

다중 에이전트 강화학습 이론 및 응용

Multi-Agent Deep Reinforcement Theory and its Application

Won Joon Yun Korea University, School of Electrical Engineering Artificial Intelligence and Mobility Laboratory

Now, we have curiosity about...

Q1. Should we wait for the scenario terminated?

Trajectory(Dataset): $\tau = \{s_0, a_0, r_0, s_1, a_1, \dots, s_T\}$

A1. No, I will introduce <u>A2C</u>. It will make objective function optimized FASTER.

Q2. How can I maximize objective function efficiently?

Objective Function: $J(\theta) = E_{\tau}[\sum_{t=0}^{T} \gamma^{t} \cdot r(s_{t}, a_{t})]$

A2. I will introduce <u>PPO</u> and <u>DDPG</u>. If you use it, you can maximize the objective function with BETTER PERFORMANCE.

Q3.What about design DQN?

A3. I will introduce <u>CommNet</u> and <u>G2ANet</u>.

Q4. Any new idea?

A4. I will introduce Value Decomposition Network.

Review: Single Agent Reinforcement Learning

What if there exists more than one agent?

What if there exists more than one agent?

With Previous method.

DQN-based CommNet

 $h_j^i: j$ -th agent's hidden state variable in i-th layer $c_i^i: j$ -th agent's communitive state variable in i-th layer

$$h_j^{i+1} = f^i(h_j^i, c_j^i)$$

CommNet Mechanism

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function


```
class CommNet(nn.Module):
    def init (self, input shape):
        super(CommNet, self).__init__()
        self.encoding = nn.Linear(input_shape, rnn_dim)
        self.f_obs = nn.GRUCell(rnn_dim, rnn_dim)
        self.f_comm = nn.GRUCell(rnn_dim, rnn_dim)
        self.decoding = nn.Linear(rnn dim, rnn dim)
   def forward(self, obs, hidden_state):
       obs encoding = torch.sigmoid(self.encoding(obs))
       h_in = hidden_state.reshape(-1, rnn_dim)
       h_out = self.f_obs(obs_encoding, h_in)
       h = h.reshape(-1, n agents, rnn dim)
       c = h.reshape(-1, 1, n_agents*rnn_dim)
       c = c.repeat(1, n agents, 1)
       mask = (1 - torch.eye(n_agents))
       mask = mask.view(-1, 1).repeat(1, rnn_dim).view(n_agents, -1)
       c = c * mask.unsqueeze(0)
       c = c.reshape(-1, n_agents, n_agents, rnn_dim)
       c = c.mean(dim=-2)
       h = h.reshape(-1, rnn_dim)
       c = c.reshape(-1, rnn_dim)
       h = self.f comm(c, h)
       weights = self.decoding(h)
       return weights, h out
```



```
class CommNet(nn.Module):
    def __init__(self, input_shape):
        super(CommNet, self). init ()
        self.encoding = nn.Linear(input_shape, rnn_dim)
        self.f_obs = nn.GRUCell(rnn_dim, rnn_dim)
        self.f_comm = nn.GRUCell(rnn_dim, rnn_dim)
        self.decoding = nn.Linear(rnn dim, rnn dim)
    def forward(self, obs, hidden state):
        obs_encoding = torch.sigmoid(self.encoding(obs))
        h_in = hidden_state.reshape(-1, rnn_dim)
        h_out = self.f_obs(obs_encoding, h_in)
        h = h.reshape(-1, n_agents, rnn_dim)
        c = h.reshape(-1, 1, n agents*rnn dim)
        c = c.repeat(1, n_agents, 1)
       mask = (1 - torch.eye(n_agents))
        mask = mask.view(-1, 1).repeat(1, rnn_dim).view(n_agents, -1)
        c = c * mask.unsqueeze(0)
        c = c.reshape(-1, n_agents, n_agents, rnn_dim)
        c = c.mean(dim=-2)
        h = h.reshape(-1, rnn_dim)
        c = c.reshape(-1, rnn_dim)
        h = self.f comm(c, h)
        weights = self.decoding(h)
        return weights, h out
```



```
class CommNet(nn.Module):
    def __init__(self, input_shape):
        super(CommNet, self). init ()
        self.encoding = nn.Linear(input_shape, rnn_dim)
        self.f_obs = nn.GRUCell(rnn_dim, rnn_dim)
        self.f_comm = nn.GRUCell(rnn_dim, rnn_dim)
        self.decoding = nn.Linear(rnn_dim, rnn_dim)
   def forward(self, obs, hidden state):
        obs encoding = torch.sigmoid(self.encoding(obs))
       h_in = hidden_state.reshape(-1, rnn_dim)
        h_out = self.f_obs(obs_encoding, h_in)
       h = h.reshape(-1, n agents, rnn dim)
       c = h.reshape(-1, 1, n_agents*rnn_dim)
                                                                 3
       c = c.repeat(1, n agents, 1)
       mask = (1 - torch.eye(n_agents))
       mask = mask.view(-1, 1).repeat(1, rnn_dim).view(n_agents, -1)
       c = c * mask.unsqueeze(0)
       c = c.reshape(-1, n_agents, n_agents, rnn_dim)
       c = c.mean(dim=-2)
       h = h.reshape(-1, rnn dim)
        c = c.reshape(-1, rnn_dim)
       h = self.f comm(c, h)
       weights = self.decoding(h)
        return weights, h out
```



```
class CommNet(nn.Module):
    def __init__(self, input_shape):
        super(CommNet, self). init ()
        self.encoding = nn.Linear(input_shape, rnn_dim)
        self.f_obs = nn.GRUCell(rnn_dim, rnn_dim)
        self.f_comm = nn.GRUCell(rnn_dim, rnn_dim)
        self.decoding = nn.Linear(rnn_dim, rnn_dim)
    def forward(self, obs, hidden_state):
        obs encoding = torch.sigmoid(self.encoding(obs))
        h_in = hidden_state.reshape(-1, rnn_dim)
        h_out = self.f_obs(obs_encoding, h_in)
        h = h.reshape(-1, n agents, rnn dim)
        c = h.reshape(-1, 1, n_agents*rnn_dim)
        c = c.repeat(1, n agents, 1)
        mask = (1 - torch.eye(n_agents))
        mask = mask.view(-1, 1).repeat(1, rnn_dim).view(n_agents, -1)
        c = c * mask.unsqueeze(0)
        c = c.reshape(-1, n_agents, n_agents, rnn_dim)
        c = c.mean(dim=-2)
       h = h.reshape(-1, rnn_dim)
c = c.reshape(-1, rnn_dim)
        h = self.f comm(c, h)
       weights = self.decoding(h)
        return weights, h out
```


