Mestrado Integrado em Eng. Engenharia de Telecomunicações e Informática

Intel MCS-51

Microcontroladores 2º Ano – A03

AT89C51RD2

- 80C52 Compatible
 - 8051 Instruction Compatible
 - Six 8-bit I/O Ports (64 Pins or 68 Pins Versions)
 - Four 8-bit I/O Ports (44 Pins Version)
 - Three 16-bit Timer/Counters
 - 256 Bytes Scratch Pad RAM
 - 9 Interrupt Sources with 4 Priority Levels
- ISP (In-System Programming) Using Standard V_{CC} Power Supply
- 2048 Bytes Boot ROM Contains Low Level Flash Programming Routines and a Default Serial Loader
- High-speed Architecture
 - In Standard Mode:
 - 40 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution)
 - 60 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
 - In X2 mode (6 Clocks/machine cycle)
 - 20 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution)
 - 30 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
- 64K Bytes On-chip Flash Program/Data Memory
 - Byte and Page (128 Bytes) Erase and Write
 - 100k Write Cycles
- On-chip 1792 bytes Expanded RAM (XRAM)
 - Software Selectable Size (0, 256, 512, 768, 1024, 1792 Bytes)
 - 768 Bytes Selected at Reset for T89C51RD2 Compatibility
- On-chip 2048 Bytes EEPROM Block for Data Storage (AT89C51ED2 Only)
- 100K Write Cycles
- Keyboard Interrupt Interface on Port 1
- · SPI Interface (Master/Slave Mode)
- 8-bit Clock Prescaler
- 16-bit Programmable Counter Array
 - High Speed Output
 - Compare/Capture
 - Pulse Width Modulator
 - Watchdog Timer Capabilities

Organização da memória

- Nesta arquitectura há dois tipos de memórias:
 - A memória de código/programa (tipo-ROM);
 - A memória de dados (tipo-RAM).
- Dependendo do microcontrolador, as memórias podem:
 - Estar implementadas internamente (dentro do chip CODE ou DATA);
 - Podemos implementá-las externamente usando barramentos (endereços, dados e controlo) e uma latch externa (XCODE e XDATA).

Espaço de memória do 8031

Organização da memória de dados interna – IDATA/IRAM

Os bancos de registos permitem uma forma rápida e eficiente de comutação de contexto em que parcelas de código usam um conjunto privado de registos independentemente.

Organização da memória

- 1. Os primeiros 128 bytes da RAM interna podem ser acedidos directa ou indirectamente;
- 2. Os SFRs só podem ser acedidos por endereçamento directo;
- 3. Os segundos 128 bytes da RAM interna só podem ser acedidos indirectamente;
- 4. Os 768 bytes da RAM expandida (ERAM 00h-2FFh) são acedidos indirectamente pela instrução de MOVX e com o bit EXTRAM a zero.

SFR - Special Function Registers

Table 1. Special Function Registers

Table 1.	DIRECT BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION							DEALE			
SYMBOL	DESCRIPTION	ADDRESS	MSB	ADDRES	13, 3 T WID	OL, OK A	LIERNAI	IVEFOR	TFUNCT	LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	_	-	-	-	-	-	EXTRAM	AO	xxxxxxx10B
AUXR1#	Auxiliary 1	A2H	_	-	ENBOOT	-	GF2	0	-	DPS	xxxxxxxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CCAP0H#	Module 0 Capture High	FAH									xxxxxxxxxB
CCAP1H#	Module 1 Capture High	FBH									xxxxxxxxB
CCAP2H#	Module 2 Capture High	FCH									xxxxxxxxB
CCAP3H#	Module 3 Capture High	FDH									xxxxxxxxB
CCAP4H#	Module 4 Capture High	FEH									xxxxxxxxB
CCAP0L#	Module 0 Capture Low	EAH									xxxxxxxxB
CCAP1L#	Module 1 Capture Low	EBH									xxxxxxxxB
CCAP2L#	Module 2 Capture Low	ECH									xxxxxxxxB
CCAP3L#	Module 3 Capture Low	EDH									xxxxxxxxB
CCAP4L#	Module 4 Capture Low	EEH									xxxxxxxxB
CCAPM0#	Module 0 Mode	DAH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM1#	Module 1 Mode	DBH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM2#	Module 2 Mode	DCH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM3#	Module 3 Mode	DDH	_	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM4#	Module 4 Mode	DEH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
			DF	DE	DD	DC	DB	DA	D9	D8	
CCON*#	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000B
CH#	PCA Counter High	F9H									00H
CL#	PCA Counter Low	E9H									00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	_	-	-	CPS1	CPS0	ECF	00xxx000B
DPTR: DPH	Data Pointer (2 bytes) Data Pointer High	83H									00H
DPL	Data Pointer Low	82H	AF	AE	AD	AC	AB	AA	A9	A8	00H
IE*	Interrupt Enable 0	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
			BF	BE	BD	BC	BB	BA	B9	B8	1
IP*	Interrupt Priority	В8Н	_	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000B
			B7	В6	B5	B4	В3	B2	B1	В0	
IPH#	Interrupt Priority High	В7Н	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	CEX4	CEX3	CEX2	CEX1	CEX0	ECI	T2EX	T2	FFH
			A7	A6	A5	A4	А3	A2	A1	A0	
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	В3	B2	B1	B0	
P3*	Port 3	вон	RD	WR	T1	T0	INT1	INT0	TxD	RxD	FFH
			01155							ie:	
PCON#1	Power Control	87H	SMOD1	SMOD0	_	-	GF1	GF0	PD	IDL	00xxx000B

