Stroke dataset

Florencia Luque and Seyed Amirhossein Mosaddad

October 6, 2024

```
##
## Adjuntando el paquete: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

##
## Adjuntando el paquete: 'agricolae'

## The following objects are masked from 'package:e1071':
##
## kurtosis, skewness
```

Introduction

This dataset is a data obtain from *kaggle* and is used to predict if a pacient will probably get a stroke based on characteristic of them like gender, age, bmi, glucose levels.

The stroke variable have a 4.8% of people have had one. We want to check the distributions of the variables and possibles explanations of which variable can make an impact to get a stroke before creating a model to proved or been proved wrong about it.

The data have the follow variables:

- 1) id: unique identifier
- 2) gender: "Male", "Female" or "Other"
- 3) age: age of the patient
- 4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- 5) heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- 6) ever married: "No" or "Yes"
- 7) work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- 8) Residence_type: "Rural" or "Urban"
- 9) avg_glucose_level: average glucose level in blood

- 10) bmi: body mass index
- 11) smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- 12) stroke: 1 if the patient had a stroke or 0 if not

The next is a summary of the data.

```
summary(data)
```

```
##
          id
                        gender
                                                     hypertension heart_disease
                                         age
##
               67
                     Female:2994
                                           : 0.08
                                                     0:4611
                                                                   0:4833
    Min.
                                    Min.
    1st Qu.:17740
                     Male :2115
                                    1st Qu.:25.00
                                                     1: 498
                                                                   1: 276
##
   Median :36922
                                    Median :45.00
   Mean
           :36514
                                    Mean
                                           :43.23
    3rd Qu.:54643
                                    3rd Qu.:61.00
##
##
   Max.
           :72940
                                    Max.
                                           :82.00
##
##
   ever_married
                                        Residence_type avg_glucose_level
                          work_type
##
    No :1756
                  children
                                : 687
                                        Rural:2513
                                                        Min.
                                                               : 55.12
##
    Yes:3353
                  Govt_job
                                : 657
                                        Urban:2596
                                                        1st Qu.: 77.24
##
                  Never_worked: 22
                                                        Median: 91.88
                  Private
                                :2924
                                                               :106.14
##
                                                        Mean
##
                  Self-employed: 819
                                                        3rd Qu.:114.09
##
                                                        Max.
                                                               :271.74
##
##
         bmi
                             smoking_status stroke
           :10.30
                     formerly smoked: 884
                                             0:4860
##
    Min.
                     never smoked
                                             1: 249
##
    1st Qu.:23.50
                                     :1892
   Median :28.10
                     smokes
                                     : 789
##
  Mean
           :28.89
                     Unknown
                                     :1544
##
    3rd Qu.:33.10
## Max.
           :97.60
##
   NA's
           :201
```

Dataset

We will star the analysis with the categorical variables.

Categorical Variables

Gender

This variable has 2 categories Male and Female (there's one person who is Other but it's only one so we can't make any assumptions about this data).

The next table shows a summary of the quantity of people getting a stroke by gender and the corresponding percentage.

```
stroke_gender = data %>% group_by(stroke,gender) %>% summarise(n = n(),.groups = "drop") %>% group_by(g
pander(stroke_gender)
```

stroke	gender	n	percent
0	Female	2853	95.29
0	Male	2007	94.89
1	Female	141	4.709
1	Male	108	5.106

you can see there's a higher % of male that have had a stroke in the data. This number is a little bit higher than the population so we don't think this would have a great impact in the future model.

Hypertension

pander(data %>% group_by(stroke,hypertension) %>% summarise(n = n(),.groups = "drop")%>%
 group_by(hypertension) %>% mutate(percent = n/sum(n)*100))

stroke	hypertension	n	percent
0	0	4428	96.03
0	1	432	86.75
1	0	183	3.969
1	1	66	13.25

The % of people who have had a stroke and have hypertension are significantly highier than the population. There's a difference approx. 9%. This could mean that if you have hypertension you could be more likely to get a stroke. ## Heart disease

```
pander(data %>% group_by(stroke,heart_disease) %>% summarise(n = n(),.groups = "drop")%>%
    group_by(heart_disease) %>% mutate(percent = n/sum(n)*100))
```

stroke	$heart_disease$	n	percent
0	0	4631	95.82
0	1	229	82.97
1	0	202	4.18
1	1	47	17.03

ggplot(data)+aes(x=stroke,fill=heart_disease) + geom_bar(position=position_dodge())+theme_minimal()

The data of the people who have a heart diseased look even more likely to get a stroke than the ones who have hypertension. Maybe there's a relation between hypertension and having a heart diseased. Heart diseased is a variable to check for more details.

