

PLATAFORMA DIGITAL PARA LA OPTIMIZACIÓN ENERGÉTICA EMPRESARIAL

UN SISTEMA DE INFORMACIÓN PARA LA TOMA DE DECISIONES EN EL SECTOR INDUSTRIAL

Autores:

Daniel molina Sanchez Luna Giraldo Gonzalez

Escuela de ciencias exactas e ingenieria

Tutores:

Darwin Martinez Miguel Angel Ariza

ÍNDICE

- 1. Introducción
- 2. Estado del arte
- 3. Objetivos
- 4. Metodología (PHVA)
- 5. Desarrollo de VoltLAB
 - o Diagnóstico energético inicial
 - Plataforma digital y módulos
 - o Simulador de ROI y modelo Random Forest
- 6. Validación y Resultados
 - Comparación real vs predicho
 - o Interpretación y uso práctico
- 7. Demostración en vivo de la plataforma
- 8. Conclusiones y Recomendaciones
- 9. Cierre

¿POR QUÉ NACE VOLTLAB?

El sector industrial colombiano consume cerca del 22% de la energía nacional

Empresas como Macamol no cuentan con sistemas de monitoreo energético

- No saben cuánto consume cada máquina
- No pueden calcular el costo por pieza

Esta falta de visibilidad genera desperdicio energético y decisiones sin respaldo técnico

Las soluciones existentes (IoT, SCADA) son costosas e inaccesibles para muchas pymes

Por eso diseñamos VoltLAB, una plataforma digital económica, funcional y escalable

Fuente: Ministerio de Minas y Energía (2021)

ESTADO DEL ARTE

Otalora Rodríguez (2019) de la Universidad del Valle

Plataforma IoT con LoRaWAN para monitoreo remoto:

- Bajo consumo energético
- Conectividad de largo alcance
- Datos en tiempo real

Relevancia: Inspiración para nuestra red confiable y eficiente de monitoreo energético.

Canastero Ríos (2021) de la Universidad ECCI

Optimización del consumo energético en una empresa textil de Colombia:

- Estrategias de eficiencia energética.
- Análisis de procesos industriales.

Relevancia: Base para entender la aplicación de la eficiencia energética en la industria y adaptarlo a nuestro enfoque de monitoreo

¿QUÉ BUSCA VOLTLAB? OBJETIVOS

General

Diseñar un sistema de información que mejore la toma de decisiones sobre el uso eficiente de los recursos energéticos en la empresa.

Específicos

- Caracterizar el contexto energético del proceso metalmecánico como base para diseñar un sistema de información adaptado a la empresa.
- Diseñar una plataforma digital con Django y base de datos en SQLite3 para recopilar, gestionar y visualizar datos energéticos.
- Aplicar modelos estadísticos como Random Forest y el ROI para analizar el consumo y evaluar oportunidades de mejora.

¿CÓMO LO HICIMOS? CICLO PHVA APLICADO

Planear

- Diagnóstico energético, diagramas de flujo, layout, fichas técnicas.
- Definición de requerimientos funcionales del sistema.

Actuar

- Ajustes técnicos, mejoras en la interfaz, recomendaciones futuras.
- Propuesta de escalabilidad e integración con IoT.

Hacer

- Desarrollo de la plataforma VoltLAB (Django + SQLite3).
- Integración de módulos: registros, predicción, ROI, control mensual.

Verificar

- Validación funcional del sistema y modelo predictivo.
- Comparación con métodos tradicionales (R², MSE).

DIAGNÓSTICO ENERGÉTICO

Macamol

Se enfoca en desarrollar y mantener moldes para procesos de inyección y soplado de plásticos.

Tabla 1
Ficha tecnica de las maquinas

No maquina	Nombre maquinas	Potencia (WATTS)	Voltaje (V)	Corriente (A)
1	Centro de Mecanizado Leadwell	13200	440	30
2	Centro de Mecanizado Leadwell	11000	440	25
3	TORNO CNC ROMI 420	18000	450	40
4	Torno paralelo IMO TURN MASTER 34-	8800	220	40
5	Torno paralelo Winston 2060	11000	220	50
6	Electroerosionadora de penetración	8800	220	40
7	Electroerosionadora de penetración	8800	220	40
8	Electro erosionadora de penetración	8800	220	40
9	Rectificadora tangencial PROTH	6600	220	30
10	Fresadora de torreta Kondor	6600	220	30
11	Fresadora de torreta Kondor	6600	220	30
12	Fresadora de torreta Phoebus	6600	220	30

