

Appendix: Copy of All Pending Claims After Amendment

1. A method of reducing formation of artifacts in a nucleic acid amplification reaction, the method comprising
 - conducting a nucleic acid amplification reaction using a template-deficient oligonucleotide as a primer,
 - wherein the template-deficient oligonucleotide comprises one or more template-deficient nucleotides,
 - wherein the number and composition of template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end of the template-deficient oligonucleotide is sufficient to allow the template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end alone to effectively prime nucleic acid synthesis in the nucleic acid amplification reaction.
 2. The method of claim 1 wherein the one or more template-deficient nucleotides are at the 5' end of the template-deficient oligonucleotide.
 3. The method of claim 1 wherein the template-deficient oligonucleotide comprises two or more template-deficient nucleotides, wherein at least two of the two or more template-deficient nucleotides are adjacent.
 4. The method of claim 3 wherein the two or more adjacent template-deficient nucleotides are within three nucleotides of the 5' end of the template-deficient oligonucleotide.
 5. The method of claim 1 wherein the template-deficient nucleotides are selected from the group consisting of modified nucleotides, derivatized nucleotides, ribonucleotides, and nucleotide analogs.
 6. The method of claim 1 wherein the template-deficient oligonucleotide comprises two or more template-deficient nucleotides, wherein at least two of the two or more template-deficient nucleotides are different.
 7. The method of claim 1 wherein the template-deficient oligonucleotide comprises two or more template-deficient nucleotides, wherein at least two of the two or more template-deficient nucleotides are template-deficient for different reasons.
 8. The method of claim 5 wherein the template-deficient nucleotides are modified nucleotides.

**ATTORNEY DOCKET NO. 13172.0001U1
Application No. 09/514,113**

9. The method of claim 5 wherein the modified nucleotides are abasic nucleotides.
10. The method of claim 5 wherein the template-deficient nucleotides are selected from the group consisting of abasic nucleotides, nucleotides with an inverted base, fluoro substituted nucleotides, alkyl substituted nucleotides, nucleotides with phenyl substituted ethers, nucleotides with substituted thioethers, nucleotides with phosphate esters, α -nucleotides, 2',3'-dideoxy nucleotides, ribonucleotides, nucleotides derivatized with biotin, nucleotides derivatized with amine, nucleotides derivatized with Hex, nucleotides derivatized with Tet, nucleotides derivatized with Fam, nucleotides derivatized with fluorescein, nucleotides derivatized with rhodamine, nucleotides derivatized with alkaline phosphatase, nucleotides derivatized with horseradish peroxidase, nucleotides derivatized with spacers, nucleotides derivatized with cholesteryl, nucleotides derivatized with DNP-TEG, nucleotides derivatized with psoralen cross-linkers, nucleotides derivatized with intercalating agents, and nucleotides derivatized with PNA conjugates.
11. The method of claim 1 wherein the nucleic acid amplification reaction does not involve cycle sequencing.
12. The method of claim 11 wherein the nucleic acid amplification reaction does not require linear amplification via thermal cycling.
13. The method of claim 12 wherein the nucleic acid amplification reaction does not involve linear amplification via thermal cycling.
14. The method of claim 1 wherein the nucleic acid amplification reaction involves exponential amplification via thermal cycling.
15. The method of claim 14 wherein the nucleic acid amplification reaction requires exponential amplification via thermal cycling.
16. The method of 14 wherein the nucleic acid amplification reaction involves the polymerase chain reaction.
17. The method of claim 1 wherein the nucleic acid amplification does not involve thermal cycling.
18. The method of 17 wherein the nucleic acid amplification is rolling circle amplification.

**ATTORNEY DOCKET NO. 13172.0001U1
Application No. 09/514,113**

19. The method of claim 1 wherein the nucleic acid amplification reaction is selected from the group consisting of exponential rolling circle amplification (ERCA), rolling circle amplification (RCA), multiple displacement amplification (MDA), strand displacement amplification (SDA), nucleic acid sequence based amplification (NASBA), transcription-mediated amplification (TMA), polymerase chain reaction (PCR), self-sustained sequence replication (3SR), amplification with Q β replicase, and cycle sequencing.

21. The method of claim 1 wherein all of the primers used in the nucleic acid amplification reaction are template-deficient.

22. The method of claim 1 wherein all of the oligonucleotides used in the nucleic acid amplification reaction are template-deficient.

23. A method of reducing formation of artifacts in a nucleic acid amplification reaction, the method comprising

conducting a nucleic acid amplification reaction using a template-deficient oligonucleotide as a primer,

wherein the nucleic acid amplification reaction does not involve thermal cycling.

27. The method of 23 wherein the nucleic acid amplification is rolling circle amplification.

31. The method of claim 23 wherein the nucleic acid amplification reaction is selected from the group consisting of exponential rolling circle amplification (ERCA), rolling circle amplification (RCA), multiple displacement amplification (MDA), strand displacement amplification (SDA), nucleic acid sequence based amplification (NASBA), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), and amplification with Q β replicase.