Ever Married

```
pander(data %>% group_by(stroke,ever_married) %>% summarise(n = n(),.groups = "drop")%>%
  group_by(ever_married) %>% mutate(percent = n/sum(n)*100))
```

stroke	ever_married	n	percent
0	No	1727	98.35
0	Yes	3133	93.44
1	No	29	1.651
1	Yes	220	6.561

ggplot(data)+aes(x=stroke,fill=ever_married) + geom_bar(position=position_dodge())+theme_minimal()

there's more people that have had a stroke you have been married than not been married. The difference with the population is big but with the ones that never married maybe not get married lower your changes or getting a stroke. ### Work Type

```
pander(data %>% group_by(stroke,work_type) %>% summarise(n = n(),.groups = "drop")%>%
    group_by(work_type) %>% mutate(percent = n/sum(n)*100))
```

stroke	$work_type$	n	percent
0	children	685	99.71
0	$Govt_job$	624	94.98
0	$Never_worked$	22	100
0	Private	2775	94.9
0	Self-employed	754	92.06
1	children	2	0.2911
1	$Govt_job$	33	5.023
1	Private	149	5.096
1	Self-employed	65	7.937

ggplot(data)+aes(x=stroke,fill=work_type) + geom_bar(position=position_dodge())+theme_minimal()

Clairly the self employed have the highest % of people who have han a stroke. This could be because of stress and the people who work with children have the lowest. Hope that working with children reduces your chances. ### Resident Type

stroke	$Residence_type$	n	percent
0	Rural	2399	95.46
0	Urban	2461	94.8
1	Rural	114	4.536
1	Urban	135	5.2

ggplot(data)+aes(x=stroke,fill=Residence_type) + geom_bar(position=position_dodge())+theme_minimal()

The part of the city that you live looks like it doesn't matter because the % of stroke is very similar to the population and almost the same between the types of resident. This could mean something

Smoking Status

```
pander(data %>% group_by(stroke,smoking_status) %>% summarise(n = n(),.groups = "drop")%>%
group_by(smoking_status) %>% mutate(percent = n/sum(n)*100))
```

stroke	smoking_status	n	percent
0	formerly smoked	814	92.08
0	never smoked	1802	95.24
0	smokes	747	94.68
0	$\operatorname{Unknown}$	1497	96.96
1	formerly smoked	70	7.919
1	never smoked	90	4.757
1	smokes	42	5.323
1	Unknown	47	3.044

ggplot(data)+aes(x=stroke,fill=smoking_status) + geom_bar(position=position_dodge())+theme_minimal()

This results call the attention because the people you formerly smoked have 3% higher than the population but obe who smokes or never have similar numbers. This could be a multivariate problem because this type of data probably mix more than one variable at a time. It's very clear that this variable should be important in the model ## Numeric Variables

BMI

The first variable to evaluate will be the bmi. This variable is a metric that represent the relation between height and weight of a person. As you can see we have 3.9334638 % percentage of NA. However this is less than 5% so to treat this variable we will deleted all the rows with the NA in bmi

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 10.30 23.50 28.10 28.89 33.10 97.60 201
```

Next, we will check the freequency of the data using the cut between (0-18.5] as underweight, (18.5-24.9] as normal, (24.9-29.9] as overweight, (29.9-34.9] as obese and over this as extremely obese. This value leaves over 50% of our population in normal and overweight and almost 40% in the largest side in obese and extremely obese.

