Breviar pentru o mare parte din cursul de LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

Claudia MUREŞAN

Universitatea din București, Facultatea de Matematică și Informatică c.muresan@yahoo.com, cmuresan@fmi.unibuc.ro

Vom folosi notația "ddacă" drept prescurtare pentru sintagma "dacă și numai dacă".

Amintim abrevierea "i. e." ("id est"), semnificând "adică".

Vom nota cu $\mathbb N$ mulţimea numerelor naturale şi cu $\mathbb N^* = \mathbb N \setminus \{0\}$ (mulţimea numerelor naturale nenule), iar, pentru orice $a,b \in \mathbb N$ cu $a \leq b$, notăm cu $\overline{a,b} = \{a,a+1,\ldots,b-1,b\} = \{x \in \mathbb N \mid a \leq x \leq b\}$. Amintim denumirile alternative:

- poset (de la englezescul partially ordered set) = mulţime parţial ordonată (i. e. mulţime înzestrată cu o relaţie de ordine pe ea);
- $funcție\ izotonă \equiv funcție\ care\ păstrează\ ordinea \equiv funcție\ crescătoare;$
- algebră Boole ≡ algebră booleană,

precum și definițiile, notațiile și rezultatele următoare:

- se folosește următoarea convenție: dacă o mulțime A este suportul unei structuri algebrice \mathcal{A} , atunci prin A vom înțelege deopotrivă mulțimea A și structura algebrică \mathcal{A} , în cazul în care va fi clar la ce structură algebrică pe A ne vom referi;
- vom spune că o structură algebrică este nevidă, respectiv finită ddacă mulțimea ei suport este nevidă, respectiv finită;
- pentru orice mulțime A, notăm cu |A| cardinalul lui A, iar cu $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ (mulțimea părților lui A);
- pentru orice mulțimi A și B, vom nota cu $A \cong B$ faptul că A este în bijecție cu B, care se transcrie prin: |A| = |B|;
- pentru orice mulţime A, notăm cu $A^2 = A \times A = \{(a,b) \mid a,b \in A\}$: produsul cartezian, produsul direct de mulţimi; aici, produsul direct al unei mulţimi cu ea însăși; în general, notăm cu $A^1 = A$ și cu $A^{n+1} = A^n \times A = \{(a,b) \mid a \in A^n, b \in A\}$, pentru orice n natural nenul: puterile naturale (nenule) ale unei mulţimi (se definește și A^0 , care este un singleton, i. e. o mulţime cu un singur element); a se vedea, în materialele din bibliografie, și produsele directe de structuri algebrice, precum și puterile naturale ale unei structuri algebrice;
- pentru orice multime A, o relație binară pe A este o submultime a lui A^2 ;
- dacă A este o mulțime și $\rho \subseteq A^2$, iar $a, b \in A$, atunci faptul că $(a, b) \in \rho$ se mai notează: $a \rho b$;
- pentru orice mulţime A, se notează cu Δ_A relaţia binară pe A definită prin $\Delta_A = \{(a, a) \mid a \in A\}$ şi numită $diagonala \ lui \ A$;
- o relație binară ρ pe o mulțime A se zice:
 - i. reflexivă ddacă orice $x \in A$ are proprietatea $x \rho x$;
 - ii. simetrică ddacă, oricare ar fi $x, y \in A$, dacă $x \rho y$, atunci $y \rho x$;
 - iii. antisimetrică ddacă, oricare ar fi $x, y \in A$, dacă $x \rho y$ şi $y \rho x$, atunci x = y;
 - iv. asimetrică ddacă, oricare ar fi $x, y \in A$, dacă $x \rho y$, atunci $(y, x) \notin \rho$;

