Contents

1	Introduction - Sets and Relations	1
	1.1 Sets	1
	1.1.1 Set Operations	2
	1.2 Relations	2
	1.3 Functions	
2	Properties of Operations on R	5
3	Groups	7
	3.1 Cancellation Law	8
	3.2 Groups of Matrices	
	3.3 Symmetric Groups	
	3.4 Subgroups	
4	Cyclic Groups and Subgroups	14
	4.1 Homomorphisms	15
	4.2 Isomorphisms	
	4.2.1 Examples	
5	Important Groups	20
-	5.1 Groups mod n	
	5.2 Multiplicative Groups	
	5.3 Symmetric Groups	

Wed. 24 Jan 2024

Note.

All info for the class is available on the canvas page. Notes from the prof are written on the iPad, and PDFs will be provided after each class. Despite this taking notes is helpful.

Offices are hours are Tuesdays in person, and Thursdays on Zoom. Hours may vary.

A text for this class is not required. Technically, we are using Fraleigh's A first course in Abstract Algebra

No quizzes in this class, weekly Homeworks except on Exam weeks, two midterms, and one final.

Readings on the class schedule are not additional, it's for people that need extra material, or people that missed that day.

1 Introduction - Sets and Relations

1.1 Sets

Definition.

A **Set**. is a well-defined collection of objects called *elements*.

 $a \in A$ means "A is a set, a is an element of a set, and a is in A.

Examples of sets are

 \bullet Z - The set of all integers, positive, negative, and zero

- \mathbb{N} The set of natural numbers, $0, 1, 2, \ldots$ In this class, \mathbb{N} starts with 1.
- ullet Q The set of rational numbers.
- \bullet $\mathbb R$ The set of real numbers.
- ullet C The set of complex numbers.
- {1, 2, 3, 4}
- $\{a \in \mathbb{Z} \mid a > 2\}$. This is a set of integers such that a > 2.
- \bullet \varnothing The empty set.
- $GLn(\mathbb{R})$ The set of $n \times n$ invertible matrices with real entries. (GL stands for "General Linear".)
- $C(\mathbb{R})$ The set of continuous functions $f: \mathbb{R} \to \mathbb{R}$.

Definition.

A set A is a **subset** of a set B if

$$\forall x \in A, x \in B$$

In other words, everything in A is also in B. As notation, we can say either $A \subseteq B$ or $A \subset B$.

A **proper** subset is $A \subset B$ but $A \neq B$. Just write $A \subsetneq B$.

For example, $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$. And, importantly, $\emptyset \subseteq A$ for all sets A. In other words, the empty set is a subset of *all* sets.

Two sets are equal if A = B, or $A \subseteq B$ and $B \subseteq A$. This is often how you prove set equality.

1.1.1 Set Operations

We have four main operations.

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$
- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$
- Product: $A \times B = \{(a, b) \mid a \in A, b \in B\}.$
- Difference: $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

Two sets are **disjoint** if $A \cap B = \emptyset$.

If we're working in a particular universe U (i.e. all sets are subsets of the universal set U) then the complement of A is $A^c = \{x \mid x \in U \text{ and } x \notin A\}$.

1.2 Relations

Definition.

A **relation** between sets A and B is a subset $R \subseteq A \times B$.

If $(a,b) \in R$, then we say that "a is related to b", or we write aRb, or $a \sim b$.

Example.

$$R \subseteq \{1, 2, 3\} \times \{2, 3, 4\}.$$
 $R = \{(1, 3), (2, 2), (3, 4)\}$

Note.

Relations might not be reflexive! If $(a, b) \in R$, that means a is related to b, but it might not be the case that $(b, a) \in R$. In other words, the reverse may not be true!

Another example might be $R \subseteq \mathbb{R} \times \mathbb{R}$, with $R = \{(x, x^3) \mid x \in \mathbb{R}\}$. Oh look! We just rewrote $f(x) = x^3$, so functions are relations.

Definition.

A partition of a set A is a collection of *disjoint* subsets whose union is A.

Another way to think of this is that any element of A is in one and only one of its partitions.

An example of this might be the partition

$$A = \mathbb{Z} = \{ x \in \mathbb{Z} \mid x < 0 \} \cup \{ 0 \} \cup \{ x \in \mathbb{Z} \mid x > 0 \}$$

is a partition of \mathbb{Z} into 3 sets.

Another example might be $A = \mathbb{R}$, subsets are $\{x\}$ for each $x \in \mathbb{R}$.

Another, maybe more interesting example might be the following.

Example.

Fix $n \in \mathbb{N}$, $n \geq 2$. Let

- $\bar{0} = \{x \in \mathbb{Z} \mid x \text{ is divisible by } n\}.$
- $\bar{1} = \{x \in \mathbb{Z} \mid x 1 \text{ is divisible by } n\}.$
- $\bar{2} = \{x \in \mathbb{Z} \mid x 2 \text{ is divisible by } n\}$. On and on until...
- $\overline{n-1} = \{x \in \mathbb{Z} \mid x (n-1) \text{ is divisible by } n\}.$

Claim: This partitions \mathbb{Z} into in n subsets.

Fri. 26 Jan 2024

Let's go back to relations, which we put aside to talk about partitions.

Definition.

A relation $A \subseteq A \times A$ is called an **equivalence relation** if it satisfies 3 properties

- 1. Reflexivity: aRA for all $a \in A$.
- 2. **Symmetry**: aRb if and only if bRa.
- 3. Transitivity: If aRb and bRc, then aRc.

