IN THE CLAIMS:

- 1. (cancelled)
- 2. (cancelled)
- 3. (previously amended) A compound defined according to the structure:

wherein m is 0 or 1;

wherein X is methyl or hydrogen;

wherein R_1 , R_2 , R_3 and R_4 each represent methyl or ethyl with the proviso that when X is methyl, each of R_1 , R_2 , R_3 and R_4 is methyl and when X is hydrogen, one of R_1 , R_2 , R_3 and R_4 is ethyl; and wherein R_6 hydrogen or methyl.

4. (previously amended) A compound defined according to the structure:

wherein m is 0 or 1;

wherein X is methyl or hydrogen;

wherein R_1 , R_2 , R_3 and R_4 each represent methyl or ethyl with the proviso that when X is methyl, each of R_1 , R_2 , R_3 and R_4 is methyl and when X is hydrogen, one of R_1 , R_2 , R_3 and R_4 is ethyl; and wherein R_6 hydrogen or methyl.

5. (original) A compound of claim 4 defined according to the structure:

wherein X is methyl or hydrogen; and

wherein R_1 , R_2 , R_3 and R_4 each represent methyl or ethyl with the proviso that when X is methyl, each of R_1 , R_2 , R_3 and R_4 is methyl and when X is hydrogen, one of R_1 , R_2 , R_3 and R_4 is ethyl.

- 6. (cancelled)
- 7. (cancelled)

8. (previously amended) A compound defined according to the structure:

$$R_{6}$$
 R_{1}
 R_{2}
 X
 $(CH_{2})_{m}$
 R_{3}
 R_{4}

wherein m is 0 or 1;

wherein X is methyl or hydrogen;

wherein R_1 , R_2 , R_3 and R_4 each represent methyl or ethyl with the proviso that when X is methyl, each of R_1 , R_2 , R_3 and R_4 is methyl and when X is hydrogen, one of R_1 , R_2 , R_3 and R_4 is ethyl; and wherein R_6 hydrogen or methyl.

9. (Original) A compound of claim 5 having the structure:

10. (Original) The optical isomers of the compound of claim 9:

(1R,5R,9R,11R)-Z	(1R,5S,9R,11S)-Z
(1R,5R,9R,11S)-Z	(1R,5R,9S,11S)-Z
(1R,5R,9S,11R)-Z;	(1R,5S,9S,11R)-Z
(1R,5S,9R,11R)-Z;	(1R,5S,9S,11S)-Z
(1S,5R,9R,11R)-Z;	(1S,5R,9S,11S)-Z
(1S,5R,9R,11S)-Z;	(1S,5S,9R,11S)-Z
(1S,5R,9S,11R)-Z;	(1S,5S,9S,11R)-Z
(1S,5S,9R,11R)-Z;	(1S,5S,9S,11S)-Z

wherein "Z" represents the compound name, "3,3,10,10,11,12,12-heptamethyl-4-oxatricyclo[7.3.0.0<1,5>]dodecane".

- 11. 19. (cancelled).
- 20. (previously presented) A method for improving, enhancing or modifying the odor properties of a fragrance by incorporating an olfactory acceptable amount of the compound of claim 4.
- 21. (previously presented) A method for improving, enhancing or modifying the odor properties of a fragrance by incorporating an olfactory acceptable amount of the compound of claim 5.
- 22. (Original) A method for improving, enhancing or modifying the odor properties of a fragrance by incorporating an olfactory acceptable amount of the compound of claim 9.
- 23. (Original) A method for improving, enhancing or modifying the odor properties of a fragrance by incorporating an olfactory acceptable amount of at least one isomer of claim 10.

24. – 25. (cancelled)

26. (previously presented) A process for synthesizing the compound of claim 8 via the Claisen rearrangement reaction:

$$R_{6}$$
 R_{6}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}

at about 190-210°C in the presence of a mild acid catalyst, said catalyst is selected from the group consisting of phosphoric acid, potassium diacid phosphate, sodium diacid phosphate, sodium bisulfate, an acid ion exchange catalyst, disodium citrate and hydroquinone.

27. (Original) A process for preparing a compound defined according to claim 4 comprising the steps of first carrying out the reaction:

$$R_{6}$$
 R_{1}
 R_{2}
 X
 $(CH_{2})_{m}$
 R_{3}
 R_{4}
 R_{4}
 R_{6}
 R_{6}
 R_{6}
 R_{1}
 R_{2}
 R_{6}
 $(CH_{2})_{m}$
 R_{3}
 R_{4}

using a metal hydride reducing agent; and then carrying out the reaction: using a protonic acid cyclizing agent.