Wie schwer ist CTL Model Checking wirklich?

Leo Kayser & Tobias Brockmeyer

31. Mai 2022

Inhalt

Die Komplexität des Erreichbarkeitsproblems

CTL-Modelchecking

Das EG-Fragment

Einige Klassen in P

Wir betrachten die folgenden Komplexitätsklassen

$$P \supset AC^1 \supset LOGCFL \supset NL$$
.

- 1. $P = TIME(n^{O(1)})$
 - \bullet = ALOGSPACE
- 2. $AC^1 = SIZE DEPTH(n^{O(1)}, \log n)$ (log-uniform)
 - = ALOGSPACE mit logarithmisch vielen Alternierungen
- 3. LOGCFL = $\{A \mid A \leq_{m}^{\log} B, B \text{ kontextfrei}\}$
 - Entscheidbar von NL-Maschine mit Hilfskeller in poly. Zeit
 - ullet = ALOGSPACE mit polynomiell beschränkter Baumgröße
- 4. $NL = NSPACE(\log n)$

Mind the GAP

Definition

Problem GAP (Graph Accessibility Problem)

Instanzen Gerichtete Graphen G = (V, E), Knoten $s, t \in V$

- Frage Gibt es in G einen Pfad von s nach t?
- Auch bekannt als PATH, STCON (s-t-connection)
- ▶ GAP \in NL: Rate Pfad einen Schritt nach dem anderen; nach |V| erfolglosen Schritten verwerfe
- ► GAP ist NL-schwer: *G* Konfigurationsgraph der NTM, *s* ist Startkonfiguration. *t* ist Endkonfiguration, NSPACE(log *n*) stellt sicher, dass Graph polynomiell groß
- lacktriangle Analoges Problem für ungerichtete Graphen: UGAP $\in L$

Alternierende Graphen

Definition

Ein alternierender Graph ist ein gerichteter bipartiter Graph $G = (V_{\exists} \dot{\cup} V_{\forall}, E)$, d.h. $E \subseteq (V_{\exists} \times V_{\forall}) \cup (V_{\forall} \times V_{\exists})$.

Die Relation apath_G(s, T) für $s \in V$, $T \subseteq V$ ist erfüllt, falls

- (0) $s \in T$, oder
- (1) $s \in V_{\exists}$ und $\exists (s, y) \in E$: apath_G(y, T), oder
- (2) $s \in V_{\forall}$ und $\forall (s, y) \in E$: apath_G(y, T).

Definition

Problem AGAP (Alternating GAP)

Instanzen Alternierende Graphen $G = (V_{\exists} \cup V_{\forall}, E)$, Knoten $s \in V$, $T \subseteq V$

Frage Gilt apath_G(s, T)?

Ein Beispielgraph

Alternierende Graphen mit Schichten

Definition

Ein alternierender geschichteter Graph ist ein alternierender Graph mit einer Partition $V=V_0\,\dot{\cup}\,\cdots\,\dot{\cup}\,V_m$, sodass

$$V_\exists = igcup_{ ext{gerade}} V_i, \quad V_\forall = igcup_{ ext{ungerade}} V_i, \quad E \subseteq igcup_{i=1}^m (V_{i-1} imes V_i).$$

Wir nehmen zudem $\deg_{\mathrm{out}}(v) > 0$ an für $v \in V \setminus V_m$.

Definition

Problem ASGAP (Alternating slice GAP)

Instanzen Alternierende Graphen $G = (V_{\exists} \cup V_{\forall}, E)$ mit m Schichten, m gerade, $s \in V_0$, $T \subseteq V_m$.

Frage Gilt apath_G(s, T)?

GAP-Varianten liefern vollständige Probleme

- ▶ ASGAP($\forall_{out} = 2, \exists_{in} = 1$): Einschränkung an G:
 - $\deg_{\mathrm{out}}(v) = 2 \text{ für } v \in V_\forall$
 - $\deg_{\mathsf{in}}(v) = 1 \text{ für } v \in V_\exists \setminus V_0$
- lacktriangle ASGAP $_{\mathsf{log}}$: Einschränkung logarithmischer Tiefe: $m \leq \log |V|$

Satz

Wir haben folgende vollständige Probleme bzgl. \leq_m^{log} :

