STOCH. MODELE SYSTEMÓW ODDZIUAŁUJĄCYCH 2024 WYKŁAD 3: PROCESY I PÓŁGRUPY FELLERA

W tym rozdziale S jest ośrodkową, lokalnie zwartą przestrzenią metryczną, a C(S) jest przestrzenią ciągłych funkcji rzeczywistych na S. Przez $C_0(S)$ oznaczać będziemy klasę funkcji z C(S) znikających w nieskończoności. Dokładniej $C_0(S)$ to zbiór tych funkcji f z C(S) takich, że dla każdego dodatniego ϵ istnieje zwarty $K \subseteq S$ taki, że $|f(x)| \le \epsilon$ dla $x \in S \setminus K$. Zauważmy, że jeżeli S jest zwarta, to $C_0(S) = C(S)$. Dodatkowo każda f z $C_0(S)$ jest jednostajnie ciągła, tj. dla każdego dodatniego ϵ istnieje dodatnia δ , taka, że dla każdych $x, y \in S$,

$$d(x,y) < \delta \implies |f(x) - f(y)| < \epsilon.$$

W obu przestrzeniach C(S) i $C_0(S)$ używamy normy jednostajnej

$$||f|| = \sup_{x \in S} |f(x)|,$$

co czyni $C_0(S)$ przestrzenią Banacha. Głównym powodem stosowania ciągłych funkcji zanikających na nieskończoności zamiast ograniczonych ciągłych funkcji w przypadku lokalnie zwartym jest to, że jednostajna ciągłość jest wymagana w wielu argumentach. Ograniczone funkcje ciągłe nie są zwykle jednostajnie ciągłe, podczas gdy ciągłe funkcje zanikające na nieskończoności są. Innym powodem jest to, że $C_0(S)$ jest ośrodkowa, co nie jest ogólnie prawdziwe dla przestrzeni wszystkich ograniczonych ciągłych funkcji na S.

0.1 Proces

Zaczynamy od opisu składników potrzebnych do definicji głównego obiektu zainteresowania w tym rozdziale. Konstrukcja będzie analogiczna do łańcuchów Markowa w czasie ciągłym. Niech

 $\Omega = D[0, \infty) = \text{zbiór funkcji prawostronnie ciągłych } \omega : [0, \infty) \to S$ z lewymi granicami.

Tak jak poprzednio dla $s, t \in \mathbb{R}_+$ połóżmy też

$$X_t(\omega) = \omega(t) \text{ oraz } (\theta_s \omega)(t) = \omega(t+s).$$

Niech \mathcal{F} będzie najmniejszym σ -ciałem podzbiorów Ω względem którego wszystkie X_t dla $t \in \mathbb{R}_+$ są mierzalne.

Definicja 0.1. Procesem Fellera na S nazywamy parę uporządkowaną (\mathbf{P}, \mathbb{F}) taką, że

(PF1) $\mathbf{P} = {\mathbf{P}_x}_{x \in S}$, gdzie dla każdego $x \in S$, \mathbf{P}_x jest miarą probabilistyczną na (Ω, \mathcal{F}) taką, że

$$\mathbf{P}_x[X_0 = x] = \mathbf{P}_x[\omega : \omega(0) = x] = 1. \tag{0.1}$$

- (PF2) $\mathbb{F} = \{\mathcal{F}_t\}_{t \in \mathbb{R}_+}$ jest filtracją na Ω , względem której zmienne losowe X(t) są adaptowane.
- (PF3) Odwzorowanie

$$x \mapsto \mathbf{E}^x[f(X_t)]$$
 jest w $C_0(S)$ dla wszystkich $f \in C_0(S)$ i $t \ge 0$. (0.2)

(PF4) Spełniona jest własność Markowa

$$\mathbf{E}_{x}[Y \circ \theta_{s} \mid \mathcal{F}_{s}] = \mathbf{E}_{X(s)}[Y] \quad \mathbf{P}_{x}$$
-prawie wszędzie (0.3)

dla wszystkich $x \in S$ oraz wszystkich ograniczonych mierzalnych Y na Ω .

