APPENDIX D

Balloon Analysis Program - Input

The input for the analysis program consists of three identifying data cards; a deck of manufactured radius, film weight and tape weight; and a deck containing the design shape in nondimensional units.

Card 1.	Format (5£15.7)	
Columns	Variable	Description
1-15	PD	Design Payload in pounds
16-30	РТОР	Nondimensional top load (P _{TOP} /PD)
31-45	WBAL	Nondimensional balloon weight (W/PD)
46-60	SMAX	Underformed gore length in feet
61-75	LAMBDA	Design $\lambda = (PD/b_d)**1./3$.
Card 2.	Format (3E15.7, I15)	CARACTER STATE OF THE STATE OF
1-15	NU	Poissons ratio
16-30	KBAR	Total tape stiffness, NK _T /PD
31-45	EBAR	Film stiffness, Eta/PD
46-60	N	Number of gores
Card 3.	Format (I15, 2E15.7)	
1-15	KMAX	Number of points to be considered
16-30	ABAR	Nondimensional superpressure, a/S _{max}
31-45	BBAR	Ratio of specific lift at altitude to
		design altitude

Card 4. Format (4E15.7) KMAX Required

Columns	Variable	Description
1-15	GP(K)	Gore position of point K in feet
16-30	RO(K)	Half gore width at point K in inches
31-45	WT(K)	Weight increment between K and K+l including tape
46-60	WTAPE(K)	Weight increment of a single tape between points K and K+1
Card 5.	Format (5E15.7) KMAX	Required
1-15	X(L+2)	Normalized design radius at point K, r/λ
16-30	X(L+3)	Normalized design height at point K, z/λ
31-45	X(L+4)	Normalized design load in meridional direction at point K, $T/2\pi PD$
46-60	X(L+5)	Design angle at point K, θ
61-75	X(L+6)	Normalized design volume at point K, $V/\pi\lambda^3$

Output consists of computed payload ratio, normalized deformed shape and stress distributions for any altitude designated as BBAR on card 3. Principal stresses and tension field patterns are computed when necessary. A sample of this output is as follows:

DESIGN VALUES
PAYLUAD= 4000.43 LBS
VOLUME= 0.5844D 07 FT(3)
GURE LENGTH= 350.85 FT
NUMBER OF TAPLS= 91
NUMBER UF POINTS= 67

NU# 0.68 KBAR= 25.68

EBAR= 82.52 ABAR= 0.00 BBAR= 1.00

BETA	R	Z	T	THETA	VUL
1.521/	0.0000	0.0000	0.2705	0.9465	0.1353
0.0209	0.0095	0.0069	0.2707	0.9457	0.1353
0.0143	0.0191	0.0137	0.2708	0.9447	0.1353
0.0186	0.0286	0.0206	0.2709	0.94.54	0.1353
0.0186	0.0381	0.0275	0.2710	0.9418	0.1353
0.0185	0.0476	0.0344	0.2712	0.9399	0.1352
0.0165	0.0571	0.0413	0.2715	0.9577	0.1352
0.0186	0.0666	0.0482	0.2717	0.9349	0.1351
0.3186	0.0760	0.0551	0.2721	0.9317	0.1350
0.0187	0.0855	0.0621	0.2724	0.9279	0.1346
0.0188	0.0949	0.0691	0.2728	0.9235	0.1347
0.0188	0.1043	0.0761	0.2733	0.9184	0.1344
0.0189	0.1137	0.0831	0.2738	0.9127	0.1342
0.0190	0.1230	0.0902	0.2143	0.9062	0.1539
0.0190	0.1323	0.0974	0.274t	0.8968	0.1335
0.0191	0.1416	0.1046	0.2754	0.6906	0.1331
0.0191	0.1508	0.1119	0.2760	0.8814	0.1326
0.0192	0.1599	0.1194	0.2765	0.8712	0.1320
0.0192	0.1090	0.1266	0.2172	0.8000	0.1314
0.0193	0.1780	0.1341	0.27/6	0.8476	0.1307
0.0193	0.1870	0.1416	U.2784	0.8341	0.1299
0.0193	0.1956	0.1495	0.2791	0.8193	0.1290
0.0193	0.2045	0.1573	0.2797	0.8033	0.1280
0.0193	0.2132	0.1053	0.2603	0.7558	0 - 1270
0.0193	0.2217	0.1733	0.2810	0.7670	0.1258
0.0192	0.2300	0.1816	0.2816	0.7467	0.1244
0.0192	0.2382	0.1900	0.2822	0.7249	0.1230
0.0192	0.2402	0.1985	0.2026	0.7016	0 - 12 14
0.0191	0.2541	0.2072	0.2834	0.6766	0.1197
0.0190	0.2017	0.2161	0.2839	0.6499	0.1179
0.0140	0.2693	1625.0	0.2844	0.0216	0.1159
0.0189	0.2764	0.2344	0.2849	0.5915	0.1137
0.0188	0.2833	0.2438	0.2854	0.5596	0.1113
0.0167	0.2899	0.2535	0.2656	0.5259	0.1088
0.0185	0.2963	0.2633	0.2861	0.4905	0.1062
0.0164	0.302	0.2733	0.2864	0.4532	0.1033
0.0162	0.3079	0.2836	0.2007	0.4141	0.1003
0.0180	0.3132	0.2940	0.2669	0.3731	0.0971
0.0178	0.3181	0.3040	0.2870	0.3304	0.0937
0.0176	0.3225	0.3154	0.2670	0.2860	0.0901
0.0174	0.3265	0.3264	0.2869	0.2398	0.0564
0.0171	0.3300	0.3375	0.2868	0.1920	0.0825
0.0168	0. 3.3.30	0.3488	0.2865	0.1431	0.0785
0.0161	0.3354	0.3602	0.2862	0.0923	0.0744
0.0158	0.3373	0.3717	0.2858	0.0436	0.0702
0.0130	0.3386	0.3832	0.2852	-0.0097	0.0659
0.0129	0.3393	0.3948	0.2645	-0.0A88	0.0616
0.0051	0.3396	0.4065	0.2637	-0.1046	0.0573

