Charakterystyka Eulera

Zadanie domowe

Weronika Jakimowicz

Zadanie 1. Opisz grupę automorfizmów triangulacji \mathbb{R} P^2 o najmniejszej liczbie wierzchołków.

usunąć kolokwializmy, pokazać, że jądro Aut(D) \to S₅ = \mathbb{Z}_2 , na początku uzasadnić 2E = 3T, ładniej pokazać, że sześciany są trzymane przez automorfizmy

Ile wierzchołków?

Zacznijmy od obserwacji, że każdy m-sympleks σ^m zawiera dokładnie $\binom{m+1}{n+1}$ n-sympleksów. W takim razie, jeśli K jest kompleksem symplicjalnym, a $f_m(K)$ oznacza liczbę m-sympleksów w K, to wówczas

$$\deg_{m}(n)\cdot f_{n}(K)=\frac{m+1}{n+1}f_{m}(K),$$

gdzie $\deg_m(n)$ mówi do ilu m-sympleksów może należeć n-sympleks w kompleksie K. Jeśli rozważamy K będące triangulacją 2-rozmaitości oraz m = 2, n = 1, to wtedy $\deg_2(1)$ = 2, tzn. $2f_1(K)$ = $3f_2(K)$. Oznacza to, że na płaszczyźnie krawędź należy do 2 trójkątów, a każdy trójkąt ma 3 krawędzie.

Wiemy, że jeśli X ma triangulację o V wierzchołkach, E krawędziach i T trójkątach, to

$$\chi(X) = V - E + T$$
.

Krawędzie to 1-sympleksy, a trójkąty to 2-sympleksy. Mamy więc $2E = 2f_1(K) = 3f_2(K) = 3T$, co po podstawieniu daje

$$\chi(X) = V - E + \frac{2}{3}E = V - \frac{1}{3}E.$$

Ilość krawędzi szacujemy od góry przez ilość krawędzi w grafie pełnym: E $\leq {V \choose 2}$ czyli

$$V = \chi(X) + \frac{1}{3}E \le \chi(X) + \frac{V(V-1)}{6}$$

dla $\mathbb{R} \, \mathsf{P}^2$ dostajemy więc ograniczenie

$$V \leq 1 + \frac{V(V-1)}{6}$$

$$6 \ge 6V - V^2 + V = V(7 - V)$$

Powyższa nierówność dla V = 6 staje się równością. Tak samo dla V = 1 mamy równość, ale z oczywistego powodu nie ma jednowierzchołkowej triangulacji na \mathbb{R} P². Pozostałe liczby naturalne z przedziału (0, 7) nie mają szansy spełniać powyższe równanie (widać na obrazku)

Z listy 1 wiemy, że 6 wierzchołkowa triangulacja \mathbb{R} P² jest jedyna z dokładnością do izomorfizmu, czyli nie musimy się martwić którą triangulacje opisujemy.

Plan działania

Płaszczyzna rzutowa \mathbb{R} P 2 to S 2 wydzielona przez antypodyczne działanie \mathbb{Z}_2 . W takim razie, 6 wierzchołkowa triangulacja na \mathbb{R} P 2 przychodzi od triangulacji na S 2 . Dwudziestościan ma 12 wierzchołków i 20 ścian i jest to interesująca nas triangulacja sfery. Łatwiejsze jest jednak badanie grupy automorfizmów bryły dualnej do dwudziestościanu - dwunastościanu o 12 ścianach i 20 wierzchołkach.

narysować na sferze z osiami symetrii

Z dodecahedronu możemy dostać icosahedron - wystarczy postawić wierzchołek na każdej ścianie i połączyć odpowiednio wierzchołkami. W ten sam sposób można z icosahedronu wrócić do dodecahedronu. Stąd grupy automorfizmów obu tych brył będą równe i wystarczy popatrzeć na dodecahedron D:

Uzasadnimy teraz to, co prawi Wikipedia, mianowicie, że $Aut(D) = A_5 \times \mathbb{Z}_2$.

Czy zgadza się rząd?

Niech $v \in D$ będzie wierzchołkiem dodecahedronu (odpowiada ścianie icosahedronu).

- |Obr(v)| = 20, bo automorfizm może postać wierzchołek na dowolny inny spośród 20 które D posiada.
- |Stab(v)| = 3! = 6, gdyż są to permutacje 3 sąsiadów tego wierzchołka przy trzymaniu v w miejscu.

W takim razie dostajemy

$$|Aut(D)| = |Orb(v)| \cdot |Stab(v)| = 20 \cdot 6 = 120 = |A_5 \times \mathbb{Z}_2|$$
.

Pozbycie się \mathbb{Z}_2

Wśród automorfizmów dodecahedronu D mamy dwa "rodzaje" odwzorowań

- rotacje i symetrie, które zachowują ruch wskazówek zegara przy numerowaniu sąsiadów dowolnego wierzchołka.
- by odwzorowanie antypodyczne tudzież symetria względem punktu w samym środku D, która

przewraca tę kolejność do góry nogami.

Ten drugi rodzaj odwzorowania będzie odpowiadać za czynnik \mathbb{Z}_2 w Aut(D). Wystarczy więc zająć się samą grupą symetrii i rotacji i pokazać, że to A_5 .

Symetrie i obroty

Sztuczką na pokazanie, że symetrie D to A₅ jest zauważenie 5 sześcianów w środku D. Sześciany możemy narysować idąc krokami:

- weź krawędź w D
- połącz wszystkie sąsiady tej krawędzi w ścianę
- weź krawędź po przeciwnej stronie D
- połącz jej wszystkie sąsiady w ścianę
- połącz te dwie ściany w sześcian.

Z tej metody wytwarzania sześcianów można od razu wywnioskować, że automorfizm przeprowadza sześciany na sześciany, ponieważ sąsiedztwo wierzchołków musi być zachowane, a to ono było podstawą wyciskania sześcianów z D.

Ponumerujmy sześciany od 1 do 5 - możemy teraz je permutować. Najbardziej leniwym sposobem na zauważenie, że grupa uzyskana przez porządne permutacje tych sześcianów to A_5 jest podzielenie $|\operatorname{Aut}(D)| = 120$ przez 2, które oznacza, że wyrzucamy antypodyzm (element rzędu 2). Zostawia to nam 60 automorfizmów, które będą permutować te sześciany i które powinniśmy móc włożyć w S_5 . Jedyna (z dokładnością do izomorfizmu) podgrupa S_5 o 60 elementach jest A_5 tak jak chcieliśmy.

Uzasadniliśmy, że $A_5 \times \mathbb{Z}_2$ = Aut(dodecahedron) = Aut(icosahedron) bo tak jak już wspomniałam, bryty te są dualne. Po wydzieleniu S^2 z triangulacją będącą icosahedronem przez działanie antypodyczne dostajemy grupę automorfizmów triangulacji $\Delta \mathbb{R} P^2$ o 6 wierzchołkach:

$$\operatorname{Aut}(\Delta\operatorname{\mathbb{R}}\operatorname{P}^2)=\operatorname{A}_5\times\operatorname{\mathbb{Z}}_2/\operatorname{\mathbb{Z}}_2=\operatorname{A}_5$$