Математический анализ

Широков Николай Алексеевич 1

 $07.09.2023 - \dots$

 $^{^1}$ "Записал Сергей Киселев, Гараев Тагир"

Оглавление

1	Пос	троение множества вещественных чисел	2
	1.1	Множества	2
	1.2	Сечения	2
	1.3	Сумма сечений	3
	1.4	Теоремы сечений	4
2	Вещественные числа		
	2.1	Супремумы и инфимумы	9
	2.2		11
	2.3	Определение степени и логарифма	11
3	Последовательности		
	3.1	• •	12
	3.2	the state of the s	13
	3.3	- · · ·	14
	3.4		15
	3.5	Бесконечные пределы	16
	3.6	Единообразная запись определения пределов	16
	3.7	Асимпотика	18
	3.8	Монотонные последовательности	18
	3.9	Число е	20
	3.10		
		· · · · · · · · · · · · · · · ·	23
	3.11	Подпоследовательности	27

Глава 1

Построение множества вещественных чисел

Лекция 1: Введение

14.09.2023

1.1 Множества

```
Определение 1. Множества X и У равны, если: \forall a \in X : a \in Y
```

 $\forall a \in X : a \in I$ $\forall b \in Y : b \in X$

Определение 2. $X \subset Y$ если:

 $\forall a \in X : a \in Y$

Определение 3. 1. $a \in A \cup B \Leftrightarrow a \in A \lor a \in B$

 $2. \ a \in A \cap B \Leftrightarrow a \in A \wedge a \in B$

3. $a \in A \setminus B \Leftrightarrow a \in A \land a \notin B$

Определение 4. (Декартово произведение множеств)

 $A \times B = \{(a, b) : \forall a \in A, \forall \in B\}; A, B \neq \emptyset$

Определение 5. $F:A \to B$ - функция, такая, что: $\forall a \in A$ сопостовляет $b = F(a) \in B$

1.2 Сечения

Определение 6. Множество $\alpha \subset \mathbb{Q}$ называется сечением, если:

• I. $\alpha \neq \emptyset$

- ullet II. если $p \in \alpha$, то q
- \bullet III. в α нет наибольшего

Пример. 1. $p^* = \{r \in \mathbb{Q} : r < p\}$ - нет наибольшего 2. $\sqrt{2} = \{ p \in \mathbb{Q} : p \le 0 \lor p > 0 \land p^2 < 2 \}$

Теорема 1. (Утверждение 1) Если $p \in \alpha \land q \notin \alpha$, то q > p

Доказательство. Если $p \in \alpha$ и $q \leq p$, то из (II.) следует. что $q \in \alpha$

Теорема 2. (Утверждение 2) $\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$

Доказательство.
$$\begin{cases} \alpha < \beta \Rightarrow \exists p \in \beta, p \notin \alpha \\ \beta < \gamma \Rightarrow \exists p \in \gamma, q \notin \beta \end{cases} \Rightarrow p < q \Rightarrow \alpha < \gamma$$

Теорема 3. Пусть α, β - сечения. Между ними существует одно из нескольких отношений: $\begin{vmatrix} \alpha \\ \beta > \alpha \\ \alpha = \beta \end{vmatrix}$

Доказательство. Предположим, что
$$\alpha < \beta$$
 и $\beta < \alpha$, тогда:
$$\begin{cases} \exists p \in \alpha, p \notin \beta \\ \exists q \in \beta, q \notin \alpha \end{cases} \Rightarrow \begin{cases} p > q \\ q > p \end{cases}$$
 - Противоречие, тогда $\alpha \neq \beta$

1.3 Сумма сечений

Теорема 4. Пусть α, β - сечения, тогда: $\alpha+\beta=\{p+q:p\in\alpha,q\in\beta\}$ - тоже сечение.

Доказательство. • (I.) Пусть $\exists s \notin \alpha, \exists t \notin \beta$, тогда:

$$\forall p \in \alpha, q \in \beta : \begin{cases} p < s \\ q < t \end{cases} \Rightarrow p + q < s + t \Rightarrow \alpha + \beta \neq \mathbb{Q}$$

 $r_1 = p + q_1, r_1 < r \Rightarrow q_1 < q \Rightarrow q_1 \in \beta \Rightarrow p + q_1 \in \alpha + \beta$

• (III.)

$$\exists p_1 \in \alpha, p > p_1 \Rightarrow p_1 + q > p + q = r, p_1 + q \in \alpha + \beta$$
 - нет наибольшего

Теорема 5. (Свойства суммы сечений)

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \beta)$$

3.
$$\alpha + 0^* = \alpha$$
, где $0^* = \{p \in \mathbb{Q} : p < 0\}$

Доказательство. Свойства 1 и 2 справедливы в силу коммутативности и ассоциативности рациональных чисел.

Докажем свойство 3:

- 1. Пусть $p \in \alpha, q \in 0^*$, тогда: $p + q , т.е. <math>\alpha + 0^* \subset \alpha$
- 2. Пусть $p\in\alpha$, тогда: $\exists p_1>p\Rightarrow p_1\in\alpha, p=p_1+(p-p_1)$, при том $p_1\in\alpha, p-p_1\in0^*\Rightarrow p\in\alpha+0^*\Rightarrow\alpha\subset\alpha+0^*$

$$\begin{cases} \alpha \subset \alpha + 0^* \\ \alpha + 0^* \subset \alpha \end{cases} \Rightarrow \alpha = \alpha + 0^*$$

1.4 Теоремы сечений

Теорема 6. (Теорема 2) Пусть α - сечение, $r \in \mathbb{Q}^+$, тогда $\exists p \in \alpha \land q \notin \alpha$: q - не наименьшее верхнее (не входящее в сечение) число q-p=r

Доказательство. Пусть $p_0 \in \alpha, p_1 = p_0 + r$

- 1. Возможно, $p_1 \notin \alpha$, тогда:
 - (a) если p_1 не наименьшее в верхнем классе, то $q=p_1$
 - (b) если же наименьшее, то $p = p_0 + \frac{r}{2}, q = p_1 + \frac{r}{2}$
- 2. Если $p_1 \in \alpha$, тогда:

Положим $p_n=p_1+nr$ для $n=0,1,2,\ldots$ Тогда $\exists !m:$ $p_m\in\alpha$ и $p_{m+1}\notin\alpha$

- (a) Если p_{m+1} не наименьшее в верхнем классе, то выберем $p=p_m, q=p_{m+1}$
- (b) Если же наименьшее, то $p = p_m + \frac{r}{2}, q = p_{m+1} + \frac{r}{2}$

Теорема 7. (Существование противоположного элемента) Пусть α - сечение, тогда $\exists ! \beta : \alpha + \beta = 0^*$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 4

Доказательство. (нужно доказать единственность и существование)

1. Докажем единственность: пусть $\exists \beta_1, \beta_2$, удовлетворяющие условию, тогда:

$$\beta_2 = 0^* + \beta_2 = (\alpha + \beta_1) + \beta_2 = (\alpha + \beta_2) + \beta_1 = 0^* + \beta_1 = \beta_1$$

2. Докажем существование: пусть

 $\beta = \{p : -p \notin \alpha, -p \text{ не является наименьшим в верхнем классе } \alpha\}$

