Álgebra Relacional

23/Agosto/2019

 Álgebra Relacional. Consiste de un conjunto de elementos con unas propiedades operacionales determinadas que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen.

- Álgebra Relacional. Consiste de un conjunto de elementos con unas propiedades operacionales determinadas que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen.
- Especifica un lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación

- Álgebra Relacional. Consiste de un conjunto de elementos con unas propiedades operacionales determinadas que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen.
- Especifica un lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación
- Importancia.
 - Provee fundamento formal a las operaciones asociadas al modelo relacional
 - Base para implementar y optimizar queries en RDBMS
 - Principales operaciones y funciones del los módulos internos de la mayoría de los sistemas relacionales están basados en operaciones del AR

- Álgebra Relacional. Consiste de un conjunto de elementos con unas propiedades operacionales determinadas que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen.
- Especifica un lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación
- Importancia.
 - Provee fundamento formal a las operaciones asociadas al modelo relacional
 - Base para implementar y optimizar queries en RDBMS
 - O Principales operaciones y funciones del los módulos internos de la mayoría de los sistemas relacionales están basados en operaciones del AR
- Técnica. Procedural/axiomático (a diferencia del Cálculo Relacional que es de tipo declarativo, aquí el orden de evaluación de las expresiones importa).

- Algebra Relacional. Consiste de un conjunto de elementos con unas propiedades operacionales determinadas que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen.
- Especifica un lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación
- Importancia.
 - Provee fundamento formal a las operaciones asociadas al modelo relacional
 - Base para implementar y optimizar queries en RDBMS
 - O Principales operaciones y funciones del los módulos internos de la mayoría de los sistemas relacionales están basados en operaciones del AR
- Técnica. Procedural/axiomático (a diferencia del Cálculo Relacional que es de tipo declarativo, aquí el orden de evaluación de las expresiones importa).
- Operadores. Unarios y Binarios: toman relaciones y el resultado son relaciones.

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición lógica (evalua a verdadero o falso) sobre los (valores de los) atributos en la relación (=, ≠, ≤, ≥, etc).
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición lógica (evalua a verdadero o falso) sobre los (valores de los) atributos en la relación (=, ≠, ≤, ≥, etc).
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición lógica (evalua a verdadero o falso) sobre los (valores de los) atributos en la relación (=, ≠, ≤, ≥, etc).
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición lógica (evalua a verdadero o falso) sobre los (valores de los) atributos en la relación (=, ≠, ≤, ≥, etc).
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

ı	DNI	Nombre	Sexo	Salario
	20222333	Diego	М	\$20.000,00
	33456234	Laura	F	\$25.000,00
	45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F} AND Salario > \$15.000 (EMPLEADO)

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición lógica (evalua a verdadero o falso) sobre los (valores de los) atributos en la relación (=, ≠, ≤, ≥, etc).
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F} AND Salario > \$15.000 (EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición lógica (evalua a verdadero o falso) sobre los (valores de los) atributos en la relación (=, ≠, ≤, ≥, etc).
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\sigma_{Sexo=F}(EMPLEADO)$

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F} AND Salario > \$15.000 (EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00

• Genera una partición horizontal de la relación

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado).

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas.

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad.

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$
- Cascada de SELECTs. $\sigma_{c_1}(\sigma_{c_2}(...\sigma_{c_n}(R))) = \sigma_{c_1 \text{ AND } c_2 \text{ AND } ... \text{ AND } c_n}(R)$

- Operador Unario. Se aplica a una sola relación
- Grado (aridad del resultado). $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$
- Cascada de SELECTs. $\sigma_{c_1}(\sigma_{c_2}(...\sigma_{c_n}(R))) = \sigma_{c_1 \text{ AND } c_2 \text{ AND } ... \text{ AND } c_n}(R)$
- SQL. Se especifica típicamente en la cláusula WHERE
- Ejemplo. $\sigma_{Sexo=F\ AND\ Salario>\$15.000}(EMPLEADO)$ se puede corresponder con:

SELECT *
FROM EMPLEADO
WHERE Sexo=F AND Salario>\$15.000;

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI, Salario} (EMPLEADO)

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI, Salario} (EMPLEADO)

DNI	Salario
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI}, Salario</sub> (EMPLEADO)

DNI	Salario
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

• Genera una partición vertical de la relación

- Operador Unario. Se aplica a una sola relación
- Grado.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(EMPLEADO)$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• π_{Sexo}(EMPLEADO)

Sexo
М
F

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• π_{Sexo}(EMPLEADO)

Sexo
М
F

Conservación # tuplas.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• π_{Sexo}(EMPLEADO)

• Conservación # tuplas. En $\pi_{< lista\ de\ atributos>}(R)$, si $< lista\ de\ atributos>$ es súper clave de R entonces $|\pi_{< lista\ de\ atributos>}(R)|=|R|$

AR - PROJECT - Propiedades (Cont.)

Conmutatividad.

AR - PROJECT - Propiedades (Cont.)

• Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT

AR - PROJECT - Propiedades (Cont.)

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad. EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad. EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

Е	N	1P	L	E	A	D	C

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEAD

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo
М
F

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo
М
F

• $\pi_{Nombre, Sexo}(\pi_{Sexo}(EMPLEADO))$

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

_

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo
М
F

• $\pi_{Nombre, Sexo}(\pi_{Sexo}(EMPLEADO))$ iNO ES POSIBLE!

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo
М
F

- $\pi_{Nombre,Sexo}(\pi_{Sexo}(EMPLEADO))$ iNO ES POSIBLE!
- SQL. Se especifica típicamente en la cláusula SELECT DISTINCT
- **Ejemplo.** $\pi_{Sexo,Salario}(EMPLEADO)$ se puede corresponder con:

SELECT DISTINCT Sexo, Salario **FROM** EMPLEADO

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_S(R)$ ó $\rho(A_1 \rightarrow B_1, ..., A_n \rightarrow B_n, R)$
- **Ejemplo 1.** Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_S(R)$ ó $\rho(A_1 \rightarrow B_1, ..., A_n \rightarrow B_n, R)$
- **Ejemplo 1.** Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Nombre, Sexo}(\sigma_{Salario \geq \$15.000}(EMPLEADO))$

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_S(R)$ ó $\rho(A_1 \rightarrow B_1, ..., A_n \rightarrow B_n, R)$
- Ejemplo 1. Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- $\pi_{Nombre, Sexo}(\sigma_{Salario} > \$15.000(EMPLEADO))$
 - \bullet $\rho(SALARIO_MAYOR, \sigma_{Salario}>\$15.000(EMPLEADO))$

SALARIO MAYOR

SALANIO_MATON			
DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00

RESULT

Nombre	Sexo
Diego	М
Laura	F

• Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\rho(EMP(DNI \rightarrow id, Salario \rightarrow Ingreso), \pi_{DNI, Salario}(EMPLEADO))$

• Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\rho(\mathsf{EMP}(\mathsf{DNI} \to \mathsf{id}, \mathsf{Salario} \to \mathsf{Ingreso}), \pi_{\mathsf{DNI}, \mathsf{Salario}}(\mathsf{EMPLEADO}))$ EMP

id	Ingreso	
20222333	\$20.000,00	
33456234	\$25.000,00	
45432345	\$10.000,00	

Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\rho(\mathsf{EMP}(\mathsf{DNI} \to \mathsf{id}, \mathsf{Salario} \to \mathsf{Ingreso}), \pi_{\mathsf{DNI}, \mathsf{Salario}}(\mathsf{EMPLEADO}))$ FMP

id	Ingreso	
20222333	\$20.000,00	
33456234	\$25.000,00	
45432345	\$10.000,00	

- SQL. Se especifica típicamente en la cláusula AS
- Ejemplo.

