Contents	4	图论		27
	_		Dominator Tree	
1 计算几何	2		pg 110011	_
1.1 二维计算几何基本操作	2	4.3	带花树	_
1.2 二维计算几何基本操作			427 (7/10	
1.3 圆的面积模板	6		最高标号预流推进 KM	
1.4 多边形相关	6	-	XM	
1.5 直线与凸包求交点	7			
1.6 半平面交	8	_	短足地刀里 · · · · · · · · · · · · · · · · · · ·	-
1.7 最大面积空凸包			2-SAT = Nosaraju	
1.8 最近点对			Hopcroft-Karp	
1.9 凸包与点集直径			moperont-Karp · · · · · · · · · · · · · · · · · · ·	
			稳定婚姻	
1.10 Farmland	-		最大团搜索	
1.11 Voronoi 图	-		极大团计数	
1.12 四边形双费马点	-		最小树形图	
1.13 三角形和四边形的费马点	11		· 离线动态最小生成树 · · · · · · · · · · · · · · · · · · ·	
1.14 三维计算几何基本操作	11		弦图	
1.15 凸多面体切割....................................	12		K 短路 (允许重复)	
1.16 三维凸包			K 短路 (不允许重复)	
1.17 球面点表面点距离				
		4.21	MINING	31
- 20311 25-000-13		数学		37
1.19 最小覆盖球	13		博弈论相关	37
1.20 三维向量操作矩阵		-	单纯形 Cpp	
1.21 立体角	14			
			自适应辛普森	
2 数据结构	14	5.5	高斯消元	
2.1 动态凸包 (只支持插入)	14	5.6	FFT	39
2.2 Rope 用法	14	5.7	整数 FFT	40
2.3 Treap	14	5.8		40
2.4 可持久化 Treap			3.1.(3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
2.5 左偏树			Miller-Rabin 素性测试	
2.6 Link-Cut Tree			PollardRho	
		5.12	多项式求根	41
2.7 K-D Tree Nearest		5.13	线性递推	41
2.8 K-D Tree Farthest		5.14	原根	42
2.9 K-D Tree Beautiful		5.15	- 离散对数	42
2.10 树链剖分		5.16	平方剩余	42
2.11 Splay 维护数列	20	5.17	N 次剩余	43
		5.18	Pell 方程	43
3 字符串相关	22	5.19	Romberg 积分	43
	22		公式	
3.2 最大回文正方形	23		5.20.1 级数与三角	43
3.3 KMP			5.20.2 三次方程求根公式	44
3.4 Aho-Corasick 自动机			5.20.3 椭圆	
			5.20.4 抛物线	45
3.5 后缀自动机			5.20.5 重心	45
3.6 后缀数组-1			5.20.6 向量恒等式	45
3.7 后缀数组-2	-		5.20.7 常用几何公式	45
3.8 环串最小表示	26		5.20.8 树的计数	
3.9、同文自动机	26	5.21	小知识	46

2 Shanghai Jiao Tong University Tempus Fugit

6	其他	47
	5.1 Extended LIS	47
	5.2 生成 nCk	47
	3.3 nextPermutation	47
	5.4 Josephus 数与逆 Josephus 数	47
	3.5 表达式求值	47
	5.6 曼哈顿最小生成树	47
	6.7 直线下的整点个数	48
	5.8 Java 多项式	48
	5.9 long long 乘法取模	49
	$-\tilde{\nu} = \tilde{\nu}$	49
	6.11 早期几判定	49
	5.12 LCSequence Fast	50
	5.13 C Split	50
		50
	201	
7	Templates	50
	7.1 泰勒级数	50
	7.2 积分表	50
	7.3 Eclipse 配置	53
	7.4 C++	53
	7.5 Java	53
	7.6 gcc 配置	54
	0	

47 1 计算几何

... 47 1.1 二维计算几何基本操作

```
1 const double PI = 3.14159265358979323846264338327950288;
          2 double arcSin(const double &a) {
          a \leftarrow -1.0 ? -PI / 2 : (a >= 1.0 ? PI / 2 : asin(a));
         4 }
         5 double arcCos(const double &a) {
          6 return a \leftarrow -1.0? PI : (a >= 1.0 ? 0 : acos(a));
         7 }
         8 struct point {
         9
                 double x, y; // `something omitted`
                 point rot(const double &a) const { // `counter-clockwise`
                    return point(x * cos(a) - y * sin(a), x * sin(a) + y * cos(a));
        11
         12
        13
                 point rot90() const { // `counter-clockwise`
. . 50 14
                     return point(-y, x);
. . 50 15
         16
                 point project(const point &p1, const point &p2) const {
                    const point &q = *this;
                     return p1 + (p2 - p1) * (dot(p2 - p1, q - p1) / (p2 - p1).norm());
. . 54 19
                 bool onSeg(const point &a, const point &b) const { // `a, b inclusive`
         20
         21
                     const point &c = *this:
         22
                     return sign(dot(a - c, b - c)) \leftarrow 0 && sign(det(b - a, c - a)) == 0;
          23
                 double distLP(const point &p1, const point &p2) const { // `dist from *this to line p1->p2`
         24
         25
                     const point &q = *this;
                     return fabs(det(p2 - p1, q - p1)) / (p2 - p1).len();
         26
         27
                 double distSP(const point &p1, const point &p2) const { // `dist from *this to segment [p1, p2]`
         28
         29
                     const point &q = *this;
                    if (dot(p2 - p1, q - p1) < EPS) return (q - p1).len();
         30
                    if (dot(p1 - p2, q - p2) < EPS) return (q - p2).len();
         31
                     return distLP(p1, p2);
         32
         33
                 bool inAngle(const point &p1, const point &p2) const { // `det(p1, p2) $\ge$ 0`
          35
                     const point &q = *this; return det(p1, q) > -EPS && det(p2, q) < EPS;
          36
         37 };
         38 bool lineIntersect(const point &a, const point &b, const point &c, const point &d, point &e) {
                 double s1 = det(c - a, d - a);
                 double s2 = det(d - b, c - b);
                 if (!sign(s1 + s2)) return false;
                 e = (b - a) * (s1 / (s1 + s2)) + a;
         43
                 return true:
         44 }
          45 int segIntersectCheck(const point &a, const point &b, const point &c, const point &d, point &o) {
                 static double s1, s2, s3, s4;
                 static int iCnt;
         47
                 int d1 = sign(s1 = det(b - a, c - a));
                 int d2 = sign(s2 = det(b - a, d - a));
                int d3 = sign(s3 = det(d - c, a - c));
```

Shanghai Jiao Tong University 3

```
int d4 = sign(s4 = det(d - c, b - c));
       if ((d1 \wedge d2) == -2 &\& (d3 \wedge d4) == -2) {
           o = (c * s2 - d * s1) / (s2 - s1);
53
           return true;
54
       iCnt = 0:
       if (d1 == 0 \&\& c.onSeg(a, b)) o = c, ++iCnt;
58
       if (d2 == 0 \&\& d.onSeg(a, b)) o = d, ++iCnt;
       if (d3 == 0 \&\& a.onSeq(c, d)) o = a, ++iCnt;
       if (d4 == 0 \&\& b.onSeq(c, d)) o = b, ++iCnt;
       return iCnt ? 2 : 0; // `不相交返回0, 严格相交返回1, 非严格相交返回2
61
62 }
63 struct circle {
64
        point o;
        double r, rSqure;
       bool inside(const point &a) { // 非严格`
67
            return (a - o).len() < r + EPS;
68
       bool contain(const circle &b) const { // 消严格`
69
            return sign(b.r + (o - b.o).len() - r) \ll 0;
70
71
        bool disjunct(const circle &b) const { // 注严格`
72
73
            return sign(b.r + r - (o - b.o).len()) \le 0;
74
        int isCL(const point &p1, const point &p2, point &a, point &b) const {
75
            double x = dot(p1 - o, p2 - p1), y = (p2 - p1).norm();
76
            double d = x * x - y * ((p1 - o).norm() - rSqure);
77
           if (d < -EPS) return 0;
           if (d < 0) d = 0;
           point q1 = p1 - (p2 - p1) * (x / y);
           point q2 = (p2 - p1) * (sqrt(d) / y);
81
           a = q1 - q2; b = q1 + q2;
            return q2.len() < EPS ? 1 : 2;
83
84
        int tanCP(const point &p, point &p, point &b) const { // `返回切点、注意可能与 $p$ 重合
85
            double x = (p - o).norm(), d = x - rSqure;
           if (d < -EPS) return 0;
87
           if (d < 0) d = 0;
           point q1 = (p - o) * (rSqure / x);
            point q2 = ((p - o) * (-r * sqrt(d) / x)).rot90();
           a = o + (q1 - q2); b = o + (q1 + q2);
            return q2.len() < EPS ? 1 : 2;
92
93
94 };
95 bool checkCrossCS(const circle &cir, const point &p1, const point &p2) { // i严格
        const point &c = cir.o;
97
        const double &r = cir.r;
98
        return c.distSP(p1, p2) < r + EPS
           && (r < (c - p1).len() + EPS | | r < (c - p2).len() + EPS);
99
100 }
101 bool checkCrossCC(const circle &cir1, const circle &cir2) { // 洋严格
       const double &r1 = cir1.r, &r2 = cir2.r, d = (cir1.o - cir2.o).len();
       return d < r1 + r2 + EPS && fabs(r1 - r2) < d + EPS;
```

```
104 }
int isCC(const circle &cir1, const circle &cir2, point &a, point &b) {
        const point &c1 = cir1.o, &c2 = cir2.o;
        double x = (c1 - c2).norm(), y = ((cir1.rSqure - cir2.rSqure) / x + 1) / 2;
        double d = cir1.rSqure / x - y * y;
        if (d < -EPS) return 0:
        if (d < 0) d = 0;
110
        point q1 = c1 + (c2 - c1) * y;
        point q2 = ((c2 - c1) * sqrt(d)).rot90();
112
        a = q1 - q2; b = q1 + q2;
        return q2.len() < EPS ? 1 : 2;</pre>
114
115 }
116 vector<pair<point, point> > tanCC(const circle &cir1, const circle &cir2) {
       "注意:如果只有三条切线,即 $s1 = 1, s2 = 1$,返回的切线可能重复,切点没有问题
118
        vector<pair<point, point> > list;
        if (cir1.contain(cir2) | | cir2.contain(cir1)) return list;
120
        const point &c1 = cir1.o, &c2 = cir2.o;
        double r1 = cir1.r, r2 = cir2.r;
121
        point p, a1, b1, a2, b2;
        int s1, s2;
124
        if (sign(r1 - r2) == 0) {
125
            p = c2 - c1:
126
            p = (p * (r1 / p.len())).rot90();
           list.push_back(make_pair(c1 + p, c2 + p));
           list.push_back(make_pair(c1 - p, c2 - p));
128
129
        } else {
            p = (c2 * r1 - c1 * r2) / (r1 - r2);
130
            s1 = cir1.tanCP(p, a1, b1);
131
            s2 = cir2.tanCP(p, a2, b2);
133
            if (s1 >= 1 \&\& s2 >= 1) {
                list.push_back(make_pair(a1, a2));
134
135
                list.push_back(make_pair(b1, b2));
136
137
        p = (c1 * r2 + c2 * r1) / (r1 + r2);
138
139
        s1 = cir1.tanCP(p, a1, b1);
        s2 = cir2.tanCP(p, a2, b2);
140
        if (s1 >= 1 \&\& s2 >= 1) {
141
            list.push_back(make_pair(a1, a2));
142
            list.push_back(make_pair(b1, b2));
143
144
        return list;
145
146 }
147 bool distConvexPIn(const point &p1, const point &p2, const point &p3, const point &p4, const point &q) {
        point o12 = (p1 - p2).rot90(), o23 = (p2 - p3).rot90(), o34 = (p3 - p4).rot90();
        return (q - p1).inAngle(o12, o23) || (q - p3).inAngle(o23, o34)
149
            II ((q - p2).inAngle(o23, p3 - p2) && (q - p3).inAngle(p2 - p3, o23));
150
151 }
152 double distConvexP(int n, point ps[], const point &q) { // 外部点到多边形的距离
        int left = 0, right = n;
        while (right - left > 1) {
154
155
            int mid = (left + right) / 2;
            if (distConvexPIn(ps[(left + n - 1) % n], ps[left], ps[mid], ps[(mid + 1) % n], q))
```

Tempus Fugit

Shanghai Jiao Tong University 4 Tempus Fugit

```
right = mid;
158
            else left = mid;
159
        return q.distSP(ps[left], ps[right % n]);
160
161 }
162 double areaCT(const circle &cir, point pa, point pb) {
163
        pa = pa - cir.o; pb = pb - cir.o;
        double R = cir.r:
164
165
        if (pa.len() < pb.len()) swap(pa, pb);</pre>
166
        if (pb.len() < EPS) return 0;
167
        point pc = pb - pa;
        double a = pa.len(), b = pb.len(), c = pc.len(), S, h, theta;
168
169
        double cosB = dot(pb, pc) / b / c, B = acos(cosB):
170
        double cosC = dot(pa, pb) / a / b, C = acos(cosC);
        if (b > R) {
            S = C * 0.5 * R * R:
172
173
            h = b * a * sin(C) / c;
            if (h < R && B < PI * 0.5)
174
                S = acos(h / R) * R * R - h * sqrt(R * R - h * h);
        } else if (a > R) {
176
            theta = PI - B - asin(sin(B) / R * b);
            S = 0.5 * b * R * sin(theta) + (C - theta) * 0.5 * R * R:
178
179
        else S = 0.5 * sin(C) * b * a;
        return S:
180
181 }
182 circle minCircle(const point &a, const point &b) {
        return circle((a + b) * 0.5, (b - a).len() * 0.5);
183
184 }
185 circle minCircle(const point &a, const point &b, const point &c) { // `钝角三角形没有被考虑
186
        double a2( (b-c).norm() ), b2( (a-c).norm() ), c2( (a-b).norm() );
        if (b2 + c2 <= a2 + EPS) return minCircle(b, c);
187
        if (a2 + c2 <= b2 + EPS) return minCircle(a, c);
        if (a2 + b2 <= c2 + EPS) return minCircle(a, b);
189
        double A = 2.0 * (a.x - b.x), B = 2.0 * (a.y - b.y);
190
        double D = 2.0 * (a.x - c.x). E = 2.0 * (a.v - c.v):
191
192
        double C = a.norm() - b.norm(), F = a.norm() - c.norm();
        point p((C * E - B * F) / (A * E - B * D), (A * F - C * D) / (A * E - B * D));
193
        return circle(p, (p - a).len());
194
195 }
196 circle minCircle(point P[], int N) { // `1—based`
        if (N == 1) return circle(P[1], 0.0);
197
        random_shuffle(P + 1, P + N + 1); circle 0 = minCircle(P[1], P[2]);
198
        Rep(i, 1, N) if(!0.inside(P[i])) { 0 = minCircle(P[1], P[i]);}
199
            Foru(j, 1, i) if(!0.inside(P[j])) { 0 = minCircle(P[i], P[j]);
200
                Foru(k, 1, j) if(!0.inside(P[k])) 0 = minCircle(P[i], P[j], P[k]); }
201
202
        } return 0;
203 }
```

1.2 二维计算几何基本操作

```
const double PI = 3.14159265358979323846264338327950288;
double arcSin(const double &a) {
   return a <= -1.0 ? -PI / 2 : (a >= 1.0 ? PI / 2 : asin(a));
```

```
4 }
5 double arcCos(const double &a) {
       return a \leftarrow -1.0? PI : (a >= 1.0 ? 0 : acos(a));
7 }
8 struct point {
       double x, y; // `something omitted
       point rot(const double &a) const { // `counter-clockwise`
           return point(x * cos(a) - y * sin(a), x * sin(a) + y * cos(a));
11
12
13
       point rot90() const { // `counter-clockwise
14
           return point(-y, x);
15
16
       point project(const point &p1, const point &p2) const {
           const point &q = *this;
           return p1 + (p2 - p1) * (dot(p2 - p1, q - p1) / (p2 - p1).norm());
18
19
20
       bool onSeq(const point &a, const point &b) const { // `a, b inclusive`
21
           const point &c = *this;
           return sign(dot(a - c, b - c)) \leq 0 && sign(det(b - a, c - a)) == 0;
22
23
24
       double distLP(const point &p1, const point &p2) const { // `dist from *this to line p1->p2
25
           const point &a = *this:
26
           return fabs(det(p2 - p1, q - p1)) / (p2 - p1).len();
27
       double distSP(const point &p1, const point &p2) const { // `dist from *this to segment [p1, p2]
28
           const point &q = *this;
29
           if (dot(p2 - p1, q - p1) < EPS) return (q - p1).len();
30
           if (dot(p1 - p2, q - p2) < EPS) return (q - p2).len();
31
           return distLP(p1, p2):
32
33
       bool inAngle(const point &p1, const point &p2) const { // `det(p1, p2) $\quad qe$ 0
34
35
           const point &q = *this; return det(p1, q) > -EPS && det(p2, q) < EPS;</pre>
       }
36
37 };
38 bool lineIntersect(const point &a, const point &b, const point &c, const point &d, point &e) {
       double s1 = det(c - a, d - a);
       double s2 = det(d - b, c - b);
       if (!sign(s1 + s2)) return false;
41
       e = (b - a) * (s1 / (s1 + s2)) + a;
42
43
44 }
45 int segIntersectCheck(const point &a, const point &b, const point &c, const point &d, point &o) {
       static double s1, s2, s3, s4;
46
       static int iCnt;
47
       int d1 = sign(s1 = det(b - a, c - a));
       int d2 = sign(s2 = det(b - a, d - a));
49
50
       int d3 = sign(s3 = det(d - c, a - c));
       int d4 = sian(s4 = det(d - c, b - c)):
5.1
       if ((d1 \wedge d2) == -2 \& (d3 \wedge d4) == -2) {
           o = (c * s2 - d * s1) / (s2 - s1);
54
           return true;
55
       iCnt = 0;
```

Shanghai Jiao Tong University 5 Tempus Fugit

```
if (d1 == 0 \&\& c.onSeg(a, b)) o = c, ++iCnt;
        if (d2 == 0 \& d.onSeq(a, b)) o = d, ++iCnt;
        if (d3 == 0 \&\& a.onSeg(c, d)) o = a, ++iCnt;
        if (d4 == 0 \&\& b.onSeq(c, d)) o = b, ++iCnt;
        return iCnt ? 2 : 0; // `不相交返回0, 严格相交返回1, 非严格相交返回2
62 }
63 struct circle {
        point o;
64
 65
        double r, rSqure;
        bool inside(const point &a) { // 消严格
            return (a - o).len() < r + EPS;
 67
       }
 68
 69
        bool contain(const circle &b) const { // 注严格`
 70
            return sign(b.r + (o - b.o).len() - r) \ll 0;
 71
        bool disjunct(const circle &b) const { // 洋严格
 72
 73
            return sign(b.r + r - (o - b.o).len()) \le 0;
 74
        int isCL(const point &p1, const point &p2, point &a, point &b) const {
 75
            double x = dot(p1 - o, p2 - p1), y = (p2 - p1).norm();
 76
 77
            double d = x * x - y * ((p1 - o).norm() - rSqure);
            if (d < -EPS) return 0:
 78
            if (d < 0) d = 0;
            point q1 = p1 - (p2 - p1) * (x / y);
            point q2 = (p2 - p1) * (sqrt(d) / y);
            a = q1 - q2; b = q1 + q2;
 82
            return q2.len() < EPS ? 1 : 2;
 83
        int tanCP(const point &p, point &a, point &b) const { // `返回切点, 注意可能与 $p$ 重合`
 85
 86
            double x = (p - o).norm(), d = x - rSqure;
            if (d < -EPS) return 0;
 87
            if (d < 0) d = 0;
            point q1 = (p - o) * (rSqure / x);
            point q2 = ((p - o) * (-r * sqrt(d) / x)).rot90();
            a = o + (q1 - q2); b = o + (q1 + q2);
            return q2.len() < EPS ? 1 : 2;
 93
94 };
95 bool checkCrossCS(const circle &cir, const point &p1, const point &p2) { // 注严格
        const point &c = cir.o;
        const double &r = cir.r;
98
        return c.distSP(p1, p2) < r + EPS
           && (r < (c - p1).len() + EPS | | r < (c - p2).len() + EPS);
99
100 }
101 bool checkCrossCC(const circle &cir1, const circle &cir2) { // 洋严格
        const double &r1 = cir1.r, &r2 = cir2.r, d = (cir1.o - cir2.o).len();
        return d < r1 + r2 + EPS && fabs(r1 - r2) < d + EPS;
103
104 }
int isCC(const circle &cir1, const circle &cir2, point &a, point &b) {
        const point &c1 = cir1.o, &c2 = cir2.o;
        double x = (c1 - c2).norm(), y = ((cir1.rSqure - cir2.rSqure) / x + 1) / 2;
107
        double d = cir1.rSqure / x - y * y;
108
        if (d < -EPS) return 0;
```

```
if (d < 0) d = 0;
        point q1 = c1 + (c2 - c1) * y;
        point q2 = ((c2 - c1) * sqrt(d)).rot90();
        a = q1 - q2; b = q1 + q2;
113
        return q2.len() < EPS ? 1 : 2;
114
115 }
vector<pair<point, point> > tanCC(const circle &cir1, const circle &cir2) {
        `注意: 如果只有三条切线, 即 $s1 = 1, s2 = 1$, 返回的切线可能重复, 切点没有问题
        vector<pair<point, point> > list;
        if (cir1.contain(cir2) | | cir2.contain(cir1)) return list;
119
        const point &c1 = cir1.o, &c2 = cir2.o;
120
        double r1 = cir1.r, r2 = cir2.r;
        point p, a1, b1, a2, b2;
        int s1, s2;
124
        if (sign(r1 - r2) == 0) {
            p = c2 - c1;
125
126
            p = (p * (r1 / p.len())).rot90();
            list.push_back(make_pair(c1 + p, c2 + p));
128
            list.push_back(make_pair(c1 - p, c2 - p));
        } else {
129
130
            p = (c2 * r1 - c1 * r2) / (r1 - r2);
131
            s1 = cir1.tanCP(p, a1, b1):
132
            s2 = cir2.tanCP(p, a2, b2);
            if (s1 >= 1 \&\& s2 >= 1) {
               list.push_back(make_pair(a1, a2));
134
                list.push_back(make_pair(b1, b2));
135
136
137
        p = (c1 * r2 + c2 * r1) / (r1 + r2);
138
139
        s1 = cir1.tanCP(p, a1, b1);
        s2 = cir2.tanCP(p, a2, b2);
140
141
        if (s1 >= 1 \&\& s2 >= 1) {
            list.push_back(make_pair(a1, a2));
142
143
            list.push_back(make_pair(b1, b2));
144
145
        return list;
146 }
147 bool distConvexPIn(const point &p1, const point &p2, const point &p3, const point &p4, const point &q) {
        point o12 = (p1 - p2).rot90(), o23 = (p2 - p3).rot90(), o34 = (p3 - p4).rot90();
        return (q - p1).inAngle(o12, o23) || (q - p3).inAngle(o23, o34)
149
150
           II ((q - p2).inAngle(o23, p3 - p2) && (q - p3).inAngle(p2 - p3, o23));
151 }
152 double distConvexP(int n, point ps□, const point &q) { // `外部点到多边开的距离
        int left = 0, right = n;
154
        while (right - left > 1) {
            int mid = (left + right) / 2;
            if (distConvexPIn(ps[(left + n - 1) % n], ps[left], ps[mid], ps[(mid + 1) % n], q))
156
157
               riaht = mid:
158
            else left = mid;
159
160
        return q.distSP(ps[left], ps[right % n]);
161 }
162 double areaCT(const circle &cir, point pa, point pb) {
```

Shanghai Jiao Tong University 6 Tempus Fugit

```
double R = cir.r;
165
        if (pa.len() < pb.len()) swap(pa, pb);</pre>
        if (pb.len() < EPS) return 0;</pre>
166
        point pc = pb - pa;
167
        double a = pa.len(), b = pb.len(), c = pc.len(), S, h, theta;
168
169
        double cosB = dot(pb, pc) / b / c, B = acos(cosB);
        double cosC = dot(pa, pb) / a / b, C = acos(cosC);
170
171
        if (b > R) {
172
            S = C * 0.5 * R * R;
173
            h = b * a * sin(C) / c;
            if (h < R && B < PI * 0.5)
174
175
                S = a\cos(h / R) * R * R - h * sart(R * R - h * h):
176
        } else if (a > R) {
            theta = PI - B - asin(sin(B) / R * b);
            S = 0.5 * b * R * sin(theta) + (C - theta) * 0.5 * R * R;
178
179
        else S = 0.5 * sin(C) * b * a;
180
        return S;
181 }
182 circle minCircle(const point &a, const point &b) {
        return circle((a + b) * 0.5, (b - a).len() * 0.5);
183
184 }
185 circle minCircle(const point &a, const point &b, const point &c) { // `钝角三角形没有被考虑
        double a2( (b-c).norm() ), b2( (a-c).norm() ), c2( (a-b).norm() );
        if (b2 + c2 <= a2 + EPS) return minCircle(b, c);
187
        if (a2 + c2 <= b2 + EPS) return minCircle(a, c);
188
        if (a2 + b2 <= c2 + EPS) return minCircle(a, b);
189
        double A = 2.0 * (a.x - b.x), B = 2.0 * (a.y - b.y);
190
        double D = 2.0 * (a.x - c.x), E = 2.0 * (a.y - c.y);
191
192
        double C = a.norm() - b.norm(), F = a.norm() - c.norm();
        point p((C * E - B * F) / (A * E - B * D), (A * F - C * D) / (A * E - B * D));
193
194
        return circle(p, (p - a).len());
195 }
196 circle minCircle(point P□, int N) { // `1—based`
        if (N == 1) return circle(P[1], 0.0):
197
198
        random_shuffle(P + 1, P + N + 1); circle 0 = minCircle(P[1], P[2]);
        Rep(i, 1, N) if(!0.inside(P[i])) { 0 = minCircle(P[1], P[i]);}
199
            Foru(j, 1, i) if(!0.inside(P[j])) { 0 = minCircle(P[i], P[j]);
200
                Foru(k, 1, j) if(!0.inside(P[k])) 0 = minCircle(P[i], P[j], P[k]); }
201
        } return 0;
202
203 }
        圆的面积模板
  1 struct Event { point p; double alpha; int add; // `构造函数省略'
        bool operator < (const Event &other) const { return alpha < other.alpha; } };</pre>
```

pa = pa - cir.o; pb = pb - cir.o;

```
struct Event { point p; double alpha; int add; // 构造函数省略:

bool operator < (const Event &other) const { return alpha < other.alpha; } };

void circleKCover(circle *c, int N, double *area) { // `$area[k]$ : 至少被覆盖$k$次

static bool overlap[MAXN][MAXN], g[MAXN][MAXN];

Rep(i, 0, N + 1) area[i] = 0.0; Rep(i, 1, N) Rep(j, 1, N) overlap[i][j] = c[i].contain(c[j]);

Rep(i, 1, N) Rep(j, 1, N) g[i][j] = !(overlap[i][j] || overlap[j][i] || c[i].disjunct(c[j]));

Rep(i, 1, N) { static Event events[MAXN * 2 + 1]; int totE = 0, cnt = 1;

Rep(j, 1, N) if (j != i && overlap[j][i]) ++cnt;

Rep(j, 1, N) if (j != i && g[i][j]) {
```

```
10
                circle &a = c[i], &b = c[j]; double l = (a.o - b.o).norm();
                double s = ((a.r - b.r) * (a.r + b.r) / l + 1) * 0.5;
11
                double t = sqrt(-(1 - sqr(a.r - b.r)) * (1 - sqr(a.r + b.r)) / (1 * 1 * 4.0));
               point dir = b.o - a.o, nDir = point(-dir.y, dir.x);
13
               point aa = a.o + dir * s + nDir * t;
14
               point bb = a.o + dir * s - nDir * t:
15
                double A = atan2(aa.y - a.o.y, aa.x - a.o.x);
16
17
               double B = atan2(bb.y - a.o.y, bb.x - a.o.x);
               events\lceil totE++ \rceil = Event(bb, B, 1); events\lceil totE++ \rceil = Event(aa, A, -1); if (B > A) ++cnt;
18
19
            } if (totE == 0) { area[cnt] += PI * c[i].rSquare; continue; }
20
            sort(events, events + totE); events[totE] = events[0];
21
            Foru(j, 0, totE) {
22
                cnt += events[j].add; area[cnt] += 0.5 * det(events[j].p, events[j + 1].p);
                double theta = events[j + 1].alpha - events[j].alpha; if (theta < 0) theta += 2.0 * PI;</pre>
24
                area[cnt] += 0.5 * c[i].rSquare * (theta - sin(theta));
25 }}}
```

1.4 多边形相关

```
1 struct Polygon { // stored in [0, n)
       int n; point ps[MAXN];
       Polygon cut(const point &a, const point &b) {
           static Polygon res; static point o; res.n = 0;
           for (int i = 0; i < n; ++i) {
               int s1 = sign(det(ps[i] - a, b - a));
               int s2 = sign(det(ps[(i + 1) % n] - a, b - a));
               if (s1 \le 0) res.ps[res.n++] = ps[i];
               if (s1 * s2 < 0) {
                   lineIntersect(a, b, ps[i], ps[(i + 1) % n], o);
                   res.ps[res.n++] = o;
11
^{12}
               }
13
           } return res;
14
       bool contain(const point &p) const { // 1 if on border or inner, 0 if outter
15
16
           static point A, B; int res = 0;
17
           for (int i = 0; i < n; ++i) {
18
               A = ps[i]; B = ps[(i + 1) \% n];
19
               if (p.onSeg(A, B)) return 1;
               if (sign(A.y - B.y) \le 0) swap(A, B);
               if (sign(p.y - A.y) > 0) continue;
21
               if (sign(p.y - B.y) \le 0) continue;
23
               res += (int)(sign(det(B - p, A - p)) > 0);
24
           } return res & 1;
25
       #define qs(x) (ps[x] - ps[0])
26
27
       bool convexContain(point p) const { // `counter-clockwise`
28
           point q = qs(n-1); p = p - ps[0];
           if (!p.inAngle(qs(1), q)) return false;
29
30
           int L = 0, R = n - 1;
           while (L + 1 < R) \{ int M((L + R) >> 1); \}
31
32
               if (p.inAngle(qs(M), q)) L = M; else R = M;
33
           } if (L == 0) return false; point l(qs(L)), r(qs(R));
34
           return sign( fabs(det(l, p)) + fabs(det(p, r)) + fabs(det(r - l, p - l)) - det(l, r) ) == 0;
```

