Lecture 05, Dynamic analysis:

GPS station in the **West Pamir** recording relative motion to detect strain & hence stress.

From "Natural laboratory Central Asia – Tracking the tectonic fingerprint of continental collision" https://www.gfz-potsdam.de/en/section/lithosphere-dynamics/projects/natural-laboratory-central-asia/

Fossen, sections: 4.1 - 4.7

Concepts are tricky. This lesson will revisit them, but pre-reading is very important – even if you don't "get it" at first.

eModule - Important!: Ch. 4. https://folk.uib.no/nglhe/StructuralGeoBookEmodules2ndEd.html

1

Pop quiz on readings (if desired)

- When is it appropriate to use the term "pressure" in geology?
 - When dealing with materials with no shear resistance (i.e. fluids).
- When can we use both stress and pressure for the same scenario?
 - In porous materials that contain fluid
- The forces on a plane can be easily decomposed into normal and shear forces. Why is it more complicated to decompose stress into normal and shear stress?
 - Stress is force per unit area, so deriving stress vectors requires accounting for the sloping (inclined plane) areas upon which force components are acting.
- What is the tool used to graphical depict normal and shear stresses that act upon a plane?
 - Mohr diagram or Mohr circle.
- What do the pair of values for a point on the Mohr circle represent?
 - A particular point on the circle gives values for normal & shear stresses acting on a particular plane (defined by corresponding angle Θ) in the rock.

Dynamic Analysis

Interpreting deformation in terms of forces and stresses responsible.

Leads to considering strength or *rheology* of the material being deformed.

3

Learning Goals

- 1. Distinguish between a Force and a Stress.
- 2. Calculate force per unit area (stress) at a given depth assuming a density for overlying rock.
- 3. Distinguish between surface stress due to force on a single plane versus stress at a point in terms of the stress tensor.
- 4. Characterize stress ellipsoids for simple principal stress scenarios.
- 5. Calculate simple stress at depth.
- 6. Use Mohr circle diagrams to plot stresses and determine preliminary basic parameters.

Л

Forces (not 'stresses') affecting rock bodies

- Slow regional scale acceleration
 E.g. tectonic plates changing velocity over thousands of years
- Fast short-lived accelerations of relatively small volumes of rock E.g. earthquake fault movements
- Body forces: act on body mass independently of other material outside body
 - Gravitational at any scale:
 - · crystal settling ...
 - tectonic plate 'ridge push' and 'slab pull" \rightarrow
 - Electromagnetic
 - Submicroscopic
 - Attractions at the crystal lattice scale.

5

Types of forces (not 'stresses') that can affect rocks

- Contact forces:
 - e.g. across surfaces of contact like faults
- Load:
 - Weight that can be supported to maintain static equilibrium
- Gravitational loading: weight of rock column on any point at depth
 - Generally equals vertical stress.
- Thermal loading:
 - · Heating or cooling of confined rock mass,
 - Expansion or contraction effects (eg freeze water in a full, closed container)
- Displacement loading
 - Large scale mechanical disturbance of rocks (plate collisions, intrusions, meteorites)

Could include the "force" discussion

- See file "optional force review.pptx".
- 5 extra slides, likely to take ~10 minutes

Rock Stress

- Stress on a plane is the FORCE per unit area of the plane (Stress σ=F/A)
- Force, F

 Area, A

 (=1x1)
- Unit of stress = pascal (Pa): 1 Pa = 1 N/m²
- Geological stresses
 - kPa (10³ Pa)
 - MPa (10⁶ Pa)
 - GPa (10⁹ Pa)
 - 1kbar = 100 MPa

9

Rock Stress

- Stress on a plane is the FORCE per unit area of the plane (Stress σ =F/A)
- Force, F

 1 Area, A
 (=1x1)
- Unit of stress = pascal (Pa): 1 Pa = 1 N/m²
- Stress is usually not equal in all directions.

Calculating Stress in Earth's crust

Stress in rocks; planes, points, normal, shear ...

- It's all in your readings.
- BUT concepts are challenging.
- Therefore, we will step through the thinking again.
- You are to help us out ...

Why is this important?

Example ... plane could be a fault, and we may want to know about stresses that could cause faulting (e.g. earthquakes).

13

Force / stress on a dipping plane (REPEAT OF Fossen 4.2 and 4.3) Questions to be asked and answered as a discussion. a. ?? What is Stress on a surface (traction) in terms of force? b. ?? What are units of stress? Stress acting on a surface can be split into two components. d. ?? What are they called? e. ?? What symbols are used f. ?? How are relations between force and stress on a dipping plane calculated? (NOT the equations, but the procedure.)

BUT - - - Stress at a point is more useful

A single surface stress relates to a single <u>plane</u>... not a very informative way to define the state of stress in the whole rock.

Instead....

Define stress at any given point in a body of rock so that we could determine the stress vector for any plane passing through that point

Stress at a point

- 3D state of stress at a point cannot be expressed by a vector.
- Stress at a point requires use of a TENSOR (2nd order).
- Stress **tensor** is represented graphically as a **stress ellipse** in 2D and as a **stress ellipsoid** in 3D.

Stress at a point – refers to the <u>whole collection of stress vectors</u> acting on each & every orientation passing a single point in a body – this is a 2^{nd} order **tensor**.

17

Stress at a point - stress ellipse

- Start with the 2D case
- Imagine that all possible planes are perpendicular to the screen (or paper).
- Also assume that the body of rock is not equally stressed.

HINT: Follow along making sketches in your notes.
Sketching helps improve your memory.

