Arbori de căutare echilibrați.

SD 2019/2020

Arbori bicolori (red-black trees)

FII, UAIC

- Symmetric binary B-tree, Rudolf Bayer, 1972.
- Echilibrarea este menținută cu ajutorul unei colorări a nodurilor.
- Arborii roșu-negru sunt arbori binari de căutare care satisfac următoarele proprietăți:
 - 1. un nod este colorat cu roșu sau negru;
 - 2. rădăcina și nodurile frunză (nil care fac parte din structură) sunt colorate cu negru;
 - 3. dacă un nod este roșu, atunci fiii săi sunt negri;
 - 4. drumurile de la un nod la nodurile de pe frontieră au același număr de noduri negre.

Curs 10

SD 2019/2020

2 / 31

Arbori bicolori - exemplu

Arbori bicolori

Lemă:

Orice subarbore al unui arbore bicolor are cel puțin $2^{bh(v)} - 1$ noduri interne, unde:

- v rădăcina subarborelui,
- bh(v) numărul de noduri negre aflate pe un drum de la v la un nod de pe frontieră, excluzându-l pe v;

Demonstrație.

La curs.

Arbori bicolori

Teoremă:

Un arbore bicolor cu n noduri interne are înălțimea $h \leq 2 \log_2(n+1)$.

Demonstrație.

Conform proprietătii 3,

$$n \ge 2^{h/2} - 1 \Rightarrow h/2 \le \log_2(n+1) \Rightarrow h \le 2\log_2(n+1).$$

$$h \leq 2\log_2(n+1).$$

Arbori bicolori: operații

Corolar:

Într-un arbore bicolor cu n noduri, operația de căutare are complexitatea $timp O(\log n)$.

Operația de inserare

► Se caută poziția de inserare și se inserează noua valoare ca în cazul arborilor binari de căutare obisnuiti.

Se colorează noul nod cu roşu.

Se restaurează proprietățile de arbore bicolor prin recolorare de noduri și aplicare de rotații simple.

FII, UAIC Curs 10 SD 2019/2020 7 / 31

Operația de inserare

- Proprietatea 1: satisfăcută.
- Proprietatea 2 satisfăcută (ambii fii ai nodului inserat sunt nil).Dacă nodul inserat este rădăcina → recolorare în negru.
- ▶ Proprietatea 4 satisfăcută (noul nod roșu înlocuiește o frunză).

- Poate să nu fie respectată proprietatea 3 dacă părintele nodului este roșu.
 - Mută mai sus această situație prin recolorarea nodurilor până când poate fi reparată prin operații de rotație și recolorare.

Operatia de inserare: restaurarea proprietății 3

- ► Caz 1: "unchiul" nodului inserat este rosu → Se recolorează "părintele" și "unchiul" în negru și "bunicul" in rosu.
- Caz 2: "unchiul" nodului inserat este negru si nodul inserat este fiul drept al unui fiu stâng \rightarrow

Se aplică o rotatie simplă la stânga între nodul curent si nodul părinte.

Caz 3: "unchiul" nodului inserat este negru si nodul inserat este fiul stâng al unui fiu stâng \rightarrow

Se aplică o rotatie simplă la dreapta între nodul "părinte" si nodul "bunic" + se recolorează nodurile "părinte" (în negru) și "bunic" (în rosu).

Obs.: Operatii similare se aplică pentru cazul simetric.

Operația de inserare - Caz 1

FII, UAIC Curs 10 SD 2019/2020 10 / 31

Operația de inserare - Caz 2 și 3

FII, UAIC Curs 10 SD 2019/2020 11 / 31

Inserare – exemplu: nodul 12

FII, UAIC

Inserare - CAZUL 1: recolorare

Inserare – CAZUL 2: rotație la stânga

Inserare – CAZUL 3: rotație la dreapta + recolorare

Inserare - Arborele roșu-negru valid

FII, UAIC

Operația de inserare: algoritm

Se consideră că fiecare nod a arborelui este o structură cu următoarele câmpuri:

- cheie: informația utilă a nodului;
- culoare: roşu / negru;
- pred: adresa nodului părinte (null pentru rădacină);
- stg: adresa fiului stâng;
- drp: adresa fiului drept.

