Algorithmique des données Classification

Charlotte Pelletier MCF Univ. Bretagne Sud – IRISA Vannes

19 mars 2020

Plan du cours

- Partie I. Introduction
 - CM0. Introduction
 - CM1. Rappels en algèbre linéaire et probabilités
- Partie II. Apprentissage non-supervisé
 - CM2. Analyse par Composantes Principales
 - CM3. k-Means
- Partie III. Apprentissage supervisé : régression
 - CM4. Régression linéaire
 - CM5. Régression logistique
 - CM6. Compromis biais-variance et techniques de régularisation
- Partie IV. Apprentissage supervisé : classification
 - CM7. Algorithmes de classification
 - CM8. Sélection de modèles

Plan du cours

- Partie I. Introduction
 - CM0. Introduction
 - CM1. Rappels en algèbre linéaire et probabilités
- Partie II. Apprentissage non-supervisé
 - CM2. Analyse par Composantes Principales
 - CM3. k-Means
- Partie III. Apprentissage supervisé : régression
 - CM4. Régression linéaire
 - CM5. Régression logistique
 - CM6. Compromis biais-variance et techniques de régularisation
- Partie IV. Apprentissage supervisé : classification
 - CM7. Algorithmes de classification
 - CM8. Sélection de modèles

Sommaire

Introduction

Rappel

Apprentissage supervisé

Généralisation

Donnée

Généralisation

Découpage des données

Validation croisée

Bootstrap

Évaluation des modèles

Régression

Classification

Courbe ROC

D'autres critères d'évaluation

Rappel

- Apprentissage supervisé: dans les données observées, on connaît la "vraie" valeur de la variable de sortie et on cherche à comprendre / prédire le lien supposé entre les variables d'entrée et de sortie
- Variable à expliquer/prédire, notée Y
 - quantitative : régression
 - ullet qualitative : classification binaire / multiclasses ${\cal C}$
- Variables explicatives, notées X¹, X², · · · , X^d?
 - qualitatives et/ou quantitatives
 - plusieurs = de quelques dizaines à plusieurs (dizaines de) milliers ⇒ sélection de variables

Données d'apprentissage

Échantillons

- $\mathbf{x} \in \mathbb{R}^d$ est une observation de d caractéristiques réelles (d variables)
- l'ensemble d'apprentissage est défini par les observations $\{x_i\}_{i=1}^m$ où m est le nombre de données d'apprentissages (observations)
- *d* et *m* définissent la dimensionnalité du problème d'apprentissage
- les données sont mises sous la forme d'une matrice $\mathbf{X} \in \mathbb{R}^{m \times d}$ définie par $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m]^\top = [X^1, X^2, \dots, X^d]$ contenant les exemples d'apprentissage en lignes et les variables en colonnes

4

Données d'apprentissage

Échantillons

- $\mathbf{x} \in \mathbb{R}^d$ est une observation de d caractéristiques réelles (d variables)
- l'ensemble d'apprentissage est défini par les observations $\{x_i\}_{i=1}^m$ où m est le nombre de données d'apprentissages (observations)
- *d* et *m* définissent la dimensionnalité du problème d'apprentissage
- les données sont mises sous la forme d'une matrice $\mathbf{X} \in \mathbb{R}^{m \times d}$ définie par $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m]^\top = [X^1, X^2, \dots, X^d]$ contenant les exemples d'apprentissage en lignes et les variables en colonnes

Étiquettes

- à chaque observation \mathbf{x}_i une valeur à prédire $y_i \in \mathcal{Y}$ est associée (étiquette)
- ullet les valeurs à prédire peuvent être concaténées en un vecteur $\mathbf{y} \in \mathcal{Y}^m$
- ullet L'espace des valeurs à prédire ${\mathcal Y}$ sera :
 - $\mathcal{Y} = \mathbb{R}$ pour la régression
 - $\mathcal{Y} = \{-1,1\}$ ou $\mathcal{Y} = \{0,1\}$ pour la classification binaire
 - $\mathcal{Y} = \{1, \dots, \mathcal{C}\}$ pour la classification multiclasses (\mathcal{C} classes)

