Introduction to Machine Learning

Lecture 15: Neural Networks

Dec 6, 2021

Jie Wang

Machine Intelligence Research and Applications Lab

Department of Electronic Engineering and Information Science (EEIS)

http://staff.ustc.edu.cn/~jwangx/

jiewangx@ustc.edu.cn

Contents

Introduction

Multi-Layer Perception

Tips

Introduction

Face recognition

Machine translation

Shēndù qián kuì wăngluò, yế chẽng wêi qián kuì shénjĩng wăngluò, huò duō céng gănzhĩ qì (MLP), shì diănxíng de shēndù xuéxí móxing.

Speech recognition

Microsoft Al Beats Humans at Speech Recognition

Self-driving

Machine reading comprehension

Milestones of Deep Learning

Google Trend of Deep Learning

Motivation of Neural Networks

Diagram of neuron

Motivation of Neural Networks

What is Neural Network?

Multi-Layer Perceptron

Hand-written Digits Recognition

The MNIST dataset

Hand-written Digits Recognition

Vector representation

Input domain

Single Neuron并补给力。

Why do we need a bias b?

Single Neuron

This is a linear classifier.

Activation function: The function that acts on the weighted combination of inputs.

We also have other activation function.

Boolean

$$\sigma(z) = \begin{cases} 1 & z > 0 \\ 0.5 & z = 0 \\ 0 & z < 0 \end{cases}$$

Unit step function

$$\sigma(z) = \begin{cases} 1 & z > 0 \\ 0 & z = 0 \\ -1 & z < 0 \end{cases}$$

Sign function

Linear

$$\sigma(z) = z$$

Linear function

Non-linear

Tanh function

Sigmoid function

 $J(z) = \max(0, z)$

ReLU function

Non-linear activation functions are frequently used in neural networks.

Why Non-Linearity?

Without non-linearity

Deep neural networks are equivalent to linear transforms.

$$W_1\big(W_2(W_3\cdot x)\big)=Wx$$

With non-linearity

The neural networks can approximate complicated functions.

A More Complicated Task

Multiple Outputs

Multiple Outputs

We choose label corresponding to the maximum value of y_i .

Question:

How do we evaluate the performance of the model?

Loss Function

Ground truth:
$$Q = \begin{bmatrix} 0 \\ 1 \\ ... \\ 0 \end{bmatrix}$$
 One hot vector $\in R^{10}$ The component corresponding to the true label is "1"

$$p_i = softmax(y_i) = \frac{e^{y_i}}{\sum_i e^{y_i}}$$

$$Loss = cross\ entropy = -\sum_{i} q_{i} \log(p_{i})$$

The goal is to minimize the loss! 34

Model Parameters

$$y = f(x) = \sigma(Wx + b)$$

Model parameter set $\theta = \{W, b\}$

Minimize the loss = Pick the best θ

Optimization

Any idea to pick the optimal parameter values? (Stochastic) Gradient Descent **Backpropagation**

Stochastic Gradient Descent

$$\min_{x} F(x) = \sum_{i=1}^{n} f_i(x)$$

- Initialize the parameter x and learning rate η
- Repeat until the termination condition is met
 - Randomly shuffle examples in the training set
 - For i = 1, ..., n

$$x_{k+1} \leftarrow x_k - \eta \nabla f_i(x_k)$$

Descent is in the sense of expectation.

By Joe pharos at the English language Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=42498187

Backpropagation 反向传播.

Upstream gradient * Local gradient

Ground truth:
$$Q = \begin{bmatrix} 0 \\ 1 \\ ... \\ 0 \end{bmatrix} \in R^{10}$$
 One hot the compositive labe

One hot vector: the component corresponding to the true label is "1".

