

Модуль Bluetooth LE BT-01

Техническое описание

Редакция 0.1 предварительная

Модуль BT-01 Техническое описание

Оглавление

Оглавление	2
Введение	3
Сферы применения	5
Технические характеристики	6
Описания модуля NAVIA BT-01	7
Схема включения модуля	10

Введение

Модуль НАВИА ВТ-01 предназначен для обеспечения надежного и стабильного радиоканала передачи данных в диапазоне 2.4Ггц. Модуль ВТ-01 работает в стандарте Bluetooth LE (Low Energy) и совместим с модулями других производителей, поддерживающими этот стандарт.

Модуль НАВИА BT-01 представляет из себя законченное устройство на базе чипсета от STM BlueNRG, с выводами UART и GPIO. Краевые площадки позволяют легко и быстро интегрировать модуль в конечное изделие заказчика либо в плату разрабатываемого устройства.

Модуль НАВИА BT-01 выпускается в двух исполнениях - НАВИА BT-01A со встроенной антенной и НАВИА BT-01, разработанный для применения совместно с внешней антенной.

Модули НАВИА ВТ-01(A) позволяют создать техническое решение с высокими характеристиками для обеспечения информационного обмена системы пользователя с внешним оборудованием при небольших затратах.

В данном документе рассматриваются модули НАВИА ВТ-01(A) — их принцип работы, технические характеристики, подключение, смена встроенного ПО.

Основное назначение данного документа – разъяснить пользователю обращение модулями НАВИА ВТ-01(A).

История изменений

Номер	Дата	Описание
редакции		
0.1	Август 2014	Исходная версия документа

Сферы применения

Модуль отвечает спецификации Bluetooth Low Energy, поддерживает работу со смартфонами на базе iOS и Android. Низкое энергопотребление модуля расширяет сферу применения устройства и позволяет применять его в таких приложениях, как беспроводные охранные датчики, брелоки автосигнализаций, автономные устройства передачи данных. Исполнение модуля и его габариты позволяют применять его в самых различных устройствах: счетчики, тахографы, медицинская техника, блоки мониторинга, диагностические комплексы, устройства передачи данных.

Технические характеристики

Таблица 1. Технические характеристики модуля

Наименование характеристики	Значение характеристики
Стандарт	BluetoothLE
Частотный диапазон	2,4002,4835GHz
Профили и протоколы	GAP, GATT, SM, L2CAP, LL,
	RF-PHY
Разнос между каналами:	2MHz
Волновое сопротивление антенны	50Ω
Максимальная мощность:	до +8dBm
Чувствительность	-96dBm
Напряжение питания:	3.3V
Ток потребления:	
в режиме приема	до 28mA
в режиме передачи	до 35mA
в режиме сна	120uA
Интерфейсы:	
UART	1
GPIO	4
Скорости обмена по UART	1200115200Baud
Пропускная способность радиоканала	1kB/s
Электрический интерфейс:	
уровни	3.3V CMOS
совместимость во входам	5V
Размеры:	
NAVIA BT-01A (с антенной)	28x15x2mm³
NAVIA BT-01 (без антенны)	21x15x2mm³
Температурный диапазон	-40+85C

Возможен выпуск модуля в исполнении «энергосберегающий», в котором потребление в режиме «сна» снижено до 5uA.

Описания модуля NAVIA BT-01

Модули NAVIA BT-01 и NAVIA BT-01A выполнен на основе технологии BluetoothLE (Low Energy). Модули выпускаются в вариантах «для подключения выносной антенны» NAVIA BT-01 и «со встроенной антенной» NAVIA BT-01A.

Внешний вид модулей NAVIA BT-01 и NAVIA BT-01A приведен на рисунках 1 и 2.

Рис.1 Модуль Bluetooth HABИA BT-01A со встроенной антенной

Рис.2 Модуль Bluetooth HABNA BT-01 без антенны

Рис.3 Структурная схема модуля NAVIA BT-01

Структура модуля приведена на Рис.3. Основные функциональные блоки:

Управляющий процессор модуля **STM32**Радиочастотный процессор **BlueNRG**Цепь высокочастотного согласования с антенной **RF match**Кварцевые резонаторы для обеспечения работы процессоров
Внутренние и внешние информационные связи модуля

На структурной схеме не показаны цепи электропитания процессоров, так как они не влияют на информацию, циркулирующую в модуле.

