# Inferência Estatística – Estimação

- Estimação de parâmetros
  - estimação por ponto ou por intervalo
- Intervalos de confiança
  - para média
  - para variância
  - para proporção
- Dimensionamento amostral

## Estimação de parâmetros



⇒ O estimador é uma variável aleatória; portanto, pode assumir diferentes valores

Estimativa é um valor particular que o estimador assume

## Processos de estimação

#### □ Estimação por ponto

É o processo através do qual obtemos um único ponto, ou seja, um único valor para estimar o parâmetro.

Exemplo: Amostra (1, 3, 2)

$$\overline{x} = \frac{\sum x_i}{n} = \frac{1+3+2}{3} = 2$$
 estimativa por ponto de  $\mu$ 

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n - 1} = \frac{(1 - 2)^{2} + (3 - 2)^{2} + (2 - 2)^{2}}{3 - 1} = 1$$

estimativa por ponto de  $\sigma^2$ 

#### □ Estimação por intervalo

É um processo que permite obter os **limites de um intervalo** onde, com uma determinada probabilidade (**nível de confiança**), podemos esperar contenham o verdadeiro valor do parâmetro.



As estimativas por intervalo são preferíveis àquelas por ponto porque indicam a precisão, estabelecendo limites que, com uma determinada probabilidade, devem conter o parâmetro.

#### ■ Estimação por intervalo

- Logo, para se ter confiança de estimar o verdadeiro parâmetro populacional, gera-se um intervalo de possíveis valores, a partir do valor (estimativa pontual) encontrado na amostra.
- Quanto maior a amplitude do intervalo, maior a confiança (probabilidade) de estimar corretamente o verdadeiro parâmetro populacional, porém menor será a precisão da estimação.



 $\triangleright$  Essa probabilidade (1- $\alpha$ ) é chamada nível de confiança, sendo  $\alpha$  o nível de significância, ou seja, a probabilidade do intervalo não conter o verdadeiro parâmetro populacional.

## Intervalos para estimar...

- Média
- Variância
- Proporção

## Como construir intervalos de confiança para µ?

1. Intervalo de confiança para a **média** de **uma** população (μ)

Duas situações

Conhecemos o valor de  $\sigma$  (ou n > 30)

Não conhecemos o valor de  $\sigma$  (e n  $\leq$  30)

2. Intervalo de confiança para a diferença entre médias de duas populações (μ<sub>1</sub>-μ<sub>2</sub> )

1. Intervalo de confiança para a média de uma população (μ)

**Situação 1:** Quando conhecemos o valor de  $\sigma$  (ou n > 30)

Parâmetro → μ (média da população X)

Qual é o melhor estimador de μ?

Estimador  $\rightarrow \overline{X}$  (média aritmética simples da amostra)

De acordo com o TCL:

Se a população tem distribuição normal: X~N (μ,σ²)

então,  $\overline{X} \sim N (\mu, \sigma^2/n)$ 

Padronizar a variável  $\overline{X} \rightarrow \text{transformar } \overline{X} \text{ em } Z$ 



$$Z = \frac{X - \mu}{\sigma}$$

$$Z = \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}}$$

$$Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N (0,1)$$

Erro padrão da média

#### Curva normal padrão



- $\mathbf{z}_{\alpha/2}$ : valor de Z que delimita a área  $\alpha/2$  a esquerda

 $\mathbf{z}_{\alpha/2}$ : valor de Z que delimita a área  $\alpha/2$  a direita

 $\alpha$ : probabilidade de Z não assumir um valor entre - $z_{\alpha/2}$  e  $z_{\alpha/2}$ 

1- $\alpha$ : probabilidade de Z assumir um valor entre - $z_{\alpha/2}$  e  $z_{\alpha/2}$ 

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = (1-\alpha)$$
 — nível de confiança

Profa Lisiane Selau

$$\begin{split} & \text{P}(-\textbf{z}_{\alpha/2} < \textbf{Z} < \textbf{z}_{\alpha/2}) = 1 - \alpha \text{ , onde: } \textbf{Z} = \frac{\overline{\textbf{X}} - \mu}{\frac{\sigma}{\sqrt{\textbf{n}}}} \\ & \text{P}(-\textbf{z}_{\alpha/2} < \frac{\overline{\textbf{X}} - \mu}{\frac{\sigma}{\sqrt{\textbf{n}}}} < \textbf{z}_{\alpha/2}) = 1 - \alpha \\ & \text{P}(-\textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}} < \overline{\textbf{X}} - \mu < \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}}) = 1 - \alpha \\ & \text{P}(-\overline{\textbf{X}} - \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}} < -\mu < -\overline{\textbf{X}} + \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}}) = 1 - \alpha \\ & \text{P}\Big[(-\overline{\textbf{X}} - \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}} < -\mu < -\overline{\textbf{X}} + \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}})(-1)\Big] = 1 - \alpha \\ & \text{P}(\overline{\textbf{X}} + \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}} > \mu > \overline{\textbf{X}} - \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}}) = 1 - \alpha \\ & \text{P}(\overline{\textbf{X}} - \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}} < \mu < \overline{\textbf{X}} + \textbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\textbf{n}}}) = 1 - \alpha \end{split}$$

