

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

A₂

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96)

US \

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors' and
(75) Inventors' Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US)

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of *Streptococcus pneumoniae*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer–based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	freland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan .		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/18931 PCT/US97/19588

Streptococcus pneumoniae Polynucleotides and Sequences

FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., *et al.*, *J. Med. Microbiol. 28:237-248* (1989).

10

15

20

25

30

35

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et. al., reported that peptide permeases can modulate

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions.

of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

(DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

10

20

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computerbased systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the *Streptococcus pneumoniae* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

5

10

15

20

25

30

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

15

20

25

30

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

10

15

20

25

30

35

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215:* 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

15

The present invention is based on the sequencing of fragments of the Streptococcus pneumoniae genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

20

25

30

35

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs): A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the The present disclosure makes available sufficient sequence skill of the art. information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

10

15

20

25

30

35

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

5

10

15

20

25

30

35

The nucleotide sequences of the genomes from different strains of Streptococcus pneumoniae differ somewhat. However, the nucleotide sequences of the genomes of all Streptococcus pneumoniae strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

WO 98/18931 PCT/US97/19588

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

5

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present A variety of data storage structures are available to a skilled artisan invention: for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

5

10

15

20

25

30

35

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

10

15

20

25

30

35

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

WO 98/18931 PCT/US97/19588

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

10

15

20

25

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

5

10

15

20

25

30

35

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Streptococcus pneumoniae DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a Streptococcus pneumoniae library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or Streptococcus pneumoniae genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

5

10

15

20

25

30

35

Tables 1, 2, and 3 list ORFs in the Streptococcus pneumoniae genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

10

15

20

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

WO 98/18931 PCT/US97/19588

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

10

15

20

25

30

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

5

15

20

25

30

EMF sequences can be identified within the contigs of the Streptococcus pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Streptococcus pneumoniae genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

WO 98/18931 PCT/US97/19588

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

5

10

20

25

35

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391. with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

15

20

30

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

10

15

20

25

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

10

15

20

25

30

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

WO 98/18931 PCT/US97/19588

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

10

15

20

25

30

35

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

10

15

20

25

30

35

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas and Streptomyces. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

10

15

20

25

30

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell 23:*175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

15

20

25

30

35

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

10

15

20

25

35

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, *PCR Protocols*, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

30 ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

10

15

20

25

30

35

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al.,

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

5

10

15

20

25

30

The metabolism of sugars is an important aspect of the primary metabolism of Streptococcus pneumoniae. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(A), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massáchusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

15

20

25

30

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

10

15

20

25

30

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

10

15

20

25

30

35

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

10

15

20

25

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Streptococcus pneumoniae* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

10

15

20

25

30

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay f r Binding Agents

5

10

15

20

25

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus pneumoniae* genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

5

10

15

20

25

30

35

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

WO 98/18931 PCT/US97/19588

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

10

20

25

30

35

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

10

15

20

25

30

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

WO 98/18931 PCT/US97/19588

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention,

together with a suitable amount of carrier vehicle.

10

15

20

25

30

35

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine5

10

15

20

25

30

35

microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* 2: 231 (1988).

2. Random Library Construction

10

15

20

25

30

35

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

5

10

15

20

25

30

35

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with Small and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears. 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 μ l aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 μ l aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

25

30

35

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniue* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 μg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One μl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

WO 98/18931 PCT/US97/19588

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5x10³ pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10⁴ pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

5

10

15

20

25

30

35

Liquid lysates (100 μ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

30

35

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

5

10

15

20

25

30

35

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

5

10

20

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

5

10

15

20

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

10

15

20

25

30

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the Streptococcus pneumoniae genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the Streptococcus pneumoniae genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

WO 98/18931 PCT/US97/19588

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using BglI and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BgIII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

5

10

15

20

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

10

15

20

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing known sequences

ORF nt length	567	450	426	624	819	474	1359	916	843	2151	1611	1143	1332	771	240	249	453	465	624
HSP nt length	200	450	426	624	819	474	1359	918	843	2151	1069	1143	876	175	238	160	453	465	624
percent	9.5	96	86	94	91	66	66	- 66	66	66	66	66	66	82	93	95	66	96	9.5
match gene name	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	S.pneumoniae dexB, cap1(A.B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	S.pneumoniae dexB, capilA, B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,i,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumonise neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	Streptococtus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrk) and homoserine kinase homolog (thrB) genes, complete cds	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	S.pneumoniae dexB, capl(A,B,C,D,E,P,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamose biosynthesis genes and aliA gene
match	gb U41735	gb U04047	emb 283335 SP28	emb 283335 SP28	emb 283335 SP28	gb U43526 	gb U43526	 gb U43526 	gb U43526	gb U43526	gb U43526 	emb Y11463 SPDN	emb Y11463 SPDN	95 041735	emb 277726 SP1S	emb 277725 SP1S	emb 277725 SPIS	emb z83335 sP28	emb 283335 SP28
Stop (nt)	1003	5720	6167	9147	9671	12019	13375	14338	15171	17282	18397	1188	2529	111473	7364	0727	7985	19733	7682
Start (nt)	437	6169	6592	9770	10489	11546	12017	13421	14329	15132	17267	46	1198	11297	7125	7322	7533	20197	8305
ORF ID	-	5	φ	1	12	7	ž	2	9	1.7	18	-	~		_		6	23	2
Contig ID		~	~	m	m	m	۳	m	n	m	 	4	4	v	٠	٥	9	9	,

S. pneumoniae - Coding regions containing known sequences

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
,	=_	9024	8206	emb 283335 SP28	S.pneumoniae dexB. cap1 (A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose blosynthesis genes and alia gene	95	819	819
0.	=	9304	8078	gb L29323	Streptococcus pneumoniae methyl transferase (mtr) gene cluster, complete cds	93	513	1221
1 11	2	548	919	emb 279691 SOOR	S. pneumoniae yorf(A, B, C, D, E). ftsL, pbpX and regR genes	1 66	316	372
11	-	892	1980	emb 279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	66	1089	1089
11	- 2	3040	3477	emb 279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	1 66	259	438
1111	9	3480	3247	emb[z79691 soon	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpx and regR genes	1 66	234	234
= = =		3601	4557	emb 279691 SOOR	S.pneumoniae yorfla, B.C.D.El, ftsL, pbpx and regR genes	96	957	957
111	8	4506	4886	emb 279691 SOOR	S.pneumoniae yorfla, B, C, D, El, ftsL, pbpX and regR genes	1 66	381	381
11	- 6 -	4884	7142	emb X16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	66	2259	2259
	91	1332	8124	emb X16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2x	98	70	993
n -		53	1126	[gb M31296]	S. pneumoniae racP gene, complete cds	1 66	437	1074
		1837	2148	emb 283335 SP28	S.pneumoniae dexB, capi A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose blosynthesis genes and allA gene	87	96	312
4		2518	2108	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase {purC} genes, complete cds	86	411	411
15	6	8942	8511	ab u09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFCHIJKLWNO) genes, complete cds, and aliA gene, partial cds	68	340	432
17		3910	3458	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence ISI318 (1372 bp)	98	453	453 1
1 17	8	4304	3873	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	1 96	382	432
19	-	41	529	emb x94909 SPIG	S.pneumoniae iga gene	75	368	489
19	2	554	757	[gb[L07752]	Streptococcus pneumoniae attachment site (attB), DNA sequence	66	167	204
1 19	-	946	1827	gb L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	94	100	882
50	-	937	182	95 033315	Streptococcus pneumonlae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes	66	756	756
50	2	2271	931	95 033315	Streptococcus pneumoniae orfu gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comC) genes, complete cds, tRNA-Arg and tRNA-Gin genes	86	1341	1341
				•	3 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	*	*	

S. pneumonise - Coding regions containing known sequences

Contig	ORF	Start	Stop	match	match gene name	percent	HSP of	+ + + + + + + + + + + + + + + + + + + +
30		3175	2684	95 076218	Streptococcus pnaumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and resonate complete the complete comp	ident 99	length	length 492
02		3322	4527	 gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protesse (sphrra) SSFGG1 (spend) intition	66	1206	1206
20	- 2	4573	5343	 gb AF000658	genes, complete cds partial sequence, and put	- 66	171	771
50	9	5532	6917	 gb AF000658	DNA polymerase III (spchan) genes, umoniae R801 (RNA-Arg gene, partial (sphta), SPSpoJ (spspoJ), initiate	66	1386	1386
20	-	\$669	8212	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete ch	66	1218	1218
50	œ	8214	8471	gb AF000658	partial initiato genes,	86	258	258
20	6	8534	9670	gb AF000658	partial initiato genes,	- 66	134	1137
22	14	11887	112267	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence ISI318 (1372 bp)		226	1 101
22	115	12708	112256	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence ISI318 (823 bp)	97	353	1 100
22	116	13165	12662	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence ISI318 (1372 bp)		70	
72	23	18398	18910	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence [S1515]	- 56	463	513
22	24	18829	19299	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 181515	- 66	443	471
23		5624	4203	emb X52474 SPPL	S.pneumoniae ply gene for pneumolysin		1422	1433
23	9	6063	5629	11771H d6	S.pneumoniae pneumolysin gene, complete cds	- 66	162	*****
26		5500	2	emb x94909 SPIG	S.pneumoniae iga gene			
26	7	5823	5584	gb[U47687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete	- 66	151	240
26	<u>-</u> -	6878	5685	gb U47687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete	100	- 05	1194
	•			+		-		-

S. pneumoniae - Coding regions containing known sequences

				*				
Contig	- E	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
26		14498	14854	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose blosynthesis genes and alia, gene	66	length 338	length 357
56	6	14763	14924	emb[283335 SP28	S.pneumoniae dexB. cap1(A.B.C.D.E.F.G.H.1.J.K genes, dTDP-rhamnose biosynthesis genes and aliA gene	100	94	162
26	2_	14922	67121	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	242	252
28		80	205	emb[283335 SP28	S. procumoniae dexB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose bloosynthesis genes and aliA gene	66	426	426
28	~	503	952	95 004047	Streptococcus pneumoniae SSz dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	450	450
28		.780	1298	95 004047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	181	519
ž		207	1523	95 108611	Streptococcus pneumoniae maltose/maltodextrin uptake (malx) and two maltodextrin permease (malc and malb) genes, complete cds	- 66	7161	1317
34	7	1477	2367	95 108611		96	195	891
34	2	2593	3420	gb L21856				
34	•	2790	2647	ab t21856	080		999	828
34	5	3418	4416	95 121856	COMPIETE CAR male control	86	137	144
34	•	7764	7507	gb U41735	de methionine sulfo	96	966	1 666
34	1.6	10562	10257	emb x63602 SPBO	S profitment as managed of the second			007
35	-	1176	1439	1 0000	YAD COMMITTEE TO A COM	92	238	306
				8745 6	S. preumoniae dexB. capi(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and allA gene	87	248	264
32	<u></u>	1458	1961	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds		264	504
35		16172	15477	emb x85787 SPCP	S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14C, cps14L, cps14C, cps	9.7	969	969
35	18	16961	16170	emb 283335 SPZ8		98	792	792
35	<u></u>	17620	16871	1602600196	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon. (cps19fABCDEFGHIJKLANO) genes, complete cds, and alia gene, partial cds.	83	750	150
•		•	•	++	•	-		

S. pneumoniae - Coding regions containing known sequences

Contig	9 ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
35	50	19061	17604	emb x85787{SPCP	S.pneumoniae dexB, cpsi4A, cpsi4B, cpsi4C, cpsi4D, cpsi4E, cpsi4F, cpsi4G, cpsi4H, cpsi4I, cpsi4A, cpsi4K, cpsi4L, tasA genes	96	1458	1458
36	139	118960	18352	95 040786	Streptococcus pneumoniae surface antigen A variant precursor (psaA) and 18 kba protein genes, complete cds, and ORFI gene, partial cds	66	609	609
<u>~</u>	-50	19934	18966	ab us3509	Streptococcus pneumoniae surface adhesin A precursor (psaA) gene, complete	66	696	696
78	-	2743	179	emb[267739[SPPA	S.pneumoniae parc, parE and transposase genes and unknown orf		2565	7 2326
37	-	2985	2824	emb 267739 SPPA	S. pneumoniae parc, parE and transposase genes and unknown orf	981		
37	_	5034	3070	emb 267739 SPPA	and unknown	000	707	797
37	-	1.5134	1 5790	emb 267739 SPPA	S. pneumoniae parc, parE and transposase ganes and unknown orf		5067	0067
75	~	1 6171	5833	emb 267739 SPPA	and unknown		200	750
38	119	112969	13268	gb M28679			866	339
39	~_	1256	2137	gb U41735	Streptococcus pneumoniae peptide methlonine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	882	882
39		2405	3370	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	996	996
40	6	5253	7208	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	- 66	4401	7301
=	-	E -	1037	emb 217307 SPRE	S. pneumoniae rech gene encoding Rech	9	2001	0000
	2	1328	2713	emb 234303 SPCI	Streptococcus pneumoniae cin operon encoding the cinh, rech, dinF, lyth genes, and downstream sequences	66	1386	1386
41		3083	4045	gb H13812	S.pneumoniae autolysin (lytA) gene, complete cds			
41	-	3272	3096	gb M13812	S. pneumoniae autolysin (lyth) gene, complete cds			596
7	2	1 3603	3860	gb M13812	S. pneumoniae autolysin (lyth) gene, complete cds	1001	1 836	1 //1
41	9	4755	5162	gb t36660	Straptococcus pneumoniae ORF, complete cds	86	408	
4	-	5270	5716	gb L36660	Streptococcus pneumoniae ORF, complete cds			
14	8	6112	6918	gb L36660	Streptococcus pneumoniae ORF, complete cds			100
4	6	6916	7119	ap r36660	Streptococcus pneumoniae ORF, complete cds	1 001	700	100
-	0.7	7082	7660	95 23660	Streptococcus pneumoniae ORF, complete cds			
=	=	7680	6767	ap 13660	Straptococcus pneumoniae ORF, complete cds	- 86	- 18	6/6
41	72	9169	8717	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence [51]18 (821 bp)	-		001
	A			+		- //	- 565	453

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	natch	match gene name	percent	HSP nt length	ORF nt length
41	2	9533	9132	emb[277725 SPIS	S. pneumoniae DNA for insertion sequence IS1381 (966 bp)	1 86	160	402
41	=	6996	9475	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	001	189	195
4	5	7190	7555	emb 282001 SP28	S.pneumoniae pcpA gene and open reading frames	- 66	366	366
44	9	8089	7607	emb z77726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	97	453	453
44	-	8423	8022	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	95	160	402
44	-	8559	8365	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	1001	189	195
1 48	6	6480	4687	gb L39074	Streptococcus pneumoniae pyruvate oxidase (spxB) gene, complete cds	- 66	1794	1794
69	~	231	2603	gb L20561	Streptococcus pneumoniae Exp7 gene, partial cds	1001	216	2373
53	<u> </u>	2407	2156	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 181202 transposase gene, complete cds	9.7	242	252
53		2566	2405	emb 283335 SP28	S.pneumoniae dexB, cap1(A, B, C, D, E, F, G, H, I, J, K genes, dTDP-thamnose biosynthesis genes and aliA gene	100	94	162
- 23	6	2831	2475	emb 283335 SP28	S. pneumoniae dexB; cap1(A, B, C, D, F, G, H, I, J, K) genes, dTDP-thamnose biosynthesis genes and aliA gene	66	338	357
88	2_	12409	11105	emb 283335 SP28	S. pneumoniae dexB. capl(A, B, C, D, E, P, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and aliA gene	67	591	1305
- 55	22	20488	119949	emb 284379 HS28	S. pneumoniae dfr gene (isolate 92)	- 66	240	540
61	=	11864	0066	emb 216082 PNAL	Streptococcus pneumoniae allB gene	88	1965	1965
63			239	gb H18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	1000	237	237
63	~ -	233	2611	gb H18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	66	2330	2379
63		2557	2823	gb M18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	1 66	266	267
1 63	7	2958	4664	gb H18729	S. pneumoniae mismatch repair protein (hexk) gene, complete cds	98	69	17071
67	9	3770	3399	8b L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	96	372	372
19	-	7161	4171	ap r20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	- 66	2938	2991
1 70		-	702	gb M14340	S. pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	100	693	702
70	~	B79	1160	[gb]H14340]	S. pneumoniae Opni gene region encoding dpnC and dpnD, complete cds	100	483	483
1 70	_	2490	1210	gb M14339	S. pneumoniae DpnII gene region encoding dpnM, dpnA, dpnB, complete cds	98	462	1281
70		4230	4424	9b J04234	S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	- 66	147	195
70	8	5197	4316	gb J04234	S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	- 66	861	882
						+	+	+

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
70	13	8108	9874	gb L20562	Streptococcus pneumoniae Exp8 gene, partial cds	93	234	1767
17	122	27964	28341	emb x63602 SPBO	S. pneumoniae mash-Box	93	233	378
22	\$	4607	3552	emb 226850 SPAT	S.pneumoniae (N222) genes for AfPase a subunit, AfPase b subunit or subunit	97	102	1056
7.3	-	471	133	emb(x63602 SPBO	S. pneumoniae mmsA-Box	91	193	339
73	~	3658	776	gb J04479	S. pneumoniae DNA polymerase I (polA) gene, complete cds	1 66	2682	2682
٤	8	4864	5379	ab M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	318	516
77		2622	1999	emb[283335 SP28	S. pneumoniae dexB. capl(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene	95	624	624
11		3341	2523	emb(283335 SPZ8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	16	819	819
18		341		emb x77249 SPR6	S.pneumoniae (R6) claR/claH genes	1 66	339	339
78	7	1095	325	emb x77249 SPR6	S.pneumoniae (R6) claR/claH genes	1 66	177	1111
82	2	11436	10816	gb U90721	Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	1 6	621	621
82	= 1	12402	111434	gb U93576	Straptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	96	953	696
82	= = = = = = = = = = = = = = = = = = = =	12381	112704	195[093576]	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	1001	15	324
83		3212	3550	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	290	339
93	9.	4662	6851	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetese (purC) genes, complete cds	66	2190	2190
83	=	6849	8213	gb[M36180[Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	1365	1365
83	122	8236	0606	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	855	855
83	13	9283	113017	gb L15190	Streptococcus pneumoniae SAICAR synthetase (purC) gene, complete cds	1001	107	3735
8		22147	23313	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete	86	218	1167
83	24	23268	23450	ab L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete	86	172	183
83	25	7527	23505	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strii) gene, complete	66	3826	4023

S. pneumonise - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
93	26	28472	17771	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	66	416	702
88		4554	6173	emb 283335 SP28	S.pneumoniae dexB, capl(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	697	1620
87	9	5951	5316	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	439	636
88	<u>~</u>	2957	3511	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetese (purC) genes, complete cds	94	555	\$55
88	۰	3466	4269	gb[M36180]	Streptococcus preumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	804	804
68	1	9878	10093	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	211	216
68		10062	10412	emb 283335 SP28	S. pneumoniae dexB, capi (A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene	97	335	351
93	2	5303	4941	emb x63602 SPBO	S. pneumonlae mmsA-Box	89	237	363
76		1708	1520	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	91	140	189
66		89	700	emb 283335 SPZ8	S.pneumoniae dexB. capi (A.B.C.D.E.P.G.H.I.J.K) genes, dTDP-rhamose biosynthesis genes and aliA gene	93	592	612
99	~ :	1773	1775	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	966	666
99	_	2794	1712	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	1083	1083
99	4	3732	2788	emb x17337 SPAM	Straptococcus pneumoniae ami locus conferring aminopterin resistance	100	945	945
99	2	5249	3714	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
66	9	7262	1 5277	₹	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	1986	1986
101		216	1538	emb x54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	66	146	1323
101	~	1492	9171	emb X54225 SPEN	S.pneumoniae epuk a.J endA genes for 7 kDa protein and membrane endonuclease	66	228	228
101	-3	1694	1855	emb X54225 SPEN	S.pneumoniae epuk and endA genes for 7 kDa protein and membrane endonuclease	100	162	162
101		1701	2582	emb x54225 SPEN	S.pneumoniae epuk and endk genes for 7 kDa protein and membrane endonuclease	100	882	882
103	_	5556	5041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	1 001	396	516
104	~	1347	1556	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	83	206	210
						*******	*********	

S. pneumoniae - Coding regions containing known sequences

Cont ig	ORF ID	Start (nt)	Stop (nt)	match acession	match gene name	percent	HSP nt length	ORF nt length	
105	2	5381	5028	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	86	353	354	
105	9	6089	5379	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	86	84	111	
107	7	2785	1880	emb X16022 SPPE	S.pneumoniae penA gene	- 86	72	906	
107	5	2913	4988	emb X16022 SPPE	S.pneumoniae penA gene	- 66	1692	2076	
107	9	4981	5595	emb X13136 SPPE	Streptococcus pneumoniae penA gene for penicillin binding protein 2B lacking N-term. (penicillin resistant strain)	91	107	615	
108	6	8906	8718	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	95	342	351	
108	112	11308	10922	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	- 66	199	387	
109	-	2768	2241	emb 277725 SP1S	S.pneumoniae DNA for insertion sequence 151381 (966 bp)	96	61	528	
109	4	2688	2855	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	148	168	
109	<u> </u>	2862	3269	emts 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	408	
109	9	5320	3584	gb H18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	100	371	1737	
113	-	431	e .	gb #36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	95	429	429	
113	10	9788	8532	emb X99400 SPDA	S.pneumoniae dack gene and ORF	66	1257	1257	
	Ξ	9870	10985	emb x99400 SPDA	S.pneumoniae dacA gene and ORF	66	1116	1116	
114	e -	2530	2030	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	ς. Σ	481	201	
115	3_	11303	10932	gb u04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	372	372	
117	_	897	3302	emb x72967 SPNA	S.pneumoniae nanA gene	66	2402	2406	
117	2	3277	3831	emb X72967 SPNA	S.pneumoniae nank gene	- 66	237	\$55	
117		4327	3899	ab m36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	88	429	429	
121	7	1369	1941	ab u72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DmaJ (dnaJ) gene, partial cds	66	202	573	
121		2412	4253	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1842	1842	
122	8	5066	5587	gb u04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	49	451	522	
			 			• • • • • • • • • • • • • • • • • • • •	•		

S. pneumoniae - Coding regions containing known sequences

Contig	Ţ:	Start	Stop	match	match gene name		11 000	4
9	2	(at)	(ut)	acession		ident	length	length
125		1811	189	gb M36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase [[purC] genes, complete cds	92	66	1623
128	5-	12496	11204	emb 283335 SP28	S.pneumoniae dexB. capilA,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alia gene	91	705	1293
134	-	-	492	emb Y10818 SPY1	S. pneumonlae spsA gene	66	203	492
134	~	556	2652	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	685	2097
134	-	1160	837	emb Y10818 SPY1	S. pneumoniae spsk gene	86	324	324
134	-	3952	2882	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	1 86	215	1071
134	œ .	7992	9848	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	285	1857
134		9846	10622	gb U12567	Streptococcus pneumoniae P13 glycerol-1-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	570	777
134	2	10805	11122	96 012567	Streptococcus pneumoniae Pl3 glycerol-1-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpP) and ORF3 genes, complete cds	000	318	318
137	£	7970	8443	de no 9 2 3 9	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon. (cps19fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds	06	420	474
137	7	8590	8775	emb Z83335 SPZ8	S. pneumoniae dexB, capl(A, B, C, D, E, P, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene	96	174	186
137	12	8773	8967	emb 283335 SP28	S. pneumoniae dexB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene	86	195	195
137	116	9223	9687	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	446	465
137	=	9641	110051	emb 277727 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (823 bp)	96	293	411
139	2	12998	112702	emb x63602 SPBO	S. pneumoniae mmsA-Box	1 06	234	297
141	=	7805	8938	emb 249988 SPMH	Streptococcus pneumoniae mush gene	1 66	338	1134
141	6	8936	10972	emb 249988 SPMM	Streptococcus pneumoniae mmsA gene	1 66	2037	2037
141	21	11472	12467	emb 249988 SPHM	Streptococcus pneumoniae masA gene	100	76	966
142	2	1 257	814	gb н80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	86	174	558
142		787	1 957	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	142	171
142	-	980	3022	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	95	1997	2043 {
					+ 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0			

S. pneumoniae ~ Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
142	S	3020	3595	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	153	1 tengen
145	-	-	219	emb 235135 SPAL	S. pneumoniae alia gene for amia-like gene A	97	185	219
145	7	171	1994	[95]120556]	Streptococcus pneumoniae plpA gene, partial cds	66	1811	1824
145	-	2287	7599	emb 247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs	66	1052	5313
145	-	9934	7766	65 м90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete	66	2169	2169
145	s	10488	9922	gb M90527	Streptococcus pneumoniae penicillin-binding protein (pdnA) gene, complete cds	66	512	295
146	-	159	7	emb 282002 SP28	S. pneumoniae pcpB and pcpC genes	86	156	156
146	~	344	96	emb 282002 SP28	S. pneumoniae pcp8 and pcpC genes	86	255	255
146	116	11795	10794	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	85	276	1002
147	=	10678	10202	emb 221702 SPUN	S.pneumoniae ung gene and mutx genes encoding uracil-DNA glycosylase and 8- oxodcTP nucleoside triphosphatase	86	477	477
147	122	11338	10676	emb 221702 SPUN	S.pneumoniae ung gene and mutx genes encoding uracil-DNA glycosylase and 8-oxodGTP nucleoside triphosphatase	66	663	663
148	7	6006	8815	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	06	180	195
156	-	1154	1402	emb[x63602 spBo	S. pneumoniae mnsA-Box	94	185	249
159	=	9048	8521	gb M36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	526	528
160		-	147	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	100	142	147
160	7	179	868	emb[226851 SPAT	S.pnaumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	66	720	720
160		906	1406	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	96	105	501
160	~	1373	1942	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	87	306	570
161	-	-	984	emb x77249 SPR6	S.pneumoniae (R6) ciaR/ciaH genes	1 66	984	984
1 161		6910	7497	emb x83917 SPGY	S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit	1 66	437	588
161	- i	7443	9386	emb X83917 SPGY	S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit	86	1912	1944
1 163		~	2155	gb L20559	Streptococcus pneumoniae Exp5 gene, partial cds	98	327	2154
						+	+	+1-1-1-1

S. pneumoniae - Coding regions containing known sequences

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORP nt
165		32	1618	gb[J01796]	S. pneumoniae malx and malk genes encoding membrane protein and amylomaltase, complete cds, and malk gene encoding phosphorylase	66	1587	1587
165	~	1608	3902	gb J01796 	S. pneumoniae malX and malM genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase	100	280	2295
166		378	•	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	100	375	375
166		1507	320	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	1188	1188
166		3240	1432	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	1 66	563	18081
167		1077	328	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	76	155	750
167	-	1844	666	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	98	405	846
167	_; _;	2714	1842	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	1 6	604	873
1 167	— i	3399	2641	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	66	703	759
168		-	2259	gb 120558	Streptococcus pneumoniae Exp4 gene, partial cds	1 66	282	2259
170	92	1338	7685	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	95	315	348
172		2462	4981	gb U47625	Streptococcus pneumoniae formate acetyltransfarase (exp72) gene, partial	97	365	2520
175		573	20	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	68	353	354
175	-	1843	3621	emb 247210 SPDB	S.pneumoniae dexB, capla, capla and caplC genes and orfs	95	0 0	- 0000
176	5	3984	2980	emb[267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	2 2 2		******
178	-	-	425	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf			5007
179		426	٥ر	emb 283335 SP28	S.pneumoniae dexB, capi[A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alla gene	- 66	338	357
180	-	3084	1855	emb x95718 SPGY	S.pneumoniae gyrk gene		182	0000
186	-	714	7	emb 279691 SOOR	S.pneumoniae yorf [A, B, C, D, E], ftsL, pbpX and regR genes	- 86	- 65	1000
186	~	2254	809	emb[279691 SOOR	S.pneumoniae yor[[A,B,C,D,E], ftsL, pbpX and regR genes	- 86	318	1 2 7 9 1
186	-	707	880	emb 279691 500R	S.pneumoniae yorf(A,B,C,D,E), ftst, pbpX and regR genes		7.7.	
189		~	259	gb U72720	Streptococcus pneumoniae hast shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	- 66	258	258
189	7	009	385	95/072720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	86	204	216
				+			-	-

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	percent	HSP nt	ORF nt
189		1018	851	gb U72720	Streptococcus pneumoniae heat shock protain 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	168	1 tength
189		1012	2154	gb U72720 	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	- 66	1062	1143
191	6	7829	7524	emb(x63602 SPBO	S.pneumonlae mmsA-Box	95	234	305
194		4	729	[gb[H36180]	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	91	728	729
199	7	7111	881	emb 283335 SPZB	S.pneumoniae dexB, cap1(A, B, C, D, B, F, G, H, I, J, K) genes, WTDP-rhamnose biosynthesis genes and allA gene	96	211	237
199	-	1499	1762	emb 283335 SP28	S.pneumoniae dexB. capila, B. C.D. E. F. G. H. I. J. Kl genes, dTDP-rhamnose biosynthesis genes and alia gene	68	248	264
199	5	1781	2284	emb Z83335 SPZ8	S.pneumoniae dexB. capilA.B. C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	504	504
203		1977	337	gb L20563	Streptococcus pneumoniae Exp9 gene, partial cds	- 66	342	1641
204		1145	-	gb L36131	Streptococcus pneumoniae expl0 gene, complete cds, recA gene, 5' end	66	1143	1143
208		65	2296	gb U89711	Streptococcus pneumoniae pneumococcal surface protein A PspA (pspA) gene, complete cds	06	471	2238
213		2455	2123	emb 283335 SP28	S.pneumoniae dexB, capl A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	96	332	333
216		368	22	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
216	_	2650	2327	gb M28678	S.pneumoniae promoter sequence DNA	86	98	124
222	-	417	-	emb 283335 SP28	S. pneumoniae dexB. capl(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	***	414	414
1 227		5266	4238	emb AJ000336 SP	Streptococcus pneumoniae 1dh gene	- 66	1029	1020
239		-	804	gb H31296	S.pneumoniae recP gene, complete cds		484	7 7 6
247		1625	1807	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	178	183
249		921	1364	emb 283335 SP28	S. pneumoniae dexb, capila, B, C, D, E, F, G, H, I, J, Kl genes, dTDP-rhamiose biosynthesis genes and alia gene	96	443	444
253		362	e	gb M36180	Streptococcus pneumoniae transposese, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	- 66	360	360
253		1238	2050	emb 283335 SP28	S. preumoniae dexB, capl(A, B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	95	420	813
•				+				-

S. pneumoniae - Coding regions containing known sequences

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
253	<u>•</u>	2069	2572	emb 283335 SP28	S.pneumoniae dexB. cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose blosynthesis genes and aliA gene	97	504	504
255	-		800	emb 282002 SP28	S pneumoniae pcp8 and pcpC genes	1 66	511	1000
255	~	198	1 1841	emb 282002 SP28	S. pneumoniae pcp8 and pcpC genes			06/
255	3	2493	1969	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf		7/0	1044
1 257	2	985	077	emb[x17337[SPAM	rring	7.		525
257	7	1245	907	gb M36180		92	339	339
267	2	495	1208	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetese (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	95	84	714
267		1291	722	95 016156	Streptococcus pneumoniae dihydroptaroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	- 6	755	987
267		2261	3601	gb[U16156]	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	86	1341	1341
267	5	3561	4136	gb[016156]	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulh), guanosine triphosphate cyclohydrolase (sulc), aldolase-pyrophosphokinase (sulD) genes, complete eds	66	576	576
267	9	4164	4949	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthecase (sulb), quanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	66	748	786
267	_	5544	5140	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetease (sulb), guanosine triphosphate cyclohydrolase (sulc), aldolase pyrophosphokinase (sulD) genes, complete cds	100	186	405
268	7	1793	1990	emb x63602 SPBO	S.pneumoniae masA-Box			
172	-	562	104	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds		134	198
291	-	75	524	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450	459
291	~	1001	525	emb 283335 SP28	S.pneumoniae dexB, capila, B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and alla gene	87	205	774
291	~	807	559	emb 283335 SP28	S. pneumoniae daxB, cap1(A, B, C, D, E, F, G, H, I, J, X) genes, dTDP-rhamnose biosynthesis genes and alia gene		170	249
291	-	1374	1099	gb[H36180]	Steptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	88	264	276

S. pneumoniae - Coding regions

91 299 100 233 94 89 97 102 95 435		
emb 281315 SP28 S.pneumoniae pcpA gene and open reading frames emb 281315 SP28 S.pneumoniae dexb, capi(A, B,C,D,E,F,G,H,I,J,K) genes, qtpp-rhamnose gb U41715 Strept coccus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds c subunit c subunit c subunit emb 2267719 SPPA S.pneumoniae parC, parE and transposase genes and unknown orf emb 2831315 SP28 S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,I,J,K) genes, dTpp-rhamnose biosynthesis genes and allh gene	, -;;;;	-;;;;;;;;;;
Emb 283335 SP28 S.pneumoniae darB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, qTOP-F, biosynthesis genes and allA gene	155 SPZ8 SEZ8 SEZ	
35 SPAT	155 SPAT SPA	,,
39 SPPA	35 SP28	
35 SPZ8 S.pneumoniae dexB. biosynthesis gener	35 SPZ8 S.pneumoniae dexB, blosynthesis gene	S.pneumoniae dexB. biosynthesis gener S.pneumoniae dexB. biosynthesis gener Streptococcus pneum
	35 SP28 S.pneumoniae dexB, biosynthesis gener	S. pneumoniae dexB, biosynthesis general Streptococcus pneum

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

s sim phosphoenolpyruvate:sugar phosphotransferase system enzyme I (Streptococcus heat-shock protein 82/neomcyn phosphotransferase fusion protein (hsp82-neo) phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris] phosphoenolpyruvate:sugar phosphotransferase system HPr (Streptococcus ATP-dependent protease proteolytic subunit (Streptococous salivarius) intrageneric coaggregation-relevant adhesin (Streptococcus gordonii) inosine monophosphate dehydrogenase (Streptococcus pyogenes) uracil phosphoribosyltransferase (Streptococcus salivarius) formyl-tetrahydrofolate synthetase (Streptococcus mutans) |pir|F60663|F606 |translation elongation factor Tu - Streptococcus oralis |pir|F60663|F606 |translation elongation factor Tu - Streptococcus oralis |UDP-glucose pyrophosphorylase {Streptococcus pyogenes} [neomycin phosphotransferase [Cloning vector pBSL99] lacD polypeptide (AA 1-326) (Staphylococcus aureus) lacz gene product (unidentified cloning vector) |gnl|PID|d100972 |Pyruvate formate-lyase (Streptococcus mutans) initiation factor IF-1 [Lactococcus lactis] thymidine kinase (Streptococcus gordonii) plasmin receptor (Streptococcus pyogenes) hypothetical (Haemophilus influenzae) DeoD (Streptococcus thermophilus) H+ ATPase (Enterococcus faecalis) GTP-BINDING PROTEIN ERA HOMOLOG. [unidentified cloning vector] YIXM (Streptococcus mutans) [lacD [Lactococcus lactis] match gene name salivarius Sp|P37214|ERA_S match acession gi | 1574495 |gi | 1276873 91 1743856 |gi|1850606 91 1103865 91 984927 91 310627 |gi|347999 gi | 153615 gi | 149396 gi | 924848 91 987050 |gi|153755 91 347998 91 208225 gi | 703442 91 | 581299 gi | 46606 7354 |gi|995767 91 153573 3513 |91|153763 Start (nt) ~ ~ -Contig ORF ~ ~ σ, **œ** ~ ~ ^ _ 3 60 ~

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

11 4734 5120 gi 40150	match match gene name cession	e in	% ident	length (nt)
1 53 1297 gil 47341 5 5 5 5 5 5 5 5 6 6		93	87	387
1 3 299 gn1 PID d101166 1 5 1924 3462 g1 142462 1924 3462 g1 142462 1924 3462 g1 1773264 1 16 564 g1 149394 1 197 3 g1 295259 3 1192 1976 g1 149396 1 197 3 g1 295259 1 197 197 g1 149396 1 1982 197 g1 149396 1 2 1054 1462 g1 149396 1 2 266 g1 149396 1 2 2066 g1 1850607 1 2 2066 g1 185060 1 1 2 2066 g1 185060 1 1 2 2066 g1 185060 1 1 1 2 2066 g1 18508 1 1 2 2065 2469 ptr S07223 RSBS 6 9539 g1 141065 8 4765 6153 gn1 Ptr d100347 1 1 1 1 1 1 1 2 2065 2469 ptr S0723 RSBS 6 9539 g1 185504 1 1 1 1 1 1 1 1 1	antitumor protein (Streptococcus pyogenes)	93	87	1245
3 695 1093 91 142462 5 1924 3462 91 1773264 1 16 564 91 149394 1 197 3 91 295259 3 1392 1976 91 1374496 1 197 3 91 149410 4 5631 3937 91 149410 5 1054 1462 91 149410 6 4442 4726 91 149410 7 1442 4726 91 1856607 8 10750 9272 91 153740 9 11947 11072 91 153740 9 11947 11072 91 143065 1 2 2065 2469 917 507231 R585 6 9539 9390 91 143065 1 11119 9734 91 1815634 1 11119 9734 91 1815634 2 1798 278 91 183741 3 1839 91 153741 5 4113 4400 91 1196921 6 9533 9400 91 1353741 7 11119 9734 91 1155741 8 4765 6153 91 183741 9 113400 91 1196921 1 1 1 1 1 1 1 1 1 1	d101166 [ribosomal protein S7 (Bacillus subtilis]	93	84	297
5 1924 3462 gi 1773264 5 3757 3047 gi 535273 1 16 554 gi 149394 1 197 3 gi 295259 3 1392 1976 gi 149396 1 197 3 gi 295259 3 1265 1534 gi 149396 1 2 2061 1462 gi 149410 1 2 260 gi 149410 1 2 2066 gi 149410 1 2 2066 gi 1850607 1 2 2066 gi 1850607 1 2 2066 gi 1850607 1 2 2056 gi 187184 1 2 2056 gi 187184 1 3 2065 gi 187184 1 3 2065 2469 pir 507231R585 6 9539 gi 1875634 1 11119 9734 gi 1815634 1 11119 9734 gi 1815634 2 673 1839 gi 135771 1 2 2 2 2 2 2 2 2	_	93	98	399
5 3757 3047 g1 535273 1 16 564 g1 149394 1 197 3 g1 295559 3 1392 1976 g1 1395559 1976 g1 149396 19622 g1 149396 19622 g1 149396 19622 1976 g1 149396 19752 g1 149396 19752 g1 149396 19752 g1 149396 19752 g1 153740 19752 g1 153740 19752 g1 153740 19752 g1 153739 19752 g1 153739 19752 g1 143065 19752 g1 153741 g1 g1 153741 g1 g1 19752 g1 153741 g1 g1 g1 g1 g1 g1 g1	4 ATPase,	93	85	1539
1 16 564 91 149394 1 197 3 91 1295259 131 1976 91 1574496 121 120781 19927 91 110532 131652 1534 91 149310 12 1362 1462 91 149310 12 1362 1462 91 1856607 10 4442 4726 91 1856607 10 4442 4726 91 1856607 10 4442 4726 91 1856607 10 4442 4726 91 1871784 11 2 2065 91 153740 11 11 10 91 11 12 91 11 12 91 11 1	aminopeptidase	93	82	117
1 197 3 91 295239 1 192 1976 91 1574496 21 20781 19927 91 110632 21 20781 19927 91 110632 21 20781 3937 91 149910 2 260 1960 91 149910 2 260 1900 91 1850607 2 260 1900 91 287871 2 260 1900 91 287871 2 260 1900 91 183740 9 11947 11072 91 153740 9 11947 11072 91 153739 9 2065 2469 pir S07223 R5BS 6 9539 9390 91 141065 2 2 2 2 2 2 2 2 2	-	93	06	549
3 1192 1976 94 1574496	_	93	91 1	195
21 120781 19927 gil 110632 1265 1534 gil 149410 4 5631 3937 gil 149410 2 1362 4060 gil 14950607 10 4442 4726 gil 1850607 1 2 260 1900 gil 28731 1 2 2056 gil 28731 1 2 2056 gil 28731 1 2 2056 gil 153740 9 11947 11072 gil 153739 9 11947 11072 gil 153739 6 9539 gil 143065 8 4765 6153 gil 1815634 7 11119 9734 gil 1815634 7 11119 9734 gil 1815634 7 11119 9734 gil 1815634 7 11113 4400 gil 1196921 1 1 1 1 1 1 1 1 1	6 hypothetical [Haemophilus i	92	80	585
3 1265 1534 g1 149396 7 3662 4060 g1 149410 6 6 6 6 6 6 6 6 6	_	92	86	855
7 3662 4060 94 149410 4 5631 3937 911 191 e294090 2 3054 1462 91 1850607 10 4442 4726 91 1850607 1 2 2056 91 28781 1 2 2056 91 28781 1 2 2056 91 28781 1 2 2056 91 153740 9 11947 11072 91 153739 9 11947 11072 91 153739 9 11947 11119 9 9 91 141065 9 9 9 9 9 9 9 9 9	_	9.2	83	270
4 \$631 3937 gn1 P1D e294090 2 1054 1462 g1 1850607 10 4442 4726 pir \$17865 \$5178 1 2 260 1900 g1 287871 1 2 2056 g1 B7784 9 11947 11072 g1 153740 9 11947 11072 g1 153739 5 2065 2469 pir \$5722 R585 6 9539 9390 g1 141065 7 11119 9734 g1 P1D d100347 7 11119 9734 g1 1815634 7 11119 9734 g1 1815634 8 4765 6153 g1 R15206998 9 1798 278 g1 153741 1 5 4113 4400 g1 1196921 1 5 4113 4400 g1 1196921 10 10 1196921 10 10 10 1196921 10 10 10 1196921 10 10 10 1196921 10 10 10 10 10 10 1111 10 10	_	92	83	399
2 1054 1462 91 1850607 519mal 10 4442 4426 91 18517865 5178 Fiboson 2 260 1900 91 28771 9170EL 9 11947 11072 91 153740 910cross 9 11947 11072 91 153739 9100 91 153739 9100 91 143065 9100 910 911 914 911 9	294090 [fibronectin-binding protein-like protein A [Streptococcus gordonii]	91	95	1695
10 4442 4726 pir 517865 5178 ribosomal protein 517- 2 260 1900 gi 287871 groEL gane product (Lact 2 2056 gi 871784 Clp-like ATP-dependent protein 110750 9272 gi 153740 gucrose phosphorylase S 2065 2469 pir 507223 R5BS ribosomal protein L17- 6 9539 9390 gi 143065 hubst (Bacillus stearoth B 4765 6153 gi 2208998 dextran glucosidase baxs 2 1798 278 gi 2208998 dextran glucosidase baxs 2 673 1839 gi 153741 ATP-binding protein Strentlantlantlantlantlantlantlantlantlantla		91	84	1593
2 260 1900 91 287871 GroEL gene product [Lact 1 2 2056 91 871784 Clp-like ATP-dependent p 8 10750 9272 91 153740 sucrose phosphorylase 15 2065 2469 pir 2023	ribosomal protein S17	91	80	285
1 2 2056	groEk gene product (Lactococcus lactis)	91	82	1641
8 10750 9272 91 153740 sucrose phosphorylase S 11947 11072 91 153739 membrane protein Strept S 2065 2469 pir S07223 R5BS Tibosomal protein L17 - 6 9539 9390 93 141065 hubst Racillus stearoth S 4765 6153 911 Pip 4100347 Nat -ArPase beta subunit 7 11119 9734 91 1815634 91 91 91208998 dextran glucosidase DaxS 2 1798 278 91 2208998 dextran glucosidase DaxS 2 673 1839 91 153741 ArP-binding protein Strept 5 4113 4400 91 1196921 unknown protein Inserti	_	91 –	1 64	2055
9 11947 11072 91 153739 membrane protein (Strept 5 2065 2469 pir 507223 R5BS ribosomal protein L17 - 6 9539 9390 91 143065 hubst (Bacillus stearoth 8 4765 6153 911 Pip 910347 Na+ -ATPase beta subunit 7 11119 9734 91 1815634 91 91 91 9208998 dextran glucosidase paxS 2 1798 278 91 15208998 dextran glucosidase paxS 2 673 1839 93 155741 ATP-binding protein Str 5 4113 4400 91 1116921 unknown protein Inserti	_	91	94	1479
5 2065 2469 plr S07223 R585 Itbosomal protein L17- 6 9539 9390 g1 113065 hubst (Bacillus stearoth 8 4765 6153 g11 PlD d100347 Na+ -ATPase beta subunit 7 11119 9734 g1 1815634 g1 utamine synthetase typ 2 1798 278 g1 12208998 dextran glucosidase DaxS 2 673 1839 g1 153741 ATP-binding protein Str	membrane protein (Streptococcus mutans)	91	78	876
6 9539 9390 G1 143065	3 R5BS ribosomal	91	78	405
8 4765 6153 gn1 P1D d100347 7 11119 9734 gi 1815634 2 1798 278 gi 2208998 2 673 1839 gi 153741 5 4113 4400 gi 1196921	_	91	89	150
7 11119 9734 91 1815634 2 1798 278 91 12208998 2 673 1839 91 153741 5 4113 4400 91 1136921	100347 Na+ -ATPas	91	- 61	1389
2 1798 278 91 2208998 2 673 1839 91 153741 5 4113 4400 91 1196921	-	91	82	1386
2 673 1839 91 153741 5 4113 4400 91 1196921	9 dextran glucosidase DaxS [Streptococcus suis]	91	1 64	1521
5 4113 4400 91 1196921	ATP-binding protein (Streptococcus mutans)	91	85	1167
	1 unknown protein (Insertion sequence IS861)	91	71	288
- 1	3 A369 diacylglycerol kinase homolog - Streptococcus mutans	- 06	1 11	405

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	g ORF	Start (nt)	Stop (nt)	match	match gene name	sia .	1 ident	length	+
33	~	841	527	gi 1196921	unknown protein (Insertion sequence 18861)	06	70	315	- +
48	133	120908	19757	gn1 P1D e274705	[lactate oxidase [Streptococcus inlae]	06	80	1152	· + -
55	121	77761	118515	gn1 PID e221213	Clpx protein [Bacillus subtilis]	06	1 57	1263	
98	7	1717	1 977	gi 1710133	[flagellar filament cap [Borrelia burgdorfer]]	06	50	261	
- 65	-		909	91 1165303	[L3 (Bacillus subtilis]	06	75	909	
114		~	988	91 153562	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) (Streptococcus mutans)	06	80	987	
120	-	1345	827	gi 407880	ORFI (Streptococcus equisimilis)	06	75	519	
1 159	12	0694.	8298	91 143012	GMP synthetase [Bacillus subtills]	90	84	609	
166		4076	3282	 1661179 	high affinity branched chain amino acid transport protein (Streptococcus mutans)	06	78	795	
183	-	28	1395	gi 308858	ATP:pyruvate 2-0-phosphotransferase [Lactococcus lactis]	06	1 94	1368	
191	-	2891	1662	gi 149521	tryptophan synthase beta subunit [Lactococcus lactis]	- 06	78	1230	
198	7	1551	436	91 2323342	(AF014460) CcpA (Streptococcus mutans)	06	1 92	1116	
305	-	37	783	91 11573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	1 06	80 -	747	
8 : 	-	1 2285	3343	91 149434	putative Lactococcus lactis	89	1 87	1059	
46	8	1757	7362	5434 A454	ribosomol protein L19 - Bacillus stearothermophilus	89	1 94	216	
49	6	8363	110342	91 153792	recP peptide (Streptococcus pneumoniae)	89	83	1980	
18 1	-14	118410	19447	91 308857	ATP:D-fructose 6-phosphate 1-phosphotransferase [Lactoccccus lactis]	89	81	1038	
57	=	9896	10669	gn1 PID d100932	H2O-forming NADH Oxidase [Streptococcus mutans]	89	- 44	984	
	5	2418	2786	91 1165307	[S19 (Bacillus subtilis]	89	81 1	369	
	8	3806	4225	sp P14577 RL16_	50S RIBOSOMAL PROTEIN L16.	89	82	420	
65	118	8219	8719	91 143417	ribosomal protein SS [Bacillus stearothermophlius]	89	76	501	
73	6 !	6337	5315	91 532204	prs [Listerla monocytogenes]	1 68	70 1	1023	
92	-	3360	1465	gn1 PID e200671	lepA gene product (Bacillus subtilis)	89	76	1896	
66	=	12818	11919	gi 153738	membrane protein Streptococcus mutans	89	- 67	006	
1 120	2	3552	1300	91 407881	stringent response-like protein (Streptococcus equisimilis)	1 68	1 62	2253	
122	5	4512	2791	gn1 P1D e280490	unknown (Streptococcus pneumoniae)	- 68	81	1722	
					4 - 6 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		-+	********	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a sia	% ident	length (nt)
176	-	699	*	91 47394	S-oxoprolyl-peptidase Streptococcus pyogenes	89	78	999
177	9	3050	3934	gi 912423	putative [Lactococcus lactis]	89	11,	885
181		4033	5751	gi 149411	enzyme III [Lactococcus lactis]	88	80	1719
211	-	3149	2793	91 535273	aminopaptidase C (Streptococcus thermophilus)	89	83	357
361	-	431	838	91 1196922	unknown protein [Insertion sequence [S861]	- 68	1 02	408
34	71	11839	10535	sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS).	88	78	1305
38	<u> </u>	1646	2623	91 2058544	putative ABC transporter subunit ComYA [Streptococcus gordonil]	88	78	978
54	-		227	gn1 PID d101320	Yqgu (Bacillus subtilis)	88	99	225
52	~	611	1468	gn1 PID e134943	putative reductase 1 (Saccharomyces cerevisiae)	88	75	858
65	2	5497	6909	A29102	ribosomal protein L5 - Bacillus stearothermophilus	1 88 1	75	573
99	20	9030	9500	91 2078381	ribosomal protein L15 (Staphylococcus aureus)	88	83	671
1 78	<u> </u>	3636	1108	gn1 PID d100781	lysyl-aminopeptidase (Lactococcus lactis)	88	- 08	2529
106	112	12965	12054	91 2407215	(AF017421) putative heat shock protein HtpX (Streptococcus gordonii)	88	72	912
107	7	219	962	gn1 PID e339862	putative acylneuraminate lyase (Clostridium tertium)	88	75	744
111	8	14073	10420	gi 402363	RNA polymerase beta-subunit (Bacillus subtilis)	88	74	3654
126	6	13096	12062	gn1 PID e311468	unknowm [Bacillus subtilis]	88	74	1035
140	12	19143	18874	[g1 1573659	H. influenzaa predicted coding region HI0659 (Haemophilus influenzae)	88	61	270
144	-	394	555	gn1 PID e274705	lactate oxidase (Streptococcus Inlae)	88	75	162
148	-	2723	3493	g1 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	88	89	711.
160	8	5853	6278	91 173267	ATPase, epsilon subunit [Streptococcus mutans]	88	65	426
771	-	0771	2885	gi 149426	putative (Lactococcus lactis)	88	72	1116
211	9	4140	3613	[91 535273	aminopeptidase C (Streptococcus tharmophilus)	88	74	528
231	7	580	957	91 40186	homologous to E.coli ribosomal protein L27 (Bacillus subtilis)	988	78	378
092	- 2	2387	2998	91 1196922	unknown protein [Insertion sequence IS861]	88	69	612
1 291	9	2017	3375	gn1 PID d100571	adenylosuccinate synthetase (Bacillus subtilis)	88	75	1359
319	7	658	1317	91 603578	serine/threonine kinase [Phytophthora capsici]	98	88	342
40	5	4353	4514	91 153672	lactose repressor (Streptococcus mutans)	87	96	162
					+=====================================			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	11111							
Contig	08F	Start (nt)	Stop (nt)	match	match gene name	e sin	* ident	length (nt)
49	2	110660	10929	[91 1196921	[unknown protein [Insertion sequence 1886]]	87	72	270
69	-	3140	3808	91 1165309	S3 (Bacillus subtilis)	87	1 67	699
69	12	6623	7039	91 1044978	ribosomal protein S8 (Bacillus subtilis)	87	73	417
75		5411	6625	91 1877422	galactokinase Streptococcus mutans	87	78	1215
80		703	2805	gn1 PID d101166	elongation factor G Bacillus subtilis)	87	191	2103
82	-	541	248	9111196921	unknown protein (Insertion sequence IS861)	- 48	69	294
140	123	25033	123897	gn1 PID e254999	phenylalany-tRNA synthetase beta subunit (Bacillus subtilis)	87	74	1137
214	<u></u>	10441	8516	91 2281305	glucose inhibited division protein homolog GidA (Lectococcus lactis	87	75	1926
1 220	~	2742	874	gn1 PID e324358	product highly similar to elongation factor EF-G (Bacillus subtilis)	87	1 57	1869
1 260	-	2096	2389	gi 1196921	unknown protein (Insertion sequence 19861)	87	72	294
1 323	-	27	059	91 897795	[30S ribosomal protein [Pediococcus acidilactici]	87	13	624
1 357	-	154	570	gi 1044978	ribosomel protein S8 (Bacillus subtilis)	87	73	417
49	=	110927	111445	gi 1196922	unknown protein (Insertion sequence 15861)	98	63	519
- 59	112	7461	9224	gi 951051	relaxase (Streptococcus pneumonlae)	98	89	1764
65	7	1553	2401	pir A02759 R5BS	ribosomal protein L2 - Bacillus stearothermophilus	98	77	849
65	123	10957	11610	91 44074	adenylate kinase [Lactococcus lactis]	98	76	654
82	7	4374	4856	91 153745	mannitol-specific enzyme III (Streptococcus mutans)	98	72	483
102	-	4270	4986	gn1 PID 6264705	OMP decarboxylase [Lactococcus lact(s]	98	76	717
106	9	7824	6880	gn1 PID e137598	aspartate transcarbamylase [Lactobacillus leichmannii]	98	89	945
107	-	1	273	gn1 P1D e339862	putative acylneuraminate lyase (Clostridium tertium)	86	1.17	273
=======================================	-	10432	6710	[gn1 PID e228283	DNA-dependent RNA polymerase (Streptococcus pyogenes)	98	80	3723
131	-	5704	4892	91 1661193	polipoprotein diacylglycerol transferase (Streptococcus mutans)	86	112	813
134	-	6430	7980	91 2388637	glycerol kinase (Enterococcus faecalis)	98	1 67	1551
146	=	1 7473	6583	91 1591731	melvalonate kinase (Methanococcus jannaschil)	98	72	891
153	~	565	2010	91/2160707	dipeptidase (Lactococcus lactis)	98	78	1416
154		~	1435	gi 1857246	6-phosphogluconate dehydrogenase [Lactococcus lactis]	98	74	1434

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	eis 7	1 ident	length (
161		5025	6284	gi 47529	Unknown (Streptococcus salivarius)	98	99	1260
184		~	1483	91 642667	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase [Streptococcus mutans]	98	33	1482
210	80	1 3659	6571	91 153661	[translational initiation factor 1F2 [Enterococcus faecium]	98	76	2913
250	7	2	187	91 1573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	98	89	186
36	-	1 2644	3909	[91 2149909	cell division protein [Enterococcus faecalis]	88	73	1266
38	7	2475	1 3587	91 2058545	putative ABC transporter subunit ComYB [Streptococcus gordonii]	85	72	1113
38	- 	1 3577	3915	gi 2058546	ComYC Streptococcus gordonii	85	80	339
52	5	1. 2797	3789	gn1 P1D d101316	YqfJ (Bacillus subtilis)	88	72	993
1 82	2	4915	6054	91 153746	mannitol-phosphate dehydrogenase (Streptococcus mutans)	85	68	1140
83	115	14690	15793	gi 143371	phosphoribosyl aminoimidazole synthetase (PUR-M) (Bacillus subtilis)	85	69	1104
87	~	1 1417	2388	91 1184967		85	69	972
108	_	2666	3154	91 153566	ORF (19% protein) [Enterococus faecalis]	88	67	489
127	- 5	312	692	gi 1044989	ribosomal protein S13 (Bacillus subtilis)	88	72	381
1 128	<u></u>	1534	2409	91 1685110	tetrahydrofolate dehydrogenase/cyclohydrolasa (Streptococcus thermophilus)	1 85	112	876
137	_	2962	4767	gn1 P1D d100347	Na+ -ATPase alpha subunit (Enterococcus hirae)	85	74	1806
071	2	2622	709	gn1 P1D d102006	(ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. (Bacillus subtilis)	88	70	1914
187	5	3760	4386	191 727436	putative 20-kDa protein [Lactococcus lactis]	85	69	627
233	7	728	1873	gi 1163116	ORF-5 [Streptococcus pneumonlae]	85	1 49	1146
234	~	962	1255	gi 2293155	(AF008220) Ytia (Bacillus subtilis)	85	61	294
240	-	309	1931	gi 143597	CTP synthetase (Bacillus subtilis)	85	1.07	1623
9	-	199	1521	191 508979	GTP-binding protein (Bacillus subtilis)	84	72	1323
10	7	4375	3443	gn1 PID e339862	putative acylneuraminate lyase (Clostridium tertium)	94	70	933
14	-	63	2093	91 520753	DNA topoisomerase I (Bacillus subtilis)	84	69	2031
19	7	1793	2593	91 2352484	(AF005098) RNAseH II (Lactococcus lactis)	84	- 89	801
20	= 1	117720	19687	gn1 PID d100584	cell division protein (Bacillus subtilis)	84	1 11	1968
22	28	21723	20884	gi 299163	alanine dehydrogenase (Bacillus subtilis)	84	89	840
							+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

			40000000					
Contig	ORF ID	Start (nt)	Stop (nt)	match	match gene name	sia .	* ident	length
30	10	7730	6792	gn1 PID d100296	[fructokinase (Streptococcus mutans)	84	2,4	0.00
33	.6	1 5650	5300	91 147194	phnA protein (Escherichia coli)	3		600
36	[22	121551	120772	91 310631	APP binding protein [Streptococcus gordonii]			100
48	-	2837	1 2505	91 882609			7/	08/
58	-	4	1516	gi 450849	amylase [Streptococcus bovis]	70	60 5	333
59	21	6715	1 7116	g1 951053	ORF10, putative (Streptococcus pneumoniae)	70		14/0/
62	-	12	644	91 806487	ORF211: putative (Lactococcus lactis)	78		700
68	117	6777	8207	91 1044980	ribosomal protein Li8 [Becillus subtilis]	98		1 000
65	21	9507	10397	gi 44073	SecY protein [Lactococcus lactis]	9.6	84	
106	7	5474	2262	gn1 P10 e199387	carbamoyl-phosphate synthase [Lactobacillus plantarum]	98		
159	-	147	~	91 806487	ORF11; putative [Lactococcus lactis]	94	: [5	5135
163	*	4690	5910	91 2293164	(AF008220) SAM synthase (Bacillus subtilis)	2		
192	-	46	1308	91 95046	tripeptidase (Lactococcus lactis)	9.6		1221
348		671	φ	gi 1787753	(AECOD245) [3146; 79 pct identical to 336 amino acids of ADHL ZYMMO SW: P20368 but has 10 additional N-ter residues (Escherichia coli)	8	7.7	999
-	-	1572	3575	gi 143766	(thrSv) (EC 6.1.1.3) (Bacillus subtilis)			
6	9	3893	3417	gn1 P1D d100576	single strand DNA binding protein [Bacillus subtilis]		9	
71	115	7426	1 8457	91 520738	comA protein (Streptococcus pneumoniae)			
20		_	14144	gn1 P1D d100583	unknown [Bacillus subtilis]			1 200
2	4	3358	2606	91 1788294	(AE000290) o238; This 238 aa orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 aa protein YEBC_ECOLI 5W: P24237 (Escherichia coli)	8	74	753
28	9	3304	3005	91 1573659	H. influenzae predicted coding region HI0659 [Haemophilus influenzae]	83	57	- 002
1 35	2	5108	3867	91 311707	hypothetical nucleotide binding protein (Acholeplasma laidlawii)	83		1242
55	- 61	17932	17528	91 537085	ORF_f141 [Escherichia coli]	83	- 65	404
55	200	18539	17919	91 496558	orfx [Bacillus subtilis]	83	- 69	621
65	9	2795	3142	91/1165308	L22 (Bacillus subtilis)	83	- 64	348
68	9	6877	6683	gi 1213494	immunoglobulin Al protease (Streptococcus pneumoniae)	83	54	195
					· * * * * * * * * * * * * * * * * * * *			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	g ORF	Start (nt)	Stop (nt)	match	match gene name	N Sim	& ident	length
87	115	115112	114771	gn1 PID e323522	putative rpo2 protein (Bacillus subtilis		75	(100)
96	113	8963	9631	91 47394	5-oxoprolyl-peptidase Streptococcus pyogenes		5 5	750
9.6	-	-	263	91 1183885	(glutamine-binding subunit (Bacillus subtilis)			
120	-	1710	5233	gi 310630	rinc metalloprotease (Streptococcus gordonii)	5	3 2	107
127	-	1 2998	1 4347	91/1500567	M. jannaschil predicted coding region MJ1665 (Methanococcus jannaschii)	83		0767
137	-		440	91 472918	(v-type Na-ATPase (Enterococcus hirae)			
160	•	3466	4356	91/1773265	Affase, gamma subunit (Streptococcus mutans)		2	07
214	-	2278	2964	91 663279	transposase (Streptococcus pneumoniae)			
226	-	1 2367	2020	91 142154	[thioredoxin Symechococcus PCC6301]			180
303	<u>-</u>	e -	1049	gi 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus)		0, 1, 1	
303	- 2	11155	1931	91 289282	glutamyl-tRNA synthetase (Bacillus subtilis)			
9	=	115370	114318	gi 633147	ribose-phosphate pyrophosphokinase [Bacillus caldolyticus]	82		
7	-	299	96	gi 143648	ribosomal protein L2B (Bacillus subtilis)	82	1 69	400
6	-	1479	1090	gi 385178	unknown (Bacillus subtilis)	82	46	900
6	-	4213	3899	gn1 P1D d100576	ribosomal protein S6 (Bacillus subtilis)	R2 -		
12	9	4688	3942	gn1 P1D d100571	unknown [Bacillus subtilis]			
23	11	13422	14837	91 520754	putative (Bacillus subtilis)	68		
22	118	14897	115658	gn1 PID d101929	uridine monophosphate kinase (Synechocystis sp.)	2 2	3	
2	116	111471	10641	gml PID d101190	ORP4 (Streptococcus mutans)		7	70/
35	6	7400	6255	91 1881543	UDP-N-acetylglucosamine-2-epimerase (Streptococcus pneumoniae)	2		158
ŝ	2	8003	7533	91(1173519	riboflavin synthase beta subunit [Actinobacillus pleuropneumoniae]			917
8	32	23159	123437	91 1930092	outer membrane protein (Campylobacter jejuni)	- 6		1/2
52	14	13833	14765	gi 1142521	deoxyribodipyrimidine photolyase (Bacillus subtilis)	A 2 H		613
99	-	4737	1 1849	gn1 P1D d102221	(AB001610) uvra (Deinococcus radiodurans)	82	- 49	2000
62	-	2131	1457	91 2246749	(AF009622) thioredoxin reductase [Listeria monocytogenes]	82	63	675
11	:	16586	117518	gn1 P1D e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	82	- 09	933
23	=	9222	7837	anj PID d100586	unknown (Bacillus subtilis)	62	65	1386
							-+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF.	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
74	-		13771	gn1 PID d101199	alkaline amylopullulanase (Bacillus sp.)	83	89	3771
- 83	6	3696	3983	gn1 PID e305362	unnamed protein product [Streptococcus thermophilus]	82	52	288
98	11	110776	9394	191 683583	5-enolpyruvylshikimate-3-phosphate synthase [Lactococcus lactis]	82	1 69	1383
89	112	8295	9752	gi 40025	homologous to E.coli 50K (Bacillus subtilis)	82	99	1458
115	6	10347	8812	gn1 PID d102090	(ABG03927) phospho-beta-galactosidase 1 (Lactobacillus gasserl)	82	14	1536
118	-	-	1332	gn1 P1D d100579	seryl-tRNA synthetase (Bacillus subtilis)	82	11.	1332
151	<u>-</u>	4657	6246	pir 506097 5060	Type 1 site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain S - Citrobacter freundil	83	99	1590
173	9	4183	1 3503	gi 2313836	(AE000584) conserved hypothetical protein (Helicobacter pylori)	82	89	681
177	112	5481	7442	gn1 PID d101999	(AB001341) NcrB (Escherichia coll)	82	28	1962
193	~	178	576	pir S08564 R3BS	ribosomal protein S9 - Bacillus stearothermophilus	82	70	399
245	~	258	845	gi 146402	EcoA type I restriction-modification enzyme S subunit (Escherichia coli)	82	89	588
6	-	3400	3146	gn1 PID d100576	ribosomal protein S18 (Bacillus subtilis)	81	99	255
16	_	7484	8413	191 1100074	[tryptophany]-tRNA synthetase [Clostridium longisporum]	18	0,4	930
50	=	10308	13820	gn1 PIO d100583	transcription-repair coupling factor (Bacillus subtilis)	81	63	3513
38	~	1232	1606	91 [2058543	[putative DNA binding protein [Streptococcus gordonii]	181	63	375
45	- 5	1 3061	1751	gi 460259	[enolase [Bacillus subtilis]	18	67	1311
90	-	7	1267	gi 431231	uracil permesse (Bacillus caldolyticus)	18	61	1266
48		2453	1440	gn1 PID d100453	Mannosephosphate Isomerase (Streptococcus mutans)	81	70	1014
25	7	1106	336	gi 154752	transport protein (Agrobacterium tumefaciens)	181	64	177
65	[22	10306	10821	91 44073	SecY protein [Lactococcus lactis]	1 81	99	516
- 89	-	3874	2603	gi 556886	serine hydroxymethyltransferase [Bacillus subtilis]	91	69	1272
66	9.	19126	118929	gi 2313526	(AE000557) H. pylori predicted coding region HP0411 [Hellcobacter pylori]	81	75	198
106	_	8373	7822	gn1 P1D e199384	pyrR [Lactobacillus plantarum]	18	61	552
108	٠	5054	6877	gi 1469939	group B oligopeptidase PepB (Streptococcus agalactiae)	81	99	1824
113	115	15899	118283	pir S09411 S094	spoiis protein - Bacillus subtilis	181	65	2385
128		3359	3634	91 1685111	orf1091 (Streptococcus thermophilus)	81	- 69	276
				•				

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match	match gene name	sin	1 ident	length
								(nt)
151	- 1	830	3211	gi 304896	ECOE type I restriction-modification enzyme R subunit (Escherichia coli)	- E	59	2382
159	=	6722	1 7837	91 2239288	GMP synthetase [Bacillus subtilis]	81	69	1116
170	-	739	458	[gn1 P1D d102006	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)	81	55	282
191		1759	893	gi 149522	[tryptophan synthase alpha subunit [Lactococcus lactis]	81	65	867
214		2290	1994	gi 157587	reverse transcriptase endonuclease [Drosophila virilis]	81	43	297
1 217	4	4415	4008	91 466473	cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)	81	59	408
262	7	569	868	91 153675	[tegatose 6-P kinase [Streptococcus mutans]	81	89	300
299		.663	7	gn1 PID 6301154	StySKI methylase (Salmonella enterica)	81	09	099
1 366	2	376	83	gi 149521	[tryptophan synthase beta subunit [Lactococcus lactis]	81	9	294
13	01	8766	9242	91 1216490	DNA/pantothenate metabolism flavoprotein (Streptococcus mutans)	80	1 49	1 774
17	=	0509	5748	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	80	67	303
1,1	91	8455	9906	91 703126	leucocin A translocator (Leuconostoc gelidum)	80	59	612
18		2440	1613	91 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschil)	80	85	828
1 27	_	4248	1579	91 452309	valy1-tRNA synthetase (Bacillus subtilis)	80	69	2670
28	-	3671	3288	191 1573660	H. influenzae predicted coding region H10560 (Haemophilus influenzae)	80	59	384
32	7	905	1933	gn1 PID e264499	dihydroorotate dehydrogenase B [Lactococcus lactis]	80	99	1032
39	-		1266	gn1 P1D e234078	hom [Lactococcus lactis]	80	63	1266
52	5	4363	3593	91 1183884	ATP-binding subunit (Bacillus subtilis)	80	57	177
52	5	4550	4744	91 2198820	[AF004225] Cux/CDP(1B1); Cux/CDP homeoprotein [Mus musculus]	80	1 09	195
65	= 1	7109	7486	gi 951052	ORF9, putative (Streptococcus pneumoniae)	80	68	378
69	-	1230	1550	pir A02815 R5BS	ribosomal protein L23 - Bacillus stearothermophilus	80	1 69	321
65	122	5174	5503	pir A02819 R5BS	ribosomal protein L24 - Bacillus stearothermophilus	80	70	330
99	6	9884	10687	91 2313836	(AE000584) conserved hypothetical protein [Helicobacter pylori]	1 08	99	804
82	~	648	2438	91 (622991	mannitol transport protein (Bacillus stearothermophilus)	80	65	1791
85		950	630	91 528995	polyketide synthase (Bacillus subtilis)	80	46	321
68	8	6870	5779	91 853776	peptide chain release factor 1 (Bacillus subtilis)	80	63	1092
93	112	8718	7438	gn1 Pt0 d101959	hypothetical protein (Symechocystis sp.)	- 08	09	1281
						-+		*******

S. pneumoniee - Putative coding regions of novel proteins similar to known proteins

106 5 6854 109 2 2160 124 9 4246 137 19 12655 140 19 19699 158 2 2474 171 10 7474 171 10 7474 181 1 2 313 1 27 329 2 1652 311 1 2 312 1 2 311 1 2 312 1 2	4 5751 6 13953 6 13953 6 13953 7 11376	gn1 PrD e199386		*	.+	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	·- - - - - -		glutaminase of carbamoyl-phosphate synthase [Lactobacillus plantarum]	08	9	1104
7 1 7 1 1 0 7 1 2 2 3 8 8 3		gi 40056	phoP gene product (Bacillus subtilis)	- 08	29	111
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		_	[30S ribosomal protein S16 [Bacillus subtilis]	- 08	- 69	294
1 2 1 1 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_ ; _ ;	gi 22813	phosphopentomutase (Lactococcus lactis cremoris)	80	99	1281
		[gi 15910	[NADP-dependent glutamate dehydrogenase [Glardia intestinalis]	80	68 1	1290
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		gi 517210	putative transposase Streptococcus pyogenes	- 80	1 0/	243
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 984	gi 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	- 80	65	1491
	1 7728	gi 39780	cyclophilin C-associated protein (Mus musculus)	80	1 09	255
7 7 7	619	di 149395	lacC (Lactococcus lactis)	80	99	618
	539	gi 143467	ribosomal protein S4 (Bacillus subtilis)	80	1 04	513
	828	1911533080	RecF protein (Streptococcus pyogenes)	80	63	795
	858	91 442360	ClpC adenosine triphosphatase [Bacillus subtilis]	80	- 88	957
	1 5580	91 149435	putative (Lactococcus lactis)	1 62	1 99	1269
23 1 1175	5 135	gi 1542975	AbcB (Thermoanserobacterium thermosulfurigenes)	1 66	61	1041
33 14 9244	1 8201	gn1 PID e253891	UDP-glucose 4-epimerase (Bacillus subtilis)	1 62	62	1044
36 3 1242	2633	gn1 PID e324218	[tsA [Enterococcus hirae]	79	- 85	1392
38 13 7155	6 8378	91 405134	acetate kinase (Bacillus subtilis)	1 64	58	1224
55 7 9011	6229	91 1146234	dihydrodipicolinate reductase (Bacillus subtilis)	1 64	1 95	783
65 19 8661	1 8915	91 2078380	ribosomal protein L30 (Staphylococcus aureus)	1 62	1 89	255
69 4 3678	3 2128	gn1 PID	unknown (Bacillus subtilis)	1 61	64	1551
69 9 7881	1 7279	91 677850	hypothetical protein (Staphylococcus aureus)	1 62	59	603
72 10 8491	1 9783		hypothetical protein (Symechocystis sp.)	19	62	1293
80 3 2906	1 7300	91 143342	polymerase III (Bacillus subtilis)	1 62		4395
82 14 13326	15689	gn1 PID e255093	hypothetical protein [Bacillus subtilis]	1 67		2364
86 13 12233	111118	gi 683582	prephenate dehydrogenase (Lactococcus lactis)	1 61	- 88	1116
92 3 940	1734	91 537286	triosephosphate isomerase [Lactococcus lactis]	1 60	1 59	795
98 6 4023	4742	gn1 P1D d100262	LivG protein (Salmonella typhimurium)	79	63	720

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig		-	: —-	match	match gene name	- sia	% ident	lenath
	<u> </u>		(uc)	acession				(ut)
66	12	16315	14150	91 153736	a-galactosidase (Streptococcus mutans)	96.	6.4	2166
107	_	5684	6406	gi 460080	D-alanine:D-alanine ligase-related protein Enterococcus faecalis	62	58	723
113	6	6858	6303	91 466882	pps1; B1496_C2_189 [Hycobacterium leprae]	62	64	1446
151	2	13424	112213	gi 450686	[3-phosphoglycerate kinase [Thermotoga maritima]	62	09	1212
162	7	1158	1 3017	91 506700	CapD (Staphylococcus sureus)	62	1.9	1860
177	~	2876	3052	91 912423	putative [Lactococcus lectis]	61	19	177
177	8	4198	4563	91 149429	putative [Lactococcus lactis]	64	61	366
187	-	1,2728	2907	gn1 PID d102002	[AB001488] FUNCTION UNKNOWN. [Bacillus subtilis]		53	180
189	-	1 3589	4350	gn1 PID e183449	putative ATP-binding protein of ABC-type (Bacillus subtilis)	66	19	762
191	5	4249	3449	91 149519	indoleglycerol phosphate synthase [Lactococcus lactis]	64	99	801
211	_	1805	1 2737	gi 147404	mannose permease subunit II-M-Man (Escherichia coli)	62	57	933
212	_	3863	3621	gn1 PID e209004	glutaredoxin-like protein (Lactococcus lactis)	79	58	243
215	-	1 987	715	gi 2293242	(AF008220) arginine succinate synthase (Bacillus subtilis)	1 62	64	273
323	~	530	781	gi 897795	[10S ribosomal protein [Pediococcus acidilactici]	61	1 69	252
380	-	1 694	2	91 1184680	polymucleotide phosphorylase (Bacillus subtilis)	19	64	693
384		655	239	gi 143328	phoP protein (put.); putative (Bacillus subtilis)	1 62	59	417
9	-	2820	4091	gi 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]	78	62	1272
8	-	05	1786	gi 149432	[putative [Lactococcus lactis]	78	63	17571
6	-	351	124	91 897793	1998 gene product (Pediococcus acidilactici)	78	1 68	228
115	8	7364	8314	gn1 P10 d100585	Cysteine synthetase A [Bacillus subtilis	78	63	951
20	01	9738	10310	gn1 PID d100583	stage V sporulation (Bacillus subtilis)	78	58	573
20	176	17165	117713	gi 49105	hypoxanthine phosphoribosyltransferase [Lactococcus lactis]	78	59	549
22		17388	118416	gn1 PrD d101315	YqfE (Bacillus subtilis)	78	09	1029
22	127	120971	20612	gi 299163	alanine dehydrogenase (Bacillus subtilis)	78	- 65	360
34	8	7407	7105	91 41015	aspartate-tRNA ligase (Escherichia coli)	78	55	303
35	₽	6257	5196	91 1657644	Cap8E [Staphylococcus aureus]	78	- 09	1062
							*********	*********

S. pneumoniae - Putative coding regions of novel proteins bimilar to known proteins

						•		
Contig	LID	Start (nt)	Stop (nt)	match	match gene name	# stm	• ident	length (nt)
9	=	9287	8001	91/1173518	GTP cyclohydrasa II/ 3,4-dihydroxy-2-butanone-4-phosphate synthase (Actinobacillus pleuropneumoniae)	78	88	1287
89	<u> </u>	22422	23183	91 2314330	(AE000623) glutamine AEC transporter, ATP-binding protein (glnQ)	82	88	762
52	~	2101	1430	91 1183887	integral membrane protein (Bacillus subtilis)	187	54	672
55	=	13605	12712	gn1 PID d102026	[AB002150] YbbP [Bacillus subtilis]	1 87	58	894
55	=	116637	115612	gn1 PID e313027	hypothetical protein (Bacillus subtilis)	78	51	1026
12	14	119756	19598	191 179764	calcium channel alpha-1D subunit [Homo sapiens]	78	57	159
74	Ξ	15031	14018	gi 1573279	[Holliday junction DNA helicase (ruvb) [Haemophilus influenzae]	78	57	1014
22	6	6623	1972	91 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	1 84 1	62	1350
18	717	12125	13906	91 1573607	L-fucose isomerase (fucI) [Haemophilus influenzae]	BL	99	1782
82	_	2423	4417	91 153744	ORF X; putative (Streptococcus mutans)	78	1 19	1995
B3	-13	16926	18500	91 (143373	phosphoribosyl aminoimidazole carboxy formyl formyltransferass/inosine monophosphate cyclohydrolase (PUR-H(J)) (Bacillus subtilis)	78	63	1575
83	120	20212	20775	gi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) (Bacillus subtilis)	78	64	564
92	- 5	165	878	gn1 P1D d101190	ORF2 (Streptococcus mutans)	78	62	714
86	8	5863	6069	91 2331287	[AF013188] release factor 2 (Bacillus subtilis]	78	63	1047
113		1071	2741	gi 580914	dnazx (Bacillus subtilis)	1 84 1	64	1671
127	-	1133	1 2071	91 142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	78	59	939
132	-	2782	497	91 1561763	pullulanase (Bacteroides thetafotaomicron)	1 84 1	58	2286
135	-	2698	1 3537	91 1788036	(AE000269) NH3-dependent NAD synthetase (Escherichia coli)	78	99	840
140	124	26853	25423	gi 1100077	phospho-beta-glucosidase [Clostridium longisporum]	187	64	1431
150	- 2	4690	4514	91 149464	smino peptidase [Lactococcus lactis]	1 86	42	177
152	7	-	1 795	91 639915	NADH dehydrogenase subunit (Thunbergía alata)	78	43	1 267
162	-	4997	1 4110	[gn1 P1D e323528	[putative YhaP protein [Bacillus subtilis]	78	- 49	888
181	0_	8651	7947	gi 149402	lactose repressor (lacR; alt.) [Lactococcus lactis]	1 87	48	105
200	7	3627	4958	gn1 PID d100172	Invertase [Zymomonas mobilis]	1 84	19	1332
203	-	1 3230	3015	gi 1174237	Cyck (Pseudomonas fluorescens)	78	57	216
					+ 1	*	*	*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

10	10	(nt)	(uc)	acession	match gene name	es in	# ident	(nt)
210	6	6289	27.17	gi 580902	ORF6 gene product (Bacillus subtilis)	78	42	384
214	•	3810	7672	gn1 P10 d102049	P. haemolytica o-sialoglycoprotein endopeptidase; P36175 (660) transmembrane [Bacillus subtilis]	78	09	1014
214	113	6322	8163	gi 1377831	unknown (Bacillus subtilis)	94	62	1842
217	-	6	7172	91 488430	alcohol dehydrogenase 2 (Entamoeba histolytica)	84	64	2709
223	e	2316	3098	91 1573047	spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]	78	65	783
268	-	742	so 	91 517210	putative transposase Streptococcus pyogenes	78	65	735
276	-	223	153	gn1 PID d100306	ribosomal protein L1 (Bacillus subtilis)	78	9	531
312	_	1 1567	1079	91 289261	comE ORF2 (Bacillus subtilis)	1 78	54	489
339	-	1117	794	91/1916729	CadD (Staphylococcus aureus)	18	53	678
342	~	762	265	91 1842439	phosphatidylglycerophosphate synthase (Bacillus subtilis)	78	- 65	498
383	-	757	e	91 1184680	polymucleotide phosphorylaso (Bacillus subtilis)	78	9	735
,	115	111923	111018	gi 1399855	carboxyltransferase beta subunit (Symechococcus PCC7942)	77	63	906
80	7	1698	2255	gi 149433	[putative [Lactococcus lactis]	11	59	558
17	14	6948	7550	gi 520738	comA protein (Streptococcus pneumoniae)	77	09	603
	112	9761	8967	gi 1000451	TreP (Bacillus subtilis)	7.6	43	795
36	14	111421	12131	91/1573766	phosphoglyceromutase (gpmA) [Haemophilus influenzae]	77	99	711
55	_	3836	4096	gi 1708640	YeaB (Bacilius subtilis)	77	55	261
61	-	8377	8054	gi 1890649	multidrug resistance protein LarA [Lactococcus lactis]	7.1	51	324
65	~	607	1254	gi 40103	ribosomal protein L4 [Bacillus stearothermophilus]	77	63	648
68		7509	7240	91 47551	MRP (Streptococcus suis)	7.	99	270
69	-	1083	118	gn1 PID e311493	unknown (Bacillus subtilis)	77	57	996
۲,	~	4583	4026	gn1 PID e281578	hypothetical 12.2 kd protein (Bacillus subtilis)	12	09	558
83	14	13104	14552	gi 1590947	amidophosphoribosyltransferase [Nethanococcus jannaschii]	11	36	1449
94	-	3006	5444	gn1 P1D e329895	[AJ000456] cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]	- 66	99	2439
96	=	8518	8880	gi 551879	ORF 1 [Lactococcus lactis]	-11	62	363
	=	14082	12799	12: 1163737			*	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1111771				**************************************				
Contig	ORP	Start (nt)	Stop (nt)	match	match gene name	a sim	* ident	length (nt)
106	-	361	1176	01 148921	[LicD protein (Haemophilus influenzae]	1 12	51	816
108	-	3152	4030	91 1574730	tellurite resistance protein (tehB) (Haemophilus influenzae)	1 11	58	879
118	-	3520	3131	gi 1573900	D-alanine permease (daga) [Haemophilus influenzae]	1 11	57	390
124	7	1796	1071	91 1573162	tRNA (guanina-N1)-methyltransferase (trmD) [Haemophilus influenzae]	1 "	58	726
126	-	5909	4614	gn1 PID d101163	Srb [Bacillus subtilis]	1 44	62	1296
128	- 2	630	1373	gn1 PID d101328	Yqiz (Bacillus subtilis)	1 11	58	744
130	-	-	1287	gn1 PID e325013	hypothetical protein (Bacillus subtilis)	1 4	61	1287
139	5	4388	3639	91 2293302	(AFO08220) YtqA [Bacillus subtilis]	1 11	59	750
140	Ξ	10931	9582	91 289284	cysteinyl-tRNA synthetase (Bacillus subtilis)	1 11	64	1350
140	118	119451	19263	191 517210	putative transposase (Streptococcus pyogenes)	1 11	99	189
141	- 5	976	1683	gn1 P1D e157887	[URF5 (as 1-573) [Drosophila yakuba]	1 11	50	1 801
141	7	2735	5293	gi 556258	sech [Listeria monocytogenes]	1 11	59	2559
144	- 5	671	2173	gn1 P1D d100585	lysyl-tRNA thynthetase [Bacillus subtilis]	1 11	61	1503
163	5	6412	7398	91 511015	dihydroorotate dehydrogenase A [Lactococcus lactis]	1 11	62	1 186
164	2_	7841	7074	gn1 PID d100964	homologue of iron dicitrate transport ATP-binding protein FecE of E. coli [Bacillus subtilis]	- 1	52	768
191	8	7257	5791	gi 149516	anthranilate synthase alpha subunit [Lactococcus lactis]	1 11	57	1467
198	8	5377	1 5177	gi 1573856	hypothetical (Haemophilus influenzae)	1 22	99	201
213	-	202	462	91/1743860	Brca2 (Mus'musculus)	1 11	50	261
250	2	231	509	gn1 P1D 8334776	[YibH protein (Bacillus subtilis]	1 11	09	279
289	_	7571	1276	gn1 PID d100947	Ribosomal Protein L10 (Bacillus subtilis)	1 11	62	462
292	- 5	1399	999	gi 143004	transfer RNA-Gln synthetase Bacillus stearothermophilus)	1.44	58	732
7	-	2734	1166	gn1 PID d101824	peptide-chain-release factor 3 (Synachocystis sp.)	1 9/	53	1569
-	23	18474	18235	gi 455157	acyl carrier protein [Cryptomonas phi]	1 9/	57	240
6	8	5706	4342	gi 1146247	asparaginyl-tRNA synthetase (Bacillus subtilis)	76	61	1365
07	5	4531	1 4385	gn1 P1D e314495	hypothetical protein (Clostridium perfringens)	76	53	147
18	7	1615	842	91 1591672	[phosphate transport system ATP-binding protein [Mathanococcus januaschii]	76	36	774
					◆ * * * * * * * * * * * * * * * * * * *		**********	+-+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

							•	
	137	27796	[28173	gn1 PID e13389	translation initiation factor IF3 (AA 1-172) (Bacillus stearothermonhius)	26	7	379
	9	3869	2682	gi 1773346	Cap5G (Staphylococcus aureus)	76	61	1188
9	28	21113	21787	91 2314328	(AE00062)) glutamine ABC transporter, permease protein (glnP) [Hellcobacter pylori]	92	52	675
52	12	12881	13786	91 142521	decoxyribodipyrimidine photolyase [Bacillus subtilis]			906
55	07	11521	110571	gn1 PID e283110	(emb (Staphylococcus aureus)	76	61	951
57	8	7824	6559	gi 290561	ol88 Escherichia col1	16	47	1266
62	5	2406	2095	gn1 PID e313024	hypothetical protein [Bacillus subtilis]	76	59	312
65	•	4223	4441	91 40148	129 protein (AA 1-66) [Bacillus subtilis]	76	58	219
68	~	1328	1 2371	gn1 PID e284233	anabolic ornithing carbamoyltransferase [Lactobacillus plantarum]	76	61	1044
69	80	7297	6005	gn1 P1D d101420	Pyrimidine nucleoside phosphorylase (Bacillus stearothermophilus)	76	61	1293
1 23	12	7839	7267	gn1 PID e243629	unknown (Mycobacterium tuberculosis)	76	53	573
14	2	8433	7039	gn1 PID d102048	C. thermocellum beta-glucosidase; P26208 [985] [Bacillus subtilis]	76	1 09	1395
80	5	7643	1 7936	91 2314030	(AEGG0599) conserved hypothetical protein (Helicobacter pylori)	76	61	294
82	115	16019	16996	gi 1573900	D-alenine permease (dagA) (Maemophilus influenzae)	76	56	976
63	61	18616	19884	91 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) (Bacillus subtilis)	36	09	1269
98	4	13409	112231	91 143806	Arof [Bacillus subtilis]	76	58	9711
87	-		1442	91 153804	Sucrose-6-phosphate hydrolase (Streptococcus mutans)	76	59	1440
87	16	15754	15110	[gn1 PID e323500	putative Gmk protein (Bacillus subcilis)	76	36	645
93	-	1769	1539	91 1574820	1,4-alpha-glucan branching enzyme (glgB) (Haemophilus influenzae)	1 94	46	231
94	-	15	365	91 144313	6.0 kd ORF (Plasmid ColE!)	1 94	1 66	315
116	~	2151	1678	91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	1 9/	59	474
123	9	3442	5895	gi 1314297	ClpC ATPase [Listeria monocytogenes]	1 9/	59	2454
126	~	2156	2932	gn1 PID d101328	YqiZ (Bacillus subtilis)	76	- 19	1 111
128	= +	6973	7677	gi 944944	purine nucleoside phosphorylase [Bacillus subtilis]	76	- 09	825
<u></u>	=	6186	5812	91 1674310	(AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium Mycoplasma pneumoniae	9,	- 44	375

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	sia .	* ident	length (nt)
139	7	3641	3192	91 229 3302	[AF008220] YtqA [Bacillus subtilis]	76	53	450
140	14	14872	12536	91 1184680	polynucleotide phosphorylase (Bacillus subtilis)	76	62	2337
143		2583	1 3905	g1 143795	transfer RNA-Tyr synthetase (Bacillus subtilis)	76	61	1323
170	9	5095	6114	gn1 PID d100959	ycg0 (Bacillus subtilis)	76	3	1020
180	7	1927	557	191 40019	ORF 821 (aa 1-821) [Bacillus subtilis]	76	53	1371
191		5815	5228	gi 551880	anthranilate synthase beta subunit [Lactococcus lactis]	76	61	588
195		3829	2444	191 2149905	[D-glutamic acid adding enzyme [Enterococcus faecalis]	1 94	1 09	1386
200		1914	3629	gi 431272	lysis protein (Bacillus subtilis)	76	58	1716
201		431	207	[gi 2208998	dextran glucosidase DexS Streptococcus suis	76	57	225
214	- 2	1283	2380	gi 663278	[transposase [Streptococcus pneumoniee]	76	55	1098
1 225		2338	3411	[gi[1552775	ATP-binding protein (Escherichia col1)	1 94	26	1074
233	-	7	724	(91/1163115	neuraminidase B (Streptococcus pneumoniae)	76	09	723
347	7	523	38	gi 537033	ORF_[356 (Escherichia coli)	76	9	486
356	7	842	165	gi 2149905	D-glutamic acid adding enzyme [Enterococcus faecalis]	76	61	678
366	-	734	348	91 149520	[phosphoribosyl anthranilate isomerase [Lactococcus lactis]	76	1 69	387
2	8	12599	11484	gi 1574293	[fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	75	61	1116
9	=======================================	12553	111894	gn1 PID d102050	ydik (Bacillus subtilis)	75	51	099
6	01	7282	6062	gi 142538	aspartate aminotransferase [Bacillus sp.]	75	35	1221
100	122	8080	7940	gi 149493	SCRF1 methylase [Lactococcus lactis]	75	1 95	141
18	- 5	4266	3301	gn1 Pr0 d101319	YqgH (Bacillus subtilis)	75	52	996
22	-	1838	2728	91 1373157	orf-X: hypothetical protein; Method: conceptual translation supplied by author [Bacillus subtilis]	75	62	891
30	=	9015	7828	91 153801	enzyme scr-II (Streptococcus mutans)	75	64	1188
12	5	2362	2030	91 2293211	(AF008220) putative thioredoxin (Bacillus subtilis)	75	53	333
32	6	7484	8359	gn1 P1D d100560	[formamidopyrimidine-DNA glycosylase (Streptococcus mutans)	75	61	876
88	-	1735	1448	81 413976	ipa-52r gene product [Bacillus subtilis]	75	53	288
£ -	91	6470	5769	91 533105	unknown (Bacillus subtilis)	75	96	702
						+	•••••••••	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

far	9 9	(nt)	(ut)	match acession	match gene name	a sin	å ident	length (nt)
33	112 68	6878	7183	pir A00205 FECL	[ferredoxin [4Fe-45] - Clostridium thermaceticum	1 75	95	306
36	1 181		~	91 2088739	(AF003141) strong similarity to the FABP/P2/CRBP/CRABP family of transporters (Caenorhabditis elegans)	75	£3	180
38 - 2	22 14510	- 1	15379	gi 1574058	hypothetical (Maemophilus influenzae)	27	95	018
84	33 (23398	- ;	24066	[gi 1930092	outer membrane protein (Campylobacter jejuni)	27	95	699
51	7	-	319	91 43985	nifS-like gene [Lactobacillus delbrueckii]	1 25		318
15	10 83	8318 1	11683	91 537192	CG Site No. 620; alternate gene names hs, hsp, hsr, rm; apparent frameshift in GenBank Accession Number X06545 [Escherichia coli]	75	80	3366
54	18 119566		20759	91 666069	orf2 gene product (Lactobacillus leichmannii)	75		1194
57	9 84	-;	7822	91 290561	0188 (Escherichia coli)	27	20	627
65	14 60	6072	6356	gi 606241	105 ribosomal subunit protein S14 [Escherichia coli]	25	64	285
70	4 3071	-	2472	gi 1256617	adenine phosphoribosyltransferase [Bacillus subtilis]	25	57	009
71 2	24 30399	į	29404	91 1574390	[C4-dicarboxylate transport protein [Haemophilus in[luenzae]	26	57	966
13	2 910	- ;	455	gn1 PID e249656	YneT (Bacillus subtilis)	27	57	456
	- 18	1810	491	91/1146219	28.2% of identity to the Escherichia coli GTP-binding protein Era; putative [Bacillus subtilis]	25	65	1320
82	6 63	6360	6536	91 1655715	BztD (Rhodobacter capsulatus)	75	55	177
83	6 1938	-	2975	gn1 PID e323529	[putative PlsX protein [Bacillus subtilis]	75	36	1038
93 1	11 73	7368	5317	91 39989	methionyl-tRNA synthetase Bacillus stearothermophilus	75	58	2052
93 1	13 94(9409	8699	gi (1591493	glutamine transport ATP-binding protein Q (Methanococcus jannaschil)	75	54	711
-	1 1795	- 56	42	gn1 PID e323510	Ylov protein (Bacillus subtilis)	1 25	57	1749
103	2 362		1186	gn1 PID e266928	unknown (Mycobacterium tuberculosis)	75	64	825
104	1 691	-		91 460026	repressor protein (Streptococcus pneumoniae)	1 57	54	225
113	5 2951		3883	9n1 PID d101119	ABC transporter subunit (Synechocystis sp.)	75	55	933
121	1 320	-	1390	91 2145131	repressor of class I heat shock gene expression HrcA (Streptococcus mutans)	75	58	1071
127	6 2614	-	3000	91 1500451	M. Jannaschii predicted coding region MJ1558 [Methanococcus jannaschli]	75	44	387
137 118	8 10082	Ì	10687	91 393116	P-glycoprotein 5 [Entamoeba histolytica]	75	52	909
149 [11	1 8499	-	9338	gn1 PID d100582	Unknown (Bacillus subtilis)	-		

S. pneumoniae - Putative coding regions of novel proteins bimliar to known proteins TABLE 2

Contig	ORF ID	Start (nt)	Stop (nt)	match acession	match gene name	A sim	* ident	length
151	9	9100	1 7673	91 40467	HsdS polypeptide, part of CfrA family [Citrobacter freundii]	75	57	1428
158	-	986	e -	gn1 PID e253891	UDP-glucose 4-epimerase [Bacillus subtilis]	75	5	700
172	8	5653	6774	gi 142978	glycerol dehydrogenase Bacillus stearothermophilus	75	3	
172	6	7139	9730	gn1 PID e268456	unknown (Mycobacterium tuberculosis)			7977
173	-	261	62	gn1 PID e236469	(ClOC5.6 [Caenorhabditis elegans]	2 2	00000	7607
185		3066	2014	91 1574806	spermidine/putrescine transport ATP-binding protein (potA) Haemophilus influenzae)	27	95	1053
1 191	9	5235	1	91 149518	phosphoribosyl anthranilate transferase [Lactococcus lacits]	24		
226	2	1774	1181	91 2314588	AE000642) conserved hypothetical protein (Helicobacter pyloxi)	24	, ,	707
231	-	1	153	gi 40173	homolog of E.coli ribosomal protein L21 (Bacillus subtilis)	22		766
1 234	-	7	418	91 2293259	(AF008220) YtqI (Bacillus subtilis)	35		
279	-	552	151	91(1119198	unknown protein (Bacillus subtilis)	75	9	
291	_	3558	1 3827	91 40011	ORF17 (AA 1-161) (Bacillus subtilis)	75	48	2.00.0
375	~	137	628	191 410137	ORFX13 [Bacillus subtilis]		88	400
9	20	_ !	17560	91 2293323	(AP008220) Ytd1 (Bacillus subtilis)	7.4	53	840
-	9	4682	6052	91 1354211	PET112-like protein (Bacillus subtilis)	74	09	1251
18	*	3341	1 2427	gni Pib dioi319	YqgI (Bacillus subtilis)	74	48	910
12	9	5885	4800	91 1072381	glutamyl-aminopeptidase (Lactococcus lactis)	74		7 9 8 0 5
24	7	739	548	91 2314762	(AE000655) ABC transporter, permease protein (yaeE) [Helicobacter pylori]	74	46	1 601
25	~	7	367	gn1 PID d100932	HZO-forming NADH Oxidase (Streptococcus mutans)	74		7 77
38	118	11432	12964	gi 537034	ORF_0488 [Escherichia coli]	74	57	1533
48	01	8924	6999	(91)1513069	P-type adenosine triphosphatase [Listeria monocytogenes]	24		7356
55	=	11964	11401	sn1 PID e283110	[femb [Staphylococcus aureus]	7.4		
61	7	1782	427	gi 2293216	(AF008220) putative UDP-N-acetylmuramate-alanine ligase [Bacillus subtilis]	7.4		
96	10	9414	8065	gn1 P10 d101325	YqiB (Bacillus subtilis)	74	7 7 7	7
83	7	999	926	pir C33496 C334	hisC homolog - Bacillus subtilis	74	- 58	261
86	6	8988	8080	91 683585	prephenate dehydratase [Lactococcus lactis]	74	55	906
						•		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	mis *	% ident	length
102	- 5	5005	5652	91 143394	OMP-PRPP transferase (Bacillus subtilis)	74	57	648
103	2	4364	3267	gn1 PID e323524	YloN protein (Bacillus subtilis)	74	62	1098
108	_	6864	7592	gn1 PID e257633	methyltransferase (Lactococcus lactis)	74	56	729
131	~	478	146	gn1 PID d101320	YqgZ [Bacillus subtilis]	74	45	333
133	7	1380	919	gn1 PID e313025	hypothetical protein [Bacillus subtilis]	74	99	462
137	6	6167	6787	gn1 PtD d100479	Na+ -ATPase subunit D (Enterococcus hirae)	74	53	621
149	4	3008	3883	gn1 PrD d100581	high level kasgamycin resistance (Bacillus subtilis)	7.4		9.0
157	~	243	824	gi [1573373	methylated-DNAprotein-cysteine methyltransferase (dat1) [Haemophilus influenzae]	74	84	582
164	9	3515	4249	gi 410131	ONFX7 (Bacillus subtilis)	74	48	735
167	^	5446	5201	91 413927	[hpa-]r gene product [Bacillus subtilis]	74	58	746
171	-	7	1818	gn1 PID d102251	beta-galactosidase Bacillus circulans	74	62	1818
172	-	1064	2392	91 466474	cellobiose phosphotransferase enzyme II'' (Bacillus stearothermophilus)	74	50	1329
185	7	326	m	91 1573646	Mg 12+) transport ATPase protein C (mgtC) (SP: P22037) (Haemophilus	74	89	324
188	2	1089	2018	gi 1573008	ATP dependent translocator homolog (msbA) (Haemophilus influenzae)	74	99	930
189	=	6491	7174	[gt 1661199	sakacin A production response regulator (Streptococcus mutans)	74	09	684
210	7	520	1287	91 2293207	(AF008220) Ytmg (Bacillus subtilis)	74	09	768
261		836	192	91 666983	putative ATP binding subunit (Bacillus subtilis)	74	55	645
263		1619	3655	gi 663232	Similarity with S. cerevisiae hypothetical 117.7 kD protein in subtelomeric Y' repeat region (Saccharomyces cerevisiae)	74	42	2037
265		844	1227	gi 49272	Asparaginase (Bacillus licheniformis)	74	64 1	384
368	-	-	942	191 603998	junknown (Saccharomyces cerevisiae)	74	39	942
-	116	_	11921	gn1 P1D d101324	Yqhx (Bacillus subtilis)	73	57	1417
17	01	5706	5449	05362	unnamed protein product (Streptococcus thermophilus)	73	47	258
31	~	522	244	gn1 PID d100576	single strand DNA binding protein (Bacillus subtilis)	1.57	55	279
32	9	5667	6194	gn1 pia dioi315	YqfG (Bacillus subtilis)	73	58	528
34	115	110281	9790		(AB001684) ORF42c (Chlorella vulgaris)	73	46	492
						*		*******

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match yene name	e is	* ident	length (nt)
40	112	9876	9226	1911113517	riboflavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	22	55	651
55	~	3592	839	gn1 PID d101887	(cation-transporting ATPase Pack (Synechocystis sp.)	73	09	2754
55	18	17494	16586	gn1 PID e265580	unknown (Mycobacterium tuberculosis)	נר	52	1 606
65	116	7213	1767	gi 143419	ribosomal protein L6 [Bacillus stearothermophilus]	13	09	555
99	~	3300	3659	gn1 PID e269883	LacF [Lactobacillus casei]	73	52	360
70	01	5557	5733	91 857631	envelope protein (Human immunodeficiency virus type 1)	73	1 09	1771
1,	-	6133	8262	gn1 P10 e322063	ss-1 4-galactosyltransferase (Streptococcus pneumoniae)	73	45	2130
72	-		851	gi 2293177	(AF008220) transporter [Bacillus subtilis]	73	20	849
92	_	7019	6195	gn1 PID d101325		13	99	825
96	77	10009	9533	91 1573086	uridine kinase (uridine monophosphokinase) (udk) [Haemophilus influenzae]	1 67	54	1. 477
80	_	8113	9372	gi 1377823	aminopeptidase (Bacillus subtilis)	73	1 09	1260
76	-2	3389	1668	gn1 PID d101954	dihydroxyacid dehydratase [Synechocystis sp.]	73	54	1722
86	6	6912	7619	gn1 PID e314991	FtsE [Mycobacterium tuberculosis]	13	54	1 807
108	=	10928	10440	gi 388109	regulatory protein (Enterococcus faecalis)	73	24	489
128	9	3632	4222	91 1685111	orf1091 (Streptococcus thermophilus)	73	63	591
138	-	1575	394	gi 147326	transport protein (Escherichia coli)	7.3	1 09	1182
140	=======================================	12538	111903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	13	55	636
162	5	5701	4991	gnt P1D e323511	putative YhaO protein [Bacillus subtilis]	7.3	20	711
1 164	-	2323	2790	91 1592076	hypothetical protein (SP.P25768) [Methanococcus jannaschii]	1.85	52	468
164	8	4815	5546	91 410137	ORFX13 [Bacillus subtilis]	73	56	732
170	5	4394	5302	gn1 PID d100959	homologue of unidentified protein of E. coli (Bacillus subtilis)	73	46	1 606
178		3893	4855	91 46242	nodulation protein B, S'end (Rhizobium loti)	13	26	963
204	9	9605	4278	gn1 P10 e214719	PicR protein (Sacillus thuringiensis)	73	41	819
213	~	832	2037	gi 1565296	ribosomal protein Si homolog; sequence specific DNA-binding protein [Leuconostoc lactis]	52		1206
231	~	84	287	191 40173	homolog of E.coll ribosomal protein L21 (Bacillus subtilis)	13	61	204
1 237	-	~	505	191 1773151	adenine phosphoribosyltransferase [Escherichia coli]	73	51	504
					▶ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*********	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a sia	# ident	length
269	-	2	691	gn1 P1D d101328	Yqix (Bacillus subtills)	73	36	069
289	7	1272	832	pir A02771 R7MC	ribosomal protein L7/L12 - Micrococcus luteus	64	99	441
343		 51	484	91 1788125	(AE000276) hypothetical 30.4 kD protein in man2-cspC intergenic region [Escherichia coli]	73	47	471
356	-	222	~	gi 2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)	73	20	219
,	2	3165	4691	gn1 PID d101833	amidase (Synechocystis sp.)	72	52	1527
,	6	7195	7647	gi 146976	nusB (Escherichia coli)	72	54	453
,	==	13743	13300	gn1 PID e289141	similar to hydroxymyristoyl-(acyl carrier protein) dehydratase (Bacillus subtilis)	72	29	444
22	13	15637	16224	gn1 PID d101929	ribosome releasing factor (Synechocystis sp.)	72	51	588
33	117	112111	111425	gn1 PID d101190	ORF3 (Streptococcus mutans)	72	55	687
34	_	1 7147	1 5627	1911396501	aspartyl-tRNA synthetase (Thermus thermophilus)	72	52	1521
38	-23	15372	16085	pir H64108 H641	L-ribulose-phosphate 4-epimerase (araD) homolog - Haemophilus influenzae (strain Rd KW20)	72	54	714
96	2	5094	6905	gn1 PID e254877	unknown (Mycobacterium tuberculosis)	72	1 95	1812
40	9	4469	4636	gi 153672	lactose repressor (Streptococcus mutans)	72	- 85	168
48	2	1459	1253	91 310380	Inhibin beta-A-subunit (Ovis aries)	72	33	207
48	29	21729	22424	91 2314329	(AE000623) glutamine ABC transporter, permease protein (glnP) (Helicobacter pylori)	72	49	969
05	5	4529	3288	gi 1750108	YnbA (Bacillus subtilis)	72	54	1242
51	6	1044	1 2282	gi 2293230	(AF008220) YtbJ (Bacillus subtilis)	72	54	1239
52	2	13681	13938	gi 142521	deoxyribodipyrimidine photolyase (Bacillus subtilis	72	45	258
55	-	841	35	gi 882518	ORF_0304; GTG start (Escherichia coli)	72	59	807
75	5	2832	3191	gn1 P1D e209886	mercuric resistance operon regulatory protein (Bacillus subtilis)	72	44	360
76	9	6229	1772	91 142450	ahrC protein (Bacillus subtilis)	72	53	459
1 79	- 5	5065	4592	91 2293279	(AF008220) YtcG (Bacillus subtilis)	72	46	474
87	-	14726	12309	gn1 PID e323502	putative PriA protein (Bacillus subtilis)	72	52	2418
91	-	444	662	gi 500691	MYO1 gene product (Saccharomyces cerevisiae)	72	80	219
91		4516	4764	gi 829615	skeletal muscle sodium channel alpha-subunit (Equus caballus)	72	38	249

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	: —-	Start	Stop	match	match gene name	- sia	1 t Ident	length
a !	=	(ac)	(nt)	acession				(nt)
95	~	2004	1717	gnl PID e323527	(putative Asp23 protein (Bacillus subtilis)	1 72	40	288
109	-	1452	118	gi 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	72	52	1335
126			2192	[gn1 PID d101831	glutamine-binding periplasmic protein (Symechocystis sp.)	72	9.0	2190
130	;	1735	2478	[g1 2415396	(AP015775) carboxypeptidase [Bacillus subtilis]	22	53	744
137	9	2585	2929	gi 472922	v-type Na-ATPase (Enterococcus hirae)	72	46	345
140	110	9601	1 9203	91 49224	URP 4 (Synechococcus sp.)	22	48	399
146	- 2	1906	1247	[gn1 P1D e324945	hypothetical protein (Bacillus subtilis)	72	45	099
147	~	2084	1083	gn1 P1D e325016	hypothetical protein (Bacillus subtilis)	72	96	1002
147		6156	5146	gi 472327	TPP-dependent acetoin dehydrogenase beta-subunit [Clostridium magnum]	72	36	1011
148	8	5381	6433	91 974332	[NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]	72	54	1053
148	=	10256	9675	gn1 Pro d101319	Yegn (Bacillus subtilis	72	05	582
159		4005	4949	91 1788770	(AE000330) 0463; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4°, PBPE_BACSU SW: P32959 (451 as) [Escherichia coli]	72	43	945
172	10	1 9907	10620	911763387	unknown (Saccharomyces cerevisiae)	72	55	714
220	- 3	2862	3602	91 1574175	hypothetical (Haemophilus influenzae)	27	50	741
267	-	-	449	91 290513	[470 (Escherichia coli]	72	6.8	447
281	~	6699	540	gn1 PID d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	22	45	360
290		1018	4	91 474195	This ORF is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 (Mycoplasma-like organism)	22	94	1005
300	-	63	587	91/746399	transcription elongation factor [Escherichia coli]	27	20	525
316	-	1326	-	gi 158127	protein kinase C (Drosophila melanogaster)	72	40	1323
342	-	227	~	gn1 PID d101164	unknown (Bacillus subtilis)	72	54	225
354	-	-	1005	gn1 PID d102048	C. thermocellum beta-glucosidase, P26208 (985) (Bacillus subtilis)	72	52	1005
9	01	8134	10467	gn1 PID e264229	unknown (Mycobacterium tuberculosis)	11,	57	2334
7	120	16231	15464	gi 18046]-oxoacyl-[acyl-carrier protein] reductase [Cuphea lanceolata]	112	52	768
15	<u>-</u>	1297	~	gn1 PI0 d100571	replicative DNA helicase (Bacillus subtilis)	112	51	1296
15	→ Ĭ	4435	1 3869	[gi 499384	orf189 (Bacillus subtilis)	11.	47	567
						*******	A CHERTICAL	1 1 1 1 1 1 1 1

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	metch	match gene name	mis *	% ident	length (nt)
19	9	5120	4218	gn1 PID d101318	YqgG [Bacillus subtilis]	712	51	903
29	-		540	91 1773142	similar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]	17	26	540
38	02	13327	13830	gi 537036	ORF_0158 [Escherichia coli]	1,7	48	504
51	112	15015	12676	gi 149528	dipeptidyl peptidase IV [Lactococcus lactis]	17	55	2340
- 55	23	21040	20585	gi 2343285	(AF015451) surface located protein (Lactobacillus rhamnosus)	17	58	456
09	~	705	265	gn1 PID d101320	YqgZ (Bacillus subtilis]	71	4	441
17	81	24679	26226	gi 580920	rodD (gtaA) polypeptide (AA 1-673) (Bacillus subtilis)	7.1	44	1548
۲	25	(30587	30360	91 606028	ORF_0414; Geneplot suggests frameshift near start but none found [Escherichia coli]	7	20	228
27	9	5239	6729	[gi]580835	lysine decarboxylase (Bacillus subtilis)	7.1	48	1491
22	<u> </u>	11991	12878	gi 624085	similar to rat beta-alanine synthetase encoded by GenBank Accession Number \$27881; contains ATP/GTP binding motif [Paramecium bursaria Chlorella virus 1]	1.	54	888
7.3	=	7269	7033	gi 1906594	PMI (Rattus norvegicus)	7.1	42	237
74	9	10385	8517	gi 1573733	prolyl-tRNA synthetase (proS) [Haemophilus influenzae]	71	52	1869
8	6	5772	6578	gi 147404	mannose permease subunit II-M-Man [Escherichia coli]	71	45	807
98	- 5	4602	3604	gn1 PID e322063	ss-1,4-galactosyltransferase [Streptococcus pneumoniae]	71	53	666
105	7	3619	4707	91 2323341	(AF014460) PepQ (Streptococcus mutans)	71	88	1089
106	2	113557	12955	91 1519287	LemA (Listeria monocytogenes	122	48	603
114	7	1029	1979	gi 310303	mosA (Rhizobium mellloti)	7.1	55	951
122	~	564	1205	91 1649037	glutamine transport ATP-binding protein GLNQ [Salmonella typhimurium]	17	50	642
132	<u>.</u>	9018	7063	gn1 PID d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	17	51	1956
140	_	1141	227	91 1673788	(AE000015) Mycoplasma pneumoniae, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P13243, from B. subtilis (Mycoplasma pneumoniae)	11.	64	918
140	<u> </u>	5635	4973	gn1 P10 d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	11/	89	663
141	-	7369	7845	gn1 P10 d102005	(ABO01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E. COLI AND MYCOPLASHA PNEUMONIAE. (Bacillus subtilis)	17	51	477

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	IORF	Start (nt)	Stop (nt)	match	match gene name	s sim	1 ident	length
193	-		165	gi 46912	ribosomal protein Li3 (Staphylococcus carnosus)	1, 1	59	165
194	-	2205	1594	gi 535351	Cody [Bacillus subtilis]	1,7	52	612
199	-	1510	1319	gi 2182574	(AE000090) Y4pE [Rhizoblum sp. NGR234]	17	45	192
208	~	2616	3752	91 1787378	(AE000213) hypothetical protein in purB 5' region (Escherichia coli)	12	57	1137
209	-	2022	1111	gi 41432	fepC gene product [Escherichia coli]	12	46	882
210	- 2	1911	1 3071	gi 49316	ORF2 gene product (Bacillus subtilis)	112	45	1161
210	9	1 3069	3386	191 580900	ORF3 gene product (Bacillus subtilis)	112	48	318
212	-	13561	1381	gi 557567	ribonucleotide reductase R1 subunit [Mycobacterium tuberculosis]	1,2	53	2181
233	-	2003	2920	gn1 P1D d101320	YqgR Bacillus subtilis	12	05	918
244		1	1053	gn1 P1D d100964	homologue of espartchinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	112	55	1041
251	2	1008	1874	91 755601	unknown (Bacillus subtilis	71	99	867
282	7	906	1 712	91 1353874	unknown (Rhodobacter capsulatus)	122	99	195
312	7	1 2137	1565	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	12.	34	573
338	-	3	683	gi 1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	111	48	681
346			164	gi 1591234	hypothetical protein (SP:P42297) [Methanococcus januaschii]	122	36	162
374		619	2	gi 397526	clumping factor (Staphylococcus aureus)	111	23	618
1 377	-	688	2	gi 397526	clumping factor (Staphylococcus aureus)	12	23	1 289
-	8	1 7419	6958	gn1 PID e269486	Unknown [Bacillus subtilis]	0,	42	462
-	=	8395	9075	gn1 PID e255543	putative iron dependant repressor (Staphylococcus epidermidis)	0,	94	681
-	=	11024	10254	gn1 PID d100290	undefined open reading frame (Bacillus stearothermophilus)	1 02	55	1177
-	-13	14213	61761	gn1 PID d101090		0,	56	495
•	-	1057	287	gn1 PID d100581	unknown (Bacillus subtilis)	100	52	1.177
12	-	2610	1789	gn1 PID d101195	yycd (Bacillus subtilis)	70	52	822
12	2	2586	1846	gi 2293447	(AF008930) ATPase (Bacillus subtilis)	70	54	741
22	===	110955	111512	91 1165295	Ydr540cp (Saccharomyces cerevisiae)	70	50	558
30	9	4315	1 3980	91)39478	ATP binding protein of transport ATPases (Bacillus firmus)	1 02	51	336
						*****	4	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	sim	# ident	length (nt)
£	_	370	113	91 662792	single-stranded DNA binding protein [unidentified eubacterium]	0,	36	258
23	51	110639	1526	gi 1161219	[homolgous to D-amino acid dehydrogenase enzyme [Pseudomonas aeruginosa]	0,	50	1119
38	9	3812	4312	91 2058547	ComYD (Streptococcus gordonii)	0,	48	501
38	;	17986	118477	gi 537033	ORF (Escherichia coli)	0,	58	492
\$	52	11054	9846	91/1173516	riboflavin-specific deaminase (Actinobacillus pleuropneumoniae)	100	52	1209
42	7	122	1954	91 (1146183	putative (Bacillus subtilis)	0, 1	51	1233
5		2373	1612	91 1591493	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]	02	48	762
45	- I	9197	8049	gn1 P1D d102036	subunit of ADF-glucose pyrophosphorylass [Bacillus stearothermophilus]	1 0/	54	1149
59	~	567	926	gn1 PID d100302	neopullulanase (Bacillus sp.)	1 02	42	390
90		1874	795	gnt PID e276466	aminopeptidase P (Lactococcus lactis)	1 07 1	88	1080
19	-	5553	2437	gn1 P1D e275074	SNF (Bacillus cereus)	1 00	51	3117
19		7914	6802	gi 1573037	cystathionine gamma-synthase (metB) [Haemophilus influenzae]	1 00	52	1113
63		5372	7222	gn1 PID d100974	unknown (Bacillus subtilis)	1 00 1	54	1821
89	-	7126	6962	91 1263014	emm18.1 gene product (Streptococcus pyogenes)	1 00	37	165
22	112	10081	10911	gi 2313093	(AE000514) carboxymorspermidine decarboxylase (nspC) [Helicobacter pylori]	0,	95	831
5.	2	7888	8124	gi 1877423	galactose-1-P-uridy transferase (Streptococcus mutans)	1 02	59	237
79	_	3424	2525	91 39881	ORF 311 (AA 1-311) [Bacillus subtilis]	1 02 1	1 69	006
87	01	9369	7324	gn1 PID e323506	putative Pkn2 protein (Bacillus subtilis)	1 02	52	2046
96	=	10640	11788	gi 1573209	[RNA-guanine transglycosylase (tgt) [Haemophilus influenzae]	1 04 1	52	1149
611	2	574	1086	gi 433630	A180 (Saccharomyces cerevisiae)	100	59	513
123	5	2901	3461	gn1 PtD d100585	unknown (Bacillus subtilis)	1 02	45	561
125	-	4593	4282	gn1 PID e276474	capacitative calcium entry channel 1 (Bos taurus)	1 02 1	35	312
129	- 5	4500	3454	gn1 PrD d101314	YqeT (Bacillus subtilis)	1 04	47	1047
133		2608	1394	91/2293312	(AF008220) YtfP (Bacillus subtilis)	1 02 1	20	1215
135	-	420	662	gn1 P1D e265530	yorfE Streptococcus pneumoniae	1 02	47	243
137	m	438	932	gi 472919	V-type Na-ATPass (Enterococcus hirae)	1 02	57	495
138	-	440		[gi 147336	transmembrane protein (Escherichia coli)	102	42	438
					◆F#\$#\$#\$###############################	*	41111111	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	OR C	Start	Stop	match	match gene name	l s sin	* Ident	length 1
		7311)	- decession		_		(ut)
	-19	18796	16364	91 976441	NS-methyltetrahydrofolate homocysteine methyltransferase (Saccharomyces cerevisiae)	70	53	2433
167	9	8263	6699	gi 149535	D-alanine activating enzyme (Lactobacillus casei)	02	52	1569
204	-	3226	2747	gn1 P1D d102049	E. coli hypothetical protein; 931805 (267) [Bacillus subtilis]	70	51	480
207		2627	2869	gn1 PID e309213	racGAP Dictyostellum discoideum]	0,	45	243
282	-	1136	882	91 1353874	unknown [Rhodobacter capsulatus]	10	05	255
9	121	117554	18453	gn1 PID e233879	hypothetical protein (Bacillus subtilis)	69	9.9	1 006
9	75	118482	119471	91 580883	[ba-88d gene product (Bacillus subtilis]	69	53	1 066
22	9	. 4682	5824	91 2209379	(AF006720) ProJ Bacillus subtilis	69	48	1143
22	6	1 7992	8651	gn1 P1D d100580	unknown (Bacillus subtilis	69	51	099
22	2	1 9871	10767	gn1 P10 d100581	[unknown [Bacillus subtilis]	69	51	697
1 27	_	1 5857	5348	Pro	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)	69	28	510
36	01	7294	10116	91 437916	isoleucy -tRNA synthetase (Staphylococcus aureus)	69	- 68	2823
38	-	2	1090	 gi 141900	alcohol dehydrogenase (EC 1.1.1.1) (Alcaligenes eutrophus)	69	8.9	1089
40	14	111333	11944	91 1573280	Holliday junction DNA helicase (ruva) (Maemophilus influenzae)	69	44	612
40	115	11942	112517	lgi 1573653	DNA-3-methyladenine glycosidase I (tagI) [Haemophilus influenzae]	69	50	1 925
45	9	6947	5490	g1 580887	starch (bacterial glycogen) synthase (Bacillus subtilis)	69	47	1458
48	34	24932	24153	gn1 P1D e233870	hypothetical protein (Bacillus subtilis)	69	36	780
49	9	6183	6521	gi 396297	similar to phosphotransferase system enzyme II (Escherichia coli)	69	50	339
-49	8	7586	8338	91 396420	similar to Alcaligenes eutrophus pHG1 D-ribulose-5-phosphate 3 epimerase [Escherichia coli]	69	49	753
55	9	8262	7033	91 1146238	poly(A) polymerase (Bacillus subtilis	69	80	1230
65	_	954	2333	[gn1 PID e313038	hypothetical protein (Bacillus subtilis)	69	54	1380
62	_	0/11	1418	gn1 PID d101915	hypothetical protein (Symechocystis sp.)	69	49	249
63	8	7298	1762	91 293017	ORF3 (put.); putative (Lectococcus lactis)	- 69	42	465
99	•	3657	5081	91 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	69	49	1425
99		5126	6829	91 433809	entyme II (Streptococcus mutans)	69	1 97	1704
11	9	10017	10664	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	1 69	39 1	648
					◆	•		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	-							
Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	sim	% ident	length
71	21	27730	127966	gnl PID d100649	DE-cadherin (Drosophila melanogaster)	69	30	71.6
77	- !		237	91 287870	groES gene product (Lactococcus lactis)	69	44	45.6
81	2	3622	4101	91 1573605	fucose operon protein (fucU) [Haemophilus influenzae]	69	52	480
8	-	40	714	pir C33496 C334	hisc homolog - Bacillus subtilis	69	46	675
83	116	115742	16335	191 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus subtilis]	69	99	598
85	7	1212	916	91 194097	IFN-response element binding factor 1 (Hus musculus)	69	87	297
16	<u>s</u>	3678	4274	91 1574712	anserobic ribonuleoside-triphosphate reductase activating protein (nrdG) [Haemophilus influenzae]	69	44	597
9.8	2	1 3247	4032	gn1 P10 d100262	Live protein (Salmonella typhimurium)	69	51	786
108	5	4085	9505	gn1 PID e257629	transcription factor (Lactococcus lactis)	69		977
126	_	3078	4568	gn1 PID d101329	YqjJ (Bacillus subtilis)	69	49	1491
131	9	4121	2889	gn1 P1D d101314	YqeR (Bacillus subtilis)	69	47	1233
136	~	1505	2299	[gn1 PID d100581	unknown (Bacillus subtilis)	69	47	795
149	2	3852	4763	gn1 PID e323525	323525 [YloQ protein (Bacillus subtilis)	69	50	912
149	122	9336	10655	15151)19	Homology with E.coli and P.seruginosa lysk gene; product of unknown function; putative (Pseudomonas syringse)	69	52	1320
153	4	3191	3829	91 1710373	Brng (Bacillus subtilis)	69	44	630
169	_	849	2324	gn1 P1D d100582	temperature sensitive cell division Bacillus subtilis	69	4 69	1476
180	-	995	~	91 488339	alpha-amylase (unidentifled cloning vector)	69	50	564
212	- [1196	231	gi 1395209	ribonucleotide reductase R2-2 small subunit (Mycobacterium tuberculosis)	69	53	966
226	_	2	199	pir JQ2285 JQ22	nodulin-26 - soybean	69	7	999
233	2	3249	4766	91 472918	V-type Na-ATPase (Enterococcus hirae)	- 69	1 95	18181
235	~	099	1766	91 148945	methylase (Haemophilus influentae)	- 69		2011
243	7	865	2361	gn1 PID d100225	ORFS (Barley yellow dwarf virus)	69	- 69	1 6071
251	6	2899	1967	91 2289231	macrolide-efflux protein Streptococcus agalactiae	09	5	
310	-		282	gn1 PTD e322442	Peptide deformylase (Clostridium beijerinckii)	- 69		282
369	-	868	7	gi 397526	Clumping factor (Staphylococcus auraus)	1 69	22	1 198
370	-	749	e _	gi 397526	clumping factor (Staphylococcus aureus)	1 69	22	747
					◆ 8 € 4 € 8 € 8 € 1 € 1 5 € 5 € 5 € 6 € 8 € 8 € 8 € 8 € 8 € 8 € 8 € 8 € 8	*******	-+	•

pneumoniae - Putative coding regions of novel proteins 'similar to known proteins

Contig	LORF	Start	Stop	40406				•
91	2	(at)	(<u>l</u>	acession	ווערכים פנים וספום	e is	* ident	length (nt)
379	-	44	280	gn1 PID d100649	DE-cadherin (Drosophila melanogaster)	69	30	237
388	- -	260	22	gi 1787524	(AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region [Escherichia coli]	69	77	189
-	~	2006	3040	gn1 P1D d101809	ABC transporter (Synechocystis sp.)	99	63	1 2501
12	-2	1958	2600	91 2182992	histidine kinase [Lactococcus lactis cremoris]	89	45	1360
15	7	1790	1311	pir S16974 R5BS	ribosomal protein L9 - Bacillus stearothermophilus	89	56	480
16	9	7353	5701	91 1787041	(AE000184) o530; This 530 as orf is 33 pct identical (14 gaps) to 525 residues of an approx. 640 as protein YHES_HAEIN SW: P44808 (Escherichia coll)	89	45	1653
17	112	6479	6805	91 553165	acetylcholinesterase [Homo saplens]	89	68	327
20	=	14128	114505	91 142700	P competence protein (ttg start codon) (put.); putative (Bacillus subtilis)	1 89	40	178
22	33	24612	25397	91 289262	comE ORF3 [Bacillus subtilis]	1 89	36	786
30		4548	4288	91 (311388	ORF1 (Azorhizobium caulinodans)	69	46	261
36	5	3911	4585	91 1573041	hypothetical (Haemophilus influenzae)	89	54	675
9	9	5219	6040	91 1790131	[AE000466] hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	89	47	822
54	02	6235	7086	gi 882579	CG Site No. 29739 (Escherichia coli)	69	55	852 1
55	- 2	7069	5165	gn1 PID d101914	ABC transporter Synechocystis sp.]	68	45	1 5061
17		6134	5613	_	outer membrane integrity protein (tolA) [Haemophilus influenzae]	68	- 05	522
1.1	01	15342	16613	_	ipa-12d gene product [Bacillus subtilis]	68	31	1272
11	122	17560	18792	91 44073	SecY protein (Lactococcus lactis)	68	35	1233
1 2	= 1	122295	24703	91 1762349	involved in protein export (Bacillus subtilis)	1 89	20 1	2409
22	911	10208	9729	91 1353537	dUTPase (Bacteriophage rlt)	89	51	480
86	81	17198	16011	91 413943	ipa-19d gene product (Bacillus subtilis)	89	53 –	1188
87	=	17491	15866	91 150209	ORF 1 (Mycoplacma mycoides)	- 89	£3	1626
88	9	5139	4354	91 1498824	M. jannaschii predicted coding region MJ0062 (Methanococcus jannaschii)	- 89	- 09	786
89	=======================================	8021	8242	91 150974	4-oxalocrotonate tautomerase (Pseudomonas putida)	- 89	43	222
- 97		6755	5394	91 2367358	(RECOGGS1) hypothetical 53.9 kD protein in aidB-rpsF intergenic region [Escherichia coll]	89	7	1362
			,	+				

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	98. 51.	Start (nt)	Stop (nt)	match	match gene name	s sim	1 dent	length
98	~	1418	2308	gn1 PID d100261	Liva protein (Salmonella typhimurium)			(nt)
99		16414	17280	gi 455363	regulatory protein (Streptococcus murane)	89	40	891
115		5054	1 3693	91 466474		88	50	1 867
124		3394	3221	gn1 P10 d100702		68	*	1362
125	7	2923	1922	ai 450566		89	95	174
132	- 2	4858	1 2888	(crtiniblation)	Pur Iteration Process (Bactilles Subtills)	89	20	1002
140	-	7765	:	100000000000000000000000000000000000000	low it date (bynechocystis sp.)	89	52	1971
150	-	539		191 1403411	unknown [Saccharomyces cerevisiae	68	47	186
164	-	889	867	(m) Director	AUF-FIDOSYLARGINING hydrolase [Mus musculus]	89	59	537
164	2	819	1835	den lemberssing		89	49	810
169	7	3946	4104	transport to the second terms of the second te	protein	B9	50	1017
170	4	4247	4396		Invocretical protein - Lactococcus lactis subsp. lactis plasmid psL2	68	40	159
121	8	6002	7054	100000	ă į	89	52	150
00,			İ	131707181	[precursor (aa -20 to 381) [Acinetobacter calcoaceticus]	1 89	54	1053
0	7	6473	Ĭ	gn1 PID e313075	hypothetical protein (Bacillus subtilis)	1 69	46	603
2112	-	696	1802	91 1439528	EIIC-man [Lactobacillus curvatus]	- 69		
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein; P43990 (182) (Racilling and 182)		9	834
217	<u> </u>	4955	5170	gn1 PID e326966	Similar to B. vulgaris CKS-associated mitochondrial (reverse	89	05	969
218		3930	4745	0112291198	(Approximately and a second and		:	977
220	-	4628			Ytgp	89	38	816
316	-			16/c/caloraland	(AJ000005) orfl (Bacilius megaterium)	89	51	291
	- 👬		801	91 410137	ORFX13 (Bacillus subtilis)	99	4 44	
237	-	675	1451	91 396348	homoserine transsuccinylase (Escherichia coli)			670
250	-	171	1229	91 310859	ORP2 [Synechococcus sp.]	00	68	1
254			155	91 1787105	(AE000189) o648 was o669; This 669 aa orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 aa protein YBBA_HAEIN SW: P45247	89	44	363
337	-	7	774	gn1 PID e261990	Dufative orf (assis).			
345	-		653		001111111111111111111111111111111111111	89	47	774
	-			-	tnymidylate symthase (EC 2.1.1.45) [Lactococcus lactis]	- 89	- 19	651
							•	

S. pnaumoniae - Putative coding regions of novel proteins similar to known proteins

	::::			11111111111111111		•	•	
Contig	ORF IID	Start (nt)	Stop (nt)	match	match gene name	ei s	* ident	length (nt)
386	7	417	-	lgi 1573353	outer membrane integrity protein (tolA) (Haemophilus influenzae)	68	51	414
2	-	5722	4697	gi 1592141	M. jannaschii predicted coding region MJ1507 [Methanococcus jannaschii]	67	26	1026
	9	5397	4591	gi 2293175	(AF008220) signal transduction regulator [Bacillus subtilis]	67	44	807 [
2	7	2301	574	91 2313385	(AE000547) para-aminobenzoate synthetase (pabB) [Helicobacter pylori]	67	48	1728
9	119	16063	16758	[gi 413931	ipa-7d gene product (Bacillus subtilis)	67	- 17	1 969
22	89	7094	7897	gi 1928962	pyrroline-5-carboxylate reductase [Actinidia deliciosa]	67	51	804
29	01	8335	9072	gi 468745	gtcR gene product (Bacillus brevis)	67	7	738
31	_	1379	585	gi 2425123	(AF019966) PksB [Dictyostellum discoldeum]	67	1 64	795
32		8849	10150	gi 42029	ORF1 gene product [Escherichia coli]	67	47	1302
36	116	14830	15546	g1 1592142	ABC transporter, probable APP-binding subunit (Methanococcus jannaschiil	67	43	1 717
38	6	4958	5392	gn1 PID e214803	[72283.3 (Caenorhabditis elegans)	67	47	435.
38	12	113775	14512	gi 537037	ORF_0216 (Escherichia coli)	67	52	738
45	6	10428	9181	91 551710	branching entyme (glgB) (EC 2.4.1.18) [Bacillus stearothermophilus]	67	51	1248
48	23	118344	17514	gi 413949	ipa-25d gene product (Bacillus subtilis)	1 19	1 08	831
05	- 5	1773	952	gn1 PID d101330	YqjQ (Bacillus subtilis)	1 19	55	822
53	-	431		gi 1574291	[timbris] transcription regulation repressor (pilB) (Haemophilus influenzae)	67	40	429
55	=	112740	11946	gn1 PID e252990	ORF YDL037c (Saccharomyces cerevisiae)	67	\$1	1 267
61	6	9210	8329	gn1 PID e264711	ATP-binding cassette transporter A (Staphylococcus aureus)	1 19	30	882
1,2	-	5614	6117	gi 1197667	vitellogenin (Anolis pulchellus)	67	36	504
8		4489	4983	gi 1142714 	phosphoenolpyruvate:mannose phosphotransferase element IIB [Lactobacillus curvatus]	67	42	495
83	-	2957	3214	91 1276746	Acyl carrier protein [Porphyra purpurea]	67	37	258
98	8	8140	6089	gi 1147744	PSR (Enterococcus hirae)	67	45	1332
1 97	-	986	1366	gn1 PID d102235	(AB000631) unnamed protein product (Streptococcus mutans)	67	43	381
102	-	601	1413	gi 682765	mccB gene product (Escherichia coli)	1 19	36	813
106	-	1109	1987	gi 148921	LicD protein (Haemophilus influentae)	67	43	879
115	7	5982	5656	gi 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	1 77	327
						•	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	S S I II	% ident	length
115	7	8421	8077	91 466473	cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)	69	51	345
127	13	8127	7021	91 147326	transport protein (Escherichia coli)	69	45	1107
136		2215	2859	gn1 P1D d100581	[unknown [Bacillus subtilis]	69	49	645
140	121	123317	120906	PID	[phenylalanyl-tRNA synthetase [Synechocystis sp.]	69	+	2412
146	9	2894	1893	91 2182994	histidine kinase [Lactococcus lactis cremoris]	1 69	44	1000
151		111476	111117	gn1 PID d100085	ORF129 [Bacillus cereus]	67	48	360
160	10	7453	8646	91 2281317	OrfB: similar to a Strepcocccus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) [Lactococcus 1	69	20	1194
1 163		3099	4505	gn1 PID d101317	YqfR Bacillus subtilis	67	47	1407
167	8	6704	5454	91 1161933	DitB [Lactobacillus casel]	69	45	1251
169	7	2322	2879	gn1 PID d101331	YqkG (Bacillus subtilis)	67	41	558
171	=	7656	8384	[91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	67	20	729
188		1930	3723	91 1542975	AbcB (Thermoanaerobacterium thermosulfurigenes)	69	46	1794
189	9	3599	3141	gn1 PID e325178	Hypothetical protein (Bacillus subtilis)	67	52	459
205	•	1663	2211	191 606073	ORF_o169 (Escherichia coli]	67	47	549
1 207	7	2896	3456	gi 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	64	\$61
712		4086	3703	191 895750	putative cellobiose phosphotransferase enzyme III (Bacíllus subtilis)	67	42	384
246	~	291	662	gi 1842438	unknown (Bacillus subtills)	67	43	372
252	_	7	745	gi 2351768	PspA (Streptococcus pneumoniae)	67	41	744
265	<u></u>	1134	1811	gi 2313847	(AE000585) L-asparaginase II (ansB) [Helicobacter pylori]	67	42	678
295	_	-	375	91 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	43	375
-	-	4898	5146	gn1 P1D e255179	unknown (Mycobacterium tuberculosis)	99	95	249
c _	-	389	2	gn1 PID e269548	Unknown (Bacillus subtills)	99	48	387
-	120	19267	20805	91 39956	[IIGIc [Bacillus subtilis]	99	20	1539
4		2545	2718	91 1787564	(AE000228) phage shock protein C (Escherichia coli)	99	36	174
5	6	13197	12592	gi 1574291	[timbrial transcription regulation repressor (pllB) [Haemophilus influenzae]	99	46	909

. S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	sim !	1 Ident	length (nt)
6	-	2872	1451	gn1 PID e266928	unknown (Mycobacterium tuberculosis)	99	43	1422
12	~	1469	1200	gi 520407	orf2; GTG start codon [Bacillus thuringiensis]	99	42	270
15	71	10979	1 9897	gi 2314738	(AE000653) translation elongation factor EF-Ts (tsf) [Helicobacter pylori]	99	49	1083
16	~	1312	734	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	99	35	579
22	~	1372	1881	191 1480916	signal peptidase type II [Lactococcus lactis]	99	38	480
22	7	5828	9602	gn1 PID 6206261	gamma-glutamyl phosphate reductase (Streptococcus thermophilus)	99	51	1269
22	02	16194	117138	gn1 PID e281914	Yitt (Bacillus subtilis)	99	1 05 1	945
90	7	. 530	976	91 2314379	(AE000627) ABC transporter, ATP-binding protein (yhcG) (Helicobacter pylori)	99	0	447
32	-	199	984	91 312444	ORF2 (Bacillus caldolyticus)	99	69	786
g 	2	8352	7234	gi 1387979	44% identity over 302 residues with hypothatical protein from Synechocystis sp, accession D64006_CD; expression induced by environmental stress; same similarity to glycosyl transferases; two potential membrane-spanning helices [Bacillus subtil	99	4	1119
34	9	5658	4708	gn1 PID e250724	orf2 [Lactobacillus sake]	99	39	951
34	7	9792	9574	[91 1590997	M. jannaschii pradicted coding region MJ0272 (Methanococcus jannaschil)	99	- 48	219
35	16	15163	14501	[91[1773352	[cap5M [Staphylococcus aureus]	99	46	663
36	6	6173	9269	91 11518680	minicell-associated protein DivIVA (Bacillus subtilis)	99	35	804
36	=_	10396	10824	bbs 155344	Insulin activator factor, INSAF (human, Pancreatic insulinoma, Peptide Partial, 744 aaj (Homo sapiens)	99	\$	429
48	-	28	1419	gn1 PID e325204	hypothetical protein (Bacillus subtilis)	99	20	1392
48	_	3810	4112	91 2182574	(AE000090) Y4pE (Rhizobium sp. NGR234)	99	40	303
52	-	3595	2789	91 388565	major cell-binding factor [Campylobacter jejuni]	99	55	807
54		2992	1076	gn1 P1D d101831	glutamine-binding periplasmic protein (Synechocystis sp.)	99	43	1587
19	2	9740	9183	gn1 PID e154144	mdr gene product (Staphylococcus aureus)	99	70	558
72	=	10893	11993	91 2313129	[AEG00526] H. pylori predicted coding region HP0049 [Helicobacter pylori]	99	44	11011
74	6	13267	12476	gi 1573941	hypothetical (Maemophilus influenzae)	99	43	792
75		~	898	91 1574631	nicotinamide mononucleotide transporter (pnuC) (Haemophilus influenzae)	99	48	867
75	-	5303	4275	91 41312	put. EBG repressor protein (Escherichia coli)	99	40	1029
						********		+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start Int)	Stop (nt)	match	match gene name	e is	% ident	length (nt)
82	٠,	6813	8123	gn1 P1D e255128	trigger factor (Bacillus subtilis)	99	53	1311
83		905	1219	pir C33496 C334	hisC homolog - Bacillus subtilis	99	44	315
86	2	9407	8925	91 683584	shikimate kinase (Lactococcus lactis)	99	77	483
88	01	1001	0909	gi 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	99	52	942
68	-	951		gi 410118	ORFX19 (Bacillus subtilis)	99	5	948
93		3661	1172	91 1787936	(AE000260) £298; This 298 aa orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 aa protein YCSN_BACSU SW: R42972 (Escherichia coli)	99	6	951
104	۳ -	1805	3049	gi 1469784	putative cell division protein ftsW [Enterococcus hirae]	99	87	1245
901	7	13576	114253	191 40027	homologous to E.coli gids [Bacillus subtilis]	99	52	678
107	~	965	1864	91 144858	ORF A (Clostridium perfringens)	99	49	006
112	7	5718	6593	gi 609332	DprA (Haemophilus influenzae)	99	63	876
115	-	£	302	gi 727367	Hyrlp (Saccharomyces cerevisiae)	99	95	300
1 122	-		995	gn1 PID d101328	YqiY (Bacillus subtilis)	99	36	564
126	. —	11759	11046	gn1 PID d101163	ORF3 (Bacillus subtilis)	99	48	714
128	=	8201	8431	91 726288	growth associated protein GAP-43 [Xenopus laevis]	99	41	231
131	88	4894	4508	91 486661	TWnm related protein (Saccharomyces cerevisiae)	99	39	186
140		3236	2574	91 40056	phop gene product [Bacillus subtilis]	99	36	663
140	115	16318	15434	91 1658189	5,10-methylenetetrahydrofolate reductase (Erwinia carotovora)	99	84	885
146	77	7926	7636	gn1 PID d101140	transposase [Synechocystis sp.]	99	42	291
147	9	7137	6154	gi 472326	TPP-dependent acetoin dehydrogenase alpha-subunit (Clostridium magnum)	99	48	984
149	9	4435	5430	gn1 PID d101887	pentose-5-phosphate-3-epimerase (Synechocystis sp.)	99	46	1 966
149	113	10754	11575	gi 42371	pyruvate formate-lyase activating ensyme (AA 1-246) (Escherichia colil	99	42	822
186	4	2578	2270	gn1 PID d101199	ORF11 (Enterococcus faecalis)	99	41	309
207	7	2340	2597	gn1 PID e321893	envelope glycoprotein gpl60 (Human immunodeficiency virus type 1)	99	46	258
210	_	3358	3678	91 49318	ORF4 gene product [Bacillus subtilis]	99	46	321
217	8	5143	5355	91 49538	thrombin receptor (Cricetulus longicaudatus)	99	38	213
1 220	-	3875	3642	gi 466648	alternate name ORFD of L23635 (Escherichia coli)	99	33	234

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

				**************************************		1		
Contig	ORF ID	Start (nt)	Stop (nc)	match	match gene name	* sim	• ident	length (nt)
223		1070	138	gn1 PID e247187	zinc finger protein (Bacteriophage phigle)	99	45	933
224		1864	2640	gi 1176399	putative ABC transporter subunit (Staphylococcus epidermidis)	99	4	777
243	-	n	872	dbj AB000617_2	(AB000617) Yedii (Bacillus subtilis)	99	45	870
268	7	1 891	568	191 (517210	[putative transposase (Streptococcus pyogenes]	99	1 09	324
322	-	7	643	[gi 1499836	2n protease (Methanococcus jannaschii)	99	40	642
s	2	13909	13178	lgi 1574292	hypothetical (Haemophilus influenzee)	9	34	732
•	<u> </u>	10465	11190	91 142854	homologous to E. coli radC gene product and to unidentified protein from Staphylococcus aureus [Bacillus subtilis]	69	88	726
7	7	647	405	pir C64146 C641	hypothetical protein HI0259 - Haemophilus influenzae (strain Rd KW20)	9	42	243
_	-	6246	1 6821	1323	YqhU (Bacillus subtilis)	59	80	576
10	~	1873	1397	gi 1163111	ORF-1 (Streptococcus pneumoniae)	65	54	477
16	-	1428	1 2222	gn1 PID e325010	hypothetical protein [Bacillus subtilis]	65	45	795
- 21	4	1 3815	1 3357	gn1 PID e314910	e314910 hypothetical protein (Staphylococcus sciuri)	9	40	459
22	34	25776	26384	91 1123030	CpxA (Actinobacillus pleuropneumoniae)	9	42	609
43	~	1 1648	290	gi 1044826	[F14E5.1 [Caenorhabditis elegans]	9	38	1359
48	13	110062	10856	gi 1573390	hypothetical (Haemophilus influenzae)	9	45	195
48	22	17521	16883	91 1573391	hypothetical [Haemophilus influentae]	65	37	639
48	25	119027	18533	gn1 PID e264484	YCR020c, len:215 Seccharomyces cerevisiae)	65	38	495
49	-	3856	5334	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	65	32	1479
05	9	5337	4519	gi 171963	LRNA isopentenyl transferase (Saccharomyces cerevisiae)	9	42	819
52	115	14728	115588	gi 1499745	M. jannaschii predicted coding region MJ0912 (Methanococcus jannaschii)	1 65	46	861
59	-	3963	4745	gt 496514	orf zeta (Streptococcus pyogenes)	9	42	783
- 68	-	1 2500	3483	91 887824	ORF_0310 [Escherichia coli]	9	97	984
69	-	1712	1077	gn1 PID e311453	unknown [Bacillus subtilis]	1 99	42	1095
69	-	6029	5325	gi 809660	decxyribose-phosphate aldolase (Bacillus subtilis)	1 99	55	705
17	2	8536	9783	gi 1573224	glycosyl transferase lgtC (GP:U14554_4) (Haemophilus influenzae)	9	42	1248
72	8	1 7664	8527	gn1 P1D e267589	Unknown, highly similar to several spermidine synthases (Bacillus subtilis)	65	39	864
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a sin	* Ident	length (nt)
96	- 2	5773	4097	gn1 P1D d101723	DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). (Escherichia coli)	65	44	1677
94	6	8089	7875	gi 1574276	exodeoxyribonuclease, small subunit (xseB) [Haemophilus influenzae]	65	38	225
84	~	2870	2352	91 2313188	(AE000532) conserved hypothetical protein [Helicobacter pylori]	65	41	519
98	115	114495	13407	gn1 P1D d101880	3-dehydroquinate synthase (Synechocystis sp.)	65	4	1 6801
87	-	3706	2423	gi 151259	HMG-CoA reductase (EC 1.1.1.88) (Pseudomonas mevalonii)	9	51	1284
88		2425	2736	gi 1098510	unknown [Lactococcus lactis]	65	30	312
	~	1627	1007	gn1 PID d102008	(AB001488) SIMILAR TO ORFIA OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916.	69	41	621
=	9	6635	6186	gn1 PID e246063	NN23/nucleoside diphosphate kinase [Xenopus laevis]	65	1 05	450
116	-	-	1016	gn1 PID d101125	queuosine blosynthesis protein QueA (Synechocystis sp.)	65	44	1014
123	_	69	389	gi 49839	ORF2 (Clostridium perfringens)	65	36	321
123	_	6522	7190	[g1[1575577	DNA-binding response regulator (Thermotoga maritima)	9	39	1 699
125	_	3821	2859	gn1 PID e257609	sugar-binding transport protein (Anaerocellum thermophilum)	1 59	47	963
761	112	8015	7818	91 2182574	[AEG00090) Y4pE [Rhizobium sp. NGR234]	1 59	41	198
147	-	5021	3885	91 472329	dihydrolipoamide acetyltransferase (Clostridium magnum)	65	47	1137
148	~	1053	1931	[gn1 P1D d101319	YqgH (Bacillus subtilis)	65	42	879
151	~	3212	4687	91 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	65	20	1476
156	2	730	437	91 310893	membrane protein (Theileria parva)	9	47	294
164	-	1 4256	4837	gi 410132	ORFX8 (Bacillus subtilis)	65	48	582
169	9	3192	3914	91 1552737	similar to purine nucleoside phosphorylase (deoD) [Escherichia coll]	65	7	723
176	-	2951	2220	gn1 PID e339500	oligopeptide binding lipoprotein (Streptococcus pneumoniae)	- 59	43	732
195	*	4556	1 3900	91 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	65	40	657
196		160	1572	gn1 P1D d102004	(ABGO1488) PROBABLE UDP-N-ACETYLHURAMOYLALANYL-D-GLUTAHYL-2, 6- DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis)	65	2	1413
204	~	2246	1215	gi 143156	membrane bound protein [Bacillus subtilis]	65	37	1032
210	7	1544	1891	91 49315	ORF1 gene product (Bacillus subtilis)	65	48	348
242	7	1625	723	91 1787540	(AE000226) f249; This 249 aa orf is 32 pct identical (8 gaps) to 244 residues of an approx. 272 aa protein AGAR_ECOLI SW: P42902 [Escherichia coll]	65	42	903
1 1 1 1 1 1 1 1 1	•		•		+			*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt.)	match	match gene name	a sia	* ident	length (nt)
284	-		006	191 559861	clyH [Plasmid pAD1]	59	36	006
304		2	574	gn1 PID e290934	unknown [Mycobacterium tuberculosis]	69	52	573
315	-	2	1483	91 790694	mannuronan C-5-epimerase (Azotobacter vinelandii)	59	57	1482
320	-	m	569	gn1 PID d102048	K. aerogenes, histidine utilization repressor; P12380 (199) DNA binding (Bacillus subtilis)	65	46	567
358	-	-	309	gn1 PID e323508	YloS protein (Bacillus subtilis)	65	\$5	309
2		1 7571	9699	[gi 1498753	inicotinate-nucleotide pyrophosphorylase [Rhodospirillum rubrum]	199	47	876
9	٥	5924	6802	gn1 P10 d101111	methionine aminopeptidase [Synechocystis sp.]	64	52	879
8	4	3417	3686	gi 1045935	DNA helicase II [Mycoplasma genitalium]	1 64	58	270
11	4	3249	2689	gn1 PID e265529	OrfB [Streptococcus pneumonlae]	64	46	561
15	_	6504	1245	91 1762328	Ycr59c/Yig2 homolog (Bacillus subtilis)	1 64	45	642
22	=	9548	9895	gn1 P1D d100581	unknown (Bacillus subtilis)	99	38	348
22	20	122503	23374	191 289260	comE ORFI [Bacillus subtilis]	1 64	44	672
1 26	_	14375	14199	91 409286	baru (Bacillus subtilis)	1 64	30	1771
27	~	1510	1334	gi 40795	DdeI methylase (Desulfovibrio vulgaris)	69	51	1771
1 29	~	614	767	91 2326168	type VII collagen (Hus musculus)	1 64	20	318
35	7	368	121	pir JC1151 JC11	hypothetical 20.3k protein (insertion sequence [S1131]) - Agrobacterium tumefaciens (strain P022) plasmid Ti	99	000	354
00		3	449	191 46970	epiD gene product (Staphylococcus epidermidis)	64	41	447
40	-	4683	4976	gn1 PID e325792	(AJ000005) glucose kinase (Bacillus megaterium)	64	45	294
45	-	8068	6920	gn1 PID d102036	subunit of ADP-glucose pyrophosphorylase (Bacillus stearothermophilus)	- 64	- 0\$	1149
51	7	301	1059	gi 43985	nifs-like gene [Lactobacillus delbrueckii]	64	54	159
53	=	115251	18397	gi 2293260	(AFD08220) DNA-polymerase III alpha-chain (Bacillus subtilis)	99	46	3147
53	6	1157	555	gi 1574292	hypothetical [Maemophilus influenzae]	1 64	47	603
58	~	4236	1606	gi 1573826	alanyi-tRNA synthetase (alas) [Haemophilus influenzae]	64	51	2631
99	-	3	1259	91 895749	putative cellobiose phosphotransferase enzyme II'' (Bacillus subtilis)	64	42	1257
68	5	5213	6556	gi 436965	[malk] gene products (Bacillus stearothermophilus)	64	47	1344
69	<u>-</u>	5356	4949	gn1 P1D d101316	Cdd (Bacillus subtilis	64	52	408
					• • • • • • • • • • • • • • • • • • •		**********	********

S. pneumoniae - Putative coding regions of novel proteins Bimilar to known proteins

1 4 6948 5038 91 7264 75 75 75 75 75 75 75 7	Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	& ident	length
138 1455 Phon 11379 End-Good Control of Contr	74		6948	5038	91 726480	L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus subtilis]	64	20	1911
13 19016 14331 911 143135 marchanol debydrogenase sliphs-10 subunit lacellius sp.] 44 15	75		1283	1465	bbs 133379	TLS=nuclear tide Mutant,	9	57	183
12 2183 2200 pni Projektion Profession Procession Procession Procession Procession Profession Procession Proc	- 81	2	14016	14231	91 143175	dehydrogenase alpha-10 subunit [Bacillus	99	35	216
11 10046 9300 gmil Project23556 putative Prof. Proc. Proc. Project	83	122	21851	122090		YqfA (Bacillus subtilis)	64	4	240
1 32 126 9710 PTD Q-2013880 Nayobhetical protein Bacillus subtilles 64 55 1 2 126 92 1657903 deialar to S. aureus matcury(II) reduction 64 65 1 2 126 92 1657903 deialar to S. aureus matcury(II) reduction 64 65 1 13 15 64 91 1670 1	1 87	=	10046	9300	gn1 PID e323505		64	43	747
1 2 1276 91 1859303 similar to S. aurous maccury(III) reductase [Escherichia colii 64 65 65 61 61 61 61 61 61	86	-	5032	5706	_	hypothetical protein [Bacillus subtilis]	64	38	675
1 5.116 6410 joil PID[d101119 MIST (Symethologytels 9p.) 64 50 1 2 1297 anil PID[e12052264 Oxporthetical protein (Natronobacterium phaseonis) 64 40 3 1125 2156 anil PID[e12052264 Oxporthetical protein (Instruction) 64 40 4 1167 2709 anil PID[d10114] Vacothetical protein (Instruction) 64 52 1 1152 3 [d1]177841 unknown (Bacillus subtilis) 64 52 1 1152 3 [d1]177841 unknown (Bacillus subtilis) 64 52 1 1152 3 [d1]177841 unknown (Bacillus subtilis) 64 42 1 1122 2549 [d1]172245 mevalonate pyrophosophate decarboxylase (Bacillus subtilis) 64 45 1 2 1018 gn1 PD[e13703] unknown gene pyrophosophate decarboxylase (Bacillus subtilis) 64 45 1 4 129 [d1]2233301 unknown gene pyrophosophate decarboxylase (Bacillus subtili	105	-	7	1276	gi 1657503	to S. aureus mercury(II) reductase	64	45	1275
1 2 1127 July	113		5136	6410		NifS (Symechocystis sp.)	64	80	1275
3 1125 1156 gril Piol e 253284 ONF TOLIAGA (Saccharomyces cerevisiae) 64 64 50 50 50 50 50 50 50 5	1119	-	2	1297		hypothetical protein (Natronobacterium pharaonis)	99	37	1296
4 1467 2709 gni prip dio101884 hypothetical protein Symechocyatis sp.] 1180 2709 gni prip dio101814 Yqgu Bacillus subtilis 1181 1184 1282	123	~	1125	2156	e253284	ORF YDL244w [Saccharomyces cerevisiae]	64	40	1032
4 1467 2709 gni PID d101314 YqeU (Bacillus subtilis)	124	- 2	2331	1780		hypothetical protein (Symechocystis sp.)	99	20	552
1 152 3 gi 1377841 unknown (Bacillus subtilis)	129	7	3467	2709	d101314	YqeU (Bacillus subtilis)	1 99	52	759
11 196 7549 pir JCI151 JCI1 hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium 64 50 64 44 44 44 44 44 44 4	131	-	152	~	gi 1377841	unknown (Bacillus subtilis)	64	42	150
3 1326 2651 gi 12293101 (APTO08220) Ytq8 (Bacillus subtilis)	137	=_	7196	7549	pir JC1151 JC11	1	64	05	354
10 6730 5648 91 1322245 mevalonate pyrophosphate decarboxylase [Rattus norvegicus] 64 45 1 1 1 2 1018 911 PID e137033 unknown gene product Lactobacillus leichmannii] 64 46 1 1 1 1 1 1 1 1 1	139	-	3226	2651	gi 2293301	(APO08220) YtqB (Bacillus subtilis)	64	44	576
1 2 1018 gnl PID e137033 unknown gene product !Lactobacillus leichmannii}	146	110	6730	5648	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	99	45	1083
11 8430 8783 92 2130630 (AF000430) dynamin-like protein [Homo saplens] 64 28 28 2 2 2 2 2 3 3 3 3 3	147	-	2	1 1018		unknown gene product (Lactobacillus leichmannii)	99	46	1017
7 4313 3612 gnl PID d102050 transmembrane [Bacillus subtilis] 64 31 1299 2114 gnl PID d100892 homologous to Gln transport system permease proteins [Bacillus subtilis] 64 43 43 40 40 40 40 40 4	148	=	8430	8783	gi 2130630		64	28	354
4 1299 2114 gnl PID d100892 homologous to Gln transport system permease proteins (Bacillus subtilis) 64 43 6 5880 6362 gi 517204 ORF1, putative 42 kDa protein [Streptococcus pyogenes] 64 58 13 9707 8769 gnl PID d100964 homologue of ferric anguibactin transport system permerase protein FatD of 64 40 13 9707 8769 gnl PID d100964 homologue of ferric anguibactin transport system permerase protein FatD of 64 39 10 6154 6507 gi 534045 antiterminator (Bacillus subtilis) 64 33 10 6154 6507 gi 581307 response regulator [Lactobacillus plantarum] 64 33 14 3519 2863 gi 49520 phosphoribosyl anthranilate isomerase [Lactococcus lactis] 64 46	156	-	4313	3612		transmembrane (Bacillus subtilis)	64	33	702
6 5880 6362 gi 517204 ORFI, putative 42 kDa protein (Streptococcus pyogenes) 64 58 13 9707 8769 gnl PID d100964 homologue of ferric anguibactin transport system permarase protein FatD of 64 40 5 3906 4598 gi 534045 antiterminator (Bacillus subtilis) 10 6154 6507 gi 581307 response regulator (Lactobacillus plantarum) 4 3519 2863 gi 49520 phosphoribosyl anthranilate isomerase (Lactococcus lactis) 64 46 7519 7863 gi 49520 7510 7863 7510 7863 7510 7863 7510	157		1299	2114		Gln transport system permease proteins (Bacillus	64	43	816
13 9707 8769 gnl P1D d100964 homologue of ferric anguibactin transport system permerase protein FatD of 64 40 40 40 40 4508 gi 534045 antiterminator (Bacillus subtilis 10 6154 6507 gi 581307 response regulator (Lactobacillus plantarum) 10 6154 6507 gi 581307 response regulator (Lactobacillus plantarum) 10 6154 61 64 64 65 64 65 65 65 65	162	ا و	5880	6362	gi 517204	ORF1, putative 42 kDa protein [Streptococcus pyogenes]	64	58	483
5 3906 4598 gi 534045 antiterminator (Bacillus subtilis)	164	2_	9707	8769		homologue of ferric anguibactin transport system permerase protein FatD of V. anguillarum [Bacillus subtilis]	64	40	939
10 6154 6507 qi 581307 response requiator (Lactobacillus plantarum) 4 3519 2863 qi 149520 phosphoribosyl anthranilate isomerase (Lactococcus lactis) 64 46	175	5	3906	4598		antiterminator (Bacillus subtilis	64	39	693
4 3519 2863 gi 149520 phosphoribosyl anthranilate isomerase (Lactococcus lactis) 64 46	189	100	6154	6507	gi 581307	response regulator (Lactobacillus plantarum)	64	33	354
	161	-	3519	2863		[phosphoribosyl anthranilate isomerase [Lactococcus lactis]	99	46	657

