# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLIPPEDIMAGE= JP405228993A

PAT-NO: JP405228993A

DOCUMENT-IDENTIFIER: JP 05228993 A

TITLE: AIRING DEVICE

PUBN-DATE: September 7, 1993

INVENTOR-INFORMATION:

NAME

TAKEDA, HARUNORI YOSHII, NAOHARU

ASSIGNEE-INFORMATION:

NAME

COUNTRY ASAHI CHEM IND CO LTD N/A

APPL-NO: JP04031871

APPL-DATE: February 19, 1992

INT-CL (IPC): B29C055/28; B29C035/16 ; B29C047/20

US-CL-CURRENT: 425/326.1

#### ABSTRACT:

PURPOSE: To mold at a high speed and stably by providing an air port oriented horizontally with respect to the central line of a device and an air port oriented within a specific angle range as an airing air port for the use of inflation molding.

CONSTITUTION: An upper lip 10, a middle lip 11, and a lower lip 12, are attached to an airing main body 13. A cooling air 4 coming in from a cooling air inlet 1 becomes nearly uniform speed in the annular direction at a partition plate 2 and is distributed to blowoff ports 7 and 8 at the middle lip 11. For the angle of the port 8, an angle α of

O° through 90° both inclusive with respect to the central line A is necessary. On the other hand, the port 7 is oriented to the rectangular direction with respect to the central line A, that is, an angle γ is made to be within O± 10°.

A melted resin receives the cooling air 4 nearly from the vertical direction and is cooled rapidly, so that stability of a valve will be improved. Also, as the cooling air 4 is blown off from the 2 parts, the heated air touches the valve surface a little, so that larger cooling effect can be obtained.

COPYRIGHT: (C) 1993, JPO& Japio

### (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

#### 特開平5-228993

(43)公開日 平成5年(1993)9月7日

| (51)Int.Cl. <sup>5</sup> |       | 識別記号 | 庁内整理番号  | FΙ | 技術表示箇所 |
|--------------------------|-------|------|---------|----|--------|
| B 2 9 C                  | 55/28 |      | 7258-4F |    |        |
|                          | 35/16 |      | 9156-4F |    |        |
|                          | 47/20 |      | 7717-4F |    |        |
| # B 2 9 L                | 7: 00 |      | 4F      |    |        |

審査請求 未請求 請求項の数1(全 5 頁)

|          |                 | <u> </u> |                      |
|----------|-----------------|----------|----------------------|
| (21)出願番号 | 特願平4-31871      | (71)出願人  | 000000033            |
|          |                 |          | 旭化成工業株式会社            |
| (22)出顧日  | 平成4年(1992)2月19日 |          | 大阪府大阪市北区堂島浜1丁目2番6号   |
|          |                 | (72)発明者  | 武田 晴典                |
|          |                 |          | 岡山県倉敷市潮通3丁目13番1 旭化成工 |
|          |                 |          | 業株式会社内               |
|          |                 | (72)発明者  | 吉井 直治                |
|          |                 |          | 岡山県倉敷市潮通3丁目13番1 旭化成工 |
|          |                 |          | 業株式会社内               |
|          |                 |          |                      |

#### (54)【発明の名称】 エアリング装置

#### (57)【要約】

【目的】 押出成形、例えばインフレーション成形方法 により熱可塑性樹脂の管状フィルムを高速で製造する際 に、ダイより押出された樹脂を効率よく冷却することの できる装置を提供する。

【構成】 二箇所に設けられた空気の吹出口の一方の吹 出口7は装置の中心線(A)に対し垂直に向けられ、他 方の吹出口8は同じ中心線(A)に対して0°以上90 \*以下の角度をもって向けられているエアリング装置。



#### 【特許請求の範囲】

. ,

【請求項1】 二箇所に設けられた空気の吹出口の一方 の吹出口7は装置の中心線(A)に対し垂直に向けら れ、他方の吹出口8は同じ中心線(A)に対して0°以 上90°以下の角度をもって向けられていることを特徴 とするエアリング装置。

#### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は管状樹脂の製造装置の 内、冷却装置に関するものである。さらに詳しく説明す 10 ると本発明は押出成形、例えばインフレーション成形方 法により熱可塑性樹脂の管状フィルムを高速で製造する 際に、ダイより押出された樹脂を効率よく冷却するエア リング装置を提供するものである。

