Complément de trigonométrie

Exercice 1. (m) Soient $a, b, c \in \mathbb{R}$ tels que $a + b + c = \pi$. Montrer que :

$$\cos^{2}(a) + \cos^{2}(b) + \cos^{2}(c) + 2\cos(a)\cos(b)\cos(c) = 1.$$

Exercice 2. (m) Résoudre dans \mathbb{R} les équations :

1)
$$\sin(x) = \frac{1}{2}$$
. 2) $\tan(x) = -1$. 3) $\cos(5x) = \cos\left(\frac{2\pi}{3} - x\right)$.
4) $\cos(3x) = \sin(x)$. 5) $\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{x}{3}\right)$. 6) $\cos^4(x) - \sin^4(x) = 1$.

4)
$$\cos(3x) = \sin(x)$$
. 5) $\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{x}{3}\right)$. 6) $\cos^4(x) - \sin^4(x) = 1$.

Exercice 3. (m) Résoudre dans \mathbb{R} les inégalités :

1)
$$2\sin^2(x) - 3\sin(x) > 2$$
. 2) $2\cos^2(x) - 9\cos(x) + 4 > 0$.

3)
$$\cos(x) - \sin(x) > \frac{\sqrt{2}}{2}$$
. 4) $\cos(5x) + \cos(3x) \le \cos(x)$.

Exercice 4. (c) Linéariser les expressions $A(\theta) = \sin^3(\theta)\cos(\theta)$, $B(\theta) = \cos^4(\theta)$ et $C(\theta) = \cos^2(\theta)\sin^2(\theta)$.

Exercice 5. (m) Linéariser les fonctions suivantes afin d'en déterminer une primitive sur \mathbb{R} :

$$f: x \mapsto \cos(3x)\cos(2x), \ g: x \mapsto \cos(2x)\sin(5x) \text{ et } h: x \mapsto \sin(3x)\sin(4x).$$

Exercice 6. (i) Résoudre dans \mathbb{R} les équations :

1)
$$\cos(x) - \cos(5x) = \sin(3x)$$
. 2) $\cos(\theta) + \cos(2\theta) + \cos(3\theta) = 0$. 3) $\cos(\theta) + \cos(2\theta) + \cos(3\theta) = 3$.

Exercice 7. (i) Transformer les fonctions suivantes en produit afin de trouver leurs zéros :

1)
$$f: \theta \mapsto \cos(\theta) + 2\cos(2\theta) + \cos(3\theta)$$
.

2)
$$g: \theta \mapsto \sin(\theta) + \sin(2\theta) + \sin(7\theta) + \sin(8\theta)$$
.

Exercice 8. (m) À quelle condition sur le réel m l'équation $\sqrt{3}\cos(x) + \sin(x) = m$ a-t-elle une solution réelle? Résoudre cette équation pour $m = \sqrt{2}$.

Exercice 9. (m) Calculer en fonction de $\theta \in \mathbb{R}$ et de $n \in \mathbb{N}$ les sommes :

1)
$$\sum_{\substack{k=0\\n}}^{n} \cos(k\theta) \text{ et } \sum_{k=0}^{n} \sin(k\theta).$$
 2)
$$\sum_{\substack{k=0\\n}}^{n} \cos^{2}(k\theta) \text{ et } \sum_{k=0}^{n} \sin^{2}(k\theta).$$

3)
$$\sum_{k=0}^{n} \cos((2k-1)\theta)$$
. 4) $\sum_{k=0}^{n} \cos^{k}(\theta) \cos(k\theta)$.

Exercice 10. (i) Calculer en fonction de
$$a, b \in \mathbb{R}$$
 et de $n \in \mathbb{N}$, $\sum_{k=0}^{n} \binom{n}{k} \cos(a+kb)$.