Исследование вольт-амперных характеристик структуры n-CdS-p-CdTe с протяженным слоем промежуточного твердого раствора

© Ш.А. Мирсагатов, А.Ю. Лейдерман, Б.У. Айтбаев, М.А. Махмудов

Физико-технический институт Научно-производственного объединения "Физика-Солнце" Академии наук Узбекистана, Ташкент, Узбекистан

E-mail: mirsagatov@ramler.ru

(Поступила в Редакцию в окончательном виде 20 февраля 2009 г.)

Приведены результаты исследований гетероструктур n-CdS-p-CdTe с протяженным слоем промежуточного твердого раствора, для которого соблюдается соотношение $w/L\approx 10~(w-$ длина базы, L- диффузионная длина неосновных носителей). Вольт-амперные характеристики таких структур в значительном диапазоне изменений напряжения хорошо описываются степенными закономерностями типа $J\approx AV^{\alpha}$, где показатель степени α меняется с ростом напряжения. Результаты объясняются в рамках теории дрейфового механизма переноса тока, учитывающей возможность обмена свободными носителями внутри рекомбинационного комплекса.

Работа выполнена по грантам ФА-ФО32 и ФА-ФО27-ФО28 Фонда фундаментальных исследований АН Узбекистана.

PACS: 73.61.Ga, 73.40.Rw, 72.10.-d

1. Введение

В последние годы интенсивно исследуются различные полупроводниковые структуры на основе поликристаллического CdTe. В первую очередь это гетероструктуры $n\text{-}\mathrm{CdS}-p\text{-}\mathrm{CdTe}$, часто используемые как солнечные элементы. Интерес к ним связан с дороговизной кремниевых и арсенид-галлиевых аналогов. В работах [1–4] было показано, что на границе раздела гетероструктуры $n\text{-}\mathrm{CdS}-p\text{-}\mathrm{CdTe}$ формируется твердый раствор (TP) CdTe_{1-x}S_x, неоднородный не только по проводимости, но и по составу, который сильно зависит от технологических параметров, прежде всего от температуры подложки.

В настоящей работе приводятся результаты исследований гетероструктур n-CdS-p-CdTe, у которых толщина высокоомного твердого раствора $\text{CdTe}_{1-x}\text{S}_x$ составляет $\sim 3-4\,\mu\text{m}$. Она была измерена по сколу с торца структуры на электронном микроскопе МИМ-8, как в [5]. Цель настоящей работы — объяснить вольт-амперные характеристики (ВАХ) таких структур с единой точки зрения, принимающей во внимание возможность электронного обмена внутри сложных рекомбинационных комплексов, возникающих в промежуточном твердом растворе в процессе выращивания этих гетероструктур.

Для проведения исследований гетеропереходы n-CdS-p-CdTe были изготовлены по технологии, описанной в [2]. Верхний П-образный контакт, со стороны которого осуществляется освещение, изготавливался из индия при помощи напыления в вакууме $\sim 10^{-5}\,\mathrm{Torr}$. Тыльный контакт был изготовлен из молибдена. Базовым материалом служили пленки p-CdTe, сопротивление которых было равно $\rho \approx 10^2 - 10^3\,\Omega \cdot \mathrm{cm}$, а толщина $d\approx 70\,\mu\mathrm{m}$. Пленки состояли из блоков микрокристаллов

со столбчатой структурой зерен, ориентированных по направлению роста и разориентированных по азимуту. Размеры зерен находились в пределах от 100 до $150\,\mu\text{m}$, так что зерна охватывали всю толщину пленки.

ВАХ регистрировались в прямом (когда "+" прикладывался к p-CdTe) и обратном (когда "-" прикладывался к p-CdTe) направлениях в широких пределах изменения тока и напряжения. На рис. 1,2 приведены зависимости ВАХ для прямого и обратного направлений тока в двойном логарифмическом масштабе для двух типов образцов. Эти образцы были получены при одной и той же температуре источника и подложки, но при различных уровнях вакуума и длительности технологического процесса. Общий анализ ВАХ показывает, что все они обладают выпрямляющими свойствами. Их коэффициенты выпрямления $K = J_d/J_r$ соответственно равны 250 (образце № 1) и 200 (образец № 2). Кроме того, ВАХ этих образцов, построенные в двойном логарифмическом масштабе, как в прямом, так и в обратном направлениях тока хорошо укладываются на прямые. Следовательно, они описываются степенными зависимостями типа $J = AV^{\alpha}$. Последовательность участков ВАХ этих образцов разная в прямом и обратном направлениях тока. Следует отметить, что в [6] исследовались сублинейные участки ВАХ гетероструктуры n-CdS-p-CdTe с "толстой" базой, когда $w/L \approx 3-5$. В настоящей работе исследуются ВАХ гетероструктур n-CdS-p-CdTe с более протяженным слоем промежуточного твердого раствора, когда $w/L \approx 8-10$.

