

UNITED STATES PATENT APPLICATION

for a new and useful invention entitled

**HIGH PERFORMANCE COMPOSITE TUBULAR
STRUCTURES**

Inventor:

Howard Lindsay

Snell and Wilmer Docket No. 35708.0300

HIGH PERFORMANCE COMPOSITE TUBULAR STRUCTURES

Inventor: Howard Lindsay

CROSS REFERENCES TO RELATED APPLICATIONS

This application claims priority to United States Provisional Patent Application Serial No. 5 60/211,904 entitled "Net Molding of High Performance Composite Tubular Structures," filed June 16, 2000.

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to the design and manufacture of high performance, composite, tubular structures. More specifically, the invention relates to high performance, composite, tubular structures that utilize an integral pattern of reinforcing ribs on the inner diameter ("ID") or outer diameter ("OD") surface of the tube.

2. Background of the Prior Art

Thin-walled, high performance, tubular structures have a wide variety of practical uses, such as for graphite composite golf shafts, arrows, bats, ski poles, hockey sticks, bicycle parts and many other applications. Current state of the art, high performance, tubular structures are constructed by various methods and from various materials. Designers of such tubular structures satisfy certain design criteria (such as strength, stiffness, weight and torsional behavior) by varying material types (fibers/resins), orientations of fiber directions and geometric proportions of the tube itself. Another way designers have sought to improve high performance tubes is by developing new manufacturing techniques.

Using one manufacturing method, tubular structures are made by rolling material, such as pre-impregnated sheets of fiber/resin ("prepreg"), onto a "mandrel." The rolled layers of prepreg are then consolidated against the outer surface of the mandrel (called the "ID control surface") by wrapping the prepreg layers with shrink tape and curing via elevated temperature. Figure 1 is a simplified diagram of this method, which involves wrapping layers of prepreg 108 around a

mandrel 102 and wrapping a layer of shrink wrap material 104 around the layers of prepreg 108. Through the application of heat, the shrink wrap material 104 contracts, providing external compaction pressure 106 such that the layers of prepreg 108 are consolidated and cured to form a tubular structure.

5 Figures 2a and 2b are copies of magnified, cross sectional photographs of “flag wrapped” (Figure 2a) and “filament wound” (Figure 2b) high performance tubular structures made by the method described in Figure 1. Figures 2a and 2b readily demonstrate wall irregularities 202, 204 in tubular structures which frequently result from conventional manufacturing techniques.

10 The standard flag wrapping and filament wound processes for manufacturing high performance tubes have several drawbacks due to the fact that, during consolidation/curing, the diameter of the tube is reduced. This reduction in diameter typically makes the final OD surface rough and irregular, thus requiring secondary finishing by centerless grinding and sanding. Grinding and sanding make the OD surface of the tubular structure uniform and smooth so that it can be painted to yield a cosmetically acceptable finish. However, the grinding/sanding process also typically cuts and abrades the outermost fibers of a tubular structure. Because these outermost fibers are the most highly stressed due to their location (i.e., $\sigma_{\text{max}} = MC/I$, where “C” is the distance to the outside layer), the grinding/sanding process usually reduces the structural integrity of a tubular structure.

15 One variation on the flag wrapping and filament wound techniques for making high performance tubular structures is to consolidate them from the inside, rather than the outside, thus yielding a “net molded” outer surface. This technique uses a female mold, rather than a grinding/sanding process, and the resulting outermost fibers are less distorted during consolidation/cure and are also not cut or abraded during grinding/sanding. The net molding technique also allows for the use of higher, more uniform, consolidation pressures than the conventional, shrink-wrap, flag wrapping and filament wound techniques. Higher consolidation pressures result in higher integrity laminates with fewer voids and, therefore, greater tubular strength.

20 Though the net molding technique may be an improvement over the shrink wrapping techniques, prior art methods for producing high performance, composite, tubular structures are still limited. One problem, aside from the wall irregularities discussed above, is the inability of

prior art tubular structures to attain optimal wall thinness while retaining sufficient tubular strength. Whichever technique is chosen for manufacture, a designer typically strives to produce a tubular structure with a uniform, consistent, well-consolidated wall thickness, with undamaged, undistorted composite fibers. A designer also typically tries to make the wall of the tubular
5 structure as thin as possible, to decrease the weight of the tube, while attaining sufficient wall stiffness and strength to enable the structure to be used for its intended purpose. For example, as the wall of a tubular structure is made thinner, its overall stiffness and strength usually decrease. A fundamental failure mode, such as buckling, of a tubular structure may result if the wall of the structure is too thin. A tube that buckles (typically from compression) cannot achieve its
10 maximum strength. Buckling, in turn, usually leads to further structural failures, such as local fiber breaking and premature catastrophic structure failure.

