10707 Deep Learning: Spring 2021

Andrej Risteski

Machine Learning Department

Lecture 2:

Representational power of neural networks

Neural network basics: the artificial neuron

Neuron **pre-activation**:

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^T \mathbf{x}$$

Neuron post-activation:

$$h(\mathbf{x}) = \sigma(b + \mathbf{w}^T \mathbf{x})$$

Where:

w are the **weights** (parameters) b is the **bias** term $\sigma(\cdot)$ is called the **activation function**

Linear activation function:

$$\sigma(a) = a$$

- Sometime No nonlinear transformation
- So No output squashing
- Poor representational power (linear composed w/ linear = linear)

Sigmoid activation function:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- Squashes the neuron's output between 0 and 1: can be interpreted as P(ouput = 1|a)(i.e. **logistic classifier**)
- Always positive
- Sounded
- Strictly Increasing

Hyperbolic tangent ("tanh") activation function:

- Squashes neuron's output between -1 and 1
- S Can be positive or negative
- Sounded
- Strictly increasing

$$\sigma(a) = \tanh(a)$$

$$= \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Rectified linear ("ReLU") activation function:

$$\sigma(a) = \max(a, 0)$$

- Sounded below by 0 (always non-negative)
- Tends to produce units with sparse activities
- Solution
 Not upper bounded
- Strictly increasing

Single Hidden Layer Neural Net

Hidden layer **pre-activation**:

$$a(x) = b^{(1)} + W^{(1)}x$$

$$a(x)_i = b_i^{(1)} + \sum_j W_{i,j}^{(1)} x_j$$

Hidden layer **post-activation**:

$$h(x) = \sigma(a(x))$$

Output layer activation:

$$f(x) = o(b^{(2)} + w^{(2)^T} h^{(1)}(x))$$

Output activation function

Softmax output activation

In multi-way classification, we need multiple outputs (1 per class)

Natural: model calculates conditional probabilities P(ouput = c|x)

Softmax activation function at the output

$$\mathbf{o}(\mathbf{a}) = \operatorname{softmax}(\mathbf{a}) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \dots \frac{\exp(a_C)}{\sum_c \exp(a_c)}\right]^\top$$

- S strictly positive
- sums to one

Predict class with the highest estimated class conditional probability.

Multilayer Neural Net

Consider a network with L hidden layers.

Layer **pre-activations**:

$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)$$

Hidden layer post-activations:

$$\boldsymbol{h}^{(k)}(\boldsymbol{x}) = \sigma(\boldsymbol{a}^{(k)}(\boldsymbol{x}))$$

Output layer activation:

$$h^{(L+1)}(x) = o\left(a^{(L+1)}(x)\right) = f(x)$$

Loss functions

Recall: typical approach is to minimize a training loss l over predictors \mathcal{F} :

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(x,y): \text{training samples}} l(f(x), y)$$

Common losses:

$$l_2$$
: $l(f(x), y) = ||f(x) - y||^2$, more common for **regression**, y can be vector or scalar

$$f(x) = \langle w, x \rangle$$

$$f(x) = \sum_{i} a_{i} x^{i}$$

Loss functions

Recall: typical approach is to minimize a training loss l over predictors \mathcal{F} :

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(x,y): \text{training samples}} l(f(x), y)$$

Common losses:

$$l_2$$
: $l(f(x), y) = ||f(x) - y||^2$, more common for **regression**, y can be vector or scalar

$$\mathbf{0} - \mathbf{1}$$
: $l(f(x), y) = 1_{f(x) \neq y}$, ideal loss for **classification**, but poorly behaved for optimization

$$f(x) = sgn(\langle w, x \rangle)$$
 $f(x) = sgn(\sum_{i} a_{i}x^{i})$

Loss functions

Recall: typical approach is to minimize a training loss l over predictors \mathcal{F} :

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(x,y): \text{training samples}} l(f(x), y)$$

Common losses:

$$l_2$$
: $l(f(x), y) = ||f(x) - y||^2$, more common for **regression**, y can be vector or scalar

$$\mathbf{0} - \mathbf{1}$$
: $l(f(x), y) = 1_{f(x) \neq y}$, ideal loss for **classification**, but poorly behaved for optimization

Log-loss/:
$$cross\ entropy$$
: $l(f(x), y) = -\log f(x)_y$, for f using a **softmax** output layer, well-behaved gradients

