MA108 - Spring 2018 Tutorial 2 Final Answers

- 1. Solve the following ODE after finding an integrating factor.
- (a) $(27xy^2 + 8y^3) dx + (18x^2y + 12xy^2) dy = 0.$

Answer. $e^x (54y(x-1) + 24y^2 + 9x^2y^2 + 4xy^3 - 8y^2 - 27y^2(x-1)) = C.$

(b) $-y dx + (x^4 - x) dy = 0.$

Answer. $y(1-x^{-3})^{-1/3} = C$, that is, $xy(x^3-1)^{-1/3} = C$.

(c) $y\sin y \, dx + x(\sin y - y\cos y) \, dy = 0.$

Answer. $\frac{xy}{\sin y} = C$.

(d) $y(1+5\ln|x|) dx + 4x \ln|x| dy = 0.$

Answer. $4x^{5/4}(\ln|x|)^{1/4} = C$.

(e) $(3x^2y^3 - y^2 + y) dx + (-xy + 2x) dy$.

Answer. $3x + \frac{1}{xy} - \frac{1}{xy^2} = C$.

(f) $y dx + (2x - ye^y) dy = 0$.

Answer. $2xy + e^y - ye^y = C$.

(g) $(a\cos xy - y\sin xy) dx + (b\cos xy - x\sin xy) dy = 0.$

Answer. $e^{ax+by}\cos xy = C$.

2. Solve the following IVP.

(a) $(4x^3y^2 - 6x^2y - 2x - 3) dx + (2xx^4y - 2x^3) dy = 0$, y(1) = 3.

Answer. $x^2y^2 - 2x^3y - x^2 - 3x - 1 = 0.$

(b)
$$(y^3 - 1)e^x dx + 3y^2(e^x + 1) dy = 0, \quad y(0) = 0.$$

Answer.
$$(y^3 - 1)e^x + y^3 + 1 = 0.$$

(c)
$$(9x^2 + y - 1) dx - (4y - x) dy = 0$$
, $y(1) = 0$.

Answer.
$$3x^3 + xy - 2y^2 - 2 = 0$$
.

3. Based on the existence and uniqueness theorem, (i) find all the (x_0, y_0) for which the theorem gives an interval in which the given IVP has a solution and (ii) an interval around x_0 for which it has a unique solution.

(a)
$$y' = \frac{e^x + y}{x^2 + y^2}$$
.

Answer.

- (i) $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$
- (ii) $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$

(b)
$$y' = (x^2 + y^2)y^{1/3}$$
.

Answer.

- (i) $(x_0, y_0) \in \mathbb{R}^2$.
- (ii) $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(x, 0) : x \in \mathbb{R}\}.$

(c)
$$y' = \frac{1}{(x-1)\sin y}$$
.

Answer.

- (i) $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(1, n\pi) : n \in \mathbb{N}\}.$
- (ii) $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(1, n\pi) : n \in \mathbb{N}\}.$
- **4.** Let $y' = 3x(y-1)^{1/3}$, $y(x_0) = y_0$.
- (a) For what points (x_0, y_0) does the IVP have a solution.

Answer.
$$(x_0, y_0) \in \mathbb{R}^2$$
.

(b) For what points (x_0, y_0) does the IVP have a unique solution in an interval around x_0 .

Answer.
$$(x_0, y_0) \in \mathbb{R}^2 \setminus \{(x, 1) : x \in \mathbb{R}\}.$$

(d) Let $(x_0, y_0) = (0, 1)$. Find four solutions for the IVP which differ from each other for values of x in every open interval that contains $x_0 = 0$.

Answer.

(i)
$$y(x) = 1, x \in \mathbb{R}$$
.

(ii)
$$y(x) = 1 + x^3, x \in \mathbb{R}$$
.

(iii)
$$y(x) = 1 - x^3, x \in \mathbb{R}.$$

(iii)
$$y(x) = 1 + x^3, x \in \mathbb{R}$$
.
(iv) $y(x) = \begin{cases} 1, & x < 0 \\ 1 + x^3, & x \ge 0 \end{cases}$

(There can be other solutions as well.)

6. State on which rectangles the hypotheses of existence and uniqueness theorem for ODEs are satisfied.

(a)
$$y' = \frac{\ln|xy|}{1 - x^2 + y^2}$$
.

Answer. Let $S = \{(x, y) : x = 0 \text{ or } y = 0 \text{ or } 1 - x^2 + y^2 = 0\}$. Then the required rectangles are all rectangles R such that $R \cap S = \emptyset$.

(b)
$$y' = \frac{1+x^2}{3y-y^2}$$
.

Answer. Let $Y_0 = \{(x,0) : x \in \mathbb{R}\}$ and $Y_3 = \{(x,3) : x \in \mathbb{R}\}$. Then the required rectangles are all rectangles R such that $R \cap Y_0 = R \cap Y_3 = \emptyset$.

Solve the IVP and determine how the interval in which the solution exists depends on the initial value x_0 .

(a)
$$y' + y^3 = 0$$
, $y(0) = y_0$.

Answer.
$$y(x) = \frac{x^3}{3} + \frac{x^4}{12} + \frac{x^5}{60}$$
.

(b)
$$y' = \frac{x^2}{y(1+x^3)}, \quad y(0) = y_0.$$

Answer. If
$$y_0 = 0$$
, then $\frac{y^2}{2} = \frac{1}{3} \ln |1 + x^3|$.

If
$$y_0 > 0$$
, then $y = \sqrt{\frac{2}{3} \ln|1 + x^3| + C_1}$.

If
$$y_0 < 0$$
, then $y = -\sqrt{\frac{2}{3} \ln|1 + x^3| + C_2}$.

Find ϕ_1, ϕ_2, ϕ_3 , the first three Picard's iterations for the following ODEs.

(a)
$$y' = x + y^2$$
, $y(0) = 0$.

Answer.
$$\phi_1(x) = \int_0^x s ds = x^2/2.$$

$$\phi_2(x) = \int_0^x (s + (s^2/2)^2) ds = x^2/2 + x^5/20.$$

$$\phi_3(x) = \int_0^x (s + (s^2/2 + s^5/20)^2) ds = x^2/2 + x^5/20 + x^8/160 + x^{11}/4400.$$

- **(b)** $y' = x^2 + y^2$, y(0) = 0.
- (c) $y' = x^2 + y$, y(0) = 0.