Basic Concepts of OS

- 1. Interrupts ,Storage structure , I/O structure
- 2. Operating-System Operations , Multiprogramming , Multi Processing, Dual Moed, Multi Mode ,Timer
- 3. Computing Environments, Traditional Computing, Mobile Computing, Client Serve Computing, Peer to peer Computing, Cloud Computing, Real Time Embedded System
- 4. System Services, Linker and Loader, Kernel Structure

Topics and sub topics of Chapter 3 Processes

- 1. Process Concept
 - a. Process
 - b. Process State
 - c. Process Control Block
 - d. Threads
- 2. Process Scheduling
 - a. Scheduling Queues
 - b. CPU scheduling
 - c. Context Switches
- 3. Operations on Processes
 - a. Process creation
 - b. Process Termination
- 4. Interprocess Communication
- 5. IPC shared memory system
- 6. IPC in message Passing System
 - a. Naming
 - b. Synchronization
 - c. Buffering
- 7. Pipes
 - a. Named Pipes
 - b. Unnamed Pipes

Topic and sub Topic of Chapter 4: Thread and Concurrency

- 1. Overview
- 2. Multi core programming
 - a. Programming challenges
 - b. Types of parallelism
- 3. Multi-Threading Model
 - a. Many to one Model
 - b. One to one Model
 - c. Many to many Model
- 4. Threads Libraries
 - a. P-thread
- 5. Thread Creation
- 6. Thread Issue

- a. The fork() and exec() system call
- b. Signal Handling
- c. Threading Cancellation
- d. Thread local Storage
- e. Schedular activation

Topic and sub Topic of Chapter 5: CPU Scheduling

- 1. Basic Concepts
 - a. CPU I/O Brust Cycle
 - b. CPU scheduler
 - c. Preemptive and non-preemptive
 - d. Dispatcher
- 2. Scheduling Criteria
- 3. Scheduling Algorithm
 - a. First Come First Serve scheduler
 - b. Shortest Job scheduler
 - c. Round Robin Scheduling
 - d. Priority Scheduling
 - e. Multilevel Queue Scheduling
 - f. Multilevel feedback Queue Scheduling
- 4. Thread Scheduling
 - a. Contention Scope
 - b. Pthread Scheduling
- 5. Multi-Processor scheduling
 - a. Approaches of multi-processor scheduling
 - b. Multi Core Processor
 - c. Multithreading Multicore system
 - d. Load Balancing
 - i. Push Migration
 - ii. Pull Migration
 - e. Processor Affinity
- i. Hard Affinity
 - iii. Soft affinity
 - f. Heterogenous Multiprocessing

Topic and Sub Topic of Chapter 5 CPU Scheduling

- 1. Basic Concepts
 - a. CPU I/O Brust Cycle
 - b. CPU scheduler
 - c. Preemptive and non-preemptive
 - d. Dispatcher
- 2. Scheduling Criteria
- 3. Scheduling Algorithm
 - a. First Come First Serve scheduler
 - b. Shortest Job scheduler

- c. Round Robin Scheduling's
- d. Priority Scheduling
- e. Multilevel Queue Scheduling
- f. Multilevel feedback Queue Scheduling
- 4. Thread Scheduling
 - a. Contention Scope
 - b. Pthread Scheduling
- 5. Multi-Processor scheduling
 - a. Approaches of multi-processor scheduling
 - b. Multicore CPUs
 - c. Multithreaded cores
 - d. NUMA systems

Topic and Sub Topic of Chapter 6 Process Synchronization

- 1. Background
- 2. The Critical Section Problem
- 3. Peterson's Solution
- 4. Mutex Lock
- 5. Semaphore
 - a. Binary Semaphore
 - b. Counted Semaphore
- 6. Liveness
 - a. Deadlock
 - b. Priority Inversion

Topic and Sub Topic of Chapter 8 Deadlocks

- 1. System Model
- 2. Deadlock in Multithreaded Application
 - a. Live Lock
- 3. Deadlock Characterization
 - a. Necessary Condition
 - b. Resource Allocation
- 4. Methods of Handling Deadlock
- 5. Deadlock Prevention
 - a. Mutual Exclusion
 - b. Hold and wait.
 - c. No Preemption
 - d. Circular Wait
- 6. Deadlock Avoidance
 - a. Safe State
 - b. Resource allocation Graph Algorithm
 - c. Banker's Algorithm
- 7. Deadlock Detection
 - a. Single Instance of each resource type
 - b. Several instance of resource type
 - c. Detection-Algorithm Usage
- 8. Recovery from Deadlock

- a. Process and Thread Termination
- b. Resource Preemption

Topic and Sub Topic of Chapter 9 Memory Management

- 1. Background
 - a. Basic Hardware
 - b. Address Binding
 - c. Logical Versus Physical Address Space
 - d. Dynamic Loading
 - e. Dynamic Linking and Shared Libraries
- 2. Contiguous Memory Allocation
 - a. Memory Protection
 - b. Memory Allocation Fragmentation
 - c. Allocation Algorithms
- 3. Paging
 - a. Basic Method
 - b. Address Translation Scheme
 - c. Paging Model
 - d. Address Binding
 - e. Paging Table of Logical and Physical Memory
 - f. Paging Hardware with TLB
 - g. Effective Access Time