することができる。樹脂構造物の形成時の高さは、所望の液晶表示層の厚みより大きくすることが望ましい。

[0087]他方の基板の電極形成面には、紫外線硬化 樹脂や熱硬化性樹脂等を用いてシール材を設ける。シール材は、基板の外縁部で連続する環状に配置する。シール材の配置は、上述した樹脂構造物と同様に、ディスペンサ法やインクジェット法など樹脂をノズルの先から基 板上に吐出して形成する方法や、スクリーン版、メタルマスク等を用いた印刷法、樹脂を平板あるいはローラ上に形成した後、透明基板上に転写する転写法などによって行えばよい。さらに、少なくとも一方の基板の表面に、従来公知の方法によりスペーサを散布する。

【0088】そして、とれら一対の基板を電極形成面が 対向するように重ね合わせ、この基板対の両側から加圧 しながら加熱する。加圧及び加熱は、例えば、図26に 示すように、平板150上に樹脂構造物115が形成さ れた基板112aを載せ、対向基板112bを重ねて、 **端部から加熱・加圧ローラ151により加熱・加圧しな** がら、ローラ151と平板150との間を通過させるこ とにより行うことができる。このような方法を用いる と、フィルム基板などの可撓性を有するフレキシブル基 板を用いても精度よくセルを作製することができる。熱 可塑性高分子材料で樹脂構造物を形成しておくと、樹脂 構造物を加熱により軟化させ冷却により固化させて、樹 脂構造物で両基板を接着させることができる。また、シ ール材として熱硬化性樹脂材料を用いた場合は、この基 板の重ね合わせの際の加熱によりシール材を硬化させる 50 とよい。

10

【0089】との重ね合わせ工程において、液晶材料を 一方の基板上に滴下し、基板の重ね合わせと同時に液晶 材料を液晶素子に注入する。この場合、予めスペーサを 液晶材料に含ませておき、これを少なくとも一方の基板 の帯状電極形成面に滴下すればよい。

17

【0090】液晶材料を基板の端部に滴下し、ローラで 基板を重ね合わせながら液晶材料を他端へと押し広げる ことにより、基板全域に液晶材料を充填することができ る。とうするととにより、基板を重ね合わせる際に生じ た気泡を液晶材料に巻き込むのを低減することができ

【0091】その後、少なくとも樹脂構造物を構成する 樹脂材料の軟化温度以下に基板温度が低下するまで基板 を加圧し続けてから加圧を停止し、さらに、シール材と して光硬化性樹脂材料を用いた場合は、その後に光照射 を行ってシール材を硬化させる。

【0092】同様の手順で、液晶材料を選択反射波長が 異なるものに変更し、青色表示用、緑色表示用、および 赤色表示用のセルを作製する。とうして作製したセルを 3層に積層し、とれらを接着剤で貼りつけ、さらに最下 20 層に光吸収層を設けてフルカラーの液晶表示素子とす

【0093】 (表示素子の駆動回路及び駆動方法)液晶 表示素子100の画素構成は、図27に示すように、そ れぞれ複数本の走査電極R I. R 2~Rmと信号電極C 1、C2~Cn(n, mは自然数)とのマトリクスで表 される。走査電極R1、R2~Rmは走査駆動IC13 1の出力端子に接続され、信号電極C1, C2~Cnは 信号駆動IC132の出力端子に接続されている。

【0094】走査駆動IC131は、走査電極R1, R 30 2~Rmのうち所定のものに選択信号を出力して選択状 態とする一方、その他の電極には非選択信号を出力し非 選択状態とする。走査駆動【C131は、所定の時間間 隔で電極を切り換えながら順次各走査電極R1, R2~ Rmに選択信号を印加してゆく。一方、信号駆動IC1 32は、選択状態にある走査電極R1, R2~Rm上の 各画素を書き換えるべく、画像データに応じた信号を各 信号電極C1、C2~Cnに同時に出力する。例えば、 走査電極Raが選択されると(aはa≦mを満たす自然 数)、この走査電極Raと各信号電極Cl, C2~Cn との交差部分の画素LRa-Cl~LRa-Cnが同時 に書き換えられる。これにより、各画素における走査電 極と信号電極との電圧差が画素の書き換え電圧となり、 名画素がこの書き換え電圧に応じて書き換えられる。

(0095)駆動回路は前述の中央処理装置40、LC Dコントローラ52、画像処理装置55、画像メモリ5 8及び駆動1C131,132にて構成され、画像メモ リ56に記憶された画像データに基づいてLCDコント ローラ52が駆動IC131、132を制御し、液晶表 示索子100の各走査電極及び信号電極間に順次電圧を 50 構造のなかに液晶が分散された、あるいは、液晶中に高

