明細書

音響検出機構

技術分野

[0001] 本発明は、基板にコンデンサを形成する一対の電極を有し、この一対の電極のうち 一方の電極はアコースティックホールに相当する貫通穴を形成した背電極であり、他 方の電極は振動板である音響検出機構に関する。詳しくは、音圧信号を計測するセ ンサやマイクロホンとして使用される音響検出機構に関する。

背景技術

- [0002] 例えば、携帯電話機には従来からコンデンサマイクロホンが多用され、そのコンデンサマイクロホンの代表的な構造として、図7に示すものを例に挙げることができる。つまり、このコンデンサマイクロホンは、アコースティックホールに相当する複数の貫通穴hを形成した金属製のカプセル100の内部に、固定電極部300と振動板500とを、スペーサ400を挟み込む形態で一定間隔を持って対向配置すると共に、カプセル100の後部開口に基板600を嵌め込む形態で固定し、この基板600に対してJ-FET等で成るインピーダンス変換素子700を備えている。この種のコンデンサマイクロホンでは固定電極部300または振動板500上に形成した誘電体材料に高電圧を印加し、加熱して電気的な分極を発生させて、表面に電荷を残留させたエレクトレット膜を生成することにより(同図では、振動板500を構成する金属や導電性のフィルムで成る振動体520にエレクトレット膜510を形成している)、バイアス電圧を不要とした構造である。そして、音による音圧信号によって振動板500が振動した場合には、振動板500と固定電極部300との距離が変化することで静電容量が変化し、この静電容量の変化をインピーダンス変換素子700を介して出力するよう機能する。
- [0003] コンデンサマイクロホンを小型化する技術として、例えば下記特許文献1に記載されている技術が知られている。この技術では、シリコンウェハー(1)に対し、酸化物層(2)、多結晶シリコン層(3)、(5)、窒化珪素層(4)、多結晶シリコンで成る犠牲層を形成し、蝕刻処理等によりシリコンウェハー上に対して振動板に相当するダイヤフラム(窒化珪素層(4))を形成している。また、同一のシリコンウェハー(1)に対し、アコ

ースティックホールに相当する多数の孔(30)を有し、背電極として機能する後プレートを、ダイヤフラムを形成する際と同様の技術によってシリコンウェハー上に形成している。そして、ダイヤフラムと後プレートとを重ね合わせて、共晶ソルダリング、静電結合、シリコン融着等の技術によって結合することでマイクロホンとして機能するユニットを構成している(番号は文献中のものを引用)。

- [0004] また、コンデンサマイクロホンを小型化する技術として、例えば下記特許文献2に記載されている技術も知られている。この技術では、単結晶シリコン基板(101)の裏面側にダイヤフラムを形成するための凹部の形成用及びホウ素のドープ用のマスクを形成する第1の工程と、単結晶シリコン基板の表面側にバックプレートを形成するためのホウ素のドープ用のマスクを形成する第2の工程と、単結晶シリコン基板の表面側および裏面側から所定量のホウ素ドーピングを行う第3の工程と、ドライエッチングにより音響ホールを形成し、アルカリエッチングによりバックプレート、ダイヤフラムの間に間隙を形成し、最後に電極を形成する第4の工程とでマイクロホンを形成する。この技術では振動板に相当するダイヤフラム(102)と、背電極に相当するバックプレート(103)とが基板(101)に対して一体的に形成される(番号は文献中のものを引用)。
- [0005] また、類似する技術として、例えば下記特許文献3に記載されている技術も知られている。この技術では、バルクシリコン層(1)、絶縁層(2)、ボディーシリコン層(3)を積層し、ボディーシリコン層(3)に形成したドープ領域(8)を背極にすると共に、このドープ領域(8)にアコースティックホールに相当する複数の開口(10)を形成している。また、ドープ領域(8)に対してスペーサ層(4)(犠牲層)を介して対向する位置に形成したメンブレン層(5)で成るメンブレン(7)を振動板としたものが存在する。この技術では、特許文献2に記載の技術と同様にマスクの形成、ドーピング、エッチング等の処理によりボディシリコン層(3)に対して空所(9)を形成し、前記開口(10)を形成し、ドープ領域(8)とメンブレン(7)との間に空洞(6)を形成している(番号は文献中のものを引用)。
- [0006] 特許文献1:特開平7-50899号公報 特許文献2:特開2002-95093号公報