Klasse	Vollständige Probleme
P	AGAP, ASGAP, ASGAP($\forall_{out} = 2, \exists_{in} = 1$)
AC^1	ASGAP _{log}
LOGCFL	$ASGAP(\forall_{out}=2,\exists_{in}=1)_{log}$
NL	GAP

Syntax und Semantik der Computational Tree Logic

Syntax: Sei PROP eine abzählbare Menge von Symbolen.

$$\begin{split} \varphi ::= \top \mid \textbf{\textit{p}} \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \oplus \varphi \mid \neg \varphi \mid \mathcal{O}\varphi \mid \varphi \mathcal{O}'\varphi \\ \textbf{\textit{p}} \in \mathsf{PROP}, \ \mathcal{O} \in \{\mathsf{EX}, \mathsf{AX}, \mathsf{EG}, \mathsf{AG}, \mathsf{EF}, \mathsf{AF}\}, \ \mathcal{O}' \in \{\mathsf{EU}, \mathsf{AU}, \mathsf{ER}, \mathsf{AR}\} \end{split}$$

Semantik (Auszug): Es sei $\mathcal{M} = (\mathcal{F}, \xi)$ ein Modell zum *totalen* Rahmen $\mathcal{F} = (W, R)$ und $w \in W$.

Sei Π die Menge der unendlichen Pfade beginnend bei w.

- $ightharpoonup \mathcal{M}, w \models \mathsf{EX}\, \varphi \; \mathsf{gdw}. \; \exists \pi = (\pi_1, \pi_2, \dots) \in \Pi : \mathcal{M}, \pi_2 \models \varphi$
- $ightharpoonup \mathcal{M}, w \models \mathsf{EF}\,\varphi \; \mathsf{gdw}. \; \exists \pi \in \Pi \; \exists k \geq 1: \, \mathcal{M}, \pi_k \models \varphi$
- \blacktriangleright \mathcal{M} , $w \models \mathsf{EG}\,\varphi$ gdw. $\exists \pi \in \mathsf{\Pi} \ \forall k \geq 1$: \mathcal{M} , $\pi_k \models \varphi$
- $AX \varphi \equiv \neg EX \neg \varphi, AF \varphi \equiv \neg EG \neg \varphi, AG \varphi \equiv \neg EF \neg \varphi$
- $\begin{array}{c} \blacktriangleright \ \, \mathcal{M}, w \models \psi \, \mathsf{EU} \, \varphi \, \, \mathsf{gdw}. \, \, \exists \pi \in \Pi \, \, \exists k \geq 1 \colon \mathcal{M}, \pi_k \models \varphi \, \, \mathsf{und} \\ \qquad \qquad \forall i < k \colon \mathcal{M}, \pi_i \models \psi \end{array}$

Das Model Checking Problem

Definition

```
Problem CTL-MC(T)

Instanzen CTL-Formel \phi mit Operatoren aus T\subseteq \{\land,\lor,\oplus,\neg,\mathsf{EX},\ldots,\mathsf{AR}\}, ein Kripkemodell \mathcal{M}=((W,R),\xi), eine Welt w_0\in W.

Frage Gilt \mathcal{M},w_0\models\phi?
```

- ▶ CTL-MC(T) ∈ P für beliebiges T
- ► CTL-MC(T) ist P-vollständig wenn alle Operatoren erlaubt
- Klassifikation mittels Post'schen Clones?

 später mehr
- ▶ Beispielhaft: $ASGAP(\forall_{out} = 2, \exists_{in} = 1) \leq_{m}^{log} CTL-MC(EX, AX)$

Beweis. ASGAP($\forall_{out} = 2, \exists_{in} = 1$) $\leq_{m}^{log} CTL-MC(EX, AX)$

$$\langle G = (V,E),s,T
angle \; \mapsto \; \langle \mathcal{M} = ((V,E'),\xi),s,\phi
angle$$
 , wobei

- ► $E' = E \cup \{ (v, v) \mid v \in V_m \}$
- ▶ $\xi(w) = \{t\}$ wenn $w \in T$, \emptyset sonst

Ausblick: Wie können wir EX und AX simulieren?

