BAYESIAN LEARNING - LECTURE 4

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- ► Prediction
- Decision theory

PREDICTION

- ▶ Using the estimated model for **forecasting** a future observation \tilde{y} .
- ► Posterior predictive distribution (y denotes available data at the time of forecasting)

$$p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta, y) p(\theta|y) d\theta$$

▶ If $p(\tilde{y}|\theta, y) = p(\tilde{y}|\theta)$ [not true for time series], then

$$p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|y) d\theta$$

► The uncertainty that comes from not knowing θ is represented in $p(\tilde{y}|y)$ by averaging over $p(\theta|y)$.

PREDICTION - BERNOULLI DATA

▶ Let $y = \sum_{i=1}^{n} y_i$ and \tilde{y} the outcome of the next trial

$$p(\tilde{y} = 1|y) = \int_{\theta} p(\tilde{y} = 1|\theta) p(\theta|y) d\theta$$
$$= \int_{\theta} \theta p(\theta|y) d\theta = E_{\theta|y}(\theta) = \frac{\alpha + y}{\alpha + \beta + n}.$$

▶ Uniform prior $(\alpha = \beta = 1)$

$$p(\tilde{y}=1|y)=\frac{y+1}{n+2}.$$

PREDICTION - NORMAL DATA, KNOWN VARIANCE

▶ Under the uniform prior $p(\theta) \propto c$, then

$$p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|y) d\theta$$

where

$$\theta | y \sim N(\bar{y}, \sigma^2/n)$$

 $\tilde{y} | \theta \sim N(\theta, \sigma^2)$

PREDICTION - NORMAL DATA, KNOWN VARIANCE

▶ Under the uniform prior $p(\theta) \propto c$, then

$$p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|y) d\theta$$

where

$$\theta | y \sim N(\bar{y}, \sigma^2/n)$$

 $\tilde{y} | \theta \sim N(\theta, \sigma^2)$

- 1. Generate a posterior draw of θ ($\theta^{(1)}$) from $N(\bar{y}, \sigma^2/n)$
- 2. Generate a draw of \tilde{y} ($\tilde{y}^{(1)}$) from $N(\theta^{(1)}, \sigma^2)$ (note the mean)
- 3. Repeat steps 1 and 2 a large number of times (N) with the result:
 - Sequence of posterior draws: $\theta^{(1)},, \theta^{(N)}$
 - ▶ Sequence of predictive draws: $\tilde{y}^{(1)}, ..., \tilde{y}^{(N)}$.

PREDICTIVE DISTRIBUTION - NORMAL MODEL AND UNIFORM PRIOR

- $m{\theta}^{(1)} = \bar{y} + \varepsilon^{(1)}$, where $\varepsilon^{(1)} \sim N(0, \sigma^2/n)$. (Step 1).
- $\tilde{y}^{(1)} = \theta^{(1)} + v^{(1)}$, where $v^{(1)} \sim N(0, \sigma^2)$. (Step 2).
- $\tilde{y}^{(1)} = \tilde{y} + \varepsilon^{(1)} + v^{(1)}.$
- $ightharpoonup arepsilon^{(1)}$ and $v^{(1)}$ are independent.
- ▶ The sum of two normal random variables follows a normal distribution, so \tilde{y} follows a normal distribution with

$$\begin{split} E(\tilde{y}|y) &= \bar{y} \\ V(\tilde{y}|y) &= \frac{\sigma^2}{n} + \sigma^2 = \sigma^2 \left(1 + \frac{1}{n} \right). \end{split}$$

Note that the estimation uncertainty (σ^2/n) is typically much less important than the intrinsic population uncertainty, σ^2 .

PREDICTIVE DISTRIBUTION - NORMAL MODEL AND NORMAL PRIOR

- ▶ It easy to see that the predictive distribution is normal.
- ► The mean can be obtained from

$$E_{\tilde{y}|\theta}(\tilde{y}) = \theta$$

and then remove the conditioning on θ by averaging over θ

$$E(\tilde{y}|y) = E_{\theta|y}(\theta) = \mu_n$$
 (Posterior mean of θ).

▶ The predictive variance of \tilde{y} (conditional variance formula):

$$\begin{split} V(\tilde{y}|y) &= E_{\theta|y}[V_{\tilde{y}|\theta}(\tilde{y})] + V_{\theta|y}[E_{\tilde{y}|\theta}(\tilde{y})] \\ &= E_{\theta|y}(\sigma^2) + V_{\theta|y}(\theta) \\ &= \sigma^2 + \tau_n^2 \\ &= \text{(Population variance + Posterior variance of } \theta\text{)}. \end{split}$$

In summary:

$$\tilde{y}|y \sim N(\mu_n, \sigma^2 + \tau_n^2).$$

BAYESIAN PREDICTION IN MORE COMPLEX MODELS

Autoregressive process

$$y_t = \phi_1(y_{t-1} - \mu) + ... + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

- ► Simulate a draw from $p(\phi_1, \phi_2, ..., \phi_p, \mu, \sigma|y)$
 - ► Conditional on that draw $\theta^{(1)} = (\phi_1^{(1)}, \phi_2^{(1)}, ..., \phi_p^{(1)}, \mu^{(1)}, \sigma^{(1)})$, simulate
 - $\tilde{y}_{T+1} \sim p(y_{T+1}|y_T, y_{T-1}, ..., y_{T-p}, \theta^{(1)})$
 - $\tilde{y}_{T+2} \sim p(y_{T+2}|\tilde{y}_{T+1}, y_T, ..., y_{T-p}, \theta^{(1)})$
 - ▶ and so on.
- ightharpoonup Repeat for new θ draws.

