

Week 6 Workshop – Normalisation

http://en.wikipedia.org/wiki/Ursus_Wehrli

Housekeeping

Assignment 1 (SQL) (due 11:59pm, 3 Sep 2021)

The mark and feedback will be released on 17 Sep 2021.

Housekeeping

- Assignment 1 (SQL) (due 11:59pm, 3 Sep 2021)
 The mark and feedback will be released on 17 Sep 2021.
- An optional exercise website for our course
 https://cs.anu.edu.au/dab/bench/db-exercises/

Housekeeping

- Assignment 1 (SQL) (due 11:59pm, 3 Sep 2021)
 The mark and feedback will be released on 17 Sep 2021.
- An optional exercise website for our course
 https://cs.anu.edu.au/dab/bench/db-exercises/
- An anonymous survey from our course representatives on Wattle (till 4 Sep under Week 6)

Help us to improve our planning and teaching

- Thus, we need to consider two important questions:
 - Do we need to decompose a relation?

- Thus, we need to consider two important questions:
 - Do we need to decompose a relation?
 - Several normal forms
 - \hookrightarrow help us to decide whether or not to decompose a relation

- Thus, we need to consider two important questions:
 - Do we need to decompose a relation?
 - Several normal forms
 - \hookrightarrow help us to decide whether or not to decompose a relation
 - What problem (if any) does a given decomposition cause?

- Thus, we need to consider two important questions:
 - Do we need to decompose a relation?
 - Several normal forms
 - \hookrightarrow help us to decide whether or not to decompose a relation
 - What problem (if any) does a given decomposition cause?
 - Two properties
 - → help us to decide how to decompose a relation

Two Properties

 In addition to data redundancy, we need to consider the following properties when decomposing a relation:

Two Properties

- In addition to data redundancy, we need to consider the following properties when decomposing a relation:
 - Lossless join "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

Two Properties

- In addition to data redundancy, we need to consider the following properties when decomposing a relation:
 - 1 Lossless join "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

Dependency preservation – "capture the same meta-data"

To ensure that each functional dependency can be inferred from functional dependencies after decomposition.

Lossless join – "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

Lossless join – "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

R		
Name	StudentID	DoB
Mike	123456	20/09/1989
Mike	123458	25/01/1988

R ₁	
Name	StudentID
Mike	123456
Mike	123458

R_2		
StudentID	DoB	
123456	20/09/1989	
123458	25/01/1988	

• **Example 1:** Does the decomposition of *R* into *R*₁ and *R*₂ has the lossless join property?

Lossless join – "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

	R	
Name	StudentID	DoB
Mike	123456	20/09/1989
Mike	123458	25/01/1988

R ₁		
Name	StudentID	
Mike	123456	
Mike	123458	

R ₂	
StudentID	DoB
123456	20/09/1989
123458	25/01/1988

• Example 1: Does the decomposition of *R* into *R*₁ and *R*₂ has the lossless join property?

Yes, because the natural join of R_1 and R_2 yields R.

Lossless join – "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

	R	
Name	StudentID	DoB
Mike	123456	20/09/1989
Mike	123458	25/01/1988

	R ₃
Name	StudentID
Mike	123456
Mike	123458

R_4		
Name	DoB	
Mike	20/09/1989	
Mike	25/01/1988	

• **Example 2:** Does the decomposition of *R* into *R*₃ and *R*₄ has the lossless join property?

Lossless join – "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

	R	
Name	<u>StudentID</u>	DoB
Mike	123456	20/09/1989
Mike	123458	25/01/1988

	R ₃
Name	StudentID
Mike	123456
Mike	123458

R ₄		
Name	DoB	
Mike	20/09/1989	
Mike	25/01/1988	

• **Example 2:** Does the decomposition of *R* into *R*₃ and *R*₄ has the lossless join property?

No, because the natural join of R_3 and R_4 generates spurious tuples.

• Example 2: The following decomposition from *R* into *R*₃ and *R*₄ doesn't have the lossless join property. It generates spurious tuples.

R		
Name	StudentID	DoB
Mike	123456	20/09/1989
Mike	123458	25/01/1988

SELECT * FROM R ₃ NATURAL JOIN R ₄		
Name	StudentID	DoB
Mike	123456	20/09/1989
Mike	123456	25/01/1988
Mike	123458	20/09/1989
Mike	123458	25/01/1988

R ₃		
Name	StudentID	
Mike	123456	
Mike	123458	

R_4		
Name	DoB	
Mike	20/09/1989	
Mike	25/01/1988	

Lossless join – "capture the same data"

R		
Name	StudentID	DoB
Mike	123456	20/09/1989
Mike	123458	25/01/1988

R ₁		
Name	StudentID	
Mike	123456	
Mike	123458	

R_3		
Name	StudentID	
Mike	123456	
Mike	123458	

R_2		
StudentID DoB		
123456	20/09/1989	
123458	25/01/1988	

 R_4

DoB

20/09/1989 25/01/1988 Lossless join

Name
Mike
Mike

Not lossless join

 Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 1: Given a FD {StudentID} → {Name} defined on R

R		
Name	StudentID	<u>CourseNo</u>
Mike	123456	COMP2400
Mike	123458	COMP2600

R ₁		
Name	StudentID	
Mike	123456	
Mike	123458	

R ₂		
StudentID	CourseNo	
123456	COMP2400	
123458	COMP2600	

■ Does the above decomposition preserves {StudentID} → {Name}?

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 1: Given a FD {StudentID} → {Name} defined on R

R		
Name	StudentID	<u>CourseNo</u>
Mike	123456	COMP2400
Mike	123458	COMP2600

R ₁		
Name	StudentID	
Mike	123456	
Mike	123458	

R ₂		
StudentID	CourseNo	
123456	COMP2400	
123458	COMP2600	

• Does the above decomposition preserves $\{StudentID\} \rightarrow \{Name\}$? Yes, because $\{StudentID\}$ and $\{Name\}$ are both in R_1 after decomposition and thus $\{StudentID\} \rightarrow \{Name\}$ is preserved in R_1 .

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 2: Given a FD {StudentID} → {Name} defined on R

R		
Name	StudentID	<u>CourseNo</u>
Mike	123456	COMP2400
Mike	123458	COMP2600

R ₁	
Name	CourseNo
Mike	COMP2400
Mike	COMP2600

R_2	
StudentID	CourseNo
123456	COMP2400
123458	COMP2600

■ Does the above decomposition preserves {StudentID} → {Name}?

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 2: Given a FD {StudentID} → {Name} defined on R

R		
Name	StudentID	<u>CourseNo</u>
Mike	123456	COMP2400
Mike	123458	COMP2600

R ₁	
Name	CourseNo
Mike	COMP2400
Mike	COMP2600

R_2	
StudentID	CourseNo
123456	COMP2400
123458	COMP2600

Does the above decomposition preserves {StudentID} → {Name}?
 No, because {StudentID} and {Name} are not in a same relation after decomposition.

