Keypoint detection

- Many <u>applications</u> benefit from features localized in (x,y) (image registration, panorama stitching, motion estimation + tracking, recognition ...)
- Edges well localized only in one direction → detect corners?

- Desirable properties of keypoint detector
 - Accurate localization
 - Invariance against shift, rotation, scale, brightness change
 - Robustness against noise, high repeatability

Keypoint detection

- Laplacian detector
- Determinant of Hessian detector
- Harris detector
- FAST detector

Laplacian keypoint detector

Input images

LoG response

Thresholded LoG response

Local extrema of thresholded LoG response

Superimposed LoG keypoints

500 strongest keypoints

Determinant of Hessian keypoint detector

$$\det \mathbf{H}[x,y] = f_{xx}[x,y]f_{yy}[x,y] - (f_{xy}[x,y])^{2}$$

Input images

DoH response

Thresholded DoH response

Local maxima of DoH response

Superimposed DoH keypoints

500 strongest keypoints

What patterns can be localized most accurately?

Local displacement sensitivity (assuming continuous f(x,y))

$$S\left(\Delta x, \Delta y\right) = \sum_{(x,y) \in window} \left[f\left(x,y\right) - f\left(x + \Delta x, y + \Delta y\right) \right]^{2}$$

• Linear approximation for small $\Delta x, \Delta y$

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + f_x(x, y) \Delta x + f_y(x, y) \Delta y$$
 $f_x(x, y) - \text{horizontal image gradient}$

$$S(\Delta x, \Delta y) \approx \sum_{(x,y) \in window} \left[\left(f_x(x,y) \quad f_y(x,y) \right) \left(\frac{\Delta x}{\Delta y} \right) \right]^2$$

$$= \left(\Delta x \quad \Delta y \right) \left[\sum_{(x,y) \in window} \left[f_x^2(x,y) \quad f_x(x,y) f_y(x,y) \right] \right] \left(\frac{\Delta x}{\Delta y} \right)$$

$$= \left(\Delta x \quad \Delta y \right) \mathbf{M} \left[\frac{\Delta x}{\Delta y} \right]$$

$$= \left(\Delta x \quad \Delta y \right) \mathbf{M} \left[\frac{\Delta x}{\Delta y} \right]$$

Iso-sensitivity curves are ellipses

Harris detector

Based on eigenvalues λ_1 , λ_2 of "structure matrix" (aka "normal matrix" aka "second-moment matrix")

$$\mathbf{M} = \begin{bmatrix} \sum_{\substack{[x,y] \in window}} f_x^2[x,y] & \sum_{\substack{[x,y] \in window}} f_x[x,y]f_y[x,y] \\ \sum_{\substack{[x,y] \in window}} f_x[x,y]f_y[x,y] & \sum_{\substack{[x,y] \in window}} f_y^2[x,y] \end{bmatrix}$$

 $f_x[x,y]$ – horizontal image gradient $f_y[x,y]$ – vertical image gradient

Harris cornerness

$$C = \det(\mathbf{M}) - k \cdot \left(trace\left(\mathbf{M}\right)\right)^{2} = \lambda_{1}\lambda_{2} - k \cdot \left(\lambda_{1} + \lambda_{2}\right)^{2}$$

$$k = 0.05$$

Input images

Harris cornerness

Thresholded cornerness

Local maxima of cornerness

Superimposed Harris keypoints

500 strongest keypoints

Robustness of Harris detector

- Invariant to brightness offset: $f[x,y] \rightarrow f[x,y] + c$
- Invariant to shift and rotation

Not invariant to scaling

Features from Accelerated Segment Test (FAST)

- Compare "nucleus" p to circle of sixteen pixels
- Nucleus is feature point, iff at least n=9 contiguous circle pixels are either all brighter, or all darker, by θ
- Optimize pixel comparisons to reject non-corners early

Input images

FAST corners superimposed

