

 TDM
 729.89
 915.51
 185.62 ▲ 25.43%
 FLR
 660.27
 745.28
 85.01 ▲ 12.88%

 HUM
 749.73
 924.29
 174.56 ▲ 23.28%
 UVD
 155.59
 181.57
 25.98 ▲ 16.70%

 DMW
 833.72
 1004.01
 170.29 ▲ 20.43%
 QUV
 440.55
 540.21
 99.66 ▲ 22.62%

 YZJ
 903.49
 1127.46
 223.97 ▲ 24.79%
 HZT
 285.51
 344.98
 59.47 ▲ 20.83%

 GLY
 982.07
 1219.39
 237.32 ▲ 24.17%
 PCW
 811.44
 1029.66
 218.22 ▲ 26.89%

 VDA
 113.74
 143.41
 29.67 ▲ 26.09%
 AIK
 361.77
 451.39
 89.62 ▲ 24.77%

 UVV
 468.08
 535.41
 67.33 ▲ 14.38%
 ZJJ
 858.36
 994.57
 136.21 ▲ 15.87%

 HJS
 545.49
 659.05
 113.56 ▲ 20.82%
 RHJ
 894.79
 1046.68
 151.89 ▲ 16.97%

 400
 450.08
 609.98
 84.87 ▲ 17.97%
 450.08
 609.98
 84.87 ▲ 17.97%

Bitcoin Consensus Algorithm

Consensus algorithm (simplified)

- 1. New transactions are broadcast to all nodes
- 2. Each node collects new transactions into a block
- In each round a <u>random</u> node gets to broadcast its block
- Other nodes accept the block only if all transactions in it are valid (unspent, valid signatures)
- Nodes express their acceptance of the block by including its hash in the next block they create

Incentive 1: block reward

Creator of block gets to

- •include special coin-creation transaction in the block
- choose recipient address of this transaction

Value is fixed: currently 12.5 BTC, halves every 4 years

Block creator gets to "collect" the reward only if the block ends up on long-term consensus branch!

Incentive 2: transaction fees

Creator of transaction can choose to make output value less than input value

Remainder is a transaction fee and goes to block creator

Purely voluntary, like a tip

Equivalent views of proof of work

- Select nodes in proportion to computing power
- 1. Let nodes compete for right to create block
- Make it moderately hard to create new identities

Hash puzzles

To create block, find nonce s.t.

H(nonce || prev_hash || tx || ... || tx) is very small

PoW property 1: difficult to compute

As of Aug 2014: about 10²⁰ hashes/block

Only some nodes bother to compete — miners

PoW property 2: parameterizable cost

Nodes automatically re-calculate the target every two weeks

Goal: <u>average</u> time between blocks = 10 minutes

PoW property 3: trivial to verify

Nonce must be published as part of block

Mining economics

If mining reward (block reward + Tx fees) > hardware + electricity cost → Profit

Complications:

- fixed vs. variable costs
- reward depends on global hash rate

What we want from signatures

Only you can sign, but anyone can verify

Signature is tied to a particular document can't be cut-and-pasted to another doc

API for digital signatures

(sk, pk) := generateKeys(keysize)

sk: secret signing key

pk: public verification key

sig := sign(sk, message)

isValid := verify(pk, message, sig)

can be randomized algorithms

https://tools.superdatasci ence.com/blockchain/publ ic-private-keys/keys

Requirements for signatures

"valid signatures verify"

verify(pk, message, sign(sk, message)) == true

"can't forge signatures"

adversary who:

knows pk

gets to see signatures on messages of his choice can't produce a verifiable signature on another message

Bitcoin uses <u>ECDSA</u> standard Elliptic Curve Digital Signature Algorithm

relies on hairy math
will skip the details here --- look it up if you care

good randomness is essential foul this up in generateKeys() or sign()?

probably leaked your private key

Decentralized identity management

anybody can make a new identity at any time make as many as you want!

no central point of coordination

These identities are called "addresses" in Bitcoin.

Public Key vs Bitcoin Address

HD(Hierarchically Deterministic)
Wallets

Multiple private-public keys for security purpose

Additional Reading

DETERMINISTIC WALLETS, THEIR ADVANTAGES AND THEIR UNDERSTATED FLAWS

https://bitcoinmagazine.com/technical/deterministic-wallets-advantages-flaw-1385450276

Acknowledgement and Source:

https://www.udemy.com/course/build-your-blockchain-az/