Variational Sequential Monte Carlo

Shvechikov Pavel

Samsung Al Center National Research University Higher School of Economics

September 22, 2018

Overview

- Introduction
 - State space models
 - Inference in SSM
- 2 Importance Sampling
 - Basic Monte Carlo
- Sequential Monte Carlo
 - SMC definitions
- 4 Variational Sequential Monte Carlo
 - Algorithm

State-Space Models

 $\{Z_t\}_{t\geq 1}$ is a hidden Markov process

$$Z_1 \sim \mu(\cdot)$$
 $Z_t \mid (Z_{t-1} = z) \sim f_{\theta}(\cdot | z)$ (1)

 $\{X_t\}_{t\geq 1}$ is Markov observation process

$$X_t \mid (Z_t = z) \sim g_{\theta}(\cdot \mid z)$$
 (2)

State-Space Models: Examples

- Hidden Markov Model: $\{Z_t\}$ is a finite Markov Chain
- 2 Linear Gaussian SSM:

$$Z_{t} = A_{t}Z_{t-1} + B_{t}V_{t} \qquad V_{t} \stackrel{iid}{\sim} \mathcal{N}(0, I)$$

$$X_{t} = B_{t}Z_{t} + D_{t}W_{t} \qquad W_{t} \stackrel{iid}{\sim} \mathcal{N}(0, I)$$
(3)

Non-linear non-Gaussian model – stochastic volatility model

$$Z_{t} = \phi Z_{t-1} + \sigma V_{t} \qquad V_{t} \stackrel{iid}{\sim} \mathcal{N}(0, I)$$

$$X_{t} = \beta \exp(Z_{t}/2)W_{t} \qquad W_{t} \stackrel{iid}{\sim} \mathcal{N}(0, I)$$
(4)

Inference in SSM

Goals:

- θ is known: infer $\{z_t\}_{t\geq 1}$ from $\{x_t\}_{t\geq 1}$
 - Filtering: $p(z_t|x_{1:t})$, $p(x_{1:t})$
 - Smoothing: $p(z_t|x_{1:T}), p(z_{1:T}|x_{1:T})$
- θ is unknown: identify dynamics, i.e. $\log p(x_{1:T}|\theta) \to \max_{\theta}$

Inference in SSM

Goals:

- θ is known: infer $\{z_t\}_{t\geq 1}$ from $\{x_t\}_{t\geq 1}$
 - Filtering: $p(z_t|x_{1:t}), p(x_{1:t})$
 - Smoothing: $p(z_t|x_{1:T}), p(z_{1:T}|x_{1:T})$
- θ is unknown: identify dynamics, i.e. $\log p(x_{1:T}|\theta) \to \max_{\theta}$

$$p(z_{1:T}|x_{1:T}) = \frac{p(x_{1:T}, z_{1:T})}{p(x_{1:T})}$$
 (5)

$$p(x_{1:T}, z_{1:T}) = \underbrace{\mu(z_1) \prod_{t=2}^{T} f(z_t | z_{t-1}) \prod_{t=1}^{T} g(x_t | z_t)}_{p(x_{1:T} | z_{1:T})}$$
(6)

$$p(x_{1:T}) = \int p(x_{1:T}, z_{1:T}) dz_{1:T}$$
 (7)

Analytic Inference

Posterior

$$p(z_{1:t}|x_{1:t}) = \frac{p(z_{1:t}, x_{1:t})}{p(x_{1:t})} = \frac{p(z_{1:t-1}, x_{1:t-1})g(x_t|z_t)f(z_t|z_{t-1})}{p(x_{1:t})}$$

$$= p(z_{1:t-1}|x_{1:t-1})\frac{g(x_t|z_t)f(z_t|z_{t-1})}{p(x_t|x_{1:t-1})}$$
(8)

Denominator

$$p(x_t|x_{1:t-1}) = \int g(x_t|z_t)f(z_t|z_{t-1})p(z_{t-1}|x_{1:t-1})dz_{t-1:t}$$
 (9)

Marginal likelihood decomposes naturally

$$p(x_{1:t}) = p(x_1) \prod_{k=2}^{t} p(x_k | x_{1:k-1})$$
 (10)

Non-Gaussian non-linear dynamics?

