Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente
Analisi	Prof. A. Manzoni	
CdL Ingegneria Aerospaziale	Prof. S. Micheletti	
Ultima Prova in Itinere		
19 giugno 2018		
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 1h 30m.

SPAZIO RISERVATO AL DOCENTE

Pre Test	
Esercizio 1	
Esercizio 2	
Totale	

Pre Test

1.	(2 punti) Assegnati i nodi equispaziati $x_0, x_1, \dots x_5$ nell'intervallo [0,10] e la funzione $f(x) =$
	$5(x+4)^2$, si consideri l'interpolante composito lineare $\Pi_1^H(x)$ interpolante $f(x)$ nei precedenti
	nodi. Si riporti il valore di $\Pi_1^H(1)$.

10 punti

2. (1 punto) Sia $f(x) = 2x^2$. Si approssimi $\int_3^6 f(x)dx$ con la formula semplice del trapezio. Si riporti l'approssimazione $I_T(f)$ ottenuta.

l			
1			
l			
1			

3. (2 punti) Si consideri la formula dei trapezi composita per l'approssimazione dell'integrale $\int_{-2}^{2} e^{x} dx$. Senza applicare esplicitamente la formula, si stimi il numero M di sottointervalli equispaziati di $[-2,2]$ tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-1}$.
4. (1 punto) Sia $f(x) = 5x^3$; si approssimi $f'(2)$ mediante la formula delle differenze finite in avanti utilizzando il passo $h = 0.1$; si riporti il valore $\delta_+ f(2)$ di tale approssimazione.

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} \mathbf{y}'(t) = A\mathbf{y}(t) & t \in (0, +\infty), \\ \mathbf{y}(0) = (3 \ 2)^T. \end{cases}$$

dove $A = \begin{bmatrix} -6 & 9 \\ 0 & -8 \end{bmatrix}$. Si riporti la condizione di assoluta stabilità del metodo di Eulero in avanti per il precedente problema di Cauchy.

6. (2 punti) Si consideri il seguente problema differenziale di diffusione-reazione:

$$\begin{cases} -u''(x) + 2u(x) = x & x \in (0,1), \\ u(0) = 2, & u(1) = 0. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/2 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per N=1. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.

7. (1 punto) Dato il seguente problema differenziale di diffusione–trasporto:

$$\begin{cases} -u''(x) + 50 u'(x) = 0 & x \in (0,1), \\ u(0) = 0, & u(1) = 2, \end{cases}$$

si consideri (senza applicarla) la sua approssimazione numerica mediante il metodo delle differenze finite centrate con passo di discretizzazione h > 0. Qual è la condizione sul passo di discretizzazione h che garantisce l'assenza di oscillazioni (instabilità) numeriche per la soluzione approssimata del problema?

$\frac{1}{1+\frac{2}{3}}$ defir	nita in $[a,b] = [-4]$,4].
polinomi inte o, al variare	erpolanti di Lagra di n , i valori della almeno 4 cifre d	nge $\Pi_n f$ su nodi le approssimanti
	$: \Pi_n f(\bar{x}) = \underline{\qquad}$	
per n = 12	$: \Pi_n f(\bar{x}) = \underline{\qquad}$	
$ f(x) - \Pi_n $	f(x) associati alle	e corrispondenti
	i valutino $f(x)$ e tato con almeno 4	$\Pi_n f(x)$ in 1000
	$E_n(f) = \underline{\hspace{1cm}}$	
riporti il risul	$: E_n(f) = \underline{\hspace{1cm}}$	
riporti il risul $per n = 8$		
riporti il risul $per n = 8$ $per n = 12$	(b).	
riporti il risul $per n = 8$	(b).	
riporti il risul $per n = 8$ $per n = 12$	(b).	
riporti il per n		unto (b).