WO 2005/009077 3 PCT/JP2004/010042

特許文献3:米国特許第6140689号明細書

発明の開示

発明が解決しようとする課題

- [0007] 図7に示す従来からのマイクロホンの出力を大きくする(感度を高める)ためには、 固定電極部300と振動板500との間の静電容量を大きくする必要がある。そして、静 電容量を大きくするには、固定電極部300と振動板500との重畳面積を大きくする、 または、固定電極部300と振動板500と間隔を小さくすることが有効である。しかし、 固定電極部300と振動板500と重畳面積を大きくすることはマイクロホン自体の大型 化を招くものであり、前述したようにスペーサ400を配置する構造では、固定電極部300と振動板500との距離を小さくするについても限界があった。
- [0008] また、エレクトレットコンデンサマイクロホンでは、永久的電気分極を作り出すために FEP(Fluoro Ethylene Propylene)材等の有機系の高分子重合体が使用されることも 多く、この有機系の高分子重合体を用いたものは耐熱性に劣るため、例えば、プリント基板に実装する場合にリフロー処理時の熱に耐え難く、実装する際にリフロー処理 を行えないものであった。
- [0009] そこで、特許文献1、2、3に示されるようにシリコン基板に対して固定電極と振動板とを形成することにより、固定電極と振動板との距離を小さくして出力を高めることが考えられる。これらの構造の音響検出機構では、エレクトレット膜を形成していないので、バイアス電源を必要とするものであるが、リフロー処理が可能となる。
- [0010] しかしながら、特許文献1に記載される技術では、シリコン基板に対してダイヤフラムを形成し、同じシリコン基板に対して後プレートを形成し、夫々を重ね合わせ、共晶ソルダリング、静電結合、シリコン融着等の技術によって結合する処理を必要とするので、歩留まりが低下する点は否めず、しかも、振動板と背電極との間隔の精度が低下しやすく信頼性の面で改善の余地がある。
- [0011] また、特許文献2に記載される技術では、ホウ素ドーピングを行う際のイオン注入時の打ち込み量、すなわち、イオンを打ち込む際のエネルギーによって背電極の厚みを決めるものの、このエネルギーの調節範囲内でのみ背電極の厚みを設定するので、設計自由度が低くなる不都合があった。

- [0012] また、特許文献3に記載された技術では、背電極にSOI層のシリコン基板を用いるので、特許文献2のように背電極の厚みが制限される不都合が解消し、背電極の応力制御の課題が解決し、しかも、J-FET等の信号処理回路と一体化する点においても有利となる。しかしながらこの特許文献3に記載された技術では、犠牲層に酸化膜を用いているために、犠牲層エッチングの材料としてHF系エッチング液を用いるので、回路を一体化する構造では電極パッド及び回路保護膜にHF耐性のある材料を選定する必要がある。また
 - 、特許文献3に記載された技術では背電極にSOI層のシリコン基板を用いることで背電極の膜厚精度を維持しているが、基板としてSOIを用いる必要があるのでコストが高くなる。
- [0013] 本発明の目的は、基板に対して簡単なプロセスで振動板ならびに背電極を作り出すことが可能で、背電極の応力制御が容易で、SOIのように高価なウエハーを用いることなく背電極を精度良く形成できる音響検出機構を合理的に構成する点にある。 課題を解決するための手段
- [0014] 本発明の特徴は、基板にコンデンサを形成する一対の電極を有し、この一対の電極のうち一方の電極はアコースティックホールに相当する貫通穴を形成した背電極であり、他方の電極は振動板である音響検出機構であって、前記振動板が金属膜または積層膜で成り、前記金属膜は低温プロセスにて作製されるスパッタリング、真空蒸着またはめっきの技術を用いて形成され、前記積層膜は有機膜と導電性膜とで形成され、前記背電極が前記基板に形成され、前記振動板と前記背電極との電極間距離を決めるスペーサが有機膜である犠牲層の一部から成る点にある。
- [0015] この構成によると、犠牲層が有機膜にて構成されているので犠牲層エッチングする 材料として有機膜除去剤およびプラズマ処理を用いるので振動板ならびに背電極に ダメージを与えることなく処理でき、回路一体化に適する。また、犠牲層に有機膜を 用いているので低温プロセスにて処理ができ、容易に膜厚を変えることもでき、膜厚 制御性も良い。その結果、製造工程が単純化し、音圧信号を高感度で検出し得る音 響検出機構が構成されたのである。特に、この構成の音響検出機構はエレクトレット 層を形成しないので、リフロー処理時の高温にも耐えるものとなる。