印加し、液晶表示素子100に画像を書き込む。

【0096】ととで、コレステリック相を示す液晶の捩 れを解くための第1の閾値電圧をVth1とすると、電 圧Vthlを十分な時間印加した後に電圧を第1の関値 電圧Vth1よりも小さい第2の閾値電圧Vth2以下 に下げるとブレーナ状態になる。また、Vth2以上で V t h 1 以下の電圧を十分な時間印加するとフォーカル コニック状態になる。との二つの状態は電圧印加を停止 した後でも安定に維持される。また、Vth1~Vth 2間の電圧を印加することにより、中間調の表示、即 ち、階調表示が可能である。

【0097】なお、部分的に書き換えを行う場合は、書 き換えたい部分を含むように特定の走査ラインのみを順 次選択するようにすればよい。これにより、必要な部分 のみを短時間で書き換えることができる。

【0098】各画素の書き換えは前述した方法で行うと とができるが、既に画像が表示されている場合、この画 像による影響をなくすために、書き換え前に各画素を全 て同じ表示状態にリセットすることが好ましい。 リセッ トは全画素を一括して行ってもよいし、走査電極ごとに 行ってもよい。例えば、各画素をフォーカルコニック状 態にリセットする場合は、十分な透明状態が得られるよ うにするために、比較的長い時間が必要であることが判 明している。従って、書き換えに先だって全画素を一括 してフォーカルコニック状態にリセットすると、各走査 電極ごとにリセットを行う場合に比較して、書き換えの 時間を短くすることができて好ましい。

【0099】部分的に書き換えを行う場合は、各走査ラ インどとにリセットを行うか、書き換えたい部分を含む 特定の走査ライン間のみを一括してリセットすればよ

【0100】いずれにしても、中央処理装置40から書 き込み指令が出されると、昇圧回路51がオンされ駆動 IC131, 132に昇圧された電圧を印加すると共に LCDコントローラ52が駆動1C131, 132を制 御して液晶表示素子100に書き込みが行われる。そし て、書き込みが終了すると、直ちに少なくとも昇圧回路 51をオフ状態として電力消費をどく小さくしたり、さ **らにLCDコントローラ52への通電を停止して駆動回** 路への電力供給を停止する。

【0101】(他の液晶表示素子)なお、前記液晶表示 素子100においては、樹脂製柱状構造物が液晶表示層 内に含まれる素子構成について説明した。このような構 成は、フィルム基板を用いて軽くしかも表示特性の優れ た液晶表示素子を作製することができると共に、大型化 が容易で、駆動電圧が比較的小さい、衝撃に強いといっ た種々の優れた特徴を有しており特に有用なものであ る。しかし、メモリ性液晶自体は必ずしもこの構成に限 定されるわけではなく、従来公知の高分子の3次元網目

20

分子の3次元網目構造が形成された、いわゆる高分子分 散型の液晶複合膜として液晶表示層を構成することも可 能である。また、メモリ性を有する液晶として、コレス テリック相を示す双安定性液晶を例にとって説明した が、これに限らず、強誘電性液晶を用いることもでき

19

【図面の簡単な説明】

【図1】本発明の一実施形態である冷蔵庫を示す正面

【図2】前配冷蔵庫を示す斜視図、液晶ディスプレイを 10 フローチャート図。 取り外した状態を示す。

- 【図3】液晶ディスプレイの他の形態を示す斜視図。
- 【図4】電源/制御回路の第1例を示すブロック図。
- 【図5】前記第1例のより詳細を示すブロック図。
- 【図6】制御回路の第2例を示すブロック図。
- 【図7】食物在庫管理の表示例を示す説明図。
- 【図8】レシピの表示例を示す説明図。
- 【図9】伝言板の表示例を示す説明図。
- 【図10】カレンダの表示例を示す説明図。

【図11】液晶ディスプレイの制御手順のメインルーチ 20 ンを示すフローチャート図。

【図12】明るさ検出処理のサブルーチンを示すフロー チャート図。

【図13】タイマ割り込み処理のサブルーチンを示すフ ローチャート図。

【図14】割り込み処理のサブルーチンを示すフローチ ャート図。

【図15】割り込み処理のサブルーチンを示すフローチ ャート図、図14の続き。

【図16】カレンダ表示処理のサブルーチンを示すフロ 30 140…タッチパネル ーチャート図。

*【図17】カレンダ表示処理中のメモリ、表示消去及び 新規作成のサブルーチンを示すフローチャート図。

【図18】 絵表示処理のサブルーチンを示すフローチャ ート図。

【図19】伝言板表示処理のサブルーチンを示すフロー チャート図

【図20】 伝言板表示処理中の新規作成のサブルーチン を示すフローチャート図。

【図21】食物在庫管理表示処理のサブルーチンを示す

【図22】レシビ表示処理のサブルーチンを示すフロー チャート図。

【図23】受信情報表示処理のサブルーチンを示すフロ ーチャート図。

【図24】ディスプレイとして用いられる液晶表示素子 の一例を示す断面図。

【図25】前記液晶表示素子のフィルム基板上に柱状構 造物及びシール材を形成した状態を示す平面図。

【図26】前記液晶表示素子の製作工程を示す説明図。

【図27】前記液晶表示素子のマトリクス駆動回路を示 すブロック図。

【符号の説明】

1…冷蔵庫

6…充電制御回路の接点

10…液晶ディスプレイ

35…二次電池

40…中央処理装置(CPU)

