

Jan Stephan Fakultät Informatik // Institut für Technische Informatik Seniorprofessor Dr.-Ing. habil. Rainer G. Spallek

Entwicklung eines SYCL-Backends für die Alpaka-Bibliothek und dessen Evaluation mit Schwerpunkt auf FPGAs

Verteidigung der Diplomarbeit 17. Dezember 2019

Gliederung

Motivation und Ziel

FPGAs als Beschleuniger

- Einsatzzwecke
- Programmierung

Die SYCL-Spezifikation

Die Alpaka-Bibliothek

Implementierung des SYCL-Backends

- Struktur
- Probleme

Ergebnisse

- Nutzbarkeit
- Performanz

Fazit

Motivation und Ziel

apple.com/de/shop/buy-iphone iphone-11-pro/

https://www.hpe.com/de/de/ servers/tower-servers.html

newsroom.intel.de/news-releases/intel-announces-worlds-best-gaming-processor-new-9th-gen-intel-core-i9-9900k

nvidia.com/de-de/design-visualization/

https://www.rewards.sony.com/ ps4-game-system-1tb-pro/3003346.html

lenovo.com/de/de/laptops/thinkpad/t-series/ T495/p/22TP2TTT495

ps://www.extremetech.com/extreme/ 1375-reverse-engineered-ps4-apu-reveals --consoles-real-cpu-and-gpu-specs

GPUs sind Beschleuniger!

- Spezialisierte Hardware
- Datenparallele Algorithmen

Weitere Beschleunigertypen:

- CPUs mit besonders vielen Kernen (AMD EPYC)
- GPU-ähnlich (NVIDIA Tesla)
- Hybride (Intel Xeon Phi)

Problem: Allzweck-Hardware

Nicht für jede Anwendung ideal

Lösung: problemspezifische Hardware?

- Application-specific integrated circuit (ASIC)
- Hohe Produktionskosten → erst ab hohen Stückzahlen interessant
- Fertige Hardware schwer anpassbar

Dynamisch konfigurierbare Hardware

- field programmable gate array (FPGA)
- Frei verschaltbare Komponenten (Logikfunktionen, Speicher, ...)
- Schaltungen beliebig austauschbar
- Langsamer als ASICs
- Synthese: Algorithmus → Schaltung

Problem: Programme nicht portabel

— GPUs: CUDA (seit 2005, nur NVIDIA)

— CPUs: OpenMP (seit 1997) & Intrinsiken

FPGAs: Hochsprachen-Dialekte (seit 2011)

Khronos: einheitliche API-Standards

2008: Open Computing Language (OpenCL)

2015: SYCL (FPGA-Unterstützung)

Abstrahierende Bibliotheken

- Beispiel: Kokkos (seit 2014, keine FPGA-Unterstützung)
- Beispiel: Alpaka (seit 2015, keine FPGA-Unterstützung)

Ziel

Untersuchung des SYCL-Standards

- Existierende Implementierungen
- Nutzbarkeit
- FPGA-Schwerpunkt

Entwicklung eines Alpaka-SYCL-Backends

- Analyse der Schwierigkeiten und Unzulänglichkeiten
- Einschätzung der Leistungsfähigkeit
- Verifizierung durch reale Anwendung

Aufbau

- Logikzellen mit geringer Komplexität
- Regelmäßige spaltenweise Feldstruktur
- Programmierbare Verdrahtungen
- Puffer für Ein- und Ausgabe (I/O)
- Weitere Elemente (Speicher, Multiplizierer, ...)

Moderne FPGAs (Xilinx Virtex UltraScale+)

- Configurable logic block (CLB)
- *Input/output block* (IOB)
- Block RAM (36 kbit, paralleler Zugriff)
- UltraRAM (288 kbit, kein paralleler Zugriff)
- Digital signal processor (DSP)
- Clock management tile (CMT)

Xilinx XCU200

- Aufteilung in drei super logic regions (SLR)
- Zugriff auf Off-Chip-Speicher (DRAM)
- Dynamische Region für Programmierer
- Statische Region für Laufzeitumgebung
- 111.500 CLBs
- 1706 Block RAMs
- 800 UltraRAMs
- 5867 DSPs

nach Xil19a, S. 5

Einsatzzwecke

- Schaltungsentwurf
- Rapid prototyping für integrierte Schaltkreise
- Einfache Fehlerbehebung
- Schaltkreise in kleiner Stückzahl
- Einstiegskosten geringer als bei ASICs
- Höhere Kosten pro Stück bei größeren Produktionsvolumen
- Microsoft: Inferenz tiefer neuraler Netzwerke [Fow+18, Chu+18]
- Trainierte Netzwerke als Schaltung
- Microsoft: FPGAs als Netzwerkkarten [Fir+18]
- Amazon: FPGA-Cloud-Instanzen [Ama]
- FPGAs als Beschleuniger [Di+17]

