

班级	姓名	
1.用绿光照射	· 甘某一光电管,能产生光。	电效应。现欲使光电子从阴极逸出时的最大初动能增大,下列
办法中可行的	的有 () A	
(甲) 改用组	红光照射	(乙) 增大绿光的强度
(丙) 增大>	光电管上的加速电压	(丁) 改用紫光照射
(A) 1个	(B) 2个	(C) 3个 (D) 4个
2.在α粒子穿	2过金箔发生大角度散射的	的过程中,下列说法中正确的是()A
(A) a 粒子	一直受到金原子核的斥	力作用 (B) a 粒子的动能不断减小
(C) a 粒子	的电势能不断增大	(D) a 粒子发生散射,是与电子碰撞的结果
3.天然放射性	生元素 ²³² Th (钍) 经过-	-系列 $lpha$ 衰变和 eta 衰变之后,变成 $^{208}_{82}Pb$ (铅)。下列论断中
正确的是() D	
(A) 铅核比	24 个中子	(B) 铅核比钍核少 24 个质子
		8次β衰变 (D)衰变过程中共有6次α衰变和4次β衰变
4.用中子轰击	5氧原子核的核反应方程:	式为 $_{8}^{16}$ O+ $_{0}^{1}$ n \rightarrow_{7}^{a} N+ $_{b}^{0}$ X,则()B
(C) X 代表 5.图为α粒子 生了分叉,分 (A)细而长	电子, a=17, b=-1 穿过充满氮气的云室时指 分叉后有一条细而长的径 实的径迹是α粒子 (B)	(B) X代表正电子, a=17, b=1 (D) X代表质子, a=17, b=1 由摄的照片, 在许多α粒子的径迹中有一条发迹和一条粗而短的径迹,则() C 细而长的径迹是氧核 (D) 粗而短的径迹是质子
		速度竖直向上抛出,不计空气阻力,g取10m/s²,1s后物体的
	m/s,则该物体此时(
		向向上 (B)位置一定在 A 点上方,速度方向向下
	·定在 A 点上方,速度方	
	-定在 A 点下方, 速度方	
	·	定质量的某种理想气体在两条等温线上的p↑
		OAC 和 OBD 的面积分别为 S _A 和 S _B ,则 A
() C		B B
	₹ 大 Ŧ Sp (B)	SA 一定等于 Sp

- (C) S_A 一定小于 S_B
- (D) 无法比较它们的大小

8.在竖直平面内的一段光滑圆弧轨道上有等高的两点 M、N. 它们所对圆心角小于 10°. P 点是圆弧 的最低点, O 为弧 NP 上的一点, 在 OP 间搭一光滑斜面, 将两小滑块(可视为质点)分别同时从 〇点和 M 点由静止释放,则两小滑块的相遇点一定在()B

- (A) P点
- (B) 斜面 PO 上的一点
- (C) PM 弧上的一点 (D) 滑块质量较大的那一侧

9.如图所示, 挡板垂直干斜面固定在斜面上, 一滑块 m 放在斜面上, 其上表 面呈弧形且左端最薄,一球 M 搁在挡板与弧形滑块上,一切摩擦均不计,用 平行干斜面的拉力 F 拉住弧形滑块, 使球与滑块均静止, 现将滑块平行干斜

- (A) 木板对球的弹力增大
- (B) 滑块对球的弹力增大
- (C) 斜面对滑块的弹力不变 (D) 拉力 F 减小

10.某同学设计了如图甲所示电路研究电源输出功率随外电阻 变化的规律。电源电动势 E 恒定,内电阻 $r=6\Omega$, R_1 为滑动变 阻器、 R_0 、 R_3 为定值电阻、A、V为理想电表。当滑动变阻器 滑臂从 a 到 h 移动的过程中, 输出功率随滑臂移动距离 x 的变 化情况如乙图所示.则 R_1 的最大阻值及 R_2 、 R_3 的阻值可能为 下列哪组 ()A

(A) $12\Omega_{\lambda}$ $6\Omega_{\lambda}$ 6Ω (B) 6Ω , 12Ω , 4Ω (C) $12\Omega_{\lambda}$ $6\Omega_{\lambda}$ 2Ω (D) 6Ω , 12Ω , 8Ω 11.图示为利用放射线自动控制铝板厚度的装置的示意图。生产线生产的是厚度为 2mm 的铝板, 放 射源能放射出 α 、 β 、 γ 三种射线,铝板下的探测接收器可以把接收到的放射线的强度转化为电信号, 通过微机控制轧辊间的距离从而控制铝板的厚度。根据 α 、 β 、 γ 三种

