UNIVERSITI TUNKU ABDUL RAHMAN

Department of Mathematics and Actuarial Science

CONTENTS

3	Nor	rmal Theory Inference	2
		Normal Distribution	
	3.2	Quadratic forms: $\mathbf{y^T A y}$	11
	3.3	Chi-square Distributions	15
	3.4	F Distribution	21
	3.5	Students's t -distribution	25
	3.6	Sums of squares in ANOVA tables	27
	3.7	Hypotesis Test for $E(\mathbf{y})$	41
		` '	

3 Normal Theory Inference

3.1 Normal Distribution

Definition 1.

A random variable Y with density function

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

is said to have a **normal** (*Gaussian*) **distribution** with

$$E(Y) = \mu$$
 and $V(Y) = \sigma^2$.

We will use the notation

$$Y \sim N(\mu, \sigma^2)$$

Suppose Z has a normal distribution with E(Z) = 0 and V(Z) = 1, i.e.,

$$Z \sim N(0,1),$$

then Z is said to have a $standard\ normal$ distribution.

Definition 2._

Suppose $\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix}$ is a random vector whose

elements are independently distributed standard normal random variables. For any $m \times n$ matrix A, We say that

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{A}^T \mathbf{Z}$$

has a *multivariate normal distribution* with mean vector

$$E(\mathbf{y}) = E(\boldsymbol{\mu} + \mathbf{A}^{T}\mathbf{Z})$$

$$= \boldsymbol{\mu} + \mathbf{A}^{T}E(\mathbf{Z})$$

$$= \boldsymbol{\mu} + \mathbf{A}^{T}\mathbf{0}$$

$$= \boldsymbol{\mu}$$

and variance-covariance matrix

$$V(\mathbf{y}) = \mathbf{A}^{\mathbf{T}} V(\mathbf{Z}) \mathbf{A}$$
$$= \mathbf{A}^{\mathbf{T}} \mathbf{A} \equiv \mathbf{\Sigma}$$

We will use the notation

$$\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

When Σ is positive definite, the joint density function is

$$f(\mathbf{y}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})}$$

The multivariate normal distribution has many useful properties:

Result 1. Normality is preserved under linear transformations: If

$$\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

then

$$w = \mathbf{c}^{T} \mathbf{y} \sim N(\mathbf{c}^{T} \boldsymbol{\mu}, \mathbf{c}^{T} \boldsymbol{\Sigma} \mathbf{c})$$
$$\mathbf{W} = \mathbf{c} + B \mathbf{y} \sim N(\mathbf{c} + B \boldsymbol{\mu}, B \boldsymbol{\Sigma} B^{T})$$

for any non-random \mathbf{c} and B.

Result 2.

Suppose

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} \ \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} \ \boldsymbol{\Sigma}_{22} \end{bmatrix} \right)$$

then

$$\mathbf{y}_1 \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}).$$

Note: This result applies to any subset of the elements of \mathbf{y} because you can move that subset to the top of the vector by multiplying \mathbf{y} by an appropriate matrix of zeros and ones.

Example 1. Suppose

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \sim N \left(\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 & 1 & -1 \\ 1 & 3 & -3 \\ -1 & -3 & 9 \end{bmatrix} \right)$$

Find the distribution of

- (a) y_1
- (b) y_2
- (c) y_3
- (d) $\begin{bmatrix} y_1 \\ y_3 \end{bmatrix}$

If $w_1 = y_1 - 2y_2 + y_3$ and $w_2 = 3y_1 + y_2 - 2y_3$, then find the distribution of

- (e) w_1
- (f) w_2
- $(g) \mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

Comment:

202205

If $\mathbf{y}_1 \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ and $\mathbf{y}_2 \sim N(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$, it is **not** always true that $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$ has a normal distribution.

Result 3.

If \mathbf{y}_1 and \mathbf{y}_2 are **independent** random vectors such that

$$\mathbf{y}_1 \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$
 and $\mathbf{y}_2 \sim N(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$

then

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_1 & 0 \\ 0 & \boldsymbol{\Sigma}_2 \end{bmatrix} \right)$$

Result 4.

If $\mathbf{y}^T = [\mathbf{y}_1 \cdots \mathbf{y}_k]$ is a random vector with a multivariate normal distribution, then $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_k$ are **independent** if and only if $Cov(\mathbf{y}_i, \mathbf{y}_j) = 0$ for all $i \neq j$.