Table 1. Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT	DIRECT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION MSB LSB								
SYMBOL	DESCRIPTION	ADDRESS									
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000B
RCAP2H# RCAP2L#	Timer 2 Capture High Timer 2 Capture Low	CBH CAH								•	00H 00H
SADDR# SADEN#	Slave Address Slave Address Mask	A9H B9H									00H 00H
SBUF	Serial Data Buffer	99H	9F	9E	9D	9C	9B	9A	99	98	xxxxxxxxB
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H	0.5	0.5	0.0	00	op.	0.0	00	00	07H
TCON*	Timer Control	88H	8F TF1	8E TR1	8D TF0	8C TR0	8B IE1	8A IT1	89 IE0	88 IT0	00H
TCON	Timer Control	0011	1171	IKI	11-0	TRU	ILI	1111	ILU	110	0011
			CF	CE	CD	CC	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	-	-	_	-	-	T2OE	DCEN	xxxxxxx00B
TH0 TH1 TH2#	Timer High 0 Timer High 1 Timer High 2	8CH 8DH CDH									00H 00H 00H
TL0 TL1 TL2#	Timer Low 0 Timer Low 1 Timer Low 2	8AH 8BH CCH									00H 00H 00H
TMOD WDTRST	Timer Mode Watchdog Timer Reset	89H A6H	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00H

SFRs are bit addressable.

P89C51RD2

[#] SFRs are modified from or added to the 80C51 SFRs.

Reserved bits.

Modelo de Programação

80C51 Program Model

Modelo de Programação

Adaptado de:

AYALA
"8051
Microcontroller
Architecture
Programming
and Applications"

Família i8052

REGISTER	ADDRESS	DESCRIPTION	BIT-ADDRESSABLE
T2CON	C8H	Control	Yes
RCAP2L	CAH	Low-byte capture	No
RCAP2H	ÇBH	High-byte capture	No
TL2	CCH	Timer 2 low-byte	Na
TH2	CDH	Timer 2 high-byte	No

Estado do microcontrolador após *reset*

REGISTER(S)	CONTENTS
Program counter	0000H
Accumulator	OCH
B register	00H
P8W	00H
SP	07H
DPTR	D000H
Ports 0-3	FFH
IP (8031/8051)	XXX000000B
P (8032/8052)	XX0000000B
IE (8031/9051)	0XX00000B
IE (8032/9052)	0X000000B
Timer registers	OCH
SCON	OCH
SBUF	00H
PCON (HMOS)	0XXXXXXXX
PCON (CMOS)	0XXX0000B
· · · · · · · · · · · · · · · · · ·	

Registo(s)	Conteúdo
Program Counter	0000H
Accumulator, B register, PSW	00H
SP	07H
DPTR	0000H
Ports 0-3	FFH
IP	XXX00000B
Timer registers, SCON	00H

Notas sobre o conjunto de instruções e modos de endereçamento

Rn	Registo (R0 a R7) do banco de registos seleccionado
direct	Endereço directo de 8-bit de uma posição da memória interna de dados.
	Pode-se tratar da RAM de dados interna (0-127) ou de um SFR (porto I/O, reg de estado, etc (128-255))
@Ri	Endereço de 8-bit de uma posição da RAM interna, endereçada indirectamente através de R0 ou R1.
#data	Constante de 8-bit incluída na instrução
#data16	Constante de 16-bit incluída na instrução
addr16	Endereço de destino de 16-bit. Usado por LCALL e LJMP. O salto pode ser para qualquer localização da ROM.
addr11	Endereço de destino de 11-bit. Usado por ACALL e AJMP.
	O salto pode ser para qualquer localização dentro da página de 2KB da ROM.
rel	Offset de destino de 8-bit com sinal. Usado por SJMP e todos os saltos condicionais.
	O alcance vai de -128 a 127 bytes relativamente ao endereço da próxima instrução.
bit	Bit da RAM de dados interna ou do SFR

