

CLAIMS

We claim:

5 1) A method for reducing or eliminating a
decrease in neurosensory retinal function
following laser treatment of choroidal
neovascularization (CNV) while maintaining
the vascular occlusion therapeutic effect of
10 such therapy, the method comprising the
steps: a) administering to a mammal having
a CNV a therapeutically effective amount of
an alpha receptor agonist, b) subjecting
said mammal to laser irradiation of the
15 retinal locus of the CNV; wherein the amount
of neurosensory retinal function following
steps a) and b) is greater than when said
mammal is subjected to step b) without step
a).
20
2) The method of claim 1 wherein the alpha
adrenergic receptor agonist is an alpha 2
selective agonist.
25
3) The method of claim 2 wherein the alpha
adrenergic receptor agonist is selected from
the group consisting of brinoinidine,
clonidine, and para-aminoclonidine.
30
4) The method of claim 3 in which the alpha
adrenergic receptor agonist is brimonidine.

TOP SECRET//EYES ONLY

5) The method of claim 2 wherein the alpha 2 selective agonist is an alpha 2B and/or 2C selective agonist.

5

6) The method of claim 3 wherein the alpha 2 selective agonist is an alpha 2B selective agonist.

10 7) The method of claim 6 in which the alpha 2B selective agonist is selected from the group consisting of AGN 960, AGN 795 and AGN 923.

15 8) The method of claim 7 in which the alpha 2B selective agonist is AGN 960.

9) The method of claim 7 in which the alpha 2B selective agonist is AGN 795.

20 10) The method of claim 7 in which the alpha 2B selective agonist is AGN 923.

11) The method of claim 4 wherein the alpha 2 selective agonist is an alpha 2B specific agonist.

25

12) The method of claim 1 wherein prior to step b) said method comprises: administering to said patient a therapeutically effective amount of a photoactive agent in a manner

30

such that said photoactive agent is present
in the CNV during step b).

5 13) A method of protecting ocular neural tissue
from damage caused by electromagnetic
irradiation of the retina comprising
delivering to a patient's ocular neural
tissue an amount of a neuroprotectant
compound effective to protect a plurality of
10 ocular neurons from cell death as compared
to ocular neuron cell death following such
irradiation observed in the absence of the
administration of said neuroprotectant.

15 14) The method of claim 13 wherein said
electromagnetic irradiation is laser
irradiation.

20 15) The method of claim 13 wherein said
neuroprotectant compound is an alpha
adrenergic agonist.

25 16) The method of claim 13 wherein said alpha
adrenergic agonist is an alpha 2 selective
agonist.

30 17) The method of claim 16 wherein said alpha 2
selective agonist is selected from the group
consisting of brimonidine, clonidine and
para-aminoclonidine.

18) The method of claim 17 wherein said compound
is brimonidine.

5 19) The method of claim 13 wherein said alpha
adrenergic receptor agonist is an alpha 2B
and/or alpha 2C selective agonist.

10 20) The method of claim 19 wherein said alpha 2B
and/or alpha 2C selective agonist is
selected from the group consisting of AGN
960, AGN 795 and AGN 923.

15 21) The method of claim 20 in which the alpha 2B
selective agonist is AGN 960.

20 22) The method of claim 20 in which the alpha 2B
selective agonist is AGN 795.

25 23) The method of claim 20 in which the alpha 2B
selective agonist is AGN 923.

30 24) The method of claim 13 wherein said
neuroprotectant compound is administered at
a time sufficiently before said
electromagnetic irradiation to permit
localization within ocular tissue prior to
said treatment.

35 25) The method of claim 13 wherein said
neuroprotectant compound is administered
following said electromagnetic irradiation.