MATH3354 - Assignment 9

18 October 2019

Collaboration Statement

I discussed questions 1, 2 and 3 with Angus Mingare, Ben Ellis-Bloor, Gianni Gagliardo and Aymon Wuolanne.

1

Prove that \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ as well as the Fermat cubic S and \mathbb{P}^2 are not isomorphic.

We will use the result that there are no non-constant regular maps $\mathbb{P}^n \to \mathbb{P}^m$ for n > m.

Suppose we have an isomorphism $g: \mathbb{P}^2 \to \mathbb{P}^1 \times \mathbb{P}^1$. Let $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ be projection onto the first factor. Projection is regular, so the composition $(\pi \circ g): \mathbb{P}^2 \to \mathbb{P}^1$ is a surjective regular map. In particular it is a non-constant regular map, a contradiction.

First suppose that we are not in characteristic 2 or 3 and suppose, in order to gain a contradiction, that we have a regular isomorphism $g: \mathbb{P}^2 \to S$. In assignment 5 we proved that when $\operatorname{char} k \neq 2, 3$ there is a non-constant regular map $\pi: S \to \mathbb{P}^1$ from the Fermat Cubic to \mathbb{P}^1 . Therefore, the map $(\pi \circ g): \mathbb{P}^2 \to \mathbb{P}^1$ is a non-constant regular map $\mathbb{P}^2 \to \mathbb{P}^1$, a contradiction.

2

The Krull dimension of a ring R is the largest n such that there exists a strictly increasing chain

$$(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \dots \subsetneq \mathfrak{p}_n,$$

of prime ideals in R.

(a)

What is the Krull dimension of \mathbb{Z} .

First we see that the dimension is at least 1 because we have the chain $(0) \subseteq (2)$. We note that the prime ideals in \mathbb{Z} are either (0) or of the form (p) for some prime p, since if we have an ideal (n) for n = ab where 1 < a, b < n, then $a, b \notin (n)$ because a, b < n but $ab \in (n)$, so (n) is not prime.

However, we note that the ideals containing (p) are of the form (d) for $d \mid p$. Since the only divisor of p is 1, this implies that the only ideal which contains (p) is (1), which is not a prime ideal. Similarly, an ideal contained in (p) is of the form (kp) for some $k \in \mathbb{Z}$ which is not a prime ideal unless k = 0. Thus the longest possible chain is $(0) \subsetneq (p)$ for some prime p, and so the Krull dimension of \mathbb{Z} is 1.

(b)

Let X be an irreducible affine variety. Prove that the Krull dimension of k[X] is equal to the dimension of X.

If X has Krull dimension n then we have a maximal chain of prime ideals,

$$\mathfrak{p}_0 \subsetneq ... \subsetneq \mathfrak{p}_n$$
.

We may assume that $\mathfrak{p}_0 = (0)$, because otherwise we could add this ideal to the chain and obtain a strictly longer chain. By the Nullstellensatz this gives us a length n chain of non-empty irreducible closed subsets,

$$V(0) = X \supseteq V(\mathfrak{p}_1) \supseteq \dots \supseteq V(\mathfrak{p}_n).$$

Similarly if we had a maximal length n chain of non-empty irreducible closed subsets, applying I to the chain would give a length n chain of prime ideals. Therefore, the Krull dimension is also equal the largest n such that we have a strictly increasing chain,

$$X_1 \subsetneq \dots \subsetneq X_n \subsetneq X$$

of non-empty irreducible closed sets. Suppose X has Krull dimension n, so we have a chain as above. We know from class that if we have $Y \subsetneq X$ for irreducible closed sets, then $\dim Y < \dim X$. Therefore, with each inclusion in such a chain the dimension goes up by at least 1. Therefore,

$$0 < \dim X_1 < \dim X_2 - 1 < \dots < \dim X - n$$

so $n \leq \dim X$. That is, $kr \dim X \leq \dim X$.

Next we want to show that $\dim X \leq kr \dim X$ by induction on the dimension of X. First suppose that $\dim X = 0$, then X is a single point (because X is a non-empty irreducible), so $X = \{x_0\}$. The longest chain of non-empty irreducible closed sets is $\{x_0\}$, so X has Krull dimension 0.

Suppose that $\dim Y \leq kr \dim Y$ whenever $\dim Y \leq n$ and let X be an irreducible dimension (n+1) variety. Since X has positive dimension it is non-empty and not a point, so k[X] is not the trivial ring (by the Nullstellensatz). Therefore, we can choose a non-zero polynomial $f \in k[X]$ which does not vanish identically on X. Then, we know that $V(f) \subset X$ is non-empty, so the Principal Ideal Theorem implies that V(f) has pure dimension $\dim X - 1 = n$. Let Y be an irreducible component of V(f), then Y has dimension n, so by the induction hypothesis $\dim Y \leq kr \dim Y$. Since $kr \dim Y \geq n$ we can choose a length n chain of non-empty irreducible closed subsets of Y, $Y_1 \subsetneq \dots \subsetneq Y$. This gives a length (n+1) chain in X,

$$Y_1 \subsetneq ... \subsetneq Y \subsetneq X$$
.

Hence, $kr \dim X \ge n+1 = \dim X$. By induction, $\dim X \le kr \dim X$ for all irreducible affine varieties, so $\dim X = kr \dim X$ since we have already shown the other inequality.

3

Show that $f \in k[X]$ is a zero divisor if and only if f vanishes identically on some irreducible component of X.

 (\Longrightarrow) : Suppose $f \in k[X]$ is a zero divisor. Then there is some non-zero $g \in k[X]$ such that fg = 0 in k[X]. Since g is non-zero in k[X] there is some $y \in X$ such that $g(y) \neq 0$. Say y belongs to the irreducible component Y, so $g \notin I(Y)$. Because Y is irreducible we know that I(Y) is prime, so because $fg \in I(Y)$ and $g \notin I(Y)$, we know that $f \in I(Y)$. Therefore, f vanishes on an irreducible component of X

(\Leftarrow): We can write X in terms of its irreducible components as, $X = Y_1 \cup Y_2 \cup ... \cup Y_n$. We know that f vanishes identically on some irreducible component of X, say Y_1 . Since Y_1 is not contained within $Y_2 \cup ... \cup Y_n$ we know that $I(Y_2 \cup ... \cup Y_n)$ is not contained within $I(Y_1)$ by the Nullstellensatz. Hence, we can choose $g \in I(Y_2 \cup ... \cup Y_n) \setminus I(Y_1)$. Then $g \neq 0$ in k[X] because g does not vanish identically on Y_1 . However, f(x)g(x) = 0 on all of X because f vanishes on Y_1 and g vanishes on $Y_2 \cup ... \cup Y_n$. Therefore, fg = 0 in k[X], so f is a zero divisior.