Shanghai Jiao Tong University 7 Tempus Fugit

```
#undef as
       double isPLAtan2(const point &a, const point &b) {
37
           double k = (b - a).alpha(); if (k < 0) k += 2 * PI;
38
           return k:
40
       point isPL_Get(const point &a, const point &b, const point &s1, const point &s2) {
41
42
           double k1 = det(b - a, s1 - a), k2 = det(b - a, s2 - a);
           if (sign(k1) == 0) return s1;
43
           if (sign(k2) == 0) return s2;
           return (s1 * k2 - s2 * k1) / (k2 - k1);
45
46
47
       int isPL Dic(const point &a, const point &b, int l, int r) {
48
           int s = (det(b - a, ps[l] - a) < 0) ? -1 : 1;
49
           while (l \ll r) {
               int mid = (l + r) / 2;
50
51
               if (\det(b-a, ps[mid]-a) * s \le 0) r = mid-1;
               else l = mid + 1;
52
53
           }
           return r + 1;
54
55
       int isPL_Find(double k, double w□) {
56
57
           if (k \le w[0] \mid k > w[n-1]) return 0;
           int l = 0, r = n - 1, mid;
58
           while (l \ll r) {
59
               mid = (l + r) / 2;
60
               if (w[mid] >= k) r = mid - 1;
61
               else l = mid + 1;
           } return r + 1;
63
64
       bool isPL(const point &a, const point &b, point &cp1, point &cp2) { // `$0 (log N)$
65
           static double w[MAXN * 2]; // `pay attention to the array size`
           for (int i = 0; i \le n; ++i) ps[i + n] = ps[i];
67
           for (int i = 0; i < n; ++i) w[i] = w[i + n] = isPLAtan2(ps[i], ps[i + 1]);
           int i = isPL Find(isPLAtan2(a, b), w):
69
           int j = isPL_Find(isPLAtan2(b, a), w);
           double k1 = det(b - a, ps[i] - a), k2 = det(b - a, ps[j] - a);
71
72
           if (sign(k1) * sign(k2) > 0) return false; // `no intersection`
           if (sign(k1) == 0 \mid | sign(k2) == 0)  // `intersect with a point or a line in the convex`
73
               if (sign(k1) == 0) {
                   if (sign(det(b-a, ps[i+1]-a)) == 0) cp1 = ps[i], cp2 = ps[i+1];
                   else cp1 = cp2 = ps[i];
77
                   return true;
               if (sign(k2) == 0) {
                   if (sign(det(b-a, ps[j+1]-a)) == 0) cp1 = ps[j], cp2 = ps[j+1];
                   else cp1 = cp2 = ps[j];
81
               return true;
84
85
           if (i > j) swap(i, j);
           int x = isPL_Dic(a, b, i, j), y = isPL_Dic(a, b, j, i + n);
86
           cp1 = isPL\_Get(a, b, ps[x - 1], ps[x]);
```

```
cp2 = isPL\_Get(a, b, ps[y-1], ps[y]);
 89
            return true;
 90
        double getI(const point &0) const {
91
            if (n <= 2) return 0;
 92
 93
            point G(0.0, 0.0);
 94
            double S = 0.0, I = 0.0;
 95
            for (int i = 0; i < n; ++i) {
                const point &x = ps[i], &y = ps[(i + 1) % n];
 96
 97
                double d = det(x, y);
                G = G + (x + y) * d / 3.0;
 98
                S += d;
 99
100
            3G = G / S:
101
            for (int i = 0; i < n; ++i) {
102
                point x = ps[i] - G, y = ps[(i + 1) % n] - G;
                I \leftarrow fabs(det(x, y)) * (x.norm() + dot(x, y) + y.norm());
104
            return I = I / 12.0 + fabs(S * 0.5) * (0 - G).norm();
106
107 };
```

1.5 直线与凸包求交点

```
ı int isPL(point a, point b, vector<point> &res) { // `点逆时针给出,无三点共线
       static double theta「MAXNT:
       for (int i = 0; i < n; ++i) theta[i] = (list[(i + 1) % n] - list[i]).atan2();
       double delta = theta[0];
       for (int i = 0; i < n; ++i) theta[i] = normalize(theta[i] - delta);</pre>
       int x = lower_bound(theta, theta + n, normalize((b - a).atan2() - delta)) - theta;
       int y = lower_bound(theta, theta + n, normalize((a - b).atan2() - delta)) - theta;
       for (int k = 0; k \le 1; ++k, swap(a, b), swap(x, y)) {
           if (y < x) y += n;
           int l = x, r = y, m;
           while (l + 1 < r) {
11
               if (sign(det(b-a, list[(m = (l + r) / 2) % n] - a)) < 0) l = m;
13
               else r = m:
          }
14
15
           1 %= n, r %= n;
           if (sign(det(b-a, list[r]-list[l])) == 0) {
16
               if (sign(det(b - a, list[l] - a)) == 0)
               return—l; // `直线与 $(list[l], list[r])$ 重合`
18
19
          }
20
           else {
21
               point p; lineIntersect(list[l], list[r], a, b, p);
               if (p.onSeg(list[l], list[r]))
22
23
               res.push_back(p);
24
25
       return res.size();
27 }
```

Shanghai Jiao Tong University 8 Tempus Fugit

半平面交

```
1 struct Border {
       point p1, p2; double alpha;
       Border(): p1(), p2(), alpha(0.0) {}
       Border(const point &a, const point &b): p1(a), p2(b), alpha(atan2(p2.y-p1.y, p2.x-p1.x)) {}
       bool operator == (const Border &b) const { return sign(alpha - b.alpha) == 0; }
       bool operator < (const Border &b) const {</pre>
           int c = sign(alpha - b.alpha); if (c != 0) return c > 0;
           return sign(det(b.p2 - b.p1, p1 - b.p1)) >= 0;
9
11 point isBorder(const Border &a, const Border &b) { // a and b should not be parallel
       point is; lineIntersect(a.p1, a.p2, b.p1, b.p2, is); return is;
12
13 }
14 bool checkBorder(const Border &a, const Border &b, const Border &me) {
       point is; lineIntersect(a.p1, a.p2, b.p1, b.p2, is);
       return sign(det(me.p2 - me.p1, is - me.p1)) > 0;
17 }
18 double HPI(int N, Border border□) {
       static Border que[MAXN * 2 + 1]; static point ps[MAXN];
       int head = 0, tail = 0, cnt = 0; // [head, tail)
20
21
       sort(border, border + N); N = unique(border, border + N) - border;
       for (int i = 0; i < N; ++i) {
22
           Border &cur = border[i];
           while (head + 1 < tail \&\&!checkBorder(que[tail - 2], que[tail - 1], cur)) — tail;
24
25
           while (head + 1 < tail && !checkBorder(que[head], que[head + 1], cur)) ++head;</pre>
           que[tail++] = cur;
       } while (head + 1 < tail && !checkBorder(que[tail - 2], que[tail - 1], que[head])) —tail;</pre>
       while (head + 1 < tail && !checkBorder(que[head], que[head + 1], que[tail - 1])) ++head;
       if (tail — head <= 2) return 0.0:
29
       Foru(i, head, tail) ps[cnt++] = isBorder(que[i], que[(i + 1 == tail) ? (head) : (i + 1)]);
30
       double area = 0; Foru(i, 0, cnt) area += det(ps[i], ps[(i + 1) % cnt]);
31
       return fabs(area * 0.5); // or (—area * 0.5)
32
33 }
```

最大面积空凸包

```
inline bool toUpRight(const point &a, const point &b) {
      int c = sign(b.y - a.y); if (c > 0) return true;
       return c == 0 \&\& sign(b.x - a.x) > 0;
4 }
5 inline bool cmpByPolarAngle(const point &a, const point &b) { // `counter-clockwise, shorter first if they share
        the same polar angle`
      int c = sign(det(a, b)); if (c != 0) return c > 0;
       return sign(b.len() - a.len()) > 0;
8 }
9 double maxEmptyConvexHull(int N, point p[]) {
      static double dp[MAXN][MAXN];
      static point vec[MAXN];
      static int seq[MAXN]; // `empty triangles formed with $(0, 0), vec[o], vec[ seq[i] ]$`
      double ans = 0.0;
```

```
Rep(o, 1, N) {
15
           int totVec = 0;
16
           Rep(i, 1, N) if (toUpRight(p[o], p[i])) vec[++totVec] = p[i] - p[o];
           sort(vec + 1, vec + totVec + 1, cmpByPolarAngle);
17
           Rep(i, 1, totVec) Rep(j, 1, totVec) dp[i][j] = 0.0;
18
           Rep(k, 2, totVec) {
19
               int i = k - 1;
20
               while (i > 0 && sign( det(vec[k], vec[i]) ) == 0) —i;
21
22
               int totSeq = 0;
23
               for (int j; i > 0; i = j) {
24
                   seq[++totSeq] = i;
                   for (j = i - 1; j > 0 \& sign(det(vec[i] - vec[k], vec[j] - vec[k])) > 0; ---j);
25
26
                   double v = det(vec[i], vec[k]) * 0.5;
27
                   if (j > 0) \lor += dp[i][j];
28
                   dp[k][i] = v;
                   cMax(ans, v);
29
30
               } for (int i = totSeq -1; i >= 1; -i) cMax( dp[k][ seq[i] ], dp[k][seq[i + 1]] );
31
32
       } return ans;
33 }
```

1.8 最近点对

```
1 int N; point p[maxn];
2 bool cmpByX(const point &a, const point &b) { return sign(a.x - b.x) < 0; }
3 bool cmpByY(const int &a, const int &b) { return p[a].y < p[b].y; }</pre>
 4 double minimalDistance(point *c, int n, int *ys) {
       double ret = 1e+20;
       if (n < 20) {
           Foru(i, 0, n) Foru(j, i + 1, n) cMin(ret, (c[i] - c[j]).len());
           sort(ys, ys + n, cmpByY); return ret;
       } static int mergeTo[maxn];
       int mid = n / 2; double xmid = c[mid].x;
       ret = min(minimalDistance(c, mid, ys), minimalDistance(c + mid, n - mid, ys + mid));
11
       merge(ys, ys + mid, ys + mid, ys + n, mergeTo, cmpByY);
12
       copy(mergeTo, mergeTo + n, ys);
14
       Foru(i, 0, n) {
15
           while (i < n && sign(fabs(p[ys[i]].x - xmid) - ret) > 0) ++i;
16
           int cnt = 0;
17
           Foru(j, i + 1, n)
18
               if (sign(p[ys[j]].y - p[ys[i]].y - ret) > 0) break;
               else if (sign(fabs(p[ys[j]].x - xmid) - ret) \leftarrow 0) {
19
20
                   ret = min(ret, (p[ys[i]] - p[ys[j]]).len());
21
                   if (++cnt >= 10) break;
               }
22
23
       } return ret;
24 }
25 double work() {
       sort(p, p + n, cmpByX); Foru(i, 0, n) ys[i] = i; return minimalDistance(p, n, ys);
27 }
```

Shanghai Jiao Tong University 9 Tempus Fugit

1.9 凸包与点集直径

```
1 vector<point> convexHull(int n, point ps[]) { // `counter-clockwise, strict`
       static point qs[MAXN * 2];
       sort(ps, ps + n, cmpByXY);
       if (n <= 2) return vector<point>(ps, ps + n);
       int k = 0;
       for (int i = 0; i < n; qs[k++] = ps[i++])
           while (k > 1 \& det(qs[k-1] - qs[k-2], ps[i] - qs[k-1]) < EPS) \longrightarrow k;
       for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i-])
           while (k > t \& det(qs[k-1] - qs[k-2], ps[i] - qs[k-1]) < EPS) - k;
       return vector<point>(qs, qs + k);
10
11 }
12 double convexDiameter(int n, point ps□) {
       if (n < 2) return 0; if (n == 2) return (ps[1] - ps[0]).len();
       double k, ans = 0;
15
       for (int x = 0, y = 1, nx, ny; x < n; ++x) {
           for(nx = (x == n - 1)? (0) : (x + 1); ; y = ny) {
               ny = (y == n - 1) ? (0) : (y + 1);
               if ( sign(k = det(ps[nx] - ps[x], ps[ny] - ps[y])) \le 0) break;
18
           } ans = max(ans, (ps[x] - ps[y]).len());
19
           if (sign(k) == 0) ans = max(ans, (ps[x] - ps[ny]).len());
20
21
       } return ans;
22 }
```

1.10 Farmland

```
」 struct node { int begin「MAXN], *end; } a「MAXN]; // 汝村 $p[i]$ 的极角的 atan2 值排序
 2 bool check(int n, point p[], int b1, int b2, bool vis[MAXN][MAXN]) {
       static pii l[MAXN * 2 + 1]; static bool used[MAXN];
       int tp(0), *k, p, p1, p2; double area(0.0);
       for (l[0] = pii(b1, b2); ; ) {
           vis[p1 = l[tp].first][p2 = l[tp].second] = true;
           area += det(p[p1], p[p2]);
           for (k = a[p2].begin; k != a[p2].end; ++k) if (*k == p1) break;
           k = (k == a[p2].begin) ? (a[p2].end - 1) : (k - 1);
           if ((1[++tp] = pii(p2, *k)) == 1[0]) break;
10
       } if (sign(area) < 0 || tp < 3) return false;</pre>
       Rep(i, 1, n) used[i] = false;
       for (int i = 0; i < tp; ++i) if (used[p = l[i].first]) return false; else used[p] = true;
       return true; // `a face with tp vertices`
14
15 }
16 int countFaces(int n, point p[]) {
       static bool vis[MAXN][MAXN]; int ans = 0;
       Rep(x, 1, n) Rep(y, 1, n) vis[x][y] = false;
18
       Rep(x, 1, n) for (int *itr = a[x].begin; itr != a[x].end; ++itr) if (!vis[x][*itr])
           if (check(n, p, x, *itr, vis)) ++ans;
21
       return ans;
22 }
```

1.11 Voronoi 图

不能有重点, 点数应当不小于 2

```
1 #define 0i(e) ((e)->oi)
 2 #define Dt(e) ((e)->dt)
 3 #define On(e) ((e)→on)
 4 #define Op(e) ((e)→op)
 5 #define Dn(e) ((e)->dn)
 6 #define Dp(e) ((e)->dp)
 7 #define Other(e, p) ((e)\rightarrowoi == p ? (e)\rightarrowdt : (e)\rightarrowoi)
 8 #define Next(e, p) ((e)\rightarrowoi == p ? (e)\rightarrowon : (e)\rightarrowdn)
 9 #define Prev(e, p) ((e)->oi == p ? (e)->op : (e)->dp)
10 #define V(p1, p2, u, v) (u = p2 \rightarrow x - p1 \rightarrow x, v = p2 \rightarrow y - p1 \rightarrow y)
11 #define C2(u1, v1, u2, v2) (u1 * v2 - v1 * u2)
12 #define C3(p1, p2, p3) ((p2\rightarrow x - p1\rightarrow x) * (p3\rightarrow y - p1\rightarrow y) - (p2\rightarrow y - p1\rightarrow y) * (p3\rightarrow x - p1\rightarrow x))
13 #define Dot(u1, v1, u2, v2) (u1 * u2 + v1 * v2)
14 #define dis(a,b) (sqrt( (a\rightarrow x-b\rightarrow x)*(a\rightarrow x-b\rightarrow x)+(a\rightarrow y-b\rightarrow y)*(a\rightarrow y-b\rightarrow y) ))
15 const int maxn = 110024;
16 const int aix = 4;
17 const double eps = 1e-7;
18 int n, M, k;
19 struct gEdge {
       int u, v; double w;
        bool operator <(const gEdge &e1) const { return w < e1.w - eps; }</pre>
22 } E[aix * maxn], MST[maxn]:
23 struct point {
        double x, y; int index; edge *in;
        bool operator <(const point &p1) const { return x < p1.x - eps | | (abs(x - p1.x) <= eps && y < p1.y - eps); }
26 };
27 struct edge { point *oi, *dt; edge *on, *op, *dn, *dp; };
28
29 point p[maxn], *Q[maxn];
30 edge mem[aix * maxn], *elist[aix * maxn];
32 void Alloc_memory() { nfree = aix * n; edge *e = mem; for (int i = 0; i < nfree; i++) elist[i] = e++; }
33 void Splice(edge *a, edge *b, point *v) {
        edge *next;
        if (0i(a) == v) next = 0n(a), 0n(a) = b; else next = Dn(a), Dn(a) = b;
35
        if (0i(next) == v) Op(next) = b; else Dp(next) = b;
        if (0i(b) == v) On(b) = next, Op(b) = a; else Dn(b) = next, Dp(b) = a;
37
38 }
39 edge *Make_edge(point *u, point *v) {
        edge *e = elist[--nfree];
        e \rightarrow on = e \rightarrow op = e \rightarrow dn = e \rightarrow dp = e; e \rightarrow oi = u; e \rightarrow dt = v;
        if (!u\rightarrow in) u\rightarrow in = e;
43
        if (!v \rightarrow in) v \rightarrow in = e;
44
        return e;
45 }
46 edge *Join(edge *a, point *u, edge *b, point *v, int side) {
        edge *e = Make_edge(u, v);
48
        if (side == 1) {
49
            if (0i(a) == u) Splice(0p(a), e, u);
             else Splice(Dp(a), e, u);
51
             Splice(b, e, v);
        } else {
52
             Splice(a, e, u);
```

Shanghai Jiao Tong University 10 Tempus Fugit

```
if (0i(b) == v) Splice(0p(b), e, v);
 55
              else Splice(Dp(b), e, v);
         } return e;
 56
57 }
 58 void Remove(edge *e) {
         point *u = 0i(e), *v = Dt(e);
         if (u \rightarrow in == e) u \rightarrow in = e \rightarrow on;
         if (v \rightarrow in == e) v \rightarrow in = e \rightarrow dn;
61
         if (0i(e\rightarrow on) == u) e\rightarrow on\rightarrow op = e\rightarrow op; else e\rightarrow on\rightarrow dp = e\rightarrow op;
         if (0i(e \rightarrow op) == u) e \rightarrow op \rightarrow on = e \rightarrow on; else e \rightarrow op \rightarrow dn = e \rightarrow on;
64
        if (0i(e\rightarrow dn) == v) e\rightarrow dn\rightarrow op = e\rightarrow dp; else e\rightarrow dn\rightarrow dp = e\rightarrow dp;
 65
         if (0i(e\rightarrow dp) == v) e\rightarrow dp\rightarrow on = e\rightarrow dn; else e\rightarrow dp\rightarrow dn = e\rightarrow dn;
 66
         elist[nfree++] = e:
67 }
68 void Low_tangent(edge *e_l, point *o_l, edge *e_r, point *o_r, edge **l_low, point **0L, edge **r_low, point **OR
          for (point *d_l = 0ther(e_l, o_l), *d_r = 0ther(e_r, o_r); ; )
              if (C3(o_1, o_r, d_1) < -eps) e_1 = Prev(e_1, d_1), o_1 = d_1, d_1 = 0 + er(e_1, o_1);
              else if (C3(o_1, o_r, d_r) < -eps) e_r = Next(e_r, d_r), o_r = d_r, d_r = 0ther(e_r, o_r);
              else break;
 72
 73
          *OL = o_l, *OR = o_r; *l_low = e_l, *r_low = e_r;
74 }
 75 void Merge(edge *lr, point *s, edge *rl, point *u, edge **tangent) {
         double 11, 12, 13, 14, r1, r2, r3, r4, cot_L, cot_R, u1, v1, u2, v2, n1, cot_n, P1, cot_P;
         point *0, *D, *OR, *OL; edge *B, *L, *R;
         Low_tangent(lr, s, rl, u, &L, &OL, &R, &OR);
 78
         for (*tangent = B = Join(L, OL, R, OR, 0), O = OL, D = OR; ;) {
 79
 80
              edge *El = Next(B, 0), *Er = Prev(B, D), *next, *prev;
              point *l = 0ther(El, 0), *r = 0ther(Er, D);
 81
              V(1, 0, 11, 12); V(1, D, 13, 14); V(r, 0, r1, r2); V(r, D, r3, r4);
 82
              double cl = C2(l1, l2, l3, l4), cr = C2(r1, r2, r3, r4);
 83
              bool BL = cl > eps, BR = cr > eps;
              if (!BL && !BR) break;
 85
              if (BL) {
                   double dl = Dot(l1, l2, l3, l4):
                   for (cot_L = dl / cl; ; Remove(El), El = next, cot_L = cot_n) {
                       next = Next(El, 0); V(0ther(next, 0), 0, u1, v1); V(0ther(next, 0), D, u2, v2);
                       n1 = C2(u1, v1, u2, v2); if (!(n1 > eps)) break;
                       cot_n = Dot(u1, v1, u2, v2) / n1;
                       if (cot_n > cot_L) break;
             } if (BR) {
 94
 95
                   double dr = Dot(r1, r2, r3, r4);
                   for (cot_R = dr / cr; ; Remove(Er), Er = prev, cot_R = cot_P) {
 96
                       prev = Prev(Er, D); V(0ther(prev, D), 0, u1, v1); V(0ther(prev, D), D, u2, v2);
                       P1 = C2(u1, v1, u2, v2); if (!(P1 > eps)) break;
 99
                       cot_P = Dot(u1, v1, u2, v2) / P1;
                       if (cot P > cot R) break:
100
101
              } l = Other(El, O); r = Other(Er, D);
103
              if (!BL || (BL && BR && cot_R < cot_L)) B = Join(B, 0, Er, r, 0), D = r;
              else B = Join(El, 1, B, D, 0), 0 = 1;
104
105
```

```
107 void Divide(int s, int t, edge **L, edge **R) {
        edge *a, *b, *c, *ll, *lr, *rl, *rr, *tangent;
        int n = t - s + 1;
        if (n == 2) *L = *R = Make_edge(Q[s], Q[t]);
        else if (n == 3) {
            a = Make\_edge(Q[s], Q[s + 1]), b = Make\_edge(Q[s + 1], Q[t]);
112
113
            Splice(a, b, Q[s + 1]);
            double v = C3(0\lceil s\rceil, 0\lceil s + 1\rceil, 0\lceil t\rceil);
114
115
            if (v > eps)
                             c = Join(a, 0[s], b, 0[t], 0), *L = a, *R = b;
116
            else if (v \leftarrow eps) c = Join(a, Q[s], b, Q[t], 1), *L = c, *R = c;
117
            else *L = a, *R = b;
118
        } else if (n > 3) {
119
            int split = (s + t) / 2;
            Divide(s, split, &ll, &lr); Divide(split + 1, t, &rl, &rr);
            Merge(lr, Q[split], rl, Q[split + 1], &tangent);
121
122
            if (Oi(tangent) == Q[s]) ll = tangent;
            if (Dt(tangent) == Q[t]) rr = tangent;
124
            *L = 11; *R = rr;
125
126 }
127 void Make Graph() {
        edge *start, *e; point *u, *v;
        for (int i = 0; i < n; i++) {
130
            start = e = (u = &p[i]) \rightarrow in;
            do{v = 0ther(e, u)};
131
                if (u < v) E[M++].u = (u - p, v - p, dis(u, v)); // M < aix * maxn
            } while ((e = Next(e, u)) != start);
133
134
135 }
136 int b[maxn];
137 int Find(int x) { while (x != b[x]) \{ b[x] = b[b[x]]; x = b[x]; \} return x; }
138 void Kruskal() {
        memset(b, 0, sizeof(b)); sort(E, E + M);
        for (int i = 0; i < n; i++) b[i] = i;
140
        for (int i = 0, kk = 0; i < M && kk < n - 1; i++) {
            int m1 = Find(E[i].u), m2 = Find(E[i].v);
142
143
            if (m1 != m2) b[m1] = m2, MST[kk++] = E[i];
144
145 }
146 void solve() {
        scanf("%d", &n);
        for (int i = 0; i < n; i++) scanf("%lf%lf", &p[i].x, &p[i].y), p[i].index = i, p[i].in = NULL;
149
        Alloc_memory(); sort(p, p + n);
        for (int i = 0; i < n; i++) Q[i] = p + i;
        edge *L, *R; Divide(0, n-1, &L, &R);
151
        M = 0; Make_Graph(); Kruskal();
152
153 }
154 int main() { solve(); return 0; }
```

1.12 四边形双费马点

1 typedef complex<double> Tpoint;

Shanghai Jiao Tong University 11 Tempus Fugit

```
2 const double eps = 1e-8;
 3 const double sqrt3 = sqrt(3.0);
 4 bool cmp(const Tpoint &a, const Tpoint &b) {
        return a.real() < b.real() - eps || (a.real() < b.real() + eps && a.imaq() < b.imaq());</pre>
 7 Tpoint rotate(const Tpoint &a, const Tpoint &b, const Tpoint &c) {
       Tpoint d = b - a; d = Tpoint(-d.imag(), d.real());
       if (Sign(cross(a, b, c)) == Sign(cross(a, b, a + d))) d *= -1.0;
        return unit(d);
12 Tpoint p[10], a[10], b[10];
13 int N, T;
14 double totlen(const Tpoint &p. const Tpoint &a. const Tpoint &b. const Tpoint &c) {
        return abs(p-a) + abs(p-b) + abs(p-c);
16 }
17 double fermat(const Tpoint &x, const Tpoint &y, const Tpoint &z, Tpoint &cp) {
        a\lceil 0 \rceil = a\lceil 3 \rceil = x; a\lceil 1 \rceil = a\lceil 4 \rceil = y; a\lceil 2 \rceil = a\lceil 5 \rceil = z;
        double len = 1e100, len2;
        for (int i = 0; i < 3; i++) {
           len2 = totlen(a[i], x, y, z);
22
            if (len2 < len) len = len2, cp = a[i];
23
      3
24
       for (int i = 0; i < 3; i++) {
           b[i] = rotate(a[i + 1], a[i], a[i + 2]);
            b[i] = (a[i + 1] + a[i]) / 2.0 + b[i] * (abs(a[i + 1] - a[i]) * sqrt3 / 2.0);
26
27
       b[3] = b[0];
       Tpoint cp2 = intersect(b[0], a[2], b[1], a[3]);
       len2 = totlen(cp2, x, y, z);
       if (len2 < len) len = len2, cp = cp2;</pre>
32
       return len;
34 double getans(const Tpoint &a) {
        double len = 0; for (int i = 0; i < N; i++) len += abs(a - p[i]);
36
38 double mindist(const Tpoint &p, const Tpoint &a, const Tpoint &b, const Tpoint &c, const Tpoint &d) {
        return min( min(abs(p - a), abs(p - b)), min(abs(p - c), abs(p - d)));
40 }
41 int main() {
       N = 4;
       for (cin >> T; T; T──) {
44
            double ret = 1e100, len_cur, len_before, len1, len2, len;
45
            Tpoint cp, cp1, cp2;
            Foru(i, 0, N) cin >> p[i];
            Foru(i, 0, N) ret = min(ret, getans(p[i]));
            Foru(i, 1, N) Foru(j, 1, N) if (j !=i) Foru(k, 1, N) if (k !=i && k !=j) {
48
49
                cMin(ret, abs(p[0] - p[i]) + abs(p[j] - p[k])
                        + min( min(abs(p[0] - p[j]), abs(p[0] - p[k])),
                               min(abs(p[i] - p[j]), abs(p[i] - p[k]))
53
                ret = min(ret, getans(intersect(p[0], p[i], p[j], p[k])));
```

```
55
           Foru(i, 0, N) Foru(j, i + 1, N) Foru(k, j + 1, N) \{
               double len = fermat(p[i], p[j], p[k], cp);
56
               ret = min(ret, len + mindist(p[6-i-j-k], p[i], p[j], p[k], cp));
57
58
           sort(p, p + N, cmp);
59
           for (int i = 1; i < N; i++) {
               cp1 = (p[0] + p[i]) / 2.0;
61
62
               int j, k;
63
               for (j = 1; j < N \&\& j == i; j++);
64
               for (k = 6 - i - j, len_before = 1e100; ;) {
65
                   len1 = fermat(cp1, p[j], p[k], cp2);
66
                   len1 = fermat(cp2, p[0], p[i], cp1);
67
                   len = len1 + abs(cp2 - p[j]) + abs(cp2 - p[k]);
                   if (len < len_before - (1e-6)) len_before = len;</pre>
69
                   else break;
               } ret = min(ret, len_before);
70
71
           } printf("%.4f\n", ret);
72
73
       return 0;
74 }
```

1.13 三角形和四边形的费马点

- 费马点: 距几个顶点距离之和最小的点
- 三角形:
 - 若每个角都小于 120° : 以每条边向外作正三角形,得到 ΔABF , ΔBCD , ΔCAE ,连接 AD,BE,CF,三线必共点于费马点. 该点对三边的张角必然是 120° ,也必然是三个三角形外接圆的交点
 - 否则费马点一定是那个大干等于 120° 的顶角
- 四边形:
 - 在凸四边形中, 费马点为对角线的交点
 - 在凹四边形中, 费马点位凹顶点

1.14 三维计算几何基本操作

Shanghai Jiao Tong University 12 Tempus Fugit

```
14 };
15 double distLL(const point &p1, const point &p2, const point &q1, const point &q2) {
        point p = q1 - p1, u = p2 - p1, v = q2 - q1;
       double d = u.norm() * v.norm() - dot(u, v) * dot(u, v);
       if (sign(d) == 0) return p1.distLP(q1, q2);
       double s = (dot(p, u) * v.norm() - dot(p, v) * dot(u, v)) / d;
       return (p1 + u * s).distLP(q1, q2);
20
21 }
22 double distSS(const point &p1, const point &p2, const point &q1, const point &q2) {
       point p = q1 - p1, u = p2 - p1, v = q2 - q1;
       double d = u.norm() * v.norm() - dot(u, v) * dot(u, v);
       if (sign(d) == 0) return min(min((p1 - q1).len(), (p1 - q2).len()),
25
26
                                     min((p2 - q1).len(), (p2 - q2).len()));
27
       double s1 = (dot(p, u) * v.norm() - dot(p, v) * dot(u, v)) / d;
       double s2 = (dot(p, v) * u.norm() - dot(p, u) * dot(u, v)) / d;
       if (s1 < 0.0) s1 = 0.0; if (s1 > 1.0) s1 = 1.0;
30
       if (s2 < 0.0) s2 = 0.0; if (s2 > 1.0) s2 = 1.0;
       point r1 = p1 + u * s1; point r2 = q1 + v * s2;
31
32
       return (r1 - r2).len();
33 }
34 bool isFL(const point &p, const point &o, const point &q1, const point &q2, point &res) {
       double a = dot(0, q2 - p), b = dot(0, q1 - p), d = a - b;
       if (sign(d) == 0) return false;
       res = (q1 * a - q2 * b) / d;
37
       return true;
38
39 }
40 bool isFF(const point &p1, const point &o1, const point &p2, const point &o2, point &a, point &b) {
       point e = det(o1, o2), v = det(o1, e);
       double d = dot(o2, v); if (sign(d) == 0) return false;
       point q = p1 + v * (dot(o2, p2 - p1) / d);
       a = q; b = q + e;
45
       return true;
46 }
```

1.15 凸多面体切割

```
1 vector<vector<point> > convexCut(const vector<vector<point> > &pss, const point &p, const point &o) {
       vector<vector<point> > res;
       vector<point> sec;
       for (unsigned itr = 0, size = pss.size(); itr < size; ++itr) {</pre>
           const vector<point> &ps = pss[itr];
           int n = ps.size();
           vector<point> qs;
           bool dif = false;
           for (int i = 0; i < n; ++i) {
               int d1 = sign( dot(o, ps[i] - p) );
               int d2 = sign( dot(o, ps[(i + 1) \% n] - p) );
               if (d1 \le 0) qs.push_back(ps[i]);
12
               if (d1 * d2 < 0) {
14
                   point q;
                   isFL(p, o, ps[i], ps[(i + 1) % n], q); // must return true
                   qs.push_back(q);
                   sec.push_back(q);
```

```
if (d1 == 0) sec.push_back(ps[i]);
19
               else dif = true:
21
               dif l = dot(o, det(ps[(i + 1) % n] - ps[i], ps[(i + 2) % n] - ps[i])) < -EPS;
22
23
           if (!qs.empty() && dif)
               res.insert(res.end(), qs.begin(), qs.end());
^{24}
25
       if (!sec.empty()) {
26
27
           vector<point> tmp( convexHull2D(sec, o) );
28
           res.insert(res.end(), tmp.begin(), tmp.end());
29
30
       return res:
31 }
32
33 vector<vector<point> > initConvex() {
34
       vector<vector<point> > pss(6, vector<point>(4));
       pss[0][0] = pss[1][0] = pss[2][0] = point(-INF, -INF, -INF);
35
       pss[0][3] = pss[1][1] = pss[5][2] = point(-INF, -INF, INF);
       pss[0][1] = pss[2][3] = pss[4][2] = point(-INF, INF, -INF);
37
38
       pss[0][2] = pss[5][3] = pss[4][1] = point(-INF, INF);
39
       pss[1][3] = pss[2][1] = pss[3][2] = point(INF, -INF, -INF);
40
       pss[1][2] = pss[5][1] = pss[3][3] = point(INF, -INF, INF);
       pss[2][2] = pss[4][3] = pss[3][1] = point(INF, INF, -INF);
41
       pss[5][0] = pss[4][0] = pss[3][0] = point(INF, INF, INF);
42
43
       return pss;
44 }
```

