Resistor Detection and Classification Using Support Vector Machines

David McNeil

Rose-Hulman Institute of Technology mcneilde@rose-hulman.edu

Overview

- Introduction
- 2 Detection
- Classification
- 4 Examples
- Conclusion

Objective

Successfully be able to detect and classify resistors in an image.

- Detection— Determining the location of the resistors in the image
- Classification

 Determining the resistor value based on color codes

Resistor Color Codes

Assumptions

- Resistors are all of a standard type
- Resistors are of a similar size in images
- Images are all of the same resolution
- Images have a similar white balance
- Images have been taken on a white background
- Images have been taken with a consistent camera angle
- Images only include resistors

Detection

Basic Approach

- Convert image to black and white (binary image)
- Convolve the binary image with a binary mask of a resistor
- Rotate the binary mask and convolve again, repeat at 10° intervals
- Find local maximum in the convolved space

Initial Image

Binary Image

Resistor Mask

Convolved Images

Mask at 0°

Mask at 90°

Classification

Basic Approach

- Collect 3x3 mean RGB data from each color band and base resistor color
- Train support vector machine (SVM) classifier
- Apply prediction to each pixel in resistor
- Use statistical results of classification to determine resistor value

Train Classifier

- 11 class problem
- 880 training points
- 220 verification points
- Used radial basis kernel function $K(x, x') = \exp(\gamma ||x x'||^{1})$
- 5 fold cross validation
- Grid search for cost function (C) and γ
- Cross Validation Accuracy = 95.4649%
- Verification Accuracy = 94.5701%

Future Work

- Use classification data to determine color code
- Use line walking method and standard resistor values to improve accuracy
- Create augmented reality mobile app

Questions?

