Lasso et sélection de modèles

Nicolas Verzelen, Joseph Salmon

INRA / Université de Montpellier

Plan

Rappels

Sélection de variables et parcimonie

Améliorations et extensions du Lasso

Retour sur le modèle

$$\mathbf{y} = X\boldsymbol{\beta}^* + \boldsymbol{\varepsilon} \in \mathbb{R}^n$$

$$X = [\mathbf{x}_1, \dots, \mathbf{x}_p] = \begin{pmatrix} x_{1,1} & \dots & x_{1,p} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,p} \end{pmatrix} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta}^{\star} \in \mathbb{R}^p$$

Plan

Rappels

Sélection de variables et parcimonie La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

Motivation

Utilité des estimateurs $\hat{oldsymbol{eta}}$ avec beaucoup de coefficients nuls :

- pour l'interprétation
- ▶ pour l'efficacité computationnelle si p est énorme

Idée sous-jacente : sélectionner des variables

Rem: aussi utile si β^* a peu de coefficients non nuls

Méthodes de sélection de variables

- Méthodes de dépistage par corrélation (\ge : correlation screening): supprimer les \mathbf{x}_j de faible corrélation avec \mathbf{y}
 - avantages : rapide (+++), coût : p produits scalaires de taille n, intuitive (+++)
 - <u>défauts</u> : néglige les interactions entre variables \mathbf{x}_j , résultats théoriques faibles (- -)
- Méthodes gloutonnes (≥ : greedy) / pas à pas (≥ : stage/step-wise)
 - avantages : rapide (++), coût : p produits scalaires de taille n par variable active, intuitive (++)
 - <u>défauts</u> : propagation de mauvaises sélections de variables aux étapes suivantes ; résultats théoriques faibles (-)

Méthodes de sélection de variables

- Méthodes de dépistage par corrélation ($\ge \le$: correlation screening) : supprimer les \mathbf{x}_j de faible corrélation avec \mathbf{y}
 - avantages : rapide (+++), coût : p produits scalaires de taille n, intuitive (+++)
 - \bullet <u>défauts</u> : néglige les interactions entre variables \mathbf{x}_j , résultats théoriques faibles (- -)
- ► Méthodes gloutonnes (ﷺ : greedy) / pas à pas (ﷺ : stage/step-wise)
 - <u>avantages</u> : rapide (++), coût : p produits scalaires de taille n par variable active, intuitive (++)
 - <u>défauts</u> : propagation de mauvaises sélections de variables aux étapes suivantes ; résultats théoriques faibles (-)
- Méthodes pénalisées favorisant la parcimonie (e.g., Lasso)
 - avantages : résultats théoriques bons (++)
 - <u>défauts</u> : encore lent (on y travaille Fercoq et al. (2015)) (-)

Méthodes de sélection de variables

- Méthodes de dépistage par corrélation (\ge : correlation screening) : supprimer les \mathbf{x}_j de faible corrélation avec \mathbf{y}
 - avantages : rapide (+++), coût : p produits scalaires de taille n, intuitive (+++)
 - <u>défauts</u> : néglige les interactions entre variables \mathbf{x}_j , résultats théoriques faibles (- -)
- ► Méthodes gloutonnes (ﷺ : greedy) / pas à pas (ﷺ : stage/step-wise)
 - <u>avantages</u> : rapide (++), coût : p produits scalaires de taille n par variable active, intuitive (++)
 - <u>défauts</u> : propagation de mauvaises sélections de variables aux étapes suivantes ; résultats théoriques faibles (-)
- ▶ Méthodes pénalisées favorisant la parcimonie (e.g., Lasso)
 - avantages : résultats théoriques bons (++)
 - <u>défauts</u> : encore lent (on y travaille Fercoq et al. (2015)) (-)