- [0016] 本発明は、前記振動板が、前記めっきの技術を用いて形成されたNi膜またはCu 膜により形成され、このめっきを行う際の処理条件の設定により前記振動板の内部応 力が設定されるようにしても良い。
- [0017] この構成によると、めっきの技術により振動板を形成するので、例えば、めっき液を用いる程度の簡単な処理によって、比較的厚い振動板も簡単な処理で短時間に形成でき、しかも、めっきを行う際の処理条件の設定によって振動板の応力制御を行うので、内部に応力が残存する現象を回避することを可能にして、音圧信号に対して忠実に振動する振動膜を形成できる。その結果、微小な音響振動であっても忠実に検出し得るものとなる。
- [0018] 本発明は、前記スパッタリングまたは前記真空蒸着の技術を用い、Si、Al、Ti、Ni、Mo、W、Au、Cuのいずれかを材料として金属膜を形成し、またはSi、Al、Ti、Ni、Mo、W、Au、Cuの中から選択される複数を材料として積層して金属膜を形成することにより前記振動板を形成しても良い。
- [0019] この構成によると、必要とする金属材料を用いて、スパッタリングまたは真空蒸着により振動板を形成できる。つまり、スパッタリングや真空蒸着の技術はめっき液を介在させてめっきの技術により金属膜を形成するもののようにイオン化傾向等の化学的性質を考慮しなくとも金属膜を形成できるので、Si、Al、Ti、Ni、Mo、W、Au、Cuのいずれか又はこれらの中から選択される複数の材料を必要に応じて使用して振動板を形成できる。その結果、検出対象とする音響の振動数や音量に対応した金属材料を用いて振動板を形成できる。
- [0020] 本発明は、前記振動板が、レジスト、ポリイミド樹脂、ポリパラキシレン樹脂の何れかの樹脂を用いた有機膜で成るベース層と、導電性材料で成る導電層とを積層して形成されても良い。
- [0021] この構成によると、振動板が、有機層で成るベース層と導電性材料で成る導電層とを積層して構成されるので、樹脂材料の柔軟性と導電材料の導電性を利用して振動膜を形成できる。つまり、振動板を形成する場合には、導電性材料を電極として機能させるだけで済むので、金属膜より強靱で柔軟性に富んだ樹脂材料を主体として振

動板を形成できる。特に、これらの樹脂は膜厚を制御したコーティングを比較的容易に行えるので、全体として薄い振動板を形成できる。その結果、金属材料のみで形成されたものと比較して薄膜化が容易であり、音圧信号を忠実に検出し得るものとなった。

- [0022] 本発明は、犠牲層エッチングにより、前記背電極と前記振動板との間に空隙領域を 形成するための前記犠牲層の材料としてレジスト、ポリイミド樹脂の何れかの樹脂を 用いた有機膜を有しても良い。
- [0023] この構成によると、犠牲層としてシリコン基板に対して比較的容易に任意の膜厚に 形成できる有機膜を用い、この犠牲層を、背電極と振動板との間に積層する形態で 形成し、犠牲層エッチングを行うことにより背電極と振動板との間に空隙領域を形成 できる。その結果、犠牲層を用いることにより背電極と振動板との間に必要とする任意 の高さの空間を容易に形成できるものになった。
- [0024] 本発明は、前記基板が単結晶シリコン基板で成り、前記単結晶シリコン基板として、 (100)面方位のシリコン基板を用いても良い。
- [0025] この構成によると、(100)面方位のシリコン基板特有の面方位の方向に選択的に エッチングを進行させ得るので、エッチングパターンに対して忠実となる精密なエッチ ングを可能にする。その結果、必要とする形状の加工を実現できるものとなった。
- [0026] 本発明は、前記犠牲層の下地に異方性エッチングに対して耐性のある材料を形成しても良い。
- [0027] この構成によると、異方性エッチング時に耐性のある材料を設けることで犠牲層である有機膜およびシリコン基板で形成されている背電極にダメージを与えることなく処理ができる。その結果、背電極を保護しながら必要とする処理を行えるものとなった。
- [0028] 本発明は、前記犠牲層の膜厚が1~5 µ mであっても良い。
- [0029] ここで、犠牲層の膜厚は前記振動板と背電極との距離に対応し、この距離が小さいほど音響検出機構として感度が向上する。しかしながら、前記振動板と背電極との距離を狭隙化するにつれて犠牲層エッチング処理時の乾燥工程において背電極と振動板が付着する場合が生じ得るので、本発明では前記振動板と背電極の空隙領域を1~5μmに設定することが有効となる。その結果、犠牲層の膜厚の設定により良

好な性能を維持できるものとなった。

- [0030] 本発明は、前記振動板が、前記めっきの技術を用いて形成されためっき層により形成され、このめっき層と前記基板に形成される絶縁層との間に、夫々の密着性を高める密着層を介在させても良い。
- [0031] この構成によると、振動板としてのめっき層と絶縁層との間に介在させた密着層により、めっき層と絶縁層との密着性が向上する。
- [0032] 本発明は、前記背電極にアコースティックホールを開口した後に音響入り口に相当する開口部を異方性エッチングにて形成しても良い。
- [0033] この構成によると、工程歩留まりが向上する。また、本発明の工程により背電極の膜厚制御性も向上する。その結果、必要とする膜厚の背電極を形成し、工程歩留まりも向上するものとなった。
- [0034] 本発明は、前記背電極の膜厚制御が音響検出機構パターンとシリコン基板上に並列して形成されている検査パターンによって行われても良い。
- [0035] この構成によると、音響検出機構パターンとシリコン基板上に並列して形成している 検査パターンを検査することで背電極の厚さを制御できることができる。その結果、背 電極の厚さを精度良く制御できた。
- [0036] 本発明は、前記基板に対して複数の半導体素子を具備する信号取り出し回路を形成し、前記振動板と背電極とで音響検出部を形成し、この音響検出部からの信号を信号取り出し回路に伝える電気接続手段を備えても良い。
- [0037] この構成によると、基板に形成した信号取り出し回路と、振動板と背電極とで成る音響検出手段との間に、電気接続手段を形成することにより、音響検出手段からの信号を信号取り出し回路で処理することが可能となる。その結果、該音響検出手段と別個に信号処理回路を形成する必要がなく、音響検出機構が組み込まれる機器における部品類の低減を実現するものとなった。
- [0038] 本発明は、前記電気接続手段が、金属細線、または、半導体製造工程で前記支持 基板上に形成される金属膜で構成されても良い。
- [0039] この構成によると、金属細線を用いたボンディングの技術等による接続、または、半 導体製造工程で基板上に形成される金属膜による接続によって、信号取り出し回路