Comments:

- (i) If \mathbf{y}_i is independent of \mathbf{y}_j , then $Cov(\mathbf{y}_i, \mathbf{y}_j) = 0$.
- (ii) When $\mathbf{y} = (y_1, \dots, y_n)^T$ has a multivariate normal distribution, y_i uncorrelated with y_j implies y_i is independent of y_j . This is usually not true for other distributions.

Result 5.

If

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} \sim N \left(\begin{bmatrix} \boldsymbol{\mu}_y \\ \boldsymbol{\mu}_x \end{bmatrix} \begin{bmatrix} \Sigma_{yy} & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_{xx} \end{bmatrix} \right)$$

with a positive definite covariance matrix, the **conditional distribution** of **y** given the value of **X** is a normal distribution with mean vector

$$E(\mathbf{y}|\mathbf{x}) = \boldsymbol{\mu}_y + \Sigma_{yx} \Sigma_{xx}^{-1} (\mathbf{x} - \boldsymbol{\mu}_x)$$

and positive definite covaraince matrix

$$V(\mathbf{y}|\mathbf{x}) = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$$

note that this does not depend on the value of \mathbf{x}

3.2 Quadratic forms: y^TAy

Some useful information about the distribution of quadratic forms is summarized in the following results.

Result 6.

If
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
 is a random

vector with

$$E(\mathbf{y}) = \boldsymbol{\mu}$$

and

$$V(\mathbf{y}) = \mathbf{\Sigma}$$

and **A** is an $n \times n$ non-random matrix, then

$$E(\mathbf{y}^{\mathsf{T}}\mathbf{A}\mathbf{y}) = \boldsymbol{\mu}^{T}\mathbf{A}\boldsymbol{\mu} + tr(\mathbf{A}\boldsymbol{\Sigma})$$

. .

202205

Example 2.

Consider a Gauss-Markov model with

$$E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$
 and $V(\mathbf{y}) = \sigma^2 I$.

Show that $\hat{\sigma}^2 = \frac{SSE}{n-rank(\mathbf{X})}$ is an unbiased estimator of σ^2 .

..

3.3 Chi-square Distributions

Definition 3.

Let
$$\mathbf{Z} = \begin{bmatrix} Z_1 \\ \vdots \\ Z_n \end{bmatrix} \sim N(\mathbf{0}, I)$$
, i.e., the elements

of Z are n independent standard normal random variables. The distribution of

$$W = \mathbf{Z}^T \mathbf{Z} = \sum_{i=1}^n Z_i^2$$

is called the **central chi-square distribution** with n degrees of freedom.

We will use the notation

$$W \sim \boldsymbol{\chi}_{(n)}^2$$

The density function is

$$f(w) = \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}} w^{n/2 - 1} e^{-w/2}$$

MEME16203 LINEAR MODELS

Moments:

202205

If $W \sim \chi_n^2$, then

(i)
$$E(W) = n$$

(ii)
$$V(W) = 2n$$

(iii)
$$M_W(t) = E(e^{tW}) = \frac{1}{(1-2t)^{n/2}}$$

Note: The R-codes is store in the file: chidenR.txt.

Central Chi-Square Densities

Definition 4.

Let

202205

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \sim N(\boldsymbol{\mu}, I)$$

i.e., the elements of \mathbf{y} are independent normal random variables with $y_i \sim N(\mu_i, 1)$. The distribution of the random variable

$$W = \mathbf{y}^T \mathbf{y} = \sum_{i=1}^n y_i^2$$

is called a **noncentral chi-square distribution** with n degrees of freedom and noncentrality parameter

$$\lambda = \boldsymbol{\mu}^T \boldsymbol{\mu} = \sum_{i=1}^n \mu_i^2$$

We will use the notation

$$W \sim \chi_n^2(\lambda)$$

MEME16203 LINEAR MODELS

The density function is:

$$f(w) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \frac{w^{\frac{1}{2}n+k-1}e^{-w/2}}{2^{\frac{1}{2}n+k}\Gamma(\frac{1}{2}n+k)}$$

Moments:

If $W \sim \chi_n^2(\lambda)$ then

(i)
$$E(W) = n + \lambda$$

(ii)
$$V(W) = 2n + 4\lambda$$

(iii)
$$M_W(t) = (1 - 2t)^{-\frac{1}{2}n} e^{-\lambda[1 - (1 - 2t)^{-1}]}$$

Note: The R-codes is store in the file: ncchiden R. txt.

