Année 2019-2020

🗻 Rappels et Méthodologie 🤝

I - Exercices

Exercice 1. Montrer que $\bigcup_{n \in N} [-n; n] = \mathbb{R}$

Correction: Comme souvent pour démontrer une égalité d'ensemble, on procède par double inclusion:

- Montrons que $\bigcup_{n \in \mathbb{N}} [-n; n] \subset \mathbb{R}$. C'est évident, car chaque interval [-n; n] est un sous-ensemble de \mathbb{R} .
- Montrons que $\mathbb{R} \subset \bigcup_{n \in \mathbb{N}} [-n; n]$

Pour cela, on va prendre $x \in \mathbb{R}$. Par définition de la partie entière [x], on a : $\begin{cases} [x] \in \mathbb{Z} \\ [x] \leq x < [x] + 1 \end{cases}$

Posons alors $n = \max(|\lfloor x \rfloor + 1|, |\lfloor x \rfloor|)$ (pensons au cas ou x < 0). Il est clair que $x \in [-n; n]$. Donc $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \ / \ x \in [-n; n], \text{ donc } \mathbb{R} \subset \bigcup_{x \in \mathbb{N}} [-n; n], \text{ d'où}$

$$\bigcup_{n\in N} [-n;n] = \mathbb{R}$$

Exercice 2. Soient E et F deux ensembles finis. On suppose qu'il existe une injection $i: E \to F$ et une surjection $s: E \to F$. Montrer qu'il existe une bijection de E dans F.

Correction: l'idée ici est de montrer qu'ils ont le même nombre d'éléments: on pourra ainsi construire notre bijection "à la main". Commençons par remarquer que :

E est fini $\Rightarrow E = \{e_1, e_2, \dots, e_j, \dots, e_p\}$ avec les e_j tous distincts F est fini $\Rightarrow F = \{f_1, f_2, \dots, f_j, \dots, f_q\}$ avec les f_j tous distincts il ne nous reste alors qu'à montrer que p = q pour pouvoir conclure :

- Montrons $q \ge p$: par définition d'une fonction injective : $\forall e_j \in E, \forall e_k \in E, i(e_j) = i(e_k) \Leftrightarrow e_j = e_k$ (ce qui revient à j = k, car on a précisé que les e_j étaient tous distincts). Considérons alors $\mathscr{I} = i(E) = \{i(e_1), i(e_2), \dots, i(e_p)\}$. On peut dire de cet ensemble que :
 - d'une part, il est inclus dans F, car i est une fonction de E dans F.
 - d'autre part, les $i(e_j)$ étant tous distincts, car i est injective, $\mathscr I$ contient p éléments.

Or, comme F contient q éléments, on a donc $q \ge p$

• Montrons maintenant que $p \ge q$. On va procéder par l'absurde et supposer que p < q pour arriver à une contradiction.

Comme s est une surjection, alors par définition $\forall f_j \in F \exists e_k \in E \ / \ s(e_k) = f_j$. Autrement dit, on a $\mathscr{S} = \{s(e_1), s(e_2), \dots, s(e_p)\} = F$, en notant que \mathscr{S} contient **au plus** p élements. En supposant p < q, alors on peut dire $\exists f \in F \ / \ f \notin \mathscr{S}$, ce qui contredit le fait que s est surjective.

Par l'absurde, on peut donc conclure que $p \ge q$.

Avec les deux inégalités, on peut conclure p=q, et donc $E=\{e_1,e_2,\ldots,e_j,\ldots,e_p\}$ avec les e_j tous distincts $F=\{f_1,f_2,\ldots,f_j,\ldots,f_p\}$ avec les f_j tous distincts Soit alors b la fonction telle que $\forall j \in [1;p], b(e_j)=f_j$, dont on vérifie facilement que c'est une bijection, qui répond donc à la question.

Exercice 3. Soit $n \in \mathbb{N}$, et \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. Soit $z = \prod_{x \in \mathbb{U}_n \setminus \{1\}} (x-1)$.

