ÁLGEBRA LINEAR

Exercícios - Transformações Lineares

Lic. Ciências da Computação

- 1. Sejam V, W espaços vectoriais sobre \mathbb{K} e $t:V\to W$ uma transformação linear. Mostre que
 - (a) t(0) = 0.
 - (b) Para $v_1, ..., v_n \in V, \alpha_1, ..., \alpha_n \in \mathbb{K},$ $t(\alpha_1 v_1 + ... + \alpha_n v_n) = \alpha_1 t(v_1) + ... + \alpha_n t(v_n).$
- 2. Diga quais das aplicações seguintes, entre espaços vectoriais reais, são transformações lineares:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $f(x,y) = (2x + y, x, y x), \forall (x,y) \in \mathbb{R}^2$.
 - (b) $g: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $g(x, y, z) = (y^2, y), \forall (x, y, z) \in \mathbb{R}^3$.
 - (c) $h: \mathbb{R}_2[x] \to \mathbb{R}^2$ definida por $h(ax^2 + bx + c) = (1, a + b), \forall ax^2 + bx + c \in \mathbb{R}_2[x]$.
 - (d) $t: \mathbb{R}^2 \to \mathbb{R}$ definida por $t(a, b) = 5a 2b, \forall (a, b) \in \mathbb{R}^2$.
- 3. Para cada $k \in \mathbb{R}$, seja $g_k : \mathbb{R}^4 \to \mathbb{R}^3$ a aplicação definida por

$$g_k(a_1, a_2, a_3, a_4) = (a_4 - k, 0, 2a_1 + a_3), \forall (a_1, a_2, a_3, a_4) \in \mathbb{R}^4.$$

Determine os valores de k para os quais g_k é transformação linear.

4. Considere a transformação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (x + y, 0, y - z), \forall (x, y, z) \in \mathbb{R}^3.$$

Determine Nucf, Imf e uma base para cada um destes subespaços vectoriais.

5. Sejam V, V' espaços vectoriais reais, $(v_1, v_2, v_3, v_4, v_5)$ uma base de V, (v'_1, v'_2, v'_3) uma base de V' e $f: V \to V'$ a transformação linear definida por

$$f(x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 + x_5v_5) = (x_2 - x_3)v_1' + (x_3 - x_2)v_2' + (x_1 + x_4 + x_5)v_3',$$
$$\forall x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}.$$

- (a) Determine Nucf
- (b) Diga, justificando, se f é injectiva.
- (c) Dê exemplo de um vector $u \in V$ tal que $u \notin \text{Nuc} f$. Justifique.
- (d) Verifique que $v_1 v_4 \in \text{Nuc} f$.
- 6. Diga, justificando, se existe
 - (a) uma transformação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(1,0,0) = (0,0,1), \ f(0,0,1) = (1,0,0), \ f(7,0,14) = (0,0,7).$

- (b) uma transformação linear $g:\mathbb{R}^2\to\mathbb{R}^4$ tal que $g(-1,2)=(0,1,2,3),\ g(2,-1)=(0,-1,-2,-3).$
- 7. Seja $q: \mathbb{R}^3 \to \mathbb{R}^4$ a transformação linear definida por

$$g(1,0,0) = (1,0,1,0), \quad g(0,1,0) = (0,1,-2,0), \quad g(0,0,1) = (1,1,0,0).$$

- (a) Determine i) g(2,3,1). ii) g(-1,2,0).
- (b) Determine uma base de $\operatorname{Im} g$ e indique a característica de g.
- (c) Diga, justificando, se g é injectiva.
- 8. Sejam $n, m \in \mathbb{N}$ e V, V' espaços vectoriais sobre o corpo \mathbb{K} tais que dim V = n e dim V' = m. Sejam $(v_1, ..., v_n)$ uma base de V e $f: V \to V, g: V \to V'$ transformações lineares. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) $(g(v_1), ..., g(v_n))$ é base de V'.
 - (b) Se g é sobrejectiva, então $n \geq m$.
 - (c) Se $n \ge m$, então g é sobrejectiva.
 - (d) Se $g(v_i) \neq g(v_j)$ sempre que $i \neq j$ $(i, j \in \{1, ..., n\})$, então g é injectiva.
 - (e) Se g é sobrejectiva, então g é injectiva.
 - (f) Se g é injectiva, então g é sobrejectiva.
 - (g) f é injectiva se e só f é sobrejectiva.
- 9. Considere as transformações lineares

$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 definida por $f(x, y, z, w) = (x - y, x + w, y + z), \ \forall (x, y, z, w) \in \mathbb{R}^4;$
 $g: \mathbb{R}^4 \to \mathbb{R}^4$ definida por $g(x, y, z, w) = (x, x + z, -w, 2y + z), \ \forall (x, y, z, w) \in \mathbb{R}^4;$
 $h: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $h(1, 1, 1) = (2, 0, 1), \ h(1, 1, 0) = (1, 0, -1), \ h(1, 0, 0) = (0, 0, 2);$
 $t: \mathbb{R}^3 \to \mathbb{R}^4$ definida por $t(x, y, z) = (x - y, 0, 0, x + y + z), \ \forall (x, y, z) \in \mathbb{R}^3;$

e as bases

$$B_1 = ((0,0,0,1), (0,0,1,1), (0,1,1,1), (1,1,1,1)) e$$

$$B_2 = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)) de \mathbb{R}^4;$$

$$B'_1 = ((1,1,1), (1,1,0), (1,0,0)) e$$

$$B'_2 = ((1,0,0), (0,1,0), (0,0,1)) de \mathbb{R}^3.$$

Determine

- a) $M(f; B_1, B'_1)$. b) $M(f; B_1, B'_2)$. c) $M(g; B_2, B_1)$.
- d) $M(g; B_1, B_2)$. e) $M(h; B'_1, B'_2)$. f) $M(h; B'_1, B'_1)$.
- g) $M(t; B'_2, B_2)$. h) $M(t; B'_1, B_1)$.

