(19)日本国特許庁(JP)

(12) 公開特許公報(A).

(11)特許出願公開番号 特開2000-293245

(P2000-293245A)

(43)公開日 平成12年10月20日(2000.10.20)

(51) Int.Cl. ⁷		酸別記号	F I			テーマコード(参考)	
	1/56	3 1 0	G 0 5 F	1/56	310′ 310′	T 5F038 Z 5F041	
H01L	27/04 21/822 33/00			7/04		J 5H430 B OL (全 7 頁	
(21)出願番	→	特願平11-102917 平成11年4月9日(1999.4.9)	(71) 出題人	· · · · · · · · · · · · · · · · · · ·			
			(72)発明者 山口 裕嗣 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内				
			(74)代理人		557 西教 主一郎		

最終頁に続く

(54) 【発明の名称】 定電流駆動装置および定電流駆動半導体集積回路

(57)【要約】

【課題】 複数の定電流ドライバICを用いて多数の負荷を、定電流ドライバIC間の出力電流のばらつきが小さい状態で駆動する。

【解決手段】 EL表示パネル50の有機EL素子51,52, …を定電流で駆動するために、定電流ドライバIC1,2,3が使用される。各定電流ドライバIC1,2,3には、定電流ドライバ回路10,20,30 および制御回路11,21,31が内蔵される。定電流ドライバIC1には基準電流発生回路12が内蔵される。定電流ドライバIC1には基準電流発生回路12が内蔵され、基準抵抗13に基づいて発生される基準出力電流を基地出力端子OREF1~3から導出する。各定電流ドライバIC1,2,3の基準電流入力端子IREFには、基準電流発生回路12からの基準出力電流を入力し、駆動出力端子O01~O64からそれぞれ同一電流値の駆動電流を出力する。駆動電流は、各制御回路11,21,31によってオンまたはオフに制御される。

【特許請求の範囲】

【請求項1】 複数の負荷を、各負荷同一の電流で駆動 する定電流駆動装置において、

負荷の総数より少ない複数の定電流駆動半導体集積回路 であって、

各定電流駆動半導体集積回路は、

同一の半導体チップ上に集積され、

1以上の基準入力端子を有し、基準入力端子に入力され る基準信号に対応する一定電流で、負荷の総数のうちの 一部に属する複数の負荷をそれぞれ駆動する複数のドラ イブ回路と、

各負荷用の駆動入力端子を有し、駆動入力端子への入力 信号に従って該ドライブ回路の各出力をオンまたはオフ にそれぞれ制御する制御回路とを含む、そのような定電 流駆動半導体回路と、

同一の半導体チップ上に集積され、複数の定電流駆動半 導体集積回路の基準入力端子に、同一の基準信号を与え るように発生する基準信号発生回路とを含むことを特徴 とする定電流駆動装置。

【請求項2】 前記基準信号発生回路は、前記複数の定 20 電流駆動半導体集積回路のうちの少なくとも1つと同一 の半導体チップ上に集積されていることを特徴とする請 求項1記載の定電流駆動装置。

【請求項3】 前記基準信号発生回路は、各前記複数の 定電流駆動半導体集積回路にそれぞれ同一の電流値を前 記基準信号として与えることを特徴とする請求項1また は2記載の定電流駆動装置。

【請求項4】 同一の半導体チップ上に集積され、複数 の負荷をそれぞれ同一の定電流値を有する出力で駆動す るための定電流駆動半導体集積回路であって、1以上の 基準電流入力端子および複数の駆動出力端子を有し、基 準電流入力端子に入力される基準電流に従って、各駆動 出力端子に各負荷を同一の定電流値で駆動するための出 力を導出する複数の定電流駆動回路と、

複数の基準電流出力端子を有し、各基準電流出力端子に 同一電流値を有する出力をそれぞれ発生する基準電流発 生回路とを含むことを特徴とする定電流駆動半導体集積 回路。

