Metody Inżynierii Wiedzy

Systemy uczące się - podejście klasyczne Dr inż. Michał Majewski

mmajew@pjwstk.edu.pl

materialy: ftp(public): //mmajew/MIW

Podstawowe idee sieci neuronowych

Podstawowe idee sieci neuronowych

Reguła łańcuchowa – pochodne funkcji złożonych

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{D_{\text{ifferentiate outer function}}}{\sum_{\text{Keep the inside the same}}^{\text{Differentiate inner function}}}$$

Metoda gradientu prostego – algorytm numeryczny do minimum lokalnego funkcji celu

Reguła łańcuchowa – pochodne funkcji złożonych

If
$$y = f(u)$$
, where $u = g(x)$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$\frac{dy}{dx} = \begin{cases} D_{\text{ifferentiate outer function} \\ Keep the inside the same} \end{cases}$$
Differentiate inner function

Differentiate
$$f(x) = \cos(2x)$$

$$\frac{dy}{dx} = \begin{pmatrix} \text{Differentiate} \\ \text{outer function} \\ \text{Keep the inside} \\ \text{the same} \end{pmatrix}$$

$$f(x) = \cos(2x)$$

$$f'(x) = -\sin(2x) \cdot 2$$

$$f'(x) = -2\sin(2x)$$

Metoda gradientu prostego – algorytm numeryczny do minimum lokalnego funkcji celu

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)

Metoda gradientu prostego – algorytm numeryczny do minimum lokalnego funkcji celu

Cost Incremental Step

Derivative of Cost

Weight

Weight

Minimum Cost

Weight

Rozważmy funkcję kwadratową $f(x)=x^2$.

Krok 1: Wybierz punkt początkowy, na przykład $x_0=4$.

Krok 2: Oblicz gradient funkcji w punkcie początkowym. Dla funkcji kwadratowej $f(x)=x^2$, gradient to $\frac{df}{dx}=2x$. W punkcie $x_0=4$ gradient wynosi $\frac{df}{dx}=2\times 4=8$.

Krok 3: Przesuń się w kierunku przeciwnym do gradientu o pewną odległość, która jest ustalona przez współczynnik uczenia (learning rate). Załóżmy, że wybieramy współczynnik uczenia równy $\alpha=0.1$. Zatem nowa wartość x_1 będzie wynosić:

$$x_1 = x_0 - lpha imes rac{df}{dx} = 4 - 0.1 imes 8 = 4 - 0.8 = 3.2$$

Krok 4: Powtarzaj te kroki, aż do spełnienia warunku stopu (np. gdy zmiana wartości funkcji między kolejnymi iteracjami jest wystarczająco mała) lub po osiągnięciu maksymalnej liczby iteracji.

Metoda gradientu prostego – algorytm numeryczny do minimum lokalnego funkcji celu

Oto kilka przykładów innych algorytmów optymalizacyjnych używanych w uczeniu maszynowym:

- **1.Metoda spadku gradientu ze spadkiem szybkości uczenia (learning rate decay)**: modyfikuje learning rate w trakcie iteracji, zmniejszając ją wraz z postępem optymalizacji.
- **2.Metoda momentum**: dodaje "momentum" do procesu optymalizacji, czyli uwzględnia poprzednie kierunki i prędkości przemieszczania się.
- **3.Algorytmy adaptacyjnego kroku uczenia (adaptive learning rate algorithms)**: Takie algorytmy, np. Adam, RMSprop, AdaGrad, automatycznie dostosowują wielkość kroku uczenia dla każdego parametru w zależności od jego historycznej wartości gradientu.
- 4. Algorytmy drugiego rzędu (second-order optimization algorithms):

Algorytmy te, np. metoda Newtona, używają informacji z drugich pochodnych funkcji kosztu (takich jak macierz Hessego) do obliczenia kierunku optymalizacji. Mogą być bardziej skuteczne w przypadku funkcji o nieliniowym kształcie lub w przypadku wysokich wymiarów przestrzeni parametrów, ale wymagają one większych obliczeń.

