GATE (2021) PH(40-52)

EE24BTECH11040 - Mandara Hosur

Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: $-\frac{2}{3}$)

1) Consider a point charge +Q of mass m suspended by a massless, inextensible string of length l in free space (permittivity ε_0) as shown in the figure. It is placed at a height d (d > l) over an infinitely large, grounded conducting plane. The gravitational potential energy is assumed to be zero at the position of the conducting plane and is positive above the plane.

If θ represents the angular position and p_{θ} its corresponding canonical momentum, then the correct Hamiltonian of the system is

a)
$$\frac{p_{\theta}^2}{2m_{\ell}^2} - \frac{Q^2}{16\pi\varepsilon_0(d-l\cos\theta)} - mg(d-l\cos\theta)$$

b)
$$\frac{p_{\theta}^2}{2ml^2} - \frac{Q^2}{8\pi\varepsilon_0(d-l\cos\theta)} + mg(d-l\cos\theta)$$

c)
$$\frac{p_{\theta}^{2}}{2ml^{2}} - \frac{Q^{2}}{8\pi\epsilon_{0}(d-l\cos\theta)} - mg(d-l\cos\theta)$$

d)
$$\frac{p_{\theta}^2}{2ml^2} - \frac{Q^2}{16\pi\varepsilon_0(d-l\cos\theta)} + mg(d-l\cos\theta)$$

2) Consider two concentric conducting spherical shells as shown in the figure. The inner shell has a radius a and carries a charge +Q. The outer shell has a radius b and carries a charge -Q. The empty space between them is half-filled by a hemispherical shell of a dielectric having permittivity ε_1 . The remaining space between the shells is filled with air having the permittivity ε_0 .

The electric field at a radial distance r from the center and between the shells (a <r < b) is

- a) $\frac{Q}{2\pi(\epsilon_0+\epsilon_1)} \frac{\hat{r}}{r^2}$ everywhere b) $\frac{Q}{4\pi\epsilon_0} \frac{\hat{r}}{r^2}$ on the air side and $\frac{Q}{4\pi\epsilon_1} \frac{\hat{r}}{r^2}$ on the dielectric side c) $\frac{Q}{2\pi\epsilon_0} \frac{\hat{r}}{r^2}$ on the air side and $\frac{Q}{2\pi\epsilon_1} \frac{\hat{r}}{r^2}$ on the dielectric side d) $\frac{Q}{4\pi(\epsilon_0+\epsilon_1)} \frac{\hat{r}}{r^2}$ everywhere

- 3) For the given sets of energy levels of nuclei X and Y whose mass numbers are odd and even, respectively, choose the best suited interpretation.

- a) Set I: Rotational band of X
 - Set II: Vibrational band of Y
- b) Set I: Rotational band of Y
 - Set II: Vibrational band of X
- c) Set I: Vibrational band of X
 - Set II: Rotational band of Y
- d) Set I: Vibrational band of Y
 - Set II: Rotational band of X
- 4) Consider a system of three distinguishable particles, each having spin $S = \frac{1}{2}$ such that $S_z = \pm \frac{1}{2}$ with corresponding magnetic moments $\mu_z = \pm \mu$. When the system is placed in an external magnetic field H pointing along the z-axis, the total energy of the system is μH . Let x be the state where the first spin has $S_z = \frac{1}{2}$. The probability of having the state x and the mean magnetic moment (in the +z direction) of the system in state x are
 - a) $\frac{1}{3}$, $-\frac{1}{3}\mu$

- 5) Consider a particle in a one-dimensional infinite potential well with its walls at x = 0and x = L. The system is perturbed as shown in the figure.

The first order correction to the energy eigenvalue is

- a) $\frac{V_0}{4}$ b) $\frac{V_0}{3}$ c) $\frac{V_0}{2}$ d) $\frac{V_0}{5}$

- 6) Consider a state described by $\psi(x,t) = \psi_2(x,t) + \psi_4(x,t)$, where $\psi_2(x,t)$ and $\psi_4(x,t)$ are respectively the second and fourth normalized harmonic oscillator wave functions and ω is the angular frequency of the harmonic oscillator. The wave function $\psi(x,t=0)$ will be orthogonal to $\psi(x,t)$ at time t equal to

 - a) $\frac{\pi}{2\omega}$ b) $\frac{\pi}{\omega}$ c) $\frac{\pi}{4\omega}$ d) $\frac{\pi}{6\omega}$
- 7) Consider a single one-dimensional harmonic oscillator of angular frequency ω , in equilibrium at temperature $T = (k_B \beta)^{-1}$. The states of the harmonic oscillator are all non-degenerate having energy $E_n = (n + \frac{1}{2})\bar{h}\omega$ with equal probability, where n is the quantum number. The Helmholtz free energy of the oscillator is

