SISTEMAS INTELIGENTES.

PRÁCTICA DE BÚSQUEDA 1

UNIVERSIDAD DE MÁLAGA Dpto. Lenguajes y Ciencias de la Computación

- **1.** El programa AIDA-UMA se encuentra disponible en http://aida-uma.googlecode.com El archivo mapas.zip se encuentra disponible en la página de la asignatura en el campus virtual.
 - 1.) Empleando los mapas incluidos en el archivo mapas.zip ejecutar el algoritmo A* para cada uno de ellos empleando los tres heurísticos proporcionados: h=0, distancia euclídea, y distancia Manhattan. Registrar para cada uno de ellos los consumos máximos de memoria y el número de iteraciones. Estos datos se muestran en el simulador en la parte inferior de la ventana.

MAPA 1

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	522	482	21
Dist. Euclídea	133	96	21
Dist. Manhattan	98	72	21

MAPA 2

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	151	142	21
Dist. Euclídea	73	62	21
Dist. Manhattan	56	46	21

MAPA 3

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	270	238	18
Dist. Euclídea	49	36	18
Dist. Manhattan	29	19	18

MAPA 4

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	269	262	28
Dist. Euclídea	225	207	28
Dist. Manhattan	155	120	28

MAPA 5

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	48	48	27
Dist. Euclídea	48	46	27
Dist. Manhattan	46	42	27

MAPA 6

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	408	391	29
Dist. Euclídea	281	243	29
Dist. Manhattan	188	146	29

MAPA 7

	Máx. memoria	Iteraciones	Coste de la solución
H = 0	503	485	32
Dist. Euclídea	182	150	32
Dist. Manhattan	58	33	32

2) Según la siguiente representación.

a) Calcule la heurística Manhattan a cada celda, teniendo en cuenta que la casilla origen es (B1) y la casilla destino (C4) (Rellene el cuadro).

Е	5	4	3	2	3	4	5	6	7	8	9
D	4		2	1	2						8
С	3			GOAL	1	2	3	4	5		7
В	4	3									8
A	5	4	3	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9	10	11

b) Cree el mapa en AIDA que quedaría como la siguiente figura, (ojo con las paredes del mapa):

c) Ejecute el algoritmo A* con la heurística Distancia Manhattan y compare con la ejecución manual del algoritmo y la heurística señalada, rellenando la siguiente tabla:

Nodo	Sucesor $g + h = f$	Orden en que se han	Orden en que se han
seleccionado		cerrado(mi persona)	cerrado(AIDA)
B1	A1/1+5=6	(8)	
	B2/1+3=4	(2)	
	C1/1+3=4	(1)	(1)
B2	A2/2+4=6	(3)	
C1	D1/2+4=6	(7)	(2)
A2	A1/3+5=8	(4)	
	A3/3+3=6		
D1	E1/3+5=8	0	(3)
A3	A4/4+2=6	(5)	
A4	A5/5+3=8	(6)	
A5	A6/6+4=10		
E1	E2/4+4=8	(9)	(4)
E2	E3/5+4=9	(10)	(5)
E3	D3/6+2=8 E4/6+2=8	(11)	(6)

D3	D4/7+1=8	(12)	(7)
E4	E5/7+3=10 D4/7+1=8	(13)	(8)
D4	C4/8+0=8	OBJETIVO	OBJETIVO