Fluctuation Analysis of Adaptive Multilevel Splitting

Arnaud Guyader (UPMC - Paris VI)

Joint work with Frédéric Cérou (INRIA)

Particle Methods for the Management of Risks April 1st, 2016, Paris

Framework

- $X \sim \eta$, a random vector in \mathbb{R}^d (typically: $\eta(dx) \propto f(x) dx$).
- $S: \mathbb{R}^d \to \mathbb{R}$ is called the score function (black-box).
- Hence, one can only simulate the random variable Y = S(X).
- The quantile q lies far out in the tail of the pdf of Y.

$$\Rightarrow$$
 Goal: estimate $p = \mathbb{P}(S(X) > q) = \mathbb{P}(Y > q) \approx 0$.

Remarks:

1. $p \approx 0 \Rightarrow$ Crude Monte Carlo is computationally intractable.

$$\frac{\operatorname{Var}(\hat{\rho}_{mc})}{p^2} = \frac{\operatorname{Var}(\#\{i:\ S(X_i) > q\}/N)}{p^2} = \frac{1-p}{Np} \approx \frac{1}{Np}.$$

2. Assuming S acts as a black-box \Rightarrow no Importance Sampling.

Toy Example

- Random vector: X is such that $\mathbb{E}[X] = 0$.
- Score function: Y = S(X) = |X| is the Euclidean norm of X.
- Aim: Estimate $p = \mathbb{P}(S(X) > q)$, where $q \gg \mathbb{E}|X| = \mathbb{E}[Y]$.

Multilevel Splitting: Basic Idea

- Fix *n* and a sequence of levels $-\infty = q_0 < q_1 < \cdots < q_n = q$.
- Notation: let $p_j = \mathbb{P}(Y > q_j | Y > q_{j-1})$ s.t. each $p_j \not\approx 0$.
- Bayes formula: $p = \mathbb{P}(Y > q) = p_1 \times p_2 \times \cdots \times p_n$.
- Multilevel Splitting estimator: $\hat{p} = \hat{p}_1 \times \hat{p}_2 \times \cdots \times \hat{p}_n$.

Implementation: First step

• Ingredient: an η -symmetric transition kernel K_1 , *i.e.*

$$\eta(dx)K_1(x,dx')=\eta(dx')K_1(x',dx).$$

- Example: if $X \sim \mathcal{N}(0, I_d)$, then $X' = \frac{X + \sigma_1 W}{\sqrt{1 + \sigma_1^2}}$ makes the job for any $\sigma_1 > 0$ as long as $W \sim \mathcal{N}(0, I_d)$ and $W \perp X$.
- Remark: if no obvious K_1 , but $\eta(dx) \propto f(x) dx$, then one may apply Metropolis-Hastings algorithm.

Letting $\mathcal{A}_1=\{x\in\mathbb{R}^d,\ S(x)>q_1\}$, apply (iterate) the kernel $M_1(x,dx')=K_1(x,dx')\mathbb{1}_{\mathcal{A}_1}(x')+K_1(x,\bar{\mathcal{A}}_1)\delta_x(dx').$

 \Rightarrow The law $\eta_1(dx) = \eta(dx)\mathbb{1}_{A_1}(x)/\eta(A_1)$ is the restriction of η "above" q_1 and satisfies $\eta_1 M_1 = \eta_1$.

Implementation: Step j

Ingredient: an η -symmetric transition kernel K_j .

- Example: if $X \sim \mathcal{N}(0, I_d)$, then $X' = \frac{X + \sigma_j W}{\sqrt{1 + \sigma_j^2}}$.
- Step j: letting $A_j = \{x, S(x) > q_j\}$, apply (iterate) the kernel

$$M_j(x, dx') = K_j(x, dx') \mathbb{1}_{A_j}(x') + K_j(x, \bar{A}_j) \delta_x(dx').$$

 \Rightarrow The law $\eta_j(dx) = \eta(dx) \mathbb{1}_{\mathcal{A}_j}(x)/\eta(\mathcal{A}_j)$ is the restriction of η "above" q_j and satisfies $\eta_j M_j = \eta_j$.

Remark: Importance of the tuning parameter σ_i

- σ_j too large \Rightarrow most proposed transitions are refused.
- σ_i too small \Rightarrow the particles move slowly.

