Classificação de *issues* do Github relacionadas a Segurança

Aprendizagem de Máquina

Bruno Gonçalves de Oliveira bruno.mphx2@gmail.com Diogo Cezar Teixeira Batista diogocezar@utfpr.br

Universidade Federal do Paraná - UFPR

Curitiba - 2020

Agenda

- Introdução
- Obtenção dos Dados
- 3 Pré-processamento
- 4 Extração de Características
- 6 Resultados
- 6 Conclusão

Introdução

 Desafio: classificação de issues sem observação do código fonte;

Exemplo Issues

Figura: Exemplos de Issues do Projeto Vue.js

Issues sobre Segurança

- Eventualmente, as issues podem estar relacionadas a tópicos de segurança.
- Quando consideradas críticas, podem ser analisadas por outros especialistas;
- Como identificar quais issues que s\(\tilde{a}\) relacionadas com seguran\(\tilde{c}\)?
- Como classificar estas issues para que especialistas possam analisar os cógidos?

Proposta do Trabalho

 Criação de uma ferramenta que utilize técnicas de aprendizagem de máquina para o desenvolvimento de um classificador que consiga analisar as palavras contidas nas mensagens das issues de um dado projeto, e classificar se esta issue está ou não relacionada no contexto de segurança da informação.

Obtenção dos Dados

- Utilizou-se o github-csv-tools¹ que possibilita a exportação dos dados de um repositório do GitHub, salvando as informações em um arquivo no formato CSV.
- Dados tratados para um CSV com 2 colunas:

```
security, PushObserver can be used to push \hookleftarrow serverinitiated HTTP/2 requests into an \hookleftarrow OkResponseCache...
not, Handle LOCKED in conversions. Motivation...
```

Código 1: CSV Exemplo com Base de Dados

¹https://github.com/gavinr/github-csv-tools

Fonte de Dados

- Base de Testes: issues do projeto Wildfly²;
- Base de Treinamento: issues dos projetos: okhttp³, jgit⁴ e couchbase⁵
- Os dados de treinamento possuem 199 entradas, enquanto que para a base de teste foram utilizadas 211 entradas.

²https://github.com/wildfly/wildfly

 $^{^3} https://github.com/square/okhttp \\$

⁴https://github.com/eclipse/jgit

⁵https://github.com/couchbase

Pré-processamento (Regas Aplicadas)

- Transformar todo texto em minúsculo;
- Ignorar pontuações;
- Corrigir palavras com ortografia incorreta;
- Remover as chamadas stop words que não acrescentam informação aos textos, por exemplo: of, a, in, on.

Extração de Características

- Foram aplicadas as técnicas:
 - Bag-of-Words;
 - TF-IDF (term frequency-inverce document frequency);
- Palavras mais relevantes: ['security', 'secure', 'vulnerable', 'leak', 'exception', 'crash', 'malicious', 'sensitive', 'user', 'authentication', 'protect', 'vulnerability', 'authenticator', 'auth', 'npe']

Resultados

Classifier	Accuracy	F1Score	Time (s)
LinearDiscriminantAnalysis	0.867	0.865	0.183
LogisticRegression	0.867	0.865	0.191
DecisionTreeClassifier	0.867	0.865	0.193
MLPClassifier	0.867	0.865	0.302
svm.LinearSVC	0.867	0.865	1.903
Perceptron	0.862	0.861	0.17
KNeighborsClassifier	0.533	0.696	0.229
GaussianNB	0.471	0.307	0.192

Tabela: Resultados dos Experimentos

Matrizes de Confusão

Matrizes de Confusão

Conclusões

- LinearDiscriminantAnalysis, LogisticRegression,
 DecisionTreeClassifier, MLPClassifier, svm.LinearSVC e
 Perceptron tiveram resultados bastante semelhantes;
- KNeighborsClassifier e GaussianNB mostraram resultados insatisfatórios;

Trabalhos Futuros

 Criação de um mecanismo capaz de obter issues através da API do GitHub, filtrando labels relacionadas a segurança;

Código Fonte

 $\bullet \ https://github.com/bmphx2/aprendizagem-de-maquina\\$

Referências I

- Scott Chacon and Ben Straub, Pro git, Apress, 2020.
- Richard Duda, Peter Hart, and David G. Stork, *Pattern classification*, Ltd. John Wiley and Sons: New York, 2001.
- Doaa Mohey El-Din, Enhancement bag-of-words model for solving the challenges of sentiment analysis, International Journal of Advanced Computer Science and Applications 7 (2016).
- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, *Introduction to information retrieval*, Cambridge University Press, Cambridge, UK, 2008.
- Allan Pinkus, Approximation theory of the mlp model in neural networks, ACTA NUMERICA 8 (1999), 143–195.

Referências II

- F. Rosenblatt, *The perceptron: a probabilistic model for information storage and organization in the brain.*, Psychological review **65 6** (1958), 386–408.
- Andrew Webb, Statistical pattern recognition: Third edition, Ltd. John Wiley and Sons: New York, 2002.