A Book of Abstract Algebra (2nd Edition)

	Chapter 28, Problem 2ED	Bookmark	Show all steps: ON	
	Problem			
	Let V be a finite-dimensional vector space. Let dim V designate the dimension of V . Prove each of the following: If U is a subspace of V , and dim $U = \dim V$, then $U = V$.			
	Step-by-step solution Step 1 of 3			
	By definition of subspace, it is known that subspace is some subset of any vector space which itself is a vector space or follows properties of subspace.			
	Comment			
	Step 2 of 3 Dimension of a subspace is a measure of how large it is. It can also be thought of as maximum numbers of independent vectors in a subspace. Comment Step 3 of 3 Here V is a given vector space and U is a subspace of V. Let vector space has dimension n, then			

there is set of maximum *n* possible linearly independent vectors. These vectors are said to span

Now consider any subspace U . If $\dim U = \dim V$, then set of n independent vectors span U . But			
we also know that any set of n independent vectors span V . This is only possible if U is			
coincident with V.			
Hence $\dim U = \dim V$			
Comment			