The key idea is that equivalence relations on A are the same as partitions of A. What's going on here?

From an equivalence relation: If b is related to b, put them in the same set. Because of symmetry of equivalence relations, order of elements in the set doesn't matter.

Conversely, given a partition say $aRb \Leftrightarrow bRa$ are in the same subset.

Note.

We'll be talking a lot about partitions and equivalence relations in this class.

Now we move on to the next step in our intro: functions.

1.3 Functions

A function $f: A \to B$ is a relation $R_f \subseteq A \times B$ such that, for all $a \in A$, there is a unique $b \in B$ such that aRb. Effectively, this means that

- 1. We pass the vertical line test.
- 2. The function is defined over its entire domain.

Which are the properties we expect of functions!

Example.

Let $f: \mathbb{R} \to \mathbb{R}$, with $R_f = \{(x, x^3) \mid x \in \mathbb{R}\}$. We write f(a) for the value b where $(a, b) \in R_f$.

Given a function $f: A \to B$. We say that

- A is the domain.
- B is the codomain.
- The range is a subset of the codomain, only where f outputs values.

The + operation is a function + : $\mathbb{R} \to \mathbb{R}$, also written as $(a,b) \mapsto a+b$. The multiplication operation $\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, also written as $(a,b) \to ab$. These are binary operations, very useful in Group Theory.

Definition.

A binary operation on a set A is a function $f: A \times A \to A$. Its an operation on two inputs that outputs one thing.

Note.

A dot product does not count here! Because the output of the dot product does not come from the same set as the input.

To do more complicated things in real life (such as a + b + c), we must parenthesize.

$$f(a, f(b, c))$$
 or $f(f(a, b), c)$

Of course this doesn't matter for addition in particular, but it might for other binary operators!

Example.

Fix $n \geq 2$ and consider $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ (Note that this is a set of sets!)

We want to come up with binary operations on this set. We have

1. Addition: $+: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$, defined as $(\bar{a}, \bar{b}) \mapsto \overline{a+b}$.

But this isn't well-defined! For instance, what happens if a + b exceeds n? To fix this, let's add the following condition:

Let $\bar{x} = \bar{y}$ if x, y are in the same subset of partitions. (i.e. They have the same remainder mod n.)

Question: Is this a well-defined binary operations?

Answer: Yes! But we must check that it doesn't matter how we define our inputs.

2. Multiplication: $\times : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$, defined as $(\bar{a}, \bar{b}) \mapsto \overline{ab}$

Note.

We also write $x \equiv y \pmod{n}$ if $\bar{x} = \bar{y}$.

Now we're ready to jump in.

2 Properties of Operations on R

Let's look at the properties of $(\mathbb{R}, +)$ and $(\mathbb{R} \setminus \{0\}, \times)$.

 $(\mathbb{R},+)$

1. **Associativity**: a + (b + c) = (a + b) + c

2. Identity: a + 0 = a

3. Inverses: a + (-a) = (-a) + a = 0

4. Commutativity: a + b = b + a

 $(\mathbb{R}\setminus\{0\},\times)$

1. Associativity: $a \times (b \times c) = (a \times b) \times c$

2. Identity: $a \times 1 = a$.

3. **Inverses**: $a \times (1/a) = (1/a) \times a = 1$

4. Commutativity: $a \times b = b \times a$

Definition.

We say that a binary operation $p: A \times A \to A$ is **associative** if

$$p(a, p(b, c)) = p(p(a, b), c)$$

for any $a, b, c \in A$. In other words, how we parenthesize doesn't matter.

Definition.

We say that a binary operation $p: A \times A \to A$ has an **identity** if

$$p(a, e) = p(e, a) = a$$

for any $a \in A$.

Definition.

We say that a binary operation $p: A \times A \to A$ has a **inverses** if

1. It has an identity element e (otherwise identity is meaningless!)

2.

$$p(a,b) = p(b,a) = e$$

for any $a \in A$ and some $b \in A$.

We usually write b as a^{-1} .

Definition.

We say that a binary operation $p: A \times A \to A$ is **commutative** if

$$p(a,b) = p(b,a)$$

for any $a, b \in A$.

Let's look at properties of $(\mathbb{Z}_n, +)$ and (\mathbb{Z}_n, \times) .

 $(\mathbb{Z}_n,+)$

- 1. Is Associative.
- 2. Has an identity: 0.
- 3. Has an inverse: $\overline{(-a)}$ for any \bar{a} .
- 4. Is Commutative: We can move elements around.

 (\mathbb{Z}_n, \times)

- 1. Is Associative
- 2. Has an identity: 1.
- 3. **Does not** have an inverse! Because $\bar{0}$ is still there, we have no inverse.
- 4. Is Commutative: We can move elements around. In this case, $\bar{a}\bar{b} = \overline{ab} = \bar{b}\bar{a} = \bar{b}\bar{a}$.

Question: If we instead looked at $(\mathbb{Z}_n \setminus \{0\}, \times)$, would there be inverses?

Answer: We've messed the whole thing up! This is not even an binary operation anymore. Since we don't have $\bar{0}$, what does $\bar{2} + \bar{2}$ even mean now, if n = 4?

We'll study this more in about a week.

Let's look at matrices. $A = \operatorname{Mat}_n(\mathbb{R})$ be the set of $n \times n$ matrices with real elements, with the binary operation being matrix multiplication. Let's look at its properties.

- 1. Its associative.
- 2. It has an identity.
- 3. It **does not** have an inverse.
- 4. It is not commutative.

