Parallel Algorithms & the PRAM Model

Advanced Topics Spring 2009

Prof. Robert van Engelen

Overview

- The PRAM model of parallel computation
- Simulations between PRAM models
- Work-time presentation framework of parallel algorithms
- Design and analysis of parallel algorithms

The PRAM Model of Parallel Computation

- Parallel Random Access Machine (PRAM)
- Natural extension of RAM: each processor is a RAM
- Processors operate synchronously
- Earliest and best-known model of parallel computation

Shared memory with *m* locations

p processors, each with private memory

All processors operate synchronously, by executing load, store, and operations on data

Synchronous PRAM versus Asynchronous PRAM

- The synchronous PRAM model has a similarity with data-parallel execution on a SIMD machine
 - All processors execute the same program
 - All processors execute the same PRAM step instruction stream in "lock-step"
 - Effect of operation depends on local data
 - Instructions can be selectively disabled (for if-then-else flow)
- The asynchronous PRAM model
 - Several competing models
 - No lock-step

Classification of PRAM Model

- A PRAM step ("clock cycle") consists of three phases
 - 1. Read: each processor may read a value from shared memory
 - 2. Compute: each processor may perform operations on local data
 - 3. Write: each processor may write a value to shared memory
- Model is refined for concurrent read/write capability
 - Exclusive Read Exclusive Write (EREW)
 - □ Concurrent Read Exclusive Write (CREW)
 - □ Concurrent Read Concurrent Write (CRCW)
- CRCW PRAM: what to do with concurrent writes?
 - Common CRCW: all processors must write the same value
 - Arbitrary CRCW: one of the processors succeeds in writing
 - Priority CRCW: processor with highest priority succeeds in writing

Comparison of PRAM Models

- A model *A* is less powerful compared to model *B* if either
 - □ The time complexity is asymptotically less in model B for solving a problem compared to A
 - □ Or the time complexity is the same and the work complexity is asymptotically less in model *B* compared to *A*
- From weakest to strongest:
 - □ EREW
 - CREW
 - Common CRCW
 - □ Arbitrary CRCW
 - Priority CRCW

Simulations Between PRAM Models

- An algorithm designed for a weaker model can be executed within the same time complexity and work complexity on a stronger model
- An algorithm designed for a stronger model can be simulated on a weaker model, either with
 - Asymptotically more processors (or more work by the same number of processors)
 - Or asymptotically more time

Simulating a Priority CRCW on an EREW PRAM

- Theorem: An algorithm that runs in T time on the p-processor priority CRCW PRAM can be simulated by EREW PRAM to run in O(T log p) time
 - □ A concurrent read or write of an *p*-processor CRCW PRAM can be implemented on a *p*-processor EREW PRAM to execute in O(log *p*) time
 - \square $Q_1,...,Q_p$ CRCW processors, such that Q_i has to read (write) $M[j_i]$
 - \square $P_1,...,P_p$ EREW processors
 - \square $M_1,...,M_p$ denote shared memory locations for special use
 - \square P_i stores $\langle j_i, i \rangle$ in M_i
 - \square Sort pairs in lexicographically non-decreasing order in O(log p) time using EREW merge sort algorithm
 - □ Pick representative from each block of pairs that have same first component in O(1) time
 - Representative P_i reads (writes) from M[k] with $\langle k, \rangle$ in M_i and copies data to each M in the block in O(log p) time using EREW segmented parallel prefix algorithm
 - \square P_i reads data from M_i

Example 1: Reduction on the EREW PRAM

- Reduce (sum) p values on the p-processor EREW PRAM in O(log p) time
- Reduction algorithm uses exclusive reads and writes
- Algorithm is the basis of other EREW algorithms

Example 1

```
Sum of n values using n processors (i)
Each processor i, 1 \le i \le n, executes:
Input: A[1,...,n], n = 2^k
Output: sum S = \sum_{j=1..n} A[j]
begin
 B[i] := A[i]
  for h = 1 to \log n do
    if i \le n/2^h then
      B[i] := B[2i-1] + B[2i]
  if i = 1 then
    S := B[i]
end
```

How much time?

How many operations?

