# **III Combinatorics**

Ishan Nath, Michaelmas 2024

Based on Lectures by Prof. Imre Leader

December 3, 2024

Page 1 CONTENTS

# Contents

| 0        | Intr                       | roduction                       | 2  |  |
|----------|----------------------------|---------------------------------|----|--|
| 1        | Set                        | et Systems                      |    |  |
|          | 1.1                        | Shadows                         | 6  |  |
|          | 1.2                        | Total Orders                    | 9  |  |
|          | 1.3                        | Compression                     | 10 |  |
|          | 1.4                        | Intersecting Families           | 15 |  |
| <b>2</b> | Isoperimetric Inequalities |                                 |    |  |
|          | 2.1                        | Concentration of Measure        | 23 |  |
|          | 2.2                        | Edge-isoperimetric Inequalities | 25 |  |
|          | 2.3                        | Inequalities in the Grid        | 27 |  |
| <b>3</b> | Intersecting Families 3    |                                 |    |  |
|          | 3.1                        | t-intersecting Families         | 34 |  |
|          | 3.2                        | Modular Intersections           |    |  |
|          | 3.3                        | Borsuk's Conjecture             |    |  |
| Index    |                            |                                 | 41 |  |

# 0 Introduction

We have the following list of things.

- 1: Set systems.
- 2: Isoperimetric inequalities.
- 3: Intersection families.

Books include 'Combinatorics' by Bollobás, and 'Combinatorics of Finite Sets', by Anderson.

# 1 Set Systems

Let X be a set. A set system on X, also called a family of subsets of X, is a family  $A \subseteq \mathcal{P}(X)$ . For example,

$$X^{(r)} = \{ A \subseteq X \mid |A| = r \}.$$

Usually,  $X = [n] = \{1, 2, ..., n\}$ , so  $|X^{(r)}| = \binom{n}{r}$ . Thus,

$$[4]^{(2)} = \{12, 13, 14, 23, 24, 34\}.$$

We make  $\mathcal{P}(X)$  into a graph by joining A and B if  $|A\triangle B| = 1$ . This is the discrete cube  $Q_n$ .

Literally just a cube.



Alternatively, can view  $Q_n$  as an n-dimensional unit cube  $\{0,1\}^n$ , by identifying e.g.  $\{1,3\}$  with the binary string  $101000\cdots$ .



Say  $\mathcal{A} \subseteq \mathcal{P}(X)$  is a *chain* if, for all  $A, B \in \mathcal{A}$ ,  $A \subseteq B$  or  $B \subseteq A$ . For example,

$$\mathcal{A} = \{23, 12357, 1235, 123567\}$$

is a chain.

Say  $\mathcal{A}$  is an antichain if, for all  $A, B \in \mathcal{A}$  and  $A \neq B$ , we have  $A \nsubseteq B$ . For example,  $\mathcal{A} = \{23, 137\}$  is an antichain.

How large can a chain be? We can achieve |A| = n + 1 by taking

$$\mathcal{A} = \{\emptyset, 1, 12, 123, \dots, [n]\}$$

Cannot beat this as each  $0 \le r \le n$ ,  $\mathcal{A}$  can contain at most one r-set (a member of  $X^{(r)}$ ).

How large can an antichain be? We can achieve  $|\mathcal{A}| = n$ , e.g.  $\mathcal{A} = \{1, 2, ..., n\}$ . More generally, we can take  $\mathcal{A} = X^{(r)}$ , and the best is when  $r = \lfloor n/2 \rfloor$ .

**Theorem 1.1** (Sperner's Lemma). Let  $A \subseteq \mathcal{P}(X)$  be an antichain. Then,

$$|\mathcal{A}| \le \binom{n}{\lfloor n/2 \rfloor}.$$

The idea is follows: we know that a chain meets a layer in at most one point, since a layer is an antichain. If we decompose the cube into chains, we have at most one element of an antichain in each chain.

**Proof:** We will decompose  $\mathcal{P}(X)$  into  $\binom{n}{\lfloor n/2 \rfloor}$  chains, then we are done. To achieve this, it is sufficient to find:

- (i) For each r < n/2, a matching from  $X^{(r)}$  to  $X^{(r+1)}$ .
- (ii) For each  $r \ge n/2$ , a matching from  $X^{(r)}$  to  $X^{(r-1)}$ .

Then we put these together to form our chains; each passing through  $X^{(\lfloor n/2 \rfloor)}$ .

By taking complements, it is enough to prove (i).

Let G be the bipartite subgraph of  $Q_n$  spanned by  $X^{(r)} \cup X^{(r+1)}$ : we seek a matching from  $X^{(r)}$  to  $X^{(r+1)}$ .

For any  $S \subseteq X^{(r)}$ , the number of edges from S to  $\Gamma(S)$  is |S|(n-r), since each edge in S has n-r edges.

Moreover there are at most  $|\Gamma(S)|(r+1)$  edges, counting from  $\Gamma(S)$ . Therefore,

$$|\Gamma(S)| \ge \frac{|S|(n-r)}{r+1} \ge |S|.$$

So we are done, by Hall's matching theorem.

Page 5 1 SET SYSTEMS



When do we have equality in Sperner's? The above proof tells us nothing.

Our aim is to prove the following: if A is an antichain, then

$$\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \le 1.$$

In other words, the percentages of each layer occupied add up to at most 1. This trivially implies Sperner's.

#### 1.1 Shadows

For  $\mathcal{A} \subseteq X^{(r)}$ , the shadow of  $\mathcal{A}$  is  $\partial \mathcal{A} = \partial^{-} \mathcal{A} \subseteq X^{(r-1)}$  defined by

$$\partial \mathcal{A} = \{ B \in X^{(r-1)} \mid B \subseteq A \text{ for some } A \in \mathcal{A} \}.$$

For example, if  $A = \{123, 124, 134, 137\}$ , then

$$\partial \mathcal{A} = \{12, 13, 23, 14, 24, 34, 17, 37\}.$$

**Proposition 1.1** (Local LYM). Let  $A \subseteq X^{(r)}$ . Then,

$$\frac{|\partial \mathcal{A}|}{\binom{n}{r-1}} \ge \frac{|\mathcal{A}|}{\binom{n}{r}}.$$

So, the fraction of the local occupancy by  $\partial \mathcal{A}$ , is at least the occupancy by  $\mathcal{A}$ .

Remark. LYM = Lubell, Meshalkin, Yamamoto.

**Proof:** We look at the number of  $\mathcal{A}$  to  $\partial \mathcal{A}$  edges in the bipartite graph  $Q_n$ ; counting from above, there are exactly  $|\mathcal{A}|r$ .

However counting from below, it is at most  $|\partial \mathcal{A}|(n-r+1)$ . So,

$$\frac{|\partial \mathcal{A}|}{|\mathcal{A}|} \ge \frac{r}{n-r+1} = \frac{\binom{n}{r-1}}{\binom{n}{r}}.$$

So we are done.

Remark. When do we have equality? We lose equality if an element in  $\partial \mathcal{A}$  is connected to an element not in  $\mathcal{A}$ , so for this not to occur, we need that for all  $A \in \mathcal{A}$ , and  $i \in A$ ,  $j \notin \mathcal{A}$ , that  $A - \{i\} \cup \{j\} \in \mathcal{A}$ .

But this is very strong, and in fact either  $\mathcal{A} = \emptyset$  or  $X^{(r)}$ .

**Theorem 1.2** (LYM Inequality). Let  $A \subseteq \mathcal{P}(X)$  be an antichain. Then,

$$\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \le 1.$$

As a bit of notation, we write  $A_r$  for  $A \cap X^{(r)}$ .

We will look at two proofs. The first idea is to bubble down with local LYM.

**Proof:** Obviously

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} \le 1.$$

Now,  $\partial A_n$  and  $A_{n-1}$  are disjoint, as A is an antichain. So,

$$\frac{|\partial \mathcal{A}_n|}{\binom{n}{n-1}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} = \frac{|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1,$$

whence we get

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1,$$

by local LYM. We now continue again. Notice  $\partial(\partial \mathcal{A}_n \cup \mathcal{A}_{n-1})$  is disjoint from  $\mathcal{A}_{n-2}$ , we find

$$\frac{|\partial(\partial\mathcal{A}_n\cup\mathcal{A}_{n-1})|}{\binom{n}{n-2}} + \frac{|\mathcal{A}_{n-2}|}{\binom{n}{n-2}} \leq 1,$$

whence

$$\frac{\left|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}\right|}{\binom{n}{n-1}} + \frac{\left|\mathcal{A}_{n-2}\right|}{\binom{n}{n-2}} \le 1.$$

We can now continue inductively.

When do we have equality? We must have had equality in each use of local LYM. Hence equality in LYM needs that the maximum r with  $A_r \neq \emptyset$ , then  $A_r = X^{(r)}$ .

Hence equality in Sperner needs either  $\mathcal{A} = X^{(n/2)}$ , if n is even, or  $\mathcal{A} = X^{(\lfloor n/2 \rfloor)}$  or  $X^{(\lceil n/2 \rceil)}$ , for n odd.

Now time for another proof.

Page 8 1 SET SYSTEMS

**Proof:** Choose uniformly at random a maximal chain C. For any r-set A, note that

$$\mathbb{P}(A \in \mathcal{C}) = \frac{1}{\binom{n}{r}}.$$

So for our antichain  $\mathcal{A}$ ,

$$\mathbb{P}(\mathcal{C} \text{ meets } \mathcal{A}_r) = \frac{|\mathcal{A}_r|}{\binom{n}{r}},$$

as these events are disjoint. Hence, since  $\mathcal{C}$  can meet  $\mathcal{A}$  at one point at most,

$$\mathbb{P}(\mathcal{C} \text{ meets } \mathcal{A}) = \sum_{r=0}^{n} \frac{|\mathcal{A}_r|}{\binom{n}{r}},$$

from which we get

$$\sum_{r=0}^{n} \frac{|\mathcal{A}_r|}{\binom{n}{r}} \le 1.$$

Equivalently, the number of maximal chains is n!, and the number through any fixed r-set is r!(n-r)!, so

$$\sum_{r} |\mathcal{A}_r| r! (n-r)! \le n!.$$

We now return to shadows. For  $A \subseteq X^{(r)}$ , we have

$$|\partial \mathcal{A}| \ge |\mathcal{A}| \frac{r}{n-r+1}.$$

We know that equality is rare: it only happens for  $\mathcal{A} = \emptyset$ , or  $X^{(r)}$ . What happens in between?

In other words, given  $|\mathcal{A}|$ , how should we choose  $\mathcal{A} \subseteq X^{(r)}$  to minimise  $|\partial \mathcal{A}|$ ?