```
# Create frequency table
bmi_freq_table <- table(frec_table)</pre>
print(bmi_freq_table)
## frec_table
##
       Underweight
                              Normal
                                           Overweight
                                                                 Obese Extremely Obese
                349
                                1230
                                                 1409
                                                                  1000
                                                                                     920
##
bmi_rel_freq <- prop.table(bmi_freq_table)*100</pre>
print(bmi_rel_freq)
## frec_table
##
       Underweight
                              Normal
                                           Overweight
                                                                 Obese Extremely Obese
##
          7.110839
                          25.061125
                                            28.708231
                                                             20.374898
                                                                              18.744906
```

If we check this with a graph we can see that the graph looks a bit symetrical with an inclination to the right. This could it mean that the distribution is not a normal like could it seem. We are going to check the kurtosis and skewness shape to check if there's a problem.

```
stat.freq(aux_bmi)
## $variance
```

```
## $variance
## [1] 63.33528
##
## $mean
## [1] 28.84576
##
## $median
## [1] 28.00923
##
## $mode
        [- -]
                  mode
## [1,] 25 30 27.22513
ggplot(data, aes(x=bmi)) +
  geom_histogram(color="black", fill="cadetblue1")+
  labs(title = "BMI Distribution")
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

BMI Distribution


```
bmi_mean <- mean(data$bmi)
bmi_median <- median(data$bmi)

# Density plot with a vertical line at the mean
ggplot(data, aes(x = data$bmi)) +
    geom_density(fill = "aquamarine1", alpha = 0.6) +
    geom_vline(aes(xintercept = bmi_mean), color = "dodgerblue2", linetype = "dashed", size = 1) +
    geom_vline(aes(xintercept = bmi_median), color = "hotpink1", linetype = "dotted", size = 1) +
    labs(title = "Density Plot of BMI with Mean and Median", x = "BMI", y = "Density") +
    annotate("text", x = bmi_mean + 0.5, y = 0.02, label = paste("Mean =", round(bmi_mean, 2)), color = "annotate("text", x = bmi_median - 0.5, y = 0.015, label = paste("Median =", round(bmi_median, 2)), co
    theme_minimal()</pre>
```


skewness(data\$bmi)

[1] 1.055063

kurtosis(data\$bmi)

[1] 3.36233

The values of the shape tell us that this is not a normal distribution. There's a lot of people in the center of the data but the quantity of people with a extremely high BMI that change the weigh of the tail in the distribution.

Looking only at the graph we expected that the Kurtosis was close to 3 but a 3.35 shows that this data have a heavier tail than a normal distribution. This means that we have outliers in the data. In this case there's a lot of values over 30. If we combined the Skewness value of 1.05 and the Kurtosis this tell us that the the distribution in skewed to the right and that the heavier tails is to this side explaining the outliers.

To see if the outliers are correctly in the heavier side we can check the boxplot of the bmi

```
ggplot(data, aes(y = data$bmi)) +
  geom_boxplot(fill = "lightblue", color = "darkblue") + # Change box and border color
  labs(title = "Boxplot of BMI", y = "BMI Values") + # Custom title and labels
  theme_minimal()
```


As you can see with the boxplot we can make sure that the bmi data have outliers within the largest values. The problem with this data is that we can not be sure if this is a mistake in the part of measure or maybe exist people with those values. YOu can see this in the qqplot next.

```
ggplot(data, aes(sample=bmi)) + stat_qq(size=2,color=rainbow(4908))+stat_qq_line()+theme_minimal()+
    labs(title = "QQ plot for bmi")
```



```
data_sub_bmi_catw= data %>% group_by(cat_weight,stroke) %>% summarise(mean = mean(bmi),.groups = "drop"
print(data_sub_bmi_catw)
```

BMI with stroke

```
## # A tibble: 10 x 3
##
      cat_weight
                     stroke mean
      <fct>
##
                     <fct> <dbl>
  1 Underweight
                             16.7
##
                     0
##
   2 Underweight
                     1
                             16.9
## 3 Normal
                     0
                             22.2
## 4 Normal
                     1
                             22.6
  5 Overweight
                     0
                             27.5
##
  6 Overweight
                     1
                             27.6
  7 Obese
                     0
##
                             32.2
  8 Obese
                     1
                             32.1
## 9 Extremely Obese 0
                             41.1
## 10 Extremely Obese 1
                             40.3
```

```
ggplot(data, aes(x = bmi, fill = stroke)) +
  geom_histogram(binwidth = 3)+
  facet_wrap(~stroke)+theme_minimal()+labs(title = "bmi histogram by stroke",x="bmi",y="count")
```

