Esercitazioni di Elettrotecnica

a cura dell'Ing. Antonio Maffucci

Parte II:

Circuiti in regime sinusoidale

ESERCITAZIONE N.7: Fasori ed impedenze

ESERCIZIO 7.1

Esprimere la corrente i(t) in termini di fasore nei seguenti tre casi:

a)
$$i(t) = 4\cos(\omega t - 1.14)$$
 b) $i(t) = 10\cos(\omega t - \pi)$

$$i(t) = 10\cos(\omega t - \pi)$$

c)
$$i(t) = 8\cos(\omega t + \pi/2)$$

Risultato: a)
$$\bar{I} = 4 \exp(-j1.14)$$
; b) $\bar{I} = -10$; c) $\bar{I} = 8j$.

$$\bar{I} = -10$$
; c) $\bar{I} = 8$

ESERCIZIO 7.2

Valutare (in coordinate cartesiane e polari) le impedenze viste ai capi dei morsetti:

$$R = 10 \Omega$$
 L = 1 mH
 $\omega = 10^4 \ rad/s$

$$R = 8 \Omega$$
, $L = 15 mH$
 $C = 0.4 mF$, $f = 50 Hz$

$$R = 200 \Omega$$
, $L = 16 mH$
 $C = 10 \mu F$, $\omega = 2.5 \cdot 10^3 \ rad / s$

a)
$$\dot{Z} = 10 + 10j = 10\sqrt{2} \exp(j\pi/4) \Omega$$
;

b)
$$\dot{Z} = 8 + 11.54j = 14 \exp(j0.965) \Omega$$
;

c)
$$\dot{Z} = 8 + 20j = 21.5 \exp(j1.19) \Omega$$
;

ESERCIZIO 7.3

Le seguenti coppie di fasori esprimono tensione e corrente relative ad un dato bipolo. Dire, nei tre casi, se si tratta di un resistore, un condensatore o un induttore e valutare il valore di R, C o L

a)
$$v(t) = 15\cos(400t + 1.2)$$
, $i(t) = 3\sin(400t + 1.2)$;

b)
$$v(t) = 8\cos(900t - \pi/3)$$
, $i(t) = 2\sin(900t + 2\pi/3)$;

c)
$$v(t) = 20\cos(250t + \pi/3)$$
, $i(t) = 5\sin(250t + 5\pi/6)$;

a) $\overline{V} = 15e^{j1.2}$, $\overline{I} = 3e^{j(1.2-\pi/2)}$. Posto $\overline{V} = \dot{Z}\overline{I}$ si ha che:

$$\arg(\dot{Z}) = \arg(\overline{V}) - \arg(\overline{I}) = \frac{\pi}{2} \implies \dot{Z} = j\omega L \implies L = \frac{|\overline{V}|}{|\overline{I}|\omega} = 12.5 \text{ mH}.$$

b) $\overline{V} = 8e^{-j\pi/3}$, $\overline{I} = 2e^{j(2\pi/3 - \pi/2)} = 2e^{-j\pi/6}$. Posto $\overline{V} = \dot{Z}\overline{I}$ si ha che:

$$\arg(\dot{Z}) = \arg(\overline{V}) - \arg(\bar{I}) = -\frac{\pi}{2} \quad \Rightarrow \quad \dot{Z} = -\frac{j}{\omega C} \quad \Rightarrow \quad C = \frac{\left|\bar{I}\right|}{\left|\overline{V}\right|_{\omega}} = 0.28 \; mF \; .$$

c) $\overline{V} = 20e^{j\pi/3}$, $\overline{I} = 5e^{j(5\pi/6 - \pi/2)} = 5e^{j\pi/3}$. Posto $\overline{V} = \dot{Z}\overline{I}$ si ha che:

$$\arg(\dot{Z}) = \arg(\overline{V}) - \arg(\overline{I}) = 0 \quad \Rightarrow \quad \dot{Z} = R \quad \Rightarrow \quad R = \frac{\left|\overline{V}\right|}{\left|\overline{I}\right|} = 4 \Omega.$$

ESERCIZIO 7.4

Si consideri il circuito in figura, determinando L tale che la parte immaginaria dell'impedenza vista ai capi dei morsetti indicati col pallino risulti $\operatorname{Im}\{\dot{Z}\}=100~\Omega$.

L'impedenza totale vista ai capi dei morsetti è

$$\dot{Z} = R + \frac{(j\omega L)/(j\omega C)}{j(\omega L - 1/\omega C)} = R + j\frac{\omega L}{1 - \omega^2 LC},$$

quindi basta imporre

$$\operatorname{Im}\{\dot{Z}\} = \frac{\omega L}{1 - \omega^2 LC} = 100 \implies L = 2.19 \ mH$$
.