#### 1. Intervalo de confiança para a média de uma população (μ)

**Situação 1:** Quando conhecemos o valor de σ (ou n > 30)



IC (
$$\mu$$
; 1- $\alpha$ ):  $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ 

onde:

 $\overline{X}$ : é o estimador de  $\mu$ 

n: é o tamanho da amostra;

σ: é desvio padrão da população

 $z_{\alpha/2}$ : é o valor de Z que delimita a área  $\alpha/2$  (tabela)

1-α é a probabilidade de que os limites contenham (ou cubram) o verdadeiro valor de μ.



## Significado de um IC para $\mu$ , com nível de confiança **1-** $\alpha$ **=0,95**





95% dos intervalos contêm μ

- ⇒ Em geral, não conhecemos o parâmetro σ.
- Por isso usamos uma estimativa desse parâmetro que é o s (desvio padrão obtido de uma amostra).

Em muitas situações, quando a amostra é grande (n > 30), a estimativa é considerada suficientemente próxima do parâmetro.

Duas pressuposições para a utilização desta metodologia:

- 1. A variável em estudo tem distribuição normal,  $X \sim N (\mu, \sigma^2)$
- 2. Conhecemos o valor de  $\sigma$  <u>ou</u> o tamanho da amostra é suficientemente grande para obtenção de uma estimativa aproximada da variação populacional  $(\sigma) \rightarrow n > 30$

**Exemplo:** Uma amostra de 100 funcionários de uma grande empresa apresentou nota média de 65,5 pontos e desvio padrão de 4,8 pontos para a satisfação com o salário. Obtenha o intervalo de confiança ao nível de 95%, para a verdadeira nota média de satisfação com o salário e conclua.

Variável em estudo: X = nota de satisfação com salário

Pressuposição: A variável em estudo tem distribuição normal e n>30.

#### **Estimativas:**

$$\bar{X} = 65,5$$

$$s = 4.8$$

n = 100 empregados



IC (
$$\mu$$
; 1- $\alpha$ ):  $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ 

IC (
$$\mu$$
; 0,95): 65,5  $\pm$  1,96  $\times$   $\frac{4,8}{\sqrt{100}}$ 

IC (
$$\mu$$
; 0,95): 65,5  $\pm$  0,941

Limite inferior = 
$$65,5 - 0,941 = 64,56$$

Limite superior = 
$$65.5 + 0.941 = 66.44$$

$$P(64,56 < \mu < 66,44) = 0.95$$

Concluímos, com 95% de confiança, que a verdadeira nota média de satisfação dos funcionários com os salários deve estar entre 64,56 e 66,44 pontos.

Profa Lisiane Selau

#### **Exercícios:**

- 1) A variabilidade do tempo de atendimento em um consultório conhecida  $\sigma$  = 0,10 min. Uma amostragem com 20 pessoas indicou tempo médio de atendimento de 1,5 minutos. Construa um intervalo de confiança de 95% para o tempo médio de atendimento. (1,46; 1,54)
- 2) Suponha o desvio padrão da vida útil de uma determinada marca de tubo de imagem de TV é conhecido e é igual a  $\sigma$  = 500, mas que a média da vida útil é desconhecida. Supõe-se que a vida útil dos tubos de imagem tem uma distribuição aproximadamente normal. Para uma amostra de n = 15, a média da vida útil foi 8.900 horas de operação. Construir:
- a) um intervalo de confiança de 95% para estimar a média da população. (8647; 9153)
- b) um intervalo de confiança de 90% para estimar a média da população. (8687; 9113)

#### 1. Intervalo de confiança para a média de uma população (μ)

Situação 2: Quando não conhecemos o valor de σ (e n ≤ 30)

 $\Rightarrow$  Quando a amostra é pequena, não podemos supor que o desvio padrão da amostra (**s**) seja uma estimativa suficientemente aproximada do parâmetro  $\sigma$ .

Portanto, não podemos utilizar a estatística  $\mathbb{Z}$ , para construir o intervalo de confiança para  $\mu$ .

IC (
$$\mu$$
; 1- $\alpha$ ):  $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$  desconhecido

Nesse caso, em vez de Z, utilizamos a distribuição t de Student, com parâmetro v.

