# Cloud Storage using Erasure Code

# **Distributed Storage**

- Striping/Sharding
  - ➤ How to store objects in distributed storage
    - A lot of data objects (or files) in many storage nodes
    - A large data object in many storage nodes ⇒ Striping
      - We have discussed how to partition, placing, maintaining layout
  - ➤ What are the problems with striping?
    - One node failure ⇒ data loss
      - One node failure:  $f \Rightarrow At$  least one of N node failure:  $1-(1-f)^N$
  - **➤** Solutions
    - Striping + replication ⇒ High space consumption
    - (N,K) erasure code
      - Divide data into N shares, reconstruct data from K shares

#### **Erasure Code**

- **♦**(N,K) erasure code
  - ➤ Code with original data
    - RAID is also a type of erasure code with original data



- ➤ Code without original data
  - May be for security, e.g. secret sharing
  - E.g., N = 10, K = 4, take any 4, original data can be reconstructed



#### **Erasure Code**

- ❖ Different focuses for communication and storage
  - ➤ Most erasure codes are originally designed for reliable data transmission
  - ➤ In communication
    - Error checking and recovery are both important
  - ➤ In storage
    - Consider storage node failures, but failure detection is not the main concern, only need to consider recovery from failures
      - Each piece of data is stored at a different storage ⇒ Failed node is clearly known
      - Many disks have their own integrity coding schemes to detect errors

## **Erasure Code, Replication, Striping**

- What are to be compared
  - ➤ Redundancy level
    - How much more redundant space is needed to achieve the same level of fault tolerance
  - > Parallel transmission
    - When accessing a certain data by one client, different parts of the data can be transmitted from different nodes
    - Reduce the communication latency
  - > Parallel accesses
    - When accessing the same data by different clients, concurrent client accesses can be parallelized
    - Reduce the potential waiting time

## **Erasure Code, Replication, Striping**

- \*Redundancy level
  - ➤ Replication
    - Consider 3 replicas: with 2 failures, there is still one good replica
    - Storage space is tripled, redundancy is 200%
  - > (N, K) erasure code
    - 4 data nodes, 2 redundancy nodes
- $d_1 d_2 d_3 d_4 r_1 r_2$
- Can also tolerate 2 failures
- Only 50% redundancy
- Any disadvantage?
  - Recovery time will be higher
- > Striping + replication
  - Same redundancy as replication
    - (striping alone has no redundancy, no fault tolerance)

## **Erasure Code, Replication, Striping**

- ❖ Parallel accesses and communication cost
  - $\triangleright$  Striping + replication  $\begin{vmatrix} d_1 & d_2 & d_3 & d_4 & d_1 & d_2 & d_3 & d_4 \end{vmatrix}$   $\begin{vmatrix} d_1 & d_2 & d_3 & d_4 \end{vmatrix}$ 
    - Cannot access arbitrarily
    - Has to get one block from each specific node group
  - - Assume MDS: Maximum distance separable code
      - Data can be reconstructed from any K (out of N) shares
      - Increase N to increase the level of parallel accesses
      - Access the nearest K nodes to reduce the communication cost
      - The data encoding and reconstruction cost is a concern



#### **RAID**

- **❖** RAID 6
  - ➤ 2 parity disks
  - ➤ How to compute the second parity? Diagonal
    - Consider K data disks and K data size (w = K)



➤ But recovery may be a problem!

#### **RAID**

- \*Recovery problem in simple 2-parity solution
  - ➤ Consider two disk failures

| 0 | ? | 0 | ? | 0                | 0 |
|---|---|---|---|------------------|---|
| 0 | ? | 0 | ? | 0<br>0<br>0<br>0 | 0 |
| 0 | ? | 0 | ? | 0                | 0 |
| 0 | ? | 0 | ? | 0                | 0 |

➤ Multiple solutions

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0<br>0<br>0<br>0 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|---|------------------|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0                | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0                | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0                | 1 | 0 | 0 |

## **EvenOdd Coding**

- EvenOdd coding
  - Consider K disks, K-1 block size
    - K is a prime

| 0 | 1 | 1 | 0 | 0 | 0 | 1   |
|---|---|---|---|---|---|-----|
| 1 | 1 | 0 | 0 | 1 | 1 | 0   |
| 0 | 1 | 1 | 1 | 0 | 1 | 0   |
| 0 | 0 | 0 | 1 | 1 | 0 | 0   |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 4 |

