PYPHS DOCUMENTATION Version 0.1.9b2

Antoine Falaize

18 novembre 2016

1 Introduction

The python package pyphs is dedicated to the treatment of passive multiphysical systems in the Port-Hamiltonian Systems (PHS) formalism. This formalism structures physical systems into

- energy conserving parts,
- power dissipating parts and
- source parts.

This guarantees a *power balance* is fulfilled, including for numerical *simulations* based on an adapted *numerical method*.

- 1. Systems are described by directed multi-graphs (networkx.MultiDiGraph).
- 2. The time-continuous port-Hamiltonian structure is build from an $auto-mated\ graph\ analysis.$
- 3. The discrete-time port-Hamiltonian structure is derived from a *structure* preserving numerical method.
- 4. LaTeX description code and C++ simulation code are automatically generated.

1.1 Installation

Notice only python 2.7 is supported.

It is recommanded to install pyphs using PyPI (the Python Package Index). In terminal :

pip install pyphs

Mac OSX only : An installation for *Anaconda* users is also available. In terminal :

conda install -c afalaize pyphs

1.2 The PHS formalism

Below is a recall of the Port-Hamiltonian Systems (PHS) formalism. For details, the reader is referred to the *e.g.* the acaemic reference [Falaize and Hélie, 2016].

We consider systems that can be described by the following time-continuous non-linear state-space representation:

$$\underbrace{\begin{pmatrix} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \\ \mathbf{w} \\ \mathbf{y} \end{pmatrix}}_{\mathbf{b}} = \underbrace{\begin{pmatrix} \mathbf{M}_{xx} & \mathbf{M}_{xw} & \mathbf{M}_{xy} \\ \mathbf{M}_{wx} & \mathbf{M}_{ww} & \mathbf{M}_{wy} \\ \mathbf{M}_{yx} & \mathbf{M}_{yw} & \mathbf{M}_{yy} \end{pmatrix}}_{\mathbf{M}} \cdot \underbrace{\begin{pmatrix} \nabla \mathbf{H}(\mathbf{x}) \\ \mathbf{z}(\mathbf{w}) \\ \mathbf{u} \end{pmatrix}}_{\mathbf{a}} \tag{1}$$

where

$$\mathbf{M} = \underbrace{\begin{pmatrix} \mathbf{J}_{xx} & \mathbf{J}_{xw} & \mathbf{J}_{xy} \\ \mathbf{J}_{yx} & \mathbf{J}_{yw} & \mathbf{J}_{yy} \\ \mathbf{J}_{yx} & \mathbf{J}_{yw} & \mathbf{J}_{yy} \end{pmatrix}}_{\mathbf{I}} - \underbrace{\begin{pmatrix} \mathbf{R}_{xx} & \mathbf{R}_{xw} & \mathbf{R}_{xy} \\ \mathbf{R}_{wx} & \mathbf{R}_{ww} & \mathbf{R}_{wy} \\ \mathbf{R}_{yx} & \mathbf{R}_{yw} & \mathbf{R}_{yy} \end{pmatrix}}_{\mathbf{R}}$$
(2)

and

— $\mathbf{J}: \mathbf{x} \mapsto \mathbf{J}(\mathbf{x})$ is a skew-symmetric matrix :

$$\mathbf{J}_{\alpha\beta} = -\mathbf{J}_{\beta\alpha}^{\intercal} \ \text{ for } \ (\alpha,\beta) \in \{\mathtt{x},\mathtt{w},\mathtt{y}\}^2,$$

- $\mathbf{R}: \mathbf{x} \mapsto \mathbf{R}(\mathbf{x}) \succeq 0$ is a positive definite matrix,
- $\mathbf{x}: t \mapsto \mathbf{x}(t) \in \mathbb{R}^{n_{\mathbf{x}}}$ is the state vector,
- $H: \mathbf{x} \mapsto H(\mathbf{x}) \in \mathbb{R}_+$ is a *storage function* (convex and positive-definite scalar function with H(0) = 0),
- $\nabla H : \mathbf{x} \mapsto \nabla H(\mathbf{x}) \in \mathbb{R}^{n_{\mathbf{x}}}$ denote the gradient of the storage function with the *storage power*

$$P_{\mathbf{x}} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \cdot \nabla \mathbf{H}(\mathbf{x}),$$

