Mechanistic numerical modelling of solute uptake by plant roots

Andre Herman Freire Bezerra

Advisor: Quirijn de Jong van Lier

University of São Paulo

Piracicaba, February 19, 2016

Introdução 000000 Desafios

Desenvolvimento e produção transpiração da planta

Estresse (biótico/abiótico)

Fechamento dos estômatos

Alteração na transpiração

Introdução

Introdução

- Encontrar um modelo que explique suficientemente bem o fenomeno para o propósito escolhido;
- Relação número de parâmetros/grau de complexidade do modelo difícil de ser ajustado;
- Encontrar simplificações que tornem a resolução possível, perdendo o mínimo possível de precisão (realidade X simulação).

Modelagem \rightarrow entender/simular/prever os fenômenos melhorar práticas de manejo das culturas

Extração de soluto

Modelos macroscópicos

Zona radicular → componente de extração uniforme.

Extração de água e soluto → termo "sumidouro" nas equações de balanço de massa.

Modelos microscópicos

Raiz singular cinlíndrica de raio e propriedades de extração uniformes.

A extração de água e soluto \rightarrow condições de contorno à superfície da raíz.

Introdução 0000000 Revisão

Modelos macroscópicos

Zona radicular → componente de extração uniforme.

Extração de água e soluto → termo "sumidouro" nas equações de balanço de massa.

Modelos microscópicos

Raiz singular cinlíndrica de raio e propriedades de extração uniformes.

A extração de água e soluto \rightarrow condições de contorno à superfície da raíz.

Solução numérica X Solução analítica

Numérica

$$\begin{bmatrix} C_1^{j+1} \\ C_1^{j+1} \\ C_2^{j+1} \\ C_3^{j+1} \\ \vdots \\ C_{n-1}^{j+1} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{n-1} \end{bmatrix}$$

Analítica

$$\Theta(\mu,\eta) = \sum_{n=0}^{\infty} A_n \mu^{\mathsf{v}} \beta_{\mathsf{v}}(\mu, au,lpha_n)$$
 exp

Bezerra, A.H.F.

Introdução ○○○●○○○ Revisão

- ► Início → soluções analíticas em regime estacionário para o fluxo de água e solutos
- ightharpoonup Computadores ightharpoonup soluções numéricas uni, bi e tridimensionais (regime transiente)
 - soluções com extração de soluto linear ou não-linear

Possibilidade de prever o estresse hídrico e osmótico

Introdução 0000000

Modelos empíricos

Feddes et al. (1978), Homaee (1999), Li et al. (2006)

Modelo mecanístico

De Jong van Lier et al. (2009)

Redução da transpiração

parâmetros físicos

Solução proposta

Modelo microscópico, numérico e mecanístico com extração não-linear de soluto (dependente da concentração do solo)

- Base \rightarrow modelo mechanístico de extração de água e movimento de soluto proposto por De Jong van Lier et al. (2009)
- Resolver a Equação de Convecção-Dispersão para o movimento e extração de soluto no solo, considerando fluxos transientes de água e soluto e assumindo extração de soluto dependente da concentração no solo.

Buscando-se uma solução também mecanística para a extração de

solutos, utilizou-se a equação de Michaelis-Menten como condição de fronteira à superfície da raiz.

Introdução 0000000 Obietivos

- Incorporar extração de soluto no modelo de De Jong van Lier et al. (2009);
- Diferenciar quantitativamente as componentes passiva e ativa da extração de solutos:

Características do domínio

Equação de Richards

$$\frac{\partial \theta}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(rK(h) \frac{\partial H}{\partial r} \right)$$

Equação de Convecção-Dispersão

$$r\frac{\partial(\theta C)}{\partial t} = -\frac{\partial}{\partial r}\left(rqC\right) + \frac{\partial}{\partial r}\left(rD\frac{\partial C}{\partial r}\right)$$

Condições de contorno em r_0 :

Água:

T_n quando transpiração é potencial Limitada por $K(\theta)$ quanto $T_r < 1$

Soluto:

$$-D(\theta)\frac{\partial C}{\partial r} + q_0 C_0 = q_{s_0} = -\frac{F}{2\pi r_0 Rz}$$

Condição de cotorno em r_0

$$F = \begin{cases} \frac{I_m C_0}{K_m + C_0} + q_0 C_0, & \text{if } C_0 < C_{lim} \\ I_m, & \text{if } C_{lim} \le C_0 \le C_2 \\ q_0 C_0, & \text{if } C_0 > C_2 \end{cases}$$

Extração de soluto dependente da concentração de soluto no solo (MM equation)

 C_{lim} e C_2 calculados analiticamente (não adiciona novos parâmetros)

Premissas:

- Extração por fluxo de massa \rightarrow passivo
- Extração por difusão → ativo
- Parâmetro $I_m \rightarrow \text{demanda da}$ planta por soluto
- ► Em C_{lim} a extração é limitada pelo fluxo de soluto

Implementação numérica da ECD

Discretização

- Solução implícita (backward Euler method)
- Discretização do espaço o não-constante (Δ_r crescente) o maior precisão (malha mais fina) na zona de maior variação de fluxos
- lacktriangle Discretização do tempo ightarrow variável (de acordo com o número de iterações)

