The Aggregate Consequences of Tax Evasion

Alessandro Di Nola¹ Georgi Kocharkov²
Almuth Scholl¹ Anna Tkhir¹

¹University of Konstanz

²Goethe University Frankfurt

Frankfurt-Mannheim Macro Workshop March 8, 2019

Motivation

- Tax evasion is substantial in the U.S.
 - In 2001, \$197 billion \approx 18% of actual tax liability (Slemrod 2007)
- ▶ Tax evasion is concentrated among self-employed businesses
 - 57% of self-employed income versus 1% of wages and salaries
- Self-employed businesses are important
 - 39% of assets and 21% of income

What We Do

- Research questions
 - How does tax evasion in the self-employment sector affect aggregate outcomes and welfare?
 - What are the implications for tax enforcement and tax policy?
- Dynamic general equilibrium model with
 - heterogeneous agents and incomplete markets
 - occupational choice: worker or self-employed business owner
 - tax evasion in self-employment sector
- Quantitative application to the U.S.

What We Do

- Research questions
 - How does tax evasion in the self-employment sector affect aggregate outcomes and welfare?
 - What are the implications for tax enforcement and tax policy?
- Dynamic general equilibrium model with
 - heterogeneous agents and incomplete markets
 - occupational choice: worker or self-employed business owner
 - · tax evasion in self-employment sector
- Quantitative application to the U.S.

What We Do

- Research questions
 - How does tax evasion in the self-employment sector affect aggregate outcomes and welfare?
 - What are the implications for tax enforcement and tax policy?
- Dynamic general equilibrium model with
 - heterogeneous agents and incomplete markets
 - occupational choice: worker or self-employed business owner
 - · tax evasion in self-employment sector
- Quantitative application to the U.S.

Main Findings

- Tax evasion
 - ↑ size but ↓ productivity of the self-employment sector,
 - Induces self-employed businesses to stay small
 - ↑ aggregate savings and ↓ wealth inequality

Welfare

- Perfect enforcement ⇒ welfare ↓ by 4% if no redistribution
- Tax revenues ↑ by 1.6% of GDP
- If redistributed back average welfare gain of up to 0.9%
- Tax enforcement and tax policy
 - Tax revenues of self-employed follow a Laffer curve wrt the tax rate
 - Fine that maximizes tax revenues is 10 p.p. lower than existing penalty of 75% in U.S.

Main Findings

Tax evasion

- ↑ size but ↓ productivity of the self-employment sector,
- Induces self-employed businesses to stay small
- ↑ aggregate savings and ↓ wealth inequality

Welfare

- Perfect enforcement ⇒ welfare ↓ by 4% if no redistribution
- Tax revenues ↑ by 1.6% of GDP
- If redistributed back average welfare gain of up to 0.9%
- Tax enforcement and tax policy
 - Tax revenues of self-employed follow a Laffer curve wrt the tax rate
 - Fine that maximizes tax revenues is 10 p.p. lower than existing penalty of 75% in U.S.

Main Findings

Tax evasion

- ↑ size but ↓ productivity of the self-employment sector,
- Induces self-employed businesses to stay small
- ↑ aggregate savings and ↓ wealth inequality

Welfare

- Perfect enforcement ⇒ welfare ↓ by 4% if no redistribution
- Tax revenues
 † by 1.6% of GDP
- If redistributed back average welfare gain of up to 0.9%

Tax enforcement and tax policy

- Tax revenues of self-employed follow a Laffer curve wrt the tax rate
- Fine that maximizes tax revenues is 10 p.p. lower than existing penalty of 75% in U.S.