La pseudo-norme ℓ_0

Définitions

Le **support** du vecteur β est l'ensemble des indices des coordonnées non nulles :

$$supp(\beta) = \{ j \in [1, p], \beta_j \neq 0 \}$$

La **pseudo-norme** ℓ_0 d'un vecteur $\boldsymbol{\beta} \in \mathbb{R}^p$ est son nombre de coordonnées non-nulles :

$$\|\boldsymbol{\beta}\|_{0} = \operatorname{card}\{j \in [1, p], \beta_{j} \neq 0\}$$

Rem: $\|\cdot\|_0$ n'est pas une norme, $\forall t \in \mathbb{R}^*, \|t\boldsymbol{\beta}\|_0 = \|\boldsymbol{\beta}\|_0$

 $\underline{\mathsf{Rem}} \colon \lVert \cdot \rVert_0 \text{ n'est pas non plus convexe, } \boldsymbol{\beta}_1 = (1,0,1,0\dots,0)$

$$m{eta}_1=(0,1,1,0,\dots,0) \ {
m et} \ 3=\|rac{m{eta}_1+m{eta}_2}{2}\|_0\geq rac{\|m{eta}_1\|_0+\|m{eta}_2\|_0}{2}=2$$

La pénalisation ℓ_0

Première tentative de méthode pénalisée pour introduire de la parcimonie : utiliser ℓ_0 pour la pénalisation / régularisation

$$\hat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2}_{\text{attache aux donn\'ees}} \quad + \underbrace{\lambda \|\boldsymbol{\beta}\|_0}_{\text{r\'egularisation}} \right)$$

Problème combinatoire !!! (problème "NP-dur")

Résolution exacte : nécessite de considérer tous les sous-modèles, *i.e.*, calculer les estimateurs pour tous les supports possibles ; il y en a 2^p , ce qui requiert le calcul de 2^p moindres carrés !

Exemples:

 $\overline{p=10}$ possible : $\approx 10^3$ moindres carrés

p=30 impossible : $\approx 10^{10}$ moindres carrés

Rem: avancées récentes en MIP Bertsimas et al. 16

Le Lasso : la définition pénalisée

Lasso : Least Absolute Shrinkage and Selection Operator Tibshirani (1996)

$$\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2}_{\text{attache aux données}} \quad + \underbrace{\lambda \|\boldsymbol{\beta}\|_1}_{\text{régularisation}} \right)$$

où
$$\|oldsymbol{eta}\|_1 = \sum_{j=1}^p |eta_j|$$
 (somme des valeurs absolues des coefficients)

► On retrouve de nouveau les cas limites :

$$\lim_{\lambda \to 0} \hat{\beta}_{\lambda}^{\text{Lasso}} = \hat{\beta}^{\text{MCO}}$$
$$\lim_{\lambda \to +\infty} \hat{\beta}_{\lambda}^{\text{Lasso}} = 0 \in \mathbb{R}^{p}$$

<u>Attention</u> : l'estimateur Lasso n'est pas toujours **unique** pour un λ fixé ; prendre par exemple deux colonnes identiques

Interprétation contrainte

Un problème de la forme :

$$\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}_{\text{attache aux données}} \quad + \underbrace{\lambda \|\boldsymbol{\beta}\|_1}_{\text{régularisation}} \right)$$

admet la même solution qu'une version contrainte :

$$\begin{cases} \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\min} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 \\ \text{t.q. } \|\boldsymbol{\beta}\|_1 \leq T \end{cases}$$

pour un certain T > 0.

Rem: le lien $T \leftrightarrow \lambda$ n'est pas explicite

- ▶ Si $T \to 0$ on retrouve comme solution le vecteur nul : $0 \in \mathbb{R}^p$
- $lackbox{ Si } T
 ightarrow \infty$ on retrouve $\hat{oldsymbol{eta}}^{ ext{MCO}}$ (non contraint)

Mise à zéro de certains coefficients

Optimisation sous contrainte ℓ_2 : solution non parcimonieuse

Mise à zéro de certains coefficients

Optimisation sous contrainte ℓ_1 : solution parcimonieuse

Définitions

Pour $f:\mathbb{R}^n\to\mathbb{R}$ une fonction convexe, $u\in\mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x\in\mathbb{R}^n$ on a

