第三章抗体

本章教学大纲

【目的要求】

- 1. 掌握 抗体和免疫球蛋白的概念、结构、类型和功能。各类免疫球蛋白的特性和功能。
- 2. 熟悉 免疫球蛋白的类别转换机制;单克隆 抗体的制备和应用。
- 3. 了解 免疫球蛋白的基因结构和基因重排; 基因工程抗体。

【教学内容】

- 1. 抗体和免疫球蛋白的概念以及免疫球蛋白分型(膜型和分泌型)。
- 2. 免疫球蛋白的基本结构,功能区,水解片段及其它成分。
- 3. 免疫球蛋白的类型,同种型,同种异型和独特型。
- 4. 免疫球蛋白的基因结构及其重排和表达。 Ig的类别 转换。
- 5. 抗体V区和C区的功能。
- 6. 各类免疫球蛋白的特性和功能。
- 7. 单克隆抗体和基因工程抗体。

概念

1. 抗体(antibody, Ab)功能性概念

是由抗原刺激而产生并能与刺激其产生的抗原发生特异性结合的、具有免疫功能的糖蛋白。 抗体主要存在血清中,也存在于如呼吸道粘膜液、 小肠粘膜液、唾液以及乳汁等其它体液中。

2. 免疫球蛋白(immunoglobulin, Ig)结构性概念 具有抗体活性或化学结构与抗体分子相似的 球蛋白。

存在形式

- BCR(B细胞受体)
 - 一 膜型(membrane immunoglobulin, mIg)
- 抗体 分泌型(secreted immunoglobulin, sIg)

第一节 抗体的分子结构

一、免疫球蛋白的基本结构

抗体的互补决定区与抗原表位结合示意图

免疫球蛋白的铰链区及其功能

二、免疫球蛋白的功能区

功能区:是不连续,紧密折叠的区域,由重链和轻链 经链内二硫键连接而成的球状结构。该区具有特殊的 功能特性。

轻链: VL、CL

重链:[VH

CH1, CH2, CH3, CH4

 $IgG \overline{IgM}$

IgA IgE

IgD

主要功能

- 1. VL和VH是抗原结合的部位(FV区)。 ▶
- 2. CL和CH上具有同种异型的遗传标记。
- 3. IgG的CH2和IgM的CH3具有补体固有成分C1q的结合点,参与激活补体系统。
- 4. CH3/CH4具有结合包括单核细胞、巨噬细胞、粒细胞、B细胞、NK细胞等细胞的Fc段受体的功能。▶
- 5. IgG的CH2+CH3 具有介导IgG通过胎盘的特性。

Immunoglobulin Fragments: Structure/Function Relationships

三、免疫球蛋白的水解片段

1. 木瓜蛋白酶 (Papain) (将重链于近氨基端切断)

, Fab段(fragment of antigen- binding,抗原结合片段) Fab段可以与抗原结合,具有抗体的活性。

Fc段(fragment crystalizable,可结晶片段) Fc段不能与抗原结合,但可执行Ig的其他生物学功能。 2. 胃蛋白酶(Pepsin)(将重链于近羧基端切断)

| F(ab')₂ : 可结合2个抗原表位。 | pFc': 无生物学活性。

3. 意义: 阐明Ig分子生物学作用。

免疫球蛋白的水解片段

四、其它成分

- 1. 连接链 (joining chain, J链): IgM五聚体, IgA双聚体
- 2. 分泌片 (secretory piece, SP): SIgA

IgM和SIgA结构示意图

第二节 抗体的类型和生物学活性

一、抗体的类型

(一) 同种型 (isotype)

同一种属每个个体都具有的免疫球蛋白的抗原特异性,其抗原决定簇主要存在于Ig的C区。

1. 类和亚类(根据H链的抗原性不同)

```
IgG —γ(gamma)
           IgA — \alpha(alpha)
           IgM - \mu(mu)
(1) 类
          IgD — \delta(delta)
           IgE - \epsilon(epsilon)
```

(2) 亚类 { IgG: IgG1, IgG2, IgG3, IgG4 | IgA: IgA1, IgA2

2. 型和亚型(根据轻链C区抗原特异性不同分型)

