Homework 5: EM for a Simple Topic Model

There is a mathematical component and a programming component to this homework. Please submit ONLY your PDF to Canvas, and push all of your work to your Github repository. If a question requires you to make any plots, please include those in the writeup.

Background: In this homework, you will implement a very simple kind of topic model. Latent Dirichlet allocation, as we discussed in class, is a topic model in which each document is composed of multiple topics. Here we will make a simplified version in which each document has just a single topic. As in LDA, the vocabulary will have V words and a topic will be a distribution over this vocabulary. Let's use K topics and the kth topic is a vector $\boldsymbol{\beta}_k$, where $\boldsymbol{\beta}_{k,v} \geq 0$ and $\sum_v \boldsymbol{\beta}_{k,v} = 1$. Each document can be described by a set of word counts \boldsymbol{w}_d , where $\boldsymbol{w}_{d,v}$ is a nonnegative integer. Document d has N_d words in total, i.e., $\sum_v w_{d,v} = N_d$. Let's have the unknown overall mixing proportion of topics be $\boldsymbol{\theta}$, where $\boldsymbol{\theta}_k \geq 0$ and $\sum_k \theta_k = 1$. Our generative model is that each of the D documents has a single topic $z_d \in \{1, \ldots, K\}$, drawn from $\boldsymbol{\theta}$; then, each of the words is drawn from $\boldsymbol{\beta}_{z_d}$.

Problem 1 (Complete Data Log Likelihood, 4 pts)

Write the complete-data log likelihood $\ln p(\{z_d, w_d\}_{d=1}^D \mid \theta, \{\beta_k\}_{k=1}^K)$. It may be convenient to write z_d as a one-hot coded vector z_d .

Solution

$$\ln p(\{z_d, w_d\}_{d=1}^D \mid \theta, \{\beta_k\}_{k=1}^K) = \ln \prod_{d=1}^D p(z_d, w_d \mid \theta, \{\beta_k\}_{k=1}^K)$$

since z_d follows a $Categorical_K(\theta_k)$, we get

$$\ln p(\{z_d, \mathbf{w}_d\}_{d=1}^D \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_k\}_{k=1}^K) = \ln \prod_{d=1}^D \prod_{k=1}^K \left[\boldsymbol{\theta}_k p(\mathbf{w}_d \mid \{\boldsymbol{\beta}_k\}_{k=1}^K) \right]^{z_{dk}}$$

since w_d follows a Multinomial_{N_d} $(\beta_{z_{dk}})$, we get

$$\ln p(\{z_d, w_d\}_{d=1}^D \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_k\}_{k=1}^K) = \ln \prod_{d=1}^D \prod_{k=1}^K \left[\boldsymbol{\theta}_k \frac{\Gamma(N_d+1)}{\prod_i \Gamma(w_{id}+1)} \prod_{i=1}^{N_d} \left(\beta_{ki}^{w_{id}} \right) \right]^{z_{dk}}$$

$$\ln p(\{z_d, w_d\}_{d=1}^D \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_k\}_{k=1}^K) = \sum_{d=1}^D \sum_{k=1}^K z_{dk} \ln \left[\boldsymbol{\theta}_k \frac{\Gamma(N_d+1)}{\prod_i \Gamma(w_{id}+1)} \prod_{i=1}^{N_d} (\boldsymbol{\beta}_{ki}^{w_{id}}) \right]$$

we finally get:

$$\ln p(\{z_d, \boldsymbol{w}_d\}_{d=1}^D \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_k\}_{k=1}^K) = \sum_{d=1}^D \sum_{k=1}^K z_{dk} \left[\ln \boldsymbol{\theta}_k + \ln \Gamma(N_d + 1) - \sum_{i=1}^{N_d} \ln \Gamma(w_{id} + 1) + \sum_{i=1}^{N_d} w_{vd} \ln \beta_{ki} \right]$$

Problem 2 (Expectation Step, 5pts)

Introduce estimates $q(z_d)$ for the posterior over the hidden variables z_d . What did you choose and why? Write down how you would determine the parameters of these estimates, given the observed data $\{w_d\}_{d=1}^D$ and the parameters θ and $\{\beta_k\}_{k=1}^K$.

Solution

We have
$$q(z_{kd}) \propto p(z_{kd}=1 \mid \theta) \prod_{i=1}^{N_d} p(w_{id} \mid z_{kd}=1, \beta_{k=1..K})$$

It's simply the prior times the likelihood.