S. pneumoniae - Putative coding regions of novel proteins Wimilar to known proteins

Cont ig ID	ID	Start (nt)	Stop (nt)	match	match gene name	8 sim	* ident	length
202	-	92	1140	gn1 PID e293806	O-acetylhomoserine sulfhydrylase [Leptospira meyeri]	99	47	1065
224	-	234	1571	gi 1573393	collagenase (prtC) [Haemophilus influenzae]	1 64	42	1338
231	5	162	647	91 40174	ORF X (Bacillus subtilis)	64	43	357
253	m	709	1089	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence [S1131]) - Agrobacterium tumefacions (strain PO22) plasmid Ti	64	05	381
265	-	820	7	gi 1377832	unknown (Bacillus subtilis	64	31	819
297	-	-	099	91 1590871	collagenase [Methanococcus jannaschii]	- 64	8,	999
328	-	263	21	91 992651	Gin4p Saccharomyces cerevisiae	64	41	243
2	7	8730	8608	91 556885	Unknown (Bacillus subtilis)	69	48	633
10	9	5178	44B3	191 1573101	hypothetical (Haemophilus influenzae)	69	40	969
12	=	9324	9902	91 806536	membrane protein (Bacillus acidopullulyticus)	63	42	579
15	0 .	8897	1 9187	[gi [722339	unknown Acetobacter xylinum	63	40	291
17	~	1031	309	gn1 PID e217602	PinU (Lactobacillus plantarum)	69	32	723
18	8	8777	6975	gi 1377843	unknown {Bacillus subtilis]	69	45	804
26	-	9780	1078	gi 142440	ATP-dependent nuclease (Bacillus subtilisi	63	46	2703
29	2	3488	4192	91 1377829	unknown (Bacillus subtilis)	63	35	705
34	Ξ	8830	7988	gn1 PID d101198	ORF8 (Enterococcus faecalis)	63	45	843
35	_	1187	876	gi 722339	unknown (Acetobacter xylinum)	63	39	312
48	115	12509	11691	[gi 1573389	hypothetical (Haemophilus influenzae)	63	41	919
51	111	112719	12189	gi 142450	ahrC protein (Bacillus subtilis)	63	35	531
55	-	3979	5022	gi 1708640	YeaB (Bacillus subtilis)	1 63	41	1044
55	115	13669	14670	gn1 PID e311502	[thioredoxine reductase [Bacillus subtilis]	- 69	44	1002
89	01	9242	8919		HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382).	63	40	324
96	_	6554	5685	gi 1574382	lic-1 operon protein (licD) [Haemophilus influenzae]	63	41	870
88	8	6085	5180	gi 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	63	43	906
96	8	5858	6484	[gi 1052803	orflgyrb gene product (Streptococcus pneumoniae)	63	38	627
100	1 1	240	1940	1711/191	[fucosidase [Dictyostellum discoideum]	63	36	1701
		•				+	+	1

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

104	101139		- 69	****	
8 9189 8554 91 53309 1 1 1 1 1 1 1 1 1	d101139	phosphoenolpyruvate carboxylase (Corynebacterium glutamicum)	3	46	2703
6 4704 4886 gn1 P1D 4517 5203 gn1 P1D 4517 5203 gn1 P1D 4585 4585 gn1 P1D 4585 Gn1	d101139 d101434	endonuclease III (Bacillus subtilis)	63	45	636
7 4517 5203 gn1 P1D	d101434	transposase [Symechocystis sp.]	63	39	183
4 963 1547 91 47292 7 4100 4585 911 PTD 1 3 347 91 17333 1 137 175 91 15915 1 137 175 91 15915 1 127 1347 91 139648 1 127 1347 91 139648 1 127 1347 91 13915 1 127 1347 91 13915 1 2 5 6 91 1477 1 2 5 6 91 1477 1 2 5 6 91 12233 1 2495 288 91 PTD 1 2495 288 91 PTD 1 2495 2431 911 PTD		orf2 (Methanobacterium thermoautotrophicum)	63	20	687
7 4100 4585 gn1 PTD	_	v-type Na-ATPase [Enterococcus hirae]	63	27	585
5 1741 2571 91 17870 112 8803 14406 911 91233 1533 1533 1	e313025	hypothetical protein (Bacillus subtilis)	63	98	486
12 8803 14406 gn1 PtD 2 423 917 g1 72233 3 794 1012 g1 15915 1 1377 175 gn1 PtD 1 137 157 g1 15915 1 127 1347 g1 13648 1 127 1347 g1 13648 1 2 556 g1 172333 1 2495 288 gn1 PtD 1 2495 288 gn1 PtD 1 2495 288 gn1 PtD 1 123 23374 24231 gn1 PtD 16 14320 13193 gn1 PtD 17 18 18 gn1 PtD 18 18 18 gn1 PtD 19 14320 13193 gn1 PtD 10 14320 13193 Gn1 PtD 11 12 14320 13193 Gn1 11 12 14320 13193 Gn1 11 12 14320 13193 Gn1 12 12 12 12 12 12 13 14 14 14 14 14 15 14 14 15 14 14 15 14 14 16 14 14 17 18 18 18 18 18 18 18	043	(AECOO184) [221; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SM: P09997 [Escherichia coli]	6	66	831
1 3 347 91 17731 3 794 1012 91 15213 1 1377 175 901 FID 1 1377 1357 91 13948 1 127 1347 94 13948 1 127 1347 94 13948 1 2904 3466 94 72233 1 2495 288 91 122528 1 2495 288 91 FID 23 23374 24231 911 FID 16 14320 13193 911 FID	6324918	[gAl protesse [Streptococcus sanguis]	63	48	\$604
2 423 917 917 918	50	hypothetical 14.8kd protein (Escherichia coli)	69	34	345
3 794 1012 gi 15915 113915	6	unknown [Acetobacter xylinum]	63	61	495
1 1377 175 9n1 P1D 1527 91 15004 1 1 1 1 1 1 1 1 1		cobalamin biosynthesis protein N (Methanococcus jannaschii)	63	36	219
5 1739 1527 61 15915 15016	e324217	ftsQ [Enterococcus hirae]	69	33	1203
1 81 257 91 10004 1 127 1347 91 13648 13 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1374 1375 1373 1374 1375 1374 1373 1374 1373 1374 1373 1374 1373 1374 1373 1375 1373	182	cobalamin biosynthesis protein N (Methanococcus jannaschii)	69	36	213
1 127 1347 91 39648 3 2804 3466 94 72233 1 905 486 94 18774 1 2 556 94 14777 1 219 13 94 22528 1 88 378 94 72233 1 2495 288 971 PID 23 23374 24231 971 PID	53	TreR (Bacillus subtilis)	63	g -	177
3 2804 3466 94 72233 1 905 486 94 18774 1 2 556 94 17774 1 219 13 94 72233 3 364 158 94 72233 3 364 158 94 72233 1 2495 288 971 970	9	ORF8 [Bacillus subtilis]	63	*	1221
1 905 486 91 18774 1 2 5 6 91 14777 1 2 1 3 91 22528 91 72233 3 4 158 91 22528 1 2 2 2 2 2 2 2 2 2	6	unknown (Acetobacter xylinum)	63	37	663
1 2 556 91 14777 1 219 13 91 12528 1 1 1 1 1 1 1 1 1	124	UDP-galactose 4-epimerase (Streptococcus mutans)	69	46	420
1 219 13 g1 22528 1 86 378 g1 72233 3 364 156 g1 22528 1 2495 288 gn1 PID 23 23374 24231 gn1 PID 16 14320 13193 gn1 PID	41	histidine periplasmic binding protein P29 (Campylobacter jejuni)	69	36	555
1 88 378 91 72233 3 364 158 91 22528 1 2495 288 9n1 P1D 23 23374 24231 9n1 P1D 16 14320 13333 9n1 P1D	343	(AF013293) No definition line found [Arabidopsis thaliana]	63	33	207
3 364 158 91 22528 1 2495 288 911 PID 23 23374 24231 911 PID 16 14320 13193 911 PID	6	unknown [Acetobacter xylinum]	63	40	291
1 2495 288 gn1 PID 23 23374 24231 gn1 PID 16 14320 13193 Gn1 PID	-	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
23 23374 24231 gn1 P1D 16 14320 13193 qn1 P1D	e325007	penicillin-binding protein (Bacillus subtilis)	62	42	2208
[16 [14320 [13193 [an] PID]	e254993	hypothetical protein (Bacillus subtilis)	62	35	858
	e349614	nifS-like protein (Mycobacterium leprael	62	37	1128
7 8 6819 7232 gn1 PID c	d101324	VqhY (Bacillus subtilis)	62	32	414
19 15466 14207 gn1 PID	D d101804 beta	eta ketoacyl-acyl carrier protein synthase (Symechocystis sp.)	62	43	1260

S. pneumoniae - Putative coding regions of novel proteins bimilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	metch gene name	E to a	1 ident	length
,	21	17155	116229	gn1 P1D e323514	putative FabD protein (Bacillus subtilis)	62	46	927
-	24	119526	18519	91 1276434	beta-ketoacyl-ACP synthase III (Cuphea wrightii)	62	37	1008
12		5904	4702	91 1573768	A/G-specific adenine glycosylase (mutY) [Haemophilus influenzae]	62	43	1203
12	5	8032	8793	gi 1591587	pantothenate metabolism flavoprotein (Methanococcus jannaschii)	62	33	762
13	=	9678	9328	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	62	\$	351
11	-	2609	2442	gi 1591081	M. Jannaschii predicted coding region MJ0374 (Methanocqccus jannaschii	62	43	168
7.1	<u></u>	3053	2835	91 149570	role in the expression of lactacin F, part of the laf operon [Lactobacillus sp.]	62	3	219
22	10	8627	9538	gn1 PID d100580	similar to B. subtilis DnaH (Bacillus subtilis)	62	63	912
30		865	2043	[gi 2314379 	(AE000627) ABC transporter, ATP-binding protein (yhcg) (Helicobacter pylori)	62	\$	1179
2	5	2235	1636	91 413976	ipa-52r gene product (Bacillus subtilis)	62	44	009
96	=	5689	6123	gi 148231	o251 (Escherichia coll)	62	34	435
40	11	14272	13328	gn1 PID d101904	hypothetical protein (Symechocystis sp.)	62	43	945
42	-	n	311	1461	putative (Bacillus subtilis)	62	- 17	309
44	~	1267	4005	91 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli]	62	43	2739
48	=	9732	9304	gi 662920	repressor protein (Enterococcus hirae)	62	32	429
51	8	5664	7181	gn1 PID e301153	StySkI methylase (Salmonella enterica)	62	44	1518
52	_	1 2791	2099	91 1183886	Integral membrane protein (Bacillus subtilis)	62	41	693
55	91	15702	14704	gn1 PID e313028	hypothetical protein [Bacillus subtilis]	62	40	1 666
1 59	9	3438	3984	91 2065483	unknown [Lactococcus lactis lactis]	62	32	567
63	5	1 4997	4809	95 149771	pilin gene inverting protein (PivML) (Moraxella lacunata)	62	28	189
1 70	7	10002	10739	191 992977	bplG gene product (Bordetella pertussis)	62	45	738
7	=	18790	20382	91 1280135	coded for by C. elegans cDNA cm2le6; coded for by C. elegans cDNA cm01e2; similar to melibiose carrier protein (thiomethylgalactoside permease II) [Ceenorhabditis elegans]	62	62	1593
	28	32217	32768	gni Projatorata	YqeG (Bacillus subtilis)	62	35	552
74		11666	10383	[91 1552753	hypothetical (Escherichia coli)	62	38	1284
					 	-		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	1							
Contig	ORF 11D	Start (nt)	Stop (nt)	match	match gene name	e sim	9 ident	length (nt)
80	80	9370	6096	gn1 P1D d102002	(ABOO1488) FUNCTION UNKNOWN. [Bacillus subtilis]	62	46	240
97	110	8906	7041	gi 882463	protein-N(pl)-phosphohistidina-sugar phosphotransferasa (Escherichia coli)	62	42	2028
86	4	2306	3268	gn1 PID d101496	BraE (integral membrane protein) [Pseudomonas aeruginosa]	62	42	963
1 102	1 3	2823	1539	gn1 PID e313010	hypothetical protein [Bacillus subtilis]	62	24	717
103	£	2795	1242	gn1 P1D d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	62	41	1554
111	2	2035	3462	91 581297	NisP [Lactococcus lactis]	62	44	1428
1112	4	3154	4080	gi 1574379	lic-l operon protein (licA) (Haemophilus influenzae)	62	39	927
112	9	4939	5649	91 1574381	lic-1 operon protein (licC) (Haemophilus influentae)	62	39	1111
124	<u>-</u> -	1137	121	91/1573024	anaerobic ribonucleoside-triphosphate reductase (nrdD) (Haemophilus influenzae)	62	45	417
124	9	3162	2329	gi 609076	leucyl aminopeptidase (Lactobacillus delbrueckii)	62	40	834
1 126	_	111073	7516	gn1 PID d101163	ORF4 [Bacillus subtilis]	62	38	3558
129	9	4983	4540	pir S41509 S415	zinc finger protein EF6 - Chilo iridescent virus	62 6	8.8	444
131	_	4510	4103	gi 1857245	unknown [Lactococcus lactis]	62	42	408
149	7	1923	2579	gi 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	62	7	657
149	7	5360	6055	gn] PID e323508	YloS protein (Bacillus subtilis)	62	40	969
156	-	450	238	gn1 P1D e254644	membrane protein (Streptococcus pneumoniae)	62	40	213
156	9	3606	2935	gn1 PID d102050	transmembrane (Bacillus subtilis)	62	37	672
171	7	1779	2291	191 43941	EIII-B Sor PTS (Klebsiella pneumoniae)	62	35	513
271	~	385	723	191 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	62	39	339
173	_	2599	893	gi 1591732	cobalt transport ATP-binding protein O (Methanococcus jannaschii)	62	42	17071
179	~	492	1754	91 1574071	H. influentae predicted coding region H11038 (Haemophilus influenzae)	62	38	1263
181	9	2856	3707	gi 1777435	LacT (Lactobacillus casei)	62	42	852
185	7	2074	311	91 2182397	(AE000073) Y4fN (Rhizobium sp. NGR234)	62	41	1764
200	7	1061	1984	gi 450566	transmembrane protein (Bacillus subtilis)	62	37	924
202	£	2583	3473	g1 42219	P35 gene product (AA 1 - 314) [Escherichia coli)	9 29	41	891
1 210	_	1374	1565	gi 49315	ORF1 gane product [Bacillus subtilis]	62	\$ \$	192
							• • • • • • • • • • •	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

211 1 971 981 981 [19174023] Included Displacement and analysis of the proposed analysis of the proposed and an	Contig	08F	Start (nt)	Stop (nt)	match	match gene name	ei s	* ident	length (nt)
2 1495 1034 901 PDIDIGIO119 GRFT (Streptococcous material 62 62 63 64 64 64 64 64 64 64	211	-		1 971	gi 147402	[Escherichia	62	43	696
1 34 909 20150063 Olivectol uptake facilitator (Streptococcus pneumoniae) 62 2 90 917 341229259 (APRODEZZO) YRQI (Bacilius aubtilia) 62 1 1 155 1467 Oni File 275435 Galaccotinae (Arabidopais thailana) 62 1 1 155 1467 Oni File 275431 Galaccotinae (Arabidopais thailana) 62 1 1 155 1467 Oni File 275431 Galaccotinae (Arabidopais thailana) 62 1 1 15 155 1417 Oni File 275431 Galaccotinae (Arabidopais thailana) 62 1 15 1856 175 Oni File 175 Galaccotinae (Arabidopais thailana	223	7	1495	1034	gn1 PID d101190		62	41	462
1 175 146 17991259 (APROGAZIO) YEQT [Baccillus aubilita] 62 1 1 1 1 155 (14167421) (ARROGAZIO) PYCOPIGRARS promunonias promu	228	-	34	606		uptake facilitator	62	44	876
1 1 159 1417 1911 1910 1917 1911 1910 1917 1911	234	7	90	716	gi 2293259	(AF008220) Ytq1 (Bacillus subtilis)	62	38	828
1 15 159 dil 1674231 (MERODOS) Mycoplasma premuoniles hypothetical protein homologi similar to 62 1844 1372 gil 137333 Outer membrane integrity protein (tolA) [Haemophilus influenzee] 62 1855 1825 gil 137333 Outer membrane integrity protein (tolA) [Haemophilus influenzee] 62 1855 1825 gil 137333 Outer membrane integrity protein (tolA) [Haemophilus influenzee] 63 1855 gil 137333 Outer membrane integrity protein (tolA) [Haemophilus influenzee] 64 1875 1825 gil 14435 gillallar to gramehocyttis ap. hypothetical protein, encoded by GemBark 61 18 18 18 18 18 18 18	282	5	1765	1487		galactokinase (Arabidopsis thaliana)	62	33	279
9 944 1373 gill1373333 Outer membrane integrity procein (tolM) [Heemophilus Influenzee] 62 19 18550 19269 gill16861 ONF_CZ39 [Escherichia coli] 61 4 2725 3225 gill2114435 similar to Synachocyatia sp. hypothetical procein. encoded by GenBank 61 6 3726 Gill2114435 similar to Synachocyatia sp. hypothetical procein. encoded by GenBank 61 11 8786 1004 gill18569 Lacasion Number DéGOOG [Bacillus subtilis] 61 11 8786 7224 goil PDD [diol0122] Yogil Racillus subtilis] 61 11 8786 7224 goil PDD [diol0122] Yogil Racillus subtilis] 61 11 3786 6555 pp[HDD [diol0122] Yogil Racillus subtilis] 61 12 12 627 gil [3501] Yogil Racillus subtilis] 61 13 628 pp[HDD [diol032] Garles product [Bacharchia coli] 61 14 4 914 3587 gil [3501 Junknown [Bacillus subtilis] 61 </td <td>375</td> <td></td> <td>-</td> <td>159</td> <td></td> <td>pneumoniae, hypothetical protein homolog; similar Number P15155, from B. subtilis (Mycoplasma</td> <td>62</td> <td>0.0</td> <td>159</td>	375		-	159		pneumoniae, hypothetical protein homolog; similar Number P15155, from B. subtilis (Mycoplasma	62	0.0	159
4 2725 19269 [91606162 ONF_CT229 [Secherichia coll] 611 19269 19269 [911011423 Similar to Symechocyetis sp. hypothetical protein, encoded by GenBank 61 61 61 61 61 62 62 63 64 64 64 64 64 64 64	385	- 5	584	1357	91 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	62	47	228
4 2725 3225 gi 114425 lamilar to Symechocyetis sp. hypothetical procein, encoded by GenBank 61 5 3336 3034 gi 149569 lactedin Procession Number DéGodé [Bacillus aubtilis] 61 11 8388 7234 gni Proldiolos xylose repressor (Symechocystis sp.) 61 5 1374 637 gni Proldiolos xylose repressor (Symechocystis sp.) 61 6 1374 637 gni Proldiolos xylose repressor (Symechocystis sp.) 61 5 1374 638 pp45169 porC SPERHIDINE/PUTRESCINE TRANSPORT SYSTER PERMEASE PROPERS 61 1 3 626 pp45169 porC SPERHIDINE/PUTRESCINE TRANSPORT SYSTER PERMEASE PROPERS 61 1 3 627 gi 537108 ORP_E234 [Escherichia coli] 61 1 3 692 gi 537108 ORP_E234 [Escherichia coli] 61 1 3 692 gi 53706 [bp16 gene product [Bordecalla pertuasia] 61 1 1 9 8816 7891 [dilatolosa) [dalatolosa)		119		19269	91 606162	ORF (229 (Escherichia coll)	19	41	720
6 1326 3054 94 149569	-		2725	3225	91 2114425	to Synechocystis sp. hypothetical ton Number D64006 [Bacillus subtil	19	42	501
1 4061 4957 gni PiD di01068 kylose repressor (Symechocyttis sp. 1)	71	9	3326	3054	91 149569	lactacin P (Lactobacillus sp.)	1 61	43	273
11 8988 7234 6037 9m1 PID d101329 Yq3H Bacillus subtilis 61 61 61 61 61 61 61	7	_	4061	4957	gn1 PID d101068	kylose repressor (Synechocystis sp.)	19	38	897
6 1974 6017 gml PID d1001316 YqfK Bacillus subtilis 1 3 692 gi 537108 ORP_£7254 Escherichia coli 1 3 692 gi 19501 ORP_£7254 Escherichia coli 1 9739 10202 gil 19501 ORP_£7254 Escherichia coli 1 9739 10202 gil PID d100133 carboxynorspermidina decarboxylass Symachocystis sp. 2 7881 7003 gil PID d100305 farnesyl diphosphate synthase Bacillus stearothermophilus 3 7881 1136 gil 1789683 (AE000407) mathionyl-tRNA formyltransferase Escherichia coli 4 4914 3697 gil 537080 ribonucleoside triphosphate raductase Escherichia coli 5 7311 1349 gil PID d100151 hypothetical protein (Symechocystis sp. 6 7968 6478 gil 895347 putative cal operon regulator Bacillus subtilis 8 7181 8518 gil 209527 protein histidine kinase Enterococcus faecalis	54	11	8388	7234	gn1 PID d101329	YqjH (Bacillus subtilis)	19	42	1155
5 7356 6565 sp P45169 POTC_ SPERHIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTEIN POTC. 61 1 3 652 [44 537108 GRF_fi254 Escherichia coli] 61 1 3 682 [44 537108 GRF_fi254 Escherichia coli] 61 1 9759 10202 gai 19501 PPLZ12 gene product (AA 1-184) (Lupinus polyphyllusi 61 1 9759 10202 gai 195076 bplF gene product (Borderella pertussis) 61 1 9759 10202 gai 1910 10101833 carboxynocspermidine decarboxylase (Synachocystis sp.] 61 1 9759 10202 gai 1910 10101833 carboxynocspermidine decarboxylase (Synachocystis sp.] 61 4 4914 3697 gai 528991 unknown Bacillus subtilis) 61 5 731 1369 gai 137080 ribonucleoside triphosphate raductase (Escherichia coli) 61 6 7968 6478 gai 895747 putative cel operon regulator (Bacillus subtilis) 61 8 7181 8918 gai 1209527 protein histidine kinase (Enterococcus faecalis) 61	57	9	3974	6037	gn1 P10 d101316	YqfK (Bacillus subtilis)	1 61	42	2064
1 3 692 gil 537108 ORF_£6254 Escherichia colij 61 61 61 61 61 62 62 62	58	5	7356	6565	sp P45169 POTC_	SYSTEM PERMEASE PROTEIN	19	34	792
9 8816 7890 gi 19501 pPLZ12 gene product (AA 1-184) [Luphnus polyphyllus] 61 61 61 61 61 61 62 63 64 64 64 64 64 64 64	69	-	~	692	191 537108		61	9#	069
15 10717 12008 gi 992976 bplF gene product Bordetella pertussis 61 61 61 61 61 61 61	89	6	8816	7890	gi 19501		61	41	927
11 9759 10202 gnl PID d101833 carboxynorspermidine decarboxylsas (Synchocysis sp.) 61 4 4914 3697 gi 528991 unknown Bacillus subtilis 61 5 731 12989 gi 528991 unknown Bacillus subtilis 61 6 731 1349 gnl PID d101851 hypothetical protein (Synechocystis sp.) 61 8 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61 9 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61 9 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61 9 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61 9 788 788 Gi 1209527 protein histidine kinase (Enterococcus faecalis) 61 9 788 788 Gi 1209527 Protein histidine kinase (Enterococcus faecalis) 61 9 788 788 Gi 1209527 Protein histidine kinase (Enterococcus faecalis) 61 9 788 788 Gi 1209527 Protein histidine kinase (Enterococcus faecalis) 61 9 788 788 Gi 1209527 Protein histidine kinase (Enterococcus faecalis) 61 9 788 788 Gi 1209527 Protein histidine kinase (Enterococcus faecalis) 61 9 788	02	- 51	:	12008	gi 992976		61	3	1272
8 7881 7003 gnl PID d100305 farnesyl diphosphate synthase [Bacillus stearothermophilus] 61	27	=	9759	10202	gn1 Pr0 d101833	carboxynorspermidine decarboxylase [Synachocystis sp.]	61	36	444
4 4914 3697 gi S28991 unknown Bacillus subtilis	1 76		7881	7003			[61]	45	879
13 12311 11361 gi 1789683 (AE0000407) methionyl-tRNA formyltransferase [Escherichia coli) 61 2 731 2969 gi 537080 ribonucleoside triphosphate reductase [Escherichia coli) 61 3 2711 3499 gnl PID d101851 hypothetical protein (Synechocystla sp.) 61 6 7966 6478 gi 895447 putative cel operon regulator (Bacillus subtilis) 61 8 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61	87	-	4914	3697	gi 528991	unknown (Bacillus subtilis)	19	42	1218
2 731 2389 gi 537080 Tibonucleoside triphosphate reductase [Escherichia coli] 61	87	_ [12311	11361	91 1789683	methionyl-tRNA formyltransferase [Escherichia	19	77	951
3 2711 3499 gni PID d101851 hypothetical protein (Synechocystis sp.) 6 7968 6478 gi 895747 putative cel operon regulator (Bacillus subtilis) 61 61 8 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61	91	2	731	2989	91 537080	ribonucleoside triphosphate reductase [Escherichia coli]	1 9 1	45	2259
6 7968 6478 91 895747	105		2711	3499	gn1 P1D d101851		61	44	789
8 7181 8518 gi 1209527 protein histidine kinase (Enterococcus faecalis) 61	115	9	7968	6478	g1 895747		19	36	1491
	123	8	7181	!	91 1209527	protein histidina kinase (Enterococcus faecalis)	61	- 07	1338

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a sin	* ident	length (nt)
126	۰	7525	6725	gi 1787043	(AE000184) f271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 [Escherichia coli)	61	38	801
128	-	-	639	gn1 PID d101328	YqiY (Bacillus subtilis)	61	7	639
139	_	4794	5054	91 1022726	unknowm Staphylococcus haemolyticus	61	41	261
139	6	12632	5913	gn1 P1D e270014	[beta-galactosidase [Thermoanaerobacter ethanolicus]	61	41	6720
143	-	2552	4 2	gi 520541	penicillin-binding proteins 1A and 1B (Bacillus subtilis)	61	42	2511
148	91	12125	111424	91 1552743	tetrahydrodipicolinate N-succinyltransferase (Escherichia coli)	61	42	702
162		4112	3456	(gn1 PID d101829	phosphoglycolate phosphatase (Symechocystis sp.)	61	30	657
27.1	<u>~</u>	727	1077	· - ·	B. subtilis, cellobiose phosphotransferase system, celA; P46318 (220)	61	-	351
177	-	1101	2771	gn1 PID d100574	unknown (Bacillus subtilis)	. 61	43.	672
202	7	1278	2585	g1 1045831	hypothetical protein (GB:[18965_6) [Mycoplasma genitalium]	61	36	1308
224	-	2782	3144	91 1591144	M. jannaschii predicted coding ragion MJ0410 [Hethanococcus jannaschii]	61	30	363
225	-	3395	3766	gi 1552774	hypothetical [Escherichia coli]	61	40	372
249	7	212	802	91 1000453	Trem (Bacillus subtilis)	61	42	291
254	~	843	484	gn1 PID d100417	ORF120 (Escherichia coli)	61	36	360
257	_	0	350	[gn1 P10 e255315	unknown [Mycobacterium tuberculosis]	61	42	348
293	4	3971	3657	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence ISI131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	19	45	315
100	-	949	1,	91 2291209	(AF016424) contains similarity to acyltransferases (Caenorhabditis elegans)	61	33	933
373	-	1066	287	91 393396	Tb-292 membrane associated protein (Trypanosoma brucei subgroup)	61	38	780
-	24	24473	24955	191 (537093	ORF_o153b [Escherichia coli]	09	27	483
9	2	4636	5739	191 2293258	(AF008220) YtoI (Bacillus subtilis)	- 09	35	1104
9	112	11936	11187	91 293017	ORF3 (put.); putative [Lactococcus lactis]	1 09	44	750
11	=	6708	6484	gi 149569	lactacin F (Lactobacillus sp.)	- 09	32	225
81		6977	5670	91 1788140	(AE000278) o481; This 481 as orf is 35 pct identical (19 gaps) to 309 residues of an approx. 856 as protein NOLL_HUMAN SW: P46087 (Escherichia coli)	9	£3	1308
20	115	15878	17167	gn1 PID d100584	lunknown (Bacillus subtilis)	6	*	1290
					•			*

S. pneumoniae - Putative coding regions of novel proteins slmilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	Eis -	1 ident	length (nt)
22	-		243	gn1 P1D d102050	transmembrane (Bacillus subtilis)	99	36	243
32	2	8296	8964	gi 2293275	(AF008220) YtaG (Bacillus subtilis)	09	37	699
38	115	8837	1 9697	gi 40023	B.subtilis genes rpmH, rnpA, 50kd, gida and gidB (Bacillus subtilis)	9	35	861
.	9	8610	5944	191 171787	protein kinase i [Saccharomyces cerevisiae]	09	36	2667
44	-	-	1269	gn1 PID e235823	unknown (Schizosaccharomyces pombe)	09	44	1269
45	97.	111138	10368	91 397488	1,4-alpha-glucan branching enzyme (Bacillus subtilis)	09	43	1177
48	119	15766	14378	gn1 P1D e205173	orf1 (Lactobacillus helveticus)	09	39	1389
48	[21	116727	16951	gn1 PID d102041	[AB002668] unnamed protein product [Haemophilus actinomycetemcomitans]	09	32	225
05	-	7	868	gn1 PID e246537	ORP286 protein [Pseudomonas stutzeri]	09	31	897
62	1 2	638	7,111	gn1 PID d100587	unknown (Bacillus subtilis)	09	42	540
68	-	3590	5203	gi 1573583	H. influenzae predicted coding region HIO594 (Haemophilus influenzae)	09	36	1614
0,	=_	5781	6182	gn1 PID d102014	(ABOO1488) SIMILAR TO YDFR GENE PRODUCT OF THIS ENTRY (YDFR_BACSU).	9	33	402
07	112	6343	8133	gn1 PID e324970	hypothetical protein (Bacillus subtilis)	09	38	1791
17	8	111701	14157	91 580866	ipa-12d gene product (Bacillus subtilis)	09	33	2457
74	8	112509	11664	gn1 PID d101832	phosphatidate cytidylyltransferase (Synechocystis sp.)	909	45	846
92		4116	3367	gi 2352096 	orf; similar to serine/threonine protein phosphatase (Fervidobacterium islandicum)	9	39	750
80		2757	7665	gi 1786420 	(AE000131) f86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 Escherichia coli	09	30	294
81	•	4073	4522	gi 147402	mannose permease subunit III-Man (Escherichia coli)	9	35	450
98	-	940	155	91 143177	putative (Bacillus subtilis)	9	36	786
92	-	-	192	gi 396348	homoserine transsuccinylase (Escherichia coli)	9	45	192
6	7	10619	9384	91 1788389	(AE000297) o464; This 464 as orf is 31 pct identical (9 gaps) to 311 residues of an approx. 416 as protein MTRC_NEIGO SW: P43505 (Escherichia coll)	09	27	1236
94	5	5548	8121	gn1 PID e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]	09	50	2574
97		5396	4533	gi 1591396	transketolase' (Hethanococcus jannaschii)	9	43	864
102	7	2081	2833	gn1 PID e320929	hypothetical protein (Mycobacterium tuberculosis)	09	43	753

S. pneumoniae - Putative coding regions of novel proteins 站前lar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	# ident	length (nt)
106	6	9773	9183	gn1 P1D e334782	VIbN protein (Bacillus subtilis)	09 1	31	591
113	80	6361	6837	91 466875	nifU; B1496_C1_157 (Mycobacterium leprae)	09	43	477
115	7	2755	524	gn1 PID e328143	(AJ000332) Glucosidase II (Homo sapiens)	09	32	2232
1 122	1 1	4763	8905	gn1 PID d101876	transposase (Synechocystis sp.)	09	39	306
127	80	4510	5283	91 1777938	Pgm (Treponema pallidum)	09	38	774
138	•	3082	2672	gn1 PID e325196	hypothetical protein (Bacillus subtilis)	09	36	411
139	-	177	4	gn1 PID d100680	ORF (Thermus thermophilus)	09	39	174
139	11	14520	13009	91 537145	ORF_[437 [Escherichia coli]	09	30	1512
140	2	2592	1249	191 1209527	protein histidine kinase (Enterococcus faecalis)	09	37	1344
141	-	210	1049	91 (63181	E5 ORF from bp 3842 to 4081; putative [Human papillomavirus type 33]	09	34	840
141	- 2	5368	6405	gi 145362	tyrosine-sensitive DAHP synthase (arof) [Escherichia coli]	09	41	1038
142	•	3558	4049	191 600711	putative (Bacillus subtilis)	09	37	492
148	130	1 7742	8713	gn1 PID e313022	hypothetical protein (Bacillus subtilis)	09	27	972
153	5	3667	4278	gi 2293322	(AF008220) branch-chain amino acid transporter (Bacillus subtilis)	09	42	612
155	_	1413	748	gi 2104504	putative UDP-glucose dehydrogenase [Escherichia coli]	09	0.7	999
158	3	3116	2472	gn1 PID d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	09	37	645
159	m 	778	1386	gn1 P1D e308090	product highly similar to Bacillus anthracis CapA protein (Bacillus subtilis)	9	8	609
163	7	8049	8468	[gn1 PID d101313	Yqen (Bacillus subtilis)	09	38	420
170	-	4130	2688	gi 1574179	H. influenzae predicted coding region HI1244 [Haemophilus influenzae]	09	39	1443
171	7	4717	5901	191 606076	ORF_0384 (Escherichia coli)	09	***	1185
183	_	2440	2135	91 1877427	repressor (Streptococcus pyogenes phage T12)	09	38	306
161	10	9444	8428	gi 415664	catabolite control protein (Bacillus megaterium)	09	42	1017
200	-	139	1083	gi 438462	transmembrane protein [Bacillus subtilis]	- 09	37	945
201	~	3895	1928	91 475112	enzyme Ilabc (Pediococcus pentosaceus)	09	39	1968
214	115	10930	- ;	gi 1573407	hypothetical (Haemophilus influenzae)	09	39	492
218	4	2145	2363	191 608520	(myosin heavy chain kinase A (Dictyostelium discoideum)	90	31	219

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 19 ID	ORF	Start (nt)	Stop (nt)	match	match gene name	E is	• ident	length (nt)
226	-	2518	2351	gi 437705	hyaluronidase (Streptococcus pneumoniae)	09	53	168
242	-	725	~	91 43938	Sor regulator (Klebsiella pneumoniae)	09	41	723
245	7	~	288	gi 304897	EcoE type I restriction modification enzyme H subunit [Escherichia coli]	09	95	288
251	-	905	45	[91 671632	unknown (Staphylococcus aureus)	09	36	861
259	-	696	82	gi 153794	rgg [Streptococcus gordon11]	09	32	888
260	~	1492	1662	pir S31840 S318	probable transposase - Bacillus stearothermophilus	09	26	171
274	-	836	96	gi 1592173	N-sthylammeline chlorohydrolase (Methanococcus jannaschii)	09	04	741
308	-	463	2	191 1787397	(AEGO0214) 0157 (Escherichia coli)	09	43	462
318	-	3	308	gn1 PID e137594	xerC recombinase [Lactobacillus leichmannii]	09	42	306
344	-	7.3	522	91 509672	repressor protein (Bacteriophage Tuc2009)	09	32	450
5	_	576	4	g1 2293147	[AF008220] YtxH [Bacillus subtilis]	65	31	. 573
7	22	118140	17142	gn1 PID e280724	unknown (Mycobacterium tuberculosis)	65	39	666
9	-	1413	7	gi 1353880	sialidase L (Macrobdella decora)	65	1.4	1410
15	9	6463	5156	91 580841	F1 (Bacillus subtilis)	65	35	1308
22	2	479	1393	gi 142469	als operom regulatory protein (Bacillus subtilis)	- 65	34	915
22	5	2698	4614	gn1 PID e280623	PCPA (Streptococcus pneumonlae)	65	44	1917
oc S		208	558	gn1 PID e233868	hypothetical protein (Bacillus subtilis)	65	37	351
30	-	8698	2455	gn1 PID e202290	unknown [Lactobacillus sake]	65	33	1224
35	=	112201	11071	gn1 PID e238664	hypothetical protein (Bacillus subtilis)	65	35	1131
35	=	13288	12182	191 1657647	Cap8H (Staphylococcus aureus)	65	39	1107
36	118	118076	17897	gi 1500535	[M. jannaschli predicted coding region MJ1635 [Methanococcus jannaschii]	- 65	33	180
38	122	6172	7137	di 2293239	(AF008220) YtxK (Bacillus subtilis)	65	34	996
42		1952	3361	91 1684845	pinin (Canis familiaris)	59	40	1410
20		2678	1728	gn1 PID d101329	Yqjk (Becillus subtilis)	89	41	951
95	5	1 1870	2388	gn1 P1D e137594	xerC recombinase (Lactobacillus leichmannii)	59	41	519
19	9	6812	5628	gn1 P1D e311516	aminotransferase (Bacillus subtilis)	59	40	1185
69	- 3	2382	3023	91 1146190	2-keto-1-deoxy-6-phosphogluconate aldolase [Bacillus subtilis]	29	36	642
						4	********	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_		•	(11)
	1 8567	7 8899	gi 1573628	antothenate kinase (coak) [Haemophilus influenzae]	65	38	333
	2 11383	3 10055	gn1 PID e323504	putative Fmu protein (Bacillus subtilis)	65	44	1329
	13927	15894	91 1673731	(AEOOOO10) Mycoplasma pneumoniae, fructose-permesse IIBC component; similar to Swiss-Prot Accession Number P20966, from E. coli [Mycoplasma pneumoniae]	65	.	1968
	8 8766	6 8521	gi 1590886	M. jannaschii predicted coding region MJ0110 (Methanococcus jannaschii)	89	38	246
	2 1966	1526	gn1 PTD e209005	homologous to ORF2 in nrdEF operons of E.coli and S.typhimurium [Lactococcus lactis]	59	£	441
128 17	13438	9 13178	gn1 PID e279632	unknown [Mycobacterium tuberculosis]	65	38	261
140 22	2 23903	1 23388	91 482922	protein with homology to pail repressor of B.subtilis (Lactobacillus delbrueckii)	29	0.4	516
148 113	9697	9014	gn1 P10 d102005	(ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. (Bacillus subtilis)	88	32	684
149 10	0 7213	3 8244	91 710422	cmp-binding-factor 1 (Staphylococcus aureus)	65	0\$	1032
164	9 6993	3 6013	gn1 P1D d100965	ferric anguibactin-binding protein precueor FatB of V. anguillarum [Bacillus subtilis]	29	41	981
164 112	8836	5 7823	gn1 P1D d100964	homologue of ferric anguibactin transport system permerase protein FatC of V. anguillarum (Bacillus subtilis)	59	35	1014
2 771	401	1072	91 289759	coded for by C. elegans cDNA CE2G3 (GenBank:Z14728); putative [Caenorhabditis elegans]	59	4	672
7 1 1	, 3841	4200	91 2313445	(AE000551) H. pyloxi predicted coding region HP0342 (Helicobacter pyloxi)	59	38	360
183 4	1 2768	8 2508	gi 509672	repressor protein (Bacteriophage Tuc2009)	65	20	261
186	6 3398	8 2820	gi 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	65	88	579
190	3 3120	1171 0	gi 1613768	histidine protein kinase (Streptococcus pneumoniae)	65	32	1410
194 2	2 1621	1 1019	gn1 PID d100579	unknown (Bacillus subtilis	65	9	603
198	7 5205	5 4306	gn1 P1D e313073	hypothetical protein (Bacillus subtilis)	85	38	006
220	5 4362	3958	gn1 PID d101322	YqhL (Bacillus subtilis)	65	46	405
242	£721 E	3 2367	91 1787045	(AE000184) [108; This 308 as orf is 35 pct identical (35 gaps) to 305 residues of an approx. 296 as protein PFLC_ECOLI SW: P32675 (Escherichia coll)	88	42	795
247 2	11154	-	1480 91 40073	ORFIO7 (Bacillus subtilis)	65	39	327

S. pneumoniae - Putative coding regions of novel proteins stailar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	* ident	length (nt)
256	-	968	7	gn1 PID d101924	hemolysin [Symechocystis sp.]	65	39	867
258		65	820	91 2246532	ORF 73, contains large complex repeat CR 73 (Kaposi's sarcoma-associated herpesvirus)	85	20	756
270	-	386	1126	gn1 PID d102092	YfnB (Bacillus subtilis)	65	40	741
281	-	552	166	gi 666062	putative Lactococcus lactis	65	31	387
1 309	-	m	479	gi 405879	yeiH (Escherichia coli)	65	38	477
1 363	-	2	1894	91 915208	gastric mucin (Sus scrots)	65	31	1893
387	7	425	94	191 160671	S antigen precursor (Plasmodium falciparum)	65	44	342
5	ا 	111223	10465	gn1 PID d101812	[LumQ (Synechocystis sp.]	85	29	759
52	-	2098	3513	479	Na+ -ATPase subunit J (Enterococcus hirae)	88	39	1416
06	2	4058	13651	gi 39478	ATP binding protein of transport ATPases [Bacillus firmus]	88	34	408
<u> </u>	9	2983	2210	gn1 PID d101164	unknown (Bacillus subtilis)	88	45	174
36	8	5316	6179	gi 1518679	orf (Bacillus subtilis)	85	32	864
43	2	5926	13971	[91 1788150	(AE000278) protease II (Escherichia coli)	88	7.6	1956
46	- 2	3704	5221	gn1 PID e267329	Unknown (Bacillus subtilis)	85	42	1518
48	124	111722	111066	17710 d101771	thiamin biosynthetic bifunctional enzyme [Synechocystis sp.]	88	34	657
52		1229		gn1 P1D d101291	reductase [Pseudomonas aeruginosa]	88	35	1221
53	~	1 702	412	91 2313357	(AE000545) cytochrome c biogenesis protein (ccdA) [Helicobacter pylori]	85	25	291
58	-	6586	5498	91 147329	transport protein [Escherichia coli]	88	41	1089
69	- 5	4934	3807	gn1 PID e311492	unknown (Bacillus subtilis)	85	4	1128
1,	27	131357	132277	91 2408014	hypothetical protein (Schizosaccharomyces pombe)	88	33	921
1 72	-	3586	2882	91 18694	nodulin-21 (AA 1-201) [Glycine max]	85	34	705
74	-	4937	4230	[g1 2293252	(AF008220) Ytmo (Bacillus subtilis)	58	33	1 807
67	-	4594	3422	91 1217989	ORF3 (Streptococcus pneumoniae)	88	44	1173
82	8	10585	1111	gi 882711	exonuclease V alpha-subunit (Escherichia coli)	58	38	2415
86	5	116017	15337	91 47642	5-dehydroquinate hydrolyase (1-dehydroquinase) (Salmonella typhi)	58	32	681
97	- 5	1 931	260	gi 153794	rgg (Streptococcus gordonii)	58	32	372
						*	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	08F	Start (nt)	Stop (nt)	match	match gene name	E si s	* ident	length
108	7	358	2724	gi 537020	vac8 gene product (Escherichia coll)	58	37	2367
111	2	4593	5240	91 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschil)	58	36	648
120	~	4421	5110	gn1 P1D d101320	Yqgx (Bacillus subtilis)	88	47	069
128	16	113131	12673	gi 662919	ORP U (Enterococcus hirae)	88	42	459
132	~	6174	4939	191 1800301	[macrolide-efflux determinant (Streptococcus pneumoniae]	88	35	1236
133	-	111	890	gn1 PID e269488	Unknown (Bacillus subtilis)	- 88	36	780
160	=	8615	5986	gi 473901	ORF1 [Lactococcus lactis]	- 58	39	1251
161	9	6268	6849	gn1 PID d101024	IN-1 protein (Homo sapiens)	- 88	32	582
169	-	214	~	gn1 P1D d100447	(translation elongation factor-3 (Chlorella virus)	- 88	7 7	213
1 187		487	2	91 475114	regulatory protein [Pediococcus pentosaceus]	88	38	486
187	9	4384	4620	gi 167475	dessication-related protein (Craterostigma plantagineum)	58	55	237
190	~	1464	1640	gn1 PID e246727	competence pheromone (Streptococcus gordonii)	- 28	38	1771
192	~	2012	1344	gn1 PID d100556	rat GCP360 [Rattus rattus]	58	44	699
506	-	1292	969	gn1 PID e202579	product similar to WrbA [Lactobacillus sake]	58	35	597
216	~	2333	555	gn1 PID e325036	hypothetical protein (Bacillus subtilis)	88	33	1 6771
217	5	5250	4321	gi 466474	cellobiose phosphotransferase enzyme II'' [Bacillus stearothermophilus]	28	38	930
217		5636	5106	gn1 P1D d102048	B. subtilis cellobiose phosphotransferase system celB; P46317 (998) transmembrane [Bacillus subtilis]	80	4	531
232	-	2	811	gi 1573777	cell division ATP-binding protein (ftsE) [Haemophilus influenzae]	28	39	810
264		7	715	gi 973330	NatA (Bacillus subtilis)	28	32	714
280		33	767	91 1786187	(AE000111) hypothetical 29.6 kD protein in thrC-talB intergenic region [Escherichia coll]	88		735
306	-	845	_	gn1 PID e334780	YlbL protein (Bacillus subtilis)	58	47	843
360	_	1556	1092	sp P46351 YZGD_	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I 5'REGION.	1 85	32	465
363	5	2160	1867	gi 160671	S antigen precursor (Plasmodium falciparum)	58	51	294
1 372	-	908	_	91 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	58	37	804
382	~	749	519	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence [S]]]]] - Agrobacterium tumefaciens (strain P022) plasmid Ti	885	14	231
	1					+		+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1 1 1 1 1 1 1 1 1 1	Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# STB	• ident	length
1 2 412	_	6	8409	7471	gi 1499745	M. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii]	57	38	939
1 2 2022 1386 pull probletonomy 67 100	10	2	7674	1 7507	91 1737169		62	30	168
1 1002 1004 1010 101		-	7	412	d100139	[Acetobacter	57	42	411
11 631 644 970 Projektical Protein Recillus subtilies 57 546 506 94 5152204 Prospheserine phosphese (Rechineccous jannachili) 57 546 506 94 5152204 Prospheserine phosphese (Rechineccous jannachili) 57 54 57 57 57 57 57 57	31	-	2032	1388	[91]2293213	(AF008220) YtpR (Bacillus subtilis)	57	37	645
7 633 762 901 532304 Phosephoses in phosephoses (Methomonas campestria) 57 643 64 630 153309 Prof. enzymer II (Functione (Nanthomonas campestria) 57 64 630 91 533169 Prof. enzymer II (Functione (Nanthomonas campestria) 57 735	33	=	6931	6449			- 25	36	483
1 (52) (63) (64) (64) (64) (64) (64) (64) (64) (64	- 45	- 2	5446	2060	91 1592204	,	52	9.0	387
5 4520 6850 gil 374144 disple-stranded-DNA specific examuclasse (recal) (Reacophilius influencese] 57 75 76 75 75 75 75 75	49	-	6523	7632	91 155369		57	35	1110
5 5279 1795 91 1813500 Traplicase-sesociated polyprotein loat blue dwarf virual 57 46 1815 13182 395 91 1812500 Mambiogous to Safasfrot.YIDA_ECOLI Mypothedical procesn (Bacillus subtilis) 57 40 40 40 40 40 40 40 4	52	9	4,520	6850	gi 1574144	exonuclease (recJ)	57	35	2331
15 1382 1055 91 2182609 AREDONO991 VECT Philosophian Sp. NGR214 5511 1382 1055 91 2182609 Phomologous to SwissProt.VID_ECOLI hypothetical protein [Bacillus aubtillia] 57 40 40 40 40 40 40 40 4	53	~	2079	1795	gi 1843580	replicase-associated polyprotein (oat blue dwarf virus)	52	46	285
15 11883 11039 gni PID G100892 homologous to SwissProt.YIDb_ECOLI hypothetical procain labcillus subtillia 57 44 2 2561 1815 gni PID G100855 homologue of NNDPH-flavin oxidereducese Prp of V. harveyi Bacillus 57 34 3 1825 9753 glil206045 Genochabditis aleganal Genochabditis aleg	63	9	5312	4995	91 2182608	(AE000094) V4rJ (Rhizobium sp. NGR234)	57	39	318
2 2.561 1815 gnil PID d100965 hamologue of NADPH-flavin oxidoreductase Prp of V. harveyi [Bacillus 57 44 9 9556 9753 gril 12066045 subtilis) 35 35 16 15371 14493 gril 12060045 subtilis 57 34 16 15371 14493 gril 12060045 subtilis 57 34 1 1691 1577 gril 1700003 mutator mutr protein [Mechanococcus janaschil] 57 31 1 1692 1177 gril 159883 [kinconina synthase Arabidopsis thalianal 57 43 14 17211 [8212 gril 159193 [kinconina synthase Arabidopsis thalianal 57 43 14 17211 [8212 gril 159193 [kinconina synthase Arabidopsis thalianal 57 44 1 17212 [812 gril 159193 [kinconina synthase Arabidopsis thalianal 57 44 1 17212 [812 gril 159193 [kinconina synthase Arabidopsis thalianal [kinconina	72	12	13883	13059		2	57	\$	825
16 15371 14493 gi 1206045 Graenorhabditis elegans 16 15371 14493 gi 1787983 (Abbolo64) o2881; 92 pct identical (1 gaps) to 212 residues of fragment 57 34 34 34 34 34 34 34 3	67		2561	1815		of NADPH-flavin oxidoreductase Prp of V.	52	44	747
16 15371 14493 g1 1787983 (AE000264) o288; 92 pct identical (I gaps) to 222 residues of fragment 57 34 34 34 34 34 34 34 3	8	6	9836	9763	91 1206045	of similarity to tis elegans!	52	35	168
5 1695 1177 91 1500003 mutator mutT protein [Methanococcus jannaschii] 57 33 151 152 151 152 91 55982 [threonine synthase Arabidopsis thaliana 57 44 172 182 182 91 173149 BirA protein [Bacillus subtilis] 57 44 172 182 91 173149 BirA protein [Bacillus subtilis] 57 44 172 183 91 159 91 159 91 159 91 159 91 159 91 159 91 159 91 150 91 150 91 91 91 91 91 91 91 9	98	16	15371	14493	gi 1787983 	o288; 92 pct identical (1 gaps) to 222 residues of I SW: P28244 (223 aa) [Escherichia coli)	52	34	879
6 3026 4519 91 559882 [threonine synthase Arabidopsis thaliana] 57 43 43 114 17211 18212 91 773149 BirA protein [Bacillus subtilis] 57 30 30 16 18212 91 7591393 M. jannaschili predicted coding region MJ0678 [Wethanococcus jannaschili 57 30 16 18627 18328 pir A45605 A45605	93	_	1695	1177	gi 1500003		57	33	519
14 17211 18212 gil 773349 BirA protein [Bacillus subtilis] 57 44 44 48 7903 gil 1591393 H. jannaschii predicted coding region MJ0678 [Methanococcus jannaschii] 57 30 22 48 7903 gil 1591393 H. jannaschii predicted erythrocyte surface antigen HESA - Plasmodium 57 22 22 23 23 24 2108 2884 gnl PTD[d102148 (AB001684) sulfate transport system permease protein (Chlorella vulgaris 57 39 25 25 25 25 25 25 25 2	96	9	3026	4519	91 559882	threonine synthase [Arabidopsis thallana]	57	\$	1494
8 7448 7903 91 1591393 H. jannaschii predicted coding region MJ0678 [Methanococcus jannaschii] 57 30 16 18627 18328 pir A45605 A456 matura-parasite-infected erythrocyte surface antigen MESA - Plasmodium 57 22 2 343 1110 pir F64149 F641 hypothetical protein HI0355 - Haemophilus influenzae (strain Rd KM20) 57 38 4 2108 2884 gnl P1D d102148 (AB001684) sulfate transport system permease protein (Chlorella vulgaris) 57 35 10 6477 5587 gi 1573082 nitrogenase C (niff) [Haemophilus influenzae] 57 35 11 9251 9790 gi 153692 pneumolysin [Streptococcus pneumoniae] 57 38 4 2139 1363 gi 42081 nagD gene product (AA 1-250) [Escherichia coli] 57 36	66	7	11211	118212	91 773349	BirA protein (Bacillus subtilis)	- 25	99	1002
16 18627 18328 pir A45605 A456 mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium 57 22 22 23 343 1110 pir F64149 F641 hypothetical protein H0355 - Haemophilus influenzae (strain Rd kW20) 57 38 27 38 2108 2884 gnl P1D d102148 (AB001684) sulfate transport system permease protein (Chlorella vulgaris) 57 35 35 35 35 35 35 35	1112	8	7448	1 7903	gi 1591393	predicted coding region MJ0678	57	30	456
2 343 1110 pir F64149 F641 hypothetical protein H10355 - Haemophilus influenzae (strain Rd KW20) 57 38	E .	91-	18627	18328	pir A45605 A456		57	22	300
4 2108 2884 gnl PID d102148 (AB001684) sulfate transport system permease procein (Chlorella vulgaris 57 39 10 6477 5587 gi 1573082 nitrogenase C (nifC) [Haemophilus influenzae 57 35 11 9251 9790 gi 153692 pnaumolysin Streptococcus pnaumoniae 4 2139 1363 gi 42081 nagD gene product (AA 1-250) [Escherichia coll 57 36	123	~	343	1110		protein HI0355 -	57	38	768
10 6477 5587 gi 1573082 nitrogenase C (nifC) (Maemophilus influenzae 57 35	123	-	2108	2884	d102148	system permease protein (Chlorella	57	39	1777
13 9251 9790 gi 153692 pneumolysin Streptococcus pneumoniae 4 2139 1363 gi 42081 nagD gene product (AA 1-250) [Escherichia coli]	127	0 -	6477	5587	91 1573082	c (nifc)	57	35	891
4 2139 1363 gi 42081 nagD gene product (AA 1-250) [Escherichia coli]	128	13	9251	9790	gi 153692	pneumolysin (Streptococcus pneumoniae)	57	38	540
	131	-	2139	1363	91 42081	nagD gene product (AA 1-250) [Escherichia coli]	57	36	177

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match	match gene name	e sin	% ident	length (nt)
136		214	1221	bbs 148453	SpaA=endocarditis immunodominant antigen (Streptococcus sobrinus, MUCOB 263, Peptide, 1566 aa] (Streptococcus sobrinus)	57	44	1008
140	125	128701	26851	gi 505576	beta-glucoside permease [Bacillus subtilis	57	38	1851
141	9 -	6395	1 7438	91 995560	unknown {Schiiosaccharomyces pombe}	- 52	4	1044
144	-	3231	2785	gn1 PID d100139	ORF (Acetobacter pasteurianus)	52	42	447
155		5454	4564	91 600431	glycosyl transerase [Erwinia amylovora]	55	34	891
159	6	4877	5854	1911290509	0307 [Escherichia coli]	57	35	978
167	Ξ	9710	9249	gn1 PID d100139	ORF (Acetobacter pasteurianus)	57	42	462
171	9	4023	4436	91 147402	mannose permease subunit III-Man [Escherichia colii]	57	29	414
178	-	1 2170	1076	gn1 PID d102004	[(ABG01488) ATP-DEPENDENT RNA HELICASE DEAD HOHOLOG. [Bacillus subtilis]	25	39	1095
190	-	145	1455	gi 149420	export/processing protein [Lactococcus lactis]	57	30	1311
198		298	95	91 522268	unidentified ORF22 [Bacteriophage bIL67]	52	36	204
203	7	3195	2110	gn1 PtD e283915	orf c01003 (Sulfolobus solfataricus)	57	41	1086
205	-	40	507	gi 1439527	EliA-man (Lactobacillus curvatus)	55	28	468
214		4243	3797	gn1 P10 d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189)	52	88	447
268		1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein (Lectobacillus curvatus)	57	36	492
351	-	324	34	gn1 PID e275871	T03F6.b (Caenorhabditis elegans)	57	31	291
386	-	226	7	[91]160671	S antigen precursor (Plasmodium falciparum)	52	45	225
2	2	10486	7778	gi 405857	yehU [Escherichia coli]	95	33	1710
8	2	3674	3910	gi 467199	[pksC; L518_F1_2 [Mycobacterium leprae]	56	39	237
10	- 3	3442	1874	gn1 P1D d101907	sodium-coupled permease (Symechocystis sp.)	86	36	1569
21	-	1880	333	gi 2313949	(AE000593) osmoprotection protein (proWX) (Helicobacter pylori)	95	1 55	1548
22	29	21968	22456	gn1 PID d102001	(ABGO1488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis)	95	37	489
27	-	1361		gi 215132	ea59 (525) (Bacteriophage lambda)	95	30	1359 (
28	6	4667	4278	91 1592090	DNA repair protein RAD2 (Methanococcus jannaschii)	26	29	390
33		e	386	gn1 PID d100139	ORF (Acetobacter pasteurianus)	56	-	384

S. pneumoniae - Putative coding regions of novel proteins Timilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s in	% ident	length (nt)
36		5122	5397	pir PQ0053 PQ00	hypothetical protein (proC 3' region) - Pseudomonas acruginosa (strain PAO) (fragment)	36	28	276
40	4	1 3137	4318	g1 1800301	macrolide-efflux determinant (Streptococcus pneumoniae)	95	1 72	1182
40	116	112511	13191	gn1 PID e217602	PlnU [Lactobacillus plantarum]	56	38	681
48	112	13775	13023	gi 143729	transcription activator (Bacillus subtilis)	98	35	753
25	-	1674	2594	gn1 PID d102036	membrane protein (Bacillus stearothermophilus)	95	25	921
88	-	1842	1 1459	gn1 PID d100139	ORF (Acetobacter pasteurianus)	95	41	384
- 89	_	5815	4940	gi 853777	product similar to E.coli PRFA2 protein (Bacillus subtilis)	95	42	876
501	7	1360	2718	gn1 PID d101913	hypothetical protein (Synechocystis sp.)	56	37	1359
1112		1 2151	3194	91 537201	ORF_0345 (Escherichia coli)	95	31	1044
1113	-	1 2754	2963	gn1 PID d100340	ORF (Plum pox virus)	95	28	210
122		1203	2054	91 1649035	high-affinity periplasmic glutaminc binding protein [Salmonella typhimurium]	26	30	852
124	8	1939	3694	gn1 PID e248893	unknown [Mycobacterium tuberculosis]	95	27	246
125	-	4403	4107	gn1 PID d100247	human non-muscle myosin heavy chain (Homo sapiens)	95	32	297
127	=	6608	6405	91 2182397	(AE000073) Y4fN (Rhizobium sp. NGR234)	26	35	204
134	2	4769	3849	gn1 PID d101870	hypothetical protein (Symechocystis sp.)	36	39	921
137	01	6814	7245	gi 1592011	sulfate permease (cysA) [Methanococcus jannaschii]	95	34	432
1 142	8	5019	4582	pir A47071 A470	orfl immediately 5' of nifs - Bacillus subtilis	99	29	438
146	8	1 4676	3660	gn1 P1D d101911	hypothetical protein (Symechocystis sp.)	99	32	101
148	_	1 1906	1 2739	gn1 P1D d101099	phosphate transport system permease protein PstA (Synachocystis sp.)	36	36	834
150	-	4449	2743	gn1 PID e304628	probably site-specific recombinase of the resolvase family of enzymes	26	27	1707
172		2	508	gi 1787791	(AE000249) f.117; This 317 as orf is 27 pct identical (16 gaps) to 301 residues of an approx. 320 as protein YXXC_BACSU SW: P39140 [Escherichia coll]	98	# m	207
27.1	_	4979	5668	gi 396293	similar to Bacillus subtilis hypoth, 20 kDa protein, in tsr 3' region [Escherichia coli]	26	40	069
186	-	3732	3367	gi 1732200	PTS permease for mannose subunit IIPMan [Vibrio furnissii]	56	36	366
187	~	2402	819	pir S57904 S579	VirR49 protein - Streptococcus pyogenes (strain CS101, serotype M49)	26	35	1584

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	match gene name	E	dident	length
204	~	2772	2239	gi 606376	ORE_o162 [Escherichia coli]	96	35	534
206	7	3342	1633	gi 559861	ClyM (Plasmid pAD1)	95	38	1710
219	_	1689	1096	191 1146197	putative (Bacillus subtilis)	95	27	594
230	~	409	1485	pir C60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype f)	95	40	1077
233	-	2930	3268	91 1041785	rhoptry protein (Plasmodium yoelii]	98	24	339
273	7	1543	2724	91 143089	lep protein (Bacillus subtilis)	95	32	1182
353	-	-	516	gn1 PID e325000	[hypothetical protein [Bacillus subtilis]	98	41	516
359		87	641	gi 1786952 	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 (Escherichia coll)	56	46	555
363	-	4482	4198	gi 1573353	outer membrane integrity protein (tola) [Haemophilus influenzae]	36	38	285
376		2	508	gn1 PID e325031	hypothetical protein (Bacillus subtilis)	95	33	507
18		836	177	gn1 PID d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	55	31	1 099
28	-	1824	1618	[gn1 PID e316518	STAT protein [Dictyostellum discoideum]	55	40	207
29	و	4496	5041	91 1088261	unknown protein (Anabaena sp.)	85	31	546
38	12	9696	10702	91 580905	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	55	31	1008
49	-2	1 5727	6182	91 1786951	(AE000176) heat-responsive regulatory protein (Escherichia coli)	55	29	456
51	-	2381	3241	gn1 P1D d101293	YbbA (Bacillus subtilis)	55	42	861
52	6	9640	10866	gi 153016	ORF 419 protein (Staphylococcus aureus)	55	23 [1221
53	-	1813	1349	gi 896042	OspF (Borrelia burgdorferi)	55	30	465
09	5	4794	5756	gi 1499876	magnesium and cobalt transport protein [Wethanococcus jannaschii]	55	38	963
1,1	6	114176	115408	gi 1857120	glycosyl transferase [Neisseria meningitidis]	55	41	1233
75	9	3189	4229	gn1 PID e209890	NAD alcohol dehydrogenase (Bacillus subtilis)	55	44	1041
108	01	10488	9820	gn1 PID e324997	hypothetical protein (Bacillus subtilis)	55	36	699
113	112	12273	113037	gn1 P1D e311496	unknowm [Bacillus subtilis]	55	34	765
113	=======================================	13007	113945	gi 1573423	-phosphofructokinase (fruK) (Haemophilus influenzae	55	39	939
126	·	6764	5907	91 1790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]		37	858
		1						+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match	metch gene name	e sin	• ident	length (nt)
129	2	2719	905	gn1 PID d101425	Pr-peptidase (Bacillus licheniformis)		35	1818
138	-	2593	1610	91 142833	ORF2 (Bacillus subtilis!	85	37	984
140	•	6916	5633	gn1 P1D d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtilis]	25	26	1284
147	3	3854	2136	191 472330	dihydrollposmide dehydrogenase (Clostridium magnum)	55	39	1719
147	10	10204	8921	gn1 PID 673078	dihydroorotase {Lactobacillus leichmannii}	85	38	1284
148	- 2	3430	4119	91 290572	peripheral membrane protein U (Escherichia coli)	55	29	1 069
148	9	4171	4650	91 695769	transposase (Xanthobacter autotrophicus)	55	37	480
149	į		11650	[gn1 P1D d101329	YqjG (Bacillus subtilis)	85	32	915
156	<u></u>	1113	550	91 2314496	AE000634) conserved hypothetical integral membrane protein [Helicobacter pylori]	88	34	564
159	2_	6625	5897	gi 290533	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins [Escherichia coli]	55	29	729
164		1784	2332	gn1 PID e255118	hypothetical protein (Bacillus subtilis)	55	37	549
164	2	2772	13521	3521 · g1 40348	put. resolvase fnp I (AA 1 - 284) [Bacillus thuringiensis]	35	35	750
1 164	=	7428	7216	gn1 PID e249407	unknown [Mycobacterium tuberculosis]	ss	38	213
167	_ s	0986.	3345	91 535052	involved in protein secretion (Bacillus subtilis)	55	28	516
186	5	2880	2563	91 606080	ORF_0290: Geneplot suggests frameshift linking to 0267, not found [Escherichia col1]	55	35	318
189	8	4311	5396	gn1 P1D e183450	hypothetical EcsB protein [Bacillus subtills]	55	32	1086
192	5	3270	3079	gi 1196504	vitellogenin convertase (Aedes aegypti)	55	38	192
195	2	2454	1384	gi 1574693	transferase, peptidoglycan synthesis (murG) [Haemophilus influenzae]	55	33	1011
198	4	3013	2471	gn1 PID e313074	hypothetical protein (Bacillus subtilis)	55	29	543
214	-	373	744	gn1 P1D d101741	transposase (Synechocystis sp.)	55	33	372
219	~	1115	456	91 288301	ORF2 gene product [Bacillus megaterium]	55	30	1 099
263	-	3742	3443	91 18137	cgcr-4 product [Chlamydomonas reinhardtii]	35	48	300
285	-	2	829	gn1 PID d100974	unknown (Bacillus subtilis)	55	707	828
286	-	650	249	91 39684	ORF (18 kDa) (Vibrio cholerae)	55	31	402
1 297	2	1229	9691	91 150848	prtC (Porphyromonas gingivalis)	55	39	468

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	* ident	length (nt)
309	- 5	218	982	[gi 1574491	hypothetical (Haemophilus influenzae)	55	35	765
328	- 5	646	224	gi 571500	probibitin Saccharomyces cerevisiae	55	27	423
330	-	1340	474	gi 396397	soxS [Escherichia coli]	55	29	867
364	-	2538	1546	(gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	55	36	993
368	-	941	105	[91 160671	S antigen precursor (Plasmodium falciparum)	55	0.4	837
-	5	4604	3624	91 2293176	(AF008220) signal transduction protein kinase (Bacillus subtilis)	54	26	981
6	=	7746	7246	91 1146245	putative (Bacillus subtilis)	54	38	501
38	24	116213	17937	gi 1480429		54	27	1725
40	8	5076	4882	91,139989	methionyl-tRNA synthetase [Bacillus stearothermophilus]	54	35	195
4	-	3980	2367	gn1 P1D e148611	ABC transporter [Lactobacillus helveticus]	54	25	1614
52	07	10844	12103	gi 1762962	FemA (Staphylococcus simulans)	54	29	1260
57	-	7	512	gi 558177	endo-1,4-beta-xylanase [Cellulomonas fimi]	54	36	510
58	_	4749	4246	gn1 P10 d101237	hypothetical (Bacillus subtilis)	54	29	504
1,2	-	10684	111703	91 510255	orf3 [Escherichia coli]	54	31	1020
1,1	20	27546	127737	gi 202543	serotonin receptor (Rattus norvegicus)	54	31	192
72	~	844	1098	gi 148613	srn8 gene product (Plasmid F)	54	37	255
72	_	7438	6695	gi 1196496	recombinase (Moraxella bovis)	54	38	744
74	10	14043	13465	gi 1200342	ONF 3 gene product (Bradyrhizoblum japonicum)	54	32	579
74	7	16483	115995	gi 2317798	maturase-related protein [Pseudomonas alcaligenes]	54	30	489
98	-	1 2877	2155	91 46988	orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)	54	34	723
89	5	4433	3921	gi 147211	phnO protein (Escherichia coli)	54	41	513
90	-	3	464	gi 2317798	maturase-related protein (Pseudomonas alcaligenes)	54	30	462
96	01	8058	8510	gn1 PID d102015 	(ABGO1488) SIMILAR TO SALMONELLA TYPHINURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subtilis)	54	32	453
97	9	4662	3604	91 1591394	[transketolase'' (Methanococcus jannaschii)	54	30	1059
106	111	10406	12010	91 606286	ORF_0637 (Escherichia coli)	54	32	1605
147	8	8663	7404	gn1 P10 d101615	ORF_ID:0319#7; similar to (SwissProt Acression Number P37340) (Escherichia coli)	54	35	1260
				111111111111111	• * * * * * * * * * * * * * * * * * * *	*		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

			* 1					
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sia	* ident	length
171	4	2477	1 3223	91 1439528	EIIC-man Lactobacillus curvatus	54	36	707
174	7	2068	1787	[gn1 P1D d100518	motor protein [Homo sapiens]	5.4	۶	
188	<u>-</u>	1 526	1188	gn1 P1D e250352	unknown (Mycobacterium tuberculosis)	100		
198	- 2	3582	2884	gn1 P1D e313074	hypothetical protein (Bacillus subtilis	2.0		700
207	-		1641	gn1 PrD d101813	hypothetical protein (Symechocystis sp.)	98	24	1641
210	-	7	655	91 2293206	(AF008220) YtmP (Bacillus subtilis)	24	000	1,07
225	~	996	1 2357	gn1 PID e330194	R11H6.1 (Caenorhabditis elegans)	24	96	1 000
241	-	1691	347	gn1 PID d101813	[hypothetical protein (Synechocystis sp.]	54	26	1 3151
263		1907	1395	gn1 P1D d101886	transposase (Synechocystis sp.)	54	08	1 689
1 263	9 -	1 3450	1 2977	191 160671	S antigen precursor [Plasmodium falciparum]	54	47	474
772	-	1 2517	1363	19111196926	unknown protein (Streptococcus mutans)	54	92	
1 307	-	828	.	91 2293198	(AF008220) YtgP [Bac11]us subtilis]	2.4		
325	-	19	1 768	gi 2182507	(AE000083) Y41H Rhizobium sp. NGR234	5.48	1 22	1 032
332	~	888	290	91 1591815	ADP-ribosylglycohydrolase (draG) (Methanococcus jannaschii	1 88		2 1 6
385	-	240	479	lails10878			76	**********
					manno acid (asture: N-glycosylation sites, aa 41 . 43, 46 . 48, 51 . 53, 72 . 74, 107 109, 128 130, 132 . 134, 158 160, 163 165; amino acid feature: Rod protein domain, aa 169 340; amino acid feature: globular protein domai	42	64	240
7	25	119702	19493	gn1 PID e255111	hypothetical protein (Bacillus subtilis)	53	32 1	210
53		2497	2033	gn1 P10 d102015	(AB001488) SHILLAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subtilis)	53	25	465
29	=	9042	10121	gi 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	53	31	10801
1 33	-	1479	1009	pir S10655 S106	hypothetical protein X - Pyrococcus woesei (fragment)	53	33	47.1
36	9	4583	5134	gn1 PID e316029	unknown (Mycobacterium tuberculosis)	53	30	552
38	1	8521	8898	91 580904	homologous to E.coli rnpA (Bacillus subtilis)	53	30	378
52	-	7007	8686	91 1377831	unknown (Bacillus subtilis)	53	29	1680
54	12	17555	19564	91 666069	orf2 gene product [Lactobacillus leichmannii]	53	36	2010
56	-	1	681	91 1592266	restriction modification system S subunit [Methanococcus jannaschii]	53	32	681

pneumoniae - Putative coding regions of novel proteins similar to known proteins

2	2	(nt)	(nt.)	acession	match gene name	N sim	% ident	Jength
52	01	9431	8487	9111788543	(AE000310) f151; Residues 1-121 are 100 pct identical to YOAL_ECOLI SW: P31944 (122 as) and as 152-351 are 100 pct identical to YOAK_ECOLI SW: P31943 [Escherichia coli]		31	945
61	_	429	~	gn1 PID e236467	B0024.12 (Caenorhabditis elegans)			707
1,	-	5772	4	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	53	3	925
72		894	2840	gi 2293178	(AP008220) YtsD Bacillus subtilis	- 23	2.2	707
23	-	9793	9212	91/17/8556	putative cobalamin synthesis protein (Escherichia coli)			
88	_	5217	4342	gi 2098719	putative fimbrial-associated protein [Actinomyces naeslundii]		96	9 1 0
93	2	2395	1688	gi 563366	gluconate oxidoreductase Gluconobacter oxydans	3	2 2	900
96	6	6632	7762	gi 517204	ORFI, putative 42 kDa protein (Streptococcus pyogenes)	53	42	1841
108		7629	8600	gi 149581	maturation protein (Lactobacillus paracasei)	53	- 64	
128	6	6412	6972	gn1 P1D e317237	unknown (Mycobacterium tuberculosis)		30	21.6
128	112	8429	9253	91 311070	pentraxin fusion protein (Xenopus laevis)	53		100
148	-	-	950	pir A61607 A616	probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)	53	36	890
163	~	2162	3022	gi 1755150	Inocturnin (Kenopus laevis)	53	96	198
171		2304	2624	91 1732200	PTS permease for mannose subunit IIPMan (Vibrio furnissii)	53		100
182	5	3785	3051	gn1 PID d100572	unknown (Bacillus subtilis)	53	1 51	735
209		2948	1935	gi 1778505	ferric enterobactin transport protein (Escherichia coli)	53	28	8101
218	- 1	3884	2406	91 40162	murE gene product (Bacillus subtilis)	53	34	1479
250		473	790	gn1 PID e334776	YlbH protein (Bacillus subtilis)	53		01.6
275	-	-	1611	gn1 PID d101314	Yqew (Bacillus subtilis)	5	35	1131
332	-	544	~	gi 409286	bmrU (Bacillus subtilis)			110
2	- 2	2543	3445	PID 6233879	hypothetical protein (Bacillus subtilis)	5.2		
3	22 2	22402	23376	gi 38969	lacF gene product (Agrobacterium radiobacter)	25		202
2	-	8094	2356	gn1 PID e324915	IgAl protease (Streptococcus sanguis)			
22	26 1		20212	91 152901	ORF 3 (Spirochaeta aurantia)			
22	31 12	23140	24666	91 289262	comm ORF3 [Bacillus subtilis]	- 25		
27	-	5397	4801	91 39573	P20 (AA 1-178) (Bacillus licheniformis)			7357
, , , ,	! ! !			*		4	רר	185

S. pneumoniae - Putative coding regions of novel proteins Eimliar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	sia	* ident	length (nt)
35	100	8604	1 7357	91 508241	putative O-antigen transporter (Escherichia coli)	52	27	1248
45	7	4801	3662	gn1 PID d102243	(AB005554) homologs are found in E. coli and H. influenzae; see SWISS_PROT ACC!: P42100 (Bacillus subtilis)	52	36	1140
\$	18	114385	13726	gn1 PID e205174	orf2 [Lactobacillus helveticus]	52	25	099
49	-	5321	5755	91 2317740	(AP013987) nitrogen regulatory IIA protein (Vibrio cholerae)	52	19	435
54	-	2773	4668	91 1500472	H. Jannaschii predicted coding region MJI577 [Methanococcus Jannaschii]	52	36	1896
54	9	5250	4969	91 2182453	(AE000079) Y410 Rhizobium sp. NGR234}	52	40	282
99	9	8400	6955	91 43140	TrkG protein (Escherichia coli)	52	30	1446
1,	126	130659	31312	gn1 PID e314993	unknown (Mycobacterium tuberculosis)	52	23	654
75	7	1673	1035	gn1 PID d102271	(AB001683) FarA [Streptomyces sp.]	52	27	639
81	_	1439	2893	gn1 PID e311458	rhamnulose kinase [Bacillus subtilis]	52	32	1455
81	8	4987	5781	gi 147403	mannose permease subunit II-P-Man (Escherichia coli)	52	37	795
83	<u> </u>	20687	21853	91 143365	phosphoribosyl aminoimidazole carboxylase II (PUR-K; ttg start codon) [Bacillus subtilis]	52	37	1167
86	9	5785	4592	91 1276879	EpsF (Streptococcus thermophlius)	52	26	1194
986	150	119390	17861	gi 454844	ORF 3 (Schistosoma mansoni)	52	26	1530
96	=	110540	6596	gi 288299	ORF1 gene product (Bacillus megaterium)	52	33	882
111	-	7	2026	gi 148309	cytolysin B transport protein Enterococcus faecalis	52	27	2025
112	~	1457	2167	gi 471234	orfl (Haemophilus influenzae)	52	33	117
118		2931	2365	bbs 151233 	Hip=24 kda macrophage infectivity potentiator protein [Legionella pneumophila, Philadelphia-1, Peptide, 184 aa] [Legionella pneumophila]	52	33	567
122	6	5646	5951	gi 8214	inyosin heavy chain (Drosophila melanogaster)	52	36	306
122	Ξ	6159	6374	91 434025	dihydroliposmide scetyltransferase (Pelobacter carbinolicus)	52	52	216
134	9	4880	6313	[gi 153733	M protein trans-acting positive regulator [Streptococcus pyogenes]	52	£3	1434
135	£ .	1238	2716	gn1 P1D e245024	unknown (Mycobacterium tuberculosis)	52	35	1479
141	_	1681	2319	[gn1]P1D[d100573	unknown (Bacillus subtilis)	52	32	639
161	!	2562	5024	91 1146243	22:4% identity with Escherichia coli DNA-damage inducible protein;	52	36	2463
173	7	896	183	91 1215693	putative orf; GT9_orf434 [Mycoplasma pneumoniae]	52	30	786
						+	+	

S. pneumoniae - Putative coding regions of novel proteins Shillar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e sia	* ident	length (nt)
198	9	4400	13567	gn1 PID e313010	hypothetical protein (Bacillus subtilis)	52	26	834
210	12	8844	9107	91 497647	DNA gyrase subunit B (Mycoplasma genitalium)	25	38	264
214	10	5264	5431	gi: 550697	envelope protein (Human immunodeficiency virus type 1)	52	36	168
225	_	15	984	gi 1552773	hypothetical (Escherichia coli)	52	34	870
230	-	39	362	gn1 PID d100582	unknown (Bacillus subtilis)	52	28	324
287	-	871	~	gn1 PID e335028	protease/peptidase (Mycobacterium leprae)	52	29	870
363	2	1305	4	91 (393394	Tb-291 membrane associated protein [Trypanosoma bruce; subgroup]	52	32	1302
23	~	2048	1173	gn1 P1D e254943	Unknown (Mycobacterium tuberculosis)	51	30	876
29	_	742	1521	91 929900	5methylthioadenosine phosphorylase (Sulfolobus solfataricus)	51	116	780
45	_	410	1597	gi 1877429	integrase (Streptococcus pyogenes phage 112)	51	32	1188
48	126	119227	118946	gi 2314455	[AE000633] transcriptional regulator (tenA) [Helicobacter pylori]	51	33	282
73	2	4276	4016	1911474177	alpha-D-1,4-glucosidase (Staphylococcus xylosus)	51	16	261
81	Ξ	8935	112057	1911311070	pentraxin fusion protein (Xenopus laevis)	51	31	3123
83	2	1195	1986	gn1 PID d101316	YqfI (Bacillus subtilis)	51	33	792
8.6	10	1831	6538	gi 41500	ORF 3 (AA 1-352); 38 kD (put. ftsX) (Escherichia coli)	51	782	1008
113	9	3908	5173	gi 466882	pps1; B1496_C2_189 [Hycobacterium leprae]	51	27	1266
124	-	326	57	gi 2191168	(AF007270) contains similarity to myosin heavy chain [Arabidopsis thaliana]	51	32	270
129	110	7286	6816	6816 * 91 1046241	orf14 Bacteriophage HP1]	51	30	471
143		4963	1 3983	gi 1354935	probable copper-transporting atpase (Escherichia coli)	51	26	981
148	115	111359	10226	gi 2293256	(AF008220) putative hippurate hydrolase (Bacillus subtilis)	51	36	1134
149	80	6003	7313	91 1633572	Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like	51	217	1311
151	6	112092	11550	gn1 P1D e281580	hypothetical 40.7 kd protein (Bacillus subtilis)	51	34	543
159	9	2555	3208	gi 146944	CMP-N-acetylneuraminic acid synthetase (Escherichia coli)	51	36	654
174	-	1797	7	gi 1773166	probable copper-transporting atpase (Escherichia coli)	51	28	1794
265	4	2231	5771	[gn1 P1D e256400	lanti-P. (alciparum antigenic polypeptide (Saimiri sciureus)	51	18	459
277	7	643	1311	pir 532915 5329	pilD protein - Neisseria gonorrhoeae	51	33	699
						1.1111111		

5. pneumoniae - Putative coding regions of novel proteins 's'fallar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	# ident	length (nt)
350	_	890	<u></u>	gi 290509	ol07 (Escherichia coli)	1 51	30	888
363	7	1228	4485	19111707247	partial CDS (Caenorhabditis elegans)	51	23	3258
367	-	1701	•	91 393394	Tb-291 membrane associated protein [Trypanosome brucei subgroup]	18	32	1698
15	2	5174	4497	gn1 PID e58151	F3 (Bacillus subtilis)	05	38	678
16	*	2220	2582	gnl PID e325010	hypothetical protein (Bacillus subtilis)	05	29	363
19	5	1 2591	4159	[gi [1552733	similar to voltage-gated chloride channel protein (Escherichia coli)	05	30	1569
25	4	1 2701	1997	[gi 887849	ORF_f219 [Escherichia coli]	05	27	705
35	7	1 211	417	gn1 PID e236697	unknown (Saccharomyces cerevisiae)	05	33	207
39	-	3416	5152	gn1 PID d100974	unknown [Bacillus subtilis]	80	27	7571
51	_	4000	5181	91 1592027	Carbanoyl-phosphate synthase, pyrimidine-specific, large subunit [Methanococcus jannaschii]	200	27	1182
51	6	7179	8303	gi 1591847	Lype I restriction-modification enzyme, S subunit (Methanococcus jannaschii)	20	28	1125
52	8	8740	9534	91 144297	acetyl esterase (XynC) [Caldocellum saccharolyticum]	05	34	795
52	116	16591	07751	91 2108229	basic surface protein (Lactobacillus fermentum)	05	34	822
57	_	6031	6336	gi 2275264	60S ribosomal protein L7B (Schizosaccharomyces pombe)	05	40	306
1.	23	29348	28383	gn1 P10 d101328	YqjA (Bacillus subtilis)	05	30	996
986	112	11155	10769	964	hypothetical protein (Bacillus subtilis)	80	24	387
93	~	1205	330	91 1066016	similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P23538 (Pyrococcus furiosus)	05	24	876
96	5	1673	2959	gn1 PID e322433	gamma-glutamylcysteine synthetase (Brassica juncaa)	05	29	1287
86	7	218	1711	91 151110	leucine-, isoleucine-, and valine-binding protein (Pseudomonas aeruginosa)	20	30	954
103	7	3303	2785	gi 154330	O-antigen ligase (Salmonella typhimurium)	80	31	519
115	2	6480	5980	91 895747	putative cel operon regulator (Bacillus subtilis)	1 05 1	26	501
129	=	7559	7305	gi 1216475	skeletal muscle ryanodine receptor (Homo sapiens)	20	32	255
129	=	8192	7965	91 152271	319-kDA protein (Rhizobium meliloti)	1 05	30	228
151	-	7634	6819	191 40348	put. resolvase Tnp I (AA 1 - 284) (Bacillus thuringiensis)	20	35	816
153	_	-	597	gn1 PID d102015	(ABGO1488) SIMILAR TO NITROREDUCTASE. (Bacillus subtilis)	50	29	597
					◆ 7 1 1 2 1	+	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	& ident	length (nt)
155	2	5986	5432	gi 1276880	EpsG (Streptococcus thermophilus)	05	28	555
160	6	7390	6323	91 1786983	(AE000179) 0331; 92 pct identical to the 333 aa hypothetical protein YBHE_ECOLI SW: P52697; 26 pct identical (7 gaps) to 167 residues of the 373 aa protein HLE_TRICU SW: P46057; SW: P52697 [Escherichia coli]	20	e .	1068
163	9	7396	8091	gn1 PID d101313	Yqen (Bacillus subtilis)	05	22	969
167	و -	5232	3940	91 413926	ipa-2r gene product (Bacillus subtilis)	05	27	1293
169	7	1 807	130	gn1 PID e304540	endolysin (Bacteriophage Bastille)	05	35	678
171	٥ -	3168	4025	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	05	27	858
1 210	Ξ	1818	8414	91 330038	HRV 2 polyprotein [Human rhinovirus]	05	25	264
364	- !	1538	135	gi 393396	Tb-292 membrane associated protein (Trypanosoma brucei subgroup)	05	31	1404
10	_	5911	2090	91 144859	ORF B (Clostridium perfringens)	64	24	822
56	5	10754	9768	Ui 142440	ATP-dependent nuclease (Bacillus subtilis)	49	31	987
99	_	7776	8398	gi 414170	trkA gene product (Methanosarcina mazeii)	64	56	1380
77	9	5364	4648	gn1 P1D 6285322	Reck protein (Mycobacterium smegmatis)	49	28	7.17
82	113	12689	13249	gn1 P1D e255091	hypothetical protein (Bacillus subtilis)	64	20	561
66	6	4866	4531	gi 40067	X gene product [Bacillus sphaericus]	49	26	336
1112	5	4019	4948	gi 1574380	lic-1 operon protein (licB) (Haemophilus influenzae)	49	27	930
129		6058	4949	gn1 PID e267587	Unknown (Bacillus subtilis)	49	35	0111
135	2	3875	4438	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	49	25	564
154	- 5	1423	1953	gn1 PID d101102	regulatory components of sensory transduction system (Symechocystis sp.)	60	29	531
156	2	2878	1637	gn1 P1D d101732	hypothetical protein (Symechocystis sp.)	49	25	1242
173	2	3500	2940	91 490324	LORF X gene product [unidentified]	69	30	561
1 182	-	1057	7	gi 331002	first methionine codon in the ECLF1 ORF (Saimiriine herpesvirus 2)	49	25	1056
192	9	5352	3667	gi 2394472	(AF024499) contains similarity to homeobox domains (Caenorhabditis elegans)	69	23	1686
253	-	1129	1350	91 531116	SIR4 protein [Saccharomyces cerevisiae]	49	23	222
1 277	-	009	136	91 396844	ORF (18 kDa) [Vibrio cholerae]	49	32	465
728	6	1435	887	gi 733524	phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoideum)	1 67	7 77	549
					·	+	****	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	Ein	* ident	length (nt)
365	-	1436	132	91 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	69	31	1305
33	7	4461	13277	91 145644	codes for a protein of unknown function (Escherichia coli)	48	36	1185
40	2	652	1776	gn1 PID e290649	ornithine decarboxylase (Nicotiana tabacum)	48	29	1125
67	-	1377	2384	91 1772652	2-keto-3-deoxygluconate kinase [Haloferax alicantei]	69	30	1 8001
74	~	4269	3871	91 2182678	[AEGO0101) Y4v3 [Rhizobium sp. NGR234]	48	27	399
81	5	1326	541	91 153672	lactose repressor (Streptococcus mutans)	48	33	786
81	7	2981	3646	91 146042	[uculose-1-phosphate aldolase (fuch) (Escherichia coli)	48	30	999
97	-	602	51	gi 153794	rag (Streptococcus gordonii)	48	29	552
110	-	1	3132	91 1381114	prtB gene product (Lactobacillus delbrueckii)	48	23	3132
131	2	2914	2147	gn1 P1D e183811	Acyl-ACP thioesterase (Brassica napus)	48	27	768
133	-	3494	1 2628	gn1 PID e261988	[putative ORF [Bacillus subtilis]	48	27	867
139	9	4231	4599	gi 1049388	ZK470.1 gene product (Caenorhabditis elegans)	48	23	369
139	_	5036	5995	gi 1022725	unknown (Staphylococcus haemolyticus)	48	29	630
140	7	11936	11007	gn1 P1D d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44105 (189) [Bacillus subtilis]	8	27	930
146	6	5670	4654	191 1591731	melvalonate kinase [Methanococcus jannaschii]	48	24	1017
161		1280	2374	gn1 PID d101578	[Collagenase precursor (EC 3.4,-), [Escherichia coli]	48	24	1095
172		10581	111048	gn1 PID d101132	hypothetical protein (Symechocystis sp.)	48	27	468
182	7	2930	2586	gi 40067	X gene product (Bacillus sphaericus)	48	37	345
210	51	10786	11196	sp P13940 LE29_	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	8	30	411
214	112	6231	6482	gi 40389	non-toxic components [Clostridium botulinum]	48	26	252
221		704	_	gi 1573364	H. influenzae predicted coding region HI0392 (Haemophilus influenzae)	48	27	702
227	7	647	3928	91 1673693	(AE000005) Mycoplasme pneumoniae, C09_orf718 Protein (Mycoplasma pneumoniae)	48	30	3282
253	7	480	758	gn1 PID e236697	unknown [Saccharomyces cerevisiae]	48	31	279
363		1874	1122	gi 18137	cgcr-4 product Chlamydomonas reinhardtil	48	40.1	753
389		505	~	191 18137	cgcr-4 product (Chlamydomonas reinhardtii)	48	38	504
3	121	20879	122258	gn1 PID e264778	putative maltose-binding pootein (Streptomyces coelicolor)	47	33	1380
							4466666	

S. pneumoniae - Putative coding regions of novel proteins sīmilar to known proteins

13 1316 1460 4656 14119573 1210 (Ab. 1-178) [Bacillus alticheniformis] 13 1316 1316 1316 1316 13113131 1318	Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
3 3736 1760 gn1 P1D d100572 unknown BB 14516 13263 g1 1773351 Cap5L State 6 3547 4002 p1r A37024 A370 32K antiges R 1753 3276 gn1 P1D e280611 PCPC Street R 1753 3276 gn1 P1D e280611 PCPC Street R 1753 3276 gn1 P1D e266555 unknown M R 1753 3267 gn1 P1D d100964 homologue R 1222 1759 gn1 P1D d100964 homologue Streptomy R 1222 1759 gn1 P1D d100964 homologue Streptomy R 1754 gn1 P1D d100964 homologue Streptomy R 1755 gn1 P1D d101055 Streptomy Streptomy	9	4	4089	4658	[gi]39573	P20 (AA 1-178) [Bacillus licheniformis]	47	23	570
15 14516 1363 91 1773351 Cap5L State 6 3547 4002 pir A37024 A370 32K antiger 6 1357 9273 91 3948 U3 Bacillu 7 1753 3276 91 1786458 (AB000134) 7 7 7 7 7 7 7 7 7	15	-	3736	1760			47	25	1977
6 3547 4002 ptr A37024 A370 32K antiger 4 1753 3276 grl Ptr e280611 PCPC Street 5 5589 5386 grl Ptr e280611 PCPC Street 7 1232 1759 grl Ptr d100964 Presidues 8 6814 6200 grl Ptr d100964 Presidues 9 5589 5386 grl Ptr d100964 Presidues 1 2 1549 grl Ptr d100964 Presidue 1 2 1549 grl Ptr d101320 Vagz Baci 1 2 1549 grl Ptr d101320 Vagz Baci 1 2 1549 grl Ptr d101320 Vagz Ptr 1 2 1018 grl Ptr d101652 Coli 1 2 1018 grl Ptr d101652 ORF_ID:034 1 1127 3 grl 2209215 Prevented 1 1127 3 grl 1054776 Prevented 1 1127 Grl Grl Ptr d101652 Prevented 1 1127 Grl Grl Ptr d101652 Prevented 1 1127 Grl Grl Ptr d101652 Prevented 1 1127 Grl Grl Grl Ptr d101652 Prevented 1 1127 Grl Grl Grl Ptr d101652 Prevented 1 1127 Grl Grl Grl Frevented 1 1127 Grl Grl Grl Frevented 1 1127 Grl Grl Grl Grl Grl 2 1008 Grl Grl Grl Grl Grl 3 1008 Grl Grl Grl Grl Grl 4 7093 Grl Grl Grl Grl Grl Grl 5 9205 Grl Grl Grl Grl Grl Grl Grl 6 9205 Grl Grl Grl Grl Grl Grl Grl 7 9205 Grl			14516	113263	191(1773351	Cap5L Staphylococcus aureus	47	20	1254
8 10154 9273 91 39848 U3 [Bacill] 4 1753 3276 91 P1D e280611 PCPC [Street	23	9	3547	4002	pir A37024 A370		47	38	456
4 1753 3276 gn1 PID e280611 PCPC [Street of Street of	55		10154	9273	gi 39848	U3 (Bacillus subtilis)	47	3.6	883
9 5589 5386 g1 1786458 residues residues coli	92	-	1753	3276		PCPC (Streptococcus pneumoniae)	47	35	1524
4 4951 3542 gn1 PID e166555 unknown [H] 4 6814 6200 g1 1522674 H Jannasch Streptomy 4 6814 6200 g1 1522674 H Jannasch Streptomy 5 3267 2155 g1 2367190 version (coli) 1 2 1549 gn1 PID e254973 autolysin 2 1549 gn1 PID e254973 autolysin 3 880 644 g1 1835755 zinc finger 4 14182 12638 pir S43609 S436 rock Protecting 5 1267 g1 12209215 (AF004125) 6 1127 3 g1 2209215 (AF004125) 7 4553 5860 gn1 PID d101652 ORF_ID:034 8 8220 7723 g1 123794 reg Streph Stre	127	٥.	5589	5386	1 40	fl10; This 120 as orf is 76 pct identical of an approx. 48 as protein Y127_HAEIN SW:	47	32	204
4 4951 3542 gn1 PID d100964 homologue 3 803 1174 gn1 PID d101320 Yqg2 Bacil 5 3267 2155 g1 2367190 Version 6 880 644 g1 PID e224973 autolysin 1 2 1549 gn1 PID e224973 autolysin 1 4 14182 12638 pIT S41009 S436 rof A protection 1 2 1018 gn1 PID e223891 xylose repton 1 1127 3 g1 2209215 (AP004125) 1 1127 3 g1 1054776 hr44 gene 14 9198 8125 g1 11659286 afull gene 4 7093 6197 g1 153794 rgg Strepp 8 8220 7723 g1 1235795 pullulanase	0.1	7	1232	1 1759	e266555	unknown (Mycobacterium tuberculosis)	47	23	528
4 6814 6200 91 1522674 H. Jannasco Bergolom 3 803 1174 91 12267190 (AE000390) (AE00	140	4	4951	3542		homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	£ 4	24	1410
3 803 1174 4m1 PID d101320 Yqg2 Racilon (1800) Yqq2 Yqq3 Yqqq Yqq3 Yqqq Y	151	7	6814	6200	91 1522674	predicted coding region MJECL41	47	27	615
5 3267 2155 gi 2367190 version (version (vers	157	_	803	11174			47	25	372
1 2 1549 gn1 PID e224973 autolysin 1 2 880 644 g1 183555 Zinc finger 14 14182 12638 pir S41609 S436 rofA prote 1 2 1018 gn1 PID a223891 xylose rep 1 127 3 g1 2209215 (AFOR425) pneumonia 13 7308 7982 g1 1054776 hr44 gene 14 9198 8125 g1 1054776 hr44 gene 14 7093 6197 g1 1235794 rgg Strepp 18 8220 7723 g1 1235795 publiulanas 19 9205 8115 g1 407878 19ucine rice	178	5	3267	2155	· On 1	(AE000390) o334; sequence change joins ORFs ygjR & ygjS from earlier version (YGJR_ECOLI SW: P42599 and YGJS_ECOLI SW: P42600) IEscherichia colii	4	0.00	1113
2 880 644 91 1835755 zinc finger 14 14182 12638 pir S43609 S436 rofA protection 1 2 1018 gnl PID d101652 ORF_ID:034 Coli 1127 3 91 2209215 (AF004325) Dreumonia 13 7308 7982 91 1054776 hr44 gene 14 9198 8125 91 1657794 rgg Strepp 4 7093 6197 91 1235795 pullulanas 9 9205 8315 91 407878 1eucine rice	273	~	2	1549			47	32	1548
14	300	7	880	644	91 1835755	zinc finger protein Png-1 (Mus musculus)	47	22	237
1 2 1018 gn1 P1D e2231891 xy10se rep 7 4551 5860 gn1 P1D d101652 ORF_ID:034 1 1127 3 gi 2209215 (AF004125) 13 7308 7982 gi 1054776 hr44 gene 14 9198 8125 gi 1054776 hr44 gene 4 7093 6197 gi 153794 rgg Strep 8 8220 7723 gi 1235795 pull ulahass 9 9205 8315 gi 407878 1eucine rice	54		14182	12638	pir \$43609 \$436	protein -	46	24	1545
7 4553 5860 gnl PlD d101652 ORF_ID: 034 1 1127 3 g1 2209215 (AF004125) 1 13 7308 7982 g1 1054776 hr44 gene 14 9198 8125 g1 1469286 atuA gene 4 7093 6197 g1 153794 rgg (Streep 8 8220 7723 g1 1235795 pullulahass 9 9205 8315 g1 407878 1aucina richal	88	_	2	1 1018		xylose repressor (Anaerocellum thermophilum)	46	27	1017
1 1127 3 gi 2209215 (AF004125)	96	~	4553	5860		ORF_ID:034785; similar to [SwissProt Accession Number P45272] [Escherichia coli]	46	23	1308
13 7308 7982 91 1054776 14 9198 8125 91 1469286 4 7093 6197 91 1235794 8 8220 7723 91 1235795 9 9205 8315 91 407878	112		1127	n		(AF004125) putative oligosaccharide repeat unit transporter (Streptococcus pneumoniae)	9	24	1125
14 9198 8125 G1 1469286 4 7093 6197 G1 153794 8 8220 7723 G1 1235795 9 9205 8315 G1 407878	122	=	7308	7982	-	gene product	46	34	675
4 7093 6197 gi 153794 8 8220 7723 gi 1235795 9 9205 8315 gi 407878	127	14	9198	8125	OD 1	gene product (Actinobacillus	46	28	1074
8 8220 7723 91 1235795 9 9205 8315 91 407878	132	7	7093	6197	gi 153794		46	26	897
9 9205 8315 91 407878	140	8	8220	1 7723	gi 1235795	pullulanase (Thermoanaerobacterium thermosulfurigenes)	46	21	498
	140	6	9205	8315	91 407878	leucine rich protein (Streptococcus equisimilis)	46	27	891

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

13 1 1 1985 4 1149171 (AFFORD299) No definition line found (Canonchabditis elegens) 1 1 1985 4 1149171 (AFFORD299) No definition line found (Canonchabditis elegens) 2 1 2 760 7608 5 11046112 VaC188 gene product (Cyanophora paradoxa) 2 760 7608 5 11046112 VaC188 gene product (Cyanophora paradoxa) 2 760 7608 5 11046112 VaC188 gene product (Cyanophora paradoxa) 3 8 740 7608 5 11046112 VaC188 gene product (Cyanophora paradoxa) 4 76 7608 5 11046112 VaC188 gene product (Cyanophora paradoxa) 5 8 8 740 7 7 7 7 7 7 7 7 7	Contig	LID	Start (nt)	Stop (nt)	match	match gene name	sia -	* ident	length (nt)
1 1 585 91 1947171 [AP000299] 1 1 1 1 1 1 1 1 1	162	-	-	1125	91 1143209	Method: conceptual translation supplied by	46	25	1125
3 1971 1477 sp PO2562 MYSS_ HYOSIN HER 2 760 1608 91 1016112 VCT38 gene 1 687 220 91 107344 (AE000011) Accession Accession 1 687 220 91 1788049 (AE000270) Cold 1 1 1 1 1 1 1 1 1	199	-	1	585	91 1947171	[Caenorhabditis	46	28	585
2 760 1608 91 1016112 10733	223	-	1971	1477	sp P02562 MYSS_		46	1 12	495
1 687 220 gi 1673744 (AE0000111) 8 5843 6472 gi 1788049 (AE000270) 1 307 2 gi 1599079 Coded for colid 1 307 2 gi 1599079 Coded for colid 1 307 2 gi 1599079 Coded for colid 1 307 2 gi 152192 Coded for colid 1 307 2 gi 153192 Coded for colid 1 307 2 gi 153192 Coded for colid 1 307 2 gi 153192 Coded for colid 1 307 2 gi 1331942 Coded for colid 1 307 2 gi 1331942 Coded for colid 1 307 364 gi 131319882 Coded for colid 1 307 364 gi 131319882 Coded for colid 1 307 364 gi 131198 Coded for colid 1 307 3876 gi 1315168 Coded for colid 2 696 1352 gi 536934 Coded for colid 2 696 1352 gi 536934 Coded for colid 2 2 2416 338 gi 336400 Similar to colid 2 2416 338 gi 3396000 Similar to colid 2 2416 338 gi 3396000 Similar to colid 2 2416 338 gi 33960000 Similar to colid 2 2416 338 gi 339600000000000000000000000000000000000	232	2	760	1608	91 1016112		46	28	849
8 5843 6472 91 1788049 (AE000270) 1 307 2 91 172339 Unknown [A Langer of the coll] 1 307 2 91 1699079 Coded for yki48910 16 14371 14874 91 132190 INADH dehyd of coll of the c	292		687	220		Mycoplasma pneumoniae, Number C53312, from H.	9	29	468
1 307 2 gi 1699079 Coded for by C. elegans CDNA y441h4 1; coded for by CDNA y441h4 1; coded for by CDNA y441h4 1; coded for by CDNA y441h4 1; coded for coded for coded for coded for by CDNA y441h4 1; coded for code	30	œ	5843	6472		(AE000270) 0235; This 235 as orf is 29 pct identical (10 gaps) to 198 residues of an approx. 216 as protein YTXB_BACSU SW: P06568 (Escherichia coli)	\$\$	24	630
1 107 2 91 1699079 Coded for by C. elegans CDNA yklhid.); coded for by C. elegans CDNA yklolid. Si coded for by C. elegans CDNA calogolid. Coded for by C. elegans CDNA yklolid. Si coded for by C. elegans CDNA calogolid. Si coded for by C. elegans CDNA yklolid. Si coded for by C. elegans CDNA yklolid. Si coded for by C. elegans CDNA calogolid. Si coded for by C. elegans CDNA yklolid. Si coded for by C. elegans CDNA yklolid. Si coded for by C. elegans CDNA calogolid. Si coded for by C. elegans CDNA yklihid. Si similar to eukaryolit Na/N+ exchangers [Escherichia coli]	4.8	9	3461	3868	gi 722339	unknown (Acetobacter xylinum)	45	29	408
16 14371 14874 91 1321900 NADH dehydrogenase (ubiquinone) (Artemia franciscana) 2 9158 7941 91 152192 putation causes a succinoglucan-minus phenotype; Excording 2 2 2 2 2 2 2 2 2	09		307	~		elegans cDNA yk41h4.3; coded for by C. elegans cDNA ded for by C. elegans cDNA yk15295.5; coded for by C. k59a10.5; coded for by C. elegans cDNA yk41h4.5; coded cDNA cm10g10; coded	45	36	306
7 9158 7941 91 152192 protein, third gene of the exorro operon; putative [] 12 7046 6606 bhs 153689 HitBeiron utilization protein (Haemophilus influenzae, TN106, Peptide, 506 aa) [Haemophilus influenzae] 15 1561 2619 91 472921 V-type Na-APPase [Enterococcus hirae] 1 774 364 91 472921 V-type Na-APPase [Enterococcus hirae] 1 604 2 91 472921 V-type Na-APPase [Enterococcus hirae] 1 604 2 91 404457 Latex allergen [Hovea brasiliensis] 18 19782 20288 91 404457 Latex allergen [Hovea brasiliensis] 18 19782 20288 91 40457 Porf. [Eacherichia coli) 18 19782 20288 91 40457 Porf. [Eacherichia coli) 18 19782 20288 91 40100718 ORF. [277] [Eacherichia coli) 18 19785 3976 91 2151768 PspA [Streptococcus pneumoniae] 1 818 75 91 10100718 ORF! [Bacillus sp.] 1 15467 18256 91 1045739 M. genitalium predicted coding region MG064 [Mycoplasme the state of the sta	72	116	14371	14874		NADH dehydrogenase (ubiquinone) (artemia franciscana)	45	25	504
12 7046 6606 bbs 53689 HitBairon utilization protein (Haemophilus influenzae) 1 714 1861 2619 91 472921 V-type Na-AfPase (Enterococcus hirae) 1 714 1864 91 472921 V-type Na-AfPase (Enterococcus hirae) 1 604 2 91 1480457 Latex allergen (Hovea brasiliensis) 18 19782 20288 91 433942 ORF (Lactococcus lactis) 18 19782 20288 91 433942 ORF (Lactococcus lactis) 18 19782 20288 91 433942 ORF (Lactococcus lactis) 18 19782 20288 91 537207 ORF (Lactococcus lactis) 18 19782 91 537207 ORF (Lactococcus lactis) 18 19782 91 537207 ORF (Lactococcus protein) 19 19 19 19 19 19 19 1	66	-	9158	7941	91 152192	a succir	45	28	1218
5 1561 2619 91 472921 V-type Na-AFPase Enterococcus hirae 1 774 364 91 304141	127	112	7046	9099			45	24	441
1 774 364 94 304141	137	2	1561	2619	91 472921	v-type Na-ATPase [Enterococcus hirae]	45	33	1059
1 604 2	209	-	1774	364	91 304141	(Bacillus	45	28	411
18 19782 20288 gi 413942 ORF [Lactococcus laciis] 8 7030 6452 gi 513207 ORF_[277 [Escherichia coli]] 8 7030 4007 gn.] PID 6308082 membrane transport protein [Bacillus subtilis] 1 818 75 gn.] PID 100718 ORF Bacillus sp.] 1 8185 3876 gi 21351768 PspA Streptococcus pneumoniae] 17 15467 18256 gi 1045739 M. genitalium predicted coding region MG064 (Mycoplasma 15 14656 17343 gi 520541 Penicillin-binding proteins 1A and 1B Bacillus subtilis 2 696 1152 gi 536934 MyCA gene product Escherichia coli 2 2416 338 gi 396400 similar to eukaryotic Na+/H+ exchangers Escherichia col	314	-	604	~	gi 1480457	latex allergen (Hevea brasiliensis)	45	1 16	603
8 7030 6452 94 537207 ORF_£277 Escherichia coli 5 4909 4037 911 PID 9308082	20	118	1	20288	gi 433942	ORF (Lactococcus lactis)	44	26	507
5 4909 4017 gnl PID e308082 membrane transport protein [Bacillus subtilis] 1 818 75 gnl PID d100718 ORPI Bacillus sp. 3 1885 3876 gi 2151768 PspA Streptococcus pneumoniae] 1 15467 18256 gi 1045739 W. genitalium predicted coding region MC064 Mycoplassma 15 14656 17343 gi 520541 penicillin-binding proteins 1A and 1B Bacillus subtilis 2 696 1352 gi 536934 MyCA gene product Escherichia coli 2 2416 338 gi 396400 similar to eukaryotic Na+/H+ exchangers Escherichia col	87	8	7030	6452	g1 537207	ORF_f277 (Escherichia coli)	\$	36	579
1 818 75 gnl PID d100718 ORPI Bacillus sp. 3 1865 3876 gi 2151768 PspA Streptococcus pneumoniae 17 15467 18256 gi 1045739 M. genitalium predicted coding region MG064 (Mycoplasma 15 14656 17343 gi 520541 Penicillin-binding proteins 1A and 1B Bacillus subtilis 2 696 1352 gi 536934 MyCA gene product Eschetichia coli 2 2416 338 gi 396400 Similar to eukaryotic Na+/H+ exchangers Escherichia col	166	s	1 4909	4037		transport protein (Bacillus	*	25	873
3 1885 3876 gi 2351768 PspA Streptococcus pneumoniae 17 15467 18256 gi 1045739 M. genitalium predicted coding region MGG64 [Mycoplasma 15 14656 17343 gi 520541 penicillin-binding proteins 1A and 1B Bacillus subtilis 2 696 1352 gi 536934 MyCA gene product (Escherichia coli) 2 2416 338 gi 396400 similar to eukaryotic Na+/H+ exchangers (Escherichia col	247	-	818	75	gn1 PID d100718	ORFI [Bacillus sp.]	44	20	744
17 15467 18256 91 1045739 M. genitalium predicted coding region MG064 (Mycoplasma 15 14656 17343 91 520541 penicillin-binding proteins IA and IB (Bacillus subtilis 2 696 1332 91 536934 M3CA gene product (Escherichia coli) 2 2416 338 91 396400 similar to eukaryotic Na+/H+ exchangers (Escherichia col	32	2	1.1885	3876	9 1	PspA [Streptococcus pneumoniae]	\$	24	1992
15 14656 17343 94 520541 2 696 1352 94 536934 2 2416 338 91 396400	36	117	- 1	:	~ 1	genitalium predicted coding region MG064 (Mycoplasma	43	26	2790
2 696 1352 g1 536934 2 2416 338 g1 396400	54	51	14656	17343	91 520541	and 18 (Bacillus	43	27	2688
2 2416 338 gi 396400	67	7	969	1352	191 536934	yjck gene product (Escherichia coli)	43	29	657
	139	7	2416	338	gi 396400	similar to eukaryotic Na+/H+ exchangers [Escherichia coli)	43	24	2079

 ${f K}$ 2.

Contig	ORF TD	Contig ORF Start Stop ID (nt) (nt)	Stop (nt)	match	match gene name	s im	ident	length (nt)
298		1 3 809 gi 413	608	g1 413972	Ipa-48r gene product (Bacillus subtilis)	43	24	807
1 387	-	1 47 427	1 427	gi 2315652	(AF016669) No definition line found (Caenorhabditis elegans)	43	30	381
185	- 7	4 4221 3127 gi 218	1 3127	gi 2182399	(AEGOGG73) Y4fP [Rhizobium sp. NGR234]	41	25	1095
340		1 582	07	gn1 PID e218681	CDP-diacylglycerol synthetase (Arabidopsis thaliana)	41	20	513
363		6 4205 1914 91 125	1914	91 1256742	R27-2 protein (Trypanosoma cruzi)	41	27	2622
368	- 1	2 2	943 gi 217	[gi 21783	LAM glutenin (AA 1-356) [Triticum aestivum]	41	34	942
155	~	4489	4489 2861 91 420	91 42023	member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein (Escherichia coli)	0	8.	1629
365	~	95	1438	1438 91 1633572	Herpesvirus saimiri ORF73 homolog [Kaposi's sarcoma-associated herpes-like virus]	0	21	1344
-	-	2979	3860	gn1 PID d101908	3 2979 3860 gml PID d101908 hypothetical protein (Symechocystis sp.)	39	26	882
-	- 2	5 3814 4647 gnl PI	4647	gn1 PID d101961	D[d101961 hypothetical protein (Synechocystis sp.)	39	19	834
1 26	9	14035	10724	26 6 14035 10724 gi 142439	ATP-dependent nuclease [Bacillus subtilis]	38	20	3312
42	-	47 1 3 4916 91 632	4916	gi 632549	NF-180 (Petromyzon merinus)	36	23	4914
					◆ + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	+	*	

드
0
o
Þr
known
ĕ
ů
7
ĭ
副
.03
بد
not
ins
ē
۲
ä
_
8
ó
=
õ
5
ō
regi
ě
5
=
pos
ŭ
é
=
at
Ä
4
ι
ō
=
5
Ĕ
ᅙ
_
죠
<u>ā</u>

·	. — .		· — ·	. —	• - •	• —·	• — ·	• — ·	·			•		•		• —	•	.		• - - •	.	•	• —	· _ ·	•	.	. — .
Stop (nt)	3009	4964	994	1574	6497	25396	26317	1689	12618	12841	15390	9419	9910	4280	5704	6298	6888	7672	7	1456	1434	243	3087	34	1050	4465	15893
Start (nt)	3428	4611	818	1182	5382	25046	25625	1519	12875	13215	15977	9955	10161	3915	6024	6069	7136	1968	1140	6771	1913	-	5675	324	1451	4890	14544
ORF	4	9	~	~		125	126	~	7	115	118	77	12	9	6	8	6	Ξ,	-	<u> </u>	~	-	5	-	<u> </u>	6	4
Cont 1g ID	-	-	۳	~		m		9	٠	9	g	,	۲	60	6	07	2	10	77	12	14	16	91	17	11	17	50
÷	4					. ·					<u>. </u>	.	. — ·	.			_	: — :	-			: — ·	_			: — ·	- :

pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Stop (nt.)	2589	4482	17362	19982	25764	26218	27572	6032	6653	518	2641	4223	4956	1797	3850	4597	5072	4919	5518	8207	6263	2344	5538	4668	7740	8641	9377
	3359	ا ق	17099	119467	25540	26388	26382	5599	132	36		4819	4789	3017	4272	5028	5746	5596	5039	5695	6511	2664	5203	5327	8024	9360	9667
ORF	n	S	131	25	33	35	36	-	00	-	5	•	S	5		2	=	-			6	9	S	-	01	27	5
Cont ig ID	77		77	22	22	22	22	23	23	24	25	27	27	78	28	28	28	29	29	29	30	31	32		34	34	34
· ·	•-•				• •	•	-				-	· — ·	-	· — ·					·				_	_	! — .		·‡

1/7
S
-
1
a
ă
Ξ
ź
ō
5
_
iffillar to know
H
ã
덛
粕
40
s not \$1
ō
c
w
=
75
ŭ
0
ă
_
7
9 7 6
ŏ
3 of no
ion
ion
6
ē
-
Ð
5
ਚ
ö
٠
2
7
ĕ
ي
Putati
'
pneumoniae
ä
Ę
2
5
ĕ
ă
_

Stop (nt)	11902		0670	1041	10893	11388	14595	4577	5001	11175	11376	3143	2	8732	9071	6831	3665	3468	7081	3582	4229	8922	12494	15764	18351	21776	-
1 3 2	13104	9688	11073	334	111120	10993	27121	4269	4480	5517	10732	1728	172	8884	9956	4831	3204	3875	6074	3196	4579	9323	13042	16342	17971	21979	209
ORF	18	=	13	~	22	1 =	12	_	6	2	12	_	-	_		4		-	_	2	80	==	16	20	24	30	-
Contig ID	34	35	35	36	36	36	36	38	38	38	38	40	\$	43	63	44	45	46	46	8	88	48	48	48	48	48	49
• •			•	•		•	• •	-			-			-	· ·	-	 .	· ·	· — ·					-	 .		· — ÷

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

†	-	; —	: —	,	-	; –	-	-	-	-	-	-	-		, —	-	- -	÷		. —	-	: —	. –	.	. –	÷	, ,
Stop (nt)	1 6	3598	12883	5187	5459	6210	17506	10123	12141	1387	1939	2130	2501	7335	430	2736	3063	5549	5929	6451	1772	3176	7	3147	9495	1182	980
Start (nt)		3239	12146	5588	6013	6004	17685	10515	11947	935	1496	1624	2100	7541	7	2416	2734	4743	5459	5741	2395	3316	2722	1180	9082	1343	1165
ORF	4	- 2	11	-		6	16	6	7	6	→	_	7	9	-	4	2	60	6	9	-	·-	-	~	6	-	~
Contig	20	51	52	54	54	54	54	55	55	95	98	57	57	80	59	59	65	89	59	09	61	61	64	99	99	67	69
	•	• •		•			. – .	• •	. —	•			• •	•	· —			• — •				· — ·		-		·	:

Ġ
7
•
known prototolo
•
5
- 5
Ĭ.
ì
L
4
`,≽
7
d proteins not
6
0
C
~
Į.
٥
_
of novel
8
Č
0
LO.
ĕ
<u>ب</u>
Ö
ŭ
_
ž
=
8
Ű
ative coding reg
3
2
ď
5
۵
F
oniae
7
5
Ē
ē
pneumoni

nt)		•			i /		•	•	: —	· —	•	• -	-		، ـــ ه	.	- -	. — .	· ·	· — ·	. — .	.	-	.	٠.
8 - 18			22338	27556	8081	4216	4582	4773	6428	8996	195	535	9210	8109	7	8931	1150	16460	2929	1092	2875	7114	2000	6001	2006
Start (nt) 4059	4215	2 1 2	21859	26204	8458	3815	4214	4369	7183	9462	524	867	8602	7924	244	6631	1872	6810	4464	2147	3606	6767	5326	6459	7224
OR C	9	-;-	116	139	6	4	9	7	91	-15	-	- 2	=	9	- -	110	-	11	-	- 5	-	119	- 2	7	- 6
Contig 1D 70	0,		1,1	71	72	73	۲3	7.3	7.3	7.3	76	7.6	76	80	91	81	8	83	84	98	98	96	87	87	87

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

	-1-1-1-1		<u></u>	
2 2 3 3 9 6 6 9 5 2 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9	57.5	2379 3712 182 632	1420 6753 18692 19541	1980 299 4373 6735 6517
Start (nt) 17910 18275 1817 2711 6252 6252 7771 7771	95 17 18 18 18 18 18 18 18 18 18 18 18 18 18	4533 4533 904	1250 7043 18522 19717	4094 48 48 6142 6098
2 2 9 9 6 7 7 8	~ 0 -	9 8 7 7 6	9 2 2	2 2 6 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 8 9 9 9	0 0 0 0	100 103 103 104

oteins
known pro
5
dittillar
not
proteins
novel
o
regions
coding
Putative
1
pneumoniae
Ġ

Stop (nt)	363	10212	268	3788	4606	10438	2121	1357	2333	6199	7416	069	3368	102	724	9509	6277	7621	756	5673	11209	1140	3830	134	14521	14532	14875
Start	-	9832.	~	3417	3809	10854	2873	2274	2698	5858	6301	346	2544	689	1011	6454	6540	7809	1433	5972	11838	625	2913	325	14027	14840	15363
ORF	-	2	-	г г	-	2	_	~	-	01	77	7	-	-		8	6	22	-	91	=	7	7	2	77	12	=
Contig	106	106	108	111	111	115	116	118	122	122	122	124	128	129	129	129	129	129	131	131	134	135	136	137	139	139	139
+ ·		-	•		÷ ·	• —·	-			-	• —	•	•	• —	• —	•	•	•	•	• ~	• —	•	•		• — ·	• —	, +

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

	r i	20838	285	479	778	2885	9401	10676	9750	7276	8647	4765	1936	2880	6070	579	1909	2642	1741	1411	4311	294	780	1722	4017	1018	4945	4972
•	Start (nt)	9	_	760	1149	3604	8223	9399	10052	7488	8913	5298	7	2557	6258	1355	2556	2061	1953	2181	4550	37	631	1384	3271	1332	5535	5406
	10 PR	20	-	_	7	-	5	14	115	-	6	-	-	_	6	~	n	e .	-	~		-	~	-	-	7	_	9
		140	142	146	146	146	146	146	146	147	147	148	149	149	149	150	150	153	154	155	156	157	159	159	159	161	165	166
•	;	• —·	÷ i		. — .	. — ·	· — ·	. — ·	. — :	.	. :	-	. — .				_						-	! — ·	-	⊹ _		 _

o known proteins
known
S
lar
ot similar to
not
proteins
novel
of
regions
coding re
Putative
ı
neumoniae

																						,						
	6395	3205	6243	6362	6962	7906	7476	1948	2677	835	1789	546	1466	4925	1 2213	5347	8703	3724	2473	1102	2006	2320	4219	4634	3557	4363	4821	+======================================
Start (nt)		2828	6485	6964	7303	8790	7150	2298	2913	659	893	1487	2200	4686	4923	5111.	7396	3452	1853	2112	2617	2126	4683	4846	2940	3686	4183	
ORF	6	S	_	60	6	=	6	5	-	~	~	~	-	6	2	===	2	-	2	~	_	~	- 5	9	-	-	2	
Cont 19 ID	167	169	170	170	170	170	171	172	173	175	175	176	176	177	771	177	177	178	181	182	182	183	185	185	187	188	188	
+	•	• —	• —	• —	• —	+ - -	• —	•	• ·	• •	•			· ·	• ·	· ·	. —		· — ·	. — ·	· — ·	· —		. ·	· — ·	. —	. — .	:

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

	6493	2844	5564	4	10001	2268	2878	5331	839	2127	4543	6231	1849	861	6644	5769	6895	3276	1709	2460	2682	8230	10441	10705	2330	5277	5754
	5882	3143	9565	618	10357	2861	3081	0089	997	2315	6249	6620	1553	-	6844	5329	5993	3914	447	2038	2458	7370	9029	10439	2581	2065	9665
ID I	9	2	9	-	Ξ	m	-	,	m	-	5	•	7	-	2	'n	-	5	~	-	5	9	2		5	6	
Contig	188		189	191	191	192	192	192	193	194	195	195	196	197	198	200	200		205		509	210	210	210	214	214	214
+	•	•	• —	•	• —	• —	• —	•	· ·		•	•		•	•	•	•	·		· ·	· —	. —	. — ·	 -	-		i i

-
ė
profeins
Ş
ğ
*
2
4
7
_
not biffilar
2
Ė
rot
ă
vel proteins
nove
c
of novel
S
5
ogions of
D
=
ě
2
ā
Ξ
1
ø
į
eumoniae
ē
Ğ
s.

.	• —	• – •	• — ·	•	•	• —	•	•					•	.	•												
Stop (nt)	194	1432	1972	3821	39	009	1964	510	1312	1838	312	687	9.	270	362	1222	792	1616	2123	771	1900	2973	342	1022	1681	186	2295
Start (nt)	541	914	1430	3639	458	869	2617		1539	2116	52	310	999	-	- m		2789	1179	1 0771	653	2244	3569		177	1124	857	1684
ORF 1D	- 2	7	<u>-</u>	9	_ _	_ 		-	-	9	-	7	- -	-	-	7		7	-	-	-	2		7	7	-	7
Contig ID	712		218	218	219	220	223	722	234	234	235	235	238	246	248	248	254	258	260	263	100	263	266	266	270	272	275
			-	- 4	_					. —	! _ .	_				! — .	-	-	_	_	<u>.</u>	_	_	_		-	-

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not statilar to known proteins

	406		1134	826	7	-	1858	2925	608	700	843	530	350	1889	1818	584	7.7.	133	607	549	535	82	342	705	701	199	198
Start (nt)	2	714	1463	1119	540	684	1589	2539	7	767	670	261	559	249	2087	1048	313	477	912	-	7	465	127	-	968	750	-
R D	-	-	4	~	-	-	2	~	_	7		-	_	~	~	~	~	_	~	-	-	7	~	-	7	~	-
	278	60	282	287	288	289	291	293	294	296	296	302	309	310	316	317	318	319	327	331	333	333	333	341	345	346	349
•							•	· ·	•		. —	. — .	. ;	· — ·	. — ·		· — ·		-	. — ·		: —	 -	_			. — .

pneumoniae - Putative coding regions of novel proteins not limilar to known proteins

 Stop (nt)	413	973	448	628	1265	1004	510	693	7	30	******
Start (nt)	81	3	636	948	1639	345	683	109	150	269	
ORF	~	-	~	~	7	-	2		-	~	-
Contig ID	350	355	358	360	364	378	379	381	385	385	
,						. — •		- 1		•	•

TABLE 3

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PB340P1
- (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (301) 309-8504
 - (B) TELEFAX: (301) 309-8512

WO 98/18931

150

PCT/US97/19588

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5625 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA	CCAGCTACAG	CTAAAGGAAC	TTACGTAACA	AACTTGACTA	TCACAACTAC	60
TCAAGGTGTT	GGTATCAAAG	TTGACGTAAA	CTCACTTTAA	TCAGTAGTTA	AAGTAATGTA	120
AAAAAGTTGA	AGACGCTATG	TCTCAACTTT	TTTTGATGTA	CGACGGGCAT	GTTGTATAGT	180
AGATGTGTAC	TATTCTAGTT	TCAATCTACT	ATAGTAGCTC	AGAAGTCGGT	ACTTAAACGT	240
GCTATATCAA	AACCAGTCCT	TGAAAAACGT	GGACTGGTTT	CGTGTTTGGA	TTATTACCTT	300
GAACGACATG	CGTTAAAAGT	TAGTTGAACC	GCCGTATGCC	GAACGGACGT	ACGGTGGTGT	360
GAGAGGGGCT	AGAGATTATC	CCCTACTCGA	TTTCGAAATC	TAGTGGAATG	AATCTGGAAT	420
AGTCCATCGA	GCTTTCTAAT	ACTCTTCGAA	AATCTCTTCA	AACCACGTCA	ACGTCGCCTT	480
GCCGTGCGTA	TGGTTACTGA	CTTCGTCAGT	TCTATCCACA	ACCTCAAAAC	AGTGTTTTGA	540
GCTGACTACG	TCAGTTCCAT	CTACAACCTC	AAAACAGTGT	TTTGAGCAAC	CTGCGGCTAG	600
TTTCCTAGTT	TGCTCTTTGG	TTTTCATTGA	GTATAACACA	TTGTTAGAAG	TTGGTTTAAA	660
TTTCCTAATC	AGTTTGTTCA	CATTTACCTT	CGATATATTA	TATCCCATAG	TTAAGGTTGG	720
TCATACAGAT	GATTATAGTC	ATGGAGCCGT	AAAACTTAGT	GTTTCTTTAG	TTGACAAAGA	780
TGCCATGAAA	AAAATATTTG	TAACTGTAAT	AGGATATTT	GAAATAAATA	TAGATGAAAA	840
TATCACCGAT	ATTCTATACG	TAAATGGTAC	TGCTATTCTT	TATCTTTATT	TACGTTCAAT	900
TGTTTCAATA	GTTTCGGCAA	TTGATAGCAG	TGAAGCAATG	TTGCTACCTA	TCATTAATGT	960
TTTAGAGTTA	CTAGATAAAT	CTCAACCTTT	TGAAGAAGAA	TAATTTATTA	GCTCACTAAA	1020
TTGAGGGTAA	GGAAAAGTAA	AAGCAGTAAG	AAAAATGTCT	TGCATTATAC	AGCAACCTTT	1080
TGGGAATGAG	TGGATGGATT	GAATAAAATT	TGATTAAGAG	TGGATGATTT	ATCTGTAGAT	1140
TATTATTGGA	CAGTTAGTCT	TGAAGTAGTC	TAAGAATTAG	GTTATAATCA	GTAGAAGCCT	1200
TGCTAATAAT	GAGGAGGTTA	GTTTATGTAT	AGTAGACTGA	АТСТААААТА	GTACGAAACA	1260
ATTGCTAAAA	CATTTATAGA	AATTAATTT	ACTTTCCCAA	TCGATTTGTT	CTCATCTTAT	1320
TTCAATCCGC	TATATATTAT	GGTATCGAAT	CTTCATCAGA	ATGATAAAAT	TAATCAATTG	1380
ATATCTGATT	ACAAACAGAA	TATGAAAGCT	TTTTATATCA	CTATTGAAAA	ATTTATACGA	1440

GATGATGAAA	GCCTTAAGTG	TTATTTTATA	AAGGTTATTT	CAAGTCGTTC	CAAGGTAACA	150
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAAA	156
AAATTTATG	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCCT	ACATGTACGA	162
aagaggtggt	CGAGTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	168
ACTTCTTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	174
ATATTTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAATACC	GCCCTCTGGT	180
gagaagatga	GTAGGTTGGT	AATTTAAACT	ATTAAACAGA	ATTTTTGATT	AAAAGTATTA	186
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCAAA	CGCTTGCATT	TCGTTTTTTA	192
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	198
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCTT	ACGATAGGGA	204
GATAGATATG	GCAATGATAG	AAGTGGAACA	TCTTCAGAAA	AATTTTGTGA	AGACTGTTAA	210
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCAT	CCTGAAAAGC	AGACCTTTGA	216
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	222
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTTGA	AACCAACATC	228
TGGTTTTTGT	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	234
TATTGGCGTA	GTCTTTGGAC	AACGCACCCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	240
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCATA	AGCGTATGGA	246
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	252
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	258
PTTTTTAGAT	GAGCCGACCA	TTGGTTTGGA	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	264
AATTACTCAG	ATCAATCAAG	AGGAAGAAAC	TACCATTCTT	TTGACCACTC	ACGATTTGAG	270
rgatattgag	CAACTITGTG	ATCGGATTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTTGA	2760
rggaacggtg	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAACT	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTGA	2886
FAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
FATCAAGCAA	ACCCTGTCTG	ATTTTGAAAT	CCGCGATTTG	AAGATGGTGG	ATACGGATAT	3000
IGAGGATATT	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAAA	TTGTGGAGAC	3060
GTTATAAACC	CTTTATCAAT	GCAGGGGTTC	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
PTCTCTATCG	GATTGGCGAT	GTCATGGGGG	CTTTTGTGGC	CTTTTATCTC	TGGAAGGCTG	3180

			152			
TCTTTGATTC	TTCGCAAGAG	TCTTTGATTC	AGGGCTTCAG	TATGGCGGAT	ATCACCCTCT	324
ACATCATCAT	GAGTTTTGTG	ACCAATCTTC	TGACTAGATC	CGATTCGTCC	TTTATGATTG	330
GGGAGGAGGT	CAAGGATGGC	TCCATTATCA	TGCGTTTGTT	GCGACCAGTG	CATTTTGCGG	336
CCTCCTATCT	TTTCACCGAG	CTTGGTTCCA	AGTGGTTGAT	TTTTATCAGC	GTTGGCCTTC	342
CATTTTTAAG	TGTCATTGTC	TTGATGAAAA	TCATATCGGG	TCAAGGTATT	GTAGAGGTGC	348
TAGGATTAAC	TGTCATTTAT	CTTTTTAGCT	TAACGCTCGC	CTATCTGATT	AACTTTTTCT	354
TTAATATTTG	CTTTGGATTT	TCAGCCTTTG	TGTTTAAAAA	TCTTTGGGGT	TCCAACCTAC	360
TTAAGACTTC	CATAGTGGCT	TTTATGTCGG	GGAGTTTGAT	TCCCTTGGCA	TTTTTTCCAA	366
AGGTTGTTTC	AGATATTCTC	TCCTTTTTGC	CTTTTTCATC	CTTGATTTAT	ACTCCAGTTA	372
TGATCATTGT	TGGAAAATAC	GATGCCAGTC	AGATTCTTCA	GGCACTCCTT	TTGCAGTTCT	378
TCTGGCTCTT	AGTGATGGTG	GGATTGTCTC	AGTTAATTTG	GAAACGGGTC	CAGTCCTTTA	384
TCACCATTCA	aggaggttag	TATGAAAAA	TATCAACGAA	TGCATCTGAT	TTTTATCAGA	390
CAATACATCA	AACAAATCAT	GGAATATAAG	GTAGATTTTG	TGGTTGGTGT	CTTGGGAGTC	396
PTTCTGACTC	AAGGCTTGAA	TCTCTTGTTT	CTCAATGTCA	TCTTTCAACA	TATTCCATTC	402
CTAGAAGGCT	GGACCTTTCA	AGAGATAGCT	TTCATTTATG	GATTTTCCTT	GATTCCCAAG	408
GGAATGGACC	ATCTCTTTTT	TGACAATCTC	TGGGCACTAG	GGCAACGCCT	AGTCCGAAAA	414
CGGGAGTTTG	ACAAGTATCT	GACTCGTCCC	ATCAATCCTC	TCTTTCACAT	CCTAGTTGAA	420
ACCTTTCAGA	TTGATGCCTT	GGGTGAACTC	TTAGTCGGTG	GTATTTTATT	GGGAACAACA	426
GTGACCAGCA	TTGTTTGGAC	TCTTCCAAAA	TTCCTGCTTT	TCCTAGTTTG	TATTCCTTTT	432
GCGACCTTGA	TTTATACTTC	TCTTAAAATC	GCAACAGCCA	GTATCGCCTT	TTGGACTAAG	438
CAGTCAGGCG	CCATGATTTA	CATCTTCTAT	ATGTTCAATG	ACTTTGCTAA	GTATCCGATT	444
PCTATTTACA	ATTCTCTTCT	TCGTTGGTTG	ATTAGCTTTA	TCGTGCCTTT	CGCCTTTACA	450
CCTACTATC	CAGCTAGCTA	TTTCTTACAG	GAAAAGGATG	TGTTCTTTAA	CGTAGGAGGT	456
rtgatgttga	TTTCTCTGGT	TTTCTTTGTT	ATTTCCCTTA	AACTTTGGGA	TAAGGGCTTA	462
GATTCCTACG	AAAGTGCGGG	TTCGTAAAAG	CTAAAGTAAG	ACTAAAATCA	AGAAAGAAAC	4686
PTATGATGTT	TGTAATTGAA	GAAGTCAAGG	ATGAAAATCA	AAAAAAGGCA	GTTGTCGCTG	4740
AGGTTTTGAA	GGATTTGCCA	GAATGGTTTG	GAATCCCAGA	AAGCACACAA	GCCTATATAG	480
AAGGAACCAC	GACACTGCAA	GTTTGGACCG	CCTATCAGGA	GAGTGATTTG	ACTAGATTTG	486
PAAGCTTATC	CTATTCGAGT	GAAGATTGTG	CAGAGATTGA	TTGTCTCGGC	GTAAAAAAGC	4920
TATCAAGGT	AGAAAAATTG	GGAGCCAATT	GCTTGCTACT	TTAGAGAGTG	AAGCTCGTAA	4980

153

AAAAGTTGGT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	5040
AACAAATGAC	TTTTATCGAG	GTCTTGGCTT	TAAAAAGTTA	GAGATTTTTC	CTCAACTATG	5100
GAATCCGCAA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATTCTCAGA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCACTCGTAA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAGAAGATA	ACCGTTAAGC	CTTACTCTTA	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
TATTTTATCA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
TTTTTGATGG	TATGAATGTG	CTTATAATGT	ATCCCGGTTA	ACGAAAGTTT	TGGACTTATA "	5460
CTCTTCGAAA	ATCTCTTCAA	ACCACGTCAA	CGTCGCCTTG	CCGTGCGTAT	GGTTATGACT	5520
TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGT	GACTACGTCA	GTTCCATCTA	5580
CAACCTCAAA	ACACTGTTTT	GCCCAATCTG	CGGCTAGTTT	CCTAG		5625
(2) THEODY	ATTON FOR CE	O TO NO. 2.				