Now looking at $A = GL_n(\mathbb{R})$ be the set of $n \times n$ invertible matrices with real entries.

- 1. Its associative.
- 2. It has an identity.
- 3. It **does** have an inverses.
- 4. It **is not** commutative.

Proposition

If $p: A \times A \to A$ is a binary operation with two identities e, f, then e = f.

Proof

$$e = p(e, f) = f$$
, so $e = f$.

Proposition

If we have two inverses, then they are the same. More formally: if p(a,b) = p(b,a) = e, and p(a,c) = p(c,a) = e, then b = c

Proof

p(c, p(a, b)) = p(c, e) = c, but we could have also done p(p(c, a), b) = p(e, b) = b, so b = c.

Mon. 29 Jan 2024

Note.

Homework 1 is due this Thursday at 11:59PM, on Gradescope. Because this is the first homework, Gradescope will allow late submissions but just submit it on time.

Last time, we talked about binary operations and their properties. Now, we are going to put everything together and talk about Groups!

3 Groups

Definition.

A **Group** is a set G with a binary operation $p: G \times G \to G$ that

- 1. Is Associative.
- 2. Has an *Identity*.
- 3. Has Inverses.

Note that it does **not** have commutatitivity. We'll talk about that later.

Notation-wise, we write (G, p), or just G if the binary operations is understood. Additionally, we often write the operation as $a \cdot b$, a + b, or ab instead of p(a, b).

Definition.

A Group is **Abelian** if the operation is also *commutative*.

Note.

Sometimes, we say that a group is *closed* under its operation. However we don't need this because a binary operation, by definition, is necessarily closed.

Let's look at some examples.

Example.

These groups are **Abelian**:

- 1. $(\mathbb{R},+)$
- $2. (\mathbb{Z}, +)$
- 3. $(\mathbb{C},+)$
- 4. $(\mathbb{R} \setminus \{0\}, \times)$

These groups are **Non-Abelian**:

- 1. $(GL_n(\mathbb{R}), \times)$. Recall that this is the set of non-invertible $n \times n$ matrices with real entries.
- 2. $(\mathbb{Z}_n, +)$. Recall that this was the set of classes of partitions modulo n.

These are **not Groups**:

- 1. $(\mathbb{N} \cup \{0\}, +)$, has no inverses.
- 2. $\operatorname{Mat}_n(\mathbb{R}), \times$), has no inverses.

Definition.

The **Order** of a group, is the *cardinality* of the set G, denoted |G|.

3.1 Cancellation Law

In a group G, if ab = ac, then b = c.

Proof

Since G has inverses, there is an element $a^{-1} \in G$ such that $aa^{-1} = e$. So,

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c$$

$$b = c$$

Defn of Identity

Let's look at some more examples.

3.2 Groups of Matrices

Example.

From the groups of matrices, we can also talk about

- $\mathrm{GL}_n(\mathbb{R})$
- $\mathrm{GL}_n(\mathbb{C})$
- $\mathrm{GL}_n(\mathbb{Q})$

Which are all groups.

Question: Is $GL_n(\mathbb{N})$ a group? What about $GL_n(\mathbb{Z})$?

Recall that GL stands for *general linear*. There is also the *special linear* group SL. This is the set of general linear matrices with determinant 1. Let's look at some examples

Example.

1. $SL = \{ A \in GL_n(\mathbb{R}) \mid \det(A) = 1 \}$

Recall that det(AB) = det(A) det(B), so this is closed.

3.3 Symmetric Groups

Definition.

Given the set $\{1, 2, ..., n\}$, the group of *permutations* of this set is the **symmetric group** S_n , where the binary operation is *function composition*.

A **permutation** is a bijection $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$. A permutation can be described by a list.

Example.

If n = 3, we have the permutations

$$\{123, 213, 132, 321, 231, 312\}$$

We say that $\sigma:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ takes an input from the set and defines the shuffle.

We'll talk more about Symmetric groups later in the semester.

Note.

- The Symmetric group is **Non-Abelian**.
- There are n! permutations of S_n , so the order of S_n is $|S_n| = n!$
- Why the Symmetric Group is named as it is is a question for another day.

3.4 Subgroups

Definition.

A **subgroup** is a subset H of a group (G, p) such that:

1. H is closed under p.

If
$$a, b \in H$$
, then $p(a, b) \in H$.

Note that we *need* to explicitly state that a subgroup is closed, because p is **not** closed in H, but it is by virtue of the values in H. However this does not come for free from p, unlike with G like before.

2. H has inverses.

If
$$a \in H$$
, then $a^{-1} \in H$.

Note that we also have

1. The Identity, by virtue of H being closed and containing inverses.

$$aa^{-1} = e$$

2. Associativity, because (G, p) is associative. This property is just inherited from G.

So
$$(H, p)$$
 is a group!

As notation, we say that $H \leq G$ if H is a subgroup of G.

| Example.

$$\mathrm{SL}_n(\mathbb{R}) \leq \mathrm{GL}_n(\mathbb{R}) \leq \mathrm{GL}_n(\mathbb{C})$$

Notice the direction of "subset-ness"!

Example.

$$\{\bar{0},\bar{2}\} \le (\mathbb{Z}_4,+)$$

Let's check this one.

1. Closure:

This is small enough that we can check them all.