#### [0002]

【従来の技術】図6は従来のエアリング装置機構及びそ の作用を示す説明図である。図6において冷却風は冷却 風入口1よりエアリング装置の中に入り仕切板2により 環状方向に対し整流作用を受け環状吹出口3よりエアリ ング装置の中心線(A)に向けて環状方向に対しほぼ均 20 一に冷却風4が吹出される。

【0003】一方、特公平1-54182号公報には仕 切板はないが吹出口を二箇所に設けたエアリング装置が 開示されている。

#### [0004]

【発明が解決しようとする課題】図6に示すような従来 方法では、インフレーション成形によるフィルムの製造 速度を速めるためには、エアリング装置から吹出される 冷却風の風速を速めて冷却効果を増加させる事が必要で ある。しかし極めて速い風速で冷却風を一箇所から吹出 30 すためバブルの一部5の場所で極端な溶融樹脂の変形が おこり、このことがバブル6の安定性を悪化させ高速で のフィルムの製造を困難とさせる原因となっていた。特 公平1-54182号公報に開示されている方法におい ても高速でフィルムを製造する場合速度によってはバブ ルの安定性が悪くなる場合があった。

#### [0005]

【課題を解決するための手段】本発明に係るエアリング 装置は上記の課題を解決することを目的にしており、二 箇所に設けられた空気の吹出口の一方の吹出口7は装置 40 の中心線(A)に対し垂直に向けられ、他方の吹出口8 は同じ中心線(A)に対して0°以上90°以下の角度 をもって向けられていることを特徴としている。

#### [0006]

【作用】従来方法では溶融樹脂との熱交換を受けて熱せ られた冷却風9がいつまでもバブル6の表面を進行する ので熱交換率が徐々に悪くなり、必要な冷却効果が得ら れなかった。このため冷却効果を上げるためにはバブル 6に強風を吹きつけねばならず、バブルの一部5が変形 し不安定となり、正常な製品が得にくいと云う欠点があ 50 【0012】吹出口8の通路に整流板を設けてもよい。

った。

【0007】一方、本発明のエアリング装置は図1に示 すように二箇所の吹出口から冷却風4を吹出す構造とな っているため、冷却風が別々の場所に向いて進行する。 そのため熱せられた空気のバブル6表面での接触が少な く、より大きな冷却効果が得られ、高速でフィルムの製 造を行う場合でもバブル6が安定し正常な製品を得るこ とができるようになる。したがって、従来方法にみられ たようなバブルの一部の変形が少なく、高速でフィルム を製造する場合においてもバブル6の安定性が非常に良 好である。

2

【0008】この発明では、一方の吹出口7は冷却風を 溶融樹脂に向けてほぼ垂直に向けて吹出す構造となって いるため、その部分で溶融樹脂は急冷され溶融状態の樹 脂粘度が下がってバブル6の安定性が良くなる。しか も、もう一方の吹出口8から吹出す冷却風の風速をより 高めることが可能となり、冷却効果を飛躍的に高めるこ とができるようになった。

#### [0009]

【実施例】本発明の実施例を図1と図2に基づいて説明 する。図1は本発明の一例を示すエアリング装置の一部 切欠き正面図であり、図2は平面図である。図1におい て冷却風入口1よりエアリング装置に入った冷却風4 は、仕切板2で整流を受け環状方向においてほぼ均一な **風速となる。このしくみは従来品と同様である。さらに** 冷却風はエアリング装置リップ部を経て吹出口7及び吹 出口8より吹出される。

【0010】エアリング上リップ10、エアリング中リ ップ11、エアリング下リップ12はエアリング本体1 3にそれぞれ取付けられる。エアリング本体13から送 られてくる冷却風はエアリング中リップ11で仕切られ て吹出口7、吹出口8に分配される。エアリング上リッ プ10は上下動が可能であり、これを上下させることに より吹出口8の吹出口面積を変え、この部分の風速を調 整する構造としている。

【0011】吹出口8の角度は中心線(A)に対して角 度αが0°以上90°以下とすることが必要である。よ り好ましくは30°以上90°以下とするとよい。さら に好ましくは35°以上65°以下とするとよりよくな る場合がある。さらに詳しく説明すると、エアリング中 リップ11の吹出口8側の壁角度を0°以上90°以下 とすることが必要である。より好ましくは30°以上9 0°以下とするとよい。さらに好ましい角度は35°以 上65°以下である。吹出口8のもう片方の壁、即ちエ アリング上リップ10の吹出口8の部分の角度はエアリ ング中リップ11の吹出口8部分の角度に対し+15・ 以上-15°以下の範囲内に設定することが好ましい。 さらに好ましくは+10°以上-10°以下の範囲内に 設定することがより好ましい。

