這隻企鵝是哪誰呢?

統計110馬靖宇、統計111翁瑋廷、統計111許祐誠

資料介紹

資料來自KAGGLE網站

此資料有七種特徵,三種類別型(SPECIES、ISLAND、SEX),

四種連續型(CULMEN LENGTH&DEPTH、FLIPPER LENGTH、BODY MASS),

共343筆資料

species	island	culmen_length	culmen_depth	flipper_length	body_mass	sex
Adelie	Torgersen	39.1	18.7	181	3750	MALE

資料前處理

删除任一欄位有NA的整筆資料,另外第338筆的SEX = ".",也將該筆刪除。一共刪除10筆,資料剩下333筆,做後續的分析。

species	island	culmen_length	culmen_depth	flipper_length	body_mass	sex
Gentoo	Biscoe	44.5	15.7	217	4875	•

敘述統計量

Histogram

Boxplot

Linear Regression

切割訓練、 測試資料

1. train:test = 2:1 將index的0,3,6…和1,4,7…設為訓練 資料

將index的2,5,8…設為測試資料

2. train:test = 3:1

將index的0,4,8…、1,5,9…、

2,6,10…..設為訓練資料

將index的3,7,11...設為測試資料

模型配適和預測

1.DECISION TREE

	Adelie	Chinstrap	Gentoo	All
accuracy	0.978723	0.956522	1	0.981982
Precision	0.978723	0.956522	1	0.981982
Recall	0.978723	0.956522	1	0.981982
F-score	0.978723	0.956522	1	0.981982
Support	47	23	41	

train: test = 2:1

decicision tree model 0

tree.DecisionTreeClassifier
(random_state=2)

train:test = 2:1

decicision tree model 1

tree.DecisionTreeClassifier(criterion = "entropy",random_state=2)

	Adelie	Chinstrap	Gentoo	All
accuracy	0.978723	0.956522	1	0.990991
Precision	0.979167	1	1	0.990991
Recall	1	0.956522	1	0.990991
F-score	0.989474	0.977778	1	0.990991
Support	47	23	41	

train : test = 3 : 1

decicision tree model 0

tree.DecisionTreeClassifier(random_state=2)

	Adelie	Chinstrap	Gentoo	All
accuracy	1	1	0.966667	0.987805
Precision	1	0.944444	1	0.987805
Recall	1	1	0.966667	0.987805
F-score	1	0.971429	0.983051	0.987805
Support	35	17	30	

train:test = 3 : 1

decicision tree model 1

tree.DecisionTreeClassifier(criterion = "entropy",random_state=2)

	Adelie	Chinstrap	Gentoo	All
accuracy	1	1	0.966667	0.987805
Precision	1	0.944444	1	0.987805
Recall	1	1	0.966667	0.987805
F-score	1	0.971429	0.983051	0.987805
Support	35	17	30	

模型配適和預測

2. RANDOM FOREST

train:test = 2 : 1

random forest model 0 1 2 3 4 5 6 7 8

max_sample = [0.6,0.7,0.8] max_feature = [2,3,4]

ensemble.RandomForestClassifier(
criterion="entropy",random_state
=100,max_samples,max_features)

	Adelie	Chinstrap	Gentoo	All
accuracy	1	0.956522	1	0.990991
Precision	0.979167	1	1	0.990991
Recall	1	0.956522	1	0.990991
F-score	0.989474	0.977778	1	0.990991
Support	47	23	41	

	Adelie	Chinstrap	Gentoo	All	train:test = 3 : 1		
accuracy	1	1	1	1	random forest model 0 1 3 6		
Precision	1	1	1	1	max_sample = [0.6,0.7,0.8]		
Recall	1	1	1	1	<pre>max_feature = [2,3,4]</pre>		
F-score	1	1	1	1	<pre>ensemble.RandomForestClassif er(criterion="entropy".rando</pre>		
Support	35	17	30		<pre>er(criterion="entropy",ran _state=100,max_samples,max atures)</pre>		

