Computational Maths Assignment 3 Solutions

Daniel Nugent – 183226304

- 1. B (given insert into MATLAB)
- 2. B (given insert into MATLAB)
- 3. E (given insert into MATLAB)
- 4. B

010,20,410.67
1 1.2 1,2 1,25
X=0.5
(05-05)(05-05)(05-06) (05-0)(05-04)(05-06)
(p-1-2) (p-1-2-6) (0.2-0.486) -0.2-0.4862-06
$(1) \begin{array}{c} (0.5 - 0.2) (0.5 - 0.4) (0.5 - 0.6) \\ (2) (0.5 - 0.2) (0.5 - 0.4) (0.5 - 0.6) \\ (3) (3) (3) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4$
(13) (0.5-0,2) (0.5-0.6)
Po.4-0)(0.4-0.2)(0.4-0.6)
+1.25 (0.5-0)(0.5-0.2)(0.5-0.4)
(0.6-0)(0.6-0.2)(0.6-0.4)=
0.0625 + 1.2(-0.3225) + 1.3(0.7375)
+1.25(0.3225)=1,297252(1.3)
2 2.1 2 3 2.6
30=0.5
(2)(0.9-0.2)(0,5-0.6)
(copy last one)
CONC 2-3,
(2)(0.0625) + 2.1(-0.3125) + (3(0.932))
1 (0,39 L) = a-11
(1.3, 2.44)

5. C

Time (s)	10	15	20	22
Velocity (ms^{-1})	22	36	57	10

Choose the data points closest to the point we want to estimate

So we choose (15,36), (20,57) and (22,10) as these timestamps are closest to 17s.

$$v(t) = a_0 + a_1 t + a_2 t^2$$

we get three equations

1.
$$36 = a_0 + a_1(15) + a_2(15)^2$$

2.
$$57 = a_0 + a_1(20) + a_2(20)^2$$

3.
$$10 = a_0 + a_1(22) + a_2(22)^2$$

$$\begin{pmatrix} 1 & 15 & 225 \\ 1 & 20 & 400 \\ 1 & 22 & 484 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 36 \\ 57 \\ 10 \end{pmatrix}$$

Solving gives us
$$a_0 = -\frac{8499}{7}$$
, $a_1 = \frac{1427}{10}$, $a_2 = -\frac{277}{70}$

$$v(t) = -\frac{8499}{7} + \frac{1427}{10}t - \frac{277}{70}t^2$$

Differentiation of v(t) with respect to t will give us acceleration

$$v'(t) = \frac{1427}{10} - \frac{277}{35}t$$

Subbing in 17 gives us 8.157142

6. D

Newtons

Legrange

6 Granger

(1)
$$-1$$
 | 1 | 2 | -1 | -1 | 1 | 2 | -1

7. D

L
Dennes Nogert 95
$f_{i}(x) = \frac{a_{i}}{(x_{i+1}-x_{i})^{3}} + \frac{q_{i+3}}{(x_{i}-x_{i})^{3}} (x_{i}-x_{i})^{3}$
$f_{i}(x) = \frac{a_{i}}{6h_{i}}(x_{i+2}-x_{e})^{3} + \frac{q_{i+3}}{6h_{i}}(x_{-}x_{i})^{3}$ $(\frac{1}{h_{i}} - \frac{a_{i}h_{i}}{6})(x_{i+2}-x_{e}) + (\frac{1}{1+2} - \frac{a_{i+2}h_{i}}{6})(x_{-}x_{e})$
a: la a = 0 for ablic spline.
$x_2 - x_1 = hi = 1$ $x_3 - x_2 - h2 = 1$
26-23=43=2
apa, +2(1+h2)(92)+h293-6(43-43-42-41)
92+92 × 1.74
h292 + 2 (h2 + h3) (G3) + h394 = 6 (14-73 43-72)
$9_2 + 69_3 = -1.83$
14 1 92 - 1.86 (6 93 × 0.53 40 92 × 0.53 40 93 × -0.3771
$\{2,(3e)=-0.0332503(5-3e)^3+0.466033(5-3e)$ = $\{0.455(3e-3)\}$
f

$c_{pen} = 2 + h$ $2 - 1 = 2 - h$	FELL
$f(x_1) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!}h^2 + \frac{f'''(x_0)}{3!}h^3$	FFFF
the 412 4	FFPFF
$f(x_{-1}) = f(x_0) - f(x_0)h + f''(x_0)h^2 - f'''(x_0)h^2 - f'''(x_0)h^2 - f'''(x_0)h^2 - f'''(x_0)h^2 - f'''(x_0)h^2 - f''''(x_0)h^2 - f'''(x_0)h^2 - f''''(x_0)h^2 - f'''''(x_0)h^2 - f'''''(x_0)h^2 - f'''''(x_0)h^2 - f'''''(x_0)h^2 - f'''''(x_0)h^2 - f'''''(x_0)h^2 - f''''''(x_0)h^2 - f''''''(x_0)h^2 - f'''''''(x_0)h^2 - f'''''''''''''''''''''''''''''''''''$	There
$\frac{1}{2} = \frac{1}{20} =$	PEPERTI
f"(20) + f(1/2) 65	1000
= 2f(x0)+f"(x0/1/2)h+ f(x)(\(\xi\))h+ \(\xi\)\(\xi\)	2000
= f(x0/m) + f(6x0-h)	6 6 6
$f''(oco h)h^{2} = f(xo + h) + f(xo - h) - 2f(xo) - f(x)(x + xo)h^{2}$	1111
$f''(xcom)h^2 = f(2coh) - 2f(2co) + f(2co + h) - (wr)$ $f''(xcom) = f(2coh) - 2f(2co) + f(2co + h) - f'''(2it)$ $h^2 = f(2coh) - 2f(2co) + f(2co + h) - f'''(2it)$	2)
extract extract equation AH	

