1 Prodigy InfoTech Internship: Task 2

Perform data cleaning and exploratory data analysis (EDA) on a dataset of your choice, such as the Titanic dataset from Kaggle. Explore the relationships between variables and identify patterns and trends in the data.

Sample Dataset: Titanic

```
[1]: import warnings
   warnings.filterwarnings('ignore')

import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

sns.set_theme(context='notebook', style='whitegrid', palette='muted')
```

2 Understand the shape of the data

```
[2]: | df = pd.read_csv('data/Titanic.csv', index_col='PassengerId')
[3]: df.head()
                  Survived Pclass \
[3]:
     PassengerId
                          0
                                  3
     1
     2
                          1
                                  1
     3
                          1
                                  3
     4
                          1
                                  1
     5
                                  3
                                                                 Name
                                                                          Sex
                                                                                 Age \
     Passengerld
     1
                                             Braund, Mr. Owen Harris
                                                                          male 22.0
     2
                  Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
     3
                                              Heikkinen, Miss. Laina
                                                                       female 26.0
     4
                        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                       female 35.0
```

Allen, Mr. William Henry male 35.0

	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld	•					
1	1	0	A/5 21171	7.2500	NaN	S
2	1	0	PC 17599	71.2833	C85	С
3	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	0	113803	53.1000	C123	S
5	0	0	373450	8.0500	NaN	S

[4] : df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 891 entries, 1 to 891 Data columns (total 11 columns):

#	Column	Non-Null Count		nt Dtype
0	Survived	891	non-null	int64
1	Pclass	891	non-null	int64
2	Name	891	non-null	object
3	Sex	891	non-null	object
4	Age	714	non-null	float64
5	SibSp	891	non-null	int64
6	Parch	891	non-null	int64
7	Ticket	891	non-null	object
8	Fare	891	non-null	float64
9	Cabin	204	non-null	object
10	Embarked	889	non-null	object
dtypes: float64(2),			int64(4),	object(5)

memory usage: 83.5+ KB

[5] : df.describe()

[5]:		Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
I	mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

[6] : df.drop(columns='Cabin').isna().mean()

[6]: Survived 0.000000 Pclass 0.000000 Name 0.000000

```
SibSp
                  0.000000
      Parch
                 0.000000
      Ticket
                  0.000000
      Fare
                  0.000000
      Embarked
                  0.002245
      dtype: float64
 [7]: | df = df.drop(columns='Cabin').dropna(subset=['Embarked'])
     3 Data Cleaning
 [8]: df['Age'] = df['Age'].round()
      df['Pclass'] = df['Pclass'].map({1: 'Upper', 2: 'Middle', 3: 'Lower'})
      df['Embarked'] = df['Embarked'].map({'C': 'Cherbourg', 'Q': 'Queenstown', 'S':_
       s'Southampton'})
      df['Survived'] = df['Survived'].map({0: 'Survived', 1: 'Not Survived'})
      df['Sex'] = df['Sex'].str.title()
      categorical_columns = ['Sex', 'Parch', 'SibSp', 'Pclass', 'Embarked',
       s'Survived'1
      df[categorical_columns] = df[categorical_columns].astype('category')
 [9] : cols = [
          'Name', 'Sex', 'Age', 'Parch', 'SibSp',
          'Ticket', 'Pclass', 'Embarked', 'Fare',
          'Survived'.
      1
      df = df[cols]
[10] : df.head()
[10]:
                                                                 Name
                                                                          Sex
                                                                                Age \
      Passengerld
                                             Braund, Mr. Owen Harris
                                                                         Male 22.0
      2
                   Cumings, Mrs. John Bradley (Florence Briggs Th... Female 38.0
      3
                                              Heikkinen, Miss. Laina Female 26.0
      4
                        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                       Female 35.0
      5
                                            Allen, Mr. William Henry
                                                                         Male 35.0
                                                            Embarked
                  Parch SibSp
                                         Ticket Pclass
                                                                         Fare \
      Passengerld
```

Sex

Age

0.000000

0.198653

```
1
               0
                    1
                             A/5 21171 Lower Southampton
                                                           7.2500
2
               0
                    1
                              PC 17599 Upper
                                                Cherbourg 71.2833
3
               0
                    0 STON/02. 3101282 Lower Southampton
                                                           7.9250
4
               0
                                113803 Upper Southampton 53.1000
5
               0
                    0
                                373450 Lower Southampton
                                                           8.0500
```

Survived

Passengerld Survived Not Survived Not Survived Not Survived Survived Survived

[11]: df.info()

<class 'pandas.core.frame.DataFrame'> Index: 889 entries, 1 to 891 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype		
0	Name	889 non-null	object		
1	Sex	889 non-null	category		
2	Age	712 non-null	float64		
3	Parch	889 non-null	category		
4	SibSp	889 non-null	category		
5	Ticket	889 non-null	object		
6	Pclass	889 non-null	category		
7	Embarked	889 non-null	category		
8	Fare	889 non-null	float64		
9	Survived	889 non-null	category		
dtypes: category(6), float64(2), object					
memory usage: 41.1 + KB					

4 Data Exploration

```
sns.countplot(data=df, x='Survived')

plt.title('Survival vs. Not Survival')

plt.show();
```



```
[13]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 7))

sns.boxplot(data=df, x='Age', hue='Survived', gap=0.1, ax=ax1)
ax1.set_xlabel('Age', fontsize=14)
ax1.set_title('Distribution of Age')

sns.boxplot(data=df, x='Fare', hue='Survived', gap=0.1, ax=ax2)
ax2.set_xlabel('Fare', fontsize=14)
ax2.set_title('Distribution of Fare')

plt.tight_layout()
plt.show();
```



```
[14]: def remove_outliers(df, col):
          Q1 = df[col].quantile(0.25)
          Q3 = df[col].quantile(0.75)
          IQR = Q3 - Q1
          lower_bound = Q1 - 1.5 * IQR
          upper_bound = Q3 + 1.5 * IQR
          return df[
              (df[col] >= lower_bound) &
              (df[col] <= upper_bound)
          1
      df = remove_outliers(df, 'Age')
      df = remove_outliers(df, 'Fare')
[15]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 7))
      sns.boxplot(data=df, x='Age', hue='Survived', gap=0.1, ax=ax1)
      ax1.set_xlabel('Age', fontsize=14)
      ax1.set_title('Distribution of Age')
      sns.boxplot(data=df, x='Fare', hue='Survived', gap=0.1, ax=ax2)
      ax2.set_xlabel('Fare', fontsize=14)
      ax2.set_title('Distribution of Fare')
      plt.tight_layout()
      plt.show();
```


[16]: sns.pairplot(data=df, hue='Survived', aspect=2);

plt.tight_layout()
plt.show();

Thank you