- 1. Compute the PageRank of each vertex in the following figure:
 - (1) assuming no random teleport
 - (2) assuming $\beta = 0.8$

Define a "rank" r_i for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

$$r_j = r_i/3 + r_k/4$$

Answer:

(1) The transition matrix for the graph is:

$$\begin{bmatrix} 1/3 & 1/2 & 0 \\ 1/3 & 0 & 1/2 \\ 1/3 & 1/2 & 1/2 \end{bmatrix}$$

By equation method (Mr = r), we get

$$\frac{1}{3}r_1 + \frac{1}{2}r_2 + 0 = r_1$$

$$\frac{1}{3}r_1 + 0 + \frac{1}{2}r_3 = r_2$$

$$\frac{1}{3}r_1 + \frac{1}{2}r_2 + \frac{1}{2}r_3 = r_3$$
$$r_1 + r_2 + r_3 = 1$$

and the result $r = \left[\frac{3}{13}, \frac{4}{13}, \frac{6}{13}\right]^T$

(1) (2) assuming
$$\beta = 0.8$$

$$\sum_{i \to j} r_i = 1$$

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

$$0.8 \times \left(\frac{1}{3}r_1 + \frac{1}{2}r_2 + 0\right) + 0.2 \times \frac{1}{3} = r_1$$

$$0.8 \left(\frac{1}{3}r_1 + 0 + \frac{1}{2}r_3\right) + 0.2 \times \frac{1}{3} = r_2$$

$$0.8 \left(\frac{1}{3}r_1 + \frac{1}{2}r_2 + \frac{1}{2}r_3\right) + 0.2 \times \frac{1}{3} = r_3$$

$$r_1 + r_2 + r_3 = 1$$

and the result $\boldsymbol{r} = \left[\frac{7}{27}, \frac{25}{81}, \frac{35}{81}\right]^T$

- 2. Use three iterations to compute the topic-sensitive PageRank for the graph of the following figure, assuming the teleport set is (suppose β =0.8):
 - **(1)** A only.
 - (2) A and C.

Answer:

(1) The transition matrix **M** of this Figure is:

$$\mathbf{r}' = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \mathbf{r} + \begin{bmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{r} + \begin{bmatrix} 1/5 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}, \begin{bmatrix} 0.2 \\ 0.2666 \\ 0.2666 \end{bmatrix}, \begin{bmatrix} 0.52 \\ 0.16 \\ 0.16 \end{bmatrix}, \begin{bmatrix} 0.392 \\ 0.2026 \\ 0.2026 \end{bmatrix}, \begin{bmatrix} 0.4432 \\ 0.1856 \\ 0.1856 \end{bmatrix}, \begin{bmatrix} 0.4227 \\ 0.1924 \\ 0.1924 \end{bmatrix}, \dots, \begin{bmatrix} 0.4285 \\ 0.1904 \\ 0.1904 \end{bmatrix}$$

(2)
$$\mathbf{r}' = \begin{bmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{r} + \begin{bmatrix} 1/10 \\ 0 \\ 1/10 \\ 0 \end{bmatrix}$$

[1.0]		0.1	ı	0.5	1	0.34		0.404		[0.3784]		[0.3857]
0.0	,	0.2666	,	0.1333	,	0.1866	,	0.1653	,	0.1738		0.1714
0.0		0.3666		0.2333		0.2866		0.2653		0.2738		0.2714
$\lfloor 0.0 \rfloor$		0.2666		L0.1333.		0.1866		0.1653		[0.1738]		L0.1714J