Intersection of hyperbolic paraboloid (saddle) and cylinder

Surface defined on the base of cylinder

Intersection of two cylinders

 $\uparrow \quad z \quad y^2 + z^2 = r^2$

Volume of the solid

8 times of the volume of this solid

Tutorial 8 Q2

http://www.math.tamu.edu/~Tom.Kiffe/calc3/ newcylinder/2cylinder.html

projection to xy plane of intersection of two cylinders is $x^2 + y^2 = r^2$

equation of the curve of intersection is

$$z=\pm\sqrt{r^2-y^2}$$
, where y is on the project (circle)
 $x^2+y^2=r^2$

OR
$$z(t) = (\pm \sqrt{r^2 - t^2})i + tj + (\pm \sqrt{r^2 - t^2})k$$

equation of the surface above the region

$$x^2 + y^2 \le r^2$$
 is given by

$$z = f(x, y) = \sqrt{r^2 - y^2}$$