

EasyST: Modeling Spatial-Temporal Correlations and Uncertainty for Dynamic Wind Power Forecasting via PaddlePaddle

Yiji Zhao^{1,2}, Haomin Wen^{1,2,3}, Junhong Lou³, Jinji Fu^{1,2}, Jianbin Zheng³, Youfang Lin^{1,2,*}

¹School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

²Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China. *Team advisor

³Artificial Intelligence Department, Cainiao Network, Hangzhou, China.

- Background
- > Challenge
- > Solution
- > Experiment

Background

Problem Introduction

Wind Power Forecasting (WPF)

- Predict future wind power based on historical data
- Complex Spatial-Temporal Correlations
- Huge data uncertainties

Dataset

SDWPF from Longyuan Power Group Corp

- > Spatial distribution: relative location of all wind turbines
- > Dynamic context: weather situations and turbine internal contexts

Metrics

$$Score = \frac{1}{2}(MAE(\hat{y}, y) + RMSE(\hat{y}, y))$$

prediction length: 288

- Background
- > Challenge
- > Solution
- > Experiment

Challenge

■ Complex spatial-temporal correlations

- > Spatial correlation
- > Temporal correlation

Huge data uncertainties

- Background
- > Challenge
- > Solution
- > Experiment

Spatial and Temporal Modeling

Fig 1. Overview of solution

Data Pre-processing

Methods

- Abnormal values clipping
- Spatial group partitioning
- Group & Global mean aggregation (Fig 2.)
- Spatial filling of missing values
- Coarse-grained aggregation of time series (Fig 3.)

Fig 2. Spatial group partition.

Fig 3. Coarse-grained aggregation

Spatial and Temporal Modeling

Fig 1. Overview of solution

■ Feature Engineering

feature type	features	configure	
raw values	patv,wspd	granularity = 10 min	
time different features	diff	$\Delta t = 1,2,3$	
time window statistics	max, min, std, var, mean, median	window = 1h, 3h, 6h, 12h, 24h, 48h, 72h	

> Spatial position embedding(SE):

A trainable spatial embedding for each turbine.

$$SE = [z_1^s, z_2^s, \dots, z_N^s] \in \mathbb{R}^{N \times d}$$

> Temporal position embedding(TE):

Time-of-day & Hour of day

$$\mathbf{TE} = \begin{bmatrix} \mathbf{z}_1^t, \mathbf{z}_2^t, \dots, \mathbf{z}_{T_d}^t \end{bmatrix} \in \mathbb{R}^{T_d \times d}$$

以意文道大学 Deterministic and Probabilistic Modeling に立て 第二

Fig 1. Overview of solution

Deterministic Forecasting Model

Temporal MLP: Directly forcast the value of target (Patv)

- Temporal-Linear Layer (TLinear)
- Gated Linear Unit (GLU)

$$\mathcal{H}^l = \text{GLU}(\text{Linear}_{C \to 2C}(\mathcal{H}^{l-1})).$$

$$\tilde{\mathcal{H}}^l = \text{TLinear}_{TC \to C}(\mathcal{H}^l) \in \mathbb{R}^{B \times N \times C},$$

$$\tilde{\mathcal{H}}^l = \text{GLU}(\text{Linear}_{C \to 2C}(\tilde{\mathcal{H}}^l)) \in \mathbb{R}^{B \times N \times C}$$
.

$$O = GLU(Linear_{(L+1)C \to C'}(\tilde{\mathcal{H}}^0 \parallel \cdots \parallel \tilde{\mathcal{H}}^L)) \in \mathbb{R}^{B \times N \times C'},$$

$$\hat{\mathcal{Y}} = Reshape(Linear_{C' \to P}(O)) \in \mathbb{R}^{B \times N \times P \times 1}$$

$$\mathcal{L}_{\text{score}} = \frac{1}{2SP} \left(\sum_{s=1}^{S} \sum_{i=1}^{N} \sum_{t=1}^{P} m_{s,i,t} \cdot \left[\left(y_{s,i,t} - \hat{y}_{s,i,t} \right)^2 + \left| y_{s,i,t} - \hat{y}_{s,i,t} \right| \right] \right)$$

以家文道大学 Deterministic and Probabilistic Modeling Nino 報告

Probabilistic Forecasting Model

Deep Factor: calculate the joint predictive distribution of future observations

fixed effect : $\mu_t = \text{Linear}_{C \to 1}(\text{GRU}(\mathbf{H}_{t-1})) \in \mathbb{R}^{BN}$,

random effect : $\sigma_t = \text{Linear}_{C \to 1}(\text{GRU}(H_{t-1})) \in \mathbb{R}^{BN}$,

emission: $\mathbf{y}_t \sim p(\mathbf{y}_t | \boldsymbol{\mu}_t, \boldsymbol{\sigma}_t)$,

$$\mathcal{L}_{\text{NLL}} = -\sum_{s=1}^{S} \sum_{i=1}^{N} \sum_{j=1}^{P} m_{s,i,t} \cdot \log p(y_{s,i,t} | \mu_{s,i,t}, \sigma_{s,i,t})$$

$$= \sum_{s=1}^{S} \sum_{i=1}^{N} \sum_{j=1}^{P} m_{i,j}^{s} \cdot \left(\frac{\log \sigma_{s,i,t}^{2}}{2} + \frac{(y_{s,i,t} - \mu_{s,i,t})^{2}}{2\sigma_{s,i,t}^{2}} + C \right)$$

Fig 1. Overview of solution

Hybrid Model

Table 1. Model table list

model	term	pred length	granularity
Temporal MLP (global-mean)	short	3,6,9,12,24,34	10min
	middle	72	20min
	long	144,288	10min
	long	144,288	30min
Temporal MLP (all-turbine)	short	24,34	10min
Deep Factor	short	3,6,9,12,24,34	10min
	middle	108	30min
	long	144,288	10min

Train

Multi-model & Multi-term & Multi-grain

- Multi-model (Table 1.)
 Temporal MLP (global mean & all turbine) & Deep Factor
- Multi-term (Fig 4.)
 Short term & middle term & long term
- Multi-grain10 min (origin) & 20 min & 30 min

Fig 4. Multi-Term

Fig 5. Fusion Weight

- Background
- > Challenge
- > Solution
- > Experiment

Experiment

- ➤ V1 : Temporal MLP (global-mean) model
- ➤ V2 : V1 + Multi-term prediction
- ➤ V3: V2 + Multi-grain prediction
- > V4 : V3 + poral MLP (all-turbine)
- ➤ V5 : ∨4 + Deep Factor
- > Rank : Regular rank : 5 ; PaddlePaddle Rank : 3

Conclusion

The proposed model: H-STWPF

- Spatial and Temporal Modeling
- Deterministic and Probabilistic Modeling
- Multi-term & Multi-grain

Official account:

INSIS Lab@BJTU

AlLab@Cainiao Network

Personal webpage:

➤ Yiji Zhao: https://yijizhao.github.io/

➤ Haomin Wen: https://wenhaomin.github.io/

THANKS