【請求項5】 前記複数の定電流駆動回路の出力をオン またはオフに制御するための信号がシリアルに入力され るシリアル入力端子を有し、シリアル入力端子に入力さ れた信号をパラレルに出力するシフトレジスタ回路と、 ラッチ用入力端子を有し、ラッチ用入力端子への入力信 号に従って、シフトレジスタ回路のパラレル出力をラッ チし、ラッチされた出力で各定電流駆動回路の出力をオ ンまたはオフに制御するラッチ回路とを含むことを特徴 とする請求項4記載の定電流駆動半導体集積回路。

【発明の詳細な説明】

[0001]

電流でそれぞれ駆動する定電流駆動装置およびそのよう た定館流駆動装置に使用する定電流駆動半導体集積回路 に関する。

[0002]

10

【従来の技術】従来から、発光ダイオード(以下「LE D」と略称する)素子を多数個配列して形成されるLE Dプリンタ・ヘッドやLEDディスプレイ・パネル、あ るいは特定の有機化合物のエレクトロルミネッセンス (以下「EL」と略称する) 現象を利用する有機ELデ ィスプレイ・パネルなどは、多数の発光素子などの負荷 を定電流でそれぞれ駆動している。これらの負荷は、多 数個を同時に駆動しなければならないので、複数の定電 流出力端子を有する半導体集積回路(以下「IC」と略 称することがある) である定電流ドライバ I Cを複数個 使用して駆動する場合が多い。この場合に、各定電流ド ライバICの出力電流値にばらつきが生じると、発光素 子の発光量などにばらつきが生じ、プリンタでは印字む ら、ディスプレイ・パネルでは表示むらを生じる。この むらを低減するために、定電流ドライバICの出力電流 は、各定電流出力端子間でのばらつきを小さく抑えるこ とが要求されている。

【0003】一方、ICは、同一のマスクから同一のプ ロセスに基づいて製造されても、半導体チップが異なる と、半導体チップ上に形成されるトランジスタや抵抗な どの各素子の電気的特性は異なり、整合性はあまり高く ならない。∫しかしながら、同一の半導体チップ上に形成 されるトランジスタや抵抗などの間では、電気的特性の 相対的な誤差が小さくなり、整合性が高いという特徴を 有している。このため、ドライバICの出力電流は、同 - I Cの定電流出力端子間では各出力間のばらつきが小 さくなるけれども、異なるIC間では比較的ばらつきが 大きくなってしまう。したがって、複数のドライバIC を使用して、LEDプリンタ・ヘッド、LEDディスプ レイ・パネル、有機ELディスプレイ・パネルなどの発 光素子を駆動する場合は、ドライバIC間のばらつきを 補正することが必要となる。

【0004】ドライバIC間のばらつきの補正は、各ド ライバIC毎に電流設定抵抗を外付けし、電流設定抵抗 の抵抗値を調整して行うことが一般的である。 特開平8 -169139には、LEDヘッド駆動用のドライバ! Cに、組合わせによって合成抵抗値を変更することが可 能な電流設定抵抗を内蔵し、外部からの補正データに対 応させて抵抗の組合わせの合成抵抗値を変え、定電流値 を変更する先行技術が開示されている。

[0005]

【発明が解決しようとする課題】定電流駆動用のドライ パIC間のばらつきを、電流設定抵抗値を調整して補正。 する従来の方法では、表示素子とドライバICとを組立 てるLEDプリンタ・ヘッド、LEDディスプレイ・パ 【発明の風する技術分野】本発明は、多数の負荷を一定 50 ネルあるいは有機EL・ディスプレイ・パネルなどの組

立て工程を自動化しにくいという問題がある。ドライバICを1つの半導体集積回路として形成すれば、定電流出力間のばらつきは小さくなるけれども、半導体集積回路としての規模が大きくなり、半導体チップとして必要な面積も大きくなってしまう。しかも、ドライバICとしての汎用性が失われ、特定のLED・ヘッド、LEDディスプレイ・パネルあるいは有機EL・ディスプレイ・パネルなどに専用的にしか使用することができなくなってしまう。このような事情は、定電圧を出力するドライバICの場合も同様である。

【0006】本発明の目的は、複数の半導体集積回路に分けて負荷を駆動しても、半導体集積回路の出力間でのばらつきを少なくすることができる定電流駆動装置および定電流駆動半導体集積回路を提供することである。

