ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

ightharpoonup Consider \mathbb{R} the set of real numbers.

- ightharpoonup Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':

- ightharpoonup Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':

- ightharpoonup Consider \mathbb{R} the set of real numbers.
- ► We draw the set as 'Real line':

-3 -3 -1 0 1 Q 3

- ightharpoonup Consider \mathbb{R} the set of real numbers.
- ► We draw the set as 'Real line':

- ightharpoonup Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':

- ightharpoonup Consider \mathbb{R} the set of real numbers.
- ► We draw the set as 'Real line':

- ► This is only a visual aid for us. We are not connecting axioms of geometry with axioms of real line.

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

Example 11.1: Take $I_n = (-\frac{1}{n}, \frac{1}{n})$, then

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

- Proof: Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

- Proof: Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- Now if $x \in \mathbb{R}$ and x > 0, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

- Proof: Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- Now if $x \in \mathbb{R}$ and x > 0, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- $\blacktriangleright \text{ Hence } x \notin \left(-\frac{1}{m}, \frac{1}{m}\right).$

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

- ► Claim: $\bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n}) = \{0\}.$
- Proof: Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- Now if $x \in \mathbb{R}$ and x > 0, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- $\blacktriangleright \text{ Hence } x \notin \left(-\frac{1}{m}, \frac{1}{m}\right).$
- ► Consequently $x \notin \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$.

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

- ▶ Proof: Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- Now if $x \in \mathbb{R}$ and x > 0, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- $\blacktriangleright \text{ Hence } x \notin \left(-\frac{1}{m}, \frac{1}{m}\right).$
- ► Consequently $x \notin \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$.
- ▶ Similarly, if $x \in \mathbb{R}$ and x < 0, then $x \notin \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$.

A sequence of intervals $I_1, I_2, I_3, ...$ is said to be nested if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

$$(-1,1)\supset (-\frac{1}{2},\frac{1}{2})\supset (-\frac{1}{3},\frac{1}{3})\cdots$$

- ▶ Proof: Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- Now if $x \in \mathbb{R}$ and x > 0, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- $\blacktriangleright \text{ Hence } x \notin \left(-\frac{1}{m}, \frac{1}{m}\right).$
- ► Consequently $x \notin \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$.
- ▶ Similarly, if $x \in \mathbb{R}$ and x < 0, then $x \notin \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$.
- ► This completes the proof.

Example 11.2: Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.

- **Example 11.2**: Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.
- ▶ Then J_n is a nested family of intervals:

$$J_1\supset J_2\supset J_3\supset\cdots.$$

- **Example 11.2**: Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.
- ▶ Then J_n is a nested family of intervals:

$$J_1\supset J_2\supset J_3\supset\cdots$$
.

Clearly

$$\bigcap_{n\in\mathbb{N}}J_n=\emptyset.$$

- **Example** 11.2: Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.
- ▶ Then J_n is a nested family of intervals:

$$J_1\supset J_2\supset J_3\supset\cdots$$
.

Clearly

$$\bigcap_{n\in\mathbb{N}}J_n=\emptyset.$$

So intersection of a nested family of intervals can be empty.

▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.
- ▶ Then K_n is a nested family of intervals:

$$K_1\supset K_2\supset K_3\supset\cdots.$$

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.
- ▶ Then K_n is a nested family of intervals:

$$K_1\supset K_2\supset K_3\supset\cdots$$
.

 $\blacktriangleright \bigcap_{n\in\mathbb{N}} K_n = \emptyset.$

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.
- ▶ Then K_n is a nested family of intervals:

$$K_1\supset K_2\supset K_3\supset\cdots$$
.

- $ightharpoonup \cap_{n\in\mathbb{N}} K_n = \emptyset.$
- Considering previous examples, the following theorem can be a bit of a surprise.

► Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.

- ► Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.
- Recall that an interval is said to be closed and bounded if it is of the form [a, b] for some real numbers a, b with a < b.

- ► Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.
- Recall that an interval is said to be closed and bounded if it is of the form [a, b] for some real numbers a, b with a < b.
- ▶ Proof: Suppose $I_1, I_2, ...$ is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n.

- ► Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.
- Recall that an interval is said to be closed and bounded if it is of the form [a, b] for some real numbers a, b with a < b.
- ▶ Proof: Suppose $I_1, I_2, ...$ is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n.
- ▶ We want to show that $\bigcap_{n\in\mathbb{N}} I_n = \bigcap_{n\in\mathbb{N}} [a_n, b_n] \neq \emptyset$.

- Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.
- ▶ Recall that an interval is said to be closed and bounded if it is of the form [a, b] for some real numbers a, b with a < b.
- ▶ Proof: Suppose $I_1, I_2, ...$ is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n.
- We want to show that $\bigcap_{n\in\mathbb{N}}I_n=\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset$.
- ▶ As $I_n \supseteq I_{n+1}$, we have $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ for every n.

- ► Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.
- Recall that an interval is said to be closed and bounded if it is of the form [a, b] for some real numbers a, b with a < b.
- ▶ Proof: Suppose $I_1, I_2, ...$ is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n.
- ▶ We want to show that $\bigcap_{n\in\mathbb{N}} I_n = \bigcap_{n\in\mathbb{N}} [a_n, b_n] \neq \emptyset$.
- ▶ As $I_n \supseteq I_{n+1}$, we have $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ for every n.
- ▶ This means that $a_n \le a_{n+1} < b_{n+1} \le b_n$ for every n.

▶ Since for every n, $l_1 \supseteq l_n$, we get $a_1 \le a_n \le b_n \le b_1$.

- ▶ Since for every n, $l_1 \supseteq l_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .

- ▶ Since for every n, $I_1 \supseteq I_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.

- ▶ Since for every n, $I_1 \supseteq I_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.

- ▶ Since for every n, $I_1 \supseteq I_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- **>** By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.

- ▶ Since for every n, $I_1 \supseteq I_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A, and $a_n \in A$,

$$a_n \leq u, \qquad (i)$$

- ▶ Since for every n, $l_1 \supseteq l_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A, and $a_n \in A$,

$$a_n \leq u,$$
 (i)

We have

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq b_n$$

Hence $a_m \leq b_n$ for $1 \leq m \leq n$.

- ▶ Since for every n, $I_1 \supseteq I_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A, and $a_n \in A$,

$$a_n \leq u,$$
 (i)

► We have

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq b_n$$

Hence $a_m \leq b_n$ for $1 \leq m \leq n$.

For $m \ge n$, $I_m \subseteq I_n$, and hence $a_n \le a_m < b_m \le b_n$. In particular, $a_m \le b_n$.

- ▶ Since for every n, $I_1 \supseteq I_n$, we get $a_1 \le a_n \le b_n \le b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A, and $a_n \in A$,

$$a_n \leq u,$$
 (i)

► We have

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq b_n$$

Hence $a_m \leq b_n$ for $1 \leq m \leq n$.

- For $m \ge n$, $I_m \subseteq I_n$, and hence $a_n \le a_m < b_m \le b_n$. In particular, $a_m \le b_n$.
- Combining the last two conclusions, we have

$$a_m \leq b_n, \quad \forall m \quad (ii)$$

From (ii), b_n is an upper bound for A. Since u is the least upper bound, we get

$$u \leq b_n$$
, (iii).

From (ii), b_n is an upper bound for A. Since u is the least upper bound, we get

$$u \leq b_n$$
, (iii).

► From (i) and (iii), $a_n \le u \le b_n$. In other words, $u \in I_n$. Since this is true for every n, $u \in \bigcap_{n \in \mathbb{N}} I_n$.

From (ii), b_n is an upper bound for A. Since u is the least upper bound, we get

$$u \leq b_n$$
, (iii).

- From (i) and (iii), $a_n \le u \le b_n$. In other words, $u \in I_n$. Since this is true for every $n, u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ In particular, $\bigcap_{n\in\mathbb{N}} I_n$ is non-empty.

▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- $\mathbf{v} \in \bigcap_{n \in \mathbb{N}} I_n$.

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- $\mathbf{v} \in \bigcap_{n\in\mathbb{N}} I_n$.
- We have $a_m \leq b_n$ for all m, n.

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- \triangleright $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \le b_n$ for all m, n.
- This implies $u \le b_n$ for all n, as b_n is an upper bound for A and u is the least upper bound.

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- \triangleright $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \le b_n$ for all m, n.
- This implies $u \le b_n$ for all n, as b_n is an upper bound for A and u is the least upper bound.
- ► This in turn implies *u* is a lower bound for *B* and since *v* is the greatest lower bound we get

$$u \leq v$$
.

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- \triangleright $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \le b_n$ for all m, n.
- This implies $u \le b_n$ for all n, as b_n is an upper bound for A and u is the least upper bound.
- ► This in turn implies *u* is a lower bound for *B* and since *v* is the greatest lower bound we get

$$u \leq v$$
.

▶ In fact, as $a_n \le u \le v \le b_n$ for every n, we can see that

$$[u,v]\subseteq\bigcap_{n\in\mathbb{N}}I_n.$$

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- \triangleright $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \le b_n$ for all m, n.
- This implies $u \le b_n$ for all n, as b_n is an upper bound for A and u is the least upper bound.
- ► This in turn implies u is a lower bound for B and since v is the greatest lower bound we get

$$u \leq v$$
.

▶ In fact, as $a_n \le u \le v \le b_n$ for every n, we can see that

$$[u,v]\subseteq\bigcap_{n\in\mathbb{N}}I_n.$$

▶ Here if u = v, then [u, v] is to be understood as the singleton $\{u\}$.

▶ Theorem 11.2: Let $I_1, I_2, ...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.

- ▶ Theorem 11.2: Let $I_1, I_2,...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ Proof: Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.

- ▶ Theorem 11.2: Let $I_1, I_2,...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ Proof: Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ightharpoonup We want to show u = v.

- ▶ Theorem 11.2: Let $I_1, I_2,...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ Proof: Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ightharpoonup We want to show u = v.
- ▶ Suppose not. Since $a_n \le u \le v \le b_n$ for every n.

- ▶ Theorem 11.2: Let $I_1, I_2, ...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ Proof: Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ightharpoonup We want to show u = v.
- ▶ Suppose not. Since $a_n \le u \le v \le b_n$ for every n.
- ▶ Hence $b_n a_n \ge (v u)$ for every n.

- ▶ Theorem 11.2: Let $I_1, I_2, ...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ Proof: Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ightharpoonup We want to show u = v.
- ▶ Suppose not. Since $a_n \le u \le v \le b_n$ for every n.
- ▶ Hence $b_n a_n \ge (v u)$ for every n.
- ▶ In particular v u is a lower bound for $\{b_n a_n : n \in \mathbb{N}\}$ Therefore $(v - u) \leq 0$.

- ▶ Theorem 11.2: Let $I_1, I_2,...$ be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose inf $\{b_n a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ Proof: Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ightharpoonup We want to show u = v.
- ▶ Suppose not. Since $a_n \le u \le v \le b_n$ for every n.
- ▶ Hence $b_n a_n \ge (v u)$ for every n.
- ▶ In particular v u is a lower bound for $\{b_n a_n : n \in \mathbb{N}\}$ Therefore $(v - u) \leq 0$.
- ▶ Since we already have $u \le v$, we get v u = 0, that is, u = v.

Uncountability of $\mathbb R$

▶ Theorem 11.5: The set \mathbb{R} is uncountable.

Uncountability of $\mathbb R$

- ▶ Theorem 11.5: The set \mathbb{R} is uncountable.
- ▶ Proof: Fix $a, b \in \mathbb{R}$ with a < b.

