

0 0 0 0 0 0 00 00000000

北京新云南皇冠假日酒店

全局读·

---腾讯TDSQL分布式金融级数据库

李海翔@那海蓝蓝

面向金融类业务,十年积累,亿级账户验证

腾讯公司内与计费、充值、转账、财务等核心系统90%以上都使用TDSQL!

分布式事务处理模型与数据异常

业界主流数据库的解决方式

TDSQL全局读一致性的实现技术

并发操作可以被区分为四种:读-读、读-写、写-读、写-写

两阶段锁(2 Phase Lock)

时间戳 (Timestamp Ordering)

主要技术 并发控制

基于有效性检查(validation protocal)

多版本和快照隔离 (MVCC, Snapshot)

CO (Commitment Ordering)

OCC (Optimistic Concurrency Control)

读半已提交数据异常

结果: 账目不平

DTCC 2019 -

届中国数据库技术大会

- 两个数据节点Na、Nb; 两个数据项X、Y
- Na节点commit完成: Nb节点commit未完成
- 全局该事务处于committing状态

Tencent DB

分布式事务处理模型与数据异常

业界主流数据库的解决方式

TDSQL全局读一致性的实现技术

Na: X Na: Committed: X = X-10 Reader (X-10)+YNb: Y Nb: Committing: Y=Y+10 初始 写事务发生,提交状态不同 读事务

解决方案

编号	各种方案	缺点	案例
1	全局事务管理器	非去中心化、低效	Pg XC
2	基于封锁的并发访问控制算法+全 局可串行化	低效	某些系统 SS2PL+MVCC
3	全局可串行化+线性一致性	所有事件全序排序=>所有事务全 局排序,低效	Spanner SS2PL+MVCC
4	全局可串行化+混合逻辑时钟+全局 事务提交标志	数据是否可读,需要通过全局事务提交状态验证,增加通讯次数	CockroachDB SSI+MVCC
5	2次读 《Scalable atomic visibility with ramp transactions》	增加了通讯轮数,且只能解决读半已提交数据异常	学术界的解决 方式

DTCC 2019 ...

分布式读半已提交异常

node 1

更多的数据异常

Tencent DB

Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang Lee, Norman May: Distributed snapshot isolation: global transactions pay globally, local transactions pay locally. VLDB J. 23(6): 987-1011 (2014)

node 2

更多的数据异常.....

DTCC 2019 .-

第十届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2019

存在的业务问题:

● 事务x、y同时发起 对账,对账结果 不同

解决技术:

● 实现全局可串行 化

分布式事务处理模型与数据异常

业界主流数据库的解决方式

TDSQL全局读一致性的实现技术

十届中国数据库技术大会

第二代TDSQL 分布式事务处理模型

start transaction; 修改user1的金额; 修改user2的金额; commit;

Burckhardt [2014] breaks down linearizability into three components:

 $Linearizability(\mathcal{F}) \triangleq SingleOrder \wedge RealTime \wedge RVal(\mathcal{F})$

where

and

$$\text{SingleOrder} \triangleq \underline{\exists H' \subseteq \{op \in H : op.oval = \nabla\} : vis = ar \setminus (\underline{H'} \times \underline{H})} \tag{8}$$

and RealTime $\triangleq rb \subseteq ar$. (9)

$$RVal(\mathcal{F}) \triangleq \forall op \in H : op.oval \in \mathcal{F}(op, cxt(A, op)).$$
 (4)

In other words, SINGLEORDER imposes a single global order that defines both vis and ar, whereas RealTime constrains arbitration (ar) to comply to the returns-before partial ordering (rb). Finally, RVAL (\mathcal{F}) specifies the return value consistency of a replicated data type. We recall that, as per Equation (5), in case of read/write storage, this is the value written by the last write (according to ar) visible to a given read operation rd.

Bailis P, Davidson A, Fekete A, et al. Highly available transactions: Virtues and limitations. In Proc. of VLDB. 2013. 181-192

核心: 同时满足2个一致

- 读的角度:分布式读数据一致
- 读写混合的角度:分布式事务 的事务一致性
- 非多副本的数据一致性

技术难点:

- 正确性相对容易实现
- 性能难以提高

解决方案—TDSQL全时态数据库

DTCC 2019

第十届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2019

	15		
N1子节点	N2子节点	全局状态	是否可见
Prepared	Prepared	Preparing	不可见,读前一个版本
Prepared	Prepared	Prepared	不可见
Prepared	Prepared	Committed	可见
Committed	Prepared	Committed	可见
Committed	Committed	Committed	可见

核心问题:

● 分布式、全态数据在任何时间点的数据一致性

解决技术:

- 写写冲突封锁机制互斥
- MVCC从新版本到旧版本
- 局部节点处于Prepared状态
- 全局事务Committed/ Prepared状态
- 异步、批量设置本地事务状态
- 全局逻辑时钟(非跨城/洲分布)
- 冲突可串行化
- VLDB 2019 腾讯全时态论文《A Lightweight and Efficient Temporal Database Management System in TDSQL》

未来展望

DICC 2019 第十届中国数据库技术大会

2PC保证了事务提交的一致性

Paxos保证了数据的多副本一致性

缺点:

没有高效解决全局读一致性

没有实现分布式事务的可串行化

分布式事务的吞吐量低

优点:

实现了可串行化分布式事务

采用了OCC机制理论上事务吞吐量较好

缺点:

OCC机制在冲突较多时性能急剧下降

实测性能低于TDSQL

没有实现线性一致性和事务一致性的结合

以物理时间做全序排序

实现了事务一致性和线性一致性的统一

Spanner

限制了并发

优点:

缺占:

事务吞叶量低

http://km.oa.com/group/22808/articles/show/330944 每秒事务的吞吐量 = 1/2 = 1/0.008 = 125个事务/秒

优先了外部—致性,牺牲了事务吞吐量

解决了什么问题?

正确性如何保证? TDSQL

效率如何保证?

CockroachDB

O Base

分布式事务

线性一致性

DICC 2019

第十届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2015

向上攀登,永不止步

关注"腾讯云数据库"官方微信

体验移动端一键管理数据库

获取数据库技术干货和最新资讯

立享10元腾讯云代金券

数据库领域泰斗

李海翔(网名:那海蓝蓝)

