Geometry of Surfaces - Exercises

Exercises marked with * are to be answered (partially) in the online quiz for this week on the Keats page for this module.

- **48.** Use Euler's formula to show that the sum of the normal curvatures for any pair of orthogonal directions is equal to the sum $\kappa_1 + \kappa_2$ of the principal curvatures.
- **49.** Compute the principal curvatures and principal directions of a generalized cylinder given by $\sigma(u, v) = (f(u), g(u), v)$ with $\dot{f}^2 + \dot{g}^2 = 1$.
- **50.*** Let K be the Gaussian curvature and H be the mean curvature of a surface σ . What are the Gaussian curvature \tilde{K} and the mean curvature \tilde{H} of the surface $\tilde{\sigma} = \lambda \sigma$ with $0 \neq \lambda \in \mathbb{R}$?
- **51.** Let \mathcal{S} be a surface and suppose there is a plane that is tangent to \mathcal{S} along a unit speed curve γ . Prove that the Gaussian curvature of \mathcal{S} along γ is ≤ 0 .
- **52.*** Let S be a surface with $O \in S$ and assume that the coefficients of the first and second fundamental form at O are E = 1, F = 0, G = 2, L = 1, M = 1 and N = 1. Compute the Gaussian curvature, the mean curvature and the principal curvatures of S at O. Is O an elliptic, hyperbolic or parabolic point?
- **53.*** Can the Gaussian curvature be 100 and the mean curvature be 1 at the same point?
- **54.** Let γ be a unit speed curve on a surface \mathcal{S} with positive Gaussian curvature. Show that the curvature κ of γ satisfies

$$\kappa \ge \min\{|\kappa_1|, |\kappa_2|\}$$

at each point. Deduce that the curvature of a unit speed curve on a sphere of radius R is always $\geq \frac{1}{R}$.

55. A nonzero tangent vector to a surface S is called asymptotic (or an asymptotic direction) if the normal curvature in that direction is zero. Show that if the mean curvature is zero at a nonplanar point $p \in S$, then there are two orthogonal asymptotic directions at p.