Оглавление

1.	Понятие двойного интеграла	2
2.	Задачи, приводящие к понятию двойного интеграла	3
	1) Механическое приложение	3
	2) Геометрическое приложение	3
3.	Основные свойства двойного интеграла	4
	1) Аддитивность	4
	2) Линейность	4
	3) Монотонность	4
	4) Интегрируемость произведения	4
4.	Вычисление двойного интеграла в декартовой системе коор-	
	динат	6
5.	Криволинейные координаты на плоскости	7
6.	Замена переменных в двойном интеграле	9
7.	Замена переменных в произвольном двойном интеграле	10
8.	Дифференциальные уравнения 1-го порядка	11
9.	Геометрический смысл уравнения	13

1. Понятие двойного интеграла

Будем считать, что все области двумерного пространства являются квадрируемыми (имеющими площадь), а границы областей — непрерывными, гладкими, замкнутыми линиями.

Отрезок, соединяющий любые две точки границы области и принадлежащий этой области, называется xopdoй. Наибольшая из хорд — это dua-memp области.

Пусть $D \subset \mathbb{R}^2$, функция f(x,y) задана на области D. Разобьём D на n маленьких частиц (D_i) , где $S_{\Delta i} = \Delta \sigma_i$ — площадь каждой частицы. На каждой площадке выберем произвольным образом точку $M_i(\alpha_i,\beta_i)$.

Составим интегральную сумму:

$$S_n = \sum_{i=1}^n f(\alpha_i, \beta_i) \Delta \sigma_i.$$

Обозначим через $\lambda = \max \Delta \sigma_i$ максимальный диаметр частичных областей. Если при $\lambda \to 0$ существует предел $\lim_{\lambda \to 0} S_n$, то он называется двойным интегралом функции f(x,y) по области D и обозначается:

$$\iint\limits_{D} f(x,y) \, dx \, dy$$

Если этот предел существует и конечен, то функция f(x,y) называется uhmerpupyemoй в области D.

2. Задачи, приводящие к понятию двойного интеграла

1) Механическое приложение

Если в области D распределено вещество с плотностью $\rho = f(x,y)$, то масса вещества вычисляется по формуле:

$$m = \iint\limits_{D} f(x, y) \, dx \, dy$$

2) Геометрическое приложение

Пусть в области D задана положительная непрерывная функция z=f(x,y). Тогда объём тела, лежащего в плоскости Oxy и ограниченного сверху поверхностью z=f(x,y), вычисляется по формуле:

$$V = \iint_D f(x, y) \, dx \, dy$$

Двойной интеграл выражает объём цилиндрического тела, образующие которого параллельны оси Oz и которое ограничено снизу областью D, а сверху — поверхностью z=f(x,y).

3. Основные свойства двойного интеграла

1) Аддитивность

Если f(x,y) интегрируема в области D, то она интегрируема в любой подобласти $D' \subset D$ (D, D' — квадрируемые области).

Если f(x,y) интегрируема на D_1 и D_2 , то f(x,y) интегрируема на $D=D_1\cup D_2$.

Если $D = D_1 \cup D_2$, где D_1 и D_2 — квадрируемые множества без общих внутренних точек, то:

$$\iint_{D} f(x,y) \, dx \, dy = \iint_{D_{1}} f(x,y) \, dx \, dy + \iint_{D_{2}} f(x,y) \, dx \, dy$$

2) Линейность

Пусть f(x,y), g(x,y) интегрируемы на D, $\alpha,\beta\in\mathbb{R}$. Тогда $\alpha\cdot f(x,y)+\beta\cdot g(x,y)$ интегрируема на D и:

$$\iint\limits_{D} \left[\alpha \cdot f(x,y) + \beta \cdot g(x,y)\right] dx \, dy = \alpha \iint\limits_{D} f(x,y) \, dx \, dy + \beta \iint\limits_{D} g(x,y) \, dx \, dy$$

3) Монотонность

Если f(x,y), g(x,y) интегрируемы на D и $f(x,y) \leq g(x,y)$ для любого $(x,y) \in D$, то:

$$\iint\limits_D f(x,y)\,dx\,dy \le \iint\limits_D g(x,y)\,dx\,dy$$

4) Интегрируемость произведения

Если f(x,y), g(x,y) интегрируемы на D, то $f(x,y) \cdot g(x,y)$ также интегрируема на D.

