Virtualization

Virtualization

Definition:

Virtualization is the process of creating a virtual version of a physical resource, such as a server, storage device, network, or operating system. It allows multiple virtual machines (VMs) to run on a single physical machine using a **hypervisor**, improving **efficiency**, **scalability**, and **isolation**.

Hypervisor

A **hypervisor** is software that allows multiple virtual machines (VMs) to run on a single physical machine. It manages hardware resources (like CPU, memory, and storage) and allocates them to each VM. Examples include VMware, VirtualBox, and Hyper-V.

Types of Hypervisors:

• Type 1 (Bare Metal):

Runs directly on physical hardware without a host operating system. These are more secure, have lower latency, and are typically used in data centers. Examples: VMware ESXi, Microsoft Hyper-V.

• Type 2 (Hosted):

Runs on top of a host operating system like any other application. Easier to set up but with more latency. Used mostly for testing or personal use. Examples: VMware Workstation, Oracle VirtualBox.

Benefits of Virtualization

Cost Saving:

Multiple virtual environments on one physical machine reduce the need for physical infrastructure, saving on electricity, maintenance, and hardware upgrades.

Speed and Agility:

Creating VMs is faster than setting up physical systems, making testing, scaling, and deployment more efficient.

Lower Downtime:

VMs can be moved between hypervisors on different servers, allowing fast recovery during shutdowns or failures.

Virtual Networking

Définition:

Virtual networking creates connections between virtual machines using software rather than physical hardware. It allows VMs on different physical machines to communicate using virtual switches, routers, and tunnels.

Physical Network Components

• Underlay:

The physical infrastructure that supports the virtual network, such as physical servers, switches, and routers.

• Fabric:

All the physical components (servers, storage, and networking gear) that work together to run a virtualized environment efficiently.

• TEP (Tunnel Endpoint):

A network point that enables VMs to communicate across physical networks. It handles the encapsulation and decapsulation of data between the virtual overlay and the physical underlay.

Physical Routers and Bridges:

These connect virtual machines to the physical network and allow VMs on different servers to communicate with each other and with external systems.

Overlay Network Components

Overlay:

The virtual side of the network that allows VMs to communicate over software-defined connections, even if they're on different physical machines.

• Segments:

Virtual Layer 2 networks (like local LANs). VMs in the same segment can communicate using MAC addresses. VMs in different segments need a router to

communicate.

• Transport Zone:

Defines which hypervisors and segments can communicate. It controls the scope of each segment by specifying which physical hosts are part of the virtual network.

Routers and Bridges:

Used to connect segments together. They can also connect to physical routers, enabling communication between the virtual and physical networks.

• Micro-Segmentation:

A security method that creates smaller isolated zones within a segment. Each VM can have its own rules and policies, limiting internal threats even on the same segment.