1. Montrer que
$$z = (2i)^{n-1} \prod_{k=1}^{n-1} e^{i k\pi/n} \sin\left(\frac{k\pi}{n}\right)$$

2. Montrer que
$$\prod_{k=1}^{n-1} e^{i k\pi/n} = i^{n-1}$$

3. En déduire
$$|z| \leq 2^{n-1} \left(\frac{\pi}{4}\right)^{\left\lfloor \frac{n}{4} \right\rfloor}$$

4. Proposer une amélioration encore plus fine de ce résultat.

Correction:

1. Notons l'utilisation habile de la formule d'Euler :

$$\begin{split} z &= \prod_{x \in \mathbb{U}_n \backslash \{1\}} (x-1) \\ &= \prod_{k=1}^{n-1} \left(\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}} - 1 \right) \\ &= \prod_{k=1}^{n-1} \mathrm{e}^{\frac{\mathrm{i}k\pi}{n}} \left(\mathrm{e}^{\frac{\mathrm{i}k\pi}{n}} - \mathrm{e}^{\frac{-\mathrm{i}k\pi}{n}} \right) \text{ on factorise } \mathrm{e}^{\frac{\mathrm{i}k\pi}{n}} \\ &= \prod_{k=1}^{n-1} 2\mathrm{i}\mathrm{e}^{\frac{\mathrm{i}k\pi}{n}} \left(\frac{\mathrm{e}^{\frac{\mathrm{i}k\pi}{n}} - \mathrm{e}^{\frac{-\mathrm{i}k\pi}{n}}}{2i} \right) \text{ on fait apparaître les formules d'Euler} \\ &= \prod_{k=1}^{n-1} 2\mathrm{i}\mathrm{e}^{\frac{\mathrm{i}k\pi}{n}} \sin \left(\frac{k\pi}{n} \right) \end{split}$$

2. Il faut se souvenir que $e^a \times e^b = e^{a+b}$ et que $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$:

$$\prod_{k=1}^{n-1} e^{i k\pi/n} = \exp\left(\sum_{k=1}^{n-1} \frac{ik\pi}{n}\right)$$
$$= \exp\left(\frac{i\pi}{n} \sum_{k=1}^{n-1} k\right)$$
$$= \exp\left(\frac{i\pi}{n} \cdot \frac{\mathcal{M}(n-1)}{2}\right)$$
$$= e^{i\frac{\pi}{2}(n-1)}$$
$$\cdot n-1$$

3. En passant au module, comme il s'agit d'un produit de termes, on va pouvoir le découper en parties faciles à étudier :

$$|z| = \left| \prod_{k=1}^{n-1} 2ie^{\frac{ik\pi}{n}} \sin\left(\frac{k\pi}{n}\right) \right| \text{ d'après la question 1}$$

$$= |(2i)|^{n-1} \left| \prod_{k=1}^{n-1} e^{\frac{ik\pi}{n}} \right| \left| \prod_{k=1} n - 1\sin\left(\frac{k\pi}{n}\right) \right|$$

$$= 2^{n-1} \prod_{k=1}^{n-1} \left| \sin\left(\frac{k\pi}{n}\right) \right| \text{ in d'après la question 2}$$

$$= 2^{n-1} \prod_{k=1}^{\lfloor n/4 \rfloor} \left| \sin\left(\frac{k\pi}{n}\right) \right| \prod_{k=\lfloor n/4 \rfloor}^{n-1} \left| \sin\left(\frac{k\pi}{n}\right) \right| \text{ par intuition}$$

On a coupé en deux pour pouvoir utiliser deux majorations différentes. Dans le cas ou $|x| \le 1$, on utilisera $|\sin(x)| \le |1|$, et sinon, on utilisera $|\sin(x)| \le |x|$. Or :

$$k \in [1; \left\lfloor \frac{n}{4} \right\rfloor] \Rightarrow k \leqslant \frac{n}{4}$$

$$\Rightarrow \frac{k\pi}{n} \leqslant \frac{\varkappa \pi}{4\varkappa}$$

$$\Rightarrow \left| \sin \left(\frac{k\pi}{n} \right) \right| \leqslant \frac{\pi}{4} \operatorname{car} |\sin(x)| \leqslant |x|$$

$$\Rightarrow \prod_{k=1}^{\lfloor n/4 \rfloor} \left| \sin \left(\frac{k\pi}{n} \right) \right| \leqslant \left(\frac{\pi}{4} \right)^{\lfloor n/4 \rfloor}$$

Et de plus, $\prod_{k=\lceil n/4 \rceil}^{n-1} \left| \sin \left(\frac{k\pi}{n} \right) \right| \le 1 \text{ car } |\sin(x)| \le 1.$ On peut donc conclure :

$$|z| \leqslant 2^{n-1} \left(\frac{\pi}{4}\right)^{\lfloor n/4\rfloor}$$

4. Ce résultat peut encore s'améliorer, en choisissant une "coupure" plus proche de 1 que $\frac{\pi}{4}$, et une approximation plus fine que $|\sin(x)| \leq |x|$, par exemple par une fonction affine entre $\frac{\pi}{4}$ et 1...

