Duality in Coherent Algebras

Mark Farrell

June 2018

Coherent Algebras

Definition

A coherent algebra W of order n is a subspace of $\mathsf{Mat}_{n\times n}(\mathbb{C})$ such that:

- MN and $M \circ N \in \overline{W}$ for all $M, N \in \overline{W}$.
- \blacksquare $M^T \in \mathcal{W}$ for all $M \in \mathcal{W}$.
- \blacksquare $I, J \in \mathcal{W}$.

Primitive Matrices

Definition

An element $M \in \mathcal{W}$ of a coherent algebra \mathcal{W} is said to be primitive if $M^2 = M$ and $MN \in \text{span}\{M\}$ for all $N \in \mathcal{W}$.

Schur-Primitive Matrices

Definition

Dually, an element $M \in \mathcal{W}$ of a coherent algebra \mathcal{W} is said to be Schur-primitive if $M^{\circ 2} = M$ and $M \circ N \in \text{span}\{M\}$ for all $N \in \mathcal{W}$.

Dual Bases

Theorem

Every commutative coherent algebra is spanned by its set of primitive matrices relative to both Schur-product and ordinary matrix multiplication.

Suppose that \mathcal{W} is a commutative coherent algebra of order n.

Let $\Gamma(W)$ denote the set of Schur-primitive matrices in W.

Dually, let $\Lambda(W)$ denote the set of primitive matrices in W.

Suppose that $\{A_i : 1 \leq i \leq d\}$ and $\{E_i : 1 \leq i \leq d\}$ are orderings on $\Gamma(W)$ and $\Lambda(W)$, letting $d := \dim(W)$.

Character Tables and Dual Character Tables

The matrix $P \in \operatorname{Mat}_{d \times d}(\mathbb{C})$ such that $A_i = \sum_{j=1}^d P_{i,j} E_j$ for all $1 \leq i \leq d$ is said to be the character table of \mathcal{W} (under these orderings).

Character Tables and Dual Character Tables

The matrix $P \in \operatorname{Mat}_{d \times d}(\mathbb{C})$ such that $A_i = \sum_{j=1}^d P_{i,j} E_j$ for all $1 \le i \le d$ is said to be the character table of \mathcal{W} (under these orderings).

Dually, the matrix $Q \in \operatorname{Mat}_{d \times d}(\mathbb{C})$ such that $E_i = \sum_{j=1}^d \left(\frac{1}{n}Q_{i,j}\right)A_j$ for all $1 \leq i \leq d$ is said to be the dual character table of \mathcal{W} (under these orderings).

Character Tables and Dual Character Tables

The matrix $P \in \operatorname{Mat}_{d \times d}(\mathbb{C})$ such that $A_i = \sum_{j=1}^d P_{i,j} E_j$ for all $1 \le i \le d$ is said to be the character table of \mathcal{W} (under these orderings).

Dually, the matrix $Q \in \operatorname{Mat}_{d \times d}(\mathbb{C})$ such that $E_i = \sum_{j=1}^d \left(\frac{1}{n}Q_{i,j}\right)A_j$ for all $1 \leq i \leq d$ is said to be the dual character table of \mathcal{W} (under these orderings).

We have that $P^{-1} = \frac{1}{n}Q$ and hence PQ = nI.

Assume that ${\mathcal W}$ is symmetric.

Assume that ${\cal W}$ is symmetric.

Define the trace inner product $\langle \cdot, \cdot \rangle$ on $\mathsf{Mat}_{d \times d}(\mathbb{C})$:

$$\langle\cdot,\cdot
angle:\mathsf{Mat}_{d imes d}(\mathbb{C}) imes\mathsf{Mat}_{d imes d}(\mathbb{C}) o\mathbb{C}$$

$$\langle A,B \rangle := \operatorname{tr}(B^*A) = \operatorname{sum}(\overline{B} \circ A)$$

Assume that ${\cal W}$ is symmetric.

Define the trace inner product $\langle \cdot, \cdot \rangle$ on $\mathsf{Mat}_{d \times d}(\mathbb{C})$:

$$\langle \cdot, \cdot
angle : \mathsf{Mat}_{d imes d}(\mathbb{C}) imes \mathsf{Mat}_{d imes d}(\mathbb{C}) o \mathbb{C}$$

$$\langle A, B \rangle := \operatorname{tr}(B^*A) = \operatorname{sum}(\overline{B} \circ A)$$

Let v_i denote the valency of A_i and m_i denote the rank of E_i for all $1 \le i \le d$.

