## EC ENGR 102 Week 5

### Aidan Jan

## October 29, 2024

## Sawtooth Signal

The sawtooth signal is given by  $f(t) = t \mod 1$ . It is plotted below:



This signal has a period of  $T_0 = 1$ . Now, when k = 0,

$$c_0 = \int_0^1 t e^0 dt$$
$$= \frac{t^2}{2} \Big|_0^1$$
$$= \frac{1}{2}$$

This is also the Fourier series of the time-limited signal f(t) = t on the interval [0,1). The time-limited signal can be made periodic via a periodic extension.

#### Fourier Series Properties

There are interesting symmetries and properties of the Fourier series that are worth expanding upon.

•  $c_0$  is the average of the signal. Not that for k=0, we have that

$$c_0 = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) dt$$

Thus,  $c_0$  is exactly the time-averaged mean of the signal and corresponds to a constant value (i.e., it has no sinusoidal component). For this reason, it is sometimes called the "DC component." DC stands for direct current in circuits, and refers to non-alternating (sinusoidal) currents. The DC component is the average value taken on by a signal.

## Fourier Symmetry

We can apply Euler's formula to re-write the Fourier coefficients, and reveal some symmetries:

$$c_{k} = \frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} f(t)e^{-j\frac{2\pi kt}{T_{0}}} dt$$

$$= \frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} f(t) \left[ \cos \left( \frac{2\pi k}{T_{0}} t \right) - j \sin \left( \frac{2\pi k}{T_{0}} t \right) \right] dt = \frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} f(t) \cos \left( \frac{2\pi k}{T_{0}} t \right) dt - \frac{j}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} f(t) \sin \left( \frac{2\pi k}{T_{0}} t \right) dt$$

In the above equation, the left term is the real part, the right term is the imaginary part.

If f(t) is real, then so are:

$$\Re(c_k) = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) \cos\left(\frac{2\pi k}{T_0}t\right) dt$$

$$\Im(c_k) = -\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) \sin\left(\frac{2\pi k}{T_0}t\right) dt$$

Therefore, for f(t) real, and using the fact that  $\cos(k)$  is even and  $\sin(k)$  is odd, we have the following symmetries:

$$\Re(c_k) = \Re(c_{-k}) \tag{1}$$

$$\Im(c_k) = \Im(c_{-k}) \tag{2}$$

$$c_k^* = c_{-k} \tag{3}$$

$$|c_k| = |c_{-k}| \tag{4}$$

$$\angle c_k = -\angle c_k^* \tag{5}$$

$$c_k = c_{-k}$$
 (only if  $x(t)$  is even) (6)

$$c_k = -c_{-k}$$
 (only if  $x(t)$  is odd) (7)

#### Proof of (1)

$$\Re(c_{-k}) = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) \cdot \cos\left(-\frac{2\pi k}{T_0}t\right) dt$$
$$= \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) \cdot \cos\left(\frac{2\pi k}{T_0}t\right) dt$$
$$= \Re(c_{-k})$$

#### Proof of (2)

$$\mathfrak{I}(c_{-k}) = -\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) \cdot \sin\left(-\frac{2\pi k}{T_0}t\right) dt$$
$$= \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) \cdot \sin\left(\frac{2\pi k}{T_0}t\right) dt$$
$$= \mathfrak{I}(c_{-k})$$

#### Proof of (3)

$$\begin{split} c_k &= \Re(c_k) + j \cdot \Im(c_k) \\ c_k^* &- \Re(c_k) - j \cdot \Im(c_k) \\ &= \Re(c_-k) + j \cdot \Im(c_-k) \\ &= c_{-k} \end{split}$$

#### Proof of (4)

$$\begin{aligned} |c_k| &= \sqrt{\Re^2(c_k) + \Im^2(c_k)} \\ |c_{-k}| &= \sqrt{\Re^2(c_k) + \Im^2(c_{-k})} \\ &= \sqrt{\Re^2(c_k) + (-\Im(c_k))^2} \\ &= |c_k| \end{aligned}$$