と音響検出部とを電気的に接続できる。その結果、ワイヤ類をハンダを用いて接続するものと比較して小型化が可能となった。

発明を実施するための最良の形態

[0040] 以下、本発明の実施形態を図面に基づいて説明する。

図1は本発明の音響検出機構の一例としてのシリコンコンデンサマイクロホン(以下、マイクロホンと略称する)の断面を示している。このマイクロホンは単結晶シリコン基板Aの一部の領域に背電極Bを形成し、この背電極Bと対向する位置に金属薄膜で成る振動板Cを配置し、この背電極Bと振動板Cとの間に対して犠牲層をスペーサDとして配置した構造を有している。このマイクロホンは、振動板Cと背電極Bとをコンデンサとして機能させるものであり、音圧信号によって振動板Cが振動する際のコンデンサの静電容量の変化を電気的に取り出す形態で使用される。

- [0041] このマイクロホンにおける基板Aの大きさは一辺が5.5mmの正方形で厚さが600 μ m程度に形成されている。振動板Cの大きさは一辺が2mmの正方形で厚さが2μ mに形成されている。背電極Bは厚さが10μ mであり、一辺が20μ m程度の正方形のアコースティックホールに相当する複数の貫通穴Baが形成されている。
- [0042] 具体的には、(100)面方位の単結晶シリコン401の表面側(図1において下側)の一部にエッチングを行うことにより背電極Bにアコースティックホール(最終的には貫通穴Baとなる)を形成し、アコースティックホールの部位に対して音響入り口に相当す

る音響開口Eを単結晶シリコン401の裏面側(図1において上側)から形成する。また、単結晶シリコン401の表面側(図1において下側)に保護膜406(第2保護膜)と、有機膜で成る犠牲層407と、金属膜408とを積層して形成し、前記背電極Cに対応する部位のエッチングを行うことにより、背電極Bと振動板Cとの間に空隙領域Fを形成し、かつ、金属膜408で振動板Cを形成し、更に、振動板Cの外周部位に残留する犠牲層407でスペーサDを形成した構造を具備したものであり、以下、マイクロホンの製造工程を図2及び図3に基づいて説明する。

[0043] 工程(a):単結晶シリコン基板401の裏面側(同図において上側)にマスク材料としてSiNで成る第1保護膜402を成膜する。

- [0044] 工程(b):前記SiNで成る第1保護膜402に対してフォトリソグラフィ技術により開口 403を形成する。図面には示していないが、この開口403を形成する際には、第1保 護膜402の膜面に対してレジストパターンを形成し、このレジストパターンをマスクとしてRIE(Reactive Ion Etching)の技術によるエッチングを行うことにより第1保護膜402を取り除いて開口403が形成される。この処理後、不要となったレジストパターンはアッシングにより除去される。
- [0045] 工程(c):次に、表面側に電極材料としてAu膜を低温プロセスにて成膜可能なスパッタリングによって形成し、更に、このAu膜の膜面にフォトリソグラフィ技術によりレジストパターンを形成し、このレジストパターンをマスクとしてエッチングすることで背電極Bに導通する状態で前記Au膜の一部で電極パッド404が形成される。この処理後、不要となったレジストパターンはアッシングにより除去される。更に、この工程で表面側から音響開口Eに繋がる複数のアコースティックホール405(この工程では穴状では無く溝状である)をフォトリソグラフィ技術によって形成する。図面には示していないが、このアコースティックホール405を形成する際には、単結晶シリコン基板401の表面側にフォトリソグラフィ技術によりレジストパターンを形成し、このレジストパターンをマスクとして必要とする深さを得るよう、単結晶シリコン基板401をエッチングする処理が行われ、この処理後、不要となったレジストパターンはアッシングにより除去される。尚、このようにアコースティックホール405を形成することにより、後述する工程(f)における異方性エッチングで音響開口Eを形成した後には、複数のアコースティックホール405は音響開口Eと連通する貫通穴Baとなる。
- [0046] 工程(d):次に、音響開口Eを形成する際のエッチング液のTMAH(テトラメチルアンモニウムハイドロオキサイド)の水溶液を用いた異方性エッチングに対して耐性のある材料としての第2保護膜406を基板Aの表面側に対し形成し、この第2保護膜406の表面に対して積層する形態(第2保護膜406を下地とする形態)でフォトレジスト(レジストの一例)、ポリイミド樹脂の何れかの樹脂を用いた犠牲層407を1~5μmの膜厚で形成する。
- [0047] 工程(e):次に、表面側に、振動板Cを形成するために金属膜408として、例えば、 Ni膜を 2μ mの厚みになるように犠牲層407の上面に対してスパッタリングにより形成