- (І.) Очевидно, что $\beta \neq \emptyset$, \mathbb{Q}
- (II.) Возьмем $p \in \beta, q -p \Rightarrow -q$ в верхнем классе α , но не наименьшее $\Rightarrow q \in \beta$
- (III.) Если $p \in \beta$, то -р не наименьшее в верхнем классе α , значит $\exists q: -q < -p$ и $-q \notin \alpha$ Положим $r = \frac{p+q}{2}$, тогда: $-q < -r < -p \Rightarrow$ -r не наименьшее в верхнем классе α . Значит, нашли такое r > p, что $r \in \beta$

Теперь проверим, что $\alpha + \beta = 0^*$:

- 1. Возьмем $p \in \alpha, q \in \beta$ По определению $\beta: -q \notin \alpha \underset{\text{Утв. 1}}{\Rightarrow} -q > p \Leftrightarrow p+q < 0 \Rightarrow p+q \in 0^* \Rightarrow \alpha+\beta \subset 0^*$
- 2. Возьмем по Теореме (2) $q-p=r\Leftrightarrow p-q=-r\in 0^*$ т.к. $q\notin \alpha$, то $-q\in \beta$, значит $p-q=p+(-q)\in \alpha+\beta\Rightarrow 0^*\subset \alpha+\beta$

$$\begin{cases} \alpha + \beta \subset 0^* \\ 0^* \subset \alpha + \beta \end{cases} \Rightarrow \alpha + \beta = 0^*$$

Лекция 2: Сечения

21.09.2023

Теорема 8. Пусть α, β — сечения. Тогда $\exists ! \gamma$ — сечение : $\alpha + \gamma = \beta$

Доказательство. Пусть имеем $\gamma_1 \neq \gamma_2$, удовлетворяющие условию. Тогда: $\alpha + \gamma_1 = \beta = \alpha + \gamma_2 \Rightarrow \gamma_1 = \gamma_2$ — противоречие.

Положим $\gamma=\beta+(-\alpha)$. Тогда в силу свойств сечений имеем: $\alpha+\gamma=\alpha+(\beta+(-\alpha))=\alpha+((-\alpha)+\beta)=(\alpha+(-\alpha))+\beta=0^*+\beta=\beta$

Определение 7. Сечение γ , построенное в предыдущей теореме обозначается через $\beta-\alpha$

Определение 8. (Абсолютная велечина) $|a| = \begin{cases} \alpha, & \text{если } \alpha \geq 0^* \\ -\alpha, & \text{если } \alpha < 0^* \end{cases}$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 5

Определение 9. (Произведение) Пусть α, β — сечения, причем $\alpha \geq 0^*, \beta \geq 0^*$

Тогда $\alpha\beta = \{r \in \mathbb{Q} : r < 0 \lor r = pq, \text{ где } p \in \alpha, q \in \beta\}$

Пример. $\sqrt{2} \cdot \sqrt{2} = 2^*$

Теорема 9. (Любые 3 из них необоходимо доказать самостоятельно) Для любых сечений α, β, γ имеем:

- 1. $\alpha\beta = \beta\alpha$
- 2. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
- 3. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$
- 4. $\alpha 0^* = 0^*$
- 5. $\alpha 1^* = \alpha$
- 6. если $\alpha < \beta$ и $\gamma > 0^*$, то $\alpha \gamma < \beta \gamma$
- 7. если $\alpha \neq 0^*$, то $\exists \beta : \alpha \cdot \beta = 1^*, \beta = \frac{1^*}{\alpha}$
- 8. если $\alpha \neq 0^*$, то $\exists \beta, \gamma : \alpha \cdot \gamma = \beta, \gamma = \frac{\beta}{\alpha}$

Теорема 10. (Свойства рациональных сечений)

- 1. $p^* + q^* = (p+q)^*$
- 2. $p^*q^* = (pq)^*$
- 3. $p^* < q^* \Leftrightarrow p < q$

Доказательство. 1. Возьмем $r \in (p+q)^* \Rightarrow r < p+q$

Положим h = p + q - r:

$$\begin{cases} p_1 = p - \frac{h}{2} \\ q_1 = q - \frac{h}{2} \end{cases} \Rightarrow \begin{cases} p_1$$

Теперь возьмем $r \in p^* + q^* \Rightarrow r = p_1 + q_1$:

$$\begin{cases} p_1 \in p^* \\ q_1 \in q^* \end{cases} \Rightarrow \begin{cases} p_1
$$\begin{cases} p^* + q^* \subset (p + q)^* \\ p^* + q^* \subset (p + q)^* \end{cases} \Rightarrow p^* + q^* \subset (p^* + q^*)$$$$

$$\begin{cases} p^* + q^* \subset (p+q)^* \\ (p+q)^* \subset p^* + q^* \end{cases} \Rightarrow p^* + q^* = (p^* + q^*)$$

2. Для умножения доказательство аналогично.

3. Если p < q, то $p \in q^*, p \notin p^* \Rightarrow p^* < q^*$ Если $p^* < q^*$, то $\exists r \in \mathbb{Q}: r \in q^*, r \notin p^* \Rightarrow p \le r < q \Rightarrow p < q$ Значит $p^* < q^* \Leftrightarrow p < q$

Теорема 11. Пусть α, β — сечения, $\alpha < \beta$. Тогда $\exists \ r^*$ — рациональное сечение : $\alpha < r^* < \beta$ **Доказательство.** $\alpha < \beta \Rightarrow \exists \ p : p \in \beta, p \notin \alpha$ Выберем такое r > p, так, что $r \in \beta$. Поскольку $r \in \beta, r \notin r^*$, то

Поскольку $p \in r^*, p \notin \alpha$, то $\alpha < r^*$

Глава 2

Вещественные числа

Определение 10. В дальнейшем сечения будут называться вещественными числами. Рациональные сечения будут отождествляться с рациональными числами. Все другие сечения будут называться иррациональными числами.

Таким образом, множество всех рациональных чисел оказывается подмножеством системы вещественных чисел.

Теорема 12. (Дедекинда) Пусть A и B — такие множества вещественных чисел, что:

- 1. $A \cup B = \mathbb{R}$
- $A \cap B = \emptyset$
- 3. $A, B \neq \emptyset$
- 4. $\forall \alpha \in A, \beta \in B : a < b$

Тогда $\exists ! \ \gamma \in \mathbb{R} : \alpha \leq \gamma \leq \beta \ \forall \alpha \in A, \forall \beta \in B$

Доказательство. 1. Докажем единственность.

Пусть γ_1,γ_2 — два числа, причем $\gamma_1 < gamma_2$. Тогда $\exists \ \gamma_3 : \gamma_1 < \gamma_3 < \gamma_2 \Rightarrow \gamma_3 \in A, \gamma_3 \in B$ — противоречие. Значит $\gamma_1 = \gamma_2$.

2. Проверим, является ли γ сечением.

$$\gamma = \{p \in \mathbb{Q} : \exists \alpha \in A : p \in \alpha\}$$

- I. $\gamma \neq \varnothing$, t.k. $A \neq \varnothing$ $\gamma \neq \mathbb{Q}, \text{t.k. } \exists q \in \mathbb{Q}: q \notin B \Rightarrow q \notin \gamma$
- II. Пусть $p_1 < p, p \in \gamma$. Тогда $\exists \alpha \in A : p_1 \in \alpha \Rightarrow p_1 \in \gamma$
- III. Пусть $p\in\gamma$. Тогда $\exists\alpha\in A:p\in\alpha$. Поскольку α сечение, то $\exists q\in\mathbb{Q}:q\in\alpha,q>p\Rightarrow q\in\gamma$

Ясно, что $\alpha \leq \gamma \forall \alpha \in A$.

