FSL91030(M)芯片

SDK 接口文档

版本: V1.4

武汉飞思灵微电子技术有限公司

2022年12月

目 录

1	VLAN	Nanagement	1
	1.1	int fsl_vlan_create	1
	1.2	int fsl_vlan_port_add	1
	1.3	int fsl_vlan_destroy	2
	1.4	int fsl_vlan_destroy_all	2
	1.5	int fsl_vlan_port_remove	3
	1.6	int fsl_vlan_control_set	3
	1.7	int fsl_vlan_control_get	4
	1.8	int fsl_vlan_port_ingress_erps_set	4
	1.9	int fsl_vlan_port_egress_erps_set	5
	1.10	int fsl_vlan_port_default_action_set	5
	1.11	int fsl_vlan_port_default_action_get	6
	1.12	int fsl_vlan_port_egress_default_action_set	7
	1.13	int fsl_vlan_port_egress_default_action_get	7
	1.14	int fsl_vlan_port_default_action_delete	8
	1.15	int fsl_vlan_port_egress_default_action_delete	8
	1.16	int fsl_vlan_port_protocol_action_add	9
	1.17	int fsl_vlan_port_protocol_action_delete	9
	1.18	int fsl_vlan_port_protocol_action_get	10
	1.19	int fsl_vlan_port_protocol_action_delete_all	10
	1.20	int fsl_vlan_translate_action_add	11
	1.21	int fsl_vlan_translate_action_get	11
	1.22	int fsl_vlan_translate_action_delete	12
	1.23	int fsl_vlan_translate_egress_action_add	13
	1.24	int fsl_vlan_translate_egress_action_delete	13
	1.25	int fsl_vlan_translate_egress_action_get	14
	1.26	int fsl_vlan_translate_action_range_add	15
	1.27	int fsl_vlan_translate_action_range_delete	16

	1.28	int fsl_vlan_translate_action_range_get	. 16
	1.29	int fsl_vlan_mac_action_add	. 17
	1.30	int fsl_vlan_mac_action_delete	. 18
	1.31	int fsl_vlan_mac_action_get	. 18
	1.32	int fsl_vlan_ip_action_add	. 19
	1.33	int fsl_vlan_ip_action_delete	. 20
	1.34	int fsl_vlan_ip_action_get	. 20
	1.35	int fsl_mac_ip_bind_miss_action_set	.21
	1.36	int fsl_pdu_option_set	.21
	1.37	int fsl_pdu_config_add	. 22
	1.38	int fsl_pdu_config_delete	. 22
	1.39	int fsl_pdu_config_get	. 23
2	Police	er Configuration	. 24
	2.1	int fsl_policing_ctl_set	. 24
	2.2	int fsl_policing_ctl_get	. 25
	2.3	int fsl_macro_policing_update_set	. 25
	2.4	int fsl_macro_policing_update_get	. 26
	2.5	int fsl_flow_policing_update_set	. 26
	2.6	int fsl_flow_policing_update_get	. 27
	2.7	int fsl_macro_policing_enable_set	. 28
	2.8	int fsl_macro_policer_create	. 28
	2.9	int fsl_macro_policer_delete	. 30
	2.10	int fsl_flow_policer_create	.31
	2.11	int fsl_flow_policer_delete	. 32
3	Quali	ty of Service	. 34
	3.1	int fsl_qos_profile_create	. 34
	3.2	int fsl_qos_profile_delete	. 35
	3.3	int fsl_vlan_priority_map_set	. 35
	3.4	int fsl_vlan_priority_map_get	. 36
	3.5	int fsl_dscp_map_set	. 36

	3.6	int fsl_vlan_priority_map_get	37
	3.7	int fsl_pri_remark_enable_set	38
	3.8	int fsl_remark_profile_create	38
	3.9	int fsl_remark_profile_delete	39
	3.10	int fsl_dscp_unmap_set	39
	3.11	int fsl_vlanpri_unmap_set	40
	3.12	int fsl_dscp_unmap_get	41
	3.13	int fsl_vlanpri_unmap_get	41
4	Stron	n Control	43
	4.1	int fsl_storm_control_enable_set	43
	4.2	int fsl_storm_control_enable_get	43
	4.3	int fsl_storm_control_global_set	44
	4.4	int fsl_storm_control_global_get	. 44
	4.5	int fsl_storm_control_update_set	45
	4.6	int fsl_storm_control_update_get	46
	4.7	int fsl_storm_control_set	46
	4.8	int fsl_storm_control_get	47
5	Field	Processor	49
	5.1	int fsl_field_init	49
	5.2	int fsl_field_detach	49
	5.3	int fsl_field_group_create_mode_id	49
	5.4	int fsl_field_group_destroy	50
	5.5	int fsl_field_entry_create_id	51
	5.6	int fsl_field_entry_install	52
	5.7	int fsl_field_entry_remove	52
	5.8	int fsl_field_entry_destroy	53
	5.9	int fsl_field_entry_destroy_all(int unit)	53
	5.10	int fsl_field_action_add	54
	5.11	int fsl_field_action_remove	55
	5.12	int fsl_field_qualify_Dstlp	55

	5.13	int fsl_field_qualify_Dstlp6	. 56
	5.14	int fsl_field_qualify_DstlpRange	.57
	5.15	int fsl_field_qualify_Dstlp6Range	.57
	5.16	int fsl_field_qualify_DstMac	.58
	5.17	int fsl_field_qualify_OuterVlanId	.59
	5.18	int fsl_field_qualifier_delete	.59
	5.19	int fsl_field_qualify_clear	.60
	5.20	int fsl_field_qualify_data	. 61
	5.21	void fsl_field_data_qualifier_init	. 61
	5.22	int fsl_field_data_qualifier_create	.62
	5.23	int fsl_field_data_qualifier_destroy	.63
	5.24	int fsl_field_data_qualifier_destroy_all	.63
	5.25	void fsl_field_data_packet_format_t_init	.64
	5.26	int fsl_field_data_qualifier_packet_format_add	.64
	5.27	int fsl_field_data_qualifier_packet_format_delete	. 65
6	Trunk	ring(Link Aggregation)	. 66
	6.1	int fsl_trunk_init	. 66
	6.2	int fsl_trunk_detach	. 66
	6.3	int fsl_trunk_create_id	. 66
	6.4	int fsl_trunk_set	. 67
	6.5	int fsl_trunk_destroy	. 68
	6.6	int fsl_trunk_get	. 68
	6.7	int fsl_trunk_psc_set	69
	6.8	int fsl_trunk_psc_get	.70
	6.9	int fsl_trunk_hash_alg_set	.70
	6.10	int fsl_trunk_hash_alg_get	71
	6.11	int fsl_trunk_failover_set	.72
7	Laye	⁻ 2 Address Management	.73
	7.1	int fsl_l2_addr_add	.73
	7.2	int fsl_l2_addr_delete	.73

	7.3	int fsl_l2_addr_get	.74
	7.4	int fsl_l2_addr_delete_by_port	.74
	7.5	int fsl_l2_addr_delete_by_vlan	.75
	7.6	int fsl_l2_age_timer_get	.75
	7.7	int fsl_l2_age_timer_set	.76
	7.8	int fsl_l2_fast_age_enable_set	.76
8	Laye	2 Multicast Management	.78
	8.1	int fsl_mcast_create	.78
	8.2	int fsl_mcast_delete	.78
	8.3	int fsl_mcast_bitmap_del	.79
	8.4	int fsl_mcast_addr_add	.79
	8.5	int fsl_mcast_addr_remove	.80
9	Port (Configuration	. 81
	9.1	int fsl_port_control_set	.81
	9.2	int fsl_port_control_get	.81
	9.3	int fsl_port_tpid_init	.82
	9.4	int fsl_port_tpid_add	.82
	9.5	int fsl_port_tpid_delete	.83
	9.6	int fsl_port_tpid_set	.83
	9.7	int fsl_ingress_port_stp_set	. 84
	9.8	int fsl_egress_port_stp_set	.84
	9.9	int fsl_egress_port_stp_get	. 85
	9.10	int fsl_ingress_stp_erps_enable_set	. 85
	9.11	int fsl_ingress_stp_erps_enable_get	.86
	9.12	int fslsoc_stat_get	. 87
10	Set fi	lter, send and receive packets 注:仅适用 1030M	.88
	10.1	fsl_rx_filter_create	.88
	10.2	fsl_rx_filter_list	.88
	10.3	fsl_rx_filter_get	.89
	10.4	fsl_rx_filter_destroy	.89

