Лекция 4

Ilya Yaroshevskiy

1 марта 2021 г.

Содержание

 1 Плотность одной меры по отношению к другой
 4

 1.1 Замена перменных в интеграле
 4

Теорема 0.1 (об абсолютной непрерывности ингтерала).

- (X,\mathfrak{A},μ)
- $f: X \to \overline{\mathbb{R}}$ суммируема

 $\underline{\text{Тогда}} \; \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall E$ — измеримым, $\mu E < \delta \quad |\int_E f| < \varepsilon$

Cледствие 0.1.1.

- f суммируемая
- $\mu E \rightarrow 0$

Тогда $\int_{E_n} f \to 0$

Доказательство. Возьмем множества $X_m := X(|f| \ge n)$, очевидно что $X_n \supset X_{n+1} \supset \dots$, а также $\mu(\bigcap X_n) = 0$

Утвержение: $\forall \varepsilon \; \exists n_\varepsilon \quad \int_{X_{n_\varepsilon}} |f| < \frac{\varepsilon}{2}$ — это свойство непрерывности сверху меры $A \mapsto \int_A |F| d\mu$ Пусть $\delta := \frac{\varepsilon}{2n_\varepsilon}$, тода при $\mu E < \delta$

$$\left| \int_{E} f \right| \leq \int_{E_{n}X_{n_{\varepsilon}}} |f| + \int_{E_{n}X_{n_{\varepsilon}}}^{C} \leq \int_{X_{n_{\varepsilon}}} |f| + \int_{E_{n}X_{n_{\varepsilon}}} n_{\varepsilon} < \frac{\varepsilon}{2} + \mu E \cdot n_{\varepsilon} \leq \varepsilon$$

Правда ли что:

$$f_n \underset{\mu}{\Longrightarrow} f \quad \forall \varepsilon > 0 \ \mu X(|f_n - f| > \varepsilon) \to 0$$

$$\int_{Y} |f_n - f| d\mu \to 0$$

эквивалентны.

$$(\Rightarrow)$$
 Нет. $(X,\mathfrak{A},\mu)=(\mathbb{R},\mathfrak{M},\lambda)$
$$f_n=\frac{1}{nx}\ f_n\underset{\lambda}{\Longrightarrow}0$$

$$\int |f_n-f|=+\infty-$$
при всех n

(⇐) Да.

$$\mu\underbrace{X(|f_n - f| > \varepsilon)}_{X_n} = \int_{X_n} 1 \le \int_{X_n} \frac{|f_n - 1|}{\varepsilon} = \frac{1}{\varepsilon} \int_{X_n} |f_n - f| \le \frac{1}{\varepsilon} \int_X |f_n - f| \xrightarrow[n \to +\infty]{} 0$$

Теорема 0.2 (Лебега).

- (X,\mathfrak{A},μ)
- \bullet f_n, f измеримые, почти везде конечные
- $\bullet \ f_n \underset{\mu}{\Longrightarrow} f$

- $\exists g$ суммируемая мажоранта:
 - 1. $\forall n \ |f_n| \le g$ почти везде
 - 2. g усммируемая везде

 ${
m \underline{Torдa}}\ f_n, f$ — суммируемые и $\int_X |f_n-f| d\mu \xrightarrow[n o +\infty]{} 0$, и 'тем более' $\int_X f_n d\mu o \int_X f d\mu$

Доказательство. f_n — суммируема в силу 1, f — суммируема по следствию т. Рисса: $|f| \le g$ почти везде

'тем более' $=\left|\int_X f_n - \int_X f\right| \leq \int_X |f_n - f| o 0$

1. $\mu X<+\infty$ фиксируем ε $X_n=X(|f_n-f|>\varepsilon)$ $f_n\to f,$ т.е. $\mu X_n\to 0$

$$|f_n - f| \le |f_n| + |f| \le 2g$$

$$\int_X |f_n - f| = \int_{X_n} + \int_{X_n^C} \le \int_{X_n} 2g + \int_{X_n^C} \varepsilon d\mu < \varepsilon + \varepsilon \mu X$$

По следствию т. об абсолютной непрерывности: $\int_{X_n} 2g \xrightarrow[n \to +\infty]{} 0$

