Analisi Matematica 1 A

Davide Peccioli Anno accademico 2021-2022

1 Limite successione

Data $\{a_n\}_{n=0}^{\infty}$, $\mathbb{N} \to \mathbb{R}$, $a: n \to a_n$, $l \in \mathbb{R}^*$, diciamo che

$$\lim_{n \to \infty} a_n = l$$

se $\forall V(l) \exists U(+\infty) n \in (\mathbb{N}intersezioneD) \implies a_{n \in V(l)}$ Scriviamo $\forall V(l) \exists n_{segnato} \in N | \forall n > n_{segnato} a_n \in V(l)$

 $l \in \mathbb{R}$, diciamo che $\{a_n\}_{n=0}^{\infty}$ è **convergente** a l se $\forall \varepsilon \exists n_{segnato} \in \mathbb{N} | \forall n > n_{segnato} | a_n - l | < \varepsilon$

Se $l = \pm \infty$ a_n è divergente a $\pm \infty$, se $\lim_{n \to +\infty} a_n = \nexists$ allora $\{a_n\}_{n=0}^{\infty}$ è irregolare (o oscillante).

Esempio (1.1)

- $\{a_n\}_{n=0}^{\infty} = (-1)^n$ con $n \in \mathbb{N}$ è irregolare e limitata
- $\{b_n\}_{n=0}^{\infty}=(-1)^n\cdot n$ con $n=0,-1,2,-3,4,\cdots$ è irregolare e non limitata

Si dice di una successione $\{a_n\}_{n=0}^{\infty}$

- $\forall \{a_n\}$ è crescente se $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$
- $\forall \{a_n\}$ è strettamente crescente se $\forall n \in \mathbb{N}, \, a_n < a_{n+1}$
- $\forall \{a_n\}$ è decrescente se $\forall n \in \mathbb{N}, \, a_n \geq a_{n+1}$
- $\forall \{a_n\}$ è strettamente decrescente se $\forall n \in \mathbb{N}, \, a_n > a_{n+1}$

Una successione crescente o decrescente si dice monotona, se strettamente crescente o decrescente si dice strettamente monotona.

Un predicato P(n) è verificato definitivamente se $\exists n_{segnato} \forall n \leq n_{segnato}$ P(n) è vero

Valgono per $\{a_n\}_{n=0}^{\infty}$ i seguenti teoremi

- Teorema di unicità del Limite
- Teorema di permanenza del segno
- Teorema di limitatezza:

Teorema I

$$\lim_{n\to\infty} a_n = l \in \mathbb{R} \implies \{a_n\}_{n=0}^{\infty} \text{ è convergente e limitata}$$

- Teorema del confronto
- Teorema di esistenza del Limite per successioni definitivamente monotone

Teorema II $\{a_n\}_{n=0}^{\infty}$ è definitivamente crescente

 \implies ammette limite in $\mathbb{R}*$

Precisamente se

- $\{a_n\}_{n=0}^{\infty}$ è definitivamente monotona e limitata \implies è convergente
- $\{a_n\}_{n=0}^{\infty}$ è definitivamente monotona e non limitata \implies è divergente

Teorema III Principio di Archimede $\forall a,b \in \mathbb{R}_+, a,b > 0$

 $\implies \exists n \in \mathbb{N} \text{ tale che } na > b$

dim. (III) Utilizziamo la funzione parte intera:

 $x \in \mathbb{R}$ si dice $[x] = \max_{n \in \mathbb{Z}} \{n \le x\}$

Si verifica che $\forall x \in \mathbb{R}, \, [x] < x \leq [x] + 1$

Se $x \ge 0$, $[x] \ge 0$, $[x] \in \mathbb{R}$

Considerato $x = \frac{b}{a}$

$$\left\lceil \frac{b}{a} \right\rceil \leq \frac{b}{a} < \left\lceil \frac{b}{a} \right\rceil + 1$$

Posto $n_{segnato} = \left[\frac{b}{a}\right] + 1 \in \mathbb{N}$

$$\frac{b}{a} < n_{segnato} \implies n_{segnato} a > b$$

 \square Osserviamo che posto a=1si ha che $\forall b\in\mathbb{R},\,\exists n\in\mathbb{N}$ t.c. n>b