- $\bullet \ \bar{0} + \bar{0} = \bar{0}$
- $\bar{0} + \bar{2} = \bar{2}$
- $\bar{2} + \bar{0} = \bar{2}$
- $\bar{2} + \bar{2} = \bar{4} = \bar{0}$

Note that we didn't really need to check the middle two, since the group is Abelian, and that property is inherited.

2. Inverses

- $\bullet \ \bar{0} + \bar{0} = \bar{0}$
- $\bar{2} + \bar{2} = \bar{0}$

So we have a subgroup!

Example.

If G is a group and $a \in G$ is an element, then

$$H = \{\dots, a^{-3}, a^{-2}, a^{-1}, e, a^{1}, a^{2}, a^{3}, \dots\}$$

is a subgroup.

As a note

- $\bullet \ a^{-3} = a^{-1}a^{-1}a^{-1}$
- $a^2 = aa$

Furthermore, sometimes, $a^n = e$ for some finite n. The smallest such n is called the **order** of a.

Example.

The order of $\bar{2} \in \mathbb{Z}_4$ is 2.

Definition.

We say that a subgroup $H \leq G$ is called **trivial** if |H| = 1. Or,

$$H=\{e\}$$

This is a subgroup of every group.

Note.

 $G \leq G$ for all groups G. In other words, a group is always a subgroup of itself.

We can say that H < G is a **proper** subgroup if $H \le G$ but $H \ne G$ and, additionally for this class, H is non-trivial.

Wed. 31 Jan 2024

Today we are going to talk about subgroups of \mathbb{Z} under addition. We want to understand *all* those subgroups. Both the techniques and the results will be useful beyond just this set of groups.

Let $a \in \mathbb{Z}$, and let $a\mathbb{Z} = \{ax \mid x \in \mathbb{Z}\}$ be all the multiples of a (with $0\mathbb{Z} = \{0\}$.)

Claim.

 $a\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Proof.

We need check two properties.

- 1. Closure: Given $ax, ay \in a\mathbb{Z}$, $ax + ay = a(x + y) \in a\mathbb{Z}$.
- 2. Inverses: Given $ax \in a\mathbb{Z}$, $a(-x) \in a\mathbb{Z}$, and $ax + a(-x) = ax ax = 0 \in a\mathbb{Z}$.

Note.

This is how you should prove your questions relating to subgroups on the homework.

Claim.

If $H \leq \mathbb{Z}$ is a subgroup, then $H = a\mathbb{Z}$ for some $a \in \mathbb{Z}$. In other words, this is it! This is all the subgroups.

Proof.

If $H \leq \mathbb{Z}$, then $0 \in H$. If $H = \{0\}$; then $H = 0\mathbb{Z}$ is the trivial subgroup. Otherwise, H contains non-zero integers. Since H contains inverses, it contains positive integers. Let a be the smallest positive integer in H. We want to show that $H = a\mathbb{Z}$.

Given $ax \in a\mathbb{Z}$, we can express ax as follows

$$ax = \begin{cases} a + \dots + a & x > 0 \\ 0 & x = 0 \\ (-a) + \dots + (-a) & x < 0 \end{cases}$$

In all such cases, H is closed and has inverses/identity, so $ax \in H$ and thus $a\mathbb{Z} \subseteq H$.

The harder way is going backwards.

Given $h \in H$, and assume |h| > a (We can do this because a is the smallest positive integer in H.) Write

$$h = ax + r$$

Where $0 \le r < a$. We know that $h \in H$, and $ax \in H$, so

$$r = h - ax \in H$$

Because r is a combination of two elements in the subgroup! But recall that r is between 0 and a. But we said before that a is the smallest positive integer in H, so r must be zero! In other words h = ax and $h \in a\mathbb{Z}$. Which proves that $H \subseteq a\mathbb{Z}$.

So $H = a\mathbb{Z}$.

Note.

This proof is very important and the techniques in it come back! Be sure you understand what's going on.

This is great! We've now categorized every subgroup of the Integers under addition!

Now, given $a\mathbb{Z}$, $b\mathbb{Z}$, form

$$a\mathbb{Z} + b\mathbb{Z} = \{ax + by \mid x, y \in \mathbb{Z}\}\$$

This is a subgroup of \mathbb{Z} . In fact,

Theorem

Definition.

If $a, b \neq 0$, then d is the greatest common divisor (gcd), of a and b,

$$d = \gcd(a, b)$$

If a, b = 0, $d = \gcd(a, b)$, then

1. d divides a and b, notated as $d \mid a$ and $d \mid b$.

Proof.

$$a \cdot 1 + b \cdot 0 = a \in d\mathbb{Z}$$
, so $d \mid a$. Similarly for b , $a \cdot 0 + b \cdot 1 = b \in d\mathbb{Z}$ so $d \mid b$.

2. if $e \mid a$ and $e \mid b$, then $e \mid d$

Proof

If
$$e \mid a \mid b$$
, then $e \mid (ax + by) = d$.

3. $\exists x, y \in \mathbb{Z}$ such that d = ax + by

Proof.

$$d \in a\mathbb{Z} + b\mathbb{Z}$$
, so $d = ax + by$, for some $x, y \in \mathbb{Z}$.

Fact.

d is the smallest positive value of |ax + by|.

This is useful, because if ax + by = 1 for some x, y, then gcd(a, b) = 1.

Definition.

 $a, b \in \mathbb{Z}$ are **relatively prime** if gcd(a, b) = 1 and

$$gcd(a, b) = 1 \Leftrightarrow ax + by = 1$$

for some $x, y \in \mathbb{Z}$.

Proposition.

