Probability and Statistics: Lecture-37

Monsoon-2020

by Dr. Pawan Kumar (IIIT, Hyderabad) on November 9, 2020

Let X_1, X_2, \dots, X_n be n discrete RVs.

Joint PDF, Joint CDF

Let X_1, X_2, \dots, X_n be n discrete RVs.

* The joint PMF of X_1, X_2, \dots, X_n is defined as

$$P((X_1, X_2, \dots, X_n) \in A) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Joint PDF, Joint CDF

Let X_1, X_2, \dots, X_n be n discrete RVs.

* The joint PMF of X_1, X_2, \dots, X_n is defined as

$$P((X_1, X_2, \dots, X_n) \in A) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

* Let X_1, X_2, \dots, X_n be *n* continuous RVs,

Joint PDF, Joint CDF

Let X_1, X_2, \cdots, X_n be n discrete RVs.

* The joint PMF of X_1, X_2, \dots, X_n is defined as

$$P((X_1, X_2, \cdots, X_n) \in A) = P(X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n)$$

* Let X_1, X_2, \dots, X_n be *n* continuous RVs, then PDF is denoted by

$$f_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n),$$

and the probability is computed as follows

Joint PDF, Joint CDF

Let X_1, X_2, \dots, X_n be n discrete RVs.

* The joint PMF of X_1, X_2, \dots, X_n is defined as

$$P((X_1, X_2, \dots, X_n) \in A) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

* Let X_1, X_2, \dots, X_n be *n* continuous RVs, then PDF is denoted by

$$f_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n),$$

and the probability is computed as follows

$$P((X_1,X_2,\cdots,X_n)\in A) = \int \cdots \int_A \cdots \int f_{X_1X_2...X_n}(x_1,x_2,\cdots,x_n) dx_1 \cdots dx_n$$

Joint PDF, Joint CDF

Let X_1, X_2, \dots, X_n be n discrete RVs.

* The joint PMF of X_1, X_2, \dots, X_n is defined as

$$P((X_1, X_2, \dots, X_n) \in A) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

* Let X_1, X_2, \dots, X_n be *n* continuous RVs, then PDF is denoted by

$$f_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n),$$

and the probability is computed as follows

$$P((X_1,X_2,\cdots,X_n)\in A)=\int\cdots\int_A\cdots\int f_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n)\,dx_1\cdots dx_n$$

* The marginal PDF of RV X_i can be obtained

* The marginal PDF of RV X_i can be obtained by integrating out all other X_i 's, for example,

* The marginal PDF of RV X_i can be obtained by integrating out all other $X_j's$, for example,

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1 X_2 \dots X_n} \, \underline{dx_2} \, \underline{dx_3} \cdots \underline{dx_n}$$

* The marginal PDF of RV X_i can be obtained by integrating out all other $X_j's$, for example,

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1 X_2 \dots X_n} \, dx_2 dx_3 \cdots dx_n$$

* The joint CDF of *n* random variables X_1, X_2, \dots, X_n is defined as

* The marginal PDF of RV X_i can be obtained by integrating out all other X_i 's, for example,

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1 X_2 \dots X_n} dx_2 dx_3 \cdots dx_n$$

* The joint CDF of *n* random variables X_1, X_2, \dots, X_n is defined as

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 \le x_1,X_2 \le x_2,...,X_n \le x_n)$$

» Example

Example (Three jointly continuous RV:

Let X, Y and Z be three jointly continuous random variables

Example (Three jointly continuous RV

Let X, Y and Z be three jointly continuous random variables with joint PDF

» Example

Example (Three jointly continuous RV

Let X, Y and Z be three jointly continuous random variables with joint PDF

$$f_{ extit{XYZ}}(extit{x}, extit{y}, extit{z}) = egin{cases} egin{cases} egin{cases} egin{cases} egin{cases} egin{cases} egin{cases} egin{cases} c & \lambda & \lambda & \lambda \\ 0 & \lambda & \lambda & \lambda \\ 0$$

» Example

Example (Three jointly continuous RV

Let X, Y and Z be three jointly continuous random variables with joint PDF

$$f_{XYZ}(x,y,z) = egin{cases} c(x+2y+3z) & 0 \leq x,y,z \leq 0 \\ 0 & ext{otherwise} \end{cases}$$

1. Find the constant c

Example (Three jointly continuous RV

Let X, Y and Z be three jointly continuous random variables with joint PDF

$$f_{XYZ}(x,y,z) = egin{cases} c(x+2y+3z) & 0 \leq x,y,z \leq 1 \ 0 & ext{otherwise} \end{cases}$$