Main Findings - Mechanism

Subsidy channel

Tax evasion reduces the tax burden of self-employed business owners

Selection channel

Tax evasion induces low-productive agents to become self-employed

Detection channel

The probability of audit induces self-employed businesses to stay small

Literature

- Classic papers on tax evasion
 - Allingham and Sandmo (1972), Sandmo (2005), Slemrod (2007)
- Heterogenous agent models with entrepreneurship
 - Quadrini (2000), Cagetti and De Nardi (2006), Kitao (2008)
- Heterogenous agent models with informality/tax evasion
 - Maffezzoli (2011), Bobbio (2016), Bastidas (2018)
- Occupational choice models with informality
 - Amaral and Quintin (2006), Antunes and Cavalcanti (2007), Quintin (2008), Ordonez (2014)

Model

Model - Households

Preferences

$$E\sum_{t=0}^{\infty} \beta^t u(c_t), \qquad u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$$

- Endowment
 - A unit of time
 - Working ability $\varepsilon \in \mathcal{E}$
 - Business ability $\theta \in \Theta$
- Occupation
 - Worker
 - Self-employment
- Tax evasion
 - Self-employed may evade part of their business profit

Model - Technology

Corporate sector

$$Y_C = K_C^{\alpha} N_C^{1-\alpha}, \qquad 0 < \alpha < 1$$

Sector of self-employment

$$y = \theta k^{\nu}$$
, $0 < \nu < 1$

▶ Capital depreciates at rate $\delta \in (0, 1)$

Model - Workers

- Receive wage w and interest r on their savings a
- ▶ Pay income taxes $T^W(\cdot)$
- Markets are incomplete and workers are borrowing-constrained
- Budget

$$y_w = w\varepsilon + ra$$

$$c + a' \leqslant y_w + a - T^W(y_w)$$

$$a' \geqslant 0$$

Model - Self-Employed

- Receive interest r on their savings a
- Invest in capital and may borrow at rate r subject to a collateral constraint
- Budget

$$\pi = \theta k^{\vee} - (\delta + r)k$$

$$y_E = \pi + ra$$

$$0 \le k \le \lambda a, \qquad \lambda \ge 1$$

$$a' \ge 0$$

Model - Tax Evasion

- Tax evasion takes place in the self-employment sector
- Self-employed agents pay income taxes $T^E(\cdot)$ but may evade a fraction ϕ of business income
- ▶ With probability p(k), p'(k) > 0, an evader is detected and pays a proportional fine s
- Budget constraint if not detected

$$c + a' \leqslant y_E + a - T^E((1 - \phi)\pi + ra)$$

Budget constraint if detected

$$c + a' \leq y_E + a - T^E((1 - \phi)\pi + ra)$$
$$-s[T^E(\pi + ra) - T^E((1 - \phi)\pi + ra)]$$

Model - Tax Evasion

- Tax evasion takes place in the self-employment sector
- ▶ Self-employed agents pay income taxes $T^E(\cdot)$ but may evade a fraction ϕ of business income
- ▶ With probability p(k), p'(k) > 0, an evader is detected and pays a proportional fine s
- Budget constraint if not detected

$$c + a' \leqslant y_E + a - T^E((1 - \phi)\pi + ra)$$

Budget constraint if detected

$$c + a' \leqslant y_E + a - T^E((1 - \phi)\pi + ra)$$
$$-s[T^E(\pi + ra) - T^E((1 - \phi)\pi + ra)]$$

Model - Government

- The government collects taxes on income, fines and provides transfers
- ► The tax function *T* (Gouveia and Strauss, 1994)

$$T^{i}(y) = a_{0}^{i}(y - (y^{-a_{1}^{i}} + a_{2}^{i})^{-1/a_{1}^{i}})$$

with $i = \{ W \text{ orker, } E \text{ ntrepreneur} \}$

Model - Timing

- 1. At the beginning of each period ε and θ are realized
- 2. Agents choose an occupation $o \in \{W, E\}$
- 3. Self-employed decide how much to invest (k) and evade (ϕ)
- 4. Agents pay taxes (T^W, T^E)
- 5. Detection by tax authority takes place
- 6. Consumption and saving decisions are made

Household Problem - Occupational Choice

At the start of each period, households decide whether to work in the corporate sector or to be self-employed

$$V\left(\mathbf{a}, \epsilon, \theta\right) = \max_{\mathbf{o} \in \left\{W, E\right\}} \left\{V^{W}\left(\mathbf{a}, \epsilon, \theta\right), V^{E}\left(\mathbf{a}, \epsilon, \theta\right)\right\}$$

- $V^W(a, \epsilon, \theta)$: value function of a worker
- $V^{E}(a, \epsilon, \theta)$: value function of a self-employed