For softmax, $f(x)_c = P(\text{output} = c|x)$, so we maximize the log-probability of correct label. Generalizes naturally when y **not** deterministic fn of x in \mathcal{D} :

$$-\log f(x)_y = -\sum_c 1_{y=c} \log f(x)_c = -\sum_c 1_{y=c} \log P(\text{output} = c|x)$$

Taking expectation of y: $\mathbb{E}_{y|x}l(f(x), y) = -\mathbb{E}_{y|x}\log P(\text{output} = y \mid x)$

Basic optimization algorithm: stochastic gradient descent

Recall: typical approach is to minimize a training loss l over predictors \mathcal{F} :

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(x,y): \text{training samples}} l(f(x), y)$$

Basic algorithm (Stochastic Gradient Descent)

Glossing over many details. Stay tuned.

- Initialize:
$$\theta_0 := \{W^{(1)}, b^{(1)}, \dots, W^{(L+1)}, b^{(L+1)}\}$$

- For t=1 to T
 - Pick a uniformly random training example (x, y):

- Set
$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} l(f_{\theta}(x, y))$$

Neural nets:

Step size

"Steepest" descent: direction of most (local) improvement

gradients can be efficiently calculated, using **backpropagation**

Supervised learning

Empirical risk minimization approach:

minimize a **training** loss l over a class of **predictors** \mathcal{F} :

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(x,y): \text{training samples}} l(f(x), y)$$

Three pillars:

- (1) How expressive is the class \mathcal{F} ? (Representational power)
- (2) How do we minimize the training loss efficiently? (Optimization)
- (3) How does \hat{f} perform on unseen samples? (Generalization)

Expressivity

What do we mean by expressivity?

Expressive = functions in class can represent "complicated" functions

Linear classification

The arguably simplest class of classifiers is **linear:**

$$f(x) = \langle w, x \rangle$$

$$f(x) = sgn(\langle w, x \rangle)$$

How do we make classifiers "more expressive"?

One pervasive idea in machine learning (from kernels onward): train a linear classifier on a **feature embedding** of data.

$$f(x) = \sum_{i=0}^{k} a_i x^i$$

For instance, we can write

$$f(x) = \langle a, \phi(x) \rangle$$
, where

$$a = (a_1, a_2, ..., a_k)^T, \phi(x) = (1, x, x^2, ..., x^k)$$

Hence, we first embed x via ϕ from \mathbb{R} into \mathbb{R}^k , and train a linear classifier on these new features.

How do we make classifiers "more expressive"?

By increasing degree we can increase expressiveness *a lot*:

For finite set of points $\{(x_1, y_1), ..., (x_n, y_n)\}$, $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$ by **Lagrange's interpolation theorem**, we can find a polynomial p of degree n-1, s.t. $\forall i, y_i = f(x_i)$

How do we make classifiers "more expressive"?

By increasing degree we can increase expressiveness *a lot*:

For any function f, we can **approximate it** on any compact set Ω by a sufficiently high degree polynomial: for every $\epsilon > 0$, $\exists p$ of sufficiently high degree, s.t. $\max_{x \in \Omega} |f(x) - p(x)| \le \epsilon$

(Stone-Weierstrass)

Vague intuition: think of Taylor series; near point x_0 , we have

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \cdots$$

$$f(x) = \langle w, \phi(x) \rangle,$$

$$\phi(x) = (1, x - x_0, (x - x_0)^2, ...,), w = (f(x_0), f'(x_0),)$$

Lots of choices!

The name of the game in **kernel methods** was choose a good embedding ϕ we explored. Lots of latitude here:

Polynomial kernel (in d dim.):

$$\phi(x) = (1, x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \dots, x_d^2, \dots, x_d^k)$$

Gaussian kernel (in 1d.):

$$\phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left(1, \sqrt{\frac{1}{1!}} \frac{x}{\sigma}, \sqrt{\frac{1}{2!}} \sqrt{\frac{1}{1!}} \left(\frac{x}{\sigma} \right)^2, \dots \right)$$

Choices of these kernels is closely related to something called the "kernel trick", which allows for cheap computation of the **kernel** $\langle \phi(x), \phi(y) \rangle$. Beyond the scope of this course!

Lots of choices!

