

25 YEAR RE-REVIEW Министерство здравоохранения СССР

портативный электросон пэс

Разработан в Научно-исследовательском институте эксперимен альной хирургической аппаратуры и инструментов

Mockba

назначени в

Портативный аппарат "Электросон" применяется в хирургии /для лечения электросном в предоперационном и послеоперационном периоде/, в терапии /для лечения гипертонической
болезни, головных болей, бессоницы и др./, в психиатрим
/для лечения некоторых форм шизофрении, циклофрении, эпилепсии, психоневрозов после контузии и др./.

описанив

Работа портативного аппарата "Электросон" основана на воздействии импульсного тока определенной форми, частоти и длительности на кору головного мозга. Импульсы с крутым фронтом волны вызывают торможение нервных клеток, переходящее в дремотное состояние и сон, продолжающийся в большинстве случаев и после выключения тока. Импульсный ток имеет комбинированную форму и состоит из прямоугольных импульсов и регулируемой гальванической составляющей. Аппарат работает на двух пальчиковых лампах 6Н1П.

Генератор аппарата представляет собой мультивибратор, работающий в диапазоне от 2 до 130 гц. С генератора
импульсы поступают на ограничитель, затем — на сетку катодного повторителя /выходного каскада/. Напряжение в цепь
пациента подается с катодной цепи выходной лампы.

В аппарате имеется электромеханическая и электронная блокировки для защиты от попадания высокого напряжения на

больного при неисправностях.

В аппарате предусмотрени: 1/ фиксация и плавная регулировка частоти; 2/ плавная регулировка напряжения, поданного на пациента; 3/ миллиамперметр для контроля дозы тока, протекающего через пациента; 4/ регулировка постоянной составляющей; 5/ эквивалент сопротивления для определения сопротивления пациента в период лечения.

электроды для подведения тока к пациенту

Электроток от анпарата к пациенту подводится с помощью электродов, которые накладываются на орбиты глаз и
на затылок вблизи нижней части ушной раковины с каждой
стороны. К двум орбитам глаз подводится отрицательный полюс, а к затылочным электродам положительный полюс. Для
достижения хорошего контакта в точках прилегания электродов к коже необходимо непрерывное увлажнение этих точек,
что достигается специальной конструкцией электродов.

подготовка аппарата к работе

- 1. Установить переключатель-предохранитель в положение, соответствующее напряжению сети.
- 2. Тумблер включения сети установить в положение выключено.
- 3. Ручка регулировки напряжения пациента должна стоять на нуле.

- 4. Установить частоту по таблице, прилагаемой к аппарату, двумя ручками: грубо переключателем и плавно потенциометром.
 - 5. Вставить вилку основного аппарата в сеть.
- б. Тумблер измерения сопротивления объекта должен стоять в нижнем положении, а потенциометр в положении 0.

BKJIOYEHME AHHA PATA

Для включения аппарата тумблер с надписью "сеть" необходимо поставить в полотение "включено". При этом должна
загореться сигнальная лампочка аппарата.

После 8-минутного прогрева необходимо проконтролировать работу аппарата, для чего тумблер эквивалентного сопротивления надо поставить в положение "включено", а потенциометр установить по прилагаемому графику на 5 к. ом.

при постепенном вращении ручки регулировки выходного напражения на миллиамперметре слева направо ток будет увеличиваться; это означает, что аппарат исправен. Величина тока при этом должна соответствовать графику.

После этого все ручки необходимо устанавитвать в исходное положение.

После проверки исправности аппарата необходимо перейти к подготовке электродов, подводящих ток к больному. Для
этого заполняют электроды физиологическим раствором, предварительно вставив в каждый электрод фитиль из ваты. Напол-

нение электродов физиологическим раствором лучше всего производить с помощью медицинского шприца. На электрод накладывается слой ваты с марлей, также смоченной физиологическим раствором. Электроды должны подключаться к аппарату
так, чтобы к глазам подводился полюс минуса, а к затылку
полюс плюса. При наложении электродов на глаза и затылок
необходимо проследить за хорошим прилеганием электродов к
коже /через вату с марлей/, плохой контакт с кожей при незначительном токе вызовет ощущение покалывания. Прикосновение металла может вызвать легкие ожоги кожи. После наложения электродов шнур пациента подключается к клеммам
аппарата с соблюдением указанной выше полярности.

Включение тока на пациента необходимо проводить медленно. Наращивание тока нужно производить /не более чем по 0,1 MA/ до слабого покалывания.

В среднем ток достигается при силе тока 0,2-0,8 ма. При повторных сеансах электросна время усыпления отдельных пациентов сокращается. Характерными моментами наступления сна является расслабление мышц конечностей, глубокое ровное дыхание, порозовение лица, ровный пульс, у некоторых больных наблюдается храп и посапывание. При проведении сеанса сна желательно уложить больного в наиболее удобное для сна положение. Сеанс сна проводится ежедневно в течение 1-2 часов. Общая продолжительность сна 15-16 ч. Электросон

- 5 **-**

телетельно проводить в одно и то же время в первой половине дня. То усможнению врача допускается повторный курс нечения электросном. В большинстве случаев сон продолжается им и после выключения тека. Поэтому по экончании ссанса сна необходимо плавно уменьшить силу тока до 0 в течение 3-5 минут, вытем следует отключить больного от аппарата.

TEXHIMECIAN KAPAKTEPHCTURA

Напри ение сети питания - 110,127,220 в
Потребляемая модность от сети - 25 вт
Средняя сила тока для достижения сна - 0,2-0,3 ма
Длительность прямоугольных импульсов - 0,4-1,2 м.сек
Гальваническая составляющая напряжения - от 0 до 20%
Габариты аппарата без упаковочного футляра

Вес андарата - 2,5 кг

Частотная характеристика Рекомендуемая частота F = 100 гц

Conducto	Частота в герцах 1гц-1пер. 1сек.						
(barr	I диап.	I диап.	Ш диап.	№ диап.	У ди <i>а</i> п		
0	127	58	<i>2</i> 5,5	11,7	4,9		
5	116	52	23,1	10,1	4		
10	100	45	19,3	ඊ .ඊ	3		
15	85	38	16,3	7	2,3		
<i>2</i> 0	73	34	14	6	2		
<i>2</i> 5	60	27,5	10,రి	5	1,5		

График изменения постоянной составляющей анодного тока, от напряжения смещения при нагрузке в 5,1 ком.

	U СМЕЩ	Tok 7 ma	И вых. /вольт/	Е . /ВОЛЬТ/	%	
l	-4,2	0,35	19			
l	-2	0,6	20	. 2	10	
	0	0,75	20	3	15	
	+ 1,5	0,85	20	3,5	17,5	
	+3	1, 0	20	4	20	
I	+4,8	1, 2	20	4,5	<i>22</i> ,5	

График выходного уровня в пик. значениях

(PADyCt)	U BUX BO/IDT		
2	0		
4	2		
6	4		
రి	6		
10	7		
12	9		
14	10		
16	12		
18	14		
20	16		
22	18		
24	20		
26	20		

Эквивалент объекта

UDDEKIA				
Panyco	RKOM			
0	13			
2	13			
4	12,1			
6	11			
රී	9,6			
10	8,2			
12	7			
14	6,1			
16	5,2			
18	4,2			
<i>2</i> 0	3,1			
22	2			
24	0			
26	0			