It is believable that if  $|\mathcal{A}| = \binom{k}{r}$ , then we should take  $\mathcal{A} = [k]^{(r)}$ . In between adjacent binomials, it is believable that we should take  $[k]^{(r)}$ , plus some r-sets in  $[k+1]^{(r)}$ .

### Example 1.1.

For  $\mathcal{A} \subseteq X^{(3)}$  with

$$|\mathcal{A}| = \binom{8}{3} + \binom{4}{2},$$

we could take

$$\mathcal{A} = [8]^3 \cup \{9 \cup B \mid B \in [4]^{(2)}\}.$$

In some ways our set A should be of minimal 'order', under some ordering on  $X^{(r)}$ .

### 1.2 Total Orders

Let A, B be distinct r-sets, and say  $A = a_1 \dots a_r, B = b_1 \dots b_r$ , where  $a_1 < \dots < a_r, b_1 < \dots < a_r$ .

We say that A < B in the *lexographic* or *lex* ordering if for some j we have  $a_i = b_i$  for all i < j, and  $a_j < b_j$ . So lex cares about small elements.

#### Example 1.2.

Lex on  $[4]^{(2)}$  orders the elements as 12, 13, 14, 23, 24, 34.

Lex on  $[6]^{(3)}$  orders the elements as

$$123,124,125,126,134,135,136,145,146,156,$$
  $234,235,236,245,246,256,345,346,356,456.$ 

We say that A < B in the *colexographic* or *colex* ordering if for some j, we have  $a_i = b_i$  for all i > j, and  $a_j < b_j$ . So colex cares about big elements.

### Example 1.3.

Colex on  $[4]^{(2)}$  orders the elements as 12, 13, 23, 14, 24, 34.

Colex on  $[6]^{(3)}$  orders the elements as

Note that in colex,  $[n-1]^{(r)}$  is an initial segment of  $[n]^{(r)}$ . This is not true in lex. This allows us to view colex as an enumeration of  $\mathbb{N}^{(r)}$ . Remark. A < B in colex  $\iff A^c < B^c$  in lex, with ground set ordering ordering reversed.

Colex in particular may be the ordering we want to solve the above problem, minimizing  $|\partial \mathcal{A}|$ . Our aim will then be to show that initial segments of colex are the best for  $\partial$ , i.e. if  $\mathcal{A} \subseteq X^{(r)}$  and  $\mathcal{C} \subseteq X^{(r)}$  is the initial segment of colex with  $|\mathcal{C}| = |\mathcal{A}|$ , then

$$|\partial \mathcal{C}| < |\partial \mathcal{A}|$$
.

In particular,

$$|\mathcal{A}| = \binom{k}{r} \implies |\partial \mathcal{A}| = \binom{k}{r-1}.$$

## 1.3 Compression

The idea is to try to transform  $A \subseteq X^{(r)}$  into some  $A \subseteq X^{(r)}$  such that:

- (i)  $|\mathcal{A}'| = |\mathcal{A}|$ .
- (ii)  $|\partial \mathcal{A}'| \leq |\partial \mathcal{A}|$ .
- (iii)  $\mathcal{A}'$  looks more like  $\mathcal{C}$  than  $\mathcal{A}$  did.

Ideally, we would like a family of such 'compressions'

$$\mathcal{A} \to \mathcal{A}' \to \cdots \to \mathcal{B}$$
.

such that either  $\mathcal{B} = \mathcal{C}$ , or  $\mathcal{B}$  is so similar to  $\mathcal{C}$  that we can directly check that

$$|\partial \mathcal{B}| \geq |\partial \mathcal{C}|$$
.

The fact that colex prefers 1 to 2 inspires the following: fix  $1 \le i < j \le n$ . The ij-compression  $C_{ij}$  is defined as follows:

For  $A \in X^{(r)}$ , set

$$C_{ij}(A) = \begin{cases} A \cup i - j & \text{if } j \in A, i \notin A, \\ A & \text{else.} \end{cases}$$

For  $\mathcal{A} \subseteq X^{(r)}$ , set

$$C_{ij}(\mathcal{A}) = \{C_{ij}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{ij}(A) \in \mathcal{A}\}.$$

So  $C_{ij}(\mathcal{A}) \subseteq X^{(r)}$ , and  $|C_{ij}(\mathcal{A})| = |\mathcal{A}|$ . Say  $\mathcal{A}$  is *ij*-compressed if  $C_{ij}(\mathcal{A}) = \mathcal{A}$ .

**Lemma 1.1.** Let  $A \subseteq X^{(r)}$ , and  $1 \le i < j \le n$ . Then

$$|\partial C_{ij}(\mathcal{A})| \leq |\partial \mathcal{A}|.$$

Page 11 1 SET SYSTEMS

**Proof:** Write  $\mathcal{A}'$  for  $C_{ij}(\mathcal{A})$ , and let  $B \in \partial \mathcal{A}' - \partial \mathcal{A}$ . We will show that  $i \in B, j \notin B$ , and  $B \cup j - i \in \partial \mathcal{A} - \partial \mathcal{A}'$ , which will show that we are done.

We have that  $B \cup x \in \mathcal{A}'$ , for some x, with  $B \cup x \notin \mathcal{A}$ . So,  $i \in B \cup x$ ,  $j \notin B \cup x$ , and  $(B \cup x) \cup j - i \in \mathcal{A}$ .

We cannot have x = i, otherwise  $(B \cup x) \cup j - i = B \cup j$ , giving  $B \in \partial \mathcal{A}$ . So  $i \in B$ , and  $j \notin B$ .

Also, notice  $B \cup j - i \in \partial A$ , since  $(B \cup x) \cup j - i \in A$ .

Suppose  $B \cup j - i \in \partial \mathcal{A}'$ , so  $(B \cup j - i) \cup y \in \mathcal{A}'$  for some y. We cannot have y = i, else  $B \cup j \in \mathcal{A}'$ , so  $B \cup j \in \mathcal{A}$ , contradicting  $B \notin \partial \mathcal{A}$ . So  $j \in (B \cup j - i) \cup y$ , and  $i \notin (B \cup j - i) \cup y$ .

Whence both  $(B \cup j - i) \cup y$  and  $B \cup y$  belong to  $\mathcal{A}$ , by definition of  $\mathcal{A}'$ , contradicting  $B \notin \partial \mathcal{A}$ .

Remark. We have actually shown that  $\partial C_{ij}(\mathcal{A}) \subseteq C_{ij}\partial \mathcal{A}$ .

Say  $\mathcal{A} \subseteq X^{(r)}$  is left-compressed if  $C_{ij}(\mathcal{A}) = \mathcal{A}$  for all  $i \leq j$ .

**Corollary 1.1.** Let  $A \subseteq X^{(r)}$ . Then there exists a left-compressed  $B \subseteq X^{(r)}$  with |B| = |A|, and  $|\partial B| \le |\partial A|$ .

**Proof:** Define a sequence  $A_0, A_1, \ldots$  as follows. Let  $A_0 = A$ .

Having defined  $A_0, \ldots, A_k$ , if  $A_k$  is left-compressed then we can stop the sequence with  $A_k$ .

If not, choose i < j such that  $A_j$  is not ij-compressed, and set  $A_{k+1} = C_{ij}(A_k)$ .

This must terminate, as for example

$$\sum_{A \in \mathcal{A}_k} \sum_{i \in A} i$$

is strictly decreasing in k.

Then the final term  $\mathcal{B} = \mathcal{A}_k$  satisfies that  $|\mathcal{B}| = |\mathcal{A}|$ , and  $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$ , by the previous lemma.

Remark.

1. Similarly we may choose all  $\mathcal{B} \subseteq X^{(r)}$  with  $|\mathcal{B}| = |\mathcal{A}|$ , and  $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$ , and

then choose one with smallest sum of elements.

- 2. We can choose the order of the  $C_{ij}$  so that no  $C_{ij}$  is applied twice.
- 3. Any initial segment of colex is left-compressed. The converse is false, for example lex: {123, 124, 125, 126}.

This is not exactly what we want; we want to show that this is colex.

The fact that colex prefers 23 to 14 inspires the following. Let  $U, V \subseteq X$  with  $|U| = |V|, U \cap V = \emptyset$ , and  $\max V > \max U$ .

Define the UV-compression as follows: for  $A \subseteq X$ ,

$$C_{UV}(A) = \begin{cases} A \cup U - V & \text{if } V \subseteq A, U \cap A = \emptyset, \\ A & \text{otherwise.} \end{cases}$$

For  $\mathcal{A} \subseteq X^{(r)}$ , set

$$C_{UV}(\mathcal{A}) = \{C_{UV}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{UV}(A) \in \mathcal{A}\}.$$

For example if  $\mathcal{A} = \{123, 124, 147, 237, 238, 149\}$ , then

$$C_{23.14}(\mathcal{A}) = \{123, 124, 147, 237, 238, 239\}.$$

So  $C_{UV}(\mathcal{A}) \subseteq X^{(r)}$ , and  $|C_{UV}(\mathcal{A})| = |\mathcal{A}|$ . Say  $\mathcal{A}$  is UV-compressed if  $C_{UV}(\mathcal{A}) = \mathcal{A}$ .

Sadly, we can have  $|\partial C_{UV}(\mathcal{A})| > |\partial \mathcal{A}|$ . For example if  $\mathcal{A} = \{147, 137\}$ , then  $|\partial \mathcal{A}| = 5$ , but  $C_{23,14}(\mathcal{A}) = \{237, 147\}$  has  $|\partial C_{23,14}(\mathcal{A})| = 6$ .

We can prove the following at least:

**Lemma 1.2.** Let  $A \subseteq X^{(r)}$  be UV-compressed for all U, V with |U| = |V|,  $U \cap V = \emptyset$  and  $\max V > \max U$ . Then A is an initial segment of colex.

**Proof:** Suppose not. Then there exists  $A, B \in X^{(r)}$  with B < A in colex, but  $A \in \mathcal{A}, B \notin \mathcal{A}$ .

Set  $V = A \setminus B$ ,  $U = B \setminus A$ . Then clearly |V| = |U|, and U, V are disjoint, with  $\max V > \max U$  since B < A. So,  $C_{UV}(A) = B$ , contradicting  $\mathcal{A}$  UV-compressed.

But we can show the following:

**Lemma 1.3.** Let  $U, V \subseteq X$  with |U| = |V|,  $U \cap V = \emptyset$ , and  $\max U < \max V$ . For  $A \subseteq X^{(r)}$ , suppose that for all u, there exists v such that A is (U - u, V - v)-compressed. Then,

$$|\partial C_{UV}(\mathcal{A})| \leq |\partial \mathcal{A}|.$$

Page 13 1 SET SYSTEMS

**Proof:** Let  $\mathcal{A}' = C_{UV}(\mathcal{A})$ . For  $B \in \partial \mathcal{A}' - \partial \mathcal{A}$ , we will show that  $U \subseteq B$ ,  $V \cap B = \emptyset$ , and  $B \cup V - U \in \partial \mathcal{A} - \partial \mathcal{A}'$ .