	10.5 prepare_pkt	. 90
	10.6 fsl_common_tx	
	10.7 fsl_common_rx_register	.91
	10.8 fsl_common_rx_unregister	.91
	10.9 fsl_common_rx_start	. 92
	10.10 fsl_common_rx_shutdown	. 92
11	修订信息	.94

1 VLAN Management

1.1 int fsl_vlan_create

描述

创建一条 vlan。

语法

int fsl_vlan_create(int unit, fsl_vlan_t vid)

参数

unit 设备号

vid vlan id

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.2 int fsl_vlan_port_add

描述

为一条 vlan 添加入向和出向的端口成员。

语法

int fsl_vlan_port_add(int unit, fsl_vlan_t vid, fsl_pbmp_t pbmp, fsl_pbmp_t ubmp,fsl_pbmp_t lbmp)

参数

unit 设备号

vid vlan id

pbmp 待添加端口成员

upmp 待添加 untag 端口成员

lbmp 待添加 trunk 成员

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.3 int fsl_vlan_destroy

描述

删除一条指定 vlan。

语法

int fsl_vlan_destroy(int unit, fsl_vlan_t vid)

参数

unit 设备号

vid vlan id

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.4 int fsl_vlan_destroy_all

描述

删除所有 vlan。

语法

int fsl_vlan_destroy_all(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.5 int fsl_vlan_port_remove

描述

移除特定 vlan 的端口成员。

语法

int fsl_vlan_port_remove(int unit, fsl_vlan_t vid, fsl_pbmp_t pbmp,fsl_pbmp_t lbmp)

参数

unit 设备号

vid vlan id

pbmp 待删除端口成员,高为有效指示

lbmp 待删除 trunk 成员,高为有效指示

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.6 int fsl_vlan_control_set

描述

设置 vlan 对应属性的值。

语法

int fsl_vlan_control_set(int unit, fsl_vlan_control_t type,fsl_vlan_t vid, int value)

参数

unit 设备号

type vlan 属性枚举类型

vid vlan id

value 待设置属性值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.7 int fsl_vlan_control_get

描述

获取 vlan 对应属性的值

语法

int fsl_vlan_control_get(int unit, fsl_vlan_control_t type, fsl_vlan_t vid,int *value)

参数

unit 设备号

type vlan 属性枚举类型

vid vlan id

value vlan 属性值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.8 int fsl_vlan_port_ingress_erps_set

描述

入方向环网保护设置。

语法

int fsl_vlan_port_ingress_erps_set(int unit, fsl_vlan_t vid, fsl_pbmp_t pbmp,fsl_pbmp_t lbmp)

参数

unit 设备号

vid vlan id

pbmp 待保护端口成员

lbmp 特保护 trunk 成员

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.9 int fsl_vlan_port_egress_erps_set

描述

出方向环网保护设置。

语法

int fsl_vlan_port_egress_erps_set(int unit, fsl_vlan_t vid, fsl_pbmp_t pbmp,fsl_pbmp_t lbmp)

参数

unit 设备号

vid vlan id

pbmp 待保护端口成员

lbmp 待保护 trunk 成员

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.10 int fsl_vlan_port_default_action_set

描述

创建入向端口默认的 vlan 处理动作

语法

int fsl_vlan_port_default_action_set(int unit, int port, fsl_vlan_action_set_t *action)

参数

unit 设备号

port 入向物理端口

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.11 int fsl_vlan_port_default_action_get

描述

获取入向端口默认的 vlan 处理动作。

语法

int fsl_vlan_port_default_action_get(int unit, int port, fsl_vlan_action_set_t *action)

参数

unit 设备号

port 入向物理端口

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.12 int fsl_vlan_port_egress_default_action_set

描述

创建出向端口默认的 vlan 处理动作。

语法

int fsl_vlan_port_egress_default_action_set(int unit, int port, fsl_vlan_action_set_t *action)

参数

unit 设备号

port 出向物理端口

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.13 int fsl_vlan_port_egress_default_action_get

描述

获取出向端口默认的 vlan 处理动作。

语法

int fsl_vlan_port_egress_default_action_get(int unit, int port, fsl_vlan_action_set_t *action)

参数

unit 设备号

port 出向物理端口

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.14 int fsl_vlan_port_default_action_delete

描述

删除入向端口默认的 vlan 处理动作。

语法

int fsl_vlan_port_default_action_delete(int unit, int port)

参数

unit 设备号

port 入向物理端口

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.15 int fsl_vlan_port_egress_default_action_delete

描述

删除出向端口默认的 vlan 处理动作。

语法

int fsl_vlan_port_egress_default_action_delete(int unit, int port)

参数

unit 设备号

port 出向物理端口

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.16 int fsl_vlan_port_protocol_action_add

描述

增加端口的协议 vlan 动作。

语法

```
int fsl_vlan_port_protocol_action_add(int unit, int inlslag, int inPort, int ethType, fsl_vlan_action_set_t *action)
```

参数

unit 设备号

inPort 入端口

ethType 以太网类型

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.17 int fsl_vlan_port_protocol_action_delete

描述

删除端口的协议 vlan 动作。

语法

int fsl_vlan_port_protocol_action_delete(int unit, int inlslag, int inPort, int ethType)

参数

unit 设备号

inPort 入端口

ethType 以太网类型

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.18 int fsl_vlan_port_protocol_action_get

描述

获取端口的协议 vlan 动作。

语法

int fsl_vlan_port_protocol_action_get(int unit, int inIslag, int inPort, int ethType, fsl_vlan_action_set_t *action)

参数

unit 设备号

inPort 入端口

ethType 以太网类型

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.19 int fsl_vlan_port_protocol_action_delete_all

描述

删除所有端口的协议 vlan 动作。

语法

int fsl_vlan_port_protocol_action_delete_all(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.20 int fsl_vlan_translate_action_add

描述

增加入向基于 vlan 的 vlan 翻译动作。

语法

int fsl_vlan_translate_action_add(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan, int inner_vlan, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan 外层 vlan id 或者 tag

inner_vlan 内层 vlan id 或者 tag

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.21 int fsl_vlan_translate_action_get

描述

获取入向基于 vlan 的 vlan 翻译动作。

语法

int fsl_vlan_translate_action_get(int unit,int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan, int inner_vlan, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan 外层 vlan id 或者 tag

inner_vlan 内层 vlan id 或者 tag

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.22 int fsl_vlan_translate_action_delete

描述

删除入向基于 vlan 的 vlan 翻译动作。

语法

int fsl_vlan_translate_action_delete(int unit,int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan, int inner_vlan)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan 外层 vlan id 或者 tag

inner_vlan 内层 vlan id 或者 tag

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.23 int fsl_vlan_translate_egress_action_add

描述

增加出向基于 vlan 的 vlan 翻译动作。

语法

int fsl_vlan_translate_egress_action_add(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan, int inner_vlan, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan 外层 vlan id 或者 tag

inner_vlan 内层 vlan id 或者 tag

action vlan tag 的动作设置

返回值

FSLRAL E NONE 成功

FSLRAL_E_XXX 错误

1.24 int fsl_vlan_translate_egress_action_delete

描述

删除出向基于 vlan 的 vlan 翻译动作。

语法

int fsl_vlan_translate_egress_action_delete(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan, int inner_vlan)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan 外层 vlan id 或者 tag

inner_vlan 内层 vlan id 或者 tag

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.25 int fsl_vlan_translate_egress_action_get

