1 Geschichte

- · Riemann 1854
- Lebesgue 1904
- Kolmogorov 1933 (moderne Wahrscheinlichkeitstheorie)

2 Aktuelles Interesse/ Beispiele

Beispiel 2.1

 $\Omega=\{w_1,w_2,...\}$ abzählbar oder endlich. $\mu(\{w_i\}):=p_i\in[0,\infty]$. Sei $A\subset\Omega:\mu(A)=\sum_{w\in A}\mu()\{w\}\in[0,\infty]$ (funktioniert da endliche/ abzählbare Mengen).

Eigenschaften:

- $\mu(\emptyset) = 0$.
- $\mu \ge 0$
- σ -Additivität: $\mu(A \dot{\cup} B) = \mu(A) + \mu(B)$ und A und B sind disjunkt. Das heißt abzählbare Vereinigung klappt.

Spezialfall: pi = 1 (Zählmaß).

Fixiere $x \in \Omega$.

$$\mu(A) = \begin{cases} 1, & x \in A \\ 0, & \text{sonst} \end{cases}$$

Genannt das Dirac Maß.

Sei Ω diskret. Seien $\{x_1,...,x_n\}$. Das empirisches Maß: $\frac{1}{n}\sum_{i=1}^n \delta_{x_i}(\cdot)$.

2.1 Länge eines Pfades/ einer Kurve

Sei $\gamma:[0,1]\to(E,\varrho)$ mit Metrik ϱ . Sei π eine endliche Partition von [0,1] ist. Die Länge ist definiert als

$$L[\gamma] := \sup_{\pi} \sum_{[s,t] \in \pi} \varrho(\gamma(s), \gamma(t))$$

2.2 Geometrie

Gegeben sei eine Mannigfaltigkeit \mathcal{M}^n mit Dimension n. Eine nette Teilfläche von \mathbb{R}^m mit $m \geq n$. Für eine lokale Umgebung von $x \in \mathcal{M}^n$ findet man eine Karte φ , sodass der betrachtete Raum \mathbb{R}^n gleicht. Sei $\mathcal{A} = \varphi^{-1}(A)$.

What is the right definition of volume (measure)? Naiv:

$$vol^n(\mathcal{A}) \coloneqq Leb^n(A).$$

Geht nicht, da nicht intrinsisch definiert (hängt von der Karte φ ab.

Besser:

$$Vol^{n}(\mathcal{A}) := \int_{A \subset \mathbb{R}^{n}} \sqrt{\det(g \circ \varphi^{-1})} dx^{1} ... dx^{n},$$

wobei $g: \mathcal{M} \to \{IP\}, x \mapsto g_{|_x}$. Genannt **Riemann'sche Volumenmaß**.

2.3 Hausdorff Maß

Sei (E,ϱ) ein metrischer Raum. Bisher: $A\subset E$. Man versucht daraus ein d-dimensionales Maß zu konstruieren. $U_{i...}$ max abzählbare Überdeckung von A. Wir schauen uns nur Überdeckungen an mit $diam(U_i) := \sup\{\varrho(x,y) : x,y \in U\} < \delta$, wobei $\delta > 0$ fix ist.

$$H^d_{\delta}(A) := \inf\{(\sum diam(U_i))^d\}$$

Wir lassen δ gegen o laufen

$$H(A) := \lim_{\delta \to 0} H_{\delta}^{d}(A)$$

Nun ist H^d (eingeschränkt auf geeignete A) ein Maß. Es nennt sich das d-dimensionale Hausdorff-Maß. Es gibt ein Theorem, das besagt, dass für Riemann'sche Mannigfaltigkeiten \mathcal{M}^n : $H^d = Vol^d$ (bis auf eine Konstante).

Leistungsstärker als das Riemannsche Volumenmaß. Man kann zum Beispiel die Koch Kurve berechnen.

Beispiel 2.2

Das eindimensionale Hausdorffmaß: $H^1(\text{Koch Menge})=\infty$. Für das zweidimensionale Maß erhält man $H^2(\text{Koch Menge})=0$. Was passiert, wenn 1< d<2?

Maße mit Gesamtmasse 1 heißen Wahrscheinlichkeitsmaße. $\mu(\Omega)=1\iff$ probability. $\int ...d_{\mu}$ heißen Erwartungswerte.

Maßtheorie in ∞ —dim: Wiener-Maß (Highlight der letzten 50 Jahre Mathemtik):

$$\Omega = C([0,1], \mathbb{R}^n)$$
 Banachraum

$$A \subset \Omega, \mu(A) \in [0,1]$$

outer boundary of planar brownian motion. Was ist die Hausdorff Dimension von solchen Objekten? $dim_H(\%)=\frac{4}{3}$ im Jahr 2000: L-S-W.

2014 Φ^4 measure: Quantenfeldtheorie. Hainer Fields Medaille