

UNIVERSIDADE ESTADUAL DE SANTA CRUZ (UESC)

Criada pela Lei 6.344, de 05.12.1991, e reorganizada pela Lei 6.898, de 18.08.1995 e pela Lei 7.176, de 10.09.1997

CET115 – Processamento Digital de Imagens

Introdução

Prof. Dra. Vânia Cordeiro da Silva

Departamento de Ciências Exatas e Tecnológicas Universidade Estadual de Santa Cruz (UESC) vania(at)uesc(dot)br

Motivação

Uma imagem vale mais do

que mil palavras... (Confúcio 500 aC)

 Seres humanos são limitados à banda visual do espectro eletromagnético (EEM): aparelhos de processamento não!

Motivação

- Processadores trabalham com imagens geradas por fontes que os humanos não estão acostumados a associar com imagens
 - Principal fonte de energia para imagens: especto eletromagnético de energia (visível ou não)
 - Outras fontes: acústica (geologia), ultrassônica (medicina) e eletrônica (microscopia)
- Hoje em dia não existe praticamente mais nenhuma área de empreeendimento técnico que não seja impactada de uma forma ou de outra pelo processamento digital de imagens (Gonzales 2010)

Introdução

 Principais elementos envolvidos na sensação de cor

Introdução

- Luz: radiação eletromagnética que possui uma certa "energia", denominada "fóton", para cada de onda
 - Comportamento ondulatório com grande gama de frequências e comprimentos de onda característicos
 - A imagem é formada pela quantidade de luz refletida ou emitada pelo objeto observado

Partículas

Núcleo

- Ondas eletromagnéticas: ondas senoidais de vários comprimentos/frequencias
 - Fluxo de partículas sem massa, cada uma se deslocando em um padrão ondulatório, na velocidade da luzóton de luzono.

Bandas espectrais agrupadas de acordo com a energia por foton:

EEM

- EE: têm efeitos e/ou o tipo de utilização diferentes
 - Variando de raios gama (mais alta energia) às ondas de rádio (mais baixa energia)
 - Faixa visível: aproximadamente de 390 nm a 790 nm
 - Varia de pessoa para pessoa
- A maioria das imagens são geradas pela combinação de uma fonte de "iluminação" e a reflexão ou absorção de energia dessa fonte pelos elementos da "cena"
 - Iluminação: luz visível, raio-x, infravermelho, radar, ultrasson, raios gama...
 - Cena: Objetos cotidianos, superfície lunar, moléculas, formações rochosas subterrâneas, cérebro humano, ...

EEM

- Nenhuma componente termina abruptamente, cada faixa se mistura a gradativamente à próxima
 - Altas frequências: danos na nossa estrutura celular
- Luz não visível:
 - Raios Gama (radiação): medicina nuclear (tomografia), esterelização e astronomia
 - Raios X: imagens médicas e industriais
 - Ultravioleta: microscopia de fluorescencia, lasers, imagens biológicas e astronomia
 - Infravermelho: satélite
 - Microondas: radar
 - Ondas de rádio: medicina (ressonancia) e astronomia

EEM

- Luz Visível: devemos compreender o processo de visão dos seres humanos:
 - Inicia-se na córnea
 - Olho humano percebe comprimentos de onda diferentes como cores diferentes
 - Órgãos receptores (olhos): sensíveis à radiação eletromagnética de determinada faixa
 - Interpretam como luz

Cul

- Cada espécie possui
 - Gatos e insetos: banc zona do ultra violeta c
 - Gatos precisam de :
 - Cães:

Curiosidade

- Cada espécie possui uma percepção diferente:
 - Répteis (cobras): zona dos infravermelhos e são praticamente insensíveis ao que chamamos luz
 - Pombos: não possuem bastonetes, precisam de bastante luz
 - Corujas: algumas possuem apenas bastonetes e têm uma excelente visão noturna