Non Central Chi-Square Densities with ncp = 1.5

3.4 F Distribution

Definition 5.

If $W_1 \sim \chi_{n_1}^2$ and $W_2 \sim \chi_{n_2}^2$ and W_1 and W_2 are **independent**, then the distribution of

$$F = \frac{W_1/n_1}{W_2/n_2}$$

is called the **central F distribution** with n_1 and n_2 degrees of freedom.

We will use the notation

$$F \sim F_{n_1,n_2}$$

Central moments:

$$E(F) = \frac{n_2}{n_2 - 2}$$
 for $n_2 > 2$

$$V(F) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$$
 for $n_2 > 4$

Note: The R-codes is store in the file: fdenR.txt.

Densities for Central F Distributions

23

Definition 6.

If $W_1 \sim \chi_{n_1}^2(\lambda)$ and $W_2 \sim \chi_{n_2}^2$ and W_1 and W_2 are **independent**, then the distribution of

$$F = \frac{W_1/n_1}{W_2/n_2}$$

is called a **noncentral F distribution** with n_1 and n_2 degrees of freedom and noncentrality parameter λ .

We will use the notation

$$F \sim F_{n_1,n_2}(\lambda)$$

Moments:

$$E(F) = \frac{n_2(n_1 + 2\lambda)}{(n_2 - 2)n_1} \quad \text{for } n_2 > 2$$

$$V(F) = \frac{2n_2^2}{n_1^2(n_2 - 2)} \left[\frac{(n_1 + 2\lambda)^2}{(n_2 - 2)(n_2 - 4)} + \frac{n_1 + 4\lambda}{n_2 - 4} \right] \quad \text{for } n_2 > 4$$

Note: The R-codes is store in the file: fden-ncR.txt.

with (5,20) df and noncentrality parameter = 1.5

with (5,20) df and noncentrality parameter = 3

MEME16203 LINEAR MODELS

3.5 Students's t-distribution

Definition 7.

If $Z \sim N(0,1)$ and $W \sim \chi_n^2$ and Z and W are independent, then the distribution of

CHAPTER 3 NORMAL THEORY INFERENCE

$$T = \frac{Z}{\sqrt{W/n}}$$

is called a student's t-distribution with n degrees of freedom.

Its density function is

$$f(t) = \frac{\Gamma(\frac{1}{2}n + \frac{1}{2})}{\sqrt{n\pi}\Gamma(\frac{1}{2}n)} \left(1 + \frac{t^2}{n}\right)^{-\frac{1}{2}(n+1)}$$

We will use the notation

$$T \sim t_n$$

Moments:

$$E(T) = 0$$

$$V(T) = \frac{n}{n-2}$$

MEME16203 LINEAR MODELS

Definition 8.

202205

If $y \sim N(\mu, 1)$ and $W \sim \chi_n^2$ and y and W are independent, then the distribution of

$$T = \frac{Z}{W/n}$$

is called a noncentral student's t—distribution with n degrees of freedom and non-central parameter μ .

We will use the notation

$$T \sim t_n(\mu)$$

The density function is:

$$f(t) = \frac{n^{\frac{1}{2}n}}{\Gamma(\frac{1}{2}n)} \frac{e^{-\frac{1}{2}\mu^2}}{(n+t^2)^{\frac{1}{2}(n+1)}} \sum_{k=0}^{\infty} \frac{\Gamma(\frac{1}{2}n + \frac{1}{2}k + \frac{1}{2})\mu^k 2^{\frac{1}{2}k} t^k}{k!(n+t^2)^{\frac{1}{2}k}}$$

MEME16203 LINEAR MODELS

3.6 Sums of squares in ANOVA tables

Sums of squares in ANOVA tables are quadratic forms

$$\mathbf{y}^{\mathrm{T}}\mathbf{A}\mathbf{y}$$

where **A** is a non-negative definite symmetric matrix (**usually a projection matrix**).

To develop F-tests we need to identify conditions under which

- \bullet $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y}$ has a central (or noncentral) chi-square distribution
- \bullet $\mathbf{y}^{T}\mathbf{A}_{i}\mathbf{y}$ and $\mathbf{y}^{T}\mathbf{A}_{j}\mathbf{y}$ are independent

Result 7.