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 3: Given a set of FDs $\{ \{StudentID\} \rightarrow \{Email\}, \{Email\} \rightarrow \{Name\}, \{StudentID\} \rightarrow \{Name\} \}$ defined on R

R		
Name	StudentID	Email
Mike	123456	123456@anu.edu.au
Tom	123123	123123@anu.edu.au

R ₁	
Name	Email
Mike	123456@anu.edu.au
Tom	123123@anu.edu.au

R_2		
StudentID	Email	
123456	123456@anu.edu.au	
123123	123123@anu.edu.au	

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 3: Given a set of FDs $\{ \{StudentID\} \rightarrow \{Email\}, \{Email\} \rightarrow \{Name\}, \{StudentID\} \rightarrow \{Name\} \}$ defined on R

R		
Name	StudentID	Email
Mike	123456	123456@anu.edu.au
Tom	123123	123123@anu.edu.au

R ₁		
Name	Email	
Mike	123456@anu.edu.au	
Tom	123123@anu.edu.au	

R_2		
StudentID	Email	
123456	123456@anu.edu.au	
123123	123123@anu.edu.au	

■ Does the above decomposition preserves {StudentID} → {Name}?

- Dependency preservation: To ensure that each functional dependency can be inferred from functional dependencies after decomposition.
- Example 3: Given a set of FDs $\{ \{StudentID\} \rightarrow \{Email\}, \{Email\} \rightarrow \{Name\}, \{StudentID\} \rightarrow \{Name\} \}$ defined on R

R		
Name	StudentID	Email
Mike	123456	123456@anu.edu.au
Tom	123123	123123@anu.edu.au

R_1		
Name	Email	
Mike	123456@anu.edu.au	
Tom	123123@anu.edu.au	

R_2		
StudentID	Email	
123456	123456@anu.edu.au	
123123	123123@anu.edu.au	

• Does the above decomposition preserves {StudentID} \rightarrow {Name}? Yes, because {StudentID} \rightarrow {Name} can be inferred by {StudentID} \rightarrow {Email} (preserved in R_2) and {Email} \rightarrow {Name} (preserved in R_1).

• If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R_1 and R_2 are a superkey for R_1 or R_2 ;

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R_1 and R_2 are a superkey for R_1 or R_2 ;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₂ = {A, C} fullfill lossless join and dependency preserving?

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₂ = {A, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_2 = \{A \rightarrow C\}$

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₂ = {A, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_2 = \{A \rightarrow C\}$
 - Lossless join?

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₂ = {A, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_2 = \{A \rightarrow C\}$
 - Lossless join? Yes because A is a superkey for R_1 .

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₂ = {A, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_2 = \{A \rightarrow C\}$
 - Lossless join? Yes because A is a superkey for R₁.
 - Dependency preserving?

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decomposition of R into R₁ = {A, B} and R₂ = {A, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_2 = \{A \rightarrow C\}$
 - Lossless join? Yes because A is a superkey for R_1 .
 - Dependency preserving? No because $(\Sigma_1 \cup \Sigma_2)^* \neq \Sigma^*$ from the fact that $\{A \to B, A \to C\} \not\vDash B \to C$.

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₃ = {B, C} fullfill lossless join and dependency preserving?

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₃ = {B, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_3 = \{B \rightarrow C\}$

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₃ = {B, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_3 = \{B \rightarrow C\}$
 - Lossless join?

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₃ = {B, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_3 = \{B \rightarrow C\}$
 - Lossless join? Yes because B is a superkey for R_3 .

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₃ = {B, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_3 = \{B \rightarrow C\}$
 - Lossless join? Yes because B is a superkey for R_3 .
 - Dependency preserving?

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R₁ and R₂ are a superkey for R₁ or R₂;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.
- Consider R={A, B, C} with the set of FDs Σ = {A → B, B → C, A → C}.
 Does the decompostion of R into R₁ = {A, B} and R₃ = {B, C} fullfill lossless join and dependency preserving?
 - $\Sigma_1 = \{A \rightarrow B\}$ and $\Sigma_3 = \{B \rightarrow C\}$
 - Lossless join? Yes because B is a superkey for R_3 .
 - Dependency preserving? Yes because $(\Sigma_1 \cup \Sigma_3)^* = \Sigma^*$ from the fact that $\{A \to B, B \to C\} \models A \to C$.

Normal Forms

Normal forms	Test criteria			
1NF	weak	BCNF 3NF 2NF 1NF		
	1			

Note that:

- 1NF is independent of keys and functional dependencies.
- 2NF, 3NF and BCNF are based on keys and functional dependencies.
- 4NF and 5NF are based on other dependencies (will not be covered in this course).

BCNF

Do not represent the same fact twice (within a relation)!

BCNF - Definition

• A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.

BCNF - Definition

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- When a relation schema is in BCNF, all data redundancy based on functional dependency are removed.

BCNF - Definition

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- When a relation schema is in BCNF, all data redundancy based on functional dependency are removed.
 - Here data redundancy is considered in terms of FDs, i.e., for a non-trivial FD X → Y, there exists a relation R that contains two distinct tuples t₁ and t₂ with t₁[XY] = t₂[XY].

 $\{CourseName\} \rightarrow \{Instructor\}$

TEACH		
StudentID	CourseName	Instructor
u123456	Operating Systems	Hegel
u234566	Relational Databases	Yu
u234567	Relational Databases	Yu

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:
 - {CourseName} \rightarrow {Instructor}.

TEACH			
StudentID	CourseName	Instructor	
u123456	Operating Systems	Hegel	
u234566	Relational Databases	Yu	
u234567	Relational Databases	Yu	

Is TEACH in BCNF?

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:
 - {CourseName} \rightarrow {Instructor}.

TEACH			
StudentID	CourseName	Instructor	
u123456	Operating Systems	Hegel	
u234566	Relational Databases	Yu	
u234567	Relational Databases	Yu	

Is TEACH in BCNF?

Not in BCNF because {CourseName} is not a superkey.

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:
 - {CourseName} \rightarrow {Instructor}.

TEACH		
StudentID	CourseName	Instructor
u123456	Operating Systems	Hegel
u234566	Relational Databases	Yu
u234567	Relational Databases	Yu

Is TEACH in BCNF?

Not in BCNF because {CourseName} is not a superkey.

• Did we represent the same fact twice (or more times)?

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:
 - {CourseName} \rightarrow {Instructor}.

TEACH			
StudentID	CourseName	Instructor	
u123456	Operating Systems	Hegel	
u234566	Relational Databases	Yu	
u234567	Relational Databases	Yu	

- Is TEACH in BCNF?
 - Not in BCNF because {CourseName} is not a superkey.
- Did we represent the same fact twice (or more times)?
 Yes, the Instructor of Relational Databases is Yu.

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

Output: a set S of relation schemas in BCNF, each having a set of FDs

• Start with $S = \{R'\}$;

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

- Start with $S = \{R'\}$;
- Do the following for each $R \in S$ iteratively until no changes on S:
 - Find a (non-trivial) FD $X \rightarrow Y$ on R that violates BCNF, if any;
 - Replace R in S by two relation schemas XY and (R-Y) and project the FDs to these two relation schemas.

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

- Start with $S = \{R'\}$;
- Do the following for each $R \in S$ iteratively until no changes on S:
 - Find a (non-trivial) FD $X \rightarrow Y$ on R that violates BCNF, if any;
 - Replace R in S by two relation schemas XY and (R-Y) and project the FDs to these two relation schemas.
- Does the above Algorithm always produce a lossless decomposition?

