Binômio de Newton

Coeficientes binomiais:

Definição: Dados dois números naturais n e p, com $n \ge p$, definimos o *coeficiente* binomial n sobre p, e indicamos por $\binom{n}{p}$, dado por $\binom{n}{p} = \frac{n!}{p!(n-p)!}$, onde $\binom{n}{p} = C_{n,p}$. Chamamos n de numerador e p de denominador de $\binom{n}{p}$.

Exemplos:

Calcule os coeficientes binomiais:

a)
$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5.4.3!}{3!2.1} = 10$$

b)
$$\binom{10}{7} = \frac{10!}{7!3!} = \frac{10! \cdot 9 \cdot 8 \cdot 7!}{7! \cdot 3 \cdot 2 \cdot 1} = 120$$

Casos particulares:

a) Quando
$$p = 0$$
, temos $\binom{n}{0} = \frac{n!}{0!n!} = 1$, $\forall n \in \mathbb{N}$.

Exemplos:

$$\binom{4}{0} = 1 e \binom{20}{0} = 1$$

b) Quando
$$p = 1$$
, temos $\binom{n}{1} = \frac{n!}{1!(n-1)!} = \frac{n(n-1)!}{1!(n-1)!} = n$, $\forall n \in \mathbb{N}$.

Exemplos:

$$\binom{5}{1} = 5 e \binom{9}{1} = 9$$

c) Quando
$$n = p$$
, temos $\binom{n}{n} = \frac{n!}{n!0!} = 1$, $\forall n \in \mathbb{N}$.

Exemplos:

$$\binom{5}{5} = 1 e \binom{14}{14} = 1$$

Usamos os coeficientes binomiais no estudo do desenvolvimento do binômio de Newton.

Binomiais Complementares:

Definição: Dois coeficientes binomiais de mesmo numerador são complementares quando a soma de seus denominadores é igual ao numerador, isto é:

$$\binom{n}{p}$$
 e $\binom{n}{q}$ são complementares se $p+q=n$

Exemplos:

a)
$$\begin{pmatrix} 8 \\ 2 \end{pmatrix}$$
 e $\begin{pmatrix} 8 \\ 6 \end{pmatrix}$

b)
$$\binom{9}{5}$$
 e $\binom{9}{4}$

a)
$$\begin{pmatrix} 8 \\ 2 \end{pmatrix}$$
 e $\begin{pmatrix} 8 \\ 6 \end{pmatrix}$ b) $\begin{pmatrix} 9 \\ 5 \end{pmatrix}$ e $\begin{pmatrix} 9 \\ 4 \end{pmatrix}$ c) $\begin{pmatrix} 11 \\ 4 \end{pmatrix}$ e $\begin{pmatrix} 11 \\ 7 \end{pmatrix}$

Propriedade: Dois coeficientes binomiais complementares são iguais se:

$$\binom{n}{p} = \binom{n}{q} \Leftrightarrow \begin{cases} p = q \\ p + q = n \end{cases}$$

Sendo n, p e q números naturais tais que $n \ge p$ e $n \ge q$.

Exemplo:

Calcule
$$x \text{ em} \begin{pmatrix} 6 \\ x \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

Temos duas possibilidades
$$\begin{cases} x = 2 \\ \text{ou} \\ x + 2 = 6 \Rightarrow x = 4 \end{cases}$$

Triângulo de Pascal

Os coeficientes binomiais podem ser dispostos em uma tabela chamada triângulo de Pascal ou Tartaglia. Nela coeficientes de um mesmo numerador agrupam-se em uma mesma linha e os de mesmo denominador agrupam-se em uma mesma coluna.

Linha 0
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Linha 1 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Linha 2 $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$

Linha 3 $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$

Linha 4 $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$

Linha 5 $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$...