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

La sous-différentielle est l'ensemble des sous-gradients : $\partial f(x^*) = \{u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle u, x - x^* \rangle \}.$

Définitions

Pour $f:\mathbb{R}^n\to\mathbb{R}$ une fonction convexe, $u\in\mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x\in\mathbb{R}^n$ on a

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

La sous-différentielle est l'ensemble des sous-gradients : $\partial f(x^*) = \{u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle u, x - x^* \rangle \}.$

Définitions

Pour $f:\mathbb{R}^n\to\mathbb{R}$ une fonction convexe, $u\in\mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x\in\mathbb{R}^n$ on a

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

La sous-différentielle est l'ensemble des sous-gradients : $\partial f(x^*) = \{u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle u, x - x^* \rangle \}.$

Définitions

Pour $f:\mathbb{R}^n\to\mathbb{R}$ une fonction convexe, $u\in\mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x\in\mathbb{R}^n$ on a

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

La sous-différentielle est l'ensemble des sous-gradients : $\partial f(x^*) = \{u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle u, x - x^* \rangle \}.$

Règle de Fermat

Théorème

Un point x^* est un minimum d'une fonction convexe $f:\mathbb{R}^n\to\mathbb{R}$ si et seulement si $0\in\partial f(x^*)$

Preuve : utiliser la définition des sous-gradients :

▶ 0 est un sous-gradient de f en x^* si et seulement si $\forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle 0, x - x^* \rangle$

Règle de Fermat

Théorème

Un point x^* est un minimum d'une fonction convexe $f:\mathbb{R}^n\to\mathbb{R}$ si et seulement si $0\in\partial f(x^*)$

Preuve : utiliser la définition des sous-gradients :

▶ 0 est un sous-gradient de f en x^* si et seulement si $\forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle 0, x - x^* \rangle$

Rem: visuellement cela correspond à une tangente horizontale

Fonction (abs): $f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs): $f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs): $f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Condition de Fermat pour le Lasso

$$\hat{\boldsymbol{\beta}}_{\lambda}^{Lasso} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2}\|\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2}_{\text{attache aux données}} \quad + \underbrace{\lambda\|\boldsymbol{\beta}\|_1}_{\text{régularisation}} \right)$$

Conditions nécessaires et suffisantes d'optimalité (Fermat) :

$$\forall j \in [p], \ \mathbf{x}_j^\top \left(\frac{y - X \hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}}}{\lambda} \right) \in \begin{cases} \{ \mathrm{sign}(\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}})_j \} & \mathrm{si} \quad (\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}})_j \neq 0, \\ [-1, 1] & \mathrm{si} \quad (\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}})_j = 0. \end{cases}$$

$$\underline{\mathsf{Rem}} \colon \mathsf{si} \ \lambda > \lambda_{\max} := \max_{j \in \llbracket 1, p \rrbracket} |\langle \mathbf{x}_j, \mathbf{y} \rangle|, \ \mathsf{alors} \ \hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}} = 0.$$

preuve : vérifier les conditions ci-dessus pour 0 et $\lambda > 0$

Le cas orthogonal : le seuillage doux

Retour sur un cas simple (design orthogonal) : $X^{\top}X = \mathrm{Id}_p$

$$\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 = \|X^{\top}\mathbf{y} - X^{\top}X\boldsymbol{\beta}\|_2^2 = \|X^{\top}\mathbf{y} - \boldsymbol{\beta}\|_2^2$$

car X est une isométrie dans ce cas, l'objectif du lasso devient :

$$\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p \left(\frac{1}{2} (\mathbf{x}_j^\top \mathbf{y} - \beta_j)^2 + \lambda |\beta_j| \right)$$

Problème séparable : problème qui revient à minimiser terme à terme en séparant les termes la somme

II faut donc minimiser : $x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$ pour $z = \mathbf{x}_i^{\top} \mathbf{y}$