1.16 三维凸包

不能有重点

```
1 namespace ConvexHull3D {
       #define volume(a, b, c, d) (mix(ps[b] - ps[a], ps[c] - ps[a], ps[d] - ps[a]))
       vector<Facet> getHull(int n, point ps[]) {
           static int mark[MAXN][MAXN], a, b, c;
           int stamp = 0;
           bool exist = false;
           vector<Facet> facet;
           random_shuffle(ps, ps + n);
           for (int i = 2; i < n && !exist; i++) {
               point ndir = det(ps[0] - ps[i], ps[1] - ps[i]);
11
               if (ndir.len() < EPS) continue;
12
               swap(ps[i], ps[2]);
13
               for (int j = i + 1; j < n && !exist; j++)
                   if (sign(volume(0, 1, 2, j)) != 0) {
14
15
                       exist = true:
16
                       swap(ps[i], ps[3]);
                       facet.push_back(Facet(0, 1, 2));
17
                       facet.push_back(Facet(0, 2, 1));
18
19
20
           if (!exist) return ConvexHull2D(n, ps);
21
22
           for (int i = 0; i < n; ++i)
```

Shanghai Jiao Tong University 13 Tempus Fugit

```
for (int j = 0; j < n; ++j)
                   mark[i][j] = 0;
           stamp = 0;
25
           for (int v = 3; v < n; ++v) {
26
               vector<Facet> tmp;
               ++stamp:
               for (unsigned i = 0; i < facet.size(); i++) {
                   a = facet[i].a;
                   b = facet[i].b;
31
                   c = facet[i].c;
                   if (sign(volume(v, a, b, c)) < 0)
                       mark[a][b] = mark[a][c] =
                       mark[b][a] = mark[b][c] =
                       mark[c][a] = mark[c][b] = stamp;
                   else tmp.push_back(facet[i]);
               } facet = tmp;
39
               for (unsigned i = 0; i < tmp.size(); i++) {
                   a = facet[i].a; b = facet[i].b; c = facet[i].c;
                   if (mark[a][b] == stamp) facet.push_back(Facet(b, a, v));
                   if (mark[b][c] == stamp) facet.push_back(Facet(c, b, v));
43
                   if (mark[c][a] == stamp) facet.push_back(Facet(a, c, v));
44
           } return facet;
46
       #undef volume
47
48 }
49 namespace Gravity {
       using ConvexHull3D::Facet;
       point findG(point ps[], const vector<Facet> &facet) {
51
52
           double ws = 0; point res(0.0, 0.0, 0.0), o = ps[facet[0].a];
           for (int i = 0, size = facet.size(); i < size; ++i) {</pre>
53
54
               const point &a = ps[ facet[i].a ], &b = ps[ facet[i].b ], &c = ps[ facet[i].c ];
               point p = (a + b + c + o) * 0.25;
               double w = mix(a - o, b - o, c - o);
56
57
               WS += W:
               res = res + p * w;
           } res = res / ws;
59
           return res;
60
61
62 }
```

1.17 球面点表面点距离

```
double distOnBall(double lati1, double longi1, double lati2, double longi2, double R) {
lati1 *= PI / 180; longi1 *= PI / 180;
lati2 *= PI / 180; longi2 *= PI / 180;

double x1 = cos(lati1) * sin(longi1);

double y1 = cos(lati1) * cos(longi1);

double z1 = sin(lati1);

double x2 = cos(lati2) * sin(longi2);

double y2 = cos(lati2) * cos(longi2);

double z2 = sin(lati2);

double theta = acos(x1 * x2 + y1 * y2 + z1 * z2);
```

```
return R * theta;
```

1.18 长方体表面点距离

```
2 void turn(int i, int j, int x, int y, int z, int x0, int y0, int L, int W, int H) {
       if (z == 0) r = min(r, x * x + y * y);
       else {
           if (i \ge 0 \&\& i < 2) turn(i + 1, j, x0 + L + z, y, x0 + L - x, x0 + L, y0, H, W, L);
           if (j \ge 0 \&\& j < 2) turn(i, j + 1, x, y0 + W + z, y0 + W - y, x0, y0 + W, L, H, W);
           if (i \leftarrow 0 && i > -2) turn(i - 1, j, x0 - z, y, x - x0, x0 - H, y0, H, W, L);
           if (j \le 0 \& j > -2) turn(i, j - 1, x, y0 - z, y - y0, x0, y0 - H, L, H, W);
10 }
11 int calc(int L, int H, int W, int x1, int y1, int z1, int x2, int y2, int z2) {
       if (z1 != 0 && z1 != H)
13
           if (y1 == 0 | | y1 == W) swap(y1, z1), swap(y2, z2), swap(W, H);
14
                                   swap(x1, z1), swap(x2, z2), swap(L, H);
       if (z1 == H) z1 = 0, z2 = H - z2;
       r = INF; turn(0, 0, x2 - x1, y2 - y1, z2, -x1, -y1, L, W, H);
16
17
       return r;
18 }
```

1.19 最小覆盖球

```
int outCnt; point out[4], res; double radius;
2 void ball() {
       static point q[3];
       static double m[3][3], sol[3], L[3], det;
       int i, j; res = point(0.0, 0.0, 0.0); radius = 0.0;
       switch (outCnt) {
       case 1: res = out[0]; break;
       case 2: res = (out[0] + out[1]) * 0.5; radius = (res - out[0]).norm();
9
           break:
       case 3:
11
           q[0] = out[1] - out[0]; q[1] = out[2] - out[0];
           for (i = 0; i < 2; ++i) for (j = 0; j < 2; ++j)
12
               m[i][j] = dot(q[i], q[j]) * 2.0;
13
14
           for (i = 0; i < 2; ++i) sol[i] = dot(q[i], q[i]);
15
           det = m[0][0] * m[1][1] - m[0][1] * m[1][0];
16
           if (sign(det) == 0) return;
17
           L[0] = (sol[0] * m[1][1] - sol[1] * m[0][1]) / det;
18
           L[1] = (sol[1] * m[0][0] - sol[0] * m[1][0]) / det;
19
           res = out[0] + q[0] * L[0] + q[1] * L[1];
           radius = (res - out[0]).norm();
20
21
           break;
       case 4:
22
23
           q[0] = out[1] - out[0]; q[1] = out[2] - out[0]; q[2] = out[3] - out[0];
24
           for (i = 0; i < 3; ++i) for (j = 0; j < 3; ++j) m[i][j] = dot(q[i], q[j]) * 2;
           for (i = 0; i < 3; ++i) sol[i] = dot(q[i], q[i]);
25
```

Shanghai Jiao Tong University 14 Tempus Fugit

```
det = m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0]
               + m[0][2] * m[2][1] * m[1][0] - m[0][2] * m[1][1] * m[2][0]
               -m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1];
           if (sign(det) == 0) return;
           for (j = 0; j < 3; ++j) { for (i = 0; i < 3; ++i) m[i][j] = sol[i];
               L[j] = (m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0]
                     + m[0][2] * m[2][1] * m[1][0] - m[0][2] * m[1][1] * m[2][0]
                     -m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]) / det;
               for (i = 0; i < 3; ++i) m[i][j] = dot(q[i], q[j]) * 2;
           } res = out[0];
           for (i = 0; i < 3; ++i) res += q[i] * L[i]; radius = (res - out[0]).norm();
38
39 void minball(int n, point pt□) {
       if (outCnt < 4) for (int i = 0; i < n; ++i)
           if ((res - pt[i]).norm() > +radius + EPS) {
               out[outCnt] = pt[i]; ++outCnt; minball(i, pt); --outCnt;
43
               if (i > 0) {
                   point Tt = pt[i];
                   memmove(&pt[1], &pt[0], sizeof(point) * i);
                   pt[0] = Tt;
50 }
51 pair<point, double> main(int npoint, point pt[]) { // 0—based
        random\_shuffle(pt, pt + npoint); radius = -1;
       for (int i = 0; i < npoint; i++) { if ((res - pt[i]).norm() > EPS + radius) {
           outCnt = 1; out[0] = pt[i]; minball(i, pt); } }
54
55
       return make_pair(res, sqrt(radius));
56 }
```

1.20 三维向量操作矩阵

• 绕单位向量 $u = (u_x, u_y, u_z)$ 右手方向旋转 θ 度的矩阵:

$$\begin{bmatrix} \cos\theta + u_x^2 (1 - \cos\theta) & u_x u_y (1 - \cos\theta) - u_z \sin\theta & u_x u_z (1 - \cos\theta) + u_y \sin\theta \\ u_y u_x (1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2 (1 - \cos\theta) & u_y u_z (1 - \cos\theta) - u_x \sin\theta \\ u_z u_x (1 - \cos\theta) - u_y \sin\theta & u_z u_y (1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2 (1 - \cos\theta) \end{bmatrix}$$

$$= \cos\theta I + \sin\theta \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} + (1 - \cos\theta) \begin{bmatrix} u_x^2 & u_x u_y & u_x u_z \\ u_y u_x & u_y^2 & u_y u_z \\ u_z u_x & u_z u_y & u_z^2 \end{bmatrix}$$

- 点 a 绕单位向量 $u=(u_x,u_y,u_z)$ 右手方向旋转 θ 度的对应点为 $a'=a\cos\theta+(u\times a)\sin\theta+(u\otimes u)a(1-\cos\theta)$
- 关于向量 v 作对称变换的矩阵 $H = I 2 \frac{vv^T}{vTv}$,
- 点 a 对称点: $a' = a 2\frac{v^T a}{v^T v} \cdot v$

1.21 立体角

对于任意一个四面体 OABC, 从 O 点观察 ΔABC 的立体角 $\tan \frac{\Omega}{2} = \frac{\min(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})}{|a||b||c|+(\overrightarrow{a} \cdot \overrightarrow{c})|b|+(\overrightarrow{b} \cdot \overrightarrow{c})|a|}$

2 数据结构

2.1 动态凸包 (只支持插入)

```
1 #define x first // `upperHull $\leftarrow (x, y)$`
2 #define y second // `lowerHull $\leftarrow (x, -y)$
3 typedef map<int, int> mii;
 4 typedef map<int, int>::iterator mit;
5 struct point { point(const mit &p): x(p→first), y(p→second) {} };
6 inline bool checkInside(mii &a, const point &p) { // `border inclusive`
       int x = p.x, y = p.y; mit p1 = a.lower\_bound(x);
       if (p1 == a.end()) return false; if (p1\rightarrowx == x) return y <= p1\rightarrowy;
       if (p1 == a.begin()) return false; mit p2(p1-);
       return sign(det(p - point(p1), point(p2) - p)) >= 0;
11 } inline void addPoint(mii &a, const point &p) { // `no collinear points'
       int x = p.x, y = p.y; mit pnt = a.insert(make_pair(x, y)).first, p1, p2;
       for (pnt \rightarrow y = y; ; a.erase(p2)) {
           p1 = pnt; if (++p1 == a.end()) break;
14
           p2 = p1; if (++p1 == a.end()) break;
           if (det(point(p2) - p, point(p1) - p) < 0) break;
       } for ( ; ; a.erase(p2)) {
           if ((p1 = pnt) == a.begin()) break;
           if (-p1 == a.begin()) break; p2 = p1-;
19
20
           if (\det(point(p2) - p, point(p1) - p) > 0) break;
21
22 }
```

2.2 Rope 用法

2.3 Treap

```
struct node { int key, prio, size; node *ch[2]; } base[MAXN], *top, *root, *null, nil;
typedef node *tree;
tree newNode(int key) {
    static int seed = 3312;
    top=>key = key; top=>prio = seed = int(seed * 48271LL % 2147483647);
    top=>size = 1; top=>ch[0] = top=>ch[1] = null; return top++;
}

void Rotate(tree &x, int d) {
    tree y = x=>ch[d]; x=>ch[d]; y=>ch[d] = x; y=>size = x=>size;
    x=>size = x=>ch[0]=>size + 1 + x=>ch[1]=>size; x = y;
}
```

Shanghai Jiao Tong University 15 Tempus Fugit

```
12 void Insert(tree &t, int key) {
         if (t == null) t = newNode(key);
         else { int d = t->key < key; Insert(t->ch[d], key); ++t->size;
14
              if (t->ch[d]->prio < t->prio) Rotate(t, !d);
15
16
17 }
18 void Delete(tree &t, int key) {
         if (t\rightarrow key != key) \{ Delete(t\rightarrow ch[t\rightarrow key < key], key); -t\rightarrow size; \}
         else if (t\rightarrow ch[0] == null) t = t\rightarrow ch[1];
21
         else if (t\rightarrow ch[1] == null) t = t\rightarrow ch[0];
         else { int d = t \rightarrow ch[0] \rightarrow prio < t \rightarrow ch[1] \rightarrow prio;
23
              Rotate(t, d); Delete(t\rightarrowch[d], key); —t\rightarrowsize;
24
25 }
```

2.4 可持久化 Treap

```
1 inline bool randomBySize(int a, int b) {
         static long long seed = 1;
         return (seed = seed * 48271 % 2147483647) * (a + b) < 2147483647LL * a;
 4 }
 5 tree merge(tree x, tree y) {
         if (x == null) return y; if (y == null) return x;
         tree t = NULL:
         if (randomBySize(x\rightarrow size, y\rightarrow size)) t = newNode(x), t\rightarrow r = merge(x\rightarrow r, y);
         else t = newNode(y), t \rightarrow l = merge(x, y \rightarrow l);
         update(t); return t;
10
11 }
12 void splitByKey(tree t, int k, tree &l, tree &r) { // `$[—\infty, k) [k, +infty)$
         if (t == null) l = r = null;
14
         else if (t\rightarrow key < k) l = newNode(t), splitByKey(t\rightarrow r, k, l\rightarrow r, r), update(l);
                                  r = \text{newNode}(t), \text{splitByKey}(t \rightarrow l, k, l, r \rightarrow l), \text{update}(r);
15
16 }
17 void splitBySize(tree t, int k, tree &l, tree &r) { // `$[1, k) [k, +\infty)$`
         static int s; if (t == null) l = r = null;
         else if ((s = t\rightarrow l\rightarrow size + 1) < k) l = newNode(t), splitBySize(t\rightarrow r, k - s, l\rightarrow r, r), update(l);
                                                    r = \text{newNode}(t), \text{splitBySize}(t \rightarrow l, k, l, r \rightarrow l), \text{update}(r);
21 }
```

2.5 左偏树

```
1 tree merge(tree a, tree b) {
2     if (a == null) return b;
3     if (b == null) return a;
4     if (a \to key > b \to key) swap(a, b);
5     a \to rc = merge(a \to rc, b);
6     a \to rc \to fa = a;
7     if (a \to lc \to dist < a \to rc \to dist) swap(a \to lc, a \to rc);
8     a \to dist = a \to rc \to dist + 1;
9     return a;
10 }</pre>
```

2.6 Link-Cut Tree

```
1 struct node { int rev; node *pre, *ch[2]; } base[MAXN], nil, *null;
 2 typedef node *tree;
 3 #define isRoot(x) (x\rightarrow pre\rightarrow ch[0] != x && x\rightarrow pre\rightarrow ch[1] != x)
 4 #define isRight(x) (x→pre→ch[1] == x)
 5 inline void MakeRev(tree t) { if (t != null) { t \rightarrow rev \triangleq 1; swap(t \rightarrow ch[0], t \rightarrow ch[1]); } }
 6 inline void PushDown(tree t) { if (t->rev) { MakeRev(t->ch[0]); MakeRev(t->ch[1]); t->rev = 0; } }
 7 inline void Rotate(tree x) {
        tree y = x \rightarrow pre; PushDown(y); PushDown(x);
        int d = isRight(x);
        if (!isRoot(y)) y->pre->ch[isRight(y)] = x; x->pre = y->pre;
10
        if ((y\rightarrow ch[d] = x\rightarrow ch[!d]) != null) y\rightarrow ch[d]\rightarrow pre = y;
11
        x\rightarrow ch[!d] = y; y\rightarrow pre = x; Update(y);
12
13 }
14 inline void Splay(tree x) {
15
        PushDown(x); for (tree y; !isRoot(x); Rotate(x)) {
            y = x \rightarrow pre; if (!isRoot(y)) Rotate(isRight(x) != isRight(y) ? x : y);
16
17
        } Update(x);
18 }
19 inline void Splay(tree x, tree to) {
        PushDown(x); for (tree y; (y = x \rightarrow pre) != to; Rotate(x)) if (y \rightarrow pre != to)
21
            Rotate(isRight(x) != isRight(y) ? x : y);
        Update(x);
22
23 }
24 inline tree Access(tree t) {
        tree last = null; for (; t != null; last = t, t = t \rightarrow pre) Splay(t),t \rightarrow ch[1] = last, Update(t);
26
        return last;
27 }
28 inline void MakeRoot(tree t) { Access(t); Splay(t); MakeRev(t); }
29 inline tree FindRoot(tree t) { Access(t); Splay(t); tree last = null;
        for (; t!= null; last = t, t = t->ch[0]) PushDown(t); Splay(last); return last;
31 }
32 inline void Join(tree x, tree y) { MakeRoot(y); y \rightarrow pre = x; }
33 inline void Cut(tree t) {Access(t); Splay(t); t->ch[0]->pre = null; t->ch[0] = null; Update(t);}
34 inline void Cut(tree x, tree y) {
        tree upper = (Access(x), Access(y));
        if (upper == x) { Splay(x); y\rightarrowpre = null; x\rightarrowch[1] = null; Update(x); }
37
        else if (upper == y) { Access(x); Splay(y); x\rightarrowpre = null; y\rightarrowch[1] = null; Update(y); }
        else assert(0); // `impossible to happen`
38
39 }
```

Shanghai Jiao Tong University 16 Tempus Fugit

2.7 K-D Tree Nearest

```
1 struct Point { int x, y; };
 2 struct Rectangle {
       int lx , rx , ly , ry;
       void set(const Point &p) { lx = rx = p.x; ly = ry = p.y; }
       void merge(const Point &o) {
           lx = min(lx, o.x); rx = max(rx, o.x); ly = min(ly, o.y); ry = max(ry, o.y);
       } void merge(const Rectangle &o) {
           lx = min(lx , o.lx); rx = max(rx , o.rx); ly = min(ly , o.ly); ry = max(ry , o.ry);
       } LL dist(const Point &p) {
           LL res = 0;
           if (p.x < lx) res += sqr(lx - p.x); else if (p.x > rx) res += sqr(p.x - rx);
11
           if (p.y < ly) res += sqr(ly - p.y); else if (p.y > ry) res += sqr(p.y - ry);
           return res;
14
15 };
16 struct Node { int child[2]; Point p; Rectangle rect; };
17 const int MAX_N = 1111111;
18 const LL INF = 100000000;
19 int n, m, tot, root; LL result;
20 Point a[MAX_N], p; Node tree[MAX_N];
21 int build(int s, int t, bool d) {
       int k = ++tot, mid = (s + t) >> 1;
       nth\_element(a + s, a + mid, a + t, d ? cmpXY : cmpYX);
24
       tree[k].p = a[mid]; tree[k].rect.set(a[mid]); tree[k].child[0] = tree[k].child[1] = 0;
25
           tree[k].child[0] = build(s, mid , d ^ 1), tree[k].rect.merge(tree[k].child[0]].rect);
       if (mid + 1 < t)
           tree[k].child[1] = build(mid + 1, t, d \wedge 1), tree[k].rect.merge(tree[tree[k].child[1]].rect);
28
29
       return k;
30 }
31 int insert(int root, bool d) {
       if (root == 0) {
           tree[++tot].p = p; tree[tot].rect.set(p); tree[tot].child[0] = tree[tot].child[1] = 0;
33
34
           return tot;
       } tree[root].rect.merge(p);
35
       if ((d && cmpXY(p, tree[root].p)) || (!d && cmpYX(p, tree[root].p)))
36
            tree[root].child[0] = insert(tree[root].child[0], d ^ 1);
37
       else tree[root].child[1] = insert(tree[root].child[1], d ^ 1);
39
       return root;
40 }
```

```
41 void query(int k, bool d) {
       if (tree[k].rect.dist(p) >= result) return;
       cMin(result, dist(tree[k].p, p));
       if ((d && cmpXY(p, tree[k].p)) || (!d && cmpYX(p, tree[k].p))) {
44
           if (tree[k].child[0]) query(tree[k].child[0], d ^ 1);
           if (tree[k].child[1]) query(tree[k].child[1], d ^ 1);
47
       } else {
48
           if (tree[k].child[1]) query(tree[k].child[1], d ^ 1);
           if (tree[k].child[0]) query(tree[k].child[0], d ^ 1);
49
50
51 }
52 void example(int n) {
       root = tot = 0; scan(a); root = build(0, n, 0); // `init, a[0 \setminus n - 1]$
       scan(p); root = insert(root, 0); // `insert`
       scan(p); result = INF; ans = query(root, 0); // `query`
56 }
```

2.8 K-D Tree Farthest

输入 n 个点, 对每个询问 px, py, k, 输出 k 远点的编号

```
1 struct Point { int x, y, id; };
2 struct Rectangle {
       int lx, rx, ly, ry;
       void set(const Point &p) { lx = rx = p.x; ly = ry = p.y; }
       void merge(const Rectangle &o) {
           lx = min(lx, o.lx); rx = max(rx, o.rx); ly = min(ly, o.ly); ry = max(ry, o.ry);
       }
       LL dist(const Point &p) { LL res = 0;
           res += max(sqr(rx - p.x), sqr(lx - p.x));
           res += max(sqr(ry - p.y), sqr(ly - p.y));
11
           return res:
12
13 }; struct Node { Point p; Rectangle rect; };
14 const int MAX_N = 111111;
15 const LL INF = 1LL << 60;
16 int n, m;
17 Point a[MAX_N], b[MAX_N];
18 Node tree[MAX_N * 3];
19 Point p; // `p is the query point`
20 pair<LL, int> result[22];
21 void build(int k, int s, int t, bool d) {
       int mid = (s + t) \gg 1;
       nth_element(a + s, a + mid, a + t, d ? cmpX : cmpY);
       tree[k].p = a[mid];
       tree[k].rect.set(a[mid]);
25
       if (s < mid)
26
27
           build(k << 1, s, mid , d ^{\wedge} 1), tree[k].rect.merge(tree[k << 1]. rect);
       if (mid + 1 < t)
28
29
           build(k \ll 1 \mid 1, mid + 1, t, d \land 1), tree[k].rect.merge(tree[k \ll 1 \mid 1]. rect);
30 }
31 void query(int k, int s, int t, bool d, int kth) {
       if (tree[k].rect.dist(p) < result[kth].first) return;</pre>
       pair<LL, int> tmp(dist(tree[k].p, p), -tree[k].p.id);
```

Shanghai Jiao Tong University 17 Tempus Fugit

```
for (int i = 1; i \leftarrow kth; i++) if (tmp > result[i]) {
           for (int j = kth + 1; j > i; j—) result[j] = result[j - 1]; result[i] = tmp;
           break;
36
37
       int mid = (s + t) \gg 1;
       if ((d && cmpX(p, tree[k].p)) || (!d && cmpY(p, tree[k].p))) {
           if (mid + 1 < t) query(k << 1 | 1, mid + 1, t, d ^ 1, kth);
40
           if (s < mid) query(k \ll 1, s, mid , d \wedge 1, kth);
41
       } else {
42
           if (s < mid) query(k << 1, s, mid, d ^ 1, kth);
           if (mid + 1 < t) query(k << 1 | 1, mid + 1, t, d ^ 1, kth);
45
46 }
47 void example(int n) {
       scan(a); build(1, 0, n, 0); // `init, a[0 \cdot 1]$
       scan(p, k); // `query`
       Rep(j, 1, k) result[j].first = -1;
50
       query(1, 0, n, 0, k); ans = -result[k].second + 1;
51
52 }
```

2.9 K-D Tree Beautiful

```
1 long long norm(const long long &x) {
       // For manhattan distance
       return std::abs(x);
       // For euclid distance
       return x * x;
6 }
 8 struct Point {
       int x, y, id;
       const int& operator [] (int index) const {
11
           if (index == 0) {
12
13
               return x;
14
           } else {
15
               return y;
16
19
       friend long long dist(const Point &a, const Point &b) {
           long long result = 0;
20
21
           for (int i = 0; i < 2; ++i) {
               result += norm(a[i] - b[i]);
22
           return result;
24
25
26 } point[N];
27
28 struct Rectangle {
       int min[2], max[2];
30
       Rectangle() {
```

```
min[0] = min[1] = INT_MAX;
32
           max[0] = max[1] = INT_MIN;
33
34
35
       void add(const Point &p) {
36
37
           for (int i = 0; i < 2; ++i) {
               min[i] = std::min(min[i], p[i]);
38
39
               max[i] = std::max(max[i], p[i]);
40
41
42
       long long dist(const Point &p) {
43
44
           long long result = 0;
45
           for (int i = 0; i < 2; ++i) {
46
               // For minimum distance
               result += norm(std::min(std::max(p[i], min[i]), max[i]) - p[i]);
47
48
               // For maximum distance
               result += std::max(norm(max[i] - p[i]), norm(min[i] - p[i]));
49
50
           return result;
51
52
53 };
54
55 struct Node {
       Point seperator;
57
       Rectangle rectangle;
       int child[2];
59
       void reset(const Point &p) {
60
61
           seperator = p;
           rectangle = Rectangle();
62
63
           rectangle.add(p);
           child[0] = child[1] = 0;
64
65
66 } tree[N << 1];
68 int size, pivot;
69
70 bool compare(const Point &a, const Point &b) {
       if (a[pivot] != b[pivot]) {
           return a[pivot] < b[pivot];</pre>
72
73
74
       return a.id < b.id;</pre>
75 }
77 int build(int l, int r, int type = 1) {
       pivot = type;
79
       if (1 >= r) {
           return 0;
80
81
82
       int x = ++size;
83
       int mid = l + r \gg 1;
       std::nth_element(point + l, point + mid, point + r, compare);
```

Shanghai Jiao Tong University 18 Tempus Fugit

```
for (int i = 1; i < r; ++i) {
            tree[x].rectangle.add(point[i]);
 87
 88
        tree[x].child[0] = build(1, mid, type ^ 1);
        tree[x].child[1] = build(mid + 1, r, type ^ 1);
 91
        return x;
92 }
93
94 int insert(int x, const Point &p, int type = 1) {
        pivot = type;
        if (x == 0) {
 97
            tree[++size].reset(p);
            return size;
        tree[x].rectangle.add(p);
100
101
        if (compare(p, tree[x].seperator)) {
            tree[x].child[0] = insert(tree[x].child[0], p, type ^ 1);
            tree[x].child[1] = insert(tree[x].child[1], p, type ^ 1);
104
105
        return x;
106
107 }
108
          For minimum distance
109 //
110 void query(int x, const Point &p, std::pair<long long, int> &answer, int type = 1) {
111
        if (x == 0 \mid l \mid tree[x].rectangle.dist(p) > answer.first) {
112
            return;
113
114
        }
115
        answer = std::min(answer,
116
                 std::make_pair(dist(tree[x].seperator, p), tree[x].seperator.id));
        if (compare(p, tree[x].seperator)) {
117
            query(tree[x].child[0], p, answer, type ^ 1);
118
            query(tree[x].child[1], p, answer, type ^ 1);
119
120
        } else {
            query(tree[x].child[1], p, answer, type ^ 1);
121
            query(tree[x].child[0], p, answer, type ^ 1);
122
123
124 }
126 std::priority_queue<std::pair<long long, int> > answer;
127
128 void query(int x, const Point &p, int k, int type = 1) {
        pivot = type;
            (int)answer.size() == k && tree[x].rectangle.dist(p) > answer.top().first) {
131
132
            return:
133
        answer.push(std::make_pair(dist(tree[x].seperator, p), tree[x].seperator.id));
134
        if ((int)answer.size() > k) {
135
            answer.pop();
136
137
```

tree[x].reset(point[mid]);

```
if (compare(p, tree[x].seperator)) {
    query(tree[x].child[0], p, k, type ^ 1);
    query(tree[x].child[1], p, k, type ^ 1);
} else {
    query(tree[x].child[1], p, k, type ^ 1);
    query(tree[x].child[1], p, k, type ^ 1);
    query(tree[x].child[0], p, k, type ^ 1);
}
```

2.10 树链剖分

```
1 #include <cstdio>
2 #include <cstdlib>
3 #include <cstring>
 4 #include <cmath>
5 #include <iostream>
6 #include <fstream>
7 #include <algorithm>
8 #include <vector>
9 #include <string>
10 #define lson l,mid,rt<<1</pre>
11 #define rson mid+1,r,rt<<1|1</pre>
12
13 using namespace std;
14
15 const int MAX = 111111;
16 typedef long long LL;
17 typedef vector<int>::iterator iter;
18 struct qry_node {
       int u,v,w;
20 }qrys[MAX];
21 struct tree_node {
22
       LL sum:
       LL mark;
23
24 }tree[MAX*4];
25 vector<int> ori[MAX];
26 int pre[MAX],size[MAX],heavy[MAX], deep[MAX], f[MAX][20];
27 int num[MAX],block[MAX],pathHead[MAX],ind = 0;
28
29 void insert(int u,int v)
30 {
       ori[u].push_back(v);
31
32
       ori[v].push_back(u);
33 }
35 void prepare_split(int u,int pre)
36 {
       int tmp = 0;
37
       pre[u] = pre;
38
       for (iter it = ori[u].begin(); it != ori[u].end(); ++it) {
39
40
           int v = (*it);
           if (v != pre) {
41
42
               prepare_split(v,u);
```

```
if (size[v] > tmp) {
                   tmp = size[v];
                   heavy[u] = v;
               size[u] += size[v];
49
50
       size[u]++;
51
52 }
53
54 void split(int u,int bel)
55 {
       block[u] = num[u] = ++ind;
       pathHead[u] = bel;
       if (heavy[u]) split(heavy[u],bel);
59
       block[u] = max(block[u],block[heavy[u]]);
       for (iter it = ori[u].begin(); it != ori[u].end(); ++ it) {
60
           int v = (*it);
           if (v != pre[u] && heavy[u] != v) {
62
63
               split(v,v);
               block[u] = max(block[u],block[v]);
64
66
67 }
68
69 void push_up(int l,int r,int rt)
       if (l != r) tree[rt].sum = tree[rt<<1].sum + tree[(rt<<1)+1].sum;
71
72 }
73 void push_down(int l,int r,int rt)
74 {
       if (tree[rt].mark != 0 && l != r) {
76
           int mid = (l + r) \gg 1;
           tree[rt << 1].mark += tree[rt].mark;</pre>
77
           tree[rt << 1 | 1].mark += tree[rt].mark;</pre>
           tree[rt \ll 1].sum += (mid - l + 1) * tree[rt].mark;
79
           tree[rt \ll 1 \mid 1].sum += (r - mid) * tree[rt].mark;
           tree[rt].mark = 0;
81
82
83 }
84
85 void build(int l,int r,int rt)
86 {
       tree[rt].sum = tree[rt].mark = 0;
       if (l == r) return;
       int mid = (l+r)>>1;
       build(lson):
91
       build(rson);
92 }
93 void upd(int l,int r,int rt,int a,int b,int c)
94 {
       push_down(l,r,rt);
```

```
int tmp = tree[rt].sum;
        if (a \le 1 \&\& b \ge r) \{
 97
            tree[rt].sum += (r - l + 1) * c;
 98
            tree[rt].mark += c;
 99
            return;
100
101
        int mid = (l + r) \gg 1;
102
103
        if (a \ll mid) upd(lson,a,b,c);
        if (b > mid) upd(rson,a,b,c);
104
105
        push_up(l,r,rt);
106 }
107 LL qry(int l,int r,int rt,int a,int b)
108 {
109
        push_down(l,r,rt);
        if (a \le 1 \&\& b >= r) {
            return tree[rt].sum;
111
112
        int mid = (l + r) \gg 1;
113
114
        LL ret = 0;
        if (a \ll mid) ret += qry(lson, a, b);
115
116
        if (b > mid) ret += qry(rson,a,b);
117
        return ret:
118 }
119
120 void lca_prepare(int u)
121 {
122
        for (iter it = ori[u].begin(); it != ori[u].end(); ++it) {
            int v = (*it);
123
            if (v != pre[u]) {
124
                deep[v] = deep[u]+1;
                f[v][0] = u;
126
127
                for (int tmp = u, dep = 0; tmp; f[v][dep+1] = f[tmp][dep], tmp = f[tmp][dep], dep++);
                lca_prepare(v);
128
129
130
131
132
133 int get_lca(int u,int v)
134 {
        int lose = abs(deep[u] - deep[v]), pos = 0;
136
        if (deep[u] < deep[v]) swap(u,v);
        while (lose) {
137
138
            if (lose & 1) u = f[u][pos];
            pos ++;
139
140
            lose >>= 1;
141
142
        pos = 0;
143
        while (u != v) {
            if (f[u][pos] != f[v][pos] || (f[u][pos] == f[v][pos] && !pos)) {
144
                u = f[u][pos];
145
146
                v = f[v][pos];
                pos++;
147
148
```