Uncountability of $\mathbb R$

- ▶ Theorem 11.5: The set \mathbb{R} is uncountable.
- ▶ Proof: Fix $a, b \in \mathbb{R}$ with a < b.
- ▶ We will show that [a, b] is uncountable.

Uncountability of \mathbb{R}

- ▶ Theorem 11.5: The set \mathbb{R} is uncountable.
- ▶ Proof: Fix $a, b \in \mathbb{R}$ with a < b.
- ▶ We will show that [a, b] is uncountable.
- This would complete the proof as subsets of countable sets are countable, $\mathbb R$ can not be countable.

Uncountability of \mathbb{R}

- ▶ Theorem 11.5: The set \mathbb{R} is uncountable.
- ▶ Proof: Fix $a, b \in \mathbb{R}$ with a < b.
- ▶ We will show that [a, b] is uncountable.
- This would complete the proof as subsets of countable sets are countable, \mathbb{R} can not be countable.
- ▶ Suppose [a, b] is countable.

Uncountability of \mathbb{R}

- ▶ Theorem 11.5: The set \mathbb{R} is uncountable.
- ▶ Proof: Fix $a, b \in \mathbb{R}$ with a < b.
- ▶ We will show that [a, b] is uncountable.
- This would complete the proof as subsets of countable sets are countable, \mathbb{R} can not be countable.
- ightharpoonup Suppose [a, b] is countable.
- Let $\{x_1, x_2, ...\}$ be an enumeration of [a, b]. (This just means that $n \mapsto x_n$ is a bijective function from \mathbb{N} to [a, b].)

Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.

- Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.
- Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.

- Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.
- Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.

- Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.
- Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a,b]\supseteq I_1\supseteq I_2\supseteq\cdots,$$

- Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.
- Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a,b]\supseteq I_1\supseteq I_2\supseteq\cdots,$$

▶ with $x_n \notin I_n$ for every $n \in \mathbb{R}$.

- Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.
- Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a,b]\supseteq I_1\supseteq I_2\supseteq\cdots,$$

- ▶ with $x_n \notin I_n$ for every $n \in \mathbb{R}$.
- ightharpoonup By nested intervals property of \mathbb{R} ,

$$\bigcap_{n\in\mathbb{N}}I_n$$

is non-empty. Take $u \in \bigcap_{n \in \mathbb{N}} I_n$.

- Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $l_1 = [a_1, b_1]$ of [a, b] such that $x_1 \notin l_1$.
- Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a,b]\supseteq I_1\supseteq I_2\supseteq\cdots,$$

- ▶ with $x_n \notin I_n$ for every $n \in \mathbb{R}$.
- ightharpoonup By nested intervals property of \mathbb{R} ,

$$\bigcap_{n\in\mathbb{N}}I_n$$

is non-empty. Take $u \in \bigcap_{n \in \mathbb{N}} I_n$.

▶ Then clearly $u \in [a, b]$.

▶ Also for every n, $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.

- ▶ Also for every n, $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n. This means that $n \mapsto x_n$ from \mathbb{N} to [a,b] is not surjective as we have got $u \in [a,b]$ such that $u \neq x_n$ for every n.

- ▶ Also for every n, $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n. This means that $n \mapsto x_n$ from \mathbb{N} to [a,b] is not surjective as we have got $u \in [a,b]$ such that $u \neq x_n$ for every n.
- ightharpoonup This is a contradiction and hence [a, b] is not countable.

- ▶ Also for every n, $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n. This means that $n \mapsto x_n$ from \mathbb{N} to [a,b] is not surjective as we have got $u \in [a,b]$ such that $u \neq x_n$ for every n.
- ightharpoonup This is a contradiction and hence [a, b] is not countable.

- ▶ Also for every n, $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n. This means that $n \mapsto x_n$ from \mathbb{N} to [a,b] is not surjective as we have got $u \in [a,b]$ such that $u \neq x_n$ for every n.
- ▶ This is a contradiction and hence [a, b] is not countable.
- ► END OF LECTURE 11.