$$p_i = softmax(y_i) = \frac{e^{y_i}}{\sum_i e^{y_i}}$$

Suppose that, the true label of a given data instance is $\it i$. Then

$$Loss = \frac{cross\ entropy}{entropy} = -\sum_{i} q_{i} \log(p_{i}) = -\log(p_{i})$$

$$Loss = cross \ entropy = -\log(p_i)$$

$$p_i = softmax(y_i) = \frac{e^{y_i}}{\sum_i e^{y_i}}$$

$$\frac{\partial Loss}{\partial y_{j}} = \frac{\partial Loss}{\partial p_{i}} \frac{\partial p_{i}}{\partial y_{j}}$$

$$\frac{\partial Loss}{\partial p_{i}} = -\frac{1}{p_{i}} \qquad \frac{\partial p_{i}}{\partial y_{j}} = \begin{cases} p_{i}(1-p_{i}) & i=j\\ -p_{i}p_{j} & i\neq j \end{cases}$$

$$\frac{\partial Loss}{\partial y_{i}} = \frac{\partial Loss}{\partial p_{i}} \frac{\partial p_{i}}{\partial y_{i}} = \begin{cases} p_{i}-1 & i=j\\ p_{i} & i\neq j \end{cases}$$

$$y_i = \frac{1}{1 + e^{-z_i}}$$

$$\frac{\partial Loss}{\partial z_{i}} = \frac{\partial Loss}{\partial y_{i}} \frac{\partial y_{i}}{\partial z_{i}}$$

$$\frac{\partial y_{i}}{\partial z_{i}} = y_{i}(1 - y_{i})$$

$$z_i = w_{i,1}x_1 + w_{i,2}x_2 + \dots + w_{i,784}x_{784} + b_i$$

$$\frac{\partial Loss}{\partial w_{i,j}} = \frac{\partial Loss}{\partial z_i} \frac{\partial z_i}{\partial w_{i,j}} \qquad \frac{\partial z_i}{\partial w_{i,j}} = x_j$$

$$\frac{\partial Loss}{\partial b_i} = \frac{\partial Loss}{\partial z_i} \frac{\partial z_i}{\partial b_i} \qquad \frac{\partial z_i}{\partial b_i} = 1$$

$$W = W - \eta \frac{\partial Loss}{\partial W}$$
$$b = b - \eta \frac{\partial Loss}{\partial b}$$

$$\theta = \{W^{1}, b^{1}, W^{2}, b^{2}, \dots, W^{L}, b^{L}\}$$

$$W^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \qquad b^{l} = \begin{bmatrix} \vdots \\ b_{l}^{l} \\ \vdots \end{bmatrix}$$

$$\frac{\partial Loss(\theta)}{\partial W^{l}} = \begin{bmatrix} \frac{\partial Loss(\theta)}{\partial W_{11}^{l}} & \frac{\partial Loss(\theta)}{\partial W_{12}^{l}} & \cdots \\ \frac{\partial Loss(\theta)}{\partial W_{21}^{l}} & \frac{\partial Loss(\theta)}{\partial W_{22}^{l}} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

$$\frac{\partial Loss(\theta)}{\partial b^{l}} = \begin{bmatrix} \vdots \\ \frac{\partial Loss(\theta)}{\partial b^{l}_{l}} \\ \vdots & \vdots \end{bmatrix}$$

$$W = W - \eta \frac{\partial Loss}{\partial W} \qquad b = b - \eta \frac{\partial Loss}{\partial b}$$

45

Layer *l*

 a_i^l : output of a neuron $oldsymbol{w_{ij}^l}$: a weight of layer $oldsymbol{l}$

 b_i^l : a bias of layer l z_i^l : input of an activation function

$$z^{l} = W^{l}a^{l-1} + b^{l}$$
$$a^{l} = \sigma(z^{l})$$

$$\frac{\partial Loss(\theta)}{\partial w_{ij}^{l}} = \frac{\partial Loss(\theta)}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$
If $l > 1$:
$$z_{i}^{l} = \sum_{j} w_{ij}^{l} a_{j}^{l-1} + b_{i}^{l}$$

$$\frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} = a_{j}^{l-1}$$
If $l = 1$:

$$\frac{\partial Loss(\theta)}{\partial w_{ij}^{l}} = \frac{\partial Loss(\theta)}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$

$$\delta_i^l = \frac{\partial Loss(\theta)}{\partial z_i^l}$$

- Input domain: document, word, image, voice, etc.
- Output domain: probability distribution, single label, etc.

The learning algorithm is to map the input domain X into the output domain Y

$$f: X \longrightarrow Y$$

· Handwriting Recognition

Speech Recognition

$$f($$
 $) =$ "Hello, MIRA"

In fact, the neural networks are universal function approximators!

$$y = f(x; \theta) = \sigma(W^L \dots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

Different model parameters *W* and *b* determine different mappings.

Standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one finite dimensional space to another to any desired degree of accuracy.

----- Multilayer feedforward networks are universal approximators'

Pick a function f = pick a set of model parameters θ

➤ A good function: The output of the function is close to the label.

$$f(x;\theta) \sim y$$

➤ An example loss function:

$$Loss = \sum_{k} ||y_k - f(x_k; \theta)||^2$$

where k is the number of training examples

Commonly Used Loss Functions

> Square loss

$$Loss = (1 - f(x; \theta))^{2}$$

➤ Hinge loss

$$Loss = \max(0,1 - yf(x;\theta))$$

➤ Logistic loss

$$Loss = -y\log(f(x;\theta))$$

Cross entropy loss

$$Loss = -\sum y \log(f(x; \theta))$$

Demonstration 示范

Classification Problem

The input is the coordinates of the points.

Demonstration

Classification Problem: 500 Epoches

An epoch= one forward pass and one backward pass of all the training examples

Tips

Deeper is Better?

Deeper 3 Better performance

Deeper is Better?

Model	Depth(layers)	Performance(error rate)
AlexNet[Hinton, at. al. 2012]	8	16.4%
GooLeNet[Simonyan, at. al. 2014]	22	6.7%
ResNet[Kaiming He, at. al. 2015]	152	3.57%

Dataset: ImageNet, which is a benchmark dataset for image classification.

Deep structure can capture complex patterns more efficiently than the shallow one.

Overfitting

The generalization performance of this model can be poor.

Which one is better?

A good model is the one that generalizes well on the unseen data.

Preventing Overfitting in DNN

- Early Stopping
- Regularization
- Dropout
- ...

Preventing Overfitting in DNN

- Early Stopping
- Regularization
- Dropout
- ...

$$Loss'(\theta) = Loss(\theta) + \frac{\lambda ||\theta||_p}{\downarrow}$$
 regularization term

 ℓ_2 norm $\|\theta\|_2^2 = (\theta_1)^2 + (\theta_2)^2 + \cdots$

Small weights usually imply smooth decision boundary.

L2 Regularization

$$Loss'(\theta) = Loss(\theta) + \lambda \frac{1}{2} ||\theta||_2^2$$
$$||\theta||_2 = (\theta_1)^2 + (\theta_2)^2 + \cdots$$

$$\frac{\partial Loss'}{\partial \theta} = \frac{\partial Loss}{\partial \theta} + \lambda \theta$$

$$\theta^{t+1} := \theta^t - \eta \frac{\partial Loss'}{\partial \theta^t}$$

$$= \theta^t - \eta (\frac{\partial Loss}{\partial \theta^t} + \lambda \theta^t)$$

$$= (1 - \eta \lambda)\theta^t - \eta \frac{\partial Loss}{\partial \theta^t}$$

L1 Regularization

$$Loss'(\theta) = Loss(\theta) + \lambda ||\theta||_{1}$$
$$||\theta||_{1} = |\theta_{1}| + |\theta_{2}| + \cdots$$

$$\frac{\partial Loss'}{\partial \theta} = \frac{\partial Loss}{\partial \theta} + \lambda * sgn(\theta)$$

$$\theta^{t+1} := \theta^t - \eta \frac{\partial Loss'}{\partial \theta^t}$$

$$= \theta^t - \eta (\frac{\partial Loss}{\partial \theta^t} + \lambda sgn(\theta^t))$$

$$= \theta^t - \eta \lambda sgn(\theta^t) - \eta \frac{\partial Loss}{\partial \theta^t}$$

Preventing Overfitting in DNN

- Early Stopping
- Regularization
- Dropout
- ...

Training: We drop each neuron with probability p

Dropout

Training: We dropout each neuron with probability p. Then, we train the resulting network for one iteration.

Dropout

Dropout

Testing: No dropout

Input

$$W_{test} = (1 - p)W_{train}$$

Why Dropout

Dropout is a kind of ensemble

Why Dropout

Dropout is a kind of ensemble

With N neurons, there are 2^N possible sub-networks.

- The average can relieve overfitting
- Dropout can learn more robust patterns

Design Deep model

Questions

