The spectrum of a self-adjoint operator is a compact subset of \mathbb{R}

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

April 3, 2014

Abstract

In these notes I prove that the spectrum of a bounded linear operator from a Hilbert space to itself is a nonempty compact subset of \mathbb{C} , and that if the operator is self-adjoint then the spectrum is contained in \mathbb{R} . To show that the spectrum is nonempty I prove various facts about resolvents.

1 Adjoints

1.1 Operator norm

Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$, and define $I: H \to H$ by $Ix = x, \ x \in H$. For $v \in H$, let $||v|| = \sqrt{\langle v, v \rangle}$, and if $T: H \to H$ is a bounded linear map, let

$$||T|| = \sup_{\|v\| \le 1} ||Tv||.$$

namely, the operator norm of T.

1.2 Definition of adjoint

The Riesz representation theorem states that if $\phi: H \to \mathbb{C}$ is a bounded linear map then there is a unique $v_{\phi} \in H$ such that

$$\phi(x) = \langle x, v_{\phi} \rangle$$

for all $x\in H.$ Let $T:H\to H$ be a bounded linear map, and for $y\in H,$ define $\phi_y:H\to\mathbb{C}$ by

$$\phi_y(x) = \langle Tx, y \rangle$$
.

 $\phi_y: H \to \mathbb{C}$ is a bounded linear map, so by the Riesz representation theorem there is a unique v_y such that

$$\phi_y(x) = \langle x, v_y \rangle$$

for all $x \in H$. Define $T^*: H \to H$ by

$$T^*y = v_y$$
.

 T^*y is well-defined because of the uniqueness in the Riesz representation theorem. For all $x, y \in H$,

$$\langle x, T^*y \rangle = \langle x, v_y \rangle = \phi_y(x) = \langle Tx, y \rangle.$$

We call $T^*: H \to H$ the adjoint of $T: H \to H$.

1.3 Adjoint is linear

For $y_1, y_2 \in H$, we have for all $x \in H$ that

$$\langle x, T^*(y_1 + y_2) \rangle = \langle Tx, y_1 + y_2 \rangle$$

$$= \langle Tx, y_1 \rangle + \langle Tx, y_2 \rangle$$

$$= \langle x, T^*y_1 + T^*y_2 \rangle.$$

Hence for all $x \in H$,

$$\langle x, T^*(y_1 + y_2) - T^*y_1 - T^*y_2 \rangle = 0.$$

In particular this is true for $x = T^*(y_1 + y_2) - T^*y_1 - T^*y_2$, so by the nondegeneracy of $\langle \cdot, \cdot \rangle$ we get

$$T^*(y_1 + y_2) - T^*y_1 - T^*y_2 = 0.$$

We similarly obtain for all $\lambda \in \mathbb{C}$ and all $y \in H$ that

$$T^*(\lambda y) - \lambda T^* y = 0.$$

Hence $T^*: H \to H$ is a linear map.

1.4 Adjoint is bounded

For $x, y \in H$, by the Cauchy-Schwarz inequality we have

$$|\phi_y(x)| = |\langle x, v_y \rangle| \le ||x|| \, ||v_y||,$$

so $\|\phi_y\| \le \|v_y\|$, i.e. the operator norm of ϕ_y is less than or equal to the norm of v_y . If $v_y \ne 0$, then $\left\|\frac{v_y}{\|v_y\|}\right\| = 1$ and

$$\left| \phi_y \left(\frac{v_y}{\|v_y\|} \right) \right| = \left\langle \frac{v_y}{\|v_y\|}, v_y \right\rangle = \|v_y\|.$$

It follows that

$$\|\phi_y\| = \|v_y\|.$$

Then for $y \in H$, by the Cauchy-Schwarz inequality and because T is bounded we have

$$||T^*y|| = ||v_y||$$

$$= ||\phi_y||$$

$$= \sup_{||x|| \le 1} ||\phi_y(x)||$$

$$= \sup_{||x|| \le 1} |\langle Tx, y \rangle|$$

$$\le \sup_{||x|| \le 1} ||T|| ||x|| ||y||$$

$$\le ||T|| ||y||.$$

Therefore T^* is bounded. Thus if $T: H \to H$ is a bounded linear map then its adjoint $T^*: H \to H$ is a bounded linear map.