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

- Start with $S = \{R'\}$;
- Do the following for each $R \in S$ iteratively until no changes on S:
 - Find a (non-trivial) FD $X \rightarrow Y$ on R that violates BCNF, if any;
 - Replace R in S by two relation schemas XY and (R Y) and project the FDs to these two relation schemas.
- Does the above **Algorithm** always produce a lossless decomposition? If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 , this decomposition is **lossless join** if and only if the common attributes of R_1 and R_2 are a superkey for R_1 or R_2 .

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

- Start with $S = \{R'\}$;
- Do the following for each $R \in S$ iteratively until no changes on S:
 - Find a (non-trivial) FD $X \rightarrow Y$ on R that violates BCNF, if any;
 - Replace R in S by two relation schemas XY and (R-Y) and project the FDs to these two relation schemas.
- Does the above **Algorithm** always produce a lossless decomposition? If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 , this decomposition is **lossless join** if and only if the common attributes of R_1 and R_2 are a superkey for R_1 or R_2 .
- Yes because X is a superkey for XY.

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:

 $\{CourseName\} \rightarrow \{Instructor\}$

TEACH			
StudentID	CourseName	Instructor	
u123456	Operating Systems	Hegel	
u234566	Relational Databases	Yu	
u234567	Relational Databases	Yu	

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:

 $\{CourseName\} \rightarrow \{Instructor\}$

TEACH			
StudentID	CourseName	Instructor	
u123456	Operating Systems	Hegel	
u234566	Relational Databases	Yu	
u234567	Relational Databases	Yu	

Can we normalise TEACH into BCNF?

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:

 $\{CourseName\} \rightarrow \{Instructor\}$

TEACH		
StudentID	CourseName	Instructor
u123456	Operating Systems	Hegel
u234566	Relational Databases	Yu
u234567	Relational Databases	Yu

Can we normalise TEACH into BCNF? Yes.

R_1	
CourseName	Instructor
Operating Systems	Hegel
Relational Databases	Yu

R_2			
StudentID	CourseName		
u123456	Operating Systems		
u234566	Relational Databases		
u234567	Relational Databases		

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- Consider the relation schema TEACH with the following FD:

 $\{CourseName\} \rightarrow \{Instructor\}$

	TEACH		
Stu	dentID	CourseName	Instructor
u1	23456	Operating Systems	Hegel
u2	34566	Relational Databases	Yu
u2	34567	Relational Databases	Yu

Can we normalise TEACH into BCNF? Yes.

R_1	
CourseName	Instructor
Operating Systems	Hegel
Relational Databases	Yu

R_2		
StudentID	CourseName	
u123456	Operating Systems	
u234566	Relational Databases	
u234567	Relational Databases	

Do not represent the same fact twice (within a relation)!

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} \rightarrow {CustomerID}
 - {Date, Time, Room} → {CustomerID}
- Is Interview in BCNF? If not, normalize Interview into BCNF.

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} → {CustomerID}
- Is INTERVIEW in BCNF? If not, normalize INTERVIEW into BCNF.
 - {CustomerID, Date}, {OfficerID, Date, Time}, and {Date, Time, Room} are the keys.

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} → {CustomerID}
- Is INTERVIEW in BCNF? If not, normalize INTERVIEW into BCNF.
 - {CustomerID, Date}, {OfficerID, Date, Time}, and {Date, Time, Room} are the keys.
 - Any superkey must contain one of these keys as a subset.

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} → {CustomerID}
- Is INTERVIEW in BCNF? If not, normalize INTERVIEW into BCNF.
 - {CustomerID, Date}, {OfficerID, Date, Time}, and {Date, Time, Room} are the keys.
 - Any superkey must contain one of of these keys as a subset.
- INTERVIEW is not in BCNF because {OfficerID, Date} \to {Room} and {OfficerID, Date} is not a superkey.

• We decompose Interview along the FD: {OfficerID, Date} → {Room}:

INTERVIEW				
OfficerID	CustomerID	Date	Time	Room
S1011	P100	12/11/2013	10:00	R15
S1011	P105	12/11/2013	12:00	R15
S1024	P108	14/11/2013	14:00	R10
S1024	P107	14/11/2013	14:00	R10

INTERVIEW1				
OfficerID	Date	Room		
S1011	12/11/2013	R15		
S1024	14/11/2013	R10		

INTERVIEW2			
OfficerID CustomerID Date Time			
S1011	P100	12/11/2013	10:00
S1011	P105	12/11/2013	12:00
S1024	P108	14/11/2013	14:00
S1024	P107	14/11/2013	14:00

• We decompose Interview along the FD: {OfficerID, Date} → {Room}:

INTERVIEW				
OfficerID	CustomerID	Date	Time	Room
S1011	P100	12/11/2013	10:00	R15
S1011	P105	12/11/2013	12:00	R15
S1024	P108	14/11/2013	14:00	R10
S1024	P107	14/11/2013	14:00	R10

INTERVIEW1			
OfficerID	Date	Room	
S1011	12/11/2013	R15	
S1024	14/11/2013	R10	

INTERVIEW2				
OfficerID CustomerID Date Time				
S1011	P100	12/11/2013	10:00	
S1011	P105	12/11/2013	12:00	
S1024	P108	14/11/2013	14:00	
S1024	P107	14/11/2013	14:00	

Do not represent the same fact twice (within a relation)!

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} \rightarrow {CustomerID}

INTERVIEW1				
OfficerID	Date	Room		
S1011	12/11/2013	R15		
S1024	14/11/2013	R10		

INTERVIEW2			
OfficerID	CustomerID	Date	Time
S1011	P100	12/11/2013	10:00
S1011	P105	12/11/2013	12:00
S1024	P108	14/11/2013	14:00
S1024	P107	14/11/2013	14:00

Project FDs on two new relation schemas.

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} → {CustomerID}

INTERVIEW1				
OfficerID	Date	Room		
S1011	12/11/2013	R15		
S1024	14/11/2013	R10		

INTERVIEW2			
OfficerID	CustomerID	Date	Time
S1011	P100	12/11/2013	10:00
S1011	P105	12/11/2013	12:00
S1024	P108	14/11/2013	14:00
S1024	P107	14/11/2013	14:00

Project FDs on two new relation schemas. INTERVIEW1: {OfficerID, Date} → {Room}

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} → {CustomerID}

INTERVIEW1			
OfficerID	Date	Room	
S1011	12/11/2013	R15	
S1024	14/11/2013	R10	

INTERVIEW2			
OfficerID	CustomerID	Date	Time
S1011	P100	12/11/2013	10:00
S1011	P105	12/11/2013	12:00
S1024	P108	14/11/2013	14:00
S1024	P107	14/11/2013	14:00

Project FDs on two new relation schemas.
 INTERVIEW1: {OfficerID, Date} → {Room}
 INTERVIEW2: {CustomerID, Date} → {OfficerID, Time}, {OfficerID, Date, Time} → {CustomerID}.

