Hierarchical RL and Skill Discovery cs 330

Reminders

Today: Project milestone due

Wednesday next week: Homework 4 due

The Plan

Information-theoretic concepts

Skill discovery

Using discovered skills

Hierarchical RL

Key learning goals:

- Understand the concept of a skill and basic algorithms in this space
- Overview of hierarchical RL algorithms

Recall: RL so far

(a) online reinforcement learning

(b) off-policy reinforcement learning

(c) offline reinforcement learning

We knew what we wanted
Short-horizon behaviors
Well defined tasks/rewards

Why Skill Discovery?

What if we want to discover interesting behaviors?

[The construction of movement by the spinal cord, *Tresch et al.*, 1999]

[Postural hand synergies for tool use, *Santello, et al.*, 1998]

Why Skill Discovery? More practical version

Coming up with tasks is tricky...

Task ideas for a tabletop manipulation scenario

Why Hierarchical RL?

Performing tasks at various levels of abstractions

Bake a cheesecake

Buy ingredients

Go to the store

Walk to the door

Take a step

Contract muscle X

Exploration

The Plan

Information-theoretic concepts

Skill discovery

Using discovered skills

Hierarchical RL

Entropy

$$p(\mathbf{x})$$
 distribution (e.g., over observations \mathbf{x})

$$\mathcal{H}(p(\mathbf{x})) = -E_{\mathbf{x} \sim p(\mathbf{x})}[\log p(\mathbf{x})]$$

entropy – how "broad" $p(\mathbf{x})$ is

KL-divergence

Distance between two distributions

$$\mathbb{D}_{KL}(q||p) = \!\! \mathbb{E}_qig[\lograc{q(x)}{p(x)}ig] = \!\! \mathbb{E}_q\!\log q(x) - \!\! \mathbb{E}_q\!\log p(x) = - \!\! \mathbb{E}_q\!\log p(x) - \mathcal{H}(q(x))$$

Mutual information

$$\mathcal{I}(\mathbf{x}; \mathbf{y}) = D_{\mathrm{KL}}(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$

$$= E_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x}, \mathbf{y})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x}) p(\mathbf{y})} \right]$$

high MI: \mathbf{x} and \mathbf{y} are dependent

$$= \mathcal{H}(p(\mathbf{y})) - \mathcal{H}(p(\mathbf{y}|\mathbf{x})) = \mathcal{H}(p(\mathbf{x})) - \mathcal{H}(p(\mathbf{x}|\mathbf{y}))$$

low MI: \mathbf{x} and \mathbf{y} are independent

High MI?

- x- it rains tomorrow, y streets are wet tomorrow
- x- it rains tomorrow, y we find life on Mars tomorrow

Mutual information

$$\mathcal{I}(\mathbf{x}; \mathbf{y}) = D_{\mathrm{KL}}(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$

$$= E_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x}, \mathbf{y})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x}) p(\mathbf{y})} \right]$$

high MI: \mathbf{x} and \mathbf{y} are dependent

$$= \mathcal{H}(p(\mathbf{y})) - \mathcal{H}(p(\mathbf{y}|\mathbf{x})) = \mathcal{H}(p(\mathbf{x})) - \mathcal{H}(p(\mathbf{x}|\mathbf{y})) \overset{\mathbf{y}}{\downarrow}$$

low MI: \mathbf{x} and \mathbf{y} are independent

example of mutual information: "empowerment" (Polani et al.)

$$\mathcal{I}(\mathbf{s}_{t+1}; \mathbf{a}_t) = \mathcal{H}(\mathbf{s}_{t+1}) - \mathcal{H}(\mathbf{s}_{t+1}|\mathbf{a}_t)$$

The Plan

Information-theoretic concepts

Skill discovery

Using discovered skills

Hierarchical RL

Soft Q-learning

Objective:

$$\sum_{t} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim q} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \mathcal{H}(q(\mathbf{a}_{t}|\mathbf{s}_{t})) \right]$$

Q-learning

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$

$$\pi(\mathbf{a}|\mathbf{s}) = \arg\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$$

Soft Q-learning

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ $2. \text{ set } \mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ $3. \text{ set } \phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$ $\pi(\mathbf{a}|\mathbf{s}) = \operatorname{argmax}_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})^{\mathsf{P}} \left(A_{+} \left(S_{+} \right) Q_{+} \right)$