Apprentissage supervisé

Système d'apprentissage

- 1. Phase d'apprentissage : apprendre un modèle (règle de décision)
- Phase de prédiction: prédire la classe de nouvelles observations (classification) ou donner une estimation de la réponse pour de nouvelles observations (régression)

Apprentissage supervisé

Système d'apprentissage

- 1. Phase d'apprentissage : apprendre un modèle (règle de décision)
- Phase de prédiction: prédire la classe de nouvelles observations (classification) ou donner une estimation de la réponse pour de nouvelles observations (régression)

Comment sélectionner / choisir

- l'algorithme d'apprentissage supervisé?
- la valeur des hyperparamètres de l'algorithme sélectionné?

Choix des algorithmes

Comment sélectionner le meilleur algorithme possible pour un problème donné?

Jeu de données Iris (CM07 et TP07) :

largeur de la pétale (cm) = f (longueur de la pétale (cm))

Sélection des hyperparamètres

*k***-Plus Proches Voisins** : Quelle est la valeur optimale de *k*?

Jeu de données Iris (CM07 et TP07) :

largeur de la pétale (cm) = f (longueur de la pétale (cm))

Sélection des hyperparamètres

Régression polynomiale:

Quelle est la valeur optimale du degré du polynôme?

Jeu de données Boston (TP06).

- LSTAT est le pourcentage de ménages dont la catégorie socio-professionnelle est peu élevée
- y est la valeur médiane des maisons dans m=506 quartiers aux alentours de Boston ($\times 1000$)

Objectifs

Objectifs

- 1. Sélectionner le meilleur algorithme possible pour un problème donné.
- 2. Sélectionner une valeur optimale pour chaque hyperparamètre de l'algorithme sélectionné.

Sommaire

Introduction

Rappel

Apprentissage supervisé

Généralisation

Données

Généralisation

Découpage des données

Validation croisée

Bootstrap

Évaluation des modèles

Régression

Classification

Courbe ROC

D'autres critères d'évaluation

Ensemble des données : $\{\mathbf{x}_i, y_i\}_{i=1}m$ avec $\mathbf{x}_i \in \mathbb{R}^d$

Ensemble des données

Ensemble des données : $\{\mathbf{x}_i, y_i\}_{i=1}m$ avec $\mathbf{x}_i \in \mathbb{R}^d$

Ensemble des données

Espace des hypothèses

- l'espace des fonctions ${\mathcal F}$ qui décrit les conditions de modélisations considérées
- cet espace est choisi en fonction de notre connaissance (et nos *convictions*) du problème d'apprentissage supervisé

Ensemble des données : $\{\mathbf{x}_i, y_i\}_{i=1}m$ avec $\mathbf{x}_i \in \mathbb{R}^d$

Ensemble des données

Espace des hypothèses

- l'espace des fonctions F qui décrit les conditions de modélisations considérées
- cet espace est choisi en fonction de notre connaissance (et nos *convictions*) du problème d'apprentissage supervisé

Exemple : $\mathbf{x}_i \in R \ (d = 1)$

Si l'on choisit d'utiliser la régression linéaire, \mathcal{F} est l'ensemble des droites du plan.

Si l'on suppose que les données $\{\mathbf{x}_i,y_i\}_{i=1}m$ ont été générées par une fonction Φ , la tâche d'apprentissage automatique consiste à déterminer $f\in\mathcal{F}$ tel que f soit le plus proche possible de Φ , soit $f(\mathbf{x})\approx\Phi(\mathbf{x})$.

Si l'on suppose que les données $\{\mathbf{x}_i,y_i\}_{i=1}m$ ont été générées par une fonction Φ , la tâche d'apprentissage automatique consiste à déterminer $f\in\mathcal{F}$ tel que f soit le plus proche possible de Φ , soit $f(\mathbf{x})\approx\Phi(\mathbf{x})$.