#### 1. Intervalo de confiança para a média de uma população (μ)

Situação 2: Quando não conhecemos o valor de σ (ou n ≤ 30)

$$P(\overline{X} - t_{\alpha/2} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

$$IC (\mu; 1 - \alpha): \overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

$$IC (\mu; 1 - \alpha): \overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

onde:  $t_{\alpha/2}$  é o valor da estatística **T** que delimita a área  $\alpha/2$ 

Este valor é encontrado na tabela da **distribuição t** de Student, a partir dos valores de  $\mathbf{v}$  e de  $\mathbf{\alpha}$ .

#### Pressuposição

A variável em estudo tem distribuição normal → X ~ N (μ,σ²)

Tabela II. Limites da distribuição t de Student.



|                             | Limites bilaterais: P(   t   > t <sub>α/2</sub> ) |       |       |        |        |        |        |         |  |  |  |
|-----------------------------|---------------------------------------------------|-------|-------|--------|--------|--------|--------|---------|--|--|--|
| Graus de —<br>Liberdade (v) | Nível de Significância (α)                        |       |       |        |        |        |        |         |  |  |  |
|                             | 0,50                                              | 0,20  | 0,10  | 0,05   | 0,025  | 0,02   | 0,01   | 0,005   |  |  |  |
| 1                           | 1,000                                             | 3,078 | 6,314 | 12,706 | 25,542 | 31,821 | 63,657 | 127,320 |  |  |  |
| 2                           | 0,816                                             | 1,886 | 2,920 | 4,303  | 6,205  | 6,965  | 9,925  | 14,089  |  |  |  |
| 3                           | 0,715                                             | 1,638 | 2,353 | 3,183  | 4,177  | 4,541  | 5,841  | 7,453   |  |  |  |
| 4                           | 0,741                                             | 1,533 | 2,132 | 2,776  | 3,495  | 3,747  | 4,604  | 5,598   |  |  |  |
| 5                           | 0,727                                             | 1,476 | 2,015 | 2,571  | 3,163  | 3,365  | 4,032  | 4,773   |  |  |  |
| 6                           | 0,718                                             | 1,440 | 1,943 | 2,447  | 2,969  | 3,143  | 3,707  | 4,317   |  |  |  |
| 7                           | 0,711                                             | 1,415 | 1,895 | 2,365  | 2,841  | 2,998  | 3,500  | 4,029   |  |  |  |
| 8                           | 0,706                                             | 1,397 | 1,860 | 2,306  | 2,752  | 2,896  | 3,355  | 3,833   |  |  |  |
| 9                           | 0,703                                             | 1,383 | 1,833 | 2,262  | 2,685  | 2,821  | 3,250  | 3,690   |  |  |  |
| 10                          | 0,700                                             | 1,372 | 1,813 | 2,228  | 2,634  | 2,764  | 3,169  | 3,581   |  |  |  |

\_ \_ \_

#### **Exemplo:**

Através da seguinte amostra de tamanho 15, procura-se estimar a verdadeira potência média de aparelhos eletrônicos de alta sensibilidade, medida em microwatts, utilizando um intervalo de confiança de 95%:

26,7; 25,8; 24,0; 24,9; 26,4; 25,9; 24,4; 21,7; 24,1; 25,9; 27,3; 26,9; 27,3; 24,8; 23,6

#### Resolução:

Variável em estudo: X = potência de aparelhos eletrônicos (microwatts) Pressuposição: A variável em estudo tem distribuição normal.

IC (
$$\mu$$
; 1- $\alpha$ ):  $\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$ 

#### **Estimativas:**

$$\bar{x}$$
 = 25,31  $\alpha$  = 0,05

$$s=1,579$$
  $v=15-1=14$ 

n=15 
$$t_{0.025:14} = 2,145$$



#### Construção do intervalo:

IC (
$$\mu$$
;1- $\alpha$ ):  $\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$ 

IC (
$$\mu$$
; 0,95): 25,31  $\pm$  2,145  $\times \frac{1,58}{\sqrt{15}}$ 

IC (
$$\mu$$
; 0,95): 25,31  $\pm$  0,874

Limite inferior: 25,31 - 0,874 = 24,44

Limite superior: 25,31 + 0,874 = 26,18

$$P(24,44 < \mu < 26,18) = 0.95$$

Conclusão: Com confiança de 95%, pode-se dizer que a verdadeira potência média dos aparelhos eletrônicos deve estar entre 24,44 a 26,18 microwatts.

#### **Exercício:**

Um engenheiro de desenvolvimento de um fabricante de pneus está investigando a vida do pneu em relação a um novo componente de borracha.

Ele fabricou 40 pneus e testou-os até o fim da vida em um teste na estrada. A média e o desvio padrão da amostra são 61.492 e 6.085 km, respectivamente. O engenheiro acredita que a vida média desse novo pneu é maior em relação a 60.000 km, que é a vida média do pneu antigo.