Let p be a prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof.

Assume that p is a prime, and $p \mid ab$, but $p \nmid a$.

We will show that $p \mid b$.

The factors of p are 1 and p, and $p \nmid a$, so gcd(p, a) = 1 (since the gcd is either 1 or p, but if it was p, then p would divide a.)

So there must exist $x, y \in \mathbb{Z}$ with px + ay = 1. Multiplying by b, we have pxb + aby = b. Now of course, $p \mid pxb$ and, more importantly, $p \mid aby$ since a is a multiple of p so

$$p \mid (pxb + aby) = b$$

So $p \mid b$.

Similarly.

 $a\mathbb{Z} \cap b\mathbb{Z}$ is also a subgroup of \mathbb{Z} , say $m\mathbb{Z}$ and m = lcm(a, b), the least common multiple of a and b: The smallest number which is both a multiple of a and b.

The Euclidean Algorithm. To find the gcd

To understand this, let's look at an

Example.

Suppose we want to find the gcd(210, 45). Write $210 = 45 \cdot 4 + 30$. If $x \mid 210$ and $x \mid 45$, then $x \mid 30$. Now $x \mid 30$ and $x \mid 45$ implies that $x \mid 210$.

Hence gcd(210, 45) = gcd(45, 30).

We can do this trick again!

 $45 = 30 \cdot 1 + 15$, so gcd(45, 30) = gcd(30, 15) = 15. So gcd(210, 45) = 15.

Cyclic Subgroups.

G is a group, and $a \in G$. The set

$$\langle a \rangle = \{\dots, a^{-3}, a^{-2}, a^{-1}, e, a, a^2, a^3, \dots\}$$

is called the cyclic subgroup generated by a.

Note.

 $\langle a \rangle$ is the smallest subgroup of G that contains all these powers of a.

 $|\langle a \rangle| = |a|$, the smallest positive n such that $a^n = e$, or ∞ .

4 Cyclic Groups and Subgroups

We're going to repeat a little bit from last class, just to make sure we're on the same page.

Definition.

If G is a group and $a \in G$, the set

$$\langle a \rangle = \{ \dots, a^{-3}, a^{-2}, a^{-1}, e, a, a^2, a^3, \dots \}$$

Is the cyclic subgroup generated by a.

If $G = \langle a \rangle$ for some $a \in G$, we say G is a **cyclic group**.

Example.

 $G = \mathbb{Z}$, a = 2, We have that

$$\langle 2 \rangle = \{ \dots, -4, -2, 0, 2, 4, \dots \}$$

In general, $\langle a \rangle = a\mathbb{Z}$, and $\langle 1 \rangle = \mathbb{Z}$, so \mathbb{Z} is a cyclic group.

Note.

 $\langle a \rangle$ is the smallest subgroup of G containing a.

Recall: Let $n \in \mathbb{N}$ be the smallest number such that $a^n = e$ (or ∞ if $a^n \neq e$ for all n) we say that n is the order of a, or |a| = n.

Proposition

Let $|a| = n < \infty$. Then

- 1. $a^l = a^m$ if and only if $l m \equiv 0 \pmod{n}$.
- 2. $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}, \text{ and } |\langle a \rangle| = n.$

Proof

1. If $a^l=a^m$, then $a^la^{-m}=e$ and so $a^{l-m}=e$. Assume that $l-m\leq 0$. If $l-m\not\equiv 0\pmod n$ then l-m>n, because n is minimal. Then l-m=nk+r, and $r\in\{0,1,\ldots,n-1\}$. So

$$a^r = a^{(l-m)-nk} = \underbrace{a^{l-m}}_{e} \underbrace{(a^n)^{-k}}_{e}$$

But r < n so in fact r = 0. This contradicts $l - m \not\equiv 0 \pmod{n}$, hence $l - m \equiv 0 \pmod{n}$.

2. If $l \in \mathbb{Z}$, write l = nk + r, $r \in \{0, 1, ..., n - 1\}$, then $a^l = a^{nk+r} = (a^n)^k a^r = e^k a^r = a^r$. So

$$\langle a \rangle = \{e, a, \dots, a^{n-1}\}$$

If $a^l = a^m$ for $l, m \in \{0, 1, ..., n-1\}$, then $l-m \equiv 0 \pmod{n}$. This only happens for l = m, so $|\langle a \rangle| = n$.

This answers the question to the overloading of the word "order" from before. The *order* of an element is in fact the order of the cyclic subgroup that it generates!

Example.

If |a| = n, then

$$|a^l| = \frac{n}{\gcd(n, l)}$$

This is a good exercise for understanding subgroups. If you understand why it's true, you're in good shape.

Definition.

An **infinite cyclic group** is a cyclic group $\langle a \rangle$ where $|a| = \infty$.

For example, \mathbb{Z} .

Finite cyclic groups, for example $\mathbb{Z}_n = \langle \bar{1} \rangle$

Example.

If $G = \mathrm{GL}_2(\mathbb{R})$, then

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Has infinite order. Raising it to a power keeps generating larger and larger matrices.

However other matrices have finite order. For example, rotation matrices! In fact, it's possible to generate a rotation matrix of any order!

$$B_n = \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix}$$

Has order n. It's a rotation matrix!

4.1 Homomorphisms

So far we've been studying groups in isolation, but we may want to make general statements about the relation between different groups.

We want function between groups that "respect" the group operation.

Definition.

