SLIC Superpixels

R. ACHANTA, A. SHAJI, K. SMITH, A. LUCCHI, P. FUA et S. SUSSTRUNK

École Polytechnique Fédérale de Lausanne (EPFL) Suisse

(1) Échantillonnage régulier de l'image

Grille

- \bullet K superpixels avec N pixels
- Taille = $S \times S$ avec $S = \sqrt{\frac{N}{K}}$
- $C_k(L_k, a_k, b_k, x_k, y_k)$ centres

C_1	C_2	
П		

Affinement de la grille

Pour chaque C_k

- Chercher le pixel C_i' de gradient le plus faible dans un voisinage $n \times n$
- $C_k \leftarrow C_i'$

$C_{1}^{'}$	$C_2^{'}$	
П		

Valeur de $n? \rightarrow 3$

(2) Évolution des centres de chaque super pixel

Algorithme itératif

Répéter

- (1) Calcul des superpixels
 - Pour chaque p_i , choisir C_k dans voisinage $2S \times 2S$ qui minimise

$$D_s = d_{lab} + \frac{m}{S} d_{xy}$$

 d_{lab}, d_{xy} : distances euclidiennes

- (2) Mise à jour des centres (moyennes des attributs)
- (3) Calcul de $E(L_1)$ entre les anciens et nouveaux C_k

Jusqu'à E<Seuil

Choix pour
$$m$$
? $\rightarrow 10$
Choix pour $Seuil$? $\rightarrow 10$

(3) Renforcement de la connectivité des régions

Problème

L'algorithme utilisé n'interdit pas les super pixels disjoints

Solution

Pour chaque partie disjointe, attribuer le label du super pixel le plus gros dans son voisinage