Connection with Feynman-Kac Formulas

- Potential functions: $\mathbb{1}_{S(x)>q_j}=\mathbb{1}_{A_j}(x)=G_{j-1}(x)$.
- Markov chain: let $(X_j)_{j\geq 0}$ a non-homogeneous Markov chain with initial distribution $\eta_0=\eta$ and transitions M_{j+1} .

⇒ Unnormalized measures:

$$\gamma_n(\varphi) = \mathbb{E}\left[\varphi(X_n)\prod_{j=0}^{n-1}G_j(X_j)\right] = \mathbb{E}\left[\varphi(X)\mathbb{1}_{S(X)>q}\right],$$

Thus, $\gamma_n(1) = \mathbb{E}[\mathbb{1}_{S(X)>q}] = p$ is our quantity of interest.

⇒ Normalized measures:

$$\eta_n(\varphi) = \frac{\gamma_n(\varphi)}{\gamma_n(1)} = \mathbb{E}[\varphi(X)|S(X) > q].$$

Interacting Particle System

- Markov chain $(X_i^1, \dots, X_i^N)_{0 \le i \le n}$ with initial distribution $\eta_0^{\otimes N}$ and transitions described by the previous algorithm.
- $\hat{p}_{j+1} = \eta_i^N(G_j)$ is the proportion of the sample (X_i^1, \dots, X_i^N) "above" q_{i+1} , i.e., such that $S(X_i^i) \geq q_{i+1}$.
- ⇒ Empirical normalized measures

$$\eta_n^N(\varphi) = \frac{1}{N} \sum_{i=1}^N \varphi(X_n^i) \xrightarrow[N \to \infty]{a.s.} \eta_n(\varphi) = \mathbb{E}[\varphi(X)|S(X) > q]$$

⇒ Empirical unnormalized measures

$$\begin{cases} \gamma_n^N(1) = \prod_{j=0}^{n-1} \eta_j^N(G_j) = \hat{p}_1 \dots \hat{p}_n = \hat{p} \xrightarrow[N \to \infty]{a.s.} \gamma_n(1) = p \\ \\ \gamma_n^N(\varphi) = \gamma_n^N(1) \times \eta_n^N(\varphi) \xrightarrow[N \to \infty]{a.s.} \gamma_n(\varphi) = \mathbb{E}[\varphi(X) \mathbb{1}_{S(X) > q}] \end{cases}$$

We introduce the family of operators $Q_{\ell,n}$ defined by

$$Q_{\ell,n}(\varphi)(x) = \mathbb{E}\left[\left. arphi(X_n) \prod_{j=\ell}^{n-1} G_j(X_j) \right| X_\ell = x
ight]$$

and their normalized versions $\overline{Q}_{\ell,n}(\varphi) = Q_{\ell,n}(\varphi)/\eta_{\ell}(Q_{\ell,n}(1))$.

Theorem

$$\begin{split} \sqrt{N} \left(\gamma_n^N(\varphi) - \gamma_n(\varphi) \right) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}(0, p^2 \Sigma(\varphi)), \\ \text{where } \Sigma(\varphi) &= \sum_{\ell=0}^n \eta_\ell \left(\overline{Q}_{\ell,n}(\varphi)^2 - \eta_n(\varphi)^2 \right). \text{ Moreover,} \\ &\sqrt{N} \left(\eta_n^N(\varphi) - \eta_n(\varphi) \right) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}(0, \Sigma(\varphi)). \end{split}$$

Back to the Probability

Corollary

The estimator $\hat{p} = \hat{p}_1 \dots \hat{p}_n$ converges a.s. to p, and we have

$$\sqrt{N} \stackrel{\hat{p}-p}{p} \xrightarrow[N\to\infty]{\mathcal{L}} \mathcal{N}(0,\sigma^2),$$

where

$$\sigma^{2} = \sum_{j=1}^{n} \frac{1 - p_{j}}{p_{j}}$$

$$+ \sum_{j=1}^{n-1} \frac{1}{p_{j}} \mathbb{E} \left[\left(\frac{\mathbb{P}(X_{n-1} \in \mathcal{A}_{n}|X_{j})}{\mathbb{P}(X_{n-1} \in \mathcal{A}_{n}|X_{j-1} \in \mathcal{A}_{j})} - 1 \right)^{2} \middle| X_{j-1} \in \mathcal{A}_{j} \right]$$

What is the best thing to do?