Rem: on parle d'**opérateur proximal** en z de la fonction $x \mapsto \lambda |x|$ (cf. Parikh et Boyd (2013), pour les méthodes proximales)

Régularisation en 1D : Ridge

Résoudre :
$$\eta_\lambda(z)=rgmin_{x\in\mathbb{R}}x\mapsto rac{1}{2}(z-x)^2+rac{\lambda}{2}x^2$$

$$\eta_\lambda(z)=rac{z}{1+\lambda}$$

Contraction ℓ_2 : Ridge

Régularisation en 1D : Lasso

Résoudre :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$$

$$\eta_{\lambda}(z) = \operatorname{sign}(z)(|z| - \lambda)_+ \text{(Exercice)}$$

Contraction ℓ_1 : Seuillage doux (\blacksquare : soft thresholding)

Régularisation en 1D : ℓ_0

Résoudre :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z-x)^2 + \lambda \mathbbm{1}_{x \neq 0}$$

$$\eta_{\lambda}(z) = z \mathbbm{1}_{|z| \geq \sqrt{2\lambda}}$$

Contraction ℓ_0 : Seuillage dur (\blacksquare : hard thresholding)

Régularisation en 1D : Elastic Net

Résoudre :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda(\gamma|x| + (1-\gamma)\frac{x^2}{2})$$
 $\eta_{\lambda}(z) = \mathsf{Exercice}$

Contraction ℓ_1/ℓ_2

Seuillage doux : forme explicite

$$\eta_{\text{Lasso},\lambda}(z) = \begin{cases} z + \lambda & \text{si } z < -\lambda \\ 0 & \text{si } |z| \le \lambda \\ z - \lambda & \text{si } z > \lambda \end{cases}$$

Exercise: Prouver le résultat précédent en utilisant les sous-gradients

Exemple numérique : simulation

- $m{\beta}^{\star} = (1, 1, 1, 1, 1, 0, \dots, 0) \in \mathbb{R}^p$ (5 coefficients non-nuls)
- $lackbox{} X \in \mathbb{R}^{n \times p}$ a des colonnes tirées selon une loi gaussienne
- $ightharpoonup y = X oldsymbol{eta}^{\star} + oldsymbol{\varepsilon} \in \mathbb{R}^n \text{ avec } oldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$
- \blacktriangleright On utilise une grille de 50 valeurs de λ

Pour cet exemple les tailles sont : $n = 60, p = 40, \sigma = 1$

Intérêt du Lasso

- ► Enjeu numérique : le Lasso est un problème convexe
- Sélection de variables/ solutions parcimonieuses (sparse) : $\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}}$ a potentiellement de nombreux coefficients nuls. Le paramètre λ contrôle le niveau de parcimonie : si λ est grand, les solutions sont très creuses.

Exemple : on obtient 17 coefficients non nuls pour LassoCV dans la simulation précédente

Rem: RidgeCV n'avait aucun coefficient nul

Analyse de l'estimateur dans le cas général

<u>Analyse théorique</u> : (nettement) plus poussée que pour les moindres carrées ou que pour Ridge; peut être trouvée dans des références récentes, *cf.* Buhlmann et van de Geer (2011) pour des résultats théoriques

<u>En résumé</u> : on biaise l'estimateur des moindres carrés pour réduire la variance

Plan

Rappels

Sélection de variables et parcimonie

Améliorations et extensions du Lasso

LSLasso / Elastic-Net

Pénalités non-convexes / Adaptive Lasso

Structure sur le support

Stabilisation

Extensions des moindres carrés / Lasso

Le biais du Lasso

Le lasso est biaisé : il contracte les grands coefficients vers 0

Le biais du Lasso

Le lasso est biaisé : il contracte les grands coefficients vers 0

Le biais du Lasso : un remède simple

Comme les grands coefficients sont parfois contractés vers zéro, il est possible d'utiliser une procédure en deux étapes

LSLasso (Least Square Lasso)