#### Proof of (5)

$$\angle c_k = \arctan\left(\frac{\Re(c_k)}{\Im(c_k)}\right)$$

$$= \arctan\left(\frac{\Re(c_{-k})}{\Im(c_{-k})}\right)$$

$$= \arctan\left(\frac{\Re(c_k)}{-\Im(c_k)}\right)$$

$$= \angle c_{-k}$$

### Proof of (6)

$$c_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-jk\omega_0 t} dt$$
$$c_{-k} = \frac{1}{T_0} \int_0^{T_0} x(t)e^{jk\omega_0 t} dt$$

Let u = -t.

$$= -\frac{1}{T_0} \int_0^{-T_0} x(-u) \cdot e^{-jk\omega_0 u} du$$
$$= \frac{1}{T_0} \int_{-T_0}^0 x(u) \cdot e^{-jk\omega_0 u} du$$
$$= c_{l}$$

#### Fourier Series Properties

• If x(t) is even, then x(t) = x(-t), and therefore,  $c_k = c_{-k}$ . You can see this by realizing that kt only appears in the complex exponential, and therefore negating t has the same effect as negating k.

$$x(t)$$
 even  $\Longrightarrow c_k = c_{-k}$ 

• If x(t) is odd, then x(t) = -x(-t), and therefore,  $c_k = -c_{-k}$ . This holds for the same reason as for the even case.

$$x(t) \text{ odd} \Longrightarrow c_k = -c_{-k}$$

• Combining facts, we have that if x(t) is even and real, then  $c_k = c_{-k}$  and  $c_{-k} = c_k^*$ , and so  $c_k = c_k^*$ . This means that  $c_k$  must be real.

$$x(t)$$
 even and real  $\Longrightarrow c_k$  real

• If x(t) is odd and real, then  $c_k = -c_{-k}$ , and because  $c_{-k} = c_k^*$ , then  $c_k = -c_k^*$ . This means that  $c_k$  must be imaginary.

$$x(t)$$
 odd and real  $\Longrightarrow c_k$  imaginary

#### Perseval's Theorem

Suppose we want to find the power of a complex signal:

$$\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt$$

Since x(t) is complex, we split the square to  $x(t) \cdot x(t)^*$ . Therefore,

$$= \frac{1}{T_0} \int_{t_0}^{t_0+T_0} x(t)x(t)^* dt$$

$$= \frac{1}{T_0} \int_{t_0}^{t_0+T_0} \left[ \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \right] \left[ \sum_{n=-\infty}^{\infty} c_n^* e^{-jn\omega_0 t} \right] dt$$

We can then switch the order of the summation and integral.

$$= \frac{1}{T_0} \sum_{k=-\infty}^{\infty} c_k \sum_{k=-\infty}^{\infty} c_n^* \cdot \int_{t_0}^{t_0+T_0} e^{j(k-n)\omega_0 t} dt$$

Notice that the integral returns 0 when  $k \neq n$ , and  $T_0$  when k = n. This is because if you expand the exponential using Euler's formula, then you are integrating a cosine and sin over one period, the periods of which will cancel out. Therefore,

$$= \frac{1}{T_0} \sum_{-\infty}^{\infty} c_k \cdot c_k^* \cdot T_0$$
$$= \sum_{k=-\infty}^{\infty} |c_k|^2$$

Everything before this point is fair game on Midterm 1.

# Aperiodic Signals

- The Fourier series can model (almost) any **periodic** or **time-limited** function as a sum of complex exponentials. However, most signals we encounter are not necessarily periodic or time-limited.
- The Fourier transform allows us to calculate the spectrum of aperiodic signals.

#### Intuition of going from Fourier series to Fourier transform

Extending Fourier series to the Fourier transform is fairly intuitive.

The idea is the following:

- We can calculate the Fourier series of a periodic or time-limited signal, over some interval of length  $T_0$ .
- A signal that is not periodic can be viewed as a periodic signal, where  $T_0$  is infinite. As  $T_0$  is infinite, it never repeats.
- But the point is that we can replace our Fourier series calculation as, instead of being over a finite period,  $T_0$ , being over all time, from  $t = -\infty$  to  $\infty$ .

• Mathematically, we can calculate the Fourier series of f(t) over the interval [-T/2.T/2) via:

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

with

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} f(t)e^{-jk\omega - 0} dt$$

where  $\omega_0 = 2\pi/T$ . In the Fourier transform, we're now going to let  $T \to \infty$ .

### Example:

