Environmental control

Vincenzo Damico 269656 Ilenia Oliverio 263924 Josseline Michelle Alvarenga Ortez 251905 **IOT CLASS PROJECT 2024-2025, PROF. GIANCARLO FORTINO**

Content

- Goals
- Work Flow
- Contex-aware
- Challenges
- Features
- Used Technologies

Goals

Main Goal:
Museum's environment
dashboard

Side Goal:

Museum's environment data analysis

Sensor Nodes
TelosB

Base StationTelosB

Edge DevicePC, Python Interface

radio

Serial Port

2 TelosB

MAKEFILE

SensingAppC.nc

SensingC.nc

SensorMsg.h

1 TelosB

MAKEFILE

SimpleReceiver AppC.nc

SimpleReceiverC.nc

SensorMsg.h

Python Interface

Pattern MVC

Contex-aware

1 ~ TelosB base station

1 ~ Arduino to change the temperature

Measurement Frequency

Challenges

 Radio communication fails between TelosB

Sensors Placement

Uncertainty

Challenges

 MQTT with QoS=1 to balance RealTime constraints & Reliability

 Design a cheap cloud architecture

Features

Dashboard that provides real-time visualization

Data analysis, computation, and interpolation (air quality and data history).

Cloud system to store and share data

Auto-setting of the temperature with a reinforcement learning (if we have time \bigcirc)

What did | will we use?

https://github.com/VincenzoDamico/IOT_TinyOs

Thank you

Vincenzo Damico 269656 Ilenia Oliverio 263924 Josseline Michelle Alvarenga Ortez 251905

