Routing in LEO Satellite Networks: How Many Link-State Updates Do We Need?

Qian Shan, Zhiyuan Wang, Shan Zhang, Qingkai Meng, and Hongbin Luo

Beihang University

IEEE Satellite 2023

Background & Motivation

- Large-scale LEO satellite constellation is expected to provide ubiquitous Internet services
- **◆** Efficient routing & forwarding is necessary in LEO satellite networks
- **♦** Major challenge: topology instability
 - Occasional ISL failure & recovery
 - Routing protocol should quickly detect & disseminate the topology changes

Background & Motivation

- ◆ Previous link-state routing protocols for satellite networks are mainly based on OSPF^[1-3]
 - ☐ Globally disseminates coarse-grained link-states
 - Only focus on ISL connectivity
- **♦ Neglect** topology characteristics of LEO satellite networks
 - Deterministic neighbor relationship
 - Predictable topology
- ◆ Real-time connectivity of a far away ISL may not be crucial

Question 1

Do we need global link-state dissemination in LEO constellations with deterministic neighbors?

Question 2

Which type of link-state update fits LEO constellations, global coarse-grained or localized fine-grained?

- [1] Pan T, Huang T, Li X, et al. OPSPF: orbit prediction shortest path first routing for resilient LEO satellite networks. IEEE ICC, 2019.
- [2] Ruan G, Pan T, Lu C, et al. Lightweight Route Flooding via Flooding Topology Pruning for LEO Satellite Networks. IEEE ICC, 2022
- [3] Yan F, Lian P, Luo H, et al. Logic Path Identified Hierarchical (LPIH) Routing for LEO Satellite Network. IEEE Satellite, 2022

Overview of Our Work

- ◆ A novel *Localized Fine-grained (LoFi)* link-state protocol for LEO satellite networks
- **◆** Localized fine-grained link-state update
- **♦** Predictable-topology-based routing calculation
- **◆** Performance evaluation on packet-level experiments

General Design Considerations of Link-State Routing Protocols

Link-State Update Mechanism in Our LoFi Protocol

- Key ideas
 - > Reduce the range of link-state dissemination: localized
 - > Enrich the link-state information with the link load: fine-grained
- Satellites exhibit more valuable link-states at the cost of small communication overhead

Semantics of Link-State Information in LoFi

Classic OSPF

- ☐ Coarse-grained
- ☐ Focus on ISL connectivity
- No load awareness

LoFi

- **□** Fine-grained
- ☐ ISL connectivity & ISL load
- ☐ Load aware: occupation of forwarding queue

Generated link-state message

	Advertising satellite	ISL	Link-state data	
			connectivity	load
	S_1	L_1	true	0.3
		L_2	true	0.6
		L_3	true	0.8
		L_4	false	

Method of Link-State Dissemination in LoFi

Classic OSPF

- ☐ Global link-state dissemination via flooding
- ☐ Globally consistent LSDBs
- ☐ Causes too much advertisement overhead

LoFi

- ☐ Localized link-state dissemination
- \square Parameterized by $n \in \{0, 1, 2, ...\}$
- \square Link-states are disseminated within n hops
- ☐ Independent & inconsistent LSDBs
- ☐ Reduces advertisement overhead
- ☐ Enables ISL load incorporation

Trigger of Link-State Update in LoFi

- Event-triggered link-state update mechanism
- **◆** Trigger1: ISL failure/recovery, the same as traditional link-state protocols
- **◆** Trigger2: ISL load change, enables load awareness in LoFi
 - \square Parameterized by $\delta \in [0, 1]$
 - lacktriangle Disseminates ISL load change only if amplitude of queue occupation ratio exceeds δ

 \square Trigger event: $|q(t) - \tilde{q}| \ge Q \cdot \delta$

LoFi Parameters

- **♦** $n \in \{0, 1, 2, ...\}$
 - ☐ Represents the **range** of link-state dissemination
 - lacktriangle A larger n means more link-states obtained, but larger advertisement overhead
- \bullet $\delta \in [0,1]$
 - ☐ Represents the **sensitivity** of load awareness
 - lacktriangle A smaller δ means more sensitive to load changes, but larger advertisement overhead
- lack LoFi (n, δ) framework generalizes a wide range of link-state protocols
 - \square LoFi(∞ , 1) is classic OSPF
 - \square Trade-off between different (n, δ) tuples is needed

Routing Calculation Mechanism in LoFi

- Link-states in LSDB come from local dissemination / predictable topology
- **♦** Each satellite builds the routing table using its LSDB

Routing Calculation Mechanism in LoFi

- Link-state database maintenance
 - ☐ For ISLs within local dissemination range: **precisely obtained** through link-state updates
 - ☐ For ISLs out of local dissemination range: **inferred** based on predictable topology
- **◆** Routing decision algorithm
 - Each ISL is associated with a link-cost metric

$$Cost_{ISL} = d_{ISL}^{Propa} + d_{ISL}^{Queue}$$

Propagation delay

- Within dissemination range: precisely obtained
- Out of dissemination range: inferred based on predictable topology

■ Selects the path with the lowest cost when forwarding data packets

Queuing delay

- Within dissemination range: precisely obtained
- Out of dissemination range: considered as zero

Performance Evaluation in OMNeT++

- Experiment setup
 - ☐ Iridium-like constellation
 - ☐ Performance metrics: Packet loss ratio, End-to-end delay, Advertisement overhead
- ◆ Baseline: OPSPF^[1], ELB^[2]

Localized link-state dissemination achieves comparable performance at a lower overhead

^[1] Pan T, Huang T, Li X, et al. OPSPF: orbit prediction shortest path first routing for resilient LEO satellite networks. IEEE ICC, 2019.

^[2] Taleb T, Mashimo D, Jamalipour A, et al. Sat04-3: Elb: An explicit load balancing routing protocol for multi-hop ngeo satellite constellations[C]//IEEE Globecom 2006. IEEE, 2006: 1-5.

Performance Evaluation in OMNeT++

LoFi(4, δ) significantly outperforms ELB in advertisement overhead, packet loss ratio & delay

As δ decreases, LoFi sacrifices control overhead in exchange for a better packet delivery performance

Fine-grained link-state achieves load awareness at a low advertisement overhead

Container-based Emulator & Implementation on Linux Kernel

Container-based emulator

- **◆**Implementation of LoFi on the emulator
 - ☐ Link-state update mechanism: implemented in user space
 - Routing calculation mechanism: implemented in kernel & user space

Conclusion & Future Works

♦ Conclusion

- ☐ Proposed localized fine-grained (LoFi) link-state routing protocol for LEO satellite networks
- ☐ Performance evaluation on packet level experiments
- ☐ LoFi outperforms OPSPF & ELB

♦ Future works

- Deal with packet disorders
- ☐ Further evaluate the performance of LoFi based on the container-based emulator

Thanks

Appendix

♦ An example of data forwarding