Household Problem - Value Function of Worker

$$V^{W}\left(a,\varepsilon,\theta\right)=\max_{c,a'}\left\{u\left(c\right)+\beta E\left[V\left(a',\varepsilon',\theta'\right)|\varepsilon,\theta\right]\right\}$$
 subject to
$$y_{W}=w\varepsilon+ra$$

$$c+a'\leqslant y_{W}+a-T^{W}\left(y_{W}\right)$$

$$a'\geqslant0$$

Household Problem - Value Function of Self-Employed

$$\begin{aligned} V^{E}\left(a,\varepsilon,\theta\right) &= \max_{k,\varphi} \left\{ p\left(k\right) \, V_{d}^{E}\left(a,\varepsilon,\theta,k,\varphi\right) + \left(1-p\left(k\right)\right) \, V_{n}^{E}\left(a,\varepsilon,\theta,k,\varphi\right) \right\} \\ \text{subject to} \end{aligned}$$

$$0 \leqslant k \leqslant \lambda a$$
, $\lambda \geqslant 1$

- $V_d^E(a, \epsilon, \theta)$: value function of a self-employed if detected
- $V_n^E(a, \epsilon, \theta)$: value function of a self-employed if not detected

Household Problem - Value Function Not Detected

$$\begin{split} V_{n}^{\textit{E}}\left(\textit{a},\varepsilon,\theta,\textit{k},\varphi\right) &= \max_{\textit{c},\textit{a}'}\left\{u\left(\textit{c}\right) + \beta\textit{E}\left[\textit{V}\left(\textit{a}',\varepsilon',\theta'\right)|\varepsilon,\theta\right]\right\} \\ \text{subject to} \\ &\pi = \theta\textit{k}^{\vee} - (\delta+r)\textit{k} \\ &y_{\textit{E}} = \pi + \textit{ra} \\ &c + \textit{a}' \leqslant y_{\textit{E}} + \textit{a} - \textit{T}^{\textit{E}}\left(\left(1-\varphi\right)\pi + \textit{ra}\right) \end{split}$$

Household Problem - Value Function Detected

$$V_d^E\left(a,\varepsilon,\theta,k,\phi\right) = \max_{c,a'}\left\{u\left(c\right) + \beta E\left[V\left(a',\varepsilon',\theta'\right)|\varepsilon,\theta\right]\right\}$$
 subject to
$$\pi = \theta k^{\vee} - (\delta+r)k$$

$$y_E = \pi + ra$$

$$c+a' \leqslant y_E + a - T^E\left((1-\phi)\pi + ra\right) - s[T^E(\pi+ra) - T^E\left((1-\phi)\pi + ra\right)]$$

► Stationary Equilibrium

Calibration

Calibration - External

- ▶ Panel Study of Income Dynamics (PSID) 1990-2003
- Income tax

$$T^{i}(y) = a_{0}^{i}(y - (y^{-a_{1}^{i}} + a_{2}^{i})^{-1/a_{1}^{i}}), \qquad i = \{W, E\}$$

▶ Details

Working ability

$$\log \varepsilon_{t+1} = \rho_{\varepsilon} \log \varepsilon_t + \eta_{\varepsilon,t+1}$$

where
$$\eta_{\varepsilon,t+1} \sim N(0, \sigma_{\varepsilon}^2)$$

Calibration - External

Parameter	Description	Value	Source
σ	Elasticity of substitution	2	standard value
α	Corp. capital share	0.38	Karabarbounis and Neiman (2014)
λ	Leverage ratio	1.2	Diaz-Gimenez et al. (1992)
s	Tax evasion fine	1.75	U.S. Department of the Treasury (2016)
Working ability			
ρ_{ϵ}	Persistence	0.89	micro data - PSID
σ_{ϵ}	Standard deviation	0.21	micro data - PSID
Tax functions			
$a_0^W \ a_1^W$	workers	0.32	Cagetti and De Nardi (2009) - PSID
a_1^W	workers	0.76	Cagetti and De Nardi (2009) - PSID
a_2^W	workers	0.22	Cagetti and De Nardi (2009) - PSID
aĒ	self-employed	0.26	Cagetti and De Nardi (2009) - PSID
a ^Ĕ	self-employed	1.40	Cagetti and De Nardi (2009) - PSID
a2 a a a	self-employed	0.44	Cagetti and De Nardi (2009) - PSID