FII, UAIC Curs 10 SD 2019/2020 17 / 31

Operația de inserare: algoritm

```
Procedure inserare(t, x)
begin
     insArbBinCautare(t, x)
     x \rightarrow culoare \leftarrow rosu
     while (x! = t \text{ and } x \rightarrow pred \rightarrow culoare == rosu) do
          if (x \rightarrow pred == x \rightarrow pred \rightarrow pred \rightarrow stg) then
               v \leftarrow x \rightarrow pred \rightarrow pred \rightarrow drp
               if (y \rightarrow culoare == rosu) then
                    Caz 1
               else
                    if (x == x \rightarrow pred \rightarrow drp) then
                         Caz 2
                    Caz 3
          else
               similar cu ramura "then", doar că interschimbăm stg cu drp
     t \rightarrow culoare \leftarrow \mathsf{negru}
end
```

FII, UAIC Curs 10 SD 2019/2020 18 / 31

Operația de inserare: Caz 1

```
x 	o pred 	o culoare \leftarrow \text{negru}
y 	o culoare \leftarrow \text{negru}
x 	o pred 	o pred 	o culoare \leftarrow \text{roṣu}
x \leftarrow x 	o pred 	o pred 	o pred
```

FII, UAIC Curs 10 SD 2019/2020 19 / 31

Operația de inserare: Caz 2

$$x \leftarrow x \rightarrow pred$$

rotatie-stânga (t, x)

FII, UAIC Curs 10 SD 2019/2020 20 / 31

Operația de inserare: Caz 3

```
\begin{array}{l} x \rightarrow \mathit{pred} \rightarrow \mathit{culoare} \leftarrow \mathsf{negru} \\ x \rightarrow \mathit{pred} \rightarrow \mathit{pred} \rightarrow \mathit{culoare} \leftarrow \mathsf{roṣu} \\ \mathsf{rotatie\text{-}dreapta}(t, x \rightarrow \mathit{pred} \rightarrow \mathit{pred}) \end{array}
```

FII, UAIC Curs 10 SD 2019/2020 21 / 31

Operația de inserare - exemplul 2

FII, UAIC Curs 10 SD 2019/2020 22 / 31

Operația de inserare - exemplul 3

FII, UAIC Curs 10 SD 2019/2020 23 / 31

Operația de inserare - exemplul 3

FII, UAIC Curs 10 SD 2019/2020 24 / 31

Operația de stergere

- Similară cu operația de ștergere de la arborii binari de căutare obisnuiti.
- Se va ține cont că nodurile "null" fac parte din structură.
- În urma ștergerii este posibil ca proprietatea 4 să nu mai fie respectată.
- ► Se restaurează proprietățile de arbore bicolor prin recolorare de noduri și aplicare de rotații simple.

FII, UAIC Curs 10 SD 2019/2020 25 / 31

Operația de ștergere: restaurarea proprietății 4

- ▶ Caz 1: Se transformă într-unul din cazurile 2), 3), 4) printr-o rotație.
- ► Caz 2: Nodul pentru care nu este satisfăcută proprietatea este deplasat spre rădăcină cu un nivel prin recolorarea unui nod.
- Caz 3: Se transformă în cazul 4) printr-o interschimbare de culori și o rotație.
- ► Caz 4: În acest caz se restabilește proprietatea de arbore bicolor pentru întreg arborele.

FII, UAIC Curs 10 SD 2019/2020 26 / 31

Stergere - CAZUL 1

Caz 1: Se transformă într-unul din cazurile 2), 3), 4) printr-o rotație.

FII, UAIC Curs 10 SD 2019/2020 27 / 31

Stergere - CAZUL 2

Caz 2: Nodul pentru care nu este satisfăcută proprietatea este deplasat spre rădăcină cu un nivel prin recolorarea unui nod.

FII, UAIC Curs 10 SD 2019/2020 28 / 31

Stergere - CAZUL 3

Caz 3: Se transformă în cazul 4) printr-o interschimbare de culori și o rotație.

29 / 31

Ştergere – CAZUL 4 Caz 4:

În acest caz se restabilește proprietatea de arbore bicolor pentru întreg arborele.

Arbori bicolori

▶ Complexitatea algoritmilor de inserare / stergere: $O(\log n)$.

Corolar:

Clasa arborilor bicolori este $O(\log n)$ -stabilă.

FII, UAIC Curs 10 SD 2019/2020 31 / 31

Arbori bicolori

▶ Complexitatea algoritmilor de inserare / stergere: $O(\log n)$.

Corolar:

Clasa arborilor bicolori este O(log n)-stabilă.

- Utilizări:
 - System symbol tables
 - Kernel Linux (Completely Fair Scheduler)
 - Runway reservation system
 - ▶ Java: TreeMap, TreeSet; C++ STL: map, multimap, multiset

FII, UAIC Curs 10 SD 2019/2020 31 / 31