Structural failure is especially likely if a tubular structure is bent when used for its intended purpose. Figures 3a and 3b, for example, show a tubular structure 302 with arrows representing tension 304 and compression 306 forces which might occur with bending 308. The combination of tension 304 on one side and compression 306 on the other side of a tubular structure 302 may cause deflection 310 of the structure, as shown in Figure 3b. The stiffness of the wall of a tubular structure 302, determined by such factors as the material used to make the tube and the thickness of the wall of the tube, determines how much deflection 310 occurs when the tubular structure is loaded with bending forces. If deflection 310 reaches a certain point, a situation of exponential
15 decay is reached, wherein the stresses present at the wall section increase exponentially until the wall eventually buckles catastrophically. Because instability is inherent in ultra-thin walls of tubular structures, designers generally must use thicker walls than are desirable, in order to achieve adequate stiffness (which translates to adequate stability). Therefore, using prior art methods to produce high performance, composite, tubular structures, the goal of optimal lightness
20 is sacrificed somewhat to achieve requisite stiffness and strength. Accordingly, a long-felt need exists for a high performance, composite tubular structure, and a method for producing that structure, which will combine optimal wall thinness with optimal resistance to buckling and buckling-related stress.

SUMMARY OF THE INVENTION

The present invention satisfies the needs described above by providing high performance, composite, tubular structures that are lighter and/or more resistant to buckling-related stress than conventional tubes. In general, the present invention incorporates features into the design of 5 tubular structures to enhance performance.

For example, in accordance with one preferred embodiment of the present invention, tubular structures are enhanced by incorporating small, stabilizing, raised ribs on the ID or OD of the tubes. These ribs enable designers to optimize the tubes' inertial properties (area mass moments of inertia) to achieve lighter weight, greater stiffness, increased strength or some combination of all three. The ribs may be configured in a variety of shapes and sizes, but are typically helical or circular, parallel or non-parallel, and/or may travel in opposite directions and cross over one another. In accordance with various aspects of the present invention, the ribs may also be hollow. Hollow ribs optionally allow specific materials that are different from the rest of the tubular structure to be included within the ribs. Thus, it will be readily apparent to one skilled in the art that countless combinations and variations of ribs according to one embodiment of the present invention are possible. Like I-beams used in construction, the integral ribs allow designers of tubular structures to use lesser amounts of material, thus optimizing wall thinness, while simultaneously maintaining wall stability and, therefore, strength.

20

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional diagram of the standard flag wrapping and filament wound processes for producing a high performance, composite, tubular structure.

FIGS. 2a and 2b are copies of magnified, cross-sectional pictures of tubular structures produced by the prior art flag wrapping and filament wound processes, respectively.

25

FIGS. 3a and 3b are longitudinal views of a tubular structure with applied forces of tension and compression and resulting deflection.

FIGS. 4a, 4b and 4c show, in cross-section, a method for fabricating an expandable, elastomeric tube using a "male" mold, which may be used in the manufacture of a high performance, composite, tubular structure with integrated ribs.

30

FIGS. 5a, 5b and 5c show, in cross-section, a method for fabricating an expandable,

elastomeric tube using a "female" mold, which may be used in the manufacture of a high performance, composite, tubular structure with integrated ribs.

FIGS. 6a and 6b show, in cross-section, a method and apparatus for manufacturing high performance, composite, tubular structures with integrated ribs.

5 FIG. 7 is a longitudinal, cutaway view of a high performance, composite, tubular structure with integrated ribs on the ID of the structure.

FIG. 8a is a magnified, cross-sectional view of part of a high performance, composite, tubular structure, with a rib on the ID of the structure made from a veil layer and integral metal.