er costruire le approssimanti $\Pi_n^{CH}f$ con $n=6,8,10,12$. Si calcolino e si riportino gli errori $n^{CH}(f)=\max_{x\in[a,b]} f(x)-\Pi_n^{CH}f(x) $ (si riporti il risultato con almeno 4 cifre decimali). per $n=6$: $E_n(f)=$ per $n=8$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=12$: $E_n(f)=$				
r costruire le approssimanti $\Pi_n^{CH} f$ con $n=6,8,10,12$. Si calcolino e si riportino gli errori $C^H(f)=\max_{x\in[a,b]} f(x)-\Pi_n^{CH} f(x) $ (si riporti il risultato con almeno 4 cifre decimali). per $n=6$: $E_n(f)=$ per $n=8$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=12$: $E_n(f)=$ pe				
r costruire le approssimanti $\Pi_n^{CH} f$ con $n=6,8,10,12$. Si calcolino e si riportino gli errori $C^H(f)=\max_{x\in[a,b]} f(x)-\Pi_n^{CH} f(x) $ (si riporti il risultato con almeno 4 cifre decimali). per $n=6$: $E_n(f)=$ per $n=8$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=12$: $E_n(f)=$ pe				
er costruire le approssimanti $\Pi_n^{CH} f$ con $n=6,8,10,12$. Si calcolino e si riportino gli errori $n^{CH}(f)=\max_{x\in[a,b]} f(x)-\Pi_n^{CH}f(x) $ (si riporti il risultato con almeno 4 cifre decimali). per $n=6$: $E_n(f)=$ per $n=8$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=12$: $E_n(f)=$				
er costruire le approssimanti $\Pi_n^{CH} f$ con $n=6,8,10,12$. Si calcolino e si riportino gli errori $\Pi_n^{CH} f(f) = \max_{x \in [a,b]} f(x) - \Pi_n^{CH} f(x) $ (si riporti il risultato con almeno 4 cifre decimali). per $n=6$: $E_n(f) =$				
per $n=6$: $E_n(f)=$ per $n=8$: $E_n(f)=$ per $n=10$: $E_n(f)=$ per $n=12$: $E_n(f)=$ per $n=12$: $E_n(f)=$ [1 punto] Siano ora assegnati i nodi $x_0=-1$, $x_1=0$, $x_2=1$, $x_3=2$ e $x_4=3$. Si calcoli e si riporti l'espressione della retta di regressione lineare $p_1(x)$ che approssima le coppie di dati $(x_i,f(x_i))\}_{i=0}^4$. $p_1(x)=$ [2] $p_1(x)=$ [3] $p_1(x)=$ [4] $p_1(x)=$ [5] $p_1(x)=$ [6] $p_1(x)=$ [6] $p_1(x)=$ [7] $p_1(x)=$ [7] $p_1(x)=$ [8] $p_1(x)=$ [9] $p_1(x)=$				
er costruire le approssimanti $\Pi_n^{CH} f$ con $n=6,8,10,12$. Si calcolino e si riportino gli errori $\Pi_n^{CH} f(f) = \max_{x \in [a,b]} f(x) - \Pi_n^{CH} f(x) $ (si riporti il risultato con almeno 4 cifre decimali). per $n=6$: $E_n(f) =$				
$E_n^{CH}(f) = \max_{x \in [a,b]} f(x) - \prod_n^{CH} f(x) \text{ (si riporti il risultato con almeno 4 cifre decimali).}$ $\operatorname{per} n = 6 : E_n(f) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$				
per $n=10$: $E_n(f)=$ per $n=12$: $E_n(f)=$ (1 punto) Siano ora assegnati i nodi $x_0=-1, \ x_1=0, \ x_2=1, \ x_3=2$ e $x_4=3$. Si calcoli e si riporti l'espressione della retta di regressione lineare $p_1(x)$ che approssima le coppie di dati $\{(x_i,f(x_i))\}_{i=0}^4$. $p_1(x)=$	$\Xi_n^{CH}(f) = \max_{x \in [a,b]} f $	$f(x) - \prod_{n=1}^{CH} f(x) $ (si riporti	il risultato con almeno 4 cifre o	decimali).
(1 punto) Siano ora assegnati i nodi $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$ e $x_4 = 3$. Si calcoli e si riporti l'espressione della retta di regressione lineare $p_1(x)$ che approssima le coppie di dati $\{(x_i, f(x_i))\}_{i=0}^4$. $p_1(x) = \underline{\hspace{1cm}}$ ERCIZIO 2. Si consideri il problema di Cauchy:	$per n = 6 : E_n($	f) =	per $n = 8$: $E_n(f) =$	
e si riporti l'espressione della retta di regressione lineare $p_1(x)$ che approssima le coppie di dati $\{(x_i, f(x_i))\}_{i=0}^4$. $p_1(x) = \underline{\qquad \qquad }$ ERCIZIO 2. Si consideri il problema di Cauchy: $\begin{cases} y'(t) &= f(t,y) & t \in (0,t_f], \\ y(0) &= y_0, \end{cases}$ $t_f > 0$ e il dato iniziale y_0 assegnati. $(4 \ punti)$ Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Eulero in avanti. Si riporti l'algoritmo del metodo di Eulero in avanti (non in stretto linguaggio	$per n = 10 : E_n$	$(f) = \underline{\hspace{1cm}}$	per $n = 12$: $E_n(f) = _{}$	
$\begin{cases} y'(t) &= f(t,y) & t \in (0,t_f], \\ y(0) &= y_0, \end{cases} $ (1) $t_f > 0 \text{ e il dato iniziale } y_0 \text{ assegnati.}$ (4 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Eulero in avanti. Si riporti l'algoritmo del metodo di Eulero in avanti (non in stretto linguaggio	si riporti l'espression	ne della retta di regression	e lineare $p_1(x)$ che approssima	= 3. Si calcoli le coppie di dati
$\begin{cases} y'(t) &= f(t,y) & t \in (0,t_f], \\ y(0) &= y_0, \end{cases} $ (1) $t_f > 0 \text{ e il dato iniziale } y_0 \text{ assegnati.}$ (4 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Eulero in avanti. Si riporti l'algoritmo del metodo di Eulero in avanti (non in stretto linguaggio				
$t_f > 0$ e il dato iniziale y_0 assegnati. (4 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Eulero in avanti. Si riporti l'algoritmo del metodo di Eulero in avanti (non in stretto linguaggio	ercizio 2. Si cons	ideri il problema di Cauch	y:	
(4 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Eulero in avanti. Si riporti l'algoritmo del metodo di Eulero in avanti (non in stretto linguaggio		$\begin{cases} y'(t) &= f(t,y) \\ y(0) &= y_0, \end{cases}$	$t \in (0, t_f],$	(1)
Eulero in avanti. Si riporti l'algoritmo del metodo di Eulero in avanti (non in stretto linguaggio				
	<i>Eulero in avanti</i> . Si ri	porti l'algoritmo del metod	do di <i>Eulero in avanti</i> (non in s	
	Matlab [®]) definendo c			
	Matlab [®]) definendo c			
	Matlab [®]) definendo c			
	Matlab [®]) definendo c			
	Matlab [®]) definendo c			
	Matlab [®]) definendo c			
	Iatlab [®]) definendo c			

