The **skmath** package*†

Simon Sigurdhsson [sigurdhsson@gmail.com] Version 0.1d

Abstract The skmath package provides improved and new math commands for superior typesetting with less effort.

1 Introduction

This package intends to provide helpful (re-)definitions of commands related to typesetting mathematics, and specifically typesetting them in a more intuitive, less verbose and more beautiful way. It was originally not intended for use by the public, and as such there may be incompatibilities with other packages of which I am not aware, but I figured it could be useful to other people as well.

2 Usage

2.1 Options

As of version v0.1d, there is only one option: commonsets. By default, it is disabled but if the option is given the package will define \N , \Z , \Q , \R and \C as blackboard variants of the respective letters, to represent the common sets of numbers.

^{*}Available on http://www.ctan.org/pkg/skmath.

[†]Development version available on https://github.com/urdh/skmath.

2.2 New commands

The package defines a number of new commands that aid in typesetting certain mathematical formulae.

/8

These commands are only available if the commonsets option is given. They typeset the set of natural, integer, rational, real and complex numbers respectively.

Example:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}.$$

```
\norm \{\langle expression \rangle\} \abs \{\langle expression \rangle\}
```

The commands \norm and \abs, quite expectedly, typeset the norm ans absolute value of an expression, respectively. They have one mandatory argument (the expression), and different norms can be achieved by appending a subscript after the argument of \norm.

Example:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

\d {\\\variable\\}

There is also a command \d, with one mandatory argument, that typesets the differential part of an integral.

Example:

$$\int_{\mathbb{T}} \frac{\sin(x)}{x} \, \mathrm{d}x$$

2.3 Improved commands

In addition to adding new commands, this package also redefines already existing commands in a mostly backwards-compatible way to improve their usefulness.

The trigonometric functions have been redefined to typeset more easily. They typeset $\langle expression \rangle$ as an argument of the expression, and (if applicable) $\langle power \rangle$ as a superscript between the function and its argument, e.g. $\sin^2(\phi)$.

```
\ln {\(\langle expression \\)}
```

The natural logarithm macro \ln has also been redefined to require an argument which is typeset as the argument of the logarithm.

```
\log [\langle base \rangle] \{\langle expression \rangle\}
```

The related macro $\setminus \log$ is redefined in a similar way, but also accepts an optional argument denoting the base of the logarithm: $\log_2(x)$.

```
\langle \exp \{\langle expression \rangle\}
```

The exponential, $\backslash \exp$, is redefined to typeset its argument as a superscript of e in some display styles, and as an argument of \exp otherwise:

$$e^{\sqrt{2}\exp(x)}$$

2.4 Stylistic changes

Some commands have been redefined in a completely backwards-compatible way to improve the end result of their typesetting.

```
\frac \{\langle numerator \rangle\} \{\langle denominator \rangle\}
```

The \frac command has been changed to improve typesetting, allowing displaystyle math in some settings.

```
\\text{\(expression\)\} \{\(expression\)\}
```

The \bar command has been changed to cover the entire $\langle expression \rangle$ (i.e. \overline{uv}), and \vec has been changed to match the \vectorsym command provided by isomath.