32. The method of claim 23 wherein the template-deficient oligonucleotide comprises one or more template-deficient nucleotides.

33. The method of claim 32 wherein the one or more template-deficient nucleotides are at the 5' end of the template-deficient oligonucleotide.

**ATTORNEY DOCKET NO. 13172.0001U1
Application No. 09/514,113**

34. The method of claim 32 wherein the template-deficient oligonucleotide comprises two or more template-deficient nucleotides, wherein at least two of the two or more template-deficient nucleotides are adjacent.

35. The method of claim 34 wherein the two or more adjacent template-deficient nucleotides are within three nucleotides of the 5' end of the template-deficient oligonucleotide.

36. The method oligonucleotide of claim 32 wherein the template-deficient nucleotides are selected from the group consisting of modified nucleotides, derivatized nucleotides, ribonucleotides, and nucleotide analogs.

37. The method oligonucleotide of claim 32 wherein the template-deficient oligonucleotide comprises two or more template-deficient nucleotides, wherein at least two of the two or more template-deficient nucleotides are different.

38. The method of claim 32 wherein the template-deficient oligonucleotide comprises two or more template-deficient nucleotides, wherein at least two of the two or more template-deficient nucleotides are template-deficient for different reasons.

39. The method of claim 36 wherein the template-deficient nucleotides are modified nucleotides.

40. The method of claim 36 wherein the modified nucleotides are abasic nucleotides.

41. The method of claim 36 wherein the template-deficient nucleotides are selected from the group consisting of abasic nucleotides, nucleotides with an inverted base, fluoro substituted nucleotides, alkyl substituted nucleotides, nucleotides with phenyl substituted ethers, nucleotides with substituted thioethers, nucleotides with phosphate esters, (α -nucleotides, 2',3'-dideoxy nucleotides, ribonucleotides, nucleotides derivatized with biotin, nucleotides derivatized with amine, nucleotides derivatized with Hex, nucleotides derivatized with Tet, nucleotides derivatized with Fam, nucleotides derivatized with fluorescein, nucleotides derivatized with rhodamine, nucleotides derivatized with alkaline phosphatase, nucleotides derivatized with horseradish peroxidase, nucleotides derivatized with spacers, nucleotides derivatized with cholesteryl, nucleotides derivatized with DNP-TEG, nucleotides derivatized with psoralen cross-linkers, nucleotides derivatized with intercalating agents, and nucleotides derivatized with PNA conjugates.

**ATTORNEY DOCKET NO. 13172.0001U1
Application No. 09/514,113**

42. The method of claim 32 wherein the number and composition of template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end is sufficient to allow the template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end alone to effectively prime nucleic acid synthesis in the nucleic acid amplification reaction.

43. The method of claim 23 wherein the template-deficient oligonucleotide is a primer.

44. The method of claim 43 wherein all of the primers used in the nucleic acid amplification reaction are template-deficient.

45. The method of claim 23 wherein all of the oligonucleotides used in the nucleic acid amplification reaction are template-deficient.

77. A method of reducing formation of artifacts in a nucleic acid amplification reaction, the method comprising

conducting a nucleic acid amplification reaction using a template-deficient oligonucleotide as a primer,

wherein the template-deficient oligonucleotide comprises one or more template-deficient nucleotides, wherein the one or more adjacent template-deficient nucleotides are within three nucleotides of the 5' end of the template-deficient oligonucleotide,

wherein the number and composition of template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end of the template-deficient oligonucleotide is sufficient to allow the template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end alone to effectively prime nucleic acid synthesis in the nucleic acid amplification reaction.

78. The method of claim 77, wherein the modified nucleotides are abasic nucleotides.

79. A method of reducing formation of artifacts in a nucleic acid amplification reaction, the method comprising

conducting a nucleic acid amplification reaction using a template-deficient oligonucleotide as a primer,

wherein the template-deficient oligonucleotide comprises one or more template-deficient nucleotides, wherein the modified nucleotides are abasic nucleotides,

wherein the number and composition of template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end of the template-deficient oligonucleotide is sufficient to

**ATTORNEY DOCKET NO. 13172.0001U1
Application No. 09/514,113**

allow the template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end alone to effectively prime nucleic acid synthesis in the nucleic acid amplification reaction.

80. A method of reducing formation of artifacts in a nucleic acid amplification reaction, the method comprising

conducting a nucleic acid amplification reaction using a template-deficient oligonucleotide as a primer,

wherein the template-deficient oligonucleotide comprises one or more template-deficient nucleotides, wherein the one or more adjacent template-deficient nucleotides are within three nucleotides of the 5' end of the template-deficient oligonucleotide, wherein the modified nucleotides are abasic nucleotides,

wherein the number and composition of template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end of the template-deficient oligonucleotide is sufficient to allow the template-capable nucleotides 3' of the template-deficient nucleotide closest to the 3' end alone to effectively prime nucleic acid synthesis in the nucleic acid amplification reaction.