Scaling Deep Learning Training to 256 GPUs

_

Hillery Hunter
IBM Fellow & Director of Accelerated Cognitive Infrastructure, IBM Research

A new era of computing

Putting AI to use

Building and Leveraging Understanding

From data to understanding

Data Sources

Devices, Sensors
Public Clouds
Private Clouds
On Premises Systems

Data Types

Business Problems

Security, fraud detection Credit risk Sentiment analysis Advertising

Machine translation Robotics Interactive learning Health analytics

Driver assistance Law enforcement Insurance

Techniques

Modern models:

- Deep neural networks CNN, RNN, LSTM, ...
- Deep stacking networks...

Traditional algorithms:

- Linear regression
- Logistic regression
- Support vector machine
- Naïve Bayes classifier
- K-means clustering
- Random forests
- Decision trees

AI is fueled by machine and deep learning techniques

Developing AI function

Accelerated training ... days become hours

Threatmiling wents with Power AI DDL!

IBM **PowerAI**

What's in the training of deep neural networks?

Neural network model

Billions of parameters

Gigabytes

Computation

Iterative gradient based search

Millions of iterations Mainly matrix operations

Goal: Search for the best parameters to make model fit data. **Workload characteristics:** Both compute and data intensive!

System for intense compute on big data

GPUs: Good for matrix computations! ~10 times faster than CPUs

Software tools Caffe, Torch, TensorFlow

Caffe, Torch, TensorFlow

System support

Hardware

Single machine

1-4 GPUs

Training time 9 days!

Multiple Power machines

256 GPUs

PowerAI DDL

4 hours!

Challenge: Move data at high speed among GPUs on many machines

Unique innovation through OpenPOWER collaboration

POWER9 with Next Gen NVLink delivers 6-9.5x bandwidth

Designing a balanced system

6x Faster CPU-GPU Data Communication Enables Large Models with Large Input Data

Data processing stages for distributed deep learning

Communication paths

PowerAI DDL: Fully utilize bandwidth for links within each node and across all nodes

→ Learners communicate as efficiently as possible

PowerAI DDL

Putting breakthrough deep learning times into the hands of customers

Communication Library for Distributed Deep Learning Training

- Enables deep learning software to scale to 100s of servers with GPUs
- · Works across variety of system sizes
- Works with variety of network types, switch topologies

Released results @ 256 P100 GPUs

- Better scaling efficiency than Facebook AI Research:
 95% (IBM) vs <90% (FB)
- Higher image recognition accuracy than Microsoft: 33.8% (IBM) vs 29.8% (MS)

TECHNICAL DETAILS: https://arxiv.org/abs/1708.02188

PowerAI DDL training ResNet-50 1k Caffe

#GPUs	4	8	16	32	64	128	256
#Nodes	1	2	4	8	16	32	64
Speedup	1.0	2.0	3.9	7.9	15.5	30.5	60.6
Scaling efficiency	1.00	1.00	.98	.99	.97	.95	.95

Distributed Deep Learning: POWER9 with NVIDIA Tesla V100

2.3X more data processed on TensorFlow vs tested x86 systems

Maximize research productivity by training on more images in the same time with TensorFlow 1.4.0 running on a cluster of POWER9 AC922 servers with Nvidia Tesla V100 GPUs connected via NVLink 2.0

- 2.3X more images processed per second vs tested x86 systems
- PowerAI Distributed Deep Learning (DDL) library provides innovative distribution methods enabling AI frameworks to scale to multiple servers leveraging all attached GPUs
- ResNet50 testing on ILSVRC 2012 dataset (aka Imagenet 2012)
 - Training on 1.2M images
 - Validation on 50K images

TensorFlow 1.4.0 – 4 Nodes ResNet50 + Imagenet2012

- Results are based IBM Internal Measurements running 1000 iterations of HPM Resnet50 on 1.2M images and validation on 50K images with Dataset from ILSVRC 2012 aka Imagenet 2012.
- Hardware: 4 nodes of Power AC922; 40 cores (2 x 20c chips), POWER9 with NVLink 2.0; 2.25 GHz, 1024 GB memory, 4xTesla V100 GPU; Red Hat Enterprise Linux 7.4 for Power Little Endian (POWER9).
 Competitive stack: 4 nodes of 2x Xeon E5-2640 v4; 20 cores (2 x 10c chips) / 40 threads; Intel Xeon E5-2640 v4; 2.4 GHz; 1024 GB memory, 4xTesla V100 GPU, Ubuntu 16.04.
- Software: Tensorflow 1.4.0 framework and HPM Resnet50 https://github.com/tensorflow/benchmarks.gif (commit: f5d85aef) and with the following parameters:Batch-Size: 64 per GPU; Iterations: 1100; Data: Imagenet; local-parameter-device: gpu; variable-update: replicated

Enterprise-ready software distribution built on open source

Performance faster training times for data scientists

Tools for ease of development

IBM PowerAI