Estatística Básica II

PROBABILIDADE

TUANY CASTRO

Fenômeno aleatório

· Situações ou acontecimentos cujos resultados não podem ser previstos com certeza.

Exemplos:

- Resultado do lançamento de um dado;
- Condições climáticas do próximo domingo;
- Taxa de inflação do próximo mês;
- Resultado de um exame de sangue;
- Tempo de espera num ponto de ônibus.

Exemplo

Vamos lançar um dado honesto duas vezes. Qual a probabilidade de observarmos dois números pares?

Total de resultados possíveis: 6 * 6 = 36

Total de resultados com dois números pares: 3 * 3 = 9

Probabilidade de observamos dois números pares: $\frac{9}{36}$

Modelo probabilístico

Todo fenômeno ou experimento aleatório tem seu modelo probabilístico especificado quando estabelecemos:

 \square O **espaço amostral**: conjunto de todos os resultados possíveis, representado por Ω (ômega)

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), \dots (6,6)\}$$

 $n\{\Omega\} = 36$

 \square Uma **probabilidade**: P(A) é a probabilidade de ocorrer um evento A de Ω (A é um evento de Ω)

$$A = \{(2,2), (2,4), (2,6), (4,2), \dots, (6,6)\}$$
$$P(A) = \frac{9}{36}$$

Como atribuir probabilidade?

A atribuição de probabilidades a eventos aleatórios pode ocorrer de duas maneiras básicas:

- Baseando-se em características teóricas da realização do evento. **Exemplo:** probabilidade $\frac{1}{6}$ de observarmos cada face no lançamento de um dado honesto.
- Baseando-se em frequências de ocorrências. **Exemplo:** Se, em uma amostra de 30 funcionários de uma empresa, observo 7 fumantes, posso afirmar que a probabilidade de funcionário fumante nessa empresa é $\frac{7}{30}$.

1) Lançamos uma moeda duas vezes. Qual a probabilidade de observarmos duas faces iguais? (Sugestão: denote C para indicar cara e R para indicar coroa).

$$\Omega = \{CC, CR, RC, RR\}, \quad n(\Omega) = 2 * 2 = 4$$

$$A = \{CC, RR\}, \quad n(A) = 1 * 1 + 1 * 1 = 2$$
 $P(A) = \frac{2}{4} = \frac{1}{2}$

2) Uma fábrica produz peças de carros que podem ser classificadas como boas (B) ou defeituosas (D). Se tomarmos uma amostra de três peças, qual a probabilidade de observamos duas peças defeituosas?

$$\Omega = \{BBB, BBD, BDB, ..., DDD\}, \quad n(\Omega) = 2 * 2 * 2 * 2 = 8$$

$$A = \{BDD, DBD, DDB\}, \quad n(A) = \frac{3!}{2!} = 3$$

$$P(A) = \frac{3}{8}$$

3) Considere abaixo os dados referentes aos alunos matriculados em uma universidade em dado ano. Qual a probabilidade de observamos um estudante de Marketing (M)?

Curso	Homens	Mulheres	Total
Administração (A)	70	40	110
Engenharia (E)	20	10	30
Direito (D)	10	20	30
Marketing (M)	10	20	30
Total	110	90	(200)

$$P(M) = \frac{30}{200} = \frac{3}{20}$$

Propriedades da Probabilidade

☐ É um número entre 0 e 1 para qualquer evento A:

$$0 \le P(A) \le 1$$

 \square Ω é o conjunto de todos os resultados possíveis e \emptyset é o conjunto vazio. Assim:

$$P(\Omega) = 1$$

$$P(\emptyset) = 0$$

□ A união de dois eventos, A e B, é indicada por A ∪ B, que é a ocorrência de pelo menos um dos eventos. Se A e B são eventos disjuntos, ou seja, não há elementos de A em B ou de B em A, temos que:

$$P(A \cup B) = P(A) + P(B)$$

Exemplo

Lançamos um dado honesto duas vezes. Qual a probabilidade de observarmos duas faces pares ou o número 3 pelo menos uma vez?

