Exercice 1. Équivalents et séries à termes positifs.

- 1. (a) Calculer un équivalent de ch(n).
 - (b) Quelle est la nature de la série $\sum \frac{1}{\operatorname{ch}(n)}$?
- 2. (a) À l'aide de la formule de Stirling, calculer un équivalent de $\binom{2n}{n}$.
 - (b) Quelle est la nature de la série $\sum 2^{-2n} \binom{2n}{n}$?
- 3. (a) Calculer un équivalent de $u_n = 2\sqrt{n} \sqrt{n+1} \sqrt{n-1}$.
 - (b) Quelle est la nature de la série $\sum u_n$?
- 4. (a) Soit $S_n = \sum_{k=1}^n k \ln(k)$.

En comparant avec une intégrale, montrer que $S_n \sim \frac{1}{2}n^2 \ln(n)$

- (b) Quelle est la nature de la série $\sum \frac{1}{S_n}$?
- 5. (*) Soit a > b > 0. Déterminer la limite de la suite de terme général

$$u_n = \left(\frac{\ln(n+a)}{\ln(n+b)}\right)^{n\ln(n)}.$$

puis un équivalent de $u_n - \ell$ où ℓ est cette limite. Quelle est la nature de $\sum (u_n - \ell)$?

Exercice 2. Trois applications des développements limités

- 1. Calcular $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} \frac{1}{x}\right)$.
- 2. Soit $f: x \mapsto \frac{\sin x}{x}$.
 - (a) À l'aide d'un développement limité, démontrer que f est prolongeable en 0 en une fonction dérivable en 0 et préciser f'(0).
 - (b) La fonction f est aussi dérivable sur \mathbb{R}^* par théorèmes généraux ; calculer cette dérivée et prouver qu'elle est continue en 0.
- 3. (*) Pour $k \in \mathbb{N}^*$, on note $f_k : x \mapsto \cos(x^k)$. Soit $n \in \mathbb{N}^*$. Montrer que (f_1, \dots, f_n) est libre dans le \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$.

Exercice 3. Deux séries alternées.

- 1. Pour tout $n \ge 1$, on note $a_n = \frac{(-1)^n}{2n + (-1)^n}$.
 - (a) Pour $n \ge 1$, calculer $|a_{2n+1}| |a_{2n}|$ ainsi que $|a_{2n+2}| |a_{2n+1}|$.
 - (b) Justifier que $\sum a_n$ est une série convergente.
 - (c) En travaillant sur les sommes partielles, calculer $\sum_{n=1}^{\infty} a_n$.

 Indication: on pourra exploiter quelque-chose remarqué en 1-(a).
- 2. Pour tout $n \ge 2$, on note $b_n = \frac{(-1)^n}{n + (-1)^n}$.
 - (a) Pour $n \ge 1$, calculer $|b_{2n+1}| |b_{2n}|$ ainsi que $|b_{2n+2}| |b_{2n+1}|$.
 - (b) Pourquoi ne peut-on pas appliquer cette fois le théorème des séries alternées?
 - (c) En utilisant un développement limité, justifier que $\sum b_n$ est convergente.
 - (d) En travaillant sur les sommes partielles, calculer $\sum_{n=2}^{\infty} b_n$.

 Indication: on pourra faire un tri pair/impair et utiliser sans démonstration le développement $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$, où γ est la constante d'Euler.

Problème. Étude de la fonction ζ .

Pour x > 1, on note

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Ceci définit sur l'intervalle $]1,+\infty[$ une fonction ζ (se prononce « dzêta ») qui a une grande importance en mathématiques (notamment en arithmétique).

Partie 1. La constante γ d'Euler.

Pour $n \in \mathbb{N}^*$, on pose $v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$.

- 1. Montrer que $v_{n+1} v_n \underset{n \to +\infty}{\sim} -\frac{1}{2n^2}$.
- 2. En déduire que la série $\sum (v_{n+1} v_n)$ converge , puis que la suite (v_n) converge. On notera γ sa limite. Cette constante est appelée constante d'Euler.