射线贯穿性能的不同可以判断, 三种射线中, 对控制铝板厚度起主要 作用的射线是 。β射线

12.用功率为 $P_0=1W$ 的点光源, 照射离光源 r=3m 处的某块金属薄片 已知光源发出的是波长 $\lambda = 589$ nm 的单色光。则 1s 内打到金属薄片 1mm²面积上的光子数为

;若取该金属原子半径 r₁ =0.5×10⁻¹⁰m, 则金属表面上每个原子平均需隔 能接收到一个光子。 $2.6*10^{10}$, 4.9×10^3

13.氢原子中电子离核最近的轨道半径 $r_1=0.53\times10^{-10}$ m, 电子的质量为 m = 9.1×10^{-31} kg, 静电力常 量为 $k = 9 \times 10^9 \text{Nm}^2/\text{C}^2$,则电子在该轨道上运动的速度为 : 电子在该轨道上运动时的等效 电流为 A。2.19*×10⁶ m/s 1.0×10⁻³A

14.卢瑟福用质量为m, 速度为v的 α 粒子轰击金原子核 $^{196}_{79}$ Au 后发现, 只有极少数的 α 粒子发生 大角度偏转,个别α粒子甚至反向弹回。若取"无穷远"处为金原子核电荷的零电势位置,则距金 原子核中心 R 处某点的电势表达式为 U=kO/R, 式中 Q 为金原子核所带的电量, k 为静电力恒量。 已知基元电荷为 e, 若假定 α 粒子在离原子核最近处的动能减为零, 然后弹回, 则全过程 α 粒子的 电势能变化情况是 根据能量守恒关系可估算金原子核的半径不可能超过 变大后变小 316ke²/mv²

15.如图所示,竖直平行导轨间距 l=20cm,导轨顶端接有一开关 S。导体棒 ab 与导轨接触良好且无摩擦,ab 的电阻 $R=0.4\Omega$,质量 m=10g,导轨的电阻 $R=0.4\Omega$,质量 m=10g,导轨的电阻 $R=0.4\Omega$,质量 R=10g,导轨的电阻 $R=0.4\Omega$, R=10g,导轨的电阻 R=10g,导轨的电阻 R=10g,导轨 R=10g,是 R=10

16.如图所示,在质量为 m_B =30kg 的车厢 B 内紧靠右壁,放一质量 m_A =20kg 的小物体 A(可视为质点),对车厢 B 施加一水平向右的恒力 F,且 F=120N,使之从静止开始运动。测得车厢 B 在最初 t=2.0s 内移动 s=5.0m,且这段时间内小物块未与车厢壁发生过碰撞。车厢与地面间的摩擦忽略不计。

- (1) 计算 B 在 2.0s 的加速度。
- (2) 求 t=2.0s 末 A 的速度大小。
- (3) 求 t=2.0s 内 A 在 B 上滑动的距离。

2.5m/s², 4.5m/s. 0.5m

17.如下图所示,一个很长的竖直放置的圆柱形磁铁,产生一个中心辐射的磁场(磁场水平向外),其大小为B=k/r(其中r为辐射半径),设一个与磁铁同轴的圆形铝环,半径为R(大于圆柱形磁铁的半径),而弯成铝环的铝丝其横截面积为S,圆环通过磁场由静止开始下落,下落过程中圆环平面始终水平,已知铝丝电阻率为Q,密度为Q00、试求:

- (1) 圆环下落的速度为 v 时的电功率
- (2) 圆环下落的最终速度

$$\frac{2\pi k^2 v^2 S}{\rho R}, \frac{\rho \rho_0 R^2 g}{k^2}$$

选择题 4'x 10 = 40'

填空题 3'x 7 空 = 21 '

15 题 每图 3 ' + 最终速度 2' + (t=0.1 秒讨论) 2 '=13'

16 题 4 '+4' +5 ' = 13 '

17 题 6 '+7' = 13

15 题 评分标准中所有图中均应该标明 1m/s 和 0.1s 的标志点 若图形正确 缺标志点和渐近线扣 1分 横纵坐标的名称和单位扣 1分 图形错则为零分

包含自由下落部分 加速度和速度变化情况

11.1919 年卢瑟福通过如图所示的实验装置,第一次完成了原子核的人工转变,并由此发现了____。图中A 为放射源发出的___粒子,B 为___气。完成该实验的下列核反应方程____+ \rightarrow 0 + 0 .

