אוטומטים 2 ־ תרגולים גיל

הרגול 2 ⁻ 5/2/19

שאלה ממבחן 2017

. אינה באמצעות משפט באמצעות אינה
$$L = \left\{ \begin{matrix} n, \geq 5 \\ a^n b^m | n < m \end{matrix} \right\}$$
 אינה הוכח אהשפה א. הוכח שהשפה

- , $i,j \geq 5$, $i < j \in \mathbb{N}$ לכל a^i,a^j נתבונן •
- i < j כי $a^i b^j \in L$ כי b^j עבור הסיפא (במחלקות שקילות שקילות שקילות יכי מי $a^i b^j \in L$ כי
- . אינה אינה בו ולפי משפט נרוד הגולרית. לכן יש לL אינה אינה הגולרית. לכן יש לj=j כי מj=j כי משפט נרוד •

$$index(L_2) > 5$$
 מקיימת $L_2 = \left\{ egin{aligned} p < 2 \, (\mod 3) \\ a^p | p \equiv 3 \, (\mod 5) \end{aligned}
ight\}$ ב. הוכח/הפרך: השפה

:אינטואיציה

הוכחה:_

ינים את הסיפא נוסיף את נוסיף כאשר a^1,a^j לכל לכל $a^1,....,a^5$ נמבונן כתבונן \bullet

$$a^{j}a^{13-j} = a^{13} \in L_2$$

 $a^{i}a^{13-j} = a^{13-j+1} \notin L_2$

 $8 \le 13 - j + i \le 12$ • •

$index(R_{L_3}) > index(R_{L_2})$: ג. תהי $L_3 = L_2 \cdot \{b\}$ הוכיחו כי

- . $yz \notin L_2$ אבל $xz \in L_2$ פך כך ש $z \in \sum^*$ הניתנו להפרדה ב L_{R_2} הניתנו להפרדה אבל $x,y \in \sum^*$
 - ע: נבחר את הסיפא ונקבל ב $zb\in\sum^*$ את נבחר מכאן מכאן . z=b ונקבל
 - $x \cdot zb \in L_3$
 - $yzb \notin L_3$ -
 - $index(R_{L_2})$ ניתנות להפרדה ב לכן הלכן לכן לכן ה R_{L_3} , לכן הפרדה ב לכן x,y
 - R_{L_3} ב הניתנות הפרדה באותה מחלקה ב כעת נראה לשתי מילים הייו באותה סחלקה \bullet
 - y=3 ואת $x=a^3b$ ניקח את
 - המילים שלא המילים של המחלקה ב R_{L_2} המחלקה שלא המילים המילים הא העx,y
 - arepsilon אבל ניתנות להפרדה ב R_{L_3} למשל ע"י -
 - . כנדרש , $index(R_{L_3}) > index(R_{L_2})$ •

דקדוקים

$$G = (V, T, S, P)$$

$$G=(V,I,S,F)$$
 בשפה: $E(G)=\{a^n|n\in\mathbb{N}\}$ לכן: $E(G)=\{a^n|n\in\mathbb{N}\}$ לכן: $E(G)=\{a^n|n\in\mathbb{N}\}$ לדוגמה: $E(G)=\{a^n|n\in\mathbb{N}\}$ לדוגמה: $E(G)=\{a^n|n\in\mathbb{N}\}$

 $L(G) = \{w \in T^* | \overset{\cdot}{S} \Rightarrow^* w\}$ למעשה שפת הדקדוק היא:

משימות:

abc שפת כל המילים המכילות .1

$$G=\left(\left\{ S,A\right\} \left\{ a,b,c\right\} ,S,,P\right)$$
 : אז

- $S \rightarrow AabcA$ •
- $A \to \varepsilon |aA|bA|cA \bullet$

a^nb^n השפה.2

$$G = (\{S\}\{a,b\},S,P) : \aleph$$

: P

: P

$$S \rightarrow aSb$$
 •

$a^nb^nc^n$ השפה.3

- $S \to \varepsilon |aA| \bullet$
- $A \rightarrow bB \bullet$
- $B \to c C$ •
- $cC \to Cc$ •
- $bC \to Cb \bullet$
- $aC \rightarrow aS_2 \bullet$
- $S_2 \to \varepsilon |aA_2| \bullet$
- $A_2 \rightarrow bB_2 \bullet$
- $B_2b \rightarrow bB_2 \bullet$
- $B_2c \to cC \bullet$

$$S \rightarrow aA \rightarrow abB \rightarrow abcC \rightarrow abCc \rightarrow aCbc \rightarrow aS_2bc \rightarrow aaA_2bc \rightarrow aabB_2bc$$

$$\rightarrow aabbB_2c \rightarrow aabbcCcc \rightarrow ... \rightarrow aaCbbcc \rightarrow aaaS_2bbcc \rightarrow ...$$

הרעיון שנוכל לקמפל כל שפה שנרצה למשל:

$$stat \rightarrow IF|FOR|AR|ASS$$

לדוגמה:

$$ASS \rightarrow V = A'$$

$$A \rightarrow 8 + A|; Stat$$

$FOR \rightarrow for(INIT; COUND; STEP)$

שפות חסרות הקשר

איך שוללים ח"ה?

1. ספירה מדוייקת:

- לא $L = \{a^p | \text{p is prime}\}$
 - לא $L=\left\{a^{n^2}|n\in\mathbb{N}
 ight\}$ •
- כן, כי רק צריך לזכור את השארית בי רק כי $L=\left\{a^{3n}|n\in\mathbb{N}
 ight\}$

2. השוואה כפולה/ספירת משולשת:

לא -
$$L = \{a^nb^nc^n|n\in\mathbb{N}\}$$
 •

3. ספירה מתחלפת:

- לא $L = \{a^nb^mc^nd^m|n,m\in\mathbb{N}\}$ •
- כן כן מחסנית זה אפשרי בר כן $L=\{a^nb^mc^md^n|n,m\in\mathbb{N}\}$

4. השוואה באותו הסדר (הכללה ל3)

- לא $L = \left\{ w \cdot w | w \in \left\{0,1\right\}^* \right\}$ •
- כן ח"ה $L = \left\{ w \cdot w^R | w \in \left\{0,1\right\}^*
 ight\}$ •

תרגילים

$$L=\left\{a^nb^mc^k|n=2m+k\;n,m,k\in\mathbb{N}
ight\}$$
 .1. השפה:

- $S \rightarrow \varepsilon |aSc| aaBb$ \bullet
 - $B \to \varepsilon |aaBb|$

$$L=\left\{a^nb^mc^k|n=m\cdot k,\;n,m,k\in\mathbb{N}
ight\}$$
 .2

- אינה חסרת הקשר מו ספירה מדויקת
- $8=1\cdot 8 \backslash 2\cdot 4 \backslash$ לא מספיק לדעת מהו הערך של הn, אלא ה הערך של הm,kלא מספיק לדעת מהו הערך של ה
 - ההוחכה על למת הניפוח

ה"ה -
$$\underline{L}=\{a^nb^m|m\leq 2n+17\in\mathbb{N}\}$$
 השפה .3

- $S \rightarrow aS \mid aSb \mid aSbb \mid B \bullet$
 - $B \rightarrow \varepsilon \mid b \mid b^2 \dots \mid b^{17} \bullet$

$$\underline{L}=\left\{a^nb^kc^m|n\geq k\;m=n+2\;n,m,k\in\mathbb{N}
ight\}$$
 .4

• יש כאן השוואה כפולה , ולכן אינה ח"ה

ח"ה - $\{a^nb^m | n \neq m, m \in \mathbb{N}\}$.5

- $S \to S_S | S_c \bullet$
- $S_s \to aS_s b|aS_s|a$ •
- $S_c \to aS_c b |S_c b| b \bullet$

למת הניפוח

טענה: לכל שפה ח"ה יש דקדוד ח"ה שכל מתשנה בו גוזר או $A \to a$ או $A \to XY$ הומסקי) רעיון ההוכחה:

חזרה על רעיון ההוכחה:

אם זה עץ הגזירה:

• מחישובי גבהים ושובך היונים יש משתנה שחוזרים עליו פעמים, לכן נוכל לסמן:

- $z=uv^iwx^iy\in L$ ויתקיים ש: •
- $|vwx| \leq n$ אז חייב להיות ש אויב איז מכיון שלוקחים מילה באורך מספיק לפריסת העץ אז: $|z| \geq n = 2^{|v|} + 1$
 - וכן v או x בעץ יגזר לפחות לטרמינל אחד מהגדרה של חומסקי •

מרגול 5 ⁻ 6/6/19

אוטמט מחסנית

 $(Q,\sum,\Gamma,q_0,\delta,\perp,F)$ באופן באופן מחסנית מחסנית כללי כל

• כל מעבר מורכב באופן הבא: (כמות סופית אך לא חסומה , מצב של תווים במקום ראש המחסנית) \rightarrow (ראש המחסנית, תו, מצב)

$$\Gamma$$
 תווי המחסנית , \sum תווי המחסנית •

$$\sum = \{a, b\}, \Gamma = \{A, \Gamma\} \bullet$$

 $\{a^nb^n|n\in\mathbb{N}\}$ השפה

aba בוגמת הרצה $^{ au}$ למילה $^{ au}$

• המילה הריקה:

: aabb המילה \bullet

 $\Gamma = \{\bot, A, B\}$, $\sum = \{a, b\}$ נגדיר , $\left\{ww^R | w \in \{a, b\}^*\right\}$ תהיה השפה

:abaab,baaba דוגמת הרצה $^{ au}$ למילה

:aabba דוגמת הרצה $^{ au}$ למילה

תהיה השפה איך לבנות אוטומט איך $\left\{a^nb^mc^k|n=2m+k\right\}$ תהיה השפה

- B על מנת לבטא הוצאה כפולה של q_2 על מנת לבטא ullet
- . טריק אחר הוא להגדיר תו חדש, למשל 'AA' ולהתאים את הכללים.

הגדרה: קבלה באמצעות ריקון: אוטומט המקבל כאשר המחסנית התרוקנה + סיימנו את קריאת המילה (ללא דרישה למצב מקבל) הערה: האוטומטים שהראנו עד כה , קיבלו גם באמצעות המצבים המקבלים וגם באמצעות הריקון כאשר בונים אוטומט צריך להגיד מאיזה סוג הוא.

: הוכחה

: שפה רוגלרית, לכן קיים ל אוטומט אוטומט פופי דטרימנסטי שפה L

$$A = (Q, \sum, q_0, \delta, F)$$

הבא: באופן באופן ע"י ריקון הבא: • נגדיר אוטומט מחסנית M_e

$$M_e = \left(\left\{ q_0^M \right\}, \sum, Q \cup \left\{ \perp \right\}, q_0^M, \underbrace{q_0}_{\text{bottom}}, \delta \right)$$

- $\delta\left(p,\sigma
 ight)=q$ עבור $\delta_{M}\left(q_{0}^{M},\sigma,p
 ight)=\left(q_{0}^{M},q
 ight)$
 - $\delta_M\left(a_0^M,\varepsilon,p\right) = \left(q_0^M,\varepsilon\right), p \in F \bullet$
- אז, a וקורא q_1 וקורא q_1 וקורא המחסנית תשמור המחסנית המצבים בהתאמה למעברים של האוטומט הסופי, כלומר עם אני עומד ב q_1 וקורא q_1 למחסנית יכנס q_1 , ואני עובר למצב הבא
 - נותר להוכים הכלה דו־כיוונית...

הוכיחו לכל שפה רגולרית קיים אוטומט מחסנית המקבל את השפה באמצעות ריקון מחסנית, ויש לו מצב מאחד

בלבד.