- $\mathbf{w}: t \mapsto \mathbf{w}(t) \in \mathbb{R}^{n_{\mathbf{w}}}$ is the dissipation vector variable,
- $\mathbf{z}: \mathbf{w} \mapsto \mathbf{z}(\mathbf{w}) \in \mathbb{R}^{n_{\mathbf{w}}}$ is a dissipation function (with positive definite jacobian matrix and $\mathbf{z}(0) = 0$) for the dissipated power

$$P_{\mathbf{w}} = \mathbf{w} \cdot \mathbf{z}(\mathbf{w}) + \mathbf{a} \cdot \mathbf{R} \cdot \mathbf{a},$$

- $\mathbf{u}: t \mapsto \mathbf{u}(t) \in \mathbb{R}^{n_y}$ is the input vector,
- $\mathbf{y}: t \mapsto \mathbf{y}(t) \in \mathbb{R}^{n_y}$ is the output vector,
- the power received by the sources from the system is

$$P = \mathbf{u} \cdot \mathbf{v}$$
.

The state is split according to $\mathbf{x} = (\mathbf{x}_1^\intercal, \, \mathbf{x}_{n1}^\intercal)^\intercal$ with

 $\mathbf{x}_1 = (x_1, \cdots, x_{n_{\mathbf{x}1}})^\intercal$ the states associated with the quadratic components of the storage function $\mathbf{H}_1(\mathbf{x}_1) = \frac{\mathbf{x}_1 \cdot \mathbf{Q} \cdot \mathbf{x}_1}{2}$

 $\mathbf{x}_{\mathtt{nl}} = (x_{n_{\mathtt{xl}}+1}, \cdots, x_{n_{\mathtt{x}}})^{\intercal}$ the states associated with the non-quadratic components of the storage function with $n_{\mathtt{x}} = n_{\mathtt{xl}} + n_{\mathtt{xnl}}$ and

$$H(\mathbf{x}) = H_1(\mathbf{x}_1) + H_{n1}(\mathbf{x}_{n1})$$

.

The set of dissipative variables is split according to $\mathbf{w} = (\mathbf{x}_1^\intercal, \, \mathbf{w}_{\mathtt{n}1}^\intercal)^\intercal$ with

 $\mathbf{w}_1 = (w_1, \dots, w_{n_{\mathbf{w}_1}})^{\intercal}$ the variables associated with the linear components of the dissipative relation $\mathbf{z}_1(\mathbf{w}_1) = \mathbf{Z}_1 \mathbf{w}_1$

 $\mathbf{w}_{\mathtt{nl}} = (w_{n_{\mathtt{vl}}+1}, \cdots, w_{n_{\mathtt{v}}})^{\intercal}$ the variables associated with the nonlinear components of the dissipative relation $\mathbf{z}_{\mathtt{nl}} : \mathbf{w}_{\mathtt{nl}} \mapsto \mathbf{z}_{\mathtt{nl}}(\mathbf{w}_{\mathtt{nl}}) \in \mathbb{R}^{n_{\mathtt{wnl}}}$ with $n_{\mathtt{w}} = n_{\mathtt{wl}} + n_{\mathtt{wnl}}$ and

$$\mathbf{z}(\mathbf{w}) = \left(\begin{array}{c} \mathbf{Z}_1 \, \mathbf{w}_1 \\ \mathbf{z}_{\mathtt{nl}}(\mathbf{w}_{\mathtt{nl}}) \end{array} \right).$$