Obtenha o intervalo de confiança, ao nível de 99%, para a vida média do pneu e conclua a respeito da suposição do engenheiro.

#### Resolução:

Variável em estudo: X = vida do pneu (km)

#### Pressuposições:

- 1. A variável em estudo tem distribuição normal.
- 2. A amostra é grande (n>30).

Estimativas:  $\overline{x} = 61.492 \text{ km}$ 

s = 6.085 km

n = 40 pneus



Construção do intervalo: 
$$IC(\mu; 1-\alpha): \overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

IC (
$$\mu$$
; 0,99): 61.492  $\pm$  2,575  $\times \frac{6.085}{\sqrt{40}}$ 

IC ( $\mu$ ; 0,99): 61.492  $\pm$  2.477

Limite inferior: 61.492 - 2.477 = 59.015

Limite superior: 61.492 + 2.477 = 63.969

 $P(59.015 < \mu < 63.969) = 0.99$ 

Conclusão: O intervalo de confiança, ao nível de 99%, para a verdadeira vida média do novo pneu é de 59.015 a 63.969 km.

Como o valor 60.000 km **está** coberto pelo intervalo, a vida média do novo pneu **não** é maior que a do pneu antigo.

**Exercício:** A quantidade mensal de produtos entregues por uma empresa segue uma distribuição Normal com média e variância desconhecidas. Analise os dados a seguir, que representam uma amostra de 20 meses e construa um intervalo de 95% para a média.

| 17,4 | 18,2 | 18,3 | 18,8 | 19,0 | 19,2 | 19,3 | 19,6 | 19,6 | 19,9 |
|------|------|------|------|------|------|------|------|------|------|
| 20,2 | 20,2 | 20,5 | 20,7 | 20,9 | 21,0 | 21,3 | 21,5 | 21,9 | 22,6 |

$$\overline{X} = 20.01$$

$$S = 1,34$$

$$19,38 \le \mu \le 20,64$$

**Exercício:** Como encarregado de compras de um supermercado, suponha que você toma uma amostra aleatória de 12 latas de vagens em conserva de um setor de enlatados. O peso líquido de cada lata de vagens está apresentado na tabela: Supondo que o peso líquido médio por lata seja normalmente distribuído, estimar o peso líquido médio das vagens enlatadas usando um intervalo de confiança de 95%.

| Peso por lata   | 15,7 | 15,8 | 15,9 | 16,0 | 16,1 | 16,2 |
|-----------------|------|------|------|------|------|------|
| (em 10 gramas)  |      |      |      |      |      |      |
| Número de latas | 1    | 2    | 2    | 3    | 3    | 1    |

média = 15,97 e desvio-padrão = 0,15

R: (15,88; 16,06)

**Exercício:** A vida média de operação para uma amostra de n = 10 lâmpadas foi de 4.000 horas, com desvio padrão de 200 horas. Supõe-se que o tempo de operação das lâmpadas em geral tenha distribuição aproximadamente normal. Estima a vida média de operação para a população de lâmpadas da qual foi extraída a amostra, usando um intervalo de confiança de 95%.

R: (3.857 a 4.143 h)

## 2. Intervalo de confiança para a diferença entre médias de duas populações (µ<sub>1</sub>-µ<sub>2</sub>)

Há três **pressuposições** que devem ser atendidas para o uso desse procedimento:

- 1. A variável em estudo tem distribuição normal:  $X \sim N (\mu, \sigma^2)$
- **2.** As variâncias das populações são iguais  $(\sigma_1^2 = \sigma_2^2 = \sigma)$
- 3. As amostras retiradas das populações são independentes



Profa Lisiane Selau

26

Atendidas as pressuposições, desejamos comparar as médias das populações, estimando por intervalo, a diferença  $\mu_1$  -  $\mu_2$ .

Utilizamos, a seguinte expressão

IC ( 
$$\mu_1 - \mu_2$$
; 1- $\alpha$ ):  $\overline{X}_1 - \overline{X}_2 \pm t_{\alpha/2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S^2$ 

$$S^{2} = \frac{S_{1}^{2}(n_{1}-1) + S_{2}^{2}(n_{2}-1)}{(n_{1}-1) + (n_{2}-1)}$$
 Variância combinada

onde:  $t_{\alpha/2}$  é o valor da estatística **T** que delimita a área  $\alpha/2$ 

Este valor é encontrado na tabela da **distribuição t** de Student a partir dos valores de  $\mathbf{v}$  e de  $\mathbf{\alpha}$ .