DIAGNÓSTICO ENERGÉTICO

IDENTIFICACIÓN DE ÁREAS CRÍTICAS Y OPORTUNIDADES DE MEJORA

<u>Diagrama de flujo</u>

Diagrama de Pareto

Layout

DATOS SEUDOALEATORIOS PUNTO DE PARTIDA PARA LA OPTIMIZACIÓN

Tabla 2

Datos reales de Macamol

Año	Mes	Numero de piezas	Consumo mes	Precio de la energia
2018	Enero	55	2057	452,43
2018	Febrero	90	1756	447,23
2018	Marzo	75	1458	4736,27

• Debido a la limitación en la cantidad de registros reales, se generó un conjunto adicional de datos seudoaleatorios.

- Estos datos se construyeron a partir de rangos realistas basados en las fichas técnicas y patrones de operación observados.
- El objetivo fue aumentar la muestra y mejorar la capacidad de entrenamiento del modelo.

Tabla 3

Datos seudoaleatorios de Macamol

	Id Pieza	id Máquina	Tipo de Tapa	Piezas requeridas	Horas de trabajo	Nombre maquinas	Potencia (kW)	Consumo energético	Precio electricidad	Costo energético	Fecha
-	1	12	Mediana	30	3,45	Fresadora de torreta	6,6	22,77	30,62	697,2174	2024-03-01 08:00:00
	1	3	Mediana	31	3,31	TORNO CNC ROMI 420	18	59,58	39,26	2339,1108	2024-03-01 16:00:00
	2	7	Mediana	26	7,07	Electroerosion adora de penetración	8,8	62,216	35,98	2238,53168	2024-03-01 07:00:00

DISEÑO LÓGICO Y FUNCIONAL DE VOLTLAB

MODELO DE DATOS RELACIONAL

Requerimientos funcionales del sistema

- VoltLAB se basa en un modelo de datos relacional optimizado para análisis energético.
- Las entidades principales son:
 - Maquinaria y Molde, interrelacionadas
 - RegistroConsumo, que centraliza los datos operativos
 - PrecioEnergia y MesActivo, que controlan la variabilidad mensual
 - Relaciones uno-a-muchos y muchos-amuchos fueron diseñadas según la lógica del proceso industrial.

MesActivo
- id (autofield)
- mes (IntegerField)
- año (IntegerField)

DISEÑO LÓGICO Y FUNCIONAL DE VOLTLAB

INFRAESTRUCTURA TÉCNICA

Requerimientos funcionales del sistema

- VoltLAB está desplegado como una aplicación web monolítica bajo arquitectura cliente-servidor.
- Componentes:
- Cliente: navegador web (HTML, CSS)
- Servidor: Django + SQLite3
- Visualización: Plotly en frontend
- Modelo predictivo: Random Forest embebido con scikit-learn
- La base de datos local permite análisis energéticos sin conexión a Internet.

DISEÑO LÓGICO Y FUNCIONAL DE VOLTLAB

CASO DE USO FUNCIONAL CLAVE

Tabla 4

Caso de uso 09, Calculo del ROI

Caso de Uso CUog Nombre CU Calcular ROI real por máquina Permite al usuario analizar la viabilidad económica de una inversión en nueva maquinaria, comparando el consumo energético actual con una opción tecnológica más eficiente. El Descripcion ROI se calcula automáticamente a partir de los datos registrados en la base de datos y el valor de inversión ingresado manualmente. Administrador Actor Alta Prioridad Estimacion 10 puntos Debe existir un registro de consumo energetico Dependencia El usuario ha iniciado sesión y ha registrado como minimo un registro de consumo energetico Precondiciones Flujo Basico Paso Descripcion El usuario accede al módulo "Simulador ROI real por máquina". El sistema carga los registros del mes activo para cada máquina. 2 El usuario selecciona una máquina y digita el valor estimado de inversión. 3 El sistema calcula el ahorro anual basado en escenarios del 20 % y 30 %. 4 Se calcula el ROI (en años) automáticamente. 5 El sistema muestra la viabilidad de la inversión y clasifica el resultado. 6 Flujo Alternativo A El usuario no ingresa un valor válido de inversión. A_1 El sistema impide el cálculo y solicita la corrección del dato. A_2 El análisis puede usarse como criterio para priorizar futuras adquisiciones. Postcondiciones El ROI queda calculado y clasificado como viable, medianamente viable o no viable. El precio del kWh se toma automáticamente del historial de precios. Criterios de aceptacion El ROI se presenta con claridad y clasificaciones cualitativas según rangos.

