# Min Cost to Connect All Points (View)

You are given an array points representing integer coordinates of some points on a 2D-plane, where points[i] =  $[x_i, y_i]$ .

The cost of connecting two points  $[x_i, y_i]$  and  $[x_j, y_j]$  is the **manhattan distance** between them:  $|x_i - x_j| + |y_i - y_j|$ , where |val| denotes the absolute value of val.

Return *the minimum cost to make all points connected*. All points are connected if there is **exactly one** simple path between any two points.

## Example 1:



Input: points = [[0,0],[2,2],[3,10],[5,2],[7,0]]

Output: 20

### Explanation:



We can connect the points as shown above to get the minimum cost of 20.

Notice that there is a unique path between every pair of points.

### Example 2:

Input: points = [[3,12],[-2,5],[-4,1]]

Output: 18

#### **Constraints:**

- 1 <= points.length <= 1000
- $-106 \le x_i$ ,  $y_i \le 106$
- All pairs (x<sub>i</sub>, y<sub>i</sub>) are distinct.