CS 7545: Machine Learning Theory

Fall 2018

Lecture 17: Statistical Learning Theory

Lecturer: Jacob Abernethy Scribes: Manon Huguenin, Hang Zhang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

17.1 Supervised Learning Setting

17.1.1 Key ingredients

The key ingredients for the supervised learning setting are the following:

- 1. Observation/Input space \mathbb{X} : $e.g: \mathbb{X} \in \mathbb{R}^d$, where d is the dimension of the space.
- 2. Label space \mathbb{Y} :

 $e.q: - \mathbb{Y} = \{0,1\}$ "binary class".

- $\mathbb{Y} = \{1, 2, 3, ..., K\}$ "multi-class".
- $\mathbb{Y} = \mathbb{R}$ "regression".
- 3. Prediction space \mathbb{Y}' : may not be the same as \mathbb{Y} . $e.g: \mathbb{Y}' = [0,1]$ while $\mathbb{Y} = \{0,1\}$.
- 4. A distribution $\mathcal{D} \in \Delta(\mathbb{X} \times \mathbb{Y})$ associated with the instance of a learning problem: Samples (\mathbf{x}, y) are drawn from \mathcal{D} $((\mathbf{x}, y) \sim \mathcal{D})$, where \mathbf{x} is the random observation and y is its label (type).
- 5. A hypothesis space \mathcal{H} : a set of functions mapping \mathbb{X} to \mathbb{Y} .

e.g. a) "Decision stumps": $\mathcal{H} = \{h_{i,\alpha}(\mathbf{x}) = \mathbb{1}[x_i > \alpha] : \alpha \in \mathbb{R}, i = 1, \dots, d\}$.

- b) "Linear thresholds": $\mathcal{H} = \{h_{\boldsymbol{\omega},b}(\mathbf{x}) = \mathbb{1}[\langle \boldsymbol{\omega}, \mathbf{x} \rangle \leq b] : \boldsymbol{\omega} \in \mathbb{R}^d, b \in \mathbb{R}\}.$
- c) "Neural networks": $\mathcal{H} = \{h_{\mathbf{M}_1, \mathbf{b}_1, \mathbf{M}_2, \mathbf{b}_2, \dots, \mathbf{M}_K, \mathbf{b}_K}(\mathbf{x}) = \sigma(\mathbf{b}_K + \mathbf{M}_K \sigma(\mathbf{b}_{K-1} + \mathbf{M}_{K-1} \sigma(\dots \sigma(\mathbf{b}_1 + \mathbf{M}_1 \mathbf{x})))), \text{ for all matrices } \mathbf{M}_1, \dots, \mathbf{M}_K, \text{ and all offsets } \mathbf{b}_1, \dots, \mathbf{b}_K, \text{ and with } \sigma(\cdot) \text{ being the function such that } \sigma(\nu) = \frac{1}{1 + \exp(\nu)}.$
- 6. A loss function $\ell: \mathbb{Y}' \times \mathbb{Y} \to \mathbb{R}$: the quantity $\ell(\hat{y}, y)$ is to describe "how bad is \hat{y} an estimate of y". e.g. a) "0-1 loss": $\ell(\hat{y}, y) = \mathbb{1}[\hat{y} \neq y]$.
 - b) "hinge loss": $\ell(\hat{y}, y) = \max(1 \hat{y}y, 0)$, where $\mathbb{Y} = \{-1, 1\}$.
 - c) "square loss": $\ell(\hat{y}, y) = (\hat{y} y)^2$.

17.1.2 Important concepts

Definition 17.1 (Risk/Generalization error) Given a distribution $\mathcal{D} \in \Delta(\mathbb{X} \times \mathbb{Y})$, a loss function $\ell(\cdot, \cdot)$, the **risk** or **generalization error** of a hypothesis h is defined as

$$\mathcal{R}(h) = \underset{(\mathbf{x},y) \sim \mathcal{D}}{\mathbb{E}} [\ell(h(\mathbf{x}),y)].$$

Remark 17.2 The key idea in statistical learning is that you want the risk (generalization error) to be small.