CommNet Performance

	Training method				
Model Φ	Supervised	Reinforcement			
Independent	0.59	0.59			
CommNet	0.99	0.94			

	Other game versions				
Model Φ	Easy (MLP)	Hard (RNN)			
Independent	15.8 ± 12.5	26.9 ± 6.0			
Discrete comm.	1.1 ± 2.4	28.2 ± 5.7			
CommNet	0.3 ± 0.1	22.5 ± 6.1			
CommNet local	<u>-</u>	21.1± 3.4			

	Module $f()$ type						
Model Φ	MLP	RNN	LSTM				
Independent	20.6 ± 14.1	19.5 ± 4.5	9.4 ± 5.6				
Fully-connected	12.5 ± 4.4	34.8 ± 19.7	4.8 ± 2.4				
Discrete comm.	15.8 ± 9.3	15.2 ± 2.1	8.4 ± 3.4				
CommNet	2.2± 0.6	7.6± 1.4	1.6± 1.0				

Summary of CommNet

CommNet

In Graph Approach.

- 1. Should the agent communicate with all agent?
- 2. Can we transfer only essential information between agents?
- → G2ANet will be the solution to the above problem.

In Graph Approach.

- 1. Should the agent communicate with all agent?
- 2. Can we transfer only essential information between agents?

G2ANet will be the solution to the above problem.

• States of agent are mapped into nodes(vertices).

 Seq2Seq and attention mechanism is widely used in natural language process(NLP).