תרגול 6 ⁻ 13/6/19

שאלה 1

א. הוכח/הפרך : עבור $\{a\}$ אם שפה בשנת הניפוח לשת הניפוח לשת הניפוח לשת היא מקיימת גםאת למת היא הוכח/הפרך : עבור בעבור בעבור

הוכחה:

- $\sum = \{a\}$ שפה המקיימת את למהת ניפוח לשח"ה, מעל L
- $uv^iwx^iy\in L$, $|vwx|\leq 1$, $|vx|\geq 1$ z=uvwxy קיים פירוק $|z|\geq n_{cf}$ $z\in L$ כך שלכל $n_{cf}\in\mathbb{N}$ כד נתון שקיים
 - $u_rv_r^iw_r\in L$, $|u_rv_r|\le n_r$, $|v_r|\ge 1$, $z'=u_rv_rw_r$ פיים פירוק $|z\ge n_r$ לכל הכל n_r ע"ל: יש n_r
 - $n_r = n_{cf}$ את בחר לשפ"ה, נבחר מלמת הניפוח מלמת המובטח n_{cf}
 - ינים ש: $z=u_{cf}v_{cf}w_{cf}x_{cf}y_{cf}$ פירוק לפי הלמה לח"ה, לפי הלמה לח"ה, לפי המקיים ש: $z=u_{cf}v_{cf}w_{cf}x_{cf}y_{cf}$ פר תהי
 - $|v_{cf}x_{cf}| \geq 1$ -
 - $|v_{cf}w_{cf}x_{cf}| \leq n_{cf}$, -
 - $i \in \mathbb{N}$ לכן $u_{cf}v_{cf}^iw_{cf}x_{cf}^iy_{cf}$ ז , –
 - . נבחר: . $u_{cf}=a^{|u_{cf}|}...y=a^{|y_{cf}|}$ אינו ש: $\sum=\{a\}$ מכיון ש
 - $u_r = w_{cf}$ -
 - $v_r = v_{cf} \cdot x_{cf}$ -
 - $w_r = u_{cf} \cdot y_{cf}$ -
 - . בעת: $z=u_rv_rw_r$, ולכן סדר השרשור א חשוב. , מכייון שכל המילים מכילות א מכייון שכל המילים .
 - מנתון $|v_r| = |v_{cf} \cdot x_{cf} \ge 1|$
 - נתון $|u_rv_r| = |v_{cf}w_{cf}x_{cf}| < n_r$
 - $u_r v_r^i w_r = w_{cf} (v_{cf} x_{cf})^i u_{cf} y_{cf} = u_{cf} v_{cf}^i w_{cf} x_{cf}^i y_{cf} \in L \bullet$
 - ולכן מקיית את למת הניפוח לשפות רוגלריות, כנדרש

ב. הוכח או הפרך : לכל א"ב סופים \sum , אם שפה מקיימת את למת הניפוח לשפות ח"ה , אז היא מקיימת את למת הניפוח לשפות רגולריות.

לא נכון ־ ד"נ:

- ... מקיימת את למת הניפוח לשפות הL , $L=\{a^nb^n|n\in\mathbb{N}\}$ הת לבחר הניפוח לשפות ח"ה. $\sum=\{a,b\}$
- נקבל: $u=a^{k-1}$,($k\geq 1$) (בחר $z=a^kb^k$ שנ מכאן שי $|z|\geq 2$ $z\in L$, תהי n=2 הוכחה: נבחר •

$$z = \underbrace{aa}_{u} \underbrace{a}_{v} \underbrace{\varepsilon}_{w} \underbrace{b}_{x} \underbrace{bb}_{y}$$

- $|vwx|=2\leq 2$, $|vx|=2\geq 1$ ומתקיים:
- $uv^iwx^iy=a^{k-1}a^iarepsilon b^ib^{k-1}=a^{k-1+i}b^{k-1+i}\in L$: ומתקיים ש
 - 1 אוטומטים את הלמה לשפות רגולריות את מקיימת לL

i בסדרה עבור L_i בסדרה אינסופית של שפות (כולן שונות) בסדרה עבור L_1 כך ש L_1 ב L_2 ב L_3 ... הוכח כי קיימת סדרה אינסופית של שפות (כולן שונות) אי־זוגי היא חסרת הקשר, וכל L_i עבור i זוגי אינה חסרת הקשר. בסעיף זה אין צורך לתת הוכחה מלאה לאי רגולריות של שפה.

$$L_1 = \{a^n b^n | n \in \mathbb{N}\} \bullet$$

$$L_2 = \{a^n b^m\} \cup \left\{ a^n b^n c^n \middle| \begin{matrix} n \in \mathbb{N} \\ n \ge 1 \end{matrix} \right\} \bullet$$

$$L_1 \subset L_2$$
 -

$$L_3 = \left\{ a^n b^m c^k | n, m, k \in \mathbb{N} \right\} \bullet$$

$$L_4 = \left\{ a^n b^m c^k | n, m, k \in \mathbb{N} \right\} \cup \left\{ a^n b^n c^n a^n \Big| \begin{array}{l} n \in \mathbb{N} \\ n \ge 1 \end{array} \right\} \bullet$$

$$L_5 = \{a^{n_1}b^{n_2}c^{n_3}d^{n_4}|n_{1,2,3,4} \in \mathbb{N}\} \bullet$$

שאלה 2

לכל אחת מהשפות הבאותת הוכח שהוא ח"ה או הוכח שיאנה ח"ה

$$L_2=\left\{a^nc^mb^ld^h|n\leq 3m,l\leq 2h+5
ight\}$$
 א. השפה

- כן , ח"ה. נציג דקדוק לשפה
- :P כאשר, $G = (\{S, X, Y, B\}, T = \{a, b, c, d\}, S, P)$ יהיה •

$$S o XY$$
 -

$$S \to X \to \varepsilon |Xc|aXc|aaXc|aaXc$$
 -

$$Y \rightarrow B|Yd|bYd|bbYd$$
 -

$$B \to \varepsilon |b|bb...|bbbbb$$
 -

$L_1 = \left\{wcw|w \in \left\{a,b\right\}^* ight\}$ ב. השפה

- לא, ח"ה. נשלול על ידי למת הניפוח
- $|z| \geq n$ ו ש $z \in L$ מתקיים ש , $z = a^n b^n c a^n b^n$ הוכחה: נניח בשלילה שכן, ויהיה $n \in \mathbb{N}$ המובטח מהלמה נבחר
 - |vwx| < nו ו|vx| < 1 המקיים z = uvwxy היהיה
 - נבחר i=0 ונקבל שבהכרח:

- c המילת המילת אל תהיה שווה לכמות הa שאחרי הa
 - b או באותו אופן עבור כמות ה \bullet

שאלה 3

א. הוכח באמצעות משפט נרוד שהשפה בסעיף 2. ב אינה רגולרית

- $i\in\mathbb{N}$ לכל a^ic נתבונן ב
- (ואז נקבל ∞ מחלקות שקילות) במחלקות במחלקות וא a^ic ו a^ic
- $a^jca^i \notin L$ ומצד שני $a^ica^i \in L$ ומכאן ש
ו $z=a^i$ השפה את שני j>i עבור עבור י
 - ומכאן שיש אינסוף מחלקות שקילות ולכן אינה אינסוף מחלקות שקילות ולכן ullet

ב. הוכח/הפרך: תהי $L\in \sum^*$ אז קבוצת מחלקות השקילות של R_L וקבוצת מחלקות של ב. הוכח/הפרך

• הרעיון: מחלקות השקילות לוקחות את כל המילים ומחלקות אותם למילים שכן בשפה ולכאלה שלא בשפה , השפה המשלימה פשוט הופכת בינהם