Tabla 5

Caso de uso 14, Prediccion energetica

Caso de Uso	CU14 Nombre CU Realizar predicción energética							
Descripcion	Permite al usuario ingresar manualmente los datos de una máquina, un molde, las horas trabajadas y el número de piezas a producir, para obtener una predicción del consumo energético estimado mediante un modelo de regresión entrenado con datos históricos.							
Actor		Administrador						
Prioridad	Alta	Estimacion	12 puntos					
Dependencia	El sis	stema debe tener bastantes reg	gistros en los datos					
Precondiciones	El usuari	io ha iniciado sesión con perm	isos de administrador.					
		Flujo Basico						
Paso	Descripcion							
1	El us	suario accede al módulo "Pred	icción energética".					
2	El sistema muestra un formulario para ingresar máquina, molde, horas y piezas.							
3	El usua	ario completa los campos y ha	ce clic en "Predecir".					
4	El sistema utiliza el n	nodelo entrenado para calcula	r el consumo energético estimado.					
5	Se muestra el resultado	numérico junto con una conc consumo).	lusión cualitativa (bueno, medio, alto					
		Flujo Alternativo A						
A1	El usuar	io deja campos vacíos o introd	luce valores inválidos.					
A2	El sistema solicita corrección antes de proceder con la predicción.							
Postcondiciones	El usuario obtiene un valor estimado de consumo energético basado en un modelo predictivo.							
	l resultado puede ser usado	para planificar cargas energét	icas, comparar opciones o anticipar costo					
Criterios de	El model	o se ejecuta correctamente co	n los datos ingresados.					
aceptación	La predicción se muestra con claridad y acompañada de una interpretación cualitativa.							

EVALUACIÓN DE MODELOS DE PREDICCIÓN

SELECCIÓN DE RANDOM FOREST EN DATOS REALES

Modelos evaluados

- Regresión Lineal
- Gradient Boosting
- Random Forest

Modelo seleccionado: Random Forest

- Mayor coeficiente de determinacion
- Menor error medio cuadrático (MSE)
- Mejor comportamiento con relaciones no lineales
- Mejor reaccionando a outliers

Tabla 6

Evaluacion de los modelos

Modelo	R ²	MSE
Regresión Lineal	0,17	4.985
Gradient Boosting	-0.22	677,16
Random Forest	0,67	1,71515

IMPLEMENTACIÓN DE LA PLATAFORMA VOLTLAB

MODULO PRINCIPAL

Módulos funcionales implementados

- Consumo: Registro de datos operativos con cálculo automático de consumo y costo
- Predicción: Estimación del consumo energético según variables de entrada
- ROI: Simulación de retorno de inversión bajo diferentes escenarios
- Control mensual: Gestión del mes activo y precio del kWh
- Visualización: Dashboards dinámicos con gráficos Plotly

ANÁLISIS PRELIMINAR DEL ROI

EVALUACIÓN ECONÓMICA MANUAL DE SUSTITUCIÓN TECNOLÓGICA

Evaluación manual del Retorno de Inversión

- Se realizó un cálculo manual de ROI
- Se simularon escenarios de ahorro del 20% y 30% por modernización tecnológica.