1.5 Adjoint is involution

Because $T^*: H \to H$ is a bounded linear map, it has an adjoint $T^{**}: H \to H$, and T^{**} is itself a bounded linear map. For all $x, y \in H$,

$$\begin{array}{rcl} \langle Tx, y \rangle & = & \langle x, T^*y \rangle \\ & = & \overline{\langle T^*y, x \rangle} \\ & = & \overline{\langle y, T^{**}x \rangle} \\ & = & \langle T^{**}x, y \rangle. \end{array}$$

Hence for all $x, y \in H$,

$$\langle Tx - T^{**}x, y \rangle = 0.$$

This is true in particular for $y = Tx - T^{**}x$, so by the nondegeneracy of $\langle \cdot, \cdot \rangle$ we obtain

$$Tx - T^{**}x = 0, \qquad x \in H.$$

Thus for any bounded linear map $T: H \to H$, $T^{**} = T$. In words, if T is a bounded linear map from a Hilbert space to itself, then the adjoint of its adjoint is itself. We have shown already that $\|T^*\| \leq \|T\|$. Hence also $\|T\| = \|T^{**}\| \leq \|T^*\|$, so

$$||T|| = ||T^*||$$
.

If $T^* = T$, we say that T is self-adjoint.

2 Bounded linear operators

Let $\mathscr{B}(H)$ be the set of bounded linear maps $H \to H$. With the operator norm, one checks that $\mathscr{B}(H)$ is a Banach space. We define a product on $\mathscr{B}(H)$ by $T_1T_2 = T_1 \circ T_2$, and thus $\mathscr{B}(H)$ is an algebra. We have

$$\|T_1T_2\| = \sup_{\|x\| \le 1} \|T_1(T_2x)\| \le \sup_{\|x\| \le 1} \|T_1\| \|T_2x\| = \|T_1\| \sup_{\|x\| \le 1} \|T_2x\| \le \|T_1\| \|T_2\|,$$

and thus $\mathscr{B}(H)$ is a Banach algebra.¹ Let $\mathscr{B}_{\mathrm{sa}}(H)$ be the set of all $T \in \mathscr{B}(H)$ that are self-adjoint.

Theorem 1. If $T \in \mathcal{B}(H)$, then T is self-adjoint if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$.

Proof. If $T \in \mathscr{B}_{sa}(H)$, then for all $x \in H$,

$$\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle},$$

so $\langle Tx, x \rangle \in \mathbb{R}$.

If $T \in \mathcal{B}(H)$ and $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$, then

$$\langle Tx, x \rangle = \langle x, T^*x \rangle = \overline{\langle T^*x, x \rangle} = \langle T^*x, x \rangle,$$

so, putting $A = T - T^*$, for all $x \in H$ we have

$$\langle Ax, x \rangle = 0.$$

Thus, for all $x, y \in H$ we have

$$\langle Ax, x \rangle = 0, \qquad \langle Ay, y \rangle = 0, \qquad \langle A(x+y), x+y \rangle = 0,$$

and combining these three equations,

$$0 = \langle Ax, x \rangle + \langle Ax, y \rangle + \langle Ay, x \rangle + \langle Ay, y \rangle = 0 + \langle Ax, y \rangle + \langle Ay, x \rangle + 0.$$

But $A^* = -A$, so we get

$$\langle Ax, y \rangle + \langle y, -Ax \rangle = 0,$$

hence

$$\langle Ax, y \rangle - \overline{\langle Ax, y \rangle} = 0.$$
 (1)

As well, for all $x, y \in H$ we have

$$\langle Ax, -iy \rangle - \overline{\langle Ax, -iy \rangle} = 0,$$

so

$$\langle Ax, y \rangle + \overline{\langle Ax, y \rangle} = 0.$$
 (2)

By (1) and (2), for all $x, y \in H$ we have

$$\langle Ax, y \rangle = 0,$$

and thus A = 0, i.e. $T = T^*$.

$$T^{**} = T$$
, $(T_1 + T_2)^* = T_1^* + T_2^*$, $(\lambda T)^* = \overline{\lambda} T^*$, $||T^*T|| = ||T||^2$.

