Lecture 27. Maximum Flow / P or NP

Introduction to Algorithms
Sungkyunkwan University

Hyunseung Choo choo@skku.edu

Max Flow Problem

- $\mathbf{G} = G(V, E)$
- $\mathbf{x}_{ij} = \text{flow on arc } (i,j)$
- $\mathbf{u}_{ij} = \text{capacity of flow in arc } (i, j)$
- $\mathbf{s} = \text{source node}$
- t = sink node
- \blacksquare Maximize v

Subject to:
$$\sum_j x_{ij} - \sum_k x_{ki} = 0$$
 for each $i \neq s, t$ $\sum_j x_{sj} = v$ $0 \leq x_{ij} \leq u_{ij}$ for all $(i,j) \in E$

Maximum Flows

- We refer to a flow x as maximum if it is feasible and maximizes v
- Our objective in the max flow problem is to find a maximum flow

A max flow problem Capacities and a non-optimum flow

Feasibility Problem: Find a Feasible Flow

Is there a way of shipping from the warehouses to the retailers to satisfy demand?

Transformation to a Max Flow Problem

There is a 1-1 correspondence with flows from s to t with 24 units (why 24?) and feasible flows for the transportation problem

Feasibility Problem: Find a Matching

Is there a way of assigning persons to tasks so that each person is assigned a task, and each task has a person assigned to it?

Transformation to a Max Flow Problem

Does the maximum flow from s to t have 4 units?

Residual Networks

The Residual Network G(x)

Let r_{ij} denote the residual capacity of arc (i,j)

Augmenting Paths

- An augmenting path is a path from s to t in the residual network
- The residual capacity of the augmenting path P
- To *augment along P*, send $\delta(P)$ units of flow along each arc of the path, then, modify x and the residual capacities appropriately
- $\mathbf{r}_{ij} := \mathbf{r}_{ij} \delta(\mathsf{P})$ and $\mathbf{r}_{ji} := \mathbf{r}_{ji} + \delta(\mathsf{P})$ for $(i,j) \in \mathsf{P}$

Ford-Fulkerson Max-Flow (1/16)

- Begin
 - **▶** x := 0
 - create the residual network G(x)
 - \triangleright while there is some directed path from s to t in G(x) do
 - begin
 - \star let P be a path from s to t in G(x)
 - $\star \Delta := \delta(P)$
 - ★ send \(\Delta \) units of flow along P
 - ★ update the r's
 - end
- End {the flow x is now maximum}

Ford-Fulkerson Max-Flow (2/16)

This is the original network, plus reversals of the arcs

Ford-Fulkerson Max-Flow (3/16)

This is the original network, and the original residual network

Ford-Fulkerson Max-Flow (4/16)

Find any s-t path in G(x)

Ford-Fulkerson Max-Flow (5/16)

Determine residual capacity Δ of the path Send Δ units of flow in the path Update residual capacities

Ford-Fulkerson Max-Flow (6/16)

Find any s-t path

Ford-Fulkerson Max-Flow (7/16)

Determine the residual capacity Δ of the path Send Δ units of flow in the path Update residual capacities

Ford-Fulkerson Max-Flow (8/16)

Find any s-t path

Ford-Fulkerson Max-Flow (9/16)

Determine the residual capacity Δ of the path Send Δ units of flow in the path Update residual capacities

Ford-Fulkerson Max-Flow (10/16)

Find any s-t path

Ford-Fulkerson Max-Flow (11/16)

Determine the residual capacity Δ of the path Send Δ units of flow in the path Update residual capacities

Ford-Fulkerson Max-Flow (12/16)

Find any s-t path

Ford-Fulkerson Max-Flow (13/16)

Determine the residual capacity Δ of the path Send Δ units of flow in the path Update residual capacities

Ford-Fulkerson Max-Flow (14/16)

There is no s-t path in the residual network This flow is optimal

Ford-Fulkerson Max-Flow (15/16)

These are the nodes that are reachable from node s

Ford-Fulkerson Max-Flow (16/16)

Here is the optimal flow

How Do We Know When a Flow Is Optimal?

▶ There is no augmenting path in the residual network

METHOD

A Simple and Very Bad Example

After 1 Augmentation

After Two Augmentations

After Three Augmentations

And so on

After 2M Augmentations

I couldn't find a polynomial time algorithm, because no such algorithm exists!

NP-Completeness

- Some problems are intractable
 - They grow large, we are unable to solve them in reasonable time
- What constitutes reasonable time?
 Standard working definition: polynomial time
 - For an input of size n, the worst-case running time is $O(n^k)$ for some constant k
 - ▶ Polynomial time: O(1), O(n lg n), O(n²), O(n³)
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)

Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?
 - Every algorithm we've studied provides polynomial-time solution to some problems
 - We define P to be the class of problems solvable in polynomial time
- Are all problems solvable in polynomial time?
 - No: Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given
 - Such problems are clearly intractable, not in P

NP-Complete Problems

- Definition
 - ► The class P (or NP) denotes the family of all problems that can be solved by deterministic (nondeterministic) polynomial time algorithms All decision problems only answer YES or NO
- Nondeterministic polynomial time algorithm exist?

NP-Complete Problems

- The NP-Complete problems are an interesting class of problems whose status is unknown
 - No polynomial-time algorithm has been discovered for an NP-Complete problem
- We call this the P = NP?
 - ► The biggest open problem in CS
- Examples of NP-Complete problems:
 - Vertex cover problem
 - ▶ Traveling salesman problem
 - Job scheduling problem
 - ...

Thanks to contributors

Mr. Pham Van Nguyen (2022)

Dr. Thien-Binh Dang (2017 - 2022)

Prof. Hyunseung Choo (2001 - 2022)