3

図3は整流板14をバブル5の接線上に取付けた例を示 す中リップ11部分の平面図である。整流板14により バブル5の接線方向側に向け冷却風を吹出させることが できる。整流板14を設けることにより、バブルの変形 を少なくし、より速い風速で冷却風をエアリング装置か ら吹出させることが可能となる。その結果、冷却効果を さらに増加させることができる。整流板14は、エアリ ング上リップ10、エアリング中リップ11のどちらに 取付けてもよい。つぎに整流板14の取付け位置の別の 例を図によって説明する。図4および図5は中リップ1 10 1の吹出口8付近の拡大平面図であり、説明のため、整 流板は1つしか図示していない。いずれの場合も整流板 14は冷却風をバブル5の接線方向側に向けて吹出すよ うに設置される。

【0013】図4においては、整流板14はバブル5の 接線方向15からエアリング中リップ11の内径20の 1/2以内の長さだけ、好ましくはエアリング中リップ 11の内径20の1/4以内の長さだけ並行移動させた 線18または19上に設置される。また、図5に示すよ うに、整流板14をバブル5の接線方向15に対し角度 20 1 冷却風入口 βが-35°以上+45°以下の傾きをもつ直線上に設 置してもよい。角度βが-30°以上+30°以下の範 囲内、特に角度βが-20°以上+20°以下の範囲内 に設置するとより好ましい場合がある。

【0014】整流板14の長さは、整流効果をもたすた め吹出口の長さ21の1/2以上あることが好ましい場 合がある。また整流板14の枚数は4枚以上が好まし い。一方、吹出口7は中心線(A)に対して垂直方向を 向いていなければならない。本発明において垂直方向と は、図1における $\gamma$ の値が $0° \pm 10°$ 、好ましくは0 30 10 エアリング上リップ \* ±5°をいう。さらに詳しく説明すると、エアリング 中リップ11の吹出口7部分とエアリング下リップ12 の吹出口7部分の中心軸(A)に対する角度が、それぞ れ0°±10°、好ましくは0°±5°であることが必 要である。又この吹出口7付近に、前記したような整流。 板を取付けてもよい。整流板を取付ける場合、その取付 け方は前記の吹出口8に取付ける場合と同様にすること が好ましい。

【0015】さらに吹出口7及び吹出口8両方に整流板 14を取付けてもよい。本発明のエアリング装置の大部 40 24 ピンチロール 分もしくは一部の材質を、従来のものにかえてアルミニ

ウムもしくはアルミニウム合金とすることができる。軽 量で交換の際の取外し、取付け作業が容易におこなえ、 作業性が大幅に向上する。

#### [0016]

【発明の効果】本発明のエアリング装置を用いてインフ レーション成形を行なうと、高速で安定した成形が可能 となる。

#### 【図面の簡単な説明】

【図1】本発明の一例を示す一部切欠き正面図である。

【図2】本発明の一例を示す平面図である。

【図3】本発明の中リップ部分の一例を示す平面図であ る。

【図4】 整流板の取付け位置の例を説明するための、中 リップの吹出口付近の拡大平面図である。

【図5】整流板の取付け位置の別の例を説明するため の、中リップの吹出口付近の拡大平面図である。

【図6】従来のエアリング装置機構及びその作用説明し た説明図。

#### 【符号の説明】

- - 2 仕切板
  - 3 従来エアリング装置の吹出口
  - 4 冷却風
  - 5 バブルの一部
  - 6 バブル
  - 7 バブルに対し垂直方向に向けられたエアリング装置 の吹出口
  - 8 もう一方のエアリング装置の吹出口
  - 9 熱交換を受けた冷却風
- - 11 エアリング中リップ
  - 12 エアリング下リップ
  - 13 エアリング本体
  - 14 整流板
  - 15 バブルの接線方向
  - 16 吹出口7への冷却風の流入口
  - 17 エアリング中リップの一部
  - 22 ダイ
  - 23 案内板
- - 25 エアリング上リップの調整用ハンドル