bmi histogram by stroke


```
ggplot(data, aes(sample = bmi, fill = stroke))+
    stat_qq(size=2)+ stat_qq_line() +
    facet_wrap(~stroke)+theme_minimal()+labs(title = "bmi qqplot by stroke",x="stroke",y="count")
```

bmi qqplot by stroke


```
ggplot(data, aes(y = bmi, fill =stroke))+
  geom_boxplot()+
  facet_wrap(~gender)+theme_minimal()+labs(title = "bmi boxplot by stroke",x="stroke",y="count")
```

bmi boxplot by stroke


```
#gender
data_sub_bmi_gender= data %>% group_by(gender,stroke) %>% summarise(mean = mean(bmi),.groups = "drop")
print(data_sub_bmi_gender)
```

BMI with gender

bmi boxplot by gender

#hypertension data_sub_bmi_hyper= data %>% group_by(hypertension,stroke) %>% summarise(mean = mean(bmi),.groups = "dr print(data_sub_bmi_hyper)

BMI with hypertension

```
## # A tibble: 4 x 3
##
    hypertension stroke mean
    <fct>
             <fct> <dbl>
##
## 1 0
                 0
                         28.4
                         30.3
## 2 0
                 1
## 3 1
                 0
                         33.4
                         30.9
```

```
ggplot(data, aes(y = bmi, fill =hypertension))+
  geom_boxplot()+
  facet_wrap(~gender)+theme_minimal()+labs(title = "bmi boxplot by hypertension",x="hypertension",y="contact.")
```

bmi boxplot by hypertension


```
data_sub_bmi_hd= data %>% group_by(heart_disease,stroke) %>% summarise(mean = mean(bmi),.groups = "drop
print(data_sub_bmi_hd)
```

BMI by heart diseased

```
## # A tibble: 4 x 3
    heart_disease stroke mean
##
     <fct>
                  <fct> <dbl>
## 1 0
                  0
                           28.8
## 2 0
                           30.4
                   1
## 3 1
                  0
                           30.2
                           30.8
## 4 1
                   1
```

```
ggplot(data, aes(y = bmi, fill =heart_disease))+
  geom_boxplot()+
  facet_wrap(~gender)+theme_minimal()+labs(title = "bmi boxplot by heart disease",x="heart disease",y="entropy of the content of
```

bmi boxplot by heart disease


```
data_sub_bmi_em= data %>% group_by(ever_married,stroke) %>% summarise(mean = mean(bmi),.groups = "drop")
print(data_sub_bmi_em)
```

BMI by ever married

```
## # A tibble: 4 x 3
##
     ever_married stroke mean
                  <fct> <dbl>
##
     <fct>
                  0
                          25.2
## 1 No
                          29.9
## 2 No
                  1
                          30.9
## 3 Yes
                  0
                          30.5
```

```
ggplot(data, aes(y = bmi, fill =ever_married))+
  geom_boxplot()+
  facet_wrap(~ever_married)+theme_minimal()+labs(title = "bmi boxplot by ever married",x="ever married")
```

bmi boxplot by ever married


```
data_sub_bmi_wt= data %>% group_by(work_type,stroke) %>% summarise(mean = mean(bmi),.groups = "drop")
print(data_sub_bmi_wt)
```

BMI by work type

```
## # A tibble: 9 x 3
##
     work_type
                  stroke mean
##
     <fct>
                   <fct> <dbl>
                           20.0
## 1 children
                  0
## 2 children
                           30.9
                 1
## 3 Govt_job
                  0
                           30.6
## 4 Govt_job
                  1
                           29.4
## 5 Never_worked 0
                           25.5
## 6 Private
                           30.3
## 7 Private
                           31.1
## 8 Self-employed 0
                           30.3
## 9 Self-employed 1
                           29.6
```

```
ggplot(data, aes(y = bmi, fill =stroke))+
  geom_boxplot()+
  facet_wrap(~work_type)+theme_minimal()+labs(title = "bmi boxplot by stroke",x="work type",y="count")
```

bmi boxplot by stroke


```
data_sub_bmi_tr= data %>% group_by(Residence_type,stroke) %>% summarise(mean = mean(bmi),.groups = "dropprint(data_sub_bmi_tr)
```

