Formelsammlung — Signale und Systeme

bei Prof. Thao Dang

Tim Hilt

16. Januar 2019

Inhaltsverzeichnis

1	Grundlagen und Metriken	3
2	LTI-Systeme	4
3	Fourierreihen	6
4	Fouriertransformation	7
5	Faltung	8
6	Filter und Übertragungsfunktionen	9
7	Konstruktion Bode-Diagramm	10

Seite 2 Tim Hilt

1 Grundlagen und Metriken

Eigenschaften Allgemeine Cosinusfunktion

$$f(t) = A\cos(\omega \cdot t + \varphi)$$
$$T = \frac{2\pi}{\omega} \quad ; \quad \omega = \frac{2\pi}{T}$$

Betrag einer komplexen Zahl

$$Z = x + jy$$
$$|Z| = \sqrt{x^2 + y^2}$$

Winkel einer komplexen Zahl

$$\arg(Z) = \varphi = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{für } x > 0, y \text{ bel.} \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{für } x < 0, y \text{ bel.} \\ \frac{\pi}{2} & \text{für } x = 0, y > 0 \\ -\frac{\pi}{2} & \text{für } x = 0, y < 0 \end{cases}$$

Dämpfung zweier Pegel

$$a = 20 \cdot \log \left(\frac{\mathsf{Eingang}}{\mathsf{Ausgang}} \right) \mathsf{dB}$$

und wenn Eingang = 1:

$$= -20 \cdot \log(\text{Ausgang}) dB$$

Phasengang

$$b(f) = -\arg(Z)$$

Die Phase muss dem negativen Winkel entsprechen, um bei nachlaufendem Signal eine positive Zeitverzögerung zu erhalten.

Phasenlaufzeit/Zeitverzögerung

$$t_p = \frac{b(f)}{\omega}$$

Tim Hilt Seite 3

2 LTI-Systeme

Abbildung 1: LTI-System

Linearität

Ein System gilt als linear, wenn zum Signal nichts addiert wird, sondern dass Signal nur entweder verschoben an der t-Achse oder skaliert in y-Richtung ist.

Zeitinvarianz

Wird das Signal x(t) noch mit einer anderen Funktion, die von t abhängt multipliziert, dann ist das System **nicht** zeitinvariant, da diese Funktion sich mit der Zeit verändert und x(t) somit immer mit anderen Werten multipliziert wird.

Bsp.:

$$y(t) = \sqrt{2}x(t)$$
 zeitinvariant $y(t) = x(t) \cdot \sin(t)$ zeitvariant! $y(t) = x^2(t)$ auch zeitvariant

Kausalität

Ein Signal ist kausal, wenn gilt x(t) = 0 für t < 0

Stabilität

Beim Betrachten der Stabilität unterscheidet man 3 Fälle:

- 1. Das System ist stabil, wenn alle Pole im Pol-Nullstellen-Diagramm in der linken Halbebene liegen
- 2. Das System ist grenzstabil, wenn nur einfache Pole im Pol-Nullstellen-Diagramm auf der imaginären Achse liegen
- 3. Das System ist instabil, wenn Pole in der rechten Halbebene des Pol-Nullstellen-Diagramms liegen und/oder mehrfache Pole auf der imaginären Achse liegen

Seite 4 Tim Hilt

3 Fourierreihen

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega t) + b_k \sin(k\omega t)), \quad \omega = \frac{2\pi}{T}$$

Gleichanteil

$$s_G = \frac{ ext{Integral "über eine Periode}}{ ext{Periodendauer}}$$

Reelle Fourier-Koeffizienten a_k und b_k

$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(k\omega t) dt$$

$$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(k\omega t) dt$$

Umrechnung von c_k zu a_k und b_k

$$a_k = 2\operatorname{Re}(c_k)$$

$$b_k = -2\operatorname{Im}(c_k)$$

$$\rightarrow c_k = \frac{a_k - ib_k}{2}$$

Tim Hilt Seite 5

4 Fouriertransformation

Fourierreihe aus Fouriertransformation

Achtung: stetiges f der Fouriertransformation wird durch diskretes $\frac{k}{T}$ ersetzt

$$\frac{1}{T} = f_0$$

$$s(t) \circ - \bullet \quad S(f)$$

$$c_k = \frac{1}{T} \cdot S\left(\frac{k}{T}\right)$$

Demnach lässt sich der Gleichanteil berechnen durch:

$$c_0 = \frac{1}{T} \cdot S\left(\frac{0}{T}\right)$$

Seite 6 Tim Hilt

5 Faltung

Werden zwei Signale $u_1(t),u_2(t)$ unterschiedlicher Bandbreiten T_1,T_2 gefaltet, so beträgt die Bandbreite des neuen Signals T_1+T_2 .

Faltung mit $\sigma(t)$

Wird eine Funktion mit $\sigma(t)$ gefaltet, so ergibt sich für das Faltungsintegral:

$$n(t) \star \sigma(t) = \int_{-\infty}^{\infty} n(\tau) \cdot \sigma(t - \tau) d\tau = \int_{-\infty}^{t} n(\tau) d\tau$$

Tim Hilt Seite 7

6 Filter und Übertragungsfunktionen

Im Fourierbereich: $\omega=2\pi f$, im Laplacebereich: $j\omega=p$

	RC-Tiefpass	RC-Hochpass	RL-Tiefpass	RL-Hochpass
$rac{U_a}{U_e} = H(j\omega)$	$\frac{1}{1+j\omega RC}$	$rac{j\omega RC}{1+j\omega RC}$	$\frac{R}{R+j\omega L}$	$rac{j\omega L}{R+j\omega L}$
f_G/ω_G	$\frac{1}{2\pi RC}; \frac{1}{RC}$	$\frac{1}{2\pi RC}; \frac{1}{RC}$	$\frac{R}{2\pi L}; \frac{R}{L}$	$\frac{R}{2\pi L}; \frac{R}{L}$

Abbildung 2: RC-Tiefpass

Abbildung 4: RC-Hochpass

Abbildung 3: RL-Tiefpass

Abbildung 5: RL-Hochpass

Seite 8 Tim Hilt

7 Konstruktion Bode-Diagramm

Für Pol- Nullstellendiagramm:

- 1. ps im Nenner und im Zähler isolieren
- 2. Pol- und Nullstellen für p finden
- 3. Polstellen als imes und Nullstellen als imes in ein Re / Im-Diagramm (p-Ebene) eintragen

Bode-Diagramm

Das Bode-Diagramm besteht aus dem **Amplitudengang** und dem **Phasengang**. Der Amplitudengang A(f) lässt sich berechnen durch

$$A(f) = -20\log(|H(f)|)$$

während sich der Phasengang b(f) berechnen lässt über

$$b(f) = -\arctan\left(\frac{\mathrm{Im}(H(f))}{\mathrm{Re}(H(f))}\right) + \begin{cases} 0 & \mathrm{Re}(H(f)) > 0 \\ \pm \pi & \mathrm{Re}(H(f)) < 0 \end{cases}$$

Sprungantwort schnell berechnen

$$a(t) = (a(0) - a(\infty)) \cdot e^{-\frac{t}{T}} + a(\infty)$$