Nankai University

Undergraduate Course Syllabus

1. Course Information

Course N	ame	ne Mathematical Statistics					
Course Number		FINA0110					
Course Type		□ Compulsory course Liberal Arts Education □ Elective course Liberal Arts Education ■ Compulsory course Professional □ Elective course Professional					
Credit		2.5 Lectu Hour	48	Pra ctic um 0 Hou rs	Total Hours 48		
Grading Str	ructure	■ Percentage	system Pass/Fail Sy	ystem			
Course Provider		School of Finance					
Prerequisite courses		Calculus, Linear Algebra, Probability					
Course Director		Min Song, Haibin Wang, Jiening Pan					
		Course Tex	tbooks and Referei	nce Materials			
,	Authors		Title	Publishing House	ISBN		
Textbooks	David R. Anderson; Dennis J. Sweeney; Thomas A. Williams; Jeffrey D. Camm; James J. Cochran		Statistics for Business & Economics	Cengage Learning	9781337901062		
	Authors		Title	Publishing House	ISBN		
Reference Materials	Junping Jia; Xiaoqun He; Yongjin Jin		Statistics	China Renmin University Press	9787300253510		
	Xiaotong Zhang		Applied Econometrics	China Machine Press	9787111265757		

2. Course Introduction

As a science of methodology studying on how to collect, clean, display and analyze data, Mathematical Statistics aims to teach students how to use scientific statistical theories and methods to understand quantitatively the regularity of development and the changes of objective things. This course will provide students with basic knowledge, theory and methods to lay the foundation for other courses and related work. This course is mainly for second-year undergraduate students. The main content of the course includes:

- Random sampling and several important distributions;
- Point estimation including moment approach, percentile matching, and maximum likelihood;
- Bias, variance, MSE, Fisher information matrix, Cramér-Rao lower bound, consistency, efficiency, and UMVUE;
- Confidence intervals estimation, including the mean of samples from a normal population, differences of means of samples from two normal population, variances, and proportions;
- Neyman-Pearson lemma, significance and power, and information criteria;
- Hypothesis test, including mean, variance, χ^2 test on contingency tables and goodness-of-fit and likelihood ratio test;
- Linear regression, least square estimation, t-test and F-test, prediction and analysis of residuals;
- Analysis of variance.

Through the teaching process, on the one hand, students are required to understand the basic principles of statistics and master the basic ideas of statistics. On the other hand, students should develop habits of thinking and use statistical knowledge to "discover problems, analyze problems, and solve problems" to improve students' professional application skills.

3. Course Content and Teaching Arrangements

Num	Content	Hours	Type
1	Chap 1: Sampling distributions	6	Lecture, discussion
	 Concept of random sampling; 		
	 Concept of statistical inference; 		
	• Normal, t, F and χ^2 distribution.		
	Chap 2: Point estimation	12	Lecture, discussion, online quiz
	 Moment matching; 		
2	Percentile matching;		
	Maximum likelihood method, Fisher		
	information matrix, Cramér-Rao lower		
	bound		
	• Properties of an estimator: bias,		
	variance, MSE, consistency, efficiency,		
	and UMVUE.		
3	Chap 3: Confidence Interval	7	Lecture, online quiz
	Mean from one normal population;		

	Differences of two means;		
	• Variances from one normal population;		
	• Variance proportions.		
	Chap 4: Hypothesis test		
4	 Basic problems of hypothesis test; 	6	Lecture, discussion, online quiz
	Neyman-Pearson lemma, significance		
	and power, and information criteria;		
	• Test on mean and variance;		
	• χ^2 test on contingency tables and		
	goodness-of-fit;		
	Likelihood ratio test.		
5	Chap 5: ANOVA	7	Lecture, online quiz
	 Introduction to ANOVA; 		
	One-way ANOVA;		
	• Two-way ANOVA.		
6	Chap 6: Univariate linear regression	10	Lecture, discussion, online quiz
	• Least square estimator;		
	• T-test and F-test;		
	 Prediction using linear regression; 		
	Analysis of residuals		

4. Course Assessment

The course assessment consists of two main parts, one part is quiz and homework, accounting for 30%. The other part is a closed-book examination, which assesses students' knowledge mastery and accounts for 70% of the total.