Il faut alors

- quantifier la qualité d'une fonction de décision $h \in \mathcal{F}$
 - fonction de coût \(\ell \) (fonction perte, fonction d'erreur ou en anglais loss function ou cost function) (CM4)
- chercher la fonction de décision f optimale dans \mathcal{F}
 - *f* est optimale si elle minimise la fonction de coût (dans ce cours)

Risque

• espérance de la fonction de coût ℓ :

$$\mathcal{R}(h) = \mathbb{E}_{\mathbf{x}} \Big[\ell \big(h(\mathbf{x}), y \big) \Big]$$

• on cherche la fonction f optimale qui minimise ce risque :

$$f = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathcal{R}(h) = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathbb{E}_{\mathbf{x}} \Big[\ell \big(h(\mathbf{x}), y \big) \Big]$$

Risque

• espérance de la fonction de coût ℓ :

$$\mathcal{R}(h) = \mathbb{E}_{\mathbf{x}} \Big[\ell \big(h(\mathbf{x}), y \big) \Big]$$

• on cherche la fonction f optimale qui minimise ce risque :

$$f = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathcal{R}(h) = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathbb{E}_{\mathbf{x}} \Big[\ell \big(h(\mathbf{x}), y \big) \Big]$$

Risque empirique

• risque calculée pour les *m* observations de la base de données (erreur moyenne) :

$$\mathcal{R}_{emp}(h) = rac{1}{m} \sum_{i=1}^{m} \ellig(h(\mathbf{x}_i), y_iig)$$

• minimisation du risque empirique

$$f = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathcal{R}_{emp}(h) = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \frac{1}{m} \sum_{i=1}^{m} \ell(h(\mathbf{x}_i), y_i)$$

Risque

• espérance de la fonction de coût ℓ :

$$\mathcal{R}(h) = \mathbb{E}_{\mathbf{x}} \Big[\ell \big(h(\mathbf{x}), y \big) \Big]$$

• on cherche la fonction f optimale qui minimise ce risque :

$$f = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathcal{R}(h) = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathbb{E}_{\mathbf{x}} \Big[\ell \big(h(\mathbf{x}), y \big) \Big]$$

Risque empirique

• risque calculée pour les *m* observations de la base de données (erreur moyenne) :

$$\mathcal{R}_{emp}(h) = rac{1}{m} \sum_{i=1}^m \ellig(h(\mathbf{x}_i), y_iig)$$

• minimisation du risque empirique

$$f = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \mathcal{R}_{emp}(h) = \underset{h \in \mathcal{F}}{\operatorname{argmin}} \, \frac{1}{m} \sum_{i=1}^{m} \ell(h(\mathbf{x}_i), y_i)$$

La minimisation du risque empirique est un problème mal-posé*:

Toutes les frontières de décision h (droites grisées en pointillés) minimisent le risque empirique ($\mathcal{R}_{emp}(h)=0$). Il existe donc un nombre infini de solutions qui minimisent le risque empirique à zéro.

^{*} Un problème est bien posé au sens de Hammard si : (1) une solution existe, (2) la solution est unique, et (3) la solution dépend de façon continue des données dans le cadre d'une topologie raisonnable. Source : Wikipédia

Objectif de l'apprentissage supervisé

Un système d'apprentissage supervisé doit être capable de **généraliser** :

- capacité d'un modèle à faire des prédictions correctes sur de nouvelles données qui n'ont pas été utilisées pour construire le modèle
 - prédire l'étiquette d'une nouvelle observation (classification)
 - estimer la variable réponse d'une nouvelle observation (régression)

Objectif de l'apprentissage supervisé

Un système d'apprentissage supervisé doit être capable de **généraliser** :

- capacité d'un modèle à faire des prédictions correctes sur de nouvelles données qui n'ont pas été utilisées pour construire le modèle
 - prédire l'étiquette d'une nouvelle observation (classification)
 - estimer la variable réponse d'une nouvelle observation (régression)

Évaluer un modèle sur les données qui ont servi à le construire ne permet pas de savoir comment le modèle se comporte sur de nouvelles données.

- → Autrement dit, la capacité de généralisation d'un modèle ne peut pas être évaluée en observant le risque empirique.
- → Il existe un lien avec le compromis biais-variance (CM06), et donc les problèmes de sur- et sous-apprentissage.