Given groups (G, p) and (G', p'). A **Homomorphism** $\varphi : G \to G'$ is a function such that

$$\varphi(p(a,b)) = p'(\varphi(a), \varphi(b))$$

It doesn't matter if we combine elements before or after the binary operations.

Suppressing p and p', we can write $\varphi(ab) = \varphi(a)\varphi(b)$.

Alternatively, we have the following diagram

$$\begin{array}{cccc} G\times G & \longrightarrow p & \longrightarrow G \\ & & & \downarrow \\ & & & \downarrow \\ G'\times G' & \longrightarrow p' & \longrightarrow G' \end{array}$$

Example.

We can express the determinant function as

$$\det: \mathrm{GL}_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times)$$

Or

$$A \to \det(A)$$

And we can check that det(AB) = det(A) det(B)

Similarly

Example.

Consider the function exp: $(\mathbb{R}, +) \to (\mathbb{R} \setminus \{0\}, \times)$

Or

$$x \to e^x$$

And we can check that $\exp(x+y) = e^x e^y = \exp(x) \exp(y)$

A more general

${\bf Example}.$

Given a group G, $a \in G$, we have

$$\varphi: (\mathbb{Z}, +) \to G$$

or

$$n \to a^n$$

If |a| = n, then $\varphi(\mathbb{Z}_n, +) \to G$, or $\bar{i} \to a^i$.

${\bf Example}.$

The **trivial homomorphism** $\varphi: G \to G'$ can be defined as $a \to e$ for all $a \in G$.

Note.

The difference between an *Isomorphism* and a *Homomorphism* is **not** necessarily a bijection.

Proposition

If $\varphi: G \to G'$ is a homomorphism, then

- 1. $\varphi(a_1,\ldots,a_n)=\varphi(\alpha_1)\cdots\varphi(a_n)$
- 2. $\varphi(e_G) = e_{G'}$
- 3. $\varphi(a^{-1}) = \varphi(a)^{-1}$

It's important to note that these aren't by definition, but derived from the definition.

Proof.

- 1. This one is by induction, we won't prove it.
- 2. $\varphi(e_G e_G) = \varphi(e_G)\varphi(e_G)$

We can can "cancel" $\varphi(e_G)$ from both sides and get

$$e_{G'} = \varphi(e_G)$$

3.
$$e_{G'} = \varphi(e_G) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1})$$
 so $\varphi(a)\varphi(a^{-1}) = e_{G'}$ and so $\varphi(a^{-1}) = \varphi(a)^{-1}$

Mon. 5 Feb 2024

Recall: A **Homomorphism** is a function $\varphi: G \to G'$ satisfying $\varphi(ab) = \varphi(a)\varphi(b)$.

When we talk about functions, we like to talk about the *image* of that function.

Definition.

The **image** (or **range**) of φ is $\varphi(G) = \{\varphi(a) \mid a \in G\}$ is the set of all outputs of φ on its domain.

Definition.

The **Kernel** of φ is $\ker(\varphi) = \{a \in G \mid \varphi(a) = e_{G'}\}.$

A vector space under addition is actually a group!

Proposition

1. $\varphi(G)$ is a subgroup of G'. The image is a subgroup of the codomain.

Closure

If $\varphi(a)$, $\varphi(b) \in \varphi(G)$, then $\varphi(a)\varphi(b) = \varphi(ab)$ since φ is a Homomorphism. But notice that $\varphi(ab) \in \varphi(G)$, so we have closure.

Inverses

If $\varphi(a) \in \varphi(G)$, then $\varphi(a)^{-1} = \varphi(a^{-1}) \in \varphi(G)$, so it's a subgroup.

2. ker(G) is a subgroup of G. The kernel is a subgroup of the domain.

Closure

If $a, b \in \ker(\varphi)$, $\varphi(ab) = \varphi(a)\varphi(b) = e \cdot e = e$, so $\varphi(ab) \in \ker(\varphi)$.

Inverses

If
$$a \in \ker(\varphi)$$
, then $\varphi(a^{-1}) = \varphi(a)^{-1} = e^{-1} = e$, so $a^{-1} \in \ker(\varphi)$.

Let's look at an

Example.

Consider the determinant function $\det : \operatorname{GL}_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times), A \to \det(A)$

Here, the determinant is onto, so $\det(\operatorname{GL}_n(\mathbb{R})) = \mathbb{R} \setminus \{0\}$. Additionally,

$$\ker(\det) = \{A \in \operatorname{GL}_n(\mathbb{R}) \min \det(A) = 1\} = \operatorname{SL}_n(\mathbb{R})$$

To prove that something is a subgroup, it's often useful to find a homomorphism whose kernel (or image) is a subgroup.

Consider the following

Example.

$$\exp(\mathbb{R},+) \to (\mathbb{R} \setminus \{0\},\times)$$
 is a homomorphism, $x \to e^x$.

$$\exp(\mathbb{R}) = \{x \in \mathbb{R} \mid x > 0\}, \text{ and } \ker(\exp) = \{x \in \mathbb{R} \mid \exp(x) = 1\} = \{0\}.$$

Proposition:

 $\varphi: G \to G'$ is one to one if and only if $\ker(\varphi) = \{e\}$.

Proof:

$$(\Rightarrow)$$
: $\varphi(e) = e$, so $e \in \ker(\varphi)$.

If $a \neq e$ and $a \in \ker(\varphi)$, then $\varphi(a) = \varphi(e) = e$ so φ is not injective, and we have a contradiction. Thus $\ker(\varphi) = \{e\}$.

