CS 547: Foundation of Computer Security

S. Tripathy IIT Patna

Previous *Class*

- Malicious code: Malware
 - Viruses
 - Resident
 - Code
 - Spreading and payload

Present Class

- Virus
 - To evade detection
- Malicious code: Malware
 - Worms
- Other malicious codes
 - Backdoor
 - Rootkit
 - Trojan horse and Logic Bomb
- Detection mechanisms
 - Signature based
 - Behaviour based

Malware!

Malware is

- Software, intended to intercept or take partial control of a computer's operation without the user's consent/knowledge.
- It subverts the computer's operation for the benefit of a third party.

• [NIST05] defines malware as:

"a program that is inserted into a system, usually covertly, with the intent of compromising the confidentiality, integrity, or availability of the victim's data, applications, or operating system or otherwise annoying or disrupting the victim."

Malware covers all kinds of intruder software

 including viruses, worms, backdoors, rootkits, Trojan horses, stealware etc. These terms have more specific meanings.

Viruses

- A virus is a particular kind of malware that infects other files
 - Traditionally, a virus could only infect executable programs
 - Typically, when the file is executed (or sometimes just opened), the virus activates, and tries to infect other files with copies of itself

Infection

- For executable programs:
 - Typically, the virus will modify other programs and copy itself to the beginning of the targets' program code
- For documents with macros:
 - The virus will edit other documents to add itself as a macro which starts automatically when the file is opened

Virus Phases

dormant phase

- virus is idle
- will eventually be activated by some event
- not all viruses have this stage

triggering phase

- virus is activated to perform the function for which it was intended
- can be caused by a variety of systemevents

propagation phase

- virus places a copy of itself into other programs or into certain system areas on the disk
- may not be identical to the propagating version
- each infected program will now contain a clone of the virus which will itself enter a propagation phase

execution phase

- function is performed
- may be harmless or damaging

Virus structure

```
Program V:=
   goto main;
   1234567;
   subroutine infect-executable :=
   { loop:
    file := get-random-executable-file;
    if(first-line-of-file = 1234567)
            then goto loop
            else prepend V to file; }
    subroutine do-damage :=
    { whatever damage is to be done; }
```

```
subroutine trigger-pulled: =
{ return true if some condition
  holds; }
main: main-program :=
{ infect-executable;
if trigger-pulled then do-
  damage;
goto next; }
next:
```

Spread and Payload

- In addition to trying to spread
 - Some viruses try to evade detection by disabling any active virus scanning software
- Most viruses have some sort of payload
 - At some point, the payload of an infected machine will activate, and something (usually bad) will happen
 - Erase your hard drive
 - Subtly corrupt some of your spreadsheets
 - Install a keystroke logger to capture your online banking password
 - Start attacking a particular target website

To evade detection!!!

- The infected program will first run the virus code when invoked
 - If the infection phase is fast, then it will be unrecognizable
- Infected version of a program is longer than the normal
 - A virus can compress the infected program to make its versions identical length

How to evade detection: Compression Virus


```
Program V:=
   goto main;
   1234567;
   subroutine infect-executable :=
   { loop:
    file := get-random-executable-file;
    if(first-line-of-file = 1234567) then goto loop;
   compress file
   prepend V to file; }
Main: main_program :=
      {is ask_permission then infect-executable
   uncompress rest of file;
   run uncompressed file;}
```

Spotting viruses

- When should we look for viruses?
 - As files are added to our computer
 - Via portable media
 - Via a network
 - From time to time, scan the entire state of the computer
 - To catch anything we might have missed on its way in
 - But of course, any damage the virus might have done may not be reversible
- How do we look for viruses?
 - Signature-based protection
 - Behaviour-based protection

Signature-based protection

- Keep a list of all known viruses
- For each virus in the list, store some characteristic feature (the signature)
 - Most signature-based systems use features of the virus code itself
 - The infection code
 - The payload code
 - Can also try to identify other patterns characteristic of a particular virus
 - Where on the system it tries to hide itself
 - How it propagates from one place to another

Virus Signatures Detecting Virus Signatures

Virus Goal	How Achieved
Attach to executable	Modify file directory / Write to executable pgm file
Attach to data/ control file	Modify directory / Rewrite data Append to data / Append data to self
Remain in memory	Intercept interrupt by modifying interrupt handler address table / Load self in non-transient memory area
Infect disks	Intercept interrupt /Intercept OS call (e.g., to format disk) Modify system file / Modify ordinary executable pgm
Conceal self	Intercept system calls that would reveal self and falsify results / Classify self as "hidden" file
Spread self	Infect boot sector / Infect systems pgm Infect ordinary pgm / Infect data ordinary pgm reads to control its executable
Prevent deactivation	Activate before deactivating pgmand block deactivation Store copy to reinfect after deactivation