Soft Q-learning

Exploration

Fine-tunability

Robustness

Haarnoja et al. RL with Deep Energy-Based Policies, 2017

Learning diverse skills

$$\pi(\mathbf{a}|\mathbf{s},z)$$
task index

Why can't we just use MaxEnt RL

- 1. **action** entropy is not the same as **state** entropy agent can take very different actions, but land in similar states
- 2. MaxEnt policies are stochastic, but not always **controllable** intuitively, we want **low** diversity for a fixed *z*, high diversity *across z's*

Intuition: different skills should visit different state-space regions

Diversity-promoting reward function

$$\pi(\mathbf{a}|\mathbf{s}, z) = \arg\max_{\pi} \sum_{z} E_{\mathbf{s} \sim \pi(\mathbf{s}|z)}[r(\mathbf{s}, z)]$$

reward states that are unlikely for other $z' \neq z$

Examples of learned tasks

Mountain car

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

A connection to mutual information

$$\pi(\mathbf{a}|\mathbf{s}, z) = \arg\max_{\pi} \sum_{z} E_{\mathbf{s} \sim \pi(\mathbf{s}|z)}[r(\mathbf{s}, z)]$$

$$r(\mathbf{s}, z) = \log p(z|\mathbf{s})$$

$$I(z, \mathbf{s}) = H(z) - H(z|s)$$

maximized by using uniform prior p(z)

minimized by maximizing $\log p(z|\mathbf{s})$

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

See also: Gregor et al. Variational Intrinsic Control. 2016

The Plan

Information-theoretic concepts

Skill discovery

Using discovered skills

Hierarchical RL

How to use learned skills?

 $\pi(\mathbf{a}|\mathbf{s},z)$

How can we use the learned skills to accomplish a task?

Learn a policy that operates on z's

Results: hierarchical RL

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

What's the problem?

Skills might not be particularly useful

It's not very easy to use the learned skills

What makes a useful skill?

What's the problem?

Consequences are **hard** to predict

Consequences are **easy** to predict

Slightly different mutual information

$$I(z,\mathbf{s}) = H(z) - H(z|s)$$

$$\max \mathcal{I}(s',z\mid s) = \max\left(\mathcal{H}(s'\mid s) - \mathcal{H}(s'\mid s,z)\right)$$

$$\mathcal{I}(\mathbf{x};\mathbf{y}) = \lim_{\substack{\mathbf{x} \in \mathbb{Z} \\ \text{different skills}}} \mathcal{I}(\mathbf{x},\mathbf{y}) || p(\mathbf{x}) p(\mathbf{x}) p(\mathbf{y}|z)$$

$$I(s';z|s) \geq \mathbb{E}_s \mathbb{E}_z \mathbb{E}_{p(s'\mid s,z)} [\log \frac{q_{\phi}(s'\mid s,z)}{p(s'\mid s)}]$$

$$\approx \mathbb{E}_s \mathbb{E}_z \mathbb{E}_{p(s'\mid s,z)} [\log \frac{q_{\phi}(s'\mid s,z)}{\sum_{i=1}^{L} q_{\phi}(s'\mid s,z_i)} + \log L]$$

Sharma, Gu, Levine, Kumar, Hausman, DADS, 2019.

Skill-dynamics model

We are learning a skill-dynamics model $q(s' \mid s, z)$

compared to conventional global dynamics $p(s' \mid s, a)$

Skills are optimized specifically to make skill-dynamics easier to model

Sharma, Gu, Levine, Kumar, Hausman, DADS, 2019.

DADS algorithm

Algorithm 1: Dynamics-Aware Discovery of Skills (DADS)

Initialize π, q_{ϕ} ;

while not converged do

Sample a skill $z \sim p(z)$ every episode; Collect new M on-policy samples; Update q_{ϕ} using K_1 steps of gradient descent on M transitions; Compute $r_z(s,a,s')$ for M transitions; Update π using any RL algorithm;

end

Sharma, Gu, Levine, Kumar, Hausman, DADS, 2019.

DADS results

Using learned skills

Use skill-dynamics for model-based planning Plan for skills not actions

Tasks can be learned zero-shot

Summary

- Two skill discovery algorithms that use mutual information
- Predictability can be used as a proxy for "usefulness"
- Method that optimizes for both, predictability and diversity
- Model-based planning in the skill space
- Opens new avenues such as unsupervised meta-RL
 - Gupta et al. Unsupervised Meta-Learning for RL, 2018

The Plan

Information-theoretic concepts

Skill discovery

Using discovered skills

Hierarchical RL

Why Hierarchical RL?