5) Теорема о среднем

Пусть:

1.
$$f(x,y), g(x,y)$$
 — интегрируемы на D

2.
$$g(x,y) \ge 0$$
 на D

3.
$$m = \inf_{D} f(x, y), M = \sup_{D} f(x, y)$$

Тогда существует $\mu \in [m,M]$ такое, что:

$$\iint\limits_{D} f(x,y)g(x,y)\,dx\,dy = \mu \iint\limits_{D} g(x,y)\,dx\,dy$$

4. Вычисление двойного интеграла в декартовой системе координат

Пусть $D \subset \mathbb{R}^2$ и задана непрерывная функция f(x,y). Предположим, что D ограничена непрерывной замкнутой кривой $\partial D = l$, которую любая вертикальная или горизонтальная прямая пересекает не более чем в двух точках.

Предположим, что D расположена в прямоугольнике:

$$\begin{cases} a \le x \le b \\ c \le y \le d \end{cases}$$

Прямые x=a и x=b точками касания делят границу на две части: $l=l_1\cup l_2$. Предположим, что:

$$l_1: y = y_1(x); \quad l_2: y = y_2(x)$$

тогда двойной интеграл вычисляется по формуле:

$$\iint\limits_{D} f(x,y) \, dx \, dy = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) \, dy$$

Второй случай (интегрирование в обратном порядке): пусть прямые y=c и y=d точками касания делят границу l на две части: $l=l_3\cup l_4$ так, что:

$$l_3: x = x_1(y); \quad l_4: x = x_2(y)$$

тогда двойной интеграл вычисляется по формуле:

$$\iint\limits_{D} f(x,y) \, dx \, dy = \int_{c}^{d} dy \int_{x_{1}(y)}^{x_{2}(y)} f(x,y) \, dx$$

Интегралы в правых частях первого и второго случая называются no-вторными.

5. Криволинейные координаты на плоскости

Пусть двумерная квадрируемая область $G \subset \mathbb{R}^2$ задана функциями:

$$x = x(u, v), \quad y = y(u, v), \quad (u, v) \in G$$

Эта система функций определяет отображение области G в область $D \subset \mathbb{R}^2$.

Предположим, что отображение удовлетворяет следующим условиям:

1. Оно взаимно однозначно и имеет обратное отображение:

$$u = u(x, y), \quad v = v(x, y), \quad (x, y) \in D$$

2. Функции x = x(u, v), y = y(u, v) непрерывно дифференцируемы в области G, причём якобиан отображения:

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0$$

В силу непрерывности частных производных функций, якобиан сохраняет свой знак в области G. Отображение устанавливает взаимно однозначное соответствие между двумя областями, а также между кусочногладкими кривыми в областях D и G.

Линия $u=u_0$ в G соответствует гладкой кривой L в области D, описываемой уравнениями:

$$x = x(u_0, v), \quad y = y(u_0, v)$$

Аналогично, линия $v=v_0$ соответствует кривой l в области D:

$$x = x(u, v_0), \quad y = y(u, v_0)$$

Так как отображение взаимно однозначно, то через каждую точку $(x,y) \in D$ проходит единственная линия каждого семейства, соответствующая

значениям $u=u_0, v=v_0$. Поэтому значения (u,v) однозначно определяют точку $(x,y)\in D$. Придавая u и v допустимые значения, на плоскости Oxy получим два семейства координатных линий. Значения u и v называются криволинейными координатами точки $(x,y)\in D$.

Частным случаем криволинейных координат является полярная система координат с началом в точке O. Переход от полярных координат к декартовым задаётся формулами:

$$x = r\cos\varphi, \quad y = r\sin\varphi$$

где $r \ge 0$ — полярный радиус, φ — полярный угол.