Programmierung

Die SYCL-Spezifikation

Die Alpaka-Bibliothek

Implementierung des SYCL-Backends

ErgebnisseNutzbarkeit // Übersicht

Implementierung	Nutzbarkeit mit Alpaka
ComputeCpp	Nicht nutzbar (fehlerhaft)
Intel	Nutzbar
Xilinx	Nicht nutzbar (fehlerhaft)
hipSYCL	Nicht nutzbar (unvollständig)
sycl-gtx	Nicht nutzbar (unvollständig)

Nutzbarkeit // ComputeCpp

Verwendete Version: ComputeCpp 1.1.5 Community Edition

```
Problem: Zeiger

template <typename T>
void f(T* ptr);

auto x = 42;
f(&x); // void f(int* ptr);

auto ptr = sycl_accessor.get_pointer();
f(ptr); // void f(__global int* ptr);

std::is_same_v<int*, decltype(ptr)>; // false
__global int* ptr2 = nullptr; // Syntaxfehler
```


Nutzbarkeit // Xilinx

Verwendete Softwareversionen:

- github.com/triSYCL/sycl, sycl/unified/next-Zweig, Commit #dfb95af
- SDAccel 2019.1
- XRT 2.2
- xilinx-u200-xdma & xilinx-u200-xdma-dev für Ubuntu 18.04 (Version 201830.2-2580015)

Problem #1: Mathematikfunktionen

- Compiler generiert fehlerhafte Instruktionen
- Manche Funktionen führen zu Compiler-Absturz
- rsqrt(double)

Nutzbarkeit // Xilinx

Problem #2: benutzerdefinierte Strukturen

```
struct coord
{
    std::size_t x;
    std::size_t y;
};

struct kernel
{
    operator()()
    {
        auto c = coord{42, 42}; // Compiler-Absturz
    }
};
```


Performanz // Verifizierung

Verifizierung des Alpaka-Backends

- Alpaka-Programm: *jungfrau-photoncounter*
- Photonenzähler für JUNGFRAU-Detektor (Paul Scherrer Institut, PSI)
- 16 Megapixel
- 2 Byte pro Pixel
- Derzeitige Frequenz: 100 Hz (3,2 GB/s)
- Zielfrequenz: 2,2 kHz (74 GB/s)

$$N_{\gamma} = \frac{\mathsf{ADC} - \mathsf{Sockel}}{\mathsf{Verstärkung} \cdot E_{\gamma}}$$

- $-N_{\nu}$: Anzahl der Photonen
- ADC: Messergebnis des Pixels
- Sockel: Grundrauschen des Pixels (engl. pedestal)
- Verstärkung: Signalverstärkung des Pixels (engl. gain)
- E_{ν} : Photonenenergie

Performanz // Verifizierung

Performanz // Compile-Zeit

Performanz // Ressourcenverbrauch

int

float

Fazit

Literatur

Literatur

- [Ama] Amazon Web Services, Inc. *Amazon EC2 F1-Instances*. URL: https://aws.amazon.com/de/ec2/instance-types/f1/ (besucht am 22.11.2019)
- [Chu+18] Eric Chung u.a. "Serving DNNs in Real Time at Datacenter Scale with Project Brainwave". In: *IEEE Micro* Jahrgang 38. Ausgabe 2 (März 2018), S. 8 20. DOI: 10.1109/MM.2018.022071131
- [Di+17] Lorenzo Di Tucci u.a. "The Role of CAD Frameworks in Heterogeneous FPGA-Based Cloud Systems". In: IEEE 35th International Conference on Computer Design. Nov. 2017, S. 423 426. DOI: 10.1109/ICCD.2017.75
- [Fir+18] Daniel Firestone u.a. "Azure Accelerated Networking: SmartNICs in the Public Cloud". In: 15th USENIX Symposium on Networked Systems Design and Implementation. Apr. 2018, S. 51 64.
- [Fow+18] Jeremy Fowers u.a. "A Configurable Cloud-Scale DNN Processor for Real-Time AI". In: *Proceedings of the 45th Annual International Symposium on Computer Architecture*. Juni 2018, S. 1 14. DOI: 10.1109/ISCA.2018.00012
- [HS10] Charles Hawkins und Jaume Segura. *Introduction to Modern Digital Electronics*. Preliminary Edition. SciTech Publishing, Inc., 2010. ISBN: 978-1-891-12107-4

Literatur

[Xil19a] Xilinx, Inc. *Alveo U200 and U250 Data Center Accelerator Cards Data Sheet*. DS962 (v1.1). Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124, Vereinigte Staaten von Amerika, Juni 2019.

