III. Interpolare polinomială: Pentru un cet du date (*i. yi) := 1,11+1 ER

<u>De ce?</u> Pentru aproximana mui funitu f cont. pe un [a,b] care este dificil de evaluat; jeut un reuprone de date son predictie etc.

Thu. The (x_i, y_i) is $\overline{y_i}$, $x_i \neq x_j$, $i \neq j$ $\Rightarrow \exists i \text{ un pol de quad } n \quad \forall n(x) \in \mathcal{P}_n(R) \text{ a.t.} \quad \forall n(x_i) = y_i, \text{ is } i = 1, n+1$

$$f \approx P \Rightarrow f' \approx P' = polinom, Sf \approx SP = polinom$$

$$F_{n}(x_{i},y_{i})_{i=1,n+1} \in \mathbb{R}^{2}. \quad F_{n}(x) = a_{0} + a_{1}x + a_{2}x^{2} + ... + a_{n}x^{n}$$

$$F_{n}(x_{i}) = y_{i}, i = \overline{y_{i}} + ... + a_{n}x^{n} =$$

In continuare, pp.
$$x_i$$
: $n+1$ puncte educistante în $[a_1b]$.
 $y_i = f(x_i)$.
 $Rex. sist. (x) = coefai, $i = \overline{c_{1n}}$.$

$$= \Re \left(\pi \right) = \frac{n}{2} a_i x^i$$

Obs. Aa = 1 B nz. met. dinde, met. i terative etc.

regulo Granur

regulo Granur

$$i=1_{\overline{1}\overline{1}+\overline{1}}$$
 $a_{i-1}=\frac{dt}{dt}\widetilde{A}i$
 $A_i=mat\cdot A \quad cu \quad col\cdot i$ înlocuită cu vect. $al\cdot J$

Obs Met A poste contine elem. «1 9/san >>1 => cond (A) >> 1. =) erori pentru aprox sol.a. <u>D</u>: Pot reformula pl. a 1. så <u>nu</u> gjung lo un vist. de tip (*)?

<u>Aus</u>: Da! Inainte au considerat bate $\{1, \chi, \chi^2, \dots, \chi^n\} = \}$ $P_n(\chi) = \sum_{i=0}^n a_i \chi^i$ Ideea: Schrink bata au $\{L_1(\chi), L_2(\chi), \dots, L_{n+1}(\chi)\}$ Copolide grad χ^i $\chi^i \sim \chi^i$ Light $\chi^i = \chi^i = \chi^i$ $\chi^i = \chi^i$

Li(
$$x_i$$
) = 1, Li(x_j) = 0, i $\neq j$
=) Sist de ex. lin. lo core se aging est $T \cdot y = y$
 $P_n(x) = \sum_{i=1}^{n+1} \gamma_i L_i(x)$.