Pseudo row, every bit should be 0 (5,7) is diagonal parity for gray Need to make this bit (5,7) = 0  $\Rightarrow$  Let this be the adjust bit A  $\Rightarrow$  For this example, A = 1  $\Rightarrow$  Use A to adjust all the

diagonal parity bits

- ➤ How to compute A from parities?
  - XOR (horizontal parities)
    - = XOR (all data bits, K\*(K-1) bits)
    - = XOR (diagonal parities) + A
  - In this example:  $XOR(0110) = XOR(1000) + A \Rightarrow A = 1$

## **EvenOdd Coding**

- **❖** Recovery
  - ➤ How to recover from 1 disk failure?
    - Data disk failure: recover from one of the parity disks
    - Parity disk failure: recompute the lost parity
  - ➤ How to recover from 2 disk failures?
    - 1 data disk + diagonal parity disk
      - First recover the data disk from horizontal parity disk
      - Then recompute the diagonal parity disk
    - 1 data disk + horizontal parity disk
    - 2 data disks
  - ➤ Why do we need to adjust the diagonal parity???

## **EvenOdd Coding**

\*Recovery from 2 data disk failures



- ➤ For any two data disk failures, there are always two diagonals that only lost one bit ⇒ derive those lost bits first
  - Disks 1 and 2 fail: orange bit M[1,1] can be computed first
  - Disks 3 and 5 fail: blue bit M[2,3] can be computed first
- ➤ After the first recovery, one row can be recovered fully, then zig-zag to recover the rest

# **EvenOdd Coding**

❖ Recovery from 1 data disk+ horizontal parity disk failures



➤ With any 1 data disk failure, there is always one diagonal without data loss ⇒ Derive the adjust bit from that diagonal

### **Even-Odd Coding**

- ❖ Why N has to be prime?
  - (N: # data disks, e.g., 4, 6)
  - ➤ By counter example





When #data-disk is even, (N = 4/6): Choose disks 1,3 as failed (gray, green)

- $\Rightarrow$  Gray on disk 3 is at row (N-(3-1) = 2/4)
- ⇒ Start from row 2 on disk 1, then disk 3, next row is always "2" rows after i.e., row (s\*2) % N, s = 1..N–1
- ⇒ Always get to gray before finish ⇒ Stuck (because gray lost only one bit, after recovering the lost bit, cannot proceed on diagonal any more)

When #data-disk is multiple of 3 (e.g., 9/15) Choose disks 1,4 as failed (gray, green)

- $\Rightarrow$  Gray on disk 4 is at (N+1-4 = 6/12)
- $\Rightarrow$  Start from position 3, jump 3
- ⇒ Always get to gray before finish ⇒ Stuck

#### **RAID-DP**

- \*RAID double parity
  - ➤ Used in RAID-6
  - Consider K disk and K data bits from each disk
    - K+1 is a prime

| 0 | 1 | 1 | 0 | 0 | 1 |
|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 |
|   |   |   |   |   |   |

- ➤ Horizontal parity
- ➤ Diagonal parity
  - The horizontal parity is also used to compute the diagonal parity
  - Gray diagonal has no diagonal parity

#### **RAID-DP**

|   | 1 | 2 | 3 | 4 | 5 |   |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 2 | 1 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 1 | 1 | 1 | 1 |
| 4 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1 disk failure or 1 data disk + D-parity disk ⇒ no problem

- Any two disk failures, not the diagonal parity
  - ➤ Horizontal parity disk is the same as data disk
    - They are horizontal parities for each other
  - ➤ If disk 1 and another disk failed (e.g., 3)
    - Always can find a non-gray diagonal with only 1 lost bit
      - The other diagonal is gray, which also lost only one bit
    - Blue:  $(2,1) \to (2,3) \to (4,1) \to (4,3) \to (1,1) \to (1,3) \to (3,1) \to (3,3) \to \text{done}$

#### **RAID-DP**

|   | 1 | 2 | 3 | 4 | 5 |   |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 0 |   | 1 |
| 2 | 1 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 1 | 1 | 1 | 1 |
| 4 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

- Any two disk failures, not the diagonal parity
  - ➤ If failed does not include disk 1 (e.g., 2 and 5)
    - Always can find 2 non-gray diagonals with only 1 lost bit
    - Orange:  $(3,2) \rightarrow (3,5) \rightarrow (1,2) \rightarrow (1,5) \rightarrow \text{stuck}$
    - Green:  $(2,5) \rightarrow (2,2) \rightarrow (4,5) \rightarrow (4,2) \rightarrow$  stuck, but done

