微积分 A(1) 第四次习题课参考答案(第九周)

一、中值定理

1. 在[0,1]上,0 < f(x) < 1,f(x) 可微,且 $f'(x) \neq 1$.

证明:在(0,1)存在唯一的 ξ 使 $f(\xi) = \xi$ 。

证明: (1) 存在性: 作辅助函数 F(x) = f(x) - x,

$$F(0) = f(0) > 0$$
$$F(1) = f(1) - 1 < 0$$

由连续函数的介值定理得,在(0,1)存在 ξ 使 $F(\xi)=0$,即 $f(\xi)=\xi$ 。

(2) 唯一性: 若存在两点 ξ_1,ξ_2 ,使 $f(\xi_1)=\xi_1$, $f(\xi_2)=\xi_2$,由 Lagrange 中值定理,

存在 $\eta \in (\xi_1, \xi_2)$ (假设 $\xi_1 < \xi_2$), 使

$$f'(\eta) = \frac{f(\xi_1) - f(\xi_2)}{\xi_1 - \xi_2} = 1$$
,

与条件 $f'(x) \neq 1$ 矛盾。

2. 设函数 f(x),g(x) 在 [a,b] 上连续,在 (a,b) 内具有二阶导数切存在相等的最大值,

且
$$f(a) = g(a)$$
, $f(b) = g(b)$, 证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$ 。

证明:
$$\diamondsuit F(x) = f(x) - g(x)$$
, 则

$$F(a) = 0$$
, $F(b) = 0$.

设 f(x),g(x) 在 (a,b) 内的最大值为M 分别在 $\alpha \in (a,b)$, $\beta \in (a,b)$ 取得,

当
$$\alpha = \beta$$
时,取 $\eta = \alpha = \beta \in (a,b)$,则有 $f(\eta) = g(\eta)$ 。

当 α ≠ β 时,则

$$F(\alpha) = f(\alpha) - g(\alpha) = M - g(\alpha) \ge 0$$

$$F(\beta) = f(\beta) - g(\beta) = g(\beta) - M \le 0$$

由介值定理,存在 $\eta \in (a,b)$ 使 $F(\eta) = 0$,即 $f(\eta) = g(\eta)$.

由 Rolle 定理,
$$\exists \xi_1 \in (a, \eta)$$
, $F'(\xi_1) = 0$, $\exists \xi_2 \in (\eta, b)$, $F'(\xi_1) = 0$

再由 Rolle 定理, $\exists \xi \in (\xi_1, \xi_2) \subset (a,b)$, $h''(\xi) = 0$,即 $f''(\xi) = g''(\xi)$.

3. 设 f(x) 在 [a,b] 上连续,且 f(a)=f(b)=1,求证存在 $\xi,\eta\in(a,b)$,使得 $e^{\eta-\xi}[f(\eta)+f'(\eta)]=1$ 。

解: $\Diamond F(x) = e^x f(x)$,则F(x)在[a,b]上满足Lagrange 定理条件,于是

$$\frac{e^{b}f(b) - e^{a}f(a)}{b - a} = e^{\eta}[f(\eta) + f'(\eta)], \quad \sharp + \eta \in (a, b)$$

由
$$f(a) = f(b) = 1$$
,则有 $\frac{e^b - e^a}{b - a} = e^{\eta} [f(\eta) + f'(\eta)]$,

另取
$$g(x) = e^x$$
 , 则又有 $\frac{e^b - e^a}{b - a} = e^{\xi}$, 其中 $\xi \in (a, b)$,

综合上述两个等式即有 $e^{\eta-\xi}[f(\eta)+f'(\eta)]=1$

证 法
$$\Box$$
 : 记 $g(x) = e^x[f(x)-1]$, 则 $g(a) = g(b) = 0$,

 $\exists \eta \in (a,b), g'(\eta) = 0$.

