First Order Logic and KR Semantics of First-Order Logic

Objectives

Objective
Explain the semantics
of First-Order Logic

Interpretation: Example

For signature $\sigma = \{a, succ, P, Q\}$ where

- a is an object constant,
- succ is a unary function constant,
- P is a unary predicate constant,
- Q is a binary predicate constant

$$|I| = \mathbf{N},$$

$$a^I = 10, \qquad succ^I(n) = n+1$$

$$P^{I}(n) = \begin{cases} \mathsf{t}, & \text{if } n \text{ is prime,} \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$

$$Q^{I}(m,n) = \begin{cases} \mathsf{t}, & \text{if } m < n, \\ \mathsf{f}, & \text{otherwise.} \end{cases}$$

Interpretation: Definition

An interpretation (or structure) I of a signature σ consists of

- a non-empty set |I|, called the universe (or domain) of I
- for every object constant c of σ , an element c^{I} of |I|
- for every function constant f of σ of arity n > 0, a function f^I from $|I|^n$ to |I|
- for every propositional constant R of $\sigma,$ an element $\,R^{I}$ of $\,\{t,f\}$
- for every predicate constant R of σ of arity n > 0, a function R^I from $|I|^n$ to $\{t, f\}$

Semantics: Terms

For term a, a is part of interpretation I

For terms $f(t_1, ..., t_n)$,

 $-f(t_1,...,t_n)^I = f^I(t_1^I,...,t_n^I)$ for all function constants f of arity n > 0

Example:

- $-a^{I} = 10$ (part of interpretation)
- $-succ(a)^{I} = succ^{I}(a^{I}) = succ^{I}(10) = 11$

Semantics (Formulas): Buggy

We define the truth value F^I of F under interpretation I as:

$$- R(t_1, ..., t_n)^I = R^I(t_1^I, ..., t_n^I),$$

$$-\perp^I = f$$
, $\top^I = t$,

$$- (\neg F)^I = \neg (F^I),$$

- $(F \odot G)^I$ = $\odot (F^I, G^I)$ for every binary connective \odot
- $\forall w F(w)^I = t$ iff, for all object constants $c, F(c)^I = t$
- $-\exists w F(w)^I = t$ iff, for some object constants $c, F(c)^I = t$

Q: What does this mean?

$$-\exists x \left(Q(x,a)\right)^{I} = t$$
iff for some object constant c,
$$Q(c,a)^{x} = t$$
iff
$$Q(a,a)^{x} = t$$

$$Q(0,a)^{x} = t$$

$$|I| = \mathbf{N},$$

$$\underline{a}^{I} = 10,$$

$$P^{I}(n) = \begin{cases} \mathsf{t}, & \text{if } n \text{ is prime,} \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$

$$Q^{I}(m, n) = \begin{cases} \mathsf{t}, & \text{if } m < n, \\ \mathsf{f}, & \text{otherwise.} \end{cases}$$

Semantics: Extended Signature

- We consider an extended signature $\sigma^{\rm I}$ just to define the semantics correctly
 - $-\sigma^{I}$ is not available to the knowledge engineer
- Consider an interpretation I of a signature σ . For any element ξ of its universe |I|, select a new symbol ξ^* , called the name of ξ
- By σ^I we denote the signature obtained from σ by adding all names ξ^* as object constants
- The interpretation I can be extended to the new signature σ^{I} by defining $(\xi^{*})^{I} = \xi$ for all $\xi \in |I|$

Example: for the signature $\sigma = \{a, P, Q\}$ and interpretation I such that

$$|I| = \mathbf{N},$$

$$a^{I} = 10,$$

$$P^{I}(n) = \begin{cases} \mathsf{t}, & \text{if } n \text{ is prime,} \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$

$$Q^{I}(m,n) = \begin{cases} \mathsf{t}, & \text{if } m < n, \\ \mathsf{f}, & \text{otherwise.} \end{cases}$$

Q: What is σ^I ?

$$G^{z} = \frac{1}{3}a, P, Q, O', I', 2',$$

Semantics (Formulas): Corrected

$$R(t_1,...,t_n)^I = R^I(t_1^I,...,t_n^I)$$

$$\perp^I = f, T^I = t$$

$$(\neg F)^I = \neg (F^I)$$

 $(F \odot G)^I = \odot (F^I, G^I)$ for every binary connective \odot

$$\forall w F(w)^I = t \text{ if } F(\xi^*)^I = t \text{ for all } \xi \in |I|$$

$$\exists w F(w)^I = t \text{ if } F(\xi^*)^I = t \text{ for some}$$

 $\xi \in |I|$

Q:
$$\exists x (Q(x,a))^I = ?^{t}$$

iff $Q(z^*,a)^{t} = t$ for some $z \in N$
iff true (: take $z = 0$)

$$|I| = \mathbf{N},$$

$$a^I = 10,$$

$$P^{I}(n) = \begin{cases} \mathsf{t}, & \text{if } n \text{ is prime,} \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$

$$Q^{I}(m,n) = \begin{cases} \mathsf{t}, & \text{if } m < n, \\ \mathsf{f}, & \text{otherwise.} \end{cases}$$

Satisfaction, Logical Validity (Tautology)

- The notions are simply carried over from propositional logic
- We say that an interpretation I satisfies a sentence F, or is a model of F, and write $I \models F$, if $F^I = t$
 - A sentence is a formula with no free variables
- A sentence F is logically valid if every interpretation satisfies F (c.f. tautology in propositional logic)

Satisfaction, Logical Validity (Tautology), Equivalence

- Two sentences, or sets of sentences, are equivalent to each other if they are satisfied by the same interpretations
- A formula with free variables is said to be logically valid if its universal closure is logically valid
- Formulas F and G that may contain free variables are equivalent to each other if F ↔ G is logically valid

Entailment

- A set Γ of sentences is satisfiable if there exists an interpretation satisfying all sentences in Γ
- A set Γ of sentences entails a formula F (symbolically, $\Gamma \models F$) if every interpretation satisfying Γ satisfies the universal closure of F

Q: True or false?

```
- \{\exists x \ P(x), \ \exists x \ Q(x)\} \vDash \exists x \big(P(x) \land Q(x)\big)  false
```

$$- \{ \forall x \ P(x), \ \forall x \ Q(x) \} \vDash \forall x \big(P(x) \lor Q(x) \big)$$
 true

Undecidability of FOL

- The Validity Problem of FOL: given any sentence F, is F logically valid?
- Theorem: The Validity Problem is undecidable
- Corollary: The satisfiability problem of first-order logic (i.e., given a sentence F, is F satisfiable?) is undecidable:
 - Proof: By reducing the validity problem to it
 - F is logically valid iff $\neg F$ is unsatisfiable

We need to restrict FOL in a meaningful way!

Wrap-Up

