Problem R-310 (C₁₁H₁₀Cl₂F₂). Interpret the 56.4 MHz ¹⁹F NMR spectrum and 60 MHz ¹H NMR spectrum below (CCl₄ solvent). Determine the chemical shifts of the fluorines, and estimate the various coupling constants. Consider conformations of the cyclobutane ring (*J. Am. Chem. Soc.* **1962**, *84*, 2935).

Problem R-308 (C₈H₁₀). Below is the ³H NMR spectrum of the ethyl region of randomly tritium (³H) labeled ethylbenzene. Interpret the splitting pattern. Note: <1% of the molecules are labeled (Tiers,G. V. D.; Brown, C. A.; Jackson, R. A.; Lahr, T. N. J. Am. Chem. Soc. 1964, 86, 2526-7).

Problem R-309 (C₉H₁₄NOP). Interpret the 100 MHz ¹H NMR spectrum below. The phenyl region is not shown. {³¹P} signifies decoupling of the phosphorus signal (*Org. Magn. Res..* **1980**, *13*, 165)

Problem R-311 ($C_6H_3D_3$). Assign the peaks in the ¹³C NMR spectrum below. The spectrum is not ¹H decoupled. Estimate the coupling constants (*J. Am. Chem. Soc.* **1967**, *88*, 2967).

Problem R-311 ($C_6H_2D_4$). Assign the peaks in the ¹³C NMR spectrum below. The spectrum is not ¹H decoupled. Estimate the coupling constants (*J. Am. Chem. Soc.* **1967**, *88*, 2967).

	$(C_{16}H_{30}Sn)$. Consider carefully the ¹ H NMR spectrum of R-82E shown on the next page (the s a tri-n-butyltin group, tin is tetravalent).
(a) DBE?	What is the structure of R-82E?
(b) Explain the o	rigin and shape of the multiplets at δ 6.05 and 6.6.
(c) Determine (a form ⁴ J _{XY} = Z Hz. I	pproximately) <u>all</u> coupling constants that can be obtained from the spectrum. Identify them in the _abel your structure so that it is clear which atom you are referring to.

Part of the Hans Reich Collection https://organicchemistrydata.org

Assign all protons in this molecule, using the 500 MHz ¹H NMR spectrum, and the 300 MHz COSY spectrum. The 300 MHz ¹H spectrum is also provided. Explain specifically why some of the peaks are more complicated in the 300 compared to the 500 MHz spectrum. Draw a conformation, and label with chemical shifts.