5 1 …昇圧同路

100…液晶表示素子

【図2】 [図3] 【図11】 【図1】 メインルーチン 初地化 蘇」(カレンダ) 明るを検出 タイマスタート スリープモード 2

..

【図25】

【図26】

[図27]

【手続補正書】

[提出日] 平成12年1月17日 (2000.1.17)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0032

【補正方法】変更

【補正内容】

【0032】図<u>14</u>、図<u>15</u>は割り込みのサブルーチンを示す。この割り込みは、タッチパネル140への操作、送信器付きパーコードリーダ17からの赤外線通信によるデータの入力あるいはメモリカードが挿入口14へ挿入されることにより、中央処理装置40が起床状態

となって実行される。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0043

【補正方法】変更

【補正内容】

【0043】次に、ステップS70で表示切替キー201が操作されたか否かを判定し、操作されなければ、前記ステップS62へ戻る。操作されたのであれば、ステップS71で省電力用タイマをリセットしてスタートさせ、ステップS72で表示モード番号を2化変更し、このサブルーチンを終了する。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0048

【補正方法】変更

【補正内容】

【0048】次に、ステップS106で表示切替キー201が操作されたか否かを判定し、操作されなければ、前記ステップS102へ戻る。操作されたのであれば、ステップS107で省電力用タイマをリセットしてスタートさせ、ステップS108で表示モード番号を3に変更し、このサブルーチンを終了する。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0053

【補正方法】変更

【補正内容】

【0053】次に、ステップS120で表示切替キー201が操作されたか否かを判定し、操作されなければ、前記ステップS121で省電力用タイマをリセットしてスタートさせ、ステップS122で表示モード番号を4に変更し、このサブルーチンを終了する。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0057

【補正方法】変更

【補正内容】

【0057】次に、ステップS149で省電力用タイマをリセットしてスタートさせ、ステップS150で全表示の再書き込みを行う。さらに、ステップS151でキー操作を判定し、UP/DOWNキー又は切替キーが操作されたのであれば、前記ステップS142へ戻り、それ以外のキーが操作されたのであれば、ステップS152で表示切替キー201が操作されたか否かを判定し、操作されなければ前記ステップS153で表示モード番号を100であれば、ステップS153で表示モード番号を100であれば、ステップS154で省電力用タイマをリセットしてスタートさせ、とのサブルーチンを終了する。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0059

【補正方法】変更

【補正内容】

【0059】次に、ステップS166で表示切替キー201が操作されたか否かを判定し、操作されなければ、前記ステップS162へ戻る。操作されたのであれば、ステップS167で省電力用タイマをリセットしてスタートさせ、ステップS168で表示モード番号を6亿変更し、このサブルーチンを終了する。

【手続補正7】

【補正対象書類名】図面 【補正対象項目名】図4 【補正方法】変更 【補正方容】

【手続補正8】

【補正対象書類名】図面

【補正対象項目名】図6

【補正方法】変更

【補正内容】

【図6】

【手続補正9】

【補正対象書類名】図面

【補正対象項目名】図16

【補正方法】変更

【補正内容】

【図16】

【手続補正10】 【補正対象書類名】図面 【補正対象項目名】図18 【補正方法】変更 【補正内容】 【図18】

【手続補正11】

【補正対象書類名】図面 【補正対象項目名】図19 【補正方法】変更 【補正内容】 【図19】 651 伝電板

【手続補正12】 【補正対象書類名】図面 【補正対象項目名】図21 【補正方法】変更 【補正内容】 【図21】

*【補正対象項目名】図22 【補正方法】変更 【補正内容】 【図22】

【手続補正13】 【補正対象書類名】図面

*

フロントページの続き

(72)発明者 金子 修一郎

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル ミノルタ株式会社内

(72)発明者 浅井 克彦

大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内

Fターム(参考) 2H088 EA22 GA03 GA17 HA01 HA03 HA06 HA07 JA17 MA20

2H093 NC02 NC28 NC50 NC72 ND39

NE01 NE04 NF17

5G435 AA16 BB12 EE13 LL03

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.