Objectif de l'apprentissage supervisé

Un système d'apprentissage supervisé doit être capable de **généraliser** :

- capacité d'un modèle à faire des prédictions correctes sur de nouvelles données qui n'ont pas été utilisées pour construire le modèle
 - prédire l'étiquette d'une nouvelle observation (classification)
 - estimer la variable réponse d'une nouvelle observation (régression)

Évaluer un modèle sur les données qui ont servi à le construire ne permet pas de savoir comment le modèle se comporte sur de nouvelles données.

- → Autrement dit, la capacité de généralisation d'un modèle ne peut pas être évaluée en observant le risque empirique.
- → Il existe un lien avec le compromis biais-variance (CM06), et donc les problèmes de sur- et sous-apprentissage.

On divise donc les données en sous-ensemble!

Cas #1 : m est grand

Séparation des données en trois sous-ensembles :

Cas #1 : *m* est grand

- Données d'apprentissage : apprentissage des paramètres du modèles. Par exemple,
 - les paramètres $\{\beta_j\}_{j=0}^d$ pour la régression linéaire
 - les moyennes et variances (μ_y^j,σ_y^j) pour le classifieur bayésien naïf $(1\leq y\leq \mathbb{C}$ et $1\leq j\leq d)$

Cas #1: m est grand

- Données d'apprentissage : apprentissage des paramètres du modèles. Par exemple,

 - les moyennes et variances (μ_y^j, σ_y^j) pour le classifieur bayésien naïf $(1 \le y \le \mathbb{C} \text{ et } 1 \le j \le d)$
- Données de validation : estimation objective de l'erreur de généralisation du modèle et estimation des hyperparamètres. Par exemple,
 - l'hyperparamètre λ, coefficient de régularisation, pour les modèles de régression linéaire et logistique
 - l'hyperparamètre k, nombre de plus proches voisins (PPV) à considérer, pour l'algorithme des k-PPV

Cas #1 : m est grand

- Données d'apprentissage : apprentissage des paramètres du modèles. Par exemple,
 - les paramètres $\{\beta_j\}_{j=0}^d$ pour la régression linéaire
 - les moyennes et variances (μ_y^j, σ_y^j) pour le classifieur bayésien naïf $(1 \le y \le \mathbb{C} \text{ et } 1 \le j \le d)$
- Données de validation : estimation objective de l'erreur de généralisation du modèle et estimation des hyperparamètres. Par exemple,
 - l'hyperparamètre λ, coefficient de régularisation, pour les modèles de régression linéaire et logistique
 - l'hyperparamètre k, nombre de plus proches voisins (PPV) à considérer, pour l'algorithme des k-PPV
- 3. **Données de test** : estimation de l'erreur de prédiction sur des données non-observées (risque réel)
 - comparaison de différents algorithmes de classification
 - important: les données de test ne sont jamais utilisées pour l'estimation des paramètres et des hyperparamètres des modèles

Cas #1: m est grand

Comment choisir les proportions de chaque ensemble?

Cas #1: m est grand

Comment choisir les proportions de chaque ensemble?

- Il n'y a pas de « recettes miracles ».
- Généralement,
 - • 60 % / 10 % / 30 % ou 70 % / 10 % / 20 % pour des algorithmes d'apprentissage automatique traditionnels
 - 95 % / 2 % / 3 % ou 98 % / 1 % / 1 % pour des algorithmes d'apprentissage profond (si *m* est très grand)

Cas #1: m est grand

Comment choisir les proportions de chaque ensemble?

- Il n'y a pas de « recettes miracles ».
- Généralement,
 - • 60 % / 10 % / 30 % ou 70 % / 10 % / 20 % pour des algorithmes d'apprentissage automatique traditionnels
 - 95 % / 2 % / 3 % ou 98 % / 1 % / 1 % pour des algorithmes d'apprentissage profond (si *m* est très grand)

Remarque : Dans beaucoup de problèmes d'apprentissage automatique, il y a peu de données étiquetées (*m* est petit).