202205

Let **A** be an $n \times n$ symmetric matrix with rank(**A**) = k, and let

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where Σ is an $n \times n$ symmetric positive definite matrix. If

 $\mathbf{A}\mathbf{\Sigma}$ is idempotent

then

$$\mathbf{y}^{\mathrm{T}}\mathbf{A}\mathbf{y} \sim \chi_{k}^{2}\left(\boldsymbol{\mu}^{T}\mathbf{A}\boldsymbol{\mu}\right)$$

In addition, if $\mathbf{A}\boldsymbol{\mu} = \mathbf{0}$ then

$$\mathbf{y}^{\mathrm{T}}\mathbf{A}\mathbf{y} \sim \chi_k^2$$

. .

202205

MEME16203 LINEAR MODELS

MEME16203 LINEAR MODELS

Example 3.

For the Gauss-Markov model with

$$E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$
 and $V(\mathbf{y}) = \sigma^2 \mathbf{I}$

include the assumption that

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \sim N(X\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

Show that $\frac{SSE}{\sigma^2} \sim \chi_{n-k}^2$.

Example 4.

202205

Continuing Example 3, show that $\frac{1}{\sigma^2} \sum_{i=1}^n \hat{\mathbf{y}}_i^2 \sim \chi^2(\lambda)$, where λ is the non-central parameter.

The next result addresses the independence of several quadratic forms

Result 8.

Let
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

and let $\mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_p}$ be $n \times n$ symmetric matrices. If

$$\mathbf{A_i} \mathbf{\Sigma} \mathbf{A_j} = 0 \text{ for all } i \neq j$$

then

$$\mathbf{y}^{\mathrm{T}}\mathbf{A}_{1}\mathbf{y},\ \mathbf{y}^{\mathrm{T}}\mathbf{A}_{2}\mathbf{y},\ \ldots,\ \mathbf{y}^{\mathrm{T}}\mathbf{A}_{\mathrm{D}}\mathbf{y}$$

are independent random variables.

Example 5.

202205

Continuing Example 3, show that the "uncorrected" model sum of squares

$$\sum_{i=1}^n \, \hat{y}_i^2 = \mathbf{y}^{\mathrm{T}} \mathbf{P}_{\mathbf{X}} \mathbf{y}$$

and the sum of squared residuals

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \mathbf{y}^{\mathbf{T}} (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{y}$$

are independently distributed for the "normal theory" Gauss-Markov model where

$$\mathbf{y} \sim N(X\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

Example 6.

If $\mathbf{y} = (y_1, y_2, \dots, y_n)^T \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I})$. Find the distribution of $\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{\sigma^2}$.

Example 7.

202205

Suppose that **y** is $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$\boldsymbol{\mu} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}.$$

Let

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & -8 \\ -3 & 2 & -6 \\ -8 & -6 & 3 \end{bmatrix}$$

(a) Find $E(\mathbf{y}^{\mathsf{T}}\mathbf{A}\mathbf{y})$.

- (b) Does $\mathbf{y}^{\mathbf{T}} \mathbf{A} \mathbf{y}$ have a chi-square distribution?
- (c) If $\Sigma = \sigma^2 I$, does $\mathbf{y^T A y}/\sigma^2$ have a chi-square distribution?

Example 8.

202205

Consider the model $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$, where i = 1, 2, 3, j = 1, 2, 3, and μ , α_1 , α_2 , α_3 , are unknown parameters. Let $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, where σ^2 is unknown.

- (a) Verify that $\tau = 3\alpha_1 6\alpha_2 + 3\alpha_3$ is an estimable function and write down a formula for $\hat{\tau}$, the BLUE for τ .
- (b) Determine the distribution of $\frac{\hat{\tau}^2}{18\sigma^2}$ when $\tau = 0$.

(c) Determine the distribution of $S^2 = \sum_{i=1}^3 \sum_{j=1}^3 (Y_{ij} - \bar{Y}_{i.})^2$.

(d) Show that $F = \frac{c\hat{\tau}^2}{S^2}$, where c is a constant, has central F-distribution when $\tau=0$. Report c.

3.7 Hypotesis Test for E(y)

In Example 3 we showed that

$$\frac{1}{\sigma^2} \sum_{i=1}^n \hat{y}_i^2 \sim \chi_k^2 \left(\frac{\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}}{2\sigma^2} \right)$$

and

$$\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \sim \chi_{n-k}^2$$

where $k = \text{rank}(\mathbf{X})$.

