Case 2

Matheus Barreto Alves de Almeida

07/07/2020

Primeiramente, vamos iniciar a bibliotecas imoportantes

```
library(ggplot2)
library(dplyr)
library(readxl)
library(plotly)
library(purrr)
library(cluster)
library(forecast)
library(faction)
```

Para responder cada questão, será criado dataframes que serão nomeados por "dfi" onde i é o numero da questão.

Lendo os dataframes

```
comex <- read.csv('data_comexstat.csv')
covar <- read_xlsx('covariates.xlsx')
head(comex)</pre>
```

```
##
          date product state
                                   country
                                            type route
                                                          tons
                                                                  usd
## 1 1997-01-01
                          ES United States Import
                  corn
                                                    Sea 44.045 113029
## 2 1997-01-01
                  corn
                          GO
                                 Argentina Import Ground 54.000 36720
## 3 1997-01-01 corn
                          GO
                                   Bolivia Export Ground 0.200
                                                                  180
## 4 1997-01-01
                          GO United States Export
                  corn
                                                    Sea 3.488
                                                                 5688
## 5 1997-01-01
                  corn
                          MG
                                 Argentina Import Ground 27.000 18630
## 6 1997-01-01
                  corn
                          MS
                                  Paraguay Export Ground 40.000 38700
```

É visivel que existem varíaveis que precisam ser categorizadas:

```
comex$state <- factor(comex$state)
comex$product <- factor(comex$product)
comex$country <- factor(comex$country)
comex$route <- factor(comex$route)
comex$type <- factor(comex$type)</pre>
```

Além disso, precisamos transformar a coluna "date" para o formato Date:

```
comex$date <- as.Date(comex$date)</pre>
```

Para respondera a primeira questão, vou fazer o uso de duas novas colunas : month e year, que irá usar a coluna "date" para extrair o mês e o ano.

```
comex <- comex %>% mutate(month = format(date, "%m"), year = format(date, "%Y")) #Esse código pega os ele
```

Nosso primeiro dataframe irá mostrar a evolução anual da exportação de todo o periodo para os três produtos pedidos (total em toneladas):

```
df <- comex %>% filter(type== "Export",) %>% group_by(year,product) %>%
  filter(product %in% c('soybeans','soybean_oil','soybean_meal')) %>% summarize(total = sum(tons))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
df$year <- as.numeric(df$year)</pre>
head(df)
## # A tibble: 6 x 3
## # Groups:
               year [2]
##
      year product
                           total
##
     <dbl> <fct>
                           <dbl>
## 1 1997 soybean_meal 9965945.
## 2 1997 soybean_oil 1117451.
## 3 1997 soybeans
                        8195025.
## 4 1998 soybean_meal 9947875.
## 5 1998 soybean oil 1300080.
## 6 1998 soybeans
                        8679492.
```

Vamos visualizar melhor usando ggplot:

Para responder a segunda pergunta, precisamos criar um dataframe que agora, irá pegar apenas as observações a partir de 2014

```
df2 <- comex %>% filter(type == "Export") %>%
  filter(date >= "2014-01-01") %>% group_by(product) %>% summarize(total = sum(usd))
## `summarise()` ungrouping output (override with `.groups` argument)
head(df2)
## # A tibble: 6 x 2
##
     product
                         total
##
     <fct>
                         <dbl>
## 1 corn
                   28373289898
## 2 soybean_meal 35408303281
## 3 soybean_oil
                    5924025117
## 4 soybeans
                  146600566283
## 5 sugar
                   50326838979
## 6 wheat
                     827671155
```

Agora, vamos criar gráfico para visualizar melhor o que está acontecendo:

A partir deste gráfico, podemos ver que o produtos indicados pelo código 'soybeans', 'soybean_meal' e 'sugar' são os produtos mais importantes em termos de valor em USD.