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), \dots (6,6)\}, n\{\Omega\} = 36$$

$$A = \{(2,2), (2,4), \dots (6,6)\}, n(A) = 3 * 3 = 9$$

$$B = \{(1,3), (2,3), (3,3), \dots, (6,3)\}, n(B) = 12$$

$$P(A \cup B) = P(A) + P(B) = \frac{21}{36} = \frac{7}{12}$$

Propriedades da Probabilidade

 \square A intersecção de dois eventos, A e B, é indicada por $A \cap B$ e indica os elementos que estão em A e também estão em B.

Exemplo: Lançamos um dado honesto duas vezes. Qual a probabilidade de observarmos duas faces pares e o número 4 pelo menos uma vez?

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), \dots (6,6)\}, n\{\Omega\} = 36$$

$$A = \{(2,2), (2,4), \dots (6,6)\}, n(A) = 9$$

$$B = \{(1,4), (2,4), (4,4), \dots, (6,4)\}, n(B) = 12$$

$$A \cap B = \{(2,4), (4,4), (6,4)\}, n(A \cap B) = 3$$

$$P(A \cap B) = \frac{3}{36} = \frac{1}{12}$$

4) Considere a tabela abaixo. Qual a probabilidade, nessa escola, de observarmos um estudante de Direito ou de Administração?

Curso	Homens	Mulheres	Total
Administração (A)	70	40	110
Engenharia (E)	20	10	30
Direito (D)	10	20	30
Marketing (M)	10	20	30
Total	110	90	200

$$n{\Omega} = 200$$

 $n(D) = 30$
 $n(A) = 110$

$$P(D \cup A) = P(D) + P(A)$$

$$P(D \cup A) = \frac{30}{200} + \frac{110}{200} = \frac{114}{200} = \frac{57}{100} = 57\%$$

5) Considere a tabela abaixo. Qual a probabilidade, nessa escola, de observarmos uma mulher estudante de Administração?

Curso	Homens	Mulheres	Total
Administração (A)	70	40	110
Engenharia (E)	20	10	30
Direito (D)	10	20	30
Marketing (M)	10	20	30
Total	110	90	200

Seja L o conjunto de estudantes mulheres em Ω

$$n\{\Omega\} = 200$$
$$n(L \cap A) = 40$$

$$P(M \cap A) = \frac{40}{200} = \frac{20}{100} = 20\%$$

Regra de adição de probabilidades

Sejam A e B eventos de Ω . Então:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exemplo: Considerando a tabela abaixo, qual a probabilidade de um estudante observado ao acaso ser Homem ou estudante de Marketing?

Curso	Homens	Mulheres	Total
Administração (A)	70	40	110
Engenharia (E)	20	10	30
Direito (D)	10	20	30
Marketing (M)	10	20	30
Total	110	90	200

$$P(H) = \frac{110}{200}$$

$$P(M) = \frac{30}{200}$$

$$P(H \cap M) = \frac{10}{200}$$

$$P(H \cup M) = \frac{110}{200} + \frac{30}{200} - \frac{10}{200} = \frac{130}{200}$$

6) Uma universidade tem 10 mil alunos, dos quais 4 mil são considerados esportistas. Temos, ainda, que 700 são da biologia e 200 são esportistas e da biologia. Um aluno é escolhido ao acaso, qual a probabilidade dele ser esportista ou aluno da biologia?

Suponha E o conjunto dos alunos esportistas e B o conjuntos dos alunos da biologia.

$$P(E) = \frac{4.000}{10.000}$$

$$P(B) = \frac{700}{10.000}$$

$$P(E \cap B) = \frac{200}{10.000}$$

$$P(E \cup B) = \frac{4.000}{10.000} + \frac{700}{10.000} - \frac{200}{10.000} = \frac{4.500}{10.000} = 45\%$$