Cas #1 : *m* est grand

En pratique,

- Choisir un algorithme
- Définir une grille de recherche pour la valeur des hyperparamètres de l'algorithme sélectionné
- Séparer les données en sous-ensembles d'apprentissage, validation et test
- Pour chaque valeur sur la grille de recherche
 - 1. apprendre un modèle sur les données d'apprentissage
 - 2. évaluer les performances du modèle avec les données de validation
- Sélectionner les valeurs des hyperparamètres qui maximisent la performance du modèle (ou minimisent la fonction de coût)
- Apprendre un modèle sur les données d'apprentissage + les données de validation pour les valeurs des hyperparamètres sélectionnées.
- Évaluer la capacité de généralisation du modèle, *i.e.* évaluer les performances sur les données test

Exemple: jeu de données Iris (CM07)

Exemple : jeu de données Iris (CM07)

Exemple: jeu de données Iris (CM07)

- Choisir un algorithme : le *k*-Plus Proche Voisin
- **Définir une grille de recherche** : on cherche à déterminer la meilleure valeur de k possible (1 seul hyperparamètre). Testons par exemple $k \in [1, 2, 3, 5, 10, 15, 30]$

Exemple : jeu de données Iris (CM07)

- Choisir un algorithme : le *k*-Plus Proche Voisin
- Définir une grille de recherche : on cherche à déterminer la meilleure valeur de k possible (1 seul hyperparamètre). Testons par exemple $k \in [1, 2, 3, 5, 10, 15, 30]$
- Séparer les données

Exemple : jeu de données Iris (CM07)

• Évaluer les performances sur les échantillons de validation pour les différentes valeurs des hyperparamètres.

Exemple : jeu de données Iris (CM07)

 Évaluer les performances sur les échantillons de validation pour les différentes valeurs des hyperparamètres.

La courbe en orange montre (1-) le risque empirique, *i.e.*, évaluation du taux de bonne classification sur les données d'apprentissage.

Exemple: jeu de données Iris (CM07)

 Évaluer les performances sur les échantillons de validation pour les différentes valeurs des hyperparamètres.

La courbe en orange montre (1-) le risque empirique, *i.e.*, évaluation du taux de bonne classification sur les données d'apprentissage.

• Sélectionner les valeurs optimale des hyperparamètres : k = 15

Exemple : jeu de données Iris (CM07)

• Apprendre le modèle final sur les échantillons d'apprentissage et de validation

Exemple : jeu de données Iris (CM07)

- Apprendre le modèle final sur les échantillons d'apprentissage et de validation
- Évaluer les performances sur les données de test

OA = 76.6 % (x : données de test)

Cas #2 : m est petit

Validation croisée ou k-fold cross-validation

Cas #2 : *m* est petit

Validation croisée ou k-fold cross-validation

- 1. Diviser l'ensemble des données d'apprentissage en k sous-ensembles de tailles égales
- 2. Répéter *k* fois (séquentiellement)
 - apprendre un modèle sur k-1 sous-ensembles
 - évaluer sa performance (par exemple, le taux de bonne classification OA) sur le sous-ensemble restant

Cas #2 : m est petit

Validation croisée ou k-fold cross-validation

- 1. Diviser l'ensemble des données d'apprentissage en *k* sous-ensembles de tailles égales
- 2. Répéter *k* fois (séquentiellement)
 - apprendre un modèle sur k-1 sous-ensembles
 - évaluer sa performance (par exemple, le taux de bonne classification OA) sur le sous-ensemble restant

Question : Combien d'échantillons sont utilisés pour l'apprentissage de chaque modèle?

Cas #2 : *m* est petit

Validation croisée ou k-fold cross-validation

- 1. Diviser l'ensemble des données d'apprentissage en *k* sous-ensembles de tailles égales
- 2. Répéter k fois (séquentiellement)
 - apprendre un modèle sur k-1 sous-ensembles
 - évaluer sa performance (par exemple, le taux de bonne classification OA) sur le sous-ensemble restant

Question : Combien d'échantillons sont utilisés pour l'apprentissage de chaque modèle?

$$\frac{m(k-1)}{k}$$

Cas #2 : m est petit

Validation croisée ou k-fold cross-validation

Remarques:

- Comment choisir la valeur de *k*?
 - plus le nombre de données utilisées pour la phase d'apprentissage est grand, plus le modèle est précis