Jako **funkcję kosztu** *loss function* (ocena przewidywań sieci) przyjmiemy sume kwadratów reszt Sum of Squared Residuals (SSR), np. dla 3 danych: SSR = (Observed; - Predicted;)2

Niska wartość funkcji kosztu to dobrze przewidujący model!

Dlatego chcemy **zminimalizować funkcję kosztu**, tj. tak dobrać wagi sieci, aby SSR miało jak najmniejszą wartość.

Skorzystamy z metody gradientu prostego, czyli potrzebujemy pochodnych SSR po wagach.

Szukamy pochodnej funkcji kosztu wobec wagi *w1*

$$\frac{d \, SSR}{d \, w_1} = \frac{d \, SSR}{d \, Predicted} \times \frac{d \, Predicted}{d \, y_1} \times \frac{d \, y_1}{d \, x_1} \times \frac{d \, x_1}{d \, w_1}$$

$$SSR = \sum_{i=1}^{n=3} (Observed_i - Predicted_i)^2$$

Predicted_i = green squiggle_i =
$$y_{1,i}w_3 + y_{2,i}w_4 + b_3$$

$$y_{1,i} = f(x_{1,i}) = \log(1 + e^x)$$
Activation
Function

$$\mathbf{x}_{1,i} = \text{Input}_i \times \mathbf{w}_1 + \mathbf{b}_1$$

Po przekształceniach pochodna funkcji kosztu wobec wagi *w1*

$$\frac{d SSR}{d w_1} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times w_3 \times \frac{e^x}{1 + e^x} \times Input_i$$

$$SSR = \sum_{i=1}^{n=3} (Observed_i - Predicted_i)^2$$

Predicted_i = green squiggle_i =
$$y_{1,i}w_3 + y_{2,i}w_4 + b_3$$

$$y_{1,i} = f(x_{1,i}) = \log(1 + e^x)$$
Activation
Function

$$\mathbf{x}_{1,i} = \text{Input}_i \times \mathbf{w}_1 + \mathbf{b}_1$$

$$\frac{d \, SSR}{d \, w_1} = \sum_{i=1}^{n=3} -2 \times (\text{Observed}_i - \text{Predicted}_i) \times w_3 \times \frac{e^x}{1 + e^x} \times \text{Input}_i$$

$$\frac{d \, SSR}{d \, b_1} = \sum_{i=1}^{n=3} -2 \times (\text{Observed}_i - \text{Predicted}_i) \times w_3 \times \frac{e^x}{1 + e^x} \times \mathbf{1}$$

$$\frac{d \, SSR}{d \, w_2} = \sum_{i=1}^{n=3} -2 \times (\text{Observed}_i - \text{Predicted}_i) \times w_4 \times \frac{e^x}{1 + e^x} \times \text{Input}_i$$

$$\frac{d \, SSR}{d \, b_2} = \sum_{i=1}^{n=3} -2 \times (\text{Observed}_i - \text{Predicted}_i) \times w_4 \times \frac{e^x}{1 + e^x} \times \mathbf{1}$$

$$\frac{d \, SSR}{d \, w_3} = \sum_{i=1}^{n=3} -2 \times (\text{Observed}_i - \text{Predicted}_i) \times y_{1,i}$$

$$\frac{d \, SSR}{d \, w_4} = \sum_{i=1}^{n=3} -2 \times (\text{Observed}_i - \text{Predicted}_i) \times y_{2,i}$$

Inicjalizacja: Losowe inicjalizowanie wag sieci neuronowej, np. korzystając z rozkładu normalnego (średnia 0, odchylenie standardowe 1), a wartości bias 0.

Wagi są parametrami, które definiują zachowanie sieci neuronowej, więc sieć neuronowa jest uznawana za model parametryczny.

Inicjalizacja: Losowe inicjalizowanie wag sieci neuronowej, np. korzystając z rozkładu normalnego (średnia 0, odchylenie standardowe 1), a wartości bias 0.

