Daniel Vázquez Lago

Geometría Diferencial

Curvatura, Superficies y Riemman

Índice general

	——— Variedades, tensores y formas exteriores —	
1	Variedades y Campos vectoriales	3
2	Tensores y Formas Exteriores	5
3	Integración sobre formas diferenciales	7
4	La derivada de Lie	9
5	Lema de Poincaré	11
	Geometría y Topología	
6	\mathbb{R}^3 y Minkowski	13
7	La geometría de superficies en \mathbb{R}^3	15
8	Diferenciales Convariantes y Curvaturas	17
9	Geodésicas	19
10	Relatividad, Tensores y Curvatura	21
Bibliografia		21
0.1	4	

Variedades y Campos vectoriales

La geometía diferencia letudia las propiedades geométricas como $S \in \mathbb{R}^3$, o más general (hipersuperficies). Hay dos tipos de propiedades, las intrínsecas, que son las más importantes, y las que dependen de la propia dimensión. Las propiedades geométricas de un objeto son, por ejemplo, la simetría, distancia, curvatura, pendiente...

Definición 1.1

Una **variedad** es un espacio topológico $\mathcal M$ que puede ser cubierto por subconjuntos abiertos $\mathcal U_a$, tal que $\mathcal M = \cup_a \mathcal U_a$, tal que para cada $\mathcal U_a$ existe una aplicación $\phi_{\mathcal U_T}: \mathcal U_a \to \mathcal U \subset \mathbb R^m$ dessde $\mathcal U_i$ a un un subconjutno $\phi_{\mathcal U_a}(\mathcal U_a) \in \mathbb R^m$. De manera naif, podemos decir que una variedad de m dimensión es un espacio topológico que localmente es como $\mathbb R^m$.

Ejemplo 1.1 – Círculo S^1

El círculo S^1 se puede describir con dos cartas. Lo normal sería pensar que se puede describir con una, ya que el espacio $\phi(p \in S^1) \to \varphi = (0, 2\pi) \in R^1$. Sin embargo no es posible debido a que $\phi^{-1}(0) = \phi^{-1}(2\pi)$ pero $0 \neq 2\pi$. Las cartas que lo describen serían:

$$\phi_{\mathcal{U}_1}:\varphi\in(-\varepsilon,\pi+\varepsilon) \qquad \phi_{\mathcal{U}_2}:\chi\in(-\varepsilon,\pi+\varepsilon) \tag{1.1}$$

Tensores y Formas Exteriores

Integración sobre formas diferenciales

La derivada de Lie

Lema de Poincaré

0.27

 \mathbb{R}^3 y Minkowski

La geometría de superficies en \mathbb{R}^3

Diferenciales Convariantes y Curvaturas

Geodésicas

Relatividad, Tensores y Curvatura

Bibliografía

[1] Theodore Frankel. *The Geometry of Physics: An Introduction.* 3.ª ed. Cambridge, UK: Cambridge University Press, 2011, pág. 748. ISBN: 978-1-107-60260-1.