Accordingly, the structure matrices are split as

$$\underbrace{\begin{pmatrix} \frac{\mathrm{d}\mathbf{x}_{1}}{\mathrm{d}t} \\ \frac{\mathrm{d}\mathbf{x}_{n1}}{\mathrm{d}t} \\ \mathbf{w}_{1} \\ \mathbf{y} \end{pmatrix}}_{b} = \underbrace{\begin{pmatrix} \mathbf{M}_{x1x1} & \mathbf{M}_{x1xn1} & \mathbf{M}_{x1w1} & \mathbf{M}_{x1w1} & \mathbf{M}_{x1y} \\ \mathbf{M}_{xn1x1} & \mathbf{M}_{xn1xn1} & \mathbf{M}_{xn1w1} & \mathbf{M}_{xn1wn1} & \mathbf{M}_{xn1y} \\ \mathbf{M}_{w1x1} & \mathbf{M}_{w1xn1} & \mathbf{M}_{w1w1} & \mathbf{M}_{w1wn1} & \mathbf{M}_{w1y} \\ \mathbf{M}_{wn1w1} & \mathbf{M}_{wn1xn1} & \mathbf{M}_{wn1w1} & \mathbf{M}_{wn1wn1} & \mathbf{M}_{wn1y} \\ \mathbf{M}_{yx1} & \mathbf{M}_{yxn1} & \mathbf{M}_{yw1} & \mathbf{M}_{ywn1} & \mathbf{M}_{yy} \end{pmatrix}}_{\mathbf{M}} \cdot \underbrace{\begin{pmatrix} \mathbf{Q} \cdot \mathbf{x} \\ \nabla \mathbf{H}_{n1}(\mathbf{x}_{n1}) \\ \mathbf{Z}_{1} \cdot \mathbf{w}_{1} \\ \mathbf{z}_{n1}(\mathbf{w}_{n1}) \\ \mathbf{u} \end{pmatrix}}_{\mathbf{a}}_{(3)}$$

Table des matières

1	Intr 1.1 1.2	Installation	1 1 1
2	Stru 2.1 2.2 2.3	The symbs module	3 4 4 5
3	Alg 3.1 3.2	Graph analysis	5 6 6 6 6 7

2 Structure of the pyphs.PortHamiltonianObject

Below is a list of each module of practical use in the object pyphs.PortHamiltonianObject, along with a short description. We consider the following instantiation:

```
# import of (pre-installed) pyphs package:
import pyphs

# instantiate the PortHamiltonianObject:
phs = pyphs.PortHamiltonianObject(label='mylabel')
```

2.1 The symbs module

Container for all the SYMPY symbolic variables (sympy.Symbol).

Attributes are ordered *list of symbols* associated with the system's vectors components.

```
phs.symbs.x: state vector symbols \mathbf{x} \in \mathbb{R}^{n_x}, phs.symbs.w: dissipative vector variable symbols \mathbf{w} \in \mathbb{R}^{n_y}, phs.symbs.u: input vector symbols \mathbf{u} \in \mathbb{R}^{n_y}, phs.symbs.y: output vector symbols \mathbf{y} \in \mathbb{R}^{n_y}, phs.symbs.cu: input vector symbols for connectors \mathbf{c_u} \in \mathbb{R}^{n_y}, phs.symbs.cy: output vector symbols for connectors \mathbf{c_y} \in \mathbb{R}^{n_y}, phs.symbs.p: Time-varying parameters symbols \mathbf{p} \in \mathbb{R}^{n_y}.
```

Methods:

phs.symbs.dx(): Returns the symbols associated with the state differential dx formed by appending the prefix d to each symbol in x.

phs.symbs.args() : Return the list of symbols associated with the vector
 of all arguments of the symbolic expressions (expr module).

2.2 The exprs module

Container for all the SYMPY symbolic expressions sympy. Exprassociated with the system's functions.

Attributes: For scalar function (e.g. the storage function H), arguments of phs.exprs are SYMPY expressions (sympy.Expr); for vector functions (e.g. the disipative function z), arguments are ordered lists of SYMPY expressions; for matrix functions (e.g. the Jacobian matrix of disipative function z), arguments are sympy.Matrix objects. Notice the expressions arguments 1 must belong either to (i) the elements of phs.symbs.args(), or (ii) the keys of the dictionary phs.symbs.subs.

```
phs.exprs.H: storage function H \in \mathbb{R},
phs.exprs.z: dissipative function \mathbf{z} \in \mathbb{R}^{n_{\mathbf{z}}},
phs.exprs.g: input/output gains vector function \mathbf{g} \in \mathbb{R}^{n_{\mathbf{g}}},
```

