# **TRM Bound-Method Comparison Report**

This report compares the robustness verification performance of CROWN,  $\alpha$ -CROWN, and  $\beta$ -CROWN bound methods on the TRM-MLP model (MNIST).

#### 1. Certified Robustness Fraction



#### 2. Verification Runtime



## 3. GPU Memory Usage



## 4. Summary Table

| bound  | varified | foloified | total | verified fraction |
|--------|----------|-----------|-------|-------------------|
| bouria | vermea   | laisilleu | เบเลเ | verilled fraction |

| CROWN   | 31 | 249 | 280 | 0.11 |
|---------|----|-----|-----|------|
| α-CROWN | 40 | 240 | 280 | 0.14 |
| β-CROWN | 41 | 239 | 280 | 0.15 |

 $\beta$ -CROWN consistently achieves the highest verified fraction with slightly higher runtime and memory cost.  $\alpha$ -CROWN offers a balance between tightness and speed, while plain CROWN remains the fastest but loosest bound. This validates the attack-guided verification system's ability to scale across state-of-the-art bounding methods on GPUs.