#### **Exemplo:**

Dez cobaias adultas criadas em laboratório, foram separadas, aleatoriamente, em dois grupos: um foi tratado com ração normalmente usada no laboratório (padrão) e o outro grupo foi submetido a uma nova ração (experimental). As cobaias foram pesadas no início e no final do período de duração do experimento. Os ganhos de peso (em gramas) observados foram os seguintes:

| Ração experimental | 220 | 200 | 210 | 220 | 210 |
|--------------------|-----|-----|-----|-----|-----|
| Ração padrão       | 200 | 180 | 190 | 190 | 180 |

Construa o intervalo de confiança, ao nível de 99%, para a diferença entre as médias das duas populações.

#### Resolução:

Variável em estudo: X = ganho de peso (g)

#### Pressuposições:

- 1. A variável em estudo tem distribuição normal.
- 2. As variâncias das populações são iguais (  $\sigma_1^2 = \sigma_2^2 = \sigma^2$  ).
- 3. As amostras retiradas das populações são independentes.

#### **Estimativas:**

#### Experimental Padrão

$$\overline{X}_1 = 212$$
  $\overline{X}_2 = 188$ 

$$s_1^2 = 70$$
  $s_2^2 = 70$ 

$$n_1 = 5$$
  $n_2 = 5$ 

$$s^2 = \frac{70 \times (5-1) + 70 \times (5-1)}{(5-1) + (5-1)} = 70$$

$$IC(\mu_1 - \mu_2; 1 - \alpha): \overline{X}_1 - \overline{X}_2 \pm t_{\alpha/2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S^2$$

$$\alpha$$
=0,01

$$v=(5-1)+(5-1)=8$$

$$t_{0,005;8} = 3,355$$



#### Construção do intervalo:

IC 
$$(\mu_1 - \mu_2; 1 - \alpha)$$
:  $\overline{X}_1 - \overline{X}_2 \pm t_{\alpha/2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S^2$ 

IC 
$$(\mu_1 - \mu_2; 0.99)$$
:  $(212-188) \pm 3.355 \sqrt{\frac{1}{5} + \frac{1}{5}}70$ 

$$IC(\mu_1 - \mu_2; 0.99): 24 \pm 17.78$$

Limite inferior: 24 - 17,78 = 6,22

Limite superior: 24 + 17,78 = 41,78

$$P(6,22 < \mu_1 - \mu_2 < 41,78) = 0.99$$

Conclusão: A probabilidade de o intervalo de 6,22 a 41,78 conter a diferença entre a média de ganho de peso da população que recebeu ração experimental e a média de ganho de peso da população que recebeu a ração padrão é de 0,99.

Como o zero (0) está **fora** do intervalo, podemos concluir que as médias são iguais **diferentes**, sendo a ração experimental melhor que a padrão.

#### **Exercício:**

Duas máquinas são usada para encher pacotes de leite. O volume segue aproximadamente o modelo normal. Duas amostras de 16 pacotes de cada máquina indicou:

| Máquina A | 1021 | 1016 | 1012 | 1011 | 1014 | 1018 | 1022 | 1027 |
|-----------|------|------|------|------|------|------|------|------|
|           | 1008 | 1015 | 1013 | 1013 | 1017 | 1019 | 1007 | 1003 |
| Máquina B | 1011 | 1015 | 1017 | 1015 | 1021 | 1021 | 1010 | 1007 |
|           | 1022 | 1018 | 1016 | 1015 | 1020 | 1022 | 1025 | 1030 |

Construa um intervalo de 95% para a diferença entre as duas médias das máquinas. Baseado nos resultados desses cálculos você concluiria que as duas máquinas fornecem o mesmo volume médio?

| média =                       | 1014,75  | 1017,813           |                       |                       |                                        |
|-------------------------------|----------|--------------------|-----------------------|-----------------------|----------------------------------------|
| desvio =                      | 6,049793 | 5,84487            |                       | volor t -             | 2.042272                               |
| variância =                   | 36,6     | 34,1625            |                       | valor t =             | 2,042272                               |
| n=                            | 16       | 16                 |                       | S(diff) =             | 2,103011                               |
| S <sub>p</sub> <sup>2</sup> = | 35,38125 | S²(diff) =         | 4,422656              | lim.inf =<br>lim.sup= | -7,3574<br>1,2324                      |
| média 2 - m                   | édia 1=  | -3,0625 (diferença | das médias amostrais) | Sim, pois             | o valor zero está contido no intervalo |

#### **Exercício:**

Um eixo deve ser montado no interior de um rolamento. Uma amostra de doze unidades indicou para o diâmetro interno do rolamento  $\overline{X}_1 = 2,538$ cm e  $S_1 = 0,008$ ; e para o diâmetro do eixo  $\overline{X}_2 = 2,520$ cm e  $S_2 = 0,006$ . Supondo variâncias iguais, calcule o intervalo de confiança de 99% para a folga de montagem.

$$S_{p}^{2} = \frac{(11)0,008^{2} + (11)0,006^{2}}{12 + 12 - 2} = 0,000050$$

$$S = \sqrt{S_{p}^{2} \left(\frac{1}{12} + \frac{1}{12}\right)} = 0,00289$$

$$v = 12 + 12 - 2 = 22$$

$$t_{0,005;22} = 2,819$$

$$(2,538-2,52)-2,819(0,00289) \le folga \le (2,538-2,52)+2,819(0,00289)$$
  
 $0,00985 \le folga \le 0,02615$ 

### Intervalo de confiança para a variância

Outra distribuição importante, definida a partir da distribuição Normal é a distribuição qui-quadrado  $\chi^2$ .

