机械振动基础答案

本资料由新佳美文印社提供

地址: 升华一栋旁, 交安驾校后

电话: 13787253038

1.3 设有两个刚度分别为
$$k_1$$
, k_2 的线性弹簧如图 $T-1$.3 所示,试证明:

1) 它们并联时的总刚度
$$k_{eq}$$
 为: $k_{eq} = k_1 + k_2$

2) 它们串联时的总刚度 k_{eq} 满足: $\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2}$

解: 1) 对系统施加力 P,则两个弹簧的变形相同为 x ,但受力不同,分别为:

 $\int P_1 = k_1 x$

 k_1 k_2 k_2 k_2

1.4 求图所示扭转系统的总刚度。两个串联的轴的扭转刚度分别为 k_{ij} , k_{ij} 。

解: 对系统施加扭矩 T, 则两轴的转角为:

$$\begin{cases} \theta_2 = \frac{T}{k_{r_2}} \end{cases}$$
系统的总转角为:

$$\theta = \theta_1 + \theta_2 = T(\frac{1}{2} + \frac{1}{2})$$

1.5 两只减振器的粘性阻尼系数分别为 c_1 , c_2 , 试计算总粘性阻尼系数 c_{aa}

解: 1) 对系统施加力 P,则两个减振器的速度同为 x, 受力分别为:

- 1)在两只减振器并联时,
- 2)在两只减振器串联时。

$$P_2 = c_2 x$$

由力的平衡有: $P = P_1 + P_2 = (c_1 + c_2) x$

1.6 一简谐运动,振幅为 0.5cm,周期为 0.15s,求最大速度和加速度。

解: 简谐运动的
$$\omega_n = \frac{2\pi}{T} = \frac{2\pi}{0.15} (rad/s)$$
, 振幅为 $5 \times 10^{-3} m$;

$$\mathbb{RP} : \begin{cases}
x = 5 \times 10^{-3} \cos(\frac{2\pi}{0.15}t)(m) \\
\dot{x} = -5 \times 10^{-3} \times \frac{2\pi}{0.15}t \sin(\frac{2\pi}{0.15}t)(m/s) \\
\ddot{x} = -5 \times 10^{-3} \times (\frac{2\pi}{0.15}t)^2 \cos(\frac{2\pi}{0.15}t)(m/s^2)
\end{cases}$$

1.7 一加速度计指示出结构振动频率为82Hz,并具有最大加速度50g,求振动的振幅。

解:由 $\ddot{x}_{max} = A \times \omega_n^2$ 可知:

$$A = \frac{\ddot{x}_{\text{max}}}{\omega_n^2} = \frac{\ddot{x}_{\text{max}}}{(2\pi f)^2} = \frac{50 \times 9.8 m/s^2}{(2\pi \times 25)^2 1/s^2} = \frac{9.8}{50\pi^2} m$$

1.8 证明:两个同频率但不同相角的简谐运动的合成仍是同频率的简谐运动,

即: $A\cos\omega t + B\cos(\omega t - \varphi) = C\cos(\omega t - \theta)$, 并讨论 $\varphi = 0$, $\pi/2$, π 三种特例。

证明:

$$A\cos\omega t + B\cos(\omega t - \varphi)$$

$$= A\cos\omega t + B\cos\omega t\cos\varphi + B\sin\omega t\sin\varphi$$

$$= (A + B\cos\varphi)\cos\omega t + B\sin\varphi\sin\omega t$$

$$= \sqrt{(A + B\cos\varphi)^2 + (B\sin\varphi)^2}\cos(\omega t - \theta)$$

$$= \sqrt{A^2 + 2AB\cos\varphi + B^2}\cos(\omega t - \theta)$$

1.9 把复数 4+5 i 表示为指数形式。

解:
$$4+5i=Ae^{i\theta}$$
, 其中: $A=\sqrt{4^2+5^2}$, $\theta=arctg(\frac{5}{4})$

1.10 证明: 一个复向量用 i 相乘,等于把它旋转 $\pi/2$ 。

证明:
$$Ae^{i\theta} \times i = Ae^{i\theta} \times e^{\frac{i\pi}{2}} = Ae^{i\theta + \frac{\pi}{2}}$$

1.11 证明:梯度算子▽是线性微分算子,即

$$\nabla[af(x,y,z) + bg(x,y,z)] = a\nabla f(x,y,z) + b\nabla g(x,y,z)$$

这里,a, b 是与 x、y、z 无关的常数。

- 1.12 求函数 $g(t) = A\cos p\omega t + B\cos q\omega t$ 的均方值。考虑 p 与 q 之间的如下三种
 - ① q = np,这里n为正整数;
 - ② q/p为有理数;

关系:

- •

..