• Consequence: one has

$$\operatorname{Var}(\hat{p}/p) \geq \frac{1}{N} \sum_{j=1}^{n} \frac{1-p_{j}}{p_{j}}$$
 with $=$ if the X_{j} 's are \perp

Constrained Minimization:

$$\arg\min_{p_1,...,p_n} \frac{1}{N} \sum_{j=1}^n \frac{1-p_j}{p_j}$$
 s.t. $\prod_{j=1}^n p_j = p$

- Optimum: $p_1 = \cdots = p_n = p^{1/n}$.
- Conclusion: the levels have to be placed evenly in terms of conditional probabilities ⇒ Adaptive Multilevel Splitting.

Interacting Particle System

- Markov chain (X_j^1, \ldots, X_j^N) with initial distribution $\eta_0^{\otimes N}$ and transitions described by the previous algorithm.
- Decomposition: Fix α , then $p = r \times \alpha^n \implies \hat{p} = \hat{r} \times \alpha^{\hat{n}}$.
- Last step \hat{n} corresponds to $\hat{q}_{\hat{n}+1} > q$.
- Take $\varphi(x) = \varphi(x) \times \mathbb{1}_{S(x) > q}$, i.e., φ null below q.
- ⇒ Empirical normalized measures

$$\hat{\eta}_{\hat{n}}^{N}(\varphi) = \frac{1}{N} \sum_{i=1}^{N} \varphi(X_{\hat{n}}^{i}) \xrightarrow[N \to \infty]{a.s.} \eta_{n}(\varphi) = \mathbb{E}[\varphi(X)|S(X) > q]$$

⇒ Empirical unnormalized measures

$$\begin{cases} \hat{\gamma}_{\hat{n}}^{N}(\varphi) = \alpha^{\hat{n}} \times \frac{1}{N} \sum_{i=1}^{N} \varphi(X_{\hat{n}}^{i}) \xrightarrow[N \to \infty]{a.s.} \gamma_{n}(\varphi) = \mathbb{E}[\varphi(X) \mathbb{1}_{S(X) > q}] \\ \\ \hat{\gamma}_{\hat{n}}^{N}(1) = \alpha^{\hat{n}} \times \hat{r} = \hat{p} \xrightarrow[N \to \infty]{a.s.} \gamma_{n}(1) = p \end{cases}$$

Fluctuation Analysis [Cérou & Guyader (2015)]

Number of steps: $\hat{n} \to n = |\log p/\log \alpha|$ a.s. when $N \to \infty$.

Notation: $\eta_n^N(\varphi)$ and $\gamma_n^N(\varphi)$ are the multilevel splitting estimators for $p_1 = \cdots = p_n = \alpha$ (i.e., optimal fixed levels once α is given).

Theorem

Under some (mild) regularity assumptions on S, η and the kernels K_j , the asymptotic variances of $\hat{\eta}_n^N(\varphi)$ and $\hat{\gamma}_n^N(\varphi)$ are equal to those of $\eta_n^N(\varphi)$ and $\gamma_n^N(\varphi)$ respectively.

Sketch of the Proof

We have the decomposition

$$\hat{\eta}_n^N(\varphi) - \eta_n(\varphi) = \mathcal{M}_n^N + \mathcal{R}_n^N,$$

where:

the first term splits as follows:

$$\mathcal{M}_n^N = \mathcal{M}_n^{N,1} + \mathcal{M}_n^{N,2}$$

with martingales with respect to specific σ -fields generated by the particles X_i^i and the adaptive levels \hat{q}_j ,

• the remaining term \mathcal{R}_n^N is negligible, meaning that

$$\sqrt{n} \times \mathcal{R}_n^N \xrightarrow[N \to \infty]{\mathbb{P}} 0.$$

Conclusion

- Adaptive Multilevel Splitting allows us to place the levels in an optimal way without any loss of precision.
- The price to pay is only a low additional computational cost.
- In a different context, the take-home message here is the same as in the paper by Beskos *et al.*
- References:
 - A. Beskos, A. Jasra, N. Kantas, and A. Thiery. On the Convergence of Adaptive Sequential Monte Carlo Methods. Annals of Applied Probability, 2016.
 - F. Cérou and A. Guyader. Fluctuation Analysis of Adaptive Multilevel Splitting. Annals of Applied Probability, 2016.