Instruções que afectam as flags da ALU							
		Flag	s		Flags		
Instrução	С	O¥	AC	Instrução	C OV AC		
ADD	Х	Х	Х	CLRC	0		
ADDC	Х	×	×	CPLC	Х		
SUBB	Х	×	×	ANLC,bit	Х		
MUL	0	×		ANLC,/bit	Х		
DIV	0	×		ORLC,bit	Х		
DA	Х			ORLC,/bit	Х		
RRC	Х			MOVC,bit	Х		
RLC	Х			CJNE	Х		
SETBC	1						

Mneumónica: Nome da instrução assembly

Tamanho: Nº de bytes que a mneumónica ocupa na memória de programa

Ciclos: Nº de ciclos máquina necessários para efectuar a operação. Um ciclo=12 impulsos de relógio

	Operações Aritméticas								
Mne	eumónica			-					
ADD	A,Rn	1	1	Somar ao Acumulador o registo					
ADD	A _i direct	2	1	Somar ao Acumulador o endereço directo de RAM					
ADD	A,@Ri	1	1	Somar ao Acumulador o endereço indirecto de RAM					
ADD	A.#data	2	1	Somar ao Acumulador o bute de dados directo					
ADDC	A,Rn	1	1	Somar ao Acumulador o registo com carry					
ADDC	A _i direct	2	1	Somar ao Acumulador o endereço directo de RAM com carry					
ADDC	A,@Ri	1	1	Somar ao Acumulador o endereço indirecto de RAM com carry					
ADDC	A.#data	2	1	Somar ao Acumulador o bute de dados directo com carru					
SUBB	A,Rn	1	1	Subtrair ao Acumulador o registo com borrow					
SUBB	A,direct	2	1	Subtrair ao Acumulador o endereço directo de RAM com borrow					
SUBB	A,@Ri	1	1	Subtrair ao Acumulador end. indirecto de RAM com borrow					
SUBB	A.#data	2	1	Subtrair ao Acumulador o bute de dados directo com borrow					
INC	А	1	1	Incrementar Acumulador					
INC	Rn	1	1	Incrementar Registo					
INC	direct	2	1	Incrementar endereço directo de RAM					
INC	@Ri	1	1	Incrementar endereço indirecto de RAM					
DEC	А	1	1	Decrementar Acumulador					
DEC	Rn	1	1	Decrementar registo					
DEC	direct	2	1	Decrementar endereço directo de RAM					
DEC	തRi	1	1	Decrementar endereco indirecto de RAM					
INC	DPTR	1	2	Incrementar DPTR (apontador para dados)					
MUL	AB	1	4	Multiplicar A por B					
DIV	ΑB	1	4	Dividir A por B					
DA	А	1	1	Aiuste decimal ao Acumulador					

Operações Lógicas								
Mne	umónica	Tamanho	Ciclos	Descrição				
ANL	A,Rn	1	1	AND do Acumulador com registo				
ANL	A _i direct	2	1	AND do Acumulador com o endereço directo de RAM				
ANL	A,@Ri	1	1	AND do Acumulador com endereço indirecto de RAM				
ANL	A,#data	2	1	AND do Acumulador com o byte de dados directo				
ANL	direct,A	2	1	AND do endereço directo de RAM com o Acumulador				
ANL	direct.#data	3	2	AND do endereco directo de RAM com o bute de dado				
ORL	A,Rn	1	1	OR do Acumulador com registo				
ORL	A,direct	2	1	OR do Acumulador com o endereço directo de RAM				
ORL	A,@Ri	1	1	OR do Acumulador com endereço indirecto de RAM				
ORL	A,#data	2	1	OR do Acumulador com o byte de dados directo				
ORL	direct,A	2	1	OR do endereço directo de RAM com o Acumulador				
ORL	direct.#data	3	2	OR do endereco directo de RAM com o bute de dados				
XRL	A,Rn	1	1	XOR do Acumulador com registo				
XRL	A _i direct	2	1	XOR do Acumulador com o endereço directo de RAM				
XRL	A,@Ri	1	1	XOR do Acumulador com endereço indirecto de RAM				
XRL	A,#data	2	1	XOR do Acumulador com o byte de dados directo				
XRL	direct _i A	2	1	XOR do endereço directo de RAM com o Acumulador				
XRL	direct,#data	3	2	XOR do endereço directo de RAM com o byte de dados				
CLR	А	1	1	Limpar Acumulador				
CPL	А	1	1	Complementar Acumulador				
RL	Α	1	1	Rodar à esquerda Acumulador				
RLC	Α	1	1	Rodar à esquerda Acumulador através do carry				
RR	Α	1	1	Rodar à direita Acumulador				
RRC	А	1	1	Rodar à direita Acumulador através do carry				
SWAP	А	1	1	Trocar os nibbles do Acumulador				