The name of the game in **kernel methods** was choose a good embedding ϕ we explored. Lots of latitude here:

Polynomial kernel (in d dim.):

$$\phi(x) = (1, x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \dots, x_d^2, \dots, x_d^k)$$

Gaussian kernel (in 1d.):

$$\phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left(1, \sqrt{\frac{1}{1!}} \frac{x}{\sigma}, \sqrt{\frac{1}{2!}} \sqrt{\frac{1}{1!}} \left(\frac{x}{\sigma} \right)^2, \dots \right)$$

Choices of these kernels is closely related to something called the "kernel trick", which allows for cheap computation of the **kernel** $\langle \phi(x), \phi(y) \rangle$. Beyond the scope of this course!

Part of the deep learning story

Old school: hand-craft features

SIFT

Orientation Voting
Overlapping Blocks
Input Image
Cradient Image
Local Normalization

Textons

HoG

GIST

RIFT

Old school: hand-craft features

MFCC

Flux ZCR Rolloff

Old school: hand-craft features

Early inspirations from visual cortex

V1: Edge detection, etc.

V2: Extract simple visual properties (orientation, spatial frequency, color, etc)

V4: Detect object features of intermediate complexity

TI: Object recognition.

Image: Wang, Raj "On the Origin of Deep Learning."

What do deep networks learn?

Yosinski et al '15: http://yosinski.com/deepvis

Q: What "patterns" do neurons respond to?

A: From random start, do gradient descent to find an input for which neuron activation* is high.

*: This produces completely unrecognizable images – they are regularized w/ an image prior.

What do deep networks learn?

Yosinski et al '15: http://yosinski.com/deepvis

Q: What "patterns" do neurons respond to?

A: From random start, do gradient descent to find an input for which neuron activation* is high.

*: This produces completely unrecognizable images – they are regularized w/ an image prior.

"Universal" expressivity of neural networks

(1): Neural networks are **universal approximators**: given any Lipschitz f: $\mathbb{R}^d \to \mathbb{R}$, a **shallow** (3-layer) neural network with $\sim \left(\frac{1}{\epsilon}\right)^d$ neurons can approximate it to within ϵ error.

"curse of dimensionality"

Universal approximation I: Lipschitz function are approximable

Recall, a function $f: [0,1]^d \to \mathbb{R}$ is **L-Lipschitz** (in an l_∞ sense) if: $\forall x, y \in [0,1]^d$, $|f(x) - f(y)| \le L \max_{i \in [d]} |x_i - y_i|$

First, we show neural networks are **universal approximators**: given any Lipschitz function $f: [0,1]^d \to \mathbb{R}$, a **shallow** (3-layer) neural network with $\sim \left(\frac{1}{\epsilon}\right)^d$ neurons can approximate it to within ϵ error.

Theorem: For any L-Lipschitz function $f: [0,1]^d \to \mathbb{R}$, there is a 3-layer neural network \hat{f} with $O\left(d\left(\frac{L}{\epsilon}\right)^d\right)$ ReLU neurons, s.t.

$$\int_{[0,1]^d} |f(x) - \hat{f}(x)| \, dx \le \epsilon$$

$$\mathbb{E}_{x \sim [0,1]^d} |f(x) - \hat{f}(x)|$$

l₁ error

Universal approximation I: Proof intuition

Part 1: using Lipschitzness, we can "query" the values of function f approximately by querying its values on a fine grid.

Part 2: we can approximate f as linear combination of "queries".

$$f(x) \approx \sum_{\text{cells } C_i} 1_{x \in C_i} f(x_i)$$

$$f(x) \approx \langle w, \phi(x) \rangle, \quad \phi(x) = (1(x \in C_i))_i$$

$$w = (f(x_i))_i$$

Universal approximation I: Proof intuition

Part 1: using Lipschitzness, we can "query" the values of function f approximately by querying its values on a fine grid.

Part 2: we can approximate f as linear combination of "queries".

$$f(x) \approx \sum_{\text{cells } C_i} 1_{x \in C_i} f(x_i)$$

$$f(x) \approx \langle w, \phi(x) \rangle, \quad \phi(x) = (1(x \in C_i))_i$$

$$w = (f(x_i))_i$$

Part 3: Approximate the indicators using ReLUs

Universal approximation I: Part 1, formally

Lemma: Let $f: [0,1]^d \to \mathbb{R}$ be L-Lipschitz and $P = (C_1, C_2, ..., C_N)$ a partition of $[0,1]^d$ into cells of side lengths at most δ . Consider any set $(x_1, x_2, ..., x_N), x_i \in C_i$. Then:

$$\sup_{i \in N} \sup_{y \in C_i} |f(y) - f(x_i)| \le L\delta$$

Proof: By Lipschitzness, we have

$$\forall i, y \in C_i: |f(y) - f(x_i)| \le L \max_{i \in [d]} |y - x_i| \le L\delta \square$$

Universal approximation I: Part 2, formally

Lemma: Let $f: [0,1]^d \to \mathbb{R}$ be 1-Lipschitz, $P = (C_1, C_2, ..., C_N)$ a partition of $[0,1]^d$ into rectangles of side lengths at most δ , and a set $(x_1, x_2, ..., x_N), x_i \in C_i$. Then,

$$g(\mathbf{x}) = \sum_{i=1}^{N} 1_{x \in C_i} f(x_i) \text{ satisfies } \sup_{x \in [0,1]^d} |f(\mathbf{x}) - g(\mathbf{x})| \le L \delta$$

Proof: Let $x \in C_i$.

Then, $1_{x \in C_i} = 1$, and $1_{x \in C_j} = 0$ for $j \neq i$.

So,
$$g(x) = f(x_i)$$
.

By Lemma 1,

$$|f(x) - g(x)| = |f(x) - f(x_i)| \le L \delta$$

Lemma: Let $C \subseteq \mathbb{R}^d$ be a cell, namely $C = \{x : x \in [l_i, r_i], i \in [d]\}$. Then, there exists a 2-layer network $\tilde{\tilde{h}}(x)$ of size O(d) and ReLU activation, s.t. $\int_{x \in [0,1]^d} \left| \tilde{\tilde{h}}(x) - 1(x \in [l_i, r_i], i \in [d]) \right| dx \to 0$

Proof: First, write indicator for cell as: For any $\gamma > 0$,

we'll take γ small

$$1(x \in C) = 1\left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

Why? x is in cell iff all the indicators $1(x_i \ge l_i) + 1(x_i \le r_i)$ are on. All these indicators are on iff they sum to 2d. (If at least one is off, they sum to 2d-1)

If we can approximate (scalar) indicators, we're all good!

 $\sigma(x) = \max(\mathbf{0}, x)$

Claim: For
$$\tau \geq 0$$
, $x \in \mathbb{R}$:

$$\left|1(x \ge 0), x \in \mathbb{R}:\right|$$

$$\left|1(x \ge 0) - \left(\sigma(\tau x) - \sigma(\tau x - 1)\right)\right| = \begin{cases} \le 1, & \text{if } 0 \le x \le 1/\tau \\ 0, & \text{otherwise} \end{cases}$$

Proof: Consider several cases:

Case 1,
$$x \le 0$$
: $1(x \ge 0) = 0$ and $\sigma(\tau x) - \sigma(\tau x - 1) = 0$, so $1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1)) = 0$

Case 2,
$$x \ge 1/\tau$$
: $1(x \ge 0) = 1$ and $\sigma(\tau x) - \sigma(\tau x - 1) = 1$, so $1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1)) = 0$

Case 3,
$$0 \le x \le 1/\tau$$
: $1(x \ge 0) = 1$ and $\sigma(\tau x) - \sigma(\tau x - 1) = \tau x$, so $|1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1))| = 1 - \tau x \le 1$

$$h(x) := 1 \left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i) \right) \ge 2d - 1 + \gamma \right)$$

Replace all indicators by difference of ReLUs. What is the error?

For brevity, let $\tilde{1}(x \ge 0) = \sigma(\tau x) - \sigma(\tau x - 1)$, for some τ we will choose.

Let
$$\tilde{h}(x) \coloneqq 1\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

 $\tilde{\tilde{h}}(x) \coloneqq \tilde{1}\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$

(Change the approximations "iteratively".)

$$h(x) := 1\left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

$$\tilde{h}(x) := 1\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

$$\tilde{\tilde{h}}(x) := \tilde{1}\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

We have:

$$\int_{x \in [0,1]} \left| \tilde{h}(x) - h(x) \right| dx = \int_{x \in [0,1]^d} \left| \tilde{h}(x) - \tilde{h}(x) + \tilde{h}(x) - h(x) \right| dx$$

$$Triangle inequality \leq \int_{x \in [0,1]^d} \left(\left| \tilde{h}(x) - \tilde{h}(x) \right| + \left| \tilde{h}(x) - h(x) \right| \right) dx$$

Let's handle two terms one by one.

$$\tilde{h}(x) \coloneqq 1\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

$$\tilde{\tilde{h}}(x) \coloneqq \tilde{1}\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

$$\left|1(x \ge 0) - \left(\sigma(\tau x) - \sigma(\tau x - 1)\right)\right| = \begin{cases} \le 1, & \text{if } 0 \le x \le 1/\tau \\ 0, & \text{otherwise} \end{cases}$$

First:
$$\tilde{h}(x) - \tilde{h}(x) \neq 0$$
 only if $\exists i : x_i \in \left(l_i, l_i + \frac{1}{\tau}\right)$ or $x_i \in \left(r_i, r_i - \frac{1}{\tau}\right)$

Why: If
$$\tilde{\tilde{h}}(x) - \tilde{h}(x) \neq 0$$
, $\sum_{i} \tilde{1}(x_{i} \geq l_{i}) + \tilde{1}(x_{i} \leq r_{i}) - (2d - 1) - \gamma \in (0, \frac{1}{\tau})$;

If condition isn't satisfied, $\tilde{1} = 1$, so $\sum_{i} \tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) - (2d - 1)$ is integer, so cannot belong to interval for small enough $\gamma > 0$.

Hence,
$$\int_{x \in [0,1]^d} |\tilde{\tilde{h}}(x) - \tilde{h}(x)| \le \sum_i (\int_{\substack{x \in [0,1]^d \\ x_i \in (l_i, l_i + \frac{1}{\tau})}} 1 \, dx + \int_{\substack{x \in [0,1]^d \\ x_i \in (r_i, r_i - \frac{1}{\tau})}} 1 \, dx) \le \frac{2d}{\tau}$$

$$h(x) := 1 \left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i) \right) \ge 2d - 1 + \gamma \right)$$
$$\tilde{h}(x) := 1 \left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) \right) \ge 2d - 1 + \gamma \right)$$

$$\left|1(x \ge 0) - \left(\sigma(\tau x) - \sigma(\tau x - 1)\right)\right| = \begin{cases} \le 1, & \text{if } 0 \le x \le 1/\tau \\ 0, & \text{otherwise} \end{cases}$$

Second:
$$\int_{x \in [0,1]} \left| \tilde{h}(x) - h(x) \right| dx$$

Indicators are equal if inputs are equal

$$\leq \int_{x \in [0,1]^d} \left| 1 \left(\sum_{i=1}^d \left(1(x \geq l_i) + 1(x \leq r_i) \right) \neq \sum_{i=1}^d \left(\tilde{1}(x \geq l_i) + \tilde{1}(x \leq r_i) \right) \right) \right| dx$$

$$\leq \int_{x \in [0,1]^d} \sum_{i=1}^d 1 \left(1(x \geq l_i) \neq \tilde{1}(x \geq l_i) \right) + \sum_{i=1}^d 1 \left(1(x \leq r_i) \neq \tilde{1}(x \leq r_i) \right) dx$$

$$\leq 2d/\tau$$

$$h(x) := 1\left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

$$\tilde{h}(x) := 1\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

$$\tilde{\tilde{h}}(x) := \tilde{1}\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1 + \gamma\right)$$

Putting together, we have:

$$\int_{x \in [0,1]^d} \left| \tilde{\tilde{h}}(x) - h(x) \right| dx = \int_{x \in [0,1]^d} \left| \tilde{\tilde{h}}(x) - \tilde{h}(x) + \tilde{h}(x) - h(x) \right| dx$$

$$\leq 4d/\tau$$

Also, $\tilde{\tilde{h}}(x)$ is a 2-layer net with ReLU activations and O(d) nodes!

Universal approximation I: Putting everything together

By Part 1+2,
$$\sup_{x \in [0,1]^d} |f(x) - \sum_{i=1}^N 1_{x \in C_i} f(x_i)| \le L \delta$$

Moreover, the number of cells N can be bounded by $\left(\frac{1}{\delta}\right)^d$

By indicator approximation: can approximate arbitrarily well by taking $\tau \to \infty$ with a 2-layer ReLU net.

Combining the above two points, we get a $\left(\frac{1}{\delta}\right)^d$ —sized 3-layer net s.t.

$$\int_{[0,1]^d} |f(x) - \hat{f}(x)| \, dx \le L \, \delta$$

Taking $\delta = \frac{\epsilon}{L}$, the theorem follows.

Parting thoughts

All results we proved are **existential**: they prove that a good approximator exists. Finding one efficiently (much less so using gradient descent) is a different matter.

The choices of non-linearities are usually very **flexible**: most results of the type we saw can be re-proven using different non-linearities. (Examples in homework.)

Many other results of similar flavor. For instance, there are also results that deep, but narrow networks are universal approximators.