Eventos complementares

Indicamos por A^c o complementar de um evento qualquer A e temos que:

$$P(A) + P(A^c) = 1$$
, pois $A \cup A^c = \Omega$

Lei de Morgan: $(A \cup B)^c = A^c \cap B^c$ e $(A \cap B)^c = A^c \cup B^c$

Exemplo: Uma universidade tem 10 mil alunos, dos quais 4 mil são considerados esportistas. Temos, ainda, que 700 são da biologia e 200 são esportistas e da biologia. Um aluno é escolhido ao acaso, qual a probabilidade dele não ser esportista?

$$P(E^c) = 1 - P(E) = 1 - \frac{4.000}{10.000} = \frac{6.000}{10.000} = 60\%$$

Probabilidade Condicional

Exemplo: Considerando a tabela abaixo, qual a probabilidade de um homem observado ao acaso ser estudante de Engenharia?

Curso	Homens	Mulheres	Total
Administração (A)	70	40	110
Engenharia (E)	20	10	30
Direito (D)	10	20	30
Marketing (M)	10	20	30
Total	110	90	200

$$\frac{20}{110} = 18\% = P(E|H)$$

Probabilidade Condicional

Em muitas situações práticas, o fenômeno aleatório pode ser separado em etapas e a informação do que ocorreu em determinada etapa pode influenciar nas probabilidades de ocorrências de outras etapas.

Dados dois eventos A e B, a probabilidade condicional de A dado que B ocorreu é representada por P(A|B):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, $com P(B) > 0$

Exemplo:

$$P(E|H) = \frac{P(E \cap H)}{P(H)} = \frac{20/200}{110/200} = \frac{20}{110} = 18\%$$

- **7)** Uma urna contém duas bolas brancas (B) e três vermelhas (V). Suponha que duas bolas são sorteadas ao acaso, sem reposição. Isso significa que escolhemos a primeira bola, verificamos sua cor e não devolvemos à urna; misturamos as bolas restantes e retiramos a segunda. Qual a probabilidade da segunda bola ser branca dado que a primeira foi vermelha?
- 8) Em uma classe, a distribuição das notas finais teve a seguinte distribuição: 4 do sexo masculino e 6 do feminino foram reprovados, 8 do sexo masculino e 14 do feminino foram aprovados. Para um aluno sorteado dessa classe, denote por M se o aluno escolhido for do sexo masculino e por A se o aluno for aprovado. Qual a probabilidade do aluno ser aprovado dado que é do sexo masculino?

Regra do produto de probabilidades

Sejam A e B eventos de Ω . Então:

$$P(A \cap B) = P(A|B)P(B)$$
, com $P(B) > 0$

Exemplo: Uma urna contém duas bolas brancas (B) e três vermelhas (V). Suponha que duas bolas são sorteadas ao acaso, sem reposição. Isso significa que escolhemos a primeira bola, verificamos sua cor e não devolvemos à urna; misturamos as bolas restantes e retiramos a segunda. Qual a probabilidade de observamos bola vermelha na primeira retirada e branca na segunda?

$$P(V_1 \cap B_2) = P(B_2|V_1)P(V_1) = \frac{2}{4} * \frac{3}{5} = \frac{3}{10} = 30\%$$

Independência

Dois eventos A e B são independentes se a informação da ocorrência ou não de B não altera a probabilidade da ocorrência de A. Isto é:

$$P(A|B) = P(A)$$
, $com P(B) > 0$

ou ainda a seguinte forma equivalente:

$$P(A \cap B) = P(A)P(B)$$

- **9)** Uma urna contém duas bolas brancas (B) e três vermelhas (V). Suponha que duas bolas são sorteadas ao acaso, com reposição. Isso significa que escolhemos a primeira bola, verificamos sua cor e a devolvemos à urna; misturamos as bolas e retiramos a segunda. Qual a probabilidade da segunda bola ser branca dado que a primeira foi branca?
- **10)** Um sistema eletrônico de dois componentes (A e B) funciona quando os dois componentes funcionam simultaneamente. Supondo que esses dois componentes funcionem de maneira independente com probabilidades 1/2 para o primeiro e 2/3 para o segundo, qual a probabilidade do sistema funcionar?