By Defn 6,

$$F = \frac{\frac{1}{k\sigma^2} \sum_{i=1}^n \hat{y}_i^2}{\frac{1}{(n-k)\sigma^2} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

uncorrected model

↓ mean square

$$= \frac{\frac{1}{k} \sum_{i=1}^{n} \hat{y}_{i}^{2}}{\frac{1}{n-k} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}$$

Residual mean square

MEME16203 LINEAR MODELS

$$\sim F_{k,n-k}\left(rac{1}{2\sigma^2}oldsymbol{eta}^T\mathbf{X^TXoldsymbol{eta}}
ight)$$

This reduces to a central

F distribution with (k, n - k) d.f.

when
$$X\beta = 0$$

Use

202205

$$F = \frac{\frac{1}{k} \sum_{i=1}^{n} \hat{y}_{i}^{2}}{\frac{1}{n-k} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}$$

to test the null hypothesis

$$H_0: E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} = \mathbf{0}$$

against the alternative

$$H_A: E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} \neq \mathbf{0}$$

Comments

(i) The null hypothesis corresponds to the condition under which F has a central F distribution (the noncentrality parameter is zero).

$$\lambda = \frac{1}{2\sigma^2} (\mathbf{X}\boldsymbol{\beta})^T (\mathbf{X}\boldsymbol{\beta}) = 0$$

if and only if $X\beta = 0$.

MEME16203 LINEAR MODELS

- (ii) If $k = \text{rank}(\mathbf{X}) = \text{number of columns in } \mathbf{X}$, then $H_0 : \mathbf{X}\boldsymbol{\beta} = \mathbf{0}$ is equivalent to $H_0 : \boldsymbol{\beta} = \mathbf{0}$.
- (iii) If k = rank(X) is less than the number of columns in \mathbf{X} , then $\mathbf{X}\boldsymbol{\beta} = \mathbf{0}$ for some $\boldsymbol{\beta} \neq \mathbf{0}$ and $H_0 : \mathbf{X}\boldsymbol{\beta} = 0$ is **not** equivalent to $H_0 : \boldsymbol{\beta} = \mathbf{0}$.

Example 4 is a simple illustration of a typical

$$\sum_{i=1}^{n} y_{i}^{2} = \mathbf{y}^{T} \mathbf{y}$$

$$= \mathbf{y}^{T} [(\mathbf{I} - \mathbf{P}_{\mathbf{X}}) + \mathbf{P}_{\mathbf{X}}] \mathbf{y}$$

$$= \mathbf{y}^{T} (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{y} + \mathbf{y}^{T} \mathbf{P}_{\mathbf{X}} \mathbf{y}$$

$$\uparrow \text{call this } \mathbf{A}_{2} \quad \text{call this } \mathbf{A}_{1}$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} \hat{y}_{i}^{2}$$

$$\uparrow \text{d.f.} - \operatorname{rank}(\mathbf{A}_{2}) \quad \text{d.f.} - \operatorname{rank}(\mathbf{A}_{3})$$

More generally an uncorrected total sum of squares can be partitioned as

$$\sum_{i=1}^{n} y_i^2 = \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$= \mathbf{y}^{\mathsf{T}} \mathbf{A}_1 \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{A}_2 \mathbf{y} +$$

$$= \cdots + \mathbf{y}^{\mathsf{T}} \mathbf{A}_k \mathbf{y}$$

using orthogonal projection matrices

$$\mathbf{A_1} + \mathbf{A_2} + \cdots + \mathbf{A_k} = \mathbf{I_{n \times n}}$$

where

202205

$$rank(\mathbf{A_1}) + rank(\mathbf{A_2}) + \cdots + rank(\mathbf{A_k}) = n$$

and

$$\mathbf{A_i}\mathbf{A_j} = \mathbf{0}$$
 for any $i \neq j$.

Since we are dealing with orthogonal projection matrices we also have

$$\mathbf{A_i^T} = \mathbf{A_i}$$
 (symmetry)

$$A_i A_i = A_i$$
 (idempodent matrices)

Result 9.

Let $\mathbf{A_1}, \mathbf{A_2}, \cdots, \mathbf{A_k}$ be $n \times n$ symmetric matrices such that

$$\mathbf{A}_1 + \mathbf{A}_2 + \dots + \mathbf{A}_k = \mathbf{I}.$$

Then the following statments are equivalent

- (i) $\mathbf{A_i}\mathbf{A_j} = \mathbf{0}$ for any $i \neq j$
- (ii) $\mathbf{A_i}\mathbf{A_i} = \mathbf{A_i}$ for all $i = 1, \dots, k$
- (iii) $rank(\mathbf{A_1}) + \cdots + rank(\mathbf{A_k}) = n$

. .