描述

获取出向基于 vlan 的 vlan 翻译动作。

语法

int fsl_vlan_translate_egress_action_get(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan, int inner_vlan, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan 外层 vlan id 或者 tag

inner_vlan 内层 vlan id 或者 tag

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.26 int fsl_vlan_translate_action_range_add

描述

增加入向基于 vlan range 的 vlan 翻译动作。

语法

int fsl_vlan_translate_action_range_add(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan_lo, int outer_vlan_hi,int inner_vlan_lo, int inner_vlan_hi, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan_hi 外层 vlan id 最大值

inner_vlan_lo 内层 vlan id 最小值

inner_vlan_hi 内层 vlan id 最大值

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.27 int fsl_vlan_translate_action_range_delete

描述

删除入向基于 vlan range 的 vlan 翻译动作。

语法

int fsl_vlan_translate_action_range_delete(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan_lo, int outer_vlan_hi, int inner_vlan_lo, int inner_vlan_hi)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan_lo 外层 vlan id 最小值

outer_vlan_hi 外层 vlan id 最大值

inner_vlan_lo 内层 vlan id 最小值

inner_vlan_hi 内层 vlan id 最大值

返回值

FSLRAL_E_NONE 成功

FSLRAL E XXX 错误

1.28 int fsl_vlan_translate_action_range_get

描述

获取入向基于 vlan range 的 vlan 翻译动作。

语法

int fsl_vlan_translate_action_range_get(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, int outer_vlan_lo, int outer_vlan_hi, int inner_vlan_lo, int inner_vlan_hi, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

outer_vlan_hi 外层 vlan id 最大值

inner_vlan_lo 内层 vlan id 最小值

inner_vlan_hi 内层 vlan id 最大值

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.29 int fsl_vlan_mac_action_add

描述

增加入向基于 mac 的 vlan 翻译动作。

语法

int fsl_vlan_mac_action_add(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, fsl_mac_t mac, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

mac vlan 翻译匹配的源 mac 地址

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.30 int fsl_vlan_mac_action_delete

描述

删除入向基于 mac 的 vlan 翻译动作。

语法

int fsl_vlan_mac_action_delete(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, fsl_mac_t mac)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

mac vlan 翻译匹配的源 mac 地址

返回值

FSLRAL_E_NONE 成功

FSLRAL E XXX 错误

1.31 int fsl_vlan_mac_action_get

描述

获取入向基于 mac 的 vlan 翻译动作。

语法

int fsl_vlan_mac_action_get(int unit, int xlate, int gport, fsl_vlan_translate_key_t key_mode, fsl_mac_t mac, fsl_vlan_action_set_t *action)

参数

unit 设备号

xlate xlate0 和 xlate1 的选择

gport 虚拟或物理端口号

key_mode vlan 翻译的 key 的类型

mac vlan 翻译匹配的源 mac 地址

action vlan tag 的动作设置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.32 int fsl_vlan_ip_action_add

描述

增加基于 ip 的 mac 绑定动作。

语法

int fsl_vlan_ip_action_add(int unit, fsl_vlan_ip_t *vlan_ip, fsl_mac_t mac, int gport)

参数

unit 设备号

vlan_ip ip 匹配的相关配置

mac 与 ip 绑定的源 mac 地址

gport 与 ip 绑定的虚拟或物理端口号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.33 int fsl_vlan_ip_action_delete

描述

删除基于 ip 的 mac 绑定动作。

语法

int fsl_vlan_ip_action_delete(int unit, fsl_vlan_ip_t *vlan_ip)

参数

unit 设备号

vlan_ip ip 匹配的相关配置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.34 int fsl_vlan_ip_action_get

描述

获取基于 ip 的 mac 绑定动作。

语法

int fsl_vlan_ip_action_get(int unit, fsl_vlan_ip_t *vlan_ip, fsl_mac_t *mac, int *is_lag, int *lport)

参数

unit 设备号

vlan_ip ip 匹配的相关配置

mac 与 ip 绑定的源 mac 地址

is_lag 与 ip 绑定的端口 lag 信息

lport 与 ip 绑定的物理端口号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.35 int fsl_mac_ip_bind_miss_action_set

描述

设置 mac、ip 绑定失败时的全局报文处理动作。

语法

int fsl_mac_ip_bind_miss_action_set(int unit, int bypassen, int trapen, int dropen)

参数

unit 设备号

bypassen bypass 使能

trapen trap 使能

dropen drop 使能

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.36 int fsl_pdu_option_set

描述

设置 I2pdu 全局处理动作。

语法

int fsl_pdu_option_set(int unit, uint64_t pdu_option)

参数

unit 设备号

pdu_option 全局 pdu 处理行为配置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.37 int fsl_pdu_config_add

描述

增加 pdu 配置条目。

语法

int fsl_pdu_config_add(int unit, int index, fsl_pdu_config_t *pdu_cfg)

参数

unit 设备号

index pdu 配置条目 id

pdu_cfg pdu 内容及掩码配置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.38 int fsl_pdu_config_delete

描述

删除 pdu 配置条目。

语法

int fsl_pdu_config_delete(int unit, int index)

参数

unit 设备号

index pdu 配置条目 id

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

1.39 int fsl_pdu_config_get

描述

获取 pdu 条目的具体配置。

语法

int fsl_pdu_config_get(int unit, int index, fsl_pdu_config_t *pdu_cfg)

参数

unit 设备号

index pdu 配置条目 id

pdu_cfg pdu 内容及掩码配置

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2 Policer Configuration

2.1 int fsl_policing_ctl_set

描述

设置 policing 的全局配置。

语法

int fsl_policing_ctl_set(int unit, int direct, fsl_policing_ctl_t *pol_ctl)

参数

unit 设备号

direct policing 方向,入向和出向

pol_ctl policing 的全局配置数据

typedef struct fsl_policing_ctl_s {

uint16_t pktLenUsePkt; //当基于包做 policing 时的等效包长,字节为单位

uint8_t macroPktBytes; //macro 模式

// 0x0: 基于字节做 policing

// 0x1: 基于包做 policing

uint8_t flowPktBytes; //flow 模式

// 0x0: 基于字节做 policing

// 0x1: 基于包做 policing

uint8_t meterGran; // 控制粒度, 默认 0

uint8_t preambleLen; //帧间隔和前导码等效包长,字节为单位

} fsl_policing_ctl_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.2 int fsl_policing_ctl_get

描述

获取 policing 的全局配置。

语法

int fsl_policing_ctl_get(int unit, int direct, fsl_policing_ctl_t *pol_ctl)

参数

unit 设备号

direct policing 方向,入向和出向

pol_ctl policing 的全局配置数据

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.3 int fsl_macro_policing_update_set

描述

设置基于端口 policing 的全局更新配置。

语法

int fsl_macro_policing_update_set(int unit, int direct, fsl_policing_update_t *pol_upd)

参数

unit 设备号

direct policing 方向,入向和出向

pol_upd policing 更新配置数据

typedef struct fsl_policing_update_s {

uint8_t updEn; //填充令牌桶使能

uint16_t updMaxIndex; //更新最大条目数

uint8_t timer0Num; //令牌桶刷新周期参数

uint8 t timer1Num; //令牌桶刷新周期参数

uint16_t timer0; //令牌桶刷新周期参数

uint16 t timer1; //令牌桶刷新周期参数

} fsl_policing_update_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.4 int fsl_macro_policing_update_get

描述

获取基于端口 policing 的全局更新配置。

语法

int fsl_macro_policing_update_get(int unit, int direct, fsl_policing_update_t *pol_upd)

参数

unit 设备号

direct policing 方向,入向和出向

pol_upd policing 更新配置数据

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.5 int fsl_flow_policing_update_set

描述

设置基于流 policing 的全局更新配置。

语法

int fsl_flow_policing_update_set(int unit, int direct, fsl_policing_update_t *pol_upd)