► AX mit $\{EX, \wedge\}$: $\mathcal{M}', u \models EX(\alpha \wedge I) \wedge EX(\alpha \wedge r)$

► EX mit {EU}: \mathcal{M}' , $u \models s$ EU ((\hat{s} EU α) EU \hat{e})

 \blacktriangleright AX mit {EU}: \mathcal{M}' , $u \models s$ EU ((\hat{s} EU α) EU \hat{e})

Halbzeitpause

Was haben wir heute gelernt?

- ► GAP, ASGAP und verwandte Probleme sind vollständige Probleme interessanter Klassen
- Was das Model Checking Problem für CTL ist
- Wie man alternierende geschichtete Graphen in Kripkemodelle transformieren kann

Literatur:

Krebs, Meier und Mundhenk.

"The model checking fingerprints of CTL operators" In: Acta Informatica 56.6 (2019), S. 487-519

Mundhenk und Weiß.

"The Complexity of Model Checking for Intuitionistic Logics and Their Modal Companions"

In: A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 146–160, 2010.

CTL-MC-Fragmente mit Konstanten

Warum alles so schwer ist

Definition

Problem GAP

Instanzen Gerichtete Graphen

G = (V, E), Knoten $s, t \in V$

Frage Gibt es in *G* einen Pfad von s nach *t*?

Der Pfad zur NL-Schwere

Satz

CTL-MC(EG) ist NL-schwer. $\langle G, s, t \rangle \mapsto \langle M, s_1, EG p \rangle$

Wie hilft GAP bei CTL-MC(EG)?

 $EG\ EG\ p\equiv EG\ p$

Wie wertet man nun EGp aus?

Warum (EG, \wedge) genauso geht

Wie sieht ein Modell für $EG(\alpha \wedge EG \beta)$ aus?

NL-Algorithmus:

- ightharpoonup lpha in gegebener Welt auswerten
- ▶ EG β_i wie im Fall ohne "und" auswerten
- akzeptieren, falls jede Teilformel erfüllt ist

Vorüberlegungen für (EG,∨)-Formeln

Jede (EG, ∨)-Formel ist äquivalent zu

Disjunktion von Variablen
$$\longrightarrow \alpha \lor \bigvee_{i=1}^{n} \underline{\mathsf{EG}\,\beta_{i}} \longleftarrow$$
 hat die Form $(*)$ $(*)$ $\underline{\mathsf{EG}(\alpha \lor \bigvee_{i=1}^{n} \mathsf{EG}\,\beta_{i})}$

Was brauchen wir zum Erfüllen dieser Formel?

- ▶ Pfad, der Länge $\geq n+1$ hat und auf dem stets α gilt oder
- ▶ Pfad v_1, \ldots, v_{m-1} , auf dem stets α gilt sowie $M, u_i \models EG \beta_i$

Ein NL-Algorithmus für (EG, \vee)

```
Frage: M, w \models \alpha \lor \bigvee_{i=1}^n EG \beta_i?
 1 if Pfad für Fall 1 geraten then
        return true auf unendlichem Pfad gilt \alpha
 3 else
        Rate v_m und Pfad v_1 (= w), \ldots, v_m.
 5
        if \alpha gilt in v_1, \ldots, v_{m-1} then
             Rate i mit M, v_m \models \beta_i.
 6
                                                                           NI -schwer
            return M, v_m \models \beta_i
        else
 8
                                                                           in NL
             return false
        end
10
11 end
```

Nicht ist auch nicht schwerer

Satz

Jede (EG, ¬)-Formel ist äquivalent zu

1. EGAF φ oder

3. EG φ oder

2. AF EG φ oder

4. AF φ

wobei $\varphi = p$ oder $\varphi = \neg p$

Durch scharfes Hinsehen

- ightharpoonup $AF \varphi \equiv \neg EG \neg \varphi$
- ightharpoonup CTL-MC(AF) \in coNL = NL

Mit CTL-MC(EG) und CTL-MC(AF):

- ightharpoonup EG AF φ via EG ψ prüfen
- ightharpoonup AF EG φ via AF ψ prüfen

Rückblick

Was haben wir heute gelernt?

- ► CTL-MC(EG) ist NL-vollständig
- ► Problem bleibt NL-vollständig mit Clones *V*, *E*, *N*

Literatur:

Krebs, Meier und Mundhenk.

"The model checking fingerprints of CTL operators" In: Acta Informatica 56.6 (2019), S. 487-519

