Zadanie 1. (1 pkt)

...../1

Wartość ułamka $\frac{423134 \cdot 846267 - 423133}{423133 \cdot 846267 + 423134}$ jest równa:

A. 1

B. 2

C. 3

D. 4

Zadanie 2. (1 pkt)

...../1

Dane są dwa współśrodkowe koła. Pole wewnętrznego koła jest równe polu zewnętrznego pierścienia. Promień zewnętrznego koła jest równy *r*. Promień koła wewnętrznego jest równy:

A. $\frac{r}{2\sqrt{2}}$

B. $\frac{r}{2}$

C. $\frac{r}{\sqrt{2}}$

D. $\frac{2r}{\sqrt{2}}$

Zadanie 3. (1 pkt)

...../1

Kwadrat rozcięto na dwa prostokąty, których stosunek obwodów jest równy 3 : 5. Stosunek pól tych prostokątów jest równy:

A. $\frac{1}{8}$

B. $\frac{1}{7}$

C. $\frac{9}{25}$

D. $\frac{3}{5}$

Zadanie 4. (1 pkt)

...../1

Z urny, w której znajdują się kule o numerach: 1, 2, 3, 4, 5, 6, 7, 8, 9 wylosowano jedną kulę, której numer stał się cyfrą dziesiątek pewnej liczby dwucyfrowej. Następnie z pozostałych ośmiu kul wylosowano jedną, której numer stał się cyfrą jedności tej liczby. Prawdopodobieństwo otrzymania w ten sposób dwucyfrowej liczby parzystej jest równe:

A. $\frac{15}{16}$

B. $\frac{4}{9}$

C. $\frac{5}{12}$

D. $\frac{2}{9}$

Zadanie 5 (2 pkt)

...../2

Trzy pompy mają opróżnić basen. Pierwsza pompa samodzielnie opróżniłaby basen w ciągu 15 godzin, druga w ciągu 10 godzin, a trzecia w ciągu 9 godzin. Oblicz, czy trzy pompy pracujące jednocześnie zdążą opróżnić ten basen w ciągu 3 godzin.

Zadanie 6. (2 pkt)

...../2

Dany jest trójkąt QAB, gdzie A = (-5,1), B = (1,-5) i Q = (1,1). Punkt A_1 jest obrazem punktu A w symetrii osiowej względem prostej QB, punkt B_1 jest obrazem punktu B w symetrii osiowej względem prostej QA oraz punkt Q_1 jest obrazem punktu Q w symetrii osiowej względem prostej AB. Oblicz pole trójkąta $Q_1A_1B_1$.

Zadanie 7. (2 pkt)

...../2

Stosunek mas trzech różnych stopów srebra wynosi 7:10:18, natomiast stosunek mas czystego srebra zawartego w tych stopach równa się odpowiednio 7:9:12. Po stopieniu wszystkich kawałków otrzymano 350 gramów stopu, w którym czyste srebro stanowi 72% jego masy. Oblicz, w którym stopie jest największa procentowa zawartość srebra?

Zadanie 8. (2 pkt)

...../2

Pewna liczba całkowita dodatnia przy dzieleniu przez 5 daje resztę 3, a przy dzieleniu przez 6 daje resztę 2. Znajdź resztę z dzielenia tej liczby przez 30.

Zadanie 9 (2 pkt)

...../2

Z walca o średnicy podstawy równej 8 cm i wysokości 21 cm wycięto stożek o promieniu podstawy równym 3 cm i wysokości 14 cm. Oblicz, czy z pozostałej części walca można utworzyć kulę o średnicy równej 12 cm. Przyjmij, że liczba π jest w przybliżeniu równa $3\frac{1}{7}$.

Zadanie 10. (2pkt)/2

Pole trójkąta równobocznego *ABC* jest równe 4 cm². Punkty *K*, *L*, *M* leżą odpowiednio na prostych *AB*, *BC*, *AC* w taki sposób, że punkt *A* jest środkiem odcinka *KB*, punkt *B* jest środkiem odcinka *CL*, punkt *C* jest środkiem odcinka *AM*. Oblicz pole trójkąta *KLM*.

Zadanie 11. (2 pkt)

...../2

W graniastosłupie prawidłowym czworokątnym kąt między przekątną graniastosłupa a przekątną jego podstawy, wychodzącymi z jednego wierzchołka, jest równy 30°. Oblicz objętość tego graniastosłupa, jeśli krawędź jego podstawy jest równa 10.

Zadanie 12. (2 pkt)

...../2

Wykaż, że nie istnieje para liczb całkowitych dodatnich spełniających równość: $3x^2 + 5y^2 = 360$.

