

VinMin = 2.7V VinMax = 4.1V Vout = 5.0V Iout = 2.0A Device = TPS61088RHLR Topology = Boost Created = 2018-02-09 13:29:24.923 BOM Cost = \$2.77 BOM Count = 18 Total Pd = 0.56W

WEBENCH® Design Report

Design: 5175827/4 TPS61088RHLR TPS61088RHLR 2.7V-4.1V to 5.00V @ 2.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	■ 0805 7 mm²
2.	Ccomp	MuRata	GRM033R71C182KA88D Series= X7R	Cap= 1.8 nF ESR= 1.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
3.	Ccomp2	Yageo America	CC0201JRNPO8BN820 Series= C0G/NP0	Cap= 82.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
4.	Cin	MuRata	GRM31CR61A226KE19L Series= X5R	Cap= 22.0 uF ESR= 3.637 mOhm VDC= 10.0 V IRMS= 3.56456 A	3	\$0.08	1206_190 11 mm ²
5.	Cin2	MuRata	GRM155R60J104KA01D Series= X5R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
6.	Cout	TDK	C2012X5R1A476M125AC Series= X5R	Cap= 47.0 uF ESR= 2.94 mOhm VDC= 10.0 V IRMS= 3.80451 A	2	\$0.29	0805 7 mm ²
7.	Css	MuRata	GRM155R71C822KA01D Series= X7R	Cap= 8.2 nF ESR= 1.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
8.	Cvcc	Kemet	C0603C105Z8VACTU Series= Y5V	Cap= 1.0 uF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
9.	L1	Bourns	SRN8040-2R2Y	L= 2.2 μH DCR= 13.0 mOhm	1	\$0.24	SRN8040 100 mm ²
10.	Rcomp	Vishay-Dale	CRCW040215K8FKED Series= CRCWe3	Res= 15.8 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
11. Rfbb	Vishay-Dale	CRCW040269K8FKED Series= CRCWe3	Res= 69.8 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
12. Rfbt	Yageo America	RC0603FR-07220KL Series= ?	Res= 220.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
13. Rlim	Vishay-Dale	CRCW0402162KFKED Series= CRCWe3	Res= 162.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
14. Rt	Vishay-Dale	CRCW0402267KFKED Series= CRCWe3	Res= 267.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
15. U1	Texas Instruments	TPS61088RHLR	Switcher	1	\$1.60	

RHL0020A 25 mm²

Operating Values

Opc	rating values			
#	Name	Value	Category	Description
1.	Cin IRMS	289.487 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	1.924 A	Current	Output capacitor RMS ripple current
3.	IC lpk	4.336 A	Current	Peak switch current in IC
4.	lin Avg	3.91 A	Current	Average input current
5.	L lpp	1.003 A	Current	Peak-to-peak inductor ripple current
6.	BOM Count	18	General	Total Design BOM count
7.	FootPrint	209.0 mm ²	General	Total Foot Print Area of BOM components
8.	Frequency	588.213 kHz	General	Switching frequency
9.	Mode	BOOST CCM	General	PWM/PFM Mode
10.	Pout	10.0 W	General	Total output power
11.	Total BOM	\$2.77	General	Total BOM Cost
12.	Low Freq Gain	90.212 dB	Op_Point	Gain at 1Hz
13.	Vout Actual	4.999 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
14.	Cross Freq	24.529 kHz	Op_point	Bode plot crossover frequency
15.	Duty Cycle	48.063 %	Op_point	Duty cycle
16.	Efficiency	94.732 %	Op_point	Steady state efficiency
17.	Gain Marg	-10.337 dB	Op_point	Bode Plot Gain Margin
18.	IC Tj	43.896 degC	Op_point	IC junction temperature
19.	ICThetaJA	38.8 degC/W	Op_point	IC junction-to-ambient thermal resistance
20.	IOUT_OP	2.0 A	Op_point	lout operating point
21.	Phase Marg	57.042 deg	Op_point	Bode Plot Phase Margin
22.	VIN_OP	2.7 V	Op_point	Vin operating point
23.	Vout p-p	37.985 mV	Op_point	Peak-to-peak output ripple voltage
24.	Cin Pd	101.597 μW	Power	Input capacitor power dissipation
25.	Cout Pd	5.443 mW	Power	Output capacitor power dissipation
26.	Coutx Pd	0.0 W	Power	Output capacitor_x power loss
27.	IC Pd	358.149 mW	Power	IC power dissipation
28.	L Pd	192.261 mW	Power	Inductor power dissipation
29.	Total Pd	556.086 mW	Power	Total Power Dissipation
30.	Vout Tolerance	4.19 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

	5 1		
#	Name	Value	Description
1.	lout	2.0	Maximum Output Current
2.	VinMax	4.1	Maximum input voltage
3.	VinMin	2.7	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS61088	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. **TPS61088** Product Folder: http://www.ti.com/product/TPS61088: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.