SELECT EMP.DNI AS id, EMP.Salario AS Ingreso FROM EMPLEADO AS EMP

AR - Ejercicio 1

VUELO

Número Origen Destino Salida CDG 345 MAD 12:30 321 MAD ORY 19:05 165 I HR 09:55 903 CDG LHR 14:40 447 CDG LHR 17:00

AEROPUERTO

Charles de Gaulle

Nombre

Baraias

Gatwick

Orlv

Heathrow

Código

MAD

LGW

LHR

ORY

Ciudad Madrid Londres Londres París París

PASA JERO Nombre María

Pedro

Isabel

DNI

123

456

789

DNI	Nro_Vuelo	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

RESERVA

- Retornar Código y Nombre de los aeropuertos de Londres
- $\cite{Qué retorna} \ \rho(\textit{Cities}(\textit{Ciudad} \rightarrow \textit{City}), \pi_{\textit{Ciudad}}(\sigma_{\textit{C\'odigo} = \textit{ORY OR C\'odigo} = \textit{CDG}}(\textit{AEROPUERTO})))$
- Obtener los números de vuelo que van desde CDG hacia LHR
- Obtener los números de vuelo que van desde CDG hacia LHR o viceversa
- **1** Devolver las fechas de reservas cuyos precios son mayores a \$200

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \ tipo(A_i) = tipo(B_i)$

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \ tipo(A_i) = tipo(B_i)$
- UNION. R ∪ S. Relación que incluye todas las tuplas que están en R, S o en ambas relaciones a la vez. Duplicados son eliminados
- INTERSECTION. $R \cap S$. Relación que incluye todas las tuplas que están a la vez en R y S
- SET DIFFERENCE (o MINUS). R-S. Relación que incluye todas las tuplas que están en R, pero no incluye a aquellas que aparecen en S

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \ tipo(A_i) = tipo(B_i)$
- UNION. R ∪ S. Relación que incluye todas las tuplas que están en R, S o en ambas relaciones a la vez. Duplicados son eliminados
- INTERSECTION. $R \cap S$. Relación que incluye todas las tuplas que están a la vez en R y S
- ullet SET DIFFERENCE (o MINUS). R-S. Relación que incluye todas las tuplas que están en R, pero no incluye a aquellas que aparecen en S
- Convención. Relación resultante conserva los nombres de atributo de la primer relación.

Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

• $\rho(RESULT_1, ALUMNOS_BD \cup ALUMNOS_TLENG)$

Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

• $\rho(RESULT_1, ALUMNOS_BD \cup ALUMNOS_TLENG)$

RESULT_1

id	Nombre
1	Diego
2	Laura
3	Marina
4	Alejandro

Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

• $\rho(RESULT_2, ALUMNOS_BD \cap ALUMNOS_TLENG)$

Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

• $\rho(RESULT_2, ALUMNOS_BD \cap ALUMNOS_TLENG)$

RESULT 2

id	Nombre
2	Laura

• Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS TLENG

id	Nombre
2	Laura
4	Alejandro

ρ(RESULT_3, ALUMNOS_BD – ALUMNOS_TLENG)

Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS TLENG

id	Nombre
2	Laura
4	Alejandro

• $\rho(RESULT_3, ALUMNOS_BD - ALUMNOS_TLENG)$

RESULT_3

id	Nombre
1	Diego
3	Marina

Conmutatividad.

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.

Conmutatividad.

- $R \cup S = S \cup R$
- $R \cap S = S \cap R$
- En general, $R S \neq S R$

Asociatividad.

- $R \cup (S \cup T) = (R \cup S) \cup T$
- $R \cap (S \cap T) = (R \cap S) \cap T$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
- Equivalencia. $R \cap S =$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
- **Equivalencia.** $R \cap S = ((R \cup S) (R S)) (S R)$

Conmutatividad.

- $R \cup S = S \cup R$
- $R \cap S = S \cap R$
- En general, $R S \neq S R$

Asociatividad.

