Homework 05 Solutions

Question 01 (20 points)

A simplified form of the diameter equation is shown below.

$$d = \left(\frac{16n}{\pi} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{ut}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\} \right)^{1/3}$$

$$M_m = M_a = 0$$

 $T_m = 1000 N * m, T_a = 250 N * m$

Initial Design:

$$\frac{\frac{D}{d}}{\frac{D}{d}} = 1.2 \qquad \frac{r}{d} = 0.05$$

From Fig A-15-8, $K_{ts}=1.6$, let $K_{fs}=K_{ts}=1.6$

Shaft material: S_{ut} =1200MPa, S_y =100MPa Assume k_b =0.9 since diameter d is unknown.

	(MPa)	Correction Factor	Parameter	
Sut @RT	1200			
S _e ' @RT	600	0.5	Eq. 6-8	
	518.9	$k_a = aS_{ut}^b$ = 1.58 · 1200 ^{-0.085} = 0.865	Ground Surface	
	467.0	$k_b = 0.9$ (assumed)	Size	
	275.5	$k_c = 0.59$	Loading: Torsion	
	275.5	$k_d = 1$	Temperature	
	239.2	$k_e = 0.868$	Reliability: 95%	
S _e @RT	239.2			

For minimum diameter d at shoulder with infinite life, let n=1.0.

$$d = \left[\frac{16\sqrt{3}K_{fs}n}{\pi} \left(\frac{T_a}{S_e} + \frac{T_m}{S_{ut}}\right)\right]^{1/3} = \left[\frac{16\cdot\sqrt{3}\cdot1.6\cdot1.0}{\pi} \left(\frac{250}{239.2\cdot10^6} + \frac{1000}{1200\cdot10^6}\right)\right]^{1/3} = 0.0298m$$

d=0.0298m=29.8mm; use d=30 mm for below calculation

Iteration 2:

Since
$$\frac{D}{d} = 1.2$$
, $D = 1.2 \cdot 30 = 36mm$, Fillet radius $\frac{r}{d} = 0.05$, $r = 1.5mm$
Revised $K_{ts} = 1.6$, $q_s = 0.86$, $K_{fs} = 1 + 0.86(1.6 - 1) = 1.52$

$$d = \left[\frac{16\sqrt{3}K_{fs}n}{\pi}\left(\frac{T_a}{S_a} + \frac{T_m}{S_{tt}}\right)\right]^{1/3} = \left[\frac{16\cdot\sqrt{3}\cdot1.52\cdot1.0}{\pi}\left(\frac{250}{229\cdot5\cdot10^6} + \frac{1000}{1200\cdot10^6}\right)\right]^{1/3} = 0.0295m$$

d=0.0295m≈30mm

Select d at shoulder is adequate.

	(MPa)	Correction Factor	Parameter
S _{ut} @RT	1200		
S _e ' @RT	600	0.5	Eq. 6-8
	518.9	$k_a = aS_{ut}^b = 1.58 \cdot 1200^{-0.085} $ $= 0.865$	Ground Surface
	448.1	$k_b = \left(\frac{30}{7.62}\right)^{-0.107} = 0.864$	Size Eq. 6-20
	264.4	$k_c = 0.59$	Loading: Torsion
	264.4	$k_d = 1$	Temperature
	229.5	$k_e = 0.868$	Reliability: 95%
S _e @RT	229.5		

Calculated mean and alternating stresses shaft:

$$\sigma_{a} \coloneqq \left(\left(\frac{32 \cdot K_{f} \cdot M_{a}}{\boldsymbol{\pi} \cdot d^{3}} \right)^{2} + 3 \left(\frac{16 \cdot K_{fs} \cdot T_{a}}{\boldsymbol{\pi} \cdot d^{3}} \right)^{2} \right)^{0.5} = 124.151 \, \boldsymbol{MPa}$$

$$\sigma_{m} \coloneqq \left(\left(\frac{32 \cdot K_{f} \cdot M_{m}}{\boldsymbol{\pi} \cdot d^{3}} \right)^{2} + 3 \left(\frac{16 \cdot K_{fs} \cdot T_{m}}{\boldsymbol{\pi} \cdot d^{3}} \right)^{2} \right)^{0.5} = 496.604 \, \boldsymbol{MPa}$$

The safety factor is very close to 1 as assumed.