し、この後、この金属膜408の膜面にフォトリソグラフィ技術によりレジストパターンを 形成し、このレジストパターンをマスクとしてエッチングを行うことにより不要な金属膜4 08を除去する。更に、この処理後、不要となったレジストパターンはアッシングにより 除去される。次に、振動板Cのサイズに形成された金属膜408をマスクとして犠牲層4 07及び第2保護膜406をエッチングすることにより、この金属膜408とシリコン基板40 1との間に存在する犠牲層407と第2保護膜406とを残し(スペーサ部Dと空隙領域F とが形成される領域)、この部位以外の犠牲層407と第2保護膜407とが除去される。

- [0048] この工程(e)では、Ni材料を用いスパッタリングによって金属膜408を形成していたが、金属膜408を形成する技術として、真空蒸着の技術やめっきの技術を用いることにより金属膜408を形成することが可能である。特に、スパッタリングや真空蒸着では金属材料としてSi、Al、Ti、Ni、Mo、W、Au、Cuのいずれか1つを用いることや、これらの金属材料のうちの複数を積層した積層膜とする形態で用いても良い。
- [0049] 更に、この工程(e)で金属膜408を形成する際に犠牲層407の上面に対して密着層としてCrやTiを真空蒸着の技術によって形成し、この密着層の上面に対して前述した工程と同様にNi材料等を用いスパッタリングによって金属膜408を形成することや、犠牲層407(絶縁層の一例)の上面に対してめっきに用いる材料と同じ金属材料でシード層を形成し、このシード層の上面に対してめっきの技術により金属膜408(めっき層)を形成するよう、これらの工程を設定することも可能である。
- [0050] 工程(f):次に、工程(b)によって開口403を形成した第1保護膜402をマスクとしてエッチング液のTMAHの水溶液を用いて異方性エッチングを行うことにより音響入り口に相当する音響開口Eを形成する。尚、本工程においては表面側に異方性エッチングに耐性のある保護膜を用いる必要があり、表面側において基板Aを含む材料がエッチング液によってエッチングされないように予め処理を行っておく必要がある(図示せず)。尚、異方性エッチング処理後、本保護膜は不要となり専用の剥離液にて除去される。
- [0051] 工程(g):次に、裏面側からRIE処理を行い、第1保護膜402ならびに第2保護膜406の一部を除去する。
- [0052] 工程(h):次に、裏面側から複数のアコースティックホール405に相当する貫通穴B

aを介して犠牲層除去剤およびプラズマ処理で犠牲層407にエッチング処理が行われ、背電極Bと振動板Cとの外周部分にスペーサDとして犠牲層407を一部残存させた状態で、かつ、背電極Bと振動板Cとの間に空隙領域Fが形成されマイクロホンが完成するのである。

- [0053] このように完成したマイクロホンは、図1に示す構造のままプリント基板等に固定して使用することが可能となり、プリント基板に固定した場合には、前記電極部404、及び、振動板Cに導通する金属膜部分と、基板に形成された端子との間にワイヤボンディング等により配線が行われる。
- また、前述した工程で製造されるマイクロホンでは、マイクロホンの製造工程におけ [0054] るSiN膜の成膜工程と、集積回路形成工程とを同時または平行して行えるので、図6 に示すように、基板A上に対してマイクロホンとは別個に音響検出部としてのJ-FET 等の半導体素子を具備した信号取出し回路として集積回路Gを形成しておき、この 集積回路Gの端子と、背電極Bに導通する電極部(図示省略)と、金属膜408との間 に電気接続手段として金属膜で成る配線Hを形成し、音圧信号を電気信号として直 接的に変換して出力し得る機能を具備したマイクロホンを得ることも可能である。この 配線HはAu、Cu、Al等の金属材料を用いめっきの技術や真空蒸着の技術で金属 膜を形成し、この金属膜をエッチングにより不要な部分を除去することにより形成され たものであるが、この金属膜で成る配線Hに代えてボンディングワイヤで電気接続手 段を構成することも可能である。そして、このように同一の基板Aに対して集積回路G を形成する場合には、マイクロホンの小型化が可能となる。更に、製造工程の前半に おいてのみマイクロホンならびに集積回路の形成過程で必要な高温での熱処理を行 うよう工程を設定し、製造工程の後半において低温で処理できる集積回路ならびに マイクロホンを形成するよう形成工程を設定することにより、集積回路に対する熱処理 の影響を排除して集積回路に対する熱の影響を解消でき

るものとなり、しかも、振動膜Cに対する熱履歴による応力変化も解消できるものとなる。

[0055] 本発明によると、基板Aをエッチングした任意の深さがアコースティックホールに相当し、裏面側から異方性エッチングによってアコースティックホール405を貫通穴Ba