Analytic Inference

Posterior

$$p(z_{1:t}|x_{1:t}) = \frac{p(z_{1:t}, x_{1:t})}{p(x_{1:t})} = \frac{p(z_{1:t-1}, x_{1:t-1})g(x_t|z_t)f(z_t|z_{t-1})}{p(x_{1:t})}$$

$$= p(z_{1:t-1}|x_{1:t-1})\frac{g(x_t|z_t)f(z_t|z_{t-1})}{p(x_t|x_{1:t-1})}$$
(8)

Denominator

$$p(x_t|x_{1:t-1}) = \int g(x_t|z_t)f(z_t|z_{t-1})p(z_{t-1}|x_{1:t-1})dz_{t-1:t}$$
 (9)

Marginal likelihood decomposes naturally

$$p(x_{1:t}) = p(x_1) \prod_{k=2}^{t} p(x_k | x_{1:k-1})$$
 (10)

Non-Gaussian non-linear dynamics? No way!

Monte Carlo Integration

$$p(x_{1:T}) = \int p(x_{1:T}, z_{1:T}) dz_{1:T}$$
 (11)

Monte Carlo Integration

$$p(x_{1:T}) = \int p(x_{1:T}, z_{1:T}) dz_{1:T}$$
 (11)

Trotter and Tukey, 1954:

The only good Monte Carlos are dead Monte Carlos

Monte Carlo Integration

$$p(x_{1:T}) = \int p(x_{1:T}, z_{1:T}) dz_{1:T}$$
 (11)

Trotter and Tukey, 1954:

The only good Monte Carlos are dead Monte Carlos

Let us for the moment review the basic Monte Carlo methods.

$$\gamma_t(z_{1:t}) \stackrel{\triangle}{=} p(z_{1:t}, x_{1:t})$$

$$C_t \stackrel{\triangle}{=} p(x_{1:t})$$

$$\pi_t(z_{1:t}) \stackrel{\triangle}{=} \frac{\gamma_t(z_{1:t})}{C_t}$$
(12)

Basic Monte Carlo

Assuming we can sample $z_{1:t}^i \sim \pi_t(z_{1:t})$

$$\pi_t(z_{1:t}) = \frac{\gamma(z_{1:t})}{C_t} \approx \frac{1}{N} \sum_{i=1}^N \delta(z_{1:t} - Z_{1:t}^i) \stackrel{\triangle}{=} \widehat{\pi}_t(z_{1:t})$$

$$I_{t}(\varphi) = \int \varphi(z_{1:t}) \pi(z_{1:t}) dz_{1:t} \approx \frac{1}{N} \sum_{i=1}^{N} \varphi(Z_{1:t}^{i}) \qquad \triangleq I_{t}^{MC}(\varphi)$$

This estimate is unbiased and have a variance of

$$\mathbb{V}\mathrm{ar}\left[I_t^{MC}(\varphi)\right] = \frac{1}{N}\left(\int \varphi^2(z_{1:t})\pi(z_{1:t})dz_{1:t} - I_t(\varphi)^2\right) \tag{13}$$

Variance of MC estimate

Problems of basic Monte Carlo

- We cannot sample from high dimensional complex $\pi(z_{1:t})$
- ② We dont want to resample $z_{1:t}$ on increment of t

Variance of MC estimate

Problems of basic Monte Carlo

- **1** We cannot sample from high dimensional complex $\pi(z_{1:t})$
- ② We dont want to resample $z_{1:t}$ on increment of t

We are going to address

- the first problem with Importance Sampling (IS)
- 2 the second problem with Sequential IS

Importance Sampling

- choose a proposal distribution $q: \pi(z_{1:t}) > 0 \Rightarrow q(z_{1:t}) > 0$
- 2 sample from q, i.e. $z_{1:t}^i \sim q(z_{1:t})$,
- 3 reweight samples with importance weights $w(z_{1:t}) = \frac{\gamma(z_{1:t})}{q(z_{1:t})}$