BCNF - Exercise

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} → {CustomerID}
 - {Date, Time, Room} → {CustomerID}

INTERVIEW1				
OfficerID Date Room				
S1011	12/11/2013	R15		
S1024	14/11/2013	R10		

INTERVIEW2				
OfficerID CustomerID Date Time				
S1011	P100	12/11/2013	10:00	
S1011 P105		12/11/2013	12:00	
S1024	P108	14/11/2013	14:00	
S1024	P107	14/11/2013	14:00	

Is this decomposition dependency-preservation?

BCNF - Exercise

- Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
 - {OfficerID, Date} → {Room}
 - {CustomerID, Date} → {OfficerID, Time}
 - {OfficerID, Date, Time} \rightarrow {CustomerID}
 - {Date, Time, Room} → {CustomerID}

INTERVIEW1				
OfficerID Date Room				
S1011	12/11/2013	R15		
S1024	14/11/2013	R10		

	INTERVI	EW2		
OfficerID CustomerID Date Time				
S1011 P100		12/11/2013	10:00	
S1011 P105		12/11/2013	12:00	
S1024	P108	14/11/2013	14:00	
S1024	P107	14/11/2013	14:00	

Is this decomposition dependency-preservation?
 No because {Date, Time, Room} → {CustomerID} is lost (and cannot be recovered)!

 When applying BCNF decomposition, the order in which the FDs are applied may lead to different results.

- When applying BCNF decomposition, the order in which the FDs are applied may lead to different results.
- **Example:** Consider $R = \{A, B, C\}$ and $\{A \rightarrow B, C \rightarrow B, B \rightarrow C\}$.

- When applying BCNF decomposition, the order in which the FDs are applied may lead to different results.
- **Example:** Consider $R = \{A, B, C\}$ and $\{A \rightarrow B, C \rightarrow B, B \rightarrow C\}$.
 - Case 1: (Using C → B first)

- When applying BCNF decomposition, the order in which the FDs are applied may lead to different results.
- **Example:** Consider $R = \{A, B, C\}$ and $\{A \rightarrow B, C \rightarrow B, B \rightarrow C\}$.
 - Case 1: (Using C → B first)

$$R_1 = \{B, C\}, \Sigma_1 = \{B \to C.C \to B\}; R_2 = \{A, C\}, \Sigma_2 = \{A \to C\}$$

- When applying BCNF decomposition, the order in which the FDs are applied may lead to different results.
- **Example:** Consider $R = \{A, B, C\}$ and $\{A \rightarrow B, C \rightarrow B, B \rightarrow C\}$.
 - Case 1: (Using $C \rightarrow B$ first)

$$R_1 = \{B, C\}, \Sigma_1 = \{B \to C.C \to B\}; R_2 = \{A, C\}, \Sigma_2 = \{A \to C\}$$

• Case 2: (Using $B \rightarrow C$ first)

- When applying BCNF decomposition, the order in which the FDs are applied may lead to different results.
- **Example:** Consider $R = \{A, B, C\}$ and $\{A \rightarrow B, C \rightarrow B, B \rightarrow C\}$.
 - Case 1: (Using $C \rightarrow B$ first)

$$R_1 = \{B, C\}, \Sigma_1 = \{B \to C.C \to B\}; R_2 = \{A, C\}, \Sigma_2 = \{A \to C\}$$

• **Case 2:** (Using *B* → *C* first)

$$R_1' = \{B,C\}, \Sigma_1' = \{B \to C, C \to B\}; R_2' = \{A,B\}, \Sigma_2' = \{A \to B\};$$

Lossless Join & Dependency Preservation

- So far, we know how to find a lossless BCNF-decomposition, but it may not be dependency-preserving.
- Is there a less restrictive normal form such that a lossless and dependency-preserving decomposition can always be found?

Lossless Join & Dependency Preservation

- So far, we know how to find a lossless BCNF-decomposition, but it may not be dependency-preserving.
- Is there a less restrictive normal form such that a lossless and dependency-preserving decomposition can always be found?
 Yes, refer to 3NF.

3NF - Definition

- A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
- Question: If R is in BCNF, then R is in 3NF?

3NF - Definition

- A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
- Question: If R is in BCNF, then R is in 3NF?Yes

3NF - Definition

- A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
- Question: If R is in BCNF, then R is in 3NF?
 Yes
- 3NF preserves all the functional dependencies at the cost of allowing some data redundancy.

- Consider the following FDs of ENROL:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName};
 - {ConfirmedBy_ID} \rightarrow {StaffName}.

Enrol				
StudentID	<u>CourseNo</u>	<u>Semester</u>	ConfirmedBy ₋ ID	StaffName
123456	COMP2400	2010 S2	u12	Jane
123458	COMP2400	2008 S2	u13	Linda
123458	COMP2600	2008 S2	u13	Linda

- Consider the following FDs of ENROL:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName};
 - $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}.$

Enrol				
StudentID	<u>CourseNo</u>	<u>Semester</u>	ConfirmedBy ₋ ID	StaffName
123456	COMP2400	2010 S2	u12	Jane
123458	COMP2400	2008 S2	u13	Linda
123458	COMP2600	2008 S2	u13	Linda

Is ENROL in 3NF?

- Consider the following FDs of ENROL:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName};
 - $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}.$

Enrol				
StudentID	<u>CourseNo</u>	Semester	ConfirmedBy ₋ ID	StaffName
123456	COMP2400	2010 S2	u12	Jane
123458	COMP2400	2008 S2	u13	Linda
123458	COMP2600	2008 S2	u13	Linda

Is ENROL in 3NF?

• {StudentID, CourseNo, Semester} is the only key.

- Consider the following FDs of ENROL:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName};
 - $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}.$

Enrol				
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	ConfirmedBy ₋ ID	StaffName
123456	COMP2400	2010 S2	u12	Jane
123458	COMP2400	2008 S2	u13	Linda
123458	COMP2600	2008 S2	u13	Linda

Is ENROL in 3NF?

{StudentID, CourseNo, Semester} is the only key.

A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.

- Consider the following FDs of ENROL:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName};
 - {ConfirmedBy_ID} \rightarrow {StaffName}.

ENROL				
<u>StudentID</u>	<u>CourseNo</u>	Semester	ConfirmedBy ₋ ID	StaffName
123456	COMP2400	2010 S2	u12	Jane
123458	COMP2400	2008 S2	u13	Linda
123458	COMP2600	2008 S2	u13	Linda

Is ENROL in 3NF?

- {StudentID, CourseNo, Semester} is the only key.
 - A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
- Not in 3NF, because of {ConfirmedBy_ID} → {StaffName}: {ConfirmedBy_ID} is NOT a superkey and {StaffName} is NOT a prime attribute.