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et T-périodique. Montrer que $\exists x \in [0; T] / f\left(x + \frac{T}{2}\right) = f(x)$.

Correction: Soit g la fonction $g: x \mapsto f(x) - f\left(x + \frac{T}{2}\right)$. Alors on a

- D'une part, $g(0) = f(0) f\left(\frac{T}{2}\right)$
- D'autre part, $g\left(\frac{T}{2}\right) = f\left(\frac{T}{2}\right) f(T) = f\left(\frac{T}{2}\right) f(0)$ car f est T-périodique

Donc $g(0) = -g\left(\frac{T}{2}\right)$. De plus, g est continue sur \mathbb{R} comme somme de fonction continues sur \mathbb{R} . On a donc deux cas :

1. si
$$g(0) = 0$$
 alors $f(0) = f\left(\frac{T}{2}\right)$ et $\exists x \in [0, T] / f\left(x + \frac{T}{2}\right) = f(x)$, avec $x = 0$.

2. si
$$g(0) \neq 0$$
, alors $g(0) \times g\left(\frac{T}{2}\right) < 0$.

On peut alors appliquer le **théorèmes des valeurs intermédiaires** à g sur $\left[0; \frac{T}{2}\right]$, car elle y est continue. Ainsi, $\exists c \in \left[0; \frac{T}{2}\right] / g(c) = 0$ et donc $\exists x \in \left[0; T\right] / f\left(x + \frac{T}{2}\right) = f(x)$ avec x = c.

Dans tout les cas, on a bien $\exists x \in [0;T] / f\left(x + \frac{T}{2}\right) = f(x)$.

Un prolongement de ce raisonnement permet de montrer qu'il existe, sur terre, deux points diamétralements opposés où la température et la pression sont égales.

Exercice 5. Après avoir justifié son existence, donnez la dérivée de la fonction $\begin{cases} f : \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \mathrm{e}^{\cos(x)} \frac{\sqrt{1+x}}{x^2+1} \end{cases}$

Correction: pour rendre les calculs et le raisonnement plus lisible, on va séparer notre fonction f en deux termes: soient

$$u: \mapsto e^{\cos x}$$
 \mathcal{C}^1 sur \mathbb{R}^+ comme composée de fonctions \mathcal{C}^1 sur \mathbb{R}^+ $v: \mapsto \frac{\sqrt{x+1}}{x^2+1}$ \mathcal{C}^1 sur \mathbb{R}^+ comme fraction de fonctions \mathcal{C}^1 sur \mathbb{R}^+ , avec le dénominateur qui ne s'annule pas sur cet intervalle

f, produit de ces deux fonctions, et donc bien \mathcal{C}^1 sur \mathbb{R}^+ , et f' = u'v + uv' par la formule de LEIBNITZ. Calculons u' et v' dans un premier temps :

• Calcul de u'(x):

$$u'(x) = (\cos(x))' e^{\cos(x)}$$
$$= -\sin(x)e^{\cos(x)}$$

• Calcul de v'(x):

$$\begin{split} v'(x) &= \left(\frac{\sqrt{1+x}}{x^2+1}\right)' \\ &= \frac{(\sqrt{1+x})'(x^2+1) - \sqrt{1+x}(x^2+1)'}{(x^2+1)^2} \\ &= \frac{\frac{1}{2\sqrt{1+x}}(x^2+1) - \sqrt{1+x}(2x)}{(x^2+1)^2} \\ &= \frac{\frac{\frac{1}{2}\sqrt{1+x}(x^2+1)} - \frac{2x(1+x)\sqrt{1+x}}{1+x}}{(x^2+1)^2} \\ &= \frac{\frac{\sqrt{1+x}}{2(1+x)}(3x^2+2x+1)}{(x^2+1)^2} \text{ après factorisation} \end{split}$$

• On peut maintenant calculer f':

