Louis Cohen & Adele Mortier

MPRI 2017

February 25, 2018

- 1 Introduction
- 2 Transportation network
 - Topology
 - Toponymy
 - Schedule
- 3 Generating persons deplacement
 - General Idea
 - A person
- 4 Merger of the two projects

Introduction

Mimic the people's behavior in a big city:

Problems

- Everyday life planning ?
- Use of the transportation network?

Tools we used:

Topology

Topology – main steps

Subway network \sim Parisian "metro".

Steps

- Terminals : line segments.
- 2 Intersections : point clustering.
- **3 Stations**: points at regular intervals.
- 4 Hubs: stations crossed by many lines.
- **5** Fast lines: connect hubs together.

Topology – illustrations

(a) Terminals : originate in the suburbs, go through the center

(b) Intersections :
 move close
intersections to their
 centroid

(c) Stations : sample the line and add noise

Topology - results

Figure: Terminals generation – subway lines are simple segments

Topology – results

 $\label{prop:sigure:prop:sigu$

Topology – results

Figure: Intersection gluing – merge close intersections using a clustering algorithm (DBSCAN)

Topology - results

Figure: Line bending – bend te lines such that they cross glued intersections

Topology

Topology – results

Figure: Stations - put stations at regular intervals plus a little noise

. 57

Topology – results

Figure: Stations gluing – merge close intersections with DBSCAN again

Topology

Topology - results

Figure: Hubs – find stations with many lines crossing them and generate fast lines

Toponymy – main steps

"Realistic" stations' names, e.g. "Place Edith Piaf", "Rue de la Chine" or "Saint Marcel"...

Steps

- Data collection : collect from databases or manually.
- Combine elements together : link words ("Place de la/le", "Saint(e)", "-"...).
- 3 Do some tricks: avoid things like "Place d'Arc" or "Avenue de Maupassant"...

"Best-of": "Avenue Johnny Hallyday", "Gare Nabilla", "Rue du Swaziland"...

Figure: Simplified binary tree for name generation

Schedule – main steps

Station schedule Rightarrow point to point travel times.

Steps

- $lue{1}$ Travel times between stations \propto line speed, distance.
- **2** Departure times from terminals \propto moment of the day.
- 3 Propagate the departure times along the line using the values computed at first step.
- 4 Use the schedule to compute a shortest path that is sensitive to de day/hour of departure (**not implemented**)

Schedule – illustration

Figure: Computation of a line of the schedule for one subway line

General Idea

Key ideas

- Families
- Work
- Activities
- Home
- Deplacement between those points!

General Idea

Localisation ideas

Center: working Subburbs: housing (all probabilistic)

Localisation ideas

Center: working Subburbs: housing (all probabilistic)

Localisation ideas

Center: working Subburbs: housing (all probabilistic)

General Idea

Activities

For now : uniform generation + some more on the hubs

A person

A person

- Id
- Age
- Work type and informations
- Work location
- Home location
- Family
- Typical activities
- Planning

Persons models

How to differentiate

Typical activities
Days worked
Work location distribution

Persons type

- Students: work near home location, ludic activities, student weak
- White collar: working in center, groceries, different work shedule
- Unenmployed, outdoor work . . .

A person

Generating families

- one or two parents
- several childs

modularity

Proba of being single Number of child proba repartition Monoparental families...

Planning

Being at work during worktime Random activity on day activity Going back to home to sleep

demonstration

Modularity

Depending on other people, family More activities Special activities only on some locations Special events (worldcup etc...)

Merger of the two projects – roadmap

What we got

- Pairwise shortest paths between stations.
- Series of travels from one point to another.

What we want

Retrieve the itinerary for each travel !

Merger of the two projects – illustration

Travel from x to y: s_x , s_y the stations Shortest_path(s_x , s_v)

Figure: Computation of point-to-point shortest paths

Merger of the two projects – result

Figure: P2P shortest path with SymPy and NetworkX

Use of the different lines

How many persons use it? Schedules? Breakdown sensibility?

Conclusion

- Complex and quite "realistic" city with many adjustable parameters.
- But define "realistic"? Which metric could we use?
- Possible refinements: animated visualization, wider range of public transport, wider range of socio-professional categories, real-time shortest path using subway schedules...