参数

unit 设备号

direct policing 方向,入向和出向

pol_upd policing 更新配置数据

typedef struct fsl_policing_update_s {

uint8_t updEn; //填充令牌桶使能

uint16_t updMaxIndex; //更新最大条目数

uint8_t timer0Num; //令牌桶刷新周期参数

uint8_t timer1Num; //令牌桶刷新周期参数

uint16_t timer0; //令牌桶刷新周期参数

uint16_t timer1; //令牌桶刷新周期参数

} fsl_policing_update_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.6 int fsl_flow_policing_update_get

描述

获取基于流 policing 的全局更新配置。

语法

int fsl_flow_policing_update_get(int unit, int direct, fsl_policing_update_t *pol_upd)

参数

unit 设备号

direct policing 方向,入向和出向

pol_upd policing 更新配置数据

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.7 int fsl_macro_policing_enable_set

描述

设置端口 policing 的使能与否。

语法

int fsl_macro_policing_enable_set(int unit, int direct, int pol_id, int pol_en)

参数

unit 设备号

direct policing 方向,入向和出向

pol_id policing id, 此处为物理端口号

pol_en policing 使能标志位 0/1

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.8 int fsl_macro_policer_create

描述

创建端口 policing。

语法

int fsl_macro_policer_create(int unit, int direct, int pol_id, fsl_policer_config_t *pol_cfg)

参数

unit 设备号

direct policing 方向,入向和出向

pol_id policing id, 此处为物理端口号

pol_cfg policing 配置数据

typedef struct fsl_policer_config_s {

fsl_policer_mode_t mode; //fslPolicerModeTrTcm, /* RFC 2698 */

//fsIPolicerModeTrTcmDs, /* RFC 4115 */

//fsIPolicerModeSrTcm /* RFC 2697 */

fsl_color_sense_t colorSense;//色盲和色敏感

uint8_t globalCFlag;//全局 C 桶向 E 桶耦合标志

fsl_meter_sharing_mode_t sharingMode;//共享模式, 0: 不共享模式 1: FSL_MIN_ONLY,

//2: FSL_MAX_ONLY, 3: FSL_MIN_MAX

uint32_t cir; //c 桶令牌填充速率 kb

uint32_t cirMax; //c 桶最大添加速率 kb

uint32_t cbs; //c 桶桶深 kb

uint32_t eir; ///e 桶令牌填充速率 kb

uint32_t eirMax; //e 桶最大添加速率 kb

uint32_t ebs; //e 桶桶深

uint8_t redPri; //红色报文 (color == 2'b00)的新的 pri 值

uint8_t yellowPri; //黄色报文 (color == 2'b01)的新的 pri 值

uint8_t greenPri; //绿色报文 (color == 2'b10)的新的 pri 值

uint8_t rChangePri; //红色报文更新 pri 使能

uint8_t yChangePri; //黄色报文更新 pri 使能

uint8_t gChangePri; //绿色报文更新 pri 使能

uint8_t rChangeDrop; //红色报文 drop 使能

uint8_t yChangeDrop; //黄色报文 drop 使能

uint8_t gChangeDrop; //绿色报文 drop 使能

} fsl_policer_config_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL E XXX 错误

2.9 int fsl_macro_policer_delete

描述

删除端口 policing。

语法

int fsl_macro_policer_delete(int unit, int direct, int pol_id)

参数

unit 设备号

direct policing 方向,入向和出向

pol_id policing id, 此处为物理端口号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

2.10 int fsl_flow_policer_create

描述

创建流 policing。

语法

int fsl_flow_policer_create(int unit, int direct, int pol_id, fsl_policer_config_t *pol_cfg)

参数

unit 设备号

direct policing 方向,入向和出向

pol_id policing id (-1 表示系统分配)

pol_cfg policing 配置数据

typedef struct fsl_policer_config_s {

fsl_policer_mode_t mode; //fslPolicerModeTrTcm, /* RFC 2698 */

//fslPolicerModeTrTcmDs, /* RFC 4115 */

//fsIPolicerModeSrTcm /* RFC 2697 */

fsl color sense t colorSense;//色盲和色敏感

uint8_t globalCFlag;//全局 C 桶向 E 桶耦合标志

fsl_meter_sharing_mode_t sharingMode;//共享模式, 0: 不共享模式 1: FSL_MIN_ONLY,

//2: FSL_MAX_ONLY, 3: FSL_MIN_MAX

uint32_t cir; //c 桶令牌填充速率 kb

uint32_t cirMax; //c 桶最大添加速率 kb

uint32_t cbs; //c 桶桶深 kb

uint32_t eir; ///e 桶令牌填充速率 kb

uint32 t eirMax; //e 桶最大添加速率 kb

uint32_t ebs; //e 桶桶深 uint8_t redPri; //红色报文(color == 2'b00)的新的 pri 值 yellowPri; //黄色报文 (color == 2'b01)的新的 pri 值 uint8_t greenPri; //绿色报文 (color == 2'b10)的新的 pri 值 uint8_t uint8 t rChangePri; //红色报文更新 pri 使能 yChangePri; //黄色报文更新 pri 使能 uint8_t uint8_t gChangePri; //绿色报文更新 pri 使能 uint8_t rChangeDrop; //红色报文 drop 使能 uint8_t yChangeDrop; //黄色报文 drop 使能 gChangeDrop; //绿色报文 drop 使能 uint8_t

返回值

FSLRAL_E_NONE 成功

} fsl_policer_config_t;

FSLRAL_E_XXX 错误

2.11 int fsl_flow_policer_delete

描述

删除流 policing。

语法

int fsl_flow_policer_delete(int unit, int direct, int pol_id)

参数

unit 设备号

direct policing 方向,入向和出向

pol_id policing id

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3 Quality of Service

3.1 int fsl gos profile create

描述

创建优先级映射模板。

语法

int fsl_qos_profile_create(int unit, int qos_pro_index, fsl_qos_profile_t *qos_profile)

参数

unit 设备号

qos_pro_index 映射模板序号(-1 表示系统分配)

qos_profile 模板配置

typedef struct fsl_qos_profile_s {

uint8_t useDefault; //1:使用默认优先级

//0:其他

uint8_t useL2Info; //0x0:优先使用 L3 头信息

//0x1:使用 L2 头信息

uint8_t trustCtag; //0x0: 优先使用使用 STAG

//0x1: 使用 CTAG

uint8_t phbPtr; //PHB 表索引指针高 6 位,可用逻辑端口号

uint8_t use_flag; //默认 0,不需要配置

} fsl_qos_profile_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.2 int fsl_qos_profile_delete

描述

删除优先级映射模板。

语法

int fsl_gos_profile_delete(int unit, int gos_pro_index)

参数

unit 设备号

qos_pro_index 映射模板序号

返回值

FSLRAL E NONE 成功

FSLRAL_E_XXX 错误

3.3 int fsl_vlan_priority_map_set

描述

设置 vlan 优先级到内部优先级的映射。

语法

int fsl_vlan_priority_map_set(int unit, int qos_pro_index, int pkt_pri, int cfi, int internal_pri, fsl_color_t color)

参数

unit 设备号

qos_pro_index 映射模板序号

pkt_pri 报文优先级

cfi 报文 cfi

internal_pri 内部优先级

color 颜色

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.4 int fsl_vlan_priority_map_get

描述

获取 vlan 优先级映射配置。

语法

int fsl_vlan_priority_map_get(int unit, int qos_pro_index, int pkt_pri, int cfi, int *internal_pri, fsl_color_t *color)

参数

unit 设备号

qos_pro_index 映射模板序号

pkt_pri 报文优先级

cfi 报文 cfi

internal_pri 内部优先级

color 颜色

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.5 int fsl_dscp_map_set

描述

设置 dscp 到内部优先级的映射。

语法

int fsl_dscp_map_set(int unit, int qos_pro_index, int dscp, int internal_pri, fsl_color_t color)

参数

unit 设备号

qos_pro_index 映射模板序号

pkt_pri 报文 dscp

internal_pri 内部优先级

color 颜色

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.6 int fsl_vlan_priority_map_get

描述

获取 dscp 映射的配置。

语法

int fsl_vlan_priority_map_get(int unit, int qos_pro_index, int pkt_pri, int cfi, int *internal_pri, fsl_color_t *color)