Comparación tecnológica: marca VEDON

- Se evaluaron equipos de la marca VEDON, como alternativa de sustitución.
- Se calculó el tiempo estimado de retorno para cada máquina si se reemplazara por una nueva

Tabla 7 ROI con VEDON

Maquinas nuevas	Costo energético total (COP)	Maquinas antiguas	Costo energético total (COP)	Diferencia de ahorro	ROI (20%) en años	ROI (30%) en años
Torno paralelo Winston 2060	2,289,025.00	Torno paralelo Winston 2060	2,650,450	361,425.00	5	3
TORNO CNC ROMI 420	3,887,616.00	TORNO CNC ROMI 420	4,373,568	485,952.00	3	2
Fresadora de torreta Kondor	867,537.00	Fresadora de torreta Kondor	1,158,057	290,520.12	3	2
Electroerosionad ora de penetración	1,567,299.60	Electroerosionad ora de penetración	1,915,588	348,288.80	2	2
Centro de Mecanizado Leadwell v-30	1,901,707.50	Centro de Mecanizado Leadwell v-30	2,556,774	655,066.50	11	8
Fresadora de torreta Kondor	1,465,875.00	Fresadora de torreta Kondor	1,934,955	469,080.00	3	2
Centro de Mecanizado Leadwell v-20	2,042,785.95	Centro de Mecanizado Leadwell v-20	2,365,331	322,545.15	15	10
Rectificadora tangencial PROTH	1,235,500.75	Rectificadora tangencial PROTH	1,482,601	247,100.15	12	8
Fresadora de torreta Phoebus	939,950.00	Fresadora de torreta Phoebus	1,195,616	255,666.40	3	2

VOLTLAB

IMPLEMENTACIÓN DEL SIMULADOR DE RETORNO DE INVERSIÓN ENERGÉTICA

📈 Análisis de ROI Real por Máquina

m Mes activo: March

Precio del kWh aplicado: 737,40 COP

inversión estimada: 100000 COP

Modificar inversión (COP): 100000

Actualiza

Máquina	Horas trabajadas	Consumo (kWh)	Ahorro 20% (kWh)	Ahorro 20% (COP)	ROI 20% (años)	Clasificación 20%	Conclusión 20%	Ahorro 30% (kWh)	Ahorro 30% (COP)	ROI 30% (años)	Clasificación 30%	Conclusión 30%
TORNO CNC ROMI 420	8,0	144,00	28,80	21237	0,39	Excelente	Recuperación inmediata. Alta prioridad de optimización.	nediata. prioridad 43,20 31856 de		0,26	Excelente	Recuperación inmediata. Alta prioridad de optimización.
Electro erosionadora de penetración YAWJET	3,0	26,40	5,28	3893	2,14	Bueno	Viable si hay recursos. Recomendado.	7,92 5840		1,43	Muy bueno	Recuperación rápida. Implementación prioritaria.
Fresadora de torreta Kondor	2,0	13,20	2,64	1947	4,28	Aceptable	Retorno moderado. No urgente.	3,96 2920		2,85	Bueno	Viable si hay recursos. Recomendado.
Fresadora de torreta Phoebus	9,0	59,40	11,88	8760	0,95	Excelente	Recuperación inmediata. Alta prioridad de optimización.	17,82 13140		0,63	Excelente	Recuperación inmediata. Alta prioridad de optimización.
Centro de Mecanizado Leadwell v- 30	18,0	237,60	47,52	35041	0,24	Excelente	Recuperación inmediata. Alta prioridad de optimización.	diata. oridad 71,28 5. e		0,16	Excelente	Recuperación inmediata. Alta prioridad de optimización.
Torno paralelo IMO TURN MASTER 34- 10000	8,0	70,40	14,08	10383	0,8	Excelente	Recuperación inmediata. Alta prioridad de optimización.	21,12	15574	0,54	Excelente	Recuperación inmediata. Alta prioridad de optimización.

Simulador digital de ROI implementado en VoltLAB

• Módulo web que permite estimar inversión en modernización. Usa consumo real, potencia por máquina y tarifa energética del mes.

Cálculo automatizado

- Ahorro se basa en:
 - o Consumo actual vs. consumo optimizado
 - Escenarios simulados (20 % o 30 % de mejora)

VOLTLAB

IMPLEMENTACIÓN DEL MODELO PREDICTIVO PARA CONSUMO ENERGÉTICO

Implementación técnica en Django

- Modelo entrenado con scikit-learn y exportado mediante joblib
- Se carga dinámicamente en producción con:
 - cargar_modelo_y_predecir(potencia, horas, piezas, precio_kwh)
- Formularios web conectados a la vista
 PrediccionConsumoView procesan las solicitudes del usuario

¿Cada cuánto se entrena?