FIG. 8b is a magnified, cross-sectional view of part of a high performance, composite, tubular structure, with a hollow rib on the ID of the structure.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following descriptions are of exemplary embodiments of the invention only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description is intended to provide convenient illustrations for implementing various embodiments of the invention. As will become apparent, various changes may be made in the function and arrangement of the elements described in these embodiments without departing from the spirit and scope of the invention. For example, as described herein, integral ribs in accordance with the present invention are described as having a helical configuration, though, as mentioned above, various alternative configurations of ribs may likewise be used and still fall within the ambit of the appended claims.

That being said, with reference to Figures 4a - 4c and 5a - 5c and in accordance with one exemplary embodiment of the present invention, an expandable, elastomeric tube 408, with an outer surface 416, comprises the innermost component of the mechanism used to manufacture a tubular structure. Figures 4a - 4c show, in cross-section, one non-limiting structure used for fabricating an expandable, elastomeric tube 408 with a "male" mold 402. Male mold 402 can be made of any material commonly used by those skilled in the art for making molds. The surface 406 of male mold 402, according to the presently described embodiment, has a linear pattern of bumps 414. In one embodiment, bumps 414 have a helical pattern.

30 According to one embodiment, to fabricate expandable, elastomeric tube 408, male mold

402 is covered with a thin elastomeric membrane 404. Elastomeric membrane 404 may be composed of latex or any other substance suitable for manufacturing elastomeric tube 408. In one embodiment, male mold 402 may be dipped in liquid latex. Liquid latex is then dried to create elastomeric membrane 404 and elastomeric membrane 404 is pulled off of male mold 402. If 5 elastomeric membrane 404 is pulled off of male mold 402 inside out, as is depicted in Figure 4c, then the pattern of bumps 414 on male mold 402 creates a pattern of grooves 420 on outer surface 416 of expandable, elastomeric tube 408.

Figures 5a – 5c show, in cross-section, another non-limiting structure used for fabricating an expandable, elastomeric tube 408 with a “female” mold 502. Female mold 502 can be made of any material commonly used by those skilled in the art for making molds. The inner surface 506 of female mold 502, according to the presently described embodiment, has a linear pattern of grooves 514. In one embodiment, grooves 514 have a helical pattern.

According to one embodiment, to fabricate expandable, elastomeric tube 408, inner surface 506 of female mold 502 is covered with a thin elastomeric membrane 504. Elastomeric membrane 504 may be composed of latex or any other substance suitable for manufacturing elastomeric tube 408. In one embodiment, female mold 502 may be dipped in liquid latex. Liquid latex is then dried to create elastomeric membrane 504 and female mold 502 is pulled off of elastomeric membrane 504. If elastomeric membrane 504 is not turned inside out, as depicted in Figure 5c, the pattern of grooves 514 on female mold 502 creates the pattern of grooves 420 on outer surface 416 of expandable, elastomeric tube 408.

In accordance with one embodiment of the present invention, expandable, elastomeric tube 408 is suitably comprised of molded plastic pieces formed from conventional, thermoplastic polymers such as polyethylene or the like, and from conventional plastic molding techniques such as blow molding, injection molding, rotational molding, thermoforming, or the like. Expandable, 25 elastomeric tube 408 may also be composed of rubber-type membranes, such as latex or silicone. Preferably, any material used for the elastomeric tube 408 is rigid enough to perform the “mandrel function” during lay-up operations. For example, preferably the material possesses characteristics which allow elastomeric tube 408 to expand during an elevated temperature cure (to permit part consolidation), while substantially simultaneously maintaining pressurization integrity. It will be understood by those skilled in the art that other materials and techniques may be used to produce 30

equally effective elastomeric tubes 408. For example, a vacuum-forming technique may be used, wherein a sheet of polystyrene is placed around male mold 402, polystyrene and male mold 402 are placed in a vacuum bag, and heat and vacuum pressure are applied to cure the polystyrene around male mold 402. The foregoing examples are for exemplary purposes, and are not
5 exclusive.