Then we can

- renormalize the weights $W_t^i = \frac{w(z_{1:t}^i)}{\sum_j w(z_{1:t}^j)}$
- ullet and approximate π with

$$\widehat{\pi}(z_{1:t}) = \sum_{i=1}^{N} W_t^i \delta(z_{1:t} - z_{1:t}^i)$$

estimate of the normalizing constant

$$\widehat{C}_t = \frac{1}{N} \sum_{i=1}^N w(z_{1:t}^i)$$

Properties of IS estimation

Estimate of C_t

is unbiased

$$\mathbb{E}\left[\widehat{C}_{t}\right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{z_{1:t} \sim q} \left[\frac{\gamma_{t}(z_{1:t})}{q(z_{1:t})}\right] = \frac{N}{N} C_{t}$$

• has relative variance of $\mathcal{O}(\frac{1}{N})$

$$\frac{\mathbb{V}\mathrm{ar}\left[\widehat{C}_{t}\right]}{C_{t}^{2}} = \frac{1}{N} \left(\int \frac{\pi^{2}(z_{1:t})}{q(z_{1:t})} dz_{1:t} - 1 \right)$$

To address the second problem we introduce Sequential IS

Sequential Importance Sampling

- lacksquare choose a proposal of the form $q(z_{1:t}) = q(z_t|z_{1:t-1})q(z_{1:t-1})$
- 2 on increment of t, sample $z_t^i \sim q(z_t|z_{1:t-1}^i)$
- recompute IS weights according to the recurrence

$$w(z_{1:t}) \stackrel{\triangle}{=} \frac{\gamma(z_{1:t})}{q(z_{1:t})} = \frac{\gamma(z_{1:t})}{q(z_t|z_{1:t-1})\gamma(z_{1:t-1})} \cdot \frac{\gamma(z_{1:t-1})}{q(z_{1:t-1})}$$

$$\stackrel{\triangle}{=} \alpha(z_{1:t}) \cdot w(z_{1:t-1}) = w_1(z_1) \prod_{k=2}^t \alpha(z_{1:k})$$

We have mitigated both problems.

So what could go wrong?

Enormous variance

Consider the simplest example possible

$$\pi_t(z_{1:t}) = \prod_{k=1}^t \mathcal{N}(z_k|0,1) = \frac{\gamma_t(z_{1:t})}{C_t} = \frac{\prod_{k=1}^t \exp\left(-\frac{z_k^2}{2}\right)}{(2\pi)^{t/2}}$$
 $q_t(z_{1:t}) = \prod_{k=1}^t \mathcal{N}(z_k|0,\sigma^2)$

Then

$$\frac{\mathbb{V}\mathrm{ar}\left[\widehat{C}_{t}\right]}{C_{t}^{2}} = \frac{1}{N}\left(\int \frac{\pi^{2}(z_{1:t})}{q(z_{1:t})}dz_{1:t} - 1\right) = \left[\left(\frac{\sigma^{4}}{2\sigma^{2} - 1}\right)^{t/2} - 1\right]$$

For almost perfect q with $\sigma=1.2$ to obtain relative variance of 0.01 for t=1000 we would need $N\approx 2\times 10^{23}$ particles.

Enormous variance

Consider the simplest example possible

$$\pi_t(z_{1:t}) = \prod_{k=1}^t \mathcal{N}(z_k|0,1) = \frac{\gamma_t(z_{1:t})}{C_t} = \frac{\prod_{k=1}^t \exp\left(-\frac{z_k^2}{2}\right)}{(2\pi)^{t/2}}$$
$$q_t(z_{1:t}) = \prod_{k=1}^t \mathcal{N}(z_k|0,\sigma^2)$$

Then

$$\frac{\mathbb{V}\mathrm{ar}\left[\widehat{C}_{t}\right]}{C_{t}^{2}} = \frac{1}{N}\left(\int \frac{\pi^{2}(z_{1:t})}{q(z_{1:t})}dz_{1:t} - 1\right) = \left[\left(\frac{\sigma^{4}}{2\sigma^{2} - 1}\right)^{t/2} - 1\right]$$

For almost perfect q with $\sigma=1.2$ to obtain relative variance of 0.01 for t=1000 we would need $N\approx 2\times 10^{23}$ particles. SMC in the same setting will require only $N\approx 10^4$

Sequential Monte Carlo

Definition of SMC

SMC = Sequential IS + Resampling

SMC is a family of methods for sampling from a sequence of distributions $\{\pi_t(z_{1:t})\}$ of increasing dimension t.

