## Braids and the bracket polynomial

Thesis presentation

Apoorv Potnis

**IISERB** 

April 17, 2023

#### Outline



### Three dimensional representation



Three dimensional geometric representation of a braid

### Two dimensional representation



### Multiplication of braids



Multiplication of two braids

## The identity braid $\mathbf{I}_n$



### Inverse of braids



Inverse of a braid



### Generators of the braid group



Generators  $\sigma_i$  and  $\sigma_i^{-1}$ 

# Type II move: $\sigma_i \sigma_i^{-1} = \mathbf{I}_n$



A type II move illustrating  $\sigma_i \sigma_i^{-1} = \mathbb{I}_n$ 

### Type III move: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$



A type III move illustrating  $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ 

## Sliding of crossings: $\sigma_i \sigma_j = \sigma_j \sigma_i$



Figure: Sliding of crossings illustrating  $\sigma_i \sigma_j = \sigma_j \sigma_i$ 

### Presentation of the braid group

The Artin braid group  $B_n$  admits the following presentation on the generators  $\sigma_i$ , for  $1 \le i \le n-1$ .

$$\mathsf{B}_n = \left\langle \begin{array}{ccc} \sigma_1, \dots, \sigma_{n-1} & \sigma_i \sigma_i^{-1} & = & \mathbf{I}_n \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } i+1 \leq n-1 \\ \sigma_i \sigma_i & = & \sigma_i \sigma_i & \text{if } |i-j| \geq 2 \end{array} \right\rangle$$

### Closure of a braid $\overline{b}$



#### Braids and links

Every closure of a braid is a link.

#### Theorem (Alexander)

Every link is ambient isotopic to a closure of a braid.

### Conjugation



Conjugation process illustrating the link equivalence of  $\overline{g\,bg^{-1}}$  and  $\overline{b}$  (part 1)

### Conjugation (contd.)



Conjugation process illustrating the link equivalence of  $\overline{gbg^{-1}}$  and  $\overline{b}$  (part 2)

#### Markov theorem

#### Theorem (Markov)

Two braids whose closures are ambient isotopic to each other are related by a finite sequence of the following operations.

- Braid equivalences, i.e. equivalences resulting due to the braid relations.
- 2. Conjugation.
- 3. Markov moves.

#### Markov move



Markov move with  $b = \sigma_1^{-1}$ .

### Orientation



A braid with downward orientation

For the consistency of the orientation, it must be either upwards or downwards for all strands.



Writhe is the sum of the assigned numbers.

## Kauffman's bracket polynomial $\langle K \rangle$

#### Definition (Kauffman's bracket polynomial)

Let K an un-oriented link diagram. Then the bracket  $\langle K \rangle \in \mathbb{Z}[A,A^{-1}]$  is defined by the rules:

- 1.  $\langle \bigcirc \rangle = 1$ .
- 2.  $\langle \bigcirc \cup K \rangle = (-A^2 A^{-2}) \langle K \rangle$ .
- 3.  $\left\langle \middle{}\right\rangle = A \left\langle \middle{}\right\rangle + A^{-1} \left\langle \middle{}\right\rangle \left\langle \middle{}\right\rangle$ .

 $\langle \textit{K} \rangle$  is invariant under the type II and type III moves.

### Normalised bracket polynomial L(K)

We can normalise  $\langle K \rangle$  by multiplying it with  $(-A^3)^{-w(K)}$  gain type I move invariance.

$$L(K) := (-A^3)^{-w(K)} \langle K \rangle$$

### Bracket polynomial of a braid

Bracket polynomial of a braid:

$$\langle \cdot \rangle \colon \mathsf{B}_n \to \mathbb{Z}[A, A^{-1}]$$
  
 $\langle \cdot \rangle \colon b \mapsto \langle \overline{b} \rangle$ 

 $\langle \cdot \rangle$  is well defined and invariant under conjugation.

