MATH 465 - INTRODUCTION TO COMBINATORICS HOMEWORK 5

(1) Let $C(x) = \sum_{n=0}^{\infty} C_n x^n$ be the generating function for the Catalan numbers. Use the recurrence to show that

$$1 - C(x) + xC(x)^2 = 0.$$

- (2) Prove that the number of sequences a_1, \ldots, a_{2n} such that:
 - (a) every $a_i \in \{\pm 1\}$;
 - (b) $a_1 + a_2 + \dots + a_{2n} = 0$;
 - (c) every partial sum satisfies $a_1 + \cdots + a_i > -2$

is a Catalan number. For example, when n=2, there are 5 such sequences:

$$11 - -$$
, $1 - 1 -$, $1 - -1$, $-11 -$, $-1 - 1$.

(3) Show that the number of non-crossing (complete) matchings on 2n vertices, i.e., ways of connecting 2n points in the plane lying on a horizontal line by n non-intersecting arcs, each arc connecting two of the points and lying above the points, is C_n . For example when n = 3, there are 5 non-crossing matchings.

(4) Prove that the number of $2 \times n$ matrices whose entries are $1, 2, \ldots, 2n$, whose rows increase left-to-right, and whose columns increase top-down, is the Catalan number C_n . For example, for n = 3, the matrices are:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 4 \\ 3 & 5 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 4 \\ 2 & 5 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}.$$

(5) Prove that the number of pairs (α, β) of compositions of n with the same number of parts, such that $\alpha \geq \beta$ in the dominance order (that is, $\alpha_1 + \cdots + \alpha_i \geq \beta_1 + \cdots + \beta_i$ for all i) is C_n . For n = 3, the pairs are:

$$(111,111)$$
 $(12,12)$ $(3,3)$ $(21,12)$ $(21,21)$.

(6) Show that the number of sequences $1 \le a_1 \le a_2 \le \cdots \le a_n$ such that $a_i \le i$ for all $1 \le i \le n$ is C_n . For n = 3, there are 5 such sequences:

- (7) Prove that the number of permutations $w_1 \cdots w_n \in S_n$ satisfying the condition
 - (*) there are no indices i < j < k for which $w_k < w_i < w_j$

is a Catalan number. For example, when n=3, all permutations in S_3 satisfy (*) except 231.