JNU - 2002 QUESTION PAPER WITH SOLUTIONS

M.M.: 480 Time: 3 Hrs. Note: +4 Marks for correct response, -1 Marks for incorrect response

		$3 + 2i \sin \theta$		}	
2.	The value of real θ such	that $\frac{1-2i\sin\theta}{1-2i\sin\theta}$ is purely		what would be the output of try $(x, 8, 5)$ for $x = 1110111011101110$? (JNUEE-2004)	
	imaginary is	(JNUEE-2004)		(a) 10111 (b) 11101 (c) 01110 (d) 1101	
	(a) n^{π} (c) $n\pi \pm \pi/3$	(b) $n\pi \pm \pi/2$ (d) $n\pi \pm \pi/6$	16.	An observer at an anti - aircraft post A identifies an enem aircraft due east of his post at an angle of elevation of	of
				60°. At the same instant a detection post D situated 4 km	
4.	The coefficient of $x_1x_2^2x_3^2$	$\frac{3}{3}x_4^4x_5^5$ in the expansion of		south of A reports the aircraft at an elevation of 30°. The	ıe
٦.	$(x_1 + x_2 + x_3 + x_4 + x_5)^{15}$ is	(JNUEE-2004)		altitude at which the plane is flying is	•
	(a) $1!2!3!r!5!$	(b) 15, 14, 13, 12, 11		(JNUEE-2004	4)
	(c) 15!/15	(d) 15!/1!2! 3! 4! 5!		(a) $4\sqrt{3} kn$ (b) $2/\sqrt{3} kn$	
5.	· /	hich the inorder and postorder		Ter.	
	traversals are as under.				1
	Inorder: AFCEDB		1 /.	A Winchester - style disc has its head currentl located at track 64. Given the reference strin	•
	Postorder : FEDCBA	(JNUEE-2004)		(88, 90, 8, 11, 10, 41) representing the (ordered) sequence	_
	(a) (b)	(c) (d)		of requests for disc tracks, the total number of track	
6.	In a triangle ABC the angle A is greater than the angle B.			traversed by the disc head under the SSFT is	10
	If the values of the angles A and B satisfy the equation			(JNUEE-2004	4)
		k < 1, then the value of C is (JNUEE-2004)		(a) 108 (b) 138 (c) 139 (d) 109	_
	(a) $5^{\pi}/6$	(b) $2^{\pi}/3$	19.	Suppose that the expected number of accidents per wee	ek
	(c) $\pi/2$	(d) $2^{\pi/3}$		at an industrial plant is 4. The number of workers injure	
8.	Vou are allowed to use 20	nodes to construct on AVI		in each accident is independent random variable wit	th
ο.	You are allowed to use 20 nodes to construct an AVL - tree (height balanced tree). What is its possible maximum			a common mean of 2. Assume also that the number of	
	height?	(JNUEE-2004)		workers injured in each accident is independent of the	
	(a) 4 (b) 5	(c) 6 (d) 7		number of accidents that occur. The expected number of	
9.		active substance is the time		injures during a week is (JNUEE-2004	4)
