Тятя! Тятя! Нейросети заменили продавца!

Ппилиф Ульянкин

Листочек 4: матричное дифФфФфФференцирование

$$\left(\boldsymbol{\varphi} \right)^{\mathsf{T}} = \mathbf{G}$$

«Джек и бобовый стебель» (1890)

Упражнение 1

Найдите следующие производные:

- а. $f(x) = x^2$, где x скаляр
- б. $f(x) = a^T x$, где a и x векторы размера $1 \times n$
- в. $f(x) = x^\mathsf{T} A x$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- г. $f(x) = \ln(x^\mathsf{T} A x)$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- д. $f(x) = a^\mathsf{T} X A X a$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- е. $f(x) = xx^\mathsf{T} x$, где x вектор размера $1 \times n$

Упражнение 2

Давайте пополним таблицу дифференциалов несколькими новыми функциями, специфичными для матриц. Найдём матричные дифференциалы функций:

- а. $f(X) = X^{-1}$, где матрица X размера $\mathfrak{n} \times \mathfrak{n}$
- б. $f(X) = \det X$, где матрица X размера $n \times n$
- в. f(X) = tr(X), где матрица X размера $n \times n$
- г. Ещё больше матричных производных можно найти в книге The Matrix Cookbook $^{\! 1}$

¹https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Упражнение 3

Рассмотрим задачу линейной регресии

$$L(w) = (y - Xw)^{\mathsf{T}}(y - Xw) \rightarrow \min_{w}$$
.

- а. Найдите L(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?
- в. Найдите $d^2L(w)$. Убедитесь, что мы действительно в точке минимума.

Упражнение 4

Найдите следующие производные:

- а. f(X) = tr(AXB), где матрица A размера $\mathfrak{p} \times \mathfrak{m}$, матрица B размера $\mathfrak{n} \times \mathfrak{p}$, матрица X размера $\mathfrak{m} \times \mathfrak{n}$.
- б. $f(X) = tr(AX^TX)$, где матрица A размера $n \times n$, матрица X размера $m \times n$.
- $\mathsf{B}. \mathsf{f}(\mathsf{X}) = \ln \det \mathsf{X}$
- r. $f(X) = tr(AX^TXBX^{-T})$
- д. $f(X) = det(X^T A X)$
- е. $f(x) = x^T A b$, где матрица A размера $n \times n$, вектора x и b размера $n \times 1$.
- ж. $f(A) = x^T Ab$.

Упражнение 5

В случае Ridge-регрессии минимизируется функция со штрафом:

$$L(w) = (y - Xw)^{\mathsf{T}}(y - Xw) + \lambda w^{\mathsf{T}}w,$$

где λ — положительный параметр, штрафующий функцию за слишком большие значения w.

- а. Найдите dL(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?
- в. Найдите $d^2L(w)$. Убедитесь, что мы действительно в точке минимума.

Упражнение 6

Пусть x_i — вектор-столбец $k \times 1$, y_i — скаляр, равный +1 или -1, w — вектор-столбец размера $k \times 1$. Рассмотрим логистическую функцию потерь с l_2 регуляризацией

$$L(w) = \sum_{i=1}^{n} \ln(1 + \exp(-y_i x_i^\mathsf{T} w)) + \lambda w^\mathsf{T} w$$

а. Найдите dL;

- б. Найдите вектор-столбец ∇L.
- в. Как для этой функции потерь выглядит шаг градиентного спуска в матричном виде?

Упражнение 7

Упражняемся в матричном методе максимального правдоподобия. Допустим, что выборка размера n пришла k нам из многомерного нормального распределения c неизвестными вектором средних μ и ковариационной матрицей Σ . В этом задании нужно найти оценки максимального правдоподобия для $\hat{\mu}$ и $\hat{\Sigma}$. Обратите внимание, что выборкой здесь будет не x_1, \dots, x_n , а

$$\begin{pmatrix} x_{11}, \dots, x_{n1} \\ \dots \\ x_{n1}, \dots, x_{nm} \end{pmatrix}$$

Упражнение 8

Найдите симметричную матрицу X наиболее близкую к матрице A по норме Фробениуса, $\sum_{i,j} (x_{ij} - a_{ij})^2$. Тут мы просто из каждого элемента вычитаем каждый и смотрим на сумму квадратов таких разностей. То есть решите задачку условной матричной минимизации

$$\left\{ \begin{array}{ll} & \|X-A\|^2 \rightarrow min_A \\ & X^T = X \end{array} \right.$$

Hint: Надо будет выписать Лагранджиан. А ещё пригодится тот факт, что $\sum_{i,j} (x_{ij} - a_{ij})^2 = ||X - A||^2 = \operatorname{tr}((X - A)^\mathsf{T}(X - A)).$