Предположим, что $\exists \beta \in B : \beta < \gamma$. Тогда $\exists q \in \mathbb{Q} : q \in \gamma, q \notin \beta \Rightarrow \exists \alpha \in A : q \in \alpha \Rightarrow \alpha > \beta$ — противоречие. Значит $\gamma \leq \beta \ \forall \ \beta \in B$.

2.1 Супремумы и инфимумы

Определение 11. $E\subseteq\mathbb{R}, E\neq\varnothing$ Е - ограничено сверху, если $\exists y\in\mathbb{R}: \forall x\in E: x\leq y$

Определение 12. $G \subseteq \mathbb{R}, G \neq \emptyset$ G - ограничено снизу, если $\exists y \in \mathbb{R} : \forall x \in E : x \geq y$

Замечание. Если множество ограничено сверху и снизу, оно называется ограниченным.

Определение 13. Пусть Е ограничено сверху. Тогда y называется точной верхней границей (верхней гранью) Е, если:

- 1. у верхняя граница множества Е.
- 2. если x < y, то x не является верхней границей множества E.

Определение 14. Пусть Е ограничено снизу. Тогда y называется точной нижней границей (нижней гранью) Е, если:

- 1. у нижняя граница множества Е.
- 2. если x > y, то х не является нижней границей множества E.

Определение 15. Точная верхняя граница — $y \sup E$ Точная нижняя граница — $y \inf E$

Пример. Е состоит из всех чисел $\frac{1}{n}, n=1,2,3,\ldots$ Тогда множество ограничено, верхняя грань равна 1 и принадлежит множеству, а нижняя равна 0 и множеству не принадлежит.

Теорема 13. Пусть E ограничено сверху. Тогда $\sup E$ существует.

Доказательство. Пусть есть множества:

$$A = \{\alpha \in \mathbb{R} : \exists x \in E : x > \alpha\}$$

$$B = \mathbb{R} \setminus A$$
Torda $A \cap B = \emptyset, A \cup B = \mathbb{R}, A \neq \emptyset, B \neq \emptyset$

$$\begin{cases} \beta \in B \\ \alpha \in A \end{cases} \Rightarrow \begin{cases} \forall x \in E : x \leq \beta \\ \exists x_0 \in E : x_0 > \alpha \end{cases} \Rightarrow \alpha < \beta$$

Ясно, что никакой элемент множества A не является верхней гра-

ницей множества E, а любой элемент множества B является верхней границей множества E. Поэтому достаточно доказать, что B содержит наименьшее число.

По теореме Дедекинда:
$$\exists \gamma: \begin{cases} \alpha \leq \gamma \ \forall \alpha \in A \\ \beta \leq \gamma \ \forall \beta \in B \end{cases}$$

Предположим, что $\gamma \in A$. Тогда $\exists x \in E : x > \gamma$.

Возьмем $\gamma_1: \gamma < \gamma_1 < x \Rightarrow \gamma_1 \in A$ — противоречие.

Значит $\gamma \in B$.

Теорема 14. Пусть E ограничено снизу. Тогда inf E существует.

Доказательство. Доказательство тривиально и предоставляется читателю в качестве упражнения $\bigcirc \smile \bigcirc$.

Теорема 15. (Существование корня из вещественного числа) $\forall x \in \mathbb{R}$: $x > 0, \forall n \in \mathbb{N} : n > 0 \exists ! \ y \in \mathbb{R}, y > 0 : y^n = x, y = \sqrt[n]{x}$

Доказательство. 1. Единственность.

Пусть
$$y_1>y_2:y_2^n=x=y_1^n\Rightarrow y_2^n-y_1^n=0$$
 $>0 >0 (y_2-y_1)\cdot (y_2^{n-1}+y_2^{n-2}\cdot y_1+\ldots+y_1^{n-1})=0$ — противоречие.

2. Существование.

Пусть
$$E = \{t \in \mathbb{R} : t \ge 0, t^n < x\}$$

$$0 \in E \Rightarrow E \neq \emptyset$$

Положим
$$t_0 = 1 + x, t_0^n = (1+x)^n$$

$$\sum_{k=1}^{n} C_n^k x^k = 1 + nx + \dots > x \Rightarrow E$$
 — ограничено сверху.

Пусть $y = \sup E$ (она существует по теореме о Существовании супремума).

- Допустим, что $y^n < x$. Возьмем h: 0 < h < 1 и $h < \frac{x-y^n}{(1+y)^n-y^n}$ Тогда $(y+h)^n = \sum_{k=0}^n C_n^k y^{n-k} h^k = y^n + \sum_{k=1}^n C_n^k y^{n-k} h^k = y^n + h \sum_{k=1}^n C_n^k y^{n-k} h^{k-1} < y^n + h \sum_{k=1}^n C_n^k y^{n-k} = y^n + h \cdot ((1+y)^n y^n) < (y+1)^n y^n < y^n + x y^n = x y$ не вехрняя граница.
- Допустим, что $y^n > x$. Возьмем $k: 0 < k < 1, \ k < \frac{y^n x}{(1+y)^n y^n}$ и k < y. Тогда аналогично с $y^n > x$ получаем, что y k верхняя граница E, что противоречит тому, что $y = \sup E$.

Значит $y^n = x$.

Лекция 3: Степень, логарифм, десятичные дроби. Последовательности.

287.09.2023

2.2 Неравенство Бернулли

Теорема 16 (Неравенство Бернулли). Пусть x>-1 и $n\in\mathbb{N}$. Тогда $(1+x)^n\geq 1+nx$.

Доказательство. Докажем по индукции. При n=1 неравенство очевидно. Пусть оно верно для n=k. Тогда

$$(1+x)^{k+1} = (1+x)^k(1+x) \ge (1+kx)(1+x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x.$$

Последнее неравенство выполнено, поскольку $kx^2 \ge 0$.

2.3 Определение степени и логарифма

Определение 16. Пусть $a>0,\ m,n\in\mathbb{Z}, m\neq 0; r=\frac{n}{m}$. Тогда $a^r=(a^{\frac{1}{m}})^n$. Если n>0, то: $x^m=x\cdot x\cdot \ldots\cdot x$ Если m<0, то $x^m=\frac{1}{x^{[m]}}$.

Определение 17. Пусть
$$p \in \mathbb{Q}, p \neq 0, a > 1$$
 Тогда $a^p = \sup\{a^r : r \in \mathbb{Q}, r \neq 0, r < p\}$ $a^0 = 1$

```
Определение 18. Пусть a>1, \alpha\in\mathbb{R} E=\{a^r:r\in\mathbb{Q}, r<\alpha, r\neq 0\} Тогда \sup E=a^\alpha. И \forall a\in\mathbb{R}:0< a<1:a^\alpha=(\frac{1}{a})^{-\alpha}
```

```
Определение 19. Пусть a>0, a\neq 0, x>0. Тогда Если a>1:\log_a x=\sup\{r\in\mathbb{Q}:a^r< x\}. Если 0< a<1:\log_a x=-\log_{\frac{1}{a}}x
```

Теорема 17. (Без доказательства) Для степени и логарифма справедливы все ранее встречавшиеся свойства. (имеется в виду школьный курс)

Глава 3

Последовательности

Определение 20. Пусть X — множество, $X \neq \emptyset$. Тогда последовательностью элементов множества X называется функция $f: \mathbb{N} \to X$. $x_1, x_2, \ldots, x_n \ldots; x_n \in X$ Последовательность — $\{x_n\}_{n=1}^\infty$

3.1 Сопоставление вещественным числам десятичных дробей

Алгоритм. (Построение дроби по числу)

Рассматриваем только $x > 0, x \in \mathbb{R}$

Возьмем $n_0 \in \mathbb{Z}_+ : n_0 \le x, n_0$ — максимальное число с таким свойством.

