

Values and Networks – Steps toward Exploring their Relationships

Carsten Orwat <carsten.orwat@kit.edu> Roland Bless <roland.bless@kit.edu>

Institute of Telematics (TM),
Institute for Technology Assessment and Systems Analysis (ITAS)

Values and Technical Systems

Values and Technical Systems

Values and Technical Systems

Value Conflicts

Conflicts between values are natural

- Value-aware communication architectures?
- Value-oriented network design?

Value Conflicts – Example

Karlsruhe Institute of Technology

Further Challenges

- Trend of connecting everything
 - Internet of Things, Smart Objects, Internet of Everything
 → deeper impact on nearly all areas of life
- Strong binding between devices and services

- More and new value conflicts?
- How to handle value conflicts?

Inter-related Ways to Handle Value Conflicts

Technical System

1

Institutionalization

Establishing, Adjusting

Policy and Governance

2

Choice and Markets

3

Karlsruhe Institute of Technology

Operationalization

Values in Design, Value-sensitive design, Constructive Technology Assessment, ...

- Technical implementations are assertive and rigid
- Specification: Standards
 - IETF: Pervasive surveillance is an attack → End-to-end encryption
 - IRTF: Human Rights in Protocols Considerations Research Group
 → can protocols enable, strengthen or threaten human rights?
- Accountability: Certified Globally Unique IDs → Privacy?
- Privacy: Hornet [15] as new Network Layer → Accountability?

Operationalization – Limitations and Drawbacks

- Technical implementations of values
 - have impact on other values
 - may be complex
 - are assertive and rigid

- Technical System
- 1

- No room left for interpretation
- No flexibility exceptions from rules?
- Example:
 - Law to technically block illegal content
 - Secret black list with server names (DNS)
 - Not really effective, danger of over-blocking
 - Better solution: deletion instead of blocking

Additional Considerations Necessary...

Technical System 1

Institutionalization

Establishing, Adjusting

Institutional Frameworks

Policy and Governance

Choice and Markets

3

Institutionalization – Policy and Governance

- Political and juridical actors
 - societal decision- and rule-making
 - juridical procedures
 - regulation and oversight
 - "checks and balances"

- Technical implementation of values has impact on such processes
- Realization of values is then
 - somewhere "hidden" in the code
 - hard to assess

Institutionalization - Limitations and Drawbacks

- Regulatory capture by partial interests
 - Net Neutrality (contradictory in itself),
 European Copyright Directive (protection against DRM circumvention)
- Unjustified dominance of state interests possible
 - E.g., Mass surveillance of all citizens vs. targeted surveillance

Institutionalization – Technical Support

- Provide more means for monitoring, auditing, and assessing technical implementations
- Policy and Covernance 2
- e.g., provide transparency mechanisms
 - > evidences for bias or misbehavior
- Transparency to support disclosure of
 - Privacy violations (e.g., Smart TVs disclosing use to vendor)
 - Censorship (e.g., HTTP Response 451)

Hidden discrimination (e.g., Traffic Policing)

Institutionalization - Choice and Markets

- Markets can provide different products according to different values
- Choice and Markets
- Certified products and services
- Market failures possible
 - Limited choices
 - Binding customers to platforms
- Often requires: Market law, consumer protection, privacy regulation, competition policy

Institutionalization – Technical Support

Facilitate conditions for markets that consider/support values

- Open standards (avoid vendor lock-in)
- Higher flexibility → providing adaption and choice for individual values
- Transparency measures → assessment of value realization

Conclusions

Thinking in institutional frameworks

- Technical implementations are only one part of the solution!
- Think of markets and governance solutions
- Technical support for institutional frameworks
- Need more interdisciplinary research!

References (1)

- [1] Poel van de, Ibo and Lambèr M. M. Royakkers (2011): Ethics, Technology, and Engineering. An Introduction, Malden, Mass.: Wiley-Blackwell
- [2] Rundle, Mary and Chris Conley (2007): Ethical Implications of Emerging Technologies: A Survey, Paris: UNESCO United Nations Educational, Scientific and Cultural Organization
- [3] Clark, D., B. Lehr, S. Bauer, P. Faratin, R. Sami, und J. Wroclawski, Overlay Networks and the Future of the Internet. Communications and Strategies, 2006. 63: p. 109-129.
- [4] Knobel, C. und G.C. Bowker, Values in Design. Communications of the ACM, 2011. 54(7): p. 26-28.
- [5] Nissenbaum, H., Values in Technical Design, in Encyclopedia of Science, Technology and Ethics, C. Mitcham, Editor. 2005, Macmillian: New York. p. Ixvi-Ixx.
- [6] Shilton, K., Anticipatory Ethics for a Future Internet: Analyzing Values During the Design of an Internet Infrastructure. Science and Engineering Ethics, 2014: p. 1-18.
- [7] Clark, D.D., J. Wrocławski, K.R. Sollins, und R. Braden, Tussle in cyberspace: Defining tomorrow's internet. IEEE/ACM Transactions on Networking, 2005. 13(3): p. 462-475.
- [8] van Schewick, B., Architecture & Innovation. The Role of the End-to-End Arguments in the Original Internet; Ph.D. Thesis. 2005, Technische Universität Berlin, Fakultät IV Elektrotechnik und Informatik: Berlin.

References (2)

- [9] van Schewick, B., Network Neutrality and Quality of Service. What a Non-Discrimination Rule Should Look Like. 2012, Stanford University, The Centre for Internet and Society: Stanford.
- [10] Reidenberg, J.R., Lex Informatica: The Formulation of Information Policy Rules Through Technology. Texas Law Review, 1998. 76(3): p. 553-584.
- [11] Lessig, L., Code and other laws of cyberspace. 1999, New York: Basic Books. ISBN 978-0465039128
- [12] Naylor, D., M.K. Mukerjee, und P. Steenkiste, Balancing accountability and privacy in the network, in Proceedings of the 2014 ACM conference on SIGCOMM. 2014, ACM: Chicago, Illinois, USA. p. 75-86.
- [13] Clark., D. The Design Philosophy of the DARPA Internet Protocols. In Symposium proceedings on Communications Architectures and Protocols (SIGCOMM '88), Vinton Cerf (Ed.). 1988, ACM, New York, NY, USA, 106-114.
- [14] Bray, T. An HTTP Status Code to Report Legal Obstacles. IETF, RFC 7725, Feb. 2016.
- [15] Chen, C., D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. 2015. HORNET: High-speed Onion Routing at the Network Layer. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS '15). ACM, New York, NY, USA, 1441-1454