2.2 弹簧不受力时长度为 65cm, 下端挂上 1kg 物体后弹簧长 85cm。设用手托住物体使弹簧回到原长后无初速度地释放, 试求物体的运动方程、振幅、周期及弹簧力的最大值。

解:由题可知:弹簧的静伸长 $\triangle = 0.85 - 0.65 = 0.2(m)$

所以:
$$\omega_n = \sqrt{\frac{g}{0.2}} = \sqrt{\frac{9.8}{0.2}} = 7(rad/s)$$

取系统的平衡位置为原点,得到:

系统的运动微分方程为:
$$\ddot{x} + \omega_{n}^{2} x = 0$$

2.3 重物 m_1 悬挂在刚度为 ℓ 的弹簧上并处于静平衡位置,另一重物 m_2 从高度为

/处自由落到 m, 上而无弹跳,如图所示,求其后的运动。

解: 取系统的上下运动 x 为坐标,向上为正,静平衡位置为原点 x=0,则当 m 有 x 位移时,系统有:

$$E_{T} = \frac{1}{2}(m_{1} + m_{2})\dot{x}^{2}$$

$$U = \frac{1}{2}kx^{2}$$

2.4 一质量为m、转动惯量为I的圆柱体作自由纯滚动,圆心受到一弹簧 ℓ 约

束,如图所示,求系统的固有频率。 解:取圆柱体的转角 θ 为坐标,逆时针为正,静平衡位置时 $\theta = 0$,则当m有 θ

转角时,系统有:
$$E_T = \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}m(\dot{\theta}\,r)^2 = \frac{1}{2}(I + mr^2)\dot{\theta}^2$$

$$U = \frac{1}{2}k(\theta r)^2$$

由
$$d(E_T + U) = 0$$
 可知: $(I + mr^2)\ddot{\theta} + kr^2\theta = 0$

即:
$$\omega_n = \sqrt{kr^2/(I + mr^2)}$$
 (rad/s)

2.5 均质杆长 L、重 G,用两根长 h 的铅垂线挂成水平位置,如图所示,试求此杆相对铅垂轴 OO 微幅振动的周期。

求如图所示系统的周期,三个弹簧都成铅垂,且 $k_2 = 2k_1, k_3 = k_1$ 。

6 求如图所示系统的周期,三个弹簧都成铅垂,且
$$k_2 = 2k_1, k_3 = k_1$$
。

6 水如图所亦系统的周期,二个弹黄都成铅垂,且
$$K_2 = 2K_1, K_3 = K_1$$

 $U = \frac{1}{2}kx^2 + \frac{1}{2}k_1x^2 = \frac{5}{6}k_1x^2 \quad (其中: k = \frac{k_1k_2}{k_1 + k_2})$

x位移时,系统有: $E_T = \frac{1}{2}m\dot{x}^2$

解: 取 m 的上下运动 x 为坐标,向上为正,静平衡位置为原点 x=0 ,则当 m 有

如图所示,半径为 r 的均质圆柱可在半径为 R 的圆轨面内无滑动地、以圆

轨面最低位置 O 为平衡位置左右微摆,试导出柱体的摆动方程, 求其固有频率。

解:设物体重量W,摆角坐标 θ 如图所示,逆时 为正,当系统有 θ 摆角时,则:

$$U=W(R-r)(1-\cos\theta)\approx W(R-r)rac{ heta^2}{2}$$

设 $\dot{\phi}$ 为圆柱体转角速度,质心的瞬时速度:

$$\upsilon_c = (R-r)\dot{\theta} = r\dot{\phi}$$
, \mathbf{p} : $\dot{\phi} = \frac{(R-r)}{r}\dot{\theta}$

针

2.8 横截面面积为A,质量为m的圆柱形浮静止在比重为 γ 的液体中。设从平衡位置压

距离 x(见图),然后无初速度地释放,若不计 尼,求浮子其后的运动。

解:建立如图所示坐标系,系统平衡时x=0,由牛顿第二定律得:

$$m\ddot{x} + \gamma (Ax)g = 0$$
, $\text{ED}: \ \omega_n = \sqrt{\frac{\gamma Ag}{m}}$