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7571 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

60	AAAATATCTC	AAGAAGTCTA	TTGTGTCTTT	GTTGGCCATG	TTCCTTGCGA	CTCTCCAGCT
120	TTGCCACAAT	TGTAGTGTAC	TTTCTCTGTG	TCCTATCTCG	CATCGCTCTC	CAATAAAACG
180	ATCTTGATTG	GTTTCCGCTG	TAGGCTTGAG	TCTAGTCGTG	TTTATTTACT	GCTTACAAAA
240	GCCATAACGC	TTTTTTTAGT	CTAGGCTTGC	ACCGCACAAG	CGAACCACAA	AATAGTTTCT
300	GCGAAATAGA	AAGCATCTTA	AGGCTTTGAC	CAAGAAAGCT	TCCATTATAA	CTCCATCTTA
360	TGAGATAGCC	TCTTCGCATC	TTTTCCTTAA	TGTTTGAGCC	AATCCCATAT	TTGACTATCG
420	ATTATCATCT	TATCAGACAA	CGCCCTCGAA	ACTTTGCGCA	CATCTACTAG	CGGCTAGCCT
480	AATTCCATTT	TGGCTGGTGC	CTTTTTGTAT	TTGTACTTGT	TATCATTGGT	GTCTGGCTAT
540	AATGGTATTG	TATAAGGTAA	CTTCCTGGCG	CGTAAAGGTA	CATTTTCAAC	TGCTTATAAG
600	ATAGTGGTTT	AGCCAGCTAG	TTTGAAGTAG	AGCTGCACCG	TAAAGACATG	GCAATGTTTC
660	ATAACCAATT	CATCCGGAGT	CTAATCACTA	AAGCCAGTGG	TCGGAAAGCC	TCATCAGTGG
720	AGTTTTCCCT	CAGTTGTTCC	AAAACTGCTT	CTCCGGATTG	CACTTGTGTA	ACCCACTGGT

			154			
GCCATGACAT	AGTCTGCAGG	CGATGAACTA	ATACCGGTAC	CGTTGGTGAA	AGTCCCCAAC	780
ATCATACTGG	TCATCTTGTC	AGCTACAGAC	TTATCAATCA	CCCGTTTTTG	TGAATTTTTA	840
TGACTCGCAA	TAACTTGTCC	ACTAGCATTT	TCAATTCTAC	TAATAAAATG	AGCTTCAGGC	900
ATTAAACCTT	CATTTGCAAA	GGCGGCGTAT	GCTTGAGCCA	TTTGAAGAGG	GTTGGTTTCA	960
ACACCGCTTC	CCAAGGCGAC	ACCAAGAACA	CGGTCGACCT	TTTCCATGTT	GAGTCCGAAT	1020
TTTTCGCCTG	CCTCAAAAGC	CTTGTCGACA	CCCAAATCAT	TAACAGTGGC	AACAGCAGGT	1080
AGATTAAGCG	ATTCTGCCAA	GGCTTGATAC	ATAGGAACTT	CTCGACTCGT	TTTGATCCCT	1140
GCATAGTTAT	CAACCTTATA	GCTGTCATAC	TGCATGGTAT	GGTTATCCAA	CTGCTTATTC	1200
AAAGCCCAGC	TTGCTTCAAC	TGCTGGCGTA	TAAACAACTA	AAGGCTTAAT	TGTAGAACCA	1260
GGACTACGCT	TTGATTGGGT	TGCATAGTTG	AAATTCCGGA	ATCCAGTTTT	ATCATTGTCA	1320
GCAACTTGAC	CGACAACTCC	ACGAACTCCC	CCTGTTTTCG	GTTCGAGGGC	TACACTTCCT	1380
GATTGAGCAA	ACGTTCCATC	CTCTGCCCTC	GGAAATAGCG	ATGTGTTTTC	ATAAACAATC	1440
TGCATATTTG	CTTGGTAGTT	TTGGTCCAGC	TCTGTGTAAA	TGCGGTAGCC	ATTATTGACA	1500
ATCTCTTCCT	CTGTTAGATT	ATACTTGGAA	ACAGCTTCAT	TAACCACCGC	АТСААААТАА	1560
GAGGGGTAAC	GGTAATCTGA	GATTTTTCCT	TCATACTTAT	CGTGCAATTG	CGAAGTCATA	1620
TCAACTTCAG	CAGCTTTGGT	TTCTTGGTTT	ТТАТСААТАТ	ATCCTGCTGC	AACCATATTC	1680
TGCAAGACAG	TATCGCGCCG	ATTAGTAGAA	TCTTCTACGG	AATTCAAGGG	ATTATACAGT	1740
TCCGGCCCCT	TGAGCATCCC	TGCCAGAGTC	GCAGCTTGAT	CCAGACTCAC	TTCTGATGCA	1800
GAAACTCCAA	AGTATTTCTT	ACTCGCATCT	TCTACACCCC	ACACACCATT	тссалалтал	1860
GCGTTGTTAA	GGTACATGGT	TAGAATTTGC	TCCTTACTAT	ATTTTTTGCT	TAATTCTAAG	1920
GCAAGGAAAA	ATTCTTTCGC	TTTTCTCTCA	ACAGTTTGAT	CCTGCGATAA	ATAGGCGTTT	1980
ITAGCCAGCT	GTTGGGTAAT	GGTAGAGCCA	CCACCTGAAC	GTCCAGCAGT	GACAATAGCC	2040
AAGAAAAAAC	GGCCATAGTT	AATCCCGTCA	TTTTTATAGA	AAGAACGGTC	TTCTGTCGCA	2100
ATAACAGCAT	TCTGCAAGTT	TTTACTGATG	TCAGTCAGCT	CAACATAGGT	TCCCTTTTGA	2160
CCAGACAAGG	CACCAGCCTC	TTTTTCTTCA	CGGTCAAAAA	TAAGAGTCCG	AGTTTTCAAG	2220
GCATTTTGCA	AATCATTGAC	ATTGGTCGAC	TTGGCTACAG	САААСАААТА	GATTCCAACT	2280
AGCAAGCCTG	CACTCAAACC	TAGTATAAGG	ATAATCTTTG	TTAGATGATA	ACGACGCCAG	2340
AATTTTCGAA	TCGGACCTAC	TTGGGCTAAT	TTTTTTCGAT	CACTACGAGA	GCGACGTAAG	2400
ATAGTAGAAT	CAGAGTCCTC	TAGTTCACTT	GTTTCTTTTT	TAAAAAGAGA	AAGAAATTTC	2460
TTAATAATT	TATCTAATTT	CATGCGTTTA	TTTTATCATC	TTCATCATAG	GAAGACAAGA	2520

ATTTAGCTAT	TTCCTATCCA	AATAGGGCTT	TTTTTGTTAC	AATATCTGTA	TGCAATTCAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTTT	GAGAATCAAG	AAACATATTT	TGATAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTTTGCCAGT	TGACTTTTGA	2760
CGAGGAAGAT	TATTCCCAAA	AGACGATCCC	TTGGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGTAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAC	GAAATTGCCC	TTCTTAACCA	TGTCAGTACC	TATGTTGGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTTGCCA	AAAATCCTTT	3000
TATCCTGCCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GACTTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGGCGAACC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCTTTCAA	ATACATTTGA	3420
AAAAGAATTA	AAAAAGAATG	GATGATCGTG	TCATCCATTT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTTCTA	TCAACTCAAG	AATTATTTAG	CAATŢTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTTCGTTGT	CGTACCATGA	TACAACTTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTTGAG	TTGCGTCAAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTCG	3720
TTTGAAGCTG	CTTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTTGTGCAGA	TCCGTCAAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTTG	CAGCACCAGT	TGAGTTAGGA	3900
ACGATGTTTG	CAGCACCAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATTT	GGTCACCAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AACAACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTTAG	CTCCACCTTT	AAGGTGTTTT	4200
TCAGCTGCTT	CTTTCTTAGC	AAAGAAACCA	GTAGCTTCAA	GAACGATŤTC	TACACCGTCA	4260

			120			
GTAGCCCAGT	CGATTTGTTC	TGGATCACGT	TCAGCAGAAA	CTTTGATGAA	TTTACCGTTA	432
ACTTCAAATC	CACCTTCTTT	AACTTCAACA	GTACCGTCGA	AACGACCTTG	AGTTGTGTCG	438
TATTTCAACA	AGTGTGCAAG	CATAACTGGA	TCTGTAAGGT	CGTTGATGCG	TGTAACTTCA	444
ACACCTTCTA	CGTTTTGGAT	ACGACGGAAA	GCAAGACGAC	CGATACGTCC	GAAACCGTTA	450
ATACCAACTT	ТААСТАССАТ	TAGTGATTTC	CTCCTTATGA	AAATCATGAA	ATTTTTATTG	456
TGAAAAGAGT	AACTTGAATC	ACTACAAATC	ACCTTTCAAC	AAACCTATTA	TACAACTATT	462
TGAGTTGAAT	TGCAAGTATG	GCCATTGTTT	TTCTATGTTA	GTTTCTTTT	AAGACTGTAA	468
ACCAAGGAAT	CCCTTACTAT	TCATAGCATA	ACGATTCTAT	AGGATCCATT	TTACTAATCT	474
TACGCGCCGG	GAAGTAGGCT	GAGACATAAC	CAAGTAATAG	AGCGAAAACT	AGAGTTCCTA	480
AAACAGATAA	AAGATTTAAT	TTAAAAACCT	TAGTGATGGA	TGGGTAAAAG	TGACTTACAA	4860
TCGCATTCGC	CAAACTTCCC	ÀCCCCTTGTG	СААССААААА	TGCCAGCAGC	AAGGCGATGC	4920
CTACAATCCA	GATAGCCTCG	TAAATAAAAA	TTCCTTTGAC	ATCACGATTC	TGATAACCAA	4980
CTGCTTTCAT	GACACCTATT	TCCTTGGAAC	GTTGCATGAT	ATTGATGTAA	ATAATGATAC	5040
CAATCATAAC	CGCTGCTACC	ACAATAGCTT	GTGATGAAAG	CACAATCAAT	AATCCCTGAA	5100
PAACACGAAT	AAAGGTAATC	ACAATATCAA	GAACTCTCTG	TTGAGAAAGC	ACAGTATACT	5160
PCTTATTTTT	CTGTAATTCT	TCTGTTACTA	CTTTTGTCTG	TGATGGATCT	TTGAGTTCCA	5220
AGATAAAATA	AGATACAGCT	TTCGTAAATC	CAGCCTCTTT	CAAAATCGTT	TCCATTTGAT	5280
GAGACAGCAT	GAAACTGTTG	CTGTCCTCCA	TGTCATCTTC	ATCATTGATT	ACACGTACAA	5340
PCTTCGTTTG	AAATTGAGCA	ATCTTACTAG	TTTCGGCAGC	ACTTTCTACA	ATGCTGGCTG	5400
AGACTGATTT	GCCAATAAGA	TCATTAGCTG	TCAAATTTTT	TCCTGTCTGT	TCATTCCAAT	5460
PTTTTAGTAA	ACTGCTTGGA	ATCGTTAATC	CCTGTTCATT	TGTATCAGTA	TAGAGGGATC	5520
CAGCCAACAC	TTTGTCCGTC	TCATTATTAC	TAACAGAGAT	ACTTGTATCA	TCATAAAGAC	5580
CACTACTTG	AGCATAAGAA	GGCATCGTTT	GACTCAGATC	CATTTCTTGC	CCATCTATAG	5640
PAATATTTGA	CATGTTCATC	CCAAAAGGAC	TCTCCAAATA	TTTAATAGCT	TCTTTCCCAA	5700
CTGTATCCGT	GATATATAGT	CAATTGAAAC	AAGAGCAGGA	TAAAAAAGCC	TCGTAAAAGG	5760
PATTGCAACT	TGGTAATACC	TTTTTGAGGT	GCTTTTTGAT	ATGAGCCCAT	GTTTTCTCAA	5820
PAGGATTGTA	CTCAGGCGAG	TAGGGAGGAA	GAGGTAAAAG	TTTATGCCCA	AACTCTTCGC	5880
TAAAAGTTC	TAGCTTCCCC	ATTCTATGGA	ATCTTACATT	ATCCATAATA	ATAACCGATG	5940
STGTGTTTAA	TGTTGGTAAG	AGAAAATTCT	GAAACCAAGC	TTCAAAAAAG	TCGCTCGTCA	6000
CGTCTCTTC	GTAAGTCATT	GGAGCGATTA	ATTCACCATT	тсттасасст	GCAACCAAAG	6060

157

AAATCCTCTG	ATATCTTCTT	CCAGATACTT	TGCCTCTTAT	TAATTGACCT	TTTAATGAGC	6120
GACCATATTC	TCGATAAAAA	TAAGTATCGA	ATCCTGTTTC	GTCAATCTAA	ACAGGTGCTA	6180
GGTGCTTTAA	ACTATTAAAA	TTCTTAAGAA	ATAAGGCTAC	TTTTTCTGGG	TCTTGTTCAT	6240
agtaggtgtg	GTTCTTTTTT	CGAGTGTAGC	CCATAGCTTT	GAGCGTATAG	TGGATGGTAG	6300
TTGGATGACA	GCCAAATTCA	GAAGCTATTT	CAGTCAAATA	AGCGTCTGGA	TTGTCAGTAA	6360
GATAGTTTTT	AAGTCTATCT	CTATCAACCT	TTCTTGGTTT	TATTCCTTTT	ACTTGGTGGT	6420
TTAGCTCTCC	TGTTTTCTCT	TTTAGCTTTA	ACCAGCCATA	AATGGTATTA	CGTGAGATTT	6480
GGAAAACGTG	TGATGCTTCT	GTTATACTAC	CTGTTCGCTC	ACAATAAGAG	AGAACTTTTT	6540
TACGAAAATC	TATTGAATAT	GCCATAAAAA	GATTATACCA	CATTGTGTAC	TATTTTTGGT	6600
TCATTTTACT	ATATTTGAAG	AGGCGTTTAA	ACTATCTGAC	ATAAAACTCG	TŢCTAGAGGA	6660
AAGACATCCT	TTAAAAAGTT	AGTTTATTT	ACAACTTAGA	CATCAAGGTA	GGTTAACCCC	6720
TTCATGGAAA	AATCAAGACT	CTTAGCACTA	TGGGTTAAAC	TACCACTGGA	GACGTAATCA	6780
ATCGCTAAAC	CACGAAAACG	GCTAATAGTG	GTCATATCAA	TATTTCCAGA	ACATTCAATC	6840
CGAGAACGTC	CTGCAATTAG	GGTAATGGCC	TGTTCAATCT	GTTCCAATGA	CATATTATCC	6900
AACATGATAA	TATCAGCACC	CGCCGCCGCA	GCTTCTTCGG	CAGCAGCAAG	GCTTTCCACT	6960
TCCACCTCGA	CCATTTTCAC	AAAAGGGGCA	TAGGCACGCG	CTTGAGCAAT	TGCCTTTTGA	7020
ACACTACCTA	CTGCCGCAAT	GTGATTGTCT	TTTAGCAGGA	TAGCATCTGA	TAAATTAAAG	7080
CGATGATTAT	AGCCACCGCC	AACTCTCACG	GCATATTTCT	CAAAAAGACG	TAAATTAGGA	7140
GTAGTTTTTC	GAGTATCAAA	TACCTTAATG	CAATCATCGC	CTAAGGCTTC	TACATAAGCA	7200
GCTGTCATCG	AAGCAATCCC	TGATAAATGT	TGTAAAAAAT	TCAAGGCAAC	GCGTTCACAT	7260
GTTAAGAGAC	TTCTCACCGA	GCCTATGATT	TCTAAAACCA	AATCGCCACT	AGTCAAACGA	7320
TCCCCATCCT	TAAATTGATG	AGGATTCTGG	AAGGTCACCT	CGGCATCAAA	TAGGGTAAAA	7380
ACCCTTTGAA	AAACGGTTAG	CCCCGCTAAA	ACACCAGCTT	CCTTGGCAAA	AAGCGACACC	7440
TTGGCTTGGC	CATGATGATC	AAAAATGGCA	TTGGTACTGT	AATCTTCGGA	ATGAACATCT	7500
TCTCGCAAGG	CTGCTTTCAA	TGTATCATCT	ATTTGAAAAG	GGGTTAAATC	AGTTGAAATG	7560
ATTGACATCA	С					7571

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26385 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

60	TGTCGTTTTT	CTAAAAGTCG	TCAGGCGTAT	TTCAGGAAAA	GCTTAAATTC	TTTGCTAGTG
. 120	CTGTGTTCCA	GAAAACGTGT	CCTACAACTA	TCCTGCTCCC	TATAAAGACT	GTTTCATCTA
180	ATCTGGTGTA	GCGGTAGCGT	TTGCTGTGGA	TTCGATTGAT	GATTAAATAG	GCAAGAAGCT
240	TGTCAACTCA	GATCATCTTT	AATCCAGTAA	AACAGCATCA	ACGCTGAAAT	TAAGCACCAA
300	AACAATAGCC	TTTCAGAACG	TGACTTTTGT	AGACTCAGCT	TTTTAATAAT	AATAAATCTT
360	TTGTCCATTT	CTTTCCCCGC	TCAACAATTG	GACTGCTTCT	GTCCTCGTTT	GTTACTTCAT
420	TTTAGTTACA	TTGTAATTAT	ACCTCTCTTG	CATTTTTTAT	CTGCTAGTTT	GCTGCAATAA
480	АТСААААТАТ	CTTAATTATT	AATAGTCTTG	AATCAATGTC	CACTCTTAAT	GAAATTGTGA
540	CAACAAATTT	TCTTCTTTGT	TGAAAAAAA	ATGATTCTAG	AAAACTAACC	TTCTACCAAG
600	GTCTGTTTTT	GATCTAAGTT	CATAGCAAGA	СТАТААТААТ	TTTAAACATG	ACTTTCTTGT
660	ATCTGGTCAT	CTCCCCTACT	CTATTCCCAT	TGCGTAGATT	GTGATTATCA	TTAAAACGAG
720	ACCCCCTTAC	GTTGTTTCTG	GTTCTTACTA	TTTATGAGTT	TATTGGCCAC	ATTATTCTTT
780	TCTTGATTGT	CCTCTGGTAA	CTTCTTTACA	ACAATCTTCT	СТСТАТАТАА	ACTCAAGGGA
840	GTAACGGACT	TGGTTAGTTG	CTCACTTTGA	GTTTCCGTTT	TATAGCTACC	ATCGTTACTC
900	TGCTAATCTA	СТААТТТАСТ	TGAGTTTATA	TAACCTTTGG	TTTACTATCA	GCTCTTTTAC
960	ТТСТАСАААА	ATCAAGCATA	TGGTATTAGC	GCATGGATTC	GCTCTGGTCG	TGAAACAGTT
1020	GCTATAATAA	TCACAATCAT	TTGAAAAATC	САСААААТСС	AAAAAACTTT	AATGAAAAAC
1080	CTGGAAACGC	TGCGTGGTTG	TACTAGAGAG	AGTCCCTTTC	CAAGTCACTT	TCCATAGAGA
1140	ACGGTGGCCA	AAAACATAAA	GTTTTTTATG	CTACTCTTGA	TAAACTGATA	ATAGGAAGTC
1200	GTGGAACCAC	ATAAATGAAG	TTTGAGGTAC	GTCCCTCTCT	GATCAGAGGT	CGTTAGAGCC
1260	ATGGAGTTGC	GATACTAATT	TTTTTATTAG	ATGTCGCATT	CCTTTCGAGG	GTTGCGACGT
1320	GAAGTTAAGC	TCACGAACTG	GACAAGCTTA	TGGGCAATCC	GGAGCGCAGT	AAGAATTAGT
1380	GATATTGGAA	TTTATCTAAT	ACCTCTTGGC	GTAGAAGAAG	CAAGTGGACG	ATCATGATTC
1440	CCCTACACAC	TGATGAAACA	GACGCTACTA	ACAAAGCAAG	ACTGGTGATG	ATTTCCAACG
1500	CGTTTGGATA	ACTTTCTCAA	GGCTATTAGA	AATATCTGGT	ACTTTCAGAA	TGGAACAAAA
1560	TTGAACGTTA	AGAAAAGCAA	TCTCTGATAA	GAAAACTTCC	GACGGAAATG	TAGACATTCT
1620	АТААТАААА	AAACTATGAA	CAATGCTTAG	GATAAAAAAT	GTAGTCTGCT	GGACTTGGAA

	AGGAGAACAT	CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTG	168
	GCGTAACAAC	TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	174
	CTGGTAAATT	CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	180
	TCGAAATTGT	GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	186
	ACTTGTTCGC	CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	192
	CCATCGAAGA	TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1986
	ACCTTCCTCG	TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
	GTGAAGAAGT	GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATGACCCT	TACAAGTTGG	2100
	aattgattga	AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
	ATGTAGACCT	CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
	TTCTCCATGT	AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
•	TCTACGGTAC	AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
	aagctaagga	ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
	aagaagtggg	ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
•	rggaacgcta	CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
•	CACTTGCTTC	TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAGACA	2580
•	PGTTCCCAAC	CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
•	CGCACCACAT	CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
•	PCGCTGAAAT	CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
(STGTACGTGA	AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
2	AAGAATTCCA	ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
2	ACTACCGCTT	CCGCCTCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
2	atgagatgtg	GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
2	ACTACTTTGA	AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
2	AACTGCCCT	TGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
2	ACGCTTCGA	CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180
7	ACCGTGGGGT	TATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
(GGCCTTCCC	AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
7	ACACGTGGA	CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360

160 ACGTAGATGA GCGCAATGAA AAAATGCAGT TCAAGATCCG TGCTTCACAA ACCAGCAAGA 3420 TTCCTTACCA ATTAATTGTT GGAGACAAAG AAATGGAAGA CGAAACAGTC AACGTTCGTC 3480 GCTACGGCCA AAAAGAAACA CAAACTGTCT CAGTTGATAA TTTTGTTCAA GCTATCCTAG 3540 CTGATATCGC CAACAAATCA CGCGTTGAGA AATAAGAGTC TAGCATAAAA GCCTCCAATC 3600 TGGAGGCTTT TTCTCATCTA TTTTTACTCA AGGACTAAGT TCACTTGAGC AAACTGAATC 3660 CGCACTGTCG TTCCTTTTCC GACCTCAGAC TCGATACGAA TCTGGTGCCC CAGTTCTTCA 3720 GAAATTTTCT TAGATAGATA AAGGCCAAGT CCAGAGGACT GCTGGGTCAA ACGGCCATTG 3780 TATCCTGAAA AGCCACGTTC AAATACTCGG AGGACATCAC TGTTTTTTAT CCCGATTCCC 3840 GTATCTTTGA TACAAAGCTC TTGGTCATCC ATATAAATCT CCAGACCACC TTCCTTGGTG 3900 TACTTGAGAC TGTTTGAGAT GATTTGCTCA ATAACCACTA GCAGCCACTT TTTATCCGTC 3960 4020 GCATATTTAC GAATTATTTC CTTGACCAAG TCCTCAATTT GAACCTGCTT TAAGACCAAA 4080 TCATCATGGA AACTTTCTAA ACGCAGGTAC TGTAAAACTA GGTTGGTATA GGAGTCGATT 4140 TTGAAAATTT CCTGTTCTAG CTGCTGCTTC AGTTGGCGGT CGACCACTTC TGCAACTAAG 4200 AGTTGACTGG CTGCAATGGG GGTCTTTATC TGATGGACCC ACAAGGTATA GTAATCCAGC 4260 AAATCCGTCA GTTTTCTTTC TGCTTTTGAC CTCTGCTGAT AGAGTTCCAT CTCACGCGCT 4320 TCTAATTTTT CTGCTAAAGC TATTTCCAAA GGAGACTTGG CTTCCCTCTC TCCATAGAGA 4380 AGTTCCTGGC GATAGACCTG CGTTTCCACC AATATGTCCC AAGTGAAAAA TAATATGGTT 4440 ACAAAGCAAC ACAAGAAGAA AAAGTAGAGG AAGTAAATTC CTAGACTGGC AAATAAAAAC 4500 TGAAAGAGTA AGACAAGAAA TGCCAAAGAA AGCAGATAGA TAAAAAGACG ACTACGGGAG 4560 CGCAGATAGG CTAGAAAAAA TTGTTTCCAA TCAAGCATGC TTCAATCCGT ACCCTATTCC 4620 TTTCTTGGTC TCGATAAATC CTACCAATCC CTGCTCCTCC AACTTTTTAC GCAAACGAGC 4680 CACATTGACA GAGAGGGTAT TATCATCAAT GAAAAAGTCA CTGTTCCAAA GTTCCCGCAT 4740 CAGGTCGTCA CGTGCTACGA TGTTGCCTGC ATGCTCAAAT AACACGCGTA AAATCTGGAA 4800 TTCATTCTTG GTCAAATTCA AGACTTGCCC TTGATAATGT AAATCCATGG ATTTGGTATT 4860 GAGGATAACA CCAGCATATT CCAGCAAACT CTCATCACGC CCAAACTCAT AGGAACGACG 4920 CAACAAGCCC TGAACCTTAG CTAAAAGAAC CTGCTGGTCA AAAGGCTTGG TCACAAAGTC 4980 ATCCGCCCC ATATTGATTG CCATGACAAT ATCCATAGCC TGGTCTCTCG AAGAAAGAAA 5040 CATGATAGGT ACCTTGGAAA TCTTGCGGAT TTCCTGACAC CAGTGATAAC CATTAAACAA 5100 GGGCAAACCA ATATCCATGA GGACCAGATG AGGTTCCGAC TGAACAAATA GACTCAAAAC 5160

	TTCCATAAAG	TCTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	TTTTCCCAAT	5220
	CTGTTGACGA	ATGACCTGAT	CATCTTCTAT	ТААТАААТС	TTGTGCATGC	GCTTCTCCTT	5280
	TTCCATTATT	ATAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
	TGTTTTTAGC	CAGTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
	ТАААТАААА	GAAAGGAGCT	CTTATGGCCA	ATATTTTGA	CTATCTGAAA	GATGTCGCAT	5460
	ATGATTCTTA	TTACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
	CCTACCTCTC	CTTTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTA	GATCTAGCAC	5580
	CTCAGGTTCC	AAGAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
	AATTGGCTCA	ACACAAGCGC	TTCAAAAATT	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
	ACCCTGAACT	GCAAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
	TGATTGTCTT	TCGTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
	CCTATATGAA	GGAAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
	CCCATCATCC	TAAGCAAAAG	GTTATTCTAG	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
	TCTATGCTGC	TAGCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
	TTGATGCACC	TGGTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
	ATAGAAGCAA	GATATTCATT	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAATTCCTG	6120
	CTCACCAAAT	CATCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
	GTTGGCAGAT	TGAGGACAAG	CACTTCGTCC	AACTGGATĄA	GACCAACAGT	GATAGCCAGC	6240
	AAGTAGACAC	AACCTTTAAA	GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
	ACTTCGACCT	CTTCTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	6360
	CTTCCTTAAA	GGCGCTTGAA	TACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
	CAGAAGAAAG	AGAAACCTTG	GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
	CATGGAAAAA	TAGATAATAC	TCTTGAAAAT	TAAATGTATA	СААААСАААА	GACCTAGAAT	6540
	ACATACTTTC	ATGTGCATTC	TAAGTCTTTT	TAAATAGAAT	CTAATAGTCA	АТАААААТСА	6600
	AAGAGCATTG	AGAGATAATG	GGGCTTGGAA	CGTCCCTCTC	GCTTCAACAA	AATGACCCCA	6660
	TTATAGATTA	AAAAGATGCC	ACTTAGAAAA	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT	6720
	ATATAAAAAG	CTAACTGAAC	ATTCTCGTAT	CCATTTTTAT	AAAAAAGGTA	GGATAGATAA	6780
•	AAATAACTTG	AAATGAGGGA	таатааааат	AATACTGGAT	TCCACAAACT	TCTATTATCC	6840
•	TTCCAAAATG	ACACTATAAA	GGCTAATACA	АТТССТАТАА	CGAGATACAT	TTCTTACTCC	6900

TTTAATAGCT ACATTTTATC ATAATTATCC AAAGAAAAA GAGGGCATTT ATCCCTCTTA 6960 ATCCTTCATC TGACTCTCTG CATCGGCCAC GACTTTTTCT AGACTGGTTT GACCAAGTTC 7020 TGCCTCCATA GTCAACTGAA TTCTCTCCAA TTTTTGATCC AAAACATCAT GAATATGAGC 7080 TCCTACAGGG CAATTTGGAT TCGGATTGTC ATGGAAACTG AAGAGTTGAC CTGTCTTACC 7140 AAGACATTCG ACCGCCTGAT AAACATCTAA AAGACTAATA TCCTTAAGGT CCTTGACAAT 7200 CTCTGTTCCG CCCGTTCCAC GCGCTACTGA AATCAGCTCT GCCTTCTTCA ACTGGGACAA 7260 GATCTTTCTG ATAATGACAG GATTGACCCC GACACTAGCA GCCAGAAAAT CACTGGTCAC 7320 CTTGCTTTCC TTCCCCTCGA GGGCAATGAT TATCAGCATA.TGAGTCGCAA TGGTAAATCT 7380 ACTTGGAATT TGCATCCTCT TCTCCTTTTT ACGAGGCTAC CCTGCCTCTA CTCTTCTTTT 7440 TCTATTATTA TACCCTTTTT AGTTGTAATG TCAATCGTTA CCACTTTTCA ACCAGTCGTC 7500 TAACTCCCGA TCGCAGCCCT CTTTCTGAGC CAATTCTCTC AAAAATTCCT GATGATGAGT 7560 ATGGTGGATC CCATTGACCA GACTTTCATA GTAAACCTCA AAATAGGGAA GTCTCAGGTC 7620 TTTAGCCAGC TGCAATTCAG CTGCTACATC GTAGTCTACC CGTCGGAAGT CCATATCTAC 7680 CAGGCCTTTG TCATCAAACT CCAAAATCAT ATACTGGGCC CGCAAGTCCT TCCGTAGCTG 7740 AGCGTCCAAA AAGAAAGGTT GGCCAATCGA ACCCGGATTG ACAATCAATT GCCCACCAGT 7800 CCCGTAACGA AGCAACTGCT GGTGAATATG TCCATAAACA GCAATATCAC AGGGAGGATG 7860 AGTCACCAAG CGGTCAAACT CCTCTTGTTT GCCAGTATGA ATCAACTCTC GCCCCCAGTT 7920 CTTATCAGGC AGATGATGGC TAATTCCCAC CGTCAAATCC CCAAACTGAC GATGAATTTG 7980 AAGAGGTTGA TTGTGGAGCA CTTCAATTTC TTCTAGGGAA ATTTCCTCTA AAACATACTG 8040 GCACTGGCGC AAGAGATAGC GTTGACTGGG GCGAGTACTG TCCAATTCCT TACGGACACC 8100 ATGCCAAAGA CTGTCTTCCC AGTTTCCCAA AACTCTAGCC GTAATCGGTA GTTGATCCAA 8160 CAAGTCCAAA ATCCTTCTAC GCCCTGTCCC TGGCATGAGA ATATCTCCCA AAAGCCAGTA 8220 TTCATCCACT CCTATCTGCC GAGCATCTGC CAAAACAGCC TCCAAGGCGG TGGTATTTCC 8280 ATGAATATCT GAAAGAAGAG CTATTTTCGT CATATCCATC TCCTCGTTTT TTCTCTTGCA 3340 ATAAGTATAA CATAAAAAGT CACAGCTAGA GAAATCTAGC TTTTTTTGAT ATACTAGATA 8400 AAGATATTAG ACAAGAGGAA ACGAATGACC CCAAACAAAG AAGACTATCT AAAATGTATT 8460 TATGAAATTG GCATAGACCT GCATAAGATT ACCAACAAGG AAATTGCGGC TCGCATGCAA 8520 GTCTCTCCCC CTGCCGTAAC TGAAATGATC AAACGAATGA AAAGTGAAAA TCTCATCCTA 8580 AAGGACAAGG AATGTGGCTA TCTACTGACT GACCTCGGTC TCAAACTGGT CTCTGAGCTC 8640 TATCGTAAGC ACCGCTTGAT TGAAGTTTTT CTAGTTCATC ATTTAGACTA TACAAGTGAC 8700

163

CAGATTCACG AGGAAGCTGA GGTCTTGGAA CACACTGTCT CTGACCTGTT CGTGGAAAGA 8760 CTAGATAAAC TGCTAGGTTT CCCTAAAACC TGCCCCCACG GGGGAACTAT TCCTGCCAAG 8820 GGAGAACTAC TCGTTGAAAT CAATAACCTC CCACTAGCTG ATATCAAGGA AGCTGGCGCC 8880 TACCGCCTGA CTCGGGTGCA CGATAGTTTT GACATTCTCC ATTATCTGGA CAAGCACTCA 8940 CTTCACATCG GTGACCAGCT CCAAGTCAAG CAGTTTGATG GCTTCAGCAA TACCTTCACT 9000 ATCCTCAGTA ACGACGAGGA TTTACAAGTG AATATGGACA TTGCAAAACA ACTCTATGTC 9060 GAGAAAATCA ACTAATTTCT CAAGTCCCCT ACCAACCCTG AAAGTTTTAT TTTGGCTCTT 9120 TGTCAACTGT AGTGGGTTGA AGTCAGCTAA GCTCGAGAAA GGACAAATTT TGTCCTTTCT 9180 TTTTTGATAT TCAGAGCGAT AAAAATCCGT TTTTTGAAGT TTTCAAAGTT CCGAAAACCA 9240 AAGGCATTGC GCTTGATAAG TTTGATGAGA TTATTGGTCG CTTCCAGTTT GGCATTAGAA 9300 TAGTGTAGTT GAAGGGCGTT GACAATCTTT TCTTTATCTT TGAGGAAGGT TTTAAAGACA 9360 GTCTGAAAAA TAGGATGAAC CTGCTTTAGA TTGTCCTCAA TGAGTCCGAA AAATTTCTCC 9420 GGTTTCTTAT TCTGAAAGTG AAACAGCAAG AGTTGATAGA GCTGATAGTG GTGTTTCAAG 9480 TCTTGTGAAT AGCTCAAAAG CTTGTCTAAA ATCTCTTTAT TGGTTAAGTG CATACGAAAA 9540 GTAGGACGAT AAAATCGCTT ATCACTCAGT TTACGGCTAT CCTGTTGTAT GAGCTTCCAG 9600 TAGCGCTTGA TAGCCTTGTA TTCATGGGAT TTTCGATCCA ATTGGTTCAT AATTTGAACA 9660 CGCACACGAC TCATAGCACG GCTAAGATGT TGTACAATGT GAAAGCGATC CAACACGATT 9720 TTAGCATTCG GGAGTGAAAC AGTCTGGGAG ACTGTTTCAG CCTGAGCCTA GAAATTTGAA 9780 AGCGAAGCTG TTTAGCCAAG TCATAGTAAG GACTAAACAT ATCCATCGTA ATGATTTTCA 9840 CTTGACAACG AACGCTCTA TCGTAGCGAA GAAAGTGATT TCGGATGACA GCTTGTGTTC 9900 TGCCTTCAAG AACAGTGATA ATATTAAGAT TATCAAAATC TTGCGCAATG AAACTCATCT 9960 TTCCCTTAGT GAAGGCATAC TCATCCCAAG ACATAATCTT TGGAAGCCGA GAAAAATCAT 10020 GCTCAAAGTG AAAGTCATTG AGCTTGCGAA TGACAGTTGA AGTTGAAATG GCCAGCTGAT 10080 GGGCAATATC AGTCATAGAA ATTTTTTCAA TTAACTTTTG AGCAATYTTT TGGTTGATGA 10140 TACGAGGGAT TTGGTGATTT TTCTTTACCA GGGGAGTCTC AGCAACCATC ATTTTTGAAC 10200 AGTGATAGCA CTTGAAACGA CGCTTTCTAA GGAGAATTCT AGAAGGCATA CCAGTCGTTT 10260 CAAGATAAGG AATTTTAGAA GGTTTTTGAA AGTCATATTT CTTCAATTGG TTTCCGCACT 10320 CAGGGCAAGA TGGGGCGTCG TAGTCCAGTT TGGCGATGAT TTCCTTGTGT GTATCCTTAT 10380 TGATGATGTC TAAAATCTGG ATATTAGGGT CTTTAATGTC TAGTAATTTT GTGATAAAAT 10440

164 GTAATTGTTC CATATGATTC TTTCTAATGA GTTGTTTTGT CGCTTTTCAT TATAGGTCAT 10500 ATGGGACTTT TTTTCTACAA TAAAATAGGC TCCATAATAT CTATAGTGGA TTTACCCACT 10560 ACAAATATTA TAGAACCGTA AAAATAGAAG GAGATAGCAG GTTTTCAAGC CTGCTATCTT 10620 TTTTTGATGA CATTCAGGCT GATACGAAAT CATAAGAGGT CTGAAACTAC TTTCAGAGTA 10680 GTCTGTTCTA TAAAATATAG TAGATTGAAA TAAGATGTGA ACAACTCTAT CAGGAAAGTC 10740 AAATTAATTT ATAGAATTAT TTTAGCAGTC AAGGTGTACT GTTATAGATT CAATATATTA 10800 TATGACTATT AACCTTGTCT TCTCCTAAAA TTGACTTTCT TGTTTTCTTA TCTTGTCCAC 10860 TCGAAACAAG TATTGTAAGA ATTTGATTAT TTTTGAAAGT ACTTTTAATA TACTTGATAT 10920 AGTTAAAAA GATTTGAAAC TAAATTCCAA ATTAGAAAAA GACTTGAAAT ACTAAAAAAA 10980 AAAAAGTATA CTCTAATTGA AAACGGTAAC AAAACTAATT TAGAGAATGA AATATAGAGT · 11040 ATTTCTCTCT TAAAAGTTTT TGGTGAAACG AGATGTAGAA AGGAGATTTA GCCAAAGAGT 11100 CTATTAGTGC TAGAATAATA GATTAGAAT ATTTTAGAAA AACGAAGTGA GCAGCTTATA 11160 AATTCAAGTC CCCAAATAGA TTCATACTAG TATCTTTTGC AAAAAATAAA GGGCGACTTC 11220 CTTCATGAAT ATCAATTTCA TCTATAAGGA AGGTAGCTAA TTGAACTAAC TTATTTATTC 11280 TGTTTGTCGC TAGAAAAATC AGACCTCCTT GTGAAGATTG AGGAGATACT TAATGAAAAT 11340 CAAAGAAGAA ACTAGCAAGC TAGTAGCAGA TTGCCCAAAA CACCGCTTTG AGGTTGTAGA 11400 TAAGACTGAC CTATATAATC CAAGGTGAAG CGACTGTGGT TTGAAGAGAT TTTCAAAGAG 11460 TATAGGCTAG AGAGTAGTGT TTTTATGTCC TTCTAGTAGA AAATGCTAGA CAGAAGAATG 11520 GGGAACTTGG ATAGGAAAAA TAGATTGAGA AAGGAGGTTA GAAGAGATGA TTATTACAAA 11580 AATTAGCCGT TTAGGAACTT ATGTGGGAGT AAATCCACAT TTTGCAACAT TAATAGATTT 11640 TCTAGAAAAA ACAGGACTAG AAAATTTAAC AGAAGGTTCG ATTGCTATCG ATGGTAATCG 11700 ATTGTTTGGG AATTGCTTTA CTTATCTAGC AGATGGTCAA GCAGGGGCTT TCTTTGAAAC 11760 CCACCAAAAA TATTTGGATA TTCATTTAGT TTTGGAAAAC GAAGAAGCCA TGGCTGTTAC 11820 ATCGCCGGAA AATGTAAGCG TTACCCAAGA ATATGATGAA GAGAAAGATA TTGAATTATA 11880 CACAGGGAAA GTGGAACAGT TGGTTCATTT GAGAGCTGGC GAATGCCTCA TCACTTTTCC 11940 AGAAGATTTA CATCAACCCA AGGTTCGTAT AAATGATGAA CCTGTGAAAA AAGTTGTCTT 12000 TAAAGTTGCG ATTTCTTAAT GTAGAAAGAG AAGAACGATG AAAAAAATGA GAAAGTTTTT 12060 ATGTCTAGCT GGAATTGCGC TAGCGGCTGT TGCCTTGGTA GCTTGTTCAG GAAAAAAAGA 12120 AGCTACAACT AGTACTGAAC CACCAACAGA ATTATCTGGT GAGATTACAA TGTGGCACTC 12180

CTTTACTCAA GGACCCCGTT TAGAAAGTAT TCAAAAATCA GCAGATGCTT TCATGCAAAA

GCATCCAAAA	ACGAAAATCA	AGATTGAAAC	ATTTTCTTGG	AATGACTTCT	ATACTAAATG	12300
GACTACAGGT	TTAGCAAATG	GAAATGTGCC	AGATATCAGT	ACAGCTCTTC	CTAACCAAGT	12360
AATGGAAATG	GTCAACTCAG	ATGCTTTGGT	TCCGCTAAAT	GATTCTATCA	AGCGTATTGG	12420
ACAAGATAAA	TTTAACGAAA	CTGCCTTAAA	TGAAGCAAAA	ATCGGAGATG	ATTACTACTC	12480
TGTTCCTCTT	TATTCACATG	CACAAGTCAT	GTGGGTTAGA	ACAGATTTGT	TAAAAGAACA	12540
TAATATTGAG	GTTCCTAAAA	CTTGGGATCA	ACTCTATGAA	GCTTCTAAAA	AATTGAAAGA	12600
AGCTGGAGTT	TATGGCTTGT	CTGTTCCGTT	TGGAACAAAT	GACTTAATGG	CAACACGTTT	12660
CTTGAACTTC	TACGTACGTA	rTGGTGGAGG	AAGCCTCTTA	ACAAAAGATC	TTAAAGCAGA	12720
CTTGACAAGC	CAACTTGCTC	AAGATGGTAT	TAAATACTGG	GTTAAATTGT	ATAAAGAAAT	12780
CTCACCTCAA	GATTCTTTGA	ACTTTAATGT	CCTTCAACAA	GCTACCTTGT	TCTATCAAGG	12840
AAAAACAGCA	TTTGACTTTA	ACTCTGGCTT	CCATATCGGA	GGAATTAATG	CCAACAGTCC	12900
TCAATTGATT	GATTCGATTG	ATGCTTATCC	таттссаала	ATCAAAGAGT	CTGATAAAGA	12960
CCAAGGAATT	GAAACCTCAA	ACATTCCAAT	GGTTGTTTGG	АААААТТСАА	AACATCCAGA	13020
AGTTGCTAAA	GCATTCTTAG	AAGCACTTTA	TAATGAAGAA	GACTACGTTA	AATTCCTTGA	13080
TTCAACTCCA	GTAGGTATGT	TGCCAACTAT	TAAGGGGATT	AGCGATTCTG	CAGCCTATAA	13140
AGAAAATGAA	ACTCGTAAGA	AATTTAAACA	TGCTGAAGAA	GTAATTACTG	AAGCTGTTAA	13200
AAAAGGTACT	GCTATTGGTT	ATGAAAATGG	GCCAAGTGTA	CAAGCTGGTA	TGTTGACTAA	13260
CCAACACATT	ATTGAACAAA	TGTTCCAAGA	TATCATTACA	AATGGAACAG	ATCCTATGAA	13320
AGCAGCAAAA	GAAGCAGAAA	AACAATTAAA	TGATTTATTT	GAGGCTGTTC	AGTAGATGTA	13380
AAAGACTAGA	AAATAGGTGG	GATAGTGAGC	TGAAAAGCTC	TAGCCCAATC	TTGTAAAAGA	13440
AGGGAGAAGG	AGAATGGTTA	AAGAACGTAA	TTTAACTCGC	TGGATATTTG	TTTTGCCAGC	13500
TATGATTATC	GTAGGATTAC	TCTTTGTTTA	TCCGTTTTTC	TCGAGTATTT	TTTATAGCTT	13560
TACCAATAAG	CATTTGATTA	TGCCTAATTA	TAAATTTGTT	GGTTTGGCTA	ACTATAAAGC	13620
TGTGCTATCA	GATCCCAACT	TCTTTAATGC	GTTCTTTAAT	TCAATTAAGT	GGACCGTTTT	13680
CTCATTAGTT	GGTCAAGTTT	TAGTAGGGTT	TGTATTGGCT	TTAGCTCTTC	ACAGAGTACG	13740
CCACTTCAAG	AAATTATATA	GGACATTATT	GATTGTTCCT	TGGGCATTTC	CTACCATCGT	13800
TATTGCCTTC	TCTTGGCAGT	GGATTCTAAA	CGGGGTTTAT	GGCTACTTAC	СТААТСТААТ	13860
CGTAAAATTA	GGTTTAATGG	AACATACACC	TGCATTTTTG	ACAGATAGTA	CATGGGCATT	13920
CCTATGTTTG	GTGTTTATCA	ACATTTGGTT	TGGAGCACCA	ATGATTATGG	TTAATGTGCT	13980

166 TTCAGCTTTG CAAACAGTAC CAGAAGAACA ATTTGAGGCT GCTAAGATAG ATGGTGCTTC 14040 AAGTTGGCAG GTGTTCAAGT TTATCGTCTT TCCACATATT AAAGTGGTTG TAGGACTTCT 14100 AGTTGTTTTG AGAACTGTAT GGATCTTTAA TAACTTTGAC ATTATCTACC TCATTACTGG 14160 TGGTGGACCA GCCAATGCTA CAACGACGCT TCCAATTTTT GCTTACAACC TGGGCTGGGG 14220 AACTAAATTG TTGGGTCGTG CTTCAGCAGT TACAGTACTG CTCTTTATCT TCTTGGTGGC 14280 GATTTGCTTT ATCTACTTTG CTATCATCAG TAAGTGGGAA AAGGAGGGTA GAAAATAATG 14340 AAGAAGAAAT CCAGTATTTA TTTAGATATT CTCTCACATG TACTTTTAGT TGGTGCGACC 14400 ATCGTTGCAG TTTTCCCATT GGTATGGATT ATCATATCTT CTGTCAAAGG GAAAGGGGAA 14460 TTAACTCAGT ATCCAACACG ATTTTGGCCT GAACAGTTTA CATTAGATTA TTTCACTCAT 14520 GTTATCAACG ATTTGCACTT CATTGATAAC ATTCGAAACA GTTTAATCAT TGCCTTGGCT 14580 ACAACCCTTA TTGCGATTAT TATTTCTGCT ATGGCAGCCT ATGGTATTGT TCGATTCTTT 14640 CCTAAATTGG GAGCAATCAT GTCGAGACTA CTCGTCATTA CCTACATTTT CCCACCAATT 14700 TTGTTAGCAA TTCCCTATTC AATTGCCATT GCTAAAGTTG GGTTAACAAA TAGTTTATTT 14760 GGCTTGATGA TGGTTTATCT ATCTTTTAGT GTTCCATATG CAGTTTGGCT CTTAGTTGGA 14820 TTTTTCCAAA CAGTTCCAAT TGGAATTGAA GAAGCGGCTA GAATTGATGG TGCAAATAAA 14880 TTTGTTACGT TTTATAAAGT TGTGCTACCG ATTGTAGCAC CAGGTATTGT AGCAACAGCT 14940 ATTTATACAT TTATCAATGC TTGGAATGAA TTCCTGTATG CCTTGATTTT GATTAACAAT 15000 ACAGGAAAGA TGACAGTAGC AGTAGCCCTT CGTTCACTTA ATGGTTCAGA AATACTAGAC 15060 TGGGGAGATA TGATGGCAGC GTCTGTTATT GTAGTTCTTC CATCAATTAT TTTCTTCTCT 15120 ATCATCCAAA ATAAGATTGC AAGTGGATTA TCAGAAGGAT CTGTGAAGTA GACGAAAGAA 15180 GGAAAAAAT GAATAAAAGA GGTCTTTATT CAAAACTAGG AATTTCCGTT GTAGGCATTA 15240 GTCTTTTAAT GGGAGTCCCC ACTTTGATTC ATGCGAATGA ATTAAACTAT GGTCAACTGT 15300 CCATATCTCC TATTTTTCAA GGAGGTTCAT ATCAACTGAA CAATAAGAGT ATAGATATCA 15360 GCTCTTTGTT ATTAGATAAA TTGTCTGGAG AGAGTCAGAC AGTAGTAATG AAATTTAAAG 15420 CAGATAAACC AAACTCTCTT CAAGCTTTGT TTGGCCTATC TAATAGTAAA GCAGGCTTTA 15480 AAAATAATTA CTTTTCAATT TTCATGAGAG ATTCTGGTGA GATAGGTGTA GAAATAAGAG 15540 ACGCCCAAAA GGGAATAAAT TATTTATTTT CCAGACCAGC TTCATTATGG GGAAAACATA 15600 AAGGACAGGC AGTTGAAAAT ACACTAGTAT TTGTATCTGA TTCTAAAGAT AAAACATACA 15660 CAATGTATGT TAATGGAATA GAAGTGTTCT CTGAAACAGT TGATACATTT TTGCCAATTT 15720 CAAATATAAA TGGTATAGAT AAGGCAACAC TAGGAGCTGT TAATCGTGAA GGTAAGGAAC 15780

ATTACCTCGC AAAAGGAAGT ATTGATGAAA TCAGTCTATT TAACAAAGCA ATTAGTGATC	15840
AGGAAGTTTC AACTATTCCC TTGTCAAATC CATTTCAGTT AATTTTCCAA TCAGGAGATT	15900
CTACTCAAGC TAACTATTTT AGAATACCGA CACTATATAC ATTAAGTAGT GGAAGAGTTC	15960
TATCAAGTAT TGATGCACGT TATGGTGGGA CTCATGATTC TAAAAGTAAG ATTAATATTG	16020
CCACTTCTTA TAGTGATGAT AATGGGAAAA CGTGGAGTGA GCCAATTTTT GCTATGAAGT	16080
TTAATGACTA TGAGGAGCAG TTAGTTTACT GGCCACGAGA TAATAAATTA AAGAATAGTC	16140
AAATTAGTGG AAGTGCTTCA TTCATAGATT CATCCATTGT TGAAGATAAA AAATCTGGGA	16200
AAACGATATT ACTAGCTGAT GTTATGCCTG CGGGTATTGG AAATAATAAT GCAAATAAAG	16260
CCGACTCAGG TTTTAAAGAA ATAAATGGTC ATTATTATTT AAAACTAAAG AAGAATGGAG	16320
ATAACGATTT CCGTTATACA GTTAGAGAAA ATGGTGTCGT TTATAATGAA ACAACTAATA	16380
AACCTACAAA TTATACTATA AATGATAAGT ATGAAGTTTT GGAGGGAGGA AAGTCTTTAA	16440
CAGTCGAACA ATATTCGGTT GATTTTGATA GTGGCTCTTT AAGAGAAAGG CATAATGGAA	16500
AACAGGTTCC TATGAATGTT TTCTACAAAG ATTCGTTATT TAAAGTGACT CCTACTAATT	16560
ATATAGCAAT GACAACTAGT CAGAATAGAG GAGAGAGTTG GGAACAATTT AAGTTGTTGC	16620
CTCCGTTCTT AGGAGAAAAA CATAATGGAA CTTACTTATG TCCCGGACAA GGTTTAGCAT	16680
TAAAATCAAG TAACAGATTG ATTTTTGCAA CATATACTAG TGGAGAACTA ACCTATCTCA	16740
TTTCTGATGA TAGTGGTCAA ACATGGAAGA AATCCTCAGC TTCAATTCCG TTTAAAAATG	16800
CAACAGCAGA AGCACAAATG GTTGAACTGA GAGATGGTGT GATTAGAACA TTCTTTAGAA	16860
CCACTACAGG TAAGATAGCT TATATGACTA GTAGAGATTC TGGAGAAACA TGGTCGAAAG	16920
TTTCGTATAT TGATGGAATC CAACAAACTT CATATGGCAC ACAAGTATCT GCAATTAAAT	16980
ACTCTCAATT AATTGATGGA AAAGAAGCAG TCATTTTGAG TACACCAAAT TCTAGAAGTG	17040
GCCGCAAGGG AGGCCAATTA GTTGTCGGTT TAGTCAATAA AGAAGATGAT AGTATTGATT	17100
GGAAATACCA CTATGATATT GATTTGCCTT CGTATGGTTA TGCCTATTCT GCGATTACAG	17160
AATTGCCAAA TCATCACATA GGTGTACTGT TTGAAAAATA TGATTCGTGG TCGAGAAATG	17220
AATTGCATTT AAGCAATGTA GTTCAGTATA TAGATTTGGA AATTAATGAT TTAACAAAAT	17280
AAAGGAGAAA AACATGGTTA AATACGGTGT TGTTGGAACA GGGTATTTTG GAGCTGAATT	17340
GGCTCGCTAC ATGCAAAAGA ATGATGGAGC AGAGATTACT CTTCTCTATG ATCCAGATAA	17400
TGCAGAGGCG ATTGCAGAAG AATTGGGAGC AAAAGTAGCA AGTTCCTTAG ATGAGTTGGT	17460
TTCTAGCGAT GAAGTAGATT GTGTTATCGT CGCAACTCCA AATAATCTTC ATAAGGAACC	17520

168 GGTTATTAAG GCTGCACAGC ATGGTAAAAA TGTTTTCTGT GAAAAACCAA TTGCGCTTTC 17580 TTATCAAGAT TGTCGCGAGA TGGTAGATGC GTGTAAAGAA AACAATGTAA CCTTTATGGC 17640 AGGACATATT ATGAATTTCT TTAATGGTGT TCATCATGCA AAAGAACTCA TTAATCAAGG 17700 AGTTATCGGA GACGTTCTAT ATTGTCATAC AGCTCGTAAT GGTTGGGAAG AACAACAACC 17760 GTCAGTATCA TGGAAAAAAA TTCGTGAAAA ATCAGGTGGT CACTTGTATC ACCACATCCA 17820 TGAATTGGAT TGCGTTCAAT TCCTTATGGG GGGCATGCCT GAAACTGTAA CCATGACAGG 17880 TGGAAATGTG GCCCATGAAG GTGAACATTT CGGTGATGAA GATGATATGA TTTTTGTCAA 17940 TATGGAATTT TCTAATAAGC GTTTTGCCTT GTTAGAATGG GGTTCAGCTT ATCGTTGGGG 18000 TGAACATTAT GTCTTAATCC AAGGAAGCAA AGGTGCCATC CGCTTAGACT TATTCAACTG 18060 TAAAGGAACT CTTAAGCTAG ATGGGCAAGA AAGCTATTTC TTGATTCACG AATCGCAAGA 18120 AGAAGATGAT GATCGGACTC GTATCTATCA TAGTACAGAG ATGGATGGAG CAATTGCTTA 18180 TGGTAAACCA GGTAAACGTA CTCCATTATG GCTATCATCT GTCATTGATA AAGAAATGCG 18240 CTATCTGCAT GAGATTATGG AAGGAGCTCC AGTATCAGAA GAATTTGCAA AACTTTTGAC 18300 AGGTGAAGCT GCCCTAGAAG CAATTGCTAC TGCAGATGCT TGTACCCAGT CTATGTTTGA 18360 AGATCGCAAA GTAAAATTGT CAGAAATTGT AAAATAAATT TTGGTATTCT CCTATTTATA 18420 GGTCGACTTG CTCCTCTGAA AGTACTTTTA GAGGAGCTGT TTGACTTTGC TAGTTTTTGA 18480 AACTGAAATC TATTATACTA CAAACTATTG AAAGCGTTTT AATTTTAAGG TATAATAATC 18540 TCATAGAAAT AAAGAAAAGG AGGAAAGAGG ATGCCACAGA TTAGCAAAGA AGCCTTGATT 18600 GAGCAAATCA AAGATGGAAT CATCGTTTCT TGTCAGGCTC TTCCTCATGA ACCGCTTTAT 18660 ACAGAAGCGG GAGGGGTGAT TCCCTTGCTG GTCAAAGCGG CTGAGCAAGG TGGAGCAGTC 18720 GGTATCCGAG CAAACAGTGT TCGCGATATC AAGGAAATTA AGGAAGTCAC TAAACTTCCA 18780 ATCATTGGGA TTATCAAACG TGATTATCCA CCTCAGGAAC CCTTCATCAC GGCTACTATG 18840 AAAGAAGTTG ATGAATTGGC AGAACTGGAC ATCGAGGTGA TTGCTCTGGA TTGTACCAAG 18900 CGTGAACGCT ACGATGGTTT GGAAATTCAA GAGTTCATTC GTCAGGTTAA GGAGAAATAT 18960 CCTAATCAGC TTTTGATGGC TGATACTAGT ATCTTCGAAG AAGGGCTAGC AGCTGTAGAA 19020 GCAGGAATTG ACTTTGTCGG AACAACCTTA TCAGGCTACA CATCCTACAG TCCAAAAGTA 19080 GACGGTCCAG ATTTTGAATT GATTAAGAAA CTCTGTGATG CTGGTGTAGA TGTCATTGCA 19140 GAAGGAAAAA TTCATACACC AGAACAAGCC AAACAAATCC TTGAATATGG AGTGCGAGGC 19200 ATCGTTGTTG GTGGCGCCAT TACTAGACCA AAAGAGATTA CAGAACGCTT CGTTGCTAGT 19260 CTTAAATAAG ATGTGAGGGG GAGTTTTATG TTTAAAGTTT TACAAAAAGT TGGAAAAGCT 19320

TTTATGTTAC CTATAGCTAT A	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	19380
CTTTCAAACC CAACCACGAT A	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	19440
ATATTCCAAG TAATGAGCTC T	PGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	19500
TGTGTGGGAT TATGTATTGG (CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	19560
GTAACTGGTT ACTTAGTTAT C	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	19620
GAAGGATCTG CAATTGATAC T	rggagttatt	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
TATTTGCACA ACCGATATAA C	CAATATTCAA	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
TCACGCTTCG TTCCTATTGT T	PACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
GTTATTTGGC CACCTTTCCA A	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
GGTCCAATTG GAACTTTTCT A	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
CATCATATAA TTTACCCTAT G	STTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
GGACAAACAG TGGTTGGAGC T	гсалалаата	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
TCTGGATTAT TTACAGAAGG A	ACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
GGTTTACCGG CTGCCTGTTT A	GCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAA	20160
TACGCGGGTT TGTTTTTGG A	GTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
ATTGAATTTA TGTTTCTATT C	GTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
GGTGTTAGCT TCTTTATTGC A	GACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
GGTGTAATCG ATTTCACTTT A	TTTGGAATT	TTGCAGGGGA	ACGCTAAGAC	GAATTGGGTT	20400
CTTCAGATTC CATTTGGACT T	atttggagt	GTTTTGTATT	ATATTATTTT	TAGATGGTTC	20460
ATTACTCAAT TCAACGTTCT A	ACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
TCTGAATCCG CAGATTCAAC T	TCAAATACT	GCAGATTATT	TAAAACAGGA	TAGCCTACAA	20580
ATTATCAGAG CCTTGGGTGG A	тсааатаат	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
TTACGTGTAG CTGTAAAAGA A	GTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	20700
GCAGTTGATG TCTTAGAAGT G	AAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
ТТАТАТАААА АТАСТАТТАА Т	GAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
ATAAAAAACA GAGGAGAGTG A	TGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	20880
AAGAACTCAT TATCCAAGTT G	GATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
AAAATTAGCT TGTACAGTAC T	TGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
TTCTGGCGGA AGTAAAGATG C	TGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	21060

TTGGTGGGCA TTCCCAGTAT TTACCCAAGA AAAAACTGGT GACGGTGTTG GAACTTATGA 21120 AAAATCAATC ATCGAAGCGT TTGAAAAAGC AAACCCAGAT ATAAAAGTGA AATTGGAAAC 21180 CATCGACTTC AAGTCAGGTC CTGAAAAAAT CACAACAGCC ATCGAAGCAG GAACAGCTCC 21240 AGACGTACTC TTTGATGCAC CAGGACGTAT CATCCAATAC GGTAAAAACG GTAAATTGGC 21300 TGAGTTGAAT GACCTCTTCA CAGATGAATT TGTTAAAGAT GTCAACAATG AAAACATCGT 21360 ACAAGCAAGT AAAGCTGGAG ACAAGGCTTA TATGTATCCG ATTAGTTCTG CCCCATTCTA 21420 CATGGCAATG AACAAGAAAA TGTTAGAAGA TGCTGGAGTA GCAAACCTTG TAAAAGAAGG 21480 TTGGACAACT GATGATTTTG AAAAAGTATT GAAAGCACTT AAAGACAAGG GTTACACACC 21540 AGGTTCATTG TTCAGTTCTG GTCAAGGGG AGACCAAGGA ACACGTGCCT TTATCTCTAA 21600 CCTTTATAGC GGTTCTGTAA CAGATGAAAA AGTTAGCAAA TATACAACTG ATGATCCTAA 21660 ATTCGTCAAA GGTCTTGAAA AAGCAACTAG CTGGATTAAA GACAATTTGA TCAATAATGG 21720 TTCACAATTT GACGGTGGGG CAGATATCCA AAACTTTGCC AACGGTCAAA CATCTTACAC 21780 AATCCTTTGG GCACCAGCTC AAAATGGTAT CCAAGCTAAA CTTTTAGAAG CAAGTAAGGT 21840 AGAAGTGGTA GAAGTACCAT TCCCATCAGA CGAAGGTAAG CCAGCTCTTG AGTACCTTGT 21900 AAACGGGTTT GCAGTATTCA ACAATAAAGA CGACAAGAAA GTCGCTGCAT CTAAGAAATT 21960 CATCCAGTTT ATCGCAGATG ACAAGGAGTG GGGACCTAAA GACGTAGTTC GTACAGGTGC 22020 TTTCCCAGTC CGTACTTCAT TTGGAAAACT TTATGAAGAC AAACGCATGG AAACAATCAG 22080 CGGCTGGACT CAATACTACT CACCATACTA CAACACTATT GATGGATTTG CTGAAATGAG 22140 AACACTTTGG TTCCCAATGT TGCAATCTGT ATCAAATGGT GACGAAAAAC CAGCAGATGC 22200 TTTGAAAGCC TTCACTGAAA AAGCGAACGA AACAATCAAA AAAGCTATGA AACAATAGTC 22260 CTTAGTTATT CTATAAAAAG TAGTTTTTTA AAGAACCTAA GAGTGTATAC CCCCTTTTCC 22320 CTCTACACAG ATAGTGTAAG AAAAGGGGGC TTTTGTTTAA AATGTAAGAA ACTGTCACGA 22380 AATTAAAATG AAGTTCTTAC ATAAGCGAAT CATAAAAAAT TTCATTTTGA TTTTAAAACA 22440 GTTCAAGAAA GTCAAAAAAT TATTCTATTT GAAAGAGAGG TGCCGACTGT GAAAGTCAAT 22500 AAAATCCGTA TGCGGGAAAC AGTGATTTCC TACGCTTTCC TAGCACCAGT ATTATTCTTC 22560 TTTGTCATCT TTGTGTTGGC TCCGATGGTG ATGGGCTTCA TTACAAGTTT CTTTAACTAC 22620 TCAATGACTA AATTTGAGTT TGTAGGCTTG GATAACTATA TCCGTATGTT TAAAGATCCT 22680 GTCTTTACAA AATCTCTGAT TAACACAGTT ATTTTGGTTA TTGGATCTGT ACCAGTTGTT 22740 GTTCTATTCT CACTCTTGT AGCATCTCAG ACCTATCATC AAAATGTCAT TGCCAGATCC 22800 TTCTACCGTT TCGTCTTCTT CCTTCCTGTT GTAACGGGTA GTGTTGCCGT GACAGTTGTT 22860

TGGAAATGGA	TTTATGACCC	ACTATCAGGG	ATTCTAAACT	TTGTCCTTAA	GTCCAGCCAC	22920
ATCATCAGCC	AAAACATTTC	TTGGTTGGGA	GATAAAAACT	GGGCATTGAT	GGCGATTATG	22980
ATTATTCTCT	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040
AATATTGACA	ATTCACTGGT	TGAAGCGGCG	CGTGTTGATG	GTGCAACTGA	GTTTCAAGTT	23100
TTTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCATCACA	23160
ACAATTAACT	CATTCCAGTG	TTTCGCCTTG	ATTCAGCTTT	TGACATCTGG	TGGTCCAAAC	23220
TACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAAAAG	CCTTCCAATT	GACAGAATAC	23280
GGCTATGCCA	ACACAATTGG	TGTCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTTGTT	23340
CAATTTAAAG	TACTTGGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400
ACAGAAAAA	AACCATTAAC	AGCCTTTACT	GTTATTTCAA	CAATCATTTT	GCTCTTGTTG	23460
ACTGTGCTGT	TCATCTTTCC	ATTCTACTGG	ATTTTGACAG	GGGCATTCAA	ATCACAACCT	23520
GATACAATTG	TTATTCCTCC	TCAGTGGTTC	CCTAAAATGC	CAACCATGGA	AAACTTCCAA	23580
CAACTCATGG	TGCAGAACCC	TGCCTTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
GTAACCATGT	TCTTAGTTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700
CGTTTCTATG	GTCAACGCAT	TCTATTTGCT	ATCTTTATCG	CTGCTATGGC	GCTTCCAAAA	23760
CAAGTTGTCC	TTGTACCATT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATACTCTC	23820
TGGGCAGTTA	TCTTGCCTTT	GATTGGATGG	CCATTCGGTG	TCTTCCTCAT	GAAACAGTTC	23880
AGTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAAA	TCGACGGTTG	TGGTGAGATT	23940
CGTACCTTCT	GGAGTGTAGC	CTTCCCGATT	GTGAAACCAG	GGTTTGCAGC	CCTTGCAATC	24000
TTTACCTTCA	TCAATACTTG	GAATGACTAC	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
AACAATTTGA	CCATCTCACT	TGGGGTTGCG	ACCATGCAGG	CTGAAATGGC	AACCAACTAT	24120
GGTTTGATTA	TGGCAGGAGC	TGCCCTTGCT	GCTGTTCCAA	TCGTCACAGT	CTTCCTAGTC	24180
TTCCAAAAAT	CCTTCACACA	GGGTATTACT	ATGGGAGCGG	TCAAAGGATA	ATACTCTGCG	24240
AAAATCTCTT	CAAACTACGT	CAGCTTCACC	TTGCCATACT	TAAGTATTGC	CTGCGGTTAG	24300
CTTCCTAGTT	TGTTCTTCAA	TTTTCATTGA	GTATAGGAAA	ATCAATCTAT	CAAGATACAG	24360
AAGTATATTT	TATAGATTTA	GAGAATATAG	AGGTTATAAG	TGTCTACAAA	ATGGAGGGTA	24420
TGCAGTTACT	TTATGAAGTT	TTGTCAGACA	CTTATAAACT	TAAGAATGGT	TTTAGTTAAC	24480
TATCAGAAAC	GAAGGAAAGA	GTATGATTTT	TGACGATTTG	AAAAACATCA	ССТТТТАСАА	24540
AGGGATTCAT	CCTAATTTAG	ACAAGGCTAT	CGACTATCTC	TACCAACATC	GTAAGGATTC	24600

TTTCGAATTA GGAAAGTATG ATATTGATGG AGATAAAGTC TTTCTAGTTG TTCAGGAAAA 24660 TGTCCTCAAT CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA 24720 TTTGCTGGTA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT 24780 AGCATTCGAC GAAGCGAGTG ACATTGGCTT TGTTCATTGT CATGAACACT ACCCACTCTT 24840 GTTGGGTTAT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA 24900 TGCAGGCATG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG ATTAAAAATA 24960 GGATGAATTG TTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAATTG ATCTTTGTGA 25020 GGTAGAGAAA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG CTGCAAGAGC 25080 TAGTTTCTTA GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT 25140 TGTGAATGCA TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA AGTATGGTAT 25200 TAGTATGGCA CGCTCGATCT TAAGTAGGGT AGCTGCAACT GCAGCAGCAA GAGTAGGATT 25260 ACTGACCAAG ATTTCTGGAT GGATTTTACG AGTAGCTGTG AATGTAGCTG ATGTATATGG 25320 TANTTTTGCC AACAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG 25380 TCGTATAAAC TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTTAT TGAATATGTT 25440 AGCTTGGACA GTGCTTGCAA TGATAATTCG TGGAGGGCTA GATGGATTTG ATAGGCATAC 25500 TTGGAGTACT ATTTAATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA 25560 AAATAGAAAA AAGTCCAAAA GAAAAAATAG ATTTGTTCAT GGTAGGGACT TATGAAAGCT 25620 TTACTGACAA AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA 25680 AAAAGGAGTA AGCCTTATCA AGGCAGCATT TGATACAGAT AACTTTCTCA TGCGTTTTAG 25740 TGAGAAGGTC TTGGACATCG TGACAGCCAA TCTTCTTTTT GTCGTCTCTT GTTTACCCAT 25800 CGTGACGATT GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCGAAG TTAAGAAGAG 25860 CAGACGGGTG CCTGTTTTTA AAATCTATCT AAGATCTTTC AAGCAAAATC TGAAACTAGG 25920 TCTTCAGCTG GGTTTAATGG AGTTAGGAAT TGTGTTTCTT ACCCTTTCAG ATCTCTATCT 25980 TTTCTGGGGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA GCCATTTGTT TAGGTATTCT 26040 GATTTTCTT ACTATCGTGA TGCTGGCTAG TTACCCTATC GCGGCACGTT ATGACCTATC 26100 TTGGAAAGAA ATTCTTCAAA AAGGATTGAT GTTGGCTAGT TTTAACTTTC CTTGGTTCTT 26160 CCTCATGTTA GCCATTCTTG TCCTCATTGT GATGGTTCTT TATCTGTCCG CCTTCAGTCT 26220 ACTCTTAGGT GGCTCAGTCT TCCTACTTTT TGGGTTTGGA CTATTGGTCT TTATCCAGAC 26280 TGGATTGATG GAGAAAATTT TCGCAAAATA CCAATAGGAG CTTTATTTCT GAAACTACTT 26340

26385

TCAAAGGCTC CAAACGCTAT TCTATAAGCG AGAAACTAAA ATCGG

173

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2716 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA	TTGCCCTAGG	CATTAAGTAA	ACATATAAAA	GCATGTGAGA	GACTGTTGGA	6
AAAGCGAGGA	AATTTCCCCT	CTTTTCCTCT	AGTCTCTCCT	TTCTTTTGCT	GATTTTATTC	120
AAAGAAAATG	ATATAATAGT	AGTTATGGAG	AAAAAGAAAT	TACGCATCAA	TATGTTGAGT	186
TCAAGTGAGA	AAGTAGCAGG	ACAGGGAGTT	TCAGGTGCTT	ACCGTGAATT	AGTTCGTCTT	240
CTTCACCGTG	CTGCCAAGGA	CCAATTGATT	GTTACAGAAA	ATCTTCCAAT	CGAGGCAGAT	300
GTGACTCACT	TTCATACGAT	TGATTTTCCC	TATTATTTAT	CAACCTTCCA	AAAGAAACGC	360
TCAGGGAGAA	AGATTGGCTA	TGTGCATTTC	TTGCCAGCTA	CACTTGAGGG	AAGTTTGAAA	420
ATTCCATTTT	TCTTAAAGGG	AATTGTGAAA	CGCTATGTAT	TTTCTTTTTA	CAACCGGATG	480
GAGCACTTGG	TTGTGGTCAA	TCCTATGTTT	ATTGAGGATT	TGGTAGCAGC	TGGTATTCCA	540
CGTGAAAAAG	TGACCTATAT	TCCTAACTTT	GTCAACAAGG	AAAAATGGCA	TCCTCTACCA	600
CAAGAAGAGG	TAGTCAGACT	GCGCACAGAT	CTTGGTCTTA	GTGACAATCA	GTTTATCGTA	660
GTAGGTGCTG	GGCAAGTTCA	GAAACGTAAA	GGGATTGATG	ACTTTATCCG	TCTGGCTGAG	720
GAATTGCCTC	AGATTACCTT	TATCTGGGCT	GGTGGCTTCT	CTTTTGGTGG	TATGACAGAT	780
GGTTATGAAC	ACTATAAGAA	AATTATGGAA	AATCCCCCTA	AAAATTTGAT	TTTTCCAGGC	840
ATTGTATCGC	CAGAGCGGAT	GCGCGAATTG	TATGCTCTAG	CGGATCTTTT	CTTGTTGCCT	900
AGTTACAATG	AGCTCTTTCC	TATGACTATT	TTAGAAGCTG	CGAGTTGTGA	GGCTCCTATT	960
ATGTTGCGTG	ATTTAGATCT	CTATAAGGTG	ATTTTGGAGG	GAAATTATCG	GGCGACAGCG	1020
GGTAGAGAAG	AGATGAAAGA	GGCTATTTTG	GAATATCAAG	CAAATCCTGC	TGTCTTAAAA	1080
GATCTCAAAG	AAAAGGCTAA	GAATATTTCC	AGAGAGTATT	CTGAAGAGCA	TCTGTTACAA	1140
ATCTGGTTGG	ACTTTTATGA	GAAACAAGCC	GCTTTAGGGA	GAAAGTAAAA	AGTGAGGTAA	1200
TCTATGCGAA	TTGGTTTATT	TACAGATACC	TATTTTCCTC	AGGTTTCTGG	TGTTGCGACC	1260
AGTATTCGAA	CCTTGAAAAC	AGAACTTGAA	AAGCAGGGAC	ATGCTGTTTT	TATCTTTACG	1320
ассасасата	ACCATICTOAA	ጥርርርጥልርርልል	САПИСССАВА	ምዋል ምሮርርር አጥ	ጥርር እ እርጥር መጥ	1200

			174			
CCTTTCTTTG	CTTTTAAGGA	TCGTCGCTTT		CTTTTAGCAA	GGCACTTGAA	1440
ATTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
TTGGGGATTT	GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
TATGAAGACT	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
TATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
AAAAATATTC	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
TACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
TACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
AACCTCATCA	GTGATAAAAT	GTTTGGAACC	TTGTACTATG	GAGAACATGA	TTTGGCTGGT	2220
GCTATTTTGG	AAGCCCTGAT	TGCAACACCA	GACATGAACG	AGCATACCTT	ATCAGAGAAA	2280
TTGTATGAGA	TTTCAGCTGA	GAACTTTGGG	AAACGAGTGC	ATGAGTTTTA	TCTGGATGCC	2340
ATTATTTCAA	ATAACTTCCA	GAAAGATTTG	GCTAAAGATG	ATACGGTCAG	TCAGCGTATC	2400
TTTAAGACAG	TTTTGTATCT	TCAGCAACAG	GTGGTTGCTG	TACCTGTAAA	AGGATCTAGA	2460
CGCATGTTGA	AGGCTTCAAA	AACACAGTTG	ATCAGTATGA	GAGACTATTG	GAAAGACCAT	2520
GAAGAATAGA	AAGAGGAACA	GCTATGAAAA	AAACAATTAA	TGAGAAGCGG	TCGTGATAAA	2580
AAGATTGCGG	GTGTTTGTGC	TGGGGTGGCC	CATTATCTGG	ATATGGATCC	GACTATCGTT	2640
CAAGTCATTT	GGGGTGTTCT	TACTTGCTGT	TACGGAGCTG	GAATTGTAGC	TTACATTATT	2700
TTATGGATTA	TCGCGA	_				2716

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

•	TGTTAACAGT	CTATGGAGAG	CTTTCATAGA	ACTAAGATTC	GGTTTATCTT	TGCTGCCACA	120
	aattagtaag	GTTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTTCAA	180
•	CTCCTCAGAA	ACTCCGACCA	TAAGAGTCTT	GTCTGCTCCC	TGTTTTTCAA	ATACTCTTTT	240
•	GGAAGTAGT	ттааааатса	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTTAAG	300
	CGGGCATCCT	GACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
•	rg tcag ggca	GCACCTAAGG	ACAATCCAAT	CAAAACAAAA	GGTTCTGTCT	CTTGAGCTAG	420
•	GTGCTGATAA	ACTCGCTCTT	TAGCTTGTTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
•	GATAGCCTCA	GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTTCCAAG	ACTCTGCTGA	540
•	CTGCCCTAAC	CCATGCAAAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	TTAATTCATA	600
•	CAAGCCTCTC	ACTGCATTAC	AGCCGTAAAT	AGCTTCTGCT	TGGGTTAAAT	CTGCCAAGGT	660
(CAAGACTTTC	TCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAAA	TTCCTGGCAA	720
(GATTCCAAGT	CGGATAGGCG	GTGTGTAGAG	TTTTCCAGCG	ATTTTCAGAA	CCAAATTTCC	780
•	PATAGAGGTT	TCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTTCTCTT	GTTCTCCTAG	840
(GCTCAAATGC	GGTCGGTGAG	TGGTTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
•	CTGAAGACAG	ACTTGGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAATA	CTTGACGATT	960
(GACTTCTATC	TCTCCAGATT	TGCTAAGGCT	GATTCGCAAG	CGGTAATCTC	GATTAGCTTC	1020
2	ACAATCCTGA	CACTCTTCCT	CAATCTTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	1080
2	AAAATAACGA	CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
•	TGGCTGATT	TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
5	rgccttttga	TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCCAAG	TAATCCCTCC	1260
(GCCAACTCCA	TAAATGGCTT	GACCTTTGTG	AAGTTGAATG	GTACGAATGG	CCACATTAAA	1320
1	ATCCGTCGT	CCATTTGGAA	GCAAGAGACC	AATCGTTCCA	CAGTAGACTC	CACGCGGTTG	1380
2	AGGCTCCAAG	TCCTTGATAA	TCTCCATTGT	CGCAATTTTC	GGTGCACCCG	TTATGGAACC	1440
2	ACAAGGAAAG	AGTGAGCGGA	AGATTTCAAC	AAGGTCCACA	TCCTCTCGCA	ACTGACTCTT	1500
(GATGGTCGAA	GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
(GTGCTCGCTC	CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT	1620
(CATATTTTCA	GAGCGATTTT	TGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
7	TGGTCAGTT	ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTTGTCA	ACTCGCGATC	1740
2	ATTTTGCTCA	AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

			1/0			
ATAGGCATTG	TAGCCCGCCT	CCTGCTCTAC	CACCATACGA	TTGTAGATGG	CAAAAGGATT	186
GGCATTTAAC	TTTTGCTTAA	GTTGGACGGT	GTAGTTGACC	TGATAGGTAT	CTCCCTGCCG	192
TAAATGATGG	TGAATTTGGG	CAATGGCCTT	TTCATAGTCT	GCTGCAGACG	TTACTTCCTG	198
CCAATTTGAG	GGCAAATCAA	TATCCTCATA	AGTCAGAGGA	ATAGGGGAAG	TTTCTACGAT	204
ATCATGAACA	GTAAAGTAAA	GCAGGTACTC	TCCCAGTAGG	GGATCCTTGT	GAACTGCTAA	210
TTTTTCCTCA	AAAGCAGGTG	CAGCCTCGTA	GCTGACATAC	CCCACCACAT	AATAACCTTG	216
CTCTTGGTAG	CTTTCCACTT	GTGCCAGCAA	ATCTGCCACT	TCTTCTACAT	TTCTCGTTTT	222
CAACTCTTTA	ATAGGCTGGG	TAAAGGTATA	TCTCTCCCCC	AAAGTCCTAA	AATCAATCAC	228
TGTTTTTCTA	TGCATACCTT	AAGTATAGCA	TAAAATAAGA	AAACCCTCAT	CCGCAAAGCA	234
GATGAGAGAT	TTCAATTATT	TAAAGATTGA	AGTTTTAAAG	CTATTTGTTT	GTTGAAGAAG	240
TTTCTTATAA	ACAGCTTCTT	TTAATTTAAC	TGTATTATTC	ATAGATACTG	ТТТТАТТАСС	246
GTTTGCTTCT	TGTTTAAGAG	TTTCGGCATC	TTTTTTAACA	GCTTCTTTAA	ACAATGTCAG	252
PAAATCATCG	TATGATGAAA	CGGAAGAACC	ATTTACTTCG	AATGTTGTTA	ATCCTTTCGT	258
IGCTTTATCT	TTAACTTCTT	TGAAGTAAGC	TTTTTTAAAT	TCTTCAATAG	TATTAAATGT	2646
ATTGTTAGAT	ATTTTCTTGA	TAATATATTC	ATCACTTAGA	ACAGACTCAC	CATCTGTTTT	270
AGATTGTTGT	TTATATTTAT	TTGAAGCATA	ACCTAAGAAC	CCATTTTCGT	ATCCGTAGTA	2760
ACCCCATAAT	CTAAAAGCAT	TATGTTTGAA	TGAAACAGCT	CCAGGAGCAC	CTTTACTAGT	2820
ATTACCTCCG	TAGATACCGG	TCATCATTCT	AACACCTACA	TAAGGTGATT	GATCGTTATA	2880
GCTAATTGCT	TCGGGTTTAT	AGATACCATT	ACCTGGATTG	CGATTAGTCA	TTAATTGTTG	2940
ATCAACTAAA	TCATTAACAG	ATTGAATATT	TAATTCATTT	TTCTCTTCTT	GACTTAGATT	3000
ICGAATTTTA	TCCCATTGAT	TTAATTTATT	GTTATCACGG	TATTCTCTAT	CTATTTTTT	3060
GAACCATGCA	СТАТТТАААТ	CTTTATTTTG	TTGAGAAATC	ACAGATTCAG	CCTCAATTTC	3120
ATCAAGAAGA	GTTAAAGTGT	CATTATAACC	CTTCATATAT	СТАТТААТАТ	CTTCTCGTGT	3180
PTTTAGAGTT	TTTGGATCTG	ТААТАТАССА	CTGATTCCCA	TCATTTTTGC	GTTTAAATAC	3240
CATATTAATA	CCTAAAGAAC	CAAACTCATC	AAATCCACTA	CCAGTAACAG	GAGTTTGTAG	3300
CATACCCTGA	GCATATGCTT	CAGCATCAGT	ACCTTCACGG	TGTCCAAAGC	CACCTAAGTA	3360
AATCGCACGG	TCGTTGACGT	GTGTTGTTTC	ATGTGTGTAA	ACTGAAATAC	CGTATTCACC	3420
AACCATTTCT	AAATGAACAT	ATTTTACATC	AGTTCTAATA	TCATCAGAGT	TAGGATATAT	3480
AGCAGCATAA	GCTCCTGTTC	CATTATAATT	ATAATACTTA	TCCATAGGAC	CAAAGAATTC	3540
noma a cacca	CMNMN MN CMM	mcmcccmsmm	AMACCCCCCC	mammmmma a	GGG1 WGG1 GG	2000

AGGAGCGT'	TA TAACCTTCCC	: AAATAGGAAT	AACAGCATCT	CTTAGTAGTC	GTTGTTTAAC	366
GTTATCAG	AC GCTAGACGAI	ACCAGAAATC	ATAATAGTTT	CTATAACCAT	CTGCAGCTTT	372
GTTAACGA'	TA TCTTTAATAI	CTTCTAATGA	TTTTTTACCT	AATCGCTCTG	CACTACCAAA	378
GCAATTG	CA TTATAATTTG	ATAAATTAAA	AAGATGTGCT	ттатсаатат	TCAGTAGTGG	384
GAGTATAG	TA TTTCTAAGGT	GACTTCGTTT	ТАААТТАТСС	AATGCACGAT	GTTTAGAATT	390
TTTAATTT	CT TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGTCTT	CTGTAGCATC	396
AATAAACC	AA TCGTTCATAT	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	AAATTTAAAAA	402
rgcatcta <i>i</i>	AA TTACCTGATT	TAGTATATT	AGCCAATACT	TGACCGAATG	CGTCGAATGT	408
ACGTGAAC	CT TTAATGTTGT	TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	CTAATACGCT	414
ACTTTTT(CA CCATAGAAAT	CTGGTTTGAA	TAGCATTAAT	TCTTTAATAT	TAACATCACC	420
\AATTTAA(CT CCATAGTAAC	GATTTAGGTA	AGTTAAACCT	AGTAATAAAG	CTGCTTTGTT	426
TTCTCGA(TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTTC	432
TCGTTTT	БА АСТААТТТ ТО	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	438
PTCTTCTA!	A TATAAATCTT	TGATTGCATT	AACTCTATAG	TCACCTAATC	GATTTAGATG	444
TGATACAT	C GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTTTA	TATCATTAAC	450
\AGAGTAGT	C TTATCTTTT	GAACGATATT	AGGTGTATAT	TTAATTCCTA	AGTCAGTTAT	456
\GTATATT(T TTTACATTAC	TTAAACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	462
GTACCGT	C GCATAGTGAA	CAATAATTTT	ATTAGCTTCA	TCTAGGTTTG	TGATAAACTC	468
attgttgt1	C ATCGCGGTAA	CAGAAAGAAC	TTCTTTAGTA	TTTAGATGGT	GTTCTTTATT	474
PATTTAA!	A CCTTGATATA	CAATATAATC	TTTATTGTAG	AATGGTATTA	ATTTTTCAAG	480
TTTTTATT	G GCTTGGTTAT	ATTCAGCGTT	ATAATCTTGA	ATACTAGAAT	AGGCTTTTTC	486
TCATTAAC	TTTGCAAGAG	GAGATAGATC	ACTTTCTAAT	TTATCAGCAG	TAATATTGAA	492
GTAGTAAC	T TTAGCATCAG	CTTGTTCTTT	AGTTAATTTA	GTAAATGTTT	TAGATTTCCT	498
AATGATCI	A TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTTA	TATGAGCACT	504
GCATAATO	A GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	510
GCATAGCT	G ACAGAATTAC	TTACCGTACC	TACAGGCCAA	GTCTTACTTG	CTATTGCTCC	516
ACTTCTAC	T GGATTTGAAA	CATCTATTT	ACCTTTTACA	ACCGACTCAG	TTAGGAGAGC	5220
TTTGTACC	A ATAAGATGGT	CTAGAGTTAA	TCCATAATCT	ACTTTAGGAA	CTAACAAGCT	5280
GCGCGTGT	T TTGTTTCCTG	TAATAGTAGC	ATCAACATAT	GCTTTTCTAA	СААТТССТСТ	5340

178 ATAGTTTGTA CCTGCAATTC CCCCTGTATG AGAGCCATTT CCACTTGTAG AGTGTAGTTT 5400 GCCAAAGAAA GCAACATTTT CAATACGAGT TCCATCATTC ATATTATTTA CAAATCCAGC 5460 AACATTATTA CGACCTGAAA GTGTGCCTGT AATTTTGACA TTTGTAATAA CTGAAGAACC 5520 TTTCATAGTA TTGGCTAATG ATGCAATATT ATCTTGACCA GAACGTTCTA TCTCTACATT 5580 TTCAAAATTC ACATTATTTA TCGTTGCGTT TGTTATCACA TTAAATAATG GATGTTCCAA 5640 TTCAGTAATA GCAAATTGTT TTCCTTCAGA ACTTAAAAGT TTTCCTGTGA ATTCTTTAGT 5700 GATATATGAT TTTCCATTAG GAACAACATT TCTAGCGCTC ATTGATTGTC CCAGACGATA 5760 TTCTTTTGAA GGATCGTTTT GAATAGCTTC CACTAATTCT TTGAAATTAT AATATACATT 5820 ATCTTCGTGG ACTTTAGGTT TTTCAATATA GTGAACGTAT TCTTCTTCAA ATTTATTATC 5880 AGCAGTTCTA GAGACTAAAT TGTCTGCGAT TGCTGTAACT TTATATACAG GTGTTCCGTT 5940 AACCGTAGTT TCTTCTATAT TTTTAACAGC TAGTAATGTA GTTTTCTGAT TATTTGAAGT 6000 TATTTTAAA TAATAATTGC TCTTATCATC AGGAATAGTT GTTATCAGTG ATTCATTAGT 6060 TTCTTTTCCA TTTTCGTATT TGATTAAATC TGTACGTTTA ATATTTTTAA GCTCAACTTT 6120 TTTAAGATCT AATTGAATAT TTTGATTTTC TAGAGTTTCA GTTTCTTCAC CGTTACCTCT 6180 GTCGTAAATC ATAGTTGTAG ATAGGGTGTA TTCTTTGTAG TACTCTAGGT TCTTAAATGC 6240 AGCGCTTATA GTTTCTGTTG TTACCTTGTC ATCTGTAAGG ACTACAGTAT TAATAACTTC 6300 6360 AGTATACTTA GCAACAGCTT CACGTTCCAA TATTTTCTTA TCGGTACTAG TCAATGTTAA 6420 TATTGGCTTT TCAGATAATT CAACCAATTT TTCAATAGTT GCAGTTAATT TTTCAACAGC 6480 TTCGTTAACT TCACTTTGTT TAGCATCTGT ATTAGCTGCA ACTTTTTCAG CCTTTGTAAC 6540 TTCAGTTTGG AGGTTTTGCC AACTTCTATC ACTGTAATGT TCTTTTACCT TTGTTTTTGC 6600 ATCTGCAATC GTATTGTTTA ATTCAGTTTT ATCAACGTTT AGAGCGTCAA TAGCCGTTTT 6660 AAGTTTATTT GTCTCGCTAT TTACCTCAGG CTGTTTTACA GGCTCTGAAG CATAGACACC 6720 TTTTGCAGTT TCTAAAACAG GTCCAAGAGC ATTGTAACTT GCTGTAGAAT AATCAGTAGG 6780 AGAAACTGAA CTAGCTTTAT CAATTTGATT ATTTAACTCA CTTTTATCAA CTGGTTCTTT 6840 AGTACCAATA CCCTTTATTT TATCTTCTGG TTTCGGTGTT TCCTCTACAG CCTTCTCTTC 6900 TTCAGGAACT TCTGGTTGCT TTTCTGGCTC AACTGGTGCC GTTGGTGCCT GTTCGTCTTC 6960 TCTTGGCGCG ACTGGTTCAC CTGCTTGTTC AACTTTTGGT TCCTCTGTTG GTTCTGTTTG 7020 TTTTTCTACA GCAGGCGTTT CAACTTTTGG TTGTTCAATA GATTGATTAA CAGTCTCCTC 7080 TTTTGGTTCT ACAGTTTCTT CAGCCTTGGT ATCTGGAGTT GACTCTTCTT GTTTCGGTGT 7140

ттсстстаса	GCCTTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTTGGCG	CGACTGGTTC	`ACCTGCTTGT	TCAACTTTTG	ATTCCTCAGC	7260
TGGTTTGTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTTCCTCTG	GTTTTGACTC	7320
AACTTCTCCA	CCTACTTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTCGT	CAGTAGGTTT	TACCTCCGAT	TTTGGTTCTT	CCTTTGGACT	7440
TTCTTCTGTT	TTAGGTGCTT	CTTCTTTTGG	AGCTTCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7 560
CTCTCCAGGT	TTTGCTGAGG	TTTCTTCTAA	AACAGTGTCC	AAGCCAAGCG	TTTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAGA	CGCTAGCAAT	TTTCTTTCTC	TTGTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTTT	TGATACACCA	AACCATATAC	AACTTCATTC	CTGTCAGGCT	TTCCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATTCTCA	8100
AAACTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTTGGACG	8160
ACTAGCCAGT	GCCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTCC	AGACCAAACT	GCTCTGCCAC	8400
CTGACGTTCA	ACAACGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAACTG	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATAGT	CTCCACTATC	AGCTCACCAA	TCTCTTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GGCCCCCTGC	TTCAAATTGG	TCTTTTCTAA	AACATCTTCC	ACTACCTGAC	GTGTTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTTT	8700
TTTCTTGTTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTTGC	CCAATTACGC	ATAAAACTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTTCTA	TTCTATTTAT	ATATATTTCA	ACTTTCGTCC	8820
CTTTTTGGGG	TCTAGAATCA	ATCTTCATAT	GGTAATTGGC	TCCAAAATGA	AGTTTGAGCC	8880

180 GTTGATCGAC ATTTTGAAGA CCAACTCCCC CACGTTTGAG TTGACTTTGA CTACTATCAC 8940 CAGCATCTTG GAAGCCAACG CCATCATCCT CAATACGGAT GACCAATCCC GAATCCTGTT 9000 TCTGGACAGA AAGTTTAATA TGGCCCTGAC CTTCCTTTTC CTTAATGCCA TGGTAAAGAG 9060 CATTTCTAC AAGGGGTTGT AGGACCAGCT TGGGTAAGAC TAAATTATCA AAGGCAACAT 9120 TTTCATTAAT TTCGTATTCC AGCTTATCTC CATAGCGTTG TTTCTGGATA AAGAGATACT 9180 GGCGGACATG ATTGATTTCG TCAGAGAGAC AAATCAAGTC CTTGCCTTGA TTGAGCGCCA 9240 AGCGGAAATA GGTTGCCAAG GACTTGGTCA CCTGCACCAC TCGCTGACTA TCATGAAATT 9300 CAGCCATCCA GATGATGGTG TCCAAAGTGT TATAGAGGAA ATGTGGATTA ATCTGGCTCG 9360 AAAGGGCTTG AAGTTGGTAC TGACGGGTCG TTTCTTCCTG GCTACGAATA GCTACCATCA 9420 ACTGATCAAT CTGATCCAAC ATAGCATTAA ATTGGCGAGT TACTTCTCTC AGTTCATAGG 9480 CACCAACTTC CTTGGCACGA AGATTTTGAG CACCAGAAGC AATTTCCAAC ATGGTTTCTC 9540 TCAAATCCTT CAAAGGAGCA ATCCAGCGTT TAAGACTGAA CCACACTAAG CAGAGACAGA 9600 CAAGAAGAGA TGTGACACTG GCCCCAAGCA AGGTCCACAA GAGCTGACTC CGAACCTGGT 9660 CTAACTTTTC CAATGATGAC ACGCCAAGCA CCGTCCAATC AGTTCCTGCA ATCTTCTCTT 9720 GACTGACGTA GGATTTGTGA CCAGGAGTAT AACCCTGACC TGTATCGATG TAGGGTTTCA 9780 TAGCCTCCAT TTTGCTAGAC GAACTATAAA CTGTGTGTTG AGGATGGTAG ACAAATTCAT 9840 GGTTTTCATT GATAATGAAG GCAAAGCCCT GCTGCCCCAA CTGGAGTTGA TTGAGATAGG 9900 CTTCCAGAGT TTCATAAGAA ATATCCAAAC GAAGCACACC AAGATTGGCT CCCTTTGCAT 9960 CAACAAGTTC TTGAGTGACA GAAATGACCC ACTGACTATC TGATTTACGA GCTGGAGTCA 10020 AAACAGGCAT AGCTCCCTGA TGAATGGCCT TTTGGTACCA ATCCTCAGCC ATCATATCAG 10080 AGGAAGTTTT CATCTGCACA CTGTCATCTG TAGAAATGAC CTGACCAGAT TTGGTCACCA 10140 GCACAACAGT TTTCAAGTCC TTATCTGACT TCAAGATGGT CAAAAACAAA TCTCGGATTC 10200 CCTCGACCTT GTCTTGACTG GGATTCTCAG CATAGGCCAG AACATCCGTC TGCTGGGTCA 10260 AACCAGTCGA GGTGGTTTCT AGTTTTTTGA TATAAGACTG AATAAAGTGG CTAGTCTGGC 10320 TGATGGTCGT TTGGCTGTTG CCCTCAATGG TGGCCTCAAT GGCTGAAGAA CTTGATTGAT 10380 AGTAGAAAGT TCCAACCAGA GCTAGGAGAA TGAGAAAGAC CAGAAAGATG GAAATAACCA 10440 TTCTAACTAA AAGAGAAGAA CGCTTCATCG GTCTTCTCCC TTCTTAAACT GACGAGGTGT 10500 CACACCTGCA ATCTGCTTAA AACGTTGGGT AAAATAGTTC ATATCTTCAA AACCAACCTT 10560 CTCTGCGATC TCATAAATCT TCAGATCTGT AGTTAAAAGC AAGAGCTTGG CTTGTTTAAC 10620 ACGTTCTCTC ACCAGATAAT CCTGAAAAGG CAAGCCCAAC TCTTTCTTAA TCAAGGAACT 10680

CAGATAGGT	C GGACTAAAAC	CTAAGTCACI	GGCTAAAGAC	TTTAAACTAA	ATTGGCTATC	10740
AGCCAGATG	A GACTGGATTT	TCTGGGCCAT	GTTTCCTTCA	AACCTATTAG	тсаатааатс	10800
TTGTAACTG	C TCTTCTTTCT	CTTCCTTGTC	TAGTTTTTGT	TTGATTTTCC	CCAACATTTC	10860
CTCAATATC	C TGACGAGAAA	AGGGTTTGAG	CAGGTAGTCG	TCCACACCTA	GTTTGACAGC	10920
AGACAAGGC.	а таатсаааат	CATCGTAACC	TGTTAAAAAG	ACCAAATGAA	CCTGAGGATA	10980
GGTTTCTCG	T ACCAGACTGG	CCAACTGGAT	GCCATTTAGA	TGAGGCATGT	TGATATCGGT	11040
TAAAATGAT	A TCTGGCACCT	GCTTTTGGAT	CAATTCCCAA	GCCTGCCTTC	CATTTTCAGC	11100
CTGACCGAT	G ATTTCCATAT	CGTAGGCTGC	TACATTGACC	AGTTTAGTCA	AACCTTGTCT	11160
TACCAGATA	г тсатсттста	CGATTAAGAT	TGTGTAGGTC	ATGCTCTGCT	CCTTTACCAC	11220
TTACTAGTA	r cagtatagca	AAATTCTCCT	CTAACTGCTT	AGGAAAGACC	TCTTATACTC	11280
AATAAAAAT	CAAAAAGTAAA	CTAGGAAGAT	AGCCACAGGT	TTCTCAAAGT	ACCGCTTTGA	11340
GGTTGTAAA	r aaaactgacg	AAGTCGACTC	AAAGTATAGC	TTTGAGGTTG	TAGATAAAAC	11400
TGACGAAGT	GATAACCCTA	CATACGGTAA	GGCGACGCTG	ACGTGGTTTG	AAGAGATTTT	11460
CGAAGAGTAT	TAATCAACAT	AATCTAGTAA	ATAAGCGTAc	CTTTTTCTTC	CATTTGGTCT	11520
TTGGGAATAJ	AGCGGATAGA	GAGGCTATTG	ATACAGTAAC	GTAAGCCGCC	CTTGTCCTGT	11580
GGACCATCC	TAAAGACATG	CCCAAGGTGA	GAATCTCCTA	CTCGGCTCCG	CACTTCCATA	11640
CGCGTCATAT	TGTAGGACTT	ATCTTCCTTG	TAGGTGACAA	CATCTGGACT	GATGGGTTGG	11700
GTAAAACTAG	GCCAGCCACA	ACCAGACTCA	AATTTGTCTT	TTGATGAAAA	GAGAGGTTCC	11760
CCAGTTGCT	TATCCACATA	GATACCGGAT	TCAAATTTAT	CCCAGTAACG	GTTTGAGAAA	11820
GCTCGTTCTC	TTTGATTTTC	CTGGGTAACT	GCATACTCCT	CAGGTGACAG	GGTCTTTTTC	11880
AATTCCTCAT	CACTTGGTTT	TGGATATTTG	CTGGCATCAA	TGACAGGATA	GGCCGCCTGA	11940
TTAACATTGA	TATGGCAGTA	GCCATTTGGA	TTTTTCTTGA	GATAGTCTTG	ATGGTAATCC	12000
TCAGCCACCA	CAAAATTCTT	CAAGTTTTCC	TTTTCAACTG	CTAGAGGTTG	ATCGTATTTC	12060
TTAGCCACCI	CATCAAAGAC	TTGGTTAATC	ACTTCCAAAT	CCTTGTCATC	TGTGTAATAA	12120
ACACCAGTAC	GGTACTGGGT	CCCCACATCA	TTTCCTTGTT	TATTTTTGCT	GGTTGGATTG	12180
ATAATGCGGA	AATAGTGAAG	CAGGATTTCC	TTGAGAGAAA	TTTGCTTGGC	ATCATAGGTG	12240
ACATGGACGG	TTTCTGCATG	ACCTGTTTGG	TTAATCAATT	CGTACTTGGT	TGTTTCTCCT	12300
CTACCATTTG	CATAGCCTGA	AACGGCATCC	GTCACCCCGG	GAACACGTGA	GAAATATTCC	12360
TCCACTCCCC	AGAAACAACC	TCCAGCTAGA	TAAATTTCGT	GCAAGTCTGC	GTCTTTACTA	12420

ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT	182 TGGCTAACTG	CCGCCTTTTC	AATTTGCGAG	12480
GCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
AATACTCCTA	GCAACAAGAA	GATTTTTAAC	ТТАТСАТТСА	TAAGACGCCT	CCTAGGCTAA	12600
TTCCTTCAAA	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	ТТСААААТСА	GCCACCTCTT	TCCCTTTAGC	13020
TGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	ТТСАААТААТ	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
TCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	СААТАААААТ	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	СТААААААСС	AGCTCCATAG	CCCAACAAAA	13680
AAATATAAAT	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	TAATAAACTA	GTAACTGAGA	13740
TTGAAAATTT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTG1'AT	13800
AGACCGGTAA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCTCCT	ATCATTTTAT	TGATAGATTT	13920
ATTATA						13926

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20199 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

183

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

60	GTTTGAGAAA	AAAAAACTAT	GGAAATCGTA	TGGAGATAAT	AAATGGCATT	CCCAGCAGAA
120	TTTTGCAACT	TATTGGGAAT	GTAGCAAGTT	TATCATGCTA	TTATCGTGAT	ATAACCTTGT
180	ACTGGGATTT	AAATTTAGTG	AGATTCAAGA	TCTATAAAAT	CCCTCAGTAA	GCAATTGGTG
240	AGCTAAGATT	TTTTAGATAC	ATGAGTATGT	AGAAGAAATA	TTTTAAAGTG	CCCAGCCCTT
300	AAAATATGTC	TTCGTCGTGA	ATGGTTGCCT	TGGCGATGGT	CTGGTAATGG	AAGGTCAAGG
360	CTTCGTTGTA	GCAATGTGGT	GGTCGTGGAG	TGGTGATGGT	GCCCTTGGGG	CCTAATGGAG
420	GGCTGATTCT	GTCATTTCAA	CGCTACAATC	GATGGATTTC	TACGTACCTT	GACGAAGGAC
480	TAGAGTTCGA	CTGAGGACCT	GGTCGTGGTG	AGGGATGCAT	GGATGACCAA	GGTGAAAAAG
540	AGATTTGATT	AGGTTTTAAC	GAGACTGGCA	TCGTGATGCG	GTACGACTGT	GTACCACAAG
600	AAATATTCGT	GTGGACGTGG	GGTGGTCGTG	CGTTGCCCAC	AAGAATTTAT	GAACATGGGC
660	AGGTCAGGAA	ATGGAGAACC	ATCTCTGAAA	TGCACCGGAA	CAAAAAATCC	TTCGCGACAC
720	ATTCCCATCT	GTTTAGTAGG	GCAGATGTCG	AAAAATCTTG	AATTGGAACT	CGTGAGTTAC
780	TGGTGCCTAC	AGCCTAAAAT	ACCTCAGCTA	AAGTGTTATT	CAACACTTTT	GTAGGGAAGT
840	TGAATCCTTT	CCCAATCAGG	ATGGTTCGCA	AAATTTAGGT	CTATTGTACC	CACTTTACCA
900	TTTGGGAACT	AAGGTGTTGG	GGGGCTAGTC	TTTGATTGAA	ACTTGCCAGG	GCAGTAGCCG
960	TATGTCAGCT	ACATCATTGA	GTTATCCTTC	GCGTACACGT	GTCACATCGA	CAGTTCCTCC
1020	GGAGTCTTAC	ATAAAGAGCT	CTAGCTATCA	TGAGGACTAC	GTGATCCATA	AGCGAGGGCC
1080	CATGCCTGAG	ATAAGATGGA	ATTGTAGCTA	TCCACAGATT	TCATGGAGCG	AATCTTCGCC
1140	TGAATTTGAA	AAAATTATGA	AAATTGGCTG	CTTTAAGAAA	ATCTTGAAGA	AGTCAGGAAA
1200	AACACTTTTA	AAGGTCTGGC	TTGACCAAGC	AATTTCTGGA	CTATCTTCCC	GAGTTACCAG
1260	CGAGTCCGAT	TGCTCTACGA	CCAGAATTTT	AGACAAGACA	CTGAATTGTT	GATGCTACAG
1320	AATTAGTCGT	AAGCCTTTGA	GAAGAAGAAA	TGGATTTGAC	AAGCTTACTA	ATGGAAGAAG
1380	TAATATGACC	TGAAACTCTT	GAAAAACTCA	ACTTTCTGGT	CGACATGGGT	GATGACGATG
1440	TATGGGGGTT	AGCTTCGTGG	TTTGCCCGTC	TGTCATGAAA	-GTGATGAATC	AACTTTGATC
1500	TGGTAAATTT	TGGTCCGCAT	GATGGGGATT	TGGAGCTAAA	TTCGTGCGCG	GATGAAGCCC
1560	TTTCCGAGAT	AACCGATATC	ATGGGAGATA	GGAGACTGGT	TTGTAGACTA	GAGTTTGAAT
1620	GGAAGAACTA	AAAAGAAATT	GTTTGGAATG	CGCCGCAGAC	ATTTTGTTTC	GCGGATGGTA

			184			
TTTAATCGTC	TCAATCCAAA	TCGTGCCTTG	AGATTGGCAC	GAACTAAAAA	GGAAAATCCA	168
PCTCAGTAAA	GAAGCTAAAA	AATCCCGTGC	CTCATCAGAC	ACGGGATTTT	GTGGTACGAC	174
AGGCATGTAT	AGCAAACTGA	ATCTGGAATA	GCACAGCATA	TCTTCTAAAA	TATAGTAAAA	180
rgaaatgaga	ACAGGACAAA	TCGATCAGGA	CAGTAAAATC	GATTTCTAAC	AATGTTTTAT	186
AAGCAGAGAT	GTACTATTCT	AGTITCAATC	AACTATATTG	TTATAAATTG	ATTTGAATTT	192
Caaaattaaa	TTGTTTGATT	CTTATTTCAA	TTTGTTATAG	TATATCTGAT	GTCAAAGTTC	198
rcggcgagtc	AAATAGCGAT	TCCCAAGCCT	GACTATCGTG	AGGTAGCGGA	TTAAAATGGT	204
CTGGGGATAG	ACCGTTTTAA	GTCTGACGCT	GGAAATAAGA	ATTGTCAGAA	GAAGGGATAG	210
CGAAATCGTG	GCTCTACGAA	CAGGAACGTG	ATAATAAGGC	GTATATAGCG	GATAAGAGGG	2160
CATCAAACTC	TAAAGTCCAA	AAAGGTAGTC	GTAACCTATA	TGCGTAAATC	ACGAGAGTAA	2220
TTGAATTCGT	ACTAAGATTT	TCTATTTTCA	CTGTAACCTT	TTAACGCCCT	TATATCTTGT	2280
ATACACGAGG	AAAGATGTAC	GACTTATCCC	GTGAGGTCTA	TCACTATAAA	GAGAAAACGA	2340
CAGATAGAAG	TGATCCTGAG	TCACGGTTAT	CTGTCTGATA	GGACGGTATG	TATAAAACGC	2400
TTCTGTGAAC	TGAGAGAAGG	GGGAGAAGTT	CTTGCTAAAA	TTTAGTTGAA	CAGCCGTATT	2460
CCGATACTTA	GATAAGAGAT	CTAGTCTTAG	CTCCTACTCA	GTTTTAGGGG	ATAAAAAAGG	2520
GCAATAGCG	ATTCGAGAAA	GATTATACTC	TTCGAAAATC	TCTTCAAATC	ACGTCAATAT	2580
CGCCTTGTCG	TATGTGTAGG	ATACTGACTA	CGTCAGTTCC	ATCTACAACC	TCAAAACAGT	2640
STTTTGAGCA	ACCTGCGGCT	AGTTTCCTAG	TTTGATCTTT	GATTTTCATT	GAGTATTAGT	2700
\ATTCAGTTA	CTAACTCGTC	AACTCTGATT	TATCCAATAA	aattgaaaag	GATGGAAAAA	2760
AGGATAAATT	TATGATATAC	TTTATTTTGA	AGACCTTATT	AGAAATCTTG	AAAGAGTATT	2820
GAAAACTTAG	AATGAGAAAA	ATTGTTATCA	ATGGTGGATT	ACCACTGCAA	GGTGAAATCA	2880
TATTAGTGG	TGCTAAAAAT	AGTGTCGTTG	CCTTAATTCC	AGCTATTATC	TTGGCTGATG	2940
TGTGGTGAC	TTTGGATTGC	GTTCCAGATA	TTTCGGATGT	AGCCAGTCTT	GTCGAAATCA	3000
GGAATTGAT	GGGAGCTACT	GTTAAGCGTT	ATGACGATGT	ATTGGAGATT	GACCCAAGAG	3060
TGTTCAAAA	TATTCCAATG	CCTTATGGTA	AAATTAACAG	TCTTCGTGCA	ТСТТАСТАТТ	3120
TTATGGGAG	CCTCTTAGGC	CGTTTTGGTG	AAGCGACAGT	TGGTCTACCG	GGAGGATGTG	3180
ATCTTGGTCC	TCGTCCGATT	GACTTACACC	TTAAGGCGTT	TGAAGCTATG	GGTGCCACTG	3240
TAGCTACGA	GGGAGATAAC	ATGAAGTTAT	CTGCTAAAGA	TACAGGACTT	CATGGTGCAA	3300
TATTTACAT	GGATACGGTT	AGTGTGGGAG	CAACGATTAA	TACGATGATT	GCTGCGGTTA	3360
ACC	MCCM3 CM3 MM	AMMCAAAAMC	CACCCCCTCA	NCCTIC NC NOT	ADDO ADOMA O	7400

CTACTCTCT	r gaataatatg	GGTGCCCATA	TCCGTGGGGC	AGGAACTAAT	ATCATCATTA	348
TTGATGGTG	r tgaaagatta	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	354
CTGGAACATA	ч тататсттта	GCTGCTGCAG	TTGGTAAAGG	AATTCGTATA	AATAATGTTC	360
TTTACGAAC	CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	366
TATCTGAAG	CAGCATTTT	GTCGAGGAAC	AGTCTAATTT	GAAAGCAATC	AATATTA AGA	372
CAGCTCCTT	CCCAGGCTTT	GCAACTGATT	TGCAACAACC	GCTTACCCCT	CTTTTACTAA	378
GAGCGAATGO	TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	384
TTGAACTAGO	AAAGATGGAT	GCGGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	390
GTGGACGTGA	TTTACGTGGG	GCCAGTGTTA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	396
TAGTCATTGO	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	402
TACGTGGTTA	TTCTGATATT	ATCGAAAAAT	TACGTAATTT	AGGAGCGGAT	ATTAGACTTG	408
TTGAGGATTA	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTTCTT	414
PTTTTGAAAC	GGATCGCTTG	TATTTGCGTC	CTTTCTTTTT	TAGTGATAGT	CAGGACTTCC	420
GCGAGATAGC	TTCAAATCCA	GAAAATCTTC	AATTTATTT	CCCAACGCAG	GCAAGTCTGG	426
AAGAAAGTCA	ATATGCACTG	GCCAATTACT	TTATGAAGTC	CCCTTTGGGA	GTGTGGGCAA	4320
ITTGTGACCA	GAAAAATCAA	CAAATGATTG	GTTCTATTAA	ATTTGAGAAG	TTAGATGAAA	4380
rcaaaaaaga	AGCTGAGCTT	GGCTATTTTT	TGAGAAAAGA	TGCTTGGTCG	CAAGGATTTA	4440
rgacagaggt	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTTGA	GGAATTTGGC	TTAAAACAAT	450
FATTTATCAT	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4566
TTAGTTTGTT	CCGTCAGTTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAAATG	CGGGATTATC	4620
PTGAATTTCG	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAAT	TCTAAGCTAT	4680
PTGGAGGAAT	TACCAGTAGG	TAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
GTTAGTGATG	GAACAGCCTA	TCGGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAGTTGCTAT	AGAGAGATTA	4860
ACGTTTGCTG	AAATTGCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGGCA	AGAAGGTTTA	4920
Sagagagaat	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	AACAAAATAT	CTTGTCTTAC	4980
TTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
AAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTTCAGG	TTCATGATGA	TGTGCTTAAA	5100
	*****	maamamma=:				

			186			
ACCATGATCA	ATAAAGCCTT	GTCAAATGTC		CTGATATTCT	GACAGTTGAG	5220
AAACTTTATC	GCCCTAGTCA	TGAGTATGGT	TTTCTGAGAG	AGACAGATAC	AGTTAAAGAT	5280
PATTTGGACT	TGGTTCGTAA	GAATCGTAGC	AGCCGTTTCC	CTGTTATCAA	TCAACATCAG	5340
STCGTTGTTG	GTGTTGTAAC	CATGAGAGAC	GCTGGTGATA	AATCACCAAG	CACGACAATT	5400
GATAAGGTTA	TGTCTCGTAG	TCTATTTTTG	GTTGGATTAT	CGACAAATAT	TGCCAATGTG	5460
AGTCAACGGA	TGATCGCAGA	AGACTTTGAA	ATGGTACCAG	TTGTTCGAAG	CAATCAAACT	5520
TGCTTGGCG	TTGTGACGCG	ACGAGATGTC	ATGGAGAAGA	TGAGCCGTTC	CCAAGTTTCG	5580
CTCTACCAA	CTTTTTCTGA	GCAGATTGGA	CAAAAGCTCT	CTTATCACCA	TGATGAAGTA	5640
STCATTACAG	TGGAACCCTT	TATGCTAGAA	AAAAATGGAG	TTTTGGCTAA	TGGTGTATTG	5700
CAGAAATTC	TGACCCACAT	GACCCGATTT	AGTTGTTAAT	AGTGGTCGCA	ATCTCATTAT	5760
GAGCAGATG	CTGATCTACT	TTTTGCAGGC	TGTTCAGATA	GATGATATAT	TGCGCATTCA	5820
GCACGGATT	ATTCATCATA	CGAGACGGTC	AGCTATAATT	GATTACGATA	TTTATCATGG	5880
CACCAGATT	GTTTCAAAAG	CAAATGTGAC	TGTTAAAATT	AATTAGAAAC	TAGGAGAAAA	5940
SATGATAACA	TTAAAATCAG	CTCGTGAAAT	CGAAGCTATG	GACAAGGCTG	GTGATTTTCT	6000
GCAAGTATT	CATATAGGCT	TACGTGATTT	GATTAAGCCA	GGCGTAGATA	TGTGGGAAGT	6060
GAAGAATAT	GTCCGCCGTC	GTTGTAAAGA	AGAAAATTTC	CTTCCACTTC	AGATTGGGGT	6120
GACGGTGCC	ATGATGGACT	ATCCTTATGC	TACCTGTTGC	TCTCTTAACG	ATGAAGTGGC	6180
CACGCTTTC	CCTCGTCATT	ATATCTTGAA	AGATGGTGAT	TTGCTCAAAG	TTGATATGGT	6240
TTGGGAGGT	CCCATTGCTA	AATCTGACCT	AAATGTCTCA	AAATTAAACT	TCAACAATGT	6300
GAACAAATG	AAAAAATACA	CTCAGAGCTA	TTCTGGTGGT	TTAGCAGACT	CATGTTGGGC	6360
TATGCTGTT	GGTACACCGT	CCGAAGAAGT	CAAAAACTTG	ATGGATGTAA	CCAAAGAAGC	6420
'ATGTACAAG	GGTATTGAGC	AAGCTGTTGT	TGGAAATCGT	ATCGGTGATA	TCGGTGCGGC	6480
'ATTCAAGAA	TACGCTGAAA	GTCGTGGTTA	CGGTGTAGTG	CGTGATTTGG	TTGGTCATGG	6540
GTTGGCCCA	ACTATGCACG	AAGAACCAAT	GGTTCCTAAC	TATGGTATTG	CAGGTCGTGG	6600
CTCCGTCTT	CGTGAAGGAA	TGGTCTTAAC	CATTGAACCA	ATGATCAATA	CAGGCGATTG	6660
GAAATTGAT	ACAGATATGA	AAACTGGTTG	GGCGCATAAG	ACCATTGACG	GTGGATTGTC	6720
TGTCAGTAT	GAACACCAAT	TTGTCATTAC	GAAAGATGGA	CCTGTTATCT	TGACTAGCCA	6780
.GGTGAAGAA	GGAACTTATT	AATAAAAGT	GAAAAGACTA	CTGGAAGTTT	ATTTTGATAA	6840
AAATCCAGT	AGATCTTTTC	ATAATAAAAC	GCATTGTATC	AAGTGTTAGG	GGCTGATATC	6900

ATGCGTTTTT CTGCTTTTAA GATTTTTCC AACTCTGTTT GTAAGCGCAT CATAACAAAG 6960

GGTCTAGGAT	TCAGGGCTCT	CCTCCTATAT	ACTATTAGTA	AAGTAAAACT	AAGGGAGGAT	702
ATTTTAGTGT	CGCAGTCTAT	TGTTCCTGTA	GAGATTCCAC	AATATTGTCG	TTTTGATTCT	708
AAAAAGAGAA	ATGGAATTCT	GTTTAATGTT	CGTATTGCCA	ATCTTAAATT	TACTTTTTTA	714
TATTATACTT	CCTGCGAAAC	AAAATATGGT	ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	720
AACAACTAAC	TGATGCACGA	TTTAAGCGTC	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	726
AGATGTTAGC	TGTATTAAAA	ACAGCTTATC	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	732
CTAAATTAAG	CCTAGAAGAC	CTTCTTATGC	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	738
TTATGAAGAA	ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	744
atgggttgaa	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	750
TGAGGACACG	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	AAAAAACAAT	756
TAGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	762
GTCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	ATGAAGTTGT	768
TCAAAATGAG	TCGTAGAAAT	ATCGAACAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
AAGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTCAAGC	780
CGCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
AGAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
GTAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
TCTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAAA	TTGGGTGAAA	8040
AGTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
ACTCCCCGTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
agtaaggaag	AGAAGATGAA	CGCATTATTA	aatggaatga	ATGACCGTCA	GGCTGAGGCG	8220
GTGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
GTTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
TTGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CCTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
AATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
CGTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
CAGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
GAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
manacancecc	AACCTCCCCA	ФАФСФАФАСС	СУУАПЛЕТСТСС	СССАСФСФФА	ጥ ል ር ል ር ር ር ር ጥ ል ጥ	8700

188 CAAAAAGAAC TTCGTCAGTC TGAATCCGTT GACTTTGATG ATTTGATTAT GCTGACCTTG 8760 CGTCTCTTTG ATCAAAATCC TGATGTTTTG ACCTACTACC AGCAAAAATT CCAATACATC 8820 CACGTTGATG AGTACCAAGA TACCAACCAC GCTCAGTACC AATTGGTCAA ACTCTTGGCT 8880 TCCCGTTTTA AAAATATCTG TGTGGTTGGG GATGCGGACC AGTCTATCTA CGGTTGGCGT 8940 GGTGCTGATA TGCAGAATAT CTTGGACTTT GAAAAGGATT ACCCCAAAGC CAAGGTTGTT 9000 TTGTTGGAGG AAAATTACCG CTCAACCAAA ACCATTCTCC AAGCGGCCAA CGAGGTTATT 9060 AAAAATAATA AAAATCGCCG TCCTAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA 9120 ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGCTG TATTTGTAGC CAGAACCATC 9180 GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTCT CTATCGGACT 9240 AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATACCATG 9300 GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGCG ATATTATTGC TTATCTCAAC 9360 CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT 9420 GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT 9480 ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT 9540 ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATT 9600 ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA 9660 GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTTC TGTTACGAAG 9720 AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT 9780 TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA 9840 GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT 9900 GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA 9960 GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC 10020 AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT 10080 AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC 10140 TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG 10200 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 10260 TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT 10320 GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 10380 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10440

GTGGCTCCAA TTGAGAAAA AATCTAATTT TCCATCCTTC TCACGAATAA TAAAGTGAGG

		•				
AGGATTTTTA	TGTACAGTAT	TTCATTCCAA	GAAGATTCAC	TATTACCAAG	AGAAAGGCTG	10560
GCCAAGGAAG	GAGTTGAAGC	GCTTAGTAAC	CAAGAGTTGC	TAGCTATTTT	ACTCAGGACA	10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAAACAAGA	GCACCTGGTG	GCACTCTATC	тсаатастса	AAATCAAATC	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	TTTAATCTAA	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	1122Ò
TTATCTTTGG	GACGATTTTC	AAAAAGAAGT	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCCG	TACTCATGAC	AGCCTCAATG	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTTG	GTGCTAAGTC	CTTGATGCTC	TGGTGGTGGA	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAGA	TTTCTTGGAG	AACGGTATCT	GGTTCTGTTA	CCAAGCGTTG	AGTTGTGTAC	11460
TCAACAGAAG	AATCCTGCCA	ATGGTCTTCG	ATATCTTGGT	ACAAAGTTCC	ACCCATGGCA	11520
ACGTTAAAGA	GTTGGGTACC	ACGGCAGACA	GAGAAAATGG	GCTTTTTCTG	TTTAATAGCT	11580
TCCTTGATGA	GGGCCAGTTC	GAAGATATCT	CTTTGAAGGT	GATAGTCATC	ACTATCAATG	11640
GTTTTGGGTT	CGCCATAAAA	TTTTGGATCG	ACATTTTGCC	CACCTGTCAA	GATGAGCTTG	11700
TCAATCAAAC	TGATATAGTG	GCAGGCCATT	TCTTGATCAC	CAATCGGTAG	GATGATGGGA	11760
ATCCCTCCAG	CATCTTTAAC	GCCTTCAACA	AAGCCTTTTG	CTGCGTAGCT	CATCATGATG	11820
TCATCATCTG	GATGAGTTTT	TTCGTTTCCT	GTAATCCCAA	TAACTGGTTT	TTTCATAAAA	11880
TGATTTTCGC	TTTCTAATCC	TCTTTTCGCA	TGAAGTAGAG	GAGGGTTTGG	AGTTCACTTG	11940
TCAAATCGAC	ATACTGAACG	ACCACGTCTT	TTGGTAAATG	CAGATGGACT	GGTGAAAAAC	12000
TGAGAATTCC	TTTCACACCA	GCATCAACCA	AGAGATTAGC	AACCTCTTGT	GACTTGACGC	12060
TGGGAACAGT	TAGGATAGCA	GTCTTCACAT	CAGCATCCTT	GATTTTATCC	TTGATCTGAG	12120
AAATCCCGTA	AATGGGAATC	CCGTCAGGAG	TTTGGGTACC	GACTTCAGGA	TGGTCGTCTA	12180
GGTCAAAGGC	CATGATAATC	TTCATCTTGT	TACGTTCGTG	GAAGCGGTAG	TGGAGAAGGG	12240

190 CATGGCCCAT ATTTCCAATA CCAACCAGCA TGACATTGGT AATAGAGTTG TCATTGAGCA 12300 AATCGCCAAA AAATGTCATT AGTTTTTTGA CATCATAGCC AAAACCACGA CGACCAAGTT 12360 CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA 12420 TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 12480 AGAGAGAGA TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 12540 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 12600 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG. AAAACGGTAG 12660 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 12720 AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12780 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12840 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 12900 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 12960 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 13020 GAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13080 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13140 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTTCA AATGCCATAT GGCTAACCTC 13200 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 13260 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13320 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13380 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA 13440 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13500 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13560 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13620 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980 GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14040

GTTTTCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATTA	TTGCCTTCAG	14100
TCCCACCAGA	AGTGAAAAAG	ATATGTTGAG	GTTTTGTCCT	TAGTAACTGG	GCTAGTTCCT	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT	14220
TTCCGTGGGT	TTCTTGCATA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
PCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
PAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAAGCTT	14580
CAGAGAAGGT	ACGTCCTGTA	TATAAAATTT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTTATC	GCAGTAATGT	TTTGCGAATA	14820
GGGAACAGT	GAAAAGATTA	TCCACTGGAA	TATCAAAGAA	ACCTTGAACC	TGAACGGCAT	14880
GCAAATCAAG	AGTCAGGATA	CGATCAACTC	CAGCCTTAAC	CAGCATATTG	GCAACTAGTT	14940
PTGCTGTAAG	TGGCTCACGA	GGACAAGCAA	TGCGGTCTTG	ACGTGCATAG	CCAAAATATG	15000
GAAGGACAAC	GTTGATÄCTG	TGGGCACTTG	CACGCACACA	AGCATCGACC	ATGATTAACA	15060
ATTCCATTAG	GTGGTTGTTG	ACAGGGAAAC	TTGTTGATTG	GATGATGTAA	ACATCATAAC	15120
CACGGACACT	TTCTTCGATA	TTTACTTGGA	TTTCTCCGTC	TGAAAATTGA	CGTGATGATA	15180
TTTTCCAAG	TGGGACACCA	ACAGCTTGGG	CAATTTTTTG	TGCAATCTCT	TGGTTAGAGŢ	15240
GAGTGCGAA	AAGTTTCATG	TTTTTTCTAT	CTGACATTAT	AGACCGTCCT	CTGTAAACTT	15300
PATAAATCCT	AGTTATATTT	ACCTTACATA	TATGAACTGG	GATTTGTGTA	TTTTTATCTT	15360
тстатттта	CCAAAAAATG	GAGATTATTT	CAGCTATTTT	TCATACTTTT	GACAAATCGA	15420
CCAATTTTG	AAGGAGCTTT	TTGATAGGAA	ATCTGATTTT	TCTCTAAAAA	TTGTCGAAAA	15480
CCTGTTTGC	CTTGCTCATG	ATTTTCCACT	TCAAGCTCCA	ATTCGTAATC	TGTTATATCA	15540
AGTATCGGC	TCTGATCCAG	TGCCATGAGA	CCAATAGCTG	TTTTCATTTC	ATAGCGAAGC	15600
STTGTTAGAC	AACCAAGAAC	CTGCCAGTTC	TTACTTTGGA	TACCATGTTT	CGCCAATTCA	15660
CCAGTACTA	GCCCTTGAGG	AAGTTCTTCC	TTACTCAGAT	AGTTCTCAGC	ATCTTTTAGT	15720
		a. mammaa.				

192 GCCCAGTCTT CAAAGGTTCG AATGCGCATA GCGACTTTCT TTTCTCGCAG TTCAAAATCA 15840 GGCGTGTCGA TGTAGTAATT TGTTTGAAGA ACAGGAGTGA CACCTGTGAA CTGGTCTTTT 15900 AGACGATTGT ATTCATCTTT TTTCAATAGT GTTTTCAATT CAATTTCTAA ATGTTTCATT 15960 TTTCTTACCT TTTTTTATCG TTGAAAGCGG ATTTATGGTA TAATAAGCAT TGTATTTATT 16020 GTATATGAAT CTGGAGAAAA AATCAAAGAT ATTTTTGACG GATAATATGA GAACAAGGGA 16080 GAATATATGA CCTTAGAATG GGAAGAATTT CTAGATCCTT ACATTCAAGC TGTTGGTGAG 16140 TTAAAGATTA AACTTCGTGG TATTCGTAAG CAATATCGTA AGCAAAATAA GCATTCTCCA 16200 ATTGAGTTTG TGACCGGTCG AGTCAAGCCA ATTGAGAGCA TCAAAGAAAA AATGGCTCGT 16260 CGTGGCATTA CTTATGCGAC CTTGGAACAC GATTTGCAGG ATATTGCTGG CTTACGTGTG 16320 ATGGTTCAGT TTGTAGATGA CGTCAAGGAA GTAGTGGATA TTTTGCACAA GCGTCAGGAT 16380 ATGCGAATCA TACAGGAGCG AGATTACATT ACTCATAGAA AAGCATCAGG CTATCGTTCC 16440 TATCATGTGG TAGTAGAATA TACGGTTGAT ACCATCAATG GAGCTAAGAC TATTTTGGCA 16500 GAAATTCAAA TTCGTACTTT GGCCATGAAT TTCTGGGCAA CGATAGAACA TTCTCTCAAC 16560 TACAAGTACC AAGGGGATTT CCCAGATGAG ATTAAGAAGC GACTGGAAAT TACAGCTAGA 16620 ATCGCCCATC AGTTGGATGA AGAAATGGGT GAAATTCGTG ATGATATCCA AGAAGCCCAG 16680 GCACTTTTG ATCCTTTGAG TAGAAAATTA AATGACGGTG TAGGAAACAG TGACGATACA 16740 GATGAAGAAT ACAGGTAAAC GAATTGATCT GATAGCCAAT AGAAAACCGC AGAGTCAAAG 16800 GGTTTTGTAT GAATTGCGAG ATCGTTTGAA GAGAAATCAG TTTATACTCA ATGATACCAA 16860 TCCGGATATT GTCATTTCCA TTGGCGGGGA TGGTATGCTC TTGTCGGCCT TTCATAAGTA 16920 CGAAAATCAG CTTGACAAGG TCCGCTTTAT CGGTCTTCAT ACTGGACATT TGGGCTTCTA 16980 TACAGATTAT CGTGATTTTG AGTTGGACAA GCTAGTGACT AATTTGCAGC TAGATACTGG 17040 GGCAAGGGTT TCTTACCCTG TTCTGAATGT GAAGGTCTTT CTTGAAAATG GTGAAGTTAA 17100 GATTTTCAGA GCACTCAACG AAGCCAGCAT CCGCAGGTCT GATCGAACCA TGGTGGCAGA 17160 TATTGTAATA AATGGTGTTC CCTTTGAACG TTTTCGTGGA GACGGGCTAA CAGTTTCGAC 17220 ACCGACTGGT AGTACTGCCT ATAACAAGTC TCTTGGCGGT GCTGTTTTAC ACCCTACCAT 17280 TGAAGCTTTG CAATTAACGG AAATTGCCAG CCTTAATAAT CGTGTCTATC GAACACTGGG 17340 CTCTTCCATT ATTGTGCCTA AGAAGGATAA GATTGAACTT ATTCCAACAA GAAACGATTA 17400 TCATACTATT TCGGTTGACA ATAGCGTTTA TTCTTTCCGT AATATTGAGC GTATTGAGTA 17460 TCAAATCGAC CATCATAAGA TTCACTTTGT CGCGACTCCT AGCCATACCA GTTTCTGGAA 17520 CCGTGTTAAG GACGCCTTTA TCGGCGAGGT GGATGAATGA GGTTTGAATT TATCGCAGAT 17580

GAACATGTCA	AGGTTAAGAC	CTTCTTAAAA	AAGCACGAGG	TTTCTAAGGG	ATTGCTGGCC	17640
AAGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
CTATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTTGAAACC	17760
TTGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACTT	TCTAGTCTTG	17820
AATAAACCCT	ATGGAGTGGC	TTCTATTCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
TCCATTATTA	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	18240
CAAATCCGAG	TCCATTTTTC	TCATATCGGT	TTTCCTTTGC	TGGGAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
CATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
TGCTCGTATC	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
AGTAAAAGAA	ACAGAAGTGA	TTCCTGTTTT	GCTTGGAAAT	CCTGAAAAAA	TTAAAATTTA	18660
TCTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
atttgaagaa	ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
TGTACGCAAG	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGAT	GGAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TTCGCCCAGC	18900
тстасааатс	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
TCGTGGTACG	GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AACATCAATC	CAGATGCAGA	19020
AGCCTTGGCT	GAAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAACC	19080
TAAAATTGCC	ATGTTGAGCT	АТТСТАСТАА	AGGTTCAGGG	TTTGGTGAAA	GCGTTGATAA	19140
GGTCGTTGAA	GCAACTAAAA	TTGCTCACGA	CTTGCGTCCT	GACCTTGAAA	TCGATGGTGA	19200
GTTGCAATTT	GATGCAGCCT	TTGTTCCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19260
GGTAGCTGGT	CAAGCAAATG	TCTTCATCTT	CCCAGGTATC	GAGGCAGGAA	ATATTGGTTA	19320

194 CAAGATGGCT GAACGCCTGG GTGGCTTTGC GGCTGTAGGA CCTGTTTTGC AAGGTTTAAA 19380 CAAGCCAGTT AATGATCTTT CTCGTGGATG TAATGCAGAT GATGTTTACA AGTTGACCCT 19440 CATCACAGCA GCTCAAGCAG TTCATCAATA GTGAAAACTA TAAAGTGATA TACTATGCTA 19500 TACTGTAGTT ATGAAACTAT GTACGAAAAG CACTGCCATT AATTCCTGAG AACTAAATTA 19560 CTGATTGGTG TCAAAAAGGA AAACTTCCAA GCGATGATAT CCTGTCTATA CACGACCTAT 19620 AGAAATCTGT AATATACATA TCCGTAAAAC GATAAATTCC CTTTTTGATT TTAAATGAGT 19680 ATGAAAAGAG AATTTTTGG CTCTTTGTCA ACTGTAGTGG GTTGAAGAAA AGCTAAGCTC 19740 GAGAAAGGAC AAATTTCATC CTTTCTTTT TGATATTCAG AGCGATAAAA ATCCGTTTTT 19800 TGAAGTTTTC AAAGTTCCGA AAACCAAAGG CATTGCGCTT GATAAGTTTG ATGAGATTAT 19860 TGGTCGCTTC CAGTTTGGCG TTAGAATAGT GTAGTTGAAG GGCGTTGATA ATCTTTTCTT 19920 TATCTTTGAG GAAGGTTTTA AAGACAGTCT GAAAAATAGG ATGAACCTGC TTAAGATTGT 19980 CCTCAATAAG TCCGAAAAAT TTCTCTGGTT CCTTATTCTG GAAGTGAAAA AGCAAGAGTT 20040 GATAGAGCTG ATAGTGGTGT TTCAAGTCTT CCGAATAGCT CAAAAGCTTG TTTAAAATCT 20100 CTTTATTGGT TAAGTGCATA CGAAAAATAG GACGATAAAA TCGCTTATCA CTCAGTTTAC 20160 GGCTATCCTG TTGAATGAGT TTCCAGTAGC GCTTGATAG 20199 (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19702 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

60	САСААТАААА	ATGTTATACC	TTTTCAAACG	TTTACTCTAT	TCAGCGGATA	ACCCGATGTA
120	TTTACCTGAT	CGCGTTCAAC	TATTATTAAA	CCTTTGCTTT	CCTAAGGTCT	GAAAAAAGAC
180	AACAGTAACT	CATCGATAAG	TTAGGTTTAC	CCAAACTTTT	GAGCTGAAGC	TTCAAAGCAC
240	ACGGTTGTTT	TCGCGTGTGA	GTTTGGTTCA	GGCACGTTTT	TTGGTTTTAC	TTTTGAAGGT
300	TTCCTCCTAT	CCATTGTGTT	CATACTTTAG	TGTAAAGTAA	TCTTACGACC	CCTGATACAG
360	ACATTTTCTT	CTATGTTATC	ACATACCGTA	TGCTAGCACC	ATAGCGGATG	TAGATCTAAT
420	CTTGCGTGAC	TAAATCAGGT	ATTTGTGTCT	AAGATTTTT	AGGGAATTGG	GTTTTTTGCA
480	ATTATGTGTA	CAGAATTAAA	AACAGAACAC	ATCGTTGATT	TCCACATGCC	ATTTCTGCTC
540	CCACAGCTCA	AGTCCAAATC	ATAGCCGTCA	AGCTAAGGGT	CTCTAACTGC	TAAAAATCAT

TC:	PATCGATT	TTCTTACAAC	AATATCTGAA	тссалатаса	GTACACGAGA	CTCGCTTACA	600
TAC	CTTTGGAA	TAAAATACCT	AAAAAAGCCG	CATATGAAAG	TCCCTCAAAG	GGGAGACGAT	660
AAC	CCTTTCAG	AATATTACTG	TCAATCTAAA	CATTCACAAT	CTCACTATTC	AAAGTCTCTA	720
GTO	TTTTTTC	CATCAATTGG	AACCATTCTC	GCGGAAGGTC	АТСАТТАААА	ACATAAAACT	780
TA	\GATTATA	ATGATGAACA	CAAAGAGATT	TTATTGTTGT	TTCAACTTTA	TCCATATAAG	840
CAT	TATCTGC	ACCTAAGACA	ATCGCTTTTT	TCTCTTCTTT	CACTTTTTAT	CTCATTTCTT	900
TT	PATTCCCA	TCATATTATT	CCCATCATAT	GTTTCCCATC	ATATGTTTCT	ACGTAACCAT	960
TAT	PTTTCGCC	TATTCGTTCG	таааассата	CCAGTGGAGA	TTTTAGATGA	AGTCCCATTA	1020
CGC	STTTACAA	TTTTTACATT	ACGACACGGA	GTTTTACAAA	TCGATTTCAT	TTGCCAAACG	1080
TAC	STTAGTGA	GGCAGTTAGC	TAGTTCGCCA	AATAGCGACT	AGCGTCCAAC	AATTTGGAAC	1140
TTI	PAGTTCCA	ATTGTTGGTA	CTGAGTCACA	TCTTCTCCTC	TAACTCTACG	TCTGGATACT	1200
TGI	CCGCAAA	CCAGCGGAGG	GCAAAGTCAT	TTTCAAAGAG	AAAGACTGGT	TGGTCAAAAC	1260
GGT	CTTTGGC	TAAGATATTG	CGACTTGACG	ACATCCGTTC	ATCCAAGTCC	TCAGGCTTGA	1320
TCC	AACGAAC	GGTCTTTTTA	CCCATTGGGT	TCATAACTAC	TTCCGCATTG	TACTCGCCTT	1380
CCA	TGCGGTG	TTTAAAGACT	TCAAACTGGA	GTTGACCTAC	AGCGCCTAGC	ATGTACTCAC	1440
CTG	TTTGGTA	ATTCTTATAA	AGCTGAACGG	CTCCTTCTTG	CACCAATTGC	TCAATCCCCT	1500
TGT	GGAAGGA	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	TTTCATGAAA	ATCTCAGGTG	1560
TAA	AGGTTGG	CAGGGGTTCA	AATTCAAACT	TGTTTTTTCC	AACCGTCAAG	GTATCCCCAA	1620
CCT	GATAAGT	ACCGGTATCG	TAAACCCCGA	TAATATCACC	TGCCACGGCA	TTGGTCACAT	1680
TCT	CACGACT	CTCCGCCATA	AACTGGGTAA	CATTAGATAG	TTTAGCCCCC	TTACCAGTAC	1740
GAG	GGAGATT	GACACTCATG	CCGCGCTCAA	ATTCGCCAGA	TACGATACGG	ACAAAGGCAA	1800
TAC	GGTCACG	GTGACGAGGG	TCCATGTTGG	CTTGGATTTT	AAAGACAAAG	CCTGAGAAAT	1860
CCT	TGTCATA	AGGATCCACA	ATTTCACCGT	CTGTTTTCTT	GTGACCATGT	GGTTCTGGAG	1920
CAA	ACTTGAG	GAAGGTTTCA	AGGAAGGTCT	GCACACCAAA	GTTTGTCAGG	GCTGAACCGA	1980
AAA	AGACAGG	CGTCAATTCT	CCAGCCAGAA	TAGCTTCCTC	TGAAAACTCA	TTCCCGGCTT	2040
CAT	TTAAAAG	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	AGGATTGCTA	CCAAAGAGTT	2100
TGT	CCCCGTC	TTCTAGACTG	GCAAAACGCT	CATCCCCTTT	GTAAAGCTCT	AAACGTTGGT	2160
TAT	AGAGGTC	ATACAAGCCC	TCAAAGGCTT	TCCCCATCCC	GATAGGCCAG	TTCATAGGGT	2220
AGC	TAGCAAT	GCCCAAGATT	TCTTCCAATT	CTTGCAAGAG	ATCCAAAGGC	TCACGACCGT	2280

			196			
CACGGTCCAG	CTTGTTCATA	AAGGTAAAGA	CTGGAATGCC	ACGATGTTTC	ACAACCTCAA	2340
ACAATTTCTT	GGTTTGAGCC	TCGATCCCCT	TGGCAGAGTC	CACGACCATG	ACCGCAGCAT	2400
CCACCGCCAT	CAAGGTACGA	TAGGTATCTT	CTGAGAAGTC	CTCGTGCCCT	GGCGTGTCTA	2460
AGATATTCAC	GCGCTTGCCG	TCGTAGTCAA	ATTGCATAAC	AGATGAAGTA	ACAGAAATCC	2520
CACGTTGCTT	CTCGATATCC	ATCCAGTCAG	ATTTAGCAAA	AGTCCCTGTT	TTCTTCCCTT	2580
PTACCGTACC	AGCCTCACGA	ATCTCACCCC	CAAAGTAGAG	TAACTGCTCA	GTGATGGTTG	2640
TTTTCCCCGC	GTCCGGGTGG	GAGATAATGG	CAAAGGTACG	ACGTTTCTTA	ATTTCTTCTT	2700
GAATATTCAT	AAGTTCTCTT	TCTTTGATTC	TCTATTTTC	TTGTTTCAAT	AGCTGAGAAT	2760
GATTTTTACA	TTGGATTTTA	CCATTCCTTT	CAACACTCCA	TTATATCGGA	TTTTAGCATT	2820
FTTTTCAATT	TCTATTTCTT	TTCACTTCCC	CCTCCCTTAT	TTATAGGAAA	ATATGGTAAA	2880
ATAGAACAGA	CTAAAAATCA	TCATTTCACG	AAAGGATGCA	AGATGAAAAT	TACGCAAGAA	2940
GAGGTAACAC	ACGTTGCCAA	TCTTTCAÄAA	TTAAGATTCT	CTGAAGAAGA	AACTGCTGCC	3000
TTGCGACCA	CCTTGTCTAA	GATTGTTGAC	ATGGTTGAAT	TGCTGGGCGA	AGTTGACACA	3060
ACTGGTGTCG	CACCTACTAC	GACTATGGCT	GACCGCAAGA	CTGTACTCCG	CCCTGATGTG	3120
GCCGAAGAAG	GAATAGACCG	TGATCGCTTG	TTTAAAAACG	TACCTGAAAA	AGACAACTAC	3180
PATATCAAGG	TGCCAGCTAT	CCTAGACAAT	GGAGGAGATG	CCTAATGACT	TTTAACAATA	3240
AACTATTGA	AGAGTTGCAC	AATCTCCTTG	TCTCTAAGGA	AATTTCTGCA	ACAGAATTGA	3300
CCAAGCAAC	ACTTGAAAAT	ATCAAGTCTC	GTGAGGAAGC	CCTCAATTCA	TTTGTCACCA	3360
CGCTGAGGA	GCAAGCTCTT	GTTCAAGCTA	AAGCCATTGA	TGAAGCTGGA	ATTGATGCTG	3420
CAATGTCCT	TTCAGGAATT	CCACTTGCTG	TTAAGGATAA	CATCTCTACA	GACGGTATTC	3480
CACAACTGC	TGCCTCAAAA	ATGCTCTACA	ACTATGAGCC	AATCTTTGAT	GCGACAGCTG	3540
TGCCAATGC	AAAAACCAAG	GGCATGATTG	TCGTTGGAAA	GACCAACATG	GACGAATTTG	3600
TATGGGTGG	TTCAGGTGAA	ACTTCACACT	ACGGAGCAAC	TAAAAACGCT	TGGAACCACA	3660
CAAGGTTCC	TGGTGGGTCA	TCAAGTGGTT	CTGCCGCAGC	TGTAGCCTCA	GGACAAGTTC	3720
CTTGTCACT	TGGTTCTGAT	ACTGGTGGTT	CCATCCGCCA	ACCTGCTGCC	TTCAACGGAA	3780
CGTTGGTCT	CAAACCAACC	TACGGAACAG	TTTCACGTTT	CGGTCTCATT	GCCTTTGGTA	3840
CTCATTAGA	CCAGATTGGA	CCTTTTGCTC	CTACTGTTAA	GGAAAATGCC	CTCTTGCTCA	3900
CGCTATTGC	CAGCGAAGAT	GCTAAAGACT	CTACTTCTGC	TCCTGTCCGC	ATCGCCGACT	3960
TACTTCAAA	AATCGGCCAA	GACATCAAGG	GTATGAAAAT	CGCTTTGCCT	AAGGAATACC	4020
AGGCGAAGG	AATTGATCCA	GAGGTTAAGG	AAACAATCTT	AAACGCGGCC	AAACACTTTG	4080

AAAAATTGGG	TGCTATCGTC	GAAGAAGTCA	GCCTTCCTCA	СТСТАААТАС	GGTGTTGCCG	4140
TTTATTACAT	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACGGCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAGGTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTTACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCGAAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATGACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATACCTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTACCTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTGCTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCCGTG	ATTTTTGGAG	4680
GTGACAACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
CAATTCAAAA	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
TAACGTGATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
TGCCGGTATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAAGAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAATCGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTATCGAA	CGTGCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTCTTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATATGCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
GTACGCTGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCTTCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTTCTCA	AACGTTCGTA	AAGGTCTTGA	ATACGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
TCGCTCAGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCTCATG	CGTGTCAAGG	AAGGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCTCTTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
TCCAAAAGAA	CGTCGTGCGC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
TCAGTTGACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
TGATGCCAAA	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTAAAACA	CTGGAACAAA	TCGAATTGAC	ACCAGAAAAC	TTGGTTGAAA	TGATTGCCAT	5820

198 CATCGAAGAC GGTACTATTT CATCTAAGAT TGCCAAGAAA GTCTTTGTCC ATCTAGCTAA 5880 AAATGGCGGT GGCGCGCGTG AATACGTGGA AAAAGCAGGT ATGGTTCAAA TTTCAGATCC 5940 AGCTATCTTG ATCCCAATCA TCCACCAAGT CTTTGCCGAT AACGAAGCTG CTGTTGCCGA 6000 CTTCAAGTCA GGCAAACGTA ACGCCGACAA GGCLTTACAG GATTCCTTAT GAAGGCAACC 6060 AAAGGCCAAG CCAACCCACA AGTTGCCCTT AAACTACTTG CACAGGAATT GGCGAAGTTG 6120 AAAGAAAACT AGACAGAACA AAACCAGCCC TAAGGTTGGT TTTTTCTTCT CTACCAACTC 6180 CCAATAACTA TTTTGGCTTT ATTTCCAGAG TATTTTATGG TAAAATGAAG AGTAATAATA 6240 TTTATTAAAG AGGTAAAAAC ATGATTGAAG CAAGTACCTT AAAAGCTGGT ATGACCTTTG 6300 AAACAGCTGA CGGCAAATTG ATTCGCGTTT TGGAAGCTAG TCACCACAAA CCAGGTAAAG 6360 GAAACACGAT CATGCGTATG AAATTGCGTG ATGTCCGTAC TGGTTCTACA TTTGACACAA 6420 GCTACCGTCC AGAGGAAAAA TTTGAACAAG CTATTATCGA GACTGTCCCA GCTCAATACT 6480 TGTACAAAAT GGATGACACA GCATACTTCA TGAATACAGA AACTTATGAC CAATACGAAA 6540 TCCCTGTAGT CAATGTTGAA AACGAATTGC TTTACATCCT TGAAAACTCT GATGTGAAAA 6600 TCCAATTCTA CGGAACTGAA GTGATCGGTG TCACCGTTCC TACTACTGTT GAGTTGACAG 6660 TTGCTGAAAC TCAACCATCT ATCAAAGGTG CTACTGTTAC AGGTTCTGGT AAACCAGCAA 6720 CGATGGAAAC TGGACTTGTC GTAAACGTTC CAGACTTCAT CGAAGCAGGA CAAAAACTCG 6780 TTATCAACAC TGCAGAAGGA ACTTACGTTT CTCGTGCCTA ATCTCTAGAA AGAGGTCATT 6840 CTATGGGAAT TGAAGAACAA CTTGGCGAAA TCGTTATCGC CCCACGTGTA CTTGAAAAAA 6900 TCATTGCTAT CGCTACTGCA AAGGTAGAGG GTGTTCACTC TTTTTCAAAC AGATCAGTGT 6960 CTGATACCCT TTCAAAACTT TCACTCGGCC GTGGCATTTA TCTTAAAAAC GTGGACGAAG 7020 AACTCACAGC AGATATCTAT CTCTACCTTG AGTACGGAGT AAAAGTTCCT AAGGTAGCGG 7080 TTGCTATCCA GAAAGCTGTC AAAGATGCCG TCCGTAATAT GGCTGATGTA GAACTCGCTG 7140 CTATCAATAT TCACGTTGCA GGTATCGTCC CAGATAAAAC ACCAAAACCA GAATTGAAAG 7200 ATCTATTGA CGAGGACTTC CTCAATGACT AGTCCACTAT TAGAATCTAG ACGCCAACTC 7260 CGTAAATGCG CTTTTCAAGC TCTCATGAGC CTTGAGTTCG GTACGGATGT CGAAACTGCT 7320 TGTCGTTTCG CCTATACTCA TGATCGTGAA GATACGGATG TACAACTTCC AGCCTTTTTG 7380 ATAGACCTCG TTTCTGGTGT TCAAGCTAAA AAGGAAGAAC TAGATAAGCA AATCACTCAG 7440 CATTTAAAAG CAGGTTGGAC CATTGAACGC TTAACGCTCG TGGAGAGAAA CCTCCTTCGC 7500 TTGGGAGTCT TTGAAATCAC TTCATTTGAC ACTCCTCAGC TGGTTGCTGT TAATGAAGCT 7560 ATCGAGCTTG CAAAGGACTT CTCCGATCAA AAATCTGCCC GTTTTATCAA TGGACTGCTC 7620

AGCCAGTTTG	TAACAGAAGA	ACAATAAGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAAAAA	7680
GCTAAGCTCG	AGAAAGGACA	AATTTCGTCC	TTTCTTTTT	GATGTTCAAA	GCGATAAAAA	7740
TCCGTTTTTT	GAAGTTTTCA	AAGTTTCGAA	AACCAAAGGC	ATTGCGCTTG	ATAAGTTTGA	7800
TGAGATTATT	GGTCGCTTCC	AGTTTGGCAT	TAGAATAGTG	TAGTTGAAGG	GCGTTGACAA	7860
TCTTTTTTT	ATCTTTGAGG	AAGGTTTTAA	AGACAGTCTG	AAAAATAGGA	TGAGCCTGCT	7920
TAAGATTGTC	CTCAATAAGT	CCGAAAAATT	TCTCTGGTTC	CTTATTCTGG	AAGTGAAACA	7980
GCAAGAGCTG	ATAGAGCTGA	TAGTGGTGTT	TCAAGTCTTG	TGAATGGCTC	AAAAGCTTGT	8040
CTAAAATCTC	TTTATTGGTT	AAGTGCATAC	GAAAAGTAGG	ACGATAAAAT	CGCTTATCAC	8100
TCAGTCTACG	GCTATCCTGT	TGAATGAGTT	TCCAGTAGCG	CTTGATATCC	TTGTATTCAT	8160
GGGATTTTCG	ATGAAACTGA	TTCATGATTT	GGACACGCAC	ACGACTCATG	GCACGGCTAA	8220
GATGTTGTAC	AATGTGAAAG	CGATCAAGAA	CGATTTTAGC	ATTCGGGAGT	GAAACAGTCT	8280
GGGAGACTGT	TTCAGCCTGA	GCCTAGGAAT	TTGAAAGCGA	AGCTGTTTAG	CCAAGTCATA	8340
GTAAGGGCTA	AACATATCCA	TAGTAATAAT	TTTGACGCGA	CATCGGACAA	CTCTATCGTA	8400
GCGAAGAAAG	TGATTTCGAA	TGATAGCTTG	TGTTCTACCC	TCAAGAACAG	TGATGATATT	8460
GAGATTGTTA	AAATCTTGCG	CAATGAAGCT	CATCTTTCCC	TTTGTAAAAG	CATACTCATC	8520
CCAAGACATA	ATCTCAGGAA	GACAAGAAAA	ATCATGTTTA	AAGTGAAAAT	CATTGAGCTT	8580
ACGAATAACA	GTTGAAGTTG	AGATGGAAAG	CTGATGGGCA	ATATCAGTCA	TAGAAATCTT	8640
TTCAATCAAC	TTTTGAGCAA	TCTTTTGGTT	GATGATACGA	GGGATTTGGT	GATTTTTCTT	8700
GACGATAGAA	GTTTCAGCGA	CCATCATTTT	TGAACAGTGA	TAGCACTTGA	ATCGACGCTT	8760
TCTAAGGAGA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGA	TAAGGAATTT	TAGAAGGTTT	8820
TTGAAAGTCA	TATTTCTTCA	ATTGGTTTCC	GCACTCAGGG	CAAGATGGGG	CGTCGTAGTC	8880
CAGTTTGGCG	ATGATTTCCT	TGTGTGTATC	CTTATTGATG	ATGTCTAAAA	TCTGGATATT	8940
AGGGTCTTTA	ATGTCTAGTA	ATTTTGTGAT	AAAATGTAAT	TGTTCCATAT	GAATCTTTCT	9000
AATGAGTTGT	TTTGTCGCTT	TTCATTATAG	GTCATATGGG	ACTTTTTTC	TACAATAAAA	9060
TAGGCTCCAT	AATATCTATA	GGGGATTTAC	CCACTACAAA	TATTATAGAG	CCAACAATAA	9120
aaagaaaaag	TGTTTGATAG	ATATCAAACA	CTTTTTTCTT	TGCCTCCCAC	ТАТСТАААА	9180
aatgataata	GATATAATTG	TAAACAAAAA	TCCAGATAGG	TTTTGCATGA	TTGAGAAAGT	9240
таааааааст	ATGGCAGAGA	ATCGTTAATC	TCAGATTGTC	GGTAGAACGA	TAAACAAGGG	9300
CAAAAAAGAA	ACCAATCAGA	СТАТААТАТА	ATAAACTAAT	TGGATCTCTG	TGAGATAGTA	9360

200 TCAAATGGCT AATCCCAAAG ATGATAGCAG ATAGGATAAC ATCCAAATAG TACTTGGACT 9420 AGGGAAAGAA GGTATTCATA AAATACCCTC TATCAAGAGT CTCCTCAAAA ACAGGACCGA 9480 TGATTACAGG CAGGACAAAA GATAAGATAG TCGATAAAAA GGTTGGTTGT CCATTTGAAA 9540 AAAGCACGGT AAAATACTCA TCATGAATAT TCCTATGATT AATCAAATGA GCATAGCGTG 9600 CCCAAAAATT ACCGAGAATC TGATAAACCA CATAAGTTGC AAATAAGTAG AAGACAAATG 9660 ACCAGTTCCA GCTCTTTTC TCAAAGATAA AGAGCATCTT TTTCTTTTTT AACCTCCAAA 9720 TTAATAGAAG GAAACTTCCC ACTAATCCCA TTGTTAAAAT AAGAGAATAG ACATCAGCTC 9780 CTAACCCTAA AATGATCGTC ACATACAATC CAATTGTTTG TGGTAAATAG GTAGATAGTA 9840 AAATAATAAG CAAAAATATT CCAAATTGTC TTAGTTTTTT TGTGTTTCTC ATCGTACTTT 9900 TTTGAAAGAT TACCCTGCTC GGAAGCCGTA CTTCCAAGCA TCTATATAAG AATTAAGTGC 9960 CCCTTGCCTC ATATAGGGAG CAAATTCTCT ATAATATAAC CATCTACTAT ATCCATCTTC 10020 CCAAACAGCA AGACCACCTG AAGTTTGCTC CAAGTCCTCA GTTGAAAGAA CTGTAAATGT 10080 ATTTGTACCT GTCATTGCAA GTACCTTCTT AAAATAGATT GTTGTAGGCT CACATTTATA 10140 GTATATTTCT TTTTTTGTCT ATTTTATAGC CCATCTCCTC AACTGGCAAT TTTTCGACCT 10200 GAATTACATT TTTCCATAAA AAATGAGACC TTTCTAGTCT CATTTAGTCA TTCTTAGTAT 10260 TTTCTAAATC GTTGATAGCG TTCTTCCAGC AACTCTTCTA GCGGTTTTTG TGAAAGTCTA 10320 GCCAGCTCCG TTTGGAGTTC TTTTTTGACA CTCTTAATCA GTTCTTTACT AGAAAGTCCT 10380 ATTTCAGAAA TCACCTTATC CACCACGTCC ATTTCTAACA GTTCATGCGA AGTGATTTTC 10440 ATCAGTTCTG CTGCTTCCAT AGCGCGAGTA CCGTCCTTCC ATAAAATGGA AGCAAAGCCT 10500 TCTGGACTGA GAATGGCATA GATAGAATTT TCCAGCATCC AGACACGGTC CGCGACAGCT 10560 AGAGCCAGAG CCCCGCCTGA ACCACCTTCA CCGATAATAA TGGCGATAAT AGGAACTTTC 10620 AGGTCACTCA TTTCCATGAG ATTGCGAGCG ATAGCTTCCC CTTGACCACG TTCTTCCGCT 10680 CCGACACCAG GATAAGCACC TGCTGTATTG ATAAAGGTCA CAACTGGACG GCCAAATTTC 10740 TCAGCCTGTT TCATCAACCG CAGTGCCTTT CGGTAGCCTT CTGGATGTGG TTGGCCAAAA 10800 TTCCGTTTGA GGTTGTCTTG CAAACTCTTG CCTTTTTGGA TACCAACCAC TGTTACAGCT 10860 TGGTCTCCAA GCCAACCAAT ACCACCAACA ACTGCACCAT CATCACGAAA AGAACGGTCA 10920 CCATGTAATT GGATAAATTC ATCAAAAATG CCTGTCGCAA AGTCCAAGGT TGTCAAGCGA 10980 CTCTGCTCAC GCGCTTCTCT GACTATTTTT GCAATATTCA TCTAGGACTC CCTCCATGCA 11040 ATCTGACTAG GCTAGCAATC GTATCTGGTA AGTCTCTTCT TTTGACAATA GCATCCACAA 11100 AGCCATGTTC TAATAGGAAT TCTGCCTTTT GGAAATCCTC AGGCAAGCTT TCACGAACCG 11160

						•
TATTTTCAAT	CACACGACGC	CCAGCAAAAC	CAACCAAGCT	CTGTGGTTCA	GCCAGAATGA	11220
TATCGCCTTC	CATAGCGAAA	GAAGCTGTCA	CACCACCAGT	CGTTGGATCT	GTCAAAATGG	11280
TCAGGTAAAA	GAGACCAGCA	TTTGAATGGC	GTTTAACCGC	CGCAGAGATC	TTAGCCATCT	11340
GCATGAGACT	CATGATTCCT	TCCTGCATAC	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTI	TTCGACAGTC	GCATACTCAA	ACAAACGAGT	GATTTTTCA	CCTACAACCG	11460
TACCCATAGA	AGCCATGATA	AAGTTAGAAT	CCATAATCCC	AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGG	AGTTCCTGTC	ACAACGGCTT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT	TTGGTAACCA	GGGAAATGCA	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAZ	GGTTCCCATA	TCAATCGTCA	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT	ACAGTGCGGA	CAGATACGTT	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC	TGGACACTGG	GAAAATAATT	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
тттсссталс	CGAACGATTG	GGATTGATTC	GAATATACTT	ATCTTTTTTA	CTAAATAGAG	11880
CCATTGATTC	CCCTTTTCGG	TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA	GGTTTCCATC	AAGAAGGAAG	TATCATAATC	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG	GTCAAGCTGG	AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	TCTAATTCAT	12060
AGAGGGCACG	TTGCATTTTC	ATCAAGGCGT	CAAAACGATT	TTCGCCGTGT	ACTATGATTT	12120
TGGCAATCAT	ACTATCATAA	TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC	AACTCCACCA	CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA	GGCTGGGTTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC	TTGCTTAACA	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC	: ACCTGAAACA	AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA	ATAGAAATTG	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC	AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT	TGCAATCGAG	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG	TTCACCCAAG	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG	AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG	12720
CCTTGGCCTC	ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC	TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC	AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

202 CAGGCACACC TGCTTTAATC ATCTGAGCAC GCGCATTGAT CTTATCCCCC ATCATATCCA 12960 TAACATGACC AGATGGACCG ATAAACTTGA TACCTACTTC TTCACACATG GTCGCAAATT 13020 TGGAATTTTC ACTGAGAAAT CCAAAACCAG GGTGAATAGC TTCTGCCTCA GTCAAGACTG 13080 CAGCTGATAG AACTGCATTA ATATTGAGAT AAGACTCTGT TGCCTTGCCA GGACCAATAC 13140 AAACTGCTTC ATCTGCCAAA AGCGTATGAA GAGCTTCCTT ATCAGCAGTT GAATAAACCG 13200 CTACCGTCGC AATCCCCAAT TCACGTGCCG CACGGATAAT ACGAACCGCA ATTTCACCAC 13260 GATTGGCAAT TAAAATTTTT CGAAACATGG AGAACCTCCT TAGTTCCCAA TTGCAAAAGT 13320 AAGGGTACCA CTGGCTGCAA GCTTGCCATC CACTTCAGCC TTTGCTTCAA CCACAGCTAT 13380 GGTGCCACGA CGTTTTACAA AAGTCGCTGT CATAACCAAT TGGTCGCCTG GTACAACTTG 13440 CTTCTTGAAC TTAACCTTGT CCATACCAGC GTAAAAGACC AGTTTTCCTT TATTTTCAGG 13500 TTTTGATAAC TCCAACACAC CGGCAGTTTG CGCCAAGGCT TCCATAATCA CAACACCTGG 13560 CATAACTGGG TATTGAGGAA AGTGGCCGTT AAAGAAAGGC TCGTTGATGG TCACATTTTT 13620 GATAGCAACA ATGGTATCCT CGCTCACTTC CAAGACACGG TCCACTAGAA GCATAGGATA 13680 ACGGTGGGGA AGAGCTTCTT TGATTCCTTG AATATCGATC ATTTGATACG TACCAATCCT 13740 TTACCAAACT CAACCATTTC TTCGTTAGAG ACGAGAATTT CCGTTACCAC ACCATCCTTA 13800 GGAGCTGGGA TTTCATTCAT GACTTTCATG GCTTCGATAA TTACCAATGT TTGACCTTTT 13860 TTGACACTAT CACCAACTGT AACGAAGGCA GGTTTATCTG GTCCAGCAGC CAAGTAAACC 13920 ACTCCAACAA GTGGACTCTC TACAAGATTT CCCTCAGTAG CCACACTTGC TTCAGCTGGA 13980 GCTGGAACTT CTTCTGCTAC AGTCTCTGCT GGAGCAGATG TAGGAGCTAC TGGACTCGGT 14040 GTTGCTAGAA CGGGTGCTGG AGCGACTTGA GTTGCAACTT CAGGCACAGG TCTTGCTTCA 14100 TTCTTGCTAA ACTGCAACTC ATCCGTCCCA TTTTTATAAG AAAATTCTCT CAAACTTGAC 14160 TGGTCAAATT GAGTCATCAA GTCTTTAATA TCGTTTAAAT TCATACTTAT CTATTCTCCC 14220 AACGTTTGAA AGCAAGAACT GCATTGTGGC CTCCAAAACC AAAAGTATTT GAAATAGCGT 14280 ATGGAATTTC TTTCTCCAAG CCTTGTCCAT AAACGACATT AGCTTCGATA TAATCTGATA 14340 CTTCACTTGT CCCAGCTGTC ATTGGTACAA AGTTATGACG CATAGCTTCG ATGGTGACGA 14400 TAGCTTCTAC TGCACCCGCA GCCCCCAGCA AATGTCCTGT AAAAGACTTG GTTGATGATA 14460 CAGGTACTTC CTTACCAAGA ACAGCTACGA TAGCACCACT TTCTCCTTTT TCATTGGCAG 14520 GAGTTGACGT TCCGTGAGCA TTGACATAGG CTACTTGCTC TGGAGAAATC TCAGCTTCTT 14580 CCAAGGCTAG TTTGATGGCC TTGATAGCTC CCTGACCTTC TGGATGTGGA GAAGTCATGT 14640 GGTAGGCATC ACAAGTATTT CCGTAACCAA CCACTTCAGC CAGGATAGTA GCTCCACGTT 14700

TTTCAGCGT	G TTCAAGACTT	TCTAGAACCA	ACATCCCTGA	ACCTTCACCC	ATAACAAACC	14760
CATTGCGAT	С СТТАТСАААТ	GGGATCGAAG	CACGAGTTGG	ATCCTCTGTA	GTAGAGAGAG	14820
CTGTTAAGG	TTGGAAACCA	GCGATGGCAA	AAGGTGTGAT	AGAAGCTTCT	GTTCCTCCCA	14880
CCAACATCA	C ATCTTGGAAA	ССАААСТТАА	TGGAGCGGAA	GGCATCCCCA	ATCGCATCAT	14940
TTGATGAAG	A GCAGGCAGTA	TTGATAGATT	TACAAACACC	GTTTGCACCA	AAACGCATGG	15000
CTACATTCC	AGAAGCCATA	TTTGGTAAAG	CTTTTGGAAG	AGTCATTGGT	TTGACACGTT	15060
TGGGTCCTT.	TTCATGAAGG	CGAAGTACCT	GATCTTCAAT	TTCCTTGATT	CCACCAATAC	15120
CAGATGCAAG	GATAACACCA	AAACGATCCC	TATTAAGAGC	CTCTACATCA	AGATTGGCAT	15180
GATTTACAGO	CTCTTGGGCT	GCATACAAGG	CATATAAAGA	ATAGTTATCA	AAACGGTTGG	15240
TATCTTTTT	TACAAAGTAT	TTATCGAACG	GAAAATCTTG	GATTTCTGCC	GCATTATGCA	15300
CATCAAAGTO	CACTATGATCA	AATTTTGTAA	TGCCACCAAT	GCCGATTTTC	CCAGTTGCTA	15360
AACTATTCC	A AAATTCTTCT	GGTGTATTTC	CGATTGGAGA	TGTTACTCCA	TAACCTGTTA	15420
CCACTACTCC	ATTTAGTTTC	ATTCTTTTCA	CCTCTAGCTT	TCGCTACATA	CTTAAGCCAC	15480
CATCAATGG	AACCACTTGT	CCAGTTAGAT	AATCTTGGCC	TGCTAAAAAT	ACTGTCAAAT	15540
CTGCAACCTC	CTCTGCCTGC	CCAAATTCTT	TCATCGGAAT	CTGAGCTAGT	GTAGCTTCCT	15600
TAATCTTATO	TGACAGGATA	GCGGTCATAT	CAGACTCAAT	CATTCCTGGA	GCAATCACAT	15660
TGACTCGTAT	ATTCCGACTA	GCGACCTCGC	GTGCCACAGA	CTTGGTAAAG	CCAATCAAGC	15720
CAGCCTTAGA	AGCAGCATAA	TTAGCTTGAC	CAATATTCCC	CATCAAACCA	ACAACACTAG	15780
ACATATTAAT	GATAGCACCT	TCTCTGGCTT	TCATCATCGG	TTTCAAGACT	GATTGTGTCA	15840
TATTAAAGGC	ACCAGTCAGA	TTGACCTTGA	GCACTTTTTC	AAAATCTGCT	TCTGTCATCT	15900
TGAGCATAAG	AGTATCTTGG	GTAATCCCTG	CATTGTTGAC	CAAAACATCT	ACTGAACCCA	15960
GTTCTGCAAT	AGCTTGATCA	ATCATACGCT	TAGCGTCTGC	AAAATCTGAT	ACATCTCCTG	16020
AAATGGGAAC	CACCTTGATA	CCATAGTTTG	AAAACTCAGC	GAGCAATTCT	TCTGAGATTG	16080
CCCCACGACT	GTTTAAGACA	ATGTTGGCTC	CTGCTTGAGC	AAACTTGTGG	GCGATGGCAA	16140
GACCAATTCC	ACGACTCGAA	CCTGTAATAA	AGATATTTTT	ATGTTCTAGT	TTCATTTTTT	16200
TCCTTTCAAA	ACTTCTACTT	ATTTTAGTCT	ATTTTTCTAA	AAGTGCTACT	AAACTCGCTT	16260
GATCTTCCAC	ATGAGCTAAG	TGAGCAGTTT	GATCAATTTT	TTTAACAAAA	CCTGACAAGA	16320
CTTTCCCCGG	TCCAATCTCG	ATAAAGTTGC	TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	16380
TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	16440

204 TTTGCATCAC AGCAGCTTCT GTATTGCCGA CTAGGGGACA AGTAAAATCT GAAAAACTTA 16500 CCTGAGCTAG AGTTTCAGCT AGTTTCTGGC TAGCAGGTTC AAGGAGAGCG GTGTGAAAGG 16560 GACCTGACAC CTTAAGAGGA ATCAAGCGTT TGGCACCTGC TTCTTGCAAA AGTTCAACCG 16620 CTCGATCAAC TGCAACCACT TCTCCAGCAA TGACGATTTG TGCAGGTGTG TTATAGTTGG 16680 CTGGAGTAAC CACTCCAAGT TCAGAAGCTT TTTGACAGGC TTCTTCAATG ACCTCTACTG 16740 GCGTATTGAG AACTGCTACC ATCTTGCCAG AGTCAGCAGG AGCCGCTTCT TCCATATAGG 16800 CTCCACGCTT AGCTACCAAG GCAACCGCAT CTTCAAAATC CAAGGCGCCA CTTGCCACCA 16860 AGGCAGAGTA TTCTCCAAGA GACAAACCAG CAACCATATC AGGCTGATAG CCCTTTTCTT 16920 GCAATAAACG GTAGATAGCA ACCGAAGTCG CTAGAATGGC TGGTTGCGTA TAGCGGGTCT 16980 GATTGAGTTT GTCTTCTCC GTATCGATGA GATAACGCAA ATCATAACCG AGCACCTGGC 17040 TCGCTCGATC AATCGTTTCT TTAACAATCG GATACTGATC ATAGAAATCC CGTCCCATCC 17100 CTAGATACTG GGCACCTTGA CCAGCAAATA AAAAGGCTGT TTTAGTCATT TCTTACAACT 17160 CCTGTCCAGC GAGAGGCTTC TTCTTGAATT TTCTTAGCGG CTCCGTAATA CAAATCTTTT 17220 AGGATTTCTT CAGCTGTTTC TTCTTTAGAA ACAAGCCCTG CGATTTGACC TGCCATAACA 17280 GAGCCACCAT CCACATCACC GTGAACAACT GCTTTGGCTA GAGCACCTGC TCCCATTTGT 17340 TCAAAGATTT CTAAATCAGG ATCTTCTTGC TTAAAGGCAT CTTTTTCAGC CAGTTCAAAA 17400 TCTCTAGTCA ACTGATTTTT AATAGCACGA ACAGCATGAC CAAAGTGCTG AGCTGAAATC 17460 GTAGTATCAA TATCCCTTGC TTTTAAAATT TTCTCCTTGT AGTTTGGATG GGCATTCGAC 17520 TCTTTTGCAA CTACAAACCG TGTCCCCACC TGTACAGCCT CTGCACCTAG CATAAAGCCA 17580 GCCGCAGCAC CTTCACCATC CGCAATTCCT CCTGCAGCAA TAACAGGAAT AGATATAGCT 17640 GTGGCTACCT GTCGCACCAA GGTCATGGTT GTTAATTTAC CGATATGCCC CCCAGCTTCC 17700 ATTCCTTCTG CAATAACAGC GTCTGCACCG ATTTTTTCCA TGCGTTTAGC TAAAGCGACA 17760 CTAGGAACAA CAGGAATAAC GATTATCCCA GCTTCATGGA AACGTTCCAT ATACTTGCTT 17820 GGATTTCCTG CTCCTGTTGT GACAACTTTA ACACCTTCTT CAATAACGAG ATCCACGATG 17880 TCTTCCACAA AGGGAGATAA GAGCATGATG TTGACCCCAA AGGGTTTATC AGTCAATGAT 17940 TTGATTTTAT CAATATTGGC CTTGACAACT TCTTTCGGGG CATTTCCCCC ACCGATAATT 18000 CCTAATCCTC CAGCCTTGGA AACAGCCCCT GCCAAATCAC CATCAGCAAC CCAGGCCATC 18060 CCTCCTTGGA AAATAGGATA ATCAATCTTC AATAATTCTG TAATACGCGT TTTCATAGTG 18120 CCTCCAACCT TCCTTGCTTA CGTAATAGTT CGATTTCACC ATAATTTGAC AGTCAAACTA 18180 TTACCTAAAC AAGAGGGAGT GGGTTTCTCC CTACTCCTTC TACTAATATT CTGCTTATTT 18240

205

TGCTTGCTCT	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTTGTA	СТТТТТСААА	TACTGCCATG	ATAGGACTCC	TTTAAAATAA	18480
ATAGTTTTTT	TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTT	TCTAGCCATC	18720
ТТАТССАААА	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTTGTA	19440
ACCACTTGCT	CTGGCACATA	ATGAGCAACC	TGACTTATTT	TTGCAAAAGC	CATTATTTCA	19500
AATCCTCCAA	AAATTGGTAA	AGATTAGTCA	AACCTTTACC	CATGACAGCA	ATTTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTTCTACCA	TGGCCTTGTG	GAAGCGTTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTTCTTT	GTCAAATGCA	GATGCACCAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG				19702

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6211 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

