Семейства с бинарными скалярными произведениями

Царёв Дмитрий Вячеславович Научный руководитель: Купавский Андрей Борисович

Июнь 2023

Содержание

Мотивация

Двухуровневые многогранники Изящное применение корреляции

Попытки применения корреляции в \mathbb{R}^d

Стабильность оценки произведения

Заключение

Двухуровневые многогранники

Определение

Многогранник P двухуровневый, если любая гиперплоскость H, определяющаю гипергрань, вместе c её параллельным переносом H' покрывает все вершины P.

Двухуровневые многогранники

Определение

Многогранник Р двухуровневый, если любая гиперплоскость H, определяющаю гипергрань, вместе с её параллельным переносом H' покрывает все вершины P.

Пример

Симплекс, (гипер)куб, кросс-политоп – двухуровневые.

Пример

Трапеция, не являющаяся параллелограммом – не двухуровневый.

Пример

Семейства политопов Биркгофа, Ханнера, политопы порядка и политопы цепей для частично упорядоченных множеств, политопы стабильных браков и политопы антиклик совершенных графов.

Структура двухуровневых многогранников

Легко видеть, что у d-мерного двухуровнего многогранника не больше 2^d вершин и не больше 2^d гиперграней. Оказывается, одновременно большими эти числа быть не могут.

Гипотеза (Bohn et. al., 2015)

 \overline{E} сли P-d-мерный двухуровневый многогранник с $f_0(P)$ вершинами и $f_{d-1}(P)$ гипергранями, то $f_0(P)f_{d-1}(P) \leq d2^{d+1}$

Структура двухуровневых многогранников

Легко видеть, что у d-мерного двухуровнего многогранника не больше 2^d вершин и не больше 2^d гиперграней. Оказывается, одновременно большими эти числа быть не могут.

Гипотеза (Bohn et. al., 2015)

Если P-d-мерный двухуровневый многогранник с $f_0(P)$ вершинами и $f_{d-1}(P)$ гипергранями, то $f_0(P)f_{d-1}(P) \leq d2^{d+1}$

Окончательно доказана с помощью теоремы

Teopeма (Kupavskii, Weltge, 2022)

Пусть оба $\mathcal{A},\mathcal{B}\subseteq\mathbb{R}^d$ содержат базис \mathbb{R}^d и $\langle a,b
angle\in\{0,1\}$ для любых $a\in\mathcal{A},\ b\in\mathcal{B}.$ Тогда

$$|\mathcal{A}|\cdot|\mathcal{B}|\leq (d+1)2^d$$

Применение корреляции

В случае, если семейства набираются из булевого куба $\{0,1\}^d$, у теоремы есть изящное доказательство с применением корреляционного неравенства.

Лемма (Простейшее корреляционное неравенство)

Пусть \mathcal{A} и \mathcal{B} – замкнутые вниз (по включению) семейства подмножеств d-элементного множества. Тогда

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A} \cap \mathcal{B}| \cdot 2^d$$

Теорема

Пусть $\mathcal{A},\mathcal{B}\subseteq\{0,1\}^d$ и $\langle a,b\rangle\in\{0,1\}$ для любых $a\in\mathcal{A},\ b\in\mathcal{B}.$ Тогда $|\mathcal{A}|\cdot|\mathcal{B}|\leq (d+1)2^d.$

Краткое доказательство: рассматриваем вектора как подмножества d-элементного множества, замыкаем вниз и применяем неравенство.

Вопросы

- 1. Можно ли применить подход с корреляцией к векторам в \mathbb{R}^d и получить оценку, близкую к $(d+1)2^d$? Если да, обобщаются ли далее результаты для большего числа семейств и другие?
- 2. Стабильность оценки произведения: как улучшить оценку для семейств, не похожих на экстремальный пример?

Дискретизация, частичный порядок

Замечательным образом оказывается, что семейства с бинарными скалярными произведениями с точностью до линейных преобразований можно закодировать 0-1 векторами:

Лемма

Семействам \mathcal{A} , $\mathcal{B}\subset\mathbb{R}^d$ с бинарными скалярными произведениями соответствуют семейства \mathcal{A}_{01} , $\mathcal{B}_{01}\subset\{0,1\}^d$ такие что

$$\forall \ a_{01} \in \mathcal{A}_{01}, \ b_{01} \in \mathcal{B}_{01} : \ \langle a_{01}, B_{01}^{-1} b_{01} \rangle \in \{0, 1\}$$

где B_{01} — обратимая матрица из нулей и единиц.

Теперь на элементах $\{0,1\}^d$ можно завести отношение частичного порядка, такое что \mathcal{A}_{01} и \mathcal{B}_{01} относительно его можно замкнуть вниз.

