1. What is $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$?

- $\mathbf{A.}$ 2xh
- **B.** 2*x*
- **C.** *h*
- **D.** 0

2. If $f(x) = \sqrt{x+2}$, then which one of the following is equal to f'(x)?

A.
$$\lim_{h \to 0} \frac{\sqrt{x+h+2} - \sqrt{x+2}}{2}$$

B.
$$\lim_{h \to 0} \frac{\sqrt{x+h+2} - \sqrt{x+2}}{h}$$

C.
$$\lim_{x\to 2} \frac{\sqrt{x+2} - \sqrt{h+2}}{h}$$

$$\mathbf{D.} \quad \lim_{x \to 2} \frac{\sqrt{x+h+2} - \sqrt{h}}{h}$$

3. If $f(x) = x^{\frac{2}{5}}$, then which one of the following is equal to f'(a)?

A.
$$\lim_{a \to 0} \frac{(a+h)^{2/5} - a^{2/5}}{h}$$

B.
$$\lim_{h \to 0} \frac{(\frac{1}{x})^{\frac{5}{2}} - (\frac{1}{a})^{\frac{5}{2}}}{h}$$

C.
$$\lim_{h\to 0} \frac{(x+h)^{2/5} - h^{2/5}}{h}$$

D.
$$\lim_{x \to a} x^{2/5}$$

4. The functions f and g are differentiable and have the values shown in the table.

If
$$A = f + g$$
 then $A'(2) =$

x	f	f'	g	g'
0	5	1	-7	$\frac{1}{4}$
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

5. The functions f and g have the values shown in the table and are differentiable.

If
$$A = f \cdot g$$
 then $A'(0) =$

x	f	f'	g	g'
0	6	1	-8	$\frac{1}{3}$
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

- **A.** 0
- **B.** -6
- C. $\frac{10}{3}$
- **D.** $\frac{1}{3}$

6. The functions f and g are differentiable and have the values shown in the table.

If
$$A = \left(\frac{1}{f}\right)$$
 then $A'(4) =$

x	f	f'	g	g'
0	5	1	-7	$\frac{1}{4}$
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

- **A.** 0
- **B.** $\frac{9}{146}$
- C. $-\frac{9}{196}$
- **D.** $-\frac{1}{9}$

7. The functions f and g have the values shown in the table and are differentiable.

If
$$A = \left(\frac{g}{f}\right)$$
 then $A'(2) =$

x	f	f'	g	g'
0	5	1	-7	$\frac{1}{4}$
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

- **A.** 23
- **B.** $-\frac{23}{64}$
- **C.** $\frac{23}{64}$
- **D.** −23

8. The functions f and g are differentiable and have the values shown in the table.

If
$$A = f(g(x))$$
 then $A'(-8) =$

х	f	f'	g	g'
-8	4	3	-2	6
-6	10	12	0	9
-2	20	9	6	18
2	30	15	12	24

- **A.** 18
- **B.** 54
- **C.** 9
- **D.** -9

9. f and g are differentiable functions and have the values shown in the table.

If
$$A = \sqrt{g(x)}$$
 then $A'(-2) =$

х	f	f'	g	g'
-8	4	3	-2	6
-6	10	12	0	9
-2	16	9	36	18
2	30	15	52	24

- **A.** $\frac{9}{8}$
- **B.** $\frac{3}{2}$
- C. $\frac{4}{9}$
- **D.** 6

10. At which of the five points shown on the graph is $\frac{dy}{dx}$ positive? Choose the best answer.

- \mathbf{A} . A and E
- **B.** D only
- **C.** C, D, and E
- **D.** E only

11.

Given the graph of f shown above, which of the following is the graph of the derivative, f'?

A.

B.

C.

D.

12.

The graph of f' is shown. If f(2) = 6, then $f(0) = \underline{\hspace{1cm}}$.

- **A.** -10
- **B.** 2
- **C.** -2
- **D.** -22

13.