206

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAAAATTTCC	TCTCTTCTCT	TGAAAAATTT	TGAAAAAATG	GTATGATAGT	AACAAGTTAT	60
TTTTAAGAGG	AAAGAAAGGG	GAATAATGGA	GAAAATCAGT	TTAGAATCTC	CTAAGACGGG	120
GTCGGACCTA	GTTTTGGAAA	CACTTCGTGA	TTTAGGAGTT	GATACCATCT	TTGGTTATCC	180
TGGTGGTGCG	GTTTTGCCTT	TTTATGATGC	GATATATAAT	TTTAAAGGCA	TTCGCCACAT	240
TCTAGGGCGC	CATGAGCAAG	GTTGTTTGCA	TGAAGCTGAA	GGTTATGCCA	AATCAACTGG	300
AAAGTTGGGT	GTTGCCGTCG	TCACTAGTGG	ACCAGGAGCA	ACAAATGCCA	TTACAGGGAT	360
TGCGGATGCC	ATGAGCGATA	GCGTTCCCCT	TTTGGTCTTT	ACAGGTCAGG	TGGCGCGAGC	420
AGGGATTGGG	AAGGATGCCT	TTCAGGAGGC	AGACATCGTG	GGAATTACCA	TGCCAATCAC	480
TAAGTACAAT	TACCAAGTTC	GTGAGACAGC	TGATATTCCG	CGTATCATTA	CGGAAGCTGT	540
CCATATCGCA	ACTACAGGCC	GTCCAGGGCC	AGTTGTAATT	GACCTACCAA	AAGACATATC	600
TGCTTTAGAA	ACAGACTTCA	TTTATTCACC	AGAAGTGAAT	TTACCAAGTT	ATCAGCCGAC	660
TCTTGAGCCG	AATGATATGC	AAATCAAGAA	AATCTTGAAG	CAATTGTCCA	AGGCTAAAAA	720
GCCAGTCTTG	TTAGCTGGTG	GTGGAATTAG	TTATGCTGAG	GCTGCTACGG	AACTAAATGA	780
ATTTGCAGAA	CGCTATCAAA	TTCCAGTGGT	AACCAGTCTT	TTGGGACAAG	GAACGATTGC	840
AACGAGTCAC	CCACTCTTTC	TTGGAATGGG	AGGCATGCAC	GGGTCATTCG	CAGCAAATAT	900
TGCTATGACG	GAAGCGGACT	TTATGATTAG	TATTGGTTCT	CGTTTCGATG	ACCGTTTGAC	960
GGGGAATCCT	AAGACTTTCG	CTAAGAATGC	TAAGGTTGCC	CACATTGATA	TTGACCCAGC	1020
TGAGATTGGC	AAGATTATCA	GTGCAGACAT	TCCTGTAGTT	GGAGATGCTA	AGAAGGCCTT	1080
GCAAATGTTG	CTAGCAGAAC	CAACAGTTCA	CAACAACACT	GAAAAGTGGA	TTGAGAAAGT	1140
CACTAAAGAC	AAGAATCGTG	TTCGTTCTTA	TGATAAGAAA	GAGCGTGTGG	TTCAACCGCA	1200
AGCAGTTATT	GAACGAATTG	GTGAATTGAC	GAATGGAGAT	GCCATTGTGG	TAACAGACGT	1260
TGGTCAACAC	CAAATGTGGA	CAGCTCAGTA	TTATCCCTAC	CAAAATGAAC	GTCAGTTAGT	1320
GACTTCAGGT	GGTTTGGGAA	CAATGGGCTT	TGGAATTCCA	GCAGCAATCG	GTGCTAAAAT	1380
TGCTAACCCA	GATAAGGAAG	TAGTCTTGTT	TGTTGGGGAT	GGTGGTTTCC	AAATGACCAA	1440
CCAGGAGTTG	GCTATTTTGA	ATATTTACAA	GGTGCCAATC	AAGGTGGTTA	TGCTGAACAA	1500
TCATTCACTT	GGAATGGTTC	GCCAGTGGCA	GGAATCCTTC	TATGAAGGCA	GAACATCAGA	1560
GTCGGTCTTT	GATACCCTTC	CTGATTTCCA	ATTGATGGCG	CAGGCTTATG	GTATTAAAAA	1620
CTATAAGTTT	GACAATCCTG	AGACCTTGGC	TCAAGACCTT	GAAGTCATCA	CTGAGGATGT	1680

TCCTATGCTA	ATTGAGGTAG	ATATTTCTCG	TAAGGAACAG	GTGTTACCAA	TGGTACCGGC	1740
TGGTAAGAGT	AATCATGAGA	TGTTGGGGGT	GCAGTTCCAT	GCGTAGAATG	TTAACAGCAA	1800
AACTACAAAA	TCGTTCAGGA	GTCCTCAATC	GCTTTACAGG	TGTCCTATCT	CGTCGTCAGG	1860
TTAATATTGA	AAGCATCTCT	GTTGGAGCAA	CAGAAGATCC	GAATGTATCG	CGTATCACTA	1920
ТТАТТАТТGA	TGTTGCTTCT	CATGATGAAG	TGGAGCAAAT	CATCAAACAG	CTCAATCGTC	1980
agattgatgt	GATTCGCATT	CGAGATATTA	CAGACAAGCC	TCATTTGGAG	CGCGAGGTGA	2040
TTTTGGTTAA	GATGTCAGCG	CCAGCTGAGA	AGAGAGCTGA	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTGC	AACAGTAGTA	GACGTAGCGC	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAAA	GAGCGAAGCC	CTATTGCGAG	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGGG	TGCAACTGGA	TTTACCCGCG	ATTAAAAATC	CAACTTAAAT	TTATTAAACC	2280
AGCCTAAAAG	GCAATAAATA	ATAGAAAAGA	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTGA	CGGTAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGG	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
TGTACGTCCA	GGTAAATCTT	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
TCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	TCAAGAAAAT	3060
GCGTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
TGCAAATGAC	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTAAA	AACGACGATG	ATGCATTCAA	AATCTATAAC	TAATTAGAAA	TATATAGCGC	3360
TCCACATCAT	መመመልመረጋል አ አ	АСА ФФАФСАС	ΔΔΔΔΦΨΨΟΟΔ	ጥርርጥጥልጥጥልጥ	ጥርርጥጥር ጥልርጥ	3420

208 TGTATAATGT AATTACACCG TCGGTAATAG TGCTAGCAGA CCAAAATAAA GCAGATTGGT 3480 CGTATGATGA AAATGCTGTA ATTAACATTT ATGATGATGC TAATTTTGAA GATGGTAGGT 3540 TGCATATGAA CTTTGAACAA TTCTTCAAAT TGGCACAAAT AGCTAGAGAA GAAGGTCTTG 3600 AAATTCATTC TCCGTTTGAG AGAGCTGGTG CGACTAAATC TGCTCGTTAT ATAGCGAAAT 3660 GGATTTTGAG AAATAAAAAA CATTAACAAA TATAGTTGGT AAATCATTAG GACCTAAATC 3720 AGCTGTTAGA TTCGGAGAAG CTTTATCCTA TATTGAAGGT CCTCTTCGCA GAATAAATGA 3780 GACGATAGAT GGCGGTTTAT ATCAAATAGA GCAAATTATT GCATCTGGAT TGAAAGAATC 3840 GGGTTTAAAT GACTGGACTG CGAAAACTTT AGCTTCAGCT ATTCGTGGGA TATTAGATGT 3900 ACTTATTTAG GGGTTGAAAT CATATGAATA TTACCAATTT GTTTTCTATC AAGACAGGAT 3960 GTGATGAAAC TGATAGGCAA CTGCAAAAAC TATTTTTTCA GTTGGATTTA CAATTGGGAG 4020 AATTGACAGA TCAACTAAGA AAATTAGATT CTAATTTTGT TCCTCGTAGT CAATTTGTAG 4080 ACACGTTGGA TTTGAATGAT GTAGAATATA AAGAAATTTT AAACTATTTT ATCTTCCATC 4140 GTAATGATAG TGAAGAAAGT TTGGTAGAAT GGTTATATGA TTGGATTTCC ACAAATCGTT 4200 ATGAACTTCC TAAAGAGTTT TCGATTCGTA TGGCTCATAA ATACCATGAA AGTGTTACTG 4260 AAGTTTTCGG AGATGAATAA CTAAAAAACA GTCATTAGTG ACTGTTTTTT ATAGAAAAAG 4320 AGGTTTTATA TGTTAAGTTC AAAAGATATA ATCAAGGCTC ACAAGGTCTT GAACGGTGTG 4380 GTTGTGAATA CTCCACTGGA TTACGATCAT TATTTATCGG AGAAGTATGG TGCTAAGATT 4440 TATTTGAAAA AAGAAAATGC CCAGCGTGTT CGCTCCTTTA AAATTCGTGG TGCCTATTAT 4500 GCCATTTCCC AGCTCAGCAA GGAAGAACGT GAACGTGGGG TAGTCTGCGC TTCTGCGGGA 4560 4620 ATGCCCATTA CTACGCCACA ACAAAAGATT GGTCAGGTTC GCTTTTTTGG TGGGGATTTT 4680 GTAACTATTA AACTAGTTGG AGATACCTTT GATGCCTCAG CCAAAGCAGC TCAAGAATTT 4740 ACAGTCTCTG AAAATCGTAC CTTTATTGAT CCTTTTGATG ATGCTCATGT TCAAGCAGGT 4800 CAAGGAACAG TTGCTTATGA GATTTTAGAA GAAGCTCGAA AAGAATCGAT TGATTTTGAT 4860 GCTGTCTTGG TTCCTGTTGG TGGTGGCGGT CTCATTGCCG GGGTTTCTAC CTATATCAAG 4920 GAAACAAGTC CAGAGATTGA GGTTATCGGA GTAGAGGCGA ATGGAGCGCG TTCCATGAAA 4980 GCTGCCTTTG AGGCTGGAGG TCCAGTAAAA CTCAAGGAAA TTGATAAATT TGCTGATGGG 5040 ATTGCTGTGC AAAAGGTAGG TCAGTTGACC TATGAAGCAA CTCGTCAACA TATTAAAACT 5100 TTGGTAGGTG TCGATGAGGG ATTGATTTCT GAAACCTTGA TTGACCTTTA CTCTAAGCAA 5160 GGGATAGTCG CAGAACCTGC TGGAGCGGCT AGTATCGCCT CTTTAGAGGT TTTAGCTGAA 5220

209

TATATTAAGG	GGAAAACCAT	TTGTTGTATC	ATTTCTGGAG	GAAATAATGA	TATCAACCGT	5280
ATGCCAGAAA	TGGAAGAGCG	TGCCTTGATT	TATGATGGTA	TCAAACATTA	CTTTGTGGTC	5340
AATTTCCCAC	AACGTCCAGG	AGCTTTGCGT	GAGTTTGTAA	ATGATATCCT	GGGGCCAAAT	5400
GATGATATCA	CACGTTTTGA	GTATATCAAA	CGAGCTAGCA	AGGGAACAGG	CCCAGTATTA	5460
ATTGGGATCG	CTTTAGCAGA	TAAGCATGAT	TATGCAGGTT	TGATTCGTAG	AATGGAAGGT	5520
TTTGATCCAG	СТТАТАТТАА	CTTAAATGGT	AATGAAACGC	TTTATAATAT	GCTTGTCTGA	5580
GGACTAATAA	AAAAATATCA	TACCTTCATT	TTGATTTCCT	ATCTATTGAC	AAGCATAGTC	5640
ACACTGTCTT	TAATACTCTT	CGAAAATCTC	TTCAAACCAC	GTTAGCTCTA	TCTGCAACCT	5700
CAAAACAGTG	TTTTGAGCAA	CTTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	5760
AGTATAAGGT	ATGATTTGAT	TTCTTTTTGT	TGACAAATAT	actatattaa	AAAGATATAT	5820
AAGTAATTAA	CTGAGCTTAT	CTGTCTTGTC	АТСТСТАТТА	AGGATGGTTT	AGATAATCGG	5880
GTGTCTGCTT	CTAGGCTAGC	ACCTCAATAT	CCAAAGGAGT	GATGAATTTG	AAGGACATAA	5940
GGAATACCTA	TCTCTCAGAT	GATTTATTGA	GGAAGAAAGA	TAGGAGTTTT	TGAGCTAGTG	6000
AAGGCTTGGA	TTTCTAAAGG	TTAGAACTAT	CATCTTCAGT	TCTTAAATCG	AAGAAATAAG	6060
CTATCTTACG	GAAATAGAGA	AGCATTTTTT	AAGAACTTGA	ATAATTTCGC	ACCTTAAGAG	6120
GGTAATAATA	CAGTATTTT	ATTAGCAAAT	ATTTATGGTG	TAGAGGCTAG	CAAAACCTAT	6180
ATATTATCGG	ATTTAAAAAG	GAAGTAAGAA	A .			6211

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

60	TTTCAGATAT	CTATCTTGAT	GAGTATATTT	CAAAATAACT	CACGATTCTT	CCGGACTCCC
120	CATGGCTTCT	GCTTCTCCGA	CTTGAGAAGA	TCTTCTTACG	TTCTGTGGCC	AAATTCTTCC
180	CTCTTGTATA	GGCAAGCGTG	AAGTTTGACT	GAGCATAGAT	GCAAAACCTT	TCCTTACTGA
240	TCGTATAGCC	CTCATATCAG	GAGGCGTCTT	TGTGGATAGC	TTCCCACTAT	TTTGGCTCCC
300	GATCCATAAT	TAAGCCTTAT	AACGTACATA	GACACTCCAG	GATCCATCAC	TATATAGTAG
360	AAAGGAGGTA	GTGGACAATC	CATCATCATT	GTATAAGAGC	GATTTCGGGC	AAATCTCTTC

			210			
AGACCTTAAA	GCCACTTGTT	GAGCCATCCT	TGATCGCCTC	AATCAAAAGC	ATATTGGCTT	42
ССТТТТСТСТ	TTTTGGATAA	ACAAACTGCA	GGCGCTTAGG	GGCTAGATTA	TGTCGTTTTA	48
ACGTATCCAA	AATATCCAGA	AGTCGATCAG	GACGATGAAC	CATGGCCAAA	CGCCCATTAG	54
ACTTGAGAAT	ACTCTGGGCA	CTACGACAGA	TTTCTTCCAA	ATTAGTCGTG	ATTTCGTGTC	60
GAGCCAAGAG	ATAATGTTCA	CTCTCGTTCA	GATTAGAATA	AGGATTCACC	TTGAAATAGG	66
GTGGATTACA	CAAAATCATA	TCCACCTTAC	TCCCCTGAAT	GTGAGCAGGC	ATATTTTTCA	72
AATCATCGCA	GATGACCTGC	ATTTGCTCCT	CTAATCCATT	CAAACGGACA	GAGCGTTCAG	78
CCATATCCGC	CAAACGCTCC	TGAATCTCAA	CAGACAATAT	CTGTGCTTGA	GTACGAGTGC	84
TAGCAAAAAG	CCCCACTGCT	CCATTCCCAG	CACAGAAATC	CACAATCAAC	CCCTTCTTAG	90
GAAAACGTGG	AAATCGTGAT	AAGAGAACAC	TATCCACCGA	ATAGCTAAAA	ACCTCTCTAT	96
TTTGAATGAT	TTTGATATCT	GTCGAAAAGA	GCTGGTTAAT	GCGCTCTCCT	GATTTTAATA	102
ATTGTTCTTC	TTCCATGGTC	CTATTATAGC	AAATTCATAT	TAACATTACA	АААААТАТАА	108
AACTCTAAAC	TACTTCTTCT	TTTTTAAATG	GTGCAGGGCT	TCTCCAGTCC	AGATTGGTAG	114
CATTCGTCGA	AAGGGAGCAA	AGCCGTAGTT	AAAGCGGTCG	CTTGAAAAGC	GTCTCCGTCT	120
AGGAAACTGG	TACTTTTCTT	CCTCCAAAGT	GCGGATAGAA	AGACTGGCTT	TCCCTGTAAA	126
TCATCTAAA	TCCACTACCT	GAACTTGAAC	CTCTTCATCG	ACTTTCAAGG	TTTCATGAAT	1320
ATTTTCAATA	AATCCTGTCC	GAATCTCTGA	AATGTGAATC	AGCCCCGTAT	CACCCGTCTC	1380
RAACTCAACA	AAGGCACCGT	AGGGCTGAAT	CCCTGTAATA	CGCCCCTTTA	GCTTATCACC	1440
GATTTTCATC	TTAGTCCTCG	ATTTCAATAG	TTTCAATTAC	AACATCTTCA	ACTGGCTTGT	1500
CCATAGCTCC	TGTCTCAACA	GCAGCAATGG	CATCCAAGAC	AGCGTAAGAT	GCTTCATCAG	1560
TAACTGACC	AAAAACCGTG	TGACGGCGGT	CTAGGTGAGG	TGTCCCACCT	TGATTGGCAT	1620
AGATTTCTGC	AATCGGTTCT	GGCCAACCAC	CACGAGTAAT	TTCTTTCTTA	GAATAAGGTA	1680
GTGTTGGTT	TTGCACGATA	AAGAACTGGC	TGCCGTTGGT	ATTTGGACCA	GCATTTGCCA	1740
GGAAAGAGC	ACCACGGATA	TTGTAAAGCT	CTTCTGAGAA	TTCATCCTCA	AAAGATTCGC	1800
GTAGATTGA	CTCGCCACCC	ATACCAGTTC	CAGTTGGGTC	TCCACCTTGG	ATCATAAAGT	1860
CTTGATAAT	ACGGTGGAAA	ATGACACCAT	CATAGTAGCC	ATCTTTTGAA	AGAGATACAA	1920
GTTAGCCAC	TGTTTTAGGA	GCATGTTCAG	GGAAAAGCTT	GATACGTAAG	TCTCCGTGAT	1980
GGTCTTAAT	AGTCGCAAGA	GGACCTTCTA	CTGTTTCAAT	GTCTACTTGT	GGAAAATGCA	2040
TTCTTTTTC	TACCATACCA	AATACTTCTA	AGGCAGCAAA	AATGCCATCT	TCTTCTAATG	2100
	> m > > m cm c cm	mmmm comma	mmmn man ma			

TGATTCCAGC	ATAATCAAAG	AGTTCCAAGT	CGTTGAGACC	АТСТССАААА	ACCATGACCT	2220
TCTCTGGTTT	CAAGCCAAGG	TGTTCCACAA	CCTTTTCCAC	CCCCGTCGCT	TTGGAGCCTG	2280
AAATCGGCAC	AATATCAGAC	GAATGTTGAT	GCCAACGAAC	CATGCGAAGT	TTGTCTGAGA	2340
GACTGTCAGG	CAAGTGCAAG	TCATCTCCCT	ТАТСТТСААА	AGTCCACATC	TGATAGATAT	2400
CTTCTTTTTC	ATGGAAATCG	GGATCTACAT	CTAAGTCGGG	ATAAATTGGA	TTGATAGCTT	2460
CACTCATCAT	ATCGGTGCGA	GTCGACAACT	TGGCATCATG	ACTCCCAACC	AAGCCATACT	2520
CAATTCCTTC	TTGCTTAGCC	CAAGAGATAT	ACTCCTCAAC	ATCTGACTTT	TCAATCTGAT	2580
GCTGATAAAT	GACCTGACCT	TTTTTATCTT	CGATATAAGC	CCCATTCAAA	GTTACAAAAA	2640
AGTCAGGCTT	GAGATCACGA	ATCTCTGGAA	CAACACCAAA	AATGCCACGT	CCAGAGGCGA	2700
TTCCTGTTAA	AATTCCTTTT	TCACGCAACT	GTTTAAAAAC	AGTGGGAATT	GTAGTTGGAA	2760
TAAACCCTGT	CTTTGAATTC	CGCAATGTAT	CATCAATATC	AAAAAAGACA	ATCTTGATCT	2820
TCTTTGCCTT	GTATCTTAAT	TTCGCGTCCA	TCTCACTACC	TCTTTCAATC	TAACTCTTTC	2880
CATTATATCA	TAAAGTAGGC	AAATCCCCTA	TTTTCAAAAA	GTTTATCATT	TTTATTTAA	2940
TTTCTTGGAT	GAGAAAAGAG	ACATATTTAT	GAAAAAGCTC	CATCGTGCTT	TTAATGTGTT	3000
CTCTTGTTTT	CAAACTCGTA	AAAAGGGAGC	CACTGATCCT	AACTCGCTCT	CTCATTTCAA	3060
AGCTTGTGAA	AAAAGACCCG	TTGGGGTCTT	AATTCGCTTT	CTTGTTTTCA	AGCTCATGAA	3120
AAAGAGACCC	AACTGGGTCT	TTTCTTTAAT	CTTCGTTTAC	GAAAGGCATC	AAAGCCATTA	3180
CGCGAGCGCG	TTTGATAGCT	GTTGTTACTT	TACGTTGGTT	TTTAGCTGAA	GTTCCTGTTA	3240
CACGACGAGG	AAGGATTTTC	CCACGTTCTG	AAACGAAACG	GCTAAGAAGC	TCAGTATCTT	3300
TGTAATCAAC	ATATTCAATT	TTGTTTGCTG	CGATGTAATC	AACTTTTTTA	CGGCGTTTGA	3360
ATCCGCCACG	ACGTTGTTGA	GCCATGTTTT	TTCTCCTTTA	TAAGTTTAGT	TGTCCATTAG	3420
AATGGTAAAT	CATCATCTGA	AATATCCAAT	GGGTTTGTTG	CTCCAAATGG	ATTTTCATTA	3480
CGTGAAAAGT	CTGGTACTGA	ATTTGTAGGT	GCTGAATAGT	TTGCAGTTGG	TGCAGAGTAA	3540
GCTCCACCTG	TGTGACCCTC	ACGCACACTA	CGGCTTTCCA	ACATTTGGAA	ATTCTCAGCC	3600
ACGACCTCTG	TCACGTAGAC	ACGTTGTCCT	TGCTGGTTAT	CGTAACTACG	AGTCTGGATA	3660
CGACCTGTCA	CCCCGATAAG	TGAGCCTTTT	TTAGCCCAGT	TAGCAAGATT	TTCAGCCTGT	3720
TGGCGCCACA	TAACGACATT	GATAAAATCA	GCCTCACGTT	CACCATTTTG	АСТСТТАААТ	. 3780
GTACGGTTTA	CTGCAAGAGT	AAAAGTCGCA	ACTGCTACAT	TTGATGGGGT	ATAACGCAAC	3840
TCAGCGTCAC	GTGTCATACG	CCCTACAAGT	ACAACATTGT	TAATCATAGT	TTACCTTCTT	3900

			212			
ACGCGTCAA	T TTTGACGATC	ATGTGACGAA	GAATGTCAGC	GTTGATTTTT	GAAAGACGGT	3960
CAAACTCTT	T AAGAGCTGCA	TCGTCATTTG	CTTCAACGTT	AACGATGTGG	TAAAGTCCTT	4020
CACGGAAAT	C TTGGATTTCG	TATGCAAGAC	GACGTTTTTC	CCAAGTTTTT	GATTCAACAA	4080
CAGTTGCAC	C GTTGTCAGTC	AAAATAGAGT	CAAAACGTGC	TACCAAAGCG	TTTTTAGCTT	4140
СТТСТТСАА	T GTTTGGACGA	ATGATATAAA	GAATTTCGTA	TTTAGCCATT	GATATGTTCC	4200
TCCTTTTGG	т стаатбассс	CAAGACTTTG	CAAGGGGTAA	GTGAGGTTCG	СТСАСААТАА	4260
ACTATTATA	C TAGAAAAAT	TTTTTTACGC	AAGTAAAAAC	ACTAGAATTC	GAAAAAACGC	4320
CACATGGGC	G TTTTCCTGTT	CTTATGGTTT	GATACGGTGC	AACATACGTG	GGAATGGAAT	4380
AGCTTCACG	G ATATGTTTTG	TTCCTGCTGC	GAAGGTTACC	ATACGTTCGA	TACCGATACC	4440
AAATCCTCC	G TGTGGAACTG	TACCGTATTT	ACGAAGGTCA	AGGTAGAATT	CATATTCTGT	4500
ACGATCCAT	G CCAAGTTCAT	CCATCTTAGC	GACAAGGGCA	TCGTAATCTT	CCTCACGCAT	4560
AGACCCACC	G АТААТТТСТС	CATAGCCTTC	TGGAGCAAGC	AAGTCTGCAC	AAAGCACGCG	4620
CTCTGGATT	T CCAGGAACTG	GTTTCATGTA	GAAGGCCTTG	ATGGCTGCTG	GATAGTTCAT	4680
GACAAATGT	T GGCACACCAA	AGTGGTTTGA	AATCCAAGTT	TCGTGTGGTG	ACCCAAAGTC	4740
ATCACCATG	C TCAAGATGCT	CGTAGTCAGC	ATCTTCATCA	TTTTCATGCT	CTTGCAAGAG	4800
GTCAATGGC	T TGATCGTAAG	TGATACGTTT	GAATGGCTCT	GCAATGTAGC	GTTTCAAGAG	4860
TTCTGTATC.	A CGTTCCAAGG	TTTCCAAGGC	TTGAGGCGCG	CGGTCAAGAA	CACCTTGTAG	4920
AAGAGCTTT	C ACATAAGCTT	CTTGCAAGTC	AAGCGACTCA	TCATGTGTCA	AGTATGAGTA	4980
CTCAGCATC	C ATCATCCAGA	ACTCAGTCAA	GTGACGGCGT	GTTTTTGATT	TTTCAGCACG	5040
GAAAACTGG.	A CCAAAGTCAA	AGACACGACC	AAGAGCCATA	GCCCCTGCTT	CTAGGTAAAG	5100
CTGACCTGA	T TGGCTCAAGT	AGGCTGGCGT	TCCGAAGTAG	TCAGTTTCAA	AGAGTTCTGT	5160
AGAATCTTC	T GCCGCATTTC	CTGAAAGAAT	TGGGCTGTCA	AACTTCATAA	AACCGTTCTT	5220
GTCAAAGAA	C TCATAAGTTG	CATAGATAAT	AGCGTTACGG	ATTTGCAACA	CAGCTACTTG	5280
CTTACGAGA	G CGTAgCCACA	AGTGACGGTT	ATCCATCAAA	AAGTCTGTTC	CGTGTTCTTT	5340
rggtgtgat	T GGGTAGTCTT	GAGATTCACC	GATCACTTCG	ATGTCTGTGA	TGTCCAACTC	5400
ATAGCCAAA'	r ttagaacgtt	CGTCCTCTTT	GACAATACCT	GTCACATAAA	CAGACGTTTC	5460
TGGCTCAA	G CGTTTGATAA	CATCAAACTT	CTCAAGTCCC	ACTTCTTCAC	CAAATTTTTC	5520
GACAAAGTT	r ggtttaaaag	CCACACCTTG	AAAGAAGGCT	GTTCCATCAC	GCAATTGTAA	5580
GAAAGCGAT'	т тттссттттс	CTGATTTGTT	GGCAACCCAA	GCGCCAATCG	TCACTTCCTG	5640
	ը ՄԻՐՄՄՄՄՄԻ Խ ԻՐ ԸՄԻ	ር እ እጥል እጥርርጥ	ምል <i>ር ልር ር</i> መመመም	CTCATTATION	mmccmmmmcm	F700

TTTTTATTCT	TTATGGCAAA	CCACCTCTAT	ATTGTTCCCA	TCCAGGTCAA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	TTCTTCCTTA	TTTTCTGCTA	AAAAAGCAAA	5880
ATGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	CCAAAAATCA	CCACCAGGAT	GAGGGCTGTT	5940
CGGGGATAGA	AAACTAATTA	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC	СТАТААААТС	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT	CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT	CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CCAAGGCCAC	TTCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
CTTTCATCTC	CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CCACTTCAAA	TCCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
ATTGGGCTAC	TGCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
TAATGTCTGC	TTCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT	GATGACCACT	GTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
TGAACTCATG	ACCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC	AGCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
TGGGATTAGA	TGGCGAATTC	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
ACTGCTCTAC	GGTCACCTTA	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT	CTTGACCTGA	TCTCCATAGC	TAACCCAGTA	TGGGGTTGGG	ATGATGACTT	6900
CATCACCTGG	ATTGACCACA	GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
CGACTGTCAC	TTGATTTGAC	GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
CCGCCGCCTT	AAGCTCTGGC	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
GAATCGATGC	AATGGCGGCA	TCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA	CAAAATATCT	CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CCAAAGTCAC	ACTTTCTTCC	АТТТСТАААА	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
GTTGACCAAT	GCTCCTGTTT	СААААТСТАС	TAGATAAAAA	TCAGATCCTG	ACTTAACTTC	7320
CCAGATTGGC	TTATCTTGAT	AACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
TTCCTTAGAA	ACCGTTTCTG	CTTTTTCTTG	TGAAACACCC	TGATTTAGCT	GATAAACGTA	7440

AATCTTATGG	TCATCTTTAC	CAATCAGGAC	214 AGCAAGCGCT	TCTTGCTGTT	TGTTACGACC	7500	
AAGAACGCTG	TAATAAGATT	CCAAGCCATT	GTATAAATCA	ACCTGATCAG	CCTGCTCTAA	7560	
TCCTGCATAC	TGCTGAGCTA	ATTTTTCTCC	TTCACTTTTA	GCTGTTTGAT	AGGGTTTCAT	7620	
GCTAAGAGAA	ACCATATACA	GAAAGGAACC	ACTGATAACC	ACAAACAAAA	TCGTCATCCC	7680	
TAGACCATAC	TGCCACAGTA	GATTATTTTT	TGCTTTGTTT	TGTCTTTTT	TCACTCGTCT	7740	
ATTTTACCAT	CTATTAAGCT	TTATTACAAG	TGAATATAAG	AATACTCTTC	GAAAATCTCT	7800	
TCAAACCACG	TCAGCTTTAT	CTGCAGACCT	CAAAGCTGTG	CTTTGAGCAA	CCAATTCTAT	7860	
TTCTCCCTTC	AAACAAAACC	GATTTTGAAA	GTGAAACAGT	TCTTACTTTT	TCAGTCACAA	7920	
atgattagag	TTTGCCGGG					7939	
(2) INFORMATION FOR SEQ ID NO: 10:							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9897 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC	GTCAAATAAT	TACCATTTTG	TTTAATACCG	AAATTTTTAT	CTACTGAAAA	60
TTCAGTTGGT	CTGTTGGTAC	GATCGTCGTA	TACAGTACCA	TTCTCACGAA	TAGTATAATT	120
GTAATCAGTA	TCACCTTGTT	TCCTTAATTT	AAGGTAATAA	TTACCATCAA	TTTGTTTATA	180
ACCTGAATCT	TTTCTAGTTG	CTTCTCTAAA	ACTTACTCCA	GCAGGCATCA	CATCAGCAAA	240
CATGAGTACT	TGTTTGTTCT	TTTTTTCAAC	AATAACAGAG	TCAATATAGG	TTGCACCACC	300
GCTGATTTGT	AAGTCACGTC	CACCAACTTC	ACGAGGCCAT	TCTAATGGTA	CTGGCGCAAA	360
ATCATCGAAT	GCCAATGTTA	ATTTTGGTTT	AGTCCATGTC	TTACCATTAT	CATCACTATA	420
ACTTGTAGCA	ATATTAATTT	TATTCAAGAA	ATCATGAGTT	CCACCGTAAC	GAGCGTCAAT	480
GCTTGAAAAT	ACCCGACCAT	TGCTAAAAGT	ATACAGAACT	GGAATACGGA	AATAGTTAGA	540
ACCTGTTGTA	TCATTAGCCG	TATAAATTAA	ATGTCCAGTA	ACAGCGTTTG	TTGTCATCTT	600
TTTAACAGTT	TCTTCATCCA	ATGCACTATT	AAAGAATTTG	ATATTTTCTA	GTGTTCCGTT	660
AAAACCAAAC	GCCGTTTTTC	CTGCACGTTT	CACTCCCCCA	AGCATATAGT	AATCAATACC	720
TTTAATATCC	TTGATGTTTA	GGAAATTATC	CACTTTCTTT	TCTACTACTT	TTGTACCATT	780
TGCGTATAAA	GAATATGTTT	TTTTGACTGA	ATCTGCTACT	ACTGCAACAG	TGTTAGTCAC	840
AGCCTCTTGT	TTGTACTTAC	CCCAAACTGA	AGCAGGTCTG	GATACTAGGT	TATTTTTATT	900

GGAAGAAGTA	TCACGCGCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
АТААСТАТТТ	TGTTGACCGG	GTTTGGAATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
ТААСТСТТТА	GTAACATTTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTT	TTTCTAAGAC	1140
AGGAGTTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	GAGTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTTGA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAAGGTTA	CATATTGTTT	1380
AATATTTTTT	TTCATTTTAT	TTTTCCTCGT	TTAAAACTTT	GATAACAAGT	TTTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	ACCAACATAT	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTCAG	1620
TATTTTCAAC	AACAATATGA	АТАТСТАААТ	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	TCAATATCAA	1740
PTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTTCTAA	AAAATCACAG	ACTTTTGAAA	1800
A ATA TT TATT	GACAGAAGCA	TATCGTTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
PTTCTCTTTT	CTATTAGTGA	CGAACTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	GAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
PTGGAGGAAG	Gaagtattta	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTTAGAAA	CAAATCCAAG	AATAAATACA	CCACCAAGTA	2160
GACCAAGTAC	AAGTCCCATG	aaactattga	ACCATTCGTA	TGCAGATTTA	ATATCTGAGT	2220
GAGCCATGAC	AATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
CCATGAAGT	TGCAACAGAG	TTCAAACCTG	TTGAAATAGT	TGATTGAGAT	GCTGCATAAA	2400
CGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AAGTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	AAGTAAAAGA	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TOTAL ACAA	<u> </u>	እርጥጥጥ ርጥ ጥ እ እ	TO THE PROPERTY OF THE PARTY OF	mcmacmaaaa	CCTTCAACCA	2640

			216			
AATCTTGAGA	TGAAGCATAG	GAAGACAAGA	TTGTAAAGCC	TGAACCCATC	ACAATTAAAA	270
AGATGGAGTT	TGAAAGCAAG	TTAGGATCGA	AAAGTTTTTC	ATTTGCAGCA	AGGAATTTCC	276
CGTTTGCTAA	TGTTTCTGCT	ACTGCACCAA	AGCCACCTTT	AATATTAGCA	ATCAGTACAA	282
АТАААССТАА	AACGACACCA	CTAATCAGAA	TCACACCTTG	AATAAAGTCT	GTCCATAATA	288
CGGATTTTAG	ACCACCAGTA	TAAGAATAAA	CAATTGCAAC	TACACCCATC	AAAATAATCA	294
AAATATTGAT	GTCAATTCCT	GTCAATACTG	ATAAACCAGC	TGATGGGAGG	TACATAATGA	300
TAGACATACG	TCCCAATTGA	TAAATAATAA	ACAAGAGTGC	TGAAATAATA	CGAAGTGCTT	306
TAGAATTAAA	ACGTTTATCC	AAGTAATCAT	ATGCCGTATC	GATGTCTATC	CGTGCAAAGA	312
TAGGTAAGAT	AAAACGAATT	GTCAGTGGAA	TAGCTACTAC	CATCCCTAAT	TGAGCAAACC	318
АТААААТССА	GCTACCTGCA	TAAGAGCTAC	CAGCGAGTCC	CAAGAAGGAA	ATCGGACTGA	324
GCATTGTGGC	AAAAATGGAT	ACCGAAGTAA	CATACCAAGG	AACCGAACCA	TCTCCTTTAA	330
AGAACTCTTT	TCCTTTCATC	TCTTTTTTAG	AGAAATAGAT	ACCTGCAACC	AACACCGCAA	336
GTAAATAAAC	AATCAAGATA	ATTAAGTCAA	TTATTGTAAA	TCCTGTTGTG	CCCATAACAT	342
ATCTCCATAT	TGATTTTATT	TATTATAAAA	ATTCTTTTCG	TGCTTGTTGA	ATAAGTTCTG	348
CTGCTTGTTT	TGCAACTTCC	AAGTCACCTT	CTGCCAATGC	TTCTAAAGGT	TGACGAACAG	354
AACCTAAATC	AAGTTTTTCA	TTTAGACGCA	AAACTTCTTT	TGCTACAGCA	TACATATTTG	360
CCTTACCTGA	TATCATCTTA	TAGATAACTT	CATTGATAGC	ATATTGAAGT	TTTTTAGCTG	366
ГАТСТАААТС	TCGTTCTTGA	ATCAAACTTT	CCAATTTCAA	GAACAAATCT	GGCATAACGC	372
CATAAGTACC	ACCAATACCA	GCTTCTGCTC	CCATCAAGCG	ACCACCAAGA	TATTGTTCAT	378
CTGGACCATT	GAATACAATG	TAATCTTCTC	CACCTGCAGC	TACAAACATT	TGAATATCTT	384
GTACAGGCAT	AGAAGAATTT	TTAACTCCAA	TCACACGAGG	ATTTTGACGC	ATTGTTGCAT	390
ACAAACTACC	AGTCAACGCA	ACCCCTGCCA	ATTGTGGAAT	ATTATAGATA	ATAAAATCTG	396
PATTTGACGC	AGCTTCACTC	ATTGCATTCC	AATATGCTGC	GATTGAATAC	TCTGGCAATT	402
rgaaataaat	AGGTGGGATA	GCTGCAATAG	CATCGACTCC	AACACTTTCT	GAATGTTTTG	408
CCAATTCGAT	ACTATCTTTC	GTGTTATTAC	ATGCAATATG	GTTGATAACT	GTTAATTTAC	414
CTTTAGCAAC	TTCCATAACA	GCTTCAATAA	TTTGTTTACG	ATCTTCTACA	CTTTGGTAAA	420
FACATTCACC	TGAAGAACCA	TTTACATAGA	TACCTTTTAC	ACCTTTGTCA	ATGAAATATT	426
GTACCAGAGA	TTTTACACGA	TCTTGGCTAA	TTTCACCATT	TTCATCATAG	CAAGCATAAA	432
ATGCAGGGAT	AACGCCTTTG	TATTTAGTTA	AATCTTTCAT	CAGATTTCTC	CTTTATATTG	438
	01/00101mm	***********	G1 GG1 1 mm==	mmmm.o.o.a. a		

CACCAATGAC	TACACTGGTA	ACACCTAAAC	TATAAGCTIT	TTTTAATTGT	TCTGGATAAT	4500
GAATTTTTCt	TCGGCAATTA	CCGGAATATT	AAAATCAGCC	AATTTTTCA	TTAGTTCAAA	4560
ATCAGGCTCA	TCTGATTGTA	CACTTGTACT	TGTGTAACCT	GATAATGTTG	TACCAACAAA	4620
ATCAACGCCT	GATTTAAATG	CATAGAGACC	ТТСАТСТААА	TTACTTACAT	CCGCCATCAG	4680
CAATTGATTC	GGATATTTT	CTTTTATTT	TTTGATAAAT	TCACTGACAA	CTAAGCCATC	4740
ATATCTTGGT	CTTAAAGTTG	CATCAAATGC	AATGACTGTT	GTTCCGCATT	CTACAAGTTC	4800
ATCTACTTCT	TTCATCGTAG	CAGTAATATA	TGGTTCTTGA	GGTGGATAAT	CCCTTTTGAT	4860
AATTCCAATT	ATTGGTAAAT	CTACTACTTT	CTGAATTGCT	TTAATATCAC	GCACAGAATT	4920
TGCGCGAATG	CCCACTGCTC	CTGCCTCTAA	AGCTGCTTTA	GCCATAAAAG	GCATCAAGCT	4980
AAATTCTTCA	TTATAAAGGG	CTTCACCAGG	TAAAGCTTGA	CAAGAAACAA	TGACTCCACC	5040
TTGAACTTGG	CTTATAAATT	TTTCTTTAGT	CCAAATTTGG	CTCATTTTAT	TATTCCTCCT	5100
TATGGATAAT	AGTTTGATTG	TAATAATATT	GTCTCTCTGG	ACTTTCCAGA	TAATTAGAGA	5160
ATAAGCAGTC	TGTAATTAAA	AGTATTGGAA	ACTGAGGTGA	TATGCGATTG	CCATACGAGA	5220
GATGATCGGT	CGAAGCTAAT	AACAATAGTT	CATCAAAGAA	ACAATCTTCT	TCGTCAAATT	5280
TTCTTGTAGT	САТТААААСТ	GTTTTAGCGC	CTTTATCTGC	AGCTTTTTGT	AGACCTTCTA	5340
GTACAATATC	AGTTTGACCT	GAAATGGATG	CTCCAATGAC	AAGGCAATTT	TCATTAAGTA	5400
GTAAGCTACT	CCACAAAATC	ATATCCTCGT	CTGATAATAC	TTCACCAATC	ACTCCGAGAC	5460
GCATAAATCT	CATCTTCATT	TCTTGTAAAG	CAAGAACAGA	ACTTCCTTTA	CCGTAGAGAT	5520
ATACACGCTC	AGCAGTTTCT	ATCATCTCAG	CAATACGCTC	AAGTTGAACT	TCATCAAGAA	5580
CCGTGTAAGT	TTTTCTCAAC	ATTTCCTCAT	AGTCGGATAA	AACTTTTTCT	GTTGCCTCTG	5640
TATATAATGC	CAACTTTTCT	TTCTCATGAA	TCATCTCTTG	GTATTTGAAA	ATGAATTGTC	5700
TAAAACCTTT	AAAACCACAT	TTTTTCGCAA	ATCGAGTCAA	TGTTGCTTTG	GATACATTAA	5760
GGTATTCGCA	CAATGCTTTA	GATGAATAAT	CATTCAGAGG	TTGCTGTTTT	AAGAAGAATT	5820
TAGCAATGTC	TTTTTCAGCA	TATGCCATAT	TTGGTAAGTT	AGCTTCTATC	ATTGGAATTA	5880
GTTCTTTTTG	CAGTAACATA	TGAGCTCCTT	AGTTGAAGTA	AACGTTTACA	TTCTTTATTT	5940
TAACACTTTT	TTTTTTTTC	AATATTTTTC	Ataaattaga	AACTAGTTTC	CAATTTCTTT	6000
CGTTTCATAA	CAGAACAACA	ААСАТААААА	TATAATAGTT	TTTATTCTTT	TTATCGTAAT	6060
ТАТАТСТАТТ	GTAAGAACGT	TTATCACTAA	TAATATGTTC	АТАТТААААТ	ATTTTAGTAA	6120
ТАТТТАТТТ	TGGTTTTATT	ATTTCTTTTC	GGAATTTCTA	TATAATATTT	TATTTCTAAA	6180

AAAATTGAAA AAATATTTCT AGTTTCTTTA TTTTATATAG GTAATATATT TTATTTCTAA 6240 ATTAAAAGAG AATCCCATAA AAACTACAGA TTTATGAGAT AAATCAGGTC ACCTATTTTA 6300 AAAAAGCAGC AAACTATAAA CTAAAAAGTT CCACACCAAA TGTAACCCCA TACTTCCCCA 6360 TAAGTCAGAT TTATAGCGCA CCATACCTAA AAACATTCCA AGTGAAACGT ACAGACACCA 6420 AGCTAGAATG GTTCCTGGAT GATGTACTAA GGCAAATAAA ACACTTGTCA AAGCAACTCG 6480 AATATCTAAT TTTCTAACCA AGTTCCATAA AATTTCACGA TACAGAAATT CTTCAACCAT 6540 ACTCGCATTG ATTAAGAACA ATAAAAATGA AAACCAAGGA ACTTGATGTT GAAGGCCAAT 6600 TAAATTTGTT TGATTCGTGC TTCCTTGAGC ATGAATCAGG CTAAAACATA GACTTATAAT 6660 CAGTAGACTA GCTAGTCCAA TACCAAGGCA TTTCATCCTA GTTTTCATAT TGACCTTGAC 6720 CACTTGTTTT CGTTGACCAT ACATCCATAA AAAAGAAAAA AGAGACGCAC CATAGAGAAC 6780 CTGTAGTATA GTTAACTCAC CGATACAAAG AAATTTCAAT AAGTATAGAG ATACCAATAG 6840 GACATTTACT TGTTGGAATA TATAAACTGG AATTATTCTT TTCATAGTTA CCTCCGAAAT 6900 AAATCTTCAT AATCTAAATC TAATATCTGC ACAATCCTTT CTACCCATGG ACTTTGAGGC 6960 ATTCGTTGTT CCATCTTGTA GTGGCGAATC TTTTGATATA AACGATTCAA TTCACTTGGA 7020 TAGTGAAACT CTCCCGCAAA CATTTTTCTG GTTAACTCAA TCCAGCTGAT ATTTCTTTCA 7080 GCCAAAATAA TGGACAAGTT CTCCCAAAAT CGTTCAGCCA TATTTCTTCT CCTTTAGTTA 7140 GATAAATAAT GTGTTTGYGC CATGTAAATC AATTGTTTCG TATCTCTTGG CAATAGAGCT 7200 CTAGCCTCTT CCAAATTCAG ACTTGGATAA ACCCGCTTAT TTGAAACCAC AAAAGGAAGT 7260 CCGATGGTTA GTTCAGGATT TTTTAAAATT ATCTCAACGA AATCCGTTAA TCTTAGATTG 7320 TCACGGTTCT TAAATCGTAA TAAATTGGGA GATAAAAACT CAAAACAATC TGAAGAATAG 7380 CTCATCATCT CAATTAATTT GTCCTTTGTC ATTTCAGAAA CTGAATGACA AGATACCTCA 7440 ATGCCATAGT TTTGGAAGAA GTCTAAAAGA AGTTGATTTC TTTGGCTATT TTTACTTAGA 7500 TAGAGATCAA TCATGGGAGA CCTCCAACAA ATTTGCTTCC ATTTGATATT CTGAGACGAT 7560 TAAGGAATCT AACAACTTTG AGAAGTTAAT CGATTTCTTG TCTTCATCAT AAGCTTTTAC 7620 AGTTACTTGG GTTGTAAGTA TCCCCTCTTT TCCCTCGGCT CGATAGTCTT GTCAATATAA 7680 AACAAAAACA AGATTCTGAT TATCATCTAC AAAGGCATTA ACTCCGTTCT TTATATCCTG 7740 ACTITCAAGG AATTCCATAA CGTTTTGAAG ATAGGATTCA TAAAATAGTG GGTAATTATG 7800 TTTTTTATGG TAATCATCTA AAAATGTTAC CTCAAACTCA CATGGATAAT TGGGCATCAA 7860 AAATATTTGT TCATCCAGCT GTTTGATTTC TGCATCATGT AATTCTGTTT CTAATTCATC 7920 ACAATCTAGT ATTGATTCTT TATTTAATGC TTTTATCTTT TTCCTCTATT TCTTTTAATT 7980

TCTTTGCGAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAACTTGT	TTATAGAGCT	8040
GACTATTAAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
GAAAACACTC	TTTAGGAGTG	ATTCGTCGTA	TTCTCAAACG	GTAAAATTGT	CCATCTATTA	8160
AAACACCAGC	TACTTGGTAA	ACTTGTTTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CCATTTGACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	тссаастста	CCACGACGAT	8280
ACTGAGAACT	TGGTCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
TTTTCGTTGC	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
TTTTATCTCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACTT	CCATAGACAC	8460
GACCTGTCTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAC	GACAATGCCA	TAACGATCCT	8520
GAGTATTTAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
TGTCTAATCT	ATCTGGTGTC	ATACAAGGAA	TCGCAACTTT	AAATCCTTCT	CCTTTACCAC	8640
GAACTAAGGT	TGGCGCAAGA	CCTTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
ATGGATTCAA	ATTTCCTAGT	GCTTTCAAAG	TCTCAGAGTT	AGTTGCTTGA	CCTTCTCGTC	8760
TGAAAGGAAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCTCT	8820
CTCTGTTTTT	GGGAACGCCA	AAATCCTTAC	TGTTAAGCAC	CTGCCACTCA	ACATCAAACC	. 8880
CCAACTCATC	AAGTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GGCCTTTAAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCGAGCAA	9000
TTTCAAAGAA	CAAAGTTCCT	CTAGTATCTT	CAAATCCCAA	TCGTCTTCCT	GCGATTGAAA	9060
ATGCTTGACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	TTTTTAAATT	9120
CGTCATCTGA	AACATCTCGT	ATGTCATGAA	ATTETATTTC	TCCTTCCGTT	TGAAAAATGG	9180
ACTTATAAGA	TTTCCTAGCA	AATTTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
GAGCTTCCAT	TCCCATCCTA	AAGCCTCCTA	TCCCAGCAAA	талатстала	ACCCAAATCA	9300
TTCATACCTC	TCTCAACTAG	ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
TCCTCCTCAT	GAGGTCAGTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
ттсстсаааа	GGGCAGACTC	CTCCCTTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
CTTTAATGCA	TCATTAACGA	CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
AGGTTGACTT	TTCTAATCCT	agaataaagt	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
CTAGACAATT	TGAGGAGCTG	CTTGCGTCCT	GTTCGAACAC	ATTTTCCTAC	CACGTGAAGA	9660
AAAAGATGGC	GGAAGCGTTT	GATTGTTAAA	GTTTGGAAGT	CACCTCCAGC	TAGATGTTTG	9720

AGAAAAAGAT AGAGATTGTA GGCGATACAG CTCATCATCA TACGAACTCG TTTTTGATTA 9780

AGGTTGAACT ATCCGTTTTA TCGCCAAAAA ATCCCTCCTT CATCTCCTTG ATGAAATTCT 9840

CGGCTTGACC ACGTCCACGA TAAAGCTGAA ACTGGTCTTG GCTTGTTCCG GTACCGA 9897

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8148 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAA	CA AGCCAAGAC	C AGTTTCAGCT	TTATCGTGGA	CGTGGTCAAG	CCGAGAATTT	60
CATCAAGG	AG ATGAAGGAG	G GATTTTTGG	CGATAAAACG	GATAGTTCAA	CCTTAATCAA	120
AAACGAAG	TT CGTATGATG	A TGAGCTGTAT	CGCCTACAAT	CTCTATCTTT	TTCTCAAACA	180
TCTAGCTG	GA GGTGACTTC	C AAACTTTAAC	AATCAAACGC	TTCCGCCATC	TTTTTCTTCA	240
CGTGGTAG	A AAATGTGTT	C GAACAGGACG	CAAGCAGCTC	CTCAAATTGT	CTAGTCTCTA	300
TGCCTATT	CC GAATTGTTT	T CAGCACTTTA	TTCTAGGATT	AGAAAAGTCA	ACCTGAATCT	360
TCCTGTTCC	TATGAACCA	C CTAGAAGAAA	AGCGTCGTTA	ATGATGCATT	AAAGAACAGT	420
CGAGATGA	A AAATCGTGT	G ACGAACCAAG	GGAGGAGTCT	GCCCTTTTGA	GGAAATCTAG	480
CGAGGAAAA	A CGATACTGG	A ACAGCAGAAA	GTAAAACTGA	CCTCATGAGG	AGGAAGAAAG	540
TGGCTCAT	GA GGTCAGGGG	r tttgtaagtt	ACATCTAGTT	GAGAGAGGTA	TGAATGATTT	600
GGGTAAATA	C AATGAGCTT	G AAAGAAGTAG	CAAACTCACC	AAGCGCCAAT	TCTTTGAGAA	660
TCAGATGCT	G GATTATACC	A TCATTGCGCA	TGAGAGTTTT	GAAATCATCC	GTCATTCTGT	720
CTACCAGAC	CA GATGATCGT	G AAGTGGAAAA	TGCTCTGGCT	TTTGAAGTGA	AAAATGATGA	780
AACAGACA.	G CTGATTCTG	r tattaagcga	GGATATTGGT	GTAGGTGAAA	AATTGTGCCT	840
CGTTGACGG	A ACAAAAATG	C GTGGAAAATG	TTTAGTATAT	GATAAAATAA	ATGAGAGAAT	900
GATTCGCTT	G CAGTGCTAG	A AATAGGCATT	TTGAATAGTG	AATATGTTAT	AATAAGTATT	960
AGTAGGAGG	ST GTTTTAGAT	r ggagaagaaa	CTGACCATAA	AAGACATTGC	GGAAATGGCT	1020
CAGACCTCG	A AAACAACCG	P GTCATTTAC	CTAAACGGGA	AATATGAAAA	AATGTCCCAA	1080
GAGACACGI	G AAAAGATTG	A AAAAGTTATT	CATGAAACAA	ATTACAAACC	GAGCATTGTT	1140
GCGCGTAGC	TAAACTCCA	A ACGAACAAAA	TTAATCGGTG	TTTTGATTGG	TGATATTACC	1200
AACAGTTTC	T CAAACCAAA	r TGTTAAGGGA	ATTGAGGATA	TCGCCAGCCA	GAATGGCTAC	1260

CAGGTAATGA TAGGAAATAG	TAATTACAGC	CAAGAGAGTG	AGGACCGGTA	TATTGAAAGC	1320
ATGCTTCTCT TGGGAGTAGA	CGGCTTTATT	ATTCAGCCGA	CCTCTAATTT	CCGAAAATAT	1380
TCTCGTATCA TCGATGAGAA	AAAGAAGAAA	ATGGTCTTTT	TTGATAGTCA	GCTCTATGAA	1440
CACCGGACTA GCTGGGTTA	AACCAATAAC	TATGATGCCG	TTTATGACAT	GACCCAGTCC	1500
TGTATCGAAA AAGGTTATGA	ACATTTTCTC	TTGATTACAG	CGGATACGAG	TCGTTTGAGT	1560
ACTCGGATTG AGCGGGCAAG	TGGTTTTGTG	GATGCTTTAA	CAGATGCTAA	TATGCGTCAC	1620
GCCAGTCTAA CCATTGAAGA	TAAGCATACG	AATTTGGAAC	AAATTAAGGA	ATTTTTACAA	1680
AAAGAAATCG ATCCCGATGA	AAAAACTCTG	GTATTTATCC	CTAACTGTTG	GGCCCTACCT	1740
CTAGTCTTTA CCGTTATCA	AGAGTTGAAT	TATAACTTGC	CACAAGTTGG	GTTGATTGGT	1800
TTTGACAATA CGGAGTGGAC	TTGCTTTTCT	TCTCCAAGTG	TTTCGACGCT	GGTTCAGCCC	1860
TCCTTTGAGG AAGGACAACA	GGCTACAAAG	ATTTTGATTG	ACCAGATTGA	AGGTCGCAAT	. 1920
CAAGAAGAAA GGCAACAAGI	CTTGGATTGT	AGTGTGAATT	GGAAAGAGTC	GACTTTCTAA	1980
AATGAAGGAA AATGACTTGO	AATCTCTGTT	AAGAAATAAA	ATAATCCCAC	CTAGAACAAG	2040
CTAGGTGGGA TTATTTGCCT	ATGAAATGAG	AAATTATGGG	AGCAAGCTCC	тааатсааст	2100
GTTTTTGATC TACTTCTTTA	ACTACTTGAT	AAAAGTTATA	GAAGTAGGCC	AAACTTGAAA	2160
TGATGGTTAC GACTAGGAAT	ATTGAAAATT	TCCATTGGAC	AGGGTTGGTT	AAAAGTTGTG	2220
GAAAGGATAT GAGGAGAAAG	AAGAGGGCTG	CGTTGAGGAC	AGGTATCCGT	TTTGATTGTA	2280
TTTTCTCAAG TCCTTTATTC	AGCGCAGGAA	GAAAGAGGAG	TAGGAGTAGT	AAAACTGTAT	2340
GAGAAATAGC TCCTGAAGTA	AGGGCGAAGA	AAAGGAAAAT	ACTGATAAAA	ACATGAATGA	2400
TCAGTAGTCT AGCTAGTGAT	TTCATAAGGC	ACCTCCTAAT	CCTGGTCTTT	TTTAGCTCTT	2460
GCAATACGAA GTGAGTCGAC	AATATGTATC	ATCACTCCGA	AAAAGAAAGC	TCCCAGTATA	2520
GTTTTAAAAA TATGTTTTGT	ATTTAGAAGA	GAACTGATAA	AATTTGGATT	TTCACTTGTT	2580
AGGGTATCAA TGAGTGGAAT	ТАТААААААТ	ATCACTGTTC	CATAAATCGA	ACCTGCTTTC	2640
AGACCAGGAT AACGTAACTG	TTTCTTTTCT	TTTTTCATGA	GTTTCCTCCT	AATCCTCATC	2700
TTGATTTTC TTAGTTTTTG	CAATGCGACG	GGAGATGAGG	AACTGTATGC	TCGCTCCGAA	2760
GAAAATAGAA CCGAGAATAC	TTGATACACC	ATTTCTTATA	GTGAGAAGAG	AATGAAAAT A	2820
GTCCTGACCT TCATCTATGA	GTATCCTGAG	AAGAGGAGTT	АТААААААСА	TCCATAGACC	2880
AAAGAACAAA CCTGCTTTCA	GACCTGGGTA	GTGTAGTTGC	TTGCTTTCTT	TCTCATTCAG	2940
CATATCTGGT TCAATGACTG	TGATGCCTGT	TTTTTTCATT	TGGTAGGTGA	CATAGCCAGA	3000

			222			
AGCGATGAGG	GCAATCACTA	AAATCAGAGG		AGAGCCACTT	CTTGAGGGTA	3060
PTTATAGGCC	AGAAGGAGTG	GAATAAGATT	TCCGAAAATC	ATCAGATAAA	AGAGGATGAT	3120
AAAGACTTGG	TTCCCAATAC	TATCGGCCTC	ACGCCGTTTG	TATTCGTCAA	GGGGACCAGA	3180
AATACCGTAT	GTGCGTTTGA	TCAGTTTTTC	AGTGAAGGTT	TCTTTTTCA	TGAGTTTGCT	3240
CTTTTTTAA	AAATCTTCCT	CCCAAAAGAG	ACTGTTGAGG	TCAGTTTGGA	GGCTGCGGGC	3300
GAGATTGAGA	CAGAGTTCCA	AGGTTGGATT	GTACTTGTCG	TTTTCAATCA	TATTGATAGT	3360
CTGTCTCGAG	ACACCGATAT	CCTTGGCGAG	TTCGAGCTGG	GAAATACCCA	ATTCCTTGCG	3420
AAATTCTTTC	ACACGATTCA	TCTGTTCTCC	TTTCTGATTT	ATGTCGTATA	TATTTGACTA	3480
PATTATAGTC	TTTTAAACAT	AAAGTGTCAA	GTATTTTTGA	CATATTTTT	GAAGAAATAG	3540
PAGTCTCCTT	GTCCTATTTG	TCTGACAAGT	GCAAGCTGGT	CGGATTTGTG	GTAAAATAGA	3600
PAAGATATGA	CAAAAGAATT	TCATCATGTA	ACGGTCTTAC	TCCACGAAAC	GATTGATATG	3660
TTGACGTAA	AGCCTGATGG	TATCTACGTT	GATGCGACTT	TGGGCGGAGC	AGGACATAGC	3720
GAGTATTTAT	TAAGTAAATT	AAGTGAAAAA	GGCCATCTCT	ATGCCTTTGA	CCAGGATCAG	3780
ATGCCATTG	ACAATGCGCA	AAAACGCTTG	GCACCTTACA	TTGAGAAGGG	AATGGTGACC	3840
TTATCAAGG	ACAACTTCCG	TCATTTACAG	GCATGTTTGC	GCGAAGCTGG	TGTTCAGGAA	3900
attgatggaa	TTTGTTATGA	CTTGGGAGTG	TCTAGTCCTC	AATTAGACCA	GCGTGAGCGT	3960
GTTTTTCTT	ATAAAAAGGA	TGCGCCACTG	GACATGCGGA	TGAATCAGGA	TGCTAGCCTG	4020
ACAGCCTATG	AAGTGGTGAA	CAATTATGAC	TATCATGACT	TGGTTCGTAT	TTTCTTCAAG	4080
TATGGAGAGG	ACAAATTCTC	TAAACAGATT	GCGCGTAAGA	TTGAGCAAGC	GCGTGAAGTG	4140
AGCCGATTG	AGACAACGAC	TGAGTTAGCA	GAGATTATCA	AGTTGGTCAA	ACCTGCCAAG	4200
GAACTCAAGA	AGAAGGGGCA	TCCTGCTAAG	CAGATTTTCC	AGGCTATTCG	AATTGAAGTC	4260
ATGATGAAC	TGGGAGCGGC	AGATGAGTCC	ATCCAGCAGG	CTATGGATAT	GTTGGCTCTG	4320
SATGGTAGAA	TTTCAGTGAT	TACCTTTCAT	TCCTTAGAAG	ACCGCTTGAC	CAAGCAATTG	4380
TCAAGGAAG	CTTCAACAGT	TGAAGTTCCA	AAAGGCTTGC	CTTTCATCCC	AGATGATCTC	4440
AGCCCAAGA	TGGAATTGGT	GTCCCGTAAG	CCAATCTTGC	CAAGTGCGGA	AGAGTTAGAA	4500
CCAATAACC	GCTCGCACTC	AGCCAAGTTG	CGCGTGGTCA	GAAAAATTCA	CAAGTAAGAG	4560
GAAAAAGAT	GGCAGAAAAA	ATGGAAAAA	CAGGTCAAAT	ACTACAGATG	CAACTTAAAC	4620
GTTTTCGCG	TGTGGAAAAA	GCTTTTTACT	TTTCCATTGC	TGTAACCACT	CTTATTGTAG	4680
CATTAGTAT	TATTTTTATG	CAGACCAAGC	TCTTGCAAGT	GCAGAATGAT	TTGACAAAAA	4740
CAATGCGCA	GATAGAGGAA	AAGAAGACCG	AATTGGACGA	TGCCAAGCAA	GAGGTCAATG	4800

	AACTATTACG	TGCAGAACGT	TTGAAAGAAA	TTGCCAATTC	ACACGATTTG	CAATTAAACA	4860
	ATGAAAATAT	TAGAATAGCG	GAGTAAGATA	TGAAGTGGAC	AAAAAGAGTA	ATCCGTTATG	4920
	CGACCAAAAA	TCGGAAATCG	CCGGCTGAAA	ACAGACGCAG	AGTTGGAAAA	AGTCTGAGTT	4980
	TATTATCTGT	CTTTGTTTTT	GCCATTTTTT	TAGTCAATTT	TGCGGTCATT	ATTGGGACAG	5040
	GCACTCGCTT	TGGAACAGAT	TTAGCGAAGG	AAGCTAAGAA	GGTTCATCAA	ACCACCCGTA	5100
	CAGTTCCTGC	CAAACGTGGG	ACTATTTATG	ACCGAAATGG	AGTCCCGATT	GCTGAGGATG	5160
	CAACCTCCTA	TAATGTCTAT	GCGGTCATTG	ATGAGAACTA	TAAGTCAGCA	ACGGGTAAGA	5220
	TTCTTTACGT	AGAAAAAACA	CAATTTAACA	AGGTTGCAGA	GGTCTTTCAT	AAGTATCTGG	5280
	ACATGGAAGA	ATCCTATGTA	AGAGAGCAAC	TCTCGCAACC	TAATCTCAAG	CAAGTTTCCT	5340
	TTGGAGCAAA	GGGAAATGGG	ATTACCTATG	CCAATATGAT	GTCTATCAAA	AAAGAATTGG	5400
	AAGCTGCAGA	GGTCAAGGGG	ATTGATTTTA	CAACCAGTCC	CAATCGTAGT	TACCCAAACG	5460
	GACAATTTGC	TTCTAGTTTT	ATCGGTCTAG	CTCAGCTCCA	TGAAAATGAA	GATGGAAGCA	5520
	AGAGCTTGCT	GGGAACCTCT	GGAATGGAGA	GTTCCTTGAA	CAGTATTCTT	GCAGGGACAG	5580
	ACGGCATTAT	TACCTATGAA	AAGGATCGTC	TGGGTAATAT	TGTACCCGGA	ACAGAACAAG	5640
	TTTCCCAACG	AACGATGGAC	GGTAAGGATG	TTTATACAAC	CATTTCCAGC	CCCCTCCAGT	5700
	CCTTTATGGA	AACCCAGATG	GATGCTTTTC	AAGAGAAGGT	AAAAGGAAAG	TACATGACAG	5760
	CGACTTTGGT	CAGTGCTAAA	ACAGGGGAAA	TTCTGGCAAC	AACGCAACGA	CCGACCTTTG	5820
	ATGCAGATAC	AAAAGAAGGC	ATTACAGAGG	ACTTTGTTTG	GCGTGATATC	CTTTACCAAA	5880
	GTAACTATGA	GCCAGGTTCC	ACTATGAAAG	TGATGATGTT	GGCTGCTGCT	ATTGATAATA	5940
	ATACCTTTCC	AGGAGGAGAA	GTCTTTAATA	GTAGTGAGTT	AAAAATTGCA	GATGCCACGA	6000
	TTCGAGATTG	GGACGTTAAT	GAAGGATTGA	CTGGTGGCAG	AACGATGACT	TTTTCTCAAG	6060
,	GTTTTGCACA	CTCAAGTAAC	GTTGGGATGA	CCCTCCTTGA	GCAAAAGATG	GGAGATGCTA	6120
,	CCTGGCTTGA	TTATCTTAAT	CGTTTTAAAT	TTGGAGTTCC	GACCCGTTTC	GGTTTGACGG	6180
	ATGAGTATGC	TGGTCAGCTT	CCTGCGGATA	ATATTGTCAA	CATTGCGCAA	AGCTCATTTG	6240
	GACAAGGGAT	TTCAGTGACC	CAGACGCAAA	TGATTCGTGC	CTTTACAGCT	ATTGCTAATG	6300
	ACGGTGTCAT	GCTGGAGCCT	ATTTATTA	GTGCCATTTA	TGATCCAAAT	GATCAAACTG	6360
	CTCGGAAATC	TCAAAAAGAA	ATTGTGGGAA	ATCCTGTTTC	TAAAGATGCA	GCTAGTCTAA	6420
•	CTCGGACTAA	CATGGTTTTG	GTAGGGACGG	ATCCGGTTTA	TGGAACCATG	TATAACCACA	6480
•	GCACAGGCAA	GCCAACTGTA	ACTGTTCCTG	GGCAAAATGT	AGCCCTCAAG	TCTGGTACGG	6540

			224			
CTCAGATTGC	TGACGAGAAA	AATGGTGGTT		GTTAACCGAC	TATATTTTCT	660
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTTAT	CTTGTATGTG	ACGGTCCAAC	666
AACCTGAACA	TTATTCAGGT	ATTCAGTTGG	GAGAATTTGC	CAATCCTATC	TTGGAGCGGG	672
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCTAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCTTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	TTAAAAAAAT	TACATTAACT	TTAGGAGACT	7140
AATATGTTTA	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAAA	AGCTGGGACT	CCTACAATGG	GAGGTTTGGT	TTTCTTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCAG	CAATAATGTG	7380
GGAATGATTT	TGTTCATCTT	GGTCTTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGTCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTTCTAT	ATTTTCTTCG	CTCTTTTCTG	GCTAGTCGGT	7620
TTTTCAAACG	CAGTAAACTT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
ATTAGTTTGT	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTCA	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
acttctgtta	TGATGCAAGT	CAGTTATTTC	AAACTGACAG	GTGGTAAACG	TATTTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATTT	TATATTTGAT	GTAAGAATGG	CACCCTGATG	TTTCAGGG	•	8148

(2) INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

225

- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TACTCCACCO	TTAATATCCG	TTCCTGTAAA	TACTTTACCG	CTTTTAAGTT	CATAGAATTG	60
AACTTTTAAA	TGCTTGTCTT	CAAGCATCTT	TTCCATCCAA	TTTTTAGGAG	TTTGACCAGC	120
ТТТАААТААА	AACCTTGCTG	GGGTGATTAG	TATAGATTTA	TCTGCGATTT	TATAAGCTTC	180
АТСААТАААА	TAGTGATATA	TCGGCTCATC	TCTGGCTTCT	CCTGTTTCCT	GATACGGAGG	240
ATTTCCTATC	ACGACATCAA	ATTTCATTTC	ACTTTCCTCG	CTAGATAGGC	GCTCAAAACC	300
TATCATTCTA	TTCTTTTTCC	AGTCTTTGAT	ATGGGTTTTA	GATTCTTCTA	CTTCTTGGAC	360
TTCTAGCTCA	TCCGCAAACA	AACTCAATTG	TTGAGATTGC	TTTTGTTTAG	CTGAATAAGG	420
ACTACTTTTT	TTCAATCCAT	CCATCTGAAA	GACATTGTAA	GAGATAATAG	TCGCAATTTC	480
TTTCTTTTGC	TCTAATGTTG	GTTGATTTCC	AGTCTTAGCT	AGATAATAGT	CCTCAAAAGT	540
TGCCAAAAGA	TTCTCACGCG	CCAAAAGGAG	AGAATCTCCT	TGATACTCAT	AACCATACGA	600
AGCATGATAA	GCATCTTTTA	CAAGTTTATA	AAATGTGACT	TCATCTGAAA	CCTCACGACT	660
AATCCGTTGC	AGTTTTCTAT	CAACAAAACC	AACTCGCTCA	GATAATGGAA	TTTCCTCACC	720
AGTTACGGTA	TCATATCTCG	TTACCATATA	AGGTGCTTCA	CCACAAGTTA	CCTCTAACCA	780
TCGTAAGTCC	ACATACTCCT	CAAGACTTAA	CGAGCCTAAT	TTCGATTCTA	CATATCCATT	840
TTGCTTTGCG	ACCAACCACG	TTGGTGTAAA	CACTTCTGCC	CTTATTTTTG	TCCGATCTTT	900
TTGTTCATAT	TTGGATTTTT	CAGATCTGGG	CTGAATCAAG	TTGGCAAAGT	TTCCAGTAAC	960
CTTACTTGGA	TTGATGCGAT	CACTTGGAGC	AAATCCCTTT	CCTAACAATT	CATAAGAATG	1020
CGTAnGCCAA	ACAATTGATT	TCTTTGTCGT	TCGATCTTTT	AAAAGAATTT	TTAATAAGTC	1080
AGCCGATTCT	TTAGCCAAAC	TTTCTTCACT	AATATCTATT	GTCATCAGCA	ACCTCTCTTA	1140
TATTGTAAGC	CCTATTATAT	CATATTTTAA	AGAATGAAAA	TTTACTTGAA	AAAAGTAATT	1200
CAATAAATAT	CTCTCCGATG	ACCAACTTCT	AGAGTAGCAA	CGACTAATTC	ATCATCTACA	1260
ATTTGTACGA	TAACTCGATA	ATTACCAATT	CTATAGCGCC	ATTGACCAAC	GCGATTACCA	1320
ACCAAAGCCT	TTCCGTGTCG	TCTTGGGTCT	TCCAAAACAT	TGGTTTGTAA	ATAGTTTGTA	1380
ATTAGCTTCT	GCGTATAACG	GTCCAATTTT	TTCAATTGCT	TGATAAAACG	TCTTGTTGGA	1440
ACTAATTTAT	ACAAATTATT	CATCCTTCAA	GCCTAAATCA	TGCATCATTT	CTTCCCAAGT	1500
AATGGGTTCA	ACTCCTTTTT	CCAAGTCTTC	TAAATACTCT	TGATAGGCTA	AATCTGCCAC	1560

226 ACGAGCATCG TATTCATCTT CTAGGGCTTC AAGAGTTTTG GTGCGAATAA GTTCCGAAAG 1620 GGAAACTCCT TCAAACTTAG CCATTGCTTT CATAAATGTT TTATCAGCTT CAGAAACTTT 1680 TAATGTAATA GTAGTCATCT TTTGTGCTCC CTTTTTTAAT GGTAACACCA TTGTATTACT 1740 TTTTAGGTGT TCAGTCAATA TAAAAAGAAC ACCTTCTCAG CGTTCTTTCT ATATCTCTGT 1800 CAATGGTGTT GCGGTATCTG GTGAGGTATC ATAAACCTTA AAGTCTACTC CGACTCCCAG 1860 ATCAGCTTGA GCCAGCTGAT TGACCATGGT CATATGAGCC AGTTCCTTGA TATTGTTTTC 1920 CTTAGATAAA TGCCCAAGGT AAATCTTCTT AGTACGATTT CCTAGCGTCC GAATCATAGC 1980 TTCAGCACCG TCCTCGTTAG AAAGGTGACC AAGGTCAGAT AGGATTCGTT GTTTGAGTCG 2040 CCAAGCGTAA GAACCTGATC GCAAAATCTC TACATCATGG TTGGCCTCGA TAAGATAACC 2100 ATCCGCATTT TCGACAATGC CCGCCATACG GTCACTGACA TAACCTGTAT CTGTCAAGAG 2160 GACAAAACTC TTATCATCCT TCATAAAGCG ATAGAACTGC GGTGCGACTG CATCATGGCT 2220 TACACCAAAA CTCTCGATGT CGATATCTCC AAAGGTTTTG GTTTTACCCA TTTCAAAAAT 2280 ATGCTTTTGC GAAGAATCCA CCTTGCCAAG ATATTTACTA TTTTCCATAG CTTGCCAGGT 2340 CTTTCATTG GCATAAAGAT CCATACCATA CTTGCGAGCC AAAACGCCTA CTCCATGGAT 2400 ATGATCTGAA TGCTCATGGG TAATCAAGAT GGCATCCAGG TCTTCTGGCT TACGGTTAAT 2460 TTCAGCTAGC AGACTGGTAA TTTTCTTGCC AGACAAGCCT GCATCTACTA AAAGCTTCTT 2520 TTTTGAGGTT TCCAGATAAA AAGAATTTCC ACTGGAACCC GACGCTAAAA TACTGTATTT 2580 AAAGCCTATT TCACTCATTC TAGTCTTCTA CTTCATCCTC CCATACTTCT TCTTTCACTG 2640 CATCCTTATC ATAAGGGAGT ACAATGGTAA AGGTTGAACC CTTGCCGTAT TCACTCTTGG 2700 CCCAAATAAA GCCCTTATGT TGTTTGATAA TTTCTTTAGC GATAGACAGT CCTAGACCTG 2760 TACCACCTTG TGCACGACTT CTAGCACGAT CCACACGATA GAAACGGTCA AAGATACGTG 2820 GTAAATCCTG CTTAGGAATC CCCAAACCGT GGTCAGAAAT GGATAAAATC ATCTGGTCTT 2880 CAGTTGTCTT CATTCTGACA GTGATTTTAC CCCCATCTGG CGAATACTTA ATAGCATTAT 2940 TTAAAATATT GTCGACAACC TGCGTCATCT TATCTGTATC AATTTCCATC CAGATAGAAT 3000 TGATGGGATA ATCTCTCACC AACTCATATT TTTTCTCCTT TTCCTGTCCT TTCATCTTGT 3060 CAAAACGATT GAGGATAAAG GTAATAAAAG CAGTGAAGTT AATCAGTTCC ACATCTAGGT 3120 GACTGGTAGC ATTATCAATA CGTGAAAGAT GGAGGAGATC CGTCACCATG CGCATCATAC 3180 GGTTGGTCTC ATCAAGAGAA ACCTTGATAA AGTCTGGTGC TACAGTTTCA CACAAAGCCC 3240 CCTCATCCAA GGCTTCAAGA TAGGATTTTA CGCTAGTCAG AGGAGTCCGT AACTCATGGC 3300 TAACATTGGA AACAAAGAGT CTTCGTTCGC GTTCTTCCTT CTCCTGCTCC GTCGTATCAT 3360

G	CAAAACAGC	CACCAAACCT	GAAATAAAGC	CAGACTCTCG	ACGTATCAAG	GCAAAGCGAA	3420
С	TCGAAGGTT	CAAATATTCG	CCATTGATAT	CTTGGGAATC	TAGCAACAAT	TCTGGACTTT	3480
G	GGTAATCAA	ATCACGCAAT	TCATAGTTTT	CTTCTATCTT	GAGCAATTCC	AAAATGCTTC	3540
T	ATTCAGAAC	ATCTTCCTTA	ACCAACCCCA	GTTGCTTCTT	GGCTGTATCG	TTAATCATGA	3600
T	AATCTGACC	CCGACGGTTA	GTCGCAAGAA	CCCCATCTGT	САТАТААААС	AGAATACTAT	3660
T	TAGCCTCTT	ACTCTCTTGT	TCTAGATTTT	CCTGAGTGAG	ACGAATAACC	TCCGACAAGT	3720
C	АТТСАЛАТТ	ATTGGTAATA	TTGGTGATTT	CAGACCCACC	TTGCATATCA	AGAACCTTGG	3780
A	ATAATCTCC	TGCAATCAAA	TCTTTAACCT	TTTGATTGAC	TTGCTTCAAC	TGAATATTAT	3840
C	ACGTCTATT	TTCCAGTAAT	AAGAGGGTCA	CAACAAGGAT	GAAACCTAAC	AAAATCAGGA	3900
T.	AAAGATAAA	ATCTCTGGTA	AAAATGGTTT	GTTTCAGTAA	ATCAAGCATT	ATTTCTCATG	3960
T.	AATACCCTA	CACCACGGCG	CGTCAAGATA	TACTCTGGTC	GGCTGGGCGT	ATCTTCAATC	4020
T	TCTCACGCA	GACGTCGTAC	AGTCACATCA	ACTGTACGGA	CATCACCAAA	ATAGTCATAA	4080
C	CCCAGACAG	TCTCAAGCAA	GTGTTCGCGC	GTGATGACTT	GACCTGTATG	CGATGCTAAA	4140
T	GATACAAAA	GCTCAAATTC	ACGATGGGTT	AAGTCTAGTT	CTTCGCCATA	TTTTTTAGCC	4200
A	CGTAGGCGT	CTGGAACAAT	TTCTAAATCC	CCAATTTGGA	TAGGTTGAGG	TTTACTATCT	4260
G	CTTCCTGAC	CATCTACTGG	CATAGGTTGA	GAACGACGCA	GAAGAGCTTT	AACACGCGCC	4320
T	GCAACTCAC	GATTGGAGAA	GGGTTTTGTT	ACATAGTCAT	CTGCCCCAAG	TTCCAAACCG	4380
A'	PAACCTTAT	CAAATTCACT	ATCTTTGGCT	GAAAGCATAA	GAATGGGCAC	ACTGCTTGTC	4440
T'	PACGAATGG	TCTTAGCAAC	TTCTAAACCA	TCAATTTCTG	GAAGCATCAA	ATCCAGAATA	4500
A'	PAATATCTG	GTTGCTCTGC	TTCAAATTGC	TCTAGCGCTT	CACGACCATT	AAAAGCAGTT	4560
A	CAACTTCGT	AACCTTCCTT	GGTCATATTA	AACTTGATAA	TATCCGAGAT	TGGTTTCTCA	4620
T	CATCTACAA	TTAGTATTT	TTTCATATGT	TCACCTTTTT	CTCTACTATT	АТАССААААА	4680
A	ATAGTCAGA	AGACACAATA	GCTAGTCTTG	GCTACTGTCT	AAGTTGGCTT	GTGCATAAAC	4740
C	TGCCAGATT	TTTTGTTGGG	GTTTGGCAAG	TGGGTAATTC	TTGAATTCTT	CTGGTGAAAG	4800
CC	CAGCGAACT	TCCCTATCTG	AAAAATCATG	GAAGTCACTC	ACCTGACCTG	CTACAATCTG	4860
T?	CATGCCAT	TTTCGATGAC	TAAAAACATG	CTGGACTGTA	TCAAAACAAA	CATCAAGCCA	4920
ΑΊ	CAACATCT	AGGTCATAGT	CCTGCTGGAA	ACTCTCTTCT	GGACTGGGAC	CAAAGTTCAC	4980
AC	TTTCTTCC	GCAACCTGAT	GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA	AGTTATCAAC	5040
ŢI	CTATAAAG	GGGAAATGCC	AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTCAAG	5100

			228			
ТАААААТТСТ	CCTTGAGAAT	TTTTCACAAC	TAAGGCTTTA	AGATAAATAG	GAACCGGCTT	5160
TTTCTTAGGA	GATTTAATTG	GATAACGGTC	CATGGTTCCA	TTCTGATATG	CCGCACTAAA	5220
GTCCTTGACT	GGGCTTTCTT	CAGGTCTGGG	ATTTACAGGA	GACTCAATAT	CAGACCCTAA	5280
GTCCATCAAG	GCTTGATTAA	AATCACCCGG	ACGATCCGGA	TTAATCAAGA	TCTCCATCAT	5340
TGCCTGAAAA	ATTTTTCGAT	TACTTGGAAT	CCCAATATCG	TGGTTGACTT	CAAACAGACG	5400
CGCCAAGACC	CGCATGACAT	TACCATCTAC	AGCTGGCTCA	GGCAAGTTAA	AAGCAATACT	5460
GGAAATGGCT	CCTGCTGTGT	AAGGTCCAAT	CCCTTTCAAG	CTGGAAATTC	CTTCATAGGT	5520
ATTTGGAAAT	TGGCCACCAA	AGTCAGTCAT	AATCTGCTGG	GCTGCAGCCT	GCATATTGCG	5580
AACTCGAGAA	TAATAGCCCA	AGCCCTCCCA	AGCTTTCAGT	AAACTCTCCT	CAGGCGCAGT	5640
TGCCAGACTT	TCGACAGTTG	GAAACCAGTC	CAAAAATCTT	TCGTAGTAAG	GGATAACTGT	5700
ATCCACCCTG	GTCTGCTGAA	GCATGATTTC	AGATACCCAG	ATGTGATAAG	GATTTTTACT	5760
PCTCCTCCAA	GGCAAATCTC	TTTTGTTTTC	ATCATACCAA	GCGAGAAGTT	TCTCACGGAA	5820
AGAAATGACT	TTCTCCTCCG	GCCACATGAC	GATACCGTAT	TCTTTCAAAT	CTAACATATC	5880
ICTAGTATAA	CACAGAAGGT	TTCACCTGTC	TTTGTATCTG	АТТТАТААТА	TTTTCAATAG	5940
ATAGTATATA	ACTTTTCTAT	CTACTTATAC	TCAATGAAAA	TCAAAGAGCA	AACTAGGAAG	6000
CTAGCCGCAG	GTTGCTCAAA	ACACTGTTTT	GAGGTTGTGG	ATAGAACTGA	CAGAGTCAGT	6060
АТСАТАТАСТ	ACGGCAAGGT	GAAGCTGACG	TAGTTTGAAG	AGATTTTCGA	AGAGTATAAA	6120
CTTATTGAT	GAACTGCTTG	CAGTCTGAGA	AAAAATGAGC	TTGGATATŤA	TTTCCAAACT	6180
CACTTAAAGT	CAATTTCAAT	CCACTAGAAC	AAGCCTAGTA	CAGTTCCATC	GCTTTCAACA	6240
PCCATGTTGA	GAGCTGCTGG	ACGTTTTGGA	AGACCTGGCA	TGGTCATAAC	ATCACCAGTT	6300
AAGGCAACGA	TGAAGCCTGC	ACCTAATITT	GGTACCAATT	CACGAATGGT	AATTTCAAAG	6360
PTTTCTGGTG	CTCCAAGCGC	ATTTGGATTG	TCTGAGAAAC	TGTATTGAGT	TTTAGCCATA	6420
CAGATTGGCA	ATTTGTCCCA	ACCGTTTTGA	ACGATTTGAG	CAATTTGTGT	TTGAGCTTTC	6480
PTCTCAAAGT	TCACTTTGCT	ACCACGATAG	ATTTCAGTGA	CAATTTTTC	AATCTTTTC1	6540
rggacagaaa	GGTCATTATC	ATACAAACGT	TTATAGTTAG	CTGGATTTTC	AGCAATTGTC	6600
PTAACAACTG	TTTCGGCAAG	TGCTACTCCA	CCTTCTGCTC	CATCAGCCCA	GACACTAGCC	6660
\ATTCAACTG	GTACATCGAT	TGAGGCACAG	AGTTCTTTTA	AGGCTGCAAT	TTCAGCTTCT	6720
STATCAGATA	CAAATTCGTT	AATAGCTACA	ACTGCTGGAA	TACCGAACTT	ACGGATATTT	6780
CAACGTGGC	GTTTCAAGTT	AGCAAAACCT	GCACGAACTG	CCTCTACATT	TTCTTCAGTC	6840
GAGCGTCTT	TAGCCACACC	ACCATTCATC	TTAAGGGCAC	GAAGGGTTGC	GACAATAACA	6900

