04-gRafici

Ottavia M. Epifania, Ph.D

Lezione di Dottorato @Università Cattolica del Sacro Cuore (MI)

8-9 Giugno 2023

Table of contents

- 1 Grafici tradizionali
- 2 ggplot2
- 3 Esportare i grafici
- 4 Lavora con i dati
- 5 Esporta i dati

- Grafici base
- Grid graphics & ggplot2

Entrambi:

Grafici tradizionali

- High level functions \rightarrow le funzioni che producono effettivamente il grafico
- Low level functions → Le funzioni che lo rendono più "bello"

Table of Contents

- 1 Grafici tradizionali
- 2 ggplot2
- 3 Esportare i grafici
- 4 Lavora con i dati
- **6** Esporta i dati

Lavora con i dati

Grafici tradizionali

0000000

```
plot()
            # scatter plot, specialized plot methods
boxplot()
hist()
            # histogram
qqnorm()
            # quantile-quantile plot
barplot()
pie()
            # pie chart
pairs()
            # scatter plot matrix
persp()
            # 3d plot
contour()
            # contour plot
            # conditional plot
coplot()
interaction.plot()
```

demo(graphics) vi fonrisce un tour guidato dei grafici

0000000

```
points()
          # Aggiunge punti al grafico
lines()
          # Aggiunge linee al grafico
rect()
polygon()
abline() # aggiunge una riga con intercetta a e pendenza b
arrows() # aggiunge barre d'errore
text()
        # aggiunge testo nel plot
mtext()
        # aggiunge testo nei margini
axis()
        # personalizza gli assi
box() # box attorno al grafico
legend() # cambia parametri della legenda
```

00000000

Ogni plot è composto da due regioni:

- Plotting region (dove effettivamente sta il plot)
- La regione dei margini (contiene i margini e le varie etichette degli assi)

Plot layout

Ogni plot è composto da due regioni:

- Plotting region (dove effettivamente sta il plot)
- La regione dei margini (contiene i margini e le varie etichette degli assi)

Uno scatter plot:

Aggiunge del testo al plot

```
text(0.6, 0.6, "Testo @ (0.6, 0.6)")
abline(h=.6, v=.6, lty=2) # horizont. and vertic.
# lines
```

Margins region

Modificare il layout dei plot

Per ottenere 4 pannelli:

Grafici tradizionali

00000000

```
par(mfrow=c(2,2)) # i pannelli vengono riempiti in riga
par(mfcol=c(2,2)) # i pannelli vengono riempiti in colonna
```

hist()

Produce un istogramma:

Frequenze:

hist(benessere\$score_au)

Densità

hist(benessere\$score_au,
 density=50, breaks=20,
 prob=TRUE, col = "darkblue")

Multi plot (in riga)

```
par(mfrow=c(2,2))
hist(benessere$score au,density=50, breaks=20, prob=TRUE)
curve(dnorm(x, mean=mean(benessere$score_au),
             sd=sd(benessere$score au)),
      col="darkblue", lwd=2, add=TRUE, yaxt="n")
hist(benessere\$score_au,density=\frac{50}{}, breaks=\frac{20}{}, prob=\frac{TRUE}{})
curve(dnorm(x, mean=mean(benessere$score_au),
             sd=sd(benessere$score au)),
      col="darkblue", lwd=2, add=TRUE, yaxt="n")
```


Table of Contents

- Grafici tradizionali
- 2 ggplot2
- 3 Esportare i grafic
- 4 Lavora con i dati
- **6** Esporta i dati

Table of Contents

- Grafici tradizionali
- 2 ggplot2
- 3 Esportare i grafici
- 4 Lavora con i dati
- **6** Esporta i dati

Esportare i grafici

```
postscript() # vector graphics
pdf()

png() # bitmap graphics
tiff()
jpeg()
bmp()
```

Remember to run off the graphic device once you've saved the graph:

```
dev.off()
```

(You can do it also manually)

comma separatered value \rightarrow i separatori di colonna sono le virgole ","

Nonostante siano comma separatered value nei computer in italiano sono ":", cosa che ovviamente genera non poca confusione

