Московский физико-технический институт Факультет общей и прикладной физики

Образовательная программа «Квантовая теория поля, теория струн и математическая физика»

III семестр 2017-2018 учебного года Домашнее задание №2:

Элементы классической теории поля, Лагранжев формализм

Автор: Иванов Кирилл, 625 группа

> г. Долгопрудный 15 сентября 2017 года

1. Вопросы

Определим скобку Пуассона для функций $f(x_i), g(x_i)$, где x_i — произвольные координаты на фазовом пространстве, $i=1,2,\ldots,2n$:

$$\{f(x), g(x)\} \stackrel{def}{=} \omega^{\mu\nu} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}}$$

где подразумевается суммирование по повторяющимся индексам (здесь и далее), а $\omega^{\mu\nu}(x)$ — антисимметричный тензор 2 ранга, т.е. $\omega^{\mu\nu}(x) = -\omega^{\nu\mu}(x)$.

Можно определить дифференциальную 2-форму ω через внешнее произведение 1-форм dx^{μ} , и тогда будем говорить, что каждому нашему тензору $\omega^{\mu\nu}$ соответствует форма ω , такая что

$$\omega = \omega^{\mu\nu} dx^{\mu} \wedge dx^{\nu}$$

Определим операцию внешнего дифференцирования формы как

$$d = dx^{\mu} \frac{\partial}{\partial x^{\mu}}$$

Тогда форма A будет называться замкнутой, если dA = 0.