

nas fronteiras do conhecimento

Introdução e Objetivos

Teoria Espectral de Grafos

Computação quântica

Relação com outras áreas

Encontrar uma árvore que possua mais de dois vértices fortemente cospectrais ou provar que tal árvore não existe.

Metodologia

Grafos e Árvores

Matriz de Adjacência

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Decomposição espectral

$$\sqrt{2} \frac{1}{4} \begin{pmatrix} 1 & \sqrt{2} & 1 \\ \sqrt{2} & 2 & \sqrt{2} \\ 1 & \sqrt{2} & 1 \end{pmatrix} + 0 \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} - \sqrt{2} \frac{1}{4} \begin{pmatrix} 1 & -\sqrt{2} & 1 \\ -\sqrt{2} & 2 & -\sqrt{2} \\ 1 & -\sqrt{2} & 1 \end{pmatrix}$$

Metodologia

Para dois vértices **a** e **c** serem fortemente cospectrais, precisamos que, em cada idempotente, as entradas (**a**, **a**) sejam iguais às entradas (**c**, **c**) e que as colunas **a** sejam paralelas às colunas **c**.

$$\frac{1}{4} \begin{pmatrix} \boxed{1} & \sqrt{2} & 1\\ \sqrt{2} & 2 & \sqrt{2}\\ 1 & \sqrt{2} & \boxed{1} \end{pmatrix},$$

$$\frac{1}{2} \begin{pmatrix} \boxed{1} & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & \boxed{1} \end{pmatrix},$$

$$\frac{1}{4} \begin{pmatrix} \mathbf{1} & -\sqrt{2} & 1 \\ -\sqrt{2} & 2 & -\sqrt{2} \\ 1 & -\sqrt{2} & \mathbf{1} \end{pmatrix}$$

Resultados e Conclusões

Ainda não encontramos árvores com mais de dois vértices fortemente cospectrais, mas temos candidatas.

Ideias: Estudar automorfismos da árvores e o conjunto numérico dos autovalores.

Variedade de tópicos e abrangência da teoria espectral, estreitando a relação de grafos com álgebra.