- 1. Lasso : obtenir $\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}}$

2. Moindres-carrés sur les variables actives
$$\sup(\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}})$$

$$\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{LSLasso}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\arg\min} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2$$

$$\underset{\sup(\boldsymbol{\beta}) = \sup(\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Lasso}})}{\sup(\boldsymbol{\beta})}$$

Attention : il faut faire la CV sur la procédure entière ; choisir λ du Lasso par CV puis faire les moindres carrés garde trop de variables

Rem: LSLasso pas forcément codé dans les packages usuels

Débiasage

Débiasage

Prédiction: Lasso vs. LSLasso

Bilan du LSLasso

Avantages

- les "vrais" grands coefficients sont moins atténués
- en faisant la CV on récupère moins de variables parasites (amélioration de l'interprétabilité)
 e.g., sur l'exemple précédent le LSLassoCV retrouve les 5 "vraies" variables non nulles, et un faux positif

LSLasso: utile pour <u>l'estimation</u>

Limites

- la différence en prédiction n'est pas toujours flagrante
- ▶ nécessite plus de calcul : re-calculer autant de moindres carrés que de paramètres λ (de dimension la taille des supports, car on néglige les autres variables)
- non packagé

Elastic Net : régularisation ℓ_1/ℓ_2

L'Elastic Net introduit par Zou et Hastie (2005) est solution de

$$\hat{\boldsymbol{\beta}} \lambda = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left[\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \left(\gamma \|\boldsymbol{\beta}\|_1 + (1 - \gamma) \frac{\|\boldsymbol{\beta}\|_2^2}{2} \right) \right]$$

Rem: deux paramètres de régularisation, un pour la régularisation globale, un qui contrôle l'influence Ridge vs. Lasso

 $\underline{\mathsf{Rem}} :$ la solution est unique et la taille du support de l'Elastic Net est plus petite que $\min(n,p)$

$$\gamma = 1.00$$

$$\gamma = 0.99$$

$$\gamma = 0.95$$

$$\gamma = 0.90$$

$$\gamma = 0.75$$

$$\gamma = 0.50$$

$$\gamma = 0.25$$

$$\gamma = 0.1$$

$$\gamma = 0.05$$

$$\gamma = 0.01$$

$$\gamma = 0.00$$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \mathrm{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\beta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}_{\text{attache aux donn\'ees}} \right. \\ \left. + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\beta_j|)}_{\text{r\'egularisation}} \right)$$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \operatorname{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\beta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \quad \left(\quad \underbrace{\frac{1}{2}\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}_{\text{attache aux donn\'es}} \right. \\ \left. \quad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\beta_j|)}_{\text{r\'egularisation}} \right)$$

Adaptive-Lasso Zou (2006) / ℓ_1 re-pondérés Candès et al. (2008)

$$pen_{\lambda,\gamma}(t) = \lambda |t|^q$$
 avec $0 < q < 1$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t\to \mathrm{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\beta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}_{\text{attache aux données}} \right. \\ \left. + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\beta_j|)}_{\text{régularisation}} \right)$$

▶ MCP (minimax concave penalty) Zhang (2010) pour $\lambda > 0$ et $\gamma > 1$

$$\mathrm{pen}_{\lambda,\gamma}(t) = \begin{cases} \lambda |t| - \frac{t^2}{2\gamma}, & \mathsf{si} \ |t| \leq \gamma \lambda \\ \frac{1}{2}\gamma \lambda^2, & \mathsf{si} \ |t| > \gamma \lambda \end{cases}$$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t\to \mathrm{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\beta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \quad \left(\quad \underbrace{\frac{1}{2}\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}_{\text{attache aux donn\'es}} \right. \\ \left. \quad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\beta_j|)}_{\text{r\'egularisation}} \right)$$

SCAD (Smoothly Clipped Absolute Deviation) Fan et Li (2001) pour $\lambda > 0$ et $\gamma > 2$

$$\mathrm{pen}_{\lambda,\gamma}(t) = \begin{cases} \lambda|t|, & \text{si } |t| \leq \lambda \\ \frac{\gamma\lambda|t| - (t^2 + \lambda^2)/2}{\gamma - 1}, & \text{si } \lambda < |t| \leq \gamma\lambda \\ \frac{\lambda^2(\gamma^2 - 1)}{2(\gamma - 1)}, & \text{si } |t| > \gamma\lambda \end{cases}$$

Rem: difficultés algorithmiques (arrêt, minima locaux, etc.)