- Если $n_0 = x$ алгоритм закончен.
- Если $n_0 < x$ продолжаем: выбираем $n_1 \in \mathbb{Z} : n_0 + \frac{n_1}{10} \le x$

Аналогично с n_0 , проверяем равенство с х. Так вплоть до n_k : $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}\leq x$

Если ни на одном шаге равенство не выполняется, то задаем последовательность:

$$\{x_n\}_{n=0}^{\infty} = n_0, \frac{n_1}{10}, \frac{n_2}{10^2}, \dots$$

Теорема 18. (О супремуме десятичных дробей) Рассмотрим $E=\{r: r=\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}, k\in\mathbb{N}\}$ Тогда $\sup E=x$ (из алгоритма).

Доказательство. Так как $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x$, то $\sup E\leq x$ Предположим, что $\sup E< x$. Тогда $\exists r: r=x-\sup E>0$. Выберем такое k, что $\frac{1}{k^9}< r\Leftrightarrow k>\frac{1}{r^9}$. $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x< n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k+1}{10^k}\Rightarrow n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}> x-\frac{1}{10^k}> x-r=\sup E$, значит

$$x = \sup E$$

Лемма 1. (доказать самостоятельно) Пусть есть $E\subset\mathbb{R}, a\in\mathbb{R}, E_a=\{x+a:x\in E\}$ Тогда $\sup E_a=a+\sup E$

Дальше шла какая-то теорема, смысл которой я не понял. Если найдете адекватную запись или сможете объяснить — пишите \bigcirc \smile \bigcirc

3.2 Предел последовательности

Определение 21. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность вещественных чисел. Тогда $a\in\mathbb{R}$ называется пределом последовательности, если $\forall \varepsilon>0 \; \exists N: \forall n>N: |x_n-a|<\varepsilon.$

Замечание. $\forall x,y,z \in \mathbb{R}: |z-x| \leq |z-y| + |y-x|$

Определение 22. Пусть X — множество, функция ρ : $\rho: X \times X \to \mathbb{R}$ X — метрическое пространство, если: $\forall a,b \in X: \rho(a,b) \geq 0$ И выполнены следующие свойства:

- 1. $\rho(a,b) = 0 \Leftrightarrow a = b$
- 2. $\rho(a, b) = \rho(b, a)$
- 3. $\rho(a,b) \le \rho(a,c) + \rho(c,b)$

Тогда ρ — метрика X.

Пример. \mathbb{R} — метрическое пространство, $\rho(x,y) = |x-y|$

Определение 23. Пусть X — метрическое пространство, $a \in X, \{x_n\}_{n=0}^{\infty}, x_n \in X$ $\lim_{n \to \infty} x_n = a, \text{ если } \forall \varepsilon > 0 \; \exists N : \forall n > N : \rho(x_n, a) < \varepsilon$

Теорема 19. (Единственность предела) Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} x_n = b$, то a=b

Доказательство. Пусть $a \neq b$. Тогда $\delta = \rho(a,b) > 0$. Положим $\varepsilon = \frac{\delta}{4}$.

- 1. Так как $\underset{n \to \infty}{x_n} \to a: \exists N_1: \forall n > N_1: \rho(x_n,a) < \varepsilon$
- 2. И так как $\underset{n \to \infty}{x_n} \to b: \exists N_2: \forall n > N_2: \rho(x_n, b) < \varepsilon.$

Пусть $n=N_1+N_2+1$. Тогда для n выполнены (1) и (2) Имеем $0<\delta=\rho(a,b)\leq \rho(a,x_n)+\rho(x_n,b)<\varepsilon+\varepsilon=\frac{\delta}{2}$ — противоречие.

Теорема 20. (Ограниченность сходящейся последовательности) X — метрическое пространство с метрикой ρ

$$x_n \in X, a \in X$$
 Пусть $x_n \to a$. Тогда $\exists \ R > 0 : \forall n \in \mathbb{N} : \rho(x_n, a) < R$

Доказательство. Возьмем

$$\varepsilon=1\Rightarrow\exists N:\forall n>N:\rho(x_n,a)<1$$
 (1)
Определим R как $R=\max(\rho(x_1,a)+1,\rho(x_2,a)+1,\ldots,\rho(x_N,a)+1,1)$ (2)

Тогда:

- если n>N, то из (1) следует (2), значит $R\geq 1$
- если $1 \le n \le N$, то $R \ge \rho(x_n, a)$

В обоих случаях R удовлетворяет условию теоремы.

3.3 Арифметические операции над пределами

Свойства. Для $\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}y_n=b, c\in\mathbb{R}$ справедливы следующие свойства:

- 1. $\forall n \in \mathbb{N} : x_n = a \Rightarrow \lim_{n \to \infty} x_n = a$
- $2. \ c \cdot \lim_{n \to \infty} x_n = c \cdot a$
- $3. \ x_n + y_n \underset{n \to \infty}{\longrightarrow} a + b$
- 4. $x_n \cdot y_n \underset{n \to \infty}{\longrightarrow} a \cdot b$

- 2. $\forall \varepsilon > 0 \exists N : \forall n > N : |x_n a| < \varepsilon \Rightarrow |cx_n ca| = |c(x_n a) = |c||x_n a| < |c||\varepsilon|$
- $3. \begin{cases} \forall \varepsilon_1 > 0 \exists N_1 : \forall n > N_1 : |x_n a| < \varepsilon_1 \\ \forall \varepsilon_2 > 0 \exists N_2 : \forall n > N_2 : |y_n b| < \varepsilon_2 \end{cases} \Rightarrow \text{при } n > N_1 + N_2 + 1 : |x_n + y_n a b| \leq |x_n a| + |y_n b| < \varepsilon_1 + \varepsilon_2 \end{cases}$
- 4. Аналогично (3) при $n>N_1+N_2+1:|x_ny_n-ab|=|x_ny_n-ay_n+ay_n-ab|\leq |x_ny_n-ay_n|+|ay_n-ab|=|x_n-a||y_n|+|a||y_n-b|$ т.к. $\lim_{n\to\infty}y_n=b$, то $\exists R:\forall n:|y_n|\leq R$ (из предыдущей теоремы)

Тогда $|x_n - a||y_n| + |a||y_n - b| < \varepsilon_1 R + |a|\varepsilon_2$

Лекция 4: Продолжение

27.09.2023

Свойства. (Продолжение)

5
$$x_n \neq c \ \forall n, x_n \rightarrow a, a \neq 0 = > \frac{1}{x_n} \rightarrow \frac{1}{a}$$

$$6 \begin{cases} x_n \to a$$
из п. 5
$$y_n \to b \end{cases} \Rightarrow \frac{y_n}{x_n} \to \frac{a}{b}$$

$$7 \ x_n \le y_n \forall n, x_n \to a, y_n b \Rightarrow a \le b$$

Доказательство. (5, 6, 7)

5 І. Возьмем $\varepsilon_0 = \frac{|a|}{2} > 0$, тогда:

$$\exists N : \forall n > N : |x_n - a| < \varepsilon_0 \Rightarrow |x_n| \ge |a| - |x_n - a| > |a| - \frac{|a|}{2} = \frac{|a|}{2}$$

II.
$$\forall \varepsilon > 0 : \exists N_1 : \forall n > N_1 : |x_n - a| < \varepsilon$$

 $N_0 = max(N_1,N)$. При $n > N_0$ получаем:

$$\left| \frac{1}{x_n} - \frac{1}{a} \right| = \left| \frac{a - x_n}{x_n \cdot a} \right| = \frac{1}{|a|} \cdot \frac{1}{|x_n|} \cdot |x_n - a| < \frac{1}{(I), (II)} \cdot \frac{2}{|a|} \cdot \varepsilon$$

6
$$\frac{y_n}{x_n} = y_n \cdot \frac{1}{x_n}$$
 — далее по п. (4), (5).

