3 семестра

1 семестр – зачет

18 часов лекций = 9 лекций в семестре 18 часов практик = 9 практик в семестре 18 часов ЛР = 4,5 ЛР в семестре

преподаватель:

к.т.н., доцент каф. инженерной физики Будин Артемий Геннадьевич

Рекомендуемая литература:

- Курс физики : учеб. пособие / А. А. Детлаф, Б. М. Яворский
- Общий курс физики. Т.1 Механика. Т.2 Термодинамика и молекулярная физика / Д.В. Сивухин
- Курс общей физики / И.В. Савельев
- Физика. Современный курс / В.А. Никеров
- Физика для ВУЗов. Механика и молекулярная физика / В.А. Никеров

Серия роликов от «НАУЧФИЛЬМ», Фейнмановкие лекции, Физика для всех/Ландау, Физика света/The Physics of Light [2014], серия фильмов «Механическая вселенная»

D	R	Ε,	Ц	e	H	И	e
				edcume			

Единица изм.	Сокращение	Величина	Определение
Метр	M	Длина	Метр — длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.
Килограмм	кг	Macca	Определяется через постоянную Планка.
Секунда	c	Время	Секунда — время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонизми уровнями основного состояния атома цезия-133.
Ампер	A	Сила тока	Определен путём фиксации численного значения элементарного заряда равным 1,602 176 634 10 ⁻¹³ , когда он выражен единицей Кл. которая равна А-ç, где секунда определена выше.
Кельвин	К	Термодина- мическая температура	Один Кельвин определен через значение постоянной Больциана, которая равна 1,380649 × 10 ⁻²³ Дж / К.
Моль	моль	Количество вещества	Устанавливаться фиксацией численного значения постоянной Авогадро равным в точности 6,02214X-10 ²³ , иогда она выражена единицей СИ моль ¹²
Кандела	кд	Сила света	Сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540-10 ¹² Гц. энергетическая сила света которого в этом направлении составляет 1/683 Bt/cp

Физические основы механики

Идеализации в механике

Материальная точка — это тело, обладающее конечной массой, размерами которого в условиях данной задачи можно пренебречь.

Абсолютно твердое тело — тело, расстояние между двумя точками которого не меняется.

- Работа с формулами
- Работа с дробями
- Скаляры и векторы
- Сложение векторов
- Варианты векторного произведения
- Проецирование векторов
- Нахождение производных
- Нахождение интегралов

Физические основы механики

Система отсчёта — совокупность системы координат, тела отсчёта и часов

Системы координат

прямоугольная

сферическая

цилиндрическая

Физические основы механики

Положение материальной точки M и определяется тремя координатами X, Y, Z, которые являются **проекциями** мат. точки на соответствующие оси.

Радиус-вектор — это вектор, проведенный из начала системы координат в ту точку, где в данный момент времени находится материальная точка.

$$r=x\cdot i+y\cdot j+z\cdot k$$

i, j, k — орты

Кинематические уравнения движения:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \qquad \mathbf{r} = \mathbf{r}(t)$$
$$z = z(t)$$

$$x = x_0 + v_0 t$$

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

$$x = x_0 + v_0 t + \dots + c t^n$$

$$x = x(t)$$

Траектория — линия, по которой движется тело (линия, описываемая этой точкой в пространстве).

Путь ΔS — это длина траектории

Перемещение Δr

вектор, направленный из начального положения тела в конечное.

$$\mathbf{r}(t) + \Delta \mathbf{r}(\Delta t) = \mathbf{r}(t + \Delta t)$$

$$\Delta \mathbf{r}(\Delta t) = \mathbf{r}(t + \Delta t) - \mathbf{r}(t)$$

Перемещение ≠ путь

Скорость — величина, показывающая как быстро изменяется положение (координата) тела

$$\Delta oldsymbol{r} = oldsymbol{r}_2 - oldsymbol{r}_1 \ oldsymbol{v}_{ ext{cped}} = rac{\Delta oldsymbol{r}}{\Delta t}$$
 — средняя скорость

$$v = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}$$
 — мгновенная скорость

мгновенная скорость есть производная от радиусвектора по времени.

$$S = \int_{t1}^{t2} v dt$$
 -путь

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \cdot \mathbf{i} + \frac{dy}{dt} \cdot \mathbf{j} + \frac{dz}{dt} \cdot \mathbf{k} = \mathbf{v}_y + \mathbf{v}_y + \mathbf{v}_z$$

$$v = v_x + v_y + v_z$$

$$\begin{cases} v_x = i \cdot \frac{dx}{dt} \\ v_y = j \cdot \frac{dy}{dt} \\ v_z = k \cdot \frac{dz}{dt} \end{cases}$$

Равномерное движение — движение с постоянной скоростью.

$$S = \int_{t_1}^{t_2} v dt = v \int_{t_1}^{t_2} dt = v(t_2 - t_1) = v \Delta t$$

S=12At - DVTh DDM DARHOMEDHOM DRUWOHMA

Ускорение — это величина, показывающая как по времени изменяется скорость.

Ускорение — векторная величина, равная первой производной скорости по времени.

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

Следовательно, скорость при равноускоренном движении:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t,$$

где V₀ – скорость тела в начальный момент.