Il comando di base per leggere i .csv:

```
read.csv(file, header = TRUE, sep = ",", quote = "\",
         dec = "."", ...)
```

file: Il nome del file (se serve anche la sua directory)

header = TRUE: La prima riga contiene i nomi delle variabilii

sep = ",": I separatori delle colonne sono le virgole

dec = ".": Il separatore dei decimali

.csv in Italia

Grafici tradizionali

Due opzioni:

- usare la funzione read.csv = sep() settando sep = ";" e
 dec=","
- 2 usare la funzione read.csv2() \rightarrow cambiano i default per cui sep =";" e dec = "."

```
dir("data") # elenca tutti gli oggetti che sono all'interno
```

```
[1] "babies.tab" "benessere.csv" "benessereScores.csv"
```

```
[4] "CioccoRazzaBuilt.dat" "database benessere.xls"
```

"datiBenessere.xlsx"

Come si chiama il file?

```
[7] "score.tab"
```

Voglio importare il data set benessere.csv e assegnarlo all'oggetto data:

```
data = read.csv("data/benessere.csv",
                header = TRUE,
                sep =",", dec = ".")
```

Ha funzionato?

Si!

head(data)

Grafici tradizionali

```
benessere stipendio genere
          5 1461.0983
1
                             m
             1132.3637
3
            1675.9004
                             m
              328.9587
5
            1370.0146
                             m
6
              954.3540
```

Ha funzionato?

No

Grafici tradizionali

```
head(data.2)
```

```
benessere.stipendio.genere
        5,1461.09828023079,m
        7,1132.36368361099,f
3
        7,1675.90040479853,m
        2,328.958701913838,f
5
        6,1370.01460952768,m
6
        5,954.354030915469,f
```

Il comando di base per leggere i .tab o .dat:

```
read.table(file, header = FALSE, sep = "", quote = "\"'",
         dec = "."", ...)
```

file: Il nome del file (se serve anche la sua directory)

header = FALSE: La prima riga contiene i nomi delle variabili (letto di default)

sep = "": I separatori delle colonne sono inferiti dal file

dec = ".": Il separatore dei decimali

read.table() in pratica |

```
tab_data = read.table("data/babies.tab")
head(tab_data)
```

```
id genere peso altezza
1 baby1 f 7.424646 62.07722
2 baby2 m 7.442727 58.18877
3 baby3 f 9.512598 84.52737
4 baby4 f 11.306349 85.13573
5 baby5 m 9.345165 75.23783
6 baby6 m 5.411290 46.80163
```

```
dat_data = read.table("data/CioccoRazzaBuilt.dat",
                      header = TRUE, sep = "\t")
head(dat_data)
```

date time build subject blocknum blockcode trialnum

- 1 121318 09:55 3.0.6.0 1 1 consenso 1
- 2 121318 09:55 3.0.6.0 1 2 fame 1
- 3 121318 09:55 3.0.6.0 1 6 BuiltLatteFondente2nd 1
- 4 121318 09:55 3.0.6.0 1 6 BuiltLatteFondente2nd 2 5 121318 09:55 3.0.6.0 1 6 BuiltLatteFondente2nd 4
- 6 121318 09:55 3.0.6.0 1 6 BuiltLatteFondente2nd 6
- trialcode
- 1 consenso
- 2 fame
- 3 reminder
- 4 Builtlatteright
- 5 Builtfondenteleft
- 6 Builtfondenteleft response correct

File excel

```
Servono aiuti esterni (un pacchetto apposito):
```

install.packages("readxl") va digitato e fatto correre una volta nella console

```
library("readxl") # rende disponibile il pacchetto nell'ambie
```

La funzione:

```
read_excel(path, sheet = NULL, range = NULL, col_names = TRUE
           col_types = NULL, ...)
```

path: Il nome del file (se serve anche la sua directory) sheet = NULL dà la possibilità di speicificare il foglio specifico del file excel

```
range = NULL: Il range specifico di celle da leggere (e.g., B0:B13)
col names = TRUE: La prima riga contiene i nomi delle variabili
```

```
benessere = read_excel("data/datiBenessere.xlsx")
head(benessere)
# A tibble: 6 \times 19
ID età genere frat item1 item2 item3 item4 item5 au1 au2
au3 au4
<dbl> <dbl> <dbl>
1 1 16 1 0 1 2 4 3 4 5 4 5 2
2 2 21 1 1 2 2 3 4 3 5 4 5 2
3 3 28 2 4 2 3 5 1 2 4 4 4 4
4 4 15 2 2 3 4 2 2 2 4 5 5 3
5 5 23 1 3 4 5 1 5 2 3 2 3 2
6 6 31 1 2 2 3 2 1 2 5 1 5 1
# i 6 more variables: au5 <dbl>, au6 <dbl>, au7 <dbl>, au8
<dbl>. au9 <dbl>.
# au10 <dbl>
```

