Formulário

Equação iterativa		Convergência	
secante	Newton	superlinear	quadrática
$x_{k+1} = x_k - \frac{(x_k - x_{k-1})f(x_k)}{f(x_k) - f(x_{k-1})}$	$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$	$\lim_{k \to +\infty} \frac{ x^* - x_{k+1} }{ x^* - x_k ^{1.618}} = L$	$\lim_{k \to +\infty} \frac{ x^* - x_{k+1} }{ x^* - x_k ^2} = L$
Convergência: $\frac{f''(\xi)}{2f'(\xi)}$	$(0,0)$. Onde $\xi,\eta\in I$.	$CP: \frac{ x_{k+1} - x_k }{ x_{k+1} } \le \epsilon_1 e f($	$ x_{k+1} \le \epsilon_2$

Equação iterativa		CP
Jacobi	Gauss-Seidel	
/	$(D-L)x^{(k+1)} = Ux^{(k)} + b$	$\frac{\ x^{(k+1)} - x^{(k)}\ }{\ x^{(k+1)}\ } \le \epsilon$
$x^{(k+1)} = C_J x^{(k)} + M^{-1}b$	$x^{(k+1)} = C_{GS}x^{(k)} + M^{-1}b$	
$M = D, DC_J = (L + U)$	$M = (D - L), MC_{GS} = U$	

Jacobi	ano	Equação iterativa	CP
$ \begin{pmatrix} \frac{\partial f_1(x_1, x_2, \dots, x_n)}{\partial x_1} & \dots \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n(x_1, x_2, \dots, x_n)}{\partial x_1} & \dots \end{pmatrix} $	$ \frac{\partial f_1(x_1, x_2, \dots, x_n)}{\partial x_n} \\ \vdots \\ \partial f_n(x_1, x_2, \dots, x_n)}{\partial x_n} $	$x^{(k+1)} = x^{(k)} + \Delta_x$ $J(x^{(k)})\Delta_x = -f(x^{(k)})$	$\frac{\ \Delta_x\ }{\ x^{(k+1)}\ } \le \epsilon_1$ $\ f(x^{(k+1)})\ \le \epsilon_2$

Polinómio interpolador de Newton:

$$p_n(x) = f_0 + (x - x_0) [x_0, x_1] + \dots + (x - x_0) \dots (x - x_{n-1}) [x_0, \dots, x_n]$$

Erro de truncatura:
$$R_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}, \text{ com } \xi \in [x_0, x_n]$$

$$\frac{(x_i - x_{i-1})M_{i-1} + 2(x_{i+1} - x_{i-1})M_i + (x_{i+1} - x_i)M_{i+1}}{-\frac{6}{(x_i - x_{i-1})}(f_i - f_{i-1})} = \frac{6}{(x_i - x_{i-1})}(f_i - f_{i-1})$$

Spline Natural	$Spline \ { m Completa}$
$M_0 = 0$	$2(x_1 - x_0)M_0 + (x_1 - x_0)M_1 = \frac{6}{(x_1 - x_0)}(f_1 - f_0) - 6f_0'$
$M_n = 0$	$2(x_n - x_{n-1})M_n + (x_n - x_{n-1})M_{n-1} = 6f'_n - \frac{6}{(x_n - x_{n-1})}(f_n - f_{n-1})$

Erro de truncatura spline cúbica $|f(x) - s_3(x)| \le \frac{5}{384}h^4M_4$ $|f'(x) - s'_3(x)| \le \frac{1}{24}h^3M_4$ com $\max_{\xi \in [x_0, x_n]} |f^{(iv)}(\xi)| \le M_4$ $h = \max_{0 \le i \le n-1} (x_{i+1} - x_i)$

$$\begin{pmatrix} \sum_{i=1}^{m} \phi_1^2(x_i) & \dots & \sum_{i=1}^{m} \phi_1(x_i)\phi_n(x_i) \\ \dots & \dots & \dots \\ \sum_{i=1}^{m} \phi_n(x_i)\phi_1(x_i) & \dots & \sum_{i=1}^{m} \phi_n^2(x_i) \end{pmatrix} \begin{pmatrix} c_1 \\ \dots \\ c_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} f_i \phi_1(x_i) \\ \dots \\ \sum_{i=1}^{m} f_i \phi_n(x_i) \end{pmatrix}$$

Resíduos dos mínimos quadrados: $\sum_{i=1}^{m} (f_i - M(x_i))^2$

Polinómios ortogonais:
$$\boxed{P_{i+1} = A_i(x-B_i)P_i(x) - C_iP_{i-1}(x)}, \boxed{P_0(x) = 1}, \boxed{P_{-1}(x) = 0}$$

$$\boxed{A_i = 1} \boxed{B_i = \frac{\langle xP_i(x),P_i(x)\rangle}{\langle P_i(x),P_i(x)\rangle}} \boxed{C_0 = 0 \text{ e } C_i = \frac{\langle P_i(x),P_i(x)\rangle}{\langle P_{i-1}(x),P_{i-1}(x)\rangle}}$$
 Coeficientes do modelo polinomial
$$\boxed{c_j = \frac{\sum_{i=1}^m f_iP_j(x_i)}{\sum_{i=1}^m P_j(x_i)^2}}.$$