Product

soybeans

sugar

wheat

Na terceira pergunta, utilizou-se o mesmo periodo, filtrando-se apenas o produto pedido:

soybean_meal soybean_oil

0.0e+00 -

corn

```
df3 <- comex %>% filter(type == "Export") %>%filter(date >= "2014-01-01" & product == "corn") head(df3)
```

```
date product state
                                 country
                                                                     usd month year
                                            type route
                                                           tons
## 1 2014-01-01
                                                          6.940
                                                                    1388
                                                                            01 2014
                    corn
                            BA
                                Malaysia Export
                                                   Sea
## 2 2014-01-01
                    corn
                            GO
                                 Algeria Export
                                                   Sea 5361.021 1100618
                                                                            01 2014
## 3 2014-01-01
                                                                            01 2014
                            GO
                                 Ecuador Export
                                                   Sea 2150.465
                                                                  441921
                    corn
## 4 2014-01-01
                    corn
                            GO Indonesia Export
                                                   Sea
                                                        220.000
                                                                   40982
                                                                            01 2014
## 5 2014-01-01
                            GO Indonesia Export
                                                                            01 2014
                    corn
                                                   Sea
                                                        970.721
                                                                  192407
## 6 2014-01-01
                            GO
                                    Iran Export
                                                        147.116
                                                                   29702
                                                                            01 2014
                    corn
                                                   Sea
```

Para visualizas as rotas mais usadas, vamos utilizar um gráfico de barras:

```
-barplot(table(df3$route), main = "Corn Routes",ylab = "Frequency",col = 'darkblue')
```



```
## [,1]
## [1,] -0.7
## [2,] -1.9
## [3,] -3.1
## [4,] -4.3
## [5,] -5.5
```

Fica evidente que a rota mais usada é a marítima. Isso também se repete para os outros produtos:

```
with(comex,histogram(~route |product))
```


Agora, vamos verificar os parceiros mais importantes do Brasil nos ultimos 3 anos, respondendo a questão 4. Aqui, considera-se os parceiros mais importantes aqueles com o qual o Brasil importou e exportou mais.

```
df4 <- comex %>%filter(date >= "2017-01-01" & product %in% c("corn", 'sugar'))
head(df4)
##
           date product state
                                           country
                                                                        tons
                                                                                 usd
                                                      type
                                                            route
                                         Argentina Import
## 1 2017-01-01
                            AL
                                                              Sea
                                                                   9759.000 1805225
                    corn
## 2 2017-01-01
                            CE
                                         Argentina Import
                                                              Sea 29933.422 5586005
                    corn
                                                                               20000
## 3 2017-01-01
                            GO
                                         Argentina Import Ground
                                                                       5.000
                    corn
## 4 2017-01-01
                    corn
                            GO Dominican Republic Export
                                                              Sea
                                                                     795.679
                                                                              147710
## 5 2017-01-01
                            GO
                                           Ecuador Export
                                                              Air
                                                                       0.122
                                                                                1504
                    corn
## 6 2017-01-01
                            GO
                                             Egypt Export
                                                              Sea
                                                                     199.950
                                                                              533884
                    corn
##
     month year
        01 2017
## 1
## 2
        01 2017
##
   3
        01 2017
        01 2017
## 4
```

É util utilizar a função top_n do dplyr, que verifica os n primeiros elementos com a maior contagem. Para o nosso caso, o número de contagens é o número de trades efetuados.

```
top6parceiros <- df4 %>% count(country,sort = TRUE) %>% top_n(6)
```

Selecting by n

01 2017

01 2017

5

6

head(top6parceiros)

```
## country n
## 1 United States 583
## 2 Paraguay 547
## 3 Egypt 400
## 4 Spain 400
## 5 Iran 388
## 6 Japan 367
```

Vamos visualizar esses parceiros lado a lado:

ggplot(top6parceiros,aes(country,n))+ geom_col(fill="darkred") + xlab("Country")+ ylab("Trades") +labs(

Top 6 partners in the last 3 years

Com a mesma função, podemos verificar os top 5 estados mais importantes em termos de exportação, levando em conta cada produto.

```
df5 <- comex %>% group_by(product) %>% count(state) %>% top_n(5)
```

Selecting by n

head(df5)

```
## # A tibble: 6 x 3
## # Groups: product [2]
## product state n
## <fct> <fct> <int> <int> <int> 1 corn GO 2883
## 2 corn MS 1711
```

```
## 3 corn MT 4476
## 4 corn PR 3744
## 5 corn SP 2607
## 6 soybean_meal GO 1976
ggplot(df5,aes(n,product,fill = state))+ geom_col() + ylab('Product') + xlab("Trades")
```


Aqui, cada estado e representado por uma cor. O preenchimento da cor indica a contribuicao daquele estado.