Sistema de Visão Humano

- Elementos fotossensíveis presentes na retina: cones e bastonetes (± 150 milhões)
 - Convertem energia luminosa em impulsos elétricos que são transmitidos até o cérebro para serem interpretados
 - Ocorre, então, o ato de ver
 - Comparativamente, as câmeras digitais atuais possuem 16 milhões de sensores
 - Bastonetes não detectam cor: sensíveis a baixos níveis de iluminação
 - Objetos coloridos à luz do dia parecem acinzentados sob o luar

Sistema de Visão Humano

 Visão: resposta ao estímulo luminoso que atravessa camadas transparentes da retina, chegando aos cones e bastonetes, gerando reações fotoquímicas

Sistema de Visão Humano

- Cones: Sensíveis a cores
 - Funcionam sob boas condições de iluminação
 - Olho humano não detecta a cor dos objetos em condições de iluminação muito fraca como à noite
 - Existem 3 tipos de cones de acordo com a sensibilidade a faixas do espectro
 - Na zona do azul (ondas curtas)
 - Na zona do verde (ondas médias)
 - Na zona do vermelho (ondas largas)
 - Diz-se que o olho apresenta cones "azuis", "verdes" e "vermelhos"
 - Cores diversas podem ser obtidas por combinações destas três cores primárias vermelho, verde e azul

Daltonismo

 Perturbação da percepção visual caracterizada pela incapacidade de diferenciar todas ou algumas cores

 Os cones dos. daltônicos não existem em número suficiente ou apresentam alguma alteração, impedindo o indivíduo de diferenciar as cores nas diversas tonalidades

- Intuitivamente baseado no sistema visual humano: deverá possuir três parâmetros
- Processo aditivo: combinação de radiações monocromáticas nas faixas verde, vermelho e azul
- Padronização: programas possam conversar entre si e com o usuário
- Primeiro padrão (1931): comitê CIE (Comission Internacionale de l'Éclairage)
 - Comissão Internacional de Iluminação
 - Cores primárias: vermelho, verde e azul

- CIE Sistema RGB
 - Cores secundárias: cores primárias combinadas duas a duas em igual intensidade
 - Magenta = Vermelho + Azul
 - Cíano = Azul + Verde
 - Amarelo = Verde + Vermelho
 - Valores variam entre 0 (min) e 1 (max)
 - Branco: intensidade máxima
 - Preto: intensidade mínima
 - Quase universalmente empregue pelos equipamentos que manipulam luz

- CIE Sistema RGB (cont.)
 - Não representa cor primária pura: não define o comprimento de onda de cada cor
 - Variações sensíveis de monitor para monitor
 - Espaço RGB: cubo de aresta unitária
 - Preto: vértice (0,0,0)
 - Branco: vértice (0,0,0)

- CIE Sistema RGB (cont.)
 - Vermelho(1,0,0) + Cião(0,1,1) = Branco (1,1,1)
 - Verde(0,1,0) + Magenta (1,0,1) = Branco (1,1,1)
 - Azul (0,0,1) + Amarelo(1,1,0) = Branco (1,1,1)

Modelo tricromático:
definindo cada cor
através de 3
números

- CIE Sistema RGB (cont.)
 - Tradicionalmente implementado com valores inteiros entre 0 e 255
 - Velocidade
 - Discretização em 256 intensidade é mais do que suficiente ao olho humano
 - "Ao passarmos pela vitrine de uma loja com muitos televisores ligados mostrando a mesma cena vemos cores diferentes"

Exemplos de Cor no OpenGl

- glClearColor(0.5,0.5,0.0,0); //Especifica um cor para o fundo
- glClear(GL_COLOR_BUFFER_BIT);
 //Manda limpar o fundo
- glColor3ub(255, 55, 255); //Especifica a cor de desenho
- glColor3f(0.0f, 0.0f, 1.0f); // Altera a cor do desenho para azul