- v. $tranzitiv \check{a}$ ddacă, oricare ar fi $x, y, z \in A$, dacă $x \rho y$ și $y \rho z$, atunci $x \rho z$;
- o relație binară ρ pe o multime A se numește:
 - i. (relație de) preordine ddacă este reflexivă și tranzitivă;
 - ii. (relație de) echivalență ddacă este o preordine simetrică;
 - iii. (relație de) ordine (parțială) ddacă este o preordine antisimetrică;
 - iv. (relație de) ordine totală (sau liniară) ddacă este o relație de ordine cu proprietatea că, oricare ar fi $x, y \in A$, are loc $x \rho y$ sau $y \rho x$;
- pentru orice relație binară ρ pe o mulțime A, se definește inversa lui ρ ca fiind relația binară pe A notată cu ρ^{-1} și dată de: $\rho^{-1} = \{(b,a) \mid a,b \in A, (a,b) \in \rho\} \subseteq A^2 = A \times A;$
- pentru orice relație binară ρ pe o mulțime A și orice $a, b \in A$, are loc: $(a, b) \in \rho$ ddacă $(b, a) \in \rho^{-1}$;
- pentru orice relații binare ρ și σ pe o mulțime A, avem:
 - i. $(\rho^{-1})^{-1} = \rho$;
 - ii. $\rho \subseteq \sigma$ ddacă $\rho^{-1} \subseteq \sigma^{-1}$;
 - iii. $(\rho \cup \sigma)^{-1} = \rho^{-1} \cup \sigma^{-1}$; în general, pentru orice mulțime $I \neq \emptyset$ și orice familie $(\rho_i)_{i \in I}$ de relații binare pe A, $(\bigcup_{i \in I} \rho_i)^{-1} = \bigcup_{i \in I} \rho_i^{-1}$ (comutarea reuniunii cu inversarea);
 - iv. $(\rho \cap \sigma)^{-1} = \rho^{-1} \cap \sigma^{-1}$; în general, pentru orice mulțime $I \neq \emptyset$ și orice familie $(\rho_i)_{i \in I}$ de relații binare pe A, $(\bigcap_{i \in I} \rho_i)^{-1} = \bigcap_{i \in I} \rho_i^{-1}$ (comutarea intersecției cu inversarea);
- inversa unei relații de ordine notate \leq se notează, uzual, cu \geq ;
- pentru orice mulţime A şi orice relaţii binare ρ şi σ pe A, compunerea dintre relaţiile binare ρ şi σ se notează cu $\rho \circ \sigma$ şi se defineşte astfel: $\rho \circ \sigma = \{(a,c) \mid a,c \in A, (\exists b \in A) ((a,b) \in \sigma \text{ şi } (b,c) \in \rho)\};$
- pentru orice relație binară ρ pe o mulțime A, se definesc: $\rho^0 = \Delta_A$ și $\rho^{n+1} = \rho^n \circ \rho$, oricare ar fi $n \in \mathbb{N}$:
- $\bullet\,$ dată o relație binară ρ pe o mulțime A, au loc echivalențele:
 - i. ρ este reflexivă ddacă $\Delta_A \subseteq \rho$;
 - ii. ρ este simetrică ddacă $\rho = \rho^{-1}$;
- pentru orice relație binară ρ pe o mulțime A, se numește $\hat{i}nchiderea$ reflexivă/simetrică/tranzitivă a lui ρ cea mai mică (în sensul incluziunii) relație binară reflexivă/simetrică/tranzitivă pe A care include pe ρ ;
- pentru orice relație binară ρ pe o mulțime A, închiderea reflexivă/simetrică/tranzitivă a lui ρ se notează $\mathcal{R}(\rho)/\mathcal{S}(\rho)/\mathcal{T}(\rho)$, respectiv;
- dată o relație binară ρ pe o mulțime A, au loc echivalențele:
 - i. ρ este reflexivă ddacă $\rho = \mathcal{R}(\rho)$;
 - ii. ρ este simetrică ddacă $\rho = \mathcal{S}(\rho)$;
 - iii. ρ este tranzitivă ddacă $\rho = \mathcal{T}(\rho)$;

• pentru orice relație binară ρ pe o mulțime A:

i.
$$\mathcal{R}(\rho) = \Delta_A \cup \rho;$$

ii. $\mathcal{S}(\rho) = \rho \cup \rho^{-1};$
iii. $\mathcal{T}(\rho) = \bigcup_{n=1}^{\infty} \rho^n;$