	Adelie	Chinstrap	Gentoo	All
accuracy	1	1	0.966667	0.987805
Precision	0.972222	1	1	0.987805
Recall	1	1	0.966667	0.987805
F-score	0.985915	1	0.983051	0.987805
Support	35	17	30	

train: test = 3 : 1

random forest model 2 4 5 8

max_sample = [0.6,0.7,0.8] max_feature = [2,3,4]

ensemble.RandomForestCla ssifier(criterion="entropy",r andom_state=100,max_sam ples,max_features)

模型配適和預測

3.BAGGINGCLASSIFIER

```
train: test = 3: 1

n_estimators = [8,12,16]

max_samples = [0.5,0.6,0.7,0.8]

max_features = [0.5,0.6,0.7,0.8]
```



```
train: test = 2: 1
n_estimators = [8,12,16]
max_samples = [0.5,0.6,0.7,0.8]
max_features = [0.5,0.6,0.7,0.8]
```



```
train: test = 1: 1
n_estimators = [8,12,16]
max_samples = [0.5,0.6,0.7,0.8]
max_features = [0.5,0.6,0.7,0.8]
```



```
train: test = 1: 3

n_estimators = [8,12,16]

max_samples = [0.5,0.6,0.7,0.8]

max_features = [0.5,0.6,0.7,0.8]

BaggingClassifier(n_estimators_max_sample)
```



```
train: test = 1: 9

n_estimators = [8,12,16]

max_samples = [0.5,0.6,0.7,0.8]

max_features = [0.5,0.6,0.7,0.8]
```


train只取其中十筆,其餘為test

 $n_estimators = [8,12,16]$

 $max_samples = [0.5, 0.6, 0.7, 0.8]$

 $max_features = [0.5, 0.6, 0.7, 0.8]$

模型配適和預測

4.GAUSSIANNB

train: test = 3 : 1 GaussianNB()

train: test = 2: 1

GaussianNB()

	precision	recall	f1-score	support
Adelie	1.00	0.36	0.53	47
Chinstrap	0.59	1.00	0.74	23
Gentoo	0.75	1.00	0.85	41
accuracy			0.73	111
macro avg	0.78	0.79	0.71	111
weighted avg	0.82	0.73	0.69	111

train: test = 1 : 1 GaussianNB()

train: test = 1 : 3 GaussianNB()

train: test = 1:9 GaussianNB()

train只取其中十筆,其餘為test GaussianNB()

模型配適和預測

5.GRADIENTBOOSTINGCLASSIFIER

```
train : test = 3 : 1
n_estimators = [8,12,16]
learning_rate = [0.6,0.7,0.8,1]
max_depth = [2,3,4]
```



```
train : test = 2 : 1
n_estimators = [8,12,16]
learning_rate = [0.6,0.7,0.8,1]
max_depth = [2,3,4]
```



```
train : test = 1 : 1
n_estimators = [8,12,16]
learning_rate = [0.6,0.7,0.8,1]
max_depth = [2,3,4]
```



```
train: test = 1: 3
n_estimators = [8,12,16]
learning_rate = [0.6,0.7,0.8,1]
max_depth = [2,3,4]
```



```
train : test = 1 : 9
n_estimators = [8,12,16]
learning_rate = [0.6,0.7,0.8,1]
max_depth = [2,3,4]
```


train只取其中十筆,其餘為test n_estimators = [8,12,16] learning_rate = [0.6,0.7,0.8,1] max_depth = [2,3,4]

