What are scientific models? Part I

 $P_d = a - b Q_d$ $P_s = c + d Q_s$

 $Q_d = Q_s$

 $P_d = P_s + T$

(demand function)

(supply function)

(market equilibrium)

(Transaction cost mark-up)

 $P_d = a - b Q_d$ $P_s = c + d Q_s$ $Q_d = Q_s$ (demand function) (supply function) (market equilibrium) (Transaction cost mark-up)

What is the Nature of Models?

Models as...

- representations
- idealisations
- purpose-dependent
- things to manipulate

Stands in for

Target

CONCEPTEST 1

Why represent targets with models, instead of investigating the target itself?

Write down your answer in two sentences, before continuing!

What are scientific models? Part II

Investigating the target directly would be....

...physically impossible or too costly

...legally or morally prohibited

...cognitively too demanding, so that instead we investigate a simplified model

"Bohr Theory" (1913)

- •One has reasons to believe that theory is not false
- Object of theory is indeed governed by principles stated in theory

"Bohr Theory" (1913)

- •One has reasons to believe that theory is not false
- Object of theory is indeed governed by principles stated in theory

"Bohr Model" (1925)

- •Provides approximation of object in question
- •Alternative representations of the same object useful for other purposes exist

"Bohr Theory" (1913)

- One has reasons to believe that theory is not false
- Object of theory is indeed governed by principles stated in theory

"Bohr Model" (1925)

- •Provides approximation of object in question
- •Alternative representations of the same object useful for other purposes exist

Same target, two different models

Same target, two different models

Same target, two different models

Which model is better?

Answer depends on **purpose**.

Module II: Models & Modelling Video 3

Till Grüne-Yanoff

What is the Nature of Models?

Models as...

- representations
- idealisations
- purpose-dependent
- things to manipulate

What is the Nature of Models?

Models as...

- representations
- idealisations
- purpose-dependent
- things to manipulate

Material Models

Material Models

Material, Computational & Mathematical Models

Material models

Computational models

$$Q_d = Q_s$$
$$Q_d = a - bP$$

$$Q_s = -c + dP$$

Mathematical models

Material Models

https://www.youtube.com/watch?v=q_eMQ

<u>vDoDWk</u>

3:28 - 3:38

Material Models

vDoDWk

3:28 - 3:38

https://www.youtube.com/watch?v=q_elviQ utaneous-injection-in-the-rat/

1:44-1:49

Learning By Manipulating Models

Peter Mennim, "Portrait of an Academic [Mary Hesse (1924-2016)]"

Learning By Manipulating Models

Organs
Physiology
Nervous systems
Hormones

Organs
Physiology
Nervous systems
Hormones

Organs
Physiology
Nervous systems
Hormones

Size Lifespan Gestation period

Size Lifespan Gestation period

which he presented to the Royal Society in 1803.

Thomas Young's sketch of two-slit diffraction, which he presented to the Royal Society in 1803.

Models vs. Experiments

Similarities

- In a model, we set variables & parameters cf. experimental control
- We manipulate a model *cf. experimental manipulation*
- We observe results of model manipulation cf. exp. Observation

Models vs. Experiments

Similarities

- In a model, we set variables & parameters cf. experimental control
- We manipulate a model *cf. experimental manipulation*
- We observe results of model manipulation cf. exp. observation

Differences

- Internal validity less of a problem for models than for experiments
- External validity a problem for all models but only for some experiments

Models vs. Experiments

- Models are things to manipulate
- Afford neutral analogies
- Source of errors distinguishes modelling from experimenting.

Model virtues: what makes a good model?

Part I: Similarity

What Makes a Good Model?

No fixed scheme...but many ingredients that need to be balanced:

- Similarity to target
- Robustness
- Precision
- Simplicity
- Theoretical tractability
- Transparency

Similarity

Similarity

A model M is a good representation of a target X if and only if M is similar to X with respect to properties P to the degree d^{P} .

According to the above definition, can we ever exclude *any* model as a bad representation of any given target?

Think about this for a moment and formulate your answer in a sentence or two.

Material properties:

Model fuselage made of plastic

...

Airplane exterior hull made of metal

...

Geometric properties

laminar flow inverted gull wing

...

laminar flow inverted gull wing

...

Interior design properties

Model has no interior elements

two seats, covered in leather, ...

Model virtues: what makes a good model? Part II

What Makes a Good Model?

Many ingredients that need to be balanced:

- Similarity to target
- Robustness
- Precision
- Simplicity
- Theoretical tractability
- Transparency

Precision

A model M1 is **more precise** (with respect to a parameter P) than another model M2 if the parameter specifications of M1 imply the parameter specifications of M2

Precision

A model M1 is **more precise** (with respect to a parameter P) than another model M2 if the parameter specifications of M1 imply the parameter specifications of M2

M1:
$$dN/dt = f(N)$$

M2:
$$dN/dt = rN$$

M3:
$$dN/dt = 1.5N$$

Direction of implication

Simplicity

Simplicity

Simplicity

A model M1 is **simpler** than another model M2 if (i) M1 processes less variables than M2, (ii) M1 contains less parameters than M2, and (iii) M1 uses fewer operations than M2.

Tractability

A model is **tractable** (with respect to some general set of rules), if the relevant model result can be obtained by applying these principles to the model.

Theoretical Tractability

Transparency

A model is **epistemically transparent** if the model user is cognitively capable of understanding how the model result is produced

Transparency

A model is **epistemically transparent** if the model user is cognitively capable of understanding how the model result is produced

Transparent

```
Ax. 1. \{P(\varphi) \land \Box \forall x [\varphi(x) \rightarrow \psi(x)]\} \rightarrow P(\psi)

Ax. 2. P(\neg \varphi) \leftrightarrow \neg P(\varphi)

Th. 1. P(\varphi) \rightarrow \Diamond \exists x [\varphi(x)]

Df. 1. G(x) \iff \forall \varphi [P(\varphi) \rightarrow \varphi(x)]

Ax. 3. P(G)

Th. 2. \Diamond \exists x G(x)

Df. 2. \varphi \operatorname{ess} x \iff \varphi(x) \land \forall \psi \{\psi(x) \rightarrow \Box \forall y [\varphi(y) \rightarrow \psi(y)]\}

Ax. 4. P(\varphi) \rightarrow \Box P(\varphi)

Th. 3. G(x) \rightarrow G \operatorname{ess} x

Df. 3. E(x) \iff \forall \varphi [\varphi \operatorname{ess} x \rightarrow \Box \exists y \varphi(y)]

Ax. 5. P(E)

Th. 4. \Box \exists x G(x)
```

Transparency

A model is **epistemically transparent** if the model user is cognitively capable of understanding how the model result is produced

Transparent

```
Ax. 1. \{P(\varphi) \land \Box \ \forall x[\varphi(x) \rightarrow \psi(x)]\} \rightarrow P(\psi)

Ax. 2. P(\neg \varphi) \leftrightarrow \neg P(\varphi)

Th. 1. P(\varphi) \rightarrow \Diamond \exists x[\varphi(x)]

Df. 1. G(x) \iff \forall \varphi[P(\varphi) \rightarrow \varphi(x)]

Ax. 3. P(G)

Th. 2. \Diamond \exists x G(x)

Df. 2. \varphi \text{ ess } x \iff \varphi(x) \land \forall \psi \{\psi(x) \rightarrow \Box \ \forall y[\varphi(y) \rightarrow \psi(y)]\}

Ax. 4. P(\varphi) \rightarrow \Box P(\varphi)

Th. 3. G(x) \rightarrow G \text{ ess } x

Df. 3. E(x) \iff \forall \varphi[\varphi \text{ ess } x \rightarrow \Box \ \exists y \varphi(y)]

Ax. 5. P(E)

Th. 4. \Box \exists x G(x)
```

Not Transparent

"A network consisting of 1.73 billion nerve cells connected by 10.4 trillion synapses... The process took 40 minutes to complete the simulation of 1 second of neuronal network activity in real, biological, time....."