Si definisca con precisione l'errore di troncamento locale τ_n e si riporti la sua espressione.
Cosa significa che il metodo di Eulero in avanti per l'approssimazione del problema di Cauchy (1 è consistente? Qual è il suo ordine di consistenza?
(1 punto) Sempre considerando il metodo di Eulero in avanti per il problema di Cauchy (1), m per $t_f = +\infty$, si riporti la definizione di assoluta stabilità del metodo, introducendo il problem modello e definendo con precisione tutta la notazione utilizzata.
(1 punto) Si riporti ora l'algoritmo del metodo di Heun (non in stretto linguaggio Matlab® per l'approssimazione del problema di Cauchy (1); si definisca con precisione tutta la notazion utilizzata.

(d)	$(3 \ punti)$ Si consideri il problema di Cau $y_0 = 0$. Si utilizzino opportuni comandi metodo di Heun con diversi passi tempora riportino i valori della soluzione approssima dei precedenti valori di h_i (si riportino alm	Matlab [®] per approssimare tale li $h_1 = 0.05$, $h_2 = 0.025$, $h_3 = 0.025$ ata $u_{N_{h,i}}$ corrispondente all'istan	e problema mediante il 0125 e $h_4 = 0.00625$. Si
		$u_{N_{h,2}} = $	
	$u_{N_{h,3}} = \underline{\hspace{1cm}}$	$u_{N_{h,4}} = $	
(e)	(2 punti) Sapendo che la soluzione esatta riportino gli errori E_{h_i} associati alle soluz specificato al punto (d) (si riportino almer	ioni $u_{N_{h,i}}$ al tempo t_f ottenuti p	per ciascun valore di h_i
	$E_{h_1} = $	$E_{h_2} = $	
	$E_{h_3} = $	$E_{h_2} = \underline{\qquad}$ $E_{h_4} = \underline{\qquad}$	
	Si motivi la risposta riportando con compottenuto.	letezza la procedura seguita e il	corrispondente grafico
(f)	(1 punto) Quale condizione occorre richie applicato al problema del punto (d) risulti		aché il metodo di <i>Heun</i>