Normalisation using writhe:

$$L(K) := (-A^3)^{-w(b)} \langle \overline{b} \rangle$$

$$\left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle = A \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle + A^{-1} \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle$$

$$\left| \cdots \right| \left| \bigcirc \left| \cdots \right| = \mathbf{I}_n \quad \text{and} \quad \mathsf{U}_i \coloneqq \left| \cdots \right| \left| \bigcirc \left| \cdots \right| \right|$$

$$\langle \sigma_i^{-1} \rangle = A \langle \mathsf{U}_i \rangle + A^{-1} \langle \mathbf{I}_n \rangle$$

$$\langle \sigma_i \rangle = A \langle \mathbb{I}_n \rangle + A^{-1} \langle \mathsf{U}_i \rangle$$

We refer to  $U_i$ 's as "hooks" or "input-output" forms.

They don't belong to the Artin braid group.



Input-output forms or hooks for 4 strands

## Example



### Example (contd.)



Writing a state of a braid closure in terms of input-output forms

$$\langle b \rangle = \langle S(b) \rangle = \sum_{s} \langle b | s \rangle \langle P_{s} \rangle = \sum_{s} \langle b | s \rangle \delta^{\|s\|}$$

 $\langle \sigma_i^{-1} \rangle = A \langle \mathsf{U}_i \rangle + A^{-1} \langle \mathbf{I}_n \rangle$ 

||s||: Number of loops in s minus one

s: A state in the expansion

 $\langle b|s\rangle$ : Product of A's and  $A^{-1}$ 's

 $P_s$ : Product of  $U_i$ 's

 $\delta : -A^2 - A^{-2}$ 

$$\langle S(b)
angle$$
 : Substituting  $\langle \sigma_i
angle = A\,\langle {
m I\hspace{-.1em}I}_n
angle + A^{-1}\,\langle {
m U}_i
angle$  and

### Temperley–Lieb algebra $\mathsf{TL}_n$

We give  $U_i$ 's a structure of their own by constructing

- $\triangleright$  over the ring  $\mathbb{Z}[A, A^{-1}]$
- $\triangleright$  the free additive algebra  $\mathsf{TL}_n$
- $\triangleright$  with the generators  $U_1, U_2, \ldots, U_{n-1}$
- and the multiplicative relations coming from the interpretation of U<sub>i</sub>'s as input-output forms.

### Multiplicative relations in $TL_n$

Multiplicative relations in  $\mathsf{TL}_n$ :

- 1.  $U_i U_{i\pm 1} U_i = U_i$
- 2.  $U_i^2 = \delta U_i$
- 3.  $U_i U_j = U_j U_i$  if  $|i j| \ge 2$

## Geometric interpretation of $U_1U_2U_1=U_1$



Geometric interpretation of  $U_1U_2U_1=U_1$ 

## Geometric interpretation of $U_i^2 = \delta U_i$



Geometric interpretation of  $U_i^2 = \delta U_i$ 

### Geometric interpretation of $U_3U_1=U_1U_3$



### Representation of $B_n$ in $TL_n$

We define a mapping

$$\rho \colon \mathsf{B}_n \to \mathsf{TL}_n$$

by

$$\rho(\sigma_i) = A + A^{-1} U_i$$
$$\rho(\sigma_i^{-1}) = A^{-1} + A U_i$$

 $\rho \colon \mathsf{B}_n \to \mathsf{TL}_n$  is a representation of the Artin braid group.

#### Trace

We define the diagrammatic trace

$$\operatorname{tr} \colon \mathsf{TL}_n \to \mathbf{Z}[A, A^{-1}]$$

by extending linearly

$$\operatorname{tr}(P) = \langle P \rangle.$$

This version of trace is diagrammatic in nature as we are counting loops in a state.

$$\langle b \rangle = \operatorname{tr}(\rho(b))$$

### Whole procedure

#### So one can

- ightharpoonup find a braid representation b of a link L by Alexander's theorem,
- ightharpoonup calculate  $tr(\rho(b))$
- and normalise it to get the link invariant normalised bracket polynomial.

The substitution  $A = t^{-1/4}$  yields us the Jones polynomial.