NEPAL COLLEGE OF INFORMATION TECHNOLOGY

Course: Simulation and Modeling

- 1. Why simulation is essential in depicting real world problem. Differentiate deterministic and stochastic system.
- 2. Why Monte-Carlo method is best method for computing static model? Use Monte Carlo Method to determine the value of pi.
- 3. How nonlinear differential equation can be used to represent continuous system? Explain with
- 4. What are the various performance measure that measures the performance of queue? Explain in detail.
- 5. Why analog method does not suit for continuous system? Write the structure of CSMP code.
- 6. "Call does not get lost when line is busy but it creates a list and gets connected automatically when line is free." Verify this statement on the basis of various states involved in this simulation.
- 7. What is simulation programming task? Explain in detail.
- 8. Use linear congruential generator to generate random numbers for a=5 and c=3 for 4 bit computer starting with any initial seed value in between 0 to m-1.
- 9. When data are auto-correlated which output analysis method is used? Explain it with reference of SSQM.
- 10. When Simulation run is repeated for multiple times which output analysis method is preferable, explain in detail.
- 11. What is DSSLs? Write the GPSS code for manufacturing shop model when the parts rejected are sent back for further work. Reworking takes 15+-3 minutes. After correction the parts resubmitted for inspection. Simulated for 1000 parts to be completed.
- 12. Why Monte-Carlo method is best method for computing static model? Solve

$$I = \int_2^5 x^2/3 \, dx$$

13. Use Runs up and runs down test to determine the following sequence of number can be accepted or rejected on hypothesis of independence where α =0.05.

0.34	0.90	0.25	0.89	0.87	0.44	0.12	0.21	0.46	0.67
0.83	0.76	0.79	0.64	0.70	0.81	0.94	0.74	0.22	0.74
0.96	0.99	0.77	0.67	0.56	0.41	0.52	0.73	0.99	0.02
0.47	0.30	0.17	0.82	0.56	0.05	0.45	0.31	0.78	0.05
0.79	0.71	0.23	0.19	0.82	0.93	0.65	0.37	0.39	0.42
0.99	0.17	0.99	0.46	0.05	0.66	0.10	0.42	0.18	0.49

14. Test if the 5th, 10^{th} , 15^{th} and so on, numbers in the sequence are autcorrelated. (Use α =0.05)

0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 0.9
--

0.99	0.15	0.33	0.35	0.91	0.41	0.60	0.27	0.75	0.88
0.68	0.49	0.05	0.43	0.95	0.58	0.19	0.36	0.69	0.87

- 15. Develop the poker test for
- a) Four-digit numbers
- b) Five digits number
- 16. Use the mixed congruential method to generate a sequence of three two digit number with a=7, c=29, m=100 and $X_0=37$.
- 17. Use Runs above and runs below mean test to determine the following sequence of number can be accepted or rejected on hypothesis of independence where α =0.05.

0.23	0.87	0.13	0.89	0.77	0.44	0.12	0.21	0.46	0.67
0.93	0.76	0.79	0.64	0.59	0.81	0.94	0.74	0.22	0.74
0.76	0.99	0.77	0.67	0.98	0.41	0.52	0.73	0.58	0.02
0.34	0.30	0.17	0.82	0.66	0.05	0.45	0.31	0.78	0.05
0.88	0.71	0.23	0.19	0.82	0.93	0.65	0.17	0.39	0.22
0.69	0.01	0.94	0.46	0.05	0.66	0.10	0.05	0.18	0.89

18. Consider the following sequence of 120 digits:

1	3	7	4	8	6	2	5	1	6	4	4	3	3	4	2	1	5	8	7
0	7	6	2	6	0	5	7	8	0	1	1	2	6	7	6	3	7	5	9
0	8	8	2	6	7	8	1	3	5	3	8	4	0	9	0	3	0	9	2
2	3	6	5	6	0	0	1	3	4	4	6	9	9	8	5	6	0	1	7
5	6	7	9	4	9	3	1	8	3	3	6	6	7	8	2	3	5	9	6
6	7	0	3	1	0	2	4	2	0	6	4	0	3	9	3	6	8	1	5

Test whether these digits can be assumed to be independent based on frequency with which gap occur.

Use α =0.05

19.

Parts are being made at the rate of one every 6 minutes. They are of two types, A and B, and are mixed randomly, with about 10% being type B. A separate inspector is assigned to examine each type of part. The inspection of A parts takes 4 ± 2 minutes and B parts take 20 ± 10 minutes. Both inspectors reject about 10% of the parts they inspect. Simulate for a total of 1,000 type A parts accepted.

20.

Workers come to a supply store at the rate of one every 5 ± 2 minutes. Their requisitions are processed by one of two clerks who take 8 ± 4 minutes for each requisition. The requisitions are then passed to a single storekeeper who fills them one at a time, taking 4 ± 3 minutes for each request. Simulate the queue of workers and measure the distribution of time taken for 1,000 requisitions to be filled.