Diferential Geometry

Thomas Brosnan

Notes taken in Professor Sergey Frolov's class, Michaelmas Term $2024\,$

"hokay" -Sergey Frolov

Contents

1	Defi	inition of a Manifold	4
	1.1	Regions	4
	1.2	Differentiable Manifold	4

1 Definition of a Manifold

1.1 Regions

• A region ("open set") is a set of D points in \mathbb{R}^n such that together with each point p_0 , D also contains all points sufficiently closer to p_0 , i.e.:

$$\forall p_0 = (x_0^1, \dots, x_0^n) \in D \; \exists \; \epsilon > 0,$$

 $st : p = (x^1, \dots, x^n) \in D, \; iff \; |x^i - x_0^i| < \epsilon.$

• A region with out a boundary is obtained fro ma region D by adjoining all boundary points to D. The boundary of a region is the set of all boundary points.

1.2 Differentiable Manifold

- A differentiable n-dimensional manifold is a set M together with the following structure on it. The set M is the union of a finite or countably infinite collection of subsets U_q with the following properties:
 - Each subset U_q has defined on it co-ords x_q^{α} , $\alpha = 1, \dots, n$ called local co-ords by virtue of which U_q is identifiable with a region of Euclidean