[0007]

【課題を解決するための手段】本発明は、複数の負荷を、各負荷同一の電流で駆動する定電流駆動装置において、負荷の総数より少ない複数の定電流駆動半導体集積回路であって、各定電流駆動半導体集積回路は、同一の半導体チップ上に集積され、1以上の基準入力端子を有し、基準入力端子に入力される基準信号に対応する有電流で、負荷の総数のうちの一部に属する複数の負荷のをそれぞれ駆動する複数のドライブ回路と、各負荷用の駆動入力端子を有し、駆動入力端子への入力信号にぞれでもし、駆動入力端子をはオフにそれぞれ制御可路とを含む、そのような定電流駆動半導体関路の基準入力端子に、同一の基準信号を与えるように発生する基準信号発生回路とを含むことを特徴とする定電流駆動装置である。

【0008】本発明に従えば、複数の定電流駆動半導体 集積回路にそれぞれ含まれる複数のドライブ回路によっ て、複数の負荷はそれぞれ同一の電流で駆動される。各 定電流駆動半導体回路は、ドライブ回路と制御回路とを 含む。ドライブ回路は、1以上の基準入力端子を有し、 基準入力端子に入力される基準信号に対応する一定電流 で、負荷の総数のうちの一部に属する複数の負荷をそれ ぞれ駆動する。制御回路は、各負荷用の駆動入力端子を 有し、駆動入力端子への入力信号に従って該ドライブ回 路の各出力をオンまたはオフにそれぞれ制御する。ドラ イブ回路の基準入力端子には、基準信号発生回路からの 基準信号が与えられる。基準信号発生回路は、同一の半 導体チップ上に集積されて、複数の定電流駆動半導体集 穳回路の基準入力端子に同一の基準信号を与えるように 基準信号を発生する。基準信号発生回路からは、ばらつ きの少ない基準信号が発生されて、複数の定電流駆動半 導体集積回路の基準入力端子にそれぞれ与えられる。各 定電流駆動半導体集積回路内で、基準信号に対応して負 荷を駆動する一定電流は、同一の半導体チップ上のドラ イブ回路から出力されるので、ばらつきを少なくするこ

とができる。異なる定電流駆動半導体集積回路からの駆動電流も、同一の半導体チップ上の基準信号発生回路から発生されるばらつきの小さい基準信号に対応して出力されるので、抵抗などによる調製を行わなくても、出力電流のばらつきを小さく抑えることができる。

【0009】また本発明で前記基準信号発生回路は、前記複数の定電流駆動半導体集積回路のうちの少なくとも 1つと同一の半導体チップ上に集積されていることを特徴とする。

10 【0010】本発明に従えば、基準信号発生回路が複数の定電流駆動半導体集積回路のうちの少なくとも1つと同一半導体チップ上に集積されているので、基準信号発生回路を定電流半導体集積回路と別に設ける必要はなく、負荷と合わせてディスプレイ・パネルなどを組立てる際の小形化を図ることができる。

【0011】また本発明で前記基準信号発生回路は、各 前記複数の定電流駆動半導体集積回路にそれぞれ同一の 電流値を前記基準信号として与えることを特徴とする。

【0012】本発明に従えば、複数の定電流半導体集積 回路は、基準信号発生回路からの同一の電流値の基準電 流入力に対応してそれぞれ同一の電流値で負荷を駆動す るので、多くの負荷をばらつきの少ない定電流値で駆動 することができる。

【0013】さらに本発明は、同一の半導体チップ上に 集積され、複数の負荷をそれぞれ同一の定電流値を有す る出力で駆動するための定電流駆動半導体集積回路であ って、1以上の基準電流入力端子および複数の駆動出力 端子を有し、基準電流入力端子に入力される基準電流に 従って、各駆動出力端子に各負荷を同一の定電流値で駆 30 動するための出力を導出する複数の定電流駆動回路と、 複数の基準電流出力端子を有し、各基準電流出力端子に 同一電流値を有する出力をそれぞれ発生する基準電流発 生回路とを含むことを特徴とする定電流駆動半導体集積 回路である。