2.9 求如图所示系统微幅扭振的周期。图中两个摩擦轮可分别绕水平轴 O_1 , O_2 转动,它们相互啮合,不能相对滑动,在图示位置(半径 O_2A 与 O_2B 在同一水平线上),弹簧不受力。摩擦轮可以看做等厚均质圆盘,质量分别为 m_1 , m_2 。

解: 两轮的质量分别为 m_1, m_2 , 因此轮的半径比为:

$$\frac{1}{r_2} = \sqrt{\frac{1}{m_2}}$$
由于两轮无相对滑动,因此其转角比为:
 $\theta_1 = r_2 = \dot{\theta_1}$

2.10 如图所示,轮子可绕水平轴转动,对转轴的动惯量为I,轮缘绕有软绳,下端挂有重量为IP的体,绳与轮缘之间无滑动。在图示位置,由水平簧维持平衡。半径IR与IP均已知,求微振动的周

解:取轮的转角 θ 为坐标,顺时针为正,系统平衡 $\theta = 0$,则当轮子有 θ 转角时,系统有:

$$E_T = \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}\frac{P}{g}(\dot{\theta}R)^2 = \frac{1}{2}(I + \frac{P}{g}R^2)\dot{\theta}^2$$

$$U = \frac{1}{2}k(\theta a)^2$$

弹 期。

时

2.11 弹簧悬挂一质量为 m 的物体,自由振动的周期为 T,如果在 m上附加一个质量 m_1 ,则弹簧的静伸长增加 Δ / n 求当地的重力加速度。

解:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$k = \frac{4\pi^2 m}{T}$$

$$m_1 g = k \Delta I$$

$$g = \frac{k \Delta I}{T} - \frac{4\pi^2 m}{T} \Delta I$$

2.12 用能量法求图所示三个摆的微振动的固有频率。摆锤重 P, (A)与(c)中每个弹簧的弹性系数为 kt2。(1)杆重不计; (2)若杆质量均匀,计入杆重。

解: 取系统的摆角 θ 为坐标,静平衡时 $\theta=0$ (a) 若不计杆重,系统作微振动,则有:

 $\mathbb{P}: \ \omega_n = \sqrt{\frac{(\frac{P}{g} + \frac{m_L}{2})g + \frac{kL}{4}}{(\frac{P}{g} + \frac{m_L}{3})L}} \ (\text{rad/s})$ (c) 如果考虑杆重,系统作微振动,则有:

 $E_T = \frac{1}{2} \left(\frac{P}{\sigma} L^2 \right) \dot{\theta}^2 + \frac{1}{2} \left(\frac{1}{3} m_L L^2 \right) \dot{\theta}^2 = \frac{1}{2} \left(\frac{P}{\sigma} + \frac{m_L}{3} \right) L^2 \dot{\theta}^2$

 $U \approx -\left(\frac{P}{g} + \frac{m_L}{2}\right)gL\frac{\theta^2}{2} + \frac{1}{2}\left(\frac{k}{2}\right)(\theta\frac{L}{2})^2 \times 2$

2.13 求如图所示系统的等效刚度,并把它写成与x的关系式。

2.14 一台电机重 470N, 转速为 1430r/min, 固定在两根 5 号槽钢组成的简支 梁的中点,如图所示。每根槽钢长1.2m,重65.28N,弯曲刚度 $EI=1.66\times10^5$ N·m²。

(a)不考虑槽钢质量, 求系统的固有频率;

(4)设槽钢质量均布,考虑分布质量的影响,求系统的固有频率;

(c)计算说明如何避开电机和系统的共振区。

2.15 一质量 m 固定于长 L, 弯曲刚度为 EI, 密度为r 的弹性梁的一端, 注以方放氏星的概念计算甘用方板家

2.16 求等截面 U形管内液体振动的周期,阻力不计,假定液柱总长度为 L。

解:假设U形管内液柱长I,截面积为A,密度为 ρ ,取系统静平衡时势能为0,

左边液面下降
$$x$$
时,有:

$$E_T = \frac{1}{2} \rho A \dot{x}^2$$

$$U = \rho A \times x \times g \times x$$

由
$$d(E_T + U) = 0$$
 可知: $\rho Al\ddot{x} + 2g\rho Ax = 0$

2. 17 水箱 1 与 2 的水平截面面积分别 A_1 、 A_2 ,底部用截面为 A_3 的细管连接。液面上下振动的固有频率。

解:设液体密度为 ρ ,取系统静平衡时势能为0,当左边液面下降 x_1 时,右边液

面上升 x_1 ,液体在水箱 1 与 2 和细管中的速度分别为 \dot{x}_1 , \dot{x}_2 , \dot{x}_3 , 则有:

2.18 如图所示,一个重 M、面积为A的薄板悬挂在弹簧上,使之在粘性液体中振动。设 T_1 、 T_2 分别为无阻尼的振动周期和在粘性液体中的阻尼周期。试证明:

$$\mu = \frac{2\pi W}{gAT_1T_2} \sqrt{T_2^2 - T_2^2}$$

并指出 μ 的意义(式中液体阻尼力 F_{μ} •2/4)。

2.19 试证明: 对数衰减率也可用下式表示 $\delta = \frac{1}{n} \ln \frac{x_0}{x_n}$, (式中 x_n 是经过 n 个循

环后的振幅)。并给出在阻尼比 ζ 为 0.0l、0.1、0.3 时振幅减小到 50%以下所需要的循环数。

解:设系统阻尼自由振动的响应为x(t);

 t_0 时刻的位移为 x_0 ; $t_n = t_0 + nT$ 时刻的位移为 x_n ; 则:

2.20 某双轴汽车的前悬架质量为 m_1 =1151kg,前悬架刚度为 k_1 =1.02×10 5 N/m,若假定前、后悬架的振动是独立的,试计算前悬架垂直振动的偏频。如果要求前悬架的阻尼比 $\zeta=0.25$,那么应给前悬架设计多大阻尼系数(c)的悬架减振器?

2.21 重量为P的物体,挂在弹簧的下端,产生静伸长 δ ,在上下运动时所遇到的阻力与速度 ν 成正比。要保证物体不发生振动,求阻尼系数 ϵ 的最低值。若物体在静平衡位置以初速度 κ 开始运动,求此后的运动规律。

解:设系统上下运动为x坐标系,系统的静平衡位置为原点,得到系统的运动微分方程为:

$$\frac{P}{g}\ddot{x} + c\dot{x} + \frac{P}{\delta}x = 0$$

系统的阻尼比 :
$$\zeta = \frac{c}{2\sqrt{mk}} = \frac{c}{\sqrt{\frac{PP}{N}}}$$

2.22 一个重 5500N 的炮管具有刚度为 3.03×10⁵N/m 的驻退弹簧。如果发射时

①炮管初始后座速度; ②减振器临界阻尼系数(它是在反冲结束时参加工作的);

炮管后座 1.2m, 试求:

③炮管返回到离初始位置 0.05m 时所需要的时间。

2.23 设系统阻尼比 $\zeta = 0.1$,试按比例画出在 $\frac{\omega}{\omega_n} = 0.5$ 、1.0、2.0 三种情况下 微分方程的向量关系图。

2.24 试指出在简谐激励下系统复频率响应、放大因子和品质因子之间的关系, 并计算当 $\zeta = 0.2$ 、 $\omega_z = 5 \text{ rad/s}$ 时系统的品质因子和带宽。

2.25 已知单自由度系统振动时其阻力为《其中《导学数》《导运动速度》

2.26 某单自由度系统在液体中振动,它所受到的激励为 $F = 50 \cos \omega t$ (N),系统 在周期 T = 0.20s 时共振,振幅为 0.005cm,求阻尼系数。

解:由
$$T=0.20s$$
时共振可知,系统固有频率为: $\omega_n=\frac{2\pi}{T}=10\pi$

当
$$\omega \to \omega_n$$
时,已知响应振幅: $X = \frac{F_0}{2}$, (参教材 P30)

所以:
$$c = \frac{F_0}{X\omega} = \frac{10^5}{\pi} (N \cdot s/m)$$

2.27 一个具有结构阻尼的单自由度系统,在一周振动内耗散的能量为它的最大势能的1.2%,试计算其结构阻尼系数γ。

2.28 要使每一循环消耗的能量与频率比无关,需要多大的阻尼系数。

2.29 若振动物体受到的阻力与其运动速度平方成正比,即

$$\begin{cases} F_d = a\dot{x}^2 & \dot{x} \le 0 \\ F_d = -a\dot{x}^2 & \dot{x} > 0 \end{cases}$$

求其等效阻尼系数和共振时的振幅。

解:实际上,这是一种低粘度流体阻尼。

设系统的运动为:
$$x(t) = X\cos(\omega t - \varphi)$$

$$\omega_{c} = \int \alpha x^{2} dx$$

$$\int_{0}^{\pi/w} dx dx = \int_{0}^{\pi/w} dx dx + \int_{0}^{\pi/w} dx dx = \int_{0}^{\pi/w} dx dx$$

$$X = \sqrt{\frac{3\pi F_0}{8\alpha x w_n^2}} = \frac{1}{2w_n^2} \sqrt{\frac{3\pi F_0}{2\alpha}}$$