ESERCIZIO 7.5

A quale di queste impedenze corrisponde la fase $\varphi = -\pi/4$?

1: R-L serie	2: R-C serie	3: R-C parallelo	4: L-C serie
$R = 10 \Omega$	$R = 10 \Omega$	$R = 0.5 \Omega$	C = 1 F
L = 10 mH	C = 10 mF	C = 0.2 F	L=1 H
$\omega = 100 rad / s$	$\omega = 100 \ rad / s$	$\omega = 10 \ rad / s$	$\omega = 1 rad / s$

Caso 3:
$$\dot{Z} = \frac{1}{\dot{Y}} = \frac{1}{1/R + j\omega C} = \frac{1}{2+2j} = 0.25(1-j) \implies \varphi = tg^{-1}(-1) = -\frac{\pi}{4}.$$

ESERCIZIO 7.6

Dati i seguenti fasori $\overline{V}_1 = 10 \exp(j\pi/6)$, $\overline{V}_2 = 10 \exp(-j\pi/6)$, $\overline{V}_3 = 5 \exp(-j\pi/3)$:

- a) rappresentare nel piano complesso i fasori $\overline{V_1}$, $\overline{V_2}$, $\overline{V_3}$;
- b) calcolare i fasori: $\overline{V_1} + \overline{V_2}$, $\overline{V_1} \overline{V_2}$, $\overline{V_1} + \overline{V_3}$, $\overline{V_1} \overline{V_3}$;
- c) rappresentare nel piano complesso i fasori valutati al punto b)
- d) rappresentare nel tempo le tensioni corrispondenti ai fasori dei punti a) e b), avendo definito la trasformazione fasoriale come segue: $v(t) = V \cos(\omega t + \alpha) \leftrightarrow \overline{V} = V \exp(j\alpha)$

ESERCITAZIONE N.8: Analisi di reti in regime sinusoidale

ESERCIZIO 8.1

Con riferimento al seguente circuito, valutare:

- a) l'impedenza \dot{Z}_{eq} vista ai capi del generatore;
- b) le correnti $i_L(t)$ e $i_C(t)$

 $Risultato: \ a) \ \ \dot{Z}_{eq} = 5 - j15 \ \Omega \ ; \quad b) \quad i_L(t) = 0.45 \cos(1000t - 1.11) \ A, \quad i_C(t) = -sin(1000t) \ A \ .$

ESERCIZIO 8.2

Con riferimento al seguente circuito valutare le correnti $i_L(t)$ ed $i_C(t)$.

Passando al dominio dei fasori si avrà la rete di ammettenze:

$$\overline{J}_1 = 10 A$$
, $\overline{J}_2 = -10 j A$, $\dot{Y}_C = j \omega C = j 10^{-3} S$, $\dot{Y}_{RL} = \frac{1}{R + i \omega L} \approx 1 - j 10^{-3} S$, $\dot{Y}_R = \frac{1}{R} = 1 S$.

Questa rete ha due nodi: preso come riferimento il nodo in basso in figura ed indicato con \overline{V}_A il potenziale del nodo in alto, il metodo dei potenziali nodali consente di scrivere immediatamente

$$\overline{V}_A(\dot{Y}_C + \dot{Y}_{RL} + \dot{Y}_R) = \overline{J}_1 + \overline{J}_2 \quad \Rightarrow \quad \overline{V}_A = 5 \text{-} j5 \; .$$

La corrente nel condensatore sarà data da

$$\bar{I}_C = \bar{V}_A \dot{Y}_C = 5 \cdot 10^{-3} (1+j) = 7.07 \cdot 10^{-3} \exp(j\pi/4)$$
,

a cui corrisponde, nel tempo: $i_c(t) = 7.07\cos(1000t + \pi/4) \ mA$. La corrente nell'induttore sarà invece

$$\bar{I}_L = \overline{V}_A \dot{Y}_{RL} \approx 5(1 - j) = 7.07 \exp(-j\pi/4)$$
,

per cui si ha, tornando nel tempo: $i_L(t) = 7.07\cos(1000t - \pi/4)$ A.

ESERCIZIO 8.3

Con riferimento al seguente circuito, valutare:

- a) l'impedenza \dot{Z}_{eq} vista ai capi del generatore;
- b) la potenza complessa \dot{S} erogata dal generatore;

Passando al dominio dei fasori si avrà la rete di impedenze:

$$\overline{J} = 10$$
, $\dot{Z}_C = -j/(\omega C) = -2j$, $\dot{Z}_L = j\omega L = 2j$, $\dot{Z}_R = R = 2$.