Remark 17.3 Because the distribution \mathcal{D} is inaccessible, risk $\mathcal{R}(h)$ cannot be calculated directly. Instead, we adopt its empirical value as the substitution.

Definition 17.4 (Empirical risk) Given samples $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \subseteq \mathbb{X} \times \mathbb{Y}$, the empirical **risk** of a hypothesis h is defined as

$$\hat{\mathcal{R}}_m(h) = \frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i), y_i).$$

Empirical Risk Minimization 17.2

Introduction 17.2.1

Definition 17.5 (Empirical Risk Minimization (ERM)) Given a data set S, the empirical risk minimization proposes to minimize the empirical risk, i.e.,

$$\hat{h}_m^{\text{ERM}} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\mathcal{R}}_m(h), \tag{17.1}$$

where $\hat{\mathcal{R}}_m(\cdot)$ denotes the empirical risk.

Example 17.6 (Least square regression) We define here the hypothesis set as $\mathcal{H} = \{h_{\omega}(\mathbf{x}) : \langle \omega, \mathbf{x} \rangle, \omega \in \mathcal{U} \}$ \mathbb{R}^d and the loss function as $l(\hat{y}, y) = \|\hat{y} - y\|_2^2$. Then we can write the estimate ω^* with ERM as

$$\boldsymbol{\omega}^* = \operatorname{argmin}_{\boldsymbol{\omega}} \frac{1}{m} \left(\sum_{i=1}^m \|y_i - \langle \boldsymbol{\omega}, \ \mathbf{x}_i \rangle\|_2^2 \right) \implies \boldsymbol{\omega}^* = \underbrace{(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathrm{T}}}_{\boldsymbol{X}^{\dagger}} \boldsymbol{Y},$$

where $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_m], \ \mathbf{Y} = [y_1 \ y_2 \ \cdots \ y_m]^T$, and $(\cdot)^{\dagger}$ denotes the Moore-Penrose inverse.

17.2.2Evaluation Quantities

To evaluate the algorithm, there are two important evaluation quantities: estimation error and approximation error.

Definition 17.7 (Estimation Error) For ERM hypothesis \hat{h}_m^{ERM} , its estimation error is defined as

$$\mathcal{R}(\hat{h}_m^{\mathrm{ERM}}) - \min_{h^* \in \mathcal{H}} \mathcal{R}(h^*).$$

Remark 17.8 The first term $\mathcal{R}(\hat{h}_m^{\text{ERM}})$ corresponds to the risk of \hat{h}_m^{ERM} . The second term $\min_{h^* \in \mathcal{H}} \mathcal{R}(h^*)$ corresponds to the risk of the best hypothesis h^* that can be chosen from the hypothesis set \mathcal{H} .

Definition 17.9 (Approximation Error) Approximation error is defined as

$$\min_{h^* \in \mathcal{H}} \mathcal{R}(h^*) - \min_{\substack{h^{**} \in \text{ all possible} \\ \text{functions}}} \mathcal{R}(h^{**}),$$

where the second term $\min_{h^{**} \in \text{ all possible}} \mathcal{R}(h^{**})$ is also known as the **Bayes risk**.

Fact 17.10 (Bias Variance Trade-off) ¹ The above two quantities are affected by the complexity of the hypothesis set \mathcal{H} : as the hypothesis set \mathcal{H} becomes more complex, ² the estimation error goes up (\uparrow) while the approximation error goes down (\downarrow) .

Here the "variance" corresponds to the estimation error, since they measure the sensitivity to the data set S, while "bias" corresponds to the approximation error.

¹This terminology is suitable only when the loss function is $\|\cdot\|_2^2$ while inaccurate when other loss function is adopted.

