Как пересчитать вещественные числа (неформально)?

1. Номер вещественного числа — первое упоминание в литературе, т.е. $\langle j,y,n,p,r,c \rangle$: j — гёделев номер названия научного журнала (книги); y — год издания; n — номер;

р — страница;

r — строка; с — позиция

Как пересчитать вещественные числа (неформально)?

1. Номер вещественного числа — первое упоминание в литературе, т.е. $\langle j, y, n, p, r, c \rangle$: j — гёделев номер названия научного журнала (книги); y — год издания;

n — номер;

р — страница;

r — строка;

с — позиция

2. Попробуете предъявить число x, не имеющее номера? Это рассуждение сразу даст номер.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Пример

Формальная арифметика, исчисление предикатов, исчисление высказываний — счётно-аксиоматизируемые.

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

Определение

$$\mathcal{M}'=\langle D',F_n',P_n'
angle$$
 — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n
angle$, если:

1. $D' \subseteq D$,

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

1. $D' \subseteq D$, F'_n , P'_n — сужение F_n , P_n (замкнутое на D').

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение М не является элементарной подмоделью?

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение М не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} .

Определение

 $\mathcal{M}' = \langle D', F'_n, P'_n \rangle$ — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение M не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} . Но пусть $D' = \{\Box\}$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

1. Построим D_0 — множество всех значений, которые упомянуты в языке теории.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

- 1. Построим D_0 множество всех значений, которые упомянуты в языке теории.
- 2. Будем последовательно пополнять D_i : $D_0 \subseteq D_1 \subseteq D_2 \dots$, следя за мощностью. $D' = \cup D_i$.
- 3. Покажем, что $\langle D', F_n, P_n \rangle$ требуемая подмодель.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Очевидно, $|D_0| \leq |T|$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

 $1. \ arphi$ не имеет свободных переменных — пропустим.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.

- 1. φ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем

- $1. \ \varphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ тождественно истинен или ложен, но при $y'\in D\setminus D_k$ отличается добавим y' к D_{k+1} .

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Всего добавили не больше $|T| \cdot |D_k|$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- $1. \ \varphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Всего добавили не больше $|T|\cdot |D_k|$. $|\cup D_i|\leq |T|\cdot |D_k|\cdot |\aleph_0|=\max(|T|,|\aleph_0|)$

Индукцией по структуре формул $\tau\in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'}=[\![\varphi]\!]_{\mathcal{M}}.$

1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)).$

Индукцией по структуре формул $\tau \in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'} = [\![\varphi]\!]_{\mathcal{M}}$.

1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $\tau \equiv \forall y. \varphi(y, x_1, \ldots, x_n).$

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. arphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au\equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению).

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.
 - 2.3 $\tau \equiv \exists y. \varphi(y, x_1, \dots, x_n)$ аналогично.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$.

1. Как известно, $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|>|\mathbb{N}|=\aleph_0$. Однако, ZFC — счётно-аксиоматизируемая теория.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC — счётно-аксиоматизируемая теория. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC — счётно-аксиоматизируемая теория. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?

«Парадокс» Сколема

- 1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC счётно-аксиоматизируемая теория. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?
- 2. У равенств разный смысл, первое в предметном языке, второе в метаязыке.

«Парадокс» Сколема

- 1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC счётно-аксиоматизируемая теория. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?
- 2. У равенств разный смысл, первое в предметном языке, второе в метаязыке. Внутри теории не выразить все способы нумерации, которые возможны.