Note: π_t may not be nested, i.e. $\pi_t(z_{1:t-1}) \neq \pi_{t-1}(z_{1:t-1})$

At each time step SMC provides

- **1** approximation $\widehat{\pi}_t$ of π_t
- 2 estimates normalization constant C_t

Definition of SMC

SMC = Sequential IS + Resampling

SMC is a family of methods for sampling from a sequence of distributions $\{\pi_t(z_{1:t})\}$ of increasing dimension t.

Note: π_t may not be nested, i.e. $\pi_t(z_{1:t-1}) \neq \pi_{t-1}(z_{1:t-1})$

At each time step SMC provides

- **1** approximation $\widehat{\pi}_t$ of π_t
- 2 estimates normalization constant C_t
 - simple technique, hard to analyze due to resampling
 - very strong theoretical guarantees
 - well explored field (over 20 years of thorough investigation)
 - very good in practice

SMC procedure: Bootstrap filter (Gordon, 1993)

At t=1

- **1** Sample *N* particles $z_1^i \sim q(z_1)$
- Compute weights $w_1(z_1^i) = \frac{\gamma(z_1^i)}{q(z_1^i)}$ $W_1^i = \frac{w_1(z_1^i)}{\sum_i w_1(z_1^i)}$

SMC procedure: Bootstrap filter (Gordon, 1993)

At t=1

- **1** Sample *N* particles $z_1^i \sim q(z_1)$
- $\text{Compute weights} \qquad w_1(z_1^i) = \frac{\gamma(z_1^i)}{q(z_1^i)} \qquad W_1^i = \frac{w_1(z_1^i)}{\sum_i w_1(z_1^i)}$

At $t \ge 2$

- Sample ancestor indices $a_{t-1}^i \sim \operatorname{Cat}(W_{t-1}^1, ..., W_{t-1}^N)$
- Sample N particles $z_t^i \sim q(z_t|z_{1:t-1}^{a_{t-1}^i})$
- Compute weights

$$w_t(z_{1:t}^i) = \frac{\gamma(z_{1:t-1}^i)}{q(z_{1:t}^i)} \qquad W_t^i = \frac{w_t(z_{1:t}^i)}{\sum_i w_t(z_{1:t}^i)}$$

SMC procedure: Bootstrap filter (Gordon, 1993)

At t=1

- **1** Sample N particles $z_1^i \sim q(z_1)$
- Compute weights $w_1(z_1^i) = \frac{\gamma(z_1^i)}{g(z_1^i)}$ $W_1^i = \frac{w_1(z_1^i)}{\sum_i w_1(z_1^i)}$

At t > 2

- Sample ancestor indices $a_{t-1}^i \sim \operatorname{Cat}(W_{t-1}^1, ..., W_{t-1}^N)$
- 2 Sample N particles $z_t^i \sim q(z_t|z_{1:t-1}^{a_{t-1}'})$
- Compute weights

$$w_t(z_{1:t}^i) = \frac{\gamma(z_{1:t-1}^i)}{q(z_{1:t}^i)} \qquad W_t^i = \frac{w_t(z_{1:t}^i)}{\sum_i w_t(z_{1:t}^i)}$$

Estimate normalization constant and target distribution

$$\widehat{C}_t = \frac{1}{N} \sum_{i=1}^t w_t(z_{1:t}^i) \qquad \widehat{\pi}_t(z_{1:t}) = \sum_{i=1}^N W_t^i \delta(z_{1:t} - z_{1:t}^i)$$

Resampling reduces variance of final estimates

$$N \frac{\mathbb{V}\text{ar}\left[\widehat{C}_{t}^{SIS}\right]}{C_{t}^{2}} = \int \frac{\pi_{t}^{2}(z_{1:t})}{q(z_{1:t})} dz_{1:t} - 1$$

$$N \frac{\mathbb{V}\text{ar}\left[\widehat{C}_{t}^{SMC}\right]}{C_{t}^{2}} \approx \int \frac{\pi_{t}^{2}(z_{1})}{q_{1}(z_{1})dz_{1}} - 1$$

$$+ \sum_{l=0}^{t} \int \frac{\pi_{t}^{2}(z_{1:k})}{\pi_{k-1}(z_{1:k-1})q_{k}(z_{k}|z_{1:k})} dz_{k-1:k} - 1$$

Resampling "resets" the system – splits the integral into parts.