The following expression are computed from the exprs.build() method (see below):

phs.exprs.dxH : the continuous gradient vector of storage scalar function $\nabla H(\mathbf{x}) \in \mathbb{R}^{n_{\mathbf{x}}},$

phs.exprs.dxHd: the discrete gradient vector of storage scalar function $\overline{\nabla} H(\mathbf{x}, \delta \mathbf{x}) \in \mathbb{R}^{n_{\mathbf{x}}}$,

phs.exprs.hessH: the continuous hessian matrix of storage scalar function (computed as $\nabla \nabla H(\mathbf{x}) \in \mathbb{R}^{n_{\mathbf{x}} \times n_{\mathbf{x}}}$),

phs.exprs.jacz : the continuous jacobian matrix of dissipative vector function $\nabla \mathbf{z}(\mathbf{w}) \in \mathbb{R}^{n_{\mathbf{w}} \times n_{\mathbf{w}}}$.

^{1.} Accessed through the $sympy.Expr.free_symbols$ (e.g. $phs.exprs.H.free_symbols$ to recover the arguments of the Storage function H).

phs.exprs.y : the expression of the continuous output vector function $\mathbf{y}(\nabla \mathbf{H}, \mathbf{z}, \mathbf{u}) \in \mathbb{R}^{n_y}$,

phs.exprs.yd : the expression of the discrete output vector function $\overline{\mathbf{y}}(\overline{\nabla}\mathbf{H},\mathbf{z},\mathbf{u}) \in \mathbb{R}^{n_y}$,

Methods:

phs.exprs.build() : Build the following system functions as SYMPY expressions and append them as attributes to the phs.exprs module :
 phs.exprs.dxH, phs.exprs.dxHd, phs.exprs.hessH, phs.exprs.jacz, phs.exprs.y,
 and phs.exprs.yd.

phs.exprs.setexpr(name, expr) : Add the SYMPY expression expr to the phs.exprs module, with argument name, and add name to the set of phs.exprs._names.

phs.exprs.freesymbols() : Return a python set of all the free symbols
 (sympy.Symbol) that appear at least once in all expressions with names
 in phs.exprs._names.

2.3 The dims module

Container for accessors to the system's dimensions. No attributes should be changed manually. To split the system into its linear and nonlinear part, use phs.split_linear() which organize the system vectors as

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_{n1} \end{pmatrix}, \quad \dim(\mathbf{x}_1) =$$
 (4)

Attributes: phs.dims.xl: Number of state vector components associated with a quadratic storage function: $H_1(\mathbf{x}_1) = \mathbf{x}_1^\intercal \cdot \frac{\mathbf{Q}}{2} \cdot \mathbf{x}_1$, and phs.dims.x() is equal to phs.dims.xl + phs.dims.xnl().

phs.dims.wl: Number of dissipative vector variable components associated with a linear dissipative function: $\mathbf{z}_1(\mathbf{w}_1) = \mathbf{Z}_1 \cdot \mathbf{w}_1$, and phs.dims.w() is equal to phs.dims.wl + phs.dims.wnl().

Methods:

phs.dims.x(): Return the dimension of state vector len(phs.symbs.x).

phs.dims.xnl() : Return the number of state vector components associated with a nonlinear storage function

len(phs.symbs.x).

setexpr(name, expr): Add the SYMPY expression expr to the exprs module, with argument name, and add name to the set of exprs._names.

freesymbols() : Retrun a python set of all the free symbols (sympy.symbols)
 that appear at least once in all expressions with names in exprs._names.

3 Algorithms

This section details the algorithms actually implemented for

- 1. the graph analysis and
- 2. the different simulation methods

3.1 Graph analysis

The graph analysis method that derives the port-Hamiltonian system's differential-algebraic equations from with a given netlist is detailed in the reference [Falaize and Hélie, 2016]. The algorithm implemented in PYPHS is exactly that in [Falaize and Hélie, 2016, algorithm 1].

3.2 Simulation methods

The discrete gradient method is used in conjunction with the port-Hamiltonian structure to produce a passive-guaranteed numerical scheme (see [Falaize and Hélie, 2016] for details). In the sequel, quantities are defined on the current time step $\mathbf{x} \equiv \mathbf{x}(t_k)$, with $k \in \mathbb{N}_+^*$.