- 1. Find the constant c
- 2. Find the marginal PDF of X

= [[c](==22+2yx+32x)]dydz $= \int_{0}^{\infty} \int_{0}^{\infty} C\left[\frac{1}{2} + 2y + 3z\right] dy dz$

= [] = (x+2y+32)dy =

= Sc[==+37] dz

@ fx(x) = [[fxyz (x17,2)dydz

Independence of Multiple Random Variables

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

Independence of Multiple Random Variables

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$$

Independence of Multiple Random Variables

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$$

* If X_1, X_2, \dots, X_n are discrete, then they are independent if

Independence of Multiple Random Variables

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$$

* If X_1, X_2, \dots, X_n are discrete, then they are independent if

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1)P_{X_2}(x_2)\cdots P_{X_n}(x_n)$$

Independence of Multiple Random Variables

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$$

* If X_1, X_2, \ldots, X_n are discrete, then they are independent if

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1)P_{X_2}(x_2)\cdots P_{X_n}(x_n)$$

* If X_1, X_2, \ldots, X_n are continuous, then they are independent if

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$$

* If X_1, X_2, \dots, X_n are discrete, then they are independent if

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1)P_{X_2}(x_2)\cdots P_{X_n}(x_n)$$

* If X_1, X_2, \ldots, X_n are continuous, then they are independent if

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n)$$

The *n* random variables X_1, X_2, \dots, X_n are independent if for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$$

* If X_1, X_2, \dots, X_n are discrete, then they are independent if

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1)P_{X_2}(x_2)\cdots P_{X_n}(x_n)$$

* If X_1, X_2, \dots, X_n are continuous, then they are independent if

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n)$$

* If random variables $X_1, X_2, ..., X_n$ are independent, then we have

$$E[X_1,X_2,\cdots,X_n]=E[X_1]E[X_2]\cdots E[X_n]$$

Definition of I.I.D.

Random variables $X_1, X_2, ..., X_n$ are said to be independent and identically distributed (i.i.d.)

Definition of I.I.D.

Random variables $X_1, X_2, ..., X_n$ are said to be independent and identically distributed (i.i.d.) if they are independent,

Definition of I.I.D.

Random variables $X_1, X_2, ..., X_n$ are said to be independent and identically distributed (i.i.d.) if they are independent, and they have the same marginal distributions:

Definition of I.I.D.

Random variables $X_1, X_2, ..., X_n$ are said to be independent and identically distributed (i.i.d.) if they are independent, and they have the same marginal distributions:

$$F_{X_1}(x) = F_{X_2}(x_2) = \cdots = F_{X_n}(x), \quad \text{for all } x \in \mathbb{R}$$

Definition of I.I.D.

Random variables $X_1, X_2, ..., X_n$ are said to be independent and identically distributed (i.i.d.) if they are independent, and they have the same marginal distributions:

$$F_{X_1}(x) = F_{X_2}(x_2) = \cdots = F_{X_n}(x), \text{ for all } x \in \mathbb{R}$$

- If we flip the same coin N times and record the outcome, then X_1, \ldots, X_n are I.I.D.
- * Verify that these I.I.D. variables will have same mean and variances

» Expectation and Variance...

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

Expectation and Variance

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

* The expectation of Y is

Expectation and Variance

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

* The expectation of Y is

$$E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$$

Expectation and Variance

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

- * The expectation of Y is $E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$
- * We recall that

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

- * The expectation of Y is $E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$
- * We recall that

$$\mathsf{Var}(\textit{\textbf{X}}_1 + \textit{\textbf{X}}_2) = \mathsf{Var}(\textit{\textbf{X}}_1) + \mathsf{Var}(\textit{\textbf{X}}_2) + 2\mathsf{Cov}(\textit{\textbf{X}}_1,\textit{\textbf{X}}_2)$$

Expectation and Variance

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

- * The expectation of Y is $E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$
- * We recall that

$$\mathsf{Var}(\pmb{\mathsf{X}}_1 + \pmb{\mathsf{X}}_2) = \mathsf{Var}(\pmb{\mathsf{X}}_1) + \mathsf{Var}(\pmb{\mathsf{X}}_2) + 2\mathsf{Cov}(\pmb{\mathsf{X}}_1, \pmb{\mathsf{X}}_2)$$

In general, for *Y*, we have

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

- * The expectation of Y is $E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$
- * We recall that $\mathsf{Var}(X_1+X_2) = \mathsf{Var}(X_1) + \mathsf{Var}(X_2) + 2\mathsf{Cov}(X_1,X_2)$

