Công thức tính cường độ điện trường tại trung điểm

1. Công thức

Để tính cường độ điện trường tại trung điểm, ta áp dụng nguyên lý chồng chất điện trường:

- Bước 1: Xác định phương, chiều, độ lớn của từng vectơ cường độ điện trường do từng điện tích gây ra tại trung điểm.
- Bước 2: Vẽ vectơ cường độ điện trường tổng hợp theo quy tắc hình bình hành hoặc quy tắc cộng vectơ.
- Bước 3: Xác định độ lớn của cường độ điện trường tổng hợp từ hình vẽ.

$$\vec{E} = \vec{E_1} + \vec{E_2}$$

+ Nếu q₁, q₂ cùng dấu: $\Rightarrow \overrightarrow{E_1} \uparrow \downarrow \overrightarrow{E_2} \Rightarrow E = E_1 - E_2$

$$q_1$$
 \longrightarrow q_2 \longrightarrow q_2

+ Nếu q₁, q₂ trái dấu: $\Rightarrow \overrightarrow{E_1} \uparrow \uparrow \overrightarrow{E_2} \Rightarrow E = E_1 + E_2$

2. Ví dụ minh họa

Ví dụ 1: Có hai điện tích điểm $q_1 = 0.5$ nC và $q_2 = -0.5$ nC lần lượt đặt tại hai điểm A, B cách nhau một đoạn a = 6 cm trong không khí. Hãy xác định cường độ điện trường \vec{E} tại điểm M là trung điểm của AB.

Hướng dẫn giải: Gọi \vec{E}_1, \vec{E}_2 lần lượt là cường độ điện trường do điện tích q_1 và q_2 gây ra tại M.

+
$$Vi:$$
 $\begin{cases} r_1 = r_2 = r \\ |q_1| = |q_2| = q \end{cases} \Rightarrow E_1 = E_2 = k \frac{|q|}{r_M^2} = 5000(V/m)$

+ Các vecto \vec{E}_1, \vec{E}_2 được biểu diễn như hình vẽ.

+ Gọi $\stackrel{..}{E}$ là điện trường tổng hợp do $q_{_1}$ và $q_{_2}$ gây ra tại M. Ta có: $\stackrel{..}{E}=\stackrel{..}{E}_1+\stackrel{..}{E}_2$

+ Vì \vec{E}_1 , \vec{E}_2 cùng chiều nên: $E = E_1 + E_2 = 10000 (V/m)$

+ Vậy $\vec{E}\,$ có điểm đặt tại M, phương AB, chiều từ A đến B, độ lớn 10000 V/m

Ví dụ 2: Cho hai điện tích điểm $q_1 = q_2 = 4.10^{-10} \text{C}$ đặt tại hai điểm A, B trong không khí biết AB = 2 cm. Hãy xác định cường độ điện trường \vec{E} tại điểm là trung điểm của AB.

Hướng dẫn giải: Gọi \vec{E}_1, \vec{E}_2 lần lượt là cường độ điện trường do điện tích q_1 và q_2 gây ra tại M.

$$AM = BM = \frac{AB}{2} = 1cm \Rightarrow E_1 = E_2 = k \frac{|q_1|}{r_H^2} = 36000(V/m)$$

+ Các vecto \vec{E}_1, \vec{E}_2 được biểu diễn như hình vẽ.

$$\underset{q_{1}}{\bigoplus} - - \underbrace{\stackrel{\overline{E_{2M}}}{\longleftarrow} \stackrel{\overline{E_{1M}}}{\longrightarrow}}_{M} - - \bigoplus_{q_{2}}$$

+ Gọi $\stackrel{.}{E}$ là điện trường tổng hợp do $q_{_1}$ và $q_{_2}$ gây ra tại M. Ta có: $\stackrel{.}{E}=\stackrel{.}{E}_1+\stackrel{.}{E}_2$

+ Vì \vec{E}_1 , \vec{E}_2 ngược chiều nên: $E = E_1 - E_2 = 0 (V/m)$