として形成できるので比較的簡単な処理で背電極Bを形成できるものとなり、しかも、厚さのコントロールが必要な振動板Cをスパッタリング、真空蒸着、めっきの技術によって形成するので、比較的簡単な処理によって振動板Cの厚さを振動に最適な厚さに簡単に設定でき、音圧信号を感度良く検出できるものにしている。また、音響検出機構を製造する工程においては、犠牲層407のエッチングによって背電極Bと振動板Cとの間に空隙領域Fを形成するので、この犠牲層407の厚みをコントロールすることにより、背電極Bと振動板Cとの距離を必要な値に設定できるものとなり、しかも、エッチングの後に犠牲層407の一部を残して、背電極Bと振動板Cとの距離を維持するスペーサDとして用いることを実現している。特に、基板Aに対して音響検出部としての集積回路を形成することにより、この音響検出機構の外部に音響検出用の回路を特別に形成する必要がなく、装置に組み込んだ場合には装置全体の部品点数を低減できるものになっている。

[0056] このように、本発明の構成の音響検出機構は、微細加工技術を用いて基板に対して背電極Bと振動板Cとを形成した構造を採るので、音響検出機構全体を極めて小型に構成することが可能となり、携帯電話機のような小型の機器に対して容易に組込むことが可能となるばかりか、プリント基板に実装する場合にも、高温でのリフロー処理に耐え得るので、装置の組立を容易にするものとなる。

[0057] 〔別実施の形態〕

本発明は上記実施の形態以外に、例えば、以下のように構成して実施することも可能である(この別実施の形態では前記実施の形態と同じ機能を有するものには、実施の形態と共通の番号、符号を付している)。

[0058] (1)金属膜408を形成する手段としてめっきの技術を用いてNi膜やCu膜を形成することも可能である。具体的な一例として、電極端子404の形成後に、めっき材料と同じ材料で成るシード層をスパッタリングによって形成し、この後、めっき液を用いて全面にNi膜またはCu膜を金属膜408として形成する。このように形成された金属膜408(めっき層)は異方性エッチング等の処理後に不要な領域を除去することで振動板Cとして機能する。更に、このようなめっきを行う際には、CrやTi等の金属膜を真空蒸着等の技術により密着層として形成することにより、振動板Cを形成する金属膜408と、

WO 2005/009077 13 PCT/JP2004/010042

犠牲層407(絶縁層の一例)である有機膜との密着性を向上させることも可能である

- [0059] 特にめっきを行う際には、めっき液に不純物等の添加ならびにpH値を制御することで振動板の応力制御を容易にできる。具体的には図4においてグラフ化して示したように、めっき液中のリンの量(リン含量/wt%)と、めっきにより形成される金属膜の内部応力との間には同図にグラフとして示す関係が存在し、同図から明らかなようにめっき液中のリンの量を10~12wt%リン含量に設定した無電解Niめっき液を用い、液温91℃で処理することにより内部応力が極めて小さい振動板Cが得られる。このように振動板Cの内部応力を極めて小さい値に設定したものでは、音圧信号に対して振動板Cが忠実に振動して良好な感度を得るものとなる。
- [0060] (2)振動板Cとして、図5に示すように、ポリイミド樹脂、ポリパラキシレン樹脂(パリレン樹脂;商品名)、あるいは、エッチングに使用されるフォトレジスト膜の何れかの樹脂を用いた有機膜で成るベース層420と導電層として金属膜408で挟んだ積層構造の振動板Cを形成する。具体的な一例を挙げると、犠牲層407の外面にNi等の金属膜408をスパッタリングによって形成し、ポリイミド樹脂を塗布し、ベーク後に、再びNi等の金属膜408をスパッタリングによって形成する。異方性エッチング後に不要な領域の金属膜ならびにポリイミド樹脂で構成されている積層膜を除去し、有機剥離剤によって犠牲層407を除去することで、ベース層420と導電層(金属膜408)とを積層した構造の振動板Cが得られる。Ni膜は異方性エッチングに耐性があるので異方性エッチングの際の保護膜として機能するばかりでなく、ポリイミド樹脂とNi膜にて形成された積層膜の膜厚が振動板Cの厚さとなるため精度良く振動板Cを形成できる。更に、振動板Cを形成するためのベース層420として、レジストやポリパラキシレン樹脂を用いることも可能である。
- [0061] (3)背電極Bの膜厚制御が音響検出機構パターンとシリコン基板上に並列して形成している検査パターンによって行うことができる。具体的には、背電極の径より小さい開口径のパターンを検査領域に設けておくことで、エッチングのマイクロローディグ効果によって、アコースティックホール開口工程で所望の膜厚より浅い深さしかエッチングされない。このような深さの違うパターンを配列しておくことで、異方性エッチングの