► Tax

Calibration - Internal

Business ability

$$\log \theta_{t+1} = \mu_{\theta} + \rho_{\theta} \log \theta_t + v_{\theta,t+1}, \qquad v_{\theta,t+1} \sim \textit{N}(0,\sigma_{\theta}^2)$$

Probability of detection

$$p(k) = \frac{1}{1 + p_1 \exp(-p_2 k)}, \quad p_1 > 0, p_2 > 0$$

► Data on Auditing

Calibration - Internal

Parameter	Description	Value	Source/Target	
Preferences				
β	Discount factor	0.935	4% interest rate	
Production				
δ	Capital depreciation	0.11	Capital-output ratio	
V	Span of control	0.62	Share of income, self-employed	
Entrepreneurial ability				
ρθ	Persistence	0.935	Exit rate, self-employed	
$\sigma_{ heta}$	Standard deviation	0.77	Share of assets, self-employed	
$\mu_{ heta}$	Unconditional mean	-1.29	Share, self-employed	
Tax evasion detection				
<i>p</i> ₁	Parameter of $p(k)$	1500	Tax evasion by income (quintiles)	
p_2	Parameter of $p(k)$	0.7	Tax evasion by income (quintiles)	
Tax functions rescale				
χ	Rescaling parameter	1.4	Tax revenue to GDP	
· · · · · · · · · · · · · · · · · · ·	·			

Probability of Auditing

Model Fit - Targets

Moments	Data	Model
Interest rate (%)	4.00	3.97
Capital-output ratio	2.65	2.62
Share of self-employed (%)	14.70	14.65
Share of assets, self-employed (%)	39.11	42.72
Share of income, self-employed (%)	21.04	23.76
Exit rate, self-employed (%)	15.73	15.90
Misreporting rate (%)	11.00	10.33
Tax revenues/GDP (%)	15.20	14.96

Model Fit - Targets

Share of SE by Income

Model Fit - Size of Self-Employed Businesses

Model Fit - Wealth and Income Distribution

	Gini	Mean/Median	Bottom 40	Top 20	Top 10	Top 1
Wealth						
Model	73.5	2.90	3.26	76.38	63.32	21.53
US Data	71.1	3.10	2.71	75.64	60.56	26.53
<u>Income</u>						
Model	36.6	1.34	19.84	45.03	31.71	10.69
US Data	35.2	1.23	19.32	42.77	28.27	7.60

Results

The Impact of Tax Evasion - Occupational Choice

The Impact of Tax Evasion - Capital of Self-Employed

	Tax Evasion	No Evasion	% Change
Sector of self-employment			
Share	0.147	0.105	+4.14
$E(\theta E)$	0.93	1.02	-10.14
E(k E)	12.86	14.65	-13.90
Κ ^E	1.88	1.54	+18.30
Υ ^E	0.68	0.56	+17.90
Corporate sector			
K^C	3.84	3.82	+0.53
N^C	0.85	0.89	-4.34
Y^C	1.51	1.54	-2.46
Prices			
r (%)	3.97	4.34	-0.37
W	1.10	1.08	+1.48
Inequality and tax revenues			
Gini wealth	73.50	75.24	-1.74
<i>T/Y</i> (%)	14.96	16.61	-1.65

Firm Size

	Tax Evasion	No Evasion	% Change
Sector of self-employment			
Share	0.147	0.105	+4.14
$E(\theta E)$	0.93	1.02	-10.14
E(k E)	12.86	14.65	-13.90
Κ ^E	1.88	1.54	+18.30
Y ^E	0.68	0.56	+17.90
Corporate sector			
K^C	3.84	3.82	+0.53
N^C	0.85	0.89	-4.34
Y^C	1.51	1.54	-2.46
Prices			
r (%)	3.97	4.34	-0.37
W	1.10	1.08	+1.48
Inequality and tax revenues			
Gini wealth	73.50	75.24	-1.74
<i>T/Y</i> (%)	14.96	16.61	-1.65

