

04-17-00

A

Box SEQ

CERTIFICATION OF EXPRESS MAILING: I hereby certify that this correspondence is being deposited with the United States Postal Service, Express Mail Post Office to Addressee, Express Mail label number EK716025528AS under 37 CFR 1.10, addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231, on 4-14-00

By Michael Lassner

April 14, 2000

Hon. Commissioner of Patents
and Trademarks
Washington, D.C. 20231

Attorney Docket
17133/02/US

JC600 U.S. PTO
09/549848
04/14/00

RE: New Patent Application Transmittal

Sir:

Kindly award a filing date and serial number under 35 USC 111 to the patent application based upon the enclosed specification (and any drawings). Declaration and filing fee are deferred. Please direct all correspondence to the undersigned at the address indicated below.

INVENTOR: Michael Lassner
1920 Fifth Street
Davis, CA 95616

Citizenship: US

INVENTOR: Beth Savidge
1920 Fifth Street
Davis, CA 95616

Citizenship: US

INVENTOR: James D. Weiss
800 N. Lindbergh Blvd
St. Louis, MO 63167

Citizenship: US

INVENTOR: Dusty Post-Beitenmiller
800 N. Lindbergh Blvd
St. Louis, MO 63167

Citizenship: US

DEPARTMENT OF COMMERCE

TITLE: NUCLEIC ACID SEQUENCES TO PROTEINS INVOLVED IN
ISOPRENOID SYNTHESIS

[X] Specification (47 total pages)

[X] 26 Sheets of Drawings

[X] This application claims priority to: a US application filed April 15, 1999 as US Serial No. 60/129,899 and US application filed July 30, 1999 as US Serial No. 60/146,461

[x] Sequence Listing (45 pages)

Computer readable form of Sequence Listing as required by 37 CFR 1.821 through 1.825.

It is hereby stated that the content of the paper and computer readable form are the same (§ 1.821(f)).

All correspondence regarding this application should be sent to:

Calgene LLC
1920 Fifth Street
Davis, CA 95616
(530) 753-6313

Respectfully submitted,

Carl J. Schwedler
Reg. No. 36,924

Enclosure

DEPARTMENT OF COMMERCE

NUCLEIC ACID SEQUENCES TO PROTEINS INVOLVED IN TOCOPHEROL
SYNTHESIS

5

INTRODUCTION

This application claims the benefit of the filing date of the provisional Application U.S. Serial Number 60/129,899, filed April 15, 1999, and the provisional Application, U.S. Serial 10 Number 60/146,461, filed July 30, 1999.

CERTIFICATE OF MAILING
RECEIVED
U.S. POSTAL SERVICE
JULY 20 1999

TECHNICAL FIELD

The present invention is directed to nucleic acid and amino acid sequences and constructs, and methods related thereto.

BACKGROUND

Isoprenoids are ubiquitous compounds found in all living organisms. Plants synthesize a diverse array of greater than 22,000 isoprenoids (Connolly and Hill (1992) *Dictionary of Terpenoids*, Chapman and Hall, New York, NY). In plants, isoprenoids play essential roles in particular cell functions such as production of sterols, contributing to eukaryotic membrane architecture, acyclic polyprenoids found in the side chain of ubiquinone and plastoquinone, growth regulators like abscisic acid, gibberellins, brassinosteroids or the photosynthetic pigments chlorophylls and carotenoids. Although the physiological role of other plant isoprenoids is less evident, like that of the vast array of secondary metabolites, some are known to play key roles mediating the adaptative responses to different environmental challenges. In spite of the remarkable diversity of structure and function, all isoprenoids originate from a single metabolic precursor, isopentenyl diphosphate (IPP) (Wright, (1961) *Annu. Rev. Biochem.* 20:525-548; and Spurgeon and Porter, (1981) in Biosynthesis of Isoprenoid Compounds., Porter and Spurgeon eds (John Wiley, New York) Vol. 1, pp1-46).

A number of unique and interconnected biochemical pathways derived from the isoprenoid pathway leading to secondary metabolites, including tocopherols, exist in chloroplasts of higher plants. Tocopherols not only perform vital functions in plants, but are also important from mammalian nutritional perspectives. In plastids, tocopherols account for up to 40% of the total quinone pool.

Tocopherols and tocotrienols (unsaturated tocopherol derivatives) are well known antioxidants, and play an important role in protecting cells from free radical damage, and in the prevention of many diseases, including cardiac disease, cancer, cataracts, retinopathy, Alzheimer's disease, and neurodegeneration, and have been shown to have beneficial effects on symptoms of arthritis, and in anti-aging. Vitamin E is used in chicken feed for improving the shelf life, appearance, flavor, and oxidative stability of meat, and to transfer tocots from feed to eggs. Vitamin E has been shown to be essential for normal reproduction, improves overall performance, and enhances immunocompetence in livestock animals. Vitamin E supplement in animal feed also imparts oxidative stability to milk products.

The demand for natural tocopherols as supplements has been steadily growing at a rate of 10-20% for the past three years. At present, the demand exceeds the supply for natural tocopherols, which are known to be more biopotent than racemic mixtures of synthetically produced tocopherols. Naturally occurring tocopherols are all *d*-stereomers, whereas synthetic α -tocopherol is a mixture of eight *d,l*- α -tocopherol isomers, only one of which (12.5%) is identical to the natural *d*- α -tocopherol. Natural *d*- α -tocopherol has the highest vitamin E activity (1.49 IU/mg) when compared to other natural tocopherols or tocotrienols. The synthetic α -tocopherol has a vitamin E activity of 1.1 IU/mg. In 1995, the worldwide market for raw refined tocopherols was \$1020 million; synthetic materials comprised 85-88% of the market, the remaining 12-15% being natural materials. The best sources of natural tocopherols and tocotrienols are vegetable oils and grain products. Currently, most of the natural Vitamin E is produced from γ -tocopherol derived from soy oil processing, which is subsequently converted to α -tocopherol by chemical modification (α -tocopherol exhibits the greatest biological activity).

Methods of enhancing the levels of tocopherols and tocotrienols in plants, especially levels of the more desirable compounds that can be used directly, without chemical modification, would be useful to the art as such molecules exhibit better functionality and bioavailability.

In addition, methods for the increased production of other isoprenoid derived compounds in a host plant cell is desirable. Furthermore, methods for the production of particular isoprenoid compounds in a host plant cell is also needed.

5

SUMMARY OF THE INVENTION

The present invention is directed to prenyltransferase (PT), and in particular to PT polynucleotides and polypeptides. The polynucleotides and polypeptides of the present invention include those derived from prokaryotic and eukaryotic sources.

Thus, one aspect of the present invention relates to isolated polynucleotide sequences encoding prenyltransferase proteins. In particular, isolated nucleic acid sequences encoding PT proteins from bacterial and plant sources are provided.

Another aspect of the present invention relates to oligonucleotides which include partial or complete PT encoding sequences.

It is also an aspect of the present invention to provide recombinant DNA constructs which can be used for transcription or transcription and translation (expression) of prenyltransferase. In particular, constructs are provided which are capable of transcription or transcription and translation in host cells.

In another aspect of the present invention, methods are provided for production of prenyltransferase in a host cell or progeny thereof. In particular, host cells are transformed or transfected with a DNA construct which can be used for transcription or transcription and translation of prenyltransferase. The recombinant cells which contain prenyltransferase are also part of the present invention.

In a further aspect, the present invention relates to methods of using polynucleotide and polypeptide sequences to modify the tocopherol content of host cells, particularly in host plant cells. Plant cells having such a modified tocopherol content are also contemplated herein.

The modified plants, seeds and oils obtained by the expression of the prenyltransferases are also considered part of the invention.

30

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides an amino acid sequence alignment between ATPT2, ATPT3, ATPT4,

ATPT8, and ATPT12 are performed using ClustalW.

5 Figure 2 provides a schematic picture of the expression construct pCGN10800.

Figure 3 provides a schematic picture of the expression construct pCGN10801.

Figure 4 provides a schematic picture of the expression construct pCGN10803.

Figure 5 provides a schematic picture of the expression construct pCGN10806.

Figure 6 provides a schematic picture of the expression construct pCGN10807.

10 Figure 7 provides a schematic picture of the expression construct pCGN10808.

Figure 8 provides a schematic picture of the expression construct pCGN10809.

Figure 9 provides a schematic picture of the expression construct pCGN10810.

Figure 10 provides a schematic picture of the expression construct pCGN10811.

Figure 11 provides a schematic picture of the expression construct pCGN10812.

Figure 12 provides a schematic picture of the expression construct pCGN10813.

Figure 13 provides a schematic picture of the expression construct pCGN10814.

Figure 14 provides a schematic picture of the expression construct pCGN10815.

Figure 15 provides a schematic picture of the expression construct pCGN10816.

Figure 16 provides a schematic picture of the expression construct pCGN10817.

Figure 17 provides a schematic picture of the expression construct pCGN10819.

Figure 18 provides a schematic picture of the expression construct pCGN10824.

Figure 19 provides a schematic picture of the expression construct pCGN10825.

Figure 20 provides a schematic picture of the expression construct pCGN10826.

Figure 21 provides an amino acid sequence alignment using ClustalW between the

25 *Synechocystis* sequence knockouts.

Figure 22 provides an amino acid sequence of the ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 protein sequences from *Arabidopsis* and the slr1736, slr0926, slr1899, slr0056, and the slr1518 amino acid sequences from *Synechocystis*.

Figure 23 provides the results of the enzymatic assay from preparations of wild type

30 *Synechocystis* strain 6803, and *Synechocystis* slr1736 knockout.

Figure 24 provides bar graphs of HPLC data obtained from seed extracts of transgenic *Arabidopsis* containing pCGN10822, which provides of the expression of the ATPT2 sequence, in the sense orientation, from the napin promoter. Provided are graphs for alpha, gamma, and delta tocopherols, as well as total tocopherol for 22 transformed lines, as well as a 5 nontransformed (wildtype) control.

Figure 25 provides a bar graph of HPLC analysis of seed extracts from *Arabidopsis* plants transformed with pCGN10803 (35S-ATPT2, in the antisense orientation), pCGN10802 (line 1625, napin ATPT2 in the sense orientation), pCGN10809 (line 1627, 35S-ATPT3 in the sense orientation), a nontransformed (wt) control, and a empty vector transformed control.

10

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, *inter alia*, compositions and methods for altering (for example, increasing and decreasing) the tocopherol levels and/or modulating their ratios in host cells. In particular, the present invention provides polynucleotides, polypeptides, and methods of use thereof for the modulation of tocopherol content in host plant cells.

The present invention provides polynucleotide and polypeptide sequences involved in the prenylation of straight chain and aromatic compounds. Straight chain prenyl transferases as used herein comprises sequences which encode proteins involved in the prenylation of straight chain compounds, including, but not limited to, geranyl geranyl pyrophosphate and farnesyl pyrophosphate. Aromatic prenyl transferases, as used herein, comprises sequences which encode proteins involved in the prenylation of aromatic compounds, including, but not limited to, menaquinone, ubiquinone, chlorophyll, and homogentisic acid. The prenyl transferase of the 25 present invention preferably prenylates homogentisic acid.

The biosynthesis of α -tocopherol in higher plants involves condensation of homogentisic acid and phytolpyrophosphate to form 2-methyl-6-phytylbenzoquinol that can, by cyclization and subsequent methylations (Fiedler et al., 1982, *Planta*, 155: 511-515, Soll et al., 1980, *Arch. Biochem. Biophys.* 204: 544-550, Marshall et al., 1985 *Phytochem.*, 24: 1705-1711, all of which 30 are herein incorporated by reference in their entirety), form various tocopherols. The *Arabidopsis*

pds2 mutant identified and characterized by Norris *et al.* (1995), is deficient in tocopherol and plastiquinone-9 accumulation. Further genetic and biochemical analysis suggests that the protein encoded by *PDS2* may be responsible for the prenylation of homogentisic acid. This may be a rate limiting step in tocopherol biosynthesis, and this gene has yet to be isolated. Thus, it is an aspect of the present invention to provide polynucleotides and polypeptides involved in the prenylation of homogentisic acid.

Isolated Polynucleotides, Proteins, and Polypeptides

10 A first aspect of the present invention relates to isolated prenyltransferase polynucleotides. The polynucleotide sequences of the present invention include isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group of sequences set forth in the Sequence Listing and to other polynucleotide sequences closely related to such sequences and variants thereof.

20 The invention provides a polynucleotide sequence identical over its entire length to each coding sequence as set forth in the Sequence Listing. The invention also provides the coding sequence for the mature polypeptide or a fragment thereof, as well as the coding sequence for the mature polypeptide or a fragment thereof in a reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, pro-, or prepro- protein sequence. The polynucleotide can also include non-coding sequences, including for example, but not limited to, non-coding 5' and 3' sequences, such as the transcribed, untranslated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence that encodes additional amino acids. For example, a marker sequence can be included to facilitate the purification of the fused polypeptide. Polynucleotides 25 of the present invention also include polynucleotides comprising a structural gene and the naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

30 wherein, at the 5' end, X is hydrogen, and at the 3' end, Y is hydrogen or a metal, R₁ and R₃ are any nucleic acid residue, n is an integer between 1 and 3000, preferably between 1 and 1000 and

R₂ is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in the Sequence Listing and preferably those of SEQ ID NOs: 1, 3, 5, 7, 8, 10, 11, 13-16, 18, 23, 29, 36, and 38. In the formula, R₂ is oriented so that its 5' end residue is at the left, bound to R₁, and its 3' end residue is at the right, bound to R₃. Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.

The invention also relates to variants of the polynucleotides described herein that encode for variants of the polypeptides of the invention. Variants that are fragments of the polynucleotides of the invention can be used to synthesize full-length polynucleotides of the invention. Preferred embodiments are polynucleotides encoding polypeptide variants wherein 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues of a polypeptide sequence of the invention are substituted, added or deleted, in any combination. Particularly preferred are substitutions, additions, and deletions that are silent such that they do not alter the properties or activities of the polynucleotide or polypeptide.

Further preferred embodiments of the invention that are at least 50%, 60%, or 70% identical over their entire length to a polynucleotide encoding a polypeptide of the invention, and polynucleotides that are complementary to such polynucleotides. More preferable are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the invention and polynucleotides that are complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length are particularly preferred, those at least 95% identical are especially preferred. Further, those with at least 97% identity are highly preferred and those with at least 98% and 99% identity are particularly highly preferred, with those at least 99% being the most highly preferred.

Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptides encoded by the polynucleotides set forth in the Sequence Listing.

The invention further relates to polynucleotides that hybridize to the above-described sequences. In particular, the invention relates to polynucleotides that hybridize under stringent conditions to the above-described polynucleotides. As used herein, the terms "stringent conditions" and "stringent hybridization conditions" mean that hybridization will generally occur

if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/milliliter denatured, 5 sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at approximately 65°C. Other hybridization and wash conditions are well known and are exemplified in Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Second Edition, cold Spring Harbor, NY (1989), particularly Chapter 11.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in the Sequence Listing under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers as described herein.

As discussed herein regarding polynucleotide assays of the invention, for example, polynucleotides of the invention can be used as a hybridization probe for RNA, cDNA, or genomic DNA to isolate full length cDNAs or genomic clones encoding a polypeptide and to isolate cDNA or genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in the Sequence Listing. Such probes will generally comprise at least 15 bases. Preferably such probes will have at least 30 bases and can have at least 50 bases. Particularly preferred probes will have between 30 bases and 50 bases, inclusive.

The coding region of each gene that comprises or is comprised by a polynucleotide sequence set forth in the Sequence Listing may be isolated by screening using a DNA sequence provided in the Sequence Listing to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to identify members of the library which hybridize to the probe. For example, synthetic oligonucleotides are prepared which correspond to the prenyltransferase EST sequences. The oligonucleotides are used as primers in polymerase chain reaction (PCR) techniques to obtain 5' and 3' terminal sequence of prenyl transferase genes. Alternatively, where oligonucleotides of low degeneracy can be prepared from particular

prenyltransferase peptides, such probes may be used directly to screen gene libraries for prenyltransferase gene sequences. In particular, screening of cDNA libraries in phage vectors is useful in such methods due to lower levels of background hybridization.

Typically, a prenyltransferase sequence obtainable from the use of nucleic acid probes
5 will show 60-70% sequence identity between the target prenyltransferase sequence and the encoding sequence used as a probe. However, lengthy sequences with as little as 50-60% sequence identity may also be obtained. The nucleic acid probes may be a lengthy fragment of the nucleic acid sequence, or may also be a shorter, oligonucleotide probe. When longer nucleic acid fragments are employed as probes (greater than about 100 bp), one may screen at lower
10 stringencies in order to obtain sequences from the target sample which have 20-50% deviation (i.e., 50-80% sequence homology) from the sequences used as probe. Oligonucleotide probes can be considerably shorter than the entire nucleic acid sequence encoding an prenyltransferase enzyme, but should be at least about 10, preferably at least about 15, and more preferably at least about 20 nucleotides. A higher degree of sequence identity is desired when shorter regions are used as opposed to longer regions. It may thus be desirable to identify regions of highly conserved amino acid sequence to design oligonucleotide probes for detecting and recovering other related prenyltransferase genes. Shorter probes are often particularly useful for polymerase chain reactions (PCR), especially when highly conserved sequences can be identified. (See,
Gould, *et al.*, PNAS USA (1989) 86:1934-1938.).

20

Another aspect of the present invention relates to prenyltransferase polypeptides. Such polypeptides include isolated polypeptides set forth in the Sequence Listing, as well as polypeptides and fragments thereof, particularly those polypeptides which exhibit prenyltransferase activity and also those polypeptides which have at least 50%, 60% or 70% identity, preferably at least 80% identity, more preferably at least 90% identity, and most preferably at least 95% identity to a polypeptide sequence selected from the group of sequences set forth in the Sequence Listing, and also include portions of such polypeptides, wherein such portion of the polypeptide preferably includes at least 30 amino acids and more preferably includes at least 50 amino acids.

25

“Identity”, as is well understood in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the
30

sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as determined by the match between strings of such sequences. "Identity" can be readily calculated by known methods including, but not limited to, those described in *Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York (1988); *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data, Part I*, Griffin, A.M. and Griffin, H.G., eds., Humana Press, New Jersey (1994); *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press (1987); *Sequence Analysis Primer*, Gribskov, M. and Devereux, J., eds., Stockton Press, New York (1991); and Carillo, H., and Lipman, D., *SIAM J Applied Math*, 48:1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available programs. Computer programs which can be used to determine identity between two sequences include, but are not limited to, GCG (Devereux, J., et al., *Nucleic Acids Research* 12(1):387 (1984); suite of five BLAST programs, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, *Trends in Biotechnology*, 12: 76-80 (1994); Birren, et al., *Genome Analysis*, 1: 543-559 (1997)). The BLAST X program is publicly available from NCBI and other sources (*BLAST Manual*, Altschul, S., et al., NCBI NLM NIH, Bethesda, MD 20894; Altschul, S., et al., *J. Mol. Biol.*, 215:403-410 (1990)). The well known Smith Waterman algorithm can also be used to determine identity.

Parameters for polypeptide sequence comparison typically include the following:

Algorithm: Needleman and Wunsch, *J. Mol. Biol.* 48:443-453 (1970)

Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, *Proc. Natl. Acad. Sci USA* 89:10915-10919 (1992)

25 Gap Penalty: 12

Gap Length Penalty: 4

A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison Wisconsin. The above parameters along with no penalty for end gap are the default parameters for peptide comparisons.

30 Parameters for polynucleotide sequence comparison include the following:

Algorithm: Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970)

Comparison matrix: matches = +10; mismatches = 0

Gap Penalty: 50

Gap Length Penalty: 3

5 A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison Wisconsin. The above parameters are the default parameters for nucleic acid comparisons.

The invention also includes polypeptides of the formula:

10 wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R₁ and R₃ are any amino acid residue, n is an integer between 1 and 1000, and R₂ is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in the Sequence Listing and preferably those encoded by the sequences provided in SEQ ID NOS: 2, 4, 6, 9, 12, 17, 19-22, 24-28, 30, 32-35, 37, and 39. In the formula, R₂ is oriented so that its amino terminal residue is at the left, bound to R₁, and its carboxy terminal residue is at the right, bound to R₃. Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.

20 Polypeptides of the present invention include isolated polypeptides encoded by a polynucleotide comprising a sequence selected from the group of a sequence contained in the Sequence Listing set forth herein .

The polypeptides of the present invention can be mature protein or can be part of a fusion protein.

25 Fragments and variants of the polypeptides are also considered to be a part of the invention. A fragment is a variant polypeptide which has an amino acid sequence that is entirely the same as part but not all of the amino acid sequence of the previously described polypeptides. The fragments can be "free-standing" or comprised within a larger polypeptide of which the fragment forms a part or a region, most preferably as a single continuous region. Preferred fragments are biologically active fragments which are those fragments that mediate activities of 30 the polypeptides of the invention, including those with similar activity or improved activity or

with a decreased activity. Also included are those fragments that antigenic or immunogenic in an animal, particularly a human.

Variants of the polypeptide also include polypeptides that vary from the sequences set forth in the Sequence Listing by conservative amino acid substitutions, substitution of a residue 5 by another with like characteristics. In general, such substitutions are among Ala, Val, Leu and Ile; between Ser and Thr; between Asp and Glu; between Asn and Gln; between Lys and Arg; or between Phe and Tyr. Particularly preferred are variants in which 5 to 10; 1 to 5; 1 to 3 or one amino acid(s) are substituted, deleted, or added, in any combination.

Variants that are fragments of the polypeptides of the invention can be used to produce 10 the corresponding full length polypeptide by peptide synthesis. Therefore, these variants can be used as intermediates for producing the full-length polypeptides of the invention.

The polynucleotides and polypeptides of the invention can be used, for example, in the transformation of host cells, such as plant host cells, as further discussed herein.

The invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids within the mature polypeptide (for example, when the mature form of the protein has more than one polypeptide chain). Such sequences can, for example, play a role in the processing of a protein from a precursor to a mature form, allow protein transport, shorten or lengthen protein half-life, or facilitate manipulation of the protein in assays or production. It is contemplated that cellular enzymes can be used to remove any additional amino acids from the mature protein.

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. The inactive precursors generally are activated when the prosequences are removed. Some or all of the prosequences may be removed prior to activation. Such precursor protein are generally called proproteins.

25

Plant Constructs and Methods of Use

Of particular interest is the use of the nucleotide sequences in recombinant DNA constructs to direct the transcription or transcription and translation (expression) of the 30 prenyltransferase sequences of the present invention in a host plant cell. The expression

constructs generally comprise a promoter functional in a host plant cell operably linked to a nucleic acid sequence encoding a prenyltransferase of the present invention and a transcriptional termination region functional in a host plant cell.

A first nucleic acid sequence is "operably linked" or "operably associated" with a second nucleic acid sequence when the sequences are so arranged that the first nucleic acid sequence affects the function of the second nucleic-acid sequence. Preferably, the two sequences are part of a single contiguous nucleic acid molecule and more preferably are adjacent. For example, a promoter is operably linked to a gene if the promoter regulates or mediates transcription of the gene in a cell.

Those skilled in the art will recognize that there are a number of promoters which are functional in plant cells, and have been described in the literature. Chloroplast and plastid specific promoters, chloroplast or plastid functional promoters, and chloroplast or plastid operable promoters are also envisioned.

One set of plant functional promoters are constitutive promoters such as the CaMV35S or FMV35S promoters that yield high levels of expression in most plant organs. Enhanced or duplicated versions of the CaMV35S and FMV35S promoters are useful in the practice of this invention (Odell, *et al.* (1985) *Nature* 313:810-812; Rogers, U.S. Patent Number 5,378,619). In addition, it may also be preferred to bring about expression of the prenyltransferase gene in specific tissues of the plant, such as leaf, stem, root, tuber, seed, fruit, etc., and the promoter chosen should have the desired tissue and developmental specificity.

Of particular interest is the expression of the nucleic acid sequences of the present invention from transcription initiation regions which are preferentially expressed in a plant seed tissue. Examples of such seed preferential transcription initiation sequences include those sequences derived from sequences encoding plant storage protein genes or from genes involved in fatty acid biosynthesis in oilseeds. Examples of such promoters include the 5' regulatory regions from such genes as napin (Kridl *et al.*, *Seed Sci. Res.* 1:209:219 (1991)), phaseolin, zein, soybean trypsin inhibitor, ACP, stearoyl-ACP desaturase, soybean α' subunit of β -conglycinin (soy 7s, (Chen *et al.*, *Proc. Natl. Acad. Sci.*, 83:8560-8564 (1986))) and oleosin.

It may be advantageous to direct the localization of proteins conferring prenyltransferase to a particular subcellular compartment, for example, to the mitochondrion, endoplasmic

reticulum, vacuoles, chloroplast or other plastidic compartment. For example, where the genes of interest of the present invention will be targeted to plastids, such as chloroplasts, for expression, the constructs will also employ the use of sequences to direct the gene to the plastid. Such sequences are referred to herein as chloroplast transit peptides (CTP) or plastid transit peptides (PTP). In this manner, where the gene of interest is not directly inserted into the plastid, the expression construct will additionally contain a gene encoding a transit peptide to direct the gene of interest to the plastid. The chloroplast transit peptides may be derived from the gene of interest, or may be derived from a heterologous sequence having a CTP. Such transit peptides are known in the art. See, for example, Von Heijne *et al.* (1991) *Plant Mol. Biol. Rep.* 9:104-126; Clark *et al.* (1989) *J. Biol. Chem.* 264:17544-17550; della-Cioppa *et al.* (1987) *Plant Physiol.* 84:965-968; Romer *et al.* (1993) *Biochem. Biophys. Res Commun.* 196:1414-1421; and, Shah *et al.* (1986) *Science* 233:478-481.

Depending upon the intended use, the constructs may contain the nucleic acid sequence which encodes the entire prenyltransferase protein, or a portion thereof. For example, where antisense inhibition of a given prenyltransferase protein is desired, the entire prenyltransferase sequence is not required. Furthermore, where prenyltransferase sequences used in constructs are intended for use as probes, it may be advantageous to prepare constructs containing only a particular portion of a prenyltransferase encoding sequence, for example a sequence which is discovered to encode a highly conserved prenyltransferase region.

The skilled artisan will recognize that there are various methods for the inhibition of expression of endogenous sequences in a host cell. Such methods include, but are not limited to, antisense suppression (Smith, *et al.* (1988) *Nature* 334:724-726), co-suppression (Napoli, *et al.* (1989) *Plant Cell* 2:279-289), ribozymes (PCT Publication WO 97/10328), and combinations of sense and antisense Waterhouse, *et al.* (1998) *Proc. Natl. Acad. Sci. USA* 95:13959-13964. Methods for the suppression of endogenous sequences in a host cell typically employ the transcription or transcription and translation of at least a portion of the sequence to be suppressed. Such sequences may be homologous to coding as well as non-coding regions of the endogenous sequence.

