1.7. Vagues successives

Lorsqu'il y a plusieurs couples en dehors du solvant, on peut avoir plusieurs réactions en même temps.

$$\begin{array}{l} \underline{\text{exemples:}} \ \mathsf{I}_{(aq)}^{-} \to \frac{1}{2} \mathsf{I}_{2(aq)} + \mathsf{e}^{-} \\ \\ \text{et} \ \mathsf{I}_{2(aq)} + 6\mathsf{H}_{2}\mathsf{O}_{(I)} \to 2\mathsf{IO}_{3(aq)}^{-} + 12\mathsf{H}_{(aq)}^{+} + 10\mathsf{e}^{-} \end{array}$$

On doit alors ajouter le courant des deux réactions:

On parle de vagues successives quand comme pour le I_2 , l'oxydant formé peut-être à nouveau oxydé.

2. Phénomènes de corrosion humide

Dans la partie précédente on a étudié théoriquement et expérimentalement la cinétique des réactions d'oxydo-réduction pour un couple Ox/Red.

On a montré que les courbes i-E permettent de décrire les propriétés électrochimiques d'un couple Ox/Red.

On a mis en oeuvre le montage à 3 électrodes qui permet de mesurer ces courbes i-E.

Dans cette partie on va utiliser ce formalisme pour étudier les réactions d'oxydo-réduction qui interviennent dans les phénomènes de corrosion.

2.1. Transformations spontanée

On considère un système chimique où interviennent deux couples oxydant/réducteur: Ox_1/Red_1 et Ox_2/Red_2 .

Les courbes i-E nous permettront de décrire les réactions possibles d'oxydo-réduction entre les deux couples.

Une courbe i-E d'un couple est déterminée par $E_{O\!\times/Red}$, $\eta_{a,0}$, $\eta_{c,0}$, ;diff ;diff

Pour deux couples dans une même solution on a deux conditions :

- Ils ont le même potentiel. C'est le potentiel de la solution qui est commune aux deux couples.
- Le courant anodique est égal en valeur absolue au courant cathodique, donc $i_a = -i_c$. Les deux demi-équations d'oxydation et de réduction se font à la même vitesse.

On remarque graphiquement qu'il n'y a qu'un seul potentiel qui permet de vérifier ces deux conditions :

On parle du **potentiel mixte**. Il est nommé mixte car il est déterminé par les deux couples en cherchant le potentiel vérifiant $i_a = -i_c$.

On détermine aussi de manière unique la vitesse de la réaction car $v=\frac{\it i}{\it n\mathcal{F}}$

On a donc déterminé E et v pour la réaction:

$$\mathsf{Ox}_1\,+\,\mathsf{Red}_2\leftrightarrows\mathsf{Ox}_2\,+\,\mathsf{Red}_1$$

En fonction des courbes i-E des deux couples Ox/Red en jeu.

Différents cas rencontrés :

$$E_2 < E_1 \& \eta_{a,0} = \eta_{c,0} = 0$$

réaction rapide

$$E_2 < E_1 \& E_1 + \eta_{c,O} < E_2 + \eta_{a,0}$$

 $E_2 < E_1 \& \eta_{a,0} \neq 0 \ \eta_{c,0} \neq 0$

réaction lente

$$E_1 < E_2$$

bloquée cinétiquement

bloquée thermodynamiquemento

2.2. Corrosion chimique

La **corrosion** désigne les transformations chimiques **spontanées** par lesquelles <u>un métal</u> ou un alliage métallique (un réducteur) **tend à s'oxyder**.

Par exemple le fer se transforme en rouille par corrosion.

On parle de corrosion **humide** quand les réactifs oxydant sont **en** solution.

État initial

État final

On remarque que la corrosion a lieu en présence de O_2 et H_2O simultanément. Et que la présence d'ions favorise la corrosion.

Les couples oxydant/réducteur qui interviennent sont Fe^{2+}/Fe et H^+/H_2 si milieu acide ou O_2/HO^- si milieu neutre oxygéné. C'est une transformation spontanée on peut donc à partir des courbes i-E déterminer le potentiel mixte, qu'on nomme ici **potentiel de corrosion**.

On peut aussi déterminer l'intensité du courant anodique, qu'on nomme ici **intensité de courant de corrosion**.

Si on considère un milieu acide on prend en considère l'oxydant du couple H^+/H_2 . Puis on peut étudier la corrosion.

Aspect thermodynamique: diagramme E-pH

On remarque plusieurs domaines :

- 1 $Fe_{(s)}$ favorisé \Rightarrow immunité
- 2 $Fe_{(aq)}^{2+}$ favorisé \Rightarrow corrosion
- 3 $\operatorname{Fe_2O_{3(s)}}$ favorisé \Rightarrow couche d'oxyde protectrice \Rightarrow passivation

Aspect cinétique: courbe i-E

On retrouve nos 3 domaines thermodynamique plus un $4^{\mathrm{i\`e}\mathrm{me}}$:

- **•** pour *E* très négatif, i = 0, le $Fe_{(s)}$ est stable
- ▶ puis $i \neq 0$, le métal est corrodé en Fe²⁺
- ightharpoonup puis i o 0, le film de $\operatorname{Fe_2O_{3(s)}}$ imperméable bloque la réaction
- ▶ puis i \nearrow le film se dégrade la réaction reprend

A partir des trois graphes précédents on peut maintenant expliquer

Corrosion uniforme vs corrosion différentielle:

On a étudié dans les diapositives précédentes un cas de corrosion humide **uniforme**, toute la surface de l'électrode de Fer est corrodée **de la même façon en tout point** en contact avec la solution.

On peut aussi observer une corrosion humide différentielle, si la corrosion s'exerce de manière différente sur les différentes zones du système.

exemples: la goutte d'Evans - hétérogénéité du milieu

cathod

cathode

 $OH^- + O_2 + Fe^2$

- On verse une goutte d'eau salée sur une plaque de Fer.
- On y ajoute l'indicateur coloré: phénolphtaléine qui devient rose en présence d'ions HO⁻.
- On y ajoute l'indicateur coloré:

hexacyanoferrate de potassium qui forme un précipité bleu en présence d'ions Fe²⁺

exemples: le clou - hétérogénéité du support

exemples: corrosion galvanique ou corrosion bimétallique

