Compact / CANopen / Logic Controller / Twido System User Guide

Contents

Important Information	3
Before You Begin	4
Introduction	6
Glossary	8
Application Source Code	9
Typical Applications	10
System	12
Architecture	12
Installation	15
Hardware	
Software	26
Communication	27
Implementation	34
Communication	35
Controller	38
HMI	
Devices	
Altivar 312 TeSysU	
Appendix	
Detailed Component List	
Component Protection Classes	
Component Features	
Contact	112

Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

▲ WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

ACAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in equipment damage.

NOTE

PLEASE Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

> A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and the installation, and has received safety training to recognize and avoid the hazards involved

© 2008 Schneider Electric. All Rights Reserved.

Before You Begin

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

A WARNING

UNGUARDED MACHINERY CAN CAUSE SERIOUS INJURY

- Do not use this software and related automation products on equipment which does not have point-of-operation protection.
- Do not reach into machine during operation.

Failure to follow these instructions can cause death, serious injury or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only the user can be aware of all the conditions and factors present during setup, operation and maintenance of the machine; therefore, only the user can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, the user should refer to the applicable local and national standards and regulations. A "National Safety Council's" Accident Prevention Manual also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as point-of-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products by itself cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks for point-of-operation protection have been installed and are operational before placing the equipment into service. All mechanical/electrical interlocks and safeties for point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation protection is outside the scope of this document.

START UP AND TEST

Before using electrical control and automation equipment for regular operation after installation, the system should be given a start up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check be made and that enough time is allowed to perform complete and satisfactory testing.

A CAUTION

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- Remove tools, meters and debris from equipment.

Failure to follow these instructions can result in injury or equipment damage.

Follow all start up tests recommended in the equipment documentation. Store all equipment documentation for future reference.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and grounds, except those grounds installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- Remove tools, meters, and debris from equipment.
- Close the equipment enclosure door.
- Remove ground from incoming power lines.
- Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and rating of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments. Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software tools approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can cause death, serious injury or equipment damage.

Introduction

Introduction

This document is intended to provide a quick introduction to the described system. It is not intended to replace any specific product documentation, nor any of your own design documentation. On the contrary, it offers additional information to the product documentation, for installing, configuring and implementing the system.

The architecture described in this document is not a specific product in the normal commercial sense. It describes an example of how Schneider Electric and third-party components may be integrated to fulfill an industrial application.

A detailed functional description or the specification for a specific user application is not part of this document. Nevertheless, the document outlines some typical applications where the system might be implemented.

The architecture described in this document has been fully tested in our laboratories using all the specific references you will find in the component list near the end of this document. Of course, your specific application requirements may be different and will require additional and/or different components. In this case, you will have to adapt the information provided in this document to your particular needs. To do so, you will need to consult the specific product documentation of the components that you are substituting in this architecture. Pay particular attention in conforming to any safety information, different electrical requirements and normative standards that would apply to your adaptation.

It should be noted that there are some major components in the architecture described in this document that cannot be substituted without completely invalidating the architecture, descriptions, instructions, wiring diagrams and compatibility between the various software and hardware components specified herein. You must be aware of the consequences of component substitution in the architecture described in this document as substitutions may impair the compatibility and interoperability of software and hardware.

A CAUTION

EQUIPMENT INCOMPATIBILITY OR INOPERABLE EQUIPMENT

Read and thoroughly understand all hardware and software documentation before attempting any component substitutions.

Failure to follow these instructions can result in injury or equipment damage.

Abbreviations

Abbreviation	Signification
AC	Alternating Current
СВ	Circuit Breaker
DI	Digital Input
DO	Digital Output
DC	Direct Current
EDS	Electronic Data Sheet
E-STOP	Emergency Stop
HMI	Human Machine Interface
1/0	Input/Output
IL	Instruction List - a textual IEC-61131 programming language
LD	Ladder Diagram - a graphic IEC-61131 programming language
PC	Personal Computer
PDO	Process Data Object (CANopen)
PS	Power Supply
RPM	Revolutions Per Minute
RPDO	Receive Process Data Object (CANopen)
SE	Schneider Electric
SDO	Service Data Object
TPDO	Transmit Process Data Object (CANopen)
TVDA	Tested, Validated, Documented Architectures
VSD	Variable Speed Drive
WxHxD	Dimensions: Width, Height and Depth

Glossary

Expression	Signification
Altivar (ATV)	SE product name for a family of VSDs
CANopen	Name for a communications machine bus system
Harmony	SE product name for a family of switches and indicators
Magelis	SE product name for a family of HMI devices
MB - SL	SE name for a serial Modbus communications protocol
Modbus	A communications protocol
OsiSense	SE product name for a family of sensors
Phaseo	SE product name for a family of power supplies
SoMove	SE product name for a drive configuration software
Preventa	SE product name for a family of safety devices
TeSys	SE product name for a family for motor protection devices and load contactors
Twido	SE product name of a basic range family of controllers
TwidoSuite	SE product name for a controller programming software
Vijeo Designer	SE product name for Magelis HMI devices configuration software

Application Source Code

Introduction

The example source code is in the form of configuration, application and import files. Use the appropriate software tool to either open or import the files.

Extension	File Type	Software Tool Required
CFG	Export File (Multiloader Export)	SoMove (Lite)
DOC	Document file	Microsoft Word
EDS	Electronic Data Sheet - Device Definition	Industrial standard
PDF	Portable Document Format - document	Adobe Acrobat
PSX	Project file	SoMove (Lite)
SPA	Schneider Product Archive	TwidoSuite
VDZ	Project file	Vijeo Designer
XPR	Project file	TwidoSuite
ZW1	Project file	EPLAN P8

Typical Applications

Introduction

Here you will find a list of the typical applications, and their market segments, where this system or subsystem can be applied:

Packaging

Filling machines
Bottling machines
Wrapping machines
Corking machines
Pallet wrappers

Textile

Clothing machinesSawing machines

Pumping

Booster stationsCompressorsVacuum pumps

Hydraulic, Air, Filter pumps...

HVAC-R

Compressors

Other Machines

- Wood working machines
- Cutting machines
- Sanders
- Sawing machines
- Industrial washing machines

SPECIAL NOTE

The products specified in this document have been tested under actual service conditions. Of course, your specific application requirements may be different from those assumed for this and any related examples described herein. In that case, you will have to adapt the information provided in this and other related documents to your particular needs. To do so, you will need to consult the specific product documentation of the hardware and/or software components that you may add or substitute for any examples specified in this documentation. Pay particular attention and conform to any safety information, different electrical requirements and normative standards that would apply to your adaptation.

The application examples and descriptions contained in this document have been developed based on products and standards available and defined for Europe. Some or all of the application examples may contain recommendations of products that are not available in your country or locality, or may recommend wiring, products, procedures or functions that are in conflict with your local, regional or national electrical or safety codes and/or normative standards.

A WARNING

REGULATORY INCOMPATIBILITY

Be sure that all equipment applied and systems designed comply with all applicable local, regional and national regulations and standards.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE:

The information in this document is based on European standards and may not be valid for use in the U.S.A.

The use and application of the information contained herein require expertise in the design and programming of automated control systems. Only the user or integrator can be aware of all the conditions and factors present during installation and setup, operation, and maintenance of the machine or process, and can therefore determine the automation and associated equipment and the related safety provisions and interlocks which can be effectively and properly used. When selecting automation and control equipment, and any other related equipment or software, for a particular application, the user or integrator must also consider any applicable local, regional or national standards and/or regulations.

System

Introduction

The system chapter describes the architecture, dimensions, quantities, required software and the different types of components used within this system.

Architecture

General

The controller in this application is a Twido. The user can control the application using the Magelis HMI.