File .sav

Grafici tradizionali

Aiuti esterni:

install.packages("foreign") oppure
install.packages(foreign)

Table of Contents

- Grafici tradizionali
- 2 ggplot2
- 3 Esportare i grafici
- 4 Lavora con i dati
- **6** Esporta i dati

Disclaimer

Grafici tradizionali

Presento solo le opzioni disponibili con base-R.

Si ottengono le stesse cose che si otterrebbero con tidyverse La logica di tidyverse è un po' diversa, ma si ottiene lo stesso risultato con più codice

Sorting (Riordinare)

babies

```
id genere peso altezza
1 baby1 m 9.858097 68.83238
2 baby2 f 8.128073 72.30143
3 baby3 f 11.347780 74.75981
```

• • •

. . . .

order():

Ordine crescente

```
babies[order(babies$peso), ]

id genere peso altezza
baby5 m 5.547482 50.95574
baby10 f 6.899776 71.39348
baby2 f 8.128073 72.30143
```

 id genere
 peso
 altezza

 7
 baby7
 m 15.253421
 89.57014

 4
 baby4
 f 15.246266
 87.40951

 3
 baby3
 f 11.347780
 74.75981

. . . .

Si può ordinare anche considerando più variabili:

```
babies[order(babies$peso, babies$altezza,
             decreasing = TRUE), ]
```

	10	genere	peso	altezza
7	baby7	m	15.253421	89.57014
4	baby4	f	15.246266	87.40951
3	baby3	f	11.347780	74.75981
6	baby6	m	10.005233	70.75147
1	baby1	m	9.858097	68.83238
9	baby9	m	8.767017	65.63333
8	baby8	f	8.638523	83.48096
2	baby2	f	8.128073	72.30143
10	baby10	f	6.899776	71.39348
5	baby5	m	5.547482	50.95574

Wide format

Grafici tradizionali

Siamo abituati ad avere i dati in formato wide, ovvero matrici $p \times v$ dove $p = 1, \dots, P$ partecipanti e $v = 1, \dots, V$ variabili

Il numero di righe è uguale a P (numero dei partecipanti) e il numero di colonne è uguale a V (numero di variabili):

		ndition A	Condition B		
Respondent	RT ∜	Accuracy 🕏	RT ∜	Accuracy 🖔	
p1	520	1	420	0	
<i>p</i> 2	320	0	620	0	
p3	720	1	520	1	

Long format

Grafici tradizionali

I dati organizzati in long format stanno prendendo sempre più piede

I software per la somministrazione di esperimenti (e.g., Inquisit, e-prime, PsychopPy) forniscono i risultati in long format

In riga si trovano le singole osservazioni. Ogni partecipante ha tante righe quante sono le osservazioni (i.e., i trial o le domande a cui ha risposto)

Il numero totale di righe è il prodotto tra P e il numero di trial di cui è composto l'esperimento

Condition	Stimulus	RT	Accuracy
А	18⁴	520	1
В	18€	420	0
Α	₹ 8*	320	0
В	₹ 8*	620	0
Α	™ 8*	720	1
В	₹&*	520	1
	A B A	A 格 B 格 A 格 B 格	B

Grafici tradizionali 00000000	ggplot2 ○	Esportare i grafici	Lavora con i dati	Esporta i dati 0000					
Long to	wide								
Da qui (long	Da qui (long format)								
Indometh #	Long format								
1 1 2 1 3 1 4 1 5 1	time conc 0.25 1.50 0.50 0.94 0.75 0.78 1.00 0.48 1.25 0.37 2.00 0.19								

A qui (wide format):

Subject	conc.0.25	conc.0.5	conc.0.75	conc.1	conc.1.25	conc.
_						

.2 conc.3 con 1 1.50 0.94 0.78 0.48 0.37 0.19 0.12 0

12 2 2.03 1.63 0.71 0.70 0.64 0.36 0.32 0 3 23 2.72 1.49 1.16 0.80 0.80 0.39 0.22 0

34 4 1.85 1.39 1.02 0.89 0.59 0.40 0.16 5 45 2.05 1.04 0.81 0.39 0.30 0.23 0.13

0

0

reshape()

Per girare il dataset si utilizza la funzione reshape

Sempre meglio sapere come sono fatti i dati per evitare sorprese:

levels(Indometh\$Subject) # quanti soggetti ho?