0.0081	0.3390	0.4181	0.2825	-0.1288	0.0530
0.0163	0.3354	0.4297	0.2017	-0.1868	0.0467
0.0184	0.3365	0.4412	0.2818	-0.2446	0.0445
0.0162	0.3342	0.4526	0.2830	-0.3030	0.0404
0.0177	0.3310	0.4638	0.2830	-0.3613	0.0365
0.0176	0.3273	0.4748	0.2841	-0.4195	0.0321
0.0174	0.3228	0.4850	0.2841	-0.4775	0.0291
0.0174	0.3176	0.4961	0.2048	-0.5350	0.0257
0.0174	0.3119	0.5062	0.2049	-0.5921	0.0225
0.0175	0.3056	0.5160	0.2652	-0.6486	0.0195
0.0177	0.2987	0.5255	0.2853	-0.7043	0.0168
0.0180	0.2913	0.5345	0.2850	-0.7591	0.0144
0.0184	0.2833	0.5431	0.2853	-0.8129	0.0122
0.0169	0.2750	0.5512	0.2854	-0.8657	0.0102
0.0195	0.2561	0.5589	0.2854	-0.9173	0.0064
0.0201	0.2569	0.5661	0.2854	-0.9676	0.0069
0.0208	0.2473	0.5726	0.2854	-1.0165	0.0056
0.0216	0.2374	0.5790	0.2854	-1.0639	0.0045
0.0223	0. 2271	0.5847	0.2855	-1.1097	0.0035
0.0232	0.2107	0.5699	3.2855	-1.1539	0.0027
0.0240	0.2059	0.5946	0.2656	-1.1962	0.0021
0.0248	0.1950	0.5969	0.2856	-1.2306	0.0016
0.0256	0.1839	0.6027	0.2857	-1.2750	0.0012
0.0264	0.1721	0.6061	0.2850	-1.3113	0.0008
0.0272	0.1613	0.0090	0.2655	-1.3455	0.000t
0.0279	0.1499	0.0111	0.2853	-1.3773	0.0004
0.0286	0.1384	0.0136	0.2850	-1.4069	0.0003
0.0292	0.1268	0.0157	0.2845	-1.4340	0.0002
0.0298	0.1151	0.6172	0.2637	-1.4580	0.0001
0.0305	0.1034	0.0184	0.2825	-1.4807	0.0001
0.0314	0.0917	0.6194	0.2608	-1.5004	0.0000
0.0331	0.0800	0.6202	0.2786	-1.5174	0.0000
0.0360	0.0663	0.5207	0.2755	-1.5327	0.0000
0.0409	0.0505	0.6211	0.2716	-1.5444	0.0000
0.0468	0.0440	0.0214	0.2073	-1.5504	0.0000
0.0529	0.0330	0.6215	0.2630	-1.5636	-0.0000
0.0564	0.0212	0.0215	0.2605	-1.5711	-0.0000
0.0546	0.0094	0.6215	0.2605	-1.5729	-0.0000
0.0555	0.0000	0.6215	0.2737	-1.5749	0.0000