7 Предположим, что
$$a>b$$
. Тогда $\varepsilon_0=\frac{a-b}{2}>0\Rightarrow \begin{cases}\exists N_1:\forall n>N_1:|x_n-a|<\varepsilon_0\\\exists N_2:\forall n>N_2:|y_n-b|<\varepsilon_0\end{cases}$ = $\forall n>N_1+N_2+1:y_n<\varepsilon_0+b=b+\frac{a-b}{2}=a-\frac{a-b}{2}=a-\varepsilon_0<$ $x_n\Rightarrow y_n< x_n$ — противоречие с условием.

$$\forall n > N_1 + N_2 + 1 : y_n < \varepsilon_0 + b = b + \frac{a-b}{2} = a - \frac{a-b}{2} = a - \varepsilon_0 < x_n \Rightarrow y_n < x_n$$
— противоречие с условием.

Замечание. (Различные промежутки)

- 1. $(a,b) = \{x \in R : a < x < b\}$ интервал (открытый промежуток)
- $2. \ [a,b] = \{x \in R : a \le x \le b\} \ \ \text{замкнутный промежуток}$ $3. \ [a,b] = \{x \in R : a \le x \le b\} \ \ \text{полуоткрытый промежуток}$
- 4. $(a, b] = \{x \in R : a < x \le b\}$ полуоткрытый промежуток

3.4 Расширенное множество вещественных чисел

Определение 24. $\overline{R} = R \cup \{+\infty, -\infty\}$ — расширенное множество вещественных чисел. При этом:

$$\forall x \in \mathbb{R} : x < +\infty, x > -\infty$$

Замечание. (Еще промежутки)

1.
$$(a, \infty) = \{x \in \mathbb{R} : x > a\}$$

$$[a, \infty) = \{x \in \mathbb{R} : x > a\}$$

2.
$$[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$$

3. $(-\infty, a] = \{x \in \mathbb{R} : x < a\}$

4.
$$(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$$

Свойства. (Продолжение свойств пределов)

$$8 \begin{cases} \forall n: x_n \leq y_n \leq z_n \\ x_n \to a \\ z_n \to a \end{cases} \Rightarrow y_n \to a - \text{теорема о двух миллиционерах}$$

Доказательство.
$$\begin{cases} \forall \varepsilon > 0: \exists N_1: \forall n > N_1: |x_n - a| < \varepsilon \Leftrightarrow x \in (a - \varepsilon, a + \varepsilon) \\ \forall \varepsilon > 0: \exists N_2: \forall n > N_2: |z_n - a| < \varepsilon \Leftrightarrow z \in (a - \varepsilon, a + \varepsilon) \end{cases}$$

$$\forall n > \max(N_1, N_2):$$

$$a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon \Rightarrow |y_n - a| < \varepsilon$$

3.5 Бесконечные пределы

Определение 25. (Бесконечные пределы)

• $\{x_n\}_{n=1}^{\infty}, x_n \to \infty, n \to \infty$ $\lim_{n\to\infty} x_n = +\infty$, если:

 $\forall L \in \mathbb{R} \ \exists N : \forall n > N : x_n > L$

• $\{y_n\}_{n=1}^{\infty}, y_n \to -\infty, n \to \infty$

 $\lim_{n\to\infty}y_n=-\infty$, если:

 $\forall L \in \mathbb{R} : \exists N : \forall n > N : y_n < L$

(возможно сокращение записи n-> далее.)

3.6 Единообразная запись определения пределов

Определение 26. Окрестостью вещественного числа a называется любой интервал $(a - \varepsilon, a + \varepsilon)$, где $\varepsilon > 0$ (обозначается как $\omega(a)$).

Определение 27. Окрестность
$$+\infty:(L,+\infty), L\in\mathbb{R}$$
 Окрестность $-\infty:(-\infty,L), L\in\mathbb{R}$

Определение 28. Пусть $\{x_n\}_{n=1}^{\infty}$, тогда $x_n \to a$, если: $\forall \omega(\alpha): \exists N: \forall n > N: x_n \in \omega(\alpha)$

Свойства. (Доказать самостоятельно)

Пусть $\{a_n\}_{n=1}^{\infty}, a \to +\infty, \{b_n\}_{n=1}^{\infty}, b \to -\infty,$ тогда:

1.
$$c > 0 : ca_n \to +\infty, cb_n \to -\infty$$

 $c < 0 : ca_n \to -\infty, cb_n \to +\infty$

2.
$$x_n \to x, x \in \mathbb{R} \cup \{+\infty\} \Rightarrow a_n + x_n \to +\infty$$

 $y_n \to y, y \in \mathbb{R} \cup \{-\infty\} \Rightarrow b_n + y_n \to -\infty$

3. Возьмем x_n, y_n из п. (2), тогда:

$$x > 0 \Rightarrow a_n x_n \to +\infty, b_n x_n \to -\infty$$

 $y < 0 \Rightarrow a_n y_n \to -\infty, b_n y_n \to +\infty$

4. Если $\forall n : a_n \neq 0, b_n \neq 0$, тогда:

$$\frac{1}{a_n} \to 0$$

$$\frac{1}{b_n} \to 0$$

Если
$$x_n > 0, x_n \to 0 \Rightarrow \frac{1}{x_n} \to +\infty$$

Если
$$x_n < 0, x_n \to 0 \Rightarrow \frac{1}{x_n} \to -\infty$$

5.
$$\forall n : x_n \leq y_n, x \to \alpha, y_n \to \beta; \alpha, \beta \in \overline{\mathbb{R}} \Rightarrow \alpha \leq \beta$$

6.
$$\begin{cases} \forall n : x_n \leq y_n \leq z_n \\ x_n \to \alpha, \alpha \in \mathbb{R} \\ z_n \to \alpha \end{cases} \Rightarrow y_n \to \alpha$$

Замечание. $+\infty = +\infty$

$$-\infty = -\infty$$

$$-\infty < +\infty$$

Доказательство. (2, 6)

$$2 \begin{cases} x \in \overline{\mathbb{R}} \Rightarrow \exists M : \forall n : |x_n - x| < M \Rightarrow x_n > x - M \\ \forall L \in \overline{\mathbb{R}} : \exists N : \forall n > N : a_n > L \end{cases} \Rightarrow a_n + x_n > L + x - M$$
, где правая часть — любое число.