We have that  $B \cup x \in \mathcal{A}'$ , and  $B \cup x \notin \mathcal{A}$ . So  $U \subseteq (B \cup x)$ ,  $V \cap (B \cup x) = \emptyset$ , and  $(B \cup x) \cup V - U \in \mathcal{A}$ , by the definition of  $C_{UV}$ .

If  $x \in U$ , then there exists  $y \in U$  such that  $\mathcal{A}$  is (U - x, V - y)-compressed, by assumption. So from  $(B \cup x) \cup V - U \in \mathcal{A}$ , we have  $B \cup y \in \mathcal{A}$ , contradicting  $B \notin \partial \mathcal{A}$ .

Thus  $x \notin U$ , and so  $U \subseteq B$ ,  $V \cap B = \emptyset$ .

We certainly have  $B \cup V - U \in \partial A$ , as  $(B \cup x) \cup V - U \in A$ , so we just need to show that  $B \cup V - U \notin \partial A'$ .

Suppose that  $B \cup V - U \in \partial \mathcal{A}'$ , so that  $(B \cup V - U) \cup w \in \mathcal{A}'$ , for some w.

If  $w \in U$ , then we know that  $\mathcal{A}$  is (U - w, V - z)-compressed for some  $z \in V$ , so  $B \cup z \in \mathcal{A}$ , contradicting  $B \notin \partial \mathcal{A}$ .

If  $w \notin U$ , we have that  $V \subseteq (B \cup V - U) \cup w$ , and  $U \cap ((B \cup V - U) \cup w) = \emptyset$ , so by definition of  $C_{UV}$ , we must have that both  $(B \cup V - U) \cup w$  and  $B \cup w \in \mathcal{A}$ , contradicting  $B \notin \partial \mathcal{A}$ .

**Theorem 1.3** (Kruskal-Katona). Let  $A \subseteq X^{(r)}$ , where  $1 \le r \le n$ , and let C be the initial sequence of colex on  $X^{(r)}$ , with |C| = |A|. Then,

$$|\partial \mathcal{C}| \leq |\partial \mathcal{A}|.$$

In particular, if  $|\mathcal{A}| = \binom{k}{r}$ , then

$$|\partial \mathcal{A}| \ge \binom{k}{r-1}.$$

**Proof:** Let

$$P = \{(U, V) \mid |U| = |V| > 0, U \cap V = \emptyset, \max U < \max V\} \cup \{(\emptyset, \emptyset)\}.$$

Define sets  $A_0, A_1, \ldots$  of sets systems in X as follows: set  $A_0 = A$ .

Having defined  $A_0, \ldots, A_k$ , if  $A_k$  is (U, V)-compressed for all  $(U, V) \in P$ , then we are done.

Otherwise, we have  $(U, V) \in P$  with |U| = |V| > 0 and disjoint, such that  $A_k$  is not (U, V)-compressed. Choose (U, V) minimal.

Page 14 1 SET SYSTEMS

Note that for all  $u \in U$ , there is  $v \in V$  such that  $(U - u, V - v) \in P$ , namely take  $v = \min V$ . So by the previous lemma, we get

$$|\partial C_{UV}(\mathcal{A}_k)| = |\partial \mathcal{A}_k|.$$

Set  $A_{k+1} = C_{UV}(A_k)$ , and continue. This must terminate, as

$$\sum_{A \in \mathcal{A}_k} \sum_{i \in A} 2^i$$

is strictly decreasing in k. Hence the final term  $\mathcal{B}$  satisfies  $|\mathcal{B}| = |\mathcal{A}|$ ,  $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$  and is (U, V)-compressed for all  $(U, V) \in P$ .

So,  $\mathcal{B} = \mathcal{C}$  by lemma 1.2.

Remark.

1. Equivalently, if we write

$$|\mathcal{A}| = {k_r \choose r} + {k_{r-1} \choose r-1} + \dots + {k_s \choose s},$$

where  $k_r > k_{r-1} > \cdots > k_s$ , and  $s \ge 1$ , then

$$|\partial \mathcal{A}| \ge {k_r \choose r-1} + {k_{r-1} \choose r-2} + \dots + {k_s \choose s-1}.$$

- 2. When do we have equality in Kruskal-Katona? We can check that if  $|\mathcal{A}| = \binom{k}{r}$  and  $|\partial \mathcal{A}| = \binom{k}{r-1}$ , then  $\mathcal{A} = Y^{(r)}$  for some  $Y \subseteq X$  with |Y| = k.
- 3. However, it is not true in general that if  $|\partial \mathcal{A}| = |\partial \mathcal{C}|$  then  $\mathcal{A}$  is isomorphic to  $\mathcal{C}$  (isomorphism means the sets are equal up to a permutation of the ground set X).

For  $A \subseteq X^{(r)}$ ,  $0 \le r \le n$ , the upper shadow of A is

$$\partial^+ \mathcal{A} = \{ A \cup x \mid A \in \mathcal{A}, x \notin A \} \subseteq X^{(r+1)}.$$

**Corollary 1.2.** Let  $A \subseteq X^{(r)}$ , where  $0 \le r \le n$ , and let C be the initial segment of lex on  $X^{(r)}$  with |C| = |A|. Then,

$$|\partial^+ \mathcal{A}| \ge |\partial^+ \mathcal{C}|.$$

Page 15 1 SET SYSTEMS

**Proof:** From Kruskal-Katona, note A < B in colex  $\iff A^c < B^c$  in lex, with the ground set order reversed.

From the fact that the shadow of an initial segment is an initial segment, we get the following:

**Corollary 1.3.** Let  $A \subseteq X^{(r)}$ , and C the initial segment of colex on  $X^{(r)}$  with |C| = |A|. Then,

$$|\partial^t \mathcal{C}| < |\partial^t \mathcal{A}|,$$

for all  $1 \le t \le r$ .

**Proof:** If  $|\partial^t \mathcal{C}| \leq |\partial^t \mathcal{A}|$ , then  $|\partial^{t+1} \mathcal{C}| \leq |\partial^{t+1} \mathcal{A}|$  by Kruskal-Katona, since  $\partial^t \mathcal{C}$  is an initial segment of colex.

So, if  $|\mathcal{A}| = \binom{k}{r}$ , then

$$|\partial^t \mathcal{A}| \ge \binom{k}{r-t}.$$

Note that our proof of Kruskal-Katona uses lemmas 1.2 and 1.3, not lemma 1.1 and its corollary.

## 1.4 Intersecting Families

Say  $\mathcal{A} \subseteq \mathcal{P}(X)$  is intersecting if  $A \cap B \neq \emptyset$  for all  $A, B \in \mathcal{A}$ .

How large can an intersecting family be? We can have  $|\mathcal{A}| = 2^{n-1}$ , by taking

$$\mathcal{A} = \{ A \in \mathcal{P}(X) \mid 1 \in A \}.$$

**Proposition 1.2.** Let  $A \subseteq \mathcal{P}(X)$  be intersecting. Then  $|A| \leq 2^{n-1}$ .

**Proof:** For any  $A \subseteq X$ , at most one of  $A, A^c$  can belong to A.

Note that there are many other extremal example, for example

$$\mathcal{A} = \{ A \in \mathcal{P}(X) \mid |A| > n/2 \}.$$

What if  $A \subseteq X^{(r)}$ ? If r > n/2, then we can just take  $A = X^{(r)}$ , and if r = n/2, then we can choose one of  $A, A^c$ .

So the interesting case is r < n/2. We could try again

$$\mathcal{A} = \{A \in X^{(r)} \mid 1 \in A\}.$$

Then this has size

$$\binom{n-1}{r-1} = \frac{r}{n} \binom{n}{r}.$$

We could also take, for example

$$\mathcal{B} = \{ A \in X^{(r)} \mid |A \cap \{1, 2, 3\}| > 2 \}.$$

But for n = 8, r = 3, we see  $|\mathcal{A}| = 21$ , and  $|\mathcal{B}| = 16$ .

**Theorem 1.4** (Erdos-Ko-Rado Theorem). Let  $A \subseteq X^{(r)}$  be intersecting, where r < n/2. Then

$$|\mathcal{A}| \le \binom{n-1}{r-1}.$$

**Proof:** We do multiple proofs. First, note that

$$A \cap B = \emptyset \iff A \not\subseteq B^c$$
.

This motivates the idea, 'bubble down with Kruskal-Katona'.

Let  $\tilde{\mathcal{A}} = \{A^c \mid A \in \mathcal{A}\} \subseteq X^{(n-r)}$ . Then we know that  $\partial^{n-2r} \tilde{\mathcal{A}}$  and  $\mathcal{A}$  must be disjoint families of r-sets.

Suppose that  $|\mathcal{A}| > \binom{n-1}{r-1}$ . Then

$$|\tilde{\mathcal{A}}| = |\mathcal{A}| > \binom{n-1}{r-1} = \binom{n-1}{n-r}.$$

Hence, by Kruskal-Katona, we have

$$|\partial^{n-2r}\tilde{\mathcal{A}}| \ge \binom{n-1}{r}.$$

But this gives

$$|\mathcal{A}| + |\partial^{n-2r}\tilde{\mathcal{A}}| > \binom{n-1}{r-1} + \binom{n-1}{r} = \binom{n}{r} = |X^{(r)}|,$$

contradiction.

Note that this calculation had to give the correct answer, as the shadow calculation would all be exact if  $A = \{A \in X^{(r)} \mid 1 \in A\}$ .

Now we consider a second proof. Pick a circle ordering of [n], i.e. a bijection  $C:[n] \to \mathbb{Z}_n$ . How many sets in  $\mathcal{A}$  are intervals in this ordering?

Page 17 1 SET SYSTEMS

At most r, since if  $C_1 \dots C_r \in \mathcal{A}$ , then for each  $2 \leq i$ , at most one of the intervals  $C_i C_{i+1} \dots C_{i+r-1}$  and  $C_{i-r} C_{i-r+1} \dots C_{i-1}$  can belong to  $\mathcal{A}$ .

For each r-set A, in how many of then n! cyclic orderings is it an interval? We have n choices for where it is placed, r! orderings for the elements of A, and (n-r)! orderings for the elements of  $A^c$ . Hence,

$$|\mathcal{A}|nr!(n-r)! \le n!r \implies |\mathcal{A}| \le \frac{n!r}{nr!(n-r)!} = \binom{n-1}{r-1}.$$

#### Remark.

- 1. Again the numbers had to work out.
- 2. Equivalently, we are double-counting the edges in a bipartite graph, where one class is the vertex classes, and the other class is the cyclic orderings, and an edge is present if A is an interval in C.
- 3. This method is called averaging, or Katona's method.
- 4. When do we have equality? It is actually unique; if  $A \subseteq X^{(r)}$  is intersecting, and |A| is maximal, then

$$\mathcal{A} = \{ A \in X^{(r)} \mid i \in A \},\$$

for some  $1 \le i \le n$ . This can be seen from proof 1, by analysing the equality case in KK, or by looking at proof 2 a bit more carefully.

