Algebra 1

Vid Drobnič

Kazalo

1	Vektorji v trirazsežnem prostoru		
	1.1	Operacije z vektorji	3
	1.2	Linearna neodvisnost	4

1 Vektorji v trirazsežnem prostoru

 ${\mathcal P}$ - prostor

 $T \in \mathcal{P}$ - točka

 $A, B \in \mathcal{P}$

 \overrightarrow{AB} - usmerjena daljica

Formalno: $\overrightarrow{AB} = (A, B) \in \mathcal{P} \times \mathcal{P}$ (urejen par)

Ekvivalentnost usmerjenih daljic:

 $\overrightarrow{CD} \sim \overrightarrow{AB}$, kadar je \overrightarrow{AB} z vzporednim premikom mogoče premakniti v \overrightarrow{CD} .

- |AB| = |CD| (dolžini daljic sta enaki)
- $\bullet\,$ ista smer (če potegnemo premico čez izhodišca daljic (AC), morata biti točki B in D na istem "bregu" te premice)
- $AB \parallel CD$

$$\overrightarrow{CD} \sim \overrightarrow{AB} \Rightarrow \overrightarrow{AB} \sim \overrightarrow{CD}$$

 $\underline{\text{Def:}}$ Vektor \overrightarrow{AB} je množica $\overrightarrow{AB}=\{\overrightarrow{XY}:\overrightarrow{XY}\sim\overrightarrow{AB}\}$ (usmerjene daljice ekvivalentne daljici \overrightarrow{AB})

- ničelni vektor: $\vec{AA} = \vec{0}$
- \bullet nasprotni vektor
 vektorja \vec{AB} je $\vec{BA}~(\vec{BA}=-\vec{AB})$

Dodatna oznaka: \vec{a} , $-\vec{a}$ nasprotni vektor

 $V = \{ \vec{v} : \vec{v} \text{ vektor} \}$ - vektorski prostor.

 $O \in \mathcal{P}$; O fiksiramo

$$f: \mathcal{P} \to V$$

$$f(T) = \vec{OT}$$

fje bijekcija (vsaki točki priredi natanko en vektor). $\vec{a} = \vec{OT}$

1.1 Operacije z vektorji

Seštevanje:

$$\vec{a}, \vec{b} \in V$$

$$\vec{a} = \vec{AB}, \vec{b} = \vec{BC}$$

$$\vec{a} + \vec{b} = \vec{AC}$$

$$\vec{AB} + \vec{BC} = \vec{AC}$$

Lastnosti:¹

- (1) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ asociativnost
- (2) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ komutativnost
- $(3) \vec{a} + \vec{0} = \vec{a}$
- (4) $\vec{a} + (-\vec{a}) = \vec{0}$

Za lastnosti od (1) do (4) = (V,+) Abelova grupa.

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b})$$

Množenje s skalarjem

Skalar je realno število.

$$\vec{a}, \alpha \in \mathbb{R}$$

 $\alpha \vec{a}$ je vektor.

- ima isto smer kot \vec{a} za $\alpha > 0$
- $\bullet\,$ ima nasprotno smer kot \vec{a} za $\alpha<0$
- $|\alpha \vec{a}| = |\alpha||\vec{a}|$

¹Dokaz lastnosti (1) in (2) s skico.

$$\vec{a} = \vec{OA} \neq \vec{0}$$

$$\alpha \vec{a} = \vec{OT}, O, A, T \text{ so na isti premici}$$

S tem uvedemo koordinatni sistem na premici OA.

<u>Lastnosti:</u>

(5)
$$\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a}$$

(6)
$$(\alpha + \beta)\vec{a} = \alpha\vec{a} + \beta\vec{a}$$

(7)
$$\alpha(\vec{a}\vec{b}) = \alpha\vec{a} + \alpha\vec{b}$$

(8)
$$1\vec{a} = \vec{a}$$

V, + in množenje s skalaji je **vektorski prostor**: veljajo lastnosti od (1) do (8).

1.2 Linearna neodvisnost

$$\vec{a}, \vec{b} \in V$$

 \vec{a}, \vec{b} sta linearno odvisna kadar je: bodisi $\vec{b} = \alpha \vec{a}$ za ustrezen $\alpha \in \mathbb{R}$,

bodisi $\vec{a} = \beta \vec{b}$ za ustrezen $\beta \in \mathbb{R}$.

V nasprotnem primeru sta \vec{a} in \vec{b} linearno neodvisna.

$$\vec{a} = \vec{OA}, \vec{b} = \vec{OB}$$

- 1. \vec{OA} in \vec{OB} sta linearno odvisna $\Leftrightarrow O, A, B$ kolinearne (ližijo na isti premici).
- 2. \vec{a}, \vec{b} sta linearno neodvisna $\Leftrightarrow (\alpha \vec{a} + \beta \vec{b} = \vec{0} \Rightarrow \alpha = \beta = 0)$

Privzamemo da sta \vec{a}, \vec{b} linearno neodvisna:

$$\{T: \vec{OT} = \alpha \vec{a} + \beta \vec{b}, \alpha, \beta \in \mathbb{R}\} = \mathcal{R}$$

 $\alpha \vec{a} + \beta \vec{b}$ - linearna kombinacija \mathcal{R} - ravnina določena zO,A,B (z vektorji $\vec{a},\vec{b})$ in točko O.

$$\vec{r} = \vec{OT}, T \in \mathcal{R}$$

$$\exists \alpha, \beta \in \mathbb{R} : \vec{r} = \alpha \vec{a} + \beta \vec{b}$$

Pri tem sta α in β enolična določena skalarja.

V \mathcal{R} smo z vektorjema \vec{a}, \vec{b} vpeljali koordinatni sistem.

 $\vec{a}, \vec{b}, \vec{c} \in V$ so linearno odvisni, kadar je vsaj eden od njih linearna kombinacija drugih dveh.

 $\text{npr: } \vec{c} = \alpha \vec{a} + \beta \vec{b}$

V nasprotnem primeru so $\vec{a}, \vec{b}, \vec{c}$ linearno neodvisni.

- 1. $\vec{a}=\vec{OA}, \vec{b}=\vec{OB}, \vec{c}=\vec{OC}$ so linearno odvisni $\Leftrightarrow O,A,B,C$ koplanarne (ležijo na isti ravnini)
- 2. $\vec{a}, \vec{b}, \vec{c}$ so linearno neodvisni $\Leftrightarrow (\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Rightarrow \alpha = \beta = \gamma = 0)$