2. $\mu X=+\infty$ Проверим утверждение: $\forall \varepsilon>0\ \exists A\subset X$ — измеримое, μA — конечная: $\int_{X\setminus A}g<\varepsilon$

$$\int_X g = \sup \{ \int g_n, \ 0 \le g_n \le g, \ g_n - \text{ступенчатая} \}$$

$$A := \{x : g_n(x) > 0\}$$

— при достаточно больших n

$$0 \le \int_X g - \int_X g_n = \int_A g - g_n + \int_{X \setminus A} g < \varepsilon$$

Фиксируем $\varepsilon > 0$

$$\int_{X} |f_n - f| d\mu = \int_{A} + \int_{X \setminus A} \le \int_{A} |f_n - f| + \int_{X \setminus A} 2g$$

По 1 $\int_A |f_n-f| \xrightarrow[n \to +\infty]{} 0 \int_{X \setminus A} 2g < 2\varepsilon$ т.е. при больших $n \int_x |f_n-f| d\mu < 2\varepsilon$

Теорема 0.3 (Лебега).

- (X,\mathfrak{A},μ)
- f_n, f измеримые, почти везде конечные
- \bullet $f_n o f$ почти везде
- $\exists g$ суммируемая мажоранта:
 - 1. $\forall n \mid f_n \mid \leq g$ почти везде
 - $2. \, g$ усммируемая везде

 $ext{ Тогда} \ f_n, f$ — суммируемые и $\int_X |f_n - f| d\mu \xrightarrow[n \to +\infty]{} 0$, и 'тем более' $\int_X f_n d\mu \to \int_X f d\mu$

Доказательство.

$$h_n := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

- $0 \le h_n \le 2g$
- h_n монотонна убывает
- \bullet $\lim h_n = \overline{\lim} |f_n f| = 0$ почти везде

 $2h-h_n \geq 0$ — эта последовательность возрастает, $2g-h_n \rightarrow 2g$ почти везде

$$\int_{X} 2g - h_n \to \int_{X} 2g \Rightarrow \int_{X} h_n \to 0$$
$$\int_{X} |f_n - f| \le \int_{X} h_n \to 0$$

 Π ример.

$$\int_{0}^{+\infty} t^{x-1} e^{-t} dt$$

$$\lim_{x \to x_{0}} \int_{0}^{+\infty} t^{x-1} e^{-t} dt \stackrel{?}{=} \int_{0}^{+\infty} t^{x_{0}-1} e^{-t} dt$$

Да. $t^{x-1}e^{-t}\xrightarrow[x\to x_0]{}t^{x_0-1}e^{-t}$ при всех t>0

Суммируемая мажоранта: $|t^{x-1}e^{-t}| \le \underbrace{t^{\alpha-1}e^{-t}}_{\text{сумм.}}, \ 0 < \alpha < x_0$

Теорема 0.4 (Фату). • (X, \mathfrak{A}, μ)

- $f_n \ge 0$ измеримая
- $f_n \to f$ почти везде

Примечание. Здесь не требуется чтобы $\int_X f_n \to \int_X f$, это может быть не выполнено Доказательство.

$$g_n:=\inf(f_n,\ f_{n+1},\ \dots)$$
 $0\leq g_n\leq g_{n+1}\ \lim g_n=\varliminf f_n=f$ почти везде $\int_X g_n\leq \int_X f_n\leq c$ $\int_X g_n o \int_X f\Rightarrow \int_X f\leq c$

Cледствие 0.4.2.

- $f_n, f \ge 0$ измеримые, почти везде конечные
- $f_n \Rightarrow f$
- $\exists c > 0 \ \forall n \int_X f_n \le c$

 $\underline{\text{Тогда}} \int_X f \leq c$

Доказательство.

$$f_n \Rightarrow f \Rightarrow \exists n_k \ f_{n_k} \to f$$
 почти везде

Cледствие 0.4.3.

• $f_n \ge 0$ — измеримые

Тогда

$$\int_{X} \underline{\lim} f_n \le \underline{\lim} \int_{X} f_n$$

Доказательство. Как в теореме:

$$\int_{Y} g_n \le \int_{Y} f_n$$

Выберем n_k :

$$\int_{X} f_{n_k} \xrightarrow[n \to +\infty]{} \underline{\lim} \int_{X} f_n$$

Zzz..