Metamorphic

Polymorphism

- To try to evade signature-based virus scanners, some viruses are polymorphic
 - Instead of making perfect copies of itself every time it infects a new file or host, it makes a modified copy
 - This is often done by encrypting the virus code
 - The virus starts with a decryption routine which decrypts the rest of the virus, which is then executed
 - When the virus spreads, it encrypts the new copy with a newly-chosen random key
- How would you scan for polymorphic viruses?

Encrypted

Encrypting virus structure

- Encrypting virus structure (informal pseudo-code)

```
array decr key;
             procedure decrypt(virus code, decr key)
              end /* decrypt */
         begin /* virus V in target pgm T */
                     decrypt (V, decr key);
         infect: if infect condition met then
                  find new target pgms NT to infect;
                 mutate V into V' for copying;
red
                  encrypt V' with random key into V";
en-
                  save new key in file for V";
                  attach V" to NT;
cryp
             hide modification of NT (with stealth
-ted
                  code of V);
         damage: if damage condition met then
                 execute damage code of V
              else start T
  end /* virus V in target pgm T */
```

Virus Signatures Detecting Virus Signatures

- Encrypting virus: Encrypts its object code (each time with a different/random key), decrypts code to run
- Q: Is there any signature for encryption virus that a scanner can see?
 - Hint: consider 3 parts of encryption virus:
 - "proper" virus code (infect/damage code)
 - decr_key
 - procedure decrypt

Virus Signatures Detecting Virus Signatures

- Q: Is there any signature for encryption virus that a scanner can see?
- A:
 - "proper" virus code encrypted with random key polymorphic
 - decr_key random key used to encrypt/decrypt polymorphic
 - procedure decrypt (or a pointer to a library decrypt procedure)
 unencrypted, static
 - => procedure decrypt of V is its signature visible to a scanner
- But: Virus writer can use polymorphic techniques on decryption code to make it "less visible" (to hide it)
- · Virus writers and scanner writers challenge each other
 - An endless game?

Behaviour-based protection

- Signature-based protection systems have a major limitation
 - You can only scan for viruses that are in the list!
 - But there are several brand-new viruses identified every day
 - More than 75 thousand
 - What can we do?
- Behaviour-based systems look for suspicious patterns of behaviour, rather than for specific code fragments
 - Of course, this is only useful post-infection

False negatives and positives

- Any kind of test or scanner can have two types of errors:
 - False negatives: fail to identify a threat that is present
 - False positives: claim a threat is present when it is not
- Which is worse?
- How do you think signature-based and behaviourbased systems compare?

Logic bombs

- Logic bomb is a malicious code hiding in the software already on your computer, waiting for a certain trigger to "go off" (execute its payload)
- Logic bombs are usually written by "insiders", and are meant to be triggered sometime in the future
 - After the insider leaves the company
- The payload of a logic bomb is usually pretty dire
 - Erase your data
 - Corrupt your data
 - Encrypt your data, and ask you to send money to some offshore bank account in order to get the decryption key!

Logic bombs

- What is the trigger?
- Usually something the insider can affect once he is no longer an insider
 - Trigger when this particular account gets three deposits of equal value in one day
 - Trigger when a special sequence of numbers is entered on the keypad of an ATM
 - Just trigger at a certain time in the future (called a "time bomb")

Trojan horses

 Trojan horses are programs which claim to do something innocuous (and usually do), but which also hide malicious behaviour

You're surfing the Web and you see a button on the Web site saying, "Click here to see the dancing pigs." And you click on the Web site and then this window comes up saying, "Warning: this is an untrusted Java applet. It might damage your system. Do you want to continue? Yes/No." Well, the average computer user is going to pick dancing pigs over security any day. And we can't expect them not to.

-- Bruce Schneier

Spotting Trojan horses and logic bombs

- Spotting Trojan horses and logic bombs is extremely tricky. Why?
- The user is intentionally running the code!
 - Trojan horses: the user clicked "yes, I want to see the dancing pigs"
 - Logic bombs: the code is just (a hidden) part of the software already installed on the computer
- Don't run code from untrusted sources?
- Better: prevent the payload from doing bad things

Thanks