3-way tables: Alcohol Cigarette, and Marijuana Use

Survey asked 2276 students in their final year of high school in a nonurban area near Dayton, Ohio whether they ever used alcohol, cigarettes, or marijuana.

Alcohol	Cigarette	Marijuana Use	
Use	Use	Yes	No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

This is example of a $2 \times 2 \times 2$ contingency table. Shorthand: A=alcohol, C=cigarette, M=marijuana.

(Statistics 203) March 4, 2010 1 / 14

Contingency Tables: Death Penalty Example

The 674 subjects where defendants in murder cases in Florida between 1976 and 1987.

Victim's	Defendant's	Death	Penalty	Percent
Race	Race	Yes	No	Yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
Total	White	53	430	11.0
	Black	15	176	7.9

(Statistics 203) March 4, 2010 2 / 14

J Way table	b. Types of interaction
Symbol	Interpretation
(A,C,M)	Mutual Independence
(AC,M)	AC jointly independent of M
(AC,AM)	M, C conditionally independent given A
(AC,AM,CM)	Homogeneous association of each pair.

Marginal independence: fit 2×2 table.

(Statistics 203) March 4, 2010 3 / 14

Alcohol	Cigarette	Marijuana Use	
Use	Use	Yes	No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

$$Y_{ijk} \sim Poisson(\lambda_{ijk})$$

Conditioned on total (*N*) $Y_{ijk} \sim Multinom(N, \pi_{ijk})$. π_{i++} be probability of row A = i, π_{ij+} be probability of A = i, C = j, etc.

A,C, and M mutually independent

$$\lambda_{ijk} = \lambda \lambda_i^A \lambda_j^C \lambda_k^M$$

$$\pi_{ijk} = \pi_{i++} \pi_{+j+} \pi_{++k}$$

(Statistics 203)

4/14

Cigarette	Marijuana Use	
Use	Yes	No
Yes	911	538
No	44	456
Yes	3	43
No	2	279
	Use Yes No Yes	Use Yes Yes 911 No 44 Yes 3

$$Y_{ijk} \sim Poisson(\lambda_{ijk})$$

Conditioned on total (*N*) $Y_{ijk} \sim Multinom(N, \pi_{ijk})$. π_{i++} be probability of row A = i, π_{ij+} be probability of A = i, C = j, etc.

M is jointly independent of A, C

$$\lambda_{ijk} = \lambda \lambda_i^A \lambda_j^C \lambda_k^M \lambda_{ij}^{AC}$$
$$\pi_{ijk} = \pi_{ij+} \pi_{++k}$$

Cigarette	Marijuana Use	
Use	Yes	No
Yes	911	538
No	44	456
Yes	3	43
No	2	279
	Use Yes No Yes	Use Yes Yes 911 No 44 Yes 3

$$Y_{ijk} \sim Poisson(\lambda_{ijk})$$

Conditioned on total (*N*) $Y_{ijk} \sim Multinom(N, \pi_{ijk})$. π_{i++} be probability of row A = i, π_{ij+} be probability of A = i, C = j, etc.

C and M conditionally independent given A

$$\lambda_{ijk} = \lambda \lambda_i^A \lambda_j^C \lambda_k^M \lambda_{ij}^{AC} \lambda_{ik}^{AM}$$
$$\pi_{jk|i} = \pi_{j+|i} \pi_{+k|i}.$$

(Statistics 203) March 4, 2010

6/14

Alcohol	Cigarette	Marijuana Use	
Use	Use	Yes	No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

$$Y_{ijk} \sim Poisson(\lambda_{ijk})$$

Conditioned on total (*N*) $Y_{ijk} \sim Multinom(N, \pi_{ijk})$. π_{i++} be probability of row A = i, π_{ij+} be probability of A = i, C = j, etc.

• Each pair of A,C, and M has homogeneous association.

$$\lambda_{ijk} = \lambda \lambda_i^A \lambda_j^C \lambda_k^M \lambda_{ij}^{AC} \lambda_{ik}^{AM} \lambda_{ik}^{CM}.$$

e.g. the dependence relationship of A, C does not depend on M.

(Statistics 203) March 4, 2010 7 / 14

Alcohol	Cigarette	Marijuana Use	
Use	Use	Yes	No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

$$Y_{ijk} \sim \textit{Poisson}(\lambda_{ijk})$$

Conditioned on total (*N*) $Y_{ijk} \sim Multinom(N, \pi_{ijk})$. π_{i++} be probability of row A = i, π_{ij+} be probability of A = i, C = j, etc.

Saturated Model.

$$\lambda_{ijk} = \lambda \lambda_i^{A} \lambda_i^{C} \lambda_k^{M} \lambda_{ij}^{AC} \lambda_{ik}^{AM} \lambda_{ik}^{CM} \lambda_{ijk}^{ACM}.$$

(Statistics 203) March 4, 2010 8 / 14

Analysis of 3-way tables

- Fit log-linear model (Poisson GLM) for each of the models.
 - Criterion: maximum likelihood.
 - 2 Fitting method: Newton Raphson.
- 2 Use a model selection criterion to choose the best one.
 - AIC, BIC.
 - 2 Use Deviance χ^2 test to choose between nested models.

```
glm(..., family=poisson), loglm(MASS) in R.
```

(Statistics 203) March 4, 2010 9 / 14

Contingency Tables: Death Penalty Example

The 674 subjects where defendents in murder cases in Florida between 1976 and 1987.

Victim's	Defendant's	Death	Penalty	Percent
Race	Race	Yes	No	Yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
Total	White	53	430	11.0
	Black	15	176	7.9

(Statistics 203) March 4, 2010 10 / 14

Simpson's Paradox

(Statistics 203) March 4, 2010 11 / 14

Repercussions

This analysis was influential in drawing attention to racial bias in the US court system. Similar studies were done in other cities.

See:

http://66.39.33.150/death-penalty-black-and-white-who-lives-who-dies-who-decides

(Statistics 203) March 4, 2010 12 / 14

3-way tables: Drug Use Data

Alcohol	Cigarette	Marijuana Use	
Use	Use Yes N		No
Yes	Yes	911	538
	No	44	456
No	Yes	3	43
	No	2	279

(Statistics 203) March 4, 2010 13 / 14

Conditional Odds Ratios

Estimates of odds ratios from the various models:

	Cond	itional <i>I</i>	Association	Margi	nal Ass	sociation
Model	AC	AM	CM	AC	AM	CM
(A,C,M)	1.0	1.0	1.0	1.0	1.0	1.0
(AC,M)	17.7	1.0	1.0	17.7	1.0	1.0
(AM,CM)	1.0	61.9	25.1	2.7	61.9	25.1
(AC,AM,CM)	7.8	19.8	17.3	17.7	61.9	25.1

(Statistics 203) March 4, 2010 14 / 14