Лабораторная работа №5

Модель Лотки - Вольтерры

Габриэль Тьерри

11 марта 2023

Содержание

Докладчик	4
Цель работы	5
Задание Материалы и методы	6
Ход работы	7
Решение на языке Julia	7
График	8
График	
Решение на языке Openmodelica	10
График	1
Выводы	12
Список литературы	13

Список таблиц

Список иллюстраций

1	Sol (Julia)	8
2	Изменение числа хищников и хищников(JULIA)	9
3	Изменение числа хишников и хишников(ОМ)	11

Докладчик

- Габриэль Тьерри
- студент НКНбд-01-20
- Факультет физико-математических и естественных наук
- Российский университет дружбы народов
- 1032204249

Цель работы

Реализовать на языках программирования Julia и Openmodelica модель Лотки-Вольтерры, также известную как моедль взаимодействия "хищник-жертва".

Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.47 * x(t) + 0.021 * x(t) * y(t) \\ \frac{dy}{dt} = 0.57 * y(t) - 0.044 * x(t) * y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях:

$$x_0 = 12, y_0 = 37$$

Найдите стационарное состояние системы.

Материалы и методы

- Язык программирования Julia
- Язык программирования Modelica
- Пакеты Plots, DifferentialEquations

Ход работы

Решение на языке Julia

1. На первом этапе смоедлировали задачу, используя язык программирования Julia. Получили следующий код:

```
begin
   import Pkg
   Pkg.add("LaTeXStrings")
   Pkg.activate()
   using\ Differential Equations
   using LaTeXStrings
   import Plots
end
begin
   X0 = 12.0
  Y0 = 37.0
   a = 0.47
   b = 0.021
   c = 0.57
   d = 0.044
end
```

```
\begin{split} &\text{function } F!(du,\,u,\,p,\,t) \\ &du[1] = -a^*u[1] + b^*u[1]^*u[2] \\ &du[2] = c^*u[2] - d^*u[1]^*u[2] \\ &\text{end} \\ \\ &begin \\ &U0 = [X0,\,Y0] \\ &T = [0.0,\,100.0] \\ &prob = ODEProblem(F!,\,U0,\,T) \\ &end \\ \end{split}
```

График

Рис. 1: Sol (Julia)

```
sol = solve(prob, saveat = 0.05)
```

В результате работы программы получили следующие результат.

График

Рис. 2: Изменение числа хищников и хищников(JULIA)

Plots.plot(sol)

Найдем стационарное состояние системы в точке ${\bf x}$

begin

$$\mathbf{x} = \mathbf{c}/\mathbf{d}$$

end

Найдем стационарное состояние системы в точке у

begin

$$y = a/b$$

 $\quad \text{end} \quad$

Решение на языке Openmodelica

2. На втором этапе смоделировали задачу в среде моделирования Openmodelica. Получили следующие код:

```
model LAB5 constant Real a=0.47; //значение a constant Real b=0.021; //значение b constant Real c=0.57; //значение c constant Real d=0.044;//значение d Real x;//хищники Real y;//жертвы initial equation x=12;//начальное количество хищников y=37;//начальное количество жертв equation der(x)=a^*x-b^*x^*y;//уравнение системы der(y)=-c^*y+d^*x^*y;//уравнение системы end LAB5;
```

В результате работы программы получили следующие результат.

График

Рис. 3: Изменение числа хищников и хищников(ОМ)

Выводы

В ходе выполнения лабораторной работы я научился строить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при заданных начальных условиях. Нашел стационарное состояние системы.

Список литературы