2.29

 $F_d = \begin{cases} \frac{\cdot^2}{\alpha x} & \frac{\cdot}{x \le 0} \\ \frac{\cdot^2}{-\alpha x} & \frac{\cdot}{x \ge 0} \end{cases}$

 $\omega_e = \int F_d dx = 4 \int_0^{r/4} \alpha x^2 dx$

 $=4\int_{0}^{T/4}\alpha x^{3}dx$

2.30 KGIII 电动机重 P,装在弹性基础上,静下沉量为d。当转速为 m / min 时,由于转子失衡,沿竖向有正弦激励,电机产生振幅为 A 的强迫振动。试求激励的幅值,不计阻尼。

2.31 电动机重 P,装在弹性梁上,使梁有静挠度 d 。转子重 Q,偏心距为 e。试求当转速为w 时,电动机上下强迫振动的振幅 A,不计梁重。

I,因而系统固有频率 $\omega_{n} = K_{\tau}/I$, 但因kr不能精确计算,必须用试验 测定 α_n 。为此固定升降舵,利用弹 簧 私对调整片做简谐激励,并用弹 簧 k 来抑制。改变激励频率 a 直至 达到其共振频率 ω_r 。试以 ω_r 和试

装置控制。该装置相当于一刚度为 4 的扭转弹簧。调整片转动惯量为

2.33 如图所示由悬架支承的车辆沿高低不平的道路行进。试求 W的振幅与行进速度的关系,并确定最不利的行进速度。

解: 由题目

2.33
$$T = \frac{L}{\nu} \qquad w = \frac{2\pi}{T} = \frac{2\pi L}{L}$$

$$y = Y \cos \frac{2\pi L}{L} t$$

- 2.34 单摆悬点沿水平方向做简谐运动(图 T—2.34),x =asinw t。试求在微幅的强迫振动中偏角q 的变化规律。已知摆长为 L,摆锤质量为 m。
- 2.35 一个重90N的飞机无线电要与发动机的频率1600~2200r/min 范围的振动隔离,为了隔离85%,隔振器的静变形需要多少?
- 2.36 试从式(2.95)证明:
 - 1. 无论阻尼比 ζ 取何值,在频率比 $\omega/\omega_{\mu} = \sqrt{2}$ 时,恒有 X=A。
- 2. 在 $\omega/\omega_n < \sqrt{2}$, X/A 随 ζ 增大而减小,而在 $\omega/\omega_n > \sqrt{2}$, X/A 随 ζ 增大而增大。

2.40 求单自由度无阻尼系统对图所示激励的响应,设初始条件为零。

解:

a

$$h(t) = \frac{1}{n\omega_d} e^{-\xi\omega_n t} \sin\omega_d t$$

$$h(t-\tau) = \frac{1}{n\omega_d} e^{-\xi\omega_n (t-\tau)} \sin[\omega_d (t-\tau)]$$

2.41 求图 T-2.41 所示系统的传递函数,这里激励是x3(1)。

2.42 一弹簧质量系统从一倾斜角为 30° 光滑斜面下滑,如图所示。求弹簧与墙壁 始接触到脱离接触的时间。 30°

解: 弹簧接触墙壁时, m 的速度为:

$$v_0 = \sqrt{2gs \sin 30^\circ} = \sqrt{gs}$$

以接触时m的位置为原点,斜下方为正,则m的微分方程为:

 $m\ddot{x} + kx = mg \sin 30^{\circ}$

2.43 一个高 万。、宽 ¼ 的矩形脉冲力加到单自由度无阻尼系统上,把这个矩形脉冲力看做两个阶跃脉冲力之和,如图所示。用叠加原理求 ▷ ¼ 后的响应。

2.44 如图 *T*—2.44 所示,系统支承受凸轮作用,运动波形为图中所示的锯齿波,求系统的稳态响应。

] {y(t)

 $U = \frac{1}{2}k_{11}\theta_{1}^{2} + \frac{1}{2}k_{12}(\theta_{1} - \theta_{2})^{2} = \frac{1}{2}(k_{11} + k_{12})\theta_{1}^{2} + \frac{1}{2}k_{12}\theta_{2}^{2} - k_{11}\theta_{1}\theta_{2}$