Linha k $\begin{pmatrix} k \\ 0 \end{pmatrix}$ $\begin{pmatrix} k \\ 1 \end{pmatrix}$ $\begin{pmatrix} k \\ 2 \end{pmatrix}$ $\begin{pmatrix} k \\ 3 \end{pmatrix}$ $\begin{pmatrix} k \\ 4 \end{pmatrix}$ $\begin{pmatrix} k \\ 5 \end{pmatrix}$...

Calculando os valores dos coeficientes, obtém-se:

Propriedades:

1^a) Toda linha começa e termina por 1.

De fato:
$$\binom{k}{0} = 1$$
, $\binom{k}{k} = 1$, $\forall k \in N$

2ª) Em uma mesma linha coeficientes binomiais equidistantes dos extremos são iguais. Exemplo:

Justificativa: Esses coeficientes binomiais são complementares.

 3^{a}) A partir da linha 2, cada elemento x (com exceção do primeiro e do último) é igual a soma de dois elementos da linha anterior, a saber: o elemento imediatamente acima de x e o anterior dele.

Esta propriedade é conhecida como relação de Stifel e pode ser generalizada por:

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}, \ n \ge p$$

O 1° membro da igualdade representa um elemento genérico (linha n e coluna p) do triângulo; o segundo membro representa a soma de dois elementos da linha anterior (linha n-1), um da mesma coluna (p) e o outro da coluna anterior (p-1).

Exemplos:

1) Calcule o valor de
$$\binom{9}{7} + \binom{9}{8}$$

Pela relação de Stifel $\binom{9}{7} + \binom{9}{8} = \binom{10}{8}$

$$E \binom{10}{8} = \frac{10!}{8!2!} = \frac{10.9.8!}{8!2.1} = 45$$

2) Suponhamos que
$$\binom{n}{p} = x$$
 e $\binom{n+1}{p+1} = y$. Descubra o valor de $\binom{n}{p+1}$. Pela relação de Stifel $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$
$$x + \binom{n}{p+1} = y \Rightarrow \binom{n}{p+1} = y - x.$$

 4^{a}) A soma dos elementos da linha de numerador k é igual a 2^{k} .

Linha 0	1								2^{0}
Linha 1	1	1							2^{1}
Linha 2	1	2	1						2^2
Linha 3	1	3	3	1					2^3
•••	•••	•••	•••	•••	•••	•••			
Linha k	$\begin{pmatrix} k \\ 0 \end{pmatrix}$	$\begin{pmatrix} k \\ 1 \end{pmatrix}$	$\binom{k}{2}$	$\binom{k}{3}$	$\begin{pmatrix} k \\ 4 \end{pmatrix}$	$\binom{k}{5}$	•••	$\begin{pmatrix} k \\ k \end{pmatrix}$	2^k

Somatório:

È um símbolo indicado pela letra grega Σ (sigma), que representa a soma de certo número de parcelas com alguma característica comum.

Exemplos:

Calcule:

a)
$$\sum_{i=1}^{5} i^2$$
 (lê-se: somatório de i^2 , para i variando de 1 até 5.).
 $\underbrace{1^2_{i=1} + 2^2_{i=2} + 3^2_{i=3} + 4^2_{i=4} + 5^2_{i=5}}_{i=4} = 1 + 4 + 9 + 16 + 25 = 55$

$$\underbrace{1^{2}_{i=1}}_{i=2} + \underbrace{2^{2}_{i=3}}_{i=3} + \underbrace{4^{2}_{i=4}}_{i=4} + \underbrace{5^{2}_{i=5}}_{i=5} = 1 + 4 + 9 + 16 + 25 = 55$$

b)
$$\sum_{i=0}^{3} \frac{1}{i+1}$$

= $\frac{1}{0+1} + \frac{1}{1+1} + \frac{1}{2+1} + \frac{1}{3+1} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{12+6+4+3}{12} = \frac{25}{12}$

c)
$$\sum_{k=0}^{2} {5 \choose k}$$

= ${5 \choose 0} + {5 \choose 1} + {5 \choose 2} = 1 + 5 + 10 = 16$