

Некоммерческое акционерное общество

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра Автоматизации и управления

ПРОГРАММНЫЕ СРЕДСТВА СИСТЕМ АВТОМАТИЗАЦИИ

Методические указания к выполнению лабораторных работ для студентов специальности 5B070200 — Автоматизация и управление

СОСТАВИТЕЛИ: Ибраева Л.К., Абжанова Л.К., Ильясов А.З. Программные средства систем автоматизации. Методические указания к выполнению лабораторных работ для специальности 5В070200 — Автоматизация и управление. — Алматы: АУЭС, 2019 — 58 с.

Методические указания предназначены для освоения инструментариев системы программирования и моделирования MATLAB и содержат описания к 9 лабораторным работам.

Ил.-17, табл.- 20, библиогр.- 10 наим.

Рецензент:

Печатается по плану издания некоммерческого акционерного общества «Алматинский университет энергетики и связи» на 2019 г.

© НАО «Алматинский университет энергетики и связи», 2019 г.

Содержание

Введение	4
	•
1 Лабораторная работа №1. Знакомство с системой. Обычные	5
вычисления	3
2 Лабораторная работа №2 Работа с матрицами и векторами	13
3 Лабораторная работа №3ВведениевграфикуМАТLAB	19
4 Лабораторная работа №4. Основы программирования в MATLAB	25
5 Лабораторная работа № 5. Циклические операторы в среде	2.1
программирования MATLAB	31
6 Лабораторная работа №6. Численные методы решения	2.5
обыкновенных дифференциальных уравнений	35
7 Лабораторная работа №7. Аппроксимация функций	39
8 Лабораторная работа №8. Основы Simulink	45
9 Лабораторная работа №9. Имитационное моделирование систем	49
Список литературы	57

1 Лабораторная работа №1. Знакомство с системой. Обычные вычисления

Цель работы: изучить в среде MATLAB представление данных, простые числовые выражения и математические формулы.

1.1 Задание на лабораторную работу

В процессе выполнения лабораторной работы студент должен:

- изучить назначение и компоненты пользовательского интерфейса системы MATLAB;
 - изучить объекты MATLAB;
 - изучить правила представления данных;
 - подготовить отчет по работе.

1.2 Интерфейс пользователя

Система MATLAB имеет многооконный пользовательский интерфейс, в котором размещен ряд средств прямого доступа к различным компонентам системы (рисунок 1.1).

Основную часть окна системы занимает командное окно — *Command Window*, в котором расположена строка ввода, начинающаяся специальными символами «>>» (символ вводится автоматически). На этой строке записываются команды для выполнения системой.

В левой части окна расположено окно истории команд — *Command History*, в котором отображаются вводимые пользователем команды. При необходимости эти команды можно снова выполнить, сделав двойной щелчок мыши по нужной команде в окне истории команд.

Окно рабочей области MATLAB - *Workspace* показано на рисунок 1.2 и содержит список переменных (именованные массивы), накопленных в памяти в процессе работы, расширение списка переменных при обращении к функциям, выполнении М-файлов и загрузке сохраненных переменных.

Как и все окна рабочего стола системы MATLAB, окно рабочей области, сопровождается контекстным меню, которое включает следующие опции:

- Open Selection... (Открыть выделенное...);
- GraphSelection (Построить график);
- SelectAll (Выделить все);
- Import Data (Импорт данных);
- Save Selection As... (Сохранить выделенное как...);
- SaveWorkspaceAs... (Сохранить рабочую область как...);
- Delete Selection (Удалить выделенное);
- Delete Workspace (Удалить рабочую область).

Рисунок 1.1 - Окно MATLAB, которое содержит *Command Window*, *Workspace* и текущее окно *Current Folder* рабочей области

Рисунок 1.2 – Окно рабочей области *Workspace*

MATLAB содержит мощную подсистему справки MATLAB Help:

- меню Help Help Window или соответствующая кнопка на панели инструментов, а также команда helpwin;
- для вывода окна справки по отдельным разделам используется *helpwin topic*;
 - helpops используется для вывода списка операторов MATLAB.

Другая полезная команда MATLAB — команда *look for*. Ее можно использовать для поиска команды по ключевому слову.