3.2.1 Split of the linear part from the nonlinear part

The dicrete gradient for the quadratic part of the Hamiltonian is $\nabla H_1 = \frac{1}{2} \mathbf{Q} (2\mathbf{x}_1 + \delta \mathbf{x}_1)$ and the discret linear subsystem is

and the nonlinear subsystem is

$$\begin{pmatrix} \frac{\mathbf{I_d}}{\delta t} & 0 \\ 0 & \mathbf{I_d} \end{pmatrix} \underbrace{\begin{pmatrix} \delta \mathbf{x_{n1}} \\ \mathbf{w_{n1}} \end{pmatrix}}_{\mathbf{v_{n1}}} = \underbrace{\begin{pmatrix} \mathbf{M_{xn1xn1}} & \mathbf{M_{xn1wn1}} \\ \mathbf{M_{wn1xn1}} & \mathbf{M_{wn1wn1}} \end{pmatrix}}_{\mathbf{\overline{N_{n1n1}}}} \mathbf{f_{n1}} + \underbrace{\begin{pmatrix} \mathbf{M_{xn1y}} \\ \mathbf{M_{wn1y}} \end{pmatrix}}_{\mathbf{\overline{N_{n1y}}}} \mathbf{u}$$

$$+ \underbrace{\begin{pmatrix} \mathbf{M_{xn1x1}} & \mathbf{M_{xn1w1}} \\ \mathbf{M_{wn1x1}} & \mathbf{M_{wn1w1}} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \mathbf{Q} & 0 \\ 0 & \mathbf{Z_1} \end{pmatrix}}_{\mathbf{\overline{N_{n1x1}}}} \mathbf{v_1} + \underbrace{\begin{pmatrix} \mathbf{M_{xn1x1}} \\ \mathbf{M_{wn1x1}} \end{pmatrix} \mathbf{Q}}_{\mathbf{\overline{N_{n1x1}}}} \mathbf{x_1}$$

$$(6)$$

${\bf 3.2.2} \quad {\bf Presolve \ numerical \ nonlinear \ subsystem}$

$$\begin{pmatrix}
\frac{\mathbf{I_{d}}}{\delta t} & 0 \\
0 & \mathbf{I_{d}}
\end{pmatrix} \mathbf{v_{n1}} = \underbrace{(\overline{\mathbf{N}_{n1x1}} + \overline{\mathbf{N}_{n11}} \, \mathbf{N}_{1x1})}_{\mathbf{N_{n1x1}}} \mathbf{x}_{1} + \underbrace{(\overline{\mathbf{N}_{n1n1}} + \overline{\mathbf{N}_{n11}} \, \mathbf{N}_{1n1})}_{\mathbf{N_{n1n1}}} \mathbf{f_{n1}} \\
\underbrace{(\overline{\mathbf{N}_{n1y}} + \overline{\mathbf{N}_{n11}} \, \mathbf{N}_{1y})}_{\mathbf{N_{n1y}}} \mathbf{u}$$
(7)