[1] "1" "4" "2" "5" "6" "3"

table(Indometh\$Subject) # quante osservazioni ho per soggetto?

11 11 11 11 11 11

nrow(Indometh) # quante righe ha il mio dataset?

[1] 66

Ci aspettiamo un dataframe a 6 righe e con 11 colonne + la colonna con gli id dei soggetti:

Esportare i grafici

```
# From long to wide
df.w <- reshape(Indometh, v.names = "conc", timevar = "time",</pre>
    idvar = "Subject", direction = "wide")
```

Le aspettative sono rispettate?

```
nrow(df.w) == length(levels(Indometh$Subject)) # ho sei righe?
```

```
[1] TRUE
```

```
sum(grepl("conc", colnames(df.w))) # ho 11 colonne per le 11 variabili?
```

[1] 11

Facendo prima...

	Subject	conc.0.25	conc.0.5	conc.0.75	conc.1	conc.1.25	conc.2	conc.3	con
1	1	1.50	0.94	0.78	0.48	0.37	0.19	0.12	0
12	2	2.03	1.63	0.71	0.70	0.64	0.36	0.32	0
23	3	2.72	1.49	1.16	0.80	0.80	0.39	0.22	0
34	4	1.85	1.39	1.02	0.89	0.59	0.40	0.16	0
45	5	2.05	1.04	0.81	0.39	0.30	0.23	0.13	0
56	6	2.31	1.44	1.03	0.84	0.64	0.42	0.24	0
	conc.5 conc.6 conc.8								

Wide to long

Grafici tradizionali

```
# From wide to long
df.1 <- reshape(df.w, varying = list(2:12), v.names = "conc",
   idvar = "Subject", times = names(df.w)[-1], direction = "long")
           Subject time conc
1.conc.0.25
                 1 conc.0.25 1.50
```

2.conc.0.25 2 conc.0.25 2.03 3.conc.0.25 3 conc.0.25 2.72

Unire dataset

Grafici tradizionali

Se i dataset hanno lo stesso numero di colonne con lo stesso nome all data = rbind(data, data1, data2, ...)

Se i dataset hanno lo stesso numero di righe:

```
all data = cbind(data, data1, data2, ...)
```

Se i dataset hanno numeri diversi di righe e/o colonne, ma hanno almeno una caratteristica in comune (e.g., id) \rightarrow merge()

```
all_data = merge(data1, data2,
                 bv = "ID")
```

All'argomento by si può passare anche un vettore di character che indica secondo quale variabile vogliamo che vengano uniti i dataset

Esporta i dati

merge(): Un esempio

babies

```
    id genere
    peso altezza

    1 baby1
    m 9.858097 68.83238

    2 baby2
    f 8.128073 72.30143

    3 baby3
    f 11.347780 74.75981
```

. . . .

merge(): Un esempio

Grafici tradizionali

```
babies
                                    baby_detail
      id genere
                     peso
                           altezza
                                           id termine apgar genere
              m 9.858097 68.83238
   baby1
                                    1
                                        baby1
                                                  yes
                                                          8
                                                                 \mathbf{m}
   baby2
              f 8.128073 72.30143
                                        baby2
                                                                 f
                                                  yes
                                                          8
   baby3 f 11.347780 74.75981
                                        baby3
                                                                 f
                                                  ves
```

merge(babies, baby_detail)

	id	${\tt genere}$	peso	altezza	termine	apgar
1	baby1	m	9.858097	68.83238	yes	8
2	baby10	f	6.899776	71.39348	no	3
3	baby2	f	8.128073	72.30143	yes	8
4	baby3	f	11.347780	74.75981	yes	9
5	baby4	f	15.246266	87.40951	yes	6
6	baby5	m	5.547482	50.95574	yes	8
7	baby6	m	10.005233	70.75147	yes	5
8	baby7	m	15.253421	89.57014	yes	3
9	baby8	f	8.638523	83.48096	no	6
10	baby9	m	8.767017	65.63333	no	4

