Deep Learning Tutorial

Luiz Gustavo Hafemann

LIVIA

École de Technologie Supérieure - Montréal

Agenda for the day 1

- Introduction to Machine Learning
- Simbolic Math with Theano

Learning functions from data

Learning functions from data

- Supervised Learning
 - Classification: SPAM classification, object recognition
 - Categorical output: $y=f(\mathbf{x})$ $y\in\mathcal{Y}$

Learning functions from data

Supervised Learning

- Classification: SPAM classification, object recognition
 - Categorical output: $y = f(\mathbf{x})$

$$y = f(\mathbf{x})$$

$$y \in \mathcal{Y}$$

- Regression: House pricing, forecasting
 - Real output:

$$y = f(\mathbf{x})$$

$$y \in \mathbb{R}$$

Learning functions from data

Supervised Learning

- Classification: SPAM classification, object recognition
 - Categorical output: $y=f(\mathbf{x})$ $y\in\mathcal{Y}$
- Regression: House pricing, forecasting
 - Real output: $y=f(\mathbf{x})$ $y\in\mathbb{R}$

Unsupervised Learning

• Density estimation, clustering, anomaly detection

Problem formulation:

Problem formulation:

Given a set of examples $(\mathbf{x}^{(i)}, y^{(i)})$, where

Problem formulation:

Given a set of examples $(\mathbf{x}^{(i)},y^{(i)})$, where $\mathbf{x}=\{x_1,x_2,..x_n\}$ are measurements of the input

Problem formulation:

Given a set of examples $(\mathbf{x}^{(i)}, y^{(i)})$, where $\mathbf{x} = \{x_1, x_2, ... x_n\} \ \text{are measurements of the input}$ is the correct class

Problem formulation:

Given a set of examples $(\mathbf{x}^{(i)}, y^{(i)})$, where $\mathbf{x} = \{x_1, x_2, ... x_n\} \text{ are measurements of the input}$ is the correct class

The objective is to learn a mapping (function) from x to y:

$$y_{\text{pred}} = f(x)$$

That generalizes to unseen examples

Toy example:

2-class problem: classify fish between bass and salmon

$$y \in \{\text{bass}, \text{salmon}\}$$

Two measurements: width and lightness

$$\mathbf{x} = \{x_1, x_2\}$$

Supervised Learning - toy example

Acquired 50 examples from each class:

Supervised Learning - toy example

Learn a model

(in this case: a parametric linear model)

Supervised Learning - toy example

Generalize to new examples

Supervised Learning

Choose a function family

Usually a parametric family (e.g. "Logistic Regression")

Choose a function family

Usually a parametric family (e.g. "Logistic Regression")

A way to evaluate the quality of f

Loss function \rightarrow the lower, the better is the model

Choose a function family

Usually a parametric family (e.g. "Logistic Regression")

A way to evaluate the quality of f

Loss function → the lower, the better is the model

A way to search for the best f

Optimization procedure → how to change the parameters to get a lower loss

Function family:

linear: $w_1x_1+w_2x_2...w_mx_m$

Use a non-linear function to get results between [0,1]

$$P(y|x) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Function family:

linear: $w_1x_1+w_2x_2...w_mx_m$

Use a non-linear function to get results between [0,1]

$$P(y|x) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Objective:

Maximize P(y|x) for the examples in the dataset.

Equivalent to minimize: $-\sum \log P(y|x)$

Function family:

linear: $w_1x_1+w_2x_2...w_mx_m$

Use a non-linear function to get results between [0,1]

$$P(y|x) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Objective:

MaximizeP(y | x) for the examples in the dataset.

Equivalent to minimize: $-\sum \log P(y|x)$

Optimization:

Gradient descent: Start with random w, do small steps that reduce the loss

Loss function:

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log P(y|x)$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Loss function:

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log P(y|x)$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Optimization:

Start:
$$\mathbf{w}^{(0)} = \text{random}$$

For T iterations:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla_{\mathbf{w}} L$$

Loss function:

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log P(y|x)$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Optimization:

Start:
$$\mathbf{w}^{(0)} = \text{random}$$

For T iterations:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla_{\mathbf{w}} L$$

Calculating $\nabla_{\mathbf{w}} L$:

Use chain rule. Or use software that does it for you (e.g. Theano)

What matters is <u>generalization error</u>, but we minimize training error

If our model is too complex, it may overfit

- Estimate the generalization error
 - Keep separate test set to estimate generalization error (need to be disjoint from training set not to be biased)

Estimate the generalization error

- Keep separate test set to estimate generalization error (need to be disjoint from training set not to be biased)
- To choose hyperparameters of the model (e.g. choice of model, feature extractors, etc.) use yet another disjoint set

Estimate the generalization error

- Keep separate test set to estimate generalization error (need to be disjoint from training set not to be biased)
- To choose hyperparameters of the model (e.g. choice of model, feature extractors, etc.) use yet another disjoint set

Model selection and overfitting

Train different models on the training set

Evaluate performance on validation. Pick best model

Test model performance on test set

Hyper-parameter value which yields smallest error on validation set is 5 (it was 1 for the training set)

Introduction to Theano

Symbolic Computation

Expressions are defined as a graph

Blue: inputs

Yellow: intermediate nodes

Green: output

Introduction to Theano

Expressions need to be compiled

```
a = T.scalar()
b = T.scalar()
c = 3*a + 2*b
f = theano.function([a,b],c)
f(2,2) #returns 10
```


Enable automatic differentiation:

```
df_da = T.grad(c, a)
g = theano.function([a,b], df_da)
g(2,2) # returns 3
```

Ipython Notebook

DEMO