## 北海道大学工学部 神経制御工学研究室

EXI IPI

北海道大学

インターンシップ

高専生の皆さん, 北海道大学工学 部で先端研究の 体験をしてみま

研究室見学場

● 研修可能テーマや日程などの 詳細は裏面(次項)をご覧く ださい

せんか?

- 希望テーマの受け入れの可否, 日程調整など,事前に電話や メールでお問い合わせ下さい
- 本インターンシップは、当該研究室(神経制御工学)が独 自に計画・実施するものです



本インターンシップの内容に関するお問合わせ先:

〒060-0814 北海道札幌市北区北14 条西9 丁目 北海道大学工学部情報エレクトロニクス 学科 生体情報コース バイオエンジニアリング講座 神経制御工学研究室 インターンシップ担当 教授 舘野 高 Tel 011-706-6763, E-mail: tateno@ist.hokudai.ac.jp

## 2022年度 冬・2023年度春(夏) 北海道大学 工学部 神経制御工学研究室 インターンシップ テーマ・内容・対象・期間

- 期間中の交通費, 食費, 旅費, 宿泊費等の費用は, 参加者の自己負担となります
- 一部の課題は、**オンライン**で実施可能な内容があります

| 研修テーマ                                                    | 研修内容<br>の概略                                                                                                                                                     | 受入<br>対象              | 受入期間                                     |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|
| テーマ1:<br>大型計算機による経頭蓋<br>刺激の脳活動分布推定                       | 数値計算シミュレータCOMSOL multiphysics <sup>(*)</sup> を用いて、電磁気、超音波、近赤外光等の刺激による脳内の誘発電場分布を数値計算します(一部分はオンラインで実施も可能)  (*) COMSOL multiphysicsは、COMSOL Inc.が開発しているソフトです。      | 本科生・専攻<br>科生の何れも<br>可 | 1月〜3月(もし<br>くは, 8, 9月)<br>で学生の希望する<br>期間 |
| テーマ2:<br>齧歯類の脳活動の計測と<br>データ解析                            | マウスの脳波活動を多点で計測して,信<br>号解析を行います(一部の実験は大学院<br>生の高専OBと共に実施)                                                                                                        | 本科生・専攻<br>科生の何れも<br>可 | 1月~3月(もし<br>くは, 8, 9月)<br>で学生の希望する<br>期間 |
| テーマ3:<br>齧歯類の大脳皮質からの<br>多点神経活動計測実験と<br>そのデータ解析           | マウスの脳に刺入した多点電極から神経<br>活動を計測して、計測データから聴覚神<br>経細胞の応答特性を解析します。また、<br>電気的な刺激を印加した応答を解析しま<br>す(一部のデータ解析のみをオンライン<br>で実施することも可能)                                       | 本科生・専攻<br>科生の何れも<br>可 | 3月(もしくは,<br>8, 9月)で学生<br>の希望する期間         |
| テーマ4:<br>多点神経活動計測データ<br>を用いた音情報の分類器<br>の作成と未学習の音情報<br>予測 | 機械学習を用いて多点同時神経活動計測<br>データから周波数の異なる音刺激応答の<br>関する分類器(計算機モデル)を作成し<br>ます. そして, 学習データにない提示音<br>が, どの様に脳内応答を誘起するかを,<br>その分類器から予測・推定します.<br>(一部のみをオンラインで実施すること<br>も可能) | 本科生・専攻<br>科生の何れも<br>可 | 3月(もしくは,<br>8, 9月)で学生<br>の希望する期間         |

インターンシップ・研究室見学担当 教授 舘野高

Tel 011-706-6763, E-mail: tateno@ist.hokudai.ac.jp