In general, for Y, we have

$$\mathsf{Var}\left(\sum_{i=1}^n \mathsf{X}_i\right) = \sum_{i=1}^n \mathsf{Var}(\mathsf{X}_i) + 2\sum_{i < j} \mathsf{Cov}(\mathsf{X}_i, \mathsf{X}_j)$$

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

- * The expectation of Y is $E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$
- * We recall that $\mathsf{Var}(X_1+X_2) = \mathsf{Var}(X_1) + \mathsf{Var}(X_2) + 2\mathsf{Cov}(X_1,X_2)$

In general, for Y, we have

$$\operatorname{\mathsf{Var}}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{\mathsf{Var}}(X_i) + 2\sum_{i < j} \operatorname{\mathsf{Cov}}(X_i, X_j)$$

* If X_1, X_2, \ldots, X_n are independent, then

Let $Y = X_1 + X_2 + \cdots + X_n$. The we have the following

* The expectation of Y is

$$E[Y] = E[X_1] + E[X_2] + \cdots + E[X_n]$$

* We recall that

$$\mathsf{Var}(\mathit{X}_1+\mathit{X}_2) = \mathsf{Var}(\mathit{X}_1) + \mathsf{Var}(\mathit{X}_2) + 2\mathsf{Cov}(\mathit{X}_1,\mathit{X}_2)$$

In general, for Y, we have

$$\mathsf{Var}\left(\sum_{i=1}^n \mathsf{X}_i\right) = \sum_{i=1}^n \mathsf{Var}(\mathsf{X}_i) + 2\sum_{i < j} \mathsf{Cov}(\mathsf{X}_i, \mathsf{X}_j)$$

* If X_1, X_2, \ldots, X_n are independent, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

Example (Who will receive the present

N people sit around a round table, where N>5.

Example (Who will receive the present?

N people sit around a round table, where N > 5. Each person tosses a coin.

Example (Who will receive the present?

N people sit around a round table, where N > 5. Each person tosses a coin. Anyone whose outcome is different from his/her two neighbors will receive a present.

Example (Who will receive the present?

N people sit around a round table, where N > 5. Each person tosses a coin. Anyone whose outcome is different from his/her two neighbors will receive a present. Let X be the number of people who receive presents.

Example (Who will receive the present?

N people sit around a round table, where N > 5. Each person tosses a coin. Anyone whose outcome is different from his/her two neighbors will receive a present. Let X be the number of people who receive presents. Find E[X] and Var(X).

» PDF of the Sum of Multiple Random Variables...

» PDF of the Sum of Multiple Random Variables...

PDF of the Sum of Multiple RVs

We recall that if $Y = X_1 + X_2$, and X_1 and X_2 being independent, we have

» PDF of the Sum of Multiple Random Variables...

PDF of the Sum of Multiple RVs

We recall that if $Y = X_1 + X_2$, and X_1 and X_2 being independent, we have

$$f_Y(y) = f_{X_1}(y) * f_{X_2}(y) = \int_{-\infty}^{\infty} f_{X_1}(x) f_{X_2}(y-x) dx$$

For multiple variable case, i.e., if $Y = X_1 + X_2 + \cdots + X_n$, we have

$$f_{Y}(y) = f_{X_1}(y) * f_{X_2}(y) * \cdots * f_{X_n}(y)$$

* However, it is computationally difficult!

Definition of Random Vector and Expectation

When dealing with multiple RVs, it is useful to use vector and matrix notations.

Definition of Random Vector and Expectation

When dealing with multiple RVs, it is useful to use vector and matrix notations. This helps using a compact notation and tools from linear algebra.

Definition of Random Vector and Expectation

When dealing with multiple RVs, it is useful to use vector and matrix notations. This helps using a compact notation and tools from linear algebra. Let X_1, X_2, \ldots, X_n be n independent RVs, then random vector is defined as

Definition of Random Vector and Expectation

When dealing with multiple RVs, it is useful to use vector and matrix notations. This helps using a compact notation and tools from linear algebra. Let X_1, X_2, \ldots, X_n be n independent RVs, then random vector is defined as

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \quad E[X] = \begin{bmatrix} E[X_1] \\ E[X_2] \\ \vdots \\ E[X_n] \end{bmatrix}$$

Definition of Random Vector and Expectation

When dealing with multiple RVs, it is useful to use vector and matrix notations. This helps using a compact notation and tools from linear algebra. Let X_1, X_2, \ldots, X_n be n independent RVs, then random vector is defined as

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \quad E[X] = \begin{bmatrix} E[X_1] \\ E[X_2] \\ \vdots \\ E[X_n] \end{bmatrix}$$

We call X a random vector and E[X] is the expectation of random vector.

