

Generating Chinese Ci with Designated Metrical Structure

Richong Zhang¹, Xinyu Liu², Xinwei Chen², Zhiyuan Hu¹, Zhaoqing Xu¹, Yongyi Mao² 1.BDBC Beihang University 2. University of Ottawa, Canada

zhangrc@act.buaa.edu.cn,zhiyuan.hu.bj@gmail.com, xuzhaoqingchina@gmail.com, ymao@uottawa.ca

Paper and code: https://github.com/zhiyuanhubj/Generating-Chinese-Ci

Contribution

Rule-based learning traditionally belongs to the symbolist paradigm of AI

Neural networks and distributed representations belong to the connectionist paradigm of AI

Cipai:忆江南(Yi Jiang Nan)						
Rhythmic Rule:	3 characters, 5 characters。 7 characters, 7 characters。 5 characters?					
Ci:	江南好,风景旧曾谙。日出江花红胜火,春来江水绿如蓝。能不忆江南?					
Tonal Rule:	0+-,0++.0-0++,0++++.0++?					
Rhyming Rule:	,xx?					
Translation:	Fair Southern shore, with scenes I adore. At sunrise riverside flowers redder than fire. In spring gre waves grow as blue as sapphire. Which I cannot but admire.					

Tone rule mean Ping(+), Ze(-) or 0

Rhyming are a final, called a "rhyming foot" or Yunshe, which may take 16 different sounds.

Generating Ci(宋词) with designated metrical structure is a perfect example for investigating whether one can bridge the great divide between the connectionist and the symbolist.

Metrically Restricted Ci Generation (MRCG)

Examples and Dataset

Two examples Ci's generated by MRCG

	Cipai: 长相思 (Chang Xiang Si)	Cipai: 清平乐 (Qing Ping Yue)			
彻银头	The pretty hairpin I wear	消魂销尽	Have you lost your mind		
等用卷	With loneliness and boredom	昨梦沈郎不	Dreaming of Mr. Shen last night?		
泪滴红藤村玉钩	Tears drop on the moon-lit pillow	英情飘茵随逝日	Don't pity the green grass withering in the wind of time		
夜来横温秋	Lightly drenching this night of autumn	润雨潇湘月明	Tears like rain, you linger in the moonlight		
淡墨淋	Let my pen and ink	只愁听玉钩花	Sadness when you listen to an old song		
东晋游	Run through the Dynasty of Jin	白革桥外啼鸦	Resonates with the raven, crying on the bridge		
百啭莺吭春梦稠	In the dream of romance, let thousands of doves chirp	别离帐愁无迹	Leave behind the pain of parting		
秋千闲倚楼	Where on a leisureful balcony, I play on a swing	吟怀谁把年华	For an old memory, who would sacrifice youth, beautiful and shining		

Introduction of Dataset

We crawl a dataset from a Chinese poetry website: https://sou-yun.com/

95% of the corpus are contributed by the most popular 314 Cipai's; the most popular 20 Cipai's contribute to about 45% of the corpus.

The dataset contains 82,724 Ci's, written for 818 Cipai's; on average there are 102 Ci' per Cipai.

In total, 3,797 Ci's in the testing set and 78,927 in the training set.

Model

We adopt the CVAE (conditional variational autoencoder) framework for generating Ci for a given Cipai.We explicitly encode the metrical rules in the given Cipai into distributed representations and feed them to the neural networks.

Experiments

Metrical Performance

Model	Blind Generation			Guided Generation			
	Length	Tone	Rhyme	Length	Tone	Rhyme	
Seq2seq	-	-	7-2	27.1	55.0	29.8	
Attn	-	_	-	28.2	56.3	26.7	-
MRCG-	35.49	59.43	33.34	41.96	66.21	39.77	-
MRCG	99.21	92.03	96.87	99.37	93.71	98.28	(

Seq2Seq:Seq2Seq model
Attn: Attention
MRCG-: MRCG with metrical-rule
encoding removed(ablation experiment)

Semantics Performance

Encoder

- Character Embedding: $\overline{w}_{I,j} := \mathbf{D}w_{I,j}$
- Line Embedding (GRU):

$$h_{I,j}^{\mathrm{s}} := \mathsf{GRU}(h_{I,j-1}^{\mathrm{s}}, \overline{w}_{I,j})$$
 $\overline{s}_{I} := h_{I,N(I)}^{\mathrm{s}}$

- Context Embedding (2-layer GRU)
- Latent Semantics Encoding (MLP)
- blue circle: concatenation
- red box: GRU

z_0 z_1 z_2 z_3 z_4 z_4 z_5 z_6 z_8 z_8

From line embedding to latent semantics

Decoder

Generate a line of characters

- blue circle: concatenation
- red box: GRU
- $r_{l,j}$: rule encoding for the j^{th} character in the l^{th} line.

$$r_{l,j} := \mathbf{concat}(\widetilde{a}_{l,j}, \widetilde{b}_{l,j})$$

- a rhyme-rule vector $\widetilde{b}_{l,j}$
- a tone-rule vector $\tilde{a}_{l,j}$

......

ciliantics i cirolinance								
Objective Tests		Human Evaluation						
AST	RST	Flu	The	Aes	All			
0.242	0.358	2.65	2.8	2.26	2.33			
0.221	0.323	2.53	2.72	2.25	2.21			
0.235	0.541	2.38	2.41	2.34	2.26			
0.229	0.529	2.59	2.68	2.54	2.45			
	Objective AST 0.242 0.221 0.235	Objective Tests AST RST 0.242 0.358 0.221 0.323 0.235 0.541	Objective Tests Hu AST RST Flu 0.242 0.358 2.65 0.221 0.323 2.53 0.235 0.541 2.38	Objective Tests Human E AST RST Flu The 0.242 0.358 2.65 2.8 0.221 0.323 2.53 2.72 0.235 0.541 2.38 2.41	Objective Tests Human Evaluation AST RST Flu The Aes 0.242 0.358 2.65 2.8 2.26 0.221 0.323 2.53 2.72 2.25 0.235 0.541 2.38 2.41 2.34			

Fluency (Flu)
Theme consistency (Thm)
Aesthetics (Aes)
Overall (All)
performance are evaluated using
scores {1(poor), 2, 3, 4(expert level)}

Absolute Semantics Test (AST)
Relative Semantics Test (RST)

Conclusion

- 1. We present the first neural model, MRCG, that explicitly encodes metrical structure in Ci generation.
- 2. We demonstrate that MRCG generates nearly perfect metrics without sacrificing semantics.
- 3. This exercise suggests that it is possible to integrate the symbolist paradigm in the connectionist learning framework.

Future:

We believe that generating "human-level" semantics relies on the development of new natural language understanding models, particularly those capable of representing reasoning at a fundamental level.