Ejercicios Geomtería Diferencial

Hugo Del Castillo Mola

25 de septiembre de 2022

Índice general

A 1	_			
() [Curvas			

Capítulo 1

Curvas

Ejercicio (33). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva p.p.a., $M:\mathbb{R}^3\to\mathbb{R}^3$ movimiento rígido y $\beta=M\circ\alpha$ curva. Demostrar

- (I) M conserva la orientación $\Rightarrow k_{\beta} = k_{\alpha}$, $au_{\beta} = au_{\alpha}$,
- (II) M invierte la orientación $\Rightarrow k_{\beta} = -k_{\alpha}$, $\tau_{\beta} = \tau_{\alpha}$.

Solución. *Sea* $\beta = M\alpha$ *donde* $M \in \mathcal{M}_{3\times 3}(\mathbb{R})$. *Entonces,*

$$k_{\beta} = ||\beta''|| = ||M\alpha''|| = ||M|||\alpha''|| = ||M||k_{\alpha}$$

donde

$$||M|| = \begin{cases} 1, \text{ si } M \text{ conserva la orientación} \\ -1, \text{ si } M \text{ invierte la orientación} \end{cases}$$

$$\Rightarrow k_{\beta} = \begin{cases} k_{\alpha}, \text{ si } M \text{ conserva la orientación} \\ -k_{\alpha}, \text{ si } M \text{ invierte la orientación} \end{cases}$$

La torsión de β es

$$\tau_{\beta} = (\beta' \times \beta'') \cdot \beta''' = (M\alpha' \times M\alpha'') \cdot M\alpha'''$$
$$= (\alpha' \times \alpha'') \cdot \alpha''' = \tau_{\alpha}$$

Por tanto, la torsión es invariante ante isometrías.