6

3.2.3 Algorithm

Inputs

$$\begin{split} \mathbf{i} \mathbf{D}_{1} &= \begin{pmatrix} \frac{\mathbf{I}_{d}}{\delta t} & 0 \\ 0 & \mathbf{I}_{d} \end{pmatrix} - \begin{pmatrix} \mathbf{M}_{x1x1} & \mathbf{M}_{x1v1} \\ \mathbf{M}_{w1x1} & \mathbf{M}_{w1v1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \mathbf{Q} & 0 \\ 0 & \mathbf{Z}_{1} \end{pmatrix} \\ \overline{\mathbf{N}_{1x1}} &= \begin{pmatrix} \mathbf{M}_{x1x1} \\ \mathbf{M}_{w1x1} \end{pmatrix} \mathbf{Q} \\ \overline{\mathbf{N}_{1n1}} &= \begin{pmatrix} \mathbf{M}_{x1xn1} & \mathbf{M}_{x1wn1} \\ \mathbf{M}_{w1xn1} & \mathbf{M}_{w1wn1} \end{pmatrix} \\ \overline{\mathbf{N}_{1y}} &= \begin{pmatrix} \mathbf{M}_{x1y} \\ \mathbf{M}_{w1y} \end{pmatrix} \\ \overline{\mathbf{N}_{n1n1}} &= \begin{pmatrix} \mathbf{M}_{xn1x1} & \mathbf{M}_{xn1wn1} \\ \mathbf{M}_{wn1xn1} & \mathbf{M}_{wn1wn1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \mathbf{Q} & 0 \\ 0 & \mathbf{Z}_{1} \end{pmatrix} \\ \overline{\mathbf{N}_{n1x1}} &= \begin{pmatrix} \mathbf{M}_{xn1x1} & \mathbf{M}_{xn1w1} \\ \mathbf{M}_{wn1x1} & \mathbf{M}_{wn1w1} \end{pmatrix} \mathbf{Q} \\ \overline{\mathbf{N}_{n1y}} &= \begin{pmatrix} \mathbf{M}_{xn1x1} \\ \mathbf{M}_{wn1x1} \end{pmatrix} \mathbf{Q} \\ \overline{\mathbf{N}_{n1y}} &= \begin{pmatrix} \mathbf{M}_{xn1y} \\ \mathbf{M}_{wn1y} \end{pmatrix} \\ \mathcal{J}_{fn1}(\mathbf{v}_{n1}) &= \begin{pmatrix} \mathcal{J}_{\nabla H_{n1}} & 0 \\ 0 & \mathcal{J}_{z_{n1}} \end{pmatrix} \\ \mathbf{I}_{n1} &= \begin{pmatrix} \frac{\mathbf{I}_{d}}{\delta t} & 0 \\ 0 & \mathbf{I}_{d} \end{pmatrix} \end{pmatrix} \end{split}$$

Process

3.3 Realizability solver

Connections

Serial
$$\sum_{n=1}^{N} e_n = 0$$
, $f_1 = \cdots = f_N = \phi$ (variable commune)

$$\begin{aligned} & \mathbf{parallel} & & \sum_{n=1}^{N} f_n = 0, \\ & e_1 = \cdots = e_N = \phi \text{ (variable commune)} \\ & & \mathbf{Storage} \end{aligned}$$

Realizable

$$\begin{cases} \phi = u = \frac{\mathrm{d}}{\mathrm{d}t}x &= \frac{\mathrm{d}x_1}{\mathrm{d}t} = \dots = \frac{\mathrm{d}}{\mathrm{d}t}x_N \\ y = \nabla H_i(x) &= \sum_{i=1}^N \nabla H_i(x_i) \end{cases}$$

alors
$$x = x_1 = x_2$$
 et $\mathbf{H}(x) = \left(\sum_{i=1}^{N} \mathbf{H}_i\right)(x)$

Non-Realizable

$$\begin{cases} \phi = u = \nabla \mathbf{H}_1(x) = \nabla \mathbf{H}_1(x_1) = \dots = \nabla \mathbf{H}_N(x_N), \\ y = \frac{\mathrm{d}}{\mathrm{d}t}x = \sum_{i=1}^N \frac{\mathrm{d}}{\mathrm{d}t}x_i \end{cases}$$

alors
$$x = \sum_{i=1}^{N} x_i$$
 et $\mathbf{H}(x) = \left(\sum_{i=1}^{N} H_i \nabla \mathbf{H}_i^{-1} G\right)(x)$ avec $G^{-1}(x) = \sum_{i=1}^{N} \nabla \mathbf{H}_i(x_i)$ Dissipatives

Realizable

$$\begin{cases} \phi = u = w &= w_1 = \dots = w_N, \\ y = z(w) &= \sum_{i=1}^{N} z_i(x_i) \end{cases}$$

Non-Realizable

$$\begin{cases} \phi = u = z(w) = z_1(w_1) = \dots = z_N(w_N), \\ y = w = \sum_{i=1}^{N} w_i \end{cases}$$

alors
$$w = \sum_{i=1}^{N} w_i = \left(\sum_{i=1}^{N} z_i^{-1}\right)(\phi)$$
 et $z^{-1}(\phi) = w \Rightarrow z(w) = \left(\sum_{i=1}^{N} z_i\right)^{-1}(w)$

Références

[Falaize and Hélie, 2016] Falaize, A. and Hélie, T. (2016). Passive guaranteed simulation of analog audio circuits: A port-hamiltonian approach. Applied Sciences, 6(10):273.