	required for one half of that substance to decay. The			(a) 2 (b) 4 (c) 6 (d) 8	4)
	amount of 11C, an isotope of carbon present at a			The concept of virtual memory (JNUEE-2004) (a) allows one user to use all the memory available	+)
	funture time t (m months) is given by A (t) = 100 exp [- 0.0331]. The half - life of the material in months is			(b) allows Virtual Reality programs to run	
				(c) allows a user program to run on another compute	er
	(JNUEE-2004)	4		which is connected on a network	•-
	(a) ln 2	(b) 0.0338		(d) provides a user program with an address space large	er
10	(c) $\ln 2/0.0338$ (d) $2 \ln 2$	too 6 mg for corting using		than the amount of physical memory	
10.	A file of size $n = 100$ takes 6 ms for sorting using Quicksort algorithm. Then approximately how much time would it take to sort a file of size $n = 1000000000$?			$\begin{vmatrix} 1+a & b \end{vmatrix}$	
				$\Delta = \begin{vmatrix} 1 & 1+b & 1 \end{vmatrix}$	
	would it take to soft a fife o	(JNUEE-2004)		1 1 14	
	(a) 24000000	(b) 24 ms	21.	Ifa,b,carealidifferentfromzero,and	1
	(c) 240000 ms	(d) 18000000 ms		is equal to zero, then the value of $a^{-1} + b^{-1} + c^{-1}$ is	
11.	Solve $z^5 = 1$, for z	(JNUEE-2004)		(JNUEE-2004)	
	(a) $z = e^{2x \text{ in}}$, $n = 0, 1, 2$	(b) $z = e^{2x \text{ in/5}}$, $n = 0, 1, 2$		(a) abc (b) a ⁻¹ b ⁻¹ c ⁻¹ (c) -a - b - c (d) N.O.T.	
	(c) $z = e^{x \text{ in/5}}$, $n = 0, 1, 2$	(d) $z = e^{5x \text{ in}}, n = 0, 1, 2,$	22	The ratio of the altitude of the cone of gretest volum	10
			22.	which can be inscribed in a given sphere, to the diameter	
14.		er triangular matrix a		of the sphere is (JNUEE-2004)	
	-	alinear array h (0 5049] in		(a) $1/4$ (b) $3/4$ (c) $1/3$ (d) $2/3$	-,
	lexicographical (row by row stored in h[0], where is a [8		23.	Let G = (V, E), E (e1, e2, e3, e4, e5, e6, e7, e8, e9, e1	0,
	stored in figure, where is a to	(JNUEE-2004)		e11, e12, e13) be a graph with a circuit $C = (e1, e2, e3)$	
	(a) 4851 (b) 4850	(c) 3330 (d) 4175		e5, e6, e8, e9, e11). Which of the following may be	
15.	Consider the following C fu	` '		cut - set of G? (JNUEE-2004)	4)
	unsigned try (unsigned x, ir			(a) $S = (e1, e2, e3)$ (b) $S = (e3, e4, e5, e8)$	
	{	-		(c) $S = (e2, e3, e4, e7, e9)$	
	return $(x >> (p + 1 - n)) &$	-(-0 << n);		(d) $S = (e4, e5, e6, e10, e12)$	