El modelo se entrena manualmente a demanda con el comando: python manage.py entrenar_modelo

- Este comando ejecuta el script de entrenamiento con datos registrados en la base
- Permite actualizar el modelo según nuevos datos operativos, sin afectar el sistema en uso

VERIFICACIÓN DEL MODELO PREDICTIVO

CONSUMO REAL VS CONSUMO ESTIMADO

Comparación de Predicción vs Consumo Estimado

Mes activo: March

Molde	Máquina	Horas	Piezas	Real (kWh)	Predicho (kWh)	Diferencia
Tapa Refisal	TORNO CNC ROMI 420	4,0	40	72,0	109,98	37,980000000000004
Tapa Refisal	Electro erosionadora de penetración YAWJET	3,0	70	26,4	113,22	86,82
Tapa Refisal	Fresadora de torreta Kondor	2,0	8	13,2	115,38	102,17999999999999
Tapa Refisal	TORNO CNC ROMI 420	4,0	40	72,0	109,98	37,980000000000004
Tapa Tajin	Fresadora de torreta Phoebus	5,0	35	33,0	109,98	76,98
Tapa Tajin	Fresadora de torreta Phoebus	4,0	15	26,4	115,38	88,9799999999999
Tapa Azucar	Centro de Mecanizado Leadwell v-30	9,0	75	118,8	135,9	17,10000000000001
Tapa Azucar	Centro de Mecanizado Leadwell v-30	9,0	75	118,8	135,9	17,10000000000001
Tapa Azucar	Torno paralelo IMO TURN MASTER 34-10000	4,0	25	35,2	115,38	80,17999999999999
Tapa Azucar	Torno paralelo IMO TURN MASTER 34-10000	4,0	25	35,2	115,38	80,17999999999999

📊 Comparación gráfica

Consumo Real vs Predicho

Propósito de esta funcionalidad

- Permitir al usuario verificar si el modelo de predicción está funcionando correctamente
- Comparar de forma visual los consumos energéticos reales contra los valores estimados por el modelo
- ¿Qué puede observar el usuario?
 - Casos donde la predicción se acerca o se desvía del consumo real
 - o Posibles anomalías o errores de registro
 - Precisión del modelo a lo largo del tiempo

Evaluación cuantitativa

- Se calcula la diferencia entre ambos valores
- El sistema resalta desviaciones y permite evaluar la precisión del modelo
- Visualización grupal tipo barra agrupada (real vs predicho) por molde

ACCESO A LA PLATAFORMA VOLTLAB - DEMO EN VIVO, EN RENDER

https://voltlab.onrender.com

ACCESO:

- Cuenta Administrativa:
 - Usuario: admin
 - Contraseña: admin

- Cuenta Operario:
 - Usuario: operario
 - Contraseña: operario

CONCLUSIONES Y RECOMENDACIONES

VOLTLAB COMO HERRAMIENTA PARA LA TOMA DE DECISIONES ENERGÉTICAS

Conclusiones Clave

- Se logró desarrollar VoltLAB como una plataforma integral que transforma datos energéticos en decisiones operativas, técnicas y económicas dentro de un entorno real como el de Macamol.
- Se realizó un diagnóstico energético detallado usando diagramas de flujo, layout de planta, fichas técnicas y análisis de Pareto, identificando los puntos críticos de consumo que fundamentaron el diseño del sistema.
- Se implementó una solución funcional, modular y escalable, estructurada por apps independientes para consumo, predicción, ROI, reportes y gestión mensual, con visualizaciones dinámicas en Plotly.
- Se integró un modelo predictivo Random Forest entrenado con datos reales y simulados, junto a un simulador de ROI que permite evaluar retornos energéticos bajo distintos escenarios, facilitando decisiones de inversión tecnológica.
- Cada objetivo fue cumplido de forma funcional y verificable dentro del sistema, demostrando la aplicabilidad de VoltLAB en el entorno industrial.

Limitaciones y desafíos

- Escasez de datos reales históricos al inicio del proyecto
- Ausencia de sensores o automatización para validación automática
- Requiere capacitación básica para operarios con menor familiaridad digital

Recomendaciones futuras

- Integrar sensores IoT para captura automática de datos en tiempo real
- Desplegar la plataforma en la nube para facilitar acceso remoto y respaldo
- Incluir módulos adicionales como alertas de sobreconsumo o mantenimiento predictivo
- Entrenamiento del modelo predictivo mas amigable con el usuario

