CS61

USN 1 M S

* RAMAIAH Institute of Technology

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

SEMESTER END EXAMINATIONS - MAY 2023

Program : B.E. - Computer Science and Semester : V

Course Name : Compiler Design Max. Marks : 100
Course Code : CS61 Duration : 3 Hrs

Instructions to the Candidates:

· Answer one full question from each unit.

UNIT - I

1.	a)	Define the terms lexeme, pattern and token with examples. Identify the	CO1	(06)
		lexemes that make up the tokens in the following C program		
		int max (int i, int j)		

/* return maximum of i and j */

{return i>j? i:j;}

- b) Discuss how Input buffering is handled by lexical analyzer using sentinels CO1 (07) and buffer pairs.
- c) Construct the transition diagrams for:i) Hide, side, tide, said ii) Logical operators.

CO1 (07)

- 2. a) Explain the various phases of compiler. Give the translation of the CO1 (09) assignment statement: a=b+c*10 at the end of each phase. Assume a,b,c as float data types.
 - b) What is a left-recursion 7 Write the algorithm to eliminate left recursion CO1 (06) and apply it to eliminate left-recursion from the following grammar
 A→Ba | Aa | c
 B→Bb | Ab | Id
 - c) Illustrate the different lexical errors and recovery actions.

CO1 (05)

UNIT - II

- 3. a) Describe the shift reduce parsing of SR parser for arithmetic expression CO2 (08) for the input string : (id+id)*id.
 - b) Construct the CLR parser's canonical collection of items for the following CO2 (07) grammar.

S-->AA

A-->aA|b

- c) Mention the steps for LALR parser construction from CLR parser. CO2 (05)
- 4. a) Illustrate the algorithms of FIRST and FOLLOW for Predictive parser CO2 (08) using the following grammar.

 $S \rightarrow A \mid a$

A→a

- b) Compare SLR, CLR and LALR parsers. CO2 (05)
- Apply SLR parser construction algorithms to construct SLR parser for the CO2 (07) grammar: $S \rightarrow (S)S \mid \varepsilon$.

UNIT - III

- 5. a) What is meant by calling sequence and return sequence? List calling CO3 (08) sequence design principles.
 - b) Define a syntax directed definition. Give SDD for the simple type CO3 (06) declaration including int and float types.
 - c) Illustrate how infix to prefix translation is implemented with the help of CO3 (06) semantic actions.

6.	a) b) c)	Define synthesized and inherited attributes. Give example for each. List the different storage allocation strategies and explain in detail. Define postfix SDT's. Write the rules for turning an L- attributed SDD into an SDT.	CO3 CO3	(04) (10) (06)			
		UNIT- IV					
7.	a)	Write about the value number method for constructing DAG's for an expression with example.	CO4	(80)			
	b)		CO4	(07)			
	c)	Define the semantic rules to generate intermediate code for flow of control statements.	CO4	(05)			
8.	a)	Specify the instruction forms of three address codes and give examples for each one of them.	CO4	(80)			
	b) c)	Explain the translation of arithmetic expressions using semantic rules. Appraise about the translation of a break, continue and goto statements to intermediate codes.	CO4 CO4	(07) (05)			
UNIT - V							
9.	a)	Briefly explain the main issues in code generation.	CO5	(10)			

- 9. a) Briefly explain the main issues in code generation. CO5 (10)
 - b) Describe the following terms with an example. CO5 (10)
 - i) Common sub expression elimination
 - ii) Dead code elimination.
- 10. a) What is basic block and flow graph and Generate three address code, CO5 (10) basic block and flow graph for the following C segment.

for (i=1; i<=10; i++)
for (j=1; j<=10; j++)
$$a[i][j]=0;$$

for (i=1; i<=10; i++)
 $a[i][i]=1;$

b) Explain the code generation algorithm and generate code for the CO5 (10) following expression. $X = a/(b+c) - d^*(e+f)$.
