

PLANO DE ENSINO

CURSO: Superior Bacharelado em Ciência da Computação				
MODALIDADE DO CURSO:		(X) PRESENCIAL () EAD		
NÍVEL DE	ENSINO MÉDIO	() INTEGRADO () CONCOMITANTE ()SUBSEQUENTE		
ENSINO/FORMA	ENSINO SUPERIOR	() LICENCIATURA (X) BACHARELADO () TECNÓLOGO		
DISCIPLINA: Geometria Analítica e Álgebra Linear				
PROFESSOR/PROFESSORES: Vanussa Gislaine Dobler de Souza				
ANO LETIVO/ SEMESTRE: 2016/1°				
SEMESTRE DO CURSO OU ANO DA TURMA: 1° semestre				
CARGA HORÁRIA DA DISCIPLINA: (X) SEMESTRAL () ANUAL				

OBJETIVO GERAL DO CURSO

O principal objetivo do curso de Bacharelado em Ciência da Computação do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Câmpus Ibirubá é formar profissionais aptos para fazer o desenvolvimento científico e tecnológico da Computação e que contribuam para o desenvolvimento nas diversas áreas do conhecimento. O curso visa a formação de profissionais atuantes na busca de inovação e evolução tecnológica, conscientes da sua importância social e para a transformação do mercado de trabalho.

OBJETIVOS DA DISCIPLINA

Proporcionar ao estudante uma visão integrada dos conceitos e resultados básico da Álgebra Linear e Geometria Analítica, tornando o estudante capaz de reconhecer e resolver problemas na área, associados a futuras disciplinas e também a projetos fora da sala de aula e, privilegiando a dimensão instrumental desses conhecimentos, tendo em vista a crescente utilização da Matemática nas demais ciências. Gradativamente espera-se que o aluno consiga:

- compreender fundamentos, aplicações e procedimentos da Geometria Analítica;
- identificar e abordar situações passíveis de serem tratadas pela Geometria Analítica;
- dominar os conceitos e procedimentos básicos da Geometria Analítica, sabendo exemplificar, no caso de conceitos e justificar, no caso de procedimentos; e utilizar propriedades;
- reconhecer a álgebra linear como ferramenta que pode ser utilizada em diversas áreas do conhecimento, através da compreensão dos conteúdos da disciplina, os quais servirão como instrumento de domínio da ciência e da técnica.

EMENTA

Pontos, retas e ângulos. Triângulos semelhantes. Funções trigonométricas de ângulos. Círculos. Lugares geométricos. Polígonos, Polígonos Regulares Inscritos e Circunscritos. Área de figuras planas. Cálculo de matrizes, determinantes, sistemas lineares, vetores e espaços vetoriais.

CONTEÚDOS PROGRAMÁTICOS

- 1. Cálculo de Matrizes:
 - Operações com matrizes;
 - A inversa de uma matriz;
 - Caracterizações de matrizes invertíveis.
- 2. Determinantes:
 - Introdução ao conceito de determinante;
 - Propriedades dos determinantes;
 - Regra de Cramer.
- 3. Sistemas Lineares:
 - Sistemas de Equações Lineares;
 - Formas escalonadas;
 - Equações vetoriais;
 - Conjuntos de soluções de sistemas lineares;
 - Independência linear.
 - A matriz de uma transformação linear;
- 4. Espaços Vetoriais:
 - Espaços vetoriais e subespaços;
 - Conjuntos linearmente dependentes e linearmente independentes;
 - Conjuntos Linearmente Independentes e bases;
 - Dimensão de um espaço vetorial;
 - Posto;
 - Mudança de base;

- 5. Autovalores e autovetores:
 - Autovalores e autovetores;
 - Polinômio característico;
 - Diagonalização de operadores lineares;
- 6. Pontos, retas e ângulos:
 - Sistema de coordenadas cartesianas no plano;
 - Distância entre pontos;
 - Equações da reta e do plano;
 - Condições de paralelismo e perpendicularismo;
 - Posições relativas: entre retas; entre retas e planos; entre planos;
 - Ângulos: entre retas; entre reta e plano; entre planos;
- 7. Triângulos semelhantes;
- 8. Lugares Geométricos.

SISTEMÁTICA DE AVALIAÇÃO NA DISCIPLINA				
INSTRUMENTOS DE	CRITÉRIOS DE AVALIAÇÃO	COMPOSIÇÃO DA		
AVALIAÇÃO		NOTA		
Duas provas.	Uma prova será realizada individualmente e outra em duplas, sem consulta ao material. Os critérios de avaliação serão combinados com os alunos e estipulados de acordo com o conteúdo visto em aula.	Peso 3 cada uma.		
Dois trabalhos	Os trabalhos serão em duplas.	Peso 2 cada um.		

ESTRATÉGIAS DE RECUPERAÇÃO PARALELA

Atendimento feito ao aluno, de acordo com as necessidades específicas do mesmo e também de acordo com o conteúdo no qual o aluno apresenta as dificuldades de aprendizagem.

REFERÊNCIAS BIBLIOGRÁFICAS

REFERÊNCIAS BÁSICAS

DOLCE, O. & POMPEO, J. N. Fundamentos de matemática elementar: geometria plana. São Paulo: Atual, 1997. v. 9.

IEZZI, G. et al. Fundamentos da matemática elementar. São Paulo: Atual, 1997. v. 9.

ANTON, H.; RORRES, C. Álgebra linear com aplicações. 8. ed. Rio de Janeiro: LTC, 2002.

REFERÊNCIAS COMPLEMENTARES

WAGNER, E. Construções Geométricas. Editora SBM. 1998. (Coleção Professor de Matemática)

BARBOSA, J. L. M. Geometria euclidiana plana. Fortaleza: SBM, 1997.

BEZERRA, M. J. Metemática para o ensino médio. 5. ed. São Paulo: Scipione, 2001.

LEON, S. J. Álgebra linear com aplicações. 4. ed. Rio de Janeiro: LTC, 2008.

GIOVANI, J. R.; BONJORNO, J. R.; GIOVANI JR, J. R. Matemática fundamental: uma nova abordagem. São Paulo: FTD, 2002. v. único. Editores, 1999.

REFERÊNCIAS PARA APROFUNDAMENTO

Será apresentada durante o semestre.

ASSINATURAS	
PROFESSOR/PROFESSORES	
COORDENAÇÃO DO CURSO	

birubá.	da	2016.
on upa.	de	۷010.