	Operações de Tranferência de Dados								
Mn	eumónica	Tamanho	Ciclos	Descrição					
MOV	A,Rn	1	1	Mover para o Acumulador do registo					
MOV	A,direct	2	1	Mover para o Acumulador do endereço directo de RAM					
MOV	A,@Ri	1	1	Mover para o Acumulador do endereço indirecto de RAM					
MOV	A,#data	2	1	Mover para o Acumulador do byte de dados directo					
MOV	Rn,A	1	1	Mover para o registo do Acumulador					
MOV	Rn,direct	2	2	Mover para o registo do endereço directo de RAM					
MOV	Rn.#data	2	1	Mover para o registo do bute de dados directo					
MOV	direct,A	2	1	Mover para o endereço directo de RAM do Acumulador					
MOV	direct,Rn	2	2	Mover para o endereço directo de RAM do Registo					
MOV	direct,direct	3	2	Mover para o endereço directo de RAM do end. directo de RAM					
MOV	direct,@Ri	2	2	Mover para o endereço directo de RAM do end. indirecto de RAM					
MOV	direct.#data	3	2	Mover para o endereco directo de RAM do bute de dados directo					
MOV	@Ri,A	1	1	Mover para o endereço indirecto de RAM do Acumulador					
MOV	@Ri,direct	2	2	Mover para o endereço indirecto de RAM do end. directo de RAM					
MOV	@Ri,#data	2	1	Mover para o endereço indirecto de RAM do bute de dados directo					
MOV	DPTR,#data16	3	2	Mover para o DPTR dois bytes de dados					
MOVC	A,@A+DPTR	1	2	Mover para o Acumulador o byte de código relativo a DPTR					
MOVC	A,@A+PC	1	2	Mover para o Acumulador o byte de código relativo a PC					
MOVX	A,@Ri	1	2	Mover para o Acumulador o endereço indirecto (8-bit) de XRAM					
MOVX	A,@DPTR	1	2	Mover para o Acumulador o endereço indirecto (16-bit) de XRAM					
MOVX	@Ri,A	1	2	Mover para o endereço indirecto (8-bit) de XRAM o Acumulador					
MOVX	@DPTR,A	1	2	Mover para o endereço indirecto (16-bit) de XRAM o Acumulador					
PUSH	direct	2	2	Colocar (Push) na stack do endereço directo de RAM					
POP	direct	2	2	Retirar (Pop) da stack do endereço directo de RAM					
XCH	A,Rn	1	1	Trocar entre Acumulador e registo					
хсн	A _i direct	2	1	Trocar entre Acumulador e endereço directo de RAM					
XCH	A,@Ri	1	1	Trocar entre Acumulador e endereço indirecto de RAM					
XCHD	A,@Ri	1	1	Trocar digito menor entre Acumulador e endereço indirecto de RAM					

	Operações de Manipulação sobre booleanos							
Mneumónica Tamanho Ciclos [Ciclos	Descrição					
CLR	0	1	1	Limpar carry				
CLR	bit	2	1	Limpar bit directo da RAM				
SETB	С	1	1	Activar carry				
SETB	bit	2	1	Acitvar bit directo da RAM				
CPL	С	1	1	Complementar carry				
CPL	bit	2	1	Complementar bit directo da RAM				
ANL	C,bit	2	2	AND do carry com o bit directo da RAM				
ANL	C,/bit	2	2	AND do carry com o complemento do bit directo da RAM				
ORL	C,bit	2	2	OR do carry com o bit directo da RAM				
ORL	C,/bit	2	2	OR do carry com o complemento do bit directo da RAM				
MOV	C,bit	2	1	Mover para o carry o bit directo da RAM				
MOV	bit,C	2	2	Mover para o bit directo da RAM o carry				
JC	rel	2	2	Saltar (para end. relativo) se o carry estiver activo				
JNC	rel	2	2	Saltar se o carry estiver limpo				
JB	bit,rel	3	2	Saltar se o bit directo da RAM estiver activo				
JNB	bit,rel	3	2	Saltar se o bit directo da RAM estiver limpo				
JBC	bit,rel	3	2	Saltar se o bit directo da RAM estiver activo e limpar bit				

