

ABSOLUTE MAXIMA AND MINIMA

4.4.1 DEFINITION Consider an interval in the domain of a function f and a point x_0 in that interval. We say that f has an *absolute maximum* at x_0 if $f(x) \le f(x_0)$ for all x in the interval, and we say that f has an *absolute minimum* at x_0 if $f(x_0) \le f(x)$ for all x in the interval. We say that f has an *absolute extremum* at x_0 if it has either an absolute maximum or an absolute minimum at that point.

f has an absolute minimum but no absolute maximum on $(-\infty, +\infty)$.

f has no absolute extrema on $(-\infty, +\infty)$.

f has an absolute maximum and minimum on $(-\infty, +\infty)$.

f has no absolute extrema on (a, b).

f has an absolute maximum and minimum on [a, b].

(a)

(*b*)

(c)

(*d*)

(*e*)

4.4.2 THEOREM (*Extreme-Value Theorem*) If a function f is continuous on a finite closed interval [a, b], then f has both an absolute maximum and an absolute minimum on [a, b].

4.4.3 THEOREM If f has an absolute extremum on an open interval (a, b), then it must occur at a critical point of f.

A Procedure for Finding the Absolute Extrema of a Continuous Function f on a Finite Closed Interval [a, b]

- **Step 1.** Find the critical points of f in (a, b).
- **Step 2.** Evaluate f at all the critical points and at the endpoints a and b.
- Step 3. The largest of the values in Step 2 is the absolute maximum value of f on [a, b] and the smallest value is the absolute minimum.

Example 1 Find the absolute maximum and minimum values of the function $f(x) = 2x^3 - 15x^2 + 36x$ on the interval [1, 5], and determine where these values occur.

Solution. Since f is continuous and differentiable everywhere, the absolute extrema must occur either at endpoints of the interval or at solutions to the equation f'(x) = 0 in the open interval (1, 5). The equation f'(x) = 0 can be written as

$$6x^2 - 30x + 36 = 6(x^2 - 5x + 6) = 6(x - 2)(x - 3) = 0$$

Thus, there are stationary points at x = 2 and at x = 3. Evaluating f at the endpoints, at x = 2, and at x = 3 yields

$$f(1) = 2(1)^3 - 15(1)^2 + 36(1) = 23$$

$$f(2) = 2(2)^3 - 15(2)^2 + 36(2) = 28$$

$$f(3) = 2(3)^3 - 15(3)^2 + 36(3) = 27$$

$$f(5) = 2(5)^3 - 15(5)^2 + 36(5) = 55$$

from which we conclude that the absolute minimum of f on [1, 5] is 23, occurring at x = 1, and the absolute maximum of f on [1, 5] is 55, occurring at x = 5.

Table 4.4.2
ABSOLUTE EXTREMA ON INFINITE INTERVALS

LIMITS	$\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = +\infty$	$\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to +\infty} f(x) = -\infty$	$\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to +\infty} f(x) = +\infty$	$\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = -\infty$ $x \to +\infty$
CONCLUSION IF f IS CONTINUOUS EVERYWHERE	f has an absolute minimum but no absolute maximum on $(-\infty, +\infty)$.	f has an absolute maximum but no absolute minimum on $(-\infty, +\infty)$.	f has neither an absolute maximum nor an absolute minimum on $(-\infty, +\infty)$.	f has neither an absolute maximum nor an absolute minimum on $(-\infty, +\infty)$.
GRAPH	x	**************************************	x x	**************************************

Table 4.4.3
ABSOLUTE EXTREMA ON OPEN INTERVALS

LIMITS	$\lim_{x \to a^{+}} f(x) = +\infty$ $\lim_{x \to b^{-}} f(x) = +\infty$	$\lim_{x \to a^{+}} f(x) = -\infty$ $\lim_{x \to b^{-}} f(x) = -\infty$	$\lim_{x \to a^{+}} f(x) = -\infty$ $\lim_{x \to b^{-}} f(x) = +\infty$	$\lim_{x \to a^{+}} f(x) = +\infty$ $\lim_{x \to b^{-}} f(x) = -\infty$
CONCLUSION IF f IS CONTINUOUS ON (a, b)	f has an absolute minimum but no absolute maximum on (a, b).	f has an absolute maximum but no absolute minimum on (a, b).	f has neither an absolute maximum nor an absolute minimum on (a, b).	f has neither an absolute maximum nor an absolute minimum on (a, b).
GRAPH	a b x	a b	a b *	a b

- **4.4.4 THEOREM** Suppose that f is continuous and has exactly one relative extremum on an interval, say at x_0 .
- (a) If f has a relative minimum at x_0 , then $f(x_0)$ is the absolute minimum of f on the interval.
- (b) If f has a relative maximum at x_0 , then $f(x_0)$ is the absolute maximum of f the interval.

7–16 Find the absolute maximum and minimum values of f on the given closed interval, and state where those values occur.

7.
$$f(x) = 4x^2 - 12x + 10$$
; [1, 2]

8.
$$f(x) = 8x - x^2$$
; [0, 6]

9.
$$f(x) = (x-2)^3$$
; [1, 4]

10.
$$f(x) = 2x^3 + 3x^2 - 12x$$
; [-3, 2]

11.
$$f(x) = \frac{3x}{\sqrt{4x^2 + 1}}$$
; [-1, 1]

12.
$$f(x) = (x^2 + x)^{2/3}$$
; [-2, 3]

13.
$$f(x) = x - 2\sin x$$
; $[-\pi/4, \pi/2]$

14.
$$f(x) = \sin x - \cos x$$
; $[0, \pi]$