1 Плотность одной меры по отношению к другой

1.1 Замена перменных в интеграле

- (X, \mathfrak{A}, mu)
- (Y, \mathfrak{B}, \cdot)
- $\Phi: X \to Y$
- ullet Пусть Φ измеримо в следующем смысле:

$$\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}$$

Для $E \in \mathfrak{B}$ положим $\nu(E) = \mu \Phi^{-1}(E)$ Тогда ν — мера:

$$\nu(E_n) = \mu(\Phi^{-1}(\bigsqcup E)n) = \mu(\bigsqcup \Phi^{-1}(E_n)) = \sum \mu \Phi^{-1}(E_n) = \sum \nu E_n$$

Мера ν называется образом μ при отображении Φ и

$$\nu E = \int_{\Phi^{-1}(E)} 1d\mu$$

Примечание.

ullet $f:Y o\overline{\mathbb{R}}$ — измерима относительно ${\mathfrak{B}}$

Тогда $f\circ\Phi$ — измерима относитльно $\mathfrak{A}\ (f\circ\Phi:X\to\overline{\mathbb{R}})$

$$X(f(\Phi(x)) < a) = \Phi^{-1}(\underbrace{Y(f < a)}_{\in \mathfrak{B}}) \in \mathfrak{A}$$

Определение.

- $\omega: X \to \overline{\mathbb{R}}$ измерима(на X относительно \mathfrak{A})
- $\omega \geq 0$

$$\forall B \in \mathfrak{B} \ \nu(B) = \int_{\Phi^{-1}(B)} \omega(x) d\mu(x)$$

— взвешенный образ меры μ при отображении Φ , ω — вес

Теорема 1.1.

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\Phi: X \to Y$
- ν взвешенный образ меры μ при отображении Φ с весом ω
- $\omega \geq 0$ измерима на X

Тогда $\forall f$ — измеримые на Y относительно $\mathfrak{B},\,f\geq 0$ $f\circ \Phi$ — измеримая на X относительно \mathfrak{A} и

$$\int_{Y} f(y)d\nu(y) = \int_{X} f(\Phi(x)) \cdot \omega(x) \underline{\mu}(x) \tag{1}$$

То же верно для суммируемых f

Доказательство. $f \circ \Phi$ — измеримая

1. Пусть $f = \mathcal{X}_B, B \in \mathfrak{B}$

$$f \circ \Phi(x) = f(\Phi(x)) = \begin{bmatrix} 1 & , \Phi(x) \in B \\ 0 & , \Phi(x) \notin B \end{bmatrix} = \mathcal{X}_{\Phi^{-1}(B)}$$

Тогда 1:

$$\nu B \stackrel{?}{=} \int_X \mathcal{X}_{\Phi^{-1}(B)} \cdot \mu = \int_{\Phi^{-1}(B)} \mu$$

- это определение ν
- 2. f ступенчатая. 1 следует из линейности интеграла
- 3. $f \ge 0$ измеримая: таким образом ??? измеримая функция ступенчатая + т. Леви

$$0 \leq h_1 \leq h_2 \leq \ldots, \ h_i$$
 — ступенчатая $h_i \leq f \ h_i o f$

$$\int_{Y} h_{i} d\nu = \int_{X} h_{i} \circ \Phi \cdot \omega d\mu \xrightarrow[i \to \infty]{}$$

4. f — измеримая \Rightarrow для |f| выполнено $1 \Rightarrow |f|$ и $|f \circ \Phi| \cdot \omega$ Что-то про f_+

Следствие 1.1.4. В условиях теоремы:

- $B \in \mathfrak{B}$
- f суммируемая на B

Тогда

$$\int_B f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x)) \omega(x) d\mu$$

Доказательство. В теорему подствить $f \leftrightarrow f \cdot \mathcal{X}_B$

Примечание. Частный случай.

- \bullet X = Y
- $\mathfrak{A} = \mathfrak{B}$
- $\Phi = \operatorname{Id}$
- $\nu(B) = \int_B \omega(x) d\mu, \, \omega \geq 0$ измеримая

В этой ситуации ω — плотность
(меры ν относительно меры μ) и тогда по теореме:

$$\int_X f d\nu = \int_X f(x)\omega(x)d\mu$$