BMI by resident type

```
## # A tibble: 4 x 3
##
     Residence_type stroke mean
##
     <fct>
                    <fct> <dbl>
                             28.8
## 1 Rural
                    0
## 2 Rural
                             30.1
                    1
## 3 Urban
                    0
                             28.8
                             30.8
```

```
ggplot(data, aes(y = bmi, fill =Residence_type))+
  geom_boxplot()+
  facet_wrap(~Residence_type)+theme_minimal()+labs(title = "bmi boxplot by resident type",x="resident type")
```

bmi boxplot by resident type


```
data_sub_bmi_catw= data %>% group_by(smoking_status,stroke) %>% summarise(mean = mean(bmi),.groups = "d
print(data_sub_bmi_catw)
```

BMI by smoking status

```
## # A tibble: 8 x 3
##
    smoking_status stroke mean
##
    <fct>
                    <fct> <dbl>
                           30.7
## 1 formerly smoked 0
## 2 formerly smoked 1
                           31.0
## 3 never smoked 0
                           30.0
## 4 never smoked
                           30.4
                   1
                    0
                           30.5
## 5 smokes
## 6 smokes
                           30.6
                    1
                           25.6
## 7 Unknown
                    0
## 8 Unknown
                    1
                           29.4
```

```
ggplot(data, aes(y = bmi, fill =smoking_status))+
  geom_boxplot()+
  facet_wrap(~smoking_status)+theme_minimal()+labs(title = "bmi boxplot by smoking status",x="smoking status")
```

bmi boxplot by smoking status

Glucose levels

```
glc_mean <- mean(data$avg_glucose_level)
glc_median <- median(data$avg_glucose_level)

# Density plot with a vertical line at the mean
ggplot(data, aes(x = avg_glucose_level)) +
    geom_density(fill = "aquamarine1", alpha = 0.6) +
    geom_vline(aes(xintercept = glc_mean), color = "dodgerblue2", linetype = "dashed", size = 1) +
    geom_vline(aes(xintercept = glc_mean), color = "hotpink1", linetype = "dotted", size = 1) +
    labs(title = "Density Plot of avg_glucose with Mean and Median", x = "Avg_Glucose", y = "Density") +
    annotate("text", x = glc_mean + 0.5, y = 0.02, label = paste("Mean =", round(glc_mean, 2)), color = "annotate("text", x = glc_median - 0.5, y = 0.015, label = paste("Median =", round(glc_median, 2)), col
    theme_minimal()</pre>
```


ffd

```
skewness(data$avg_glucose_level)
```

[1] 1.614619

```
kurtosis(data$avg_glucose_level)
```

[1] 1.907085

djfj

```
ggplot(data, aes(y = avg_glucose_level)) +
  geom_boxplot(fill = "lightblue", color = "darkblue") + # Change box and border color
  labs(title = "Boxplot of avg. glucose", y = "avg. glucose Values") + # Custom title and labels
  theme_minimal()
```


fdskjs

-0.2

50

-0.4

0.2

0.4

0.0

QQ plot for avg. glucose


```
data_sub_glu_st= data %>% group_by(stroke) %>% summarise(mean = mean(avg_glucose_level),.groups = "drop
print(data_sub_glu_st)
```

Avg. Glucose levels with stroke

```
## # A tibble: 2 x 2
## stroke mean
## < <fct> <dbl>
## 1 0 104.
## 2 1 135.
```

```
ggplot(data, aes(x = avg_glucose_level, fill = stroke)) +
  geom_histogram(binwidth = 3)+
  facet_wrap(~stroke)+theme_minimal()+labs(title = "avg. glucose histogram by stroke",x="avg. glucose",
```

avg. glucose histogram by stroke


```
ggplot(data, aes(sample = avg_glucose_level, fill = stroke))+
    stat_qq(size=2)+ stat_qq_line() +
    facet_wrap(~stroke)+theme_minimal()+labs(title = "avg. glucose qqplot by stroke",x="stroke",y="count"
```

avg. glucose qqplot by stroke


```
ggplot(data, aes(y = avg_glucose_level, fill =stroke))+
  geom_boxplot()+
  facet_wrap(~gender)+theme_minimal()+labs(title = "avg. glucose boxplot by stroke",x="stroke",y="count")
```

avg. glucose boxplot by stroke


```
data_sub_glu_gd= data %>% group_by(gender,stroke) %>% summarise(mean = mean(avg_glucose_level),.groups
print(data_sub_glu_gd)
```

