HOW TO COUNT LATTICE POINTS USING DYNAMICS?

RONGHAN YUAN

ABSTRACT. In this week, we learned the proof of Howe-Moore vanishing theorem for matrix coefficients of unitary representations of $SL(n,\mathbb{R})$. As a application, this note presents how this is applied to the problem of counting lattice points in hyperbolic plane. The main reference of this note is [1].

Contents

1.	Statement of the problem]
2.	Counterpart of the problem in dynamic system	1
3.	Proof of the main theorem	;
4.	bibliography	Ę
Re	ferences	Ę

1. Statement of the problem

The famous Gauss circle problem is the following

Problem 1.1. Let N(R) denote the number of lattice points \mathbb{Z}^2 in the circle $x^2 + y^2 \leq R^2$, then

$$(1.2) N(R) \sim \pi R^2$$

as $R \to \infty$. The Gauss problem is about the estimation of error term.

We can ask the same question under the setting of hyperbolic plane, that is

Question 1.1. For a torsion free lattice Γ in \mathbb{H}^2 , so that $\Sigma = \Gamma \backslash \mathbb{H}^2$ is a surface of finite area. Fix a point $p \in \mathbb{H}^2$, let B(p,R) denote the ball centered at p with radius R, let N(R,q) denote the number of points in $\Gamma q \cap B(p,R)$, then how does N(R,q) grow as $R \to \infty$?

We will finally show that

$$(1.3) \hspace{1cm} N(R,q) \sim \frac{area(B(p,R))}{area(\Sigma)}$$

2. Counterpart of the problem in Dynamic system

In this section, we prove a theorem about equidistribution of a series of measures, which plays a key role in the proof of main theorem. We fix the notation $G = SL(2,\mathbb{R})$, and identify it as the two-fold covering of $PSL(2,\mathbb{R})$, which is just the unit tangent bundle of \mathbb{H}^2 , and denote K = SO(2). Recall that we have the Iwasawa decomposition G = KAN. Let $e = I_2$ denote the identity.

First we will define such a series of measure. First we define the 'circle' on the surface Σ .

Definition 2.1. For a point $p \in \mathbb{H}^2$, let [p] denote its image in Σ . With out lost of generality, we may assume $p = I_2$. Then denote

(2.2)
$$S([p],t) = \{ [kg_t \cdot p] | k \in K \} = \{ [kpg_t] | k \in K \},$$
 where $g_t = diag\{ e^{\frac{t}{2}}, e^{-\frac{t}{2}} \}$

The dot in $g_t \cdot p$ means the action of this geodesic flow on the point p, and is just pg_t , which is the right multiplication by g_t . In the book [2], the notation is slightly different, the g_t here is denoted as a_t^{-1} in [2], so the geodesic flow under this notation becomes right multiplication by a_t^{-1} .

This is not exactly the circle on the surface Γ , but the image of the circle of radius t under quotient. Because under a left invariant metric, kpg_t is the trajectory of a geodesic starting from p, with initial velocity of k, in the unit tangent bundle. (For simplicity, we assume $p=I_2$, at this time, left multiplication of K exactly gives all unit tangent vectors in the tangent space at I_2 . For other points, we may need to choose some conjugation of K. Also recall the fact that the transitive action of $PSL(2,\mathbb{R})$ on unit tangent bundle is given by left multiplication, while the geodesic flow acts by right multiplication.)

It is clear the image of this set under projection $G \to G/K$ describes exactly the geodesic circle on hyperbolic plane centered at p with radius t. We are interested in its projection in $\Gamma \backslash G/K$, because this image will become equidistributed in Σ as $t \to \infty$. It is natural to guess such a behavior will occur. Just by imagine the image of circle in $\mathbb{R}^2/\mathbb{Z}^2$, the image also becomes very dense as the radius tends to infinity.

Strictly speaking, we can define a series of measures λ_t supported on the set S([p],t), in the following way

(2.3)
$$\int_{\Sigma} f d\lambda_t = \int_K f([kpg_t]) dk$$

So the measure λ_t is actually a one-dimensional measure. The following theorem says, as $t \to \infty$, S([p], t) fills the surface Σ evenly.

Theorem 2.4. The above measures λ_t are equidistributed, that is, for all $f \in C_c(\Sigma)$,

(2.5)
$$\lim_{t \to \infty} \int_{S([p],t)} f \lambda_t = \frac{1}{area(\Sigma)} \int_{\Sigma} f(x) d\mu(x),$$

where μ is the measure on Σ induced from left Haar measure μ on G. We normalize the left Haar measure such that it is induced from dx = dkd(an), where dk is probability measure on K.

Proof. Let $f \in C_c(\Gamma \backslash G/K)$, let \tilde{f} be the function f lifted to $\Gamma \backslash G$. Because Γ is torsion free, and $K \cap \Gamma$ is a finite subgroup of Γ due to compactness, $K \cap \Gamma = \{e\}$ must hold. We may choose a small enough open neighborhood U of e such that $KU \cap \Gamma = \{e\}$ still holds.

By uniform continuity of f, thus also \tilde{f} , upon shrinking U, we may assume

$$|\tilde{f}(gu) - \tilde{f}(g)| < \epsilon, \ \forall g \in G, u \in U$$

Using the Iwasawa decomposition, we can choose neighborhoods U_1 and U_2 of e in A and N respectively, such that $U_1U_2 \subset U$. From Iwasawa decomposition, we know $KU_1U_2 \subset KU$ is a open neighborhood of e in G. Denote $V = U_1U_2$.

Because for all elements n in N, $g_t^{-1}ng_t$ tends to e as $t \to \infty$, upon shrinking U_2 , we may assume

$$g_t^{-1}U_2g_t \subset U_2, \ \forall t \geq 0$$

Due to U_1 and g_t commute, since A is abelian, we have

$$Vg_t \subset g_t V \ \forall t \geq 0$$

This implies

$$(2.6) |\tilde{f}(\Gamma k v g_t) - \tilde{f}(\Gamma k g_t)| = |\tilde{f}(\Gamma k g_t (g_t^{-1} v g_t)) - \tilde{f}(\Gamma k g_t)| < \epsilon \ \forall v \in V, k \in K, t \ge 0$$

Integral the above inequality over K and V in the space $\Gamma \backslash G$, we have

$$\begin{aligned} |\frac{1}{\mu(\Gamma KV)} \int_{\Gamma KV} \tilde{f}(\Gamma kvg_t) - \tilde{f}(\Gamma kg_t) dk dv| \\ (2.7) & = |\frac{\mu_{AN}(V)}{\mu(\Gamma K)} \int_K \tilde{f}(\Gamma kg_t) dk - \frac{1}{\mu(\Gamma KV)} \int_{\Gamma KV} \tilde{f}(\Gamma kg_t) dk dv| \\ = |\int_K \tilde{f}(\Gamma kg_t) dk - \frac{1}{\mu(\Gamma KV)} \int_{\Gamma KV} \tilde{f}(\Gamma kg_t) dk dv| < \epsilon \end{aligned}$$

The second equation uses Fubini's theorem, and decompose $KV = K \times V$, due to the fact K is unimodular, the measure $d\mu = dkdv$. Because $KV \cap \Gamma = \{e\}$, integration on $\Gamma \backslash G$ can be identified as integration on $KV \subset G$. The third equation is due to the fact $\mu(\Gamma KV) = \mu_K(K)\mu_{AN}(V) = \mu_{AN}(V)$, which can be derived using Fubini's theorem.

Let χ be the characteristic function of the open subset ΓKV of $\Gamma \backslash G$. By Moore's Ergodicity Theorem, the action of geodesic flow is strong mixing, we have

(2.8)
$$\lim_{t \to \infty} \frac{1}{\mu(\Gamma K V)} \int_{\Gamma K V} \tilde{f}(\Gamma k g_t) dk dv$$
$$= \frac{1}{\mu(\Gamma K V)} \int_{\Gamma \backslash G} \tilde{f}(x g_t) \chi(x) dx$$
$$= \frac{1}{\mu(\Gamma \backslash G)} \int_{\Gamma \backslash G} \tilde{f}(x g_t) dx$$

The last step uses strong mixing. Hence for t large enough,

(2.9)
$$|\int_{K} f([kpg_{t}])dk - \frac{1}{area(\Sigma)} \int_{\Sigma} f(x)d\mu(x)|$$

$$= |\int_{K} \tilde{f}(\Gamma kg_{t})dk - \frac{1}{\mu(\Gamma \backslash G)} \int_{\Gamma \backslash G} \tilde{f}(x)d\mu(x)| < 2\epsilon$$

The last step combines (2.7) and (2.8), and completes the proof of this theorem. \Box

3. Proof of the main theorem

This theorem before shows circle in hyperbolic space is equidistributed in the $\Gamma \backslash G/K$ as radius tends to infinity. Now we want to relate it to counting lattice points.

Theorem 3.1. For any $q \in \mathbb{H}^2$, one has

(3.2)
$$N(R,q) \sim \frac{area(B(p,R))}{area(\Sigma)}$$

as $R \to \infty$.

Proof. Fix $q \in \mathbb{H}^2$, choose $\epsilon > 0$ small enough such that $B(q, \epsilon)$ is isometric to the ball $B([q], \epsilon) \subset \Sigma$.

First, we want to relate the lattice counting with integral.

Choose α to be a positive bump function with integral 1 on Σ , and supported in $B([q], \epsilon)$, $\tilde{\alpha}$ be its lift to $\Gamma \backslash G$. Since $x \mapsto N(R, x)$ is a function invariant under Γ , thus is a function on Σ .

We have

$$(3.3) N(R - \epsilon, q) \le N(R, x) \le N(R + \epsilon, q) \ \forall x \in B(q, \epsilon)$$

Because if $d(\gamma q, p) \leq R - \epsilon$,

$$(3.4) d(\gamma x, p) \le d(\gamma x, \gamma q) + d(\gamma q, p) = d(x, q) + d(\gamma q, p) \le R$$

So $N(R - \epsilon, q) \le N(R, x)$, $N(R, x) \le N(R + \epsilon, q)$ can be proved similarly.

(3.5)
$$N(R - \epsilon, q) \le \int_{\Sigma} \alpha(x) N(R, x) dx \le N(R + \epsilon, q)$$

Denote χ the characteristic function of B(p,R), the integral in the middle can be rewritten as

$$(3.6) \qquad \int_{\Sigma} \alpha(x) N(R, x) dx = \int_{\Sigma} \alpha(x) \sum_{\gamma \in \Gamma} \chi(\gamma x) dx = \int_{B(p, R)} \tilde{\alpha}(x) dx$$

Using the expression of \mathbb{H}^2 under geodesic polar coordinate, which is $\frac{dxdy}{y^2} = \sinh t dt d\theta$. (Recall the hyperbolic metric can also be given as $dt^2 + \sinh^2 t d\theta$. Also recall here $p = I_2$ is chosen as the center of this geodesic polar coordinate.)

(3.7)
$$\int_{B(p,R)} \tilde{\alpha}(x)dx = 2\pi \int_{0}^{R} \int_{K} \tilde{\alpha}(kpg_{t}) \sinh t dk dt$$
$$= 2\pi \int_{0}^{R} \left(\int_{\Sigma} \alpha d\lambda_{t} \right) \sinh t dt$$

Using the equidistribution theorem proved in section 2, and the fact α has integral 1, we have

(3.8)
$$\int_{\Sigma} \alpha d\lambda_t \to \frac{1}{area(\Sigma)} \ as \ t \to \infty$$

Since $\sinh t$ grows very fast as $t \to \infty$, the main part of the integral is contributed by $\int_{\Sigma} \alpha d\lambda_t$ with large t. So we have the estimation

(3.9)
$$\int_{B(p,R)} \tilde{\alpha}(x) dx \sim \frac{area(B(p,R))}{area(\Sigma)} \quad as \ R \to \infty$$

We quote the fact that

Lemma 3.10.

(3.11)
$$area(B(p,R)) = 4\pi \sinh^2(\frac{R}{2})$$

Then $area(B(p,R)) \sim \pi e^R$. Let

(3.12)
$$a(R) = \frac{N(R, q)area(\Sigma)}{\pi e^R}$$

Due to (3.5)

$$(3.13) e^{-\epsilon}a(R-\epsilon) \leq \frac{area(\Sigma)}{\pi e^R} \int_{B(p,R)} \tilde{\alpha} dx \leq e^{\epsilon}a(R+\epsilon)$$

For any limit point a of a(R) when $R \to \infty$, since the middle term tends to 1, we have

$$(3.14) e^{-\epsilon}a \le 1 \le e^{\epsilon}a$$

Since ϵ can be arbitrarily small, this shows $\lim_{R\to\infty} a(R)$ exists and equal to 1, and the main theorem is proved.

4. BIBLIOGRAPHY

References

- [1] M.Bachir Bekka and Matthias Mayer. Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces. Cambridge University Press. 2000.
- [2] Manfred Einsiedler and Thomas Ward. Ergodic Theory: with a view towards Number Theory. Springer-Verlag London Limited. 2011.
- [3] Anthony W.Knapp. Lie Groups Beyond an Introduction. Second Edition. Birkhauser. 2002.