Topology Qualifying Exam Spring 1988

Do 9 of the following 17 problems.

- 1. Prove that the following statements are equivalent for any topological space X:
 - a) X is Hausdorff
 - b) for any space Y and for each pair of continuous functions $f, g: Y \to X$ that agree on a dense subset of Y, f = g.
- **2.** Prove that the product of normal T_1 spaces must be T_1 and completely regular, but need not be normal.
- 3. Prove or give a counterexample for each of the following implications: separable $\stackrel{(a)}{\Longrightarrow}$ second countable $\stackrel{(b)}{\Longrightarrow}$ first countable $\stackrel{(c)}{\Longrightarrow}$ separable $\stackrel{(d)}{\Longrightarrow}$ first countable $\stackrel{(e)}{\Longrightarrow}$ second countable.
- **4.** Let A be a subset of a topological space X. Show that the following statements are equivalent:
 - a) $x \in \overline{A}$
 - b) there is a filter \mathcal{F} on X such that $A \in \mathcal{F}$ and \mathcal{F} converges to x.
 - c) There is a net $\alpha: \Lambda \to A$ that converges to x.
- **5.** Let $(X_{\alpha})_{\alpha \in A}$ be a collection of topological spaces and let x be fixed point in $\prod_{\alpha \in A} X_{\alpha}$. Show that

$$D = \left\{ y \in \prod_{\alpha \in A} X) \alpha | \ y \text{ and } x \text{ differ in at most finitely many coordinates} \ \right\}$$

is dense in $\prod_{\alpha \in A} X_{\alpha}$.

- **6.** Let $\{A_{\alpha}\}$ be a point-finite covering of a Hausdorff space X. Show that $\{A_{\alpha}\}$ has a subcovering $\{B_{\gamma}\}$ so that no subset of $\{B_{\gamma}\}$ covers X.
- 7. Prove that the following statements are equivalent for any topological space X:
 - a) X is Tychonoff (i.e., T_1 and completely regular)
 - b) X can be embedded in a compact Hausdorff space.
- 8. Show that for $n \geq 1$ the *n*-sphere, S^n , is homeomorphic to the one-point compactification of Euclidean *n*-space, E^n .
- **9.** Find an error in the following purported "proof" that 2^R is metrizable, where $2 = \{0, 1\}$ is a two point discrete space, and R is the set of real numbers.
 - **Proof.** Consider the inclusion $N\subseteq R$, where N is the natural numbers. This induces a "natural" embedding $2^N\hookrightarrow 2^R$ where $f\mapsto \hat{f}$ and

$$\hat{f}(r) = \begin{cases} f(r) & \text{if } r \in N \\ 0 & \text{if } r \in R - N. \end{cases}$$

But 2^N is the Cantor space C. Thus C is embedded in 2^R . Let U be an open subset of 2^R . By the definition of product topology, the projection of U is $\{0,1\}=2$ in all but finitely many coordinates. Thus $U\cap 2^N\neq\emptyset$. So 2^N is dense in 2^R . But 2^N is compact and 2^R is Hausdorff, so 2^N is closed in 2^R . Thus $2^N=2^R$. But C is metrizable, and so 2^R is metrizable.

- 10. Prove that every quotient of a locally connected space is locally connected.
- 11. Let E^n denote Euclidean *n*-dimensional space. For what values of *n* is it true that $E^n \{p\}$ is simply connected for any point $p \in E^n$. Prove your answer.
- 12. Let E^n denote Euclidean *n*-dimensional space. For what values of *n* is it true that $E^n C$ is connected for any countable subset C. Prove your answer.
- 13. Show that in a locally compact Hausdorff space, countable intersections of dense open sets are dense and open.
- **14.** A covering $\{U_{\alpha}\}_{{\alpha}\in A}$ of a topological space X is called shrinkable if there is a covering $\{V_{\alpha}\}_{{\alpha}\in A}$ of X such that $\overline{V_{\alpha}}\subseteq U_{\alpha}$ for each ${\alpha}\in A$ and $V_{\alpha}\neq\emptyset$ whenever $U_{\alpha}\neq\emptyset$. Show that a Hausdorff space is normal if and only if each point-finite covering is shrinkable.
- 15. Prove that every separable metrizable space can be embedded in a countable product of closed unit intervals.

16.

- a) Give an example of an ultrafilter on the set \mathbb{R} of real numbers.
- b) Give an example of a filter on \mathbb{R} that is not an ultrafilter.
- c) Prove that every filter on \mathbb{R} is contained in an ultrafilter on \mathbb{R} .
- 17. Show that every compact connected Hausdorff space is the continuous image of [0,1].