Управление рабочей областью. Содержимое рабочей области сохраняется между выполнением отдельных команд. Таким образом, результаты одной

задачи могут повлиять на следующую. Чтобы избежать такой возможности, рекомендуется в начале каждого нового независимого вычисления давать четкую команду на очистку рабочей области.

Все переменные, созданные в сеансе MATLAB, хранятся в рабочей области MATLAB. Чтобы при выходе из MATLABэто рабочее пространство не было уничтожено, используйте File – Save Workspace As ... - всех переменные в рабочей области сохранятся в текущем каталоге в файле с расширением.mat. Эти.mat файлы являются двоичными файлами, что означает, что вы не можете редактировать или читать их. Вы можете перезагрузить файл в любое время позже, используя команду: File-Import Data. Этот метод сохранения сохраняет все переменные в рабочей области. Можно выбрать любое количество переменных.

Команда *dir* дает вам список всех файлов, которые находятся в текущем каталоге.

1.3 Представление данных в МАТLAВ

Центральным понятием всех математических систем является математическое выражение. Математические выражения строятся на основе чисел, констант, переменных, операторов, функций и разных спецзнаков.

Число — простейший объект языка MATLAB, представляющий количественные данные. Числа используются в общепринятом представлении о них. Представление чисел в MATLAB соответствует правилам языков программирования.

Константа — это предварительно определенное числовое или символьное значение, представленное уникальным именем. В МАТLAB существуют некоторые стандартные константы (таблица 1.1).

TD 7	1	T T		
		- Предопределенны <i>е</i>	TOOTOGITITIO	ропшини
- гаошина т		- 1 106/10/106/16/16888	: постоянные	ксличины

Имя переменной	Пояснение к переменной	
pi	Число π=3,14159	
i,j	Мнимая единица, $\sqrt{-1}$.	
inf	Бесконечность, ∞	
NaN	Не число (not a number)	

Символьной константой считается любая последовательность символов, заключенных в апострофы, например, 'Hello!'.

Переменная — это объект с именем, который хранит некоторые данные. В зависимости от этих данных переменные могут быть числовыми или символьными, векторными или матричными.

Имя переменной должно начинаться с буквы, может содержать буквы, цифры и символ подчеркивания. Имя не должно совпадать с именами других переменных, функций и процедур системы. Прописные и строчные буквы в МАТLAB различаются.

Для уничтожения определения переменной используется специальная команда:

- *-clear* уничтожает все переменные;
- clear x— уничтожает переменную x;
- clear x, y— уничтожает переменные x и y.

Оператор — это специальное обозначение для определенной операции над данными — операндами. Например, арифметическими операторами являются знаки суммы (+), вычитания (—), умножения (*), деления (/), возведения в степень (^). Операторы используются совместно с операндами. Например, в выражении 2+3 знак «+» является оператором сложения, а числа 2 и 3 — операндами.

Для задания переменной некоторого значения используется оператор присваивания:

Имя переменной =
$$3$$
начение;

Для вывода значения переменной нужно в командной строке ввести ее имя и нажать клавишу *Enter*. Переменная должна иметь значение перед тем, как она будет использована. После ввода переменной она хранится в окне *Workspace*. Двойным щелчком в этом окне на имя переменой, можно просмотреть информацию о ней (размерность, тип).

Если не присвоить выражение переменной, то ответ передается в переменную с именем *ans* (answer), которую можно в дальнейшем использовать. Знак «; » подавляет вывод результата на экран(не обязателен для ввода).

Пример ввода команды и вывод результата с присвоением переменной и без присваивания (>> - приглашение системы, после этих символов набирается команда):

$$>> x=25*625$$
 $>> 25*625$ $= ans = 15625$

Если необходимо разместить несколько выражений на одной строке, можно использовать знаки (,), (;).

Символ (%) используется для комментариев.

Команда *who* выводит все имена используемых переменных.

Команда whos выводит более полную информацию о переменных.

При вычислении значений арифметических выражений нужно набрать в командной строке это выражение и нажать клавишу *Enter*. Перед тем как вычислять значение математического выражения, необходимо определить значение каждой входящей в него переменной. Вычисляемое выражение может содержать любое количество переменных, операторов и функций.