# 2 Isoperimetric Inequalities

This section deals with problems of the following form: how do we minimize the boundary of a set of a given size?

For example in  $\mathbb{R}^2$ , given an area, the disc minimizes the perimeter. For  $\mathbb{R}^3$ , given a volume, the solid sphere minimizes the surface area. In  $S^2$ , given a surface area, the circular cap minimizes the perimeter.

We want to discretize this. For a set A of vertices of a graph G, the boundary of A is

$$b(A) = \{x \in G \mid x \notin A, xy \in E \text{ for some } y \in A\}.$$

An isoperimetric inequality on G is an equality of the form

$$|b(A)| \ge f(|A|),$$

for all  $A \subseteq G$ , and some function f.

Often it is simpler to look at the neighbourhood of A,  $N(A) = A \cup b(A)$ , so

$$N(A) = \{ x \in G \mid d(x, A) \le 1 \}.$$

A good example for A might be a ball  $B(x,r) = \{y \in G \mid d(x,y) \leq r\}$ . What happens for  $Q_n$ ?

For |A| = 4 in  $Q_3$ , we may either take a ball, or  $Q_2$ . The ball has boundary 3, while  $Q_2$  has boundary 4.





A good guess is that balls are the best, i.e. sets of the form

$$B(\emptyset, r) = X^{(\leq r)} = X^{(0)} \cup X^{(1)} \cup \dots \cup X^{(r)}.$$

What if the size of our set is between two levels, i.e.  $|X^{(\leq r)}| \leq |A| \leq |X^{(\leq r+1)}|$ ?

Our guess is to take A with  $X^{(\leq r)} \leq A \leq X^{(\leq r+1)}$ . If  $A = X^{(\leq r)} \cup B$ , where  $B \subseteq X^{(r+1)}$ , then

$$B(A) = (X^{(r+1)} - B) \cup \partial^+(B).$$

So we would take B to be an initial segment of lex, by Kruskal-Katona.

In the simplicial ordering of  $\mathcal{P}(X)$ , we set x < y if either |x| < |y|, or |x| = |y|, but x < y in lex.

Our aim is to show that initial segments of the simplicial ordering minimize the boundary. We do it by compression, in the spirit of KK.

Fix  $A \subset \mathcal{P}(X)$ . For  $1 \leq i \leq n$ , the *i-selection* of A are the families  $A_{-}^{(i)}$ ,  $A_{+}^{(i)} \subseteq \mathcal{P}(X-i)$  given by

$$A_{-}^{(i)} = \{ x \in A \mid i \notin x \},$$
  

$$A_{+}^{(i)} = \{ x - i \mid x \in A, i \in x \}.$$

The *i-compression* of A is the family  $C_i(A) \subseteq \mathcal{P}(X)$  given by,  $(C_i(A))_{-}^{(i)}$  is the first  $|A_{-}^{(i)}|$  elements of the simplicial ordering of  $\mathcal{P}(X-i)$ , and  $(C_i(A))_{+}^{(i)}$  be the first  $|A_{+}^{(i)}|$  elements of the simplicial ordering on  $\mathcal{P}(X-i)$ .

This is essentially doing a compression on each of the two i-level sub-hypercubes simultaneously.

A subset is *i-compressed* if  $C_i(A) = A$ . Here a *Hamming ball* is a family with  $X^{(\leq r)} \subseteq A \subseteq X^{(\leq r+1)}$  for some r.

**Theorem 2.1** (Harper's Theorem). Let  $A \subseteq Q_n$ , and let C be the initial segment of the simplicial order with |C| = |A|. Then  $|N(A)| \ge |N(C)|$ . In particular, if

$$|A| = \sum_{i=0}^{k} \binom{n}{i} \implies |N(A)| \ge \sum_{i=0}^{k+1} \binom{n}{i}.$$

Remark.

- 1. If we knew A was a Hamming ball, we would be done by KK.
- 2. Conversely, this theorem implies KK, as we could take  $B \subseteq X^{(r)}$ , and then apply theorem 1 to  $A = X^{(\leq r-1)} \cup B$ .

**Proof:** We proceed by induction on n. For n = 1, this is trivial.

Now suppose we are given n > 1,  $A \subseteq Q_n$ , and  $1 \le i \le n$ . Then we claim that

$$|N(C_i(A))| \le |N(A)|.$$

Write B for  $C_i(A)$ . Then we have

$$N(A)_{-} = N(A_{-}) \cup A_{+},$$
  
 $N(A)_{+} = N(A_{+}) \cup A_{-},$ 

and of course

$$N(B)_{-} = N(B_{-}) \cup B_{+},$$
  
 $N(B)_{+} = N(B_{+}) \cup B_{-}.$ 

Now,  $|B_+| = |A_+|$ , and  $|N(B_-)| \le |N(A_-)|$  by induction. But  $B_+$  is an initial segment of the simplicial ordering, and  $N(B_-)$  is as well, as a neighbourhood of an initial segment is an initial segment.

So,  $B_+$  and  $N(B_-)$  are nested. Hence  $|N(B)_-| \leq |N(A)_-|$ . Similarly,  $|N(B)_+| \leq |N(A)_+|$ , giving  $|N(B)| \leq |N(A)|$ . Define a sequence  $A_0, A_1, \ldots \subseteq Q_n$  as follows: Set  $A_0 = A$ , and having chose  $A_0, \ldots, A_k$ , if  $A_k$  is *i*-compressed for all i, then stop the sequence with  $A_k$ .

If not, pick i with  $C_i(A_k) \neq A_k$ , and set  $A_{k+1} = C_i(A_k)$ , and continue. This must terminate, because the sum of the position of x in the simplicial order, over all  $x \in A_k$ , is strictly decreasing.

The final family  $B = A_k$  satisfies |B| = |A|, and  $|N(B)| \le |N(A)|$ , and is *i*-compressed for all *i*.

Does B being i-compressed for all i imply B is an initial segment? No; consider a copy of  $Q_2$  in  $Q_3$ . However,

**Lemma 2.1.** Let  $B \subseteq Q_n$  be i-compressed for all i, but not an initial segment of the simplicial order. Then either:

- n is odd, say n = 2k + 1, and  $B = X^{(\leq k)} \{k + 2, k + 3, \dots, 2k + 1\} \cup \{1, 2, \dots, k + 1\}$ ,
- n is even, say n = 2k, and  $B = X^{(\leq k)} \{1, k+2, \dots, 2k\} \cup \{2, 3, \dots, k+1\}$ .

Then we are done, as in each case  $|N(B)| \ge |N(C)|$ .

**Proof:** Suppose that B is not an initial segment of the simplicial ordering, so there is x < y in the simplicial ordering with  $x \notin B$ ,  $y \in B$ .

For each  $1 \le i \le n$ , we cannot have  $i \in x$  and  $i \in y$ , since B is i-compressed,

and we also cannot have  $i \notin x$ ,  $i \notin y$  for the same reason.

So  $x = y^c$ . Thus for each  $y \in B$ , there is at most one earlier x with  $x \notin B$ , namely  $x = y^c$ , and for each  $x \notin B$ , there is at most one later y with  $y \in B$ , namely  $y = x^c$ .

So  $B = \{z \mid z \leq y\} - \{x\}$ , with x the predecessor of y, and  $x = y^c$ . Hence if n = 2k + 1, then x must be the last k-set, and if n = 2k then x is the last k-set with 1.

This completes the proof of Harper's theorem.

Remark.

- 1. We can also prove Harper's theorem using UV-compressions.
- 2. We can also prove KK using i-compressions.

For  $A \subseteq Q_n$  and  $t = 1, 2, 3, \ldots$ , the t-neighbourhood of A is

$$A_{(t)} = N^t(A) = \{x \in Q_n \mid d(x, A) \le t\}.$$

Corollary 2.1. Let  $A \subseteq Q_n$  with

$$|A| \ge \sum_{i=0}^{r} \binom{n}{i}.$$

Then for all  $t \leq n - r$ ,

$$|A_{(t)}| \ge \sum_{i=0}^{r+t} \binom{n}{i}.$$

**Proof:** Use Harper's theorem and induction (the neighbourhood of an initial segment of simplicial is another initial segment).

To get a feeling for the strength of the corollary, we will need some estimates on the size of things like

$$\sum_{i=0}^{r} \binom{n}{i}$$

**Proposition 2.1.** Let  $0 < \varepsilon < 1/4$ . Then,

$$\sum_{i=0}^{\lfloor (\frac{1}{2}-\varepsilon)n\rfloor} \binom{n}{i} \leq \frac{1}{\varepsilon} e^{-\varepsilon^2 n/t} 2^n.$$

**Proof:** For  $i \leq \lfloor (\frac{1}{2} - \varepsilon)n \rfloor$ , we have

$$\frac{\binom{n}{i-1}}{\binom{n}{i}} = \frac{i}{n-i+1} \le \frac{(\frac{1}{2}-\varepsilon)n}{(\frac{1}{2}+\varepsilon)n} = \frac{\frac{1}{2}-\varepsilon}{\frac{1}{2}+\varepsilon} = 1 - \frac{2\varepsilon}{\frac{1}{2}+\varepsilon} \le 1 - 2\varepsilon.$$

Hence, summing this as a GP,

$$\sum_{i=0}^{\lfloor (\frac{1}{2}-\varepsilon)n\rfloor} \binom{n}{i} \leq \frac{1}{2\varepsilon} \binom{n}{\lfloor (\frac{1}{2}-\varepsilon)n\rfloor}.$$

The same argument tells us that

$$\binom{n}{\lfloor (\frac{1}{2}-\varepsilon)n\rfloor} \leq \binom{n}{\lfloor (\frac{1}{2}-\frac{\varepsilon}{2})n\rfloor} (1-\varepsilon)^{\frac{\varepsilon n}{2}-1} \leq 2^n \cdot 2(1-\varepsilon)^{\varepsilon n/2} \leq 2^n \cdot 2e^{-\varepsilon^2 n/2}.$$

Thus we get

$$\sum_{i=0}^{\lfloor (\frac{1}{2}-\varepsilon)n\rfloor} \binom{n}{i} \leq \frac{1}{2\varepsilon} 2e^{-\varepsilon^2n/2} 2^n.$$

**Theorem 2.2.** Let  $0 < \varepsilon < 1/4$ ,  $A \subseteq Q_n$ . Then

$$\frac{|A|}{2^n} \ge \frac{1}{2} \implies \frac{|A_{(\varepsilon n)}|}{2^n} \ge 1 - \frac{2}{\varepsilon} e^{-\varepsilon^2 n/2}.$$

In other words, half-sized sets have exponentially large  $\varepsilon n$ -neighbourhoods.

**Proof:** It is enough to show that if  $\varepsilon n$  is an integer, then

$$\frac{|A_{(\varepsilon n)|}}{2^n} \ge 1 - \frac{1}{\varepsilon} e^{-\varepsilon^2 n/2}.$$

We have that

$$|A| \ge \sum_{i=0}^{\lceil n/2 - 1 \rceil} \binom{n}{i},$$

so by Harper, we have

$$|A_{(\varepsilon n)}| \ge \sum_{i=0}^{\lceil n/2 - 1 + \varepsilon n \rceil} \binom{n}{i}.$$

$$|A^c_{(\varepsilon n)}| \leq \sum_{\lceil n/2 + \varepsilon n \rceil}^n \binom{n}{i} = \sum_{i=0}^{\lfloor n/2 - \varepsilon n \rfloor} \binom{n}{i} \leq \frac{1}{\varepsilon} e^{-\varepsilon^2 n/2} \cdot 2^n.$$

Remark. The same would show that, for small sets,

$$\frac{|A|}{2^n} \ge \frac{2}{\varepsilon} e^{-\varepsilon^2 n/2} \implies \frac{|A_{(2\varepsilon n)}|}{2^n} \ge 1 - \frac{2}{\varepsilon} e^{-\varepsilon^2 n/2}.$$

#### 2.1 Concentration of Measure

Say  $f: Q_n \to \mathbb{R}$  is Lipschitz if  $|f(x) - f(y)| \le 1$  for all x, y adjacent. For  $f: Q_n \to \mathbb{R}$ , say  $M \in \mathbb{R}$  is a Lévy mean or the median of f if

$$|\{x \in Q_n \mid f(x) \le M\}| \le 2^{n-1}$$
 and  $|\{x \in Q_n \mid f(x) \ge M\}| \ge 2^{n-1}$ .

We are now ready to show that every well-behaved function on the cube  $Q_n$  is roughly constant nearly everywhere.

**Theorem 2.3.** Let  $f: Q_n \to \mathbb{R}$  be Lipschitz with median M. Then,

$$\frac{|\{x\mid |f(x)-M|\leq \varepsilon n\}|}{2^n}\geq 1-\frac{4}{\varepsilon}e^{-\varepsilon^2 n/2},$$

for any  $0 < \varepsilon < 1/4$ .

Note that this is the concentration of measure phenomenon.

**Proof:** Let  $A = \{x \mid f(x) \le M\}$ . Then

$$\frac{|A|}{2^n} \ge \frac{1}{2} \implies \frac{|A_{(\varepsilon n)|}}{2^n} \ge 1 - \frac{2}{\varepsilon} e^{-\varepsilon^2 n/2}.$$

But f is Lipschitz, so if  $x \in A_{(\varepsilon n)}$ , then  $f(x) \leq M + \varepsilon n$ . Then,

$$\frac{|\{x\mid f(x)\leq M+\varepsilon n\}|}{2^n}\geq 1-\frac{2}{\varepsilon}e^{-\varepsilon^2 n/2}.$$

Similarly,

$$\frac{|\{x\mid f(x)\geq M-\varepsilon n\}|}{2^n}\geq 1-\frac{2}{\varepsilon}e^{-\varepsilon^2 n/2}.$$

Putting this together,

$$\frac{|\{x\mid |f(x)-M|\leq \varepsilon n\}|}{2^n}\geq 1-\frac{4}{\varepsilon}e^{-\varepsilon^2n/2},$$

Let G be a graph of diameter D. Write

$$\alpha(G, \varepsilon) = \max \left\{ 1 - \frac{|A_{(\varepsilon D)}|}{|G|} \mid A \subseteq G, \frac{|A|}{|G|} \ge \frac{1}{2} \right\}.$$

So  $\alpha(G,\varepsilon)$  says that half-sized sets have larger  $\varepsilon D$ -neighbourhoods.

We say that a sequence of graphs is a Lévy family if  $\alpha(G_n, \varepsilon) \to 0$  as  $n \to \infty$ , for each  $\varepsilon > 0$ .

This theorem tells us that the sequence  $(Q_n)$  is a Lévy family, and it is even a normal Lévy family, meaning that  $\alpha(G_n, \varepsilon)$  is exponentially small in n, for each  $\varepsilon > 0$ .

For any Lévy family we have concentration of measure. Most naturally occurring families of graphs are Lévy families, for example  $(S_n)$  where  $S_n$  is made into a graph by joining permutations joined by a transposition.

We can also define  $\alpha(X, \varepsilon)$  similarly for an metric measure space X, of finite measure and finite diameter.

#### Example 2.1.

 $(S^n)$  is a Lévy family. This requires two ingredients.

1. An isoperimetric inequality on  $S_n$ : for  $A \subseteq S_n$  and C a circular cap with |C| = |A|, we have  $|A_{(\varepsilon)}| \ge |C_{(\varepsilon)}|$ .

This is proven by compression; consider laying the sphere out on some way, and then vertically projecting each point if possible. This is known as two-point symmetrisation.

2. Then we estimate the size. A circular cap of measure 1/2 is the cap of angle  $\pi/2$ . Then  $C_{(\varepsilon)}$  is the circular cap of angle  $\pi/2 + \varepsilon$ . This has measure about

$$\int_{\varepsilon}^{\pi/2} \cos^{n-1} t \, \mathrm{d}t \to 0.$$

Moreover this is a normal Lévy family.

We have deduced concentration of measure from an isoperimetric family. Conversely,

**Proposition 2.2.** Let G be a graph such that for any Lipschitz function  $f: G \to \mathbb{R}$  with median M, we have

$$\frac{|\{x \in G \mid |f(x) - M| > t\}}{|G|} \le \alpha$$

for some given  $t, \alpha$ . Then for all  $A \in G$ , if  $\frac{|A|}{|G|} \geq \frac{1}{2}$ , we have

$$\frac{|A_{(t)}|}{|G|} \ge 1 - \alpha.$$

**Proof:** The function f(x) = d(x, A) is Lipschitz, and has 0 as its median since at least half of the values take 0. So

$$\frac{|\{x \in G \mid x \not\in A_{(t)}\}|}{|G|} \le \alpha.$$

### 2.2 Edge-isoperimetric Inequalities

For a subset A of vertices of a graph G, the edge-boundary of A is

$$\partial_e A = \partial A = \{ xy \in G \mid x \in A, y \notin A \}.$$

An inequality of the form  $|\partial A| \geq f(|A|)$  for all  $A \subseteq G$  is an edge-isoperimetric inequality on G.

What happens in  $Q_n$ ? Given |A|, which  $A \subseteq Q_n$  could we take to maximize  $|\partial A|$ ? For example, if |A| = 4, then the





It follows that maybe subcubes are the best. What if we have  $A \subseteq Q_n$  with  $2^k < |A| < 2^{k+1}$ ? Then we should take  $A = \mathcal{P}([k])$  along with some sets in  $\mathcal{P}([k+1])$ .

So we define the following ordering: for  $x, y \in Q_n$  and  $x \neq y$ , we say that x < y in the binary ordering on  $Q_n$  if  $\max x \triangle y \leq y$ . Equivalently,

$$x < y \iff \sum_{i \in x} 2^i < \sum_{i \in y} 2^i.$$

For example in  $Q_3$ , the sets are ordered

$$\emptyset$$
, 1, 2, 12, 3, 13, 23, 123.

For  $A \subseteq Q_n$  and  $1 \le i \le n$ , we define the *i-binary-compression*  $B_i(A) \subseteq Q_n$  by giving it *i*-sections:

$$(B_i(A))_-^{(i)}$$
 = initial segment of binary on  $\mathcal{P}(X-i)$  of size  $|A_-^{(i)}|$ ,  $(B_i(A))_+^{(i)}$  = initial segment of binary on  $\mathcal{P}(X-i)$  of size  $|A_+^{(i)}|$ .

So  $|B_i(A)||A|$ . We say that A is *i-binary-compressed* if  $B_i(A) = A$ .

**Theorem 2.4** (Edge-isoperimetric Inequality in  $Q_n$ ). Let  $A \subseteq Q_n$  and C be the initial segment of binary on  $Q_n$  with |C| = |A|. Then  $|\partial C| \le |\partial A|$ . In particular, if  $|A| = 2^k$ , then  $|\partial A| \ge 2^k (n - k)$ .

*Remark.* This is sometimes called the theorem of Harper, Lindsey, Bernstein and Hart.

**Proof:** We proceed by induction on n. n = 1 is trivial.

For n > 1,  $A \subseteq Q_n$ ,  $1 \le i \le n$ , we claim that  $|\partial B_i(A)| \le |\partial A|$ .

Indeed, write B for  $B_i(A)$ . Then

$$|\partial A| = |\partial(A_{-})| + |\partial(A_{+})| + |A_{+} \triangle A_{-}|,$$
  
$$|\partial B| = |\partial(B_{-})| + |\partial(B_{+})| + |B_{+} \triangle B_{-}|.$$

By induction,  $|\partial(B_{-})| \leq |\partial(A_{-})|$  and  $|\partial(B_{+})| \leq |\partial(A_{+})|$ . Also, the set  $B_{+}$  and  $B_{-}$  are nested, as each is an initial segment of binary on  $\mathcal{P}(X-i)$ .

Therefore, certainly we have  $|B_{+} \triangle B_{-}| \leq |A_{+} \triangle A_{-}|$ . So  $|\partial B| \leq |\partial A|$ .

Define a sequence  $A_0, A_1, \ldots \subseteq Q_n$  as follows. Set  $A_0 = A$ . Having defined  $A_0, \ldots, A_k$ , if  $A_k$  is *i*-binary-compressed for all *i*, then stop the sequence. If not, choose *i* with  $B_i(A_k) \neq A_k$ , and put  $A_{k+1} = B_i(A_k)$ .

This must terminate as the function

$$k \mapsto \sum_{x \in A_k} (\text{position of } x \text{ in binary})$$

is strictly decreasing. Now the final family  $B = A_k$  satisfies |B| = |A| and  $|\partial B| \leq |\partial A|$ .

Note that B need not be an initial segment of binary, for example take  $\{\emptyset, 1, 2, 3\} \subseteq Q_3$ . However these are the only counterexamples.

**Lemma 2.2.** Let  $B \subseteq Q_n$  be binary compressed for all i, that is not an initial

segment of binary. Then

$$B = \mathcal{P}(n-1) - \{12 \dots n-1\} \cup \{n\}.$$

Then we are done, as clearly  $|\partial B| \ge |\partial C|$ , since  $C = \mathcal{P}(n-1)$ .

**Proof:** As B is not an initial segment there exists x < y with  $x \notin B$ ,  $y \in B$ .

Thus for all i, we cannot have  $i \in x, y$  or  $i \notin x, y$ , as B is i-binary-compressed. So  $y = x^c$ .

Thus for each  $y \in B$ , there is at most one earlier  $x \in B$ , and for each  $x \notin B$  there is at most one later  $y \in B$ . So  $B = \{z \mid z \leq y\} - \{x\}$ , where y is the predecessor of y and  $y = x^c$ .

So we must have  $y = \{n\}$ .

This concludes the proof of theorem 2.4.

*Remark.* It is vital in this proof, and the proof of Harper's that the extremal sets were nested.

The isoperimetric number of a graph G is

$$i(G) = \min \left\{ \frac{|\partial A|}{|A|} \mid A \subseteq G, \frac{|A|}{|G|} \le \frac{1}{2} \right\}.$$

Corollary 2.2.  $i(Q_n) = 1$ .

**Proof:** Taking  $A = \mathcal{P}(n-1)$ , we get that  $i(Q_n) \leq 1$  (every edge is between x and x + n).

To show that  $i(Q_n) \ge 1$ , we need to show that if C is an initial segment of binary with  $|C| \le 2^{n-1}$ , then  $|\partial C| \ge |C|$ . But  $C \subseteq \mathcal{P}(n-1)$ , so certainly  $|\partial C| \ge |C|$ .

# 2.3 Inequalities in the Grid

For any k = 2, 3, ..., the *grid* is the graph on  $[k]^n$  in which x is joined to y if for some i, we have  $x_j = y_j$  for  $j \neq i$ , and  $|x_i - y_i| = 1$ .

For example, we can draw the 4 grid.

Note that for k = 2, this is exactly  $Q_n$ . Do we have analogues of Sperner's and KK for the grid? We start with the vertex-isoperimetric problem; which sets  $A \subseteq [k]^n$  (of a given size) minimise |N(A)|?

In  $[k]^2$ , we can either consider a diagonal or a square. The diagonal cut seems to be better.

This suggests that we go up in levels according to

$$|x| = \sum_{i=1}^{n} |x_i|,$$

i.e. we take  $\{x \in [k]^n \mid |x| \le r\}$ . What if

$$|\{x \in [k]^n \mid |x| \le r\}| < |A| < |\{x \in [k]^n \mid |x| \le r + 1\}|$$
?

In this case, we take  $A = \{x \in [k]^n \mid |x| \le r\}$ , and some point with |x| = r + 1. The points we pick should be those which keep  $x_1$  large.

This suggests in the *simplicial ordering* on  $[k]^n$ , we set x < y if either |x| < |y| or |x| = |y| and  $x_i > y_i$  where i is the minimal element where they differ.

#### Example 2.2.

On  $[3]^2$ , the ordering is

$$(1,1), (2,1), (1,2), (3,1), (2,2), (1,3), (3,2), (2,3), (3,3).$$

On  $[4]^3$ , the ordering is

$$(1,1,1),(2,1,1),(1,2,1),(1,1,2),(3,1,1),(2,2,1),(2,1,2),(1,3,1),$$
  
 $(1,2,2),(1,1,3),(4,1,1),(3,2,1),\dots$ 

For  $A \subseteq [k]^n$  for some  $k \ge 2$  and  $1 \le i \le n$ , the *i-sections* of A are the sets  $A_1, \ldots, A_k \subseteq [k]^{n-1}$  defined by

$$A_t = A_t^{(i)} = \{ x \in [k]^{n-1} \mid (x_1, x_2, \dots, x_{i-1}, t, x_i, x_{i+1}, \dots, x_{n-1}) \in A \}.$$

The *i-compression* of A is  $C_i(A) \subseteq [k]^n$  defined by giving its *i*-sections:

$$C_i(A) = \text{initial segment of } [k]^{n-1} \text{ of size } |A_t|.$$

Essentially, we are going layer by layer in the i'th direction, and shoving everything into an initial segment of simplicial.

**Theorem 2.5** (Vertex-Isoperimetric Inequality in the Grid). Let  $A \subseteq [k]^n$ , and let C be the initial segment of simplicial of  $[k]^n$  with |C| = |A|.

Then  $|N(C)| \le |N(A)|$ . In particular, if  $|A| \ge |\{x \mid |x| \le r\}$ , then  $|N(A)| \ge |\{x \mid |x| \le r+1\}$ .

**Proof:** We proceed by induction on n. n = 1 is trivial, if  $A \subseteq [k]^1 \neq \emptyset$ , then  $|N(A)| \geq |A| + 1 = |N(C)|$ .

Given n > 1 and  $A = [k]^n$ , fix  $1 \le i \le n$ . We claim that  $|N(C_i(A))| \le |N(A)|$ .

Indeed, write B for  $C_i(A)$ . For any  $1 \le t \le k$ , we have

$$N(A)_t = N(A_t) \cup A_{t-1} \cup A_{t+1},$$

and similarly  $N(B)_t = N(B_t) \cup B_{t-1} \cup B_{t+1}$ . Now  $|B_{t-1}| = |A_{t-1}|$ , and  $|B_{t+1}| = |A_{t+1}|$ , and  $|N(B_t)| \le |N(A_t)|$ , by the induction hypothesis. But the sets  $B_{t-1}, B_{t+1}$  and  $N(B_t)$  are nested as each is an initial segment of simplicial on  $[k]^{n-1}$ .

Hence  $|N(B)_t| \le |N(A)_t|$ , so  $|N(B)| \le |N(A)|$ .

Among all  $B \subseteq [k]^n$  with |B| = |A| and  $|N(B)| \le |N(A)|$ , pick one with sum of simplicial positionings the smallest. Then B is i-compressed for all i.

We are very far from being done. To continue, we split into two cases.

Case 1: n = 2. What we know is precisely that B is a down-set. Let  $r = \min\{|x| \mid x \notin B\}$ , and  $s = \max\{|x| \mid x \in B\}$ . We may assume that  $r \le s$ , since if r = s + 1, then  $B = \{x \mid |x| \le s\}$ , hence B = C.

If r = s, then

$$\{x\mid |x|\leq r-1\}\subseteq B\subseteq \{x\mid |x|\leq r\},$$

so clearly  $|N(B)| \ge |N(C)|$ .

If r < s, then we cannot have  $\{x \mid |x| = s\} \subseteq B$ , because then also  $\{x \mid |x| = r\} \subseteq B$  as B is a down set.

So there is y, y' with |y| = |y'| = s,  $y \in B$  and  $y' \notin B$ , and  $y' = y \pm (e_1 - e_2)$ , by DIVT.

Similarly, we cannot have  $\{x \mid |x| = r\} \cap B = \emptyset$ , otherwise  $\{x \mid |x| = s\} \cap B = \emptyset$ , again as B is a down set. So there is x, x' with |x| = |x'| = r,  $x \notin B$ ,  $x' \in B$  and  $x' = x \pm (e_1 - e_2)$ .

Now let  $B' = B \cup \{x\} - \{y\}$ . From B we lost at least one point in the neighbourhood, namely  $y + e_1$  or  $y + e_2$ , and gained at most one point, so  $|N(B')| \leq |N(B)|$ . This contradicts the minimality of B.

Case 2:  $n \ge 3$ . For any  $1 \le i \le n-1$  and any  $x \in B$  with  $x_n > 1$  and  $x_i < k$ , we must have that

$$x - e_n + e_i \in B$$
,

as B is j-compressed, for any  $j \neq 1, n$ .

So, considering the *n*-sections of B, we have that  $N(B_t) \subseteq B_{t-1}$  for all t = 2, ..., k. Recall that  $N(B)_t = N(B_t) \cup B_{t+1} \cup B_{t-1}$ , so in fact  $N(B)_t = B_{t-1}$ . Thus,

$$|N(B)| = |B_{k-1}| + |B_{k-2}| + \dots + |B_1| + |N(B_1)| = |B| - |B_k| + |N(B_1)|.$$

Similarly,  $|N(C)| = |C| - |C_k| + |N(C_1)|$ . So to show  $|N(C)| \le |N(B)|$ , it is enough to show that  $|B_k| \le |C_k|$ , and  $|B_1| \ge |C_1|$ , since  $|N(C_1)|$  is minimal for its size.

To show  $|B_k| \leq |C_k|$ , define a set  $D \subseteq [k]^n$  as follows: put  $D_k = B_k$ , and for  $t = k - 1, k - 2, \ldots, 1$  set  $D_t = N(D_{t-1})$ .

Then  $D \subseteq B$  so  $|D| \le |B|$ , and in fact D is an initial segment of simplicial so  $D \subseteq C$ , showing  $|B_k| = |D_k| \le |C_k|$ .

To show  $|B_1| \ge |C_1|$ , define a set  $E \subseteq [k]^n$  as follows: put  $E_1 = B_1$ , and for  $t = 2, 3, \ldots, k$  set  $E_t = \{x \in [k]^{n-1} \mid N(\{x\}) \subseteq E_{t-1}\}.$ 

Then  $E \supseteq B$  so  $|E| \supseteq |B|$  and E is an initial segment of simplicial, so  $E \supseteq C$ , whence  $|B_1| = |E_1| \ge |C_1|$ .

This shows the theorem.

Corollary 2.3. Let  $A \subseteq [k]^n$  with  $|A| \ge |\{x \mid |x| \le r\}|$ . Then  $|A_{(t)}| \ge |\{x \mid |x| \le r + t\}|$ .

Remark. We can check from the corollary that for k fixed, the sequence  $([k]^n)$  is a Lévy family.

We now look at the edge-isoperimetric inequality in the grid. Which set  $A \subseteq [k]^n$  should we take to minimize  $|\partial A|$ ? For example, in  $[k]^2$ , we can look at squares and triangles, which suggest that squares are the best.

However, there are nasty things that happen as we grow the size of of |A|. When |A| is 1/4 of the total size of  $[k]^2$ , the square does equally as well as the column,

and for greater sizes columns do better.

A similar thing occurs at 3/4 of the total size, when the column equals a cosquare, and at large sizes the cosquare does the best. So we have phase transitions at  $|A| = k^2/4$  and  $3k^2/4$ , when the extremal sets are not nested. This seems to rule out compression methods (insert image).

And in  $[k]^3$ , we have even more phase transitions:

$$[a]^3 \to [a]^2 \times [k] \to [a] \times [k]^2 \to ([a]^2 \times [k])^c \to ([a]^3]^c.$$

Hence in  $[k]^n$ , up to halfway we get n-1 of these phase transitions.

Note that if  $A = [a]^d \times [k]^{n-d}$ , then  $|\partial A| = da^{d-1}k^{n-d} = d|A|^{1-1/d}k^{n/d-1}$ .

