

Keras Tutorial

Yu Wang Yale University

Introduction

- Installation:
 - Requirement: numpy, scipy, python (2.7+ or 3.3+)
 - Under Theano: Anaconda—> Theano —> Keras
 - 1. Go to https://www.continuum.io
 Download Anaconda, install using graphical installer
 - 2. Terminal: pip install Theano
 - 3. sudo pip install Keras
 - Under Tensorflow: Anaconda—> Tensorflow —> Keras

Keras

- Why Keras?
 - Easy Implementation, Modularity
 - Support CNN/RNN, and combination of two
 - MIMO training as well
 - Changing backend from Theano to Tensorflow or vice versa

Tensorflow in Keras

- By default, Keras use Theano on Backend.
- From Theano to Tensorflow:
- Find Keras Configuration file: ~/.keras/keras.json:

```
{"epsilon": 1e-07, "floatx": "float32", "backend": "theano"}

t
{"epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow"}
```


Modules

- Models: Sequential models, Group models
- Layers:
 - Core layers
 - Convolutional layers
 - Recurrent layers
 - Embedding layers
- Objectives
- Optimizers
- Activations

Sequential Model

· Sequential model is a linear stack of models

Initialization:

model = Sequential()

Add one layer to model:

model.add(Dense(32, input_dim=784))

model.add(Dense(32, input_shape=(784,)))

Add an activation layer

model.add(Activation('relu')

Sequential Model

Compilation:

similar to session in Tensorflow, or theano.function the Theano

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

Training:

Using fit command

model.fit(data, labels, nb_epoch=10, batch_size=32)

Core Layers

Dense: fully connected layer

```
model.add(Dense(32, input_dim=16))
```

Activation: Applies activation function to output

```
model.add(Activation('sigmoid'))
```

Dropout: Applies dropout to the input

```
model.add(Dropout(0.5))
```

• Flattern: flattern the input

```
model.add(Flatten())
```


Convolutional layer(1-3 dimension)

Convolutional CNN:

```
model.add(Convolution1D(64, 3, input_shape=(10, 32)))
```

Max-Pooling layer

```
model.add(MaxPooling1D((pool length=2, stride=None))
```

Zero padding

model.add (ZeroPadding1D(padding=1))

Convolutional layer(1-3 dimension)

Convolutional CNN:

```
model.add(Convolution2D(64, 3, 3, input_shape=(3,256, 256)))
```

Max-Pooling layer

```
model.add(MaxPooling2D((pool_size=(2,2), stride=None))
```

Zero padding

model.add (ZeroPadding2D(padding=(1,1)))

Example: MNIST : 99.25%

Recurrent layer

Simple RNN

model.add(SimpleRNN(32, activation='tanh', dropout_W=0, dropout_U=0))

Long-Short term memory

model.add(LSTM(32, input shape=(10, 64),acticvation='tanh'))

GRU

model.add(GRU(32, input_shape=(10, 64),acticvation='tanh'))

Comparison of RNN and LSTM

The repeating module in a standard RNN contains a single layer.

The repeating module in an LSTM contains four interacting layers.

Example- Stacked LSTM

Input dim: 16, LSTM output dim:32, Final output dim:10, time step: 8

Example- Stacked LSTM

```
from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
data dim = 16
timesteps = 8
nb classes = 10
model = Sequential()
model.add(LSTM(32, return sequences=True, input shape=(timesteps, data dim)))
model.add(LSTM(32, return sequences=True))
model.add(LSTM(32))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical crossentropy', optimizer='rmsprop', metrics=['accuracy'])
model.fit(x train, y train, batch size=64, nb epoch=5, validation data=(x val, y val))
```


Embedding layer

• Idea coming from word2vec: space matching

```
model.add(Embedding(1000, 64, input_length=10))
```

- Take an integer matrix of size (batch, input_length), the largest integer should be smaller than 1000.
- Notice: only can be used in first layer

```
model = Sequential()
model.add(Embedding(1000, 64, input_length=10))
```