- pentru orice mulțime A, notăm cu $\operatorname{Eq}(A)$ mulțimea relațiilor de echivalență pe A, și, pentru orice $\sim \in \operatorname{Eq}(A)$, se notează cu A/\sim mulțimea factor a lui A prin \sim , i. e. mulțimea claselor de echivalență ale relației de echivalență \sim ;
- pentru orice mulțime nevidă A, o partiție a lui A este o familie nevidă de părți nevide ale lui A două câte două disjuncte și având reuniunea egală cu A; vom nota mulțimea partițiilor lui A cu Part(A);
- pentru orice mulţime nevidă A, $\operatorname{Eq}(A) \cong \operatorname{Part}(A)$, întrucât funcţia $\varphi : \operatorname{Eq}(A) \to \operatorname{Part}(A)$, definită prin: $\varphi(\sim) = A/\sim$ pentru orice $\sim \in \operatorname{Eq}(A)$, este o bijecţie; inversa lui φ este definită astfel: pentru orice mulţime $I \neq \emptyset$ şi orice $\pi = (A_i)_{i \in I} \in \operatorname{Part}(A)$, $\varphi^{-1}(\pi)$ este relaţia de echivalenţă pe A care are drept clase mulţimile A_i , cu $i \in I$, adică $\varphi^{-1}(\pi) = \sim \subseteq A^2$, definită prin: oricare ar fi $x, y \in A$, $x \sim y$ ddacă există $k \in I$ astfel încât $x, y \in A_k$;
- pentru orice n natural nenul, notăm cu \mathcal{L}_n lanțul cu n elemente și cu L_n mulțimea suport a lui \mathcal{L}_n ; \mathcal{L}_n este unic modulo un *izomorfism de poseturi*, i. e. modulo o funcție izotonă bijectivă și cu inversa izotonă;
- pentru orice poset (P, \leq) , notăm cu < relația de ordine strictă asociată lui \leq , i. e. relația binară pe mulțimea P definită prin: $<=\leq \setminus \Delta_P = \{(a,b) \mid a,b \in P, a \leq b, a \neq b\}$, și cu \prec relația de succesiune asociată lui \leq , i. e. relația binară pe mulțimea P definită prin: $\prec=\{(a,b) \mid a,b \in P, a < b, (\nexists x \in P) \ a < x < b\}$;
- notăm laticile sub forma (L, \vee, \wedge, \leq) sau (L, \vee, \wedge) , laticile mărginite sub forma $(L, \vee, \wedge, \leq, 0, 1)$ sau $(L, \vee, \wedge, 0, 1)$, iar algebrele Boole sub forma $(B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$ sau $(B, \vee, \wedge, \bar{\cdot}, 0, 1)$, cu semnificația uzuală pentru fiecare simbol din aceste notații;
- legătura dintre operațiile binare \vee și \wedge și relația de ordine \leq în orice latice (L, \vee, \wedge, \leq) este: pentru orice elemente $x, y \in L$, au loc echivalențele: $x \leq y$ ddacă $x \vee y = y$ ddacă $x \wedge y = x$;
- într–o latice mărginită $\mathcal{L}=(L,\vee,\wedge,\leq,0,1)$, două elemente $x,y\in L$ sunt complemente unul altuia ddacă $\begin{cases} x\vee y=1 \text{ și}\\ x\wedge y=0, \end{cases}$ iar un element $z\in L$ se zice complementat ddacă are cel puţin un complement:
- într-o latice mărginită distributivă, orice element complementat are un unic complement;
- o latice este nedistributivă ddacă are o sublatice izomorfă cu diamantul sau cu pentagonul;
- orice lanţ este o latice (distributivă), cu operaţiile binare $\vee = \max$ şi $\wedge = \min$;
- în orice algebră Boole $(B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$, se definesc *implicația booleană*, \rightarrow , și *echivalența booleană*, \leftrightarrow , ca operații binare pe B, astfel: pentru orice $x, y \in B$:

i.
$$x \to y = \overline{x} \lor y;$$

ii. $x \leftrightarrow y = (x \to y) \land (y \to x);$

- în orice algebră Boole $(B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$, pentru orice elemente $x, y \in B$, au loc următoarele:
 - i. $\overline{0} = 1$, $\overline{1} = 0$ şi: $\overline{x} = 1$ ddacă x = 0, iar: $\overline{x} = 0$ ddacă x = 1 (de fapt, mai general: în orice latice mărginită, 0 și 1 sunt complemente unul altuia și nu au alte complemente);
 - ii. $\overline{\overline{x}} = x$;
 - iii. $x \to y = 1$ ddacă $x \le y$;
 - iv. $x \leftrightarrow y = 1$ ddacă x = y;
- pentru orice mulţime A, $(\mathcal{P}(A), \cup, \cap, \subseteq, \bar{\cdot}, \emptyset, A)$ este o algebră Boole, unde am notat, pentru orice $X \in \mathcal{P}(A)$, $\overline{X} = A \setminus X$;
- pentru orice $n \in \mathbb{N}$, \mathcal{L}_2^n (puterea a n-a a lanţului cu 2 elemente) este o algebră Boole; pentru n = 1, avem algebra Boole \mathcal{L}_2 , numită algebra Boole standard; dacă notăm cu $L_2 = \{0, 1\}$ mulţimea suport a lanţului cu 2 elemente, \mathcal{L}_2 , atunci $L_2^n = \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \{0, 1\}\}$ este mulţimea subiacentă a algebrei Boole \mathcal{L}_2^n ;
- orice algebră Boole finită este izomorfă cu \mathcal{L}_2^n pentru un $n \in \mathbb{N}$;
- se numește atom al unei algebre Boole $(B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$ un succesor al lui 0 în posetul (B, \leq) , adică un element $a \in B$ cu $0 \prec a$ (i. e. astfel încât 0 < a și nu există niciun $x \in B$ cu proprietatea că 0 < x < a);
- se numește filtru al unei algebre Boole $\mathcal{B} = (B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$ o submulțime nevidă F a lui B închisă la conjuncție și la majorare, i. e. o mulțime F cu proprietățile:
 - i. $\emptyset \neq F \subseteq B$;
 - ii. pentru orice $x, y \in F$, rezultă că $x \land y \in F$;
 - iii. pentru orice $x \in F$ și orice $y \in B$, dacă $x \leq y$, atunci $y \in F$;

mulțimea filtrelor lui \mathcal{B} se notează cu Filt(\mathcal{B});

- este imediat că orice filtru al unei algebre Boole conține elementul 1;
- pentru orice algebră Boole $\mathcal{B} = (B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$ și orice $a \in B$, mulțimea notată $[a) = \{b \in B \mid a \leq b\}$ este un filtru al lui \mathcal{B} , numit filtrul principal generat de a; notăm mulțimea filtrelor principale ale lui \mathcal{B} cu PFilt(\mathcal{B});
- orice algebră Boole finită are toate filtrele principale;
- se numește congruență a unei algebre Boole $\mathcal{B} = (B, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$ o relație de echivalență \sim pe B compatibilă cu operațiile de algebră Boole ale lui \mathcal{B} , i. e. o relație binară \sim pe B cu proprietățile:
 - i. $\sim \in \text{Eq}(B)$;
 - ii. pentru orice $x, y, x', y' \in B$, dacă $x \sim x'$ și $y \sim y'$, atunci $x \lor y \sim x' \lor y'$ (compatibilitatea cu \lor);
 - iii. pentru orice $x, y, x', y' \in B$, dacă $x \sim x'$ și $y \sim y'$, atunci $x \wedge y \sim x' \wedge y'$ (compatibilitatea cu \wedge);
 - iv. pentru orice $x, x' \in B$, dacă $x \sim x'$, atunci $\overline{x} \sim \overline{x'}$ (compatibilitatea cu $\overline{\cdot}$);

notăm cu $Con(\mathcal{B})$ mulțimea congruențelor lui \mathcal{B} ;

