Mechanical System Dynamics

Exam Simulation

Structural properties:

Beams O₁A, AB and O₂B:

$$m_1 = 33.50 \text{ kg/m}$$
 $EA_1 = 8.85E8 \text{ N}$ $EJ_1 = 3.10E6 \text{ N} \cdot \text{m}^2$

Beams O₃D and O₄E:

$$m_2 = 10.30 \text{ kg/m}$$
 $EA_2 = 2.72E8 \text{ N}$ $EJ_2 = 6.55E5 \text{ N} \cdot \text{m}^2$

Mass and Mass Moment of Inertia of lumped masses in A, B and C:

$$M_1 = 20 \text{ kg}$$
 $I_1 = 0.04 \text{ kg} \cdot \text{m}^2$ $M_2 = 50 \text{ kg}$ $I_1 = 0.1 \text{ kg} \cdot \text{m}^2$

Assume a Rayleigh model for damping, say $[C] = \alpha \cdot [M] + \beta \cdot [K]$, with coefficient $\alpha = 1 \text{ s}^{-1}$ and coefficient $\beta = 1\text{E-}5 \text{ s}$.

- 1. Build a FEM model for the structure depicted in Figure 1, reliable in the frequency range 0 200 Hz. Save the figure of the undeformed structure in a file .fig as SNxxx1.fig where S is the first letter of your surname, N is the first letter of your name and xxx are the last three numbers of your ID number (Matricola) (example: Bruni Stefano 123456: BS456).
- 2. Compute the first 3 natural frequencies and mode shapes. Save the results in three files .fig as SNxxx2.fig, SNxxx3.fig and SNxxx4.fig. Obtain the modal mass and stiffness for the first 3 mode shapes.
- 3. Compute the Frequency Response Function in the band 0 200 Hz (resolution: 1 Hz) of vertical displacement of C and horizontal displacement of E due to a vertical force applied in C. Save the results as SNxxx5.fig and SNxxx6.fig. **Comment the results** (see table 1).
- 4. Compute the steady-state response of the horizontal acceleration of B due to a periodic force applied in the horizontal direction in A. The time history of the force is reported in Figure 2 (T = 0.1 s and $F_{max} = 1E5$ N). Neglect any contribution of the external force for harmonics higher than the third. Save the result as SNxxx7.fig. Moreover, identify the values of period T that produce a resonance condition for the structure in the frequency range 0 200 Hz (consider just the first three harmonics of the external force). **Describe your reasoning** (see table 1).
- 5. Compute the Frequency Response Function in the band 0-200 Hz (resolution: 1 Hz) of the axial load of the upper end of O_3D beam due to a horizontal force applied in C. Save the result as SNxxx8.fig.

6. Define a structural change able to increase at least of 40% the first natural frequency of the system without introducing elements in the space enclose by the main structure O_1ABO_2 and without increasing the mass of the system more than 10%. Any change of material is not allowed, all constraints must be applied at the level of points O_1 , O_2 , O_3 and O_4 . If the section of one or more beam is changed, the inertial and stiffness parameters m, EA, EJ must be modified consistently with the change in shape and/or size of the section itself, i.e. if k^2 is the ratio between the modified value of parameter EJ and the original one, the modified values of parameters EA and m will be obtained by multiplying the original values by k. Save the result as SNxxx9.fig. **Briefly describe the changes implemented**.

Figure 2. Time history of the horizontal periodic force applied in A.

Table 1

Surname	Name		ID number/ code SNxxx	
1.	<u> </u>			
File name .inp				
2.	<u> </u>			
1 st Natural Frequency [Hz]		m _{m1} [kg]	k _m	[N/m]
2 nd Natural Frequency [Hz]		m _{m2} [kg]	k _m	2 [N/m]
3 rd Natural Frequency [Hz]		m _{m3} [kg]	k_{mi}	3 [N/m]
3.				
Maximum amplitude of the ver				
Maximum amplitude of the hor		E		
Comment figures SNxxx5 and	SNxxx6			
4.				
5.				
Maximum amplitude of axial lo	oad			
6.				
File name .inp				
1 st Natural Frequency [Hz] for	the modified structure			

SUBMISSION OF RESULTS:

Create a MATLAB file with the commands needed to solve the exercise and save it as SNxxx.m (e.g. for Bruni Stefano 123456: BS456.m).

Compress all the results to be submitted (SNxxx.m, *.inp, and .fig files) in a file saved as SNxxx.zip (or SNxxx.rar) that must be submitted by uploading it on Beep, following the instructions below reported:

- Connect to website https://beep.metid.polimi.it/ and login by using your Person Code and Password;
- Select the course "Dinamica dei Sistemi Meccanici" and select the Tab "Consegne";
- Select the folder "Test_15_06_2015" and select the Tab "Aggiungi" and "Documento singolo";
- Fill the field "Titolo" with the code SNxxx (e.g. for Bruni Stefano 123456 BS456);
- Select your compressed file SNxxx.zip by clicking on "Sfoglia" and corfirm the upload by clicking on "Pubblica"