We take
$$p(z_{kd} = 1 | \theta) = \theta_k$$

$$q(z_{kd}) \propto \theta_k \prod_{i=1}^{N_d} p(w_{id} | z_{kd} = 1, \beta_{k=1..K})$$

 w_d is drawn from a $Multinomial(\beta_k)$:

$$q(z_{kd}) \propto \theta_k \prod_{i=1}^{N_d} \beta_{ki}^{w_{id}}$$

We then normalize and get:

$$q(z_d) = \left(\frac{\theta_k \prod_{i=1}^{N_d} \beta_{ki}^{w_{id}}}{\sum_{k=1}^{K} \theta_k \prod_{i=1}^{N_d} \beta_{ki}^{w_{id}}}\right)_{k=1...K}$$

Problem 3 (Maximization Step, 5pts)

With the $q(z_d)$ estimates in hand from the E-step, derive an update for maximizing the expected complete data log likelihood in terms of θ and $\{\beta_k\}_{k=1}^K$.

- (a) Derive an expression for the expected complete data log likelihood for fixed γ 's.
- (b) Find a value of θ that maximizes the expected complete data log likelihood derived in (a). You may find it helpful to use Lagrange multipliers in order to force the constraint $\sum \theta_k = 1$. Why does this optimized θ make intuitive sense?
- (c) Apply a similar argument to find the value of $\beta_{k,v}$ that maximizes the expected complete data log likelihood.

Solution

a- In this 'Maximization' step, we suppose γ given (from the 'Expectation' step) and fixed

$$\begin{split} \mathbb{E}_{z} \big[\ln p(\{z_{d}, \boldsymbol{w}_{d}\}_{d=1}^{D} \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_{k}\}_{k=1}^{K}) \big] &= \sum_{d=1}^{D} \sum_{k=1}^{K} \gamma_{dk} \ln p(\{z_{d}, \boldsymbol{w}_{d}\} \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_{k}\}_{k=1}^{K}) \\ \mathbb{E}_{z} \big[\log p(\{z_{d}, \boldsymbol{w}_{d}\}_{d=1}^{D} \mid \boldsymbol{\theta}, \{\boldsymbol{\beta}_{k}\}_{k=1}^{K}) \big] &= \sum_{d=1}^{D} \sum_{k=1}^{K} \gamma_{dk} \Big[\ln \theta_{k} + \ln \Gamma(N_{d}+1) - \sum_{i=1}^{N_{d}} \ln \Gamma(w_{id}+1) + \sum_{v=1}^{V} w_{vd} \ln \beta_{kv} \Big] \end{split}$$

b - We derive the previous expression by θ_k including the Lagrangian from the constraint: $\sum \theta_k = 1$

$$\begin{split} &\frac{\partial}{\partial \theta_k} \sum_{d=1}^D \sum_{k=1}^K \gamma_{dk} \Big[\ln \theta_k + \ln \Gamma(N_d + 1) - \sum_{i=1}^{N_d} \ln \Gamma(w_{id} + 1) + \sum_{v=1}^V w_{vd} \ln \beta_{kv} + \lambda (1 - \sum_{k=1}^K \theta_k) \Big] = 0 \\ &\frac{\partial}{\partial \theta_k} \sum_{d=1}^D \sum_{k=1}^K \gamma_{dk} \Big[\ln \theta_k + \lambda (1 - \sum_{k'=1}^K \theta_k') \Big] = 0 \end{split}$$

This implies:

$$\sum_{d=1}^{D} \gamma_{dk} \left(\frac{1}{\theta_k} - \lambda \right) = 0$$

$$\sum_{d=1}^{D} \gamma_{dk} \left(1 - \lambda \theta_k \right) = 0$$

$$\sum_{d=1}^{D} \gamma_{dk} = \sum_{d=1}^{D} \lambda \theta_k$$

$$\sum_{d=1}^{D} \gamma_{dk} = \lambda D \theta_k$$

hence, we get the following equation (1):

$$\theta_k = \frac{1}{\lambda D} \sum_{d=1}^{D} \gamma_{dk}$$

Now let's sum over *k*:

$$\sum_{k=1}^{K} \theta_k = \frac{1}{\lambda D} \sum_{k=1}^{K} \sum_{d=1}^{D} \gamma_{dk}$$

We know that
$$\sum_{k=1}^K \theta_k = 1$$
 and $\sum_{k=1}^K \gamma_{dk} = \sum_{k=1}^K q(z_{dk}) = 1$ so $\sum_{k=1}^K \sum_{d=1}^D \gamma_{dk} = D$
We now have $1 = \frac{D}{\lambda D}$ so $\lambda = 1$

Replacing λ in equation (1), we get:

$$\theta_k = \frac{1}{D} \sum_{d=1}^{D} \gamma_{dk}$$

which makes a lot of sense, θ_k becomes the average probability of documents being of topic k.

c- We want to derive the expected log likelihood with respect to β_{kv} .

