Lógica Matemática

Webconferência I



Professor(a): Mabel Lopes

# Álgebra dos Conjuntos

Definição: Conjunto é uma coleção de elementos.

Ex.: 1. O conjunto dos times brasileiros de futebol.

### 2. Conjuntos Numéricos:



# Álgebra dos Conjuntos



Formas de representação de um conjunto:

A={a,e,i,o,u} (enumeração)

A={x | x é vogal} (propriedade)

Diagrama de Venn



# Algebra dos Conjuntos



Conjunto Finito: é quando se tem uma quantidade limitada de elementos.

Exs.: 
$$A=\{x \mid x \in vogal\}=\{a,e,i,o,u\}$$



Conjunto Infinito: tem um número ilimitado de elementos.

Ex.:  $C=\{x \mid x \in um \text{ número par e não-negativo}\}=\{0,2,4,6,8...\}$ 



# Álgebra dos Conjuntos



Conjunto Unitário: é aquele que possui apenas um elemento.

Ex.: A={x | x é a capital do Brasil}

**Conjunto Vazio:** é um conjunto que não possui nenhum elemento. É representado por  $\{\}$  ou  $\phi$ .

Ex.:  $A=\{x \mid x.0=2\}=\{\}$ 

**Obs.:** O conjunto vazio está contido em qualquer conjunto, logo, ele é um subconjunto de todo conjunto.

Conjunto Universo (U): é o conjunto de todos os elementos existentes em um determinado assunto.

M

U=ℝ

### Relações de Igualdade e Inclusão

**Relação de Igualdade:** Um conjunto A é **igual** a um conjunto B, **A=B**, se todo elemento de A for também elemento de B, e todo elemento de B for também elemento de A.

Se existir algum elemento de A que não é de B ou vice versa, dizemos que **A**≠**B**.

Ex.: 
$$\{a,b,d\} \neq \{a,b,c,d\}$$



### Relações de Igualdade e Inclusão



### Relação de Inclusão:

Se todo elemento de A é também um elemento de B, dizemos que A está contido em B, ou que A é **subconjunto** de B, ou ainda, que A é parte de B e indicamos por  $A \subset B$ , ou  $B \supset A$ .

**Ex.:** {a,b,c} ⊂{a,b,c,d}

Se A não é subconjunto de B, então  $A \not\subset B$ .

**Ex.:** {a,b,c} ⊄{b,c,d,e}









### Relações de Inclusão e Igualdade



### Relação de Pertinência:

A relação entre um elemento e um conjunto é chamada de **relação de pertinência**. Se a é um elemento de B dizemos que  $a \in B$ , se a não é um elemento de B, dizemos que  $a \notin B$ .

Ex.(Diagrama):  $a \in B$  ou  $a \in \{a, e, i, o, u\}$ 

d ∉ {a,e,i,o,u}



### Relações de Igualdade e Inclusão



### Conjunto Complementar:

O complementar de um conjunto B em relação ao conjunto Universo U, é constituído de todos os elementos de U que não pertencem a B.

Ex.:  $U=\{1,2,3,4,5,6,7\}$ ,  $B=\{1,3,5,7\}$  então  $B'=\{2,4,6\}$ 

Representação: B',  $\bar{B}$  ou  $B^C$ .





**União de Conjuntos:** Dados os conjuntos A e B, a união de A e B, denotado por **AUB**, é constituído de todos os elementos que pertencem a A ou a B ou a ambos.

Ex.:  $A = \{1,2,3,4\}$   $B = \{3,4,5,6\}$   $A \cup B = \{1,2,3,4,5,6\}$ 



**Intersecção de Conjuntos:** Dados os conjuntos A e B, a intersecção de A e B, denotado por **A∩B**, é constituído de todos os elementos que pertencem ao mesmo tempo a A e a B.

Ex.:  $A = \{1,2,3,4\}$   $B = \{3,4,5,6\}$   $A \cap B = \{3,4\}$ 

#### **A**∩**B**



**Diferença entre Conjuntos:** Dados os conjuntos A e B, a diferença dos conjuntos A e B, denotado por **A**—**B**, é constituído de todos os elementos que pertencem a A, mas não pertencem a B.

Ex.: 
$$A = \{1,2,3,4\}$$
  $B = \{3,4,5,6\}$   $A - B = \{1,2\}$ 



Quando  $B \subset A$ , a diferença A - B é chamada também o complementar de B em relação à A, denotado por  $C_A^B$ .





Diferença Simétrica entre Conjuntos: Dados os conjuntos A e B, a diferença simétrica entre o conjunto A e B, denotado por  $\mathbf{A} \triangle \mathbf{B}$  é o conjunto de elementos que estão em A ou B, mas não estão na interseção de A e B.

Ex.: 
$$A = \{1,2,3,4\}$$
  $B = \{3,4,5,6\}$   $A \triangle B = \{1,2,5,6\}$ 



**Produto Cartesiano:** O produto Cartesiano de dois conjuntos A e B, denotado por AxB, é o conjunto formado por todos os pares ordenados (x,y), onde  $x \in A$  e  $y \in B$ .

Ex.: 
$$A=\{a,b,c\}$$
  $B=\{1,2\}$ 



### Conjuntos



#### Problema:

Uma avaliação contendo duas questões foi aplicada a 200 alunos.

#### Sabe-se que:

50 alunos acertaram as duas questões.

100 alunos acertaram a primeira questão.

90 alunos acertaram a segunda questão.

Quantos alunos erraram as duas questões?

# Lógica x Álgebra dos Conjuntos



| Coniuntos                                           | Propriedade             | Lógica                                                                                                                     |
|-----------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|
| $A \cap A = A$                                      |                         | p∧p⇔p                                                                                                                      |
| A **** A = A                                        | Idempotência            | p r p                                                                                                                      |
| AUA = A                                             | Taompotonoia            | p∨p⇔p                                                                                                                      |
| $A \cap B = B \cap A$                               |                         | $p \land q \Leftrightarrow q \land p$                                                                                      |
|                                                     | Comutatividade          |                                                                                                                            |
| AUB = BUA                                           |                         | $p \lor q \Leftrightarrow q \lor p$                                                                                        |
| $A \cap (B \cap C) = (A \cap B) \cap C$             |                         | $p \wedge (q \wedge r) \iff (p \wedge q) \wedge r$                                                                         |
|                                                     | Associatividade         | ** ** *** *** ***                                                                                                          |
| $A \cup (B \cup C) = (A \cup B) \cup C$             |                         | $p \lor (q \lor r) \iff (p \lor q) \lor r$                                                                                 |
| $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$    |                         | p ∧ (q ∨ r) ⇔ (p ∧ q) ∨                                                                                                    |
| (C)                                                 |                         | (p ∧ r)                                                                                                                    |
|                                                     | Distributividade        |                                                                                                                            |
| A U (B \( \text{C} \) = (A U B) \( \text{C} \) (A U |                         | p ∨ (q ∧ r) ⇔ (p ∨ q) ∧                                                                                                    |
| C)                                                  |                         | (p <b>∨</b> r)                                                                                                             |
| ~~A = A                                             |                         | ¬¬р ⇔ р                                                                                                                    |
|                                                     | . N ~                   | 20720 -                                                                                                                    |
| A  ~A = Ø                                           | Complementar ou Negação | p <b>∧</b> ¬p ⇔ F                                                                                                          |
| A U ~A = <b>U</b>                                   |                         | p ∨ ¬p ⇔ ∨                                                                                                                 |
| ~(A U B) = ~A \ \ ~B                                |                         | $ \begin{array}{c} p \lor \neg p \Leftrightarrow \lor \\ \neg (p \land q) \Leftrightarrow \neg p \lor \neg q \end{array} $ |
|                                                     | DeMorgan                |                                                                                                                            |
| ~(A \cap B) = ~A U ~B                               |                         | ¬(p ∨ q) ⇔ ¬p ∧ ¬q                                                                                                         |
| $A \cap U = A$                                      |                         | p ∧ V ⇔ p                                                                                                                  |
| The sale                                            | Elemento Neutro         |                                                                                                                            |
| $A \cup \emptyset = A$                              |                         | p∨F⇔p                                                                                                                      |
| $A \cap \emptyset = \emptyset$                      |                         | p∧F⇔F                                                                                                                      |
|                                                     | Elemento Absorvente     |                                                                                                                            |
| A U <b>U</b> = <b>U</b>                             |                         | p ∨ ∨ ⇔ ∨                                                                                                                  |

 Definição: Proposição é toda sentença (conj. De palavras ou símbolos) que expresse um pensamento completo, que pode ser qualificado como verdadeiro ou falso.

Ex.: O sol é amarelo.

sen 180°=1

Uma proposição é necessariamente dada por uma fase declarativa.

| MUNDO REAL                 | PROPOSIÇÃO LÓGICA |
|----------------------------|-------------------|
| ESTÁ NEVANDO.              | Р                 |
| FAZ FRIO.                  | Q                 |
| SE ESTÁ NEVANDO, FAZ FRIO. | P Q               |



### Tipos de Proposições:

• Proposição simples: É aquela que não contém nenhuma outra proposição como parte integrante de si mesma.

Ex.: p: As estrelas brilham.

q: O homem é mortal.

 Proposição Composta: É aquela formada pela composição de duas ou mais proposições.

Ex.: p: O flamengo ganha ou o flamengo perde.

q: Se eu estudar então passarei no concurso.



Conectivos: são as palavras que usamos para formar novas proposições a partir de outras. Os principais conectivos são:

| Símbolo           | Lê-se           |  |
|-------------------|-----------------|--|
| ٨                 | E               |  |
| V                 | Ou              |  |
| ~                 | Não             |  |
| -                 | Se Então        |  |
| $\leftrightarrow$ | Se e somente se |  |
|                   |                 |  |

O conectivo "não" apesar de não unir proposições, altera o valor de uma proposição.

#### Exs.:

p: O número 4 é par e o número 5 é ímpar.

q: Se sabe matemática então faça engenharia.

r: Um triângulo é retângulo, se e somente se, satisfaz o Teorema de Pitágoras.

As **tabelas –verdade** possibilitam visualizarmos todas as possibilidades dos valores lógicos de uma proposição.

Valores que uma proposição simples "p" pode assumir:

V 2 possibilidades

Valores que duas proposições simples podem assumir numa proposição

composta:

V V F V F V

4 possibilidades

Generalizando, uma proposição composta por "n" proposições simples temos um total de  $\mathbf{2}^n$  possibilidades.



### Operações Lógicas:

Nas operações lógicas os **operadores** são os conectivos, enquanto os **operandos** são as proposições .

| Operação            | Conectivos        | Lê-se                 | Exemplos              |
|---------------------|-------------------|-----------------------|-----------------------|
| Negação             | ~                 | Não                   | ~p                    |
| Conjunção           | ٨                 | e                     | pΛq                   |
| Disjunção           | V                 | ou                    | p V q                 |
| Condicional         | $\rightarrow$     | Se , então            | $p \rightarrow q$     |
| Bicondicional       | $\leftrightarrow$ | se e somente se       | $p \leftrightarrow q$ |
| Disjunção exclusiva | <u>v</u>          | Ou, ou, mas não ambos | p ⊻ q                 |

**Negação:** A negação de uma proposição p é a proposição "não p", que representaremos por "~p", cujo valor lógico é o oposto ao da proposição p.

| р | ~p |
|---|----|
| V | F  |
| F | ٧  |

Exs.:

p: A capital do Brasil é Salvador. (F)

~p: A capital do Brasil não é Salvador. (V)

q: Cos 0 = 1 (V)

 $^{\sim}q: Cos 0^{\circ} \neq 1 (F)$ 

**Conjunção:** A conjunção de duas proposições p e q é a proposição "**p e q**", que é representada por "**p^q**" cujo valor lógico será verdade se ambas as proposições são verdadeiras e será falso nos outros casos.

| р | q | p^q |
|---|---|-----|
| ٧ | V | V   |
| V | F | F   |
| F | V | F   |
| F | F | F   |

Exs.:

p: 3 é ímpar (V)

q: 3<4(V)

**p^q**: 3 é impar e 3<4. (V)

r: Um triângulo tem 3 lados.(V)

s: 5 é par (F)

r^s: O triângulo têm 3 lados e 5 é par (F)

**Disjunção**: A disjunção de duas proposições p e q é a proposição "**p ou q**", que é representada por "**p**V**q**" cujo valor lógico será verdade (V) se pelo menos uma das proposições p e q são verdadeiras e será falso (F) se ambas

forem falso.

p q p√q V V V V F V F V F

Exs.: p: Hoje está quente. (V)

q: Teresina é uma cidade Fria. (F)

p V q: Hoje está quente ou

Teresina é uma cidade fria. (V)

r: 4 é um número primo (F)

s: 5 é par (F)

r Vs: 4 é um número primo ou 5 é par(F)



**Disjunção Exclusiva:** A disjunção exclusiva de duas proposições p e q é a proposição " **ou p ou q**", que é representada por " $\mathbf{p} \vee \mathbf{q}$ ", cujo valor lógico é falso (F) quando p e q tem o mesmo valor lógico e verdade (V) quando p e q tem valores lógicos diferentes.

| р | q | <u>p</u> ⊻g |
|---|---|-------------|
| V | V | F           |
| V | F | V           |
| F | ٧ | ٧           |
| F | F | F           |

Exs.: p: O tomate é uma fruta(V) r: 4 é par (V)

q:O tomate é uma verdura. (F) s: 5 é ímpar (V)

p  $\underline{V}$  q: (V) r $\underline{V}$ s: Ou 4 é par ou 5 é ímpar(F)

**Condicional :** A condicional de duas proposições p e q é a proposição "se p então q", que é representada por " $p \rightarrow q$ ", cujo valor lógico será falso (F) quando p for verdadeiro e q for falso e verdade(V) nos demais casos.

| р | q | p→q |
|---|---|-----|
| V | V | V   |
| V | F | F   |
| F | V | V   |
| F | F | V   |

Exs.: p: Pitágoras é um filósofo. (V)

q: Angelina Jolie é cantora(F)

p → q: Se Pitágoras é filósofo então
 Angelina Jolie é cantora.(F)

**Bicondicional**: A bicondicional de duas proposições p e q é a proposição "p se e somente se q", que é representada por " $p \leftrightarrow q$ ", cujo valor lógico é verdade (V) quando p e q tem o mesmo valor lógico e falso nos demais casos.

| р | q | p⇔g |
|---|---|-----|
| ٧ | V | V   |
| ٧ | F | F   |
| F | V | F   |
| F | F | V   |

Exs.: p:. O futebol é uma paixão brasileira.(V)

q:. Recife é a capital de Pernambuco.(V)

 $\mathbf{p} \leftrightarrow \mathbf{q}$ : O futebol é uma paixão brasileira se, e somente se, Recife é a capital de Pernambuco. (V)

### Exemplo



Ex.: Para que o valor lógico da proposição "Se João é cantor, então ele não joga todo dia" seja verdade, é:

- a)Suficiente que o valor lógico da proposição "João é cantor" seja falso.
- b) Suficiente que o valor lógico da proposição "ele não joga todo dia" seja falso.
- c)Necessário que o valor lógico da proposição "João é cantor" seja verdade.
- d)Suficiente que o valor lógico da proposição "João é cantor" seja verdade.
- e)Necessário que o valor lógico da proposição "João é cantor" seja verdade e o valor lógico da proposição "ele não joga todo dia" seja falso.