Stress at a point - stress ellipse

- For each plane, the calculated surface stress is a sum of normal and shear stress components
- For each plane we can draw the corresponding stress vector and have its length proportional to magnitude
- An envelope drawn around a finite number of planes defines an ellipse that represents the stress field

19

Stress at a point - stress ellipse

- Long axis of the ellipse is parallel to maximum surface stress
- Short axis of the ellipse is parallel to minimum surface stress
- These stresses are PRINCIPAL STRESSES.
- They are perpendicular to planes with zero shear stress, called the PRINCIPAL PLANES of stress

Stress in 2-D

- \Rightarrow Each point has an infinite number of intermediate stress directions, with one maximum & one minimum stress direction ($\sigma_1 \& \sigma_3$). By convention, the largest stress is called σ_1 , so σ_1 is always $\geq \sigma_3$
- ⇒ All possible stresses to scale for a point = <u>stress</u> ellipse

21

Stress at a point – principle stresses

- In 3D, a stress ellipsoid has 3 principal stresses.
- Max, intermediate, min principal stress are: σ_1 , σ_2 , σ_3
- In other words, **by definition**, $\sigma_1 > \sigma_2 > \sigma_3$

Magnitudes and orientations of principal stresses completely define the stress ellipsoid and therefore stress at a point.

From the principal stresses we can calculate **surface stress** on a plane at **any** orientation through that point.

Why? **Example** ... plane could be a fault, and we may want to know about stresses that could cause faulting (e.g. earthquakes).

Stress at a point – principle stresses

Define several specific stress states using principal stresses

- 1. hydrostatic $\sigma_1 = \sigma_2 = \sigma_3$
- 2. general triaxial stress $\sigma_1 > \sigma_2 > \sigma_3$
- 3. uniaxial tension $\sigma_1 = \sigma_2 = 0$; $\sigma_3 < 0$
- 4. uniaxial compression $\sigma_2 = \sigma_3 = 0$; $\sigma_1 > 0$
- ?? Sketch the stress ellipsoid for scenarios 1 and 2.
- ?? Why would sketching 3 & 4 look not much like an ellipsoid?

23

Relationships BETWEEN stresses:

Three definitions of values that relate the stress:

- differential stress: difference between maximum and minimum.
- deviatoric stress: half the differential.
- mean stress: essentially the "average" value of stress.

These values are used in stress analysis. Here we simply define them.

What are these 3 values if $\sigma_1 = 2.0$, $\sigma_2 = 1.0$, $\sigma_3 = 0.5$?

- differential stress = ??
- deviatoric stress = ?? $\sigma_1 \sigma_3$) / 2
- mean stress = ?? $(\sigma_1 + \sigma_2 + \sigma_3) / 3$

Special case ... ??

- What stress situation is depicted here?
- What does 2D ellipse look like? A c____
- What does 3D ellipse look like? A s_____
- What value will shear stresses be?
- Will any deformation be expected?

25

Horizontal Stress ??

- 1. What force is contributing to vertical stress components?
- 2. Are there horizontal stresses evident?
- 3. Do they appear to be more, less or same as vertical stress?
- 4. What evidence do you see that this is NOT simply a vertical stress that is more than gravity?

Stress at a point – components

Consider stress at a point by defining stress components (σ_s , σ_n) on an infinitely small cube in a Cartesian XYZ reference frame.

- Sides are perpendicular to the coordinate axes.
- Any surface stress can be resolved into its 3 components
- \bullet Stress normal to face $(\sigma_{xx}\,\sigma_{yy}\,\sigma_{zz})$
- Stress **parallel** to face (shear) acts along one of the other 2 axes.

Positive stresses are shown.

Equal and opposite stresses act on the negative and inside faces of the cube.

Fossen (2016), Fig. 4.6

Stress at a point - components

- Cube must be in mechanical equilibrium (at rest) so normal stresses and shear stresses must sum to zero.
- So $\sigma_{xy} = \sigma_{yx}$
- Hence there are only 6 independent components.

31

Back up ... derive fundamental stress equations with only $\boldsymbol{\sigma}_1$

Why?

We are working towards a standard, convenient method of describing and analyzing stresses within rocks.

Example:

- Given stresses in the Earth, will a fault with a known plane or direction be likely to fail?
- What about a fault lying in a different plane?

33

Back up ... derive fundamental stress equations with only $\boldsymbol{\sigma}_1$

Why? We are working towards standard, convenient method of describing and analyzing stresses within rocks.

- Recall Fossen Fig. 4.1
- ?? Force F decomposes into ... what?
- Stresses do NOT decompose so easily
- ?? They require what to be taken into account?

Stress - Mohr diagram

The MOHR DIAGRAM (Christian Otto Mohr 1835-1918) is a simple graphical method for determining:

- the state of stress at a point, and
- the values of σ_s , σ_n for any surface through that point
- We will only look at the Mohr diagram for 2D stress, although they can be constructed for stress in 3D as well

Mohr Circle lecture

• OPTIONAL slide set reviewing Mohr circles – 9 slides only.

39

Stress - Mohr diagram

Worksheet activity.

What have we accomplished today?

- ✓ Distinguish between a Force and a Stress.
- ✓ Calculate force per unit area (stress) at a given depth assuming a density for overlying rock.
- ✓ Distinguish between surface stress due to force on a single plane versus stress at a point in terms of the stress tensor.
- ✓ Characterize stress ellipsoids for simple principal stress scenarios.
- ✓ Calculate simple stress at depth.
- \checkmark Use Mohr circle diagrams to plot stresses and determine preliminary basic parameters.

Tonight or tomorrow:

Finish the worksheet activity to hand in next lesson for participation.