CLAIMS

1	1.	A method of forming a semiconductor structure, the method comprising the steps		
2		of:		
3		providing a substrate having a surface oriented on a first crystal plane that		
4		enables subsequent crystal planes for channels to be utilized;		
5		forming a first transistor so that a sidewall of a first fin body forms a first channel		
6		and so that the sidewall of the first fin body is oriented on a second crysta		
7		plane to provide a first carrier mobility; and		
8		forming a second transistor so that a sidewall of a second fin body forms a		
9		second channel and so that the sidewall of the second fin body is oriented		
0		on a third crystal plane to provide a second carrier mobility that is		
11		different from the first carrier mobility.		
1	2.	The method of claim 1, wherein the step of providing a substrate comprises the		
2		step of providing a silicon substrate having surface oriented on a {110} crystal		
3		plane.		
1	3.	The method of claim 1, wherein the step of forming a first transistor comprises		
2		the step of forming a first transistor so that the sidewall of the first fin body is		
3		oriented on a {n n m} plane and n and m are any integer, wherein the step of		
4		forming a second transistor comprises forming a second transistor so that the		
5		sidewall of the second fin body is oriented on a {a a b} plane and a and b are any		
6		integer such that the {n n m} plane and the {a a b} plane are not equivalent by a		

7

symmetry transformation.

- The method of claim 1, wherein the step of forming a first transistor comprises
 the step of forming one of a first p-channel FinFET (PFET) and a first n-channel
 FinFET (NFET), wherein the step of forming a second transistor comprises the
 step of forming one of a second PFET and a second NFET.
- The method of claim 4, wherein the step of forming one of a first PFET and a 5. 1 first NFET comprises forming one of a first PFET and a first NFET so that the 2 sidewall of the first fin body is oriented on a second crystal plane to provide one 3 of an optimized carrier mobility and a non-optimized carrier mobility, wherein 4 the step of forming one of a second PFET and a second NFET comprises forming 5 one of a second PFET and a second NFET so that the sidewall of the second fin 6 body is oriented on a third crystal plane to provide one of an optimized carrier 7 mobility and a non-optimized carrier mobility. 8
- The method of claim 4, wherein the step of forming one of a first PFET and a first NFET comprises forming one of a first PFET and a first NFET so that the sidewall of the first fin body is oriented on one of a {100} crystal plane, a {110} crystal plane, and a {111} crystal plane, wherein the step of forming one of a second PFET and a second NFET comprises forming one of a second PFET and a second NFET so that the sidewall of the second fin body is oriented on one of a {100} crystal plane, a {110} crystal plane, and a {111} crystal plane.

			• •
1	7.	A semiconductor structure	comprising:

- a substrate having a surface oriented on a first crystal plane that enables subsequent crystal planes for channels to be utilized;
- a first transistor having a first fin body, the first fin body having a sidewall forming a first channel, the sidewall of the first fin body oriented on a
- second crystal plane to provide a first carrier mobility; and
- a second transistor having a second fin body, the second fin body having a sidewall forming a second channel, the sidewall of the second fin body
- oriented on a third crystal plane to provide a second carrier mobility that

is different from the first carrier mobility.

- The semiconductor structure of claim 7, wherein the silicon substrate surface is oriented on a {110} crystal plane.
- The semiconductor structure of claim 7, wherein the sidewall of the first fin body is oriented on a {n n m} plane and n and m are any integer, wherein the sidewall of the second fin body is oriented on a {a a b} plane and a and b are any integer such that the {n n m} plane and the {a a b} plane are not equivalent by a symmetry transformation.
- 1 10. The semiconductor structure of claim 7, wherein the first transistor is one of a first p-channel FinFET (PFET) and a first n-channel FinFET (NFET), wherein the second transistor is one of a second PFET and a second NFET.

10

- The semiconductor structure of claim 8, wherein the sidewall of the first fin body of one of the first PFET and the first NFET is oriented on a second crystal plane to provide one of an optimized carrier mobility and a non-optimized carrier mobility, wherein the sidewall of the second fin body of one of the second PFET and the second NFET is oriented on a third crystal plane to provide one of an optimized carrier mobility and a non-optimized carrier mobility.
- 1 12. The semiconductor structure of claim 8, wherein the sidewall of the first fin body
 2 of one of the first PFET and the first NFET is oriented on one of a {100} crystal
 3 plane, a {110} crystal plane, and a {111} crystal plane, wherein the sidewall of
 4 the second fin body of one of the second PFET and the second NFET is oriented
 5 on one of a {100} crystal plane, a {110} crystal plane, and a {111} crystal plane.
- 1 13. A semiconductor structure comprising a chip comprising:
- a first single crystal semiconductor sidewall channel oriented on a first crystal plane; and
- a second single crystal semiconductor sidewall channel oriented on a second crystal plane different from the first crystal plane;
- wherein the first crystal plane is not equivalent to the second crystal plane by a symmetry transformation.
- The semiconductor structure of claim 13, wherein a first mobility is associated with the first crystal plane and a second mobility is associated with the second crystal plane, wherein the first mobility is different from the second mobility.

- 1 15. The semiconductor structure of claim 13, wherein the chip has a surface oriented on a {110} crystal plane.
- 1 16. The semiconductor structure of claim 13, wherein the first single crystal semiconductor sidewall channel is part of a first FinFET and the second single crystal semiconductor sidewall channel is part of a second FinFET.
- The semiconductor structure of claim 16, wherein the first FinFET is one of a first p-channel FinFET (PFET) and a first n-channel FinFET (NFET), wherein the second FinFET is one of a second PFET and a second NFET.
- The semiconductor structure of claim 17, wherein one of the first PFET and the first NFET is oriented on a second crystal plane to provide one of an optimized carrier mobility and a non-optimized carrier mobility, wherein one of the second PFET and the second NFET is oriented on a third crystal plane to provide one of an optimized carrier mobility and a non-optimized carrier mobility.
- 1 19. The semiconductor structure of claim 17, wherein one of the first PFET and the
 2 first NFET is oriented on one of a {100} crystal plane, a {110} crystal plane, and
 3 a {111} crystal plane, wherein one of the second PFET and the second NFET is
 4 oriented on one of a {100} crystal plane, a {110} crystal plane, and a {111}
 5 crystal plane.

* * * *