What Makes a Good Model?

Many ingredients that need to be balanced:

- Similarity to target
- Robustness
- Precision
- Simplicity
- Theoretical tractability
- Transparency

Trading off Virtues

Increasing one epistemic virtue in a model often means decreasing another one

```
e.g.: precision --- transparency similarity --- simplicity
```

Building a model means finding the trade-off best for your purpose!

Module II: Models & Modelling Video 5

Till Grüne-Yanoff

Learning from models

Learning from and with Models

- as mirrors of the real world
- as isolations

Models as Mirrors

Largest neuronal network simulation, using K computer, RIKEN 2013

Models as Mirrors

Largest neuronal network simulation, using K computer, RIKEN 2013

Simulation of smallpox epidemic, Portland, OR. *Nature* 2004.

Models as Mirrors: FE Analysis

Finite element simulation of impact damages on car (left) and bridge (below)

Physical model

Describe the problem: Simplifying a real engineering problem into a problem that can be solved by FEA

FEA model

Discretize/mesh the solid, define material properties, apply boundary conditions

Results

Obtain, visualize and explain the results and make your boss happy

FEA theory

Choose approximate functions, formulate linear equations, and solve equations

Necessary steps in designing Finite Element Analysis (FEA)

August 2, 2013

Although the simulated network is huge, it only represents 1% of the neuronal network in the brain....

The nerve cells were randomly connected...."

RIKEN News and Media

August 2, 2013

Although the simulated network is huge, it only represents 1% of the neuronal network in the brain....

The nerve cells were randomly connected...."

RIKEN News and Media

Assumption that the occupancy rate of locations within a city block are "nothing more than reasonable guesses"

Eubank et al 2004, supplement

Models as mirrors might function as ideal, but comes at a cost:

- lack of simplicity, tractability, transparency
- high similarity to target, precision

.... but not sufficient to avoid external validity issues

Module II: Models & Modelling Video 7

Till Grüne-Yanoff

Learning from models as Isolations

Can a model be similar to its target and still be simple?

Can a model be similar to its target and still be simple?

- Isolating models single out one aspect of the target, ignoring all the others
 - a causal factor
 - a property

Can a model be similar to its target and still be simple?

- Isolating models single out one aspect of the target, ignoring all the others
 - a causal factor
 - a property
- They represent the workings of that factor accurately

Can a model be similar to its target and still be simple?

 Isolating models single out one aspect of the target, ignoring all the others

a causal factor

Arthur Cayley (1821-1895) – airplane consists of 3 separate systems:

Lift Propulsion Control

Can a model be similar to its target and still be simple?

 Isolating models single out one aspect of the target, ignoring all the others

a causal factor

Arthur Cayley (1821-1895) – airplane consists of 3 separate systems:

Propulsion

Control

Wright Brothers' models for these three systems

Different research strategies in early aeronautics

H. Maxim (1894)

Immediately construct flyable airplane

Different research strategies in early aeronautics

Immediately construct flyable airplane

Start with smaller scale model of flyable airplane

Different research strategies in early aeronautics

Start with smaller scale model of flyable airplane

Start with isolating models of components and then synthesise

Immediately construct flyable airplane

Isolating Models: Limitations

- System must be dividable this way
 - Components must be truly independent
- Difficult to validate isolated models
 - Results of valid isolating models might not look like anything in the real world – because real-world phenomena are combinations of effects, while isolating model only represents one such effect
 - Validation either through synthesis but that gives rise to a new version of Duhem-Quine problem; Or by carefully constructing isolating experiments