10. Considere as bases $B = (v_1, v_2)$ de \mathbb{C}^2 e $B' = (v'_1, v'_2, v'_3)$ de \mathbb{C}^3 em que $v_1 = (-1, 1), v_2 = (1, 1)$ e $v'_1 = (1, 1, 1), v'_2 = (0, 1, 1), v'_3 = (0, 0, 1).$

Seja
$$f: \mathbb{C}^2 \to \mathbb{C}^3$$
 a transformação linear tal que $M(f; B, B') = \begin{bmatrix} -1 & 1 \\ 0 & -1 \\ -2 & 1 \end{bmatrix}$.

Determine

- (a) f(2,3). (b) f(-1,1).
- (c) f(0,0). (d) f(0,2).
- 11. Considere, no espaço vectorial real \mathbb{R}^3 , a base B = ((1,0,1),(1,1,0),(0,1,1)) e o endomorfismo f definido por f(1,0,1) = (1,-1,1), f(1,1,0) = (2,1,1), f(0,1,1) = (1,0,0).
 - (a) Determine M(f; B, B).
 - (b) Determine $f(a, b, c), \forall (a, b, c) \in \mathbb{R}^3$.
 - (c) Mostre que f é um automorfismo de \mathbb{R}^3 e determine f^{-1} .
- 12. Considere o espaço vectorial real \mathbb{R}^3 e seja B base canónica de \mathbb{R}^3 .

Seja
$$g: \mathbb{R}^3 \to \mathbb{R}^3$$
 uma transformação linear tal que $M(g; B, B) = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ -1 & 3 & -1 \end{bmatrix}$.

- (a) Determine g(0,1,2) e g(1,1,0).
- (b) Mostre que i) $\dim \operatorname{Im} g = 2$. ii) $\operatorname{Nuc}(g) = <(0, 1, 2)>$.
- (c) Indique um vector $v \in \mathbb{R}^3$ tal que $v \neq (1,1,0)$ e g(v) = (0,0,1). Justifique.
- 13. Sejam V, V' espaços vectoriais reais, $B = (v_1, v_2, v_3)$ uma base de V e $B' = (v'_1, v'_2, v'_3, v'_4)$ uma base de V' e $f: V \to V'$ a transformação linear tal que $M(f; B, B') = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 4 & 1 \end{bmatrix}$.

Determine a) Im f. b) Nuc f.

14. Considere as transformações lineares $f,g:\mathbb{R}^3\to\mathbb{R}^2$ e $h:\mathbb{R}^2\to\mathbb{R}^3$ definidas, respectivamente, por

$$f(x, y, z) = (2x + z, x + 2z), g(x, y, z) = (x, x - y - z), \forall (x, y, z) \in \mathbb{R}^3;$$

 $h(a, b) = (2a, a - b, a + b), \forall (a, b) \in \mathbb{R}^2.$

Sendo B a base canónica de \mathbb{R}^3 e B' a base canónica de \mathbb{R}^2 , determine

- (a) M(f + g; B, B').
- (b) $M(h \circ f; B, B)$.
- (c) $M((f+g)\circ(3h); B', B')$.
- 15. Sejam B = ((1,1),(1,0)) uma base de \mathbb{R}^2 , B' = ((1,1,1),(1,1,0),(1,0,0)) uma base de \mathbb{R}^3 e $g: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que $M(g;B,B') = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$.

- (a) Determine $M(g; B_1, B_1')$ onde B_1 é a base canónica de \mathbb{R}^2 e B_1' é a base canónica de \mathbb{R}^3 .
- (b) $M(g; B_2, B')$ onde $B_2 = \{(0, 1), (2, 1)\}.$
- 16. Sejam V, V' espaços vectoriais reais de dimensão 3, B uma base de V e B' uma base de V'.

Seja
$$f:V\to V'$$
 a transformação linear tal que $M(f;B,B')=\left[\begin{array}{ccc} 1 & 0 & 1\\ 2 & 1 & 0\\ 3 & 0 & 1 \end{array}\right].$

- (a) Verifique que f é isomorfismo de V em V'.
- (b) Determine $M(f^{-1}; B', B)$.
- 17. Sejam V um espaço vectorial real, $B=(u_1,u_2,u_3)$ e $B'=(v_1,v_2,v_3)$ bases de V e $f:V\to V$ a transformação linear tal que $M(f;B,B')=\begin{bmatrix}2&1&0\\0&1&-1\\2&-1&2\end{bmatrix}$.
 - (a) Determine $f(u_1)$ e $f(2u_2 + 2u_3)$.
 - (b) Determine $\dim Nuc f$. Justifique.
 - (c) Sendo $M(id_V; B, B') = \begin{bmatrix} 0 & 0 & -1 \\ -2 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$, determine M(f; B', B).