Particle impoverishment

No free lunch: (Doucet, 2011)

It is impossible to accurately represent a distribution on a space of arbitrarily high dimension with a sample of fixed, finite size.

At each step we can only reduce the particle set!

Particle impoverishment

No free lunch: (Doucet, 2011)

It is impossible to accurately represent a distribution on a space of arbitrarily high dimension with a sample of fixed, finite size.

At each step we can only reduce the particle set!

Many techniques to partially mitigate impoverishment

- Controlled resampling: the variance of weights (ESS, ent.)
- Advanced resampling: Systematic / Residual resampling, etc.
- Look-aheads: Block Sampling, Auxiliary Particle Filter
- Resample-Move: MCMC / Gibbs steps to "jitter" particles

SMC for Filtering – Particle Filter

Recall

$$\pi_t(z_{1:t}) \stackrel{\Delta}{=} \frac{\gamma_t(z_{1:t})}{C_t} = \frac{p(z_{1:t}, x_{1:t})}{p(x_{1:t})} = p(z_{1:t}|x_{1:t})$$

$$p(z_{1:t}|x_{1:t}) = p(z_{1:t-1}|x_{1:t-1}) \frac{g(x_t|z_t)f(z_t|z_{t-1})}{p(x_t|x_{1:t-1})}$$

- We have $\widehat{p}(z_{1:t-1}|x_{1:t-1}) = \sum_{i} W_{i}^{t-1} \delta(z_{1:t-1} z_{1:t-1}^{i})$
- Can marginalize $\widehat{p}(z_{t-1}|x_{1:t-1}) = \sum_{i} W_{i}^{t-1} \delta(z_{t-1} z_{t-1}^{i})$
- Resample, i.e. sample from $\widehat{p}(z_{t-1}|x_{1:t-1})$:

$$\overline{p}(z_{t-1}|x_{1:t-1}) \triangleq \frac{1}{N} \sum_{i=1}^{N} \delta(z_{t-1} - z_{t-1}^{i})$$

The marginal likelihood estimate

Sampling z_t^i from proposal $q(z_t|z_{t-1}^i)$ we obtain

$$p(x_t|x_{1:t-1}) \approx \int \frac{g(x_t|z_t)f(z_t|z_{t-1})}{q(z_t|z_{t-1}^i)} q(z_t|z_{t-1}^i) \overline{p}(z_{t-1}|x_{1:t-1}) dz_{t-1:t}$$

$$= \frac{1}{N} \sum_{i}^{N} \frac{g(x_t|z_t^i)f(z_t^i|z_{t-1}^i)}{q(z_t^i|z_{t-1}^i)}$$

The marginal likelihood estimate

Sampling z_t^i from proposal $q(z_t|z_{t-1}^i)$ we obtain

$$\begin{aligned} p(x_t|x_{1:t-1}) &\approx \int \frac{g(x_t|z_t)f(z_t|z_{t-1})}{q(z_t|z_{t-1}^i)} q(z_t|z_{t-1}^i) \overline{p}(z_{t-1}|x_{1:t-1}) dz_{t-1:t} \\ &= \frac{1}{N} \sum_{i}^{N} \frac{g(x_t|z_t^i)f(z_t^i|z_{t-1}^i)}{q(z_t^i|z_{t-1}^i)} \end{aligned}$$

We can model f, g, q with complex models:

$$w_t^i = \frac{f(z_t|z_{1:t-1}^{a_{t-1}^i})g(x_t|z_{1:t}^k)}{q(z_t^k|x_{1:t},z_{1:t-1}^{a_{t-1}^i})}$$

And still easily estimate marginal likelihood (unbiasedly)

$$\widehat{p}(x_{1:t}) \stackrel{\triangle}{=} \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} w_t^i,$$