Attenzione! Dataset con id diversi

id termine apgar genere 1 baby1 yes 8 m 2 baby2 8 f yes 3 baby3 f yes f 4 baby4 6 yes 5 baby11 8 yes m 6 baby12 5 yes m baby13 yes m 8 baby14 6 f no baby15 no m baby16 f no

Attenzione! Dataset con id diversi

```
id termine apgar genere
1
    baby1
               yes
                        8
                                m
2
    baby2
                                f
               yes
3
    baby3
                                f
               yes
                                f
4
    baby4
                        6
               yes
5
   baby11
               yes
                                m
   baby12
               yes
                                m
   baby13
               yes
                                m
   baby14
                        6
                                f
                no
   baby15
                no
                                m
10 baby16
                                f
                no
```

merge(babies, new_baby)

id	genere	peso	altezza	termine	apgar
baby1	m	9.858097	68.83238	yes	8
baby2	f	8.128073	72.30143	yes	8
baby3	f	11.347780	74.75981	yes	9
baby4	f	15.246266	87.40951	yes	6
	baby1 baby2 baby3	baby2 f baby3 f	baby1 m 9.858097 baby2 f 8.128073 baby3 f 11.347780	baby1 m 9.858097 68.83238 baby2 f 8.128073 72.30143 baby3 f 11.347780 74.75981	baby1 m 9.858097 68.83238 yes baby2 f 8.128073 72.30143 yes baby3 f 11.347780 74.75981 yes

Oppure

Grafici tradizionali

```
merge(babies, new_baby,
      all = T)
```

	id	genere	peso	altezza	termine	apgar
1	baby1	m	9.858097	68.83238	yes	8
2	baby10	f		71.39348	<na></na>	NA
3	baby11	m	NA.	NA	yes	8
4	baby12	m	NA	NA	yes	5
5	baby13	m	NA	NA	yes	3
6	baby14	f	NA NA	NA	no	6
7	baby15	m	NA NA	NA NA	no	4
	•	f				3
8	baby16	_	NA	NA	no	_
9	baby2	f	8.128073	72.30143	yes	8
10	baby3	f	11.347780	74.75981	yes	9
11	baby4	f	15.246266	87.40951	yes	6
12	baby5	m	5.547482	50.95574	<na></na>	NA
13	baby6	m	10.005233	70.75147	<na></na>	NA
14	baby7	m	15.253421	89.57014	<na></na>	NA
15	baby8	f	8.638523	83.48096	<na></na>	NA
16	baby9	m	8.767017	65.63333	<na></na>	NA
	3					

Table of Contents

- Grafici tradizionali
- 2 ggplot2
- 3 Esportare i grafici
- 4 Lavora con i dati
- **5** Esporta i dati

```
write.table(data, # il dataframe
            file = "mydata.txt", # il nome che si vuol dare +
            header = TRUE,
            sep = "\t",
             . . . . )
```

L'ambiente di R:

```
save(dat, file = "exp1 data.rda") # salva un oggetto specific
save(file = "the earth.rda")
                                  # save the environment
load("the_earth.rda")
                                  # re-importa l'environment
```

Aggregating

Aggrega una variabile "dipendente" a seconda di una serie di variabili dipendenti e vi applica una funzione

Aggregate a response variable according to grouping variable(s) (e.g., averaging per experimental conditions):

```
# Una variabile dipendente (y) e pi single grouping variable
aggregate(y ~ x, data = data, FUN, ...)
```

```
# Multiple response variables, multiple grouping variables
aggregate(cbind(y1, y2) \sim x1 + x2, data = data, FUN, ...)
```

Aggregating: Example

len supp dose

OJ 1.0 22.70 VC 1.0 16.77

OJ 2.0 26.06 VC 2.0 26.14

Grafici tradizionali

3

5

```
ToothGrowth # Vitamin C and tooth growth (Guinea Pigs)
```

```
4.2 VC 0.5
2 11.5 VC 0.5
 7.3 VC 0.5
. . . .
aggregate(len ~ supp + dose, data = ToothGrowth, mean)
 supp dose len
   OJ 0.5 13.23
   VC 0.5 7.98
```