際に深さの違うパターンが時間の経過とともに貫通する現象を利用した背電極の膜 厚制御が可能となるのである。

産業上の利用可能性

[0062] 本発明の音響検出機構は、コンデンサマイクロホンとして用いる他に、空気振動や空気の圧力変化に感応するセンサとして利用することも可能である。

図面の簡単な説明

[0063] [図1]コンデンサマイクロホンの断面図

[図2]コンデンサマイクロホンの製造工程を連続的に示す図

[図3]コンデンサマイクロホンの製造工程を連続的に示す図

[図4]別実施の形態(1)めっき液中のリン含量と振動板の応力との関係をグラフ化した図

[図5]別実施の形態(2)のコンデンサマイクロホンを示す図

[図6]信号取出し回路を形成したコンデンサマイクロホンを示す図

[図7]従来のコンデンサマイクロホンの断面図

符号の説明

408 金属膜

420 ベース層

A 基板

B 背電極

Ba 貫通穴

C 振動板

D スペーサ

F 空隙領域

H 電気接続手段

G 信号取出し回路

請求の範囲

[1] 基板にコンデンサを形成する一対の電極を有し、この一対の電極のうち一方の電極はアコースティックホールに相当する貫通穴を形成した背電極であり、他方の電極は振動板である音響検出機構であって、

前記振動板が金属膜または積層膜で成り、前記金属膜は低温プロセスにて作製されるスパッタリング、真空蒸着またはめっきの技術を用いて形成され、前記積層膜は 有機膜と導電性膜とで形成され、

前記背電極が前記基板に形成され、

前記振動板と前記背電極との電極間距離を決めるスペーサが有機膜である犠牲層の一部から成ることを特徴とする音響検出機構。

- [2] 前記振動板が、前記めっきの技術を用いて形成されたNi膜またはCu膜により形成され、このめっきを行う際の処理条件の設定により前記振動板の応力制御を行っていることを特徴とする請求項1記載の音響検出機構。
- [3] 前記スパッタリングまたは前記真空蒸着の技術を用い、Si、Al、Ti、Ni、Mo、W、Au、Cuのいずれかを材料として金属膜を形成し、またはSi、Al、Ti、Ni、Mo、W、Au、Cuの中から選択される複数を材料として積層して金属膜を形成することにより前記振動板を形成したことを特徴とする請求項1記載の音響検出機構。
- [4] 前記振動板が、レジスト、ポリイミド樹脂、ポリパラキシレン樹脂の何れかの樹脂を用いた有機膜で成るベース層と、導電性材料で成る導電層とを積層して形成されていることを特徴とする請求項1記載の音響検出機構。
- [5] 犠牲層エッチングにより、前記背電極と前記振動板との間に空隙領域を形成するための前記犠牲層の材料としてレジスト、ポリイミド樹脂の何れかの樹脂を用いた有機膜を有することを特徴とする請求項1記載の音響検出機構。
- [6] 前記基板が単結晶シリコン基板で成り、前記単結晶シリコン基板として、(100)面 方位のシリコン基板を用いていることを特徴とする請求項1記載の音響検出機構。
- [7] 前記犠牲層の下地に異方性エッチングに対して耐性のある材料を形成することを 特徴とする請求項1~6のいずれか1項に記載の音響検出機構。
- [8] 前記犠牲層の膜厚が1〜5μmであることを特徴とする請求項1〜6のいずれか1項

WO 2005/009077 16 PCT/JP2004/010042

に記載の音響検出機構。

- [9] 前記振動板が、前記めっきの技術を用いて形成されためっき層により形成され、このめっき層と前記基板に形成される絶縁層との間に、夫々の密着性を高める密着層を介在させたことを特徴とする請求項1、2、5又は6のいずれか1項に記載の音響検出機構。
- [10] 前記背電極にアコースティックホールを開口した後に音響入り口に相当する開口部を異方性エッチングにて形成することを特徴とする請求項1〜6のいずれか1項記載の音響検出機構。
- [11] 前記背電極の膜厚制御が音響検出機構パターンとシリコン基板上に並列して形成されている検査パターンによって行われることを特徴とする請求項1〜6のいずれか1 項記載の音響検出機構。
- [12] 前記基板に対して複数の半導体素子を具備する信号取り出し回路を形成し、前記振動板と背電極とで音響検出部を形成し、この音響検出部からの信号を信号取り出し回路に伝える電気接続手段を備えていることを特徴とする請求項1記載の音響検出機構。
- [13] 前記電気接続手段が、金属細線、または、半導体製造工程で前記支持基板上に 形成される金属膜で構成されていることを特徴とする請求項12記載の音響検出機構

[図1]

A: 基板

401: シリコン基板

B: 背電極

404: 電極部

406: 第2保護膜

Ba: 貫通穴 (アコースティックホール)

407: 犠牲層

C: 振動板

D: スペーサ

408: 金属膜

E: 音響開口

F: 空隙領域

[図2]

[図3]

[図5]

A: 基板

B: 背電極

Ba: 貫通穴 (アコースティックホール) C: 振動板

D: スペーサ

E: 音響開口

F: 空隙領域

401: シリコン基板

404: 電極部

406: 第2保護膜

407: 犠牲層

408: 金属膜

420: ベース層

[図6]

A: 基板

401: シリコン基板

B: 背電極

406: 第2保護膜

Ba: 貫通穴 (アコースティックホール)

407: 犠牲層

408: 金属膜

C: 振動板

D: スペーサ

E: 音響開口

F: 空隙領域

G: 集積回路

H: 配線

[図7]

INTERNATIONAL SEARCH REPORT

International application No.