The variable speed drives, connected to the Twido via CANopen bus, are of the type Altivar 312. An additional motor is driven by a TeSysU motor starter.

The example application includes two functional safety options:

- 1. A tamper free Emergency Stop function supervised with a Preventa safety module.
- 2. A second safety module to evaluate protective door guard function.

Layout

Components

Hardware:

- Compact main switch NSX100F
- Motor circuit breaker GV2L
- TeSysD contactor LC1D
- Altivar variable speed drive ATV312
- TeSysU motor starter
- Harmony XALK Emergency Stop switch with rotation release
- Phaseo power supply ABL8
- Modicon Twido modular controller
- CANopen tap TSX
- Magelis HMISTU655 Graphic display terminal
- Harmony XB5 selector switches, push buttons and indicator lamps
- Harmony tower light
- Preventa guard switch with mechanical actuator XCS
- Preventa safety module XPS
- Multi 9 circuit breaker
- Standard AC motor

Software:

- Twidosuite Version 2.20.11
- SoMove 1.2.4.0
- Vijeo Designer 5.1 SP1

Quantities of Components

For a complete and detailed list of components, the quantities required and the order numbers, please refer to the detailed components list in the appendix.

Degree of Protection

Not all the components in this configuration are designed to withstand the same environmental conditions. Some components may need additional protection, in the form of housings, depending on the environment in which you intend to use them. For environmental details of the individual components please refer to the list in the appendix of this document and the appropriate user manual.

Cabinet Technical Data

Input Mains voltage 400 Vac Power requirement ~ 3 kW

Cable Size 5 x 2.5 mm² (L1, L2, L3, N, PE)
Cable Connection 3 phase + Neutral + Ground

Neutral is needed for 230 Vac (Phase and

Neutral)

Output Motor power ratings 4 asynchronous motors (4 poles: 1500 RPM)

controlled by ATV312 (0.37 kW)

1 asynchronous motors (4 poles: 1500 RPM)

controlled by TeSysU (0.18 kW)

Functional Safety Notice

The standard and level of functional safety you apply to your application is determined by your system design and the overall extent to which your system may be a hazard to people and machinery.

(EN ISO13849-1 EN IEC62061)

Whether or not a specific functional safety category should be applied to your system should be ascertained with a proper risk analysis.

This document is not comprehensive for any systems using the given architecture and does not absolve users of their duty to uphold the functional safety requirements with respect to the equipment used in their systems or of compliance with either national or international safety laws and regulations

Emergency Stop

Emergency Stop/Emergency Disconnection function

This function for stopping in an emergency is a protective measure which complements the safety functions for the safeguarding of hazardous zones according to EN ISO 12100-2.

Safety Function

Door guarding:

up to Performance Level (PL) = b, Safety Integrity Level (SIL) = 1

Dimensions

The compact dimensions of the devices used, for example, the controller and power supply, enable the components to be installed inside a small control panel with the following external dimensions: 800 x 1200 x 400 mm (WxHxD).

The display elements used to indicate "Plant Ready" and "Safety Acknowledged" can be built into the door of the control cabinet along with the system master switch and Emergency Stop switch.

Installation

Introduction

This chapter describes the steps necessary to set up the hardware and configure the software required to fulfill the described function of the application.

Assembly

Notes

The components and I/O points listed below represent a cross-section of the components and signals which can be used in conjunction with most typical applications (functional safety/maintenance switches) and are a basic necessity for control and display purposes and a number of optional inputs and outputs.

The components designed for installation in a control cabinet, example Twido, Phaseo power supply unit, Harmony Emergency Stop switching device, line circuit breaker, contactors and motor circuit breaker, etc. can be snapped onto a 35 mm DIN rail.

The Altivar variable speed drive is installed directly on the mounting plate.

Emergency Stop, main switch and HMI are installed in the cabinet door.

The Preventa guard switch is mounted in the field.

There are two options available for mounting Harmony XB5 push buttons and indicator lamps:

- a) Using a 22 mm hole drilled into the front door of the control cabinet in the appropriate position.
- b) Using XALD housing, this can house up to 5 push buttons or indicator lamps. This XALD is designed for backplane assembly or direct wall mounting.

The individual components must be interconnected in accordance with the detailed circuit diagram to help ensure that they function correctly.

- 400 Vac wiring between Compact main switch, motor circuit breaker, load relay and variable speed drives.
- 24 Vdc wiring between power supply unit, Twido, push buttons, indicator lamps and variable speed drive control circuit.
- 24 Vdc between Emergency Stop, Preventa, and the control circuit of the load contactor.

Twido I/O Wiring

Twido inputs	Description
10.0	Not used, reserved for fast counters
I 0.1	Not used, reserved for fast counters
10.2	Safety Relay 1, Emergency Stop
10.3	Safety Relay 2, door guarding
10.4	Motor protection switch, drive 1
10.5	Motor protection switch, drive 2
10.6	Motor protection switch, drive 3
10.7	Motor protection switch, drive 4
10.8	Push button start
10.9	Push button stop
I 0.10	Not used
I 0.11	Not used

Twido outputs	Description
Trans. Out Q0	Pilot light, acknowledge button, Emergency stop
Trans. Out Q1	Pilot light, acknowledge button, door guarding
Relay Out Q2	Pilot light, start button
Relay Out Q3	Pilot light, stop button
Relay Out Q4	Pilot light, plant ready for operation
Relay Out Q5	Not used
Relay Out Q6	Not used
Relay Out Q7	Not used

Digital extension module

Digital I/O-Module inputs	Description
all inputs	Not used

Digital I/O-Module outputs	Description
Relay Out Q0	Tower light, green indicator lamp
Relay Out Q1	Tower light, red indicator lamp
Relay Out Q2	Tower light, blue indicator lamp
Relay Out Q3	Tower light, white indicator lamp
Relay Out Q4	Not used
Relay Out Q5	Not used
Relay Out Q6	Not used
Relay Out Q7	Not used

Analog extension module

Analog I/Os	Description
all inputs and outputs	Not used

Thermocouple module

Connections	Description
Out0	Not used
In0	Temperature sensor Pt100
In1	Temperature sensor Pt100

Twido CANopen module	Description
COM	CANopen bus communication

Twido 24 Vdc supply	Description
COM	Supply inputs 0 Vdc
COM+	Supply outputs +24 Vdc
-V	Supply outputs 0 Vdc
COM 1	Supply outputs +24 Vdc
COM 2	Supply outputs +24 Vdc
COM 3	Supply outputs +24 Vdc

Hardware

Guard switch Preventa XCSA502	TO SECONDARY OF THE PROPERTY O	13 33 21 14 34 22
Indicator Press Button Harmony XB5	Protected Protected	LED ØE
Motor circuit breaker TeSys GV2L07	(a) 52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Contactor TeSysD LC1D09BD	COLDS DOCUMED	A2 A1 T1/2 1/L1 T2/4 3/L2 T3/6 5/L3 14 13/NO 22 21/NC

Operator panel Magelis HMI HMISTU655

Exploded view of Magelis STU Small Panel: simple installation by means of a 22 mm diameter hole

A Magelis STU Small Panel is made up of a front module (comprising the screen) and a rear module (comprising the CPU plus terminals and connectors). The two modules are fixed together by means of a hole measuring 22mm in diameter. The fixing system contains the following elements:

- (6) An adjusting nut
- (7) A seal
- (8) An anti rotation tee (can be used as an option)
- (9) A release mechanism: simply press to separate the two modules once they have been fixed together

Altivar 312

ATV312H037N4

3-phase, 400 Vac, 0.37 kW

Motor Starter

TeSysU

Power base two directions

LUB12BL

Coil wiring kit

LULC08

Motor Starter

TeSysU

Control Unit

LUCA05BL

Motor Starter

TeSysU

CANopen communication module

LULC08

- 1. 24 Vdc power Supply
- Terminal for coil wiring kit

Software

General

TwidoSuite is used for programming the Twido, including the configuration for communication and assigning inputs and outputs.