Some of the theoretical results

Assumption: exponential stability – $\forall z_1, z'_1$

$$\int |p(z_t|x_{2:t}, \mathbf{z_1}) - p(z_t|x_{2:t}, \mathbf{z_1'})| dx_t \leq \alpha^t, \qquad 0 \leq \alpha < 1$$

• L1 distance. Bias increases linearly with $t: \exists B_1 < \infty$

$$\int \left| \mathbb{E}\left[\widehat{p}(z_{1:t}|x_{1:t})\right] - p(z_{1:t}|x_{1:t}) \right| \leq \frac{B_1 \cdot t}{N}$$

• Central Limit Theorem. Approximate Normality: $\exists B_2 < \infty$

$$\lim_{N\to\infty} \sqrt{N}(\log \widehat{p}(x_{1:t}) - \log p(x_{1:t})) \to \mathcal{N}(0, \sigma_t^2), \quad \sigma_t^2 \leq B_2 t$$

• **Relative Variance** increases linearly with $t: \exists B_3 < \infty$

$$\mathbb{E}\left[\left(\frac{\widehat{p}(x_{1:t})}{p(x_{1:t})}-1\right)^2\right] \leq \frac{B_3t}{N}$$

Improvements over standard SMC

Proposal improvements:

- Estimating the mode of a true posterior $p(z_t|x_{1:t})$
- Local approximations: local linearization of system dynamics (EKF), Unscented KF, etc.
- Implicit proposals (Chorin, 2012)

Improvements over standard SMC

Proposal improvements:

- Estimating the mode of a true posterior $p(z_t|x_{1:t})$
- Local approximations: local linearization of system dynamics (EKF), Unscented KF, etc.
- Implicit proposals (Chorin, 2012)

Can we improve upon the fixed proposal?

Variational Sequential Monte Carlo

High level overview

- \bullet We can parametrise our proposal distribution q
- ② And optimize KL between q and true posterior $p(z_{1:t}|x_{1:t})$
- To sample from variational posterior
 - Run SMC and pick one of the particles
- Applicable to any sequence of probabilistic models
- VSMC allows for model learning, proposal adaptation and inference amortization

Unifying view on ELBO

For any unnormalized target density $\gamma(z)$ with normalizing constant C, $\pi(z) = \frac{\gamma(z)}{C}$ and a proposal density q

$$\mathrm{ELBO} = \int Q(z) \log \frac{\gamma(z)}{Q(z)} dz = \log C - \mathrm{KL}(Q||\pi)$$

Unifying view on ELBO

For any unnormalized target density $\gamma(z)$ with normalizing constant C, $\pi(z) = \frac{\gamma(z)}{C}$ and a proposal density q

$$ext{ELBO} = \int Q(z) \log \frac{\gamma(z)}{Q(z)} dz = \log C - \text{KL}(Q||\pi)$$

- Assume $\widehat{C}(z)$ is nonnegative and $\int Q(z)\widehat{C}(z) = C$
- Then we can plug $\gamma(z) = Q(z)\widehat{C}(z)$ into ELBO

ELBO =
$$\int Q(z) \log \frac{Q(z)\widehat{C}(z)}{Q(z)} dz = \int Q(z) \log \widehat{C}(z) dz$$

Unifying view on ELBO

For any unnormalized target density $\gamma(z)$ with normalizing constant C, $\pi(z)=\frac{\gamma(z)}{C}$ and a proposal density q

$$\mathrm{ELBO} = \int Q(z) \log \frac{\gamma(z)}{Q(z)} dz = \log C - \mathrm{KL}(Q||\pi)$$

- Assume $\widehat{C}(z)$ is nonnegative and $\int Q(z)\widehat{C}(z) = C$
- Then we can plug $\gamma(z) = Q(z)\widehat{C}(z)$ into ELBO

ELBO =
$$\int Q(z) \log \frac{Q(z)\widehat{C}(z)}{Q(z)} dz = \int Q(z) \log \widehat{C}(z) dz$$

• For example $\widehat{C}(z)$ may be one of these

$$\widehat{C}(z)^{VAE} = \frac{p(x,z)}{q(z|x)}, \qquad \widehat{C}(z^{1:K})^{IWAE} = \frac{1}{K} \sum_{k=1}^{K} \frac{p(x,z^k)}{q(z^k|x)}$$