(1)型 _{ κ (kappa)型 } λ (lambda)型 }

(2) 亚型(λ链):

OZ(+) (或λ1): 第190位(亮氨酸)

OZ(-) (或λ2):第190位(精氨酸)

Kern(+)(或λ3):第154位(甘氨酸)

Kern(-)(或λ4): 第154位(丝氨酸)

同种型

二、抗体的生物学活性

(一) 特异性结合抗原

超变区一表位 静电力、氢键、范德华力 1. 结合基础 可逆 影响因素: PH、温度、电解质

2. 实际意义

中和效应 — 中和毒素和病毒 与Ag结合 — 促吞噬细胞吞噬

(二) 激活补体系统

Ab (IgM、IgG) + Ag → C1q → 补体经典途径 IgG4、IgA和 IgE的凝聚物 → 补体旁路途径

(三)结合Fc受体

- (1) 介导超敏反应: |型超敏反应;
- (2) 调理作用 (opsonization): IgG + 抗原(颗粒性)
 → FcγR (单核、巨噬细胞及中性粒细胞) → 促吞噬细胞吞噬;
- (3) ADCC: IgG + 抗原(靶细胞) → Fc γR (NK 细胞) → 杀伤靶细胞。

(四) 通过胎盘和粘膜

免疫球蛋白的功能

三、抗体的Fc受体

(一) IgG的FcR分I、II、III型,均属免疫球蛋白超家族成员

FcyRI: 单核细胞、巨噬细胞、中性粒细胞, IgG(IgG1和IgG3)的高亲合力受体;

FcγRII: 分布广泛,以低亲和力结合免疫复合物和 多聚形式的IgG;

FcγRIII: IgG1、IgG3为低亲和力受体。巨噬细胞、NK细胞、嗜酸性粒细胞和中性粒细胞,与单体或免疫复合物形式的IgG结合,介导NK细胞的ADCC效应及巨噬细胞的捕获或清除等。

(二) IgE的Fc受体

FceRI:

结构: 跨膜糖蛋白,属Ig超家族,IgE的高亲和力受体。

分布和功能: 嗜碱性粒细胞和肥大细胞,介导 | 型速 发型超敏反应。

FceRII(CD23):

结构:穿膜糖蛋白,低亲和力受体,属C型凝集素家族成员。

分布:成熟B细胞、活化巨噬细胞和树突状细胞等。

(三) IgA的Fc受体

FcαR(CD89)为跨膜糖蛋白,属Ig超家族成员。为中等亲和力受体,主要表达于单核细胞、巨噬细胞、中性粒细胞等,介导吞噬、ADCC以及炎症介质的释放。

(四) IgM受体、IgD

前者主要表达于B细胞,二者共同表达于成熟B细胞。

FcγR、FcαR和FcεR结构示意图

四、免疫球蛋白超家族

(一)概念

许多细胞膜表面和机体的某些蛋白分子,其多肽链折叠方式与Ig折叠相似,在DNA水平上和氨基酸序列上与IgV区或Ig C区有较高的同源性。编码这些多肽链的基因被称为免疫球蛋白基因超家族,基因表达产物称为免疫球蛋白超家族(Immunoglobulin superfamily, IGSF)。

(二)组成

- 1. T细胞、B细胞抗原识别受体和信号传导分子
- 2. MHC及相关分子
- 3. Ig受体
- 4. 某些细胞因子受体
- 5. 神经系统功能相关分子
- 6. 部分白细胞分化抗原(CD)

免疫球蛋白超家族分子的结构示意图

第三节 各类免疫球蛋白的特性和功能

-, IgG

- 1. 一般特性
 - (1)单体分子
 - (2)四个亚类
- IgG1, IgG2 and IgG4

IgG3

- (3)血清中含量最高(75%Ig);
- (4) 半衰期最长(21~23天);
- (5)3~5岁达成人水平(8.0~17mg/ml);
- (6)可与SPA结合。