			cx + ay + b = 0 are congruent only when (JNUEE-2004)		
25.	Which of the following partially ordered sets is a tree?		(a) $a + b + c = 0$		
	(a) The set of all binary strings of length ≤ 10 , partially		(b) $a^2 + b^2 + c^2 - ab - bc - ca = 0$ (c) $a^3 + b^3 + c^3 + 3abc = 0$		
	ordered by $v \le w$ if w is a subtracting v		(d) $a^3 + b^3 + c^3 - a^2b - b^2c - c^2a = 0$		
	(b) The set of all termary strings of length ≤ 10 , partially				
	ordered by $v \le w$ if w is a initial subtracting v	44.	Referential integrity in SQL is represented by		
	(c) The set of all binary strings of length ≤ 2 , partially		(a) foreign key (b) primary key		
	ordered by $v \le w$ if w is a subtracting v		(c) candidate key (d) super key		
	(d) The set of all termary strings of length \(\leq 2 \), partially	45.	The disadvantage of passing parameters by value into		
26	ordered by $v \le w$ if v is an initial subtracting of w. Given that $\log_{10} x^2 y^2 = 6$ and $\log_{10} (x/y) = 2$, then x and y		subprograins is (JNUEE-2004)		
20.	respectively are (JNUEE-2004)		(a) shallow binding and ad binding(b) additional storage for the formal parameter and the		
	(a) \sqrt{D} ,100 $\sqrt{0}$ (b) 100, 1		data transfer cost		
	100 6		(c) pass-by-value-result ambiguity and additional		
	(c) $100\sqrt{0}$, $\sqrt{0}$ (d) 1000 , 10		recursive overhead (d) pretotype overloading and garage collection overhead		
28.	Which of the following is a group? (JNUEE-2004)		(a) pretotype overloading and garage concetion overhead		
	(a) Rational numbers under x	47.	If $\cos^{-1} p + \cos^{-1} q + \cos^{-1} r = \pi$, $p^2 + q^2 + \dots = 1$		
	(b) Positive rational numbers under +		(a) $2p^2 q^2 + r^2 + 4pqr$ (b) $r^2 + 2pqr$		
	(c) {1, 3, 5, 7} under x mod 8 (d) {1, 2, 3,4,5,6,7} under x mod 8		(a) $2p^2 q^2 + r^2 + 4pqr$ (b) $r^2 + 2pqr$ (c) $r^2 + 2pqr - 1$ (d) N.O.T.		
	(a) (1, 2, 3, 1,5,0,7) and (1 x mod 0		* 7		
30.	Let X and Y be independent random variables with means	18	If $f(x) = k \exp\left(-\frac{1}{2}x^2\right)$ for $x \in R$; can be a probability		
	μ_x and μ_y and variances σ_x^2 and σ_y^2 . Then, Var (XY)	40.	density function for $(JNUEE-2004)$		
	equals. (JNUEE-2004)		(a) $k = 1$ (b) $k = 2^{\pi}$		
	(a) $\sigma_x^2 \sigma_y^2$ (b) $\sigma_x^2 \sigma_y^2 + \mu_y^2 \sigma_x^2 + \mu_x^2 \sigma_y^2$		(d) $k = (2^{\pi})^{-1/2}$ (d) $k (2^{\pi})^{-1}$		
	(a) $\sigma_x^2 \sigma_y^2$ (b) $\sigma_x^2 \sigma_y^2 + \mu_y^2 \sigma_x^2 + \mu_x^2 \sigma_y^2$ (c) $\mu_y^2 \sigma_x^2 + \mu_x^2 \sigma_y^2$ (d) $(\sigma_x \sigma_y)^2$		$\prod_{i=1}^{n} A_{i}$ and $\prod_{i=1}^{n} A_{i}$		
	$ (c) \stackrel{r}{\sim} y \stackrel{r}{\sim} x \stackrel{r}{\sim} y \qquad (d) \stackrel{c}{\sim} x \stackrel{r}{\sim} y $	49.	Let $A_i = (1, 2, 3,, i)$ for $i = 1, 2, 3,$ Then $i = 1$		