Forme des pénalités classiques

Plusieurs noms pour une même idée :

- ► Adaptive-Lasso Zou (2006)
- \blacktriangleright ℓ_1 re-pondérés Candès et al. (2008)
- ► approche DC-programming (pour *Difference of Convex Programming*) Gasso *et al.* (2008)

 $\underline{\mathsf{Exemple}} : \mathsf{prendre} \ \mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q \ \mathsf{avec} \ q = 1/2$

Algorithm: Adaptive Lasso (cas q = 1/2)

Entrées: X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

 $\underline{\mathsf{Exemple}} : \mathsf{prendre} \ \mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q \ \mathsf{avec} \ q = 1/2$

Algorithm: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k = 1, \dots, K$ do

 $\underline{\mathsf{Exemple}} : \mathsf{prendre} \ \mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q \ \mathsf{avec} \ q = 1/2$

Algorithm: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k=1,\ldots,K$ do

$$\hat{\boldsymbol{\beta}} \leftarrow \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\beta_j| \right)$$

Exemple : prendre $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithm: Adaptive Lasso (cas q = 1/2)

Entrées: X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for
$$k=1,\ldots,K$$
 do

$$\hat{\boldsymbol{\beta}} \leftarrow \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\beta_j| \right)$$
$$\hat{w}_j \leftarrow \frac{1}{|\hat{\beta}_j|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Exemple: prendre $pen_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithm: Adaptive Lasso (cas q = 1/2)

Entrées: X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k=1,\ldots,K$ do

$$\hat{\boldsymbol{\beta}} \leftarrow \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\beta_j| \right)$$
$$\hat{w}_j \leftarrow \frac{1}{|\hat{\beta}_j|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Rem: en pratique pas besoin d'itérer beaucoup (5 itérations)

Exemple: prendre $pen_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithm: Adaptive Lasso (cas q = 1/2)

Entrées: X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

for $k=1,\ldots,K$ do

$$\hat{\boldsymbol{\beta}} \leftarrow \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\beta_j| \right)$$
$$\hat{w}_j \leftarrow \frac{1}{|\hat{\beta}_j|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Rem: en pratique pas besoin d'itérer beaucoup (5 itérations)

Rem: utiliser un solveur Lasso pour mettre à jour $\hat{\beta}$

Structure du support

On suppose ici que l'on connaît une structure de groupes sur les variables au préalable de l'étude : $[\![1,p]\!] = \bigcup_{g \in G} g$

Vecteur et ses coordonnées actives (en orange) :

Support creux : quelconque

Pénalité envisagée : Lasso

$$\|\theta\|_1 = \sum_{j=1}^p |\beta_j|$$

Structure du support

On suppose ici que l'on connaît une structure de groupes sur les variables au préalable de l'étude : $[\![1,p]\!]=\bigcup_{g\in G}g$

Vecteur et ses coordonnées actives (en orange) :

Support creux : groupes

Pénalité envisagée : Groupe-Lasso

$$\|\theta\|_{2,1} = \sum_{g \in G} \|\beta_g\|_2$$

Structure du support

On suppose ici que l'on connaît une structure de groupes sur les variables au préalable de l'étude : $[\![1,p]\!] = \bigcup_{g \in G} g$

Vecteur et ses coordonnées actives (en orange) :

Support creux : groupes + sous groupes

Pénalité envisagée : Sparse-Groupe-Lasso

$$\alpha \|\theta\|_1 + (1-\alpha)\|\theta\|_{2,1} = \alpha \sum_{j=1}^p |\beta_j| + (1-\alpha) \sum_{g \in G} \|\beta_g\|_2$$