L'impedenza di ingresso vista dal generatore è data da:

$$\dot{Z}_{eq} = \dot{Z}_R /\!/ [\dot{Z}_C /\!/ \dot{Z}_R + \dot{Z}_L] = 0.8 + j0.4 \Omega. \label{eq:Zeq}$$

La potenza complessa erogata da j(t) si valuta facilmente una volta nota \dot{Z}_{eq} :

$$\dot{S}_J \equiv \frac{1}{2} \overline{V}_J \overline{J}^* = \frac{1}{2} \dot{Z}_{eq} J \overline{J}^* = \frac{1}{2} \dot{Z}_{eq} J^2 = \frac{(0.8 + j0.4)100}{2} = 40 + j20 \; .$$

ESERCIZIO 8.4

Con riferimento al seguente circuito, valutare:

- a) la matrice delle ammettenze \dot{Y} del doppio-bipolo visto ai capi dei generatori;
- b) la potenza complessa \dot{S} erogata dai generatori;

Risultato: a)
$$\dot{Y}_{11} = 0.5 \,\Omega^{-1}$$
, $\dot{Y}_m = 0.5 j \,\Omega^{-1}$, $\dot{Y}_{22} = 0.5 - j \,\Omega^{-1}$;
b) $\dot{S}_1^{er} = 75 \,W$, $\dot{S}_2^{er} = 50 \,W + j200 \,VAr$.

ESERCIZIO 8.5

Con riferimento al seguente circuito valutare

- a) la potenza complessa erogata dal generatore;
- b) la reattanza da inserire in parallelo al generatore in modo che l'impedenza complessiva vista dal generatore stesso assorba la stessa potenza media di prima ma abbia un fase φ tale che $\cos \varphi = 0.9$ (*rifasamento*).

a) Passando al dominio dei fasori si avrà la rete di impedenze:

$$\overline{E} = 1 V$$
, $\dot{Z}_C = -j \Omega$, $\dot{Z}_L = 5j \Omega$, $\dot{Z}_R = 1 \Omega$.

L'impedenza equivalente vista dal generatore è

$$\dot{Z}_{eq} = \dot{Z}_L + \frac{\dot{Z}_C \dot{Z}_R}{\dot{Z}_C + \dot{Z}_R} = 4.53e^{j1.46} \Omega,$$

quindi la potenza complessa erogata dallo stesso sarà

$$\dot{S} = P + jQ = \frac{1}{2}\overline{E}\overline{I}^* = \frac{1}{2}\frac{\overline{E}\overline{E}^*}{\dot{Z}_{eq}^*} = \frac{1}{2}\frac{E^2}{\dot{Z}_{eq}^*} = \frac{1}{2}\frac{e^{j1.46}}{4.53} = 12.2 \ mW + j0.11 \ VAr \ .$$

b) La fase \(\phi\) dell'impedenza vista dal generatore deve essere tale che

$$\cos \varphi = 0.9$$
 \Rightarrow $\varphi = \cos^{-1}(0.9) = 0.45 \ rad$.

Poiché la fase di \dot{Z}_{eq} non verifica tale condizione, occorre inserire un'opportuna \dot{Z}_x tra l'impedenza \dot{Z}_{eq} ed il generatore in modo che l'impedenza complessiva \dot{Z}_{TOT} verifichi tale richiesta. Affinchè tale inserzione non alteri la potenza media $P = \text{Re}\{\dot{S}\} = 12.2 \text{ mW}$

 \dot{Z}_x deve essere posta in parallelo al generatore e deve essere: $\dot{Z}_x = jX$. Per stabilire il valore di tale reattanza si può applicare il principio di conservazione delle potenze, che impone, dopo l'inserzione di \dot{Z}_x , che:

$$P_{TOT} = P$$
, $Q_{TOT} = Q + Q_x$.

La fase ϕ dell'impedenza $\dot{Z}_{TOT} = \dot{Z}_x / / \dot{Z}_{eq}$ è legata a P_{TOT} , Q_{TOT} dalla relazione

$$\varphi = tg^{-1} \left(\frac{Q_{TOT}}{P_{TOT}} \right) = tg^{-1} \left(\frac{Q + Q_x}{P} \right) \quad \Rightarrow \quad Q_x = Ptg\varphi - Q.$$

Imponendo la condizione desiderata su φ si ottiene $Q_x = -0.10 \, VAr$, il che significa che \dot{Z}_x è un'impedenza capacitiva. Ricordando l'espressione della potenza reattiva assorbita da una capacità ai capi della quale sia imposta la tensione si ha la condizione richiesta.

$$Q_x = -\omega C \frac{E^2}{2} = -0.10 \implies C = 20 \ \mu F.$$

ESERCIZIO 8.6

Calcolare la potenza attiva P_2 e la potenza reattiva Q_2 assorbita dalla serie R_2-L_2 .