A distribuição  $\chi^2$  é a base para inferências a respeito da variância  $\sigma^2$ .

#### Pressuposição:

X é uma variável com Distribuição Normal com média e variância desconhecidas.

Então, um intervalo de confiança é obtido usando-se a seguinte expressão:

$$\left| P\left(\frac{\left(n-1\right)S^2}{q_{\alpha/2,n-1}} \leq \sigma^2 \leq \frac{\left(n-1\right)S^2}{q_{\alpha/2,n-1}}\right) = 1-\alpha \right|$$

Profa Lisiane Selau



- $ightharpoonup S^2$  é o estimador da variância populacional  $\sigma^2$ ;
- > n é o tamanho da amostra;
- ightharpoonup q' $_{\alpha/2}$  é o valor da distribuição qui-quadrado, com v=n-1 graus de liberdade, que delimita a área  $\alpha/2$  à esquerda;
- ightharpoonup q<sub> $\alpha$ /2</sub> é o valor da distribuição qui-quadrado com  $\nu$ =n-1 graus de liberdade que delimita a área  $\alpha$ /2 à direita.

**Tabela III.** Limites unilaterais da distribuição qui-quadrado ( $\chi^2$ ).



| Graus de  | N.    |               |       | Nív  | el de Sig | el de Significância (α) |       |       |       |       |  |  |  |  |
|-----------|-------|---------------|-------|------|-----------|-------------------------|-------|-------|-------|-------|--|--|--|--|
| Liberdade |       | Esquerda (q') |       |      |           | Direita (q)             |       |       |       |       |  |  |  |  |
| (v)       | 0,005 | 0,01          | 0,025 | 0,05 | 0,1       | 0,1                     | 0,05  | 0,025 | 0,01  | 0,005 |  |  |  |  |
| 1         | 0,00  | 0,00          | 0,00  | 0,00 | 0,02      | 2,71                    | 3,84  | 5,02  | 6,63  | 7,88  |  |  |  |  |
| 2         | 0,01  | 0,02          | 0,05  | 0,10 | 0,21      | 4,61                    | 5,99  | 7,38  | 9,21  | 10,60 |  |  |  |  |
| 3         | 0,07  | 0,11          | 0,22  | 0,35 | 0,58      | 6,25                    | 7,81  | 9,35  | 11,34 | 12,84 |  |  |  |  |
| 4         | 0,21  | 0,30          | 0,48  | 0,71 | 1,06      | 7,78                    | 9,49  | 11,14 | 13,28 | 14,86 |  |  |  |  |
| 5         | 0,41  | 0,55          | 0,83  | 1,15 | 1,61      | 9,24                    | 11,07 | 12,83 | 15,09 | 16,75 |  |  |  |  |
| 6         | 0,68  | 0,87          | 1,24  | 1,64 | 2,20      | 10,64                   | 12,59 | 14,45 | 16,81 | 18,55 |  |  |  |  |
| 7         | 0,99  | 1,24          | 1,69  | 2,17 | 2,83      | 12,02                   | 14,07 | 16,01 | 18,48 | 20,28 |  |  |  |  |
| 8         | 1,34  | 1,65          | 2,18  | 2,73 | 3,49      | 13,36                   | 15,51 | 17,53 | 20,09 | 21,95 |  |  |  |  |
| 9         | 1,73  | 2,09          | 2,70  | 3,33 | 4,17      | 14,68                   | 16,92 | 19,02 | 21,67 | 23,59 |  |  |  |  |
| 10        | 2,16  | 2,56          | 3,25  | 3,94 | 4,87      | 15,99                   | 18,31 | 20,48 | 23,21 | 25,19 |  |  |  |  |
|           |       |               |       |      |           |                         |       |       |       |       |  |  |  |  |

- - -

**Exemplo:** Uma das maneiras de manter sob controle a qualidade de um produto é controlar sua variabilidade. Uma máquina de encher pacotes de café está regulada para enchêlos conforme uma distribuição normal com média de 500g. Colheu-se uma amostra de 16 pacotes e observou-se uma variância de 169 $g^2$ . Com esse resultado encontrar o intervalo de confiança de 95% para  $\sigma^2$ .

