Homework 1

Quantum Mechanics

August 29th, 2022

CLAYTON SEITZ

Problem 1. For the spin 1/2 state $|+\rangle_x$, evaluate both sides of the inequality

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} |\langle [A, B] \rangle|^2$$

for the operators $A = S_x$ and $B = S_y$, and show that the inequality is satisfied. Repeat for the operators $A = S_z$ and $B = S_y$

Solution.

Let $A = S_x$ and $B = S_y$. The variance $\langle (\Delta S_x)^2 \rangle$ in state $|+\rangle_x$ must be zero since $|+\rangle_x$ is an eigenvector of S_x

$$\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle - \langle S_x \rangle^2 = 0$$

Therefore, the LHS of the above inequality is zero. The commutator $[S_x, S_y] = i\hbar S_z$ and

$$\langle S_z \rangle = \langle +|_x S_z |+\rangle_x = 0$$

Clearly the inequality is satisfied since both sides are zero. Now let $A = S_z$ and $B = S_y$. Since the state is prepared in $|+\rangle_x$, the variances $\langle (\Delta S_x)^2 \rangle$ and $\langle (\Delta S_x)^2 \rangle$ must be 1/4 (this is just a fair coin toss).

The commutator $[S_z, S_y] = -i\hbar S_x$ and $\langle S_x \rangle = \frac{\hbar}{2}$. The inequality then reads

$$\frac{1}{16} \ge \frac{\hbar^2}{16}$$

which is satisfied given that $\hbar \approx 10^{-34} \,\mathrm{J\cdot s}$

Problem 2.		
Solution.		•
Problem 3.		
Solution.		•
Problem 4.		
Solution.		
Problem 5.		
Solution.		-
Problem 6.		
Solution.		