Digital System Design and Lab: HW3

Lo Chun, Chou R13922136

April 25, 2025

1

By lecture slide LEC-09 p.10-11, we knew that using two three-state buffers with one inverter could do data selection, and is equivalent to a 2-to-1 MUX:

So, we can use the two 4-to-1 MUXs and this setting to implement the 8-to-1 MUX as follows:

$\mathbf{2}$

The derivation process and the resulting truth table are shown below:

The following is the different cases of the latch:

(1)

From the above cases, we can see that when R=1 and H=0, $P=1\neq Q'=0.$ Therefore, we should not let:

$$R=1$$
 and $H=0$

(2)

The next-state table is shown below:

R	Н	Q	Q+
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	X
1	0	1	1
1	1	0	X
1	1	1	1

And we can construct the K-map as follows:

HOR	D	1
0 0	0	X
o	0	J
l	1	
ا ۵	0	*

Which would give us the characteristic equation:

$$Q^+ = R + H \cdot Q$$