Avg. Glucose levels with gender

```
## # A tibble: 4 x 3
## c gender stroke mean
## c <fct> <fct> <dbl>
## 1 Female 0 102.
## 2 Female 1 126.
## 3 Male 0 106.
## 4 Male 1 146.
```

```
ggplot(data, aes(x = avg_glucose_level, fill = gender)) +
   geom_histogram(binwidth = 5.5)+
   facet_wrap(~gender)+theme_minimal()+labs(title = "avg_glucose histogram by gender",x="avg_glucose",y=
```

avg glucose histogram by gender


```
data_sub_glu_hyp= data %>% group_by(hypertension,stroke) %>% summarise(mean = mean(avg_glucose_level),...
print(data_sub_glu_hyp)
```

Glucose levels with hypertension

```
## # A tibble: 4 x 3
## hypertension stroke mean
## <fct> <fct> <fct> <dbl>
## 1 0 0 102.
## 2 0 1 130.
## 3 1 0 128.
## 4 1 1 146.
```

```
ggplot(data, aes(x = avg_glucose_level, fill = hypertension)) +
   geom_histogram(binwidth = 5.5)+
   facet_wrap(~hypertension)+theme_minimal()+labs(title = "avg_glucose_histogram by hypertension",x="avg_glucose_histogram by hypertension")
```

avg glucose histogram by hypertension


```
data_sub_glu_hd= data %>% group_by(heart_disease,stroke) %>% summarise(mean = mean(avg_glucose_level),...
print(data_sub_glu_hd)
```

Avg. Glucose levels with heart disease

```
ggplot(data, aes(x = avg_glucose_level, fill = heart_disease)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~heart_disease)+theme_minimal()+labs(title = "avg_glucose_histogram by heart_disease",x="a
```

avg glucose histogram by heart disease


```
data_sub_glu_em= data %>% group_by(ever_married,stroke) %>% summarise(mean = mean(avg_glucose_level),.g
print(data_sub_glu_em)
```

Avg. Glucose levels with ever married

```
## # A tibble: 4 x 3
##
     ever_married stroke mean
##
                  <fct> <dbl>
                          95.9
## 1 No
                  0
## 2 No
                  1
                         107.
## 3 Yes
                  0
                         108.
                         138.
                  1
```

```
ggplot(data, aes(x = avg_glucose_level, fill = ever_married)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~ever_married)+theme_minimal()+labs(title = "avg_glucose_histogram by ever_married",x="avg_glucose_histogram by ever_married")
```

avg glucose histogram by ever married


```
data_sub_glu_wt= data %>% group_by(work_type,stroke) %>% summarise(mean = mean(avg_glucose_level),.group_print(data_sub_glu_wt)
```

Avg. Glucose levels with work type

```
## # A tibble: 9 x 3
##
     work_type
                   stroke mean
##
     <fct>
                   <fct> <dbl>
## 1 children
                           94.1
## 2 children
                           57.9
                   1
## 3 Govt_job
                   0
                          106.
## 4 Govt_job
                   1
                          137.
## 5 Never_worked 0
                           96.0
                          104.
## 6 Private
## 7 Private
                          139.
## 8 Self-employed 0
                          112.
## 9 Self-employed 1
                          123.
```

```
ggplot(data, aes(x = avg_glucose_level, fill = work_type)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~work_type)+theme_minimal()+labs(title = "avg_glucose_histogram by work_type",x="avg_glucose_histogram by work_type")
```

avg glucose histogram by work type


```
data_sub_glu_rt= data %>% group_by(Residence_type,stroke) %>% summarise(mean = mean(avg_glucose_level),
print(data_sub_glu_rt)
```