Thus $\mathscr{B}(H)$ is a C^* -algebra. $I \in \mathscr{B}(H)$, so we say that $\mathscr{B}(H)$ is unital.

The adjoint map $*: \mathcal{B}(H) \to \mathcal{B}(H)$ satisfies, for $\lambda \in \mathbb{C}$ and $T_1, T_2 \in \mathcal{B}(H)$,

Using the above characterization of bounded self-adjoint operators, we can prove that a limit of bounded self-adjoint operators is itself a bounded self-adjoint operator.

Theorem 2. $\mathscr{B}_{sa}(H)$ is a closed subset of $\mathscr{B}(H)$.

Proof. If $T_n \in \mathscr{B}_{\mathrm{sa}}(H)$ and $T_n \to T \in \mathscr{B}(H)$, then for $x \in H$ we have

$$\langle Tx, x \rangle = \lim_{n \to \infty} \langle T_n x, x \rangle \in \mathbb{R},$$

hence $T \in \mathscr{B}_{sa}(H)$.

If $T \in \mathscr{B}_{sa}(H)$ and $\langle Tx, x \rangle \geq 0$ for all $x \in H$, we say that T is *positive*. Let $\mathscr{B}_{+}(H)$ be the set of all positive $T \in \mathscr{B}_{sa}(H)$. For $S, T \in \mathscr{B}_{sa}(H)$, if

$$T - S \in \mathscr{B}_{+}(H)$$

we write $S \leq T$. Thus, we can talk about one self-adjoint operator being greater than or equal to another self-adjoint operator. $S \leq T$ is equivalent to

$$\langle Sx, x \rangle \le \langle Tx, x \rangle$$

for all $x \in H$.

3 A condition for invertibility

Theorem 3. If $T \in \mathcal{B}(H)$ and there is some $\alpha > 0$ such that $\alpha I \leq TT^*$ and $\alpha I \leq T^*T$, then $T^{-1} \in \mathcal{B}(H)$.

Proof. By $\alpha I \leq T^*T$, we have for all $x \in H$,

$$\|Tx\|^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle \ge \langle \alpha x, x \rangle = \alpha \|x\|^2$$

so $||Tx|| \ge \sqrt{\alpha} ||x||$. This implies that T is injective. By $\alpha I \le TT^*$, we have for all $x \in H$,

$$\left\|T^*x\right\|^2 = \left\langle T^*x, T^*x \right\rangle = \left\langle TT^*x, x \right\rangle \ge \left\langle \alpha x, x \right\rangle = \alpha \left\|x\right\|^2,$$

so $||T^*x|| \ge \sqrt{\alpha} ||x||$, and hence T^* is injective. Let $Tx_n \to y \in H$. Then,

$$||Tx_n - Tx_m||^2 = ||T(x_n - x_m)||^2 \ge \alpha ||x_n - x_m||^2.$$

Since Tx_n converges it is a Cauchy sequence, and from the above inequality it follows that x_n is a Cauchy sequence, hence there is some $x \in H$ with $x_n \to x$. As T is continuous, $y = Tx \in T(H)$, showing that T(H) is a closed subset of H. But it is a fact that if $T \in \mathcal{B}(H)$ then the closure of T(H) is equal to $(\ker T^*)^{\perp}$. Thus, as we have shown that T^* is injective,

$$T(H) = (\ker T^*)^{\perp} = \{0\}^{\perp} = H,$$

²It is straightforward to show that if v is in the closure of T(H) and $w \in \ker T^*$ then $\langle v, w \rangle = 0$. It is less straightforward to show the opposite inclusion.

i.e. T is surjective. Hence $T: H \to H$ is bijective. It is a fact that if $T \in \mathcal{B}(H)$ is bijective then $T^{-1} \in \mathcal{B}(H)$, completing the proof.³

4 Spectrum

For $T \in \mathcal{B}(H)$, we define the $spectrum \, \sigma(T)$ of T to be the set of all $\lambda \in \mathbb{C}$ such $T-\lambda I$ is not bijective, and we define the $resolvent \, set$ of T to be $\rho(T) = \mathbb{C} \setminus \sigma(T)$. To say that $\lambda \in \rho(T)$ is to say that $T - \lambda I$ is a bijection, and if $T - \lambda I$ is a bijection it follows from the open mapping theorem that its inverse function is an element of $\mathcal{B}(H)$: the inverse of a linear bijection is itself linear, but the inverse of a continuous bijection need not itself be continuous, which is where we use the open mapping theorem.

