Probleme propuse * Setul 7

61. (determinanţi) Fie matricea $A \in \mathcal{M}_3(\mathbb{R})$ cu elementele $a_{ij} = \begin{cases} \frac{1}{i+1}, & 1 \leq j \leq i \leq 3 \\ 0, & 1 \leq i \leq 3 \end{cases}$

Determinantul lui A are valoarea

- a) $\frac{1}{24}$; b) 1; c) 2; d) $\frac{1}{12}$; e) $\frac{1}{6}$; f) $\frac{1}{3}$.
- **62.** (sisteme liniare) Se consideră matricele $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ și $C = BAB^{-1}$.

- $\begin{array}{l} {\rm S} \ddot{\rm a} \ {\rm se \ determine \ matricea} \ C^{20}. \\ {\rm a}) \ \left(\begin{array}{ccc} 3^{20} & 2^{20} 3^{20} \\ 0 & 2^{20} \end{array} \right) ; \ {\rm b}) \ \left(\begin{array}{ccc} 2^{20} & 0 \\ 0 & 3^{20} \end{array} \right) ; \ {\rm c}) \ \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right) ; \\ {\rm d}) \ \left(\begin{array}{ccc} 2^{20} & 0 \\ 3^{20} 2^{20} & 3^{20} \end{array} \right) ; \ {\rm e}) \ \left(\begin{array}{ccc} 0 & 2^{20} \\ 3^{20} & 0 \end{array} \right) ; \ {\rm f}) \ \left(\begin{array}{ccc} 2 & 2 \\ 2 & 3 \end{array} \right). \end{array}$
- **63.** (sisteme liniare) Fie $a,b,c\in\mathbb{R}$ și fie sistemul $\begin{cases} x+y+z=c\\ ax+by+(a+b)z=0\\ a^2x+b^2y+(a+b)^2z=0. \end{cases}$

Care afirmatie este adevărată?

- a) Dacă a = b, atunci sistemul este compatibil pentru orice $c \in \mathbb{R}$.
- b) Dacă a=0 și $b\neq 0$, atunci sistemul este compatibil pentru orice $c\in\mathbb{R}$.
- c) Dacă $a \neq b$, atunci sistemul este compatibil determinat, pentru orice $c \in \mathbb{R}$.
- d) Dacă $c \neq 0$, atunci sistemul este incompatibil pentru orice $a, b \in \mathbb{R}$.
- e) Dacă $a \neq 0$ și $b \neq 0$, atunci sistemul este incompatibil pentru orice $c \in \mathbb{R}$.
- f) Dacă $a + b \neq 0$, atunci sistemul este compatibil determinat $\forall c \in \mathbb{R}$.
- **64.** (şiruri) Fie $x_n = (\sqrt{2} + 1)^n$. Pentru orice $n \ge 1$ există numere naturale a_n , b_n astfel încât $x_n = a_n + b_n \sqrt{2}$. Să se calculeze $\ell = \lim_{n \to \infty} \frac{a_n}{b_n}$.
- a) $\ell=0;$ b) nu există; c) $\ell=\sqrt{2};$ d) $\ell=\frac{\sqrt{2}}{2};$ e) $\ell=\infty;$ f) $\ell=-\sqrt{2}.$
- **65.** (limite) Fie $\ell = \lim_{x \nearrow 1} (1-x)^2 f(x) \lim_{x \searrow 1} f(x)$, unde $f(x) = \lim_{n \to \infty} f_n(x)$, iar $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \begin{cases} 1 + 2x + 3x^2 + \dots + nx^{n-1}, & x \le 1 \\ e^{n(1-x)}, & x > 1 \end{cases}$. At unci ℓ este

$$f_n(x) = \begin{cases} 1 + 2x + 3x^2 + \dots + nx^{n-1}, & x \le 1 \\ e^{n(1-x)}, & x > 1 \end{cases}$$
. Atunci ℓ ester

- a) 0; b) -1; c) 1; d) ∞ ; e) nu există; f) $-\infty$.
- **66.** (derivabilitate) Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0 \\ 0, & x \le 0 \end{cases}$

este indefinit derivabilă pe $\mathbb R$ și să se calculeze $f^{(n)}(0)$ pentru $n\geq 1$

- a) 1; b) 0; c) e^{-1} ; d)-1; e) $\ln 2$; f) $e + e^{-1}$.
- 67. (primitive) Fie $f: \mathbb{R} \to \mathbb{R}$ și F o primitivă a sa. Dacă $F(x) \cdot f(x) = x, \forall x \in \mathbb{R}$, și F(0) = 1, atunci f(x)are expresia

a) $f(x) = 1, \forall x \in \mathbb{R}$; b) $f(x) = \frac{x}{\sqrt{1+x^2}}, \forall x \in \mathbb{R}$; c) $f(x) = \sqrt{1+x^2}, \forall x \in \mathbb{R}$; d) $f(x) = x, \forall x \in \mathbb{R}$; e) $f(x) = 0, \forall x \in \mathbb{R}$; f) $f(x) = x^2, \forall x \in \mathbb{R}$.

- 68. (funcții trigonometrice) Perioada principală T a funcției $f(x) = \sin^4 x + \cos^4 x$ este

a) $T = 2\pi$; b) $T = \pi$; c) $T = \frac{\pi}{2}$; d) $T = \frac{\pi}{3}$; e) $T = \frac{\pi}{4}$; f) $T = \frac{\pi}{6}$.

69. (aplicțiile trigonometriei în algebră) Dacă x_1 și x_2 sunt soluțiile ecuației $x^2 + x + 1 = 0$, să se determine pentru câte valori $n \in \mathbb{N}$, $n \le 10$, avem egalitatea $(x_1 + 1)^n + (x_2 + 1)^n = -1$.

a) 0; b) 2; c) 4; d) 10; e) 8; f) nu există astfel de valori.

70. (poliedre - volume) Un trunchi de piramidă regulată are bazele pătrate de laturi a și b (a > b), iar înălțimea este h. Calculați înălțimea piramidei din care s-a format acest trunchi de piramidă. a) $\frac{ah}{a-b}$; b) $\frac{b}{a}h$; c) $\frac{a}{b}h$; d) $\frac{ah}{a+b}$; e) $\frac{bh}{a+b}$; f) $\frac{bh}{a-b}$.

a)
$$\frac{ah}{a-b}$$
; b) $\frac{b}{a}h$; c) $\frac{a}{b}h$; d) $\frac{ah}{a+b}$; e) $\frac{bh}{a+b}$; f) $\frac{bh}{a-b}$