#### **Reed Solomon Code**

- Generation matrix
  - ➤ Identify matrix I<sub>n</sub>
    - With dimension n\*n
  - > Additional rows: Redundancy matrix
    - Vandermonde and Cauchy constructions Assure inversibility
  - In encoding, no need to compute first n rows
    - They are the original data (because of the identify matrix)



#### **Reed Solomon Code**

❖ Vandermonde matrix

$$\mathbf{E} = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{bmatrix}$$

Cauchy matrix

$$E^{T} = a_{ij} = \frac{1}{x_i - y_j}; \quad x_i - y_j \neq 0, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n$$

- > Special case of Cauchy matrix: Hilbert matrix
  - $x_i y_j = i + j 1$
- > Every sub-matrix of a Cauchy matrix is a Cauchy matrix

#### Size of the Code

Ε

Data

Codeword

- ❖ All (N,K) coding can be expressed using encoding and decoding matrices
  - $\triangleright$  What's the size of  $c_i$ ?
    - Assume regular \*, +
  - $\rightarrow d_i$  is 8 bits
    - $\mathbf{c}_i$  will be 18 bits
  - $\rightarrow d_i$  is 32 bits
    - $\mathbf{c}_i$  will be 66 bits
  - $\triangleright d_i$  is b bits
    - $\Rightarrow c_i$  will be  $b*2 + \log n$  bits

#### **Size of Code**

- ❖ Code size should be the same as data size
  - Have a longer code than the data size is waste of space
  - > Field
    - Closure for addition and multiplication
      - If  $x, y \in F$ , then  $x + y, x * y \in F$
    - Existence of additive & multiplicative inverse in F
      - If  $x \in F$ , then  $\exists y \in F$ , s.t. x + y = 0 (or x \* y = 1)
    - Coding computation on a field is reversible
  - ➤ Choice of field for RS computation
    - Integer is a field, but data size has problem
    - Prime field:  $a + b \Rightarrow (a + b) \% p$ ;  $a * b \Rightarrow (a * b) \% p$ 
      - Prime will not be  $2^x \Rightarrow$  One bit longer in code size than in data size
    - Galois' Field: Final choice in coding

#### **Galois' Field Arithmetic**

- ❖ Galois field with 2<sup>N</sup> elements
  - Consider an irreducible polynomial *P* 
    - $P = a_0 x^{N} + a_1 x^{N-1} + ... + a_{N-1} x + a_N$ 
      - $a_i$ , for all i, is in  $\{0, 1\}$
    - $\blacksquare$  mod P is a field
      - (Similar to the concept of mod a prime number)
  - **➤** Computation
    - If  $p_1$  and  $p_2$  are in P, then  $p_1 + p_2$  and  $p_1 * p_2$  are in P
      - $(p_1 + p_2) \mod P$ ,  $(p_1 * p_2) \mod P$
  - ➤ Use Galois field in RS computation
    - Map polynomial to the binary numbers
    - + becomes XOR and \* can be done by table lookup

#### **Galois' Field Arithmetic**

- ❖ Galois field with 4 elements
  - $\triangleright$  Consider an irreducible polynomial  $x^2 + x + 1$ 
    - $x^2 + x + 1 = 0 \Rightarrow x^2 = -(x+1) = x+1$ 
      - In  $Z_2$ , -1 = -1 + 2 = 1
    - $(1+x)^2 = 1 + 2x + x^2 = x$
    - $(1+x) * x = x + x^2 = -1 = 1 \Rightarrow x$  and (1+x) inverse to each other
      - In  $Z_2$ , 2x = 0
    - Map to the 2-bit binary numbers
      - $0 + 0x \Rightarrow 00$ ;  $1 + 0x \Rightarrow 10$ ;  $0 + 1x \Rightarrow 01$ ;  $1 + x \Rightarrow 11$

# **Erasure Code in Storage Systems**

- ❖ Erasure code is used quite often in cloud storage
  - Microsoft Azure
  - GFS II
  - Facebook HDFS
  - ➤ Mostly used for redundancy
    - Focus on improving recovery speed, i.e., when a share is lost, how to rebuild it efficiently
    - If we reconstruct the data, the share can be recomputed, but can we do better?
    - All the systems above use an improved method, focusing on recovery speed

#### **Erasure Code in GFS II**

- ❖ Plain RS 6+3 code in Google GFS II
  - (N,K) = (9,3)