We prove that the spectrum of a bounded self-adjoint operator is real.

Theorem 4. If $T \in \mathscr{B}_{sa}(H)$, then $\sigma(T) \subseteq \mathbb{R}$.

Proof. If $\lambda \in \mathbb{C} \setminus \mathbb{R}$, $\lambda = a + ib$, $b \neq 0$, and $X = T - \lambda I$, then

$$\begin{array}{lll} XX^* & = & (T-\lambda I)(T-\lambda I)^* \\ & = & (T-(a+ib)I)(T-(a-ib)I) \\ & = & T^2-(a-ib)T-(a+ib)T+(a^2+b^2)I \\ & = & (a^2+b^2)I-2aT+T^2 \\ & = & b^2I+(aI-T)^2 \\ & = & b^2I+(aI-T)(aI-T)^* \\ & \geq & b^2I. \end{array}$$

 $X^*X = XX^* \ge b^2I$ and b > 0, so by Theorem 3, $X = T - \lambda I$ has an inverse $(T - \lambda I)^{-1} \in \mathcal{B}(H)$, showing $\lambda \notin \sigma(T)$.

5 The spectrum of a bounded linear map is bounded

If $\lambda \in \rho(T)$ then we define $R_{\lambda} = (T - \lambda I)^{-1} \in \mathcal{B}(H)$, called the resolvent of T.

Theorem 5. If $T \in \mathcal{B}(H)$ and $|\lambda| > ||T||$ then $\lambda \in \rho(T)$.

Proof. Define $R_{\lambda,N} \in \mathcal{B}(H)$ by

$$R_{\lambda,N} = -\frac{1}{\lambda} \sum_{n=0}^{N} \frac{T^n}{\lambda^n}.$$

 $^{^3}T^{-1}: H \to H$ is linear. The open mapping theorem states that if X and Y are Banach spaces and $S: X \to Y$ is a bounded linear map that is surjective, then S is an open map, i.e., if U is an open subset of X then S(U) is an open subset of Y. Here, $T \in \mathscr{B}(H)$ and T is bijective, and so by the open mapping theorem T is open, from which it follows that $T^{-1}: H \to H$ is continuous, and so bounded (a linear map between normed vector spaces is continuous if and only if it is bounded).

As $\frac{\|T\|}{|\lambda|} < 1$, the geometric series $\sum_{n=0}^{\infty} \frac{\|T\|^n}{|\lambda|^n}$ converges, from which it follows that $R_{\lambda,N}$ is a Cauchy sequence in $\mathscr{B}(H)$ and so converges to some $S_{\lambda} \in \mathscr{B}(H)$. We have

$$||S_{\lambda}(T - \lambda I) - I|| \leq ||S_{\lambda}(T - \lambda I) - R_{\lambda,N}(T - \lambda I)|| + ||R_{\lambda,N}(T - \lambda I) - I|| \leq ||S_{\lambda} - R_{\lambda,N}|| ||T - \lambda I|| + ||-\frac{T}{\lambda} \sum_{n=0}^{N} \frac{T^{n}}{\lambda^{n}} + \sum_{n=0}^{N} \frac{T^{n}}{\lambda^{n}} - I|| = ||S_{\lambda} - R_{\lambda,N}|| ||T - \lambda I|| + ||-\frac{T^{N+1}}{\lambda^{N+1}}|| \leq ||S_{\lambda} - R_{\lambda,N}|| ||T - \lambda I|| + (\frac{||T||}{|\lambda|})^{N+1},$$

which tends to 0 as $N \to \infty$. Therefore $S_{\lambda}(T - \lambda I) = I$. And,

$$\begin{aligned} \|(T - \lambda I)S_{\lambda} - I\| & \leq & \|(T - \lambda I)S_{\lambda} - (T - \lambda I)R_{\lambda,N}\| \\ & + \|(T - \lambda I)R_{\lambda,N} - I\| \\ & \leq & \|T - \lambda I\| \|S_{\lambda} - R_{\lambda,N}\| + \left(\frac{\|T\|}{|\lambda|}\right)^{N+1}, \end{aligned}$$

whence $(T - \lambda I)S_{\lambda} = I$, showing that

$$S_{\lambda} = (T - \lambda I)^{-1}$$
.