Example 2: Matrix Multiply on the CREW PRAM

- Consider $n \times n$ matrix multiplication C = A B using n^3 processors
- Each element of C

$$c_{ij} = \sum_{k=1..n} a_{ik} b_{kj}$$

can be computed on the CREW PRAM in parallel using n processors in $O(\log n)$ time

■ All c_{ij} can be computed using n^3 processors in $O(\log n)$ time

Example 2

```
Matrix multiply with n^3 processors (i,j,l)
Each processor (i,j,l) executes:
Input: n \times n matrices A and B, n = 2^k
Output: C = A B
begin
  C'[i,j,l] := A[i,l]B[l,j]
  for h = 1 to \log n do
   if i \le n/2^h then
      C'[i,j,l] := C'[i,j,2l-1] + C'[i,j,2l]
  if l = 1 then
    C[i,j] := C'[i,j,1]
end
```

 $O(\log n)$ time

How many operations?

Example 2: CREW versus EREW PRAM

- Algorithm on the CREW PRAM requires $O(\log n)$ time and $O(n^3)$ operations (n^2 processors perform O(n) ops)
- On the EREW PRAM, the exclusive reads of a_{ij} and b_{ij} values can be satisfied by making n copies of a and b, which takes $O(\log n)$ time with n processors (broadcast tree)
- Total time is still $O(\log n)$
- But requires more work and total memory requirement is huge!

The WT Scheduling Principle

- The work-time (WT) scheduling principle schedules p processors to execute an algorithm
 - \square Algorithm has T(n) time steps and W(n) total operations
 - ☐ A time step can be parallel, i.e. **pardo**
- We can adapt the algorithm to run on the p-processor PRAM in $\leq |W(n)/p| + T(n)$ steps
- Proof
 - □ Let $W_i(n)$ be the number of operations (work) performed in time unit i, $1 \le i \le T(n)$
 - □ Simulate each set of $W_i(n)$ operations in $\lceil W_i(n)/p \rceil$ parallel steps, for each $1 \le i \le T(n)$
 - □ The number of steps on the *p*-processor PRAM takes $\sum_{i} \lceil W_{i}(n)/p \rceil \leq \sum_{i} (\lfloor W_{i}(n)/p \rfloor + 1) \leq \lfloor W(n)/p \rfloor + T(n)$

Work-Time Presentation

- The WT presentation can be used to determine the time and operation requirements of an algorithm
- The upper-level WT presentation framework describes the algorithm in terms of a sequence of time units
 - \square From which we can determine T(n) and W(n)
- The lower-level follows the WT scheduling principle
 - \square *p*-processor PRAM requires $\leq \lfloor W(n)/p \rfloor + T(n)$ steps

Example 1 Revisited: WT Presentation

```
Input: A[1,...,n], n = 2^k
Output: sum S = \sum_{j=1..n} A[j]
begin
 for 1 \le i \le n pardo
   B[i] := A[i]
  for h = 1 to \log n do
    for 1 < i < n/2^h pardo
      B[i] := B[2i-1] + B[2i]
  if i = 1 then
    S := B[1]
end
```

Do you spot any concurrent reads? concurrent writes?

$$T(n) = O(\log n)$$

 $W(n) = O(n)$

WT scheduling principle: total time $\leq O(n/p + \log n)$

Example 2 Revisited: WT-Presentation

```
Input: n \times n matrices A and B, n = 2^k
Output: C = A B
begin
  for 1 \le i, j, l \le n pardo
    C'[i,j,l] := A[i,l]B[l,j]
  for h = 1 to \log n do
    for 1 < i, j < n, 1 < l < n/2^h pardo
      C'[i,j,l] := C'[i,j,2l-1] + C'[i,j,2l]
  for 1 \le i, j \le n pardo
    C[i,j] := C'[i,j,1]
end
```

$$T(n) = O(\log n)$$
$$W(n) = n^3$$

WT scheduling principle: total time $\leq O(n^3/p + \log n)$

Example 3: PRAM Recursive Prefix Sum Algorithm

```
Input: Array of (x_1, x_2, ..., x_n) elements, n = 2^k
Output: Prefix sums s_i, 1 \le i \le n
begin
 if n = 1 then s_1 = x_1; exit
  for 1 \le i \le n/2 pardo
      y_i := x_{2i-1} + x_{2i}
  Recursively compute prefix sums of y and store in z
  for 1 \le i \le n pardo
    if i is even then s_i := z_{i/2}
    if i > 1 is odd then s_i := z_{(i-1)/2} + x_i
    if i = 1 then s_1 := x_1
end
```