$$s^2 = 169$$
  $n = 16$ 

$$q'_{0,025;15} = 6,26$$
  $q_{0,025;15} = 27,49$ 



$$\left|\frac{\left(n-1\right)S^{2}}{q_{\alpha/2,n-1}} \leq \sigma^{2} \leq \frac{\left(n-1\right)S^{2}}{q'_{\alpha/2,n-1}}\right|$$

$$\frac{15(169)}{27,49} \le \sigma^2 \le \frac{15(169)}{6,26}$$

$$92,22 \le \sigma^2 \le 404,95$$

ou

$$9,60 \le \sigma \le 20,12$$

**Exercício:** A quantidade mensal de produtos entregues por uma empresa segue uma distribuição Normal com média e variância desconhecidas. Analise os dados a seguir, que representam uma amostra de 20 meses e construa um intervalo de 95% para a variância da quantidade mensal de produtos entregues.

| 17,4 | 18,2 | 18,3 | 18,8 | 19,0 | 19,2 | 19,3 | 19,6 | 19,6 | 19,9 |
|------|------|------|------|------|------|------|------|------|------|
| 20,2 | 20,2 | 20,5 | 20,7 | 20,9 | 21,0 | 21,3 | 21,5 | 21,9 | 22,6 |

$$\overline{X} = 20.01$$

$$S = 1,34$$

$$1,04 \le \sigma^2 \le 3,84$$

ou

$$1,02 \le \sigma \le 1,96$$

# Intervalo de confiança para a proporção $(\pi)$

Exemplos: proporção de produtos defeituosos em um lote ou proporção de eleitores que votarão em um candidato.

Pressuposição:

$$n \in grande \Rightarrow np > 5 e n(1-p) > 5$$

Pressuposição:  
n é grande 
$$\Rightarrow$$
 np > 5 e n(1-p) > 5 (p é o estimador de π)  $p = \frac{x}{n}$ 

Assim, a aproximação Normal pode ser usada, resultando no seguinte intervalo de confiança:

$$P\left(p-z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}} \le \pi \le p+z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}\right) = 1-\alpha$$

$$IC(\pi; 1-\alpha) = \left(p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}\right)$$

**Exemplo:** Foi realizada uma pesquisa de mercado para verificar a preferência da população de em relação ao consumo de determinado produto. Para isso, colheu-se uma amostra de 300 consumidores e, destes, 180 disseram consumir o produto. Encontre o intervalo de confiança de 99% para a proporção de consumidores do produto na população.



n = 300 p = 
$$\frac{180}{300} = 0.6$$
  
IC( $\pi$ ; 1- $\alpha$ ) =  $\left(p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}\right)$   
 $\left(0.6 \pm 2.575 \sqrt{\frac{0.6(1-0.6)}{300}}\right)$ 

$$(0.6 \pm 0.0728) = (0.5272; 0.6728)$$

Com uma confiança de 99%, a proporção de consumidores que preferem o produto pesquisado deve estar entre 52,72% e 67,28%.

**Exercício:** Um empresário deseja conhecer a satisfação de seus clientes em relação aos serviços prestados por sua empresa. Em uma amostra aleatória de n=100 clientes entrevistados, 12 pessoas demonstraram insatisfação com os serviços prestados. Construa um intervalo de 95% de confiança para a proporção de clientes insatisfeitos. R: (5,63%; 18,37%)

$$n = 100 p = \frac{12}{100} = 0.12$$

$$0.025 0.025 IC(\pi; 1-\alpha) = \left(p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}\right)$$

$$\left(0,12\pm1,96\sqrt{\frac{0,12(1-0,12)}{100}}\right) = (0,0563;0,1887)$$

Com 95% de confiança, a proporção de pessoas insatisfeitas com os serviços prestados deve estar entre 5,63% e 18,37%.

#### **Exercícios:**

- 1) Numa pesquisa de mercado, 400 pessoas foram entrevistadas sobre sua preferência por determinado produto. Destas 400 pessoas, 240 disseram preferir o produto. Determinar um intervalo de confiança de 95% de probabilidade para o percentual de preferência dos consumidores em geral para este produto. R: (55,20%; 64,80%)
- 2) Um administrador de uma universidade coleta dados sobre uma amostra aleatória de âmbito nacional de 230 alunos de cursos de Administração de Empresas e encontra que 54 de tais estudantes têm diplomas de Técnico em Contabilidade. Usando um intervalo de confiança de 90%, estimar a proporção nacional de estudantes que possuem diplomas de Técnico de Contabilidade. R: (19%; 28%)

# Dimensionamento de amostra

Os intervalos de confiança para média tem as formas:

$$\overline{\mathbf{x}} \pm \mathbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{\mathbf{n}}}$$
  $\overline{\mathbf{x}} \pm \mathbf{t}_{\alpha/2} \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}$ 