6
$$\forall \varepsilon > 0 : \exists N_1 : \forall n > N_1 : x_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

 $\forall \varepsilon > 0 : \exists N_2 : \forall n > N_2 : z_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$
 $N_0 = \max(N_1, N_2)$

$$\forall n > N_0 : x_n \le y_n \le z_n \Rightarrow y_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

3.7 Асимпотика

Определение 29. (О-большая и о-малая)

- 1. $x_n = o(1)$, если $x_n \to 0$
- 2. $y_n = O(1)$, если $\exists C : \forall n : |y_n| \le C$
- 3. Пусть $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \forall n: b_n \neq 0$, тогда: $a_n = o(b_n)$, если $\frac{a_n}{b_n} \to 0$
- 4. Пусть есть $\{c_n\}, \{d_n\},$ тогда: $c_n = O(d_n),$ если $\exists C: |c_n| \leq C|d_n|$

Замечание. Это не равенство в привычном смысле, следует читать его только слева направо.

3.8 Монотонные последовательности

Определение 30. (монотонные последовательности)

- $\{a_n\}_{n=1}^{\infty}$ монотонно возрастает, если $\forall n: a_n \leq a_{n+1}$ (возрастает строго если $a_n < a_{n+1}$)
- $\{b_n\}_{n=1}^{\infty}$ монотонно убывает, если $\forall n: b_n \leq b_{n+1}$

Замечание. Говорят, что поледовательнотсть c_n монотонна, если она либо монотонно возрастает, либо монотонно убывает.

Теорема 21. (Теорема о пределе монотонной последовательности)

- Пусть есть последовательность $\{c_n\}_{n=1}^{\infty}$, тогда $\exists \lim_{n \to \infty} c_n \in \overline{\mathbb{R}}$.
- Для того, чтобы монотонно возрастающая последовательность имела конечный предел, необходимо и достаточно, чтобы последовательность была ограничена снизу.
- Для того, чтобы монотонно убывающая последовательность имела конечный предел необходимо и достаточно, чтобы последовательность была ограничена сверху.

При этом справелдивы неравенства:

- $\forall m: c_m \leq \lim_{n \to \infty} c_n$ если последовательность возрастает. (или < если строго возрастает)
- $\forall m: c_m \geq \lim_{n \to \infty} c_n$ если последовательность убывает.

Доказательство. Предположим, что проследовательность c_m не ограничена сверху, тогда:

$$\forall L \in \mathbb{R}: \exists N: c_N > L$$

$$\forall n > N: c_n \geq c_{n-1} \geq c_{n-2} \geq \ldots \geq c_N + 1 \geq c_N > L$$
 T.e. $C_n > L$

мы взяли любое L и по нему нашли такое N большое, что при любом n>N полуается что с с номером n Больше чем lambda это означает что по определению предела предел $\lim C_n=+\infty$

Если последовательность возрастает и не ограничена сверху у нее есьт пределе и этот предел равен + бесконечности

другой вариант: последовательность возрастает и огранчена сверху Пусть $C_n \leq C_{n+1} n \exists M..e_n \leq M \forall n$

рассмотрим множество всех элементов последовательности

$$E = \{ \alpha \in \mathbb{R} : \exists n \in \mathbb{N} \text{ т.ч. } \alpha = C_n \}$$

Это предположение означает что E ограничено сверху $c=\sup E$

в таком случае мы имеем неравенство $C_n \le C \forall n \ (12)$

Теперь возьмем $\forall \varepsilon > 0$

 $C-\varepsilon$ - это не верхняя граница

$$\exists N$$
 т.ч. $C_N > C - \varepsilon$ (13)

Воспользуемся монотонностью последовательности С

Давайте возьмем $\forall n > N$

$$(13) = C_n \ge C_{n-1} \ge \dots \ge C_{N+1} \ geqC_N > C - \varepsilon \ (14)$$

Посмотрим на соотношение 12, 14

$$C - \varepsilon < C_N \le C < C + \varepsilon \Longrightarrow |C_n - C| < \varepsilon$$
 (15)

Это соотношение означает что

$$(15) => C = \lim_{n \to \infty} C_n$$

Предел существует, являющийся вещественным числом.

мы доказали что если последовательность ограничена сверху, то существует предел и выполенно такое неравенство.

Если последовательность строго монотонна, то неравенство будет стросим

Доказательство.
$$C_{n_0} < C_{n_0+1} \le c => C_{n_0} < C$$

Если
$$\exists\lim_{n\to\infty}C_n=C\in R=>\exists M$$
 т.ч. $|C_n-C|\leq M=>C_n\leq C+M\forall n$ для убывающих доказывается аналогично.

Теорема 22. (Теорема о ложных промежутках) $[a_n, b_n] \supset [a_{n+1}, b_{n+1}] \forall n$ (16)

Предположим, что $b_n - a_n \to 0$ (17) $n - > \infty$

Промежутки замкнутые $=>\exists!c\in[a_n,b_n], \forall n$ (18)

```
Доказательство. a_n \le a_{n+1}, b_n \ge b_{n+q} \forall n \ (19)
     a_1 \le a_2 \le \dots \le a_n < b_n \le b_{n-1} \le \dots \le b_2 \le b_1  (19)
     a_1 \le a_n \le b_n \le b_1 \forall n
     T.e. a_n < b_1, b_n > a, (20)
    (19), (20) => \exists \lim_{n \to \infty} = a \in \mathbb{R} \ \text{u} \ \exists \lim_{n \to \infty} b_n = b \in \mathbb{R} (21)
     => \lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n (22)
     (21), (22) => a \leq b (23)
     a_n \le a \forall n \ b_n \ge \forall n
     (24)
     => b-a \le b_n - a_n \forall n
     (25)
     0 \le b - a = \lim_{n \to \infty} (b - a) \le \lim_{n \to \infty} (b_n - a_n) = 0  (26)
     (23), (26) => a = b = def c
     (24), (27)=> a_n \le c \le b_n \forall n, r.e. c \in [a_n, b_n] (27)
     Пусть \exists c_1 \neq c т.ч. c_1 \in [a_n, b_n] \forall n (28)
     Тогда, 27' и 28 => что a_n \le c < c_1 \le b_n \forall n \ (29)
     (29) = c_1 - c \le b_n - a_n \forall n \ (30)
    (30) = > \lim_{n \to \infty} (c_1 - c) \le \lim_{n \to \infty} (b_n - a_n) = 0 \ 0 < c_1 - c = Предположение
о том что найдется ещё какой-то c_1 неверно теорема доказана.
```

Замечание. В этой теореме рассматриваются замкнутые Промежутки

Пример.
$$a_n = O \forall n, b_n = \frac{1}{n}$$
 $(a_{n+1}, b_{n+1}) = (0, \frac{1}{n+1}) \subset (0, \frac{1}{n}) = (a_n, b_n)$ $b_n - a_n = \frac{1}{n} \to 0 \ n \to \infty$ $\nexists C \in \mathbb{R}$ т.ч. $c \in (0, \frac{1}{n}) \forall n$

в каком месте доказательства предыдущей теоремы мы пользовались тем что промежутки замкнуты?