Proof of Work Optimality

- **Theorem**: The PRAM prefix sum algorithm correctly computes the prefix sum and takes $T(n) = O(\log n)$ time using a total of W(n) = O(n) operations
- **Proof** by induction on k, where input size $n = 2^k$
 - □ Base case k = 0: $s_1 = x_1$
 - □ Assume correct for $n = 2^k$
 - □ For $n = 2^{k+1}$
 - For all $1 \le j \le n/2$ we have $z_j = y_1 + y_2 + ... + y_j = (x_1 + x_2) + (x_3 + x_4) + ... + (x_{2j-1} + x_{2j})$
 - Hence, for $i = 2j \le n$ we have $s_i = s_{2i} = z_i = z_{i/2}$
 - And $i = 2j+1 \le n$ we have $s_i = s_{2j+1} = s_{2j} + x_{2j+1} = z_j + x_{2j+1} = z_{(i-1)/2} + x_i$
- $T(n) = T(n/2) + a \Rightarrow T(n) = O(\log n)$

PRAM Nonrecursive Prefix Sum

```
Input: Array A of size n = 2^k
Output: Prefix sums in C[0,j], 1 < j < n
begin
 for 1 \le j \le n pardo
     B[0,j] := A[j]
 for h = 1 to \log n do
   for 1 \le j \le n/2^h pardo
     B[h,j] := B[h-1,2j-1] + B[h-1,2j]
 for h = \log n to 0 do
   for 1 < j < n/2^h pardo
     if j is even then C[h,j] := C[h+1,j/2]
      else if i = 1 then C[h,1] := B[h,1]
      else C[h,j] := C[h+1,(j-1)/2] + B[h,j]
end
```


First Pass: Bottom-Up

Second Pass: Top-Down

Example 4: Pointer Jumping

Finding the roots of a forest using pointer-jumping

Pointer Jumping on the CREW PRAM

```
Input: A forest of trees, each with a self-loop at its root, consisting of arcs (i,P(i)) and nodes i, where 1 \le i \le n

Output: For each node i, the root S[i]

begin

for 1 \le i \le n pardo

S[i] := P[i]

while S[i] \ne S[S[i]] do

S[i] := S[S[i]]
end
```

 $T(n) = O(\log h)$ with h the maximum height of trees $W(n) = O(n \log h)$

PRAM Model Summary

- PRAM removes algorithmic details concerning synchronization and communication, allowing the algorithm designer to focus on problem properties
- A PRAM algorithm includes an explicit understanding of the operations performed at each time unit and an explicit allocation of processors to jobs at each time unit
- PRAM design paradigms have turned out to be robust and have been mapped efficiently onto many other parallel models and even network models
 - A SIMD network model considers communication diameter, bisection width, and scalability properties of the network topology of a parallel machine such as a mesh or hypercube

Design and Analysis of Parallel Algorithms

- Arithmetic problems:
 - □ Polynomial evaluation: first-order linear recurrence
 - Polynomial multiplication: FFT
 - Lagrange interpolation
- Planar geometry:

□ The convex hull problem revisited: constant-time computation of the upper common tangent

First-Order Linear Recurrences

Consider the first-order linear recurrence:

$$y_1 = b_1$$

$$y_i = a_i y_{i-1} + b_i \qquad \text{for } 2 \le i \le n$$

- At first sight this seems impossible to parallelize, at least in its current form
- However, note that the prefix sum

$$y_i = \sum_{j=1..i} b_j$$

is a special case of a first-order linear recurrence where $a_i = 1$ (the multiplicative unit element)

