

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

SYLLABUS

PROYECTO CURRICULAR: INGENIERÍA ELECTRÓNICA

Electrónica 1

Especificaciones del espacio académico

Facultad: Ingeniería

Proyecto curricular: Ingeniería Electrónica.

Código de la asignatura: 91 Área: Electrónica analógica Tipo de espacio: Obligatorio Tipo de curso: teórico Practico

Grupos: Normalmente 4 de 24 estudiantes cada uno

Número de créditos: 3

Alternativas metodológicas

Clases magistrales

Charlas

Practicas

Proyectos tutorados

Talleres

Tareas

Charlas a distancia

Asesoría y dirección tutorizadas.

I. Justificación del espacio académico

Con este primer curso del área de electrónica analógica se adquieren las bases para construir el conocimiento en la Ingeniería electrónica

El estudiante adquiere las destrezas y conocimientos de los dispositivos de estado sólido hasta llegar al análisis y diseño, básicos, en aplicaciones con el diodo y con una etapa amplificadora en pequeña señal y baja frecuencia.

II. Programación del contenido

Objetivo general

Proporcionar a los estudiantes las competencias para el análisis y diseño de las diversas aplicaciones del diodo semiconductor y para el análisis y diseño de una etapa amplificadora de pequeña señal y baja frecuencia, con transistores bipolares (BJT) y con transistores a efecto de campo (FET).

Objetivos específicos

- Adquirir los conceptos de la física de semiconductores, sus fenómenos y aplicaciones.
- Estudiar el Diodo semiconductor en sus diversas aplicaciones, en análisis y diseño.
- Estudio de otros dispositivos formados por la combinación de capas PN: UJT, SCR, DIAC,TRIAC
- Estudiar el Transistor de Unión Bipolar (BJT): técnicas de polarización, configuraciones básicas, amplificadores de una etapa en pequeña señal y baja frecuencia en análisis y diseño.
- Estudiar los diferentes tipos de Transistores de efecto de campo (FET'S), en sus tres configuraciones en una etapa amplificadora, en análisis y diseño.
- Estudiar el transistor como conmutador y la aplicación en las tecnologías TTL y CMOS.
- Verificar los circuitos analizados o diseñados con la aplicación de programas de simulación y su respectiva implementación práctica en el laboratorio.

Competencias de formación

Básicas:

- Analizar, diseñar y elegir elementos y alternativas para una aplicación particular con diodos semiconductores y con una etapa amplificadora.
- Capacidad del estudiante para comprender los siguientes cursos de esta línea de conocimiento, dado que proporciona las bases para analizar un microcircuito.
- Manejo y destreza en la simulación manipulación de los equipos apropiados para verificar los circuitos analizados o diseñados.
- Creación de circuitos para aplicaciones básicas.

Investigativas:

 Aplicación de software de simulación, características de los equipos de laboratorio y características de cada dispositivo semiconductor a implementar.

Laborales:

 Experiencia del trabajo en equipo, destrezas para la simulación y la práctica, herramientas de creatividad y solución a problemas en el área.

Unidades temáticas

- Unidad 1: Introducción a los semiconductores. Unión PN no polarizada.
- **Unidad 2:** Diodo semiconductor, curva v-i, recta de carga. Aplicaciones, análisis y diseño: Rectificador, recortador, sujetador, regulador. Otros dispositivos formados por combinación de capas semiconductoras P y N: UJT, DIAC, SCR, TRIAC.
- Unidad 3: Transistores de Unión Bipolar (BJT'S) Transistores de efecto de campo (FET'S).
 Técnicas de polarización resistiva y con fuentes de corriente. Análisis y diseño.
- Unidad 4: Modelo equivalente en pequeña señal de BJT y FET. Análisis y diseño.
- Unidad 5: Transistor en conmutación.

Resultados de Aprendizaje

Al completar con éxito el curso de Electrónica I, los estudiantes deberían ser capaces de:

- Dominar los conceptos, los procesos y los términos empleados en la electrónica básica y la desarrollada con semiconductores.
- Analizar circuitos electrónicos básicos apoyados en diodos y/o transistores (bipolares y FET).
- Diseñar etapas básicas de circuitos electrónicos apoyados en diodos y/o transistores (bipolares y FET).
- Identificar aplicaciones analógicas y de conmutación de los circuitos desarrollados con semiconductores.
- Utilizar modelos equivalentes de apoyo en el diseño y en el análisis tanto de circuitos a diodos como de circuitos a transistores.

III. Estrategias

Metodología Pedagógica y Didáctica:

Cátedra magistral: A cargo del docente sobre los temas del curso, planteando y solucionando problemas que aclaren y enriquezcan el tema tratado. Los estudiantes cuentan en las aulas virtuales, con los apuntes de clase para traer conceptos previos a cada sesión de clase o para revisar los temas tratados.

Tareas: Al finalizar cada sesión de clase se plantean ejercicios sobre el tema tratado, como un refuerzo sobre el mismo. Igualmente, se propone la búsqueda de ejercicios en los textos de bibliografía.