【0014】本発明に従えば、定電流駆動半導体集積回 路は、同一の半導体チップ上に形成され、駆動回路と基 準電流発生回路とを含む。駆動回路は、1以上の基準電 流入力端子および複数の駆動出力端子を有し、基準電流 入力端子に入力される基準電流に従って、各駆動出力端 子に各負荷を同一の定電流値で駆動するための出力を導 40 出する。同一の半導体チップ上に形成されているので、 各負荷を駆動する定電流値のばらつきを小さくすること。 ができる。基準電流発生回路も、同一の半導体チップ上 に形成されているので、複数の基準電流出力端子に端子 ・間のばらつきの小さい出力をそれぞれ導出することがで、 きる。ばらつきの小さい定電流出力値の1つを同一の半 導体チップ上に形成される

駆動回路に与え、他の出力を 他の半導体チップ上に形成される駆動回路に与えるよう にすれば、半導体チップが異なる駆動回路からばらつき の小さい定電流値で複数の負荷をそれぞれ駆動させるこ

とができる。

【0015】また本発明は、前配複数の定電流駆動回路の出力をオンまたはオフに制御するための信号がシリアルに入力されるシリアル入力端子を有し、シリアル入力端子に入力された信号をパラレルに出力するシフトレジスタ回路と、ラッチ用入力端子を有し、ラッチ用入力端子への入力信号に従って、シフトレジスタ回路のパラレル出力をラッチし、ラッチされた出力で各定電流駆動回路の出力をオンまたはオフに制御するラッチ回路とを含むことを特徴とする。

【0016】本発明に従えば、各負荷に定電流出力を与える駆動回路は、シフトレジスタ回路にシリアルに入力される信号が、シフトレジスタ回路からパラレルに出力され、ラッチ回路によってラッチされた出力でオンまたはオフに制御される。シフトレジスタへのシリアル入力端子と、ラッチ回路のラッチ用入力端子とを用いて、多くの駆動出力端子からの定電流出力のオンまたはオフへの制御を行うことができる。

[0017]

【発明の実施の形態】図1は、本発明の実施の一形態の 定電流駆動装置として/有機ELディスプレイ・パネル の概略的な電気的構成を示す。3個の定電流ドライバ I C1, 2, 3は、1つの基準電流入力端子IREFへ入 力される基準電流に対応して、64の駆動出力端子〇0 1~064からそれぞれ同一電流値の駆動出力を導出す ることができる。定電流ドライバIC1には、基準電流 入力端子 I R E F に入力される基準電流に従って、64 の駆動出力端子〇01~〇64にそれぞれ駆動電流を供 給する定電流ドライバ回路10と、定電流ドライバ回路 10から出力される駆動電流を、入力信号に応じてオン またはオフに制御するための制御回路11と/定電流ド ライバ回路10の基準電流入力端子に基準電流を供給す るための基準電流出力端子を含む3つの基準電流出力端 子OREF1~3から/同一電流値の基準電流を発生す る基準電流発生回路12とを含む。基準電流発生回路1 2は、/定電流ドライバ101の外部に設けられる基準抵 抗13で、各基準電流出力端子OREF1~3から導出 する基準電流値を調整することができる。他の定電流ド ライバIC2、3にも、定電流ドライバ回路20、30 および制御回路21,31が含まれる。

【0018】定電流ドライバ回路ICI、2、3の駆動出力端子O01~O64は、EL表示パネル50で、有機EL素子51、52、…、が192ドット×nドットのマトリクス状に配置されて構成される192列を、64列ずつに分割し、各列を負荷としてそれぞれ駆動する。ELパネル50のn行は、行選択回路61に含まれるスイッチング素子SW1、SW2、…、SWnのうちのいずれか1つのみが導通して選択される。行選択回路60によって選択される行と、各列との交点に配置される有機EL素子が選択され、定電流ドライバ回路10、

20,30によって駆動される。)