We know how to parallelize the prefix sum

Divide and Conquer Parallelization

- Rewrite $y_i = a_i y_{i-1} + b_i$ into $y_i = a_i (a_{i-1} y_{i-2} + b_{i-1}) + b_i$
- This equation defines a linear recurrence of size n/2 for even index i

$$z_1 = b_1'$$

 $z_i = a_i' z_{i-1} + b_i'$ $2 \le i \le n/2$

1. Let

$$a_i' = a_{2i} a_{2i-1}$$

 $b_i' = a_{2i} b_{2i-1} + b_{2i}$

- 2. Solve z_i recursively
- 3. For $1 \le i \le n$ set

$$y_i = z_{i/2}$$
 if i is even
 $y_i = a_i z_{(i-1)/2} + b_i$ if i is odd > 1
 $y_i = b_1$ if $i = 1$

First-Order Linear Recurrence

```
Input: Arrays B = (b_1, b_2, ..., b_n) and A = (a_1 = 0, a_2, ..., a_n), n = 2^k
Output: The y_i values such that y_i = a_i y_{i-1} + b_i
begin
  if n = 1 then y_1 := b_1; exit
  for 1 < i < n/2 pardo
    a_i' := a_{\gamma_i} a_{\gamma_{i-1}}
    b_{i}' := a_{2i}b_{2i-1} + b_{2i}
  Recursively solve the recurrence z_i defined by
         z_1 = b_1' and z_i = a_i' z_{i-1} + b_i' for 2 < i < n/2
  for 1 \le i \le n pardo
    if i is even then y_i := z_{i/2}
    if i > 1 is odd then y_i := a_i z_{(i-1)/2} + b_i
    if i = 1 then y_1 := b_1
end
```


Parallel Time and Work

- From the algorithm we observe
 - T(n) = T(n/2) + O(1) therefore total parallel time $T(n) = O(\log n)$
 - \square W(n) = W(n/2) + O(n) therefore total operations W(n) = O(n)

Polynomial Evaluation

We wish to evaluate the polynomial

$$p(x) = b_1 x^{n-1} + b_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n$$

- Two steps:
- 1. Use prefix sum
 - □ Compute the $x^{n-i} = [1, x, x^2, x^3, ..., x^{n-1}]$ concurrently for all i, which takes $O(\log n)$ time and O(n) work
- 2. Use a tree reduction to compute the sum
 - □ Parallel sum $b_i x^{n-i}$ takes $O(\log n)$ parallel time and O(n) work

Polynomial Evaluation (cont'd)

We wish to evaluate the polynomial

$$p(x) = b_1 x^{n-1} + b_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n$$

Horner's rule

$$p(x) = (((b_1 x + b_2) x + b_3) x + \dots + b_{n-1}) x + b_n$$

gives a first-order linear recurrence with $a_i = x$

 \square Takes $O(\log n)$ total parallel time with O(n) total operations

Polynomial Multiplication

Consider the polynomials

$$p(x) = a_0 x^{n-1} + a_1 x^{n-2} + a_2 x^{n-3} + \dots + a_{n-1}$$

$$q(x) = b_0 x^{m-1} + b_1 x^{m-2} + b_2 x^{m-3} + \dots + b_{m-1}$$

We wish to compute the product

$$r(x) = p(x)q(x) = c_0 x^{n+m-2} + c_1 x^{n+m-3} + c_2 x^{n+m-4} + \dots + c_{n+m-2}$$

where

$$c_k = \sum_{j=0..k} a_j b_{k-j}$$

(we take $a_j = 0$ for $j \ge n$ and $b_{k-j} = 0$ for $k-j \ge m$)

Polynomial Multiplication (cont'd)

- We can compute all $c_k = \sum_{j=0..k} a_j b_{k-j}$ in $O(\log (n+m))$ parallel time
 - □ Takes $O((n+m-1)^2/2) = O(nm)$ operations

Polynomial Multiplication & FFT

- Convolution theorem: polynomial multiplication with FFT
 - \bigcirc O(log(n+m)) parallel time, with a simple use of the FFT algorithm reduces the total number of operations to O((n+m) log(n+m))
 - The FFT of the coefficients a_i of p and a_j of q gives the values of the product polynomial $r(\omega^j) = p(\omega^j)q(\omega^j)$ at the distinct roots of unity ω^j