Shanghai Jiao Tong University 20 Tempus Fugit

```
else {
                pos---;
151
152
        return u;
153
154 }
155
156 int n,m;
157
158 int main()
159 {
         freopen("tree.in","r",stdin);
160
        freopen("tree.out","w",stdout);
161
162
        ios::sync_with_stdio(false);
163
164
        cin >> n;
165
        for (int i = 1; i < n; ++i) {
166
            int a,b;
            cin >> a >> b;
            a ++ ,b ++ ;
168
            insert(a,b);
169
170
171
        memset(pre,0,sizeof(pre));
        memset(size,0,sizeof(size));
172
        prepare_split(1,1);
173
        split(1,1);
174
        lca_prepare(1);
175
        build(1,n,1);
176
        cin >> m;
177
178
        for (int i = 1; i <= m; ++i) {
179
            string c;
180
            cin >> c;
            if (c[0] == 'A') {
181
                int u,v,w,lca;
182
183
                cin >> u >> v >> w;
184
                U++, V++;
                lca = get_lca(u,v);
185
                while (pathHead[u] != pathHead[lca]) {
186
                    upd(1,n,1,num[pathHead[u]],num[u],w);
187
                    u = pre[pathHead[u]];
188
189
                }upd(1,n,1,num[lca],num[u],w);
                while (pathHead[v] != pathHead[lca]) {
190
                    upd(1,n,1,num[pathHead[v]],num[v],w);
191
                    v = pre[pathHead[v]];
192
193
                \{upd(1,n,1,num[lca],num[v],w\};
                upd(1,n,1,num[lca],num[lca],-w);
194
195
196
            else {
197
                int u;
198
                cin >> u;
199
                cout << (LL)qry(1,n,1,num[u],block[u]) << endl;</pre>
200
201
```

```
202 }
203 return 0;
204 }
```

2.11 Splay 维护数列

```
1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
      4 #define keyTree root->ch[1]->ch[0]
     6 using namespace std;
    8 \text{ const int } N = 5000000;
     9 const int INF = 1001;
  10 int n, m, a[N];
  11
  12 int max(int x, int y, int z)
13 {
 14
                                   return max(x, max(y, z));
 15 }
   16
 17 struct node {
                                    int key, maxL, maxR, maxSum, sum, same, size;
  19
                                   bool rev;
                                   node *pre, *ch[2];
                                   inline void reverse(){
 21
                                                     if (size == 0) return;
 22
                                                     rev ^= 1;
 23
 24
                                                      swap(ch[0], ch[1]);
                                                      swap(maxL, maxR);
  25
  26
                                   inline void saming(int x){
 27
                                                     if (size == 0) return;
 28
  29
                                                     key = same = x;
                                                      maxL = maxR = maxSum = sum = x * size;
  30
 31
                                                     if (x < 0)
  32
                                                                         maxL = maxR = maxSum = x;
  33
                                   inline void push_up(){
 34
 35
                                                     sum = ch[0] -> sum + ch[1] -> sum + key;
                                                     size = ch[0] \rightarrow size + ch[1] \rightarrow size + 1;
  36
  37
                                                      maxL = max(ch[0] \rightarrow maxL, ch[0] \rightarrow sum+key, ch[0] \rightarrow sum+key+ch[1] \rightarrow maxL);
                                                      maxR = max(ch[1] \rightarrow maxR, ch[1] \rightarrow sum+key, ch[1] \rightarrow sum+key+ch[0] \rightarrow maxR);
  38
                                                     \max Sum = \max(ch[\emptyset] - \max Sum, \max(ch[\emptyset] - \max Sum, \max(ch[\emptyset] - \max R + key, \max(ch[\emptyset] - \max R + key + \max R + key) + \max(ch[\emptyset] - \max R + key + \max R + key + \max(ch[\emptyset] - \max R + key + \max R + key + \max R + key + \max(ch[\emptyset] - \max R + key + \max R + key + \max(ch[\emptyset] - \max(ch[\emptyset] - \max R + key + \max(ch[\emptyset] - \min(ch[\emptyset] - \max(ch[\emptyset] - \max(ch[\emptyset] - \max(ch[\emptyset] - \max(ch[\emptyset] - \min(ch[\emptyset] - 
  39
                                             ch[1]—>maxL,key)))));
  40
                                   inline void push_down(){
  41
                                                     if (rev){
  42
                                                                         ch[0]-->reverse();
   43
   44
                                                                         ch[1]->reverse();
   45
    46
                                                      rev = 0;
```

```
if (same != INF){
                    ch[0]—>saming(same);
                    ch[1]—>saming(same);
              }
               same = INF;
51
52
53 };
54
55 class splayTree{
          node *root, *null;
          node buf[N]; // 内存池
          int top; // 内存池使用量
59
          node *stk[N]; // 内存回收
60
         int cnt; // 内存回收量
61
         int num;
62
63
         int pos, tot, c, pop;
         inline void erase(node *x){
64
               x \rightarrow size = x \rightarrow sum = x \rightarrow maxL = x \rightarrow maxR = x \rightarrow maxSum = 0;
66
67
         inline node *newNode(int value){
               node *x:
68
               if (cnt) x = stk[cnt-];
               else x = \&buf[top++];
               x\rightarrow key = x\rightarrow maxL = x\rightarrow maxR = x\rightarrow maxSum = x\rightarrow sum = value;
               x \rightarrow size = 1, x \rightarrow rev = 0;
72
               x \rightarrow pre = x \rightarrow ch[0] = x \rightarrow ch[1] = null;
73
               x \rightarrow same = INF;
               return x;
          inline void init(){
77
               top = cnt = 0;
               num = n;
               null = newNode(—INF);
               null \rightarrow size = 0, null \rightarrow sum = 0;
               root = newNode(—INF);
               root \rightarrow sum = 0;
               root \rightarrow ch[1] = newNode(-INF);
               root \rightarrow ch[1] \rightarrow pre = root;
               root \rightarrow ch[1] \rightarrow sum = 0;
          inline node *build(int l,int r){
88
               if (l>r) return null;
               int mid = (l+r) \gg 1;
               node *x = newNode(a[mid]);
               x\rightarrow ch[0] = build(l,mid-1);
               x\rightarrow ch[1] = build(mid+1,r);
93
               if (x\rightarrow ch[0] != null) x\rightarrow ch[0]\rightarrow pre = x;
               if (x\rightarrow ch[1] != null) x\rightarrow ch[1]\rightarrow pre = x;
               x->push_up();
               return x;
         inline void rotate(node *x,int c){
```

```
100
                node *y = x \rightarrow pre;
101
                y->push_down();
102
               x->push_down();
                y \rightarrow ch[!c] = x \rightarrow ch[c];
                if (y\rightarrow ch[!c] != null)
104
105
                    y \rightarrow ch[!c] \rightarrow pre = y;
106
                x \rightarrow pre = y \rightarrow pre;
               if (x→pre != null)
                    x \rightarrow pre \rightarrow ch[y == x \rightarrow pre \rightarrow ch[1]] = x;
108
109
                x \rightarrow ch[c] = y;
                y \rightarrow pre = x;
                if (y == root)
112
                    root = x:
113
               y->push_up();
114
          inline void splay(node *x, node *g){
116
               x->push_down();
                while (x \rightarrow pre != g){
117
118
                    if (x \rightarrow pre \rightarrow pre == g){
                          rotate(x, x == x \rightarrow pre \rightarrow ch[0]);
119
120
                         break;
121
                    }
122
                    node *y = x \rightarrow pre, *z = y \rightarrow pre;
                    int f = (y == z \rightarrow ch[0]);
123
                    if (x == y \rightarrow ch[f])
124
                          rotate(x, !f), rotate(x, f);
126
                          rotate(y, f), rotate(x, f);
127
128
129
               x \rightarrow push_up();
130
131
          inline void select(node *x, int k){
               node *t = root;
132
                while (true) {
                    t->push_down();
134
135
                     int tmp = t->ch[0]->size;
                    if (tmp == k) break;
136
                    if (tmp < k) k = tmp + 1, t = t \rightarrow ch[1];
137
                     else t = t \rightarrow ch[0];
138
               }
139
140
                splay(t, x);
141
          inline void recycle(node *x){
142
               if (x\rightarrow ch[0] != null) recycle(x\rightarrow ch[0]);
143
144
               stk[++cnt] = x;
               if (x->ch[1] != null) recycle(x->ch[1]);
145
146
147
          inline void insert(){
148
               scanf("%d%d", &pos, &tot);
149
               num += tot;
150
                for (int i = 1; i \leftarrow tot; ++i)
151
                    scanf("%d", &a[i]);
152
                select(null, pos);
```

Shanghai Jiao Tong University 22 Tempus Fugit

```
153
             select(root, pos+1);
            keyTree = build(1, tot);
154
            keyTree->pre = root->ch[1];
            splay(keyTree, null);
156
157
        inline void del(){
158
            scanf("%d%d", &pos, &tot);
159
            select(null, pos-1);
160
            select(root, pos+tot);
161
162
            if (keyTree != null){
163
                 num —= keyTree→size;
                 recycle(keyTree);
165
                 root \rightarrow ch[1] \rightarrow ch[0] = null;
166
                 root->ch[1]->push_up();
                 root→push_up();
167
168
169
            splay(root \rightarrow ch[1], null);
170
171
        inline void make_same(){
            scanf("%d%d%d", &pos, &tot, &c);
172
173
            select(null, pos-1);
            select(root, pos+tot);
174
175
            if (keyTree != null){
                 keyTree→saming(c);
176
                 splay(keyTree, null);
177
            }
178
179
        inline void reverse(){
180
            scanf("%d%d", &pos, &tot);
181
182
            select(null, pos-1);
            select(root, pos+tot);
183
184
            if (keyTree != null){
                 keyTree→reverse();
185
                 splay(keyTree, null);
186
187
            }
188
        inline void max_sum(){
189
            printf("%d\n", root->maxSum);
190
191
        inline void get_sum(){
192
193
            scanf("%d%d", &pos, &tot);
            select(null, pos-1);
194
            select(root, pos+tot);
195
            if (keyTree != null){
196
197
                 printf("%d\n", keyTree->sum);
                 splay(keyTree, null);
198
                 keyTree->push_down();
199
            } else printf("0\n");
200
201
202 }spt;
203
204 int main(){
         scanf("%d%d", &n, &m);
```

```
for (int i = 1; i <= n; ++i)
            scanf("%d", &a[i]);
207
        spt.init();
208
        spt.keyTree = spt.build(1,n);
209
        spt.keyTree->pre = spt.root->ch[1];
210
211
        spt.splay(spt.keyTree, spt.null);
        char op[30];
212
213
        for (int i = 1; i <= m; ++i) {
            scanf("%s", op);
214
215
            switch (op[0]){
216
            case 'I': spt.insert(); break;
            case 'D': spt.del(); break;
217
218
            case 'R': spt.reverse(); break;
219
            case 'G': spt.get_sum(); break;
220
            case 'S': spt.make_same(); break;
            case 'M':
221
222
                if (op[2] == 'X') spt.max_sum();
                else spt.make_same(); break;
223
224
            }
225
226
        return 0;
227
```

3 字符串相关

3.1 Manacher

```
// 要处理的字符串
1 char t[1001];
2 char s[1001 * 2]; // 中间插入特殊字符以后的
3 int Z[1001 * 2], L, R; // Gusfield's Algorithm
4
5 // 由省左, 由省右, 对称地做字符匹配
6 int match(int a, int b)
7 {
      int i = 0;
      while (a - i \ge 0 \&\& b + i < n \&\& s[a - i] == s[b + i]) i++;
10
      return i;
11 }
12
13 void longest_palindromic_substring()
14 {
15
      int N = strlen(t);
16
      // 在 t 中插入特殊字符, 存放到 s
17
      memset(s, '.', N*2+1);
18
19
      for (int i=0; i<N; ++i) s[i*2+1] = t[i];
      N = N*2+1;
20
21
      // modified Gusfield's lgorithm
22
23
      Z[0] = 1;
      L = R = 0;
24
      for (int i=1; i<N; ++i)
```

Shanghai Jiao Tong University 23 Tempus Fugit

```
int ii = L - (i - L); // i的映射位置
              int n = R + 1 - i;
              if (i > R)
                 {
31
                     Z[i] = match(i, i);
                    L = i;
33
                    R = i + Z[i] - 1;
34
             else if (Z[ii] == n)
                 {
                    Z[i] = n + match(i-n, i+n);
                    L = i;
                    R = i + Z[i] - 1;
41
42
             else
                 Z[i] = min(Z[ii], n);
43
45
      // 尋找最長迴文子字串的長度。
46
      int n = 0, p = 0;
47
48
      for (int i=0; i<N; ++i)
         if (Z[i] > n)
49
             n = Z[p = i];
50
51
      // 記得去掉持殊字元。
52
      cout << "最長迴文子字串的長度是" << (n—1) / 2;
53
54
      // 印出最長迴文子字串, 記得別印特殊字元。
55
      for (int i=p-Z[p]+1; i<=p+Z[p]-1; ++i)
56
57
          if (i & 1)
              cout << s[i];
58
59 }
```

3.2 最大回文正方形

```
1 #include <cstdio>
2 #include <cstdlib>
3 #include <cstring>
4 #include <cmoth>
5 #include <iostream>
6 #include <fstream>
7 #include <algorithm>
8 #include <string>
9

using namespace std;
11
12 const int MAX = 711;
13 int n, m, tmp, t;
14 string line[MAX], row[MAX], col[MAX];
15 int row_z[MAX][MAX * 2], col_z[MAX][MAX * 2];
16 int row_palinlen[MAX][MAX][2], col_palinlen[MAX][MAX][2];
```

```
17 int maxlen, sx, sy, ex, ey;
18
19 void match(int start, int &z, string &s,int len)
20 {
       while (\text{start} - z) = 0 \& \text{start} + z < \text{len } \& \text{s[start} - z] = \text{s[start} + z]
21
22
23 }
24
25 void calc_z(string s, int *z)
26 {
27
       static int mid, right, len, reflect_i, suply_pos;
28
29
       z[0] = 1;
30
       len = s.size();
31
       mid = right = 0;
32
33
       for (int i = 1; i < len; ++i) {
           reflect_i = 2 * mid - i;
34
35
           suply_pos = i + z[reflect_i] - 1;
           if (i > right) {
36
37
               match(i, z[i] = 0, s, len);
               mid = i, right = i + z[i] - 1;
38
39
           } else if (suply_pos == right) {
               match(i, z[i] = z[reflect_i], s, len);
40
41
               mid = i, right = i + z[i] - 1;
42
           } else {
               z[i] = min(z[reflect_i], right - i + 1);
43
44
45
46 }
47
48 int main()
49 {
       ios::sync_with_stdio(false);
50
51
52
       cin >> n >> m;
       for (int i = 0; i < n; ++i) {
53
54
           row[i] = "#";
55
           cin >> line[i];
           for (int j = 0; j < m; ++j) {
               row[i] += line[i][j];
               row[i] += '#';
58
59
           }
           calc_z(row[i], row_z[i]);
60
61
           for (int j = 0, cnt = 1; j < m; ++j, cnt += 2) {
               row_palinlen[i][j][1] = row_z[i][cnt] - 1;
62
               row_palinlen[i][j][0] = row_z[i][cnt + 1] - 1;
63
64
           }
65
       for (int i = 0; i < m; ++i) {
66
67
           col[i] = "#";
           for (int j = 0; j < n; ++j) {
68
69
               col[i] += line[j][i];
```

Shanghai Jiao Tong University 24

```
col[i] += "#";
            calc_z(col[i], col_z[i]);
 72
            for (int j = 0, cnt = 1; j < n; ++j, cnt += 2) {
 73
                 col_palinlen[j][i][1] = col_z[i][cnt] - 1;
                 col_palinlen[j][i][0] = col_z[i][cnt + 1] - 1;
            }
 77
 78
        tmp = min(n,m);
        maxlen = 1;
        sx = sy = ex = ey = 0;
 81
 82
 83
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j) {
                 int k,c;
 85
                 t = tmp;
                 for (k = 1, c = 0; k \le t; k += 2, c++) {
                    if (i - c < 0 \mid i + c >= n \mid i j - c < 0 \mid i j + c >= m) break;
                     t = min(t, row_palinlen[i - c][j][1]);
                     t = min(t, row_palinlen[i + c][j][1]);
                     t = min(t, col_palinlen[i][j - c][1]);
                     t = min(t, col_palinlen[i][j + c][1]);
                     if (k > t) break;
                    if (t <= maxlen) break;</pre>
                 if (k-2 > maxlen) {
                     c---;
                     maxlen = k - 2:
                     sx = i - c; ex = i + c;
100
                     sy = j - c; ey = j + c;
102
                 t = tmp:
                 for (k = 2, c = 0; k \le t; k += 2, c++) {
104
                     if (i - c < 0 | | i + c + 1 >= n | | j - c < 0 | | j + c + 1 >= m) break;
                     t = min(t, row_palinlen[i - c][j][0]);
106
                     t = min(t, row_palinlen[i + c + 1][j][0]);
                     t = min(t, col_palinlen[i][j - c][0]);
108
                     t = min(t, col_palinlen[i][j + c + 1][0]);
                     if (k > t) break;
                     if (t <= maxlen) break;</pre>
112
                 if (k-2 > maxlen) {
113
114
                     c---;
                     maxlen = k - 2;
115
116
                     sx = i - c; ex = i + c + 1;
117
                     sy = j - c; ey = j + c + 1;
118
119
        cout << sx + 1 << " " << sy + 1 << " "
120
             << ex + 1 << " " << ey + 1 << endl;
121
122
```

```
123 return 0;
124 }
```

3.3 KMP

```
next[i] = \max\{len|A[0...len-1] = A的第 i 位向前或后的长度为 len 的串}
  ext[i] = max\{len|A[0...len-1] = B的第 i 位向前或后的长度为 len 的串}
void KMP(char *a, int la, char *b, int lb, int *next, int *ext) {
    —a; —b; —next; —ext;
      for (int i = 2, j = next[1] = 0; i \le la; i++) {
          while (j && a[j + 1] != a[i]) j = next[j]; if (a[j + 1] == a[i]) ++j; next[i] = j;
      } for (int i = 1, j = 0; i <= lb; ++i) {
          while (j && a[j + 1] != b[i]) j = next[j]; if (a[j + 1] == b[i]) ++j; ext[i] = j;
          if (j == la) j = next[j];
9 } void ExKMP(char *a, int la, char *b, int lb, int *next, int *ext) {
      next[0] = la; for (int &j = next[1] = 0; j + 1 < la && a[j] == a[j + 1]; ++j);
      for (int i = 2, k = 1; i < la; ++i) {
         int p = k + next[k], l = next[i - k]; if (l ;
          else for (int &j = next[k = i] = max(0, p-i); i + j < la && a[j] == a[i + j]; ++j);
13
14
      } for (int &j = ext[0] = 0; j < la && j < lb && a[j] == b[j]; ++j);
      for (int i = 1, k = 0; i < lb; ++i) {
15
          int p = k + ext[k], l = next[i - k]; if (l ;
          else for (int &j = ext[k = i] = max(0, p - i); j < la && i + j < lb && a[j] == b[i + j]; ++j);
17
18
19 }
```

Tempus Fugit

3.4 Aho-Corasick 自动机

3.5 后缀自动机

```
1 struct SAM {
2    int in[Maxn * 2 + 1][Sigma], fa[Maxn * 2 + 1], max[Maxn * 2 + 1], tot, last;
3    void init(int n) {
4        tot = last = 0;
5        for(int i = 0; i <= 2 * n + 1; ++i)</pre>
```

Shanghai Jiao Tong University 25 Tempus Fugit

```
memset(in[i], -1, size of in[i]), fa[i] = -1;
       void add(int x) {
           int v = last; ++tot, last = tot, max[last] = max[v] + 1;
           while(v != -1 \& in[v][x] == -1) in[v][x] = last, v = fa[v];
           if(v == -1) \{ fa[last] = 0; return; \}
           int p = in[v][x];
12
13
           if(max[p] == max[v] + 1) fa[last] = p;
14
           else {
15
               int np = ++tot;
               max[np] = max[v] + 1; fa[np] = fa[p], fa[p] = np, fa[last] = np;
               while(v != -1 \&\& in[v][x] == p) in[v][x] = np, v = fa[v];
17
18
               memcpy(in[np], in[p], sizeof in[p]);
19 }}};
```

```
3.6 后缀数组-1
待排序的字符串放在 r[0...n-1] 中, 最大值小于 m.
   r[0...n-2] > 0, r[n-1] = 0.
   结果放在 sa[0...n-1].
 1 namespace SuffixArrayDoubling {
       int wa[MAXN], wb[MAXN], wv[MAXN], ws[MAXN];
       int cmp(int *r, int a, int b, int l) {
           return r[a] == r[b] && r[a + 1] == r[b + 1];
       void da(int *r, int *sa, int n, int m) {
           int i, j, p, *x = wa, *y = wb, *t;
           for (i = 0; i < m; i++) ws[i] = 0;
           for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
           for (i = 1; i < m; i++) ws[i] += ws[i-1];
11
           for (i = n - 1; i \ge 0; i \longrightarrow) sa[\longrightarrow ws[x[i]]] = i;
12
           for (j = 1, p = 1; p < n; j *= 2, m = p) {
               for (p = 0, i = n - j; i < n; i++) y[p++] = i;
               for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
14
15
               for (i = 0; i < n; i++) wv[i] = x[y[i]];
16
               for (i = 0; i < m; i++) ws[i] = 0;
17
               for (i = 0; i < n; i++) ws[wv[i]]++;
               for (i = 1; i < m; i++) ws[i] += ws[i-1];
               for (i = n - 1; i \ge 0; i \longrightarrow) sa[\longrightarrow ws[wv[i]]] = y[i];
               for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
                   x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++;
21
22
23
25 namespace SuffixArrayDC3 { // `r 与 sa 大小需 3 倍
        #define F(x) ((x) / 3 + ((x) % 3 == 1 ? 0 : tb))
       #define G(x) ((x) < tb ? (x) * 3 + 1 : ((x) - tb) * 3 + 2)
       int wa[MAXN], wb[MAXN], wv[MAXN], ws[MAXN];
       int c0(int *r, int a, int b) {
29
30
           return r[a] == r[b] \&\& r[a + 1] == r[b + 1] \&\& r[a + 2] == r[b + 2];
31
       int c12(int k, int *r, int a, int b) {
```

```
33
           if (k == 2) return r[a] < r[b] || (r[a] == r[b] && c12(1, r, a + 1, b + 1));
                        return r[a] < r[b] \mid | (r[a] == r[b] && wv[a + 1] < wv[b + 1]);
34
35
       void sort(int *r, int *a, int *b, int n, int m) {
36
            for (int i = 0; i < n; i++) wv[i] = r[a[i]];
37
            for (int i = 0; i < m; i++) ws[i] = 0;
            for (int i = 0; i < n; i++) ws[wv[i]]++;
39
           for (int i = 1; i < m; i++) ws[i] += ws[i-1];
            for (int i = n - 1; i \ge 0; i \longrightarrow b \vdash ws \lceil wv \lceil i \rceil \rceil \rceil = a \lceil i \rceil;
41
42
43
       void dc3(int *r, int *sa, int n, int m) {
44
           int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p;
45
           r[n] = r[n + 1] = 0:
            for (i = 0; i < n; i++) if (i \% 3 != 0) wa[tbc++] = i;
47
            sort(r + 2, wa, wb, tbc, m);
           sort(r + 1, wb, wa, tbc, m);
48
49
           sort(r, wa, wb, tbc, m);
            for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
50
51
               rn[F(wb[i])] = c0(r, wb[i-1], wb[i]) ? p-1 : p++;
52
           if (p < tbc) dc3(rn, san, tbc, p);
53
            else for (i = 0; i < tbc; i++) san[rn[i]] = i;
54
           for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
55
           if (n \% 3 == 1) wb[ta++] = n-1;
           sort(r, wb, wa, ta, m);
56
           for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
57
            for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
58
               sa[p] = c12(wb[j] \% 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
59
            for (; i < ta; p++) sa[p] = wa[i++];
60
            for (; j < tbc; p++) sa[p] = wb[j++];
61
62
       #undef F
63
64
       #undef G
65 }
66 namespace CalcHeight {
       int rank[MAXN], height[MAXN];
68
       void calheight(int *r, int *sa, int n) {
           int i, j, k = 0;
69
70
           for (i = 1; i \le n; i++) rank[sa[i]] = i;
71
           for (i = 0; i < n; height[rank[i++]] = k)
                for (k ? k - : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
73
74 }
```

3.7 后缀数组-2

```
1 namespace SuffixArrayDoubling {
2    int wa[MAXN], wb[MAXN], wv[MAXN];
3    int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a + l] == r[b + l]; }
4    void da(int *r, int *sa, int n, int m) {
5        int i, j, p, *x = wa, *y = wb, *t;
6        for (i = 0; i < m; i++) ws[i] = 0;
7        for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
8        for (i = 1; i < m; i++) ws[i] += ws[i - 1];</pre>
```

Shanghai Jiao Tong University 26 Tempus Fugit

```
for (i = n - 1; i \ge 0; i \longrightarrow) sa[\longrightarrow ws[x[i]]] = i;
            for (j = 1, p = 1; p < n; j *= 2, m = p) {
                for (p = 0, i = n - j; i < n; i++) y[p++] = i;
                for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
12
                for (i = 0; i < n; i++) wv[i] = x[y[i]];
                for (i = 0; i < m; i++) ws[i] = 0;
                for (i = 0; i < n; i++) ws[wv[i]]++;
15
                for (i = 1; i < m; i++) ws[i] += ws[i-1];
16
                for (i = n - 1; i \ge 0; i \longrightarrow) sa[\longrightarrow ws[wv[i]]] = y[i];
17
                for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
19
                    x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++;
20 }}}
21 namespace CalcHeiaht {
        int rank[MAXN], height[MAXN];
       void calheight(int *r, int *sa, int n) {
            int i, j, k = 0; for (i = 1; i \le n; i++) rank[sa[i]] = i;
24
25
            for (i = 0; i < n; height[rank[i++]] = k)
                for (k ? k - : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
26
27 }
       void init(int len)
29
       {
            for(int i = 0; i \le len + 10; ++i)
30
31
                rank[i] = height[i] = 0;
32
33 }
34 //Sample
35 int r[MAXN]; char s[MAXN];
36 int main()
37 {
       int len;
       scanf("%s", s);
39
       len = strlen(s);
       for(int i = 0; i < len; ++i) r[i] = s[i] - 'a' + 1;
42
       r[len] = 0;
       SuffixArrayDoubling::da(r, sa, n + 1, 30);
43
       CalcHeight::calheight(r, sa, n);
       //Then the value of sa[0\sim 1] is 1\sim n, so init RMQ carefully(1~n not 0~n-1)
45
46
       return 0;
47 }
48 }
```

3.8 环串最小表示

```
1 int minimalRepresentation(int N, char *s) { // s must be double—sized and 0—based
2    int i, j, k, l; for (i = 0; i < N; ++i) s[i + N] = s[i]; s[N + N] = 0;
3    for (i = 0, j = 1; j < N; ) {
4        for (k = 0; k < N && s[i + k] == s[j + k]; ++k);
5        if (k >= N) break; if (s[i + k] < s[j + k]) j += k + 1;
6        else l = i + k, i = j, j = max(l, j) + 1;
7    } return i; // [i, i + N) is the minimal representation
8 }</pre>
```

3.9 回文自动机

```
1 #include <cstdlib>
2 #include <cstdio>
3 #include <cstring>
4 #include <algorithm>
5
6 const int C = 26;
7 const int N = 100000;
8 const int S = N + 2 + C;
10 char string[N + 2];
int s, length[S], suffix[S], go[S][C];
13 int extend(int p, int i)
14 {
15
       while (string[i - 1 - length[p]] != string[i]) {
16
           p = suffix[p];
17
18
       int q = suffix[p];
       while (string[i - 1 - length[q]] != string[i]) {
19
           q = suffix[q];
20
21
22
       int c = string[i] - 'a';
23
       int pp = go[p][c];
       int qq = go[q][c];
       if (pp == -1) {
25
           length[pp = go[p][c] = s ++] = length[p] + 2;
26
27
           suffix[pp] = qq;
28
           memset(go[pp], -1, sizeof(go[pp]));
29
       return pp;
30
31 }
32
33 int main()
34 {
35
       int tests;
       scanf("%d", &tests);
36
       for (int t = 1; t <= tests; ++ t) {
           printf("Case #%d: ", t);
38
           for (int i = 0; i < C + 2; ++ i) {
39
               suffix[i] = 1;
40
41
               length[i] = std::min(i - 1, 1);
               memset(go[i], -1, sizeof(go[i]));
42
43
44
           suffix[0] = suffix[1] = 0;
45
           for (int i = 0; i < C; ++ i) {
               go[0][i] = 2 + i;
46
47
           }
           s = C + 2;
48
49
           string[0] = '#';
           scanf("%s", string + 1);
50
51
           int n = strlen(string + 1);
```

