Série 6

Exercice 1. Soit Ω un ouvert connexe dans $\mathbb C$ et soit I un intervalle fermé dans Ω . Soit f continue dans Ω et analytique dans $\Omega \setminus I$. Montrer que f est analytique dans tout Ω .

Exercice 2. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière non constante. Démontrer que $f(\mathbb{C})$ est dense dans \mathbb{C} .

Exercice 3. En utilisant le contour de la Figure 1, calculer l'intégrale

$$\int_0^\infty \frac{\sin t}{t} dt$$

Figure 1

Exercice 4.

(1) (Lemme de Schwarz) Démontrer que si $f: \mathbb{C} \to \mathbb{C}$ est analytique dans le disque unité ouvert \mathbb{D} , f(0) = 0 et $|f(z)| \le 1$ pour tout $z \in \mathbb{D}$, alors pour tout $z \in \mathbb{D}$ on a

$$|f(z)| \le |z|$$
.

- (2) Soit $z, a \in \mathbb{D}$, et soit $M_a : \mathbb{D} \to \mathbb{C}$ la fonction analytique $M_a(z) = \frac{z-a}{1-z\bar{a}}$. Montrer que $\forall z, a \in \mathbb{D}$, on a $|M_a(z)| \le 1$, et que $M_a \circ M_{-a} = M_{-a} \circ M_a = \mathrm{Id}$.
- (3) Déduire que si la fonction $f: \mathbb{D} \to \mathbb{D}$ est analytique dans le disque ouvert \mathbb{D} et qu'elle a deux points fixes dans \mathbb{D} , alors $f(z) \equiv z$. (Indice: Utiliser (2) pour montrer que l'on peut supposer qu'un des deux points fixes est 0.)
- (4) Soit $f: \mathbb{D} \to \mathbb{D}$ analytique et t.q. $f(z_0) = z_0$ et $f'(z_0) = 1$ pour un certain $z_0 \in \mathbb{D}$. Montrer que $f(z) \equiv z$.
- (5) (Lemme de Schwarz-Pick) Démontrer que si $f:\mathbb{D}\to\mathbb{D}$ est holomorphe alors $\forall z,w\in\mathbb{D}$ on a

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(z)} f(w)} \right| \le \left| \frac{z - w}{1 - \overline{z} w} \right|,$$

et en déduire que

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$