Avg. Glucose levels with resident type

```
## # A tibble: 4 x 3
##
     Residence_type stroke mean
##
     <fct>
                    <fct> <dbl>
## 1 Rural
                    0
                             104.
## 2 Rural
                             133.
                    1
## 3 Urban
                    0
                             104.
## 4 Urban
                             136.
```

```
ggplot(data, aes(x = avg_glucose_level, fill = Residence_type)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~Residence_type)+theme_minimal()+labs(title = "avg_glucose_histogram by_resident_type",x="a")
```

avg glucose histogram by resident type


```
data_sub_glu_st= data %>% group_by(smoking_status,stroke) %>% summarise(mean = mean(avg_glucose_level),
print(data_sub_glu_st)
```

Avg. Glucose levels with smoking status

```
## # A tibble: 8 x 3
##
     smoking_status stroke mean
##
     <fct>
                    <fct> <dbl>
## 1 formerly smoked 0
                            111.
## 2 formerly smoked 1
                           139.
## 3 never smoked
                            106.
## 4 never smoked
                    1
                            133.
                           105.
## 5 smokes
                    0
## 6 smokes
                           141.
                    1
                            97.9
## 7 Unknown
                    0
## 8 Unknown
                    1
                            121.
```

```
ggplot(data, aes(x = avg_glucose_level, fill = smoking_status)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~smoking_status)+theme_minimal()+labs(title = "avg_glucose_histogram by_smoking_status",x=
```

avg glucose histogram by smoking status

\mathbf{Age}

```
ggplot(data, aes(x=age)) +
  geom_histogram(color="black", fill="cadetblue1")+
  labs(title = "Age Distribution")
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Age Distribution


```
age_mean <- mean(data$age)
age_median <- median(data$age)

# Density plot with a vertical line at the mean
ggplot(data, aes(x = data$age)) +
   geom_density(fill = "aquamarine1", alpha = 0.6) +
   geom_vline(aes(xintercept = age_mean), color = "dodgerblue2", linetype = "dashed", size = 1) +
   geom_vline(aes(xintercept = age_median), color = "hotpink1", linetype = "dotted", size = 1) +
   labs(title = "Density Plot of BMI with Mean and Median", x = "BMI", y = "Density") +
   annotate("text", x = age_mean + 0.5, y = 0.02, label = paste("Mean =", round(age_mean, 0)), color = "annotate("text", x = age_median - 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median - 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median - 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median - 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median - 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median - 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median, 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median, 0.5, y = 0.015, label = paste("Median =", round(age_median, 0)), color = "intercept = age_median, 0.5, y = 0.015, label = paste("Median = ", round(age_median, 0)), color = "intercept = age_median, 0.5, y = 0.015, label = paste("Median = ", round(age_median, 0)), color = "intercept = age_median, 0.5, y = 0.015, label = age_median, 0.5, y = 0.015, y = 0.
```

Density Plot of BMI with Mean and Median

Age levels with stroke

```
data_sub_age= data %>% group_by(stroke) %>% summarise(mean = mean(age),.groups = "drop")
print(data_sub_age)
```

```
ggplot(data, aes(x = age, fill = stroke)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~stroke)+theme_minimal()+labs(title = "age histogram by stroke",x="age",y="count")
```

age histogram by stroke


```
data_sub_age_gender= data %>% group_by(gender,stroke) %>% summarise(mean = mean(age),.groups = "drop")
print(data_sub_age_gender)
```

Age levels with gender

```
ggplot(data, aes(x = age, fill = gender)) +
  geom_histogram(binwidth = 5.5)+
  facet_wrap(~gender)+theme_minimal()+labs(title = "age histogram by gender",x="age",y="count")
```

age histogram by gender


```
data_sub_age_hyp= data %>% group_by(hypertension,stroke) %>% summarise(mean = mean(age),.groups = "drop
print(data_sub_age_hyp)
```

Age levels with hypertension

```
## # A tibble: 4 x 3
##
     hypertension stroke mean
##
                  <fct>
                         <dbl>
## 1 0
                  0
                          40.0
## 2 0
                          67.0
                  1
## 3 1
                  0
                          61.2
                          69.6
## 4 1
```

```
ggplot(data, aes(x = age, fill = hypertension)) +
   geom_histogram(binwidth = 5.5)+
   facet_wrap(~hypertension)+theme_minimal()+labs(title = "age histogram by hypertension",x="age",y="country")
```

age histogram by hypertension