 - a) $\frac{\bar{h}\omega}{2} + \beta^{-1} \ln \left[1 e^{\beta \bar{h}\omega} \right]$ b) $\frac{\bar{h}\omega}{2} + \beta^{-1} \ln \left[1 e^{-\beta \bar{h}\omega} \right]$ c) $\frac{\bar{h}\omega}{2} + \beta^{-1} \ln \left[1 + e^{-\beta \bar{h}\omega} \right]$ d) $\beta^{-1} \ln \left[1 e^{-\beta \bar{h}\omega} \right]$
- 8) A system of two atoms can be in three quantum states having energies 0, ϵ and 2ϵ . The system is in equilibrium at temperature $T = (k_B \beta)^{-1}$. Match the following Statistics with the Partition function.

Statistics	Partition function
CD: Classical (distinguishable particles)	Z1: $e^{-\beta\epsilon} + e^{-2\beta\epsilon} + e^{-3\beta\epsilon}$
CI: Classical (indistinguishable particles)	Z2: $1 + e^{-\beta\epsilon} + 2e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}$
FD: Fermi-Dirac	Z3: $1 + 2e^{-\beta\epsilon} + 3e^{-2\beta\epsilon} + 2e^{-3\beta\epsilon} + e^{-4\beta\epsilon}$
BE: Bose-Einstein	Z4: $\frac{1}{2} + e^{-\beta\epsilon} + \frac{3}{2}e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + \frac{1}{2}e^{-4\beta\epsilon}$

- a) CD:Z1, CI:Z2, FD:Z3, BE:Z4
- b) CD:Z2, CI:Z3, FD:Z4, BE:Z1
- c) CD:Z3, CI:Z4, FD:Z1, BE:Z2
- d) CD:Z4, CI:Z1, FD:Z2, BE:Z3
- 9) The free energy of a ferromagnet is given by $F = F_0 + a_0(T T_C)M^2 + bM^4$, where F_0 , a_0 , and b are positive constants, M is magnetization, T is the temperature, and T_C is the Curie temperature. The relation between M^2 and T is best depicted by

10) Consider a spherical galaxy of total mass M and radius R, having a uniform matter distribution. In this idealized situation, the orbital speed v of a star of mass m (m << M) as a function of the distance r from the galactic center is best described by (G is the universal gravitational constant)

11) Consider the potential U(r) defined as

$$U(r) = -U_0 \frac{e^{-\alpha r}}{r}$$

where α and U_0 are real constants of appropriate dimensions. According to the first Born approximation, the elastic scattering amplitude calculated with U(r) for a (wave-vector) momentum transfer q and $\alpha \to 0$, is proportional to (Useful integral: $\int_0^\infty \sin{(qr)}e^{-\alpha r}dr = \frac{q}{\alpha^2 + q^2}$)

a)
$$q^{-2}$$

- b) q^{-1}
- c) q
- d) q^2
- 12) As shown in the figure, inverse magnetic susceptibility $(\frac{1}{\nu})$ is plotted as a function of temperature (T) for three different materials in paramagnetic states.

(Curie temperature of ferromagnetic material = T_C

Néel temperature of antiferromagnetic material = T_N)

Choose the correct statement from the following

- a) Material 1 is antiferromagnetic $(T < T_N)$, 2 is paramagnetic, and 3 is ferromagnetic $(T < T_C)$.
- b) Material 1 is paramagnetic, 2 is antiferromagnetic $(T < T_N)$, and 3 is ferromagnetic $(T < T_C)$.
- c) Material 1 is ferromagnetic $(T < T_C)$, 2 is antiferromagnetic $(T < T_N)$, and 3 is paramagnetic.
- d) Material 1 is ferromagnetic ($T < T_c$), 2 is paramagnetic, and 3 is antiferromagnetic $(T < T_N)$.
- 13) A function f(t) is defined only for $t \ge 0$. The Laplace transform of f(t) is

$$\mathcal{L}(f;s) = \int_0^\infty e^{-st} f(t) dt$$

whereas the Fourier transform of f(t) is

$$\tilde{f}(\omega) = \int_0^\infty f(t)e^{-i\omega t}dt$$

The correct statement(s) is (are)

- a) The variable s is always real.
- b) The variable s can be complex. c) $\mathcal{L}(f;s) = \int_0^\infty e^{-st} f(t) dt$ and $\tilde{f}(\omega) = \int_0^\infty f(t) e^{-i\omega t} dt$ can never be made connected.

d) $\mathcal{L}(f;s) = \int_0^\infty e^{-st} f(t) dt$ and $\tilde{f}(\omega) = \int_0^\infty f(t) e^{-i\omega t} dt$ can be made connected.