参数

unit 设备号

qos_pro_index 映射模板序号

pkt_pri 报文 dscp

internal_pri 内部优先级

color 颜色

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.7 int fsl_pri_remark_enable_set

描述

设置端口内部优先级重标记使能。

语法

int fsl_pri_remark_enable_set(int unit, int port, int rmk_en)

参数

unit 设备号

port 物理端口号

rmk_en 重标记使能标志位 0/1

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.8 int fsl_remark_profile_create

描述

创建重标记模板。

语法

int fsl_remark_profile_create(int unit, int rmkPriPtr, fsl_rmk_info_t *rmk_info)

参数

unit 设备号

rmkPriPtr 重标记模板序号

rmk_info 重标记配置信息

typedef struct fsl_rmk_info_s {

uint8_t index; //重映射的索引

uint8_t scosRmkEn; //重映射 scos 使能

uint8_t ccosRmkEn; //重映射 ccos 使能

uint8_t brgChgTos; //重映射 tos 使能

uint8_t onlyChgDscp; //只修改 dscp

uint8_t use_flag; //默认 0,不需要配置

} fsl_rmk_info_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.9 int fsl_remark_profile_delete

描述

删除重标记模板。

语法

int fsl_remark_profile_delete(int unit, int rmkPriPtr)

参数

unit 设备号

rmkPriPtr 重标记模板序号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.10 int fsl_dscp_unmap_set

描述

设置报文 dscp 重标记。

语法

int fsl_dscp_unmap_set(int unit, int rmkPriPtr, int internal_pri, fsl_color_t color, int pkt_dscp)

参数

unit 设备号

internal_pri 内部优先级

color 颜色

pkt_dscp 报文 dscp

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.11 int fsl_vlanpri_unmap_set

描述

设置报文 vlan 优先级重标记

语法

int fsl_vlanpri_unmap_set(int unit, int rmkPriPtr, int internal_pri, fsl_color_t color, int cos, int cfi)

参数

unit 设备号

internal_pri 内部优先级

color 颜色

cos 报文 vlan pri

cfi 报文 vlan cfi

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.12 int fsl_dscp_unmap_get

描述

获取报文 dscp 重标记配置。

语法

int fsl_dscp_unmap_get(int unit, int rmkPriPtr, int internal_pri, fsl_color_t color, int *pkt_dscp)

参数

unit 设备号

internal_pri 内部优先级

color 颜色

pkt_dscp 报文 dscp

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

3.13 int fsl_vlanpri_unmap_get

描述

获取报文 vlan 优先级重标记配置。

语法

int fsl_vlanpri_unmap_get(int unit, int rmkPriPtr, int internal_pri, fsl_color_t color, int *cos, int *cfi)

参数

unit 设备号

internal_pri 内部优先级

color 颜色

cos 报文 vlan pri

cfi 报文 vlan cfi

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4 Strom Control

4.1 int fsl storm control enable set

描述

设置风暴控制使能与否。

语法

int fsl_storm_control_enable_set(int unit, fsl_storm_control_mode_t mode, int arg, fsl_forward_type_t fwd_type, int enable)

参数

unit 设备号

mode 风暴控制模式(3 种: system, port, forward id)

arg 风暴控制 id,对应三种模式

fwd_type 转发类型(单播,组播,广播)

enable 使能标识

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4.2 int fsl_storm_control_enable_get

描述

获取风暴控制的使能标识。

语法

int fsl_storm_control_enable_get(int unit, fsl_storm_control_mode_t mode, int arg, fsl_forward_type_t fwd_type, int *enable)

参数

unit 设备号

mode 风暴控制模式(3 种: system, port, forward id)

arg 风暴控制 id,对应三种模式

fwd_type 转发类型(单播,组播,广播)

enable 使能标识

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4.3 int fsl_storm_control_global_set

描述

设置风暴控制的全局配置。

语法

int fsl_storm_control_global_set(int unit, uint8_t meter_gran, uint8_t preamble_len)

参数

unit 设备号

meter_gran 控制粒度

preamble_len 前导码和帧间隙的等效包长

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4.4 int fsl_storm_control_global_get

描述

获取风暴控制的全局配置。

语法

int fsl_storm_control_global_get(int unit, uint8_t *meter_gran, uint8_t *preamble_len)

参数

unit 设备号

meter_gran 控制粒度

preamble_len 前导码和帧间隙的等效包长

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4.5 int fsl_storm_control_update_set

描述

设置风暴控制的更新配置。

语法

int fsl_storm_control_update_set(int unit, fsl_storm_control_mode_t mode, fsl_storm_ctl_global_t *global_ctl)

参数

unit 设备号

mode 风暴控制模式

global_ctl 风暴控制的更新配置

typedef struct fsl_storm_ctl_global_s {

uint32_t pktLenUsePkt; //当基于包做 metering 时的等效包长

uint8_t updEn; //填充令牌桶使能

uint32_t maxUpdldx; //填充令牌桶的最大 index

uint32_t delayInterval; //填充令牌桶周期

} fsl_storm_ctl_global_t;

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4.6 int fsl_storm_control_update_get

描述

获取风暴控制的更新配置。

语法

int fsl_storm_control_update_get(int unit, fsl_storm_control_mode_t mode, fsl_storm_ctl_global_t *global_ctl)

参数

unit 设备号

mode 风暴控制模式

返回值

FSLRAL E NONE 成功

FSLRAL_E_XXX 错误

4.7 int fsl_storm_control_set

描述

设置风暴控制的类型、限速值和突发尺寸。

语法

int fsl_storm_control_set(int unit, fsl_storm_control_mode_t mode, int arg, fsl_forward_type_t fwd_type, fsl_storm_policing_type_t pol_type, uint32_t limit, uint32_t burst_size)

参数

unit 设备号

mode 风暴控制模式

arg 风暴控制 id,对应三种模式

fwd_type 转发类型

pol_type policing 类型(包和字节)

limit 限速值

burst size 突发尺寸

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

4.8 int fsl_storm_control_get

描述

获取风暴控制的类型、限速值和突发尺寸。

语法

int fsl_storm_control_get(int unit, fsl_storm_control_mode_t mode, int arg, fsl_forward_type_t fwd_type, fsl_storm_policing_type_t *pol_type, uint32_t *limit, uint32_t *burst_size)

参数

unit 设备号

mode 风暴控制模式

arg 风暴控制 id,对应三种模式

fwd_type 转发类型

pol_type policing 类型(包和字节)

limit 限速值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

5 Field Processor

5.1 int fsl_field_init

描述

fp 初始化,需最先被调用。

语法

int fsl_field_init(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

5.2 int fsl field detach

描述

清除所有 fp 相关配置,包含软件资源和硬件配置。

语法

int fsl_field_detach(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

5.3 int fsl_field_group_create_mode_id

描述

创建 field 组。

语法

int fsl_field_group_create_mode_id(int unit, fsl_field_qset_t qset, int pri, fsl_field_group_mode_t mode,uint16_t entry_num,fsl_field_key_tp_t key_tp,fsl_field_group_t group)

参数

unit 设备号

qset 指定配置的哪一个模块。仅支持 fslFieldQualifyStageIngress、fslFieldQualifyStageEgress、fslFieldQualifyStageLookupEgress

pri 暂未使用 mode、entry_num、Key_tp

group 组 ID

返回值

FSLRAL E NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_RESOURCE 硬件资源不可用

FSLRAL_E_PARAM 参数错误

FSLRAL_E_EXISTS group ID 或 key tp 已存在

FSLRAL_E_MEMORY 分配内存失败

FSLRAL E XXX 其他错误

5.4 int fsl_field_group_destroy

描述

销毁 field 组。调用此函数前,该 group 下的所有 entries 必须被销毁。

语法

int fsl_field_group_destroy(int unit, fsl_field_group_t group)

参数

unit 设备号

group 组 ID

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND 该组不存在

FSLRAL_E_BUSY 该组中存在 entry

FSLRAL_E_XXX 其他错误

5.5 int fsl_field_entry_create_id

描述

创建 entry。

语法

int fsl_field_entry_create_id(int unit,fsl_field_group_t group,fsl_field_entry_t entry)

