

cinferms annual meeting | 2020 VIRTUAL

Investigating Potential Bias
And Discrimination In The
Development of A Typical AI
Platform For Heart
Transplantation

Shuyu (Jade) Zhang, Zejian Wu, Chenhao You, Yan Shi, Hamid Ahady, Clark University

Introduction

- Heart failure is a global pandemic without cure
- Heart transplantation is the most effective treatment for patients with endstage heart failure
- We want to help Decision makers have a predictive tool to facilitate their decision for organ matching
- We investigate the results of the latest researches in heart transplantation survival prediction for any evidences of bias in gender or region.

Introduction

- Dataset: National registry of U.S. heart transplants from 1987-2016 (UNOS dataset)
- Survival of patients after one year from transplantation surgery is predicted.
- The best model (the highest AUC) is selected from all of the combinations:

Total No. of Data Mining Project Developed

	CRISP-DM Sections						
	Da	ta Preparation	1	Training Model			
-	Categorical	Numerical	- "	Feature	Resampling	Training	
Factors	Imputation	Imputation	Encoding	Selection	Method	Algorithm	
No. of levels	4	2	2	3	5	9	
Total Combinations	$4 \times 2 \times 2 \times 3 \times 5 \times 9 \times (5 \text{ fold cross validation}) = 10,800$						

The training algorithm was Logistic Regression (the simplest one)

The survival tool

http://134.53.225.215/Heart-Transplant/monotonic/

Definition of Discrimination

- Initially originated from Latin for 'distinguishing'
- refers to an unjustified treatment of people based on belonging to some groups rather than their individual merits
- Human rights

 laws prohibit discrimination on the grounds of race, national or ethnic origin, color, religion, age, sex, sexual orientation, gender id entity or expression, marital status, family status, genetic characteristics, or disability.

Source: In 21st century Philippines, discrimination is still an inescapable way of life. GetRealPost

Discrimination in Machine Learning

- Discrimination due to algorithm is sometimes referred to as digital discrimination. In fact, digital discrimination could cause by biased dataset or the algorithm itself when sensitive attributes are included in the model
- Direct Discrimination
 - People that are similar in terms of non-protected characteristics should receive similar predictions
- Indirect Discrimination
 - Differences in predictions
 across groups of people can
 only be as large as justified
 by non-protected
 characteristics.

Protected Groups & Targets

- Gender of Patient
 - Male
 - Female
- Region
 - Southeast
 - Middle west
 - and Northeast

- Survival Status
 - C

The patient would not survive

The patient would survive

From 0 to 1

We use statistical tests to investigate the existence of indirect discrimination in predicted survival status and survival possibility among gender and region

Existence Tests

Regression Slope Test

- determine whether there is a significant linear relationship between an independent variable X and a dependent variable Y
- $Y = B_0 + B_1 X$
- Hypothesis:

$$H_0: B_1 = 0$$

$$H_a: B_1 \neq 0$$

Mean Differences Test

- For two groups:
 - Ho: there is no difference between the two population means
 - Ha: there is difference between the two population means
- For three groups:
 - ANOVA

Methodology

- Gender
 - 1. Select the data generated by Logistic Regression
 - 2. Test if there is significant bias between male and female in the actual survival status (0 and 1)
 - 3. Test if there is significant bias between male and female in the predicted survival rate (0 and 1)
 - 4. Test if there is significant bias between male and female in the predicted survival possibility (0 to 1)
 - 5. Compare the test results
- Region
 - Similar process
 - Detect the bias between Southeast, Middle west, and Northeast

Methodology

Result: Gender – Regression Test

$$Y = B_0 + B_1 X$$

 $H_0: B_1 = 0$

Actual Survival Status									
Year	slope	std_error	p-value	conclusion					
0	0.001511	0.006605	0.819071	Accept					
1	0.012958	0.009701	0.181679	Accept					
2	0.002992	0.011007	0.785788	Accept					
3	0.013493	0.011838	0.254377	Accept					
4	0.013493	0.011838	0.254377	Accept					
5	0.012717	0.013391	0.342328	Accept					
6	0.022473	0.014057	0.109933	Accept					
7	0.00921	0.014482	0.524829	Accept					
8	0.001508	0.014928	0.919531	Accept					
9	-0.00653	0.015153	0.666347	Accept					
10	-0.01831	0.015338	0.232594	Accept					

Predicted Survival Status								
Year	slope	std_error	p-value	conclusion				
C	0.050847	0.011930913	2.05E-05	Reject				
1	0.035387	0.012385337	0.004284322	Reject				
2	0.038522	0.01273741	0.002499292	Reject				
3	0.045311	0.013024613	0.00050617	Reject				
4	0.045311	0.013024613	0.00050617	Reject				
5	0.089718	0.013694132	6.08E-11	Reject				
6	0.077486	0.014078576	3.85E-08	Reject				
7	0.052496	0.014398259	0.000268411	Reject				
8	0.047808	0.014736314	0.001183829	Reject				
9	0.034139	0.014957594	0.022501932	Reject				
10	0.042433	0.015247362	0.005404143	Reject				

