Department of Physics and Astronomy Heidelberg University

Bachelor thesis in Physics submitted by

Mathieu Kaltschmidt

from Kappel-Grafenhausen

Functional Renormalization and Quantum Gravity

This bachelor thesis has been carried out by

Mathieu Kaltschmidt

at the

Institute for Theoretical Physics

at

Heidelberg University

under the supervision of

Prof. Dr. Jan M. Pawlowski

Functional Renormalization and Quantum Gravity

Mathieu Kaltschmidt

Abstract

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Zusammenfassung

Contents

1.	Introduction	1
2.	Functional methods in Quantum Field Theory	3
	2.1. Generating Functionals and Correlation Functions	3
	2.2. The Functional Renormalization Group	4
	2.2.1. Renormalization group consistency	5
	2.3. The Renormalisation Group Flow for the Effective Action	5
3.	Fundamentals of General Relativity	7
	3.1. The Einstein Equations	7
	3.2. Perturbative Non-Renormalizability of Gravity	9
4.	Quantum Gravity in the Einstein-Hilbert Truncation	11
	4.1. RG approach to Quantum Gravity	11
	4.2. Truncations of the theory space	11
	4.3. The effective action for Quantum Gravity	11
	4.4. Non-Gaussian Fixed Points	12
5.	Conclusions and Outlook	13
A.	Mathematical Appendix	15
	A.1. Heat Kernel techniques	15
	A.2. York decomposition	15
B.	Numerical Implementation	17
Re	ferences	I
Lis	et of Figures	111

Introduction

Throughout this thesis we use units such that $\hbar = c = G \equiv 1$.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Functional methods in Quantum Field Theory

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.1. Generating Functionals and Correlation Functions

We consider a theory setting of N scalar fields $\varphi_a(x), a \in \{1, ..., N\}$ in d-dimensional Euclidean space. The corresponding partition sum in presence of sources $J_a(x)$ reads

$$Z[J] = \int \mathcal{D}\varphi \,\mathrm{e}^{-\mathcal{S}[\varphi] + J \cdot \varphi} \,. \tag{2.1}$$

The information content of the partition sum results mainly from the classical action functional $S[\varphi]$, which determines the classical field equations

$$\frac{\delta S}{\delta \varphi(x)} = 0. {(2.2)}$$

Notation: The scalar product sums over field components and integrates over all space ...

$$J \cdot \varphi = \int_{x} J_{a}(x) \ \varphi_{a}(x) = \int_{p} \tilde{J}_{a}(p) \ \tilde{\varphi}_{a}(p)$$
 (2.3)

with

$$\int_{x} = \int_{\mathbb{R}^{d}} d^{d}x \quad \text{and} \quad \int_{p} = \int_{\mathbb{R}^{d}} \frac{d^{d}p}{(2\pi)^{d}}$$
 (2.4)

Mean field description:

$$\phi := \langle \varphi \rangle = \frac{1}{Z} \frac{\delta Z}{\delta J} \bigg|_{I=0} = \int \mathcal{D}\varphi \ \varphi \ e^{-\mathcal{S}[\varphi] + J \cdot \varphi}$$
 (2.5)

Higher correlations:

$$\langle \varphi_1 \cdots \varphi_n \rangle := \langle \varphi^n \rangle = \frac{1}{Z} \frac{\delta^n Z}{\delta^n J} = \int \mathcal{D}\varphi \ \varphi_1 \cdots \varphi_n \ e^{-\mathcal{S}[\varphi] + J \cdot \varphi}$$
 (2.6)

We obtain the Schwinger functional by taking the logarithm:

$$W[J] = \ln Z[J] \tag{2.7}$$

For the special case of n=2 the correlation function yields the connected 2-point function which is also known as the propagator $G_{ab}(x,y)$ correlating the field φ_a at spacetime point x with the field φ_b at y.

$$G_{ab}(x,y) = \frac{\delta^2 W[J]}{\delta J_a(x)\delta J_b(y)} = \frac{\delta}{\delta J_a(x)} \left(\frac{1}{Z} \frac{\delta Z}{\delta J_b(y)} \right)$$

$$= \frac{1}{Z} \left(\frac{\delta^2 Z}{\delta J_a(x)\delta J_b(y)} \right) - \frac{1}{Z^2} \left(\frac{\delta Z}{\delta J_a(x)} \right) \left(\frac{\delta Z}{\delta J_b(y)} \right)$$

$$= \langle \varphi_a(x)\varphi_b(y) \rangle - \varphi_a(x)\varphi_b(y) = \langle \varphi_a(x)\varphi_b(y) \rangle_c$$
(2.8)

The Effective Action:

The effective action can be obtained by performing a Legendre transform of the Schwinger funtional, i. e.:

$$\Gamma[\phi] = \sup_{J} \left\{ \int_{x} J(x)\phi(x) - \mathcal{W}[J] \right\} = \int_{x} J_{\text{sub}}(x)\phi(x) - \mathcal{W}[J_{\text{sub}}]$$
 (2.9)

Quantum equation of motion:

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = J(x) \tag{2.10}$$

Dyson-Schwinger equation:

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = \frac{\delta\mathcal{S}}{\delta\varphi(x)} \left[\varphi = G \cdot \frac{\delta}{\delta\phi} + \phi \right]$$
 (2.11)

2.2. The Functional Renormalization Group

• Kadanoff Block-Spin model

• maybe visualization of Ising model + phase transitions

2.2.1. Renormalization group consistency

Cutoff independence of the full quantum effective action:

$$\Lambda \frac{\mathrm{d}\Gamma}{\mathrm{d}\Lambda} = 0 \tag{2.12}$$

Full effective action in a generic representation:

$$\Gamma[\phi] = \mathcal{D}_{\Lambda}[\phi] + \Gamma_{\Lambda}[\phi] \tag{2.13}$$