- 2. 生物学活性
- (1) 通过胎盘(新生儿抗感染);
- (2) 激活补体(裂解细胞);
- (3) 调理作用(促进吞噬);
- (4)介导ADCC(细胞毒作用)。
- 3. 实际意义
- (1) 抗感染;
- (2) 自身抗体 → 自身免疫病;
- (3)介导变态反应(Ⅱ、Ⅲ型);
- (4) 封闭抗体 → 肿瘤细胞逃逸;
- (5) 亲合层析法 IgG纯化;
- (6)免疫学检测。

二、IgM

- 1. 五聚体,分子量最大(900kd),又称巨球蛋白;
- 2. 人类发育过程中最早合成的Ig;
- 3. 体液免疫应答最先产生的 Ig 感染早期免疫;
- 4. 占血清Ig含量的5~10%;
- 5. 半衰期5天 血清中特异性IoM 水平增高提示 有近期感染;
- 6. 激活补体;
- 7. IgM不能通过胎盘 → 脐带 水平升高表明胎儿有宫内感
- 8. B细胞膜IgM(mIgM)→
- 9. 自身抗体 → 自身免疫病。

三、IgA

1. 两种类型

(血清型: IgA1, 单体;

分泌型: IgA2, 二聚体,

粘膜局部浆细胞合成;

分泌片由粘膜上皮细胞合成;

- 2. 半衰期6天;
- 3. 占血清Ig含量的5~15%;
- 4. 粘膜局部抗感染免疫,阻止病原微生物黏附;
- 5. 聚合Ig/ Secretory Piece J Chain

Origin of Secretory Component of slgA

四、IgD

- 1. 单体分子
- 2. 存在形式:分泌性 血清中,功能不清; 膜结合性 — B细胞表面,
- 3. 意义
 - (1)是B细胞成熟的重要标志;
 - (2) 抗原受体,对B细胞活化、增殖和分化起调节
 - 作用;
- 4. 占血清Ig含量的
- 5. 半衰期3天。

五、IgE

- 1. 单体分子;
- 2. 血清中含量最低(占Ig的0.002%);
- 3. 种系进化中出现最晚;
- 4. 呼吸道和胃肠道浆细胞产生;
- 5. 介导 | 型超敏反应;
- 6. 过敏性疾病和某些寄生 性IgE水平增高。

五大类免疫球蛋白特性比较(1)

	IgG	IgM	IgA/SIgA	IgD	IgE
存在形式	单体	五聚体	单体/二 聚体	单体	单体
相对分子质 量(×1000)	146	970	160/385	184	188
血清中总Ig 百分含量	70~75	5~10	15~20	<1	0.002
半衰期	23	5	6	3	3
出现时间	出生 后三 个月	出生前	出生后四 个月	晚	晚

五大类免疫球蛋白特性比较(2)

	IgG	IgM	IgA	IgD	IgE
与补体结合能力		√			
中和作用	$\sqrt{}$	$\sqrt{}$			
调理作用	$\sqrt{}$				
ADCC	$\sqrt{}$				
参与粘膜防御					
能穿透胎盘	$\sqrt{}$				
与细胞结合	$\sqrt{}$				$\sqrt{}$
与 SPA结合	$\sqrt{}$				
参与超敏反应	$\sqrt{}$	$\sqrt{}$			

各类免疫球蛋白比较

免疫球蛋白	IgG	IgA	IgM	IgD	IgE
重链名称	γ	α	μ	δ	ε
开始合成时间	出生后 3 个月	胚胎末期	出生后 4~6 个月	较晚	较晚
重链功能区数目	4	4	5	4	5
主要存在形式	单体	单体、双体	五聚体	单体	单体
分子量(KD)	146~170	160, 400	970	175	188
碳水化合物(%)	4	10	12	18	12
血清浓度(mg/100ml)	1150 ± 300	210 ± 50	150	0.3~4	0.002
占血清 Ig 总量 (%)	75	10	5-10	<1	<0.001
存在于外分泌液	9 4	+++	+	5 10 0	900 900 000 000 000 000 000 000 000 000
经典途径活化补体	++	199	+++	£	#
旁路途径活化补体	+	+	?	+	+
半衰期(天)	20~23	5.8	5.1	2.8	2.5
合成部位	脾、淋巴结浆细胞	粘膜相关淋巴样组织	脾、淋巴结浆细胞	扁桃体、脾浆细胞	粘膜固有层浆细胞
通过胎盘	+	9/ <u>8/4</u> 9	225	8 <u>88</u> 8	23
肥大细胞、 嗜碱细胞脱颗粒	1	140	æ	=	++++
免疫作用	抗菌、抗病毒、抗毒 素、自身抗体	粘膜局部免疫作用,抗 菌、抗病毒,免疫排除 功能	早期防御作用,溶菌, 溶血,mIgM,天然血型 抗体,类风湿因子	表达 mIgM和 mIgD 引起正免疫应答	抗寄生虫感染,I 型超 敏反应

