Total N	No. of Questions : 10] [Total No. Գիեթ //www.onfineap.com
	Roll No
	CS/IT-404(N)
B. E.	(Fourth Semester) EXAMINATION, Dec., 2009 (New Scheme)
	(Common for CS & IT Engg. Branch)
-	ANALYSIS AND DESIGN OF ALGORITHMS
	Time: Three Hours
	Maximum Marks: 100
	Minimum Pass Marks: 35
Note:	Attempt any <i>one</i> question from each Unit. All questions carry equal marks. Assume suitable data wherever necessary.
_	Unit — I
1. (a)	Find the location of 45 in the given array by applying binary search algorithm: 10
(b)	9, 12, 15, 24, 30, 36, 45, 70
(0)	What are heaps? Write a complète algorithm to create a heap. Explain with example.
	Or
2. (a)	What is the significance of Asymptotic Notation? Draw a graph of a function $\log n$, $n \log n$, n^2 , 2^n for

various values of n.

(b) Sort the given list using merge sort :

50, 40, 20, 70, 15, 35, 20, 60

10

10

P. T. O.

Unit-II

3. (a) Given 10 activities along with their start and finish time as:

$$s_i = \langle 1, 2, 3, 4, 7, 8, 9, 9, 11, 12 \rangle$$

 $f_i = \langle 3, 5, 4, 7, 10, 9, 11, 13, 12, 14 \rangle$

Compute a schedule where largest number of activities takes place.

(b) Explain the greedy strategy. Write algorithm for knapsack problem.

Or

4. (a) Apply Kruskal's algorithm to find a generic minimum spanning tree for the graph:

Fig. 1

(b) Find the optimal merge pattern for the following data:

10

Unit-III

5. (a) Define how knapsack problem is solved by using dynamic programming?

Consider n = 3 $(w_1, w_2, w_3) = (2, 3, 3), (p_1, p_2, p_3) = (1, 2, 4)$ and m = 6. Find optimal solution for the given data.

(b) Explain Reliability design problem briefly.

8

6. (a) Apply Floyd-Warshall algorithm for constructing shortest path. Show the matrices $D^{(k)}$ and $\pi^{(k)}$ computed for the graph. 12

Fig. 2

(b) Explain dynamic programming with example. Unit-IV

(a) Write a backtracking algorithm for 8-queen problem.

10

(b) Explain travelling salesman problem using branch and bound method. Generate a state space tree for the following cost matrix: 10

$$C_{ij} = \begin{bmatrix} A & B & C & D \\ A & \begin{bmatrix} \infty & 12 & 7 & 4 \\ 10 & \infty & 13 & 9 \\ 3 & 8 & \infty & 11 \\ 5 & 6 & 10 & \infty \end{bmatrix}$$

$$Or$$

- (a) Design a backtracking algorithm for graph-coloring problem. 10
 - (b) Explain lower bound theory and its use in solving algebraic problems. 10

P. T. O.

1t — V	http://www.onlineqp.com
--------	-------------------------

10

9.	(a)	Create a B-tree of order 5 from the following lists	of
		data items:	10
		< 15, 20, 35, 95, 13, 10, 50, 65, 5, 70, 30, 40, 45, 80,	,
		25, 6, 22, 33 >	

(b) Write an algorithm for BFS and DFS. Or

- 10. (a) Define NP completeness and reducibility of problems. What are NP hard problems? 10
 - (b) A binary tree has 9 nodes. The inorder and preorder traversal of tree yield the following sequence of nodes: 10

Inorder: EACKFHDBG Preorder: FAEKCDHGB