При арифметических вычислениях в MATLAB соблюдается порядок, принятый в математике. Для изменения порядка действий используются круглые скобки.

Отличительной особенностью MATLAB является то, что при правильном вводе любого элемента, этот элемент автоматически сохраняется в памяти до следующего изменения в поле Workspace.

Команды форматирования. По умолчанию, MATLAB представляет числа с четырьмя десятичными знаками. Это так называемый *short* формат. Если необходима большая точность, необходимо использовать команду *format*. Формат *long* отражает 16 знаков после запятой. Формат *format bank* округляет число до двух десятичных знаков.

Большие числа отображают, используя экспоненциальное представление. Формат shorte отображает число в экспоненциальной форме с четырьмя десятичными знаками и экспонентой. Формат longe отображает число в экспоненциальной форме с 16 десятичными знаками и экспонентой.

В примере 1.1 приведена работа с форматами.

```
Пример 1.1.
>> format shorte
>> 5/3
ans =
 1.6667e+00
>> format longe
>> 5/3
ans =
   1.66666666666667e+00
>> format short
>> 5/3
ans =
  1.6667
>> format bank
>> 5/3
ans =
     1.67
Пример 1.2.
Вычислить значение выражения:
```

$$z = \frac{x^2 + y}{3 - |sinx|} + 2,$$

при x=25, y=3,6.

Порядок ввода в CommandWindow:

>>
$$x=25$$
;
>> $y=3.6$;
>> $z=(x^2+y)/(3-abs(sin(x)))+2$

z = 221.2040

В результате получим z=221.2040.

1.4 Порядок выполнения лабораторной работы

- 1.4.1 Запустите MATLAB. Изучите компоненты пользовательского интерфейса.
- 1.4.2 Настройте окна с помощью пункта меню *Layout-Default*. Настройка окон MATLAB также может быть выполнена с помощью кнопки в виде «стрелки» (в правом верхнем углу).

Рисунок 1.5 - Настройка окон MATLAB с помощью Layout

- 1.4.3 Выполните настройки (шрифт, цвет и т.д.) с помощью кнопки «*Preferences*».
 - 1.4.4 Измените рабочую (текущую) папку с помощью команды:

>>cd 'nymь к nanкe'

(например>>cd 'c:\Users') или с помощью окна Current Folder.

- 1.4.5 Выполните операции с числами:
- введите два числа;
- сложите эти числа;
- получите произведение полученного результата на любое другое число;
- запишите результат в переменную a;
- введите несколько арифметических выражений, изменяя порядок выполнения арифметических операций;
- для заданных значений аргументов вычислите значения выражений (по варианту); выполните это же задание, размещая в конце выражения знак «;»;

- измените значения некоторых аргументов и вычислите значение функции, не набирая заново выражение.
 - 1.4.6 Просмотрите список используемых переменных.
 - 1.4.7 Получите полную информацию о переменных.
- 1.4.8 Выполните действия по управлению переменной: изменить ее значение; удалить из рабочей области и т.д.
 - 1.4.9 Сохраните сессию, закройте MATLAB.
- 1.4.10 Загрузите MATLAB, загрузите сохраненную сессию.
 - 1.4.11 Вычислите выражение, а также значение функции f(x) на отрезке [a,b] с шагом h (по варианту таблица 1.2).

Таблица 1.2 - Варианты заданий

№	Выражение	Функция	Интервал [a,b] и шаг h
1.	$\frac{\left(12\frac{1}{6} - 6\frac{1}{27} - 5,25\right)13,5 + 0,111}{0,02}$	$f(x) = \frac{x^2}{1 + 0.25\sqrt{x}}$	[1,13,1], h =0.2
2.	$\frac{\left(1\frac{1}{12} + 2\frac{5}{32} + \frac{1}{24}\right):9,6 + 2,13}{0,00004}$	$f(x) = \frac{x^2 + 3}{2x + 24}$	[15], h=0.5
3.	$\frac{\left(6,6-3\frac{3}{14}\right)5\frac{5}{6}}{(21-1.25):2,5}$	$f(x) = \frac{x^3}{3x^2 + \sqrt{x}}$	[03], h=0.1
4.	$ \frac{(21 - 1.25): 2,5}{(2625 - \frac{2}{3} \cdot 2 \frac{5}{14})} $ $ \frac{(3\frac{1}{12} + 4.375): 19\frac{8}{9}}{0,134 + 0,05} $	$f(x) = \frac{x^3 + 3}{x + 0.25\sqrt{x}}$	[0.55], h =0.2
5.	$\overline{18\frac{1}{6}-1\frac{11}{14}-\frac{2}{15}\cdot2\frac{6}{7}}$	$f(x) = \frac{x^2}{x - 0.5x + \sqrt{x}}$	[16], h=0.3
6.	$\frac{\left(58\frac{4}{15} - 56\frac{7}{24}\right):0.8 + 2\frac{1}{9}\cdot0.225}{8.75\cdot0.6}$	$f(x) = \frac{x^2 + 2x}{x^3 - 10x}$	[010], h =0.8
7.	$\frac{\left(\frac{0.216}{0.15} + 0.56\right) : 0,5}{\left(7.7:24.75 + \frac{2}{15}\right)4.5}$	$f(x) = \frac{4}{x^3 - 0.25x}$	[18], h=0.6
8.	$\frac{1\frac{4}{11} \cdot 0.22 \colon 0.3 - 0.96}{\left(0.2 - \frac{3}{40}\right) 1,6}$	$f(x) = \frac{10x^3 + x}{5x + x^2}$	[06], h =0.4
9.	$\frac{\left(\frac{3}{5} + 0,425 - 0,005\right):0,12}{30,5 + \frac{1}{6} + 3\frac{1}{3}}$	$f(x) = \frac{x^2}{5x + 0.25\sqrt{x}}$	[010], h =0.7
10.	$\frac{3\frac{1}{3} + 2,5}{2,5 - 1\frac{1}{3}} \div \left(\frac{0,05}{\frac{1}{7} - 0,125} + 5,7\right)$	$f(x) = \frac{10}{x + x^3}$	[18], h=0.5

No॒	Выражение	Функция	Интервал [a,b] и шаг h
11.	$\frac{0,725 + 0,42}{0,128 - 6,25 - (0,0345/0,12)} \cdot 0,25$	$f(x) = \frac{x^3}{7 + 5\sqrt{x}}$	[010], h =0.5
12.	$\frac{\left(4,5\cdot1\frac{2}{3}-6,75\right)\cdot0,6}{\left(3,333\cdot0,3+0,222\cdot\frac{4}{9}\right)\cdot2\frac{2}{3}}$	$f(x) = \frac{x}{5x + 0.25}$	[19], h =0.4
13.	$\frac{\left(5\frac{4}{45} - 4\frac{1}{6}\right) : 5\frac{8}{15}}{\left(4\frac{2}{3} + 0.75\right) : 3\frac{9}{13}}$	$f(x) = \frac{x^2}{7 + 0.5x}$	[05], h=0.1
14.	$\frac{\left(3\frac{4}{17} - 4\frac{1}{6}\right) : 5\frac{2}{3}}{\left(2\frac{2}{3} + 2,5\right) \cdot 3\frac{1}{5}} + \frac{2}{5}$	$f(x) = \frac{x^3 + x}{2x + 0.5}$	[06], h =0.2
15.	$\frac{\left(12\frac{3}{8} + 45\frac{1}{24}\right) + 5\frac{2}{7} \cdot 0,5}{0,75 \cdot 0,6}$	$f(x) = \frac{x^2}{x - 0.5x^2}$	[110], h =0.3
16.	$\frac{\left(\frac{8}{0.75 \cdot 0.6}\right)}{0.75 \cdot 0.6}$ $\frac{\left(4\frac{4}{7} - 10\frac{7}{33}\right) : \frac{2}{17} + 2\frac{1}{9} \cdot 0.225}{0.6\frac{3}{8}}$	$f(x) = \frac{10+x}{x^2+4}$	[1.12], h =0.05
17.	$\frac{(68,023 - 66,028): 6\frac{1}{9} + \frac{7}{40} \cdot 4,5}{0,042 + 0,086}$	$f(x) = \frac{x}{x^3 + 0.47\sqrt{x}}$	[0.510], h =0.7
18.	$\frac{(1,88+2,127)\cdot 0,01875}{0,625-\frac{13}{18}/3,13}+8,29$	$f(x) = \frac{x^2}{2x}$	[-33], h =0.2
19.	$\frac{\frac{3}{0,4} - 0,009: (0,15:2,5)}{0,32 \cdot 6 + 0,033 - (5,3-3,88)}$	$f(x) = \frac{x^2 + x}{0.25\sqrt{x}}$	[-55], h =0.5
20.	$\frac{(34,06-33,81)\cdot 4}{6,84/(28,57-25,15)} + 1,33/\frac{4}{21}$	$f(x) = \frac{10x^2}{x+5}$	[-55], h =0.4