Popularne techniki inicjalizacji wag:

- 1.Losowa inicjalizacja: Wagi są inicjalizowane losowo, na przykład z rozkładu normalnego.
- **2.Inicjalizacja Xaviera / Glorot**: Inicjalizacja wag *Wij* jest dokonywana zgodnie z zaleceniami zaproponowanymi przez Xaviera Glorota: *U* rozkładem normalnym, *fanin* rozmiar poprzedniej warstwy (liczbę kolumn), *fanout* oznacza rozmiar bieżącej warstwy.

$$W_{ij} \sim U \left[-rac{\sqrt{6}}{\sqrt{fan_{in} + fan_{out}}}, rac{\sqrt{6}}{\sqrt{fan_{in} + fan_{out}}}
ight]$$

- **3.Inicjalizacja He**: Podobnie jak inicjalizacja Xaviera, ale **dostosowana do funkcji aktywacji ReLU** (Rectified Linear Unit), aby lepiej radzić sobie z problemem zanikającego gradientu.
- **4.Inicjalizacja Orthogonalna**: Wagi są inicjalizowane jako macierz ortogonalna, co może pomóc w uniknięciu zjawiska korelacji między wagami. (Jak pomnożymy macierz przez jej otrzymamy macierz jednostkową). Wiersze reprezentują wagi wychodzące z neuronów w jednej warstwie, a kolumny reprezentują wagi wchodzące do neuronów w kolejnej warstwie,

Inicjalizacja: Losowe inicjalizowanie wag sieci neuronowej, np. korzystając z rozkładu normalnego (średnia 0, odchylenie standardowe 1), a wartości bias 0.

Zły dobór inicjalizacji wag w sieciach neuronowych może prowadzić do kilku istotnych konsekwencji:

- **1.Zanikający lub eksplodujący gradient**: Nieprawidłowo zainicjalizowane wagi mogą prowadzić do zjawiska zanikającego lub eksplodującego gradientu, co może znacząco utrudnić proces uczenia się poprzez propagację wsteczną.
- **2.Wolniejszy lub zatrzymany postęp treningu**: Nieoptymalne wagi mogą prowadzić do wolniejszego postępu w treningu lub nawet całkowicie zatrzymać proces uczenia się, co może prowadzić do słabszej jakości modelu.
- **3.Nadmierna czułość na początkowe dane**: Jeśli wagi są zbyt małe lub zbyt duże, model może stać się nadmiernie czuły na dane treningowe, co może prowadzić do przeuczenia lub niedouczenia.
- **4.Niestabilność modelu**: Nieprawidłowo zainicjalizowane wagi mogą prowadzić do niestabilnego zachowania modelu podczas treningu, co może skutkować nieregularnymi wynikami lub trudnościami w zbieżności algorytmu uczenia się.

Funkcja (ang. Rectified Linear Unit) RELU

- Funkcja RELU: $y = max\{x, \emptyset\}$
- Funkcja RELU można aproksymować funkcją ciągłą softplus:

$$\zeta = \log(1 + e^x)$$

• Pochodną funkcji softplus jest funkcja sigmoidalna:

$$\frac{d}{dx}\zeta(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

Funkcja (ang. Rectified Linear Unit) RELU

• Funkcja RELU: $y = max\{x, \emptyset\}$

W większości bibliotek pochodna funkcji ReLU jest zazwyczaj zaimplementowana jako:

$$f'(x) = egin{cases} 0 & \operatorname{dla} x < 0 \ 1 & \operatorname{dla} x > 0 \ 0 & \operatorname{dla} x = 0 \end{cases}$$

Często dokonuje się różnych prób z ustawieniami 0 lub 1 dla x=0, aby zbadać, które zachowanie pochodnej działa lepiej dla danego problemu. Ustawienie pochodnej na 1 może umożliwić neuronowi nadal uczenie się nawet w przypadku zerowego sygnału wejściowego.

