PoI+NBU: A Feasibility study in Generating High-Resolution Adversarial Images with a Black Box Evolutional Algorithm based Attack (Additional Material)

Enea Mancellari ^1[0000-0002-8562-1433], Ali Osman Topal^1[0000-0003-0141-4742], and Franck Leprévost ^1[0000-0001-8808-2730]

¹University of Luxembourg, House of Numbers, 6, avenue de la Fonte, L-4364 Esch-sur-Alzette, G-D of Luxembourg enea.mancellari@uni.lu & aliosman.topal@uni.lu & franck.leprevost@uni.lu

Abstract. Adversarial attacks in the digital image domain pose significant challenges to the robustness of machine learning models. Trained convolutional neural networks (CNNs) are among the leading tools used for the automatic classification of images. They are nevertheless exposed to attacks: Given an input clean image classified by a CNN in a category, carefully designed adversarial images may lead CNNs to erroneous classifications, although humans would still classify "correctly" the constructed adversarial images in the same category as the input image. In this feasibility study, we propose a novel approach to enhance adversarial attacks by incorporating a pixel of interest detection mechanism. Our method involves utilizing the BagNet model to identify the most relevant pixels, allowing the attack to focus exclusively on these pixels and thereby speeding up the process of adversarial attack generation. These attacks are executed in the low-resolution domain, and then the Noise Blowing-Up (NBU) strategy transforms the low-resolution adversarial images into high-resolution adversarial images. The PoI+NBU strategy is tested on an evolutionary-based black-box targeted attack against MobileNet trained on ImageNet using 100 clean images. We observed that this approach increased the speed of the attack by approximately 65%.

Keywords: Black-box attack; Convolutional Neural Network; High resolution adversarial image; Noise Blowing-Up method; Pixels of Interest

1 Clean images

Fig. 1: Representation of the 100 ancestor clean images \mathcal{A}_q^p used in the experiments. \mathcal{A}_q^p pictured in the q^{th} row and p^{th} column $(1 \leq p, q \leq 10)$ is randomly chosen from the ImageNet validation set of the ancestor category c_{a_q} specified on the left of the q^{th} row.

Table 1: Size $h \times w$ (with $h, w \geq 224$) of the 100 clean ancestor images \mathcal{A}_q^p .

		`	, –	- /		\circ q							
Ancestor images \mathcal{A}^p_q and their original size $(h \times w)$													
c_{aq}	q^p	1	2	3	4	5	6	7	8	9	10		
abacus	1	2448x3264	960x1280	262x275	598x300	377x500	501x344	375x500	448x500	500x500	2448x3264		
acorn	2	374x500	$500\mathrm{x}469$	375×500	$500\mathrm{x}375$	$500\mathrm{x}500$	$500\mathrm{x}500$	375×500	$374 \mathrm{x} 500$	$461\mathrm{x}500$	333x500		
baseball	3	398x543	240x239	$2336\mathrm{x}3504$	333x500	$262\mathrm{x}350$	$310\mathrm{x}310$	$404 \mathrm{x} 500$	$344\mathrm{x}500$	375×500	285x380		
broom	4	597x400	286x490	360x480	$298\mathrm{x}298$	$413\mathrm{x}550$	$366\mathrm{x}500$	400 x 400	$348 \mathrm{x} 500$	$346\mathrm{x}500$	$640\mathrm{x}480$		
brown bear	5	700x467	$406\mathrm{x}500$	333x500	500×333	$497\mathrm{x}750$	$336\mathrm{x}500$	480x599	$375\mathrm{x}500$	334x500	419x640		
canoe	6	500x332	450x600	360 x 525	2448x3264	375×500	$600\mathrm{x}400$	1067 x 1600	$333 {\bf x} 500$	1536 x 2048	375x500		
hippopotamus	7	375×500	1200 x 1600	333x500	$450\mathrm{x}291$	$525\mathrm{x}525$	$375\mathrm{x}500$	$500\mathrm{x}457$	$424\mathrm{x}475$	500 x 449	339x500		
llama	8	500x333	618x468	500 x 447	253x380	$490\mathrm{x}500$	$333\mathrm{x}500$	$375\mathrm{x}1024$	$375\mathrm{x}500$	$290\mathrm{x}345$	$1920\mathrm{x}2560$		
maraca	9	700x642	375×500	$470\mathrm{x}627$	$900\mathrm{x}928$	960 x 1280	$500\mathrm{x}375$	$500\mathrm{x}375$	$375\mathrm{x}500$	375×500	375×500		
mountain bike	10	768×1024	500x375	375x500	333x500	500×375	300 x 402	768×1024	$446\mathrm{x}500$	375×500	2065 x 1335		

Fig. 2: Visual quality of the EA-generated adversarial images in the LR domain under various settings: without and with PoI; for epsilon values 8, 12, and 16; and with PoI using different Top x% of the most relevant pixels, where x=10, 20, 25, 30, and 35.

2 Proportion of pixels with various x values for the Top x%.

For each c_a category, Table 2 displays, for various values of x, the average (computed over the 10 clean images selected from c_a , resized to the LR domain 224×224) proportion of pixels, that contribute to the Top x% of the c_a -label value and c_t -label value (taken together without any duplication) as measured by BagNet-33.

As x% increases, there is a rapid rise in the occupied image space up to 5%. Beyond 5%, the increase becomes more gradual (see Figure 3). This trend occurs because the most relevant pixels are densely clustered around the object's key structural features, with additional pixels extending into less critical areas, resulting in a smoother increase in occupied space.

Table 2: **Proportion of image space** occupied by the Top x% most relevant pixels in the LR domain for the c_a and the c_t categories as measured by BagNet-33.

c_a Top $x\%$	1%	2%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%
abacus	4.70	8.87	19.49	33.33	44.12	52.82	59.98	65.97	71.04	75.26	78.88	81.98	84.60	86.87
acorn	4.66	8.55	18.35	31.25	41.82	50.70	58.15	64.44	69.85	74.46	78.32	81.56	84.31	86.67
baseball	4.73	8.70	18.55	31.45	41.81	50.32	57.46	63.69	69.07	73.72	77.71	81.14	84.05	86.48
broom	4.71	8.82	19.30	32.73	43.10	51.41	58.23	63.97	68.87	73.02	76.71	79.93	82.83	85.35
brownbear	4.79	9.01	19.91	34.36	45.55	54.49	61.74	67.65	72.54	76.66	80.11	83.03	85.52	87.60
canoe	4.60	8.49	18.40	31.58	42.05	50.70	57.92	64.03	69.21	73.69	77.56	80.95	83.85	86.27
hippopotamus	4.81	8.92	18.95	31.60	41.49	49.67	56.70	62.78	68.07	72.75	76.81	80.35	83.36	85.92
llama	4.55	8.44	18.95	30.48	40.25	48.53	55.57	61.71	67.14	71.87	76.04	79.67	82.81	85.49
maraca	4.75	8.87	18.09	32.51	42.97	51.51	58.68	64.77	70.03	74.51	78.38	81.66	84.47	86.85
mountain bike	4.70	8.68	19.20	32.16	42.67	51.29	58.68	64.48	69.62	73.96	77.71	80.95	83.73	86.10
Average	4.70	8.74	18.90	32.15	42.58	51.14	58.28	64.35	69.54	73.99	77.82	81.12	83.95	86.36

Fig. 3: Proportion of image space occupied by the Top x% most relevant pixels in the LR Domain for the c_a category and for the c_t -category as measured by BagNet-33.