1.5 Требования к отчету

Отчет по работе должен содержать:

- вариант задания;
- скриншоты работы с пользовательским интерфейсом с комментариями;
- скриншоты выполнения вычислений;

1.6 Контрольные вопросы

- 1.6.1 Объясните назначение системы MATLAB.
- 1.6.2 Что такое окно Current Folder?
- 1.6.3 Для чего используется Command History?
- 1.6.4 Назначение окна Workspace?

- 1.6.5 Как можно отразить на экране отдельные элементы пользовательского интерфейса?
 - 1.6.6 Как можно ввести в командное окно переменную?
 - 1.6.7 Перечислите правила именования переменных.
 - 1.6.8 Назовите зарезервированные переменные МАТLAB.
 - 1.6.9 Объясните правила выполнения арифметических операций.
 - 1.6.10 Как можно подавить вывод на экран результата.

2 Лабораторная работа №2 Работа с матрицами и векторами

Цель работы: изучить работу с матрицами, а также использование математических функций в инженерных расчетах.

2.1 Задание на лабораторную работу

В процессе выполнения лабораторной работы студент должен:

- изучить математические функции MATLAB;
- изучить различные операции с векторами, матрицами, комплексными переменными;
- научиться применять изученные функции к решению инженерных задач.

2.2 Операции с массивами. Математические функции MATLAB

Структура хранения всех данных в MATLAB представляет собой матрицу. Матричная переменная в MATLAB может иметь любое количество строк и столбцов. Скалярная переменная тоже хранится как матрица с одной строкой и одним столбцом. Матричная переменная может быть любой переменной, то есть может быть скаляром, вектором или матрицей.

Существует два основных типа векторов в MATLAB: вектор-строка и вектор-столбец. Вектор-строка хранит свои числа «горизонтально», а вектор-столбец — «вертикально». Эти массивы обычно заключаются в квадратные скобки.

Создание векторов и матриц. Вектор – одномерный массив чисел. Для отделения элементов. Вектор-строка создается посредством заключения множества элементов в квадратные скобки с использованием пробела или запятой между элементами. Все индексы вектора нумеруются, начиная с 1.

Матрица — двумерный массив чисел. В MATLAB матрица создается посредством ввода каждой строки как последовательности чисел, отделенных друг от друга запятой или пробелом; конец строки обозначается точкой с запятой.

MATLAB можно использовать как простой «карманный калькулятор» для матриц: можно быстро и легко умножать, складывать или вычитать их. Это очень удобный инструмент для проверки матричных вычислений.

MATLAB дает возможность создавать некоторые матрицы автоматически, без необходимости печатания каждого элемента:

- -zeros(m,n) создает матрицу размерности mxn с нулевыми элементами;
- ones(m,n) создает матрицу размерности mxn с элементами, равными единице;
- eye(m,n) создает матрицу размерности mxn, элементы главной диагонали равны единице;
- rand(m,n) создает матрицу размерности mxn, элементы которой являются случайными челами между 0 и 1.

Математические функции. МАТLAВ предлагает множество предопределенных математических функций для инженерных вычислений. С помощью help elfun и help specfun сможно просмотреть список встроенных элементарных и специальных функций МАТLAB. Ко всем элементарным функциям можно получить доступ по их именам (таблица 2.1).