Groupe-Lasso

La pénalisation par la norme ℓ_1 assure que peu de coefficients sont actifs, mais aucune autre structure sur le support n'est utilisée

Structures additionnelles classiques :

- ▶ Parcimonie par groupe/bloc : Groupe-Lasso Yuan et Lin (2006)
- ► Parcimonie individuelle et par groupe : Sparse Groupe-Lasso Simon, Friedman, Hastie et Tibshirani (2012)
- ► Structures hiérarchiques (par exemple avec les interactions d'ordre supérieur) Bien, Taylor et Tibshirani (2013)
- ► Structures sur des graphes, des gradients, etc.

Stabilisation du Lasso

Le Lasso peut être **instable** : quand il n'y a pas unicité de la solution (e.g., quand p > n) selon le solveur numérique et la précision demandée, les variables sélectionnées peuvent différer.

On peut limiter ce genre de défauts en utilisant des techniques de ré-échantillonnage :

- ► Bolasso Bach (2008)
- ► Stability Selection Meinshausen et Buhlmann (2010)

Algorithm: Bootstrap Lasso

Entrées : X, \mathbf{y} , nombre de réplications B, régularisation λ

Algorithm: Bootstrap Lasso

Entrées : X, \mathbf{y} , nombre de réplications B, régularisation λ

for $k = 1, \dots, B$ do

Algorithm: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

for $k = 1, \ldots, B$ do

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$

Algorithm: Bootstrap Lasso

Entrées : X, \mathbf{y} , nombre de réplications B, régularisation λ

for $k = 1, \dots, B$ do

Générer un échantillon $\mathit{bootstrap}: X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{eta}_{\lambda}^{\mathrm{Lasso},(k)}$

Algorithm: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

for $k = 1, \dots, B$ do

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{oldsymbol{eta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\beta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Algorithm: Bootstrap Lasso

Entrées : X, \mathbf{y} , nombre de réplications B, régularisation λ

for $k = 1, \dots, B$ do

Générer un échantillon $\mathit{bootstrap}: X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{oldsymbol{eta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\beta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Calculer :
$$S := \bigcap_{k=1}^{B} S_k$$

Algorithm: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

for
$$k = 1, \dots, B$$
 do

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{eta}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\beta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Calculer :
$$S := \bigcap_{k=1}^{B} S_k$$

$$\mathsf{Calculer}: \hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Bolasso}} \in \underset{\sup(\boldsymbol{\beta}) = S}{\mathrm{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2$$

Algorithm: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

for
$$k = 1, \dots, B$$
 do

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{oldsymbol{eta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\beta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Calculer :
$$S := \bigcap_{k=1}^{B} S_k$$

Calculer:
$$\hat{\boldsymbol{\beta}}_{\lambda}^{\text{Bolasso}} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2$$

$$\underset{\text{supp}(\boldsymbol{\beta}) = S}{\sup_{\boldsymbol{\beta} \in \mathbb{R}^p}}$$

Sorties : un support S, et un vecteur $\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{Bolasso}}$

Exemple

Régression multi-tâches

On veut résoudre m régressions linéaires conjointement : $Y \approx X\Theta$

avec

- $Y \in \mathbb{R}^{n \times m}$: matrice des observations
- $ightharpoonup X \in \mathbb{R}^{n imes p}$: matrice de design (commune)
- ullet $\Theta \in \mathbb{R}^{p \times m}$: matrice des coefficients

<u>Exemple</u>: plusieurs signaux sont observés au cours du temps (*e.g.*, divers capteurs d'un même phénomène)

Rem:cf. MultiTaskLasso dans sklearn pour le numérique

Moindre carres pénalisées

Dans le contexte de la régression multi-tâches on peut résoudre les moindres carrés pénalisés :

$$\hat{\Theta}_{\lambda} = \underset{\Theta \in \mathbb{R}^{p \times m}}{\operatorname{arg\,min}} \quad \left(\quad \underbrace{\frac{1}{2} \|Y - X\Theta\|_F^2}_{\text{attache aux donn\'ees}} \quad + \underbrace{\lambda \Omega(\Theta)}_{\text{r\'egularisation}} \right)$$

où Ω est une pénalité / régularisation à préciser

Rem: la norme de Frobenius $\|\cdot\|_F$ est définie pour toute matrice $A\in\mathbb{R}^{n_1\times n_2}$ par

$$||A||_F^2 = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} A_{j_1,j_2}^2$$