BAYESIAN PREDICTION IN MORE COMPLEX MODELS

Autoregressive process

$$y_t = \phi_1(y_{t-1} - \mu) + ... + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

- ► Simulate a draw from $p(\phi_1, \phi_2, ..., \phi_p, \mu, \sigma|y)$
 - ► Conditional on that draw $\theta^{(1)} = (\phi_1^{(1)}, \phi_2^{(1)}, ..., \phi_p^{(1)}, \mu^{(1)}, \sigma^{(1)})$, simulate
 - $\tilde{y}_{T+1} \sim p(y_{T+1}|y_T, y_{T-1}, ..., y_{T-p}, \theta^{(1)})$
 - $\tilde{y}_{T+2} \sim p(y_{T+2}|\tilde{y}_{T+1}, y_T, ..., y_{T-n}, \theta^{(1)})$
 - ▶ and so on.
- ightharpoonup Repeat for new θ draws.
- Regression trees.
 - ▶ Uncertainty on which variables to split on, and the split point.
 - ► For given draw of splitting variables and split points, simulate a response. Repeat for many different draws.

PREDICTING AUCTION PRICES ON EBAY

- ▶ Problem: Predicting the auctioned price in eBay coin auctions.
- ▶ Data: Bid from 1000 auctions on eBay. The highest bid is not observed. The lowest bids are also not observed because of the seller's reservation price.
- ► Covariates: auction-specific, e.g. Book value from catalog, seller's reservation price, quality of sold object, rating of seller, powerseller, verified seller ID etc
- Buyers are strategic. Their bids does not fully reflect their valuation. Game theory needed in the econometric model. Very complicated likelihood.

SIMULATING AUCTION PRICES ON EBAY, CONT.

- ▶ A draw from the posterior predictive distibution of an auction's price:
- 1. Simulate a draw $\theta^{(1)}$ from the posterior of the model parameters θ
- 2. Simulate the number of bidders conditional on θ (which contains the intensity parameter of a Poisson process)
- 3. Simulate a complete auction bid sequence, $\mathbf{b}^{(1)}$, conditional on $\theta = \theta^{(1)}$, for the bidders generated in Step 2.
- 4. For the bid sequence $\mathbf{b}^{(1)}$, return the next to largest bid (eBay's proxy bidding system).

PREDICTING AUCTION PRICES ON EBAY, CONT.

DECISION THEORY

- Let θ be an unknown quantity. State of nature. Examples: Future inflation, Global temperature, Disease.
- ▶ Let $a \in A$ be an action. Ex: Interest rate, Energy tax, Surgery.
- lacktriangle Choosing action a when state of nature turns out to be θ gives **utility**

$$U(a, \theta)$$

▶ Alternatively loss $L(a, \theta) = -U(a, \theta)$.

► Loss table:

$$\begin{array}{c|cccc} & \theta_1 & \theta_2 \\ \hline a_1 & L(a_1, \theta_1) & L(a_1, \theta_2) \\ a_2 & L(a_2, \theta_1) & L(a_2, \theta_2) \end{array}$$

- Example utility functions:
 - ▶ Linear: $L(a, \theta) = |a \theta|$
 - Quadratic: $L(a, \theta) = (a \theta)^2$
 - ► Lin-Lin:

$$L(a,\theta) = \begin{cases} c_1 & \text{if } a \leq \theta \\ c_2 & \text{if } a > \theta \end{cases}$$

OPTIMAL DECISION

- Ad hoc decision rules:
 - ▶ *Minimax*. Choose the decision that minimizes the maximum loss.
 - ▶ *Minimax-regret*: Choose the decision rule that gives you least regret when you eventually find out the true value of θ .
- ▶ Bayesian axiomatic theory gives you the rule: Choose the action that maximizes the (posterior) expected utility:

$$a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|y)}[L(a, \theta)],$$

where $E_{p(\theta|y)}$ denotes the posterior expectation.

▶ Using simulated draws $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ from $p(\theta|y)$:

$$E_{p(\theta|y)}[L(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} L(a,\theta^{(i)})$$

- **Separation principle**: The analysis of uncertainty (i.e. the posterior of θ) is completely separated from the utilities of the choices.
- Example: Optimal reservation price in auctions. Utility = Profit. Uncertainty about the sale price. Here a affects $p(\theta|y)$.

POINT AND INTERVAL ESTIMATION

- Choosing a point estimator is a decision problem.
- ▶ Which to choose: posterior median, mean or mode?
- ▶ It depends on your loss function:
 - ▶ Linear loss → Posterior median is optimal
 - ▶ Quadratic loss → Posterior mean is optimal
 - ▶ Lin-Lin loss $\rightarrow c_1/(c_1+c_2)$ quantile of the posterior is optimal
 - lacktriangle Zero-one loss ightarrow Posterior mode is optimal
- Similar analysis can be used to select interval type: symmetric or HPD?