3 Implementation

The package implementation is very simple. First, we do the standard $\LaTeX 2_{\varepsilon}$ preamble thing, then we require some dependencies.

```
\label{latex2e} $$ \end{TeXPormat} LaTeX2e} [1999/12/01] $$ \ProvidesPackage{skmath}%
(package)
              [2012/12/28 v0.1d skmath improved math commands]
           \RequirePackage{xparse}
          \PassOptionsToPackage{intlimits}{amsmath}
          \RequirePackage{kvoptions,amssymb,mathtools,xfrac,isomath}
             We begin by declaring an option.
          \SetupKeyvalOptions{family=skmath,prefix=skmath0}
          \DeclareBoolOption[false]{commonsets}
         9 \ProcessKeyvalOptions*
             We optionally provide commands to typeset common sets.
        10 \ifskmath@commonsets
(package)
        \N(no arguments)
(package) 11
            \Z(no arguments)
(package)
            \Q(no arguments)
```

```
(package) 13
        \R(no arguments)
(package)
            \C(no arguments)
(package)
            ⟨package⟩ 16 \fi
            This is followed by commands to typeset the norm and absolute value.
      \abs(no arguments)
\( \package \rangle \) \( \DeclarePairedDelimiter\abs{\lvert}{\rvert} \)
     \norm(no arguments)
\( \package \rangle \) 18 \( \DeclarePairedDelimiter\norm{\lVert}{\rVert} \)
            We replace all trigonometric functions and some other common func-
          tions with alternatives that take an argument (or optionally, several
          arguments).
\langle package \rangle 19 \let\skmath@sin\sin
        20 \let\skmath@cos\cos
        21 \let\skmath@tan\tan
        22 \let\skmath@cot\cot
        23 \let\skmath@arcsin\arcsin
        24 \let\skmath@arccos\arccos
        25 \let\skmath@arccos\arctan
        26 \let\skmath@ln\log
        27 \let\skmath@log\log
        28 \let\skmath@exp\exp
      \sin(no arguments)
       29 \RenewDocumentCommand\sin{om}{%
(package)
            \IfNoValueTF{#1}
              {\ensuremath{\skmath@sin\left(#2\right)}}
              {\ensuremath{\skmath@sin^{#1}\left(#2\right)}}%
```

```
33 }
       \cos(no arguments)
         34 \RenewDocumentCommand\cos{om}{%
              \IfNoValueTF{#1}
                 {\ensuremath{\skmath@cos\left(#2\right)}}
                 {\ensuremath{\skmath@cos^{#1}\left(#2\right)}}%
       \tan(no arguments)
⟨package⟩ 39 \RenewDocumentCommand\tan{om}{%
              \IfNoValueTF{#1}
         40
                {\ensuremath{\skmath@tan\left(#2\right)}}
                 {\ensuremath{\skmath@tan^{#1}\left(#2\right)}}%
         42
       \cot(no arguments)
\( \package \rangle \) 44 \\ \RenewDocumentCommand\\ \cot{\om}{\%}
              \IfNoValueTF{#1}
         45
                 {\ensuremath{\skmath@cot\left(#2\right)}} 
{\ensuremath{\skmath@cot^{#1}\left(#2\right)}}%
         46
         47
         48 }
   \arcsin(no arguments)
         49 \RenewDocumentCommand\arcsin{m}{%
              \ensuremath{\skmath@arcsin\left(#1\right)}%
         51 }
   \arccos(no arguments)
         52 \RenewDocumentCommand\arccos{m}{%
         53 \ensuremath{\skmath@arccos\left(#1\right)}%
         54 }
   \arctan(no arguments)
⟨package⟩ 55 \RenewDocumentCommand\arctan{m}{%
         56 \ensuremath{\skmath@arctan\left(#1\right)}%
57 }
```

```
\ln(no arguments)
        58 \RenewDocumentCommand\ln{m}{%
              \ensuremath{\skmath@ln\left(#1\right)}%
         59
         60 }
       \log(no arguments)
\( \package \rangle \) 61 \RenewDocumentCommand\log{om}{%}
              \IfNoValueTF{#1}
                {\ensuremath{\skmath@log\left(#2\right)}}
                {\ensuremath{\skmath@log_{#1}\left(#2\right)}}%
       \exp(no arguments)
\( \package \rangle \) 66 \\ \RenewDocumentCommand\\exp\{m}\{\ensuremath\\mathchoice\\\}\)
              {e^{#1}}%
              {\skmath@exp\left(#1\right)}%
              {\skmath@exp\left(#1\right)}%
             {\skmath@exp\left(#1\right)}%
              The fraction command is modified to improve typesetting.
      \frac(no arguments)
         72 \RenewDocumentCommand\frac{mm}{\genfrac{}{}{}}}%
(package)
                         {\displaystyle #1}{\displaystyle #2}}
              The \bar command is also modified to impove typesetting.
       \bar(no arguments)
\( \package \rangle \) 74 \\ \RenewDocumentCommand\\ \bar{m}{\%}
                \ensuremath{\mkern 1.5mu\overline{\mkern-1.5mu{#1}\mkern-1.5mu}\mkern 1.5mu}}
              We introduce a command to typeset the differential part of integrals,
            shamefully stolen from an answer on TEX.SE. Definition is deferred until
            after all packages are loaded to avoid collisions with other \d commands.
```

\(package \) 76 \AtBeginDocument{%

\d(no arguments)

 $\langle package \rangle$ 77 \DeclareDocumentCommand\d{m}{\ensuremath{\, \mathbb{4}}#1%}

⟨package⟩ 79 }

Finally, we define a nicer way to denote vectors.

\vec(no arguments)

⟨package⟩ 80 \let\vec\vectorsym

⟨package⟩ 81 \endinput

4 Changes

V0.1

General: Initial version.

vo.1a

\d: Fixed obtuse errors.

vo.1b

General: Load amsmath with \z: Moved to xparse command intlimits option.

\bar: Added \bar replacement.

 \c : Moved to xparse command \c O.1C definition.

\d: Moved to xparse command definition.

\exp: Moved to xparse command definition.

\frac: Moved to xparse command General: Fixed fatal documentadefinition.

\N: Moved to xparse command definition.

\Q: Moved to xparse command definition.

\R: Moved to xparse command definition.

definition.

General: Moved package from docstrip to skdoc.

vo.1d

tion and package errors.

5 Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers in roman refer to the code line of the definition.

A	\ln 3,6
\abs 2,5	\log
\arccos	
\arcsin	N
\arctan	\N
·	\norm 2,5
В	,
\bar 4,7	0
(222	\Q
C	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\C	R
\cos 3,6	\R
	\n
\cot 3,6	6
5	S
D	\sin 3,5
\d	
	Т
Е	\tan 3,6
\exp 3,7	
	V
F	\vec 4,8
\frac	
	Z
L	\z 2,4