第四节 免疫球蛋白的基因结构及其表达

一、免疫球蛋白的基因库

免疫球蛋白基因组成

lg基因库	V基因	D基因库	J基因	C基因
H链基因库 (IGH)	VH1~VHn	D1~Dn	J1~Jn	CH1~CHn
κ链基因库 (IGK)	V κ 1~ V κ n		J1~Jn	Ск1
λ链基因库 (IGL)	V λ 1~ V λ n		J1~Jn	C λ 1~ C λ n

二、免疫球蛋白的基因结构及其重排和表达

免疫球蛋白基因结构

(a) H-chain DNA

(b) κ -chain DNA

(c) λ -chain DNA

三、抗体多样性的遗传学基础

- (1) 胚系中众多的V、D、J基因片段;
- (2) V-D-J和V-J重排时,基因片段进行随机组合;
- (3) VDJ连接过程中的核苷酸缺失和N区的核苷酸插入;
- (4) L链H链之间随机配对组合;
- (5) 体细胞突变。

四、免疫球蛋白的类转换(class switch)

Ig类转换,又称同种型转换(isotype switch): 是指B细胞在受抗原刺激后,首先合成IgM,然后转 为合成IgG等其它类别。

机制: B细胞 \rightarrow 活化 \rightarrow 基因重排形成V-D-J-C μ → 合成IgM \rightarrow CD40/CD40L信号及细胞因子作用 \rightarrow C μ 基因被替换 \rightarrow 合成具有相同抗原特异性的不同的Ig类和亚类。

B细胞基因重排机制图

细胞因子在lg类别转换中的作用

第五节 单克隆抗体和基因工程抗体

- 一、多克隆抗体(polyclonal antibody)
- 1. 定义: 抗原分子通常具有多个抗原决定簇, 动物免疫后可刺激多种具有相应抗原受体的B细胞发生免疫应答, 因而可产生多种针对不同抗原决定簇的抗体。这些由不同B细胞克隆产生的抗体称为多克隆抗体(polycolonal antibody, PcAb)。
- 2. 实际意义
 - (1) 预防、治疗感染性疾病(特异性差,可发生超敏反应)
 - (2) 临床诊断

二、单克隆抗体(monoclonal antibody, McAb)

- 1. 定义:由单一克隆B细胞杂交瘤产生的、只识别 抗原分子某一特定抗原决定簇的、具有高度特异性的 抗体。每种单克隆抗体其类、亚类、型及亲和力完全 相同,具有高度均一性。
- 2. 特点 具有高度均一性。
- 3. 杂交瘤细胞 骨髓瘤细胞 — 无限增殖; 免疫B细胞 — 合成、分泌特异性抗体。
- 4. 杂交瘤技术
 HAT培养基:次黄嘌(H)、氨基蝶呤(A)和胸腺嘧啶核苷(T)。

单克隆抗体的制备

三、基因工程抗体

基因工程抗体是通过PCR技术获得抗体基因或抗体基因片段,与适当载体重组后引入不同表达系统所产生的抗体,被广泛应用于疾病的临床诊断、预防和治疗及基础理论研究等领域。

人-鼠嵌合抗体(chimeric antibody); 人改型抗体(reshaped humanized antibody); 小分子抗体;

双特异性抗体(bispecific antibody)等。

思考题

- 1. 阐述免疫球蛋白的基本机构及各个功能区的意义
- 2. 阐述免疫球蛋白的水解片断
- 3. 简述五大类免疫球蛋白具有不同的理化特性和生物学功能
- 4. 同种型、同种异型和独特型的概念
- 5. 单克隆抗体