The HMI application on the Magelis operator terminal is configured using Vijeo Designer software.

The Altivar 312 variable speed drive can be configured using the keypad panel. However, the SoMove software is a more user-friendly option and can be used for parameterizing the drive, saving data and quickly restoring existing data for service purposes. The software can also help you to optimize the parameters online.

To use the software packages, your PC must have the appropriate Microsoft Windows operating system installed:

Windows XP Professional

The default installation path on the hard drive of your PC for each of the software tools is:

TwidoSuite

C:\Program Files\Schneider Electric\TwidoSuite

Vijeo Designer

C:\Program Files\Schneider Electric\Vijeo-Designer

SoMove Lite

C:\Program Files\Schneider Electric\SoMove Lite

Communication

General

A Modbus connection is used to exchange data between the Magelis HMI terminal and the Twido. The XBTZ9780 communication cable shown below is required to connect these two devices. The software driver required for Modbus communication is already included in the software packages for the Magelis panel and the Twido.

A CANopen link is used to connect the controller, the Altivar 312 and the TeSysU device. The different cables, adapters and connectors are explained on the following pages to allow the wiring inside the cabinet.

This chapter describes the hardware used for data communications (CANopen) and how to use the programming cables used in configuring the individual devices in the system.

НМІ

HMI <> PC	HMISTU terminals can be connected to the PC in two different ways:
	via USB portvia Ethernet
Download cable PC <> HMI BMXXCAUSBH018	BMX XCA USBO••
Communication Cable HMI <> controller XBTZ9780	XBT Z9780 (RS 485) RJ45 MiniDin

Controller

To program the Twido, use the cable TSXCRJMD25 with the RS845 adapters (TSXCUSB485) to connect the PC **Communication cable** with the Twido. with USB connector PC <> Twido Verify that the adapter is in switch position 2. **TSXCRJMD25** For the communication to work properly, port 1 must be configured on the Twido TSX CUSB485 TSX CUSB485 Convertisseur USB-RS485 Convertidor USB-RS485 TSX CUSB485 Convertitore USB-RS485 TSX CUSB485 USB to RS485 converter TSX CUSB485 Konverter USB-RS485 USB 至 RS485 转换器 快速参考指南 Quick Reference Guide Kurzanleitung Instruction de service Guida di riferimento RJ45 OTB 1S0DM9LP VW3 A8306R ·· PLC: Minidin8 Micro Premium TSX C RJMD 25 Twido RJ45 with power XBTN/R/S USB-A XBTZ925 DB15 Unitelway Tap TSXSCA62 TSX CRJDB 25 Windows 2000, XP RJ45 USB-A VBUS (+5V) Data (D-) N.C. 3 PMC Port Mode Control Data (D+) 4 U-GND D1 (B) Transceiver Terminal 1 D0 (A) Transceiver Terminal 0 RS485 Driver Enable (INPUT) Power Supply (5V, 500 mA max)

NDF VP (OUT) Common

Signal and power supply Common

Altivar 312

CANopen

CANopen topology used in this architecture

The picture shows where the CANopen bus needs to be terminated.

Precondition for the terminating resistors is that the entire cable length of the stub (connected to connection 1 on the CANopen TAP) is shorter than the cables between Twido and CANopen TAP and TeSysU and CANopen TAP.

CANopen Master Module

TWDNC01M

The CANopen Interface Module is plugged into the Twido and has a SUB-D9 CANopen connection

Altivar 312

CANopen

daisy chain option

Node ID: 1, 2, 3 and 4

ATV312

CANopen option card

daisy chain option

VW3A31208

TeSysU CANopen communication module

The following address is used: Node ID: 5

SW7	SW6	SW5	SW4	SW3	SW2	SW1	Address
0	0	0	0	0	0	0	Not valid
0	0	0	0	0	0	1	1 (default)
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
0	0	0	0	1	0	1	5

CANopen Connector

TSXCANKCDF90T

Use this connector on the **TWDNCO1M**. Connector includes a terminal resistor.

CANopen cable

TSXCANCD50

Flexible Cable

CANopen TAP

TSXCANTDM4

Terminal resistor can be selected using the **ON /OFF** switch.

The image shows the resistor set to **OFF**.

As TeSysU bus module requires a 24 Vdc power supply, this needs to be wired on the CANopen out of the CANopen TAP.

CANopen cable

TCSCCN4F3M1T

Connects from the CANopen TAP to the first Altivar 312.

CANopen pre-assembled connection cable

VW3CANCARR03 (length: 0,3m)

Used for connecting ATV312 in a daisy chain connection.

Implementation

Introduction

The implementation chapter describes all the steps necessary to initialize, configure, program and start-up the system to achieve the application functions as listed below.

Function

Start-up and functional description

- 1. Switch on all circuit breakers. The main switch is off.
- 2. Verify that the Emergency Stop has not been activated
- 3. Switch on at the main switch
- 4. Check the door guard switch
- 5. Acknowledge the Emergency Stop and door guard switch
- 6. The start-up screen is shown on the HMI touch screen7. Press the **Bus** button on the right to open the CANopen status page
- 8. Wait until all devices show a green status field and press the Control Dev. 1-3 (panel for Altivar 1..3) or Control Dev. 4&5 button (panel for Altivar 4 or TeSysU)
- 9. Select from the control screen per Altivar the setpoint speed, forward, reverse or stop.
- 10. Press the Control Dev. 4&5 button (panel for Altivar 4 and TeSysU)
- 11. Select from the control screen per Altivar the setpoint speed, forward, reverse or stop. For TeSys U select only forward or revers.
- 12. In case an alarm occurs the alarm button in the right down corner will turn red. Press the alarm button to open the alarm summary page.

Functional Layout

Communication

Introduction

This chapter describes the data passed via the communications networks (e.g. CANopen or Modbus) that is not bound directly with digital or analog hardware.

The list contains:

- The device links
- · Direction of data flow
- Symbolic name and
- Bus address of the device concerned.

Device Links

This application uses Modbus and CANopen networks.

Modbus connects:

- Magelis Panel as Modbus master
- Twido as Modbus slave (address 1)

CANopen connects the following devices:

- Twido CANopen master module (address 127)
- Altivar 312 variable speed drives (addresses 1..4)
- TeSysU reverse motor starter (address 5)

Datalink HMI → Twido

Device 1			Device 2
HMISTO511 (Modbus master)		Twido (Modbus slave 1)	
Address	Designation	Address	Name
%M11	HMI_Slave_1_FWD	%M11	HMI_SLAVE_1_FWD
%M12	HMI_Slave_1_REV	%M12	HMI_SLAVE_1_REV
%M13	HMI_Slave_1_STOP	%M13	HMI_SLAVE_1_STOP
%M21	HMI_Slave_2_FWD	%M21	HMI_SLAVE_2_FWD
%M22	HMI_Slave_2_REV	%M22	HMI_SLAVE_2_REV
%M23	HMI_Slave_2_STOP	%M23	HMI_SLAVE_2_STOP
%M31	HMI_Slave_3_FWD	%M31	HMI_SLAVE_3_FWD
%M32	HMI_Slave_3_REV	%M32	HMI_SLAVE_3_REV
%M33	HMI_Slave_3_STOP	%M33	HMI_SLAVE_3_STOP
%M41	HMI_Slave_4_FWD	%M41	HMI_SLAVE_4_FWD
%M42	HMI_Slave_4_REV	%M42	HMI_SLAVE_4_REV
%M43	HMI_Slave_4_STOP	%M43	HMI_SLAVE_4_STOP
%M51	HMI_Slave_5_FWD	%M51	HMI_SLAVE_5_FWD
%M52	HMI_Slave_5_REV	%M52	HMI_SLAVE_5_REV
%M53	HMI_Slave_5_STOP	%M53	HMI_SLAVE_5_STOP
%M100	HMI_Alarm_Reset	%M100	HMI_CLEAR_ERROR
%MW1	HMI_Panel_ID_Current	%MW1	HMI_PANEL_ID_CURRENT
%MW11	HMI_Slave_1_SP	%MW11	HMI_SETP_SLAVE_1
%MW12	HMI_Slave_2_SP	%MW12	HMI_SETP_SLAVE_2
%MW13	HMI_Slave_3_SP	%MW13	HMI_SETP_SLAVE_3
%MW14	HMI_Slave_4_SP	%MW14	HMI_SETP_SLAVE_4