A semi-amplitude do intervalo de confiança, que é a precisão da estimação, é dada por

$$d = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$d = t_{\alpha/2} \frac{s}{\sqrt{n}}$$





- > O grau de precisão é utilizado para estabelecer a semi-amplitude desejada para o intervalo de confiança, e é comum que ele seja expresso em percentual.
- > Tomando d =  $\gamma \overline{x}$  , com  $\gamma$  entre 0 e 1, estabelecemos o grau de precisão como uma percentagem da média.
- > Por exemplo, tomar  $\gamma$  = 0,10 significa que pretendemos obter um tamanho de amostra n tal que, no intervalo de confiança para  $\mu$ , tenhamos uma semi-amplitude máxima que corresponda a 10 % do valor da média amostral.
- >Então d será a magnitude (na unidade de medida que a variável em estudo é medida) dessa semi-amplitude máxima desejada.

# »Da expressão, isolando n temos

$$d = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \qquad \qquad n = z_{\alpha/2}^2 \frac{\sigma^2}{d^2} \qquad \qquad \text{Variância populacional}$$

$$d=t_{\alpha/2}\frac{s}{\sqrt{n}} \text{ Estimativa da variância através de amostra piloto}$$

**Exemplo:** Qual o tamanho da amostra necessário para estimar a média populacional de uma característica dimensional de um processo com 95% de confiança e precisão de 0,5 cm? Sem conhecimento da variabilidade populacional, estima-se o desvio padrão populacional através de uma amostra piloto.

| 7  | 11 | 12 | 11 | 13 | 8  | 15 | 8  | 11 | 16 |
|----|----|----|----|----|----|----|----|----|----|
| 10 | 12 | 9  | 6  | 11 | 10 | 11 | 10 | 12 | 9  |

# Solução:

$$\alpha = 0.05$$

$$t_{0.025,19} = 2,093$$

$$d = 0.5 cm$$

$$s_1 = 2,46$$

$$n = t_{\alpha/2}^2 \frac{s^2}{d^2} = 2,093^2 \frac{2,46^2}{0,5^2} = 106$$

Logo, é necessária uma amostra de pelos menos 106 observações, devendo ser coletadas mais 86.

IC(
$$\pi$$
; 1- $\alpha$ ) =  $\left(p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}\right)$   $\longrightarrow$   $n = \frac{z_{\alpha/2}^2 p(1-p)}{d^2}$ 

**Exemplo:** O fornecedor alega que entrega 10% de produtos defeituosos. Qual o tamanho de amostra suficiente para estimar a proporção de produtos defeituosos entregues por este fornecedor com precisão de 0,03 e 95% de confiança?

## Solução:

$$\alpha = 0.05 \implies z_{0.025} = 1.96$$
;  $p = 0.10$ ;  $d = 0.03$ 

$$n = \frac{1.96^2 \cdot 0.10 \cdot (1 - 0.10)}{0.03^2} = 384.16$$

Logo, é necessária uma amostra de 385 produtos.

### **Exercícios:**

- 1) Um analista do departamento de pessoal deseja estimar o número médio de horas de treinamento anual para os capatazes de uma divisão da companhia, com um erro de 3,0 horas e com 90% de confiança. Baseado em dados de outras divisões, ele estima o desvio padrão das horas de treinamento em  $\sigma$  = 20,0 horas. Qual o tamanho mínimo necessário da amostra? (R: n = 121)
- 2) Um comprador potencial deseja estimar o valor médio das compras por cliente em uma loja de brinquedos em um aeroporto. Com base em uma amostra piloto de 40 vendas, o desvio padrão dos valores de vendas foi estimado em s = \$0,80. Qual o tamanho mínimo que deveria ter uma amostra se ele deseja estimar a média das vendas dentro de \$0,25 com confiança de 99%? (R: n = 75)

### **Exercícios:**

3) Qual o tamanho da amostra necessário para estimar a média populacional de uma característica dimensional de um processo com 95% de confiança e precisão de 0,5cm ?

Sem conhecimento da variabilidade populacional, estima-se o desvio-padrão populacional através de uma amostra piloto.

| 7  | 11 | 12 | 11 | 13 | 8  | 15 | 8  | 11 | 16 |
|----|----|----|----|----|----|----|----|----|----|
| 10 | 12 | 9  | 6  | 11 | 10 | 11 | 10 | 12 | 9  |

(R: n = 106, logo é necessário coletar mais 86 (106-20) peças)

4) Quer-se estimar a proporção de porto-alegrenses maiores de 16 anos que são favoráveis à flexibilização das leis trabalhistas. Qual o tamanho mínimo da amostra necessário para um erro absoluto de estimação de no máximo 2 pontos percentuais, com uma confiança de 95%? (R: n = 2401)