Chapter 3 Part 2 Arithmetic for Computers -Floating Point

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
 - 4,600,000,000 or 4.6×10^9
- Like scientific notation
 - -2×10^{-7}
 - $+0.002 \times 10^{-4}$
 - $+987.02 \times 10^{9}$
- In binary
 - $-\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Can't use integer to represent

not normalized

normalized

float a; // single precision double b; //double precision

Floating Point Standard- IEEE Std 754-1985 &

• Single precision - 32-bit

single: 8 bits

single: 23 bits

Significand=1 +fraction

S	Exponent	Fraction				
X =	$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Biase)}$					
		Significand)×2(Exponent-Bias				

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalized number ±1.xxxxxxx₂ × 2^{yyyy}
 - Always has a leading 1, so no need to represent it explicitly (hidden bit)
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single precision: Bias = 127, Double precision: Bias = 1023

What number is represented by the following single-precision float?

$$x=11000000101000...00_{2}$$
 (32-bit)

- S = 1
- Fraction = $01000...00_2$
- Exponent = 10000001_2 = 129

•
$$X = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129-127)}$$

= $(-1) \times (1+1/4) \times 2^{2}$
= -5.0

Floating-Point Example

- Represent –0.75 in single-precision floating point
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = ?
 - Fraction = ?
 - Exponent = ?

Hidden 1 is not represented

Why uses bias (excess presentation) in the exponents

- Easier to compare which exponent is larger
 - Just need to check the bit from left to right

		as=127	Bi	ts	8 bi
		11111110 11111101	254 253	01111111 01111110	127 126
			••••		
			•••••	•••	
		10000000	128	0000001	1
		01111111	127	0000000	0
				111111111	-1
					••••
a al		0000001	1	10000010	-126
erved		00000000	0	10000001	-127
erved	re	11111111	255	10000000	-128

Floating Point Standard- IEEE Std 754-1985

Double precision (64-bit)

double: 11 bits double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

$$x = (-1)^{S} \times (Significand) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalized number $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
 - Have hidden 1
 Fraction=Significand-1
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Double: Bias = 1023

 What number is represented by the following double float?

- S = 1
- Fraction = $1000...00_2$

•
$$X = (-1)^{1} \times (1 + .1_{2}) \times 2^{(1021 - 1023)}$$

= $(-1) \times (1 + 1/2) \times 2^{-2}$
= $-3/8$

Floating-Point Example

- Represent –0.75 in double-precision floating point
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S =?
 - Fraction =?

Exponent = ?

Hidden 1 is not represented

IEEE 754 Encoding of FP number

Encoding

- Exp. 00...00 and 111...11 reserved
- Exp.=00000000 and Fract.=00000...00 => 0
- Exp.=0, and Fract. != 0 => denormalized number (discuss later)
- Exp.=111..111 and Fract.= 000...000 => $\pm \infty$ (discuss later)
- Exp.=111...111 and Fract.!=0 => Non a Number (NaN) (discuss later)

Single precision		Double precision		Object represented	
Exponent	Fraction	Exponent	Fraction		
0	0	0	0		0
0	Nonzero	0	Nonzero	± denorr	nalized number
1–254	Anything	1–2046	Anything	± floating-point number	
255	0	2047	0	± infinity	
255	Nonzero	2047	Nonzero	NaN (Not a Number)	

Denormalized Numbers

- (Review) Smallest normalized value
 - -00000010000000.....0000
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - Exponent = 1 127 = -126
 - Smallest value = 1.0×2^{-126}
- How to represent number smaller than 1.0x2⁻¹²⁶?
- E.g. 0.5x2⁻¹²⁶ =>Use denormalized number

S	Exponent	Fraction
---	----------	----------

- Exponent = 00000000
- Fraction ⇒ hidden bit is 0

$$x = (-1)^{S} \times (Fraction) \times 2^{-126}$$

- Allow for gradual underflow, with diminishing precision
- Denormalized with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-126} = \pm 0.0$$

Two representations of 0.0!