参数

unit 设备号

group 组 ID

entry entry ID

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND 组不存在

FSLRAL_E_EXISTS entry ID 已存在

FSLRAL_E_MEMORY 分配内存失败

FSLRAL_E_RESOURCE entry 条目已满

5.6 int fsl_field_entry_install

描述

安装 entry 到硬件表项。entry 安装之前应使用 $fsl_field_qualify_xxx$ 添加 qualify,使用 $fsl_field_action_add$ 添加 actions。

语法

int fsl_field_entry_install(int unit, fsl_field_entry_t entry)

参数

unit 设备号

entry entry ID

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL E XXX 其他错误

5.7 int fsl_field_entry_remove

描述

从硬件表项中删除 entry。

语法

int fsl_field_entry_remove(int unit, fsl_field_entry_t entry)

参数

unit 设备号

entry entry ID

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL E XXX 其他错误

5.8 int fsl_field_entry_destroy

描述

销毁 entry。销毁软件 entry 相关资源,如果该 entry 已经安装至硬件表项,则函数会调用 fsl_field_entry_remove 接口清除硬件表项中的 entry,释放资源。

语法

int fsl_field_entry_destroy(int unit, fsl_field_entry_t entry)

参数

unit 设备号

entry entry ID

返回值

FSLRAL E NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_XXX 其他错误

5.9 int fsl_field_entry_destroy_all(int unit)

描述

销毁所有 entry。

语法

int fsl_field_entry_destroy_all(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL E INIT 未初始化

FSLRAL_E_XXX 其他错误

5.10 int fsl_field_action_add

描述

添加 action 到 entry。一条 entry 可以添加多个 action。

语法

int fsl_field_action_add(int unit,fsl_field_entry_t entry,fsl_field_action_t action,uint32_t param0, uint32_t param1)

参数

unit 设备号

entry entry ID

action action 类型

param0 action 值。不使用时赋值为 0。

param1 action 值。不使用时赋值为 0。

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_MEMORY 分配内存失败

FSLRAL_E_UNAVAIL 不支持该 action 类型

FSLRAL_E_CONFIG action 类型冲突

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.11 int fsl_field_action_remove

描述

entry 中删除 action。

语法

int fsl_field_action_remove(int unit, fsl_field_entry_t entry,fsl_field_action_t action)

参数

unit 设备号

entry entry ID

action action 类型

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.12 int fsl_field_qualify_Dstlp

描述

添加 qualification 到 entry,匹配报文的 ipv4 地址。

语法

int fsl_field_qualify_Dstlp(int unit, fsl_field_entry_t entry,fsl_ip_t data,fsl_ip_t mask)

参数

unit 设备号

entry entry ID

data 数据

mask 掩码

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.13 int fsl_field_qualify_Dstlp6

描述

添加 qualification 到 entry,匹配报文的 ipv6 地址。

语法

int fsl_field_qualify_Dstlp6(int unit, fsl_field_entry_t entry,fsl_ip6_t data,fsl_ip6_t mask)

参数

unit 设备号

entry entry ID

data 数据

mask 掩码

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.14 int fsl_field_qualify_DstlpRange

描述

添加 qualification 到 entry。范围匹配报文 ipv4 地址,支持 4 种范围配置,且配置范围值不能重合。

语法

int fsl_field_qualify_DstlpRange(int unit, fsl_field_entry_t entry,fsl_ip_t ipL, fsl_ip_t ipH)

参数

unit 设备号

entry entry ID

ipL 最小 ipv4 地址

ipH 最大 ipv4 地址

返回值

FSLRAL_E_NONE 成功

FSLRAL E INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.15 int fsl_field_qualify_Dstlp6Range

描述

添加 qualification 到 entry。范围匹配报文 ipv6 地址,支持 2 种范围配置,且配置范围值不能重合。

语法

int fsl_field_qualify_Dstlp6Range(int unit, fsl_field_entry_t entry,fsl_ip6_t ipL, fsl_ip6_t ipH)

参数

unit 设备号

entry entry ID

ipL 最小 ipv6 地址

ipH 最大 ipv6 地址

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.16 int fsl_field_qualify_DstMac

描述

添加 qualification 到 entry, 匹配报文的目的 Mac 地址。

语法

int fsl_field_qualify_DstMac(int unit, fsl_field_entry_t entry,fsl_mac_t data,fsl_mac_t mask)

参数

unit 设备号

entry entry ID

data 数据

mask 掩码

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.17 int fsl_field_qualify_OuterVlanId

描述

添加 qualification 到 entry, 匹配报文的外层 Vlan ID。

语法

int fsl_field_qualify_OuterVlanId(int unit, fsl_field_entry_t entry, fsl_vlan_t data,fsl_vlan_t mask)

参数

unit 设备号

entry entry ID

data 数据

mask 掩码

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.18 int fsl_field_qualifier_delete

描述

从指定 entry 中删除 qualification。

语法

int fsl_field_qualifier_delete(int unit, fsl_field_entry_t entry, fsl_field_qualify_t qual)

参数

unit 设备号

entry entry ID

qual qualifier ID

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.19 int fsl_field_qualify_clear

描述

从指定 entry 中删除所有的 qualification。

语法

int fsl_field_qualify_clear(int unit, fsl_field_entry_t entry)

参数

unit 设备号

entry entry ID

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND entry 不存在

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.20 int fsl_field_qualify_data

描述

添加数据 qualification 到 entry, 匹配 udf 值。

语法

int fsl_field_qualify_data(int unit,fsl_field_entry_t eid, int qual_id,uint8_t *data,uint8_t *mask, uint16_t length)

参数

unit 设备号

eid entry ID

qual_id 同 fsl_field_data_qualifier_t 结构体的 qual_id

data 数据

mask 掩码

length 匹配数据的长度

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND qual ID 未创建

FSLRAL_E_PARAM 参数错误

FSLRAL E XXX 其他错误

5.21 void fsl field data qualifier init

描述

初始化 fsl_field_data_qualifier_t 结构体。

语法

void fsl_field_data_qualifier_init(fsl_field_data_qualifier_t *data_qual)

参数

data_qual 结构体指针

返回值

无返回值。

5.22 int fsl_field_data_qualifier_create

描述

创建一个数据 qualifier。仅创建软件资源。

语法

int fsl_field_data_qualifier_create(int unit, fsl_field_data_qualifier_t *data_qualifier)

参数

unit 设备号

data_qualifier 结构体指针

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_EXISTS qual ID 存在

FSLRAL_E_FULL 支持的 data qualifier 条数已满

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

5.23 int fsl_field_data_qualifier_destroy

描述

销毁一个数据 qualifier。

语法

int fsl_field_data_qualifier_destroy(int unit, int qual_id)

参数

unit 设备号

qual_id qual ID

返回值

FSLRAL E NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND qual ID 未创建

FSLRAL_E_XXX 其他错误

5.24 int fsl_field_data_qualifier_destroy_all

描述

销毁所有数据 qualifier。

语法

int fsl_field_data_qualifier_destroy_all(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_XXX

其他错误

5.25 void fsl_field_data_packet_format_t_init

描述

初始化_field_data_packet_format_t 结构体。

语法

void fsl_field_data_packet_format_t_init (_field_data_packet_format_t *packet_format)

参数

packet format支持 data qualifier 的数据包格式

返回值

无返回值。

5.26 int fsl_field_data_qualifier_packet_format_add

描述

将 qual id 对应的软件数据写入硬件表项。

语法

int fsl_field_data_qualifier_packet_format_add(int unit, int qual_id,_field_data_packet_format_t *packet_format)

参数

unit 设备号

qual_id qual ID

packet format 暂未使用(不能为 NULL)

