МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Кафедра дискретного аналізу та інтелектуальних систем

Індивідуальне завдання №1

з курсу "Теорія ймовірності та математична статистика"

Виконав: студент групи ПМі-2_

Оцінка

Перевірила: доц. Квасниця Г.А.

Постановка задачі:

Теоретичні відомості:

Представлення статистичного матеріалу

Множина всіх можливих значень випадкової величини X називається **генеральною сукупністю**, а множина значень x_i (i=1, 2, ..., k), яка одержана в результаті випробувань, — вибіркою з генеральної сукупності або **статистичною сукупністю**. Число елементів вибірки називається обсягом вибірки.

Послідовність варіант, записаних за зростанням, називається варіаційним рядом (дискретним варіаційним рядом).

Послідовність інтервалів $(z_0, z_1], (z_1, z_2], ..., (z_{m-1}, z_m]$ називається інтервальним варіаційним рядом (неперервним варіаційним рядом).

Надалі, через \widetilde{n}_i позначатимемо суму частот варіант які попадають в інтервал $(z_{i-1}, z_i]$: числа \widetilde{n} називають накопиченими відносними частотами.

Статистичну сукупність характеризують статистичним розподілом вибірки, який може бути дискретним або інтервальним

Дискретним статистичним розподілом вибірки називається відповідність між варіантами та їх частотами або відносними частотами.

Дискретний статистичний розподіл вибірки можна подати у вигляді таблиць:

Програмна реалізація:

Для написання коду я використовував мову програмування Python, середовище Jupyter Notebook і наступні бібліотеки: pandas, numpy, matplotlib.pyplot

Користувач вводить мінімальне і максимальне значення для елементів вибірки, а також її розмір розмір, після чого генерується масив рандомних значень в заданих межах.

Сортую масив і виводжу варіаційний ряд.

Для виведення частотної таблиці створюю словник в якому ключами ϵ унікальні елементи вибірки а значеннями — їхня кількість повторень. Передаю в DataFrame словник і виводжу у вигляді таблиці.

Рахую суму елементів вибірки, ділю на її розмір і отримую середнє вибіркове.

Отримані результати:

Кількість: 50

Ліва границя: 1

Права границя: 20

Вибірка:

[1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 13, 14, 15, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19]

Варіаційний ряд: [1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19]

Частотна таблиця:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
x[i]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
n[i]	1	1	4	3	3	3	2	2	3	4	2	2	5	1	1	5	3	2	3

Середнє вибіркове: 10.42

Розмах: 18

Моди: 13, 16

Медіана: 10.0

Графік емпіричної функції розподілу

Полігон частот

Інтервальний розподіл

Гістограма інтервального розподілу

Мода інтервального розподілу: 16.94736842105263

Медіана інтервального розподілу: 11.125

Зведений інтервальний розподіл до дискретного (частотна таблиця):

	9	1	2	3	4	5
x[i]	2.491	5.5	8.5	11.5	14.5	17.5
n[i]	6.000	9.0	7.0	8.0	7.0	13.0

Середнє вибіркове: 10.89892

Розмах: 15.009

Висновок: