Deep Learning & Applied Al

Linear regression, convexity, and gradients

Emanuele Rodolà rodola@di.uniroma1.it

In deep learning, we deal with highly parametrized models called deep neural networks:

• Each block has a predefined structure (e.g., a linear map)

- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta

- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta
- Finding the parameter values is called training...

- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta
- Finding the parameter values is called training...
- ...which is done by minimizing a function called loss

- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta
- Finding the parameter values is called training...
- ...which is done by minimizing a function called loss
- Minimization requires computing gradients, called backpropagation

Parametrized models

The parameters determine the network's behavior and must be solved for.

Parametrized models

The parameters determine the network's behavior and must be solved for.

Parametrized models

The parameters determine the network's behavior and must be solved for.

Our task is to find the parameters Θ .

We start from the simplest non-trivial case for a learning model:

We start from the simplest non-trivial case for a learning model:

We start from the simplest non-trivial case for a learning model:

Model: linear + bias

Parameters: $\Theta = \{a, b\}$

Data: n pairs (x_i, y_i) ; the x_i are called the regressors

We start from the simplest non-trivial case for a learning model:

 $f_{\Theta}(x_i) = y_i$

Model: linear + bias

Parameters: $\Theta = \{a, b\}$

Data: n pairs (x_i, y_i) ; the x_i are called the regressors

Given a and b, we have a mapping that gives new output from new input.

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all $i=1,\dots,n$.

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all $i = 1, \ldots, n$.

Problem: Choose a and b that minimize the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{a,b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

where $\Theta = \{a, b\}$.

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all $i = 1, \ldots, n$.

Problem: Choose a and b that minimize the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

where $\Theta = \{a, b\}$.

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all $i = 1, \ldots, n$.

Problem: Choose a and b that minimize the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

where $\Theta = \{a, b\}$.

When f_{Θ} is linear, this is called a least-squares approximation problem.

Linear regression: Loss function

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all $i = 1, \ldots, n$.

Problem: Choose a and b that minimize the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{\Theta} \ell_{\Theta}(\{x_i, y_i\})$$

The error criterion w.r.t. the parameters is also called a loss function, usually denoted by ℓ :

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

Linear regression: Loss function

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all $i = 1, \ldots, n$.

Problem: Choose a and b that minimize the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{\Theta} \ell_{\Theta}(\{x_i, y_i\})$$

The error criterion w.r.t. the parameters is also called a loss function, usually denoted by ℓ :

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

Remark: We minimize the loss w.r.t. the parameters Θ , and **not** w.r.t. the data (x_i, y_i) . Also, the loss is defined on the entire dataset, not on just one data point.

We are considering the following case:

where $f_{\pmb{\Theta}}$ is linear, and $\ell_{\pmb{\Theta}}$ is quadratic.

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer Θ .

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer Θ .

Finding minimizers for general ℓ is an open problem. The research area is broadly called optimization.

In general, the optimization method depends on the properties of ℓ .

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer Θ .

Finding minimizers for general ℓ is an open problem. The research area is broadly called optimization.

In general, the optimization method depends on the properties of ℓ .

We will mostly deal with unconstrained problems.

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer Θ .

Finding minimizers for general ℓ is an open problem. The research area is broadly called optimization.

In general, the optimization method depends on the properties of ℓ .

We will mostly deal with unconstrained problems.

Let's see what optimization problems we can solve easily!

Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and $\alpha \in (0, 1)$

Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and $\alpha \in (0, 1)$

Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and $\alpha \in (0, 1)$

Let us further assume that f is a differentiable function, so that we can compute its derivative $\frac{df}{dx}$ at all points x.

Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and $\alpha \in (0, 1)$

Let us further assume that f is a differentiable function, so that we can compute its derivative $\frac{df}{dx}$ at all points x.

Theorem: the global minimizer x is where $\frac{df(x)}{dx} = 0$.

In deep learning we deal with loss functions with $n\gg 1$ parameters:

$$f:\mathbb{R}^n\to\mathbb{R}$$

In deep learning we deal with loss functions with $n \gg 1$ parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

The notion of derivative is replaced by the notion of gradient:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

which is the vector of partial derivatives of f.

In deep learning we deal with loss functions with $n \gg 1$ parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

The notion of derivative is replaced by the notion of gradient:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

which is the vector of partial derivatives of f.

Convexity is defined as before:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

In deep learning we deal with loss functions with $n \gg 1$ parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

The notion of derivative is replaced by the notion of gradient:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

which is the vector of partial derivatives of f.

Convexity is defined as before:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

and we also have the global optimality condition:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{0} \implies f(\mathbf{x}) \le f(\mathbf{y}) \text{ for all } \mathbf{y} \in \mathbb{R}^n$$

The gradient $\nabla_{\mathbf{x}} f(\mathbf{x})$ encodes the direction of steepest ascent of f at point \mathbf{x} .

The gradient $\nabla_{\mathbf{x}} f(\mathbf{x})$ encodes the direction of steepest ascent of f at point \mathbf{x} . In the simple 1D case:

The gradient $\nabla_{\mathbf{x}} f(\mathbf{x})$ encodes the direction of steepest ascent of f at point \mathbf{x} . In the simple 1D case:

The gradient $\nabla_{\mathbf{x}} f(\mathbf{x})$ encodes the direction of steepest ascent of f at point \mathbf{x} . In the more general case:

The gradient $\nabla_{\mathbf{x}} f(\mathbf{x})$ encodes the direction of steepest ascent of f at point \mathbf{x} . In the more general case:

The length of the gradient vector encodes its steepness.

The Euclidean distance measures the length of a straight line connecting two points:

The Euclidean distance measures the length of a straight line connecting two points:

The Euclidean distance measures the length of a straight line connecting two points:

The Euclidean distance measures the length of a straight line connecting two points:

Apply Pythagoras' theorem: $d(a,b)=(|x_b-x_a|^2+|y_b-y_a|^2)^{\frac{1}{2}}$

The Euclidean distance measures the length of a straight line connecting two points:

Apply Pythagoras' theorem:
$$d(a,b)=(|x_b-x_a|^2+|y_b-y_a|^2)^{\frac{1}{2}}$$

In matrix notation:

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2$$

where
$$\mathbf{a} = \begin{pmatrix} x_a \\ y_a \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} x_b \\ y_b \end{pmatrix}$

One can generalize to different power coefficients $p \ge 1$:

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}} \downarrow$$

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{p}} = (|x_{1} - y_{1}|^{\mathbf{p}} + |x_{2} - y_{2}|^{\mathbf{p}})^{\frac{1}{\mathbf{p}}}$$

One can generalize to different power coefficients $p \ge 1$:

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}}$$

$$\|\mathbf{x} - \mathbf{y}\|_{p} = (|x_{1} - y_{1}|^{p} + |x_{2} - y_{2}|^{p})^{\frac{1}{p}}$$

As well as generalize from \mathbb{R}^2 to \mathbb{R}^k :

$$\|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

One can generalize to different power coefficients $p \ge 1$:

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}}$$

$$\|\mathbf{x} - \mathbf{y}\|_{p} = (|x_{1} - y_{1}|^{p} + |x_{2} - y_{2}|^{p})^{\frac{1}{p}}$$

As well as generalize from \mathbb{R}^2 to \mathbb{R}^k :

$$\|\mathbf{x} - \mathbf{y}\|_p = (\sum_{i=1}^k |x_i - y_i|^p)^{\frac{1}{p}}$$

This definition gives us the L_p distance between vectors in \mathbb{R}^k .

One can generalize to different power coefficients $p \ge 1$:

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}} \downarrow$$

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{p}} = (|x_{1} - y_{1}|^{\mathbf{p}} + |x_{2} - y_{2}|^{\mathbf{p}})^{\frac{1}{\mathbf{p}}}$$

As well as generalize from \mathbb{R}^2 to \mathbb{R}^k :

$$\|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

This definition gives us the L_p distance between vectors in \mathbb{R}^k .

The length (or norm) of a vector is simply its distance from the origin:

$$\|\mathbf{x} - \mathbf{0}\|_2 = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^k |x_i|^2}$$

One can generalize to different power coefficients $p \ge 1$:

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}} \downarrow$$

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{p}} = (|x_{1} - y_{1}|^{\mathbf{p}} + |x_{2} - y_{2}|^{\mathbf{p}})^{\frac{1}{\mathbf{p}}}$$

As well as generalize from \mathbb{R}^2 to \mathbb{R}^k :

$$\|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

This definition gives us the L_p distance between vectors in \mathbb{R}^k .

The length (or norm) of a vector is simply its distance from the origin:

$$\|\mathbf{x} - \mathbf{0}\|_2 = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^k |x_i|^2} = \sqrt{\mathbf{x}^{\top} \mathbf{x}}$$

L_p unit balls in \mathbb{R}^2

$$\min_{a,b\in\mathbb{R}} \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where $\ell:\mathbb{R}^2 \to \mathbb{R}$ is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where $\ell: \mathbb{R}^2 \to \mathbb{R}$ is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$

$$\boldsymbol{\Theta}^* = \arg\min_{\boldsymbol{\Theta} \in \mathbb{R}^2} \ell(\boldsymbol{\Theta})$$

where $\ell: \mathbb{R}^2 \to \mathbb{R}$ is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$
$$= \sum_{i=1}^{n} \nabla_{\Theta} (y_i^2 + a^2 x_i^2 + b^2 - 2ax_i y_i - 2by_i + 2abx_i)$$

$$\boldsymbol{\Theta}^* = \arg\min_{\boldsymbol{\Theta} \in \mathbb{R}^2} \ell(\boldsymbol{\Theta})$$

where $\ell: \mathbb{R}^2 \to \mathbb{R}$ is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$

$$= \sum_{i=1}^{n} \nabla_{\Theta} (y_i^2 + a^2 x_i^2 + b^2 - 2ax_i y_i - 2by_i + 2abx_i)$$

$$= \sum_{i=1}^{n} \binom{2ax_i^2 - 2x_i y_i + 2bx_i}{2b - 2y_i + 2ax_i}$$

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where $\ell: \mathbb{R}^2 \to \mathbb{R}$ is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$

$$= \sum_{i=1}^{n} \nabla_{\Theta} (y_i^2 + a^2 x_i^2 + b^2 - 2ax_i y_i - 2by_i + 2abx_i)$$

$$= \left(\sum_{i=1}^{n} 2ax_i^2 - 2x_i y_i + 2bx_i \right)$$

$$= \left(\sum_{i=1}^{n} 2b - 2y_i + 2ax_i \right)$$

$$\boldsymbol{\Theta}^* = \arg\min_{\boldsymbol{\Theta} \in \mathbb{R}^2} \ell(\boldsymbol{\Theta})$$

where $\ell: \mathbb{R}^2 \to \mathbb{R}$ is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

A solution is found by setting $\nabla_{\mathbf{\Theta}} \ell(\mathbf{\Theta}) = \mathbf{0}$:

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \left(\frac{\sum_{i=1}^{n} 2ax_i^2 - 2x_iy_i + 2bx_i}{\sum_{i=1}^{n} 2b - 2y_i + 2ax_i} \right)$$

We get 2 linear equations in the 2 unknowns a, b:

$$\left(\frac{\sum_{i=1}^{n} ax_{i}^{2} + bx_{i} - x_{i}y_{i}}{\sum_{i=1}^{n} ax_{i} + b - y_{i}}\right) = \begin{pmatrix} 0\\0 \end{pmatrix}$$

The learning model of linear regression is linear in the parameters (while it is **not** linear in x, due to the bias).

Therefore, in matrix notation the equations $y_i = ax_i + b$ read:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

The learning model of linear regression is linear in the parameters (while it is **not** linear in x, due to the bias).

Therefore, in matrix notation the equations $y_i = ax_i + b$ read:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{Y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

Remark: Deep learning frameworks frequently use the alternative expression with the bias encoded separately:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{Y}} = a \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{X}} + b$$

Familiarize with matrix calculus.

When implementing deep nets, we manipulate matrices, vectors, and tensors.

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations $y_i = ax_i + b$ at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations $y_i = ax_i + b$ at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations $y_i = ax_i + b$ at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations $y_i = ax_i + b$ at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

Setting $abla_{m{ heta}}\ell = \mathbf{0}$ we get:

$$-2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} = \mathbf{0}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations $y_i = ax_i + b$ at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

Setting $abla_{m{ heta}}\ell = \mathbf{0}$ we get:

$$\mathbf{X}^{\top}\mathbf{X}\boldsymbol{ heta} = \mathbf{X}^{\top}\mathbf{y}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations $y_i = ax_i + b$ at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

Setting $abla_{m{ heta}}\ell = \mathbf{0}$ we get:

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

We get a closed form solution to our problem.

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

$$\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \begin{pmatrix} \theta_1 & \cdots & \theta_n \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_n \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

Example: $f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \theta_{i} \theta_{j}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

Example:
$$f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_1} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \theta_i \theta_j \\ \vdots \\ \frac{\partial}{\partial \theta_n} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \theta_i \theta_j \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

$$\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \begin{pmatrix} \sum_{j} a_{1j} \theta_{j} + \sum_{i} a_{i1} \theta_{i} \\ \vdots \\ \sum_{j} a_{nj} \theta_{j} + \sum_{i} a_{in} \theta_{i} \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

 $\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \begin{pmatrix} \sum_{i} (a_{1i} + a_{i1}) \theta_{i} \\ \vdots \\ \sum_{i} (a_{ni} + a_{in}) \theta_{i} \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

Example:
$$f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^{\top})\boldsymbol{\theta}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #14, but we did it directly in matrix form.

Example: $f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^{\top})\boldsymbol{\theta}$$

If A is symmetric (e.g., $A = X^{T}X$), then:

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = 2\mathbf{A}\boldsymbol{\theta}$$

Linear regression: Higher dimensions

Until now we have seen the case where:

$$y_i = ax_i + b$$
 for $i = 1, \dots, n$

that is, each data point is one-dimensional (just one number).

Linear regression: Higher dimensions

Until now we have seen the case where:

$$y_i = ax_i + b$$
 for $i = 1, \dots, n$

that is, each data point is one-dimensional (just one number).

In the more general case, the data points $(\mathbf{x}_i, \mathbf{y}_i)$ are vectors in \mathbb{R}^d :

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b}$$
 for $i = 1, \dots, n$

Linear regression: Higher dimensions

Until now we have seen the case where:

$$y_i = ax_i + b$$
 for $i = 1, \dots, n$

that is, each data point is one-dimensional (just one number).

In the more general case, the data points $(\mathbf{x}_i, \mathbf{y}_i)$ are vectors in \mathbb{R}^d :

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b}$$
 for $i = 1, \dots, n$

Defining the matrices
$$\mathbf{X} = \begin{pmatrix} \begin{vmatrix} & & | & \\ \mathbf{x_1} & \mathbf{x_2} & \cdots \\ & | & | & \\ 1 & 1 & \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} \begin{vmatrix} & & | & \\ \mathbf{y_1} & \mathbf{y_2} & \cdots \\ & | & | & \end{pmatrix}, \mathbf{\Theta} = \begin{pmatrix} \mathbf{A} \\ \mathbf{b}^\top \end{pmatrix}$$
,

we get a closed-form solution to $abla_{oldsymbol{\Theta}}\ell(oldsymbol{\Theta}) = \mathbf{0}$:

$$\boldsymbol{\Theta} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{Y}^{\top}$$

Wrap-up

Sometimes, the learning model is linear and the loss is $\mbox{\it quadratic}.$

This case can be solved in closed form.

Wrap-up

Sometimes, the learning model is linear and the loss is quadratic.

This case can be solved in closed form.

The more data points $(\mathbf{x}_i,\mathbf{y}_i)$ we have, the better.

Wrap-up

Sometimes, the learning model is linear and the loss is quadratic.

This case can be solved in closed form.

The more data points $(\mathbf{x}_i, \mathbf{y}_i)$ we have, the better.

In deep learning, linear models usually appear as "pieces" within more complicated nonlinear models.

Suggested reading

For convexity and optimality, read Sections 3.1.1 and 3.1.3 of the book:

S. Boyd & L. Vandenberghe, "Convex optimization". Cambridge University Press, 2009

Public download link: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf