Labbrapport: dämpad och driven pendel

Björn Sundin TE18C, NTI Kronhus

27 mars 2021

1 Inledning

- 1.1 Syfte
- 1.2 Frågeställningar

1.3 Teori

Den matematiska modellen som används för att beskriva svängningsrörelsen hos torsionspendeln beskriva av denna differentialekvation:

$$I\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}} = -k\theta - \lambda \frac{\mathrm{d}\theta}{\mathrm{d}t} + \mu \cos(\omega t) \Leftrightarrow$$

$$\theta''(t) + \frac{\lambda}{I}\theta'(t) + \frac{k}{I}\theta(t) = \frac{\mu}{I}\cos(\omega t)$$
(1)

Där:

- θ är vinkelpositionen av pendeln relativt jämviktsläget i radianer.
- I är tröghetsmomentet för pendeln med enhet [kg · m²]. Det är vridmomentet som krävs för att skapa en vinkelacceleration på 1 $\frac{\text{rad}}{\text{s}^2}$.
- ullet är vridmomentet per radian vinkelavvikelse riktat mot jämviktsläget för den specifika pendeln. Detta vridmoment orsakar den naturliga svängningen.
- λ är ett bromsande vridmoment per $\frac{\text{rad}}{\text{s}}$ motriktat rörelseriktningen. Denna orsakar pendelns dämpning.
- μ är amplituden av det pålagda vridmomentet, med frekvensen $\omega\left[\frac{\mathrm{rad}}{\mathrm{s}}\right]$.

I, k och λ beror alla på egenskaper hos pendeln samt pendelns radie. μ beror däremot på den radie där det pålagda vridmomentet appliceras samt kraftens maximum som orsakar vridmomentet.

Differentialekvationen har olika lösningar beroende på värdena på konstanterna:

- 1. Fri pendel: $\lambda = 0 \land \mu = 0 \Leftrightarrow \theta = A\sin(\omega_0 t + \phi) = A\cos(\theta)\sin(\omega_0 t) +$
- 2. Däm $Ae^{-\frac{\lambda}{2}t} \cdot \sin(\omega t)$

2 Metod

3 Resultat

Den insamlade datan som mättes med Cassy Lab under laborationen redovisas i figurerna nedan.

Figur 1: Datan för "odämpad" svängning.

4 Analys

$$y = 0.1318 \cdot \sin((180.63x + 103.83) \cdot \frac{2\pi}{360})$$

$$\approx 0.1318 \cdot \sin(3.153x + 1.812)$$
(2)

5 Slutsatser