DMA Přednáška – Dělitelnost

Definice.

Nechť $a, b \in \mathbb{Z}$. Řekneme, že a **dělí** b, značeno $a \mid b$, jestliže existuje $k \in \mathbb{Z}$ takové, že $b = k \cdot a$. V takovém případě říkáme, že a je **faktor** b a že b je **násobek** a. Také říkáme, že b je **dělitelné** a.

Fakt.

Pro každé $a \in \mathbb{Z}$ platí $1 \mid a$, $a \mid a$ a $a \mid 0$.

Věta.

Nechť $a, b, c \in \mathbb{Z}$.

- (i) Jestliže $a \mid b$ a $b \mid c$, pak $a \mid c$.
- (ii) $a \mid b$ právě tehdy, když $|a| \mid |b|$.
- (iii) Jestliže $a \mid b$ a $b \neq 0$, tak $|a| \leq |b|$.

Věta.

Nechť $a, b \in \mathbb{N}$. Jestliže $a \mid b$ a $b \mid a$, pak a = b.

Definice.

Nechť $a \in \mathbb{N}, a \geq 2$.

Řekneme, že je to **prvočíslo** (**prime**), jestliže jediná přirozená čísla, která a dělí, jsou 1 a a. Řekneme, že a je **složené číslo**, jestliže to není prvočíslo.

Definice.

Nechť $a, b \in \mathbb{Z}$.

Číslo $d \in \mathbb{N}$ je **společný dělitel** čísel a, b, jestliže $d \mid a \text{ a } d \mid b$.

Číslo $d \in \mathbb{N}$ je **společný násobek** čísel a, b, jestliže $a \mid d$ a $b \mid d$.

Definice.

Nechť $a, b \in \mathbb{Z}$.

Definujeme jejich **největší společný dělitel**, značeno gcd(a,b), jako největší prvek množiny jejich společných dělitelů, pokud je alespoň jedno z a, b nenulové. Jinak definujeme gcd(0,0) = 0.

Definujeme jejich **nejmenší společný násobek**, značeno lcm(a, b), jako nejmenší prvek množiny jejich společných násobků, pokud jsou a, b obě nenulové. Jinak definujeme lcm(a, 0) = lcm(0, b) = 0.

Definice.

Řekneme, že čísla $a, b \in \mathbb{Z}$ jsou **nesoudělná**, jestliže $\gcd(a, b) = 1$.

Fakt.

Nechť p je prvočíslo. Pak pro libovolné $a \in \mathbb{Z}$ platí, že buď je s p nesoudělné, nebo p dělí a.

Fakt.

Nechť $a \in \mathbb{N}$. Pak gcd(a,0) = a, lcm(a,0) = 0 a gcd(a,a) = lcm(a,a) = a.

Fakt.

Nechť $a, b \in \mathbb{Z}$. Pak gcd(a, b) = gcd(|a|, |b|) a lcm(a, b) = lcm(|a|, |b|).

Věta.

Nechť $a, b \in \mathbb{Z}$. Pak $lcm(a, b) \cdot gcd(a, b) = |a| \cdot |b|$.

Věta. (o dělení se zbytkem)

Nechť $a,d\in\mathbb{Z},\ d\neq 0$. Pak existují $q\in\mathbb{Z}$ a $r\in\mathbb{N}_0$ takové, že a=qd+r a $0\leq r<|d|$. Čísla q a r jsou jednoznačně určena.

Definice.

Číslu r říkáme **zbytek** při dělení a číslem d a značíme jej $r=a \mod d$. Číslu q říkáme **částečný podíl**.

Fakt.

Nechť $a, b \in \mathbb{Z}$, $a \neq 0$. Pak $a \mid b$ právě tehdy, když $b \mod |a| = 0$, tedy zbytek po dělení b číslem |a| je 0.

Lemma.

Nechť $a > b \in \mathbb{N}$, nechť $q, r \in \mathbb{N}_0$ splňují a = qb + r. Pak platí následující: (i) $d \in \mathbb{N}$ je společný dělitel a, b právě tehdy, když je to společný dělitel b, r. (ii) $\gcd(a, b) = \gcd(b, r)$.

Euklidův algoritmus pro nalezení gcd(a, b) pro $a > b \in \mathbb{N}$.

Verze 1. nebo Verze 2. Iniciace: $r_0 := a, r_1 := b, k := 0$. Rrok: $k := k+1, r_{k-1} = q_k \cdot r_k + r_{k+1}$ opakovat dokud nenastane $r_{k+1} = 0$. Pak $\gcd(a,b) = r_k$. repeat $r := a \mod b$; a := b; b := r; until b = 0; output: a;

Věta. (Bezoutova věta/rovnost)

Nechť $a, b \in \mathbb{Z}$. Pak existují $A, B \in \mathbb{Z}$ takové, že $\gcd(a, b) = Aa + Bb$.

Rozšířený Euklidův algoritmus pro nalezení gcd(a, b) = Aa + Bb pro $a > b \in \mathbb{N}$.

Verze 1.

Inicializace: $r_0 := a, r_1 := b, k := 0,$ $A_0 := 1, A_1 := 0, B_0 := 0, B_1 := 1.$ Krok: $k := k + 1, , q_k := \left\lfloor \frac{r_{k-1}}{r_k} \right\rfloor,$ $r_{k+1} := r_{k-1} - q_k r_k,$ $A_{k+1} := A_{k-1} - q_k A_k,$ $B_{k+1} := B_{k-1} - q_k B_k.$

Opakovat dokud nenastane $r_{k+1} = 0$.

Pak $gcd(a,b) = r_k = A_k a + B_k b$.

nebo Verze 2.

procedure gcd-Bezout(a, b: integer) $A_0 := 1; A_1 := 0; B_0 := 0; B_1 := 1;$ repeat

 $\begin{aligned} q_k &:= \left \lfloor \frac{r_{k-1}}{r_k} \right \rfloor; \\ r &:= a - qb; \\ a &:= b; \ b := r; \\ r_a &:= A_0 - qA_1; \\ r_b &:= B_0 - qB_1; \\ a &:= b; \ b := r; \\ A_0 &:= A_1; \ A_1 := r_a; \\ B_0 &:= B_1; \ B_1 := r_b; \\ \text{until } b &= 0; \end{aligned}$

output: a, A_0, B_0 ;

Lemma. (Euklidovo lemma)

Nechť $a, b, d \in \mathbb{Z}$.

Jestliže $d \mid (ab)$ a gcd(d, a) = 1, pak $d \mid b$.

Prvočísla v první stovce:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Lemma.

Nechť $a_1, \ldots, a_m \in \mathbb{N}$ a p je prvočíslo.

Jestliže $p \mid (a_1 a_2 \cdots a_m)$, pak existuje i takové, že $p \mid a_i$.

Lemma.

Pro každé $a \in \mathbb{N}$, $a \ge 2$ existuje prvočíslo, které jej dělí.

Věta. (Fundamentální věta aritmetiky, prvočíselný rozklad) Nechť $n \in \mathbb{N}$. Pak existují prvočísla p_1, p_2, \ldots, p_m a exponenty $k_1, k_2, \dots, k_m \in \mathbb{N}_0$ takové, že

$$n = p_1^{k_1} \cdot p_2^{k_2} \cdots p_m^{k_m} = \prod_{i=1}^m p_i^{k_i}.$$

 $n=p_1^{k_1}\cdot p_2^{k_2}\cdots p_m^{k_m}=\prod_{i=1}^m p_i^{k_i}.$ Jestliže přidáme podmínky $p_1< p_2<\ldots< p_m$ a $k_i>0$, tak je tato dekompozice jednoznačně určena.