We add the Lagrangian for the constraint: $\sum_{v=1}^{V} \beta_{kv} = 1$

$$\begin{split} \frac{\partial}{\partial \beta_{kv}} \Big[\sum_{d=1}^{D} \sum_{k=1}^{K} \gamma_{dk} \Big(\ln \theta_k + \ln \Gamma(N_d + 1) - \sum_{i=1}^{N_d} \ln \Gamma(w_{id} + 1) + \sum_{v=1}^{V} w_{vw} \ln \beta_{kv} + \lambda (1 - \sum_{v=1}^{V} \beta_{kv}) \Big) \Big] &= 0 \\ \sum_{d=1}^{D} \gamma_{dk} (\frac{w_{vd}}{\beta_{kv}} - \lambda) &= 0 \\ \sum_{d=1}^{D} \gamma_{dk} (w_{vd} - \lambda \beta_{kv}) &= 0 \\ \sum_{d=1}^{D} \gamma_{dk} w_{vd} &= \sum_{d=1}^{D} \lambda \beta_{kv} \\ \sum_{d=1}^{D} \gamma_{dk} w_{vd} &= \lambda D \beta_{kv} \end{split}$$

We get the following equation (2):

$$\beta_{kv} = \frac{1}{\lambda D} \sum_{d=1}^{D} \gamma_{dk} w_{vd}$$

Let's sum over *v*:

$$\sum_{v=1}^{V}\beta_{kv} = \frac{1}{\lambda D}\sum_{v=1}^{V}\sum_{d=1}^{D}\gamma_{dk}w_{vd}$$

We know that $\sum_{v=1}^{V} \beta_{kv} = 1$:

$$\sum_{v=1}^{V} \sum_{d=1}^{D} \gamma_{dk} w_{vd} = \lambda D$$

$$\sum_{d=1}^{D} \gamma_{dk} \left(\sum_{v=1}^{V} w_{vd} \right) = \lambda D$$

By definition $\sum_{v=1}^{V} w_{vd} = N_d$

$$\lambda = \frac{1}{D} \sum_{d=1}^{D} \gamma_{dk} N_d$$

We plug this into equation (2):

$$\hat{\beta}_{kv} = \frac{D}{\sum_{d=1}^{D} \gamma_{dk} N_d} \frac{1}{D} \sum_{d=1}^{D} \gamma_{dk} w_{vd}$$

Finally,

$$\hat{eta}_{kv} = rac{\sum_{d=1}^D \gamma_{dk} w_{vd}}{\sum_{d=1}^D \gamma_{dk} N_d}$$

Problem 4 (Implementation, 10pts)

Implement this expectation maximization algorithm and try it out on some text data. In order for the EM algorithm to work, you may have to do a little preprocessing.

The starter code loads the text data as a numpy array that is 5224951×3 in size. As shown below, the first number in the numpy array represents the document_id, the second number represents a word_id, and the third number is the count the word appears.

[doc_id, word_id, count]

A dictionary of the mappings between word ids and words is also provided. The full dataset description can be found at http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.data.html.

Plot the objective function as a function of iteration and verify that it never increases. Try different numbers of topics and report what topics you find by, e.g., listing the most likely words.

Solution

After an extensive use of Pandas' pivot_table and merge functions, I was able to get an iteration (step E, step M and computation of the expected complete data log likelihood) under 14 seconds for K=10 and 23 for K=20.

I have initialized theta randomly and used a Dirichelet distribution to initialize beta.

I had to use a exp and a ln function to compute the γ_{dk} matrix to avoid Python rounding up to zero when multiplying powers of probabilities $(\prod_{i=1}^{N_d} \beta_{ki}^{w_{id}})$.

My loss function converges and never increases but unfortunately I have noticed that after a few iterations my matrix beta converges towards a matrix where all $beta_k$ are the almost the same. Which means that the most 'likely' word of a topic is always the same one, the word with the most counts across documents: word number 23314: 'researched'.

All of this makes this model useless.

Figure 1: Theta initialization for K=10

Figure 2: Initialization of a vector beta

Figure 3: Loss function vs iteration

Problem 5 (Calibration, 1pt)

Approximately how long did this homework take you to complete? 35h