Datalink Twido → HMI

Device 1			Device 2
HMISTO511 (Modbus master)		Twido (Modbus slave 1)	
Address	Designation	Address	Name
%M2	HMI_global_Alarm_Stat	%M2	STATUS_ALARM_SUMMARY
%M101	HMI_Alarm_01	%M101	HMI_ALARM_01
%M102	HMI_Alarm_02	%M102	HMI_ALARM_02
%M103	HMI_Alarm_03	%M103	HMI_ALARM_03
%M104	HMI_Alarm_04	%M104	HMI_ALARM_04
%M105	HMI_Alarm_05	%M105	HMI_ALARM_05
%M106	HMI_Alarm_06	%M106	HMI_ALARM_06
%M107	HMI_Alarm_07	%M107	HMI_ALARM_07
%M108	HMI_Alarm_08	%M108	HMI_ALARM_08
%MW2	HMI_Panel_ID_Next	%MW2	HMI_PANEL_ID_NEXT
%MW11	HMI_Slave_1_SP	%MW11	HMI_SETP_SLAVE_1
%MW12	HMI_Slave_2_SP	%MW12	HMI_SETP_SLAVE_2
%MW13	HMI_Slave_3_SP	%MW13	HMI_SETP_SLAVE_3
%MW14	HMI_Slave_4_SP	%MW14	HMI_SETP_SLAVE_4
%MW20:X0	CANopen_Master_OK	%MW20:X0	CANOPEN_MASTER_OK
%MW20:X1	CANopen_Slave_1_OK	%MW20:X1	CANOPEN_SLAVE _1_OK
%MW20:X2	CANopen_Slave_2_OK	%MW20:X2	CANOPEN_SLAVE _2_OK
%MW20:X3	CANopen_Slave_3_OK	%MW20:X3	CANOPEN_SLAVE _3_OK
%MW20:X4	CANopen_Slave_4_OK	%MW20:X4	CANOPEN_SLAVE _4_OK
%MW20:X5	CANopen_Slave_5_OK	%MW20:X5	CANOPEN_SLAVE _5_OK
%MW31	HMI_Temp_1	%MD31	HMI_TEMPERATURE_1
%MW32	HMI_Temp_2	%MD32	HMI_TEMPERATURE_2

Datalink Drive1 → Twido

	Drive 1		
Altiva	Altivar (CANopen slave 1) to Twido (CANopen master)		
Address	Address Designation		
%IWC1.0.0	D_STATUS_SLAVE_1		
%IWC1.0.1	D_CONTROL_SLAVE_1		
%IWC1.0.2	D_IERROR_SLAVE_1		
%IWC1.0.3	D_MCURRENT_SLAVE_1		
Twido (CANopen master) to Altivar (CANopen slave 1)			
Address	Designation		
%QWC1.0.0	D_COMMAND_SLAVE_1		
%QWC1.0.1	D TARGET SLAVE 1		

Twido → Drive1

Datalink
Drive2 →
Twido

Drive2

Twido →	
D : 0	

Drive 2		
Altivar (CANopen slave 2) to Twido (CANopen master)		
Address Designation		
%IWC1.1.0	D_STATUS_SLAVE_2	
%IWC1.1.1	D_CONTROL_SLAVE_2	
%IWC1.1.2	D_IERROR_SLAVE_2	
%IWC1.1.3	D_MCURRENT_SLAVE_2	
Twido (CANopen master) to Altivar (CANopen slave 2)		
Address	Designation	
%QWC1.1.0	D_COMMAND_SLAVE_2	
%QWC1.1.1	D_TARGET_SLAVE_2	

Datalin	k
Drive3	\rightarrow
Twido	

Drive 3		
Altivar (CANopen slave 3) to Twido (CANopen master)		
Address	Designation	
%IWC1.2.0	D_STATUS_SLAVE_3	
%IWC1.2.1	D_CONTROL_SLAVE_3	
%IWC1.2.2	D_IERROR_SLAVE_3	
%IWC1.2.3	D_MCURRENT_SLAVE_3	
Twido (CANopen master) to Altivar (CANopen slave 3)		
Address	Designation	
%QWC1.2.0	D_COMMAND_SLAVE_3	
9/ OWC1 2 1	D TARGET SLAVE 2	

Twido → Drive3

i wido (CANoperi master) to Attivar (CANoperi siave 3)	
Address	Designation
%QWC1.2.0	D_COMMAND_SLAVE_3
%QWC1.2.1	D_TARGET_SLAVE_3

Datalink Drive4 → Twido

Drive 4			
Altivar (CANopen slave 4) to Twido (CANopen master)			
Address	Designation		
%IWC1.3.0	D_STATUS_SLAVE_4		
%IWC1.3.1	D_CONTROL_SLAVE_4		
%IWC1.3.2	D_IERROR_SLAVE_4		
%IWC1.3.3	D_MCURRENT_SLAVE_4		
Twido	Twido (CANopen master) to Altivar (CANopen slave 4)		
Address	Designation		
%QWC1.3.0	D_COMMAND_SLAVE_4		
%QWC1.3.1	D_TARGET_SLAVE_4		

Twido → Drive4

Datalink
TeSysU →
Twido

Sysu	-/
/ido	

Twido →	
TeSysU	

TeSysU			
TeSysU (CANopen slave 5) to Twido (CANopen master)			
Address	Address Designation		
%IWC1.4.0	TPDO_1_2004SUB6 (internal TeSysU status register 455) *)		
%IWC1.4.1	TPDO_1_2004SUB9 (internal TeSysU status register 458) *)		
Twido (CANopen Master) to Altivar (CANopen Slave 5)			
Address Designation			
%QWC1.4.0	RPDO_1_2008SUB5 (internal TeSysU control register 704) *)		
%QWC1.4.1	RPDO_2_2008SUB4 (internal TeSysU control register 703) *)		
%QWC1.4.2	RPDO_3_2008SUB1 (internal TeSysU control register 700) *)		

*) only the first input word and output word are used in this example

Controller

Introduction

This chapter describes the steps required for the initialization and configuration and the source program required to fulfill the functions.

The controller program is created using TwidoSuite.

Requirements

To use TwidoSuite and program the Twido first verify that:

- TwidoSuite is installed on your PC
- The example application, TwidoSuite project Opimized_CANopen_Twido.xpr, is in the standard project directory (C:\Program Files\Schneider Electric\TwidoSuite\My Projects)
- The Twido is switched on
- The Twido is connected to the PC using the proper programming cable

Procedure

Programming the controller consists of:

- Create a new project
- Configure the Twido
- Configure the Modbus for HMI
- Import EDS-file for TeSysU
- Configure the CANopen devices
- CANopen module configuration
- Activate the Altivar drive macros
- · Create variables
- Create an Application Program
- Insert Macros for ATV drives
- Control commands for TeSysU
- Save / export a project
- Open / import a project
- Connecting to a Twido
- Download a project
- Download firmware

Create a new project

To create a new project click on the arrow next to

"Programming" Mode

2 Select the **Project** tab and click on:

Create a new project

- Enter the project information as required:
 - Project name
 - Directory path for save
 - Author
 - Department
 - Index
 - Industrial Property

Continue with Create.

