

TEORIA WSPÓŁBIEŻNOŚCI

LABORATORIUM 12

SIECI PETRIEGO

ALBERT GIERLACH

15.01.2021

1. Ćwiczenie

Maszyna stanów. Prosty model maszyny stanów swiateł ulicznych przedstawia sieć na rysunku poniżej:

Stanami sa miejsca sieci, zaś znacznik pokazuje w jakim stanie aktualnie sie znajdujemy.

- Narysować przyklad w symulatorze.
- Sprawdzić własciwości sieci (ograniczoność, bezpieczenstwo i możliwy deadlock) w symulatorze Pipe w menu "State Space Analysis".
- Wygenerować graf osiągalności "Reachability/Coverability Graph". Zaobserwować:
 - Jakie znakowania są osiagalne?
 - Ile wynosi maksymalna liczba znaczników w każdym ze znakowań? Jakie mozemy wyciągnac z tego wnioski n.t. ograniczoności i bezpieczenstwa?
 - Czy kazde przejście jest przedstawione jako krawedz w grafie ? Jaki z tego wniosek n.t. zywotności przejśc ?
 - Czy wychodzac od dowolnego wezla grafu (znakowania) mozna wykonac dowolne przejscie? Jaki z tego wniosek n.t. zywotności sieci? Czy sa możliwe zakleszczenia?
- Wykonać analizę niezmiennikow (wybrac w menu "Invariant Analysis").
 - wynik analizy niezmiennikow przejsc (T-invariants) pokazuje nam, ile razy trzeba odpalic dane przejscie (T), aby przeksztalcic znakowanie poczatkowege z powrotem do niego samego (wynik nie mowi nic o kolejnosci odpalen). Z wyniku mozemy m.in. wnioskowac o odwracalnosci sieci.
 - wynik analizy niezmiennikow miejsc (P-invariants) pokazuje nam zbiory miejsc, w ktorych laczna suma znacznikow sie nie zmienia. Pozwala to wnioskowac n.t. zachowawczosci sieci (czyli własnosci, gdzie suma znacznikow pozostaje stala) oraz o ograniczonosci miejsc.

Rysunek 1: Zbudowany graf w programie PIPE2

Petri net state space analysis results

Bounded	true
Safe	true
Deadlock	false

Rysunek 2: Wyniki "State Space Analysis"

Jak widzimy sieć jest ograniczona (ponieważ liczba tokenów wewnątrz sieci zawsze jest równa jeden), bezpieczna (jest 1-ograniczona) i nie wystąpi w niej deadlock (nie ma sytuacji, w której nie moglibyśmy przejść dalej).

Rysunek 3: Wyniki "Reachability/Coverability Graph"

Widzimy, że każde znakowanie jest osiągalne, a maksymalna liczba znaczników w kazdym z nich wynosi jeden. Stąd wniosek, że sieć jest bezpieczna i ograniczona. Każde z przejść jest

pokazane jako krawędź w grafie, czyli zawsze można wystartować z dowolnego stanu - oznacza to, że każde przejście jest żywe. Wychodzac od dowolnego znakowania można wykonać dowolne przejście - wynika z tego, że sieć jest żywa oraz nie są możliwe zakleszczenia.

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Rysunek 4: Wyniki "Invariant Analysis"

Wynik analizy niezmienników przejść mówi, że sieć jest odwracalna, ponieważ, aby wrócić do stanu startowego, należy przejść przez każdą tranzycję. Z kolei wynik analizy niezmienników miejsc określa miejsca, w których suma znaczników pozostaje stała - sieć jest ograniczona i zachowawcza.

3. Zadanie 1

Wymyslic własna maszyne stanow, zasymulowac przykład i dokonac analizy grafu osiagalności oraz niezmiennikow j.w.

Rysunek 5: Stworzona sieć

Petri net state space analysis results

Bounded	false
Safe	false
Deadlock	false

Rysunek 6: Wyniki "State Space Analysis"

Sieć nie jest ograniczona, ponieważ tranzycja T1 będzie powodować produkowanie dodatkowych tokenów, czyli w miejscu P3, będzie ciągle przybywać tokenów (w nieskończoność). Sieć nie jest bezpieczna ponieważ nie jest 1-ograniczona (w P3 pojawia się więcej niż jeden token). Nie ma możliwości deadlocka, ponieważ zawsze mamy możliwość przejść do innego stanu (poza przechodzeniem z P3).

Rysunek 7: Wyniki "Reachability/Coverability Graph"

Każde ze znakowań jest osiągalne, każde przejście jest żywe, a więc sieć też jest żywa.

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) = 1$$

 $M(P0) + M(P2) = 2$

Rysunek 8: Wyniki "Invariant Analysis"

Widzimy, że T-invariants jest puste - stąd wynika, że sieć jest nieodwracalna. Z kolei z równań P-invariants możemy wyciągnąć wniosek, że sieć nie jest bezpieczna, zachowawcza, ograniczona.

5. Zadanie 2

Zasymulowac sieć jak ponizej:

Dokonac analizy niezmiennikow przejsc. Jaki wniosek mozna wyciagnac o odwracalności sieci? Wygenerowac graf osiagalności. Prosze wywnioskowac z grafu, czy siec jest zywa. Prosze wywnioskowac czy jest ograniczona. Objasnic wniosek.