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= -\sin(x)e^{\cos(x)} \left(\frac{\sqrt{1+x}}{x^2+1}\right) + e^{\cos(x)} \frac{\frac{\sqrt{1+x}}{2(1+x)}(3x^2+2x+1)}{(x^2+1)^2}$$

$$= e^{\cos(x)} \left(\frac{\sqrt{1+x}}{x^2+1}\right) \left(-\sin(x) + \frac{(3x^2+2x+1)}{2(x^2+1)(1+x)}\right)$$

Exercice 6. Faire une étude de la fonction $f: x \mapsto \frac{x^2 - 3x + 2}{x + 1}$

Correction:

- Ensemble de définition : d'après les théorèmes généraux, f est définie et \mathcal{C}^{∞} partout où x+1 ne s'annule pas, c'est à dire sur $\mathbb{R}\setminus\{-1\}=\mathcal{D}_f$.
- Limites aux bornes de \mathcal{D}_f :

$$-\operatorname{En}-\infty$$
;

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - 3x + 2}{x + 1}$$

$$= \lim_{x \to -\infty} \frac{x^2 \left(1 - \frac{3}{x} + \frac{2}{x^2}\right)}{x \left(1 + \frac{1}{x}\right)} \text{ on factorise par le terme de plus haut degré}$$

$$= \lim_{x \to -\infty} \frac{x^{\frac{1}{2}} \left(1 - \frac{3}{x} + \frac{2}{x^2}\right)}{\cancel{x} \left(1 + \frac{1}{x}\right)} \text{ pour lever la forme indeterminée}$$

$$= \lim_{x \to -\infty} x = -\infty$$

— En
$$+\infty$$
: $\lim_{x\to +\infty} f(x) = +\infty$ par le même calcul.

-- En -1⁻:
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{6}{x+1} = -\infty$$

-- En -1⁺:
$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{6}{x+1} = +\infty$$

Donc pas de raccordement possible en -1, et étude des branches asymptotique en $\pm \infty$.

• Branches infinies : d'une part, asymptote verticale d'équation x = -1.

En $-\infty$: $\lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\frac{x^2-3x+2}{x^2}=1$ par la même méthode qu'au dessus (on factorise par le terme de plus haut degré). On a donc une asymptote oblique de pente 1. Trouvons son ordonnée à l'origine :

$$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \frac{x^2 - 3x + 2}{x + 1} - \frac{x^2 + x}{x + 1}$$
$$= \lim_{x \to -\infty} \frac{-4x + 2}{x + 1} = -4$$

On en déduit que l'asymptote oblique en $-\infty$ à pour équation y = x - 4.

En $+\infty$ On effectue les mêmes calculs, avec la même méthode, pour trouver la même asymptote y=x-4.

• **Dérivée** : on peut calculer la dérivée de f sur \mathcal{D}_f . Posons $u(x) = x^2 - 3x + 2$ et v(x) = x + 1. On a donc u'(x) = 2x - 3 et v'(x) = 1. On peut calculer la dérivée : $\forall x \in \mathcal{D}_f$:

$$f'(x) = \left(\frac{u(x)}{v(x)}\right)'$$

$$= \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{(2x-3)(x+1) - (x^2 - 3x + 2)}{(x+1)^2}$$

$$= \frac{2x^2 - 3x + 2x - 3 - x^2 + 3x - 2}{(x+1)^2}$$

$$= \frac{x^2 + 2x - 5}{(x+1)^2}$$

D'où
$$f'(x) = \frac{x^2 + 2x - 5}{(x+1)^2}$$

• Signe de la dérivée : le dénominateur de la précédente fraction étant positif, le signe de f'(x) est celui de $x^2 + 2x - 5$, soit négatif entre les racines de ce polynôme, et positif ailleurs. Cherchons les racines de $x^2 + 2x - 5$:

$$\Delta = (2)^{2} - 4 \times 1 \times (-5)$$
= 24
= $(2\sqrt{6})^{2}$

Le discriminant étant positif, on a donc deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
$$= \frac{-2 - 2\sqrt{6}}{2}$$
$$= -1 - \sqrt{6}$$

et de même

$$x_2 = -1 + \sqrt{6}$$

(Note: la dérivé change de signes en ces points; il s'agit pour x_1 d'un maximum local, et pour x_2 d'un minimum local. Une étude du signe de la dérivée seconde nous donnerais des informations sur la concavité/convexité de f suivant l'intervalle de \mathcal{D}_f où l'on se trouve, et on pourrait alors conclure que x_1 est le maximum (unique!) sur $]-\infty;-1[$ et x_2 le minimum sur $]-1;+\infty[$)

• **Zéros de** f: pour trouver les zéros de f, il faut et il suffit de trouver les racines de $x^2 - 3x + 2$. On a 1 qui est une racine évidente, donc

$$x^{2} - 3x + 2 = (x - 1)(x - a)$$
 avec $a \in \mathbb{R}$

Et on a a=2 car le produit des racines d'un polynôme vaut toujours son terme constant. Donc

$$x^2 - 3x + 2 = (x - 1)(x - 2)$$

et on a donc les zéros de f qui sont 1 et 2.

• Tableau de variation : on peut donc, avec toutes les informations précédentes, dresser le tableau de variation de f :

Exercice 7. Résoudre l'équation différentielle $(E): y' + 2xy = 2xe^{-x^2}$

Correction : c'est une équation différentielle linéaire d'ordre 1, on peut donc commencer par résoudre l'équation homogène associée (H): y' + 2xy = 0, puis on cherchera une solution particulière par méthode de variation de la constante.

- Solution de l'équation homogène : L'équation (H) est sous une forme standard dont on connaît les solutions : on peut donner directement $y_H(x) = C \mathrm{e}^{-\int_0^x 2t \mathrm{d}t}$ avec $C \in \mathbb{R}$. L'intégrale se calcule directement, 2t étant la dérivée de t^2 : $y_H(x) = C \mathrm{e}^{-x^2}$
- Variation de la constante : On va chercher une solution particulière s de (E) qui soit sous la forme $s(x) = C(x)e^{-x^2}$, avec la fonction C à déterminer :

$$s(x) = C(x)e^{-x^{2}}$$

$$\Rightarrow s'(x) = C'(x)e^{-x^{2}} - 2xC(x)e^{-x^{2}}$$

$$\Rightarrow s'(x) + 2xs(x) = C'(x)e^{-x^{2}} - 2xC(x)e^{-x^{2}} + 2xC(x)e^{-x^{2}}$$

$$\Rightarrow 2xe^{-x^{2}} = C'(x)e^{-x^{2}} - 2xC(x)e^{-x^{2}} + 2xC(x)e^{-x^{2}} \text{ car } s \text{ solution de } (E)$$

$$\Rightarrow 2xe^{-x^{2}} = C'(x)e^{-x^{2}}$$

$$\Rightarrow 2x = C'(x)$$

On peut donc choisir $C(x) = x^2$, et on a alors notre solution particulière $\underline{s(x)} = x^2 e^{-x^2}$. On a donc nos solution générales de (E):

$$S_{(E)} = \{y(x) = (x^2 + C)e^{-x^2}, C \in \mathbb{R}\}$$

Note: une variante consiste a appliquer directement la formule de résolution générale:

$$y \text{ solution de } y' + f(x)y = g(x) \Leftrightarrow y(x) = \left(C + \int_0^x g(t) \mathrm{e}^{\int_0^t f(y) \mathrm{d}y} \mathrm{d}t\right) \mathrm{e}^{-\int_0^x f(y) \mathrm{d}y}$$

Puis on applique en calculant d'abord l'intégrale de f, on injecte le résultat, ce qui devrait simplifier le calcul de l'intégrale de g, et on conclue.

Exercice 8. Soit $\alpha \in \mathbb{C}$ avec $\Re(\alpha) > 0$, et f une fonction de classe \mathcal{C}^1 telle que $f' + \alpha f \xrightarrow{\to +\infty} 0$. Montrer que $f \xrightarrow{\mathbb{C}^n} 0$.

Correction: Posons la fonction $g=f'+\alpha f$. Alors f est solution de l'équation différentielle (E): $y'+\alpha y=g$. L'équation homogène associée est $(H):y'+\alpha y=0$, dont les solutions sont les fonctions $y(x)=\lambda \mathrm{e}^{-\alpha x}$ avec $\lambda\in\mathbb{R}$. Les solutions de (E) sont donc de la forme $y(x)=\lambda \mathrm{e}^{-\alpha x}+s(x)$ avec s une solution particulière.

