

Função modular e inequação modular

Resumo

Função modular:

A função modular é uma função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = |x|. Para se construir o gráfico dessa função devemos considerar como uma função definida por várias sentenças, ou seja, ela se comporta de maneiras distintas para cada intervalo de x.

Considere a função f(x) = |x|

Temos que:

$$f(x) = \begin{cases} x = |x| \text{ se } x \ge 0\\ ou\\ -x = |x| \text{ se } x < 0 \end{cases}$$

Ou seja, para x ≥ 0, a função é y = x e para x < 0, a função é y = - x

Juntando os dois gráficos:

Note que a Imagem é \mathbb{R}_+ .

Inequação modular

Na equação modular, exemplo |x| = 3, geometricamente, queríamos descobrir quais os valores que distavam 3 unidades da origem, nesse casos $S = \{-3,3\}$.

Já nas inequações, exemplo $|x| \le 3$, queremos descobrir intervalo onde os números que distam menos de 3 unidades da origem e $|x| \ge 3$, analogamente, o intervalo onde os números distam mais de 3 unidades da origem.

Assim, o conjunto solução de $|x| \le 3$ é $-3 \le x \le 3$ e de $|x| \ge 3$ é $x \le 3$ ou $x \ge 3$ Resumindo:

$$\rightarrow |x| < a \Leftrightarrow -a < x < a$$

$$\rightarrow |x| > a \Leftrightarrow x > a \text{ ou } x < -a$$

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. Seja f(x) uma função real. O gráfico gerado pelo módulo dessa função, |f(x)|
 - a) nunca passará pela origem
 - b) nunca passará pelo 3 ou 4 quadrante
 - c) intercepta o eixo x somente se f(x) for do primeiro grau
 - d) intercepta o eixo y somente se f(x) for do segundo grau
- 2. Seja f(x) = |x-3| uma função. A soma dos valores de x para os quais a função assume o valor 2 é
 - **a)** 3
 - **b)** 4
 - **c)** 6
 - **d)** 7
- **3.** O domínio da função real $f(x) = \sqrt{1 |x|}$ é o intervalo
 - **a)** $\{x \in \mathbb{R} \mid x < -1 \text{ ou } x > 1\}$
 - **b)** $\{x \in \mathbb{R} \mid x \le -1 \text{ ou } x \ge 1\}$
 - c) $\{x \in \mathbb{R} \mid -1 < x < 1\}$
 - **d)** $\{x \in \mathbb{R} \mid -1 \le x \le 1\}$
- **4.** Considera a função $f(x) = \left| \frac{x^2}{2} 2 \right|$. Para quais valores reais de x temos f(x) = 1?
 - **a)** $S = \{-\sqrt{6}, \sqrt{6}, -\sqrt{2}, \sqrt{2}\}$
 - $\textbf{b)} \qquad S = \left\{ -\sqrt{6}, -\sqrt{2} \right\}$
 - $\mathbf{c)} \qquad S = \left\{ \sqrt{6}, \sqrt{2} \right\}$
 - $\textbf{d)} \qquad S = \left\{ -\sqrt{6}, \sqrt{6} \right\}$
 - **e)** $S = \{-\sqrt{2}, \sqrt{2}\}$

Considere a função $f(x) = \left| \frac{x^2}{2} - 2 \right|$. Para quais valores reais de x temos $f(x) \le 1$? 5.

a)
$$S = \left\{ x \in \mathbb{R} / -\sqrt{6} \le x \le -\sqrt{2} \text{ ou } \sqrt{2} \le x \le \sqrt{6} \right\}$$

$$\textbf{b)} \quad S = \left\{ x \in \mathbb{R} \: / \: -\sqrt{6} \le x \le -\sqrt{2} \right\}$$

$$c) S = \left\{ x \in \mathbb{R} / \sqrt{2} \le x \le \sqrt{6} \right\}$$

$$\textbf{d)} \quad S = \left\{ x \in \mathbb{R} \ / \ -\sqrt{6} \le x \le \sqrt{2} \ \text{ou} \ \sqrt{2} \le x \le -\sqrt{6} \right\}$$

$$e) \quad S = \left\{ x \in \mathbb{R} / -\sqrt{6} \le x \le \sqrt{6} \right\}$$

6. Considere a função real f(x) = |-x+1|. O gráfico que representa a função é:

e)

b)

d)

Qual é o conjunto solução em \mathbb{R} de $5-x \le x+2$? **7**.

