EXADEMY

ONLINE NATIONAL TEST

Course: UPSC – CSE - Mathematics Optional Test 3

Subject: VECTOR ANALYSIS Time: 2 Hours

Total Questions: 15 Total Marks: (100)

- Q1. If $F = (2y + 3) \mathbf{i} + xz \mathbf{j} + (yz x) \mathbf{k}$, evaluate $\int_C F dr$ along the following paths C:
 - I. $x = 2t^2$, y = t, $z = t^3$ from t = 0 to t = 1.
 - II. The straight lines from (0, 0, 0) to (0, 0, 1) then to (0, 1, 1) and then to (2, 1, 1)
- III. The straight line joining (0, 0, 0) to (2, 1, 1).

7 Marks

Q2. Evaluate the vector integral

 $\int_{S} (yz\mathbf{i} + zx\mathbf{j} + xy\mathbf{k}) \cdot d\mathbf{a}, \text{ where S is the surface of the sphere } x^{2} + y^{2} + z^{2} = 1 \text{ in the first quadrant.}$

7 Marks

Q3. Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where

 $\mathbf{F} = c[-3a\sin^2\theta\cos\theta\,\mathbf{i} + a(2\sin\theta - 3\sin^3\theta)\mathbf{j} + b\sin2\theta\,\mathbf{k}]$ and the curve C is given by

 $r = a \cos \theta \, i + a \sin \theta \, j + b k; \quad \theta \text{ varying from } \pi/4 \text{ to } \pi/2.$

Q4.	Find the angle between the lines AB, AC where A, B, C are the three points with
rectang	gular Cartesian coordinates (1, 2, -1), (2, 0, 3), (3, -1, 2) respectively.

7 Marks

Q5. If **a**, **b** are vectors and a, b their lengths, show that

$$\left(\frac{\boldsymbol{a}}{a^2} - \frac{\boldsymbol{b}}{b^2}\right)^2 = \left(\frac{\boldsymbol{a} - \boldsymbol{b}}{ab}\right)^2$$

7 Marks

Q6. Given two vectors:

$$a = 2i - 3j + k$$
; $b = -i + 2j - k$.

Find the projection of **a** on **b** and that of **b** on **a**.

2 Marks

Q7. Given two vectors

$$a = i + j - k$$
; $b = i - j + k$.

Find a unit vector \mathbf{c} , perpendicular to the vector \mathbf{a} and coplanar with \mathbf{a} and \mathbf{b} . Find also a vector \mathbf{d} perpendicular to both \mathbf{a} and \mathbf{c} .

Q8. If \mathbf{a} , \mathbf{b} , \mathbf{c} be three non-zero, non-coplanar vectors, find a relation between the vectors $\mathbf{a} + 3\mathbf{b} + 4\mathbf{c}$, $\mathbf{a} - 2\mathbf{b} + 3\mathbf{c}$, $\mathbf{a} + 5\mathbf{b} - 2\mathbf{c}$, $6\mathbf{a} + 14\mathbf{b} + 4\mathbf{c}$.

7 Marks

Q9. A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where **t** is the time. Find the component of its velocity and acceleration at time t = 1 in the direction $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$.

7 Marks

Q10. The equation of motion of a particle P of mass m is given by $m(d^2\mathbf{r}/dt^2) = f(r)\hat{\mathbf{r}}$, where \mathbf{r} is the position vector of P measured from an origin O, $\hat{\mathbf{r}}$ is a unit vector in the direction of \mathbf{r} and $f(\mathbf{r})$ is a function of the distance of P from O, show that $\mathbf{r} \times (d\mathbf{r} / dt) = \mathbf{c}$, where \mathbf{c} is a constant vector.

7 Marks

Q11. Show that

$$curl \frac{a \times r}{r^3} = -\frac{a}{r^3} + \frac{3r}{r^3} (a \cdot r)$$
, where **a** is a constant vector.

7 Marks

Q12. Prove that

$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r).$$

Q13. Evaluate $\int_V (2x + y) dV$, where V is the closed region bounded by the cylinder $z = 4 - x^2$ and the plane x = 0, y = 0, y = 2 and z = 0.

7 Marks

Q14. If $\overrightarrow{OA} = ai$, $\overrightarrow{OB} = aj$, $\overrightarrow{OC} = ak$, form three coterminous edges of a cube and S denotes the surface of the cube, evaluate

$$\int_{\mathcal{S}} \{(x^3 - yz)\mathbf{i} - 2x^2y\mathbf{j} + 2\mathbf{k}\}.\,\mathbf{n}\,dS.$$

by expressing it as a volume integral. Also verify the result by direct evaluation of surface integral.

7 Marks

Q15. Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at (1, -2, -1) in the direction $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. In which direction the directional derivative will be maximum and what is its magnitude. Also find a unit normal to the surface $x^2yz + 4xz^2 = 6$ at the point (1, -2, -1), find the equation of tangent plane and normal at the point (1, -2, -1).