大模型使用1: 提示学习、语境学习、思维链

杨沐昀

语言技术研究中心 哈尔滨工业大学

回顾经典的预训练模型应用: Finetuning

口根据任务特点,设置不同的输入输出形式

目录 CONTENTS

- **1** 提示学习 (prompt learning)
- **2** 语境学习 (in-context learning)
- 3 思维链 (chain of thought)

E ST. CONTENTS

- 提示学习(prompt learning)
- **2** 语境学习 (in-context learning)
- B 思维链 (chain of thought)

提示学习

□当我们在预训练时,模型在学什么?

- Stanford University is located in ______, California. [Trivia]
- I put ____ fork down on the table. [syntax]
- The woman walked across the street, checking for traffic over ____ shoulder. [coreference]
- I went to the ocean to see the fish, turtles, seals, and _____. [lexical semantics/topic]
- Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was ____. [sentiment]
- Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the _____. [some reasoning this is harder]
- I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic arithmetic; they don't learn the Fibonnaci sequence]

CS224N,2023

语言模型是世界模型(world model)?

□语言模型可以对代理 (agent) 、思想 (belief) 、动作 (action) 做基本的建模

Pat watches a demonstration of a bowling ball and a leaf being dropped at the same time in a vacuum chamber. Pat, who is a physicist, predicts that the bowling ball and the leaf will fall at the same rate.

Changing the last sentence of the prompt, we get:

... Pat, who has never seen this demonstration before, predicts that the bowling ball will fall to the ground first. This is incorrect. In a vacuum chamber, there is no air

Language Models as Agent Models [Andreas, 2022]

语言模型是世界模型(world model)?

□语言模型可以对时间和空间做基本的建模

HARBIN INSTITUTE OF TECHNOLOGY

GPT的涌现能力

- □GPT (117M)
 - □12层transformer decoder
 - □在BooksCorpus上训练(4.6G)
 - □表现了在大规模的语言模型上预训练的技术对于下游任务很有用
 - □5年前

- □GPT2 (XL 1.5B)
 - □和GPT结构相同, 但是更大
 - ☐ GPT2-small 117M
 - □在互联网文本上训练 (40G)
 - (Language Models Are Unsupervised Multitask Learners)

zero-shot learning

□zero-shot learning 是GPT2的一个重要能力:即在没有例子和梯度更新的情况下完成任务的能力

□QA任务

□prompt: passage:

passage:哈尔滨工业大学在黑龙江省哈尔滨市question:哈尔滨工业大学在哪儿

answer:

□比较句子的可能性

□prompt:

这只猫不能戴这个帽子因为它太大了。这里的"它"指的是猫还是帽子?

提示学习

□什么是prompt和prompt learning

- □prompt其实就是输入,目的是更好挖掘预训练语言模型的能力
- □ prompt learning, is the technique of making better use of the knowledge from the pre-trained model by adding additional texts to the input (Liu et al., 2021)

提示学习

□更多示例

Google

Q what are the most beal

- □搜索引擎,可以根据我们的输入,进行输出的 提示
- □语言模型
 - □根据提示,BERT能回答,JDK 是 Oracle 研发的
 - □根据 TL;DR: 的提示,BART知道人类想要问的是文章的摘要
 - □根据提示,ERNIE 知道人类想要问鸟类的能力--飞行

X 👃 Q

□以情感分析举例

- □ 数据集 D = {(x, y)}, x是句子, y是对应的情感label
- Step 1: prompt construction 【Template】
- Step 2: answer construction [Verbalizer]
- Step 3: answer prediction 【Prediction】
- Step 4: answer-label mapping [Mapping]

Input: x = 1 love this movie.

Template: [x]
Overall, it was a
[z] movie.

Answer:

{fantastic:ⓒ, boring:☺}

Prompting: x' = 1 love this movie. Overall, it was a [z] movie.

Predicting: x' = I love this movie. Overall, it was a fantastic movie.

Mapping: fantastic ⇒©

- □Step 1: prompt construction 【Template】
 - □我们需要构建一个模版Template,模版的作用是将输入和输出进行重新构造,变成一个新的带有mask slots的文本,具体如下
 - □定义一个模版,包含了2处代填入的 slots: [x] 和 [z]
 - □将[x] 用输入文本代入

□例如:

- □输入: x = 我喜欢这个电影。
- □模版: [x]总而言之,它是一个[z]电影。
- □代入 (prompting) : 我喜欢这个电影。 总而言之,它是一个[z]电影。

- □Step 2: answer construction 【Verbalizer】
 - □建立预测词z与标签y_hat之间的映射,例如
 - ☐ fantastic -> good
 - ☐Boring -> bad

■Step 3: answer prediction 【Prediction】 ■ 预测mask slot的词z

Input: x = I love this movie.

Template: [x]
Overall, it was a
[z] movie.

Answer: {fantastic:@,

boring:⊗}

Prompting: x' = 1 love this movie. Overall, it was a [z] movie.

Predicting: x' = I love this movie. Overall, it was a fantastic movie.

Mapping: fantastic =>☺

□Step 4: answer-label mapping 【Mapping】 □按照step 3的映射将z映射为y_hat

Input: x = 1 love this movie.

Template: [x]
Overall, it was a
[z] movie.

Answer: {fantastic:⊕, boring:⊕}

Prompting: x' = 1 love this movie. Overall, it was a [z] movie.

Predicting: x' = I love this movie. Overall, it was a fantastic movie.