- * CDF is $F_{\underline{X}}(x) = F_{\underline{X}_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n)$
- * If X is jointly continuous, the PDF is denoted as

$$f_{\chi}(x) = f_{\chi_1, \chi_2, \dots, \chi_n}(x_1, x_2, \dots, x_n)$$

69

» Random Matrix and Expectation...

Random matrix, Expectation

A random matrix is a matrix whose elements are random variables.

Random matrix, Expectation

A random matrix is a matrix whose elements are random variables.

$$M = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix} \quad E[M] = \begin{bmatrix} E[X_{11}] & E[X_{12}] & \dots & E[X_{1n}] \\ E[X_{21}] & E[X_{22}] & \dots & E[X_{2n}] \\ \vdots & \vdots & \vdots & \vdots \\ E[X_{m1}] & E[X_{m2}] & \dots & E[X_{mn}] \end{bmatrix}$$

Random matrix, Expectation

A random matrix is a matrix whose elements are random variables.

$$M = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix} \quad E[M] = \begin{bmatrix} E[X_{11}] & E[X_{12}] & \dots & E[X_{1n}] \\ E[X_{21}] & E[X_{22}] & \dots & E[X_{2n}] \\ \vdots & \vdots & \vdots & \vdots \\ E[X_{m1}] & E[X_{m2}] & \dots & E[X_{mn}] \end{bmatrix}$$

Here M is called the random matrix, and E[M] is the expectation of random matrix.

Random matrix, Expectation

A random matrix is a matrix whose elements are random variables.

$$M = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix} \quad E[M] = \begin{bmatrix} E[X_{11}] & E[X_{12}] & \dots & E[X_{1n}] \\ E[X_{21}] & E[X_{22}] & \dots & E[X_{2n}] \\ \vdots & \vdots & \vdots & \vdots \\ E[X_{m1}] & E[X_{m2}] & \dots & E[X_{mn}] \end{bmatrix}$$

Here M is called the random matrix, and E[M] is the expectation of random matrix.

- * If $Y = AX + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, then E[Y] = AE[X] + b
- * Also, if $X_1, \overline{X_2, \cdots, X_k}$ are k n-dimensional RVs, then

Random matrix, Expectation

A random matrix is a matrix whose elements are random variables.

$$M = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix} \quad E[M] = \begin{bmatrix} E[X_{11}] & E[X_{12}] & \dots & E[X_{1n}] \\ E[X_{21}] & E[X_{22}] & \dots & E[X_{2n}] \\ \vdots & \vdots & \vdots & \vdots \\ E[X_{m1}] & E[X_{m2}] & \dots & E[X_{mn}] \end{bmatrix}$$

Here M is called the random matrix, and E[M] is the expectation of random matrix.

- * If $Y = AX + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, then E[Y] = AE[X] + b
- * Also, if X_1, X_2, \dots, X_k are k n-dimensional RVs, then

$$E[X_1 + X_2 + \cdots X_k] = E[X_1] + E[X_2] + \cdots + E[X_k].$$

» Variance of a Sum of Random Variables...

Let X_1, X_2, \dots, X_n be *n* random variables.

Variance of Multiple Random Variables

Let X_1, X_2, \dots, X_n be n random variables. Then we have the following

» Variance of a Sum of Random Variables...

Variance of Multiple Random Variables

Let X_1, X_2, \dots, X_n be *n* random variables. Then we have the following

$$\mathsf{Var}\left(\sum_{i=1}^n \mathsf{X}_i\right) = \sum_{i=1}^n \mathsf{Var}(\mathsf{X}_i) + 2\sum_{i < j} \mathsf{Cov}(\mathsf{X}_i, \mathsf{X}_j)$$

» Variance of a Sum of Random Variables...

Variance of Multiple Random Variables

Let X_1, X_2, \dots, X_n be *n* random variables. Then we have the following

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

If X_1, X_2, \ldots, X_n are independent, then we have

» Variance of a Sum of Random Variables...

Variance of Multiple Random Variables

Let X_1, X_2, \dots, X_n be *n* random variables. Then we have the following

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

If X_1, X_2, \dots, X_n are independent, then we have

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

69

» Correlation and Covariance Matrix...

» Correlation and Covariance Matrix...