		MER.	CIR.	MER.	PRINCIPAL	STRESSES	. MAX	
K	F	STRESS	STRESS	SHEAR	51	52	SHEAR	ANGLE
1	0.0167	0.8028	0.0000	-0.0241	0.6634	0.0000	0.4314	-0.0279
~	0.0101	0.6360	0.0007	-0.0231	0.8387	0.0001	0.4193	-0.6276
3	0.0176	0.8153	0.0020	-0.0219	0.6159	0.0020	0.4069	-0.0269
43460	0.0171	0.7947	0.0055	-0.0207	0.7952	0.0050	0.3951	-0.0202
5	0.0107	0.7758	0.0094	-0.0197	0.7763	0.0069	0.3837	-0.0257
6	0.0102	0.7500	0.0141	-0.0155	0.7591	0.0137	0.3727	-0.0252
1	0.0156	0.7429	0.0198	-0.0190	0.7434	0.0193	0.3620	-0.0249
8	0.0154	0.7286	0.0262	-0.0173	0.7290	0.0258	0.3516	-0.0240
4	0.0150	0.7155	0.0334	-0.3160	0.7159	0.0330	0.3415	-0.0244
10	0.0140	0.7035	0.0412	-0.0161	0.7039	0.0408	0.3315	-0.0243
11	0.0143	0.6925	0.0447	-0.0156	0.6928	0.0493	0.3218	-0.0242
12	0.0139	0.6024	0.0588	-0.0151	0.0827	0.0584	0.3122	-0.0243
13	0.0130	0.6731	0.0683	-0.0147	0.6734	0.0660	0.3027	-0.0243
14	0.0132	0.0045	0.0784	-0-0144	0.0548	0.0780	0.2934	-0.0243
15	0.0124	0.6066	0.0009	-0.0140	0.0509	0.0885	0.2842	-0.0247
16	0.0126	0.6493	0.0997	-0.0137	0.6496	0.0994	0.2751	-0.0249
17	0.0123	0.6426	0.1109	-0.0134	0.6429	0.1105	0.2662	-0.0252
18	0.0120	0.6363	0.1223	-0.0131	0.0306	0.1220	0.2573	-0.0253
19	0.0117	0.6305	0.1340	-0.0123	0.0308	0.1336	0.2486	-0.0259
20	3.0114	0.6251	0.1458	-0.0126	0.6254	0.1455	0.2400	-0.0263
21	0.0111	0.6201	0.1578	-0.0124	0.6204	0.1575	0.2314	-0.0268
22	0.010c	0.0154	0.1700	-0.0121	0.6157	0.1697	0.2230	-0.0272
23	0.0100	0.6110	0.1622	-0.0119	0.6114	0.1819	0.2147	-0.0277
24	0.0103	0.6070	0.1445	-0.011/	0.6073	0.1941	0.2066	-0.0283
24	0.0100	0.6032	0.2000	-0.0114	0.6035	0.2065	0.1965	-0.0268
20	0.0098	0.5997	0.2191	-0.0112	0.0000	0.2188	0.1906	-0.0294
27	0.0095	0.5964	0.2314	-0.0110	0.5967	0.2311	0.1828	-0. 3300
28	0.0093	0.5934	0.2437	-0-0107	0.5937	0-2434	0-1751	-0-0307
29	0.0090	0.5406	0.2560	-0.0105	0.5909	0.2557	0.1676	-0.0314
30	0.0086	0.5850	0.2683	-0.0103	0.5884	0.2080	0-1602	-0.0321 -0.0329
31	0.0086	0.5857	0.2805	-0-0101	0.5861	0.2802	0.1529 0.1458	-0.0338
32	0.0083	0.5837	0.2928	-0.0098	0.5822	0.3048	0.1387	-0.0347
34	0.0001	0.5819	0.3051	-0.0096	0.5822	0.3171	0.1318	-0.0347
35	0.0079	0.5864	0.3174	-0.0094	0.5795	0.3295	0.1250	-0.03us
30	0.0077	0.5791	0.3290	-0.0092	0.5785	0.3419	0.1183	-0.0360
37	0.0075	0.5782	0.3423	-0.0090	0.5779	0.3545	0.1117	-0.0393
36	0.0071	0.5772	0.3549	-0.0088	0.5776	0.3673	0.1051	-0.0408
39	0.0069	0.5773	0.3676	-0.0080	0.5776	0.3802	0.0987	-0.0425
40	0.0007	0.5777	0.3938	-0.0084	0.5780	0.3934	0.0923	-0.044-
41	0.0065	0.5785	0.4072	-0.0081	0.5789	0.4069	0.0860	-0.0471
4 4	0.0064	0.5799		-0.0079	0.5803	0.4212	0.0795	-0.0447
43	0.0062	0.5815	0.4210	-0.0093	0.5821	0.4350	0.0735	-0.0634
44	0.0054	0.5870	0.4004	-0.0091	0.5877	0.4598	0.0639	-0.071
45	0.0056	0.56.95	0.4750	-0.0100	0.5916	0.4726	0.0596	-0.1404
46	0.0052	0.6111	0.5470	-0.0161	0.6149	0.5432	0.0358	-0.2328
47	0.0050	0.6142	0.5612	-0.0237	0.0233	0.5521	0.0356	-0.3651
	0.0000	0.0172	0.3012	0.023	0.00	00 332 1	0.0000	