Cas #2 : *m* est petit

Validation croisée ou k-fold cross-validation

Remarques:

- Comment choisir la valeur de *k*?
 - plus le nombre de données utilisées pour la phase d'apprentissage est grand, plus le modèle est précis
 - Cas particulier k = m: leave-one-out Principe
 - apprentissage de m modèles différents
 - · une seule observation est utilisée dans la phase test

Inconvénients

- $k = m \Rightarrow m$ modèles à apprendre \Rightarrow temps calculatoire \nearrow
- comme une seule observation change pour l'apprentissage de chaque modèle, les modèles appris sont très similaires

Cas #2 : *m* est petit

Validation croisée ou k-fold cross-validation

Remarques:

- Comment choisir la valeur de *k*?
 - plus le nombre de données utilisées pour la phase d'apprentissage est grand, plus le modèle est précis
 - Cas particulier k = m: leave-one-out Principe
 - apprentissage de m modèles différents
 - · une seule observation est utilisée dans la phase test

Inconvénients

- $k = m \Rightarrow m$ modèles à apprendre \Rightarrow temps calculatoire \nearrow
- comme une seule observation change pour l'apprentissage de chaque modèle, les modèles appris sont très similaires
- Quelle mesure de performance utilisée (OA, Kappa, taux de faux positifs, taux de vrais négatifs, etc.)?

Bootstrap

Cas #2 : *m* est petit

Bootstrap

• tirages aléatoires **avec** remise de *m* observations dans l'ensemble des données

Bootstrap

Cas #2 : *m* est petit

Bootstrap

 tirages aléatoires avec remise de m observations dans l'ensemble des données

Pour aller plus loin

La probabilité de tirer k fois une observation lors de m tirages aléatoires avec remise est donnée par la loi binomiale suivante :

$$\mathbb{P}(X=k) = \binom{k}{m} p^k (1-p)^{m-k},$$

avec p la probabilité de tirer aléatoirement l'observation.

Chaque observation a la même probabilité d'être tiré au sort, donc $p = \frac{1}{m}$:

$$\mathbb{P}(X=k) = \binom{k}{m} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^{m-k},$$

Si m est grand on peut calculer que :

- 36.79 % des échantillons ne sont pas inclus
- 36.79 % des échantillons sont inclus une seule fois
- 18.39 % des échantillons sont inclus exactement deux fois
- 6.13 % des échantillons sont inclus exactement trois fois
- 1.53 % des échantillons sont inclus exactement quatre fois
- etc.

Pour aller plus loin

Définitions: on distingue généralement trois types d'analyse statistique

- 1. les analyses descriptives
 - « résumer » les données en utilisant des mesures statistiques (moyenne, pourcentage, etc.)
 - première étape avant d'effectuer une analyse inférentielle
- 2. les analyses inférentielles
 - test statistique
 - intervalle de confiance
- 3. les analyses prédictives (i.e., l'apprentissage automatique)

Sommaire

Introduction

Rappel

Apprentissage supervisé

Généralisation

Domnees

Généralisation

Découpage des données

Validation croisée

Bootstrap

Évaluation des modèles

Régression

Classification

Courbe ROC

D'autres critères d'évaluation

Évaluation des modèles de régression

Rappel sur la régression :

- $\{\mathbf{x}_i, y_i\}_{i=1}^N$ les N échantillons test
 - $\mathbf{x}_i \in \mathbb{R}^d$ une observation représentée par d variables
 - $y_i \in \mathbb{R}$ l'étiquette associée à l'observation x_i
- f la fonction de décision appris par le modèle de régression
 - par exemple $f(\mathbf{x}_i) = \beta_0 + \sum_{j=1}^d \beta_j \times x_i^j$

Évaluation des modèles de régression

Erreur quadratique moyenne (*Mean Squared Error*) : la moyenne des carrés des résidus :

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2$$

En régression, le résidu est l'écart entre la valeur à expliquer/prédire (y_i) et la valeur expliquée/prédite $(f(\mathbf{x}_i))$, soit les résidus $y_i - f(\mathbf{x}_i)$ pour tout i.