【0019】EL表示パネル50の各有機EL素子5 1,52,…は、全電流ドライバIC1,2,3のシリ アル入力端子Siに入力されるシリアル信号に基づいて オンまたはオフに制御され、有機EL索子51,52, …のオンまたはオフの表示に対応して、EL表示パネル 50での画像表示が行われる。) 定電流ドライバIC1, 2, 3から同一電流値がオン状態の有機EL素子51, 52,…に与えられるので、オン状態の画素間の輝度の ばらつきが少ない状態で表示を行うことができる。/ 10 【0020】シリアル入力端子SIに入力されるシリア ル信号は、/クロック端子CLOCKに入力されるクロッ ク信号に同期して与えられ、シリアル出力端子SOから 出力される。定電流ドライバ1C2のシリアル入力端子 SIを定電流ドライバIC1のシリアル出力端子SOと 接続し、定電流ドライバIC3のシリアル入力端子SI を定電流ドライバIC2のシリアル出力端子SOに接続 する。定電流ドライバIC1のシリアル入力端子SIか ら、192列分の表示データをクロック信号に同期して 入力させれば、/制御回路11,21,31内に含まれる それぞれ64段ずつのシフトレジスタ回路に、各列の表 示データを与えることができる。各列の表示データは、 ラッチ入力用端子LATCHに入力されるラッチ信号に

応じてシフトレジスタからラッチ回路に取込まれ、イネ

ープル入力端子ENABLEに与えられる信号に従って

定電流ドライバ回路10から各駆動出力端子O01~O64への駆動出力のオンまたはオフの制御が行われる。

クロック入力信号CLOCK、ラッチ用入力信号LAT

CHおよびイネーブル用入力信号ENABLEは、各定

電流ドライバIC1, 2, 3に対し、それぞれ共通に与

えられる。」 【0021】図2は、図1に示す定電流ドライバ1C1 の概略的な電気的構成を示す。制御回路11には、64 ピット・シフト・レジスタ70と、64ピット・ラッチ 80とが含まれる。64ピット・シフト・レジスタ70 は、クロック端子に入力されるクロック信号CLOCK に同期して、シリアル入力端子SIから入力されるシリ アル信号を64ピット分のレジスタにそれぞれ記憶させ る。|ラッチ回路である64ピットラッチ80は、外部か ち与えられるラッチ用信号LATCHに応答して、64 ピット・シフト・レジスタ64からの出力データを取込 んで保持する() 6 4 ビット・ラッチ80の出力データ は、常に導出され、64のANDゲート101, 10 2, …, 164を介して64ビットの定電流ドライバ回 路10を制御する。 定電流ドライバ回路10には、基準… 電流が入力され、カレントミラー回路として、同一の出 力電流を導出する。なお基準電流入力端子IREFは複 数設け、入力電流値の和として、出力電流を導出させる

| 【0022】図3は、図2に示す基準電流発生回路12

こともできる。

の概略的な電気的構成を示す。定電圧回路110は、一定の電圧を出力する。CMOSオペアンプなどの演算増幅器111は、定電圧回路110からの出力電圧を基準にして、基準抵抗13に発生する電圧が等しくなるように、制御用NMOSトランジスタ112のゲートに信号電圧を与える。基準抵抗13は、制御用NMOSトランジスタ112のソース側に、基準電圧入力端子VREFを介して接続される。制御用NMOSトランジスタ112のドレイン側には、制御用PMOSトランジスタ113のドレインが接続される。制御用NMOSトランジスタ113のドレインが接続される。制御用NMOSトランジスタ113のドレインが接続される。制御用NMOSトランジスタ113のドレインが接続される。制御用NMOSトランジスタ113のドレインが接続される。制御用NMOSトランジスタ113のドレインが接続される。制御用NMOSトランジスタ113に基づいて変に変に変に変に表して