6. Замена переменных в двойном интеграле

Пусть отображение

$$x = x(u, v), \quad y = y(u, v)$$

взаимно однозначно, непрерывно дифференцируемо и отображает область G на D. Причём якобиан этого отображения отличен от нуля.

Тогда площадь квадрируемого замкнутого множества D может быть выражена двойным интегралом по области G:

$$S_D = \iint_D dx \, dy = \iint_G |J| \, du \, dv$$

где J — якобиан преобразования:

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix}$$

7. Замена переменных в произвольном двойном интеграле

Пусть отображение

$$x = x(u, v), \quad y = y(u, v)$$

взаимно однозначно, непрерывно дифференцируемо и отображает область G на D, причём якобиан этого отображения отличен от нуля.

Если f(x,y) непрерывна в D или допускает разрывы вдоль конечного числа кусочно-гладких кривых, оставаясь ограниченной в D, тогда справедлива формула замены переменных:

$$\iint\limits_{D} f(x,y)\,dx\,dy = \iint\limits_{G} f(x(u,v),y(u,v))\cdot |J|\,du\,dv$$

где J — якобиан преобразования:

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix}$$

8. Дифференциальные уравнения 1-го порядка

Обыкновенным дифференциальным уравнением 1-го порядка называется уравнение вида:

$$F(x, y, y') = 0$$

где x — независимая переменная, y — неизвестная функция, y' — её производная, а F — заданная функция трёх переменных, определённая в \mathbb{R}^3 .

Пусть $x \in (a,b)$, $\varphi(x)$ — непрерывно дифференцируемая функция, которая является решением уравнения, если при её подстановке получается тождество:

$$F(x, \varphi(x), \varphi'(x)) \equiv 0, \quad x \in (a, b)$$

Важным частным случаем является уравнение вида:

$$y' = f(x, y)$$

где f(x,y) — функция двух переменных, определённая в $D\subset\mathbb{R}^2$.

Уравнение y' = f(x,y) является обыкновенным дифференциальным уровнением 1-го порядка, разрешённым относительно производной. Простейшим примером уравнения, разрешённого относительно производной, является:

$$y' = f(x)$$

решение которого связано с нахождением первообразной непрерывной f(x):

$$y = \int f(x) \, dx + C$$

Дифференциальное уравнение может иметь бесконечное количество решений. Каждое конкретное решение называется *частным решением* уравнения. Множество всех частных решений этого уравнения является *общим решением*. Решить Дифференциальное уравнение — значит найти его общее решение.

Часто требуется найти не общее решение уравнения y' = f(x, y), а некоторое частное решение y(x), для которого известно, что в некоторой точке x_0 оно принимает значение y_0 :

$$y(x_0) = y_0$$

Задача решения уравнения y' = f(x,y), удовлетворяющего условию $y(x_0) = y_0$, называется задачей Коши, при этом условие $y(x_0) = y_0$ называется начальным условием. Как правило, задача Коши имеет единственное решение в отличие от решения уравнения y' = f(x,y).

9. Геометрический смысл уравнения

В каждой точке $(x,y) \in D$ поставим в соответствие прямую, проходящую через эту точку под углом, тангенс которого равен функции $\tan \alpha = f(x,y)$. В этом случае говорят, что правая часть уравнения y' = f(x,y) задаёт *поле направлений*.

Интегральной кривой уравнения y' = f(x,y) называется кривая, график которой лежит в D и в каждой точке этого графика существует касательная, которая совпадает с прямой поля направлений для этой точки.

Пусть $\varphi(x)$ — решение уравнения y'=f(x,y), тогда график этой функции является интегральной кривой уравнения y'=f(x,y) и обратно, если некоторая интегральная кривая является графиком функции $\varphi(x)$, то $\varphi(x)$ является решением.

С геометрической точки зрения, решение уравнения y' = f(x,y) — задача построения интегральных кривых этого уравнения. Следовательно, задача Коши с начальным условием $y(x_0) = y_0$ эквивалентна задаче нахождения интегральной кривой, проходящей через заданную точку $(x_0, y_0) \in D$.