ACTG	CATCTG	GAGATGTTGG	CAAGTTTGGT	GTCTTGATAT	CAAGGAATTT	CTCAGCACCA	696
AGGT	CCGCAC	CAAAACCAGC	TTCAGTAACA	GTGTAATCAG	CCAAGTGAAG	GGCTGTTGTC	702
GTCG	CCAAAA	CAGAGTTACA	GCCATGAGCG	ATATTGGCAA	ATGGACCACC	GTGTACAAAG	708
GCAG	GTGTAC	CGTAAATTGT	CTGAACCAAG	TTTGGCTTAA	TAGCATCCTT	СААААТСААА	714
GCCA	AGGCAC	CCTCAACCTG	CAAATCACCT	ACAGAAACAG	GCGTACGGTC	ATAGCGATAA	720
CCAA	TAACGA	TATTCGCCAA	ACGACGTTTC	AAGTCCTCGA	TGTCCGTTGC	CAAGCAAAGA	726
ATTG	CCATGA	TTTCTGAAGC	AACTGTAATA	TCAAAACCAT	CCTCACGTGG	AATACCGTTT	732
AGAG	GACCAC	CAAGACCAAC	AGTCACATGG	CGGAGCGTAC	GGTCGTTCAA	GTCCACAACG	738
CGTT	TCCAGA	GGATACGACG	TTGATCAATT	CCCAGCTCAT	TCCCTTGGTG	CAAGTGGTTG	7440
TCAA	TCAAGG	CAGAAAGGGC	ATTGTTGGCA	GTTGTAATAG	CATGCATATC	TCCAGTAAAG	7500
TGGA	GGTTGA	TGTCTTCCAT	TGGCAGAACT	TGTGCATACC	CACCACCAGC	AGCACCACCC	7560
TTGA	TCCCCA	TGACTGGACC	AAGAGACGGT	TCGCGGATAG	CAATCATGGT	TTTCTTGCCA	7620
ATCT	TGTTCA	AGGCATCCGC	AAGACCAATG	GTAAGCGTCG	ACTTTCCTTC	ACCTGCAGGT	7680
GTTG	GGTTGA	TGGCAGTAAC	CAAGATCAAT	TTACCGACTG	GATTGCTCTC	AACTGCACGA	7740
ATTT	TATCAA	AGCTGAGTTT	AGCCTTGTAC	TTTCCGTACA	ACTCCAAATC	GTCATAAGAA	7800
ATAC	CAAGTT	TCTCTACAAC	ATCAACAATT	GGCTTCAACT	CAATACTCTG	TGCGATTTCA	7860
ATAT	CTGTTT	TCATTCAAAA	TTCCTCTAAC	CTCTTATATG	ATAATTCATT	ATATCACAAA	7920
ACAA	GATTTT	TAACATCCTA	AAACTCTCTA	AACGTTCGTA	AATATCTCTG	TTTTTAAGAC	7980
TTTT.	AGAGTC	CTTTCTTAAA	TTTTATATGG	CTTTATAGTT	TGAAACTATA	ATAAATCTTC	8040
GTTT	TTACCA	AAAATTTATC	ACTTTCATTT	TACTTACCGC	TTATTTTTGT	GTACAATAGT	8100
GCTA'	TGAAAA	TTTTAGTTAC	ATCGGGCGGT	ACCAGTGAAG	CTATCGATAG	CGTCCGCTCT	8160
ATCA	CTAACC	ATTCTACAGG	TCACTTGGGG	AAAATTATCA	CAGAGACTTT	GCTTTCTGCA	8220
GGGT	ATGAAG	TTTGTTTAAT	TACGACAAAA	CGAGCTCTGA	AGCCAGAGCC	TCATCCTAAC	8280
CTAA	GTATTC	GAGAAATTAC	CAATACCAAG	GACCTTCTAA	TAGAAATGCA	AGAACGTGTT	8340
CAGG	ATTATC	AGGTCTTGAT	CCACTCAATG	GCTGTTTCTG	ACTACACTCC	TGTTTATATG	8400
ACAG	GCTTG	AGGAAGTTCA	GGCTAGCTCC	AATCTAAAAG	AATTTTTAAG	CAAGCAAAAT	8460
CATC	AGGCCA	AGATTTCTTC	AACTGATGAG	GTTCAGGTTT	TGTTCCTTAA	AAAGACACCC	8520
AAAA:	TCATAT	CCCTAGTCAA	GGAATGGAAT	CCTACTATTC	ATCTGATTGG	TTTCAAACTG	8580
~~~		********	mas mamaamm	a. a. mmaa. a			

			230			
CAAGCAGATT	TAATCATCGC	GAATGACCTG		CAGCAGATCA	GCACCGAGCT	8700
ATATTTGTTG	AGAAAAATCA	GCTTCAAACA	GTCCAGACTA	AAGAAGAAAT	TGCAGAACTC	8760
CTCCTTGAAA	AAATTCAAGC	CTATCATTCT	TAGAAAGGAA	AACTATGGCA	AACATTCTCT	8820
TGGCTGTAAC	GGGTTCAATC	GCCTCTTATA	AGTCGGCAGA	TTTAGTCAGT	ТСТСТААААА	8880
AACAAGGCCA	TCAAGTCACT	GTCTTAATGA	CTCAGGCTGC	TACAGAGTTT	ATCCAACCTT	8940
rgacactaca	GGTACTCTCA	CAGAATCCTG	TCCACTTGGA	TGTCATGAAG	GAACCCTATC	9000
CTGATCAGGT	CAATCATATC	GAACTTGGAA	AAAAAGCAGA	тттатттатс	GTGGTACCTG	9060
CAACTGCTAA	CACTATTGCA	AAACTAGCTC	ACGGATTTGC	GGACAACATG	GTAACCAGTA	9120
CAGCTCTAGC	CCTACCAAGT	CATATTCCCA	AACTAATAGC	TCCTGCTATG	AATACAAAAA	9180
<b>IGTATGACCA</b>	TCCAGTAACT	CAGAATAATC	TGAAAACATT	AGAAACTACG	GCTATCAGCT	9240
GATTGCTCCT	AAGGAATCCC	TACTAGCTTG	TGGAGACCAC	GGACGAGGAG	CTTTAGCTGA	9300
CCTCACAATT	ATTTTAGAAA	GAATAAAGGA	AACTATCGAT	GAAAAAACGC	TCTAATATTG	9360
CACCCATTGC	TATCTTTTTT	GCTACCATGC	TCGTGATACA	CTTTCTGAGC	TCACTTATCT	9420
PTAACCTTTT	TCCATTTCCA	ATCAAACCGA	CCATTGTTCA	TATTCCTGTC	ATTATTGCCA	9480
GCATTATTTA	TGGTCCACGA	GTTGGGGTTA	CACTTGGATT	TTTGATGGGA	TTACTTAGCT	9540
rgacggttaa	CACGATTACG	ATTCTACCGA	CAAGCTACCT	СТТСТСТССС	TTCGTACCAA	9600
ACGGAAACAŤ	CTACTCAGCT	ATCATTGCCA	TCGTCCCACG	TATTTTGATT	GGTTTAACTC	9660
CTTACTTAGT	CTATAAACTG	ATGAAAAACA	AGACTGGTCT	GATTTTAGCT	GGAGCCCTTG	9720
GTTCcTTGAC	AAATACTATC	TTTGTCCTTG	GAGGAATCTT	CTTCCTATTT	GGAAATGTTT	9780
ATAATGGAAA	TATCCAACTT	CTTCTGGCAA	CCGTTATCTC	AACAAATTCA	ATTGCTGAAT	9840
<b>PGGTCATTTC</b>	TGCAATTCTA	ACCCTAGCCA	TTGTTCCACG	ACTACAAACC	ТТСАААААТ	9900
AAAAACAGG						9909

# (2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 1126 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA 120

231

TAA	AGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
CTT	тасаааа	СААСТТСАТА	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
TAT	TCTTTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGA	AGATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
тса	CCCAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GAT	TTCAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGA	AGGTTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGA	AGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	САААААСТТС	ATAAGTTGGT	600
TGT	TCTTTAT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAG	TGTTCGT	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGA	CTTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GAT	TGAAGTG	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACA	.cgccgcc	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTA	CGAACCA	TTTGAAATTC	CAGAACAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCG	TGGCGCA	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCC	AGAACTG	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAG	TCGAAGTGAC	1080
TCC	AGCAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTtCTCAA	GCAACT		1126
	<b></b>		4				

# (2) INFORMATION FOR SEQ ID NO: 14:

# (i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 2520 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CCGGCAACAA	AAAAGAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GCTAAGCCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
GGCATATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
CGCAATATAT	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AAAAAGCTAA	TAAAGTTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
GGCATTTGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

			232			
AAATCACCAA	GGATGCAGTC	AAAAATGCTT	TTAAAGAACC	TCGTAAGATC	GATATGGACT	42
TGGTCGATGC	CCAACAAGCT	CGTCGGATCT	TGGATCGCTT	GGTAGGGTAT	TCGATTTCGC	48
CTATTTTGTG	GAAGAAGGTC	AAGAAGGGCT	TGTCAGCAGG	TCGCGTTCAG	TCCATTGCCC	54
TTAAACTCAT	CATTGACCGT	GAAAATGAAA	TCAATGCCTT	CCAGCCAGAA	GAATACTGGA	60
CAGTTGATGC	TGTCTTTAAA	AAGGGAACCA	AACAATTTCA	TGCTTCCTTC	TATGGAGTAG	66
atggtaaaaa	GATGAAACTG	ACCAGCAATA	ACGAAGTCAA	GGAAGTCTTG	TCTCGTCTGA	72
CGAGTAAAGA	CTTTTCAGTA	GATCAGGTGG	ATAAGAAAGA	GCGCAAGCGC	AATGCTCCTT	78
TACCCTATAC	CACTTCATCT	ATGCAGATGG	ATGCTGCCAA	ТААААТСААТ	TTCCGTACTC	84
GAAAAACCAT	GATGGTTGCC	CAACAGCTCT	ATGAAGGAAT	TAATATCGGT	TCTGGTGTTC	90
AAGGTTTGAT	TACCTATATG	CGTACCGATT	CGACTCGTAT	CAGTCCTGTA	GCGCAAAATG	96
AGGCGGCAAG	CTTCATTACG	GATCGTTTTG	GTAGCAAGTA	TTCTAAGCAC	GGTAGCAAGG	102
PCAAAAACGC	ATCAGGTGCT	CAGGATGCCC	ATGAGGCTAT	TCGTCCGTCA	AGTGTCTTTA	1086
ATACACCAGA	AAGCATCGCT	AAGTATCTGG	ACAAGGATCA	GCTTAAGCTA	TATACCCTTA	1140
<b>PCTGGAATCG</b>	TTTTGTGGCT	AGCCAGATGA	CAGCGGCCGT	TTTTGATACC	ATGGCTGTTA	1200
AATTGTCTCA	AAAAGGGGTT	CAATTTGCTG	CCAATGGTAG	TCAGGTTAAG	TTTGATGGTT	1260
ATCTTGCCAT	TTATAATGAT	TCTGACAAGA	ATAAGATGTT	ACCGGACATG	GTTGTTGGAG	1320
ATGTGGTCAA	ACAGGTCAAT	AGCAAACCAG	AGCAACATTT	CACCCAACCG	CCTGCCCGTT	1380
ATTCTGAAGC	AACACTGATT	AAAACCTTAG	AGGAAAATGG	GGTTGGACGT	CCATCAACCT	1440
ACGCGCCAAC	CATTGAAACC	ATTCAGAAAC	GTTATTATGT	TCGCCTGGCA	GCCAAACGTT	1500
PTGAACCGAC	AGAGTTGGGA	GAAATTGTCA	ATAAGCTCAT	CGTTGAATAT	TTCCCAGATA	1560
<b>ICGTAAACGT</b>	GACCTTCACA	GCTGAAATGG	AAGGTAAACT	GGATGATGTC	GAAGTTGGAA	1620
AAGAGCAGTG	GCGACGGGTC	ATTGATGCCT	TTTACAAACC	ATTCTCTAAA	GAAGTTGCCA	1680
AGGCTGAAGA	AGAAATGGAA	AAAATCCAGA	TTAAGGATGA	ACCAGCTGGA	TTTGACTGTG	1740
AAGTGTGTGG	CAGTCCAATG	GTCATTAAAC	TTGGTCGTTT	TGGTAAATTC	TACGCTTGTA	1800
CAATTTCCC	AGATTGCCGT	CATACCCAAG	CANTCGTGAA	AGAGATTGGT	GTTGAGTGTC	1860
CAAGCTGTCA	TCAGGGACAA	ATTATTGAGC	GAAAAACCAA	GCGTAATCGC	CTATTCTATG	1920
STTGCAATCG	CTATCCAGAA	TGTGAATTTA	CCTCTTGGGA	CAAGCCTGTT	GGTCGTGACT	1980
GTCCAAAATG	TGGCAACTTC	CTCATGGAGA	AAAAAGTCCG	TGGTGGTGGC	AAGCAGGTTG	2040
TTGTAGCAA	AGGCGACTAC	GAGGAAGAAA	AGATGGCTCT	TTGTCAACTG	TAGTGGGTTG	2100
A CIDC A COMA	ACCMCCACAA	3.CC3.C333.000	mmcmcccmmc	mmmmmma v m v	mma. a. a	

233

TAAAAATCCG	TTTTTTGAAG	TTTTCAAAGT	TCCGAAAACC	AAAGGCATTG	CGCTTGATAA	2220		
GTTTGATGAG	ATTATTGGTC	GCTTCCAATT	TGGCGTTAGA	ATAGTGTAGT	TGAAGGCCGT	2280		
TGACGATTTT	CTCTTTGTCC	TTTAGAAAGG	TTTTAAAGAC	AGTCTGAAAA	AGAGGATGAA	2340		
CCTGCTTTAG	ATTGTCCTCA	ATGAGTCCGA	AAAATTTCTC	CGGTTCCTTA	TTCTGAAAGT	2400		
GAAACAGCAA	GAGTTGATAG	AGCTGATAGT	GATGTTTCAA	GTCTTGTGAA	TAGCTCAAAA	2460		
GCTTGTTTAA	AATCTCTTTA	TTGGTTAAAT	GCATACGAAA	AGTAGGGCGA	TAAAAATGTT	2520		
(2) INFORMATION FOR SEQ ID NO: 15:								

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10993 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

			234			
TATTCTGTAA	ATCACCTTGA	TTATCAAGGA	TAGTACGAAC	CGTTGTTGCA	TCTATGGCAT	1080
CACCACGATC	GGATAAATCG	ACCATGGCTT	GGAAAATCAA	ACGATGGGCA	TACTTAAAAA	1140
AGTCCCGAGA	CTCAATGTAT	TCTCGCACAA	AAACAAGTTT	ACTCTCATCA	ATAAAGATAG	1200
CCCCTAAAAC	GGATTGCTCA	GCTAAGATAT	CTTGAGGTTG	TACTCGTAAC	TCTTCTACTT	1260
CTGCCATCAG	ACTTCCCTTC	CTTTTACAAT	CTTGTCAAGA	AGGTGTANAC	TTATCCTTCT	1320
<b>TTCACACGAA</b>	GATTGATTAC	ACTTGTGATA	TCTTGATAGA	TTTTCACTGG	CACATCAATC	1380
AAACCAACCG	CTCGAATCGG	AGCTTGTACT	TGAATATGAC	GTTTATCAAT	CTTAATTCCA	1440
AATTGCTTTT	GCAATTCTTC	TGCAATCTTC	TTATTGGTAA	TAGAACCAAA	GGTACGACCA	1500
TCTGGACCAA	CTTTTTCAAC	AAATTCTACA	ACAGTTTCTT	CTGCTTCAAG	TTGTGCTTTA	1560
ATTGCTTTTC	CTTCTGCAAT	CATCTCAGCG	TGAGCTTTTT	CTTCCGATTT	TTGTTTACCA	1620
CGAAGTTCAC	CTACAGCTTG	AGCAGTCGCT	TCTTTGGCTA	GATTCTTTTT	GATAAGAAAG	1680
PTTTGCGCAT	ACCCTGTTGG	TACTTCCTTA	ATTTCGCCTT	TTTTACCTTT	TCCTTTAACA	1740
rctgctaaaa	AGATTACTTT	CATTCTTCTT	TCTCCTTTTC	CTTCATTTCA	TTTAATACAA	1800
PTTCTGTCAG	TTTTTCACCT	GCTTCTGACA	AGGTTACATC	TTTAATTTGA	GCTGCTGCCA	1860
ATTAAAGTG	GCCTCCACCG	CCTAACTCTT	CCATAATCCG	TTGTACATTC	AGTTTACTAC	1920
GACTTCGAGC	TGAGATAGAG	ATAAATCCTT	GTGTATTCTT	CGCAAGAACA	AAACTCGCTT	1980
CAATACCTGA	CATGGCTAAC	ATGGCATCTG	CTGCCTTACT	AATAACAACT	GTATCATAGC	2040
ATTTCATGTC	CTTAGCCTCT	GCTATTAGTA	CATCTGAACC	TAATTTACGC	CCCTGTAAAA	2100
PAAGTTCATT	GACCTCACGA	TATTCTTCAA	AATCTGTCGC	AGCGATTTCC	TGGATAGCAA	2160
TACTATCACT	TCCGCGCGTT	CTGAGATAGC	TAGCAACATC	AAATGTÇCGA	CTAGTTACTC	2220
GCGAGGTGAA	ATTTTTAGTA	TCCAACATCA	TACCAGCCAT	CAAGACACTT	GCTTGCATAC	2280
GACTCAAACG	ATTTTTCTTA	GAATTCTGGA	ACTGAATCAA	TTCCGTTACC	AACTCACTGG	2340
CACTACTTGC	ACCACTTTCG	ATATAAGTAA	TAACCGCATT	ATCTGGAAAA	TCCTGATCCC	2400
TCTATGGTG	GTCAATAACA	ATGGTTTGGG	TAAATAAATC	ATAAAATTCT	TTTGATAATG	2460
TAAGGCTGT	CTTTGAATGG	TCTACAAGAA	TCAACAAAGA	ACGATTGGTC	ACCATCCCCA	2520
TGCATCCTT	AACAGACAAC	AACTTCGTAA	CTCCTTCTTT	TTCTATGAAT	GAAACAGCTC	2580
TTCAATATC	TGGAGACATT	TGTTCTTCAT	CATAAAGAGC	ATAGCTATTT	TCAATCACAT	2640
GCTGGCGAA	CAACTGCATA	CCTACAGCAG	AGCCCAAAGC	ATCCATGTCT	AAATTTTTGT	2700
ACCGACTAC	AAAAACCTGA	TCTACACTCC	GAATCTTATC	TGAAATAGCT	GTCATCATAG	2760
GCGCGTACG	AGTCCGTGTA	CGCTTGATTG	AAGCAGCAGA	CCCACCACCA	AAATAAACTG	2820

GATTTTTCGT	TTCGTCGTTT	TCCTTAACAA	CCACCTGGTC	GCCACCACGT	ACTTCAGCCA	2880
AGTTCAAATT	GAGCAAAGCA	ACTTTCCCTA	TCTCATCATG	ATTTCCATCG	CCATAAGAAA	2940
ATCCCATACT	TAAGGTCAAG	GGCAACTGTC	TCTGTTTCGA	CTCTTCTCTG	AAAGCATCAA	3000
TAACAGAAAA	TTTATCATTC	ATCAAGCCCT	CAAGCACCGT	GTAGTCAGTA	AATAGATAAA	3060
ATCGATCCAT	ACTTACCCGA	CGAGAAAACA	TCATGTGTTT	TTCTGAAAAC	TCTGATATAA	3120
AATTAGCTAC	AAAACTATTG	ATTTGACTAA	TATCTGACTC	AGAAGTTTCA	TCCTCCAAAT	3180
CATCATAATT	ATCCACAGAG	ACAATCCCAA	TCACTGGTCT	ACTTGTTACC	AATTCATCTG	3240
TTATGGCTTG	TTCCCTGGAT	ACATCTACAA	AATACAAAAC	ACCGGAAGAA	GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTGG	CATAAGTAGA	CGGATTTCCT	ACTGAAGCCT	3360
TGATAATCGT	TTGAACAGCT	тстааатсаа	AATCACCATC	TTCCTTGGTC	AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	ATAACACCTA	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAAC	TTTCTTCCGC	TTGGTGGTTT	ACATACTGTA	3540
TCTGTTCTAC	ATCACTCCTT	GTATAATGCA	CTCTCAGTTT	СТТАААТААА	AAAACATAGC	3600
CTCCTACAAA	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	AGGAAAAATT	GGACTTACAT	3720
TTTTTAAAA	CATTCAAAAC	CTCTTGGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ACTTTTTAAA	AGTGTAATCA	GTAATTCTAT	CAATTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	CCCCAATAAA	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
AATCAATTTG	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
TATTTTTACG	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	CCATACATAT	4200
CTTGAGATAC	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
TAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GGAAGTACTT	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT	TTCACCACGG	ATACTATATT	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
TTTTGTTTTT	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG	AAAATGTTTT	TACATCCTTA	GCACCAGCTT	CTTCCAACAG	TTTCTTAACA	4560

			236			
CGATTTATAG	TTGCTCCTGT	AGTATAGATA	ТСАТСТАТАА	GTAGGATTTT	TTTAGGAATA	462
GTGACTCCAC	ТТТТААТААА	GAAAGGAAGT	TCTGTCCCCA	AGCGCTCTGA	ACGATTTTTA	468
GAAGAACTGG	CTCTCTCTTC	TCTTTTCTCT	AATAAATCCA	GATACTCAAA	GCCTGCTGCC	474
TCTACCAAGC	CCTCAACCTG	ATTAAATCCT	CTATTAGCAT	ATCTATCAGG	ACTTAGGGGA	480
ATTACAACAA	ATTGATACTC	TTTGTACTTT	TTCAACTCCT	САСТТААААА	TGAAGCGAAA	486
ACTTTTCTTA	ACAGGAAGTC	TCCATCAAAC	TTATACCGAC	TGAAAAAATC	CTTCATAGCT	492
TGATTGTAAG	TAAAAATCGC	TCTATGACTG	ACTTCAACTC	CCTCTTTACA	CCAAAGTTGA	498
CAATCTTGAC	ACTTTGTTGA	CAACTCTGTT	TTCATACAAT	TTGGACAGTT	CTCTTCCCCA	504
ATTCTTTCAA	AAGTAGAATC	ACAGTCTGAA	CAAAGACAAG	AGTCATCATT	CCTCAGAAGT	510
AAGAGACTAC	TAAAAGTTAA	AACAGTCTTC	ATAGTCTGCC	CACATAACAA	GCACTTCATA	516
GACCAGCCTC	CTTATTCATC	ATCTGAATTT	CCTTAATCGC	CTTCTTGATT	GAAGCATTTA	522
ACCCATCATG	GAAGAAAAGC	AAATCTCCTG	TCGGTCTATC	CATGCTTCGT	CCAACTCGTC	528
CACCAATCTG	ААТСАААСТА	GACTTGGTAA	ACAAACGATG	ATTGGCCTCT	ACTACGAAAA	534
CATCCACACA	AGGGAAGGTA	ACTCCGCGCT	CCAAGATTGT	CGTACTGATA	AGTATTGTCA	540
GTTCTCCATC	TCGAAAAGCT	TGTACTTGCT	CTAATCGATC	CTCTGTTACA	GAAGATACAA	546
AGCCAATTTT	CTCATTTGGA	AATTGCTCCT	GTAAGATTTC	TGCTAACTGC	TCCCCTTTCT	552
TAATTTCTGA	AGCAAAAATG	AGTAACGGAT	AAGCTGTCTT	TCTCTGCTTC	TCAATATAGG	. 558
ACTTTAACTT	TGGTGACAAA	CGATTCTTGT	CTAAGTAGCG	ATTAAAATCC	GATAACCAAA	564
TTGGTTTTGG	AATAATCAAC	GGATTTCCAT	GAAACCGTCT	CGGTAAATTC	AGTCTTTTTA	570
GTTCTCCTAA	ACGGACCTTT	TTATCTAACT	CATTGGTCGA	AGTCGCTGTT	AAAAAGATTC	576
TCAATCCATT	CTCCTTTACA	CTATTCTTGA	CAGCGTGGTA	AAGCATGGGA	TTATCAACAT	582
AAGGAAAAGC	ATCTACTTCA	TCCACTATCA	GCAAATCAAA	AGCTTGATAA	AACTTCAATA	588
ACTGATGGGT	TGTTGCAACA	ACTAGTGGTG	TTCGAAAATA	AGGTTCCGAT	TCTCCATGTA	594
GCAAAGCTAT	CCCGCAAGAA	AAATCCTGTT	GCAGGCGCTT	GTACAGCTCC	AAACAAACAT	600
CTATGCGAGG	ACTAGCCAAA	CACACTGCAC	CACCCGCATT	GATCACTTTA	GCCACTACTT	606
GATAAATCAT	TTCTGTCTTT	CCAGCTCCTG	TTACCGCATG	AACTAAGGTT	GGCTTTTGCT	612
<b>IGTCTACTAC</b>	TTGAAGCAAT	CCCTCTGACA	CCTTCTCTTG	AAAAGGAGTT	AATTGGCCGC	618
GCCATTTGAG	AACATCTTGC	TTTGGAAAAT	CCTCCTGCGG	AAAATAGTAT	AAAGTTTGAT	6240
CACTTCTGAC	TCGCTTCATC	AGCAAGCACT	CTCGACAATA	GTAAGCACCG	ATGGGCAAAT	6300
ል <b>ር</b> ሮልጥጥር	<b>ТАСА АТАСТА</b>	CTATTACACC	CTTCACACAA	A A COMMOCCCC	MINCER COMMON	6366

				•		
TCATTGCTGG	AAGTTTCTCC	GCCAACTGAC	GTTCTTCTTC	TGTTAATTCA	TTCTCAGTAA	6420
ATAAACGACC	GAGATAATCT	AAATTTACTT	TCATACTTCT	TTATTCGTAA	AAACTAGCAC	6480
TTTAGATGAT	TTTTTAGTAC	AATTAAATCA	TGGAATTTAG	GACAATTAAA	GAGGACGGTC	6540
AAGTCCAAGA	AGAAATCAAA	AAATCTCGCT	TTATCTGCCA	TGCCAAGCGT	GTTTATAGCG	6600
AAGAAGAGGC	TCGTGACTTC	ATTACTGCCA	TCAAAAAAGA	ACACTACAAA	GCGACACATA	6660
ACTGCTCTGC	CTTCATTATT	GGAGAACGTA	GTGAAATTAA	ACGTACAAGT	GATGATGGTG	6720
AGCCTAGTGG	TACTGCTGGT	GTTCCCATGC	TTGGGGTACT	AGAAAATCAC	AATCTCACCA	6780
ATGTCTGTGT	GGTCGTGACA	CGCTACTTTG	GTGGTATTAA	ACTAGGCGCT	GGAGGACTAA	6840
TTCGTGCTTA	CGCCGGCAGT	GTCGCCTTAG	CTGTCAAAGA	AATTGGTATT	ATTGAAATAA	6900
AAGAACAGGC	TGGCATTGCT	ATTCAAATGT	CTTATGCTCA	GTACCAAGAG	TACAGTAACT	6960
TCCTTAAAGA	ACATGGTCTC	ATGGAGCTGG	ATACAAACTT	TACAGATCAA	GTCGATACGA	7020
TGATTTATGT	TGATAAAGAA	GAAAAAGAAA	CTATTAAAGC	TGCACTTGTG	GAGTTTTTTA	7080
ATGGAAAAGT	CACTTTAACT	GACCAAGGTT	TACGAGAGGT	TGAAGTTCCT	GTAAACTTAG	7140
TGTAAACAAT	GAATAATACA	GCGTTTCGTT	GACATTCTCA	CAACTACTTT	AGCGAGCAAA	7200
ATAAAAAGAG	GCGTACCAAA	ATATACTAGA	AAATGAAGCA	ATTCAAACGA	AACCTGATAT	7260
CGTTTTCCTT	CACACCTATT	TACTAGAATT	AGCTGAACGC	AATCACTTGA	AAATTAATGA	7320
CTTTGATCTA	TGATATATAG	AAATGGTATG	GATAGCGTTA	TACTAAAGAT	ATCTTATACA	7380
aagaggt <b>att</b>	CATATGTCTA	TTTATAACAA	CATTACTGAA	TTAATCGGTC	AAACACCGAT	7440
TGTTAAACTT	AACAACATCG	TGCCAGAAGG	TGCTGCAGAC	GTCTATATAA	AGCTTGAAGC	7500
ATTTAATCCT	GGTTCATCTG	TAAAAGACCG	TATTGCCCTT	AGCATGATTG	AAAAAGCTGA	7560
ACAAGATGGT	ATTCTGAAAC	CTGGTTCTAC	TATTGTTGAA	GCAACAAGTG	GAAACACCGG	7620
TATTGGACTT	TCATGGGTAG	GTGCTGCTAA	AGGGTATAAA	GTCGTCATCG	TTATGCCTGA	7680
AACTATGAGT	GTAGAACGAC	GTAAAATTAT	CCAAGCTTAT	GGTGCTGAAC	TCGTCCTAAC	7740
TCCTGGTAGC	GAGGGAATGA	AAGGTGCTAT	TGCTAAGGCT	CAAGAAATCG	CTGCTGAACG	7800
TGATGGTTTC	CTTCCTCTTC	AATTTGACAA	TCCAGCTAAT	CCAGAAGTAC	ACGAAAGAAC	7860
AACAGGAGCT	GAGATACTAG	CTGCTTTCGG	TAAAGATGGA	TTAGATGCCT	TTGTTGCTGG	7920
AGTAGGTACT	GGTGGAACGA	TTTCTGGTGT	TTCTCATGCA	CTCAAATCAG	AAAATTCTAA	7980
CATTCAAGTT	TTTGCAGTAG	AAGCAGATGA	ATCTGCTATT	CTATCTGGTG	AAAAACCTGG	8040
TCCTCACAAA	ATTCAAGGTA	TCTCAGCTGG	ATTTATTCCT	GATACACTTG	ATACTAAAGC	8100

CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG 8160 TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA 8220 GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAG ATAACGGTGA 8280 ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA 8340 AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTT ATTTGCACTT 8400 TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCTCTAAA ACCTCTTTGT TTACGAGAGT 8460 TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA 8520 TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC 8580 TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC 8640 CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG 8700 TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCCTTA 8760 CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC 8820 AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT 8880 AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT 8940 TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT 9000 TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT 9060 TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT 9120 GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA 9180 CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT 9240 ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTAGAAGCA 9300 GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT 9360 CAGCCAATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAGT 9420 CAGTTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAT CCCAGTAAAG 9480 AACTTTAAAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC 9540 CAATTCAAAG TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT 9600 CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA 9660 CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT 9720 ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC 9780 TTATTATAGG GCTTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT 9840 TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG 9900

239

TTATTCAAGG	CTGCTGCCAT	TGTAGCTGCA	ACTTCAGCTT	CGAAGTCGTT	TGCAGCTTTC	9960
TCGATACCTT	CACCAACTTC	AAAGCGAGCA	AACTCAACTA	CCGAAGCGTT	AACTGATTCA	10020
AGGTATGCTT	CAACTGTCTT	GCTGTCATCC	ATGATGTAAA	CTTGTGCAAG	AAGTGTGTAA	10080
GCTTGGTCAA	CTTTAGTGTT	ATCAAGCATG	AAGCGATCCA	TTTTACCTGG	AATAATTTTG	10140
TCCCAGATTT	TTTCTGGTTT	GCCTTCTGCA	GCCAATTCAG	CTTTGATGTC	AGCTTCAGCT	10200
TGAGCAATAA	CATCATCAGT	TAATTGAGCT	TTTGATCCAT	ACTTCAAGTG	TGGAAGAGCT	10260
GGTTTATTAA	CCATTGCACG	GCTTTCGTTG	TCTTGGTCGA	TAACGTGATT	CAATTGTGCC	10320
AACTCATCTT	TAACGAATTG	CTCATCCAAT	TCTTTGTAAG	AAAGAACTGT	TGGTTTCATC	10380
GCTGCGATGT	GCATTGACAA	TTGTTTAGCA	AGTGCTTCGT	CTCCACCTTC	AACAACTGAA	10440
ATAACACCGA	TACGTCCACC	GTTATGTTGG	TATGCTCCAA	AGTGTTGTGC	GTCTGTTTTT	10500
TCAATCAATG	CAAAGCGACG	GAATGAGATT	TTCTCTCCGA	TAGTTGCTGT	TGCAGATACG	10560
TATGCAGCTT	CAAGAGTTTC	ACCTGAAGGC	ATTATCAAAG	CAAGAGCTTC	TTCGTTGTTA	10620
GCAGGTTTTC	CTTCAGCAAT	GACTTTAGCT	GTAGTATTTA	CCAATTCAAC	GAATTGAGCG	10680
TTTTTTGCAA	CGAAGTCAGT	TTCAGCGTTT	ACTTCAATAA	CTGCTGCAAC	ATTACCGTTA	10740
ACATAAACAC	CAGTCAAACC	TTCTGCAGCA	ACACGGTCAG	CTTTCTTAGC	TGCCTTAGCC	10800
ATACCTTTTT	CACGAAGCAA	TTCAATCGCT	TTTTCGATGT	CACCGTCTGT	TTCTACAAGC	10860
GCTTTTTTAG	CGTCCATAAC	ACCGGCACCA	GATTTTTCAC	GCAACTCTTT	TACAAGTTTA	10920
GCTGTAATTT	CTGCCATTTT	AATTCTCCTA	TATTTTTGA	aaataggaga	GCGCGGCTAA	10980
GCCCGCCTC	CGG					10993

# (2) INFORMATION FOR SEQ ID NO: 16:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG	GTTTGGCACC	TCGATGTCGG	CTCGTCGCAT	CCTGGGGCTG	TAGTCGGTCC	60
CAAGGGTTGG	GCTGTTCGCC	CATTAAAGCG	GCACGCGAGC	TGGGTTCAGA	ACGTCGTGAG	120
ACAGTTCGGT	CCCTATCCGT	CGCGGGCGTA	GGAAATTTGA	GAGGATCTGC	TCCTAGTACG	180
AGAGGACCAG	AGTGGACTTA	CCGCTGGTGT	ACCAGTTGTC	TTGCCAAAGG	CATCGCTGGG	240

			240			
TAGCTATGTA	GGGAAGGGAT	AAACGCTGAA	AGCATCTAAG	TGTGAAACCC	ACCTCAAGAT	300
GAGATTTCCC	ATGATTATAT	ATCAGTAAGA	GCCCTGAGAG	ATGATCAGGT	AGATAGGTTA	360
GAAGTGGAAG	TGTGGCGACA	CATGTAGCGG	АСТААТАСТА	ATAGCTCGAG	GACTTATCCA	420
AAGTAACTGA	GAATATGAAA	GCGAACGGTT	TTCTTAAATT	GAATAGATAT	TCAATTTTGA	480
GTAGGTATTA	CTCAGAGTTA	AGTGACGATA	GCCTAGGAGA	TACACCTGTA	CCCATGCCGA	540
ACACAGAAGT	TAAGCCCTAG	AACGCCGGAA	GTAGTTGGGG	GTTGCCCCCT	GTGAGATAGG	600
GAAGTCGCTT	AGCTTTAATC	CGCCATAGCT	CAGTTGGTAG	TAGCGCATGA	CTGTTAATCA	660
TGATGTCGTA	GGTTCGAGTC	CTACTGGCGG	AGTAATtGAT	AAAAGGGaAC	ACAGCTGTGT	720
TCCTCTTTTT	GTATCAATTT	GTATCACCAA	GCATTTTCAT	AAGGAAGTCT	GTTATTTCTT	780
GAGAACTTTC	TTTTTTTCCA	TGTGCAATCC	AAGTTTGGCA	GACACCAAAA	AGTGCATGAG	840
TTAGATAGAT	GCTACTATAT	TCTAATTCAG	TGGTATTTAG	ATTCAGTTGC	ATAAATCGCT	900
TTTGTAAATC	TGTACTAAGC	ATGATATGAA	GTTTATTTCG	TAAGAAATTT	TGGATTTCTT	. 960
TAGTCCCATT	TTCAGAAAGA	AGGGCAGCCA	GAAGTGGTTC	TGACTCTAGA	ТАТТСААААА	1020
СТТСТААААТ	AGCGTCTCTT	TTGTGATGAG	CATGTTTTTG	АААААТАТАТ	TCAAATGTAT	1080
GGAATAGCTT	GCTTTGATAG	TGCTCAATCA	TATCATACTT	ATCCTTATAG	TGAGTATAGA	1140
AGCTGGAACG	ACTAATTCCG	GCTTTTTCTA	CTAATTTGAC	AGTAGAAATT	TTATCAAATG	1200
GCTGTTCCAT	CAGTAATTGT	ACCATAGCAT	TTTCAATAGT	TCGCTTTGTT	TTTAAGCGTT	1260
TGTTACTTTC	TTGCATATTT	CCTCCTTGTA	AACAAATTAG	ACTATATGTC	TAAAAATAGA	1320
TTTTTTATCT	TGTAATTTAG	ATTTTTTAAT	GTATAATCTA	TTATATCAAA	ATTTTAGACA	1380
ATATGTTTAA	AAAAGGAGAA	ACTAAGTTTA	AAGAATGGAA	AGCAATTTAA	ААААААССАА	1440
CCTTTATTAT	TGTCATGATC	GGGATTTCTC	TTATTCCAGA	TCTGTACAAT	ATCATATTTT	1500
TGTCATCAAT	GTGGGATCCA	TATGGGCAAT	TGTCTGACTT	ACCTGTGGCA	GTTGTAAATA	1560
atgataaaga	GGCTTCCTAT	aatggtaata	CTATGGCAAT	AGGAAAAGAC	ATGGTGTCCA	1620
ATTTAAAAGA	AAATAAAACC	TTGGATTTTC	ATTTTGTAGA	TGAAGAGGAA	GGAAAGAAGG	1680
GATTGGAAGA	TGGCGATTAC	TATATGGTAG	TGACTTTACC	AAGTGATTTA	TCTGAAAAAA	1740
CAACTACATT	ATCCAATATT	CAATCGACAG	CAGCTTATCA	ATCATTGACA	AGTGAGCAAC	1800
AAACTGAGAT	AAGTGATTCT	GTATCTCAAA	ATTCAACTGA	TAGTATTCAA	TCGGCTCAGT	1860
CAATTGTAGC	TTTAGTACAA	GATTTACAGG	GAAGTTTAGA	AAACTTACAA	AATCAATCTT	1920
CTAATCTTTC	GACTTTAAAA	AATCAATCTA	ATCAAGTATC	ACCTATTACT	TCTACTTCTT	1980
TGATAGGATT	GTCAAGTGGA	TTAACAGAGA	TACAAGGAGA	тсттастасс	AAATTACTTC	2040

CTGCCAGTC	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	210
CTCAGGGCGC	AAGTCAACTA	AGTGAAAAAA	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	216
TAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	222
AATTACAATC	: AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	228
CTCCATTAGA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	234
GAACAAAGTI	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	240
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	АСЛАТСТААА	AATGCAGAGA	246
TTTTGTCAAA	TCCACTCAAT	CTTTCAAAAA	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	252
TCGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	CAACAAATAT	258
GATATTTGCG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	264
TTGAGCTGAA	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	270
TCAGCTTATT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	276
AAGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	282
PTTTTTCTCA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	288
PGCTTTGACA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	294
PTCGGGATTA	CGACAAACAA	TCTCTATCAA	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	300
CTATTTACTA	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	306
AATCGACCGA	TTAACTGGTC	GATTTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	312
АТТССАЛАТА	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	318
atgaaggaaa	GTGTAATAGT	TCCTTTCCCC	TTGGGAATGT	CAACTTTCAT	AAATCCAGTT	324
rgagettett	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	330
GGAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	336
TAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
PTGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
CTAACATTGA	TATTGAAAGT	TTTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
CATTATCAG	TTGTAAAAGT	CTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	3600
TATCGTTAG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
TCAATTTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
ጥውሞውልጥጋልሞ	المناطعة الم	<u>ጥር</u> ማጥጥጥጥጥ	<b>ТА А ССПАТИТС</b>	CACAAAAAMA	3 m C 3 3 3 3 mm C	270/

			242			
ACGTTAGCAA	GTTGATTTAA	AAATGAGGCC	TGATTATCCA	AGGTATGTTC	ATTGAACTTG	384
ACATCATTGT	AAACAGATTG	ACTCGCAACT	GCAATCGGAA	GAGAGTAŢTG	ATTTTCATAT	390
AGGGTAAGAT	TATCTTTTTG	ATAGATATCT	TTAAAGCCAT	ACTTATCAAT	AGGACTGTCT	396
GAGATATTGT	ACTGGATACC	ААЛТАЛАСТА	TCAGCCAAAA	TACTATTATT	TGCATATCGG	402
agattgagat	TAGTCCCAGA	GGATTTAAAA	CCAAGTTTAT	CTAAAGTAGA	GCTTGATGAA	408
CGATTTCGAA	CAGATGAAAA	TTGAGAGATT	CCATTGTAGT	TGAATTTCAT	ACTGTCATTT	414
CCTGTCTGAG	TTTGTAGTTT	TTCAGTACGA	GTAAATTGAT	TTCCAATATA	TGTTGAGAAA	420
GATTCCATAG	CTGGGATATC	TCGACTATAA	GCACTTCGAG	AAGCAAATCC	CCATTCCTTA	426
GCAATTCCGT	CCATTTGAGA	TGAAGCATTT	AAACTCATTT	CAACCAGTAT	AAATAAAGAG	432
ATTAGAATGG	CAAATAGATT	CACAGATATA	AACTTTTTGA	TAACTGCAAG	GAGTAAAAGA	438
GAATAGACAA	CCAAAAATTC	AAGAGTAAGC	AGAATATTCA	AATCTGTTAA	AAAAGAATAA	444
PGCGATTTTA	GATAGATGGT	AGCTAAAAAT	CCTGCTACTA	CAAGAAAAAG	CGAAACTAAA	450
AAATTCCAGA	CTTTAAGTTC	TTTCAGACGC	TTTAAGACTT	CTGCTGCTGT	GTAAATTAAC	456
AAGGTAGAGA	AAATCCAAGC	ATAGCGATGT	AAAAACATGT	TTGGAGTATG	CATGCCTTGC	462
CAAAATAAGT	CAAGAGCTTC	TATGTAAAAG	CTTGCAATTA	GAAATGCAAA	GAATATTACA	468
PATATGAGTT	TCACGTGAAA	CTTAATAGAT	TTCAGCGTAA	AAAATAAAAT	GGTCAAAATA	474
AAGGGAAATA	GTCCAACAAA	AATCATTGGG	ATGGCCCCAT	ACTTTGTTGT	GTCAAAGGAA	480
CAATGAATT	GCTTAGCAAA	GAGATCAAGA	TACCAGCTAC	TTTCAGTTTG	AAACTTTGTA	486
ACTTCAGTCA	ATTTTTCCCC	ATGTGTCTGT	AAATCAAATA	GAGTGGGAAG	AGTCATAATC	492
AAACTAGCCA	TACCAGCTAA	AAAGGAGATA	ACTATGAAAT	CAAGAACAGA	TGATTTTCGA	498
STCTTAAAGT	CCCACGAAAT	TTGACAGAGA	TACCAGAAAA	TAAGAAACAA	TACTGTCATA	504
TATCCAAAAT	AATAATTTTG	AATAAATAAG	ATTGACAGAC	TTGTAAAGTA	CAATAGGAGT	510
TTCTTTTCAG	TTATCAGTAG	ATGTAAACCA	GTTATAATTA	AAGGAATCAA	GATAAAAACA	5160
CTAGCCAGG	TTTTTATCTC	TAATTGACTG	ACAGTGAAAC	TCATCAGAGC	ATAGGAAGTA	5220
SATAAGGCTA	GTTTTAAAAT	CTGAGGGATA	GATTGAAACA	ATTTATTCAA	ACTAAAAAAG	5280
STTGACAGAC	CAATCAATCC	AAATTTTAAG	AGAGTTGTCA	GATAGATAGC	ATCTGGCATA	5340
TCGTTAGAT	CAAAAAAGTA	AACCAGAGGC	GCGAGAAAAC	TACCCAAGTA	ATAACTAGAT	5400
AGGGCATAGA	AGTTTAGCCC	TAGACCACTT	GTAAAGGTGT	AAAACAGATT	ACTATTTCCA	5460
GTAGGATAT	TTCGTAAGGC	ТАСАТСАААА	ATAACGTATT	GATGAAAGCC	АТСТССТААТ	5520
GAGGAGAGT	TGTCGCTATT	CCAGTAGATA	СТТТСАСАТА	GATATACTCC	ልርልርልሞልልሞር	5580

ACTACAGGAA TGATGAAAGA	AATAAAATAG	GTTCGATATG	AAAAATTTTT	TGATTTCATG	5640
TTACCTCGTA GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
TTAGTCTTTC CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
GTAGGTTTCA TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAGTTTGA ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
CAATCCATCA TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
TACAAGGACA TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
CCCTGACAAG ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
GAAGCCACGT AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
AAGAATTGAT TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
AGTTGTAACT CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
TAATGCAGTC GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
GATGAAACTA ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
TGTCAAGAGA TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
ACTAGATGGC ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
CTGCCTTGAC TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
TTTTTCTTCT GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
CTTCCAGAAG TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
GTGAGTACAA ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAAGTCAATC AAGAAGTCTT	CTAACCAAGT	AATCGATTGG	ATATCCAAAC	CGTTAGTAGG	6780
CTCGTCCAAG AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
TTTTTCACCG TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
GTTTTGAAGT AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
TCCTTCGAGT TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
AGCATCTTTC TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
GGCACGTTCA TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
ACCAAGAGAG ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
TGATTTTCCG GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
ATTGACATCA TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

			244			
СААТСТТТТ	CTCCTATATG	TGTAATATAT		AGAAAATACA	GAAATATTCA	7380
<mark>እ</mark> ልፐፕፕፕፕልፕ	TGTCAATTTT	GTGTAAATTA	TATTTACAGT	ATCCTTTACA	CAAATCTGTA	7440
AAAAGCAAGG	CTGATTTATT	TTGATAAATT	ACGGTTATTT	CATTAAAAAA	ATGCTATAAT	7500
TGAAAGGACT	ATATCGAAGG	AGAACAAAAT	GACTAAACCC	ATTATTTAA	CAGGAGACCG	7560
TCCAACAGGA	AAATTGCATA	TTGGACATTA	TGTTGGAAGT	СТСАААААТС	GAGTATTATT	7620
ACAGGAAGAG	GATAAGTATG	ATATGTTTGT	GTTCTTGGCT	GACCAACAAG	CCTTGACAGA	7680
TCATGCCAAA	GATCCTCAAA	CCATTGTAGA	GTCTATCGGA	AATGTGGCTT	TGGATTATCT	7740
TGCAGTTGGA	TTGGATCCAA	ATAAGTCAAC	TATTTTTATT	CAAAGCCAGA	TTCCAGAGTT	7800
GGCTGAGTTG	TCTATGTATT	ATATGAATCT	AGTTTCGTTA	GCACGTTTGG	AGCGAAATCC	7860
AACAGTCAAG	ACAGAGATTT	CTCAGAAAGG	ATTTGGAGAA	AGCATTCCGA	CAGGATTCTT	7920
GGTCTATCCA	ATCGCTCAAG	CAGCTGATAT	CACAGCTTTC	AAGGCTAATT	ATGTTCCTGT	7980
TGGGACAGAT	CAGAAACCAA	TGATTGAGCA	AACTCGTGAA	ATTGTTCGTT	CTTTTAACAA	8040
TGCATATAAC	TGTGATGTCT	TGGTAGAGCC	GGAAGGTATT	TATCCAGAAA	ATGAGAGAGC	8100
AGGGCGTTTG	CCTGGTTTAG	ATGGAAATGC	TAAAATGTCT	AAATCACTAA	ATAATGGTAT	8160
TTATTTAGCT	GATGATGCGG	ATACTTTGCG	TAAAAAAGTA	ATGAGTATGT	ATACAGATCC	8220
AGATCATATC	CGCGTTGAGG	ATCCAGGTAA	GATTGAGGGA	AATATGGTTT	TCCATTATCT	8280
AGATGTTTTT	GGTCGTCCAG	AAGATGCTCA	AGAAATTGCT	GATATGAAAG	AACGTTATCA	8340
ACGAGGTGGT	CTTGGTGATG	TGAAGACCAA	GCGTTATCTA	CTTGAAATAT	TAGAACGTGA	8400
ACTGGGTCCG	G					8411
(2) INFORMA	ATION FOR SE	O ID NO: 17	) <u>.</u>			

#### (2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9064 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TGCCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
TATTAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
CATGGAATTT	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
AGCAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
ATCTAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATGGCTGAAA	AGCAAGCCTT	300

TTGTT	TTTTT	ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATT	ATTGA	TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGC	AAAGA	TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAA	ATGAG	GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
TGCTT	AAAGA	AAGCATGTTG	CAGTAATCCT	СТАТАААТСА	ATTCTTCCAT	CAGTGGAACC	600
AGAAA	GAACA	GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCACT	ATAACCAATC	660
AATAC.	AGCCC	AACCTTCCGC	AGTTGACTGA	ACATGTTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTG	GAACA	CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATTT	TTTTCTTGGA	780
ATGCG	GAAGA	GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAA	ACTCA	AGATATTTTG	AATCCAGAAT	AAATTGCCTA	TCTGAGAAGA	AAATTGCCAA	900
TAGTT	TTGGA	CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	ССВАЛАЛТАЛ	GTAAGAGAAG	960
ACTGC	АСТТА	TTTTGAATAG	AAGTTGATAC	TTTTTCATAG	AAATCCTCCC	TACTATGACC	1020
TCACC	TTGTC	AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTTTGTTTTT	TTTAAGGCTA	1080
ACCTG	ACTAC	TAGATAATAG	ATACATTAAG	GCATTAAAGA	CAATGAAAAT	ATGTCCATAG	1140
AATAA	AATCA	ACCTCGCATC	CAAACCAAGA	TAAAGTTTGA	TTATCAAAAA	GATGAGCAAA	1200
AGAAT"	TTGAA	ACCATAAGGT	TTTTCCAAAA	ATAAATTTAA	AGCGATTTCG	AATATCTACT	1260
TCCTT	GATTT	TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTO	GTAAA	GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	TTTGTAAAAA	TGTCCCTAAA	1380
AGAAT	ATCCA	ACACACTACT	CAAGAAAATA	ACAAAAAATA	ATCTGTATTT	САТАТТАААТ	1440
ACCTC	CATTC	ATTTATTTCA	CTAACAATTT	AATAGAGCCT	TCTACTCAAA	TATCCTGTCA	1500
GAAAA	GGATA	GAAAGCTACT	TTTTATAATA	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACA	AGCAG	AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATTC	TGTTTCTGAA	1620
ATACC:	<b>PCTAT</b>	ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
TTGGT	PCTAG	GACTAACCAA	ATCATCATTT	ACTTATATTT	AAGAGTATCT	CTTTTATTTT	1740
AATGT	ATGTT	AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAAATGA	ACAGTAACGG	1800
GGTTA	AGTCT	СТАААААААТ	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAA	CTATC	TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCA	AGAGC	GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTTAGT	1980
ATATC	ATTGT	TTTTTAAAAT	TTTTCATCCA	AATCTTGAAT	TGTCATCGAA	ACATCTTGAA	2040

			246			
ТТСТТААААА	ATTTAAAAAG	TAAGCATTAA	AAACATACTT	TCCTCTTTAT	ATTGTATTGA	210
TACCAACTTG	TTTGTAGACT	TTTCATCCTG	CTATCACATA	TCATTTTGAC	AGGCGAAACA	2160
ATATTAAAGA	AACTCCCCTG	TAAATTAAGC	TAGCAAATAC	AGGGGAGAAA	TTTATTTTTT	2220
AGAGAGTACT	ATCCGTATCC	TTTTTGGAAG	ATTTTGAAAA	татттттста	ATTAAGTCAT	2280
CCATATAAGG	ACCAAATATA	ССААСТАСТА	ААССААТЛАТ	AAAACTTTTA	AAATCCATAA	2340
TTACCACCAA	CATATTGCTG	CATAGGCTAC	ACCTCCAAGT	ATAGCTCCAC	CTGCAGCACC	2400
AGTTACACCT	ATTCCTATAG	CAAATGGTCC	CAATAGAAAT	GTCAAACCGT	TGTTGCACAC	2460
CCATCAATTG	CGCCATATGC	AACCCCTGCT	GCACAACTAA	TTTTTCTTCC	CCAATCAATA	2520
TCTCCACCTT	CAACGCAAGC	AAGCATTTCA	ТТАТССАТАА	CTGCAAATTG	TGACATCATT	2580
TTTGTATCCA	TATAGTGTAT	CACTTTTCAG	TTACGGAACA	AGTTTAATAT	AAAAATTATC	2640
AAAAAAACAT	AGGCAATAAA	GAGAAAAATT	AATTTATCAT	AGATTAGAAA	TAATATGACA	2700
AAACAATTCA	ATGATGTTAA	TTCAATAGTC	TTTTGTTTTT	TATCGGAGAT	ACTTATGGAT	2760
AGATAAATAA	GATAGGTTTG	AAAAGCGAAG	AGAATAATAA	AGAATATAGC	CTTCATAAAA	2820
TTTAGCTTTC	ATTTTTATGA	TGTAGCGGTA	TAGGCTAAAT	ATCCACAAAC	CACTGCTCCT	2880
CCAATTCCTC	CTATTGCAGC	GCCCCATGGT	CCTAGAAGTC	TCCCATATTT	CACTCCACCC	2940
GCTGCACAAC	CTAAAGCAGC	AACTACAGCT	GCTCCTCCGG	AATTACCTCC	ATAAACCTCA	3000
CTCAGCATTG	TTTCATTTAT	ATTACAATAA	GTATTCATAC	AAGTCTCCTT	ттаттаааат	3060
CCACCCGTTG	CCCCTGTTAC	TCCTGCCCAA	AGATCCACAC	CAAATTTAGC	TCCTATGTAT	3120
CCACATGCTC	CCATAAATGG	TGCTCCAACA	CCACTCGCAG	CACAAATAGC	TGTCCCTAGC	3180
CCCCAGCCAC	CAAAAGCAGC	ACCACCACCT	TCTAAGACAT	TAGTTTGCCA	ATTATTCTTG	3240
CCTCCTTCAA	TACTAGATAA	CATAGTTATA	TCCATTTCAT	GAAATTGTTC	CATAATTTTT	3300
GTATCCATGA	CAAATACTCT	TTTTTATTTT	TAATTTTTGT	CTTGTTGTAA	CTTTGACAAG	3360
PTTAGTATAT	CATCGTTTTT	TAAAATTTTT	CATCCAGATT	TTGAATAGTC	ATCGAAACGT	3420
CTTGAATTGC	AAAAATTACA	TTAGACTTCC	TGCAAAACTA	GAATCCTAGT	TCATGATTGA	3480
PAATACCAGC	ACTCAAATTC	ATTCGTAATC	CGAAGCGTTT	ACGATGACTT	CGATAGGTTG	3540
PTGAAAACAT	TTTAAACGTT	TTTACTTTGG	CAAAGATGTT	CTCAACCTTG	CTTCTCTCCT	3600
FAGATAGCGC	ATGGTTACAG	GCTTTATCTT	CAACTGTTAG	CGGTTTGAGT	TTGCTGGATT	3660
PACGTGAAGT	TTGTGCTTGA	GGATATATCT	TCATGAGCCC	TTGATAACCA	CTGTCAGCCA	3720
AGATTTTACC	AGCTTGTCCG	ATATTTCTGC	GACTCATTTT	GAACAACTTC	ATATCATGAC	3780
AATAGTTCAC	AGTGATATCC	AAAGAAACAA	TTCTCCCTTG	ACTTGTGACA	ATCGCTTGAG	3840

TCTTCATAGC	GTGAAATTTC	TTTTTACCAG	AATCATTCGC	TAATTCTTTT	TTTAGGGCGA	3900
TTGATTTTTA	CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3960
GAAATCGTAA	CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	4020
TTGCTTTCGT	GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
TATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
TGAACACCAA	CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
ATAGAACTAT	AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
TTCTAACAAT	GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
CATATTTTGT	TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
TTTTCTTTTA	TACTTCATTA	AGCTCTACTT	ТТТАТААТАС	TTCAAGCCCC	ACATGAGCAG	4500
AAGCATGATG	ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
TCCTGCTGTG	ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
CATAAGTTGA	TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
TTCCCTAGTG	AGATAAACAG	TAACCAAAAT	AGAAGCCAAG	TTAATAACTA	CTAAAAGAAA	4740
TTGGAAAACT	ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
CAAGGCCAAC	TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
AGTTTTCATT	TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
ACATAGGCTA	TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
ATGGACATGA	TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
CCTAAATGTG	CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
TTTTGACCTT	GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
TAAAAAAGCA	AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
TGTAGACTTT	TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
CTCCCCTGTA	AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTTAG	AGAGTACTAT	5340
CCGTATCCTT	TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
CAAATATACC	AACTACTAAA	ССААТААТАА	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
TGTTGCTGCA	TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
TTGCCATGTT	CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

TGCTTTGGCA	AAATCTCCCC	AATTGCATCC	GCCACCTTCA	ACGCAAGCAA	GCATTTCAGT	564
АТССАТААСА	GAAAATTGTG	ACATCATTTT	TGTATCCATG	АСАААТЛСТС	CTTTTTTAAA	570
АААСТААААТ	AAATCAGAAT	AGAATCCTCA	ТААТТТТАСТ	ATAAGTCTTA	CCAACTTAGT	576
CCCAATTTAT	CACCAACCAT	ACCTCCTAAG	CATGTTAATC	CACCCCCAAT	TGCACCAATG	582
TGTGCTCCAA	CAAATGCACC	AGCAAGTCCA	GCTACTCCTA	AAGTGGCCAA	ACCTGCTCCA	588
GTTCCACCAG	ттатааттсс	CGTAGTGACT	CCTGTAATCA	GTGCATTTTG	ACAATCAGTG	594
GAGCTATACC	CCCCTTCAAC	TTTCGCAAGC	ATTTCAGTAT	ССАТААССТС	TAACTGTGAC	600
AACATTTTTG	TATTCATGAT	GAATACCTCC	TTTTTATTT	CAATTTGTTA	CCAAAGTCTT	606
АААТТСААТА	AACAAATAGA	TTTTTTATAG	TATCTTTTTG	ATTTTCTTAA	AAAAGTATAT	612
ACGTCTACTA	тсттсттааа	GGTAGCAGTA	CCTATTTTT	AGTCTAAGAT	TTCAATAATC	618
TTGAGTATCT	AAAATATCTT	AATTTCGTTA	TTCTCCTTGC	AATAAAAAGT	TTTACTATAC	624
TATTATTAA	CTTGCAGAAA	GCAAAAAATA	ТТАСТАААТА	ATAGTTTATA	GTTAAGTTTT	630
TTATTCCTAC	CAATCCATCA	ACTAAGTAAA	GCATCAACGA	TTACATAAAC	GATTGATAAT	636
АЛАЛТТААЛА	TTTTGCTAAC	TATCTTATTC	TCATCATTCT	TAGATAACTT	TGATATTTTG	642
TAAGTAAGTA	AATAAGACAG	ATAATTAATA	GCGATAATAA	TACTATATTT	AAGAATCATA	648
ATCTTACAAA	GAGGACATAA	TTCCTGAACC	TACACAAATA	AGTGTTGCTG	CTCCCCCAGT	654
TATCGGACCA	GTCGCAGCAG	CTAATAGTAC	TGCTCCAATA	CAACCACCGA	TTGCAGATCC	660
raaattgcct	CTTCCTCCAC	TAACTATTTC	GAGTTCTTCA	TTATCCATAA	CAGAAAATTG	666
PTCCATCATT	TTTGTATTCA	TGACAAATAC	TCCTTTTTTC	TTTTTTTTTT	TTTGTCTTGT	672
rgtaactttg	ATAAGTTTAG	TATATCATCG	ТТТТТААДА	TTTTTCATCC	AGATCTTGAA	678
PTGTCATCGA	AACGTCTTGA	ATTAGCTTTT	TTATTTCAAG	CCACCTCTAA	ATGTTTAAAA	684
AAAATAATTT	CTAATCACTT	TTTTACCATT	CAGGAAGTTT	TAATGACTAT	TCAAGATTTC	690
атаааататс	AACTTAGTTT	TATGACATAA	TAGACCTATC	CACTATATGA	AAGGAATTGC	696
CAATGACTTC	TTATAAACGT	ACATTTGTTC	CTCAAATAGA	TGCGAGAGAC	TGTGGTGTCG	702
CTGCCTTAGC	CTCGATTGCT	AAATTCTATG	GTTCAGATTT	TTCTCTAGCT	CACTTGAGAG	7086
AACTTGCAAA	GACCAATAAA	GAAGGGACGA	CTGCTCTTGG	CATTGTAAAA	GCCGCTGATG	7140
AAATGGGCTT	TGAAACAAGA	CCTGTTCAAG	CAGATAAAAC	GCTCTTTGAC	ATGAGTGATG	7200
PCCCCTATCC	ATTTATCGTT	CACGTTAACA	AAGAAGGAAA	ACTCCAACAT	TACTATGTTG	7260
PCTATCAAAC	AAAGAAAGAC	TATCTGATTA	TTGGTGATCC	TGACCCTTCT	GTAAAAATCA	7320
יייים אינו אינוייים אינוייים	********	THE PROPERTY OF THE PROPERTY O	እስመድር እ <b>ር</b> መድር	ACTIA COMA MOD	mmmem s com s	776

CCAAACCCAG	CTATCAACCC	CATAAAGATA	AAAAGAATGG	TCTACTAAGC	AAGCTTCCTT	7440
CCTCTGATTT	тсаласалал	ATCTCTCATT	GCTTACATTG	TTCTCTCAAG	CTTATTGGTC	7500
ACTATTATCA	ATATAGGTGG	TTCTTACTAT	CTCCAAGGAA	TCTTGGATGA	ATACATTCCA	7560
AATCAGATGA	AATCAACTTT	AGGAATCATC	TCAGTTGGTC	TGGTTATCAC	CTATATCCTC	7620
CAACAAGTCA	TGAGCTTCTC	CAGAGATTAT	CTCCTAACCG	TTCTGAGTCA	GAGATTAAGT	7680
ATTGATGTGA	TTTTATCCTA	TATTCGCCAT	ATTTTTGAAC	TTCCCATGTC	TTTCTTTGCG	7740
ACACGTCGTA	CAGGAGAAAT	CATTTCACGA	TTCACAGATG	СТААСТСТАТ	TATAGATGCC	7800
TTGGCTTCTA	CCATTCTTTC	TCTTTTTCTG	GATGTTTCTA	TTCTGATTCT	TGTAGGAGGC	7860
GTCTTACTGG	CACAAAACCC	TAATCTCTTC	CTTCTTTCTC	TTATTTCCAT	TCCTATATAC	7920
ATGTTCATCA	TCTTTTCTTT	TATGAAACCT	TTCGAAAAAA	TGAACCATGA	TGTCATGCAA	7980
AGTAATTCTA	TGGTTAGCTC	TGCCATTATC	GAAGATATCA	ACGGGATTGA	AACTATAAAG	8040
TCGCTCACGA	GTGAAGAAAA	TCGCTATCAA	AATATAGACA	GCGAATTTGT	AGATTATTTG	8100
GAAAAATCCT	TTAAGCTCAG	TAAATATTCT	ATTTTACAAA	CGAGTTTAAA	GCAGGGAACA	8160
AAATTAGTTC	TGAATATCCT	TATCCTATGG	TTTGGCGCTC	AATTAGTCAT	GTCAAGTAAA	8220
ATTTCTATCG	GTCAGCTGAT	TACCTTTAAC	ACACTTTTTT	CTTACTTTAC	AACTCCTATG	8280
GAAAATATTA	TCAACCTCCA	AACCAAACTC	CAATCTGCGA	AGGTCGCTAA	TAACCGTTTG	8340
AACGAAGTCT	ATCTAGTCGA	ATCTGAATTT	CAAGTTCAAG	AAAACCCTGT	TCATTCACAT	8400
PTTTTGATGG	GCGATATTGA	ATTTGATGAC	CTTTCTTATA	AGTATGGTTT	TGGATGAGAT	8460
ACCTTAACAG	ATATTAATCT	CACGATTAAA	CAAGGAGATA	AGGTTAGCCT	AGTTGGAGTT	8520
AGTGGTTCTG	GTAAAACAAC	TTTAGCCAAA	ATGATTGTCA	ATTTCTTTGA	ACCCTACAAA	8580
GGGCATATTT	CCATCAATCA	TCAGGATATT	AAAAACATTG	ATAAAAAAGT	CTTGCGCCGT	8640
CATATTAATT	ACCTACCCCA	ACAAGCCTAT	ATCTTTAATG	GCTCTATTTT	GGAAAACTTA	8700
ACCTTGGGCG	GTAATCATAT	GATTAGTCAA	GAAGATATTC	TAAAAGCTTG	TGAAGTAGCT	8760
GAAATCCGTC	AAGACATTGA	AAGAATGCCT	ATGGGCTATC	AAACTCAGCT	CTCTGATGGA	8820
GCTGGTCTAT	CAGGAGGACA	GAAGCAACGA	ATCGCTCTCG	CTCGTGCTCT	TTTAACTAAA	8880
PCTCCTGTTT	TAATACTAGA	TGAAGCTACT	AGCGGTCTTG	ATGTCTTGAC	TGAGAAAAG	8940
GTTATAGATA	ATCTTATGTC	TCTAACTGAT	AAAACCATTC	TCTTTGTAGC	CCATCGTCTC	9000
AGTATAGCCG	AACGAACCAA	CCGTGTCATT	GTTCTTGACC	AGGGGAAAAT	CATTGAAGTT	9060
GGTA						9064

250

### (2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7780 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

60	AATTATAACG	AATTTTGTAT	CCTCTCTGTT	AAATAAACAA	TTGATTTCAT	CTCCATTTTT
120	TTTTTCGTTC	TCAAAAATAT	AATTTTTATC	GTGTTTTTTA	TACTTGTCAA	ATATCCAAGT
180	ACTATTTTAT	ACAGAATTAA	TCCCTTTTAT	GATTTCAAGC	GCCATCAGTT	AAAAAAAGGA
240	TTTAGCATAG	CACAGATATT	ACAACCCATT	TTCAAAGTAG	TCTTACCTGT	AGTTCGACAA
300	AACAATGGCT	CACGACCCGT	TGGAAATAAT	GGAAATAACT	GCTCCAAGTA	TCACCGATAC
360	ATAGTGGTTA	TAGTTTCAAA	AGGTCACGGA	TTCAGTCGCA	TCTTAATCTC	TCTGGATTTT
420	AAGATAAAGA	CAGAACCATT	GCGTCGTCAA	CACCCGGTAT	CCATGGAGGC	ATTTGCTCAT
480	ттсттсстст	TTTTTTTAAT	TCACGTCCCA	GCTTTTAACT	CTTCCACAAC	TCAAGTGCTG
540	GGCTACAGCG	CCTGGGCAAT	CGGATGGTTG	CCCCTTCATA	TGCGCTCTTC	ACAGCTGGAA
600	TGTACGCAAA	CAGTCAAGAC	GCCTTAAGGA	ATCTGATACA	TACGCTCCAC	TGATCCCCCA
660	CAGTTTCACT	ATTTCTTTTC	ATTTCAAATG	GAGTGCGATC	CTGGTTGTTG	TCTTGAGAGA
720	ACGGTCATGC	TTGCCAGGTC	ATGACCTCTT	ATCATCTTCG	TTACTTCTGC	TCGTATTCAT
780	CATAGCGTAG	CTTCTTGTCC	TGTGAGAGCA	ACGATTGATT	CACGTACCGT	GTGACAAAAG
840	CTTTCATCTC	ATCGTAACAT	TCAAATTGAG	ТАААТСТТСТ	GTAATTTCTC	AACTGGTTAT
900	TCAAGGAACA	GTGTTGGGGA	CCGTTTCCTT	ATATAGTCTT	TTTTCCTGTA	СТТАТССААА
960	GTCTTATCAG	GAAAAATCCT	CTCCATCTAG	TCAATCAAAT	ATCATTAAAT	TCTGCTTGGT
1020	TTGTCTTTTA	CATGGTGTAC	TTACCAGAAG	ATGGAACGGG	AGCTTGCTGC	AGATACGTGA
1080	GAAGTTGGCT	ATCCAAAGCC	CTGAAATCGG	ATTTTACCAG	GGTTTCCTCA	GACCATACAA
1140	ACACGCTGCT	GGCCACGCAG	CCAAGACACG	GGACTAGTTG	GATGATTTTA	CATCCAAGAG
1200	TCATCCCAGA	ATCCTTGACC	CATATAGACG	ATAGCTGAAT	TGACAATCCA	GTTGACCACC
1260	TCCTTAATTC	AACCTGCTTA	CTTCATCCAG	TTTTCTACGG	TTGCAAGGCT	TAGAGGCACC
1320	GGATTAGGTT	CATAGGGAAA	CATAGATAGT	ACAACATTCT	AAGCCCGTAG	CATTGATACG
1380	GGACTGTAGA	ATCTGTACGC	ATTCAACCGT	TCCTTACGTA	CATTCCGATT	GTTGGAAAAC
1440	AGATCTCCCA	CTCTGGATTG	TTGTGGTCAC	ACGGATCCAG	ATTGTACACC	TGTTGTGACC

TGCGGTTGAG AGACTTGAGG AGGGTTGAG	CT TCCCTGATCC	AGATGGACCA	ATCAAGGCTG	1500
TAATTTCCTT AGGTTGGAAA GATAGGGAA	AA CACTATTCAA	AGCCTTCTTT	ттаттатаат	1560
AAACGGACAG GTCTGATACC TGTAAAATC	CG CATCTGTCAT	ACGGTTTCCT	TTCTAACCAA	1620
AGTGACCAGA TACATAGTCA TTGGTGGAG	CT GTAGCTTGGC	ATTTTGGAAA	ATAGTTGCAG	1680
TCTTGTCATA CTCAATCAAA TCACCCAAC	GT AAAAGAAGCC	TGTATAGTCA	CTTGCACGAG	1740
CAGCCTGCTG CATATTATGC GTTACAATC	GA TGATGGTAAA	GTTTTTCTTG	AGCTCAAACA	1800
TGGTCTCTTC TAGTTGCATG GTCGCAATC	CG GATCCAAGGC	TGAGGCTGGC	TCATCCATTA	1860
AGAGGATATC TGGCTTAACA GAGATGGCA	AC GAGCGATACA	GAGACGTTGT	TGCTGACCAC	1920
CTGATAAGGT CAAGGCTGAC TTGTGGAGA	AT CGTCTTTAAC	CTGATCCCAG	AGGGCAGCCT	1980
GACGAAGGGA GGTTTCTACG ATTTCATCT	TA GGACTTGCTT	ATCCTTAACT	CCAGCACGTT	2040
CATGCGCAAA GGTAATATTA CGGTAAATT	rg acttagcaaa	TGGATTGGGA	CGTTGAAAAA	2100
CCATTCCAAT GTGTTTACGC ATTTCATA	AA CGTTGATTTC	TGGACGGTTG	ACATCAATTC	2160
CACGATAGAG AATCTGCCCA GTTACTTTA	AG CAATATCAAT	AGTATCATTC	ATGCGATTGA	2220
GACTGCGTAA GTAGGTAGAT TTCCCCGAT	rc ccgacgggcc	AATCAAAGCT	GTAATTTTAT	2280
TTCTTTCAAA TTGCATATCA ATCCCCTTA	A TGGATTCATT	TTTACCATAG	TAAACATGGA	2340
CATCCTTAGT AGAAAGGGCT ACTTTTCT	TT CAGGAAAGGT	AAGGATATGC	TTCTCATCCC	2400
AGTTATATGT TGACATGGCT TCTCCTTT	AG GCAGCGGTTA	ATTTCTTGTG	TAGATAGCTT	2460
CCGAACTTAC GAGCTCCAAA GTTAAAAAT	rc aggataaaga	TCAGGAGCAC	AGCGGCAGAA	2520
CCTGCTGATA CAATGGTTCC ATCTGGAAT	PA GTGCCTTCAC	TATTGACTTT	CCAGATATGG	2580
ACAGCCAAGG TTTCTGCTTG ACGGAAGAT	ra gagatggggc	TAGTCACACT	GAGGATATTC	2640
CAGTTAGACC AGTCAAGAGC TGGCGCCGA	AT TGCCCTGCTG	TATAGATCAG	AGCTGCAGCT	2700
TCGCCAAAGA TACGACCAGA TGCCAAGAC	CG ACACCCGTTA	CAATACCTGG	AAGCGCTTCC	2760
GGAATAACAA CATGAACCAC TGTCTCCCA	G CGAGAAATCC	CAAGAGCCAG	ACCAGCCTCA	2820
CGTTGGGTAT GGTGAACGTG TTTCAAACT	TA TCCTCTACAT	TACGCGTCAT	CTGAGGCAAG	2880
TTAAAGACTG TCAAGGCCAA GGCACCTGA	A ATGATTGAAA	ATCCATACTC	AAACTGGACT	2940
ACAAAGATCA AGTAACCAAA GAGACCCAC	C ACCACTGATG	GTAAAGAGGA	CAAAATTTCA	3000
ATACAAGTCC GCACAAAGTT GGTAACAGG	GA CCTTTTTAG	CATATTCAGC	CAAGTAAATC	3060
CCAGCTCCCA TAGAAAGAGG TACAGAAAT	ATCAAGGTAA	TGACCAATAG	GAAAAAGGAA	3120
TTGTAAAGCT GAATGCCAAT CCCACCACC	T GCTTGAAAAG	CAGAAGACCT	TCCAGTCAAG	3180

252 AAAGACCAAG AGATATGGGG CAAGCCCCGA ACCAAGATAT AGAGAATCAA GGAAGCCAAG 3240 ATTGTCACAA TGATGCTAGC AATCGTATAG AGGACAGCTG TTGCAAGTTT ATCTAATTTC 3300 TTAGCGCGCA TAATTTTCT TTCCTCTTC TTTCGTAATC AATTTAATCA CACTGTTAAA 3360 AACTAAGCTC ATCAAGAGCA GTACCAAGGC CAGTGACCAG AGAACATTAT TATTTACAGT 3420 TCCCATGACA GTGTTCCCAA TTCCCATAGT TAATATAGAA GTTAAAGTTG CAGCTGGTGT 3480 GGTCAAGGAA GTTGGGATAA CAGCTGAGTT TCCGACAACC ATCTGGATAG CTAGAGCCTC 3540 ACCAAAGGCA CGCGCCATCC CAAAGACCAC TGCAGTGAAA ATACCAGAAC GGGCCGCCTT 3600 CAAGATCACA CGCCAGATAG TCTGCCAGCG AGTGGCTCCC ATAGCGAAAC TGGCTTCACG 3660 ATAATAACGA GGAACCGCAC GCAAGCTATC CGTTGTCATA AAGGTTACGG TCGGCAAAAT 3720 CATGACAAAG AGGACGGAAA TCCCTGACAA AATCCCAAAA CCAGTCCCAC CAAAGACACT 3780 GCGAACAAG GGAACGACGA CTTGCAAGCC AATAAATCCG TACACTACTG AAGGAATCCC 3840 AACCAGGAGT TCAATAGCTG GTTGCAAAAT CTTCGCCCCT TTTGGTGATA CTTCGGTCAT 3900 AAAAACTGCT GCACCAATAG CAAAGGGTGT TGCGATAAGG GCTGAGAGAA TGGTAACGAT 3960 AAAGGAACCC AAAATCATAG GAAGGGCACC AAATTCTTTA CTAGAAGGAT TCCAAGTTCC 4020 TCCCAAAAGA AAGTCAAAGA TATTCACACC ATTGACAAAG AAGGTCGACA AGCCTTTTTG 4080 CGCTACGAAA ACCAAAATCA TGGCCACAAG GATGACTATC AAAGAAAGAC AGGCAAAGGT 4140 CAAACCTTTT CCTAATTTCT CCAGACGAGA ATTCTTTGAT GGAAGCAACA TTTTCTTAGC 4200 TAATTCTTCT TGATTCATTA TTGTCTCCCT TCCAACACTG TCACAGTTCC GGCAGCATCT 4260 TTTTCAACCT TCATTTCCTT AATCGGAATA TACTTCAATC CTTTGACAAT CCCTTCTTGG 4320 GTCTCATCCG AGAGAACAAA ATTGAGAAAT TCTGCAGCCA ACTCATTGGG CTGCCCCAAT 4380 GTATACATAT GCTCATAAGA CCACAAGGGC CAATTATTGC TACTTATATT TTCTGGACTT 4440 AAGTCATAGC CATTCAACTT CATGCTTTTG ACCGAATCAT CTATATAGGT AAGAGATAAA 4500 TAAGAGATAG CTCCTGGACT TTTTGATACG ATTGATTTTA CCGCTCCATT TGAATCCTGC 4560 TCCTGACTTT GCATGGCAGA CTGACCTTCC ATAATGACAG TATCAAAGGT AGCACGAGAG 4620 CCAGAGCCGG CTGCCCGATT GATAACAGAG ATGGGTAAGT CCTTACCACC AACCTCTTTC 4680 CAATTGGTTA CCTCACCTAT GAAGATTTGA CGAAGTTGCT CTGTCGTTAG GTTATCAACA 4740 TCAACCTCCT TATTGACAAT CAGAGCCAAG CCAGCTACCG CGACCTTGTG GTCAACAAGA 4800 GCAGAAGCAT CAATTCCGTC TTTTTCCTCA GCAAATACAT CTGAGTTTCC TATATCAACT 4860 GCCCCAGACT GAACCTGGGA CAAGCCTGTA CCAGAACCTC CCCCTTGGAC ATTGACCGTT 4920 TTTCCAACAT GGATCGTGCC AAATTCATCT GCCGCTACTT CAACCAAGGG TTGCAAGGCA 4980

GTTGAGCC	A CAGCCGTTAT	GGATTCTCCA	CGATCAATCC	AGCTAGCACA	GCCTACTAAA	5040
CAAGCCGTC	CA GCCAAAAAGC	GATAAGAGAC	AGAGCAAGCT	TTTTTCTTT	TTTCACTGTT	5100
тттстсстс	G AAAATAATTA	TGAATACTGT	GAATTTTTTA	AGTAGTTCTT	TATGAGTTGA	5160
CGCATGAAT	T CTTACCAAAT	TTCTGCGCAA	TTGATTATTT	АТАТААТАТА	GGCTATATTA	5220
CTCTTTCC1	A ACCTCCTTTT	TTCATATGTG	GATAAAATCT	CTTGTCTATC	CCTTCCCCCA	5280
TTGTCACCO	A TTATAGTCAT	TTCGTGTCTC	TTTTTCCCCT	TTTTAATGCA	AGGGAAATTA	5340
CTCTCCTTA	G ATGATAATCC	AAAAGCTAGA	AAGGTATCTC	AAACCTCTCT	ACTCTCCCAG	5400
ACTAGTTT <i>A</i>	C AACTAAAAGG	AAAAGATTCT	ATTTTATGAG	AAATCTAGTT	TACAAGCGGT	5460
aagaacgci	а атаастааас	TTCTTGTACT	CTTTGAAAAT	CTCTTCAAAC	CAGTGTTTTG	5520
AGCTATCTA	T GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAG	TAAAACTACA	5580
IGTAATGGC	A ATCAAGATAT	CAAGAATCAT	CCTACTAAAA	AAATCCATAC	TTTCACTATA	5640
ACATAGAAT	'A AGATATTTGA	CTAGCATTTT	CATTTGAATC	TGAGGCCTTT	TGGAAAATAA	5700
PTTTTCAAA	A CATTTCCAGT	AACCTTTGCA	AAGCCCAAGC	CATTGCCTTT	AACCAAAACT	5760
TGGTACCAA	C CATTTGGCAG	ACTTTCTGCC	AGCTGAACGG	TTTCTCCAGC	CGCATACTTG	5820
ACAAACGCT	T CTTGGCCAAT	TTCAACCGAC	TGTTCGACCT	GACTCGGTTT	CAAGGCTAAA	5880
CCAAGAGCG	A AACTGGGCTC	AAAGCGTTTC	TTCTTAAAAG	TACCCAGATG	CAGTCCATTG	5940
CGAGCAATC	T TGAGCTTCCA	TAAATCTGGC	AAAAGTTCTG	GCAAGAGATA	AAGCTGGTCT	6000
CCAAAAATC	T GCAAGATACC	CGGTAGATTG	ACCTTCAAAT	GGTTTTGGGC	AAATTCCTGC	6060
CACAAGGCA	A CTTGTTCACG	GCTGAGGTTA	CTCTTACTTG	ССТТАААТТТ	AGGAGCTGGA	6120
TTGTTACCC	T TAAACTGTAG	ATGGGCAACA	AACTGACCCT	CTCCCTTAXA	CTGATGAGGA	6180
PACATCCGA	G CCGTTTCTGG	CAGGTCAATA	CCAGCTACCA	TTCCATTGAT	ATGCTCTACT	6240
GCAACAAG	т саааатсата	CTCTTCCAGC	AACCAATTGA	CAATCTCTTC	GTTTTCCTCG	6300
GGTGCCCAG	G TACAGGTCGA	ATAAACCAGA	TGACCACCTT	CAGCTAACAT	GGTCACTGCA	6360
rcctccaga	A TTTCTCTTTG	CAAGCTAGCA	CATTGACTCG	GATAATCTAA	GCTCCAATAG	6420
rccatagca	T CAGGTTGCTT	ACGAAACATT	CCTTCACCAG	AGCAAGGGC	ATCAAGAACG	6480
ATTAAGTCA	A AATAGCCTTT	AAAGACCTTG	ACCAAGCGGT	CGGCAGATTC	ATTGGTCACC	6540
ACGACATTT	G TCGCTCCAAA	ACGCTCCATG	TTTTCAACCA	AAATCTTAGC	CCGTTTGCTT	6600
AAATTTCA	T TGGAAnCAAG	TAGCCCCTCC	CCTGCTAGAT	AGGCTGCCAG	TTGAGTTGAT	6660
PTGCCCCCC	G GTGCAGCAGC	CAAGTCCAAG	ACCTTCATAC	CAGGACTGGG	TTGGGCTACT	6720

254 TGAGCCACCA TTTGAGCAGC AGGTTCTTGC GAATAAACTA AACCTGTAGC ATGCTCAGGC 6780 GATTTCCCTG AAACCTTCCC ATAGTGGCCC CAAGGGGTTT GAGTAATGGC ATCAGAAAAG 6840 GAAAGTTGCT CTTCTTTAA GGGATTGACC CGAAAGGCCG AAACCGCTTC CTCCTCAAAA 6900 GAGGCAAGAA AATCTCTTGC CTCATCTCCT AGTATCTCTT TATATTTTTC AACAAATCCT 6960 TCTGGAAATT GCATTTAAGT TCTTTTCCTT TCGTAAATAT AGGACTGAAT TTCCTCCTGC 7020 ATCTCAAGAG GCACCATCAT GACCGGCTGT CTGGTTTGAA AATCAGGAGC TTCACCAAAA 7080 AGGGTCACAA CCCGATAGCC CAGACTTTCC CCTAAAATAC TAGCTGCGGC ATAATCCCAT 7140 GGTTGCAGAT AAGTGAGATA GGTCAACAAA CGCCCTGACA AAATCTTGGC AAAACTAATG 7200 GCCGCACTTC CATAGACACG AACACCAAGA ACCGCTCGGC TCAAATCAGC CAGCCCCCAT 7260 TCATTGGTTT CCAGCATACC ACTATTCCCT GCAATGAGAA AATCTCCAAG TGGTTTAGTT 7320 TTAAAAGGAG CTAGGGACCT ATCATTTAGA CAAACTGGAA ATTCCCCACC ACCGTGGTAA 7380 CAATCCCCTT TGACCACATC ATAAATCAGA CCAAACTGTC CCTGACCATT TTCAAAATAA 7440 GCCATCATAA CAGCAAAATC TTCCTGCTGG GCTACAAAAT TATTGGTACC ATCAATGGGA 7500 TCAATGACCC AAACCTTGCC CTCTTGAACC GAGGCTCGCA GACAACCTTC TTCAGCACAA 7560 ATCTTATCCT CAGGATAACG GGACAAAATC TCACCAACCA AGAGTTCCTG AACTTCTTTG 7620 TCCAGTCTGG TCACCAAATC TGTTGGAGAG GACTTGGTTT CAACACGCAA GTCTTCCTGC 7680 ATATGGTCAA GAATGTACTG ACCTGCTTTC TTAACAAGCT CTTTAGCAAA TTCAAATTTA 7740 CTTTCCAAGA GAAATCTTTC CTTCCCCTTT TTCTTTGGGG 7780 (2) INFORMATION FOR SEQ ID NO: 19:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4820 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

60	AACTACTAGC	TAAGCCTATG	TGGGACGTCG	GGTGACCTGA	AGGAACACCA	GTAATGATAT
120	AAGAAGAAGC	AACCAATACG	ATATATCTCA	GTATGGTACC	TTTAAAGATG	TGCTAAAGGC
180	TTACAGATGA	AGAGGTTTGG	CGGTAAAACA	TCAATCTCTA	GGCAAGACAA	CAAACAAAAG
240	TTAAGAAAGC	TGGAGTGAGT	ATATCATACT	TTAATAACCA	GAAAAGGTAT	CTTGGTTTTG
300	TTAATGATAC	AAAGTTACTT	TAGATTGAAC	ATCAGTTTGA	GAACGACAAG	TATGTATCAA
360	AATTACAGAA	AGTGTAGATG	AACTACAAGC	TTGCCAAGAA	TGGCAAACAT	AACACAGCCT

ATTAATGGAC	GTTGCTGTTC	GTAAGGATGC	AGAACACAAT	TACTACCATT	GGAATAACTA	42
CAATCCAGAC	ATAGATAGTG	AAGTCCACAA	GCTCAAGAGA	GCAATCTTTA	AAGCCTATCT	486
TGACCAAACA	AATGATTTTA	GAAGTTCAAT	TTTTGAGAAT	AAAAAATAGT	GTCTACTATT	540
AGGAAATAAA	GTTTAAAAAG	GTGATGAAGA	ACAAACCAAG	ATTCAAGCAG	GAATTCCTAC	606
TGATAATGAA	GTAAGTTATG	ATCTTATTTA	TCAGCAGGAA	ACTCTTCCTG	CAACAGGTTC	660
ATCAACTTCT	GAGCTTACAG	CTTTAGGCCT	ATTAGCTGTT	GGTAGTTTAG	TTCTTTTGGT	720
TCATAATATG	ACGGGAACAG	TTTTTTGCTC	CCTCTGAAAA	GTCATCATTT	GATGGCTTTT	780
TTCTATATAG	GGTAAAAGAT	AGGGTAAAAG	GCTATCATCG	GACAAAATAA	AGAAGGCATG	840
АТАТААТАТА	AAGTAGATTT	CTATGTCATA	AAACAAGAAC	TGTTTGGACA	TCATTCATTT	900
GAAAACTCTC	TATGTTCAAA	CAATAGTAAA	ATAAAATAGG	GGATCTAAAT	CCTTGCTATG	960
AAAGGAAAAA	ACTCAATGGC	TACTATTCAA	TGGTTTCCTG	GTCACATGTC	TAAAGCTCGT	1020
CGACAGGTGC	AGGAGAATTT	AAAATTTGTT	GATTTTGTGA	CGATTTTAGT	AGATGCACGC	1080
TTGCCTCTAT	CTAGTCAAAA	TCCTATGTTG	ACCAAGATTG	TTGGTGATAA	ACCAAAACTC	1140
TTGATTTTAA	ACAAGGCCGA	CTTGGCTGAT	CCAGCAATGA	CCAAGGAATG	GCGTCAGTAT	1200
TTTGAATCAC	AAGGAATCCA	GACGCTAGCT	ATCAACTCCA	AAGAGCAAGT	GACTGTAAAA	1260
GTTGTAACAG	ATGCGGCCAA	GAAGCTCATG	GCTGATAAGA	TTGCTCGCCA	GAAAGAACGT	1320
GGGATTCAGA	TTGAAACCTT	GCGTACTATG	ATTATCGGGA	TTCCAAACGC	TGGTAAATCA	1380
ACTCTGATGA	ACCGTTTGGC	TGGTAAAAAG	ATTGCTGTTG	TTGGAAACAA	GCCAGGGGTC	1440
ACAAAAGGTC	AACAATGGCT	ТААААССААТ	AAAGACCTGG	AAATCTTGGA	TACACCGGGG	1500
ATTCTCTGGC	CTAAGTTTGA	GGATGAAACT	GTTGCACTTA	AGTTGGCATT	GACTGGAGCT	1560
ATCAAAGACC	AGTTGCTTCC	TATGGATGAG	GTTACCATTT	TTGGTATCAA	TTATTTCAAA	1620
GAACATTATC	CAGAAAAGCT	GGCTGAACGC	TTCAAACAAA	TGAAAATTGA	AGAAGAAGCG	1680
CCTGTGATTA	TTATGGATAT	GACCCGCGCC	CTCGGTTTCC	GTGATGACTA	TGACCGTTTT	1740
PACAGTCTCT	TCGTGAAGGA	AGTCCGTGAT	GGCAAACTCG	GTAACTATAC	CTTAGATACA	1800
PTGGAAGACC	TCGATGGCAA	CGATTAAAGA	AATCAAAGAA	TTCCTTGTGA	CAGTCAAGGA	1860
GTTAGAAAGC	CCTATTTTTT	TAGAGCTTGA	AAAGGATAAT	CGCTCAGGAG	TTCAAAAGGA	1920
AATCAGCAAG	CGTAAAAGAG	CCATTCAAGC	TGAATTAGAT	GAAAATTTGC	GCTTGGAATC	1980
CATGCTTTCT	TATGAAAAAG	AACTTTÄTAA	GCAAGGATTG	ACCTTAATTG	CAGGTATTGA	2040
rc x ccmmccm	CCINCOMCCINC	mmccmccmcc	mema emercem	CCCCCCCCCC	mmmma merma a	2122

256 AAATTGTAAG ATTAAAGGTC TCAACGACAG CAAGAAAATT CCTAAAAAGA AACATCTGGA 2160 GATTTCCAA GCCGTTCAAG ACCAAGCCTT GTCGATTGGA ATTGGTATCA TAGATAATCA 2220 GGTCATCGAC CAAGTCAACA TCTATGAAGC AACCAAACTA GCCATGCAAG AAGCAATCTC 2280 CCAGCTCAGC CCTCAACCAG AGCACCTTTT GATTGATGCC ATGAAACTGG ACTTGCCCAT 2340 TTCACAAACC TCCATTATCA AAGGAGATGC CAACTCCCTC TCTATCGCAG CAGCATCTAT 2400 AGTAGCCAAG GTAACACGTG ATGAATTGCT GAAAGAATAC GATCAGCAGT TCCCTGGCTA 2460 TGATTTCGCT ACTAATGCAG GATATGGCAC AGCTAAACAT CTGGAAGGCC TCACAAAACT 2520 AGGAGTTACC CCAATTCACC GAACCAGCTT TGAACCCGTT AAATCACTGG TTTTAGGTAA 2580 AAAAGAAAGT TAATTGAAAG GAAATAACAT GGAGGAACAG TCGGAAATAG TCCGTTCTAA 2640 GAAAGAATTC GCCTTTGCAT CCAGCACTAT ACTATCCCAA GTTGGTCGAG GAATCATTGT 2700 CGGCCTCATC GTTGGAATTA TCGTCGGATC CTTTCGTTTC TTAATTGAAA AGGGCTTCCA 2760 CCTGATACAA GGAGTTTATC AAGATCAAGG GTACTTAGTG CGCAATCTTT TTGTACTGGT 2820 TTTGTTTTAT ATACTCATCT GTTGGCTCAG TGCCAAACTA ACACGGTCAG AAAAAGATAT 2880 TAAAGGCTCA GGAATTCCTC AAGTCGAAGC CGAACTGAAA GGCCTCATGT CCCTCAACTG 2940 GTGGGGCATT CTTTGGAAAA AATATGTGCT AGGTATTCTT GCTATTGCCA GTGGACTCAT 3000 GCTGGGTCGA GAGGGACCCA GCATTCAACT TGGAGCAGTT GGTGGTAAAG GAATTGCCAA 3060 GTGGCTCAAA TCCAGTCCAG TAGAGGAACG TTCCTTGATT GCCAGTGGAG CTGCAGCAGG 3120 TTTAGCCGCA GCCTTTAATG CTCCTATTGC AGCACTTCTC TTTGTTGTAG AAGAAGTCTA 3180 TCACCATTTT TCGCGCTTTT TCTGGGTCTC AACTCTAGCA GCCAGCATCG TAGCAAACTT 3240 TGTGTCTCTA CTCATGTTCG GTTTGACACC AGTATTGGAT ATGCCAGATA ACATTCCTCC 3300 CATGACCCTA GATCAGTATT GGATATATCT CGTCATGGGA ATTTTCCTTG GATTTTCAGG 3360 TTTTCTCTAT GAGAAAGCTG TATTAAACGT TGGAAGAGTT TATGACTTGA TTGGTCAAAA 3420 AATCCATTTG GATAGGGCTT ATTATCCCAT CTTGGCTTTT ATCCTTATCA TACCAGTCGG 3480 AATCTTCTTA CCTCAAATCA TTGGTGGCGG AAATCAGCTT GTCCTTTCTT TAACTGAACA 3540 AAATTTTAGT TTCCAAGTTT TATTAGCTTA CTTTTTAATC CGCTTTATTT GGAGTATGAT 3600 TAGCTATGGA AGTGGACTGC CAGGAGGAAT TTTCCTCCCC ATTTTAGCTC TTGGTTCTTT 3660 GCTTGGTGCC TTAGTTGGTG TTATCTGTGT CAATCTTGGA CTTGTCAGTC AAGAGCAATT 3720 CCCTATATTT GTCATTCTAG GAATGAGTGG CTATTTTGGA GCCATATCAA AAGCTCCCTT 3780 AACCGCTATG ATCCTCGTAA CTGAGATGGT AGGAGATATT CGCAACCTTA TGCCACTTGG 3840 TCTTGTCACT CTTGTTTCTT ATATTATCAT GGATTTGCTC AAAGGTACGC CAGTCTATGA 3900

257

AGCC.	ATGCTG	GAAAAAATGC	TTCCAGAAGA	AGTATCTAGC	GAAGGAGAAG	TTACACTTAT	3960
CGAA	ATACCA	GTTTCTGATA	AAATTGCTGG	GAAACAAGTT	CATGAACTCA	ACTTACCACA	4020
CAAC	GTCCTC	ATCACAACTC	AAGTCCATAA	TGGCAAGAGC	CAAACAGTTA	ACGGCTCAAC	4080
CAGA	ATGTAT	CTGGGTGATA	TGATTCACCT	GGTTATTCCA	AAAAGTGAAA	TTGGAAAAGT	4140
CAAA	GATTTG	TTGTTGTAGT	ATGAGTATTT	ACATAATTTA	TGTTATGTAA	ATGATCAGTT	4200
TGAT"	TTATTT.	AGAAAACCGA	TTCTCAGGAA	TGAGATCGGT	TATTTTTAC	TGATGAGGAA	4260
TTTT	ACATAT	AAATAATTGA	ACTTTATTAA	AAATAAGACT	ATAATTAAGT	TAGAAATGAT	4320
AAAG	rataaa	GCTAGAAAGG	AGTTTACTGT	ATCAAATCTG	TACAGTAAGA	ттаааатсат	4380
GAAA	AAGAAA	ACAATAGCAA	TTATATAGAG	AAATGAAATA	GAAATAGGAT	AAAACAATCA	4440
GGAC	AATCAA	ATCAATTTCT	AGCAATGTTT	TAGAAGTCCA	GATGTACTAT	TCTAGTTTCA	4500
ATCT	АТТАТА	CAATGTGTTT	TGTATCTCAT	AGCTCCTTAT	ATAGCTCTTC	AGTTATGTAG	4560
TATT	AACAGA	AGTTTAGTGG	GTGAGATTTT	TATTATTTTC	CTTATTCTGT	TTTGTTTGTA	4620
GGTC	PAAGTC	TTTTTATCAC	TTTGAAAAAC	TCCTATAACA	TCTTTCCGAA	АААСТАТААТ	4680
TTTC:	PTGAAA	AATATACAAG	TCTATGCTAT	ACTACTAGTA	ТАСТТАСТТА	TGGAGAAAT	4740
ACAT	GAAACG	TGAGATTTTA	CTGGAACGAA	TCGACAAACT	AAAACAACTC	ATGCCCTGGT	4800
AAGT'	PCTGGA	АТАСТАССАА					4820

### (2) INFORMATION FOR SEQ ID NO: 20:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21338 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTACGACATC	ATGATTAACA	GTCATGCGCT	ACTACCAACT	GAGCTATGGC	GGATAAAATA	60
GTCCGTACGG	GATTCGAACC	CGTGTTACCG	CCGTGAAAAG	GCGGTGTCTT	AACCCCTTGA	120
CCAACGGACC	TTCTATCTGT	AGCAGATATA	ACCATTATAT	CAATTTCTTG	CTAATTGTCA	180
ATCACTTTTG	AGATTTTTTC	TCTAAAATAT	CTTTTAATTT	TCTAATTTTT	AATCTTGAAA	240
TAGGACAACG	ATGGTCTTCA	TAGAAAACAA	TTTCTAAGTT	TTTTCGATCA	ATTTCTCTGA	300
TATTACCTAT	ATTTACCAAA	AATGACTTGT	GAGGAGAATA	AAATCGCTGA	GTATGTTTGT	360
CCTTTTCCTG	AATATCTGTC	ATGGTACCAT	AAAACTCTTT	TGCAAAATTC	TTACCAATAA	420

			258			
TGCGCAATTT	ATGAGATACC	CCTGTTGTTT	CAATATACAA	AATATCATGG	TAAGGAATTT	480
TTAAATCATT	TCCCTTGTAA	TTGTAGTCGA	AATAATCTAC	AACATCTTCA	TTTTCAAGTA	540
ACATACTCTT	CGTGTAGAAG	ATATTTTGCT	CAATTCTCTT	CTTAAACATC	TCATCATTGA	600
ТАТССТТАТС	AACAAAATCT	AGGGCTGATA	CCTGGTATTT	ATAGGTTAGA	GTCGCAAACT	660
CTGATCGACT	AGTGATAAAG	ACGATAATAG	CGTAAGGATT	GTAATGACGA	ATGAGCTGAG	720
CCACTTCAAA	TCCCTTTTTC	TCAATTCCAT	GAATATCGAT	ATCTAGGAAA	TAAAGCTGAT	780
TTACTTCATC	ATTTTCAATG	TATTCTTCAA	ATTCACGGAC	TTTTCCCGTT	GTCTTGTATG	840
ATATTGGAAT	ATTCGATTCT	TTCGAAATTT	CATCCAATAT	TCTCTCTAGT	CTCACTTGAT	900
GTTCAATAAC	ATCTTCTAAA	ATTAAAACTT	ТСАТТСАААТ	TCCCTCTTAA	ATCTAATGAT	960
TTGTCTAAAT	GTACTGCCTT	CCATCTCTGT	ттстаааата	ATATTGTTGT	ACTTATCTAG	1020
TAGTTCTTTC	ACATTATTTA	ATCCGACTCC	GCGATTTCTT	CCCTTAGTGG	AGAATCCTAA	1080
GGCAAATAGA	TCTCCTGAAG	GAGTCATCGT	CATTTTACAT	GAATTCTGAA	TCACAATAAC	1140
TGTTTCAGTT	TCCATCTTAA	TAACTGCTAC	TTCCATCTGC	TTTTTATAGC	TATCAGCCGA	1200
ICCTTCGACA	GCATTATTCA	ATAAAACGCT	CATGATACGA	ACCAAATCCA	ATAGTTCAAT	1260
IGGAAGCTTG	GTAATCGTAT	CTTTTACTTC	CAGTGTAAAC	TCTACACCAT	TATTTCGAGC	1320
ATAGACAATT	GACTGAGCAA	CCAAACTTCG	TAAAGCTGAG	TCTTCTATGT	TGTTCAAATC	1380
AAAGTAAGTG	TACTTATCTG	AACGCAATTT	ATGATTTGCT	TTGACTAAAA	CTTCATTGTA	1440
AATTCTGTCA	ATTTCCTGTA	AATTACCACT	GTCAATTGCC	ATCTGCATGC	TGACAAGCAT	1500
<b>PCCAGCATAA</b>	TCATGTCGAA	AACCACGGAT	TTCATTATAC	AGACCAACAA	TTTCATCTGT	1560
STAATTCTGT	AAATGTTTCT	GTTCAAATTT	CTTCTGCTTC	AAAGCAATCT	CTTTCTCCAT	1620
TTGAACTTTA	TGAGAATTCA	TTGCAAAGAA	GGTCAAAAGG	AGAGAGATAA	AGACAATAGA `	1680
GACAAAATA	CTTCCAAAAC	TATTCAAATG	TTTAATCGTA	CTTACCATAT	CTGAAACGAA	1740
AGATACAATA	TGTAGCAATA	GTAAAGCAAA	AAATACTTTT	TTCAAGAAAG	GATAAAGGTA	1800
STCCTTGTCA	AAATAGGCTA	GTTCCAAATG	GAAATAGTAA	ATGATTTTTA	ATGTAACAAA	1860
TAGGTTAAC	ACCGTCACAA	CGAAAAAGAA	TGGGAAATGA	TATTGTAAAA	СААААТТАТС	1920
CCTGTTATA	GAGGAGAAAA	TTACGGACAG	Aaagttatga	GTGCTCTCAT	ATAAAAGAGA	1980
PAGTAGTAAA	CTTAGGAATA	GTCCTCTATC	CCTCTCATAC	TGTTTCATCC	АТССАЛАЛТА	2040
GAATATAAG	CCCAAAGGAA .	АТАААААТСТ	TTCAATCCCT	АТТТТАТСТА	AATATAGAAG	2100
TAAAAGGAA .	AATTCAAGTA	CTATTTCAGT	TAGTAATGTA	TAAGCACCAA	AAACGTATAA	2160
TCTTTTCTA	TTTATTCGAC	CTTTACAAAT	TAAACGGTAA	CTGTGACTAA	ТААТТАААА	2220

ATGAACAATA	ACTGTCCCAA	ATCCAAGTAA	ATCCATTACT	СТТТСТССТТ	ATTTCATTAC	2280
TTTTTTCGTA	GGAAAAGAAA	ATCAAGGATG	ATTCTTGAAA	TCCTCATCTC	CCCACCTTTA	2340
ATCTTTTGTA	AGTCTTTTTC	CTTCAAAGCT	ACAAACTGTT	CCAATTTAAC	TGTGTTTTTC	2400
ATAATAAAAT	СТССТААААТ	GTTTTTTCTT	GTAAGCTAAC	TTACAAAAAC	CATTATACAA	2460
AATGGAATTT	CGTTTTAGAT	AAAATTCTCT	CAACTGTCAT	TTTTTTCTCC	CAAAGTGTAC	2520
TTTTTTAAGA	AAAAAGCCGG	GAAAATTCCC	AGCTTTGCTA	TTATATTGAT	CCCAGCAGGA	2580
TTCGAACCTG	CGACCGTTCG	CTTAGAAGGC	GAATGCTCTA	TCCAGCTGAG	CTATGAGACC	2640
TAATACAATT	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TTTCTATTTA	TGGTAGGGGA	2700
ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	CTCATTAACT	2760
GATGGGGTAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	TTTACAGATG	2820
ATGATAATCC	TAAACTTCCC	CCAATAATAA	AAGTAAGAGT	AGAAAATCCT	TTTATAGAAG	2880
TTTCTTCTAA	CTGCTTACTA	AATTCTTCTG	AGAAGAAAGT	TTTCCCTTCA	ATGGCTAACA	2940
CAATAACGAA	ATCACGGTCA	GCAATTTTTG	ATAAAATTCT	CTGACCTTCT	ATTTCTAAAA	3000
TCTTTTGATT	TTCTGATTCA	CTGGCCTTAT	CTGGTGTTTT	TTCATCTGAT	AACTCAATCA	3060
TTTCAAACTT	AGCAAATCTA	GAAATTCGTT	TTGAATACTC	TGCGATACCA	TCTTTTAAAT	3120
ACTTTTCTTT	CAGTTTCCCA	ACTGTTACAA	CTTTAATTTT	CATGACTCTA	TTCTAACATA	3180
TTCTCTATTT	TTTCACATCT	TATTCACAAA	АТАААААТА	GATTTCAATT	AAGAAAATCA	3240
CAATTTCAAA	AGAGTTATCC	ACAGTTTGTG	TAAAACTTTT	GTGTTTAAGT	TATAATTAAG	3300
CTAGTCAGTT	TATACTTTCA	GTAATTCAAA	CATATGGAGG	CAAATATGAA	ACATCTAAAA	3360
ACATTTTACA	AAAAATGGTT	TCAATTATTA	GTCGTTATCG	TCATTAGCTT	TTTTAGTGGA	3420
GCCTTGGGTA	GTTTTTCAAT	AACTCAACTA	ACTCAAAAAA	GTAGTGTAAA	CAACTCTAAC	3480
AACAATAGTA	CTATTACACA	AACTGCCTAT	AAGAACGAAA	ATTCAACAAC	ACAGGCTGTT	3540
AACAAAGTAA	AAGATGCTGT	TGTTTCTGTT	ATTACTTATT	CGGCAAACAG	ACAAAATAGC	3600
GTATTTGGCA	ATGATGATAC	TGACACAGAT	TCTCAGCGAA	TCTCTAGTGA	AGGATCTGGA	3660
GTTATTTATA	AAAAGAATGA	TAAAGAAGCT	TACATCGTCA	CCAACAATCA	CGTTATTAAT	3720
GGCGCCAgCA	AAGTAGATAT	TCGATTGTCA	GATGGGACTA	AAGTACCTGG	AGAAATTGTC	3780
GGAGCTGACA	CTTTCTCTGA	TATTGCTGTC	GTCAAAATCT	CTTCAGAAAA	AGTGACAACA	3840
GTAGCTGAGT	TTGGTGATTC	TAGTAAGTTA	ACTGTAGGAG	AAACTGCTAT	TGCCATCGGT	3900
AGCCCGTTAG	GTTCTGAATA	TGCAAATACT	GTCACTCAAG	GTATCGTATC	CAGTCTCAAT	3960

			260			
AGAAATGTAT	ССТТААААТС	GGAAGATGGA	CAAGCTATTT	CTACAAAAGC	CATCCAAACT	402
GATACTGCTA	TTAACCCAGG	TAACTCTGGC	GGCCCACTGA	TCAATATTCA	AGGGCAGGTT	408
ATCGGAATTA	CCTCAAGTAA	AATTGCTACA	AATGGAGGAA	CATCTGTAGA	AGGTCTTGGT	414
ITCGCAATTC	CTGCAAATGA	TGCTATCAAT	ATTATTGAAC	AGTTAGAAAA	AAACGGAAAA	420
GTGACGCGTC	CAGCTTTGGG	AATCCAGATG	GTTAATTTAT	CTAATGTGAG	TACAAGCGAC	426
ATCAGAAGAC	TCAATATTCC	AAGTAATGTT	ACATCTGGTG	TAATTGTTCG	TTCGGTACAA	432
AGTAATATGC	CTGCCAATGG	TCACCTTGAA	AAATACGATG	ТААТТАСААА	AGTAGATGAC	438
<b>AAA</b> GAGATTG	CTTCATCAAC	AGACTTACAA	AGTGCTCTTT	ACAACCATTC	TATCGGAGAC	444
ACCATTAAGA	ТААССТАСТА	TCGTAACGGG	AAAGAAGAAA	CTACCTCTAT	CAAACTTAAC	450
<b>AAGAGTTCAG</b>	GTGATTTAGA	ATCTTAATTG	ACATCTATGT	AAAGAAAGCT	TTACATAAGA	4560
Gaaaagatgt	GTTAGTGTAG	AATCATGGAA	AAATTTGAAA	TGATTTCTAT	CACAGATATA	4620
CAAAAAAATC	CCTATCAACC	CCGAAAAGAA	TTTGATAGAG	AAAAACTAGA	TGAACTAGCA	4680
CAGTCTATCA	AAGAAAATGG	GGTCATTCAA	CCGATTATTG	TTCGTCAATC	TCCTGTTATT	4740
GGTTATGAAA	TCcTTGCAGG	AGAGAGACGC	TATCGGGCTT	CACTTTTAGC	TGGTCTACGG	4800
<b>PCTATCCCAG</b>	CTGTTGTTAA	ACAGATTTCA	GACCAAGAGA	TGATGGTCCA	GTCCATTATT	4860
GAAAATTTAC	AGAGAGAAAA	TTTAAACCCA	ATAGAAGAAG	CACGCGCCTA	TGAATCTCTC	4920
GTAGAGAAAG	GATTCACCCA	TGCTGAAATT	GCAGATAAGA	TGGGCAAGTC	TCGTCCATAT	4980
ATCAGCAACT	CCATTCGTTT	ACTTTCCTTG	CCAGAACAGA	TTCTTTCAGA	AGTAGAAAAT	5040
GCAAACTAT	CACAAGCCCA	TGCGCGTTCC	CTAGTTGGGT	TAAATAAGGA	ACAACAAGAC	5100
РАТТТСТТТС	AACGGATTAT	AGAAGAAGAT	ATTTCTGTAA	GGAAATTAGA	AGCTCTTCTG	5160
ACAGAGAAAA	AACAAAAGAA	ACAGCAAAAA	ACTAATCATT	TCATACAAAA	TGAAGAAAAA	5220
CAGTTAAGAA	AACTACTCGG	ATTAGATGTA	GAAATTAAAC	ТАТСТААААА	AGACAGTGGA	5280
<b>AAATCATTA</b>	TTTCTTTTTC	AAATCAAGAA	GAATATAGTA	GAATTATCAA	CAGCCTGAAA	5340
PAAGGCTGTT	CTTTTATTTT	TTTATCTCAC	AAGGTTATCC	ACTATGTTTT	TCGATAAAAA	5400
CTTAATAAA	TCAATAATTT	CTTCTTTTAT	CCCCAACCTG	TGGATAAAGT	TTGGTAACAT	5460
rgtggattat	TTTTCACAGC	TTGTGGAAAA	TTCTTGCTAT	CTATGGTAAA	ATATCTCTAG	5520
PATTAAACTT	TTAAATAGTA	AAGGAGGAGA	AAGGATTGAA	AGAAAAACAA	TTTTGGAATC	5580
TATATTAGA	ATTTGCACAA	GAAAGACTGA	CTCGATCCAT	GTATGATTTC	TATGCTATTC	5640
AGCTGAACT	CATCAAGGTA	GAGGAAAATG	TTGCCACTAT	ATTTCTACCT	CGCTCTGAAA	5700
GGAAATGGT	CTGGGAAAAA	CAACTAAAAG	ATATTATTGT	AGTAGCTGGT	TTTGAAATTT	5760

ATGACGCTGA	AATAACTCCC	CACTATATTT	TCACCAAACC	TCAAGATACG	ACTAGCTCAC	5820
AAGTTGAAGA	AGCTACAAAT	TTAACTCTTT	ATAACTATAG	TCCAAAGTTA	GTATCTATTC	5880
CTTATTCAGA	TACGGGATTA	AAAGAAAAGT	ATACCTTTGA	TAACTTTATT	CAAGGGGATG	5940
GAAATGTTTG	GGCTGTATCA	GCCGCTTTAG	CTGTCTCTGA	AGATTTGGCT	CTGACCTATA	6000
ACCCTCTTTT	TATCTATGGA	GGACCAGGCC	TTGGTAAGAC	TCACTTATTA	AACGCTATTG	6060
GAAATGAAAT	ТСТААААААТ	ATTCCTAATG	CGCGTGTTAA	ATATATCCCT	GCCGAAAGCT	6120
TTATTAATGA	CTTTCTTGAT	CACCTAAGAC	TTGGGGAAAT	GGAAAAGTTT	AAAAAGACCT	6180
ATCGTAGTCT	TGATCTTTTG	TTAATCGATG	ATATCCAGTC	ACTCAGCGGA	AAAAAAGTCG	6240
CAACTCAGGA	AGAATTTTTC	AATACCTTTA-	ACGCCCTTCA	TGACAAGCAA	AAACAGATTG	6300
TCCTAACGAG	TGATCGTAGT	CCAAAACATC	TAGAAGGGCT	CGAGGAGAGG	CTTGTCACGC	6360
GTTTTAGTTG	GGGATTGACA	CAAACTATCA	CCCCCCTGA	CTTTGAAACA	CGTATTGCCA	6420
TTTTACAAAG	TAAGACGGAA	CATTTAGGCT	ACAATTTCCA	AAGTGATACT	CTAGAATACC	6480
TAGCTGGGCA	ATTTGATTCA	AATGTTCGAG	ATCTTGAGGG	AGCCATCAAC	GACATCACTT	6540
TAATTGCCAG	agtaaaaaa	ATCAAGGATA	TCACTATTGA	TATTGCTGCA	GAAGCCATTA	6600
GAGCCCGCAA	ACAAGATGTT	AGCCAAATGC	TCGTCATCCC	AATTGATAAA	ATCCAAACTG	6660
AAGTTGGTAA	CTTTTATGGT	GTTAGTATCA	AAGAAATGAA	GGGAAGTAGA	CGCCTTCAAA	6720
ATATTGTTTT	GGCCCGTCAA	GTAGCCATGT	ATTTATCTAG	AGAACTAACA	GATAATAGTC	6780
TTCCAAAAAT	TGGGAAGGAA	TTTGGGGGAA	AAGATCATAC	CACAGTCATT	CATGCCCATG	6840
CCAAAATAAA	ATCTTTGATT	GATCAAGACG	ATAATTTACG	TTTAGAAATT	GAATCAATCA	6900
AAAAGAAAAT	CAAATAATTT	GTGGATAACT	TTTAGTTTTT	TATCTTTTTT	ATCCACATTT	6960
TTTAAACAAG	сталалаласт	TGATATGACT	TGTTTAAAGG	CTGTTTTCCA	CAGATTTCAC	7020
AGACTCTATT	ATTACTATTA	TCTTTCTAAT	АСТАААААТА	AATAAAGGAG	AATCCATGAT	7080
TCATTTTTCA	аттаатаааа	ATTTATTTCT	ACAAGCATTA	AATACTACTA	AGAGAGCTAT	7140
TAGTTCTAAA	AATGCCATTC	CTATTTTATC	AACAGTAAAA	ATTGACGTGA	CCAATGAAGG	7200
TATTACTTTA	ATTGGTTCAA	ATGGTCAAAT	TTCAATTGAA	AATTTTATTT	CTCAAAAAAA	7260
TGAAGATGCT	GGTTTGTTAA	TTACTTCTTT	AGGTTCGATC	CTTCTTGAAG	CTTCTTTCTT	7320
TATCAATGTA	GTATCTAGTT	TACCTGATGT	AACTCTTGAT	TTTAAAGAAA	TTGAACAAAA	7380
TCAAATTGTT	TTAACCAGTG	GCAAATCAGA	AATTACCCTA	AAAGGAAAAG	ATAGCGAACA	7440
ATATCCACGA	ATCCAAGAAA	TTTCAGCAAG	CACTCCTTTA	ATACTTGAAA	CAAAATTACT	7500

262

CAAGAAAATT ATTAATGAAA CAGCCTTTGC TGCAAGTACA CAAGAGAGTC GTCCGATTTT 7560 AACAGGTGTC CACTTCGTAT TGAGTCAACA CAAAGAGTTA AAAACAGTTG CAACAGACTC 7620 TCATCGCCTA AGCCAGAAAA AATTGACTCT TGAAAAAAAT AGTGATGATT TTGATGTCGT 7680 AATTCCTAGC CGTTCTCTAC GCGAATTTTC AGCGGTATTT ACAGATGATA TCGAAACTGT 7740 AGAGATTTTC TTTGCCAATA ACCAAATCCT CTTTAGAAGC GAAAATATTA GCTTCTATAC 7800 TCGTCTCCTA GAAGGAAACT ATCCTGATAC AGATCGCTTG ATTCCAACAG ACTTTAACAC 7860 TACTATTACT TTTAATGTGG TAAACTTACG CCAGTCAATG GAGCGTGCCC GTCTTTTATC 7920 AAGTGCGACT CAAAATGGTA CTGTGAAACT TGAAATTAAG GATGGGGTTG TTAGCGCCCA 7980 TGTTCACTCT CCAGAAGTTG GTAAAGTAAA CGAAGAAATC GATACTGATC AGGTTACTGG 8040 TGAAGATTTG ACCATTAGTT TCAACCCAAC TTACTTGATT GATTCTCTTA AAGCTTTAAA 8100 TAGCGAAAAG GTGACTATTA GCTTTATCTC AGCTGTTCGT CCATTTACTC TTGTGCCAGC 8160 AGATACTGAC GAAGACTTCA TGCAGCTCAT TACACCAGTT CGTACAAATT AAGTGAAAGA 8220 GGTTGAGCCT GGCTCGCCTC TTTTATGATA TAATCGAAAA AGAAAAGGAG AGTAGTATGT 8280 ATCAAGTTGG AAATTTTGTT GAGATGAAAA AATCACACGC TTGTACAATC AAGTCGACTG 8340 GTAAAAAGGC TAATCGTTGG GAAATTACAC GTGTAGGAGC AGATATCAAA ATAAAATGTA 8400 GTAATTGTGA GCATGTTGTC ATGATGGGGC GATATGATTT TGAGCGAAAA ATGAATAAAA 8460 TTATTGACTG AGAACCCTTA GTTAGAGGGT TAGCACTTTA TCCCTTTTTG TGTTATAATA 8520 TTAGGGATTG AAATGAAAAC GGAGAATGAG AAATATGGCT TTGACAGCAG GTATCGTTGG 8580 TTTGCCAAAC GTTGGTAAAT CAACACTATT TAATGCAATT ACAAAAGCAG GAGCAGAGGC 8640 AGCAAACTAC CCATTTGCGA CGATTGATCC AAATGTTGGA ATGGTGGAAG TTCCAGATGA 8700 ACGCCTACAA AAACTAACTG AAATGATAAC TCCTAAAAAG ACAGTTCCCA CAACATTTGA 8760 ATTTACAGAT ATTGCAGGGA TTGTAAAAGG AGCTTCAAAA GGAGAGGGGC TAGGGAATAA 8820 ATTCTTGGCC AATATTCGTG AAGTAGATGC GATTGTTCAC GTAGTTCGTG CTTTTGATGA 8880 TGAAAATGTA ATGCGCGAGC AAGGACGTGA AGACGCCTTT GTAGATCCAC TTGCAGATAT 8940 TGATACCATT AATCTGGAAT TGATTCTTGC TGACTTAGAA TCAGTGAACA AACGATATGC 9000 GCGTGTAGAA AAGATGGCAC GTACGCAAAA AGATAAAGAA TCAGTAGCAG AATTCAATGT 9060 TCTTCAAAAG ATTAAACCAG TCCTAGAAGA CGGGAAATCA GCTCGTACCA TTGAATTTAC 9120 AGATGAGGAA CAAAAGGTTG TCAAAGGTCT TTTCCTTTTG ACGACTAAAC CAGTTCTTTA 9180 TGTAGCTAAT GTGGACGAGG ATGTGGTTTC AGAACCTGAC TCTATCGACT ATGTCAAACA 9240 AATTCGTGAA TTTGCAGCGA CAGAAAATGC TGAAGTAGTC GTTATTTCTG CGCGTGCTGA 9300

GGAAGAAATT TCTGAATTGA	ATGATGAAGA	TAAAAAAGAG	TTTCTTGAAG	CCATTGGTTT	9360
GACAGAATCA GGTGTAGATA	AGTTGACGCG	TGCAGCTTAC	CACTTGCTTG	GATTGGGAAC	9420
TTACTTCACA GCTGGTGAAA	AAGAAGTTCG	CGCTTGGACT	TTCAAACGTG	GTATGAAGGC	9480
TCCTCAAGCA GCTGGTATTA	TCCACTCAGA	CTTTGAAAAA	GGCTTTATTC	GTGCAGTAAC	9540
CATGTCATAT GAAGATCTAG	TGAAATACGG	ATCTGAAAAG	GCCGTAAAAG	AAGCTGGACG	9600
CTTGCGTGAA GAAGGAAAAG	AATATATCGT	TCAAGATGGC	GATATCATGG	AATTCCGCTT	9660
TAATGTCTAA AAATTAATAA	ATGGTGTCAA	TTAGGTTGGA	AAAAAATTCC	AACCCTTTTG	9720
GCTTTTGAAA GGAAAAATAA	ATGACCAAAT	TACTTGTAGG	CTTGGGAAAT	CCAGGGGATA	9780
AATATTTTGA AACAAAACAC	AATGTTGGTT	TTATGTTGAT	TGATCAACTA	GCGAAGAAAC	9840
AGAATGTCAC TTTTACACAC	GATAAGATAT	TTCAAGCTGA	CCTAGCATCC	TTTTTCCTAA	9900
ATGGAGAAAA AATTTATCTG	GTTAAACCAA	CGACCTTTAT	GAATGAAAGT	GGAAAAGCAG	9960
TTCATGCTTT ATTAACTTAC	TATGGTTTGG	ATATTGACGA	TTTACTTATC	ATTTACGATG	10020
ATCTTGACAT GGAAGTTGGG	AAAATTCGTT	TAAGAGCAAA	AGGCTCAGCA	GGTGGTCATA	10080
ATGGTATCAA GTCTATTATT	CAACATATAG	GAACTCAGGT	CTTTAACCGT	GTTAAGATTG	10140
GAATTGGAAG ACCTAAAAAT	GGTATGTCAG	TTGTTCATCA	TGTTTTGAGT	AAGTTTGACA	10200
GGGATGATTA TATCGGTATT	TTACAGTCTG	TTGACAAAGT	TGACGATTCT	GTAAACTACT	10260
ATTTACAAGA GAAAAATTTT	GAGAAAACAA	TGCAGAGGTA	TAACGGATAA	ATGGTGACCT	10320
TATTAGATTT ATTCTCAGAA	AATGATCAGA	TTAAAAAATG	GCATCAAAAT	TTAACAGATA	10380
AGAAAAGACA ACTAATACTT	GGTTTATCAA	CATCTACTAA	GGCTCTTGCA	ATTGCAAGCA	10440
GTTTAGAAAA AGAAGATAGG	ATTGTGTTAT	TGACGTCAAC	TTATGGAGAA	GCAGAAGGAC	10500
TTGTTAGTGA TCTTATTTCT	ATCTTGGGTG	AGGAACTCGT	CTATCCATTT	TTGGTAGATG	10560
ATGCTCCTAT GGTGGAGTTT	TTGATGTCTT	CACAGGAAAA	AATTATTTCA	CGGGTTGAAG	10620
CCTTGCGTTT TTTGACTGAT	TCATCTAAGA	AAGGGATTTT	AGTTTGTAAT	ATCGCAGCAA	10680
GTCGATTGAT TTTACCGTCT	CCCAATGCAT	TCAAAGATAG	TATTGTAAAA	ATCTCAGTTG	10740
GTGAAGAATA TGATCAACAC	GCGTTTATCC	ATCAGTTAAA	GGAAAATGGC	TATCGAAAAG	10800
TTACTCAAGT ACAAACTCAG	GGCGAATTTA	GTCTTCGAGG	AGATATTTTA	GATATTTTTG	10860
AAATATCCCA GTTAGAACCT	TGTCGAATTG	AGTTTTTTGG	TGATGAAATT	GATGGTATCA	10920
GGTCATTTGA AGTAGAAACA	CAATTATCGA	AAGAAAATAA	GACAGAACTC	ACTATCTTTC	10980
CAGCTAGTGA TATGCTTTTG	AGAGAAAAGG	ATTATCAACG	AGGACAGTCA	GCTTTAGAAA	11040

AACAAATTTC AAAAACTTTA TCACCTATTT TGAAATCATA CCTAGAAGAA ATTCTTTCAA 11100 GTTTTCACCA AAAACAAAGT CATGCAGACT CTCGGAAGTT TTTATCTTTG TGCTATGATA 11160 AGACATGGAC TGTCTTTGAT TATATTGAAA AAGATACTCC AATATTCTTT GATGATTATC 11220 AAAAATTGAT GAATCAGTAT GAAGTCTTTG AAAGAGACTT AGCGCAGTAC TTTACAGAAG 11280 AATTACAGAA TAGTAAAGCA TTTTCTGATA TGCAGTATTT TTCTGATATT GAACAAATCT 11340 ATAAAAAACA AAGTCCAGTG ACCTTTTTCT CTAATCTTCA AAAGGGTTTA GGAAATCTCA 11400 AATTTGACAA AATTTATCAA TTCAATCAAT ATCCTATGCA GGAATTTTTC AATCAGTTTT 11460 CTTTTCTAAA AGAAGAAATT GAACGATATA AAAAAATGGA TTACACCATT ATTCTGCAGT 11520 CTAGCAATTC AATGGGAAGT AAAACATTGG AGGATATGTT AGAGGAATAT CAGATTAAAT 11580 TGGATTCTAG AGATAAGACA AATATCTGTA AAGAATCTGT AAACTTAATA GAGGGTAATC 11640 TCAGACATGG TTTTCATTTT GTAGATGAAA AGATTTTATT GATAACTGAA CATGAGATTT 11700 TTCAAAAGAA ATTAAAGCGT CGTTTTCGAA GACAACATGT TTCAAATGCA GAGAGATTAA 11760 AAGATTACAA TGAACTTGAA AAAGGGGACT ATGTTGTCCA TCATATCCAT GGGATTGGTC 11820 AATATCTAGG AATTGAAACC ATTGAAATCA AGGGAATTCA TCGCGATTAT GTCAGTGTCC 11880 AATACCAAAA TGGTGATCAA ATTTCTATCC CCGTGGAACA GATTCATCTA CTGTCCAAAT 11940 ATATTTCAAG TGATGGTAAA GCTCCAAAAC TCAATAAATT AAATGACGGT CATTTTAAAA 12000 AGGCCAAGCA AAAGGTTAAG AACCAGGTAG AGGATATAGC TGATGATTTA ATCAAACTCT 12060 ACTCTGAACG TAGTCAGTTG AAGGGTTTTG CTTTCTCAGC TGATGATGAT GATCAAGATG 12120 CCTTTGATGA TGCTTTCCCT TATGTTGAAA CGGATGATCA ACTTCGTAGT ATTGAGGAAA 12180 TCAAGAGGGA TATGCAGGCT TCTCAGCCAA TGGATCGACT TTTAGTTGGG GATGTTGGTT 12240 TTGGAAAGAC TGAAGTTGCT ATGCGTGCAG CCTTTAAAGC AGTCAATGAT CACAAACAGG 12300 TTGTCATTCT AGTTCCGACG ACGGTTTTAG CGCAACAGCA CTATACGAAT TTTAAGGAAC 12360 GATTCCAAAA TTTTGCAGTT AATATTGATG TGTTGAGTCG CTTTAGAAGT AAAAAAGAGC 12420 AGACTGCAAC ACTTGAAAAA TTGAAAAACG GTCAAGTCGA TATTTTGATT GGAACACATC 12480 GTGTTTTGTC AAAAGATGTT GTGTTTGCTG ATTTGGGCTT GATGATTATT GATGAGGAAC 12540 AGCGATTTGG TGTCAAGCAT AAGGAAACTT TGAAAGAACT GAAGAAACAA GTGGATGTCC 12600 TAACCTTGAC CGCTACGCCA ATCCCTCGTA CCCTCCATAT GTCTATGCTG GGAATCAGAG 12660 ATTTATCTGT TATTGAAACT CCGCCGACTA ATCGCTATCC TGTTCAGACC TATGTTTTGG 12720 AAAAGAATGA TAGTGTCATT CGTGATGCTG TCTTGCGTGA AATGGAGCGT GGAGGTCAAG 12780 TTTATTATCT TTACAACAAA GTTGACACAA TTGTTCAGAA GGTTTCAGAA TTACAGGAGT 12840

TGATTCCGGA	GGCTTCGATT	GGATATGTTC	ATGGTCGAAT	GAGTGAAGTC	CAGTTGGAAA	12900
ATACTCTATT	AGACTTTATT	GAGGGACAAT	ACGATATCTT	GGTGACGACT	ACTATTATTG	12960
AGACAGGGGT	GGACATTCCA	AATGCTAATA	СТТТАТТТАТ	TGAAAATGCG	GACCATATGG	13020
GCTTGTCAAC	CTTATATCAG	TTAAGAGGAA	GAGTCGGTCG	TAGTAATCGT	ATTGCTTATG	13080
СТТАТСТСАТ	GTATCGTCCA	GAAAAATCAA	TCAGTGAAGT	CTCTGAAAAG	AGATTAGAAG	13140
CGATTAAAGG	ATTTACAGAA	TTGGGCTCTG	GCTTTAAGAT	TGCAATGCGA	GATCTTTCGA	13200
TTCGTGGAGC	AGGAAATCTT	TTAGGAAAAT	CCCAGTCTGG	TTTCATTGAT	TCTGTTGGTT	13260
TTGAATTGTA	TTCGCAGTTA	TTAGAGGAAG	CTATTGCTAA	ACGAAACGGT	AATGCTAACG	13320
CTAACACAAG	AACCAAAGGG	AATGCTGAGT	TGATTTTGCA	AATTGATGCC	TATCTTCCTG	13380
ATACTTATAT	TTCTGATCAA	CGACATAAGA	TTGAAATTTA	CAAGAAAATT	CGTCAAATTG	13440
ACAACCGTGT	CAATTATGAA	GAGTTACAAG	AGGAGTTGAT	AGACCGTTTT	GGAGAATACC	13500
CAGATGTAGT	AGCCTATCTG	TTAGAGATTG	GTTTGGTCAA	ATCATACTTG	GACAAGGTCT	13560
TTGTTCAACG	TGTGGAAAGA	AAAGATAATA	AAATTACAAT	TCAATTTGAA	AAAGTCACTC	13620
AACGACTGTT	TTTAGCTCAA	GATTATTTTA	AAGCTTTATC	CGTAACGAAC	TTAAAAGCAG	13680
GCATCGCTGA	GAATAAGGGA	TTAATGGAGC	TTGTATTTGA	TGTCCAAAAT	AAGAAAGATT	13740
ATGAAATTTT	AGAAGGTTTG	CTGATTTTTG	GAGAAAGTTT	ATTAGAGATA	AAAGAGTCTA	13800
AGGAAGAAAA	TTCCATTTGA	TATTTTTCTT	СТАТААААТА	GATAAAAATG	GTACAATAAT	13860
AAATTGAGGT	AATAAGGATG	AGATTAGATA	AATATTTAAA	AGTATCGCGA	ATTATCAAGC	13920
GTCGTACAGT	CGCAAAGGAA	GTAGCAGATA	AAGGTAGAAT	CAAGGTTAAT	GGAATCTTGG	13980
CCAAAAGTTC	AACGGACTTG	AAAGTTAATG	ACCAAGTTGA	AATTCGCTTT	GGCAATAAGT	14040
TGCTGCTTGT	AAAAGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	14100
TGTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	СТАААААТАТ	TGTACAATTG	14160
AATAATTCTT	ТТАТТСАААА	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	14220
AAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	14280
ACTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	14340
TTGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	14400
AAGTTGAAAG	ATGAAGATTA	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	14460
TCGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	14520
ATTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	14580

266 14640 TTATTTTGTT GCTACCAAGT TTTTTGACCA TTTCAAAAGT CGTTAGCACA GAAAAAGAAG 14700 TCGTCTATAC TTCGAAAGAA ATTTATTACC TTTCACAATC TGACTTTGGT ATTTATTTTA 14760 GAGAAAAATT AAGTTCTCCC ATGGTTTATG GAGAGGTTCC TGTTTATGCG AATGAAGATT 14820 TAGTAGTGGA ATCTGGGAAA TTGACTCCCA AAACAAGTTT TCAAATAACC GAGTGGCGCT 14880 TAAATAAACA AGGAATTCCA GTATTTAAGC TATCAAATCA TCAATTTATA GCTGCGGACA 14940 AACGATTTT ATATGATCAA TCAGAGGTAA CTCCAACAAT AAAAAAAGTA TGGTTAGAAT 15000 CTGACTTTAA ACTGTACAAT AGTCCTTATG ATTTAAAAGA AGTGAAATCA TCCTTATCAG 15060 CTTATTCGCA AGTATCAATC GACAAGACCA TGTTTGTAGA AGGAAGAGAA TTTCTACATA 15120 TTGATCAGGC TGGATGGGTA GCTAAAGAAT CAACTTCTGA AGAAGATAAT CGGATGAGTA 15180 AAGTTCAAGA AATGTTATCT GAAAAATATC AGAAAGATTC TTTCTCTATT TATGTTAAGC 15240 AACTGACTAC TGGAAAAGAA GCTGGTATCA ATCAAGATGA AAAGATGTAT GCAGCCAGCG 15300 TTTTGAAACT CTCTTATCTC TATTATACGC AAGAAAAAAT AAATGAGGGT CTTTATCAGT 15360 TAGATACGAC TGTAAAATAC GTATCTGCAG TCAATGATTT TCCAGGTTCT TATAAACCAG 15420 AGGGAAGTGG TAGTCTTCCT AAAAAAGAAG ATAATAAAGA ATATTCTTTA AAGGATTTAA 15480 TTACGAAAGT ATCAAAAGAA TCTGATAATG TAGCTCATAA TCTATTGGGA TATTACATTT 15540 CAAACCAATC TGATGCCACA TTCAAATCCA AGATGTCTGC CATTATGGGA GATGATTGGG 15600 ATCCAAAAGA AAAATTGATT TCTTCTAAGA TGGCCGGGAA GTTTATGGAA GCTATTTATA 15660 ATCAAAATGG ATTTGTGCTA GAGTCTTTGA CTAAAACAGA TTTTGATAGT CAGCGAATTG 15720 CCAAAGGTGT TTCTGTTAAA GTAGCTCATA AAATTGGAGA TGCGGATGAA TTTAAGCATG 15780 ATACGGGTGT TGTCTATGCA GATTCTCCAT TTATTCTTTC TATTTTCACT AAGAATTCTG 15840 ATTATGATAC GATTTCTAAG ATAGCCAAGG ATGTTTATGA GGTTCTAAAA TGAGGGAACC 15900 AGATTTTTTA AATCATTTTC TCAAGAAGGG ATATTTCAAA AAGCATGCTA AGGCGGTTCT 15960 AGCTCTTTCT GGTGGATTAG ATTCCATGTT TCTATTTAAG GTATTGTCTA CTTATCAAAA 16020 AGAGTTAGAG ATTGAATTGA TTCTAGCTCA TGTGAATCAT AAGCAGAGAA TTGAATCAGA 16080 TTGGGAAGAA AAGGAATTAA GGAAGTTGGC TGCTGAAGCA GAGCTTCCTA TTTATATCAG 16140 CAATTTTCA GGAGAATTTT CAGAAGCGCG TGCACGAAAT TTTCGTTATG ATTTTTTCA 16200 AGAGGTCATG AAAAAGACAG GTGCGACAGC TTTAGTCACT GCCCACCATG CTGATGATCA 16260 GGTGGAAACG ATTTTTATGC GCTTGATTCG AGGAACTCGC TTGCGCTATC TATCAGGAAT 16320 TAAGGAGAAG CAAGTAGTCG GAGAGATAGA AATCATTCGT CCCTTCTTGC ATTTTCAGAA 16380

AAAAGACTTT	CCATCAATTT	TTCACTTTGA	AGATACATCA	AATCAGGAGA	ATCATTATTT	16440
TCGAAATCGT	ATTCGAAATT	CTTACTTACC	AGAATTGGAA	AAAGAAAATC	CTCGATTTAG	16500
GGATGCAATC	TTAGGCATTG	GCAATGAAAT	TTTAGATTAT	GATTTGGCAA	TAGCTGAATT	16560
ATCTAACAAT	ATTAATGTGG	AAGATTTACA	GCAGTTATTT	TCTTACTCTG	AGTCTACACA	16620
AAGAGTTTTA	CTTCAAACTT	ATCTGAATCG	TTTTCCAGAT	TTGAATCTTA	CAAAAGCTCA	16680
GTTTGCTGAA	GTTCAGCAGA	TTTTAAAATC	TAAAAGCCAG	TATCGTCATC	CGATTAAAAA	16740
TGGCTATGAA	TTGATAAAAG	AGTACCAACA	GTTTCAGATT	TGTAAAATCA	GTCCGCAGgC	16800
TGATGAAAAG	GAAGATGAAC	TTGTGTTACA	CTATCAAAAT	CAGGTAGCTT	ATCAAGGATA	16860
TTTATTTTCT	TTTGGACTTC	CATTAGAAGG	TGAATTAATT	CAACAAATAC	CTGTTTCACG	16920
TGAAACATCC	ATACACATTC	GTCATCGAAA	AACAGGAGAT	GTTTTGATTA	AAAATGGGCA	16980
TAGAAAAAA	CTCAGACGTT	TATTTATTGA	TTTGAAAATC	CCTATGGAAA	AGAGAAACTC	17040
TGCTCTTATT	ATTGAGCAAT	TTGGTGAAAT	TGTCTCAATT	TTGGGAATTG	CGACCAATAA	17100
TTTGAGTAAA	AAAACGAAAA	ATGATATAAT	GAACACTGTA	CTTTATATAG	AAAAATAGA	17160
TAGGTAAAAA	ATGTTAGAAA	ACGATATTAA	AAAAGTCCTC	GTTTCACACG	ATGAAATTAC	17220
AGAAGCAGCT	AAAAAACTAG	GTGCTCAATT	AACTAAAGAC	TATGCAGGAA	AAAATCCAAT	17280
CTTAGTTGGG	ATTTTAAAAG	GATCTATTCC	TTTTATGGCT	GAATTGGTCA	AACATATTGA	17340
TACACATATT	GAAATGGACT	TCATGATGGT	TTCTAGCTAC	CATGGTGGAA	CAGCAAGTAG	17400
TGGTGTTATC	AATATTAAAC	AAGATGTGAC	TCAAGATATC	AAAGGAAGAC	ATGTTCTATT	17460
TGTAGAAGAT	ATCATTGATA	CAGGTCAAAC	TTTGAAGAAT	TTGCGAGATA	TGTTTAAAGA	17520
AAGAGAAGCA	GCTTCTGTTA	AAATTGCAAC	CTTGTTGGAT	AAACCAGAAG	GACGTGTTGT	17580
AGAAATTGAG	GCAGACTATA	CTTGCTTTAC	TATCCCAAAT	GAGTTTGTAG	TAGGTTATGG	17640
TTTAGACTAC	AAAGAAAATT	ATCGTAATCT	TCCTTATATT	GGAGTATTGA	AAGAGGAAGT	17700
GTATTCAAAT	TAGAAAGAAT	AATCTTTAAT	GAAAAAACAA	AATAATGGTT	ТААТТАААА	17760
TCCTTTTCTA	TGGTTATTAT	TTATCTTTTT	CCTTGTGACA	GGATTCCAGT	ATTTCTATTC	17820
TGGGAATAAC	TCAGGAGGAA	GTCAGCAAAT	CAACTATACT	GAGTTGGTAC	AAGAAATTAC	17880
CGATGGTAAT	GTAAAAGAAT	TAACTTACCA	ACCAAATGGT	AGTGTTATCG	AAGTTTCTGG	17940
TGTCTATAAA	AATCCTAAAA	CAAGTAAAGA	AGAAACAGGT	ATTCAGTTTT	TCACGCCATC	18000
TGTTACTAAG	GTAGAGAAAT	TTACCAGCAC	TATTCTTCCT	GCAGATACTA	CCGTATCAGA	18060
ATTGCAAAAA	CTTGCTACTG	ACCATAAAGC	AGAAGTAACT	GTTAAGCATG	AAAGTTCAAG	18120

268 TGGTATATGG ATTAATCTAC TCGTATCCAT TGTGCCATTT GGAATTCTAT TCTTCTTCCT 18180 ATTCTCTATG ATGGGAAATA TGGGAGGAGG CAATGGCCGT AATCCAATGA GTTTTGGACG 18240 TAGTAAGGCT AAAGCAGCAA ATAAAGAAGA TATTAAAGTA AGATTTTCAG ATGTTGCTGG 18300 AGCTGAGGAA GAAAAACAAG AACTAGTTGA AGTTGTTGAG TTCTTAAAAG ATCCAAAACG 18360 ATTCACAAAA CTTGGAGCCC GTATTCCAGC AGGTGTTCTT TTGGAGGGAC CTCCGGGGAC 18420 AGGTAAAACT TTGCTTGCTA AGGCAGTCGC TGGAGAAGCA GGTGTTCCAT TCTTTAGTAT 18480 CTCAGGTTCT GACTTTGTAG AAATGTTTGT CGGAGTTGGA GCTAGTCGTG TTCGCTCTCT 18540 TTTTGAGGAT GCCAAAAAAG CAGCACCAGC TATCATCTTT ATCGATGAAA TTGATGCTGT 18600 TGGACGTCAA CGTGGAGTCG GTCTCGGCGG AGGTAATGAC GAACGTGAAC AAACCTTGAA 18660 CCAACTTTTG ATTGAGATGG ATGGTTTTGA GGGAAATGAA GGGATTATCG TCATCGCTGC 18720 GACAAACCGT TCAGATGTAC TTGACCCTGC CCTTTTGCGT CCAGGACGTT TTGATAGAAA 18780 AGTATTGGTT GGTCGTCCTG ATGTTAAAGG TCGTGAAGCA ATCTTGAAAG TTCACGCTAA 18840 GAATAAGCCT TTAGCAGAAG ATGTTGATTT GAAATTAGTG GCTCAACAAA CTCCAGGCTT 18900 TGTTGGTGCT GATTTAGAGA ATGTCTTGAA TGAAGCAGCT TTAGTTGCTG CTCGTCGCAA 18960 TAAATCGATA ATTGATGCTT CAGATATTGA TGAAGCAGAA GATAGAGTTA TTGCTGGACC 19020 TTCTAAGAAA GATAAGACAG TTTCACAAAA AGAACGAGAA TTGGTTGCTT ACCATGAGGC 19080 AGGACATACC ATTGTTGGTC TAGTCTTGTC GAATGCTCGC GTTGTCCATA AGGTTACAAT 19140 TGTACCACGC GGCCGTGCAG GCGGATACAT GATTGCACTT CCTAAAGAGG ATCAAATGCT 19200 TCTATCTAAA GAAGATATGA AAGAGCAATT GGCTGGCTTA ATGGGTGGAC GTGTAGCTGA 19260 AGAAATTATC TTTAATGTCC AAACCACAGG AGCTTCAAAC GACTTTGAAC AAGCGACACA 19320 AATGGCACGT GCAATGGTTA CAGAGTACGG TATGAGTGAA AAACTTGGCC CAGTACAATA 19380 TGAAGGAAAC CATGCTATGC TTGGTGCACA GAGTCCTCAA AAATCAATTT CAGAACAAAC 19440 AGCTTATGAA ATTGATGAAG AGGTTCGTTC ATTATTAAAT GAGGCACGAA ATAAAGCTGC 19500 TGAAATTATT CAGTCAAATC GTGAAACTCA CAAGTTAATT GCAGAAGCAT TATTGAAATA 19560 CGAAACATTG GATAGTACAC AAATTAAAGC TCTTTACGAA ACAGGAAAGA TGCCTGAAGC 19620 AGTAGAAGAG GAATCTCATG CACTATCCTA TGATGAAGTA AAGTCAAAAA TGAATGACGA 19680 AAAATAACCC TGAGAGAGGC TGGAGCCTCT CTTTTTTGTG CAGTTTAGGA GCTAAAGGGA 19740 ACAGAATGGA GAAAATGGAA CAAATGTGTT TTCTAATCTG TTAGACTGTA TCTAGAAAGG 19800

GGAAAATTAT GATTAAAGAA TTGTATGAAG AAGTCCAAGG GACTGTGTAT AAGTGTAGAA

ATGAATATTA CCTTCATTTA TGGGAATTGT CGGATTGGGA GCAAGAAGGC ATGCTCTGCT

19860

	TACATGAATT	GATTAGTAGA	GAAGAAGGAC	TGGTAGACGA	TATTCCACGT	TTAAGGAAAT	19980
	ATTTCAAGAC	CAAGTTTCGA	AATCGAATTT	TAGACTATAT	CCGTAAACAG	GAAAGTCAGA	20040
	AGCGTAGATA	CGATAAAGAA	CCCTATGAAG	AAGTGGGTGA	GATCAGTCAT	CGTATAAGTG	20100
,	AGGGGGGTCT	CTGGCTAGAT	GATTATTATC	TCTTTCATGA	AACACTAAGA	GATTATAGAA	20160
	ACAAACAAAG	TAAAGAGAAA	CAAGAAGAAC	TAGAACGCGT	CTTAAGCAAT	GAACGATTTC	20220
	GAGGGCGTCA	AAGAGTATTA	AGAGACTTAC	GCATTGTGTT	TAAGGAGTTT	ACTATCCGTA	20280
	CCCACTAGTA	AGTCATGCAA	AAAAAATGAA	AAAAATTAGA	AAAAGTAGTT	GACAAAGTTT	20340
	GAAAAGGCTG	TATAATAGTA	AGAGTTGAAA	ATAACAACTC	AGGTCCGTTG	GTCAAGGGGT	20400
	TAAGACACCG	CCTTTTCACG	GCGGTAACAC	GGGTTCGAAT	CCCGTACGGA	CTATGGTATG	20460
	TTGCGTCAGG	ACCACTTGAT	GAAAAAAGT	TTAAAAAAAC	TTAAAAATCT	TCAAAAAAGT	20520
	GTTGACAAGC	GAAAGCAGTT	GTGATATACT	AATATAGTTG	TCGCTTGAGA	GAAGCAAGTG	20580
	ACAAAGACCT	TTGAAAACTG	AACAAGACGA	ACCAATGTGC	AGGGCGCTAC	AACGTAAGTT	20640
,	GTAGTACTGA	ACAATGAAAA	AAACAATAAA	TCTGTCAGTG	ACAGAAATGA	GTAAGAACTC	20700
	AAACTTTTTA	ATGAGAGTTT	GATCCTGGCT	CAGGACGAAC	GCTGGCGGCG	TGCCTAATAC	20760
	ATGCAAGTAG	AACGCTGAAG	GAGGAGCTTG	CTTCTCTGGA	TGAGTTGCGA	ACGGGTGAGT	20820
	AACGCGTAGG	TAACCTGCCT	GGTAGCGGGG	GATAACTATT	GGAAACGATA	GCTAATACCG	20880
•	CATAAGAGTA	GATGTTGCAT	GACATTTGCT	TAAAAGGTGC	ACTTGCATCA	CTACCAGATG	20940
•	GACCTGCGTT	GTATTAGCTA	GTTGGTGGGG	TAACGGCTCA	CCAAGGCGAC	GATACATAGC	21000
•	CGACCTGAGA	GGGTGATCGG	CCACACTGGG	ACTGAGACAC	GGCCCAGACT	CCTACGGGAG	21060
•	GCAGCAGTAG	GGAATCTTCG	GCAATGGACG	GAAGTCTGAC	CGAGCAACGC	CGCGTGAGTG	21120
i	AAGAAGGTTT	TCGGATCGTA	AAGCTCTGTT	GTAAGAGAAG	AACGAGTGTG	AGAGTGGAAA	21180
•	GTTCACACTG	TGACGGTATC	TTACCAGAAA	GGGACGGCTA	ACTACGTGCC	AGCAGCCGCG	21240
(	GTAATACGTA	GGTCCCGAGC	GTTGTCCGGA	TTTATTGGGC	GTAAAGCGAG	CGCAGGCGGT	21300
•	PAGATAAGTC	TGAAGTTAAA	GGCTGTGGCT	ТААССАТА			21338

## (2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 6273 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

6	AGATAATGAA	ACGCTCTATT	TTCGGACGCA	TGGATAGACT	GAGCCGTGTC	TGTTTTTAAA
120	TATTTGTTAA	TGAAACCTCT	CGACATGAGO	TAACCTTAGT	ACAAGATTTC	CTGCCTATAC
180	ACAGTAAAAT	AACTGTCTTT	ATGAATAGTO	CACCTATTTT	АААТАТТАТА	GTAGTTCACA
240	AGTCATTCTC	AGTGACATTC	TTCCATTTTA	TTCTCTTTCT	CATGAAAATT	TTTAGAAAAT
3.00	TTTAAGGAAG	TATCTAGTCG	AGCATTCTTT	AAATTGTCTG	AGCCCAGACG	АСАТСААААА
360	TTGTTCTTGG	TCAACAAACC	CATCATTTCT	GTCTCTGTCC	TATGTTTAAA	TTGAGTTCAG
420	GTAGTTGAGC	CACCGACTTG	TTGCCTTCAA	CTTTGCTGAC	TGGCTACTTG	AGAAACTCCT
480	TTCCAACTCT	TAAGAACTCT	GCCAATGTAT	AATCTTACCA	GGCTTTCTGT	TGGCTCATCT
540	TGGGAAGAGT	CTTGATAAGG	AGTGGAGCCC	TTCTTTCATG	TGAGAAGAGC	GGGTGTTTCT
600	AGTCGAATAG	ATTCCGCATC	TAACGCTCCA	CTGTAAATCA	CTTCCAAGAC	TGCTTGTCAT
660	TGGCTCAATG	AGCGAAGGGC	ATAGCCTGAT	CCCTGACTGA	TTTGAATATC	GCATCCGTGA
720	ATCTTCACGG	CCTTATTTCC	GATTGCAAGC	ACCATACATT	TGAGATTGAG	GTCGCTACAT
780	CAAGTCTGAA	CCACTTTTTT	AACTGCCCTT	ACCTGCCTTC	CGAGTGTAAA	TCGTTAAACT
840	ATAGGTGTTT	CAGCTACAGC	TTTTTCGGAA	TTGAGCAATC	AGCCATATTC	ATGGTCTTCA
900	ATCACGCGCC	TAGCAATGCC	TGATCCTGCT	ATAGGCTAGA	TGGGTTTGAG	TGATAAGACA
960	CAAACTTTCA	ATGGTTGAAG	ACCTTGGGTG	TTCATGACTC	CCTGTTCTGG	ACCTGATAAA
1020	AGCTTCATAA	CTTTTTTCAG	TCAATATCGC	AGGATAGATG	CAGTAAATTC	GTCACCGTAC
1080	ATTTTCTTCA	TCATGCTGGT	ACAGTCGCAG	ATTCGGTTTA	TCTTCCCAAA	AGGAAGCTTG
1140	CCCAGCAATA	GACCTATTTT	TCTGGTTCTG	GGCCAAAATT	TATACATATT	ATCAGCAACT
1200	ACCCAGTAAT	TATAAGACAG	AGAGCTGGAC	TTGAACCAAA	CCTTCTCTTT	ACCAAGTTTT
1260	CATCACTTTT	TTGCTTTTTC	GTCCGTAATT	TGAGAAAATC	AGGCAAAACC	AAAGCCACCA
1320	СААААТСААА	GTGCCCCAAT	GCAGAAGAAA	GGCTAGCACT	TAAAGGCAAT	AGTAGGAAGT
1380	TGCACCAATC	CTAGTCCCCC	ATAAAGGAAC	TCCCAAAAGA	TACGGTCAAT	CTGGCATTAT
1440	CCCAGACATG	CCGTCCGAAT	AAAACAGCTG	ACCGATAATC	AGGTTGCCGT	AAGGCCGCCA
1500	GGTCATCCCA	GTTCCCATCT	TTCTTGAGAC	AATTTCAAAT	TGGCGAGTGG	ATAACAGGCA
1560	GATAGTATTT	TCAGCCCAGT	TCAATTCCCT	CAGGTTCGGA	CAGCCTCTTG	AAGGCAATCC
1620	GGTCCCAATT	AAGCCGGCAA	AGAGCTGTCA	ATAAATCACT	GGAAAATCGC	TGCAAAATAG
1680	GAAAATACCT	GGATGGTCTG	GCCAGAGACG	CCCCAACAAG	GGATAAAGAG	CCCATCAAAG
1740	AGCCAAGGGA	GAAGAAAAAC	TCATGATAGC	GGCCAGCTTC	AGACCCAGTC	GCAATCTGCA

ATCGCAAGCA	AAATAGCTAG	TAACAAGGTC	AAAAGCGACA	ACTGCAAATG	TTGAGATAGA	1800
GCTGTCAACC	AATCACTAAA	ACGATCCTGA	AAAGTTGCAA	TTAAATTAGT	CATGNACACT	1860
ACCTCCAAAC	AAGTCTGCTA	CAAAGTCTGT	TGCAGGCGCT	TTTAAAATTG	TCTCGGGATT	1920
CGCTACCTGG	CGAATTTCTC	CATCCTGCAA	GACAGCAATA	CGGTCCGCCA	ACTTCAAGGC	1980
TTCATCCGTA	TCATGGGTTA	CAAAAATCGT	TGTCATCCCA	AACTCTTTAT	GCAATTCTTT	2040
TGTCAGAACC	TGCAACTGTT	TTCTCGAAAT	AGCATCCAAG	GCCGAAAAGG	GTTCATCCAT	2100
GAGGAAAATC	TTGGGCTGAC	CAATCATAGC	TCGGACAATA	CCGACCCGTT	GCTGTTCTCC	2160
ACCAGATAAT	TCACTAGGTA	AGCGATGCCC	ATACTCGGCT	ACTGGTAAAC	CAACCTTAGC	2220
CAAAAGCTCT	TCTGTTTTCT	TCGTAATTTC	TTCCTTGCTC	CACCCCTTCA	TTTCAGGAAT	2280
GAGAGCAATA	TTTTCCGCAA	CTGTTAGATT	TGGAAAAAGA	GCAATAGCCT	GTAAAACATA	2340
ACCAGTAGAA	AGACGAAGTT	CACGCTCATC	ATAGTCTTTG	ATGCGCTTCC	CATCCATATA	2400
AATATTTCCA	TCAGTTGGTT	CCAAAAGACG	GTTAATCATC	TTGAGCATGG	TCGTCTTACC	2460
TGACCCAGAA	GGCCCTACTA	AAACCATAAA	TTCCCCATCC	TCAATCTGTA	AGTTGACATC	2520
TCTCAAGACA	TCCTTTTCTG	TGTAGCGCAG	TGCTACATTT	TTGTATTCAA	TCATTCTTTG	2580
TCCTCAATTT	AAAACTTCCC	TCGATTGGTC	AAGTCTTCTA	CCTTAGGCAT	AACTTCCTTA	2640
TTATCCCAAT	GCTCCACAAT	TTTCCCGTTC	TCTAAACGGA	AGATATCGTA	CTGGGCATAA	2700
GCAACGCCAT	CAATCTGAGT	CTGACCATAG	CTAACCACAT	AGTTTCCTTG	TCCTAAGAGT	2760
TGGAAAACAA	AGTCAAAAGT	GACACTATAT	TCAGCCACAT	AGTTTTTATA	AGCAGCACTT	2820
CCTTGTCCAA	TATCATGATT	ATGCTGAATC	AAATCGTCTG	CCACATAATC	ACTCCACTGC	2880
TCTAGCTCCC	CATTTTGGAA	AATTTCTGTC	AAGAAACGGC	GAACCAGCTT	TTTATTTTCT	2940
GCTTTCTTAT	CCAAATCCTT	GATTTCAAAA	TCTCCAAAAA	TTTGATCTAG	TTGGTCATTT	3000
TCAGGTGTTC	GATAGTAGTC	AATGACATCC	CAATGCTCAA	CAATACAACC	ATTCTCATCC	3060
TCACGGAAAG	TATCCGTCGT	CACCCATTGA	GCTTCTCCAC	CATTCAGATA	TTGATGAACA	3120
TGAACAAAGA	CCAGATTGCC	ATCCTCAATG	GTGCGGACAA	TCTTAATCTG	ACGCTCTGGA	3180
TGACGCTCAA	AGAAATCTGC	AAAGAAGGCT	GCAAATCCTT	CTTTCCCGTC	AGGAACACCT	3240
GTCGAATGTT	GGATATAGGT	ATCCCCTACA	GACTGGGCTT	GAGCCTCAGC	AACTCGTCCG	3300
TCTTGAATGG	CATGGATGTA	TAGGTTGTGA	GCATTTTTCA	CTTGTTGTGA	CATATTCTAA	3360
ACCTCATTTC	CCTTCTCTTT	CAGATTCGCC	AAAATTCTTT	CTTGAAAACC	TTCAAATTGG	3420
TGAATTTCTT	CCTCTGAAAA	TCCTTTGTAA	AAGATAGTAT	CCAATTTCTG	ACTGACACGA	3480

TGCCCCACTT CTTTCTGGGA CTTGCCTAAC TCCGTTAAAA CTAAATACTT CTTACGCTTG 3540 TCTTTCCAC ACGGACTAAC AATTACAAGC TTTTGTTCCT CTAGCTTTTT TATCATAGTC 3600 GTCAGCGTAT TATTCGCAAG TCCAGTCGCA AGCGCGATAT CTGTCGCAGT TGCGCAGCCA 3660 GTTTCACTAT TCCATAAAAC CGCTAAAATC TTGCCCTGTT CACCCCTATA AAGAGCCTCA 3720 GGATCTTGAC TCAGTAACTT TTGAAAAATC CGCCCATTCA ACAAACGAAT ATGATGGGCT 3780 AGCAAATGAC CATCTTTCAT AACACCTCCA ATTTATTTCG ATATCGAAAT GAATAAAACA 3840 ATTGTAACAC TCATCGTTCT AACTGTCAAC TATTTCGATT TAGAAATAAT TTTTGATAAT 3900 TATCCACACC ACCATACTCC GGCTCAACTA ACTTTTAACG AGAGTTTCTA AACTCCTTCG 3960 TCCTCCAGTC TACAAAAGCC TTCCATTCGT ACTATCCTAT ATTTTATGAG GGGACACATT 4020 TTTCCTATCA GACCATTTAT TTTAAAGATA GAAGTAAATC ATAATTGCTT CCATCTGTTC 4080 TTTTATAGTA TATTGAAGTT AGACTAGAGC ACTGTATCTT CTAAAACATT GATAGAAAGC 4140 GATTTGAATT TCCCAATCAA TTTGTTCGTA TTTATAGCAT TTCGAAACTG GAATAGGACA 4200 CCATGACTGC TAAAAGATTT CTATAAATTC ATTTAATTTC CTCAATCAAT TTGTTCATAT 4260 CTTATTTCAT TCCGCTATAA TTTCACCTTA CCCTATCTTT TTCGTAGCAC CCTTCAAACA 4320 GCCTATCCCC TACCGTTTGA CGATTCCTCA CTTCGCTCCA CTTCCATTAC AGAAGTTTCT 4380 TCACTACTAT GGGCTCGGCT GACTTCTCAT GATTCCTTGT TACTACTATT TGAACGCTCA 4440 CGAGATAGAT CTTACAAAAA ATGCTTTGAT CCACAATGGA ATCAAAGCAT TTTAAAGAGT 4500 TCCTCATACA TAAGCGCAGA AGTCGCAGTT CCTCTGTACT TGGCTTCTTC TCTTTTGACA 4560 AAGCGAGCCA AGTTGAGCAA CTCAGGTGCT GGATGTTTGG GATTTAGGAG CAATTCACGA 4620 TTGACCAGGC CTGAGAGACG AACTGCCTGC AATTGCTCAT TTGTAGTAGG CAGTTTTTTA 4680 GTAGTCTCTA GGAGAGCAGC AACTAAATCT TCACTCAAAT CATGTCGAGC ATGATTGTAA 4740 AGATCTTTTA TAAGGCTTTC TAGGTTTGGT TCTACCATCC CTACCACCTC CCTTATGGTT 4800 TAATAATGTT TAATCAAATC AACCGTTGAA CGATCCAATT TCTTCACCAA GGCTTGTAAG 4860 AAAGCTTGCG CTTCTAGGAA GTCATCCATT GCATAGAGGG TTTGGTGAGA ATGGATATAA 4920 CGAGCGCAGA CACCGATAGT TGTTGATGGG ACACCACCAT TTTTCAGATG AGCTGCACCT 4980 GCATCTGTTC CGCCTTTACC ACAGTAGTAT TGGTACTTGA TACCAGCTTC TTCAGCCGTT 5040 GTCAAAAGGA AATCCTTCAT CCCTGGGAGA AGCAAGTGAC CTGGATCATA GAAACGAATC 5100 AAGGTTCCAT CTCCAATCTT GCCTTGACCA CCGTAGACAT CACCTGCTGG TGAGCAATCA 5160 ACTGCGAGGA AGACTTCTGG GTCAAACTTG GTTGTAGAGG TATGAGCGCC ACGCAGACCA 5220 ACTTCTTCTT GGACGTTAGA ACCCAGATAG AGTTCATTGC CGAGTTTTTG ACCCGATAAA 5280

273

GCTT	CAGCTA	GCTCGCTTAC	CATGAGGACA	CCGTAGCGGT	TATCCCAAGC	TTTTGAGATG	5340
TATA	TTTTTT	CATTGGCTGT	CAAAATTGCA	GAACTATCTG	GTACAATGGT	ATCACCAGGA	5400
CGGA	TGCCAA	AACTTTCTGC	CTCAGCCTTG	TCCGCAAAAC	CACCATCAAA	AACGATATCG	5460
GCAA'	TGGCTG	GCATGGTTGG	TCCCCCCTTT	CCACGAGTCA	AATGCGGAGG	AACAGAACCT	5520
GAAA'	TCACAG	GAATTTCATG	ACCATCACGA	GTCAAGAGTT	TGAAACGTTG	GCTGCTAACC	5580
ACCA'	TGGGGT	TCCAGCCACC	GATTTCTACG	ACACGGAAGG	TACCATCTGG	CTTGATTTCG	5640
CTGA	CCATAA	AACCAACTTC	GTCCATATGA	GAAGCGACCA	AGACGCGCGG	TGCATCCACA	5700
GCTT	CTGAAT	GTTTGATACC	AAAAATACCA	CCCAAGCCAT	CTGTCACCAC	TTCATCCACA	5760
rgcg	GTGTCA	ACTTTTCACG	AAGATAAGCA	CGGACAGGCG	CTTCATGACC	TGAGACTGCA	5820
GCAA	GTTCTG	TTACTTCTTT	AATTTTTGAA	AATAATGTTG	TCATTTCAGT	TCCTTCTTTC	5880
PTTC/	ATCCAT	TTTACCACTT	TTTATAGGAG	AAGGATAGTG	GGAAGGTGGA	TTTCTAAGTT	5940
AGTA!	TCTTAG	TCCTGCTCTA	TCTTAGAAAA	GGATAGTATT	CTCTTGCATG	TAGTGCAAAA	6000
rcta(	GTAAAC	ATTCCAAAAT	TAACTCGAAT	ATTTATTTCC	AAACAAAAAA	ACAATACACC	6060
ATCA	aagttg	TTTGGATTTT	TCATGAAATT	TACAGAAAAT	AGTTGACTTC	CCTTTCTTCT	6120
TTCT	TAAAT	ATATAGTTGG	TTGAGTTTGG	AATAGTACGC	TGTAGCTGCT	AAAACATTTC	6180
raga.	AATTAA	TTTGACTTTC	CTAATAGAGT	TGTTCATATC	TTATTTCAAT	TTACTATAGT	6240
ACAA	AACTAG	AAAAGGAAAA	AATCATGACC	AGG			6273

#### (2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
   (A) 'LENGTH: 28171 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACAACCTTTT	TCAAAAACTC	ACCTTGGTAC	GGAGATGTTT	TGCTTTCTGC	TATTATTTTC	60
GGTTATATTC	ATATCAATTT	TGCTTTAACT	CCTCTTGCTT	TTTTCATTTA	TGCTAGTGGA	120
GGTCTTATTT	TAGCTCTATT	GTATCGCATG	ACTAAAAATC	TCTACTATCC	AATACTAGTT	180
CATATTCTCA	TTAATATCAC	TGCCTTCTGG	GATGTGTGGT	TGCTCCTATT	TTCAGGAAGT	240
TAGCTTACTA	AAATAATGTC	GGAACTTTCC	GGCATTTTCT	TTTTTCACAA	ATAGTCAACG	300
THE PROPERTY OF THE PROPERTY O	<b>്റ</b> ാനാന്ത്രസ	CTCCTCTCTA	ጥርር እርጥጥ አጥጥ	THE PROPERTY OF A THE	CATITUTE	260

A	TAAGGTTGA	CTTGAGAAAG	GCAGATAGTG	AAGATAGTTA	AGAAGAATAG	GATGTTCTTT	420
T	ттссттттт	GGAAAACTTC	TAAAATATGG	TATAATGAAA	AGATAAAGAA	GTTGGGGGTA	480
G	AAGATGAAC	ATTCAACAAT	TACGCTATGT	TGTGGCTATT	GCCAATAGTG	GTACTTTTCG	540
T	GAAGCTGCT	GAAAAGATGT	ATGTTAGTCA	GCCGAGTCTG	TCTATTTCTG	TTCGTGATTT	600
G	GAAAAAGAG	TTGGGCTTTA	AGATTTTCCG	TCGGACCAGC	TCAGGGACTT	TCTTGACCCG	660
т	CGTGGGATG	GAATTTTATG	AAAAATCGCA	AGAATTGGTT	AAAGGATTTG	ATATTTTTCA	720
A	AATCAGTAT	GCCAATCCTG	AAGAAGAAAA	AGATGAATTT	TCTGTTGCTA	GCCAGCACTA	780
Т	GACTTCTTG	ССАССААСТА	TTACGGCCTT	TTCAGAGCGC	TATCCTGACT	ATAAGAACTT	840
C	CGTATTTTT	GAATCAACTA	CTGTTCAAAT	ATTAGATGAA	GTGGCGCAAG	GGCATAGTGA	900
G	ATTGGGATT	ATCTACCTCA	ACAATCAAAA	TAAAAAGGGG	ATTATGCAAC	GGGTTGAAAA	960
A	TTAGGTCTG	GAGGTCATCG	AATTGATTCC	TTTCCATACC	CATATTTATC	TCCGTGAGGG	1020
т	CATCCTTTA	GCCCAGAAAG	AGGAATTAGT	CATGGAGGAT	TTAGCGGATT	TACCAACGGT	1080
Т	CGTTTCACT	CAAGAGAAAG	ACGAGTACCT	TTATTATTCA	GAGAACTTTG	TCGATACCAG	1140
C	GCTAGCTCA	CAGATGTTTA	ATGTGACAGA	CCGTGCCACC	TTGAATGGTA	TTTTGGAGCG	1200
G	ACGGACGCC	TATGCGACAG	GTTCTGGATT	TTTAGATAGT	GACAGTGTTA	ATGGCATTAC	1260
A	GTTATTCGT	CTCAAGGATA	ACCTAGATAA	CCGCATGGTC	CATGTTAAAC	GTGAAGAAGT	1320
G	GAGCTTAGT	CAAGCTGGGA	CTCTCTTCGT	AGAAGTCATG	CAAGAATATT	TTGATCAAAA	1380
G	AGGAAATCA	TGAAAAAAAG	AGCAATAGTG	GCAGTCATTG	TACTGCTTTT	GATTGGGCTG	1440
G	ATCAGTTGG	тсааатсста	TATCGTCCAG	CAGATTCCAC	TGGGTGAAGT	GCGCTCCTGG	1500
A	TCCCCAATT	TCGTTAGCTT	GACCTACCTG	CAAAATCGAG	GTGCAGCCTT	TTCTATCTTA	1560
C	AAGATCAGC	AGCTGTTATT	CGCTGTCATT	ACTCTGGTTG	TCGTGATAGG	TGCCATTTGG	1620
T	ATTTACATA	AACACATGGA	GGACTCATTC	TGGATGGTCT	TGGGTTTGAC	TCTAATAATC	1680
G	CGGGTGGTC	TTGGAAACTT	TATTGACAGG	GTCAGTCAGG	GCTTTGTTGT	GGATATGTTC	1740
C	ACCTTGACT	TTATCAACTT	TGCAATTTTC	AATGTGGCAG	ATAGCTATCT	GACGGTTGGA	1800
G	TGATTATTT	TATTGATTGC	AATGCTAAAA	GAGGAAATAA	ATGGAAATTA	AAATTGAAAC	1860
T	GGTGGTCTG	CGTTTGGATA	AGGCTTTGTC	AGATTTGTCA	GAATTATCAC	GTAGTCTCGC	1920
G.	AATGAACAA	ATTAAATCAG	GCCAGGTCTT	GGTCAATGGT	CAAGTCAAGA	AAGCTAAATA	1980
C.	ACAGTCCAA	GAGGGTGATG	TCGTCACTTA	CCATGTGCCA	GAACCAGAGG	TATTAGAGTA	2040
T	GTGGCTGAG	GATCTTCCGC	TAGAAATAGT	CTACCAAGAT	GAGGATGTGG	CTGTCGTTAA	2100
C.	AAACCTCAG	GGAATGGTTG	TGCACCCGAG	TGCTGGTCAT	ACCAGTGGAA	CCCTAGTAAA	2160

TGCCCTCATG TATCATATTA AGGACTTGTC GGGTATCAAT GGGGTTCTGC GTCCAGGGAT 2220 TGTTCACCGT ATTGATAAGG ATACGTCAGG TCTTCTCATG ATTGCTAAAA ACGATGATGC 2280 GCATCTAGCA CTTGCCCAAG AACTCAAGGA TAAAAAGTCT CTCCGCAAAT ATTGGGCGAT 2340 TGTTCATGGA AATCTACCTA ATGATCGTGG TGTAATTGAA GCGCCGATTG GCCGGAGTGA 2400 AAAAGACCGT AAGAAACAGG CTGTAACTGC TAAAGGGAAG CCTGCAGTGA CGCGTTTTCA 2460 CGTCTTGGAA CGCTTTGGCG ATTATAGCTT AGTAGAGTTG CAACTGGAGA CAGGGCGCAC 2520 TCATCAAATC CGTGTCCACA TGGCTTATAT CGGCCATCCA GTCGCTGGTG ATGAGGTCTA 2580 TGGTCCTCGC AAGACTTTGA AAGGACATGG ACAATTTCTT CATGCCAAGA CTTTAGGTTT 2640 TACTCATCCG AGAACAGGTA AGACCTTGGA ATTTAAAGCA GATATCCCAG AGATTTTTAA 2700 GGAAACCTTG GAGAGATTGA GAAAGTAAGA ATGAAAAAGA AATTAACTAG TTTAGCACTT 2760 GTAGGCGCTT TTTTAGGTTT GTCATGGTAT GGGAATGTTC AGGCTCAAGA AAGTTCAGGA 2820 AATAAAATCC ACTTTATCAA TGTTCAAGAA GGTGGCAGTG ATGCGATTAT TCTTGAAAGC 2880 AATGGACATT TTGCCATGGT GGATACAGGA GAAGATTATG ATTTCCCAGA TGGAAGTGAT 2940 TCTCGCTATC CATGGAGAGA AGGAATTGAA ACGTCTTATA AGCATGTTCT AACAGACCGT 3000 3060 ACCCACAGTG ATCATATTGG AAATGTTGAT GAATTACTGT CTACCTATCC AGTTGACCGA 3120 GTCTATCTTA AGAAATATAG TGATAGTCGT ATTACTAATT CTGAACGTCT ATGGGATAAT 3180 CTGTATGGCT ATGATAAGGT TTTACAGACT GCTGCAGAAA AAGGTGTTTC AGTTATTCAA 3240 AATATCACAC AAGGGGATGC TCATTTTCAG TTTGGGGACA TGGATATTCA GCTCTATAAT 3300 TATGAAAATG AAACTGATTC ATCGGGTGAA TTAAAGAAAA TTTGGGATGA CAATTCCAAT 3360 TCCTTGATTA GCGTGGTGAA AGTCAATGGC AAGAAAATTT ACCTTGGGGG CGATTTAGAT 3420 AATGTTCATG GAGCAGAAGA CAAGTATGGT CCTCTCATTG GAAAAGTTGA TTTGATGAAG 3480 TTTAATCATC ACCATGATAC CAACAAATCA AATACCAAGG ATTTCATTAA AAATTTGAGT 3540 CCGAGTTTGA TTGTTCAAAC TTCGGATAGT CTACCTTGGA AAAATGGTGT TGATAGTGAG 3600 TATGTTAATT GGCTCAAAGA ACGAGGAATT GAGAGAATCA ACGCAGCCAG CAAAGACTAT 3660 GATGCAACAG TTTTTGATAT TCGAAAAGAC GGTTTTGTCA ATATTTCAAC ATCCTACAAG 3720 CCGATTCCAA GTTTTCAAGC TGGTTGGCAT AAGAGTGCAT ATGGGAACTG GTGGTATCAA 3780 GCGCCTGATT CTACAGGAGA GTATGCTGTC GGTTGGAATG AAATCGAAGG TGAATGGTAT 3840 TACTTTAACC AAACGGGTAT CTTGTTACAG AATCAATGGA AAAAATGGAA CAATCATTGG 3900

276 TTCTATTTGA CAGACTCTGG TGCTTCTGCT AAAAATTGGA AGAAAATCGC TGGAATCTGG 3960 TATTATTTA ACAAAGAAA CCAGATGGAA ATTGGTTGGA TTCAAGATAA AGAGCAGTGG 4020 TATTATTTGG ATGTTGATGG TTCTATGAAG ACAGGATGGC TTCAATATAT GGGGCAATGG 4080 TATTACTTTG CTCCATCAGG GGAAATGAAA ATGGGCTGGG TAAAAGATAA AGAAACCTGG 4140 TACTATATGG ATTCTACTGG TGTCATGAAG ACAGGTGAGA TAGAAGTTGC TGGTCAACAT 4200 TATTATCTGG AAGATTCAGG AGCTATGAAG CAAGGCTGGC ATAAAAAGGC AAATGATTGG 4260 TATTTCTACA AGACAGACGG TTCACGAGCT GTGGGTTGGA TCAAGGACAA GGATAAATGG 4320 TACTTCTTGA AAGAAAATGG TCAATTACTT GTGAACGGTA AGACACCAGA AGGTTATACT 4380 GTGGATTCAA GTGGTGCCTG GTTAGTGGAT GTTTCGATCG AGAAATCTGC TACAATTAAA 4440 ACTACAAGTC ATTCAGAAAT AAAAGAATCC AAAGAAGTAG TGAAAAAGGA TCTTGAAAAT 4500 AAAGAAACGA GTCAACATGA AAGTGTTACA AATTTTTCAA CTAGTCAAGA TTTGACATCC 4560 TCAACTTCAC AAAGCTCTGA AACGAGTGTA AACAAATCGG AATCAGAACA GTAGTAGAAA 4620 AGAAGGTTTT AGGGCCTTCT TTTTCCTATC AACTCTTTTC TATTTCCTGT TATTCATGTT 4680 ATAATGGATA AATATGAATA ATCGGAGTGA GACTATGAAA TACAAACGGA TTGTCTTTAA 4740 GGTGGGTACT TCTTCTCTGA CAAATGAGGA TGGAAGTTTA TCACGTAGTA AGGTAAAGGA 4800 TATTACCCAG CAGTTGGCTA TGCTGCACGA GGCTGGTCAT GAGTTGATTT TGGTGTCTTC 4860 AGGTGCCATT GCGGCTGGTT TTGGAGCCTT AGGATTTAAA AAGCGTCCGA CTAAGATTGC 4920 TGATAAACAG GCTTCAGCAG CGGTAGGGCA GGGGCTTTTG TTGGAAGAAT ATACAACCAA 4980 TCTTCTCTTG CGTCAAATCG TTTCTGCACA AATCTTGCTG ACCCAAGATG ACTTTGTGGA 5040 TAAGCGTCGT TATAAAAATG CCCATCAGGC TTTGTCGGTT TTGCTCAACC GTGGGGCAAT . 5100 TCCTATCATC AATGAGAATG ATAGTGTCGT TATTGATGAG CTCAAGGTTG GGGACAATGA 5160 CACTCTAAGT GCTCAAGTAG CGGCGATGGT CCAAGCAGAC CTTTTAGTTT TCTTGACAGA 5220 TGTGGACGGT CTCTATACTG GAAATCCTAA TTCAGATCCA AGAGCCAAAC GCTTGGAGAG 5280 AATCGAGACC ATCAATCGTG AGATTATTGA TATGGCTGGT GGAGCTGGTT CGTCAAACGG 5340 AACTGGGGGT ATGTTAACCA AAATCAAGGC TGCAACTATC GCGACGGAAT CAGGAGTTCC 5400 TGTTTATATC TGCTCATCCT TGAAATCAGA TTCCATGATT GAGGCGGCAG AGGAGACCGA 5460 GGATGGTTCT TACTTTGTTG CTCAAGAGAA GGGGCTTCGT ACCCAGAAAC AATGGCTTGC 5520 CTTCTATGCT CAGAGTCAAG GTTCTATTTG GGTTGATAAA GGGGCTGCGG AAGCTCTCTC 5580 TCAATATGGA AAGAGTCTTC TCTTATCTGG TATCGTTGAA GCAGAAGGAG TCTTTTCTTA 5640 CGGTGATATC GTGACAGTAT TTGACAAGGA AAGTGGAAAA TCACTTGGAA AAGGACGCGT 5700

PCT/US97/19588

GCAATTTGGA	GCATCTGCTT	TGGAGGATAT	GTTGCGTTCT	CAAAAAGCCA	AGGGTGTCTT	5760
GATTTACCGT	GACGACTGGA	TTTCCATTAC	TCCTGAAATC	CAACTACTTT	TTACAGAATT	5820
TTAGAGGTAA	ACTATGGTGA	GTAGACAAGA	ACAATTTGAA	CAGGTACAGG	CTGTTAAAAA	5880
ATCGATTAAC	ACAGCTAGTG	AAGAAGTGAA	AAACCAAGCC	TTGCTAGCCA	TGGCTGATCA	5940
CTTAGTGGCT	GCTACTGAGG	AAATTTTAGC	GGCTAATGCC	CTCGATATGG	CAGCGGCTAA	6000
GGGGAAAATC	TCAGATGTGA	TGTTGGATCG	TCTTTATTTG	GATGCAGATC	GTATAGAAGC	6060
GATGGCAAGA	GGAATTCGTG	AAGTGGTTGC	CTTACCAGAT	CCAATCGGTG	AAGTTTTAGA	6120
AACAAGTCAG	CTTGAAAATG	GTTTGGTTAT	САСАААААА	CGTGTAGCTA	TGGGTGTCAT	6180
CGGTATTATC	TATGAAAGCC	GTCCAAATGT	GACGTCTGAT	GCGGCTGCTT	TGACTCTTAA	6240
GAGTGGAAAT	GCGGTTGTTC	TTCGTAGTGG	TAAGGATGCC	TATCAAACAA	CCCATGCCAT	6300
TGTCACAGCC	TTGAAGAAGG	GCTTGGAGAC	GACTACTATT	CATCCAAATG	TGATTCAACT	6360
GGTGGAGGAT	ACTAGCCGTG	AAAGTAGTTA	TGCTATGATG	AAGGCCAAGG	GCTATCTAGA	6420
CCTTCTCATT	CCTCGTGGAG	GAGCTGGCTT	GATCAATGCA	GTGGTTGAGA	ATGCGATTGT	6480
ACCTGTTATC	GAGACAGGGA	CTGGGATTGT	CCATGTCTAT	GTGGATAAGG	ATGCAGACGA	6540
AGACAAGGCG	CTGTCTATCA	TCAACAATGC	TAAAACCAGT	CGTCCTTCTG	TTTGTAATGC	6600
CATGGAGGTT	CTGCTGGTTC	ATGAAAACAA	GGCAGCAAGC	TTCCTTCCTC	GCTTGGAGCA	6660
AGTGTTGGTT	GCAGAGCGTA	AGGAAGCTGG	ACTGGAACCA	ATTCAATTCC	GCCTAGATAG	6720
CAAAGCAAGC	CAGTTTGTTT	CAGGTCAAGC	AGCTGAGACC	CAAGACTTTG	ACACCGAGTT	6780
TTTAGACTAT	GTCCTTGCTG	TTAAGGTTGT	GAGCAGTTTA	GAAGAAGCGG	TTGCGCACAT	6840
TGAATCCCAC	AGCACCCATC	ATTCGGATGC	TATTGTGACG	GAAAATGCTG	AAGCTGCAGC	6900
ATACTTTACA	GATCAAGTGG	ACTCTGCAGC	GGTGTATGTT	AATGCCTCAA	CTCGTTTCAC	6960
AGATGGAGGA	CAATTTGGTC	TTGGTTGTGA	AATGGGGATT	TCTACTCAGA	AATTGCACGC	7020
GCGTGGTCCC	ATGGGCTTGA	AAGAGTTGAC	CAGCTACAAG	TATGTGGTTG	CCGGTGATGG	7080
GCAGATAAGG	GAGTAAGAGA	TGAAGATTGG	ATTTATCGGT	TTGGGGAATA	TGGGTGCTAG	7140
CTTGGCAAAA	TCTGTCTTGC	AGACTAGGAC	GTCAGATGAG	ATTCTCCTTG	CCAATCGTAG	7200
TCAAGCTAAG	GTAGATGCTT	TCATTGCAGA	CTTTGGTGGT	CAGGCTTCCA	GCAATGAAGA	7260
AATGTTTGCA	GAAGCAGATG	TGATTTTTCT	AGGAGTTAAG	CCTGCTCAGT	TTTCTGAACT	7320
GCTTTCTCAA	TACCAGACCA	TCCTTGAAAA	AAGAGAAAGT	CTTCTTTTGA	TTTCGATGGC	7380
AGCTGGATTG	ACCTTAGAAA	AACTAGCAAG	TCTTATCCCA	AGTCAACACC	GAATTATTCG	7440

278 TATGATGCCT AATACCCCTG CTTCTATCGG GCAAGGAGTG ATTAGTTATG CCTTGTCTCC 7500 TAATTGCAGG GCTGAGGACA GTGAGCTCTT TTATCAGCTT TTAGCCAAGG CTGGTCTCTT 7560 GGTTGAACTA GGAGAAAGTT TAATCGATGC AGCGACAGGT CTTGCAGGTT GTGGACCAGC 7.620 CTTTGTCTAT CTTTTTATCG AGGCCTTGGC AGATGCAGGT GTTCAGACAG GATTACCACG 7680 AGAAATAGCA TTGAAAATGG CAGCACAAAC TGTGGTAGGA GCTGGGCAAT TGGTCCTTGA 7740 AAGTCAGCAA CATCCTGGAG TATTGAAAGA CCAAGTCTGT AGCCCAGGCG GTTCGACTAT 7,800 CGCTGGTGTA GCAAGCCTAG AAGCGCATGC TTTCCGAGGA ACAGTCATGG ATGCAGTTCA 7860 TCAAGCCTAC AAACGAACAC AAGAACTAGG TAAATAAGAG GTAGTTTTGA CTGCCTCTTT 7920 TATGGTGGCT GAAATGAGAA GACACAAAAA GATTGTCACA AACCCCTATT TTTTTGATAG 7980 AATAGAAGTA GTAAAAAAGA AATGAGTTAG ACATGTCAAA AGGATTTTTA GTCTCTCTG 8040 AGGGACCAGA GGGAGCAGGC AAGACCAGTG TTTTAGAGGC TCTGCTACCA ATTTTAGAGG 8100 AAAAAGGAGT AGAGGTGTTG ACGACCCGTG AACCTGGCGG AGTCTTGATT GGGGAGAAGA 8160 TTCGGGAAGT GATTTTGGAT CCAAGTCATA CTCAGATGGA TGCTAAAACA GAGCTACTTC 8220 TCTATATTGC CAGTCGCAGA CAGCATTTGG TGGAAAAAGT TCTTCCAGCC CTTGAAGCTG 8280 GCAAGTTGGT CATCATGGAT CGTTTTATCG ATAGTTCTGT TGCCTATCAG GGATTTGGTC. 8340 GTGGCTTAGA TATTGAAGCC ATTGACTGGC TCAATCAGTT TGCGACAGAT GGCCTCAAAC 8400 CCGATTTGAC ACTCTATTTT GACATCGAGG TGGAAGAAGG GCTGGCTCGT ATTGCTGCTA 8460 ATAGTGACCG CGAGGTTAAT CGTTTGGATT TGGAAGGGTT GGACTTGCAT AAAAAAGTTC 8520 GTCAAGGCTA CCTTTCTCTT CTGGATAAAG AGGGAAATCG CATTGTCAAG ATTGATGCTA 8580 GTCTCCCTTT GGAGCAAGTT GTGGAAACTA CCAAGGCTGT CTTGTTTGAC GGAATGGGCT 8640 TGGCCAAATG AAACAAGATC AACTAAAGGC TTGGCAACCA GCTCAGTTTG ACCGTTTTGT 8700 CCGTATCTTA GAACAAGACC AGCTCAATCA CGCCTATCTC TTTTCAGGTT TCTTTGAAAG 8760 CTTGGAAATG GCGCAATTTT TAGCTAAGAG CCTCTTTTGT ACGGATAAAG TTGGCGTCTT 8820 ACCATGTGAG AAATGCCGAA GTTGCAAGCT GATTGAACAG GGAGAATTTC CCGATGTCAC 8880 CTTGATTAAA CCAGTTAATC AGGTCATTAA GACGGAACGC ATTCGAGAAT TGGTGGGTCA 8940 GTTTTCTCAA GCAGGGATTG AAAGCCAGCA ACAGGTCTTT ATCATCGAGC AAGCGGATAA 9000 AATGCATCCC AACGCAGCCA ATTCTCTGCT CAAGGTCATC GAAGAACCCC AGAGTGAAGT 9060 TTATATTTTC TTCTTGACTA GCGATGAGGA AAAGATGTTA CCGACAATCC GAAGTCGGAC 9120 TCAGATCTTC CACTTTAAAA AGCAAGAAGA AAAACTTATC TTACTCTTAG AACAAATGGG 9180 ACTTGTTAAG AAAAAAGCGA CTCTTTTAGC TAAGTTTAGT CAATCGCGAG CTGAAGCAGA 9240

AAAGTTGGCT	AATCAGGCAA	GTTTTTGGAC	CTTGGTCGAT	GAAAGTGAAC	GCCTGCTGAC	9300
TTGGTTAGTA	GCTAAGAAAA	AAGAAAGTTA	TCTACAGGTT	GCCAAATTAG	CCAACTTGGC	9360
AGATGATAAG	GAAAAACAGG	ATCAGGTTTT	ACGGATTCTT	GAAGTTCTCT	GTGGGCAGGA	9420
CCTCTTGCAG	GTAAGAGTAA	GAGTGATTCT	ACAAGATTTA	CTAGAAGCTA	GAAAAATGTG	9480
GCAAGCTAAT	GTCAGCTTTC	AAAATGCCAT	GGAATATCTG	GTCTTGAAAG	AAATATAAAC	9540
TCAAAAATGA	ATGATAAAGA	AAGGAAAGGG	CTGTTTTATG	GACAAAAAAG	AATTATTTGA	9600
CGCGCTGGAT	GATTTTTCCC	AACAATTATT	GGTAACCTTA	GCCGATGTGG	AAGCCATCAA	9660
GAAAAATCTC	AAGAGCCTGG	TAGAGGAAAA	TACAGCTCTT	CGCTTGGAAA	ATAGTAAGTT	9720
GCGAGAACGC	TTGGGTGAGG	TGGAAGCAGA	TGCTCCTGTC	AAGGCCAAGC	ATGTTCGTGA	9780
AAGTGTCCGT	CGCATTTACC	GTGATGGATT	TCACGTATGT	AATGATTTTT	ATGGACAACG	9840
TCGAGAGCAG	GACGAGGAAT	GTATGTTTTG	TGACGAGTTG	CTATACAGGG	AGTAGGCATG	9900
CAGATTCAAA	AAAGTTTTAA	GGGGCAGTCT	CCCTATGGCA	AGCTGTATCT	AGTGGCAACG	9960
CCGATTGGCA	ATCTAGATGA	TATGACTTTT	CGTGCTATCC	AGACCTTGAA	AGAAGTGGAC	10020
TGGATTGCTG	CTGAGGATAC	GCGCAATACA	GGGCTTTTGC	TCAAGCATTT	TGACATTTCC	10080
ACCAAGCAGA	TCAGTTTTCA	TGAGCACAAT	GCCAAGGAAA	AAATTCCTGA	TTTGATTGGT	10140
TTCTTGAAAG	CAGGGCAAAG	TATTGCTCAG	GTCTCTGATG	CCGGTTTGCC	TAGCATTTCA	10200
GACCCTGGTC	ATGATTTAGT	TAAGGCAGCT	ATTGAGGAAG	AAATTGCAGT	TGTGACAGTT	10260
CCAGGTGCCT	CTGCAGGAAT	TTCTGCCTTG	ATTGCCAGTG	GTTTAGCGCC	ACAGCCACAT	10320
ATCTTTTACG	GTTTTTTACC	GAGAAAATCA	GGTCAGCAGA	AGCAATTTTT	TGGCTTGAAA	10380
AAAGATTATC	CTGAAACACA	GATTTTTTAT	GAATCACCTC	ATCGTGTAGC	AGACACGTTG	10440
GAAAATATGT	TAGAAGTCTA	CGGTGACCGC	TCCGTTGTCT	TGGTCAGGGA	ATTGACCAAA	10500
ATCTATGAAG	AATACCAACG	AGGTACTATC	TCTGAGTTAT	TAGAAAGCAT	TGCTGAAACG	10560
CCACTCAAGG	GCGAATGTCT	TCTCATTGTT	GAGGGTGCCA	GTCAGGGTGT	GGAGGAAAAG	10620
GACGAGGAAG	ACTTGTTCGT	AGAAATTCAA	ACCCGCATCC	AGCAAGGTGT	GAAGAAAAAC	10680
CAAGCTATCA	AGGAAGTCGC	TAAGATTTAC	CAGTGGAATA	AAAGTCAGCT	CTACGCTGCC	10740
TACCACGACT	GGGAAGAAA	ACAATAAAGG	GAGACAGGAT	GTAATAATTC	TGTCTGTTTC	10800
TGTTTAACTT	<b>AATTAGT</b> ĠAT	GATAATATAA	AGATGTATCA	CTTGGTATAG	AAGCTTTGGT	10860
ATTAAGTTTT	TTATTAAGCC	CATACGGAAT	ACCGATGGTT	GGAGCAGCAG	TTATAGCGTT	10920
CTTAGAAGGT	ATAAATAGAA	AAATAAGGTC	ATTTTAAATC	AAAGGATTGA	TAAATCAGAA	10980

280 AGAAGGTGAT TTTTTGCGAA CATACGAAAA TAAAGAAGAA CTAAAAGCTG AGATAGAGAA 11040 AACATTTGAG AAATATATTT TAGAATTTGA TAATATTCCA GAAAATTTAA AAGATAAGAG 11100 AGCTGATGAA GTTGACAGAA CTCCAGCAGA AAACCTTGCT TATCAGGTTG GTTGGACCAA 11160 CTTGGTTCTT AAATGGGAAG AAGATGAAAG AAAGGGGGCTT CAAGTAAAAA CACCATCGGA 11220 TAAATTTAAA TGGAATCAAC TTGGTGAATT ATATCAGTGG TTCACAGATA CCTACGCTCA 11280 TTTATCTCTG CAAGAGTTGA AAGCAAAATT AAATGAAAAT ATTAATTCTA TCTCTGCAAT 11340 GATTGATTCG TTGAGTGAGG AAGAATTATT TGAACCGCAT ATGAGAAAGT GGGCTGATGA 11400 AGCGACTAAA ACAGCGACTT GGGAAGTGTA TAAGTTTATT CATGTAAATA CGGTTGCACC 11460 TTTTGGAACT TTCAGAACTA AAATCAGAAA ATGGAAGAAG ATAGTATTAT AAATTATATT 11520 TTTAACTTTA AAAAATTTCA TAAAAATGGT TACCAAAGGC GATAGAAGAA AAACTATCGT 11580 CTTTTCTTT GCAAATTTTT AAGAAGGGAG GTGATCTTGC ATGGACTTTG AATATTTTTA 11640 TAACAGAGAA GCGGAAAGAT TTAACTTCTT AAAAGTACCG GAGATATTAG TTGATAGAGA 11700 AGAATTTCGG GGCTTATCAG CAGAAGCAAT TATCCTTTAT TCCATACTTC TTAAACAGAC 11760 AGGAATGTCA TTTAAGAATA ACTGGATAGA CAAGGAAGGC AGAGTATTTA TCTATTTTAC 11820 TGTCGAAGAA ATTATGAAAA GAAGAAATAT CTCAAAGCCA ACTGCCATAA AAACATTAGA 11880 TGAGCTTGAT GTAAAAAAGG AATAGGACTG ATCGAAAGAG TAAGGCTTGG ACTTGGTAAG 11940 CCGAACATCA TTTATGTTAA AGACTTTATG AGTATATTTC AGGTAAAAGA AAATGACTTA 12000 CAGAAGTCAA AAAACTTAAC TTCAGAAGTA AAAGATTTTA ACCTCAGAAG TAAAGAAAAT 12060 GAACTTCAAG AGGTTAAGAA CCTTGACTCT AACTATATAG AGAATAATAA GAGTAAGTAT 12120 AGTAAGAGA AATATAGTTT TGGTGAAAAC GGACTTGGAA CATTTCAAAA TGTGTTTTTA 12180 GCTGCTGAAG ATATATCGGA TTTACAAATC ATAATGAACT CACAGCTTGA GAATTACATT 12240 AGACTTCCTG CAAAACTAGA ATCCTAGTTC ATGATTGATA ATGCCAGCAA TCAAATTCAT 12300 TCGTAATCCG AAGCGTTTAC GATGATTTCG ATAGATTGTT GAAAACATTT TAAACGTTTT 12360 TACTTTGGCA AAGATGTTCT CAATCTTGCT TCTCTCCTTG GATAGCGCAT GGTTACAGGC 12420 TTTATCTTCA GCTGTTAGCG GCTTGAGTTT GCTGGATTTA CGTGGAGTTT GTACTTGAGG 12480 ATATATCTTC ATGAGCCCTT GATAACCACT GTCAGACAAG ATTTTACCAG CTTGTCCGAT 12540 ATTTCTGCGA CTCATTTTGA ACAACTTCAT ATCACGACAA TAGTTCACAG CGATATCCAA 12600 AGAAACAATT CTCCCTTGAC TTGTGACAAT CGCTTGAGCC TTCATAGCGT GAAATTTCTT 12660 TTTACCAGAA TGATTCGCTA ATTCTTTTT TAGGGCGATT GATTTTACT TCCGTCGCAT 12720 CAATCATTAC CGTGTCCTCA GAACTGAGAG GAGTTCTTGA AATCGTAACA CCACTTTGAA 12780

	CAAGAGTTAC	TTCAACCCAT	TGGCTCCGAC	GGATTAAGTT	GCTTTCGTGA	АТАССААААТ	12840
	CAGCCGCAAT	TTGTTCATAA	GTTCGATATT	CTCGCACATA	TTGAAGAGTG	GCCATAAGAA	12900
	GGTCTTCTAG	GCTTAATTTA	GGTTTTCGTC	CACCTTTTGC	GTGTTTAAGT	TGATAAGCTG	12960
	TTTTTAATAC	AGCTAATATC	TCTTCAAAAG	TCGTGCGCTG	AACACCAACA	AGACGCTTAA	13020
	ATCGTGCATC	AGTTAGTTGT	TTACTTGCTT	CATCATTCAT	AGAACTACTA	TACCATATTT	13080
	TGTTTCGCAG	GAAGTCTATT	GGAAAGTAAG	AAATATTGAA	GCTGAGGCTA	TTAGAAGAAA	13140
	TTGTGAGCGT	GGTGCTATTT	TTTCAGGTAA	AATAAAATAT	CACGAAGATT	CACAGTTTAA	13200
	AGGAGATCAC	TATGTTGAAT	GTTATGCTGT	TTTAGATAAT	ACGGTTATAG	CAAGAGATAG	13260
	AATAACAGTC	CCTATCGATC	CGTTATGTGG	AAAAGATTTT	ATAGAGTAGC	ATATAATTGA	13320
	TTCTTAACTG	GAATACTCAC	TATCTCTTTA	CATCAAGAAA	ATGACTAAAC	AGGGAAGTTT	13380
,	GCCTTCTTCC	CTTTTTTTGT	TATACTAGTA	GAAGAAAAA	TTAGAAAGAT	TTGTGGGTGT	13440
,	CAAACAGCCC	AGTGGGGTGT	TTTAATATGG	ACTTAGGTCC	CACCCAAAGA	GGTATTAGTG	13500
	FCGTGTCTCA	ATCTTATATC	AATGTTATCG	GTGCTGGTTT	GGCAGGTTCT	GAAGCAGCTT	13560
,	ACCAAATCGC	AGAGCGTGGT	ATTCCAGTTA	AACTATATGA	AATGCGTGGT	GTCAAGTCTA	13620
1	CACCCCAGCA	TAAAACAGAC	AATTTTGCTG	AGTTGGTTTG	TTCCAATTCT	TTGCGTGGGG	13680
,	ATGCTTTGAC	AAATGCAGTT	GGTCTTCTCA	AGGAAGAAAT	GCGTCGCTTG	GGTTCTGTTA	13740
,	CTTGGAATC	TGCTGAGGCT	ACACGTGTTC	CTGCAGGTGG	TGCCCTTGCA	GTGGACCGTG	13800
i	ATGGTTTCTC	TCAAATGGTG	ACCGAAAAAG	TTGCCAACCA	CCCCTTGATT	GAAGTGGTTC	13860
(	GTGATGAAAT	TACAGAATTG	CCGACAGATG	TTATTACGGT	TATCGCTACT	GGTCCTTTGA	13920
(	CAAGTGATGC	CTTGGCTGAA	AAGATTCATG	CTCTTAATGA	CGGTGCTGGT	TTTTATTTCT	13980
ž	ACGATGCGGC	AGCGCCTATT	ATCGATGTCA	ACACTATCGA	TATGAGCAAG	GTCTACCTCA	14040
i	AATCACGTTA	TGATAAGGGA	GAAGCGGCCT	ACCTCAATGC	CCCTATGACC	AAGCAAGAAT	14100
•	TTATGGATTT	CCATGAAGCT	TTGGTCAATG	CAGAAGAAGC	ACCGCTTAGT	TCTTTTGAAA	14160
i	AAGAAAAGTA	CTTTGAAGGA	TGTATGCCTA	TCGAAGTCAT	GGCCAAACGT	GGCATTAAAA	14220
(	CTATGCTTTA	TGGCCCTATG	AAGCCAGTCG	GTCTTGAGTA	CCCAGACGAC	TATACAGGAC	14280
(	CTCGTGATGG	agaatttaaa	ACACCTTATG	CGGTTGTGCA	ACTTCGTCAG	GATAATGCAG	14340
•	CTGGTAGCCT	CTACAATATT	GTTGGTTTCC	AGACCCACCT	CAAATGGGGA	GAACAAAAGC	14400
(	STGTCTTCCA	AATGATTCCG	GGTCTTGAAA	ATGCGGAGTT	TGTCCGTTAT	GGTGTGATGC	14460
ž	ATCGCAATTC	TTACATGGAT	TCACCAAATC	TTCTTGAGCA	GACTTACCGT	TCTAAGAAAC	14520

282
AACCAAATCT CTTCTTGCT GGTCAAATGA CGGGTGTGGA AGGCTATGTT GAGTCGGCGG
CTTCAGGCTT AGTTGCGGGA ATTAACGCAG CTCGTCTCTT CAAGGAAGAA AGCGAGGCTA
TTTTCCCCGA GACGACAGCG ATTGGAAGCT TAGCTCATTA CATTACCCAT GCCGACAGCA

14580

14640

14700

14760

14820

14880

14940

15000

15060

15120

15180

15240

AACATTTCCA ACCAATGAAT GTCAATTTTG GGATCATCAA GGAGTTGGAA GGCGAGCGTA
TCCGTGATAA GAAGGCTCGT TATGAAAAAA TTGCAGAGCG TGCCCTTGCC GACTTAGAGG

AATTTTTGAC TGTCTAATTT TTTTGAAAGA ATTGCTCATG ATACTATAAA AATCTTAGAA
ATTGTGATAA AATAGGTAGG ATGAAAGAAG GAGAGTGAAA ATGGCGAATC CCAAGTATAA

ACGTATTTTA ATCAAGTTAT CAGGTGAAGC CCTTGCCGGT GAACGTGGCG TAGGGATTGA

TATCCAAACA GTTCAAACAA TCGCAAAAGA GATTCAAGAA GTTCATAGCT TAGGTATCGA
AATTGCCCTT GTTATCGGTG GAGGAAATCT CTGGCGTGGA GAACCTGCAG CAGAAGCAGG

TATGGACCGT GTTCAGGCAG ATTACACAGG AATGCTTGGG ACTGTTATGA ATGCTCTTGT

GATGGCAGAT TCATTGCAAC AAGTTGGGGT TGATACGCGT GTACAAACAG CTATTGCCAT

GCAACAAGTG GCAGAGCCTT ATGTCCGTGG ACGTGCCCTT CGTCACCTTG AAAAAGGCCG 15300
TATCGTTATC TTTGGTGCTG GAATTGGTTC ACCTTACTTC TCGACAGATA CAACAGCGGC 15360

CCTTCGTGCA GCTGAAATCG AAGCAGATGC CATCCTCATG GCTAAAAATG GTGTCGATGG 15420

TGTTTACAAT GCCGATCCTA AGAAAGATAA GACAGCTGTT AAGTTTGAAG AATTGACCCA 15480

CCGTGACGTT ATCAATAAAG GTCTTCGTAT CATGGACTCA ACAGCTTCAA CCCTCTCAAT 15540
GGACAACGAC ATTGACTTGG TTGTATTCAA CATGAACCAA CCAGGCAACA TCAAACGTGT 15600

CGTATTTGGT GAAAATATCG GAACAACAGT TTCAAATAAT ATCGAAGAAA AGGAATAAGA 15660

AAGAATATGG CTAACGCAAT TATTGAAAAA GCTAAAGAGA GAATGACCCA GTCTCACCAA 15720

TCACTTGCTC GTGAATTTGG TGGTATCCGT GCTGGTCGTG CCAATGCAAG CTTGCTTGAC 15780

CGTGTACATG TAGAATACTA TGGAGTCGAA ACTCCTCTTA ACCAAATCGC TTCAATTACG 15840

ATTCCAGAAG CGCGTGTTTT GTTGGTAACA CCATTTGACA AGTCTTCATT GAAAGACATC 15900
GAACGTGCCT TGAACGCTTC TGATATTGGT ATCACACCGG CTAATGACGG TTCTGTGATT 15960

CGCTTGGTTA TCCCAGCTCT TACAGAAGAA ACTCGTCGTG ACCTTGCTAA AGAAGTGAAG 16020
AAGGTCGGCG AAAATGCTAA AGTGGCTGTC CGCAATATCC GTCGCGATGC TATGGACGAA 16080

GCTAAGAAAC GAGAAAAAGC AAAAGAAATC ACTGAAGACG AATTGAAGAC TCTTGAAAAA 16140

GACATTCAAA AAGTAACAGA CGATGCTGTT AAACACATCG ACGACATGAC TGCTAACAAA 16200

GAGAAAGAAC TTTTGGAAGT CTAAAAATAA ACAGAAAAAC TCAGTTGGCA TTGCTGGCTG 16260
AGTTTTATTC GAAAGAAGGA AATATGAATA CAAATCTTGC AAGTTTTATC GTTGGACTGA 16320

T	CATCGATGA	AAACGACCGT	TTTTACTTTG	TGCAAAAGGA	TGGTCAAACC	TATGCTCTTG	16380
С	TAAGGAAGA	AGGCCAACAT	ACAGTAGGGG	ATACGGTCAA	AGGTTTTGCA	TACACGGATA	16440
Т	GAAGCAAAA	ACTCCGCCTG	ACAACCTTAG	AAGTGACTGC	CACTCAGGAC	CAATTTGGTT	16500
G	GGGACGTGT	CACAGAGGTT	CGTAAGGACT	TGGGTGTCTT	TGTGGATACA	GGCCTTCCTG	16560
A	CAAGGAAAT	CGTTGTGTCA	CTCGATATTC	TCCCTGAGCT	CAAGGAACTC	TGGCCTAAGA	16620
A	GGGCGACCA	ACTCTACATC	CGTCTTGAAG	TGGATAAGAA	AGACCGTATC	TGGGGCCTCT	16680
T	GGCTTATCA	AGAAGACTTC	CAACGTCTTG	CTCGTCCTGC	CTACAACAAC	ATGCAGAACC	16740
A	AAACTGGCC	AGCCATTGTT	TACCGTCTCA	AGCTGTCAGG	AACTTTTGTT	TACCTACCAG	16800
A	АААТААТА	GCTTGGTTTT	ATTCATCCTA	GCGAGCGTTA	CGCAGAGCCA	CGTTTGGGGC	16860
A.	AGTATTAGA	TGCGCGCGTT	ATTGGTTTCC	GTGAAGTGGA	CCGCACTCTG	AACCTCTCCC	16920
T	CAAACCACG	CTCCTTTGAA	ATGTTGGAAA	ACGATGCTCA	GATGATTTTG	ACTTATTTGG	16980
A	AAGCAATGG	CGGTTTCATG	ACCTTAAATG	ACAAGTCATC	TCCAGACGAC	ATCAAGGCAA	17040
C	CTTTGGCAT	TTCTAAAGGT	CAGTTCAAGA	AAGCTTTAGG	TGGTCTTATG	AAGGCTGGTA	17100
A	AATCAAGCA	GGACCAGTTT	GGGACAGAGT	TGATTTAGGG	AGGCTTATGA	GAAAATCATT	17160
T	TACACTTGG	CTCATGACCG	AGCGCAATCC	TAAAAGTAAC	AGTCCCAAAG	CAATTTTGGC	17220
A	GACCTCGCT	TTTGAAGAGT	CAGCCTTTCC	AAAACACACA	GATGATTTTG	ATGAGGTCAG	17280
T	CGCTTTTTG	GAGGAGCATG	CCAGTTTCTC	TTTTAACCTA	GGAGATTTTG	ACAGCATTTG	17340
G	CAGGAATAT	CTAGAACACT	AGCATTTATT	CATTGGGTTT	GGGCTAGTAA	TTTCTCCATC	17400
C	CTCTGCTAT	AATAAAAAGA	AATAAAAGGA	TTAGAGAGGT	TCTTTATTTG	AAGGAACATT	17460
CZ	AATAGACAT	TCAACTGAGT	CATCCAGATG	ACCTGTTTCA	TCTTTTTGGT	TCCAATGAAC	17520
G	CCATCTTCG	TTTGATGGAA	GAAGAGCTTG	ATGTTGTGAT	TCATGCTCGT	ACGGAGATTG	17580
T	CCAGGTTTT	GGGAGAAGAG	TCTGCCTGTG	AGGAAGCCCG	TCAAGTTATT	CAGGCTTTGA	17640
TC	GTCTTGGT	AAATCGTGGG	ATGACCGTTG	GTACGCCAGA	TGTAGTCACT	GCGATTAGCA	17700
TC	GTCAAAAA	TGATGAAATT	GACAAGTTTG	TCGCCCTTTA	CGAAGAAGAA	ATTATCAAGG	17760
ΑΊ	PAATACTGG	GAAACCTATC	CGTGTCAAAA	CCCTAGGGCA	AAAGCTTTAT	GTGGACAGTG	17820
TC	CAAACAGCA	TGATGTGACC	TTTGGAATTG	GGCCAGCAGG	TACAGGGAAG	ACCTTCCTTG	17880
CZ	AGTGACCTT	GGCAGTGACT	GCCCTTAAAC	GTGGGCAAGT	CAAGCGAATT	ATCCTAACTC	17940
GI	CCAGCGGT	GGAAGCGGGA	GAGAGTCTTG	GATTTCTTCC	GGGTGATCTT	AAGGAGAAGG	18000
TO	GATCCTTA	CCTTCGTCCT	GTTTACGATG	CCTTGTATCA	AATTCTTGGG	AAAGACCAAA	18060

c	GACTCGTCT	CATGGAGCGT	GAAATTATCG	284 AAATTGCGCC	CCTTGCCTAT	ATGCGTGGCC	1812
c	GACCTTGGA	TGATGCCTTT	GTCATTCTCG	ATGAGGCGCA	AAACACGACC	ATCATGCAGA	18186
7	GAAGATGTT	CTTGACGCGT	TTAGGTTTTC	ATTCTAAGAT	GATTGTCAAT	GGAGATATTA	18240
c	STCAGATTGA	CCTGCCACGT	AATGTCAAGT	CCGGTTTGAT	TGATGCTCAA	GAGAAACTCA	18300
P	GAACATCCA	TCAGATTGAC	TTTGTTCATT	TTTCAGCCAA	GGATGTGGTT	CGCCATCCTG	18360
1	TGTCGCTCA	GATTATCCGA	GCCTATGAAT	ATTCTACTGA	AGTTGCACAC	GACTGATTTT	18420
c	SAGGAAGTTC	GCCTGCAAAA	GAATAGACTT	GTTCGGTAAC	TGTAAAAAGT	GTTATACTAT	18480
1	TTTATGGAA	ACAGTATACG	ACAAAGCACA	AAAACTTAAC	тсааааааст	ТСАААСТАТТ	18540
G	ATTGGTGTC	AAAAAGGAAA	CCTTTCAACT	CATGCTAGAA	CACCTGAATT	CAGCCTATCA	18600
G	ATTCAGCAC	CGAAAAGGTG	GACGTCCACG	TAGTCTGCCC	ATGGAAGACC	AGCTCATTAT	18660
G	ACCCTCCGT	TACTTGCGAT	ATTATCCCAC	TCAGCGTCTG	CTGGCCTTTG	ATTTTGGCGT	18720
c	GGTGTAGCT	ACGGTAAATG	CCATCATCAC	TTGGGTGGAG	GATACACTTC	GTGCGTCAGG	18780
τ	'AGCTTTGAT	TTGGACCATT	TAGAAGCCCC	GAGTGCTGCT	GTGGCTATTG	ACGTGACCGA	18840
A	AGTCCGATT	CAGCGTCCAA	ACAAAACCAA	AGCAAAAATT	ATTCTGGTAA	AAAGAAACGA	18900
C	ACACCTTAA	AAACTCAAAT	TATGCTGGAT	TTGACGACAC	ATAAAGTCTG	TCAAATGGCC	18960
T	TTTCTGACG	GACATACGCA	TGATTTTACT	CTCTTCAAAG	AAAGTATTGG	ACAAAGTTTG	19020
C	CTGAAACGA	CGCTTGCCTT	TGTTGACCTA	GGTTATTTAG	GCATCTTGAA	ATTTCATGAG	19080
A	ATACTTTCA	TTCCTGCTAA	AAATTCCAAA	AATCGCCGCC	TGAGTGAGGA	TGATAAGCAG	19140
Т	ТАААТАААС	AGATGTCAGC	GATACGAATT	GAAATTGAAC	ATTTTAACGC	TAAATTCAAG	19200
Α	CCTTCCAAA	TCATGTCAGT	CCCTTATCGT	AACCGCAGAA	AACGTTTCGA	GTTACGGGCG	19260
G	AATTAATTT	GTGCCATCAT	CAATTATGAA	GTGAACTAGA	TTCCGAACAA	GTCTAATATA	19320
С	TTTTGAGAG	AGGAAAATCC	AGTTGTATAG	GCTAAAGGTT	TTATCCAAAG	GTCTGAGACA	19380
A	CGATTAGGC	ACGATGGAAA	GAACTTTTAT	GTGGCTGATG	ACGATCAGTG	CATCTTCCTG	19440
Т	GTCATAATC	ACAGGGCACA	AGAAAGTAGG	AATTTGAAAA	GATGATTGAC	СААСТАТСТА	19500
A	GTATTACAG	TTGTAGGATA	CTAACTGAAA	AGGATATTCC	AAGTATTTTA	TCTTTATATG	19560
A	AAGTAATCC	TCTGTATTTT	CAGCATTGTC	CACCAGAGCC	AAATTTTGCA	actgtaaaag	19620
A	GGACATGCT	TTGTCTACCT	GAAGGTAAAG	CTAAGGCTGA	TAAGTTTTTT	GTTGGATTTT	19680
G	GAATGGATC	TGACCTTGTG	GCTGTTATGG	ATTTTGTCTA	TGCATATCCT	GATGAGGAGA	19740
C	TGTTTTTAT	TGGTTTGTTT	ATGGTTGATC	AAGCCTATCA	GAGAAAAGGG	ATTGGTAGTC	19800

ATATTGTGAC AGAAGCACTA GCTTATTTTG CTAAGAACTT TCGAAAGGCA CGTTTGGCTT

	ATGTTAAGGG	AAATCCGCAA	TCTCAGCATT	TTTGGGAAAA	GCAGGGCTTT	AAATCAATTG	19920
	GATGCGAGGT	TAAGCAAGAA	CTCTATACGG	TTGTTATCGC	TGAACAGAGC	CTAGAAGATT	19980
	AGAAATGGCA	TCAAGTAAGA	ACTATTTGGA	ATTTGTTTTG	GAACAATTAT	CAGGATTAGA	20040
	TGATGTGACT	TACCGTTCCA	TGATGGGGGA	GTATATTCTT	TACTTCCGCG	GCAAGATTAT	20100
	TGGCGGCATT	TATGACGATC	GCTTTTTAGT	TAAACCCGTG	CAAGCAGTCT	TAGATAAGAT	20160
	TGACCAATCT	TCTTTTGAGT	TTCCATACAA	AGGTGCCAAA	GAAATGATTT	GAGTGGAAGA	20220
	ACTTGATAAT	AAGATGTTTC	TATAAGACCT	AATTTTAGCT	ATGTATAACC	AACTGCCAAC	20280
	GCCCAAACCT	AAAAAGAAAA	AGCAAGGGTG	AACGAAGTAA	AAAAGAAGTC	TGCTAAGGCC	20340
	CTGTCTTTGC	ACGGGTAAAA	TTTTATATAT	AAAAAGAAGC	TGGGACTAAA	GAGCTCAGCT	20400
	TCCTTTGGTT	TATATAATTG	TCATTACAAG	ACGAAGTGGT	TGGGCGAAAC	TCTGTTGACT	20460
	ТТАТТСААТТ	TAGAGTTTCT	TATGCACAAT	TGAGTCTGGA	ACGAAAGTCT	CCAGTTGCAA	20520
	AGTATACAGT	ACAATAAACC	AACGATGTAA	TAGCTGATGA	CACAAAGCAC	AGTGGGTAGG	20580
	ACTTGCGAAG	TCACCCTTTT	CTTTTCAAAA	TTTATACTAA	ATCATTGATA	TCAGTGTAGT	20640
	CACGATTAAG	TCCTTGAGCA	ACTGGTAGGT	TAGTCAAGTA	ACCTTGATAA	GTAGTCACAC	20700
	CTTGACGCAA	GCCTTCATCT	TCAGAGATTG	CTTGTGCGAA	TCCTTTGCCA	GCCAAAGCTT	20760
	CGATATAAGG	AAGAGTGACA	TTGGTTAGGG	CGATGGTTGA	AGTGCGAGCA	ACCGCACCAG	20820
	GGATATTGGC	AACGGCATAG	TGGAGAACAC	CGTGTTTTTC	ATAGACGGGT	TCATCGTGCG	20880
	TTGTCACACG	GTCAGCTGTT	TCGATAACGC	CACCTTGGTC	AACAGCAACG	TCAACGATAC	20940
	AGAGCCTGGA	CGCATTTGTT	TGACCATCTC	ATCTGTCACC	AATTCCGGTG	CTTTTGCACC	21000
	AGGGATGAGA	ATGGCTCCAA	TCACCACATC	AGCATCTCTC	ACACTTGCTT	CAATGTTGAA	21060
	TGAATTAGAC	ATAAGAGTTT	GAATTTGACT	TCCAAAGACT	TCTTCTAGAA	CTGAGAGACG	21120
	CTTGGAACTA	ATATCTAAAA	TAGTCACTTG	AGCACCAAGA	CCAAGGGCGA	TGCGGGCAGC	21180
	ATGTGTACCG	ACGACACCAC	CACCGATGAT	AGTTACTTTT	CCTTTTGGAA	CACCTGGTAC	21240
,	ACCACCAAGT	AGAACACCAG	AGCCACCAGC	TTGCTTAGTA	AGGAAGTGAG	CTCCGATTTG	21300
	AACAGCCATA	CGACCTGCAA	CCTCACTCAT	AGGAACGAGG	AGCGGTAGTT	GTCCTTGATT	21360
	GTCACGAACA	GTTTCAGTTG	TTTTTGCTGT	TAACATAGCA	TCTGCTAATT	CTGGAGCAGC	21420
	GGCCATGTGC	AAGTAGGTGA	AGAGAAGAAG	ATCGTCGCGC	AAGTAACCGT	ATTCAGAACT	21480
	TAAAGATTCT	TTTACTTTCA	CAACCAACTC	TGCTGCCCAA	GCTTCACCAG	CAGTAGCGAC	21540
	AATCTCAGCT	CCTTGCTTTT	GATAGTCAGC	ATCAGTAAAG	CCAGAACCGA	GACCAGCATT	21600

286 TGTTTCGATA AGGACACGAT GACCACGACT AACTAAGCTA TGAACACCTG CAGGTGTGAG 21660 GGCGACACGG TTTTCGTTAT TTTTAATTTC TTTTGGGATT CCGATTAACA TTGAGATAAC 21720 CTACCTTTCA ATTGACGGTC TTGTTTTGGT TGTCACATTC CAGTTCATAA ATCAAAAATG 21780 TGACGGTTTC ATTGTATATG AAACCGCTTC AAAAATCAAG AAAAACTTGT CATCCAAATT 21840 TTTTTATGCT AGACTAGTGA AAATCAAGCT CTAATGGAGG GAAAAGTATG GAATCAATAT 21900 TTGTGAAATT TGCCCAGTAT CCGTCTATAG AAACGGAGCG TTTATTGCTC AGACCTGTAA 21960 CTTTGGATGA TGCGGAACAA TGTTTGACTA TGCCTCGGAC AAGGGTAATA CACGTTACAC 22020 TTTTCCAACC AATCAAAGCT TGGAAGAAAC CAAGAATAAC ATTGCTCAGT TCTACTTGGC 22080 TAATCCCTTG GGACGTTGGG GAATAGAACT AAAAAGCAAT GGTCAGTTTA TTGGAACCAT 22140 TGACTTGCAC AAGATTGATT CTGTTCTTAA GAAGGCAGCT ATTGGCTACA TTATCAATAA 22200 ANAGTATTGG ANTCAAGGAT TAACGACAGA AGCCAATCGT GCTGTGATTG AGCTAGCTTT 22260 TGAGAAGATA GGGATGAATA AGTTGACTGC CCTTCACGAT AAGGCTAATC CCGCGTCAGG 22320 AAAGGTCATG GAGAAATCAG GCATGCGTTT TTCCCATGCA GAACCATATG CTTGTATGGA 22380 CCAGCATGAA AAAGGCCGAA TCGTGACAAG AGTTCATTAT GTCTTGACCA AGGAAGACTA 22440 TTTTGCAAAT AAATAAGCAG TTGAAAAGAA ATTTTTCGAC TGTTTTTCT TCCTCTTACG 22500 AATAATCTAA GAGAGGAGAA AATATGGAAG CAATTATCGA GAAAATCAAA GAGTATAAAA 22560 TCATCGTCAT CTGTACTGGT CTGGGCTTGC TTGTAGGAGG ATTTTTCCTG CTAAAACCAG 22620 CTCCACAAAC ACCTGTCAAA GAGACGAATT TGCAGGCTGA AGTTGCAGCT GTTTCCAAGG 22680 ACTCATCGAC CGAAAAGGAA GTGAAGAAGG AAGAAAAGGA AGAACCCCTT GAACAAGATC 22740 TAATCACAGT AGATGTCAAA GGTGCTGTCA AATCGCCAGG GATTTATGAC TTGCCTGTAG 22800 GTAGTCGAGT CAATGATGCT GTTCAGAAGG CTGGTGGCTT GACAGAGCAA GCAGACAGCA 22860 AGTCGCTCAA TCTAGCTCAG AAAGTTAGTG ATGAGGCTCT GGTTTACGTT CCTACTAAGC 22920 GAGAAGAAGC AGTTAGTCAA CAGACTGGTT CGGGGACAGC TTCTTCAACA AGCAAGGAAA 22980 AGAAGGTCAA TCTCAACAAG GCCAGTCTGG AAGAACTCAA GCAGGTCAAG GGACTGGGAG 23040 GAAAACGAGC TCAGGACATT ATTGACCATC GTGAGGCAAA TGGCAAGTTC AAGTCAGTAG 23100 ACGAGCTCAA GAAGGTCTCT GGCATTGGTG GCAAAACAAT AGAAAAGCTT AAAGACTATG 23160 TTACAGTGGA TTAAGAATTT CTCTATTCCC CTAATTTACC TGAGTTTTCT ATTACTTTGG 23220 CTTTATTACG CTATTTTCTC AGCATCTTAT CTTGCTTTGT TGGGCTTTGT TTTTCTGCTA 23280 GTCTGTCTCT TTATCCAATT TCCGTGGAAA TCTGCTGGTA AAGTTCTAAT AATTTGCGGA 23340 ATCTTTGGAT TTTGGTTTGT TTTTCAAAAT TGGCAACAGA GTCAAGCGAG TCAAAATCTG 23400

GCGGATTCTG	TTGAAAGGGT	ACGGATTTTG	CCTGATACTA	TTAAGGTTAA	TGGTGATAGT	23460
CTATCCTTTC	GTGGCAAGTC	TAACGGTCGT	GCTTTCCAAG	TCTATTATAA	ACTCCAGTCC	23520
GAGGAGGAGA	AAGAAGCCTT	TCAAGCTTTA	ACTGACCTGC	ATGAGATAGG	ACTAGAAGGG	23580
AAGCTTTCGG	AGCCAGAAGG	GCAGAGAAAT	TTTGGTGGCT	TTAATTACCA	AGCCTATCTG	23640
AAGACTCAGG	GAATTTACCA	GACTCTCAAT	ATCAAAACAA	TCCAGTCACT	TCAAAAGATT	23700
GGCAGTTGGG	ATATAGGAGA	AAACTTGTCC	AGTTTACGTC	GAAAGGCTGT	GGTTTGGATT	23760
AAGACGCACT	TTCCAGACCC	TATGGGCAAT	TACATGACAG	GACTCTTGCT	GGGACATCTG	23820
GACACCGACT	TTGAGGAGAT	GAATGAGCTT	TATTCCAGTC	TAGGAATTAT	CCACCTCTTT	23880
GCCCTATCTG	GCATGCAGGT	AGGTTTTTTC	ATGAATGGAT	TTAAGAAACT	TCTCTTGCGA	23940
TTGGGCTTGA	CCCAAGAAAA	GTTGAAATGG	CTGACTTATC	CCTTTTCCCT	TATCTATGCG	24000
GGACTAACTG	GATTTTCAGC	ATCGGTTATT	CGCAGTCTCT	TGCAAAAGCT	ACTGGCTCAA	24060
CATGGGGTTA	AGGGCTTGGA	TAATTTTGCC	TTGACGGTGC	TTGTCCTCTT	TATTGTCATG	24120
CCAAACTTTT	TCTTGACAGC	AGGAGGAGTC	TTGTCCTGCG	CTTATGCTTT	TATCCTGACC	24180
ATGACCAGCA	AAGAAGGGGA	GGGGCTCAAG	GCTGTTACTA	GTGAAAGTCT	AGTCATCTCC	24240
TTGGGCATAT	TGCCCATTCT	ATCCTTCTAT	TTTGCGGAAT	TTCAACCTTG	GTCTATCCTT	24300
TTGACCTTTG	TCTTTTCCTT	TCTTTTTGAC	TTGGTCTTCT	TACCGCTCTT	GTCTATCTTA	24360
TTTGTCCTTT	CCTTTCTCTA	TCCAGTCATT	CAGCTGAACT	TTATCTTTGA	ATGGTTAGAG	24420
GGCATTATTC	GCTTGGTCTC	GCAGGTGGCA	AGGAGACCAC	TTGTCTTTGG	TCAACCCAAC	24480
GCATGGCTTT	TAATCTTATT	GTTAATTTCC	TTGGCTTTGG	TCTATGATTT	GAGGAAAAAC	24540
attaaaggat	TAACAGTATT	GAGTTTATTG	ATTACAGGTC	TCTTTTTCCT	TACCAAGTAT	24600
CCACTGGAAA	ATGAAATCAC	CATGCTGGAT	GTGGGGCAAG	GAGAAAGTAT	TTTCTACGGG	24660
ATGTAACTGG	GAAAACCATT	CTCATAGATG	TAGGTGGTAA	GGCAGAATCT	TATAAGAAAA	24720
TCAAAAAATG	GCAAGAAAAG	ATGACGACCA	GCAATGCCCA	GCGAACCTTG	ATTCCCTATC	24780
TCAAAAGTCG	AGGAGTAGCT	AAGATTGACC	AGCTAATTTT	GACTAACACG	GACAAGGAGC	24840
ATGTTGGAGA	TTTGTCAGAG	ATGACCAAGG	CTTTCCATGT	AGGGGAGATT	CTAGTATCAA	24900
AAGACAGTCT	GAAACAGAAG	GAATTTGTGG	CAGAACTACA	GGCGACTCAA	ACAAAGGTGC	24960
GTAGTATGAT	AGTAGGGGAG	AACTTGCCCA	TTTTTGGAAG	TCAGTTAGAA	GTTCTATCTC	25020
CAAGGAAAAT	GGGAGATGGA	GGACACGATG	ATACCCTAGT	TCTGTATGGG	AAATTCTTGG	25080
ATAAGCAATT	TCTCTTCACG	GGAAATTTGG	AGGAGAAAGG	AGAGAAGGAC	TTGCTGAAGC	25140

288 ACTATCCAGA CTTGAAAGTA AATGTTTTGA AAGCTAGCCA ACATGGCAAT AAAAAATCAT 25200 CAAGTCCAGC CTTTCTAGAA AAACTCAAAC CAGAGCTTAC TCTTATCTCA GTTGGAAAGA 25260 GCAATCGAAT GAAACTCCCC CATCAGGAAA CATTGACACG ACTGGAAGGT ATCAATAGCA 25320 AAGTTTATCG AACTGACCAG CAAGGAGCTA TACGTTTTAA GGGGTTGGAT AGTTGGAAAA 25380 TCGAAAGTGT TCGATAGGAA GGATAAATGT TGTAGATTAG TGAAATAAAC TAAAAATTTG 25440 TTGCATAATA ATGATAAAAA TGGTATAATG AAAACGTATT CAATATTGAG GATATAAAAT 25500 CATTAAAAAT CAGCAAAAGT TGTTTTATTA GTTAGTTTAT AATCTATTGG TCTTCTTCAG 25560 TCCAGTGTAT CTGCTGTGAC AGTCACTAAA AGTTACAAGT ATGATTGGAA TACGGTTTGG 25620 GAATATAGTA CCAACTATCA CGACCATCAG TATGCTTGGA TTCCGTCATG GTCTCGTTAT 25680 GACAGCTATT CTGAGTATAA AGTTGGCGGA GGCTGGAACT ACGCTCGTTA TGAGGTCATA 25740 AACTATTACA GCGGAGGCTA TTAATTCTTA AAGAGTGAGA AAAAGGAGGG CTAGATATGT 25800 TGCAGCTTAC TCATGTGACC TTAAAAACGC GACAAGTCAT CTTGCAAGAT GTGGATTTCA 25860 CCTTTAAAAA GGGTAGGGTT TATGGTCTTC TTGCTATCAA TGGCTCTGGA AAGACGACCC 25920 TGTTCCGTGC CATTAGCAAT TTAATTCCCA TAAGTAGTGG AAATATCGCA GCCCTCCTT 25980 CTTTATTTTA TTATGAGAGT ATTGAATGGC TGGATGGAAA CTTAAGTGGG ATGGACTACC 26040 TTCGTCTTAT CAAAAACATC TGGAAGTCAG GTCTGAACTT GAGGGATGAA ATCGCCTATT 26100 GGGAAATGTC TGACTATATC AGTCTTCCCA TTCGCAAGTA TTCCTTAGGC ATGAAGCAAC 26160 GCTTGGTGAT TGCCATGTAT TTCCTCAGTC AGGCCAAATG CTGGCTCATG GATGAGATTA 26220 CAAATGGCTT AGATGAGTAT TATCGACAGA AGTTTTTTGA TAGGCTAGCA CAAATCGATA 26280 GACAAGAACA GCTGGTTCTT TTAAGTTCCC ACTATAAGGA AGAGTTGGTT GATGTCTGCG 26340 ATAGAGTAGT AACCATTCAT CAGGGGCAGA TAGAAGAGGT TTAGTTTATG AAAGATGTTA 26400 GTCTATTTT ATTGAAAAA GTTTTCAAAA GCCGCTTAAA CTGGATTGTC TTAGCTTTAT 26460 TTGTATCTGT ACTCGGTGTT ACCTTTTATT TAAATAGTCA GACTGCAAAC TCACACAGCT 26520 TGGAGAGCAG GTTGGAAAGT CGCATTGCAG CCAACGAGAG GGCTATCAAT GAAAATGAAG 26580 AGAAACTCTC CCAAATGTCT GATACCAGCT CGGAGGAATA CCAGTTTGCT AAAAATAATT 26640 TAGACGTGCA AAAAAATCTT TTGACGCGAA AGACAGAAAT TCTGACTTTA TTAAAAGAAG 26700 GGCGCTGGAA AGAAGCCTAC TATTTGCAGT GGCAAGATGA AGAGAAGAAT TATGAATTTG 26760 TATCAAATGA CCCGACTGCT AGCCCTGGCT TAAAAATGGG GGTTGACCGC GAACGGAAGA 26820 TTTACCAAGC CCTGTATCCC TTGAACATAA AAGCACATAC TTTGGAGTTT CCGACCCACG 26880 GGATTGATCA GATTGTCTGG ATTTTAGAGG TTATCATCCC AAGTTTGTTT GTGGTTGCTA 26940

289

TTATTTTTAT	GCTAACACAA	CTATTTGCAG	AAAGATATCA	AAATCATCTG	GACACAGCTC	27000
ACTTATATCC	TGTTTCAAAA	GTGACATTTG	CAATATCCTC	TCTTGGAGTT	GGAGTGGGAT	27060
ATGTAACTGT	GCTGTTTATC	GGAATCTGTG	GCTTTTCTTT	TCTAGTGGGA	AGTCTGATAA	27120
GTGGTTTTGG	ACAGTTAGAT	TATCCCTACC	CAATTTATAG	CTTAGTGAAT	CAAGAAGTAA	27180
CTATTGGGAA	AATACAAGAT	GTATTATTTC	CTGGCTTGCT	CTTAGCTTTC	TTAGCCTTTA	27240
TCGTCATTGT	GGAAGTTGTG	TACTTGATTG	CTTACTTTTT	CAAGCAAAAA	ATGCCTGTCC	27300
TCTTTCTTTC	ACTCATTGGG	ATTGTTGGCT	TATTGTTTGG	TATCCAAACC	ATTCAGCCTC	27360
TTCAAAGGAT	TGCACATCTG	ATTCCCTTTA	CTTACTTGCG	TTCAGTGGAG	ATTTTATCTG	27420
GAAGATTACC	TAAGCAGATT	GATAATGTCG	ATCTAAATTG	GAGCATGGGA	ATGGTCTTAC	27480
TTCCTTGCCT	GATTATCTTT	TTGCTATTGG	GAATTCTATT	TATTGAAAGA	TGGGGAAGTT	27540
САСАБААААА	AGAATTTTTT	AATAGATTCT	AGCTTTCCTA	TAGGTAGGGA	AAATAAGTAA	27600
AAACTAACAT	AGAGAGGGAA	TCAACTTGAT	TCTCTCTTTT	TGATTCGAAA	ACCAAACCAA	27660
ААТАСАААСА	CAAACTTTTC	AAAAAATAAC	TTTTTATCTT	GACAAGAGCT	AGAAAACTTG	27720
GTATCATATA	aaagttgaga	AAAGCAGAAG	TGAGAGCTTC	TCGCCTTGTG	ACATTAAGTT	27780
GCCTGGCCCT	ACGGATGAAA	AGTTTCGAAG	AAACGCTATC	ATAACGTGCG	GGCTTGTATA	27840
TTTACAAGTC	CGCTATTGTT	TTTCTCTAAT	AAAACAAAAG	AGGTGAAAAC	CATAGCAAAG	27900
CAAGACTTAT	TCATCAATGA	TGAGATTCGT	GTACGTGAAG	TTCGCTTGAT	TGGTCTTGAA	27960
GGAGAACAGC	TAGGTATCAA	GCCACTCAGT	GAAGCGCAAG	CTTTGGCTGA	TAACGCTAAT	28020
GTTGACCTAG	TATTGATTCA	ACCCCAAGCC	AAACCGCCTG	TTGCAAAAAT	TATGGACTAC	28080
GGTAAGTTCA	AATTTGAGTA	CCAGAAGAAG	CAAAAAGAAC	AACGTAAAAA	ACAAAGCGTT	28140
GTTACTGTGA	AAGAAGTTCG	TCTAAGTCCG	G			28171

# (2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 7147 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT	TTTGCAATCA	AGGCTAAGTA	GACAGCAGCA	AATTTCATAT	TGTATAATTT	60
CTGACTCATA	CTTCTCTCTT	TCTATGTGTA	СТАСТАТААА	TAAGAAAAAG	AAGGCCGTCA	120

			290			
AGCCTTCTTT	TGATTTATTC	TTCTGCTTCA	TCTTCTGTAA	ATTGACTATT	GTACAAGTCA	18
GCGTAGAAGC	CACCTTGCGC	CATCAGTTCC	TCATAGTTGC	CTTGCTCGAT	GATATTTCCA	24
rctttcatga	CCAAGATCAA	GTCTGCATTT	CGGATGGTTG	ACAAGCGGTG	GGCAATGACA	30
AAGGATGTGC	GTCCTTCCAT	CAAACGGTCC	ATGGCTTTTT	GGATCAATTC	CTCTGTCCGT	36
FTGTCAACAG	AAGAAGTCGC	CTCATCCAAA	ATCAAAAGCG	GTGCATCCTT	AAGAAGGCCA	42
CGAGCAATAG	TCAATAGTTG	TTTTTGTCTT	ACAGACAAGG	TCACGGTGTC	ATCCAAGATG	48
STATCATAGC	CATCTGGCAA	GGTCATAATA	AAGTGGTGAA	TTCCCACAGC	CTTACTAGCT	54
CCATCATTC	GTTCATCACT	AATCCCTATT	TGATTATAGA	TGAGATTGTC	TCGAATAGTT	60
CTTCAAAGA	GCCAGGTATC	CTGCAAGACC	ATTGAAAAGG	CATCATGCAC	TTCTGAACGC	66
STCATAGCCT	TGGTATCCAC	ACCATCAATG	CGAATACTTC	CCTTATCAAT	CTCATAGAAT	72
<b>CAAAA</b>	GATTGACAAT	GGTTGTCTTA	CCAGCCCCAG	TCGGCCCAAC	AATGGCAACC	786
TTTGACCAG	CATGAGCTGT	CGCAGAGAAG	TCATAGTCTT	GAACATTGAC	ACCGTCCACC	840
AGAATTTCTC	CTGCTGACAC	GTCGTAGAAA	CGTGGAATCA	GATTGACCAG	AGTTGATTTA	900
CAGAACCTG	TTGACCCAAT	AAAGGCCACT	GTTTGACCAG	TTTCTGCTTT	AAAGCTAACA	960
rgttcaataa	CTGCCTCCGA	ATTTGCCGCA	TAGCGgAAGG	TCACATCCTT	AAACTCGACC	1020
GACCTTTGA	AGTTTTCATC	AGTCAGCTGC	ACTTGAACAG	GGTTTTGGAT	AGAAGAATGC	108
AAATCTAAAA	CTTGATTAAT	CCGCTTAGCA	GAGACCATAG	TTCGGGGAAG	AACGATGAAG	1140
AGTGCTCCCA	TGAGAAGGAA	GCCCATGACA	ACCTACATGG	CATAAGACAT	GAAAACAATC	1200
TGTCACTAA	AGAGAGGCAG	ACGCGCTATC	GGAGCAGCGT	CGTTAATCAC	ATAGGCCCCA	1260
ATCCAGTAAA	TCGCCACACT	CAAACCACTT	GAAATCCCCA	TCATGATAGG	АТТСААААТА	1320
CCATAAGAC	GGTTGACAAA	CAAATTCAAA	CGGGTCAATT	CATCATTTAC	TGCTGCAAAT	1380
TTTCATTT	GATAATCCTC	TGCATTGTAG	GCACGAACGA	CACGAATACC	TGTTAAACTC	1440
CACGAGTGA	TACTGTTCAG	TTTATCTGTC	AGCCCCTGAA	TCAAGGACTG	TTTTGGAAAG	1500
CTACCGTCA	TCAAAACGGT	CGTCATCAGG	ACGTTGATAA	TCACTGCCAC	AAGTACGGCC	1560
AGAGCCAGT	ATTCTGAATG	ACCTAAAATC	TTCCCAATAG	CCCAGATAGC	CATAATTGAA	1620
CACGCGTTA	CCACTTGCAA	GCCCATAGTA	ATCAACATTT	GAACTTGAGT	AATGTCATTG	1680
STAGTACGCG	TCAAGAGGCT	aggaattgaa	AATTTCTTAA	TCTCTGTCTG	CGAGTAATCC	1740
AAACTCGGT	TAAAAATATC	ACTTCTCAGC	CTACTAGTAT	AAGAAGCCGC	CACTCGGGAT	1800
CAAAAAATC	CAACTGCAAC	TACGGACAAG	AAGGCAAGAA	AGGACATTCC	CATCATCATG	1860
TOTAL CONTRACTOR CONTR	CCCACAACTIC	3/II//II/3 3 3/II//3	COORDON	maccmacca a	AMCCCOM A NOW	1000

TTCGAGATAT AGGTCGGCAC TTCCAACTCT AGATAGACCG AAAAGCAAGT AAAGAGAATG	1980
GCTAGTAAAA TCATCCCCCA TTCTTTTCTA CTAATTCTTT TGGCTAATTT CTTTATTCTC	2040
TCCTCCTATT CCCTTGATAT TTTGCCTGTA GTTGACCGAG AACCTTCTCA AAAATCAGTA	2100
ATTCATCTTC ATCAATGTCT TCCATCAACT GCTTGTCTAT GCGTTCAAAA AAAGCCTTAA	2160
CCTGTTGCAT CTGAGAACGT GCTTTGTCCG TCAGACGAAC AAACTTAGCC CGCTTATCAA	2220
CAGGACTCGC CTCCAATTCC ACCAAACCAT TTTGCACTAT ACGCTTAACC AGATTACTAG	2280
CAACAGGCTT GGTAATATTG AGTTCCTGCT CGATATCTTT AATCAAGACC AAGTCTTGGT	2340
TTTTCTCGCG ATTATCCAAA AAACGCACAA CCTGACCTTG CGGCCCACCC ATAAATTCAA	2400
TGCCGCAACG TTTGGCTTCC TTTTGCACCA TCAGGTGAAT TTGATGACCA AAACGCTTAA	2460
AGACTAACAT CGGTTTATCC ATAATCTCCC CCTTCTAAAT AAAAATAGTT CTCTGGAGAA	2520
TAATTAAATT TCTATGAGAA CTATTTCTT GATTAAAAAA ATCCCAAGTG ATTTTCTCAC	2580
TTAGGATCAT GTTCTATAGG TTAAATTAAA ACCCATCTAC GTTCGTATAA ATCTTTTGGA	2640
CGTCTTCGTC GTCTTCAAGA ACGCTGTAAA GTTTTTCAAA GGTTTCAAGG TCTTCGCCTG	2700
ACAATTCCAC TTCTGACTGA GGAATCATTT CCAATTCAGT CACTTGGAAT TCTTCAATAC	2760
CAGACTCACG GAGGGCAACG ATAGCCTTGT GAAGGTCAGT TGGCGCTGTG TAAACTGTGA	2820
TTGTACCTTC TTGTGCTTCT ACGTCATCCA CATCCACATC CGCTTCGAGC AATTGCTCAA	2880
AGACTGCGTC CGCATCTTCA CCTCCAAATA CAATAACACC TTTGTTGTCA AAGAGGTAAG	2940
AAACAGAACC TGAAGCGCCC ATGTTTCCGC CGTTTTTACC AAAGGCTGCA CGGACATTGG	3000
CTGCTGTACG GTTGACGTTA GAAGTCAAAG TATCCACAAT TAGCATAGAG CCATTTGGCC	3060
CAAAACCTTC GTAACGTCCT TCTGTAAAGG TTTCGTCTGT GTTTCCTTTG GCTTTATCAA	3120
TCGCTTTATC GATAATGTGT TTTGGCACTT GGGCTTGTTT AGCACGGTCG ATAACGAATT	3180
TCAAAGCTGA GTTTGATTCT GGATCTGGAT CACCTTTTTT AGCTGCTACA TAGATTTCTA	3240
CACCAAATTT TGCATATACT TTAGAGTTAG CTCCATCTTT AGCCGTTTTC TTGGCTACGA	3300
TATTGGCCCA TTTACGTCCC ATTAGGAATC TCCTTTTTTC ACATTTTAAT CTTTCTTATT	3360
ATAACACAAG TTTTTTTGAT TTTCACTAGA GGAAATGGAT TTTATTAGCA AATCAAGCTA	3420
GGATAGCACT TTACCTGCTA AGATGGTCTT GCCTTTCTAT CTTTATCAAC AGGCACTCAT	3480
CCACATTCAA AAAACAAACT AGACCATTAT CTGCAAATAG AAAGTTTCAG CCAAGTTTGA	3540
CAAAGTCAGC TCAAATTACT GTTTGAAGTT TGTAGATATA AGCGACAAAA ACAATCATAC	3600
TGCACCTTTT GTTGACAGTC TACTCCAGAC ATATCATAGT TCAAGTAAAT ACTTTGAAAT	3660

TCAACAGTTC TTATAGGCGC TATTGTATTC TAAGAAATCA ATAGAAGAGT TTCTAAGCAA 3720 ACCTCTAATA CTCAATAAAA ATCAAAGAGC AAACTAGAAA GCTAGCCTCA GGTTGCTCAA 3780 AACACTGTTT TGAGGTTGCG GATGGGGCTG ACATGGTTTG AAGAGATTTT CGAAGAGTAT 3840 AATTTACGTG TTCCCAAGAT GGAGAAGTTA GACTAGTACA CTGGCACTTC TAAAACATTG 3900 CTAGCAATTG ATTTGTTCAT ATTTAATTTC ATTTTTCCA TAAATGGGTA TTAGATATAA 3960 ACAGCAAAAT ATTTCCGATA CGTGTCGTTC TTGAATTTCC AATCATCTAA AACAAGTAAA 4020 GGATAATCAA TCCCCTGTAT ATCAAGGAAT TGGCTACCCT TTTTACTTTT TTACACATTC 4080 TGTTTGATAG ATTCATTTTA ACATCACGAG CATACTCCAA TGGAAATCGC TAGGCAAGAG 4140 ATAAACTTTC AGATATCCGC AGAGAGATCA TCGCCTCTTT TTGTCGCAAG CATTCTCCTC 4200 TCCTAGTCAT TTTCTACCTT ATCTTCTACC TGAGGATAGA GAGTTGTTCC CCAAATAGAA 4260 ATCGTCCGCT TACGCACTAG TGGCAAATCG GTTTTTTCAT AAACCGTACG CCACCATTCC 4320 CAGGCAAGCC CGGTACACTC TCTAATTTTG ACAGAGAGAT TACGAACATT CCCTTTTAAA 4380 GGAATACTAG TGGTAAAGTG AGCCGTTAAA TCCTGCCCAT TTCTGTCCCA AGCCTTAGGA 4440 GTCAAGACTT CCTTACCTTG ATGATCATAG GATAATTCAT TCCAAGTAAT ATAATATTGG 4500 GCAACATAGG CACCACTATG ATCCAGCAGT AAATCTCCGT TTCTGTAAGC TGTAACCTTA 4560 GTCTCAACAT AGTCTGTACT ATTTTGAAAG GTCGCAACTA CATTGTCACG TAAAAAAGAA 4620 GTTGTATAGG AAATCGGCAA GCCTGGATGA TCTGCTGTAA AGCGACTGCC TTCTTGAATC 4680 AAGTCCTCTA CCATATCCAC CTTGCCTGTT ACAACTCGGG CACCCGAACT TGGGTCGCCC 4740 CCTAAAATAA CCGCCTTCAC TTCTGTATTG TCCAAAATCT GTTTCCACTC TGTCTGAGGA 4800 GCTACCTTGA CTCCTTTTAT CAAAGCTTCA AAAGCAGCCT CTACTTCATC ACTCTTACTC 4860 GTGGTTTCCA ACTTGAGATA GACTTGGCGC CCATAAGCAA CACTCGAAAT ATAGACCAAA 4920 GGACGCTCTG CAGAAATTCC TCTCTGTTTT AAATCCTCTA CCGTTACAGT ATCTTGAAAC 4980 ACATCTCCTG GATTTTTAAC AGCATCTACG CTGACTGTAT AATAAATCTG CTTAAAATTA 5040 ACAATCTGAA TCTGCTTTTC GCCTGAATGG ACAGAGTTAA AATCAATATC AAGAGAATTC 5100 CCTGTCTTTT CAAAGTCAGA ACCAAACTTG ACCTTGAGTT GTTCCATGCT GTGAGCCGTG 5160 ATTITTCAT ACTGCATTCT AGCTGGGACA TTATTGACCT GACCATAATC TTGATGCCAC 5220 TTAGCCAACA AATCGTTTAC CGCTCCGCGA ACACTTGAAT TGCTGGGGTC TTCCACTTGG 5280 AGAAAGCTAT CGCTACTTGC CAAACCAGGC AAATCAATAC TATAAGTCAT CGGAGCACGA 5340 TCGACCGCAA GAAGAGTGGG ATTATTCTCT AACAAGGTCT CATCCACTAC GAGAAGTGCT 5400

CCAGGATAGA GGCGACTGTC GTTGGTAGCT GTTACAGAAA TATCACTTGT ATTTGTCGAC

AAGCTCCGCT	TCTTTCTTTC	GATAACAACA	AACTCATCGG	GTAGCTGATT	ACCCTCTTTG	5520
ATGAAACGAT	TTTCAATACT	TTCTCCCTGA	TGGGTCAAGA	GTTTCTTTT	ATCGTAATTC	5580
ATAGCTAGTA	TAAAGTCATT	TACTGCTTTA	TTTGCCATCT	TCTACCTCCT	AATAAGTTCC	5640
TGGATTGAGT	TGCATAAACT	CAGACTTGTT	CAGCGAAATC	AGCCGTGGTT	GGACTAAGTA	5700
ATCCAAAATT	TCCTCGTACA	ATTCTTCTGA	GACATTGCGT	CGCCGTCTGG	CTAAATAAGA	5760
AGTCGGAATG	ACCGTATTAT	CCAACATAAA	TACCTTATCT	AAGTCAATCA	AGGTTGGTCT	5820
TGTAAAAGGA	TTACGAGCTA	GATCCGGCTC	TTCTATCATA	AAGTTCTTGA	CCAAACGTCT	5880
GGTCAAGAGA	GCTGGTTTGA	AGGTCTGATT	TTTAACCAAC	TCTTTGTTTT	TAGTCATGCT	5940
GTTGTCAATA	CAGATATACA	TATGATTCTT	CACAGCCAAA	TCGCTACTAA	TAGTCGGAAA	6000
AGGCAAATAA	AGAGCTACAA	CATCTCCTCT	CTTAATCAAG	CAAGAGCACC	CCCTTTTCTC	6060
CTAATGTAAC	ATAGACAGGA	TTGACCAAGT	CTTCTGATTG	ACTCAGAATT	TCCAAAGTTT	6120
GAGTTTGGCG	CGCTGTCAAT	TTAGTAGCAT	СТТСТСТСТТ	СААТАСАААА	TGCTTGTCGC	6180
CAATAACCTT	GACAATATAA	TCCTTCTCCA	AAGCTGACTG	GTAAATCCAC	ATCAGATGTT	6240
GTCTGTCCTG	AGAACTCAAG	AGAGAAGGAT	TTTCAAGCCT	CCCGATAGTC	TGATAAAAAT	6300
CAAAAACAGG	AGCTAACTCC	TGCCAATCTG	ATTGGCTAGT	TGTCAAGGCT	AGAAAAAGGG	6360
CTTTGCGAGC	TGATACTTCT	TGGTTAGCCT	TGAGAGTTAC	TTTCCCCTCC	AAGTTTTTTA	6420
GAAATCGGGA	AACTCCAGAA	AGCAAATTTT	TCTCTAACTG	CGAGAAATAA	AAACCTTTCG	6480
TTCCCAGACA	TAAGTCTTTC	ATGTCGCTTT	CTCTAGCAAA	TAAGAGCTCA	AACATTTGAT-	6540
agtaaaagaa	AAATATCTGG	CACTGGGTCG	CGCTCATCTT	TTCCTTATCG	GCTTCTTTTT	6600
TTAACCAGAG	CAAGGGCGAC	AGGTAGCTGG	ATTGAGACAT	TTCCTCTACC	TCCTACTCTT	6660
TTTTAACTGG	AGCATCTGCA	CTAGCTGCCA	CTTCTTTTGA	CTGGATACTT	TCCCACTGGT	6720
TAATCTCCTC	TGAGATAAGA	CCTTCGCATG	TCTTGACAAA	TAGGGCAAAA	GCCTTGGTCT	6780
TTCCTGCATA	TTTCTCCGTT	TGGCATTGAT	AGAGGAATTT	TTCTTTCTCC	AGGAGTTGCG	6840
CAGTTTTTTG	GTAAGAAATC	CAATTTTCCT	TTGCATTATA	CAAATTGATA	ATCCCCTCAC	6900
ACAGCAAGCC	GAGACTGGAT	AAGGCAACCG	AAATCAAACG	GTAGCGATCA	CCTGGCATAG	6960
GAATAGCACA	AAAGACAGCT	ATGAGGAAAC	CTGCCACGAT	TTCTGTTATT	TTTAATACCT	7020
TATAGCGCCT	ACGATGTTGA	ACGCTTTTCT	TTAAAAAATG	AGCTATCTGT	ACGTCTAATC	7080
GCTCTGTCAG	GTACATTTCT	TCTGGCGTCA	TATTCGTAAC	TCCTTTCATT	TACTTTGATA	7140
ATCAGGG						7147

2	q	4

(2)	INFORMATION	FOR	SEO	ID	NO:	24:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 755 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CCGCATGGGA	TTGGTGTCCT	TTTGGGCAAT	CTCTTTGACC	AAACTGGAAA	CATGTTTTAT	60
GCGCCTGCCT	TTACTGCCCT	TGTCGGCGGT	ACGTCTATAT	GATCCTAGTC	GCAAAAGTTC	120
CGCGCTTTGG	AGCCATTACC	ACTATCGGCC	TTGTCATTGC	CCTCTTTTTC	TTGGGAACTA	180
AACACGGTGC	TGGTTCCTTC	CTTCCTGGAA	TTATCTGTGG	CCTCCTAGCA	GATGGAGTAG	240
CTCATTTAGG	AAAATACAAG	GACAAAACAA	AGAACTTCCT	TTCTTTCATT	ATTTTCGCCT	300
TTAGTACAAC	AGGACCAATC	TTGCTTATGT	GGATTGCGCC	CAAAGCCTAT	ATGGCTACTC	360
TTCTGGCAAG	AGGAAAATCC	CAAGAATATA	TCGACCGTAT	CATGGTCGCT	CCAAACCCTG	420
GAACTGTCCT	TCTATTTATC	GCAAGTATTG	TCATCGGAGC	CCTAGTGGGT	GCCTTGATTG	480
GACAAGCCTT	GAGTAAAAA	TTTGCCCAGA	AAATCTGATC	AGTTAAAAAG	AGCCACGCGG	540
CTCTTTTTTA	TTTATGGCTC	AATTTCTTAG	TCAAGAAATC	TCCCAAGAAT	TGGATTGCAA	600
AGATAATCAA	AATGATAATA	ATGGTTGCCA	AGATGGTCAC	ATCGTGATTG	TAGCGGTTAA	660
ATCCATAAGC	GATGGCTACG	TTACCGATAC	CACCAGCTCC	AACCGCACCG	GCCATAGCTG	720
TTtcCCAACA	AGGGaAtCAA	GGTcACAGTC	GTCAC			755

## (2) INFORMATION FOR SEQ ID NO: 25:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3010 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TTCAATTGGT	ATCTCAATCA	ACGGTCTTCA	CATGGTTTCA	ACTGGTTTGA	CTCTTGAAAA	60
AGCGAAAGCT	GCTGGTTACA	ACGCAACTGA	AACAGGCTTT	AACGATCTTC	AAAAACCAGA	120
ATTCATGAAA	CATGACAACC	ATGAAGTAGC	AATTAAGATT	GTCTTTGACA	AAGATAGCCG	180
TGAAATTCTT	GGTGCCCAAA	TGGTTTCACA	TGATATTGCA	ATTAGCATGG	GAATCCACAT	240
GTTCTCACTT	GCTATCCAAG	AGCATGTGAC	AATTGATAAA	TTGGCATTGA	CAGACCTCTT	300

CTTCTTGCCA CACTTCAACA AACCATACAA CTA	CATCACA ATGGCTGCCC TTACGGCTGA 360
AAATTAAAAA TGAATGAGCT ATCTGGCCTT AAG	TTAAGGT CAGATAGTTT TTAGCTAATT 420
TGTCCCCATA CAATTATAGT TTTTTTATCT TGT	GCTTCAT TCTGTTCTGA CTTAAAATGA 480
AAAGGTAGCT ACCAATACAA ATGATGAGGA TAA	AACAAAT GACTGAAAAT CGTTATGAAC 540
TAAATAAAAA CTTGGCACAG ATGCTCAAGG GTG	GTGTTAT TATGGATGTG CAGAATCCTG 600
AACAGGCTCG TATCGCAGAA GCTGCTGGTG CGG	CAGCTGT GATGGCCTTG GAACGAATTC 660
CGGCTGATAT TCGTGCAGCT GGAGGAGTTT CCC	GCATGAG CGACCCAAAG ATGATTAAGG 720
AAATCCAAGA AGCGGTTAGT ATTCCAGTAA TGG	CTAAGGT CAGAATCGGG CATTTTGTTG 780
AAGCTCAGAT TTTAGAGGCT ATTGAAATTG ATT	ATATCGA CGAGAGTGAA GTTCTATCTC 840
CAGCTGATGA CCGTTTCCAT GTGGACAAGA AAG	AATTCCA AGTTCCTTTT GTCTGTGGTG 900
CTAAGGATTT GGGTGAAGCC TTGCGTCGTA TCG	CTGAAGG TGCTTCCATG ATTCGTACCA 960
AAGGAGAACC AGGGACAGGG GATATCGTCC AAG	CTGTTCG TCATATGCGT ATGATGAATC 1020
AGGAAATTCG CCGCATTCAA AACTTACGTG AGG	ACGAGCT TTATGTTGCT GCCAAGGATT 1080
TGCAAGTCCC TGTAGAATTG GTCCAATATG TTC.	ATGAACA TGGAAAATTG CCAGTTGTAA 1140
ATTTCGCTGC TGGAGGTGTT GCAACGCCAG CAG	ATGCTGC GTTAATGATG CAATTAGGGG 1200
CAGAGGGGT CTTTGTCGGT TCAGGTATTT TCA	AGTCAGG AGATCCTGTT AAACGAGCGA 1260
GTGCCATTGT TAAGGCTGTG ACTAACTTCC GTA	ATCCTCA AATCCTAGCT CAAATCTCTG 1320
AAGATTTAGG AGAAGCCATG GTTGGTATTA ATG	AAAATGA AATCCAAATT CTCATGGCTG 1380
AACGAGGAAA ATAGATGAAA ATCGGAATAT TGG	CCTTGCA AGGGGCCTTT GCAGAACATG 1440
CAAAAGTGCT AGATCAATTA GGTGTCGAGA GTG	TAGAACT CAGAAATCTA GATGATTTTC 1500
AGCAAGATCA GAGTGACTTG TCGGGTTTGA TTT	TGCCTGG TGGTGAGTCT ACAACCATGG 1560
GCAAGCTCTT ACGTGACCAG AACATGCTAC TTC	CCATCCG AGAAGCCATT CTATCTGGCT 1620
TACCAGTGTT TGGGACCTGT GCGGGCTTAA TTT	TGCTGGC TAAGGAAATC ACTTCTCAGA 1680
AAGAGAGTCA TCTAGGAACT ATGGATATGG TGG	TCGAGCG TAATGCTTAT GGGCGCCAAT 1740
TAGGAAGTTT CTACACGGAA GCAGAATGTA AGG	GAGTTGG CAAGATTCCA ATGACCTTTA 1800
TCCGTGGTCC GATTATCAGT AGTGTTGGTG AGG	GTGTAGA AATTTTAGCA ACAGTGAACA 1860
ATCAAATTGT TGCAGCCCAA GAAAAAAATA TGT	TGGTAAG TTCTTTTCAT CCAGAATTGA 1920
CTGATGATGT GCGCTTGCAC CAGTACTTTA TCA	ATATGTG TAAAGAAAAA AGTTGAGATT 1980
GAATTTCTCA ACTTTTTTAC ATGTAATAAA CAA	TAGCGAT GTATTGAAGT GCGGACGCAG 2040

296 CTAGGATAAA GAGATGCCAA ATCATGTGGA AATAAGGTTT TTTCTTGGCA TAAAATCCAG 2100 CTCCAACTGT ATAACAGAGT CCGCCAGTTA CCATGAGACT CCAGAAAACG GGTGTCGTTT 2160 GACTGATAAT GGCAGGAATG ATAGCCAGAA CCAACCAGCC CATAATCAGG TAAAGAGCAA 2220 GGCTAAATTT CTCATTGACC TTTTTAGCAA AGATTTTATA GAGAATACCA AAGATGGTCG 2280 TTCCCCATTG GATGACAATA ATCAGATAGC CAAACCAGTT ATTCATCAAG GTCAAGACAA 2340 CGGGCGTGTA TGAGCCGGCA ATGGCAACGT AAATCATAGA ATGGTCAATG ATTCGCAAAA 2400 CATATTTGTG GGTCGAACCA TAGGCCATAG AGTGATAAAT GGTGGATGAT AGGAACATGA 2460 GAAAGAGACT GATGACGAAA ATGGAAACGC CGATAGAGGA TAAAAATCCG TGTGCTTCAT 2520 AACTATAGAT GGATGAAATA GGCAGCAAGA TAAGCATGAT GACTGCACCC ACAGCATGGG 2580 TCACGCTATT AGCAATCTCC TCTCCAAAAC TGAGTTGTTT GCTGAGTTTA AGACTAGTGT 2640 TCATTGGATT ACCTCCTCTT GAGTATGATC GATTAAGTCT AGAGTTTGAT GATAGAGTTT 2700 AACGGTTTGG CAGCTGGTTT GGATAATAGG GTTAGCTGGG TCAATTCCTT GGTTCATGTA 2760 GTCCACAAAA GCATCGTAGA GTTGGTCTGA ACTTGCTTGA GTTTGTAGAG TATTAAGTGT 2820 CTGGGCTATT TCTTGAATAG AAAATACAGA CTTGAGGGTT GTGATAGCAA TCAAACGGGC 2880 AATCTGTTGG CGTTGGTATT TTTTTTTGTC AGGCTTTGTC AGGTAACCAT TTTTCACATA 2940 ATTGTTGACC ATAGATGCTG TTAGGCCCTT GTCTTTATTA GGAGAGATAG GGGCGCAGAC 3000 CTGATTGACA 3010

# (2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15213 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CATAAATCG	G TGCAAATAAC	TTAATAGTGA	AGTAGCCATT	TCTTTCGTAT	TTACCTGAGG	60
CATATTCCC	r agacgaaaga	ATATTATTAT	CAATCAAATC	ATTGAATGAA	CGTAGTCTTT	120
CAACTTCTT	TACTGTTAGA	TTTCTGACAA	CATTTGTTGC	ATAGACCTTA	TTTCCATCAG	180
GATCAGGAT	GTACTCATTT	GTAACTTTTC	TAAGAAGTTG	TTGTTTTTGA	TTCGTATCCA	240
ATTTAAGAA!	TGAATTTCCT	TCGAGATATT	CCAACATATA	AACAACGTCA	AACATGTTGT	300
GGACATATT	CTTCAAATCA	TCTGCATTAT	TAAATCTTGT	AGTTGGATCA	AGTACTTGTA	360
ATCGTCGAC	TTCTGTACTA	TCAGATTTTG	AATGTTTCAA	GATGGAGTTG	ATGGTAATGG	420

TCGCATCATC TGGATGGTCT GGTGCTTGTA ATAATCCTTT AGCAAAGAAC TCTGGTCCCA 480 AGCCACTTCT TCGACCATAT CCTCCAAGAT AAATGTCCTG ATCTGAGTCA TGTGTCATCT 540 CATGCGTATA AGTAATAGCT CCATCCTTAT CCAACATTCG ATAACCCATA TAATAAACTG 600 CATCACCTGT AGCATAAGCA CCGTGTTGAT TATGCCCAAC TTTATTTCCA ACAGGTCCAA 660 AGAAATGTTG CATTGCAGGA TTTGGATTAT CAAAATCTGC CACTTCTGTA GCTTTCCCTA 720 CGGTATTATC ATCGCCAAAT TTATAAGCAT CGTAAAGCAA AATATTTCTA TAAAGTTTTT 780 CACGTGCATT GTCGTCTAAA ATACGATACC AATAATCGTA GTGATCTCGC TGACGTTTGG 840 CTGTTTCACG CGCATTTTCT TCAACAAAAT CATTGAGAGC CTTGCCCGCT TTATGGTCAC 900 960 CGGATCTCTC TGGCAAGGTC AGGAGAGGCA AGACCATATT GCGGTATTTC CATGTGGCAC 1020 TCGTGATACG ATCATAAACA CCGATAGAAT ACTTGGTGCC AGCTAACCCT TGCTTCGTTT 1080 TCACCTCTTC GATAGTGGAT TTTTCTTCGA CAATGTAAGC CTTAGTCTCT GATTTAAACC 1140 AGTCATTATT GCTTGTATTT GGTAAAAAGA CTTTTCGGTA ATGTTCCAGC GTGCTAAACA 1200 AATCTGTCGT TCCATGTTGA CTGGCAAGAC TGATACCATA AGTATCGACA TTATTCTTAG 1260 CTAGAAGATT GTTAAAGCCA GATTTACCCA ACTCAATCAG AGTATCTAAT GGTGAAGCAT 1320 TCCCCTTACC AAAGAAGTCC AAATGGTACA GAACTAGGTC TTTGACATTC ACCTGACCAT 1380 AGCTAAAGTT ATACCACCGT TCCAGATAGG TCAAGCCAAG TAGCAAGGCT TCCTTGTTGC 1440 GTTTGATTTT ATCTACAAGA TAACCTTCAG TGACGGGGTT AGCACTAGCC AGTCCAGCAT 1500 1560 CTTCTAGATA GAGCTCAGTT TGCTTGACGT TTGGAGAAAT ACCCAGCGTC TTTCTGATGG 1620 CTTCTGAATG ATAGTCAACC TTTTGTAAGT CAGGTAAGAC TTGCTTGATG ATAGAGGTTT 1680 GGTCATACAG GAATTGGTTT GGCGTATAGA GAAGTCCAGT ATTGCCCAGA CTATATTCTG 1740 CTAATTTGGC GAAATCATTC TGGTATTTGA GATCCAGCTT CTCAGATAAA TCATCCTTGT 1800 AGTGAAGCAA GAGTTTGTTT GCAGTCTGTT TGTTAGAAAC AATGTCTGTG ATGACTTGGT 1860 TGTCCTTCAT CATGACTGCT GACAAGAGTT CTTTTTGATA TAAAAGACTG TTCTCATTGA 1920 CCAGGTTTCC GTATTTGACG ATGGTTGCCT TGTTGTAGAA AGGTAGCAAT TTTTCAATGT 1980 TTTTATAAGT CAAGTTGCGC TTAGCTTGAT AATAGGCCAC CTTAGAAAAA TCACTGTCTT 2040 TTTTGCCACT TGTTGAAAGT GGCTCCACTG TTGGTAAAAT GAGAGGATTG ATTTCTGCTT 2100 TTTTGCTTGC AATTTGAGAA GCATCTAGCA TTGTTCCTCT TTCTTCAAAG GATTCCTTGC 2160

			298			
TGACGACCTC	ATCCTTGACC	AAGGTGACAT	TGTAGACTCT	GTTGGCCTTG	CTGCTGAATG	2220
TGTCCTTTAC	CTTCATTTCG	TTATAGTGGT	AACCAGTGAT	GGCATTTCCG	TTGGTTACAT	2280
TAACATCGCT	GAGAACATTG	GTCAAACTTC	CAGCATGCCT	AACATCACCA	GAAGTTCGAT	2340
CCCACAAATT	GCCTGCCACT	CCAGCGACTC	TACCAAAGTG	CTTGACATTG	TTGATATCAC	2400
CTTCAGCATA	GCTATCTTGG	ATCTGTGCAT	CTCGGTCTAC	TAGGCCTGCA	AGTCCACCCA	2460
CAGTCTGATC	TGAAGTATTT	GTGTTAGATG	AAATGGCTAC	TGTCGCTTTT	GACTTAGTAA	2520
GTAAAGCCTT	GTCACCTGTC	AAATGACCGA	CCATACCACC	GATATTGTAG	GCAGCAGTCG	2580
TTTCATAAGT	GTTGATAATT	CTTCCCTTGA	AACTGCTCTC	TGTGATGCTT	GATTGCTCAG	2640
CCTTAGCCAG	CAAACCACCG	ATACCACGTT	CACCAGCCAG	AACACCATCG	ACGTGAACTT	2700
GCTTAATTTT	TGTGTTATTC	TGAGCTTCAT	TTGCCAGTGA	ACCGATATCA	TCTTTCCCTG	2760
AAATAGCAAC	ATTTTTTAGA	CTCAGTTTTT	CTACTGTAGC	ACCACTCAAG	ТТТТСАААСА	2820
GAGGTTTTTT	CAAATTATAG	ATAGCATAAT	TCTTGCCATC	TTTTTCACCG	ATTAAACGAC	2880
CAGTAAAGGT	GTCCTTGATA	TAGGATCTTT	CATCAGGACC	AAGCTCCACT	TCGTTAGCAT	2940
TCAGGCTGGC	CGCTAAATGA	TAGGTTCCAG	AGGGATTTTG	GTTTATAGCT	TTGACCAGAT	3000
PACTAAAGGA	AGTAAAGTTT	GTTGTTTCTT	CTGTTCCCTT	CTTAGCTAGA	TAGAAGGTAA	3060
AATTATCTTT	ATATCTGCTT	TCTATCTCCT	GCTGAAGCTT	CTCTACTTTT	GCTGTGATTT	3120
PATAAAGGAT	TTTATCATTT	TTTCTTTCCT	CTGATATTGA	TGCTACTGGT	AGGTATACAT	3180
CTTTGAATGA	AGAAGATTTC	ACTTTAACAA	AGTAGCTATT	TGGATTGCTT	GGAACTTGCT	3240
CTAACGAAAT	GTGTTGTTTA	TAAGTACCAT	TTGACAAACT	GTATAACTCT	AGGTCGGAAA	3300
CATTTCTTAA	TTCAAGTGTT	TTCTCTGGTT	CTTCTACCTT	TTTATCAGGG	TCTAGTTCAT	3360
PTTCTTGTTT	AATTTCTTCG	TTTCCATTTG	AATTGGATGT	GTTTGATTCG	GTTGAAACAT	3420
CCTCAGTTGA	ATTTCCGTTT	GATGGTTCTG	GTTCTGTTTG	TCCATTCTCT	GATGTTGTAT	3480
FACCTGAATT	TTCTGGTTTT	GTTGCAGTTC	CGTTTTTTTC	TGGTTGATTT	GATTCTTCAA	3540
CTGGTGGTTT	TGAATCACTA	GGTTTATTGG	ATACTTCTCC	AGTATTTTCG	TTAGCTATTT	3600
rcccagagtt	TGTTTGTGTT	TCTTCTGCAG	GTTGAACTGG	TTTTTCTGTT	TCTTGATTTG	3660
AGGTACCTTC	TACTGTGCCT	TCATTTGGAT	TTACTGGAAC	TTCTTCTACA	GTTTTTTCTG	3720
<b>AATTTTCATT</b>	TTTAGAGTCA	TTATGTTCTG	GTTTATTTGA	TTCTCCAACT	GAGGTTGTCG	3780
AATCACTAGG	ATTACTGGAC	ACTTCCCCAG	TATTTTTGCT	AGATGTATCT	GGTGATACTT	3840
PCTCTGAATT	CGTTGTTGAT	TCTTCTGCAG	GTTGAACTGG	ATTTTCTGCT	TCTTGAATTG	3900
A CCMMCCMMC	mema ema erem	meammeeam	mm a cmccmcm	mmemmemers.	CCMMMM A CMC	2000

GAACTTCTTC AGTTTTTTCT GGACCTTGTT CTTTGGTCTT CTCAACCGGA GTTTCAGGTT	4020
TTACTTGCTC AATATTACCC TTATATTCTG GAAGCGGTGC TACCTGCTCT GGTTCACCTT	4080
TATCACTTAC CACAGTATCT GGCGACTCTG GTTGAACCTC AGTCTCACCT TTGTCGGTCA	4140
CAACTGCTTC GGGTAATGTA GGTTGAACTT CTGGTTCGCC TTTGTCACTT ACTACAGCTT	4200
CGGGCAACTC AGGCTGAATT GCGGGTTCAA CAATAGCTCC AGACTGTACG TCCTTATGTT	4260
CTACACCAGT CTCAGGTTGT TCCTTTATAA CTTGAGTTTT TTTAGTACCT TTTTCGACTA	4320
TTCTTGGACT AGGCGCAGTC GTTGAAGTTG AAACAATTTC TCGCGAAACT TCTTCCTTGT	4380
TTACAGAGAA TATTCTGACG ATTTCAACTT TCTTACCTAA TTTACCTTCT TGTTTTACTC	4440
TTACAGTTCC TTCAGCTAAA TCAGGATTTT CTTGAATTTC TTCTTGAAAA TCTATTTTTG	4500
TCTCCATAGT TTCCTCACGA TATAAGAGTT CAGGTTTGTT CAATTGACCT GATAAAACTT	4560
CATCCTGTGG ATTTAATGTA TTTACCCCAG TCTTTTCTTT	4620
TCTTCGTTTC TAGATTCTTA TGTTCGGCTA ATTGTTCTTG AGAATCTGAA GATTGTTTCT	4680
CTTCTTTTCT TGGATTGATT AATTCAGTAG AGAAAGGTTT TTCAACTACT TGAACTTCTG	4740
TCGGCTTAGT TGAAGAAACA GGTGTTTGTT CCTGAATAGC TTGTACTGTT GATGGATGGT	4800
CTACAAAATT CGGTGTAACA TTATAATCCA CCTTTTGTTG TTTTGTAGGA GTGGCAACTG	4860
AACTCTTTTG ATTACTTACT TCAGACTCAG AAGTCGTTTT TCCCTCTTTG ATATATCCAA	4920
TATAAGTGTA ACCTGAAATC TCTTTAGGAA GAGGTAATTT TTCTCCAGAG GTCAATTCAT	4980
AGTCCGTATT GTAATTTAGC AAAAGATGAT TTTCTAAAGC ATGGACTGAA ACTAAGACAC	5040
CATTTCCTAT CCCTGCAACC AATACTAAAT GTAATACCGT TTTATTCTTA ACCTTTTTCT	5100
TGGAAACAGC AAAAATTAAA ATTCCCATAG CAGCTAAGCT AGCACCAGCA ACTAGGGCTT	5160
GCCTCTCATT CTTGCTTCCA GTATTTGGCA ATTCCGCCAG TTGATTTTGA GAATTTAACT	5220
TATAAACAAG ATAATAAGTT TCATCATCAT TCTCCACGTA TGTCGGAATA TCATAGACAA	5280
GCTGCTTCTT TTCTTCTGAT GATAGCTCTG AATCTGCCAC ATATTTATAG TGAACTCCCG	5340
CAGTTTCTTG AGCATCCACA GATGAACTAG CTAATACAGA CATAAAAAAT AAACTTGAAA	5400
TCGTTGCAGA TACAAGTCCT ACTGATAATT TTCTAAATGA AAAACGCTCT TGTTTTTCAC	5460
CAAAATACTT TTCCATTATT CCTCCTTGAA ATAAAATTTA TATATGTTAC AAAGACCTTT	5520
ATTATATAG TGTATTATCT ATTATCTATA GAAAAGGCAG TATACCTTAA TTATACTCTT	5580
AATTTACAAA AAAGTCTTAA AATTGAGATG CGCTTTCATA CTTTGTTTTA TATTATTTGG	5640
AGGTACAATA ACACCTACCA TGAAATTTAC ACGGTAGGTG TTACTCATAT CACTAATCGT	5700

300 TCTAAAAATG GTTTGAGGCA GTTGAGGAGA ATTCCTTCTA TCCAGCTTCC TTGTGCTGAT 5760 GAGCGATGGT CTTCCTGCAG GCTTTTTTTT AGAAAATCTC GGACTTGTTC TGGTGCGATT 5820 TCAAATTCAA AGGCTTTCAT TTTATAGAAA AAGTCGATGA GATGATCTGA CAGGTATTCA 5880 GTTGAAAAGG GTACTTCACC ACTTTTTCTA TATTCTAATA AGAGTCTAGA AAATCGAGCT 5940 TTTTCTTCAG GAAGCTCACG AAAATAGGAA TTGAGGATCC AAGTCTGCTT CTGTTTTCTT 6000 TCAATTGGAT CCTGACTGGC AATTCGTTGG TCTTTTTCCA GCTCTTTTTG GTATTGTTTG 6060 GCCTTGATAG CTCGTTCTGC TCTATTTTTA CCAAAAAGAA TTTTTTCCCA CTTGCGTTCT 6120 TCTTGAGTCA GGGTCTCTGT AAAGCCAAAG TAATCTTGAT AAGCACGCTC TGCGGGTCCC 6180 ATGGCTAGAA CCAGATTGTC TGCATATTGC TTGGCGATTT TATCCCTCTT CTTGCGTTCT 6240 TTCTCTGCCT GGATACGGAG TTCTTGTTCG TAGTCAATTT TCTCCTTGCC TAGCTTGACA 6300 AGGTAGAGTT GGTCATCCGA TTTCCCAAGT AAAAAGGGTT TGATACACTT TTCAAGGACT 6360 TCTTCCATCC GAGCCTTTTT CTTTGGTTCC GCCTTGGTCC AACTTCCTCC CTGAAAGACT 6420 TCTAGGAAAA GCTGGTAGTC TCTCTCAGGC GCAAATTGAT TGCCACGATT GGGTTTGAAA 6480 ACACCTTTTT CCCAGAGCCA TTTTAGAAGT CGCTCGTCAA AGTTACTTTT ATTGACCTTG 6540 ATTTTTCCT TTTTCTGAGC TTTTCTGGTT AGATTTTCAA CCTTTCTGAG CAGTTTTCT 6600 TCCTCTTCCA ATTGCTGGTC AAGGGACAAT CGATGAAAAT GACGAACACA GTCGCTACCA 6660 ATTGGAAAGA GGCGTTGGCC TGTGACACCG TTAAAGAGTT CATAAGCGTA TTTGATGGCA 6720 TTTCCACAGA CACAATTGCT ACGGCCGATA CCGTTAAAAA TAAAGGAAAC TTCATTCCAT 6780 TCCTTGGTAG CTTGTTCCCA AGTATCCGCT TTCGAAGCCT GTAAAACTGC ATCGTGCAGG 6840 GATTTTCTAA CTGGAAGTGT CATGAGGTCT CCTTTCTAAT ACTCAATAAA AATCAAAGAG 6900 CAAACTAGAA AGCTAGCCGC AATCAGCTCA AAACACTGTT TTGAGGTTGT AGATAGAACT 6960 GACGAAGTCA GCLCAAAACA CTGTTTTGAG GTTGTGGATA GAACTGACGA AGTCAGTAAC 7020 CATATATACA GCAAGGCGAA GCTGACGTGG TTTGAAGAGA TTTTCAAAGA GTATAAGTTA 7080 TACTTTTACA ACTTGAACCT CGTCTTTACC GAGTAAAATC AAGTATTTTT CAATATTTTC 7140 AATCGAATAG GCTCGTGATA AAGCCTCTTC GTATAGAGCT AACTGACCAC GATAGCGGTC 7200 TACGAGTTGA CTTGGTTCAT CATAGCGGTC TGTCTTGTAG TCGAACAGAA CAATTTTGTT 7260 TTCGTAAAGC AGATAGCCAT CAAGGATACC ACGGACAACA AAGTCTTCCT GACTCTTTTG 7320 GTCTCGTTTG AGCATGAGA AAGGTTGCTC GCGATAAAGA TGGTCGGTAT TAGCAAGAAT 7380 TTCCTGACCG AGTACTGTGT CAAAGAAAGC AAGAATTTTA TCAAGATTGA TCTTGTCTCT 7440 GACAGCTTGG CTAGTTTGAA CTTGTTTGAG TGTTTCTGTT AGGCTAGCAA GGGTTAGTTG 7500

	CTGGCTGAGG	TCAATTCTCT	GCATGAGTTC	GTGAGTAGCA	CTACCAATCT	CAGCTCCAGT	7560
	TACCTTTTCT	TTGGTTGAAA	AATCTGGCAA	ATCGAAGCTG	ATTTTCTTGC	CTACTGACTG	7620
	ACCTTGACCA	GCAATCTCGA	CACCTTCCAT	ATCCATAACT	GGTTCGTAGA	ATTTCTTGAT	7680
	TTGACTTGGG	GTTTGAACAC	TAGGAAGTTC	AATAGCTGCG	CGGTGAAGAG	TATTATAAAC	7740
	TTCCACCTCC	TTCAGCATTT	CCAGAGCTTC	TTTGATGGTA	TCTGACTGAC	GATTGTCTGC	7800
	TTGGGAGCTA	TCTTGGAGAG	GACTCTTGGT	TTCCAACTCT	CCGATAGCTT	CTCTGGTCAA	7860
	CTGATCTTCG	CCAATAAAAC	GATAACTAAA	GTTGAGCTTG	TCCTTAGTAA	ACACTTTACT	7920
	GATAGCCCAA	AGCCAATCTT	GGAAATTCCG	TGCTTGCAGT	CTAGTATTGC	TATTTAGTTT	7980
	CCCATTTTTG	GCTGCTGGGT.	ATTCCTTGGA	TTCCAGCTTT	TCACGAGAAC	CCTTGCCGAC	8040
	AAGATAGAGC	TTTTTCTCAG	CCCGCGTCAT	AGCAACATAC	AGCAAACGCA	TCTGCTCAGA	8100
	ATAGCTTGCT	AGCTGTAATT	CCTCTTCGTT	CTGCCTATAG	GTCAGACTAG	GAATGGAGAG	8160
	TTTGATGGTT	TTAGGATAGT	GGTCTTCTAC	TGCCCCTGTC	TCCATCTTGG	CAATATATIT	8220
	GACACCAAGA	CCATTCTGAC	GACTGAGAAT	GACTTCTGAC	ATAGAGTCTT	GCTTGTTGAA	8280
	ATCTTGATCC	ATATTGAGGA	TAAAGACGTA	AGGAAACTCC	AGCCCTTTAC	TCTTGTGGAT	8340
	GGTCATGAGC	TCTACTGCAT	CTTTTGGCGG	TGCGACGGCC	ACGCTTGCCA	AATCGTGCTG	8400
	GGCTTCTAAG	ACTTGGTCAA	TCATACGAAT	AAAACGCGAC	AAACCTTTGA	AATTGCTCTT	8460
	TTCAAATTGA	TCAGCACGCA	GTGCTAGGGC	ATAGAGATTG	GCCTGCCTAG	CAGGACCATT	8520
	CGGCAAAGCC	CCAACATAGT	САТААТАААА	ACGGTCGTTG	TAAATCTTCC	AAATCAAGTC	8580
	ATAGAGAGAG	TGGGTTTTGG	CATACAAGCG	CCAAGAAGCT	AGGATATCCA	TGAATTGCTT	8640
	TAGTTTTTCA	GCTAGAGCTG	TGTGAATCAA	GCCTTTTTGA	CTACTTGCCA	TTTTTTGTGC	8700
	ATTGACCAGT	TTCTCATAGA	GATTTTCGTG	GALTTTATCC	TCTGCTTTCT	GAAGGGACAA	8760
	ACGTGCTAGC	TCATCCTCAT	СААААССААА	CATTGGAGAC	TTCATAAGGG	CAACCAAGGC	8820
1	GTAGTCTTGC	AGGGGATTGT	GAATGACACG	AAGAGTGTCT	AGCATGACTT	GCACTTCTAG	8880
•	GGATTGGAGA	TAATTGTTTT	GCTCTCCGTC	AGTTTTGACA	GGAATTCCGT	ACTCAGACAG	8940
•	GGCGAGGAGA	ATCTGGTCAT	TACGACTGCG	GCTGGAGGTC	AGAAGGGCAA	TTTCCTTAAA	9000
	GGCAACACCT	TTTTCTTGAT	GAAGTTTCAG	AATCTCCTTG	ATAACTAAGC	GCATTTCGCC	9060
,	IGTTAG <b>T</b> TTC	GTTTCTGTTT	GACTCTCTTC	TTCCTCACCT	GTATCGTCCT	TGTCGTAGAG	9120
•	GAGAAATGCT	GCCTTGTTGT	CTGGATTGGG	AGTCAGTTTG	GTATTGGCAA	AAACAAGCTG	9180
•	STGCTTGTTA	TCATAGTTGA	TTTCGCCGAC	CTCTTGGTCC	ATGAGACGTT	CAAAGACATC	9240

ATTGGTTGCT GACAGCACTT CTGAACTACT ACGGAAATTT TCCTTGAGGA TAATGAGCCT 9300 GCCTTCTTGG GGATTTTGCG CATAGCGTTG GAATTTCTCA TTGAAAATCT GCGGGTCTGC 9360 CTGACGGAAA CGATAGATGG ATTGCTTGAT ATCTCCCACC ATAAAGCGAT TGTGGCCATT 9420 AGACAACAAT TCCAGCATCC GTTCTTGAAT ATGGTTGGTA TCCTGATACT CATCGACCAT 9480 GACTTCATGG AAGCGCTCCT GATAAGACTC ACGAACTTGT GGGAAATTCT CTAAAATCTC 9540 AATGGTGTAA TGGCTGATAT CAGCGAATTC GAAGGCATTT TCCTGTCGTT TTCTCTGACG 9600 ATAAGCCTCT ACAAAATCGC TCATGAAAGA TTGGAAGGTT TTAGCTAGTT TCCAAGTGTC 9660 TCCATGATAA CGTTCTTGAT AGTCGAGAAT CGCTATCTGG TCTGATAATT GTCCTAGTTT 9720 AGCAAACTGG GTCTTTCTCT CTTCGTTGTA GGCATCAGCC AGGGGCTTCA AATCAGCCTA 9780 CGGCTGGCAT TAGTCAGAGC TCGACCGTTT TTCTCCTTAG AGATGGCGAC AACACGCGCA 9840 AGCACTGCCT GATAAGCCTG ACTATCGGAC TCCTGATTTA GGGAGCCAAT TTCATCCAGA 9900 ATTAACTGAA CATTTTCTAA ATAGGCAGCC TTTGCAAACT CCTTGGCATC GTTATCCAGA 9960 TGGTAACGGA AAAAGCTTTC CAAATCCCAA AGGGCTTGTT TGATTTGCTC GGTCAGTTTT 10020 TCTTTTTCAC TGGTAAAATC AGCTTTCTCA AATCCTTTGA GGAAAGATTC ACTCAGCCAC 10080 TTTTGAGGAT TACTGGTGGA TTGGAGGAAG TCATAGATTT TATAGACCTG CTGGCGCAGA 10140 CCCCGTTCGT CCTTGCCACG CCCAGCAAAG TTTTTCAGCA AATGACTAAA GGTCTCTTTC 10200 TGTTTACCTT GGTAATGCGC TTCAAAGACC TCATGAAAGA CTTCGTTTTC GAGAATAAGT 10260 TGCTCGCTTT GGTTTTGTAA AATACGGAAA TTAGGTGCAA TATCAAGCAG ATAACCATGT 10320 TTGCCAAGGA ATTTTTGTGT GAAAGAATCC ATGGTTCCAA TGGCAGCGTT GGGTAGGTCT 10380 GCCAACTGGC GACCCAAGTG TTGTTTGAGG TCGACATCAT CTGTTTCTTG GATTTTCTTG 10440 CTGATTTTT TCTCTAAACG TTCTTTAAGT TCAGTTGCAG CCTTGACGGT AAAGGTTGAG 10500 ATAAAGAGTT GAGAAATTTC GACACCACGC GCCAATTGGT CCAGAATGCG CTCTGCCATG 10560 ACAAAGGTCT TTCCAGAACC AGCCGATGCT GAGACCAGGA TATTCTGGGC AGAAGTGTAG 10620 ATAGCTTCGA TTTGCTCGGC AGTTTTCTTC TGTTCCTTGC TCGAATTTGC TTCTGCTTCT 10680 TGCAGTTTTT GAATCTCCTC CTCACTTAAA AAGGGAATAA GCTTCATCGA TTCAACTCCT 10740 CTCTTATTTT TTCAAGCCAA GCTTGCTTGA GTTTTTCTCC GACCAGACGC TTGCCATCAG 10800 CTAGGTCCAA CTTTTCTAGG AAACGGGCTT GGCCCAGATG GTAATTGGCT TCAAAGCCTG 10860 TAATAGCCTG ATGTTGCTGG ACGTATGGGG CAATGCTTCT GCCATTTTCA GTATAAGGAT 10920 TGATGGCGAA CCGGCCTGCT AAAATCTTCT CAGCAGCTTT CTTGTAAAGA TAGGCATTGT 10980 AGTCCAGTAG GAGCTGAAAT TCCTCATCTG TCAGTTGATT AGCCTTGTTT TTGTTATAAA 11040

ATTCGCCTAA	ATAACTGCTT	TCTTTTTCCA	AGAAGAGCCC	TTGGTATTTC	ATAGATTTGC	11100
TGGCTTCTAC	CACTGCTCCT	GCCAGACTTT	TTACCGCCAT	CAGAGATTGG	ACAGGTTCAG	11160
CCATTTCCAA	GTACATGGCG	CCGAAAAAGT	TCTGCTCCCC	TTCTCTTTTT	AGGGCAGCAA	11220
GATAGGTTGG	TAACTGAGAA	TTGAGCCCAT	TAAAGAAATG	AGGAAACTGG	AACTGAGTCA	11280
GACTGGATTT	GTAGTCTACT	ACTCCTATCG	CTCCATTAGC	TTTCAAACGG	TCAATCCGGT	11340
CCACCTTGCC	TCGTACAAAG	ACACTGCGTC	CATTGTCTAA	TTGAATAAAG	GCTTGGTCTT	11400
TTCCACCAAA	ATTTGCTTCT	TCTTTGATGG	TTTCGATGGC	TGGATTGTGT	CGGAGAATAT	11460
GTCCAGTTGT	CCGTGCAACA	TCAAGCAAAA	CTTCCTTGGT	AAACTGGGCT	TCCAAACTTT	11520
CTTGATAAAT	AGCTTCAAAT	TCGCGTTCTT	GACTGGTTTC	TTGAATAGCT	TGTTCTAGAC	11580
GTTGGTCAAA	GGAATCTTCA	TTAGGCAACT	GTAAGGCGCG	TTCAAAGATA	CGATGCAAGA	11640
AATTCCCGTG	ACTACGGGCA	TCAGGATGCA	AACGTAATTC	CTCCTGCAAG	CCTAAAACGT	11700
AGCGTAGGAA	ATAACTGTAT	TCATTGCGAT	AAAACTCTGT	CAAACCCGAC	GTAGACAGGT	11760
AAAACTCCTG	TTTGGCAGGA	TAGAGAGCTT	GCAAGGTGTC	CTTGGCTAAG	GTCTTGCTGC	11820
TTGGACTGGT	TGGGATAGCT	GGATTTTCCA	GACCTTGCTG	ATCTAGTTTT	TTACCTATGA	11880
CACGCGACAG	AACCTTGACA	AAAGTCAAAT	CTTGCTCAGT	ATCGCTCATC	TCACCCTGCT	11940
GGTGATAGGC	AACCAGACTA	GACAAAAGAC	TGTGATAGGA	CCCCATATCC	TCCTTAGACA	12000
GTCCTTTGTG	ATTCATCCTC	TTCTCTCTCC	GCCTAAATCC	AAAATGGATC	AACTCTTGAA	12060
GATAGGCAGA	TTCCTTACTT	TCACTTTCGT	TAAAAAGGCT	TGGAGCCGAC	AAGAACAACT	12120
GCTTACGAGC	AGAATTGACC	AAGGAAAGCA	TAGTGTAGCG	ATTTTTCTTG	AGATTTTCAC	12180
TGCTGGCAAT	CAGTAATTGA	ACGCCTTCTT	CGGTCGCTTG	GTTTAGGTTT	TGCCTTTCTT	12240
CATCTGTCAG	AAGACTGGTG	TTTTGAGAAA	TTTTTGGTAA	ATTGTCCTGA	GTTAGTCCAA	12300
TAGCATAGAC	AAAGTCAGCA	GTCAATGGTG	CAATCAAATC	GTAACTCTGC	ACCAGAACAG	12360
TGTCCACTGT	TGCTGGAATG	GTACGGTATT	GGGACAAACT	CATTCCAGAA	TGGAGCAAGG	12420
CTAGGAAGTC	TTCCAGACTA	ACCTGTGAAC	CAGCAAAAAC	AGTCGCAAAT	TGTTCTAAAA	12480
CATGGCAGAA	AGCCTTCCAA	ACTTCGGCTT	GTCTTTCCTG	TTCTACAGCT	TCCAAAGTGG	12540
TTGTCAAATC	TTGTAACTGC	TTGGTCACAG	CTCCTTCTTT	TAGAAAGACA	CTCCATTTTT	12600
GTAGGAGTTT	TTCAGCCTTT	TGTTTTCGGC	TGGCAAAGAG	GGTTTCAAGA	GGTGCTAAAA	12660
TTCTCAGGCG	GAGGACATTC	AAACGCTCAA	GATTAAATTT	TCCATGGTGG	GATTTGGTGA	12720
AGGTTTGCTG	AAAGGCTGGC	AAGCCATTGA	TACCAAGATA	GCGGATATAT	TGCTCAAAAG	12780

304 CATCAATATC AGACTGACTG AGGTCAGTAT ACAAATCAGT TCTAAGAAGA TTAATCAAAT 12840 CCTCCTGACG AAAACGGTAA CGTTTTAAAG CTAAAATAGA CTCGACAAAC TGAGTCAAGG 12900 GATGATGAGC CATGGCTTCG CTTCTACCAA GATAAAAAGG AATCTGATAC TGGTCAAAAA 12960 TGGTTTTGAG AGATAACTGG TAAGAAGCTA CATCCCCCAA GAGAATACGA AAATGCTTGT 13020 AGCTCAGGTC TGAGTTCTCA TGTAATTTCT GACGAATACT ACGGGCTACT AGCTCCAACT 13080 CCTCCTTTTG CGTCAAACAA GACCAGATTT GTAAATTTTC ACGGTCTTTC TCATCGACAT 13140 CCAAAGCGAG TTCTGAAAAG TCATAAGAAG ACTCCAACAA ACGAGAGGCC TTGTCAAAAC 13200 TATCCATCTT CTCATGAGTT TGAGAACAGT CCTGAGCAGG CGTTTGGTAT TTAGAAGCCA 13260 GATGATGGAG AAATTTTACG CTGGCTTGGT AGAGATTGCC CTCGCTAAAA GGACTGGTAT 13320 AGGCTTTCTT ACTAGCATAA GCCCCGATAA CAATCTCAAC ACCTTTGCCG TGAAGTAAGT 13380 CCACAACCCG CTCTTCCTCA GCAGAAAAAC GAGTAAAGCC GTCAATGACC AAGGCGATTT 13440 GATTAAAATC ACTACTTACC TTGTCATTCT CAATAGCCTC AATCAAATGG GACAACTGAC 13500 TTTCCTGGGC TAACTGACCT TGATTAAGAT AGGCTGTTAC TTTCTCAAAA ATCAAGAGTA 13560 AATCCGCCCT CTTATCCTCA TCTGTTAAAT TCTCCAAGTC CAAAAAACTC ATCTGAGATT 13620 TGGTCATCTC ATGGTAAAGC TCAATTAACT GCTGGATCAA TTGAGGATCC TGCTTAATAG 13680 CGCCATAAAC ACGCAAGTCC TTGGGATCGA GTTCGGCAAG GCATTTGTAA AAGGCCAACC 13740 CAAGACCGAT ATCATCAAGA GTAGTTTTAG CTGGTAAATC ATTCAAGACC AGATAGCGAG 13800 CCATTTGAGC AAAGCGCGTG ACGGTAATCG AAAAAGAAGC CTGCTGGGAC AAGTATTCCA 13860 GCACGGCGCG TTCCTTTCA AAAGAAAGAG AGTTGGGGGC AATGTAGAAG ACCCGCTTGC 13920 CAGCTGCAAC TAGCTCTTCT GCCTCTCTG TTAGAATTTC TGTCAAAGAA GTCCGAATAT 13980 CAGTATAAAG TAATTTCATC TCAGCCTCGT TGGAATTTTT CATCACCCTA TATTATACCA 14040 TGATTAGCCT CGTAAATCTG TTAAAATATT TAGGCCATCC TTTCTTTCT TCATCATCTG 14100 CTAAATCTTA AATACTTAGC TTTACTTGTA TTAGATAGAA TAAGTCTGGC TACTGAAAAT 14160 CACATAATAA AAAAGCCTCG GTAACAAGGC TTTGAGTTTT ATGATTGTTT CTTAGGTACG 14220 GAATACACTT CAATGTGTTG TCCCAGTATC TTAATGTCGA CTGGTAGATT GTCTGATTTA 14280 TCGCCATCAA CATCGGACTC TAATTCGATA TCAGAAGAAG TTTTAATATT ACGTGCCTTT 14340 ATATATTCAA TATTCTTGAT AGAATGATTG AACTATAGTA AATTGAAACT ATAATAGTAC 14400 ACCGTGGATG CTAAAATATT TCTAGAAATT AATTTGATTT CCCTAATCAA GCTATTCGTA 14460 TCTTATTTCA ATCTACTATA ATAAAATGAA CCAAAAATAG TACACAATGT GGTATAATCT 14520 TCTTATGGCA TATTCAATAG ATTTTCGTAA AAAAGTTCTC TCTTATTGTG AGCGAACAGG 14580

305

TAGTATAACA	GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	14640
AAAGCTAAAA	GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAACAA	AACCAAGAAA	14700
AGTTGATAGA	GATAGACTTA	AAAACTATCT	TACTGACAAT	CCAGATGCTT	ATTTGACTGA	14760
AATAGCTTCT	GACTTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	14820
CTACACTCGA	AAAAAAGAAC	CACACCTACT	ATGAACAAGA	CCCAGAAAAA	GTAGCCTTAT	14880
TTCTTAAGAA	TTTTAATAGT	TTAAAGCACC	TAGCACCTGT	TTAGATTGAC	GAAACAGGAT	14940
TCGATACTTA	TTTTTATCGA	GAATATGGTC	GCTCATTAAA	AGGTCAGTTA	ATAAGAGGCA	15000
AAGTATCTGG	AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	AGGTCTAACA	AATGGTGAAT	15060
TAATCGCTCC	AATGACTTAC	GAAGAGACGA	TGACGAGCGA	CTTTTTTGAA	GCTTGGTTTC	15120
AGAAGTTTCT	CTTACCAACA	TTAACCACAC	CATCGGTTAT	TATAGTAAAA	TGAAATAAGA	15180
ATAGGGGGGG	GGGGGGAGGG	GGGGGGAGGG	AGA			15213

### (2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 6004 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTATTACCTG	AAACATTAAA	TTTAATTGGA	CATCCCGTTA	тсааттттат	AATATCATCA	60
AGATTTTTAT	TATCTGATTC	AGGAATTTTA	TCTGATATAA	CAACACCATT	TTCAAGATAG	120
TTCATTAAAT	TATTTGATTC	ACTAACATTA	GTGTTTTGAT	CTCCATCAAG	ССАААААТАА	180
TGGTTATCGG	AATCTAAATA	CGATGAGTTT	AAAATATTAT	TACAAATTAT	TTGATTTGCT	240
CCACCAGGAA	TATATCTCAC	TACTAAATTC	TGTTTAAGAT	TCTCACTACC	TGAATGAGTG	300
ATAACAAACT	CTAGAATATA	TTTAGCTAGT	CTATCTTCAA	САТАААТСАТ	CTTCCTAGAA	360
TGATACACAT	CACCTAATTC	AAAAAATGCA	TCCTGATAAT	CAATATTTTC	AATAACATCT	420
ACCTTTTCTC	CGTTTTTCAC	TAAAAGTTTC	ACGGCTTCTC	TAGGAAAATC	TTTTATAAGT	480
TGTGTAGAAT	GTGTAGTGAT	AATAATTTGA	TGTTTTTTAT	TTAAACACTC	TTGAAGTAAA	540
AACTCTTTAA	ATTTATAGAT	TGCACTCGGA	TGAAGTGAGA	TTTCAGGTTC	ATCTATTAAT	600
ATTAATGAAT	TTGATTGCGC	ATTTACTATA	TCATTTACTA	ACAAAATAAT	TCTAGCCTCA	660
ССТСТТССТС	CAAAAGCCTC	GGAATATTCT	TTTCCAGATT	TTTTCATCCA	AATAGTTTTG	720

			306			
GAAGCTTTTA	TATCATCACC	TTTTGAATAC	AACTTATGTG	TTAAAATTTG	AATGTCTGTA	780
TAAGATTCAT	CCATTATTTC	ACTAATAATT	TCACAAACTT	TATCATCAAC	TTTAACATTA	840
TCTATAACCA	TTTCCTTTTT	ATAACGCGTA	TAGCTACTTG	TATTATTCTT	ТААААТАТСА	900
GCAACTGGCT	TAGATCGTAA	TCTTATAAAA	TCTTGTTTAC	TACGTTGAGT	AGAAATTTTT	960
тааааттат	AGTGATAGAA	AAATAAATCA	AAAGCAGAAA	CATATTCTTT	ACAATCACAA	1020
AAGACAACAT	ТТТТТТСААТ	GCCATCCCAT	CTGTCTGTCG	AAGAACTTCC	AATATATTTA	1080
TTTTTGGGTA	ATCTTTCCAT	CTCATATTGT	TTTTGAGGAG	CATATGGTTC	CCAATAATCT	1140
AATCCTTTTT	TTGTTCCAGA	ACGGCCTTTA	AGAACTTCTA	CATTTCTAGA	AGCTTTAATG	1200
TTATAATATG	AATAGATTAA	ACATTGTTTC	CCATCCACTT	CATCTATTTG	ATCAACATTT	1260
GTACTAAACC	AATATTCAGA	CACACTTTTA	TTGGCTGGAG	AACCATATAA	AGCTTGTAAA	1320
ATTGAAGTTT	TATTTACTCC	ATATCTATTA	CAGACACCTC	AGGATTATTT	AACTTATAAG	1380
TTTTAACAGC	TACGGAATCA	ATTTCAACAG	CAACTTGAAC	ATCTATGCCT	GATTTTTTAA	1440
GGCCACTTGT	AGTGCCACCT	GCACCGTTAA	ATAAATCAAT	AGCAACAATT	TTCCCCATAG	1500
TATTCTCCTA	AAGTTTCTCC	TTTTTTTTTT	AACATTATCA	AATGTAAAAC	CCAACCCGAT	1560
AGGGTTAGGT	TTTTAACATC	ATTTCACCAA	CTTCTTCATC	TCATCAATAC	GTGCGACGGT	1620
CGCGTCATAT	TTAGCTTGGT	AGTCAGCTTG	TTTGTCGCAT	TCTTTTTGGA	CGACTTCTGG	1680
PTTGGCGTTG	GCTACGAAGC	GTTCGTTAGA	GAGTTTCTTA	CCAACCATGT	CCAGTTCTTT	1740
TTGCCATTTA	GCAAGTTCCT	TGTCGAGACG	GGCCAGTTCT	TCTTCAACAT	TGAGGAGATC	1800
GGCCAGTGGC	AGGTAGATTT	CTGCTCCTGT	GATGACACTT	GACATAGCCA	GTTCAGGTGC	1860
AGGGATGGTT	GATGCGATTT	CCAAGTGTTC	TGGATTTGTA	AAGCGTTTGA	TATAGTTGAC	1920
ATTGCTGTTA	AAGAAGGCTT	CCAAGTCGCT	ATCGCTTGTC	TTAACAAGGA	TGGTGATAGG	1980
CTTGCTTGGT	GCTACATTTA	CTTCCGCACG	CGCATTCCGA	ACAGCACGAA	TCAAGTCTTT	2040
GAGACTTTCC	ACACCAGTGT	GAGCCGCAAG	GTCTTCAAAG	GCTAGATTAA	CAGTTGGGTA	2100
IGCAGCTGTC	ACGATAGAAC	CTTCTGAGAT	TTGTCCAAAG	ATTTCCTCTG	TCACGAATGG	2160
CATGATTGGG	TGAAGGAGAC	GAAGGATCTT	GTCCAGCGTA	TAGAGGAGAA	CAGATCGAGT	2220
AATGACCTTA	TCGTCTTCAT	TGTCGCTGTA	TAGAACTTCC	TTGGTCAACT	CAACATACCA	2280
GTTGGCAAAT	TCTTCCCAGA	TGAAGTTGTA	AAGGATATGA	CCAGCCACAC	CAAACTCGAA	2340
CTTATCAAAG	TTTTCAGTAA	CTTTTGCAAT	GGTTTCGTTG	AGATTGTGGA	GAATCCAGCG	2400
GTCCGTCACA	TTACCAGCCT	CACCTGTTGC	AACTTTTGTG	ACATTGTCAT	GCGCCACATC	2460
~ A C C C M C A A A	COMMONMENT	MCAMCACCAM	3/13/C/C/3/C3/3	3.000000000 3.3.3	mmmmcmm v v m	2520

AAAGTTCCAT	GAAGCATCCA	TTTTCTCGTA	AGAGAAACGA	ACGTCTTGAC	CTGGTGCGGA	2580
ACCGTTTGAA	AGGAACCAAC	GAAGGGCATC	AGCACCGTAT	TTCTCGATGA	CATCCATTGG	2640
GTCAATCCCG	TTACCGAGAG	ATTTAGACAT	CTTGCGTCCT	TGCTCGTCAC	GGATGAGACC	2700
GTGGATAAGC	ACGTTTTGGA	ATGGCTGACG	ACCAGTAAAT	TCCAAGGACT	GGAAGATCAT	2760
ACGAGACACC	CAGAAGAAGA	TGATGTCGTA	ACCTGTTACC	AAGGTTGAAG	TTGGGAAATA	2820
ACGTTTAAAG	TCTTCTGAGT	CGACTTCAGG	CCAGCCCATG	GTTGAAAATG	GCCAGAGGGC	2880
AGAACTGAAC	CAAGTATCCA	AGACGTCTTC	GTCCTGAGTC	CATCCGTCAC	CTTCTGGAGC	2940
TTCTTCGCCG	ACATACATTT	CACCATCAGC	ATTGTACCAG	GCAGGGATTT	GGTGACCCCA	3000
CCAAAGCTGA	CGAGAGATAA	CCCAGTCGTG	GACATTTTCC	ATCCATTGAA	GGAAGGTATC	3060
GTTGAAACGA	GGTGGGTAGA	ATTCGACCTT	GTCCTCTGTG	TCTTGGTTAG	CAATGGCGTT	3120
CTTAGCCAAT	TGGTCCATCT	TGACGAACCA	TTGAGTAGAC	AAGCGTGGCT	CAACTACGAC	3180
ACCTGTACGT	TCTGAGTGAC	CAACACTGTG	GACACGTTTT	TCGATTTTGA	CAAGGCACC	3240
GATTTCTTCC	AACTTAGCAA	CGACTGCCTT	ACGAGCTTCA	AAACGATCCA	TGCCTGAAAA	3300
TTCAAAGGCA	AGCTCATTCA	TAGTTCCGTC	GTCGTTCATG	ACGTTGACTT	GTGGCAAGTT	3360
ATGACGTTGG	CCAACCAAGA	AGTCATTTGG	ATCGTGGGCA	GGTGTGATTT	TCACGACACC	3420
AGTACCAAGC	TCAGGATCTG	CGTGCTCATC	TCCAACGATT	GGGATGAGTT	TATTAGCGAT	3480
TGGAAGGATG	ACGTTTTTAC	CAATCAAGTC	CTTGTAGCGC	GGGTCTTCTG	GATTAACCGC	3540
AACCGCAACG	TCCCCAAACA	TAGTCTCAGG	ACGACTTGTA	GCAACTTCAA	GGGCGCGTGA	3600
ACCATCTTCC	AGCATGTAAT	TCATGTGGTA	GAAGGCACCT	TCTACATCCT	TGTGAATCAC	3660
CTCAATATCA	GAAAGGGCTG	TGCGAGCTGC	TGGGTCCCAG	TTGATGATAA	ACTCACCACG	3720
ATAGATCCAG	CCTTTCTTGT	AAAGGTTCAC	AAAGACCTTA	CGAACAGCTT	TTGACAAACC	3780
TTCATCAAGA	GTGAAACGCT	CACGAGAATA	GTCTACAGAA	AGCCCCATCT	TGCCCCATTG	3840
TTCCTTGATG	GTAGTGGCAT	ATTCGTCTTT	CCATTCCCAG	ACCTTCGTCA	AGAAAGACTC	3900
ACGACCTAGG	TCATAACGCG	TAATACCCTC	ACCACGTAAG	CGCTCCTCAA	CCTTAGCCTG	3960
AGTCGCAATA	CCAGCGTGGT	CCATACCTGG	AAGCCAAAGG	GTATCAAAGC	CTTGCATGCG	4020
TTTTTGACGG	ATGATGATAT	CCTGCAAAGT	CGTATCCCAA	GCGTGACCAA	GGTGAAGTTT	4080
CCCAGTTACG	TTTGGTGGTG	GAATCACGAT	TGAATAAGGC	TTAGCCTTTT	GATCGCCTGA	4140
AGGCTTGAAA	ACATCCGCAT	CAAGCCATTT	TTGGTAACGA	CCAGCCTCAA	CCTCGGCTGG	4200
ATTGTATTTA	GGTGAAAGTT	CTTTAGACAT	GTGTGTGTCC	TTTCTCTATT	TTGTTTATTT	4260

			308			
<b>ГАТ</b> ТТТБААТ	TTGCTTAGCA	GCTTCTTCTG	CAGACAAATT	CGTATTATTT	ATTTTAAAGT	432
AGTGGTGCAA	CTCATTCGGT	TGATGTTGGG	AATTTAATTG	AAGTGTTTCA	GCGGTCTCTA	438
AAATTTCTCT	TTCAGATACC	TCAATAŢGTC	CTTTTAAGGG	TTTGTGCTTT	AATCGATTCT	444
CCGTTCGATT	TCGACGTATG	CACTCTTCAA	GACTTGTTTC	CAATTCAACA	AACAGAATCT	450
CTTGATGAAA	GTTATCCAAT	AAATCCTGAA	TTTGCTTTAA	ATACATCAGC	TGGTACTGAT	456
rtgaaaaatc	AATTACGTCT	GTTAAAATTA	CTGATCGCTG	ATTTCTTGCA	CTTGCTCCAA	462
GGAAAGAAAA	GGTAATTCCA	CGAACAAATT	CCCACATCTC	CTCGGTATAA	TCCTGATAGA	468
rctctagtgc	AAAATCAATG	GCTTGATGGT	TATAAAATAG	GGTAGCATCC	GTCAGTCGAG	474
ATAATTCTTG	ACCAATGGTC	ATTTTTCCTG	ATGCTGGAGC	ACCAATGATG	AAAAGATGCA	480
PCAAATCACC	TCCCACTCAC	TCCTCAGCAA	GCCATATCTC	AAATCATCAC	AGCAGTTGCC	4860
<b>TTGAGCATCT</b>	TTGCGGTCTC	TTATGCGAGC	TTCGAGGGTA	AAGCCAAGCT	TTTCCGAGAC	4920
<b>PCGTTGACTT</b>	TGAAGGTTAT	ATCCAAAGCA	AGTTAGTTCA	ATCTTGTGAA	GACCAAGTTC	4986
TTAAAAGCT	AGATCAATCA	AGGAACACGC	TGCTTCTGGA	ACATAACCTC	GACCCCAATA	5040
GTCTGGGTGC	AAGGTATAGC	CAAGCTCTAG	CACATCATCC	GCATGAAGAT	GGTTGAAGTC	5100
AACAGAACCA	ATGACTTTAT	CGGTTCCTTT	GACGACAATC	CCATAGCCAG	CTGGGAGATT	5160
TTCCTTTTGA	GTACGCTCCG	GAAGAATGTG	CTCCAGATAA	TAAATCTCAT	CTTCCAAGAT	5220
CTTGACTGGA	GGAAAACCTG	CTGGATAGGC	GACCTCTGGC	AAACTAGCGT	AGGTATGGAT	5280
ATCCTCAGCA	TCCACCACTG	TGCGGACTCG	TAAAACGAGA	CGTTCTGTTT	CGATTTTATC	5340
rggcagctca	GTTCTTGCCA	TCCTTCTTCC	TCGCTTTTTT	GATGAAACTG	CCCTTCATAT	5400
CTACACGCTT	GTCCAGATAG	CGATAAACGC	GCTGATATCC	ATCTCCCATG	AAATAGGTTG	5460
GGCAAACAG	TTGATTTTTA	AAATGTCCCT	TTTCATCCAG	GAGTTCTGGG	GCAACAAGTC	5520
GCTCAAGAAT	CTTGGCAAAG	ATGTGGCAAA	TACCGTCTTC	CTCAACAATC	CTATCTACCC	5580
GACAATCTAA	AACAAGTGGA	CAGGCGTCTA	AAATAGGAGT	CTGAGTTCGT	TCAGAAATIT	5640
CATAATGCAC	TCCCAAACGT	TCCAATTTCT	CCTGATGACT	GATAAAACCA	GCCTGCTCCA	5700
CGCAAGCAT	AGAAGTTTCA	TCAGAAATAT	TCACAGTAAA	TTTTTGATAC	TGTTTGATCT	5760
CTCTGCGGC	ATTCTCTCTC	GCAACGACTC	CAATCACAAC	CCAATCTCCT	AGACTATAAG	5820
AGGAACTACA	GGTCGTGATG	TTATAGCCAA	AATTCTAATC	TTGATATCCT	ААААТАААА	5880
CAGGAAAACC	ATAATATAGT	TTACTTGTGT	TAAAAGATTG	CTTCATAACA	ACCCCCTTTG	5940
ACTAAGACGT	AAAAGAAAAG	CCCTGCCATC	TACATGACAG	GGACGAATGT	GTTTATCCGC	6000
RGGG						6004

PCT/US97/19588 WO 98/18931

309

## (2) INFORMATION FOR SEQ ID NO: 28:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5857 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

60	TTCTGGCAAG	TTTCGTCGCG	TCTGGGTTGA	TTCGTTGATT	ACGACAATGC	TGTAGAATTC
120	CATATTCAAT	CCTTTTATGG	GTGGTATAAT	AGTACACAAT	ААССАААААТ	CGAGTCAATG
180	CAGAAGCATC	GGTAGTATAA	TGAGCGAACA	TCTCTTATTG	AAAAAAGTTC	AGATTTTCGT
240	AAGAGAAAAC	TTAAAGCTAA	TTATGGCTGG	GTAATACCAT	САААТСТСАС	ACACGTTTTC
300	GAGATAGACT	AAAGTTGATA	AAAACCAAGA	TAAAAGGAAC	AACCACCAAG	AGGAGAGCTA
360	CTGACTTTGG	GAAATAGCTT	TTATTTGACT	ATCCAGATGC	CTTACTGACA	тааааастат
420	GAAAAAAGAA	GGCTACACTC	CAAAGCTATG	ACTATGCGCT	ACTACCATCC	CTGTCATCCA
480	ATTTTAATAG	TTTCTTAAGA	AGTAGCCTTA	ACCCAGAAAA	TATGAACAAG	ССАСАССТАС
540	ATTTTTATCG	TTCGATACTT	CGAAACAGGA	TTTAGATTGA	CTAACACCTG	TTTAAAGCAC
600	GAAGAAGATA	AAAGTATCTG	AATAAGAGGC	AAGGTCAGTT	CGCTCATTAA	AGAATATGGT
660	CAATGACTTA	TTAATCGCTC	AAATGGTGAG	CAGGTCTAAC	TCTTTGGTTG	TCAGAGGATT
720	TCTTACCAAC	CAGAAGTTTC	AGCTTGGTTT	ACTTTTTTGA	ATGACGAGCG	CGAAGAGACG
780	TGGGGAAGCT	TTCCATAGAA	TAATGCAAGA	TTATTATGGA	CCATCGGTTA	ATTAACCACA
840	ACTCACCTGA	CTTCCTCCCT	ACTTTTACCT	TTGGGTATAA	TGTGAAGAGT	AGAACTCTTG
900	AGGTATTACC	CACCTCAAAA	TATCAAAAAG	CATGGGCTCA	ATTGAGAAAA	GTACAATCCT
960	GACTATATAA	TGTTTCAATT	GTCTTGTTCT	AGGCTTTTTT	ACCTTTTATG	AAGTTGCAAT
1020	TTTGTTACCA	CGACCGTATT	GGCACAAAAG	GATAAGAATT	CGAAACAACC	ATTGTCTAAG
1080	GCAAACGAAC	TCTCCAGCGA	TGAGCAAGTC	AGTTCTATCT	AACAGTTCAT	ATACAGGAAA
1140	ACCACTATTA	CTTCAGACAC	CCCCTCACAT	AAACATCTGT	ACCAATTCCC	GCCTTAAAAA
1200	GGTCATCCCG	GGACAGGGTT	AAACAATCAC	ATTCCTTTAA	AGAAAATAAA	GCATCTTATC
1260	GATGAAGCAA	GAACATGAAA	ACGTCACAAA	ATCTACACCC	CACTACTTCC	ACTCTGAAGT
1320	CTTTTTTGCC	AGTTTTGTCC	тттттаааа	ATGAAAAAGA	GGATAAAGTT	TCAATGTACT
1380	TTGTTAAATC	GCTAGAAACG	AATCCGAGGG	CTTCGGATAA	AAAAATAGCC	CTCTAAATAC

			310			
AACGGCCGAA	CTTTTGAATT	TCATGGTTCG		GTTCACTGAA	CTATTTTATT	144
TTTTAAGGTT	ATCATAATAT	CAAATAGTTC	AATTAAATAC	GCTAAATTAC	TAATATACTT	150
TTTACCTTTT	ТСАТТСТААА	atgtaaagta	САААСААТТА	СААТАТАСТА	GAGGGGGAGT	156
AAAAAAGGTA	TTAAATCGAT	GAGTTCAGCA	GGCAAGAAAA	TAGCACCTTT	ACGGGTGCTA	1626
TTTTTTAATT	AACGCCACGT	TAACTTTTGA	TTGATGAATT	TTATTGTTTG	GCACTTCTTT	1680
CATTTCACGG	TAAACATCGA	TGAAATTCTT	TCCAACATTA	TTTTTGGAGT	TAACTGCATT	1740
татттттста	TTAATAACTT	TTTTAGTATC	GAAAGAATGG	TTTAAGAAAT	ССАТААСТАА	1800
CTCTCCTTTC	TCATCCTGTA	ATCAAGATTT	TTATCAATGT	CAAAATAGTA	ТТТТСТАТСА	1860
ATCCAAATTG	GTCCTTCTCC	TTTAGAAATA	GCAAGTACAT	CTACCGGACC	TCCTACTGTT	1920
TCAAGAGTGT	TGACAATTTT	TCTCTTAAAT	GAAGTTAATT	CAATAAATGT	TTTAGCTGTA	1980
CTCGCCATTT	CATTAAGTGG	TTGCATTCCA	ATAAGGTCTA	TTATAGGATT	TATATAATAT	2040
TTTTGCTGTA	TAGATGATAT	ATTTTCAAAT	ATATTCTCAA	TTTCATCACC	CAATCCATTT	2100
TTCTCCATAA	CTGATGATAC	TTGCTCTGCG	ATATATACAT	TTAAGTTAGG	ATCTATACCA	2160
TTCATAATCG	TCTCAACCAT	CTCTGACTGT	GCAAAAGGGA	TTATATGACA	AGTTTTATGA	2220
TGATTTATCA	CACTTTCATT	AATAACTTTC	CAAATTAATC	GTTTAGAAAA	AATTCCATAT	2280
AATTCAATTT	GTCTTATAGA	TGGAAATATC	TCGTCTGTAC	CATAACCTGC	TATAACTAAT	2340
CCAGTTATGT	TTGTTGAGTC	ATATCCAATG	AAAATCGCTT	TATATAAAGA	TTTAGCAATA	2400
ACTTCAACCT	CATCATCAGT	ATGAGGAAAG	GATTTAAAAA	CATCGTCTAC	AATGCTTTTT	2460
АТТААСТСТА	ACTCAGCTTC	AAAAAATTCA	AAATTACTTT	CAGCTTCTAC	TTTTGAAATT	2520
ICTAAACTAA	AATTAGTTAT	AGCATTTAAT	AAAATTTTAT	TAAAATCATC	TAGAGTGATG	2580
GTTTCACCAT	TAGAAACTCT	TAAATCAGCT	GTTTCTTGCG	CTTCATAGGC	AATGCTGTCC	2640
ААААТАСТТС	TTGTACTTCT	GACAATATAA	TTTCTTAATA	AATCCTCAAC	TTGTAGATGT	2700
TTAAAGGAAA	TTAAAAATTC	.TATTAGCTTT	TCAACGTATT	GGGCAGTATT	АТСТААТААА	2760
PCTGTGCCAA	TAGCCTGCTT	AAACTCATTT	AAAATTACCT	CCCACGGAAT	TTCCATAAAC	2820
GAAGCGTTCC	CATATATCAT	GATCCCCACG	GAATGTTCTT	TTGATAAAGT	GAATAATTTT	2880
CGGGCGCTAT	TAAAAACTTT	TGAATTTTTC	CCGTCTGATA	AGGTTACAGC	GCTATCAGAA	2940
GCCAATACAA	CACCATTTTT	ATTTAATATT	CCAATTTCTG	CTGTCAAAAT	ATCACCTAAA	3000
CTTTCTAAAC	CTGCTCATGC	TCTAATGGTA	CAACAGCTAA	GGTCTTACCA	AGACTTGCCA	3060
ACACTTTTAA	TACTGTATCA	AGTTGTGGGC	TTGTCTTTCC	TGTTTCCATT	CTAGCGATAA	3120
200000000000000000000000000000000000000	****	a momoomoma	CMM/MCM/MCC/MC			3400

TAGCCTCGAT AAGCTCACTC ATGATAGCCA CGCGCATATC ACTTTCCAAA ATTTCCTCTT 3240 TGCTGAATAA TTCAGCTCTT ACATCTTTCC AGTTACTACC AATAGCATTA TTTTTCATTG 3300 TCTAAACCTC TTTCTTTAA ATCTGCAAGT TCACGTTTAG CTTGCTCAAT CTCTCTTTTG 3360 GGTGTTTTCT GTGTCCTTTT CATAAAATGA TGCAGTAAAA CAAAACTACC ATCCATCCAA 3420 GCAACAAATA AAATTCTATC TCTAAGTGGT CTCAGCTCCC AAATTTCAGC ATCTAAATGC 3480 TTAATATATG GTTCGCCTGC GCGTGTTCCA TGTTGGCTTA ACAACTCAAT ATAATCATTA 3540 ATTTTATTAA GCTTAATTCT GCTATCTTTC CCTTTTTTAC TGGTAAGCTC TCGCATATAA 3600 TCAAAAACAG GCTCATTGCC GTTTTTATCC TTGTAAAAAT AGATATTATG CACTATTAAC 3660 ACCTCTTCCT AATAACAATT ATAACCTAAA AGTTATTGTT TGTAAATACT TTTAAGTTAT 3720 TAAAATAAAA AGCACCTAGT TTCCTAGATG CTAGCACAAT GACACGGATT CGCACCGTGG 3780 CTACCTCTAT CAAGGTGTAC TCCTTCTATA CTATCCCTTG TGCTTTAGAA TATTATACCA 3840 CACAATCAAC TAGATACCTA CCATCTCATG ATATACCCCC ATTTTGGGCA AGGGTACAAC 3900 GCTAAAATAC AAATCAGAAT AGATATTAAA CCACTTATTT AACTTATCAT AAGCTGGTGA 3960 TTGACTGATA AATAATATCC GCTGACAAGC TCCGATAACA TTCATGTGAT TGTACACATA 4020 AACCTCTTTT ACAGCCTCTA AAATGTCAGC CTCACTTGTT TGTACCCTAA TATCTGTTAT 4080 CTGCTTGATA GTTGCGTATT TTTGATAAGC TAGCATATCT TGATTTTTAG CAGCATCAAA 4140 CATTTTACGC TCAAGGACAC TATACTTAGG TTGTTCTTTA TCTCGCATGA AATACCACTT 4200 GAGCCATAAA ATCTTTCTC GGTGTATTAC AGAAATACGC TCAATTTTCT TCTTTGTCAT 4260 TGCTACCTCC TAAATCATCA ATTTAACAAT TCTAACCACT CACTTTTAGA AATAGTTGCA 4320 TAGATCTTGT TCGATGTATG ATACAAAGGT TCTAAATCTT TTTCCACCCT AATATAGTTC 4380 ATCTTATCCT CATGAGTAGG AAAGTATAGT ATTTCCGTTT CATCCTCGTT TAGGATACA 4440 TTGCACCAAT CATCAATAAT AACTGGCACT TCCCACTCAC GCCATTTTTT AAGGTTTTCT 4500 AAAAGTTCAT TATCACTAAA TAGCTCGCCA TCTATTTGGA AAAATTCCCC TAAGTCATTG 4560 TTTCCTTCAA CAATAATAAA CTCTGGCATA TTTCTATTAC TTAATAACTC CTTGAGTTCT 4620 TGTAACTCTT TGATTTCCTT TAGATACTTC CTCAATTTCC AACCTCAATT CTTCAATCTG 4680 CCTTACTACT CCAAAAATTT CATGGGTCTT ATAAGATTGT TCAAGTATAG CCTTTGCTGC 4740 TTGAGTTCTT ATAAACGGGT TGACCTTACT GTCCATCATA ATATCATTGA GTACAGAAAC 4800 AGCGTTAGAT GATGCTAAAT AAAGCATTTG AGTTGTTTTA TCCATCATCT CATCTTGCTT 4860 TATCCTCAAT GTCTTTTTAA CCGCTGCAAC TTTTAGATAC TTATGACCTG TTGCGCGTGA 4920

312 TACCCCTGCT TTTTGACATG CTTTGTCTAT CGTTGGCTCG GTAAGCATGG CATCTATGAA 4980 TTTAATTTGC TTGGACGTAA GGTTATCATT TTCATTTCCT GCCATCTATT ACCTCCTCAT 5040 TATCAAAATA AAGGGTTGCC CCTTTATTTC CCTATGCTAG ATAATTCTGC AATTCTGCAT 5100 CCATTGCCTC TGAATTGCCC TCAACAATCA TTTCATGCTG TACTAAATCA ATCTTATCTC 5160 CGTTAATAAG TAAACCACCG TGGAAATAAT CAATTTTTCT ATCAAGGAAA TGTACTAGCT 5220 TTTCAAGGCG TTGCTGTTGG CTGAATTGCT CCATGTCAAT TTCGATATAA GCAAGGGTAG 5280 TATCATTATC CATAATATCT TCTAATTTTC TAAGAGCTAG AGGTTTATTT TTATATTTTTT 5340 CTAGGTATTC TCTCATTTCT GCCACTGTTA ATTTGATACT AGATAATAAA CTTAGTTCAG 5400 CTGCATCATC TGCTGTAATA GGCTCTTCTT TTGATTCATG GTTTGCTAGT TCAGCATTTT 5460 TCTCTTTTC TAGTTGCTGA TACAATAGCT GAGCAGTATT TTGGGAATAG TTTTCGCCCT 5520 CTTTTTTATA TTTTAAAAGT TCTTGCTCTG CATACACTTT CCCGATAATC ACTTCCTTAT . 5580 AAACTAATTG CCCATCTTGA GCTTTTAGCT TAATACTCCC ATGCTCTGGA ATTTCAATAT 5640 ACTTAATTAT ACCATTTTTT GAGTATAAAA CAAAGCCTTT CTCCATCATT TTTAATAATT 5700 TATCATCCTT GTTTTCAGTC ATGCTTTTCT CCTTTATTTC ATTTTATTAT AATCTGAATA 5760 CCCCTAGTCT ATTTATTCA CTAGGTTTTT AGGGTTCGTA TGCTAAAATA CTACCCTTTT 5820 TGTGTACCTT ATGGCTGACT TTTCAAATTG GTTAGTT 5857 (2) INFORMATION FOR SEQ ID NO: 29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10254 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

AAAATGATAG	CAGGAGAGTT	TTCCCGTCCA	TCAGACCCAG	AACTGAGAGC	CTTAGCTCAG	60
GCTTCTCGCC	AAAAACAGGC	CGCCTTTAAC	AAGGAAGAGA	ACCCCTTGAA	GGGAGCCGAA	120
ATCATCAAGA	CTTGGTTTGC	CTCAACCGGG	АААААТСТТТ	ACATCAACAC	TCGCTTGATG	180
GTGGACTACG	GTGTCAACAT	CCATCTAGGG	GAAAATTTTT	ATTCTAATTG	GAACTTGACC	240
ATGCTGGATA	TCTGTCCCAT	TCGTATCGGG	GACAATGCTA	TGATTGGTCC	TAATTGTCAG	300
TTTTTGACAC	CCCTCCATCC	ACTAGATCCA	CAGGAACGCA	ATTCAGGTAT	CGAGTACGGA	360
AAGCCTATCA	CAATCGGAGA	TAATTTCTGG	ACTGGTGGTG	GCGTCATTGT	CCTTCCTGGA	420
GTGACACTGG	GAAATAATGT	CGTTGCAGGA	GCAGGGGCAG	TAATTACCAA	ATCTTTTGGC	480

GACAACGTTC	TCCTAGCTGG	CAATCCTGCC	GCGTGATTA	AGGAAATACC	TGTTAAATAG	54
AAGTAAAAA	GAACAGCTGG	GGTTGTTTCT	TTTTTGTAGG	TTTCATCATT	TTTTACCCAG	60
TTCACATTT#	CCTACTCTAT	CTCTTAGCAA	GTCTGTTTCA	TTAAGCAAGT	TCAAAGCATC	66
TCGTAAGTGG	GATGTTTTC	TCCTCAGTTC	: ATCAGCTTCC	TCCTTGACAC	TCGGTCAGAT	72
TTTGATACAA	TAGTACAAAA	TTAGAGGAGG	CAGGCTATGA	TTCAGAAACA	TGCGATTCCT	78
ATTTTAGAGT	TTGATGACAA	TCCTCAGGCG	GTTATCATGO	CCAATCACGA	GGGGCTGGAC	84
TTGCAGTTGC	CAAAGAAGTG	TGTTTATGCA	TTTTTAGGTG	AGGAGATTGA	CCGCTATGCG	90
AGGGAAGTAG	GGGCGAACTG	TGTTGGCGAA	TTTGTTTCTG	CCACCAAGAC	CTATCCAGTT	96
TATGTCGTGA	ACTACAAGGA	CGAGGAGGTC	TGTCTGGCTC	AGGCTCCTGT	TGGCTCCGCT	102
CCAGCAGCCC	AGTTTATGGA	TTGGTTGATT	GGCTATGGTG	TGGAGCAGAT	TATCTCTACT	108
GGGACCTGTG	GTGTCCTAGC	TGATATAGAG	GAAAATGCCT	TTCTAGTCCC	TGTTCGCGCT	114
CTGCGAGATG	AAGGAGCCAG	TTACCACTAT	GTGGCACCTT	GTCGTTATAT	GGAAATGCAG	120
CCAGAGGCTA	TTGCTGCTAT	TGAGGAAGTT	TTGGAAGACA	GAGGGATTCC	TTATGAAGAA	1260
GTCATGACCT	GGACGACAGA	CGGTTTTTAC	CGAGAAACGG	CTGAAAAGGT	GGCTTATCGT	1320
AAGGAAGAAG	GCTGTGCTGT	TGTGGAGATG	GAGTGTTCTG	CTCTTGCGGC	AGTAGCTCAA	1380
rtgcgtgggg	TTCTCTGGGG	TGAATTGTTG	TTCACAGCAG	ATTCTCTAGC	GGACTTGGAC	1440
CAGTACGACA	GTCGTGACTG	GGGCTCGGAA	GCTTTTAATA	AGGCGCTAGA	ACTGAGTTTA	1500
GCAAGTGTTC	ACCACCTTTA	GTTGTACTGG	CAAAGGATTT	GTTTTATCAT	AAAATGTCTA	1560
GCTCATACTT	TTCAAAAATA	TGTTTAAACG	AGGTCACCTT	CCTCTTGTCC	TAGGCATGTT	1620
GAGGTTGGGA	AAAATCTTTA	AAATCAGAAA	AACGTATCAT	ATCAGGTGAT	GAAAACTTTG	. 1680
ACACTATGCG	TTTTATGTCG	ATAAGATTTA	GAGTGAGATG	AAATGATACT	CTTCGAAAAT	1740
CTCTTCAAAC	CAGGTCAGCT	TCACCTTGCC	GTAGGTATAT	GTTACTGACT	TCGTCAGTCT	1800
PATCCGGCAA	CCTCAAAACG	GTGTTTTGAG	CTGACTTCGT	CAGTTCTATT	TGCAACCTCA	1860
\AACAGTGTT	TTGAGCAACC	TGTGACTAGC	TTTCTAATCG	ATGCCTTGGT	TTTCATTGCC	1920
PATAATCAAA	AAGAGAAATT	TTCTCCTGAA	AAGCATATAG	AGTAGCTGGC	GTTAAAAGCT	1980
CTGTCTTGC	TTTTTTGACC	TATAGTCACA	TCTATCAAGT	ATTGTTCTTG	CCTAAGCTAT	2040
CAATAAAAAG	GTGGCATTTT	TTAGGCTTGG	TGTTAGTAGA	TTTTGCCTTA	тсстатстаа	2100
FTCATTTCGA	ACTTTTTATG	GTACAATGGA	AACATGTTAT	TCAAATTATC	TAAGGAAAAA	2160
TAGAGCTAG	GCTTATCTCG	TTTATCGCCA	GCCCGTCGTA	անակարականություն	արարգությունը Մարարգույան	2220

314 GTCATTTTAC TAGGCTCTCT TCTTTTGAGC TTGCCCTTTG TCCAAGTTGA AAGCTCACGA 2280 GCGACTTATT TTGATCATCT TTTCACTGCT GTCTCTGCAG TCTGTGTGAC GGGTCTCTCA 2340 ACCCTTCCAG TAGCTCACAC CTATAATATC TGGGGTCAAA TAATCTGTTT GCTCTTGATT 2400 CAGATCGGTG GTCTAGGGCT CATGACCTTT ATTGGGGTTT TCTATATCCA GAGCAAGCAA 2460 AAGCTTAGTC TTCGTAGCCG TGCAACTATT CAGGATAGTT TTAGTTATGG AGAAACTCGA 2520 TCTTTGAGAA AGTTTGTCTA TTCTATTTTT CTCACGACCT TTTTGGTTGA GAGCTTGGGA 2580 GCTATTTTGC TTAGTTTTCG CCTTATTCCT CAACTTGGCT GGGGACGTGG TCTTTTTAGT 2640 TCCATTTTTC TAGCGATCTC AGCCTTCTGT AATGCCGGTT TTGATAATTT AGGGAGCACC 2700 AGTTTATTTG CTTTTCAGAC CGATTTACTG GTCAATCTGG TGATTGCAGG CTTGATTATT 2760 ACAGGCGGCC TTGGTTTTAT GGTCTGGTTT GATTTGGCTG GTCATGTAGG AAGAAAGAAA 2820 AAAGGACGTC TGCACTTTCA TACGAAGCTT GTACTATTAT TGACTATAGG TTTGTTGTTA 2880 TTTGGAACAG CAACTACTCT CTTTCTTGAG TGGAACAATG CTGGAACGAT TGGCAATCTC 2940 CCTGTTGCCG ATAAGGTTTT AGTTAGCTTT TTTCAAACAG TGACGATGCG AACAGCTGGC 3000 TTTTCTACGA TAGATTATAC TCAGGCTCAT CCTGTGACTC TTTTGATTTA TATCTTACAG 3060 ATGTTTCTAG GTGGGGCACC TGGAGGAACA GCTGGGGGAC TCAAGATTAC GACATTTTTT 3120 GTCCTCTTGG TCTTTGCACG AAGTGAGCTT CTAGGCTTGC CTCATGCCAA TGTTGCGAGA 3180 CGAACGATCG CGCCGCGAAC GGTTCAAAAA TCCTTTAGTG TCTTTATTAT CTTTTTGATG 3240 AGCTTCTTGA TAGGATTGAT TCTGCTAGGG ATAACAGCCA AAGGCAATCC TCCCTTTATC 3300 CACCTCGTAT TTGAAACCAT TTCAGCTCTT AGTACAGTTG GTGTAACGGC AAATCTGACT 3360 CCTGACCTTG GGAAATTGGC TCTCAGTGTT ATCATGCCAC TTATGTTTAT GGGACGAATT 3420 GGTCCCTTGA CCTTGTTTGT TAGCTTGGCA GATTACCATC CAGAAAAGAA AGATATGATT 3480 CACTATATGA AAGCAGATAT TAGTATTGGT TAAGAAAGGA AAGAGCATGT CAGATCGTAC 3540 GATTGGAATT TTGGGCTTGG GAATTTTTGG GAGCAGTGTC CTAGCTGCCC TAGCCAAGCA 3600 GGATATGAAT ATTATCGCTA TTGATGACCA CGCAGAGCGC ATCAATCAGT TTGAGCCAGT 3660 TTTGGCGCGT GGAGTGATTG GTGACATCAC AGATGAAGAA TTATTGAGAT CAGCAGGGAT 3720 TGATACCTGC GATACCGTTG TAGTCGCGAC AGGTGAAAAT CTGGAGTCGA GTGTGCTTGC 3780 GGTTATGCAC TGTAAGAGTT TGGGGGTACC GACTGTTATT GCTAAGGTCA AAAGTCAGAC 3840 CGCTAAGAAA GTGCTAGAAA AGATTGGAGC TGACTCGGTT ATCTCGCCAG AGTATGAAAT 3900 GGGGCAGTCT CTAGCACAGA CCATTCTTTT CCATAATAGT GTTGATGTCT TTCAGTTGGA 3960 TAAAAATGTG TCTATCGTGG AGATGAAAAT TCCTCAGTCT TGGGCAGGTC AAAGTCTGAG 4020

TA	AATTAGAC	CTCCGTGGCA	AATACAATCT	GAATATTTTG	GGTTTCCGAG	AGCAGGAAAA	408
TT	CCCATTG	GATGTTGAAT	TTGGACCAGA	TGACCTCTTG	AAAGCAGATA	CCTATATTTT	414
GG	CAGTCATC	AACAACCAGT	ATTTGGATAC	CCTAGTAGCA	TTGAATTCGT	AAAGAGGGAT	420
GAG	CCCTCTT	TTTTGATGCC	TAAGATGGCA	AATAGAGACA	GAAGCCCCTT	GTCTTCTAGT	426
AAA	AAGTTCTT	CAAAGGCTGG	ACTTTATGGT	AAAATAGAAA	GAAGTGACAA	GAGAGAGTAA	432
TAC	CTCAATGA	AAATCAAAGA	TCAAACTAGG	AAACTAGCTA	CGGGCTGCTC	AAAACACTGT	438
rt7	rgaggttg	CAGATAGAAC	TGACGAAGTC	AGTAACATCT	ATACGGCAAG	GCGACGTTGA	444
CGC	CGGTTTGA	AGAGATTTTC	GAAGAGTATA	AGAAAAAATC	AGTCCCCTAA	AGGAGTAGAT	450
ra7	rgaagtta	TTGTCTATCG	CAATTTCTAG	CTATAATGCA	GCAGCCTATC	TTCATTACTG	456
rgi	rggagtcg	CTAGTGATTG	GTGGTGAGCA	AGTTGGGATT	TTGATTATCA	ATGACGGGTC	4620
rc <i>i</i>	AGGATCAG	ACTCAGGAAA	TCGCTGAGTG	TTTAGCTAGC	AAGTATCCTA	ATATCGTTAG	4686
AGC	CATCTAT	CAGGAAAATA	AATGCCATGG	CGGTGCGGTC	AATCGTGGCT	TGGTAGAGGC	4740
ГТС	TGGGCGC	TATTTTAAAG	TAGTTGACAG	TGATGACTGG	GTGGATCCTC	GTGCCTACTT	4800
GAA	AATTCTT	GAAACCTTGC	AGGAACTTGA	GAGCAAAGGT	CAAGAGGTGG	ATGTCTTTGT	4860
GAC	CAATTTT	GTCTATGAAA	AGGAAGGGCA	GTCTCGTAAG	AAGAGTATGA	GTTACGATTC	4920
4GT	CTTGCCT	GTTCGGCAGA	TTTTTGGCTG	GGACCAGGTC	GGAAATTTCT	CCAAAGGCCA	4980
3TA	TACCATG	ATGCACTCGC	TGATTTATCG	GACAGATTTG	TTGCGTGCTA	GCCAGTTCTA	5040
ACI	GCCTGAA	CATACTTTTT	ATGTCGATAA	TCTCTTTGTC	TTTACGCCCC	TTCAGCAGGT	5100
CAA	GACCATG	TACTATCTGC	CTGTCGATTT	CTATCGTTAT	TTGATTGGGC	GTGAGGACCA	5160
STC	TGTCAAT	GAGCAAGTGA	TGATTAAGTG	CATTGACCAG	CAACTCAAGG	TCAATCGACT	5220
TT	GATAGAC	CAACTTGATT	TGTCCCAAGT	GAGTCATCCC	AAAATGCGAG	AATATCTGCT	5280
SAA	TCATATT	GAACTCACGA	CGGTGATTTC	CAGTACCCTG	CTCAACCGAT	CTGGAACAGC	5340
GA	GCATCTG	GCAAAAAAAC	GCCAATTGTG	GACCTATATT	CAGCAGAAAA	ATCCAGAAGT	5400
TT	TCAGGCT	ATTCGTAAGA	CCATGTTGAG	CCGTTTGACC	AAACATTCTG	TCTTGCCAGA	5460
rcg	CAAACTG	TCCAATGTCG	TCTATCAAAT	CACCAAATCT	GTTTATGGAT	TTAATTAATA	5520
r <b>a</b> .a	GTGTTTT	ATAAGAGGGA	TTTAAGAAAA	ATTTTAACTT	TTTCTTAGTC	CTTTTTAATT	5580
CA	GGAGA <b>T</b> T	ATACTAGAGT	САТСАААТАА	AGAAAGACTC	TAAGGAGAAT	CCTATGAAAT	5640
CA	ATCCAAA	TCAAAGATAT	ACTCGTTGGT	CTATTCGCCG	TCTCAGTGTC	GGTGTTGCCT	5700
AG	TTGTTGT	GGCTAGTGGC	TTCTTTGTCC	TAGTTGGTCA	GCCAAGTTCT	GTACGTGCCG	5760

316 ATGGGCTCAA TCCAACCCCA GGTCAAGTCT TACCTGAAGA GACATCGGGA ACGAAAGAGG 5820 GTGACTTATC AGAAAAACCA GGAGACACCG TTCTCACTCA AGCGAAACCT GAGGGCGTTA 5880 CTGGAAATAC GAATTCACTT CCGACACCTA CAGAAAGAAC TGAAGTGAGC GAGGAAACAA 5940 GCCCTTCTAG TCTGGATACA CTTTTTGAAA AAGATGAAGA AGCTCAAAAA AATCCAGAGC 6000 TAACAGATGT CTTAAAAGAA ACTGTAGATA CAGCTGATGT GGATGGGACA CAAGCAAGTC 6060 CAGCAGAAAC TACTCCTGAA CAAGTAAAAG GTGGAGTGAA AGAAAATACA AAAGACAGCA 6120 TCGATGTTCC TGCTGCTTAT CTTGAAAAAG CTGAAGGGAA AGGTCCTTTC ACTGCCGGTG 6180 TAAACCAAGT AATTCCTTAT GAACTATTCG CTGGTGATGG TATGTTAACT CGTCTATTAC 6240 TAAAAGCTTC GGATAATGCT CCTTGGTCTG ACAATGGTAC TGCTAAAAAT CCTGCTTTAC 6300 CTCCTCTTGA AGGATTAACA AAAGGGAAAT ACTTCTATGA AGTAGACTTA AATGGCAATA 6360 CTGTTGGTAA ACAAGGTCAA GCTTTAATTG ATCAACTTCG CGCTAATGGT ACTCAAACTT 6420 ATAAAGCTAC TGTTAAAGTT TACGGAAATA AAGACGGTAA AGCTGACTTG ACTAATCTAG 6480 TTGCTACTAA AAATGTAGAC ATCAACATCA ATGGATTAGT TGCTAAAGAA ACAGTTCAAA 6540 AAGCCGTTGC AGACAACGTT AAAGACAGTA TCGATGTTCC AGCAGCCTAC CTAGAAAAAG 6600 CCAAGGGTGA AGGTCCATTC ACAGCAGGTG TCAACCATGT GATTCCATAC GAACTCTTCG 6660 CAGGTGATGG CATGTTGACT CGTCTCTTGC TCAAGGCATC TGACAAGGCA CCATGGTCAG 6720 ATAACGGCGA CGCTAAAAAC CCAGCCCTAT CTCCACTAGG CGAAAACGTG AAGACCAAAG 6780 GTCAATACTT CTATCAAGTA GCCTTGGACG GAAATGTAGC TGGCAAAGAA AAACAAGCGC 6840 TCATTGACCA GTTCCGAGCA AAYGGTACTC AAACTTACAG CGCTACAGTC AATGTCTATG 6900 GTAACAAAGA CGGTAAACCA GACTTGGACA ACATCGTAGC AACTAAAAAA GTCACTATTA 6960 ACATAAACGG TTTAATTTCT AAAGAAACAG TTCAAAAAGC CGTTGCAGAC AACGTTAAAG 7020 ACAGTATCGA TGTTCCAGCA GCCTACCTAG AAAAAGCCAA GGGTGAAGGT CCATTCACAG 7080 CAGGTGTCAA CCATGTGATT CCATACGAAC TCTTCGCAGG TGATGGTATG TTGACTCGTC 7140 TCTTGCTCAA GGCATCTGAC AAGGCACCAT GGTCAGATAA CGGTGACGCT AAAAACCCAG 7200 CCCTATCTCC ACTAGGTGAA AACGTGAAGA CCAAAGGTCA ATACTTCTAT CAATTAGCCT 7260 TGGACGGAAA TGTAGCTGGC AAAGAAAAAC AAGCGCTCAT TGACCAGTTC CGAGCAAACG 7320 GTACTCAAAC TTACAGCGCT ACAGTCAATG TCTATGGTAA CAAAGACGGT AAACCAGACT 7380 TGGACAACAT CGTAGCAACT AAAAAAGTCA CTATTAACAT AAACGGTTTA ATTTCTAAAG 7440 AAACAGTTCA AAAAGCCGTT GCAGACAACG TTAAGGACAG TATCGATGTT CCAGCAGCCT 7500 ACCTAGAAAA GGCCAAGGGT GAAGGTCCAT TCACAGCAGG TGTCAACCAT GTGATTCCAT 7560

ACGAACTCTT	CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	7620
CACCATGGTC	AGATAACGGC	GACGCTAAAA	ACCCAGCTCT	ATCTCCACTA	GGTGAAAACG	7680
TGAAGACCAA	AGGTCAATAC	TTCTATCAAG	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	7740
AAAAACAAGC	GCTCATTGAC	CAGTTCCGAG	CAAACGGTAC	TCAAACTTAC	AGCGCTACAG	7800
TCAATGTCTA	TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	7860
AAGTCACTAT	TAAGATAAAT	GTTAAAGAAA	CATCAGACAC	AGCAAATGGT	TCATTATCAC	7920
CTTCTAACTC	TGGTTCTGGC	GTGACTCCGA	TGAATCACAA	TCATGCTACA	GGTACTACAG	7980
ATAGCATGCC	TGCTGACACC	ATGACAAGTT	CTACCAACAC	GATGGCAGGT	GAAAACATGG	8040
CTGCTTCTGC	TAACAAGATG	TCTGATACGA	TGATGTCAGA	GGATAAAGCT	ATGCTACCAA	8100
ATACTGGTGA	GACTCAAACA	TCAATGGCAA	GTATTGGTTT	CCTTGGGCTT	GCGCTTGCAG	8160
GTTTACTCGG	TGGTCTAGGT	TTGAAAAACA	AAAAAGAAGA	AAACTAATCA	GCTAAGGAAA	8220
TAAATGATGG	ATAGTGGGCT	GACTAAGATT	AGTTTAACAA	CTCAATCAGC	AATCAGGACT	8280
TTCTTTCAAT	AGCAGATTAA	AATCATCGTA	AAACAATAAA	AATAGTGTTA	TACTTAAAGC	8340
AGTATAGCAC	TGTTTTTATC	AAAGGAGAGA	CAGATGGGAA	AGACAATTTT	ACTCGTTGAC	8400
GACGAGGTAG	AAATCACAGA	TATTCATCAG	AGATACTTAA	TTCAGGCAGG	TTATCAGGTC	8460
TTGGTAGCCC	ATGATGGACT	GGAAGCGCTA	GAGCTGTTCA	AGAAAAAACC	GATTGATTTG	8520
ATTATCACAG	ATGTCATGAT'	GCCTCGGATG	GATGGTTATG	ATTTAATCAG	TGAGGTTCAA	8580
TACTTATCAC	CAGAGCAGCC	TTTCCTATTT	ATTACTGCTA	AGACCAGTGA	ACAGGACAAG	8640
ATTTACGGCC	TGAGCTTGGG	AGCAGATGAT	TTTATTGCTA	AGCCTTTTAG	CCCACGTGAG	8700
CTGGTTTTGC	GTGTCCACAA	TATTTTGCGC	CGCCTTCATC	GTGGGGGCGA	AACAGAGCTG	8760
ATTTCCCTTG	GCAATCTAAA	AATGAATCAT	AGTAGTCATG	AAGTTCAAAT	AGGAGAAGAA	8820
ATGCTGGATT	TAACTGTTAA	ATCATTTGAA	TTGCTGTGGA	TTTTAGCTAG	TAATCCAGAG	8880
CGAGTTTTCT	CCAAGACAGA	CCTCTATGAA	AAGATCTGGA	AAGAAGACTA	CGTGGATGAC	8940
ACCAATACCT	TGAATGTGCA	TATCCATGCT	CTTCGACAGG	AGCTGGCAAA	ATATAGTAGT	9000
GACCAAACTC	CCACTATTAA	GACAGTTTGG	GGGTTGGGAT	ATAAGATAGA	GAAACCGAGA	9060
GGACAAACAT	GAAACTAAAA	AGTTATATTT	TGGTTGGATA	TATTATTTCA	ACCCTCTTAA	9120
CCATTTTGGT	TGTTTTTTGG	GCTGTTCAAA	AAATGCTGAT	TGCGAAAGGC	GAGATTTACT	9180
TTTTGCTTGG	GATGACCATC	GTTGCCAGCC	TTGTCGGTGC	TGGGATTAGT	CTCTTTCTCC	9240
TATTGCCAGT	CTTTACGTCG	TTGGGCAAAC	TCAAGGAGCA	TGCCAAGCGG	GTAGCGGCCA	9300

318 AGGATTTTCC TTCAAATTTG GAGGTTCAAG GTCCTGTAGA ATTTCAGCAA TTAGGGCAAA 9360 CTTTTAATGA GATGTCCCAT GATTTGCAGG TAAGCTTTGA TTCCTTGGAA GAAAGCGAAC 9420 GAGAAAAGGG CTTGATGATT GCCCAGTTGT CGCATGATAT TAAGACTCCT ATCACTTCGA 9480 TCCAAGCGAC GGTAGAAGGG ATTTTGGATG GGATTATCAA GGAGTCGGAG CAAGCTCATT 9540 ATCTAGCAAC CATTGGACGC CAGACGGAGA GGCTCAATAA ACTGGTTGAG GAGTTGAATT 9600 TTTTGACCCT AAACACAGCT AGAAATCAGG TGGAAACTAC CAGTAAAGAC AGTATTTTTC 9660 TGGACAAGCT CTTAATTGAG TGCATGAGTG AATTTCAGTT TTTGATTGAG CAGGAGAGAA 9720 GAGATGTCCA CTTGCAGGTA ATCCCAGAGT CTGCCCGGAT TGAGGGAGAT TATGCTAAGC 9780 TTTCTCGTAT CTTGGTGAAT CTGGTCGATA ACGCTTTTAA ATATTCTGCT CCAGGAACCA 9840 AGCTGGAAGT GGTGGCTAAG CTGGAGAAGG ACCAGCTTTC AATCAGTGTG ACCGATGAAG 9900 GGCAGGGTAT TGCCCCAGAG GATTTGGAAA ATATTTTCAA ACGCCTTTAT CGTGTCGAAA 9960 CTTCGCGTAA CATGAAGACA GGTGGTCATG GATTAGGACT TGCGATTGCG CGTGAATTGG 10020 CCCATCAATT GGGTGGGGAA ATCACAGTCA GCAGCCAGTA CGGTCTAGGA AGTACCTTTA 10080 CCCTCGTTCT CAACCTCTCT GGTAGTGAAA ATAAAGCCTA AAACCCCTTT ACAAATCCAG 10140 CTATTCATGG TAGAATAGAT TTTGTGTGAA ATATCAGCAG GAAAGCATGA AGCTCGTCAA 10200 CAGGTGTCTT ATGACAAGTA ACCTTGGCTG TTTAGGCGAA GGGCATCTGC ACGG 10254 (2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9769 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

CCGGCGACTA	TCGATAACAC	TTGACTTGGT	AGCCCCACAT	TTTGGACAAC	GCATCCTTTC	60
CCTCCTTATC	GTTTTCTTTT	CATTATACCA	TTTTTTAAGC	GATTCCCAAA	ACAATTCTTC	120
TTTTTGCTTG	ACAAGTTTTT	TGTTTTGTTG	TATTATTTAA	TTAAGACAAC	AAGGTAAAAG	180
AAAGGAGACT	AAGATGTCCT	GGACATTTGA	CAACAAAAA	CCCATCTATT	TACAGATTAT	240
GGAGAAAATC	AAGCTTCAGA	TTGTTTCCCA	TACACTGGAA	CCCAATCAAC	AACTTCCAAC	300
CGTGAGGAGC	TAGCTAGCGA	GGCTGGTGTC	AATCCCAATA	CCATCCAAAG	AGCCTTATCA	360
GACCTTGAAC	GAGAAGGATT	TGTCTACAGC	AAGCGAACAA	CTGGACGATT	TGTGACTAAG	420
GATAAGGAGC	TAATCGCCCA	GTCACGCAAA	CAATTATCAG	AAGAAGAATT	GGAACACTTC	480

GTTTCCTCCA	TGACCCATTT	TGGCTATGAA	AAAGAAGAAC	TACCAGGCGT	AGTCAGTGAT	540
TATATTAAAG	GAGTTTAAGC	CTATGTCATT	ACTAGTATTT	GAAAATGTAT	CCAAATCATA	600
TGGAGCAACA	CCAGCCCTTG	AAAATGTTTC	TCTTGACATT	CCAGCTGGAA	AAATTGTCGG	660
CCTTCTTGGG	CCAAACGGCT	CAGGAAAAAC	AACCCTGATT	AAACTAATTA	ATGGCCTCTT	720
ACAACCAGAT	CAAGGACGTG	TCCTCATCAA	CGACATGGAC	CCAAGCCCAG	CAACCAAGGC	780
CGTTGTAGCT	TATTTGCCTG	ATACGACCTA	TCTCAATGAG	CAAATGAAGG	TCAAAGAAGC	840
CCTAACCTAC	TTCAAGACCT	TCTATAAAGA	TTGTCAGATC	TTGAACGCGC	CCATCATCTA	900
CTTGCAGACC	TGGGCATTGA	TGAAAATAGT	CGTCTCAAGA	AACTATCAAA	AGGAAACAAA	960
GAAAAGGTTC	AACTGATTTT	GGTTATGAGC	CGTGATGCTC	GTCTCTATGT	TTTGGACGAA	1020
CCCATTGGTG	GGGTGGATCC	AGCAGCCCGT	GCTTATATCC	TCAATACCAT	TATCAACAAC	1080
TACTCACCAA	CTTCTACCGT	TTTGATTTCT	ACCCACTTGA	TTTCTGATAT	CGAGCCAATC	1140
TTGGATGAAA	TTGTCTTCCT	AAAAGACGGA	AAAGTCGTCC	GTCAAGGAAA	TGTAGATGAT	1200
ATTCGCTACG	AGTCAGGTGA	ATCCATTGAC	CAACTCTTCC	GTCAGaATTT	AAGGCCTAAG	1260
CAAAGGAGAT	TATTTATGTT	TTGGAATTTA	GTTCGCTACG	AATTTAAAAA	TGTTAACAAG	1320
TGGTATTTAG	CCCTCTACGC	AGCCGTGCTA	GTCCTTTCTG	CCCTCATCGG	AATACAGACA	1380
CAAGGCTTTA	AAAATCTACC	TTACCAAGAA	AGTCAGGCTA	CTATGCTACT	TTTTCTAGCT	1440
ACAGTCTTTG	GTGGCTTGAT	GCTTACACTT	GGGATTTCAA	CCATTTTCTT	GATTATTAAA	1500
CGCTTCAAAG	GTAGTGTCTA	CGACCGACAA	GGCTATCTGA	CTTTGACCTT	GCCAGTTTCT	1560
GAACACCATA	TCATCACAGC	CAAACTAATC	GGTGCCTTTA	TCTGGTCATT	GATTAGCACC	1620
GCTGTATTGG	CTCTAAGTGC	TGTTATTATT	CTGGCTTTAA	CAGCTCCAGA	ATGGATTCCT	1680
CTTTCTTATG	TGATTACATT	TGTAGAAACA	CATCTCCCTC	AGATCTTTCT	TACAGGTATA	1740
TCCTTCCTAC	TAAATACTAT	TTCAGGAATC	CTCTGCATCT	ACCTGGCTAT	TTCCATTGGA	1800
CAGCTTTTCA	ATGAATACCG	TACAGCACTC	GCTGTTGCAG	TCTACATTGG	TATCCAAATC	1860
GTCATTGGAT	TTATTGAACT	TTTCTTCAAT	CTTAGTTCTA	ATTTCTATGT	CAATTCACTG	1920
GTAGGACTCA	ATGACCATTT	CTATATGGGA	GCAGGTATAG	CCATTGTTGA	AGAACTCATA	1980
TTCATAGCTA	TCTTTTATCT	CGGAACCTAC	TACATCTTGA	GAAATAAGGT	TAATTTGCTT	2040
TAAATAATTT	TTACCTAGAT	ATGTAACATA	CTCATAGAAC	AAAAGAGACC	AGGCAAAAAG	2100
TCTTTAAAAT	TAGAAAACGC	ATAGTATCAG	GTGTTGAATA	TGTACTGCcC	CCCAAAAGTT	2160
AGATTTTTTC	TGTCTAACTT	TTGGGGGCAG	TTCATAAGAA	CCTTGGTAAT	ATGCGTTTTT	2220

320

TGTGAGCTGA CTTATTTCCT TTCACTATAT CGCAAAATGA AATAAGAACG GAACGATGGG 2280 ATTTTGGAAT TCAAATCAAT TTATAAGAAT GTTTTAGAAG TAATATTATC CTATTCCAGA 2340 TTCAGTTCAC TATACAATTG AGTTTTCAAG CAACCTGTTT ACATAATGTG TACATAATTA 2400 GGTTCGTGAT TCCACCCTTT TCACCTTTAA AAACCTCGCT TTCGCAAGGC TCTTCTATTT 2460 ATAAGATAAG GCACGTTTAA AGGTTTTCCA AATCCCTAAA TCATCCGTTT GAAGAACGAG 2520 ACTAGCATAC ATGCGTCCGA TAAATCCTGT TGCTACCACC GCAAAAATCA CTGTAATAGC 2580 AAGTGAAATC CATGCTTCTG CTCCCCCGC ATAGTCATTA ATCGTTCGAA ACGGCATAAA 2640 GAAGGTCGAA ATAAAGGGAA TATAAGAACC AATCTTCAAG AGGAGATTGT CACCAGCTGC 2700 ACCTAGAGCT GTCACTCCAA AAAAACCACC CATAATCAAA ATCATCAAAG GCGACAAGGC 2760 TTTCCCTGAG TCCTCAGGAC GAGAAACCAT AGATCCTAGG AAGGCTGCCA AGACTACGTA 2820 CATGAAAAGA CTGATCAAAA TAAAGAGCAA GGTATTCAGT GAGATAGCAT CTCCCAAGTG 2880 ATCCAAAATA CCAGACTGAG CCAAGAATGG CAAATCTTTA AAGAGCAAAA CGGCAGCCAG 2940 ACCACCTACA ACATAGATCC CAATATGCGT TAAAATCACT AGAAACAGAG CCATCATCCG 3000 CGCATAGAAA TAGTGACTTG CCCTTATGCT AGAAAAAACG ACTTCCATAA TTTTGGTGCC 3060 TTTTTCACTG GCAACTTCCT GAGCTGTTAC ACCCGCATAG GTAATCAGAA TCATATAAAG 3120 AAAGAATCCT AAGGCACCTG CTGCAATTGT TTGAATAAAC TTTTTATTTT CCTTGGCTTC 3180 ATCAATCTTT TCTGTGAATT GAATTGTCTG CGCTAAGCGT TTTTCCTGCT CTTGAGACAA 3240 GGAAGCAGTT GAACGATTAA GCTGATTTTG CAGTTCATTG AGTGTACCTG TAACCTCAAA 3300 TTTAATTCCA TTTTCAAGCG ATGTTTCGCC ATGATAAACT GCCTTTAGAA CACTATCTTC 3360 TTGATCAATG GTCAAATAAC CTTTTAATTT TTCTTCTTTA ATTGCTTCTT TGGCACTTGC 3420 TTCGTCTTTA TAGTCGAAGT TAACACCATT TACATTCTTC AGTCCTTCTG CTACAGATGG 3480 CACTGTTGTC ACTACTGCCA CTTTATTATT TTTAGCCATA GAAGAACCTT GGAGATGCCC 3540 AATTCCTACA GAGATTCCTA AAAAGAGGAA CGGCGAAATC ACCATAAAGA AGAAACTCCA 3600 TGACTCGACA TGTCGAAGAT AGGTTTCCTT GATTACAACC CACATATTTC TCATACTTCC 3660 ACTCCTGATT CTAGTTTAAA GATTTCATCG ATAGTTGGCG CTTGTTGGTC AAATGTTGCG 3720 ATATATTGAC CTTGAGTCAA GATTGAGAAG AGTTCCCTTC CAGCGCTCTC ATCCTCCAAA 3780 ATCAATTTCC AACTGCCTTG TTTGGTCAAG CTCACCTGTT TGACATGAGG AAGATTTTCC 3840 AATTCTTCCT TGCTTCGTTC ACTTGAAACA AAGAGACGCG TTTTCCCGTA TTGATTGCGG 3900 ACATCCTGAA CTGGTCCGTG CAAGACCACA CGGCCATCTC GGATCATCAG AATATCGTCA 3960 CAAAGTTCCT CAACATTGGT CATGACATGG TCAGAAAAGA TAATGGTTGT CCGCGCTCTT 4020

T	TTCCTGAAA	AATGACTTGT	TTGAGCAATT	CTGTATTAAC	TGGGTCCAAT	CCACTAAAAG	4080
G	CTCATCCAA	GATAATCAGG	TCTGGTTCAT	GAATCAGAGT	AATAATGAGC	TGAATCTTCT	4140
G	CTGATTTCC	TTTTGACAGA	CTCTTGATTT	TATCTGTCAG	CTTTCCTTTC	ACTTCCAACC	4200
Т	CTTCATCCA	TTGAGGGAGT	TTTTCTTTGA	CTTCTTTGGC	ATCCATGCCT	TTTAGAGTCG	4260
c	CAAGTAGCG	AACTTGTTCA	AGAACTGTCA	ATTTAGGCAT	GAGATGCGTT	CTTCAGGCAG	4320
A	TAACCAATC	CGAGCATAGG	TCTCCTGACG	AATATCCTGA	CCATCCAGAC	CGATTTCTCC	4380
C	TGATATTCT	AGGAATTTCA	AAATACTATG	GAAAATCGTT	GTTTTTCCAG	CACCATTTTT	4440
T	CCGACTAGT	CCCAAAATAC	GACCTGGTCG	CGCTTGAAAG	TCAATACCAA	ACAAAACTTG	4500
c	TTGGATCCA	AAACTTTTCT	CTAGACTTCT	TACTTCTAGC	ATCTTTCACC	TCCGAAATTT	4560
C	TTGCACTCA	TTATACTCCT	TTTTGATAGC	CTTTACAATG	TTTTTTGTCC	ATTTTTAGAA	4620
G	ACTATTGCT	GTGTAAAATA	TGGCCTGGAG	CACTTTTATA	CTCAATGAAA	ATCAAAGAGC	4680
A	AACTAGGAA	GCTAGCCGTA	GACTGCTCAA	AGTACAGCTT	TGAGGTTGCA	GATAAAACTG	4740
A	CGAAGTCgA	CTCAAAACAC	TGTTTTGAGG	TTGTGGATAG	AACTGACGAA	kCrTAaCTAT	4800
A	TCTACGGCA	AGGCGAAcTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	TAGTGATAAA	4860
T	CCATTATAC	AGCAGCAAAC	TTAATTTATA	CCTTCCGCTC	CTCAACTGTC	TATTTTTAAT	4920
C	CTGAATTGT	TATTTGAGTA	ACTCCTTTTT	CCTCGTAAAG	TTTTCTTCCT	CTAAAACTTC	4980
T	GGAAAAAGG	CTAATAGTTT	CAGACAACAT	TTTTATAAGA	AACAAGTTCA	TCTGTCATTT	5040
С	AAGAAGGAG	TAATCCTTTA	TCTACTAATG	GACGGAACAG	AATTCAACCG	CTTGTCCGAT	5100
A	TGTTTTCTA	AGGATTATAT	AGTAAAATGA	AATAAGAACA	GGACAAATTG	ATCAGGACAG	5160
T	CAAATTGAT	TTCTAACAAT	GTTTTAGAAG	TAGATGTATA	CTATTCTAGT	TTCAATCTGC	5220
T	АТАТСТАТТ	ATGCACACCC	CTATAGGATC	TAATGAAAAT	CACAACAGGC	TCATTCATAG	5280
A	TGGTTACCT	AAGCCTAAGG	GAACTAAGAA	AACGACTACC	AAGGAAGTCG	CATTCATCGA	5340
A	AAGTAGATT	AACAACTATC	CTAAAAAATG	CTTGAACTAC	AAGTCCCCCA	GAGAAGACTT	5400
С	TGGATGACT	AACTTGAACT	TGAAATTTAG	СААТААТТАА	TTCACTATCT	AACTATATTT	5460
A	GTAATTATT	TCAGAACTGA	TTAATATTAA	AATTAACTAA	CAATTCAAAG	GATTCATACT	5520
A	GCCATAAAT	TACGTCCATC	AGAGAGAGAC	TCTTACTACT	TTTAGATTTT	AGTCTTTCTA	5580
G	CTTCAGAAT	ACATCTAAAC	TTTAGGGAAA	ATGACTATTC	GAAAGCGCGA	ATGCCTCAAA	5640
A	TTATCTCAG	ATAAGCTATT	CGAAACTTAG	AATGCTTTTA	AATTTATGGA	ATTGCGATTA	5700
т	TCGAAACCT	AGAATGCATA	TAACCTTTAG	TTGACAGACC	TATTCTAAGT	CTCGAAGGGC	5760

322 TATTTACTTT CTATTCCTTA TCAAAAAAGA CTCATTCCCC CTTTCTCCTC CAAAATATGG 5820 TATAGTAGAA ATATACTATC TATGAGGAGT TTACATGTCA CAGGATAAAC AAATGAAAGC 5880 TGTTTCTCCC CTTCTGCAGC GAGTTATCAA TATCTCATCG ATTGTCGGTG GGGTTGGGAG 5940 TTTGATTTTC TGTATTTGGG CTTATCAGGC TGGGATTTTA CAATCCAAGG AAACCCTCTC 6000 TGCCTTTATC CAGCAGGCAG GCATCTGGGG TCCACCTCTC TTTATCTTTT TACAGATTTT 6060 ACAGACTGTC GTCCCTATCA TTCCAGGGGC CTTGACCTCG GTGGCTGGGG TCTTTATCTA 6120 CGGGCACATC ATCGGGACTA TCTACAACTA TATCGGCATC GTGATTGGCT GTGCCATTAT 6180 CTTTTATCTA GTGCGCCTAT ACGGAGCTGC CTTTGTCCAG TCTGTCGTCA GCAAGCGCAC 6240 CTACGACAAG TACATCGACT GGCTAGATAA GGGCAATCGT TTTGACCGCT TCTTTATTTT 6300 TATGATGATT TGGCCCATTA GCCCAGCTGA CTTTCTCTGT ATGCTGGCTG CCCTGACCAA 6360 GATGAGCTTC AAGCGCTACA TGACCATCAT CATTCTGACC AAACCCTTTA CCCTCGTGGT 6420 TTATACCTAC GGTCTGACCT ATATTATTGA CTTTTTCTGG CAAATGCTTT GACACGTAAA 6480 AAATCCGTTT GGTTTCCCAA GTGGATTTTT AAAGCGTAGA TTAACTATAG CTTGATACTA 6540 AATATACTTT GGTATGGAAA TCATGCATAT TTTTCGATAG TGAGGCGAGG ACTTACCTAG 6600 CCTTTCCGCC GTGATAGAAA CACCTGAAAT CTAATGGTTT CAGGTATTCG GAAACTTTGA 6660 GCCTAGTGTC TCAAAGTTTA GGTATGGAAT TTTGAAGAAA GTCGCTACCG TCCGTAATCA 6720 CTTAAGGAAA GGCTCAAAAA TATTGTTTTC AACCACAAAA TCCGTTTGGT TTCCCAAGCG 6780 GATTTTGTGC TTTATTTTGA AACTTCTTTT GCAAGAACAA AGTTCCCAAG TGTGGCAGAA 6840 CCATTTCCTG CGACTGCTGG CGTCACGATA TAGTCACGCA CATCTGGTAC TGGTAGGTAA 6900 CCATTAAGAA GAGATGTAAA TTTCTCACGG ACACGGTCCA GCATATGTTG TTGAGCCATG 6960 ACCCCTCCAC CAAAGACAAT CACGTCTGGG CGGAAAGTCA CTGTCGCATT AACCGCAGCT 7020 TGAGCGATAT AGTAGGCTTG AACATCCCAA ACAGGGTTGT TGAGTTCAAT AGTTTCCCCA 7080 CGTACACCTG TACGAGCTTC CAAACTTGGA CCAGCTGCAT AACCTTCTAG ACATCCCTTA 7140 TGGAAAGGAC AAACACCCTT AAACTCTTTT TCAATATCCA TTGGGTGTCT AGCAACATAA 7200 TAATGACCCA TTTCAGGGTG ACCCACACCA CCGATAAACT CACCACGTTG GATGACGCCT 7260 GCACCGATAC CTGTACCGAT TGTGTAGTAA ACCAAGTTTT CGATACGACC ACCAGCATTG 7320 TTACGGGCAA CCATTTCACC GTAAGCAGAG CTGTTTACGT CTGTTGTGAA GTACATTGGC 7380 ACGTTTAGGG CGCGACGAAG GGCACCAAGC AAGTCTACAT TTGCCCAGTT TGGTTTTGGA 7440 GTCGTCGTGA TAAAGCCATA AGTTTTTGAG TTTTTGTCAA TATCAATCGG CCCAAATGAA 7500 CCAACTGCAA GACCAGCAAG GTTATCGAAT TTTGAGAAGA ACTCAATGGT TTTATCGATT 7560

GTTTC	GATTG	GAGTTGTTGT	TGGAAATTGT	GTTTTTTCTA	CAACGTTAAA	GTTTTCATCA	7620
CCGAC	AGCAC	AGACAAACTT	TGTACCGCCC	GCTTCCAAGC	ттссататаа	TTTTGTCATG	7680
АТААА	CCTCT	TGTTTTTATT	TTCTTTATTA	TAGCATACTT	CGAAAGTCTA	AATGTCTCTA	7740
TTTTT	TAGAT	TTTCCTCTGT	AAATCTTACT	АТСТААТААА	AACGAACAAA	CATGTCATTT	7800
GTTCG	TTTTC	ACATTAGAGA	GGATTGATTA	GATTTTCACT	TCGATCACAG	CATCCCCCTT	7860
AGCAA	CTGAA	CCTGTTGCGA	CTGGAGCTAC	TGAAGCGTAG	TCACCTGTAT	TTGTAACGAT	7920
AACCA	TTGTT	GTATCATCAA	GTCCAGCTGC	AGCGATTTTG	TTTGAGTCAA	ATGTTCCAAG	7980
AACAT	'CGCCA	GCTTTCACCT	TATTACCTTG	AGCAACTTTT	GTTTCAAAAC	CGTCACCGTT	8040
CATAG	ATACA	GTATCAATAC	CAACATGAAT	CAAAACTTCA	GCACCATTTC	TTGTTTTCAA	8100
ACCAA	AAGCG	TGCCCTGTTG	GAAAGGCAAT	TGAAACTTCA	GCATCAGCTG	GTGCATAGAC	8160
CACGC	CTTGG	CTTGGTTTCA	CAACGATACC	TTGTCCCATA	GCTCCACTTG	AGAAGACTGG	8220
GTCAT	TGACA	TCAGCAAGAG	CGACAACATC	ACCGACGATA	GGAGTTACAA	GTGTTTCATT	8280
TTGAA	GAGCT	GCTGGCGCAA	CTTCTTCTTT	TTCTTCAGCC	ACTTCAGCTC	GTTTTGCAGC	8340
TGCAG	TTGCG	TCTACTTCAT	CTTCGTAACC	AAACATGTAA	GTAAGAGCAA	AACCAAGGGC	8400
AAATG	ATACA	GCTACCATAA	GAAGGTATTG	TGGAAGTTGT	CCGTTACCAA	CATAAAGCAT	8460
TGTAC	CAGGG	ATGATGGTGA	TACCATTACC	AGTACCAGCA	AGTCCAAGGA	TAGAAGCCAA	8520
TCCAC	CACCG	ATTGCACCAG	CAATCAATGA	AAGGAAGAAT	GGTTTACGGA	AGCGCAAGTT	8580
CACCC	CGAAG	ATAGCAGGCT	CTGTAATACC	TAGGAAGGCA	GAAAGAGCAG	CCGGGAAAGC	8640
AAGTG	TTTTC	AGTTTTGGAT	TTTTTGTTT	AACACCAACC	GCAACAGTAG	CAGCACCTTG	8700
AGCTG	TCATA	GCAGCTGTGA	TGATAGCGTT	GAATGGGTTA	GCATGGTCAG	CAGCAAGTAA	8760
TTGCA	CTTCA	AGCAAGTTGA	AGATGTGGTG	CACACCTGAC	ACGACGATCA	ATTGGTGAAC	8820
CCCAC	CAATC	AAGAAACCAC	CAAGACCAAA	TGGCATGCTA	AGAATCGCTT	TTGTAGCAAT	8880
AAGGA	TGTAG	TTTTCAACAA	CGTGGAAAAC	TGGTCCAATG	ACAAAGAGTC	CAAGGATAGA	8940
CATGA	CCAAA	AGTGTCACGA	ATGGTGTTAC	CAAGAGGTCA	ATGACATCTG	GAACAACTTG	9000
CGGAC.	AGCTT	TTTCAAATTT	AGCTCCGACA	ACCCCGATGA	TGAAGGCTGG	AAGAACGGAA	9060
CCTTG	САААС	CAACAACAGG	GATGAAACCA	AAGAAGTTCA	TCGCTGTTAC	TTCACCACCT	9120
TGAGC.	AACTG	CCCAAGCGTT	TGGAAGTGAG	CCAGAGACAA	GCATCATACC	AAGAACGATA	9180
CCAAC	GGCAG	GATTTCCACC	AAATACACGG	AAGGTTGACC	ACACAACCAA	ACCTGGCAAG	9240
ATGAT	GAAGG	CTGTATCTGT	CAAGATTTGT	GTGTAAGTTG	CAAAGTCACC	TGGAAGTGGC	9300

ATTTCAAGAG	CGTTGAAAAG	ACCACGCACA	324 CCCATGAAGA	GACCTGTCGC	TACGATAACT	9360
GGGATGATTG	GAACGAAAAC	АТСАССАААА	GTACGGATAG	CACGTTGGAA	CCAGTTCCCT	9420
TGTTTAGCAA	CTTCTGCTTT	CATGTCATCC	TTAGATGATG	TTGGTAATCC	AAGTACAACA	9480
ACTTCATCGT	ACATTTTGTT	AACTGTACCT	GTACCAAAGA	TAATTTGGTA	TTGCCCTGAG	9540
TTAAAGAAAG	CACCTTGAAC	TTTTTCCAAG	TTCTCAATCA	CTTCTTTATT	GATTTTCTCT	9600
TCATCTTTGA	CCATGACACG	TAGACGAGTC	GCACAGTGGG	CAACACTATT	GACATTTTCA	9660
CGTCCGCCCA	AGGCATCGAT	GACTTTTTT	GCAATTTCCT	GATTGTTCAT	TTGCAAAAAT	9720
СТССТТАТАТ	AACATTTTGT	TCTTGTTTGA	AAGCGATTTT	ATTCGCCGG		9769
(2) INFORM	ATION FOR S	EQ ID NO: 3	1:			
(i) S	EQUENCE CHAI	RACTERISTIC	s:			

(A) LENGTH: 3149 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CGCTTGAGTG CTAATTCATA GTTCTATTGT ATCACTTGGT CAGAAATAAT CAAGAAAAAA 60 GTCTGACTTT CTCAAGATAA AAAGCCTGAG ACCAACTCAG ACTTTTTAAT TCTTAAAATG 120 GCAATTCTTC CTCTTCCAAG ACCAAATCTG CCAAATCTTG GCCTGCATTA TTTTCACGCA 180 TAGCACGTTG GGCACGACTT TCCAAGAGTT GGAATCCTGT GACAAGTACT TCGGTCACGT 240 AGTTCATTTG GCCATTTTC TCAAAGCGAC GGGTACGCAA TTCTCCATCA ACGGAAATGA 300 GACTACCTTT GGTTGCGTAC TTGCCAAAGT TTCTGCTAGT CTGCCCCATA GGACCATATT 360 GACAAAATCA GCTTCACGTT CACCGTTTTG GTCTTTGTAA CGACGGTTCA CAGCGATAGT 420 TGCTCGCGCT ACCGACTTGT CATTGTTGGT TTTGTGCAAT TCTGGTGTAG ACGTTAAACG 480 TCCAATCAAG ATAACTTTAT TATACATATT TTCTTCCTCC TACTTATCTA TTCGTAGGAA 540 ATCAAAAAA GTTACAGAAA TTTGTAACTT TTCGAGAAAA TTTTTTATTT TTTATGAACC 600 ATGAAACCTG TCGCCTGTTG ATTGGCCATA ATGGTCATAT CTGTAATCTG AACACGACGA 660 GGTTGACTAG TCACATAGAC TACTGTATCT GCAATATCCT GAGCTTGCAA AGCTTCTATT 720 CCTTGGTAAA CGGACGCAGC TCGTTCTTTA TCACCATGAA AACGCACTGT AGAAAAATCT GTTTCGACAA TTCCAGGCTG AATGGTCGTC ACCTTGATAT CCGTTGCGAT GGTATCAATT 840 CGCAGTCCAT CTGAAAAGGT CTTAACTGCC GCCTTGGTGG CTGAGTAAAC AGCTGCACCA 900 GCATAGGCAT AAATTCCTGC GGTTGACCCC ATATTGATAA TATGACCTTG ATTGGCTTTT 960

ACCATTGO	CTG	GCAAGAAACA	GCGAGTGACT	GCCATCAAAC	CTTTGACATT	GGTATCCAAC	102
ATGGTCAG	GCA	TATCCAACTC	TTCATAGTCT	TGATAGGGAG	CTAAGCCAAG	AGCCAGTCCT	108
GCGTTATT	rga	CCAGGATGTC	AATCTGACCT	ATCGTTTCTA	AAATATCAGA	GCAGACAGTC	114
TTTACCAT	rtg	TCATATCCGT	GACATCTAGG	AGAAAAGTCC	AAACTGTTTG	ATTTGGAAAA	120
GTTTCTGC	CAA	ACTCCGCCTT	AAGAGCTTCT	AGTCTGTCTA	TCCGTCGTCC	TGTTAGAACG	1260
ACATCCTO	CAC	CCTGCTCCAG	ATAAGCACGC	GCAATCGCTT	CACCGATTCC	TGATGTCGCT	1320
CCTGTAAT	CA	CAACATTTTT	TGCCATCTTA	TTTCCTTCTA	GCTGGTCTAT	CAGATATTAA	1380
CAACTTCT	AT?	GGCAGTCCAG	TGTTTCGCTG	GGTCGAACGG	TGTTCCGACA	ACTTGGTCTT	1440
CTGATAAT	TC	AAGCACCCCA	CGTTTTTGTG	GAGCATTTGG	CAGATGCAAT	TCACGAGGAC	1500
TGCACATO	CAT	ACCAAAACTC	TTTTCACCAC	GAAGTTCACC	TGGGAAAATG	AGATTCCCTT	1560
TTGGCATC	CAT	AGCTCCAGGA	AGCGCGACAA	TGGTTTTCAA	CCCCACACGC	GCATTGGGAG	1620
CTCCTGCA	LAC	GATTTGTACA	GTCTTATCAC	TTGCGACTGC	AACTTGGCAG	ATGTTGAGGT	1680
GGTCACTA	TC	TGGATGGGCT	ACCATCTCAA	CAATTTCACC	TACAACAAAC	TTAGGTTCCT	1740
ТАТСАТТА	AC	AATTTCTTCT	GTAAAACCTT	CCGCCTGCAA	CTCTTGGTTC	AAACGAGCGA	1800
CTTGCTCA	TC	TGTCAAAAAG	ACTTGACCGC	GCTCTGCAAT	TTCAAATAAA	CTTGAAACTT	1860
CGAAAATA	TT	CCAAGCCACT	GTTTCCCCAT	TATCTTTGAG	AAAAACACGG	GCTACCTTGC	1920
CTTTGCGC	TC	CACATCCAGT	TTGGCATCTC	CGCTATTTTT	CACGATGACC	ATAAGGACAT	1980
CACCGACA	TG	TTCTTTATTA	TATGTAAAAA	TCATTGTTTC	CTTTTTCTCC	TATTTCAGTC	2040
CTGCTAAA	AA	GTCATTGATT	TGTTGCTTGC	TTTTACGGTC	GCGATTGACA	AAACGACCGA	2100
TTTCCTTG	TC	CTTTTCTAGA	ACAACAAGGC	TAGGAATTCC	GTAAACATCC	CAGAGTTTGG	2160
CCAAATCC	TA	ATACTGATCT	CGGTCCATTC	GAATAAAGGT	GAACTCTGGA	TTGGTCTCCT	2220
CAATCTCT	GG	TAAGGCAGGA	TAAATATAAC	GACAATCGCT	ACACCAGTCT	GCCACAAAAA	2280
TGAAGACC	TT	CTTGCCCGCT	TTTTCCACTA	AAGATGCTAA	TTCTTCTAAA	CTTGCTGGCT	2340
GTATCATA	AG	ACTTCCTCCT	CATAGACTAG	GTCTTCATTT	TCATAGACAA	AGGTATAATG	2400
ACGGCCAT	CC	TCAAAAATGA	CGCCACCAAC	CAAGCTCTCC	AGACTGCTTT	CGTAAACTTG	2460
аасатааа	GG	GTCGCAATTT	CCCCCATGTC	GGAAAAATGG	TCTCGCACAA	TCTCTGTCAA	2520
CTCTTCCT	GA	GTCTTCATGA	GCTTACGGTC	ATCTGCAACT	TTTTCGTAG	CAAGAGCAAG	2580
GCTTCCGA	TA	CCTAGCAGAG	CCAAGCCTGC	CATCCACATT	TTTTTAGCTT	TCATACCATT	2640
CATTTTAA	CA	CAAAAAAGGC	TTCAGGACAA	ATGAGGAAGC	AGCAGAAAAG	CAAGTAAAAA	2700

326 GCCTCTTCCT TTAAGGAAAA GGACTTCTTA TACTCAATGA AAATCAAAGA CCAAACTAGG 2760 AAGCTAGCCG CAGGCTGCTC AAAGCACTGC TTTGAGGTTG TAGATAGAAC TGACGAgTCa 2820 CTCAAAACAC TGTTTTGAGG TTGTGGATGA AGCTGACGTG GTTTGAAGAG ATTTTCGAAG 2880 AGTATTATTC TTATTGCCAG GCACCTAAGT TGCCAACGTA GTAACTATCA GGTGTGTAGG 2940 TATTGCGAGC ATCTTACCTG ATGAAGCCAG ATAATACTAC TTGCCATTGT CTTTGACCCA 3000 ATCATTCGCA ATCATGGAAC CAGAAGAACT TACATAATAC CATTCTCCCT TGTCATAAAC 3060 CCAAGTACTG ACTTTCATGG TTCCTGAGCA ATTAAAGGCA AAAAAACTGT CCAATAACAT 3120 TCGTTTTTTA AAAGCATTTG ACACTACAT 3149

## (2) INFORMATION FOR SEQ ID NO: 32:

error in a

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10240 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

CCAAAAATTC AACCTTTAAG GGGAGTCCAG AGAGACTCAC AAGGTGTCAG ATAAAAGAAT 60 GGTGCAATTT TCTAGAGGAG ACTTTTTGAG TGTGCTCTCT TGTGTTGTAC GATTTTAACT 120 GAGGCCTTGC ACTAGCAAGG TCTTTTCTTT ATCTGGTCCC CTTAAAATTT AAGGAGGAAA 180 AGTTATGAAT CCCACATGTA AGAAGCGTTT GGGTGTCATT CGGTTGGAAA CCATGAAGGT 240 GGTTGCACAA GAGGAAATCG CGCCACAATC TTTGAATTAG TCCTAGAAGG AGAAATGGTT 300 GAAGCCATGC GAGCAGGCCA ATTTCTTCAT CTGCGTGTAC CGGACGATGC CCATCTCTTA 360 CGTCGTCCTA TTTCAATTTC GTCTATTGAC AAGGCAAACA AGCAGTGTCA CCTCATTTAT 420 CGGATTGACG GAGCTGGGAC TGCAATTTTT TCAACCTTAA GTCAGGGAGA CACTCTTGAT 480 GTGATGGGC CTCAGGGAAA TGGTTTTGAC TTGTCTGACC TTGATGAGCA GAATCAGGTT 540 CTCCTTGTTG GTGGTGGGAT TGGTGTTCCA CCCTTGCTTG AGGTGGCCAA GGAATTGCAT 600 GAACGTGGAG TGAAAGTAGT GACAGTCCTC GGTTTTGCTA ATAAGGATGC TGTTATTTTG 660 AAAACGGAAT TGGCTCAGTA TGGTCAGGTC TTTGTAACGA CAGATGATGG TTCTTATGGC 720 ATCAAGGGAA ATGTTTCCGT TGTTATCAAT GATTTAGACA GTCAGTTTGA TGCTGTTTAC 780 TCGTGTGGGG CTCCAGGAAT GATGAAGTAT ATCAATCAAA CCTTTGATGA TCACCCAAGA 840 GCCTATTTAT CTCTGGAATC TCGTATGGCT TGTGGGATGG GAGCTTGCTA TGCCTGTGTT 900 CTAAAAGTAC CAGAAAACGA GACGGTCAGC CAACGCGTCT GTGAAGATGG TCCTGTTTTC 960

CGCACAGGAA	CAGTTGTATT	ATAAGGAGAA	AATTATGACT	ACAAATCGAT	TACAAGTTTC	1020
TCTACCTGGT	TTGGATTTGA	AAAATCCGAT	TATTCCAGCA	TCAGGCTGTT	TTGGCTTTGG	1080
ACAAGAGTAT	GCCAAGTACT	ATGATTTAGA	CCTTTTAGGT	TCTATTATGA	TCAAGGCGAC	1140
AACCCTTGAA	CCACGTTTTG	GGAATCCAAC	TCCAAGAGTG	GCAGAGACGC	CTGCTGGTAT	1200
GCTCAATGCA	ATTGGCTTGC	AAAATCCTGG	TTTAGAGGTT	GTTTTGGCTG	AAAAGCTACC	1260
TTGGCTGGAA	AGAGAATATC	CAAATCTTCC	TATTATTGCC	AATGTAGCTG	GTTTTTCAAA	1320
ACAAGAGTAT	GCAGCTGTTT	CTCATGGGAT	TTCCAAGGCA	ACTAATGTAA	AAGCTATCGA	1380
GCTCAATATT	TCTTGTCCCA	ATGTTGACCA	CTGTAATCAT	GGACTTTTGA	TTGGTCAAGA	1440
TCCAGATTTG	GCTTATGATG	TGGTGAAAGC	AGCTGTGGAA	GCCTCAGAAG	TGCCAGTTTA	1500
TGTCAAATTA	ACCCCGAGTG	TGACCGATAT	CGTTACTGTC	GCAAAAGCTG	CAGAAGATGC	1560
GGGAGCAAGT	GGCTTGACCA	TGATCAATAC	TCTGGTTGGA	ATGCGCTTTG	ACCTCAAAAC	1620
TAGAAAACCA	ATCTTGGCCA	ATGGAACAGG	TGGAATGTCT	GGTCCAGCAG	TCTTTCCAGT	1680
AGCCCTCAAA	CTCATCCGCC	AAGTTGCCCA	AACAACAGAC	CTGCCTATCA	TTGGAATGGG	1740
AGGAGTGGAT	TCGGCTGAAG	CTGCCCTAGA	AATGTATCTG	GCTGGGGCAT	CTGCTATCGG	1800
AGTTGGAACA	GCTAACTTTA	CCAATCCTTA	TGCCTGCCCT	GACATCATCG	AAAATTTACC	1860
AAAAGTCATG	GATAAATACG	GTATTAGCAG	TCTGGAAGAA	CTCCGTCAGG	AAGTAAAAGA	1920
GTCTCTGAGG	TAAACTGCAA	TCAATCTGTT	CTTGATTTTT	TATTAGTTTG	TAATATGAAT	1980
TTAGGAGAAT	TTTGGTACAA	TAAAATAAAT	AAGAACAGAG	GAAGAAGGTT	AATGAAGAAA	2040
GTAAGATTTA	TTTTTTAGC	TCTGCTATTT	TTCTTAGCTA	GTCCAGAGGG	TGCAATGGCT	2100
AGTGATGGTA	CTTGGCAAGG	AAAACAGTAT	CTGAAAGAAG	ATGGCAGTCA	AGCAGCAAAT	2160
GAGTGGGTTT	TTGATACTCA	TTATCAATCT	TGGTTCTATA	TAAAAGCAGA	TGCTAACTAT	2220
GCTGAAAATG	AATGGCTAAA	GCAAGGTGAC	GACTATTTT	ACCTCAAATC	TGGTGGCTAT	2280
ATGGCCAAAT	CAGAATGGGT	AGAAGACAAG	GGAGCCTTTT	ATTATCTTGA	CCAAGATGGA	2340
AAGATGAAAA	GAAATGCTTG	GGTAGGAACT	TCCTATGTTG	GTGCAACAGG	TGCCAAAGTA	2400
ATAGAAGACT	GGGTCTATGA	TTCTCAATAC	GATGCTTGGT	TTTATATCAA	AGCAGATGGA	2460
CAGCACGCAG	AGAAAGAATG	GCTCCAAATŢ	AAAGGGAAGG	ACTATTATTT	CAAATCCGGT	2520
GGTTATCTAC	TGACAAGTCA	GTGGATTAAT	CAAGCTTATG	TGAATGCTAG	TGGTGCCAAA	2580
GTACAGCAAG	GTTGGCTTTT	TGACAAACAA	TACCAATCTT	GGTTTTACAT	CAAAGAAAAT	2640
GGAAACTATG	CTGATAAAGA	ATGGATTTTC	GAGAATGGTC	ACTATTATTA	тсталалтсс	2700

328 GGTGGYTACA TGGCAGCCAA TGAATGGATT TGGGATAAGG AATCTTGGTT TTATCTCAAA 2760 TYTGATGGGA AAATrGCTGA AAAAGAATGG GTCTACGATT CTCATAGTCA AGCTTGGTAC 2820 TACTTCAAAT CCGGTGGTTA CATGACAGCC AATGAATGGA TTTGGGATAA GGAATCTTGG 2880 TTTTACCTCA AATCTGATGG GAAAATAGCT GAAAAAGAAT GGGTCTACGA TTCTCATAGT 2940 CAAGCTTGGT ACTACTTCAA ATCTGGTGGC TACATGGCGA AAAATGAGAC AGTAGATGGT 3000 TATCAGCTTG GAAGCGATGG TAAATGGCTT GGAGGAAAAA CTACAAATGA AAATGCTGCT 3060 TACTATCAAG TAGTGCCTGT TACAGCCAAT GTTTATGATT CAGATGGTGA AAAGCTTTCC 3120 TATATATCGC AAGGTAGTGT CGTATGGCTA GATAAGGATA GAAAAAGTGA TGACAAGCGC 3180 TTGGCTATTA CTATTTCTGG TTTGTCAGGC TATATGAAAA CAGAAGATTT ACAAGCGCTA 3240 GATGCTAGTA AGGACTTTAT CCCTTATTAT GAGAGTGATG GCCACCGTTT TTATCACTAT 3300 GTGGCTCAGA ATGCTAGTAT CCCAGTAGCT TCTCATCTTT CTGATATGGA AGTAGGCAAG 3360 AAATATTATT CGGCAGATGG CCTGCATTTT GATGGTTTTA AGCTTGAGAA TCCCTTCCTT 3420 TTCAAAGATT TAACAGAGGC TACAAACTAC AGTGCTGAAG AATTGGATAA GGTATTTAGT 3480 TTGCTAAACA TTAACAATAG CCTTTTGGAG AACAAGGGCG CTACTTTTAA GGAAGCCGAA 3540 GAACATTACC ATATCAATGC TCTTTATCTC CTTGCCCATA GTGCCCTAGA AAGTAACTGG 3600 GGAAGAAGTA AAATTGCCAA AGATAAGAAT AATTTCTTTG GCATTACAGC CTATGATACG 3660 ACCCCTTACC TTTCTGCTAA GACATTTGAT GATGTGGATA AGGGAATTTT AGGTGCAACC 3720 AAGTGGATTA AGGAAAATTA TATCGATAGG GGAAGAACTT TCCTTGGAAA CAAGGCTTCT 3780 GGTATGAATG TGGAATATGC TTCAGACCCT TATTGGGGCG AAAAAATTGC TAGTGTGATG 3840 ATGAAAATCA ATGAGAAGCT AGGTGGCAAA GATTAGTACT ATAAGTGAAT ATGATTTGAG 3900 TGAATAGTAA GTTAAAAATC CTGATTTCAA GTAAAATCAG GATTTTTTCA TGGATGCAAT 3960 TTTTTTGGAG TCTGGTGTGA CGCGGAGGGT CTTTTGTCCT GTGTAAGTGA CAAAGCCGGG 4020 TTTTCCACCA GTTGGTTTAT TGAGTTTTTT GACTTCAATC ATATCTACCT GCACCAGATT 4080 CGACAGGCGC CCTTGAGAGA AGTAGGCAGC TAACTCTGCT GCGTCTGTCT TGACTGCATC 4140 AGATGGGTCA AGATTTCCTG AGATGACAAC ATGGCTTCCA GGAATGTCCT TAGCATGGAA 4200 CCAAAGTTCC TCCTTGCGGG CCATTTTAAA GGTCAATTCC TCATTTTGAA GATTGTTTCG 4260 TCCGACATAG ATGATGGTTT TGCCATCGCT TGCTAGATAT TGTTCTAGTT TTTTGCGTTT 4320 CTGGATTTC TCCCGTTGTC TTCTGCGGAT AAAACCTGTT TGAATCAATT CTTCACGGAT 4380 TTCAGCGATT TCTTCCAGTC CAGCTTGGTT GAGGACGGTT TCTACACTTT CCAGATAGAG 4440

AATAGTGGCT TTGGTTTCTT CAATCAAATC AGTCAAGTAT TTGACAGCTT CTTTGAGTTT

CTGATACCGT	TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	4560
AATCATGATA	GGTTGGTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTCTT	GGTCGTTAGG	4620
CACTTGGTGG	AGGAAGGTTG	TCAGCAATTC	TCCTTTTTGA	CGAAATTCTT	CAGCGTTGTC	4680
TGTCGCCAGT	AACTCTTTTT	CCTGTTTTT	GAGTTTGTGT	CGGTTTTTCT	GAAGTTCATT	4740
TTCAACACGA	CGAATCAGTT	CACTGGCCTG	CTGTTTGACG	CGGTCGCGCT	CAGCCTTATC	4800
CTTATAGTAG	GTGTCCAACA	AATCAGAAAG	ATTTGCAAAA	GGCTCTCCCA	CCTGATTTGC	4860
AAAAGGAACT	GGACTGAAGG	AAGTCTCAGT	CAAGCATGGC	TTGGTTTCTT	GATTGAAAAA	4920
ATTTCGGAAA	GCGGAAAGTT	TTTCACTAAC	CAGTATCCTT	TCCAATTCAT	TTGCCGTATC	4980
GCGTCCCAGA	CCTTGAAAGA	GGCTTTGAAG	ATTTTTTGCT	GTTAGTTCTT	GGGTTTGCAG	5040
GATTTCAAAG	AGCTTTTCAT	CCTTGATAGT	AAAAGGATTG	AGAGATTTTG	TACTTGGCGG	5100
AGCGATATAG	GTCGATCCTG	GAAGTAAGGT	GCGGTAGCTA	TTTTGTGAAA	AGCCGACGTG	5160
TTTGATAACT	TCGAGGATTT	TATGACTGCT	TTTATCGACC	AGTAGAATAT	TACTGTGTTT	5220
CCCCATAATT	TCGATAATCA	AGGTAGCCTG	GATATGGTCT	CCAATCTCGT	TTTTATTGGA	5280
AACTGTAATT	TCCACAATAC	GGTCATTTTC	CACTTGCTCA	ATCGACTCAA	TCAGGGCCCC	5340
CTGCAAATAC	TTTCTCAAAA	CCATGATAAA	GGTAGAAGGT	TGAGCTGGAT	TTTCAAAAGT	5400
CGTTTGGGTC	AGCTGAATGC	GTCCAAAAAC	TGGATGGGCA	GAAAGGAGCA	GGCGATGGCT	5460
TTGGCGATTG	CTGCGGATTT	GCAAGACCAA	CTCTTGTTCA	AAAGGCTGAT	TGATTTTCTG	5520
GATGCGACCA	TTCACTAATT	CGCTTCGCAA	TTCCTCAACT	ATGTGGTGTA	AAAAAAATCC	5580
CTCAAATGAC	ATCGTTCTCT	CCTTGTGATT	GTATTCCATA	GTATTATATC	AAAAAGGTAG	5640
AATAAAATCA	TGGAAATGTG	GTATAATAAA	GCCAAGTAAA	GAGAAACGAG	AAGCACATGT	5700
ATATTGAAAT	GGTAGATGAA	ACTGGTCAAG	TTTCAAAAGA	AATGTTGCAA	CAAACCCAAG	5760
AAATTTTGGA	ATTTGCAGCC	CAAAAATTAG	GAAAAGAAGA	CAAGGAGATG	GCAGTCACTT	5820
TTGTGACCAA	TGAGCGTAGT	CATGAACTTA	ATCTGGAGTA	CCGTAACACC	GACCGTCCGA	5880
CAGATGTCAT	CAGCCTTGAG	TATAAACCAG	AATTGGAAAT	TGCCTTTGAC	GAAGAGGATT	5940
TGCTTGAAAA	TTCAGAATTG	GCAGAGATGA	TGTCTGAGTT	TGATGCCTAT	ATTGGGGAAT	6000
TGTTCATCTC	TATCGATAAG	GCTCATGAGC	AGGCCGAAGA	ATATGGTCAC	AGCTTTGAGC	6060
GTGAGATGGG	CTTCTTGGCA	GTACACGGCT	TTTTACATAT	TAACGGCTAT	GATCACTACA	6120
CTCCGGAAGA	AGAAGCGGAG	ATGTTCGGTT	TACAAGAAGA	AATTTTGACA	GCCTATGGAC	6180
TCACAAGACA	ATAAACGAAA	ATGGAAAAAT	CGTGACTTGA	TATCCAGTTT	AGAATTTGCT	6240

TTGACAGGTA	TTTTTACTGC	TATCAAGGAA	GAACGCAATA	TGCGAAAACA	CGCAGTGACG	630
GCTCTAGTGG	TCATCCTTGC	AGGTTTTGTT	TTTCAGGTGT	CACGAATCGA	ATGGCTCTTT	636
CTCCTATTGA	GTATTTTCTT	GGTAGTAGCC	TTTGAGATTA	TCAACTCTGC	TATTGAAAAT	642
GTGGTGGATT	TGGCCAGTCA	CTATCACTTT	TCCATGCTGG	CTAAAAATGC	CAAGGATATG	648
GCGGCCGGCG	CGGTATTAGT	GGTTTCTCTT	TTCGCAGCCT	TAACAGGCGC	ATTGATTTTT	654
CTCCCACGAA	TCTGGGATTT	ATTATTTTAA	ACAGTAAGAG	GAAATTATGA	СТТТТАААТС	660
AGGCTTTGTA	GCCATTTTAG	GACGTCCCAA	TGTTGGGAAG	TCAACCTTTT	TAAATCACGT	666
TATGGGGCAA	AAGATTGCCA	TCATGAGTGA	CAAGGCGCAG	ACAACGCGCA	АТААААТСАТ	672
GGAATTTAC	ACGACTGATA	AGGAGCAAAT	TGTCTTTATC	GACACACCAG	GGATTCACAA	678
GCCTAAAACA	GCTCTCGGAG	ATTTCATGGT	TGAGTCTGCC	TACAGTACCC	TTCGCGAAGT	684
GACACTGTT	CTTTTCATGG	TGCCTGCTGA	TGAAGCGCGT	GGTAAGGGGG	ACGATATGAT	690
PATCGAGCGT	CTCAAGGCTG	CCAAGGTTCC	TGTGATTTTG	GTGGTGAATA	AAATCGATAA	696
GTCCATCCA	GACCAGCTCT	TGTCTCAGAT	TGATGACTTC	CGTAATCAAA	TGGACTTTAA	702
GAAATTGTT	CCAATCTCAG	CCCTTCAGGG	AAATAACGTG	TCTCGTCTAG	TGGATATTTT	708
GAGAGAT	CTGGATGAAG	GTTTCCAATA	TTTCCCGTCT	GATCAAATCA	CAGACCATCC	714
AGAACGTTTC	TTGGTTTCAG	AAATGGTTCG	CGAGAAAGTC	TTGCACCTAA	CTCGTGAAGA	7200
SATTCCGCAT	TCTGTAGCAG	TAGTTGTTGA	CTCTATGAAA	CGAGACGAAG	AGACAGACAA	7260
GTTCACATC	CGTGCAACCA	TCATGGTCGA	GCGCGATAGC	CAAAAAGGGA	TTATCATCGG	7320
AAAGGTGGC	GCTATGCTTA	AGAAAATCGG	TAGCATGGCC	CGTCGTGATA	TCGAACTCAT	7380
CTAGGAGAC	AAGGTCTTCC	TAGAAACCTG	GGTCAAGGTC	AAGAAAAACT	GGCGCGATAA	7440
AAGCTAGAT	TTGGCTGACT	TTGGCTATAA	TGAAAGAGAA	TACTAAGTAG	AGGTAGGCTC	7500
TGCCTGCTT	CTTGTTTTTA	CAGAAGGAGG	ACTTATGCCT	GAATTACCTG	AGGTTGAAAC	7560
GTTTGTCGT	GGCTTAGAAA	AATTGATTAT	AGGAAAGAAG	ATTTCGAGTA	TAGAAATTCG	7620
TACCCCAAG	ATGATTAAGA	CGGATTTGGA	AGAGTTTCAA	AGGGAATTGC	CTAGTCAGAT	7680
ATCGAGTCA	ATGGGACGTC	GTGGAAAATA	TTTGCTTTTT	TATCTGACAG	ACAAGGTCTT	7740
ATTTCCCAT	TTGCGGATGG	AGGGCAAGTA	TTTTTACTAT	CCAGACCAAG	GACCTGAACG	7800
AAGCATGCC	CATGTTTTCT	TTCATTTTGA	AGATGGTGGC	ACGCTTGTTT	ATGAGGATGT	7860
CGCAAGTTT	GGAACCATGG	AACTCTTGGT	GCCTGACCTT	TTAGACGTCT	ACTTTATTTC	7920
<b>'АААААТТА</b>	GGTCCTGAAC	CAAGCGAACA	AGACTTTGAT	TTACAGGTCT	TTCAATCTGC	7980
CTTGCCAAG	TCCAAAAAGC	CTATCAAATC	CCATCTCCTA	GACCAGACCT	TGGTAGCTGG	8040

ACTTGGCAAT	ATCTATGTGG	ATGAGGTTCT	CTGGCGAGCT	CAGGTTCATC	CAGCTAGACC	8100
TTCCCAGACT	TTGACAGCAG	AAGAAGCGAC	TGCCATTCAT	GACCAGACCA	TTGCTGTTTT	8160
GGGCCAGGCT	GTTGAAAAAG	GTGGCTCCAC	CATTCGGACT	TATACCAATG	CCTTTGGGGA	8220
AGATGGAAGC	ATGCAGGACT	TTCATCAGGT	CTATGATAAG	ACTGGTCAAG	AATGTGTACG	8280
CTGTGGTACC	ATCATTGAGA	AAATTCAACT	AGGCGGACGT	GGAACCCACT	TTTGTCCAAA	8340
CTGTCAAAGG	AGGGACTGAT	GGGAAAAATC	ATCGGAATCA	CTGGGGGAAT	TGCCTCTGGT	8400
AAGTCAACTG	TGACAAATTT	TCTAAGACAG	CAAGGCTTTC	AAGTAGTGGA	TGCCGACGCA	8460
GTCGTCCACC	AACTACAGAA	ACCTGGTGGT	CGTCTGTTTG	AGGCTCTAGT	ACAGCACTTT	8520
GGGCAAGAAA	TCATTCTTGA	AAACGGAGAA	CTCAATCGCC	CTCTCCTAGC	TAGTCTCATC	8580
TTTTCAAATC	CTGATGAACG	AGAATGGTCT	AAGCAAATTC	AAGGGGAGAT	TATCCGTGAG	8640
GAACTGGCTA	CTTTGAGAGA	ACAGTTGGCT	CAGACAGAAG	AGATTTTCTT	CATGGATATT	8700
CCCCTACTTT	TTGAGCAGGA	CTACAGCGAT	TGGTTTGCTG	AGACTTGGTT	GGTCTATGTG	8760
GACCGAGATG	CCCAAGTGGA	ACGCTTAATG	AAAAGGGACC	AGTTGTCCAA	AGATGAAGCT	8820
GAGTCTCGTC	TGGCAGCCCA	GTGGCCTTTA	GAAAAAAAGA	AAGATTTGGC	CAGCCAGGTT	8880
CTTGATAATA	ATGGCAATCA	GAACCAGCTT	CTTAATCAAG	TGCATATCCT	TCTTGAGGGA	8940
GGTAGGCAAG	ATGACAGAGA	TTAACTGGAA	GGATAATCTG	CGCATTGCCT	GGTTTGGTAA	9000
TTTTCTGACA	GGAGCCAGTA	TTTCTTTGGT	TGTACCTTTT	ATGCCCATCT	TCGTGGAAAA	9060
TCTAGGTGTA	GGGAGTCAGC	AAGTCGCTTT	TTATGCAGGC	TTAGCAATTT	CTGTCTCTGC	9120
TATTTCCGCG	GCGCTCTTTT	CTCCTATTTG	GGGTATTCTT	GCTGACAAAT	ACGGCCGAAA	9180
ACCCATGATG	ATTCGGGCAG	GTCTTGCTAT	GACTATCACT	ATGGGAGGCT	TGGCCTTTGT	9240
CCCAAATATC	TATTGGTTAA	TCTTTCTTCG	TTTACTAAAC	GGTGTATTTG	CAGGTTTTGT	9300
TCCTAATGCA	ACGGCACTGA	TAGCCAGTCA	GGTTCCAAAG	GAGAAATCAG	GCTCTGCCTT	9360
AGGTACTTTG	TCTACAGGCG	TAGTTGCAGG	TACTCTAACT	GGTCCCTTTA	TTGGTGGCTT	9420
TATCGCAGAA	TTATTTGGCA	TTCGTACAGT	TTTCTTACTG	GTTGGTAGTT	TTCTATTTTT	9480
AGCTGCTATT	TTGACTATTT	GCTTTATCAA	GGAAGATTTT	CAACCAGTAG	CCAAGGAAAA	9540
GGCTATTCCA	ACAAAGGAAT	TATTTACCTC	GGTTAAATAT	CCCTATCTTT	TGCTCAATCT	9600
CTTTTTAACC	AGTTTTGTCA	TCCAATTTTC	ÄGCTCAATCG	ATTGGCCCTA	TTTTGGCTCT	9660
TTATGTACGC	GACTTAGGGC	AGACAGAGAA	TCTTCTTTTT	GTCTCTGGTT	TGATTGTGTC	9720
CAGTATGGGC	TTTTCCAGCA	TGATGAGTGC	AGGAGTCATG	GGCAAGCTAG	GTGACAAGGT	9780

332 GGGCAATCAT CGTCTCTGG TTGTCGCCCA GTTTTATTCA GTCATCT ATCTCCTCTG 9840 TGCCAATGCC TCTAGCCCCC TTCAACTAGG ACTCTATCGT TTCCTCTTTG GATTGGGAAC 9900 CGGTGCCTTG ATTCCCGGGG TTAATGCCCT ACTCAGCAAA ATGACTCCCA AAGCCGGCAT 9960 TTCGAGGGTC TTTGCCTTCA ATCAGGTATT CTTTTATCTG GGAGGTGTTG TTGGTCCCAT 10020 GGCAGGTTCT GCAGTAGCAG GTCAATTTGG CTACCATGCT GTCTTTTATG CGACAAGCCT 10080 TTGTGTTGCC TTTAGTTGTC TCTTTAACCT GATTCAATTT CGAACATTAT TAAAAGTAAA 10140 GGAAATCTAG TGCGAGTAAA AATCAATCTC AAATGCTCCT CTTGTGGCAG TATCAATTAC 10200 CTAACCAGTA AAAATTCAAA AACCCATCCA GACAGATTGA 10240

## (2) INFORMATION FOR SEQ ID NO: 33:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13206 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGCTTTATCG TGGACGTGGT CAAGCCGAGA ATTTCATCAA GGAGATGAAG GAGGGATTTT 60 TTGGCGATAA AACGGATAGT TCAACCTTAA TCAAAAACGA AGTTCGTATG ATGATGAGCT 120 GTATCGCCTA CAATCTCTAT CTTTTTCTCA AACATCTAGC TGGAGGTGAC TTCCAAACTT 180 TAACAATCAA ACGCTTCCGC CATCTTTTC TTCACGTGGT GGGAAAATGT GTTCGAACAG 240 GACGCAAGCA GCTCCTCAAA TTGTCTAGTC TCTATGCCTA TTCCGAATTG TTTTCAGCAC 300 TTTATTCTAG GATTAGAAAA GTCAACCTGA ATCTTCCTGT TCCTTATGAA CCACCTAGAA 360 GAAAAGCGTC GTTAATGATG CATTAAAGAA CAGTCGAGAT GAAAAAATCG TGTGACGCAC 420 CAAGGGAGGA GTCTGCCCTT TTGAGGAAAT CTAGCGAGGA AAAACGATAC TGGAACAGCA 480 GAAAGTAAAA CTGACCTCAT GAGGAGGAAG AAAGTGGCTC ATGAGGTCAG GGGTTTTGTA 540 AGTTACATCT AGTTGAGAGA GGTATGAATG ATTTGGGATT AATCATTTCT TGTTTTAAAT 600 CAGGAGAATA GTAACGATTT TTTCCTTTTT TGACGAACTC TATTCCGTAA CGATCAATCA 660 ATTTAATCAT GTACCTAATA TTAGAATTGT TTATCCCAAA TTTATTTGAA AGCTTCTCTA 720 AGCTATATCC TTGTTTTCTA AGTTCATAGA TCTGAACTTT ATCATCATAA GTTAGTTTCA 780 TAATAAAAC ACCCCAAAAG TTAGATTTT TCTGTCTAAC TTTTGGGGGG CAGTTCATTC 840 AACACCTGAT ACTATGCGTT TTTCTTATTT GAAATACTTT TTACTCAACC TCTTTATACT 900 CAATGAAAAT CAAAGTGCAA ACTAGAAAGC TAGCCTCAGG CTGCTCAAAA CAGTGTTTTG 960

AGGTTGCAGA	TGGAAGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTATT	ACTTAATCTT	1020
CTTGATACTT	TGACTAAGAA	TAAATCCTAC	AATCATCCCT	ACCATATTTT	GCATAAAATT	1080
CGGTAGAATT	TCTGGGAGGG	CTGCTGCCCA	GCCATTCATC	AAAGCAGAAC	CCAAGGCGTA	1140
GCCTCCTACC	ATGGCAATAG	TTGCTAAAAT	AAGGCCTAAC	CACTGACTTT	ТТССТТТААА	1200
TCCTGCGAAA	AATCCCTGCA	AGCCATGGTT	GACCAAGCTA	AAGAACATCC	ACTGAGGGTA	1260
GCCTGATAAG	AGGTCAATCA	AGAAACTTGC	TAGTCCTCCG	ACTACCGCTC	CTTCACGACT	1320
ACCAAAGTAA	AAGGCCGCAA	AGAAGACACC	AGCATCTAAA	AGAGTTAGAA	TTCCTGTAGG	1380
TGTTGGGATT	TTTAAGAAAT	AACCTAGAAC	CACAGAAAGG	GCGGTTAATA	GGGATACAAG	1440
GGCGATTTTA	GTTGTTTTTG	TTTGCTTCAT	ATTGTCTTAC	TCCATACTGA	TCTGCTTGTG	1500
CAATAGCACG	ATAAACGAAA	GCCTTAGAGC	TTTCTACTGC	TGGCAAAAGT	TTATCACCTT	1560
TAACCAGGTG	ACTGGCAATG	CTAGAGSCAA	AGGTACAACs	TGCACCAGCA	TTTTGGCCTT	1620
GGATAACTGG	ATTTTCTAGG	ATAGTAAAGG	TCTGTCCATC	ATAAAAGACA	TCCACAGCCT	1680
TGTCCTGACT	AAGACGATTG	CCTCCCTTGA	TAATGACTGt	GGCGCTCCTA	AATCATGCAA	1740
TTTCTGCGCT	GCAGTTTTCA	TGTCTTCCAA	GGTTTTAATT	TCCTGACCGG	АТААТААТТС	1800
TGCTTCTGGG	AGATTAGGCG	TAATCACACT	GACATAAGGG	AAAAAGCGAA	TCAACTCTTG	1860
GCAGAGCTCA	CTGACAGCTA	CATCATGCGT	TTCCTTGCAG	ACCAAGACAG	GATCCAACAC	1920
CACAGGTACT	CCTGGGCGTT	GTTTGATAAA	GTCCAAGGCC	TTCTCAGCCA	CGCTGACAGT	1980
AGGGAGAAGA	CCAATCTTAA	TTCCCCCAAA	TTCCACATCA	CGCAAGCTAT	CTAATTCATG	2040
TTGAAAAATG	GTATCATCAG	TTGGAAAGAC	TTCAAATCCT	TTTTCTGTCA	AGGCTGTCAA	2100
ACAAGTCACT	GCTACAAACC	CATGCAAGCC	GTTCAAGGTA	TAGGTAGCCA	AATCAGCTGA	2160
CAGTCCACCA	CCACTAAAAA	TATCATTTCC	AGAAAGTGCT	AAAATACGAT	TATTCTTCAT	2220
AACGAATCTC	CTTTAAATAC	AAACCATTTG	GTGCTGCAGT	GGGACCTGCA	AGTTGCCTGT	2280
CCTTCTTCTC	CAAGATGAGA	TCAATCTGCT	CTACTGGCAT	GCGGTTGTTA	CCGATTTTGA	2340
GAAGAGTCCC	CACCATATTG	CGAATCTGTT	TATACAAGAA	ACCATTTCCT	GAAAAGGTAA	2400
AGGTCAAAAA	TTGTCCTGTC	TCATCGACTA	TTAAACTAGC	TTCTGTGATG	GTGCGAACCT	2460
TATCCTCTAC	ACTAGTCCCA	GAGGCTGTAA	AACCGGTAAA	ATCATGGGTT	CCCTCTAGCT	2520
TTTTGATTGC	AATCTGCATT	CGTTCCACAT	CGAGTGGGTA	GGGAAAGTGG	GTGGCATAGT	2580
GACGGCGCAT	CGGATTTTTG	GGACGTCCTC	TATCCACAGT	AAACTCATAG	GTCTTGCTAT	2640
GCTTGGCATA	ACGGCAATGA	AAATCATCTG	CCACAAGCTC	AATCGAAATC	ACATCAATAT	2700

			334			
CTTCAGGAGA	CTGGGTATCC	AAGGCAAAAC	GGAGTTTCTC	CTCATCCATC	TGATAAGGCA	2760
GGTCAAAATG	AATCACCTGT	CCCAGGGCAT	GAACCCCACT	ATCTGTCCTA	CCAGCACCGT	2820
GAACAGTAAT	GGCTTGCCCT	ТТАТТТААТС	TGGTCAAGGT	TTTTTCAATT	TCTTCCTGAA	2880
CGCTACGCGC	ATGAGGCTGG	CGCTGAAAGC	CAGCAAAGGC	ATAACCATCA	TAGGAAATAG	2940
TTGCTTTATA	TCTCGTCATA	GCCTCTATTT	TATCAAGAAA	TTAGTCTGTA	AACAAGGACC	3000
Гаааасааат	ATTGTATGGG	TATAAAAATC	TCATACTCTT	CGAAAATCTC	TTCAAACCAC	3060
GT <b>CAGTTTC</b> C	ATCTGCAACC	TCAACACACT	ATTTTGAGCA	ACCTGCGGCT	AGCTTTCTAT	3120
AGTAGATTGA	AATAAGATAT	GAACAACTCT	ATTAGGAAAG	TCAAATTAAT	TTCTAGAAAT	3180
ATTTTAGCAG	CTACAGCGTA	CTATTCCAAA	CTCAATCAAC	TATAGTTTGC	TCTTTGATTT	3240
rcattgagta	TCAAAAGAAA	AACTTAGGAA	TCAATCCTAA	GCTCTCTTCT	GAAGTAGGTA	3300
CATGACAAAG	ATAGAGATTA	CAATCAACCA	ACCTCCTAAG	ATACTAAAGA	CCAACATCCC	3360
ATTGTGAGTT	AGTAAGCCAA	TTGCACCTAG	AACGAATGGG	GTCGTAAAGG	CTCCGAAACT	3420
ACAGCCTAAT	ACAGCAAATG	AAGTTGCTTG	ATTGAGGAGT	TTAGCTGGAA	TTCGTTCAGA	3480
GACAAGTTGA	AAGACCGTCG	TCAAGACTAC	ACTATAGGCA	AATCCAGCCA	GAACACTTCC	3540
TGCTACTACC	ACCCACAAGG	ATGAAGACAA	GGCAATCACG	ATTTGCCCCA	AGCCAAAGGT	3600
AATACCAGAC	CAGAGGAGCA	GTTTCTCTTT	aaagatagaa	ATCAAGAAAG	AAAAACTCAC	3660
CCCAGCCACA	ATCCCGATCA	ACTGCATGAT	ACTAAGAACA	AAACTAGATA	ACTGGGCATC	3720
CCCAATCCT	CTTTCCACCA	TCAAACTTGG	AATACGGATG	GTAATAGCTG	TATTGGTACA	3780
ACTACAACT	GCCGCTTCGA	TAGCTAAGGT	AAAAATCAAG	CCTTTCATTT	CTCGAGTTAA	3840
ACGACTTGCT	TCCTTCGCTC	TTTTCTTGAC	TTCTTTCTTT	GATTTTCCAT	AAGGGACAAA	3900
GAGCAGATAA	AGGGGCAGCA	CCAAAAATCC	AGCACTATAG	GCTAGAAAGA	TAGCTGTCCA	3960
ACCAAAGGCC	AACAACTGAC	CGACGGCCAA	GGTAATGAGA	GAAGCTCCAA	CGACCTCTGC	4020
AGAAGCGCGT	AGCCCTAACA	TCTGAATTCG	CCTTTTTCCT	TGGTAGCGTT	CACTGATAAT	4080
AGAAATGGCC	TTGGCATTGA	TCATCCCAAG	ACCCAAACCA	AAGAGAAGCC	GTGTTCCAAA	4140
GACAAAGGGA	TAGGCTTGGT	ACCAGAAGGG	AGCTGTACCG	CTCAATGATA	AAATCAGCAA	4200
CCCAAACTA	ATCTGTAAGC	GCTCAGGAAA	TATTTTTCT	AAGAAACCAT	TTAGCAGTAA	4260
ATCATCATG	ATTCCAAAGG	AAGGCAAGCT	CACCAAGAGC	TCAATTTGTT	CCTTAGAATA	4320
CCCTGATAA	TAGTCAAACA	TGGCTGGTAG	GGCACTCGAA	ATGGAAAAGG	AGGTAATCAA	4380
ACGAGGGAG	AGAGCCAAAA	TGCTGGCCCG	ттстааааат	TGTTTCATGA	AATCTCTTTC	4440
ATATTTCTC	TTAATCTTCT	ACTTTTTTGA	TAGTTATCAA	ATAAGCAAGA	AAAGAAGAAG	4500

CCTCATTGGT	TTGTAGACTC	CTTCTTAAAT	TCGAAAATGA	ATCCCTTGTA	TCTTATACTC	4560
AATGAAAATC	AAAGAGCAAA	CTAGGAAGCT	AGCCGCAGGT	TGTTCAAAAC	AGTGTTTTGA	4620
GGTTGCAGAT	GGAAACTGAC	GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GGATGACTTT	4680
CTCTTGATTT	GCTTGATAAA	GTAGAAAATA	AATCCTGCTA	CCATATAGGC	AACAAAGATA	4740
ATCAGACACC	ACTTAAACAC	AACATTCCAA	CCCTTGTTCA	CATTCAAAAA	GAAGTAAGGG	4800
AAAGGATTAT	CCTTGGCATT	TGGAATATTG	AGTTTTAGAA	CCAAGCCATT	AAAAAGAGCA	4860
AACATCATAT	ACAGAAAGGG	TAAAATGGTC	CACACTGCTG	GATCCCAAAT	CTTGTATTGA	4920
CCCTGTTTGT	CAAAAAAGAG	GGTATCCGCT	AAAAACCAGA	TGGGAACGAT	ATAGTGGCAA	4980
AGGAAATTTT	CTAGGGTATA	GAAATTAGTC	GCAATGGGCG	CCAAGAGGAA	ATGGTAAATC	5040
ACACAGGTAA	TCATGATACT	CATGGTGACC	CCACCTTTTA	AGCGCAAGAG	ACTTGGCCTT	5100
TGCCAATTTT	CACCTACACG	GCTCATAACC	TTTAGAAGAT	AAAGGGTAAA	AATAGTTACC	5160
AAGAGGTTGG	ACAGAACCGT	GTAATAGAGA	AGCATCCCAA	AACCACCATG	CTTAGTAATT	5220
TCAAGATAAA	CTCCCGTAAA	AGCCGCTAGA	AACAAGAAGA	TACGGCTATA	AAATACAAGT	5280
TTATAGTGTT	TTGACATGCT	TAAATCTTCC	TCACAAACTC	TGATTTAAGT	TTCATGGCAC	5340
CAAAACCATC	AATCTTACAG	TCGATATTGT	GGTCGCCTTC	TACGATGCGG	ATATTTTCA	5400
CGCGCGTCCC	TTGTTTCAAA	TCTTTTGGCG	CACCTTTTAC	TTTCAAGTCC	TTGATGAGAG	5460
TTACTGTATC	ACCATCAGCC	AATTTATTTC	CGTTGGCATC	GATAGCGACA	AGACCTTCTT	5520
CTACTTCTGC	AACTTCAGCA	GGATTCCACT	CATGAGCACA	CTCTGGGCAA	ACCAGTAGGG	5580
CACCGTCTTC	GTAGACATAC	TCTGAGTTAC	ATTTTGGACA	ATTTGGTAAA	TTGTTCATGG	5640
TTTCTCCTTA	TCATCATTCA	CTATTCTTTG	AAAATCAAAA	TTTCTCGAAC	AGCAACTATT	5700
ATACCCTAAA	ATCAGCATTT	TGACAAATTT	AGAAAAAAAC	CGATATCAAT	CTATCGGCTT	5760
TTCTACATTT	ACATTCTTTT	TTCAGCTTCT	GCTTTGATTT	TTTCAACTAC	TTCTTGAATG	5820
TTCAAACCAG	TTGTATCAAG	GTAGACAGCA	TCCTCTGCTT	GTTTGAGAGG	AGAAGTCTCA	5880
CGATGACTAT	CCTTGTAGTC	ACGCGCAGCA	ATTTCCTTTT	TTAGGGTTTC	AAGGTCTGTT	5940
TCAATTCCCT	TGGCAATATT	TTCCTTGTAA	CGACGCTCTG	CTCTCTCATC	AACAGAAGCT	6000
ACTAGGAAAA	TTTTCAATTC	TGCTTGTGGC	AATACAACAG	TTCCAATATC	GCGACCATCC	6060
ATGACAATCC	CGCCTTGCTG	GGCAATTTCT	TGTTGGAGAG	AAACCAGTTT	CTCACGCACT	6120
TGAGGAATTG	CTGCAATAGC	AGAAACATGA	TTGGTCACTT	CATTTTCACG	GATAGGATGG	6180
GTAATATCCA	CATCTCCTAC	AAAAACAAGC	TGGTCTCCAG	TTTCTGAACG	TCCAAAGCTG	6240

			336			
ATTGGATGCT	GGTCCAACAA	GGCTAGAAGG	GCTTCGACTT	CTTCAACTCC	TAATTGGTTC	630
TTAAGAGCCA	TATAGGTCGC	TGCACGATAC	ATAGCTCCTG	TATCAAGGTA	GGTGAATCCA	636
AAATCCTTAG	CAATAATCTT	TGCGACCGTA	CTCTTACCGC	TGGAAGCAGG	ACCATCAATA	642
GCAATTTGAA	TTGTTTTCAT	ATCGGCTCCT	ATTTTATTT	TATAACATCA	CCTGGATTAG	648
CAAACCAAGA	TCCTGTAGCC	ATGTGCCCAG	GATTCAAGGC	CTCTAACTGA	GCAATGGAGA	654
TTCCTGCACG	AGCGGCAATA	GCTGCTTCCC	CTTCTCCTGC	GAGAACTTTA	ATCGTTCCTT	660
CAGGATTAGC	AGCTTCTTCT	GAACTACTAG	AAGTAGATTC	TGGCTCTGAA	CTCTGCTCAG	666
GCTGAGAACT	ACTTGAAGAT	GAGATTTGTA	CTACACTGGC	ATCAGAATCA	TGAAAGCCTT	672
TTAAGGCTGC	TGTGCGATTA	CTCCCCCCG	ATGATAGATA	GATGAGAACG	ATGACCATCA	678
CCACCACAAT	TACAAAGAAA	ATACTAGCTA	GGATCGTCAA	AATACGATTA	GCCATCCTAT	- 684
CAGCCCCTCC	GTGGTTTCGA	TGCCGACGCT	CTGCTCTTGA	TTCTTCTTGA	TCATAGATAT	690
CTTCTTGCCA	CGGTTCTTTT	GCCATACCTT	ACTCCTTGTT	TTTTTTTACT	TTTCTTATTA	696
CAATATAAAT	ATGAACATGA	AAATCACACT	TATACCTGAA	CGATGTATCG	CCTGTGGGCT	702
PTGCCAAACT	TATTCTGATT	TATTTGATTA	CCACGATAAT	GGAATCGTGC	GTTTTTACGA	708
IGACCCTGAC	CAACTGGAAA	AAGAAATTTC	TCCTAGTCAG	GATATCTTAG	AGGCTGTTAA	714
AAATTGCCCA	ACTCGCGCCC	TGATTGGAAA	CCAGGAAGCC	TAAATCAATG	GCGATAATCC	720
ACTCCCTCTA	GTTTAGCACA	TTTCCATGTA	AAATTATAGT	CTTTTCACTT	TATTTTTTC	726
rgtaaaatca	GGAAGGTCAC	TTTTTTCTTT	GATAAGATAA	AGTGGTCTTT	TTTTAGTCTC	732
PAAATAAATC	TTACTGATAT	ACTTGCCGAG	AATCCCAATG	GTCAAGAGTT	GAATGCCTCC	7380
AAGAAAGAGA	ATAACAGCCA	TCAGAGAGGT	CCAACCAGAT	GTCGGATTGC	CCAAAATGAG	7440
GGTCCGAACC	ACAACAAAAA	AGGTCATCAG	CAGAGAAAGA	AAACAAGATA	GGAGACCAGC	7500
FACAAAGGCT	ATAATCAAGG	GAAAATCTGA	AAAATTAATA	ATCCCTTCAA	TGGAGTAGAA	7560
AAAGAGTTGC	CTAAAACTCC	AACTTGTCTT	GCCAGCCTGC	CTTTCGACAT	TTGGATAGTC	7620
CAAATAGTAG	GTTTTGAAAC	CCACCCAGGC	GAAGAGCCCC	TTTGAAAAAC	GATTGGACTC	7680
GTCAAGCTT	AAAATGGCAT	CGACTACAGA	CCTTCTCATC	ATACGAAAAT	CACGGACACC	7740
CGACGGCAGA	GCTACTGGGC	TGATTTTTTG	CATGAGGCGA	TAAAAGAGAA	CAGCACAGAA	7800
ACTGCGAAAG	AAGGGTTCTC	CCTCCCGACT	AGTTCTCCGT	GTCCCAACGC	AGTCCAAGTC	7860
PACATTTTTG	TCTAATACAT	TTTTCATCTC	AAACAACATA	CTAGGAGGAT	CTTGGAGGTC	7920
<b>IGCATCCATC</b>	ACCACCACCA	AATCTCCTGT	CGCATATTGC	AAGCCTGCAT	AAAGGGCTGC	7980
TTCTTTGCCA	AAATTTCGAG	AGAAAGAAAT	ATAATGGACT	GCCGGATTTT	GCTCCCGATA	8040

GGCCTTTAAG	AGTTCCAAGG	TCCCATCACT	TGATCCATCA	TCGACAAAGA	CATACTCGAT	8100
TTCTGTTTCC	AAATCTGGAA	GTAAAGCTTC	CAGAGCCTGA	TAAAAAAGAG	GAAGTACTTC	8160
CTCTTCGTTT	AAACAAGGGA	CGATGATTGA	AATCATCATC	ТТАСТСТТСА	AATCCATTTG	8220
GATGCTTGCT	TTGCCAACGC	CATGCGTCTT	CACACATTTG	GGTGATGTCG	AGTTCTGCTT	8280
CCCAACCGAG	TTCTGCTTTA	GCTTTTGCCG	GGTCTGAGTA	GCAGGCAGCG	ATATCACCTG	8340
GGCGACGTTC	TACGATGCGG	TAAGGAATAG	GACGGCCCAC	CGCTTTTTCC	ATGTTTTGGA	8400
TAATTTCAÁG	AACTGAGTAA	CCTTTACCAG	TTCCAAGGTT	ATAAACGTTT	AGTCCTGAAC	8460
CTTTTTGGAT	TTTTTTCAAA	GCTGCAACGT	GACCCTTAGC	CAAATCGACA	ACGTGGATAT	8520
AGTCACGAAC	ACCTGTTCCA	TCTTCCGTAT	CGTAATCGTC	TCCAAACACT	TGCACTTGCT	8580
CTAATTTTCC	AACGGCTACT	TGAGTCACAT	ATGGCAAGAG	ATTGTTTGGA	ATACCGTTTG	8640
GATTTTCTCC	CAAATCACCA	CTCTCATGGG	CTCCGATTGG	GTTAAAGTAA	CGAAGCAAGA	8700
CAACATTCCA	TTCTGAGTCT	GCTTTGTAAA	TATCAGTCAA	AATTTCCTCT	AGCATGAGCT	8760
TAGTACGACC	GTATGGGTTG	GTCACTGAAA	GTGGGAAATC	TTCCAAGATG	GGCACTGTGT	8820
GCGGATCCCC	GTAAACTGTC	GCAGAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	8880
CCATGGCTTT	CAAAAGGCTG	ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	8940
TACGTGTTGA	TTCGCCAACA	GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCGGTTCTT	9000
CCTGCTTGAA	AATATCTCTG	AGGGTATCTG	TGTCACGAAT	ATCTGCCTCA	TAGAAAGGAA	9060
TCTCAACTCC	TGTGATTCCT	TCAACAACTT	CTAAACTCTT	ACGATTGCTA	TTGACAAGAT	9120
TATCCACCAC	AACAACTTGA	TGACCTGCTT	GGATCAATTC	AATAACAGTG	TGGGTTCCAA	9180
TAAAACCGGC	ACCACCAGTT	ACCAAAATCT	TTTCTTGCAT	CTTTTTTCCT	CGATTCTCAG	9240
ATTATTTTT	CTTATTTTAC	CATTTTTGAC	AGGGAATGTC	ATTTGCCATC	CTAAACTACC	9300
TGATAAAATT	TCAGTAAAAT	GCTTATACTC	TTCGAAAATC	CAATTCAAAC	TACGTCAACG	9360
TCGCCTTGCC	ATGGGTATGG	TTACTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	9420
GTTTTGAGCT	GACTTCGTCA	GTTCTATCCA	CAACCTCAAA	GCAGTGCTTT	GAGTAACCCG	9480
CGGCTAGTTT	CCTAGTTTGT	TCTTTGATTT	TTATTGAGTA	TTATTCGCTT	TTTACTCGTT	9540
TGACATAGTT	TTCAATTGGG	TAATTTAGAG	GGTCCAAGGT	CAACTCCTTG	TCTTGGATCA	9600
GTTGGGCTAG	ATGGTAACCA	ATGATAGGAC	CAGTTGTGAG	GCCTGATGAA	CCTAGTCCAC	9660
TGGCTGCATA	GACACCAGTT	AAGTCAGGCA	CCTGCCCAAA	GAAAGGAGAG	AAATCACTGG	9720
TGTAGGCACG	GATTCCAACA	CGCTCAGATT	TTGAAGTAGC	TTCAGCCAAA	ATCAGATAGT	9780

338 9840 CCATGTCATT TTCGTGGGTA GCGCCTAAGG ATAATTTCCC ACCTGCAAAG GGAATCAAAT 9900 CCCACTCCCC TTCTGGCATG ACAACAGGGT AATCTTCCAT GTCTTGGGCA AGCTGATAAT 9960 CTCGTAGTTG TCCTTTTGA GGACGGACAT CCACTTCATA ACCTAAAGGC TCTAACATGT 10020 CCCCCAACCA AGCTCCCGTC GCCAAAATAA CCTGCTCAAA CTCCTCTTCA CCAATCTGGT 10080 AGCCTGATGC TAACGGTGTC AGAGTCACTT TTTCTTTGAC CAGCTTGACA TGACTGACTT 10140 CCAGCAAACG AGTCACTAAA AGTTGGCCAT CTACTCTCGC TCCACCAGAA GCATAGAGCA 10200 GGCGGTCAAA TCCCTGCAAA CCAGGGAATA ATTCATTAGC TGAGGCTTGG TTCAGAATGG 10260 CTAATTGCCC TATCAAGGGA GATTCTTCTC TGCGCTGGAG GGCCAGTTGA TAAAGTTCTT 10320 CCAAATTGGA TTCATCCTTT TTCAAGAGAA AGACTCCCGA ACGCTGGTAA AAGTCGATTT 10380 CTTGTCCTGA TTTCTCTAAA TCAGCTAATA AATCCACATA AAAATCAGCC CCCAAGCGCG 10440 CCATCTTGTA CCAGGCTTTA TTACGGCGTT TGGAAAACCA AGGACTGATA ATTCCTGCTG 10500 CGGCCTTGGT GGCTTGACCT TGCTCATGGT CAAAAACGGT CACCTCTAGG TCACTTTCTC 10560 TCGAGAGGTA GTAGGCAGCT GTTGCTCCCA CAATTCCTGC TCCAATAATG GCAACTTTTT 10620 TCATTGTCTT CACTTTCTAA CTAGATATGA TGGAAAGGAT TGGTTGATGC CTGACTAGGC 10680 AAGATATCAA TAGACCACCC CTTATCTTCC TTCCATTGAC TAAGAAGTGC TGCGATTTTT 10740 TCTACAAAAA TCACTTCGAT ATAGTGACCT GGGTCCAATG CAAGCAACCC ATCAGATAGC 10800 ATATCCTGAG CAGTATGGTA GTAGATATCA CCAGTGATAT AGACATCTGC CCCCTTTGCC 10860 AAAGCATCCT TATAGAAAGA CTGCCCGCTT CCACCACAAA TTGCTACTCT TGAAATAGGC 10920 TTCTGCAAAT CATCCTCTTG ATAATGCACC ATTCGAAGGC TATCTAGGTC AAAGACTTGC 10980 TTGACCTGTT GGGCCAATTC CCAAAATGTC TGAGGCTGAA TATTCCCAAT ACGTCCAATT 11040 CCACGTTCTG GACCTGTTTC CTGCAGATAA GTCGTCTCCT CGATTCCTAG CATCTGACAA 11100 AACCAGTCAT TGAGCCCATT TTCAACGATA TCAATATTGG TATGGCTGAC ATAAACTGCG 11160 ATATCATGCT TAATCAGGTC GATGTAAATC TGATTTTGCG GACGGCTGGC AAGCAAGTCC 11220 TTGATAGGAC GAAAGATAGG CGCGTGCTTG ACGATAATCA AGTCCACACC CTTTTCAATG 11280 GCCTCTGCCA CTGTCTCTTC ACGAATATCG AGGGCAACCA TGACCCTTTG GATACCCTTG 11340 TCTAAAGTGC CAATTTGCAG ACCACGGCTG TCTCCCTCCA TAGAAAATTC CTGAGGGCAA 11400 AAGGCTTCAT AAGCTTGGAT CACTTCACTT GCTAACATGG AGCACCTCCT TGATAGCTTG 11460 AATCTTATCT ACTAGAACTT GACGTTCTTC CAGATTTTTT TCTGGGATTT GTCCGAGGGC 11520 GAACTCTAGC TTCTCAGCTT CTTTTTGCCA TTTTTGGACA AATACTGGAC TGACTTCTTT 11580

GGACAAGAAG	GGACCAAAGC	GAACATCACT	GGCŤGATAGC	TTCATTTGTC	CTGCTTCCAC	11640
CACCAAAATC	TCATAAAACT	TTCCAGCTTC	TTCTAAGATG	CTTTCTGCTA	CAATCTGGAA	11700
TCCATGATCC	TGTAGCCAGA	TACGCAAGTC	GTCTTCACGA	TTATTGGGCT	GGAGGATCAA	11760
ACGCTCTACA	TTAGCTAACT	TCCCCAAACC	TTCTTCTAAA	ATCCTAGCAA	TCAAACGACC	11820
ACCCATGCCA	GCAATGGTAA	TGACAGACAC	TTGGTCAGTC	TCTTCAAAAG	CTGCCAAGCC	11880
ATTGGCTAAA	CGGACTTGGA	TTTTCTCCTT	TAGGCCGTGA	GCCTCAACAT	TTTTAACCGC	11940
AGACTGATAG	GGACCTTCCA	CCACCTCACC	TGCAATAGCG	CTTTTGATTT	GCCTCTCTC	12000
AACCAACTCG	ATAGGCAGAT	AAGCATGGTC	ACTTCCCACA	TCTAGTAAAA	TAGCCCCCTG	12060
TGACACAAAG	GAAGCTACCA	ATTCTAATCT	CTTTGAAATC	ATCTTCTCTC	ACTTTCCAAA	12120
ACTCTATTAC	CTCTTATTAT	ACCACATTTC	AATCTTCAAC	TTCCCAGTAA	TATAAGCACC	12180
TCTGGCGAAA	GAAGTTTCAA	TGTCCTAAAG	TAATAAGTGA	ATCCAATTGA	AAGATTTTAA	12240
ACAATTTGCA	AAAATGTCAA	ААААТАААА	ATAAACAGTT	TATTCAGAAA	ATTCTTGACA	12300
таталаласа	CATGGTAGAA	TATAATTAGA	AAGTTAGAAA	AAATAAAAGT	TTGACTAAAA	12360
TTTGTATTTG	AAGGTGGTGT	TCAGATAAGA	AATTTAGTCA	GACGAACCAC	GAATTTGCTC	12420
TATGCTTTCT	GGAATTTATC	ATAACAGGAG	GATACAGTCA	TGGAACAAAC	ATTGTTTGAA	12480
TTAGAACTAC	TTCCAGAGGA	AGATATCATT	GTCACAGGTC	TCCCTAAGTA	TTGTTCTTTT	12540
ACTTGTTTAA	TTACAGGTCG	CTAGTTATAT	ТТТАТАТААА	ATAAGTAGCT	TTACTTACGG	12600
AATAGGCTAG	TGCTGTGTCT	CTAGCCTATT	TTAATAATTA	GGAGTTTGTT	ATGGATTTAT	12660
TAGAGAAAGA	ATGTTTAAAA	TGTGATAAAA	ATTTCCAACA	GGGTGATATT	TGGAATTACT	12720
ATTATTTATC	AGATAAGATG	CCTGCACAAG	GGTGGAAAAT	ACACATAAGC	TCCCAAATAA	12780
AAGACGCTGT	AAATATTTTT	AAGATTGTGT	ATAAACTATC	CCAACTAAAT	AATTGTAGCT	12840
TTAAAGTTGT	TAAAAATTTA	GAGGAATTAA	аалалаттаа	TTCCCCTAGG	GAAATGAGCC	12900
CTACTGCTAA	CAAATTTATA	ACTCTATATC	CTAAGTCAGA	ATCTGAAGCT	AAGAGTATGA	12960
TTTGTAATCT	TACGAATAGA	CTGTCAGAAT	TTAAGGCTCC	АААААТАСТА	TCTGACTATC	13020
AATGTGGAAT	GCATTCTCCA	GTTCATTATA	GATATGGGGC	TTTTTTAAAA	AAACAAGCTT	13080
ATGATGAAAA	АААТААААА	GTCATCTATT	TATTGCTAGA	TGAAAAAAGG	AAGAACTATG	13140
TAGAAGATAA	GAGACAAAAT	TTCCCTAGTC	TTCCTAGCTG	GAAAATGGAT	TTATTTTCAG	13200
AAGAAG		,				13206

⁽²⁾ INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13104 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

60	TGCTAAAACA	GTCAAAAAGA	GCTGTAAGTG	GCTCTTTGAT	CGAAAAATAT	CCGGATCCAG
120	TGGTGAATAA	ААСАААААТТ	GAAACAATCA	ATTGATCAAA	ATGCTGTAAC	GCTGCTAACG
180	TAGAGACACA	AATTTATCAA	TCCCCCTTTG	GGAAATCAAA	CAAGGGGGGT	AAAATTTGTT
240	ATGGAAAAGC	AGGAGTTAAT	ATCCTATGAA	AAAAAGTAGT	СТТТСТТАТА	AATAATTTAG
300	ATTTACAATA	GTTAGGACAG	TCATTCCTGG	CTGCTGTCTA	TAAAGCAGCC	AACAACCTAG
360	CTTTACTTCC	CGTATTTGTC	GTGTAACCAT	ATCTTCCTTG	CAAAGGTTTT	AACAAAAAGC
420	CCAGGTCGTG	TGGTGACAAA	TCATCACTCT	TTGAGCAACC	AACCCCTGAA	TAGCACTTGC
480	ATCGTTTATG	AATCTTTGTA	CCTTCCATCT	ATTCGTGGTG	CTTTATGCTG	ATAATTCCCT
540	ATTAACAATG	TGCAAAACGC	CACATACGAT	ATCAAAGATG	ТТТСТСАААТ	TACTCTTTTA
600	AATGGCTTCC	GATTTATGAA	TGATCAAAGG	CTCAAAGACA	TCCACGCACA	GAATTCCAGT
660	TTCCCAGTTA	CGCGATTATC	CCATGACCTT	TCTTATGTTG	GATCATTCCA	CTTACCTCTT
720	CCAAACAAGT	ACACTTGCCA	ACGACTTCCA	TTTACCAACT	GATGATCGCC	TCGTAACCTT
780	ACCTTCCGTT	GAGCTTGAGT	CAAACATTTG	ACCAACTTTA	GGTTGGTTTG	TGTTGGACTG
840	TCTACTTTAC	TTTGGCAGCT	TCATTTGGGC	TCTTGGACTA	TTCTGTTCTT	CTGCCTTTGG
900	AAAGGAAAAC	ACCATTTATC	TTGCCAACCA	ACAGCTATCA	TGGTATCTTC	AAATCGTAAT
960	ACTATCTTGA	AGCCTTCATC	GGGCTGTCCC	СТТСТТССТТ	TGTTATTTTC	GTATCTTTGG
1020	TTGCCAATCT	CACTCAAGTA	GTGCTATCAA	GATAGTGTCG	CATGTTTAAC	САТТСТСААА
1080	GACCCAACIT	TTGGAAAACA	CTCTTATTCC	CTTGATGGAG	CCTTCCTTTC	TGGCTAAATT
1140	ATCTACGTTC	ATTCCCATAC	GTTGGCTCGG	ATGATGCAAG	TGCCTTGATT	GGACTAAGAT
1200	TATATTGACG	CGAAGCAGCT	ACGACCTTTA	TCTATTCCTA	TATCTTGCAA	TGACCTTGGG
1260	GCTGTTGCGG	AATGATTTTG	TCACTTTCCC	TTCCGCAACA	TTGGCAAAAA	GTGCCAACGC
1320	ATGTACCTCT	CTTCTCTATC	ACTTTAACAA	TACACCTTCA	GATTAGCCAA	CACCTACTTT
1380	ATCTTGATCT	TTCAACCGAT	GTGGAGCTGG	AGTGTCGGAG	AGGACCTGGT	TCAATGGTGG
1440	GCAGCTGTTA	CTCAATGGCG	СТССТСААТА	ACAGGTACAT	CCGTTTGACA	CATGGATCTA
1500	AAACTACACG	CGCATTCAAG	TCTCTATGAT	GTCATCTCAA	СТСТАТСАТТ	CCTTGATTAT

CATTTGATAT GGAGGACGTC	TAAGATGAAT	AACTCAATTA	AACTCAAACG	TAGACTGACT	1560
CAAAGCCTTA CTTACCTTTA	CCTGATTGGT	CTATCAATTG	TAATTATCTA	TCCACTGTTG	1620
ATTACCATTA TGTCAGCCTT	TAAAGCAGGT	AACGTCTCAG	CCTTTAAACT	AGATACTAAT	1680
ATCGACCTCA ATTTTGATAA	CTTTAAAGGC	CTCTTCACTG	AAACCTTGTA	CGGTACTTGG	1740
TACCTCAACA CTTTGATTAT	CGCCTTAATT	ACCATGGCTG	TTCAAACAAG	TATCATCGTA	1800
CTTGCTGGTT ATGCTTACAG	CCGTTACAAC	TTCTTGGCTC	GTAAACAAAG	TTTGGTCTTC	1860
TTCTTGATCA TCCAAATGGT	GCCAACTATG	GCCGCTTTGA	CAGCCTTCTT	CGTTATGGCG	1920
CTTATGTTGA ACGCCCTTAA	CCACAACTGG	TTCCTCATCT	TCCTCTACGT	TGGTGGTGGT	1980
ATCCCGATGA ATGCTTGGCT	CATGAAAGGC	TACTTCGATA	CAGTGCCAAT	GTCTTTAGAC	2040
GAATCTGCAA AACTAGACGG	TGCAGGACAC	TTCCGCCGCT	TCTGGCAAAT	TGTTCTACCA	2100
CTTGTTCGCC CAATGGTTGC	CGTACAAGCT	CTCTGGGCCT	TCATGGGACC	TTTCGGGGAC	2160
TACATCCTCT CTAGTTTCTT	GCTTCGTGAG	AAAGAATACT	TTACTGTTGC	CGTAGGTCTC	2220
CAAACCTTCG TTAACAATGC	GAAAAACTTG	AAGATTGCCT	ACTTCTCAGC	AGGTGCTATC	2280
CTCATCGCCC TTCCAATCTG	TATTCTCTTC	TTCTTCCTAC	AAAAGAACTT	TGTTTCAGGA	2340
CTTACAAGTG GTGGCGACAA	GGGATAATTT	ATCCCCGCCA	CCCTTTTTCA	TTTTATACTC	2400
TTCGAAAATC TCTTCAAACC	ACGTCAGCTT	TATCTCCAAC	CTCAAAGTTG	TGCTTTGAGC	2460
AACCTGTGGC TAGTTTGCAC	TTTGATTTTC	ATTGATTATT	AGCAATTGTC	ACTGTAAATA	2520
ATATCCTTGT AGCAAGCAAT	TTTTCTCCTA	GACTTGAAAT	AAAGCGCATT	TCTCTATATA	2580
ATAATACTCA TATAGAAAAC	ACCTTTTAGA	AAGATACCTA	TGCTTCCATA	TCCATTTTCC	2640
TATITTCAA GTATTTGGGG	GGTTCGTAAG	CCCCTGTCCA	AACGTTTCGA	GCTCAACTGG	2700
TTTCAACTTC TCTTTACCAG	TATCTTCCTT	ATCAGCTTGT	CTATGGTACC	CATTGCTATC	2760
CAAAACAGCT CCCAGGAGAC	CTATCCGCTA	GAAACTTTTA	TCGATAATGT	CTATGAACCT	2820
CTGACAGATA AGGTTGTCCA	GGATCTCTCT	GAACATGCTA	CAATTGTCGA	TGGCACATTA	2880
ACTTATACTG GAACAGCTAG	TCAAGCCCCT	TCTGTTGTGA	TTGGTCCAAG	TCAAATCAAG	2940
GAATTACCTA AGGACTTGCA	ACTGCATTTC	GATACAAATG	AGCTAGTCAT	CAGCAAGGAA	3000
AGCAAGGAAC TGACCCGCAT	CTCTTACCGA	GCCATTCAGA	CTGAGAGTTT	CAAAAGCAAA	3060
GACAGCTTGA CCCAAGCAAT	TTCTAAAGAC	TGGTACCAAC	AAAATCGTGT	CTATATCAGC	3120
CTCTTCCTAG TTCTCGGTGC	GAGCTTCCTC	TTTGGTTTGA	ATTTCTTTAT	CGTCTCTCTT	3180
GGAGCTAGCT TTCTCCTTTA	TATCACCAAA	AGATCACGCC	TCTTTTCATT	ТААТАССТТТ	3240

			342 ⁻			
AAAGAGTGCT	ACCATTTTAT	CTTGAACTGT	TTAGGATTGC	CGACTCTGAT	TACACTTATT	330
TTGGGATTAT	TTGGCCAAAA	TATGACAACC	CTGATTACTG	ТАСААААТАТ	TCTTTTTGTT	336
CTGTATCTGG	TCACTATCTT	TTATAAAACA	CATTTCCGTG	АТССЛААТТА	CCATAAATAG	342
GAGATTTTTA	TGCCCGTTAC	GATTAAAGAC	GTGGCCAAGG	CTGCTGGTGT	TTCGCCTTCA	348
ACCGTAACCC	GTGTTATTCA	AAATAAATCA	ACCATTAGCG	ACGAAACAAA	AAAACGTGTT	354
CGCAAAGCTA	TGAAGGAACT	CAACTACCAC	CCAAACCTCA	ACGCTCGTAG	CTTGGTAAGC	360
AGCTATACTC	AGGTTATCGG	ATTAGTTCTT	CCTGATGACT	CAGACGCCTT	CTACCAGAAT	366
CCTTTCTTTC	CATCGGTTCT	ACGTGGCATC	TCTCAAGTCG	CATCTGAAAA	CCACTATGCC	372
ATTCAGATAG	CAACAGGGAA	AGATGAGAAG	GAGCGTCTCA	ACGCTATTTC	ACAAATGGTC	378
TACGGCAAGC	GTGTAGATGG	GCTAATTTTT	CTCTATGCCC	AAGAAGAAGA	CCCTCTCGTA	384
AAACTCGTCG	CAGAAGAACA	GTTCCCCTTC	CTTATCTTAG	GTAAATCTCT	ATCTCCTTTC	390
ATCCCACTTG	TCGACAACGA	CAATGTTCAA	GCTGGTTTTG	ATGCGACTGA	ATATTTCATC	396
AAAAAAGGCT	GCAAACGCAT	TGCCTTTATC	GGAGGAAGTA	AAAAGCTCTT	CGTGACCAAA	402
GACCGTTTAA	CAGGCTATGA	ACAGGCGCTT	AAACATTACA	AACTTACCAC	TGACAACAAT	4086
CGCATCTACT	TTGCCGACGA	GTTTCTGGAA	GAAAAGGGCT	ATAAATTTAG	CAAGCGATTA	4146
TTCAAGCACG	ATCCACAAAT	TGATGCTATC	ATCACAACCG	ATAGCCTCCT	AGCTGAAGGT	4200
GTTTGTAACT	ATATTGCCAA	ACACCAGCTG	GATGTCCCTG	TTCTCAGCTT	TGACTCGGTT	4260
AATCCCAAGC	TCAACTTGGC	AGCCTATGTC	GATATCAATA	GTTTAGAGCT	TGGTCGTGTT	4320
TCCCTTGAAA	CTATTCTCCA	GATTATTAAT	GATAATAAAA	ACAATAAACA	AATTTGTTAC	4380
CGTCAATTGA	TCGCCCACAA	AATTATCGAA	AAATAAGAGA	CTGGGCAAAA	AGTCGTTAAA	4440
AGCAAAAACG	CATACTATCA	GGTATTGAAA	AAACTTGATA	CTATGCGTTT	TATTGTGGGA	4500
AGATTTACTT	CCTTTTCTAC	TGAAATTGAG	TCTTTTCCCA	AGATCTTTTT	ATACTCAATG	4560
AAAATCAAAG	TGCAAACTAG	GAAGCTAGCC	GCAGGTTGCT	CAAAACACTG	TTTTGAGGTT	4620
GTAGATGAAA	CTGACGAAGT	CAGTAACCAT	ACCTACGGCA	AGGTGAAGCT	GACGTGGTTT	4680
GAAGAGAT <b>TT</b>	TCGAAGAGTA	TTAATCACTA	ATTATCTATC	TCAACAAATC	TTCCTAGAAT	4740
ATGAACATTT	TCCGAGACAG	AGACAAAGGA	GCTTGGATCC	ACTTGTGTCA	TAATCTGTTT	4800
AAATTCATTA	AACTCTGCAC	GTGTAATGAC	AGTGATTAAA	ACTGCCTTTC	TCTCGTGATT	4860
ATAGGTTCCT	TCTGCATCGT	GGATCATGGT	TGCTCCGCGG	TGCAATTTTT	TATGGATTTT	4920
TTCAATTACC	TTCTCTGGAT	GATTTGTCAC	AATCATGGCC	TGCATACGCT	TTTGCTTAGT	4980
1 1 1 C 1 C C C C C C C C C C C C C C C	momemes es e	CCCMACACAC	3 3 2 3 DC 0 DC C D 3	3///C3///3/C3 3///	1110100m	5046

TTTCCAACCA AAGGTCAAAC	CTGCTATCAG	CATGATAGTT	CCATTTACCA	AGAAAGAAAT	5100
ACTACCGACA TTCTTACCCG	TTTTCTTACG	AATAGTCAGG	CTGACGATAT	CCGTCCCACC	5160
ACTGGAGATA TTGTTTCGAA	GAGCAAAACC	AATCCCCAAA	CCCATAACAA	CACCCCAAA	5220
AAGGGAATTG ATAATGGGAT	CCTCTGTCAA	GGTTGCCACA	GGGACAAACT	GGATAAAGAA	5280
GGAACTCATA GATACCGTGA	TAAAGGTAAA	GACGGTGAAC	TTATGGCCAA	TCTGATACCA	5340
AGCTAAGACC ATCAAAGGGA	AGTTAATGGC	GTAGAAGCTT	AGCGAAATCG	GAATATGAAA	5400
ACCAAACCAG TGATTACTCA	AGGCAGAGAT	AATCTGTGCC	AGACCTGTTG	CACCACTCGA	5460
ATACACATGC CCTGGTTGGA	AAAAGAAATT	AACTGCTACT	GCTGATAAAA	AACCATAGAC	5520
CAGAGAGGCC GAAATCTTCT	САТСАТАСТТ	TTCTCGAGAG	ATACTTTGTA	AGACACGTAA	5580
AATTTTTATC TGATAAGCAA	AGCGGCGCAG	ATAATAGCGC	CACCGCTTAA	TTCGTTTTGT	5640
TTGTTTCATC TTCTTCTACT	TGTAAGCTGA	GTTCCTCTAG	TTGTTTGAGA	GCGACTGTTG	5700
ATGGAGCTTG TGTCATTGGG	TCAGTTGCCT	TGTTGTTCTT	AGGAAAGGCA	ATGACTTCAC	5760
GGATATTTTC TTCTCCAGCA	AGCAACATGA	CAAAACGGTC	AAGCCCGATA	GCCAAACCAC	5820
CGTGTGGTGG GAAACCATAG	TCCATGGCTT	CAAGAAGGAA	ACCAAACTGG	TCATTGGCTT	5880
CTTCAGTTGA GAAACCAAGA	GCCTTGAACA	TGCGTTCTTG	AAGGTCTTTT	TGGTTGATAC	5940
GAAGGCTACC ACCACCAAGC	TCATAACCGT	TCAAGACGAT	ATCGTAAGCA	ATGGCACGAA	6000
CCTTAGCCAA ATCACCTTCT	AATTCATGAG	CAGTCTCTTC	CTGTGGAAGT	GTGAAAGGAT	6060
GGTGGGCGCT CATGTAGCGG	CCTTCTTCTT	CAGACCATTC	AAACATCGGC	CAGTCAACCA	6120
CCCAAAGGAA GTTGAACTTA	TCATTATCAA	TCAAGCCAAG	CTCTTTAGCA	ATACGTCCAC	6180
GAAGGGCACC CAGTGTTGCA	TTAGCCACTT	CAAGCGTATC	CGCCACAAAG	AGAACCAAGT	6240
CCTTATCTTC AAGAACAAGC	GCTGTTGTCA	ATTCTTCTTG	GATACCAGTC	AAGAACTTGG	6300
CAACTGGTCC GTTTAATTCT	CCATCAACCA	CCTTGACCCA	AGCAAGACCT	TTGGCACCAT	6360
ACTGTTTGGC TACTTCCGTC	ATCTTGTCGA	TGTCTTTACG	TGAATAGTTG	TCCGCAGCTC	6420
CTGTGACCAC AATCGCTTTT	ACAGCAGGTG	CTTCTGAAAA	GACTTTAAAG	TCTACACCTC	6480
GGACCACTTC TGTCAAGTCC	TGAAGCAACA	TGTCAAAACG	AGTATCTGGC	TTGTCAGAAC	6540
CGTAAAGAGC CATAGCATCA	TCGTATTTCA	TACGAGGGAA	TGGTAGCGTT	ACTTCGATGC	6600
CTTTTGTTTC CTTCATCACG	CGCGCGATCA	AGCTTTCTGT	AATATCTTGG	ATTTCTTGCT	6660
CAGTAAGGAA GGACGTTTCC	AAGTCGACCT	GAGTAAATTC	AGGCTGGCGG	TCTCCACGCA	6720
AGTCCTCGTC ACGGAAACAT	TTAACGATTT	GGTAGTAACG	GTCAAAACCA	GCATTCATCA	6780

			344			
AGAGCTGTTT	CGTGATTTGT	GGACTTTGAG	GAAGAGCGTA	AAAATGCCCC	TTATTAACAC	684
GAGACGGCAC	ТАААТААТСА	CGCGCCCCTT	CAGGCGTTGA	CTTAGAAAGG	AATGGTGTCT	690
CCACGTCGAT	AAACTCCAAC	TCATCCAAGT	AGTTGCGGAT	AGAGTGGGTC	ACCTTGGCAC	696
GAAGTTTAAG	ATTTTCCAAC	ATTTCTGGAC	GACGAAGGTC	AAGGTAACGG	TAACGCAAAC	702
GTGTATCGTC	ATTTGCCTCA	ATGCCATCCT	TAATCTCAAA	TGGTGTTGTC	TTAGCTGTGT	708
TAAGCACAAT	AAGAGCTGTC	ACGTTTAACT	CAACCGCACC	AGTTGGCAAC	TTATCATTGG	714
CTTGTCACGC	GCAGCGACCT	GACCAGTCAC	CTCAATAACA	AATTCGCTAC	GAAGGCTTTC	720
AGCTGTTGCC	ATAACCTCTG	CAGATACTTT	TTCAGGGTTG	ATAACCAACT	GCATGATTCC	726
PTCACGGTCA	CGAAGATCGA	TAAAGATCAA	ACCACCAAGG	TCACGACGAC	GGCCAACCCA	732
PCCTTTCAAG	GTTATTTCTT	GTCCGATGTG	TTCCTCACGA	ACACGACCAG	CATACATACT	738
ACGTTTCATT	ATTTCTCTCC	TCTTTTATTC	TGTTACTATT	ТТАССАТААА	AGCGCAGCTC	744
PTCATGAAAA	TCATCAGAAA	AGTTTGCCAG	TCTTTAAAAG	TCAGGTGAAA	GCCCTAAAAA	750
PTAGCGCTAA	TACTCTTCGA	AAATCTCTTC	AAACCACGTC	AGCGTCGCCT	TACCGTATGT	756
ATGGTTACTG	ACTTCGTCAG	TTTCATCTAC	AACCTCAAAA	CCATGTTTTG	AGCTGACTTC	762
STCAGTTCTA	TCCACAACCT	CAAAACAGTG	TTTTGAGCAA	CCTGCGGCTA	GCTTCCTAGT	7680
PTGCTCTTTG	ATTTTCATTG	AGTATAATAC	AAAAATCCGA	TGAACTTCAC	CGGACTCTTT	7740
PATTTTGAAT	TTTTGCCTGC	TTTACGCTTT	TCAGCGATTT	CGGCTGCCTT	TCGAGGCAAG	780
ACAATTTCCG	TTATGTAAGC	CGTCCCAAAA	CGCAGTACAC	CTGCAATAGG	AGCAAAGACA	786
ACTGCTAGAT	AGTTATAGAA	GAAATCGCCT	TTGAAGGCAT	AAGCTAGCGC	TCCAATGATG	7920
<b>AAAAATAGAA</b>	CGACTGCCTG	AATCACTGCT	ATTAAAATTA	CTCGTTTCAT	GTGACCTCCT	7980
GACTCTATTA	TAGCATGAGA	ATCATCAAAA	AGCCGACTAA	ATTATTCAAA	GCGTGAAGAG	8040
VAATACTGTA	GACCAGACCT	TTTCTGCTAA	TGTAAGCCAA	ACCCAAACTA	AAACCAAGGC	8100
PAAAATAGAC	AAAAAATTGT	TGCACATCAC	CTGGAAAATG	AATCAAGGCA	AATAGAAGAC	8160
PAGATACCAG	AAGAAAAATC	AGGGTTCGTT	TACTATTGTC	CTGCTTAGGA	AAGAGATAGC	3220
STGCTAACAT	CCCTCTAAAA	ACAATCTCTT	CCGTCAAAGG	AGCAAAAATA	ACCACAGCAA	8280
AGAATGAGAA	AAGTGGTTGA	GACAAGGTCA	AGTCTGTCGC	TATTTGCTGA	TTTACTGAAG	8340
GATCATCTGG	CAAGAAGAAT	TGAACGACCA	GAGATAAGAA	CCAAACCAAG	ACAGGAAGCC	8400
<b>AATAAATC</b> G	ATTAAAGCCG	CTCTTCTCAA	TATGAACAGG	AGCCTTCTGA	TACCATTTGT	8460
AATGCCGTA	CACATATACT	CCAGCCAAGG	CCACATAGAG	TAGAGTAACA	GCATAGGGTG	8520
AGCGCCTAA	AGCAAGCGAC	GCAGTCGCGA	GCCCCTGAAT	AAAGCCATAG	АТАААТААА	8580

AGGATAGAAG	GGCTAGAAGA	ATCCAGCCAA	GGTTTTTAAG	TAATTTCATA	GATAACTCCT	8640
TTATTTGAAA	TAACGTTTTA	CCATAGGTAA	CTGCATCACA	TTGATATAAA	CATGGATGGC	8700
TCCTACAAGC	AAGAAAGCTA	GTAACTGAAT	CTCTCCTGTC	AAGAAAGAAA	TGATAATAAG	8760
AAAAATATAT	AAGGCTGGTA	AGACATATTG	GTGTAATTGG	AATAAAATTC	GAAAACTCTG	8820
ТТССАААТТА	GCCTGACGCT	CCCCTTCATC	ATAAGAATTT	ATATAGTTCA	AGACATCCTT	8880
TGGTGTAGCG	AAAAATTCCA	AATCAAACTG	ACGAACAATC	GCAATGGTTT	TAAAAAGAGA	8940
TTTTTGAGCG	ACTAAGAATA	CCACAAAGAG	TAAGAAAGAA	AGGAAAAATG	TTTGAGGGTT	9000
TGTATGCAAT	ATAATCACCT	CACTTAATGA	АТААААТА	GCCAATGGAA	TCGCTACACC	9060
TGTAATATTA	AAAGCAATGG	TTCCAAACTC	AAGATTCCGA	TACATTTGCA	CATAATAGGT	9120
TTCATTCAGA	TCGTCATCCA	TTTCCTCTTG	ATACAAAGAA	TGAAATTTTC	TGCTTTTCTT	9180
TAAGAAATTG	AAAGTCAAAA	ACATACTAAT	GAAACCTATC	AGTAAACAAA	TAGCTGATAT	9240
CCATGGCATC	AAGGCTTTTA	CATCTAAAAT	AATTTCGTGG	GATTCGACAC	GTGCCTTAAA	9300
CATCCCTACA	AACATGCCCA	AGAACCCCCC	AAGACAATAG	ACATCAAAAA	ТААСААТСТА	9360
CGTTTCTTTT	TCATATTCAT	TCTCCTTTTT	CACTTGCTAG	ATTTTTGGAT	TTCTTTTCAA	9420
TCCATTCAAT	TACTGGGATG	AGAGCAAAGT	AGACCCAAAC	AAATTGGTCG	CTTTGATAGG	9480
GATTAAACCA	GCTTAGGTCC	ATCCCAATCA	GTAGAAATAC	GCTGACTAAT	AAAGCTATGA	9540
CCACTACATA	ATAAATCACT	TTATACTTGT	TCATCACTCG	TCCTCCTCCA	AACGAAATAC	9600
CGATTCGACT	GTTTCGTTGA	AAATTTGAGA	TATTTTCAGG	GCAATGATAA	TGGATGGGGT	9660
GTACTCATCC	CGTTCTAGTA	GGCTAATGGT	CTGTCTGGAA	ACCCCTGCCA	GTTTGGCTAG	9720
GTCGGTTTGA	TTGAGACCAT	CGCGAGCTCG	AAGCTCTTTT	AGACGATTTT	TTAGTTGCAT	9780
GTTACACACC	TACTCTCCGT	CAAATTCAAC	GGTTTGGATA	TCCTCAATAC	GTTGCAACTT	9840
GAATTTTTCT	TTTCCCGTAT	TATCTACACG	TCGTAGCTTT	ACCCATTCCT	CATCAACATC	9900
CACAACTTCC	CAGTTATCTG	GCCCAATATA	CACTCCCGTT	ATAATTGGTT	CCTTTCCAAT	9960
CATTTCTTGT	AATAATCTCG	ACATTTCTGC	GTTTCCTTTC	TCTTTTCGCT	CAAGTCTTTT	10020
GATTTTATTC	TCTAGTTTCT	TGATTTTTT	AGAATTATTA	Gaataaaga	AAATCATAAA	10080
TAGTATAAAT	CCTAGTACCC	ACATTATAAC	TCCTTTCTGC	TTCCTATTTC	TTAACTTGAA	10140
TTCATTGTAA	CATATCTTTT	TCTTTTTGAC	AAGTATAGTT	GTCAAAAAAA	TTATGATTT	10200
TGTCATTTTG	CAAAAGAAAA	AGGTCAGGAG	TAGGTTCCTG	ACCACTTTAT	СТАТСАТТАА	10260
TACTCTTCTA	AAATCTCTTC	AAACCACGTC	AGCTTCACCT	TGCCGTAGGT	ATGGTTACTG	10320

			346			
ACTTCGTCAG	TTTCATCTAC	AACCTCAAAA	CCATGTTTTG	AGCTGACTTC	GTCAGTTCTA	10380
TCCACAACCT	CAAAACCATG	TTTTGAGCTG	ACTTCGTCAG	TTCTATCCAC	AACCTCAAAA	10440
CCATGTTTTG	AGCTGACTTC	GTCAGTTCTA	TCCACAACCT	CAAAACAGTG	TTTTGAGCAA	10500
CCTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTTATTG	AGTATAAAAT	CCTAGTTTTT	10560
CAAAGATTTC	TGAGAAGTTT	TGGCTGATTG	TCTCAAGTGA	CACTTGCACT	TCTTCTCGGG	10620
TTTGGTTGTT	CTTGACCGTC	ACTTGTCCGC	TTTCGACTTC	GCTCTCTCCT	AGGGTGATGA	10680
GGGTCTTAGC	CGCAAAGACA	TCGGCTGACT	TGAACTGAGC	TTTTAGTTTA	CGGTTGAGGT	10740
AATCACGCTC	TGCTTTGAAA	CCTTGTTGGC	GAAGAGCCTG	TACCAATTCC	AAGGCCTTGA	10800
TATTTGCCCC	TTCGCCCAAG	ACTGCGATAT	AGACATCTAG	GGCGTTTTCG	ATAGGGAGGG	10860
TCACACCTTG	CTTTTCAAGG	ATGAGAAGCA	GGCGCTCTAC	ACCAAGTCCA	AAACCAAATC	10920
CAGCAGTTTC	AGGGCCTCCA	AAGTAAGCAA	CCAAACCATC	GTAGCGACCA	CCCGCACAGA	10980
CGGTCAGGTC	ATTGCCCTCA	ATCTCTGTGA	TAAACTCGAA	AATGGTGTGG	TTGTAGTAGT	11040
CCAGACCACG	CACCATATTG	GTATCGATGA	TGTAATCTAC	TCCAAGATTT	TCCAACATCT	11100
GACGCACAGC	ATCAAAATGA	GCTTGGCTTT	CTTCATCAAG	AAAGTCCAAG	ATAGACGGCG	11160
CATTCTCTAC	TGCCACCTTG	TCTTCTTTTT	CCTTAGAGTC	CAAGACACGA	AGAGGATTTT	11220
CCTCCAAGCG	ACGTTGGCTA	TCCTTAGACA	AGGTCTCCTT	GAGCGGTGTC	AAATAGTCAA	11280
TCAAGGCTTG	GCGGTAGGCT	GCACGGCTCT	CAGGATTTCC	AAGAGTGTTG	AGGTGCAATT	11340
TGACACCTTG	AATACCGATT	TCCTTCAAAA	AATGGGCTGC	CATAGCGATT	GTTTCCACAT	11400
CCGTAGCTGG	ATTGCTAGAG	CCAAAACACT	CAACACCAAT	CTGGTGGAAT	TGGCGCAAGC	11460
GCCCTGCCTG	TGGACGCTCA	TAACGGAACA	TAGGTCCCAT	GTAGTAGAAC	TTGCTTGGCT	11520
TTTGCACTTC	TGGGGCGAAA	AGTTTATTTT	CCACATAGGA	ACGGACAACG	GGTGCAGTTC	11580
CTTCTGGACG	GAGGGTAATA	TGACGGTCAC	CCTTGTCATA	AAAATCGTAC	ATTTCCTTGG	11640
TTACGATATC	CGTTGTATCT	CCGACAGAGC	GACTGATAAC	CTCGTAATGC	TCAAAAATAG	11700
GCGTGCGCAC	TTCTGCATAG	TTGTAGCGTT	TGAAAATCTC	ACGGGCAAAG	CCCTCAACGT	11760
ACTGCCACTT	AGCAGACTCA	GCAGGTAAAA	TATCCTGCGT	TCCTTTTGGT	TTTTGTAATT	11820
TCATAGGGAA	TCCTCTTTAA	ACTTAATAGT	CTTATTTTAC	CATAAATAGA	GGGATTAAAA	11880
CAGTAAGAAA	AAAATTAGGA	TTTAGATATC	ATTTTTGAGA	TTAAGAATTG	тсааааааат	11940
AGCTAGCAAG	GAAAGACCAA	CAAATAGCAT	CCAAGTCAAC	TGTATATTCC	ATACGGCTAC	12000
TAGTGAAAAA	CAAGCTGTTC	CCACAGGTAT	GGATAAGGTA	AACAATAGAC	CTAAAAAATT	12060
ACTAGTACGA	GCTAGAACCT	CTGGAGCTAG	ATTTTTCATG	AGCATGGCAC	TAATCTTTGG	12120

347

TTGAACTTTA	CCAGACACAT	ACAGAGTAAA	GAAGAGAAAT	AGCAAACCAA	GCACGACTTG	12180
ATTGAATAAA	TTAGCCAAAC	CAACTAGACT	AAGTCCTACG	GTCTCCCACA	TCATCAATCT	12240
AGGCAAGGAC	TGCTTCCCAA	AATAATCATT	GCCCGTAAGG	CTACTGATGA	TGACTGATAC	12300
TAAAACACAG	AATTGATTGA	TAAATAGTGC	CTCTGTATAA	GAAAAATTCA	AGAGAGAATG	12360
GCTCAAAAAG	AAGATATTAT	AAATTCCACC	CAAAGCGCCA	CCCAAGGAAT	TAATAAGCAA	12420
GACAGCAAAG	AGCATAAAAC	CAAAGTTTTT	CTGTCCACTT	TTAAGAAAAA	CGAGACGTAA	12480
ATTTCGGTAA	ATTGTTAGGA	ACTGGTCTTT	GATAGAAAGC	TTCTCATTTT	TTAAGTTTTC	12540
ACCATCAGCA	GATGACATTG	ACAGGCTCAA	TTTGCTTTTT	CCTAAAAAGA	GGATAGTGGC	12600
TGATACTAGG	AAAAAGCAGG	CATTGATTCC	CGCAACGAGA	GAAAAATTGT	TGACCGATAG	12660
AGCTAAGAGC	CAGACTCCGA	AAGCTTGACC	ACCAATAGCT	GAAATATAGG	TGATGAACTG	12720
TGAAAAAGAA	TAAGCCTCCA	TCAGATCATC	TTCAGCTACT	TTTTCCTTAA	TAAGAGGCAT	12780
ACGCAGGCCA	CCTGCAAAAT	CACTGATGAT	ATCACTAATG	ACATTGATCA	AACACAGGCT	12840
AGAAAAGGCA	AAGAGACTAG	CTTGCTGAAC	AACTAGGGCT	GCTAGAAAAA	ATAGAACCGC	12900
CTGAAACAAA	CCGCTATAGA	CCATCCATTT	GACCTTGTCC	CTCGTGTAAT	CTGCCCGAAT	12960
CCCTGCAAAA	ACTGTAAAGA	GGGTCGGAAG	AATCATGACA	ATATTCGCCA	TAGCAACAGC	13020
AAAAGATGCT	TGTGACAAGG	TCGATGCATA	GACGATAAAG	ACCAGGTTGA	AAATCGAAAC	13080
ACCAAAAGCA	TTGAAGAAGC	GTGG				13104

# (2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 19250 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CCGGGCAAAT	AGTTTTGAAC	TTTTCATCAT	TTTCTCCTTT	AAAACTTTCT	CTCCATTATA	60
GACTCTTTTC	AGAAAGTTGT	CAACAGAATT	TTCAGAATTT	TTGAAAATTA	TTTTTCAAAC	120
AACATCTTTG	САААААТАТ	GAATATCGTA	AGCGCGTCAT	AACAAGGTAT	CTATCATTCA	180
TGGAGCTCCT	CCTGTATACT	ATTAGTAAAG	TAAATATTGG	AGGATATTTT	AATGCCACAA	240
CCTATTGTTC	CTGTAGAGAT	TCCACAATCT	CGTCGTTTTG	ATTCTAAAAA	GAGAAATGAT	300
ΑͲͲϹͲϒϹͲͲΑ	AAATTCCTAT	TGGCAAGCTT	GAAGTAAGTT	<b>ΨΨΨΨΨΟΑΑΨΟ</b>	ጥርጥር አልጥርጥር	360

			348			
GAAATGATAG	AACAGCTTTT	GGATAAGGTG	TTGCTCTATG	ACAATTCATC	TATCTAGCCT	42
AGGGCAGGTC	TATCTCGTGT	GTGGGAAAAC	TGATATGAGA	CAAGGAATCG	ATTCACTGGC	48
TTATCTCGTT	AAAACCCACT	TTGAATTGGA	TCCTTTCTCC	GGTCAAATCT	TTCTCTTTTG	54
TGGTGGACGT	AAAGACCGCT	TTAAAGTCCT	TTACTGGGAT	GGTCAAGGAT	TTTGGCTACT	600
ATATAAACGC	TTTGAGAACG	GCAGACTGAC	TTGGCCCAGT	ACAGAAAAGG	ATGTCAAAGC	660
TCTCGCACCT	GAACAAGTAG	ATTGGCTGAT	GAAAGGCTTT	TCTATCACTC	САААААТАТА	720
GTAGATTGAA	ACTAGAATAG	TACACCTCTG	CTTCTAAAAC	ATTGTTAGAA	ATCGATTTTA	780
CTGTCCTGAT	CGATTTGTCC	TGTTATTATT	TCATTTTACT	ATAAATCCAT	CAGAAAGTCG	840
TGATTTCTAT	TGAAATGAGG	ACTTTCTTTT	TATACTCATC	TGCTTTCAAA	AAGCACTCTA	900
GTCCATCTCC	GATTAACGAT	GGACTTTATC	ACCTCCTTCT	CCAGTCCTTG	TATAACATCT	960
TGAAGTTGAT	TCATGACATC	TTCCAAAGTT	CGAAAGGCTT	TATTCTTAAA	TCCACGTTTA	1020
CGAATCTCTT	TCCACACTTG	TTCAATGGGG	TTCATCTCTG	GTGTGTATGG	AGGAATAAAT	1080
GCAAAGCCAA	TATTAGTCGG	AATCTTTAAG	GTACTTGATT	TATGCCATAT	AGCATTGTCC	1140
ATAACGAGTA	AAAGATAATC	ATCTGGATAA	GCTTGTGAAA	GCTCCTATTC	CTAAAGCCCC	1200
TTTATAACCT	CTTGCGAGAG	AGACTATTGA	CTCAGCCCTT	ACTTCATGCG	GATGAAACCT	1260
CCTATCGGGT	TCTAGAGAGT	GATAGCCATC	TGACCTACTA	TTGGACTTTT	TTGTCAGGTA	1320
AAGCAGAGAA	ACAAGGGATT	ACGCTTTACC	ACCATGATCA	GTGTCGAAGT	GGTTCAGTAG	1380
TACAAGAATT	CCTAGGAGAT	TATTCTGGCT	ATGTTCATTG	TGATATGTTG	CGGCAGTAAC	1440
TTAGGACTTT	AGTCCTCTAG	TTCTGCCTAT	GCGATAGCAG	TCCAAGGTTT	AGGAGTAAGG	1500
CGACGCTAAG	CTTGGTAAAC	TGCGAACAGC	TAGAAGCTTA	TCGTCAACTG	GAAGAAGCTG	1560
CACTTGTTGG	ATGTTGGGCG	CATGTGAGAA	GGAAGTTTTT	TGAAGTGCCC	CCCAAGCAAG	1620
CAGATAAATC	ATCCTTAGGA	GCTAAAGGTT	TAGCCTATTG	TGATCAGTTA	TTTTCCTTGG	1680
AAAGAGACTG	GGAGGCTTTG	CCAGCTGATG	AACGGCTACA	GAAACGTCAA	GAACATCTCC	1740
AACCCCTACT	GGAAGACTTC	TTTGCTTGGT	GCCGTCGTCA	GTCAGTTTTA	TCGGGTTCAA	1800
AACTAGGAAG	GGCAATTGAA	TACAGCCTCA	AGTATGAAGA	AACCTTTAAG	ACCATTTTAA	1860
AAGACGGACA	TCTGGTCCTT	TCCAATAATC	TAGCTGAACG	CGCCATTAAA	TCATTGGTTA	1920
TGGGACGGAG	TAAAAGAGTC	CAGTGGACTC	TTTTAGCCTA	AGCTCAGTTT	AAAAAAACGA	1980
GGGTGGTTAT	AAAAATTTT	GCGAGGGTGG	TTATTTTCTC	AAAGTTTTGA	AGGAGCTAAA	2040
GCAAGAGCTA	TTATTATGAG	TTTGTTGGAA	ACAGCTAAAC	GTCATCAATT	ATAGTGCGTT	2100
СААТСТАТАА	CAGTACGCAT	CGACTCCTAA	ААТАТТТСТА	<b>ТАААТСААТТ</b>	<b>ጥጥርርጥጥጥርር</b> ጥ	2160

AATCGATTTG	TTCATATCTT	ATTACAATCC	ATTATAAATA	GCGAGAAATA	TCTATCCTAT	2220
CTTCTAGAAT	GTCTTCCAAA	CGAGGAAACT	CTCGTAAACA	AAGAGGTTTT	AGAGGCCTAT	2280
TTACCGTGGA	CTAAAGTTGT	ACAAGAAAAG	TGCAAATAAG	AAATCTCCAG	ATTAGGAACT	2340
ATATATGAGT	TCTCTAGTCT	GGAGATTTTT	CAATAGACTT	CGTTATTGGG	CGGTTACTTT	2400
CGAAACTTTG	AAAACTTCAA	AAAACGGATT	TTTATCGCTC	TGAACATCAA	AAAAGAAAGG	2460
ACGAAATTTG	TCCTTTCTCA	AGCTTAGCTT	TTCTTCAACC	CACTACAGTT	GACAAAGAGC	2520
CCTTTATTCT	ATCAAACATG	AAGCGCAAAA	ACAAGCCAAA	AATCCGATAG	AATGGCTATC	2580
CCTCGACTAT	CAAGTAAGAC	ATTTCCATCA	AATACGTTCA	ATTTTACTCT	TGTTCTACTA	2640
AGAATTAATC	ATCTCGTTTT	GATTTATTAA	AAATATACAA	TTCAGCTTTT	CCTCCAAACT	2700
ATTTTATCCA	CTATCCCTGT	ATAGCTCTGT	ATTATCTTAA	CAACTTTAGT	AGAGACATTT	2760
TCCTCAACAT	AATCCGGAAC	CGGTAATCCA	AAATCCTCAT	CTTGTGCCAA	GCTAACAGCA	2820
GTTTCAACTG	CTTGAAGAAG	AGAATTTTCA	TCAATGCCTG	CCAAAATAAA	TCCTGCCTTA	2880
TCTAAGGACT	CAGGACGTTC	TGTACTTGTA	CGAATACATA	CAGCGGGAAA	AGGATAACCT	2940
TGACTAGTAA	AGAAACTACT	TTCTTCCGGT	AAAGTTCCCG	AATCAGATAC	TACAACAAAT	3000
GCATTCATCT	GTAAACAATT	ATAGTCATGG	AATCCTAGTG	GCTCATGCTG	AATCACACGT	3060
TTATCTAGTT	TAAAACCGCT	CTCTTGTAGC	CTTTTCTTTG	ATCTAGGATG	GCAAGAATAT	3120
AAGATTGGCA	TATTATACTT	TTCAGCTAAT	TGATTAATTG	CTGTAAAGAG	AGAAATAAAA	3180
TTTTTATCTG	TATCAATATT	TTCCTCACGG	TGAGCTGAAA	GTAAGATATA	ACCTCCTTTT	3240
TTCAATCCCA	AACGTTCATG	GATATCTGAA	GACTCAATAG	CAGATAAATT	TTTATGTAAC	3300
ACTTCTGCCA	TAGGAGAACC	AGTTACATAT	GTGCGCTCTT	TAGGTAAACC	ACACTCATGT	3360
AAATACTTAC	GTGCATGTTC	AGAGTATGCT	AAGTTAACAT	CTGAAATAAC	ATCAACAATC	3420
CGACGATTAG	TCTCTTCCGG	TAGGCACTCA	TCTTTACAGC	GATTGCCAGC	CTCCATATGA	3480
aaaattggaa	TATGTAAACG	CTTGGCAGCA	ATAGCTGATA	AACAAGAATT	TGTATCCCCT	3540
AAAATCAATA	AAGCATCTGG	TTTAATTTGA	TTCATCAATT	TGTATGAAGT	ATTAATAATA	3600
TTCCCTACAG	TAGCACCAAG	ATCATCTCCA	ACAGCATCCA	TGTATACGTC	CGGAGTGTCT	3660
AACCCTAAAT	TATCAAAGAA	AATACCATTT	Aaattgtaat	CATAGTTTTG	TCCAGTATGT	3720
GCCAAAATAA	CATCAAAATA	CTTTCGACAT	TTAGTGATAA	CACTACTTAG	ACGTATAATC	3780
TCTGGACGTG	TTCCCACAAT	AATCAATAAC	TTAAGTTTGC	CATTATCTTT	AAAGTGAATA	3840
TCACTATAAT	CTGTCTTAAT	TTTCATTTAT	TTCTCCACTT	GTTCAAAAAA	AGTATCTGGA	3900

			220			
TGTCTAGGAT	CAAATGACTC	ATTAGCCCAC	ATGACAGTAA	TTAGATTTTC	TGTATCAGAA	396
AGATTAATAA	TATTATGTGC	ATAGCCCGGT	ATCATATGTA	TTGCTTCAAT	CTTATCGCCC	402
GACACTTCAA	AGTTCAGAAT	AGGATACTCT	TGACCGTTTT	CATCCAGCCC	TATCCTACGC	408
TCTTGTATTA	AAGCACGACC	AGAAACAACC	ATGAAAAATT	CCCACTTAGA	ATGATGCCAA	414
TGTTGCCCTT	TGGTAATGCC	AGGTTTAGAA	ATATTAACAG	AAAATTGACC	CGTATTTTCT	420
GTTTTTAATA	ATTCCGTAAA	ACTACCTCGT	TCATCTATAT	TCATTTTTAG	AGGAAACTTA	426
AACTTATCTA	CTGGTAAATA	AGATAGGTAG	GTAGAATACA	ATTTCTTTTT	AAACGATCCC	432
TGAGGAATTT	CAGGCATAAC	ТАААСТАТСА	GGCTGTTTTT	TAAATGTTTC	TAATAGAGAG	438
ACAATCTCTC	CTAAGGTTGC	ACGATGAGTC	GTTGGTACGT	AGCAGTAGTT	TCCTGATGGG	444
CTAGGTAAGA	TTTGTAATCC	ATCTAGATTA	CAACGATGAG	GATTTCCTTC	CAATGCAGTT	450
AGACACTCTT	GTATCAAATC	ATCAATATAC	AGCAACTCCA	ATTCTACACT	TGGATCATTT	456
acttgaatag	GTAAATCGTG	AGCTAGATTA	TAACAGAAAG	TTGCTACAGC	AGAATTGTAG	462
TTAGGACGGC	ACCACTTCCC	ATAAAGATTC	GGGAAACGGT	AAACTAAGAC	AGGTGCTCCC	4680
GTTTTCTTTC	САТАТТСААА	GAAGAGTTCT	TCCCCTGCTA	GCTTAGATTG	TCCATATATA	4740
GAGTTTGAAA	ATCGGCCTTC	TAAACTAGCT	TGAGTAGAAC	TTGAGAGTAG	AACAGGACAA	4800
GTGTTTTCAT	ACTTTTCTAA	AATCTCCAAT	AATCTACTTG	AAAAACCGTA	ATTTCCCTCC	4860
ATGAATTCAT	CAGGATTCTG	TGGACGATTG	ACACCAGCTA	AATGGAATAC	GAAATCGGCC	4920
TTCTTACAAT	ATTCATCTAA	TAAAATCGGA	TCTGTATCAC	GATCATACTG	AAAAATCTCT	4980
CCAATCTCTA	AATTAGGACG	AGTCCTATCT	CGTCCATCTT	TCAAAGCTTC	CAGAGTACAG	5040
ATAAGATTTT	TTCCTACAAA	TCCTTTCGCT	CCTGTGATTA	AAATATTTTT	AATCATGCCC	5100
CCTCCTTATT	TTATATGCTG	TTTTAATAGT	TAACTCTCTC	GACAATACAT	GATACATTAT	5160
ATATCCTTGA	TAATTTTAAT	GTATCTTAAA	AGATTTTACA	TCTCTTCGTC	TGCTACCATA	5220
TCACGAATTG	CTGTCTGTAT	TTCATCTAAT	TCTAGCAACT	TTCTTTTAAC	TTGCTCTACA	5280
TCCATCAAAT	CGGTATTATT	ACTATTGAAT	TCTGTCAACA	AATTTCTATT	CGTACTACCA	5340
TCTTTGAAAT	ACTTATCATA	GTTAAGATTA	CGATTATCAC	TAGGAACTCT	АТАААААТСА	5400
CCCAAATCAA	TTGCATTTGC	GCACTCTTCG	TTAGTTAATA	GTGTTTCATA	CCTTTTTTCT	5460
CCGTGTCTAA	TACCTATAAT	CTTAATATCT	TGTTCTGAGG	CAAAAATTTC	TGATACAGCC	5520
TTAGCCAACA	CTTCAATCGT	ACATGCTGGT	GCTTTCTGAA	CTAGTATATC	TCCAGATTTC	5580
CCTTCTTCAA	ATGCAAATAA	AACCAAGTCT	ACTGCTTCTT	CCAATGTCAT	CACAAAACGT	5640
CTCATCCTAC	ርጥጥሮ እርጥል ኣጥ	<b>ФСФАДСАССА</b>	արա-արա-արա-արա-արա-արա-արա-արա-արա-արա	The amount come	33MCC333C3	F300

GGAACGACAG	ATCCACGGCT	ACACAGAACA	TTCCCATAGC	GAGTCACACA	TATCTTTGTA	5760
TGCTCAGGAT	TTACCGTCCT	GGACTTAGCA	ACAGCAATCT	TTTCCATCAT	AGCCTTGGAT	5820
GTTCCCATAG	CATTGACAGG	ATAAGCCGCC	TTATCTGTAG	AAAGACAGAT	AACTTGCTTT	5880
ACACCAGCTT	CGATAGCCGC	AGTGAGGACA	TTCTCCGTTC	CCAAAATGTT	AGTTTTTACC	5940
GCTTCTACAG	GGAAAAATTC	ACAAGAAGGT	ACTTGTTTAA	GAGCAGCAGC	GTGAAAAACA	6000
TAATCCACAC	CATGCATAGC	ATTTTTTACC	GAAGCTAAGT	CACGCACATC	TCCAAGGTAA	6060
AAACGGATTT	TCCCAGCCAC	TTCTGGTACT	TTTACCTGAA	ACTCATGACG	CATATCATCT	6120
TGTTTCTTTT	CATCTCGCGA	AAATATACGA	ATCTCTGAGA	CATCTGTTTC	TAAAAAACGC	6180
TTGAGAACCG	CATTCCCAAA	TGAACCTGTC	CCTCCTGTAA	TTAGGAGAGT	TTTTCCTGTA	6240
AATTGTGACA	TATATTACAC	TTCTCCTTCT	AGTATGTCTG	CAATTTTCTT	ACAAGCCGTT	6300
CCATCTCCAT	ATGGATTTGA	AGCTTGACTC	ATTGCTTGAT	AAACTGAATC	ATTTTCTAAT	6360
AATTCTTTAA	AATGCCTATA	AATATTATTT	TCATCAGCAC	CTACAAGTTT	CAAAGTCCCT	6420
GCTTCAATTC	CCTCTGGACG	TTCAGTTGTA	TCTCTCATAA	CCAAAACAGG	TTTTCCTAAA	6480
CTTGGAGCCT	CTTCCTGAAT	ACCACCACTA	TCTGTTAAAA	TTAAATAACT	TCTTGATAAA	6540
AAATTGTGAA	AATCTAATAC	TTCTAAAGGT	TCGATCATCT	TGATACGTTC	ACAGCCACTT	6600
AGTTCTTCCT	CAGCAATTTG	GCGAACACGA	GGATTCATAT	GGATAGGATA	AATAGCCTTG	6660
ACATCTGAAT	ATTCTTCAAT	AATCCTTCTA	ATTGCTCTAA	ACATATGTCT	CATCGGTTCA	6720
CCAAGATTTT	CACGACGATG	AGCTGTAATT	AGAATAAACC	TGCTTTCTCC	TATCCATTCT	6780
AACTCAGGAT	GCGTATAGTC	CTCTTGAATT	GTAGTTTGTA	AAGCATCAAT	CGCCGTATTA	6840
CCTGTCACAA	ATATGCTCTC	TGGAGTTTTT	CCTTCTCTTA	AAAGATTATC	TTTTGAAAGT	6900
TGTGTTGGTG	TAAAATGATA	CTGAGCCAAA	ACCCCAACTG	CTTGACGATT	AAACTCTTCA	6960
GGATATGGTG	AATAGATATC	GTAAGTGCGC	AAACCAGCTT	CAACATGACC	AATTGGAATC	7020
TGTAAATAAA	AGGCCGCCAG	TGAACTAGCG	AAGGTCGTAC	TTGTATCCCC	ATGAACTAAC	7080
ACCAAATCAG	GTTTTTCTGA	СТСТААААТА	GCCTTCATTC	CTTCCAAAAT	GCCAATGGTC	7140
ACATCAAATA	AAGTTTGTTT	ATCTTTCATA	ATAGACAAAT	CAAAATCGGG	AATAATCCCA	7200
AATGTGTCCA	AGACCTGATC	CAACATTTGA	CGGTGTTGGC	CCGTAACGCA	AACTAATGTT	7260
TCAATATTCT	TACGTGTTCT	TAACTCTTTG	ACCAAAGGAC	ACATCTTGAT	GGCTTCTGGA	7320
CGAGTTCCAA	ATACTACAAC	TACTTTTTTC	ATATATTTAC	TTACTCCTAA	CAAATAATGA	7380
ACGGTTCTTA	AAATAAATTA	GATAACGGCT	AATCCATAAC	ACCACCTCAG	ACATACTTGA	7440

ACAAATAGCT	AATGTTACTA	ААСТАЛААТТ	ATCAGACAAG	ATAAATATTC	CTAATCCCAA	7500
AGTTTGGACA	ATCGAAGCTA	ATATAGTTGT	CATTGTAGTT	TCTTTCACTT	TATCAATAGC	7560
TCCTAAGACA	GGCCATCCGT	AAATCATAGA	АТАААААСТА	GCAACAAAAG	CGGGTAATAA	7620
GTACTTAAGA	AAATCTGCTG	AAACGGTATA	TTTTTCACCA	CCAATTATAG	AAAGAATTTG	7680
ATTTGAAAAG	AATAAAACTA	TCAAAACTCC	AAAGATAATA	GGAATAAACA	TAATCCGATT	7740
AATACTCTTA	ACCGATTGTA	TATCTTTAGT	ACGTATCATA	TGCGGATATA	AACTATTCGC	7800
TATAGGATTA	TACAATGATT	TTGCTGCTGA	AAGCAGTTGC	ATTGCTATCC	CCCAAAAGGC	7860
TATCTCTTGA	CTTTGTAAAT	AAAAACCCGA	AATGACTGTC	GTAAAGACGC	CAAAAATAGT	7920
AGTTGCAAAA	TTGGATAAAA	AATAAATAGA	GGATTCCTTT	AAATCTTTAA	CCCAAACAGA	7980
CAGATAAGAA	AATGATAATT	TAATTCCATA	ATAATGAAGG	AATCTATAAG	AAACTACTGC	8040
AGCAACTAAA	TTCCCAATTC	CTTCCAATAT	AGGAATCCAT	AAAATAGAAG	AATCATCTTT	8100
TACTACAATA	AATGTCAAAA	TTGTAATGAT	AGTTTTAGAA	ATAATATAAG	GAATTGCAAC	8160
TGCATGCATC	TTTTCAATTC	CACGAAATAA	AAAGTCAAAG	TATAAAATAT	TGGTCACTGT	8220
AGCTAACAAA	TAAAAAACTG	AAAAAAGAAT	ATTCTCTCTC	ATTATTGGGA	TTTGCCACAT	8280
CAATATGGTG	TAAATTAGAA	TCGAAATGAT	AGATAAAAAT	ATTTTTTCAA	CTAGAGTATC	8340
TCCAACTATC	CTTCCAATCT	TTGAGGGAGT	AGTACAAGCA	TTTACAATAT	TTTTTGTAGC	8400
TGATATCATG	AAACCAAAAT	CAATCACCAG	TTGAACATAA	GCTATTAACG	СТТТААСАТА	8460
AATAACCATT	CCATACGCGT	CTAGCGAAAG	CACCCTTGTC	AAATACGGGA	GTGTTAATAA	8520
AGGAAATAGT	AATTTAACAA	TATTCAGAAT	ATAGAGAGAA	CTTGTATTTT	TTATAAATGA	8580
AATTCTATCA	ACTTTCACGA	ACTAGTCCTT	CCAAAAAAAG	АТСТАААТАG	TCCAAACTAC	8640
TTCTCGCTTT	CAACACCAAT	TCTGAAGGTA	TTGTTATCGG	TTTTAGATGA	AAAGTTTCAA	8700
GTTTCTTTAC	AATACTATTA	ACACTTGAAT	CAAATAAAGA	TTCACAACGT	TGTAACTCTC	8760
CAATTGCTCC	ATAATAACGT	GCTGTTTTT	CTGGATGGCA	TGCAATGGCA	ATCACAGATI	8820
таттааааса	TGTTGCCACT	ACCCCAACAT	GTAATTTACA	AGTTAAAACC	ACATCTACCA	8880
TTTTCAACAA	TGATGTCATT	TCTGCAGGAG	AATGATACTT	GAATTGAAAA	CAATCCTCAG	8940
ттстаастаа	TTTTCTAAAT	TCCTGATAAT	AAGCATCTTC	ATAAGGTAGA	ATGGAATCCG	9000
AAGTTACTAC	AACATAATAG	TTAGGATTGT	TTTCTAGAAA	AAGACTAATT	GATTCCGCAA	9060
ATTTTTCAAG	AGCTTTTTTG	GAATGATTAT	AGTGAACAAG	AATTATCTTC	TTATCTTTAG	9120
CTTCTCTTTT	CAATTGACAC	AGCTGCTCTG	TTTTTTCTTC	TCTTAATTTA	CTTGAAATAA	9180
TTAAATCAAA	GGTTTCATGC	ACTGGAGCCG	AAGGCGACAA	ATGCTTCAAA	GAATCAAATG	9240

ATTCTCGATC	ACGAACTGTA	ATAAATTGAG	CATGATTAAT	AATTCTCTTT	ATACCATAAT	9300
TCATCAAAGA	ATCGTTATTA	GGCCCTGCAC	СААТАССТАА	ТАСТССТАТА	GGCTTTTTAA	9360
AATATGAAGC	CCAAATTCCC	AAAGGTAAAA	ATCGTTTAAA	TTGGATTAAA	TTATCACGAA	9420
AACGTGCATT	ATGCCCTTCC	ССААААТАТС	CTCCCGGGAT	АТАСААААТА	GCATCTGCTT	9480
GTTTTTTAGT	AAAACTTTGT	TTTTGGCGAT	ATTCTTTCAA	GTACATTTGA	AAGAAATCTG	9540
ATGGATTATA	AAAAGAAACT	TCATATCCTT	TAGATTCTAA	TAAATCATAG	ACAATCTCAC	9600
CGTAAAGATA	ATCACCGTAA	TTACTTGAAC	CATAATCCGT	TGCACCATGT	AACATAATTT	9660
TTTTCACCAC	TATTTTTCA	ACCTCCTAAA	AATAAATATC	ATAATCAAAC	TATACATAAT	9720
AGGACGATAA	ACATCTATTG	AACTACTTCT	CACTAAAAGC	AATAGTTGAG	AAATTACCGA	9780
ААААТАААТА	ACTTTTGAGA	TTTTACTTGT	TTGAAAAGCT	СТСАЛАТТТА	ATCGCCATCC	9840
ACTAAATATT	CCCAAAACAA	AACTCCAAAA	AACACCACCA	TAGTAACCAA	AGTTCCAAAA	9900
TAATTCTTCC	ACAAAAGAAG	AGCCTACAGG	TAACCCCAAA	AATTTATTAA	TAACAACCGT	9960
CGCTGATGCT	ттатсааааа	AATCACCAAC	TAACCATCCA	ATAGGAAAAA	TTGATAGGAT	10020
AGTGCGTAGA	AATGTCATCC	CATATTCATA	TGGAATGCTA	CTAGGCACAA	CAGTTACAGC	10080
AGAAGCTACT	GTTAGGCTGG	TCAGTCCCGA	CTCTGAAAAT	ACTTCCCCTA	GTATATTCTT	10140
TACAAAATCT	AATGAAGAAA	AGGAATCAAA	TAAGTATATA	CCTATAGTAT	TCAAGTCGAA	10200
ACGGTGCCCC	СТААТААСАА	CTAATACATT	TAATAGAAAT	ACAGTTACTA	TTAAAAATAC	10260
AAGTACTCTT	TTCTTCGAAA	AAGTAATCCC	TAAAGATTGT	GTGTATACTA	AAACCAACGC	10320
CAAGATTGAA	AACACCTGGA	TTTTACGACT	TCCTGTTAGG	ATCATTATCA	AAATTAGGTA	10380
AAACAACATT	ACCCAAAAAA	TAGTACGCTT	TATAACTCGG	GACAGCTTAT	CTGAATAAAA	10440
CAAGGAGAAC	ACACCAGGAA	GCATAAGTAC	TCCTAAATCA	TCTATTATTC	CTGAACTAGC	10500
IGCCTCTGAA	TATGCTGAAT	AGCTATTCGC	CGCTCTAACT	GCTAGTACTG	TTTTAGAATC	10560'
AGTTATTACC	CTAGAAATAA	AGCCCACTCC	TGTTAAAATC	CTACCCGCAT	TGTACAAAAT	10620
PTTCTCTTCA	TTTTCCTGAT	AATTTTGTAC	TTCTGAATGA	TAATGTACCT	TTCCATCACT	10680
ТААААААТ	AAATAGCCTA	CAGAATAACA	AAACAAAATC	САААТТАТАА	AAATATATGA	10740
ATGAAATAAT	TCTTCATTAT	TATAGAAGTT	ACTAGGGCTC	CACAGCAGAG	TTGTTTGAAA	10800
CCCATATAC	TCATTGAAAA	TTAATCCAAA	САТАААААА	TAAGATAAAA	TCAGATACCA	10860
PACAGAAAAA	TCATATATAC	TAACTTTTTG	TAAAATAAAA	CCAGTAATTT	<b>GAAAAATA</b> AT	10920
PAGAAAGCAA	ACCCATATAA	ATATAGACGG	аасатаатта	САТАТАВСАА	<b>አ</b> ልሮሮልጥጥልጥጥ	10000

354 CCAATTATCG AGAGTCCAGA ACAAGTAACA GAAAGCAAAT ATAAAACTTA ATGTCACTAG 11040 TGTCACTCTA CAAATATACT TTGTCTGCAT CTATATCTCC TTTATTACAC ACATTTCTTG 11100 ATAACGATTC AATAATTTAC TAGCTTGATA ACAAATATCA TAGAGTCCAT CTGTCATACT. 11160 GTTATTTATT TCAAAACGAT TGCATTCCTC AGATGTTAAA GACAGTACTT TATCTTTCCA 11220 TAGCAACACA GACTCTTCGT TGATAGGTAA GTAACTAATG TTTTTGGTCA CATCTACTTC 11280 TTGCGTCACT GTATCTGACG ATAAAATTTG TAATCCCGAT GCCTGAGCCT CTACTAGAGA 11340 AACAGGCAAC CCCTCATATT TAGACGGAAG CAAAAAAACA TCCATCGCAG ATAATAAATC 11400 AGAAATATCA GTCCTTCTCC CTAAAAATAG CACATATGGG GTCAGATTTA GTTCTAAAGC 11460 TTTCTGTTTT AATTTCTGCT CATCCTCACC ATTACCAACT AGGAGTAAAA TAACATTTGG 11520 TTTGATTAAA ATGAGTTCTT TTAAAACGTT AAATAAATAA CTTTGGTTTT TTTGATCTGA 11580 TAGGCGAGCT ATATTTCCTA ATACGAACTT ATTTGACACA TCTAATTCTC TACGACATTT 11640 TTCTCTAACA TCTGACAAAA ATTGATACTT TTTCAAATCA ATTGCATTAA AAATAATTTC 11700 AATTTTTCCG TCTTTATACG CTTTCTCCC ATATAACCAC TTAGCCGAAT CTTCCCCACA 11760 TGCAAACCAA TGAGTTGCTA AGATTTTTAC CAAAATTGTT ACTAATTTAC GCAATACTTT 11820 TTGAAAACTG TTTTCTGTTA CATAAGCCAT ATGACTATGA ATAATTCTAA TTTTACAACC 11880 AATTATTTTA GATAAGATCA GACCAATTGC AGATTTATAG CCATGGCAAT GAACTATATC 11940 ATAATCTCCT TTCTTTATTA TTCTAGCAAG AGAGAGAAAC TGATGTAGAG GCTTTTTCCT 12000 TAATAGAGGC ACATGATAAA CCTTTGCACC CAATTCTTTC ATTTTATCCT CTAAAAATCC 12060 TTGTTCTTTT CCAGGCACAA TAAAATCAAA TTGAATTTTT TTTCTATCAA TGTGAGAATA 12120 ATAGTTGAAT AGAAAACTTT CTACTCCACC ACTATCTAGT GTTGTAAATA GATGTAATAC 12180 TTTAATCATT CTTCTTT AAGCTTAAGA TTCGCTTCTC TAATTCTATT TCTGTTTTTT 12240 GTTTTTCTAA ACTAATTCTG TCCATGAAGT TATCACAATT CTTAATTAGC TGTTTCCTGT 12300 CAAGGTTTTG AATATACAAA GCCAAACAAT CTTTTTCCGA TTCATCCTTC ATAGGTAAAA 12360 CGAAACCAAA ACCATTCTCT ATTGACACTT TTTCCATATA AGTATCTTCA CAAACTAAAA 12420 TAGGTTTATA CAACAATGCA GCAAAGTAGA GTTTATTAGA CAAAGCATAG TCTAGTAAGG 12480 GAGTGTGATT CCCGTATAAA TTCAAAACAA CATCTGTATT CTTATAAAAA GACATGGTAT 12540 CTTTAGGCTG GAATGTGTCC ACCAAGTTAA CATTGCTGAT ATTTTTTTCT TGACAAAATT 12600 CCCTTAATTC TCCTGCATTA GTACCTATAA AATTCAACTG AAATCGACTG TCATTTGCAA 12660 AAAAATCGAT TATTTTTTA TTTTGTTCTT GAAAACGAAT TAAACCAATG TAGGAAAGTT 12720 GAATTGGAAA CGTACTATTA TTTTTTAACT GCTTTACCTC GTTTAATTCT ATCATATTGG 12780

GTAGGTTATG	GGTAGTAAAA	TACTCTCCCA	TTGGTAAAAA	AAATTTATAG	CCGTCTGAAG	12840
AAACGATATT	CATTAAAGAA	TTTTTCACCA	ATTGTTTCTG	AACCAAACGA	TAAACCAAAA	12900
ATTTTTCATA	ACTGTAATCA	CGAATATCAT	AAATATATCT	ATTTTTAAAT	GAAAAGAGAA	12960
GAAAATCTAC	TAAAATGAAA	GACACAATAC	TATGTAACGG	СААТАТСАТА	TCATAATCAT	13020
TTTCTTTTAG	CTTCTTTTTA	ATTTCTTTTC	TGAATTTTAC	АТААССТААТ	<b>ЛТСТТАСТТА</b>	13080
ATTTTCCTTT	ACCAGAAAAA	GAAATACGAT	AGTAGTTTTG	TTTTGTAATA	ATCTCGTTAA	13140
TATTCTTATC	ССААТАТАТА	ACATCGTAAC	TAATAGACAG	TTTCTTCAAT	AATTCTTTAT	13200
AAAAATTGAA	GTAAGGAGTT	AGATATATAT	TATCAGATAG	TATAAACAGT	ACTCTCATTA	13260
AATTATTCTT	TCTTACTTTC	CCTCTCTAAA	CATGTCTCCA	GTTCGAGCAT	AAACTGCTCT	13320
TTTGAAAAGT	GATTTTCATA	GTAACAACGA	GCTTTCTTTC	CTAACTCTCT	TTGTCTCTTA	13380
ATAGATAACA	TACTAAATTT	ACAAATATTT	TTTGCCAATT	GTTTTACATC	TCGTTCGGGA	13440
CTAACATATC	CACAATTTGC	TTCTTCTACA	ATTATTTTAG	CATCTCCTGA	AATTGCACCT	13500
ATAATTGGTT	TGCCTGCCGC	CATATAAGAk	TGTACCTTCC	CAGGTATAGT	ACGAGAAACT	13560
ATCGAGTCTC	CTATTAAAGA	AACTAACATA	GCATCTGATT	TTTTATAGAA	GGATGGCATT	13620
TCCTCCAAAG	AACGTCTTCC	ATAGAAGGAA	ATATTCTTTA	ACTCCAATTC	ATGAGCTAAT	13680
GCTTTCATGC	TTAACAATTC	CGTACCATCT	CCAACAAAAT	GAAAATGAAT	TTTCTTGGGT	13740
AAATTGGTAT	TCTTCTCTAT	CAAACTGGCA	GCTTTCAAAA	TAGTTTCCAA	ATTTTGTGCT	13800
TTGCCAATAT	TACCAGCAAA	AGTTAGGTCA	ACACTTTCTT	TATTAACTAT	AGATTCATCA	13860
GGGATAAAAA	GATCTTCTGC	ATATTGTGGC	AAATATGTAA	TCTTTTGTTC	GGATATGTCA	13920
AATTGCTTCA	СААААТААТТ	TTTAAATGAT	GGACTAGTGA	CAAATATATA	ATCACTAGCT	13980
CGGTAAACTT	TTTTTGAGAT	AAATTTAAAC	AGCTTGAAAA	TCAAGCCATC	TTGTTTCACT	14040
CCACCTACGG	ТТАААСТАТС	TGGCCAAACA	TCCATACAAT	ATAGAAACAT	CGGTTTCTTA	14100
TATTTTTTTT	TATAAGCCAT	ACCAGCCCAT	GCCATCATAA	CTGGAGACAA	TTGGTTAACG	14160
AATACACAGT	CAAAATTCGA	TCCATCTTTC	GTTTTATACC	TCCCCAATAA	AACTCCTAAA	14220
GTAGAACTAA	TTGCAAAGCT	ААААТААТТС	AACAATCGAA	ATACAACACT	TTTTTTTCTA	14280
GGGATTGTAT	AAGAACGATA	TATCGTAACA	CCTTCTATAA	TCTCACGTCT	TTTTTTATTA	14340
TGACGATAAT	CTGCATATAT	CTTCCCTTCA	GGGTAATTAG	GAATCCCAGC	CAAAACAGAG	14400
ACTTCATGCC	CTTTTCGAAC	TAAATCTTCA	CAAATATCTG	ACAACCTGAA	TGGTTCTGGC	14460
TTATAATGTT	GGCAAACAAA	TAGTATTTTC	ATTGTCCAAT	TTAACTTTCT	TTCTTACCAC	14520

			356			
TACCCTCTAC	AATACCTTTT	CGTTTCAGTA	CGTAAGGTAT	TGTCTTAACT	ATACATCTAA	1458
ТАТССАТТАТ	CAAAGACAGA	TGTTTAACAT	AGTAGCCATC	TAACTCCGTC	TTCATCTCAA	1464
CAGACAAAGT	ATCACGCCCG	TTAATTTGTG	CCCATCCAGT	TAACCCTGGC	AAGATATCAT	1470
TTGCTCCATA	CTTATCTCTC	TCTGCAATCA	AATCTAGTTC	ATTTATACCC	GCTGGTCTAG	1476
GACCTACAAT	ACTCATATTA	CCAACAAGAA	TATTAAACAA	TTGTGGTAGT	TCATCCAAAG	1482
ATGTTTTTCG	CAAGAAAGCC	CCTACTTTTG	TAATCYATTG	CTCTGGATTA	TATAAGTTTC	1488
GAGGCGCCAC	ATTTTTAGGT	GCATCTATTT	TCATAGACCT	AAATTTCAAA	ATATAGAAGT	1494
ATTCTTTATG	AATACCAAAG	CGTTTTTGCT	TAAATATAAC	CGGACCTTCT	GAATCAAGTT	1500
TAATCGCAAT	TGCAATTATC	ATAAAAACCG	GACACAATAT	TATTATCCCT	ATTAAAGATA	1506
АТААТАТАТС	ACCTAATCGT	TTTATTATAC	CGTACATAAA	CAACCTCCAA	СТАТАААТТС	1512
TATTTCCATT	TTTCATTCTA	TTTCCATTTG	ACAAATTAAA	TCAGGCAGTA	CATGCAACTA	1518
CAGAAACTCA	ATATATATT	GGTCACTCAA	TGATTTTCAG	<b>АААТ</b> АТААТТ	CTTTTATCCT	1524
CTACGTCAGA	TAAAACTTTT	CTCCATCTAA	ACAAAATTTA	TTTGTTTCAG	TAATATATGA	1530
GTTCTCAATA	ATGAATTAGA	AGGTCCAGTT	CAATTATTCT	TCCAAATAGA	CCGAATATTA	15360
PTTGAAGACA	TATCGGTTTC	TGAAATTGCA	ATCAGTACAT	AAGCTAATAA	ACTGATAAGT	1542
ATGCTCTGTA	AGAATGCCAG	AGTTATATTG	TAGTCCCCTT	CCATACTATA	TTCATTTTAT	15486
PTTTTACCAT	AATTTCCATA	GGAACCGTAA	ACTCCATACT	TATTAACCGA	GATATCCAAT	1554
PTATTTAAAA	CAACTCCTAG	GAACAGTTTC	CCTGTTTGTT	TTAATTGTTG	TTTCGCTTTT	1560
rggatatcac	GTTTATTCGC	CTCACCTGTT	GCTGTTACCA	AGATGGACGC	ATCACACTTT	15660
rgagtgataa	TTGCCGCATC	AATAACAATT	CCAATAGGCG	GTGTATCAAT	AATGATATAA	15720
<b>PCAAAATA</b> TT	TACGCAATGT	TTCAATCATA	TCATTAAAAT	TTTTACTTTG	TAACAAGGCT	15780
GTAGGGTTTG	GTGATACAGA	TCCCGATTGA	ACTACAAATA	AATTTTCAAT	ATTTGTATCA	15840
CATAAACCGT	GAGATAAATC	AGCTGTCCCA	GATAAAAATT	CTGTTAGCCC	TGTAATTT PT	15900
<b>FCACGAGATT</b>	тааааастсс	TAACATAACT	GAATTTCGAG	TATCGCCATC	GATCAAAAGA	15960
GTTTTATAGC	CTGCACGCGC	AAACGACCAT	GCTATATTTA	TGGAAGTAGT	TGTTTTTCCT	16020
<b>FCCCCAGGGT</b>	TAACAGAAGT	AACGGAAATT	ACTTTTAGTT	TATCTCCGCT	CAACTGTATA	16080
TTTGTACACA	AGGCATTGTA	ATATTCTTCT	GCCTTCTTAA	TGAACTCCAG	TTTTTTTTGT	16140
SCTATTTCTA	ATGTCGGCAT	CCTTCTCTCC	TATTTCAACT	TACCCAAGTT	TGGCACAACT	16200
CCAAAAGTG	TCATCTGCAA	TGTATTTTCG	ATATCTTCCG	GACGTTTCAC	ACGAGTATCC	16260
AAAGTTCAA	CATCAACAAC	<b>ጥልጥልል</b> ሮልሮሞል	CTTCC ATCA	CCCCTCCCAA	እ	16220

AGTGTATTGC	GTTTAATATT	TGGCGAAGAC	GGGGATATCG	CCGGCCTTGC	CTCCTCCAGT	16380
GTTGTCACGT	CAGAAACACG	AGTAATACTG	ATAATTTTTT	GAGCAGCTAC	TTCTCTCAAA	16440
GAGTTAGCGA	TACGGCTTGC	CTCTTCAGGA	ACTCGATCAT	TAACTGAAAT	AGAGACAATA	16500
CGGGTATCAA	CTGGTACTGT	CACTTTAATT	TTATTAGCCA	AACCTTTTGG	CGTCAAATCT	16560
AGTTTCAAAT	CAGAAACAAC	TTCCTCCAAA	ACATCCTGCG	AAAGGATAAT	CTCACGGTAG	16620
TCTTTTACCA	GATAAGTTCC	TGCCTGCAAA	TCCTGATTTG	TCAACCCCGG	CTTGTCTCCT	16680
TGATTGCGAT	TCACTACGTA	AATTCGCGTG	GTACTCGTAT	ATTCTGGCTT	AACAATAAAA	16740
GTGCTATATG	CAAAAGCCCC	CGCACCTGTC	ACAAGTGCCA	СТАТТААААТ	CATTAGCTTG	16800
CGTTTCCACA	AGCTTTTAAC	TAATTGAAAT	ACATCGATTT	CTATCGTATT	TTGTTCTTTC	16860
ATCATTTCTC	CTAAATTAGT	TGATCCATTA	CAATTTTTCG	AGGATTGTCT	ATAAAAAGTT	16920
CCTGAGCCTT	CGCTTCTCCG	TATTTTTGGG	TAACAAGGTC	ATATGCTTCT	GCCATATGAG	16980
GAGGTCTACC	GTCTAGATTG	TGCATATCAC	TTGCAATGAC	ATGAACCAAA	TCCTGCTCTA	17040
AAAAATACTG	AGCTCTTTTT	TTCATGAATT	TATAACGTTC	GCCAAAAAGT	TTGGGTTTGA	17100
GGACATGTGA	ACTATTTACT	TGCGTGTAAC	AGCCCATATC	GATCAGTTCT	CGAACGCGTT	17160
TTTCATTATT	TTCAAGAGCA	TCATAGCGCT	CAATGTGGGC	AATGACTGGA	GTAATTCCCA	17220
ACATCAAGAT	CTTGCTCAAG	GCGCTATGAA	TATCGCGATA	AGGAGTGTTC	АТАСТАААСТ	17280
CTATCAAGGC	ATAACGACTA	TCATTGAGGG	TCGGAATCCG	CTTTTTTTCC	AGCTTATCCA	17340
GAACATCTGG	TGTGTAATAA	ATTTCAGCCC	CGTAAGCAAT	GACCAAGTCA	CTCGCCACTT	17400
CCTTAGCTAT	TTCCCGAACC	TGAAGAAAGT	TTTCTGCTAT	CTTCTCTTCC	GGAGTTTCAA	17460
ACATGCCCTT	GCGACGGTGA	GAGGTAGAAA	CAATGGTTCG	CACCCCTGT	CTGTAGGATT	17520
CTGCCAAGAG	AGCCTTGCTT	TCCTCTCTTG	ACTTGGGACC	GTCATCTACA	TCAAAAACGA	17580
TATGCGAATG	GATGTCTATC	ATTTCATCTA	CCCTCCATCA	CATCCTGTAT	AGCTGCTTTA	17640
ACTACAGCTA	AACTACTATC	ATCTATTTCC	ATCACATAGA	GGTTACTGTC	TGGCATTGCA	17700
TAAGAAGGAA	GATCCATCCG	ACCTGTCCCT	TTTAAATCTT	GAGAATTTAC	TTTATAATTC	17760
CCTCCACTTT	CTAACTGAGC	ATTGACCAAA	TTTATCATGG	TCTCAAGTGG	CATATTTGTT	17820
TGGATAGAAT	CTTGCAAGCT	ATTAATGATC	GTACTATAAT	TTTTCAGCAC	TTCGGTTGAC	17880
GTTAATTTTT	GAAGGATAGC	CACAATCACC	TTTTGTTGAT	GCCCCCCCC	GTCACGATCG	17940
CCATCTGCTA	GGGAGTAGCG	CTCACGAACA	AAACCGAGAG	CCTGTTCTGA	ATCAAGATGA	18000
ACATTGCCTG	CAGGGTAATA	CTTTCCATTC	GTATGGGCAG	TAAATTCTTG	ATCATTATAA	18060

358

			338			
ACATCAATTC	CACCCAACAA	ATCAATCAAT	TTCAAAAACG	AAGTGAAGTT	CANTCGCACA	18120
TAGTAATTGA	TATCCACTCC	ATAGAGATTT	TCTAAGGTGT	GAATGGACGA	ATCAACTCCA	18180
TAAATGCCCG	CATGAGTCAA	TTTATCTTTT	TGATTATTTC	CACCATCTGC	GATTGGTACA	18240
TAGGCATCAC	GTGGCGTTGT	GGTCAAGAGG	ATTTTCTTGG	TATCTCGATT	GACAGTCATC	18300
aggatgttga	CATCTGATCG	CGACACCGAA	CTAATAGGAC	CATAGGTGTC	AATTCCACTA	18360
ACATAGATAT	TGAAAGACTG	ACTCTTAGAC	GTCTTAGGAG	CTTCTACTTT	TTTAGTGAAT	18420
CCCTTAGTAT	AAATCTTTTT	TATCTTCGAT	GCGTAGTCTG	GATACTCTGA	CTCGATGATG	18480
TTTTCAAAGA	CACTATTTAG	GACAATGGCC	TTAGTCTCCC	CTGCAATCAA	ACTCTTGTAA	18540
GCTGCCAAGT	AAGACGAACT	CTGGTTGACC	GTCAAATCGG	TATTCTGACT	TGACTTGATA	18600
TCAGCTAGTA	ATTTCTGAAT	ATTTTCATTA	TTAGTCCCAG	TCGGTGCTGT	CACACTCGTC	18660
AGTTGCGTAA	CATTTTCGAT	CTCACTATCT	GCTAAAACAG	CGACACTGAT	TGAATATTCT	18720
GAGTAATTAG	AAGTCGCATT	TAAACGATTG	GTCAGTCCAA	CAAACTGCTG	TACTGCAAAG	18780
AGCGACACAG	AGCTGACAAG	GATAGAGAAC	ACCAACAGAA	AAATAGTAAA	CTTTTCAGCT	18840
TTTTTATAGA	TAATCAAGAG	TAGCCCTACC	AAGGCAACTA	GTAGGACTAA	CGCAGTTACC	18900
ACTAGATTAA	GATATCTAAA	AGCAAGGATA	ТТСТАСТТАА	AGATTAAGAA	СААТААААА	18960
CAAACTAACA	ТАААТАААТА	AGTCAGCAAA	ACTATATTAA	CACTTCGCTT	CACTTTCTGT	19020
GAACGTGATT	TTTTAAAACG	TCTACTCATG	ATTAATACCT	ATACATTGAA	CATTATACGA	19080
ТТАТАТСАСТ	TTTTTACGGT	AATGTCTACA	CCTTTATTTT	TACTATCTGC	ATCTTTAAGT	19140
ATCTTAGTAG	ACTTCCCGCG	ааасааааат	ATAGTAAAAT	GAAATAAGAA	CAGAACAAAT	19200
CGTTCAGGAC	AGTCAAATCG	ATTTCTAACA	ATGTTTTAGA	AGCAGAGGTG		19250

# (2) INFORMATION FOR SEQ ID NO: 36:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 21706 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

AAAGTTGAAA	GACTGCTAGC	TGTTTTTGAT	ACCAATCGTT	TCCAACTACA	GAGCAAACAG	60
TATACAAAGT	TTGTTTTTGG	ATGTAAGCTT	CTTGATGGAC	AATTCCAAGA	AAATCAAGAA	120
ATTGCTGACC	TTCAATTTTT	TGCCATTGAC	CAACTGCCGA	ACTTATCTGA	AAAACGCATT	180
ACCAAGGAGC	AAATAGAGCT	TCTTTGGCAG	GTTTATCAAG	GTCATAGGGG	GCAATATCTT	240

GACTAAGAAG	ATGATTATCG	ТАТТТСТААА	тссатттта	ACAACTAGCA	TGGTATAATA	30
ATATGCAGGA	AAATTTTGAA	TTATGAGGAA	GACTAGATGA	ATTTATGGGA	TATTTTCTTT	36
ACGACTCAGG	CAACCGAGCC	GCCCAAATTT	GACCTTTTTT	GGTATGTTAG	CCTATTTACG	42
CTCTTAGCCT	TAACCTTTTA	TACAGCCCAT	CGCTATCGTG	AAAAGAAGGT	TTACCAACGA	48
TTTTTCCAAA	TCTTGCAGAC	TGTTCAGTTA	ATCCTTCTTT	ATGGTTGGTA	CTGGGTCAAT	54
CATATGCCAC	TGTCAGAAAG	CCTACCCTTT	TACCATTGCC	GTATGGCTAT	GTTTGTGGTA	60
CTCTTGCTTC	CTGGTCAATC	САААТАТААА	CAATACTTTG	CATTATTGGG	AACATTTGGG	66
ACATTAGCAG	CCTTTGTTTA	TCCAGTGCCA	GATGCTTACC	CTTTTCCACA	TATCACCATT	72
СТАТССТТТА	TCTTTGGTCA	TTTAGCACTC	TTGGGGAACT	CTCTAGTTTA	TCTATTGAGA	78
CAGTATAATG	CGCGATTGCT	GGATGTGAAG	GGAATTTTTC	TCATGACCTT	TGCCCTAAAT	84
GCCTTGATTT	TTGTGGTCAA	TTTGGTGACA	GGTGGCGATT	ACGGATTTTT	GACAAAACCG	90
CCATTGGTTG	GGGATCACGG	TCTAGTAGCT	AATTATTTAC	TTGTTTCAAT	TGTGCTGGTA	96
GCTACTATCA	GTTTGACTAA	GAAAATCTTA	GAATTCTTTT	TAGCTCAAGA	AGCAGAAAAA	102
ATGATTGCAA	AGGAAGCTTA	ACACAGAGCT	TTCTTTTTTG	CTCTTAGAGA	GTTTTTACAA	108
GCAGCTTATA	AAATAAGAAT	TTCTGAATAG	ACAAACTCAA	AAAATGGCTG	GGAAATTTAG	114
GAAAAAAGCA	AGCACGATTA	AATTTTTTGT	GTTATAATAT	TTTGTGAATA	GCTATGCCTA	120
TGTTTAGCTA	TGGAATAATA	CGAAGTGCGA	AACTTGGAAG	ATAGAGAGGA	AGCGATGTAA	126
TGGCTAGAGA	AGGCTTTTTT	ACAGGTCTAG	ATATTGGAAC	AAGCTCTGTC	AAGGTGCTTG	1320
TGGCCGAGCA	GAGAAATGGT	GAATTAAATG	TAATTGGCGT	GAGTAATGCC	AAAAGTAAAG	1380
GTGTAAAGGA	TGGAATTATT	GTTGATATTG	ATGCAGCAGC	AACTGCTATC	AAGTCAGCCA	1440
PTTCCCAAGC	GGAAGAAAAG	GCAGGCATTT	CGATTAAATC	AGTGAATGTC	GGCTTGCCTG	1500
GTAATCTTTT	GCAGGTAGAA	CCAACTCAGG	GGATGATTCC	AGTAACATCT	GATACTAAGG	1560
<b>AAATTACGGA</b>	TCAAGATGTT	GAAAATGTTG	TCAAATCAGC	TTTGACAAAG	AGTATGACAC	1620
CTGACCGTGA .	AGTCATTACC	TTTATTCCTG	AAGAATTTAT	TGTGGATGGT	TTCCAAGGGA	1680
PTCGTGACCC .	ACGTGGCATG	ATGGGGGTTC	GCCTTGAAAT	GCGTGGTTTG	CTTTATACAG	1740
GACCTCGTAC	TATCTTGCAC	AATTTGCGTA	AGACGGTTGA	GCGTGCAGGT	GTTCAGGTTG	1800
LAAATGTTAT	CATTTCACCA	CTAGCAATGG	TTCAGTCTGT	TTTGAACGAA	GGGGAACGTG	1860
ATTTGGTGC	TACAGTGATT	GATATGGGGG	CAGGTCAAAC	GACTGTCGCT	ACAATCCGTA	1920
ጥር አክር አክር ጥ	CCACMMCACA	CAMAMMOMOC	3 3 C 3 3 C C C C C C	3.C3.MM3.MOM3		

360 TCTCCAAGGT TTTGAAAACC TCTCGCAAAT TAGCGGAAGG CTTGAAACTG AATTACGGGG 2040 AAGCCTATCC GCCTCTTGCA AGCAAAGAAA CCTTCCAAGT AGAGGTTATT GGAGAAGTAG 2100 AAGCAGTCGA AGTGACGGAA GCCTACTTGT CAGAAATTAT TTCTGCACGA ATCAAGCACA 2160 TCCTTGAACA AATCAAGCAA GAATTAGATA GAAGGCGTCT ATTGGACCTC CCTGGTGGTA 2220 TTGTCTTAAT CGGTGGGAAT GCCATTTTAC CAGGTATGGT TGAGCTTGCT CAGGAAGTCT 2280 TTGGCGTCCG TGTCAAGCTT TATGTTCCAA ATCAAGTTGG TATCCGTAAT CCAGCCTTTG 2340 CGCATGTGAT TAGTTTATCA GAATTTGCGG GTCAATTAAC AGAAGTTAAT CTTTTGGCTC 2400 AGGGAGCGAT AAAAGGTGAG AATGACTTAA GTCATCAGCC AATTAGTTTT GGTGGGATGC 2460 TGCAAAAAC AGCTCAGTTT GTACAATCAA CGCCTGTTCA ACCAGCTCCT GCTCCAGAAG 2520 TAGAGCCGGT GGCGCCTACA GAACCAATGG CGGATTTCCA ACAAGCTTCA CAAAATAAAC 2580 CGAAATTAGC AGATCGTTTC CGTGGATTGA TCGGAAGCAT GTTTGACGAA TAAAGAGGAA 2640 AAATAAATTA TGACATTTTC ATTTGATACA GCTGCTGCTC AAGGGGCAGT GATTAAAGTA 2700 ATTGGTGTCG GTGGAGGTGG TGGCAATGCC ATCAACCGTA TGGTCGACGA AGGTGTTACA 2760 GGCGTAGAAT TTATCGCAGC AAACACAGAT GTACAAGCAT TGAGTAGTAC AAAAGCTGAG 2820 ACTGTTATTC AGTTGGGACC TAAATTGACT CGTGGTTTGG GTGCAGGAGG TCAACCTGAG 2880 GTTGGTCGTA AAGCCGCTGA AGAAAGCGAA GAAACACTGA CGGAAGCTAT TAGTGGTGCC 2940 GATATGGTCT TCATCACTGC TGGTATGGGA GGAGGCTCTG GAACTGGAGC TGCTCCTGTT 3000 ATTGCTCGTA TCGCCAAAGA TTTAGGTGCG CTTACAGTTG GTGTTGTAAC ACGTCCCTTT 3060 GGTTTTGAAG GAAGTAAGCG TGGACAATTT GCTGTAGAAG GAATCAATCA ACTTCGTGAG 3120 CATGTAGACA CTCTATTGAT TATCTCAAAC AACAATTTGC TTGAAATTGT TGATAAGAAA 3180 ACACCGCTTT TGGAGGCTCT TAGCGAAGCG GATAACGTTC TTCGTCAAGG TGTTCAAGGG 3240 ATTACCGATT TGATTACCAA TCCAGGATTG ATTAACCTTG ACTTTGCCGA TGTGAAAACG 3300 GTAATGGCAA ACAAAGGGAA TGCTCTTATG GGTATTGGTA TCGGTAGTGG AGAAGAACCT 3360 GTGGTAGAAG CGGCACGTAA GGCAATCTAT TCACCACTTC TTGAAACAAC TATTGACGGT 3420 GCTGAGGATG TTATCGTCAA CGTTACTGGT GGTCTTGACT TAACCTTGAT TGAGGCAGAA 3480 GAGGCTTCAC AAATTGTGAA CCAGGCAGCA GGTCAAGGAG TGAACATCTG GCTCGGTACT 3540 TCAATTGATG AAAGTATGCG TGATGAAATT CGTGTAACAG TTGTTGCAAC GGGTGTTCGT 3600 CAAGACCGCG TAGAAAAGGT TGTGGCTCCA CAAGCTAGAT CTGCTACTAA CTACCGTGAG 3660 ACAGTGAAAC CAGCTCATTC ACATGGCTTT GATCGTCATT TTGATATGGC AGAAACAGTT 3720 GAATTGCCAA AACAAAATCC ACGTCGTTTG GAACCAACTC AGGCATCTGC TTTTGGTGAT 3780

TGGGATCTTC	GCCGTGAATC	GATTGTTCGT	ACAACAGATT	CAGTCGTTIC	TCCAGTCGAG	3840
CGCTTTGAAG	CCCCAATTTC	ACAAGATGAA	GATGAATTGG	ATACACCTCC	ATTTTTCAAA	3900
AATCGTTAAG	TAAATGAATG	TAAAAGAAAA	TACAGAACTT	GTTTTTCGAG	AAGTTGCAGA	3960
GGCTAGTCTG	AGTGCTCATC	GAGAGAGTGG	TTCGGTCTCT	GTCATTGCAG	TTACCAAGTA	4020
TGTAGATGTA	CCGACAGCGG	AAGCCTTGCT	TCCGCTAGGT	GTCCATCATA	TCGGTGAAAA	4080
TCGTGTAGAT	AAGTTTCTGG	AAAAATATGA	AGCTTTAAAA	GATCGAGATG	TGACTTGGCA	4140
TTTGATTGGT	ACCTTGCAAA	GACGTAAGGT	GAAAGATGTC	ATTCAATACG	TTGATTATTT	4200
CCATGCATTG	GACTCAGTAA	AGCTAGCAGG	GGAAATTCAA	AAAAGAAGTG	ACCGAGTCAT	4260
CAAGTGTTTC	CTTCAAGTAA	ATATTTCTAA	AGAAGAAAGC	AAACACGGTT	TTTCGAGAGA	4320
GGAACTGCTG	GAAATCTTGC	CAGAGTTAGC	CAÇACTAGAT	AAGATTGAAT	ATGTTGGTTT	4380
AATGACGATG	GCACCTTTTG	AGGCTAGCAG	TGAGCAGTTG	AAAGAGATTT	TCAAGGCGGC	4440
CCAAGATTTA	CAAAGAGAAA	TTCAAGAGAA	ACAAATTCCA	AATATGCCTA	TGACCGAGTT	4500
AAGTATGGGA	ATGAGTCGTG	ATTATAAAGA	AGCGATTCAA	TTCGGTTCCA	CTTTTGTTCG	4560
TATAGGTACA	TCATTTTTTA	AGTAGGAGAG	AACCATGTCT	TTAAAAGATA	GATTCGATAG	4620
ATTTATAGAT	TATTTTACGG	AGGATGAGGA	TTCAAGTCTC	CCTTATGAAA	AAAGAGATGA	4680
GCCTGTGTTT	ACTTCAGTAA	ATTCTTCACA	GGAACCGGCT	CTCCCAATGA	ATCAACCTTC	4740
ACAGTCGGCT	GGCACAAAAG	AGAACAATAT	CACCAGACTT	CATGCAAGAC	AACAGGAATT	4800
GGCAAATCAG	AGTCAGCGTG	CAACGGATAA	GGTCATTATA	GATGTTCGTT	ATCCTAGAAA	4860
ATATGAGGAT	GCAACAGAAA	TTGTTGATTT	ATTGGCAGGA	AACGAAAGTA	TCTTGATTGA	4920
TTTTCAGTAT	ATGACAGAGG	TGCAGGCTCG	TCGTTGTTTG	GACTATTTGG	ATGGAGCTTG	4980
TCATGTTTTA	GCTGGAAATT	TGAAAAAGGT	AGCTTCTACC	ATGTATTTGT	TGACACCAGT	5040
GAACGTTATT	GTAAATGTTG	AAGATATCCG	TTTACCAGAT	GAAGATCAAC	AGGGTGAGTT	5100
CGGTTTTGAT	ATGAAGCGAA	ATAGAGTACG	ATAATGATTT	TTTTAATTCG	TATGATTTAT	5160
AATGCAGTGG	ATATTTACTC	CCTGATTTTG	GTAGCCTTCG	CTGTCATGTC	TTGGTTTCCA	5220
GGTGCCTACG	AATCCAGTTT	AGGTCGTTGG	ATTGTAGCGT	TGGTGAAACC	AGTGCTTGCT	5280
CCCTTGCAAC	GCCTGCCTTT	ACAGATAGCG	GGTCTTGATT	TATCTGTTTG	GGTTGCGATT	5340
GTTTTGGTTC	GATTTTTAGG	AGAAAACCTA	GTGCGTTTTC	TGGCGATGAT	AGGATGAATA	5400
AAGGGATTTA	TCAGCATTTC	TCCATAGAAG	ATCGTCCATT	TCTTGACAAG	GGAATGGAAT	5460
GGATAAAGAA	GGTAGAAGAT	AGCTATGCTC	CTTTTTTAAC	TCCTTTTATC	AATCCTCATC	5520

			362			
AGGAGAAGCT	ATTAAAGATT	TTGGCCAAAA	CCTATGGTCT	TGCTTGTAGC	AGTAGTGGGG	558
AATTCGTCTC	GAGTGAGTAT	GTTCGAGTTT	TATTATACCC	AGATTATTTC	CAACCAGAGT	564
TTTCAGATTT	TGAAATATCT	CTCCAGGAAA	TTGTGTATTC	СААТАААТТТ	GAACATTTAA	570
CGCATGCTAA	GATTTTAGGG	ACAGTCATCA	ATCAATTAGG	GATTGAACGG	AAACTTTTTG	576
GAGATATCCT	agtagatgaa	GAACGGGCGC	AGATTATGAT	TAATCAGCAG	TTTCTTCTTC	582
TCTTTCAAGA	TGGACTAAAG	AAAATTGGTC	GTATACCTGT	TTCGCTGGAG	GAACGTCCTT	588
PCACCGAGAA	AATAGATAAG	CTAGAACAGT	ATCGAGAACT	GGATTTATCT	GTGTCTAGTT	594
ITCGATTAGA	TGTTCTTTTA	TCAAATGTTT	TGAAACTATC	TAGGAATCAA	GCAAACCAGT	600
rgattgaaaa	GAAACTTGTC	CAAGTAAATT	ATCATGTGGT	AGACAAATCA	GATTACACTG	606
PTCAAGTTGG	AGACTTGATT	AGTGTGAGAA	AATTTGGTCG	CTTGAGATTA	CTTCAAGATA	612
AGGGACAAAC	GAAAAAAGAG	<b>А</b> А <b>G</b> А <b>ЛА</b> ААА	TAACCGTCCA	GTTATTATTA	AGTAAGTGAG	618
GAATAGAATG	CCAATTACAT	CATTAGAAAT	AAAGGACAAG	ACTTTTGGAA	CTCGATTCAG	624
AGGTTTTGAT	CCAGAAGAAG	TCGATGAATT	TTTAGATATT	GTGGTTCGTG	ATTACGAAGA	630
PCTTGTGCGT	GCGAATCATG	ATAAAAATTT	GCGTATTAAG	AGTTTAGAAG	AGCGTTTGTC	636
PTACTTTGAT	GAAATAAAAG	ATTCATTGAG	CCAGTCTGTA	TTGATTGCTC	AGGATACAGC	642
rgagagagtg	AAACAGGCGG	CGCATGAACG	TTCAAACAAT	ATCATTCATC	AAGCAGAGCA	648
AGATGCGCAA	CGCTTGTTGG	AAGAAGCTAA	ATATAAGGCA	AACGAGATTC	TTCGTCAAGC	654
AACTGATAAT	GCTAAGAAAG	TCGCTGTTGA	AACAGAAGAA	TTGAAGAACA	AGAGCCGTGT	660
CTTCCACCAA	CGTCTCAAAT	CTACAATTGA	GAGTCAGTTG	GCTATTGTTG	AATCTTCAGA	666
TTGGGAAGAT	ATTCTCCGTC	CAACAGCTAC	TTATCTTCAA	ACCAGTGATG	AAGCCTTTAA	672
AGAAGTGGTT	AGCGAAGTAC	TTGGAGAACC	GATTCCAGCT	CCAATTGAAG	AAGAACCAAT	678
rgatatgaca	CGTCAGTTCT	CTCAAGCAGA	AATGGCAGAA	TTACAAGCTC	GTATTGAGGT	6840
AGCCGATAAA	GAATTGTČTG	AATTTGAAGC	TCAGATTAAA	CAGGAAGTGG	AAGCTCCAAC	6900
CCTGTAGTG	AGTCCTCAAG	TTGAAGAAGA	GCCTCTGCTC	ATCCAGTTGG	CCCAATGTAT	6960
GAAGAACCAG	AAGTAGCTCC	AATGCATCCG	ATAGGTCCAA	CACCAGCTAC	AGAAACTGTT	7020
SATTCAATAC	CGGGATTTGA	AGCACCGCAA	GAATCTGTTA	CAATTTTATA	AGAAATATTC	7080
GAGAACAAT	ATCTTATCCT	TATATTTCCA	GCGAGCAGGA	GATGGTGTGA	GTCCTGTAAT	7140
CCTATTGAT	AAGATTATCC	TCTCAAAAAC	TCAAGTCTGA	AGCTAGTAAG	ATTTGACGTT	7200
CCCACGTTA	CGGGATAAGA	GGGAGAAAGA	CTAAATCTTT	TTCCGAATAA	AGGTGGTACC	726
CGATTTTCG	TCCTTTTTGG	AAGTCGTGGT	ጥጥጥ AAጥጥጥር	<b>ፈጥጥልጥጥል</b> ጥጥ	<b>ТАХАССАСАТ</b>	7320

ACCATGAAAC TCAAAGACAC	CCTTAATCTT	GGGAAAACTG	AATTCCCAAT	GCGTGCAGGC	7380
CTTCCTACCA AAGAGCCAGT	TTGGCAAAAG	GAATGGGAAG	ATGCAAAACT	TTATCAACGT	7440
CGTCAAGAAT TGAACCAAGG	AAAACCTCAT	TTCACCTTGC	ATGATGGCCC	TCCATACGCT	7500
AACGGAAATA TCCACGTTGG	ACATGCTATG	AACAAGATTT	CAAAAGATAT	CATTGTTCGT	7560
TCTAAGTCTA TGTCAGGATT	TTACGCACCA	TTTATTCCTG	GTTGGGATAC	TCATGGTCTG	7620
CCAATCGAGC AAGTCTTGTC	AAAACAAGGT	GTCAAACGTA	AAGAAATGGA	CTTGGTTGAG	7680
TACTTGAAAC TTTGCCGTGA	GTACGCTCTT	TCTCAAGTAG	ATAAACAACG	TGAAGATTTT	7740
AAACGTTTGG GTGTTTCTGG	TGACTGGGAA	AATCCATATG	TGACCTTGAC	TCCTGACTAT	7800
GAAGCAGCTC AAATTCGTGT	ATTTGGTGAG	ATGGCTAATA	AGGGTTATAT	CTACCGTGGT	7860
GCTAAGCCAG TTTACTGGTC	ATGGTCATCT	GAGTCAGCAC	TTGCTGAAGC	AGAGATTGAA	7920
TACCATGACT TGGTTTCAAC	TTCCCTTTAC	TATGCCAACA	AGGTAAAAGA	TGGCAAAGGA	7980
GTTCTAGATA CAGATACTTA	TATCGTTGTC	TGGACAACGA	CTCCATTTAC	CATCACAGCT	8040
TCTCGTGGTT TGACGGTTGG	TGCAGATATT	GATTACGTTT	TGGTTCAACC	TGCTGGTGAA	8100
GCTCGTAAGT TTGTCGTTGC	TGCTGAATTA	TTGACTAGCT	TGTCTGAGAA	ATTTGGCTGG	8160
GCTGATGTTC AAGTTTTGGA	AACTTACCGT	GGCCAAGAAC	TCAACCACAT	CGTAACAGAA	8220
CACCCATGGG ATACAGCTGT	AGAAGAGTTG	GTAATTCTTG	GTGACCACGT	TACGACTGAC	8280
TCTGGTACAG GTATTGTCCA	TACAGCCCCT	GGTTTTGGTG	AGGACGATTA	CAATGTTGGT	8340
ATTGCTAATA ATCTTGAAGT	CGCAGTGACT	GTTGATGAAC	GTGGTATCAT	GATGAAGAAT	8400
GCTGGTCCTG AATTTGAAGG	TCAATTCTAT	GAAAAGGTAG	TTCCAACTGT	TATTGAAAAA	8460
CTTGGTAACC TCCTTCTTGC	CCAAGAAGAA	ATCTCTCACT	CATATCCATT	TGACTGGCGT	8520
ACTAAGAAAC CAATCATCTG	GCGTGCAGTT	CCACAATGGT	TTGCCTCAGT	TTCTAAATTC	8580
CGTCAAGAAA TCTTGGACGA	aattgaaaaa	GTGAAATTCC	ACTCAGAATG	GGGTAAAGTC	8640
CGTCTTTACA ATATGATCCG	TGACCGTGGT	GACTGGGTTA	TCTCTCGTCA	ACGTGCTTGG	8700
GGTGTTCCAC TTCCTATCTT.	CTACGCTGAA	GATGGTACAG	CTATCATGGT	AGCTGAAACT	8760
ATTGAACACG TAGCTCAACT	TTTTGAAGAA	TATGGTTCAA	GCATTTGGTG	GGAACGTGAT	8820
GCCAAAGACC TCTTGCCAGA	AGGATTTACT	CATCCAGGTT	CACCAAACGG	CGAGTTCAAA	8880
AAAGAAACTG ATATCATGGA	CGTTTGGTTT	GACTCAGGTT	CATCATGGAA	TGGAGTGGTG	8940
GTAAACCGTC CTGAATTGAC	TTACCCAGCC	GACCTTTACC	TAGAAGGTTC	TGACCAATAC	9000
CGTGGTTGGT TTAACTCATC	ACTTATCACA	TCTGTTGCCA	ACCATGGCGT	AGCACCTTAC	9060

364 AAACAAATCT TGTCACAAGG TTTTGCCCTT GATGGTAAAG GTGAGAAGAT GTCTAAATCT 9120 CTTGGAAATA CTATTGCTCC AAGCGATGTT GAAAAACAAT TCGGTGCTGA AATCTTGCGT 9180 CTCTGGGTAA CAAGTGTTGA CTCAAGCAAT GACGTGCGTA TCTCTATGGA TATCTTGAGC 9240 CAAGTTTCTG AAACTTACCG TAAGATTCGT AACACTCTTC GTTTCTTGAT TGCCAATACA 9300 TCTGACTTTA ACCCAGCTCA AGATACAGTC GCTTACGATG AGCTTCGTTC AGTTGATAAG 9360 TACATGACGA TTCGCTTTAA CCAGCTTGTC AAGACCATTC GTGATGCCTA TGCAGACTTT 9420 GAATTCTTGA CGATCTACAA GGCCTTGGTG AACTTTATCA ACGTTGACTT GTCAGCCTTC 9480 TACCTTGATT TTGCCAAAGA TGTTGTTTAC ATTGAAGGTG CCAAATCACT GGAACGCCGT 9540 CAAATGCAGA CTGTCTTCTA TGACATTCTT GTCAAAATCA CCAAACTCTT GACACCAATC 9600 CTTCCTCACA CTGCGGAAGA AATCTGGTCA TATCTTGAGT TTGAAACAGA AGACTTCGTC 9660 CAATTGTCAG AATTACCAGA AGTTCAAACT TTTGCTAACC AAGAAGAAAT CTTGGATACA 9720 TGGGCAGCCT TCATGGACTT TCGTGGACAA GCACAAAAAG CCTTGGAAGA AGCTCGTAAT 9780 GCAAAAGTTA TCGGTAAATC ACTTGAAGCA CACTTGACAG TTTATCCAAA TGAAGTTGTG 9840 AAAACTCTAC TCGAAGCAGT AAACAGCAAT GTAGCACAAC TTTTGATCGT GTCTGAGTTG 9900 ACCATCGCAG AAGGACCAGC TCCGGAAGCT GCCCTTAGCT TCGAAGATGT AGCCTTCACA 9960 GTTGAACGTG CTACTGGTGA AGTATGTGAC CGTTGCCGTC GTATCGACCC AACAACAGCA 10020 GAACGCAGCT ACCAGGCAGT TATCTGTGAC CACTGTGCAA GCATCGTAGA AGAAAACTTT 10080 GCGGAAGCAG TCGCAGAAGG ATTTGAAGAG AAATAAGATT GAAAAGTCTA GGCAAAATTC 10140 AATTTGAGAA GAAAAGACAA CTAATTTTAT AGTCTATTAA ACGCATTGTA TCACGTTTTT 10200 GAATACCTGA TATGATGCGT TTTTTATTTA TTTTAAAAAT TTGCGAGGTA TGACTTTTTA 10260 TACTCAACAA GAATCAAAGA GAAACTTAGC AAGCTAACAG TAGTAAGATA AAATAGGAAT 10320 TTGATATTAG GGATAAGATT GGTAAATAGT GTAATATTTT TACAACAATA AATTTATATA 10380 GTTATTTCTG GTTTCTGAAA AGTATTATAT TTTATTTCAT ATTATACAAA TTTTTATTTT 10440 ATAATATCAG AACATACTTT TTTTAAAAGC AAATATGATA CAATTTTATT TGAAAAAAAT 10500 AAAAAAGGAG ATTTTATTAT AAAATTAAAA AGACTTGCTT TAATTAGTGG TATCGTCGGT 10560 CTTGTGGGAG GAATTTTACT TCTTATTGGT CCTTTTGTCT TGTTGGGAAT AGCGGTAAAC 10620 ACAGCTGCTA CAACTCTTAA TGGAGGAGCT ACTGCAGGGG CTTTTTCAGG TGTAGCCTTA 10680 CTCTTGAATG CCTTGAAGAT TGCAAATCTT GTTCTTGGTA TCATTGCTAT TGTTTACTAT 10740

AAAGGAGATA AGCGTGTAGG TGCAGCTCCG TCTGTACTAA TGATTGTTTC TGGTGGAGTT

AGTCTCATTC TATTCCGTTC TTAGGATGGG TTGGGGGGAT TTTTGCTATT ATCGGAGGAT

10800

CTCTATTCCT	TTCAACATTG	AAGAAATTCA	AATCAGAAGA	ATAAAAGGTA	TTTTAGCATG	10920
AAAAGAACAA	AAAAGTTTAT	CGGTATAGGA	GTAGCTCTAT	TATCTCTTTC	TCTTCTAGTT	10980
GCATGTGGAA	CATAAAGTTC	AAAGAATACT	TCAACAAGTA	ATGATGAGAA	GACAGTAGCA	11040
ACATCCAATA	GTTCAAAAGA	AACAATCACT	TTCGATACAC	CGGTTGTAAC	AGACGATGCG	11100
ATTGAATCAA	TACGCACTTA	TGCAGATTAT	ATAGATCTTT	ATAAAAATAT	TTTTGATGAT	11160
TATTTTACTA	AAGCTGAGGA	AGGTTTCAAA	GGCATAGCTA	TGGAAAATAA	TGACTCGTTT	11220
АСТАААСТАА	AAGAGTCAAC	TCAAAAATTA	TTCGATGCGC	AGAAAAAAAG	GTTAAATAAT	11280
GAAGATAGAA	TAGAAACAAC	CAAAAACAAT	GTGATTGCCA	AACATTGTCA	AACAGTCCTT	11340
TCCTTTTTGG	TTTTGACTAG	CTTTTTTGTG	AAAAATTGTG	TAAAATAGAA	TAGATAAACG	11400
AGGGGAAACC	TCGGAAAATT	TAAAGGAGAA	TCCATCTAAT	GGTAAAATTG	GTTTTTGCTC	11460
GCCACGGTGA	GTCTGAATGG	AACAAAGCTA	ACCTTTTCAC	TGGTTGGGCT	GATGTTGATT	11520
TGTCTGAAAA	AGGTACACAA	CAAGCGATTG	ACGCTGGTAA	ATTGATCAAA	GAAGCTGGTA	11580
TCGAATTTGA	CCAAGCTTAC	ACTTCAGTAT	TGAAACGTGC	TATCAAAACA	ACTAACTTGG	. 11640
CTCTTGAAGC	TTCTGACCAA	TTGTGGGTTC	CAGTTGAAAA	ATCATGGCGC	TTGAACGAAC	11700
GTCACTACGG	TGGTTTGACT	GGTAAAAACA	AAGCTGAAGC	TGCTGAACAA	TTTGGTGATG	11760
AGCAAGTTCA	CATCTGGCGT	CGTTCATACG	ATGTATTGCC	TCCAAACATG	GACCGTGATG	11820
ATGAGCACTC	AGCTCACACA	GACCGTCGTT	ACGCTTCACT	TGACGACTCA	GTTATCCCAG	11880
ATGCTGAAAA	CTTGAAAGTG	ACTTTGGAAC	GTGCTCTTCC	ATTCTGGGAA	GATAAAATCG	11940
CTCCAGCTCT	TAAAGATGGT	AAAAACGTAT	TCGTAGGAGC	TCACGGTAAC	TCAATCCGTG	12000
CCCTTGTAAA	ACACATCAAA	GGTTTGTCAG	ATGACGAGAT	CATGGACGTG	GAAATCCCTA	12060
ACTTCCCACC	ATTGGTATTC	GAATTCGACG	aaaaattgaa	CGTCGTTTCT	GAATACTACC	12120
TTGGAAAATA	AAAAATTGTA	AGTCTAGAAT	TGATTTCTAG	GCTTTTTATG	TTAGTATGGA	12180
AGTATGATAA	GGAATAAAAA	ACAAGATTAT	GTACTGGCCT	лсаадсалсс	AGCTTCAACC	12240
ACTTACATGG	GTTGGGAAGA	AGAAGCTTŤA	CCGATAGGCA	ATGGTTCTTT	AGGAGCAAAA	12300
GTATTTGGCC	TTATAGGGGC	TGAACGGATT	CAATTTAATG	AAAAAAGTCT	CTGGTCTGGA	12360
GGTCCACTTC	CTGATAGTTC	AGATTATCAG	GGTGGAAATC	TTCAGGATCA	GTATGTTTTT	12420
TTAGCTGAGA	TTCGGCAGGC	TTTGGAGAAG	AGAGATTACA	ATCTGGCTAA	GGAACTGGCT	12480
GAGCAGCACC	TAATTGGGCC	AAAAACGAGT	CAATATGGGA	CCTATCTGTC	TTTTGGGGAT	12540
ATTCACATTG	AGTTCAGCCA	GCAAGGTACG	ACTTTGTCTC	AGGTGACGGA	CTATCAGAGA	12600

366 CAGCTGAATA TTAGTAAGGC ACTTGCGACG ACTTCTTATG TCTATAAGGG AACGCGATTT 12660 GAACGTAAAG CTTTTGCGAG TTTTCCAGAT GATCTCTTGG TTCAATGTTT TACTAAGGAA 12720 GGGTTGGAAA CTCTAGATTT TACTATAGAA CTATCCTTGA CCTGTGATTT GGCTTCTGAT 12780 GGAAAGTATG AGCAGGAAAA ATCTGATTAC AAGGAGTGTA AGTTGGATAT TACTGATTCT 12840 CATATCTTGA TGAAGGGAAG AGTTAAGGAT AATGATCTGC GGTTTGCTAG TTATCTAGCT 12900 TGGGAAACGG ATGGAGATAT TAGAGTTTGG TCAGATAGGG TTCAGATATC AGGAGCCAGT 12960 TATGCCAATC TCTTCTTGGC CGCTAAGACG GATTTTGCCC AAAATCCTGC TAGCAATTAT 13020 CGCAAGAAC TAGATTTAGA GCAACAGGTG ATAGACTTGG TGGACACAGC TAAAGAAAAG 13080 GGCTATACCC AATTGAAATC AAGGCATATC GAGGACTACC AAGCCTTATT CCAGCGTGTT 13140 CAATTGGATT TGGAAGCTGA TGTTGACGCA TCCACTACAG ATGATTTGTT AAAAAATTAT 13200 AAGCCACAAG AAGGGCAGGC TTTGGAGGAG CTGTTCTTCC AGTATGGACG GTATTTATTG 13260 ATTAGTTCGT CCAGAGACTG CCCAGATGCT CTACCAGCTA ACCTACAGGG AGTCTGGAAT 13320 GCGGTCGACA ATCCTCCTTG GAATTCGGAC TATCACTTAA ATGTCAATCT GCAGCTGAAT 13380 TATTGGCCAG CCTATGTTAC CAATCTCCTA GAGACGGTCT TTCCAGTCAT CAACTATGTA 13440 GATGATTTGC GTGTCTATGG TCGTCTAGCG GCTGTAAAGT ATGCAGGAAT CGTCTCTCAG 13500 AAAGGTGAGG AGAATGGTTG GTTGGTTCAT ACTCAAGCGA CTCCCTTTGG TTGGACGGCA 13560 CCTGGTTGGG ATTACTATTG GGGTTGGTCA CCAGCTGCCA ATGCGTGGAT GATGCAAACC 13620 GTTTATGAAG CCTATTTATT TTATAGGGAC CAAGACTATC TCAGGGAGAA AATTTATCCC 13680 ATGTTGAGGG AAACGGTTCG TTTTTGGAAT GCCTTTTTAC ATAAGGATCA GCAGGCGCAG 13740 CGTTGGGTGT CTTCTCCGTC TTATTCCCCA GAACATGGGC CGATTTCGAT TGGCAATACC 13800 TATGACCAAT CTCTGATTTG GCAGTTATTT CATGATTTTA TTCAGGCTGC TCAGGAATTG 13860 GGACTGGATG AGGACTTGTT GACTGAGGTT AAGGAGAAGT CTGATTTACT AAATCCTTTG 13920 CAAATCACTC AATCTGGTCG AATCAGGGAG TGGTATGAGG AGGAAGAGCA GTATTTTCAA 13980 AATGAGAAAG TGGAGGCCCA GCATCGGCAC GCTTCCCATC TAGTGGGACT CTATCCTGGC 14040 AATCTCTTTA GCTACAAGGG ACAAGAGTAT ATTGAAGCGG CGCGTGCTAG CCTCAATGAT 14100 CGTGGAGATG GCGGCACAGG CTGGTCCAAG GCTAATAAGA TCAATCTCTG GGCGCGTTTG 14160 GGAGATGGCA ATCGAGCCCA TAAATTATTG GCAGAGCAGT TAAAGACATC CACCTTGCAA 14220 AATCTTTGGT GTAGCCATCC TCCTTTTCAG ATAGATGGTA ATTTTGGTGC TACTAGTGGC 14280

ATGGCAGAAA TGTTACTCCA GTCTCATGCA GCTTATCTGG TACCTCTAGC TGCCCTACCT

GATGCTTGGT CAACAGGTTC TGTTTCAGGC TTAATGGCAC GTGGACATTT TGAAGTGAGC

14340

ATGAGCTGGG	AAGATAAAAA	ACTCTTACAG	TTGACCATTT	TATCAAGGAG	TGGAGGAGAT	14460
TTGCGAGTTT	CTTATCCAGA	TATTGAGAAG	AGTGTGATTA	AAATGAATCA	AGAAAAAATA	14520
AAAGCGAAAT	GCATGGGGAA	AGATTGTATT	TCGGTGGCAA	CAGCAGAAGG	TGATCTTGTT	14580
CAATTTTATT	TTTAAGAAGA	TGTTATAAGG	CAGTAATTTG	AAACTGCCTT	TTAATAAGGA	14640
TTTAAGAATA	TAAGCAGTTT	TCAACTAGTT	GAAAAAACGT	TATAATGATA	ATAGGAAGTA	14700
ATACTCAATG	AAAATCAAAG	AGCACAAACT	AGGAAGCTAG	CCGCAGGTTG	CTCAAAACAG	14760
TGTTTTGAGG	TTGCAGATGG	AAGCTGACGT	GGTTTGAAGA	GAGATTTTCG	AGGAGTATAA	14820
TTTGTTTGAT	AGAGGGTGGG	TCTGATGGCT	TATATTGAGA	TGAAACACTG	TTACAAGCGT	14880
TATCAGGTTG	GGGACACGGA	GATTGTGGCC	AATTGTGATG	TGAATTTTGA	GATTGAAAAG	14940
GGGGAGCTGG	TTATTATCCT	TGGTGCTTCA	GGTGCAGGCA	AGTCAACAGT	TCTTAACCTT	15000
CTTGGGGGAA	TGGATACCAA	TGATGAAGGG	GAAATCTGGA	TTGATGGTGT	TAATATTGCG	15060
GATTATAGTT	CCCACCAGCG	CACCAATTAC	CGTAGAAATG	ATGTGGGGTT	TGTTTTTCAG	15120
TTTTATAATC	TAGTTTCTAA	TCTGACAGCT	AAGGAAAATG	TGGAACTGGC	TTCTGAAATT	15180
GTGACAGATG	CCTTGAATCC	TGATCAGGCC	TTGACAGATG	TAGGTCTGGC	TCATCGTCTC	15240
AATAACTTTC	CAGCCCAGCT	TTCTGGAGGG	GAGCAACAGC	GAGTCTCCAT	TGCACGCGCG	15300
GTAGCCAAAA	АТССТААЛАТ	TCTCCTTTGT	GATGAACCGA	CTGGAGCCTT	GGATTATCAG	15360
ACGGGCAAGC	AGGTTTTGAA	AATTCTCCAA	GACATGTCTC	GTCAAAAGGG	AGCGACGGTG	15420
ATCATCGTGA	CTCATAATGG	AGCTTTGGCG	CCCATTGCTG	ATCGCGTGAT	TCAAATGCAC	15480
GATGCCAGTG	TCAAGGATGT	GGTGCTCAAC	CAGCATCCTC	AGGATATTGA	CAGTTTGGAG	15540
TACTAGCATG	ATCAAGCGAA	AAACTTATTG	GAAGGACTTA	GTTCAGTCCT	TCACAGGCTC	15600
CAAGGGGCGT	TTTTTATCCA	TCTTGATCCT	GATGATGTTG	GGATCTCTAG	CCTTAGTAGG	15660
CCTCAAAGTA	ACCAGTCCCA	ACATGGAGGC	GACAGCTAAT	GCTTATTTAA	CAACTGCTCA	15720
AACCTTGGAT	TTGGCAGTCA	TGTCTAACTA	TGGCTTGGAT	CAAGCAGACC	AAGAAGAACT	15780
AAAACAGACG	GAGGGCGCAG	AGGTCGAGTT	TGGCTATTTG	ACAGATGTGA	CTATGGATAA	15840
TGGGCAGGAT	GCCATTCGGC	TGTACTCCAA	ACCAGAGCGA	ATTTCAACCT	TTCAGCTAAG	15900
AAAGGGACGA	CTTCCTCAGT	CAGACAAGGA	AATCGCTTTG	GCCACTCATT	TGCAAGGCCA	15960
ATACAGCGTG	GGACAGGAGA	TTAGTTTTAA	AGAAAAAGAA	GAGGGTCATT	CCTCTTTAAA	16020
AGACCATACT	TATACCATTA	CTGGTTTTGT	GGATTCGGCT	GAAATCCTCT	CCCAGCGAGA	16080
TATGGGCTAC	GCAGGAAGTG	GAAGTGGGAC	TCTGACAGCC	TATGGGGTGA	TTTTACCTAG	16140

	ጥሮል አጥጥጥር ልጥ	СУСУУУСТСТ	аса апапасс	TCGTTTGAAA	<b>ТАТСА АСАТТ</b>	<b>ም</b> ልርርርርርምምም	16200
				ATCCAAGCAA			16260
	AATTTTATCA	GATAATGGCA	AGGTACGTCT	GCAACTTTTG	AAAAAAGAAG	GACAAGAGTC	16320
	TCTAGACAAG	GGGCAAGAGA	CCCTTGACAA	GGCTCAGACT	AATTTGCAGG	AAGGCAAGCG	16380
	TCGTTTAGCA	GCTGCTCAAG	CTCGTATACA	GGCTCAAGAA	AGTCAACTAG	CCTTGTTTCC	16440
	TCAAGTTCAG	AGAGAGCAGG	CTAGTGCTCA	ACTTACCCAA	GCCAAGCAGG	AATTGGGCAA	16500
	GGAAGAGGAC	AAACTAAAGC	AAGCTGAACA	AAATCTAGCC	CAAGAAAAGG	AAAAATTAGA	16560
	AAAACATCAG	CAAGTCTTGG	ATGATTTGGC	GGAGCCAAGG	TATCAGGTTT	ATAATCGTCA	16620
	GACCATGCCA	GGTGGTCAGG	GCTATCTTAT	GTATAGCAAT	GCTTCATCCA	GTATTCGAGC	16680
	AGTGGGCAAT	ATCTTTCCTG	TGGTACTTTA	TGCCGTAGCA	GCCATGGTGA	CCTTTACGAC	16740
	CATGACTCGC	TTTGTAGACG	AAGAGCGAAC	TCATGCAGGG	ATTTTTAAGG	CCTTGGGTTA	16800
	TCGTAGTAAG	GATATTATCG	CCAAGTTTCT	CCTTTATGGA	CTAGTAGCTG	GGACTGTCGG	16860
	AACGGCTCTA	GGTAGTATAC	TTGGTCATTA	TTTGCTAGCC	AGTGTAAT1"I	CAAGTGTCAT	16920
	TACAAAAGGC	ATGGTGGTGG	GAGAAACTCA	GATTCAGTTC	TATTGGACCT	ATAGCTTACT	16980
	AGCTTTTGTC	TTGAGCTTGT	TGGCGAGTGT	GTTACCAGCC	TATCTGGTGG	CTTGGAGGGA	17040
	ACTTCATGAC	GAAGCAGCCC	AGCTTCTACT	TCCTAAACCT	CCTGTCAAAG	GAGCTAAAAT	17100
,	CTTATTGGAG	CGTATCGGTT	TTATCTGGCG	TCGTCTCAGT	TTTACTCATA	AGGTAACAGC	17160
,	CCGCAACATC	TTTCGTTATA	AGCAGAGAAT	GTTGATGACA	ATCTTTGGTG	TGGCAGGTTC	17220
•	TGTAGCTCTG	CTCTTTGCAG	GTTTGGGAAT	CCAATCTTCT	GTAGCAGGAG	TTCCGTCTAA	17280
	ACAGTTTCAA	CAAATCCAAC	AGTATCAGAT	GCTTGTCTCT	GAAAATCCTA	GTGCGACCAA	17340
•	TCAGGACAAG	GTAGAGCTAG	CAGAAGTGTT	GAAAGGGCAG	GAGATACTAG	CCTACCAGAA	17400
	AATCTATTCT	AAAGCGCTAT	ACAAGGATTT	CAAAGGCAAA	GCTGGTCTTC	AAAACATTAC	17460
	TCTTATGATG	ATAGAGAAGG	AAGATTTGAC	TCCCTTTATC	CATCTTCAAC	ATCATCAGCA	17520
	GGAGCTGACA	TTAAAAGATG	GCATCGTTAT	TACAGCTAAA	CTCGCCCAGC	TGGCAGGTGT	≟7580
	CAAGGTTGGG	CAGACTTTAG	AAATTGAAGG	TAAGGAACTA	AAGGTCGTTG	CTATTACTGA	17640
	GAACTACGTT	GGTCACTTTA	TTTATATGAG	TCAGGCTAGC	TATGAGCAAC	TTTACGGACA	17700
	GCTACCCCAA	GCCAACACTT	ATCTGGTCTC	ATTAAGGGAT	ACCAGTGCAA	СТАСТАТССА	17760
				TGCGGTGTCC			17820
				CTCACTCAAT			
						-	17880
(	CATCGTATCG	GTTCTATTAG	CTATTGTCAT	CCTTTACAAT	CTGACCAATA	TCAACGTAGC	17940

TGA	GAGAATC	CGTGAACTCT	CCACTATCAA	GGTTCTTGGT	тттсатаата	ATGAAGTCAC	1800
CCT	CTACATT	TACCGTGAGA	CGATTGTGCT	GTCCCTTGTG	GGAATCGTAC	TTGGTCTGAT	1806
AGC	TGGTTTC	TATTTACACC	AATTTTTGAT	TCAAATGATT	TCGCCTGCGA	СТАТТСТСТТ	1812
TTA	TCCGCAG	GTAGGCTGGG	AAGTCTATGT	AATCCCAGTG	GCAGCAGTAA	GCATCATTTT	1818
GAC	CTTGCTT	GGTTTCTTCG	TCAATTATTA	TCTGAGAAAG	GTTGATATGT	TAGAAGCCCT	1824
GAA	ATCTGTA	GAGTAAGGTA	GTTATTTTTA	GCTGATTGAA	CTTCTATTTA	CTAATATTCA	1830
AAA	ATCCTCC	GTTTCAAAGA	GCAGGGAACT	CTTTGTGACA	GAGGATTTTT	TCTATAGGGC	1836
TTT	AGCAGCT	GCAATTGCGG	CTTCGAAGTT	TGGCTCAGAA	TTGATATTAT	CCACGTATTC	1842
AAC	GTAGCGA	ATCGTATTGT	CAGTATCGAG	GACAAAGACT	GCGCGTGCTA	ATAGGTGCCA	1848
TTC	GTTGATC	AAGAGGCAT	AATCGCGCCC	GAAAGAATGG	TCAAAGTAGT	CTGAAAGCAT	1854
AAT	GCATTG	TCAAGGCCTT	CAGCACCGCA	CCAACGTTTT	TGAGCAAAAG	GTAGGTCCAT	1860
TGA	AACAGTC	AATACGACCG	TGTTGTCCAG	TCCAGCCAAT	TCTTCATTAA	AACGACGTGT	1866
TTG	agttgag	CAGATGCCTG	TATCGATAGA	AGGAACGACA	CTCAAGACTT	TTTTCTTGCC	1872
ATC/	AAAATCA	GCCAGAGATT	TTTTAGAAAG	ATCTGTTGTA	GTAAGAGAAA	AATCAAGCGC	1878
CTT	STCGCCG	ACTTGTAGTT	GTTTACCTGT	AAAGCTCACA	GGATTTCCGA	GAAAAGTTAC	1884
CATA	AGGATAC	TCCAATCTTT	TTTCTTCCAT	TTTAGCTGAA	ACAGTCGGAA	TTTTCCAATG	1890
ATT?	rgaccgg	AAATATGGGC	ATAGAAAAA	CGCCAGCTCA	TGTGAGAATG	ACGTTTTTCA	1896
PAGO	STTTATT	TTGCCAATCC	TTCAGCAATC	TTGTCAAGGT	TGTATTTCAT	CATGCTGTAG	19020
rago	CTGTCGC	CTTCTTTACC	TTGTTCTGCG	ATAGAGTCAG	TAAAGATTTG	AGCGTAGATT	19080
GGG <i>I</i>	ATGTTTG	TGTCTTGAGA	AACAGTTTTC	ATTGGACGGT	CATCCACACT	TGATTCTACA	1914
AAG/	AGTGATG	GAACTTTTGT	TTGGCGAAGT	TTTTCAACCA	AGGTCTTGAT	TTGTTCAGGA	19200
GTTC	CTTCTT	CTTCAGTATT	GATTTCCCAG	ATGTAAGCAC	TTGGGACACC	ATAGGCTTTA	19260
GAGA	<b>LAGTATT</b>	TGAATGCTCC	TTCGCTGGTT	ACAATGAGTT	TCTTTTCAGC	AGGGATCTTA	19320
rta <i>i</i>	ATTTAT	CCTTACTTTC	TTTATCAAGT	TTGTCTAACT	TATCAGTATA	TTCTTTGAGA	19380
rrrı	TTTCAT	AGAATTCTTT	ATTGTTAGGG	TCTTTGGCGC	TCAATTGTTT	GGCGATATTT	19440
TAC	СЛАЛАЛ	TAATACCGTT	TTCAAGGTTA	AGCCAAGCGT	GTGGGTCTTC	TTTTCCTTTT	19500
CAT	TTTGAC	CTTCAAGGTA	GATAACATCA	ACGCCGTCGC	TGACTGCGAA	GTAGTCTTTG	19560
rrr	CAGTTT	TCTTGGCATT	TTCTACCAAT	TTTGTAAACC	AAGCATTGCC	ACCTGTTTCA	19620
AGGT	TGATAC	CGTTATAGAA	AATCAAATTA	GCCTCAGAAG	TTTTCTTAAC	GTCTTCAGGA	19680

370-AGTGGTTCGT ATTCGTGTGG GTCTTGCCCA ATCGGAACGA TACTATGAAG GTCAATTTTG 19740 TCACCAGCAA TATTTTTAGT AATATCAGCG ATGATTGAGT TTGTAGCAAC AACTTTTAGT 19800 TTTTGACCAG AAGTTGTATC TTTTTTCCG CTAGCACATG CTACAAGAAT GATTGCAGAA 19860 AGAAAGAGAA CGAGTAATGT ACCTAATTTT TTCATTAGAT CCTCCAATTT ATTAGGGCTT 19920 TGCCCCTTAT TTTAACAAAT GTTTATTTTT CAGTTTCAAA TATCGTTGTT TGGGAGCGAT 19980 AAAGAAGCTA ATGAGAAAGA AACTAGCAGC TGTAAGCACG ATACTAGAAC CTGCCGCAAC 20040 ATTAAAACTA TAGCCAATAA AGAGTCCCAA AACTGAAGCA GTAGCTCCGA AGGTTGAGGA 20100 AAGGAAAATC ATACTTTTCA GACTATTAGC ATACAGATAA GCAGTTGCAG CTGGGGTAAT 20160 CAGCATGGCT ACAATCAGGA TAGTTCCGAC ACTTTGCATG GCTGTCACAG ACACGAGAGT 20220 CAGGAGTACC ATGAGAAGGT AGTGATAGAA ATTGACAGGC ATTCCCATGG CTTTAGCCAA 20280 GAGTTCATCA AAGGAAGTTA TCAAGAGTTG CTTGAAGAAA ATCCAGATTA ACAAGAGGAT 20340 AGCTGCCCC ACACCCATAG TAATAAACAT ATCCGTATCT TGGACGGCCA GGATATTACC 20400 AAAAAGGATA TGGAAAAGGT CAGTTGAACT TTTAGCGACA CCAATCAAGA TGATACCGAG 20460 GGCTAAGAAA GAAGAAAAGG TAATGCCGAT GGCGGTATCG CTTTTGATAA TCGAGTTTCC 20520 TTTGATGTAG GTAATGATGA TGGCAGCTAG CAATCCAAAG ACAATGGCTC CGATAAAGAA 20580 GTCAAGGCCC AAGATGAAGG ATAGGGCTAC ACCTGGTAAG ACAGCATGTG AAATGGCATC 20640 TCCCATGAGT GACATCCCGC GTAGAATAAT GAAACATCCC ACAGCTCCAG CTACAATCCC 20700 GACGACAATA GCTGTTATCA AGGCATTTTG TAGGAAATGG AATTTTTGCA ATCCATCGAT 20760 AAATTCTGCA ATCATAGGTC ACCTCCATTG AAAAAGAGTT GATTACCGTA AGCTTCTTTT 20820 AGATTGGTTT CGGTAAAAGT TTCTTTTGTT GGACCAAAGG CAATCACTTC TCGATTGACA 20880 AGTAAGACTT GATCGAAGTA GTGGGGAATC TTGCTGAGGT CGTGGTGAAC GATGAGAACC 20940 GTCTTCCCAG CTTTTTTCAA ATCTCTCAGC GTATTCATGA TGATTTCCTC ACTGACAGAG 21000 TCAATCCCAG CAAAGGGTTC ATCCAAGAGG ATATAGTCGG CTTCCTGCAC CAAACATCTG 21060 GCAATCAAGA CCCGCTGGAA TTGACCTCCA GACAGTTGAC TAATTTGACG TTCAGCGTAG 21120 TCAGCTAGGC CGACGATTTC AAGGGCCTCT TGCACTTTCT TCCAATGTTT AGCCTTTAAA 21180 CTTCGAAAGA GAGGAATAGA GGGAAATAGT CCTAACGAGA CGCATTCCTT GACCTTGATG 21240 GGAAAGTTGT AGTCGATATT GATTTTTGT TCGACATAGG CAATTCGGTG TAAGGATTTT 21300 TTAACTTCCT TGTCATCGAG AAATGCCTGA CCTTGATGTG GGATAATTCC CAACATACCT 21360 TTTAATAGTG TTGATTTCCC AGCGCCGTTT GGACCAATGA TGCCGGTAAT TGTTGGTCCA 21420 TGGAGCACTA GTGAAATATC CTTAAGTGCC AACGTTTCTT TGTAGGAGAC ACTGAGGTTT 21480

371

TCGATACGTA TCATAAACTT GTATTCCTCC TGTCTCTTAA TATACATTAA AAAAAAAATT 21540 AAGTCAAGTT AATTTTTGAA AAAATTAAAA TAATAACTGA AAAATAGATT CTAAAGATAA 21600 CTTTCAGGAT AAATTTCTAA ATTATAAAAC GCATAGTATC AAGTGTAAAA AACTTGGAAT 21660 TATGCGTTTT ATCATGGAAA GATTTTTTAT AATAGCTAAA AAATAA 21706

#### (2) INFORMATION FOR SEQ ID NO: 37:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6171 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

GATCCCCAGG	AAAAACCGAG	GTTTTCCCAA	TCAATCGTTA	CTGTCATATT	CCACTCCTTA	60
TTCTAAAAAC	СТАТТТСТТА	TATTCTACAC	ТАТТТТТСТА	AAATAGCAAG	TATATTTTGT	120
AATTTTCAGA	AAATTTCTCC	ААТАААААСС	AACTCTTAGA	ACTGATTCTT	CATTTCACTT	180
ATTTATCTTC	AGTAACTACT	TCCTGAAGAT	AAGCGTCAAA	AACTTCTTCA	TCTGAAATCG	240
TGTCAGAAAT	GAAGCTTCCA	TTGCTAGTGC	GTTCTGACAA	GTTCAAGTCT	TGCAATCGGC	300
TTTCATAGAT	TGTTCCTTTA	TTGGATTGGA	CAAGCAGAGT	TTGGTCGTTC	ACATCCACTT	360
CCGTACTGAA	GAAATCGCCA	ACAAATCCTT	GCTCTGCAAC	TGCTCCTGCC	AAGAAGACAC	420
GATGCGGTTT	GTTTTTCAAC	TCACGCAAGA	CTTGTAATCC	TCGTTTGGCA	CGGCTGGTTG	480
CTAGAATTTC	CTCAATGGAA	ACACGTTTCA	AGCTTCCACG	CTGGGTCAAG	AGGTAGAAGG	540
ACGAAGTATT	ACAGATAAAG	CCAGATTGGA	GGACATCATC	TTCTTTCAAA	TTCATAGCCT	600
TGACACCTGC	TGCCTTAGCA	CCGACAACCG	GAACCTCTTC	GATATTGAAA	CGCAGGGCAT	660
AACCATTTTG	ACTAACCAAG	ACAACATCAT	CTAGTTTAAT	CGGAGCCACT	GCTACAATCT	720
GATCTGTATC	GTCTTTGAGC	TTAGCATACT	TGACAGACTT	AGATCTATAG	GTCCGCCATG	780
GAGTGAATTC	TTTTCGCTCT	ACCCGTTTGA	TTTGACCAAG	GCGAGTCACT	GCAAAGTAGG	840
TTGTCGCATC	GTCAAACTGA	TCCAGTACTT	CCACATAAAG	GATTTCTTCA	TTCGTTTCAA	900
AGTTTGTGAT	GGTTTGGCTC	AGATGCTCTC	CGATGTCCTT	CCAACGAATA	TCTGCCAACT	960
CATGGATTGG	TCTGTAGATG	ACATTTCCAA	GACTTGTGAA	CATCAAGAGG	TGCTGGGTTG	1020
TCTTGGCAGA	TTGAACAAAA	ATCAAACGGT	CATCATCACG	CTTGCCAATT	TCTTCCAAGG	1080
TGGAAGCCGC	AAAGGAACGT	GGACTGGTAC	GCTTGATGTA	ACCTGCCTTG	GTCACGCTGA	1140

			3/2			
CGTAGGTATC	TTCCTCAGCG	ATAAGACTAG	CTGTATCAAT	CTCAATTGCT	TTCGCAGTGT	120
CTTCTAAAGA	ACTCAAACGA	GGAGTTGCAA	ATTTCTTCTT	GACCTCACGA	AGTTCTTTCT	126
TCATGAGATT	GTACATAGTC	CTTTCATCAC	CGATAATAGC	CGCCAGCATA	GCAATCTTCT	132
CACGAAGCTC	TGCTTCTTCT	TCCTGCAAGA	CAACCACATC	GGTATTGGTC	AAACGGTACA	138
GTTGCAAAGT	TACGATAGCC	TCAGCCTGTT	CTTCCGTAAA	ATCATAGCTA	ACTTTGAGGT 1	144
TTTCCTTGGC	GTCCGCCTTA	TTCTCAGAAG	CACGGATAAG	AGCAATGACT	TCATCCAAAA	150
TCGAAATCAC	ACGAATCAAA	CCTTCGACGA	TATGGAGACG	TTTCTCAGCC	TTTTCTTTGT	156
CAAAGCGTGA	ACGCGCCAAA	ATCACTTCTC	GACGGTGAGC	GATATAGCTA	GACAGGATTG	162
GAACAATCCC	AACCTGACGA	GGTGTGAAAT	TGTCAATCGC	CACCATATTA	AAGTTGTAGT	168
TGATTTGTAG	GTCGGTGTAC	TTAAATAAGT	AGTTGAGAAC	AAGCTCAGTA	TTAGCGTCTT	174
TCTTAAGTTC	GATAGCGATA	CGAAGACCAT	CACGGTCAGA	CTCATCACGA	ACCTCAGCAA	180
TCCCAGCTAC	CTTGTTATTA	ACACGAACAT	CATCGATTTT	CTTGACTAGA	TTGGCCTTAT	1860
<b>IGATTTCATA</b>	AGGAATCTCA	ATAATAACGA	TTTGTTCCTT	ACCACCTTTT	AGCTTTTCAA	1920
PTTCAGTCTT	GGAACGAACA	ACCACGCGCC	CTTTCCCAGT	CTCATAAGCT	TTCTTGATTT	1980
CATCACGACC	CTGAATAATA	GCCCCTGTAG	GGAAGTCTGG	TCCAGGCAAG	AATTCCATGA	2040
GTTTATCAAT	CTTTGCAGTT	GGGTGGTCAA	TCATGTAAAC	TGCAGCATCT	ATGACCTCAG	2100
CTAAATTATG	GGGAGGAATG	TCTGTGGCAT	AACCAGCCGA	AATCCCAGTC	GAACCATTGA	2160
CCAAGAGGTT	TGGAAAGGCT	GCTGGCAAGA	CCGTTGGTTC	TTTCTCCGTA	TCGTCAAAGT	2220
rccatgcaaa	AGGAACTGTC	TTTTTCTCGA	TATCCTGAAG	AAGGTAGCCT	GCAATTTCAG	2280
ACAAACGTGC	CTCAGTATAA	CGCATAGCCG	CAGGAGGATC	TCCGTCCATA	GAACCGTTAT	2340
PACCGTGCAT	TTCAACTAGA	ATCTCACGAT	TTTTCCAGTT	CTGTGACATA	CGAACCATGG	2400
CATCATAGAT	AGAAGAATCC	CCGTGTGGGT	GGAAATTCCC	CATGATGTTC	CCGACTGACT	2460
rggccgactt	ACGGTAGCTC	TTGTCAAAAG	TATTGCTATC	CTTATTCATA	GAATAAAGAA	2520
PACGGCGCTG	AACCGGCTTC	AACCCATCAC	GAATATCTGG	CAAAGCCCGG	TCTTGAATAA	2580
rgtacttgga	GTAGCGACCA	AAGCGCTCTC	CCATGATGTC	CTCCAGGGAC	ATGTTTTGAA	2640
PGTTAGACAT	AAGATACAAA	GCCCATAAAA	TACCAAGTGA	AAATAGAAAA	TTCTTGAAGT	2700
AGCAAACTC	ACAAGAGAAT	TTATCTTTT	CACACAGTAT	CTAGGGCGTG	TTCAACTCCT	2760
TCAAAGAAT	GTAGAGTAGG	TTTTTATGCA	GTAAAAGATA	TTTTACGGGA	ATTCCTCCCG	2820
GTTCAGTTA	CGATAAGTAA	CCAAACTATC	CTGTTTGTAT	TTTTCAATAT	GAAAATCTGG	2880
TTTCCAAAA	TTAGTCTTAG	TTTGTGTCTT	AGCCGCTCCC	TTAAGCGCCT	СТТТСАСАТА	2940

AGCACTCATA	GCAGATTCTT	CATTAATAAT	CCTGCAATTT	TTTCAAACCA	<b>AGATTTTCAA</b>	300
ACTGCTTTTT	CACATAGTCA	TTCACATCCG	ACTCTAATTT	CCAGTTTACT	AACATATTAT	306
TTTCTTTCAT	TAAAACACTG	TCGTTTCTTC	TAGCGTAAAC	TTGACATTAT	CTTCAATCCA	312
TTTACGGCGT	GGTTCTACCT	TATCTCCCAT	GAGAACATTG	ACGCGGCGTT	ceccecec	318
TAAATCTTCA	ATTGTGACAC	GGATGAGGGT	ACGTGTTTCT	GGGTTCATGG	TTGTTTCCCA	324
GAGCTGGTCC	GCATTCATCT	CACCAAGTCC	TTTGTATCGT	TGGAGGGTAG	CGCCTTTACC	330
GAACTGTTTA	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	CTTCTTCTTT	336
CTTGCCTTTA	CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	CATGACCTGC	342
CTCGACTAGC	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	GGATATGGGC	348
ACCGTCGGTA	TCCGCATCGG	TCATGATAAT	GATCTTATCA	TAGTTGGCAT	CTTCAATAGA	354
GAAGTCTGCT	CCAACACCCG	CACCAATGGT	ATAAATCATG	GTATTGATCT	CTTCATTTTT	360
GAGGATATCC	GCCATCTTGG	CCTTGGCTGT	ATTGACAACC	TTACCACGAA	GAGGTAGAAT	366
AGCCTGGAAC	TTGCGGTCAC	GACCTTGTTT	GGCAGAACCA	CCGGCAGAGT	CCCCCTCAAC	372
TAGATAGAGT	TCATTCTTAG	CAGGATTCTT	AGATTGGGCT	GGGGTCAATT	TCCCAGACAA	3786
CAAGCCCTTA	TCTTTCTTGT	TTTTCTTCCC	ATTTCGGCTC	TCATCACGCG	CCTTACGTGC	3840
TGCTTCACGA	GCATCACGGG	CCTTGATAGC	CTTGCGGATG	AGGTTAGAAG	CTAATTCCCC	3900
ATTTTCCATA	aggaaaaagg	TCAACTTATC	AGCCACTATT	CCATCCACAA	CTGGGCGAGC	3960
PAGGGGGCTT	CCTAGTTTAT	CCTTGGTCTG	TCCTTCAAAC	TGCAAGTGTT	CTTCAGGAAC	4020
<b>FAAGATAGAA</b>	AGAACGGCCG	CTAGTCCCTC	ACGATAGTCT	GAACCTTCAA	GGTTTTTATC	4086
PTTTTCCTTG	AGAAGACCTG	TTTTACGTGC	ATAGTCATTC	ATGACCTTGG	TAATGGCAGA	4140
CTTGAGTCCT	GTCTCGTGCG	TTCCACCGTC	CTTGGTGCGA	ACGTTATTGA	CAAAAGATAG	4200
AATGTTATCT	GAGAATCCGT	CATTGTACTG	GAGGGCTACT	TCCACTTGAA	AACCATTGTC	4260
PTCCCCTTCA	AAGTAAAGAA	CTGGCGTCAA	GATTTCCTTA	TCTTCGTTGA	GATAAGAAAC	4320
AAAATCTTGT	ACTCCATTCT	CATAGTGGAA	CTCAATCGCT	TCATTTGTTC	GCTTGTCCGT	4380
<b>FAAAGACAA</b> G	GTCACATTTT	TCAAGAGAAA	GGCTGATTCA	TTAAGGCGCT	CTGAAATGGT	4440
ATTGTACTTG	AAATCTGTCG	TAGAAAATAT	AGTCGCGTCA	GGCATAAAAG	TAACTTTGGT	4500
GCCTGTTTTA	GACTTGGGTG	CTGTACCGAT	TTTCTTCAAA	GTCGTGACAG	GTTTTCCACC	4560
ATTTTCGAAA	CGTTGCTTGT	AAACTGCGCC	ATCACGGGTA	ATTTCAACTT	CTAACCAGCT	4620
	mm	******	maaamaa a am			4600

374

			374			
ACCTTGACCG	AATTTCCCTC	CGGCATGAAG	AATGGTAAAG	АТААССТСАА	CAGTTGGAAT	4740
TCCCATAGCG	TGCATACcTG	TCGGCATCCC	ACGTCCATGG	TCTTGAACCG	TTAGACTACC	4800
GTCTTTATTG	ATAGTTACAT	CAATACGATC	ACCAAACCCA	GACAAGGCTT	CATCGACTGC	4860
ATTATCAACG	ATTTCCCAAA	CTAGGTGATG	AAGACCAGCG	CCATCGGTCG	ATCCAATATA	4920
CATCCCTGGA	CGTTTTCGGA	CCGCATCCAA	CCCTTCTAGC	ACCTGAATAG	CATCATCATT	4980
ATAATTGTTA	ATATTGATTT	CCTTTTTTGA	CACAAGGAAC	CTCCTATTCG	TTCATCTTTA	5040
CTATTCTACA	GGTTTTCCAA	GGATTTTGCA	AAATTTTTCT	TTCTCCGATG	TGACAATTTC	5100
AGCAGAGATT	CTCTGCTTTT	CTTTCCCAAT	TCATGATATA	ATAGGAGTAT	GATTACAATA	5160
GTTTTATTAA	TCCTAGCCTA	TCTGCTGGGT	TCGATTCCAT	CTGGTCTCTG	GATTGGACAA	5220
GTATTCTTTC	AAATCAATCT	ACGCGAGCAT	GGTTCTGGTA	ACACTGGAAC	GACCAACACC	5280
TTCCGCATTT	TAGGTAAGAA	AGCTGGTATG	GCAACCTTTG	TGATTGACTT	TTTCAAAGGA	5340
ACCCTAGCAA	CGCTGCTTCC	GATTATTTTT	CATCTACAAG	GCGTTTCTCC	TCTCATCTTT	5400
GGACTTTTGG	CTGTTATCGG	CCATACCTTC	CCTATCTTTG	CAGGATTTAA	AGGTGGTAAG	5460
GCTGTCGCAA	CCAGTGCTGG	AGTGATTTTC	GGATTTGCGC	CTATCTTCTG	TCTCTACCTT	5520
GCGATTATCT	TCTTTGGAGC	TCTCTATCTT	GGCAGTATGA	TTTCACTGTC	TAGTGTCACA	5580
GCATCGATTG	CGGCTGTTAT	CGGGGTTCTG	CTCTTTCCAC	TTTTTGGTTT	TATCCTGAGT	5640
AACTATGACT	CTCTCTTCAT	CGCTATTATC	TTAGCACTTG	CTAGTTTGAT	TATCATTCGT	5700
CATAAGGACA	ATATAGCTCG	TATCAAAAAT	AAAACTGAAA	ATTTGGTCCC	TTGGGGATTG	5760
AACCTAACCC	ATCAAGATCC	таааааатаа	AATGCCAGTT	CTGTACTGCC	CCCAAACAGT	5820
TAGACAAATA	ATTTATCCAA	AGGATTTAGT	TCTGTACTGC	ACAGGACTAA	GTCCTTTTAG	5880
TTTTACCTTA	ATTCGTTTGT	TGTTGTAGTA	ATCAATATAG	TCTATAATGG	CTTGTTCCAA	5940
TTGATTAAGT	GATTTAAATG	TTTTCTCATA	GCCATAAAAC	ATTTCGGATT	TTAAAATGCC	6000
AAAGAAAGAT	TCCATCCTAC	CGTTGTCTTG	GCTGTTGCCC	TTACGTGACA	TGGATGCTTG	6060
AATTCCCTTA	CTCTCTAGGA	ACCGATGATA	AGAATCGTGT	TGGTATTGCC	AGCCTTGGTC	6120
ACTATGGAGA	ATCGTATTCT	CGTAGTGCTT	CTCTGTGAAT	GCCTGTTCCA	A	6171

### (2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18475 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

375

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

ТАТТАСАААТ АААААААСGG	AGGAGTGCTT	TATGAAAGCC	TATACTTATG	TTAAACCAGG	60
ACTTGCTTCT TTTGTTGATG	TAGACAAACC	AGTTATTCGC	AAGCCAACAG	ACGCTATTGT	120
GCGTATTGTA AAAACCACTA	TTTGTGGAAC	AGACCTCCAT	ATTATCAAAG	GGGATGTTCC	180
TACTTGCCAA AGTGGTACCA	TTCTTGGCCA	CGAAGGGATT	GGGATTGTTG	AAGAAGTTGG	240
GGAAGGAGTT TCCAACTTCA	AAAAAGGTGA	CAAGGTCTTG	ATTTCTTGCG	TCTGTGCCTG	300
TGGTAAATGC TACTACTGTA	AAAAAGGAAT	TTATGCTCAC	TGTGAAGACG	AAGGGGGCTG	360
GATTTTCGGT CACTTGATTG	ATGGTATGCA	GGCTGAATAT	CTACGTGTCC	CTCATGCAGA	420
TAATACTCTT TACCATACTC	CAGAAGACTT	GTCAGATGAA	GCTTTGGTTA	TGCTGTCAGA	480
CATTCTGCCT ACTGGATATG	AAATTGGTGT	CTTAAAAGGG	AAAGTAGAAC	CTGGTTGCAG	540
CGTAGCCATT ATTGGTTCAG	GTCCAGTTGG	ATTGGCTGCT	CTTTTAACAG	CCCAATTCTA	600
TTCACCAGCT AAATTGATTA	TGGTAGACCT	AGACGATAAC	CGCTTGGAAA	CTGCCCTATC	660
ATTCGGTGCG ACTCATAAGG	TTAATTCTTC	AGACCCTGAA	AAAGCCATTA	AAGAAATTTA	720
TGATTTGACA GATGGTCGTG	GTGTGGATGT	CGCTATCGAA	GCTGTTGGTA	TTCCTGCAAC	780
ATTTGATTTC TGTCAAAAGA	TTATCGGTGT	AGACGGAACG	GTTGCCAACT	GTGGTGTGCA	840
TGGTAAACCA GTTGAATTCG	ATTTAGATAA	ACTTTGGATT	CGCAACATCA	ATGTAACAAC	900
TGGTTTGGTA TCTACAAATA	CGACTCCACA	ATTGTTGAAA	GCACTTGAAA	GTCATAAGAT	960
TGAACCGGAA AAATTGGTAA	CTCACTATTT	CAAACTCAGT	<b>GAAATTGAAA</b>	AAGCCTACGA	1020
AGTCTTCAGT AAGGCAGCAG	ACCACCATGC	CATTAAGGTC	ATTATCGAAA	ACGATATCTC	1080
AGAAGCCTAA GTAGTAAAAA	TATTTTTGTA	CATAAGTAAA	TAGAAATTCA	GTCATCCATC	1140
AGATGGCTGG ATTTTTATC	ааааааттаа	GAAATGAGCA	TATTTCTTTC	CTTGTCTGGC	1200
GGAATTGGTT ATAATATACG	GTACAAAGGA	ATGAATGAAT	ATGTATCGTG	TTATAGAAAT	1260
GTACGGAGAT TTTGAACCGT	GGTGGTTCTT	AGAAGGTTGG	GAAGAAGATA	TTGTAGCAAG	1320
TAGAAAATTT GACCAGTATT	ATGATGCTCT	САААТАСТАС	AAAACTTGCT	GGTTTAGATT	1380
GGAACAAGAA TCGCCTCTTT	ataaaagtag	AAGCGACTTG	ATGACCATTT	TTTGGGACCC	1440
GGAAGACCAA CGCTGGTGTG	ATGAATGTGA	TGAGTATTTA	CAACAATACC	ATTCTTTGGC	1500
TCTTTTGCAG GATGAGCAGG	TTATCCCAGA	CGAAAAACTA	CGCTCAGGCT	ATGAAAAACA	1560
AACCAGTCAG GAAAGGAATC	GTTCTTGCCG	TATGAAATTA	AAATAGAGAA	AAGTAACTTT	1620
TTTGGAGTTG CTTTTTTAT	TTTTCTAACT	CTTTGCGAAT	AGTATAGGTG	AGGAGGTAAG	1680

376 TATGGTTCAA GAAATTGCAC AAGAAATCAT TCGTTCAGCT CGGAAAAAAG GGACGCAGGA 1740 TATCTATTTT GTCCCTAAGT TAGACGCCTA TGAGCTTCAT ATGAGGGTAG GAGACGAGCG 1800 CTGTAAAATT GGTAGCTATG ATTTTGAAAA GTTTGCAGCC GTTATCAGTC ACTTTAAGTT 1860 TGTGGCGGGT ATGAATGTGG GAGAAAAAAG ACGTAGTCAA CTGGGTTCCT GTGATTATGC 1920 CTATGACCAT AAGATAGCGT CTCTACGTTT ATCTACTGTA GGCGATTATC GGGGGCATGA 1980 GAGTTTGGTT ATCCGTTTGT TGCACGATGA GGAGCAGGAC CTGCATTTTT GGTTTCAGGA 2040 TATTGAAGAA TTAGGCAAGC AGTACAGGCA ACGGGGACTC TATCTTTTTG CTGGTCCGGT 2100 TGGGAGTGGT AAGACGACCT TGATGCATGA ATTGTCCAAG TCACTCTTTA AAGGACAGCA 2160 AGTTATGTCC ATCGAAGATC CTGTCGAAAT CAAGCAGGAC GACATGCTTC AGTTGCAGTT 2220 GAACGAAGCA ATCGGCCTAA CCTATGAAAA TCTAATCAAA CTTTCCTTGC GTCATCGACC 2280 AGATCTCTTG ATTATCGGAG AAATTCGTGA CAGCGAGACG GCGCGTGCAG TGGTCAGAGC 2340 TAGTTTGACA GGTGCGACAG TCTTTTCAAC CATTCACGCC AAGAGTATCC GAGGTGTTTA 2400 TGAGCGTCTG CTGGAGTTGG GTGTGAGTGA AGAAGAATTG GCAGTTGTTC TGCAAGGAGT 2460 CTGCTACCAG AGATTAATCG GGGGAGGAGG AATCGTTGAC TTTGCAAGCA GAGATTATCA 2520 AGAACACCAA GCAGCCAAGT GGAATGAGCA AATTGACCAG CTTCTTAAAG ATGGACATAT 2580 CACAAGTCTT CAGGCTGAGA CGGAAAAAAT TAGCTACAGC TAAGCAAAAA AATATCATCA 2640 CCCTATTTAA CAATCTCTTT TCTAGCGGTT TTCATCTGGT GGAGACTATC TCCTTTTTAG 2700 ATAGGAGTGC TTTGTTGGAC AAGCAGTGTG TGACCCAGAT GCGTGTGGGC TTGTCTCAGG 2760 GGAAATCATT CTCAGAAATG ATGGAAAGTT TGGGATGTTC AAGTGCTATT GTCACTCAGT 2820 TATCCCTAGC TGAAGTTCAT GGCAATCTCC ACCTGAGTTT GGGAAAGATA GAAGAATATC 2880 TGGACAATCT GGCTAAGGTC AAGAAAAAAT TGATTGAAGT AGCGACCTAT CCCTTGATTT 2940 TGCTGGGTTT TCTTCTCTTA ATTATGCTGG GGCTACGGAA TTACCTGCTC CCACAACTGG 3000 ATAGTAGCAA TATTGCCACC CAAATTATCG GTAATCTGCC CCAAATTTTT CTAGGCATGG 3060 TAGGGCTTGT TTCCGTGCTT GCCCTTTTAG CACTCACTTT TTATAAAAGA AGTTCTAAGA 3120 TGAGTGTCTT TTCTATCTTA GCACGCCTTC CCTTTATTGG AATCTTTGTG CAGACCTACT 3180 TGACAGCCTA TTATGCACGT GAATGGGGGA ATATGATTTC ACAGGGAATG GAGTTGACGC 3240 AGATTTTCA AATGATGCAG GAACAAGGTT CCCAGCTCTT TAAAGAAGTC GGTCAAGATC 3300 TGGCTCAAAC CCTGAAAAAT GGCCGTGAAT TTTCTCAGAC GATAGGAACC TATCCTTTCT 3360 TTAGGAAGGA ATTGAGTCTC ATCATAGAGT ATGGGGAAGT TAAGTCCAAG CTGGGTAGTG 3420

AGTTGGAAAT CTATGCTGAA AAAACTTGGG AAGCCTTTTT TACCCGAGTC AACCGCACCA

TGAATTTGGT	GCAGCCACTG	GTTTTTATCT	TTGTGGCACT	GATTATCGTT	TTACTTTATG	3540
CGGCAATGCT	CATGCCCATG	татсаааата	TGGAGGTAAA	ТААААТТТТТ	GAAAAAAATG	3600
ATGACATTCT	TGAAAAAAGC	TAAGGTTAAA	GCTTTTACAT	TGGTGGAGAT	GTTGGTGGTC	3660
TTGCTGATTA	TCAGCGTGCT	TTTCTTGCTC	TTTGTACCTA	ATCTGACCAA	GCAAAAAGAA	3720
GCAGTCAATG	ACAAAGGAAA	AGCAGCTGTT	GTTAAGGTGG	TGGAAAGCCA	GGCAGAACTT	3780
TATAGCTTAG	AAAAGAATGA	AGATGCTAGC	CTAAGAAAGT	TACAAGCAGA	TGGACGCATC	3840
ACGGAAGAAC	AGGCTAAAGC	TTATAAAGAA	TACAATGATA	AAAATGGAGG	AGCAAATCGT	3900
AAAGTCAATG	ATTAAGGCCT	TTACCATGCT	GGAAAGTCTC	TTGGTTTTGG	GACTTGTGAG	3960
TATCCTTGCC	TTGGGCTTGT	CCGGCTCTGT	CCAGTCCACT	TTTTCAGCGG	TAGAGGAACA	4020
GATTTTCTTT	ATGGAGTTTG	AAGAACTCTA	TCGGGAAACC	CAAAAACGCA	GTGTAGCCAG	4080
TCAGCAAAAG	ACTAGTCTGA	ACTTAGATGG	GCAGACGCTT	AGCAATGGCA	GTCAAAAGTT	4140
GCCAGTCCCT	AAAGGAATTC	AGGCCCCATC	AGGCCAAAGT	ATTACATTTG	ACCGAGCTGG	.4200
GGGCAATTCG	TCCCTGGCTA	AGGTTGAATT	TCAGACCAGT	AAAGGAGCGA	TTCGCTATCA	4260
АТТАТАТСТА	GGAAATGGAA	AAATTAAACG	CATTAAGGAA	АСААААААТТ	AGGGCAGTGA	4320
TTTTACTGGA	AGCAGTAGTC	GCTCTAGCTA	TCTTTGCCAG	CATTGCGACC	CTCCTTTTGG	4380
GACAAATTCA	AAAAAATAGG	CAAGAGGAAG	CAAAAATCTT	GCAAAAGGAA	GAAGTCTTGA	4440
GGGTAGCTAA	GATGGCCCTG	CAGACGGGGC	AAAATCAGGT	AAGCATCAAC	GGAGTTGAGA	4500
TTCAGGTATT	TTCTAGTGAA	AAAGGATTGG	AGGTCTACCA	TGGTTCAGAA	CAGTTGTTGG	4560
CAATCAAAGA	GCCATAAGGT	CAAGGCTTTT	ACCTTGTTAG	AATCCCTGCT	TGCCCTCATT	4620
GTCATCAGTG	GGGGATTACT	CCTTTTTCAA	GCTATGAGTC	AGCTCCTCAT	TTCAGAAGTT	4680
CGCTACCAGC	AACAAAGCGA	GCAAAAGGAG	TGGCTCTTGT	TTGTGGACCA	ACTTGAGGTA	4740
GAATTAGACC	GTTCGCAGTT	CGAAAAAGTA	GAAGGCAATC	GCCTATACAT	GAAGCAAGAT	4800
GGCAAGGACA	TCGCCATCGG	TAAGTCAAAG	TCAGATGATT	TCCGTAAAAC	GAATGCTCGT	4860
GGTCGAGGTT	ATCAGCCTAT	GGTTTATGGA	CTCAAATCTG	TACGGATTAC	AGAGGACAAT	4920
CAACTGGTTC	GCTTTCATTT	CCAGTTCCAA	AAAGGCTTAG	AAAGGGAGTT	CATCTATCGT	4980
etggaaaaag	AAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	GCAGTCACCA	TAGCAGCCAT	5040
CTTTAGTCTT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	GCCCACTATC	AAGACTATGC	5100
PTTGAATAAA	GAAAAATTGG	TTGCTTTTGC	TATGGCTAAA	CGAACCAAAG	ATAAGGTTGA	5160
~~~~~~~~	CCCCNACACM	mmmma a mom	A COMO A COMA	1000100111		5555