【0023】制御用PMOSトランジスタ113は、カ レントミラー回路120を構成し、カレントミラー回路 120に含まれる出力用PMOSトランジスタ121, 122、123からそれぞれ同一電流値の基準電流を導 出させることができる。各PMOSトランジスタ12 1, 122, 123のソースは、制御用PMOSトラン ジスタ113のソースとともに共通接続され、正の電源 電圧Vccが与えられる。/制御用PMOSトランジスタ 113および出力用PMOSトランジスタ121, 12 2, 123のゲートは共通接続され、/制御用 PMOSト ランジスタ113のドレインと制御用NMOSトランジ スタ1.12のドレインとの共通接続点に接続される」 【0024】カレントミラー回路120では、 制御用P MOSトランジスタ113に流れるソース・ドレイン間 電流に対応して、各出力用PMOSトランジスタ12 1, 122, 123のソース・ドレイン間電流が流れ る。出力用PMOSトランジスタ121, 122, 12 3は/同一の半導体チップ上に形成され、同一形状のマ スクを用いる露光処理と、同一のプロセス処理とに従っ て製造されるので、同一の特性を有するように製造する ことができ、ばらつきの少ない電流値で各基準電流出力 端子OREF1~3から導出する基準電流を発生させる ことができる。 基準電流値は、定電圧回路110から発 生する定電圧を基準抵抗13の抵抗値で除算した値に対 応させることができる。] 制御用PMOSトランジスタ1 13も出力用PMOSトランジスタ121, 122, 1 23と同一形状となるように形成しておけば/基準抵抗 13を流れる電流と同一電流値の電流を各基準電流出力 端子OREF1~3からそれぞれ導出させることができ る。

【0025】図4は、図3の定電圧回路110を、NPNバンドギャップ型として構成する場合の例を示す。電源から、定電流源130を介して一定電流をNPNトランジスタ131,132,133および抵抗134,135,136で構成されるバンドギャップ回路に供給すると、半導体素子として基本的なバンドギャップに基づく一定電圧を、取出すことができる。NPNトランジス

タ131はPN接合ダイオードとして、PN接合順方向 電圧を発生し、NPNトランジスタ132からのバンド ギャップ電圧と合せて、温度変化が小さい基準電圧を得 ることができる。

【0026】図5は、図2の定電流ドライバ回路10で各駆動出力端子001~064にそれぞれ接続される出力素子の例を示す。図5 (a) はPMOSトランジスタ140から出力を取出す例を示す。図5 (b) は、NMOSトランジスタ150から出力を取出す例を示す。図5 (c) は、バイポーラのPNPトランジスタ160から出力を取出す例を示す。図5 (d) は、バイポーラのNPNトランジスタ170から出力を取出す例を示す。公5 (d) は、バイポーラのNPNトランジスタ170から出力を取出す例を示す。公5 (d) は、バイポーラのNPNトランジスタ170から出力を取出す例を示す。公6 (d) は、バイポーラのNPNトランジスタ170から出力を取出す例を示す。公6 (d) は、バイポーラのNPNトランジスタ170から出力を取出す例を示す。公6 (d) は、がでまる。

【0027】図1の実施形態では、定電流ドライバIC1、2、3でEL表示パネル50の192列の有機EL素子51、52、…を64列ずつ分けてそれぞれ駆動しているけれども、列の数や、定電流ドライバICの使用個数、あるいは各定電流ドライバICで駆動可能な出力数などは他の数にすることもできる。また、定電流駆動の負荷は、EL表示パネル50の有機EL素子51、52、…ばかりではなく、LEDディスプレイ・パネルの各LED素子や、LEDプリンタ・ヘッドなどを、抵抗などによる調製なして、同様に定電流駆動することもできる。

【0028】図1の実施形態では、基準電流発生回路1 2が定電流ドライバIC1に内蔵されているけれども、 別個の半導体集積回路として構成することもできる。基 準電流発生回路を独立の半導体集積回路として形成すれ ば、基準電流出力端子の数を増やし、多くの定電流ドラ イバICを、IC間で出力電流のばらつきの小さい定電 流駆動出力を導出させることができる。

【0029】また、基準電流発生回路12を、定電流ドライバIC2、3にも内蔵させ、各定電流ドライバIC1、2、3を全く同一の構成とすることもできる。この場合には、定電流ドライバIC2、3では基準電流発生回路12の基準電流出力端子OREFは使用しないで、定電流ドライバIC1の基準電流出力端子ORESを基準電流入力端子IREFに接続する。すなわち、定電流ドライバIC2、3では基準電流発生回路12を内蔵するけれども、使用はしない。このようにすることによって、定電流ドライバIC1、2、3を標準化することができ、量産しやすくすることができる。

