1 повышающий преобразователь

1.1 определение номиналов элементов схемы

Рис. 1: повышающий преобразователь

 $U_{\text{пит.}}$ – заданное значение 100В. Подводимая мощность 100Вт. Частота переключения ключа SW 5к Γ ц. $U_R=U_{\text{нагр.}}$ – выходное напряжение на нагрузке R зависит от варианта:

1 0	
$N_{\overline{0}}\Pi/\Pi$	$U_{\text{вых}}$ (В)
1	110
2	115
3	120
4	125
5	130
6	135
7	140
8	145
9	150
10	155
11	160
12	165
13	170
14	175
15	180
16	185
17	190
18	195
19	200

- сила тока на дросселе $I_L(t)$ изменяется во времени не более чем $I_{L\mathrm{cp.}} \pm 10\%,$
- напряжение на нагрузке $U_R(t)$ изменяется во времени не более чем $U_{R\text{cp.}} \pm 10\%.$

Рассмотрим работу преобразователя в двух стадиях:

1.2 фаза заряда дросселя

В установившемся режиме

$$U_{\text{нагр.}} = U_{\text{пит.}} \frac{t_3 + t_{\text{p}}}{t_{\text{p}}} = U_{\text{пит.}} \frac{T}{t_{\text{p}}}$$
 (1)

Ключ замкнут, дроссель соединен с землей, диод через себя не дает разрядиться конденсатору, конденсатор разряжается через нагрузку.

Рис. 2: фаза заряда дросселя

напряжение на дросселе

$$U_L = L \frac{\partial i_3}{\partial t}$$

или, интегрируя

$$i(t_3) = i_{(0)} + \frac{U}{L}t_3$$

Принимая $i_{(0)}$ равным нулю (условие, когда наступает прерывистый режим) получаем что максимальный $i_{max}=\frac{U}{L}t_{\rm 3}.$ Ток меняется от 0 до i_{max} , значит

$$i_{\text{среднеe}} = i_{max}/2 = \frac{U}{2L}t_3 \tag{2}$$

или, иначе, ток меняется

$$i(t) = i_{\text{среднее}} \pm 100\%$$

Отсюда получаем минимальный L необходимый для отсутствия прерывистого режима:

$$L_{min} = \frac{U}{2} \frac{t_3}{i_{max}}$$

Средний ток получаем из заданной подводимой мощности 100Вт и напряжения батареи 100В:

$$i_{\text{среднее}} \cdot U = P$$

Если предполагаем, что i_L через дроссель меняется

$$i(t) = i_{\text{среднее}} \pm 10\%$$

то индуктивность дросселя в 10 раз больше чем L_{min}

Номинал конденсатора определим исходя из того что за время t_3 через нагрузку R разряжается на 20% от максимального заряда (или заряд конденсатора меняется $U_{\rm harp.\ cp.}\pm 10\%$).

1.3 фаза разряда дросселя

1.4 Выполнение работы на виртуальной установке

Определив номиналы выполняем работу следуя методичке "Исследование повышающего широтно-импульсного преобразователя постоянного напряжения" на виртуальной установке.