Definition of Correlation and Covariance Matrix

For a random vector X, the correlation matrix R_X and covariance matrix C_X is

Definition of Correlation and Covariance Matrix

For a random vector X, the correlation matrix R_X and covariance matrix C_X is

$$\underline{R}_{X} = \underline{E[XX^{T}]} = \begin{bmatrix}
X_{1}^{2} & X_{1}X_{2} & \dots & X_{1}X_{n} \\
X_{2}X_{1} & X_{2}^{2} & \dots & X_{2}X_{n} \\
\vdots & \vdots & \vdots & \vdots \\
X_{n}X_{1} & X_{n}X_{2} & \dots & X_{n}^{2}
\end{bmatrix}^{N} = \begin{bmatrix}
E[X_{1}^{2}] & E[X_{1}X_{2}] & \dots & E[X_{1}X_{n}] \\
E[X_{2}X_{1}] & E[X_{2}^{2}] & \dots & E[X_{2}X_{n}] \\
\vdots & \vdots & \vdots & \vdots \\
E[X_{n}X_{1}] & E[X_{n}X_{2}] & \dots & E[X_{n}^{2}]
\end{bmatrix}$$

$$C_{X} = E[(X - E[X])(X - E[X])^{T}] = \begin{bmatrix} Var(X_{1}) & Cov(X_{1}, X_{2}) & \dots & Cov(X_{1}, X_{n}) \\ Cov(X_{2}, X_{1}) & Var(X_{2}) & \dots & Cov(X_{2}, X_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ Cov(X_{n}, X_{1}) & Cov(X_{n}, X_{2}) & \dots & Var(X_{n}) \end{bmatrix}$$

» Correlation and Covariance Matrix...

Definition of Correlation and Covariance Matrix

For a random vector X, the correlation matrix R_X and covariance matrix C_X is

$$R_{X} = E[XX^{T}] = \begin{bmatrix} X_{1}^{2} & X_{1}X_{2} & \dots & X_{1}X_{n} \\ X_{2}X_{1} & X_{2}^{2} & \dots & X_{2}X_{n} \\ \vdots & \vdots & \vdots & \vdots \\ X_{n}X_{1} & X_{n}X_{2} & \dots & X_{n}^{2} \end{bmatrix} = \begin{bmatrix} E[X_{1}^{2}] & E[X_{1}X_{2}] & \dots & E[X_{1}X_{n}] \\ E[X_{2}X_{1}] & E[X_{2}^{2}] & \dots & E[X_{2}X_{n}] \\ \vdots & \vdots & \vdots & \vdots \\ E[X_{n}X_{1}] & E[X_{n}X_{2}] & \dots & E[X_{n}^{2}] \end{bmatrix}$$

$$C_X = E[(X - E[X])(X - E[X])^T] = \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) & \dots & Cov(X_1, X_n) \\ Cov(X_2, X_1) & Var(X_2) & \dots & Cov(X_2, X_n) \\ \vdots & & \vdots & & \vdots & \vdots \\ Cov(X_n, X_1) & Cov(X_n, X_2) & \dots & Var(X_n) \end{bmatrix}$$

$$\checkmark C_X = R_X - E[X]E[X]^T$$

» Correlation and Covariance Matrix...

Definition of Correlation and Covariance Matrix

For a random vector X, the correlation matrix R_X and covariance matrix C_X is

$$R_{X} = E[XX^{T}] = \begin{bmatrix} X_{1}^{2} & X_{1}X_{2} & \dots & X_{1}X_{n} \\ X_{2}X_{1} & X_{2}^{2} & \dots & X_{2}X_{n} \\ \vdots & \vdots & \vdots & \vdots \\ X_{n}X_{1} & X_{n}X_{2} & \dots & X_{n}^{2} \end{bmatrix} = \begin{bmatrix} E[X_{1}^{2}] & E[X_{1}X_{2}] & \dots & E[X_{1}X_{n}] \\ E[X_{2}X_{1}] & E[X_{2}^{2}] & \dots & E[X_{2}X_{n}] \\ \vdots & \vdots & \vdots & \vdots \\ E[X_{n}X_{1}] & E[X_{n}X_{2}] & \dots & E[X_{n}^{2}] \end{bmatrix}$$

$$C_X = E[(X - E[X])(X - E[X])^T] = \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) & \dots & Cov(X_1, X_n) \\ Cov(X_2, X_1) & Var(X_2) & \dots & Cov(X_2, X_n) \\ \vdots & & \vdots & & \vdots \\ Cov(X_n, X_1) & Cov(X_n, X_2) & \dots & Var(X_n) \end{bmatrix}$$

1.
$$C_X = R_X - E[X]E[X]^T$$

2. If
$$Y = AX + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$
, then $C_Y = AC_XA^T$

17/69

 $\boldsymbol{\mathsf{w}}$ Example of Correlation and Covariance Matrices...

