Predicting the Likelihood of an Airbnb Reservation to be Cancelled

•••

Anna Apa Capstone Project 1

Problem Statement

- As part of the sharing/peer economy, Airbnb hosts become the key determinants of the guest's experience with the company
- This experience can determine whether or not the guest will continue to use the app in the future
- Along with the price and ratings shown in their listings, an Airbnb host's likelihood of cancelling should also be readily available for prospective guests to see

Objectives:

- Predict likelihood of an Airbnb listing reservation to be cancelled
- Increase transparency and incentivize Airbnb hosts to cancel on guests less

Datasets

- In this project, I focus on the Airbnb market in London, the second largest Airbnb city outside the US
- The following csv files were downloaded from insidearibnb.com:
 - listings.csv
 - reviews.csv
 - neighbourhoods.csv
- I also downloaded the latest London crime report from the "London Datastore" website:
 - crimes.csv

Data Wrangling —reviews.csv

listing_id

id

date

reviewer_id

reviewer_name

comments

- Contains 1,249,466 rows and 6 columns
 - Each row represents a review left on a listing
- Dealing with null values:
 - Drop empty reviews
- $1,249,466 \text{ rows} \rightarrow 1,211,982 \text{ rows}$

Getting the Number of Cancellations Made by Each Listing (Target Variable)

reviews.csv

- When a host cancels on a guest, an automated posting is posted on the listing's page. This posting cannot be deleted.
- There has been two versions of this automated posting:
 - "The host canceled this reservation n days before arrival. This is an automated posting."
 - "The reservation was canceled n days before arrival. This is an automated posting."
- We group these automated postings by listing and apply .value_counts to get the number of cancellations made by each listing

Data Wrangling—listings.csv

listings.csv

id name host id host name neighbourhood_group neighbourhood latitude longitude room type price minimum_nights number of reviews last review reviews_per_month calculated_host_listings_count availability_365

- Contains 80,767 rows and 16 columns
 - Each row represents a unique listing in London
 - Each column represents a feature
- Dealing with null values:
 - Replace missing values with 0
 - Drop inactive listings ('avaibility_365'==0)
- $80,767 \text{ rows} \to 78,074 \text{ rows}$

Number of Airbnb Listings and Reviews Per Neighbourhood

Number of Reservation Cancellations Per Neighbourhood

Cancellation-Listing Ratio Per Neighbourhood

Does Price Correlate with these Cancellations?

Does the Neighborhood Crime Rate Correlate with the Cancellations in the Area?

Which Neighborhood Currently has the Highest Crime Rate?

Crime rates from 2011 (earliest Airbnb review in dataset) - 2017 (latest)

Which Features have a Statistically Significant* Correlation with the Target Variable?

Feature	Observed Correlation	P-Value	Statistically Significant*?
Price	-0.02526	0.00010	yes
Number of Reviews	0.21254	0.00000	yes
Days Booked (Demand)	-0.0110	0.00220	yes
Minimum Nights	-0.00473	0.16280	no
Crime Rate	0.01161	0.00090	yes

^{*}statistically significant at the 5% level

Does the Number of Cancellations Vary Significantly* Across Neighborhoods and Room Types?

Feature	F-Stat	P-Value	Statistically Significant*?
Neighborhood	4.65329	0.0000000	yes
Room Type	11.68846	0.0000084	yes

Machine Learning

In this study, we try the following estimators and see which one performs best

- Linear Regression
- Ridge Regression
- Lasso Regression
- Decision Trees
- Gradient Boosting
- Random Forest

Machine Learning—continued

Dealing with Categorical Features

We create dummies for features 'room_type' and 'neighbourhood'

Training Set and Test Set

 We are using 70% of the data as training set and the remaining 30% as the test set

Scoring

 We are measuring accuracy by getting the average of 5-fold cross validation scores of each model, and use R^2 as the scoring metric

Comparing Model Performance

	cv_mean
Gradient Boost	0.632205
Decision Trees	0.583318
Random Forest	0.580236
Ridge Regression	0.221451
Linear Regression	0.221447
Lasso Regression	0.216374

Feature Selection

Hyperparameter Tuning

Since our Gradient Boosting Regressor model performed best, we can improve the performance further by tuning its parameters.

```
{'best_n': 50, 'best_max_depth': 3, 'best_lr': 0.1}
```

After using these parameters, R² increases from 0.6336 to 0.6352

Results

Train set score: 64.60% Test set score: 61.45%

Limitations

Model can be improved with more features (data) on each listing

Some information provided by insideairbnb.com were time sensitive--such as the availability of each listing, which only shows the data from the past year.