Merge Layers

Merger multiple sequential models as a single input layer

Merge Layers

```
data dim = 16
timesteps = 8
nb classes = 10
encoder_a = Sequential()
encoder a.add(LSTM(32, input shape=(timesteps, data dim)))
encoder b = Sequential()
encoder b.add(LSTM(32, input shape=(timesteps, data dim)))
decoder = Sequential()
decoder.add(Merge([encoder a, encoder b], mode='concat'))
decoder.add(Dense(32, activation='relu'))
decoder.add(Dense(nb classes, activation='softmax'))
decoder.compile(loss='categorical crossentropy',
         optimizer='rmsprop',
         metrics=['accuracy'])
```


Down to earth Questions

How to obtain weights in each layer?

```
for layer in model.layers:
weights = layer.get_weights()
```

How to get configuration of each layer?

```
for layer in model.layers:
config= layer.get_config()
```

How can I use backend (like tensorflow) function?

```
from keras import backend as K K.matmul(W, x_in)+b
```

from keras import backend as K K.dot(W, x_in)+b

• How do I run on GPU? If using Tensorflow, code is compatible on GPU automatically.

Objectives

One of the two parameters for compiling the model

model.compile(loss='mean_squared_error', optimizer='sgd')

mean_squared_error
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_y)^2$$
mean_absolute_error
mean_squared_logarithmic_error
categorical_crossentropy
$$Cross_Entro = -\sum_{i=1}^{n} y_i \log \hat{y}_i$$
kullback_leibler_divergence/kld

Optimizer

• The second parameter for compiling the model

model.compile(loss='mean_squared_error', optimizer='sgd')

Sgd

keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)

Adagrad

keras.optimizers.Adagrad(lr=0.01, epsilon=1e-08)

RMSprop

keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08)

Optimizer Comparison

$$\theta_{t+1} = \theta_t - \alpha \nabla L(\theta_t)$$

• with Momentum
$$v_{t+1} = \mu v_t - \alpha \nabla L(\theta_t)$$
 $\theta_{t+1} = \theta_t + v_{t+1}$

Adagrad

$$g_{t+1} = g_t + \nabla L(\theta_t)^2$$

$$\theta_{t+1} = \theta_t - \frac{\alpha \nabla L(\theta)^2}{\sqrt{g_{t+1}} + \epsilon}$$

RMSprop

First order Momentum:
$$m_{t+1} = \gamma m_t + (1 - \gamma) \nabla L$$

Second order Momentum: $g_{t+1} = \gamma g_t + (1 - \gamma) \nabla L^2$

$$v_{t+1} = \mu v_t - \frac{\alpha \nabla L(\theta)}{\sqrt{g_{t+1} - m_{t+1}^2 + \epsilon}}$$

Activation Layer

Two approaches

model.add(Dense(64)) model.add(Activation('tanh'))

model.add(Dense(64), Activation='tanh')

Different activation layers

relu tanh sigmoid linear

Activation Layer

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

RNN example

• Time series data prediction: S&P 500 ETF 1990-1991 data (60,000+). (Data Provider: Cubist Systematic Strategist)

Parameters:

Memory size: 10, Epoch: 100, Batch size:64,

Structure: 1 RNN+ 2 Dense+ 2 Dropout(0.3)

Result: accuracy 97%, compared with ARIMA: 85%

DEMO TIME

Overfitting

- Dropout layer
 model.add(Dropout(0.5))
- Early stopping & (cross) -validation
 - 1. Split the training data into training and validation data set
 - 2. more sophisticated is using cross-validation to tackle the issue.

Final Accuracy = Average(Round 1, Round 2, ...)

Related Materials

- Official Doc: http://keras.io/
- Git: https://github.com/fchollet/keras/tree/master/keras
- Tutorial Video (U of Waterloo): https://www.youtube.com/playlist?list=PLFxrZqbLojdKuK7Lm6uamegEFGW2wki6P
- Code Comparison between Theano and Tensorflow (<u>Link</u>)