即
$$e^{\eta}[f(\eta)-1+f'(\eta)]=0$$
, $f(\eta)+f'(\eta)=1$

$$\Leftrightarrow \xi = \eta$$
, $e^{\eta - \xi} [f(\eta) + f'(\eta)] = 1$

4. 己知e < a < b, 求证: $a^b > b^a$ 。

证明: 只需证明: $b \ln a > a \ln b$, 只需证明: $\frac{\ln a}{a} > \frac{\ln b}{b}$, 而

$$\frac{\ln a}{a} - \frac{\ln b}{b} = \frac{1 - \ln \xi}{\xi^2} (a - b), a < \xi < b ,$$

由于e < a < b,因此 $1 - \ln \xi < 0, a - b < 0$,因此 $\frac{\ln a}{a} > \frac{\ln b}{b}$.

二、L'Hospital 法则

5. 求极限
$$\lim_{x\to 0} \frac{1}{x^3} \left[\left(\frac{2 + \cos x}{3} \right)^x - 1 \right].$$

$$\Re : \lim_{x \to 0} \frac{1}{x^3} \left[\left(\frac{2 + \cos x}{3} \right)^x - 1 \right] = \lim_{x \to 0} \frac{e^{x \ln\left(\frac{2 + \cos x}{3}\right)} - 1}{x^3} = \lim_{x \to 0} \frac{\ln\left(\frac{2 + \cos x}{3}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{\ln(2 + \cos x) - \ln 3}{x^2} = \lim_{x \to 0} \frac{\frac{1}{2 + \cos x} \cdot (-\sin x)}{2x}$$

$$= -\frac{1}{2} \lim_{x \to 0} \frac{1}{2 + \cos x} \cdot \frac{\sin x}{x} = -\frac{1}{6}.$$

6. 求极限
$$\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x}\right)$$
。

解: (方法 1)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1) \ln x}$$

$$= \lim_{x \to 1} \frac{\ln x}{\ln x + \frac{x - 1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2} \circ$$

(方法 2)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1)\ln(1+x-1)}$$

$$= \lim_{x \to 1} \frac{x \ln x - x + 1}{(x - 1)^2} = \lim_{x \to 1} \frac{\ln x}{2(x - 1)} = \lim_{x \to 1} \frac{x - 1}{2(x - 1)} = \frac{1}{2} .$$

7. 设 f(x) 在 x = 0 某邻域内可导,且 f(0) = 1, f'(0) = 2 ,求极限

$$\lim_{n\to\infty} \left(n\sin\left(\frac{1}{n}\right)\right)^{\frac{n}{1-f\left(\frac{1}{n}\right)}}$$

解: 考虑极限
$$\lim_{x\to 0} \left(\frac{1}{x}\sin x\right)^{\frac{1}{x(1-f(x))}} = \lim_{x\to 0} \left(1 + \frac{\sin x - x}{x}\right)^{\frac{x}{\sin x - x}} \frac{\frac{\sin x - x}{x^2(1-f(x))}}{x}$$

由符合极限定理, 只需求极限

$$\lim_{x \to 0} \frac{\sin x - x}{x^2 (1 - f(x))} = \lim_{x \to 0} \frac{-\frac{1}{6}x^3}{x^2 (1 - f(x))} = \frac{1}{6} \lim_{x \to 0} \frac{-x}{1 - f(x)} = \frac{1}{6f'(0)} = \frac{1}{12}$$

三、导数应用

8. 证明: 当 $x \in (0,1)$ 时, $(1+x)\ln^2(1+x) < x^2$

证明:
$$f(x) = (1+x)\ln^2(1+x) - x^2$$

$$f'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$$
$$f''(x) = \frac{2[\ln(1+x) - x]}{1+x}$$

显然 $\ln(1+x)-x<0$, $x\in(0,1)$, 因此 f''(x)<0, $x\in(0,1)$, f'(x) 为单调降函数。因为 f'(0)=0, f'(x)<0, $x\in(0,1)$, f(x) 为单调降函数。因为 f(0)=0, f(x)<0, $x\in(0,1)$