Shanghai Jiao Tong University 27 Tempus Fugit

4 图论

4.1 Dominator Tree

```
1 #include <cstdio>
2 #include <cstdlib>
 3 #include <cstring>
 4 #include <iostream>
 5 #include <algorithm>
 6 #include <vector>
 8 using namespace std;
10 const int oo = 1073741819;
11
12 const int Maxn = 200000;
13 const int Maxm = 200000;
14
15 vector<int> g[Maxn];
17 //idom[i] is the dominator of i, node id — 1 based(1 \sim n), n is the source
18 class DominatorTree
19 {
20 public:
21
       int tail[4][Maxm], n, m;
       int Next[4][Maxm], sora[4][Maxm];
       int ss[4], top, w_time;
24
       int rel[Maxn], semi[Maxn], b[Maxn], idom[Maxn], best[Maxn], st[Maxn], pre[Maxn];
       void origin()
25
26
       {
27
           for (int e = 0; e <= 3; e++) ss[e] = n;
           for (int i = 1; i <= n; i++) {
28
               for (int e = 0; e <= 3; e++)
29
                   tail[e][i] = i, Next[e][i] = 0;
               rel[i] = 0, semi[i] = idom[i] = pre[i] = 0, best[i] = i;
               b[i] = i;
32
           }
33
34
           rel[0] = oo;
35
       void link(int e, int x, int y)
```

```
++ss[e], Next[e][tail[e][x]] = ss[e], tail[e][x] = ss[e], sora[e][ss[e]] = y, Next[e][ss[e]] = 0;
38
39
       void dfs(int x, int y)
40
41
           ++w_time, rel[x] = w_time;
           st[++top] = x, pre[x] = y;
43
44
           for (int i = x, ne; Next[0][i];) {
               i = Next[0][i], ne = sora[0][i];
45
46
               if (!rel[ne]) dfs(ne, x);
47
           }
48
49
       int find(int x)
50
51
           int y = b[x];
           if (b[x] != x) b[x] = find(b[x]);
52
53
           if (rel[semi[best[y]]]<rel[semi[best[x]]])</pre>
               best[x] = best[y];
54
55
           return b[x];
56
57
       //n — number of vertex, m — number of edges, e — edge set
58
       void init(int _n, int _m, const vector<pair<int, int> > &e)
       {
59
60
           n = _n, m = _m;
           origin();
61
           for (int i = 0; i < m; i++) {
62
              link(0, e[i].first, e[i].second);
63
               link(1, e[i].second, e[i].first);
64
65
66
           w_{time} = 0, top = 0;
           dfs(n, 0);
67
68
69
70
       void work()
71
72
           for (int i = top; i >= 1; i \longrightarrow) {
               int ne = st[i];
73
74
               for (int j = ne, na; Next[1][j];) {
75
                   j = Next[1][j], na = sora[1][j];
                   if (!rel[na]) continue;
76
77
                   int y;
                   if (rel[na]>rel[ne]) {
78
79
                       find(na);
                       y = semi[best[na]];
80
81
                   else y = na;
82
                   if (rel[y]<rel[semi[ne]]) semi[ne] = y;</pre>
83
84
               }
               if (ne != n) link(2, semi[ne], ne);
85
               for (int j = ne, na; Next[2][j];) {
86
                   j = Next[2][j], na = sora[2][j];
87
                   find(na);
88
                   int y = best[na];
```

Shanghai Jiao Tong University 28 Tempus Fugit

```
if (semi[y] == semi[na]) idom[na] = semi[na];
                    else idom[na] = y;
 92
                for (int j = ne, na; Next[0][j];) {
 93
                    j = Next[0][j], na = sora[0][j];
 94
                    if (pre[na] == ne) {
                        na = find(na);
                        b[na] = ne;
 97
100
            for (int i = 2; i <= top; i++) {
101
102
                int ne = st[i];
103
                if (idom[ne] != semi[ne]) idom[ne] = idom[idom[ne]];
                link(3, idom[ne], ne);
105
106
107 }dom;
```

4.2 树 Hash

```
1 #include <cstdio>
 2 #include <cstdlib>
3 #include <cstrina>
 4 #include <cmath>
5 #include <iostream>
 6 #include <algorithm>
 7 #include <vector>
 8 #include <map>
 9 #include <queue>
10
11 using namespace std;
12
13 const int mm = 1051697, p = 1e9 + 9, q = 1e9 + 7;
14 const int N = 100000 + 10;
15 vector<int> vec[N];
int n, size[N], mark[N], deg[N], father[N];
17 long long f[N], g[N], rtp[N], rtq[N];
18 map<pair<long long, long long>, int> mp;
20 struct Node {
21
       int a, b, v;
       Node() {}
       Node(int _a, int _b, int _v) {
23
           a = _a, b = _b, v = _v;
24
25
26
       bool operator < (const Node &rhs) const {
           if (a == rhs.a)
27
               return b < rhs.b;</pre>
28
           return a < rhs.a;</pre>
30
31 };
32
```

```
33 struct HashNode {
34
       int pos;
       long long val1, val2;
35
       HashNode() {}
36
       HashNode(int _pos, long long _val1, long long _val2) {
37
38
           pos = _pos;
           val1 = _val1;
39
40
           val2 = _val2;
41
42
       bool operator < (const HashNode &rhs) const {
           if (val1 == rhs.val1)
43
               return val2 < rhs.val2;</pre>
44
45
           return val1 < rhs.val1:
46
47 };
48
49 void hashwork(int u)
50 {
       vector<Node> data;
       size[u] = 1;
52
53
       for (int i = 0; i < (int)vec[u].size(); ++i) {</pre>
           int v = vec[u][i];
54
55
           hashwork(v);
           data.push_back(Node(f[v], g[v], size[v]));
56
           size[u] += size[v];
57
58
59
       data.push_back(Node(1, 1, size[u]));
       sort(data.begin(), data.end());
60
61
62
       int len = 0;
       f[u] = 1;
63
64
       for (int i = 0; i < (int)data.size(); ++i) {</pre>
           f[u] = ((f[u] * data[i].a) % p * rtp[len]) % p;
65
66
           g[u] = ((g[u] * data[i].b) % q + rtq[len]) % q;
           len += data[i].v;
67
68
69 }
70
71 int main()
72 {
       ios::sync_with_stdio(false);
       rtp[0] = rtq[0] = 1;
74
75
       for (int i = 1; i < N; ++i) {
           rtp[i] = (rtp[i - 1] * mm) % p;
76
77
           rtq[i] = (rtq[i-1] * mm) % q;
78
79
80
       aueue<int> aue:
81
       cin >> n;
       for (int v = 2; v <= n; ++v) {
83
           int u;
84
           cin >> u;
85
           vec[u].push_back(v);
```

Shanghai Jiao Tong University 29 Tempus Fugit

```
father[v] = u;
            deg[u]++;
 88
        memset(size, 0, sizeof(size));
 89
 90
        memset(f, 0, sizeof(f));
        memset(g, 0, sizeof(g));
 91
        for (int i = 1; i <= n; ++i)
            if (deg[i] == 0)
 93
 94
                que.push(i);
 95
        while (!que.empty()) {
            int u = que.front();
            //cout << u << endl;</pre>
            que.pop();
            deg[father[u]]—;
            if (deg[father[u]] == 0) que.push(father[u]);
            vector<Node> data;
103
            size[u] = 1;
104
            for (int i = 0; i < (int)vec[u].size(); ++i) {
                int v = vec[u][i];
106
                //hashwork(v);
                data.push_back(Node(f[v], g[v], size[v]));
108
                size[u] += size[v];
110
            data.push_back(Node(1, 1, size[u]));
112
            sort(data.begin(), data.end());
113
114
            int len = 0;
            f[u] = 1;
116
            for (int i = 0; i < (int)data.size(); ++i) {</pre>
117
                f[u] = ((f[u] * data[i].a) % p * rtp[len]) % p;
                g[u] = ((g[u] * data[i].b) % q + rtq[len]) % q;
118
                len += data[i].v;
119
120
121
122
        //hashwork(1);
123
124
125
          vector<HashNode> ans;
          for (int i = 1; i <= n; ++i) {
126
127
          ans.push_back(HashNode(i, f[i], g[i]));
128
          sort(ans.begin(), ans.end());
129
          int tot = 0;
131
          for (int i = 0, j; i < (int)ans.size(); i = j) {
132
          for (j = i; j < (int)ans.size() \&& (ans[j].val1 == ans[i].val1 && ans[j].val2 == ans[i].val2); ++j)
133
134
                mark[ans[j].pos] = tot;
        */
136
137
        int tot = 0;
138
        for (int i = 1; i <= n; ++i) {
```

```
139
            pair<long long, long long> pr = make_pair(f[i], g[i]);
140
            if (mp.count(pr) == 0) {
141
                mp[pr] = ++tot;
                mark[i] = tot;
142
143
            } else {
                mark[i] = mp[pr];
144
145
146
147
        for (int i = 1; i <= n; ++i) {
148
            cout << mark[i];
149
            if (i == n) cout << endl;</pre>
            else cout << " ";
152
        return 0;
153 }
```

4.3 带花树

```
1 namespace Blossom {
       int n, head, tail, S, T, lca;
       int match[MAXN], O[MAXN], pred[MAXN], label[MAXN], ing[MAXN], inb[MAXN];
       vector<int> link[MAXN];
       inline void push(int x) { Q[tail++] = x; inq[x] = true; }
       int findCommonAncestor(int x, int y) {
           static bool inPath[MAXN]; for (int i = 0; i < n; ++i) inPath[i] = 0;
           for (;; x = pred[match[x]]) { x = label[x]; inPath[x] = true; if (x == S) break; }
           for ( ; ; y = pred[ match[y] ]) { y = label[y]; if (inPath[y]) break; } return y;
10
11
       void resetTrace(int x, int lca) {
           while (label[x] != lca) { int y = match[x]; inb[ label[x] ] = inb[ label[y] ] = true;
12
               x = pred[y]; if (label[x] != lca) pred[x] = y; }}
13
       void blossomContract(int x, int y) {
14
15
           lca = findCommonAncestor(x, y);
           Foru(i, 0, n) inb[i] = 0; resetTrace(x, lca); resetTrace(y, lca);
16
           if (label[x] != lca) pred[x] = y; if (label[y] != lca) pred[y] = x;
           Foru(i, 0, n) if (inb[ label[i] ]) { label[i] = lca; if (!inq[i]) push(i); }
18
19
20
       bool findAugmentingPath() {
           Foru(i, 0, n) pred[i] = -1, label[i] = i, inq[i] = 0;
21
22
           int x, y, z; head = tail = 0;
           for (push(S); head < tail; ) for (int i = (int)link[x = Q[head++]].size() - 1; i >= 0; --i) {
23
               y = link[x][i]; if (label[x] == label[y] | | x == match[y]) continue;
24
               if (y == S \mid | (match[y] >= 0 \&\& pred[match[y]] >= 0)) blossomContract(x, y);
25
26
               else if (pred[y] == -1) {
                   pred[y] = x; if (match[y] >= 0) push(match[y]);
27
28
29
                       for (x = y; x >= 0; x = z) {
30
                       y = pred[x], z = match[y]; match[x] = y, match[y] = x;
                   } return true; }}} return false;
31
32
33
       int findMaxMatching() {
34
           int ans = 0; Foru(i, 0, n) match[i] = -1;
35
           for (S = 0; S < n; ++S) if (match[S] == -1) if (findAugmentingPath()) ++ans;
```

Shanghai Jiao Tong University 30 Tempus Fugit

```
37 }
38 }
```

return ans;

4.4 最大流

```
1 namespace Maxflow {
         int h[MAXNODE], vh[MAXNODE], S, T, Ncnt; edge cur[MAXNODE], pe[MAXNODE];
         void init(int _S, int _T, int _Ncnt) { S = _S; T = _T; Ncnt = _Ncnt; }
         int maxflow() {
             static int Q[MAXNODE]; int x, y, augc, flow = 0, head = 0, tail = 0; edge e;
             Rep(i, 0, Ncnt) cur[i] = fir[i]; Rep(i, 0, Ncnt) h[i] = INF; Rep(i, 0, Ncnt) vh[i] = 0;
             for (Q[++tail] = T, h[T] = 0; head < tail; ) {
                  x = 0[++head]; ++vh[h[x]];
                  for (e = fir[x]; e; e = e \rightarrow next) if (e \rightarrow op \rightarrow c)
                      if (h[y = e \rightarrow to] >= INF) h[y] = h[x] + 1, Q[++tail] = y;
             } for (x = S; h[S] < Ncnt; ) {</pre>
11
12
                  for (e = cur[x]; e; e = e \rightarrow next) if (e \rightarrow c)
                       if (h[y = e \rightarrow to] + 1 == h[x]) \{ cur[x] = pe[y] = e; x = y; break; \}
                  if (!e) {
14
                       if (—vh[ h[x] ] == 0) break; h[x] = Ncnt; cur[x] = NULL;
                       for (e = fir[x]; e; e = e \rightarrow next) if (e \rightarrow c)
                           if ( cMin( h[x], h[e \rightarrow to] + 1 ) ) cur[x] = e;
                       ++vh[ h[x] ];
                       if (x != S) x = pe[x] \rightarrow op \rightarrow to;
19
                  } else if (x == T) \{ augc = INF;
                       for (x = T; x != S; x = pe[x] \rightarrow op \rightarrow to) cMin(augc, pe[x] \rightarrow c);
21
                       for (x = T; x != S; x = pe[x] \rightarrow op \rightarrow to) {
                           pe[x]\rightarrow c -= augc; pe[x]\rightarrow op \rightarrow c += augc;
                       } flow += augc;
24
             } return flow;
26
27
28 }
```

4.5 最高标号预流推进

```
1 namespace Network {
        int S, T, Ncnt, hsize, heap[MAXN], h[MAXN], inq[MAXN], Q[MAXN], vh[MAXN * 2 + 1];
        LL E[MAXN]; edge cur[MAXN];
        inline void pushFlow(int x, int y, edge e) {
            int d = (int)min(E[x], (LL)e \rightarrow c);
            E[x] \longrightarrow d; e \longrightarrow c \longrightarrow d; E[y] += d; e \longrightarrow op \longrightarrow c += d;
        } inline bool heapCmp(int x, int y) { return h[x] < h[y]; }</pre>
        inline void hpush(int x) {
            inq[x] = true; heap[++hsize] = x; push_heap(heap + 1, heap + hsize + 1, heapCmp);
       } inline void hpop(int x) {
            inq[x] = false; pop_heap(heap + 1, heap + hsize + 1, heapCmp); —hsize;
11
12
       } LL maxFlow() {
13
            int head = 0, tail = 0, x, y, h0;
            memset(h, 63, sizeof(int) * (Ncnt + 1));
```

```
15
             memset(vh, 0, sizeof(int) * (2 * Ncnt + 2));
16
             memset(E, 0, sizeof(LL) * (Ncnt + 1));
17
             memset(inq, 0, sizeof(int) * (Ncnt + 1));
             memcpy(cur, fir, sizeof(edge) * (Ncnt + 1));
18
             for (Q[++tail] = T, h[T] = 0; head < tail; )
19
                 for (edge e(fir[x = Q[++head]); e; e = e\rightarrownext) if (e\rightarrowop\rightarrowc)
^{21}
                     if (h[y = e \rightarrow to] >= INF) h[y] = h[x] + 1, Q[++tail] = y;
22
             if (h[S] >= Ncnt) return 0;
23
             h[S] = Ncnt; E[S] = LL_INF;
24
             for (int i = 1; i \le Ncnt; ++i) if (h\lceil i \rceil \le Ncnt) ++vh\lceil h\lceil i \rceil ];
25
             hsize = 0;
             for (edge e(fir[S]); e; e = e \rightarrow next) if (e \rightarrow c \&\& h[y = e \rightarrow to] < Ncnt) {
26
27
                 pushFlow(S, y, e); if (!inq[y] && y != S && y != T) hpush(y);
28
            } while (hsize) {
29
                 bool good = false;
                 for (edge &e(cur[x = heap[1]]); e; e = e\rightarrownext) if (e\rightarrowc)
30
31
                     if (h[x] == h[y = e \rightarrow to] + 1) {
32
                          good = true; pushFlow(x, y, e); if (E[x] == 0) hpop(x);
                          if (inq[y] == false && y != S && y != T) hpush(y);
33
                          break;
34
35
                 if (!good) { // relabel
36
37
                     hpop(x); --vh[h0 = h[x]];
                      int &minH = h[x] = INF; cur[x] = NULL;
38
                     for (edge e(fir[x]); e; e = e \rightarrow next) if (e \rightarrow c)
39
                          if ( cMin(minH, h[e \rightarrow to] + 1) ) cur[x] = fir[x];
40
                     hpush(x); ++vh[h[x]];
41
                     if (vh[h0] == 0 \&\& h0 < Ncnt) {
42
                          hsize = 0;
43
                          for (int i = 1; i <= Ncnt; ++i) {
44
                               if (h[i] > h0 \& h[i] < Ncnt) \longrightarrow vh[h[i] ], ++vh[h[i] = Ncnt + 1];
45
                               if (i != S && i != T && E[i]) heap[++hsize] = i;
                          } make_heap(heap + 1, heap + hsize + 1, heapCmp);
47
48
                 }
49
50
            } return E[T];
51
52 }
```

4.6 KM

```
int N, Tcnt, w[MAXN][MAXN], slack[MAXN];
int lx[MAXN], linkx[MAXN], visy[MAXN], ly[MAXN], linky[MAXN], visx[MAXN]; // 初首全为0

bool DFS(int x) { visx[x] = Tcnt;

Rep(y, 1, N) if(visy[y] != Tcnt) { int t = lx[x] + ly[y] - w[x][y];

if (t == 0) { visy[y] = Tcnt;

if (!linky[y] !! DFS(linky[y])) { linkx[x] = y; linky[y] = x; return true; }

} else cMin(slack[y], t);

return false;

y void KM() {

Tcnt = 0; Rep(x, 1, N) Rep(y, 1, N) cMax(lx[x], w[x][y]);

Rep(S, 1, N) { Rep(i, 1, N) slack[i] = INF;

for (++Tcnt; !DFS(S); ++Tcnt) { int d = INF;
```

Shanghai Jiao Tong University 31 Tempus Fugit

4.7 双连通分量

```
1 #include <iostream>
2 #include <cstdio>
 3 #include <cstring>
 4 #include <cstdlib>
5 #include <vector>
7 using namespace std;
9 const int MAXN = 100000 + 10;
int dfn[MAXN], low[MAXN], bccno[MAXN], dfn_clock, bcc_cnt, Top;
12 vector <int> G[MAXN], bcc[MAXN];
13 pair <int, int> stk[MAXN];
14 bool iscut[MAXN];
15 int n, m;
16
17 void dfs(int p, int fa) {
       low[p] = dfn[p] = ++dfn_clock;
       int child = 0;
19
       for (int i = 0; i < G[p].size(); ++i) {
20
           int v = G[p][i];
21
           if (!dfn[v]) {
22
               stk[++Top] = make_pair(p, v);
24
               dfs(v, p);
               child++;
25
               low[p] = min(low[p], low[v]);
               if (low[v] >= dfn[p]) {
27
                   iscut[p] = 1;
                   ++bcc_cnt;
                   bcc[bcc_cnt].clear();
                   for (;;) {
                      pair <int, int> x = stk[Top];
32
                      —Top;
                      if (bccno[x.first] != bcc_cnt) {
                          bccno[x.first] = bcc_cnt;
                          bcc[bcc_cnt].push_back(x.first);
37
                      if (bccno[x.second] != bcc_cnt) {
                          bccno[x.second] = bcc_cnt;
                          bcc[bcc_cnt].push_back(x.second);
                      if (x.first == p && x.second == v)
                          break;
44
```

```
46
           else
47
               if (dfn[v] < dfn[p] && v != fa) {
48
                   stk[++Top] = make_pair(p, v);
49
                   low[p] = min(low[p], dfn[v]);
51
52
       if (fa < 0 && child == 1) iscut[p] = 0;
53
54 }
55
56 void find_bcc(int n) {
       for (int i = 1; i \le n; ++i) dfn[i] = 0;
       for (int i = 1; i \le n; ++i) iscut[i] = 0;
       for (int i = 1; i <= n; ++i) bccno[i] = 0;
       dfn_clock = bcc_cnt = 0;
61
       for (int i = 1; i <= n; ++i)
           if (!dfn[i])
62
63
               dfs(i, -1);
64 }
65
66 int main() {
67
       scanf("%d%d", &n, &m);
       for (int a, b, i = 1; i \le m; ++i) {
           scanf("%d%d", &a, &b);
69
           G[a].push_back(b);
70
           G[b].push_back(a);
71
72
73
       find_bcc(n);
74
75
       return 0;
76 }
```

4.8 强连通分量

```
#include <iostream>
#include <cstdio>
#include <cstdio>
#include <cstdib>
#include <vector>
#include <algorithm>

const int MAXN = 100000 + 10;

vector <int> G[MAXN];
int n, m;

int dfn[MAXN], low[MAXN], stk[MAXN], Top, scc_cnt, sccno[MAXN], dfn_clock;

void dfs(int p) {
    dfn[p] = low[p] = ++dfn_clock;
    stk[++Top] = p;
}
```

Shanghai Jiao Tong University 32 Tempus Fugit

```
for (int i = 0; i < (int)G[p].size(); ++i) {
           int v = G[p][i];
           if (!dfn[v]) {
21
               dfs(v);
22
               low[p] = min(low[p], low[v]);
           else if (!sccno[v])
25
               low[p] = min(low[p], dfn[v]);
26
27
28
       if (low[p] == dfn[p]) {
           scc_cnt++;
           for (;;) {
30
31
               int x = stk[Top];
              —Top;
               sccno[x] = scc_cnt;
               if (x == p) break;
36
37 }
39 void find_scc(int n) {
       dfn clock = scc cnt = 0:
41
       for (int i = 1; i \le n; ++i) sccno[i] = 0;
       for (int i = 1; i \le n; ++i) dfn[i] = low[i] = 0;
       for (int i = 1; i <= n; ++i)
43
           if (!dfn[i])
44
               dfs(i);
45
46 }
```

4.9 2-SAT ≒ Kosaraju

注意 Kosaraju 需要建反图

```
1 namespace SCC {
       int code[MAXN * 2], seq[MAXN * 2], sCnt;
       void DFS_1(int x) { code[x] = 1;
            for (edge e(fir[x]); e; e = e\rightarrownext) if (code[e\rightarrowto] == -1) DFS_1(e\rightarrowto);
            seq[++sCnt] = x;
       } void DFS_2(int x) { code[x] = sCnt;
            for (edge e(fir2[x]); e; e = e\rightarrownext) if (code[e\rightarrowto] == -1) DFS_2(e\rightarrowto); }
       void SCC(int N) {
            sCnt = 0; for (int i = 1; i \ll N; ++i) code[i] = -1;
            for (int i = 1; i \le N; ++i) if (code[i] == -1) DFS_1(i);
            sCnt = 0; for (int i = 1; i <= N; ++i) code[i] = -1;
            for (int i = N; i >= 1; --i) if (code[seq[i]] == -1) {
13
                ++sCnt; DFS_2(seq[i]); }
15 \}// true - 2i - 1
16 // false — 2i
17 bool TwoSat() { SCC::SCC(N + N);
       // if code[2i - 1] = code[2i]: no solution
       // if code[2i - 1] > code[2i]: i selected. else i not selected
20 }
```

4.10 全局最小割 Stoer-Wagner

```
int minCut(int N, int G[MAXN][MAXN]) { // 0—based
       static int weight[MAXN], used[MAXN]; int ans = INT_MAX;
       while (N > 1) {
           for (int i = 0; i < N; ++i) used[i] = false; used[0] = true;
           for (int i = 0; i < N; ++i) weight[i] = G[i][0];
           int S = -1, T = 0;
           for (int _r = 2; _r \leftarrow N; ++_r) { // N-1 selections
               int x = -1:
               for (int i = 0; i < N; ++i) if (!used[i])
                   if (x == -1 \mid l \mid weight[i] > weight[x]) x = i;
               for (int i = 0; i < N; ++i) weight[i] += G[x][i];
12
              S = T; T = x; used[x] = true;
           } ans = min(ans, weight[T]);
13
           for (int i = 0; i < N; ++i) G[i][S] += G[i][T], G[S][i] += G[i][T];
15
           G[S][S] = 0; --N;
           for (int i = 0; i <= N; ++i) swap(G[i][T], G[i][N]);</pre>
16
17
           for (int i = 0; i < N; ++i) swap(G[T][i], G[N][i]);
18
       } return ans;
19 }
```

4.11 Hopcroft-Karp

```
int N, M, level[MAXN], matchX[MAXN], matchY[MAXN];
2 bool used[MAXN];
3 bool DFS(int x) {
       used[x] = true; for (edge e(fir[x]); e; e = e \rightarrow next) {
           int y = e \rightarrow to, z = matchY[y];
           if (z == -1 \mid | (!used[z] \&\& level[x] < level[z] \&\& DFS(z))) {
                matchX[x] = y; matchY[y] = x; return true;
9
       } return false;
10 }
int maxMatch() {
       for (int i = 0; i < N; ++i) used[i] = false;
13
       for (int i = 0; i < N; ++i) matchX[i] = -1;
14
       for (int i = 0; i < M; ++i) matchY[i] = -1;
       for (int i = 0; i < N; ++i) level[i] = -1;
       int match = 0, d;
16
17
       for ( ; ; match += d) {
           static int O[MAXN * 2 + 1];
18
19
           int head = 0, tail = d = 0;
           for (int x = 0; x < N; ++x) level[x] = -1;
20
           for (int x = 0; x < N; ++x) if (matchX[x] == -1)
21
22
               level[x] = 0, Q[++tail] = x;
23
            while (head < tail)</pre>
                for (edge e(fir[x = Q[++head]]); e; e = e\rightarrownext) {
24
                    int y = e \rightarrow to, z = matchY[y];
                    if (z != -1 \&\& level[z] < 0) level[z] = level[x] + 1, Q[++tail] = z;
26
27
            for (int x = 0; x < N; ++x) used[x] = false;
28
            for (int x = 0; x < N; ++x) if (matchX[x] == -1) if (DFS(x)) ++d;
29
```

Shanghai Jiao Tong University 33 Tempus Fugit

4.12 欧拉路

4.13 稳定婚姻

4.14 最大团搜索

```
1 namespace MaxClique { // 1—based
       int g[MAXN][MAXN], len[MAXN], list[MAXN][MAXN], mc[MAXN], ans, found;
       void DFS(int size) {
           if (len[size] == 0) { if (size > ans) ans = size, found = true; return; }
           for (int k = 0; k < len[size] && !found; ++k) {
               if (size + len[size] - k \Leftarrow ans) break;
               int i = list[size][k]; if (size + mc[i] <= ans) break;</pre>
               for (int j = k + 1, len[size + 1] = 0; j < len[size]; ++j) if (g[i][list[size][j]])
                   list[size + 1][len[size + 1]++] = list[size][j];
               DFS(size + 1);
           }
11
12
13
       int work(int n) {
           mc[n] = ans = 1; for (int i = n - 1; i; --i) { found = false; len[1] = 0;
14
15
               for (int j = i + 1; j \le n; ++j) if (g[i][j]) list[1][len[1]++] = j;
```

4.15 极大团计数

```
1 namespace MaxCliqueCounting {
       int n, ans;
       int ne[MAXN], ce[MAXN];
       int g[MAXN][MAXN], list[MAXN][MAXN];
       void dfs(int size) {
           int i, j, k, t, cnt, best = 0;
           bool bb;
           if (ne[size] == ce[size]) {
               if (ce[size] == 0)
                   ++ans;
11
               return;
12
13
           for (t = 0, i = 1; i \le ne[size]; ++i) {
               for (cnt = 0, j = ne[size] + 1; j <= ce[size]; ++j)
14
                   if (!g[list[size][i]][list[size][j]])
15
                       ++cnt;
16
17
               if (t == 0 || cnt < best)
18
                   t = i, best = cnt;
19
20
           if (t && best <= 0)
               return;
21
           for (k = ne[size] + 1; k \leftarrow ce[size]; ++k) {
22
23
               if (t > 0) {
                   for (i = k; i <= ce[size]; ++i)</pre>
24
25
                       if (!g[list[size][t]][list[size][i]])
26
                           break:
                   swap(list[size][k], list[size][i]);
27
28
               i = list[size][k];
29
               ne[size + 1] = ce[size + 1] = 0;
30
31
               for (j = 1; j < k; ++j)
                   if (g[i][list[size][j]])
32
                       list[size + 1][++ne[size + 1]] = list[size][j];
33
               for (ce[size + 1] = ne[size + 1], j = k + 1; j <= ce[size]; ++j)
34
                   if (g[i][list[size][j]])
35
                       list[size + 1][++ce[size + 1]] = list[size][j];
36
37
               dfs(size + 1);
               ++ne[size];
38
               -best:
39
40
               for (j = k + 1, cnt = 0; j \le ce[size]; ++j)
                   if (!g[i][list[size][j]])
41
                       ++cnt;
42
               if (t == 0 || cnt < best)
43
44
                   t = k, best = cnt;
               if (t && best <= 0)
45
46
                   break;
```

Shanghai Jiao Tong University 34 Tempus Fugit

4.16 最小树形图

```
1 namespace EdmondsAlgorithm { // O(ElogE + V^2) !!! 0—based !!!
         struct enode { int from, c, key, delta, dep; enode *ch[2], *next;
        } ebase[maxm], *etop, *fir[maxn], nil, *null, *inEdge[maxn], *chs[maxn];
         typedef enode *edge; typedef enode *tree;
         int n, m, setFa[maxn], deg[maxn], que[maxn];
         inline void pushDown(tree x) { if (x→delta) {
              x\rightarrow ch[0]\rightarrow key += x\rightarrow delta; x\rightarrow ch[0]\rightarrow delta += x\rightarrow delta;
              x\rightarrow ch[1]\rightarrow key += x\rightarrow delta; x\rightarrow ch[1]\rightarrow delta += x\rightarrow delta; x\rightarrow delta = 0;
        }}
10
         tree merge(tree x, tree y) {
              if (x == null) return y; if (y == null) return x;
11
12
              if (x\rightarrow key > y\rightarrow key) swap(x, y); pushDown(x); x\rightarrow ch[1] = merge(x\rightarrow ch[1], y);
              if (x\rightarrow ch[0]\rightarrow dep < x\rightarrow ch[1]\rightarrow dep) swap(x\rightarrow ch[0], x\rightarrow ch[1]);
13
14
              x\rightarrow dep = x\rightarrow ch[1] \rightarrow dep + 1; return x;
15
16
         void addEdge(int u, int v, int w) {
17
              etop\rightarrowfrom = u; etop\rightarrowc = etop\rightarrowkey = w; etop\rightarrowdelta = etop\rightarrowdep = 0;
18
              etop\rightarrownext = fir[v]; etop\rightarrowch[0] = etop\rightarrowch[1] = null;
              fir[v] = etop; inEdge[v] = merge(inEdge[v], etop++);
19
         void deleteMin(tree &r) { pushDown(r); r = merge(r \rightarrow ch[0], r \rightarrow ch[1]); }
21
22
         int findSet(int x) { return setFa[x] == x ? x : setFa[x] = findSet(setFa[x]); }
23
         void clear(int V, int E) {
              null = &nil; null \rightarrow ch[0] = null \rightarrow ch[1] = null; null \rightarrow dep = -1;
              n = V; m = E; etop = ebase; Foru(i, 0, V) fir[i] = NULL; Foru(i, 0, V) inEdge[i] = null;
26
27
         int solve(int root) { int res = 0, head, tail;
              for (int i = 0; i < n; ++i) setFa[i] = i;
29
              for ( ; ; ) { memset(deg, 0, sizeof(int) * n); chs[root] = inEdge[root];
                   for (int i = 0; i < n; ++i) if (i != root \&\& setFa[i] == i) {
                       while (findSet(inEdge[i]->from) == findSet(i)) deleteMin(inEdge[i]);
31
32
                        ++deg[ findSet((chs[i] = inEdge[i]) >> from) ];
                   for (int i = head = tail = 0; i < n; ++i)
34
                       if (i != root && setFa[i] == i && deg[i] == 0) que[tail++] = i;
                   while (head < tail) {</pre>
                       int x = findSet(chs[que[head++]]—>from);
                       if (--deg[x] == 0) que[tail++] = x;
```

```
} bool found = false;
               for (int i = 0; i < n; ++i) if (i != root \&\& setFa[i] == i \&\& deg[i] > 0) {
40
                    int j = i; tree temp = null; found = true;
41
                   do {setFa[j = findSet(chs[j]->from)] = i;
42
                       deleteMin(inEdge[j]); res += chs[j]->key;
43
                       inEdge[j]->key -= chs[j]->key; inEdge[j]->delta -= chs[j]->key;
45
                       temp = merge(temp, inEdge[j]);
                   } while (j != i); inEdge[i] = temp;
46
47
               } if (!found) break;
48
           } for (int i = 0; i < n; ++ i) if (i != root \&\& setFa[i] == i) res += chs[i]\rightarrow key;
49
           return res;
50
51 }
52 namespace ChuLiu { // O(V ^ 3) !!! 1—based !!!
       int n, used[maxn], pass[maxn], eg[maxn], more, que[maxn], g[maxn][maxn];
       void combine(int id, int &sum) { int tot = 0, from, i, j, k;
55
           for (; id != 0 && !pass[id]; id = eg[id]) que[tot++] = id, pass[id] = 1;
           for (from = 0; from < tot && que[from] != id; from++);</pre>
56
           if (from == tot) return; more = 1;
           for (i = from; i < tot; i++) {
58
59
               sum += g[eg[que[i]]][que[i]]; if (i == from) continue;
               for (j = used[que[i]] = 1; j \ll n; j++) if (!used[j])
60
61
                   if (g[que[i]][j] < g[id][j]) g[id][j] = g[que[i]][j];
62
           for (i = 1; i \le n; i++) if (!used[i] \&\& i != id)
63
               for (j = from; j < tot; j++) {
64
                   k = que[j]; if (g[i][id] > g[i][k] - g[eg[k]][k])
65
66
                    g[i][id] = g[i][k] - g[eg[k]][k];
67
68
       void clear(int V) { n = V; Rep(i, 1, V) Rep(j, 1, V) g[i][j] = inf; }
69
       int solve(int root) {
           int i, j, k, sum = 0; memset(used, 0, sizeof(int) * (n + 1));
71
72
           for (more = 1; more; ) {
73
               more = 0; memset(eg, 0, sizeof(int) * (n + 1));
74
               for (i = 1; i <= n; i++) if (!used[i] && i != root) {
                   for (j = 1, k = 0; j \le n; j++) if (!used[j] && i != j)
75
                       if (k == 0 | | g[j][i] < g[k][i]) | k = j;
76
77
                    eq[i] = k;
               } memset(pass, 0, sizeof(int) * (n + 1));
78
79
               for (i = 1; i <= n; i++) if (!used[i] && !pass[i] && i != root)
80
                   combine(i, sum);
81
           } for (i = 1; i <= n; i++) if (!used[i] && i != root) sum += g[eg[i]][i];
82
           return sum;
83
84 }
```

