AUTÓMATAS FINITOS NO DETERMINISTAS

Preguntas:

Pregunta 1

Dado el autómata:

enuncie las 10 primeras palabras en orden canónico del lenguaje que representa.

Solución:

a, aba, abba, ababa, ababa, ababa, ababaa, ababba, ababba, ababba

Pregunta 2

Dado el autómata:

enuncie las 10 primeras palabras en orden canónico del lenguaje que representa.

Solución:

a, aaa, aba, baa, bba, abaa, abba, bbaa, bbba, aaaaa

Pregunta 3

Proporcione una descripción (lo más concisa posible) del lenguaje aceptado por el siguiente autómata:

Solución:

$$L(A) = \{x \in \{a,b\}^* \ : \ bb \in Seg(x)\}$$

Pregunta 4

Proporcione una descripción (lo más concisa posible) del lenguaje aceptado por el siguiente autómata:

Solución:

El autómata acepta las palabras sobre el alfabeto $\{a,b\}$ tales que el penúltimo símbolo es a.

Más formalmente, $L(A) = \{a, b\}^* \{a\} \{a, b\}.$

Pregunta 5

Proporcione una descripción (lo más concisa posible) del lenguaje aceptado por el siguiente autómata:

Solución:

$$L(A) = \{x \in \{a,b\}^* \ : \ |x| \equiv 0 \bmod 2 \lor |x| \equiv 0 \ (\textup{m\'od} \ 3)\}.$$

Pregunta 6

Proporcione una descripción (lo más concisa posible) del lenguaje aceptado por el siguiente autómata: b

Solución:

$$L(A) = \{ax : x \in \{a, b\}^*\}.$$

Pregunta 7

Obtenga un AFN que acepte el lenguaje $L = \{x \in \{a,b\}^* : aa \in Seg(x)\}$

Pregunta 8

Obtenga un AFN que acepte el lenguaje $L = \{x \in \{a,b\}^* \ : \ |x| \geq 2 \wedge bb \not \in Suf(x)\}$

Pregunta 9

Obtenga un AFN que acepte el lenguaje $L=\{x\in\{a,b\}^*: |x|_a\equiv 0 \bmod 2 \lor |x|_a\equiv 0 \bmod 3\}$

Pregunta 10

Dado el lenguaje $L=\{xb: x\in\{a,b\}^*\}$, obtenga tres autómatas diferentes que aceptan el lenguaje.