Predicted Survival Possibilities									
Year	slope	std_error	p-value	conclusion					
0	0.019286	0.004130946	3.07E-06	Reject					
1	0.01465	0.003554636	3.80E-05	Reject					
2	0.011839	0.003172059	0.000190972	Reject					
3	0.014741	0.003082325	1.76E-06	Reject					
4	0.020767	0.003106283	2.46E-11	Reject					
5	0.028701	0.003402421	3.94E-17	Reject					
6	0.021556	3.41E-10	0.003428245	Reject					
7	0.018114	0.003742111	1.32E-06	Reject					
8	0.017326	0.0045023	0.000120078	Reject					
9	0.013855	0.005581601	0.013079482	Reject					
10	0.01545	0.00665848	0.020357182	Reject					

Result: Gender – Mean Differences Test

Ho: there is no difference between the

two population means

Actual Survival Status							
Year	statistic	p-value	conclusion				
0	0.228746	0.819071	Accept				
1	1.119031	0.263173	Accept				
2	0.271792	0.785788	Accept				
3	1.139863	0.254377	Accept				
4	1.575005	0.115296	Accept				
5	0.949638	0.342328	Accept				
6	1.598701	0.109933	Accept				
7	0.635953	0.524829	Accept				
8	0.101028	0.919531	Accept				
9	-0.43119	0.666347	Accept				
10	-1.19383	0.232594	Accept				

			-	
		Predicted S	Survival Stat	us
Year		statistic	p-value	conclusion
	0	4.261827	2.05E-0	05 Reject
	1	1.760658	0.07834874	11 Accept
	2	3.024326	0.00249929	2 Reject
	3	3.478876	0.0005061	17 Reject
	4	5.693438	1.29E-0	08 Reject
	5	6.551596	6.08E-1	l1 Reject
	6	5.503812	3.85E-0	08 Reject
	7	3.645984	0.00026841	l1 Reject
	8	3.244222	0.00118382	29 Reject
	9	2.282371	0.02250193	82 Reject
	10	2.782945	0.00540414	13 Reject
	Pre	dicted Sur	vival Possib	oilities
Year		statistic	p-value	conclusion
	0	4.66868	4 3.07E-0	6 Reject
	1	2.72950	4 0.006362	2 Reject
	2	3.73230	1 0.00019	1 Reject
	3	4.78249	7 1.76E-0	6 Reject
	4	6.6854	7 2.46E-1	1 Reject
	5	8.43537	9 3.94E-1	7 Reject
	6	6.28780	7 3.41E-10	O Reject
	7	4.84062	2 1.32E-0	6 Reject
	8	3.84836	5 0.0001	2 Reject
	9	2.48233	1 0.013079	9 Reject
	10	2.32033	4 0.02035	7 Reject