模型配適和預測 6.HISTGRADIENTBOOSTINGCLASSIFIER

```
train : test = 3 : 1
max_iter = [8,12,16]
learning_rate = [0.6,0.7,0.8,1]
max_depth = [2,3,4]
max_iter,learning_rate, max_depth,random_state=100)
```



```
train: test = 2: 1

max_iter = [8,12,16]

learning_rate = [0.6,0.7,0.8,1]

max_depth = [2,3,4]
```



```
train: test = 1: 1

max_iter = [8,12,16]

learning_rate = [0.6,0.7,0.8,1]

max_depth = [2,3,4]
```



```
train: test = 1: 3

max_iter = [8,12,16]

learning_rate = [0.6,0.7,0.8,1]

max_depth = [2,3,4]
```



```
train: test = 1: 9

max_iter = [8,12,16]

learning_rate = [0.6,0.7,0.8,1]

max_depth = [2,3,4]

HistGradientBoostingClassifier(max_iter.learning)
```


train只取其中十筆,其餘為test

 $max_iter = [8,12,16]$

learning_rate = [0.6,0.7,0.8,1]

 $max_depth = [2,3,4]$

模型配適和預測

7.KNN

Knn train: test = 2 : 1

	precision	recall	f1-score	support
Adelie Chinstrap Gentoo	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	47 23 41
accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	111 111 111

最佳n_neighbors值為:5 accuracy=:1.00

Knn train: test = 3:1

	precision	recall	f1-score	support
Adelie	1.00	1.00	1.00	35
Chinstrap	1.00	1.00	1.00	17
Gentoo	1.00	1.00	1.00	30
accuracy			1.00	82
macro avg	1.00	1.00	1.00	82
weighted avg	1.00	1.00	1.00	82

最佳n_neighbors值為:5 accuracy=:1.00

模型配適和預測

8.SVM

Svm - Linear train: test = 2 : 1

	precision	recall	f1-score	support
Adelie	1.00	1.00	1.00	47
Chinstrap	1.00	1.00	1.00	23
Gentoo	1.00	1.00	1.00	41
accuracy			1.00	111
macro avg	1.00	1.00	1.00	111
weighted avg	1.00	1.00	1.00	111

Svm - Linear train: test = 3 : 1

	precision	recall	f1-score	support
Adelie	1.00	1.00	1.00	35
Chinstrap	1.00	1.00	1.00	17
Gentoo	1.00	1.00	1.00	30
accuracy			1.00	82
macro avg	1.00	1.00	1.00	82
weighted avg	1.00	1.00	1.00	82

Svm - rbf train : test = 2 : 1

	precision	recall	f1-score	support
Adelie	0.98	1.00	0.99	47
Chinstrap	1.00	0.96	0.98	23
Gentoo	1.00	1.00	1.00	41
accuracy			0.99	111
macro avg	0.99	0.99	0.99	111
weighted avg	0.99	0.99	0.99	111

Svm - rbf train : test = 3 : 1

	precision	recall	f1-score	support
Adelie	1.00	1.00	1.00	35
Chinstrap	1.00	1.00	1.00	17
Gentoo	1.00	1.00	1.00	30
accuracy			1.00	82
macro avg	1.00	1.00	1.00	82
weighted avg	1.00	1.00	1.00	82

模型配適和預測

9.LOGISTIC REGRESSION

logistic regression train: test = 2: 1

	precision	recall	f1-score	support
Adelie	0.98	1.00	0.99	47
Chinstrap	1.00	0.96	0.98	23
Gentoo	1.00	1.00	1.00	41
accuracy			0.99	111
macro avg	0.99	0.99	0.99	111
weighted avg	0.99	0.99	0.99	111

logistic regression train: test = 3: 1

	precision	recall	f1-score	support
Adelie	1.00	1.00	1.00	35
Chinstrap	1.00	1.00	1.00	17
Gentoo	1.00	1.00	1.00	30
accuracy			1.00	82
macro avg	1.00	1.00	1.00	82
weighted avg	1.00	1.00	1.00	82

結論

- 1. 在畫出敘述統計量的圖表後,我們對於資料的型態有更進一步的了解,讓我們能夠在後續的資料分析上,更能夠知道資料在哪些模型 與演算法上,可能將會有比較好的結果。
- 2. 在試過多種模型後,我們發現大多數的模型在預測訓練資料時,都 能有不錯的表現,只有GaussianNB的表現較差。
- 3. 而在大部分模型,train和test切割成3:1,對訓練資料分類 結果較佳。