【0030】また、基準電流の代りに、基準電圧や基準 周期の信号を与え、負荷を定電流で駆動することもでき る。

[0031]

【発明の効果】以上のように本発明によれば、複数の負荷を、複数の定電流駆動半導体集積回路からのばらつき

の小さい一定電流で駆動し、駆動出力をオンまたはオフ に制御することができる。出力のばらつきを小さくする ために、各定電流駆動半導体集積回路間で調整を行う必 要はないので、定電流駆動装置の組立て時に必要な調整 の手間を省き、組立て工程の自動化も容易にすることが できる。

【0032】また本発明によれば、複数の定電流駆動半導体集積回路のうちの少なくとも1つには、基準信号発生回路が同一の半導体チップ上に集積されているので、基準信号発生回路を定電流駆動半導体集積回路と別に設ける必要はなく、定電流駆動回路の小形化を図り、組立ても容易にすることができる。

【0033】また本発明によれば、定電流半導体集積回路は、各負荷を基準信号に対応してそれぞれ同一の電流値で駆動するので、複数の負荷を容易に定電流駆動することができる。

【0034】さらに本発明によれば、定電流駆動半導体 集積回路には、同一の半導体チップ上に複数の定電流駆 動回路と基準電流発生回路とを含み、複数の基準電流出 力端子と、1以上の基準電流入力端子および複数の基準 出力端子を有する。複数の基準電流出力端子からは、ば ちつきの小さい基準電流出力を導出し、そのうちの1つ を基準電流入力端子に入力させれば、複数の駆動出力端 子からばらつきの小さい定電流出力を導出させることが できる。残りの基準電流出力端子を、他の定電流駆動半 導体出力回路の定電流駆動回路の基準入力端子に接続す れば、他の定電流駆動半導体集積回路も含めて、ばらつ きの小さい定電流出力で複数の負荷を駆動することがで きる。

【0035】また本発明によれば、複数の負荷を駆動する定電流出力を、シリアルに入力される信号に従ってオンまたはオフに制御することができる。制御のための信号はシリアルに入力されるので、入力端子の数を増やす

ことなく、多くの負荷を駆動する定電流出力のオンまた はオフの制御を行うことができる。

【図面の簡単な説明】

【図1】本発明の実施の一形態の定電流駆動装置として の有機ELディスプレイ・パネルの概略的な電気的構成 を示すブロック図である。

【図2】図1の実施形態で使用する定電流ドライバIC 1の概略的な電気的構成を示すプロック図である。

【図3】図2の定電流ドライバIC1に使用される基準 10 電流発生回路12の概略的な電気的構成を示すプロック 図である。

【図4】図3の定電圧回路110をNPNバンドギャップ型で構成する等価的電気回路図である。

【図5】図2の定電流ドライバ回路10の出力の例を示す部分的な電気回路図である。

【符号の説明】

1, 2, 3 定電流ドライバIC

10, 20, 30 定電流ドライバ回路

11, 21, 31 制御回路

20 12 基準電流発生回路

13 基準抵抗

50 EL表示パネル

51, 52, ··· 有機EL素子

60 行選択回路

110 定電圧回路

120 カレントミラー回路

121, 122, 123 出力用PMOSトランジスタ

130 定電流源

131, 132, 133, 170 NPNトランジスタ

30 140 PMOSトランジスタ

150 NMOSトランジスタ

160 PNPトランジスタ

[図2]

【図3】

10

【図1】

【図4】

【図5】

フロントページの続き

F ターム(参考) 5F038 AZ10 BB04 BB08 BB09 DF01
DF12 DF14 EZ20
5F041 BB06 BB13 BB26 FF06 FF13
5H430 BB01 BB05 BB09 BB12 CC06
EE02 EE03 EE06 EE09 EE12
EE17 EE18 FF08 FF13 GG08
GG11 HH03