3.9 Число e

e $x_n = (1 + \frac{1}{n})^n \ y_n = (1 + \frac{1}{n})^{n+1} \ x_n < y_n \forall n \ (1)$ x_n строго возрастает (2) y_n строго убывает (3) $x_n \to e, y_n \to e$ 2 < e < 3 $y_n = (1 + \frac{1}{n})x_n > x_n$ Рассмотрим $\frac{y_n - 1}{y_n} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n}{n-1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n + 1$

$$\begin{split} &\frac{n}{n+1}\cdot \left(\frac{1}{n-1}\right)^n\cdot \left(\frac{1}{n+1}\right)^n\\ &=\frac{n}{n+1}\cdot \left(\frac{n^2}{n^2-1}\right)^n\\ &=\frac{n}{n+1}\left(\frac{n^2-1+1}{n^2-1}\right)^n=\frac{n}{n+1}\cdot \left(1+\frac{1}{n^2-1}\right)^n>\\ &(n^2-1=\}x)\\ &x>0,n\geq 2\; (1+x)^n>1+nx\; \big(\text{ неравенство бернулли}\big)\\ &>\frac{n}{n+1}(1+\frac{n}{n^2-1})\\ &=\frac{n}{n+1}\cdot \frac{n^2-1+n}{n^2-1}=\\ &=\frac{n^3+n^2-n}{n^3+n^2-n-1}>1\\ &\frac{y_{n-1}}{y_n}>1\\ &y_{n-1}>y_n\\ &(a+b)^n=\sum_{k=0}^n C_n^k a^{n-k}b^k\\ &C_n^k=\frac{n!}{k!(n-k!)}\\ &C_n^0=C_n^n=1\\ &C_n^1=C_n^{n-1}=n\\ &x_n=(1+\frac{1}{n})^n=\sum_{k=0}^n C_n^k(\frac{1}{n})^k=1\cdot 1+n\cdot \frac{1}{n}+\sum_{k=2}^n C_n^k\frac{1}{n^k}\\ &=2+\sum_{k=2}^n\frac{1}{k!(n-k)!}\cdot \frac{1}{n^k}=2+\sum_{k=1}^n\frac{1}{k!}\cdot \frac{(n-k+1)\cdot \dots\cdot n}{n^k}\\ &=2+\sum_{n=2}^n\frac{1}{k!}(1-\frac{k-1}{n})\\ &=2+\sum_{n=2}^n\frac{1}{k!}(1-\frac{k-1}{n})\\ &=2+\sum_{n=2}^n\frac{1}{k!}(1-\frac{k-1}{n})\\ &=\frac{n-k+2}{n}=1-\frac{k-1}{n}\\ &\frac{n-k+2}{n}=1-\frac{k-2}{n}\\ &\frac{n-k+k}{n}=1-\frac{k-k}{n}=1\\ &\frac{n-k}{(n-k)!}=\frac{(n-k)!(n-k+1)\cdot \dots\cdot n}{(n-k)!}=(n-k+1)\cdot \dots\cdot n\\ &n\geq 3\\ &a=1,b=\frac{1}{n}\\ &1^{n-k}=1 \end{split}$$

Лекция 5: Продолжение

05.10.2023

Для того чтобы вывести все слагаемые, мы полагаем, что n >= 3, тогда

$$x_n = 2 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n})$$
 (5)(1)

Пример. (Пример умножения из предыдущей суммы) Если k=3, то

$$(1-\frac{2}{n})\cdot(1-\frac{1}{n})$$

$$x_{n+1} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{n}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right)\right)$$
(2)

Замечание. Слагаемое из (2) $(1-\frac{n}{n+1})$, также оно же в виде $\frac{1}{(n+1)^{n+1}}$ больше нуля.

Замечание. Если r > 0, то $1 - \frac{r}{n+1} > 1 - \frac{r}{n}$

$$\Rightarrow (1 - \frac{k-1}{n+1}) = (1 - \frac{1}{n+1}) \cdot \dots \cdot (1 - \frac{1}{n+1}) > (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n})$$

Замечание. Получается, что в (1) и (2) одинаковое количество слагаемых. При этом, соотвествующе слагаемые относящихся к n+1 будет строго больше чем слагаемые относящихся к n.

Следовательно, равенство (2) больше, чем равенство (1).

Кроме того, в сумме относящийся к n+1 есть ещё n+1 слагаемое, которые положительно.

$$(1), (2) \Rightarrow x_{n+1} > x_n \tag{3}$$

Примем во внимание неравенства для у и неравенства для x_n . Тогда мы будем иметь следующее неравенство:

$$(3)28.9(3)5.10 \Rightarrow x_1 < x_2 < \dots < x_n < y_n < y_{n-1} < \dots < y_1$$
 (4)

$$(4) \Rightarrow x_n < y_1, y_n > x, \forall n \tag{5}$$

Последовательность x_n строго возрастает и ограниченна сверху. Мы можем применить критерий существования конечного предела у строго монотонной возрастающей последовательности.

$$(5) \Rightarrow \exists \lim_{n \to \infty} x_n = a$$

Если мы посмотрим на последовательность y_n , она ограничена снизу в отношении пять и мы знаем что она строго монотонно убвает. По теореме о предельной последовательности получаем, что:

$$(5) \Rightarrow \exists \lim_{n \ to \infty} y_n = b$$

Теперь,

$$b = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} =$$

(Воспользуемся свойством предела произведения пределов)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 1 + \cdot \lim_{n \to \infty} x_n = a$$

Таким образом,

$$a = b = e \tag{6}$$

.

Замечание. Пользуемся свойствами пределов строго монотонной последовательностей.

Последовательность y_n строго убывает, а последовательность x_n строго возрастает поэтому её предел меньше любого y_n

$$(6) \Rightarrow x_n < e < y_n \forall n \tag{7}$$

$$(7) \Rightarrow e > x_1 = 2, e < y_5 < 3$$

$$y_5 = (\frac{6}{5})^6$$

Примечание. Нужно посчитать и понять намного ли это меньше 3 или нет.

$$e = 2.718...$$

Замечание. Число е - одно из фундаментальных констант на которой держится вся математика.

Первые две - это 0 и 1. А третья - это π

3.10 Критерий Коши, существование конечного предела последовательности

Теорема 23. Пусть имеется некоторая последовательность x_n .

$$x_{n,n-1}^{\infty}$$

Для того чтобы $\exists\lim_{\substack{n\to\infty\\ 0,\,\exists N}}x_n\in\mathbb{R}$ необходимо и достаточно, чтобы $\forall \varepsilon>0,\exists N$ такой, что $\forall m,\forall n>N$ выполнено

$$|x_m - x_m| < \varepsilon \tag{8}$$

Замечание. Важное обстоятельство содержащееся в формулировке.

В формулировке не сказано чему будет равен этот предел. Какой именно он будет - неизвесто. Известно только то что он существует.

Это так называемая теорема существования.

Доказательства начнём с необходимости.

Примечание. Необходимость означает что предел существует.

Доказательство. Предположим, что

$$\lim_{k \to \infty} x_k = a \in \mathbb{R}$$

Тогда, по определению предела для любого $\varepsilon>0\exists N$ такой, что $\forall n>N$ выполнено

$$|x_n - a| < \frac{\varepsilon}{2} \tag{9}$$

Тогда,

$$(9) \Rightarrow \text{при} n > N, m > N$$

$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow (8)$$

То-есть, необходимость доказана. Если конечный предел существует, то соотношение 8 выполнено.

Теперь докажем достаточность.

Когда мы будем доказывать достаточность, то мы не знаем, существует предел или нет.

Замечание. Не каждая последователность имеет предел (например, $x_n = -1^n$).

Для доказательства мы будем использовать теорему Дедекинда. Определим сечение множества вещественных чисел.

Нижний класс А - это

$$A = \alpha \in \mathbb{R} : \exists N$$
такое, что $\forall n > Nx_n > \alpha$ (10)

Замечание. Номер n от α зависит.

Каждому α соответствует свой номер n.

Вернхний класс А' - это

$$A' = \mathbb{R} \setminus A \tag{10'}$$

Множества, получившиеся в (10) и (10') - это сечения, и это нужно проверить.

Нужно проверить, что A и A' не пустые и не совпадают с множеством вещественных чисел.