Najczęściej stosowane funkcje aktywacji

rodzaj	równanie	pochodna	zastosowanie
skokowa	$f(s) = \begin{cases} 1 & s > 0 \\ 0 & s \le 0 \end{cases}$	_	klasyfikacja
liniowa	f(s) = s	f'(s) = 1	skalowanie
unipolarna	$f(s) = \frac{1}{1 + e^{-s}}$	f'(s) = f(s)(1 - f(s))	mod. nielin.
bipolarna	$f(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$	$f'(s) = (1 - f(s) \cdot f(s))$	mod. nielin.
arc tang.	f(s) = atan(s)	$f'(s) = \frac{1}{1+s^2}$	mod. nielin.

Zanikający lub eksplodujący gradient

- Podczas propagacji wstecznej gradienty stają się coraz mniejsze gdy przechodzimy coraz głębiej w sieci.
- Neurony w wcześniejszych warstwach uczą się bardzo wolno w porównaniu do neuronów w późniejszych warstwach.
- Spadek wartości gradientu jest proporcjonalny do głębokości sieci.
- Problem znikającego gradientu występuje głównie przy użyciu funkcji sigmoidalnej i tangens hiperboliczny.
- Możemy uniknąć tego problemu, stosując funkcje aktywacji ReLU podczas treningu głębokich sieci neuronowych.

Zanikający lub eksplodujący gradient

- Eksplodujące gradienty osiągają bardzo duże wartości podczas propagacji wstecznej. Powodem tego jest przykładowo zbyt duża wartość początkowa wag.
- W skrajnych przypadkach prowadzi to do utraty stabilności treningu i uniemożliwienia osiągnięcia odpowiedniej wydajności sieci.
- Aby uniknąć problemu eksplodującego gradientu, stosuje się różne techniki, takie jak ograniczenie wartości gradientu, użycie stabilnych metod optymalizacyjnych, jak również odpowiednie skalowanie i inicjalizacja wag.

Regularyzacja L2

Regularyzacja L2 jest techniką stosowaną w celu zapobiegania przeuczeniu się modelu poprzez karanie dużych wartości wag w sieci neuronowej. Działa poprzez dodanie kary do funkcji kosztu proporcjonalnej do kwadratu wartości wag.

W przypadku sieci neuronowej, koszt z regularyzacją L2 może być zapisany jako:

$$J_{
m regularized} = J_{
m original} + rac{\lambda}{2} \sum_i \sum_j W_{ij}^2$$

Gdzie:

- $J_{
 m original}$ to oryginalna funkcja kosztu,
- λ to parametr regularyzacji L2 (reg_lambda),
- ullet W_{ij} to waga połączenia między neuronami i i j.

Parametr `reg_lambda` kontroluje, jak bardzo wagi sieci są penalizowane za ich wielkość.

lle neuronów nieliniowych powinna mieć sieć?

Optymalizacja architektury sieci jest często wykonywana przez **eksperymentowanie z różnymi konfiguracjami sieci** podczas procesu uczenia i walidacji: **walidacja krzyżowa** lub wykorzystanie zbioru testowego.

Istnieją **techniki automatycznej optymalizacji architektury** sieci:

- **1.Grid Search:** przetestowaniu wszystkich możliwych kombinacji hiperparametrów zdefiniowanych w określonym zakresie (kosztowna obliczeniowo).
- **2.Random Search:** losowo wybiera zestawy hiperparametrów do przetestowania.
- **3.Metody ewolucyjne:** inspirowane biologiczną ewolucją do przeszukiwania przestrzeni hiperparametrów.
- **4.Bayesian Optimization:** Jest to metodologia oparta na probabilistycznym modelowaniu
- **5.Automatyczne strojenie hiperparametrów (AutoML):** To podejście wykorzystuje zaawansowane techniki do automatycznego strojenia hiperparametrów.

Implementacja i trening prostego modelu sieci neuronowej dla regresji

Celem tego projektu jest zrozumienie i praktyczna implementacja prostego modelu sieci neuronowej do zadania regresji.

1. Implementacja klasy NeuralNetworkRegression:

- 1. Zaimplementuj klasę NeuralNetworkRegression, która będzie zawierała metody do
 - inicjalizacji wag,
 - propagacji sygnału w przód
 - i wstecz oraz
 - trenowania sieci neuronowej.
- 2. Wykorzystaj funkcję aktywacji ReLU oraz jej pochodną.
- 3. Dodaj historię wartości MSE i R^2 podczas treningu.

2. Przygotowanie danych:

- 1. Wczytaj dane z pliku tekstowego *Dane/daneXX.txt* (XX od 1 do 16).
- 2. Podziel dane na cechy (X) i etykiety (y).
- 3. Wykonaj <u>normalizację</u> danych: np. za pomocą *MinMaxScaler*.
- 4. Podziel dane na zbiór treningowy i testowy za pomocą funkcji train_test_split.

3. Trenowanie sieci neuronowej:

- 1. Zainicjalizuj obiekt klasy NeuralNetworkRegression z odpowiednimi parametrami.
- 2. Trenuj sieć neuronową na zbiorze treningowym przez określoną liczbę epok.
- 3. Zapisz metryki MSE i R^2 do oceny jakości predykcji podczas treningu.

4. Ocena wyników:

- 1. Po zakończeniu treningu, oblicz wartości MSE i R^2 dla danych treningowych i testowych.
- 2. Wyświetl wykresy zmiany wartości MSE i R^2 w kolejnych epokach treningu.
- 3. Wygeneruj wykres z punktami danych treningowych i testowych oraz przewidywaniami sieci neuronowej.

Przykładowa strona raportu dla *Dane/dane3.txt*:

Implementacja i trening prostego modelu sieci

neuronowej dla regresji

public/mmajew/MIW/07/
00_neural_network_step_by_step.py

Implementacja i trening prostego modelu sieci neuronowej dla regresji

1. Propagacja sygnału w przód (forward propagation):

- W procesie propagacji sygnału w przód, dla danej próbki wejściowej X, obliczamy aktywacje neuronów w warstwie ukrytej (H) oraz w warstwie wyjściowej (\hat{Y}) .
- Aktywacje w warstwie ukrytej obliczane są jako iloczyn skalarny między wejściami X a wagami W_{input_hidden} , do których dodajemy biasy b_{hidden} . Następnie stosujemy funkcję aktywacji ReLU, co daje nam aktywacje H.
- Aktywacje w warstwie wyjściowej obliczane są w podobny sposób, z tym że jako
 wejścia bierzemy aktywacje z warstwy ukrytej, a nie dane wejściowe. Otrzymane
 aktywacje O są naszymi przewidywanymi wartościami.
- Matematycznie można to zapisać jako:

$$H = \mathrm{ReLU}(X \cdot W_{input_hidden} + b_{hidden})$$

$$\hat{Y} = \mathrm{ReLU}(H \cdot W_{hidden_output} + b_{output})$$

Gdzie:

- X to macierz danych wejściowych o wymiarach (n,m), gdzie n to liczba próbek, a m to liczba cech,
- W_{input_hidden} to macierz wag między warstwą wejściową a ukrytą o wymiarach (m,k), gdzie k to liczba neuronów w warstwie ukrytej,
- ullet b_{hidden} to wektor biasów dla warstwy ukrytej o długości k,
- H to macierz aktywacji warstwy ukrytej o wymiarach (n,k),
- W_{hidden_output} to macierz wag między warstwą ukrytą a wyjściową o wymiarach (k,1),
- b_{output} to wektor biasów dla warstwy wyjściowej o długości 1,
- ullet to przewidywane wartości regresji dla danych wejściowych.