(\Leftarrow): If $\varphi(a) = \varphi(b)$, then $\varphi(a)\varphi(b)^{-1} = e$, but then $\varphi(a)\varphi(b^{-1}) = \varphi(ab^{-1}) = e$ but since only $\varphi(e) = e$, this means $ab^{-1} = e$ and so a = b and so $\varphi(a) = e$ is injective.

4.2 Isomorphisms

Definition.

An **Isomorphism** $\varphi:G\to G'$ is a bijective homomorphism.

Note.

To check that something is an Isomorphism, you need to check two things:

- 1. It's a Homomorphism
- 2. It's a Bijection.

Note that if the function sets are finite, you only need to prove either one to one-ness or onto-ness and the other should follow. Think about why!

4.2.1 Examples

Some examples include:

- $\exp: (\mathbb{R}, \times) \to (\mathbb{R}_{>0}, \times)$
- $\varphi': (\mathbb{Z}, +) \to \langle a \rangle \leq G$ is an isomorphism if and only if $|a| = \infty$.

This should make sense, as we never get the identity by a non-zero power of a.

- Given any $A \in GL_n(\mathbb{R})$, the linear map $f_A : (\mathbb{R}^n, +) \to (\mathbb{R}^n, +)$ that sends $\bar{x} \to A\bar{x}$ is an isomorphism.
- If $a \in G$, the map $\varphi_a : G \to G$ that sends $b \to aba^{-1}$ is an isomorphism, called **conjugation by** a Check:

1. Homomorphism

$$\varphi(bc) = a(bc)a^{-1} = abeca^{-1}$$
$$= (aba^{-1})(aca^{-1})$$
$$= \varphi_a(b)\varphi_a(c)$$

2. One to One:

If $\varphi_a(b) = e$, then $aba^{-1} = e$, then $a^{-1}aba^{-1}a = a^{-1}a$, and so b = e, so φ_a is injective.

3. Onto: If $c \in G$, we want $b \in G$ such that $\varphi_a(b) = c$, i.e. $aba^{-1} = c$. So choose $b = a^{-1}ca$, then $\varphi_a(b) = aba^{-1} = a(a^{-1}ca)a^{-1} = c$, so φ_a is surjective.

Proposition: If $\varphi: G \to G'$ is an isomorphism, then $\varphi^{-1}: G' \to G$ is also an isomorphism.

Proof:

Since isomorphisms are bijections, it suffices to show that φ^{-1} is a homomorphism.

If $x, y \in G'$, we want to show that $\varphi^{-1}(xy) = \varphi^{-1}(x)\varphi^{-1}(y)$.

Say $\varphi^{-1}(x) = a$, $\varphi^{-1}(y) = b$, and $\varphi^{-1}(ab) = c$. Then we want to show that ab = c.

Then ab=c if and only if $\varphi(ab)=\varphi(c)$ (since φ is bijective, in fact injectivity is sufficient for this.)

But then this is true if and only if $\varphi(a)\varphi(b) = \varphi(c)$, if and only if $\varphi(\varphi^{-1}(x))\varphi(\varphi^{-1}(y)) = \varphi(\varphi^{-1}(xy))$, if and only if xy = xy. Thus ab = c and φ^{-1} is a homomorphism.

$$ab = c \Leftrightarrow \varphi(ab) = \varphi(c)$$

$$\Leftrightarrow \varphi(a)\varphi(b) = \varphi(c)$$

$$\Leftrightarrow \varphi(\varphi^{-1}(x))\varphi(\varphi^{-1}(y)) = \varphi(\varphi^{-1}(xy))$$

$$\Leftrightarrow xy = xy$$

Definition.

G and G' are **isomorphic** if there exists an isomorphism $\varphi: G \to G'$.

Note again that since isomorphisms are bijective, this means that the isomorphism goes both ways.

We write $G \cong G'$ or $G \subseteq G'$, but mostly the former.

Note.

The goal of this class is to give a good classification to a lot of groups. Note that it's not really possible to completely do this, even for groups of a given order, because we have infinitely many possible groups of order one, but that's okay because there's an isomorphism between.

We say that we care about these groups up to isomorphism.

What this means is that if we have two groups that are isomorphic, we're going to treat them as the same. When classifying or counting, we can count G and G' are one if $G \cong G'$.

Exercise. There is only one group of order one up to isomorphism.

So if
$$|G| = |G^{-1}| = 1$$
, then $G \cong G'$.

Next week we'll talk about specific types of groups and take a break from the theory.

Wed 07 Feb 2024

5 Important Groups

5.1 Groups mod n

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}\$$

Under +.

These are all cyclic, and in fact $\mathbb{Z}_n = \langle \overline{1} \rangle$.

Theorem:

Any cyclic (sub)group is isomorphic to \mathbb{Z} or \mathbb{Z}_n , for $n \geq 2$.

Proof Idea:

Write $f: \mathbb{Z}$ or \mathbb{Z} to $\langle a \rangle$ which takes k or \bar{k} to a^k .

Chose n = |a| or \mathbb{Z} if $|a| = \infty$.

We know that subgroups of cyclic groups are cyclic (from Homework 1.) So any subgroup of \mathbb{Z}_n is $H = \langle \bar{m} \rangle$ for some \bar{m} .

Example.

If f|n, then there exists some subgroup $H \leq \mathbb{Z}_n$ with |H| = f.

5.2 Multiplicative Groups

In what context can we define a group under multiplication for subsets of the integer \pmod{n} ?