- $R \cup (S \cup T) = (R \cup S) \cup T$
- $R \cap (S \cap T) = (R \cap S) \cap T$
- **Equivalencia.** $R \cap S = ((R \cup S) (R S)) (S R)$
- SQL 1. Operaciones en SQL UNION, INTERSECT, EXCEPT funcionan como en AR
- SQL 2. Operaciones en SQL UNION ALL, INTERSECT ALL, EXCEPT ALL no eliminan duplicados

AR - Ejercicio 2

VUELO

Número Origen Destino Salida CDG 345 MAD 12:30 321 MAD ORY 19:05 165 LHR 09:55 903 CDG LHR 14:40 447 CDG LHR 17:00

AEROPUERTO

PASAJERO

RESERVA

и.			
1	Código	Nombre	Ciudad
1	MAD	Barajas	Madrid
]	LGW	Gatwick	Londres
4	LHR	Heathrow	Londres
J	ORY	Orly	París
	CDG	Charles de Gaulle	París

DNI	Nombre
123	María
456	Pedro
789	Isabel

DNI	Nro_Vuelo	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

- lacktriangle Devolver los códigos de vuelo que tienen reservas generadas (utilizar \cap)
- 2 Devolver los códigos de vuelo que aún no tienen reservas
- 3 Retornar los códigos de aeropuerto de los que parten o arriban los vuelos

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS
- Ejemplo. PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS
- Ejemplo. PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

• ρ(RESULT, PERSONA X NACIONALIDADES)

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS
- Ejemplo. **PERSONA**

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONAL IDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

• ρ(RESULT, PERSONA X NACIONALIDADES) RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Diego	AR	BR	Brasilera
Diego	AR	CH	Chilena
Laura	BR	AR	Argentina
Laura	BR	BR	Brasilera
Laura	BR	CH	Chilena
Marina	AR	AR	Argentina
Marina	AR	BR	Brasilera
Marina	AR	CH	Chilena

• Unión compatible. Las relaciones no tienen que ser unión compatibles

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado.

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado. Si T = R X S entonces grado(T) = grado(R) + grado(S)

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado. Si T = R X S entonces grado(T) = grado(R) + grado(S)
- SQL. CROSS JOIN

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. R ⋈_{<condición>} S
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. $R \bowtie_{< condición >} S$
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. R ⋈_{< condición>} S
- Ejemplo.

PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	
BR	Brasilera	

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Laura	BR	BR	Brasilera
Marina	AR	AR	Argentina

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición
- Condición 1. En general, formato de condición de JOIN entre R y S:
 < condición > AND < condición > AND...AND < condición >
- Condición 2. Forma de < condición >es $A_i \theta B_j$, siendo A_i atributo de R y B_j atributo de S
- Condición 3. $dom(A_i) = dom(B_j)$
- Condición 4. $\theta \in \{=, <, \leq, >, \geq, \neq\}$

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición
- Condición 1. En general, formato de condición de JOIN entre R y S:
 condición > AND < condición > AND...AND < condición >
- Condición 2. Forma de < condición > es $A_i \theta B_j$, siendo A_i atributo de R y B_j atributo de S
- Condición 3. $dom(A_i) = dom(B_j)$
- Condición 4. $\theta \in \{=, <, \le, >, \ge, \ne\}$
- NULL. Tuplas cuyos atributos de JOIN son NULL o cuya condición es falsa no aparecen en el resultado

• EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.

