Sistemas de Visão e Percepção Industrial Apresentação

Apresentação

Docentes

- Vítor Santos (vitor@ua.pt)
 - Coordenação da disciplina
 - Aulas T
 - Turma P1
- Miguel Oliveira (mriem@ua.pt)
 - Turmas P2, P3

3

Enquadramento da UC

- A imagem é uma fonte muito rica de informação.
- Vantagens dos sistemas de perceção sem contacto (não invasivos/baixa interferência).
- Há cada vez mais fornecedores de soluções de hardware e software.
- Muitas oportunidades em aplicações industriais.
- Razões do crescimento do uso da visão artificial e laser:
 - Diminuição dos custos do hardware;
 - Aumento do poder computacional do equipamento industrial;
 - Melhoria da qualidade das comunicações digitais (uso de sensores remotos);
 - Implementação sem grande perturbação da instalação pré-existente;

Objetivos da disciplina

- Compreensão da formação de imagem e dos princípios do tratamento (processamento) de imagem digital.
- Extração e avaliação de propriedades geométricas e visuais sem contacto físico dos objetos de medição.
- Dimensionamento, utilização e aplicação a novas situações dos sistemas de perceção à distância (em especial sistemas de visão artificial)
- Adquirir capacidades de elaborar programas (protótipos e industriais) para resolver problemas de perceção.

Tópicos principais do programa previsto

- Introdução
- Visão
 - Bases, conceitos e definições.
 - Formação e aquisição de imagem: transformações geométricas.
 - O processamento de imagem a baixo nível: filtros e operações básicas.
 - Morfologia e operações morfológicas.
 - Descritores de regiões e contornos.
 - Imagem a cores: os espaços de cor.
 - Reconhecimento de imagem: modelos e padrões.
 - Questões e técnicas de Iluminação.
 - Sistemas industriais de visão artificial.
- Outros sistemas de perceção
 - Sistemas de perceção com laser: princípios e sistemas a 1D e 2D
 - As "câmaras" 3D.
 - Outras formas de perceção.

Funcionamento das aulas

- Aulas T
 - Apresentação e formalização de conceitos
 - Ilustração de métodos e resultados com pequenos exemplos de programação
 - ... que os estudantes poderão eventualmente seguir nos seus computadores pessoais!
- Aulas P (Obrigatórias)
 - Exercícios com programação
 - Matlab
 - Sherlock (software industrial)
 - Os exercícios realizados em cada na aula devem ser entregues no e-learning até ao fim dessa aula.

Calendário previsto das aulas

Aulas SVPI - 2022

☐ Aulas teóricas (13) ☐ Aulas práticas P1 (13) ☐ Aulas práticas P2,P3 (14)

		Fe	vere	eiro			Março							Abril						
S	Т	Q	Q	S	S	D	S	Т	Q	Q	S	S	D	S	Т	Q	Q	S	S	D
7 14 21 28	1 8 15 22	2 9 16 23	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	(14) (21) (28)	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	11 18 25	5 12 19 26	6 13 20 27	7 14 21 28		2 9 16 23 30	3 10 17 24
Maio							Junho							Julho						
S	Т	Q	Q	S	S	D	S	Т	Q	Q	S	S	D	S	Т	Q	Q	S	S	D
2	3	\ 4	5	6	7	1 8	<u>6</u>	7	1 8	2 9	3 10	4 11	5 12	4	5	6	7	1 8	9	3 10
(16) (23)	10 17 24)11)18)25	12 19 26	13 20 27	14 21 28	15 22 29	(13) (20)	14 21 28	15 22 29	16 23 30	17 24	18 25	19 26	11 18 25	12 19 26	13 20 27	14 21 28	15 22 29	16 23 30	17 24 31

Previsão da aula da Infaimon

Avaliação – Época Normal

- Realização de trabalhos práticos P
- Realização de um exame final T
- Dois regimes de avaliação:
 - Regime A (3 trabalhos TP1, TP2, TP3 e Exame)
 - NF=40%T + 60%P
 - Regime B (TP1, TP2 e Exame)
 - NF=60%T + 40%P
 - Se um aluno não entregar o TP3, fica automaticamente no Regime B, caso contrário é regime A.
 - Pode tomar a decisão até à data de entrega do TP3
- Nota mínima
 - Em qualquer caso deve ser T>7.0 e P>7.0 (nota mínima)

Avaliação – Época Recurso/Melhoria/Especial

- Realização de exame final T
- Realização de exame prático P
 - Realização de pequenos programas em Matlab e Sherlock numa sala de computadores no mesmo dia do exame T.
- Nestas épocas, quem realizar o exame prático será avaliado pelo regime A (porque cobre também Sherlock), independentemente do regime que teve na época normal.
 - NF=40%T + 60%P
- Nestas épocas, um estudante pode realizar qualquer uma, ou as duas componentes, e cuja classificação substituirá a respetiva componente da época normal.
 - Portanto, um estudante pode prescindir de realizar uma das componentes (P ou T) transportando-se a respetiva classificação da época normal e segundo o regime apropriado.
- Em qualquer caso, deve ser sempre T>7.0 e P>7.0

Bibliografia

- W. Burger, M. Burge Digital Image Processing.
 Springer, Nov 2007 E. R. Davies Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, 2005
- Rafael C. Gonzalez, Richard E. Woods Digital Image Processing. Prentice Hall, 2007
- M. Sonka, V. Hlavac, R. Boyle Image Processing: Analysis and Machine Vision. Thomson Learning Vocational, 2 Ed 1998. (or 3rd edition from 2007)
- Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins

 Digital Image Processing Using Matlab. Prentice Hall, 2004.
- Computer Vision, D. Ballard, C. Brown, Prentice-hall, 1982 (on-line em http://homepages.inf.ed.ac.uk/ rbf/BOOKS/BANDB/bandb.htm)
- Há muitos outros livros, e até algumas edições mais recentes destes.

Outras referências

- Internet
 - Computer Vision Online (bastante completo e avançado)
 - http://homepages.inf.ed.ac.uk/rbf/CVonline
 - Wiki sobre "visão por computador"
 - http://computervision.wikia.com
 - Computer Vision University of Central Florida
 - http://www.cs.ucf.edu/courses/cap6411/cap5415
- Software
 - Matlab + toolbox (Image Processing, Computer vision, Image Acquisition)
 - Octave (software aberto)
 - OpenCV Library sourceforge, for Windows and Linux.
 - Software industrial (alguns exemplos)
 - Sherlock (Dalsa) (https://www.teledynedalsa.com/imaging/ products/vision-systems/software)
 - Halcon (http://www.mvtec.com/products/halcon)
 - In-sight (Cognex) (http://www.cognex.com)
 - Neurocheck (https://www.neurocheck.com)