Special number: Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - $-\pm\infty$
 - Can be used in subsequent calculations, avoiding need for overflow check
 - E.g. F+(+∞)=+∞, or F/∞=0
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Example

Smallest positive single precision normalized number

$$1.00000000...00000_2$$
 x 2^{-126}

 Smallest positive single precision denormalized no. (Hint: Fraction is 23-bit)

Floating Point Addition

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent

$$9.999 \times 10^{1} + 0.016 \times 10^{1}$$

2. Add significands

$$9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$$

3. Normalize result & check for over/underflow

$$1.0015 \times 10^{2}$$

• 4. Round and renormalize if necessary

$$1.002 \times 10^{2}$$

Course Administration (4/24)

- 專題說明
- HW2 explanation
- HW2 is due on 5/1

Floating-Point Addition

Now consider a 4-digit binary example

$$-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} \quad (0.5 + -0.4375)$$

- 1. Align binary points
 - Shift number with smaller exponent

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

2. Add significands

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

3. Normalize result & check for over/underflow

$$1.000_2 \times 2^{-4}$$
, with no over/underflow

4. Round and renormalize if necessary

$$1.000_2 \times 2^{-4}$$
 (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
 - Steps includes shift exponents and fraction, add fraction, ..., etc.
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined (see Chapter 4 about pipeline)

FP addition flow

Floating-point
Addition. The normal
path is to execute
steps 3 and 4 once,
but if rounding
causes the sum to be
unnormalized, we
must repeat step 3.

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $-1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $-1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - -1.0212×10^6
- 4. Round and renormalize if necessary
 - -1.021×10^{6}
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

成功方學

Remove one bias

Floating-Point Multiplication

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} \ (0.5 \times -0.4375)$$

- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) 127 = -3 + 254 127
- 2. Multiply significands

$$-1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$$

- 3. Normalize result & check for over/underflow
 - $-1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times -ve \Rightarrow -ve

$$-1.110_2 \times 2^{-3} = -0.21875$$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But do multiplication for significands instead of an addition
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - $FP \leftrightarrow integer conversion$
- Operations usually takes several cycles
 - Can be pipelined (See Chapter 4)

FP Multiplication

The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers for single precision
 - 32 single-precision: \$f0, \$f1, ... \$f31
- FP instructions operate only on FP registers
- Single-precision FP load and store instructions
 - lwc1, swc1

e.g., lwc1 \$f8, 32(\$sp)

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s

e.g., add.s \$f0, \$f1, \$f6

- Single-precision comparison
 - c.xx.s (xx is eq, lt, le, ...)

e.g. c.lt.s \$f3, \$f4

Sets or clears FP condition-code bit

FP Instructions in MIPS for double-precision

り成め方學

- Separate FP registers
 - 32 FP registers
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- FP Double-precision load and store instructions
 - ldc1, sdc1
- Double-precision arithmetic

mul.d \$f4, \$f4, \$f6

- add.d, sub.d, mul.d, div.d
- Double-precision comparison

c.lt.d \$f4, \$f6

- c.xx.d (xx is eq, lt, le, ...)
- Sets or clears FP condition-code bit
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Improve Accuracy

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
- Guard & round bits: two extra (hidden) bits on the right during intermediate additions
 - Improve precision

Consider the addition $2.56 \times 10^{0} + 2.34 \times 10^{2} = 2.3656$

Without guard and round bit

$$0.02 \times 10^2 + 2.34 \times 10^2 = 2.36 \times 10^2$$

With guard and round bit

$$0.0256 \times 10^2 + 2.3400 \times 10^2 = 2.3656 \times 10^2 = 2.37 \times 10^2$$

closer to accurate answer

Improve Accuracy: sticky bit

- Sticky bit: one bit is set when there are nonzero bits to the right of the round bit.
 - Allow computer to see the difference between
 0.50000..0₁₀ and 0.50000..1₁₀

- Without Sticky bit
 - 2.3450000000001 will be stored as 2.345
- With Sticky bit
 - 2.345000000001 will be stored as 2.345 and sticky bit =1
- Used for rounding

2.345 with sticky bit=1 is larger than 2.345

Associativity

Is (x+y)+z equal to x+(y+z) ???

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

- Parallel Programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail
- Need to validate parallel programs under varying degrees of parallelism

3.8 Fallacies and Pitfalls

Fallacy: Right Shift and Division

 Left shift by i places multiplies an integer by 2ⁱ and thus right shift divides by 2ⁱ

Wrong, Only for unsigned integers

- For signed integers
 - Arithmetic right shift: replicate the sign bit

$$-e.g., -5 / 4 = -1 -1$$

$$11111011_2 >> 2 = 001111110_2 = 62$$
 not -1

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs
- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

Backup slides