4.17 离线动态最小生成树

 $O(Qlog^2Q)$. (qx[i],qy[i]) 表示将编号为 qx[i] 的边的权值改为 qy[i], 删除一条边相当于将其权值改为 ∞ , 加入一条 边相当于将其权值从 ∞ 变成某个值.

```
1 const int maxn = 100000 + 5;
2 const int maxm = 1000000 + 5;
```

Shanghai Jiao Tong University

```
3 \text{ const int maxq} = 10000000 + 5;
 4 const int qsize = maxm + 3 * maxq;
 5 int n, m, Q, x[qsize], y[qsize], z[qsize], qx[maxq], qy[maxq], a[maxn], *tz;
 6 int kx[maxn], ky[maxn], kt, vd[maxn], id[maxm], app[maxm];
 7 bool extra[maxm];
 8 void init() {
       scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) scanf("%d%d%d", x + i, y + i, z + i);
       scanf("%d", \&Q); for (int i = 0; i < 0; i++) { <math>scanf("%d%d", qx + i, qy + i); qx[i]—; }
11 }
12 int find(int x) {
       int root = x, next; while (a[root]) root = a[root];
       while ((next = a[x]) != 0) a[x] = root, x = next; return root;
15 }
16 inline bool cmp(const int &a, const int &b) { return tz[a] < tz[b]; }</pre>
17 void solve(int *qx, int *qy, int Q, int n, int *x, int *y, int *z, int m, long long ans) {
       int ri, rj;
       if (0 == 1) {
           for (int i = 1; i \le n; i++) a[i] = 0; z[qx[0]] = qy[0];
           for (int i = 0; i < m; i++) id[i] = i;
           tz = z; sort(id, id + m, cmp);
22
23
           for (int i = 0; i < m; i++) {
24
               ri = find(x[id[i]]); rj = find(y[id[i]]);
                if (ri != rj) ans += z[id[i]], a[ri] = rj;
           } printf("%I64d\n", ans);
           return;
       } int tm = kt = 0, n2 = 0, m2 = 0;
28
       for (int i = 1; i \le n; i++) a[i] = 0;
       for (int i = 0; i < 0; i++) {
           ri = find(x[qx[i]]); rj = find(y[qx[i]]); if (ri != rj) a[ri] = rj;
31
32
       for (int i = 0; i < m; i++) extra[i] = true;
       for (int i = 0; i < 0; i++) extra[qx[i]] = false;
       for (int i = 0; i < m; i++) if (extra[i]) id[tm++] = i;
36
       tz = z; sort(id, id + tm, cmp);
37
       for (int i = 0: i < tm: i++) {
           ri = find(x[id[i]]); rj = find(y[id[i]]);
           if (ri != rj)
39
                a[ri] = rj, ans += z[id[i]], kx[kt] = x[id[i]], ky[kt] = y[id[i]], kt++;
40
41
       for (int i = 1; i \le n; i++) a[i] = 0;
       for (int i = 0; i < kt; i++) a[find(kx[i])] = find(ky[i]);
       for (int i = 1; i \ll n; i++) if (a[i] == 0) vd[i] = ++n2;
       for (int i = 1; i \leftarrow n; i++) if (a[i] != 0) vd[i] = vd[find(i)];
       int *Nx = x + m, *Ny = y + m, *Nz = z + m;
       for (int i = 0; i < m; i++) app[i] = -1;
       for (int i = 0; i < 0; i++)
49
           if (app[qx[i]] == -1)
50
                Nx[m2] = vd[x[qx[i]]], Ny[m2] = vd[y[qx[i]]], Nz[m2] = z[qx[i]], app[qx[i]] = m2, m2++;
       for (int i = 0; i < 0; i++) {
           z[qx[i]] = qy[i];
52
53
           qx[i] = app[qx[i]];
54
       for (int i = 1; i \le n2; i++) a[i] = 0;
```

```
35 Tempus Fugit
```

```
for (int i = 0; i < tm; i++) {
    ri = find(vd[x[id[i]]); rj = find(vd[y[id[i]]);
    if (ri != rj)
        a[ri] = rj, Nx[m2] = vd[x[id[i]]], Ny[m2] = vd[y[id[i]]], Nz[m2] = z[id[i]], m2++;
    }
    int mid = Q / 2;
    solve(qx, qy, mid, n2, Nx, Ny, Nz, m2, ans);
    solve(qx + mid, qy + mid, Q - mid, n2, Nx, Ny, Nz, m2, ans);
    void work() { if (Q) solve(qx, qy, Q, n, x, y, z, m, 0); }
    int main() { init(); work(); return 0; }</pre>
```

4.18 弦图

- 仟何一个弦图都至少有一个单纯点, 不是完全图的弦图至少有两个不相邻的单纯点,
- 弦图最多有 n 个极大团。
- 设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点. 判断 $v \cup N(v)$ 是否为极大团, 只需判断是否存在一个 w, 满足 Next(w) = v 且 |N(v)| + 1 < |N(w)| 即可.
- 最小染色: 完美消除序列从后往前依次给每个点染色, 给每个点染上可以染的最小的颜色. (团数 = 色数)
- 最大独立集: 完美消除序列从前往后能选就选.
- 最小团覆盖: 设最大独立集为 $\{p_1, p_2, \dots, p_t\}$, 则 $\{p_1 \cup N(p_1), \dots, p_t \cup N(p_t)\}$ 为最小团覆盖. (最大独立集数 = 最小团覆盖数)

```
1 class Chordal { // 1—Based, G is the Graph, must be sorted before call Check_Chordal
2 public: // Construct will sort it automatically
       int v[Maxn], id[Maxn]; bool inseq[Maxn]; priority_queue<pair<int, int> > pq;
       vector<int> Construct_Perfect_Elimination_Sequence(vector<int> *G, int n) { // O(m + nlogn)
           vector<int> seq(n + 1, 0);
           for (int i = 0; i <= n; ++i) inseq[i] = false, sort(G[i].begin(), G[i].end()), v[i] = 0;
           int cur = n; pair<int, int> Mx; while(!pq.empty()) pq.pop(); pq.push(make_pair(0, 1));
           for (int i = n; i >= 1; --i) {
               while (!pq.empty() && (Mx = pq.top(), inseq[Mx.second] || Mx.first != v[Mx.second])) pq.pop();
10
               id[Mx.second] = cur;
               int x = seq[cur-] = Mx.second, sz = (int)G[Mx.second].size(); inseq[x] = true;
11
12
               for (int j = 0; j < sz; ++j) {
                   int y = G[x][j]; if(!inseq[y]) pq.push(make_pair(++v[y], y));
13
14
15
          } return seq;
16
17
       bool Check_Chordal(vector<int> *G, vector<int> &seq, int n) { // O(n + mlogn), plz gen seq first
18
           bool isChordal = true;
           for (int i = n - 1; i >= 1 \&\& isChordal; --i) {
19
               int x = seq[i], sz, y = -1;
20
21
               if ((sz = (int)G[x].size()) == 0) continue;
22
               for(int j = 0; j < sz; ++j) {
                   if (id[G[x][j]] < i) continue;</pre>
23
```

Shanghai Jiao Tong University 36 Tempus Fugit

```
if (y == -1 || id[y] > id[G[x][j]]) y = G[x][j];
} if (y == -1) continue;

for (int j = 0; j < sz; ++j) {
    int y1 = G[x][j]; if (id[y1] < i) continue;
    if (y1 == y || binary_search(G[y].begin(), G[y].end(), y1)) continue;
    isChordal = false; break;
}
} return isChordal;
}
return isChordal;
}
</pre>
```

```
4.19 K 短路 (允许重复)
 1 #define for_each(it, v) for (vector<Edge*>::iterator it = (v).begin(); it != (v).end(); ++it)
 2 const int MAX_N = 10000, MAX_M = 50000, MAX_K = 10000, INF = 10000000000;
 3 struct Edge { int from, to, weight; };
 4 struct HeapNode { Edge* edge; int depth; HeapNode* child[4]; }; // child[0..1] for heap G, child[2..3] for heap
         out edge
 6 int n, m, k, s, t; Edge* edge[MAX_M];
 7 int dist[MAX_N]; Edge* prev[MAX_N];
 8 vector<Edge*> graph[MAX_N]; vector<Edge*> graphR[MAX_N];
 9 HeapNode* nullNode; HeapNode* heapTop[MAX_N];
11 HeapNode* createHeap(HeapNode* curNode, HeapNode* newNode) {
       if (curNode == nullNode) return newNode; HeapNode* rootNode = new HeapNode;
       memcpy(rootNode, curNode, sizeof(HeapNode));
       if (newNode->edge->weight < curNode->edge->weight) {
14
           rootNode->edge = newNode->edge; rootNode->child[2] = newNode->child[2]; rootNode->child[3] = newNode->
         child[3];
           newNode->edge = curNode->child[2] = curNode->child[2]; newNode->child[3] = curNode->child
       } if (rootNode->child[0]->depth < rootNode->child[1]->depth) rootNode->child[0] = createHeap(rootNode->child
       else rootNode->child[1] = createHeap(rootNode->child[1], newNode);
       rootNode->depth = max(rootNode->child[0]->depth, rootNode->child[1]->depth) + 1;
19
20
       return rootNode;
21 }
22 bool heapNodeMoreThan(HeapNode* node1, HeapNode* node2) { return node1->edge->weight > node2->edge->weight; }
24 int main() {
       scanf("%d%d%d", &n, &m, &k); scanf("%d%d", &s, &t); s—, t—;
       while (m---) { Edge* newEdge = new Edge;
27
           int i, j, w; scanf("%d%d%d", &i, &j, &w);
           i---, j---; newEdge-->from = i; newEdge-->to = j; newEdge-->weight = w;
           graph[i].push_back(newEdge); graphR[j].push_back(newEdge);
29
30
       //Dijkstra
31
       queue<int> dfsOrder; memset(dist, -1, sizeof(dist));
32
       typedef pair<int, pair<int, Edge*> > DijkstraQueueItem;
33
34
       priority_queue<DijkstraQueueItem, vector<DijkstraQueueItem> > dq;
       dq.push(make_pair(0, make_pair(t, (Edge*) NULL)));
       while (!dq.empty()) {
```

```
int d = dq.top().first; int i = dq.top().second.first;
38
            Edge* edge = dq.top().second.second; dq.pop();
           if (dist[i] != -1) continue;
39
            dist[i] = d; prev[i] = edge; dfsOrder.push(i);
40
            for_each(it, graphR[i]) dq.push(make_pair(d + (*it)->weight, make_pair((*it)->from, *it)));
41
42
43
       //Create edge heap
       nullNode = new HeapNode; nullNode->depth = 0; nullNode->edge = new Edge; nullNode->edge->weight = INF;
44
       fill(nullNode->child, nullNode->child + 4, nullNode);
45
46
       while (!dfsOrder.empty()) {
47
            int i = dfs0rder.front(); dfs0rder.pop();
            if (prev[i] == NULL) heapTop[i] = nullNode;
48
49
            else heapTop[i] = heapTop[prev[i]->to];
50
            vector<HeapNode*> heapNodeList;
            for_each(it, graph[i]) { int j = (*it) \rightarrow to; if (dist[j] == -1) continue;
51
                (*it)\rightarrow weight += dist[j] - dist[i]; if (prev[i] != *it) {
52
53
                    HeapNode* curNode = new HeapNode;
54
                    fill(curNode->child, curNode->child + 4, nullNode);
                    curNode->depth = 1; curNode->edge = *it;
55
                    heapNodeList.push_back(curNode);
56
57
           } if (!heapNodeList.empty()) { //Create heap out
58
59
                make_heap(heapNodeList.begin(), heapNodeList.end(), heapNodeMoreThan);
                int size = heapNodeList.size();
                for (int p = 0; p < size; p++) {
61
                    heapNodeList[p] \rightarrow child[2] = 2 * p + 1 < size ? heapNodeList[2 * p + 1] : nullNode;
62
                    heapNodeList[p] \rightarrow child[3] = 2 * p + 2 < size ? heapNodeList[2 * p + 2] : nullNode;
63
               } heapTop[i] = createHeap(heapTop[i], heapNodeList.front());
64
65
66
       } //Walk on DAG
       typedef pair<long long, HeapNode*> DAGQueueItem;
67
       priority_queue<DAGQueueItem, vector<DAGQueueItem>, greater<DAGQueueItem> > aq;
       if (dist[s] == -1) printf("NO\n");
69
70
       else { printf("%d\n", dist[s]);
71
           if (heapTop[s] != nullNode) aq.push(make_pair(dist[s] + heapTop[s]->edge->weight, heapTop[s]));
72
       } k---; while (k---) {
           if (aq.empty()) { printf("NO\n"); continue; }
73
74
            long long d = aq.top().first; HeapNode* curNode = aq.top().second; aq.pop();
            printf("%I64d\n", d);
75
            if (heapTop[curNode->edge->to] != nullNode)
76
                \verb|aq.push(make_pair(d + heapTop[curNode->edge->to]->edge->weight, heapTop[curNode->edge->to]));|
77
            for (int i = 0; i < 4; i++) if (curNode\rightarrowchild[i] != nullNode)
78
79
                aq.push(make_pair(d - curNode->edge->weight + curNode->child[i]->edge->weight, curNode->child[i]));
80
       } return 0;
81 }
```

4.20 K 短路 (不允许重复)

Shanghai Jiao Tong University 37 Tempus Fugit

```
int *i, *j; if (value[a] != value[b]) return value[a] > value[b];
           for (i = Path[a], j = Path[b]; (*i) == (*j); i++, j++);
           return (*i) > (*j);
9 };
10 void Check(int idx, int st, int *path, int &res) {
       int i, j; for (i = 0; i < N; i++) dist[i] = 10000000000, Next[i] = t;
       dist[t] = 0; forbid[t] = true; j = t;
       for (;;) {
          for (i = 0; i < N; i++) if (!forbid[i] && (i != st || !hasNext[idx][j]) && (dist[j] + Graph[i][j] < dist[
         i] \mid \mid (dist[j] + Graph[i][j] == dist[i] \&\& j < Next[i])))
               Next[i] = j, dist[i] = dist[j] + Graph[i][j];
           j = -1; for (i = 0; i < N; i++) if (!forbid[i] && (j == -1 || dist[i] < dist[j])) j = i;
          if (j == -1) break; forbid[j] = 1; if (j == st) break;
       } res += dist[st]; for (i = st; i != t; i = Next[i], path++) (*path) = i; (*path) = i;
19 }
20 int main() {
       int i, j, k, l;
       while (scanf("%d%d%d%d", &N, &M, &K, &s, &t) && N) {
           priority_queue<int, vector<int>, cmp> Q;
24
           for (i = 0; i < N; i++) for (j = 0; j < N; j++) Graph[i][j] = 10000000000;
           for (i = 0; i < M; i++) { scanf("%d%d%d", &j, &k, &l); gcaph[j-1][k-1] = l; }
           s---; t---;
           memset(forbid, false, sizeof(forbid)); memset(hasNext[0], false, sizeof(hasNext[0]));
           Check(0, s, Path[0], value[0]); dev[0] = 0; from[0] = 0; Num[0][0] = 0; Q.push(0);
           cnt = 1; tot = 1;
           for (i = 0; i < K; i++) {
               if (Q.empty()) break; l = Q.top(); Q.pop();
               for (j = 0; j \le dev[l]; j++) Num[l][j] = Num[from[l]][j];
               for (; Path[l][j] != t; j++) {
                   memset(hasNext[tot], false, sizeof(hasNext[tot])); Num[l][j] = tot++;
34
               for (j = 0; Path[l][j] != t; j++) hasNext[Num[l][j]][Path[l][j + 1]] = true;
               for (j = dev[l]; Path[l][j] != t; j++) {
                   memset(forbid, false, sizeof(forbid)); value[cnt] = 0;
                   for (k = 0; k < j; k++) {
                       forbid[Path[l][k]] = true;
                       Path[cnt][k] = Path[l][k];
                       value[cnt] += Graph[Path[l][k]][Path[l][k + 1]];
                   } Check(Num[l][j], Path[l][j], &Path[cnt][j], value[cnt]);
                   if (value[cnt] > 2000000) continue;
                   dev[cnt] = j; from[cnt] = l; Q.push(cnt); cnt++;
           if (i < K || value[l] > 2000000) printf("None\n");
               for (i = 0; Path[l][i] != t; i++) printf("%d-", Path[l][i] + 1);
               printf("%d\n", t + 1);
          }
       } return 0;
```

4.21 小知识

- 平面图: 一定存在一个度小干等于 5 的点. E < 3V 6. 欧拉公式: V + F E = 1 + 连通块数
- 图连诵度:
 - 1. k— 连通 (k-connected): 对于任意一对结点都至少存在结点各不相同的 k 条路
 - 2. 点连通度 (vertex connectivity): 把图变成非连通图所需删除的最少点数
 - 3. Whitney 定理: 一个图是 k— 连通的当且仅当它的点连通度至少为 k
- Lindstroem-Gessel-Viennot Lemma: 给定一个图的 n 个起点和 n 个终点, 令 $A_{ij}=$ 第 i 个起点到第 j 个终 点的路径条数,则从起点到终点的不相交路径条数为 det(A)
- 欧拉回路与树形图的联系: 对于出度等于入度的连通图 $s(G) = t_i(G) \prod_{i=1}^n (d^+(v_i) 1)!$
- 密度子图: 给定无向图, 选取点集及其导出子图, 最大化 W_e + P_v (点权可负).

-
$$(S, u) = U$$
, $(u, T) = U - 2P_u - D_u$, $(u, v) = (v, u) = W_e$
- $ans = \frac{Un - C[S, T]}{2}$, 解集为 $S - \{s\}$

• 最大权闭合图: 选 a 则 a 的后继必须被选

$$-P_u > 0$$
, $(S, u) = P_u$, $P_u < 0$, $(u, T) = -P_u$
 $-\text{ans} = \sum_{P_u > 0} P_u - C[S, T]$, 解集为 $S - \{s\}$

- 判定边是否属于最小割:
 - 可能属于最小割: (u,v) 不属于同一 SCC
 - 一定在所有最小割中: (u,v) 不属于同一 SCC, 且 S,u 在同一 SCC, u,T 在同一 SCC
- 图同构 Hash: $F_t(i) = (F_{t-1}(i) \times A + \sum_{i \to j} F_{t-1}(j) \times B + \sum_{j \leftarrow i} F_{t-1}(j) \times C + D \times (i = a))$ (mod P), 枚举点 a, 迭代 K 次后求得的 $F_k(a)$ 就是 a 点所对应的 Hash 值.

5 数学

5.1 博弈论相关

1. Anti-SG:

规则与 Nim 基本相同, 取最后一个的输。

先手必胜当且仅当:

- (1) 所有堆的石子数都为 1 且游戏的 SG 值为 0;
- (2) 有些堆的石子数大于 1 且游戏的 SG 值不为 0。
- 2. SJ 定理:

对于任意一个 Anti-SG 游戏, 如果我们规定当局面中, 所有的单一游戏的 SG 值为 0 时, 游戏结束, 则先手 必胜当且仅当:

- (1) 游戏的 SG 函数不为 0 且游戏中某个单一游戏的 SG 函数大于 1;
- (2) 游戏的 SG 函数为 0 且游戏中没有单一游戏的 SG 函数大于 1。

Shanghai Jiao Tong University 38 Tempus Fugit

3. Multi-SG 游戏:

可以将一堆石子分成多堆.

4. Every-SG 游戏:

每一个可以移动的棋子都要移动.

对于我们可以赢的单一游戏, 我们一定要拿到这一场游戏的胜利.

只需要考虑如何让我们必胜的游戏尽可能长的玩下去, 对手相反。

于是就来一个 DP,

step[v] = 0; (v 为终止状态)

step[v] = maxstep[u] + 1; (sg[v] > 0, sg[u] = 0)

step[v] = minstep[u] + 1; (sg[v] == 0)

5. 翻硬币游戏:

N 枚硬币排成一排,有的正面朝上,有的反面朝上。游戏者根据某些约束翻硬币(如:每次只能翻一或两枚,或者每次只能翻连续的几枚),但他所翻动的硬币中,最右边的必须是从正面翻到反面。谁不能翻谁输。 结论:局面的 SG 值为局面中每个正面朝上的棋子单一存在时的 SG 值的异或和。可用数学归纳法证明。

6. 无向树删边游戏:

规则如下:

给出一个有 N 个点的树,有一个点作为树的根节点。游戏者轮流从树中删去边,删去一条边后,不与根节点相连的部分将被移走。谁无路可走谁输。

结论:

叶子节点的 SG 值为 0; 中间节点的 SG 值为它的所有子节点的 SG 值加 1 后的异或和。是用数学归纳法证明。

7. Christmas Game(PKU3710):

题目大意:

有 N 个局部联通的图。Harry 和 Sally 轮流从图中删边,删去一条边后,不与根节点相连的部分将被移走。Sally 为先手。图是通过从基础树中加一些边得到的。所有形成的环保证不共用边,且只与基础树有一个公共点。谁无路可走谁输。环的处理成为了解题的关键。性质:

- (1) 对于长度为奇数的环,去掉其中任意一个边之后,剩下的两个链长度同奇偶,抑或之后的 SG 值不可能为 奇数、所以它的 SG 值为 1;
- (2) 对于长度为偶数的环,去掉其中任意一个边之后,剩下的两个链长度异奇偶,抑或之后的 SG 值不可能为 0,所以它的 SG 值为 0;所以我们可以去掉所有的偶环,将所有的奇环变为长短为 1 的链。这样的话,我们已经将这道题改造成了上一节的模型。

8. 无向图的删边游戏:

我们将 Christmas Game 这道题进行一步拓展——去掉对环的限制条件,这个模型应该怎样处理? 无向图的删边游戏:

一个无向联通图,有一个点作为图的根。游戏者轮流从图中删去边,删去一条边后,不与根节点相连的部分将 被移走。谁无路可走谁输。

结论:

对无向图做如下改动:将图中的任意一个偶环缩成一个新点,任意一个奇环缩成一个新点加一个新边;所有连到原先环上的边全部改为与新点相连。这样的改动不会影响图的 SG 值。

9. Staircase nim:

楼梯从地面由下向上编号为 0 到 n。游戏者在每次操作时可以将楼梯 j(1<=j<=n) 上的任意多但至少一个硬币移动到楼梯 j-1 上。将最后一枚硬币移至地上的人获胜。 结论: 设该游戏 Sg 函数为奇数格棋子数的 Xor 和 S。 如果 S=0,则先手必败,否则必胜。

5.2 单纯形 Cpp

```
\max \{cx | Ax < b, x > 0\}
 1 const int MAXN = 11000, MAXM = 1100;
 2 // `here MAXN is the MAX number of conditions, MAXM is the MAX number of vars
 4 int avali[MAXM], avacnt:
 5 double A[MAXN][MAXM];
 6 double b[MAXN], c[MAXM];
 7 double* simplex(int n, int m) {
 8 // `here n is the number of conditions, m is the number of vars`
        int r = n, s = m - 1;
11
        static double D[MAXN + 2][MAXM + 1];
        static int ix[MAXN + MAXM];
13
        for (int i = 0; i < n + m; i++) ix[i] = i;
        for (int i = 0; i < n; i++) {
14
            for (int j = 0; j < m-1; j++) D[i][j] = -A[i][j];
16
           D[i][m-1] = 1;
            D[i][m] = b[i];
17
18
            if (D[r][m] > D[i][m]) r = i;
19
        for (int j = 0; j < m - 1; j++) D[n][j] = c[j];
21
        D\lceil n + 1 \rceil \lceil m - 1 \rceil = -1;
        for (double d; ; ) {
22
23
           if (r < n) {
                int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
24
25
                D[r][s] = 1.0 / D[r][s];
                for (int j = 0; j \leftarrow m; j++) if (j != s) D[r][j] *= -D[r][s];
                for (int i = 0; i \le m; ++i)
                    if(fabs(D[r][i]) > EPS)
29
                        avali[avacnt++] = i;
                for (int i = 0; i \le n + 1; i++) if (i != r) {
                    if(fabs(D[i][s]) < EPS) continue;</pre>
                    double *cur1 = D[i], *cur2 = D[r], tmp = D[i][s];
33
34
                    //for (int j = 0; j \le m; j++) if (j != s) cur1[j] += cur2[j] * tmp;
                    for(int j = 0; j < avacnt; ++j) if(avali[j] != s) cur1[avali[j]] += cur2[avali[j]] * tmp;</pre>
35
                    D[i][s] *= D[r][s];
39
            r = -1: s = -1:
            for (int j = 0; j < m; j++) if (s < 0 || ix[s] > ix[j]) {
                if (D[n + 1][j] > EPS | I | D[n + 1][j] > -EPS && D[n][j] > EPS) s = j;
41
            if (s < 0) break;
43
            for (int i = 0; i < n; i++) if (D[i][s] < -EPS) {
               if (r < 0 \mid l \mid (d = D[r][m] / D[r][s] - D[i][m] / D[i][s]) < -EPS
45
                          II d < EPS \&\& ix[r + m] > ix[i + m])
```

Shanghai Jiao Tong University 39 Tempus Fugit

```
r = i;

f (r < 0) return null; // 当有界

f (D[n + 1][m] < -EPS) return null; // 无故抗

f (of (int i = m; i < n + m; i++) if (ix[i] < m - 1) x[ix[i]] = D[i - m][m];

return x; // 值为 $D[n][m]$
```

5.3 单纯形 Java

```
1 double[] simplex(double[][] A, double[] b, double[] c) {
                                      int n = A.length, m = A[0].length + 1, r = n, s = m - 1;
                                      double[][] D = new double[n + 2][m + 1];
                                     int[] ix = new int[n + m];
                                     for (int i = 0; i < n + m; i++) ix[i] = i;
                                      for (int i = 0; i < n; i++) {
                                                         for (int j = 0; j < m - 1; j++) D[i][j] = -A[i][j];
                                                         D[i][m-1] = 1; D[i][m] = b[i]; if (D[r][m] > D[i][m]) r = i;
  10
                                     for (int j = 0; j < m - 1; j++) D[n][j] = c[j];
                                     D[n + 1][m - 1] = -1;
                                     for (double d; ; ) {
  13
                                                    if (r < n) {
                                                                              int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t; D[r][s] = 1.0 / D[r][s];
  14
                                                                              for (int j = 0; j \leftarrow m; j \leftrightarrow j \leftarrow m; j 
                                                                              for (int i = 0; i \le n + 1; i++) if (i != r) {
                                                                                                 for (int j = 0; j \leftarrow m; j++) if (j != s) D[i][j] += D[r][j] * D[i][s];
                                                                                                 D[i][s] *= D[r][s];
                                                                          }
                                                         r = -1; s = -1;
                                                         for (int j = 0; j < m; j++) if (s < 0 || ix[s] > ix[j]) {
                                                                              if (D[n + 1][j] > EPS | I | D[n + 1][j] > -EPS && D[n][j] > EPS) s = j;
  22
  23
                                                         if (s < 0) break;
                                                         for (int i = 0; i < n; i++) if (D[i][s] < -EPS) {
                                                                             if (r < 0 \mid l \mid (d = D[r][m] / D[r][s] - D[i][m] / D[i][s]) < -EPS
                                                                                                                              II d < EPS && ix[r + m] > ix[i + m])
  27
                                                                                                 r = i;
                                                       if (r < 0) return null; // 注有界`
  30
                                    } if (D[n + 1][m] <—EPS) return null; // `无法执行`
31
                                     double[] x = new double[m - 1];
                                      for (int i = m; i < n + m; i++) if (ix[i] < m-1) x[ix[i]] = D[i-m][m];
                                      return x; // `值为 D[n][m]
 34
 35 }
```

5.4 自适应辛普森

```
1 double area(const double &left, const double &right) {
```

```
double mid = (left + right) / 2;
       return (right - left) * (calc(left) + 4 * calc(mid) + calc(right)) / 6;
4 }
6 double simpson(const double &left, const double &right,
                  const double &eps, const double &area_sum) {
       double mid = (left + right) / 2;
       double area_left = area(left, mid);
       double area_right = area(mid, right);
10
11
       double area_total = area_left + area_right;
       if (std::abs(area_total - area_sum) < 15 * eps) {</pre>
           return area_total + (area_total - area_sum) / 15;
13
14
15
       return simpson(left, mid, eps / 2, area_left)
16
            + simpson(mid, right, eps / 2, area_right);
17 }
18
19 double simpson(const double &left, const double &right, const double &eps) {
       return simpson(left, right, eps, area(left, right));
21 }
```

5.5 高斯消元

```
1 #define Zero(x) (fabs(x) <= EPS)</pre>
2 bool GaussElimination(double G[MAXN][MAXM], int N, int M) {
       int rb = 1; memset(res, 0, sizeof(res));
       Rep(i_t, 1, N) \{ int maxRow = 0;
           Rep(row, rb, N) if (!Zero(G[row][i_th]))
               if (!maxRow | | fabs(G[row][i_th]) > fabs(G[maxRow][i_th]))
                   maxRow = row;
           if (!maxRow) continue;
           swapRow(G[rb], G[maxRow]);
           maxRow = rb++:
           Rep(row, 1, N) if (row != maxRow && !Zero(G[row][i_th])) {
11
               double coef = G[row][i_th] / G[maxRow][i_th];
13
               Rep(col, 0, M) G[row][col] -= coef * G[maxRow][col];
14
15
       Rep(row, 1, N) if (!Zero(G[row][0])) {
16
17
           int i_{t} = 1;
18
           for ( ; i_th <= M; ++i_th) if (!Zero(G[row][i_th])) break;</pre>
           if (i_th > N) return false;
19
20
           res[i_th] = G[row][0] / G[row][i_th];
       }
21
22
       return true;
23 }
```