Własność (0.2) znana jest jako własność Fellera. Innym sposobem przedstawienia części ciągłości, który wydaje się całkiem naturalny, jest to, że $x_n \to x$ w S implikuje, że rozkład X dla procesu rozpoczynającego się w x_n zbiega się słabo do tego dla procesu rozpoczynającego się w x. Własność Fellera (razem z prawostronną ciągłością trajektorii) implikuje silną własność Markowa.

Twierdzenie 0.2. Każdy proces Fellera ma silną własność Markowa. Jeżeli (\mathbf{P}, \mathbb{F}) jest procesem Fellera, to dla każdej ograniczonej zmiennej $Y : \Omega \to \mathbb{R}$ oraz \mathbb{F} -czasu zatrzymania τ to dla każdego x,

$$\mathbf{E}_{x}[Y \circ \theta_{\tau} \mid \mathcal{F}_{\tau}] = \mathbf{E}_{X(\tau)}[Y]$$
 prawie na pewno \mathbf{P}_{x}

na zdarzeniu $\{\tau < \infty\}$.

Zadanie 0.1. Niech (\mathbf{P}, \mathbb{F}) będzie procesem Fellera. Pokaż, że odwzorowanie

$$x \mapsto \mathbf{E}_x \left[\prod_{j=1}^n f_j(X_{t_j}) \right]$$
 (0.4)

jest ciągłe dla dowolnego n, dowolnych $t_1, \ldots, t_n \in \mathbb{R}$ oraz dowolnych $f_1, \ldots, f_n \in C_0(S)$.

Dowód Twierdzenia 0.2. Rozumowanie przebiega identycznie jak w przypadku łańcuchów Markowa w czasie ciągłym. W miejscu, w którym wymagana jest ciągłość odwzorowań $x \mapsto \mathbf{E}_x[Y]$ należy powołać się na tezę Zadania 0.1. \square

Przyklad 0.3. Niech $B = (B_t)_{t \in \mathbb{R}_+}$ będzie standardowym ruchem Browna określonym na przestrzeni probabilistycznej $(\Sigma, \mathcal{G}, \mathbb{P})$. Przypomnijmy, że oznacza to, że

- (BM1) $B_0 = 0 \text{ } \mathbb{P}\text{-p.w.}$
- (BM2) Dla dowolnych $t, s \in \mathbb{R}_+, t \geq s$ zmienna $B_t B_s$ ma rozkład normalny $\mathcal{N}(0, t s)$ o średniej zero i wariancji t s.
- (BM3) Dla dowolnych $t, s \in \mathbb{R}_+, t \geq s$ zmienna $B_t B_s$ jest niezależna od sigma ciała $\mathcal{G}_s^B = \sigma(B_r : r \leq s)$.
- (BM4) Odwzorowanie $t \mapsto B_t$ jest ciągłe.

Pokażemy, że ruch Browna jest procesem Fellera w myśl przyjętej przez nas definicji. Połóżmy $\mathcal{F}_t = \sigma(X_s : s \leq t)$. Niech $S = \mathbb{R}$. Dla $x \in S$ zdefiniujmy \mathbf{P}_x jako rozkład ruchu Browna (rozumianego jako funkcji $\mathbb{R}_+ \to \mathbb{R}$) zapoczątkowanego w punkcie x, dokładniej dla $A \in \mathcal{F}$ niech $\mathbf{P}_x[A] = \mathbb{P}[B + x \in A]$. Tutaj przez B + x rozumiemy funkcję $t \mapsto B_t + x$. Spełniona jest własność (PF1), ponieważ

$$\mathbf{P}_x[X_0 = x] = \mathbb{P}[B_0 + x = x] = 1.$$

Własność (PF2) jest spełniona wprost z definicji filtracji \mathbb{F} . Aby uzasadnić własność Fellera (PF3) ustalmy $f \in C_0(S)$. Ciągłość