Figures 6a and 6b show, in cross-section, an apparatus for manufacturing a tubular structure 618 with integrated ribs 620, in accordance with the present invention. The apparatus includes expandable, elastomeric tube 408, with outer surface 416, manufactured as described above and as illustrated in Figures 4a – 4c and 5a – 5c. Strands of fiber 630, the fiber being fiberglass, graphite, or any other suitable material, are wrapped around elastomeric tube 408 so that strands of fibers 630 lie in grooves 420 of IML 416. Layers of prepreg 612 are placed around the circumference of expandable, elastomeric tube 408 and strands of fibers 630. Prepreg 612 may be standard modulus (33 Ms) graphite fiber with epoxy resin, but likewise may be any other prepreg material commonly known or as yet unknown to those skilled in the art for making high performance tubular structures, such as fiberglass, aramid, boron or thermoplastic or thermosetting resins. Multiple layers of prepreg 612 may be overlaid with fiber orientations at their junctions of any angle, from 0 to 90 degrees. Fiber orientations at the junctions of the layers 612 may effect stiffness and strength of the resulting tubular structure 618. Also, different reinforcement fibers may be used in different layers 612 to fabricate the tubular structure 618.
10 For example, layers of graphite, fiberglass and aramid may be used to create a composite. The number and thickness of layers of prepreg 612 chosen depend on the characteristics of lightness, stiffness and strength the designer seeks to attain.
15

According to one embodiment of the present invention, a mandrel (not pictured in Figures 6a and 6b) may be placed inside expandable, elastomeric tube 408, to begin the consolidation process of strands of fibers 630 and layers of prepreg 612. The mandrel may be made of any hard substance, such as wood or metal. Typically, it is inserted into elastomeric tube 408, and the mandrel, tube 408, strands of fibers 630 and layers of prepreg 612 are manually rolled back and forth on a flat surface to initiate the consolidation and reduce the bulk of the layers 612.
20

Next, the mandrel is removed and expandable, elastomeric tube 408, covered by strands of fibers 630 and layers of prepreg 612, is placed into an external, curing mold 616. Elastomeric
25

5 tube 408, strands of fibers 630, prepreg layers 612 and curing mold 616 are placed in a press, or any device suitable for pressurization and heat curing. For example, methods for pressurization might include using pressurized gas, pressurized liquid, or heat-expandable foams, pastes or beads. The consolidation and curing process involves inflating expandable, elastomeric tube 408 while heating. In one embodiment, elastomeric tube 408, strands of fibers 630, prepreg layers 612 and curing mold 616 are heated to approximately 200° F to 400° F, and preferably 250° F to 350° F, and more preferably approximately 300° F, and are pressurized to approximately 50 to 150 psi, and preferably 75 to 125 psi and more preferably approximately 100 psi. Expansion of elastomeric tube 408 applies pressure (represented by arrows within elastomeric tube 408 in
10 Figure 6a) against prepreg layers 612 and consolidates layers 612 against the inner surface 640 of curing mold 616. In accordance with one embodiment of the present invention, the process depicted in Figures 6a and 6b provides a substantially airtight seal between expandable, elastomeric tube 408, strands of fibers 630 and layers of prepreg 612, suitably allowing prepreg layers 612 to be consolidated against inner surface 640 of external, curing mold 616 via pressure applied by expandable, elastomeric tube 408.

15

20 Figure 6b shows expanded elastomeric tube 408 and a fully-consolidated tubular structure 618 with integrated ribs 620 containing strands of fibers 630. During the consolidation/curing process, outer surface 416 of elastomeric tube 408, with its pattern of grooves 420, presses a pattern of integrated ribs 620 onto the ID (also called the “inner mold line” or “IML” 624) of tubular structure 618. Integrated ribs 620 make tubular structures 618 stiffer and allow for optimization of wall stability and thinness. In another embodiment of the present invention (not depicted in Figures 6a and 6b), integrated ribs 620 may be placed on the OD (also called the “outer mold line” or “OML” 642) of tubular structure 408. To do so, a pattern of grooves is built into the inner surface 640 of external curing mold 616 and the procedure just described for
25 making tubular structure 618 is carried out. In addition to improved structural properties and performance, placing integrated ribs 620 on OML 642 gives tubular structures 618 the added benefit of a unique, visible, external design.

30 According to one embodiment, after curing, tubular structure 618 and elastomeric tube 408 are removed from curing mold 616 and elastomeric tube 408 is removed from tubular structure 618. Removal may be accomplished by solvent extraction, manual extraction, or any

other feasible means for removing elastomeric tube 408. In accordance with another embodiment, elastomeric tube 408 is left inside tubular structure 618. Leaving elastomeric tube 408 inside tubular structure 618 may provide a secondary function, such as damping vibrations in tubular structure 618.

