ENGR 478 Final Project: Gesture Recognition with sEMG

By: Benediction Bora

Philip Liang

Project Overview

- Background:
 - sEMG signals
 - Pattern recognition
- Motivation:
 - Fascination with HMI
 - Potential of Machine Learning

Design and Implementation

Module 1: Data Recording and Processing

System Architecture

Design and Implementation (cont'd)

Module 2: ML Classification

Module 3: ML Model Testing/Applications

Project Outcomes

- Experiments:
 - o ADC Input
 - Feature Calculation
 - Feature Outputting
 - ML Classification Model on Iris dataset from keras
 - Data File Uploading and Formatting
- Testing/Performance Metrics:
 - Accuracy
 - Robustness
- Results/Observations:
 - Up to 85% accuracy on Test Set

Test Set Confusion Matrix with labels

Demo Video

Future Works

- Immediate Next Steps:
 - Implementation of DMA
 - More efficient handling of input ADC data and output features
 - Feature Extraction Optimization using predefined math functions
- Future Expansions:
 - Fix serial connection issue between Python and Tiva
 - Live stream features and classification prediction to control the robotic hand
 - Testing other ML Classification Algorithms and compare performances
 - Try classification Deep Learning Algorithm for classification

References

- Dmitry Dziuba, (July 23, 2019). Robotic Hand Control Using EMG Project.
 https://www.hackster.io/aka3d6/robotic-hand-control-using-emg-349254
- Weidong Geng, Yu Du, Wenguang Jin, Wentao Wei, Yu Hu & Jiajun Li, (November 15, 2016). Gesture recognition by instantaneous surface EMG images. Scientific Reports, Nature. www.nature.com/scientificreports/
- Salvatore Nicosia, Nickolas Schiffer, (April 19, 2019). RoboArm: Texas Instrument Powered 3D Printed Arm.
 https://www.hackster.io/154072/roboarm-texas-instruments-powered-3d-printed-robot-ic-arm-043960
- Ian Donovan, (2021), MyoWare Sensor Introduction Presentation Slides
- Ian Donovan, Xiaorong Zhang, (2013), MATLAB LDA code
- Xiaorong Zhang, (2021), Sample PWM code