GA Matlab Algorithm

SGA Cycle

Initial population

 $y = 100-(x1.^2+x2.^2)$; x1,x2 = [0 5] 16 bits Population of 100 individuals Crossover, probability 100% NO mutation

 $y = 100-(x1.^2+x2.^2)$; x1,x2 = [0 5] 16 bits Population of 100 individuals Crossover, probability 100% NO mutation

SGA Cycle

Initial population

 $y = 100-(x1.^2+x2.^2)$; x1,x2 = [0 5] 16 bits Population of 100 individuals Crossover, probability 100% Mutation, YES, probability 2% (par=0.5)

Standard GA Cycle

 $y = 100-(x1.^2+x2.^2)$; x1,x2 = [0 5] 16 bits Population of 100 individuals Crossover, probability 100% Mutation, YES, probability 2% (par=0.5) Selection of best individuals

Convergence diagram

 $y = 100-(x1.^2+x2.^2)$; x1,x2 = [0 5] 16 bits Population of 100 individuals Crossover, probability 100% Mutation, YES, probability 2% (par=0.5) Selection of best individuals

Design variables space