- referitor la definiția anterioară, a se observa următorul fapt: compatibilitatea unei relații binare \sim pe B cu operațiile zeroare ale lui \mathcal{B} (i. e. constantele 0 și 1) se scrie astfel: $0 \sim 0$ și $1 \sim 1$, proprietăți care sunt satisfăcute nu numai de către orice relație de echivalență \sim pe B, ci chiar de către orice relație reflexivă \sim pe B;
- mulțimea congruențelor unei algebre Boole \mathcal{B} este în bijecție cu mulțimea filtrelor lui \mathcal{B} ;
- \bullet notăm cu V mulțimea variabilelor calculului propozițional clasic;
- notăm cu E mulțimea enunțurilor calculului propozițional clasic;
- dată o *interpretare* în calculul propozițional clasic, i. e. o funcție $h: V \to \mathcal{L}_2$, notăm cu $\tilde{h}: E \to \mathcal{L}_2$ unica extindere a lui h la E care transformă conectorii logici în operații booleene;
- se notează cu $h \vDash \varphi$, respectiv $h \vDash \Sigma$, faptul că o interpretare $h : V \to \mathcal{L}_2$ satisface un enunț $\varphi \in E$, respectiv o mulțime de enunțuri $\Sigma \subseteq E$, i. e. $\tilde{h}(\varphi) = 1$, respectiv $\tilde{h}(\sigma) = 1$ pentru orice $\sigma \in \Sigma$;
- se notează cu $\vdash \varphi$ faptul că un enunț φ este o teoremă formală (adevăr sintactic) în logica propozițională clasică;
- se notează cu $\vDash \varphi$ faptul că un enunț φ este universal adevărat (tautologie, adevăr semantic) în logica propozițională clasică (adică orice interpretare satisface pe φ);
- se notează cu $\Sigma \vdash \varphi$ faptul că un enunț $\varphi \in E$ este deductibil sintactic din ipotezele $\Sigma \subseteq E$ în logica propozițională clasică;
- se notează cu $\Sigma \vDash \varphi$ faptul că un enunț $\varphi \in E$ este deductibil semantic din ipotezele $\Sigma \subseteq E$ în logica propozițională clasică (adică orice interpretare care satisface pe Σ satisface și pe φ);
- pentru orice enunț φ , $\vdash \varphi$ ddacă $\emptyset \vdash \varphi$, şi $\models \varphi$ ddacă $\emptyset \models \varphi$;
- pentru orice mulţime $\Sigma \subseteq E$, notăm cu $(E/_{\sim_{\Sigma}}, \vee_{\Sigma}, \wedge_{\Sigma}, \leq_{\Sigma}, \stackrel{\cdot}{}^{\Sigma}, 0_{\Sigma}, 1_{\Sigma})$ algebra Lindenbaum— Tarski asociată mulţimii de ipoteze Σ pentru logica propoziţională clasică, despre care ştim că este o algebră Boole; amintim că $\sim_{\Sigma} = \{(\alpha, \beta) \mid \alpha, \beta \in E, \Sigma \vdash \alpha \leftrightarrow \beta\} \in \text{Eq}(E)$; notăm cu $\widehat{\varphi}^{\Sigma} \in E/_{\sim_{\Sigma}}$ clasa unui enunţ φ în $E/_{\sim_{\Sigma}}$;
- cazul particular $\Sigma = \emptyset$ în cele de mai sus: notăm cu $(E/\sim_{\Sigma}, \vee, \wedge, \leq, \bar{\cdot}, 0, 1)$ algebra Lindenbaum—Tarski a logicii propoziționale clasice, care este o algebră Boole; amintim că $\sim = \sim_{\emptyset} = \{(\alpha, \beta) \mid \alpha, \beta \in E, \vdash \alpha \leftrightarrow \beta\} \in \text{Eq}(E)$; notăm cu $\widehat{\varphi} \in E/\sim$ clasa unui enunț φ în E/\sim ;
- pentru orice $\Sigma \subseteq E$ și orice $\varphi \in E$, are loc echivalența: $\Sigma \vdash \varphi$ ddacă $\widehat{\varphi}^{\Sigma} = 1_{\Sigma}$ în algebra booleană $E/_{\sim_{\Sigma}}$ (lemă din calculul propozițional clasic);
- caz particular: pentru orice $\varphi \in E$, are loc echivalenţa: $\vdash \varphi$ ddacă $\widehat{\varphi} = 1$ în algebra Lindenbaum—Tarski $E/_{\sim}$;
- pentru orice $\varphi, \psi \in E$ și orice $\Sigma \subseteq E$, are loc echivalența: $\Sigma \vdash \varphi \to \psi$ ddacă $\Sigma \cup \{\varphi\} \vdash \psi$ (**Teorema deducției** pentru calculul propozițional clasic; abreviată **TD**);
- pentru orice $\varphi \in E$ și orice $\Sigma \subseteq E$, are loc echivalența: $\Sigma \vdash \varphi$ ddacă $\Sigma \vDash \varphi$ (**Teorema de completitudine tare** a calculului propozițional clasic; abreviată \mathbf{TCT}); cazul $\Sigma = \emptyset$ în \mathbf{TCT} se numește **Teorema de completitudine** a calculului propozițional clasic (\mathbf{TC});
- ullet mulțimea T a teoremelor formale ale logicii propoziționale clasice e satisfăcută de orice interpretare;