Thus, if $|\lambda| > ||T||$ then $\lambda \in \rho(T)$.

The above theorem shows that $\sigma(T)$ is a bounded set: it is contained in the closed disc $|\lambda| \leq ||T||$. Moreover, if $|\lambda| > ||T||$ then we have an explicit expression for the resolvent R_{λ} :

$$R_{\lambda} = -\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{T^n}{\lambda^n}.$$

6 The spectrum of a bounded linear map is closed

Theorem 6. If $T \in \mathcal{B}(H)$, then $\rho(T)$ is an open subset of \mathbb{C} .

Proof. If $\lambda \in \rho(T)$, let $|\mu - \lambda| < ||R_{\lambda}||^{-1}$, and define $R_{\mu,N} \in \mathcal{B}(H)$ by

$$R_{\mu,N} = R_{\lambda} \sum_{n=0}^{N} (\mu - \lambda)^n R_{\lambda}^n.$$

Because $|\mu - \lambda| < \|R_{\lambda}\|^{-1}$, $R_{\mu,N}$ is a Cauchy sequence in $\mathscr{B}(H)$ and converges to some $S_{\mu} \in \mathscr{B}(H)$. We have, as $R_{\lambda} = (T - \lambda I)^{-1}$,

$$\begin{split} \|S_{\mu}(T - \mu I) - I\| & \leq \|S_{\mu}(T - \mu I) - R_{\mu,N}(T - \mu I)\| \\ & + \|R_{\mu,N}(T - \mu I + \lambda I - \lambda I) - I\| \\ & \leq \|S_{\mu} - R_{\mu,N}\| \|T - \mu I\| \\ & + \|R_{\mu,N}(T - \lambda I) - R_{\mu,N}(\mu - \lambda) - I\| \\ & = \|S_{\mu} - R_{\mu,N}\| \|T - \mu I\| \\ & + \left\|\sum_{n=0}^{N} (\mu - \lambda)^{n} R_{\lambda}^{n} - (\mu - \lambda) R_{\lambda} \sum_{n=0}^{N} (\mu - \lambda)^{n} R_{\lambda}^{n} - I\right\| \\ & = \|S_{\mu} - R_{\mu,N}\| \|T - \mu I\| + \left\| - (\mu - \lambda)^{N+1} R_{\lambda}^{N+1} \right\| \\ & = \|S_{\mu} - R_{\mu,N}\| \|T - \mu I\| + |\mu - \lambda|^{N+1} \|R_{\lambda}\|^{N+1} \,, \end{split}$$

which tends to 0 as $N \to \infty$. Therefore $S_{\mu}(T - \mu I) = I$. One checks likewise that $(T - \mu I)S_{\mu} = I$, and hence that

$$(T - \mu I)^{-1} = S_{\mu},$$

showing that $\mu \in \rho(T)$.

As $\sigma(T)$ is bounded and closed, it is a compact set in \mathbb{C} . Moreover, if $\lambda \notin \sigma(T)$ and $|\mu - \lambda| < ||R_{\lambda}||^{-1}$, then

$$R_{\mu} = R_{\lambda} \sum_{n=0}^{\infty} (\mu - \lambda)^n R_{\lambda}^n.$$

7 The spectrum of a bounded linear map is nonempty

Theorem 7. If $T \in \mathcal{B}(H)$ is self-adjoint, then $\sigma(T) \neq \emptyset$.

Proof. Suppose by contradiction that $\sigma(T) = \emptyset$. If $\lambda, \mu \in \mathbb{C}$, then

$$\begin{split} (T-\lambda I)(R_{\lambda}-R_{\mu})(T-\mu I) &= (I-(T-\lambda I)R_{\mu})(T-\mu I) \\ &= T-\mu I-(T-\lambda I) \\ &= (\lambda-\mu)I, \end{split}$$

so

$$R_{\lambda} - R_{\mu} = (\lambda - \mu) R_{\lambda} R_{\mu},\tag{3}$$

the resolvent identity. Thus

$$||R_{\lambda} - R_{\mu}|| \le |\lambda - \mu| ||R_{\lambda}|| ||R_{\mu}||,$$

⁴For each $v, w \in H$ we are going to construct a bounded entire function $\mathbb{C} \to \mathbb{C}$ depending on v and w, which by Liouville's theorem must be constant, and it will turn out to be 0. This will lead to a contradiction.