	Tax Evasion	No Evasion	% Change
Sector of self-employment			
Share	0.147	0.105	+4.14
$E(\theta E)$	0.93	1.02	-10.14
E(k E)	12.86	14.65	-13.90
K ^E	1.88	1.54	+18.30
Y ^E	0.68	0.56	+17.90
Corporate sector			
K^C	3.84	3.82	+0.53
N^C	0.85	0.89	-4.34
Y^C	1.51	1.54	-2.46
Prices			
r (%)	3.97	4.34	-0.37
W	1.10	1.08	+1.48
Inequality and tax revenues	-	-	
Gini wealth	73.50	75.24	-1.74
<i>T/Y</i> (%)	14.96	16.61	-1.65

	Tax Evasion	No Evasion	% Change
Sector of self-employment			
Share	0.147	0.105	+4.14
$E(\theta E)$	0.93	1.02	-10.14
E(k E)	12.86	14.65	-13.90
Κ ^E	1.88	1.54	+18.30
Y ^E	0.68	0.56	+17.90
Corporate sector			
K ^C	3.84	3.82	+0.53
N^C	0.85	0.89	-4.34
γ^{C}	1.51	1.54	-2.46
Prices			
r (%)	3.97	4.34	-0.37
W	1.10	1.08	+1.48
Inequality and tax revenues			
Gini wealth	73.50	75.24	-1.74
<i>T/Y</i> (%)	14.96	16.61	-1.65

- Welfare effects of eliminating tax evasion measured in consumption equivalent variations in %
- Without revenue neutrality
 - Government keeps extra tax revenues
- With revenue neutrality
 - Lump-sum redistribution
 - Tax reduction for workers and self-employed
 - Tax reduction for self-employed only

	Perfect Tax Enforcement				
	Tax Evasion	No Redis- Redistribution			tion
	Benchmark	tribution	Lump-Sum	Tax Cut	Tax Cut
			All	All	Self-Employed
	(1)	(2)	(3)	(4)	(5)
Share of SE (%)	14.65	10.51	10.45	10.80	13.92
Y	2.18	2.10	2.10	2.13	2.21
r (%)	3.97	4.34	4.40	4.23	3.81
W	1.10	1.08	1.08	1.09	1.11
Welfare (%)	N.A.	-4.09	-1.72	-1.25	-0.60

		Perfect Tax Enforcement			
	Tax Evasion	No Redis- Redistribution			tion
	Benchmark	tribution	Lump-Sum Tax Cut Tax		Tax Cut
			All	All	Self-Employed
	(1)	(2)	(3)	(4)	(5)
Share of SE (%)	14.65	10.51	10.45	10.80	13.92
Y	2.18	2.10	2.10	2.13	2.21
r (%)	3.97	4.34	4.40	4.23	3.81
W	1.10	1.08	1.08	1.09	1.11
Welfare (%)	N.A.	-4.09	-1.72	-1.25	-0.60

	Perfect Tax Enforcement				
	Tax Evasion	No Redis- Redistribution			tion
	Benchmark	tribution	Lump-Sum	Tax Cut	Tax Cut
			All	All	Self-Employed
	(1)	(2)	(3)	(4)	(5)
Share of SE (%)	14.65	10.51	10.45	10.80	13.92
Y	2.18	2.10	2.10	2.13	2.21
r (%)	3.97	4.34	4.40	4.23	3.81
W	1.10	1.08	1.08	1.09	1.11
Welfare (%)	N.A.	-4.09	-1.72	-1.25	-0.60

	Perfect Tax Enforcement				
	Tax Evasion	No Redis- Redistribution			tion
	Benchmark	tribution	Lump-Sum	Tax Cut	Tax Cut
			All	All	Self-Employed
	(1)	(2)	(3)	(4)	(5)
Share of SE (%)	14.65	10.51	10.45	10.80	13.92
Y	2.18	2.10	2.10	2.13	2.21
r (%)	3.97	4.34	4.40	4.23	3.81
W	1.10	1.08	1.08	1.09	1.11
Welfare (%)	N.A.	-4.09	-1.72	-1.25	-0.60

- ► Target a specific group of self-employed
- ▶ Only to wealth-poor self-employed, with a < p'x' where x = 10 90