Podemos agora tentar prever como sera a quantidade de toneladas da exportacao de Soybean, Corn e Soybean Meal usando o mesmo processo do Case 1.

```
df6 <- comex %% filter(type== "Export",) %>% group_by(year,product) %>%
 filter(product %in% c('soybeans','corn','soybean_meal')) %>% summarize(total = sum(tons))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
df6$year <- as.numeric(df6$year)</pre>
head(df6)
## # A tibble: 6 x 3
## # Groups:
               year [2]
##
      year product
                           total
##
     <dbl> <fct>
                           <dbl>
## 1 1997 corn
                         356895.
     1997 soybean_meal 9965945.
     1997 soybeans
## 3
                        8195025.
## 4 1998 corn
                           6034.
## 5 1998 soybean_meal 9947875.
```

```
## 6 1998 soybeans 8679492.
```

Vamos visualizar a serie temporal dos dados:

```
df6 %>% group_by(product) %>% ggplot(aes(year,total,color=product))+geom_line()
```


Fazendo os subsets dos produtos:

```
soybean <- df6%>% filter(product=="soybeans")
soybean_meal <- df6 %>% filter(product=="soybean_meal")
corn <- df6 %>% filter(product=="corn")
```

Transformando os subsets and time series:

```
corn <- ts(corn[,3],start= 1997)
soybean <- ts(soybean[,3],start = 1997)
soybean_meal <- ts(soybean_meal[,3],start = 1997)</pre>
```

Aplicando forecast para cada um dos produtos:

```
f.corn <- forecast(corn, h = 11)
f.soybean <- forecast(soybean, h = 11)
f.soybean_meal <- forecast(soybean_meal, h = 11)</pre>
```

Por fim, podemos ver uma previsao para os proximos 11 anos:

```
plot(f.corn, main = 'Corn 11 Years Forecast')
```

Corn 11 Years Forecast

plot(f.soybean, main = 'Soybean 11 Years Forecast')

Soybean 11 Years Forecast

plot(f.soybean_meal, main = 'Soybean Meal 11 Years Forecast')

Soybean Meal 11 Years Forecast

Existem outras variaveis que sao importantes e devem ser analisadas, uma vez que a quantidade de exportacao depende tambem de outros fatores, como GDP Mundial e claro, o preco. Para isso, vamos analisar o comportamento da exportacao em relacao a essas variaveis.

```
cov1 <- covar %>% filter(year >= 1997)
head(cov1)
## # A tibble: 6 x 13
      year price_soybeans price_corn price_soybean_m~ gdp_china gdp_iran
##
##
                                 <dbl>
     <dbl>
                     <dbl>
                                                   <dbl>
                                                              <dbl>
                                                                       <dbl>
## 1
      1997
                     106.
                                  93.2
                                                   124.
                                                              561.
                                                                        107.
## 2
      1998
                      84.2
                                  80.8
                                                    77.4
                                                              604.
                                                                        109.
## 3
      1999
                      65.9
                                  71.8
                                                    67.6
                                                              651.
                                                                        109.
      2000
                      69.0
                                  70.2
                                                              706.
## 4
                                                    82.9
                                                                        117.
      2001
                      63.6
                                  71.3
                                                    80.0
                                                              766.
## 5
                                                                        118.
                      71.2
                                  79.0
                                                    81.5
## 6
      2002
                                                              835.
                                                                        130.
## # ... with 7 more variables: gpd_netherlands <dbl>, gdp_spain <dbl>,
       gdp_thailand <dbl>, gdp_world <dbl>, gdp_egypt <dbl>, gdp_japan <dbl>,
## #
       gdp_vietnam <dbl>
```

Vamos visualizar agora a evolucao temporal do preco dos produtos

```
par(mfrow= c(1,3))
with(cov1,plot(year,price_soybeans,type = 'l',xlab = 'Year',ylab= 'Price'))
title(main = "Soybean Price over the Years")
with(cov1,plot(year,price_soybean_meal,type = 'l',xlab = 'Year',ylab= 'Price'))
title(main = "Soybean Meal Price over the Years")
with(cov1,plot(year,price_corn,type = 'l',xlab = 'Year',ylab= 'Price'))
```

Soybean Price over the Years Soybean Meal Price over the Year

Corn Price over the Years

Os produtos possuem graficos parecidos. Portanto, em primeiro momento, dizer que suas variaveis correlatadas sao as mesmas.