and together with $\|R_{\mu}\| - \|R_{\lambda}\| \le \|R_{\mu} - R_{\lambda}\|$ we get

$$||R_{\mu}|| (1 - |\lambda - \mu| ||R_{\lambda}||) \le ||R_{\lambda}||.$$

If $|\lambda - \mu| \leq \frac{1}{2} \cdot ||R_{\lambda}||^{-1}$, then

$$||R_{\mu}|| \le 2 ||R_{\lambda}||,$$

whence, for $|\lambda - \mu| \le \frac{1}{2} \cdot ||R_{\lambda}||^{-1}$,

$$||R_{\lambda} - R_{\mu}|| \le 2|\lambda - \mu| ||R_{\lambda}||^2.$$

Therefore, $\lambda \mapsto R_{\lambda}$ is a continuous function $\mathbb{C} \to \mathscr{B}(H)$. From this and (3) it follows that for each $\lambda \in \mathbb{C}$,⁵

$$\lim_{\mu \to \lambda} \frac{R_{\lambda} - R_{\mu}}{\lambda - \mu} = R_{\lambda}^{2}.$$

Let $v, w \in H$ and define $f_{v,w} : \mathbb{C} \to \mathbb{C}$ by

$$f_{v,w}(\lambda) = \langle R_{\lambda}v, w \rangle, \qquad \lambda \in \mathbb{C}.$$

For $\lambda \in \mathbb{C}$,

$$\lim_{\mu \to \lambda} \frac{f_{v,w}(\lambda) - f_{v,w}(\mu)}{\lambda - \mu} = \lim_{\mu \to \lambda} \left\langle \frac{R_{\lambda} - R_{\mu}}{\lambda - \mu} v, w \right\rangle = \left\langle R_{\lambda}^{2} v, w \right\rangle.$$

Thus $f_{v,w}$ is an entire function. For $|\lambda| > ||T||$, $R_{\lambda} = -\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{T^n}{\lambda^n}$, so, for $r = \frac{||T||}{|\lambda|}$,

$$||R_{\lambda}|| = \frac{1}{|\lambda|} \left\| \sum_{n=0}^{\infty} \frac{T^n}{\lambda} \right\|$$

$$\leq \frac{1}{|\lambda|} \sum_{n=0}^{\infty} r^n$$

$$= \frac{1}{|\lambda|} \frac{1}{1-r}$$

$$= \frac{1}{|\lambda|} \frac{1}{1-\frac{||T||}{|\lambda|}}$$

$$= \frac{1}{|\lambda| - ||T||}.$$

Hence, for $|\lambda| > ||T||$,

$$|f_{v,w}(\lambda)| = |\langle R_{\lambda}v, w \rangle|$$

$$\leq ||R_{\lambda}|| ||v|| ||w||$$

$$\leq \frac{||v|| ||w||}{|\lambda| - ||T||},$$

⁵There are no complications that appear if we do complex analysis on functions from $\mathbb C$ to a complex Banach algebra rather than on functions from $\mathbb C$ to $\mathbb C$. Thus this statement is that $\lambda \to R_\lambda$ is a holomorphic function $\mathbb C \to \mathscr B(H)$.

from which it follows that $f_{v,w}$ is bounded and that $\lim_{|\lambda|\to\infty} f_{v,w}(\lambda)=0$. Therefore by Liouville's theorem, $f_{v,w}(\lambda)=0$ for all λ . Let's recap: for all $v,w\in H$ and for all $\lambda\in\mathbb{C}$, $\langle R_\lambda v,w\rangle=0$. Switching the order of the universal quantifiers, for all $\lambda\in\mathbb{C}$ and for all $v,w\in H$ we have $\langle R_\lambda v,w\rangle=0$, which implies that for all $\lambda\in\mathbb{C}$ we have $R_\lambda=0$. But by assumption R_λ is invertible, so this is a contradiction. Hence $\sigma(T)$ is nonempty.