Детали построения частичного порядка

Пусть C — матрица размера $d \times 2^d$, столбцы которой — все элементы $\{0,1\}^d$. Определим $G = G(B_{01}) = C^T B_{01}^{-1} C$. Индексируя столбцы и строки G элементами $\{0,1\}^d$, введём для $x \in \{0,1\}^d$

$$R_{x} = \left\{ y \in \left\{0, 1\right\}^{d} : G_{y, x} \in \left\{0, 1\right\} \right\},$$

$$x \sim_{R} y \iff R_{x} = R_{y}, \quad [x] \leq_{R} [y] \iff R_{x} \supseteq R_{y}.$$

Для простоты пусть B_{01} симметрична, тогда \leq_R задаёт нужное отношение частичного порядка на классах эквивалентности.

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Примеры частично упорядоченных множеств

Препятствия к применению корреляции

Препятствие

Получаемые частично упорядоченные множества не всегда являются дистрибутивными решётками. Более того, они не всегда являются полурешётками.

Препятствие

Количество элементов $\mathcal{A} \wedge \mathcal{B}$ может быть экспоненциально большим.

Лемма

Пусть B_{01} имеет единицы на побочной диагонали и выше неё, а нули ниже неё. Тогда количество $x\in\{0,1\}^d$, таких что $\langle x,B_{01}^{-1}x\rangle\in\{0,1\}$, равно $\binom{n}{\left[\frac{n}{2}\right]}$.

Стабильность оценки произведения

Пусть оба $\mathcal{A},\mathcal{B}\subseteq\mathbb{R}^d$ содержат базис \mathbb{R}^d и $\langle a,b
angle\in\{0,1\}$ для любых $a\in\mathcal{A},\ b\in\mathcal{B}$

Теорема

 $|\mathcal{A}|\cdot|\mathcal{B}|=(d+1)2^d$ только если $|\mathcal{B}|=d+1$, а \mathcal{A} афинно изоморфно $\{0,1\}^d$ (или наоборот).

Основной новый результат:

Теорема

Если семейства $\mathcal A$ и $\mathcal B$ максимальны по включению и размер каждого хотя бы d+2, то $|\mathcal A|\cdot |\mathcal B| \le d2^d+2d$.

Достигается, например, на

$$\mathcal{A} = \left\{e_d + \sum_{i=1}^{d-1} arepsilon_i e_i
ight\} \cup \left\{0
ight\}, \ \mathcal{B} = \left\{rac{1}{2}\left(e_d + arepsilon_i e_i
ight)
ight\}$$

Где ε_i пробегают $\{-1,1\}$ и e_i — стандартный базис \mathbb{R}^d .

Итоги

- 1. Задача оценки произведения размеров семейств с бинарными скалярными произведениями сведена к конечному перебору, исследованы возникающие частично упорядоченные множества, найдены препятствия к применению корреляции.
- 2. Доказана точная оценка для произведения размеров семейств, отличных от «базиса и куба», и несколько других результатов о стабильности оценки $|\mathcal{A}| \cdot |\mathcal{B}|$.

Гипотезы

Гипотеза

Количество неизоморфных частично упорядоченных множеств, возникающих из всевозможных симметричных $B_{01}\in \operatorname{Mat}_{d\times d}$ равно $|\operatorname{Gr}\left(\left[\frac{d}{2}\right],\mathbb{F}_2^d\right)|$, то есть равно гауссовому биномиальному коэффициенту $\binom{d}{k}_a$ с q=2 и $k=\left[\frac{d}{2}\right]$.

Гипотеза

Пусть натуральные d и $k \leq d$ таковы что $2^{d-k} + k > 2^k (d-k+1)$, оба $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ содержат базис \mathbb{R}^d и $\langle a,b \rangle \in \{0,1\}$ для любых $a \in \mathcal{A}$, $b \in \mathcal{B}$, при этом каждое из \mathcal{A} и \mathcal{B} имеют размер строго больше $2^{k-1} (d-k+2)$. Тогда $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d-k+1) 2^k (2^{d-k} + k)$.

Источники

- Noga Alon and Joel H. Spencer.

 The Probabilistic Method.

 Wiley, New York, second edition, 2004.
- Manuel Aprile, Alfonso Cevallos, and Yuri Faenza.
 On 2-level polytopes arising in combinatorial settings.

 SIAM Journal on Discrete Mathematics, 32(3):1857–1886, 2018.
- Adam Bohn, Yuri Faenza, Samuel Fiorini, Vissarion Fisikopoulos, Marco Macchia, and Kanstantsin Pashkovich. Enumeration of 2-level polytopes. Mathematical Programming Computation, 11, 2018.
- Samuel Fiorini, Vissarion Fisikopoulos, and Marco Macchia. Two-level polytopes with a prescribed facet. In Raffaele Cerulli, Satoru Fujishige, and A. Ridha Mahjoub, editors, Combinatorial Optimization, pages 285–296, Cham, 2016. Springer International Publishing.
- Andrey Kupavskii and Fedor Noskov.

 Octopuses in the boolean cube: Families with pairwise small intersections, part i.

 Journal of Combinatorial Theory, Series B, 2023.
- Andrey Kupavskii and Stefan Weltge. Binary scalar products.