Recherchons cette solution particulière par la méthode de variation de la constante :

On pose
$$s(x) = \lambda(x)e^{-\alpha x}$$
, solution de (E) et on veut déterminer λ .
On a alors $s'(x) = \lambda'(x)e^{-\alpha x} - \lambda(x)\alpha e^{-\alpha x}$
Donc $s'(x) + \alpha s(x) = \lambda'(x)e^{-\alpha x} - \lambda(x)\alpha e^{-\alpha x} + \alpha \lambda(x)e^{-\alpha x}$
 $\Leftrightarrow g(x) = \lambda'(x)e^{-\alpha x}$
 $\Leftrightarrow \lambda(x) = \int_0^x g(t)e^{\alpha t}dt$
Et doncs $(x) = e^{-\alpha x} \int_0^x g(t)e^{\alpha t}dt$
 $= \int_0^x g(t)e^{\alpha(t-x)}dt$

On peut donc écrire $f(x) = \lambda e^{-\alpha x} + \int_0^x g(t) e^{\alpha(t-x)} dt$. Il s'agit maintenant d'utiliser cette forme pour montrer que f tend vers 0 en $+\infty$.

• Comme $\Re e(\alpha) \ge 0$, alors

$$\lambda e^{-\alpha x} \xrightarrow[x \to +\infty]{} 0 \tag{1}$$

Pour l'autre membre, on va le couper en deux et traiter les deux membres d'une manière différente. Posons $\varepsilon > 0$, et comme $g(x) \xrightarrow[x \to +\infty]{} 0$ par énoncé, alors $\exists A \in \mathbb{R} \ / \ \forall t \geqslant A, |g(t)| \leqslant \varepsilon$. On peut donc poser $\forall x \geqslant A$:

$$\int_0^x g(t)e^{\alpha(t-x)}dt = \int_0^A g(t)e^{\alpha(t-x)}dt + \int_A^x g(t)e^{\alpha(t-x)}dt = h_1(x) + h_2(x)$$

• Traitons d'abord h_1 , en usant du fait que le terme $e^{-\alpha x}$ va dominer le reste :

$$|h_1(x)| = \left| \int_0^A g(t) e^{\alpha(t-x)} dt \right|$$

$$|h_1(x)| = \left| e^{-\alpha x} \right| \left| \int_0^A g(t) e^{\alpha t} dt \right|$$

$$|h_1(x)| \le \left| e^{-\alpha x} \right| \int_0^A \left| g(t) e^{\alpha t} \right| dt \text{ par inégalité triangulaire}$$

$$|h_1(x)| \le A\Gamma \left| e^{-\alpha x} \right|$$

avec Γ le maximum de la fonction $t\mapsto |g(t)\mathrm{e}^{\alpha t}|$ (qui existe car la fonction est continue sur l'intervalle fermé [0;A]). Comme $\Gamma\in\mathbb{R},\ A\in\mathbb{R}$ et $\mathrm{e}^{-\alpha x}\xrightarrow[x\to+\infty]{}0$ (car $\Re\mathrm{e}(\alpha)\geqslant0$), alors le terme de droite de l'inégalité tend vers 0 et par suite :

$$\underbrace{h_1(x) \xrightarrow[x \to +\infty]{} 0.} \tag{2}$$

• Il ne nous reste que h_2 à traiter. Nous allons le majorer (en module) par une quantité qui tend vers 0 en même temps que ε , et qui est indépendante de A:

$$\begin{split} |h_2(x)| &= \left| \int_A^x g(t) \mathrm{e}^{\alpha(t-x)} \mathrm{d}t \right| \\ &\leqslant \int_A^x |g(t)| \left| \mathrm{e}^{\alpha(t-x)} \right| \mathrm{d}t \text{ par in\'egalit\'e triangulaire} \\ &\leqslant \int_A^x \varepsilon \mathrm{e}^{\Re(\alpha)(t-x)} \mathrm{d}t \text{ car } t \geqslant A \text{ sur } [A;x], \text{ donc } |g(t)| \leqslant \varepsilon \\ &\leqslant \frac{\varepsilon}{\Re(\alpha)} \left[\mathrm{e}^{\Re(\alpha)(t-x)} \right]_A^x \\ &\leqslant \frac{\varepsilon}{\Re(\alpha)} \left(1 - \mathrm{e}^{\Re(\alpha)(A-x)} \right) \end{split}$$

Or comme $x \ge A$, $(A - x) \le 0$ et donc $\left(1 - e^{\Re(\alpha)(A - x)}\right) \in]0; 1[$, d'où $|h_2(x)| \le \frac{\varepsilon}{\Re(\alpha)} \xrightarrow{\varepsilon \to 0} 0$ (3)

Et ainsi on peut conclure par (1) + (2) + (3):

$$f(x) \xrightarrow[x \to +\infty]{} 0$$

Note : il faut remarquer que, pour h_1 , on n'avait pas besoin de l'indépendance en A. En effet, c'est x que l'on faisait tendre vers l'infini, indépendamment de A et ε . Pour h_2 par contre, il faut faire attention, car A dépend en fait de ε , et peut devenir très grand à mesure que ε tend vers 0...

