REMARKS

If there are any questions regarding this amendment or the application in general, a telephone call to the undersigned would be appreciated since this should expedite the prosecution of the application for all concerned.

If necessary to effect a timely response, this paper should be considered as a petition for an Extension of Time sufficient to effect a timely response, and please charge any deficiency in fees or credit any overpayments to Deposit Account No. 05-1323 (Docket # 038741.55710US).

Respectfully submitted,

December 20, 2004

Donald D. Evenson Registration No. 26,160

Mark H. Neblett

Registration No. 42,028

CROWELL & MORING LLP Intellectual Property Group P.O. Box 14300 Washington, DC 20044-4300 Telephone No.: (202) 624-2500 Facsimile No.: (202) 628-8844

DDE:MHN:rde

10/518483

T12 Rec'd PCT/PTO 2 0, DEC 200

Attorney Docket No. 038741.55710US

PCT/DE03/01973

SEALING ARRANGEMENT FOR SEALING A GAP BETWEEN TWO COMPONENTS WHICH CAN MOVE ROTATIONALLY WITH RESPECT

TO ONE ANOTHER ABOUT A COMMON AXIS OF ROTATION

[0001] This application claims the priority of German application no.

10227630.7, filed June 21, 2002, and PCT International Patent Application No.

PCT/DE03/01973, filed June 13, 2003, the disclosure of which is expressly

incorporated by reference herein.

BACKGROUND AND SUMMARY OF THE INVENTION

[0002] The invention relates to a sealing arrangement for sealing a gap

between two components which can move rotationally with respect to one

another about a common axis of rotation, of the type described in the preamble

of claim 1.

[0003] The use of brush seals for sealing two components which can move

rotationally with respect to one another is well known. The brush seal in this

case substantially comprises a brush casing, which is mounted in the first

component, and a plurality of bristles which have been introduced into the brush

casing and the free ends of which are directed onto a sealing surface of the

second component. In particular in turbomachines, such as for example steam

turbines or gas turbines, brush seals are used to seal an annular gap between

rotor and stator. A brush seal of this type has been disclosed, for example, by

DE 100 18 273 A1.

- 1 -

[0004] In known brush seals of this type, it is primarily the gap between the

two components which can move rotationally with respect to one another, i.e. the

gap between the brush seal fitted into the stator, on the one hand, and the

sealing surface of the rotationally movable rotor, on the other hand, which is the

determining factor in terms of the sealing action achieved. It is known that a

brush seal of this type cannot be designed with a large coverage, since otherwise

the driving losses and the resultant generation of heat increase correspondingly.

This means that accurate production is required. This proves disadvantageous

since accurate production is known to be associated with high production costs.

[0005] A further drawback of the known brush seals is that in the event of a

drop in the sealing action of the brush seal it is necessary to replace the entire

brush seal in question. It is not possible to "reset" the brush seal, for example for

reasons of wear, in order thereby to retain the sealing function of the brush seal.

The fact that the sealing function of the brush seal cannot be reset shortens the

service life, which in turn entails additional costs.

[0006] The invention is based on the object of providing a remedy to this and

of allowing simple adjustment of the gap between the two components which can

move rotationally with respect to one another and therefore of allowing

adjustment of the sealing action or resetting of the sealing function of the fitted

brush seal.

[0007] Working on the basis of a brush seal of the type described in the

introduction, which is fitted between two components which can move

- 2 -

rotationally with respect to one another with a common axis of rotation, this

object is achieved, according to the invention, by virtue of the fact that the first

component, in which the brush casing is mounted, is mounted such that it can be

axially displaced and adjusted along the axis of rotation, and that the sealing

surface of the second component, onto which the bristles of the brush seal are

directed, is conical in form.

[0008] It is now possible, in a surprisingly simple way, to adjust the gap

between the two components and thereby to control the sealing action of the

brush seal fitted between the two components.