返回值

FSLRAL_E_NONE 成功

FSLRAL E INIT 未初始化

FSLRAL_E_NOT_FOUND qual ID 未创建

FSLRAL_E_XXX

其他错误

5.27 int fsl_field_data_qualifier_packet_format_delete

描述

将 qual id 对应的硬件表项删除。

语法

int fsl_field_data_qualifier_packet_format_delete(int unit,int qual_id,_field_data_packet_format_t *packet_format)

参数

unit 设备号

qual_id qual ID

packet_format 暂未使用(不能为 NULL)

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT 未初始化

FSLRAL_E_NOT_FOUND qual ID 未创建

FSLRAL_E_XXX 其他错误

6 Trunking(Link Aggregation)

6.1 int fsl_trunk_init

描述

trunk 初始化。需最先被调用。

语法

int fsl_trunk_init(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

6.2 int fsl_trunk_detach

描述

清除所有 trunk 相关配置,包含软件资源和硬件配置。

语法

int fsl_trunk_detach(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

6.3 int fsl_trunk_create_id

描述

创建 trunk ID。

语法

int fsl_trunk_create_id(int unit, fsl_trunk_t tid)

参数

unit 设备号

tid trunk ID (0~7)

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_EXISTS trunk ID 已存在

FSLRAL_E_XXX 其他错误

6.4 int fsl_trunk_set

描述

指定 trunk 组中的端口及 hash key 和 hash 算法类型,默认 hash key 为源 Mac 地址和目的 Mac 地址。如果 trunk 组中已经有成员端口,原有成员端口将被替换。

语法

int fsl_trunk_set(int unit, fsl_trunk_t tid, fsl_trunk_add_info_t *add_info)

参数

unit 设备号

tid trunk ID (0~7)

add_info 结构体指针

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_XXX 其他错误

6.5 int fsl_trunk_destroy

描述

销毁 trunk 组。

语法

int fsl_trunk_destroy(int unit, fsl_trunk_t tid)

参数

unit 设备号

tid trunk ID (0~7)

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_XXX 其他错误

6.6 int fsl_trunk_get

描述

获取 trunk 组中的端口成员及 hash key 和 hash 算法类型。

语法

int fsl_trunk_get(int unit, fsl_trunk_t tid,fsl_trunk_add_info_t *t_data)

参数

unit 设备号

tid trunk ID (0~7)

t data 保存 trunk 信息

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_XXX 其他错误

6.7 int fsl_trunk_psc_set

描述

设置 trunk 组的 hash key。

语法

int fsl_trunk_psc_set(int unit, fsl_trunk_t tid, int psc)

参数

unit 设备号

tid trunk ID (0~7)

psc hash key

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_XXX

其他错误

6.8 int fsl_trunk_psc_get

描述

获取 trunk 组的 hash key。

语法

int fsl_trunk_psc_get(int unit, fsl_trunk_t tid, int *psc)

参数

unit 设备号

tid trunk ID (0~7)

psc 获取的 hash key

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_XXX 其他错误

6.9 int fsl_trunk_hash_alg_set

描述

设置 trunk 组的 hash 算法类型。

语法

int fsl_trunk_hash_alg_set(int unit,fsl_trunk_t tid,fsl_trunk_hash_alg_t alg)

参数

unit 设备号

tid trunk ID (0~7)

alg hash 算法类型

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_XXX 其他错误

6.10 int fsl_trunk_hash_alg_get

描述

获取 trunk 组的 hash 算法类型。

语法

int fsl_trunk_hash_alg_get(int unit, fsl_trunk_t tid, int *alg)

参数

unit 设备号

tid trunk ID (0~7)

alg 获取的 hash 算法类型

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_XXX

其他错误

6.11 int fsl_trunk_failover_set

描述

设置 trunk 组端口失效分担使能。

语法

int fsl_trunk_failover_set(int unit, fsl_trunk_t tid, int able)

参数

unit 设备号

tid trunk ID (0~7)

able 1:开启 0:关闭

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_INIT trunk 未初始化

FSLRAL_E_PARAM 参数错误

FSLRAL_E_NOT_FOUND trunk ID 不存在

FSLRAL_E_EMPTY trunk 组未设置

FSLRAL_E_XXX 其他错误

7 Layer 2 Address Management

7.1 int fsl | l2 | addr_add

描述

添加一条 mac 地址。

语法

int fsl_l2_addr_add(int unit, fsl_l2_addr_t *l2addr)

参数

unit 设备号

I2addr I2地址

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.2 int fsl_l2_addr_delete

描述

删除一条 mac 地址。

语法

int fsl_l2_addr_delete(int unit, fsl_mac_t mac, fsl_vlan_t vid,fslral_mem_t mem,uint32_t index)

参数

unit 设备号

mac mac 地址

vid vlan id

mem mac key 表类型

index mac key 表索引

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.3 int fsl_l2_addr_get

描述

获取一条 mac 地址表的类型和索引。

语法

int fsl_l2_addr_get(int unit, fsl_mac_t mac, fsl_vlan_t vid,fsl_l2_addr_t *l2addr,fslral_mem_t *mem,uint32_t *index)

参数

unit 设备号

mac mac 地址

vid vlan id

I2 地址,暂未使用

mem mac key 表类型

index mac key 表索引

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.4 int fsl_l2_addr_delete_by_port

描述

基于 mac 地址行为表的端口来删除 mac 地址。

语法

int fsl_l2_addr_delete_by_port(int unit, fsl_module_t mod, fsl_port_t port, uint32_t flags)

参数

unit 设备号

mod 暂未使用

port 端口号

flags 暂未使用

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.5 int fsl_l2_addr_delete_by_vlan

描述

基于 vlan 来删除 mac 地址,删除指定 vlan 下的所有 mac 地址。

语法

int fsl_l2_addr_delete_by_vlan(int unit, fsl_vlan_t vid, uint32_t flags)

参数

unit 设备号

vid vlan id

flags 暂未使用

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.6 int fsl_l2_age_timer_get

描述

获取 mac 地址普通老化时间。

语法

int fsl_l2_age_timer_get(int unit, int *age_seconds)

参数

unit 设备号

age_seconds 普通老化时间

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.7 int fsl_l2_age_timer_set

描述

设置 mac 地址普通老化时间。

语法

int fsl_l2_age_timer_set(int unit, int age_seconds)

参数

unit 设备号

age_seconds 普通老化时间

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

7.8 int fsl_l2_fast_age_enable_set

描述

mac 地址快速老化使能设置。

语法

int fsl_l2_fast_age_enable_set(int unit, int value)

参数

unit 设备号

value 快速老化使能开关值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

8 Layer 2 Multicast Management

8.1 int fsl_mcast_create

描述

创建一条组播组 id。

语法

int fsl_mcast_create(int unit, int group_id, fsl_pbmp_t pbmp)

参数

unit 设备号

group_id 组播组 id

pbmp 组播组端口成员

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

8.2 int fsl_mcast_delete

描述

删除一条组播组 id。

语法

int fsl_mcast_delete(int unit, int group_id)

参数

unit 设备号

group_id 组播组 id

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

8.3 int fsl_mcast_bitmap_del

描述

删除对应组播组 id 的端口成员。

语法

int fsl_mcast_bitmap_del(int unit, uint16_t group_id, fsl_pbmp_t pbmp)

参数

unit 设备号

group_id 组播组 id

pbmp 待删除组播组成员,高为有效指示

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

8.4 int fsl_mcast_addr_add

描述

添加一条组播 mac 地址。

语法

int fsl_mcast_addr_add(int unit, fsl_mcast_addr_t *mcaddr)

参数

unit 设备号

mcaddr 组播地址信息结构体

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

8.5 int fsl_mcast_addr_remove

描述

删除一条组播 mac 地址。

语法

int fsl_mcast_addr_remove(int unit, sal_mac_addr_t mac, fsl_vlan_t vid)

参数

unit 设备号

mac mac 地址

vid vlan id

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9 Port Configuration

9.1 int fsl_port_control_set

描述

设置端口对应属性的值。

语法

int fsl_port_control_set(int unit, fsl_port_t port, fsl_port_control_t type, int value)