**Theorem 2.6.** Assuming that  $A \subseteq [k]^n$  and  $|A| \le k^n/2$ , then

$$|\partial A| \ge \min\{d|A|^{1-1/d}k^{n/d-1} \mid 1 \le d \le n\}.$$

This just says that some set of the form  $[a]^d \times [k]^{n-d}$  is the best. The following is non-examinable.

**Proof:** We give a sketch of the proof. The idea is induction on n: n = 1 is trivial.

Take  $A \subseteq [k]^n$ , with  $|A| \le k^n/2$  and n > 1. Without loss of generality, assume that A is a down-set, by compressing in each direction  $1 \le i \le n$ . For any  $1 \le i \le n$ , define  $C_i(A)$  by defining its sections:

$$C_i(A)_t = \text{extremal set of size } |A_t| \text{ in } [k]^{n-1}.$$

This will be a set of the form  $[a]^d \times [k]^{n-1-d}$ , or a complement. Say  $B = C_i(A)$ . We want to say something like  $|\partial B| \leq |\partial A|$ . Since A is a down set, we can write

$$|\partial A| = |\partial A_1| + \dots + |\partial A_k| + |A_1| - |A_k|,$$

since the sections of A are nested. But for B, we do not have the same expression, since it is not a down-set: extremal sets may not be nested. Indeed, we may have  $|\partial B| > |\partial A|$ , by choosing the sections of A on opposite sides of a phase transition.

The idea we have to solve this is to introduce a "fake" boundary  $\partial'$ , where  $\partial' A \leq \partial A$  and  $\partial' = \partial$  on extremal sets. Then we can try to show that  $C_i$ 

decreases  $\partial'$ . Consider defining

$$\partial' A = \sum_{t} |\partial A_t| + |A_1| - |A_k|,$$

where  $A_t$  is the t'th section in the i'th direction. Then  $\partial' A \leq |\partial A|$  for all A, we have equality for extremal sets (as equality holds for down-sets), and  $\partial' C_i(A) \leq \partial' A$ . However, for any  $j \neq i$ ,  $C_j(A)$  does not decrease the edge perimeter. One potential fix is trying

$$\partial'' A = \sum_{i} (|A_1^{(i)}| - |A_k^{(i)}|).$$

But this also fails, if we take e.g. A to be the outer-shell of  $[k]^n$ . Collecting our results,

$$|\partial A| \ge \partial' A \ge \partial' B = \sum_{t} |\partial B_{t}| + |B_{1}| - |B_{k}|$$
$$= \sum_{t} f(|B_{t}|) + |B_{1}| - |B_{k}|,$$

where f is the extremal function in  $[k]^{n-1}$ . Note that f is the pointwise minimum of functions of the form  $cx^{1-1/d}$  and  $c(k^{n-1}-x)^{1-1/d}$ , which are concave. So f is concave.

Consider varying  $|B_2|, \ldots, |B_{k-1}|$  while keeping  $|B_2| + \cdots + |B_{k-1}|$  constant, and ensuring  $|B_1| \ge |B_2| \ge \cdots \ge |B_{k-1}| \ge |B_k|$ . To minimize this concave function, we should take

$$C_t = \begin{cases} B_1 & 1 \le t \le r, \\ B_k & r+1 \le t \le k, \end{cases}$$

for some r. Then we have

$$|\partial A| = \partial' A \ge \partial' B \ge \partial C = rf(|B_1|) + (k - r)f(|B_k|) + |B_1| - |B_k|.$$

But now C is still not a down set. Now to improve this further, vary  $|B_1|$  while keeping  $r|B_1| + (k-r)|B_k|$  fixed (for fixed r), and  $|B_1| \ge |B_k|$ . This is concave in  $|B_1|$ , as it is a sum of concave functions. Hence we either make  $|B_1|$  as big or as small as possible.

If we let D be this set, then D must have one of the following forms:

- $|B_1| = |B_k|$ , i.e.  $D_t = D_1$  for all t.
- |B<sub>k</sub>| = 0, so D<sub>t</sub> = D<sub>1</sub> for all t ≤ r, and D<sub>t</sub> = Ø for t > r.
   B<sub>1</sub> is maximal, so D<sub>t</sub> = [k]<sup>n-1</sup> for t ≤ r, and D<sub>t</sub> = D<sub>k</sub> for t > r.

But finally, this D has become a down-set. Hence

$$|\partial A| = \partial' A \ge \partial' B \ge \partial' C \ge \partial' D = |\partial D|.$$

So we can compress by going directly  $A \to D$ . This allows us to finish as before.

Remark. We were a bit sloppy as we assumed the sections  $B_i$  were exactly of the form  $[a]^d \times [k]^{n-d}$ , however this may not be the case if  $|B_i|$  is not of this form. To fix this, work instead in  $[0,1]^n$ , and then take a discrete approximation.

This concludes the non-examinable discussion.

Remark. Very few isoperimetric inequalities are known (even approximately). For example, take isoperimetric in a layer: in  $X^{(r)}$ , join two vertices x, y if  $|x \cap y| = r - 1$ . This is open; the nicest special case if r = n/2, where it is conjectured that balls are the best, i.e. sets of the form

$${x \in [2r]^{(r)} \mid |x \cap [r]| \ge t}.$$

# 3 Intersecting Families

## 3.1 *t*-intersecting Families

 $A \subseteq \mathcal{P}(X)$  is called *t-intersecting* if  $|x \cap y| \ge t$ , for all  $x, y \in A$ . How large can a *t*-intersecting family be?

#### Example 3.1.

Take t = 2. We could take  $\{x \mid 1, 2 \in x\}$ , which has size  $1/4 \cdot 2^n$ .

Or we could take  $\{x \mid |x| \ge n/2 + 1\}$ . This has size about  $1/2 \cdot 2^n$ .

**Theorem 3.1** (Katona's t-intersecting Theorem). Let  $A \subseteq \mathcal{P}(X)$  be t-intersecting, where n + t is event. Then

$$|A| \le \left| X^{(\ge \frac{n+t}{2})} \right|.$$

**Proof:** For any  $x, y \in A$ , we have  $|x \cap y| \ge t$ , so  $d(x, y^c) \ge t$ . So writing  $\bar{A}$  for  $\{y^c \mid y \in A\}$ , we have  $d(A, \bar{A}) \ge t$ , i.e.  $A_{(t-1)}$  is disjoint from  $\bar{A}$ .

Suppose that  $|A| \ge |X^{(\ge \frac{n+t}{2})}|$ . Then by Harper,

$$|A_{(t-1)}| \ge |X^{(\ge \frac{n+t}{2} - (t-1)}| = |X^{(\ge \frac{n-t}{2} + 1)}|.$$

But  $A_{(t-1)}$  is disjoint from  $\bar{A}$ , which has size greater than  $|X^{(\leq \frac{n-t}{2})}|$ , contradicting  $|A_{(t-1)}| + |\bar{A}| \leq 2^n$ .

What about t-intersecting families of  $A \subseteq X^{(r)}$ ? We might guess that the best is

$$A_0 = \{ x \in X^{(r)} \mid [t] \subseteq x \}.$$

We could also try

$$A_{\alpha} = \{ x \in X^{(r)} \mid |x \cap [t + 2\alpha]| \ge t + \alpha \},$$

for  $\alpha = 1, 2, ..., r - t$ .

#### Example 3.2.

Take 2-intersecting subsets of  $[n]^{(4)}$ .

• If 
$$n = 7$$
, then  $|A_0| = {5 \choose 2} = 10$ ,  $|A_1| = 1 + {4 \choose 3}{3 \choose 1} = 13$ ,  $|A_2| = {6 \choose 4} = 15$ .

- If n = 8, then  $|A_0| = {6 \choose 2} = 15$ ,  $|A_1| = 1 + {4 \choose 3} {4 \choose 1} = 17$ ,  $|A_2| = {6 \choose 4} = 15$ .
- If n = 9, then  $|A_0| = \binom{7}{2} = 21$ ,  $|A_1| = 1 + \binom{4}{3} \binom{5}{1} = 21$ ,  $|A_2| = \binom{6}{4} = 15$ .

Note that  $A_0$  grows quadratically,  $A_1$  grows linearly, and  $A_2$  is constant, so  $A_0$  is the largest for n large.

The fact that  $A_0$  is the largest for n large inspires the following:

**Theorem 3.2.** Let  $A \subseteq X^{(r)}$  be t-intersecting. Then, for n sufficiently large, we have

$$|A| \le |A_0| = \binom{n-t}{r-t}.$$

Remark.

- 1. The bound we get on n is either  $(16r)^r$  if we are crude, or  $2tr^3$ , if we are careful.
- 2. This is often called the second Erdős-Ko-Rado theorem.

The idea of this proof is that  $A_0$  has r-t degrees of freedom.

**Proof:** Extend A to a maximal t-intersecting family, so we must have some  $x, y \in A$  with  $|x \cap y| = t$ . If not, then by maximality, we have that for all  $x \in A$ ,  $i \in x$  and  $j \notin x$  then  $x + j - i \in A$ , whence  $A = X^{(r)}$ .

We may assume that there exists  $z \in A$  with  $x \cap y \notin z$ , otherwise all  $z \in A$  have  $x \cap y \subseteq z$ , and  $x \wedge y$  is a t set, whence

$$|A| \le \binom{n-t}{r-t} = |A_0|.$$

So each  $w \in A$  must meet  $x \cup y \cup z$  in at least t+1 points, so

$$|A| \le 2^{3r} \left( \binom{n}{r-t-1} + \binom{n}{r-t-2} + \dots + \binom{n}{0} \right),$$

which is a polynomial of degree r-t-1, hence smaller than  $|A_0|$ .

#### 3.2 Modular Intersections

For intersecting families, we banned  $|x \cap y| = 0$ . What if we banned  $|x \cap y| = 0$  (mod k) for some k?

#### Example 3.3.

Take  $A \subseteq X^{(r)}$  with  $|x \cap y|$  odd, for all distinct  $x, y \in A$ . Then for odd r, we can achieve

$$|A| = \binom{\left\lfloor \frac{n-1}{2} \right\rfloor}{\frac{r-1}{2}},$$

by taking the sets to contain 1, and then unions of  $\{2,3\}, \{4,5\}, \ldots$ 

If we wanted  $|x \cap y|$  even, we can achieve n - r + 1 by fixing an r - 1 set and then another element. This is only linear in n.

Similarly, if r is even, then for  $|x \cap y|$  even we can achieve

$$|A| = \binom{\left\lfloor \frac{n}{2} \right\rfloor}{\frac{r}{2}},$$

by again taking unions of  $\{1, 2\}, \{3, 4\}, \ldots$ 

But for  $|x \cap y|$  odd for all  $x, y \in A$  we can again only achieve n - r + 1.

Is it possible to improve our linear bounds? It seems that  $|x \cap y| = r \pmod{2}$  forces the size of our set to be very small.

