and using the inverse of the isomorphism # (which is linear), we get

$$J'_u + \sum_{i \in I(u)} \lambda_i(u)(\varphi'_i)_u = 0,$$

as claimed. \Box

Since the constraints are inequalities of the form $\varphi_i(x) \leq 0$, there is a way of expressing the Karush–Kuhn–Tucker optimality conditions, often abbreviated as KKT conditions, in a way that does not refer explicitly to the index set I(u):

$$J'_{u} + \sum_{i=1}^{m} \lambda_{i}(u)(\varphi'_{i})_{u} = 0, \tag{KKT}_{1}$$

and

$$\sum_{i=1}^{m} \lambda_i(u)\varphi_i(u) = 0, \quad \lambda_i(u) \ge 0, \quad i = 1, \dots, m.$$
 (KKT₂)

Indeed, if we have the strict inequality $\varphi_i(u) < 0$ (the constraint φ_i is inactive at u), since all the terms $\lambda_i(u)\varphi_i(u)$ are nonpositive, we must have $\lambda_i(u) = 0$; that is, we only need to consider the $\lambda_i(u)$ for all $i \in I(u)$. Yet another way to express the conditions in (KKT₂) is

$$\lambda_i(u)\varphi_i(u) = 0, \quad \lambda_i(u) \ge 0, \quad i = 1, \dots, m.$$
 (KKT₂)

In other words, for any $i \in \{1, ..., m\}$, if $\varphi_i(u) < 0$, then $\lambda_i(u) = 0$; that is,

• if the constraint φ_i is inactive at u, then $\lambda_i(u) = 0$.

By contrapositive, if $\lambda_i(u) \neq 0$, then $\varphi_i(u) = 0$; that is,

• if $\lambda_i(u) \neq 0$, then the constraint φ_i is active at u.

The conditions in (KKT'_2) are referred to as complementary slackness conditions.

The scalars $\lambda_i(u)$ are often called *generalized Lagrange multipliers*. If $V = \mathbb{R}^n$, the necessary conditions of Theorem 50.5 are expressed as the following system of equations and inequalities in the unknowns $(u_1, \ldots, u_n) \in \mathbb{R}^n$ and $(\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m_+$:

$$\frac{\partial J}{\partial x_1}(u) + \lambda_1 \frac{\partial \varphi_1}{\partial x_1}(u) + \dots + \lambda_m \frac{\partial \varphi_m}{\partial x_1}(u) = 0$$

$$\vdots \qquad \vdots$$

$$\frac{\partial J}{\partial x_n}(u) + \lambda_1 \frac{\partial \varphi_n}{\partial x_1}(u) + \dots + \lambda_m \frac{\partial \varphi_m}{\partial x_n}(u) = 0$$

$$\lambda_1 \varphi_1(u) + \dots + \lambda_m \varphi_m(u) = 0$$

$$\varphi_1(u) \le 0$$

$$\vdots \qquad \vdots$$

$$\varphi_m(u) \le 0$$

$$\lambda_1, \dots, \lambda_m > 0.$$