Result: Region – Regression Test

					<u> </u>	ivea		REGIO	N_MIDWEST								
		Actual	Survival S	tatus				Predi	cted Survival S	tatus			Predi	cted	Survival Prob	abilities	
'ear	slope	e p	o-value	std_error	conclusion	Year		slope	p-value	std_error	conclusion	Year	slope	p-	-value	std_error	conclusio
	0 -0.0	00575	0.376377	0.006504	Accept		0	0.058056	7.84E-07	0.011746	Reject		0 0.0210	12	2.44E-07	0.004067	Reject
	1 0.01	11935	0.208335	0.009486	Accept		1	0.054162	7.71E-06	0.012102	Reject		1 0.0199	58	9.35E-09	0.003472	Reject
	2 0.01	16822	0.117115	0.010734	Accept		2	0.072223	6.03E-09	0.012406	Reject		2 0.0251	33	4.22E-16	0.003084	Reject
	3 0.01	15116	0.19611	0.011692	Accept		3	0.088542	5.70E-12	0.012837	Reject		3 0.0245	47	7.21E-16	0.003037	Reject
	4 0.02	23837	0.055766	0.01246	Accept		4	0.122215	1.09E-20	0.013067	Reject		4 0.0313	09	3.71E-25	0.003011	Reject
	5 0.02	21162	0.105789	0.013082	Accept		5	0.14526	1.63E-27	0.013311	Reject		5 0.0414	23	1.14E-35	0.003305	Reject
	6 0.02	21986	0.108197	0.013685	Accept		6	0.101202	1.56E-13	0.013682	Reject		6 0.0305	81	5.01E-20	0.003326	Reject
	7 0.02	23312	0.100971	0.014211	Accept		7	0.119321	2.73E-17	0.01407	Reject		7 0.0357	49	1.83E-22	0.003653	Reject
	8 0.03	32278	0.026408	0.014535	Reject		8	0.100935	1.93E-12	0.01431	Reject		8 0.0368	69	3.75E-17	0.004366	Reject
	9 0.02	21005	0.156257	0.014814	Accept		9	0.122428	4.80E-17	0.014547	Reject		9 0.0479	95	1.17E-18	0.005425	Reject
	10 0.01	19313	0.198195	0.015008	Accept		10	0.120963	4.48E-16	0.014845	Reject		10 0.0513	14	2.95E-15	0.006484	Reject
									I_NOTH_EAST								
			Survival S						cted Survival S						Survival Prob		
ear	slope				conclusion	Year	_	-			conclusion	Year	slope	-		std_error	
				6.70E-03				-1.19E-01		1.21E-02	-		0 -4.96E-			4.16E-03	
				9.81E-03				-9.37E-02		1.25E-02	-		1 -3.43E-	_	1.11E-21		
				1.12E-02				-4.53E-02		1.29E-02			2 -1.45E-			3.22E-03	
				1.20E-02				-5.03E-02		1.32E-02			3 -1.69E-		7.23E-08		
				1.29E-02				-5.14E-02		1.35E-02			4 -1.64E-			3.12E-03	
				1.36E-02				-9.82E-02		1.39E-02			5 -3.08E-			3.44E-03	
				1.42E-02				-4.76E-02		1.42E-02			6 -1.84E-		1.13E-07		
				1.46E-02				-3.09E-02		1.45E-02			7 -1.20E-			3.77E-03	
				1.49E-02				-3.04E-02		1.47E-02			8 -1.71E-			4.50E-03	
				1.53E-02				-8.42E-02		1.50E-02			9 -3.63E-	_	1.06E-10		
	10 -1.96	6E-02	2.05E-01	1.54E-02	Accept		10	-6.97E-02	5.58E-06	1.53E-02	Reject		10 -3.66E-	02	4.46E-08	6.68E-03	Reject
								PEGION	SOUTH EAST	т							
		Actua	l Survival S	Status					cted Survival S				Dredi	icted	Survival Prob	nahilities	
ear	slop				conclusion	Year		slope	p-value		conclusion	Year	slope			std error	conclusio
				5.90E-03		, icu	0	-1.45E-02	•	1.07E-02		, cui	0 -6.04E-			0.003696	
	1 -0.0			0.008672					0.011354747						0.000306026		-
				0.009823				-0.08361		0.012914	-		2 -0.02			0.00282	
				0.010611				-0.09059		0.01164			3 -0.025			0.002753	
				0.011356				-0.12751		0.011888	-		4 -0.03			0.002736	
				0.011925				-0.12473		0.012143	-		5 -0.036			0.003015	
				0.012519				-0.10408		0.012504			6 -0.029			0.003041	•
				0.012909				-0.12768		0.012752	-		7 -0.037			0.00331	•
				0.013246			8			0.013019	-		8 -0.034			0.003977	•
				0.013240				-0.08311		0.013015	-		9 -0.027			0.003577	
				0.013638				-0.08311		0.013521			10 -0.027		4.51E-06		-

Result: Region – ANOVA

Ho: there is no difference in means

Actual Survival Status								
Year	statistic	p-value	conclusion					
0	0.576839036	0.561695	Accept					
1	4.252878352	0.014277	Reject					
2	3.886647697	0.020558	Reject					
3	3.046513543	0.047591	Reject					
4	3.071013217	0.046444	Reject					
5	2.648017499	0.070874	Accept					
6	2.553425685	0.077904	Accept					
7	2.042358654	0.129822	Accept					
8	2.794213227	0.061255	Accept					
9	1.651012699	0.191961	Accept					
10	1.492085417	0.225008	Accept					

Predicted Survival Status							
Year	statistic	p-value	conclusion				
0	42.93389	2.859E-19	Reject				
1	23.49655	7.005E-11	Reject				
2	31.68267	2.005E-14	Reject				
3	40.23185	4.294E-18	Reject				
4	72.41616	8.078E-32	Reject				
5	93.52239	1.008E-40	Reject				
6	44.89891	4.496E-20	Reject				
7	59.53555	2.652E-26	Reject				
8	40.39344	3.913E-18	Reject				
9	49.93881	3.366E-22	Reject				
10	44.6354	6.22E-20	Reject				

Predicted Survival Possibilities							
Year		statistic	p-value	conclusion			
	0	58.41876	6.57133E-26	Reject			
	1	36.53723	1.78681E-16	Reject			
	2	55.54145	1.16897E-24	Reject			
	3	57.39094	1.94586E-25	Reject			
	4	95.55743	1.31515E-41	Reject			
	5	129.3908	9.61627E-56	Reject			
	6	69.33773	1.76977E-30	Reject			
	7	78.31291	2.95523E-34	Reject			
	8	54.35979	4.3223E-24	Reject			
	9	55.54211	1.39396E-24	Reject			
	10	42.37661	5.71776E-19	Reject			

Conclusion

- Existence of Gender Bias
- Existence of Region Bias
- The highest performing Model was in favor of female
- The highest performing Model was in favor of region northeast
- Any scoring algorithm based on the produced tool is prone to bias and needed to be optimized to reduce bias

Future Studies

- Measurement of bias
- Mathematical improvements in algorithms: developing cost function for bias
- Run algorithm separately for different groups to investigate if there
 exists overfitting/underfitting problem for some specific groups
- Sensitivity analysis of accuracy vs. bias

Thank you!