CT1 Übungsaufgaben Architektur

4	Mannan Cia	dia Haunthaata	ndtaile der MO CD	III und arklären Cie	ibro Funktion
1.	Nennen Sie	e die Hauptbesta	natelle der MU CP	'U und erklären Sie	e inre Hunktion

- 2. Ein Prozessor arbeitet eine Liste von Befehlen in einer vorgegebenen Reihenfolge ab. Finden Sie Analogien aus dem täglichen Leben.
- 3. Wie viele Bytes können mit einer 8-bit Speicheradresse adressiert werden? Wie viele mit einer 16-bit Adresse? Wie viele mit einer 32-bit Adresse?
- 4. Nennen Sie 3 Instruktionstypen der M0 CPU.

5.	What is the function of the following registers? a. PC		
	b. SP		
	c. LR		
6.	Why is the PC initialized to a defined value at reset? (Although other CPU registers may have an undefined content)		
7.	7. Name the different parts of an assembly instruction.		
8.	What is a memory map? What is it used for?		

9. How many byte positions can be addressed by the M0? Which positions in the

memory map need to be occupied? Explain your answer.

10. Explain the following terms

- a. Fetch
- b. Execute
- c. Word
- d. Half-word
- e. Little endian
- f. Big endian
- g. Word Alignment

11. A program (code in C) has variables represented as below in the memory map. Determine the decimal values of the variables Var1 Var5. Assume Little Endian representation.

Address	Byte content (decimal, hex, binary)	Variable
0x3000′0005	0x92	Var5 (char)
0x3000´0004	0x03	Var2 (unsigned char)
0x3000′0003	0xFF	
0x3000′0002	0x54	
0x3000′0001	34	
0x3000′0000	0xA2	Var1 (integer)
0x2FFF′FFFF	0x82	
0x2FFF′FFFE	0xA3	
0x2FFF′FFFD	10101101(binary)	
0x2FFF′FFFC	0x65	Var3 (unsigned integer)
0x2FFF′FFFB	25	
0x2FFF′FFFA	213	
0x2FFF′FFF9	01100010 (binary)	
0x2FFF′FFF8	0xE2	Var4 (short)
0x2FFF′FFF7	0x45	

Var1 =

Var2 =

Var3 =

Var4 =

Var5 =

How would the same variable values be stored on a Big Endian platform? Fill in the table.

Address	Byte content (decimal, hex, binary)	Variable
0x3000′0005		
0x3000′0004		
0x3000′0003		
0x3000′0002		
0x3000′0001		
0x3000′0000		
0x2FFF′FFFF		
0x2FFF′FFFE		
0x2FFF′FFFD		
0x2FFF′FFFC		
0x2FFF′FFFB		
0x2FFF′FFFA		
0x2FFF′FFF9		
0x2FFF′FFF8		
0x2FFF′FFF7		

12. Welche 3 Speicherbereiche können bei einem Programm unterschieden werden? Was wird in den einzelnen Bereichen abgelegt? In welchem Speichertyp können die Bereiche jeweils liegen?

13. Bei der Ausführung eines Programmes werden die folgenden Speicherbereiche benutzt:

Code: 0x20000000 bis 0x200001FF
 Daten: 0x20000200 bis 0x200002FF
 Stack: 0x20000300 bis 0x200003FF

Zeichnen Sie eine entsprechende Memory Map und zeichnen Sie die drei Bereiche ein. Beschriften Sie für jeden Bereich jeweils die erste und die letzte Adresse. Wie viele Speicherstellen enthält jeder der Bereiche?