Sesiones de laboratorio: En las aulas virtuales semanalmente se propone una práctica sobre los temas tratados, con la finalidad de verificar lo impartido en la clase teórica e implementar y verificar los diseños o análisis específicos sobre los temas vistos, con la dirección del docente, pero con la libertad del trabajo autónomo del grupo.

Trabajo autónomo: El estudiante se enfrenta, solo o en grupo según el libremente lo elija, a la recapitulación, o resolución, o ambos, de las temáticas o interrogantes planteados alrededor de la asignatura. En este espacio el eje del modelo es el aprender haciendo, investigando y recapitulando, todo ello alrededor de las inquietudes u obligaciones exigidas desde el aula o desde el laboratorio.

Aulas virtuales: Espacio virtual con el que se cuenta en la universidad, para que el estudiante consulte las notas de clase del docente, o pueda realizar una comunicación con el docente.

Tabla de distribución de tiempos

	Horas			Horas	Horas	Total, Horas	Créditos
				profesor/semana	Estudiante/semana	Estudiante/semestre	
Tipo de Curso	TD	TC	TA	(TD + TC)	(TD + TC +TA)	X 16 semanas	
Teórico-	4	2	3	6	9	144	3
práctico							

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado_Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos o de forma individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo del estudiante sin presencia del docente, que se puede realizar en distintas instancias: en grupos de trabajo o en forma individual, en casa o en biblioteca, laboratorio, etc.).

IV. Recursos

Académicos formales:

Docente, aula presencial de conferencia, aula virtual de conferencia, aula de consulta, herramientas Tic facilitadas por la Universidad.

Trabajos extra-clase: Tareas, lecturas, proyectos, investigaciones.

Guías de los proyectos:

Directivas de las labores a desarrollar dentro y fuera de los espacios, con asesoría del docente.

Memorias de clase:

Resúmenes de los temas desarrollados dentro del aula, acompañados de ejemplos.

Talleres, Exposiciones y labores de investigación:

Conjunto de labores entre estudiantes y docente, donde se discuten, aclaran, extienden y complementan las temáticas desarrolladas en la clase formal.

Medios:

Aulas, laboratorios, instrumentos de medida, Tic

Avudas

Diapositivas, instrumentos virtuales, tablero virtual.

Tecnologías informáticas y de la comunicación:

Manejo interactivo, estudiante-docente, del aula virtual: "Electrónica 1" ubicada en la plataforma Moodle de la universidad. Apertura y exigencia al uso de paquetes informáticos colaborativos tanto en la parte teórica como en la práctica (Multisim, PSpice o cualquier programa de simulación).

Bibliografía

Textos guía:

- SAVANT RODEN & CARPENTER Diseño electrónico. Addison Wesley Iberoamericana.
 Segunda edición. Wilmington Delaware, USA 1992.
- ROBERT R. MALIK Circuitos Electrónicos, Análisis Simulación y Diseño.
- RICHARD C. JAEGER & TRAVIS M. BLALOCK Diseño de Circuitos Microelectrónicos.
- DONALD L. SCHILLING & CHARLES BELOVE Circuitos Electrónicos Discretos e integrados. Segunda edición . Marcombo S.A. Barcelona, 1085.
- BOYLESTAD ROBERT & LOUIS NASHELSKY. Electrónica teoría de circuitos. Prentice Hall, 2003.
- SEDRA/ SMITH. Microelectronic Circuits. Fifth edition.Oxford Universty Press. USA, 2004.

V. Organización / Tiempos

Espacios, Tiempos, Agrupamientos:

Se recomienda trabajar una unidad cada cuatro semanas, trabajar en pequeños grupos de estudiantes, utilizar Internet para comunicarse con los estudiantes para revisiones de avances y solución de preguntas (esto considerarlo entre las horas de trabajo cooperativo).

VI. Evaluación

Evaluación del estudiante:

La evaluación es cuantitativa, pero involucra procesos y técnicas que permiten deducir aspectos cualitativos de la apropiación del conocimiento hecha por el estudiante. La evaluación es continua durante el proceso de enseñanza-aprendizaje y es aprovechada para hacer una realimentación permanente sobre los aspectos evaluados y así mismo obtener una crítica en la metodología empleada y el nivel de captación de los conceptos transmitidos. Se intenta que la evaluación este orientada a medir el nivel de comprensión y la adquisición de conocimientos antes que valorar numéricamente los resultados de las pruebas.

	TIPO DE EVALUACIÓN	FECHA	PORCENT AJE
PRIMERA NOTA	Talleres, Trabajos, Quiz, Parcial	Hasta semana 6	
SEGUND A NOTA	Talleres, Trabajos, Quiz, Parcial	Hasta semana 13	
LABORA- TORIO	Toma e interpretación de datos, diseño,montaje, uso instrumentos de medida		20 %
EXAMEN FINAL	Parcial. Evaluación escrita y sustentación de trabajo final	Semana 17 y 18	30%

Evaluación del curso

Aspectos:

- Evaluación del desempeño docente
- Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupal, teórica/práctica, oral/escrita.
- Autoevaluación.
- Coevaluación del curso: de forma oral entre estudiantes y docente.

VII. Datos del docente
Nombre: Clara Inés Bonilla Romero
FIRMA DEL DOCENTE
FECHA DE ACTUALIZACIÓN: octubre 2022