VSMC

Based on sampling distribution of SMC

$$Q_{SMC}(z_{1:T}^{1:K}, a_{1:T-1}^{1:K}) = \left(\prod_{k=1}^{K} q_{\phi}(z_{1}^{k})\right) \left(\prod_{t=2}^{T} \prod_{k=1}^{K} q_{\phi}(z_{t}^{k}|z_{1:t-1}^{a_{t-1}^{k}}) \operatorname{Cat}(a_{t-1}^{k}|W_{t-1}^{1:K})\right)$$

and unbiased estimator of marginal likelihood

$$\widehat{C}_{SMC}(z_{1:T}^{1:K}, a_{1:T-1}^{1:K}) = \prod_{t=1}^{T} \left[\frac{1}{N} \sum_{i=1}^{N} w_{t}^{i} \right] \quad w_{t}^{i} = \frac{f_{\theta}(z_{t} | z_{1:t-1}^{a_{t-1}^{i}}) g_{\theta}(x_{t} | z_{1:t}^{k})}{q_{\phi}(z_{t}^{k} | x_{1:t}, z_{1:t-1}^{a_{t-1}^{i}})}$$

3 we can form and optimize ELBO on $\log p(x_{1:T})$

ELBO_{SMC}(
$$\theta$$
, ϕ , $x_{1:T}$) =

$$\int Q_{SMC}(z_{1:T}^{1:K}, a_{1:T-1}^{1:K}) \log C_{SMC}(z_{1:T}^{1:K}, a_{1:T-1}^{1:K}) \ dz_{1:T}^{1:K} \ da_{1:T-1}^{1:K}$$

Optimization

$$\mathrm{ELBO}_{SMC}(\theta, \phi, x_{1:T}) \rightarrow \max_{\phi, \theta}$$

Optimization

$$\text{ELBO}_{SMC}(\theta, \phi, x_{1:T}) \rightarrow \max_{\phi, \theta}$$

- make proposal $q(z_t|z_{1:t-1}^k)$ reparametrizable
- ignore gradient with respect to categorical sampling

Theoretical benefits

• We can bound the KL in N

$$\mathrm{KL}(q_{\phi}(z_{1:t})||p(z_{1:T}|x_{1:T})) \leq \frac{c(\phi)}{N}$$

② We can bound the KL in T if N = bT

$$\mathrm{KL}(q_{\phi}(z_{1:t})||p(z_{1:T}|x_{1:T})) \leq -\mathbb{E}\left[\log\frac{\widehat{p}(x_{1:T})}{p(x_{1:T})}\right] \stackrel{T \to \infty}{\longrightarrow} \frac{\sigma^2(\phi)}{2b} < \infty$$

3 In general cannot achieve the marginal likelihood on optimal proposal q^* . Though, it is possible if p admits independence structure, i.e. if

$$p(z_{1:t-1}|x_{1:t}) = p(z_{1:t-1}|x_{1:t-1})$$

TITA ATT

Experiments

N	Bound	TIMIT	
		64 units	256 units
4	ELBO	0	10,438
	IWAE	-160	11,054
	FIVO	5,691	17,822
8	ELBO	2,771	9,819
	IWAE	3,977	11,623
	FIVO	6,023	21,449
16	ELBO	1,676	9,918
	IWAE	3,236	13,069
	FIVO	8,630	21,536

Experiments

Thank you!

References I

- Presentation of Arnaud Doucet MLSS 2012
- Doucet, Arnaud, and Adam M. Johansen. "A tutorial on particle filtering and smoothing: Fifteen years later." Handbook of nonlinear filtering 12.656-704 (2009): 3.
- Maddison, Chris J., et al. "Filtering variational objectives."
 Advances in Neural Information Processing Systems. 2017.
- Naesseth, Christian A., et al. "Variational Sequential Monte Carlo." arXiv preprint arXiv:1705.11140 (2017).
- Le, Tuan Anh, et al. "Auto-Encoding Sequential Monte Carlo." arXiv preprint arXiv:1705.10306 (2017).