Query(Dictionary)

 $\{k_{What}: v_{What}, k_{is}: v_{is}, k_{your}: v_{your}, k_{name}: v_{name}\}$

- Key
 - $k_{What}, k_{is}, k_{your}, k_{name}$
- Value

 $v_{What}, v_{is}, v_{your}, v_{name}$

Seq2Seq+Attention Mechanism(Scaled Dot-Product Attention)

$$Attention(q, k, v) = Score_{scaled} * v$$

Autoencoder: Hidden Variable(h_t) to Query, Key, Value

G2ANet Architecture


```
class G2ANet(nn.Module):
    def __init__(self, input_shape, args):
        super(G2ANet, self).__init__()
        self.encoding = nn.Linear(input_shape, rnn_dim)
        self.h = nn.GRUCell(rnn_dim, rnn_dim)
        self.hard_bi_GRU = nn.GRU(rnn_dim * 2, rnn_dim, bidirectional=True)
        self.hard_encoding = nn.Linear(rnn_dim * 2, 2)
        self.q = nn.Linear(rnn_dim, rnn_dim, bias=False)
        self.k = nn.Linear(rnn_dim, rnn_dim, bias=False)
        self.v = nn.Linear(rnn_dim, rnn_dim)
        self.decoding = nn.Linear(rnn_dim+attention_dim, n_actions)
        self.args = args
        self.input_shape = input_shape
```


Hard Attention


```
def forward(self, obs, hidden_state):
    obs_encoding = f.relu(self.encoding(obs))
    h in = hidden_state.reshape(-1, rnn_dim)
    h out = self.h(obs encoding, h in)
    h = h_out.reshape(-1, n_agents, rnn_dim)
    input hard = []
    for i in range(n agents):
       h i = h[:, i]
       h hard i = []
        for j in range(n_agents):
            if i != i:
                h_hard_i.append(torch.cat([h_i, h[:, j]], dim=-1))
                h_hard_i = torch.stack(h_hard_i, dim=0)
                input hard.append(h hard i)
            input_hard = torch.stack(input_hard, dim=-2)
            input_hard = input_hard.view(n_agents - 1, -1, rnn_dim * 2)
    h_hard = torch.zeros((2 * 1, size, rnn_dim))
    h_hard, _ = self.hard_bi_GRU(input_hard, h_hard)
    h hard = h hard.permute(1, 0, 2)
    h hard = h hard.reshape(-1, rnn dim * 2)
    hard_weights = self.hard_encoding(h_hard)
    hard weights = f.gumbel softmax(hard weights, tau=0.01)
    hard_weights = hard_weights[:, 1].view(-1, n_agents, 1, n_agents-1)
    hard_weights = hard_weights.permute(1, 0, 2, 3)
```


Hard Attention


```
def forward(self, obs, hidden_state):
                                                                      Hard Attention
                                                                                         Adjacency
    obs_encoding = f.relu(self.encoding(obs))
                                                                                           Matrix
                                                                         Output
    h in = hidden_state.reshape(-1, rnn_dim)
    h out = self.h(obs encoding, h in)
    h = h_out.reshape(-1, n_agents, rnn dim)
    input_hard = []
    for i in range(n agents):
        h_i = h[:, i]
        h hard i = []
                                                                                        Define Edge
        for j in range(n_agents):
            if i != i:
                h_hard_i.append(torch.cat([h_i, h[:, j]], dim=-1))
                                                                                                    h_1^t
                h_hard_i = torch.stack(h_hard_i, dim=0)
                input hard.append(h hard i)
            input_hard = torch.stack(input_hard, dim=-2)
            input_hard = input_hard.view(n_agents - 1, -1, rnn_dim * 2)
                                                                                          h_2^t
    h_hard = torch.zeros((2 * 1, size, rnn_dim))
    h_hard, _ = self.hard_bi_GRU(input_hard, h_hard)
    h hard = h hard.permute(1, 0, 2)
    h_hard = h_hard.reshape(-1, rnn_dim * 2)
                                                                                                    h_3^t
                                                                                                               Hard
    hard_weights = self.hard_encoding(h_hard)
                                                                                                            Attention
    hard_weights = f.gumbel_softmax(hard_weights, tau=0.01)
    hard_weights = hard_weights[:, 1].view(-1, n_agents, 1, n_agents-1)
    hard_weights = hard_weights.permute(1, 0, 2, 3)
```

