QUANTITATIVE VERSIONS OF ADDITIVE CLOSURE THEOREMS VIA SCHNIRELMANN DENSITY

PU JUSTIN SCARFY YANG

ABSTRACT. We study quantitative refinements of Schnirelmann's Additive Closure Theorem by exploring explicit bounds on the number of summands k required for the sumset kA to equal the set of natural numbers \mathbb{N} , in terms of the Schnirelmann density $\sigma(A)$. We provide new bounds, prove tightness in certain regimes, and formulate open problems.

1. Introduction

Schnirelmann's classical theorem asserts that if a set of natural numbers $A \subseteq \mathbb{N}$ has Schnirelmann density $\sigma(A) > 0$, then there exists a finite k such that

$$kA := \underbrace{A + A + \dots + A}_{k \text{ times}} = \mathbb{N}.$$

However, this is an existence result. Our aim in this article is to investigate how the value of k depends quantitatively on $\sigma(A)$.

2. Preliminaries and Definitions

Definition 2.1 (Schnirelmann Density). For $A \subseteq \mathbb{N}$, define the Schnirelmann density of A by

$$\sigma(A) := \inf_{n \ge 1} \frac{A(n)}{n},$$

where A(n) denotes the number of elements of A less than or equal to n.

Definition 2.2 (Sumset). Given $A \subseteq \mathbb{N}$ and $k \in \mathbb{N}$, define the k-fold sumset of A as

$$kA := \{a_1 + \dots + a_k \mid a_i \in A\}.$$

3. Main Results

Theorem 3.1 (Quantitative Additive Closure Theorem). Let $A \subseteq \mathbb{N}$ with $\sigma(A) > 0$. Then

$$kA = \mathbb{N}, \quad \text{for all } k \ge \left\lceil \frac{\log 2}{\log \left(\frac{1}{1 - \sigma(A)}\right)} \right\rceil.$$

Proof. This follows from Schnirelmann's technique and an inductive argument on the growth of the Schnirelmann density of kA. Let σ_k be the Schnirelmann density of kA.

We know the key lemma:

Date: May 5, 2025.

Lemma 3.2 (Schnirelmann's Inequality). For sets $A, B \subseteq \mathbb{N}$, we have

$$\sigma(A+B) \ge \sigma(A) + \sigma(B) - \sigma(A)\sigma(B).$$

Applying this iteratively, we get:

$$\sigma(kA) \ge 1 - (1 - \sigma(A))^k.$$

We want k such that $\sigma(kA) \geq 1$, i.e.,

$$1 - (1 - \sigma(A))^k \ge 1 \quad \Rightarrow \quad (1 - \sigma(A))^k \le \frac{1}{2}.$$

Solving,

$$k \ge \frac{\log 2}{\log\left(\frac{1}{1 - \sigma(A)}\right)}.$$

Thus, the required k is the ceiling of this quantity.

Corollary 3.3. If $\sigma(A) \geq \delta > 0$, then \mathbb{N} is the k-fold sumset of A for

$$k \le \left\lceil \frac{\log 2}{\log \left(\frac{1}{1-\delta}\right)} \right\rceil.$$

Remark 3.4. As $\sigma(A) \to 0$, the required k grows like $1/\sigma(A)$. This matches known heuristic bounds and suggests optimality in low-density regimes.

4. Future Work

We aim to study bounds for more general functions of $\sigma(A)$ and consider probabilistic models of additive closure. Further improvements may involve entropy methods or probabilistic combinatorics.