 $d_0 \mid d_1 \mid d_2 \mid d_3 \mid d_4 \mid d_5$ 

 $p_1 p_2 p_3$ 

#### **Erasure Code in WAS**

❖ Plain RS 12+4 code

$$d_0 \mid d_1 \mid d_2 \mid d_3 \mid d_4 \mid d_5 \mid d_6 \mid d_7 \mid d_8 \mid d_9 \mid d_{11} \mid d_{12}$$
  $p_1 \mid p_2 \mid p_3 \mid p_4$ 

- \*Reliability, redundancy, repair cost
  - **>** 6+3
    - Recovery ratio = 3/9 = 0.33
    - Redundancy = 3/6 = 0.5
    - Repair cost = 6 shares transferred
  - **>** 12+4
    - Recovery ratio = 4/16 = 0.25
    - Redundancy = 4/12 = .33
    - Repair cost = 12 shares transferred ⇒ very expensive!!!

#### **Erasure Code in WAS**

- ❖ Azure's erasure code
  - ➤ Hierarchical code



- ➤ Handling 1 failure or 2 failures in different groups
  - Require 6 share transfers







#### **Erasure Code in WAS**

- ❖ Azure's erasure code
  - ➤ May handle some of the 4 failure cases
    - As long as failures occur in both groups, all four redundant shares are useful



■ If failures are all in one group,  $(p_y)$  cannot be made use of in the example)  $\Rightarrow$  cannot recover, but chance of this is relatively low



## **Windows Azure Storage**

- ❖ File structure
  - File is considered as a stream, and is "append only"
  - Extent: unit of placement/replication
  - ➤ Block: regular file blocks, each extent has a set of blocks
  - $\triangleright$  Stream means append only  $\Rightarrow$ 
    - Only one extent open for append, the rest are "sealed"
    - Replication for unsealed, erasure coding for "cold" sealed



#### **Erasure Code in Facebook HDFS-Xorbas**

- **❖** Locally repairable code (LRC)
  - ➤ A type of regenerate code
  - ➤ A type of hierarchical regenerate code
    - A simplified version
    - Give a new name due to the naming game
  - > Facebook HDFS Xorbas



#### **Erasure Code in Facebook HDFS-Xorbas**

- Handling failures
  - ➤ If at most one failure in each group ⇒ local repair
    - If  $P_1$  fails, compute  $S_3 = G_1S_1 + G_2S_2$ , and then derive  $P_1$  from  $S_3$
  - ➤ If more than one failure in a group ⇒ require RS repair
  - No problem in handling any 6 failures
    - No problem with 4 failures
    - If all 5 blocks in a group fail, recover from 1 local + 4 RS
    - The 6th failure has to be in a different group
  - ➤ If only 3 RS blocks are used
    - Same as the case in Azure erasure code, may not be able to recover
      5 failures with 5 redundant blocks

#### References

- References
  - > RAID
    - A case for redundant arrays of inexpensive disks (RAID)
    - M. Blaum, J. Brady, J. Bruck and J. Menon, "EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures," IEEE Transactions on Computing, Vol. 44, No. 2, Feb. 1995, pp. 192-202.
    - Jay White, Chris Lueth, Jonathan Bell, "RAID-DP: NetApp Implementation of Double-Parity RAID for Data Protection" NetApp.com, March 2003.
    - C. Huang and L. Xu, "STAR: An efficient coding scheme for correcting triple storage node failures," Usenix Conference on File and Storage Technologies (FAST), December, 2005, pp. 197-210.

## **References**

- References
  - ➤ Reed Solomon
    - I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields," Journal of the Society for Industrial and Applied Mathematics, 8, 1960, pp. 300-304.
    - Vandermonde matrix:
      <a href="http://en.wikipedia.org/wiki/Vandermonde">http://en.wikipedia.org/wiki/Vandermonde</a> matrix
    - Cauchy Reed-Solomon: <a href="http://planetmath.org/CauchyMatrix.html">http://planetmath.org/CauchyMatrix.html</a>
  - > Azure erasure storage
    - C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, S. Yekhanin, "Erasure coding in Windows Azure storage," USENIX ATC, June 2012
  - ➤ Facebook HDFS-Xorbas
    - M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A.G. Dimakis, R. Vadali, S. Chen, D. Borthakur. "XORing elephants: Novel erasure codes for big data," VLDB 2013, pp. 325-336