

planetmath.org

Math for the people, by the people.

juxtaposition of automata

Canonical name JuxtapositionOfAutomata

Date of creation 2013-03-22 18:03:51 Last modified on 2013-03-22 18:03:51

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771)
Entry type Definition
Classification msc 03D05
Classification msc 68Q45

Let $A = (S_1, \Sigma_1, \delta_1, I_1, F_1)$ and $B = (S_2, \Sigma_2, \delta_2, I_2, F_2)$ be two automata. We define the juxtaposition of A and B, written AB, as the sextuple $(S, \Sigma, \delta, I, F, \epsilon)$, as follows:

- 1. $S := S_1 \stackrel{\cdot}{\cup} S_1$, where $\stackrel{\cdot}{\cup}$ denotes disjoint union,
- 2. $\Sigma := (\Sigma_1 \cup \Sigma_2) \stackrel{\cdot}{\cup} \{\epsilon\},\$
- 3. $\delta: S \times \Sigma \to P(S)$ given by
 - $\delta(s, \epsilon) := I_2$ if $s \in F_1$, and $\delta(s, \epsilon) := \{s\}$ otherwise,
 - $\delta|(S_1 \times \Sigma_1) := \delta_1$,
 - $\delta|(S_2 \times \Sigma_2) := \delta_2$, and
 - $\delta(s, \alpha) := \emptyset$ otherwise (where $\alpha \neq \epsilon$).
- 4. $I := I_1$,
- 5. $F := F_2$.

Because S_1 and S_2 are considered as disjoint subsets of S, $I \cap F = \emptyset$. Also, from the definition above, we see that AB is an http://planetmath.org/AutomatonWithEpsilonTwith ϵ -transitions.

The way AB works is as follows: a word c = ab, where $a \in \Sigma_1^*$ and $b \in \Sigma_2^*$, is fed into AB. AB first reads a as if it were read by A, via transition function δ_1 . If a is accepted by A, then one of its accepting states will be used as the initial state for B when it reads b. The word c is accepted by AB when b is accepted by B.

Visually, the state diagram $G_{A_1A_2}$ of A_1A_2 combines the state diagram G_{A_1} of A_1 with the state diagram G_{A_2} of A_2 by adding an edge from each final node of A_1 to each of the start nodes of A_2 with label ϵ (the ϵ -transition).

Proposition 1. L(AB) = L(A)L(B)

Proof. Suppose c = ab is a words such that $a \in \Sigma_1^*$ and $b \in \Sigma_2^*$. If $c \in L(AB)$, then $\delta(q, a\epsilon b) \cap F \neq \emptyset$ for some $q \in I = I_1$. Since $\delta(q, a\epsilon b) \cap F_2 = \delta(q, a\epsilon b) \cap F \neq \emptyset$ and $b \in \Sigma_2^*$, we have, by the definition of δ , that $\delta(q, a\epsilon b) = \delta(\delta(q, a\epsilon), b) = \delta_2(\delta(q, a\epsilon), b)$, which shows that $b \in L(B)$ and $\delta(q, a\epsilon) \cap I_2 \neq \emptyset$. But $\delta(q, a\epsilon) = \delta(\delta(q, a), \epsilon)$, by the definition of δ again, we also have $\delta(q, a) \cap F_1 \neq \emptyset$, which implies that $\delta(q, a) = \delta_1(q, a)$. As a result, $a \in L(A)$.

Conversely, if $a \in L(A)$ and $b \in L(B)$, then for any $q \in I = I_1$, $\delta(q, a) = \delta_1(q, a)$, which has non-empty intersection with F_1 . This means that $\delta(q, a\epsilon) = \delta(\delta(q, a), \epsilon) = I_2$, and finally $\delta(q, a\epsilon b) = \delta(\delta(q, a\epsilon), b) = \delta(I_2, b)$, which has non-empty intersection with $F_2 = F$ by assumption. This shows that $a\epsilon b \in L(AB)_{\epsilon}$, or $ab \in L(AB)$.