9. 求函数 $f(x) = (x+1)^3 (x-1)^{\frac{2}{3}}$ 的极值及单调区间。

解: (1)
$$f'(x) = 3(x+1)^2(x-1)^{\frac{2}{3}} + \frac{2}{3}(x+1)^3(x-1)^{-\frac{1}{3}} = \frac{(x+1)^2(11x-7)}{3(x-1)^{\frac{1}{3}}}$$

(2) 驻点:
$$x_1 = -1$$
, $x_2 = \frac{7}{11}$ 。导数不存在的点: $x_3 = 1$ 。

(3) 用嫌疑点分割定义区间,列表讨论 f'(x) 的符号,确定极值点与极值,单调区间。

x	(-∞,-1)	-1	$\left(-1,\frac{7}{11}\right)$	7 11	$\left(\frac{7}{11},1\right)$	1	(1,+∞)
f'(x)	+	0	+	0		不存在	+
f(x)	1	f(-1) = 0	1	$f(\frac{7}{11}) \approx 2.2$	`	f(1) = 0	1
		非极值		为极大值		为极小值	

10. 证明对任意 $x \in (0,2)$, 成立不等式 $4x \ln x \ge x^2 + 2x - 3$

证明: 令 $f(x) = 4x \ln x - x^2 - 2x + 3$,考虑 f(x) 在 (0, 2) 内的正负号与极值问题。先求驻点。 $f'(x) = 4 + 4 \ln x - 2x - 2$

令 f'(x) = 0,解出驻点 $x_0 = 1 \in (0,2)$,进一步考查两个单侧极限的情况。

$$\lim_{x \to 0^+} f(x) = 3 > 0 , \quad \lim_{x \to 2^-} f(x) = 8 \ln 2 - 5 > 0$$

又
$$f''(x) = \frac{4}{x} - 2$$
, $f''(x_0) = 2 > 0$, 因此 $f(1) = 0 = \min_{x \in (0,2)} f(x)$ 。

这意味着 f(x) ≥ 0, 即原不等式成立。

11. 证明: 方程 $x^n + x^{n-1} + \cdots + x = 1$ (n > 1) 在(0,1) 内必有唯一实根 x_n ,并求 $\lim_{n \to \infty} x_n$ 。

证明: 记 $F_n(x) = x^n + x^{n-1} + \dots + x - 1$, $F_n(0) = -1$, $F_n(1) = n - 1$, 由连续函数介值定理

可知, $F_n(x)$ 在在(0,1) 内必有一实根。

$$F_n'(x) = nx^{n-1} + \dots + 1 > 0$$
,故 $F_n(x)$ 在在 $(0,1)$ 内必有唯一实根 x_n 。
$$x_n^n + x_n^{n-1} + \dots + x_n = 1$$

$$x_{n-1}^{n-1} + x_{n-1}^{n-2} + \dots + x_{n-1} = 1$$
 相减,
$$x_n^n + [(x_n^{n-1} + \dots + x_n) - (x_{n-1}^{n-1} + x_{n-1}^{n-2} + \dots + x_{n-1})] = x_n^n + (x_n - x_{n-1})O = 0$$

其中Q的各项都为正,故 $x_n - x_{n-1} < 0$, $\{x_n\}$ 单调降,有下界0,故收敛。设 $\lim_{n \to \infty} x_n = A$,

$$\frac{x_n(1-x_n^n)}{1-x_n}=1$$

$$\frac{A}{1-A} = 1, \quad A = \frac{1}{2}$$

四、泰勒公式

12. 设f(x)在[0,1]二阶可导,f(0) = f(1),且 $|f''(x)| \le 2$,求证: $|f'(x)| \le 1, x \in [0,1]$ 。

