

## ALTERNATING CURRENT



(Current which changes its direction)

Sinuso idal wave

AVG. VAUE OF CURRENT

$$\log = \frac{t_1 \int idt}{t_2 - t_1}$$

POWER

$$Pavg = \frac{t_2}{t_2 - t_1} Pdt$$

RMS VALUE

inms = io/12 = 0.707 io | i(ac) = io sinwt = io sin 27/4 = io sin 27/4



AMPLITUDE

Max on peak value Denoted by io

TIME PERIOD

$$T = \frac{1}{\delta} = \frac{2\pi}{\omega}$$

Unit: seconds

FREQUENCY

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

Unit: Hentz (Hz)

1) PURE INDUCTIVE CIRCUIT

(Curnent thails EMF by 90°)



V= Vosincut

i = - iocoswt = iosin(wt - 1/2) Phase diff. =  $\phi = \tau / 2$ 

Inductive Reactance (XL):

$$X_L = \omega L$$
  
 $X_L = 2\pi J L$   
Unit:  $\Omega$  (ohm)

10 = Vo lims = Vnns

(2) PURE CAPACITIVE CIRCUIT (Current leads EMF by go')



V= Vosincut i = locuscut = losin(wt + 17/2)

Phase diff. =  $\varphi = \pi l_2$ Calacitive reactance (X6):



10 = Vo liams = Vams Unit: 2 (ohm)

3) PURE RESISTIVE



A.C 71 Source

V=Vosinwt i= iosincut

Phase diff. =  $\phi = \omega t - \omega T$ 

4 SERIES L-R CIRCUIT

(Current trails Voltage by 1)

$$V_0 = i_0 \sqrt{R^2 + \chi_L^2}$$

Impedence,  $Z = \int R^2 + \chi_L^2$ 

Unit: 12 (ohm)

$$[i_0 = \frac{V_0}{Z}] \text{ or, } V_0 = i_0 Z$$

 $tan \phi = \frac{XL}{R}$ 

SERIES R-C CIRCUIT

(Curnent leads Voltage by  $\Phi$ )

Impedence,  $Z = \sqrt{R^2 + \chi_L^2}$ 

Unit: 12 (ohm)





 $\tan \varphi = \frac{\chi_c}{R}$ 



| CIRCUIT              | Φ          | POWER FACTOR (COS\$)                             |
|----------------------|------------|--------------------------------------------------|
| 1. Pune<br>nesistive | O°         | coso = 1<br>Paug = Vams lams                     |
| 2. Pune<br>inductive | 90'        | cosgo = 0, Paug = 0                              |
| 3. Pune capacitive   | 90.        | (05 90 = 0, Paug = 0                             |
| 4. L-R               | Same value | $\cos \phi = R/2$ $Paug = V_{RMS} i_{RMS} (R/2)$ |
| 5. R-C               | same value | cosφ = R/Z<br>Paug = Vnms (nms (R/Z)             |

o cos¢ = 1, Power consumed → maximum





# (10) TUNING OF A RADIO RECIEVER ( The radio is a series LCR CIRCUIT.)

Small bandwidth → shanb tuning (sharp resonance)

Bandwidth = 
$$2\Delta\omega = \omega_2 - \omega_1 = \frac{R}{L}$$

$$Q = \frac{\omega_0}{\omega_2 - \omega_1} = \frac{1}{R} \int_{C}^{L}$$



$$\omega_1 = \omega_0 - \frac{R}{2L}$$
  $\omega_2 = \omega_0 + \frac{R}{2L}$ 

Power output of cincuit is maximum for (10) max

$$P_{\text{max}} = \left(\frac{(j_0)_{\text{max}}}{\sqrt{2}}\right)^2 R = \frac{(j_0)_{\text{max}}^2 R}{2}$$

### 1 L-C OSCILLATIONS Energy oscillates between Electric field of the capacitors and Magnetic field of the inductors.

$$U_{\text{Total}} = \frac{q^2}{2c} + \frac{1}{2} L^{e^2}$$

The Change on each plate of Capaciton Oscillates between 
$$+q_0 \longrightarrow +q_1 \longrightarrow 0 \longrightarrow -q_1 \longrightarrow -q_0$$

$$\frac{d^2q}{dt^2} + \frac{1}{Lc}q = 0$$



9 = 90 Koswt

$$U_{\varepsilon} = \frac{q^2}{2c} = \frac{q_o^2}{2c} \cos^2 \omega t$$

### Oscillating Magnetic Energy

$$U_{B} = \frac{1}{2}L^{2}^{2} = \frac{L^{10}}{2} \sin^{2}\omega t$$

#### (2) TRANSFORMER

Voltage input = 
$$\frac{1}{\xi_p} = -N_p \frac{d\phi}{dt}$$

$$\varepsilon_s = -\frac{N_s d\Phi}{dt}$$

$$\frac{\mathcal{L}_{S}}{\mathcal{L}_{p}} = \frac{N_{S}}{N_{p}} = \frac{\mathcal{L}_{p}}{\mathcal{L}_{s}} = K$$





#### Fon an ideal transformer, (0% energy loss and (00% energy transferred)

$$\frac{\mathcal{E}_{S}}{\mathcal{E}_{p}} = \frac{N_{S}}{N_{p}} = \frac{i_{p}}{i_{S}} = K$$

Transfer natio