Soft Attention


```
def forward(self, obs, hidden state):
    q = self.q(h_out).reshape(-1, n_agents, attention_dim)
    k = self.k(h out).reshape(-1, n agents, attention dim)
    v = f.relu(self.v(h_out)).reshape(1, n_agents, attention_dim)
    x = []
    for i in range(n_agents):
        q_i = q[:, i].view(-1, 1, attention_dim)
        k_i = [k[:, j] for j in range(n_agents) if j != i]
        v_i = [v[:, j] for j in range(n_agents) if j != i]
         k_i = \text{torch.stack}(k_i, \text{dim=0}) Score = \mathbf{q} \cdot \mathbf{k} = \mathbf{q}^T * \mathbf{k}
        k_i = k_i.permute(1, 2, 0)
        v_i = \text{torch.stack}(v_i, \text{dim=0}) Score_{scaled} = \frac{Score}{\sqrt{n}}
        v_i = v_i.permute(1, 2, 0)
                                           Attention(q, k, v) = Score_{scaled} * v
        score = torch.matmul(q_i, k_i)
         scaled score = score / np.sqrt(attention dim)
         soft_weight = f.softmax(scaled_score, dim=-1)
        x i = (v i * soft weight * hard weights[i]).sum(dim=-1)
        x.append(x_i)
    x = torch.stack(x, dim=1).reshape(-1, attention_dim)
    final input = torch.cat([h out, x], dim=-1)
    output = self.decoding(final_input)
    return output, h out
```


Soft Attention


```
def forward(self, obs, hidden state):
    q = self.q(h_out).reshape(-1, n_agents, attention_dim)
    k = self.k(h out).reshape(-1, n agents, attention dim)
    v = f.relu(self.v(h_out)).reshape(1, n_agents, attention_dim)
    x = []
    for i in range(n_agents):
        q_i = q[:, i].view(-1, 1, attention_dim)
        k_i = [k[:, j] for j in range(n_agents) if j != i]
        v_i = [v[:, j] for j in range(n_agents) if j != i]
         k_i = \text{torch.stack}(k_i, \text{dim=0}) Score = \mathbf{q} \cdot \mathbf{k} = \mathbf{q}^T * \mathbf{k}
        k_i = k_i.permute(1, 2, 0)
        v_i = \text{torch.stack}(v_i, \text{dim=0}) Score_{scaled} = \frac{Score}{\sqrt{n}}
        v_i = v_i.permute(1, 2, 0)
                                           Attention(q, k, v) = Score_{scaled} * v
        score = torch.matmul(q_i, k_i)
         scaled score = score / np.sqrt(attention dim)
         soft_weight = f.softmax(scaled_score, dim=-1)
        x i = (v i * soft weight * hard weights[i]).sum(dim=-1)
        x.append(x_i)
    x = torch.stack(x, dim=1).reshape(-1, attention_dim)
    final input = torch.cat([h out, x], dim=-1)
    output = self.decoding(final_input)
    return output, h out
```


Soft Attention


```
def forward(self, obs, hidden state):
    q = self.q(h_out).reshape(-1, n_agents, attention_dim)
    k = self.k(h out).reshape(-1, n agents, attention dim)
    v = f.relu(self.v(h out)).reshape(1, n agents, attention dim)
    x = []
    for i in range(n_agents):
        q_i = q[:, i].view(-1, 1, attention_dim)
       k_i = [k[:, j] for j in range(n_agents) if j != i]
       v_i = [v[:, j] for j in range(n_agents) if j != i]
        k_i = torch.stack(k_i, dim=0)
        k i = k i.permute(1, 2, 0)
       v i = torch.stack(v i, dim=0)
       v i = v i.permute(1, 2, 0)
        score = torch.matmul(q i, k i)
        scaled_score = score / np.sqrt(attention_dim)
        soft_weight = f.softmax(scaled_score, dim=-1)
        x i = (v i * soft weight * hard weights[i]).sum(dim=-1)
        x.append(x i)
    x = torch.stack(x, dim=1).reshape(-1, attention_dim)
    final input = torch.cat([h out, x], dim=-1)
    output = self.decoding(final input)
    return output, h out
```

o		Atter (conn		n)		Atter it (me		(cc		al Out ion & r	out nessage)
	1	0	1		0.11	0.84	0.4		0.11	0	0.4
	1	0	0	*	0.1	0.18	0.72	_	0.1	0	0
	0	1	0		0.34	0.38	0.28	_	0	0.38	0
	0	1	0		0.16	0.14	0.70		0	0.14	0

G2ANet Performance

Algorithm	Easy	Medium	Hard
CommNet	93.5%	78.8%	6.5%
IC3Net	93.2%	90.8%	70.9%
GA-Comm	99.7%	97.6%	82.3%

Thank you for your attention!

- More questions?
 - ywjoon95@korea.ac.kr