Évaluation des modèles de régression

Erreur quadratique moyenne (*Mean Squared Error*) : la moyenne des carrés des résidus :

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2$$

En régression, le résidu est l'écart entre la valeur à expliquer/prédire (y_i) et la valeur expliquée/prédite $(f(\mathbf{x}_i))$, soit les résidus $y_i - f(\mathbf{x}_i)$ pour tout i.

D'autres mesures possibles (variantes) :

• Root-Mean-Square Error

RMSE =
$$\sqrt{\text{MSE}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2}$$

• Mean Absolute Error

MAE =
$$\frac{1}{N} \sum_{i=1}^{N} |y_i - f(\mathbf{x}_i)|$$

Rappel sur la classification:

- $\{\mathbf{x}_i, y_i\}_{i=1}^N$ les N échantillons test
 - $\mathbf{x}_i \in \mathbb{R}^d$ une observation représentée par d variables
 - $y_i \in \mathcal{Y}$ l'étiquette associée à l'observation x_i
 - $\mathcal{Y} = \{-1, 1\}$ ou $\mathcal{Y} = \{0, 1\}$ pour la classification binaire

La matrice de confusion : $C = \{c_{ij}\}_{i,j=1}^{C}$ pour C classes

Prédite Réelle	1	2			j	 С
1	c ₁₁	c ₁₂			c_{1j}	 c_{1C}
2	c ₂₁	c ₂₂			c _{2j}	 c _{2C}
:	:			:		
i	c_{i1}	c_{i2}			c_{ij}	 c_{iC}
:	:		:	:	:	:
	:			:		
С	c _{C1}	c _{C2}			c_{Cj}	 ссс

La matrice de confusion : $C = \{c_{ij}\}_{i,j=1}^{C}$ pour C classes

Prédite Réelle	1	2			j		С
1	c ₁₁	c ₁₂			c_{1j}		c_{1C}
2	c ₂₁	c ₂₂			c _{2j}		c_{2C}
:	:	:	:	:	:		:
i	c_{i1}	c_{i2}			c_{ij}		c_{iC}
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
С	c_{C1}	c _{C2}			c_{Cj}		ссс

- c_{ij} corresponds au nombre d'échantillons qui appartiennent à la classe i et pour lequel l'algorithme de classification a prédit la classe j
- les éléments diagonaux $\{c_{ii}\}_{i=1}^{j}$ correspondent donc aux échantillons dont la classe a correctement été prédite par l'algorithme
- $\sum_{i=1}^{C} \sum_{j=1}^{C} c_{ij} = N$ avec N le nombre d'observations test

Mesures d'évaluation

• Taux de bonne classification (en anglais Overall Accuracy):

$$OA = \frac{\sum_{i=1}^{C} c_{ii}}{N}$$

• $0 \% \le OA \le 100 \%$ on cherche à maximiser le taux de bonne classification (100 %)

Mesure d'évaluation

• Le coefficient Kappa:

$$Kappa = \frac{OA - p_h}{1 - p_h}$$

avec $p_h = \frac{1}{N^2} \sum_{i=1}^{C} \left(\sum_{j=1}^{C} c_{ij} \right) \left(\sum_{j=1}^{C} c_{ji} \right)$ le pourcentage d'observations bien étiquetées attribué au hasard

- Le coefficient Kappa permet de s'affranchir du taux de bonne classification dû à l'aléatoire
- Référentiel de Landis et Koch pour interpréter la valeur de Kappa.

Interprétation	Valeur de Kappa
Excellente	1.00 - 0.81
Bonne	0.80 - 0.61
Faible	0.60 - 0.41
Négligeable	0.20 - 0.00
Mauvaise	< 0.00

Source: J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data. *Biometrics*. (1):159?174, 1977.

