EE206 Assignment 6 *

Due 20th Nov.

- 1. Use the relation between multiplication of f(t) (by t^n) and differentiation of F(s) to find the Laplace transforms of the following
 - (a) $f(t) = te^{-t}\cos(2t)$
- 2. Use the Laplace transform to solve the given initial-value problems
 - (a) $y'' + y' = e^{-t} \cos t$, y(0) = 0, y'(0) = 0.
 - (b) y' + 2y = f(t), y(0) = 0, where

$$f(t) = \begin{cases} 1, & 0 \le t < 1, \\ -1, & 1 \le t. \end{cases}$$

(c) y' + 3y = f(t), y(0) = 0, where

$$f(t) = \begin{cases} 1, & 0 \le t < 1, \\ 0, & 1 \le t. \end{cases}$$

- 3. Use the Convolution Theorem to find the Laplace Transform of the following functions (* stands for convolution)
 - (a) $f(t) = t^3 * te^{-t}$
 - (b) $f(t) = e^{2t} * \sin 3t$
- 4. Evaluate the given Laplace transforms without evaluating the integrals (Convolution theorem)
 - (a) $\mathcal{L}\left\{\int_0^t \tau \sin \tau d\tau\right\}$
 - (b) $\mathcal{L}\left\{\int_0^t 2\sin\tau\cos(t-\tau)d\tau\right\}$
- 5. Use the Laplace transform to solve the following problems
 - (a) $f(t) + \int_0^t f(\tau) d\tau = 1$
 - (b) $y'' + 9y = \cos 3t$, y(0) = 1, y'(0) = 4
 - (c) $y'' + 4y' + 13y = \delta(t \pi) + \delta(t 3\pi)$, y(0) = 1, y'(0) = 0
 - (d) $y'' + 2y' = \delta(t-1)$, y(0) = 0, y'(0) = 1

 $^{^{*}\}mathrm{EE}$ 206 differential equation and transform methods, Siyuan Zhan PhD, Maynooth University