TGGCTTAGTG ACGAGGGTTC GTACGGATAA GAGCCAATAT GAGTTTCTGT TTCCTTCAGT 5280 CAAAATCAAA GAAGAGAAAA GAGATAAAAA GGAAGAGGTA GCGACCGATT CAAGCGAAAA 5340 AGTGGAGAAG AAAAAATCAG AAGAGAAGCC TGAAAAGAAA GAGAATTCAT AGTCAATTCA 5400 ACTATAATGC GTTGAATCCA GAATAGTCCA CTGTAGTTTC TAGAAAATTG CTGGAAATGG 5460 ATGTTAAGCT CCAATTCATT TGTTTATATC TTATTTCAGT TTACTATACT TTGTGCTAAA 5520 TTAAAGATAT GAAACATGAT TTTAACCACA AAGCAGAAAC TTTCGATTCC CCTAAAAATA 5580 TCTTCCTCGC AAACTTGGTA TGTCAAGCAG CCGAGAAACA GATTGATCTT CTATCAGACA 5640 AAGAAATTTT AGATTTCGGT GGTGGCACGG GTCTATTAGC CTTGCCCCTA ACCCCTAGCC 5700 AAGCAGGCTA AGTCAGTCAC TCTTGTAGAC ATTTCTGAGA AAATGTTGGA GCAAGCTCGT 5760 TTGAAAGTGG AGCAGCAAGC AATCAAGAAT ATCCAGTTTT TGGAGCAAGA TTTACCGAAA 5820 AATCCCTTGG AGAAAGAGTT TGATTGCCTT GCTGTTAGTC GGGTTCTTCA TCATATGCCT 5880 GATTTGGATG CGGCTCTCTC ACTGTTTCAT CAACATTTGA AGGAAGATGG GAAACTCATC 5940 ATTGCTGATT TTACCAAGAC AGAAGCTAAT CATCATGGAT TTGATTTAGC TGAACTGGAA 6000 AACAAGCTAA TTGAGCATGG TTTTTCATCT GTGCATAGTC AGATTCTCTA TAGTGCTGAA 6060 GACCTGTTTC AAGGAAATCA CTCAGAATTC TTTTTAATAG TAGCCCAAAA ATCACTCGCC 6120 TAGTCAGGGA GTGATTTTTC TATAAGGATG GAAAAAAGAA GGGAAATTTG GTAAGATAGG 6180 AATATGGATT TTGAAAAAAT TGAACAAGCT TATACCTATT TACTAGAGAA TGTCCAAGTC 6240 ATCCAAAGTG ATTTGGCGAC CAACTTTTAT GACGCCTTGG TGGAGCAAAA TAGCATCTAT 6300 CTGGATGGTG AAACTGAGCT AAACCAGGTC AAGGAGAACA ATCAAACCCT TAAGCGTTTA 6360 GCACTACGCA AAGAAGAATG GCTCAAGACC TACCAGTTTC TCTTGATGAA GGCTGGGCAA 6420 ACAGAACCCT TGCAGGCCAA TCACCAGTTT ACACCGGATG CTATTGCTTT GCTTTTGGTG 6480 TTTATTGTGG AAGAGTTGTT TAAAGAGGAG GAAATTACTA TCCTCGAAAT GGGTTCTGGG 6540 ATGGGAATTC TAGGCGCTAT TTTCTTGACC TCGCTTACTA AAAAGGTGGA TTACTTGGGA 6600 ATGGAAGTGG ATGATTTGCT GATTGATCTG GCAGCTAGCA TGGCAGATGT AATTGGTTTG 6660 CAGGCTGGCT TTGTCCAAGG AGATGCCGTT CGCCCACAAA TGCTCAAAGA AAGCGATGTG 6720 GTCATCAGTG ACTTGCCTGT CGGCTATTAT CCTGATGATG CCGTTGCGTC GCGCCATCAA 6780 GTTGCTTCTA GCCAAGAACA TACTTACGCC CATCACTTGC TCATGGAACA AGGGCTTAAG 6840 TACCTCAAGT CAGACGGATA CGCTATTTTT CTAGCTCCGA GTGATTTGTT GACCAGTCCT 6900 CAAAGTGATT TGTTAAAAGA ATGGCTGAAA GAAGAGGCGA GTCTGGTTGC TATGATTAGT 6960 CTGCCTGAAA ATCTCTTTGC TAATGCCAAA CAATCTAAGA CTATTTTTAT CTTACAGAAG 7020