Question 02

$$T_A = 340 \text{ N·m} = F(c_0 20^{\circ} \frac{0.15}{2})$$
 $\overline{H} = 4824 \text{ N}$
 $M_{\text{total}} @ C = 4824 \cdot 0.1 = 482.4 \text{ N-m}$

$$Ta = 0$$
; $Tm = 340 \text{ N-M}$; $Ma = Mtotal = 482.4 \text{ N-M}$; $Mm = 0$
 $Table 7-1$, for sharp fillet, $kt = 2.7$ $kt = 2.2$ $\left[\frac{\Gamma}{d} = 0.02, \frac{D}{d} = 1.5\right]$
 $d = \left[\frac{16n}{T}\left(\frac{2 \text{ kg Ma}}{5e} + \frac{\sqrt{13} \text{ kg Stm}}{5ut}\right)\right]^{\frac{1}{3}}$
 $k_0 = 0.843$, $k_0 = 0.868$ (95% Reliability)

 $d = \left[\frac{16.25}{T}\left(\frac{2.27.482.4}{184 \times 10^6} + \frac{\sqrt{13}.22.340}{560 \times 10^6}\right)\right]^{\frac{1}{3}}$
 $k_0 = 0.9$ (Assumed)

 $k_0 = 0.9$ (Assumed)

 $k_0 = 0.9$ (Assumed)

 $k_0 = 0.9$ (Assumed)

$$\frac{D}{d} = 1.5 \quad D = 90 \text{ mm} \quad \frac{\Gamma}{d} = 0.02 \quad \Gamma = 1.2 \text{ mm} \quad g = 0.74 \quad g_5 = 0.75$$

$$K_f = 1 + 0.74(2.7 - 1) = 2.3 \quad K_{fS} = 1 + 0.75(2.2 - 1) = 1.9$$
Also revise $K_b = 0.862$ Se = 164.3 MPa

$$d = \left[\frac{16 \cdot 25}{T} \left(\frac{2 \cdot 2.3 \cdot 4824}{164.3 \times 10^{6}} + \frac{\sqrt{3} \cdot 1.9 \cdot 340}{560 \times 10^{6}} \right) \right]^{1/3} = 0.0582 \text{ m} = 58.2 \text{ mm}$$

Selected shaft d=60 mm is adequate.

Question 03

Nominal Shaft Dia	$d = 1 \cdot in$		
	m		
Force on Key	$F = \frac{1 rq}{l} = 5638 lbf$		
	$F = \frac{Trq}{\frac{d}{2}} = 5638 \ lbf$		
F			
Factor of Safety	SF ≔ 1.1		
Key Material: 1020 CD	$S_{ut} = 68 \cdot ksi$	$S_y = 57 \cdot ksi$	
Per DET Criteria	$S_{sy} := 0.577 \cdot S_y = 32.889 \ ksi$		
Table 7-6 shows the square key	$w = \frac{1}{4} \cdot in$	$H := \frac{1}{4} \cdot in$	
dimensions for a 1" shaft dia,	4	4	
To resist failure by shear across	SF F _O ZEA	žen.	
the key, the needed key length	$L = \frac{SF}{S_{sy}} \cdot \frac{F}{w} = 0.754$	in	
per DET	2		
	SF F		
To resist the crushing, the needed key length	$L = \frac{SF}{S_y} \cdot \frac{F}{\frac{H}{2}} = 0.87$	in	
needed key length	$\frac{-y}{2}$		
	10 -00		