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

Output: a set S of relation schemas in 3NF, each having a set of FDs

• Compute a **minimal cover** Σ' for Σ and start with $S = \phi$

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

- Compute a **minimal cover** Σ' for Σ and start with $S = \phi$
- Group FDs in Σ' by their left-hand-side attribue sets

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

- Compute a **minimal cover** Σ' for Σ and start with $S = \phi$
- Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct left-hand-side X_i of FDs in Σ' that includes $X_i \to A_1, X_i \to A_2, \dots, X_i \to A_k$:
 - Add $R_i = X_i \cup \{A_1\} \cup \{A_2\} \cdots \cup \{A_k\}$ to S

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

- Compute a **minimal cover** Σ' for Σ and start with $S = \phi$
- Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct left-hand-side X_i of FDs in Σ' that includes $X_i \to A_1, X_i \to A_2, \dots, X_i \to A_k$:
 - Add $R_i = X_i \cup \{A_1\} \cup \{A_2\} \cdots \cup \{A_k\}$ to S
- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_j$)

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

- Compute a **minimal cover** Σ' for Σ and start with $S = \phi$
- Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct left-hand-side X_i of FDs in Σ' that includes $X_i \to A_1, X_i \to A_2, \dots, X_i \to A_k$:
 - Add $R_i = X_i \cup \{A_1\} \cup \{A_2\} \cdots \cup \{A_k\}$ to S
- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_j$)
- if S does not contain a superkey of R, add a key of R as R_0 into S.

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

- Compute a **minimal cover** Σ' for Σ and start with $S = \phi$
- Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct left-hand-side X_i of FDs in Σ' that includes $X_i \to A_1, X_i \to A_2, \dots, X_i \to A_k$:
 - Add $R_i = X_i \cup \{A_1\} \cup \{A_2\} \cdots \cup \{A_k\}$ to S
- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_j$)
- if S does not contain a superkey of R, add a key of R as R_0 into S.
- Project the FDs in Σ' onto each relation schema in S

R

$$R_1 = X_1 A_1 ... A_K$$

•••

$$\mathbf{R}_{n} = \mathbf{X}_{n}\mathbf{A}$$

$$X_1 \rightarrow A_1$$

...

 $X_1 \rightarrow A_K$

A minimal cover

...

 $X_n \rightarrow A$

- Σ_1 and Σ_2 are **equivalent** if $\Sigma_1^* = \Sigma_2^*$.
- $\Sigma_1^* = \Sigma_2^*$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

- Σ_1 and Σ_2 are **equivalent** if $\Sigma_1^* = \Sigma_2^*$.
- $\Sigma_1^* = \Sigma_2^*$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

Example 1:

$$\Sigma_1=\{X\to Y,\,Y\to Z,X\to Z\} \text{ and } \Sigma_2=\{X\to Y,\,Y\to Z\}$$
 If $\Sigma_1^*=\Sigma_2^*,$

- Σ_1 and Σ_2 are **equivalent** if $\Sigma_1^* = \Sigma_2^*$.
- $\Sigma_1^* = \Sigma_2^*$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

Example 1:

$$\Sigma_1 = \{X \to Y, Y \to Z, X \to Z\} \text{ and } \Sigma_2 = \{X \to Y, Y \to Z\}$$
 If $\Sigma_1^* = \Sigma_2^*$, then Σ_1 is not **minimal**

- Σ_1 and Σ_2 are equivalent if $\Sigma_1^* = \Sigma_2^*$.
- $\Sigma_1^* = \Sigma_2^*$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

Example 1:

$$\Sigma_1 = \{X \to Y, Y \to Z, X \to Z\}$$
 and $\Sigma_2 = \{X \to Y, Y \to Z\}$ If $\Sigma_1^* = \Sigma_2^*$, then Σ_1 is not **minimal**

Example 2:

$$\Sigma_1 = \{X \to Y, XY \to Z\}$$
 and $\Sigma_2 = \{X \to Y, X \to Z\}$
If $\Sigma_1^* = \Sigma_2^*$,

- Σ_1 and Σ_2 are **equivalent** if $\Sigma_1^* = \Sigma_2^*$.
- $\Sigma_1^* = \Sigma_2^*$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

Example 1:

$$\Sigma_1 = \{X \to Y, Y \to Z, X \to Z\}$$
 and $\Sigma_2 = \{X \to Y, Y \to Z\}$ If $\Sigma_1^* = \Sigma_2^*$, then Σ_1 is not **minimal**

Example 2:

$$\Sigma_1 = \{X \to Y, XY \to Z\}$$
 and $\Sigma_2 = \{X \to Y, X \to Z\}$
If $\Sigma_1^* = \Sigma_2^*$, then Σ_1 is not minimal

- Σ_1 and Σ_2 are **equivalent** if $\Sigma_1^* = \Sigma_2^*$.
- $\Sigma_1^* = \Sigma_2^*$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

Example 1:

$$\Sigma_1 = \{X \to Y, Y \to Z, X \to Z\}$$
 and $\Sigma_2 = \{X \to Y, Y \to Z\}$
If $\Sigma_1^* = \Sigma_2^*$, then Σ_1 is not **minimal**

Example 2:

$$\Sigma_1 = \{X \to Y, XY \to Z\}$$
 and $\Sigma_2 = \{X \to Y, X \to Z\}$
If $\Sigma_1^* = \Sigma_2^*$, then Σ_1 is not **minimal**

Questions: Can we find the minimal one among equivalent sets of FDs?

Minimal Cover - The Hard Part!

Minimal Cover – The Hard Part!

- Let Σ be a set of FDs. A **minimal cover** Σ_m of Σ is a set of FDs such that

Minimal Cover – The Hard Part!

- Let Σ be a set of FDs. A minimal cover Σ_m of Σ is a set of FDs such that
 - **1** Σ_m is equivalent to Σ , i.e., start with $\Sigma_m = \Sigma$;
 - **Dependent:** each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \to \{A_1, \ldots, A_k\}$ in Σ_m with $X \to A_1, \ldots, X \to A_k$;

Minimal Cover – The Hard Part!

- Let Σ be a set of FDs. A **minimal cover** Σ_m of Σ is a set of FDs such that
 - **1** Σ_m is equivalent to Σ , i.e., start with $\Sigma_m = \Sigma$;
 - **Dependent:** each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \to \{A_1, \ldots, A_k\}$ in Σ_m with $X \to A_1, \ldots, X \to A_k$;
 - **3 Determinant:** each FD has as few attributes on the left hand side as possible, i.e., for each FD $X \to A$ in Σ_m , check each attribute B of X to see if we can replace $X \to A$ with $(X B) \to A$ in Σ_m ;

Minimal Cover – The Hard Part!

- Let Σ be a set of FDs. A minimal cover Σ_m of Σ is a set of FDs such that
 - **1** Σ_m is equivalent to Σ , i.e., start with $\Sigma_m = \Sigma$;
 - **Dependent:** each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \to \{A_1, \ldots, A_k\}$ in Σ_m with $X \to A_1, \ldots, X \to A_k$;
 - **3 Determinant:** each FD has as few attributes on the left hand side as possible, i.e., for each FD $X \to A$ in Σ_m , check each attribute B of X to see if we can replace $X \to A$ with $(X B) \to A$ in Σ_m ;
 - **1** Remove a FD from Σ_m if it is redundant.