AAAAATGAAA	TAGCAGTAGA	GCCTTTTGTT	TATCCACTTG	CTAGCTTGCA	AGATGCAAGT	708
GTTTTAATGA	AATTTAAAGA	AAATTTTCAA	AAATGGACTC	AAGGTACTGA	ААТАТААА	714
AGATTTTGTT	ATAATAGTTG	AAAACGCTTA	AAAAGGGGTA	TCATGTTATG	АСАААААСАА	720
TTGCAATCAA	TGCAGGAAGT	TCAAGTTTGA	AATGGCAATT	ATACTTAATG	CCAGAAGAAA	726
AAGTATTGGC	GAAAGGTTTG	ATTGAACGTA	TCGGTTTGAA	AGATTCAATT	TCAACTGTAA	732
AATTTGACGG	CCGTTCTGAA	CAACAAATTT	TGGATATTGA	АААТСАТАТА	CAAGCCGTTA	738
ጉጉጉጉጉጉ	GGATGACTTG	ATTCGTTTCG	ATATTATCAA	GGCTTATGAC	GAGATTACAG	744
GTGTTGGACA	TCGTGTTGTT	GCTGGTGGAG	AATATTTCAA	AGAATCAACA	GTTGTTGAGG	750
GAGATGTTTT	AGAAAAAGTT	GAAGAGTTGA	GTTTGTTGGC	TCCTCTACAC	AACCCGGCCA	756
ATGCAGCAGG	TGTTCGTGCC	TTCAAGGAAT	TGTTGCCAGA	CATTACCAGT	GTAGTTGTTT	762
TTGATACTTC	CTTCCACACA	AGTATGCCAG	AGAAAGCTTA	TCGCTACCCT	CTACCAACAA	768
AATATTACAC	AGAAAACAAG	GTTCGTAAAT	ACGGTGCTCA	TGGTACAAGT	CACCAGTTTG	774
TAGCAGGAGA	AGCTGCAAAA	CTCTTGGGAC	GTCCATTAGA	AGACTTGAAG	ТТААТТАССТ	780
GTCATATTGG	TAACGGAGGC	TCAATTACAG	CTGTGAAAGC	CGGCAAATCT	GTAGACACTT	786
CTATGGGGTT	CACTCCTCTT	GGTGGTATTA	TGATGGGAAC	GCGTACAGGG	GATATTGATC	792
CAGCTATCAT	TCCTTATTTA	ATGCAATATA	CAGAGGATTT	TAACACACCA	GAAGATATCA	7986
GTCGTGTTCT	TAACCGTGAA	TCAGGTCTTT	TGGGAGTTTC	TGCTAATTCT	AGCGATATGC	8040
GCGATATAGA	AGCAGCTGTA	GCAGAAGGGA	ATCACGAGGC	TAGCTTGGCT	TATGAAATGT	8100
ATGTTGACCG	TATCCAAAAA	CATATCGGTC	AGTACCTTGC	AGTGCTAAAT	GGAGCAGATG	8160
CCATTGTTTT	CACAGCAGGT	GTCGGTGAAA	ATGCAGAGAG	TTTCCGTCGT	GATGTAATCT	8220
CAGGGATTTC	GTGGTTTGGT	TGTGATGTTG	ATGATGAAAA	GAATGTCTTT	GGCGTTACAG	8280
GAGACATCTC	AACAGAGGCA	GCTAAAATCC	GTGTCTTGGT	TATTCCAACA	GATGAAGAAT	8340
PAGTCATTGC	CCGTGACGTT	GAACGCTTGA	AAAAATAAGT	GAAACTAAAA	AAATATTCAA	8400
PACAAGGAGT	TGGGAAAGTT	ATTTTTCCAG	CTTCTTTTTC	TGATGAAATT	GTCCAAAACC	8460
PTGCTATGAT	TGGCTTTTTT	GAAAAATATG	GTATAATAGT	AGTAATTTAA	TAGATGGAGT .	8520
rgagttttga	AGAAAAACTT	TCGTGTAAAA	AGAGAGAAAG	ATTTTAAGGC	GATTTTCAAG	8580
GAGGGGACAA	GTTTTGCTAA	TCGCAAATTT	GTGGTCTACC	AATTAGAAAA	CCAGAAAAAC	8640
CGTTTTCGAG	TAGGTCTATC	agttagcaaa	AAACTGGGGA	ATGCCGTCAC	TAGAAATCAA	8700
ስጥጥል ልርርር እር	CCAMMCCCCCA	ምእ ጥጥእጥ ሶ ሮ እር	3 5 TC C 3 3 3 3 C	CCACMOMOCM	10110mcmc	0260