Управляющий процессор **STM32** осуществляет двусторонний обмен информацией с внешними устройствами и преобразование поступающей информации в формат, пригодный для обработки радиочастотным процессором.

Радиочастотный процессор **BlueNRG** выполнение стека протокола BluetoothLE и осуществляет формирование и прием высокочастотных сигналов.

Цепь высокочастотного согласования с антенной **RF match** предназначена для согласования радиочастотного тракта процессора **BlueNRG** и антенны и фильтрации внеполосных помех.

Кварцевые резонаторы **16 MHz** и **32768Hz** предназначены для обеспечения работы процессоров **STM32** и **BlueNRG**.

Антенна предназначена для преобразования электрического сигнала в радиосигнал и обратно. Может быть выполнена в составе модуля или подключаться снаружи к специальным контактам модуля.

Рис.4 Расположение и назначение выводов модуля NAVIA BT-01(A).

Вариант исполнения модуля NAVIA BT-01 имеет выводы ANT и GND для подключения внешней антенны.

Вариант исполнения модуля NAVIA BT-01A снабжен встроенной антенной и не требует подключения внешней антенны.

Таблица 2. Назначение выводов модуля:

Вывод	Назначение
GND	общий провод модуля и конечного устройства
VDD	питание модуля

IIADT Tv	BLIVOR ROUGHLY ROOTS LIAPT
UART_Tx	выход данных порта UART
UART_Rx	вход данных порта UART
RST	общий сброс процессора модуля
GPIO1	дискретный сигнал ввода/вывода 1
GPIO2	дискретный сигнал ввода/вывода 2
GPIO3	дискретный сигнал ввода/вывода 3
GPIO4	дискретный сигнал ввода/вывода 4
SWCLK	линия тактового сигнала программирования
SWDIO	линия данных программирования

На нижней поверхности модуля расположен вывод ВООТ, предназначенный для производственных целей. В устройстве пользователя этот вывод не должен быть подключен к каким-либо цепям (должен быть оставлен «в воздухе»).

Схема включения модуля

Рис.5 Подключение выводов модуля NAVIA BT-01(A) к микроконтроллеру.

На Рис. 5 показано подключение выводов модуля NAVIA BT-01(A) к микроконтроллеру. Подключение выводов модуля GPIO не показано, так как эти выводы предназначены для подключения к ним различных устройств — кнопок, контактных датчиков, выходов различных изделий (при настройке выводов модуля как «входы») или входов устройств индикации, входов управления различными устройствами и т.д. (при настройке выводов модуля как «выходы»). Конкретное назначение выводов GPIO определяется программным обеспечением модуля и его настройками.

Программные интерфейсы обмена модулей NAVIA BT-01 и NAVIA BT-01A с устройством конечного пользователя описаны в документе «**Модуль Bluetooth LE BT-01** Описание интерфейса обмена».

Подключение программатора ST_LINK к модулю

Для загрузки программного обеспечения в модуль следует использовать программатор **ST-LINK V2**. В таблице 3 указаны выводы модуля, к которым нужно подключать программатор.

Таблица 3. Подключение программатора к модулю

Вывод	ST-LINK	Назначение
GND	3, 4, 5, 6	общий провод модуля, ST-LINK и конечного устройства
VDD	1, 2	питание модуля и буферов ST-LINK
UART_Tx	-	не использован для программирования
UART_Rx	-	не использован для программирования
SWDIO	9	линия данных программирования от ST-LINK
SWCLK	7	линия тактового сигнала программирования от ST-LINK
RST	15	сброс процессора модуля, управление от ST-LINK
GPIO1	-	не использован для программирования
GPIO2	-	не использован для программирования
GPIO3	-	не использован для программирования
GPIO4	-	не использован для программирования

Внимание! При программировании процессора модуля питание на модуль должно быть подано от внешнего источника! Программатор ST-LINK питание на процессор не обеспечивает.