Example (Example of correlation and covariance matrices

Let $\ensuremath{\textit{X}}$ and $\ensuremath{\textit{Y}}$ be jointly continuous random variables with joint PDF

Example (Example of correlation and covariance matrices)

Let X and Y be jointly continuous random variables with joint PDF

$$f_{\mathsf{X},\mathsf{Y}} = egin{cases} rac{3}{2} \mathsf{x}^2 + \mathsf{y} & 0 < \mathsf{x},\mathsf{y} < 1 \\ 0 & \mathsf{otherwise} \end{cases}$$

Example (Example of correlation and covariance matrices)

Let X and Y be jointly continuous random variables with joint PDF

$$f_{X,Y} = \begin{cases} \frac{3}{2}x^2 + y & 0 < x, y < 1\\ 0 & \text{otherwise} \end{cases}$$

Let $U = \begin{vmatrix} A \\ Y \end{vmatrix}$ be the random vector

Example (Example of correlation and covariance matrices)

Let *X* and *Y* be jointly continuous random variables with joint PDF

$$f_{X,Y} = \begin{cases} \frac{3}{2}x^2 + y & 0 < x, y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Let $U = \begin{bmatrix} X \\ Y \end{bmatrix}$ be the random vector. Find the correlation and covariance matrices of U.

» Answer to previous problem...

Solution First find the manginal
$$R = \frac{1}{2} x^2 = \frac{1}{2} x^2 = \frac{1}{2} x^2 + \frac{1}{2} = \frac{$$

» Answer to previous problem...

Covariona Madino
$$Cu = E[U-E[U]) (U-E[U])$$

$$Cu = (v) Cu(v)$$

Properties of Covariance

We have the following properties for $\ensuremath{\text{covariance}}$ matrix:

Properties of Covariance

We have the following properties for covariance matrix:

1. The covariance matrix C_X is symmetric matrix

Properties of Covariance

We have the following properties for covariance matrix:

- 1. The covariance matrix C_X is symmetric matrix
- 2. The covariance matrix C_X is positive semi-definite (PSD)

Recall definition promise definite (PD), Assum A eymnéhi.

A matrix A is SPD if TAX > 0 Hx = 0 » Properties of Covariance Matrix... Properties of Covariance We have the following properties for covariance matrix: 1. The covariance matrix C_X is symmetric matrix 2. The covariance matrix C_X is positive semi-definite (PSD) 3. The covariance matrix is positive definite if and only if all its eigenvalues are larger than zero Cx= E[(x-E[x])(x-E[x])] : A = (27) = 27 = A = A is commun.

Properties of Covariance

We have the following properties for covariance matrix:

- 1. The covariance matrix C_X is symmetric matrix
- 2. The covariance matrix C_X is positive semi-definite (PSD)
- 3. The covariance matrix is positive definite if and only if all its eigenvalues are larger than zero
- 4. The covariance matrix is positive definite if and only if $det(C_X) > 0$

עס /

» Example of Covariance Matrix...

Example (Example of covariance matrix

Consider two independent random variables \boldsymbol{X} and \boldsymbol{Y} .

»	Examp	le of Co	variance	Matrix.
---	-------	----------	----------	---------

Example (Example of covariance matri

Consider two independent random variables $\it X$ and $\it Y$. Let $\it X$ and $\it Y$ follow Uniform (0,1) distribution.

Example (Example of covariance matrix

Consider two independent random variables X and Y. Let X and Y follow ${\sf Uniform}(0,1)$ distribution. Let the random vectors U and V be defined as

Example (Example of covariance matrix

Consider two independent random variables X and Y. Let X and Y follow ${\sf Uniform}(0,1)$ distribution. Let the random vectors U and V be defined as

$$U = \begin{bmatrix} X \\ X + Y \end{bmatrix}, \quad V = \begin{bmatrix} X \\ Y \\ X + Y \end{bmatrix}$$

Example (Example of covariance matrix

Consider two independent random variables X and Y. Let X and Y follow Uniform (0,1) distribution. Let the random vectors U and V be defined as

$$U = \begin{bmatrix} X \\ X + Y \end{bmatrix}, \quad V = \begin{bmatrix} X \\ Y \\ X + Y \end{bmatrix}$$

Are the matrices C_U and C_V positive definite?

» Denition of Cross-Correlation and Cross-Covariance Matrix...

$$R_{x} = E[x \times T]$$

$$C_{x} = \left(\frac{1}{100} (x - E(x))\right) \left(x - E(x)\right)^{T}$$

 $\ensuremath{\,{\bf >\!\!\!\!>}}\,$ Denition of Cross-Correlation and Cross-Covariance Matrix...