- Given the set of FDs Σ {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID, StaffName} {ConfirmedBy_ID} \rightarrow {StaffName}
- we can compute the minimal cover of Σ as follows:

- Given the set of FDs Σ {StudentID, CourseNo, Semester} \to {ConfirmedBy_ID, StaffName} {ConfirmedBy_ID} \to {StaffName}
- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ ;

- Given the set of FDs Σ {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID, StaffName} {ConfirmedBy_ID} \rightarrow {StaffName}
- we can compute the minimal cover of Σ as follows:
 - start from Σ;
 - 2 check whether all the FDs in Σ have only one attribute on the right hand side;

- Given the set of FDs Σ {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID, StaffName} {ConfirmedBy_ID} \rightarrow {StaffName}
- lacktriangle we can compute the minimal cover of Σ as follows:
 - start from Σ;
 - 2 check whether all the FDs in Σ have only one attribute on the right hand side;
 - $\{ \textbf{StudentID}, \, \textbf{CourseNo}, \, \textbf{Semester} \} \rightarrow \{ \begin{array}{c} \textbf{ConfirmedBy_ID}, \, \textbf{StaffName} \end{array} \}$

- Given the set of FDs Σ {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName} {ConfirmedBy_ID} → {StaffName}
- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ :
 - 2 check whether all the FDs in Σ have only one attribute on the right hand side;

```
 \begin{aligned} & \{ \text{StudentID, CourseNo, Semester} \} \to \{ \begin{array}{c} \text{ConfirmedBy\_ID, StaffName} \\ \text{StudentID, CourseNo, Semester} \} \to \{ \begin{array}{c} \text{ConfirmedBy\_ID} \\ \\ \text{StudentID, CourseNo, Semester} \} \to \{ \begin{array}{c} \text{StaffName} \\ \\ \end{array} \} \end{aligned}
```


• Given the set of FDs Σ {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID} {StudentID, CourseNo, Semester} \rightarrow {StaffName} {ConfirmedBy_ID} \rightarrow {StaffName}

- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ ;
 - check whether all the FDs in Σ have only one attribute on the right hand side;

• Given the set of FDs Σ {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID} {StudentID, CourseNo, Semester} \rightarrow {StaffName} {ConfirmedBy_ID} \rightarrow {StaffName}

- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ :
 - Check whether all the FDs in Σ have only one attribute on the right hand side;
 - (3) check whether all the FDs in Σ have redundant attribute on the left hand side:

```
 \begin{split} & \{ StudentID, CourseNo, Semester \} \rightarrow \{ ConfirmedBy\_ID \} \\ & \{ StudentID, CourseNo, Semester \} \rightarrow \{ StaffName \} \\ & \{ ConfirmedBy\_ID \} \rightarrow \{ StaffName \} \end{split}
```

- lacktriangle we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ :
 - ② check whether all the FDs in Σ have only one attribute on the right hand side:
 - $\ensuremath{ \bullet}$ check whether all the FDs in Σ have redundant attribute on the left hand side;

```
check if { StudentID, CourseNo, Semester } \rightarrow {ConfirmedBy_ID} is minimal with respect to the left hand side check if { StudentID, CourseNo, Semester } \rightarrow {StaffName} is minimal with respect to the left hand side
```


Given the set of FDs Σ

```
 \begin{split} & \{ StudentID, \, CourseNo, \, Semester \} \rightarrow \{ ConfirmedBy\_ID \} \\ & \{ StudentID, \, CourseNo, \, Semester \} \rightarrow \{ StaffName \} \\ & \{ ConfirmedBy\_ID \} \rightarrow \{ StaffName \} \end{split}
```

- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ :
 - Check whether all the FDs in Σ have only one attribute on the right hand side:
 - 3 check whether all the FDs in Σ have redundant attribute on the left hand side;
 (Confirmed D. J. D. Constant)

```
check if { StudentID, CourseNo, Semester } \rightarrow {ConfirmedBy_ID} is minimal with respect to the left hand side check if { StudentID, CourseNo, Semester } \rightarrow {StaffName} is minimal with respect to the left hand side
```

All look good!

• Given the set of FDs Σ {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID} {StudentID, CourseNo, Semester} \rightarrow {StaffName} {ConfirmedBy_ID} \rightarrow {StaffName}

- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ ;
 - check whether all the FDs in Σ have only one attribute on the right hand side;
 - o check whether all the FDs in Σ have redundant attribute on the left hand side;

```
\begin{aligned} & \{ \text{StudentID, CourseNo, Semester} \} \rightarrow \{ \text{ConfirmedBy\_ID} \} \\ & \{ \text{StudentID, CourseNo, Semester} \} \rightarrow \{ \text{StaffName} \} \\ & \{ \text{ConfirmedBy\_ID} \} \rightarrow \{ \text{StaffName} \} \end{aligned}
```

- we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ ;
 - Check whether all the FDs in Σ have only one attribute on the right hand side:
 - check whether all the FDs in Σ have redundant attribute on the left hand side;
 - look for a redundant FD in $\{$ StudentID, CourseNo, Semester $\} \rightarrow \{$ ConfirmedBy_ID $\}$, $\{$ StudentID, CourseNo, Semester $\} \rightarrow \{$ StaffName $\}$, $\{$ ConfirmedBy_ID $\} \rightarrow \{$ StaffName $\}$ $\}$

```
 \begin{split} & \{ \text{StudentID, CourseNo, Semester} \} \rightarrow \{ \text{ConfirmedBy\_ID} \} \\ & \{ \text{StudentID, CourseNo, Semester} \} \rightarrow \{ \text{StaffName} \} \\ & \{ \text{ConfirmedBy\_ID} \} \rightarrow \{ \text{StaffName} \} \end{split}
```

- ullet we can compute the minimal cover of Σ as follows:
 - \bigcirc start from Σ ;
 - Check whether all the FDs in Σ have only one attribute on the right hand side:
 - check whether all the FDs in Σ have redundant attribute on the left hand side;
 - look for a redundant FD in $\{$ StudentID, CourseNo, Semester $\} \rightarrow \{$ ConfirmedBy_ID $\}$, $\{$ StudentID, CourseNo, Semester $\} \rightarrow \{$ StaffName $\}$, $\{$ ConfirmedBy_ID $\} \rightarrow \{$ StaffName $\}$ $\}$
 - {StudentID, CourseNo, Semester} → {StaffName} is redundant and thus is removed

```
{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
{StudentID, CourseNo, Semester} → {StaffName}
\{ConfirmedBy\_ID\} \rightarrow \{StaffName\}
```

- we can compute the minimal cover of Σ as follows:
 - start from Σ;
 - \bigcirc check whether all the FDs in Σ have only one attribute on the right hand side:
 - \odot check whether all the FDs in Σ have redundant attribute on the left hand side:
 - lacktriangle look for a redundant FD in $\{$ $\{$ StudentID, CourseNo, Semester $\}
 ightarrow$ {ConfirmedBy_ID}, {StudentID, CourseNo, Semester} → $\{StaffName\}, \{ConfirmedBy_ID\} \rightarrow \{StaffName\}\}$
 - {StudentID, CourseNo, Semester} → {StaffName} is redundant and thus is removed
 - Therefore, the minial cover of Σ is { {StudentID, CourseNo, $Semester\} \rightarrow \{ConfirmedBy_ID\}, \{ConfirmedBy_ID\} \rightarrow \{StaffName\}\}$ 38/50

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - $\bullet \ \{ConfirmedBy_ID\} \to \{StaffName\}$

[StudentID	CourseNo	Semester ConfirmedBy_ID S		StaffName

• Can we normalise ENROL into 3NF by a lossless and dependency preserving decomposition?

