CS 558: Homework Assignment 2 - Line Detection Due: OCTOBER 15TH 5:59pm

Enrique Dunn
Department of Computer Science
Stevens Institute of Technology
edunn@stevens.edu

Collaboration Policy. Homeworks will be done individually: each student must hand in their own answers. It is acceptable for students to collaborate in understanding the material but not in solving the problems. Use of the Internet is allowed, but should not include searching for previous solutions or answers to the specific questions of the assignment. I will assume that, as participants in a graduate course, you will be taking the responsibility of making sure that you personally understand the solution to any work arising from collaboration.

Late Policy. 10% deduction for the first 24 hours after the deadline. 25% deduction thereafter.

Submission Format. Electronic submission on Canvas is mandatory. Submit a zip file containing:

- a pdf file with the source code (excluding libraries), the resulting images and a brief explanation of the implementation.
- the code,
- the output images.

Problem 1: Pre-processing. Download the image provided on the course canvas website. You must implement two methods for detecting lines. Before extracting the lines, you need to detect potential points on them. These will be found as local maxima of the Hessian detector, implemented as in the 4^{th} set of notes. Apply a Gaussian filter first and use the Sobel filters as derivative operators. Threshold the determinant of the Hessian and then apply non-maximum suppression in 3×3 neighborhoods.

Ignore pixels for which any of the filters falls even partially out of the image boundaries.

Problem 2: RANSAC. Apply RANSAC on the points detected above to find four lines with strong support. Since it is intractable to guarantee that you found the four lines with the most support, use your best judgement to determine that the outputs are correct.

One possible implementation is to run RANSAC until it finds a line with a sufficient number of inliers. Make sure that the same inliers are not used again.

Plot the line segments in the image by connecting the two extreme inliers of each line. Also plot the inliers as 3×3 squares.

Problem 3: Hough Transform. Apply a Hough transform to detect the four lines with the strongest support using the polar parameterization of the line (not the point coordinates), Plot the results as above.

Note that the last two problems are independent.

Requirements and notes.

- You can use any programming language. You may have to explain the homework to me in person, if I am not familiar with your choice.
- You are allowed to use image reading and writing functions, as well as plotting functions, but you are not allowed to use filtering, edge detection or other image processing functions.
- Screenshots of the input with the lines and squares superimposed are acceptable.
- If you cannot implement the Hessian detector, using the local maxima of the gradient magnitude will allow you to continue, but will not receive maximum credit. (Non-maximum suppression should be in all directions here, as with the Hessian detector.)
- In Problem 1, the main parameter to be adjusted is the threshold on the determinant of the Hessian. The standard deviation of the Gaussian filter is not that important.
- In Problem 2, the main parameters are the required number of inliers and the distance threshold that determines which points are inliers given a line equation.
- In Problem 3, the main parameters are the dimensions of the bins of the accumulator.