Definition of Cross Correlation and Cross Covariance Matrices

Let X and Y be two random vectors,

Definition of Cross Correlation and Cross Covariance Matrices

Let X and Y be two random vectors, we define the cross-correlation matrix of X and Y as

» Denition of Cross-Correlation and Cross-Covariance Matrix...

Definition of Cross Correlation and Cross Covariance Matrices

Let X and Y be two random vectors, we define the cross-correlation matrix of X and Y as

$$R_{XY}=E[XY]$$

» Denition of Cross-Correlation and Cross-Covariance Matrix...

Definition of Cross Correlation and Cross Covariance Matrices

Let X and Y be two random vectors, we define the cross-correlation matrix of X and Y as

$$R_{XY} = E[XY^T]$$

Similarly the cross-covariance matrix of *X* and *Y* random vectors is defined as

» Denition of Cross-Correlation and Cross-Covariance Matrix...

Definition of Cross Correlation and Cross Covariance Matrices

Let X and Y be two random vectors, we define the cross-correlation matrix of X and Y as

$$R_{XY} = E[XY^T]$$

Similarly the cross-covariance matrix of X and Y random vectors is defined as

$$C_{XY} = E[(X - E[X])(Y - E[Y])^T]$$

» Functions of Random Variables...

Consider a function of random vector: Y = G(X),

» Functions of Random Variables...

Method of Transformation for Functions of Randome Vectors

Consider a function of random vector: Y = G(X), where $\underline{G} : \mathbb{R}^n \to \mathbb{R}^n$ is continuous and invertible function with continuous partial derivatives.

» Functions of Random Variables...

Method of Transformation for Functions of Randome Vectors

Consider a function of random vector: Y = G(X), where $G : \mathbb{R}^n \to \mathbb{R}^n$ is continuous and invertible function with continuous partial derivatives. If $H = G^{-1}$, then X = H(Y).

Consider a function of random vector: Y = G(X), where $G : \mathbb{R}^n \to \mathbb{R}^n$ is continuous and invertible function with continuous partial derivatives. If $H = G^{-1}$, then X = H(Y).

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} H_1(Y_1, Y_2, \dots, Y_n) \\ H_2(Y_1, Y_2, \dots, Y_n) \\ \vdots \\ H_n(Y_1, Y_2, \dots, Y_n) \end{bmatrix}$$

Consider a function of random vector: Y = G(X), where $G : \mathbb{R}^n \to \mathbb{R}^n$ is continuous and invertible function with continuous partial derivatives. If $H = G^{-1}$, then X = H(Y).

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} H_1(Y_1, Y_2, \dots, Y_n) \\ H_2(Y_1, Y_2, \dots, Y_n) \\ \vdots \\ H_n(Y_1, Y_2, \dots, Y_n) \end{bmatrix}$$

Then the PDF of Y, denoted by $f_{Y_1,Y_2,...,Y_n}(y_1,y_2,...,y_n)$ is given as follows

Consider a function of random vector: Y = G(X), where $G: \mathbb{R}^n \to \mathbb{R}^n$ is continuous and invertible function with continuous partial derivatives. If $H = G^{-1}$, then X = H(Y).

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} H_1(Y_1, Y_2, \dots, Y_n) \\ H_2(Y_1, Y_2, \dots, Y_n) \\ \vdots \\ H_n(Y_1, Y_2, \dots, Y_n) \end{bmatrix}$$

Then the PDF of Y, denoted by $f_{Y_1,Y_2,...,Y_n}(y_1,y_2,...,y_n)$ is given as follows

of
$$Y$$
, denoted by $f_{Y_1,Y_2,...,Y_n}(y_1,y_2,...,y_n)$ is given as follows
$$f_{Y}(y) = f_X(H(y)) |J|, \qquad \text{where } J = \det \begin{bmatrix} \frac{\partial H_1}{\partial y_1} & \frac{\partial H_1}{\partial y_2} & \dots & \frac{\partial H_1}{\partial y_n} \\ \frac{\partial H_2}{\partial y_1} & \frac{\partial H_2}{\partial y_2} & \dots & \frac{\partial H_2}{\partial y_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial H_n}{\partial y_1} & \frac{\partial H_n}{\partial y_2} & \dots & \frac{\partial H_n}{\partial y_n} \end{bmatrix}$$

example (Example of Method of Transform for Function of Random Vector,

Let Y = AX + b, where X is a n dimensional random vector,

example (Example of Method of Transform for Function of Random Vector

Let Y = AX + b, where X is a n dimensional random vector, A be a fixed (non-random) n by n matrix,

example (Example of Method of Transform for Function of Random Vector

Let Y = AX + b, where X is a n dimensional random vector, A be a fixed (non-random) n by n matrix, and b be a fixed n-dimensional vector.

