Ponte de Wheatstone e Termistor

Eduardo Parducci - 170272 Lucas Koiti Geminiani Tamanaha - 182579 Rodrigo Seiji Piubeli Hirao - 186837 Tanus Vaz Szabo - 187308

12 de Abril de 2017

Conteúdo

1	Resumo	3
2	Objetivo	3
3	Metodologia3.1 Material Utilizado3.2 Circuitos Utilizados	3 4
4	Resultados 4.1 Tensão por Resistência	5
5	Análise	6
6	Discussão	6
7	Conclusão	6
8	Referencias	6

1 Resumo

O experimento em questão foi realizado em busca de analisar o comportamento de um resistor e do diodo. Com o uso dos aparelhos necessários pode-se verificar o comportamento ohmico dos resistores, da mesma forma, o diodo mostrou, através do grafico obtido pelos pontos experimentais, seu comportamento exponencial da corrente em relação a uma certa tensão, quando polarizado diretamente. Também, provou-se um dispositivo retificador assim que foi polarizado inversamente, impedindo a passagem de corrente. Dessa forma, os resultados obtidos para o resistor confirmam seu valor nominal, pois, de acordo com a regressão linear, temos 99.8898 Ω . Pelo multimetro chegou-se a 99.6 Ω , e, o esperado é de 100 Ω .

2 Objetivo

3 Metodologia

3.1 Material Utilizado

- $\bullet~2$ Resistores de 100Ω
- 1 Resistor de 68Ω
- 1 Resistor variável
- 1 Multímetros
- 1 Protoboard
- 1 Béquer
- 1 Termômetro
- 1 Termistor
- 1 Fonte de tensão contínua
- Cabos de plug "banana"

3.2 Circuitos Utilizados

Figura 1: Circuito com Ponte de Wheatstone

4 Resultados

4.1 Tensão por Resistência

Figura 2: Gráfico da corrente adiquirida ao aumentar tensão em diodo

Figura 3: Gráfico da corrente adiquirida ao aumentar tensão em diodo

- 5 Análise
- 6 Discussão
- 7 Conclusão
- 8 Referencias