```
from collections import deque
def search(lines, pattern, history=5):
    previous_lines = deque(maxlen=history)
    for line in lines:
        if pattern in line:
            yield line, previous_lines
        previous_lines.append(line)
# Example use on a file
if name _ == '__main__':
    with open('somefile.txt') as f:
        for line, prevlines in search(f, 'python', 5):
            for pline in prevlines:
                print(pline, end='')
            print(line, end='')
            print('-'*20)
          Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).
```

```
>>> q = deque(maxlen=3)
>>> q.append(1)
>>> q.append(2)
>>> q.append(3)
>>> q
deque([1, 2, 3], maxlen=3)
>>> q.append(4)
>>> Q
deque([2, 3, 4], maxlen=3)
>>> q.append(5)
>>> q
deque([3, 4, 5], maxlen=3)
```

```
>>> q = deque()
>>> q.append(1)
>>> q.append(2)
>>> q.append(2)
>>> q.append(3)
>>> q.pop()
3
>>> q
deque([4, 1, 2, 3])
>>> q
deque([4, 1, 2])
>>> q
deque([4, 1, 2])
>>> q.popleft()
4
```

import heapq nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]print(heapq.nlargest(3, nums)) # Prints [42, 37, 23] print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2] portfolio = [{'name': 'IBM', 'shares': 100, 'price': 91.1}, {'name': 'AAPL', 'shares': 50, 'price': 543.22}, {'name': 'FB'. 'shares': 200. 'price': 21.09}, {'name': 'HPO', 'shares': 35, 'price': 31.75}, {'name': 'YH00'. 'shares': 45. 'price': 16.35}. {'name': 'ACME', 'shares': 75, 'price': 115.65} cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price']) expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])

```
>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> import heapq
>>> heap = list(nums)
>>> heapq.heapify(heap)
>>> heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]
>>> heapq.heappop(heap)
- 4
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
```

```
import heapq
class PriorityQueue:
   def __init__(self):
        self._queue = []
        self._index = 0
   def push(self, item, priority):
        heapq.heappush(self._queue, (-priority, self._index, item))
        self._index += 1
   def pop(self):
        return heapq.heappop(self._queue)[-1]
```

```
>>> class Item:
        def __init__(self, name):
            self.name = name
     def repr (self):
            return 'Item({!r})'.format(self.name)
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
```

```
>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()</pre>
>>> a = (1, Item('foo'))
                                                      >>> a = (1, 0, Item('foo'))
>>> b = (5, Item('bar'))
                                                       >>> b = (5, 1, Item('bar'))
>>> a < b
                                                       >>> c = (1, 2, Item('grok'))
True
                                                       >>> a < b
>>> c = (1, Item('grok'))
                                                       True
>>> a < c
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()</pre>
>>>
```

d = { 'a' : [1, 2, 3], 'b' : [4, 5] } e = { 'a' : {1, 2, 3}, 'b' : {4, 5} }

from collections import defaultdict

```
d = defaultdict(list)
  d['a'].append(1)
d['a'].append(2)
 d['b'].append(4)
  d = defaultdict(set)
  d['a'].add(1)
  d['a'].add(2)
  d['b'].add(4)
```

```
d = {}
for key, value in pairs:
    if key not in d:
        d[key] = []
    d[key].append(value)

d = defaultdict(list)
for key, value in pairs:
    d[key].append(value)
```

Search Problems

Search?

Information Retrieval vs Search

Search

(Problem-Solving)

Definition of Search

Finding a (best) sequence of actions to solve a problem

For now, assume the problem is

- Deterministic
- Fully observable
- Known

Search Problem Mechanics

- A search problem consists of:
 - A state space

 A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Example: Traveling in Romania

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - Arad
- Goal test:
 - Is state == Bucharest?
- Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space Sizes?

• World state:

• Agent positions: 120

• Food count: 30

• Ghost positions: 12

Agent facing: NSEW

How many

- World states?
 120x(2³⁰)x(12²)x4
- States for pathing?120
- States for eat-all-dots?
 120x(2³⁰)

Search Problem Mechanics

- A search problem consists of:
 - A state space

- A successor function (with actions, costs)
- A start state and a goal test

 A solution is a sequence of actions (a plan) which transforms the start state to a goal state What are some problems that <u>can't</u> be formulated as search?

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny search graph for a tiny search problem

Search Trees

• A search tree:

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to ACTION SEQUENCES that achieve those states
- For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Each NODE in in the search tree corresponds to an entire PATH in the state space graph.

We construct both on demand – and we construct as little as possible.

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

• Search:

- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths
- Number of nodes in entire tree?
 - $1 + b + b^2 + b^m = O(b^m)$

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the fringe take?
 - Has roughly the last tier, so O(b^s)
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

Python code for BFS

```
import collections
def bfs(graph, root):
    seen, queue = set([root]), collections.deque([root])
   while queue:
        vertex = queue.popleft()
        visit(vertex)
        for node in graph[vertex]:
            if node not in seen:
                seen.add(node)
                queue.append(node)
def visit(n):
    print(n)
if __name__ == '__main__':
    graph = \{0: [1, 2], 1: [2, 0], 2: []\}
    bfs(graph, 0)
```

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Depth-First Search (DFS) Properties

- What nodes DFS expand?
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time O(b^m)
- How much space does the fringe take?
 - Only has siblings on path to root, so O(bm)
- Is it complete?
 - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Python code for DFS

```
def dfs_recursive(graph, vertex, path=[]):
    path += [vertex]
    for neighbor in graph[vertex]:
        if neighbor not in path:
            path = dfs_recursive(graph, neighbor, path)
    return path
adjacency_matrix = \{1: [2, 3], 2: [4, 5],
                    3: [5], 4: [6], 5: [6],
                    6: [7], 7: []}
print(dfs_recursive(adjacency_matrix, 1))
# [1, 2, 4, 6, 7, 5, 3]
```

DFS vs BFS

- If you know a solution is not far from the root of the tree, a breadth first search (BFS) might be better.
- If the tree is very deep and solutions are rare, depth first search (DFS) might take an extremely long time, but BFS could be faster.
- If the tree is very wide, a BFS might need too much memory, so it might be completely impractical.
- If solutions are frequent but located deep in the tree, BFS could be impractical.
- If the search tree is very deep you will need to restrict the search depth for depth first search (DFS), anyway (for example with iterative deepening).

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Python Code for Iterative Deepening

```
# A function to perform a Depth-Limited search
# from given source 'src'
def DLS(src,target,maxDepth):
    if src == target : return True
    # If reached the maximum depth, stop recursing.
    if maxDepth <= 0 : return False</pre>
    # Recur for all the vertices adjacent to this vertex
    for i in graph[src]:
            if(DLS(i,target,maxDepth-1)):
                return True
    return False
# IDDFS to search if target is reachable from v.
# It uses recursive DLS()
def IDDFS(src,target, maxDepth):
    # Repeatedly depth-limit search till the
    # maximum depth
    for i in range(maxDepth):
        if (DLS(src, target, i)):
            return True
    return False
```

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a cheapest

node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε , then the "effective depth" is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$
- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes! (skipping the proof for now)

Uniform Cost Issues

Remember: UCS explores increasing cost contours

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

We'll fix that soon!

Next time

Informed search methods