Mapping: fantastic =>☺

对比

□对比Pretrain + Fine-tuning,

□优点:

- □Pretrain + Fine-tuning的范式需要对于每个任务都重新 fine-tune 一个新的模型,不能共用。 而prompt learning只需要人工设计新的模板就可以适应各种下游任务
- □Pretrain + Fine-tuning需要新的参数,而prompt learning不需要,后者只是在激发在预训练中学到的知识

□缺点:

□设计prompt类似于特征工程,难以选择,并且不同的prompt会有较大的性能差距

zero-shot learning

□GPT2在许多LM benchmark上达到了SOTA而没有使用具体任务的指令微调

Context: "Why?" "I would have thought you'd find him rather dry," she said. "I don't know about that," said Gabriel. "He was a great craftsman," said Heather. "That he was," said Flannery.

Target sentence: "And Polish, to boot," said _____.

**LAMBADA* (language modeling w/ long discourse dependencies)

[Paperno et al., 2016]

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14
117M	35.13	45.99	87.65	83.4	29.41
345M	15.60	55.48	92.35	87.1	22.76
762M	10.87	60.12	93.45	88.0	19.93
1542M	8.63	63.24	93.30	89.05	18.34

[Radford et al., 2019]

Prompt-based Training Strategies (训练策略选择)

- □主要是两部分的选择: 语言模型和prompt
 - ☐ Promptless Fine-tuning
 - □只有预训练语言模型,没有prompts,然后fine-tuning
 - ☐ Fixed-Prompt Tuning
 - □使用精调预训练语言模型+固定prompts
 - ☐ Prompt+LM Fine-tuning
 - □使用精调预训练语言模型+可训练的prompts
 - ■Adapter Tuning
 - □使用固定预训练语言模型无prompt,只是插入task-specific模块到预训练语言模型中
 - ■Tuning-free Prompting
 - □使用固定预训练语言模型和离散固定的prompt
 - ☐ Fixed-LM Prompt Tuning
 - □使用固定预训练语言模型和可训练的prompt

更多

- □Prompt模版工程、答案工程
- □预训练模型选择
- □Prompt集成、prompt增强、prompt组合

E ST. CONTENTS

- 提示学习 (prompt learning)
- **2** 语境学习 (in-context learning)
- 思维链 (chain of thought)

- □GPT3
 - □2020年
 - □更大 (1.5B->175B)
 - □更多数据 (40G->over 600G)
 - □ 《Language Models Are Lew-shot Learners》
- □Few-shot
 - □在你的问题之前举几个例子
 - □也叫做语境学习(in-context learning),来强调在学习一个新任务时没有梯度更新

- □Few-shot
 - □在你的问题之前举几个例子
 - □也叫做语境学习(in-context learning),来强调在学习一个新任务时没有梯度更新

```
1 gaot => goat
2 sakne => snake
3 brid => bird
4 fsih => fish
5 dcuk => duck
6 cmihp => chimp

1 thanks => merci
2 hello => bonjour
3 mint => menthe
4 wall => mur
5 otter => loutre
6 bread => pain
```

[Brown et al., 2020]

[Brown et al., 2020]

□模型规模是few-shot能力的重要影响因素

E ST. CONTENTS

- 提示学习(prompt learning)
- 一 语境学习 (in-context learning)
- **3** 思维链 (chain of thought)

GPT-3的不足

□GPT-3测试样例

Question: Which is heavier, a toaster or pencil?(烤箱和铅笔哪个更重?) GPT-3: A pencil is heavier than a toaster. (铅笔比烤箱重。)

Question: How many eye does my foot have? (我的脚有几只眼睛?) GPT-3: Your foot has two eyes. (你的脚有两只眼睛。)

预训练语言模型并不能真正克服现有深度学习模型 鲁棒性差、可解释性弱、推理能力缺失的瓶颈,故 在深层次语义理解上**与人类认知水平还相去较远!**

更难的任务?

- □在更难的任务中,即使是大模型使用prompt的方法效果也不是很好
- □特別是在那些需要更多、更复杂的推理的任务中

```
19583 + 29534 = 49117
98394 + 49384 = 147778
29382 + 12347 = 41729
93847 + 39299 = ?
```

□思维链表示一系列中间推理步骤,相当于在求解问题过程中将解

题步骤也写出来

□思维链表示一系列中间推理步骤,相当于在求解问题过程中将解 题步骤也写出来

	Multi	Arith	GSM8K
Zero-Shot Few-Shot (2 samples) Few-Shot (8 samples)		17.7 33.7 33.8	10.4 15.6 15.6
Zero-Shot-CoT Few-Shot-CoT (2 samples) Few-Shot-CoT (4 samples : First) (*1) Few-Shot-CoT (4 samples : Second) (*1) Few-Shot-CoT (8 samples)	Greatly outperforms → zero-shot Manual CoT →	78.7 84.8 89.2 90.5 93.0	40.7 41.3 - 48.7
20 21.00 CO 2 (0 Swiipies)	still better	,	,

[Kojima et al., 2022]

No.	Category	Zero-shot CoT Trigger Prompt	Accuracy
1	LM-Designed	Let's work this out in a step by step way to be sure we have the right answer.	82.0
2	Human-Designed	Let's think step by step. (*1)	78.7
3	_	First, (*2)	77.3
4	80	Let's think about this logically.	74.5
5		Let's solve this problem by splitting it into steps. (*3)	72.2
6		Let's be realistic and think step by step.	70.8
6 7		Let's think like a detective step by step.	70.3
8	200	Let's think	57.5
9		Before we dive into the answer,	55.7
10		The answer is after the proof.	45.7
-		(Zero-shot)	17.7

□思维链是大模型的重要能力

语言技术紫丁香

微信扫描二维码, 关注我的公众号