Polynomial Multiplication & FFT

Input: Polynomial coeff. $\mathbf{a} = (a_0, a_1, ..., a_{n-1})$ and $\mathbf{b} = (b_0, b_1, ..., b_{m-1})$

Output: $c = (c_0, c_1, ..., c_{n+m-2})$ such that $c_k = \sum_{j=0...k} a_j b_{k-j}$

begin

- 1. Find integer $l = 2^s$ such that $n + m 2 < l \le 2(n + m 2)$
- 2. Use FFT to compute $y = DFT_l(a)$ and $z = DFT_l(b)$
- 3. Compute $u_j = y_j z_j$ for all j = 0, ..., l-1
- 4. Use FFT⁻¹ to compute $c = DFT_l^{-1}(u)$ giving $c = (c_0, c_1, ..., c_{l-1})$

end

Steps 2, 4 take $O(\log (n + m))$ parallel time and $O((n + m) \log (n + m))$ operations

Step 3 takes O(1) parallel time and O(n + m) total operations

Note: a, b, and c vectors are implicitly padded with 0s, e.g. $a_i = 0$ for all $i \ge n$

4/21/09

Parallel FFT

■ The FFT is easily parallelizable, since the fast sequential algorithm reduces the $O(n^2)$ problem into a $O(n \log n)$ problem using a divide-and-conquer strategy

Parallel FFT

Input: $x = (x_0, x_1, ..., x_{n-1}), n = 2^k, \omega = e^{i2\pi/n}$, where $i = \sqrt{-1}$ **Output**: $y = DFT_n(x)$ **begin**

1. if n = 2 then

$$y_1 := x_1 + x_2; y_2 := x_1 - x_2;$$
 exit

2. for $0 \le j \le n/2 - 1$ pardo

$$u_j := x_j + x_{n/2+j}$$

 $v_j := \omega^j (x_j - x_{n/2+j})$

- 3. Recursively compute $z := DFT_{n/2}(u)$ and $z' := DFT_{n/2}(v)$
- 4. for $0 \le j \le n-1$ pardo if j is even then $y_j := z_{j/2}$ if j is odd then $y_j := z'_{(j-1)/2}$

end

Lagrange Interpolation

• Given a set of n points $\{(\alpha_j, \beta_j)\}_{j=0..n-1}$ determine the polynomial p of degree n-1 such that for all j=0,...,n-1

$$p(\alpha_j) = \beta_j$$

Lagrange interpolation specifies p as follows

$$p(x) = \sum_{j=0}^{n-1} \beta_j \frac{\prod_{l=0, l \neq j}^{n-1} (x - \alpha_j)}{\prod_{l=0, l \neq j}^{n-1} (\alpha_j - \alpha_l)}$$

Lagrange Interpolation (cont'd)

- Divide-and-conquer strategy: rearrange terms
- Define

$$q_l = x - \alpha_l$$

and

$$Q(x) = \prod_{l=0}^{n-1} q_l = \prod_{l=0}^{n-1} (x - \alpha_j)$$

then the derivative of Q at point α_i is

$$Q'(\alpha_j) = \prod_{l=0, l \neq j}^{n-1} (\alpha_j - \alpha_l)$$

which can be evaluated $\gamma_i = Q'(\alpha_i)$, $c_i = \beta_i/\gamma_i$ giving

$$p(x) = \sum_{j=0}^{n-1} \beta_j \frac{Q(x)/(x - \alpha_j)}{Q'(\alpha_j)} = Q(x) \sum_{j=0}^{n-1} \frac{c_j}{x - \alpha_j}$$

Lagrange Interpolation (cont'd)