- **EQUIJOIN.** JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

- **EQUIJOIN.** JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

- **EQUIJOIN.** JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Laura	BR	BR	Brasilera
Marina	AR	AR	Argentina

- EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Laura	BR	BR	Brasilera
Marina	AR	AR	Argentina

- NATURAL JOIN. Realiza el JOIN entre campos de mismo nombre y deja sólo uno de los campos duplicados
- Notación. $R \bowtie S$ (también en la bibliografía R * S)
- Requerimiento. Requiere que atributos de JOIN tengan el mismo nombre. De no ser el caso, se debe hacer un RENAME previo

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

- $\bullet \quad \rho(\textit{NACIONALIDADES_TEMP}(\textit{IDN} \rightarrow \textit{Nacionalidad}, \textit{Detalle} \rightarrow \textit{Detalle}), \\ \pi_{\textit{IDN}, \textit{Detalle}}(\textit{NACIONALIDADES}))$
- $\rho(RESULT, PERSONA \bowtie NACIONALIDADES_TEMP)$

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

- $\bullet \quad \rho(\textit{NACIONALIDADES_TEMP}(\textit{IDN} \rightarrow \textit{Nacionalidad}, \textit{Detalle} \rightarrow \textit{Detalle}), \\ \pi_{\textit{IDN}, \textit{Detalle}}(\textit{NACIONALIDADES}))$
- $\rho(RESULT, PERSONA \bowtie NACIONALIDADES_TEMP)$

RESULT

Nombre	Nacionalidad	Detalle
Diego	AR	Argentina
Laura	BR	Brasilera
Marina	AR	Argentina

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad
Diego	AR
Laura	BR
Marina	AR

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
СН	Chilena

- $\bullet \quad \rho(\textit{NACIONALIDADES_TEMP}(\textit{IDN} \rightarrow \textit{Nacionalidad}, \textit{Detalle} \rightarrow \textit{Detalle}), \\ \pi_{\textit{IDN}, \textit{Detalle}}(\textit{NACIONALIDADES}))$
- $\rho(RESULT, PERSONA \bowtie NACIONALIDADES_TEMP)$

RESULT

Nombre	Nacionalidad	Detalle
Diego	AR	Argentina
Laura	BR	Brasilera
Marina	AR	Argentina

- Tamaño resultado JOIN(S,R). Puede ir de 0 a S*R registros
- Selectividad de JOIN. Es una tasa y corresponde a: $\frac{|resultado\ JOIN(S,R)|}{|S|*|R|}$

- SQL. Se Puede realizar de múltiples maneras.
- Ejemplo.

 $\rho(NACIONALIDADES_TEMP(IDN \rightarrow Nacionalidad, Detalle), \pi_{IDN, Detalle}(NACIONALIDADES)))$ $\rho(RESULT, PERSONA \bowtie NACIONALIDADES_TEMP)$ se puede corresponder con:

SELECT Persona.Nombre, Persona.Nacionalidad, NACIONALIDADES.Detalle FROM PERSONA, NACIONALIDADES WHERE PERSONA.Nacionalidad=NACIONALIDADES.IDN;

- INNER JOIN. JOIN donde tuplas que no cumplen condición de JOIN son eliminadas del resultado (Ej. NULL en atributo de JOIN)
- OUTER JOIN. JOIN en el cual se incorpora adicionalmente al resultado las tuplas de R, S, o ambas relaciones, que no cumplen la condición de JOIN

- INNER JOIN. JOIN donde tuplas que no cumplen condición de JOIN son eliminadas del resultado (Ej. NULL en atributo de JOIN)
- OUTER JOIN. JOIN en el cual se incorpora adicionalmente al resultado las tuplas de R, S, o ambas relaciones, que no cumplen la condición de JOIN
- LEFT OUTER JOIN. R ⋈ S. Conserva todas las tuplas de R. Si no se encuentra ninguna tupla de S que cumpla con condición de JOIN, entonces los atributos de S en el resultado se completan en NULL

Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	BR
Laura	NULL
Marina	AR
Santiago	UY

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	BR
Laura	NULL
Marina	AR
Santiago	UY

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

NACIONALIDADES

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	BR
Laura	NULL
Marina	AR
Santiago	UY

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

 $\bullet \ \ \rho(\textit{RESULT}, \textit{PERSONA} \ \bowtie \ \ _{\textit{Nacionalidad} = \textit{IDN}} \ \textit{NACIONALIDADES})$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

Ejemplo.