 $^{^{2}}$ Example of more complex hypothesis sets include: (i) polynomials of higher degree, (ii) neuron networks with more layers, and (iii) decision trees with greater depth.

17.2.3 Main Results

Here we concentrate on analyzing the *estimation error*.

Bound of estimation error: First we have

$$\mathcal{R}(\hat{h}_{m}^{\text{ERM}}) - \min_{h^{*} \in \mathcal{H}} \mathcal{R}(h^{*}) \\
= \underbrace{\mathcal{R}(\hat{h}_{m}^{\text{ERM}}) - \hat{\mathcal{R}}_{m}(\hat{h}_{m}^{\text{ERM}})}_{\mathcal{T}_{1}} + \underbrace{\hat{\mathcal{R}}_{m}(\hat{h}_{m}^{\text{ERM}}) - \hat{\mathcal{R}}_{m}(h^{*})}_{\mathcal{T}_{2}} + \underbrace{\hat{\mathcal{R}}_{m}(h^{*}) - \mathcal{R}(h^{*})}_{\mathcal{T}_{3}} + \underbrace{\hat{\mathcal{R}}_{m}(h^{*}) - \mathcal{R}(h^{*})}_{\mathcal{T}_{3}}$$

$$(17.2)$$

$$\stackrel{(i)}{\leq} \mathcal{T}_{1} + \mathcal{T}_{3} \stackrel{(ii)}{\leq} 2 \sup_{h \in \mathcal{H}} |\hat{\mathcal{R}}_{m}(h) - \mathcal{R}(h)|,$$

where (i) is because $\mathcal{T}_2 \leq 0$ according to the definition of \hat{h}_m^{ERM} in Eqn (17.1), and in (ii) we use $\mathcal{T}_1 \leq \sup_{h \in \mathcal{H}} |\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)|$ and $\mathcal{T}_3 \leq \sup_{h \in \mathcal{H}} |\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)|$.

Remark 17.11 If we can control the quantity $\sup_{h\in\mathcal{H}} |\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)|$ in Eqn (17.2), this bound is called the uniform deviation bound: (i) the first term $\hat{\mathcal{R}}_m(h)$ corresponds to the training error; (ii) the second term $\mathcal{R}(h)$ corresponds to the test error.

Hence, bounding the approximation error transforms to the problem of bounding the $uniform\ deviation\ bound$.

Non-asymptotic bound: We now want to find a non-asymptotic bound to the quantity $|\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)|$.

Theorem 17.12 If \mathcal{H} is finite and $\ell(\cdot,\cdot)$ is within [0, 1], then the following inequality,

$$\sup_{h \in \mathcal{H}} |\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)| \le \sqrt{\frac{\log \frac{2|\mathcal{H}|}{\delta}}{2m}},$$

holds with probability at least $1 - \delta$, where $|\cdot|$ denotes the cardinality.

Remark 17.13 Although the increasing m leads to a smaller bound, a complex hypothesis set \mathcal{H} , which has large $|\mathcal{H}|$, compensates for the decreasing smaller bound.

Remark 17.14 Also, the bound is $\mathcal{O}(\sqrt{\log |\mathcal{H}|})$ and is consistent with the bound of the Halving Algorithm.

Remark 17.15 One wrong way of bounding is attached in the Appendix. 17.3.

Sketch of proof: Instead of lower bounding $\Pr\left\{\sup_{h\in\mathcal{H}}\left|\hat{\mathcal{R}}_m(h)-\left|\mathcal{R}(h)\right|\leq t\right\}\right\}$, we upper bound its com-

plementary event
$$\Pr\left\{\sup_{h\in\mathcal{H}}\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|\geq t\right\}$$
 as
$$\Pr\left\{\sup_{h\in\mathcal{H}}\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|\geq t\right\}=\Pr\left\{\bigcup_{h\in\mathcal{H}}\left\{\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|\geq t\right\}\right\}$$