$$x \mapsto \mathbf{E}_x [f(X_t)] = \mathbb{E}[f(B_t + x)]$$

wynika z ciągłości f oraz twierdzenia o zbieżności ograniczonej. Aby uzasadnić, że powyższe odwzorowanie jest klasy $C_0(S)$ należy pokazać, że

$$\lim_{|x| \to \infty} \mathbf{E}_x[f(X_t)] = 0.$$

Wystarczy w tym celu rozważyć oszacowanie

$$|\mathbb{E}[f(B_t + x)]| \le ||f||\mathbb{P}[|B_t| > |x|/2] + \sup_{|y| > |x|/2} |f(y)|.$$

Oba składniki po prawej stronie zbiegają do zera, przy czy zbieżność tego drugiego wynika z $f \in C_0(\mathbb{R})$. Własność Markowa uzasadniamy dokładnie w taki sam sposób, w jaki zrobiliśmy to dla procesu Poissona.

Zadanie 0.2. Niech $S = \mathbb{Z}$. Pokaż, że łańcuch Markowa w czasie ciągłym (\mathbf{P}, \mathbb{F}) jest procesem Fellera wtedy i tylko wtedy, gdy dla każdego $y \in S$ i każdego $t \in \mathbb{R}_+$,

$$\lim_{|x| \to \infty} \mathbf{P}_x[X_t = y] = 0.$$

0.2 Półgrupa

Chcemy teraz przedstawić odpowiednik funkcji przejścia na nieprzeliczalnej przestrzeni stanów. W naturalny sposób nasuwa się rozważenie rozkładów $\mathbf{P}_x[X_t \in \mathrm{d}y]$. Jednak na dłuższą metę język rozkładów jest nieporęczny. O wiele bardziej praktyczny jest język półgrup. Aby umotywować następną definicję, rozważmy przeliczalną przestrzeń stanów S_0 oraz funkcją przejścia p na S_0 . Funkcję przejścia można zakodować w kategoriach rodziny operatorów

$$T_t f(x) = \sum_{y \in S_0} p_t(x, y) f(y),$$
 (0.5)

dla $f \in C_0(S_0)$. Jasne jest, że znając T_t , a więc znając wartości $T_t f$ dla wszystkich $f \in C_0(S_0)$, znamy też funkcję przejścia $p_t(x, y)$. Wykorzystując równiania Chapmana-Kołmogorowa dostajemy dla s, t > 0,

$$T_{s+t}f(x) = \sum_{y \in S_0} p_{t+s}(x,y)f(y) = \sum_{y \in S_0} \sum_{z \in S_0} p_t(x,z)p_s(z,y)f(y)$$
$$\sum_{z \in S_0} p_t(x,z) \sum_{y \in S_0} p_s(z,y)f(y) = \sum_{z \in S_0} p_t(x,z)(T_sf)(z) = T_t(T_s(f))(x).$$

Wszystkie powyższe manipulacje są ponieważ $f \in C_0(S_0)$ jest ograniczona. Powyższa tożsamość zapisuje się jako $T_tT_s = T_t \circ T_s = T_{t+s}$. Oznacza to, że $(T_t)_{t\geq 0}$ tworzą półgrupę.

Definicja 0.4. Półgrupa Fellera to rodzina ciągłych operatorów liniowych $T = \{T_t\}_{t \in \mathbb{R}_+}$ na $C_0(S)$ spełniających następujące własności:

- (a) $T_0 f = f$ dla wszystkich $f \in C_0(S)$.
- (b) Dla każdego $f \in C_0(S)$, $\lim_{t\to 0} T_t f = f \le C_0(S)$.
- (c) $T_{t+s}f = T_sT_tf$ dla każdego $f \in C_0(S)$.
- (d) $T_t f \geq 0$ dla każdego nieujemnego $f \in C_0(S)$.
- (e) Istnieje rodzina $f_n \in C_0(S)$, $n \in \mathbb{N}$ taka, że $\sup_n ||f_n|| < \infty$, oraz $T_t f_n$ zbiega punktowo do 1 dla każdego $t \geq 0$.