Remarkably, we cannot beat linear.

**Proposition 3.1.** Let r be odd, and let  $A \subseteq X^{(r)}$  have  $|x \cap y|$  even for all distinct x, y. Then  $|A| \le n$ .

The idea is to find |A| linearly independent vectors in a vector space of dimension n, namely  $Q_n$ .

**Proof:** We view  $\mathcal{P}(X)$  as  $\mathbb{Z}_2^n$ , the *n*-dimensional vector space over  $\mathbb{Z}_2$ , by identifying each  $x \in \mathcal{P}(X)$  with  $\bar{x}$ , its characteristic sequence.

Then  $(\bar{x}, \bar{x}) \neq 0$  for all  $x \in A$ , as x has odd size. Also,  $(\bar{x}, \bar{y}) = 0$  for all distinct  $x, y \in A$ , as they have even intersection.

Hence the  $\bar{x}$  for  $x \in A$  are linearly independent: if  $\sum \lambda_i \bar{x}_i = 0$ , then dotting with  $\bar{x}_j$  gives  $\lambda_j = 0$  for all j, so  $|A| \leq n$ .

Remark. Hence also if  $A \subseteq X^{(r)}$ , with r even and  $|x \cap y|$  odd for all distinct  $x, y \in A$ , then  $|A| \le n + 1$ : just add n + 1 to each  $x \in A$  and apply the previous proposition with X = [n + 1].

Does this mod 2 behaviour generalise? We will now show that if we have s allowed

values for  $|x \cap y| \pmod{p}$ , then |A| is bounded by a polynomial of size s.

**Theorem 3.3** (Frankl-Wilson Theorem). Let p be prime, and let  $A \subseteq X^{(r)}$  be such that for all distinct  $x, y \in A$ , we have that  $|x \cap y| \equiv \lambda_i \pmod{p}$  for some i, where  $\lambda_1, \ldots, \lambda_s$   $(s \leq r)$  are integers with no  $\lambda_i \equiv r \pmod{p}$ . Then

$$|A| \le \binom{n}{s}.$$

Remark.

- 1. This bound is a polynomial in s that is independent of r.
- 2. This bound is essentially the best: if we let all  $x \in A$  contain [r-s], and s other elements, then we have

$$|A| = \binom{n-r+s}{s} \sim \binom{n}{s}.$$

3. We do need that no  $\lambda_i \equiv r \pmod{p}$ . Otherwise, say  $n = a + \lambda p$ , then we can have  $A \subseteq X^{(a+kp)}$  with  $|A| = {\lambda \choose k}$  and all  $|x \cap y| = a = r \pmod{p}$ .

The idea is to try and find |A| linearly independent points in a vector space of dimension  $\binom{n}{s}$ , by somehow applying the polynomial  $(t - \lambda_1) \cdots (t - \lambda_s)$  to  $|x \cap y|$ .

**Proof:** For each  $i \leq j$ , let M(i,j) be the  $\binom{n}{i} \times \binom{n}{j}$  matrix, where rows are indexed by  $X^{(i)}$  and columns are indexed by  $X^{(j)}$ , with

$$M(i,j)_{xy} = \begin{cases} 1 & \text{if } x \subseteq y, \\ 0 & \text{if not.} \end{cases}$$

Let V be the vector space over  $\mathbb{R}$  spanned by the rows of M(s,r). Then  $\dim V \leq \binom{n}{s}$ .

For  $i \leq s$ , consider M(i,s)M(s,r). Then each row belong to V, as we have premultiplied M(s,r) by a matrix. For  $x \in X^{(i)}$ ,  $y \in X^{(r)}$ ,

M(i,s)M(s,r)= number of s-sets z with  $x\subseteq z$  and  $z\subseteq y$ 

$$= \begin{cases} 0 & \text{if } x \not\subseteq y, \\ \binom{r-i}{s-i} & \text{if } x \subseteq y. \end{cases}$$

Hence we see

$$M(i,s)M(s,r) = \binom{r-i}{s-i}M(i,r),$$

hence all rows of M(i,r) belongs to V. Now let

$$M(i) = M(i, r)^T M(i, r),$$

whose rows again belong to V as we have premultiplied. For  $x, y \in X^{(r)}$ , we have

$$M(i)_{xy} = \text{number of } i\text{-sets } z \text{ with } z \subseteq x, z \subseteq y$$
$$= {|x \cap y| \choose i}.$$

Consider the integer polynomial  $(t - \lambda_1) \cdots (t - \lambda_s)$ . Then we may write it as

$$(t - \lambda_1) \cdots (t - \lambda_s) = \sum_{i=0}^{s} a_i {t \choose i},$$

where all  $a_i \in \mathbb{Z}$ . Moreover each  $a_i$  must be positive, as

$$t(t-1)\cdots(t-i+1) = n! \binom{t}{n}.$$

Now define

$$M = \sum_{i=0}^{s} a_i M(i).$$

Then for all  $x, y \in X^{(r)}$ ,

$$M_{xy} = \sum_{i=0}^{s} a_i \binom{|x \cap y|}{i} = (|x \cap y| - \lambda_1) \cdots (|x \cap y| - \lambda_s).$$

So the submatrix of M by spanned by the rows and columns corresopnding to the elements of A is non-zero mod p on the diagonal, and zero elsewhere. Hence the rows of M corresponding to A are linearly independent over  $\mathbb{Z}_p$ , so also over  $\mathbb{Z}$ , hence also over  $\mathbb{Q}$  and  $\mathbb{R}$ .

But these rows are a subset of V, so

$$|A| \le \dim V \le \binom{n}{s}.$$

*Remark.* We do need p to be prime. Grolmusz constructed, for each n, a value of  $r \neq 0 \pmod{d}$  and a family  $A \subseteq [n]^{(r)}$  such that, for all distinct  $x, y \in A$ , we have

 $|x \cap y| \neq 0 \pmod{d}$ , with

$$|A| > n^{c \log n / \log \log n}.$$

**Corollary 3.1.** Let  $A \subseteq [n]^{(r)}$  with  $|x \cap y| \neq r \pmod{p}$  for each distinct  $x, y \in A$ , where p < r is prime. Then

$$|A| \le \binom{n}{p-1}.$$

**Proof:** We are allowed p-1 values of  $|x \cap y| \mod p$ , hence we are done by Frankl-Wilson.

Note that two n/2 sets in [n] typically meet in about n/4 points. But  $|x \cap y| = n/4$  is very unlikely. Remarkably, we have the following result:

**Corollary 3.2.** Let p be prime, and  $A \subseteq [4p]^{(2p)}$  have  $|x \cap y| \neq p$  for all distinct  $x, y \in A$ . Then

$$|A| \le 2 \binom{4p}{p-1}.$$

Note that  $\binom{4p}{p-1}$  is a tiny fraction of  $\binom{4p}{2p}$ . Indeed,

$$\binom{n}{n/2} \sim c \frac{2^n}{\sqrt{n}}, \qquad \binom{n}{n/4} \le 2e^{-n/32} 2^n.$$

**Proof:** Halving |A| if necessary, we may assume that no  $x, x^c \in A$ . Then for  $x, y \in A$  distinct,

$$|x\cap y|\neq 0, p \implies |x\cap y|\neq 0\pmod p.$$

Hence  $|A| \leq {4p \choose p-1}$  by corollary 3.1.

# 3.3 Borsuk's Conjecture

Let S be a bounded subset of  $\mathbb{R}^n$ . How few pieces can we break S into, such that each has a smaller diameter than that of S?

The example of a regular simplex in  $\mathbb{R}^n$ , which are n+1 all equidistant, shows that we may need at least n+1 pieces.

Borsuk's Conjecture: n+1 pieces are always sufficient.

This is known for n = 1, 2 and 3, and also for S a smooth convex body or a symmetric convex body in  $\mathbb{R}^n$ .

However, Borsuk is massively false.

**Theorem 3.4** (Kahn, Kalai). For all n, there exists bounded  $S \in \mathbb{R}^n$  such that to break S into pieces of smaller diameter, we need at least  $c^{\sqrt{n}}$  pieces, for some constant c > 1.

Remark.

- 1. Our proof will show that Borsuk is false for  $n \geq 2000$ .
- 2. We will prove this for n of the form  $\binom{4p}{2}$ , where p is prime.

**Proof:** We find  $S \subseteq Q_n \subseteq \mathbb{R}^n$ . In fact, we can take  $S \subseteq [n]^{(r)}$ , for some r. Since  $S \subseteq [n]^{(r)}$ , for all  $x, y \in S$ ,

$$||x - y||^n = 2(r - |x \cap y|).$$

So we seek S with min  $|x \cap y| = k$ , but every subset of S with min  $|x \cap y| > k$  is very small.

Identify [n] with the edge set of  $K_{4p}$ , the complete graph on 4p pieces. For each  $x \in [4p]^{(2p)}$ , let  $G_x$  be the complexe bipartite graph with vertex classes x and  $x^c$ . Let  $S = \{G_x \mid x \in [4p]^{(2p)}\}$ , so  $S \subseteq [n]^{(4p^2)}$ , and  $|S| = \frac{1}{2} {4p \choose 2p}$ .

Now,

$$|G_x \cap G_y| = |x \cap y|^2 + |x^c \cap y|^2 = d^2 + (2p - d)^2$$

where  $d = |x \cap y|$ , which is minimized when d = p, i.e. when  $|x \cap y| = p$ .

Now let  $S' \subseteq S$  have a smaller diameter than that of S, and say  $S' = \{G_x \mid x \in A\}$ . Then for all  $x, y \in A$  distinct,  $|x \cap y| \neq p$ . Thus,

$$|A| \le 2 \binom{4p}{p-1}.$$

The conclusion is that the number of pieces needed is at least

$$\frac{|S|}{\max|A|} = \frac{1}{2} \binom{4p}{2p} \cdot \frac{1}{2} \binom{4p}{p-1}^{-1} \ge \frac{c \cdot 2^{4p} \sqrt{p}}{e^{-p/8} 2^{4p}}$$

for some c. But this is at least  $(c')^p = (c'')^{\sqrt{n}}$  for some c', c'' > 1.

# Index

i-compression, 19, 28 i-sections, 28 i-selection, 19 t-intersecting, 34

antichain, 4

binary compression, 26 binary ordering, 25 boundary, 18

chain, 3 colexographic ordering, 9 compression, 10, 12

discrete cube, 3

edge-boundary, 25 edge-isoperimetric inequality, 25

grid, 27

Hamming ball, 19

intersecting, 15 isoperimetric inequality, 18 isoperimetric number, 27

Lévy family, 24 Lévy mean, 23 left-compressed, 11 lexographic ordering, 9 Lipschitz, 23

median, 23

normal Lévy family, 24

set system, 3 shadow, 6 simplicial ordering, 19, 28

upper shadow, 14