由于 $I_1 = 2I_2$; $k_1 = k_2$, 所以 $[M] = I_2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $[K] = k_1 \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$

2)设系统固有振动的解为: $\begin{cases} \theta_1 \\ \theta_2 \end{cases} = \begin{cases} u_1 \\ u_2 \end{cases} \cos \omega t$, 代入 (a) 可得:

求偏导也可以得到[M],[K]

 $([K] - \alpha^2[M])$ $[u_1]$

3.2 求图所示系统的固有频率和振型。设 $m_1 = 3m_2$; $k_3 = 3k_1 = 3k_1$ 。并画出振型图。

解:1)以静平衡位置为原点,设 m_1,m_2 的位移 x_1,x_2 为广义坐标,画出 m_1,m_2 隔离体,根据牛顿第二定律得到运动微分方程:

$$\int m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2) = 0$$

 $\begin{bmatrix} 2k_2 - 3 \cdot \frac{(7 \pm 2\sqrt{7})}{3} \frac{k_2}{m_2} \cdot m_2 & -k_2 \\ -k_2 & 4k_2 - \frac{(7 \pm 2\sqrt{7})}{3} \frac{k_2}{m_2} \cdot m_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = 0$

如图所示弹簧质量系统,写出系统的频率方程并求出固

系统的动能和势能分别为

 $E_T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{x}_2^2$

 $U = \frac{1}{2}kx_1^2 + \frac{1}{2}k(x_1 - x_2)^2 + mg(x_1 + x_2)$

世紀 [1 0] [2 -1]

解:以静平衡位置为原点,设 m_1, m_2 的位移 x_1, x_2 为广义坐标,

3.4 如图 T—3.4 所示,由一弹簧是连接两个质量 m_1 , m_2 构成的系统以速度 ν 撞击制动器 k_1 ,求传到基础上的力的最大值。设 ν 为常数且弹簧无初始变形,并设 m_1 = m_2 与 k_1 = $2k_2$

3.5 求图所示系统的固有频率和振型,并画出振型图。设杆质量分布均匀。

3.7 如图 T-3.7 所示由弹簧耦合的双摆,杆长为 L。

- 1. 写出系统的刚度矩阵、质量矩阵和频率方程;
 - 1. 与山东坑的州及龙阵、灰重龙阵和频率力位 2. 求出固有频率和振型;
 - 3. 讨论是值改变对固有频率的影响。

$$E_T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 + \frac{1}{2}m_3\dot{x}_3^2$$

 $U = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(x_1 - x_2)^2 + \frac{1}{2}k_3(x_2 - x_3)^2 + \frac{1}{2}k_4x_3^2 + \frac{1}{2}(k_5 + k_6)x_2^2$

 $U = \frac{1}{2}(k_1 + k_2)x_1^2 + \frac{1}{2}(k_2 + k_3 + k_5 + k_6)x_2^2 + \frac{1}{2}(k_3 + k_4)x_3^2 - k_2x_1x_2 - k_3x_2x_3$

求偏导也可以得到[M],[K]

$$u_{12}: u_{22}: u_{32} \approx -1:0:1;$$

$$u_{13}: u_{23}: u_{33} \approx 1: \frac{-\sqrt{5}-1}{2}:1$$
;

令 $u_3 = 1$, 得到系统的振型为:

4.2 按定义求如图 7—4.2 所示三自由度扭转系统的刚度矩阵和质量矩阵。

4.3 求如图 *T*—4.3 所示三自由度弹簧质量系统的固有频率和振型。质量只能沿铅垂方向运动。

4.7 如图 2-4.7 所示系统,求出系统的全部固有频率和振型。

4.11 证明: 对系统的任一位移{x}, Rayleigh 商

$$R(x) = \frac{\{x\}^{T}[K]\{x\}}{\{x\}^{T}[M]\{x\}}$$

满足

足
$$\omega_1^2 \le R(x) \le \omega_a^2$$

这里,[A]和[M]分别是系统的刚度矩阵和质量矩阵, ω_1 和 ω_2 分别为系统的最低和最高固有频率。

证明、对据动系统的任意位数(4) 由展开史理 (4) 可快。人独此正态的正规化国

所以:
$$\frac{\omega_1^2 \sum_{i=1}^n c_i^2}{\sum_{i=1}^n c_i^2} \le R(x) \le \frac{\omega_n^2 \sum_{i=1}^n c_i^2}{\sum_{i=1}^n c_i^2}$$

也就是: $\omega_1^2 \leq R(x) \leq \omega_n^2$

证明完毕。