[0009] The sealing arrangement according to the invention leads to significant

advantages.

[0010] For example, the axial displaceability of the first component allows

optimum adjustment of the brush seal during initial installation. Moreover, the

configuration of the sealing arrangement according to the invention ensures

simplified fitting of the brush seal.

[0011] Furthermore, in the event of wear to the brush seal the latter can be

"reset". The resetting is effected by axial displacement of the first component

towards the second component. The conical configuration of the sealing surface

according to the invention as a result reduces the gap between the two

components, which means an increase in the sealing function of the brush seal.

- 3 -

This further optimizes the leakage rate, which inter alia means a lengthening of

the service life.

[0012]A further advantage is that the manufacturing tolerances can be

increased, since the brush seal can be adjusted during fitting. This leads to a

reduction in production costs.

[0013]It is preferable for means for axial displacement and adjustment to be

provided between the first component and a surrounding casing.

[0014]According to one embodiment of the invention, the means for axial

displacement and adjustment comprise an adjustment nut which is fitted into

the casing and engages with a displacement screw thread cut into the first

component, as well as a sliding seat formed between the casing and first

component.

Other objects, advantages and novel features of the present invention [0015]

will become apparent from the following detailed description of the invention

when considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The invention is described below on the basis of an exemplary

embodiment which is illustrated more or less diagrammatically in the drawing,

in which:

- 4 -

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Fig. 1 shows a sectional illustration of the sealing arrangement

according to an embodiment of the invention, which allows adjustment of the

sealing action of a brush seal, and

[0018] Fig. 2 shows the sealing arrangement from Fig. 1 after an

adjustment operation.

DETAILED DESCRIPTION

[0019] A sealing arrangement, which is denoted overall by reference numeral

10 in Fig. 1, for sealing a gap between two components which can move

rotationally with respect to one another in a turbomachine (not shown in more

detail), such as for example a steam turbine or a gas turbine, comprises a first

component 12, which is surrounded by a casing 14, and a second component 16.

The two components 12, 16 have a common axis of rotation 18.

[0020] The second component 16 is mounted such that it can move in rotation

with respect to the first component 12 about the axis of rotation 18. The

rotational mobility of the second component 16 is indicated by arrow 20.

[0021] A brush seal 22 has been introduced into the annular gap between the

components 12, 16, in order, for example, to seal off a region 24 which is at a

high pressure with respect to a region 26 which is at a lower pressure.

- 5 -

[0022] The brush seal 22 in this case comprises a brush casing 28 and a

plurality of bristles 30 fitted into the brush casing 28. Whereas the brush casing

28 is mounted in a fixed position in the first component 12, the free ends of the

bristles 30 are directed onto a conically designed sealing surface 32 of the second

component 16.

[0023] Simple axial displacement and adjustment of the first component 12 in

the casing 14 along the axis of rotation 18 is ensured by means of an adjustment

nut 34 which is fitted into the casing 14 and engages with a displacement screw

thread 36 cut into the first component 12. A sliding seat 38 between first

component 12 and casing 14 is provided as further axial guidance for the first

component 12 in the casing 14.

[0024] An axial displacement, indicated by an arrow 40 in Fig. 1, is as a result

made possible in a simple way.

[0025] On account of the conical configuration of the sealing surface 32, the

size of the gap between the two components 12, 16 is reduced in the event of an

axial displacement 40 of the first component 12 in the direction of the second

component 16.

[0026] Consequently, it is now possible to reset the sealing action of the brush

seal 22. A reduction in the gap size in this context means that the sealing action

of the brush seal 22 is increased.

- 6 -

[0027] Fig. 2 shows the sealing arrangement 10 from Fig. 1 after the sealing action has been reset by axial displacement. The gap between the first component 12 and the second component 16 has been reduced in size. The result of this is that the fitted brush seal 22 can remain fitted for a longer period of

time, i.e. has a longer service life, which in turn saves costs.

[0028] The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.