Exercício Prático 2 Parte 1 Laboratório de AC2

Arthur Martinho Medeiros Oliveira - 813168

Daniel Salgado Magalhães - 821469

Objetivo:

Construir uma Unidade Lógica e Aritmética (ULA) de 1 bit, 4 bits e implementar no Logisim e Arduino.

Parte 1 (estudo da ALU usando Logisim):

Início:

```
A=2;
        (
            ou
A=0010) B=1; (
       B=0001)
ou
AND(A,B);
B=3; (ou
B=0011)
OR(A,B);
SOMA(A,B);
A=12; ( ou
A=1100) NOT(A);
B=13;
        (
             ou
B=1101)
AND(B,A);
Fim.
```

Para o programa de teste acima, preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução (a primeira linha já foi realizada, observe que a palavra deverá conter 10 bits, para escrevermos em hexa completamos os dois bits à esquerda com zero):

Instrução	Binário	Valor em Hexa	Resultado em
realizada	(A,B,Op.code)	(0x)	binário
AND(A,B)	0010 0001 00	$(0000\ 1000\ 0100) = 0x084$	0000
OR(A,B)	0010 0011 01	$(0000 \ 1000 \ 1101) = 0x08D$	0011
SOMA(A,B)	0010 0011 11	$(0000\ 1000\ 1111) = 0x8F$	0101
NOT(A)	1100 0011 10	$(0011\ 0000\ 1110) = 0x30E$	0011
AND(B,A)	1100 1101 00	$(0011\ 0011\ 0100) = 0x334$	1100

Os prints de todos os circuitos elaborados (ULA de 1 bit e ULA de 4 bits).

ULA 1 BIT

ULA 4 BITS

Um print de cada um dos testes realizados (use o roteiro indicado no item 6). Não é necessário dar prints quando no programa de teste apenas uma atribuição de valores às variáveis for realizada.

AND(A,B)

OR(A,B)

SOMA(A,B)

NOT(A)

AND(B,A)

Parte 2

Complete agora a tabela a seguir onde todas as instruções que a ULA pode fazer serão testadas.

Instruções	Binário	Resultado da operação
450	0100 0101 0000	1011 - B
CB1	1100 1011 0001	0000 - 0
A32	1010 0011 0010	0001 - 1
C43	1100 0100 0011	0000 - 0
124	0001 0010 0100	1111 - F
785	0111 1000 0101	0111 - 7
9B6	1001 1011 0110	0010 - 2
CD7	1100 1101 0111	0000 - 0
FE8	1111 1110 1000	1110 - E
649	0110 0100 1001	1101 - D
D9A	1101 1001 1010	1001 - 9
FCB	1111 1100 1011	1100 - C
63C	0110 0011 1100	1111 - F
98D	1001 1000 1101	1111 - F
76E	0111 0110 1110	0111 - 7
23F	0010 0011 1111	0010 - 2

O projeto da ULA no Logisim com um printscreen de alguma instrução da tabela sendo executada.

Execução: 785 = 7

Responder:

Se o objetivo fosse realmente testar esta ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja na verdade a tabela que você preencheu deveria ter quantas linhas?

Resposta:

A tabela verdade deveria ter 2¹² (4096) linhas