Regulatory transcript termination regions may be provided in plant expression constructs of this invention as well. Transcript termination regions may be provided by the DNA sequence

encoding the prenyltransferase or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region which is capable of terminating transcription in a plant cell may be employed in the constructs of the present invention.

Alternatively, constructs may be prepared to direct the expression of the prenyltransferase sequences directly from the host plant cell plastid. Such constructs and methods are known in the art and are generally described, for example, in Svab, *et al.* (1990) *Proc. Natl. Acad. Sci. USA* 87:8526-8530 and Svab and Maliga (1993) *Proc. Natl. Acad. Sci. USA* 90:913-917 and in U.S.

10 Patent Number 5,693,507.

The prenyltransferase constructs of the present invention can be used in transformation methods with additional constructs providing for the expression of other nucleic acid sequences encoding proteins involved in the production of tocopherols, or tocopherol precursors such as homogentisic acid and/or phytylpyrophosphate. Nucleic acid sequences encoding proteins involved in the production of homogentisic acid are known in the art, and include but are not limited to, 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) described for example, by Garcia, *et al.* ((1999) *Plant Physiol.* 119(4):1507-1516), mono or bifunctional tyrA (described for example by Xia, *et al.* (1992) *J. Gen Microbiol.* 138:1309-1316, and Hudson, *et al.* (1984) *J. Mol. Biol.* 180:1023-1051), Oxygenase, 4-hydroxyphenylpyruvate di- (9CI), 4-Hydroxyphenylpyruvate dioxygenase; p-Hydroxyphenylpyruvate dioxygenase; p-Hydroxyphenylpyruvate hydroxylase; p-Hydroxyphenylpyruvate oxidase; p-Hydroxyphenylpyruvic acid hydroxylase; p-Hydroxyphenylpyruvic hydroxylase; p-Hydroxyphenylpyruvic oxidase), 4-hydroxyphenylacetate, NAD(P)H:oxygen oxidoreductase (1-hydroxylating); 4-hydroxyphenylacetate 1-monoxygenase, and the like. In addition, constructs for the expression of nucleic acid sequences encoding proteins involved in the production of phytylpyrophosphate can also be employed with the prenyltransferase constructs of the present invention. Nucleic acid sequences encoding proteins involved in the production of phytylpyrophosphate are known in the art, and include, but are not limited to geranylgeranylpyrophosphate synthase (GGPPS), geranylgeranylpyrophosphate reductase (GGH), 1-deoxyxylulose-5-phosphate synthase, 1- deoxy-D-xylolose-5-phosphate

reductoisomerase, 4-diphosphocytidyl-2-C-methylerythritol synthase, isopentyl pyrophosphate isomerase.

The prenyltransferase sequences of the present invention find use in the preparation of transformation constructs having a second expression cassette for the expression of additional sequences involved in tocopherol biosynthesis. Additional tocopherol biosynthesis sequences of interest in the present invention include, but are not limited to gamma-tocopherol methyltransferase (Shintani, *et al.* (1998) *Science* 282(5396):2098-2100), tocopherol cyclase, and tocopherol methyltransferase.

A plant cell, tissue, organ, or plant into which the recombinant DNA constructs containing the expression constructs have been introduced is considered transformed, transfected, or transgenic. A transgenic or transformed cell or plant also includes progeny of the cell or plant and progeny produced from a breeding program employing such a transgenic plant as a parent in a cross and exhibiting an altered phenotype resulting from the presence of a prenyltransferase nucleic acid sequence.

Plant expression or transcription constructs having a prenyltransferase as the DNA sequence of interest for increased or decreased expression thereof may be employed with a wide variety of plant life, particularly, plant life involved in the production of vegetable oils for edible and industrial uses. Particularly preferred plants for use in the methods of the present invention include, but are not limited to: *Acacia*, alfalfa, aneth, apple, apricot, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, cauliflower, celery, cherry, chicory, cilantro, citrus, clementines, coffee, corn, cotton, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, mango, melon, mushroom, nectarine, nut, oat, oil palm, oil seed rape, okra, onion, orange, an ornamental plant, papaya, parsley, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, pumpkin, quince, radiata pine, radicchio, radish, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf, turnip, a vine, watermelon, wheat, yams, and zucchini.

Most especially preferred are temperate oilseed crops. Temperate oilseed crops of interest include, but are not limited to, rapeseed (Canola and High Erucic Acid varieties), sunflower, safflower, cotton, soybean, peanut, coconut and oil palms, and corn. Depending on the method for introducing the recombinant constructs into the host cell, other DNA sequences may be
5 required. Importantly, this invention is applicable to dicotyledyons and monocotyledons species alike and will be readily applicable to new and/or improved transformation and regulation techniques.

10 Of particular interest, is the use of prenyltransferase constructs in plants to produce plants or plant parts, including, but not limited to leaves, stems, roots, reproductive, and seed, with a modified content of tocopherols in plant parts having transformed plant cells.

For immunological screening, antibodies to the protein can be prepared by injecting rabbits or mice with the purified protein or portion thereof, such methods of preparing antibodies being well known to those in the art. Either monoclonal or polyclonal antibodies can be produced, although typically polyclonal antibodies are more useful for gene isolation. Western analysis may be conducted to determine that a related protein is present in a crude extract of the desired plant species, as determined by cross-reaction with the antibodies to the encoded proteins. When cross-reactivity is observed, genes encoding the related proteins are isolated by screening expression libraries representing the desired plant species. Expression libraries can be constructed in a variety of commercially available vectors, including lambda gt11, as described in Sambrook, *et al.* (*Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

25 To confirm the activity and specificity of the proteins encoded by the identified nucleic acid sequences as prenyltransferase enzymes, *in vitro* assays are performed in insect cell cultures using baculovirus expression systems. Such baculovirus expression systems are known in the art and are described by Lee, *et al.* U.S. Patent Number 5,348,886, the entirety of which is herein incorporated by reference.

30 In addition, other expression constructs may be prepared to assay for protein activity utilizing different expression systems. Such expression constructs are transformed into yeast or prokaryotic host and assayed for prenyltransferase activity. Such expression systems are known in the art and are readily available through commercial sources.

In addition to the sequences described in the present invention, DNA coding sequences useful in the present invention can be derived from algae, fungi, bacteria, mammalian sources, plants, etc. Homology searches in existing databases using signature sequences corresponding to conserved nucleotide and amino acid sequences of prenyltransferase can be employed to 5 isolate equivalent, related genes from other sources such as plants and microorganisms. Searches in EST databases can also be employed. Furthermore, the use of DNA sequences encoding enzymes functionally enzymatically equivalent to those disclosed herein, wherein such DNA sequences are degenerate equivalents of the nucleic acid sequences disclosed herein in accordance with the degeneracy of the genetic code, is also encompassed by the present 10 invention. Demonstration of the functionality of coding sequences identified by any of these methods can be carried out by complementation of mutants of appropriate organisms, such as *Synechocystis*, *Shewanella*, yeast, *Pseudomonas*, *Rhodobacter*, etc., that lack specific biochemical reactions, or that have been mutated. The sequences of the DNA coding regions can be optimized by gene resynthesis, based on codon usage, for maximum expression in particular hosts.

For the alteration of tocopherol production in a host cell, a second expression construct can be used in accordance with the present invention. For example, the prenyltransferase expression construct can be introduced into a host cell in conjunction with a second expression construct having a nucleotide sequence for a protein involved in tocopherol biosynthesis.

The method of transformation in obtaining such transgenic plants is not critical to the instant invention, and various methods of plant transformation are currently available. Furthermore, as newer methods become available to transform crops, they may also be directly applied hereunder. For example, many plant species naturally susceptible to *Agrobacterium* infection may be successfully transformed via tripartite or binary vector methods of 25 *Agrobacterium* mediated transformation. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful when the construct uses *A. tumefaciens* or *A. rhizogenes* as a mode for transformation, although the T-DNA borders may find use with other modes of transformation. In addition, techniques of microinjection, DNA

particle bombardment, and electroporation have been developed which allow for the transformation of various monocot and dicot plant species.

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformant cells. The 5 gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

10 Where *Agrobacterium* is used for plant cell transformation, a vector may be used which may be introduced into the *Agrobacterium* host for homologous recombination with T-DNA or the Ti- or Ri-plasmid present in the *Agrobacterium* host. The Ti- or Ri-plasmid containing the T-DNA for recombination may be armed (capable of causing gall formation) or disarmed (incapable of causing gall formation), the latter being permissible, so long as the *vir* genes are present in the transformed *Agrobacterium* host. The armed plasmid can give a mixture of normal plant cells and gall.

In some instances where *Agrobacterium* is used as the vehicle for transforming host plant cells, the expression or transcription construct bordered by the T-DNA border region(s) will be inserted into a broad host range vector capable of replication in *E. coli* and *Agrobacterium*, there being broad host range vectors described in the literature. Commonly used is pRK2 or derivatives thereof. See, for example, Ditta, *et al.*, (*Proc. Nat. Acad. Sci., U.S.A.* (1980) 77:7347-7351) and EPA 0 120 515, which are incorporated herein by reference. Alternatively, one may insert the sequences to be expressed in plant cells into a vector containing separate replication sequences, one of which stabilizes the vector in *E. coli*, and the other in 25 *Agrobacterium*. See, for example, McBride, *et al.* (*Plant Mol. Biol.* (1990) 14:269-276), wherein the pRiHRI (Jouanin, *et al.*, *Mol. Gen. Genet.* (1985) 201:370-374) origin of replication is utilized and provides for added stability of the plant expression vectors in host *Agrobacterium* cells.

Included with the expression construct and the T-DNA will be one or more markers, 30 which allow for selection of transformed Agrobacterium and transformed plant cells. A

number of markers have been developed for use with plant cells, such as resistance to chloramphenicol, kanamycin, the aminoglycoside G418, hygromycin, or the like. The particular marker employed is not essential to this invention, one or another marker being preferred depending on the particular host and the manner of construction.

5 For transformation of plant cells using *Agrobacterium*, explants may be combined and incubated with the transformed *Agrobacterium* for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The
10 plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

There are several possible ways to obtain the plant cells of this invention which contain multiple expression constructs. Any means for producing a plant comprising a construct having a DNA sequence encoding the expression construct of the present invention, and at least one other construct having another DNA sequence encoding an enzyme are encompassed by the present invention. For example, the expression construct can be used to transform a plant at the same time as the second construct either by inclusion of both expression constructs in a single transformation vector or by using separate vectors, each of which express desired genes. The second construct can be introduced into a plant which has already been transformed with the prenyltransferase expression construct, or alternatively, transformed plants, one expressing the prenyltransferase construct and one expressing the second construct, can be crossed to bring the constructs together in the same plant.
20

The nucleic acid sequences of the present invention can be used in constructs to provide for the expression of the sequence in a variety of host cells, both prokaryotic eukaryotic. Host
25 cells of the present invention preferably include monocotyledenous and dicotyledenous plant cells.

In general, the skilled artisan is familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and
30 the screening and isolating of clones, (see for example, Sambrook *et al.*, *Molecular Cloning: A*

Laboratory Manual, Cold Spring Harbor Press (1989); Maliga *et al.*, *Methods in Plant Molecular Biology*, Cold Spring Harbor Press (1995), the entirety of which is herein incorporated by reference; Birren *et al.*, *Genome Analysis: Analyzing DNA*, 1, Cold Spring Harbor, New York, the entirety of which is herein incorporated by reference).

5 Methods for the expression of sequences in insect host cells are known in the art. Baculovirus expression vectors are recombinant insect viruses in which the coding sequence for a chosen foreign gene has been inserted behind a baculovirus promoter in place of the viral gene, e.g., polyhedrin (Smith and Summers, U.S. Pat. No., 4,745,051, the entirety of which is incorporated herein by reference). Baculovirus expression vectors are known in the art, and are described for example in Doerfler, *Curr. Top. Microbiol. Immunol.* 131:51-68 (1968); Luckow and Summers, *Bio/Technology* 6:47-55 (1988a); Miller, *Annual Review of Microbiol.* 42:177-199 (1988); Summers, *Curr. Comm. Molecular Biology*, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1988); Summers and Smith, *A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures*, Texas Ag. Exper. Station Bulletin No. 1555 (1988), the entireties of which is herein incorporated by reference)

10 15 20 25 Methods for the expression of a nucleic acid sequence of interest in a fungal host cell are known in the art. The fungal host cell may, for example, be a yeast cell or a filamentous fungal cell. Methods for the expression of DNA sequences of interest in yeast cells are generally described in "Guide to yeast genetics and molecular biology", Guthrie and Fink, eds. Methods in enzymology , Academic Press, Inc. Vol 194 (1991) and Gene expression technology", Goeddel ed, Methods in Enzymology, Academic Press, Inc., Vol 185 (1991).

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC, Manassas, VA), such as HeLa cells, Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK) cells and a number of other cell lines. Suitable promoters for mammalian cells are also known in the art and include, but are not limited to, viral promoters such as that from Simian Virus 40 (SV40) (Fiers *et al.*, *Nature* 273:113 (1978), the entirety of which is herein incorporated by reference), Rous sarcoma virus (RSV), adenovirus (ADV) and bovine papilloma virus (BPV). Mammalian cells may also require terminator sequences and poly-A addition sequences. Enhancer sequences which increase expression may also be included and sequences which

promote amplification of the gene may also be desirable (for example methotrexate resistance genes).

Vectors suitable for replication in mammalian cells are well known in the art, and may include viral replicons, or sequences which insure integration of the appropriate sequences encoding epitopes into the host genome. Plasmid vectors that greatly facilitate the construction of recombinant viruses have been described (see, for example, Mackett *et al*, *J Virol.* 49:857 (1984); Chakrabarti *et al.*, *Mol. Cell. Biol.* 5:3403 (1985); Moss, In: *Gene Transfer Vectors For Mammalian Cells* (Miller and Calos, eds., Cold Spring Harbor Laboratory, N.Y., p. 10, (1987); all of which are herein incorporated by reference in their entirety).

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

EXAMPLES

Example 1: Identification of Prenyltransferase Sequences

PSI-BLAST (Altschul, *et al.* (1997) *Nuc Acid Res* 25:3389-3402) profiles were generated for both the straight chain and aromatic classes of prenyltransferases. To generate the straight chain profile, a prenyl- transferase from *Porphyra purpurea* (Genbank accession 1709766) was used as a query against the NCBI non-redundant protein database. The *E. coli* enzyme involved in the formation of ubiquinone, ubiA (genbank accession 1790473) was used as a starting sequence to generate the aromatic prenyltransferase profile. These profiles were used to search public and proprietary DNA and protein data bases. In *Arabidopsis* seven putative prenyltransferases of the straight-chain class were identified, ATPT1, (SEQ ID NO:9), ATPT7 (SEQ ID NO:10), ATPT8 (SEQ ID NO:11), ATPT9 (SEQ ID NO:13), ATPT10 (SEQ ID NO:14), ATPT11 (SEQ ID NO:15), and ATPT12 (SEQ ID NO:16) and five were identified of the aromatic class, ATPT2 (SEQ ID NO:1), ATPT3 (SEQ ID NO:3), ATPT4 (SEQ ID NO:5), ATPT5 (SEQ ID NO:7), ATPT6 (SEQ ID NO:8). Additional prenyltransferase sequences from

other plants related to the aromatic class of prenyltransferases, such as soy (SEQ ID NOs: 19-23, the deduced amino acid sequence of SEQ ID NO:23 is provided in SEQ ID NO:24) and maize (SEQ ID NOs:25-29, and 31) are also identified. The deduced amino acid sequence of ZMPT5 (SEQ ID NO:29) is provided in SEQ ID NO:30.

5 Searches are performed on a Silicon Graphics Unix computer using additional Bioaccelerator hardware and GenWeb software supplied by Compugen Ltd. This software and hardware enables the use of the Smith-Waterman algorithm in searching DNA and protein databases using profiles as queries. The program used to query protein databases is profilesearch. This is a search where the query is not a single sequence but a profile based on a multiple 10 alignment of amino acid or nucleic acid sequences. The profile is used to query a sequence data set, i.e., a sequence database. The profile contains all the pertinent information for scoring each position in a sequence, in effect replacing the "scoring matrix" used for the standard query searches. The program used to query nucleotide databases with a protein profile is tprofilesearch. Tprofilesearch searches nucleic acid databases using an amino acid profile query. As the search is running, sequences in the database are translated to amino acid sequences in six reading frames. The output file for tprofilesearch is identical to the output file for profilesearch except for an additional column that indicates the frame in which the best alignment occurred.

15
20
25

The Smith-Waterman algorithm, (Smith and Waterman (1981) *supra*), is used to search for similarities between one sequence from the query and a group of sequences contained in the database. E score values as well as other sequence information, such as conserved peptide sequences are used to identify related sequences.

25 To obtain the entire coding region corresponding to the *Arabidopsis* prenyltransferase sequences, synthetic oligo-nucleotide primers are designed to amplify the 5' and 3' ends of partial cDNA clones containing prenyltransferase sequences. Primers are designed according to the respective *Arabidopsis* prenyltransferase sequences and used in Rapid Amplification of

cDNA Ends (RACE) reactions (Frohman *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:8998-9002) using the Marathon cDNA amplification kit (Clontech Laboratories Inc, Palo Alto, CA).

Additional BLAST searches are performed using the ATPT2 sequence, a sequence in the class of aromatic prenyl transferases. Additional sequences are identified in soybean libraries

that are similar to the ATPT2 sequence. The additional soybean sequence demonstrates 80% identity and 91% similarity at the amino acid sequence.

Amino acid sequence alignments between ATPT2 (SEQ ID NO:2), ATPT3 (SEQ ID NO:4), ATPT4 (SEQ ID NO:6), ATPT8 (SEQ ID NO:12), and ATPT12 (SEQ ID NO:17) are 5 performed using ClustalW (Figure 1), and the percent identity and similarities are provided in Table 1 below.

Table 1:

		ATPT2	ATPT3	ATPT4	ATPT8	ATPT12
ATPT2	% Identity		12	13	11	15
	% similar		25	25	22	32
	% Gap		17	20	20	9
ATPT3	% Identity			12	6	22
	% similar			29	16	38
	% Gap			20	24	14
ATPT4	% Identity				9	14
	% similar				18	29
	% Gap				26	19
ATPT8	% Identity					7
	% similar					19
	% Gap					20
ATPT12	% Identity					
	% similar					
	% Gap					

10

Example 2: Preparation of Expression Constructs

A plasmid containing the napin cassette derived from pCGN3223 (described in USPN 5,639,790, the entirety of which is incorporated herein by reference) was modified to make it

more useful for cloning large DNA fragments containing multiple restriction sites, and to allow the cloning of multiple napin fusion genes into plant binary transformation vectors. An adapter comprised of the self annealed oligonucleotide of sequence

CGCGATTAAATGGCGGCCCTGCAGGCAGGCCCTGCAGGGCGGCCATTAAAT

5 (SEQ ID NO:40) was ligated into the cloning vector pBC SK+ (Stratagene) after digestion with the restriction endonuclease BssHII to construct vector pCGN7765. Plamids pCGN3223 and pCGN7765 were digested with NotI and ligated together. The resultant vector, pCGN7770, contains the pCGN7765 backbone with the napin seed specific expression cassette from pCGN3223.

10 The cloning cassette, pCGN7787, essentially the same regulatory elements as pCGN7770, with the exception of the napin regulatory regions of pCGN7770 have been replaced with the double CAMV 35S promoter and the tml polyadenylation and transcriptional termination region.

A binary vector for plant transformation, pCGN5139, was constructed from pCGN1558 (McBride and Summerfelt, (1990) Plant Molecular Biology, 14:269-276). The polylinker of pCGN1558 was replaced as a HindIII/Asp718 fragment with a polylinker containing unique restriction endonuclease sites, AscI, PacI, XbaI, SwaI, BamHI, and NotI. The Asp718 and HindIII restriction endonuclease sites are retained in pCGN5139.

20 A series of turbo binary vectors are constructed to allow for the rapid cloning of DNA sequences into binary vectors containing transcriptional initiation regions (promoters) and transcriptional termination regions.

The plasmid pCGN8618 was constructed by ligating oligonucleotides 5'-
TCGAGGATCCGGCCGCAAGCTCCTGCAGG-3' (SEQ ID NO:41) and 5'-
TCGACCTGCAGGAAGCTTGGCCGGATCC-3' (SEQ ID NO:42) into SalI/XhoI-
25 digested pCGN7770. A fragment containing the napin promoter, polylinker and napin 3' region was excised from pCGN8618 by digestion with Asp718I; the fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert oriented so that the napin promoter was closest to the blunted Asp718I site of pCGN5139 and the napin 3' was closest to the blunted HindIII site was subjected

to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated pCGN8622.

The plasmid pCGN8619 was constructed by ligating oligonucleotides 5'-
TCGACCTGCAGGAAGCTTGC GGCCGCGGATCC -3' (SEQ ID NO:43) and 5'-
5 TCGAGGATCCGGCCGCAAGCTCCTGCAGG-3' (SEQ ID NO:44) into SalI/XhoI-digested pCGN7770. A fragment containing the napin promoter, polylinker and napin 3' region was removed from pCGN8619 by digestion with Asp718I; the fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow 10 fragment. A plasmid containing the insert oriented so that the napin promoter was closest to the blunted Asp718I site of pCGN5139 and the napin 3' was closest to the blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated pCGN8623.

The plasmid pCGN8620 was constructed by ligating oligonucleotides 5'-
TCGAGGATCCGGCCGCAAGCTCCTGCAGGAGCT -3' (SEQ ID NO:45) and 5'-
CCTGCAGGAAGCTTGC GGCCGCGGATCC-3' (SEQ ID NO:46) into SalI/SacI-digested pCGN7787. A fragment containing the d35S promoter, polylinker and tml 3' region was removed from pCGN8620 by complete digestion with Asp718I and partial digestion with NotI. The fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert oriented so that the d35S promoter was closest to the blunted Asp718I site of pCGN5139 and the tml 3' was closest to the blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated 25 pCGN8624.

The plasmid pCGN8621 was constructed by ligating oligonucleotides 5'-
TCGACCTGCAGGAAGCTTGC GGCCGCGGATCCAGCT -3' (SEQ ID NO:47) and 5'-
GGATCCGGCCGCAAGCTCCTGCAGG-3' (SEQ ID NO:48) into SalI/SacI-digested pCGN7787. A fragment containing the d35S promoter, polylinker and tml 3' region was 30 removed from pCGN8621 by complete digestion with Asp718I and partial digestion with NotI.

The fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert oriented so that the d35S promoter was closest to the blunted Asp718I site of pCGN5139 and the tml 3' was closest 5 to the blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated pCGN8625.

The plasmid construct pCGN8640 is a modification of pCGN8624 described above. A 938bp PstI fragment isolated from transposon Tn7 which encodes bacterial spectinomycin and 10 streptomycin resistance (Fling et al. (1985), *Nucleic Acids Research* 13(19):7095-7106), a determinant for *E. coli* and *Agrobacterium* selection, was blunt ended with Pfu polymerase. The blunt ended fragment was ligated into pCGN8624 that had been digested with SpeI and blunt ended with Pfu polymerase. The region containing the PstI fragment was sequenced to confirm both the insert orientation and the integrity of cloning junctions.

The spectinomycin resistance marker was introduced into pCGN8622 and pCGN8623 as follows. A 7.7 Kbp AvrII-SnaBI fragment from pCGN8640 was ligated to a 10.9 Kbp AvrII-SnaBI fragment from pCGN8623 or pCGN8622, described above. The resulting plasmids were pCGN8641 and pCGN8643, respectively.

The plasmid pCGN8644 was constructed by ligating oligonucleotides 5'-
20 GATCACCTGCAGGAAGCTTGCAGGCCGCGATCCAATGCA-3' (SEQ ID NO:49) and 5'-
TTGGATCCCGCGCCGCAAGCTTCCTGCAGGT-3' (SEQ ID NO:50) into BamHI-PstI
digested pCGN8640.

Synthetic oligonucleotides were designed for use in Polymerase Chain Reactions (PCR) to amplify the coding sequences of ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 for the preparation 25 of expression constructs and are provided in Table 2 below.

Table 2:

Name	Restriction Site	Sequence	SEQ ID NO:
ATPT2	5' NotI	GGATCCGGCCGCACAATGGAGTC TCTGCTCTAGTTCT	51
ATPT2	3' SseI	GGATCCTGCAGGTCACTCAAAAAAA GGTAACAGCAAGT	52
ATPT3	5' NotI	GGATCCGGCCGCACAATGGCGTT	53

		TTTTGGGCTCTCCCGTGT	
ATPT3	3' SseI	GGATCCTGCAGGTTATTGAAA CTTCCAAGTACAAC	54
ATPT4	5' NotI	GGATCCGGGCCGCACAATGTGGCG AAGATCTGTGTT	55
ATPT4	3' SseI	GGATCCTGCAGGTACATGGAGAGTAG AAGGAAGGAGCT	56
ATPT8	5' NotI	GGATCCGGGCCGCACAATGGTACT TGCCGAGGTTCCAAAGCTTGCCTCT	57
ATPT8	3' SseI	GGATCCTGCAGGTCACTTGTTC GTGATGACTCTAT	58
ATPT12	5' NotI	GGATCCGGGCCGCACAATGACTTC GATTCTAACACT	59
ATPT12	3' SseI	GGATCCTGCAGGTCAAGTGTGCGAT GCTAATGCCGT	60

The coding sequences of ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 were all amplified using the respective PCR primers shown in Table 2 above and cloned into the TopoTA vector (Invitrogen). Constructs containing the respective prenyltransferase sequences were digested with NotI and Sse8387I and cloned into the turbobinary vectors described above.

The sequence encoding ATPT2 prenyltransferase was cloned in the sense orientation into pCGN8640 to produce the plant transformation construct pCGN10800 (Figure 2). The ATPT2 sequence is under control of the 35S promoter.

The ATPT2 sequence was also cloned in the antisense orientation into the construct pCGN8641 to create pCGN10801 (Figure 3). This construct provides for the antisense expression of the ATPT2 sequence from the napin promoter.

The ATPT2 coding sequence was also cloned in the antisense orientation into the vector pCGN8643 to create the plant transformation construct pCGN10802

The ATPT2 coding sequence was also cloned in the antisense orientation into the vector pCGN8644 to create the plant transformation construct pCGN10803 (Figure 4).

The ATPT4 coding sequence was cloned into the vector pCGN864 to create the plant transformation construct pCGN10806 (Figure 5). The ATPT2 coding sequence was cloned into the vector pCGN864 to create the plant transformation construct pCGN10807(Figure 6). The ATPT3 coding sequence was cloned into the vector pCGN864 to create the plant transformation construct pCGN10808 (Figure 7). The ATPT3 coding sequence was cloned in the sense orientation into the

vector pCGN8640 to create the plant transformation construct pCGN10809 (Figure 8). The ATPT3 coding sequence was cloned in the antisense orientation into the vector pCGN8641 to create the plant transformation construct pCGN10810 (Figure 9). The ATPT3 coding sequence was cloned into the vector pCGN8643 to create the plant transformation construct pCGN10811 (Figure 10). The 5 ATPT3 coding sequence was cloned into the vector pCGN8640 to create the plant transformation construct pCGN10812 (Figure 11). The ATPT4 coding sequence was cloned into the vector pCGN8640 to create the plant transformation construct pCGN10813 (Figure 12). The ATPT4 coding sequence was cloned into the vector pCGN8643 to create the plant transformation construct pCGN10814 (Figure 13). The ATPT4 coding sequence was cloned into the vector pCGN8641 to 10 create the plant transformation construct pCGN10815 (Figure 14). The ATPT4 coding sequence was cloned in the antisense orientation into the vector pCGN8644 to create the plant transformation construct pCGN10816 (Figure 15). The ATPT2 coding sequence was cloned into the vector pCGN???? to create the plant transformation construct pCGN10817 (Figure 16). The ATPT8 coding sequence was cloned in the sense orientation into the vector pCGN8643 to create the plant transformation construct pCGN10819 (Figure 17). The ATPT12 coding sequence was cloned into the vector pCGN8644 to create the plant transformation construct pCGN10824 (Figure 18). The ATPT12 coding sequence was cloned into the vector pCGN8641 to create the plant transformation construct pCGN10825 (Figure 19). The ATPT8 coding sequence was cloned into the vector pCGN8644 to create the plant transformation construct pCGN10826 (Figure 20).

DRAFT-020

Example 3: Plant Transformation

Transgenic *Brassica* plants are obtained by *Agrobacterium*-mediated transformation as 25 described by Radke *et al.* (*Theor. Appl. Genet.* (1988) 75:685-694; *Plant Cell Reports* (1992) 11:499-505). Transgenic *Arabidopsis thaliana* plants may be obtained by *Agrobacterium*-mediated transformation as described by Valverkens *et al.*, (*Proc. Nat. Acad. Sci.* (1988) 85:5536-5540), or as described by Bent *et al.* ((1994), *Science* 265:1856-1860), or Bechtold *et al.* ((1993), *C.R.Acad.Sci, Life Sciences* 316:1194-1199). Other plant species may be similarly 30 transformed using related techniques.

Alternatively, microprojectile bombardment methods, such as described by Klein *et al.* (*BioTechnology* 10:286-291) may also be used to obtain nuclear transformed plants.

5 **Example 4:** Identification of Additional Prenyltransferases

A PSI-Blast profile generated using the *E. coli* ubiA (genbank accession 1790473) sequence was used to analyze the *Synechocystis* genome. This analysis identified 5 open reading frames (ORFs) in the *Synechocystis* genome that were potentially prenyltransferases; slr0926
10 (annotated as ubiA (4-hydroxybenzoate-octaprenyl transferase, SEQ ID NO:32), sll1899 (annotated as ctaB (cytchrome c oxidase folding protein, SEQ ID NO:33), slr0056 (annotated as g4 (chlorophyll synthase 33 kd subunit, SEQ ID NO:34), slr1518 (annotated as menA (menaquinone biosynthesis protein, SEQ ID NO:35), and slr1736 (annotated as a hypothetical protein of unknown function (SEQ ID NO:36).

DRAFT 10/2000

To determine the functionality of these ORFs and their involvement, if any, in the biosynthesis of Tocopherols, knockouts constructs were made to disrupt the ORF identified in *Synechocystis*.

Synthetic oligos were designed to amplify regions from the 5' (5'-
TAATGTGTACATTGTCGGCCTC (17365') (SEQ ID NO:61) and 5'-
20 GCAATGTAACATCAGAGATTTGAGACACAACGTGGCTTCCACAATTCCCCGCACC
GTC (1736kanpr1)) (SEQ ID NO:62) and 3' (5'-AGGCTAATAAGCACAAATGGGA (17363')
(SEQ ID NO:63) and 5'-GGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGC
GGAATTGGTTAGGTTATCCC (1736kanpr2)) (SEQ ID NO:64) ends of the slr1736 ORF.
The 1736kanpr1 and 1736kanpr2 oligos contained 20 bp of homology to the slr1736 ORF with
25 an additional 40 bp of sequence homology to the ends of the kanamycin resistance cassette.
Separate PCR steps were completed with these oligos and the products were gel purified and
combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested
with *Hinc*II and gel purified away from the vector backbone. The combined fragments were
allowed to assemble without oligos under the following conditions: 94°C for 1 min, 55°C for 1
30 min, 72°C for 1 min plus 5 seconds per cycle for 40 cycles using pfu polymerase in 100ul

reaction volume (Zhao, H and Arnold (1997) *Nucleic Acids Res.* 25(6):1307-1308). One microliter or five microliters of this assembly reaction was then amplified using 5' and 3' oligos nested within the ends of the ORF fragment, so that the resulting product contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the kanamycin resistance cassette, and 5 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the construct pMON21681 and used for *Synechocystis* transformation.

Primers were also synthesized for the preparation of *Synechocystis* knockout constructs for the other sequences using the same method as described above, with the following primers.
10 The ubiA 5' sequence was amplified using the primers 5'- GGATCCATGGTT
GCCAAACCCCATC (SEQ ID NO:65) and 5' - GCAATGTAACATCAGAGA
TTTGAGACACAACG TGGCTTGGGTAAAGCAACAATGACCGGC (SEQ ID NO:66).
The 3' region was amplified using the synthetic oligonucleotide primers 5'-
GAATTCTCAAAGCCAGCCCAGTAAC (SEQ ID NO:67) and 5'-GGTATGAGTC
AGCAACACCTTCTTCACGAGGCAGACCTCAGCGGGTGCAGAAAAGGGTTTCCC (SEQ
ID NO:68). The amplification products were combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested with *Hinc*II and gel purified away from the vector backbone. The annealed fragment was amplified using 5' and 3' oligos nested within the ends of the ORF fragment (5' - CCAGTGGTTAGGCTGTGTGGTC (SEQ ID NO:69) and 5'-
CTGAGTTGGATGTATTGGATC (SEQ ID NO:70)), so that the resulting product contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the construct pMON21682 and used for *Synechocystis* transformation.

25 Primers were also synthesized for the preparation of *Synechocystis* knockout constructs for the other sequences using the same method as described above, with the following primers. The s111899 5' sequence was amplified using the primers 5' - GGATCCATGGTTACTT
CGACAAAAATCC (SEQ ID NO:71) and 5' - GCAATGTAACATCAGAG
ATTTGAGACACAACGTGGCTTGCTAGGCAACCGCTTAGTAC (SEQ ID NO:72). The 30 3' region was amplified using the synthetic oligonucleotide primers 5'-

GAATTCTAACCCAACAGTAAAGTTCCC (SEQ ID NO:73) and 5'- GGTATGAGTCAGC
AACACCTTCTCACGAGGCAGACCTCAGCGCCGGCATTGTCTTTACATG (SEQ ID
NO:74). The amplification products were combined with the kanamycin resistance gene from
5 puc4K (Pharmacia) that had been digested with *Hinc*II and gel purified away from the vector
backbone. The annealed fragment was amplified using 5' and 3' oligos nested within the ends of
the ORF fragment (5'- GGAACCCTTGCAGCCGCTTC (SEQ ID NO:75)
and 5'- GTATGCCCAACTGGTGCAGAGG (SEQ ID NO:76)), so that the resulting product
contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the kanamycin
resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR
10 product was then cloned into the vector pGemT easy (Promega) to create the construct
pMON21679 and used for *Synechocystis* transformation.

Primers were also synthesized for the preparation of *Synechocystis* knockout constructs
for the other sequences using the same method as described above, with the following primers.
The slr0056 5' sequence was amplified using the primers 5'-
GGATCCATGTCTGACACACAAAATACCG (SEQ ID NO:77) and 5'-
GCAATGTAACATCAGAGATTTGAGACACAACGTGGCTTCGCCAATACCAGCCACC
AACAG (SEQ ID NO:78). The 3' region was amplified using the synthetic oligonucleotide
primers 5'- GAATTCTCAAAT CCCGCATGGCCTAG (SEQ ID NO:79) and 5'-
GGTATGAGTCAGAACACCTTCTCACGAGGCAGACCTCAGCGGCCTACGGCTTGGA
CGTGTGGG (SEQ ID NO:80). The amplification products were combined with the kanamycin
resistance gene from puc4K (Pharmacia) that had been digested with *Hinc*II and gel purified
away from the vector backbone. The annealed fragment was amplified using 5' and 3' oligos
nested within the ends of the ORF fragment (5'- CACTTGGATTCCCCTGATCTG (SEQ ID
NO:81) and 5'- GCAATAACCGCTTGGAAAACG (SEQ ID NO:82)), so that the resulting
25 product contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the
kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This
PCR product was then cloned into the vector pGemT easy (Promega) to create the construct
pMON21677 and used for *Synechocystis* transformation.

Primers were also synthesized for the preparation of *Synechocystis* knockout constructs
30 for the other sequences using the same method as described above, with the following primers.

The slr1518 5' sequence was amplified using the primers 5'- GGATCCATGACCGAAT CTTCGCCCCTAGC (SEQ ID NO:83) and 5'-GCAATGTAACATCAGAGATTGAGACACAACGTGGC TTTCAATCCTAGGTAGCCGAGGCG (SEQ ID NO:84). The 3' region was amplified using the synthetic oligonucleotide primers 5'- GAATTCTTAGCCCAGGCC
5 AGCCCAGCC (SEQ ID NO:85) and 5'- GGTATGAGTCAGAACACCTTCTCACGA GGCAGACCTCAGCGGGGAATTGATTGTTAATTACC (SEQ ID NO:86). The amplification products were combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested with *Hinc*II and gel purified away from the vector backbone. The annealed fragment was amplified using 5' and 3' oligos nested within the ends of the ORF
10 fragment (5'- GCGATCGCCATTATCGCTTGG (SEQ ID NO:87) and 5'- GCAGACTGGCAATTATCAGTAACG (SEQ ID NO:88)), so that the resulting product contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the construct pMON21680 and used for *Synechocystis* transformation.

B. Transformation of *Synechocystis*

Cells of *Synechocystis* 6803 were grown to a density of approximately 2×10^8 cells per ml and harvested by centrifugation. The cell pellet was re-suspended in fresh BG-11 medium (ATCC Medium 616) at a density of 1×10^9 cells per ml and used immediately for transformation. One-hundred microliters of these cells were mixed with 5 ul of mini prep DNA and incubated with light at 30C for 4 hours. This mixture was then plated onto nylon filters resting on BG-11 agar supplemented with TES pH8 and allowed to grow for 12-18 hours. The filters were then transferred to BG-11 agar + TES + 5ug/ml kanamycin and allowed to grow until colonies
25 appeared within 7-10 days (Packer and Glazer, 1988). Colonies were then picked into BG-11 liquid media containing 5 ug/ml kanamycin and allowed to grow for 5 days. These cells were then transferred to Bg-11 media containing 10ug/ml kanamycin and allowed to grow for 5 days and then transferred to Bg-11 + kanamycin at 25ug/ml and allowed to grow for 5 days. Cells
30 were then harvested for PCR analysis to determine the presence of a disrupted ORF and also for HPLC analysis to determine if the disruption had any effect on tocopherol levels.

PCR analysis of the *Synechocystis* isolates for slr1736 and sll1899 showed complete segregation of the mutant genome, meaning no copies of the wild type genome could be detected in these strains. This suggests that function of the native gene is not essential for cell function. HPLC analysis of these same isolates showed that the sll1899 strain had no detectable reduction 5 in tocopherol levels. However, the strain carrying the knockout for slr1736 produced no detectable levels of tocopherol.

The amino acid sequences for the *Synechocystis* knockouts are compared using ClustalW, and are provided in Table 3 below. Provided are the percent identities, percent similarity, and the percent gap. The alignment of the sequences is provided in Figure 21.

10

Table 3:

	Slr1736	slr0926	sll1899	slr0056	slr1518
slr1736 %identity		14	12	18	11
%similar		29	30	34	26
%gap		8	7	10	5
slr0926 %identity			20	19	14
%similar			39	32	28
%gap			7	9	4
sll1899 %identity				17	13
%similar				29	29
%gap				12	9
slr0056 %identity					15
%similar					31
%gap					8
slr1518 %identity					
%similar					
%gap					

Amino acid sequence comparisons are performed using various *Arabidopsis* prenyltransferase sequences and the *Synechocystis* sequences. The comparisons are presented in

Table 4 below. Provided are the percent identities, percent similarity, and the percent gap. The alignment of the sequences is provided in Figure 22.

Table 4:

	ATPT2	slr1736	ATPT3	slr0926	ATPT4	sll1899	ATPT12	slr0056	ATPT8	slr1518
ATPT2	29	9	9	8	8	12	9	7	9	
	46	23	21	20	20	28	23	21	20	
	27	13	28	23	29	11	24	25	24	
	9	13	8	12	13	13	15	8	10	
	19	28	19	28	26	26	33	21	26	
	34	12	34	15	26	10	10	12	10	
ATPT3		23	11	14	13	10	5	11		
		36	26	26	26	21	14	22		
		29	21	31	16	30	30	30		
			12	20	17	20	11	14		
				24	28	33	24	29		
				33	12	10	11	9		
ATPT4				18	11	8	6	7		
				33	23	18	16	19		
				28	19	32	32	33		
					13	17	10	12		
					24	30	23	26		
					27	13	10	11		
ATPT1						52	8	11		
						66	19	26		
						18	25	23		
						9	13			
						23	32			
						10	8			
slr0056										

ATPT8	7
	23
	7
slr1518	

4B. Preparation of the slr1737 Knockout

The *Synechocystis* sp. 6803 slr1737 knockout was constructed by the following method.

The GPS™-1 Genome Priming System (New England Biolabs) was used to insert, by a Tn7 Transposase system, a Kanamycin resistance cassette into *slr1737*. A plasmid from a *Synechocystis* genomic library clone containing 652 base pairs of the targeted orf (*Synechocystis* genome base pairs 1324051 – 1324703; the predicted orf base pairs 1323672 – 1324763, as annotated by Cyanobase) was used as target DNA. The reaction was performed according to the manufacturers protocol. The reaction mixture was then transformed into *E. coli* DH10B electrocompetant cells and plated. Colonies from this transformation were then screened for transposon insertions into the target sequence by amplifying with M13 Forward and Reverse Universal primers, yielding a product of 652 base pairs plus ~1700 base pairs, the size of the transposon kanamycin cassette, for a total fragment size of ~2300 base pairs. After this determination, it was then necessary to determine the approximate location of the insertion within the targeted orf, as 100 base pairs of orf sequence was estimated as necessary for efficient homologous recombination in *Synechocystis*. This was accomplished through amplification reactions using either of the primers to the ends of the transposon, Primer S (5' end) or N (3' end), in combination with either a M13 Forward or Reverse primer. That is, four different primer combinations were used to map each potential knockout construct: Primer S – M13 Forward, Primer S – M13 Reverse, Primer N – M13 Forward, Primer N – M13 Reverse. The construct used to transform *Synechocystis* and knockout slr1737 was determined to consist of a approximately 150 base pairs of slr1737 sequence on the 5' side of the transposon insertion and

approximately 500 base pairs on the 3' side, with the transcription of the orf and kanamycin cassette in the same direction. The nucleic acid sequence of slr1737 is provided in SEQ ID NO:38 the deduced amino acid sequence is provided in SEQ ID NO:39.

Cells of *Synechocystis* 6803 were grown to a density of ~ 2×10^8 cells per ml and harvested by centrifugation. The cell pellet was re-suspended in fresh BG-11 medium at a density of 1×10^9 cells per ml and used immediately for transformation. 100 ul of these cells were mixed with 5 ul of mini prep DNA and incubated with light at 30C for 4 hours. This mixture was then plated onto nylon filters resting on BG-11 agar supplemented with TES ph8 and allowed to grow for 12-18 hours. The filters were then transferred to BG-11 agar + TES + 5ug/ml kanamycin and allowed to grow until colonies appeared within 7-10 days (Packer and Glazer, 1988). Colonies were then picked into BG-11 liquid media containing 5 ug/ml kanamycin and allowed to grow for 5 days. These cells were then transferred to Bg-11 media containing 10ug/ml kanamycin and allowed to grow for 5 days and then transferred to Bg-11 + kanamycin at 25ug/ml and allowed to grow for 5 days. Cells were then harvested for PCR analysis to determine the presence of a disrupted ORF and also for HPLC analysis to determine if the disruption had any effect on tocopherol levels.

DRAFT - 6/16/2010
Page 20

PCR analysis of the *Synechocystis* isolates, using primers to the ends of the *slr1737* orf , showed complete segregation of the mutant genome, meaning no copies of the wild type genome could be detected in these strains. This suggests that function of the native gene is not essential for cell function. HPLC analysis of the strain carrying the knockout for *slr1737* produced no detectable levels of tocopherol.

4C. Phytyl Prenyltransferase Enzyme Assays

[³H] Homogentisic acid in 0.1% H₃PO₄ (specific radioactivity 40 Ci/mmol). Phytyl pyrophosphate was synthesized as described by Joo, *et al.* (1973) *Can J. Biochem.* 51:1527. 2-methyl-6-phytylquinol and 2,3-dimethyl-5-phytylquinol were synthesized as described by Soll, *et al.* (1980) *Phytochemistry* 19:215. Homogentisic acid, α, β, δ, and γ-tocopherol, and tocol, were purchased commercially.

The wild-type strain of *Synechocystis* sp. PCC 6803 was grown in BG11 medium with bubbling air at 30°C under 50 μE.m⁻².s⁻¹ fluorescent light, and 70% relative humidity. The growth

medium of slr1736 knock-out (potential PPT) strain of this organism was supplemented with 25 $\mu\text{g mL}^{-1}$ kanamycin. Cells were collected from 0.25 to 1 liter culture by centrifugation at 5000g for 10 min and stored at -80°C.

Total membranes were isolated according to Zak's procedures with some modifications (Zak,
5 et al. (1999) *Eur J. Biochem* 261:311). Cells were broken on a French press. Before the French
press treatment, the cells were incubated for 1 hour with lysozyme (0.5%, w/v) at 30 °C in a
medium containing 7 mM EDTA, 5 mM NaCl and 10 mM Hepes-NaOH, pH 7.4. The
spheroplasts were collected by centrifugation at 5000 g for 10 min and resuspended at 0.1 - 0.5 mg
chlorophyll·mL⁻¹ in 20 mM potassium phosphate buffer, pH 7.8. Proper amount of protease
10 inhibitor cocktail and DNAase I from Boehringer Mannheim were added to the solution. French
press treatments were performed two to three times at 100 MPa. After breakage, the cell
suspension was centrifuged for 10 min at 5000g to pellet unbroken cells, and this was followed by
centrifugation at 100 000 g for 1 hour to collect total membranes. The final pellet was resuspended
in a buffer containing 50 mM Tris-HCL and 4 mM MgCl₂.

15
20
25
30

Chloroplast pellets were isolated from 250 g of spinach leaves obtained from local markets.
Devined leaf sections were cut into grinding buffer (2 1 /250 g leaves) containing 2 mM EDTA, 1
mM MgCl₂, 1 mM MnCl₂, 0.33 M sorbitol, 0.1% ascorbic acid, and 50 mM Hepes at pH 7.5. The
leaves were homogenized for 3 sec three times in a 1-L blender, and filtered through 4 layers of
mirocloth. The supernatant was then centrifuged at 5000g for 6 min. The chloroplast pellets were
resuspended in small amount of grinding buffer (Douce,et al Methods in Chloroplast Molecular
Biology, 239 (1982)

Chloroplasts in pellets can be broken in three ways. Chloroplast pellets were first aliquoted
in 1 mg of chlorophyll per tube, centrifuged at 6000 rpm for 2 min in microcentrifuge, and
grinding buffer was removed. Two hundred microliters of Triton X-100 buffer (0.1% Triton X-
25 100, 50 mM Tris-HCl pH 7.6 and 4 mM MgCl₂) or swelling buffer (10 mM Tris pH 7.6 and 4
mM MgCl₂) was added to each tube and incubated for ½ hour at 4°C. Then the broken
chloroplast pellets were used for the assay immediately. In addition, broken chloroplasts can also
be obtained by freezing in liquid nitrogen and stored at -80°C for ½ hour, then used for the assay.

In some cases chloroplast pellets were further purified with 40%/ 80% percoll gradient to
30 obtain intact chloroplasts. The intact chloroplasts were broken with swelling buffer, then either

used for assay or further purified for envelope membranes with 20.5% / 31.8% sucrose density gradient (Sol, et al (1980) *supra*). The membrane fractions were centrifuged at 100 000g for 40 min and resuspended in 50 mM Tris-HCl pH 7.6, 4 mM MgCl₂.

Various amounts of [³H]HGA, 40 to 60 µM unlabelled HGA with specific activity in the 5 range of 0.16 to 4 Ci/mmol were mixed with a proper amount of 1M Tris-NaOH pH 10 to adjust pH to 7.6. HGA was reduced for 4 min with a trace amount of solid NaBH₄. In addition to HGA, standard incubation mixture (final vol 1 mL) contained 50 mM Tris-HCl, pH 7.6, 3-5 mM MgCl₂, and 100 µM phytyl pyrophosphate. The reaction was initiated by addition of *Synechocystis* total membranes, spinach chloroplast pellets, spinach broken chloroplasts, or spinach envelope 10 membranes. The enzyme reaction was carried out for 2 hour at 23°C or 30°C in the dark or light. The reaction is stopped by freezing with liquid nitrogen, and stored at -80°C or directly by extraction.

A constant amount of tocol was added to each assay mixture and reaction products were extracted with a 2 mL mixture of chloroform/methanol (1:2, v/v) to give a monophasic solution. NaCl solution (2 mL; 0.9%) was added with vigorous shaking. This extraction procedure was repeated three times. The organic layer containing the prenylquinones was filtered through a 20 µ filter, evaporated under N₂, and then resuspended in 100 µL of ethanol.

The samples were mainly analyzed by Normal-Phase HPLC method (Isocratic 90% Hexane and 10% Methyl-t-butyl ether), and use a Zorbax silica column, 4.6 x 250 mm. The samples were 20 also analyzed by Reversed-Phase HPLC method (Isocratic 0.1% H₃PO₄ in MeOH), and use a Vydac 201HS54 C18 column; 4.6 x 250 mm coupled with an All-tech C18 guard column. The amount of products were calculated based on the substrate specific radioactivity, and adjusted according to the % recovery based on the amount of internal standard.

The amount of chlorophyll was determined as described in Arnon (1949) *Plant Physiol.* 24:1. 25 Amount of protein was determined by the Bradford method using gamma globulin as a standard (Bradford, (1976) *Anal. Biochem.* 72:248)

Results of the assay demonstrate that 2-Methyl-6-Phytylplastoquinone is produced in the *Synechocystis* slr1736 knockout preparations. The results of the phytyl prenyltransferase enzyme activity assay for the slr1736 knock out are presented in Figure 23.

4D. Complementation of the slr1736 knockout with ATPT2

In order to determine whether ATPT2 could complement the knockout of slr1736 in *Synechocystis 6803* a plasmid was constructed to express the ATPT2 sequence from the TAC promoter. A vector, plasmid psl1211, was obtained from the lab of Dr. Himadri Pakrasi of Washington University, and is based on the plasmid RSF1010 which is a broad host range plasmid (Ng W.-O., Zentella R., Wang, Y., Taylor J-S. A., Pakrasi, H.B. 2000. *phrA*, the major photoreactivating factor in the cyanobacterium *Synechocystis* sp. strain PCC 6803 codes for a cyclobutane pyrimidine dimer specific DNA photolyase. *Arch. Microbiol.* (in press)). The ATPT2 gene was isolated from the vector pCGN10817 by PCR using the following primers.

ATPT2nco.pr 5'-CCATGGATTGAGTAAAGTTGTCGC (SEQ ID NO:89); ATPT2ri.pr- 5'-GAATTCACCTCAAAAAAGGTAACAG (SEQ ID NO:90). These primers will remove approximately 112 BP from the 5' end of the ATPT2 sequence, which is thought to be the chloroplast transit peptide. These primers will also add an NcoI site at the 5' end and an EcoRI site at the 3' end which can be used for sub-cloning into subsequent vectors. The PCR product from using these primers and pCGN10817 was ligated into pGEM T easy and the resulting vector pMON21689 was confirmed by sequencing using the m13forward and m13reverse primers. The NcoI/EcoRI fragment from pMON21689 was then ligated with the EagI/EcoRI and EagI/NcoI fragments from psl1211 resulting in pMON21690. The plasmid pMON21690 was introduced into the slr1736 *Synechocystis 6803* KO strain via conjugation. Cells of sl906 (a helper strain) and DH10B cells containing pMON21690 were grown to log phase (O.D. 600= 0.4) and 1 ml was harvested by centrifugation. The cell pellets were washed twice with a sterile BG-11 solution and resuspended in 200 ul of BG-11. The following was mixed in a sterile eppendorf tube: 50 ul SL906, 50 ul DH10B cells containing pMON21690, and 100 ul of a fresh culture of the slr1736 *Synechocystis 6803* KO strain (O.D. 730 = 0.2-0.4). The cell mixture was immediately transferred to a nitrocellulose filter resting on BG-11 and incubated for 24 hours at 30C and 2500 LUX(50 ue) of light. The filter was then transferred to BG-11 supplemented with 10ug/ml Gentamycin and incubated as above for ~5 days. When colonies appeared, they were picked and grown up in liquid BG-11 + Gentamycin 10 ug/ml. (Elhai, J. and Wolk, P. 1988. Conjugal transfer of DNA to Cyanobacteria. *Methods in Enzymology* 167, 747-54) The liquid cultures were then assayed for tocopherols by harvesting 1ml of culture by centrifugation,

extracting with ethanol/pyrogallol, and HPLC separation. The slr1736 *Synechocystis 6803* KO strain, did not contain any detectable tocopherols, while the slr1736 *Synechocystis 6803* KO strain transformed with pmon21690 contained detectable alpha tocopherol. A *Synechocystis 6803* strain transformed with psl1211(vector control) produced alpha tocopherol as well.

5

Example 5: Transgenic Plant Analysis

Arabidopsis plants transformed with constructs for the sense or antisense expression of the ATPT proteins were analyzed by High Pressure Liquid Chromatography (HPLC) for altered levels of total tocopherols, as well as altered levels of specific tocopherols (alpha, beta, gamma, and delta tocopherol).

Extracts of leaves and seeds were prepared for HPLC as follows. For seed extracts, 10 mg of seed was added to 1 g of microbeads (Biospec) in a sterile microfuge tube to which 500 ul 1% pyrogallol (Sigma Chem)/ethanol was added. The mixture was shaken for 3 minutes in a mini Beadbeater (Biospec) on “fast” speed. The extract was filtered through a 0.2 um filter into an autosampler tube. The filtered extracts were then used in HPLC analysis described below.

Leaf extracts were prepared by mixing 30-50 mg of leaf tissue with 1 g microbeads and freezing in liquid nitrogen until extraction. For extraction, 500 ul 1% pyrogallol in ethanol was added to the leaf/bead mixture and shaken for 1 minute on a Beadbeater (Biospec) on “fast” speed. The resulting mixture was centrifuged for 4 minutes at 14,000 rpm and filtered as described above prior to HPLC analysis.

HPLC was performed on a Zorbax silica HPLC column (4.6 mm X 250 mm) with a fluorescent detection, an excitation at 290 nm, an emission at 336 nm, and bandpass and slits. Solvent A was hexane and solvent B was methyl-t-butyl ether. The injection volume was 20 ul, the flow rate was 1.5 ml/min, the run time was 12 min (40°C) using the gradient (Table 5):

Table 5:

	<u>Time</u>	<u>Solvent A</u>	<u>Solvent B</u>
30	0 min.	90%	10%
	10 min.	90%	10%
	11 min.	25%	75%
	12 min.	90%	10%

Tocopherol standards in 1% pyrogallol/ ethanol were also run for comparison (alpha tocopherol, gamma tocopherol, beta tocopherol, delta tocopherol, and tocopherol (tocol) (all from Matreya).

5 Standard curves for alpha, beta, delta, and gamma tocopherol were calculated using Chemstation software. The absolute amount of component x is: Absolute amount of x= Response_x x RF_x x dilution factor where Response_x is the area of peak x, RF_x is the response factor for component x (Amount_x/Response_x) and the dilution factor is 500 ul. The ng/mg tissue is found by: total ng component/mg plant tissue.

10 Results of the HPLC analysis of seed extracts of transgenic *Arabidopsis* lines containing pMON10822 for the expression of ATAT2 from the napin promoter are provided in Figure 24.

HPLC analysis results of *Arabidopsis* seed tissue expressing the ATAT2 sequence from the napin promoter (pMON10822) demonstrates an increased level of tocopherols in the seed. Total tocopherol levels are increased as much as 50 to 60% over the total tocopherol levels of non-transformed (wild-type) *Arabidopsis* plants (Figure 24).

Furthermore, increases of particular tocopherols are also increased in transgenic *Arabidopsis* plants expressing the ATAT2 nucleic acid sequence from the napin promoter. Levels of delta tocopherol in these lines are increased greater than 3 fold over the delta tocopherol levels obtained from the seeds of wild type *Arabidopsis* lines. Levels of gamma tocopherol in transgenic *Arabidopsis* lines expressing the ATAT2 nucleic acid sequence are increased as much as about 60% over the levels obtained in the seeds of non-transgenic control lines. Furthermore, levels of alpha tocopherol are increased as much as 3 fold over those obtained from non-transgenic control lines.

25 Results of the HPLC analysis of seed extracts of transgenic *Arabidopsis* lines containing pMON10803 for the expression of ATAT2 from the enhanced 35S promoter are provided in Figure 25.

30 All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and

patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration
5 and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

DRAFT - DO NOT CITE OR RELY UPON

Claims

What is Claimed is:

1. An isolated nucleic acid sequence encoding a prenyltransferase.
- 5 2. An isolated nucleic acid sequence according to Claim 1, wherein said prenyltransferase is selected from the group consisting of straight chain prenyltransferase and aromatic prenyltransferase.
3. An isolated DNA sequence according to Claim 1, wherein said nucleic acid sequence is isolated from a eukaryotic cell source.
- 10 4. An isolated DNA sequence according to Claim 3, wherein said eukaryotic cell source is selected from the group consisting of mammalian, nematode, fungal, and plant cells.
5. The DNA encoding sequence of Claim 4 wherein said prenyltransferase protein is from *Arabidopsis*.
6. The DNA encoding sequence of Claim 5 wherein said prenyltransferase protein is encoded by a sequence selected from the group consisting of the sequences of Figure 1.
7. The DNA encoding sequence of Claim 4 wherein said prenyltransferase protein is from corn.
8. The DNA encoding sequence of Claim 7 wherein said prenyltransferase protein is encoded by a sequence which includes the EST of the sequences of Figure 3.
9. The DNA encoding sequence of Claim 4 wherein said prenyltransferase protein is from soybean.
10. The DNA encoding sequence of Claim 9 wherein said prenyltransferase protein is encoded by a sequence which includes the ESTs of the group consisting of the sequences of Figure 2 and Figure 9.
11. An isolated DNA sequence according to Claim 1, wherein said nucleic acid sequence is isolated from a prokaryotic cell source.
- 25 12. An isolated DNA sequence according to Claim 11, wherein said prokaryotic source is *Synechocystis*.
13. A nucleic acid construct comprising as operably linked components, a transcriptional initiation region functional in a host cell, a nucleic acid sequence encoding prenyltransferase, and a transcriptional termination region.

14. A nucleic acid construct according to Claim 13, wherein said nucleic acid sequence encoding prenyltransferase is obtained from an organism selected from the group consisting of a eukaryotic organism and a prokaryotic organism.

5 15. A nucleic acid construct according to Claim 14, wherein said nucleic acid sequence encoding prenyltransferase is obtained from a plant source.

16. A nucleic acid construct according to Claim 15, wherein said nucleic acid sequence encoding prenyltransferase is obtained from a source selected from the group consisting of *Arabidopsis*, soybean and corn.

10 17. A nucleic acid construct according to Claim 13, wherein said nucleic acid sequence encoding prenyltransferase is obtained from *Synechocystis*.

18. A plant cell comprising the construct of Claim 13.

19. A method for the alteration of the tocopherol content in a host cell, comprising; transforming said host cell with a construct comprising as operably linked components, a transcriptional initiation region functional in a host cell, a nucleic acid sequence encoding prenyltransferase, and a transcriptional termination region.

20. The method according to Claim 19, wherein said host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.

21. The method according to Claim 20, wherein said prokaryotic cell is *Synechocystis*.

22. The method according to Claim 20, wherein said eukaryotic cell is a plant cell.

23. The method according to Claim 22, wherein said plant cell is obtained from a plant selected from the group consisting of *Arabidopsis*, soybean, and corn.

24. A method for producing a tocopherol compound of interest in a host cell, said method comprising obtaining a transformed host cell, said host cell having and expressing in its genome: a construct having a DNA sequence encoding a prenyltransferase operably linked to a transcriptional initiation region functional in a host cell,

25 wherein said prenyltransferase is involved in the synthesis of tocopherols.

26. The method according to Claim 24, wherein said host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.

27. The method according to Claim 25, wherein said prokaryotic cell is *Synechocystis*.

30 28. The method according to Claim 24, wherein said eukaryotic cell is a plant cell.

28. The method according to Claim 27, wherein said plant cell is obtained from a plant selected from the group consisting of *Arabidopsis*, soybean, and corn.
29. A method for increasing the biosynthetic flux in cell from a host cell toward tocopherol production, said method comprising transforming said host cell with a construct comprising as operably linked components, a transcriptional initiation region functional in a host cell, a DNA encoding a prenyltransferase involved in the synthesis of tocopherols, and a transcriptional termination region.
30. The method according to Claim 29, wherein said host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.
31. The method according to Claim 30, wherein said prokaryotic cell is *Synechocystis*.
32. The method according to Claim 30, wherein said eukaryotic cell is a plant cell.
33. The method according to Claim 32, wherein said plant cell is obtained from a plant selected from the group consisting of *Arabidopsis*, soybean, and corn.

17133/01/US

NUCLEIC ACID SEQUENCES TO PROTEINS INVOLVED IN TOCOPHEROL SYNTHESIS

5

Abstract

Nucleic acid sequences and methods are provided for producing plants and seeds having altered tocopherol content and compositions. The methods find particular use in increasing the tocopherol levels in plants, and in providing desirable tocopherol compositions in a host plant 10 cell.

DRAFTING IN PROGRESS

ATPT2 : * 20 * 40 * 60 * 80 *
ATPT3 : * 20 * 40 * 60 * 80 *
ATPT4 : * 20 * 40 * 60 * 80 *
ATPT8 : * 20 * 40 * 60 * 80 *
ATPT12 : * 20 * 40 * 60 * 80 *

ATPT2 : * 20 * 40 * 60 * 80 *
ATPT3 : * 20 * 40 * 60 * 80 *
ATPT4 : * 20 * 40 * 60 * 80 *
ATPT8 : * 20 * 40 * 60 * 80 *
ATPT12 : * 20 * 40 * 60 * 80 *

ATPT2 : SSSLVY* 100 * 120 * 140 * 160 * 180 *
ATPT3 : SSSLVY* 100 * 120 * 140 * 160 * 180 *
ATPT4 : SSSLVY* 100 * 120 * 140 * 160 * 180 *
ATPT8 : SSSLVY* 100 * 120 * 140 * 160 * 180 *
ATPT12 : SSSLVY* 100 * 120 * 140 * 160 * 180 *

ATPT2 : SSSLVY* 200 * 220 * 240 * 260 * 280 *
ATPT3 : SSSLVY* 200 * 220 * 240 * 260 * 280 *
ATPT4 : SSSLVY* 200 * 220 * 240 * 260 * 280 *
ATPT8 : SSSLVY* 200 * 220 * 240 * 260 * 280 *
ATPT12 : SSSLVY* 200 * 220 * 240 * 260 * 280 *

ATPT2 : VAAALMNIIVGQ* 300 * 320 * 340 * 360 *
ATPT3 : VAAALMNIIVGQ* 300 * 320 * 340 * 360 *
ATPT4 : VAAALMNIIVGQ* 300 * 320 * 340 * 360 *
ATPT8 : VAAALMNIIVGQ* 300 * 320 * 340 * 360 *
ATPT12 : VAAALMNIIVGQ* 300 * 320 * 340 * 360 *

ATPT2 : PLRWRKRFALVAAMCIAVRAILYQTAFYTHIOTHYFGRPLFLTRPLIFATAFMSFFS* 400 * 420 * 440 *
ATPT3 : B-LMKRFTFWPOAFLIGHT* 400 * 420 * 440 *
ATPT4 : LKQLHPINTWVGAVN* 400 * 420 * 440 *
ATPT8 : LAFEGYGRNLGAFOQI* 400 * 420 * 440 *
ATPT12 : PDKLKGONGWGNFA* 400 * 420 * 440 *

ATPT2 : FCTRS* 460 * 480 *
ATPT3 : FCTRS* 460 * 480 *
ATPT4 : FCTRS* 460 * 480 *
ATPT8 : FCTRS* 460 * 480 *
ATPT12 : FCTRS* 460 * 480 *

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

CHARTERED

SLR1736 :	MATIOAFWRR-----FSRPHTI	GTTLS-----WAVYL	TILGD--G-NSVNSPAS	* 60	* 80	*
SLR0926 :	MVAQTPSS---PPLWLTLLYLRWHEK	-----AGRLLEM	BALWA-----CLAAQELPP	-----	DLYFGAWL	IVG-----*
SLL1899 :	MVTSTKIHQRHDSMGAVCKSYYQLTX	-----RIPFIL	LTTAAS-----WIASECRVD	-----	LAGTIAI	GTATSGLLGCV-----
SLR0056 :	MSDIQTGQ--NOAKAROLLGKGAA	GESSIWKTRLO	WVPLWGVICAAASSGGYIW	-----SGPIMTGQTQ	-----	: 64
SLR1518 :	MTESSPLAP--STAPATRKWLWAAIK	-----PYTAY	AYPTVGSAAYGT	-----QWH-----GDUFTIF	-----SATIAIWNL	: 68
	M	P	G	1	L	: 71
SLR1736 :	NOMMDVDTRINKPNLPIANGDFS	AOGRIWV	GCG-----SLAIAWC	GLNGLITVGIS-----	IIGTAYSVPP	VLKRFSSLAAJC
SLR0926 :	NDLMDRDLPQVERTKORELLARA	RA-SMQVG	GVA-----LCAAGAFL	-----TPIPLS-----FW	TVRG	: 152
SLL1899 :	NCYDQDLYEMLTARPJPA	GKYSOPRHA	IPA-----ALEVN	-----TPIPLS-----FW	CVLANP	AYPGARVFVPVPO
SLR0056 :	NDFYDRDAINEPYKPSG	LISSPOTVQ	LL-----SIGVAY	-----FW	-----	: 150
SLR1518 :	NDYEDSDTGDIDRKAHSVNL	TSWRAQDW	-----V1	-----G	-----	: 71
	N	5D Did	G	1	6	: 156
SLR1736 :	VVNGLGLFTRIGLGYPP	ITIPINW	TAIAIFKDVPDM	-----Q1	-----	: 157
SLR0926 :	AMGEAVLIS	-----AVICD	TDATW	-----Q1	-----	: 157
SLL1899 :	AGSIPPVGA	-----VTGDS	WTGATVFM	-----Q1	-----	: 157
SLR0056 :	GASIAAPWNG-H	-----EGT	NPNTM	-----Q1	-----	: 157
SLR1518 :	LITEGP	-----AAAYYSOSQS	TMV	-----Q1	-----	: 157
	M	P	G	1	6	: 157
SLR1736 :	SLR1736 :	-----ASFYQRIWKLE	ESKTE	-----	-----	: 180
SLR0926 :	SLR0926 :	-----TEPKLYQ	-----IIGQ	-----	-----	: 180
SLL1899 :	SLL1899 :	-----QYIQLSAPT	-----IIGQ	-----	-----	: 180
SLR0056 :	SLR0056 :	-----LHQQLY	-----AATGGOF	-----VKAQWLKOAG	-----GDRDARG-L	: 180
SLR1518 :	SLR1518 :	-----YHQQYAT	-----LEND	-----KYO	-----ASACPF	: 180
	M	P	G	1	6	: 180
SLR1736 :	AMPLNTAII	SHICULLA	WVRSRDVHILESKTE	-----ASFYQRIWKLE	-----	: 241
SLR0926 :	MLNPN	YMSA	-----TPEKLYQ	-----IIGQ	-----	: 234
SLL1899 :	LHOLGLY	YMA	-----QYIQLSAPT	-----IIGQ	-----	: 241
SLR0056 :	YHQQYAT	-----L	-----LEND	-----KYO	-----ASACPF	: 263
SLR1518 :	QAPWQTLI	-----AS	-----POTFQDMYFLRN	-----IATCA	-----IGHAGI	: 246
	M	P	G	1	6	: 246
SLR1736 :	SLR1736 :	-----ASFYQRIWKLE	ESKTE	-----	-----	: 241
SLR0926 :	SLR0926 :	-----TEPKLYQ	-----IIGQ	-----	-----	: 234
SLL1899 :	SLL1899 :	-----QYIQLSAPT	-----IIGQ	-----	-----	: 241
SLR0056 :	SLR0056 :	-----LHQQLY	-----AATGGOF	-----VKAQWLKOAG	-----GDRDARG-L	: 263
SLR1518 :	SLR1518 :	-----YHQQYAT	-----LEND	-----KYO	-----ASACPF	: 246
	M	P	G	1	6	: 246
SLR1736 :	SLR1736 :	-----ASFYQRIWKLE	ESKTE	-----ASFYQRIWKLE	-----	: 308
SLR0926 :	SLR0926 :	-----TEPKLYQ	-----IIGQ	-----TEPKLYQ	-----	: 292
SLL1899 :	SLL1899 :	-----QYIQLSAPT	-----IIGQ	-----QYIQLSAPT	-----	: 316
SLR0056 :	SLR0056 :	-----LHQQLY	-----AATGGOF	-----VKAQWLKOAG	-----GDRDARG-L	: 324
SLR1518 :	SLR1518 :	-----YHQQYAT	-----LEND	-----KYO	-----ASACPF	: 307
	M	P	G	1	6	: 307

Figure 21

□□□□□□□□□□□□□□□□□□

ATPT2	:	*	20	*	40	*	60	*	80
SLR1736	:	-	-	-	-	-	-	-	-
ATPT3	:	-	-	-	-	-	-	-	-
SLR0926	:	-	-	-	-	-	-	-	-
ATPT4	:	-	-	-	-	-	-	-	-
SLL1899	:	-	-	-	-	-	-	-	-
ATPT12	:	-	-	-	-	-	-	-	-
SLR0056	:	-	-	-	-	-	-	-	-
ATPT8	:	-	-	-	-	-	-	-	-
SLR1518	:	-	-	-	-	-	-	-	-
		*	100	*	120	*	140	*	160
ATPT2	:	-	-	-	-	-	-	-	-
SLR1736	:	-	-	-	-	-	-	-	-
ATPT3	:	-	-	-	-	-	-	-	-
SLR0926	:	-	-	-	-	-	-	-	-
ATPT4	:	-	-	-	-	-	-	-	-
SLL1899	:	-	-	-	-	-	-	-	-
ATPT12	:	-	-	-	-	-	-	-	-
SLR0056	:	-	-	-	-	-	-	-	-
ATPT8	:	-	-	-	-	-	-	-	-
SLR1518	:	-	-	-	-	-	-	-	-
		*	200	*	220	*	240	*	260

ATPT2	:	*	AVIAALMINIYIVG	*	KVNKPYLPLASGEYSVNTGIA	*	VASEFS	*	MSFWLGIWIVGSWMPFLWALFISRFNIGTNTYS-INPILR
SLR1736	:	-	-	-	-	-	-	-	-
ATPT3	:	-	-	-	-	-	-	-	-
SLR0926	:	-	-	-	-	-	-	-	-
ATPT4	:	-	-	-	-	-	-	-	-
SLL1899	:	-	-	-	-	-	-	-	-
ATPT12	:	-	-	-	-	-	-	-	-
SLR0056	:	-	-	-	-	-	-	-	-
ATPT8	:	-	-	-	-	-	-	-	-
SLR1518	:	-	-	-	-	-	-	-	-
		*	200	*	220	*	240	*	260

6

Figure 22 1/2

n d d

□□□□□□□□□□□□□□□□□□

ATPT2	*	280	*	300	*	320	*	340	*	340	*	
SLR1736	:	WKR-FALVAAMCILLA	RAILYQIAFYTH-IOTHVFGRRPI	FTRPI	FATAFMSFESV	VIAI	FKDIDPDIIGDKIKI-FCTRSFSVTL	-QKR	:	313		
ATPT3	:	LKR-FSLJLAACILT	RGIVVNUGLFE-FRIGLGYPPT	ITPTW	-TFLFILVPTV	VATA	FKDVPDMGDRQ-FKTOQT	QIC-KQN	:	218		
SLR0926	:	SYP-LMKRFTFWMPQAFLGLT	TINNGAATG--	AT-	VYDTIYAHODKEDDVK-	VEYKXSTADRR-	DNT	--	:	328		
ATPT4	:	AVP-GAKRVFFVFPOL	LSIANGFAVIS	IS-	GFDTVYAMADREDDRR-	EVNNESSAEEFC-	-QYV	:	213			
SLL1899	:	VIT-PLKQLHPPINTW	GAVVGAIPPLG--	VA-	EPALALYFWOUPHEM	MAHALHLCRNDYAA-	GEYKMEIS	FDP--S	:	294		
ATPT12	:	VITHWLKRHTAQNTV	GGAAGSIPPING	VA-	EPALCO-SYNSTM	-EPALIFLW	LPHEFWALALMIKKDYAQ-	-DNVMPMLP	IAEKEKT	:	220	
SLR0056	:	IIS-APPLKLKONGW	GNFAAGASYISLWTAQAL	FECT	SWTPW	-LFALIFLW	TPHEFWALALMIKKDYAQ-	-DNVMPMLP	IAEKEKT	:	308	
ATPT8	:	IIS-APPLKLKONGW	GNYAAGASYTALEWNAH	FECT	ATDWT	-TFLYSLAG	GIAYVNDFKSVVEGR	RA-LOQIPAF-	-TET	:	242	
SLR1518	:	ELTSSTTBQRYSMDDYY	QKTYYKTASTISNSCKAVAVL	TGTTA	ATDWT	-TFLYSLAG	GIAYVNDFKSVVEGR	RO-LOQIPAF-	-IGT	:	231	
		TYQGPPFRRLGYLGELICLT	TFGPAT-AAYYSQSOSFESWNLLIT	PSVFGISTAI	DDLA-ACKRSPIVRL	-TKL	: 223					
ATPT2	*	360	*	380	*	400	*	420	*	440	*	
SLR1736	:	VFWTCVTLQOMAYAAIL	UVGATSPFIWSKVVISVGHVVI	LATT	MARAKSVDLSSKTEITS	--CYM	IWKIFYAEYL	LLPFLK	--	393		
ATPT3	:	VFRGTITLGFCYLA	MAWGWIAAMPLNTAFL	IVSHLC	LA	WWRSRDVHLESKTEIAS	--	FYQH	IWKFFLEYV	WLPNFS	:	
SLR0926	:	KLWITGFGTGTASIGF	ALSGFSADLGWQYYASTAASGQ	GWO	GTADLSSGADC	--	-RKEVSNKWMFGAT	IFSGV	GRSFQ-	304		
ATPT4	:	GEAVGFFALTIGC	FYTGMIMLNPLYWLSTAAT	--	YGMV	OYIQLSAPTPEP-KIY	--	QGIEFGQV	IIIGFV	WLPNFS	:	
SLL1899	:	GKRIAAVAARNCFYMA	IPGFAYDWGLTSSWFCLEST	TLA	AAATAFSFYRDRTMHK	--	RKMFBHASLFLPVFM	SGI	LGML--	407		
ATPT12	:	VSQLWYSSLVVPPFSLL	VYVPLHOLGLLYLATAII	--	GGQFIVKAWOLKQAPGDRD	LA	--RGLEKFSEFYLM	ECCLAN	WDSL	292		
SLR0056	:	AKWICGADMITQFLRNP	ASGGKPYIALVAL	--	IPQTFQKFLDPVKYDVK	--	YQASAQPFLVFGFLVTA	ASOH	--	379		
ATPT8	:	AAWICGADMIDVFOAQ	AGIAGLYTVHQQQLYATVLL	--	IPQTFQDMYFLRNPLEND	W	--YQASAQPFLVFGMLATG	AGHAGI-	:	303		
SLR1518	:	ITAPIFEAEEFPQ	REVDQVEKDPRNVDAILEY	GKSKG	CRARELAMEHANAAIGSLPTE	NDY	KRSRRALID	THRVTIRN	:	387		
		GSQVLTLSVS	SVSLYLTATGIVL	PWAVQTL	CHQAPWQTLI	TAS	FIAVNLHFFSGM	NAAGYGWAGLG--	:	324		
										307		
ATPT2	*											
SLR1736	:	NTIF-----									308	
ATPT3	:	-----									-	
SLR0926	:	-----									-	
ATPT4	:	NOQOLVEEAGLTNVS	SGEVKTOQRKKRVAQPPVAYASA	AAPFPFLPAPS	FYSP	: 431						
SLL1899	:	--HQLVAQMGTLLG	-----	-----	-----	: 316						
ATPT12	:	-----									-	
SLR0056	:	-----									-	
ATPT8	:	K-----									-	
SLR1518	:	-----									-	

Figure 22 2/2

□ □ □ □ □ □ □ □ □ □ □

Synechocystis 6803 wild type *Synechocystis* slr1736 knockout

Figure 23

Figure 24

Figure 25

SEQUENCE LISTING

<110> Lassner, M
5 Post-Beittenmiller, D
Savidge, B
Weiss, J

<120> Nucleic Acid Sequences Involved in
10 Tocopherol Synthesis

<130> 17133/02/WO

15 <150> 60/129,899
<151> 1999-04-15

<150> 60/146,461
<151> 1999-07-30

20 <160> 94

<170> FastSEQ for Windows Version 4.0

25 <210> 1
<211> 1182
<212> DNA
<213> *Arabidopsis* sp

30 atggagtctc tgctctctag ttcttctt gttccgctg ctgggtgggtt ttgttggaaag
aagcagaatc taaagctcca ctctttatca gaaatccgag ttctgcgttg tgattcgagt
aaagttgtcg caaaaccgaa gtttaggaac aatcttgcgtt ggcctgatgg tcaaggatct
tcattgttgt tgtatccaaa acataagtgcg agatttcggg ttaatgccac tgccgggtcag
cctgaggcgtt tcgactcgaa tagcaaacag aagtctttta gagactcggtt agatgcgttt
35 tacaggtttt ctaggcctca tacagttatt ggcacagtgc tttagcatttt atctgtatct
ttcttagcag tagagaaggt ttctgatata tctcccttac ttttcaactgg catcttggag
gctgttggtg cagctctcat gatgaacatt tacatagttg ggctaaatca gttgtctgat
gttgaatag ataaggtaa caagccat tttccattgg catcaggaga atattctgtt
aacaccggca ttgcaatagt agcttccttc tccatcatga gtttctggct tgggtggatt
40 gttggttcat ggccattgtt ctgggctt tttgtgagtt tcattgcgtt tactgcataac
tctatcaatt tgccactttt acgggtggaaa agatttgcattt tggttgcagc aatgtgtatc
ctcgctgtcc gagctattat tggtaaaatc gcctttatc tacatattca gacacatgtg
780

tttggaaagac caatcttgtt cactaggcct cttatttcg ccactgcgtt tatgagcttt 840
ttctctgtcg ttattgcatt gtttaaggat atacctgata tcgaaggaaa taagatattc 900
ggaatccgat cattctctgt aactctgggt cagaaacggg tggtttggac atgtgttaca 960
ctacttcaaa tggcttacgc tggcaatt ctatgtggag ccacatctcc attcatatgg 1020
5 agcaaagtca tctcggttgt gggtcatgtt atactcgaa caactttgtg ggctcgagct 1080
aagtccgttg atctgagtag caaaaccgaa ataacttcat gttatatgtt catatggaag 1140
ctctttatg cagagtactt gctgttacct ttttgaagt ga 1182

<210> 2
10 <211> 393
<212> PRT
<213> Arabidopsis sp

<400> 2
15 Met Glu Ser Leu Leu Ser Ser Ser Ser Leu Val Ser Ala Ala Gly Gly
1 5 10 15
Phe Cys Trp Lys Lys Gln Asn Leu Lys Leu His Ser Leu Ser Glu Ile
20 25 30
Arg Val Leu Arg Cys Asp Ser Ser Lys Val Val Ala Lys Pro Lys Phe
25 35 40 45
Arg Asn Asn Leu Val Arg Pro Asp Gly Gln Gly Ser Ser Leu Leu Leu
30 50 55 60
Tyr Pro Lys His Lys Ser Arg Phe Arg Val Asn Ala Thr Ala Gly Gln
65 70 75 80
25 Pro Glu Ala Phe Asp Ser Asn Ser Lys Gln Lys Ser Phe Arg Asp Ser
85 90 95
Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile Gly Thr
100 105 110
Val Leu Ser Ile Leu Ser Val Ser Phe Leu Ala Val Glu Lys Val Ser
30 115 120 125
Asp Ile Ser Pro Leu Leu Phe Thr Gly Ile Leu Glu Ala Val Val Ala
130 135 140
Ala Leu Met Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu Ser Asp
145 150 155 160
35 Val Glu Ile Asp Lys Val Asn Lys Pro Tyr Leu Pro Leu Ala Ser Gly
165 170 175
Glu Tyr Ser Val Asn Thr Gly Ile Ala Ile Val Ala Ser Phe Ser Ile
180 185 190
Met Ser Phe Trp Leu Gly Trp Ile Val Gly Ser Trp Pro Leu Phe Trp
40 195 200 205
Ala Leu Phe Val Ser Phe Met Leu Gly Thr Ala Tyr Ser Ile Asn Leu
210 215 220
Pro Leu Leu Arg Trp Lys Arg Phe Ala Leu Val Ala Ala Met Cys Ile

	225	230	235	240
	Leu Ala Val Arg Ala Ile Ile Val Gln Ile Ala Phe Tyr Leu His Ile			
	245	250	255	
	Gln Thr His Val Phe Gly Arg Pro Ile Leu Phe Thr Arg Pro Leu Ile			
5	260	265	270	
	Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala Leu Phe			
	275	280	285	
	Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Ile Phe Gly Ile Arg Ser			
	290	295	300	
10	Phe Ser Val Thr Leu Gly Gln Lys Arg Val Phe Trp Thr Cys Val Thr			
	305	310	315	320
	Leu Leu Gln Met Ala Tyr Ala Val Ala Ile Leu Val Gly Ala Thr Ser			
	325	330	335	
	Pro Phe Ile Trp Ser Lys Val Ile Ser Val Val Gly His Val Ile Leu			
15	340	345	350	
	Ala Thr Thr Leu Trp Ala Arg Ala Lys Ser Val Asp Leu Ser Ser Lys			
	355	360	365	
	Thr Glu Ile Thr Ser Cys Tyr Met Phe Ile Trp Lys Leu Phe Tyr Ala			
	370	375	380	
20	Glu Tyr Leu Leu Leu Pro Phe Leu Lys			
	385	390		
	<210> 3			
	<211> 1224			
25	<212> DNA			
	<213> Arabidopsis sp			
	<400> 3			
	atggcgaaaa ttgggcgttc ccgtgtttca agacggttgt tgaaatcttc cgtctccgtt 60			
30	actccatctt ctccctctgc tcctttgcaa tcacaacata aatccttgc caatcctgtt 120			
	actaccatt acacaaatcc tttcactaag tgttatcctt catggaatga taattaccaa 180			
	gtatggagta aaggaagaga attgcatacg gagaagtttt ttgggtttgg ttggaaattac 240			
	agattaattt gtggaatgtc gtcgttttt tcgggtttgg agggaaagcc gaagaaaagat 300			
	gataaggaga agagtatgg tgggtttgtt aagaaagctt cttggataga tttgtatttt 360			
35	ccagaagaag ttagaggta tgctaagctt gtcgattttt ataaacccat tggaaactttt 420			
	ttgcttgcgt ggccttgat gtggtcgatt gcgttggctg ctgatcctgg aagccttcca 480			
	agttttaaat atatggcttt atttggttgc ggagcattac ttcttagagg tgctgggttt 540			
	actataaaatg atctgcttga tcaggacata gataaaagg ttgatcgtac aaaactaaga 600			
	cctatcgcca gtggttttt gacaccattt caaggattt gatttctgg gctgcagttt 660			
40	cttttaggct tagggatttt tctccaactt aacaattaca gccgtttttt aggggcttca 720			
	tctttgttac ttgtctttt ctacccactt atgaagaggt ttacatttttgcctcaagcc 780			
	tttttaggat ttgaccataaa ctggggagca ttgttaggat ggactgcagt taaaggaagc 840			
	atacaccat ctattgtact ccctctctat ctctccggag tctgctggac cttgttttat 900			

gatactattt atgcacatca ggacaaagaa gatgatgtaa aagttggtgt taagtcaaca 960
gcccttagat tcggtgataa tacaaagctt tggtaactg gatttggcac agcatccata 1020
ggtttcttg cacttctgg attcagtgcgatctcggtt gccaatatta cgcatcactg 1080
5 gccgctgcat caggacagtt aggatggcaa atagggacag ctgacttatac atctgggtct 1140
gactgcagta gaaaatttgcgtt gtcgaacaag tggttgggtt ctattatatt tagtggagtt 1200
gtacttggaa gaagtttca ataa 1224

<210> 4

<211> 407

10 <212> PRT

<213> Arabidopsis sp

<400> 4

Met Ala Phe Phe Gly Leu Ser Arg Val Ser Arg Arg Leu Leu Lys Ser
15 1 5 10 15
Ser Val Ser Val Thr Pro Ser Ser Ser Ala Leu Leu Gln Ser Gln
20 25 30
His Lys Ser Leu Ser Asn Pro Val Thr Thr His Tyr Thr Asn Pro Phe
35 40 45
20 Thr Lys Cys Tyr Pro Ser Trp Asn Asp Asn Tyr Gln Val Trp Ser Lys
50 55 60
Gly Arg Glu Leu His Gln Glu Lys Phe Phe Gly Val Gly Trp Asn Tyr
65 70 75 80
Arg Leu Ile Cys Gly Met Ser Ser Ser Ser Val Leu Glu Gly Lys
25 85 90 95
Pro Lys Lys Asp Asp Lys Glu Lys Ser Asp Gly Val Val Val Lys Lys
100 105 110
Ala Ser Trp Ile Asp Leu Tyr Leu Pro Glu Glu Val Arg Gly Tyr Ala
115 120 125
30 Lys Leu Ala Arg Leu Asp Lys Pro Ile Gly Thr Trp Leu Leu Ala Trp
130 135 140
Pro Cys Met Trp Ser Ile Ala Leu Ala Asp Pro Gly Ser Leu Pro
145 150 155 160
Ser Phe Lys Tyr Met Ala Leu Phe Gly Cys Gly Ala Leu Leu Leu Arg
35 165 170 175
Gly Ala Gly Cys Thr Ile Asn Asp Leu Leu Asp Gln Asp Ile Asp Thr
180 185 190
Lys Val Asp Arg Thr Lys Leu Arg Pro Ile Ala Ser Gly Leu Leu Thr
195 200 205
40 Pro Phe Gln Gly Ile Gly Phe Leu Gly Leu Gln Leu Leu Leu Gly Leu
210 215 220
Gly Ile Leu Leu Gln Leu Asn Asn Tyr Ser Arg Val Leu Gly Ala Ser
225 230 235 240

Ser	Leu	Leu	Leu	Val	Phe	Ser	Tyr	Pro	Leu	Met	Lys	Arg	Phe	Thr	Phe	
				245				250					255			
Trp	Pro	Gln	Ala	Phe	Leu	Gly	Leu	Thr	Ile	Asn	Trp	Gly	Ala	Leu	Leu	
				260				265					270			
5	Gly	Trp	Thr	Ala	Val	Lys	Gly	Ser	Ile	Ala	Pro	Ser	Ile	Val	Leu	Pro
				275				280					285			
Leu	Tyr	Leu	Ser	Gly	Val	Cys	Trp	Thr	Leu	Val	Tyr	Asp	Thr	Ile	Tyr	
				290				295					300			
10	Ala	His	Gln	Asp	Lys	Glu	Asp	Asp	Val	Lys	Val	Gly	Val	Lys	Ser	Thr
				305				310				315			320	
Ala	Leu	Arg	Phe	Gly	Asp	Asn	Thr	Lys	Leu	Trp	Leu	Thr	Gly	Phe	Gly	
				325				330					335			
15	Thr	Ala	Ser	Ile	Gly	Phe	Leu	Ala	Leu	Ser	Gly	Phe	Ser	Ala	Asp	Leu
				340				345					350			
Trp	Gln	Ile	Gly	Thr	Ala	Ser	Leu	Ala	Ala	Ala	Ser	Gly	Gln	Leu	Gly	
				355				360					365			
20	Trp	Gln	Ile	Gly	Thr	Ala	Asp	Leu	Ser	Ser	Gly	Ala	Asp	Cys	Ser	Arg
				370				375					380			
Lys	Phe	Val	Ser	Asn	Lys	Trp	Phe	Gly	Ala	Ile	Ile	Phe	Ser	Gly	Val	
				385				390				395			400	
25	Val	Leu	Gly	Arg	Ser	Phe	Gln									
				405												
30	<210>	5														
35	<211>	1296														
40	<212>	DNA														
45	<213>	Arabidopsis sp														
50	<400>	5														
55	atgtggcgaa	gatctgttgt	ttctcggtta	tcttcaagaa	tctctgtttc	ttcttcgtta								60		
60	ccaaacccta	gactgattcc	ttgggtccgc	gaattatgtg	cggtaatag	cttctcccag								120		
65	cctccggct	cgacggaaatc	aactgctaag	ttagggatca	ctgggtgttag	atctgatgcc								180		
70	aatcgagtt	ttgccactgc	tactgcccgc	gctacagcta	cagctaccac	cggtgagatt								240		
75	tcgtctagag	ttgcggctt	ggctggatta	gggcatca	acgctcggtt	ttattggag								300		
80	ctttctaaag	ctaaacttag	tatgcttgt	gttgcaactt	ctggacttgg	gtatattctg								360		
85	ggtacggaa	atgctgcaat	tagctcccg	gggcattttgtt	acacatgtgc	aggaaccatg								420		
90	atgattgctg	catctgctaa	ttcccttgaat	cagatttttg	agataagcaa	tgattctaa								480		
95	ataaaaagaa	cgatgctaag	gccattgcct	tcaggacgta	ttagtgttcc	acacgctgtt								540		
100	gcatgggcta	ctattgctgg	tgcttctgg	gcttgtttgt	tggccagcaa	gactaatatg								600		
105	ttggctgctg	gacttgcattc	tgccaatctt	gtactttatg	cgtttgttta	tactccgtt								660		
110	aagcaacttc	accstatcaa	tacatgggtt	ggcgctgtt	ttgggtctat	cccaccctt								720		
115	cttgggtggg	cggcagcgtc	tggtcagatt	tcataacaatt	cgatgattct	tccagctgt								780		
120	cttactttt	ggcagatacc	tcattttatg	gcccttgcac	atctctgcgc	caatgattat								840		

	gcagctggag gttacaagat gttgtcaactc tttgatccgt cagggaaagag aatagcagca	900
	gtggctctaa ggaactgctt ttacatgatc cctctcggtt tcatacgcccta tgactggggg	960
	ttaacctcaa gttggtttg cctcgaatca acacttctca cactagcaat cgctgcaaca	1020
	gcattttcat tctaccgaga ccggaccatg cataaaagcaa ggaaaatgtt ccatgccagt	1080
5	cttctcttcc ttcctgttt catgtctggc cttcttctac accgtgtctc taatgataat	1140
	cagcaacaac tcgtagaaga agccggatta acaaattctg tatctggtga agtcaaaact	1200
	cagaggcgaa agaaaacgtgt ggctcaacct ccggtggctt atgcctctgc tgcaccgtt	1260
	ccttcctcc cagctcccttc cttctactct ccatga	1296
10	<210> 6	
	<211> 431	
	<212> PRT	
	<213> Arabidopsis sp	
15	<400> 6	
	Met Trp Arg Arg Ser Val Val Tyr Arg Phe Ser Ser Arg Ile Ser Val	
	1 5 10 15	
	Ser Ser Ser Leu Pro Asn Pro Arg Leu Ile Pro Trp Ser Arg Glu Leu	
	20 25 30	
20	Cys Ala Val Asn Ser Phe Ser Gln Pro Pro Val Ser Thr Glu Ser Thr	
	35 40 45	
	Ala Lys Leu Gly Ile Thr Gly Val Arg Ser Asp Ala Asn Arg Val Phe	
	50 55 60	
	Ala Thr Ala Thr Ala Ala Thr Ala Thr Ala Thr Thr Gly Glu Ile	
25	65 70 75 80	
	Ser Ser Arg Val Ala Ala Leu Ala Gly Leu Gly His His Tyr Ala Arg	
	85 90 95	
	Cys Tyr Trp Glu Leu Ser Lys Ala Lys Leu Ser Met Leu Val Val Ala	
	100 105 110	
30	Thr Ser Gly Thr Gly Tyr Ile Leu Gly Thr Gly Asn Ala Ala Ile Ser	
	115 120 125	
	Phe Pro Gly Leu Cys Tyr Thr Cys Ala Gly Thr Met Met Ile Ala Ala	
	130 135 140	
	Ser Ala Asn Ser Leu Asn Gln Ile Phe Glu Ile Ser Asn Asp Ser Lys	
35	145 150 155 160	
	Met Lys Arg Thr Met Leu Arg Pro Leu Pro Ser Gly Arg Ile Ser Val	
	165 170 175	
	Pro His Ala Val Ala Trp Ala Thr Ile Ala Gly Ala Ser Gly Ala Cys	
	180 185 190	
40	Leu Leu Ala Ser Lys Thr Asn Met Leu Ala Ala Gly Leu Ala Ser Ala	
	195 200 205	
	Asn Leu Val Leu Tyr Ala Phe Val Tyr Thr Pro Leu Lys Gln Leu His	
	210 215 220	

Pro Ile Asn Thr Trp Val Gly Ala Val Val Gly Ala Ile Pro Pro Leu
225 230 235 240
Leu Gly Trp Ala Ala Ala Ser Gly Gln Ile Ser Tyr Asn Ser Met Ile
245 250 255
5 Leu Pro Ala Ala Leu Tyr Phe Trp Gln Ile Pro His Phe Met Ala Leu
260 265 270
Ala His Leu Cys Arg Asn Asp Tyr Ala Ala Gly Gly Tyr Lys Met Leu
275 280 285
Ser Leu Phe Asp Pro Ser Gly Lys Arg Ile Ala Ala Val Ala Leu Arg
10 290 295 300
Asn Cys Phe Tyr Met Ile Pro Leu Gly Phe Ile Ala Tyr Asp Trp Gly
305 310 315 320
Leu Thr Ser Ser Trp Phe Cys Leu Glu Ser Thr Leu Leu Thr Leu Ala
325 330 335
15 Ile Ala Ala Thr Ala Phe Ser Phe Tyr Arg Asp Arg Thr Met His Lys
340 345 350
Ala Arg Lys Met Phe His Ala Ser Leu Leu Phe Leu Pro Val Phe Met
355 360 365
Ser Gly Leu Leu Leu His Arg Val Ser Asn Asp Asn Gln Gln Leu
20 370 375 380
Val Glu Glu Ala Gly Leu Thr Asn Ser Val Ser Gly Glu Val Lys Thr
385 390 395 400
Gln Arg Arg Lys Lys Arg Val Ala Gln Pro Pro Val Ala Tyr Ala Ser
405 410 415
25 Ala Ala Pro Phe Pro Phe Leu Pro Ala Pro Ser Phe Tyr Ser Pro
420 425 430

<210> 7
<211> 479
30 <212> DNA
<213> Arabidopsis sp

<400> 7
ggaaactccc ggagcacctg tttgcaggta ccgctaacct taatcgataa tttatttctc 60
35 ttgtcaggaa ttatgtaagt ctgggtggaaag gctcgcatac cattttgca ttgccttcg 120
ctatgatcggttttacttgc ggtgtgtatga gaccaggcgt ggctttatgg tatggcgaaa 180
accatccatgtatccatgcgcctc ccgatgatttc gttctttcat tcctatacag 240
gtatcatgatgtatccatgtatccatgcgcctc ccgatgatttc gttctttcat tcctatacag 300
gtatcatgatgtatccatgcgcctc ccgatgatttc gttctttcat tcctatacag 360
40 tccgtgaaat acctgcgggc gtcatatctg ccaacagtgc gctgggtttt acgataggct 420
gctgcgtggattctgggttgcctgttatt tcattaacac gatctgttt tacctggcg 479

<210> 8

<211> 551
<212> DNA
<213> Arabidopsis sp

5 <220>
<221> misc_feature
<222> (1)...(551)
<223> n = A,T,C or G

10 <400> 8
ttgtggctta cacctaattg agcatacgcc agnccattac ggctcgtaa tcggcgccat 60
ngccggngct gntgcaccgg tagtgggcta ctgcgccgtg accaatcagc ttgatctagc 120
ggctcttatt ctgttttaa tttactgtt ctggcaaatg ccgcattttt acgcgatttc 180
catttcagg ctaaaagact tttcagcggc ctgtattccg gtgctgccc tcattaaaga 240
15 cctgcgctat accaaaatca gcattgttgtt ttacgtggc ttatcacac tggctgctat 300
catgcccccc ctcttagggt atgccggttt gatttatggg atagccgcct taattttagg 360
cttgattgg ctttatattt ccatacaagg attcaagacc gccgatgatc aaaaatggtc 420
tcgtaagatg tttggatctt cgattttat cattaccctc ttgtcggtaa tgatgcttgt 480
ttaaacttac tgcctcctga agtttatata tcgataattt cagcttaagg aggcttagtg 540
20 gttaattcaa t 551

<210> 9
<211> 297
<212> PRT
25 <213> Arabidopsis sp

<400> 9
Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe
1 5 10 15
30 Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu
20 25 30
Leu Met Ala Thr Ala Leu Asn Val Arg Val Pro Glu Ala Leu Ile Gly
35 35 40 45
Glu Ser Thr Asp Ile Val Thr Ser Glu Leu Arg Val Arg Gln Arg Gly
45 50 55 60
Ile Ala Glu Ile Thr Glu Met Ile His Val Ala Ser Leu Leu His Asp
65 65 70 75 80
Asp Val Leu Asp Asp Ala Asp Thr Arg Arg Gly Val Gly Ser Leu Asn
85 85 90 95
40 Val Val Met Gly Asn Lys Val Val Ala Leu Leu Ala Thr Ala Val Glu
100 105 110
His Leu Val Thr Gly Glu Thr Met Glu Ile Thr Ser Ser Thr Glu Gln
115 120 125

Arg Tyr Ser Met Asp Tyr Tyr Met Gln Lys Thr Tyr Tyr Lys Thr Ala
130 135 140
Ser Leu Ile Ser Asn Ser Cys Lys Ala Val Ala Val Leu Thr Gly Gln
145 150 155 160
5 Thr Ala Glu Val Ala Val Leu Ala Phe Glu Tyr Gly Arg Asn Leu Gly
165 170 175
Leu Ala Phe Gln Leu Ile Asp Asp Ile Leu Asp Phe Thr Gly Thr Ser
180 185 190
Ala Ser Leu Gly Lys Gly Ser Leu Ser Asp Ile Arg His Gly Val Ile
10 195 200 205
Thr Ala Pro Ile Leu Phe Ala Met Glu Glu Phe Pro Gln Leu Arg Glu
210 215 220
Val Val Asp Gln Val Glu Lys Asp Pro Arg Asn Val Asp Ile Ala Leu
225 230 235 240
15 Glu Tyr Leu Gly Lys Ser Lys Gly Ile Gln Arg Ala Arg Glu Leu Ala
245 250 255
Met Glu His Ala Asn Leu Ala Ala Ala Ile Gly Ser Leu Pro Glu
260 265 270
Thr Asp Asn Glu Asp Val Lys Arg Ser Arg Arg Ala Leu Ile Asp Leu
275 280 285
20 Thr His Arg Val Ile Thr Arg Asn Lys
290 295

<210> 10
25 <211> 561
<212> DNA
<213> Arabidopsis sp

<400> 10
30 aagcgcattcc gtcctttct acgattgccg ccagccatgtatggctgc ataaaccgacc 60
gcccttatcc gctcgccgccc gcggtcgaat tcattcacac cgcgacgctg ctgcatttgcg 120
acgtcgatcgat tgaaaggcgat ttgcgcgcgcg gccgcgaaag cgccgcataag gttttccggca 180
atcaggcgag cgtgctcgat ggcgattttcc ttttctcccg cgccttccag ctgatggtg 240
aagacggctc gctcgacgcg ctgcgcatttc tctcgatgc ctccgcgcgtg atcgcgccagg 300
35 gcgaagtgtat gcagctcgcc accgcgcgca atcttggaaac caatatgagc cagttatctcg 360
atgtgatcgat cgcgaaggacc gcccgcgtct ttgcccgcgc ctgcgaaatc ggcccggtga 420
tggcgaacgcg gaaggcgaa gatgctgcgcg cgatgtgcga atacggcatg aatctcggt 480
tcgccttcca gatcatcgac gaccttctcg attacggcac cggcgccac gccgagcttgc 540
gcaagaacac gggcgacgat t 561
40 <210> 11
<211> 966
<212> DNA

<213> Arabidopsis sp

<400> 11

5 atggtaacttg ccgagggttcc aaagcttgcc tctgctgctg agtacttctt caaaaagggt 60
gtgcaggaa aacagttcg ttcaactatt ttgctgctga tggcgacagc tctgaatgt 120
cgcgttccag aagcattgat tgggaatca acagatatacg tcacatcaga attacgcgt 180
aggcaacggg gtattgctga aatcactgaa atgatacacg tcgcaagtct actgcacgt 240
gatgtcttgg atgatgccga tacaaggcg 300
aacaagatgt cggtttagc aggagacttc ttgctctccc gggcttgtgg ggctctcgct 360
10 gctttaaaga acacagaggt ttagcatta cttgcaactg ctgtagaaca tcttgttacc 420
ggtgaaacca tggaaataac tagttcaacc gagcagcg 480
cagaagacat attataagac agcatcgcta atctctaaca gctgcaaagc tgccgtt 540
ctcactggac aaacagcaga agttgccgtg ttagctttg agtatggag gaatctgggt 600
ttagcattcc aattaataga cgacattctt gattcacgg gcacatctgc ctctctcgga 660
15 aaggatcg 720
tgtcagatat tcgcatgaa gtcataacag ccccaatcct ctttgccatg
gaagagttc ctcaactacg cgaagttgtt gatcaagttt aaaaagatcc taggaatgtt 780
gacattgctt tagatctt tggaaagagc aaggaaatac agagggcaag agaattagcc 840
atgaaacatg cgaatctacg agcagctgca atcgggtctc tacctgaaac agacaatgaa 900
gatgtcaaaa gatcgaggcg ggcacttatt gacttgaccc atagagtcat caccagaaac 960
20 aagtga 966

<210> 12

<211> 321

<212> PRT

25 <213> Arabidopsis sp

<400> 12

Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe
1 5 10 15
30 Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu
20 25 30
Leu Met Ala Thr Ala Leu Asn Val Arg Val Pro Glu Ala Leu Ile Gly
35 35 40 45
Glu Ser Thr Asp Ile Val Thr Ser Glu Leu Arg Val Arg Gln Arg Gly
50 55 60
Ile Ala Glu Ile Thr Glu Met Ile His Val Ala Ser Leu Leu His Asp
65 70 75 80
Asp Val Leu Asp Asp Ala Asp Thr Arg Arg Gly Val Gly Ser Leu Asn
85 90 95
40 Val Val Met Gly Asn Lys Met Ser Val Leu Ala Gly Asp Phe Leu Leu
100 105 110
Ser Arg Ala Cys Gly Ala Leu Ala Leu Lys Asn Thr Glu Val Val
115 120 125

Ala Leu Leu Ala Thr Ala Val Glu His Leu Val Thr Gly Glu Thr Met
130 135 140
Glu Ile Thr Ser Ser Thr Glu Gln Arg Tyr Ser Met Asp Tyr Tyr Met
145 150 155 160
5 Gln Lys Thr Tyr Tyr Lys Thr Ala Ser Leu Ile Ser Asn Ser Cys Lys
165 170 175
Ala Val Ala Val Leu Thr Gly Gln Thr Ala Glu Val Ala Val Leu Ala
180 185 190
Phe Glu Tyr Gly Arg Asn Leu Gly Leu Ala Phe Gln Leu Ile Asp Asp
10 195 200 205
Ile Leu Asp Phe Thr Gly Thr Ser Ala Ser Leu Gly Lys Gly Ser Leu
210 215 220
Ser Asp Ile Arg His Gly Val Ile Thr Ala Pro Ile Leu Phe Ala Met
225 230 235 240
15 Glu Glu Phe Pro Gln Leu Arg Glu Val Val Asp Gln Val Glu Lys Asp
245 250 255
Pro Arg Asn Val Asp Ile Ala Leu Glu Tyr Leu Gly Lys Ser Lys Gly
260 265 270
Ile Gln Arg Ala Arg Glu Leu Ala Met Glu His Ala Asn Leu Ala Ala
275 280 285
20 Ala Ala Ile Gly Ser Leu Pro Glu Thr Asp Asn Glu Asp Val Lys Arg
290 295 300
Ser Arg Arg Ala Leu Ile Asp Leu Thr His Arg Val Ile Thr Arg Asn
305 310 315 320
25 Lys

<210> 13
<211> 621
30 <212> DNA
<213> Arabidopsis sp

<400> 13
gctttctcct ttgctaattc ttgagcttcc ttgatcccac cgcgatttct aactattca 60
35 atcgcttc tt caagcgatcc aggctcacaa aactcagact caatgatctc tcttagcctt
ggctcattct ct tagcgc gaa gatcactggc gccgttatgt taccttggc taagt catta 180
gctgcaggct tacctaactg ctctgtggac tgagtgaagt ccagaatgtc atcaactact
tgaaaagata aaccgagatt cttcccgaa ac tgatacattt gctctgcgac cttgcttgc 300
actttaactga aaattgctgc tcctttggtg cttgcagact ctaatgaagc tgtcttgc 360
40 taactcttta gcatgttagtc atcaagctt acatcacaat cgaataaaact cgatgcttgc
tttatctcac cgcttgcaaa atctttgatc acctgcaaaa agataaatca agattcagac
caaatgttct ttgtatttag tagcttcatc taatctcaga aaggaatatt acctgactta 480
tgagcttaat gacttcaagg ttttcgagat ttgttaagtac catgatgctt gagcaacatg 540
600

aaatccccag ctaatacagc t

621

<210> 14

<211> 741

5 <212> DNA

<213> Arabidopsis sp

<400> 14

ggtgagttt	gttaatagtt	atgagattca	tctatTTTtgc	tcataaaatt	gtttggTTG	60
10 gtttaaactc	tgtgtataat	tgcaggaaag	gaaacagttc	atgagcttt	cggcacaaga	120
gtagcggtgc	tagctggaga	tttcatgttt	gctcaagcgt	catggtaactt	agcaaatctc	180
gagaatcttgc	aagttattaa	gctcatcagt	caggtactta	gttactctta	cattgtttt	240
ctatgagggtt	gagctatgaa	tctcattcg	ttgaataatg	ctgtgcctca	aactttttt	300
catgtttca	ggtgatcaaa	gactttgcaa	gcggagagat	aaagcaggcg	tccagcttat	360
15 ttgactgcga	caccaagctc	gacgagtaact	tactcaaaag	tttctacaag	acagcctctt	420
tagtggctgc	gagcaccaaa	ggagctgcca	ttttcagcag	agttgagcct	gatgtgacag	480
aacaaatgt	cgagttggg	aagaatctcg	gtctctctt	ccagatagtt	gatgatattt	540
tggatttcac	tcagtcgaca	gagcagctcg	ggaagccagc	agggagtgtat	ttggctaaag	600
gtaaacttaac	agcacctgt	atttcgctc	tggagaggg	gccaggctaa	agagagatca	660
20 ttgagtcaaa	gttctgttag	gcgggttctc	tggagaagc	gattgaagcg	gtgacaaaag	720
gtggggggat	taagagagca	c				741

<210> 15

<211> 1087

25 <212> DNA

<213> Arabidopsis sp

<400> 15

cctttcagc	caatccagag	gaagaagaga	caactttta	tcttcgtca	agagtctccg	60
30 aaaacgcacg	gttttatgct	ctctcttctg	ccctcacctc	acaagacgca	gggcacatga	120
ttcaaccaga	ggaaaaaaagc	aacgataaca	actctgcttt	tgatttcaag	ctgtatatga	180
tccgcaaagc	cgagtcgt	aatgcggctc	tcgacgtt	cgtaccgc	ctgaaacccc	240
ttacgatcca	agaagcggtc	aggtaacttt	tgctagccgg	cgaaaaacgt	gtgaggcctc	300
tgctctgcat	tgccgcttgt	gagttgtgg	ggggcgcacga	ggctactgcc	atgtcagccg	360
35 cttgcgcggt	cgagatgatc	cacacaagct	ctctcattca	tgacgatctt	ccgtgcattgg	420
acaatgccga	cctccgtaga	ggcaagccca	ccaatcacaa	ggtatgttgt	ttaatttat	480
gaaggctcag	agataatgt	gaactagtgt	tgaaccaatt	tttgctcaaa	caaggtatat	540
ggagaagaca	tggcggtttt	ggcaggtgat	gcactcctt	cattggcg	tgagcacatg	600
40 acggttgtgt	cgagtggtttt	ggtcgcctcc	gagaagatga	ttcgcgcgt	ggtttagctg	660
gccaggccca	tagggactac	aggctagtt	gctggacaaa	tgatagacct	agccagcgaa	720
agactgaatc	cagacaaggt	tggattggag	catctagagt	tcatccatct	ccacaaaacg	780
gcggcattgt	tggaggcagc	ggcagtttta	ggggttataa	tggaggtgg	aacagaggaa	840
gaaatcgaaa	agcttagaaa	gtatgctagg	tgtattggac	tactgtttca	ggttggat	900

gacattctcg acgtaacaaa atctactgag gaattggta agacagccgg aaaagacgt	960
atggccggaa agctgacgta tccaaggctg ataggttgg agggatccag ggaagttgc	1020
gagcacctga ggagagaagc agagaaaaag cttaaagggt ttgatccaag tcaggccgc	1080
cctctgg	1087

5

<210> 16
<211> 1164
<212> DNA
<213> Arabidopsis sp

10

<400> 16	
atgacttcga ttctcaacac tgtctccacc atccactctt ccagagttac ctccgtcgat	60
cgagtcggag tcctctctcg tcgaaattcg gattccgttg agttcactcg ccggcggtct	120
ggttctcgatcgatcta cgaatcaccc gggcggagat ttgttgtgcg tgccggag	180
actgatactg ataaaagttaa atctcagaca cctgacaagg caccagccgg tggttcaagc	240
attaaccagc ttctcggtat caaaggagca tctcaagaaaa ctaataaaatg gaagattcgt	300
cttcagctta caaaaaccagt cacttgcct ccactgggtt ggggagtcgt ctgtggtgct	360
gctgcttcag ggaacttca ttggacccca gaggatgttg ctaagtcgtat tctttgcgt	420
atgatgtctg gtccttgct tactggctat acacagacaa tcaacgactg gtatgataga	480
gatatcgacg caattaatga gccatatcg ccaattccat ctggagcaat atcagagcca	540
gaggttatta cacaagtctg ggtgctatta ttgggaggtc ttggatttgc tggaatatta	600
gatgtgtggg cagggcatac cactcccact gtcttctatc ttgtttggg aggatcattg	660
ctatctata tatactctgc tccacctctt aagctaaaac aaaatggatg ggttggaaat	720
tttgcacttg gagcaagcta tattagtttgc ccatggtggg ctggccaagc attgttggc	780
actcttacgc cagatgttgt tttcttaaca ctcttgcata gcatacgctgg gtttaggaata	840
gccattgtta acgacttcaa aagtgttcaa ggagatagag cattaggact tcagtctctc	900
ccagtagctt ttggcaccga aactgcaaaa tggatatgcg ttgggtctat agacattact	960
cagctttctg ttggccgata tctattagca tctggaaaac cttattatgc gttggcggtt	1020
gttgcatttgc tcatttcctca gattgtgttc cagtttaat actttctcaa ggaccctgtc	1080
aaatacgcacg tcaagttacca ggcaagcgcg cagccattct tggtgctcgg aatatttgc	1140
acggcatttag catcgcaaca ctga	1164

15
20
25
30

<210> 17
<211> 387

35 <212> PRT
<213> Arabidopsis sp

<400> 17
Met Thr Ser Ile Leu Asn Thr Val Ser Thr Ile His Ser Ser Arg Val
1 5 10 15
Thr Ser Val Asp Arg Val Gly Val Leu Ser Leu Arg Asn Ser Asp Ser
20 25 30
Val Glu Phe Thr Arg Arg Ser Gly Phe Ser Thr Leu Ile Tyr Glu

35 40 45

Ser Pro Gly Arg Arg Phe Val Val Arg Ala Ala Glu Thr Asp Thr Asp
50 55 60

Lys Val Lys Ser Gln Thr Pro Asp Lys Ala Pro Ala Gly Gly Ser Ser
5 65 70 75 80

Ile Asn Gln Leu Leu Gly Ile Lys Gly Ala Ser Gln Glu Thr Asn Lys
85 90 95

Trp Lys Ile Arg Leu Gln Leu Thr Lys Pro Val Thr Trp Pro Pro Leu
100 105 110

10 Val Trp Gly Val Val Cys Gly Ala Ala Ala Ser Gly Asn Phe His Trp
115 120 125

Thr Pro Glu Asp Val Ala Lys Ser Ile Leu Cys Met Met Met Ser Gly
130 135 140

Pro Cys Leu Thr Gly Tyr Thr Gln Thr Ile Asn Asp Trp Tyr Asp Arg
15 145 150 155 160

Asp Ile Asp Ala Ile Asn Glu Pro Tyr Arg Pro Ile Pro Ser Gly Ala
165 170 175

Ile Ser Glu Pro Glu Val Ile Thr Gln Val Trp Val Leu Leu Leu Gly
180 185 190

Gly Leu Gly Ile Ala Gly Ile Leu Asp Val Trp Ala Gly His Thr Thr
195 200 205

Pro Thr Val Phe Tyr Leu Ala Leu Gly Gly Ser Leu Leu Ser Tyr Ile
210 215 220

Tyr Ser Ala Pro Pro Leu Lys Leu Lys Gln Asn Gly Trp Val Gly Asn
225 230 235 240

Phe Ala Leu Gly Ala Ser Tyr Ile Ser Leu Pro Trp Trp Ala Gly Gln
245 250 255

Ala Leu Phe Gly Thr Leu Thr Pro Asp Val Val Val Leu Thr Leu Leu
260 265 270

30 Tyr Ser Ile Ala Gly Leu Gly Ile Ala Ile Val Asn Asp Phe Lys Ser
275 280 285

Val Glu Gly Asp Arg Ala Leu Gly Leu Gln Ser Leu Pro Val Ala Phe
290 295 300

Gly Thr Glu Thr Ala Lys Trp Ile Cys Val Gly Ala Ile Asp Ile Thr
35 305 310 315 320

Gln Leu Ser Val Ala Gly Tyr Leu Leu Ala Ser Gly Lys Pro Tyr Tyr
325 330 335

Ala Leu Ala Leu Val Ala Leu Ile Ile Pro Gln Ile Val Phe Gln Phe
340 345 350

40 Lys Tyr Phe Leu Lys Asp Pro Val Lys Tyr Asp Val Lys Tyr Gln Ala
355 360 365

Ser Ala Gln Pro Phe Leu Val Leu Gly Ile Phe Val Thr Ala Leu Ala
370 375 380

Ser Gln His
385

5 <210> 18
<211> 981
<212> DNA
<213> Arabidopsis sp

10 <400> 18 60
atgttgtta gtggttcagc gatcccatta agcagcttct gctctttcc ggagaaaccc
cacactcttc ctatgaaaact ctctcccgct gcaatccgat cttcatcctc atctgcggcc
gggtcggtga acttcgatct gaggacgtat tggacgactc tgatcaccga gatcaaccag
aagctggatg aggccatacc ggtcaaggcac cctgcgggga tctacgaggc tatgagatac
tctgtactcg cacaaggcgc caagcgtgcc cctccgtga tgtgtgtggc ggcctgcgag
30 ctcttcggtg gcgatcgctt cccaccgcct gtgccttaga aatggtgcac 360
gcggcttcgt tgatacacga cgacccccc tgtatggacg acgatcctgt ggcagagga
aagccatcta accacactgt ctacggctct ggcatggcca ttctcgccgg tgacgcctc
ttccccactcg cttccagca cattgtctcc cacacgcctc ctgacccctgt tccccgagcc
accatcctca gactcatcac tgagattgcc cgcaactgtcg gctccactgg tatggctgca
60 gGCCAGTAGC tcgacccctga aggagggtccc ttccctctt ccttggttca ggagaagaaaa
ttcggagcca tgggtgaatg ctctgcgtg tgcggggcc tattggggcg tgccactgag
gatgagctcc agagtctccg aaggtacggg agagccgtcg ggatgctgta tcaggtggc
gatgacatca ccgaggacaa gaagaagagc tatgatggtg gagcagagaa gggaatgatg
gaaatggcgg aagagctcaa ggagaaggcg aagaaggagc ttcaagtgtt tgacaacaag
900 tatggaggag gagacacact tgccctctc tacacccctcg ttgactacgc tgctcatcga
960 cattttcttc ttccctctg a
981

15 <210> 19
<211> 245
<212> DNA
<213> GLycine sp

20 <400> 19 720
gcaacatctg ggactgggtt tgcgtgggg agtggtagtg ctgttgcatt ttccggactt
780 gcttgcatt gcttgggtac catgatggtt gctgcattc ctaactctt gaatcagggt
840 tttgagatca ataatgatgc taaaatgaag agaacaagtc gcaggccact accctcagga
900 cgcacatcaca tacctcatgc agttggctgg gcatccctcg ttggattagc tggacggct
960 ctact
980

25 <210> 20 120
<211> 253
<212> DNA
<213> Glycine sp 180
240
245

<400> 20
attggctttc caagatcatt gggtttctt gttgcattca tgaccttcta ctccttgggt 60
ttggcattgt ccaaggatat acctgacgtt gaaggagata aagagcacgg cattgattct
5 tttgcagtagtac gtcttaggtca gaaacgggca ttttgattt gcgttcctt ttttgaatg 180
gcttcggag ttggtatcct ggccggagca tcacgtcac actttggac taaaatttc 240
acgggtatgg gaa 253

<210> 21
10 <211> 275
<212> DNA
<213> Glycine sp

<400> 21
15 tgcatttcta ctctctgggt atggcattgt ccaaggatat atctgacgtt aaaggagata 60
aagcatacgg catcgataact ttagcgatac gtttgggtca aaaatggta ttttggattt 120
gcattatcct ttttgaatg gctttggag ttgccttc ggcaggagca acatcttctt 180
accttggat taaaattgtc acgggtctgg gacatgtat tcttgcttca attctcttgt 240
accaagccaa atctatatac ttgagcaaca aagtt 275

<210> 22
20 <211> 299
<212> DNA
<213> Glycine sp

<220>
25 <221> misc_feature
<222> (1)...(299)
<223> n = A,T,C or G

<400> 22
30 ccanaatang tncatcttng aaagacaatt ggcctttca acacacaagt ctgcattgtga 60
agaagaggcc aattgtctt ccaagatcac ttatngtggc tattgttaatc atgaacttct 120
tctttgtggg tatggcattt gcaaaggata tacctanctg ttgaaggaga taaaatataat 180
35 ggcattgata ctttgcaat acgtataggt caaaaacaag tattttggat ttgtatccc 240
cttttgaaa ggcttcgga gttcccttag tggcaggagc aacatcttct agccttgg 299

<210> 23
<211> 767
40 <212> DNA
<213> Glycine sp

<400> 23

gtggaggctg tgggtgctgc cctgttatg aatattata ttgttggtt gaatcaattg 60
tctgatgtt aaatagacaa gataacaag ccgtatcttc cattagcatc tgggaatat 120
tccttggaaa ctgggtcac tattgttgc tcttttcaa ttctgagttt ttggcttgc 180
tgggtttagt gttcatggcc attattttgg gcccttttgc taagcttgc gctaggaact 240
5 gcttattcaa tcaatgtgcc tctgttgcaga tggaagaggt ttgcagtgtc tgcagcgatg 300
tgcattctag ctgttcgggc agtaatagtt caacttgcatttca catgcagact 360
catgtgtaca agaggccacc tgtctttca agaccattga ttttgctac tgcatttgc 420
agcttcttct ctgttagttt agcactgttt aaggatatac ctgacattga aggagataaa 480
gtatttggca tccaatctt ttcagtgtgt ttaggtcaga agccgggtgtt ctggacttgt 540
10 gttacccttc ttgaaatagc ttatggagtc gccctcctgg tggagctgc atctccttgt 600
ctttggagca aaattttcac gggctggca cacgctgtgc tggcttcaat tctctggttt 660
catgccaaat ctgttagattt gaaaagcaaa gcttcgataa catccttcta tatgtttatt 720
tggaaagctat tttatgcaga atacttactc attccttttgc ttagatg 767

15 <210> 24
<211> 255
<212> PRT
20 <213> Glycine sp

25 <400> 24
Val Glu Ala Val Val Ala Leu Phe Met Asn Ile Tyr Ile Val Gly
1 5 10 15
Leu Asn Gln Leu Ser Asp Val Glu Ile Asp Lys Ile Asn Lys Pro Tyr
20 25 30
Leu Pro Leu Ala Ser Gly Glu Tyr Ser Phe Glu Thr Gly Val Thr Ile
35 40 45
Val Ala Ser Phe Ser Ile Leu Ser Phe Trp Leu Gly Trp Val Val Gly
50 55 60
Ser Trp Pro Leu Phe Trp Ala Leu Phe Val Ser Phe Val Leu Gly Thr
30 65 70 75 80
Ala Tyr Ser Ile Asn Val Pro Leu Leu Arg Trp Lys Arg Phe Ala Val
85 90 95
Leu Ala Ala Met Cys Ile Leu Ala Val Arg Ala Val Ile Val Gln Leu
100 105 110
35 Ala Phe Phe Leu His Met Gln Thr His Val Tyr Lys Arg Pro Pro Val
115 120 125
Phe Ser Arg Pro Leu Ile Phe Ala Thr Ala Phe Met Ser Phe Phe Ser
130 135 140
Val Val Ile Ala Leu Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys
40 145 150 155 160
Val Phe Gly Ile Gln Ser Phe Ser Val Cys Leu Gly Gln Lys Pro Val
165 170 175
Phe Trp Thr Cys Val Thr Leu Leu Glu Ile Ala Tyr Gly Val Ala Leu

180 185 190
Leu Val Gly Ala Ala Ser Pro Cys Leu Trp Ser Lys Ile Phe Thr Gly
195 200 205
Leu Gly His Ala Val Leu Ala Ser Ile Leu Trp Phe His Ala Lys Ser
5 210 215 220
Val Asp Leu Lys Ser Lys Ala Ser Ile Thr Ser Phe Tyr Met Phe Ile
225 230 235 240
Trp Lys Leu Phe Tyr Ala Glu Tyr Leu Leu Ile Pro Phe Val Arg
245 250 255
10
<210> 25
<211> 360
<212> DNA
<213> Zea sp
15
<220>
<221> misc_feature
<222> (1)...(360)
<223> n = A,T,C or G
20
<400> 25
ggcgtcttca cttgttctgg tcttctcgta tcccctgatg aagaggttca cattttggcc 60
tcaggcttat ctggcctga cattcaactg gggagctta ctagggtggg ctgctattaa 120
ggaaagcata gaccctgcaa atcatccttc cattgtatac agctggtatt tggtggacgc 180
tggtgtatga tactatatat gcgcatcagg tggcgtcta tccctacttt catattaatc 240
cttgcataatc tggccatttc atgttgtcgc ggtggcttta tactgcata tctccatgca 300
tctcaggaca aagangatga cctgaaaatgtt ggagtccaag tccacagctt aagatttggg 360
25
<210> 26
30 <211> 299
<212> DNA
<213> Zea sp
30
<220>
35 <221> misc_feature
<222> (1)...(299)
<223> n = A,T,C or G
30
<400> 26
40 gatggttgca gcatctgcaa ataccctcaa ccaggtgttt gngataaaaa atgatgctaa 60
aatgaaaagg acaatgcgtg cccccctgccaa tctggcgtca tttagtcctgc acatgctgcg 120
atgtgggctaa caagtgttgg agttgcagga acagcttgcgtt tggcctggaa ggctaattggc 180
ttggcagctg ggcttgcagc ttctaatctt gttctgtatg catttgcgtt aacggccgttg 240

aagcaaatac accctgttaa tacatgggtt gggcagtcg ttgggccat cccaccact 299

<210> 27
<211> 255
5 <212> DNA
<213> Zea sp

<220>
<221> misc_feature
10 <222> (1)...(255)
<223> n = A,T,C or G

<400> 27
anacttgc atctccatgc ntctcaggac aaagangatg acctgaaagt aggtgtcaag 60
15 tccacagcat taagatttg agatttgacc nnatactgna tcagtggctt tggcgccga 120
tgcttcggca gcttagcaact cagtggttac aatgctgacc ttggttggtg tttagtgtga 180
tgcttgcgca aagaatggta tngttttac ttgatattga ctccagacct gaaatcatgt 240
tgacagggt ggccc 255

20 <210> 28
<211> 257
<212> DNA
<213> Zea sp

<400> 28
attgaagggg ataggactct ggggcttcag tcacttcctg ttgctttgg gatggaaact 60
gcaaaatgga ttgtgttgg agcaattgat atcactcaat tatctgttgc agttaccta 120
ttgagcaccc gtaagctgta ttatgccctg gtgttgctt ggctaacaat tcctcagggt 180
ttcttcagt tccagtactt cctgaaggac cctgtgaagt atgatgtcaa atatcaggca 240
30 agcgcacaac cattttt 257

<210> 29
<211> 368
<212> DNA
35 <213> Zea sp

<400> 29
atccagttgc aaataataat ggcgttcttc tctgttgtaa tagcactatt caaggatata 60
cctgacatcg aaggggaccg catattcggg atccgatcct tcagcgtccg gttaggca 120
40 aagaaggctt tttggatctg cggtggctt cttgagatgg cctacagcgt tgcgatactg 180
atgggagcta ccttcctg tttgtggagc aaaacagcaa ccattcgctgg ccattccata 240
cttgcgcga tcctatggag ctgcgcgcga tcgggtggact tgacgagcaa agccgcaata 300
acgtccttct acatgttcat ctgaaagctg ttctacgcgg agtacctgct catccctctg 360

gtgcggtg

368

<210> 30

<211> 122

5 <212> PRT

<213> Zea sp

<400> 30

Ile Gln Leu Gln Ile Ile Met Ala Phe Phe Ser Val Val Ile Ala Leu

10 1 5 10 15

Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Arg Ile Phe Gly Ile Arg

20 25 30

Ser Phe Ser Val Arg Leu Gly Gln Lys Lys Val Phe Trp Ile Cys Val

35 40 45

15 Gly Leu Leu Glu Met Ala Tyr Ser Val Ala Ile Leu Met Gly Ala Thr

50 55 60

Ser Ser Cys Leu Trp Ser Lys Thr Ala Thr Ile Ala Gly His Ser Ile

65 70 75 80

Leu Ala Ala Ile Leu Trp Ser Cys Ala Arg Ser Val Asp Leu Thr Ser

85 90 95

Lys Ala Ala Ile Thr Ser Phe Tyr Met Phe Ile Trp Lys Leu Phe Tyr

100 105 110

Ala Glu Tyr Leu Leu Ile Pro Leu Val Arg

115 120

<210> 31

<211> 278

<212> DNA

<213> Zea sp

30

<400> 31

tattcagcac cacctctcaa gctcaaggcag aatggatgga ttgggaactt cgctctgggt 60

gcgagttaca tcagcttgcc ctgggtggct ggccaggcgt tatttggAAC tcttacacca 120

gatatcattg tcttgactac tttgtacago atagctgggc tagggattgc tattgtaaat 180

35 gatttcaaga gtattgaagg ggataggact ctggggcttc agtcacttcc tgttgcttt 240

gggatggaaa ctgcaaaatg gatttgtttt ggagcaat 278

<210> 32

<211> 292

40 <212> PRT

<213> Synechocystis sp

<400> 32

Met Val Ala Gln Thr Pro Ser Ser Pro Pro Leu Trp Leu Thr Ile Ile
1 5 10 15
Tyr Leu Leu Arg Trp His Lys Pro Ala Gly Arg Leu Ile Leu Met Ile
20 25 30
5 Pro Ala Leu Trp Ala Val Cys Leu Ala Ala Gln Gly Leu Pro Pro Leu
35 40 45
Pro Leu Leu Gly Thr Ile Ala Leu Gly Thr Leu Ala Thr Ser Gly Leu
50 55 60
Gly Cys Val Val Asn Asp Leu Trp Asp Arg Asp Ile Asp Pro Gln Val
10 65 70 75 80
Glu Arg Thr Lys Gln Arg Pro Leu Ala Ala Arg Ala Leu Ser Val Gln
85 90 95
Val Gly Ile Gly Val Ala Leu Val Ala Leu Leu Cys Ala Ala Gly Leu
100 105 110
15 Ala Phe Tyr Leu Thr Pro Leu Ser Phe Trp Leu Cys Val Ala Ala Val
115 120 125
Pro Val Ile Val Ala Tyr Pro Gly Ala Lys Arg Val Phe Pro Val Pro
130 135 140
Gln Leu Val Leu Ser Ile Ala Trp Gly Phe Ala Val Leu Ile Ser Trp
20 145 150 155 160
Ser Ala Val Thr Gly Asp Leu Thr Asp Ala Thr Trp Val Leu Trp Gly
165 170 175
Ala Thr Val Phe Trp Thr Leu Gly Phe Asp Thr Val Tyr Ala Met Ala
180 185 190
25 Asp Arg Glu Asp Asp Arg Arg Ile Gly Val Asn Ser Ser Ala Leu Phe
195 200 205
Phe Gly Gln Tyr Val Gly Glu Ala Val Gly Ile Phe Phe Ala Leu Thr
210 215 220
Ile Gly Cys Leu Phe Tyr Leu Gly Met Ile Leu Met Leu Asn Pro Leu
30 225 230 235 240
Tyr Trp Leu Ser Leu Ala Ile Ala Ile Val Gly Trp Val Ile Gln Tyr
245 250 255
Ile Gln Leu Ser Ala Pro Thr Pro Glu Pro Lys Leu Tyr Gly Gln Ile
260 265 270
35 Phe Gly Gln Asn Val Ile Ile Gly Phe Val Leu Leu Ala Gly Met Leu
275 280 285
Leu Gly Trp Leu
290

40 <210> 33
<211> 316
<212> PRT
<213> Synechocystis sp

<400> 33

Met Val Thr Ser Thr Lys Ile His Arg Gln His Asp Ser Met Gly Ala
1 5 10 15
5 Val Cys Lys Ser Tyr Tyr Gln Leu Thr Lys Pro Arg Ile Ile Pro Leu
20 25 30
Leu Leu Ile Thr Thr Ala Ala Ser Met Trp Ile Ala Ser Glu Gly Arg
35 40 45
Val Asp Leu Pro Lys Leu Leu Ile Thr Leu Leu Gly Gly Thr Leu Ala
10 50 55 60
Ala Ala Ser Ala Gln Thr Leu Asn Cys Ile Tyr Asp Gln Asp Ile Asp
65 70 75 80
Tyr Glu Met Leu Arg Thr Arg Ala Arg Pro Ile Pro Ala Gly Lys Val
85 90 95
15 Gln Pro Arg His Ala Leu Ile Phe Ala Leu Ala Leu Gly Val Leu Ser
100 105 110
Phe Ala Leu Leu Ala Thr Phe Val Asn Val Leu Ser Gly Cys Leu Ala
115 120 125
Leu Ser Gly Ile Val Phe Tyr Met Leu Val Tyr Thr His Trp Leu Lys
130 135 140
20 Arg His Thr Ala Gln Asn Ile Val Ile Gly Gly Ala Ala Gly Ser Ile
145 150 155 160
Pro Pro Leu Val Gly Trp Ala Ala Val Thr Gly Asp Leu Ser Trp Thr
165 170 175
25 Pro Trp Val Leu Phe Ala Leu Ile Phe Leu Trp Thr Pro Pro His Phe
180 185 190
Trp Ala Leu Ala Leu Met Ile Lys Asp Asp Tyr Ala Gln Val Asn Val
195 200 205
30 Pro Met Leu Pro Val Ile Ala Gly Glu Glu Lys Thr Val Ser Gln Ile
210 215 220
Trp Tyr Tyr Ser Leu Leu Val Val Pro Phe Ser Leu Leu Leu Val Tyr
225 230 235 240
Pro Leu His Gln Leu Gly Ile Leu Tyr Leu Ala Ile Ala Ile Ile Leu
245 250 255
35 Gly Gly Gln Phe Leu Val Lys Ala Trp Gln Leu Lys Gln Ala Pro Gly
260 265 270
Asp Arg Asp Leu Ala Arg Gly Leu Phe Lys Phe Ser Ile Phe Tyr Leu
275 280 285
Met Leu Leu Cys Leu Ala Met Val Ile Asp Ser Leu Pro Val Thr His
40 290 295 300
Gln Leu Val Ala Gln Met Gly Thr Leu Leu Leu Gly
305 310 315

<210> 34
<211> 324
<212> PRT
<213> Synechocystis sp

5

<400> 34

Met Ser Asp Thr Gln Asn Thr Gly Gln Asn Gln Ala Lys Ala Arg Gln
1 5 10 15
Leu Leu Gly Met Lys Gly Ala Ala Pro Gly Glu Ser Ser Ile Trp Lys
10 20 25 30
Ile Arg Leu Gln Leu Met Lys Pro Ile Thr Trp Ile Pro Leu Ile Trp
35 40 45
Gly Val Val Cys Gly Ala Ala Ser Ser Gly Gly Tyr Ile Trp Ser Val
50 55 60
15 Glu Asp Phe Leu Lys Ala Leu Thr Cys Met Leu Leu Ser Gly Pro Leu
65 70 75 80
Met Thr Gly Tyr Thr Gln Thr Leu Asn Asp Phe Tyr Asp Arg Asp Ile
85 90 95
Asp Ala Ile Asn Glu Pro Tyr Arg Pro Ile Pro Ser Gly Ala Ile Ser
100 105 110
20 Val Pro Gln Val Val Thr Gln Ile Leu Ile Leu Leu Val Ala Gly Ile
115 120 125
Gly Val Ala Tyr Gly Leu Asp Val Trp Ala Gln His Asp Phe Pro Ile
130 135 140
25 Met Met Val Leu Thr Leu Gly Gly Ala Phe Val Ala Tyr Ile Tyr Ser
145 150 155 160
Ala Pro Pro Leu Lys Leu Lys Gln Asn Gly Trp Leu Gly Asn Tyr Ala
165 170 175
Leu Gly Ala Ser Tyr Ile Ala Leu Pro Trp Trp Ala Gly His Ala Leu
30 180 185 190
Phe Gly Thr Leu Asn Pro Thr Ile Met Val Leu Thr Leu Ile Tyr Ser
195 200 205
Leu Ala Gly Leu Gly Ile Ala Val Val Asn Asp Phe Lys Ser Val Glu
210 215 220
35 Gly Asp Arg Gln Leu Gly Leu Lys Ser Leu Pro Val Met Phe Gly Ile
225 230 235 240
Gly Thr Ala Ala Trp Ile Cys Val Ile Met Ile Asp Val Phe Gln Ala
245 250 255
Gly Ile Ala Gly Tyr Leu Ile Tyr Val His Gln Gln Leu Tyr Ala Thr
40 260 265 270
Ile Val Leu Leu Leu Leu Ile Pro Gln Ile Thr Phe Gln Asp Met Tyr
275 280 285
Phe Leu Arg Asn Pro Leu Glu Asn Asp Val Lys Tyr Gln Ala Ser Ala

290 295 300
Gln Pro Phe Leu Val Phe Gly Met Leu Ala Thr Gly Leu Ala Leu Gly
305 310 315 320
His Ala Gly Ile
5

<210> 35
<211> 307
<212> PRT
10 <213> Synechocystis sp

<400> 35
Met Thr Glu Ser Ser Pro Leu Ala Pro Ser Thr Ala Pro Ala Thr Arg
1 5 10 15
15 Lys Leu Trp Leu Ala Ala Ile Lys Pro Pro Met Tyr Thr Val Ala Val
20 25 30
Val Pro Ile Thr Val Gly Ser Ala Val Ala Tyr Gly Leu Thr Gly Gln
35 40 45
Trp His Gly Asp Val Phe Thr Ile Phe Leu Leu Ser Ala Ile Ala Ile
50 55 60
Ile Ala Trp Ile Asn Leu Ser Asn Asp Val Phe Asp Ser Asp Thr Gly
65 70 75 80
Ile Asp Val Arg Lys Ala His Ser Val Val Asn Leu Thr Gly Asn Arg
85 90 95
Asn Leu Val Phe Leu Ile Ser Asn Phe Phe Leu Leu Ala Gly Val Leu
100 105 110
Gly Leu Met Ser Met Ser Trp Arg Ala Gln Asp Trp Thr Val Leu Glu
115 120 125
Leu Ile Gly Val Ala Ile Phe Leu Gly Tyr Thr Tyr Gln Gly Pro Pro
130 135 140
Phe Arg Leu Gly Tyr Leu Gly Glu Leu Ile Cys Leu Ile Thr
145 150 155 160
Phe Gly Pro Leu Ala Ile Ala Ala Tyr Tyr Ser Gln Ser Gln Ser
165 170 175
35 Phe Ser Trp Asn Leu Leu Thr Pro Ser Val Phe Val Gly Ile Ser Thr
180 185 190
Ala Ile Ile Leu Phe Cys Ser His Phe His Gln Val Glu Asp Asp Leu
195 200 205
Ala Ala Gly Lys Lys Ser Pro Ile Val Arg Leu Gly Thr Lys Leu Gly
210 215 220
Ser Gln Val Leu Thr Leu Ser Val Val Ser Leu Tyr Leu Ile Thr Ala
225 230 235 240
Ile Gly Val Leu Cys His Gln Ala Pro Trp Gln Thr Leu Leu Ile Ile

245 250 255
Ala Ser Leu Pro Trp Ala Val Gln Leu Ile Arg His Val Gly Gln Tyr
 260 265 270
His Asp Gln Pro Glu Gln Val Ser Asn Cys Lys Phe Ile Ala Val Asn
5 275 280 285
Leu His Phe Phe Ser Gly Met Leu Met Ala Ala Gly Tyr Gly Trp Ala
 290 295 300
Gly Leu Gly
305
10
<210> 36
<211> 927
<212> DNA
<213> Synechocystis sp
15
<400> 36
atggcaacta tccaaagcttt ttggcgcttc tcccccccccc ataccatcat tggtacaact 60
ctgagcgtct gggctgtgta tctgttaact attctcgggg atggaaactc agttaactcc 120
cctgcttccc tggatttagt gttcggcgct tggctggcct gcctgttggg taatgtgtac 180
attgtcggcc tcaaccaatt gtggatgtg gacattgacc gcatcaataa gccgaatttg 240
cccctagcta acggagattt ttctatcgcc cagggccgtt ggattgtggg actttgtggc 300
gttgcttcct tggcgatcgc ctggggatta gggctatggc tggggctaac ggtgggcatt 360
agtttgatta ttggcacggc ctattcggtg ccgcaggtaa ggttaaagcg cttttccctg 420
ctggcggccc tggatgttgc gacgggtggg ggaattgtgg ttaacttggg cttattttta 480
tttttttagaa ttgggtttagg ttatcccccc actttaataa ccccccattctg ggttttgact 540
ttatattatct tagtttcac cgtggcgatc gccattttta aagatgtgcc agatatggaa 600
ggcgatcggc aatttaagat tcaaacttta actttgcaaa tcggcaaaca aaacgttttt 660
cggggAACCT taattttact cactgggtgt tattnagcca tggcaatctg gggcttatgg 720
gcggctatgc cttaaatac tgctttctt attgttccc atttgtgctt attagcctta 780
ctctggtggc ggagtgcaga tgtacactta gaaagcaaaa ccgaaattgc tagttttat 840
cagtttattt ggaagctatt tttcttagag tacttgctgt atcccttggc tctgtggta 900
cctaattttt ctaataactat ttttttag 927

35 <210> 37
 <211> 308
 <212> PRT
 <213> Synechocystis sp

<400> 37
40 Met Ala Thr Ile Gln Ala Phe Trp Arg Phe Ser Arg Pro His Thr Ile
 1 5 10 15
Ile Gly Thr Thr Leu Ser Val Trp Ala Val Tyr Leu Leu Thr Ile Leu
 20 25 30

Gly Asp Gly Asn Ser Val Asn Ser Pro Ala Ser Leu Asp Leu Val Phe
35 40 45
Gly Ala Trp Leu Ala Cys Leu Leu Gly Asn Val Tyr Ile Val Gly Leu
50 55 60
5 Asn Gln Leu Trp Asp Val Asp Ile Asp Arg Ile Asn Lys Pro Asn Leu
65 70 75 80
Pro Leu Ala Asn Gly Asp Phe Ser Ile Ala Gln Gly Arg Trp Ile Val
85 90 95
Gly Leu Cys Gly Val Ala Ser Leu Ala Ile Ala Trp Gly Leu Gly Leu
10 100 105 110
Trp Leu Gly Leu Thr Val Gly Ile Ser Leu Ile Ile Gly Thr Ala Tyr
115 120 125
Ser Val Pro Pro Val Arg Leu Lys Arg Phe Ser Leu Leu Ala Ala Leu
130 135 140
15 Cys Ile Leu Thr Val Arg Gly Ile Val Val Asn Leu Gly Leu Phe Leu
145 150 155 160
Phe Phe Arg Ile Gly Leu Gly Tyr Pro Pro Thr Leu Ile Thr Pro Ile
165 170 175
Trp Val Leu Thr Leu Phe Ile Leu Val Phe Thr Val Ala Ile Ala Ile
20 180 185 190
Phe Lys Asp Val Pro Asp Met Glu Gly Asp Arg Gln Phe Lys Ile Gln
195 200 205
Thr Leu Thr Leu Gln Ile Gly Lys Gln Asn Val Phe Arg Gly Thr Leu
210 215 220
Ile Leu Leu Thr Gly Cys Tyr Leu Ala Met Ala Ile Trp Gly Leu Trp
225 230 235 240
Ala Ala Met Pro Leu Asn Thr Ala Phe Leu Ile Val Ser His Leu Cys
245 250 255
Leu Leu Ala Leu Leu Trp Trp Arg Ser Arg Asp Val His Leu Glu Ser
30 260 265 270
Lys Thr Glu Ile Ala Ser Phe Tyr Gln Phe Ile Trp Lys Leu Phe Phe
275 280 285
Leu Glu Tyr Leu Leu Tyr Pro Leu Ala Leu Trp Leu Pro Asn Phe Ser
290 295 300
35 Asn Thr Ile Phe
305

<210> 38
<211> 1092
40 <212> DNA
<213> Synechocystis sp

<400> 38

	atgaaatttc cgccccacag tggttaccat tggcaaggc aatcacctt ctttgaaggt	60
	tggtacgctgc gcctgcctt gccccaatcc ggggaaagtt ttgcctttat gtactccatc	120
	gaaaatcctg cttagcgatca tcattacggc ggccggctg tgcaaattt agggccggct	180
	acgaaaaaac aagaaaatca ggaagaccaa cttgttggc ggacattcc ctggtaaaa	240
5	aaatttggg ccagtccctcg ccagttgcc cttagggcatt gggggaaatg tagggataac	300
	aggcaggcga aaccctact ctccgaagaa tttttgccca cggtaagga aggttatcaa	360
	atccatcaa atcagcacca aggacaaatc attcatggcg atcgccattg tcgttggcag	420
	ttcacccgtag aaccggaagt aacttgggg agtcctaacc gatttcctcg ggctacagcg	480
	ggttggctt ccttttacc cttgtttagt cccgggttggc aaattcttt agcccaaggt	540
10	agagcgcacg gctggctgaa atggcagagg gaacagtatg aatttgacca cgccctagtt	600
	tatgccgaaa aaaattgggg tcactcctt ccctcccgct ggtttggct ccaagcaaat	660
	tatttcctg accatccagg actgagcgctc actgcccgtg gggggaaacg gattgttctt	720
	ggtcgccccg aagaggttagc ttaattggc ttacatcacc aaggttaattt ttacgaattt	780
	ggcccccggcc atggcacagt cacttggcaa gtagctccct gggccgttg gcaattaaaa	840
15	gcacagcaatg ataggtattt ggtcaagttt tccggaaaaa cagataaaaa aggcaatttt	900
	gtccacactc ccaccgccc gggcttacaa ctcaactgcc gagataccac tagggctat	960
	ttgttatttgc aattgggatc tgggggtcac ggcctgatag tgcaagggga aacggacacc	1020
	gcggggctag aagttggagg tgattgggt ttaacagagg aaaattttag caaaaaaaaaaca	1080
	gtgccattct ga	1092

DRAFT

<210> 39

<211> 363

<212> PRT

<213> Synechocystis sp

25

<400> 39

	Met Lys Phe Pro Pro His Ser Gly Tyr His Trp Gln Gly Gln Ser Pro			
1	5	10	15	
	Phe Phe Glu Gly Trp Tyr Val Arg Leu Leu Leu Pro Gln Ser Gly Glu			
30	20	25	30	
	Ser Phe Ala Phe Met Tyr Ser Ile Glu Asn Pro Ala Ser Asp His His			
	35	40	45	
	Tyr Gly Gly Gly Ala Val Gln Ile Leu Gly Pro Ala Thr Lys Lys Gln			
	50	55	60	
35	Glu Asn Gln Glu Asp Gln Leu Val Trp Arg Thr Phe Pro Ser Val Lys			
	65	70	75	80
	Lys Phe Trp Ala Ser Pro Arg Gln Phe Ala Leu Gly His Trp Gly Lys			
	85	90	95	
40	Cys Arg Asp Asn Arg Gln Ala Lys Pro Leu Leu Ser Glu Glu Phe Phe			
	100	105	110	
	Ala Thr Val Lys Glu Gly Tyr Gln Ile His Gln Asn Gln His Gln Gly			
	115	120	125	
	Gln Ile Ile His Gly Asp Arg His Cys Arg Trp Gln Phe Thr Val Glu			

130 135 140
Pro Glu Val Thr Trp Gly Ser Pro Asn Arg Phe Pro Arg Ala Thr Ala
145 150 155 160
Gly Trp Leu Ser Phe Leu Pro Leu Phe Asp Pro Gly Trp Gln Ile Leu
5 165 170 175
Leu Ala Gln Gly Arg Ala His Gly Trp Leu Lys Trp Gln Arg Glu Gln
180 185 190
Tyr Glu Phe Asp His Ala Leu Val Tyr Ala Glu Lys Asn Trp Gly His
195 200 205
10 Ser Phe Pro Ser Arg Trp Phe Trp Leu Gln Ala Asn Tyr Phe Pro Asp
210 215 220
His Pro Gly Leu Ser Val Thr Ala Ala Gly Gly Glu Arg Ile Val Leu
225 230 235 240
Gly Arg Pro Glu Glu Val Ala Leu Ile Gly Leu His His Gln Gly Asn
15 245 250 255
Phe Tyr Glu Phe Gly Pro Gly His Gly Thr Val Thr Trp Gln Val Ala
260 265 270
Pro Trp Gly Arg Trp Gln Leu Lys Ala Ser Asn Asp Arg Tyr Trp Val
275 280 285
Lys Leu Ser Gly Lys Thr Asp Lys Lys Gly Ser Leu Val His Thr Pro
290 295 300
Thr Ala Gln Gly Leu Gln Leu Asn Cys Arg Asp Thr Thr Arg Gly Tyr
305 310 315 320
Leu Tyr Leu Gln Leu Gly Ser Val Gly His Gly Leu Ile Val Gln Gly
325 330 335
Glu Thr Asp Thr Ala Gly Leu Glu Val Gly Gly Asp Trp Gly Leu Thr
340 345 350
Glu Glu Asn Leu Ser Lys Lys Thr Val Pro Phe
355 360
30
<210> 40
<211> 56
<212> DNA
<213> Artifical Sequence
35
<400> 40
cgcgatttaa atggcgcgcc ctgcaggcgg ccgcctgcag ggccgcgcatt ttaaat 56
40
<210> 41
<211> 32
<212> DNA
<213> Artifical Sequence

<400> 41
tcgaggatcc gcggccgcaa gcttcctgca gg 32

5 <210> 42
<211> 32
<212> DNA
<213> Artifical Sequence

10 <400> 42
tcgacctgca ggaagcttgc ggccgcggat cc 32

<210> 43
<211> 32
<212> DNA
15 <213> Artifical Sequence

20 <400> 43
tcgacctgca ggaagcttgc ggccgcggat cc 32

<210> 44
<211> 32
<212> DNA
<213> Artifical Sequence

25 <400> 44
tcgaggatcc gcggccgcaa gcttcctgca gg 32

<210> 45
<211> 36
30 <212> DNA
<213> Artifical Sequence

<400> 45
tcgaggatcc gcggccgcaa gcttcctgca ggagct 36

35 <210> 46
<211> 28
<212> DNA
<213> Artifical Sequence

40 <400> 46
cctgcaggaā gcttgcgccc gcggatcc 28

<210> 47
<211> 36
<212> DNA
<213> Artifical Sequence

5

<400> 47
tcgacacctgca ggaagcttgc ggccgcggat ccagct

36

<210> 48
10 <211> 28
<212> DNA
<213> Artifical Sequence

<400> 48
15 ggatccgcgg ccgcaagctt cctgcagg

28

20 <210> 49
<211> 39
<212> DNA
<213> Artifical Sequence

<400> 49
25 gatcacacctgc aggaagcttg cggccgcggat tccaatgca

39

30 <210> 50
<211> 31
<212> DNA
<213> Artifical Sequence

35 <400> 50
ttggatccgc ggccgcaagc ttccctgcagg t

31

<210> 51
<211> 41
35 <212> DNA
<213> Artifical Sequence

<400> 51
40 gatatccgcgg ccgcacaatg gagtctctgc tctcttagttc t

41

<210> 52
<211> 38
<212> DNA

<213> Artifical Sequence

<400> 52
ggatcctgca ggtcacttca aaaaaggtaa cagcaagt 38
5
<210> 53
<211> 45
<212> DNA
<213> Artifical Sequence
10
<400> 53
ggatccgcgg ccgcacaatg gcgtttttg ggctctcccg tggtt 45

<210> 54
15 <211> 40
<212> DNA
<213> Artifical Sequence

<400> 54
20 ggatcctgca ggttattgaa aacttcttcc aagtacaact 40

<210> 55
<211> 38
<212> DNA
25 <213> Artifical Sequence

<400> 55
ggatccgcgg ccgcacaatg tggcgaagat ctgttgg 38
30
<210> 56
<211> 37
<212> DNA
<213> Artifical Sequence

35 <400> 56
ggatcctgca ggtcatggag agtagaagga aggagct 37

<210> 57
<211> 50
40 <212> DNA
<213> Artifical Sequence

<400> 57

ggatccgcgg ccgcacaatg gtacttgccg aggttccaaa gcttgccctct 50

<210> 58
<211> 38
5 <212> DNA
<213> Artifical Sequence

<400> 58
ggatcctgca ggtcacttgt ttctggtgat gactctat 38
10
<210> 59
<211> 38
<212> DNA
<213> Artifical Sequence
15
<400> 59
ggatccgcgg ccgcacaatg acttcgattc tcaacact 38
20
<210> 60
<211> 36
<212> DNA
<213> Artifical Sequence

<400> 60
ggatcctgca ggtcagtgtt gcgatgctaa tgccgt 36
25
<210> 61
<211> 22
<212> DNA
30 <213> Artifical Sequence

<400> 61
taatgtgtac attgtcgcc tc 22

35 <210> 62
<211> 60
<212> DNA
<213> Artifical Sequence

40 <400> 62
gcaatgtaac atcagagatt ttgagacaca acgtggctt ccacaattcc ccgcaccgtc 60

<210> 63

<211> 22
<212> DNA
<213> Artifical Sequence

5 <400> 63 22
aggctaataa gcacaaatgg ga

<210> 64
<211> 63

10 <212> DNA
<213> Artifical Sequence

<400> 64
ggtatgagtc agcaacacct tcttcacgag gcagacctca gcggaattgg ttttaggttat 60
15 ccc 63

<210> 65
<211> 26
<212> DNA
20 <213> Artifical Sequence

<400> 65 26
ggatccatgg ttgcccaaac cccatc

<210> 66
<211> 61
<212> DNA
25 <213> Artifical Sequence

30 <400> 66 60
gcaatgtaac atcagagatt ttgagacaca acgtggctt gggtaagcaa caatgaccgg 61
c

<210> 67
35 <211> 25
<212> DNA
<213> Artifical Sequence

<400> 67 25
40 gaattctcaa agccagccca gtaac

<210> 68
<211> 63

<212> DNA
<213> Artifical Sequence

<400> 68
5 ggtatgagtc agcaacacct tcttcacgag gcagacctca gcgggtgcga aaagggtttt 60
ccc 63

<210> 69
<211> 23
10 <212> DNA
<213> Artifical Sequence

<400> 69
ccagtggttt aggctgtgtg gtc 23

15 <210> 70
<211> 21
<212> DNA
<213> Artifical Sequence

<400> 70
ctgagttgga tgtattggat c 21

20 <210> 71
<211> 28
<212> DNA
<213> Artifical Sequence

<400> 71
30 ggtatggc ttacttcgac aaaaatcc 28

<210> 72
<211> 60
<212> DNA
35 <213> Artifical Sequence

<400> 72
gcaatgttaac atcagagatt ttgagacaca acgtggcttt gctaggcaac cgcttagtac 60

40 <210> 73
<211> 28
<212> DNA
<213> Artifical Sequence

<400> 73
gaattcttaa cccaacagta aagttccc 28

5 <210> 74
<211> 63
<212> DNA
<213> Artifical Sequence

10 <400> 74
ggtatgagtc agcaacacct tcttcacgag gcagacctca gcgccggcat tgtctttac 60
atg 63

<210> 75
15 <211> 20
<212> DNA
<213> Artifical Sequence

20 <400> 75
ggaacccttg cagccgcttc 20

<210> 76
<211> 22
<212> DNA
25 <213> Artifical Sequence

<400> 76
gtatgcccaa ctggtgacaga gg 22

30 <210> 77
<211> 28
<212> DNA
<213> Artifical Sequence

35 <400> 77
ggatccatgt ctgacacacaca aaataccg 28

<210> 78
<211> 62
40 <212> DNA
<213> Artifical Sequence

<400> 78

gcaatgtAAC atcAGAGATT ttGAGACACA acGTGGCTT CGCCAATACC agCCACCAAC 60
ag 62

5 <210> 79
<211> 27
<212> DNA
<213> Artifical Sequence

10 <400> 79
gaattctcaa atccccgcat ggcctag 27

<210> 80
<211> 65
<212> DNA
15 <213> Artifical Sequence

20 <400> 80
ggtagatgtc agcaacacact tttcacgag gcagacctca gcccctacg gcttggacgt 60
gtggg 65

25 <210> 81
<211> 21
<212> DNA
<213> Artifical Sequence

30 <400> 81
cacttgaggatt cccctgatct g 21

35 <210> 82
<211> 21
<212> DNA
<213> Artifical Sequence

40 <400> 82
gcaatacccg ctggaaaac g 21

<210> 83
<211> 29
<212> DNA
<213> Artifical Sequence

45 <400> 83
ggatccatga ccgaatcttc gcccctagc 29

<210> 84
<211> 61
<212> DNA
5 <213> Artifical Sequence

<400> 84
gcaatgtaac atcagagatt ttgagacaca acgtggcttt caatcctagg tagccgaggc 60
g 61

10 <210> 85
<211> 27
<212> DNA
<213> Artifical Sequence

15 <400> 85
gaattcttag cccaggccag cccagcc 27

20 <210> 86
<211> 66
<212> DNA
<213> Artifical Sequence

25 <400> 86
ggtatgagtc agcaacacct tcttcacgag gcagacctca gcgggaaatt gatttgtta 60
attacc 66

30 <210> 87
<211> 21
<212> DNA
<213> Artifical Sequence

<400> 87
gcgatcgcca ttatcgcttg g 21

35 <210> 88
<211> 24
<212> DNA
<213> Artifical Sequence

40 <400> 88
gcagactggc aattatcagt aacg 24

<210> 89
<211> 25
<212> DNA
<213> Artifical Sequence
5
<400> 89
ccatggattc gagtaaagtt gtcgc 25

<210> 90
10 <211> 0
<213> Artifical Sequence

<400> 90
gaattcactt caaaaaaggt aacag
15
<210> 91
<211> 4550
<212> DNA
<213> Arabidopsis sp
20
<400> 91
attttacacc aatttgatca cttaactaaa ttaattaaat tagatgatta tcccaccata 60
tttttgagca ttaaaccata aaaccatagt tataagaac tggtaatc gaatatgact 120
cgattaagat tagaaaaat ttataaccgg taattaagaa aacattaacc gtagtaaccg 180
taaatgccga ttccctccct gtctaaaaga cagaaaacat atattttatt ttgccccata 240
tgtttcactc tatttaattt caggcacaat acttttgggt ggtacaaaaa ctaaaaagga 300
caacacgtga tactttccct cgccgtcag tcagatttt tttaaacttag aaacaagtgg 360
caaatctaca ccacatttt tgcttaatct attaacttgt aagttttaaa ttccctaaaaa 420
agtctaacta attcttctaa tataagtaca ttccctaaaat ttcccaaaaaa gtcaaattaa 480
taattttcaa aatctaattct aatatctaa taattcaaaaa tcattaaaaa gacacgcaac 540
aatgacacca attaatcatc ctcgacccac acaattctac agttctcatg ctaaaccata 600
tttttgctc tctgttccctt caaaatcatt tctttctctt ctttgattcc caaagatcac 660
ttctttgtct ttgatttttg attttttttc tctctggcgt gaaggaagaa gctttatttc 720
atggagtctc tgctctctag ttcttctctt gtttccgctg gtaaatctcg tcctttctg 780
35 gtttcaggtt ttatgttg ttaggttgc gttttgtga ttcaagaacca tacaaaaagtt 840
ttgaactttt ctgaatataa aataaggaaa aagtttcgat tttataatg aattgtttac 900
tagatcgaag taggtgacaa aggttattgt gtggagaagc ataatttctg ggcttgactt 960
tgaattttgt ttctcatgca tgcaacttat caatcagctg gtgggttttgg tggaaagaag 1020
cagaatctaa agctccactc tttatcaggt tcgttagggt tttatgggtt ttgaaatta 1080
40 aataactcaat catcttagtc tcattattct attgggttgc tcacattttc taatttgaa 1140
tttatgagac aatgtatgtt ggacttagtt gaagttcttc tctttggta tagttgaagt 1200
gttactgatg ttgttagct cttacacca atatatacac ccaattttgc agaaatccga 1260
gttctgcgtt gtgattcagag taaaagttgtc gcaaaaccga agtttaggaa caatcttgc 1320

	aggcctgatg gtcaaggatc ttcattgtt ttgttatccaa aacataagtc gagatttcgg	1380
	gttaatgccs ctgcgggtca gcctgaggct ttcgactcgat atagcaaaca gaagtctttt	1440
	agagactcgtagatgcgtt ttacagggtt tctaggcctc atacagttat tggcacagtt	1500
	aagttctctttaaaaatgt aactctttaaacgcataatc tttcagggtt ttcaaggaga	1560
5	taacattagctctgtgatttgatttgcagg tgcttagcat tttatctgtatctttcttag	1620
	cagtagagaa ggtttctgtat atatctccctt tactttcac tggcatcttg gaggtaatga	1680
	atatataaca cataatgacc gatgaagaag atacatttttt ttcgtctctc tgttaaaca	1740
	attgggtttt gttttcaggc tggtgttgc gctctcatga tgaacatttacatgttggg	1800
	ctaaatcagt tgtctgatgt tgaaatagat aaggttaacat gcaaattttc ttcatatgag	1860
10	ttcgagagac tgatgagatt aatagcagct agtgcctaga tcatctctat gtgggtttt	1920
	gcaggtaaac aagccctatc ttccattggc atcaggagaa tattctgtta acaccggcat	1980
	tgcaatagtagt gcttccttct ccatcatgtt atgggtccat tttcacaaaa ttcaacttt	2040
	tagaattcta taagttactg aaatagtttgc tataaaatcg ttatagagtt tctggcttgg	2100
	gtggattgtt ggttcatggc cattgttctg ggctctttt gtgagttca tgctcggtac	2160
15	tgcataactct atcaatgtaa gtaagttct caataactaga atttggctca aatcaaaaatc	2220
	tgcagttctt agtttaggt taatgagggtt ttaataactt acttctacta caaacagttg	2280
	ccacttttac ggtggaaaag atttgcattt gttgcagcaa tgtgtatcct cgctgtccga	2340
	gctattatttgc ttcaaatcgctt ctttatcta catattcagg tactaaacca ttttccttat	2400
	gtttttagt tgtttcatc aaaatcactt ttatattact aaagctgtga aactttgttgc	2460
	cagacacatg tgtttggaaag accaatcttgc ttcaactggc ctcttattttt cgccactgct	2520
	tttatgagct ttttctctgt cgttatttgc ttgtttaagg taaacaaaaga tggaaaaaaga	2580
	ttaaatctat gtataactt aaatggcat tctactgtt ttatgagaa gttttctttt	2640
	ttgggttggat gcaggatata cctgatatcg aaggggataa gatattcggatccatcat	2700
	tctctgttaac tctgggtcag aaacgggtac gatatctaaa ctaaagaaat tgtttgact	2760
	caagtgttgg attaagatta cagaagaaag aaaactgttt ttgtttcttgc caaaattcag	2820
	gtgttttggat catgttttac actacttcaa atggcttacg ctgttgcatttcttgc	2880
	gccacatctc cattcatatg gagcaaagtc atctcggtaa caatcttttcttaccatcg	2940
	aaaactcgct aattcatcgat ttgagtttgc ctgggttcat ttgttccgt tctgttgcattt	3000
	tttttcagg ttgtgggtca ttgttataactc gcaacaactt tttggctcg agctaagtcc	3060
30	tttgatctga gtagcaaaaac cggaaataact tcatgttata ttgttcatatg gaagtttgc	3120
	ttcggttata aatagagtct ttactgcctt ttatgcgtt ccaatttggat attaaaatag	3180
	ccttcagtt tcattcaatc accattatac tgataaaatttgc tcatctctgc atcagctttt	3240
	ttatgcagat tacattgttgc tacatgttgc ttatgttgc ttatgttgc acattagaag agaagaagat	3300
	ggagataaaaaa gaataagtca tcactatgtt tctgttttta ttacaagtgc atgaaatttgc	3360
35	gttagtgaact agtgaatttgc ttgttgcatttgc tggaaatcg cagactgcggaaatatgtca	3420
	aagatatgaa ttctgttgg gtaaagaagt ctctgttgg gcaaaatctt aaggttccgtt	3480
	gtgttgcatttgc atgcataagc gaaatcgatttgc attctatgttgc gaaatttccgtt aacatgttgc	3540
	taaacatgtc agaacatctc cattctatgc tttcttgc aagaaagctc tggttttgc	3600
	acctaaactc ttatctctgc ttgttgcatttgc atatgttgc ttatgttgc acatttttttgc	3660
40	tttgatgttgc ttgttgcatttgc gtagtgcatttgc gaaatgttgc ttatgttgc acatttttttgc	3720
	tttttatataat atggataatttgc cagacatctc gtcgaagctc acaagcataatcattactact	3780
	atagtttgcatttgc ctgttgcatttgc tagttccatttgc gatgttgcatttgc aactgttgcatttgc aactgccttgc	3840
	gcgttttgc gttgttgcatttgc actactgttgc ttgttgcatttgc aactgttgcatttgc gttgttgcatttgc	3900

	agaagaatat aggctcacgg gaacgactgt ggtggaagat gaaatggaga tcatcacgt	3960
	gcccgtttgc caaagaccga gtcacgatcg agtctatgaa gtctttacag ctgctgatta	4020
	tgattgacca ttgcttagag acgcattgga atcttactag ggacttgcct gggagttct	4080
	tcaagtacgt gtcagatcat acgatgtagg agatttcacg gctttgatgt gtttgttgg	4140
5	agtccacaatg cttaatgggc ttattggccc aataatagct agctcttttgc tttagccgt	4200
	ttcgccccgt ccctgggtggt gagtattatt agggtatgggt gtgaccaaag tcaccagacc	4260
	tagagtgaat ctatgttgtt cctagaccat ggtccatggc ttttatttgt aatttgaaaa	4320
	atgaacaatt cttttgtaa ggaaaacttt tatatagttag acgtttacta tatagaaaact	4380
10	atgtgaacta acttcgtgca attgcataat aatggtgtga aatagagggt gcaaaaactca	4440
	ataaaacattt cgacgtacca agagttcgaa acaataagca aaatagattt ttttgctca	4500
	gactaatttgc tacaatgaat ggttaataaaa ccattgaagc ttttatttaat	4550
	<210> 92	
	<211> 4450	
15	<212> DNA	
	<213> Arabidopsis sp	
	<400> 92	
	tttaggttac aaaatcaatg atattgcgtat tgtcaactat aaaagccaaa agtaaagcct	60
	cttggccccgt cagaagggtca tgatcattgt atacatacag cccaaactacc tcctggaaaga	120
	aaagacatgg atcccaaaaca acaacaatag cttctttac aagaaccagt agtaactagt	180
	cactaatcta aaagaggtaa gtttcagctt ttctggcaat ggctccttga tcatttcaat	240
	cctgaaggag acccactttg tagcaagacc atgtcctctg tttcacttac agtgtgtctc	300
	aaaagtctac ttcaattctt catatatagg ttccctcacac tacagcttca tcctcattcg	360
	ttgacagaga gagagtctttt attgaaaact tcttccaagt acaactccac taaatataat	420
	agcaccaaac cacttggcg acacaaatct gtacagatataaaaaacacta ttaggtttc	480
	caaggccaaat cacataattt gattgtgaaa gagtacaaaa gataaaaccca aattttcata	540
	ctttctactg cagtcagcac cagatgataa gtcagctgtc cctatttgc atcctaactg	600
	tcctgatgca gcggccagtg atgcgtataa ttgccaccct taatcattag agcgagaaac	660
30	aaaaagaatac aaaagacagt aaatggatt aggaatcaca aatgagtccct tgtaaagttt	720
	attgagtacc gagatctgca ctgaatccag aaagtgcag aaaaacctatg gatgctgtgc	780
	caaatccagt taaccaaagc tttgttattt caccgaatct aagggctgtt gacttaacac	840
	caacttttac atcatcttct ttgcctggaa gacacaatataattagacatt agtccatggaa	900
	aaaaaaatga tttaaccttag aatatctcaa aattacttgc ataaaaactg aacttgagct	960
35	gaaattttgg gttcgtagct tgtggcataat actatttcat ttcaatggg ccacaaaagg	1020
	aactttcttt ttcacttct gttgcaaacg ggaagacttt tatggggcta actcttcaat	1080
	taaagtatag aaatcgatg gaaaagggtgg gagatcaggg taatttctt ctttatgatt	1140
	gacaaaaagtc gaacatcgaa atggatgcat ttgcgtgaga catgaaacaa aagctgaaaa	1200
	agaaaatctgt ggtggtaag cttagaaaaag aaaacaaagc aagcaatatg cacacattga	1260
40	gattaactac ttgcacttgc gtcataatca aatagatttt gaagctaaaa aataaaaaagt	1320
	gaatataacct gatgtgcata aatagtatca taaacaaggg tccagcagac tccggagaga	1380
	tagagaggga gtacaataga tgggtctatg cttccctttaa ctgcagtcca tcctaacaat	1440
	gctccccagt ttatggtcaa acctaaaaag gcttgaggct gcaattataa aaacgaatca	1500

	atcataagaa aatcagaaaa tatataatgt ctaacttga gaagccagaa tagattaaa	1560
	ttacccaaaa tggtaaacctc ttccataagt ggttagaaaa gacaagtaac aaagatgaag	1620
	ccccctaaaac acggctgcag aatatacata ctgaaatgag ctcaagtaga aaagaatttg	1680
	atcacaaaac taaagacaag acctgagaac atatcttcag aatttggcc aactacataa	1740
5	gggtgaacca tatgtgtatg tgaatttta aacaaacact tgcaaatacg cgactttagg	1800
	gcaagtaaaa aatccaaaca aacctgtaat tgttaagttg gagaagaatc cctaaggcta	1860
	aaagcaactg cagcccaga aatccaatcc cttgaaatgg tgtcaaaaaga ccactggcga	1920
	taggtcttag ttttgcata tcaacctgga tataaaagaa atttgaaga caacataatc	1980
	taaaacaaaa caaccataca aaatctttag ctttacatac aagcaaccca tctttgttta	2040
10	tggagaatg aatccagttt catgaatgct gtgtatctac cctaactact aaacacatat	2100
	ttcaatcgaa aaacatattc cacccatcc accatcttacc atatctaaca cctgaagtct ttcaactttt	2160
	gaacgaagtc atcagaacat gcagataagc tattacccaa aacagagata tgactggaaa	2220
	tgttgcgtt aattgttcca acatagaaaa atcaagacca gttccagatg tcaaagcaat	2280
	aacactttcc caccatggtt acagaaacca tagttacaca aaacatgttt cctaaaccaa	2340
15	catactaaag ggatataaa atttgacatc actttatcac cataccataa gatagcttaa	2400
	aaacaaaactg acctttgtat ctatgtcctg atcaaggcaga tcatttatag tacaaccagc	2460
	acccatctaaga agtaatgctc cgcaacccaa taaagccata tattttaaac ttggaaggct	2520
	tccaggatca gcagccaaacg caatcgacct atacaacaat gatggagatt cagagtatcg	2580
	atctatttac atagctctgg aactagatcc atgacgaaac atggaacatc gttataat	2640
	ctaaagactt ccaaacagat tcctgagtaa gaaaccagttt ggaactatag tactgttaca	2700
	tatataaaat caaagaaaac tcaggtttat agcattatcc aatcctgatt tctgccaatc	2760
	cttaaccact ctcccatgct ataaaaacc tcagctcaag atcatactac ctaattgcct	2820
	atgagctctt gggaaagatca ttatggattt gataactgaa aaaagtaaca gagaaatagc	2880
	agactgcaag aactactcca aacttctcca ctgatatgta ttagtctaa caataataaa	2940
	cagacataaaa ttcttttacc aagcttcaag agcaagttt tagtccaaac tcacagccaa	3000
	accaaccagg aaaacacata actttatcac ataaaactaa atttaatgta atctgactta	3060
	acataaaacca tcctttggaa cgaaaggaaa ctatataaac atgcagtctt tcttccctc	3120
	agctattctt tcggatggat tataatgaa ctcaaaaatgaa aatgttctt attctcagct	3180
	acattactca aaggcgaaga taaacttacc acatacaagg ccacgcaagc aaccaagttc	3240
30	caatgggttt atccaatcga gcaagcttag cataacctct aacttcttct ggtttataca	3300
	aatctatcca agaagcttcc ttaacaacaa caccatcaact cttctccctt tcatcttct	3360
	tcggctttcc ctccaaaacc gaagaagacg acgacattcc acaaattaat ctgttattcc	3420
	aaccaacacc aaaaaacttc tcctgatgca attcttccat tttactccat acttggtaat	3480
	tatcattcca tgaaggataa cacttagtga aaggatttgt gtaatggta gtcacaggat	3540
35	tggacaagga ttatgttgtt gattgcaaaa gagcagagga agaagatgga gttacggaga	3600
	cgaaagattt caacaaccgt ctggaaacac gggagagccc aaaaaacgcc atctttgaga	3660
	gaaattgttg cttggaaagaa acaaagactt gagatttcaa acgtaagtga attcttacga	3720
	acgaaagacta acttctcaag agaatcagat tagtattcc tcaaaaacaa acaaactat	3780
	ctaatttcag ttctgagtga tgaaggcctt agaatctaga acctccatgg cgtttctaat	3840
40	ctctcagaga taatcgaatt ctttacacaa tcaaagctta gaaagagaag aacaacaaca	3900
	acaacaaaaaa aaatcagatt aacaaccgac cagagagcaa cgacgacgccc ggcgagaaag	3960
	agcacgtcgt ctggagcaa gacttcttct ccagtaaccc ggttggatcg ttaatggcc	4020
	tgttagattat tatatttggg ccgaaacaat tgggtcagca aaaacttggg ggataatgaa	4080

gaaacacgt	cagtatgc	ttaggctcca	aattaattgg	ccatataatt	cgaatcagat	4140	
aaactaatca	acccttacct	tacttatttc	tcactgtttt	tatttctacc	ttagtagttg	4200	
aagaaacact	tttattttatc	tttccggac	ccaaatttga	taggatcggg	ccattactca	4260	
5	tgagcgtag	acacatatta	gccttatcag	attagtgggg	taaggtttt	ttaattcggt	4320
aagaagcaac	aatcaatgtc	ggagaaaatta	aagaatctgc	atggcgtgg	cgtgatgata	4380	
tgtcatatg	gagtcagttg	ccgatcatat	ataactattt	ataaactaca	tataaagact	4440	
	actaatagat					4450	
<210> 93							
10	<211>	2850					
	<212>	DNA					
	<213>	Arabidopsis sp					
<400> 93							
15	aattaaaatt	tgagcggtct	aaaccattag	accgtttaga	gatccctcca	acccaaaata	60
	gtcgattttc	acgtcttgaa	catatattgg	gccttaatct	gtgtggtag	taaagacttt	120
20	tattggtaaa	agaaaaacaa	ccatggccca	acatgttgat	acttttattt	aattatacaa	180
	gtaccctga	attctctgaa	atataattga	ttgaccaga	tattaatttt	aattatcatt	240
25	tcctgtaaaa	gtgaaggagt	caccgtgact	cgtcgtaatc	tgaaccaat	ctgttcatat	300
	gatgaagaag	tttctctcg	tccctccaa	cgcgtagaaa	attctgacgg	cttaacgatg	360
30	tggcgaagat	ctgttgtta	tcgttctct	tcaagaatct	ctgttcttc	ttcggttacca	420
	aaccctagac	tgattccttg	gtcccgcgaa	ttatgtgccg	ttaatagctt	ctcccagcct	480
	ccggtctcga	cggaatcaac	tgctaagtt	gggatcactg	gtgttagatc	tgatgccaat	540
	cgagttttt	ccactgctac	tgccgcccgt	acagctacag	ctaccaccgg	tgagatttcg	600
35	tctagagtt	cggctttggc	tggatttaggg	catcaactacg	ctcggttta	ttgggagctt	660
	tctaaagcta	aacttaggta	tgtgtttact	tttctttct	catgaaaaat	ctgaaaattt	720
	ccaattgtt	gattcttaaa	ttctcatttg	tttatgggt	gtatgtatgt	tgtgttgca	780
	acttctggaa	ctgggtatat	tctgggtacg	ggaaatgctg	caattagctt	cccggggctt	840
	tgttacacat	gtcaggaac	catgatgatt	gctgcacatc	ctaattcctt	gaatcaggtc	900
40	attgaaatgt	tgagaagttc	ataaaattcg	aatccttgtt	gtgtttatgt	agttgatctt	960
	gcttgcttat	gtttatgttag	ttgaaaagtt	taaaaatttc	taatccttgg	tagtgatct	1020
	cgctgtttt	ttttttcatt	ttcttagattt	ttgagataag	caatgattct	aagataaaa	1080
	gaacgatgct	aaggccattt	ccttcaggac	gtattagtgt	tccacacgct	gttgcacgg	1140
	ctactattgc	tggtgcttct	ggtgcttgtt	tttggccag	caaggtgaat	gtttgtttt	1200
45	ttatatgtga	tttctttgtt	ttatgaatgg	gtgattgaga	gattatggat	ctaaactttt	1260
	gcttccacga	caaggttatt	gcagactaat	atgttggctg	ctgacttgc	atctgcacat	1320
	cttgcacttt	atgcgtttgt	ttatactccg	ttgaagcaac	ttcacccstat	caatacatgg	1380
	gttggcgctg	ttgttggtgc	tatcccaccc	ttgcttgggt	aaatttttgc	tcctttctt	1440
	ctttattttt	gcagattctg	ttttgttgg	tactgctttt	aattcaaaat	gtatgtatgg	1500
50	ttcaccaatt	ctatgcttat	ctattttgt	tgttgtcagg	tggcggcag	cgtctggta	1560
	gatttcatac	aattcgatga	ttcttccagc	tgctcttac	tttggcaga	tacctcattt	1620
	tatgccctt	gcacatctc	gccgcaatga	ttatgcagct	ggagggtaag	accatatgg	1680
	gtcatatgag	attagaatgt	ctccttccat	gtatgttga	tcttgaacta	gttcaatttc	1740

	gtggaatgt cagagtgtcc tagatagtgt cacagcagtc gacattttag tggctagata	1800
	atgagttctt tccgttagag ataaaacattc gcgaacattg tttccagctt ccgcgaccca	1860
	acttctgatt ttgtttcttg gtaccttgtt ttcaagttaca agatgttgc actctttgat	1920
	ccgtcaggaa agagaatagc agcagtggct ctaaggaact gctttacat gatcccctc	1980
5	ggttcatcg cctatgactg tgagtcttgt agattcatct ttttttgta gtttattgac	2040
	tgcattgctg tatctgattt ttgcgttcc ttccaatttt tgtgacaggg gggtaacct	2100
	caagttggtt ttgcctcgaa tcaacacttc tcacactagc aatcgctgca acagcattt	2160
	cattctaccg agaccggacc atgcataaaag caaggaaaat gttccatgcc agtcttct	2220
	tccttcctgt ttcatgtct ggtcttcttc tacaccgtgt ctctaattgt aatcagcaac	2280
10	aactcgtaga agaagccgga ttaacaaatt ctgtatctgg tgaagtcaaa actcagaggc	2340
	gaaagaaaacg tgtggctcaa cctccggtgg cttatgcctc tgctgcaccg tttcccttcc	2400
	tcccagctcc ttccttctac tctccatgt aaccttaag caagctattt aatttttggaa	2460
	aacagaaaatt aaaaaaaaaa tctgaaaagt tcttaagttt aatctttggtaataatgaa	2520
	gtggagaacg catacaagtt tatgtatttt ttctcatctc cacataattt gatttttct	2580
15	ctaagtatgt ttcaaattgt acaaaaataca tactttatca attatctgtt caaattgtat	2640
	aattttttagt ctttgacgtg ttaggtctat ctaataaacg tagtaacgaa tttggtttgg	2700
	gaaatgaaat ccgataaccg atgatgggt agagttaaac gattaaaccg gttgggtttaa	2760
	aggctcgag tctcgacggc tgccggaaatc ggaaaatcac gattgaggac tttgagctgc	2820
	cacgaagatgt gcgtatgaggt tgaaatcaat	2850

20 <210> 94

21 <211> 3660

22 <212> DNA

23 <213> *Arabidopsis sp*

24 <400> 94

	tatttgtatt tttattgtta aattttatgtt tttcacccgg tataatcat cccatattaa	60
	tattagattt attttttggg ctttatttgtt gtttgcatt taaactgggc ccattctgct	120
	tcaatgaaac cctaattgggt tttgtttggg ctttggattt aaaccgggcc cattctgctt	180
	caatgaaggt ccttgtcca acaaaaactaa catccgacac aactagtatt gccaagagga	240
	tcgtgccaca tggcagttat tgaatcaaag gccgcacaaa ctgtaacgtt gacattactt	300
	atctccggta acggacaacc actcgttcc cgaaacagca actccacagac tcacaccact	360
	ccagtctccg gcttaactac caccagagac gattctctt tccgtcggtt ctatgacttc	420
	gattctcaac actgtctcca ccattccactc ttccagagtt acctccgtcg atcgagtcgg	480
30	agtccctctt ctgcggatt cggattccgt tgagttact cgccggcggtt ctggttctc	540
	gacgttgcattc tacgaatcac ccggtagttt gcattctgtt ggatagattt atgaatgttt	600
	tcttcgattt tttttttact gatcttgtt tggatctctc gttagggcgga gatttgggtt	660
	gcgtgcggcg gagactgata ctgataaagg tatgattttt tagttgtttt tattttctct	720
	ctcttcaaaa ttcttctttc aaacactgtt gcgtttaat ttccgacggc agttaaatct	780
35	cagacacactg acaaggcacc agccgggtt tcaagcatta accagttct cggtatcaaa	840
	ggagcatctc aagaaactgt aattttgttc atctcctcag aatctttaa attatcatat	900
	tttgtggataa tggatgttta gtttaggaat ttccctacta aaggtatct cttttgaggaa	960
	caagtcttgtt ttttagctt gaaatgtatgtt gaaaatgtt gtttagct aaaaagagtt	1020

	tgttgtata ttctgttattc agaataaaatg gaagattcg ttcagctta caaaaccagt	1080
	cacttggcct ccactggttt ggggagtcgt ctgtggtgct gctgcttcag gtaatcatac	1140
	gaaccccttt tggatcatgc aataactgtac agaaaagttt ttcathttcc ttccaattgt	1200
	ttcttctggc agggaaactt cattggaccc cagaggatgt tgctaagtcg attctttgca	1260
5	tgatgatgtc tggccttgtt cttactggct atacacaggt ctggtttac acaacaaaaaa	1320
	gctgacttgt tcttattcta gtgcatttgc ttggtgctac aataacctag acttgtcgat	1380
	ttccagacaa tcaacgactg gtatgataga gatatcgacg caattaatga gccatatcgt	1440
	ccaattccat ctggagcaat atcagagcca gaggttaactg agacagaaca ttgtgagctt	1500
10	ttatctctt tgtgattctg atttctcattt actccttaaa atgcaggttta ttacacaagt	1560
	ctgggtgcta ttattggag gtcttggat tgcttggaaata ttagatgtgt gggtaagttg	1620
	gcccttctga catataactag tacagttaaa gggcacatca gatttgctaa aatctccct	1680
	tatcaggcag ggcataccac tcccactgtc ttctatctt cttgggagg atcattgcta	1740
	tcttatatat actctgctcc acctcttaag gtaagtttta ttcttaactt ccactctcta	1800
15	gtgataagac actccatcca agtttggag ttttgaatat cgatatctga actgatctca	1860
	ttgcagctaa aacaaaatgg atgggttggaa aattttgcac ttggagcaag ctatattagt	1920
	ttgccccatggt aagatatctc gtgtatcaat aatataatggc ttgttctca tctcattgat	1980
	ttgtttcttg ctcacttgac tgataggtgg gctggccaag cattgtttgg cactcttacg	2040
	ccagatgttg ttgttctaac actcttgcac agcatagctg gggtaactctt ttggcaaacc	2100
20	ttttatgttg ctttttcgt tatctgttg aatatgctct tgcttcatgt tgtacctttg	2160
	tgataatgca gtaggaata gcccattgtt acgacttcaa aagtgttcaa ggagatagag	2220
	cattaggact tcagtcttc ccagtagctt ttggcacccga aactgcaaaa tggatatgcg	2280
	ttggtgctat agacattact cagctttctg ttggccgtat gtactatcca ctgttttgc	2340
	gcagctgtgg cttctatttc ttccatttga tcttatcaac tggatattca ccaatggtaa	2400
	agcacaattt aatgaagctg aatcaacaaa ggcaaaacat aaaagtacat tctaattgaaa	2460
25	tgagctaattt aagaggaggc atctactttt atgtttcatt agtgtgattt atggattttc	2520
	atttcatgct tctaaaacaa gtatttcaa cagtgtcatg aaataacaga acttataatct	2580
	tcatttgcac ttttacttagt ggatgagttt cacaatcatt gttatagaac caaatcaaag	2640
	gtagagatca tcatttagt atgtcttattt tggttgcagg atatcttata gcatctggga	2700
	aaccttattt tgcgttggcg ttgggtgctt tgatcattcc tcagattgtg ttccaggtaa	2760
30	agacgttaac agtctcacat tataattat caaatcttg tcactcgctt gattgctaca	2820
	ctcgcttcta taaaactgcag tttaaaatact ttctcaagga ccctgtcaaa tacgacgtca	2880
	agtaccaggta aagtcaactt agtacacatg tttgtgttct tttgaaatattt ctttgagagg	2940
	tctcttaatc agaagttgct tgaacacactc atcttgattt caggcaagcg cgcagccatt	3000
	cttggtgctc ggaatatttg taacggcatt agcatcgcaa cactgaaaaa ggcgtatattt	3060
35	gatggggttt tgtcgaaagc agaggtgtt acacatcaa aatggcaag tgatggcatc	3120
	aactagtttta aagattttt taaaatgtat gtaccgttat tactagaaac aactccgttt	3180
	gtatcaattt agcaaaaacgg ctgagaaatt gtaattgtat ttaccgtatt tgctccat	3240
	ttttgcattt cctgctata tcgaggattt gggtttatgt tagttctgtc acttctctgc	3300
	tttcagaatgt tttttgtttt ctgttagtggaa tttaactat tttcatcact tttgttattt	3360
40	attctaaaca tggatccaca taaaaacagt aatataacaaa aatgatactt cctcaaactt	3420
	tttataatct aaatctaaca actagctgtt aacccaaacta acttcataca attaatttga	3480
	gaaactacaa agactagact atacatatgt tatttaacaa cttgaaactg tggttattact	3540
	acctgatttt tttctatttctt acagccattt gatatgctgc aatcttaaca tatcaagtct	3600

cacgttggtg gacacaacat actatcacaa gtaagacacg aagtaaaacc aaccggcaac 3660

© 2000 All Rights Reserved - 00000000000000000000000000000000