Colles semaine 4 : Séries numériques : compléments

1 Sommes finies

- ▶ Généralités nombre de termes, indice de sommation, valeur moyenne
- ▶ Propriétés Linéarité, croissance (majorer, minorer une somme), relation de Chasles
- Sommation télescopique Formule $\sum_{k=m}^{n} (u_{k+1} u_k) = u_{n+1} u_m$ et variantes
 - ► On décompose la série par linéarité, puis changement d'indice. (éventuellement appoche directe : on développe la somme avec des ... + ... + ... et on simplifie)
 - ▶ Télescopage de décomposition en éléments simples. L'exemple $\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$.

2 Convergence

2.1 Définitions

La série $\sum_{n\geqslant 0} a_n$ converge si la **suite des sommes partielles** $\left(S_N = \sum_{n=0}^N a_n\right)$ converge.

- ▶ Somme de la série La somme de la série est alors la limite $S = \lim_{N\to\infty} S_N$.
- Exemple Calcul de $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = 1$.
- ▶ Divergence grossière Pour que la série $\sum_{n\geqslant 0} a_n$ converge, il faut que $a_n \xrightarrow{\infty} 0$.

 (mais cette condition n'est pas suffisante, comme pour $H_n = \sum_{k=1}^n \frac{1}{k}$, divergente)

2.2 Séries à termes positifs (SATP)

- ▶ Sommes partielles Si (a_n) est une suite $\geqslant 0$, alors la suite $\left(\sum_{k=0}^n a_k\right)$ est croissante.
- ▶ Alternative des suites croissantes. Pour (S_n) croissante, alors (de deux choses l'une) :
 - (S_n) est majorée, et alors (S_n) converge,
 - (S_n) n'est pas majorée, et alors (S_n) tend vers $+\infty$.
- ▶ Exemples de maj-minoration des sommes partielles. Application : convergence de SÀTP.

2.3 Convergence par comparaison (pour les séries à termes positifs)

- ▶ Pour chacun des cas $\begin{vmatrix} u_n \leq v_n, \\ \text{ou } u_n \sim v_n, \\ \text{ou } u_n = o(v_n) \end{vmatrix}$ si $\sum v_n$ converge, alors $\sum u_n$ aussi.
- Séries de référence
 - $\star)$ Séries géométriques : La série $\sum_{n\geqslant 0}q^n$ converge ssi |q|<1, (la somme est alors $\frac{1}{1-q})$
 - $\star)$ Séries de Riemann : La série $\sum_{n\geqslant 1}\frac{1}{n^\alpha}$ converge $ssi~\alpha>1$
- ▶ Utilisation notable si $u_n = \left(\frac{1}{n^2}\right)$, alors la série $\sum_{n \ge 0} u_n$ converge.

2.4 Convergence absolue

- ▶ **Définition** La série $\sum_{n\geq 0} a_n$ converge absolument si la série $\sum_{n\geq 0} |a_n|$ converge.
- ▶ Propriété fondamentale Toute série absolument convergente est aussi convergente.
- ▶ Contre-exemple de la réciproque

La série alternée $\sum_{k\geqslant 1} \frac{(-1)^n}{n+1}$ converge (vers $\ln(2)$!), mais n'est pas absolument convergente.

Relation de comparaisons et convergence absolue

Les résultats de 2.3 s'appliquent aussi avec $|u_n|$ par convergence absolue.