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - {ConfirmedBy₋ID} → {StaffName}

StudentID CourseNo		Semester ConfirmedBy_ID		StaffName

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}$

3	StudentID CourseNo		Semester ConfirmedBy_ID S		StaffName

- A minimal cover is {{StudentID, CourseNo, Semester} →
 {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:
 - R_1 ={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID}

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}$

StudentID CourseNo		<u>Semester</u>	Semester ConfirmedBy_ID	

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:
 - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
 - R_2 ={ConfirmedBy_ID, StaffName} with {ConfirmedBy_ID} \rightarrow {StaffName}

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - {ConfirmedBy₋ID} → {StaffName}

3	StudentID CourseNo		Semester ConfirmedBy_ID S		StaffName

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:
 - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
 - R₂={ConfirmedBy₋ID, StaffName} with {ConfirmedBy₋ID} → {StaffName}
 - Omit R_0 because R_1 is a superkey of ENROL.

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - {ConfirmedBy₋ID} → {StaffName}

StudentID CourseNo		Semester ConfirmedBy_ID		StaffName	

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:
 - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
 - R₂={ConfirmedBy_ID, StaffName} with {ConfirmedBy_ID} → {StaffName}
 - Omit R_0 because R_1 is a superkey of ENROL.
- Is {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName} preserved?

- Consider ENROL again:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName}
 - {ConfirmedBy₋ID} → {StaffName}

StudentID CourseNo S		Semester ConfirmedBy_ID		StaffName

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:
 - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
 - R₂={ConfirmedBy_ID, StaffName} with {ConfirmedBy_ID} → {StaffName}
 - Omit R_0 because R_1 is a superkey of ENROL.
- Is {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName} preserved? Yes.

Consider Interview:

Interview					
OfficerID	OfficerID CustomerID Date Time Room				
S1011	P100	12/11/2013	10:00	R15	

- OfficerID, Date} → {Room}
- {CustomerID, Date} → {OfficerID, Time}
- {OfficerID, Date, Time} → {CustomerID}
- Is Interview in 3NF? If not, normalise Interview into lossless and dependency preserving 3NF.

Consider Interview:

Interview					
OfficerID	OfficerID CustomerID Date Time Room				
S1011	P100	12/11/2013	10:00	R15	

- OfficerID, Date} → {Room}
- {CustomerID, Date} → {OfficerID, Time}
- § OfficerID, Date, Time

 } → {CustomerID}
- Is Interview in 3NF? If not, normalise Interview into lossless and dependency preserving 3NF.
 - A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.

Consider Interview:

Interview					
OfficerID	OfficerID CustomerID Date Time Room				
S1011	P100	12/11/2013	10:00	R15	

- \bigcirc {OfficerID, Date} \rightarrow {Room}
- {CustomerID, Date} → {OfficerID, Time}
- § (OfficerID, Date, Time) → {CustomerID}
- Is Interview in 3NF? If not, normalise Interview into lossless and dependency preserving 3NF.
 - A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
 - We know that {CustomerID, Date}, {OfficerID, Date, Time}, and {Date, Time, Room} are the keys.

Consider Interview:

Interview						
OfficerID	OfficerID CustomerID Date Time Room					
S1011	P100	12/11/2013	10:00	R15		

- \bigcirc {OfficerID, Date} \rightarrow {Room}
- {CustomerID, Date} → {OfficerID, Time}
- § (OfficerID, Date, Time) → {CustomerID}
- 4 {Date, Time, Room} → {CustomerID}
- Is Interview in 3NF? If not, normalise Interview into lossless and dependency preserving 3NF.
 - A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
 - We know that {CustomerID, Date}, {OfficerID, Date, Time}, and {Date, Time, Room} are the keys.

INTERVIEW is in 3NF because all the attributes are prime attributes.

- Let us consider a relation schema LOTS(PropertyID, County, Lot, Area) with the following FDS:
 - FD1: PropertyID → Lot, County, Area
 - $\bullet \ \ \mathsf{FD2} \colon \mathsf{Lot}, \ \mathsf{County} \to \mathsf{Area}, \ \mathsf{PropertyID}$
 - FD3: Area → County

- Let us consider a relation schema LOTS(PropertyID, County, Lot, Area) with the following FDS:
 - FD1: PropertyID → Lot, County, Area
 - FD2: Lot, County → Area, PropertyID
 - FD3: Area → County
- Let us abbriviate attributes of LOTS with first letter of each attribute and represent our set of dependencies as F: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
- The minimal cover of a set of functional dependencies always exists but is not necessarily unique.

 $\bullet \ \, (Case \ X) \ Find \ a \ minimal \ cover \ of \ F = \{P \rightarrow LCA, \ LC \rightarrow AP, \ A \rightarrow C\}$

• (Case X) Find a minimal cover of $F = \{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$

- (Case X) Find a minimal cover of $F = \{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - $\textbf{2 Dependent:} \ \{P \rightarrow L, \ P \rightarrow C, \ P \rightarrow A, \ LC \rightarrow A, \ LC \rightarrow P, \ A \rightarrow C\}.$

- (Case X) Find a minimal cover of $F = \{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **Dependent:** $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Determinant: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.

- (Case X) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **Dependent:** $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}.$

 - **4** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.

- (Case X) Find a minimal cover of F = {P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C}
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.

 - **1** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \to LC, LC \to AP, A \to C\}$.

- (Case X) Find a minimal cover of F = {P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C}
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Determinant: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \rightarrow LC, LC \rightarrow AP, A \rightarrow C\}$.
- (Case Y) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$

- (Case X) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Determinant: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **1** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \rightarrow LC, LC \rightarrow AP, A \rightarrow C\}$.
- (Case Y) Find a minimal cover of F = {P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C}
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$

- (Case X) Find a minimal cover of F = {P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C}
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - $\textbf{3 Determinant:} \ \{P \rightarrow L, \, P \rightarrow C, \, P \rightarrow A, \, LC \rightarrow A, \, LC \rightarrow P, \, A \rightarrow C\}.$
 - **1** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \rightarrow LC, LC \rightarrow AP, A \rightarrow C\}$.
- (Case Y) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.

- (Case X) Find a minimal cover of F = {P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C}
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - $\textbf{3 Determinant:} \ \{P \rightarrow L, \, P \rightarrow C, \, P \rightarrow A, \, LC \rightarrow A, \, LC \rightarrow P, \, A \rightarrow C\}.$
 - **4** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \to LC, LC \to AP, A \to C\}$.
- (Case Y) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Determinant: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.

- (Case X) Find a minimal cover of F = {P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C}
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - $\textbf{3 Determinant:} \ \{P \rightarrow L, \, P \rightarrow C, \, P \rightarrow A, \, LC \rightarrow A, \, LC \rightarrow P, \, A \rightarrow C\}.$
 - **4** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \to LC, LC \to AP, A \to C\}$.
- (Case Y) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Determinant: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **Remove redundant FD:** $\{LC \rightarrow P, P \rightarrow A\} \models LC \rightarrow A$. $\{P \rightarrow A, A \rightarrow C\} \models P \rightarrow C$.