Pénalisation pour le cas multi-tâches

On doit adapter les pénalisations vectorielles rencontrées :

Paramètre $\Theta \in \mathbb{R}^{p \times m}$

Support creux : quelconque

Pénalité Lasso:

$$\|\Theta\|_1 = \sum_{j=1}^p \sum_{k=1}^m |\Theta_{j,k}|$$

Pénalisation pour le cas multi-tâches

On doit adapter les pénalisations vectorielles rencontrées :

Paramètre $\Theta \in \mathbb{R}^{p \times m}$

Support creux : groupes

Pénalité Groupe-Lasso :

$$\|\Theta\|_{2,1} = \sum_{j=1}^{p} \|\Theta_{j:}\|_{2}$$

Rem: on note $\Theta_{j,:}$ la j^e ligne de Θ

Pénalisation pour le cas multi-tâches

On doit adapter les pénalisations vectorielles rencontrées :

Paramètre $\Theta \in \mathbb{R}^{p \times m}$

Support creux : groupes + sous groupes

Pénalité Sparse-Groupe-Lasso :

$$\alpha \|\Theta\|_1 + (1-\alpha) \|\Theta\|_{2,1}$$

References I

- ▶ BACH, F. "Bolasso: model consistent Lasso estimation through the bootstrap". In: *ICML*. 2008.
 - BERTSIMAS, D., A. KING et R. MAZUMDER. "Best subset selection via a modern optimization lens". In: *Ann. Statist.* 44.2 (2016), p. 813-852.
 - BÜHLMANN, P. et S. VAN DE GEER. Statistics for high-dimensional data. Springer Series in Statistics. Methods, theory and applications. Heidelberg: Springer, 2011.
 - FAN, J. et R. Li. "Variable selection via nonconcave penalized likelihood and its oracle properties". In: *J. Amer. Statist. Assoc.* 96.456 (2001), p. 1348-1360.
- FERCOQ, O., A. GRAMFORT et J. SALMON. "Mind the duality gap: safer rules for the lasso". In: *ICML*. 2015, p. 333-342.
- GASSO, G., A. RAKOTOMAMONJY et S. CANU. "Recovering sparse signals with non-convex penalties and DC programming". In: IEEE Trans. Signal Process. 57.12 (2009), p. 4686-4698.

References II

- J, Bien, J. TAYLOR et R. TIBSHIRANI. "A lasso for hierarchical interactions". In: *Ann. Statist.* 41.3 (2013), p. 1111-1141.
- MEINSHAUSEN, N. et P. BÜHLMANN. "Stability selection". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 72.4 (2010), p. 417-473.
- SIMON, N. et al. "A sparse-group lasso". In : *J. Comput. Graph. Statist.* 22.2 (2013), p. 231-245. ISSN : 1061-8600.
- ► TIBSHIRANI, R. "Regression Shrinkage and Selection via the Lasso". In: *J. R. Stat. Soc. Ser. B Stat. Methodol.* 58.1 (1996), p. 267-288.
- YUAN, M. et Y. LIN. "Model selection and estimation in regression with grouped variables". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 68.1 (2006), p. 49-67.
- ZHANG, C.-H. "Nearly unbiased variable selection under minimax concave penalty". In: Ann. Statist. 38.2 (2010), p. 894-942.
- ZOU, H. "The adaptive lasso and its oracle properties". In: J. Amer. Statist. Assoc. 101.476 (2006), p. 1418-1429.

References III

ZOU, H. et T. J. HASTIE. "Regularization and variable selection via the elastic net". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 67.2 (2005), p. 301-320.