$$a) \quad S = \left\{ x \in \mathbb{R} / x \ge \frac{3}{2} \right\}$$

$$\textbf{b)} \quad S = \left\{ x \in \mathbb{R} \ / \ x \ge -\frac{3}{2} \right\}$$

$$c) \qquad S = \left\{ x \in \mathbb{R} / x > \frac{3}{2} \right\}$$

$$\textbf{d)} \quad S = \left\{ x \in \mathbb{R} \ / \ x \le -\frac{3}{2} \right\}$$

$$e) \quad S = \left\{ x \in \mathbb{R} / x \le \frac{3}{2} \right\}$$

- **8.** Qual é o conjunto solução em \mathbb{R} de |3x+1| < 3?
 - **a)** $S = \left\{ x \in \mathbb{R} / -\frac{4}{3} < x < \frac{2}{3} \right\}$
 - $\mathbf{b)} \quad S = \left\{ x \in \mathbb{R} / -\frac{4}{3} < x \right\}$
 - $c) \quad S = \left\{ x \in \mathbb{R} / x < \frac{2}{3} \right\}$
 - **d)** $S = \left\{ x \in \mathbb{R} / -\frac{4}{3} \le x < \frac{2}{3} \right\}$
 - $e) \quad S = \left\{ x \in \mathbb{R} \ / -\frac{4}{3} \le x \le \frac{2}{3} \right\}$
- **9.** A expressão |x a| < 16 também pode ser representada por
 - **a)** x a < 16
 - **b)** x + a > 16
 - c) -a 16 < x < a + 16
 - **d)** -16+a<x<a+16
 - **e)** x a < 16 ou x a > 0
- **10.** O conjunto solução da inequação $||x-4|+1| \le 2$ é um intervalo do tipo [a,b]. O valor de a + b é igual a
 - **a)** -8
 - **b)** -2
 - **c)** 0
 - **d)** 2
 - **e)** 8

Gabarito

1. B

A alternativa [B] é a correta, pois a função |f(x)| não assumirá valores negativos e, no terceiro e quarto quadrantes, os valores assumidos por qualquer função serão sempre negativos.

2. C

Queremos calcular x de modo que se tenha f(x) = 2. Desse modo, vem

$$|x-3| = 2 \Leftrightarrow x-3 = \pm 2$$

 $\Leftrightarrow x = 1 \text{ ou } x = 5.$

O resultado é, portanto, 1+5=6.

3. D

$$1-|x| \ge 0 \Longrightarrow |x| \le 1 \Longrightarrow -1 \le x \le 1$$

Portanto, o domínio da função será dado por: $\{x \in \mathbb{R} \mid -1 \le x \le 1\}$.

4. A

Calculando:

$$\left| \frac{x^2}{2} - 2 \right| = 1$$

$$\frac{x^2}{2} - 2 = 1 \rightarrow x = \pm \sqrt{6}$$

$$\frac{x^2}{2} - 2 = -1 \rightarrow x = \pm \sqrt{2}$$

5. A

Esboçando o gráfico:

Assim: $-\sqrt{6} \le x \le -\sqrt{2}$ ou $\sqrt{2} \le x \le \sqrt{6}$.

6. A

Tem-se que $f(x) = \begin{cases} -x + 1, \text{ se } x \leq 1 \\ x - 1, \text{ se } x > 1 \end{cases}$. Portanto, o gráfico da alternativa [A] é o que representa f.

7. A

$$5 - x \le x + 2 \Rightarrow -2x \le -3 \Rightarrow x \ge \frac{3}{2}$$
$$S = \left\{ x \in \mathbb{R} \mid x \ge \frac{3}{2} \right\}$$

8. A

$$|3x+1| < 3 \Rightarrow -3 < 3x+1 < 3 \Rightarrow -4 < 3x < 2 \Rightarrow$$

$$-\frac{4}{3} < x < \frac{2}{3}$$

$$S = \left\{ x \in \mathbb{R} \mid -\frac{4}{3} < x < \frac{2}{3} \right\}$$

9. D

$$|x-a| < 16 \Rightarrow -16 < x-a < 16 \Rightarrow \boxed{-16 + a < x < a + 16}$$

10. E

De
$$||x-4|+1| \le 2$$
,
 $-2 \le |x-4|+1 \le 2$
 $-3 \le |x-4| \le 1$
 $|x-4| \le 1$
 $-1 \le x-4 \le 1$
 $3 \le x \le 5$
 $a = 3$ e $b = 5$
 $a + b = 8$