With reference now to Figure 7, a longitudinal, cutaway view of a high performance, composite, tubular structure 618, manufactured in accordance with one embodiment of the present invention, illustrates integrated ribs 620 on the IML 624. In the embodiment depicted in Figure 7, integrated ribs 620 are aligned in a pattern of two sets of helical lines. One set of ribs 620 is arranged in lines oriented at an angle of approximately 45 degrees, relative to the longitudinal axis of tubular structure 618. The other set of ribs 620 is arranged in lines oriented at an angle of approximately -45 degrees, relative to the longitudinal axis. Thus, the two sets of integrated ribs 620 are perpendicular to each other. In accordance with one aspect of the present invention, the process allows the orientation of integrated ribs 620 to be varied to achieve desired effects, such as improving stiffness by adjusting the angle of orientation of ribs 620 in relation to the longitudinal axis of tubular structure 618. For example, ribs 620 may be oriented at +/- 45° to the longitudinal axis, as depicted in Figure 7. Alternatively, ribs 620 could be oriented at angles other than +/- 45° or could be non-parallel, or could be oriented such that no ribs 620 cross one another. Of course, the foregoing orientations are for exemplary purposes only and it will be apparent to those skilled in the art that any angles of orientation and patterns for ribs 620 may be used and that different angles and patterns will provide tubular structures 618 with different characteristics of stiffness and resistance to stress.

In accordance with various embodiments of the present invention, integrated ribs 620 of high performance, composite, tubular structures may be manufactured from multiple different materials and in a variety of ways, to better achieve desired characteristics. For example, as shown in Figure 8a, an integral metal reinforcement 802 may be used to reinforce rib 620. Integral metal reinforcement 802 may be incorporated into layers of prepreg used to construct tubular structure 618, such that it will create ribs 620 according to the pattern dictated by IML 416 of expandable, elastomeric tube 408 (shown in Figures 4, 5 and 6). Incorporated in this way, integral metal 802 is covered by a "veil layer" 806 of prepreg. Outer shell 812 of tubular structure 618, may be composed of any of a number of different materials, such as graphite, steel,

aluminum, titanium or metal matrix components. Veil layer 806 comprises any suitable material having flexible/conformability properties such as graphite, fiberglass and the like. It will be evident to those skilled in the art that veil layer 806 and outer shell 812 of tubular structure 618 may be made of any material suitable for making tubular structures 618. Additionally, veil layer 5 806 and outer shell 812 may be made of different materials.

Integral metal reinforcement 802 in ribs 620 may be a different material from that used for the rest of tubular structure 618. For example, integral metal reinforcement 802 may be composed of graphite, fiberglass, Spectra, Kevlar or a discontinuous/chopped fiber. Different integral metals 802 will give tubular structures 618 different characteristics of stiffness, strength, weight, prevention of structural failure, electrical conductivity and the like. Of course, other alternative materials used for integral metal reinforcement 802, such as composites (e.g., different fibers or resins), metals (e.g., copper, aluminum, steel, titanium), plastics, ceramics or any other suitable material for reinforcement known to those skilled in the art may be used.

40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
936

accomplish the goals of added strength and stiffness without requiring thicker, heavier tubular structure 618 walls. This allows manufacturers to design ultra-light tubular structures 618 which flex longitudinally but resist buckling and buckling-related stress and, thus, have excellent torque control and stability. Furthermore, in addition to improved structural and performance properties,
5 integrated ribs 620 placed on OML 642 of a tubular structures 618 give the structures a unique, visible, aesthetic design. Such improved tubular structures 618 with integrated ribs 620 may be used to manufacture golf shafts, arrows, bats, ski poles, hockey sticks, or any other article of manufacture requiring a high-performance tubular structure 618. Additionally, such tubular structures 618 may have a cross-sectional shape that is round, square, hexagonal or any other suitable shape and, due to the flexibility of expandable, elastomeric tube 408, non-straight tubular structures 618 may be designed and produced.
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380

Lastly, as mentioned above, various principles of the invention have been described only as illustrative embodiments, and many combinations and modifications of the above-described structures, arrangements, proportions, elements, materials and components may be used in the practice of the invention. For example, methods and apparatuses not specifically described may be varied and particularly adapted for a specific environment and operating requirement without departing from those principles.