SISTEMA INTEGRAL DE AUTOMATIZACIÓN Y SEGURIDAD PARA HOGARES IOT UTILIZANDO COMUNICACIÓN MQTT Y CLOUD COMPUTING

Asignatura: Computación Física Docente: Jessica Rosas Cuevas

Integrantes - G1

- Ayma Pumainca, Juan Fidel
- Monzon Seguerra, Patrick
- Navarro Plaza, Steven Manuel
- Quispe Masias, Caleb

TABLA DE CONTENIDOS: CRITERIOS

01
UTILIDAD ESPECIFICACIÓN

02 04
COMPLEJIDAD RESULTADOS

01 UTILIDAD

ODS aplicados al proyecto

ODS7: Energía asequible y no contaminante

ODS9: Industria, innovación e infraestructura

ODS11: Ciudades y comunidades sostenibles

Estado del arte

Objetivo

Aumentar la seguridad en una casa al monitorear y controlar el estado de la puerta para prevenir posibles intrusos. Door Security System for Home Monitoring Based on ESP32

https://doi.org/10.1016/j.procs.2019.08.218

Autores

Andreas, Cornelio Revelivan Aldawira, Handhika Wiratama Putra, Novita Hanafiah, Surya Surjarwo, Aswin Wibisurya.

Estado del arte

Objetivo

Crear un dispositivo capaz de aumentar la seguridad de una habitación utilizando: ESP32 cam, sensor PIR y sensor de incendio. 2. Design and Build a Home Security System based on an ESP32 Cam Microcontroller with Telegram Notification

Autores

Filantropi Yusuf Aji Cahyono, Nugroho Suharto, Lis Diana Mustafa.

https://doi.org/10.33795/jartel.v12i2.296

Estado del arte

Objetivo

Desarrollar un sistema de bajo costo, flexible y fiable de monitoreo en el hogar con un sistema de control con seguridad adicional utilizando ESP32. 3. Internet of Things Based Home Monitoring and Device Control Using Esp32

https://www.researchgate.net/publication/334226986_Internet_of_Things_Based_Home_ Monitoring_and_Device_Control_Using_Esp32

Autores

V. Pravalika, Ch. Rajendra Prasa

Planteamiento del problema

Los propietarios de viviendas enfrentan desafíos en términos de comodidad, eficiencia y seguridad debido a la falta de control centralizado de los dispositivos. Además, la falta de automatización conduce a un consumo energético innecesario. Por lo tanto, es necesario desarrollar un sistema IoT que aborde estos problemas y mejore la comodidad, eficiencia y seguridad en los hogares.

OBJETIVO DEL PROYECTO

Objetivo general:

Desarrollar e implementar un sistema de automatización y seguridad para una casa utilizando tecnología de Internet de las cosas (IoT), con el fin de mejorar la comodidad, eficiencia y seguridad del hogar.

Objetivos específicos:

- Identificar y seleccionar los dispositivos y sensores adecuados para la automatización y seguridad del hogar, considerando aspectos como iluminación, climatización, cerraduras, detección de movimiento y alarmas.
- Desarrollar y programar un sistema centralizado que permita controlar y monitorear los dispositivos y sensores de manera remota, a través de un dashboard.
- Establecer reglas y automatizaciones personalizadas para optimizar el uso de energía, como el control de iluminación y climatización en función de la presencia de personas en las habitaciones o la detección de apertura o cierre de puertas y ventanas.

OBJETIVO DEL PROYECTO

Objetivos específicos:

- Integrar un sistema de vigilancia y detección de intrusos utilizando sensores de movimiento y/o sensores ultrasónicos, enviando notificaciones en tiempo real al propietario en caso de eventos sospechosos.
- Establecer una conexión bidireccional MQTT entre los dispositivos y el servidor de aplicaciones en la Cloud Computing, permitiendo el intercambio de mensajes en tiempo real.
- Realizar pruebas del sistema de automatización y seguridad, simulando diferentes situaciones y escenarios para garantizar su funcionamiento correcto y confiable.
- Documentar y compartir los resultados del proyecto mediante un informe, con el objetivo de contribuir al conocimiento y la difusión de sistemas de automatización y seguridad del hogar basados en IoT.

02 COMPLEJIDAD

TECNOLOGÍAS USADAS

HARDWARE

- NODEMCU ESP8266
- Arduino Mega
- 3. PIR
- Sensor magnetico
- Modulo Relay
- 6. LDR
- Sensor Ultrasonico
- 8. Motor DC
- 9. Sensor FC-28
- DHT22 10.
- 11. Laptop
- Computador 12.

SOFTWARE

- IDE Arduino
- Mosquitto
- Fritzing
- SO Ubuntu consola
- AWS
- Whatsapp
- Node Red

mosouitto

SOLUCIÓN PROPUESTA

DIAGRAMA DE FLUJO

SOLUCIÓN PROPUESTA

COMUNICACIÓN MQTT

SOLUCIÓN PROPUESTA

aws

03 ESPECIFICACIÓN

REQUERIMIENTOS DEL SISTEMA

Monitoreo y control remoto

El sistema debe permitir el monitoreo y control remoto de diversos dispositivos y sistemas en el hogar

Seguridad del hogar

El sistema debe incluir funcionalidades de seguridad para proteger el hogar y sus ocupantes como la capacidad de enviar notificaciones de alerta

Eficiencia energética

El sistema debe tener la capacidad de monitorear y controlar el consumo de energía en el hogar.

Integración con Node-RED

El sistema debe estar integrado con la plataforma Node-RED para facilitar la configuración y automatización de las diferentes funciones.