Agora, vamos separar os produtos em subsets:

```
soybean <- df6%>% filter(product=="soybeans")
soybean_meal <- df6 %>% filter(product=="soybean_meal")
corn <- df6 %>% filter(product=="corn")
head(soybean)
## # A tibble: 6 x 3
```

```
year [6]
## # Groups:
##
      year product
                        total
##
     <dbl> <fct>
                        <dbl>
## 1 1997 soybeans 8195025.
    1998 soybeans
                    8679492.
     1999 soybeans 8096035.
## 4
     2000 soybeans 10725124.
     2001 soybeans 14486902.
     2002 soybeans 14806490.
```

uma vez que os dados foram separados, vamos junta-los a tabela cov
1: $\,$

```
covcorn <- corn %>% inner_join(cov1, by = "year", suffix = c("_comex","_cov"))
covsoybean <- soybean %>% inner_join(cov1, by = "year", suffix = c("_comex","_cov"))
covsoybean_meal <- covsoybean_meal %>% inner_join(cov1, by = "year", suffix = c("_comex","_cov"))
```

head(covsoybean)

```
## # A tibble: 6 x 15
## # Groups: year [6]
     year product total price_soybeans price_corn price_soybean_m~ gdp_china
##
     <dbl> <fct>
                    <dbl>
                                   <dbl>
                                              <dbl>
                                                               <dbl>
                                                                          <dbl>
## 1 1997 soybea~ 9.97e6
                                                                          561.
                                   106.
                                               93.2
                                                               124.
## 2 1998 soybea~ 9.95e6
                                               80.8
                                                                77.4
                                                                          604.
                                    84.2
## 3 1999 soybea~ 1.01e7
                                                                67.6
                                                                          651.
                                    65.9
                                               71.8
## 4 2000 soybea~ 9.06e6
                                    69.0
                                               70.2
                                                                82.9
                                                                          706.
## 5 2001 soybea~ 1.06e7
                                    63.6
                                               71.3
                                                                0.08
                                                                          766.
## 6 2002 soybea~ 1.19e7
                                    71.2
                                               79.0
                                                                81.5
                                                                          835.
## # ... with 8 more variables: gdp_iran <dbl>, gpd_netherlands <dbl>,
      gdp_spain <dbl>, gdp_thailand <dbl>, gdp_world <dbl>, gdp_egypt <dbl>,
      gdp_japan <dbl>, gdp_vietnam <dbl>
```

Agora que cada subset possui uma correspondencia com a tabela cov1, podemos fazer as analises com linhas de regressao. Vamos avaliar a correspondencia entra a quantidade de exportação em toneladas com o GDP mundial e o preco de cada produto:

```
par(mfrow = c(1,3))
#Corn
with(covcorn,plot(price_corn,total, xlab = "Corn Price", ylab = "Total in Tons"))
abline(lm(covcorn$total ~ covcorn$price_corn))

#Soybean Meal
with(covsoybean_meal,plot(price_soybean_meal,total))
abline(lm(covsoybean_meal$total ~ covsoybean_meal$price_corn, xlab = "Soybean Meal Price", ylab = "Total

## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...):
## extra arguments 'xlab', 'ylab' will be disregarded

#Soybeans
with(covsoybean,plot(price_soybeans,total, xlab = "Soybean Price", ylab = "Total in Tons"))
abline(lm(covsoybean$total ~ covsoybean$price_corn))
```


para o GDP global:

```
par(mfrow = c(1,3))
#Corn
with(covcorn,plot(gdp_world,total, xlab= "World GDP",ylab = "Total in Tons"))
abline(lm(covcorn$total ~ covcorn$gdp_world))
#Soybeans
with(covsoybean,plot(price_soybeans,total, xlab= "World GDP",ylab = "Total in Tons"))
abline(lm(covsoybean$total ~ covsoybean$gdp_world))
#Soybean Meal
with(covsoybean_meal,plot(gdp_world,total, xlab= "World GDP",ylab = "Total in Tons"))
abline(lm(covsoybean_meal$total ~ covsoybean_meal$gdp_world))
```


Todas as projecoes indicam o crescimento da exportacao.