Escuela de Ingeniería de Sistemas e Informática Universidad Industrial de Santander

Registro de imágenes

v. 1.0.0

Yesid Gutiérrez yesid.gutierrez@correo.uis.edu.co

October 4, 2018

Contenido I

Introducción

Definición

Registros de imágenes

Tipos de registro de imágenes Transformaciones rígidas Transformaciones no rígidas Transformaciones de Escala Transformaciones Afines

Métodos

Problema
Clasificación de los métodos
Coeficiente de correlación
Prueba de implementación

Referencias

Referencias

- ► El registro de imágenes es el proceso de transformar diferentes conjuntos de datos en un sistema de coordenadas.
- El registro de imágenes es la determinación de una transformación geométrica que alinea puntos en una vista de un objeto con puntos correspondientes en otra vista de ese objeto.

Registro de imágenes

Tipos de registros de imágenes

El registro de imágenes suele clasificarse en función de su geometría en:

- Registro de imágenes rígidas / Transformaciones rígidas
- Registro de imágenes no rígidas / Transformaciones deformadas

Registro de imágenes I

Transformaciones rígidas

Las transformaciones rígidas son definidas como transformaciones geométricas que preservan todas las distancias, la rectitud de las líneas (planaridad entre superficies) y todos los ángulos distintos de cero entre lineas rectas. Normalmente, estas transformaciones poseen dos componentes de especificación los cuales son la rotación y la translación.

Transformaciones Rígidas

Las transformaciones rígidas se pueden representar como una transformación geométrica de rotación, o transformación geométrica de translación o combinaciones entre estas como se muestra a continuación:

$$x' = TRx = TR_y R_x R_z x$$

. donde:

- ▶ x es una coordenada en el espacio de la forma: $x = (x_x, x_y, x_z, 1)$.
- ▶ R es una matriz ortogonal de 4×4 que representa la rotación respecto a cada uno de los ejes coordenados. $R = R_y R_x R_z$
- ▶ T es una matriz 4×4 que representa los desplazamientos (T_x, T_y, T_z) en las direcciones (x,y,z).

Registro de imágenes III

Transformaciones rígidas

$$R_{y} = \begin{vmatrix} \cos(\theta_{y}) & 0 & \sin(\theta_{y}) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta_{y}) & 0 & \cos(\theta_{y}) & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$R_{x} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta_{x}) & \sin(\theta_{x}) & 1 \\ 0 & -\sin(\theta_{x}) & \cos(\theta_{x}) & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$R_{z} = \begin{vmatrix} \cos(\theta_{z}) & \sin(\theta_{z}) & 0 & 0 \\ -\sin(\theta_{z}) & \cos(\theta_{z}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$T = \begin{vmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Registro de imágenes

Transformaciones no rígidas

Las transformaciones no rígidas son importantes para aplicaciones de la anatomía no rígida o cuando hay distorsiones no rígidas en el procedimiento de adquisición de la imagen, también para llevar acabo el proceso de intrapatient registration.

Transformaciones no rígidas

Las transformaciones no rígidas suelen ser:

- Transformaciones de Escala.
- Transformaciones Afines.
- Transformaciones Proyectivas
- Transformaciones de Perspectiva

Transformaciones no rígidas I

Transformaciones de Escala

Las transformaciones de escala son útiles para compensar errores en los sistemas de adquisición de imágenes. Su representación es la siguiente:

Transformaciones no rígidas II

Transformaciones de Escala

Transformaciones de Escala

$$x' = SRx + t$$

donde S es una matriz diagonal (s_x, s_y, s_z) cuyos elementos representan el factor de escala S a lo largo de cada uno de los tres ejes coordenados.

$$S = \begin{vmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Transformaciones no rígidas I

Transformaciones Afines

Las transformaciones afines conservan su rectitud de lineas, la planaridad de superficies y el paralelismo, sin embargo, los ángulos entre lineas pueden cambiar, esta transformación es muy utilizada cuando existen tomografías con un ángulo mal registrado.

Transformaciones no rígidas II

Transformaciones Afines

Transformaciones Afines

$$x' = Ax + t$$

A diferencia de las transformaciones de escala, en las transformaciones afines no existe una restricción para los valores de los elementos a_{ii} de la matriz A.

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Definición del problema

Justo ahora podemos definir diversas transformaciones geométricas basados en matrices de rotación, translación, escala, afines, etc. Sin embargo, no tenemos conocimiento de lo siguiente:

- ➤ ¿Cuantos grados se debe rotar la imagen X en sentido horario?
- ¿Cuanto debe ser el factor de escala Si que se aplique a la imagen X para cada uno de los tres ejes coordenados?
- ¿Cuantos píxeles debo trasladar la imagen X en cada uno de los ejes coordenados?
- ¿Cuales son cada uno de los valores a_{ij} que debo asignar a la matriz A, con la finalidad de aplicar la afinidad a la imagen X que requiero?

Clasificación de los métodos

En la actualidad existe una gran variedad de métodos para realizar el proceso de registro de imágenes, dentro de los más destacados se encuentran:

- Métodos manuales.
- Métodos basados en puntos
- Métodos basados en superficies (disparity fuction, the head and the hat, iterative closest point).
- Métodos basados en la intensidad (Sum of Squares of Differences, Correlation Coefficient, Ratio-Image Uniformity, Partitioned Intensity Uniformity, Calculating a joint PDF)

Coeficiente de correlación

OpenCV implementa una versión mejorada de este algoritmo para encontrar una matriz de transformación y posteriormente hacer el registro de imágenes.

Si las intensidades de una imagen A y B están relacionadas linealmente, un coeficiente de correlación (CC) es el algoritmo ideal para aplicar registro a las imágenes.

Para imágenes A y B con Voxeles i, encontrar la transformación T para maximizar:

$$CC = \frac{\sum_{i} (A(i) - \bar{A}) (B'(i) - \bar{B'})}{\{\sum_{i} (A(i) - \bar{A})^{2} \sum_{i} (B'(i) - \bar{B'})^{2}\}^{1/2}} \quad \forall i \in A \cap B',$$

Prueba de implementación

A continuación se lista un link que hace referencia a un repositorio github en el cual se realiza una ligera implementación de transformaciones rígidas.

https://github.com/yesid08/Prostatex-1

Referencias

- ▶ J. Michael Fitzpatrick, Derek L. G. Hill, Calvin R. Maurer, Jr CHAPTER 8, Image Registration.
- Derek L G Hill, Philipp G Batchelor, Mark Holden and David J Hawkes, Medical image registration
- Hongliang Yu, WORCESTER POLYTECHNIC INSTITUTE, Automatic Rigid and Deformable Medical Image Registration
- ► Hartley, Zisserman, Multiple View Geometry in Computer Vision