		Threshold as Percentage of the Wealth Distribution							
	p10	p20	p30	p40	p50	p60	p70	p80	p90
Share of SE (%)	15.25	14.71	14.52	14.45	14.54	14.83	14.38	14.41	14.15
Υ	2.14	2.14	2.14	2.16	2.17	2.22	2.20	2.23	2.22
r (%)	4.13	4.14	4.14	4.12	4.05	3.92	3.96	3.85	3.84
W	1.09	1.09	1.09	1.09	1.09	1.10	1.10	1.10	1.10
Welfare (%)	-1.33	-1.09	-1.03	-0.82	-0.3	0.89	0.38	0.78	0.25

Tax Evasion and Laffer Curves

Additional results

- What is the impact of tax enforcement on tax revenues and aggregate outcomes? Fine and Tax Enforcement
- ► How do changes in tax rates affect tax revenues and aggregate outcomes? Tax Scheme

Conclusions

Conclusions

- Tax evasion by small self-employed businesses matters for aggregate outcomes and welfare
- Tax evasion
 - increases the size but reduces the productivity of the self-employment sector
 - reduces the size of self-employed businesses
 - increases aggregate savings and reduces wealth inequality
- Perfect tax enforcement: small average welfare gain with sizable gains for workers

Appendix

More on the Tax Gap

	Tax Gap (\$billion)	Share of Total
Total Tax Gap	285	-
- Individual income tax	197	69.1%
 Employment tax 	54	18.9%
 Corporate income tax 	30	10.5%
- Estate and excise taxes	4	1.4%

Source: U.S. Department of the Treasury (2006), Slemrod (2010)

 Underreporting of individual income tax: most important component of tax gap

Tax Gap by Income Sources

Table: Misreporting Percentages by Income Sources

	Tax Gap
	(% of True Amount)
Salaries and Wages	1%
Interest	4%
Dividends	4%
Business (Sch C)	57%
Part.,S Corp	18%
Capital Gains	12%

Source: U.S. Department of the Treasury (2006), Slemrod (2010)

Tax Evasion Data

- Since 1979 IRS estimates "tax gap"
 - How much tax should be paid, but is not voluntarily paid in a timely manner
- Two programs of random audits
 - 1. Taxpayer Compliance Measurement Program (TCMP)
 - 2. National Research Program (NRP)
- For tax year 2001, NRP selected a random sample of 45000 tax returns
- A.Johns & Joel Slemrod "The Distribution of Income Tax Noncompliance", National Tax Journal 2010 use IRS data to estimate distribution of tax evasion by income level

Self-Employed - Data

Table: Summary Statistics for Alternative Definitions

Variable	Self-Employed	Business Owners
Fraction of entre.	14.70%	20.11%
Share of entre. income	21.04%	27.98%
Assets owned by entre.	39.11%	46.15%
Ratio of median assets (E to W)	4.02	3.65
Exit rate entre.	15.73%	24.43%
Obs	22647	22704

SBO Firm Size

◆ Back

Stationary Equilibrium

Let $x = (a, \epsilon, \theta)$ be a state vector. A stationary equilibrium is given by

- \triangleright prices r and w and taxes T^W , T^E
- ▶ a set of policy functions c(x), a'(x), k(x), $\phi(x)$, o(x)
- ▶ a set of value functions V(x), $V^W(x)$, $V^E(x)$, $V^E_d(x)$, $V^E_d(x)$
- ightharpoonup an invariant distribution $\mu(x)$

such that

- Value and policy functions solve the household problem
- Prices are given by

$$r = F_K(K_C, N_C) - \delta, \qquad w = F_N(K_C, N_C)$$

Stationary Equilibrium

Markets clear

$$K_C + \int o(x)k(x) \ d\mu(x) = \int_X a \ d\mu(x)$$

$$N_C = \int (1 - o(x))\varepsilon \ d\mu(x)$$

▶ The government budget constraint is fulfilled

$$G = \int [(1 - o(x))T^{W}(y_{W}(x)) + o(x)T^{E}((1 - \phi(x))\pi(x) + ra) + o(x)p(k(x))[T^{E}(\pi(x) + ra) - T^{E}((1 - \phi(x))\pi(x) + ra)]s] d\mu(x)$$