Implementacja i trening prostego modelu sieci neuronowej dla regresji

1. Propagacja sygnału w przód (forward propagation):

- W procesie propagacji sygnału w przód, dla danej próbki wejściowej X, obliczamy aktywacje neuronów w warstwie ukrytej (H) oraz w warstwie wyjściowej (\hat{Y}) .
- ullet Aktywacje w warstwie ukrytej obliczane są jako iloczyn skalarny między wejściami X a wagami W_{input_hidden} , do których dodajemy biasy b_{hidden} . Następnie stosujemy funkcję aktywacji ReLU, co daje nam aktywacje H.
- Aktywacje w warstwie wyjściowej obliczane są w podobny sposób, z tym że jako wejścia bierzemy aktywacje z warstwy ukrytej, a nie dane wejściowe. Otrzymane aktywacje O są naszymi przewidywanymi wartościami.
- Matematycznie można to zapisać jako:

$$egin{aligned} H &= \mathrm{ReLU}(X \cdot W_{input_hidden} + b_{hidden}) \ \hat{Y} &= \mathrm{ReLU}(H \cdot W_{hidden\ output} + b_{output}) \end{aligned}$$

ReLU(Hidden input)

Hidden input:

X * waga + bias

Hidd Out * waga + bias

Y output:

ReLU(Y input)

Hidden Output:

Implementacja i trening prostego modelu sieci neuronowej dla regresji

2. Propagacja wsteczna błędu (backpropagation):

- W procesie propagacji wstecznej błędu, obliczamy gradienty funkcji kosztu
 względem wag w sieci neuronowej, aby zaktualizować wagi i minimalizować błąd.
- Najpierw obliczamy błąd w warstwie wyjściowej jako różnicę między prawdziwymi etykietami Y a przewidywanymi wartościami \hat{Y} .
- Następnie obliczamy gradient funkcji kosztu (np. MSE) względem wag między warstwą ukrytą a wyjściową W_{hidden_output} , korzystając z reguły łańcuchowej.
- ullet Podobnie obliczamy gradient błędu w warstwie ukrytej, aby zaktualizować wagi między warstwą wejściową a ukrytą W_{input_hidden} .
- Wagi są aktualizowane w kierunku przeciwnym do gradientu, z uwzględnieniem współczynnika uczenia oraz opcjonalnej regularyzacji (np. L2).

Matematycznie można to zapisać jako:

$$ext{Output error} = Y - \hat{Y}$$

$$ext{Gradient for } W_{hidden_output} = H^T \cdot ext{Output error}$$

$$ext{Hidden error} = ext{Output error} \cdot (W_{hidden_output})^T \cdot ext{ReLU de}$$

Gradient for $W_{input_hidden} = X^T \cdot \text{Hidden error}$

Gdzie:

- Y to prawdziwe etykiety,
- ReLU $\operatorname{derivative}(H)$ to pochodna funkcji aktywacji ReLU dla aktywacji warstwy ukrytej H.

Projekt 4.a (5 pkt)

Szkic: public/mmajew/MIW/07/ 01 neural network simple.py

Dla danych *Dane/daneXX.txt* dla *XX*={4,7,9,15,16} dobierz parametry sieci neuronowej:

- funkcję aktywacji i jej pochodną, (NIE wolno zastosować ReLU we wszystkich zestawach XX danych)
- sposób inicjalizacji wag i bias'ów,
- · parametr uczenia
- parametru regularyzacji L2 reg lambda

tak, aby uzyskać (priorytetem jest wysoka poprawność przewidywań sieci):

- metrykę r^2 score jak najbliżej 1 (powyżej 0.9 jest dobrze, ale czasem nie da rady więcej jak 0.5 uzyskać),
- metrykę MSE jak najbliższą 0.00,

dla jak najmniejszej liczby:

- epoch i
- neuronów.

Wynik Twoich studiów przedstaw w formie raportu w pdf: załącz wykresy optymalnych rozwiązań z wyszczególnieniem w/w parametrów (przykładowa strona raportu na poprzednim slajdzie).

Uwaga: dla każdego zestawu danych będzie inna sieć.