Exercice 9. Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite :
$$\begin{cases} u_0 = 1, u_1 = -1 \\ u_{n+2} = 2u_{n+1} - u_n \forall n \in \mathbb{N} \end{cases}$$
. Expliciter la suite $(u_n)_{n\in\mathbb{N}}$

Correction: on emploie la méthode classique pour les suites récurrentes linéaires d'ordre 2: d'abord mettons l'équation de récurrence sous une forme canonique: $u_{n+2} - 2u_{n+1} + u_n = 0$: (E). On a alors l'équation caractéristique associée: $r^2 - 2r + 1 = 0$, qui a une unique solution (double): r = 1.

On doit donc chercher notre suite $(u_n)_{n\in\mathbb{N}}$ de la forme : $u_n=(an+b)(1)^n=an+b$. Comme $u_0=1$, alors b=1, et comme $u_1=a+b=-1$, alors a=-2.

$$Donc u_n = -2n + 1$$

Note : on peut aussi calculer les premiers termes : 1, -1, -3, -5, puis proposer une conjecture que l'on vérifiera par récurrence.

Exercice 10. Montrer que
$$\sqrt[n+1]{n+1} - \sqrt[n]{n} \sim -\frac{\ln(n)}{n^2}$$
.

Correction : Il nous est indiqué d'appliquer le théorème des accroissements finis. Mais à quelle fonction ? Pour rappel, ce théorème nous donnera un résultat de la forme f(b)-f(a)=f'(c)(b-a) avec a,b bornes d'un intervalle et c un point dans cet intervalle. Pour correspondre à ce qui nous est proposé dans l'énoncé, posons $g:x\mapsto x^{1/x}$. Alors pour $n\in\mathbb{N}^*$, g est continue sur [n;n+1], dérivable sur]n;n+1[et donc

$$\forall n \in \mathbb{N}, \exists c_n / g(n+1) - g(n) = g'(c_n)(n+1-n) \tag{4}$$

C'est à dire : $\sqrt[n+1]{n+1} - \sqrt[n]{n} = g'(c_n)$. Il nous suffit donc de trouver un équivalent de c_n , et de calculer g'(x), pour avoir notre résultat.

 \bullet Pour calculer la dérivée de g, passons par une forme qui se prête plus à l'exercice :

$$g(x) = x^{1/x}$$

$$= e^{\frac{1}{x}\ln(x)}$$

$$\Rightarrow g'(x) = \left(\frac{1}{x}\ln(x)\right)' e^{\frac{1}{x}\ln(x)}$$

$$= \left(\frac{-1}{x^2}\ln(x) + \frac{1}{x} \cdot \frac{1}{x}\right) e^{\frac{1}{x}\ln(x)}$$

$$= \left(\frac{1 - \ln(x)}{x^2}\right) e^{\frac{1}{x}\ln(x)}$$

$$= \left(\frac{1 - \ln(x)}{x^2}\right) x^{1/x}$$

• Pour trouver un équivalent de c_n , c'est assez simple puisque celui-ci est toujours entre n et n+1, par construction. Formellement :

$$\begin{aligned} n &< c_n < n+1 \\ \Rightarrow & 1 < \frac{c_n}{n} < 1 + \frac{1}{n} \xrightarrow[n \to +\infty]{} 1 \end{aligned}$$

On a donc $c_n \sim n$ et par un calcul similaire (qu'il faut faire : ce n'est pas automatique!), on a $\ln(c_n) \sim \ln(n)$.

En utilisant ces résultats dans l'équation (4), avec n qui tend vers l'infini, on obtient :

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} \sim \frac{1 - \ln(n)}{n^2}$$

soit après simplification :

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} \underset{n \to \infty}{\sim} -\frac{\ln(n)}{n^2}$$