$$\chi = A^{-1} (Y - b) = H(Y)$$

$$J = \mathcal{U}(A^{-1}) = \int_{ab}^{b} dat(A^{-1}) dat(A^$$

Example (Example of Method of Transform for Function of Random Vector

Let Y = AX + b, where X is a n dimensional random vector, A be a fixed (non-random) n by n matrix, and b be a fixed n-dimensional vector. Find the PDF of Y in terms of X.

$$f_{\gamma}(\gamma) = f_{\times}(H(\gamma)) |J|$$

$$= f_{\times}(A^{-1}(\gamma-b)) |J| = \int_{A} f_{\times}(\tilde{A}^{1}(\gamma^{0}))$$

32/

» Definition of Jointly Normal or Gaussian Random Vectors...

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \ldots, X_n are jointly normal,

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{R}$$

is a normal variable

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n$$
, $a_1, a_2, \ldots, a_n \in \mathbb{R}$

is a normal variable

2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector,

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n$$
, $a_1, a_2, \ldots, a_n \in \mathbb{R}$

is a normal variable

2. A random vector $X = [X_1, X_2, ..., X_n]$ is said to be normal vector, if the random vectors $X_1, X_2, ..., X_n$ are jointly normal

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n$$
, $a_1, a_2, \ldots, a_n \in \mathbb{R}$

is a normal variable

variable

- 2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector, if the random vectors X_1, X_2, \dots, X_n are jointly normal
- 3. Consider a random vector Z whose components $Z_i \sim N(0,1)$, and they are I.I.D.

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{R}$$

is a normal variable

- 2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector, if the random vectors X_1, X_2, \dots, X_n are jointly normal
 - . Consider a random vector Z whose components $Z_i \sim \mathcal{N}(0,1),$ and they are I.I.D. Then the PDF of Z is

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{R}$$

is a normal variable

- 2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector, if the random vectors X_1, X_2, \dots, X_n are jointly normal
- 3. Consider a random vector Z whose components $Z_i \sim N(0,1)$, and they are I.I.D. Then the PDF of Z is

$$f_{\mathcal{Z}}(\pmb{z}) = rac{1}{(2\pi)^{n/2}} \exp\left\{-rac{1}{2}\pmb{z}^{T}\pmb{z}
ight\}$$

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{R}$$

is a normal variable

- 2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector, if the random vectors X_1, X_2, \dots, X_n are jointly normal
- 3. Consider a random vector Z whose components $Z_i \sim N(0,1)$, and they are I.I.D. Then the PDF of Z is

$$f_{\mathcal{Z}}(z) = rac{1}{(2\pi)^{n/2}} \exp\left\{-rac{1}{2}z^{\mathcal{T}}z
ight\}$$

4. For a normal random vector X, with mean m and covariance C,

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{R}$$

is a normal variable

- 2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector, if the random vectors X_1, X_2, \dots, X_n are jointly normal
- 3. Consider a random vector Z whose components $Z_i \sim N(0,1)$, and they are I.I.D. Then the PDF of Z is

$$f_{\!Z}\!(z) = rac{1}{(2\pi)^{n/2}} \exp\left\{-rac{1}{2}z^{\! au}z
ight\}$$

4. For a normal random vector X, with mean m and covariance C, the PDF is

Definition of Jointly Normal Random Vectors

1. Random variables X_1, X_2, \dots, X_n are jointly normal, if the linear combination

$$a_1X_1 + a_2X_2 + \cdots + a_nX_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{R}$$

is a normal variable

- 2. A random vector $X = [X_1, X_2, \dots, X_n]$ is said to be normal vector, if the random vectors X_1, X_2, \dots, X_n are jointly normal
- 3. Consider a random vector Z whose components $Z_i \sim N(0,1)$, and they are I.I.D. Then the PDF of Z is

$$f_{\!\mathcal{Z}}\!\left(oldsymbol{z}
ight) = rac{1}{(2\pi)^{n/2}} \exp\left\{-rac{1}{2}oldsymbol{z}^{\! au}oldsymbol{z}
ight\}$$

4. For a normal random vector X, with mean m and covariance C, the PDF is

$$f_X(x) = \frac{1}{(2\pi)^{n/2}\sqrt{\det C}} \exp\left\{-\frac{1}{2}(x-m)^T C^{-1}(x-m)\right\}$$