ARQUITECTURA DEL SISTEMA

MICROCONTROLADORES

ESP8266

Módulo de Wi-Fi altamente integrado y de bajo costo utilizado para la conectividad inalámbrica en proyectos de Internet de las cosas (IoT).

Arduino Mega

Placa de desarrollo basada en microcontrolador ATmega2560, con mayor cantidad de pines y recursos.

SENSORES

FC28

Módulo de detección de humedad del suelo.

DHT22

Dispositivo que combina un sensor de temperatura y humedad

SENSORES

HC-SR04

Módulo ultrasónico utilizado para medir distancias mediante la emisión y recepción de ondas sonoras.

LDR

Componente que varía su resistencia eléctrica en función de la intensidad de la luz incidente.

ACTUADORES

MOTOR DC

Tipo de motor eléctrico que convierte la energía eléctrica en movimiento rotatorio mediante el uso de corriente continua

BOMBA AGUA DC-1020

Bomba accionada por un motor DC que se utiliza para transportar y circular agua en sistemas de riego

COMUNICACIÓN DEL SISTEMA

MQTT

Utiliza un modelo de publicación / suscripción en el que los dispositivos pueden publicar mensajes en temas específicos y suscribirse a temas para recibir mensajes relevantes

AWS EC2

EC2 permite a los usuarios lanzar y administrar máquinas virtuales (instancias) en la nube, lo que les permite ejecutar aplicaciones y cargas de trabajo de manera flexible y eficiente.

Node-Red

Entorno de programación visual basado en nodos para conectar dispositivos, servicios y API de diferentes plataformas y crear flujos de trabajo de forma visual.

Mosquitto

Broker de mensajes MQTT de código abierto, que proporciona una plataforma de mensajería ligera y de bajo consumo de energía para la comunicación entre dispositivos en redes IoT.

04 RESULTADOS

Fecha Descripción Fallo Estado 23/06/2023 Prueba de sensor PIR Falla energética En revis... -23/06/2023 Prueba de Modulo Relay Aprobada * Prueba de sensor Medida inadecuada 23/06/2023 En revis... * HC-SR04 23/06/2023 Sensor DHT22 Aprobada -Sensor FC28 Modo de Pin 23/06/2023 Aprobada -07/07/2023 Sensor Magnético Aprobada -07/07/2023 Motor DC Aprobada -07/07/2023 Adaptador inadecuado Bomba de agua En revis... • Prueba de sensor PIR 07/07/2023 Aprobada -07/07/2023 Flujo node red Aprobada -07/07/2023 Prueba de sensor Módulo defectuoso Aprobada -HC-SR04

PRUEBAS

RECOLECCIÓN DE DATOS

4	А	В	С
1	Luminosidad	Fecha	Hora
2	4.3	09/07/2023	19:04:39
3	4.4	09/07/2023	19:04:41
4	4.4	09/07/2023	19:04:44
5	4.3	09/07/2023	19:04:46
6	4.3	09/07/2023	19:04:48
7	4.3	09/07/2023	19:04:50
8	4.3	09/07/2023	19:04:52
9	4.4	09/07/2023	19:04:54
10	4.3	09/07/2023	19:04:56

FUNCIONAMIENTO: VENTILADOR

```
// VENTILADOR
if (String(topic) == "esp82iot/ventilador" && manual){
    if (messageData == "On"){
       manual = true;
       Serial.println("ventilador On");
        digitalWrite(ventiladorPin, LOW);
    else if (messageData == "Off"){
        Serial.println("ventilador off");
        digitalWrite(ventiladorPin, HIGH);
void encendidoVentiladorAuto(float temperatura){
    if (temperatura > 30.0){ //&& humedad<40
        digitalWrite(ventiladorPin, HIGH);
    else{
        digitalWrite(ventiladorPin, LOW);
```


FUNCIONAMIENTO: BOMBA DE AGUA

```
//BOMBA DE AGUA
    if (String(topic) == "esp82iot/bomba" && manual) {
        if (messageData == "On") {
            Serial.println("bomba On");
            digitalWrite(bombaPin, LOW);
        } else if (messageData == "Off") {
            Serial.println("bomba off");
            digitalWrite(bombaPin, HIGH);
11
    void encendidoRiegoAuto(float humedadSuel) {
12
        if (humedadSuel <= 50.0) {</pre>
            digitalWrite(bombaPin, HIGH);
            delay(1000);
            digitalWrite(bombaPin, LOW);
```


FUNCIONAMIENTO: LUCES

```
//FOCOS DE LA PUERTA DE ENTRADA Y HABITACIÓN 1
      if (String(topic) == "esp82iot" && manual) {
        if (messageData == "redOn") {
          Serial.println("red On");
          digitalWrite(redPin, HIGH);
          //Foco de entrada
        } else if (messageData == "redOff") {
          Serial.println("red Off");
          digitalWrite(redPin, LOW);
11
        if (messageData == "greenOn") {
          Serial.println("green On");
12
          digitalWrite(greenPin, HIGH);
13
        } else if (messageData == "greenOff") {
14
          Serial.println("greenOff");
15
          digitalWrite(greenPin, LOW);
17
18
```



```
void encendido_luzAuto(float lumi) {
  if (lumi <= 20.0) {
    //Puerta de entrada
    digitalWrite(redPin, HIGH);
  } else {
    digitalWrite(redPin, LOW);
  }
}</pre>
```

FUNCIONAMIENTO: ALMACENAMIENTO

FUNCIONAMIENTO: RED

LECCIONES APRENDIDAS

- Programación de sensores y actuadores IoT.
- Configuración de flujos de trabajo en Node Red.
- Publicación y suscripción de dispositivos a broker Mosquito.
- Almacenamiento de datos usando archivos csv.

GRACIAS