5.6 FFT

```
1 namespace FFT {
2 #define mul(a, b) (Complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x))
```

Shanghai Jiao Tong University 40 Tempus Fugit

```
struct Complex {}; // `something omitted`
       void FFT(Complex P[], int n, int oper) {
           for (int i = 1, j = 0; i < n - 1; i++) {
                for (int s = n; j \triangleq s >>= 1, ~j \& s; );
                if (i < j) swap(P[i], P[j]);</pre>
           for (int d = 0; (1 << d) < n; d++) {
                int m = 1 \ll d, m2 = m * 2;
                double p0 = PI / m * oper;
                Complex unit_p0(cos(p0), sin(p0));
                for (int i = 0; i < n; i += m2) {
                    Complex unit(1.0, 0.0);
                    for (int j = 0; j < m; j++) {
                        Complex &P1 = P[i + j + m], &P2 = P[i + j];
                        Complex t = mul(unit, P1);
                       P1 = Complex(P2.x - t.x, P2.y - t.y);
19
                       P2 = Complex(P2.x + t.x, P2.y - t.y);
                        unit = mul(unit, unit_p0);
20
       }}}}
21
       vector<int> doFFT(const vector<int> &a, const vector<int> &b) {
22
23
           vector<int> ret(max(0, (int) a.size() + (int) b.size() - 1), 0);
24
           static Complex A[MAXB], B[MAXB], C[MAXB];
           int len = 1; while (len < (int)ret.size()) len *= 2;</pre>
           for (int i = 0; i < len; i++) A[i] = i < (int)a.size() ? <math>a[i] : 0;
           for (int i = 0; i < len; i++) B[i] = i < (int)b.size() ? <math>b[i] : 0;
           FFT(A, len, 1); FFT(B, len, 1);
28
            for (int i = 0; i < len; i++) C[i] = mul(A[i], B[i]);
           FFT(C, len, -1);
            for (int i = 0; i < (int)ret.size(); i++)
               ret[i] = (int) (C[i].x / len + 0.5);
           return ret;
34
35 }
```

5.7 整数 FFT

```
1 namespace FFT {
       `替代方案: $23068673( = 11 * 2 ^ {21} + 1)$, 原根为 $3$`
       const int MOD = 786433, PRIMITIVE_ROOT = 10; // \$3 * 2 ^ {18} + 1\$
       const int MAXB = 1 \ll 20;
       int getMod(int downLimit) { // `或者现场自己找一个MOD'
           for (int c = 3; ; ++c) { int t = (c << 21) | 1;
               if (t >= downLimit && isPrime(t)) return t;
       }}
       int modInv(int a) { return a \leftarrow 1 ? a : (long long) (MOD \leftarrow MOD / a) * modInv(MOD % a) % MOD; }
       void NTT(int P□, int n, int oper) {
10
11
           for (int i = 1, j = 0; i < n - 1; i++) {
               for (int s = n; j \triangleq s >>= 1, ~j \& s;);
12
13
               if (i < j) swap(P[i], P[j]);
14
           for (int d = 0; (1 << d) < n; d++) {
               int m = 1 \ll d, m2 = m * 2;
               long long unit_p0 = powMod(PRIMITIVE_ROOT, (MOD - 1) / m2);
```

```
if (oper < 0) unit_p0 = modInv(unit_p0);</pre>
19
                for (int i = 0; i < n; i += m2) {
                    long long unit = 1;
                    for (int j = 0; j < m; j++) {
21
                        int &P1 = P[i + j + m], &P2 = P[i + j];
                        int t = unit * P1 % MOD:
                        P1 = (P2 - t + MOD) \% MOD; P2 = (P2 + t) \% MOD;
24
25
                        unit = unit * unit_p0 % MOD;
26
27
       vector<int> mul(const vector<int> &a, const vector<int> &b) {
28
           vector<int> ret(max(0, (int) a.size() + (int) b.size() - 1), 0);
            static int A[MAXB], B[MAXB], C[MAXB];
29
30
            int len = 1; while (len < (int)ret.size()) len <<= 1;</pre>
31
            for (int i = 0; i < len; i++) A[i] = i < (int)a.size() ? <math>a[i] : 0;
32
            for (int i = 0; i < len; i++) B[i] = i < (int)b.size() ? <math>b[i] : 0;
           NTT(A, len, 1); NTT(B, len, 1);
33
34
            for (int i = 0; i < len; i++) C[i] = (long long) A[i] * B[i] % MOD;
            NTT(C, len, -1); for (int i = 0, inv = modInv(len); i < (int)ret.size(); i++) ret[i] = (long long) C[i] *
           inv % MOD;
           return ret;
36
37
38 }
```

5.8 扩展欧几里得

```
ax + by = g = gcd(x,y)
1 void exgcd(LL x, LL y, LL &a0, LL &b0, LL &g) {
2     LL a1 = b0 = 0, b1 = a0 = 1, t;
3     while (y!=0) {
4          t = a0 - x / y * a1, a0 = a1, a1 = t;
5          t = b0 - x / y * b1, b0 = b1, b1 = t;
6          t = x % y, x = y, y = t;
7     } if (x < 0) a0 = -a0, b0 = -b0, x = -x;
8     g = x;
9 }
```

5.9 线性同余方程

- 中国剩余定理: 设 m_1,m_2,\cdots,m_k 两两互素, 则同余方程组 $x\equiv a_i\pmod{m_i}$ for $i=1,2,\cdots,k$ 在 $[0,M=m_1m_2\cdots m_k)$ 内有唯一解. 记 $M_i=M/m_i$,找出 p_i 使得 $M_ip_i\equiv 1\pmod{m_i}$,记 $e_i=M_ip_i$,则 $x\equiv e_1a_1+e_2a_2+\cdots+e_ka_k\pmod{M}$
- 多变元线性同余方程组: 方程的形式为 $a_1x_1+a_2x_2+\cdots+a_nx_n+b\equiv 0\pmod m$, 令 $d=(a_1,a_2,\cdots,a_n,m)$, 有解的充要条件是 d|b, 解的个数为 $m^{n-1}d$

5.10 Miller-Rabin 素性测试

```
1 bool test(LL n, int base) {
2     LL m = n - 1, ret = 0; int s = 0;
3     for (; m % 2 == 0; ++s) m >>= 1; ret = pow_mod(base, m, n);
4     if (ret == 1 || ret == n - 1) return true;
5     for (—s; s >= 0; —s) {
```

Shanghai Jiao Tong University 41 Tempus Fugit

```
ret = multiply_mod(ret, ret, n); if (ret == n - 1) return true;
       } return false;
 8 }
9 LL special[7] = {
       1373653LL,
                          25326001LL.
       3215031751LL.
                          250000000000LL.
       2152302898747LL, 3474749660383LL, 341550071728321LL};
13 /*
14 * n < 2047
                                        test[] = {2}
* n < 1,373,653
                                        test \square = \{2, 3\}
* n < 9,080,191
                                        test[] = {31, 73}
* n < 25,326,001
                                        test[] = \{2, 3, 5\}
* n < 4,759,123,141
                                        test[] = \{2, 7, 61\}
* n < 1,122,004,669,633
                                        test [] = {2, 13, 23, 1662803}
* n < 2,152,302,898,747
                                        test[] = \{2, 3, 5, 7, 11\}
* n < 3,474,749,660,383
                                        test[] = \{2, 3, 5, 7, 11, 13\}
* n < 341,550,071,728,321
                                        test[] = \{2, 3, 5, 7, 11, 13, 17\}
    * n < 3,825,123,056,546,413,051
                                       test[] = {2, 3, 5, 7, 11, 13, 17, 19, 23}
25 bool is_prime(LL n) {
       if (n < 2) return false;
       if (n < 4) return true;
28
       if (!test(n, 2) || !test(n, 3)) return false;
       if (n < special[0]) return true;</pre>
       if (!test(n, 5)) return false;
       if (n < special[1]) return true;</pre>
31
       if (!test(n, 7)) return false;
       if (n == special[2]) return false;
       if (n < special[3]) return true;</pre>
34
       if (!test(n, 11)) return false;
       if (n < special[4]) return true;</pre>
36
       if (!test(n, 13)) return false;
       if (n < special[5]) return true;</pre>
38
       if (!test(n, 17)) return false;
39
       if (n < special[6]) return true;</pre>
40
41
       return test(n, 19) && test(n, 23) && test(n, 29) && test(n, 31) && test(n, 37);
42 }
```

5.11 PollardRho

14 }}

5.12 多项式求根

```
1 const double error = 1e-12;
2 const double infi = 1e+12;
3 int n; double a[10], x[10];
4 double f(double a[], int n, double x) {
       double tmp = 1, sum = 0;
       for (int i = 0; i \ll n; i++) sum = sum + a[i] * tmp, tmp = tmp * x;
       return sum;
8 }
9 double binary(double l, double r, double a[], int n) {
       int sl = sign(f(a, n, l)), sr = sign(f(a, n, r));
       if (sl == 0) return l; if (sr == 0) return r;
       if (sl * sr > 0) return infi;
12
       while (r - l > error) {
13
14
           double mid = (l + r) / 2;
15
           int ss = sign(f(a, n, mid));
           if (ss == 0) return mid;
           if (ss * sl > 0) l = mid; else r = mid;
17
18
       } return l;
19 }
20 void solve(int n, double a[], double x[], int &nx) {
       if (n == 1) \{ x[1] = -a[0] / a[1]; nx = 1; return; \}
       double da[10], dx[10]; int ndx;
23
       for (int i = n; i >= 1; i \longrightarrow) da[i - 1] = a[i] * i;
       solve(n-1, da, dx, ndx); nx = 0;
25
       if (ndx == 0) {
           double tmp = binary(-infi, infi, a, n);
26
27
           if (tmp < infi) x[++nx] = tmp; return;</pre>
       } double tmp = binary(-infi, dx[1], a, n);
28
       if (tmp < infi) x[++nx] = tmp;
29
       for (int i = 1; i \le ndx - 1; i++) {
30
           tmp = binary(dx[i], dx[i + 1], a, n);
31
           if (tmp < infi) x[++nx] = tmp;
33
       } tmp = binary(dx[ndx], infi, a, n);
       if (tmp < infi) x[++nx] = tmp;
34
35 }
36 int main() {
       scanf("%d", &n);
38
       for (int i = n; i \ge 0; i—) scanf("%lf", &a[i]);
       int nx; solve(n, a, x, nx);
39
40
       for (int i = 1; i \le nx; i++) printf("%0.6f\n", x[i]);
       return 0;
41
42 }
```

5.13 线性递推

```
for a_{i+n}=(\sum_{i=0}^{n-1}k_ja_{i+j})+d, a_m=(\sum_{i=0}^{n-1}c_ia_i)+c_nd
1 vector<int> recFormula(int n, int k[], int m) {
```

Shanghai Jiao Tong University 42 Tempus Fugit

```
vector<int> c(n + 1, 0);
       if (m < n) c[m] = 1;
       else {
           static int a[MAX_K * 2 + 1];
           vector<int> b = recFormula(n, k, m >> 1);
           for (int i = 0; i < n + n; ++i) a[i] = 0;
           int s = m \& 1;
           for (int i = 0; i < n; i++) {
               for (int j = 0; j < n; j++) a[i + j + s] += b[i] * b[j];
               c[n] += b[i];
           c[n] = (c[n] + 1) * b[n];
           for (int i = n * 2 - 1; i >= n; i \longrightarrow) {
               int add = a[i]; if (add == 0) continue;
               for (int j = 0; j < n; j++) a[i - n + j] += k[j] * add;
               c[n] += add;
           } for (int i = 0; i < n; ++i) c[i] = a[i];
       } return c;
19 }
```

5.14 原根

原根 g: g 是模 n 简化剩余系构成的乘法群的生成元. 模 n 有原根的充要条件是 $n=2,4,p^n,2p^n,$ 其中 p 是奇质数, n 是正整数

```
1 vector<int> findPrimitiveRoot(int N) {
       if (N \le 4) return vector(1, \max(1, N-1));
       static int factor[100];
       int phi = N, totF = 0;
       { // `check no solution and calculate phi
           int M = N, k = 0;
           if (~M & 1) M >>= 1, phi >>= 1;
           if (~M & 1) return vector<int>(0);
           for (int d = 3; d * d <= M; ++d) if (M % d == 0) {
               if (++k > 1) return vector<int>(0);
               for (phi -= phi / d; M % d == 0; M /= d);
           f(M > 1)
               if (++k > 1) return vector<int>(0); phi —= phi / M;
14
       } { // `factorize phi`
1.5
           int M = phi;
           for (int d = 2; d * d <= M; ++d) if (M % d == 0) {
               for ( ; M % d == 0; M /= d); factor[++totF] = d;
           } if (M > 1) factor[++totF] = M;
19
       } vector<int> ans;
21
       for (int g = 2; g <= N; ++g) if (Gcd(g, N) == 1) {
           bool good = true;
           for (int i = 1; i \le totF && good; ++i)
23
24
               if (powMod(q, phi / factor[i], N) == 1) good = false;
           if (!good) continue;
           for (int i = 1, gp = g; i \le phi; ++i, gp = (LL)gp * g % N)
               if (Gcd(i, phi) == 1) ans.push_back(gp);
           break;
       } sort(ans.begin(), ans.end());
       return ans;
```

31 }

5.15 离散对数

 $A^x \equiv B \pmod{C}$, 对非质数 C 也适用.

```
1 int modLog(int A, int B, int C) {
       static pii baby[MAX_SQRT_C + 11];
       int d = 0; LL k = 1, D = 1; B %= C;
       for (int i = 0; i < 100; ++i, k = k * A % C) // `$[0, \log C]$`
           if (k == B) return i:
       for (int g; ; ++d) {
           g = gcd(A, C); if (g == 1) break;
           if (B % g != 0) return -1;
           B /= g; C /= g; D = (A / g * D) % C;
       } int m = (int) ceil(sqrt((double) C)); k = 1;
       for (int i = 0; i \le m; ++i, k = k * A % C) baby[i] = pii(k, i);
       sort(baby, baby + m + 1); // [0, m]
       int n = unique(baby, baby + m + 1, equalFirst) - baby, am = powMod(A, m, C);
14
       for (int i = 0; i <= m; ++i) {
           LL e, x, y; exgcd(D, C, x, y, e); e = x * B % C;
           if (e < 0) e += C;
          if (e >= 0) {
17
18
               int k = lower_bound(baby, baby + n, pii(e, -1)) - baby;
19
               if (baby[k].first == e) return i * m + baby[k].second + d;
          P = D * am % C;
20
       } return -1;
21
22 }
```

5.16 平方剩余

- Legrendre Symbol: 对奇质数 p, $(\frac{a}{p})=\begin{cases} 1 & \text{ 是平方剩余} \\ -1 & \text{ 是非平方剩余}=a^{\frac{p-1}{2}} \bmod p \\ 0 & a\equiv 0 \pmod p \end{cases}$
- 若 p 是奇质数, $\left(\frac{-1}{n}\right) = 1$ 当且仅当 $p \equiv 1 \pmod{4}$
- 若 p 是奇质数, $(\frac{2}{p}) = 1$ 当且仅当 $p \equiv \pm 1 \pmod{8}$
- 若 p,q 是奇素数且互质, $(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2} \times \frac{q-1}{2}}$
- Jacobi Symbol: 対奇数 $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, (\frac{a}{n}) = (\frac{a}{n_1})^{\alpha_1} (\frac{a}{n_2})^{\alpha_2} \cdots (\frac{a}{n_k})^{\alpha_k}$
- Jacobi Symbol 为 -1 则一定不是平方剩余,所有平方剩余的 Jacobi Symbol 都是 1, 但 1 不一定是平方剩余

```
ax^2 + bx + c \equiv 0 \pmod{p}, 其中 a \neq 0 \pmod{p}, 且 p 是质数
```

```
1 inline int normalize(LL a, int P) { a %= P; return a < 0 ? a + P : a; }
2 vector<int> QuadraticResidue(LL a, LL b, LL c, int P) {
3    int h, t; LL r1, r2, delta, pb = 0;
4    a = normalize(a, P); b = normalize(b, P); c = normalize(c, P);
5    if (P == 2) { vector<int> res;
```

Shanghai Jiao Tong University 43

```
if (c % P == 0) res.push_back(0);
            if ((a + b + c) \% P == 0) res.push_back(1);
            return res;
       } delta = b * rev(a + a, P) % P;
        a = normalize(-c * rev(a, P) + delta * delta, P);
       if (powMod(a, P / 2, P) + 1 == P) return vector<int>(0);
        for (t = 0, h = P / 2; h \% 2 == 0; ++t, h /= 2);
       r1 = powMod(a, h / 2, P);
       if (t > 0) { do b = random() % (P - 2) + 2;
            while (powMod(b, P / 2, P) + 1 != P); }
       for (int i = 1; i <= t; ++i) {
           LL d = r1 * r1 % P * a % P;
            for (int j = 1; j \le t - i; ++j) d = d * d % P;
           if (d + 1 == P) r1 = r1 * pb % P; pb = pb * pb % P;
      r1 = a * r1 % P; r2 = P - r1;
       r1 = normalize(r1 - delta, P); r2 = normalize(r2 - delta, P);
       if (r1 > r2) swap(r1, r2); vector<int> res(1, r1);
       if (r1 != r2) res.push_back(r2);
       return res;
5.17 N 次剩余
  • 若 p 为奇质数, a 为 p 的 n 次剩余的充要条件是 a^{\frac{p-1}{(a,p-1)}} \equiv 1 \pmod{p}.
x^N \equiv a \pmod{p}, 其中 p \in \mathbb{Z}
 1 vector<int> solve(int p, int N, int a) {
       if ((a \%= p) == 0) return vector<int>(1, 0);
       int g = findPrimitiveRoot(p), m = modLog(g, a, p); // g \land m = a \pmod{p}
       if (m == -1) return vector<int>(0);
       LL B = p - 1, x, y, d; exgcd(N, B, x, y, d);
       if (m % d != 0) return vector<int>(0);
       vector<int> ret; x = (x * (m / d) % B + B) % B; // g ^ B mod p = g ^ (p - 1) mod p = 1
       for (int i = 0, delta = B / d; i < d; ++i) {
           x = (x + delta) \% B; ret.push_back((int)powMod(g, x, p));
       } sort(ret.begin(), ret.end());
       ret.resize(unique(ret.begin(), ret.end()) - ret.begin());
        return ret;
13 }
5.18 Pell 方程
\begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} x_1 & dy_1 \\ y_1 & x_1 \end{pmatrix}^{k-1} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}
1 pair<ULL, ULL> Pell(int n) {
       static ULL p[50] = \{0, 1\}, q[50] = \{1, 0\}, g[50] = \{0, 0\}, h[50] = \{0, 1\}, a[50];
       ULL t = a[2] = Sqrt(n);
       for (int i = 2; ; ++i) {
            g[i] = -g[i-1] + a[i] * h[i-1];
            h[i] = (n - g[i] * g[i]) / h[i - 1];
```

a[i + 1] = (g[i] + t) / h[i];

Tempus Fugit

5.19 Romberg 积分

5.20 公式

5.20.1 级数与三角

•
$$\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2$$

•
$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

•
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

•
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

•
$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$

• 错排:
$$D_n = n!(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}) = (n-1)(D_{n-2} - D_{n-1})$$

- $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
- $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
- $\tan \alpha \pm \tan \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$
- $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha \beta}{2}$

- $\sin \alpha \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha \beta}{2}$
- $\cos \alpha + \cos \alpha = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha \beta}{2}$
- $\cos \alpha \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha \beta}{2}$
- $\cos n\alpha = \binom{n}{0}\cos^n\alpha \binom{n}{2}\cos^{n-2}\alpha\sin^2\alpha + \binom{n}{4}\cos^{n-4}\alpha\sin^4\alpha \cdots$
- $\sin n\alpha = \binom{n}{1}\cos^{n-1}\alpha\sin\alpha \binom{n}{2}\cos^{n-3}\alpha\sin^3\alpha + \binom{n}{5}\cos^{n-5}\alpha\sin^5\alpha\cdots$
- $\sum_{n=1}^{N} \cos nx = \frac{\sin(N + \frac{1}{2})x \sin\frac{x}{2}}{2\sin\frac{x}{2}}$
- $\sum_{n=1}^{N} \sin nx = \frac{-\cos(N + \frac{1}{2})x + \cos\frac{x}{2}}{2\sin\frac{x}{2}}$
- $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \begin{cases} \frac{(n-1)!!}{n!!} \times \frac{\pi}{2} & n \neq \emptyset \\ \frac{(n-1)!!}{n!!} & n \neq \emptyset \end{cases}$
- $\bullet \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$
- $\bullet \int_{0}^{+\infty} e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}$
- 傅里叶级数: 设周期为 2T. 函数分段连续. 在不连续点的值为左右极限的平均数
 - $-a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx$
 - $-b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx$
 - $f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x)$
- Beta 函数: $B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$
 - 定义域 $(0,+\infty)$ × $(0,+\infty)$, 在定义域上连续
 - $-\ B(p,q) = B(q,p) = \frac{q-1}{p+q-1}B(p,q-1) = 2\int\limits_0^{\frac{\pi}{2}}\cos^{2p-1}\phi\sin^{2p-1}\phi\mathrm{d}\phi = \int\limits_0^{+\infty}\frac{t^{q-1}}{(1+t)^{p+q}}\mathrm{d}t = \int\limits_0^1\frac{t^{p-1}+t^{q-1}}{(1+t)^{(p+q)}}\mathrm{d}t$
 - $B(\frac{1}{2}, \frac{1}{2}) = \pi$
- Gamma 函数: $\Gamma = \int_{0}^{+\infty} x^{s-1} e^{-x} dx$
 - 定义域 $(0,+\infty)$, 在定义域上连续
 - $-\Gamma(1)=1, \Gamma(\frac{1}{2})=\sqrt{\pi}$
 - $-\Gamma(s) = (s-1)\Gamma(s-1)$

$$-B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
$$-\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s} \text{ for } s > 0$$
$$-\Gamma(s)\Gamma(s+\frac{1}{2}) = 2\sqrt{\pi} \frac{\Gamma(s)}{2^{2s-1}} \text{ for } 0 < s < 1$$

• 积分: 平面图形面积、曲线弧长、旋转体体积、旋转曲面面积 y=f(x), $\int\limits_a^b f(x)\mathrm{d}x$, $\int\limits_a^b \sqrt{1+f'^2(x)}\mathrm{d}x$, $\pi\int\limits_a^b f^2(x)\mathrm{d}x, \ 2\pi\int\limits_a^b |f(x)|\sqrt{1+f'^2(x)}\mathrm{d}x$

$$\begin{array}{lll} x & = & x(t), y & = & y(t), t & \in & [T_1, T_2], & \int\limits_{T_1}^{T_2} |y(t)x'(t)| \mathrm{d}t, & \int\limits_{T_1}^{T_2} \sqrt{x'^2(t) + y'^2(t)} \mathrm{d}t, & \pi \int\limits_{T_1}^{T_2} |x'(t)| y^2(t) \mathrm{d}t, \\ 2\pi \int\limits_{T_1}^{T_2} |y(t)| \sqrt{x'^2(t) + y'^2(t)} \mathrm{d}t, & \end{array}$$

$$r = r(\theta), \theta \in [\alpha, \beta], \quad \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) d\theta, \quad \int_{\alpha}^{\beta} \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta, \quad \frac{2}{3} \pi \int_{\alpha}^{\beta} r^{3}(\theta) \sin \theta d\theta,$$

$$2\pi \int_{\alpha}^{\beta} r(\theta) \sin \theta \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta$$

5.20.2 三次方程求根公式

对一元三次方程 $x^3 + px + q = 0$, 令

$$A = \sqrt[3]{-\frac{q}{2} + \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3}}$$

$$B = \sqrt[3]{-\frac{q}{2} - \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3}}$$

$$\omega = \frac{(-1 + i\sqrt{3})}{2}$$

則 $x_j = A\omega^j + B\omega^{2j}$ (j = 0, 1, 2).

当求解 $ax^3 + bx^2 + cx + d = 0$ 时, 令 $x = y - \frac{b}{3a}$, 再求解 y, 即转化为 $y^3 + py + q = 0$ 的形式. 其中

$$p = \frac{b^2 - 3ac}{3a^2}$$
$$q = \frac{2b^3 - 9abc + 27a^2d}{27a^3}$$

卡尔丹判别法: 令 $\Delta=(\frac{q}{2})^2+(\frac{p}{3})^3$. 当 $\Delta>0$ 时, 有一个实根和一对个共轭虚根;当 $\Delta=0$ 时, 有三个实根, 其中两个相等;当 $\Delta<0$ 时, 有三个不相等的实根.

5.20.3 椭圆

- 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 其中离心率 $e = \frac{c}{a}$, $c = \sqrt{a^2 b^2}$; 焦点参数 $p = \frac{b^2}{a}$
- 椭圆上 (x,y) 点处的曲率半径为 $R=a^2b^2(\frac{x^2}{a^4}+\frac{y^2}{b^4})^{\frac{3}{2}}=\frac{(r_1r_2)^{\frac{3}{2}}}{ab}$,其中 r_1 和 r_2 分别为 (x,y) 与两焦点 F_1 和 F_2 的距离.

$$L_{AM} = a \int_0^{\arccos\frac{x}{a}} \sqrt{1 - e^2 \cos^2 t} \mathrm{d}t = a \int_{\arccos\frac{x}{a}}^{\frac{\pi}{2}} \sqrt{1 - e^2 \sin^2 t} \mathrm{d}t$$

• 椭圆的周长 $L = 4a \int_0^{\frac{\pi}{2}} \sqrt{1 - e^2 \sin^2 t} dt = 4a E(e, \frac{\pi}{2}),$ 其中

$$E(e, \frac{\pi}{2}) = \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 e^2 - \left(\frac{1 \times 3}{2 \times 4}\right)^2 \frac{e^4}{3} - \left(\frac{1 \times 3 \times 5}{2 \times 4 \times 6}\right)^2 \frac{e^6}{5} - \cdots \right]$$

- 设椭圆上点 M(x,y), N(x,-y), x,y>0, A(a,0), 原点 O(0,0), 扇形 OAM 的面积 $S_{OAM}=\frac{1}{2}ab\arccos\frac{x}{a},$ 弓形 MAN 的面积 $S_{MAN}=ab\arccos\frac{x}{a}-xy.$
- 需要 5 个点才能确定一个圆锥曲线.
- 设 θ 为(x,y)点关于椭圆中心的极角,r为(x,y)到椭圆中心的距离,椭圆极坐标方程:

$$x = r\cos\theta, y = r\sin\theta, r^2 = \frac{b^2a^2}{b^2\cos^2\theta + a^2\sin^2\theta}$$

5.20.4 抛物线

- 标准方程 $y^2 = 2px$, 曲率半径 $R = \frac{(p+2x)^{\frac{3}{2}}}{\sqrt{p}}$
- 弧长: 设 M(x,y) 是抛物线上一点,则 $L_{OM}=\frac{p}{2}[\sqrt{\frac{2x}{p}(1+\frac{2x}{p})}+\ln(\sqrt{\frac{2x}{p}}+\sqrt{1+\frac{2x}{p}})]$
- 弓形面积: 设 M,D 是抛物线上两点,且分居一,四象限. 做一条平行于 MD 且与抛物线相切的直线 L. 若 M 到 L 的距离为 h. 则有 $S_{MOD}=\frac{2}{3}MD\cdot h$.

5.20.5 重心

- 半径 r, 圆心角为 θ 的扇形的重心与圆心的距离为 $\dfrac{4r\sinrac{\theta}{2}}{3 heta}$
- 半径 r, 圆心角为 θ 的圆弧的重心与圆心的距离为 $\dfrac{4r\sin^3\frac{\theta}{2}}{3(\theta-\sin\theta)}$
- 椭圆上半部分的重心与圆心的距离为 $\frac{4b}{3\pi}$
- 抛物线中弓形 MOD 的重心满足 $CQ=\frac{2}{5}PQ$, P 是直线 L 与抛物线的切点, Q 在 MD 上且 PQ 平行 x 轴, C 是重心

5.20.6 向量恒等式

- $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})$
- $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{c} \times \overrightarrow{b}) \times \overrightarrow{a} = \overrightarrow{b} (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{c} (\overrightarrow{a} \cdot \overrightarrow{b})$

5.20.7 常用几何公式

• 三角形的五心

45

$$-$$
 重心 $\overrightarrow{G} = \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}}{2}$

$$-$$
 内心 $\overrightarrow{I} = \frac{a\overrightarrow{A} + b\overrightarrow{B} + c\overrightarrow{C}}{a + b + c}$, $R = \frac{2S}{a + b + c}$

$$-\text{ Shù }x=\frac{\overrightarrow{A}+\overrightarrow{B}-\frac{\overrightarrow{B}\overrightarrow{C}\cdot\overrightarrow{A}\overrightarrow{C}}{\overrightarrow{A}\overrightarrow{B}\times\overrightarrow{B}\overrightarrow{C}}\overrightarrow{A}\overrightarrow{B}^T}{2},\ y=\frac{\overrightarrow{A}+\overrightarrow{B}+\frac{\overrightarrow{B}\overrightarrow{C}\cdot\overrightarrow{A}\overrightarrow{C}}{\overrightarrow{A}\overrightarrow{B}\times\overrightarrow{B}\overrightarrow{C}}\overrightarrow{A}\overrightarrow{B}^T}{2},\ R=\frac{abc}{4S}$$

$$\overrightarrow{H}$$
 \overrightarrow{H} = $3\overrightarrow{G}$ $2\overrightarrow{O}$

$$-$$
 旁心 (三个) $\frac{-a\overrightarrow{A}+b\overrightarrow{B}+c\overrightarrow{C}}{-a+b+c}$

• 四边形: 设 D_1, D_2 为对角线, M 为对角线中点连线, A 为对角线夹角

$$-a^2+b^2+c^2+d^2=D_1^2+D_2^2+4M^2$$

$$-S = \frac{1}{2}D_1D_2\sin A$$

- $-ac+bd=D_1D_2$ (内接四边形适用)
- Bretschneider 公式: $S=\sqrt{(p-a)(p-b)(p-c)(p-d)-abcd\cos^2(\frac{\theta}{2})},$ 其中 θ 为对角和
- 棱锥:
 - 体积 $V = \frac{1}{3}Ah$, A 为底面积, h 为高
 - (对正棱锥) 侧面积 $S = \frac{1}{2}lp, l$ 为斜高, p 为底面周长
- 棱台:
 - 体积 $V = \frac{(A_1 + A_2 + \sqrt{A_1 A_2}) \cdot h}{3}$, A_1 , A_2 分别为上下底面面积, h 为高
 - (对正棱台) 侧面积 $S = \frac{1}{2}(p_1 + p_2) \cdot l, p_1, p_2$ 为上下底面周长, l 为斜高.