6. Rozwiązanie

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Rysunek 9: Wyniki "Invariant Analysis"

Rysunek 10: Wyniki "Reachability/Coverability Graph"

- Odwracalność nie, można to stwierdzić na podstawie wektora (a właściwie jego braku) T-invariants
- Żywotność tak, każde z przejść musi się wykonać, a później wykonują się w pętli
- Ograniczoność nie, ilość tokenów w P3 rośnie w nieskończoność.

7. Zadanie 3

Zasymulowac wzajemne wykluczanie dwoch procesow na wspolnym zasobie. Dokonac analizy niezmiennikow. Wyjasnij znaczenie rownan (P-invariant equations). Ktore rownanie pokazuje działanie ochrony sekcji krytycznej?

Rysunek 11: Przygotowana sieć przedstawiająca procesy, które wzajemnie się wykluczają

Petri net invariant analysis results

T-Invariants

T0	T1	T2	Т3
1	1	0	0
0	0	1	1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Rysunek 12: Wyniki "Invariant Analysis"

Gdy przyjrzymy się równaniom P-invariant, możemy zauważyć, że występują w nim wszystkie trzy stany. Stan P0 odpowiada za to, że zasób jest wolny, a stany P1 i P2 oznaczają, że zasób jest zajęty przez jeden z procesów. Po prawej stronie równania znajduje się liczba jeden, co oznacza, że suma tokenów we wszystkich stanach zawsze wynosi jeden, czyli token zawsze znajduje się w jednym ze stanów, a na tym polega ochrona sekcji krytycznej.

9. Zadanie 4

Uruchomic problem producenta i konsumenta z ograniczonem buforem (mozna posluzyc sie przykladem, menu:file, examples). Dokonac analizy niezmiennikow. Czy siec jest zachowawcza? Ktore rownanie mowi nam o rozmiarze bufora?

10. Rozwiązanie

Rysunek 13: Problem producenta i konsumenta z ograniczonym buforem

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Rysunek 14: Wyniki "Invariant Analysis"

Sieć jest zachowawcza, ponieważ każda tranzycja produkuje tyle samo tokenów ile pobiera. Na podstawie wektora T-invariants widzimy, że sieć jest odwracalna. Sieć jest żywa gdyż wszystkie przejścia mogą być wykonane. O wielkości bufora mówi nam równanie nr. 3. Stan P6 odpowiada za miejsca zajęte, a P7 za miejsca wolne.

11. Zadanie 5

Stworzyc symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonac analizy niezmiennikow. Zaobserwowac brak pelnego pokrycia miejsc.

Rysunek 15: Problem producenta i konsumenta z nieograniczonym buforem

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	Р1	P2	P3	P4	P5	P6
1	1	1	0	0	0	0
0	0	0	1	1	1	0

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$

Rysunek 16: Wyniki "Invariant Analysis"

Z wektora T-invartiants - sieć odwracalna. Jest też żywa, ponieważ każdy stan jest osiągalny. W sekcji P-invariant equations obserwujemy, brak wystąpienia stanu P6, czyli bufora. Jest tak dlatego, iż jest on nieograniczony i nie da się go określić równaniem. Pozostałe równania opisują procesy wytwarzania i konsumowania tokenów.

13. Zadanie 6

Zasymulowac prosty przykład ilustrujacy zakleszczenie. Wygenerowac graf osiagalności i zaobserwowac znakowania, z ktoroch nie można wykonac przejsc. Zaobserwowac własciwości sieci w "State Space Analysis". Poniżej przykład sieci z możliwościa zakleszczenia (można wymyslic inny):

14. Rozwiązanie

Rysunek 17: Zamodelowana sieć

Rysunek 18: Wyniki "Reachability/Coverability Graph"

Graf pozwala jednoznacznie stwierdzić, że stanami, w których nastąpi deadlock są stany: S6, S7, S10, S11 - wchodząc do nich nie można już przejść dalej. Wynik analizy "State Space" pozwala poznać najkrótszą ścieżkę prowadzącą do zakleszczenia.

Petri net state space analysis results

Bounded true
Safe true
Deadlock true

Shortest path to deadlock: T2 T4 T5 T0

Rysunek 19: Wyniki "State Space Analysis"

15. Wnioski

Powyższe przykłady ukazują, że sieci Petriego pozwalają modelować różne systemy. Procesy zazwyczaj przebiegają według jakiegoś określonego modelu, dzieki temu możemy zbadać właściwości tego procesu, a dzięki temu poznać zależności między poszczególnymi podsystemami. Sieci Petriego pozwalają także unaocznić przebieg i zakończenie danego systemu, co może być użyteczne w wyszukiwaniu problemów (np. zakleszczeń).

16. Bibliografia

- http://jedrzej.ulasiewicz.staff.iiar.pwr.wroc.pl/ProgramowanieWspolbiezne/wyklad/Sieci-Petriego15.pdf?fbclid=IwAR3euBljzKlFJSOnbfJpHYjRgv8tzs_rAG7fSj84x2too3zE7nf5JaOb2yA
- http://sirius.cs.put.poznan.pl/~inf89721/MiAPB/Nowe/5%20-%20Analiza% 20sieci%20Petriego.pdf
- https://pl.wikipedia.org/wiki/Sie%C4%87_Petriego#:~:text=Sie%C4%87% 20Petriego%20%E2%80%93%20j%C4%99zyk%20modelowania%20dyskretnych,zosta% C5%82y%20zdefiniowane%20w%20latach%2060.
- http://robert.wojcik.staff.iiar.pwr.wroc.pl/dydaktyka/dzienne/ina/miasi_ 11.pdf