	•	PC1/UP2	004/010042				
A. CLASSIFIC Int.Cl7	ATION OF SUBJECT MATTER H04R19/04						
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SE		· · · · · · · · · · · · · · · · · · ·					
Minimum docun Int.Cl	nentation searched (classification system followed by class H04R19/04, H01L27/04	sification symbols)					
Jitsuyo Kokai J	itsuyo Shinan Koho 1971-2004 Jit	coku Jitsuyo Shinan Koho suyo Shinan Toroku Koho	1994-2004 1996-2004				
Electronic data b	pase consulted during the international search (name of da	ata base and, where practicable, search te	rms used)				
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.				
Y	JP 2003-163996 A (Industrial Research Institute), 06 June, 2003 (06.06.03), Par. Nos. [0010] to [0012]; a. & TW 518900 B		1-13				
Y	JP 8-95572 A (Canon Inc.), 12 April, 1996 (12.04.96), Par. Nos. [0014] to [0015]; a (Family: none)	ll drawings	1,5				
Y A	JP 2002-209298 A (Seiko Epsor 26 July, 2002 (26.07.02), Par. No. [0053]; all drawings (Family: none)	- · · · ·	5 1-4,6-13				
		·					
× Further d	ocuments are listed in the continuation of Box C.	See patent family annex.					
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the int date and not in conflict with the applic the principle or theory underlying the	cation but cited to understand				
"E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone					
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
"P" document published prior to the international filing date but later than the priority date claimed		"&" document member of the same patent					
	nal completion of the international search cober, 2004 (05.10.04)	Date of mailing of the international sea 19 October, 2004 (
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer					
Facsimile No.		Telephone No.					

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/010042

). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	assages Relevant to claim No.	
Y	JP 2002-223499 A (Seiko Epson Corp.), 09 August, 2002 (09.08.02), Par. Nos. [0020] to [0030]; all drawings (Family: none)		
Y A	JP 2003-1693998 A (Seiko Epson Corp.), 06 June, 2003 (06.06.03), Par. Nos. [0158] to [0167], [0183]; all drawings (Family: none)	9 1-8,10-13	
	· ·		
· .			

A. 発明の属する分野の分類(国際特許分類 (IPC))				
Int. C1 H04R	19/04			
B. 調査を行				
	よった。 最小限資料(国際特許分類(IPC))			
	•			
Int. C1 H04R1	9/04, H01L27/04			
最小限資料以外	トの資料で調査を行った分野に含まれるもの			
日本国実用新	案公報 1922-1996年	• .		
	用新案公報 1971-2004年 用新案公報 1994-2004年			
日本国実用新	案登録公報 1996-2004年			
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)		
	•			
		•	•	
C. 関連する				
引用文献の			関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連すると		請求の範囲の番号	
Y	JP 2003-163996 A(財団法人工業技術	研究院) 2003. 06. 06	1-13	
	【0010】-【0012】段落,全図 & TW	518900 B	-	
Y	JP 8-95572 A(キャノン株式会社)1996.04.12			
•	【0014】 - 【0015】段落,全図 (5	0.04.12 ファミリーかし)	1, 5	
	12.12.12.12.12.12.12.12.12.12.12.12.12.1			
Y	JP 2002-209298 A(セイコーエプソン株式会社) 2002.07.26		5,	
A	【0053】段落,全図 (ファミリー/	なし)	1-4, 6-13	
		•		
X C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
	のカテゴリー	の日の後に公表された文献	······································	
「A」特に関	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ	された文献であって	
もの 「E」国際出版	顔日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、そ の理解のために引用するもの	発明の原理又は理論	
以後に	公表されたもの	「X」特に関連のある文献であって、	当該文献のみで発明	
「L」優先権:	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え	えられるもの	
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当文献(理由を付す) 上の文献との、当業者にとって自			当該文献と他の1以	
「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がかいと考えられる			3	
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献				
国際調査を完了した日 05.10.2004		国際調査報告の発送日 19.1	0.2004	
	00, 20, 5002			
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	5C 7254	
日本国特許庁 (ISA/JP) 郵便番号100-8915		・ 松澤 福三郎	<u> </u>	
東京	都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3540	

カテゴリー*引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示請求の名YJP 2002-223499 A(セイコーエプソン株式会社) 2002. 08. 091-13	連する 施囲の番号
Y JP 2002-223499 A(セイコーエプソン株式会社) 2002. 08. 09 1-13	
【0020】-【0030】段落,全図 (ファミリーなし)	
Y JP 2003-1693998 A(セイコーエプソン株式会社)2003.06.06 9, 1-8,10	0-13
·	
·	