Część (c) to analogia równań Chapmana-Kolmogorowa i nazywana jest własnością półgrupy. Jedną z jej konsekwencji jest to, że T(t) i T(s) komutują, tj. $T_tT_s = T_{t+s} = T_{s+t} = T_sT_t$. Z części (d) i (e) wynika, że $||T(t)f|| \le ||f||$ dla wszystkich $f \in C_0(S)$, tak więc każdy $||T|| \le 1$. Własność (b) jest znana jako mocna ciągłość. Wraz z (c) i własnością kontrakcji, implikuje to, że funkcja $t \mapsto T(t)f$ z $[0, \infty)$ do $C_0(S)$ jest ciągła.

Oto ważny przykład - półgrupa Gaussa–Weierstrassa. Część (b) tego ćwiczenia ilustruje powody przyjmowania funkcji w $C_0(S)$ zanikających na nieskończoności.

Zadanie 0.3. Niech $S = \mathbb{R}$ i $B = (B_t)_{t \in \mathbb{R}_+}$ będzie ruchem Browna.

(a) Pokaż, że T_t zdefiniowane przez

$$T_t f(x) = \mathbb{E}[f(B_t + x)]$$

jest półgrupą Fellera.

(b) Wyjaśnij, dlaczego T nie jest mocno ciągła jako półgrupa operatorów na C(S).

W tym rozdziale konieczne będzie całkowanie funkcji ciągłych przyjmujących wartości w C(S) względem t. Rachunek takich funkcji jest analogiczny do rachunku funkcji rzeczywistych. W tym duchu wiążemy z półgrupą jej transformata Laplace'a

$$U(\alpha)f = \int_0^\infty e^{-\alpha t} T_t f \, dt, \quad \alpha > 0, \tag{0.6}$$

która nazywana jest rezolwentą półgrupy. Funkcję $U(\alpha)f$ można interpretować jako całkę Bochnera pojawiającą się po prawej stronie (0.6). Można też równoważnie myśleć, że jest to funkcja $S \to \mathbb{R}$ zadana przez

$$U(\alpha)f(x) = \int_0^\infty e^{-\alpha t} T_t f(x) \, dt, \quad x \in S.$$

W każdym razie całka w (0.6) jest dobrze określona, ponieważ funkcja $t\mapsto e^{-\alpha t}T_tf$ jest ciągła oraz

$$||e^{-\alpha t}T_t f|| \le e^{-\alpha t}||f||.$$

Zauważmy też, że $U(\alpha)$ jest operatorem liniowym na $C_0(S)$ i spełnia

$$||U(\alpha)f|| \le ||f||/\alpha.$$

Zadanie 0.4. Dla każdego $f \in C_0(S)$,

$$\lim_{\alpha \to \infty} \alpha U(\alpha) f = f.$$

Własność półgrupy przekłada się na następującą użyteczną relację, znaną jako równanie rezolwenty:

$$U(\alpha) - U(\beta) = (\beta - \alpha)U(\alpha)U(\beta). \tag{0.7}$$

Aby to sprawdzić, weźmy $\alpha \neq \beta$ i zapiszmy

$$U(\alpha)U(\beta)f = \int_0^\infty e^{-\alpha t} T_t U(\beta) f \, dt = \int_0^\infty e^{-\alpha t} \left(\int_0^\infty e^{-\beta s} T_t T_s f \, ds \right) dt$$
$$= \int_0^\infty \int_0^r e^{-\alpha t} e^{-\beta (r-t)} \, dt T_r f dr = \int_0^\infty \frac{e^{-\alpha r} - e^{-\beta r}}{\beta - \alpha} T_r f dr. \quad (0.8)$$

Jedną z konsekwencji (0.7) jest to, że $U(\alpha)$ i $U(\beta)$ komutują.