

Model Optimization and Tuning Phase Template

Date	15 July 2024
Team ID	739714
Project Title	Genetic Classification of An Individual By Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Model	Tuned Hyperparameters

Hyperparameter Tuning Documentation (6 Marks):

Random forest regression

```
from sklearn.model selection import GridSearchCV
# Define the hyperparameter grid to search over
param grid = {
    'n estimators': [50, 100, 200],
    'max_depth': [None, 5, 10],
    'min_samples_split': [2, 5],
    'min_samples_leaf': [1, 2, 4]
# Create a Random Forest Regressor model
rf model = RandomForestRegressor(random state=0)
# Perform grid search cross-validation
grid_search = GridSearchCV(estimator=rf_model, param_grid=param_grid, cv=5, s
grid_search.fit(x_train, y_train)
# Print the best hyperparameters
print("Best hyperparameters:", grid_search.best_params_)
# Get the best model
best rf model = grid search.best estimator
# Make predictions on the test data using the best model
y_pred_best_rf = best_rf_model.predict(x_test)
```

```
Gradient
tree
boosting
```

```
# Define the hyperparameter grid to search over for Gradient Boosting
param_grid_gb = {
         'n_estimators': [50, 100, 200],
         'learning_rate': [0.01, 0.1, 0.2],
         'max_depth': [3, 5, 7]
}

# Create a Gradient Boosting Regressor model
gb_model = GradientBoostingRegressor(random_state=0)

# Perform grid search cross-validation
grid_search_gb = GridSearchCV(estimator=gb_model, param_grid=param_grid_gb, cv=grid_search_gb.fit(x_train, y_train)

# Print the best hyperparameters
print("Best hyperparameters for Gradient Boosting:", grid_search_gb.best_params_
```

	RandomForest regression Provided (initial metric)			
		`		Best hyperparameters: {'max_depth': 5, 'min_samples_leaf': 4, 'min_s
	Gradient tree boosting	Not provided (initial metric)	<u>}</u>	Gradient Boosting R ² score: 0.888027251939065 Prediction for [[2023, 7, 26]]: 1.8168061136991318 /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserN warnings.warn(

Performance Metrics Comparison Report (2 Marks):

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Decision tree	The decision tree was choosen as it given best accuracy without any tunning.

Model	Baseline Metric	Optimized Metri