Lecture 11

Michael Brodskiy

Professor: M. Onabajo

October 16, 2024

- npn Bipolar Junction Transistors
 - The collector "collects" electrons, and causes current to flow through the emitter
- npn Structure without Bias
 - At zero bias $(V_{be} = V_{bc} = 0)$, neither electrons nor holes can overcome this built-in voltage barrier of $\approx .7[V]$ (for Si)

*
$$I_B = I_C = 0$$
 (cutoff)

- npn Structure with Forward-Biased EBJ
 - When $(V_{be} = .65[V], V_c > V_b)$, electrons and holes can overcome the built-in voltage barrier between the base and emitter
 - * $I_b > 0$ and $I_e > I_b$ (due to n^+ emitter doping)
 - If the base region is very thin, the electrons injected by the emitter are collected by the positive voltage applied at V_c
 - * $I_c \approx I_E >> I_B$ (active region)
 - If the base region is too thick, many electrons injected at the emitter are lost by recombining with holes in the base before the voltage applied at V_c can collect them
 - * $I_c < I_E$ (active region with low α and $\beta \to \text{low gain}$)
- Achievement of high β during Fabrication
 - Thin base region
 - * Increases the collection efficiency for injected electrons
 - * Reduces the chance of electron recombination in the base
 - Heavily-doped emitter

- * $I_E/I_B \propto n(\text{emitter})/p(\text{base}) \propto \beta$
- Doping concentrations are difficult to control precisely
 - * Current gain is not uniform among BJTs (exception: when the BJTs are all fabricated on the same integrated circuit → small variations)
- The Early Effect
 - As V_c increases, the depletion width of the B-C junction widens
 - * Base width becomes more narrow
 - * Increased collection efficiency
 - * Finally, I_c/I_b increases (higher β)
- Summary: Regions of Operation
 - CBJ: Collector-Base Junction
 - EBJ: Emitter-Base Junction
 - RB: Reverse-Biased
 - FB: Forward-Biased

EBJ	CBJ	Mode
FB	RB	Active
FB	FB	Saturation
RB	RB	Cutoff

- When designing amplifers: make sure the BJT is in active mode
- npn BJT Model for the Active Region
 - Current gain: $\beta = I_C/I_B$ (range: 10-1000, typical: 100-200)
 - Model usage:
 - * Assume (gues) a region of operation
 - \ast Replace the BJT with the appropriate model
 - * Perform standard circuit analysis
 - * Check that the conditions for the region of operation are met (if the conditions are not met: change the accumption and repeat the analysis)
 - * From KVL: $V_{BC} = V_{BE} V_{CE}$
 - * Assuming $V_{BE} = .7$ (forward-biased)
 - \cdot $V_{BC} = V_{BE} V_{CE(min)} = .7 .2 = .5[V] < .7[V]$ (ensures that CBJ remains reverse-biased)
 - · $V_{CE\downarrow} \rightarrow V_{BC\uparrow} \rightarrow \text{CBJ becomes forward-biased} \rightarrow \text{saturation}$
 - · Note: in some models (other books), $V_{CE} > .3[V]$ is assumed as condition for the active mode of operation

- npn BJT Model for the Saturation Region
 - Forward Voltage Drop of .7[V] $[V_{BE}]$ (note for all models: depends on BJT type, some models use different assumptions, such as .6[V])
- npn BJT Model for the Cutoff Region
 - BJT forms an open circuit since both diodes are in reverse bias
- Key Equations:

$$I_E = I_C + I_B$$

- When the base-emitter junction is forward-biased:

$$I_E = I_{ES}[e^{V_{BE}/V_T} - 1]$$

- Valid only in the active region:

$$I_C = \alpha I_E$$

$$I_C = \alpha I_{ES} [e^{V_{BE}/V_T} - 1]$$

$$I_B = (1 - \alpha)I_E$$

$$I_C = \beta I_B$$

$$I_S = \alpha I_{ES}$$

$$\beta = \frac{\alpha}{1 - \alpha} \quad \text{and} \quad \alpha = \frac{\beta}{1 + \beta}$$

– Typical (with high β): α is near unity