证明:
$$f(0) = f(x) + f'(x)(0-x) + \frac{1}{2}f''(\xi_1)(0-x)^2$$

 $f(1) = f(x) + f'(x)(1-x) + \frac{1}{2}f''(\xi_2)(1-x)^2$
相滅, $f(0) = f(1)$, 可得 $f'(x) = \frac{1}{2}[f''(\xi_1)x^2 - f''(\xi_2)(1-x)^2]$, $|f'(x)| \le \frac{1}{2} \cdot 2[x^2 + (1-x)^2] \le 1$

13. 设函数 y = f(x) 在[a,b]上一阶可导,在(a,b)上二阶可导,且f'(a) = f'(b) = 0,

证明:
$$\exists \xi \in (a,b)$$
, 使得 $|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b)-f(a)|$.

证明:
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(\xi_1)}{2!}(x-a)^2$$
,
$$f(x) = f(b) + \frac{f'(b)}{1!}(x-b) + \frac{f''(\xi_2)}{2!}(x-b)^2$$
,
因此 $0 = f(b) - f(a) + \frac{1}{2}[f''(\xi_2)(x-b)^2 - f''(\xi_2)(x-a)^2]$
令 $|f''(\xi)| = \max\{|f''(\xi_1)|, |f''(\xi_2)|\}$, 因此 $|f(b) - f(a)| \le \frac{|f''(\xi)|}{2}[(x-b)^2 + (x-a)^2]$

14. 设函数 y = f(x) 在[0,1] 上二阶可导,且 f(0) = f(1) = 0,且 $\min_{x \in [0,1]} f(x) = -1$,求证: $\exists \xi \in (0,1)$,使得 $f''(\xi) \geq 8$.

证明: 记
$$\min_{x \in [a,b]} f(x) = f(\eta) = -1, \eta \in (0,1)$$
 为极小值点。不妨假设 $\eta \in (0,\frac{1}{2}]$,则
$$0 = f(0) = f(\eta) + \frac{f''(\xi)}{2} (0 - \eta)^2 = -1 + \frac{f''(\xi)}{2} \eta^2$$

$$f''(\xi) \ge 8$$

- 15. (1) $y = x^2 \sin x$ 的 100 阶导数, (2) $f(x) = \ln(2-3x)$ 的 10 阶导数
- **解:** (1) 由莱布尼茨公式,注意到 x^2 的 $n \ge 3$ 阶导数均为零,则有

$$y^{(100)} = x^{2} (\sin x)^{(100)} + 100(x^{2})'(\sin x)^{(99)} + \frac{100 \times 99}{2!} (x^{2})''(\sin x)^{(98)}$$

$$= x^{2} \sin\left(x + \frac{100\pi}{2}\right) + 200x \sin\left(x + \frac{99\pi}{2}\right) + 100 \times 99 \sin\left(x + \frac{98\pi}{2}\right)$$

$$= x^{2} \sin x - 200x \cos x - 9900 \sin x$$

(2) $\frac{-3^{10}\cdot 9!}{(2-3x)^{10}}$ 。只须注意到(-1)的次数(19次)及阶乘的结果即可。

解: $\sin 6x = 6x - \frac{1}{3!}(6x)^3 + o(x^3)$,因此由已知条件

$$\lim_{x \to 0} \left(\frac{\sin 6x + xf(x)}{x^3} \right) = \lim_{x \to 0} \frac{6x - 36x^3 + o(x^3) + xf(x)}{x^3}$$

$$= \lim_{x \to 0} \frac{6 + f(x)}{x^2} - 36 + 0 = 0,$$

$$\lim_{x \to 0} \frac{6 + f(x)}{x^2} = 36.$$

注:下列作法是错误的

$$\lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = \lim_{x \to 0} \frac{6 + f(x)}{x^2} = 0$$

错误原因在于第一个等号后的无穷小量替换不在因子位置,属非法替换,答案亦为错误。