Partie 2. Propriétés élémentaires de ζ .

- 3. Quel résultat du cours permet de justifier que $\zeta(x)$ est bien défini pour x > 1?
- 4. Que vaut $\zeta(2)$? (on ne demande pas de preuve, ce serait long!)
- 5. Démontrer que ζ est décroissante sur $]1, +\infty[$.
- 6. Un encadrement.
 - (a) Pour N un entier supérieur à 2, et $x \in]1, +\infty[$, établir l'encadrement

$$\int_{2}^{N+1} \frac{1}{t^{x}} dt \le \sum_{n=2}^{N} \frac{1}{n^{x}} \le \int_{1}^{N} \frac{1}{t^{x}} dt.$$

(b) En déduire l'inégalité

$$\forall x > 1 \quad 1 + \frac{1}{(x-1)2^{x-1}} \le \zeta(x) \le 1 + \frac{1}{x-1}.$$

- (c) Montrer que $\zeta(x) \underset{x \to 1_+}{\longrightarrow} +\infty$ et donner un équivalent de $\zeta(x)$ en 1_+ .
- (d) Montrer que $\zeta(x) \underset{x \to +\infty}{\longrightarrow} 1$ et donner un équivalent de $\zeta(x)-1$ en $+\infty$.

Partie 3. Continuité de ζ sur $]1, +\infty[$.

On fixe dans cette partie un réel a de $]1, +\infty[$.

- 7. Justifier que $\sum \frac{\ln(n)}{n^a}$ est une série convergente.
- 8. Soit $\ell > 0$. Établir que

$$\forall (x,y) \in [a, +\infty]^2 \quad |e^{-x\ell} - e^{-y\ell}| \le \ell e^{-a\ell} |x - y|.$$

- 9. Démontrer que ζ est K_a -lipschitzienne sur $[a, +\infty[$, où vous exprimerez K_a .
- 10. En déduire que ζ est continue sur $]1, +\infty[$.

Partie 4. Développement asymptotique au voisinage de 1.

- 11. Soit x > 1.
 - (a) Montrer que la série $\sum n \left(\frac{1}{n^x} \frac{1}{(n+1)^x} \right)$ converge.
 - (b) En évaluant ses sommes partielles, montrer que sa somme vaut $\zeta(x)$.
 - (c) En déduire l'expression $\zeta(x) = x \sum_{n=1}^{+\infty} \int_{n}^{n+1} \frac{\lfloor t \rfloor}{t^{x+1}} dt$.
- 12. Soit x > 1.
 - (a) Vérifier l'égalité $\frac{1}{x-1} = \sum_{n=1}^{+\infty} \int_{n}^{n+1} \frac{1}{t^x} dt$.
 - (b) En déduire que $\zeta(x) \frac{x}{x-1} = x \sum_{n=1}^{+\infty} \int_{n}^{n+1} \frac{\lfloor t \rfloor t}{t^{x+1}} dt$.
- 13. Dans cette question, nous nous intéressons à $F: x \mapsto \sum_{n=1}^{+\infty} \int_{n}^{n+1} \frac{\lfloor t \rfloor t}{t^{x+1}} dt$.
 - (a) Soit x > 0; vérifier que $\int_{n}^{n+1} \frac{\lfloor t \rfloor t}{t^{x+1}} dt = O\left(\frac{1}{n^{x+1}}\right)$. En déduire que la fonction F est bien définie sur $]0, +\infty[$
 - (b) Pour $N \ge 2$, justifier que $\int_1^N \frac{\lfloor t \rfloor t}{t^2} dt = \sum_{n=1}^N \frac{1}{n} \ln(N) 1$. En déduire F(1).
 - (c) Montrer que pour x et y dans $]0, +\infty[$, on a $|F(x) F(y)| \le |\frac{1}{x} \frac{1}{y}|$. En déduire que F est continue en 1.
- 14. Démontrer enfin le développement $\zeta(x) = \frac{1}{x-1} + \gamma + o(1)$.