Designing resistor for f1 and f2 values,

for a
$$f_1 = 1500 \, \text{Hz}$$

Ossume, $C = 10n \, \text{F}$

$$f_1 = \underbrace{1.45}_{(RA + 2R_B)} C$$

let $RA = 48k$, $R_B = 24k$

$$f_1 = \underbrace{1.45}_{(48k + 2x24k)100}$$

$$f_1 = 1.51 \, \text{Hz} = 1.5 \, \text{Hz}$$

Thus, $R_A = 24k \, \text{D}$
 $R_B = 48k \, \text{D}$

for $f_2 = 3000 \, \text{Hz}$

assume $C = 10n \, \text{F}$

$$f_2 = \underbrace{1.45}_{(RA11 \, R_C) + 2R_B} C$$
 $R_A = 24k \, \text{D}$, $R_B = 48k \, \text{D}$

let $R_C = 1.4k \, \text{D}$

$$f_2 = \underbrace{1.45}_{(24k \, \text{H} \, 1.4k)} + 2x24k \, \text{J} \, \text{Ion}$$

$$f_2 = 2.93 \, \text{M} \, \text{3Hz}$$

Thus, $R_C = 1.4k \, \text{D}$

Frequency Shift Keying Modulation circuit

Message signal

Carrier signal

FSK output

Frequency Shift Keying Demodulation circuit

Message signal

Demodulated signal