- (Case X) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - $\textbf{3 Determinant:} \ \{P \rightarrow L, \, P \rightarrow C, \, P \rightarrow A, \, LC \rightarrow A, \, LC \rightarrow P, \, A \rightarrow C\}.$
 - **4** Remove redundant FD: $\{P \rightarrow LC, LC \rightarrow A\} \models P \rightarrow A$.
 - **5** Thus a minimal cover is $\{P \rightarrow LC, LC \rightarrow AP, A \rightarrow C\}$.
- (Case Y) Find a minimal cover of F = $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **1** Initialise: $\{P \rightarrow LCA, LC \rightarrow AP, A \rightarrow C\}$
 - **2** Dependent: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **3** Determinant: $\{P \rightarrow L, P \rightarrow C, P \rightarrow A, LC \rightarrow A, LC \rightarrow P, A \rightarrow C\}$.
 - **1** Remove redundant FD: $\{LC \rightarrow P, P \rightarrow A\} \models LC \rightarrow A$. $\{P \rightarrow A, A \rightarrow C\} \models P \rightarrow C$.
 - **5** Thus a minimal cover is $\{P \rightarrow LA, LC \rightarrow P, A \rightarrow C\}$.

BCNF: Whenever a non-trivial FD $X \rightarrow A$ holds in R, then X is a **superkey**.

BCNF: Whenever a non-trivial FD $X \rightarrow A$ holds in R, then X is a **superkey**.

Do not represent the same fact more than once within a relation, even if some FDs have to be abandoned!

BCNF: Whenever a non-trivial FD $X \rightarrow A$ holds in R, then X is a **superkey**.

Do not represent the same fact more than once within a relation, even if some FDs have to be abandoned!

• **3NF**: Whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.

BCNF: Whenever a non-trivial FD $X \rightarrow A$ holds in R, then X is a **superkey**.

Do not represent the same fact more than once within a relation, even if some FDs have to be abandoned!

• **3NF**: Whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.

Do not abandon any FDs, even if some facts have to be represented more than once within a relation!

BCNF-decomposition

- Repeat until no changes
 - Find a problematic FD
 - Split R into two smaller ones and project FDs

BCNF-decomposition

- Repeat until no changes
 - Find a problematic FD
 - Split R into two smaller ones and project FDs

3NF-decomposition

- Find a minimal cover
- Group FDs in the minimal cover
- Remove redundant ones
- Add a key (if necessary)
- Project FDs

BCNF-decomposition

- Repeat until no changes
 - Find a problematic FD
 - Split R into two smaller ones and project FDs

3NF-decomposition

- Find a minimal cover
- Group FDs in the minimal cover
- Remove redundant ones
- Add a key (if necessary)
- Project FDs

What properties do these algorithms have?

BCNF-decomposition

- Repeat until no changes
 - Find a problematic FD
 - Split R into two smaller ones and project FDs

3NF-decomposition

- Find a minimal cover
- Group FDs in the minimal cover
- Remove redundant ones
- Add a key (if necessary)
- Project FDs

What properties do these algorithms have?

Lossless join

Lossless join + dependency preservation

BCNF-decomposition

- Repeat until no changes
 - Find a problematic FD
 - Split R into two smaller ones and project FDs

3NF-decomposition

- Find a minimal cover
- Group FDs in the minimal cover
- Remove redundant ones
- Add a key (if necessary)
- Project FDs

What do you need to compute using FDs?

BCNF-decomposition

- Repeat until no changes
 - Find a problematic FD
 - Split R into two smaller ones and project FDs

3NF-decomposition

- Find a minimal cover
- Group FDs in the minimal cover
- Remove redundant ones
- Add a key (if necessary)
- Project FDs

What do you need to compute using FDs?

SOME superkeys (check)

SOME superkeys (check)
ALL candidate keys
ONE minimal cover

Denormalisation

- Do we need to normalize relation schemas in all cases when designing a relational database?
- Denormalisation is a design process that
 - happens after the normalisation process,
 - is often performed during the physical design stage, and
 - reduces the number of relations that need to be joined for certain queries.
- We need to distinguish:
 - Unnormalised there is no systematic design.
 - Normalised redundancy is reduced after a systematic design (to minimise data inconsistencies).
 - Denormalised redundancy is introduced after analysing the normalised design (to improve efficiency of queries)

- Normalisation: No Data Redundancy but No Efficient Query Processing
- Data redundancies are eliminated in the following relations.

Course		
<u>CourseNo</u>	Unit	

Enrol			
StudentID	CourseNo	Semester	

- Normalisation: No Data Redundancy but No Efficient Query Processing
- Data redundancies are eliminated in the following relations.

ENROL			
StudentID	CourseNo	Semester	

 However, the query for "list the names of students who enrolled in a course with 6 units" requires 2 join operations.

```
SELECT Name, CourseNo

FROM ENROL e, COURSE c, STUDENT s

WHERE e.StudentID=s.StudentID AND e.CourseNo=c.CourseNo

AND c.Unit=6;
```


- Denormalisation: Data Redundancy but Efficient Query Processing
- If a student enrolled 15 courses, then the name and DoB of this student need to be stored repeatedly 15 times in ENROLMENT.

ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	<u>Semester</u>	Unit
Tom	123456	25/01/1988	COMP2400	2010 S2	6
Tom	123456	25/01/1988	COMP8740	2011 S2	12
Michael	123458	21/04/1985	COMP2400	2009 S2	6

- Denormalisation: Data Redundancy but Efficient Query Processing
- If a student enrolled 15 courses, then the name and DoB of this student need to be stored repeatedly 15 times in ENROLMENT.

ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	<u>Semester</u>	Unit
Tom	123456	25/01/1988	COMP2400	2010 S2	6
Tom	123456	25/01/1988	COMP8740	2011 S2	12
Michael	123458	21/04/1985	COMP2400	2009 S2	6

 The query for "list the names of students who enrolled a course with 6 units" can be processed efficiently (no join needed).

SELECT Name, CourseNo FROM ENROLMENT WHERE Unit=6;

(credit cookie) Raymond F. Boyce (1947-1974)

SEQUEL: A STRUCTURED ENGLISH QUERY LANGUAGE

by

Donald D. Chamberlin Raymond F. Boyce

IBM Research Laboratory San Jose, California

ABSTRACT: In this paper we present the data manipulation facility for a structured English query language (SEQUEL) which can be used for accessing data in an integrated relational data base. Without resorting to the concepts of bound variables and quantifiers SEQUEL identifies a set of simple operations on tabular structures, which can be shown to be of equivalent power to the first order predicate calculus. A SEQUEL user is presented with a consistent set of keyword English templates which reflect how people use tables to obtain information. Moreover, the SEQUEL user is able to compose these basic templates in a structured manner in order to form more complex queries. SEQUEL is intended as a data base user language for both the professional programmer and the more infrequent data base user.

"SEQUEL: A Structured English Query Language",
D.D. Chamberlin and R.F. Boyce,
Proc. ACM SIGMOD Workshop on Data Description, Access and Control,
Ann Arbor, Michigan (May 1974)