Performing tasks at various levels of abstractions

Bake a cheesecake

Buy ingredients

Go to the store

Walk to the door

Take a step

Contract muscle X

Exploration

Hierarchical RL – design choices

Design choices:

Learning Locomotor Controllers

Heess, Wayne, Tassa, Lillicrap, Riedmiller, Silver, Learning Locomotor Controllers, 2016.

Option Critic

A Markovian option $\omega \in \Omega$ is a triple $(\mathcal{I}_{\omega}, \pi_{\omega}, \beta_{\omega})$ in which $\mathcal{I}_{\omega} \subseteq \mathcal{S}$ is an initiation set, π_{ω} is an *intra-option* policy, and $\beta_{\omega} : \mathcal{S} \to [0,1]$ is a termination function. We also assume that $\forall s \in \mathcal{S}, \forall \omega \in \Omega : s \in \mathcal{I}_{\omega}$ (i.e., all options are available everywhere)

- Option is a self-terminating minipolicy
- Everything trained together with policy gradient

Design choices:

- goal-conditioned vs not
- pre-trained vs e2e
- self-terminating vs fixed rate
- on-policy vs off-policy

Bacon, Harb, Precup, The Option-Critic Architecture, 2016.

Relay Policy Learning

Design choices:

- goal-conditioned vs not
- pre-trained vs e2e
- self-terminating vs fixed rate
- on-policy vs off-policy

Relay Policy Learning

- Goal-conditioned policies with relabeling
- Demonstrations to pre-train everything
- On-policy

- pre-trained vs e2e
- self-terminating vs fixed rate
- on-policy vs off-policy

Gupta, Kumar, Lynch, Levine, Hausman, Relay Policy Learning, 2019.

HIRO

- 1. Collect experience $s_t, g_t, a_t, R_t, \ldots$
- 2. Train μ^{lo} with experience transitions $(s_t, g_t, a_t, r_t, s_{t+1}, g_{t+1})$ using g_t as additional state observation and reward given by goal-conditioned function $r_t = r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$.
- 3. Train μ^{hi} on temporally-extended experience $(s_t, \tilde{g}_t, \sum R_{t:t+c-1}, s_{t+c})$, where \tilde{g}_t is relabelled high-level action to maximize probability of past low-level actions $a_{t:t+c-1}$.
- 4. Repeat.

Figure 2: The design and basic training of HIRO. The lower-level policy interacts directly with the environment. The higher-level policy instructs the lower-level policy via high-level actions, or goals, $g_t \in \mathbb{R}^{d_s}$ which it samples anew every c steps. On intermediate steps, a fixed goal transition function b determines the next step's goal. The goal simply instructs the lower-level policy to reach specific states, which allows the lower-level policy to easily learn from prior off-policy experience.

- Goal-conditioned policies with relabeling
- Off-policy training through off-policy corrections

Design choices:

- goal-conditioned vs not
- pre-trained vs e2e
- self-terminating vs fixed rate
- on-policy vs off-policy

Nachum, Gu, Lee, Levine HIRO, 2018.

HRL Summary

- Multiple design choices and frameworks
- Helps with exploration and temporally extended tasks
- Can be difficult to get it to work
- Seems like a natural direction for harder RL problems

Hypothesis	Experiments	Important?
(H1) Temporal training	Figures 2, 3	Yes, but only for the use of multi-step rewards (n-step returns).
(H2) Temporal exploration	Figures 2, 4	Yes, and this is important even for non-hierarchical exploration.
(H3) Semantic training	Figure 3	No.
(H4) Semantic exploration	Figure 4	Yes, and this is important even for non-hierarchical exploration.

Figure 5: A summary of our conclusions on the benefits of hierarchy.

Design choices:

- goal-conditioned vs not
- pre-trained vs e2e
- self-terminating vs fixed rate
- on-policy vs off-policy

Nachum, Lang, Lu, Gu, Lee, Levine, Why Does Hierarchy (Sometimes) Work? 2019.

Recap

Key learning goals:

- Understand the concept of a skill and basic algorithms in this space
- Overview of hierarchical RL algorithms

Skill discovery/learning:

- Connected to information-theoretic measures like mutual information
- Unsupervised but difficult to use in complex environments

Hierarchical RL:

- Many different options/methods
- Designed to cope with longer-horizon tasks
- Largely unsolved

Next

Monday – no lecture

Guest lecture – Anna Goldie on various RL applications including LLMs and chip design