- o mulţime $\Sigma \subseteq E$ e satisfiabilă (adică există o interpretare care o satisface) ddacă Σ e consistentă, i. e. sistemul deductiv $\Delta(\Sigma)$ generat de Σ , anume $\Delta(\Sigma) = \{\varphi \in E \mid \Sigma \vdash \varphi\}$, nu conţine toate enunţurile, adică $\Delta(\Sigma) \subsetneq E$;
- pentru orice $\varphi \in E$, există o formă normală conjunctivă (FNC) (i. e. o conjuncție de disjuncții de literali, adică elemente din $V \cup \{\neg p \mid p \in V\}$) $\gamma \in E$ astfel încât $\varphi \sim \gamma$, ceea ce este echivalent cu faptul că $\tilde{h}(\varphi) = \tilde{h}(\gamma)$ pentru orice interpretare h;
- un enunț φ în FNC e nesatisfiabil (i. e. nu e satisfăcut de nicio interpretare, ceea ce e echivalent cu $\vdash \neg \varphi$, așadar $\vdash \neg \varphi$ conform **TC**) ddacă există măcar o derivare prin rezoluție a clauzei vide \Box din φ ;
- un enunț φ în FNC e satisfiabil ddacă nu există nicio derivare prin rezoluție a clauzei vide \Box din φ .

Bibliografie

- [1] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, The Millenium Edition, disponibilă online.
- [2] D. Bușneag, D. Piciu, Lecții de algebră, Editura Universitaria Craiova (2002).
- [3] D. Buşneag, D. Piciu, Probleme de logică și teoria mulțimilor, Craiova (2003).
- [4] V. E. Căzănescu, Curs de bazele informaticii, Tipografia Universității din București (1974, 1975, 1976).
- [5] G. Georgescu, Elemente de logică matematică, Academia Militară, București (1978).
- [6] G. Georgescu, A. Iorgulescu, Logică matematică, Editura ASE, Bucuresti (2010).
- [7] K. Kuratowski, *Introducere în teoria mulțimilor și în topologie*, traducere din limba poloneză, Editura Tehnică, București (1969).
- [8] S. Rudeanu, Curs de bazele informaticii, Tipografia Universității din București (1982).
- [9] A. Scorpan, *Introducere în teoria axiomatică a mulțimilor*, Editura Universității din București (1996).
- [10] Articolele cu probleme date la examenul de logică matematică şi computațională, precum şi celelalte articole din *Revista de logică*, publicație online.
- [11] Cursurile de logică matematică și computațională de pe site—ul Facultății de Matematică și Informatică a Universității din București (pe serverul de cursuri: *moodle*).