Таблица 2.1 – Список наиболее часто используемых функций, где переменные могут быть числами, векторами и матрицами

cos(x)	Косинус	abs(x)	абсолютная величина
sin(x)	Синус	sign(x)	сигнум функция
tan(x)	Тангенс	max(x)	максимальное значение
acos(x)	арк-косинус	min(x)	минимальное значение
asin(x)	арк-синус	ceil(x)	округление на повышение
atan(x)	арк-тангенс	floor(x)	округление на понижение
exp(x)	экспонента в степени х	round(x)	округлене к ближайшему целому
sqrt(x)	корень квадратный	rem(x)	остаток от деления
log(x)	натуральный логарифм	angle(x)	фазовый угол
log10(x)	десятичный логарифм	conj(x)	комплексно-сопряженное число

Арифметические операции с матрицами. В МАТLAВ все арифметические операции: +, -, * и ^ могут быть применены к матрицам. Также существуют арифметические операции, которые позволяют проводить вычисления поэлементно. Список таких операций приведен в таблице 2.2.

Таблица 2.2 – Поэлементные операции с массивами

.*	По-элементное умножение
./	По-элементное деление
.^	По-элементное возведение в степень

Эти операции выполняются следующим образом. Если A и B — две матрицы одинакового размера с элементами $A = [a_{ij}]$ и $B = [b_{ij}]$, тогда команда >> C = A. *B формирует матрицу C of того же размера с элементами $c_{ij} = a_{ij} * b_{ij}$.

Чтобы возвести скалярное число в степень, используется знак $^{\land}$, например, $10^{\land}2$. Если же эту операцию надо применить к каждому элементу матрицы, надо использовать «. $^{\land}$ ».

Действия с матрицами. Основные операторы с матрицами выполняются в MATLAB также, как матричные вычисления в математике (сложение, вычитание, транспонирование, умножение матрицы на число, произведение двух матриц, определение степени матрицы) с учетом правил математики на размерности матриц, к которым эти операции применяются.

Другие операторы:

- инверсия матрицы inv(A) вычисляет матрицу, обратную к матрице A;
- det(A) вычисляет определитель матрицы;
- особенностью MATLAB является наличие двух неизвестных в математике операций деления матриц: деление слева направо (') справа налево (').

Операция B/A эквивалентна команде B*inv(A); $A \setminus B$ — команде inv(A)*B. То есть, для матрицы знак «слэш» означает инверсию: если это обратный слэш - $\langle x \rangle$ », тогда инверсия относится к первой матрице, обычный слэш «/» - инверсия относится к второй матрице.

В инженерных приложениях возникает необходимость решения матрично-векторных уравнений. Эти задачи легко решаются, так как изначально система MATLAB специально была ориентирована на решение матричных уравнений.

Например, если задано матричное уравнение Ax=b (система линейных алгебраических уравнений), где A – матрица системы, b – вектор правых частей системы, x – вектор неизвестных переменных, то для решения этой системы достаточно в командном окне MATLAB ввести команду x=inv(A)*b. Компоненты матрицы A и вектора правых частей b, конечно, должны быть введены в командное окно MATLAB.

Операции с векторами и матрицами как с массивами данных (обработка результатов измерений). Предположим мы имеем некоторую зависимость y(x), которая задана своими числовыми значениями. Ее можно представить как матрицу с двумя строками — значениями x и значениями y, назовем эту матрицу xydata.

Основные инструменты обработки данных:

- -size(xydata) определяет число строк и столбцов в матрице xydata; обращение: [n,p] = size(xydata), где n- число строк, p число столбцов;
 - max(v) возвращает значение максимального элемента вектора v;
 - -min(v) возвращает значение максимального элемента вектора v;
- -sort(v) формирует вектор, элементы которого отсортированы в порядке возрастания их значений;
 - -sum(v) вычисляет сумму элементов вектора v;
 - -prod(v) вычисляет произведение всех элементов вектора v;

- -diff(v) создает вектор, элементы которого являются разностью между соседними элементами вектора v; размер полученного вектора меньше, чем размер вектора v;
- -cumsum(v) создает вектор, каждый элемент которого является суммой всех предыдущих элементов вектора v;
- -cumprod(v) создает вектор, каждый элемент которого является произведением всех предыдущих элементов вектора v;
 - -mean(v) определяет среднее значение элементов вектора v;
 - std(v) определяет стандартное отклонение элементов вектора v.