Assume that W is symmetric.

Define the trace inner product $\langle \cdot, \cdot \rangle$ on $\mathsf{Mat}_{d \times d}(\mathbb{C})$:

$$\langle \cdot, \cdot
angle : \mathsf{Mat}_{d imes d}(\mathbb{C}) imes \mathsf{Mat}_{d imes d}(\mathbb{C}) o \mathbb{C}$$

$$\langle A,B \rangle := \operatorname{tr}(B^*A) = \operatorname{sum}(\overline{B} \circ A)$$

Let v_i denote the valency of A_i and m_i denote the rank of E_i for all $1 \leq i \leq d$.

$$\implies v_j Q_{i,j} = \langle E_i, A_j \rangle = m_i P_{j,i} \text{ for all } 1 \leq i, j \leq d.$$

Assume that ${\mathcal W}$ is symmetric.

Define the trace inner product $\langle \cdot, \cdot \rangle$ on $\mathsf{Mat}_{d \times d}(\mathbb{C})$:

$$\langle \cdot, \cdot
angle : \mathsf{Mat}_{d imes d}(\mathbb{C}) imes \mathsf{Mat}_{d imes d}(\mathbb{C}) o \mathbb{C}$$

$$\langle A,B \rangle := \operatorname{tr}(B^*A) = \operatorname{sum}(\overline{B} \circ A)$$

Let v_i denote the valency of A_i and m_i denote the rank of E_i for all $1 \leq i \leq d$.

$$\implies v_j Q_{i,j} = \langle E_i, A_j \rangle = m_i P_{j,i} \text{ for all } 1 \leq i,j \leq d.$$

Hence $Q = R \circ P^T$ where $R \in \mathsf{Mat}_{d \times d}(\mathbb{C})$ and $R_{i,j} := \frac{m_i}{v_j}$ for all $1 \leq i, j \leq d$.

Intersection Numbers and Dual Intersection Numbers

There is a set of numbers $\{p_{i,j}(k): 1 \leq i, j, k \leq d\}$ such that $A_iA_j = \sum_{k=1}^d p_{i,j}(k)A_k$ for all $1 \leq i, j \leq d$.

These are said to be the intersection numbers of W.

Intersection Numbers and Dual Intersection Numbers

Dually, there is a set of numbers $\{q_{i,j}(k): 1 \leq i, j, k \leq d\}$ such that $E_i \circ E_j = \sum\limits_{k=1}^d \left(\frac{1}{n} q_{i,j}(k)\right) E_k$ for all $1 \leq i, j \leq d$.

These are said to be the dual intersection numbers of \mathcal{W} (or Krein numbers of \mathcal{W}).

Intersection Numbers and Dual Intersection Numbers

The intersection numbers of \mathcal{W} are non-negative integers.

The dual intersection numbers of ${\cal W}$ are non-negative real numbers.

Duality Mappings

Definition

A duality mapping between (commutative) coherent algebras W and X of order n is a linear isomorphism $T: W \to X$ such that:

- $T(MN) = T(M) \circ T(N)$ for all $M, N \in \mathcal{W}$.
- $T(M \circ N) = \frac{1}{n}T(M)T(N)$ for all $M, N \in \mathcal{W}$.

Dual Coherent Algebras

There is a duality mapping between coherent algebras \mathcal{X} and \mathcal{Y} of dimension d if and only if:

1 There is a character table P of \mathcal{X} and dual character table Q of \mathcal{Y} such that $\overline{P} = Q$.

Dual Coherent Algebras

There is a duality mapping between coherent algebras \mathcal{X} and \mathcal{Y} of dimension d if and only if:

- **1** There is a character table P of \mathcal{X} and dual character table Q of \mathcal{Y} such that $\overline{P} = Q$.
- $p_{i,j}(k) = q_{i,j}(k)$ for all $1 \le i, j, k \le d$,

where $\{p_{i,j}(k): 1 \leq i,j,k \leq d\}$ are the intersection numbers of \mathcal{X}

and $\{q_{i,j}(k): 1 \leq i, j, k \leq d\}$ are the dual intersection numbers of \mathcal{Y} .