Configure the Twido

To configure the hardware, the communication parameters and bus system, click on the

Describe tab.

2 From the **Catalog** on the right select the Twido type:

Bases-> Modular-> TWDLMDA20DRT

Click on **Place** to see the Twido in the image of the rack.

Pick the Twido from the list and drag it into the page. A green square indicates the possible position.

Again in the **Catalog**, for the communications module, select:

Expansions modules-> Communication Expansion-> CANopen->TWDNCO1M

Click on **Place** and drag the item to the worktop to see the communications module show up in the image of the rack.

Continue appending local I/Os like digital or analog inputs and outputs as described above.

In this configuration following modules are used additionally:

- TM2DMM24DRF
- TM2ALM3LT
- TM2AMM6HT

The module **TM2ALM3LT** in this setup needs to be configured as it is a multipurpose analog temperature module.

Click on the upper half of the module to open the configuration.

The I/O-mapping of the module is displayed in the lower part of this configuration screen.

In this example the **Type** of input is for both **PT100**, which you select from the drop-down list. The output remains unused.

7 Select from the Scope dropdown list Celsius.

8 The analog channels are now configured in terms of input type including also the correct range.

Used	Address	Symbol	Type	Scope	Minimum	Meximum	Units
	%IW3.0		PT 100	Celsius	-1000	5000	0.1 °C
	%IW3.1		PT 100	Celsius	-1000	5000	0.1 °C
	%QW3.0		Not in use	Normal	0	4095	None

Configure the Modbus for HMI

1 Again in the **Catalog**, for the communications module, select:

Network Elements-> Modbus Elements-> Magelis

Pick and place it on the worktop.

2 To configure the communications port for the HMI connection, right mouse click on the RS485-Port on the image of the Twido and select

Configuration...

in the pop-up menu.

3 Select:

Type: Modbus

Address: 1

Continue with OK.

4 To configure the communication port of the HMI, right mouse click on the HMI image and select

Configuration...

in the pop-up menu.

5 Insert:

Name: for example, the HMI

type **HMISTU655**

Type: Modbus

Address: Master

Continue with **OK**.

6 Now connect the HMI and the Twido with a line. Place the mouse at the end of the Twido port; the view changes. Hold the right mouse button and draw a line to the point below the HMI image.

Release the mouse button and the connection, **my network 1** is shown. Double click on:

my network 1

to open the configuration box.

Import EDS-file for TeSysU

Configure the CANopen devices

1 First configure the hardware, then activate and define the slaves.

Without activation this slave is only shown in the hardware configuration, highlighted in red, but the CANbus communication is inactive. This could be helpful for example, to test a single drive of a machine.

The next step is to add the CANopen slaves.

Network Elements

→ CANOpen Elements

→ (DS-402) Drives and Motion
Control

→ ATV31_V1.2
→ Basic_ATV31

Pick and drop at workspace: **4x ATV31**

1x TeSysU (see next chapter)

Note:

Altivar 312 is fully compatible with the Altivar 31 regarding mechanical characteristics and software. The ATV31 devices shown and described in this example are already integrated in Twido delivery and software installation by default.

3 Connect the CANopen master module and the slave with a line.

Place the mouse at the end of the CANopen port; it changes the view. Hold the left mouse button and draw a line to the point below the slave image.

Release the mouse button and the connection **my network 2** is shown.

Double click on:

my network 2

to open the configuration dialog box.

4 In this application following parameters are used:

Baudrate: 500 Kbps Supervision: 300 ms

Confirm with OK.

Repeat steps 2 & 3 to add the next ATV312 slaves. Connect slave 1, 2, 3, 4 with a line. 6 To add the TeSysU click in the 0 0 0 0 0 catalog on: Network Elements

→ CANOpen Elements → (DS-0) → TeSysU_Sc_St (V1.20) Now connect the TeSysU to the last Slave. 8 Double click on the CANopen connector image of the CANopen module to open up the linking configuration.

- Proceed in the same way as you did with the transmit PDOs:
 - (1) Click the first PDO RX 1
 - (2) Click on the arrow symbol at the top

14 The PDO RX 1 appears now in the list of linked PDOs on the right.

Note:

This PDO receives the control word from the Twido.

Close the **Linking** dialog box by clicking **OK**.

CANopen module configuration

To open directly the CANopen module configuration click on the upper half of the CANopen module.

Activate the Altivar drive macros

Click on:

- (1) Configure the data
- (2) Advanced objects
- (3) Macros Drive
- (4) Activate the slave in the column Conf. and
- (5) select CANopen as Network with the respective Network Address (1..4).

- (6) In the column **Start address** enter for this example 100, 200, 300, 400 for the ATV drives. Confirm with Enter. The predefined length is a block of 30 words for each drive.
- (7) Mark the checkbox **Symbols** to get the predefined tags for the words used by the macro.
- 2 The slaves are now configured and ready for use in the programming code.

Create Variables

Two different variable types are possible:

- I/O variables, linked to inputs or outputs
- internal variables, such as bit, byte, word, double word, floating point and constant

The variables can be defined in separate lists or entered directly in the programming editor (list or ladder).

- 1 To create I/O variables, open the **Module configuration** with
 - (1) Program
 - (2) Configure
 - (3) Configure the Hardware
 - (4) Then click the relevant I/O module.

The table at the bottom of the screen shows the I/O variables.

2 The following is shown in the table:

Used: indicates whether the variable is used in the programming code

Address: the I/O address

Symbol: the symbolic variable

Used By: user logic or empty

Filtering: minimum signal time length (only for inputs)

Confirm with Apply.

The image shows how the variables in the table above are used in the program:

%I0.1 – E_STOP: variable and symbolic name in program code

%10.2: variable without symbolic name in program code

%I0.3 - START: the symbolic name is in the variable list (see image above) but not used in the program.

To create internal variables, open the Module configuration:

Program-> Configure the Data-> Simple Objects

The table, bottom left, lists the datatypes: %M, %MW, %MD, etc.

A table with addresses and symbolic names for each data type is shown on the right.

Used: indicates whether the variable is used in the program

%Mx: variable address

Symbol: symbolic variable

Create an Application **Program**

Go to the program editor with:

Program->Edit Program

A new program always begins with LADDER as the programming language.

You can only view the program in LIST mode once the first rung has been completed and analyzed.

2 Start the programming with:

add a section.

This creates a section with empty rungs.

Subroutines

10

Debug

3 Click on the header of a **Section** to enter a description (for example "Safety").

> Click on the header of a rung to enter a description.

Insert Macros for ATV Drives

To link the operation block to the macro drive input **D_manager 1**. D_manager is the macro function to access the drive and the 1 indicates Drive 1.

The space between D_manager and the 1 is mandatory. Since the macro is already configured, the address field also contains the symbolic macro name **D_MANAGER 1**.

The **SHORT** (see next step) must be exchanged for a control variable.

You can now repeat this for the other macros:

D_CLEAR_ERR

D_RUN_FWD

D_RUN_REV

D_STOP

D_SELECT_SPEED

Control commands for TeSysU

1 For TeSysU no specific macro are required. The commands forward, reverse and stop can be controlled by using the linked PDOs.

The PDO mapping for all TeSysU modules are the same, but not all modules use or provide the bits which are predefined in these transfer words.