Which of the following tables best goes with the graph of f shown?

A.

x	f'(x)
a	0
b	0
c	4

B.

x	f'(x)
a	0
b	0
c	-2

C.

x	f'(x)
а	does not exist
b	0
c	6.2

D.

x	f'(x)
a	does not exist
b	does not exist
c	-1

14.

Given the graph of f'(x), sketch the graph of f(x)

15. If
$$f(x) = 5x^3$$
, then $f'(2) =$

A. 30

B. 10

C. 40

D. 60

- **16.** A curve is given by $y = a^3$, where $a = m^2(2m 1)$. Approximate the slope of the curve when m = 0.6543.
 - **A.** 0.108
 - **B.** 0.143
 - **C.** 0.066
 - **D.** 0.047

- **17.** Find the derivative, $\frac{dy}{dx}$, of $y = \frac{2x}{1 3x^2}$.
 - $\mathbf{A.} \quad -\frac{1}{3x}$
 - **B.** $\frac{6x^2 + 2}{(1 3x^2)^2}$
 - C. $\frac{9x^2-2}{(1-3x)^2}$
 - **D.** $\frac{2x}{3(1-3x^2)^2}$

- **18.** Given the function $f(c) = \frac{2c^2}{(c^3 + 4)^2}$, find f'(3.526) to three decimal places.
 - **A.** -0.011
 - **B.** -0.019
 - **C.** 0.018
 - **D.** 0.020

- **19.** Find the derivative, $\frac{dy}{dx}$, of $f(x) = \frac{x^2 1}{x^2 + 1}$.
 - **A.** $\frac{4x}{(x^2+1)^2}$
 - **B.**
 - C. $-\frac{4x}{(x^2+1)^2}$
 - $\mathbf{D.} \quad \frac{-4x^2 4x}{(x^2 + 1)^2}$

20. If $y = \frac{-5}{\sqrt[3]{x+3}}$, then $\frac{dy}{dx} =$

A.
$$\frac{5}{3\sqrt[3]{(x+3)^4}}$$

B.
$$\frac{8}{\sqrt{(x+3)^5}}$$

C.
$$\frac{-1}{\sqrt{(x+3)^4}}$$

D.
$$\frac{-1}{5(x+3)^{4/3}}$$

21. If $f(x) = (2x^3 + 5x^2 - 7x + 4)(4x^2 - 5x + 2)$, then find f'(1).

- **A.** 21
- **B.** 27
- **C.** –27
- **D.** 3

22. Given f(2) = 3, f'(2) = 4, g(2) = -2, and g'(2) = -4. Find h'(2) if $h(x) = f(x) \times g(x)$.

23. Given f(5) = 4, f'(5) = 2, g(5) = 6, and g'(5) = -7. Find h'(5) if $h(x) = f(x) \times g(x)$.

24. The graph f(x) has horizontal tangents when x =

- **A.** −4, 2
- **B.** −4, −2, 2, 4
- \mathbf{C} . -4, -2, 4
- **D.** 2, 4

25. Find an equation for the tangent line to the graph of $f(x) = \sqrt{x+1}$ at the point where x = 3.

A.
$$x - 4y = -5$$

B.
$$x + 4y = 8$$

C.
$$x - 4y = 5$$

D.
$$4x - y = -8$$

26. If $f(x) = x^2 - 10$, find an equation of the tangent to the curve passing through the point (5, 1).

A.
$$y - 1 = -10(x - 5)$$

B.
$$y + 5 = -10(x + 1)$$

C.
$$y - 1 = 10(x - 5)$$

D.
$$y - 5 = 10(x - 1)$$

27. The graph of $f(x) = \frac{3x^2}{16 - x^2}$ has a horizontal tangent at $y = \frac{3x^2}{16 - x^2}$

- **28.** If $f(x) = (x 5)^{2/3} + 1$, then the x-value of a vertical tangent is
 - **A.** 0
 - **B.** 1
 - **C.** 5
 - **D.** $\sqrt[3]{5}$