If \bar{a} is multiplicatively invertible \pmod{n} , then there exists a $\bar{n} \in \mathbb{Z}_n$ with $\bar{a} \cdot \bar{b} = \bar{1}$.

We know that (\mathbb{Z}_4, \times) , for example, is not a group. So when is it a group?

We know that

$$\bar{a} \cdot \bar{b} = \bar{1} \Leftrightarrow ab \equiv 1 \pmod{n}$$

 $\Leftrightarrow \exists k \in \mathbb{Z} \text{ such that } ab = 1 + nk$
 $\Leftrightarrow \exists k \in \mathbb{Z} \text{ with } ab + n(-k) = 1$
 $\Leftrightarrow \gcd(a, n) = 1$

Let's define $\mathbb{Z}_n^{\times} = \{ \bar{a} \in \mathbb{Z}_n \setminus \{\bar{0}\} \mid \gcd(a, n) = 1 \}$

Theorem:

 $(\mathbb{Z}_n^{\times}, \times)$ is a group.

Proof: Omitted.

Example.

 $\mathbb{Z}_4^\times=\{\bar{1},\bar{3}\},$ and looking at the multiplication table

- $\bar{1} \cdot \bar{1} = \bar{1}$
- $\bar{1} \cdot \bar{3} = \bar{3}$
- $\bar{3} \cdot \bar{1} = \bar{3}$
- $\bar{3} \cdot \bar{3} = \bar{1}$

And in fact, we see that $\mathbb{Z}_4^{\times} \cong (\mathbb{Z}_2, +)$, Where φ takes $\bar{1}$ to $\bar{0}$, and $\bar{3}$ to $\bar{1}$.

Example.

Let's look at $\mathbb{Z}_8^{\times} = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}.$

In \mathbb{Z}_8^{\times} , every element \bar{a} satisfies $\bar{a}^2 = \bar{1}$, so $\mathbb{Z}_8^{\times} \cong \mathbb{Z}_4$, because in \mathbb{Z}_4 , $\bar{1} + \bar{1} \neq \bar{0}$ and $\bar{3} + \bar{3} = \bar{0}$.

So they are not isomorphic. If there were, say f, it would be surjective, we could pick $\bar{a} \in \mathbb{Z}_8^{\times}$ with $f(\bar{a}) = \bar{1}$, then $f(\bar{a} \cdot \bar{a}) = f(\bar{a}) + f(\bar{a})$ but this can't be the case.

Corollary: $\mathbb{Z}_n^{\times} = \mathbb{Z}_n \setminus \{0\}$ if and only if n is prime.

So $\mathbb{Z}_p^{\times} = \{\overline{1}, \dots, \overline{p-1}\}$ is a group under \times when p is prime.

Note.

These are **not** subgroups of Z_n , they have a different binary operation! These groups are under multiplication while \mathbb{Z}_n is under addition.

5.3 Symmetric Groups

Recall the definition of S_n

$$S_n = \{ \text{ all permutations of } \{1, \dots, n\} \}$$

= $\{ \text{ all bijections } \{1, \dots, n\} \rightarrow \{1, \dots, n\} \}$

Furthermore, recall that $S_n = n!$.

Example.

Consider S_4 , we say that $\sigma \in S_4$ is a function $\sigma : \{1, 2, 3, 4\} \to \{1, 2, 3, 4\}$ with

- $1 \mapsto 2$
- \bullet 2 \mapsto 4
- $3 \mapsto 3$
- $4 \mapsto 1$

This is really cumbersome to write so instead, we write

TODO Oh my god I can't tex this. See picture

Or,

$$\sigma = (124)(3) = (241)(3) = (3)(412)$$

Because 1, 2, 4 forms a cycle, and 3 is a self loop. And this uniquely describes the picture! Although this notation is compact, it's not unique. This is known as *cycle notation*.

If the group S_4 is understood, we can write (124)(3) as 124. We have a tendency to just leave off the 1-cycles.

Example.

Let's do some multiplication.

 $\sigma^2 = (124)(124)$. To do this, we first draw the picture.

TODO

And to do σ^2 , we follow the arrows twice (we do σ twice!)

So $\sigma^2 = (142)$.

Example.

Let $\sigma = (124)$, and $\tau = (12)(34)$, what is $\tau \sigma$?

Again, we can draw the graphs.

TODO

Note that order matters here! It may not always be the case that $\sigma\tau$ equals $\tau\sigma$.

So $\tau \sigma = (12)(34)(124) = (234)$.

Note.

It should make sense that (123) = (12)(23), and more generally,

$$(a_1 a_2 \cdots a_k) = (a_1 a_2)(a_2 a_3) \cdots (a_{k-1} a_k)$$

A 2-cycle (a,b) is called a **transposition**. Every $\sigma \in S_n$ can be written as a product of transpositions.

Definition.

 $\sigma \in S$ is **even** if it's the product of an even number of transpositions.

 $| \sigma \in S_n$ is **odd** if it's the product of an odd number of transpositions.

Proposition:

No $\sigma \in S_n$ is both even and odd.

Proof

(My idea here is that you can probably represent the permutation as a graph and color the vertices and make some statement about where it takes you or something like that.)

Next time!

What we get out of this is a map $\operatorname{sgn}: S_n \to (\{\pm 1, \times\})$ with

$$\sigma \to \begin{cases} 1 & \sigma \text{ even} \\ -1 & \sigma \text{ odd} \end{cases}$$

Claim: sgn is a homomorphism called the *signature* homomorphism.