Dominik Wróbel

Inżynieria oprogramowania i systemów

Informatyka, II stopień, 2018/19

Metody eksploracji danych

Laboratorium 1

Weka + Python+ regresja

1.1

W oprogramowaniu Weka załadowano plik xy-001.arff z danymi i wyświetlono dane.

Dla przedstawionych danych wykonano regresję liniową i otrzymano równanie prostej oraz współczynnik korelacji równe

$$Y = 2.3409 * X + 7.806, r = 0.9967$$

1.2

W kolejnych zadaniach wykonano te same czynności. Uzyskane w wyniku regresji proste wraz z danymi przedstawiono na wykresach z wykorzystaniem skryptu w języku Python. Plik xy-001.arff.

1.4

Plik xy-003.arff. Y = -67.4907 * X + 563.2598, r = 0.9106

Plik xy-005.arff. Y = 7.4977 * X + 13.2449, r = 0.5376

1.6

Plik xy-006.arff. Y = 0 * X + 4.7402, r = -0.3515

Plik xy-007.arff. Y = 0*X + 5.0287, r = -0.0883

1.8

Plik xy-008.arff. Y = -2.5216 * X + 17.4559, r = 0.5149

Komentarz: W tym przypadku prosta nie przechodzi przez oś symetrii elipsy. Wynika to ze specyfiki działania regresji liniowej. Algorytm oblicza odległość od prostej wyznaczaną względem osi pionowej, a nie prostopadłą do prostej.

1.9

Plik xy-010.arff. Y = -0.2412 * X + 5.974, r = 0.186

Plik xy-010.arff. Realizacja przy pomocy Pythona.

Metoda najmniejszych kwadratów

$$Y = -0.2399 * X + 5.9598$$

Regresja grzbietowa (alpha= .5)

$$Y = -0.2399 * X + 5.9597$$

Y = -0.2341 * X + 5.9297

Wyniki uzyskane przy pomocy Pythona nie różnią się w dużym stopniu od tych uzyskanych przy pomocy oprogramowania Weka.