Discretização

- Solução implícita (backward Euler method)
- Discretização do espaço \rightarrow não-constante (Δ_r crescente) \rightarrow maior precisão (malha mais fina) na zona de maior variação de fluxos
- Discretização do tempo → variável (de acordo com o número de iterações)

Modelo proposto

Extração não-linear (MM Equation) e linear (baseada em MM) em r₀

$$F = \frac{I_m C_0}{K_m + C_0} + q_0 C_0$$

$$F = \beta C_0 = \frac{2I_m}{\kappa_m \pm (\kappa_m^2 + 4I_m \kappa_m/q_0)^{1/2}} C_0$$

Algoritmo numérico da solução analítica de De Willigen and Van Noordwijk (1994) \rightarrow Extração de soluto em taxa constante

Algoritmo da solução numérica de De Jong van Lier et al. (2009) \rightarrow Sem extração de soluto

Algoritmo da solução analítica de Cushman (1979)

Extração de soluto dependente da concentração no solo

Implementação

Cenários de simulação, entradas e saídas do modelo

Cenários

Scenario	R	C _{ini}	T_p	Soil	lon
1	М	Н	Н	Loam	K^+
2	M	Н	L	Loam	K^+
3	M	L	Н	Loam	K^+
4	Н	Н	Н	Loam	K^+
5	L	Н	Н	Loam	K^+
6	M	Н	Н	Sand	K^+
7	M	Н	Н	Clay	K^+
8	М	Н	Н	Loam	NO_3^-

R: densidade radicular

Cini: concentração inicial de soluto no solo

 T_p : transpiração potencial

Parametros de Entradas

Solo, planta e atmosfera.

Saídas

Concentrações de soluto $(C(r), C_0(t))$, potenciais (h, h_{π}, H) e fluxos $(q(r), q_0(t), q_s(r), q_s(t))$.

Diferença entre a solução linear e a não-linear

$$\delta_{C} = \frac{\sum_{x=1}^{x_{end}} CL_{x} - CNL_{x}}{\sum_{x=1}^{x_{end}} CL_{x}}$$

$$\delta_{Ac} = \frac{\sum_{t=1}^{t_{end}} AcL_t - AcNL_t}{\sum_{t=1}^{t_{end}} AcL_t}$$

Saídas Analisadas: C(r), $C_0(t)$ e Ac(t) (também no teste U).

$$\delta_{C} = \frac{\sum_{x=1}^{x_{end}} CL_{x} - CNL_{x}}{\sum_{x=1}^{x_{end}} CL_{x}}$$

$$\delta_{Ac} = \frac{\sum_{t=1}^{t_{end}} AcL_t - AcNL_t}{\sum_{t=1}^{t_{end}} AcL_t}$$

Saídas Analisadas: C(r), $C_0(t)$ e Ac(t) (também no teste U).

Análise de sensibilidade

Sensibilidade parcial relativa.

$$\eta = \frac{dY/Y}{dP/P}$$

Parâmetros que sofreram variação (dP/P = 0.01):

$$I_m$$
, K_m

$$\alpha$$
, n , λ , K_s , θ_r , θ_s

Saídas analisadas:

 $t_{end}, h_{\pi}, h, \overline{h_{\pi}}, \overline{h}, Ac$

Outras análises

Bezerra, A.H.F.

University of São Paulo

Comparação dos modelos

Resultados do modelo (NLU)

Resultados do modelo (NLU)

< □ > < □ >

 Metodologia
 Results
 0

 000000
 00000€
 0

Análise de sensibilidade

Bezerra, A.H.F.

University of São Paulo

Conclusões

Conclusões

- A solução linear é preferível por ser de mais rápida execução, porém apenas nas predições Ac(t) e C(r).
- Uma segunda redução na Tr mostrou-se possível devido à redução do fluxo de água para se manter o valor de H_{lim}. C_{lim} está diretamente associado com o fluxo de água e é importante na determinação do estresse combinado (hídrico e osmótico/iônico) em baixas concentrações de soluto no solo.
- As propriedades hidráulicas do solo, densidade radicular, concentração inicial de soluto e transpiração potencial são fatores que afetam o tempo em que a concentração à superfície da raíz começa a diminuir e o tempo em que a extração ativa é máxima.

Bezerra, A.H.F. University of São Paulo

Conclusões

Conclusões

- Os parâmetros mais sensíveis do modelo são:
 - θ_r , θ_s , α , I_m e $K_m \to \text{afetam fortemente a concentração de soluto no solo$ $\theta_s \rightarrow$ afeta o tempo em que os valores limitantes de concentração são alcancados
 - $n \rightarrow$ afeta todas as saídas, mas principalmente h_{π}
- O modelo quantifica as contribuições ativa e passiva da extração de soluto do solo, que podem ser utilizadas para discernir o estresse osmótico do iônico em trabalhos futuros

Conclusões

- Modificações no método de discretização/resolução das equações de balanço de massa afim de se obter soluções estáveis e mais rápidas.
- Elaborar experimentos controlados com plantas sob situações conhecidas de estresse osmótico e iônico e comparar os resultados com as previsões do modelo.
- Investigar os mecanismos que atuam e caracterizam a definição da concentração limitante (C_{lim}) aqui teorizada.
- Considerar a concentração do íon dentro da planta.
- Incorporar o modelo proposto num modelo agroecohidrológico (SWAP)

