1

AI1103 - Challenging Problem 19

Anirudh Srinivasan CS20BTECH11059

Download latex-tikz codes from

https://github.com/Anirudh—Srinivasan—CS20/ AI1103/blob/main/Challenging—Problem—19// Challenging—Problem—19.tex

QUESTION

Suppose X_1, X_2, X_3, X_4 are i.i.d random variables taking values 1 and -1 with probability 1/2 each. Then $E(X_1 + X_2 + X_3 + X_4)^4$ equals

- A) 40
- B) 76
- C) 16
- D) 12

SOLUTION

Since, X_1, X_2, X_3, X_4 are i.i.d random variables

$$Pr(X_i = 1) = \frac{1}{2} \text{ for } i = 1,2,3,4$$
 (0.0.1)

$$\Pr(X_i = -1) = \frac{1}{2} \text{ for } i = 1,2,3,4$$
 (0.0.2)

Consider the random variable $Y = |X_1 + X_2 + X_3 + X_4|$ As X_i can take only the values 1 or -1, we have:

n	(1)	n(-1)	Y	Pr(Y)
	0	4	4	${}^{4}C_{0} \times \frac{1}{16} = \frac{1}{16}$
	1	3	2	${}^4C_1 \times \frac{1}{16} = \frac{4}{16}$
	2	2	0	${}^4C_2 \times \frac{1}{16} = \frac{6}{16}$
	3	1	2	$^{4}C_{3} \times \frac{1}{16} = \frac{4}{16}$
	4	0	4	${}^4C_4 \times \frac{1}{16} = \frac{1}{16}$

Table 4: This table shows probability associated with each value that the random variable Y take where n(1) represents the number of X_i which takes the value 1 and n(-1) represents the number of X_i which takes the value -1.

 \implies For Y, we have:

$$\Pr(Y=0) = \frac{3}{8} \tag{0.0.3}$$

$$\Pr(Y=2) = \frac{1}{2} \tag{0.0.4}$$

$$\Pr(Y=4) = \frac{1}{8} \tag{0.0.5}$$

 \implies For Y^4 , we have:

$$\Pr(Y = 0) = \frac{3}{8} \tag{0.0.6}$$

$$\Pr(Y = 16) = \frac{1}{2} \tag{0.0.7}$$

$$\Pr(Y = 256) = \frac{1}{8} \tag{0.0.8}$$

$$E(Y^4) = \sum_{\forall y} \Pr(Y = y) \times y$$
 (0.0.9)

$$= \frac{3}{8} \times 0 + \frac{1}{2} \times 16 + \frac{1}{8} \times 256 \qquad (0.0.10)$$

$$=40$$
 (0.0.11)

$$\implies E(X_1 + X_2 + X_3 + X_4)^4 = 40$$

Answer: Option (A)