Back
 Bac

Tax Function Estimation I

- Combine PSID (survey years 1990-2003) with NBER's TAXSIM program (Feenberg and Coutts 1993)
- Tax function estimation: regress average tax rate on pre-government income
- pre-government income: labor earnings + self-employment income + income from financial assets
- ► Taxes include only federal taxes (obtained from TAXSIM)

Tax Function Estimation II

► Total tax liabilities for *i* = *W*, *E*:

$$T^{i}(y) = a_{0}^{i}(y - (y^{-a_{1}^{i}} + a_{2}^{i})^{-1/a_{1}^{i}})$$

Average tax rate:

$$t(y)^{i} \equiv \frac{T^{i}(y)}{y} = a_{0}^{i} (1 - (a_{2}^{i} y^{a_{1}^{i}} + 1)^{-1/a_{1}^{i}})$$

Marginal tax rate:

$$m(y^i) = a_0^i (1 - (a_2^i y^{a_1^i} + 1)^{-1/(a_1^i - 1)})$$

■ Back

Tax Functions

Data on Auditing I

Type of return	Percent covered		
Individual Income Tax	1.11		
No adjusted gross income	3.42		
[1, 25000]	1.22		
[25000, 50000]	0.73		
[50000, 75000]	0.83		
[75000, 100000]	0.82		
[100000, 200000]	1.00		
[200000, 500000]	2.66		
[500000, 1m]	5.38		
[1m, 5m]	11.80		
[5m, 10m]	20.75		
> 10m	29.93		
Corporate income tax	1.5		
Small firms (<\$10m in assets)	1.0		
Large firms (>\$10m in assets)	17.6		

- Individuals: the probability of audit is generally rising in reported income
- Corporations: the share of returns audited rises dramatically with the amount of total assets

Data on Auditing II

Source: IRS, Data Book 2011

Probability of Auditing

Share of Self-Employed by Income

◆ Back

Misreporting of Self-Employed by Income

Average Net Worth Normalized by Mean

Policy Function for Savings

Auditing Probability and Tax Evasion

The Impact of Tax Evasion - Size of Businesses

Wealth and Income Inequality

	Gini	Mean/Median	Bottom 40	Top 20	Top 10	Top 1
Wealth						
Tax Evasion	73.5	2.90	3.26	76.38	63.32	21.53
No Tax Evasion	75.2	3.12	2.76	77.93	65.66	23.11
<u>Income</u>						
Tax Evasion	36.6	1.34	19.84	45.03	31.71	10.69
No Tax Evasion	36.3	1.32	19.91	44.71	31.38	10.47

Decomposition - Three Channels

- Start from the economy with perfect tax enforcement
- ► Then move to tax evasion economy keeping prices fixed
- By fixing some of the choices we isolate three channels
 - Fix o(x) and k(x) to eliminate the selection + detection effect $\Rightarrow \Delta_{\text{subsidy}}$
 - Fix o(x) to eliminate the selection effect $\Rightarrow \Delta_{\text{Subsidy}} + \Delta_{\text{detection}}$
 - Fix k(x) to eliminate the detection effect $\Rightarrow \Delta_{ ext{Subsidy}} + \Delta_{ ext{Selection}}$

Decomposition - Three Channels

		Tax Evasion Economies				
	Perfect Enforcement	Experiments			Benchmark	
	(1)	(2)	(3)	(4)	(5)	
Fixed decisions from (1)	-	o, k	0	k	-	
Endogenous decisions	all	assets, φ	assets, k , φ	o, assets, φ	all	
Operational channels	-	Subsidy	Subsidy+Detection	Subsidy+Selection	Subsidy+Detection +Selection	
Outcomes Share of self-employed	10.505	11.222	11.292	14.933	14.646	
Average SE capital $E(\mathbf{k} E)$	14.646	15.687	15.040	13.233	12.859	
Self-employed capital, K^E	1.538	1.760	1.698	1.976	1.883	
Misreporting rate	0	7.771	8.631	9.83	10.331	

Tax Enforcement - Tax Evasion and Tax Revenues

Tax Enforcement - Aggregates

4 Back

Tax Scheme - Tax Evasion and Tax Revenues

Tax Scheme - Aggregates

4 Rack