$$\stackrel{(a)}{\leq}\sum_{h\in\mathcal{H}}\Pr\left\{\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|\geq t\right\}=\sum_{h\in\mathcal{H}}\Pr\left\{\left|\frac{1}{m}\sum_{i=1}^{m}\ell(h(\mathbf{x}_{i}),y_{i})-\mathbb{E}\ell(h(\mathbf{x}),y)\right|\geq t\right\}$$

$$\stackrel{(b)}{\equiv}\sum_{h\in\mathcal{H}}\Pr\left\{\left|\frac{1}{m}\left(\sum_{i=1}^{m}\ell(h(\mathbf{x}_{i}),y_{i})-\sum_{i=1}^{m}\mathbb{E}\ell(h(\mathbf{x}_{i}),y_{i})\right)\right|\geq t\right\}$$

$$=\sum_{h\in\mathcal{H}}\Pr\left\{\left|\frac{1}{m}\sum_{i=1}^{m}(\ell(h(\mathbf{x}_{i}),y_{i})-\mathbb{E}\ell(h(\mathbf{x}_{i}),y_{i}))\right|\geq t\right\}$$

$$\stackrel{(c)}{\leq}\sum_{h\in\mathcal{H}}2\exp\left(-2mt^{2}\right)=2|\mathcal{H}|\exp\left(-2mt^{2}\right),$$

where (a) is because of the union bound, (b) is because $(\mathbf{x}_i, y_i) \stackrel{\text{i.i.d}}{\sim} \mathcal{D}$ and hence $\mathbb{E}\ell(h(\mathbf{x}_i), y_i) = \mathbb{E}l(h(\mathbf{x}), y)$, and in (c) we have $\ell(h(\mathbf{x}), y) \in [0, 1]$ and use Hoeffding's inequality.

Then we have

$$\Pr\left\{\sup_{h\in\mathcal{H}}\left|\hat{\mathcal{R}}_m(h)-\mathcal{R}(h)\right|\leq t\right\} \geq 1-2|\mathcal{H}|\exp\left(-2mt^2\right),$$

which completes the proof when we set t^* to satisfy $2|\mathcal{H}|\exp(-2mt^{*2}) = \delta$.

17.3 Appendix A: wrong way of bounding uniform deviation

Wrong bounding method: To bound Eqn (17.2), the goal is to bound $\sup_{h\in\mathcal{H}} |\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)|$ as the following:

$$\hat{\mathcal{R}}_m(h) - \mathcal{R}(h) = \frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i, y_i)) - \mathbb{E}\ell(h(\mathbf{x}, y))$$

$$\stackrel{(a)}{=} \frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i, y_i)) - \frac{1}{m} \sum_{i=1}^m \mathbb{E}\ell(h(\mathbf{x}_i, y_i)) = \frac{1}{m} \sum_{i=1}^m \underbrace{(\ell(h(\mathbf{x}_i, y_i)) - \mathbb{E}\ell(h(\mathbf{x}_i, y_i)))}_{\mathbf{Y}},$$

where in (a) we use the fact that $(\mathbf{x}_i, y_i) \sim \mathcal{D}$. Since $\ell(\cdot, \cdot)$ is within [0, 1], we have X_i to be a RV within [0, 1]. With Hoeffding's inequality, we have

$$\left|\hat{\mathcal{R}}_m(h) - \mathcal{R}(h)\right| = \left|\frac{1}{m} \sum_{i=1}^m X_i\right| \le \sqrt{\frac{\log \frac{2}{\delta}}{2m}},$$

with probability at least $1 - \delta$.

Problem: If we perform back-substitution, we find that large sample size, namely m, will always lead to smaller error, which is **WRONG**!! So where do we make the mistake?

Answer: When we bound $|\hat{\mathcal{R}}(h) - \mathcal{R}(h)|$ with Hoeffding's inequality, we require X_i to be independent. However, the ERM hypothesis \hat{h}_m^{ERM} makes samples correlated and violates this assumption. Hence, the above derivation is incorrect.