Analiza elektroenergetskog sustava Analiza međuispita

Prof. dr. sc. Ivica Pavić

Izv. prof. dr. sc. Marko Delimar

Međuispit

1. (6b) U transformatorskoj stanici su paralelno spojena dva regulacijska transformatora prijenosnog omjera $220 \pm 10 \cdot 1.5\%/110~kV$ sa sljedećim podatcima: $S_n = 150~MVA$, $u_k = 10.5~\%$. Gubitci u bakru i željezu, te struja magnetiziranja su zanemareni.

Regulacijska preklopka transformatora T_1 se nalazi na položaju $n_1=0$, a transformatora T_2 na položaju $n_2=-5$. Na sekundaru je spojen simetrični trofazni teret za kojega je slikom zadan fazorski dijagram jedne faze. Izračunajte napon na primaru ($|\overline{U}_1| \angle \delta_1 \ kV$). Koristite baznu snagu $S_B=100\ MVA$.

2. (9b) Za mrežu zadanu slikom izračunajte napone u čvorištima 1 i 2 u drugoj iteraciji ($\left|\overline{U}_{1}^{(2)}\right| \angle \delta_{1}^{(2)} \ kV$, $\left|\overline{U}_{2}^{(2)}\right| \angle \delta_{2}^{(2)} \ kV$) korištenjem metode Gauss-Seidel pomoću Y matrice uz zadan faktor ubrzanja $\alpha=1.1$. Za napone u čvorištima 1 i 2 koristite početne vrijednosti $\overline{U}_{1}^{(0)}=\overline{U}_{2}^{(0)}=110\ \angle 0^{\circ}\ kV$, te baznu snagu $S_{B}=100\ MVA$.

Snaga trošila u čvorištu 1 iznosi:

$$S_{t1} = 70 + j30 \, MVA$$

Također je poznat i napon u čvorištu 3:

$$U_3 = 16 \, kV$$

Poznati su sljedeći podatci o elementima mreže:

Transformator T	Vodovi V ₁₂₋₁ i V ₁₂₋₂			
$S_n = 150 MVA$	$R_1 = 0.12 \Omega/km$			
$u_k = 10.5\%$	$X_1 = 0.41 \Omega/km$			
$U_{n1}/U_{n2} = 15,75/110 kV$	$B_1 = 2.72 \mu\text{S/km}$			

Transformator T ima nazivni prijenosni omjer. Vodovi su duljine 50 km. **Napomena**: U svakom koraku je potrebno provjeriti točnost rješenja.

3. (9b) Slikom je zadan jednostavan elektroenergetski sustav. Podatci o vodovima i čvorištima su dani u tablicama.

Vodovi			
$U_n = 110 \; kV$			
$R_1 = 0 \Omega/km$			
$X_1 = 0.42 \Omega/km$			
$B_1 = 2.72 \mu\text{S/km}$			
$l_{12} = l_{23} = 25 \ km \; ; \; l_{13} = 50 \ km$			

Ŏ	Teret		Proizvodnja		Napon	
Cv.	$P_t (MW)$	Q_t (Mvar)	P_g (MW)	Q_g (Mvar)	$ U_i (kV)$	δ_i (°)
1	30	-10	-	-	/	/
2	50	25	30	15	/	/
3	-	-	/	/	120	0

U čv. 1 je spojena prigušnica modelirana kao admitancija $Y_L = -j6.198 \cdot 10^{-3} S$. Odredite napone čvorišta korištenjem metode Gauss-Seidel pomoću Z matrice uz točnost $\varepsilon=10^{-2}$ (rješenja zapisati kao $|\overline{U}_i| \angle \delta_i \ kV$).

Koristite baznu snagu $S_B = 100 \, MVA$. Za napone u čvorištima 1 i 2 koristite početne vrijednost $\overline{U}_1^{(0)} = \overline{U}_2^{(0)} = 110 \, \angle 0^{\circ} \, kV$.

Napomena: '/' označava nepoznatu vrijednost, a '-' da vrijednost ne postoji (=0).

4. (6b) Za mrežu prikazanu slikom su poznati sljedeći podatci:

Parametri vodova:

Vodovi
$U_n = 220 \ kV$
$R_1 = 0.08 \Omega/km$
$X_1 = 0.41 \Omega/km$
$B_1 = 2.7 \mu\text{S/km}$

Duljine vodova:

$$l_{12} = 20 \text{ km}$$
 $l_{23} = 25 \text{ km}$ $l_{24} = 25 \text{ km}$ $l_{34} = 20 \text{ km}$

Naponi u čvorištima su poznati te iznose:

$$U_1 = 231.000 \angle 0.000^{\circ} kV$$
; $U_2 = 229.857 \angle -0.313^{\circ} kV$
 $U_3 = 228.218 \angle -0.799^{\circ} kV$; $U_4 = 228.370 \angle -0.606^{\circ} kV$

Izračunajte:

- a) Injekciju djelatne snage u čvorištu 3 ($P_3[MW]$).
- b) Gubitke djelatne snage na vodu V_{2-4} ($\Delta P_{24}[MW]$).