Эти же самые функции *sum*, *max*, *min*, *sort*, *prod*, *diff*, *cumsum*, *cummprod*, *mean*, *std* могут быть применены к матрицам. При этом эти операции выполняются не по отношению к строкам матрицы, а по отношению к каждому из столбцов матрицы (за исключением функции *size*).

Функции комплексного аргумента. Почти все элементарные функции можно применить к комплексным значениям аргументов и получить комплексное значение результата. Благодаря этой возможности функция sqrt вычисляет квадратный корень отрицательного числа, функция abs — модуль комплексного числа.

Также в MATLAB есть несколько дополнительных функций, которые применяются только к комплексным аргументам:

- -real(z) определяет действительную часть комплексного числа z;
- -imag(y) определяет мнимую часть комплексного числа z;
- angle(z) вычисляет значение аргумента комплексного числа (в радианах от $-\pi$ до $+\pi$);
 - conj(z) определяет число, комплексно сопряженное к z.

Эти функции дают возможность выполнять вычисления с действительными числами, результат которых является комплексным числом (например, найти комплексные корни квадратного уравнения).

Табулирование функции. Табулирование функции — вычисление всех ее значений при каждом значении аргумента в указанном диапазоне. Для задания диапазона чисел необходимо написать имя переменной, поставить знак присваивания, а затем через двоеточие — начальное значение, шаг и конечное значение:

Имя_переменной=Начальное_значение:Шаг:Конечное_значение;

Если шаг равен 1, то его можно не указывать, а задать только начальное и конечное значения. После ввода диапазона значений аргумента функции задается сама функция.

Так как аргумент имеет несколько значений, то выполнение операций умножения, деления и возведения в степень должно выполняться поэлементно над каждым из значений. Для этого используются операции «с точкой»: «.*», «./», «.^» соответственно.

Пример 2.1. Вычислить значения функций:
$$y = 2 \cdot x \cdot sin(x)$$
; $z = 3x^2 + cos(x)$

для $x \in [-1,5;1,5]$ с шагом 0,5.

Порядок ввода в Command Window:

- >> x = -1.5:0.5:1.5
- >>y=2*x.*sin(x)
- $>>z=3*x.^2+cos(x)$

2.3 Порядок выполнения лабораторной работы

- 2.3.1 Запустите MATLAB.
- 2.3.2 Выполните операции с векторами:
- введите любой вектор v. Напечатайте n = size(v) это пример функции MATLAB. Объясните, что определяет эта функция;
 - введите вектор-столбец с тремя строками и одним столбцом;
- введите два вектора с тремя элементами; примените к этим векторам следующие операции: +, ; x'; *;
- транспонируйте вектор-столбец в вектор-строку и наоборот операция «'»;
- сформируйте вектор-столбец, элементы которого первые 10 чисел, используя команду (1:10)'.
 - 2.3.3 В MATLAB активно используется знак «:»:
 - введите h=10:2:20 (без квадратных скобок!). просмотрите результат;
 - создайте этот же вектор другим способом;
- создайте вектор с использованием знака «:», но с отрицательным приращением;
 - создайте вектор с использованием знака «:», но без приращения.
 - 2.3.4 Выполните операции с матрицами:
 - введите две 5x5 матрицы A и B в командное окно;
 - найдите матрицу, обратную к матрице A;
 - найдите произведение полученной матрицы и матрицы B;
- найдите произведение матрицы A и инверсии матрицы B, назовите переменную результата C;
- найдите инверсию матрицы C, запишите результат в переменную ans, примените инверсию к этой переменной, сравните результаты двух последних действий;
- вычислите вторую степень матрицы A, найдите произведение матрицы A на самое себя, сравните результаты двух последних операций;
- вычислите отрицательную вторую степень матрицы A. Найдите произведение обратной матрицы на самое себя. Сравните результат;.
 - вычислите sin(A); объясните результат;
- найдите произведение каждого элемента матрицы A на каждый элемент матрицы B;
 - создайте матрицу А размерности 2х2 и матрицу В размерности 2х3;
 - напечатайте $C = [A \ B] \ u \ D = [A,B]$; type $E = [A \ B; B \ A]$. Объясните результат;
 - напечатайте E=[A;B]. Почему эта операция не может быть выполнена?

