Jäykästi tuetun palkin ominaisvärähtely

Pitkittäisvärähtely

Pitkittäisliike tukipisteissä estetty.

$$f = \frac{n}{2L} \sqrt{\frac{E}{r}}$$
 $n = 1, 2, ...$

E kimmomoduuli

r tiheys

Vääntövärähtely

Tuet vääntöjäykät.

$$f = \frac{n}{2L} \sqrt{\frac{GI_v}{r(I_v + I_z)}}$$
 $n = 1, 2, ...$

G liukumoduuli

r tiheys

l, vääntöneliömomentti

I_v pääneliömomentti y-akselin suhteen

I_z pääneliömomentti z-akselin suhteen

Taivutusvärähtely

$$f = \frac{a_n^2}{2p L^2} \sqrt{\frac{E I}{r A}}$$
 $n = 1, 2, ...$

 $a_1 = 4,73004074$ $a_2 = 7,85320462$

 $a_3 = 10,9956079$ $a_4 = 14,1371655$

 $a_5 = 17,2787597$ $a_n = \frac{(2n+1)\times p}{2}$, kun n > 5

E kimmomoduuli

r tiheys

A poikkipinta-ala

I pääneliömomentti I_y tai I_z