Cas particulier de la classification binaire : C = 2

Prédite Réelle	Positive	Négative
Positive	e Vrais Positifs (TP)	Faux Negatifs (FN)
Negative	e Faux Positifs (FP)	Vrais Négatifs (TN)

- Taux de bonne classification : $OA = \frac{TP + TN}{TP + FN + FP + TN}$
- Taux de faux positifs : $FPR = \frac{FP}{FP+TN}$ (erreur de type I)
- Taux de faux négatifs : $FNR = \frac{FN}{FN+TP}$ (erreur de type II)

Cas particulier de la classification binaire : C = 2

Prédite Réelle	Positive	Négative
Positive	Vrais Positifs (TP)	Faux Negatifs (FN)
Negative	Faux Positifs (FP)	Vrais Négatifs (TN)

- Taux de bonne classification : $OA = \frac{TP + TN}{TP + FN + FP + TN}$
- Taux de faux positifs : $FPR = \frac{FP}{FP+TN}$ (erreur de type I)
- Taux de faux négatifs : $FNR = \frac{FN}{FN+TP}$ (erreur de type II)
- Rappel (recall, sensitivity) : Rappel = $\frac{TP}{TP+FN}$

Courbe ROC (Receiver-Operator Characteristic)

• pour les méthodes de classification binaire dont la fonction de décision retourne un score qui doit être seuillée, et pas directement une classe

Courbe ROC (Receiver-Operator Characteristic)

- pour les méthodes de classification binaire dont la fonction de décision retourne un score qui doit être seuillée, et pas directement une classe
- pour différentes valeurs de seuil : Rappel = f(1 Spécificité) = f(FPR)

Courbe ROC (*Receiver-Operator Characteristic*)

- pour les méthodes de classification binaire dont la fonction de décision retourne un score qui doit être seuillée, et pas directement une classe
- pour différentes valeurs de seuil : Rappel = f(1 Spécificité) = f(FPR)

Si la courbe ROC est en-dessous de la ligne rouge en pointillés, le modèle fait moins bien que l'aléatoire

Courbe ROC (*Receiver-Operator Characteristic*)

- pour les méthodes de classification binaire dont la fonction de décision retourne un score qui doit être seuillée, et pas directement une classe
- pour différentes valeurs de seuil : Rappel = f(1 Spécificité) = f(FPR)

Si la courbe ROC est en-dessous de la ligne rouge en pointillés, le modèle fait moins bien que l'aléatoire

 L'information de la courbe ROC peut être résumée par l'AUROC aire sous la courbe ROC : 0 ≤ AUROC ≤ 1.

Source: Chloé-Agathe Azencott. Introduction au machine learning. Dunod, 2019.

Autres critères d'évaluation

Outre les mesures d'évaluation basées sur la capacité de généralisation du modèle, il peut être intéressant de considérer d'autres critères :

- Complexité calculatoire
 - temps d'exécution = temps d'apprentissage + temps de prédiction
 - espace mémoire utilisé

On parle de passage à l'échelle (algorithme scalable ou *scalability* en anglais)

Autres critères d'évaluation

Outre les mesures d'évaluation basées sur la capacité de généralisation du modèle, il peut être intéressant de considérer d'autres critères :

- Complexité calculatoire
 - temps d'exécution = temps d'apprentissage + temps de prédiction
 - espace mémoire utilisé

On parle de passage à l'échelle (algorithme scalable ou *scalability* en anglais)

- Interprétabilité: comprendre ce qui a mené un algorithme à prendre une décision
 - simplicité du modèle versus boîte noire

Autres critères d'évaluation

Outre les mesures d'évaluation basées sur la capacité de généralisation du modèle, il peut être intéressant de considérer d'autres critères :

- Complexité calculatoire
 - temps d'exécution = temps d'apprentissage + temps de prédiction
 - espace mémoire utilisé

On parle de passage à l'échelle (algorithme scalable ou *scalability* en anglais)

- Interprétabilité: comprendre ce qui a mené un algorithme à prendre une décision
 - simplicité du modèle versus boîte noire
- Capacité d'adaptation du modèle
 - aux données manquantes ou aberrantes
 - aux données non pertinentes
 - aux données hétérogènes (par exemple présence de variables quantitatives et qualitatives)

Rasoir d'Occam

Rasoir d'Occam (Ockham) ou principe de simplicité :

- Pour des taux d'erreur comparables, le modèle de plus petite complexité est préférée
- ⇒ meilleure compréhension de la décision prise par le modèle d'apprentissage supervisé
- ⇒ interprétation plus simple du phénomène étudié

FIN