Projekt 2, Zadanie 36

Wiktor Murawski, 333255, grupa 3, środa 12:15

Metoda Adamsa-Bashfortha rzędu 4-go dla liniowych równań różniczkowych pierwszego i drugiego rzędu. Wartości początkowe y_1 , y_2 , y_3 obliczane metodą Rungego-Kutty rzędu 4-go (wzór Ralstona).

$$y' = f(x, y)$$

Tabela Butchera (wartości dokładne)

0	0	0	0	0
$\frac{2}{5}$	$\frac{2}{5}$	0	0	0
$\frac{14 - 3\sqrt{5}}{16}$	$\frac{-2889 + 1428\sqrt{5}}{1024}$	$\frac{3785 - 1620\sqrt{5}}{1024}$	0	0
1	$\frac{-3365 + 2094\sqrt{5}}{6040}$	$\frac{-975 - 3046\sqrt{5}}{2552}$	$\frac{467040 + 203968\sqrt{5}}{240845}$	0
	$\frac{263 + 24\sqrt{5}}{1812}$	$\frac{125 - 1000\sqrt{5}}{3828}$	$\frac{3426304 + 1661952\sqrt{5}}{5924787}$	$\frac{30 - 4\sqrt{5}}{123}$

Tabela Butchera (wartości przybliżone)

0	0	0	0	0
0.4	0.4	0	0	0
0.45573725	0.29697761	0.15875964	0	0
1	0.21810040	-3.05096516	3.83286476	0
	0.17476028	-0.55148066	1.20553560	0.17118478

Testy poprawności

Testy numeryczne

Przetestujemy teraz własności numeryczne zaimplementowanej metody. Zaobserwujemy jak metoda działa dla kilku wybranych funkcji, które nie są wielomianami stopnia < 2.

Zauważymy, że dla niskich n wyniki są bardzo niedokładne. Intuicyjnie, im wyższe n, tym wyniki będą dokładniejsze; k-krotne zwiększenie wartości n spowoduje około k^2 -krotne zmniejszenie wartości błędu bezwzględnego.

Wynika to z faktu wspomnianego na wykładzie, mianowicie jeśli f jest wystarczająco wiele razy różniczkowalna, to

$$|S^{[n]}(f) - I(f)| = \mathcal{O}(n^{-p})$$

gdzie p jest rzędem zastosowanej kwadratury, w naszym przypadku

$$|S_S^{[n]}(f) - I(f)| = \mathcal{O}(n^{-2})$$

Testy numeryczne

Źródła