PERSONA

BR
NULL
AR
UY

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

Ejemplo.

PERSONA

Nacionalidad
BR
NULL
AR
UY

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
СН	Chilena

• $\rho(RESULT, PERSONA \bowtie_{Nacionalidad=IDN} NACIONALIDADES)$

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

 \bullet $\rho(RESULT, PERSONA <math>\bowtie$ Nacionalidad=IDN NACIONALIDADES)

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Laura	NULL	NULL	NULL
Marina	AR	AR	Argentina
Santiago	UY	NULL	NULL

AR - OUTER JOIN (Cont.)

- RIGHT OUTER JOIN. R ⋈ S. Conserva todas las tuplas de S. Si no se encuentra ninguna tupla de R que cumpla con condición de JOIN, entonces los atributos de R en el resultado se completan en NULL
- SQL. Las tres operaciones de OUTER JOIN son parte del estándar SQL2

AR - Ejercicio 3

VUELO

Número Origen Destino Salida CDG 345 MAD 12:30 321 MAD ORY 19:05 09:55 165 I HR 903 CDG LHR 14:40 447 CDG LHR 17:00

AEROPUERTO

PASAJERO DNI | Nombr

DNI Nro Vuelo Fecha

1	Código	Nombre	Ciudad
	MAD	Barajas	Madrid
]	LGW	Gatwick	Londres
4	LHR	Heathrow	Londres
J	ORY	Orly	París
	CDG	Charles de Gaulle	París

DNI	Nombre
123	María
456	Pedro
789	Isabel

DNI	Nro_Vuelo	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

RESERVA

- 10 Devolver el nombre de la ciudad de partida del vuelo número 165
- Retornar el nombre de las personas que realizaron reservas a un valor menor a \$200
- Obtener Nombre, Fecha y Destino del Viaje de todos los pasajeros que vuelan desde Madrid

- Función. Retorna los valores de R que se encuentran emparejados con TODOS los valores de S
- Notación. $R \div S$. Requiere que atributos de $S \subset$ atributos de R. Resultado contiene atributos de R menos atributos de S

• Ejemplo.

BD	
PLP	
BD	
PLP	
TLENG	
BD	
TLENG	
BD	
PLP	
TLENG	

MATERIAS_1

	Materia	
	BD	
$\overline{}$		-

MATERIAS_2

Materia	
BD	
TLENG	

MATERIAS_3

Materia
BD
PLP
TLENG

• Ejemplo. ALUMNOS

ALUMINOS		
Nombre	Materia	
Diego	BD	
Diego	PLP	
Laura	BD	
Laura	PLP	
Laura	TLENG	
Marina	BD	
Marina	TLENG	
Santiago	BD	
Santiago	PLP	
Santiago	TLENG	

ALUMNOS ÷ MATERIAS_1

MATERIAS 1

Materia	
BD	

MATERIAS 2

 ٠.		٠.,	
М	at	eri	а
BI	D		
TI	LE	N	G

MATERIAS_3

Materia
BD
PLP
TLENG

• Ejemplo.

Nombre	bre Materia	
Diego	BD	
Diego	PLP	
Laura	BD	
Laura	PLP	
Laura	TLENG	
Marina	BD	
Marina	TLENG	
Santiago	BD	
Santiago	PLP	
Santiago	TLENG	

MATERIAS_1

Materia	
BD	

MATERIAS_2

Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS ÷ MATERIAS_1

Nombre
Diego
Laura
Marina
Santiago

Ejemplo. **ALLIMNIOS**

Nombre	Materia
Diego	BD
Diego	PLP
Laura	BD
Laura	PLP
Laura	TLENG
Marina	BD
Marina	TLENG
Santiago	BD
Santiago	PLP
Santiago	TLENG

MATERIAS 1

•••	•	•	т.	٠.,	
	١	Λ	at	eri	a
	Е	3[)		

MATERIAS_2

M	at	eri	a
ΒI	D		
ΤI	LE	N	G

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS ÷ MATERIAS _2 ALUMNOS : MATERIAS_1

	Nombre
ſ	Diego
ſ	Laura
	Marina
ľ	Santiago

Ejemplo. ALUMNOS

Nombre	Materia
Nombre	iviateria
Diego	BD
Diego	PLP
Laura	BD
Laura	PLP
Laura	TLENG
Marina	BD
Marina	TLENG
Santiago	BD
Santiago	PLP
Santiago	TLENG

MATERIAS 1

•				
	Ν	1at	er	ia
	В	D		

MATERIAS_2

Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS÷MATERIAS 1

1105 . 1111 ti E
Nombre
Diego
Laura
Marina
Santiago

ALUMNOS - MATERIAS 2

Nombre
Laura
Marina
Santiago

Ejemplo. ALLIMNIOS

Nombre	Materia
Diego	BD
Diego	PLP
Laura	BD
Laura	PLP
Laura	TLENG
Marina	BD
Marina	TLENG
Santiago	BD
Santiago	PLP
Santiago	TLENG

MATERIAS 1

• •	٠	•	ь.	٠.,	
	١	Λ	at	eri	ia
	E	31	D		

MATERIAS 2

=
Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS - MATERIAS 1

Nombre
Diego
Laura
Marina
Santiago

Nombre Laura Marina Santiago

ALUMNOS : MATERIAS 2 ALUMNOS - MATERIAS 3

Ejemplo. ΔΙΙΜΝΟς

Materia
BD
PLP
BD
PLP
TLENG
BD
TLENG
BD
PLP
TLENG

MATERIAS 1

.,	•	•	_	٠,	•••		
	١	Λ	at	:6	ri	ia	
	E	31	D				

MATERIAS 2

,,, (, L, (,), (S-
Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS÷MATERIAS 1

1000 . 1011 II E
Nombre
Diego
Laura
Marina
Santiago

ALUMNOS ÷ MATERIAS _2

•	NOS. WATE
	Nombre
	Laura
	Marina
	Santiago

ALUMNOS÷MATERIAS_3

Nombre	
Laura	
Santiago	

• Operación compuesta. Se puede expresar como secuencia de otras operaciones $(\pi, X, -)$

• Operación compuesta. Se puede expresar como secuencia de otras operaciones $(\pi, X, -)$

En ejemplo anterior (ALUMNOS÷MATERIAS_3):

- $\rho(TEMP_1, \pi_{Nombre}(ALUMNOS))$
- $\rho(TEMP_2, \pi_{Nombre}((TEMP_1 X MATERIAS_3) ALUMNOS))$
- $\rho(RESULT, TEMP_1 TEMP_2)$

TEMP 1

Nombre
Diego
Laura
Marina
Santiago

TEMP 2

Nombre
Diego
Marina

RESULT

NESOLI
Nombre
Laura
Santiago

• Operación compuesta. Se puede expresar como secuencia de otras operaciones $(\pi, X, -)$

En ejemplo anterior (ALUMNOS÷MATERIAS_3):

- $\rho(TEMP_1, \pi_{Nombre}(ALUMNOS))$
- $\rho(TEMP_2, \pi_{Nombre}((TEMP_1 X MATERIAS_3) ALUMNOS))$
- $\rho(RESULT, TEMP_1 TEMP_2)$

τ	$\overline{}$	ΛЛ	-1

Nombre
Diego
Laura
Marina
Santiago

TEMP 2

1 = 1111 ==	
Nombre	
Diego	
Marina	

RESULT

Nombre
Laura
Santiago

• SQL. No suele implementar DIVISION

AR - Bibliografía

 Capítulo 6 (hasta 6.5 inclusive) Elmasri/Navathe - Fundamentals of Database Systems, 6th Ed., Pearson, 2011.

