§ 4.3. Домашнее задание (письменное)

Письменно решить номера 11.3.29 – 11.3.50.

Найти частные производные, частные дифференциалы данных функций по каждой из независимых переменных (x,y,z,t,\ldots) и полный дифференциал:

11.3.29.
$$z = (5x^2y - y^3 + 7)^3$$
.

11.3.30.
$$v = \operatorname{arctg} \frac{u}{t}$$
.

11.3.31.
$$z = x\sqrt{y} + \frac{y}{\sqrt[3]{x}}$$
.

11.3.32.
$$z = \ln \operatorname{tg} \frac{x}{y}$$
.

11.3.33.
$$z = \sqrt{u + \sqrt{u^2 + v^2}}$$
.

11.3.34.
$$z = \ln \frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}$$
.

11.3.35.
$$z = \arccos \frac{\sqrt{x^2 - y^2}}{\sqrt{x^2 + y^2}}$$
.

11.3.36.
$$z = \sin \frac{x}{y} \cdot \cos \frac{y}{x}$$
.

11.3.37.
$$z=(x^2+y^2)\frac{1-\sqrt{x^2+y^2}}{1+\sqrt{x^2+y^2}}$$
.

11.3.38.
$$u=x^3+yz^2+3yx-x+z$$
.

11.3.39.
$$u=x^{\frac{y}{z}}$$
.

11.3.40.
$$u = x^{y^2}$$
.

11.3.41. Найти
$$u_x' + u_y' + u_z'$$
 при $x = y = z = 1$, если $u = \ln(1 + x + y^2 + z^3)$.

11.3.42. Найти
$$\frac{z_x' + z_y'}{z_x' z_y'}$$
 при $x = 1$ и $y = 2$, если $z = x^3 y - x y^3$.

11.3.43. Найти
$$\frac{\partial u}{\partial z}$$
 при $x=0,\ y=0,\ z=\frac{\pi}{4},\ \text{если } u=\sqrt{\sin^2 x+\sin^2 y+\sin^2 z}.$

11.3.44. Найти значение полного дифференциала функции
$$z=x+y-\sqrt{x^2+y^2}$$
 при $x=3,\,y=4,\,\Delta x=0,1,\,\Delta y=0,2.$

11.3.45. Найти значение полного дифференциала функции
$$z=e^{xy}$$
 при $x=1,\ y=1,\ \Delta x=0.15,\ \Delta y=0.1.$

11.3.46. Вычислить приближенно изменение функции
$$z=\frac{x+3y}{y-3x}$$
 при переходе x от $x_1=2$ до $x_2=2,5$ и y от $y_1=4$ до $y_2=3,5$.

Вычислить приближенно:

11.3.47.
$$\sqrt{1,02^3+1,97^3}$$
.

11.3.49.
$$\operatorname{arctg}\left(\frac{1,97}{1,02}-1\right)$$
.

11.3.50.
$$2,003^2 \cdot 3,998^3 \cdot 1,002^2$$
.