Возьмём

$$\varepsilon = 1$$

Тогда,

 $\exists N_0$ такой, что $\forall m, n > N_0$

$$|x_m - x_n| < 1$$

В частности, при m=N+1 и при n>N+1 имеем

$$|x_n - x_{N+1}| < 1 \Leftrightarrow x_{N+1} - 1 < x_n < x_{N+1} + 1 \tag{11}$$

$$(11) = > x_{N+1} - 1 \in A \tag{12}$$

(по определению)

Пример. Если мы возьмем любой п который > N+1, тогда получается что x_n больше чем число (12)

С другой стороны,

$$(11) \Rightarrow x_{N+1} + 1 \notin A, \text{ то-есть}, x_{N+1} + 1 \in A'$$
 (13)

При всех n, начиная с N + 1 x_n будет меньше чем то число. Оно никак не может удовлетворять соотношению (10).

Значит, это не может быть число из А, значит это число из А'.

$$(12), (13) \Rightarrow A \neq \emptyset, A' \neq \emptyset$$

Никакое из них не может быть множеством вещественных чисел. Давайте возьмём $\forall \alpha \in A, \forall \beta inA'$. Нужно доказать, что α всегда меньше β . В этом состоит условие определения сечения.

$$\alpha \in A = (10) > \exists N$$
такой, что $\forall n > Nx_n > \alpha$ (14)

Если бы для любого $\forall n>N$ выполнялось $x_n>\beta,$ то $\beta\in A.$ Однако, это не так, т.к. $\beta\in A'.$

То-есть,

$$\exists n_0 > N \text{ Takoe}, \ \forall \text{To} x_{n_0} < \beta$$
 (15)

Примечание. Если бы всё время неравенство было в другую сторону $(x_n > \beta)$, тогда бы по определению (10), мы бы получили, что $\beta \in A$, но мы взяли $\beta \in A'$, то есть $\beta \notin A$, значит свойства выше выполнятся не может и выполняется свойство (15).

$$(14), (15) \Rightarrow \alpha \leq x_{n_0} \leq \beta \Rightarrow \alpha < \beta$$

То-есть, мы действительно получили сечение. Теперь можно применить теорему Дедекинда. По теореме Дедекинда, существует некое число

 $\exists a \in R$ такое, что $\forall \alpha in A, \forall \beta in A'$

$$\alpha \le a \le \beta \tag{16}$$

Возьмём $\forall \varepsilon > 0$

Тогда,

$$(8) = > \exists N$$
такое, что выполнено (8)

m = N + 1

Тогда,

$$(8) \Rightarrow \forall n > N+1$$

$$|x_n - x_{N+1}| < \varepsilon \Leftrightarrow x_n \in (x_{N+1} - \varepsilon, x_{N+1} + \varepsilon) \tag{17}$$

Теперь, если посмотреть на соотношение (17),

$$(17) \Leftrightarrow x_n > x_{N+1} - \varepsilon u x_n < x_{N+1} + \varepsilon$$

Примечание. при $\forall n > N+1$, выполнена правая счасть неравенства (17) $x_n > x_{N+1} - \varepsilon$.

Теперь рассмотрим (10) и (18).

$$(10), (18) \Rightarrow x_{N+1} - \varepsilon \in A \tag{19}$$

Теперь обратимся ко второму неравенству в соотношении (18).

Получается, что правая часть неравенства $x_n < x_{N+1}$ принадлежит A', потому что если бы принадлежало A, должно было бы быть другое неравенство в другую сторону/

$$(10), (18) \Rightarrow x_{N+1} + \varepsilon \in A' \tag{20}$$

Возьмём (19) $\Rightarrow x_{N+1} - \varepsilon$ как α ,

а (20) $\Rightarrow x_{N+1} - \varepsilon$ как β ,

Тогда, применяем (16), получаем что:

$$(16), (19), (20) \Rightarrow x_{N+1} - \varepsilon \le a \le x_{N+1} + \varepsilon \tag{21}$$

Обратимся к соотношению (17)

$$(17): x_{N+1} < x_n < x_{N+1} + \varepsilon$$

Получаем, что a удовлетворяет этому неравенству и x_n удовлетворяет этому неравенству (лежит на промежутке) при $\forall n>N+1.$

Поэтому, (21) и (17') \Rightarrow

$$|x_n - a| < 2\varepsilon = (x_{N+1} + \varepsilon) - (x_{N+1} - \varepsilon) \tag{22}$$

Примечание. То-есть, если x_n и а лежат на этом промежутке, то длина отрезка между а и x_n меньше чем длина промежутка, на котором они лежат. Длина промежутка равна 2ε

Мы получили, что существует некоторое a такое, что для любого n > N+1 выполняется неравенство (22). А это определение предела.

По определению предела,

$$(22) \Rightarrow \lim_{n \to \infty} x_n = a$$

Тем самым, достаточность в критерии доказано. доказать конкретно а мы не смогли, но оно существует.

3.11 Подпоследовательности

Последовательность - это отображение $f: \mathbb{N} \to \mathbb{R}$.

Допустим, что у нас имеется некое отображение $g:\mathbb{N}\to\mathbb{N}$ которое не является тождественным.

д не тождественное отображение.

Когда каждому n сопоставляется тоже самое n.

$$\forall n < mg(n) < g(m)$$

Тогда, подпоследовательностью называется суперпозиция этих выражений.

$$f(g): \mathbb{N} \to \mathbb{R}$$
.

Примечание. Классический вид:

$$x_n = 1$$

$$g(k) = n_k$$

$$n_1 < n_2 < \dots$$

Тем самым, вместо всей последовательностьи x_n мы рассматриваем только с такими номерами:

$$x_{n_1}, x_{n_2}, \ldots$$

Это только часть первоначальной поледовательности.

Обозначение. Если эти номера определены, то последовательность обозначают

$$x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$$

Предел последовательности определяется как предел подпоследовательности по нижним индексам.

Если есть такая последовательность, говорят что:

 $A\in\overline{\mathbb{R}}$ является пределом, то-есть $x_{n_k}\to A$, при $k\to\infty$, если $\forall\Omega(A)$ существует такой номер K, что для любого k > K выполнено $x_{n_k}\in\Omega(A)$

Теорема 24. Пусть $x_n \to A$, при $n \to \infty$, где $A \in \overline{\mathbb{R}}$

и пусть мы имеем любой подпоследовательность

 $x_{n_k}{}_{k=1}^\infty$ выбранную из этой последовательности. $\Rightarrow x_{n_k} \to A$, при $k \to \infty$.

Доказательство. Возьмём любую окрестность А.

$$\forall \Omega(A) \Rightarrow \exists N$$
такое, что $\forall n > N$

будет выполняться

$$x_n \in \Omega(A)$$

Воспользуемся тем, что поледовательность n_k строго возрастает,

$$\rightarrow n_1 \ge 1, n_2 > 1, n_2 \ge 2$$

(Шаг индукции)

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \rightarrow n_{k+1} > k+1$$

То-есть, если мы выберем подпоследовательность, то n_k будет больше или равно к. Начиная с какого-то индекса, будет строго больше.

Возьмём K=N.

Тогда, при
 $\mathbf{k}>\mathbf{N}$ $n_k\geq k>N$ То-есть, при
 $\mathbf{k}>\mathbf{N},$ $x_{n_k}\in\Omega(A)$

$$\Rightarrow x_{n_k} \to A$$
, при $k \to \infty$