		-	
c	Į	J	
	•	•	

48	0.0041	0.0524	0.6820	-0.0232	0.6947	0.6397	0.0275	2.0727
49	0.0040	0.6558	0.6947	-0.0347	0.7150	0.0354	0.0398	2.1009
50	0.0025	0.7193	0.2769	-0.0321	0.7216	0.2746	0.2235	-0.0720
51	0.0025	0.7238	0.2808	0.0001	0.7238	3082.0	0.2215	0.0002
52	0.0025	0.7331	0.2908	-0.0002	0.7331	0.2908	0.2212	-0.0004
53	0.0025	0.7413	0.3041	0.0001	0.7413	0.3041	0.2186	0.0002
54	0.0025	0.7527	0.3130	0.0000	0.7527	0.3130	0.4198	0.0013
55	0.0026	0.7637	0.3241	0.0008	0.7637	0.3241	0.2198	0.0019
30	0.0026	0.7709	0.3320	0.0013	0.7769	0.3320	0.2224	0.0030
57	0.0026	0.7907	0.3401	0.0017	0.7907	0.3401	0.2253	0.0037
58	0.0027	0.8061	0.3462	0.0022	0.8062	0.3462	0.2300	0.0048
59	0.0028	0.8229	0.3510	0.0027	0.8229	0.3510	0.2360	0.0058
60	0.0028	0.8412	0.3542	0.0033	0.8412	0.3541	0.2436	8300.0
01	0.0029	0.8613	0.3557	0.0039	0.8613	0.3557	0.2528	0.0077
62	0.0030	0.8832	0.3556	0.0045	0.6832	0.3558	0.2637	0.0085
63	0.0031	0.9071	0.3544	0.0051	0.9072	0.3544	0.2764	0.0093
64	0.0033	0.9333	0.3518	0.0055	0.9334	0.3518	0.2908	0.0099
65	0.0034	0.9519	0.34 81	0.0064	0.9620	0.3480	0.3070	0.0105
66	0.0036	0.9932	0.3435	0.0071	0.9933	0.3434	0.3250	0.0110
67	0.0036	1.0275	0.3381	0.0079	1.0276	0.3380	0.3448	0.0114
66	0.0040	1.0650	0.3321	0.0087	1.0651	0.3320	0.3665	0.0118
69	0.0042	1.1061	0.3257	0.0095	1.1062	0.3256	0.3903	0.0122
70	0.0044	1.1514	0.3190	0.0104	1.1514	0.3168	0.4163	0.0125
71	0.0047	1.2008	0.3120	0.0114	1.2009	0.3119	0.4445	0.0128
72	0.0049	1.2553	0.3050	0.0125	1.2554	0.3048	0.4753	0.0131
73	0.0052	1.3153	0.2950	0.0136	1.3155	0.2979	0.5088	0.0134
74	0.0050	1.3817	0.2914	0.0149	1.3519	0.2912	0.5453	0.0137
15	0.0059	1.4552	0.2000	0.0164	1.4554	0.2854	0.5850	0.0140
76	0.0063	1.5371	0.2814	0.0179	1.5373	0.2811	0.6281	0.0142
77	0.0000	1.6287	0.2002	0.0195	1.0290	0.2799	0.6746	0.0145
78	0.0074	1.7321	0.2537	0.0213	1.7324	0.2834	0.7245	0.0147
79	0.0076	1.8497	0.2953	0.0234	1.0501	0.2949	0.7776	0.0150
80	0.0003	1.9840	0.3:42	0.0259	1 . 9844	0.3138	0.8353	0.0150
81	0.0090	2.1399	0.3450	0.0299	2.1404	0.3446	0.8979	0.0166
82	0.0097	2.3167	0.3694	0.0362	2.3174	0.3687	0.9743	0.0186
83	0.0107	2.5250	0.3557	0.0465	2.5267	0.3846	1.0710	0.0218
84	0.0119	2.7675	0.3551	0.0035	2.7091	0.3534	1.2079	0.0263
85	0.0100	3.0806	0.2750	0.0885	3.0830	0.2752	1.4039	0.0315
86	0.0100	3.4906	0.1324	0.1279	3.4954	0.1275	1.6840	0.0380
87	0.6196	4.1551	0.0000	0.1775	4 - 1626	-0.0076	2.0851	0.0426
	3.0.,0		0.000	005		0.00.0	20001	000420