- перепишите первый столбец матрицы A в переменную A2: A2 = A(1:2,1)
- эту операцию можно выполнить командой A2 = A(:,1). Выполните команду A(2,:). Поясните результаты.
- 2.3.5 Введите две квадратные матрицы в окно MATLAB. Вычислите: произведение A*B;
 - произведение B * A;
 - cymmy A+B;
 - произведение 3*A;
 - введите A=2. Что изменится?
- 2.3.6 Создайте матрицу размерности 5x5, элементы которой случайные числа.
 - 2.3.7 Создайте диагональную матицу размерности 4х4.
- 2.3.8 Создайте матрицу размерности 10x10 элементы которой случайные числа между 0 и 10. Все элементы в первой строке и первом столбце замените на 1.
 - 2.3.9 Создайте матрицу A, транспонируйте ее в матрицу B.
- 2.3.10 Приведите примеры использования функций zeros (m,n), ones(m,n), eye(m,n) and rand(m,n).
 - 2.3.11Решение систем линейных алгебраических уравнений:
 - сформируйте систему линейных алгебраических уравнений;
 - введите матрицу системы и вектор правых частей в командное окно;
- проверьте, имеет ли система решение (детерминант должен быть отличен от нуля);
- решите систему тремя способами: используя операцию деления вектора на матрицу; используя обратную матрицу A^{-l} ; используя процедуру inv; сравните результаты.
- 2.3.12 Необходимо вычислить значения функции y = a*exp(-k*x)*sin(x) для значений аргумента x от 0 до 10 с шагом 1 (a и k выбираются студентов).
- 2.3.13 Введите вектор v в командное окно. Выполните следующие операции:
 - найдите размер вектора;
 - определите максимальный и минимальный элементы вектора;
 - найдите сумму и произведение элементов вектора.
- 2.3.14 Введите матрицу 7х7 в командное окно. Примените операции предыдущего пункта к этой матрице.
- 2.3.15 Введите в командное окно комплексные числа u и z; выполните следующие действия:
- используя функцию $\langle disp \rangle$ отразите на экране сумму комплексных чисел u и z;
- отразите действительную, мнимую части, а также аргумент этих комплексных чисел; the real, imaginary parts and arguments of these complex numbers;
- сформируйте два квадратных уравнения с положительным и отрицательным дискриминантом; решите эти уравнения в командном окне;

- найдите комплексно-сопряженные числа к числам u и z.

2.4 Отчет по лабораторной работе

Отчет по лабораторной работе должен содержать скриншоты всех выполненных заданий с комментариями.

2.5 Контрольные вопросы

- 2.5.1 Как вводятся комплексные переменные в командное окно MATLAB?
- 2.5.2 Как можно определить минимум, максимум и среднее значение массива данных?
- 2.5.3 Объясните отличие между обычными арифметическими операциями и операциями с точкой.
- 2.5.4 Как решается система линейных алгебраических уравнений в MATLAB?
 - 2.5.5 Как находится обратная матрица?
 - 2.5.6 Как можно найти определитель матрицы?
 - 2.5.7 Как применяются элементарные функции к векторам и матрицам?
- 2.5.8 Как можно определить действительную, мнимую части и аргумент комплексного числа?
- 2.5.9 Какие функции обработки данных вы знаете? Какие отличия в применении этих функций к векторам и матрицам?
 - 2.5.10 Объясните операции деления матриц (левое и правое деление).

3Лабораторная работа №3ВведениевграфикуМАТLAВ

Цель работы: изучить правила создания2-хи 3-мернойграфики вМАТLAB.

3.1 Задание на лабораторную работу

В процессе выполнения лабораторной работы студент должен:

- научиться создавать двухмерную графику;
- приобрести навыки оформления графиков;
- научиться создавать трехмерную графику и оформлять ее.

3.2 Знакомство с графикойМАТLАВ

Графика в MATLAB имеет следующие особенности:

- высокий уровень, то есть не требует детального знания графической подсистемы;
- объектно-ориентированная, то есть каждый объект на фигуре имеет свойства, которые могут быть изменены;
- доступ к графике возможен как через просмотр объектов, так и с помощью встроенных функций.