Passando al dominio dei fasori si avrà la rete di impedenze:

$$\bar{J}_1 = 4$$
, $\bar{J}_2 = 2e^{-j2\pi/3}$, $\dot{Z}_C = -j/8\Omega$, $\dot{Z}_1 = \dot{Z}_2 = 2+4j\Omega$.

Applicando la sovrapposizione degli effetti, valutiamo il contributi ad \bar{I}_2 dovuti a \bar{J}_1 ed a \bar{J}_2

$$\bar{I}_2' = \bar{J}_1 \frac{\dot{Z}_1}{\dot{Z}_C + \dot{Z}_2 + \dot{Z}_1} = 2.03 + j0.01 \ A,$$

$$\bar{I}_{2}'' = \bar{J}_{2} \frac{\dot{Z}_{1} + \dot{Z}_{C}}{\dot{Z}_{C} + \dot{Z}_{2} + \dot{Z}_{1}} = -0.50 - j0.85$$
 A.

Pertanto si ha

$$\bar{I}_2 = \bar{I}'_2 + \bar{I}''_2 = 1.53 - j0.84 = 1.75 \exp(-j0.502)$$
 A,

quindi la potenza complessa assorbita da \dot{Z}_2 sarà

$$\dot{S}_2 = P_2 + jQ_2 = \frac{1}{2}\overline{V}_2\bar{I}_2^* = \frac{1}{2}\dot{Z}_2\bar{I}_2\bar{I}_2^* = \frac{1}{2}\dot{Z}_2I_2^2 = \frac{2+4j}{2}1.75^2 = 3.06(1+2j) \,.$$

ESERCITAZIONE N.9: Analisi di reti in regime sinusoidale/2

ESERCIZIO 9.1

Con riferimento al seguente circuito, valutare la potenza media P assorbita dal resistore R e verificare che è possibile sovrapporre le potenze medie.

Poiché i generatori non sono isofrequenziali, cioè $\omega_1 \neq \omega_2$, il circuito non ammette un regime sinusoidale e quindi non è possibile trasformare la rete in una rete di impedenze. Tuttavia, essendo la rete lineare, si può applicare la sovrapposizione degli effetti e ricavare la corrente che circola in R come i = i' + i'', dove i' si ricava dal circuito ausiliario I e i'' dal circuito ausiliario II.

Ciascuna di queste due reti può essere rappresentata da una rete di impedenze:

rete I:
$$\bar{J}_1 = 1$$
, $\dot{Z}'_C = -100j$, $\dot{Z}'_L = 0.1j$, $\dot{Z}'_R = 1$.
rete II: $\bar{J}_2 = 1$, $\dot{Z}''_C = -50j$, $\dot{Z}''_L = 0.2j$, $\dot{Z}''_R = 1$.

Applicando i partitori di corrente:

$$\bar{I}' = \bar{J}_1 \frac{\dot{Z}'_L}{\dot{Z}'_L + \dot{Z}'_C + \dot{Z}'_R} = 10^{-3} e^{j3.13} \quad \Rightarrow \quad i'(t) = \cos(100t + 3.13) \, mA.$$

$$\bar{I}'' = -\bar{J}_2 \frac{\dot{Z}''_C}{\dot{Z}''_C + \dot{Z}''_L + \dot{Z}''_R} = e^{j3.12} \quad \Rightarrow \quad i''(t) = \sin(200t + 3.12) \, A.$$

Quindi
$$i(t) = i'(t) + i''(t) = 10^{-3}\cos(100t + 3.13) + \sin(200t + 3.12) A.$$

Nota la corrente si può calcolare la potenza istantanea assorbita da R e quindi la potenza media:

$$P = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{T} \int_{0}^{T} Ri^{2}(t)dt = \frac{R}{T} \int_{0}^{T} i'^{2}(t)dt + \frac{R}{T} \int_{0}^{T} i''^{2}(t)dt + \frac{2R}{T} \int_{0}^{T} i'(t)i''(t)dt \qquad T = \max\left(\frac{2\pi}{\omega_{1}}, \frac{2\pi}{\omega_{2}}\right).$$

