МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №4: «Исследование характеристик тиристора и управляемых схем на тиристорах»

по дисциплине Электроника и Схемотехника

Вариант 6

Выполнил:

Студенты группы R33362 Осинина Т. С, Моховиков А.Е. Преподаватель: Николаев Н. А **Цель работы:** изучить углублённо тиристора, исследовать схемы управляемого выпрямителя

Часть 1. Подключение библиотеки тиристоров

В данном части мы подключали библиотек тиристоров, для этого была скачена библиотека тиристоров на сайте и помещена в папку со всеми библиотеками. Далее была создана директива и на схему добавлен тиристор (по варианту).

Рисунок 1 – Тиристор ЕС103М

Часть 2. Исследование работы управляемого выпрямителя

Рисунок 2. Схема управляемого выпрямителя

Рисунок 3. Осциллограммы входного, выходного и управляющего сигналов

Далее находим среднее значение напряжения на нагрузке при $\alpha=90^\circ$

$$U_{\text{H.CP.}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_{\text{BX}} d(\omega t) = \frac{Um}{2\pi} (1 + \cos \alpha) = 3,183 \text{ B}$$

Рисунок 4. Осциллограммы входного, выходного и управляющего сигналов и среднее значение напряжения на нагрузке

Рисунок 5. Схема моделирования для отображения среднее значение напряжения на нагрузке на графике осциллограмм

Таблица 1. Измерения среднего напряжения на нагрузке, соответствующие им углы включения

α , $^{\circ}$	0	20	40	60	80	90	100	120	140	160	180
$U_{\mathrm{H.CP.}}$, B	6,367	6,174	5,621	4,775	3,737	3,183	2,63	1,592	0,745	0,201	0

Рисунок 6. Регулировочная характеристика выпрямителя

Вывод: в части 2 была исследована работа управляемого выпрямителя, а именно были построены осциллограммы входного, выходного и управляющего сигналов. Для разных углов включения измерили средние напряжения на нагрузке, работа была выполнена верно, так как график регулировочной характеристики выпрямителя получился верным.

Часть 3. Исследование работы тиристорного регулятора мощности

Рисунок 7. Схема тиристорного регулятора мощности

Рисунок 8. Осциллограммы входного, выходного и управляющего

$$U_{\text{H.Д.}} = Um\sqrt{\frac{1}{8\pi}(4\pi - 2\alpha + sin\alpha)} = 12,247 \text{ B}$$
 $P = \frac{U_{\text{H.Д.}}^2}{R_{\text{H}}} = \frac{149,989}{10} = 14,999 \text{ BT}$

α,°	0	20	40	60	80	100	120	140	160	180
<i>U</i> _{Н.Д.} , В	14.142	14.111	13.909	13.433	12.689	11.79	10.934	10.322	10.044	10
P, Bt	20	19.91	19.346	18.045	16.101	13.9	11.955	10.654	10.088	10

Рисунок 9. Регулировочная характеристика регулятора мощности

Вывод: в части 3 исследовали работу тиристорного регулятора мощности, так как регулировочная характеристика регулятора мощности получилась верной, значит, полученные значения напряжений и мощности определены правильно. Таким образом, в процессе лабораторной работы 4 исследовали работу тиристорного регулятора мощности и управляемого выпрямителя.