$\rm JAIST-School$ of Information Science — I232E Information Theory

Midterm Exam 2022

Instructor: Brian M. Kurkoski and Lei Liu May 20, 2022 13:30–15:10

Name:			
Student Number:			

Write your answers in this test book.

If you need more space, write on the back of the paper.

 $Exam\ Policy.$ This is a $closed\ book$ exam. You may use:

• One page of notes, A4-sized paper, double-sided OK.

You may not use anything else:

- No printed materials, including books, lecture notes and slides
- No notes (except as above)
- No internet-connected devices
- $\bullet\,$ No calculators. Answers such as "log 3" are acceptable.

Question	Points	Score
1	25	
2	20	
3	25	
4	30	
Total:	100	

This exam has 10 pages.

- 1. What is the correct relationship, =, \geq , \leq or ? (for unknown) for each pair below.
 - (a) (2 points) I(X;Y) = 0.
 - (b) (2 points) $H(X,Y) _{----} H(X) + H(Y)$
 - (c) (2 points) $I(X;Y) + H(X|Y) \underline{\hspace{1cm}} H(X)$.
 - (d) (2 points) I(X;X)_____H(X).
 - (e) (2 points) $I(X;Y) \longrightarrow H(X) H(g(Y)|Y)$.
 - (f) (2 points) H(X|Y)_____H(X) + H(Y)
 - (g) (2 points) $H(2X) _ H(X)$
 - (h) (2 points) $H(X^2) = H(X)$
 - (i) (2 points) $H(X_2|X_1)$ _____ $H(X_2|X_1,X_0)$
 - (j) (3 points) H(X,Y) + I(X;Y)______ H(X) + H(Y)
 - (k) (4 points) H(X,Y) H(X|Y) + H(Y|X) + I(X;Y)

- 2. Let X be defined on $\mathcal{X} = \{-1,0,1\}$ with $p_{\mathsf{X}}(x) = [\frac{1}{4},\frac{1}{2},\frac{1}{4}]$. Let $g(x) = x^2$ and let $\mathsf{Y} = g(\mathsf{X})$, so that $\mathcal{Y} = \{0,1\}$ and $p_{\mathsf{Y}}(0) = \frac{1}{2}$ and $p_{\mathsf{Y}}(1) = \frac{1}{2}$.
 - (a) (4 points) Compute E[X] and E[g(X)].
 - (b) (4 points) What is H(Y|X)? It is easily found without computations.
 - (c) (4 points) Find $p_{XY}(x,y)$. Find $p_{X|Y}(x|y)$.
 - (d) (4 points) Compute $H(\mathsf{X}|\mathsf{Y}=0)$ and $H(\mathsf{X}|\mathsf{Y}=1).$
 - (e) (4 points) Compute H(X|Y).

3. Huffman code trees Consider a source with $\mathcal{X} = \{1, 2, 3, 4\}$ and $p_1 > p_2 > p_3 > p_4$ and $p_1 + p_2 + p_3 + p_4 = 1$. There are only two possible binary Huffman codes for this source, with corresponding trees (A) and (B):

- (a) (5 points) Let $(p_1, p_2, p_3, p_4) = (0.39, 0.21, 0.2, 0.2)$. Give a binary Huffman code for this source. What is the expected codeword length?
- (b) (5 points) Give a ternary Huffman code for the source in part (a). What is the expected codeword length?
- (c) (5 points) Give an inequality using p_1, p_3 and p_4 such that tree (A) is always obtained.
- (d) (5 points) Show that if $p_1 > \frac{2}{5}$ then $p_3 + p_4 < \frac{2}{5}$.
- (e) (5 points) Show that if $p_1 > \frac{2}{5}$, then the length of the corresponding Huffman codeword for "x = 1" is 1.

4. Consider a two-state Markov chain $\mathbf{X} = [X_1, X_2, \cdots]$ with probability transition matrix:

$$\begin{array}{c|cccc} \mathbf{P}_{\mathsf{X}_n|\mathsf{X}_{n-1}} & x_{n-1} = 0 & x_{n-1} = 1 \\ \hline x_n = 0 & 4/5 & 1/2 \\ x_n = 1 & 1/5 & 1/2 \\ \end{array}$$

- (a) (3 points) What is the stationary distribution \mathbf{p}_{X} ?
- (b) (3 points) What is the entropy rate $H(\mathcal{X})$?
- (c) (3 points) What is the (single-variable) entropy $\lim_{n\to\infty} H(X_n)$?
- (d) (3 points) Which has lower compression rate, compression using the Markov property, or single-variable compression?

Let
$$\mathbf{Y} = [Y_1, Y_2, ...]$$
 and $Y_n = [X_{2n-1}, X_{2n}]$. Then $Y_1 = [X_1, X_2], Y_2 = [X_3, X_4], ...$ is a four-state Markov chain.

- (e) (4 points) What is the probability transition matrix $\mathbf{P}_{\mathsf{Y}_n|\mathsf{X}_{2n-2}}$? What is the probability transition matrix $\mathbf{P}_{\mathsf{Y}_n|\mathsf{Y}_{n-1}}$?
- (f) (2 points) What is the stationary distribution $\mathbf{p_Y}$? (Hint: Matrix inverse is not necessary. You can utilize the stationary distribution $\mathbf{p_X}$.)
- (g) (3 points) What is the entropy rate $H(\mathcal{Y})$?
- (h) (3 points) Which has lower compression rate per symbol, compression using the Markov property of \mathbf{Y} , or compression using the Markov property of \mathbf{X} ?
- (i) (3 points) What is the (two-variable) entropy $\lim_{n\to\infty} H(\mathsf{Y}_n)$?
- (j) (3 points) Which has lower compression rate per symbol, two-variable compression, or single-variable compression?

Notes: $\log_2 5 \approx 2.3219, \log_2 7 \approx 2.8074$, and you may use the binary entropy function $h(p) \equiv -p \log p - (1-p) \log (1-p)$ for the questions above.