ENGINEERING PROJECT I

(Computer Engineering)

/2D Platform Game\

Leyla Abdullayeva

Information About The Game

- That game is a 2D platform game which playing with PC keyboards
- That game is running on Windows 10

What is the aim in our game:

You need to collect the coins in game and get best score

Important Things:

- In game, you have 3 health.
- There are some pits which you should not fall. If you fall, you will be die and lose your 1 health.

What development tools and software languages did they use for the project?

• We used **Python** 3.8 programming language.

• Python is an outstanding language for people learning to program.

And also we used PyCharm Compiler.

• **PyCharm** is an integrated development environment (IDE) used in computer programming, specifically for the Python language.

What we used in our project?

- Arcade.
- OS (operating system).

What The difficulties we faced ?

- How to create a map for the level .
- How to create an animations for the player.
- How to create more than one level .
- How to check if the player touch something like (lava).

```
coins layer name = 'Coins'
moving_platforms_layer_name = 'Moving Platforms'
map name = f":resources:tmx maps/ws500 {level}.tmx"
my_map = arcade.tilemap.read_tmx(map_name)
self.end of map = my map.map size.width * GRID PIXEL SIZE
self.wall_list = arcade.tilemap.process_layer(my_map, platforms_layer_name, TILE_SCALING)
self.coin_list = arcade.tilemap.process_layer(my_map, coins_layer_name, TILE_SCALING)
moving platforms list = arcade.tilemap.process layer(my map, moving platforms layer name, TILE SCALING)
for sprite in moving_platforms_list:
    self.wall_list.append(sprite)
self.background_list = arcade.tilemap.process_layer(my_map, "Background", TILE_SCALING)
self.ladder_list = arcade.tilemap.process_layer(my_map, "Ladders", TILE_SCALING)
self.dont touch list = arcade.tilemap.process layer(my map, dont touch layer name, TILE SCALING)
```

1. Opening a game window.

In order to open a game window, you must've downloaded arcade library beforehand.

```
import arcade
import os
# Constants
SCREEN WIDTH = 800
SCREEN HEIGHT = 600
SCREEN TITLE = "Patformer"
CHARACTER SCALING = 0.8
TILE SCALING = 0.5
COIN SCALING = 0.5
SPRITE PIXEL SIZE = 128
GRID PIXEL SIZE = (SPRITE PIXEL SIZE * TILE SCALING)
```

2.Sprite addition

After opening a new game window, the next step is to put in some graphics. "Sprites" are the graphical items that you can interact with. We create a sprite by using "Sprite" class.

3. Character definition.

```
# Textures
main path = ":resources:images/animated characters/male adventurer/maleAdventurer"
self.idle texture pair = load texture pair(f"{main path} idle.png")
self.jump_texture_pair = load_texture_pair(f"{main_path} jump.png")
self.fall_texture_pair = load_texture_pair(f"{main_path}_fall.png")
self.walk textures = []
    texture = load_texture_pair(f"{main_path}_walk{i}.png")
    self.walk textures.append(texture)
self.texture = self.idle_texture_pair[0]
self.set_hit_box(self.texture.hit_box_points)
```

By writing this code, we're defining our player's character.

4.Adding the user control.

```
# Player speed
PLAYER_MOVEMENT_SPEED = 5
GRAVITY = 1
PLAYER_JUMP_SPEED = 20
```

```
def on_update(self, delta_time):
    # We're calling physics engine

self.physics_engine.update()

# Update animations
if self.physics_engine.can_jump():
    self.player_sprite.can_jump = False
else:
    self.player_sprite.can_jump = True

if self.physics_engine.is_on_ladder() and not self.physics_engine.can_jump():
    self.player_sprite.is_on_ladder = True
    self.process_keychange()
else:
    self.player_sprite.is_on_ladder = False
    self.process_keychange()
```

```
def on key press(self, key, modifiers):
                                                              # Keyboard functions
   if key == arcade.key.UP or key == arcade.key.W:
       self.up pressed = True
   elif key == arcade.key.DOWN or key == arcade.key.S:
       self.down pressed = True
   elif key == arcade.key.LEFT or key == arcade.key.A:
        self.left pressed = True
   elif key == arcade.key.RIGHT or key == arcade.key.D:
       self.right pressed = True
   self.process keychange()
def on key release(self, key, modifiers):
   if key == arcade.key.UP or key == arcade.key.W:
       self.up pressed = False
       self.jump needs reset = False
   elif key == arcade.key.DOWN or key == arcade.key.S:
       self.down pressed = False
   elif key == arcade.key.LEFT or key == arcade.key.A:
       self.left pressed = False
   elif key == arcade.key.RIGHT or key == arcade.key.D:
       self.right pressed = False
```

5. Adding coins and sound

```
# Coins
self.coin_list = arcade.tilemap.process_layer(my_map, coins_layer_name, TILE_SCALING)
```

```
# if you hit any coins
coin_hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.coin_list)

for coin in coin_hit_list:
    if 'Points' not in coin.properties:  # özellikler
        print("Warning, collected a coin without a Points property.")
    else:
        points = int(coin.properties['Points'])
        self.score += points
        # Remove the coin
        coin.remove_from_sprite_lists()
        # Play a sound
        arcade.play_sound(self.collect_coin_sound)
```

The codes in here adds coins that we can collect. When player hits any coins, or presses jump button it also adds sound.

6. Displaying the score.

This is the "Score addition" part of our code. Now that we can collect coins and get points.

```
File Edit View Navigate Code Refactor Run Tools VCS Window Help TechPan [C:\Users\ASUS\PycharmProjects\TechPan] - C:\Users\ASUS\.PyCharm2019.3\config\scratches\2D gam
     Scratches > 2D game.py
                                  🙎 2D game.py
                                                 level4new.tmx ×
                                                                # level4.tsx
  ■ Project ▼
    TechPan C:\Users\ASUS\PycharmProje( 223
                                                 # For Showing Score
    ▼ maps
                                                 score text = f"Score: {self.score}"
      ▶ images
                                                 arcade.draw_text(score_text, 10 + self.view_left, 10 + self.view_bottom, arcade.csscolor.WHITE, 18)
        ## level4.tsx
        level4new.tmx
    ▶ ■ venv library root
  ▼ III External Libraries
    Scratches and Consoles
                                                 # self.player sprite.draw hit box(arcade.color.RED, 3)
    ▼ Scratches
```

7. Map addition

In here, we're adding the map that we've created into our code. We're coding tmx&tsx files here.

And this is the map that we used for our 1 level based Prototype-1. We've created it by using "Tiled" map editor.

As you can see, this is the first model of our "2D platform game".

Resources, training video addresses.

- Mostly we used "arcade.academy". It was pretty useful. And it was our teacher's recommendation.
- From Youtube we watched a plenty of videos from channel called "Tech with Tim", "DaFluffyPotato", "Professor Craven" and etc.