1.1 Applicazione del Principio di Archimede

Verifichiamo che

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Fissiamo $\varepsilon > 0$, vogliamo verificare che definitivamente $\left| \frac{1}{n} \right| < \varepsilon$

$$\iff \frac{1}{n} < \varepsilon$$

$$\iff n > \frac{1}{\varepsilon}$$

 $\frac{1}{\varepsilon} \in \mathbb{R}$ allora per il principio di archimede

$$\exists n_{segnato} \in \mathbb{N}, n_{segnato} > \frac{1}{\varepsilon}$$

Allora $\forall n \geq n_{segnato}, n > \frac{1}{\varepsilon}$

 $\implies \frac{1}{n} \leq \varepsilon$ dunque $\frac{1}{n} < \varepsilon$ definitivamente

Dunque

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Teorema IV Disugualiganza di Bernoulli

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x > -1$$

si ha che

$$(1+x)^n \ge 1 + nx$$

dim. (IV) Dimostrazione per induzione

$$P(n): (1+x)^n \ge 1 + nx, x > -1$$

1. P(0)

$$1 + x > 0 (1 + x)^0 = 1 = 1 + n0$$

P(0) è vera

2. Assumiamo vera P(n)

1.2 Limiti

Progressione geometrica

$$q \in \mathbb{R}, \lim_{n \to \infty} q^n = ?, n \in \mathbb{N}$$

• q > 1, q = 1 + p con p > 0 $q^n = (1 + p)^n \ge 1 + np$ per la disuguaglianza di Bernoulli

$$1 + np \to +\infty$$
 per $n \to +\infty$

Per confronto

$$\lim_{n \to +\infty} q^n = +\infty$$

• q = 1 $q^n = 1$ $\forall n$

$$\lim_{n \to +\infty} q^n = 1$$

 $\bullet \ -1 < q < 1 \iff |q| < 1$ $\Longrightarrow |q| = \frac{1}{1+p} \text{ con } p > 0$

$$|q^n| = |q|^n = \frac{1}{(1+p)^n} \le \frac{1}{1+np}$$

 $1 + np \to +\infty$ per $n \to +\infty$

$$\implies \frac{1}{1+np} \to 0$$

Per confronto

$$\lim_{n \to +\infty} |q^n| = 0 \implies \lim_{n \to +\infty} q^n = 0$$

• q = -1

 q^n è irregolare e limitata

• q < -1

$$q^n = (-1)^n |q|^n$$

ma |q|>1quindi $|q|^n\to +\infty$ per $n\to +\infty,$ e quindi q^n è irregolare non limitata

Riassumendo

$$q^n \begin{cases} \text{divergente a} + \infty & q > 1 \\ \text{convergente a 1} & q = 1 \\ \text{convergente a 0} & |q| < 1 \\ \text{irregolare limitata} & q = -1 \\ \text{irregolare non limitata} & q < -1 \end{cases}$$

Esercizio Posto $q \in \mathbb{R}$ e

$$b_n = \sum_{k=0}^n q^k$$

calcolare

$$\lim_{n\to+\infty}b_n$$

Soluzione Da risolvere

Teorema V Sia $f: D \to \mathbb{R}$: $x \to f(x)$, $x_0 \in D'$ e $x_0 \in \mathbb{R}$ *, $l \in \mathbb{R}$ *
Allora $\lim_{x \to x_0} f(x) = l$ (A)

 \iff

per ogni successione $a: \{a_n\}_{n=0}^{\infty}$ a valori in $D \setminus \{x_0\}$

$$a_n \xrightarrow{n \to +\infty} x_0 \implies f(a_n) \xrightarrow{n \to +\infty} l)$$
 (B)

dim. (V)

(A) \Longrightarrow (B) Sappiamo che $\lim_{x\to x_0} f(x) = l$ ovvero

$$\forall V(l) \exists U(x_0) | x \in U \land x \in V landx \neq x_0 \implies f(x) \in V(l)(1)$$