Formal discussion:

$$\Gamma_k[\phi] = \Gamma_{\Lambda}[\phi] + \int_{\Lambda}^{k} \frac{\mathrm{d}k'}{k'} \mathcal{F}_{k'}[\phi]$$
 (2.14)

2.3. The Renormalisation Group Flow for the Effective Action

We introduce the RG time scale *t*:

$$\partial_t = \frac{\partial}{\partial \ln(k/\Lambda)} = \frac{k}{\Lambda} \frac{\partial}{\partial (k/\Lambda)} = k \partial_k$$
 (2.15)

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \left[\frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k \right]$$

$$= \frac{1}{2} \int_p \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} (p, -p) \, \partial_t R_k(p^2)$$
(2.16)

This translates directly into the following diagrammic representation:

$$\partial_t \bigcirc = \frac{1}{2} \bigcirc$$

where $\otimes = \partial_t R_k$ represents the insertion of the respective regulator.

Figure 2.1.: Flow of Γ_k through infinite-dimensional theory space for different regulators, inspired by [5]

Fundamentals of General Relativity

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

3.1. The Einstein Equations

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

The Einstein-Hilbert action:

$$S_{\rm EH}[g_{\mu\nu}] = \frac{1}{16\pi G} \int_x \sqrt{-\det g_{\mu\nu}} (\mathcal{R} - 2\Lambda)$$
 (3.1)

Varying this action as usual yields the Einstein equations in absence of matter:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 0 \tag{3.2}$$

where we used $G_{\mu\nu} = \mathcal{R}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R}$.

Diffeomorphism invariance, Lie derivatives:

$$\mathcal{L}_{\omega}\phi = \omega^{\mu}\partial^{\mu}\phi = \omega^{\mu}\nabla^{\mu}\phi \tag{3.3}$$

Now we include matter.

Energy-Momentum Tensor:

$$T_{\mu\nu} = \frac{-2}{\sqrt{-\det g_{\mu\nu}}} \frac{\delta \mathcal{S}_{\text{matter}}}{\delta g^{\mu\nu}}$$
(3.4)

Matter part of the action for a minimally coupled scalar field ϕ :

$$S_{\text{matter}}[g_{\mu\nu}, \phi] = -\frac{1}{2} \int_{x} \sqrt{-\det g_{\mu\nu}} \left(g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi - g_{\mu\nu} V(\phi) \right)$$
(3.5)

From this, we get the Einstein equations including matter by demanding the variation $\sqrt{-\det g_{\mu\nu}} \frac{\delta S}{\delta q^{\mu\nu}}$ to vanish. This yields:

$$\frac{1}{8\pi G} \left[\mathcal{R}_{\mu\nu} - \frac{1}{2} (\mathcal{R} - 2\Lambda) g_{\mu\nu} \right] = T_{\mu\nu} \tag{3.6}$$

3.2. Perturbative Non-Renormalizability of Gravity

Quantum Gravity in the Einstein-Hilbert Truncation

4.1. RG approach to Quantum Gravity

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4.2. Truncations of the theory space

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4.3. The effective action for Quantum Gravity

4.4. Non-Gaussian Fixed Points

Conclusions and Outlook

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

After this fourth paragraph, we start a new paragraph sequence. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there

a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Appendix A.

Mathematical Appendix

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

A.1. Heat Kernel techniques

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

A.2. York decomposition

Appendix B.

Numerical Implementation

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

B.1. Determination of the Fixed Points

References

- [1] Juergen Berges, Nikolaos Tetradis, and Christof Wetterich. "Nonperturbative renormalization flow in quantum field theory and statistical physics". In: *Phys. Rept.* 363 (2002), pp. 223–386. arXiv: hep-ph/0005122 [hep-ph].
- [2] Jens Braun, Marc Leonhardt, and Jan M. Pawlowski. "Renormalization group consistency and low-energy effective theories". In: (2018). arXiv: 1806.04432 [hep-ph].
- [3] Jan. M. Pawlowski et al. *The Functional Renormalization Group & applications to gauge theories and gravity*. Lecture Notes (Link). 2019.
- [4] Martin Reuter and Frank Saueressig. "Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation". In: *Phys. Rev.* D65 (2002), p. 065016. arXiv: hep-th/0110054 [hep-th].
- [5] Janosh Riebesell. "Functional Renormalization Analytically Continued". Master thesis. Heidelberg University, 2017. arXiv: 1712.09863 [hep-th].
- [6] Timo Weigand. Quantum Field Theory I+II. Lecture Notes (Link). 2014.

List of Figures

2.1. Flow of Γ_k through infinite-dimensional theory space for different regulators 6

Acknowledgements

First and foremost i would like to thank my supervisor Jan Pawlowski for giving me the opportunity to work on such interesting topic and for his excellent guidance throughout the last months. I learned a lot about theoretical physics ...

Group, proofreaders, Heidelberger dudes..

Not to forget, i have to thank all my friends from home, especially Bastian, Chiara, Helena, Jakob, Jana and Lea for all the amazing time we spent together during the last years.

Lastly, i want to thank my parents Marie-Paule and Bernd Kaltschmidt and my sister Céline for their constant support and love and for always allowing me to pursue my dreams. I love you!

Declaration of Authorship

I hereby certify that this thesis has been composed by me and is based on my own work
unless stated otherwise.
Heidelberg,