Método de Nelder-Mead - Notação

Simplex $< X_1, \ldots, X_n$	r_{n+1} > ordenado por ordem crescente dos valores de f	
centroide	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$	
reflectido	$x_r = (1+\alpha)\bar{x} - \alpha X_{n+1}$	$\alpha = 1$
expandido	$x_e = \gamma x_r + (1 - \gamma)\bar{x}$	$\gamma = 2$
contraído interior	$x_c = \beta X_{n+1} + (1 - \beta)\bar{x}$	$\beta = \frac{1}{2}$
contraído exterior	$\hat{x}_c = \beta x_r + (1 - \beta)\bar{x}$	$\beta = \frac{1}{2}$
encolher simplex	$x_i = \frac{X_i + X_1}{2}$	
critério de paragem	$\frac{1}{\Delta} \max_{2 \le i \le n+1} X_i - X_1 \le \epsilon$	$\Delta = \max(1, \ X_1\)$

Método de Nelder-Mead - Algoritmo

Dado o Simplex ordenado fazer:

- 1. Se $f(x_r) < f(X_n)$ então
 - (a) Se $f(x_r) \ge f(X_1)$ aceitar reflectido e saltar para o passo 3.
 - (b) Se $f(x_r) < f(X_1)$ então expandir simplex:
 - i. Se $f(x_e) < f(X_1)$ então aceitar expandido e saltar para o passo 3.
 - ii. Se $f(x_e) \ge f(X_1)$ então aceitar reflectido e saltar para o passo 3.
- 2. Se $f(x_r) \ge f(X_n)$ então contrair simplex:
 - (a) Se $f(x_r) \ge f(X_{n+1})$ contrair para o interior.
 - i. Se $f(x_c) < f(X_n)$ aceita-se o contraído para o interior e saltar para o passo 3.
 - ii. Se $f(x_c) \ge f(X_n)$ encolhe-se o simplex e saltar para o passo 3.
 - (b) Se $f(x_r) < f(X_{n+1})$ contrair para o exterior.
 - i. Se $f(\hat{x}_c) < f(X_n)$ aceita-se o contraído para o exterior e saltar para o passo 3.
 - ii. Se $f(\hat{x}_c) \geq f(X_n)$ encolhe-se o simplex e saltar para o passo 3.
- 3. Se o critério de paragem não for verificado iniciar nova iteração.

Redução significativa (critério de Armijo): $f(x^{(k)}) - f(x^{(k)} + \omega^j \alpha d^{(k)}) \ge -\mu_1 \omega^j \alpha g(x^{(k)})^T d^{(k)}$. Divisões sucessivas de α por dois consiste em usar $\omega = 0.5$, $\alpha = 1$ e determinar o menor j inteiro (j = 0, 1, 2, 3...) que provoca uma redução significativa.

Direcção de descida:
$$g(x^{(k)})^T d^{(k)} \le \eta \|g(x^{(k)})\| \|d^{(k)}\|$$
.
Quase ortogonal: $|g(x^{(k)})^T d^{(k)}| \le \eta \|g(x^{(k)})\| \|d^{(k)}\|$.

Critério de paragem:
$$\frac{\|x^{(k+1)} - x^{(k)}\|}{\|x^{(k+1)}\|} \le \epsilon_1 e^{\frac{|f^{(k+1)} - f^{(k)}|}{|f^{(k+1)}|}} \le \epsilon_2 e^{\frac{|f^{(k+1)} - f^{(k)}|}{\|g^{(k+1)}\|}} \le \epsilon_3$$

Método de Descida Máxima - Algoritmo

Em cada iteração fazer:

- 1. Calcular $d^{(k)} = -g(x^{(k)})$.
- 2. Usando divisões sucessivas de α por dois determinar $\alpha^{(k)}$.
- 3. Fazer $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$.
- 4. Se o critério de paragem não for verificado iniciar nova iteração.

Método de segurança de Newton - Algoritmo

Em cada iteração fazer:

- 1. Resolver o sistema linear $G(x^{(k)})d^{(k)} = -g(x^{(k)})$. Se o sistema não tiver solução única fazer $d^{(k)} = -g^{(k)}$ e ir para o passo 4.
- 2. Se a direcção for quase ortogonal ao gradiente fazer $d^{(k)} = -g^{(k)}$ e ir para o passo 4.
- 3. Se a direcção não for de descida fazer $d^{(k)} = -d^{(k)}$.
- 4. Usando divisões sucessivas de α por dois determinar $\alpha^{(k)}$.
- 5. Fazer $x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$.
- 6. Se o critério de paragem não for verificado iniciar nova iteração.

Método quasi-Newton

Aproximação à inversa da Hessiana BFGS: $|H^{(0)}| = I$

$$H^{(k+1)} = \left(I - \frac{s^{(k)}y^{(k)T}}{s^{(k)T}y^{(k)}}\right)H^{(k)}\left(I - \frac{y^{(k)}s^{(k)T}}{y^{(k)T}s^{(k)}}\right) + \frac{s^{(k)}s^{(k)T}}{s^{(k)T}y^{(k)}}$$

$$s^{(k)} = \alpha^{(k)}d^{(k)} = x^{(k+1)} - x^{(k)} \in y^{(k)} = g^{(k+1)} - g^{(k)}$$

Método quasi-Newton - Algoritmo

Em cada iteração fazer:

- 1. Calcular $d^{(k)} = -H^{(k)}g(x^{(k)})$.
- 2. Usando divisões sucessivas de α por dois determinar $\alpha^{(k)}.$
- 3. Fazer $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$.
- 4. Se o critério de paragem não for verificado então calcular $H^{(k+1)}$ e iniciar nova iteração.