A (commutative) coherent algebra \mathcal{W} is said to be metric if $\mathcal{W} = \operatorname{span}\{I, A, A^2, \cdots\}$ for some Schur-primitive matrix $A \in \mathcal{W}$.

A (commutative) coherent algebra \mathcal{W} is said to be metric if $\mathcal{W} = \operatorname{span}\{I, A, A^2, \cdots\}$ for some Schur-primitive matrix $A \in \mathcal{W}$.

Dually, a (commutative) coherent algebra \mathcal{W} is said to be cometric if $\mathcal{W} = \operatorname{span}\{J, E, E^{\circ 2}, \cdots\}$ for some primitive matrix $E \in \mathcal{W}$.

A (commutative) coherent algebra \mathcal{W} is said to be metric if $\mathcal{W} = \operatorname{span}\{I, A, A^2, \dots\}$ for some Schur-primitive matrix $A \in \mathcal{W}$.

Dually, a (commutative) coherent algebra \mathcal{W} is said to be cometric if $\mathcal{W} = \operatorname{span}\{J, E, E^{\circ 2}, \cdots\}$ for some primitive matrix $E \in \mathcal{W}$.

If there is a duality mapping on a coherent algebra $\mathcal W$, then $\mathcal W$ is metric if and only if it is cometric.

Coherent algebras that are both metric and symmetric can be identified with the adjacency algebras of distance-regular graphs.

Coherent algebras that are both metric and symmetric can be identified with the adjacency algebras of distance-regular graphs.

The eigenvalue multiplicities of a distance-regular graph are the valencies of its distance-graphs if there is a duality mapping on its adjacency algebra.

Self-Dual Coherent Algebras

Definition

A coherent algebra $\mathcal W$ of order n is said to be self-dual if there is a duality mapping $\mathcal T:\mathcal W\to\mathcal W$ on $\mathcal W$ such that:

- $T^{-1}(M) = \frac{1}{n}T(M) \text{ for all } M \in \mathcal{W}.$
- $T(\lambda M) = \overline{\lambda} \ T(M)$ for all $\lambda \in \mathbb{C}$ and $M \in \mathcal{W}$.

Self-Dual Coherent Algebras

A coherent algebra \mathcal{W} is self-dual if and only if there is a character table P for \mathcal{W} with dual character table \overline{P} .

Strongly-Regular Graphs

Suppose that G is a (connected) strongly-regular graph of order n and valency k.

$$\implies P := \begin{pmatrix} 1 & 1 & 1 \\ k & \lambda & \mu \\ n-1-k & -1-\lambda & -1-\mu \end{pmatrix}$$

is a character table for \mathcal{A} for some $\lambda, \mu \in \mathbb{R}$

and
$$Q := \begin{pmatrix} 1 & 1 & 1 \\ j & \left(\frac{j}{k}\right)\lambda & \left(\frac{j}{n-1-k}\right)(-1-\lambda) \\ n-1-j & \left(\frac{n-1-j}{k}\right)\mu & \left(\frac{n-1-j}{n-1-k}\right)(-1-\mu) \end{pmatrix}$$

is the dual character table of A relative to P for some $j \in \mathbb{N}$.

Self-Dual Strongly-Regular Graphs

Theorem

Suppose that G is a strongly-regular graph of order n and valency k. Then G is self-dual if and only if:

$$(\lambda - \mu)^2 = n$$

with $\{k, \lambda, \mu\}$ the distinct eigenvalues of G.

Self-Dual Strongly-Regular Graphs

Theorem

A strongly-regular graph G is self-dual if and only if G is either:

- 1 A conference graph.
- 2 An SRG $(m^2, (m-1)\gamma, (\gamma-1)(\gamma-2) + (m-2), \gamma(\gamma-1))$ for some $m, \gamma \in \mathbb{N}$.

Self-Dual Strongly-Regular Graphs

Theorem

A strongly-regular graph G is self-dual if and only if the multiplicities of its eigenvalues are the valencies of G and \overline{G} .

Self-Dual Distance-Transitive Graphs

Example

The Hamming graphs are self-dual.

To be continued ...