5.20.8 树的计数

• 有根数计数: 令 $S_{n,j} = \sum_{1 \le i \le n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$

于是,
$$n+1$$
 个结点的有根数的总数为 $a_{n+1}=\frac{\sum\limits_{1\leq j\leq n}j\cdot a_j\cdot S_{n,j}}{n}$ 附: $a_1=1,a_2=1,a_3=2,a_4=4,a_5=9,a_6=20,a_9=286,a_{11}=1842$

• 无根树计数: 当 n 是奇数时, 则有 $a_n - \sum\limits_{1 \leq i \leq \frac{n}{2}} a_i a_{n-i}$ 种不同的无根树

当
$$n$$
 是偶数时,则有 $a_n - \sum_{1 \le i \le \frac{n}{2}} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$ 种不同的无根树

• Matrix-Tree 定理: 对任意图 G, 设 $\max[i][i]=i$ 的度数, $\max[i][j]=i$ 与 j 之间边数的相反数, 则 $\max[i][j]$ 的任意余子式的行列式就是该图的生成树个数

5.21 小知识

- 勾股数: 设正整数 n 的质因数分解为 $n = \prod p_i^{a_i}$, 则 $x^2 + y^2 = n$ 有整数解的充要条件是 n 中不存在形如 $p_i \equiv 3 \pmod{4}$ 且指数 a_i 为奇数的质因数 p_i . $(\frac{a-b}{2})^2 + ab = (\frac{a+b}{2})^2$.
- 素勾股数: 若m 和n 互质, 而且m 和n 中有一个是偶数, 则 $a=m^2-n^2$, b=2mn, $c=m^2+n^2$, 则a、b、c 是素勾股数.
- Stirling $\triangle \vec{\pi}$: $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$
- Pick 定理: 简单多边形, 不自交, 顶点如果全是整点. 则: 严格在多边形内部的整点数 $+\frac{1}{2}$ 在边上的整点数 -1= 面积
- Mersenne 素数: p 是素数且 2^p-1 的数是素数. (10000 以内的 p 有: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941)
- 序列差分表: 差分表的第 0 条对角线确定原序列. 设原序列为 h_i , 第 0 条对角线为 $c_0, c_1, \ldots, c_p, 0, 0, \ldots$ 有这样两个公式: $h_n = \binom{n}{0}c_0 + \binom{n}{1}c_1 + \ldots + \binom{n}{p}c_p$, $\sum_{k=0}^n h_k = \binom{n+1}{1}c_0 + \binom{n+1}{2}c_2 + \ldots + \binom{n+1}{p+1}c_p$
- GCD: $gcd(2^a 1, 2^b 1) = 2^{gcd(a,b)} 1$
- Fermat 分解算法: 从 $t=\sqrt{n}$ 开始,依次检查 $t^2-n,(t+1)^2-n,(t+2)^2-n,\ldots$,直到出现一个平方数 y, 由于 $t^2-y^2=n$,因此分解得 n=(t-y)(t+y). 显然,当两个因数很接近时这个方法能很快找到结果,但如果遇到一个素数,则需要检查 $\frac{n+1}{2}-\sqrt{n}$ 个整数
- 牛顿迭代: $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$
- 球与盒子的动人故事: $(n \ \bigcirc \ \)$ 水 $(n \ \bigcirc \)$ $(n \ \bigcirc \)$
 - 1. 球同, 盒同, 无空: dp
 - 2. 球同, 盒同, 可空: dp
 - 3. 球同, 盒不同, 无空: $\binom{n-1}{m-1}$
 - 4. 球同, 盒不同, 可空: $\binom{n+m-1}{n-1}$
 - 5. 球不同, 盒同, 无空: S(n, m)
 - 6. 球不同, 盒同, 可空: $\sum_{k=1}^{m} S(n,k)$
 - 7. 球不同, 盒不同, 无空: m!S(n,m)
 - 8. 球不同, 盒不同, 可空: m^n
- 组合数奇偶性: 若 (n&m) = m, 则 $\binom{n}{m}$ 为奇数, 否则为偶数
- 格雷码 $G(x) = x \otimes (x >> 1)$
- Fibonacci 数:

$$-F_0 = F_1 = 1, F_i = F_{i-1} + F_{i-2}, F_{-i} = (-1)^{i-1} F_i$$

$$-F_i = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

$$-\gcd(F_n, F_m) = F_{\gcd(n,m)}$$

$$-F_{i+1} F_i - F_i^2 = (-1)^i$$

$$-F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$$

• 第一类 Stirling 数: $\binom{n}{k}$ 代表第一类无符号 Stirling 数, 代表将 n 阶置换群中有 k 个环的置换个数; s(n,k) 代表有符号型, $s(n,k)=(-1)^{n-k}\binom{n}{k}$.

Tempus Fugit

$$-(x)^{(n)} = \sum_{k=0}^{n} {n \brack k} x^{k}, (x)_{n} = \sum_{k=0}^{n} s(n, k) x^{k}$$

$$- {n \brack k} = n {n-1 \brack k} + {n-1 \brack k-1}, {0 \brack 0} = 1, {n \brack 0} = {0 \brack n} = 0$$

$$- {n \brack n-2} = \frac{1}{4} (3n-1) {n \brack 3}, {n \brack n-3} = {n \brack 2} {n \brack 4}$$

$$- \sum_{k=0}^{a} {n \brack k} = n! - \sum_{k=0}^{n} {n \brack k+a+1}$$

$$- \sum_{p=k}^{n} {n \brack p} {p \brack k} = {n+1 \brack k+1}$$

• 第二类 Stirling 数: $\binom{n}{k} = S(n,k)$ 代表 n 个不同的球, 放到 k 个相同的盒子里, 盒子非空.

$$- {n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j {k \choose j} (k-j)^n$$
$$- {n+1 \brace k} = k {n \brack k} + {n \brack k-1}, {0 \brack 0} = 1, {n \brack 0} = {0 \brack n} = 0$$
$$- 奇偶性: (n-k)& \frac{k-1}{2} = 0$$

• Bell 数: B_n 代表将 n 个元素划分成若干个非空集合的方案数

$$-B_0=B_1=1, B_n=\sum_{k=0}^{n-1}{n-1\choose k}B_k$$

$$-B_n=\sum_{k=0}^n{n\choose k}$$

$$-Bell 三角形: \ a_{1,1}=1, \ a_{n,1}=a_{n-1,n-1}, \ a_{n,m}=a_{n,m-1}+a_{n-1,m-1}, \ B_n=a_{n,1}$$

$$- 对质数 \ p, \ B_{n+p}\equiv B_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ B_{n+p^m}\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- 对质数 \ p, \ \xi n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

$$- \eta n+p^m\equiv mB_n+B_{n+1} \ (\text{mod }p)$$

• Bernoulli 数

46

$$-B_0 = 1, B_1 = \frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}, B_8 = B_4, B_{10} = \frac{5}{66}$$

$$-\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}$$

$$-B_m = 1 - \sum_{k=0}^{m-1} {m \choose k} \frac{B_k}{m-k+1}$$

• 完全数: x 是偶完全数等价于 $x = 2^{n-1}(2^n - 1)$, 且 $2^n - 1$ 是质数

Shanghai Jiao Tong University 47 Tempus Fugit

6 其他

6.1 Extended LIS

```
1 int G[MAXN][MAXN];
2 void insertYoung(int v) {
3     for (int x = 1, y = INT_MAX; ; ++x) {
4         Down(y, *G[x]); while (y > 0 && G[x][y] >= v) —y;
5         if (++y > *G[x]) { ++*G[x]; G[x][y] = v; break; }
6         else swap(G[x][y], v);
7     }
8     }
9     int solve(int N, int seq[]) {
10         Rep(i, 1, N) *G[i] = 0;
11         Rep(i, 1, N) insertYoung(seq[i]);
12         printf("%d\n", *G[1] + *G[2]);
13         return 0;
14 }
```

6.2 **牛成** nCk

```
void nCk(int n, int k) {
for (int comb = (1 << k) - 1; comb < (1 << n); ) {
    int x = comb & -comb, y = comb + x;

comb = (((comb & ~y) / x) >> 1) | y;
}
}
```

6.3 nextPermutation

```
1 boolean nextPermutation(int□ is) {
2     int n = is.length;
3     for (int i = n − 1; i > 0; i—) {
4         if (is[i − 1] < is[i]) {
5             int j = n; while (is[i − 1] >= is[—j]);
6             swap(is, i − 1, j); // swap is[i − 1], is[j]
7             rev(is, i, n); // reverse is[i, n)
8             return true;
9         }
10     } rev(is, 0, n);
11     return false;
12 }
```

6.4 Josephus 数与逆 Josephus 数

```
1 int josephus(int n, int m, int k) { int x = -1;
2    for (int i = n - k + 1; i <= n; i++) x = (x + m) % i; return x;
3 }
4 int invJosephus(int n, int m, int x) {
5    for (int i = n; ; i---) { if (x == i) return n - i; x = (x - m % i + i) % i; }
6 }</pre>
```

6.5 表达式求值

```
1 inline int getLevel(char ch) {
       switch (ch) { case '+': case '-': return 0; case '*': return 1; } return -1;
3 }
4 int evaluate(char *&p, int level) {
       int res;
       if (level == 2) {
           if (*p == '(') ++p, res = evaluate(p, 0);
           else res = isdigit(*p) ? *p - '0' : value[*p - 'a'];
           ++p; return res;
      } res = evaluate(p, level + 1);
       for (int next; *p && getLevel(*p) == level; ) {
           char op = *p++; next = evaluate(p, level + 1);
12
13
           switch (op) {
               case '+': res += next; break;
14
              case '-': res -= next; break;
              case '*': res *= next; break;
16
17
       } return res;
18
19 }
20 int makeEvaluation(char *str) { char *p = str; return evaluate(p, 0); }
```

6.6 曼哈顿最小生成树

```
1 const int INF = 10000000005;
2 struct TreeEdge {
     int x, y, z; void make(int _x, int _y, int _z) { x = _x; y = _y; z = _z; }
4 } data[maxn * 4];
5 int n, x[maxn], y[maxn], px[maxn], py[maxn], id[maxn], tree[maxn], node[maxn], val[maxn], fa[maxn];
6 bool operator < (const TreeEdge& x, const TreeEdge& y) { return x.z < y.z; }
7 bool cmp1(int a, int b) { return x[a] < x[b]; }</pre>
8 bool cmp2(int a, int b) { return y[a] < y[b]; }</pre>
9 bool cmp3(int a, int b) { return (y[a] - x[a] < y[b] - x[b] | | (y[a] - x[a] == y[b] - x[b] & y[a] > y[b])); }
10 bool cmp4(int a, int b) { return (y[a] - x[a] > y[b] - x[b] || (y[a] - x[a] == y[b] - x[b] && x[a] > x[b])); }
11 bool cmp5(int a, int b) { return (x[a] + y[a] > x[b] + y[b] || (x[a] + y[a] == x[b] + y[b] && x[a] < x[b])); }
12 bool cmp6(int a, int b) { return (x[a] + y[a] < x[b] + y[b] || (x[a] + y[a] == x[b] + y[b] && y[a] > y[b])); }
13 void Change_X() {
       for (int i = 0; i < n; ++i) val[i] = x[i];
       for (int i = 0; i < n; ++i) id[i] = i;
16
       sort(id, id + n, cmp1);
       int cntM = 1, last = val[id[0]]; px[id[0]] = 1;
       for (int i = 1; i < n; ++i) {
          if (val[id[i]] > last) ++cntM, last = val[id[i]];
19
           px[id[i]] = cntM;
20
21
       }
22 }
23 void Change_Y() {
       for (int i = 0; i < n; ++i) val[i] = y[i];
       for (int i = 0; i < n; ++i) id[i] = i;
       sort(id, id + n, cmp2);
       int cntM = 1, last = val[id[0]]; py[id[0]] = 1;
```

Shanghai Jiao Tong University 48 Tempus Fugit

```
for (int i = 1; i < n; ++i) {
           if (val[id[i]] > last)
                ++cntM, last = val[id[i]];
           py[id[i]] = cntM;
31
32
34 inline int Cost(int a, int b) { return abs(x[a] - x[b]) + abs(y[a] - y[b]); }
35 int find(int x) { return (fa[x] == x) ? x : (fa[x] = find(fa[x])); }
37
        for (int i = 0; i < n; ++i) scanf("%d%d", x + i, y + i);
       Change_X(); Change_Y();
       int cntE = 0; for (int i = 0; i < n; ++i) id[i] = i;
39
40
       sort(id, id + n, cmp3);
41
        for (int i = 1; i \le n; ++i) tree[i] = INF, node[i] = -1;
       for (int i = 0; i < n; ++i) {
           int Min = INF, Tnode = -1;
43
44
           for (int k = py[id[i]]; k \le n; k + k (-k))
                if (tree[k] < Min) Min = tree[k], Tnode = node[k];</pre>
45
           if (Tnode >= 0) data[cntE++].make(id[i], Tnode, Cost(id[i], Tnode));
           int tmp = x[id[i]] + y[id[i]];
           for (int k = py[id[i]]; k; k = k & (-k))
48
                if (tmp < tree[k]) tree[k] = tmp, node[k] = id[i];</pre>
49
50
       } sort(id, id + n, cmp4);
        for (int i = 1; i \le n; ++i) tree[i] = INF, node[i] = -1;
51
52
        for (int i = 0; i < n; ++i) {
           int Min = INF, Tnode = -1;
53
           for (int k = px[id[i]]; k \le n; k += k & (-k))
54
                if (tree[k] < Min) Min = tree[k], Tnode = node[k];</pre>
           if (Tnode >= 0) data[cntE++].make(id[i], Tnode, Cost(id[i], Tnode));
56
           int tmp = x[id[i]] + y[id[i]];
57
            for (int k = px[id[i]]; k; k = k & (-k))
59
                if (tmp < tree[k]) tree[k] = tmp, node[k] = id[i];</pre>
60
       sort(id, id + n, cmp5);
61
       for (int i = 1; i \le n; ++i) tree[i] = INF, node[i] = -1;
62
63
        for (int i = 0; i < n; ++i) {
           int Min = INF, Tnode = -1;
64
           for (int k = px[id[i]]; k; k = k & (-k))
65
                if (tree[k] < Min) Min = tree[k], Tnode = node[k];</pre>
66
           if (Tnode >= 0) data[cntE++].make(id[i], Tnode, Cost(id[i], Tnode));
           int tmp = -x[id[i]] + y[id[i]];
           for (int k = px[id[i]]; k <= n; k += k & (-k))
69
                if (tmp < tree[k]) tree[k] = tmp, node[k] = id[i];</pre>
70
        } sort(id, id + n, cmp6);
71
        for (int i = 1; i \le n; ++i) tree[i] = INF, node[i] = -1;
72
        for (int i = 0; i < n; ++i) {
73
           int Min = INF, Tnode = ─1;
74
75
           for (int k = py[id[i]]; k \le n; k += k & (-k))
                if (tree[k] < Min) Min = tree[k], Tnode = node[k];</pre>
           if (Tnode >= 0) data[cntE++].make(id[i], Tnode, Cost(id[i], Tnode));
78
           int tmp = -x[id[i]] + y[id[i]];
           for (int k = py[id[i]]; k; k = k & (-k))
79
                if (tmp < tree[k]) tree[k] = tmp, node[k] = id[i];</pre>
```

6.7 直线下的整点个数

```
 \overrightarrow{\mathcal{R}} \sum_{i=0}^{n-1} \left\lfloor \frac{a+bi}{m} \right\rfloor 
1 LL count(LL n, LL a, LL b, LL m) {
2         if (b == 0) return n * (a / m);
3         if (a >= m) return n * (a / m) + count(n, a % m, b, m);
4         if (b >= m) return (n-1) * n / 2 * (b / m) + count(n, a, b % m, m);
5         return count((a + b * n) / m, (a + b * n) % m, m, b);
6 }
```

6.8 Java 多项式

```
1 class Polynomial {
       final static Polynomial ZERO = new Polynomial(new int[] { 0 });
       final static Polynomial ONE = new Polynomial(new int[] { 1 });
       final static Polynomial X = new Polynomial(new int[] { 0, 1 });
       int[] coef;
       static Polynomial valueOf(int val) { return new Polynomial(new int[] { val }); }
6
       Polynomial(int[] coef) { this.coef = Arrays.copyOf(coef, coef.length); }
       Polynomial add(Polynomial o, int mod); // omitted
       Polynomial subtract(Polynomial o, int mod); // omitted
10
       Polynomial multiply(Polynomial o, int mod); // omitted
       Polynomial scale(int o, int mod); // omitted
11
12
       public String toString() {
           int n = coef.length; String ret = "";
13
14
           for (int i = n - 1; i > 0; —i) if (coef[i] != 0)
               ret += coef[i] + "x^" + i + "+";
15
           return ret + coef[0];
16
17
       static Polynomial lagrangeInterpolation(int[] x, int[] y, int mod) {
18
19
           int n = x.length; Polynomial ret = Polynomial.ZERO;
           for (int i = 0; i < n; ++i) {
20
21
               Polynomial poly = Polynomial.valueOf(y[i]);
               for (int j = 0; j < n; ++j) if (i != j) {
22
                   poly = poly.multiply(
24
                       Polynomial.X.subtract(Polynomial.valueOf(x[j]), mod), mod);
25
                   poly = poly.scale(powMod(x[i] - x[j] + mod, mod - 2, mod), mod);
               } ret = ret.add(poly, mod);
26
27
           } return ret;
28
29 }
```

Shanghai Jiao Tong University 49 Tempus Fugit

6.9 long long 乘法取模

```
1 LL multiplyMod(LL a, LL b, LL P) { // 需要保证 a 和 b 非负;
2 LL t = (a * b — LL((long double)a / P * b + 1e—3) * P) % P;
3 return t < 0 : t + P : t;
4 }
```

6.10 重复覆盖

```
1 namespace DLX {
         struct node { int x, y; node *1, *r, *u, *d; } base[MAX * MAX], *top, *head;
         typedef node *link;
        int row, col, nGE, ans, stamp, cntc[MAX], vis[MAX];
         vector<link> eachRow[MAX], eachCol[MAX];
         inline void addElement(int x, int y) {
             top \rightarrow x = x; top \rightarrow y = y; top \rightarrow l = top \rightarrow r = top \rightarrow u = top \rightarrow d = NULL;
             eachRow[x].push_back(top); eachCol[y].push_back(top++);
10
         void init(int _row, int _col, int _nGE) {
              row = _row; col = _col; nGE = _nGE; top = base; stamp = 0;
11
             for (int i = 0; i \le col; ++i) vis[i] = 0;
12
13
             for (int i = 0; i <= row; ++i) eachRow[i].clear();</pre>
             for (int i = 0; i <= col; ++i) eachCol[i].clear();</pre>
              for (int i = 0; i \le col; ++i) addElement(0, i);
             head = eachCol[0].front();
        }
17
        void build() {
18
             for (int i = 0; i <= row; ++i) {
19
                   vector<link> &v = eachRow[i];
^{21}
                   sort(v.begin(), v.end(), cmpByY);
22
                   int s = v.size();
                   for (int j = 0; j < s; ++j) {
                       link l = v[j], r = v[(j + 1) \% s]; l \rightarrow r = r; r \rightarrow l = l;
             for (int i = 0; i <= col; ++i) {
                   vector<link> &v = eachCol[i];
                   sort(v.begin(), v.end(), cmpByX);
                   int s = v.size();
                   for (int j = 0; j < s; ++j) {
31
                       link u = v[j], d = v[(j + 1) \% s]; u \rightarrow d = d; d \rightarrow u = u;
32
             } for (int i = 0; i \le col; ++i) cntc[i] = (int) eachCol[i].size() - 1;
34
35
        void removeExact(link c) {
36
37
             c \rightarrow l \rightarrow r = c \rightarrow r; c \rightarrow r \rightarrow l = c \rightarrow l;
              for (link i = c \rightarrow d; i != c; i = i \rightarrow d)
                   for (link j = i \rightarrow r; j != i; j = j \rightarrow r) {
                       j\rightarrow d\rightarrow u = j\rightarrow u; j\rightarrow u\rightarrow d = j\rightarrow d; ---cntc[j\rightarrow y];
41
        void resumeExact(link c) {
```

```
44
                 for (link i = c \rightarrow u; i != c; i = i \rightarrow u)
                       for (link j = i \rightarrow l; j != i; j = j \rightarrow l) {
45
46
                             j\rightarrow d\rightarrow u = j; j\rightarrow u\rightarrow d = j; ++cntc[j\rightarrow y];
47
                 c \rightarrow l \rightarrow r = c; c \rightarrow r \rightarrow l = c;
48
49
50
          void removeRepeat(link c) {
51
                 for (link i = c \rightarrow d; i != c; i = i \rightarrow d) {
                       i \rightarrow l \rightarrow r = i \rightarrow r; i \rightarrow r \rightarrow l = i \rightarrow l;
52
53
54
55
           void resumeRepeat(link c) {
56
                 for (link i = c \rightarrow u: i != c: i = i \rightarrow u) {
57
                       i \rightarrow l \rightarrow r = i; i \rightarrow r \rightarrow l = i;
58
59
60
          int calcH() {
61
                 int y, res = 0; ++stamp;
                 for (link c = head \rightarrow r; (y = c \rightarrow y) \leftarrow row \&\& c != head; <math>c = c \rightarrow r) {
                      if (vis[y] != stamp) {
63
                            vis[y] = stamp; ++res;
64
                            for (link i = c \rightarrow d; i != c; i = i \rightarrow d)
65
                                  for (link j = i \rightarrow r; j != i; j = j \rightarrow r) vis[j \rightarrow y] = stamp;
                      }
67
                } return res;
68
69
           void DFS(int dep) { if (dep + calcH() >= ans) return;
70
                if (head \rightarrow r \rightarrow y > nGE | l | head \rightarrow r == head) {
71
                      if (ans > dep) ans = dep; return;
72
73
                } link c = NULL;
                 for (link i = head \rightarrow r; i \rightarrow y \leftarrow nGE \& i != head; i = i \rightarrow r)
74
75
                      if (!c || cntc[i\rightarrowy] < cntc[c\rightarrowy]) c = i;
                 for (link i = c \rightarrow d; i != c; i = i \rightarrow d) {
76
77
                      removeRepeat(i);
78
                       for (link j = i \rightarrow r; j != i; j = j \rightarrow r) if (j \rightarrow y \leftarrow nGE) removeRepeat(j);
79
                       for (link j = i \rightarrow r; j != i; j = j \rightarrow r) if (j \rightarrow y > nGE) removeExact(base + j \rightarrow y);
                      DFS(dep + 1);
80
                       for (link j = i \rightarrow l; j != i; j = j \rightarrow l) if (j \rightarrow y > nGE) resumeExact(base + j \rightarrow y);
81
                       for (link j = i \rightarrow l; j != i; j = j \rightarrow l) if (j \rightarrow y \leftarrow nGE) resumeRepeat(j);
82
                       resumeRepeat(i);
83
84
85
           int solve() { build(); ans = INF; DFS(0); return ans; }
87 }
```

6.11 星期几判定

```
1 int getDay(int y, int m, int d) {
2     if (m <= 2) m += 12, y—;
3     if (y < 1752 || (y == 1752 && m < 9) || (y == 1752 && m == 9 && d < 3))
4         return (d + 2 * m + 3 * (m + 1) / 5 + y + y / 4 + 5) % 7 + 1;
5         return (d + 2 * m + 3 * (m + 1) / 5 + y + y / 4 - y / 100 + y / 400) % 7 + 1;
6 }</pre>
```

Shanghai Jiao Tong University 50 Tempus Fugit

6.12 LCSequence Fast

6.13 C Split

```
1 for (char *tok = strtok(ins, delimiters); tok; tok = strtok(NULL, delimiters))
2 puts(tok); // '会破坏原字符串ins'
```

6.14 builtin 系列

- int ___builtin_ffs (unsigned int x) 返回 x 的最后一位 1 的是从后向前第几位, 比如 7368(1110011001000) 返回 4.
- int ___builtin_clz (unsigned int x) 返回前导的 0 的个数.
- int ___builtin_ctz (unsigned int x) 返回后面的 0 个个数, 和 ___builtin_clz 相对.
- int builtin popcount (unsigned int x) 返回二进制表示中 1 的个数.
- int ___builtin_parity (unsigned int x) 返回 x 的奇偶校验位, 也就是 x 的 1 的个数模 2 的结果.

7 Templates

7.1 泰勒级数

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots$$

$$= \sum_{i=0}^{\infty} x^i$$

$$\frac{1}{1-cx} = 1 + cx + c^2 x^2 + c^3 x^3 + \cdots$$

$$= \sum_{i=0}^{\infty} c^i x^i$$

$$= \sum_{i=0}^{\infty} x^{ni}$$

$$= \sum_{i=0}^{\infty} x^{ni}$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots$$

$$= \sum_{i=0}^{\infty} ix^i$$

$$= \sum_{i=0}^{\infty} ix^i$$

$$= \sum_{i=0}^{\infty} i^n x^i$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots$$

$$= \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^i}{i}$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots$$

$$= \sum_{i=1}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$$

$$= \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

$$= \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

$$= \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots$$

$$= \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots$$

$$= \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$=$$

7.2 积分表

- $d(\tan x) = \sec^2 x dx$
- $d(\cot x) = \csc^2 x dx$
- $d(\sec x) = \tan x \sec x dx$

• $d(\csc x) = -\cot x \csc x dx$

•
$$d(\arcsin x) = \frac{1}{\sqrt{1-x^2}} dx$$

•
$$d(\arccos x) = \frac{-1}{\sqrt{1-x^2}} dx$$

•
$$d(\arctan x) = \frac{1}{1+x^2} dx$$

•
$$d(\operatorname{arccot} x) = \frac{-1}{1+x^2} dx$$

•
$$d(\operatorname{arcsec} x) = \frac{1}{x\sqrt{1-x^2}} dx$$

•
$$d(\operatorname{arccsc} x) = \frac{-1}{u\sqrt{1-x^2}} dx$$

•
$$\int cu \, \mathrm{d}x = c \int u \, \mathrm{d}x$$

•
$$\int (u+v) dx = \int u dx + \int v dx$$

•
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1$$

•
$$\int \frac{1}{x} dx = \ln x$$

•
$$\int \frac{\mathrm{d}x}{1+x^2} = \arctan x$$

•
$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x$$

•
$$\int \sin x \, \mathrm{d}x = -\cos x$$

•
$$\int \cos x \, \mathrm{d}x = \sin x$$

•
$$\int \tan x \, \mathrm{d}x = -\ln|\cos x|$$

•
$$\int \cot x \, \mathrm{d}x = \ln|\cos x|$$

•
$$\int \sec x \, \mathrm{d}x = \ln|\sec x + \tan x|$$

•
$$\int \csc x \, \mathrm{d}x = \ln|\csc x + \cot x|$$

•
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0$$

•
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0$$

•
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0$$

•
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax))$$

•
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax))$$

•
$$\int \sec^2 x \, \mathrm{d}x = \tan x$$

•
$$\int \sin^n x \, \mathrm{d}x = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, \mathrm{d}x$$

•
$$\int \cos^n x \, \mathrm{d}x = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, \mathrm{d}x$$

•
$$\int \tan^n x \, \mathrm{d}x = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, \mathrm{d}x, \quad n \neq 1$$

•
$$\int \cot^n x \, \mathrm{d}x = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, \mathrm{d}x, \quad n \neq 1$$

•
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1$$

•
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1$$

•
$$\int \sinh x \, \mathrm{d}x = \cosh x$$

•
$$\int \cosh x \, \mathrm{d}x = \sinh x$$

•
$$\int \tanh x \, \mathrm{d}x = \ln|\cosh x|$$

•
$$\int \coth x \, \mathrm{d}x = \ln|\sinh x|$$

•
$$\int \operatorname{sech} x \, \mathrm{d}x = \arctan \sinh x$$

•
$$\int \operatorname{csch} x \, \mathrm{d}x = \ln \left| \tanh \frac{x}{2} \right|$$

•
$$\int \sinh^2 x \, \mathrm{d}x = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$$

•
$$\int \cosh^2 x \, \mathrm{d}x = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$$

•
$$\int \operatorname{sech}^2 x \, \mathrm{d}x = \tanh x$$

$$\bullet \int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0$$

•
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|$$

$$\bullet \int \operatorname{arccosh} \frac{x}{a} = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0 \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0 \end{cases}$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0$$

•
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

•
$$\int \frac{\mathrm{d}x}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

•
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln |x + \sqrt{a^2 \pm x^2}|$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|$$

•
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2}$$

•
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx$$

•
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0$$

•
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

•
$$\int x\sqrt{a^2-x^2}\,\mathrm{d}x = -\frac{1}{3}(a^2-x^2)^{3/2}$$

•
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

•
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2}$$

•
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|$$

•
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - \arccos \frac{a}{|x|}, \quad a > 0$$

•
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2}$$

•
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|$$

•
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-a^2}} = \frac{1}{a}\arccos\frac{a}{|x|}, \quad a>0$$

•
$$\int \frac{\mathrm{d}x}{x^2\sqrt{x^2+a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x}$$

$$\oint \frac{x \, \mathrm{d}x}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2}$$

•
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^3}$$

Shanghai Jiao Tong University 53 Tempus Fugit

•
$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac \end{cases}$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0 \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0 \end{cases}$$

•
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

•
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

$$\bullet \int \frac{\mathrm{d}x}{x\sqrt{ax^2 + bx + c}} = \left\{ \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, \text{ if } c > 0 \right.$$

$$\left. \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, \text{ if } c < 0 \right.$$

•
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2}$$

•
$$\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$$

•
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

•
$$\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right)$$

•
$$\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx$$

7.3 Eclipse 配置

Exec=env UBUNTU_MENUPROXY= /opt/eclipse/eclipse preference general keys 把 word completion 设置成 alt+c, 把 content assistant 设置成 alt + /

7.4 C++

```
1 #pragma comment(linker, "/STACK:10240000")
2 #include <cstdio>
3 #include <cstdlib>
4 #include <cstring>
5 #include <iostream>
```

```
6 #include <algorithm>
7 #define Rep(i, a, b) for(int i = (a); i \le (b); ++i)
8 #define Foru(i, a, b) for(int i = (a); i < (b); ++i)
9 using namespace std;
10 typedef long long LL;
11 typedef pair<int, int> pii;
12 namespace BufferedReader {
       char buff[MAX_BUFFER + 5], *ptr = buff, c; bool flag;
       bool nextChar(char &c) {
          if ((c = *ptr++) == 0) {
               int tmp = fread(buff, 1, MAX_BUFFER, stdin);
              buff[tmp] = 0; if (tmp == 0) return false;
               ptr = buff: c = *ptr++:
          } return true;
       bool nextUnsignedInt(unsigned int &x) {
22
           for (;;){if (!nextChar(c)) return false; if ('0'<=c && c<='9') break;}
           for (x=c-0); nextChar(c); x = x * 10 + c - 0) if (c < 0) | c > 0) break;
25
       bool nextInt(int &x) {
           for (;;) { if (!nextChar(c)) return false; if (c=='-' || ('0'<=c && c<='9')) break; }
27
           for ((c=='-')? (x=0,flag=true): (x=c-'0',flag=false); nextChar(c); x=x*10+c-'0')
               if (c<'0' || c>'9') break;
           if (flag) x=-x; return true;
30
31
32 };
33 #endif
```

7.5 Java

```
1 import java.io.*;
2 import java.util.*;
3 import java.math.*;
 5 public class Main {
       public void solve() {}
       public void run() {
           tokenizer = null; out = new PrintWriter(System.out);
           in = new BufferedReader(new InputStreamReader(System.in));
           solve():
11
           out.close();
12
13
       public static void main(String[] args) {
           new Main().run();
14
15
16
       public StringTokenizer tokenizer;
17
       public BufferedReader in;
       public PrintWriter out;
18
       public String next() {
19
20
           while (tokenizer == null || !tokenizer.hasMoreTokens()) {
               try { tokenizer = new StringTokenizer(in.readLine()); }
21
22
               catch (IOException e) { throw new RuntimeException(e); }
```

Shanghai Jiao Tong University 54

7.6 gcc 配置

在.bashrc 中加入 export CXXFLAGS="-Wall -Wconversion -Wextra -g3"