Равноускоренное движение — движение с постоянным ускорением.

$$a = const$$

$$v = v_0 + at$$

$$S = \int_0^t v \cdot dt = v_0 t + \frac{at^2}{2}$$

Нормальное ускорение

определяет изменение скорости по направлению

$$a_n = \frac{v^2}{R},$$

R - радиус кривизны

Полное ускорение

$$\vec{a} = \overrightarrow{a_{\tau}} + \overrightarrow{a_{n}}$$

$$a = \sqrt{a_{\tau}^2 + a_n^2}$$

Поступательное движение

- это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению

кинематика вращательного движения

Вращательное движение

— это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения

Кинематика вращательного движения

Угол поворота $\Delta \phi$ выступает в роли координаты при вращательном движении.

Модуль вектора **d** равен углу поворота, а его направление совпадает с направлением поступательного движения

винта, рукоятка которого

E,

ф Дф Дф Дб Дб В СИ В СИ В СИ

вращается в направлении Единица измерения угл движения точки по окружности, $-\frac{paguah}{\pi pag} = 180^{\circ}$ т.е. подчиняется правилу

1рад = 57, 296°

правого винта

Кинематика вращательного движения

Правило буравчика (винта): Если вращать винт (буравчик) в том направлении, в котором вращается тело, он будет завинчиваться в ту сторону, куда направлен вектор **d** φ (и угловая скорость).

Правило правой руки: Если представить, что мы взяли тело в правую руку и вращаем его в направлении, куда указывают четыре пальца, то оттопыренный большой палец покажет в ту сторону, куда направлена угловая скорость (и вектор **d** ϕ) при таком вращении.

кинематика вращательного движения

(W) A

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

$$\mathbf{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{\phi}}{\Delta t} = \frac{d\mathbf{\phi}}{dt}$$

Линейная скорость точки

$$v = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = \lim_{\Delta t \to 0} \frac{R \Delta \varphi}{\Delta t} = R \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = R \omega$$

В векторном виде

$$\mathbf{v} = [\boldsymbol{\omega}, \mathbf{R}]$$
 $|\mathbf{v}| = |\boldsymbol{\omega}| \mathbf{R} |\sin(\boldsymbol{\omega} \wedge \mathbf{R})$

Кинематика вращательного движения

Период вращения T — время, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2π

$$T = \frac{2\pi}{\omega}$$

Частотой вращения — число полных оборотов, совершаемых телом при равномерном его движении по окружности в единицу времени:

$$v = \frac{1}{T} = \frac{\omega}{2\pi} \qquad \omega = 2\pi \cdot v$$

кинематика вращательного движения

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени

$$\varepsilon = \frac{d\omega}{dt}$$

$$\omega_{1}$$

$$\omega_{2}$$

$$\omega_{3}$$

При ускоренном движении вектор ε сонаправлен вектору ω, при замедленном – направлен противоположно сму

Кинематика вращательного движения

Тангенциальная составляющая ускорения

$$a_{\tau} = \frac{dv}{dt} = \frac{d(\omega R)}{dt} = R\frac{d\omega}{dt} = R\varepsilon$$

Нормальная составляющая ускорения

$$a_n = \frac{v^2}{R} = \frac{\omega^2 R^2}{R} = \omega^2 R$$

кинематика вращательного движения

Аналогия между поступательным и вращательным движением

Поступательное дви	жение	Вращательное движение		
Перемещение	S	Угловое перемешение	9	
Линейная скорость	$v = \frac{dS}{dt}$	Угловая скорость	$w = \frac{d\varphi}{dt}$	
Ускорение	$a = \frac{dv}{dt}$	Угловое ускорение	$\varepsilon = \frac{dw}{dt}$	

$$S = S_0 + v_0 t + \frac{at^2}{2} \rightarrow \varphi = \varphi_0 + \omega_0 t + \frac{\varepsilon t^2}{2}$$

кинематика вращательного движени

Поступательное

Вращательное

Равномерное

$$a = 0$$
 $\varepsilon = 0$

$$v = \text{const}$$
 $\omega = \text{const}$

$$s = ut$$
 $\varphi = \omega t$

Равнопеременное

$$a = \frac{\upsilon - \upsilon_0}{t} = \text{const}$$

$$\varepsilon = \frac{\omega - \omega_0}{t} = \text{const}$$

$$\upsilon = \upsilon_0 + a_r t$$

$$s = \upsilon_0 t + \frac{a_r t^2}{2}$$

$$\upsilon^2 - \upsilon_0^2 = 2a_r s$$

$$\varepsilon = \frac{\omega - \omega_0}{t} = \text{const}$$

$$\omega = \omega_0 + \varepsilon t$$

$$\varphi = \omega_0 t + \frac{\varepsilon t^2}{2}$$

$$\omega^2 - \omega_0^2 = 2\varepsilon \varphi$$

Неравномерное

$$s = f(t)$$

$$\psi = \lim_{\omega \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt} = s'(t)$$

$$\varphi = f(t)$$

$$\varphi = f(t)$$

$$\varphi = \lim_{\omega \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt} = \varphi'(t)$$

$$\varphi = \lim_{\omega \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt} = \varphi'(t)$$

$$\varepsilon = \lim_{\omega \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt} = \varphi'(t)$$