Result 10. (Cochran's Theorem)

Let
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \sim N(\boldsymbol{\mu}, \sigma^2 I)$$

and let A_1, A_2, \dots, A_k be $n \times n$ symmetric matrices with

$$\mathbf{I} = \mathbf{A}_1 + \mathbf{A}_2 + \dots + \mathbf{A}_k$$

and

202205

$$n = r_1 + r_2 + \dots + r_k$$

where $r_i = \text{rank}(\mathbf{A_i})$. Then, for i = 1, 2, ..., k

$$\frac{1}{\sigma^2} \mathbf{y}^{\mathrm{T}} \mathbf{A}_{i} \mathbf{y} \sim \chi_{r_i}^2 \left(\frac{1}{\sigma^2} \boldsymbol{\mu}^{\mathrm{T}} \mathbf{A}_{i} \boldsymbol{\mu} \right)$$

and

$$\mathbf{y}^{\mathrm{T}}\mathbf{A}_{1}\mathbf{y},\ \mathbf{y}^{\mathrm{T}}\mathbf{A}_{2}\mathbf{y},\ \cdots,\ \mathbf{y}^{\mathrm{T}}\mathbf{A}_{k}\mathbf{y}$$

are distributed independently.

Example 9. Suppose that **y** is $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let

$$\mu = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \mathbf{A} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$

(a) What is the distribution of $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y}/\sigma^{2}$?

(b) Are $\mathbf{y}^{T}\mathbf{A}\mathbf{y}$ and $\mathbf{B}\mathbf{y}$ independent?

202205

(c) Are $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y}$ and $y_1 + y_2 + y_3$ independent?

Example 10.

Consider the model

$$y_i = \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

where $\epsilon_i \sim N(0, \sigma^2)$ and the data as follow:

y	y_1	y_2	y_3	y_4	y_5	y_6
X_1	0	15	30	0	15	30
X_2	-1	-1	-1	1	1	1

(a) Let SSE denote the sum of squared residuals for this model, what is the distribution of SSE?

- (b) Let \mathbf{b} be a solution to the normal equations. What are the properties of \mathbf{b} ?
- (c) Show that

$$F = \frac{2(y_4 + y_5 + y_6 - y_1 - y_2 - y_3)^2}{3SSE}$$

has an F-distribution. Report degrees of freedom.

- (d) With respect to $\boldsymbol{\beta} = (\beta_1, \beta_2)^T$, describe the null hypothesis that can be tested with the F-test in Part (c). What is the alternative hypothesis?
- (e) Does

$$F = \frac{3\left(\sum a_i y_i\right)^2}{\left(\sum a_i^2\right) SSE} = \frac{2(\mathbf{a}^T \mathbf{y})^2}{(\mathbf{a}^T \mathbf{a}) SSE}$$

have an F-distribution for any vector of constants $\mathbf{a} = (a_1, a_2, a_3, a_4, a_5, a_6)^T$?

Example 11. Suppose $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. Define

$$\mathbf{X} = \begin{bmatrix} 1 & X_1 & X_1^2 \\ 1 & X_2 & X_2^2 \\ \vdots & \vdots & \\ 1 & X_{40} & X_{40}^2 \end{bmatrix} \text{ and } \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \text{ and } \mathbf{P_x} = \mathbf{X}(\mathbf{X^TX})^{-}\mathbf{X^T}$$

and $\mathbf{P_1} = \mathbf{1}(\mathbf{1^T1})^{-1}\mathbf{1^T}$. Find the distribution of $\frac{1}{\sigma^2}\mathbf{Y^T}(\mathbf{P_X} - \mathbf{P_1})\mathbf{Y}$ and $\frac{1}{\sigma^2}\mathbf{Y^T}(\mathbf{I} - \mathbf{P_X})\mathbf{Y}$. Then, derive the distribution of $V = \frac{c\mathbf{Y^T}(\mathbf{P_X} - \mathbf{P_1})\mathbf{Y}}{\mathbf{Y^T}(\mathbf{I} - \mathbf{P_X})\mathbf{Y}}$. Report c, degrees of freedom and a formula for the noncentrality parameter.