32.	Fetching decoding and executing of an instruction is		respectively are (JNUEE-2004)		
	broken down into several time intervals. Each of these		(a) (1, 2, 3,, n) and (n) (b) (1, 2, 3,n) and (1)		
	intervals involving one or more clock periods is called		(c) (1, 2, 3,, n) and (1, 2, 3,n) (d) (1, 2, 3,, n) and (1, 2, 3, n)		
	a/an (JNUEE-2004) (a) instruction cycle (b) interpretation cycle	50.	Identity the error in the following: (JNUEE-2004)		
	(c) machine cycle (d) process cycle		int myfunc (flot ver 1, int k, int $i = 0$, int j)		
			(a) int i = 0 should not be used(b) the function cannot return int and therefore the return		
36.	The round - off error when the number 8.987652 is rounded to five significant digits is (JNUEE-2004)		type be void		
	rounded to five significant digits is (JNUEE-2004) (a) - 0.00048 (b) - 0.000048		(c) since i has been given the default value all order		
	(c) 0.00048 (d) 0.04800		variables also must have the same default value		
37.	The addressing mode used in instruction LDA 0345 H is		(d) since i has been given the default, j also should have a default value		
	(a) direct (b) indirect				
	(c) induced (d) immediate	52.	Solution of $x_n = x_{n-1} + 12n^2$, where $x_0 = 5$, is		
			(a) $x_n = r + n (n + 1)$ (b) $x_n = r + 2n (n + 1) (2n + 1)$		
39.	Let α and x_0 be positive numbers and define the sequence		(c) $X_n = 3 + (n+2)$		
	$(x_n)_{n=1}^{\infty}$ recursively by $x_n = \frac{1}{2} \left(x_{n-1} + \frac{\alpha}{x_{n-1}} \right)$ The		(d) $x_n = 3n + 2n (n + 1)$ (JNUEE-2004)		
	$(x_n)_{n=1}^{\infty}$ recursively by	53.	Let x and y be independent random variables with binomial distribution B (10, 1/3) and B (20, 1/3) respectively.		
	$y_n = \frac{x_n}{\sqrt{x_n}}$		E(x + y) is (JNUEE-2004)		
	$y_n = \frac{x_n}{\sqrt{\alpha}}$ sequence converges. Its limit is (JNUEE-2004)		(a) 5 (b) 10 (c) 15 (d) 30		
	(a) 1 (b) -1 (c) $\sqrt{\alpha}$ (d) 4α	55	A SDS (Software Dequirement Specification) describes		
40.	Which of the following is not a DBA function?	A SRS (Software Requirement Specification) describes (a) functional requirements			
	(JNUEE-2004)		(b) non-functional requirements (JNUEE-2004)		
	(a) User coordination(b) Backing-up the database		(c) the information flow (d) All of the above		
	(c) Writing queries (d) Database design	56.	The limitation of BNF is that (JNUEE-2004) (a) it always defines ambiguous syntactic features (terms)		
41.	The principal value of $\sin^{-1}[\sin(2^{\pi}/3)]$ is (JNUEE-2004)		(a) it always defines ambiguous syntactic features (terms) of a language		
42	(a) $\pi/3$ (b) $-2\pi/3$ (c) $2\pi/3$ (d) $3\pi/3$		(b) syntax diagrams are simpler alternative tool to define		
42.	The three lines $ax + by + c = 0$, $bx + cy + a = 0$ and		- -		

