电子学基础——第九次作业

计83 刘轩奇 2018011025

2019.12.05

- 10.51 A student who has a single-ended voltage source constructs the circuit shown in Fig. 10-75, hoping to obtain differential outputs. Assume perfect symmetry but $\lambda = 0$ for simplicity.
- (b) Viewing M_1 as a common-source stage degenerated by the impedance seen at the source of M_2 , calculate v_X in terms of v_{in} .
 - (b) Viewing M_1 as a source follower and M_2 as a common-gate stage, calculate v_Y in terms of v_{in} .
- (c) Add the results obtained in (a) and (b) with proper polarities. If the voltage gain is defined as $(v_X v_Y)/v_{in}$, how does it compare with the gain of differentially driven pairs?

Figure 10-75

 \mathbf{m} (a) M_2 从源端看入,输入电阻为 $\frac{1}{g_{m2}}$,而 M_1 为源简并放大器。则

$$\frac{v_X}{v_{in}} = -\frac{g_{m1}R_D}{1 + g_{m1} \cdot \frac{1}{g_{m2}}} = -\frac{g_m R_D}{2}$$

(b) M_1 为源极跟随器,则 M_1 源端电压即为 $v_{s1}=v_{in}$,而 M_2 为共栅放大器,则

$$\frac{v_Y}{v_{s1}} = g_{m1}R_D$$

$$\therefore \frac{v_Y}{v_{in}} = g_{m1}R_D$$

$$\frac{v_X - v_Y}{v_{in}} = -\frac{3}{2}g_mR_D$$

这个增益是普通差分放大器增益的1.5倍。

(c)

10.70 Compute the common-mode rejection ratio of the stages illustrated in Fig. 10-89 and compare the results. For simplicity, neglect channel-length modulation in M_1 and M_2 but not in other transistors.

Figure 10-89

解

$$CMRR = 20 \log \left| \frac{A_{vd}}{A_{vc}} \right|$$

(a) 电路对称,可考虑半边电路。由交流小信号电路中P为虚地,则

$$A_{vd} = -g_{m1}R_D$$

考虑 A_{vc} 时,可将 M_3 视为 r_{o3} ,进而再半边电路中视为 $2r_{o3}$,则 M_1 为源简并放大器:

$$A_{vc} = \frac{-g_{m1}R_D}{1 + 2g_{m1}r_{o3}}$$

则

$$CMRR = 20\log(1 + 2g_{m1}r_{o3})$$

(b) 同(a), P再交流小信号电路中仍未虚地,则

$$A_{vd} = -g_{m1}R_d$$

再考虑 A_{vc} ,将 M_4 视为 r_{o4} ,则 M_3 为源简并放大器,可视为电阻 $r=(1+g_{m3}r_{o3})r_{o4}+r_{o3}$ 从而半边电路中可将其视为 $2r=2[(1+g_{m3}r_{o3})r_{o4}+r_{o3}]$ 此时 M_1 仍为源简并放大器:

$$\therefore A_{vc} = \frac{-g_{m1}R_D}{1 + 2g_{m1}[(1 + g_{m3}r_{o3})r_{o4} + r_{o3}]}$$

:. CMRR =
$$20 \log[1 + 2g_{m1}((1 + g_{m3}r_{o3})r_{o4} + r_{o3})]$$