参数

unit 设备号

type port 属性枚举类型

port 端口号

value port 属性值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.2 int fsl_port_control_get

描述

获取端口对应属性的值。

语法

int fsl_port_control_get(int unit, fsl_port_t port, fsl_port_control_t type, int *value)

参数

unit 设备号

type port 属性枚举类型

port 端口号

value port 属性值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.3 int fsl_port_tpid_init

描述

初始化获取各个端口 tpid 使用类型,初始化变量,在 tpid 处理时,最先被调用。

语法

int fsl_port_tpid_init(int unit)

参数

unit 设备号

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.4 int fsl_port_tpid_add

描述

入方向端口 tpid 添加。

语法

int fsl_port_tpid_add(int unit,fsl_port_t port,uint16_t tpid)

参数

unit 设备号

port 端口号

tpid tpid 类型值(默认为 0x88A8)

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.5 int fsl_port_tpid_delete

描述

入方向端口 tpid 删除。

语法

int fsl_port_tpid_delete(int unit,fsl_port_t port,uint16_t tpid)

参数

unit 设备号

port 端口号

tpid Tpid 类型值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.6 int fsl_port_tpid_set

描述

出方向端口 tpid 添加。

语法

int fsl_port_tpid_set(int unit,fsl_port_t port,uint16_t tpid)

参数

unit 设备号

port 端口号

tpid Tpid 类型值

返回值

FSLRAL_E_NONE 成功

FSLRAL E XXX 错误

9.7 int fsl_ingress_port_stp_set

描述

设置入方向端口 stp 状态。

语法

int fsl_ingress_port_stp_set(int unit, fsl_port_t gport, fsl_vlan_t vid, int stp_state)

参数

unit 设备号

gport 端口号(分为普通端口和 trunk 口)

stp_state 端口 stp 状态(共四种) FSL_STP_DISABLE = 0x0, FSL_STP_BLOCKING = 0x1, FSL_STP_LEARNING = 0x2, FSL_STP_FORWARDING = 0x3

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.8 int fsl_egress_port_stp_set

描述

设置出方向方向端口 stp 状态。

语法

int fsl_egress_port_stp_set(int unit, fsl_port_t gport, fsl_vlan_t vid, int stp_state)

参数

unit 设备号

gport 端口号(分为普通端口和 trunk 口)

stp_state 端口 stp 状态(共四种) FSL_STP_DISABLE = 0x0, FSL_STP_BLOCKING = 0x1, FSL_STP_LEARNING = 0x2, FSL_STP_FORWARDING = 0x3

返回值

FSLRAL_E_NONE 成功

FSLRAL E XXX 错误

9.9 int fsl_egress_port_stp_get

描述

获取出方向 stp 状态。

语法

int fsl_egress_port_stp_get(int unit, fsl_port_t gport, fsl_vlan_t vid, int *stp_state)

参数

unit 设备号

gport 端口号(分为普通端口和 trunk 口)

stp_state 端口 stp 状态(共四种) FSL_STP_DISABLE = 0x0, FSL_STP_BLOCKING = 0x1, FSL_STP_LEARNING = 0x2, FSL_STP_FORWARDING = 0x3

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.10 int fsl_ingress_stp_erps_enable_set

描述

设置 stpchk 和 erpschk 使能状态。

语法

int fsl_ingress_stp_erps_enable_set(int unit, fsl_port_t gport, fsl_port_control_t chk_type, int value)

参数

unit 设备号

gport 端口号(分为普通端口和 trunk 口)

chk_type stp check erps check 类型(共四种) fslPortControlerpsLkpEn,

fslPortControlStpChEn, fslPortControlEerpsLkEn, fslPortControlOutStpChkEn

value 使能状态值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.11 int fsl_ingress_stp_erps_enable_get

描述

获取 stpchk 和 erpschk 使能状态。

语法

int fsl_ingress_stp_erps_enable_get(int unit ,fsl_port_t gport, fsl_port_control_t chk_type, int *value)

参数

unit 设备号

gport 端口号(分为普通端口和 trunk 口)

chk_type stp check erps check 类型(共四种) fslPortControlerpsLkpEn,

fsIPortControlStpChEn, fsIPortControlEerpsLkEn, fsIPortControlOutStpChkEn

value 使能状态值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

9.12 int fslsoc_stat_get

描述

获取端口不同类型的计数。

语法

int fslsoc_stat_get(int unit, fslsoc_port_t port, fslsoc_stat_val_t type, uint64_t *val)

参数

unit 设备号

port 端口号

type 不同计数类型

value 计数值

返回值

FSLRAL_E_NONE 成功

FSLRAL_E_XXX 错误

10 Set filter, send and receive packets

注: 本章节仅适用 FSL91030M。

10.1 fsl rx filter create

描述

创建过滤器

语法

int fsl_rx_filter_create(uint8_t pkt_data_offset,uint8_t pkt_data_size,uint8_t *data,uint8_t *mask, uint8_t priority,char *desc,uint8_t desc_size, uint16_t desc_type)

参数

pkt_data_offset: 报文偏移。

pkt_data_size: 从报文偏移 pkt_data_offset 开始计算,需要过滤的报文字段长度。最长为 KCOM FILTER BYTES MAX (256 字节)

data: 过滤器要过滤的报文字段,其长度等于 pkt_data_size。

mask: 用于要过滤的报文字段的掩码, 其长度等于 pkt_data_size

priority: 优先级,数值越低,优先级越高。

desc: 过滤器名字。

desc_size: 过滤器名字的长度,最长为 KCOM_FILTER_DESC_MAX(32字节)

desc_type: 过滤器行为,KCOM_DEST_T_NULL (不做处理),KCOM_DEST_T_NETIF (上传协议栈),KCOM_DEST_T_API (上传应用层)。

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.2 fsl_rx_filter_list

描述

查询过滤器的 id 和数量

语法

int fsl_rx_filter_list(uint8_t *filter_ids,uint32_t *filter_num)

参数

filter_ids: 查询到的过滤器 id 列表

filter_num: 查询到的过滤器的数量

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.3 fsl_rx_filter_get

描述

根据过滤器 id 获取过滤器信息

语法

int fsl_rx_filter_get(uint8_t id,kcom_filter_t *filter)

参数

id: 要查询的过滤器的 id

filter: 查询到的过滤器的信息

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.4 fsl_rx_filter_destroy

描述

根据过滤器 id 删除过滤器

语法

int fsl_rx_filter_destroy(uint8_t id)

参数

id: 要删除的过滤器 id

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.5 prepare_pkt

描述

设置包头待发送包的包头。

语法

int prepare_pkt(fsl_pkt_t *pkt)

参数

pkt 待发送的包

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.6 fsl_common_tx

描述

发包

语法

int fsl_common_tx(int unit, fsl_pkt_t *pkt, void *cookie)

参数

unit 设备号

pkt 待发送的包

cookie 预留,未使用

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.7 fsl_common_rx_register

描述

注册收包处理函数

语法

int fsl_common_rx_register(int unit, const char *name, fh_rx_cb_f callback, uint8_t priority, void *cookie, uint32_t flags)

参数

unit 设备号

name 收包处理函数的名称

callback 收包处理函数

priority 收包处理函数的优先级

cookie 预留,未使用

flags 预留,未使用

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.8 fsl_common_rx_unregister

描述

注销收包处理函数

语法

int fsl_common_rx_unregister(int unit, fh_rx_cb_f callback, uint8_t priority)

参数

callback 收包处理函数

priority 收包处理函数的优先级

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.9 fsl_common_rx_start

描述

开启收包。初始化, 创建收包线程和包处理线程

语法

int fsl_common_rx_start(int unit)

参数

unit 设备号

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

10.10 fsl_common_rx_shutdown

描述

停止收包。注销收包线程和包处理线程。

语法

int fsl_common_rx_shutdown(int unit)

参数

unit 设备号

返回值

FSL_ERR_OK 成功

FSL_ERR_XXX 错误

11 修订信息

修订时间	版本	描述
2021.4.27	V1.0	初始版本。
2021.12.23	V1.4	内容优化。