380 GACTTTGTTG TCATTGCTCG AAAAGGAGTC GAAACCTTGG GATACGCAGA GATGGAGAAA 8820 AATCTACTCC ATGTATTAAA ATTATCAAAG ATTTACCGGG AAGGAAATGG GAGTGAAAAA 8880 GAAACTAAAG TTGACTAGTT TGCTAGGACT GTCTCTGTTA ATCATGACAG CCTGTGCGAC 8940 TAATGGGGTA ACTAGCGATA TTACAGCCGA ATCGGCTGAT TTTTGGAGTA AATTGGTTTA 9000 CTTCTTTGCG GAAATCATTC GCTTTTTATC GTTTGATATT AGTATCGGAG TGGGGATTAT 9060 TCTCTTTACG GTCTTGATTC GTACAGTCCT CTTGCCAGTC TTTCAGGTGC AAATGGTGGC 9120 TTCTAGGAAA ATGCAGGAAG CTCAGCCACG CATTAAGGCG CTTCGAGAAC AATATCCAGG 9180 TCGAGATATG GAAAGCAGAA CCAAACTAGA GCAGGAAATG CGTAAAGTAT TTAAAGAAAT 9240 GGGTGTCAGA CAGTCAGACT CTCTTTGGCC GATTTTGATT CAGATGCCGG TTATTTTGGC 9300 CCTGTTCCAA GCCCTATCAA GAGTTGACTT TTTAAAGACA GGTCATTTCT TATGGATTAA 9360 CCTTGGTAGT GTGGATACAA CCCTTGTTCT TCCGATTTTA GCAGCAGTAT TCACCTTTTT 9420 AAGTACTTGG TTGTCCAACA AAGCTTTGTC TGAGCGAAAT GGCGCTACGA CTGCGATGAT 9480 GTATGGGATT CCAGTCTTGA TTTTTATCTT TGCAGTTTAT GCGCCAGGTG GAGTCGCCCT 9540 ATACTGGACA GTGTCTAATG CTTATCAAGT CTTGCAAACC TATTTCTTGA ATAATCCATT 9600 CAAGATTATC GCAGAGCGCG AGGCCGTAGT ACAGGCACAA AAAGATTTGG AAAATAGAAA 9660 AAGAAAAGCC AAGAAAAAGG CTCAGAAAAC GAAATAAATA AGGAGGAATC TGGTAGTGGT 9720 AGTATTTACA GGTTCAACTG TTGAAGAAGC AATCCAGAAA GGATTGAAAG AATTAGATAT 9780 TCCAAGAATG AAGGCTCATA TCAAAGTCAT TTCTAGGGAG AAAAAAGGCT TTCTTGGTCT 9840 ATTTGGTAAA AAACCAGCCC AAGTGGATAT TGAAGCGATT AGTGAAACGA CTGTTGTCAA 9900 AGCAAATCAA CAGGTAGTAA AAGGCGTTCC GAAAAAAATC AATGATTTGA ACGACCCTGT 9960 GAAGACGGTT AGTGAAGAAA CCGTTGACCT TGGTCATGTG GTTGATGCTA TTAAAAAAAT 10020 AGAGGAAGAA GGTCAAGGTA TTTCTGATGA AGTCAAGGCT GAAATCTTAA AACATGAAAG 10080 ACATGCCAGC ACTATCTTAG AAGAAACTGG TCACATTGAG ATTTTAAATG AACTTCAAAT 10140 CGAGGAAGCG ATGAGGGAAG AAGCAGGCGC TGATGACCTT GAAACTGAGC AAGACCAAGC 10200 TGAAAGTCAA GAACTAGAAG ACTTGGGCTT GAAAGTTGAA ACGAACTTTG ATATTGAACA 10260 AGTAGCTACG GAAGTAATGG CTTATGTTCA AACGATTATT GATGACATGG ATGTTGAGGC 10320 TACACTTTCA AATGATTATA ACCGTCGTAG CATCAATCTA CAAATTGACA CCAACGAACC 10380 AGGTCGTATT ATCGGCTACC ATGGTAAAGT CTTGAAGGCC TTGCAACTGT TGGCTCAAAA 10440 TTATCTTTAC AACCGCTATT CCAGAACCTT CTACGTTACA ATCAATGTCA ATGATTATGT 10500 CGAACACCGT GCAGAAGTCT TGCAGACCTA TGCGCAAAAA TTGGCGACTC GTGTTTTGGA 10560

AGAAGGGCGC	AGTCATAAAA	CAGATCCAAT	GTCAAATAGC	GAACGCAAGA	TTATCCATCG	10620
TATTATTTCA	CGTATGGATG	GCGTGACTAG	TTACTCTGAA	GGTGATGAGC	CAAATCGCTA	10680
TGTTGTTGTA	GATACAGAAT	AAGTAAAATC	AGGTTTATCC	TGATTTTTTG	CTAGTTAGAG	10740
GAGGTTAAAC	TGATGTTGAA	TAAGATAAGA	GACTATTTAG	ACTTTGCTGG	TTTGCAGTAC	10800
CGTAATCCTG	ATAAAGCGGG	AGCAGAGCGA	GAGAAGATGC	TGGCATTCCG	CCACAAAGGA	10860
CAAGAGGCCC	GAAAGGTTTT	TACAGAACTG	GCCAAAGCCT	TTCAAGCAAG	CCATCCAGAA	10920
TGGCAACTCC	AACAGACTAG	CCAGTGGATG	AATCAGGCCC	AGCGTTTGAG	ACCACATTTT	10980
TGGGTTTATC	TACAGAGAGA	CGGACAAGTG	ACAGAACCTA	TGATGGCCTT	ACGTTTGTAT	11040
GGGACATCTA	CTGACTTTGG	AATTTCTTTG	GAAGTCAGTT	TCATCGAACG	TAAGAAGGAT	11100
GAGCAAACAC	TGGGCAAGCA	GGCCAAAGTT	TTAGACATTC	CAACCGTTAA	AGGGATTTAT	11160
TATCTAACCT	ACTCTAATGG	TCAAAGTCAA	CGGTGGGAGG	CGAATGAAGA	AAAGCGTCGT	11220
ACTTTACGCG	AGAAGGTGAG	AAGTCAAGAA	GTTCGAAAAG	TTTTAGTGAA	GGTAGATGTT	11280
CCTATGACAG	AAAATTCGTC	TGAAGAAGAA	ATCGTAGAAG	GCTTATTGAA	GTCTTATTCT	11340
AAAATTCTTC	CCTATTATCT	AGCTACGAGA	AAATAAGATA	ATTTGTAAAA	CATCATAAAT	11400
CATACAGTCC	AAGAGTGAAC	AGTCCGCTGT	GTAATTCTTG	GTCTTTTTGT	TTGCGCTTTC	11460
GCATTATATA	ATAAACTTAC	AAAAACAATT	CAAAAGGAGA	ACAATTATGG	AAGTCGTTTC	11520
AAGTGTTCTA	AATTGGTTTT	CTAGCAATAT	TTTGCAGAAT	CCCGCATTTT	TCGTAGGTTT	11580
ATTGGTGTTG	ATAGGATATG	CACTTTTGAA	AAAACCTGCC	CATGACGTTT	TTTCAGGGTT	11640
TGTTAAAGCA	ACAGTAGGGT	ATATGTTGCT	TAACGTGGGT	GCTGGTGGTT	TGGTTACAAC	11700
CTTTCGTCCA	ATCTTAGCAG	CTCTTAACTA	CAAATTCCAA	ATTGGTGCAG	CGGTTATCGA	11760
CCCTTACTTT	GGACTTGCTG	CAGCAAACAA	CAAAATTGTA	GCAGAGTTTC	CAGATTTTGT	11820
TGGAACTGCA	ACTACAGCTC	TATTGATTGG	TTTTGGAATA	AATATCTTGC	TCGTAGCTCT	11880
TCGAAAGATT	ACGAAGGTAA	GAACCCTCTT	TATTACTGGT	CACATCATGG	TACAACAAGC	11940
TGCAACAGTA	TCTCTTATGG	TTCTATTCTT	AGTACCACAA	TTGCGCAATG	CTTACGGTAC	12000
AGCAGCGATT	GGTATCATCT	GTGGACTTTA	CTGGGCAGTT	AGTTCAAATA	TGACTGTTGA	12060
GGCAACTCAA	CGCTTGACTG	GTGGTGGCGG	ATTTGCGATT	GGTCACCAAC	AGCAATTTGC	12120
AATCTGGTTT	GTAGATAAAG	TAGCAGGACG	CTTTGGTAAG	AAAGAAGAAA	GTTTAGACAA	12180
ТСТТАААТТА	CCTAAGTTCC	TCTCAATCTT	CCACGATACA	GTTGTTGCAT	CTGCTACCTT	12240
GATGCTCGTA	TTCTTCGGAG	CCATTCTTTT	AATCTTGGGT	CCAGACATTA	TGTCTAATAA	12300

382 AGAAGTCATC ACTTCAGGAA CTCTATTCAA TCCTGCTAAA CAAGATTTCT TTATGTACAT 12360 TATCCAAACA GCCTTTACCT TCTCAGTTTA CTTGTTCGTT TTGATGCAAG GTGTCCGAAT 12420 GTTCGTATCT GAGTTGACAA ACGCCTTCCA AGGTATTTCA AACAAATTGT TGCCAGGTTC 12480 ATTCCCAGCG GTTGACGTTG CAGCTTCTTA TGGATTTGGT TCTCCAAATG CTGTCTTGTC 12540 AGGATTTACC TTTGGTTTGA TTGGTCAATT GATTACAATT GTTTTGCTCA TCGTCTTTAA 12600 AAATCCGATT CTTATTATTA CAGGATTTGT ACCAGTGTTC TTTGACAATG CAGCCATTGC 12660 GGTCTACGCT GATAAACGCG GCGGATGGAA AGCGGCTGTT ATCCTTTCCT TTATATCAGG 12720 TGTCCTTCAA GTTGCTCTAG GAGCTCTTTG TGTGGCCCTT CTCGATTTGG CATCTTATGG 12780 TGGCTACCAT GGAAATATCG ACTTTGAATT CCCATGGCTT GGATTTGGAT ATATCTTCAA 12840 ATACCTTGGT ATTGTTGGTT ATGTACTTGT GTGTCTCTTC TTGCTTGTTA TTCCTCAACT 12900 TCAATTTGCC AAAGCAAAAG ATAAAGAGAA ATATTACAAC GGTGAAGTTC AAGAAGAAGC 12960 TTAGTATCTA GAAAAGGAGA AATAAAATGG TTAAAGTATT AGCAGCGTGC GGAAATGGAA 13020 TGGGTTCATC AATGGTTATC AAGATGAAGG TTGAAAATGC TCTCCGTAAG CTTAATCAAA 13080 CAGATTTTAC AGTCAATTCA TGCAGTGTCG GTGAAGCTAA AGGTTTAGCA GTAGGATATG 13140 ACATCGTAAT CGCTTCTCTT CATTTGATTC AAGAATTGGA AGGGCGAACT AATGGGAAGT 13200 TAATTGGGCT TGATAACTTG ATGGATGATA AAGAAATCAC CGAAAAACTC AGTCAAGCAC 13260 TACAGTAAAA GGTTGGAGGG GGCTGGACAG AAACTGAGAG TTATCGTTTC TGTCCTTCTC 13320 CCTCTTTAAA TAAAGGAGGC AGATATGAAT TTAAAACAAG CTTTAATTGA CAATGACTCG 13380 ATCCGACTAG GTTTAGAGGC TAACAATTGG AAAGAAGCAG TCAAGGTAGC AGTAGATCCC 13440 TTAATTGAAA GTGGGGCAAT TTTGCCAGAG TATTACGATG CTATCATTGA ATCGACTGAA 13500 GAGTATGGGC CTTACTATAT CTTGATGCCA GGTATGGCTA TGCCCCACGC TAGACCTGAA 13560 GCAGGTGTGC AAAGTGATGC CTTTTCATTG ATTACCTTAC AAAATCCTGT TGTATTTTCA 13620 GATGGGAAAG AGGTATCTGT TTTGTTGGCA CTAGCAGCAA CAAGTTCAAA AATTCACACA 13680 AGTGTAGCCA TTCCACAAAT TATTGCCCTA TTTGAATTAG AAGATTCTAT TGCACGTTTA 13740 CAGGCTTGCC AGACTAAGA AGATGTCTTG GCTATGATTG AAGAATCTAA GGATAGCCCT 13800 TATCTCGAAG GATTGGATTT GGAAAGTTAG AAAGAAATGA CAAAAAGAAT 13860 ACCTAATTTA CAAGTTGCAT TAGACCATTC AGACTTGCAA GGAGCGATTA AAGCAGCTGT 13920 TTCTGTTGGT CAGGAAGTAG ATATTATCGA AGCTGGAACT GTTTGCTTGC TTCAAGTTGG 13980 AAGTGAACTG GCTGAAGTCT TGCGTAGCCT TTTCCCAGAT AAGATTATTG TGGCAGACAC 14040 AAAATGTGCT GATGCTGGTG GAACAGTTGC TAAAAATAAT GCGGTTCGTG GAGCAGACTG 14100

GATGACTTGT	ATCTGTTGTG	CAACCATCCC	TACTATGGAA	GCAGCTCTAA	AGGCTATCAA	14160
GACTGAACGA	GGAGAACGAG	GCGAÄATCCA	GATCGAGCTT	TATGGCGATT	GGACTTTTGA	14220
ACAAGCTCAG	CTTTGGCTAG	ATGCAGGTAT	CTCACAAGCT	ATTTATCACC	AATCTCGTGA	14280
TGCTCTTCTT	GCTGGTGAAA	CTTGGGGTGA	AAAAGACCTT	AATAAGGTTA	AAAAACTCAT	14340
TGACATGGGC	TTCCGTGTAT	CTGTAACAGG	TGGTCTAGAT	GTAGATACTC	TCAAACTCTT	14400
TGAAGGTATT	GATGTCTTTA	CCTTTATCGC	AGGTCGTGGA	ATTACAGAGG	CTGTGGATCC	14460
AGCAGGAGCA	GCGCGTGCCT	TCAAGGATGA	AATCAAACGA	ATTTGGGGGT	AAATCATGGT	14520
ACGTCCAATT	GGAATTTATG	AAAAGGCAAC	CCCAACACAC	TGTACTTGGC	TAGAACGTTT	14580
AAATTTTGCC	AAGGAGTTAG	GCTTTGATTT	TGTCGAGATG	TCTATTGACG	AACGTGACGA	14640
GCGTTTAGCA	AGACTTGACT	GGAGTAAGGA	AGAACGCTTG	GAAGTTGTCA	AAGCAATCTA	14700
TGAAACTGGT	GTTCGTATTC	CTTCTATCTG	TTTTTCAGGC	CATCGTCGCT	ACCCATTGGG	14760
TTCAAAAGAT	CCAGTTCTAG	AGGAAAAATC	TCTAGAACTC	ATGAAAAAT	GTATCGAATT	14820
AGCTCAAGAC	TTGGGAGTTC	GTACGATTCA	ATTAGCTGGT	TACGATGTTT	ACTATGAGGA	14880
AAAGTCACCC	CAGACACGCC	AACGTTTTAT	CAAAAATTTG	AGAAAAGCCT	GTGACTGGGC	14940
TGAAGAAGCT	CAGGTGGTAC	TTGCTATTGA	AATTATGGAT	GATCCTTTCA	TCAGTAGCAT	15000
CGAAAAATAT	TTGGCTATAG	AAAAAGAGAT	TGACTCTCCC	TTCCTCTTTG	TATATCCAGA	15060
TATTGGTAAT	GTGTCTGCAT	GGCATAATGA	TATCTATAGT	GAGTTTTATC	TTGGTCATCA	15120
TGCCATCGCA	GCTCTCCATC	TCAAGGATAC	TTATGCAGTG	ACAGAAAGTT	CAAAGGGCCA	15180
GTTCCGAGAT	GTACCTTTCG	GGCAAGGTTG	TGTCAAATGG	GAAGAAGCTT	TCGATATTTT	15240
AAAGGAAACC	AATTATAATG	GACCTTTCCT	AATCGAAATG	TGGTCTGAAA	ATTGTGAAAC	15300
AGTAGAAGAA	ACACGCGCAG	CCATTCAAGA	GGCGCAAGCT	TTTCTCTATC	CACTCATTAA	15360
GAAAGCAGGT	TTGATGTAAG	ATGAATCAAG	TAATCAATGC	TATGCGTAAA	CGAGTCTGTG	15420
ATGCCAATCA	ATCATTGCCA	AAACATGGAC	TTGTCAAATT	TACCTGGGGG	AATGTATCTG	15480
AAGTTAATCG	CGAACTCGGT	GTCATTGTTA	TCAAACCATC	AGGCGTGGAT	TATGACGAAT	15540
TGACACCTGA	AAACATGGTA	GTGACTGATC	TAGATGGTAA	GATCCTAGAA	GGGGATTTAA	15600
GACCATCTTC	CGACCTCCCA	ACTCATGTGC	AATTATATAA	GACTTGGTCA	GAAATTGGTA	15660
GTGTGGTTCA	CACCCATTCG	ACAGAAGCTG	TTGGTTGGGC	TCAGGCAGGT	CGTGATATTC	15720
CTTTCTACGG	AACAACCCAT	GCAGATTATT	TCTACGGTTC	AATCCCTTGC	GCCCGTAGTT	15780
TGACCAAGGA	CGAAGTAGAA	GTGGCCTATG	AAAAAGATAC	TGGCCTGGTT	ATCGTAGAAG	15840

384 AGTTTGAACA TCGCGGACTT AACCCGGTTG AAGTACCAGG AATTGTTGTA CGCAATCACG 15900 GTCCATTCAC CTGGGGCAAA AATCCAGAGA ATGCTGTTTA TCACTCTGTC GTACTAGAGG 15960 AAGTATCAAA GATGAATCGC TTTACAGAAC AAATCAATCC AAGAGTTGGA CCTGCTCCCC 16020 AGTACATACT AGAAAAACAC TACCAACGTA AACATGGACC AAATGCTTAT TATGGTCAAA 16080 AGTAAGAACG ATGAAGGAGG AGAAAAAGAT AAATTTAGCT CCTCTTTTTA CATTTGATTT 16140 TTATTGAGAG TAAAGTTGGA GTTGAAGTAA TTTTAAAAGA TTTTTTAGAA ATAGCGCTTG 16200 ATATATATA GGTAAAATAA AAAGAATTGC TGTGATATCA ATAGATTTGG GGGATTTTTT 16260 AATATGGTAC TGGATAAGGC AAGTTGTGAT TTGCTTCAAT ATTTGATGGA TCAAGAAACG 16320 TCCAAAACGA TTATGGCGAT TTCGAAAGAT TTGAAAGAGT CAAGAAGGAA AATTTATTAT 16380 CACATTGACA AAATCAATGC TGCTCTGGGT GACGAGGCGC TTCACATCAT TAGTATTCCA 16440 CGAATTGGTA TTCACTTAAC GGAAGAGCAG AGAGATGCTT GTTGTAAACT ATTATCGGAA 16500 GTAGATTCGT ACGATTATAT CATGAGTGCG CATGAACGTA TGATGATAAT GTTACTATGG 16560 ATAGGTATTT CTAAAGAACG TATTACGATT GAAAAATTGA TAGAGTTAAC AGAGGTATCT 16620 AGGAATACTG TTCTCAATGA TTTGAATAGT ATTCGTTATC AACTAACTTT GGAACAATAT 16680 CAGGTGATCT TGCAAGTGAG CAAGTCACAG GGATACAACC TTCATGCCCA CCCTCTTAAT 16740 AAAATTCAGT ATCTTCAATC GCTTCTATAT CATATTTTTA TGGAAGAAAA TGCCACTTTT 16800 GTATCTATTT TAGAAGATAA GATGAAAGAG AGGTTAGATG ATGAGTGTTT GCTTTCTGTT 16860 GAAATGAACC AATTTTTTAA GGAACAGGTT CCTTTAGTTG AACAAGATTT AGGGAAGAAA 16920 ATAAACCATC ATGAAATAAC TTTTATGTTG CAGGTTCTAC CTTATTTGCT GTTAAGCTGT 16980 CATAATGTTG AACAGTATCA AGAAAGACAT CAGGATATAG AGAAAGAATT TTCTTTGATA 17040 AGAAAAAGAA TAGAGTATCA GGTGTCTAAG AAATTAGGAG AACGGTTGTT TCAAAAGTTT 17100 GAAATTTCTT TGTCAGGACT TGAAGTTTCT CTTGTAGCTG TTCTCCTCCT CTCCTATCGT 17160 AAAGATTTGG ATATTCATGC AGAAAGTGAT GATTTTCGGC AATTAAAACT TGCTTTAGAA 17220 GAATTTATCT GGTATTTTGA ATCACAAATC CGAATGGAGA TTGAGAACAA GGATGATTTG 17280 TTACGAAATT TGATGATCCA CTGTAAAGCC TTGTTATTTA GAAAGACTTA CGGTATTTTT 17340 TCTAAAAATC CTCTAACAAA ACAAATTCGA TCCAAGTATG GAGAATTATT TTTAGTCACT 17400 AGAAAATCTG CGGAAATTTT AGAAGGAGCA TGGTTTATTC GGCTAACAGA CGATGATATT 17460 GCCTATTTGA CGATTCATAT TGGAGGATTT TTAAAATATA CACCATCATC TCAAAAAAAT 17520 ATGAAAAAG TTTATCTCGT TTGTGATGAA GGTGTTGCGG TTTCGAGACT TTTGCTGAAA 17580 CAATGCAAAC TTTATTTTCC AAATGAGCAA ATTGACACTG TATTTACAAC AGAACAATTT 17640

385

ΑZ	GAGTGTGG	AAGATATTGC	ACAAGTTGAT	GTAGTGATTA	CTACTAATGA	TGATTTGGAT	17700
AC	CAGATTTC	CGATTTTAAG	GGTTAATCCT	ATCCTTGAAG	CAGAAGATAT	TTTGAAAATG	17760
CI	'AGACTATC	TTAAACACAA	TATATTTCGT	AATAAGAGCA	AAAGTTTCAG	TGAAAATCTT	17820
TC	TAGTCTTA	TTTCGTCTTA	TATTGTAGAC	AGCAAGTTGG	CTAGTAAGTT	CCAAGAAGAG	17880
GI	TCAAACAC	ттатааатса	AGAAATAGTA	GTTCAAGCTT	TTTTGGAAGr	TATTTGAAGG	17940
AC	AGTCCAAT	GATGAACACA	AACCTGTGTk	TTTCsTGGTC	TTTTTTAGTG	TTTTGAAGGG	18000
TG	GKATACTA	ATCTCAAAGA	ТААСААТТАТ	ATCCAAAGGA	GGCAACATAT	GCCAAACGTC	18060
AA	AGAAATTA	CAAGAGAGTC	ATGGATTTTA	GCCACTTTCC	CAGAGTGGGG	AACATGGTTG	18120
AA	CGAAGAAA	TCGAAGAAGA	AGTCGTACCT	GAAGGCAACT	TTGCCATGTG	GTGGCTAGGC	18180
AΑ	.CTGTGGTA	CTTGGATTAA	GACACCAGCT	GGTGCTAACG	TTGTCATGGA	CCTTTGGTCA	18240
AA	CCGTGGAA	AATCAACCAA	aaaagtgaaa	GATATGGTTC	GTGGGCACCA	AATGGCAAAT	18300
ΑT	GGCAGGTG	TTCGTAAGCT	GCAACCAAAC	TTGCGTGTTC	AGCCAATGGT	TATCGATCCA	18360
тт	TGCTATCA	ACGAACTAGA	СТАТТАСТТА	GTTTCACACT	TCCACAGTGA	TCATATCGAC	18420
cc	ATACACAG	CTGCAGCAAT	TCTCAATAAT	CCTAAGTTAG	AGCATGTTAA	GTTGG	18475
					-		

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7186 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCAGGATTTG GTACCGTTG	AAGTGGTGTG	CCTTTCCTCC	TAAAGGAAAA	TGGAGGAAAA	60
ATCAATCAAT CAGCACATTO	: AGATATCAAA	GTTGCTAAGG	TATTGGTCAA	GGATGAAGAT	120
GAAAAAATC GCTTGCTTGC	AGCAGGGAAT	GACTTTAACT	TTGTAACCAA	TGTGGATGAT	180
ATTTTATCAG ACCAGGATAT	TACTATCGTA	GTGGAATTGA	TGGGGCGTAT	TGAGCCTGCT	240
AAAACCTTTA TCACTCGTGC	CTTGGAAGCT	GGAAAACACG	TTGTTACTGC	TAACAAGGAC	300
CTTTTAGCTG TCCATGGCGC	AGAATTGCTA	GAAATCGCTC	AAGCTAACAA	GGTAGCACTT	360
TACTACGAAG CAGCAGTTGC	TGGTGGGATT	CCAATTCTTC	GTACTTTAGC	AAATTCCTTG	420
GCTTCTGATA AAATTACGCC	CGTGCTTGGA	GTAGTCAACG	GAACTTCCAA	CTTCATGGTG	. 480
ACCAAGATGG TGGAAGAAGG	CTGGTCTTAC	GATGATGCTC	TTGCGGAAGC	ACAACGTCTA	540

			386			
GGATTTGCAG	AAAGCGATCC	GACGAATGAC	GTAGATGGGA	TTGATGCAGC	CTACAAGATG	600
GTTATTTTGA	GCCAATTTGC	CTTTGGCATG	AAGATTGCCT	TTGATGATGT	AGCCCACAAG	660
GGAATCCGCA	ATATCACACC	AGAAGACGTA	GCTGTAGCTC	AAGAGCTTGG	TTACGTAGTG	720
AAATTGGTTG	GTTCTATTGA	GGAAACTTCT	TCAGGTATTG	CTGCAGAAGT	GACTCCAACC	780
ТТССТАССТА	AAGCGCACCC	ACTTGCTAGT	GTGAATGGCG	TAATGAACGC	TGTCTTTGTA	840
GAATCTATCG	GTATTGGTGA	GTCTATGTAC	TACGGACCAG	GTGCGGGTCA	AAAACCAACT	900
GCAACAAGTG	TTGTAGCTGA	TATTGTCCGT	ATCGTTCGTC	GTTTGAATGA	TGGTACTATT	960
GGCAAAGACT	TCAACGAATA	TAGCCGTGAC	TTGGTCTTGG	CAAATCCTGA	AGATGTCAAA	1020
GCAAACTACT	ATTTCTCAAT	CTTGGCTCTA	GACTCAAAAG	GTCAGGTCTT	GAAGTTGGCT	1080
GAAATCTTCA	ATGCTCAAGA	TATTTCCTTT	AAGCAAATCC	TTCAAGATGG	CAAAGAGGGT	1140
GACAAGGCGC	GTGTCGTTAT	CATCACACAC	AAGATTAATA	AAGCCCAGCT	TGAAAATGTC	1200
TCAGCTGAAT	TGAAGAAGGT	TTCAGAATTC	GACCTCTTGA	ATACCTTCAA	GGTGCTAGGA	1260
GAATAAGATG	AAGATTATTG	TACCTGCAAC	CAGTGCCAAT	ATCGGGCCAG	GTTTTGACTC	1320
GGTCGGTGTA	GCTGTAACCA	AGTATCTTCA	AATTGAGGTC	TGCGAAGAAC	GAGATGAGTG	1380
GCTGATTGAA	CACCAGATTG	GCAAATGGAT	TCCACATGAC	GAGCGTAATC	TCTTGCTCAA	1440
AATCGCTTTG	CAAATTGTAC	CAGACTTGCA	ACCAAGACGC	TTGAAAATGA	CCAGTGATGT	1500
CCCTTTGGCG	CGCGGTTTGG	GTTCTTCCAG	CTCGGTTATC	GTTGCTGGGA	TTGAACTAGC	1560
CAACCAACTG	GGTCAACTCA	ACTTATCAGA	CCATGAAAAA	TTGCAGTTAG	CGACCAAGAT	1620
TGAAGGGCAT	CCTGACAATG	TGGCTCCAGC	CATTTATGGT	AATCTCGTTA	TTGCAAGTTC	1680
TGTTGAAGGG	CAAGTCTCTG	CTATCGTAGC	AGACTTTCCA	GAGTGTGATT	TTCTAGCTTA	1740
CATTCCAAAC	TATGAATTAC	GTACTCGCGA	CAGCCGTAGT	GTCTTGCCTA	AAAAATTGTC	1800
TTATAAGGAA	GCTGTTGCTG	CAAGTTCTAT	CGCCAATGTA	GCGGTTGCTG	CCTTGTTGGC	1860
AGGAGACATG	GTGACCGCTG	GGCAAGCAAT	CGAGGGAGAC	CTCTTCCATG	AGCGCTATCG	1920
TCAGGACTTG	GTAAGAGAAT	TTGCGATGAT	TAAGCAAGTG	ACCAAAGAAA	ATGGGGCCTA	1980
TGCAACCTAC	CTTTCTGGTG	CTGGGCCGAC	AGTTATGGTT	CTGGCTTCTC	ATGACAAGAT	2040
GCCAACAATT	AAGGCAGAAT	TGGAAAAGCA	ACCTTTCAAA	GGAAAACTGC	ATGACTTGAG	2100
AGTTGATACC	CAAGGTGTCC	GTGTAGAAGC	AAAATAAAGA	ATAGAAGATA	GGATGGGGAA	2160
ACTCTTGACC	AGAGGGGTTC	ATATCCTTTT	TGTGAAAAGA	AGTTTATACT	CAATGAAAAT	2220
CAAAGAGCAA	ACTAGGAAGC	TAGCCGCAGG	CTGCTCAAAA	CAGTGTTTTG	AGGTTGCAGA	2280
ボスクネスへのクスク	CAACMCACCM	CNACACACTIC	mmmmc x c c mm	CCACAMACAA	0001001100	0340

c	AGTAACCAT	ACTACGGTAA	GGTGACGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	2400
1	'AGTTAAAAA	CGTGATAAAG	GAGAAATAAA	GATGGCAGAA	ATTTATCTAG	CAGGTGGTTG	2460
T	TTTTGGGGC	CTAGAGGAAT	ATTTTTCACG	CATTTCTGGA	GTGCTAGAAA	CCAGTGTTGG	2520
c	TACGCTAAT	GGTCAAGTCG	AAACGACCAA	TTACCAGTTG	CTCAAGGAAA	CAGACCATGC	2580
A	GAAACGGTC	CAAGTGATTT	ACGATGAGAA	GGAAGTGTCA	CTCAGAGAGA	TTTTACTTTA	2640
Ί	TATTTCCGA	GTTATCGATC	CTCTATCTAT	СААТСААСАА	GGGAATGACC	GTGGTCGCCA	2700
A	TATCGAACT	GGGATTTATT	ATCAGGATGA	AGCAGATTTG	CCAGCTATCT	ACACAGTGGT	2760
G	CAGGAGCAG	GAACGCATGC	TGGGTCGAAA	GATTGCAGTA	GAAGTGGAGC	AATTACGCCA	2820
C	TACATTCTG	GCTGAAGACT	ACCACCAAGA	CTATCTCAGG	AAGAATCCTT	CAGGTTACTG	2880
1	CATATCGAT	GTGACCGATG	CTGATAAGCC	ATTGATTGAT	GCAGCAAACT	ATGAAAAGCC	2940
1	AGTCAAGAG	GTGTTGAAGG	CCAGTCTATC	TGAAGAGTCT	TATCGTGTCA	CACAAGAAGC	3000
1	GCTACAGAG	GCTCCATTTA	CCAATGCCTA	TGACCAAACC	TTTGAAGAGG	GGATTTATGT	3060
A	GATATTACG	ACAGGTGAGC	CACTCTTTTT	TGCCAAGGAT	AAGTTTGCTT	CAGGTTGTGG	3120
1	TGGCCAAGT	TTTAGCCGTC	CGATTTCCAA	AGAGTTGATT	CATTATTACA	AGGATCTGAG	3180
C	CATGGAATG	GAGCGAATTG	AAGTTCGTTC	TCGTTCAGGC	AGTGCTCACT	TGGGTCATGT	3240
T	TTCACAGAT	GGACCGCGGG	AGTTAGGCGG	CCTCCGTTAC	TGTATCAATT	CTGCTTCTTT	3300
A	CGCTTTGTG	GCCAAGGATG	AGATGGAAAA	AGCAGGATAT	GGCTATCTAT	TGCCTTACTT	3360
A	ААСАААТАА	AACAGAGAGT	GGGGCTTCCC	ACTTTCTTCA	TTTCTAGAAT	ATGAATAGAA	3420
G	GGATTTATG	AAACACCTAT	TATCTTACTT	CAAACCCTAC	ATCAAGGAAT	CAATTTTAGC	3480
C	CCCTTGTTC	AAGCTGTTAG	AAGCTGTTTT	TGAGCTCTTG	GTTCCCATGG	TGATTGCTGG	3540
G	ATTGTTGAC	CAATCTTTAC	CTCAGGGAGA	TCAAGGTCAT	CTCTGGATGC	AGATTGGCCT	3600
G	CTCCTTATC	TTTGCAGTAA	TTGGCGTTTT	AGTGGCCTTG	ATAGCTCAAT	TTTACTCAGC	3660
A	AAGGCAGCA	GTAGGTTCTG	CTAAGGAATT	GACAAACGAT	CTTTATCGTC	ATATTCTTTC	3720
C	TTGCCCAAG	GACAGCAGAG	ACCGTCTGAC	AACTTCTAGT	TTGGTCACTC	GCTTGACTTC	3780
G	GATACCTAC	CAGATTCAGA	CTGGTATCAA	TCAATTCCTG	CGTCTCTTTT	TACGAGCGCC	3840
C	ATTATCGTT	TTTGGTGCCA	TTTTTATGGC	TTATCGAATC	TCAGCTGAGT	TGACTTTCTG	3900
G	TTCTTAGTC	TTGGTTGCCA	TTTTGACCAT	TGTCATTGTA	GGGTTATCTC	GATTGGTCAA	3960
1	CCTTTCTAC	AGTAGTCTCA	GAAAGAAAAC	GGACCAACTG	GTTCAGGAAA	CGCGCCAGCA	4020
A	TTGCAAGGG	ATGCGGGTTA	TTCGTGCTTT	TGGTCAAGAA	AAACGAGAGT	TACAGATTTT	4080

388

TCAAACCCTT AACCAAGTTT ATGCTAGATT ACAAGAAAAG ACAGGTTTCT GGTCTAGTT! 4140 ATTAACACCT CTGACCTATC TGATTGTCAA TGGAACTCTT CTCGTTATTA TCTGGCAAGG 4200 CTATATTCA ATTCAAGGAG GAGTGCTCAG TCAAGGTGCT CTCATTGCTC TTATCAATTA 4260 CCTCTTACAG ATTTTGGTGG AATTGGTCAA GCTAGCCATG TTGATCAATT CCCTCAACCA 4320 GTCCTATATC TCAGTCAAGC GAATCGAGGA AGTCTTTGTT GAGGCTCCAG AGGATATCCA 4380 TTCAGAGTTA GAACAAAAGC AAGCTACCAG AGATAAGGTT TTACAAGTCC AAGAATTGAC 4440 CTTTACCTAT CCTGATGCGG CCCAGCCTTC TCTGAGATAC ATTTCCTTTG ATATGACTCA 4500 AGGACAAATT CTAGGTATCA TCGGGGGAAC TGGTTCTGGT AAATCAAGCT TGGTGCAACT 4560 CTTACTTGGA CTTTATCCAG TAGACAAGGG GAACATTGAC CTTTATCAAA ATGGACGTAG 4620 TCCTCTTAAT TTGGAGCAGT GGCGGTCTTG GATTGCCTAT GTACCTCAAA AGGTCGAACT 4680 CTTTAAAGGA ACCATTCGTT CCAACTTGAC TCTAGGTTTC AATCAAGAAG TATCTGACCA 4740 GGAACTCTGG CAGGCCTTGG AGATTGCGCA AGCTAAGGAT TTTGTCAGTG AAAAGGAAGG 4800 ACTCTTGGAT GCTCTAGTTG AGGCAGGGG GCGAAATTTC TCAGGTGGAC AAAAACAAAG 4860 ATTGTCTATC GCCCGAGCAG TCTTGCGCCA GGCTCCGTTT CTCATCCTAG ATGATGCAAC 4920 CTCGGCACTG GATACCATTA CAGAGTCCAA GCTCTTGAAA GCTATTAGAG AAAATTTTCC 4980 AAACACGAGC TTAATTTTGA TCTCTCAACG AACCTCAACT TTACAGATGG CGGACCAGAT 5040 TCTCCTCTTG GAAAAAGGTG AGTTGCTAGC TGTTGGCAAG CACGATGACT TGATGAAATC 5100 CAGCCAAGTC TATTGTGAAA TCAATGCATC CCAACATGGA AAGGAGGACT AGAATGAAAC 5160 GACAAACTGT AAACCAGACG CTCAAACGTT TAGCCGTAGA TTTAGCAAGC CATCCTTTCC 5220 TCCTTTTCCT AGCCTTTCTA GGAACTATTG CCCAAGTTGG CTTATCAATT TACCTACCTA 5280 TTCTGATTGG GCAGGTCATT GACCAAGTCC TAGTGGCTGG TTCATCACCA GTTTTTTGGC 5340 AGATTTTTCT CCAGATGCTC TTGGTGGTAA TAGGAAATAC TCTGGTACAA TGGGCCAATC 5400 CTCTCCTCTA TAATCGTCTA ATCTTCTCTT ATACCAGAGA TTTACGGGAG CGAATCATCC 5460 ATAAGCTCCA TCGTTTACCG ATTGCCTTTG TAGATAGGCA AGGTAGTGGA GAGATGGTTA 5520 GTCGTGTAAC CACGGACATC GAACAGTTGG CAGCTGGCTT GACCATGATT TTTAACCAAT 5580 TTTTCATTGG TGTTTTGATG ATTTTGGTCA GTATTCTAGC CATGCTCCAA ATTCATCTCC 5640 TCATGACTCT CTTAGTCTTG CTGTTGACGC CACTGTCCAT GGTGATTTCA CGCTTTATTG 5700 CCAAGAAATC CTATCATCTC TTCCAGAAGC AAACAGAGAC GAGGGGAATT CAGACTCAGT 5760 TGATTGAAGA ATCGCTTAGT CAGCAGACTA TAATCCAGTC CTTCAATGCT CAAACAGAAT 5820 TTATCCAAAG ATTGCGTGAG GCTCATGACA ACTACTCAGG CTATTCTCAG TCAGCCATCT 5880

389

TTTATTCTTC	AACGGTCAAT	CCTTCGACTC	GCTTTGTAAA	TGCACTCATT	TATGCCCTTT	5940
TAGCTGGAGT	AGGAGCTTAT	CGTATCATGA	TGGGTTCAGC	CTTGACCGTC	GGTCGTTTAG	6000
TGACTTTTT	GAACTATGTT	CAGCAATACA	CCAAGCCCTT	TAACGATATT	TCTTCAGTGC	6060
TAGCTGAGTT	GCAAAGTGCT	CTGGCTTGCG	TAGAGCGTAT	CTATGGAGTC	TTAGATAGCC	6120
CTGAAGTGGC	TGAAACAGGT	AAGGAAGTCT	TGACGACCAG	TGACCAAGTT	AAGGGAGCTA	6180
ТТТССТТТАА	ACATGTCTCT	TTTGGCTACC	ATCCTGAAAA	AATTTTGATT	AAGGACTTGT	6240
CTATCGATAT	TCCAGCTGGT	AGTAAGGTAG	CCATCGTTGG	TCCGACAGGT	GCTGGAAAAT	6300
CAACTCTTAT	CAATCTCCTT	ATGCGTTTTT	ATCCCATTAG	CTCGGGAGAT	ATCTTGCTGG	6360
ATGGGCAATC	CATTTATGAT	TATACACGAG	TATCATTGAG	ACAGCAGTTT	GGTATGGTGC	6420
TTCAAGAAAC	CTGGCTCACA	CAAGGGACCA	TTCATGATAA	TATTGCCTTT	GGCAATCCTG	6480
AAGCCAGTCG	AGAGCAAGTA	ATTGCTGCTG	CCAAAGCAGC	TAATGCAGAC	TTTTTCATCC	6540
AACAGTTGCC	ACAGGGATAC	GATACCAAGT	TGGAAAATGC	TGGAGAATCT	CTCTCTGTCG	6600
GCCAAGCTCA	GCTCTTGACC	ATAGCCCGAG	TCTTTCTGGC	TATTCCAAAG	ATTCTTATCT	6660
TAGACGAGGC	AACTTCTTCC	ATTGATACAC	GGACAGAAGT	GCTGGTACAG	GATGCCTTTG	6720
CAAAACTCAT	GAAGGCCGC	ACAAGTTTCA	TCATTGCTCA	CCGTTTGTCA	ACCATTCAGG	6780
ATGCGGATTT	AATTCTTGTC	TTAGTAGATG	GTGATATTGT	TGAATATGGT	AACCATCAAG	6840
AACTCATGGA	TAGAAAGGGT	AAGTATTACC	AAATGCAAAA	AGCTGCGGCT	TTTAGTTCTG	6900
AATAAGCCAT	TCTCTTTTGA	AAGTTTATGG	ACGAAAAAAG	TTGCCTTCGA	GTGACTTTTT	6960
TGTTACAATA	GCTAGAAAAA	TTGTTCACTG	TAATACTCAA	TGAAAATCAA	AGAGCAAACT	7020
AGGAAGCTAG	CCGTAGGTTG	CTCAAAGCAC	AGCTTTGAGG	TTGTAGATAA	GACTGACGAA	7080
GTCAGTTCAA	AACACTGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	CTCAAAACAC	7140
TGTTTTGAGG	TTGCAGATAG	AACTGACGAA	GTCAGCTCAA	AACAGG		7186

(2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CTGAAAATTC TAAAAAATTT ATAAGTAAGG AATTAATTAG TTATTTTTGT GATAAAGTTT

390 ACGTT

ATGATGAAAT	ATTTGTTGAA	GAGGTAGTTC	CGCACGTTTT	TCTGCCATAT	GAATCTGACT	120
TACTTCTTAT	TTTACCAGCT	ACGGCAAATG	TGATTGGCAA	AATTGCTAAT	GGTATTGCTG	186
ATGATTTAGT	TACAGCAACT	GTTTTAAACT	ТТААТАААА	AATAATTTT	TGTCCCAATA	240
TGAACTCTAC	TATGTGGGAC	AATCACATAG	TTCAAAGAAA	TGTATCAATT	CTAAAGGAGT	300
TGGGACATAT	ATTTTTATTT	GAGTCTAAAA	AAACATATGA	GGTAGGATTG	CGTAAAGCAA	360
TAGATTCAAC	ATGTTCAATG	TTACAACCAC	AGTCGTTAGT	AAAAGAACTT	ATCAAATTAG	420
AAAATATTGT	CCTTGAAGAG	GGACATTAAA	AACTACTGAG	AATATTAATG	AGGGGAAAAA	480
ATGGAAAATT	CATCAATCGA	TGTAGATATG	CTGTTGGAAG	AATTGACACA	AGAAGCAATG	540
GTCGTTGTTG	CTGTTGATAA	GGACTGTTAA	TTTAAACTTA	TGGCAATATA	TGAAAGGTTA	600
CTGGATGTTT	TAAATTATGC	AGGCAGTAGC	CTTTTATTAT	ATACAAATGG	ATAAAGTAAG	660
GATAATACAA	TGATTAATAA	AAAAATACAA	CAAGTTGTTT	TGGAATCATT	ACAGAATTTT	720
TTGAATGGGA	ACTTCATTTC	GCCTTGTGTA	GTCTATGATT	TTGGCTTGCT	GGAAACTGTA	780
CTTGATGAAT	тталалатса	AATTCCTGTA	ACATTCAATT	ACCAACTTTT	TTATGCCGTT	840
AAAGCAAATT	CAAATGAGAA	GATACTTGAA	TTCTTAGTAG	аталааттса	TGGAGTTGAT	900
GTGGCGTCAT	TATCTGAATT	AGATGTGGCT	AAAAATTT T	TCCCACCAAC	TCAAATTTCT	960
GTTAATGGTC	CCGCATTTTC	TTATGAAACT	TTATATAATC	TGATTAAAAA	ACAATATAAA	1020
GTTGATATTA	ACTTTTTGGA	ACATCTTCAA	CAATTTTCCC	CAAAAGAATC	TGTTGGAATA	1080
AGAGTAACGG	AGCCAGATGA	ACTTAATAAT	CGTATGAGTC	GATTTGGAAT	AAATATTTGC	1140
AGTGATAATT	GGACTAGTAA	TTTACAAAAT	CCTTTAATTA	CACGACTGCA	TTTTCATTTT	1200
GGAGAAAAAG	ATGATAAATT	TATTGTTAAG	TTAGATAAAA	TATTATTTAA	GTTACAAGAA	1260
ATTAATAAAC	TTAGAGAGGT	TAGAGAAATA	AATCTTGGAG	GCGGTTTTAT	GAAATTATTT	1320
ATGGAAAATC	GTTTGAAAGA	ATTTTTTCTA	TCACTTATGG	AAATCTATAA	AAAGTACGAT	1380
attgatagta	CTGTGACTAC	AATAATAGAA	CCAGGTAGTG	CAATTACTTC	ATTTTCTGCC	1440
IATATGATTA	CTAGCCCAGT	TAATGTTAGT	GAGGTGAATG	AGCAGCAGGT	TATCACGTTA	1500
GACACATCAA	TATACACCAA	TACATTATGG	TTTGTTCCGC	ATATTATTAC	AACGTTAAAT	1560
PCAAGTAGTA	AAGAGCGTTA	TAGTACTATT	CTCTATGGTA	ATACCTGTTA	TGAACATGAC	1620
AAGTATAAAA	TGAAAGTTTC	GCTTCCAAGG	TTAACTCAAA	ATAGCAGTAT	AGTGTTTTTT	1680
CCTGTAGGAG	СТТАТАТААА	AAGCAATCAT	TCAAATTTAC	ATCGTAATGA	TTTTATGCGG	1740
GAGGTATATT	TGTGGACAAA	AAACTTGACA	TATTAGATAA	agttaaggaa	TATTTAGGAA	. 1800
ATAAAACTAC	TCAAATTCTG	GATAATCAAT	ATAAAGAATT	TTTGAAACTT	AATGATATAA	1860

GGCGAGCGTT	TGGTATTTCA	GAAAAAGTAT	ТАААСЛАТТС	TTTTAATTTT	ACGAGTAAAG	1920
AATTTAA TGA	TAATTAATT	AACGAAAATT	ATTTATTCGA	ATATGCATGT	AGAATTAGAG	1980
aggaatggag	AAAAAAATGC	TTTAATCATT	CTTATCGTTT	TCTATGCTCA	ССТАТААТТА	2040
CAGATGATTT	TCTTAACACG	AAGACATTGA	GAAGTAGCCA	AATTGAATAT	AAATATGAGC	2100
GATATTTATC	GAAAAGTTCG	ATAGGCGATA	GAGCGGTTGA	TGGCTTTGTT	TCCTTCAATA	2160
CTTTAACAGC	TAATGGTATG	TCTGCTATTA	AACTATGTCT	TGAGATATTA	AACTCTATTT	2220
PCTTCAAGAA	GAAGATTGAT	TTATTATATT	CAACCGGATA	TTATGAAACA	AGATTTTTAT	2280
ГАААТААТСТ	TGCTAAATCA	GGTATTAGTT	GCTATGAGGT	AAGTAATTGT	GAATTGGATA	2340
aagata a att	TTATAATGTA	TTCATGATGG	AACCCAATCG	AGCCGATTTA	ACATTACAAA	2400
AAACTGATTT	CAAGATAGTA	GAATATTTTG	TTAAGTATAA	AAATAATTCA	ATAAAAGTCG	2460
PTATTTTAGA	TATTTCATAT	CAAGGTTCTA	ATTTTAAATT	AGTAGAATTT	TTAGAGAAAT	2520
PTAAATTTGC	GAATGTAATT	ATTTTTGTGG	TACGATCTTT	GATAAAATTA	GATCAAATGG	2580
Gattagaatt	GACAAATGGG	GGAATAATAG	AAGTGTTTAT	TCCTAATCAT	TTGAGAAAGT	2640
rgaaaaattt	TATTGAAGAG	GAATTCAATA	AATTTAGAAA	TTCTCACGGA	GCTAATCTAA	2700
GCCTCTATGA	ATACTGTTTG	CTTGATAATT	CTTTAACTTT	AAAAAATGAT	TGGAACTATT	2760
CTGATTTAGT	TATGAAATTT	ACGAGTAATT	TTTATGCTGA	TATAAAAGAC	TTGTTCATGG	2820
AAAATTCTGA	TATTGAAATC	ATCCATGAAG	AGGGAGTACC	TTTTGTATTT	TTAGATTTAA	2880
Paggtgaagg	TAAAAAAGAA	TATGAAATGT	TTTTTCAATG	GTTAAACTTC	TTTTACAAAC	2940
agcttggaat	CACATTGTAT	GCTAGAAATA	GTTTTGGGTT	TCGGAATCTA	ACAGTAGAGT	3000
Attttggaat	TATTGGGACA	GAAAGATATA	TATTTAAGAT	TTGTCCAGGT	GTTTATAAAG	3060
gttaagtta	TTATTTGATG	AAATTTTTAT	TAAAATCTTT	TTCAAATGAA	TATTTAAAAA	3120
CTACTGATGA	GGTTAATAGA	TGAAAAATTT	GATAAAGTTG	СТААТААТТА	GATTGATTGT	3180
FAACTTAGCA	GACAGTGTAT	TTTATATAGT	AGCATTGTGG	CACGTTAGCA	ATAATTATTC	3240
TTCGAGCATG	TTCTTAGGAA	TATTTATTGC	AGTAAATTAT	CTACCGGATT	TGTTACTAAT	3300
CTTTTTTGGA	CCAGTTATTG	ACAGAGTAAA	TCCGCAAAAA	ATTCTTATAA	TATCAATTTT	3360
GTTCAATTA	GCAGTGGCTG	TAATATTTT	ATTATTATTA	AACCAAATAT	CATTTTGGGT	3420
GATAATGAGT	CTAGTGTTTA	TTTCAGTAAT	GGCTAGCTCC	ATAAGTTACG	TGATAGAAGA	3480
TGTGTTGATT	CCTCAAGTGG	TAGAATATGA	TAAGATTGTA	TTTGCAAATT	CTCTTTTTAG	3540
PATTTCGTAT	AAAGTATTAG	ATTCTATTTT	TAATTCATTC	GCATCATTTT	TACAGGTGGC	3600

392 AGTAGGATTT ATTTATTGG TTAAGATAGA TATAGGCATA TTTTTACTTG CTCTATTTAT 3660 ATTGTTGTTG TTAAAATTTA GAACTAGCAA TGCGAATATA GAAAACTTCT CTTTCAAATA 3720 TTACAAGAGA GAAGTGTTGC AAGGTACAAA GTTTATTTTA AATAATAAAT TATTATTTAA 3780 AACCAGTATT TCTTTAACGC TTATAAACTT TTTTTATTCA TTTCAGACAG TAGTTGTACC 3840 GATTTTTTCT ATTCGATATT TTGATGGTCC GATTTTTTAT GGTATTTTTT TAACTATTGC 3900 TGGTTTGGGT GGTATATTGG GAAATATGCT AGCGCCAATC GTAATAAAAT ATTTAAAATC 3960 GAATCAAATT GTTGGTGTAT TTCTTTTTTT GAACGGCTCA AGTTGGTTAG TAGCAATTGT 4020 TATAAAAGAC TATACTTTAT CACTTATTTT ATTTTTCGTT TGTTTTATGT CTAAAGGAGT 4080 CTTCAATATT ATTTTAATT CGTTGTACCA ACAAATACCT CCACATCAAC TTCTTGGTAG 4140 GGTAAATACT ACCATTGATT CTATTATTTC TTTTGGAATG CCAATTGGTA GTTTAGTTGC 4200 AGGAACGCTT ATTGATTTGA ATATTGAATT AGTGTTAATT GCTATTAGCA TACCTTATTT 4260 TTTGTTTTCT TATATTTTTT ATACGGATAA TGGATTGAAA GAATTTAGTA TATATTAGAA 4320 ATGTTTATGT TCATTCAAAA GCATAATGAC TATAACTGAA AAAGAAAAGT GATATCTTTA 4380 AGGTTGTTCT TCTTGGTGGT GAGATTCGTG AGACAACCCA AGCTTTTGTC GGAAAGATTA 4440 CCAATGCTTT GATGGATAGG ATGTACTTTA GCAAGATGTT TTTAGTGGTA ACGGTATCGT 4500 GGATGGACGT GTAATAACCT CTTCTTTCGA GGAGTATTTT ACTAAAAAAC TAGCCTTGGA 4560 GCGTTCCCCA GAAACGGACT TACTCATTGA CTCTTCAAAG ATTTGGGGAG AAGATTTTGC 4620 TTCATCTGTT CCTTGAAAAA AGTCACAGCA GTCATCACAG ACGATAGTAC TGAACAAAAC 4680 TATGAAGAGT TAGAAATTTA TACGCAGGTG ATTGTATAAA GGATCTGGAA ATAGATAAGA 4740 AGTTGATTAG TATTGACCTA GGTGGTACAA ATATTAAGAT TACTGTTCTT TCAAATGACG 4800 GTGAGATTGA AACTTTGTGG AGTATTACAA CAGATACAAG TGAGAAAGGT TCTCAAATTA 4860 TATCGGACAT CATCAGTTCT ATTAAAAATA AATTGACCGA ACGGAATATT CCTGATAGCG 4920 ACCTTCTTGG AATCGGTATG GGAAGTTGCT CATCATACTT TCCTTGTAAA TCATAGGGGC 4980 TATAAACTCT CCGTCTACTT GTCCTGCAAC AATTGAAGTC TGCTCAAAAC GCCGTCCGCT 5040 AATCTTTCA TAGACTTTCT CCCTTTTAGG AGCCTAGCTT TCTAGTTTGT TCTTTGATTT 5100 TTATTGAGTA TACCACTATT TTACTCCCTC TGGCAAGGGA CTTTGTCTAT GTGGAGGGAT 5160 TGGGCTCCTA TGTGGTGGAG CTTTTCTGTT CTTTCTGAAA TATGGTATAA TAGCACTAAT 5220 CAATTCTAG GAAAATAGAT ACAGAAAGGG GCTGAAAGAT GTCTCATATT ATTGAATTGC 5280 CAGAGATGCT GGCAAACCAA ATCGCGGCTG GAGAGGTCAT TGAACGTCCT GCCAGTGTGG 5340

TCAAAGAGTT GGTAGAAAAT GCCATTGACG CGGGCTCTAG TCAGATTATC ATTGAGATTG

AGGAAGCTGG	TCTCAAGAAG	GTTCAAATCA	CGGATAACGG	TCATGGAATT	GCCCACGATG	5460
AGGTGGAGTT	GGCCCTGCGT	CGCCATGCGA	CCAGTAAGAT	ААААААТСАА	GCAGATCTCT	5520
TTCGGATTCG	GACGCTTGGT	TTTCGTGGTG	AAGCCTTGCC	TTCTATTGCG	TCTGTTAGTG	5580
TCTTGACTCT	GTTAACGGCG	GTGGATGGTG	CTAGTCATGG	AACCAAGTTA	GTCGCGCGTG	5640
GGGGTGAAGT	TGAGGAAGTC	ATCCCAGCGA	CTAGTCCTGT	GGGAACCAAG	GTTTGTGTGG	5700
AGGATCTCTT	TTTCAACACG	CCTGCCCGTC	TCAAGTATAT	GAAGAGCCAG	CAAGCGGAGT	5760
TGTCTCATAT	CATTGATATT	GTCAACCGTC	TGGGCTTGGC	CCATCCTGAG	ATTTCTTTTA	5820
GCTTGATTAG	TGATGGCAAG	GAAATGACGC	GGACAGCAGG	GACTGGTCAA	TTGCGCCAAG	5880
CAATCGCAGG	GATTTACGGT	TTGGTCAGTG	CCAAGAAGAT	GATTGAAATT	GAGAACTCTG	5940
ACCTAGATTT	CGAAATTTCA	GGTTTTGTGT	CCTTGCCTGA	GTTGACTCGG	GCTAACCGCA	6000
ATTATATCAG	CCTCTTCATC	AATGGCCGTT	ATATTAAGAA	CTTCCTGCTC	AATCGTGCTA	6060
TTTTGGATGG	TTTTGGAAGC	AAGCTTATGG	TTGGACGTTT	TCCACTGGCT	GTCATTCACA	6120
TCCATATCGA	CCCTTATCTA	GCGGATGTCA	ATGTGCATCC	AACTAAGCAA	GAGGTGCGGA	6180
TTTCCAAGGA	AAAAGAACTG	ATGACTCTGG	TTTCAGAAGC	TATTGCAAAT	AGTCTCAAGG	6240
AACAAACCTT	GATTCCAGAT	GCCTTGGAAA	ATCTTGCCAA	ATCGACCGTG	CGCAATCGTG	6300
AGAAGGTGGA	GCAAACTATT	CTCCCACTCA	AAGAAAATAC	GCTCTACTAT	GAGAAAACTG	6360
AGCCGTCAAG	ACCTAGTCAA	ACTGAAGTAG	CTGATTATCA	GGTAGAATTG	ACTGATGAAG	6420
GGCAGGATTT	GACCCTGTTT	GCCAAGGAAA	CCTTGGACCG	ATTGACCAAG	CCAGCAAAAC	6480
TGCATTTTGC	AGAGAGAAAG	CCTGCTAACT	ACGACCAGCT	AGACCATCCA	GAGTTAGATC	6540
TTGCTAGCAT	CGATAAGGCT	TATGACAAAC	TGGAGCGAGA	AGAAGCATCC	AGCTTCCCAG	6600
AGTTGGAGTT	TTTCGGACAA	ATGCACGGGA	CTTATCTCTT	TGCCCAAGGG	CGAGATGGAC	6660
TTTACATCAT	AGATCAGCAC	GCTGCTCAGG	AACGGGTCAA	GTACGAGGAG	TACCGTGAAA	6720
GCATTGGCAA	TGTTGACCAA	AGCCAGCAGC	AACTCCTAGT	GCCCTATATC	TTTGAATTTC	6780
CTGCGGATGA	TGCCCTGCGT	CTCAAGGAAA	GAATGCCTCT	CTTAGAGGAA	GTGGGCGTCT	6840
TTCTAGCAGA	GTACGGAGAA	AATCAATTTA	TTCTACGTGA	ACATCCTATT	TGGATGGCAG	6900
AAGAAGAGAT	TGAATCAGGC	ATCTATGAGA	TGTGCGACAT	GCTCCTTTTG	ACCAAGGAAG	6960
TTTCTATCAA	GAAATACCGA	GCAGAGCTGG	CTATCATGAT	GTCTTGCAAG	CGATCTATCA	7020
AGGCCAATCA	TCGTATTGAT	GATCATTCAG	CTAGACAACT	CCTCTATCAG	CTTTCTCAAT	7080
GTGACAATCC	CTATAACTGT	CCTCACGGAC	GTCCTGTTTT	GGTGCATTTT	ACCAAGTCGG	7140

			394			
ATATGGAAAA	GATGTTCCGA	CGTATTCAGG	AAAATCACAC	CAGTCTCCGT	GAGTTGGGGA	720
ААЛТТТАААА	GTATAAAAAA	GTCTGGGAAA	AATTTTCAAA	ATCAAAAAA	CGCATAAAAT	726
CAGGTGTTCA	AAAACCTTGA	TTTTATGCGT	TTTATCATGG	AAATAGTTAC	TTCATTTTTT	732
ССТААТТСТТ	TTCGAAACTC	TTTTTAAACG	ACGTCAGTTT	TATCAGTAAT	CTCAAAACAG	738
TGTTTTGAGC	TAATTTTGCC	AGTTTTGTCT	GTAACATCGA	AGTTGTGTTT	TACCACTCTG	744
CGACTGGTTT	CCTAGTTTGC	TCTATGATTT	TCACAGAGCA	TTAAATTGCG	ATTTTGCCAA	750
GTTTCTTTAT	TCGTCTAAAA	GTAGAGTCTG	TTCTATGCGT	CTAATGTACG	AATCAGGTTG	756
ACCATTTCAA	TAGCTCCTTG	TGCACACTCA	GAACCCTTAT	TTCCTGCTTT	AGTACCAGCT	762
CGTTCTATGG	CTTGTTCAAT	TGTATCTGTC	GTTAGCACAC	CAAACATAAC	AGGAATTTCG	768
CTATTTAAAC	TGATTTGGGC	GATTCCCTTA	GATACCTCGC	TACATACATA	ATCATAATGA	774
CTTGTATTCC	CTCTAATGAC	AGCTCCCAAG	CAGATAATTG	CATCATATTT	TTTACTTTTT	780
GCCATTTTTG	ATGCAATCAG	TGGTATTTCA	AAAGCTCCTG	GAACCCAGGC	TACCTCTATA	786
PCTTTCTCGT	TTACATTCTC	TCTTTTGAGA	TTATCTAGTG	CTCCAGATAA	TAATTTTGAA	792
GTTATAAATT	CATTAAATCT	CGCTACAACA	ATACCTATTT	TAATATTGTT	TGCTACTAAA	798
PTACCTTCAT	AAGTGTTCAT	TTATTTTCC	TCCATATTTA	AAATGTGACC	CATTCGATTT	804
PTCTTTGTTT	СТАААТАААА	ACTATCGTAA	GGATTGGCTT	CTATTTCGAT	TGATATTCTA	810
CTGGAAATGG	TAATTCCATA	TTTTTCTAAC	TGTTCAACCT	TGTCAGGATT	ATTTGTCAGT	816
AAATGAAGTG	ACTGAAGTCC	CAGATCTTTA	AGCATTTTTG	CTCCAATATG	ATATTCTCTT	8220
AAATCACCTT	CAAAGCCTAA	TGCAAGATTG	GCATCAAGCG	TATCCATGCC	TTGATCTTGT	828
AAATGATAGG	CTTTTAATTT	ATTGATAAGT	CCAATTCCTC	GTCCCTCCTG	TCGCAAGTAA	8340
AGTAAGACAC	CCGAACCATT	CTCAACAATC	ATTTTCATAG	CCTTATCGAA	TTGCTGTCCA	8400
CAATCGCAAC	GTAAAGAGCC	TAAAACATCT	CCTGTTAAAC	ATTCGGAGTG	GACCCGACAT	8460
AATACATTGG	CTTCATCCTC	TATATTTCCC	ATAATAAGAG	CAAGATGATG	TTCCCCATTT	8520
AGTTTATCTA	TATAGCTAAT	TGCTTTGAAA	TTACCGTATC	TAGTAGGCAT	ATTGACAGTT	8580
GAAACTCGTT	CTACCAGCTG	ATCATATACT	TTTCTATATT	CTTGTAATTC	TTTGATGGTA	8640
ATTAGTGGAA	TGTTGTGTTT	TTTCGAGAAC	TGAATTAAAT	CATCTGTTCT	CATCATTTTG	8700
CCATCATGAT	TCATTATTTC	ACAACATAGG	CCACACTCTT	TTAGTCCAGC	TAATTTTAAT	8760
AAATCAACAG	TTGCTTCTGT	GTGTCCATTT	CTTTCTAGGA	CACCACCTTT	TTTTGCAATT	8820
AAAGGAAACA	TGTGTCCTGG	CCTGCGAAAA	TCAGAGGGTG	TTATATCTTC	AGCTACACAC	888
ATACGTGCGG	ጥሮልርጥርርጥርጥ	ттсстсссса	GAAATACCTC	тестестте	ጥጥጥልጥል ልጥጥል	2040

ATTGAAACTG	TAAAAGCAGT	CTTATGATTA	TCTGTATTGT	TTTCAACCAT	AGGTGAAAGC	9000
ATTAATTGAT	TAGCTAAACT	TTCGCTCATA	GGCATACAAA	TTAATCCTTT	GGCATAAGTA	9060
GCCATAAAAT	TAACATTTTC	TGTTGTAGCT	GCTTGTGCAG	AACAAATTAA	GTCTCCTTCA	9120
TTTTCTCTAT	CCTTGTCGTC	TATAACAAGA	ACAAGTCGTC	CCTTCTGCAA	TGCTTCTAAT	9180
GCTTCTTGTA	TTTTTCGATA	TTCCATTGAC	TGATTATCCT	TTCTGCTAAA	ATCCATTTTG	9240
ATATAATAGT	TCCTTAGATA	TTTCTGATTT	TGGAGAGTTA	TCCATCAGTT	TTTGCACATA	9300
TTTACCTAAG	ATATCATTTT	CAAGATTTAC	TGTACTCCCG	ACTTGTTTAC	TCTTAAGAAT	9360
GGTTTGTTCC	AAGGTATGAG	GGATAACAGA	TACTGAAAAG	TTTACTTTGG	AGACTTTAGC	9420
GACAGTCAGA	CTAATGCCGT	CAATTGTAAT	AGATCCTTTT	TCAACTATTA	AATCTAAAAT	9480
TTCTTTTTGT	GTGTTGATTT	GATACCATAC	AGCATTATCA	TCTTTTTTTA	TTGACGAGAT	9540
TTTTCCTGTA	CCATCAATGT	GTCCTGTAAC	GACGTGACCC	CCAAGTCGAC	CGTTGACAGA	9600
TAAGGCTCTT	TCTAGATTCA	CCTCACTTCC	ATGTTTTAAT	AGAGTAAGAG	CTGTTCGACT	9660
CCATGTTTCA	TTCATTACAT	CAACTGTAAA	GGATTGATGA	TTGAAATGAG	TAACTGTAAG	9720
ACAGATACCA	TTTACTGCTA	TACTATCGCC	TAAATGGATA	TCCGTTAATA	TTTTTGAGGC	9780
TTTAATTGAT	AGTTTACAAT	TACGAGAGTC	TTTCTGTATT	CTTTCAACTT	TTCCGATTTC	9840
TTCAATTATT	CCTGTGAACA	TGGATAAATC	ACTTCACTTT	CTATGAGATA	GTCATTTCCT	9900
ATTTGAGAAA	ATGCATAAGG	TTTCAATCTA	ATAGCGTCAT	TTGGCAAAGA	AATACCTTCA	9960
CCTCCGACAG	GAAACTTGGC	ACTACCTCCA	AAAACTTTTG	GTGCAATATA	TATTTTCAGC	10020
TCATCAACAA	TTTGTTGTTC	CAAAGCACTC	CAATTCATTA	GACTGCCCCC	TTCTAGAACT	10080
AGGCTATCAA	TCTGCATGTT	TCCTAGATGT	TGCATTAAAC	TCGATAAGTC	TATATGATTG	10140
CCTTTTTTCT	TTATGGAAAG	TATTTCACAG	CCATGATTTT	GATATAGCTT	CATTTTATTT	10200
TTGTCTTCAG	AGGAAGTGGC	AATGTAAGTT	TTAATATCAT	TTGCTGTTTT	TACGATTTTA	10260
GAGGTAAGAG	GAGTTCGTAA	ATGTGTATCG	CATATGATAC	GGATAGGATT	TTTCCCTTCC	10320
TCCAATCTAC	ATGTCAGCAA	AGGATCGTCT	TGAATAACAG	TATTGACTCC	CACCATAATT	10380
GCACTAACAT	GGTGTCGTAA	CTGATGCACA	TGCTTTCTTG	CTTCTTCTTC	AGTAATCCAT	10440
TTGGATTGAT	TTGTTTTAGT	GGCTATTTTT	CCATCCATTG	ACATTGCATA	TTTCATAAAA	10500
ACATAGGGTA	CATGCTGGGT	AATATACTTT	CTAAAACTTT	TTATTAAGTT	AAGACACTCA	10560
ттттсталал	TTCCAACAGT	AACTTGAAGA	TTATTTTCCT	CAAGTATCTT	TACTCCTTTT	10620
CCAGATACAA	TAGGATTACA	GTCTAGGCTT	CCAATGACTA	CTCTTGTAAT	ACCACTATCG	10680

396 ATTATAGCAT CTATACAGGG AGGTGTTTTC CCGAAGTGAC AACAGGGTTC AAGTGTTACA 10740 TAAAGCGTCG CTCCGACAGG GGATTCTCTA CAGTTTTTAA GAGCATTTCT CTCAGCATGT 10800 GGGCCACCAA AAAACTCATG ATAACCTTGT CCGATAATGT GATTATCTTT TACAATAACT 10860 GCGCCGACCA TAGGATTGGG ATTGACGTAA CCAGCCCCTT TTTGTGCCAG TTTTATTGCT 10920 AATTTCATAT ATTTTGAATC GCTCATCTCG CTACCTCCAA AAAAATATAC CTTGAATAGG 10980 GGACTACTCA AGGCATACAA AAGAAAACTT ATGCGATTAA CAAAAATGCT CTGAAATGAC 11040 AAGTAATCAT TTCAGAGCAC GCAAAAAGCA CAAATATACT TTTATCTTCT TTCATCCAGA 11100 CTATACTGTC GGCTTTGGAA TTTCACCAAA TCATGCCTTT CGGCTCGTGG GCTATACCAC 11160 CGGTAGGAA TTTCACCCTG CCCTGAAGAT AGTTATTCAA TTACAGATGA TTATAGTACT 11220 TAATTTTGAA TATGTCAACA GATAAATACC GATTGTTTTT GATATACTGT ATTTGTGATA 11280 ATCGATTCTC GCTCCTCGGA TAAAGAAAAT ATGATATACT AGATAAACGA AATAAGAGAG 11340 AAGGAATACT ATGTACGCAT ATTTAAAAGG AATCATTACC AAAATTACTG CCAAATACAT 11400 TGTTCTTGAA ACCAATGGTA TTGGTTATAT CCTGCATGTG GCCAATCCTT ATGCCTATTC 11460 AGGTCAGGTT AATCAGGAGG CTCAGATTTA TGTGCATCAG GTTGTGCGTG AGGACGCCCA 11520 TTTGCTTTAT GGATTTCGCT CAGAGGATGA GAAAAAGCTC TTTCTTAGTC TGATTTCGGT 11580 CTCTGGGATT GGTCCTGTAT CAGCTCTTGC TATTATCGCT GCTGATGACA ATGCTGGCTT 11640 GGTTCAAGCC ATTGAAACCA AGAACATCAC CTACTTGACC AAGTTCCCTA AAATTGGCAA 11700 GAAAACAGCC CAGCAGATGG TGCTGGACTT GGAAGGCAAG GTAGTAGTTG CAGGAGATGA 11760 CCTTCCTGCC AAGGTCGCAG TGCAAGCAAG TGCTGAAAAC CAAGAATTGG AAGAAGCTAT 11820 GGAAGCCATG TTGGCTCTGG GCTACAAGGC AACAGAGCTC AAGAAAATCA AGAAATTCTT 11880 TGAAGGAACG ACAGATACAG CTGAGAACTA TATCAAGTCG GCCCTTAAAA TGTTGGTCAA 11940 ATAGGAGCAG AGAATGACAA AACGTTGTTC GTGGGTCAAG ATGACCAACC CGCTCTACAT 12000 CGCCTATCAT GATGAGGAGT GGGGCCAGCC CCTCCATGAT GACCAAGTAT TGTTTGAGIT 12060 GTTGTGTATG GAAACCTATC AGGCAGGCCT GTCTTGGGAA ACGGTACTCA ACAAACGCCA 12120 AGCTTTCCGA GAAGTCTTTC ATAGCTATCA AATTCACTCA GTCGCAGAGA TGACTGACAC 12180 TGAATTGGAA GCCATGCTGG AGAATCCAGC TATCATTCGA AATAGAGCCA AGCTTTTTGC 12240 TACACGCCCT AACGCCCAAG CCTTTCTACA GTTACAGGCA GAGTACGGCT CTTTTGATGC 12300 CTATCTTGG TCTTTGTTG AGGGGAAAAC TGTCGTTAAC GATGTTCCTG ATTATCGCCA 12360 AGCGCCAGCT AAAACACCCT TATCTGAGAA ATTAGCCAAA GATCTCAAAA AACGAGGCTT 12420 CAAGTTCACA GGCCCAGTCG CCGTATTGTC TTTTCTACAG GCTGCAGGGC TAGTTGATGA 12480

CCACGAGAAT	GATTGTGAGT	GGAAAGGTCT	TAAATGATGT	СТААСААААА	TAAGGAAATT	12540
CTGATTTTTG	CGATTCTCTA	TACAGTCCTC	TTTATGTTTG	ATGGCGTTAA	ATTGCTGGCT	12600
TCTTTAATGC	CATCTGCCAT	TGCAAATTAT	CTTGTTTATG	TAGTTTTAGC	TCTATATGGC	12660
TCCTTCTTGT	TCAAGGATAG	ATTGATCCAA	CAATGGAAGG	AGATTAGAAA	GACTAAAAGA	. 12720
AAATTCTTCT	TTGGAGTCTT	AACAGGATGG	CTCTTTCTCA	TTCTGATGAC	TGTTGTCTTT	12780
GAATTTGTAT	CAGAGATGTT	GAAGCAGTTT	GTGGGACTAG	ATGGACAAGG	TCTAAATCAG	12840
TCTAATATTC	AAAGTACCTT	TCAAGAACAA	CCACTACTGA	TAGCTGTTTT	TGCTTGTGTC	12900
ATTGGACCTC	TGGTAGAAGA	ATTATTTTC	CGTCAGGTCT	TATTGCATTA	CTTGCAGGAA	12960
CGGTTGTCAG	GTTTACTAAG	CATTATTCTG	GTAGGACTTG	TTTTTGCTCT	GACTCATATG	13020
CACAGTTTGG	CTCTATCAGA	GTGGATTGGT	GCAGTTGGTT	ACTTAGGTGG	AGGCCTTGCC	13080
TTTTCTATTA	TTTATGTGAA	AGAAAAAGAG	AATATCTACT	ATCCCCTACT	TGTTCACATG	13140
TTAAGCAACA	GCCTCTCCTT	AATCATTTTA	GCTATCAGTA	TAGTAAAATG	AAATGAGAAC	13200
AGGACAAATC	GATTTCTAAC	AATGTTTTAG	AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	13260
TACTGTAATA	TGTGATGAAA	ATGCCAGTAA	TGATACCGAG	AAAAAGCTG	AGAAACTTTT	13320
CCCAGCTTTA	TTTGTTATAG	TCAAAGAGAA	TGACTTGTTC	CTGTGCATCT	ACATGAGCAT	13380
GGACCCCAAA	GGGTACAATT	GCTCTTGGAG	TTGCGTGGCC	GACATTCAGA	TTATAGACAA	13440
TCGGGATATT	GCTGTCAATG	ATATCCAATA	GTGCCTCTTT	ATAGTCGTCA	TGGAAAGTTT	13500
CATCCATAGG	TTTTCCGACC	AAGAGTCCAT	TGATGACCGC	GAATATGCCA	GTGTCCTTTA	13560
AAGTTAGCAA	CATCTTTTTG	AAGTCTTCTG	GCTTAGGCTT	TTCTTCGCTT	GTTTCGAGCA	13620
AGAGGATTTT	CCCTTCCCAG	TCTGACAAGT	CAGGGAAAAG	TTTGTATTTT	TGGCAGAGTT	13680
CCGTGCTATC	TGCGTATCGA	GAGTTGTCAA	AGATATCGTA	GAGGGATTCG	AGGCAACCAC	13740
CGAGGATTTT	CCCCTCGAAC	TGGGCACTTC	CTTGCAACAA	GTCAAAACCT	GTATTTGTAT	13800
GACTGACACG	AGGTGTTCCC	AGGGCCGTGG	GACTAAAATC	AGTTCGTTCC	TCATACCAAA	13860
CGTCACTAGG	GCGGATTTCT	GAAATTCTTC	CCGTCTCAAT	CAATTCTTTA	AAGTAGTGAA	13920
GGCTATAGGC	TAGCATTTCT	TTGTCTAATT	CACAAATGTC	TGCTAAAAAG	GATTGACCAT	13980
AAAAAGTCTT	GATTCCTAAT	TTATGCAACA	TGAGGTGGTT	CATGGTTGTA	TCCGAGAAGC	14040
CAAGAAAAAT	TTTTTGCTTG	ATAACCTTTT	GGAGTTGGTC	ATTTTCAAAA	AGATAAGGTA	14100
GCAAGCGATA	GGTATCGTCT	CCACCGATGG	CACATAGGAT	CATGTCGATG	CTATCATCAG	14160
AAAAGGCATG	AATCAAATCC	TCTGCACGAG	CTTCAGGATG	GTCCTTGATA	AAGTCTAATC	14220

398

CTTTTAACGA ATGGGGCAAA AAGATGGGAT TGGTCCCAGA TCCTTGAGAC GTT 14273

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9828 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GTGAAGTGCG GCAAAAGGTG	CAAGTGATGA	GCTCAGGTTC	TTTAGCTCTT	GACATTGCCC	60
TTGGCTCAGG TGGTTATCCT	AAGGGACGTA	TCATCGAAAT	CTATGGCCCA	GAGTCATCTG	120
GTAAGACAAC GGTTGCCCTT	CATGCAGTTG	CACAAGCGCA	AAAAGAAGGT	GGGATTGCTG	180
CCTTTATCGA TGCGGAACAT	GCCCTTGATC	CAGCTTATGC	TGCGGCCCTT	GGTGTCAATA	240
TTGACGAATT GCTCTTGTCT	CAACCAGACT	CAGGAGAGCA	AGGTCTTGAG	ATTGCGGGAA	300
AATTGATTGA CTCAGGTGCA	GTTGATCTTG	TCGTAGTCGA	CTCAGTTGCT	GCCCTTGTTC	360
CTCGTGCGGA AATTGATGGA	GATATCGGAG	ATAGCCATGT	TGGTTTGCAG	GCTCGTATGA	420
TGAGCCAGGC CATGCGTAAA	CTTGGCGCCT	CTATCAATAA	AACCAAAACA	ATTGCCATTT	480
TTATCAACCA ATTGCGTGAA	AAAGTTGGAG	TGATGTTTGG	AAATCCAGAA	ACAACACCGG	540
GCGGACGTGC TTTGAAATTC	TATGCTTCAG	TCCGCTTGGA	TGTTCGTGGT	AATACACAAA	600
TTAAGGGAAC TGGTGACCAA	AAAGAAACCA	ATGTCGGTAA	AGAAACTAAG	ATTAAGGTTG	660
TAAAAAATAA GGTAGCTCCA	CCGTTTAAGG	AAGCCGTAGT	TGAAATTATG	TACGGAGAAG	720
GAATTTCTAA GACTGGTGAG	CTTTTGAAGA	TTGCAAGCGA	TTTGGATATT	ATCAAAAAAG	780
CAGGGGCTTG GTATTCTTAC	AAAGATGAAA	AAATTGGGCA	AGGTTCTGAG	AATGCTAAGA	840
AATACTTGGC AGAGCACCCA	GAAATCTTTG	ATGAAATTGA	TAAGCAAGTC	CGTTCTAAAT	900
TTGGCTTGAT TGATGGAGAA	GAAGTTTCAG	AACAAGATAC	TGAAAACAAA	AAAGATGAGC	960
CAAAGAAAGA AGAAGCAGTG	AATGAAGAAG	TTCCGCTTGA	CTTAGGCGAT	GAACTTGAAA	1020
TCGAAATTGA AGAATAAGCT	GTTAAAGCAG	TGGAGAAATC	CGCTACTTTT	TCGATTTTTG	1080
ATTCAAGTTT TTAGATTATA	TATAGTAGCT	TGAAATAAGA	TATGAACAAC	TCTATTAGGA	1140
AAGTCAAATT AATTTCTAGA	AATGTTTTAG	CAGCTACAGC	GTACTATTCC	AAACTCAACC	1200
AACTATAATA GATCGAAACT	AGAATAGTAC	ATATCTACTT	CTAAAACATT	GTTAAAAATC	1260
GATTTGACTT TCCTTATTTC	ATTCCGCTAT	ATATAGTTTG	CTGTTTCTTG	TCGCTCCTCT	1320
GGAAAGCTGA TATAATAGCT	TTATGAATAA	AAAACGAACA	GTGGACCTGA	TACATGGTCC	1380