The TeSys U Sc St module in this example (standard starter controller module) provides as status to the Twido

- status register
- I/O module status register

The TeSysU module commands for start and stop are controlled only by the first transfer word (**Word 1**).

Forward and reverse command are bitwise controlled. If both bits are switched back to zero (low signal) TeSysU module stops.

Note:

The graphics on the right show only the used bits within the CANopen objects for this type of module.

You find the correct input and output word for control and staus of the TeSysU by opening the CANopen module configuration.

According to this example the address of the first output word is **%QWC1.4.0**.

Statuswords: TeSysU → Twido

		Word 1	Word 2
TeSys U Sc St	Register	455	458
	CANopen Index	2004:6	2004:9
	Description	Status register	I/O module status register

Word 1	CANopen Index 2004:6	Sc St
bit 0	Ready: LUB=*/2B•• = the rotary handle is turned to 'On' position and there is no fault. LUS=*/2S•• = the push-button is pressed and there is no fault.	√
bit 1	Pole status: closed	√
bit 2	All faults	√
bit 3	All warnings	√
bit 4	Tripped: LUB••/2B•• = the rotary handle is turned to 'Trip' position. LUS••/2S•• = the push-button is depressed.	√
bit 14	(Non significant)	√

Word 2	CANopen Index 2004:9	Sc St
bit 0	OA1 status	V
bit 1	OA3 status	√
bit 2	LO1 status	√
bit 8	LI1 status	√
bit 9	LI2 status	√

Control words: Twido → TeSysU

	Word 1	Word 2	Word 3	Word 4
Register	704	703	700	Empty
CANopen Index	2008:5	2008:4	2008:1	-
Description	Control Register	Control of communication module	Output control	-

Word 1	CANopen Index 2008:5	Sc St
bit 0	Run forward	V
bit 1	Run reverse	√

Word 2	CANopen Index 2008:4	Sc St
bit 3	Reset warning (communication loss,)	√
	This bit is active on rising edge and must be reset to 0 by	
	programming	

To write the commands to the TeSysU the control word has to be provided with only one command active at a time with maximum one bit set.

Put following equation in the rung of your program to achieve the respective command:

Forward → 16#1 Reverse → 16#2 Stop → 16#0

Save / Export a project

To save the project select **Save** current project in the project menu.

In the Save current project window you can select the folder for the save, input the File name and select TwidoSuite Project from the Format drop-down list.

Note:

You can save the file also as an archive file. The archive file has the advantage of being portable and is a single file.

Open / import a project

1 To open a project use the Open an existing project function in the project menu.

In the **open an existing project** window select the medium:

Disk or Controller

by clicking the radio button.

Choose the file type under Format (for a project file: Project), select the folder and select the File you wish to open.

When ready click on **Open** to open the project.

For import the action is the same, except the file **Format** is TwidoSuite Archive.

Connecting to the Twido

To connect the PC to the Twido select **Program** in the main menu, then **Debug** in the submenu to get access to the **Connect** selection.

The available communication ports are shown.

Check that the the TSXCUSB485 adapter is connected, and select **the linked COM port**.

Continue with OK.

Note:

If you don't know which COM port is assigned to the TSXCUSB485 adapter continue with step 3. If you already know the COM port go directly to step 5.

The TSXCUSB485 adapter is linked by Windows to a virtual COM port. To identify the right COM port you need to open the System Properties dialog by clicking on Windows key + Pause button.

Open up the **Hardware** tab and click on **Device Manager**.

4 In the **Device Manager** click on **Ports (COM & LPT)**.

The **TSX C USB 485** adapter is listed with the corresponding port in brackets. In this case the port **COM19** is assigned to it.

5 A progress bar is displayed while TwidoSuite establishes the connection.

Download a project

13 Use the project browser to navigate through the program sections.

Download firmware

1 Ensure you have connected the Twido with the USB cable.

Select:

PLC firmware update

You are notified that the firmware download will delete any program running on the Twido.

Continue by clicking Next >.

HMI

Introduction

In this application a Magelis HMISTU655 touch display is implemented. The display communicates via Modbus protocol with the Twido.

Configuration and programming of the display is done using the Vijeo Designer HMI software.

Requirements

Before starting with Vijeo Designer the following preconditions must be met:

- Vijeo Designer software is installed on your PC
- The project Optimized_CANopen_Twido.vdz has been copied on the PC
- The Magelis HMI is switched on and connected to the PC with the cable BMXXCAUSBH018

Procedure

Setting up the HMI is done as follows:

- Create a new configuration
- Main window
- Configure the connection
- Create a new variable
- Create a switch
- Create a numeric display
- Create an alarm and alarm panel
- Export Vijeo Designer project
- Import Vijeo Designer project
- Download program to the HMI
- · Screen navigation in the application program

Create a new configuration

When Vijeo Designer starts a welcome screen is opened.
Select Create new Project from the list and click on Next >.

Main Window

After creating a Vijeo Designer HMI project the main window of Vijeo Desinger is displayed.

Vijeo Designer has the following components:

- 1. Navigator
- 2. Info viewer
- 3. Toolchest
- 4. Property Inspector
- 5. Feedback Zone
- 6. Graphic List

Configure the connection

The **Navigator** browser lists the different elements of the HMI project.

Right click on **ModbusEquipment01.**

Select **Configuration** in the pop-up menu.

Create a new variable

Right click on Variable. Optimized_CANopen_Twido - Vijeo-Frame - [Optimized_CANopen_Twido - Panel6 - Lang Ele Edit Build HMI Arrange Varjable Report View Draw Tools Window Help Select from the pop-up menu New Variable → New... Optimized_CANopen_Twido
Optimi Forms & Reports Alarms & Events Import Variables... Integer INT UINT 1-32 Bits Generic 16 Bits Signed 16 Bits Unsigned Variable Reference & Reports... DINT 32 Bits Signed 32 Bits Unsigned Property Inspector UDINT REAL Link Variables... Base Panel STRING PanelID Validate Variables... Folder Description Width Height User Data Types... User Data Types Block Intege Back Color PublishTo Function Keys HMI Runtime Block INT Block UINT Block DINT Exclusive Input Block REAL 2 The New Variable dialog opens. New Variable Change the **Data Type** of the Basic Properties Data Details | 10 Settings | Data Scaling | Alarm variable you wish to create by Variable <u>N</u>ame selecting the desired data type DINT01 from the dropdown list. Data Type DINT Array Dimension 0 BOOL In this example **BOOL** is ntege selected from the list. ScanGrou<u>p</u> UINT Twido DINT UDINT REAL Device Address STRING Block Integer Block INT Indirect Address Block UINT Block DINT OK Cancel

To enter more variables repeat the steps 2 to 5.

If you have finished entering new variables, click **OK** to close the dialog box.

Create a switch

Create a numeric display

Create an alarm and alarm panel

To create an alarm follows basically the same steps as the Elle <u>E</u>dit <u>Build</u> H<u>MI</u> <u>Arrange Variable <u>R</u>eport <u>View Draw <u>T</u>ools <u>W</u>indow <u>H</u>elp</u></u> creation of a new variable. Right click on Variable. **→** 1 × Optimized_CANopen_Twido - Panel6 - Language1 Select from the pop-up menu Optimized_CANopen_Twido
Optimized_CANopen_Twido
Graphical Panels
Graphical Panels
Graphical Panels
Flower Panels
Flower Panels
Flower Panels New Variable → New... Forms & Reports Alarms & Events Import Variables... Integer INT UINT 1-32 Bits Generic 16 Bits Signed 16 Bits Unsigned Variable Reference & Reports... DINT 32 Bits Signed Property Inspector UDINT REAL Link Variables... Base Panel STRING PanelID Validate Variables... Folder Description User Data Types... User Data Types leight Block Intege Back Color PublishTo HMI Runtime Block INT Block UINT Block DINT Exclusive Input Block REAL 2 Enter in the Basic Properties Variable Properties tab Data Type, Variable Name and an optional Basic Properties Data Details | 10 Settings | Data Scaling | Alarm description. <u>Variable N</u>ame Description Alarm message E-Stop In this example: Data Type BOOL Array Dimension 0 Data Type: ScanGroup Data Source **BOOL** Sharing O Internal ○ None Twido Read Only Reference Variable Name: Device Address External Read / Write Alarm_01 Indirect Address **Description:** Alarm message E-Stop Cancel Help

The Alarm page is created on its own panel.

Export Vijeo Designer project

To transfer a project from one PC to another an export of the project is required.

First of all any open project needs to be closed.
Select from the menu
File → Close Project.

2 Right click on the project you wish to export.

Select from the pop-up menu **Export Project...**

Import Vijeo Designer project

To import an existing project **→** 1 × Navigator into Vijeo Designer, right click 🗋 凿 🤌 on Vijeo-Manager in the Navigator area. Vijeo-Manager New Project... Ctrl+N Select Import Project... from New Folder Insert the pop-up menu. New Network Link... Import Project... Upload Editor Project... Note: Importing a project is not Refresh F5 possible if any project is still Properties Alt+Enter open. Vijeo-Manager

Download Program to the HMI

Screen navigation in the application program 1 After a power up or a restart of the HMISTU655 device the screen on the right will appear.

Optimized CANopen Twido

You can click on the **Date/Time** button to edit the date and time of the HMISTO511 device. If no action is taken the screen switches after 10 seconds to the start panel.

The **Start** panel shows the architecture and offers on the right hand side five buttons for the available pages inside the HMI.

The currently activated panel highlights the respective button by a yellow background.

7 The Alarm panel pops up when an alarm occurs and shows the text in the message list. As long as an alarm is active the Alarm button in the lower right corner turns to red.

For alarms which can be reset there is an **Alarm Reset** button in the upper right part of the panel.

Devices

Introduction

This chapter describes the steps required to initialize and configure the devices to attain the described system function.

General

Altivar 312 drives are configured by using the local control panel on the device itself. Alternatively they can be configured by using the software SoMove Lite.

Note

If this is not a new drive you should re-establish the factory settings. If you need instructions on how to do this, please read the drive documentation.

Be sure that the controller is in STOP state before parameterizing the drives.

Altivar 312

Introduction

The ATV312 parameters can be entered or modified via the local control panel on the front of the device itself or by using the software SoMove Lite.

The advantages of using the SoMove Lite software are:

- The data can be stored on the PC
- Documentation can be printed and
- The tool supports online optimization of the parameters.

Note

If this is not a new drive you should re-establish the factory settings. If you need instructions on how to do this, please read the drive documentation.

The Jog dial that is a part of the local control panel can be used for navigation by turning it clockwise or counter-clockwise. Pressing the jog dial enables the user to make a selection or confirm information.

Procedure

Setting up the ATV is done as follows:

- ATV312 Control Panel
- Configuring ATV312 with SoMove Lite
- Download the configuration
- Connect to device / upload the configuration

Preparation for commissioning

To speed up the commissioning, first make a note of the motor data found on the motor type labels (see example on the right) This data includes:

- Nominal voltage
- Nominal power
- Nominal frequency
- Power factor cos φ

Note:

Be sure that the controller is in STOP state before parameterizing the drives.

ATV312 Control Panel

The ATV312 parameters can be entered or modified via the control panel on the front of the device. This section describes how to set up the drive using the local control panel.

Alternatively, you can use the SoMove Lite software to configure the CANopen addresses and baud rate.

For the ATV312 to operate with the new address or Baudrate, a power cycle (on, off, on) is required.

A WARNING

UNINTENDED EQUIPMENT OPERATION

After making any configuration changes or adjustments, be sure to cycle power (remove and reapply power) on the drive.

Failure to follow these instructions can cause death, serious injury or equipment damage.

Configuring ATV312 with SoMove Lite

Download the Configuration

off, on) is required.

A WARNING

UNINTENDED EQUIPMENT OPERATION

After making any configuration changes or adjustments, be sure to cycle power (remove and reapply power) on the drive.

Failure to follow these instructions can cause death, serious injury or equipment damage.

Connect to device / upload the configuration

TeSysU

Introduction

This chapter presents the TeSysU motor components used in this system. They can be adapted according to the application (motor output, reversing or non-reversing drive).

Basically, the TeSysU motor control unit comprises of a:

- Power base
- Control unit
- Communication module
- Coil wiring kit
- Optional: reversing block, I_s limiter/isolation block and other modules

The following points should be taken into account when selecting components:

A 24 Vdc LU2B xx BL control unit **must be used**. Make sure it has the BL extension.

There are different versions of the coil wiring kit, which depend on the power base. LU9B N11C should be used if the power base has one direction of rotation (LU2Bxx) and LU9M RL should be used if the power base has two directions of rotation (LU2Bxx).

TeSysU

1	TeSysU Power base LU2B12BL Control unit LUCA05BL Communication module for CANopen LULC08 (1) Coil wiring kit LU9MRL (2)	LUB + LUF COO + LU9B
2	TeSysU CANopen communication module LULC08 The communication module	
	is connected to the CANopen bus using cable. TSXCANCADD1	1 Baud rate 2 Address 3 Power base connector 4 CAN bus connector

TeSysU CANopen communication module

LULC08

The baud rate is set to **500 kbps**.

SW10	SW9	SW8	Baud Rate
0	0	0	10 kbps
0	0	1	20 kbps
0	1	0 50 kbps	
0	1	1	125 kbps
1	0	0	250 kbps (default)
1	0	1	500 kbps
1	1	0	800 kbps
1	1	1	1,000 kbps

The following address is used: CANopen **Node ID 5**

SW7	SW6	SW5	SW4	SW3	SW2	SW1	Address
0	0	0	0	0	0	0	Not valid
0	0	0	0	0	0	1	1 (default)
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
0	0	0	0	1	0	1	5

Note: TeSysU needs 24 Vdc on CANopen cable to operate. See the chapter:

Communication: CANopen TAP: TSXCANTDM4 wiring.

Appendix

Detailed Component List

The following tables are a list of the main components of the Optimized CANopen Twido architecture.

Cabinet

Hardware components - Group 1: Cabinet (Circuitry, 24 Volt Supply, etc.)					
Pos.	Qty.	Description	Part Number	Rev./ Vers.	
1.1	1	Cabinet with mounting plate,	NSYS3D12840P		
		800 x 1200 x 400 mm (W x H x D)			
1.2	1	Filter fan, 230 Vac, 165 m³/h	NSYCVF165M230PF		
1.3	2	Outlet grille	NSYCAG223LPF		
1.4	1	Thermostat for Fan, 060°C, 1 NO	NSYCCOTHO		
1.5	1	Phaseo Power supply 230 Vac / 24 Vdc, 5 A	ABL8RPS24050		
1.6	1	Phaseo Power supply 230 Vac / 24Vdc, 5 A	ABL4RSM24050		

Optional

Hardware component – Group 2: Main Switch					
Pos.	Qty.	Description	Part Number	Rev./ Vers.	
2.1	1	Compact main switch 3 pole 400 Vac	NSX100F		

Main switch

Controller and I/O modules

Hardware components – Group 3: Control components					
Pos.	Qty.	Description	Part Number	Rev/ Vers.	
3.1	1	Twido modular controller, 12 IN / 8 OUT	TWDLMDA20DRT	FW 5.20	
3.2	1	CANopen master interface	TWDNCO1M		
3.3	1	TM2 digital I/O expansion module, 16 IN / 8 OUT	TM2DMM24DRT		
3.4	1	TM2 analog I/O expansion module, 4 IN / 2 OUT	TM2AMM6HT		
3.5	1	TM2 analog I/O expansion module for thermocouples and thermo probe	TM2ALM3LT		

Drives & Motor Starter

Hardv	Hardware components – Group 4: Drive and motor starter components					
Pos.	Qty.	Description	Part Number	Rev/ Vers.		
4.1	4	ATV312 variable speed drives 0.37 kW	ATV312H037N4	5.1 IE 50		
4.2	4	ATV312 CANopen daisy chain option card	VW3A31208			
4.3	4	TeSys Motor circuit breaker 2.5 A	GV2L07			
4.4	1	TeSysU Base unit for two directions	LU2B12BL			
4.5	1	TeSysU Control unit	LUCA05BL			
4.6	1	TeSysU CANopen interface	LULC08			

НМІ

Hardware components – Group 5: HMI components				
Pos.	Qty.	Description	Part Number	Rev/ Vers.
5.1	1	HMI Magelis graphical operator display, color	HMISTU655	
5.2	1	Communication cable Twido-HMI	XBTZ9780	

E-Stop & door guarding

Hardy	Hardware components – Group 6: Safety related components						
Pos.	Pos. Qty. Description		Part Number	Rev/ Vers.			
6.1	2	Preventa Emergency Stop safety relays	XPSAC5121				
6.2	1	Harmony Emergency Stop pushbutton	XB5AS844				
6.3	2	Preventa guard switch	XCSA502				

Pushbutton

Hardw	Hardware components – Group 7: Pushbutton					
Pos.	Qty.	Description	Part Number	Rev/ Vers.		
7.1	1	Harmony Box for 1 button	XALD01			
7.2	2	Harmony Signal lamp LED white	XB5AVB1			
7.3	1	Harmony Pushbutton with LED red	XB5AW34B5			
7.4	2	Harmony Pushbutton with LED blue	XB5AW36B5			

Software and cable

Softwa	Software-Components – Group 8					
Pos.	Qty.	Description	Part Number	Rev./ Vers.		
8.1	1	TwidoSuite Software	TWDBTFU10M	V2.20.11		
8.2	1	USB programming adapter	TSXCUSB485			
8.3	1	Cable for connecting programming adapter	TSXCRJMD25			
		to Twido				
8.4	1	Vijeo Designer	VJDSNDTGSV51M	V5.1 SP1		
8.5	1	Programming cable PC-HMI	BMXXCAUSBH018			
8.6	1	SoMove Lite, available by download from	web download	V2.1.4.0		
		http://www.schneider-electric.com				
8.7	1	Altivar connection cable for drives	TCSMCNAM3M002P			

Component Protection Classes

Positioning						Cabine	et
Protection class	Component	In Fi	In Field, On site			Front	
		IP54	IP65	IP67	IP55	IP65	IP20
	Harmony Emergency Stop switch				Х		Х
	Emergency Stop switch housing		Х				
	Master Switch NSX 100F						Х
	Rotating Door handle for master switch				Х		Х
	TeSys motor protection devices and load contactors						Х
	Contactors and fuses						Х
	Phaseo power supply						Х
	Emergency stop switches XPSAC***						Х
	Twido controller and expansion modules						Х
	Magelis HMISTU655 touch panel					Χ	Х
	Altivar 312 variable speed drive						Х
	CANopen Taps						Х
	Switch series "Harmony" in housing		IP66				
	Filter and filter fan				IP40		
	Fan thermostat						Х

Component Features

Components

Controller Twido

This example uses a Twido modular controller with TwidoSuite software and programming cable set.

(TWDLMDA20DRT+ TWDBTFU10EF + TSXCUSB485 + TSXCRJMD25):

- 24 Vdc
- 12 digital inputs
- 8 digital relay outputs
- expandable up to 7 modules

2 Programming Languages:

- Ladder (LD)
- Instruction List (IL)

Pre-defined functions:

- Drum control
- Fast counters up to 5kHz
- Very fast counters up to 20 kHz
- Frequency measuring 1..20 kHz
- Reserved Memory for LIFO/FIFOprocessing
- PWM-/PLS-Outputs
- External controller-Start
- PID-controller

CANopen master module TWDNCO1M

Master module for Twido logic controllers with:

- Control of up to 16 Slaves (depends on number of PDOs/SDOs)
- Baudrates 125 / 250 / 500 kBit/s
- Slave watchdog with Node Guarding or Heartbeat
- Configuration tool integrated in Twidosuite
- Bus configurable through the backplane of the controller
- Integrated macros for quick installation
- Slim format (30mm width)
- Pluggable contacts for power supply
- Configuration by controller during power up

Twido analog module TWDAMM3HT

- 4 x analog input 0..10 Vdc
- 4096 increments, 12-bit digital resolution
- 2x analog output 0..10 Vdc
- 4096 increments, 12-bit digital resolution

Safety Module: Preventa XPSAC5121

Main technical characteristics:

For monitoring Emergency stop

Max. category accord.

EN954-1

No. of safety circuits 3 N/O

No. of additional circuits

Indicators 3 LED
Power supply AC/DC 24 V
Synchro time between inputs Infinite
Response time < 40 ms
AC-15 breaking capacity C300

DC-13 breaking capacity 24 Vdc /1.5 A - L/R 50 ms

Minimum voltage and current
Dimensions (mm)
17 V / 10 mA
114 x 22.5 x 99
Connection
Captive screw-clamp

terminals

Degree of protection IP20 (terminals)

IP40 (casing)

Power Supply Phaseo: ABL8RPS24050

- 100..240 Vac / 24 Vdc, 5 A
- Slim design
- Parallel wiring possible
- Short circuit and power surge protected

Magelis Display Terminal: HMISTU655

- High-definition TFT QVGA with 24 Vdc power supply
- 64k colors
- Serial port RJ45 RS485/232 multiprotocol interface
- 10/100 BaseT RJ45 Ethernet port interface
- 1 mini USB Device + 1 USB Host 2.0 interface
- Temperature range: 0..+ 50 °C
- Certificates: UL, CE, cULus, C-Tick

Magelis STU Small Panel

Altivar 312 Variable Speed Drive: ATV312H037N4

The Altivar 312 drive is a frequency inverter for 3-phase squirrel cage asynchronous motors. The Altivar 312 is robust, compact, easy to use and conforms to EN 50190, IEC/EN 61800-2, IEC/EN 61800-3 standards UL/CSA certification and to CE marking.

Altivar 312 drives communicate on Modbus and CANopen industrial buses. These two protocols are integrated as standard.

Multiple units can be mounted side by side to save space.

Drives are available for motor ratings between 0.18 kW and 15 kW, with four types of power supply:

- 200 Vac to 240 Vac 1-phase, 0.18 kW to 2.2 kW
- 200 Vac to 240 Vac 3-phase, 0.18 kW to 15 kW
- 380 Vac to 500 Vac 3-phase, 0.37 kW to 15 kW
- 525 Vac to 600 Vac 3-phase, 0.75 kW to 15 kW

TeSysU Motor starter

with CANopen interface

TesysU LU2B12BL+ LUCA05BL + LULC08

Magnetic Circuit breaker: GV2L07 and GV2L08

- 2.5 A / 4.0 A Short circuit protected
- Magnetic cut off at 33.5 A
- lockable

TeSysD Contactor LC1D09BD

- Rated current 9 A AC3
- 1x NO contact
- 1x NC contact
- Positive opening operation allows for use in functional safety circuits
- 24 Vdc control voltage incl. suppressor circuit

Contact

Homepage	http://www.schneider-electric.com
----------	-----------------------------------

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.