A balanced tree can be used to compute the sum in

$$p(x) = Q(x) \sum_{j=0}^{n-1} \frac{c_j}{x - \alpha_j}$$

and use FFT-based polynomial multiplication

There is another way: note that

$$\frac{p(x)}{Q(x)} = \frac{p_{k-1,0}(x)}{Q_{k-1,0}(x)} + \frac{p_{k-1,1}(x)}{Q_{k-1,1}(x)} = \frac{p_{k-1,0}(x)Q_{k-1,1}(x) + p_{k-1,1}(x)Q_{k-1,0}(x)}{Q(x)}$$

where
$$p_{k-1,0}(x) = Q_{k-1,0} \sum_{j=0}^{n/2-1} \frac{c_j}{x - \alpha_j} \qquad Q_{k-1,0}(x) = \prod_{j=0}^{n/2-1} q_l(x)$$

$$p_{k-1,1}(x) = Q_{k-1,1} \sum_{j=n/2}^{n-1} \frac{c_j}{x - \alpha_j} \qquad Q_{k-1,1}(x) = \prod_{j=n/2}^{n-1} q_l(x)$$

$$Q_{k-1,1}(x) = \prod_{i=n/2}^{n-1} q_i(x)$$

$$p_{k-1,1}(x) = Q_{k-1,1} \sum_{j=n/2} \frac{c_j}{x - \alpha_j}$$
HPC-II Spring 2009

Lagrange Interpolation (cont'd)

Input: Set of pairs (α_j, β_j) for $j = 0, ..., n - 1, n = 2^k$

Output: The *n* coefficients of $p(x) = p_{k,0}(x)$ such that $p(\alpha_j) = \beta_j$ begin

1. for $0 \le j \le n-1$ pardo

$$Q_{0,j}(x) := x - \alpha_j$$

2. for h = 1 **to** $\log n$ **do**

for
$$0 \le j \le n/2^h - 1$$
 pardo

$$Q_{h,j}(x) := Q_{h-1,2j}(x) \times Q_{h-1,2j+1}(x)$$

- 3. Compute $Q'_{0,j}(x)$ and $\gamma_j := Q'_{0,j}(\alpha_j)$ for all j = 0, ..., n-1
- **4. for** $0 \le j \le n 1$ **pardo**

$$p_{0,j}(x) := \beta_j/\gamma_j$$

5. for h = 1 **to** $\log n$ **do**

for
$$0 \le j \le n/2^h - 1$$
 pardo

$$p_{h,j}(x) := p_{h-1,2j}(x) \times Q_{h-1,2j+1}(x) + p_{h-1,2j+1}(x) \times Q_{h-1,2j}(x)$$

end

$$T(n)$$
 $W(n)$

$$O(1)$$
 $O(n)$

$$\begin{bmatrix}
(u & \log_2 u) & O(\log_2 u) \\
O(u & \log_2 u) & O(u^2)
\end{bmatrix}$$

$$O(1)$$
 $O(n)$

$$O(\log^2 n)$$

$$O(n \log^2 n)$$

■ The planar convex hull of a set of points $S = \{p_1, p_2, ..., p_n\}$ of $p_i = (x,y)$ coordinates is the smallest convex polygon that encompasses all points S on the x-y plane

- The *upper convex hull* spans points $\{q_1, ..., q_s\} \subseteq S$ from point q_1 with minimum x to q_s with maximum x
- The convex hull = upper convex hull + lower convex hull
- Problem:
 - □ Given points $S = \{p_1, ..., p_n\}$ such that $x(p_1) < x(p_2) < ... < x(p_n)$, construct the upper convex hull in parallel

- Points $S = \{p_1, ..., p_n\}$ may have duplicate x-coordinate values
- Sort the points $x(p_1) \le x(p_2) \le ... \le x(p_n)$ in $O(\log n)$ parallel time and $O(n \log n)$ operations (pipelined merge sort)
- Then, if two or more points have the same *x* coordinate:
 - □ Keep the point with the largest y coordinate for the UCH
 - □ Keep the point with the smallest y coordinate for the LCH
- We can now assume that $x(p_1) < x(p_2) < ... < x(p_n)$ to compute the UHS (and similarly the LHS)

Parallel convex hull:

- 1. Divide the x-sorted points S into sets S_1 and S_2 of equal size
- 2. Compute upper convex hull recursively on S_1 and S_2
- 3. Combine $UCH(S_1)$ and $UCH(S_2)$ by computing the upper common tangent to form UCH(S)