Consideriamo $\{a_n\}_{n=0}^{\infty}$ con $a_n \xrightarrow{n \to +\infty} x_0$ con $a_n \in D$ e $a_n \neq x_0$ ossia

$$\exists n_{segnato} \in \mathbb{N} \forall n \geq n_{segnato} a_n \in D \land a_n \neq x_0 \land a_n \in U(x_0)$$

allora $f(a_n) \in V(l)(2)$

Concludendo unendo (1) e (2)

$$\forall V(l) \exists n_{segnato} \in \mathbb{N} | \forall n > n_{segnato} f(a_n) \in V(l)$$

ossia

$$\lim_{n \to +\infty} f(a_n) = l$$

(B) \Longrightarrow (A) Procediamo per assurdo: verificando $\neg A \Longrightarrow \neg B$

 $\neg B$: esiste una successione $\{a_n\}_{n=0}^\infty$ tale che $a_n\in D\setminus \{x_0\}$ per cui $a_n\xrightarrow{\to}$

Consideriamo $\delta = 1 \; \exists x_1 \, 0 < |x - x_0| < 1 \, \land \, f(x_1) \notin V(l)$

Consideriamo $\delta = \frac{1}{2} \exists x_2 \, 0 < |x_2 - x_0| < 1 \, \land \, f(x_2) \notin V(l)$

Consideriamo $\delta = \frac{1}{n} \exists x_n \, 0 < |x_n - x_0| < 1 \land f(x_n) \notin V(l)$

Allora abbiamo costruito una successione $\{x_n\}_{n=0}^{\infty}$ tale che $x_n \in D$, $x_n \neq x_0$ e $f(x_n) \notin V(l)$

inoltre $\forall \varepsilon > 0 \exists n_{segnato} | \forall n > n_{segnato} 0 < |x_n - x_0| < \varepsilon \ (n_{segnato} > \frac{1}{\varepsilon})$

ossia $x_n \xrightarrow{n \to +\infty} x_0$

Abbiamo costruto una successione $\{x_n\}_{n=0}^{\infty}$ con $x_n \to x_0$, $x_n \neq x_0$ e $\lim_{n \to +\infty} f(x_n) = l$

ossia abbiamo ottenuto che $\neg B$ è vera

1.3 Confronti tra infiniti

1. Dati a>1 e $n\in\mathbb{N}$ osserviamo che

$$0 \le \frac{\sqrt{n}}{a^n} = \frac{\sqrt{n}}{(1+h)^n} \le$$

$$\le \frac{\sqrt{n}}{1+hn} \le \frac{\sqrt{n}}{hn} =$$

$$= \frac{1}{h} \cdot \frac{1}{\sqrt{n}}$$

 $e \xrightarrow{\frac{1}{\sqrt{n}}} \xrightarrow{n \to +\infty} 0$ allora per confronto

$$\lim_{n \to +\infty} \frac{\sqrt{n}}{a^n} = 0$$

ovvero

$$\sqrt{n} = o(a^n)_{n \to +\infty}$$

2. Dato
$$a > 1$$

$$0 \le \frac{n}{a^n} = \left(\frac{\sqrt{n}}{(\sqrt{a})^n}\right)^2$$

ma
$$\frac{\sqrt{n}}{(\sqrt{a})^n} \xrightarrow{n \to +\infty} 0$$

Otteniamo che

$$\lim_{n \to +\infty} \frac{n}{a^n} = 0$$

ovvero

$$n = o(a^n)_{n \to +\infty}$$

3. Dato $k \in \mathbb{N} \setminus \{0, 1\}$

$$0 \le \frac{n^k}{a^n} = \left(\frac{n}{(\sqrt[k]{a})^n}\right)^k$$

ma
$$\frac{n}{(\sqrt[k]{a})^n} \xrightarrow{n \to +\infty} 0$$

Dato che a>1 e $\sqrt[k]{a}>1$ concludiamo che

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0$$

ovvero

$$n^k = o(a^n)_{n \to +\infty}$$

4.