I primi due contributi rappresentano le potenze medie dissipate nei circuiti I e II, quindi sono:

$$\frac{R}{T} \int_{0}^{T} i'^{2}(t) dt = \frac{R}{2} |\bar{I}'| = 0.5 \cdot 10^{-6} \ W, \qquad \frac{R}{T} \int_{0}^{T} i''^{2}(t) dt = \frac{R}{2} |\bar{I}''| = 0.5 \ W.$$

L'ultimo contributo è nullo perché per $\omega_1 \neq \omega_2$ si ha: $\int_0^T \cos(\omega_1 t + \alpha) \sin(\omega_2 t + \beta) dt = 0 \quad \forall \alpha, \beta.$

In definitiva se $\omega_1 \neq \omega_2$ è possibile sovrapporre le potenze medie: $P \approx 0.5 W$.

ESERCIZIO 9.2

Con riferimento al seguente circuito, valutare la potenza media P assorbita dal resistore R_2 e verificare che è possibile sovrapporre le potenze medie.

Risultato: $P = 0.41 \, kW$.

ESERCIZIO 9.3

Valutare l'equivalente di Thévenin ai capi dei morsetti 1-1'.

Passando alla rete di impedenze si avrà:

$$\overline{E}=2e^{j\pi/6}, \qquad \dot{Z}_C=-j, \qquad \dot{Z}_L=4j, \quad \dot{Z}_R=2.$$

Per calcolare \overline{V}_0 basta applicare la LKT alla maglia di sinistra della rete:

$$\overline{E} = \dot{Z}_L \overline{I} + r \overline{I} \quad \Rightarrow \quad \overline{I} = \frac{\overline{E}}{\dot{Z}_I + r} = 0.368 - j0.157.$$

Applicando un partitore di tensione si ha, quindi:

$$\overline{V}_0 = r\overline{I} \frac{Z_R}{\dot{Z}_R + \dot{Z}_C} = 1.070 + j0.064 = 1.07e^{j0.06} V.$$

Per calcolare \dot{Z}_{eq} occorre spegnere tutti (e soli) i generatori indipendenti, cioè \overline{E} . Applicando ancora la la LKT alla maglia di sinistra della rete:

$$0 = \dot{Z}_L \bar{I} + r\bar{I} \quad \Rightarrow \quad \bar{I} = 0$$

quindi nella rete per il calcolo di \dot{Z}_{eq} risulta spento anche il generatore controllato, visto che la sua variabile di controllo è nulla, per cui in definitiva:

$$\dot{Z}_{eq} = \frac{\dot{Z}_R \dot{Z}_C}{\dot{Z}_R + \dot{Z}_C} = 0.4(1 - 2j) \Omega.$$

ESERCIZIO 9.4

Il circuito seguente riproduce lo schema equivalente di un amplificatore a transistor per alta frequenza. Determinare la tensione ai capi del resistore di carico

Risultato: $v_U(t) = 95.9\cos(\omega t + 3.06) kV$.

ESERCIZIO 9.5

Con riferimento al seguente circuito valutare la corrente $i_1(t)$ nel circuito primario.

Poiché $L_1L_2 \neq M^2$ l'accoppiamento non è perfetto. Posto $L_1 = L_1' + L_1''$, possiamo scegliere L_1'' in modo che l'aliquota L_1'' verifichi le condizioni di accoppiamento perfetto: $L_1''L_2 = M^2 \implies L_1'' = M^2 / L_2 = 2$ mH . A questo punto il circuito equivalente sarà il seguente

Per la formula del trasporto dell'impedenza in un trasformatore ideale, il circuito è anche equivalente al seguente:

Trasformato il circuito in una rete di impedenze, nella quale si è introdotto il fasore $\overline{E} = 10 V$, l'impedenza equivalente vista dal generatore è:

$$\dot{Z}_{eq} = R_1 + j\omega L_1' + \frac{a^2 R_2 j\omega L_1''}{a^2 R_2 + j\omega L''} = 2 + 2j\Omega$$

da cui

$$\bar{I}_1 = \frac{\overline{E}}{\dot{Z}_{eq}} = \frac{5}{2}(1-j) = \frac{5}{\sqrt{2}}e^{-j\pi/4} A \implies i_1(t) = 5sin(1000t - \pi/4) A.$$

ESERCIZIO 9.6

Con riferimento al seguente circuito valutare la potenza complessa \dot{S} assorbita dal condensatore.

$$j(t) = 10\sqrt{2}\cos(100t) A$$

 $R_1 = R_2 = 5 \Omega$
 $L_1 = 1 mH$, $L_2 = 4 mH$
 $|M| = 2 mH$, $C = 12.5 mF$

Risultato: $\dot{S} = -j5 \ VAr$.