69. In a cellular netwrok, the distance between two adjacent syntax of a language (JNUEE-2004) (c) it cannot specify the context free aspects of the syntax hexagonal cells with radius R is (c) $R\sqrt{3}$ (d) $R\sqrt{(3/2)}$ of a language (b) $R\sqrt{2}$ (a) R (d) it can only specify the context free aspects of the 70. Solution of the equation $e^{\sin x} - e^{-\sin x} = 4$ is (JNUEE-2004) syntax of a language 57. The smallest positive value of x (in degree) for which tan $(x + 100^{\circ}) = \tan (x + 50^{\circ}) \tan (x) \tan (x - 50^{\circ}) is$ (JNUEE-2004) (c) 45° (d) 30° (a) 75° (b) 60° x-a x-b0 58. If a, b, c are distinct and then x 74. AAL2 protocol in ATM supports (JNUEE-2004) (JNUEE-2004) is equal to (a) 0(a) connectionless, constant - bit rate real - time (c) b (d) abc (b) a applications 59. If p, q, r be three positive numbers, then the value of (b) connection - oriented, variable - bit rate non real - time (p + q) (q + r) (r + p) is(JNUEE-2004) (b) $< 8 \, pqr$ applications (a) < 4pqr(c) > 8 pqr(c) connection - oriented, constant - bit rate real - time (d) > 4 pqr but < 8 pqrapplications 60. Observe the following program carefully and select the (d) connection - oriented, variable - bit rate real - time appropriate print f () statement from the options : applications struct month 75. The value of $\frac{1}{\sin \theta} - \frac{\sqrt{3}}{\cos \theta}$ is char *month; (JNUEE-2004) (c) $2\sqrt{2}$ void main () (b) 4 76. The solution set of the equation $\log_2(3 - x) + \log_2(3 - x)$ stuct month m = ("may"); (JNUEE-2004) (JNUEE-2004) (1 - x) = 3 is (a) printf ("/n Month: %s", m.month); (d) Ø (c) (-1, 5)(a) {-1} (b) {5} (b) printf ("/n Month : %s, month → month); 77. The real solution of the following simultaneous equations (c) printf ("/n Month: %s, m * month); is $xy + 3y^2 - x + 4y - 7 = 0$ and $2xy + y^2 - 2x - 2y + 1 = 0$ (d) print f ("n/ Month: %s, *m month) (JNUEE-2004) 61. If $x_r = \cos(\pi/2^r) + \sin(\pi/2^r)$, then $x_1 x_2 x_3 ...$ to ∞ is (a) x = 0, y = 1 (b) x = 1, y = 0(JNUEE-2004) (c) x = -2, y = 3(d) x = 2, y = -3(a) -3 (b) -2 (c) -1 (d) 0 62. If $A \cap B = \phi$ and $B \cap C = \phi$, then $P(A \cup B \cup C) = \phi$ 78. Which of the following is the function of mid-term scheduler in a time-sharing system? (JNUEE-2004) (JNUEE-2004) (a) Swapping (a) P(A) + P(B) + P(C)(b) Controlling degree of multiprogramming (b) P (A) P (B) P (C) (c) Context-switching (d) Process creation (c) P(A) P(B) + P(B) P(C) + P(C) P(A)79. In a triangle ABC, a:b:c=4:5:6. The ratio of the (d) $P(A \cap B) + P(B \cap C)$ radius of the circumcircle to that of the incircle is (JNUEE-2004) 64. The encoding scheme that uses both polarities and zero (b) 9/16(c) 16/9(d) 16/7(a) 7/16 to represent binary 1 to 0 is (JNUEE-2004) (a) bi - phase (b) bipolar 80. The polar exponential from the complex number $\overline{2}$ (c) polar (d) unipolar 65. In a triangle ABC, if cot A, cotB and cotC are in AP, then (JNUEE-2004) (a) $e^{(3\pi i/2)+2\pi k}$, $k = 0,\pm 1,\pm 2$ $a^2 b^2 c^2$ are in (JNUEE-2004) (a) AP (b) GP (c) HP (d) N.O.T. (b) $e^{(\pi i/3)+2\pi k}$, $k = 0,\pm 1,\pm 2$ 66. The of determinant value (c) $e^{2\pi k}$, $k = 0,\pm 1,\pm 2$ (d) $\sqrt{2e^{(3\pi/2)+2\pi k}}$, $k = 0,\pm 1,\pm 2$ $\Delta = |\cos(n + 1) \cos((n+1)x)| \cos((n+2)x)$ $|\sin(n + 1)x| \sin((n+1)x) \sin((n+2)x)|$ is independent of 81. A random variate has the following distribution x: 0 1 2 3 4 5 (JNUEE-2004) p(x): 0 k 2k 2k 3k k^2 $7k^2 + k$ (b) a (c) x (d) N.O.T. 67. For $n \in \mathbb{N}$, $3^{2n+2} - 8n - 9$ is divisible by (JNUEE-2004) value of k is (JNUEE-2004) (a) 81 (d) 49 (b) 72 (c) 64(a) 0.1 (b) - 0.1(c) - 1(d) 1 68. A point P is chosen at random on a line AB of length 21. 82. If $\sin \alpha$, $\cos \alpha$ are the roots of the equation The probability $P[(AP \times BP) > l^2/2]$ is (JNUEE-2004) $px^2 + qx + r = 0$, then (JNUEE-2004)

(a) $p^2 - q^2 + 2pr = 0$

(c) $(p + r)^2 = q^2 - r^2$

(b) $p^2 + q^2 - 2pr = 0$

(d) $(p - r)^2 = q^2 + r^2$

(b) $1/\sqrt{2}$

(d) $1/\sqrt{2l}$

(c) $(1-1/\sqrt{2})I$