2. Теоретические предпосылки

Следует напомнить, что почти сразу после опубликования фундаментальной работы Шокли-Рида [7],

посвященной статистике рекомбинации свободных носителей в полупроводниках с простыми рекомбинационными центрами, стали повляться работы, указывающие на случаи, когда она должна быть дополнена и усовершенствована. Во всех них речь шла о необходимости учета обмена носителями между компонентами сложного рекомбинационного комплекса. В модели Ржанова [8] электронный обмен может происходить между основным и возбужденным состояниями рекомбинационного центра, в работах [9,10] между компонентами донорно-акцепторной пары или компонентами двухуровневого рекомбинационного комплекса любой природы, в работах [11,12] — между компонентами сложных комплексов типа "отрицательно заряженный акцептор + положительно заряженный ион внедрения" или "положительно заряженный донор + отрицательно заряженная вакансия", возникающих в результате рекомбинационно-стимулированных процессов, а в работах [13,14] — при распаде сложных комплексов типа "мелкий донор + вакансия". В результа-

Рис. 1. Вольт-амперные характеристики типа $I \sim V^{\alpha}$ с различными наклонами при прямом (a) и обратном (b) направлениях тока для образца № 1. a) I — 1, 2 — 2, 3 — 2.6, 4 — 3.7; b) I — 1.92, 2 — 2.5, 3 — 5.

Рис. 2. То же, что на рис. 1, для образца № 2. a) I — 1.9, 2 — 3.3, 3 — 2; b) I — 0.45, 2 — 1, 3 — 2.3, 4 — 4..

те выражение для скорости рекомбинации претерпевает принципиальное изменение и принимает вид [15]

$$U = N_R \frac{c_n c_p (np - n_i^2)}{c_n (n + n_1) + c_p (p + p_1) + a \tau_i np},$$
 (1)

где N_R — концентрация рекомбинационных центров (комплексов), n, p — концентрации электронов и дырок, n_i — собственная концентрация в полупроводнике, c_n, c_p — коэффициенты захвата электронов и дырок, n_1, p_1 — равновесные концентрации электронов и дырок в условиях, когда уровень Ферми совпадает с уровнем примеси (так называемые статические факторы Шокли—Рида), τ_i — время, учитывающее те или иные процессы электронного обмена внутри рекомбинационного комплекса, a — коэффициент, зависящий от конкретного типа примесных или дефект-примесных комплексов (см. [15]). Несмотря на различия, во всех перечисленных выше случаях прослеживается одна общая закономерность — рекомбинация неравновесных электронов и

дырок происходит с задержкой, и учет инерционности электронного обмена внутри рекомбинационного комплекса обусловливает появление последнего члена в знаменателе формулы (1), который при достаточно высоком уровне возбуждения может стать определяющим.

При малом уровне возбуждения вклад последнего члена в знаменателе (1) пренебрежимо мал, выполняется условие $c_n(n+n_1)+c_p(p+p_1)\gg a\tau_i np$, и скорость рекомбинации описывается статистикой Шокли–Рида. При этом ВАХ в дрейфовом режиме токопереноса имеет обычный вид, соответствующий омической релаксации объемного заряда [16],

$$V \equiv \sqrt{\frac{8w^3J}{9q\mu_p\mu_n\tau_p N_D}} \equiv B_0\sqrt{J}.$$
 (2)

Здесь μ_p , τ_p — подвижность и время жизни дырок, μ_n — подвижность электронов, J — плотность тока, w — толщина базы, соответствующая в нашем случае толщине промежуточного твердого раствора $\mathrm{CdTe}_{1-x}\mathrm{S}_x$. Когда последнее слагаемое в знаменателе (1) только начинает проявляться, ток как функция напряжения подчиняется закономерности [15]

$$V = M(J) B_0 \frac{\sqrt{J}}{2}, \tag{3}$$

$$M \approx 1 + 3m \left[2 + C(a\tau_i/c_n)\sqrt{J} \right]^2, \tag{4}$$

причем $m=2\tau_iN_DV_n^*/8b(b+1)p_nw$, $b=\mu_n/\mu_p$, $C=[bp_n/qV_n^*(b+1)]$, где V_n^* — параметр, обусловленный неидеальным характером инжектирующего контакта (см. подробнее [17]), N_D — концентрация мелких донорных примесных центров. Эта зависимость позволяет объяснить небольшие отклонения от закона (2). Согласно теории [15], участки ВАХ $J\sim V^\alpha$, где $\alpha>2$, реализуются тогда, когда рекомбинация неравновесных носителей тока идет с задержкой, т.е. с участием комплексов, внутри которых происходит электронный обмен. В этом случае в знаменателе выражения (1) реализуется неравенство

$$c_n(n+n_1) + c_n(p+p_1) < a\tau_i np$$
 (5)

и ВАХ имеет следующее аналитическое выражение:

$$V = \frac{(b+1)w^{2}N_{R}}{N_{D}\mu_{p}\tau_{i}} + \frac{w\sqrt{J}}{q\mu_{p}(b+1)C} - \frac{2(b+1)w^{2}N_{R}c_{n}}{N_{D}\mu_{p}a\tau_{i}C\sqrt{J}}$$

$$= A + B\sqrt{J} - \frac{D}{\sqrt{J}}.$$
(6)

В нашем случае концентрация мелких донорных центров $N_D=N_d-N_a$, так как база структуры, $i(\mathrm{CdTe}_{1-x}\mathrm{S}_x)$ -слой, является сильно компенсированным материалом. Параметр C связан с концентрацией дырок на границе $p\text{-}\mathrm{CdTe}$ с твердым раствором выражением [15,17]

$$p(0) = C\sqrt{J}. (7)$$

Зависимость (6) позволяет описать любое значение наклона ВАХ типа $J \sim V^{\alpha}$, в том числе участка резкого роста. Затем, когда последний член в знаменателе выражения (1) начинает играть определяющую роль и скорость рекомбинации выходит на полное насыщение $U \approx N_R/\tau_i$, появляется второй квадратичный участок, на котором ВАХ описывается выражением [15]

$$V = \frac{(b+1)w^2 N_R}{2N_d \mu_p \tau_i} + \frac{w\sqrt{J}}{q\mu_p (b+1)}.$$
 (8)

3. Сопоставление теории и эксперимента, определение параметров

Как видно из рис. 1, а, при малом уровне возбуждения ВАХ описывается линейной зависимостью тока от напряжения, которая затем (при $n > n_0$) сменяется квадратичной $J \sim V^2$. Предполагая, что этот участок описывается формулой (2), вычисляем значение $\mu_p \tau_p \approx 4 \cdot 10^{-8} \, \mathrm{cm}^2/\mathrm{V}$. При этом сначала по наклону зависимости $J \sim V^2$ определяем величину $B_0 \approx 100 \, \mathrm{V} \cdot \mathrm{cm} \cdot \mathrm{A}^{-1}$, а значение $N_D \approx 2.5 \cdot 10^{10} \, \mathrm{cm}^{-3}$ находим из линейного участка ВАХ. На этом образце также исследовалась релаксация неравновесных носителей тока как в отсутствие напряжения, так и при различных величинах напряжения. Релаксационная кривая в отсутствие напряжения описывается двумя экспоненциальными зависимостями: $\ln \Delta n \approx \ln \Delta n_0 - \frac{t}{\tau_1}$ и $\ln \Delta n \approx \ln \Delta n_0 - \frac{t}{\tau_2}$, из которых были определены постоянные времени, равные $au_1 \approx 6.6 \cdot 10^{-8} \, \mathrm{s}$ и $au_2 \approx 1.15 \cdot 10^{-7} \, {\rm s}$ соответственно. Допуская, что время жизни неосновных неравновесных носителей тока дырок — $au_1 \approx 6.6 \cdot 10^{-8} \, \text{s}$, из найденного произведения $\mu_p au_p \approx 4 \cdot 10^{-8} \, \text{cm}^2/\text{V}$ определяем $\mu_p \approx 0.6 \, \text{cm}^2/\text{V} \cdot \text{s}$, что неплохо согласуется со значением подвижностей для дырок в соединениях A^2B^6 , в том числе для твердых растворов $CdTe_{1-x}S_x$ [18].

На прямой ВАХ (рис. 1, a) после участка $J \sim V^2$ следуют участки $J \sim V^{2.6}$ и $J \sim V^{3.7}$, которые, согласно теории [15], реализуются, когда рекомбинация неравновесных носителей происходит с участием комплексов с внутренним электронным обменом, и описываются выражением (6). Оно позволяет описать любое значение наклона ВАХ типа $J \sim V^\alpha$ с $\alpha > 2$. Отсюда можно определять такие параметры, как N_R/τ_i , p(0), $\frac{c_n}{a\tau_i}$ (τ_i — время задержки внутри комплекса, N_R — концентрация комплексов). Составляя уравнение прямой линии для двух заданных экспериментальных точек (J_1, V_1 и J_2, V_2), определяем значение напряжения

$$V = V_1 - \frac{V_1 - V_2}{I_2 - I_1} J_1, \tag{9}$$

которое затем приравниваем к значению $A = \frac{(b+1)w^2N_R}{N_D\mu_p\tau_i}$ из формулы (6). Далее, подставляя значения $w=3\,\mu m$,

Номер образца	Участок ВАХ	$\mu_p, au_p, ext{ cm}^2 \cdot ext{V}^{-1}$	N_R/τ , cm ³ · s ⁻¹	$p(0), \text{cm}^{-3}$	N_D , cm ⁻³
		Прямая	BAX		
	$J \sim V$ $J \sim V^2$ (закон	$4 \cdot 10^{-8}$			$2.5 \cdot 10^{10}$
1	Ламперта) $J \sim V^{2.6} \ J \sim V^{3.7}$		$3.1 \cdot 10^{16} \\ 4.1 \cdot 10^{17}$	$3 \cdot 10^{10} - 1.5 \cdot 10^{12} \\ 2 \cdot 10^{11} - 1.6 \cdot 10^{12}$	
2	$J \sim V^2 \ J \sim V^{3.8} \ J \sim V^2$	$8 \cdot 10^{-7}$	$3.7 \cdot 10^{15} \\ 3.2 \cdot 10^{16}$	$9.2 \cdot 10^8 - 8.2 \cdot 10^9 \\ 5.8 \cdot 10^{10} - 4.5 \cdot 10^{11}$	
		Обратна	я ВАХ		
1	$J \sim V^2$ (закон Ламперта) $J \sim V^{2.5}$ $J \sim V^5$	4.3 · 10 ⁻⁸	$1.7 \cdot 10^{16} \\ 8.4 \cdot 10^{16}$	$1.8 \cdot 10^9 - 3.9 \cdot 10^{10} 4.5 \cdot 10^{10} - 5.1 \cdot 10^{11}$	
2	$J \sim V^{1/2} \ J \sim V \ J \sim V^{2.6} \ J \sim V^4$		$3.4 \cdot 10^{14} \\ 2.5 \cdot 10^{15}$	$2 \cdot 10^8 - 8.2 \cdot 10^8$ $5.3 \cdot 10^9 - 3.3 \cdot 10^{10}$	7.5 · 10 ⁹

Таблица 1. Параметры, определенные из участков ВАХ

b=10~ [18], $\mu_p\approx 0.6~{\rm cm^2/V\cdot s}$ и $N_D\approx 2.5\cdot 10^{10}~{\rm cm^{-3}}$ в (6), определяем $N_R/\tau_i\approx 3.1\cdot 10^{16}~{\rm cm^{-3}\cdot s^{-1}}$ для участка $J\sim V^{2.6}$ и $N_R/\tau_i\approx 4.1\cdot 10^{17}~{\rm cm^{-3}\cdot s^{-1}}$ для участка $J\sim V^{3.7}$. Из наклона участка резкого роста тока при помощи формулы (6) определяем $\mu_p C$, а по формуле (7) оцениваем концентрацию инжектированных дырок p(0) в начале и в конце этих участков. Все параметры, вычисленные из участков ВАХ, приводятся в таблице 1.

Как видно из рис. 1, b, обратная BAX также описывается степенными зависимостями: $J \sim V^{\alpha_1} \ (\alpha_1 \approx 2)$; $J \sim V^{\alpha_2} ~(\alpha_2 \approx 2.5)$ и $J \sim V^{\alpha_3} ~(\alpha_3 \approx 5)$. Такую смену последовательности закономерностей ВАХ можно объяснить тем, что базовый $i(CdTe_{1-x}S_x)$ -слой неоднороден не только по проводимости, но и по составу. Поэтому возможна реализация условий протекания тока в режиме двойной инжекции при разных полярностях приложенного напряжения. Значение $\mu_p \tau_p = 4.3 \cdot 10^{-8} \, \mathrm{cm}^2 \cdot \mathrm{V}^{-1}$, вычисленное из первого участка обратной ВАХ $J \sim V^2$ при помощи выражения (2), хорошо согласутеся с данными, найденными из прямой ВАХ. При этом значение N_d , определенное из значений тока и напряжения в начале данного участка, является его верхним пределом. На участках $J \sim V^{2.5}$ и $J \sim V^5$ обратной ВАХ происходит резкий рост тока, т.е. следует ожидать выполнения условия (5), когда ВАХ описывается формулой (6), что позволяет определять параметры N_R/τ_i , $\mu_p C$ и p(0) теми же методами, которые были использованы при оценке их значений из прямой ВАХ (табл. 1).

Для определения параметров из участка резкого роста тока выбирались три экспериментальные точки: (V_1, J_1) , (V_2, J_2) , (V_3, J_3) , и для них составляли три уравнения

для определения коэффициентов B и D

$$B = \frac{V_2 - V_1}{\sqrt{J_2} - \sqrt{J_1}} - \frac{D\left(\frac{1}{\sqrt{J_1}} - \frac{1}{\sqrt{J_2}}\right)}{\sqrt{J_2} - \sqrt{J_1}},\tag{10}$$

$$D = \frac{(V_3 - V_2) - (V_2 - V_1) \frac{\sqrt{J_3} - \sqrt{J_2}}{\sqrt{J_2} - \sqrt{J_1}}}{\left(\frac{1}{\sqrt{J_2}} - \frac{1}{\sqrt{J_3}}\right) - \left(\frac{1}{\sqrt{J_1}} - \frac{1}{\sqrt{J_2}}\right) \frac{\sqrt{J_3} - \sqrt{J_2}}{\sqrt{J_2} - \sqrt{J_1}}},$$
 (11)

которые затем приравнивались к их аналитическим значениям в формуле(6), что позволило оценить значения $\mu_p C$, p(0), N_t/τ_i из прямой и обратной BAX (табл. 1).

У образца № 2 на первом участке прямой ВАХ ток подчиняется закономерности (3). Степень отклонения от закона Ламперта (2) была установлена следующим образом. Сначала из наклона экспериментальной прямой $J \sim V^2$ определяем $M(I)B_0$, затем из выражения (3), где $B_0 = \sqrt{\frac{8w^3}{9q\mu_p\mu_n\tau_pN_D}}$, находим $\mu_p\tau_p\approx 8\cdot 10^{-7}~{\rm cm}^2/{\rm V}$. Из соотношения $\frac{w}{L}\geq 10$, которое обычно реализуется в режиме Ламперта, определяем $\mu_p\tau_p\approx 3.5\cdot 10^{-8}~{\rm cm}^2/{\rm V}$. Далее, взяв отношение $\frac{(\mu_p\tau_p)_{\rm exp}}{(\mu_p\tau_p)_{\rm calc}}$, находим, что $M(J)^2=22.85$, т.е. параметр отклонения от закона Ламперта M(J)=4.78. (Следует отметить, что эта величина является усредненным значением, поскольку M меняется с ростом тока на протяжении всего участка).

Второй квадратичный участок ВАХ, описываемый (8), появляется после участка резкого роста, когда скорость рекомбинации выходит на полное насыщение $U \approx N_R/\tau_i$. Оценка значения $\frac{N_R}{\tau_i}$ для данного участка проводится как

Номер	Полярность	V, V	au, s		
образца			$ au_1$	$ au_2$	$ au_3$
1	Прямая ВАХ	0	$6.6 \cdot 10^{-8}$	$1.15 \cdot 10^{-7}$	
	•	0.1	$8 \cdot 10^{-8}$	$3.7 \cdot 10^{-7}$	
		1	$3.4 \cdot 10^{-5}$	$8.2 \cdot 10^{-5}$	$9.6 \cdot 10^{-5}$
		6	$9 \cdot 10^{-5}$	$3.1 \cdot 10^{-4}$	$1.2 \cdot 10^{-3}$
	Обратная ВАХ	0.1	$5 \cdot 10^{-8}$	$2.1 \cdot 10^{-7}$	
	•	2	$3 \cdot 10^{-5}$	$1.6 \cdot 10^{-4}$	$8.7 \cdot 10^{-4}$
		7	$1.2 \cdot 10^{-4}$	$4.9 \cdot 10^{-4}$	$1.4 \cdot 10^{-3}$
2	Прямая ВАХ	0	10^{-7}	$3.9 \cdot 10^{-7}$	
	•	0.3	$2.5 \cdot 10^{-5}$	$6.1 \cdot 10^{-5}$	$1.9 \cdot 10^{-4}$
		1	$8.9 \cdot 10^{-5}$	$1.6 \cdot 10^{-4}$	$2.3 \cdot 10^{-4}$
	Обратная ВАХ	1	$1.5 \cdot 10^{-7}$	$3.4 \cdot 10^{-7}$	
	_	3	$2.1 \cdot 10^{-5}$	$7 \cdot 10^{-5}$	
		8	$1.1 \cdot 10^{-4}$	$4.8 \cdot 10^{-4}$	$1.6 \cdot 10^{-3}$

Таблица 2. Значения времен жизни, измеренных фотоэлектрическим методом и по релаксации электрического сигнала

для участка резкого роста тока. Составляем уравнения прямой для двух экспериментальных точек и определяем постоянную, соответствующую значению первого члена выражения (8),

$$k = \frac{(b+1)w^2 N_R}{2N_d \mu_p \tau_i}. (12)$$

Далее, подставляя значения w,b,N_R в (12), находим $\frac{N_R}{\tau_i} \approx 3.1 \cdot 10^{16} \, \mathrm{cm}^{-3} \cdot \mathrm{s}^{-1}$, а по наклону зависимости $J \sim V^2$ определяем значение $\mu_p C$.

На обратной ВАХ у образца № 2 наблюдаются следующие участки: $J \sim V^{0.45}$, $J \sim V$, $J \sim V^{2.3}$ и $J \sim V^4$. Такая последовательность ВАХ объясняется неоднородностью слоя $i(CdTe_{1-x}S_x)$ по составу. Вероятно, вначале главную роль играет самый высокоомный слой твердого раствора, подтверждением этого является появление зависимости $J \sim V^{0.45}$ (т. е. почти $J \sim V^{0.5}$), которая присуща ВАХ p-i-n-структур в режиме эксклюзии. С ростом плотности тока (начиная с $J = 10^{-6} \,\text{A/cm}^2$) этот слой модулируется, ток в структуре ограничивается сопротивлением достаточно толстого и высокоомного слоя ТР $CdTe_{1-x}S_x$ другого состава и описывается почти линейной зависимостью от напряжения на проятжении полутора порядков тока. Значения $\frac{N_R}{\tau_i},\ p(0),$ вычисленные из участков $J\sim V^{2.3}$ и $J\sim V^4$ при помощи формулы (6), равны $3.4 \cdot 10^{14}$ cm⁻³ · s⁻¹, $2 \cdot 10^8 - 8.2 \cdot 10^8$ cm⁻³ и $\sim 2.5 \cdot 10^{15} \,\mathrm{cm}^{-3} \cdot \mathrm{s}^{-1}$, $5.3 \cdot 10^9 - 3.3 \cdot 10^{10} \,\mathrm{cm}^{-3}$ соответственно (табл. 1). Время жизни неосновных носителей тока (τ_p) измерялось фотоэлектрическим методом и по релаксации электрического сигнала в режиме V_{cc} [19,20]. При измерениях фотоэлектрическим методом использовались светодиоды, излучающие в области длин волн 0.45, 0.54, 0.69 и $0.95\,\mu\mathrm{m}$. На эти светодиоды подавались прямоугольные импульсы длительностью порядка $100 \,\mu s$ с крутизной фронта не более $2 \cdot 10^{-8} \, s$. Интервал между импульсами был порядка $10^{-4} - 10^{-3}$ s.

Использование набора светодиодов позволяет прозондировать слои TP разного состава.

При измерении τ_p методом релаксации электрического сигнала с генератора калиброванных импульсов Г5-53 подавались П-образные импульсы с амплитудой $60-80\,\mathrm{mV}$ и длительностью $100-200\,\mu\mathrm{s}$. Крутизна таких импульсов составляла не более $2\cdot 10^{-8}\,\mathrm{s}$, а интервал — не менее $5\cdot 10^{-4}\,\mathrm{s}$. В табл. 2 приводятся данные для τ , измеренных как в отсутствие постоянного смещения, так и на всех участках прямых и обратных ВАХ.

4. Результаты и обсуждение

Анализ ВАХ гетероструктур n-CdS-p-CdTe с протяженным промежуточным слоем ТР показывает, что как в прямом, так и в обратном направлении тока преобладает дрейфовый механизм переноса, который, как известно, реализуется в диодных структурах с длинной базой (с размерами $w/L \geq 10$). В нашем случае базой является ТР $\text{CdTe}_{1-x}\mathbf{S}_x$, возникающий не гетерогранице n-CdS-p-CdTe. Проявление на экспериментальных кривых участков типа $J \sim V^\alpha$ с различными наклонами позволяет предполагать, что в базе исследуемой гетероструктуры реализуется рассмотренная выше модель, учитывающая влияние инерционности внутрикомплексного электронного обмена на процессы рекомбинации и токопереноса.

На прямой ВАХ образца № 1 после линейного участка следует квадратичная завиимость тока от напряжения типа (2), а затем — два участка резкого роста тока $J \sim V^{2.6}$ и $J \sim V^{3.7}$, что не предусмотрено в модели [15]. Это, вероятно, связано с неоднородностью базового слоя $i(\text{CdTe}_{1-x}\text{S}_x)$ по составу. Значения времени жизни на этих участках лежат в пределах $10^{-4} - 10^{-3}$ s (табл. 2), а концентрация рекомбинационных центров N_R — порядка $10^{13} \sim 10^{14} \, \text{cm}^{-3}$, так что

базовый слой $i(CdTe_{1-x}S_x)$ является сильно компенсированным материалом. Последовательность участков прямой ВАХ у образца № 2 полностью соответствует смене участков ВАХ, предсказанной в [15]. Здесь зависимость типа $V \sim \sqrt{J}$ сменяется более сильной $J \sim V^{3.8}$, а затем ВАХ переходит на новый, квадратичный по напряжению участок, описываемый формулой (8). Проведенный анализ показывает, что на первом участке закон Ламперта $J \sim V^2$ (2) строго не выполняется, а реализуется закон (3), который, согласно [15], имеет место, когда в знаменателе выражения (1) еще выполняется неравенство $c_n(n+n_1) + c_p(p+p_1) > a\tau_i np$, но последний член уже начинает играть некоторую роль. Следовательно, в рекомбинационных процессах наряду с точечными рекомбинационными центрами участвуют и сложные дефект-примесные комплексы, внутри которых происходит электронный обмен. Значение $M(J) \approx 4.8$ определяет степень участия этих сложных комплексов в рекомбинации. Хотя значения N_R/τ_i и p(0) (табл. 1), соответствующие участкам $J \sim V^{3.8}$ и $J \sim V^2$, различаются более чем на порядок, однако они по величине малы. Это показывает, что у второго типа образцов слой $i(CdTe_{1-x}S_x)$ также является сильно компенсированным материалом.

При анализе ВАХ для обратного направления тока следует отметить, что хотя у всех образцов все участки ВАХ описываются зависимостями типа $J \sim V^{\alpha}$ (рис. 1,b,2,b), однако смена этих участков не всегда соответствует последовательности, которая была рассмотрена в [15]. Так, на образце № 1 первый участок описывается законом Ламперта, который сменяется участком резкого роста тока $J \sim V^{2.5}$, а затем следует наиболее сильная зависимость $J \sim V^5$, т. е. два участка резкого роста тока сменяют друг друга. Такую последовательность участков ВАХ, как указывалось выше, можно объяснить неоднородностью базового слоя структуры по составу.

На обратной зависимости ВАХ образца № 2 также имеются два участка резкого роста тока, которые сменяют друг друга. Вначале имеется зависимость $J \sim V^{1/2}$, вслед за которой следует линейная зависимость тока от напряжения. Смена зависимости $J \sim V^{1/2}$ на линейную означает, что наиболее сильно компенсированный тонкий слой твердого раствора одного состава сменяется на сравнительно толстый и менее компенсированный слой другого состава. Вид этих участков ВАХ и смена их последовательности находят свое полное объяснение в рамках модели, предложенной в [15], если допустить, что слой $i(CdTe_{1-x}S_x)$ состоит не менее чем из трех слоев разного состава. Именно поэтому при приложении к структуре напряжения различной полярности наблюдаются закономерности типа $I \sim V^{\alpha}$ с различными наклонами, характерные для двойной инжекции. При этом на обратной ВАХ закономерности типа $I \sim V^{\alpha}$ проявляются при сравнительно низких уровнях возбуждения, в силу чего значения параметров, вычисленных из участков обратной ВАХ, значительно ниже, чем значения аналогичных параметров, определенных из прямой ВАХ. Многослойность твердого раствора $CdTe_{1-x}S_x$ можно также доказать путем измерения рекомбинационных постоянных. Так, измерение временных постоянных, проведенное на образце № 1 по методу релаксации электрического сигнала в отсутствие постоянного смещения, показывает наличие двух временных постоянных: $au_1 \approx 6.6 \cdot 10^{-8} \,\mathrm{s}$ и $au_2 \approx 1.15 \cdot 10^{-7} \,\mathrm{s}$. Электрический метод позволяет зондировать все слоя твердого раствора. В p-i-n-структурах наиболее высокоомной частью является i-слой, в нашем случае — слой $i(CdTe_{1-x}S_x)$. поэтому приложенное тестовое напряжение падает в основном на этом слое, и релаксационные кривые, наблюдаемые в эксперименте, соответствуют этому слою. Причем для явного проявления релаксационных процессов в слоях ТР концентрация инжектированных носителей п должна быть больше или равна концентрации равновесных носителей n_0 , т.е. $n \ge n_0$, Вероятно, $\tau_1 \approx 6.6 \cdot 10^{-8} \,\mathrm{s}$ соответствует времени жизни неосновных носителей тока (дырок) на участке прямой ВАХ, где наблюдается закон Ламперта (2), а $\tau_2 \approx 1.15 \cdot 10^{-7}$ s характеризует кинетический процесс слоя $TP \ CdTe_{1-x}S_x$ с другим составом, в котором рекомбинационные процессы идут по двум каналм — через простые локальные центры и через сложные комплексы, так что скорость рекомбинации описывается выражением (1). Из данных табл. 2 следует, что с ростом напряжения на структуре наблюдается увеличение значения временных постоянных, которые достигают порядка $\sim 10^{-3}$ s. Кроме того, на релаксационных кривых наблюдаются два или три значения временных постоянных. Это означает, что с ростом плотности тока на структуре возрастает участие в рекомбинационных процессах сложных комплексов, внутри которых происходит задержка электронов. Проявление при одной и той же плотности тока несколько временных постоянных на кривой релаксации показывает, что в рекомбинационных процессах одновременно участвует несколько типов комплексов.

В составе ТР легколетучей компонентой являются атомы кадмия. Поэтому в подрешетке атомов кадмия легко образуются их однозарядные и двухзарядные вакансии V_{Cd}^- и V_{Cd}^{-2} и междоузельные атомы Cd_i . Двухзарядные вакансии атомов кадмия V_{Cd}^{-2} в большинстве случаев образуют комплексы с положительно заряженными примесями типа $(V_{\rm Cd}^{-2}D^+)^{-1}$ и с нейтральными междоузельными атомами теллура типа $(V_{\text{Cd}}^{-2}\text{Te}_i^*)^{-2}$ [21]. Эти комплексы являются глубокими акцепторными центрами. В составе ТР имеются как донорные примеси Cl, In, Al, так и акцепторные примеси P, Li, Ag, Аи, Си. Атомы серебра, меди, золота дают глубокие акцепторные центры. Очевидно, что в составе ТР также имеются вакансии атомов серы $(V_{\rm S})$ и теллура $(V_{\rm Te})$, которые имеют донорную природу, в то время как междоузельные Te_i и S_i имеют акцепторную природу. Вероятно, эти дефекты и примеси могут образовать дефектпримесные комплексы типа отрицательно "заряженный акцептор + положительно заряженный ион внедрения"

или "положительно заряженный донор + отрицательно заряженная вакансия", которые играют определяющую роль в рекомбинационных процессах, происходящих с задержкой с слоях TP $CdTe_{1-x}S_x$ гетероструктуры n-CdS-p-CdTe.

5. Заключение

Показано, что BAX гетероструктуры n-CdS-p-CdTe в прямом и обратном направлениях тока состоят из нескольких участков, на которых ток как функция напряжения описывается зависимостями типа $J \sim V^\alpha$ с различными наклонами. Появление таких зависимостей на обратной BAX обусловлено многослойностью TP $\text{CdTe}_{1-x}\mathbf{S}_x$, каждый слой которого имеет определенный состав (различающийся по ширине запрещенной зоны, уровню легирования и толщине).

Путем исследования ВАХ в обоих направлениях тока и измерения времени жизни τ на каждом участке ВАХ показано, что в слоях ТР $\mathrm{CdTe}_{1-x}\mathrm{S}_x$, по-видимому, образуются дефект-примесные комплексы типа "отрицательно заряженный акцептор + положительно заряженный ион внедрения" или "положительно заряженный донор + отрицательно заряженная вакансия", и можно с достаточной степенью вероятности предполагать, что в таких ТР скорость рекомбинации неравновесных носителей при низких уровнях возбуждения определяется простыми локальными центрами, но с ростом уровня возбуждения — простыми локальными центрами и дефект-примесными комплексами одновременно. С дальнейшим ростом уровня возбуждения вклад комплексов в процессе рекомбинации может стать определяющим.

Список литературы

- K. Herndon, A. Gupta, V.I. Kaydanov, R.T. Coblins. Appl. Phys. 75, 22, 3503 (1999).
- [2] Ж. Жанабергенев, Ш.А. Мирсагатов, С.Ж. Каражанов. Неорган. материалы **41**, *8*, 915 (2005).
- [3] С.А. Музафарова, Ж. Жанабергенов. Неорган. материалы **43**, 7, 781 (2007).
- [4] S.A. Muzafarova, Sh.A. Mirsagatov. УФЖ **51**, 11–12, 1125 (2006).
- [5] Ш.А. Мирсагатов, Ж. Жанабергенов, С.А. Музафарова. ФТТ 49, 7, 1111 (2007).
- [6] Х.Х. Исмоилов, А.М. Абдугафуров, Ш.А. Мирсагатов, А.Ю. Лейдерман. ФТТ 50, 11, 1953 (2008).
- [7] W. Shockley, W. Read. Phys. Rev. 87, 835 (1952).
- [8] А.В. Ржанов. ФТТ 3, 3698 (1961).
- [9] P.M. Karageorgy-Alkalaev, A.Yu. Leiderman. Phys. Status Solidi A 26, 419 (1968).
- [10] П.М. Карагеоргий-Алкалаев, А.Ю. Лейдерман. В сб.: Физика и материаловедение полупроводников / Под ред. В.И. Фистуля. Металлургия, М. (1987). 80 с.
- [11] А.Ю. Лейдерман. ДАН УзССР 7, 21 (1987).
- [12] А.Ю. Лейдерман. ДАН УзССР 4, 25 (1989).
- [13] М.Г. Шейнкман, Н.Е. Корсунская. В кн.: Физика соединений A_2B_6 . Наука, М. (1986). 109 с.

- [14] А.Ю. Лейдерман, ДАН УзССР 1, 24 (1989).
- [15] А.Ю. Лейдерман, М.К. Минбаева. ФТП 30, 1729 (1996).
- [16] М. Ламперт, П. Марк. Инжекционные токи в твердых телах. Мир, М. (1973). 210 с.
- [17] Э.И. Адирович, П.М. Карагеоргий-Алкалаев, А.Ю. Лейдерман. Токи двойной инжекции в полупроводниках. Сов. радио, М. (1978). 249 с.
- [18] Физика и химия полупроводников. $A^{\rm II}B^{\rm VI}$ / Под ред. С.А. Медведева. Мир, М. (1970). 624 с.
- [19] L.W. Davies. Proc. IEEE 51, 1637 (1963).
- [20] А. Фаренбрух, Р. Бьюб. Солнечные элементы: теория и эксперименты. Энергоатомиздат, М. (1987). 278 с.
- [21] K. Zanio. In: Semiconductors and semimals. Acad. Press, N.Y. (1978). V. 13. 210 p.