29. Find the equation of the tangent line to the graph of $x^2 - 3y^2 = 1$ at the point (2, 1).

A.
$$y-1=\frac{2}{3}(x-2)$$

B.
$$y + 1 = \frac{2}{3}(x + 2)$$

C.
$$y-1=\frac{2}{3}(x-2)$$

D.
$$y = -\frac{3}{2}(x-2)$$

30.
$$\frac{d^6(x^6)}{dx^6} =$$

$$\mathbf{A.} \quad 6x^5$$

D.
$$360x^3 + 120x^2 + x$$

31. Find $D_x^2 y$ for $y = \frac{1-x}{x-3}$.

B.
$$\frac{-8}{(x-3)^3}$$

C.
$$\frac{-4}{(x-2)^3}$$

D.
$$\frac{-4}{(x-3)^3}$$

32. Given $y^3 = x^3 - 1$, find y''.

A.
$$2xy^{-2}(1-x^3y^{-3})$$

B.
$$2xy^2\left(1-\frac{x^3}{y^3}\right)$$

C.
$$\frac{2x^2 - 2x^2y}{y^4}$$

D.
$$\frac{2xy^2 - x^2y}{y^4}$$

33. Given $x^2 - 5xy + y = 8$, find y''.

34. Find f'(x) for $f(x) = (2x^2 + 5)^7$.

A.
$$7(4x)^6$$

B.
$$(4x)^7$$

C.
$$28x(2x^2 + 5)^6$$

D.
$$28x^7$$

35. Find $\frac{dy}{dx}$ for $y = x^3 \sqrt{x+1}$.

$$\mathbf{A.} \quad \frac{3x^2}{2\sqrt{x+1}}$$

B.
$$\frac{x^2(7x+6)}{2\sqrt{x+1}}$$

$$\mathbf{C.} \quad \frac{7x^3 + x^2}{2\sqrt{x+1}}$$

D.
$$\frac{x^2\sqrt{x+1}}{\sqrt{x^6+1}}$$

36. If $y = \frac{(4x-3)^2}{\sqrt{x}}$, then $\frac{dy}{dx} =$

$$\mathbf{A.} \quad \frac{3(4x-1)(4x+3)}{2x^{3/2}}$$

B.
$$\frac{9(4x-3)}{2x^{1/2}}$$

$$\mathbf{C.} \quad \frac{3(4x-3)(4x+1)}{2x^{3/2}}$$

D.
$$3(4x-3)x^{-3/2}$$

- 37. Find $\frac{dy}{dx}$ at x = -1 given $y = u^3 \frac{2}{u^3}$ and $u = \sqrt{3x + 4}$.
 - **A.** $\frac{2}{27}$
 - **B.** 12
 - **C.** $\frac{27}{2}$
 - **D.** 27

- **38.** If $y = \frac{u^2 + 1}{u}$ and $u = \sqrt{t + 1}$, find y' when t = 3.

 - **B.** $\frac{3}{4}$
 - **C.** 4
 - **D.** $\frac{7}{9}$

39. If $x = y + 3y^2 + 4y^3$, then y' =

A.
$$\frac{1}{1+6y+12y^2}$$

B.
$$\frac{5}{6y+1+12y^2}$$

C.
$$\frac{4}{3(1+6y+8y^2)}$$

D. $1+6y+12y^2$

- **40.** Find $\frac{dy}{dx}$ given $x^2 + y^2 = 2xy$.

41. If $y = \frac{x}{x+y}$, then $\frac{dy}{dx} =$

- $\mathbf{A.} \quad \frac{y}{(x+y)^2 + x}$
- $\mathbf{B.} \quad \frac{1-y}{x+2y}$
- $\mathbf{C.} \quad \frac{-1 + \sqrt{5}x}{2}$
- $\mathbf{D.} \quad \frac{1}{1+y}$

42. A mouse is running through a straight pipe. The velocity, v(t), of the mouse is given at time t for $0 \le t \le 7$.

According to the graph, at what time t is the mouse's speed the greatest?