	Operações de Salto na Execução								
Mne	umónica	Tamanho	Ciclos	Descrição					
ACALL	addr11	2	2	Invocação end. absoluto de subrotina					
LCALL	addr16	3	2	Invocação end. longo de subrotina					
RET		1	2	Retorno de subrotina					
RETI		1	2	Retorno de interrupção					
AJMP	addr11	2	2	Salto para endereço absoluto					
LJMP	addr16	3	2	Salto para endereço longo					
SJMP	rel	2	2	Salto curto para endereço relativo					
JMP	@A+DPTR	1	2	Salto indirecto relativo a DPTR					
JZ	rel	2	2	Salto (para end. relativo) se acumulador for zero					
JNZ	rel	2	2	Salto se acumulador não for zero					
CJNE	A,direct,rel	3	2	Comparar A com end. directo de RAM e saltar se diferente					
CJNE	A,#data,rel	3	2	Comparar A com byte de dados directo e saltar se diferente					
CJNE	Rn,#data,rel	3	2	Comparar reg. com byte de dados directo e saltar se diferente					
CJNE	@Ri,#data,rel	3	2	Complend, indirecto de RAM com byte de dados e saltar se diferente					
DJNZ	Rn,rel	2	2	Decrementar registo e saltar se registo não for zero					
DJNZ	direct,rel	3	2	Decrementar end. Directo de RAM e saltar senão for zero					
NOP		1	1	Nenhuma operação					

Fetch do opcode

Directivas assembly básicas

CSEG AT X

- coloca a próxima instrução no endereço X da memória de código/programa (ROM);
- ex: CSEG AT 0H

END

Indica ao assembler que o ficheiro fonte terminou.

"Etiquetas"

- Em vez de calcularmos o endereço de cada salto, podemos utilizar etiquetas ou labels para marcar esses endereços:
- ex:

CSEG AT 0H

JMP MAIN ;dependendo da distância do salto, o assembler escolhe a instrução de salto ideal

MAIN:

MOV R0,#25

Características eléctricas

Portos de Entrada/Saída

V_{OL} – tensão de saída nível lógico baixo

```
V_{CC} = 4.5V \text{ to } 5.5V
0.3 V I_{OL} = 100 \,\mu\text{A}^{(4)}
0.45 V I_{OL} = 1.6 \,\text{mA}^{(4)}
1.0 V I_{OL} = 3.5 \,\text{mA}^{(4)}
```

 $V_{CC} = 4.5V \text{ to } 5.5V$ $I_{OL} = 200 \text{ } \mu\text{A}^{(4)}$ $I_{OL} = 3.2 \text{ } m\text{A}^{(4)}$ $I_{OL} = 7.0 \text{ } m\text{A}^{(4)}$

V_{OH} – tensão de saída nível lógico alto

Em condições de regime permanente (não transitórias), I_{OL} deve ser externamente limitada de modo a garantir:

I_{OL} máxima por pino de porto: 10mA

I_{OL} máxima por porto (8-bit): 15mA (P1, P2 e P3) e 26mA (P0)

I_{OL} total máxima para todos os pinos de saída: 71mA

Laboratórios - Interface

Problema:

 Com base no valor de 4 pinos de entrada do porto 2 (P2.4 a P2.7), ou seja, do *nibble* (4-bit) mais significativo de P2, escrever no *display* de 7-segmentos o caracter hexadecimal correspondente ao valor do *nibble*.

Hardware:

Exemplo

- O microcontrolador automaticamente coloca no endereço A0H da memória de dados interna, a representação binária das tensões lidas nos pinos de entrada P2.7 a P2.4;
- No exemplo os bits P2.7 a P2.4 foram definidos como entradas digitais e os bits P2.3 a P2.0 como saídas digitais, usando a instrução: MOV P2,#0F0H;
- Reparar que os bits foram lidos em lógica negativa devido à configuração do hardware;
- O programa lê os bits do porto E/S para o acumulador: MOV A,P2
- O programa realiza operações sobre o acumulador;
- Após as verificações e conversões o programa tem no acumulador os bits (bit a 0 LED liga, bit a 1 LED desliga) a colocar nos pinos do porto de E/S (P1);
- MOV P1,A ;acendem-se os segmentos desejados.

KIT8051- Esquema de Ligações

	D1 4
a	Pl 3
b	Pl.2
C	Pl O
d	Pl.6
е	Pl 5
f	P1.7
g	Pl 4
dp	P1.1

Escrever **0** em P1.3 liga o segmento **a**. Escrever 1 desliga