תרגול השלמה - 26/6/19

תשע"ח סמסטר ב' מועד א

סגירויות

ח"ה = רגורלית ∩ ח"ה

ח"ה = רגולרית \ ח"ה

ח"ה = ח"ה ∪ ח"ה

 $n''n \cdot n''n = n''n$

שאלה 1

- תנו דוגמה לדקדוק ח"ה חד משמעי לשפה בת 3 מילים .1
- $G = (V = \{S\}, T = \{a, b, c\}, S, P)$ לכן , $L = \{a, b, c\}$ נגדיר
 - $P = \{S \rightarrow a|b|c\} : P \bullet$
 - 2. תנו דוגמא לדקדוק ח"ה רב משמעי לשפה בת 3 מילים
 - $G = (V, T = \{abc\}, S, P)$ לכך $\{aba, abb, bab\}$
 - B o aba|abb|bab ,A o aba|abb|bab , S o A|B: P ullet
 - מילה בודדת x אינה כאשר א $L \cup \{x\}$ אינה ח"ה אז L אינה מילה בודדת.
 - ת"ה $L' = L \cup \{x\}$ עח"ה •
 - אס די הוו העירה L'=L אז $x\in L$ אם •
 - , $L=L'\backslash \{x\}=L'\cap \{\bar x\}$ אם $x\notin L$ אם •
- שפה ח"ה שהרי שפה ח"ה בגורלית שפה ח"ה בשפה ח"ה שפה ח"ה שפה ח"ה שפה ח"ה שפה ח"ה שפה ח"ה $\{x\}$
 - ה סתירה ולכן ח"ה לפי הנתון, $\{ar{x}\}$ רגולרית ולכן ח"ה ח"ה סתירה •

- עבור i אי־אוגי אינה $L_1\subseteq L_2\subseteq ...\subseteq L_{10}$ עבור , $\sum=\{a\}$ טונות, מעל שונות, מעל בור $L_1,....L_{10}$ עבור $L_1,....L_{10}$ אי־אוגי אינה .4 עבור L_i אוגי כן ח"ה
 - $L_1 = \left\{ a^{32p} | \text{p is prime} > 2 \right\}$ ullet
 - $L_2 = \left\{ a^{32n} | \text{n is odd} \right\} \cup L_1 \bullet$
 - $L_3 = \{a^{16p} | \text{p is prime}\} \cup L_2 \bullet$
 - $L_4 = \left\{ a^{16n} | n \in \mathbb{N} \right\} \cup L_3 \bullet$
 - $L_5 = \{a^{8p} | \text{p is prime}\} \cup L_4 \bullet$
 - $L_6 = \left\{ a^{8n} | n \in \mathbb{N} \right\} \cup L_5 \bullet$
 - $L_7 = \{a^{4p} | \text{p is prime}\} \cup L_6 \bullet$
 - $L_8 = \left\{ a^{4n} | n \in \mathbb{N} \right\} \bullet$
 - $L_9 = \{a^{2p}|\} \cup L_8 \bullet$
 - $L_{10} = \{a^n | n \in \mathbb{N}\} \bullet$

שאלה 2

- $L_1 = \left\{ a^i b^i c^i d^i | \in \mathbb{N} \right\} . 1$
- . הקובע המבוטח הקובע המבוח . היהיה הניפוח לשפות המימת את למת המפוטח מהלמה. הקובע המבוטח מהלמה. לא ח"ה היהים לא לא למת המפוטח מהלמה שכן, ולכן לא ח"ה הקובע המבוטח מהלמה.
 - $z\in L_1$, $|z|=4n\geq n$: מתקיים ש: , $z=a^nb^nc^nd^n$ נבחר
 - $|nwx| \leq n$, $|vx| \geq 1$:פירוק כלשהו פירוק , z = uvwxy
 - נבחר i=0 ונתבונן בכל המקרים:
- n התווים שאתר התווים מו $z'=wv^0wx^0y$ אתו או מכך אז מכך מכן מון כלול מון יהי כלול vwx (א) $z'\in L$. פעמים
- $z'=uv^0wx^0y$ ב תווים 2 ער כולל בתוכו 2 תווים 2 תווים 2 תווים 2 ער כולל בתוכו 2 תווים בער 2 להיות יהיו $z'\notin L$ ולכן $z'\notin L$
 - $L_2 = \{a, b, c, d\}^* \setminus L_1$.2
 - : כן ח"ה, נשים לב
 - $L_2 = \bigcup_{1 \le j \le j \le 4} \left\{ a^{n_1} b^{n_2} c^{n_3} d^{n_4} \middle| \begin{array}{l} n_i \ne n_j \\ n_{1...4} \in \mathbb{N} \end{array} \right\} \cup \left\{ w \in \left\{ a, b, cd \right\}^* \middle| \text{ w form is not: } a^{n_1} b^{n_2} c^{n_3} d^{n_4} \right\} \bullet$
- וזו שפה רגורלית $\left\{w\in\left\{a,b,cd\right\}^*\mid \text{w form is not: }a^{n_1}b^{n_2}c^{n_3}d^{n_4}\right\}=\overline{\left\{a^{n_1}b^{n_2}c^{n_3}d^{n_4}|n_{1,\dots,4}\in\mathbb{N}\right\}}$ ומתקיים ש: $\left\{w\in\left\{a,b,cd\right\}^*\mid \text{w form is not: }a^{n_1}b^{n_2}c^{n_3}d^{n_4}\right\}$
- רגולרית בי הביטי הרגולרי המתאים לL' , $a^*b^*c^*d^*$, ולכן מסגירות למשלים של שפות רגולריות, גם L' רגולרית בי הביטי הרגולרי
 - נקבל: j=2 , i=1 רבור ח"ה עבור השפה , $1\leq i\leq j\leq 4$ לכל •
- שפות של שפות , i < j , אופן עבור כל ל $L_{1,2} = \left\{a^{n_1}b^{n_2} \middle| \begin{array}{l} n_1 \neq n_2 \\ n_1,n_2 \in \mathbb{N} \end{array}\right\} \cdot \left\{a^{n_3}b^{n_4} \middle| \begin{array}{l} n_3 \neq n_4 \\ n_3,n_4 \in \mathbb{N} \end{array}\right\}$ ס"ה ביא ח"ה.
 - $L_3 = \left\{ a^i b^j | j \in \{i, 2i, 3i\} \right\}$ השפה .3
 - ח"ה L_3 מאיחוד לשפות ח"ה $L_3=\left\{a^ib^i|i\in\mathbb{N}\right\}\cup\left\{a^ib^{2i}|i\in\mathbb{N}\right\}\cup\left\{a^ib^{3i}|i\in\mathbb{N}\right\}$

שאלה 3

_ אינה רגולרית $L=\left\{a^nb^nc^{2n}|n\in\mathbb{N} ight\}$ אינה אינה באמצעות משפט נרוד שהשפה .1

- . אבל , $a^jb^jc^{2i}\notin L$ אבל , $a^ib^ic^{2i}\in L$ ומתקיים ש , $j=c^{2i}$: אבל הסיפא , ולכן את הסיפא . ישנות.
 - . מכאן , שיש אינסוף מחלקות שקילות ולפי משפט נרוד, L אינה רגולרית.

ב. היא גם $L_3 = \{uvx | ux \in L_1, v \in L_2\}$: היא גם היא L_1, L_2 היכח שלכל .2

. $M_1,M_1':M_1$ העתקים ל העתקים נצור 2 העתקים תהיינה M_1,M_2 אוט' מחסינת לכל אחת מהשפות . ניצור 2 העתקים ל M_1,M_2 הואר M_1,M_2 הואר בתחיל מואר מעבר M_1 מעבר M_2 למצב ההתחלתי של M_1 ומשם נתחיל מ M_1 המשבר מעבר מעבר M_1 נעביר מעבר M_2 באוטומט M_1 ומשם משך כרגילו כמו שהיא באוטמט M_1

:אילוסטרציה

$index(R_L)$ |L| כך ש: $L\subseteq \{a,b\}^*$ סופית שפה L סופית .3

$$1>0$$
 , $index(R_L)=1$, $|L|=0$, $R_L=\left\{\sum^*
ight\}$, $L=\phi$ דוגמה $ullet$