- **A.** 1
- **B.** 3
- **C.** 5
- **D.** 6

- **43.** A ground hog starts at time t = 0 and moves along a straight path that can be described by using the *x*-axis so that its position at any time $t \ge 0$ is $x(t) = t^3 6t^2 + 9t + 12$. What is the velocity of the ground hog at t = 0?
 - **A.** -9
 - **B.** 0
 - **C.** 6
 - **D.** 9

1.	ı	14.	
Answer:	В	Answer:	
CodePath:	EAS.APC.D.A.1	CodePath:	EAS.APC.D.D.29
2.		15.	
Answer:	В	Answer:	D
	EAS.APC.D.A.3	CodePath:	EAS.APC.E.B.1
3.		16.	
Answer:	A	Answer:	С
	EAS.APC.D.A.8	CodePath:	EAS.APC.E.B.4
4.		17.	
4. Answer:	В	Answer:	В
	EAS.APC.D.B.1	CodePath:	EAS.APC.E.B.23
	L/10.711 C.D.B.1	18.	
5.	D	Answer:	A
Answer:	B EACARCD B 11	CodePath:	EAS.APC.E.B.25
	EAS.APC.D.B.11	19.	
6.		Answer:	A
Answer:	C	CodePath:	EAS.APC.E.B.27
CodePath:	EAS.APC.D.B.14	20.	
7.		Answer:	A
Answer:	C	CodePath:	
CodePath:	EAS.APC.D.B.20	21.	
8.		Answer:	A
Answer:	В	CodePath:	
CodePath:	EAS.APC.D.B.21	22.	Erionia Ciercio
9.		Answer:	C
Answer:	В		EAS.APC.E.B.63
CodePath:	EAS.APC.D.B.24	23.	E/10./11 C.E.B.03
10.		Answer:	A
Answer:	В	CodePath:	
CodePath:	EAS.APC.D.D.3	24.	El Iolli C.E.B.O
11.		Answer:	В
Answer:	В	CodePath:	
CodePath:	EAS.APC.D.D.8		Li Io.i II C.L.C.I
12.		25. Answer:	A
Answer:	A	CodePath:	EAS.APC.E.C.3
CodePath:	EAS.APC.D.D.11		El IO.HI C.E.C.S
		26. Answer:	С
13.		CodePath:	EAS.APC.E.C.6
Answer:	C EAS ARC D D 17		LAG.AI C.E.C.U
CodePath:	EAS.APC.D.D.17	27.	D
		Answer:	D EAS ADCE C 10
		CodePath:	EAS.APC.E.C.19

28.

Answer: C

CodePath: EAS.APC.E.C.28

29.

Answer: C

CodePath: EAS.APC.E.C.60

30.

Answer: C

CodePath: EAS.APC.E.D.1

31.

Answer: D

CodePath: EAS.APC.E.D.7

32.

Answer: A

CodePath: EAS.APC.E.D.15

33.

Answer: $\frac{-398}{(5x-1)^3}$

CodePath: EAS.APC.E.D.36

34.

Answer: C

CodePath: EAS.APC.E.F.3

35.

Answer: B

CodePath: EAS.APC.E.F.9

36.

Answer: C

CodePath: EAS.APC.E.F.17

37.

Answer: C

CodePath: EAS.APC.E.F.55

38.

Answer: A

CodePath: EAS.APC.E.F.57

39.

Answer: A

CodePath: EAS.APC.E.G.1

40.

Answer: B

CodePath: EAS.APC.E.G.5

41.

Answer: B

CodePath: EAS.APC.E.G.14

42.

Answer: D

CodePath: EAS.APC.E.I.14

43.

Answer: D

CodePath: EAS.APC.E.I.17