- Base case of recursion: two points, which are returned as UCH(S)
- Revisit the common tangent computation:
 - The line segment (a,b) can be computed sequentially in $O(\log n)$ time with $n = |UCH(S_1) + UCH(S_2)|$ using a binary search method
- And replace with parallel computation:
 - \square The line segment (a,b) can be computed in O(1) parallel time
- Line segments can be implemented as linked list of points, thus $UCH(S_1)$ and $UCH(S_2)$ can be connected using one pointer change of a to point to b in O(1) time

Intermezzo: Parallel Search

- Let $X = (x_1, x_2, ..., x_n)$ be n distinct elements from a set S such that $x_1 < x_2 < ... < x_n$
- Given $y \in S$, find the index i for which $x_i \le y < x_{i+1}$ where we added $x_0 = -\infty$ and $x_{n+1} = +\infty$
- Parallel search with p processors:
 - \square Split X in p segments of (almost) equal length
 - \square Each processor verifies if y is in its segment
 - \square If so, restrict search to the segment containing y and repeat

Intermezzo: Parallel Search

Objective: search index of 27

Parallel time =
$$O\left(\frac{\log(n+1)}{\log(p+1)}\right)$$

 p_2 found i=13

- Let $UCH(S_1) = (r_1, ..., r_s)$ and $UCH(S_2) = (q_1, ..., q_t)$
- We need to determine points $a = r_i$ and $b = q_{j(i)}$ such that all points in S are below the line through points a and b

50

- Given a point $r_i \in \mathrm{UCH}(S_1)$ then for any $q_k \in \mathrm{UCH}(S_2)$ we can determine in $\mathrm{O}(1)$ sequential time if $q_k = q_{j(i)}$, or $q_{j(i)}$ is to the left of q_k or $q_{j(i)}$ is to the right of q_k
- Thus, using parallel search, we can determine for point r_i the tangent $(r_i, q_{j(i)})$ in $O(\log t / \log p)$ parallel time using p processors, where $t = |UCH(S_2)|$

- Given a point $r_i \in \text{UCH}(S_1)$ and $q_{j(i)} \in \text{UCH}(S_2)$, then we can determine in O(1) sequential time if $r_i = a$, or a is to the left of r_i or a is to the right of r_i
- Thus, using parallel search, we can determine the tangent (a, b) in $O(\log (st) / \log p)$ parallel time using p processors, where $s = |UCH(S_1)|$ and $t = |UCH(S_2)|$

- Take $p = \sqrt{s}\sqrt{t}$ then $O(\log(st) / \log(\sqrt{s}\sqrt{t})) = O(\log(st) / \frac{1}{2}\log(st)) = O(1)$ parallel time and $O(\sqrt{s}\sqrt{t}) = O(n)$ operations
- 1. Choose \sqrt{s} points from $UCH(S_1)$ thereby dividing the set $UCH(S_1)$ into (almost) equal blocks of size \sqrt{s} each
- 2. Find the $q_{j(k\sqrt{s})}$ for each $r_{k\sqrt{s}}$, $k=1,...,\sqrt{s}$, using $p=\sqrt{s}\sqrt{t}$ processors in O(1) parallel time
- 3. Deduce the block $B_k = (r_{k\sqrt{s+1}}, ..., r_{(k+1)\sqrt{s-1}})$ that contains a
- 4. For each r_i in block B_k , determine $q_{j(i)}$ and search $a=r_i$ using $p=\sqrt{s}\sqrt{t}$ processors in O(1) parallel time
- 5. Set $b = q_{i(i)}$

Convex Hull Problem Revisited: Putting it Together

- Preprocess the points by sorting in $O(\log n)$ parallel time (pipelined merge sort), such that $x(p_1) \le x(p_2) \le ... \le x(p_n)$
- Remove duplicates $x(p_i) = x(p_i)$ (for UCH and LCH)
- Divide-and-conquer:
 - 1. Split S into S_1 S_2 and recursively compute the UCH of S_1 and S_2
 - 2. Combine $UCH(S_1)$ and $UCH(S_2)$ by computing the upper common tangent in O(1) time to form UCH(S)
- Repeat to compute the LCH
- Parallel time (assuming p = O(n) processors)

$$T(n) = T(n/2) + O(1)$$

gives

$$T(n) = O(\log n)$$

Further Reading

An Introduction to Parallel Algorithms, by J. JaJa, 1992