CSL7360: Computer Vision Major Project

Comparative Analysis of Traditional and Deep Learning Approaches for Road Pothole Detection

Group# 40

Akansha Gautam	M23CSA506
Anchit Mulye	M23CSA507
Om Prakash Solanki	M23CSA521
Shyam Vyas	M23CSA545

Dataset

- Used Pothole Detection Dataset available in Kaggle
 - https://www.kaggle.com/datasets/atulyakumar98/pothole-detection-dataset/data
- Contains two type of images Normal and Potholes
 - o 'Normal'
 - 352 images of smooth roads
 - Captured from various angles
 - 'Potholes'
 - 329 images of roads with potholes
 - Includes different sizes and perspectives

Traditional Computer Vision Based Solution

ORB + SVM

- Uses ORB to extract keypoint-based features from grayscale images
- Builds a visual vocabulary using K-Means clustering on descriptors
- Represents images as histograms of visual words (Bag of Words model)
- Trains an SVM classifier to distinguish between normal and pothole images

SIFT + SVM

- Uses SIFT to extract scale-and rotation-invariant features
- Constructs a Bag of Words representation using K-Means clustering
- Each image is converted into a fixed-size feature vector (histogram)
- An SVM classifier is trained on these vectors for binary classification
- More accurate than ORB in many cases but computationally heavier

Deep Learning Based Solution

Convolutional Neural Network (CNN)

- Learns spatial features using convolutional layers
- Uses 3 conv layers (32→64→128) + max pooling
- Dense layers handle binary classification
- Good at detecting potholes from different angles.
- Robust to lighting, size, and noise variations.

Compact Convolutional Transformer (CCT)

- Combines CNNs (local features) with Transformers (global context)
- Convs reduce input size, making it lighter than Transformers
- Performs well even on small datasets
- More efficient than pure transformers
- Great for complex tasks like pothole detection, capturing both details and context

Steamlit Application

Comparative Analysis of Traditional and Deep Learning Approaches for Road Pothole Detection

Evaluation Results

Sample Images		ORB + SVM	SIFT + SVM	CNN	сст
Pothole Img 1	Prediction	POTHOLES	POTHOLES	POTHOLES	POTHOLES
	Confidence	89.88%	94.56%	91.64%	88.11%
Pothole Img 2	Prediction	POTHOLES	POTHOLES	POTHOLES	POTHOLES
	Confidence	60.80%	98.67%	56.73%	78.01%
Normal Img 1	Prediction	NORMAL	NORMAL	NORMAL	NORMAL
	Confidence	94.65%	75.63%	99.72%	97.95%
Normal Img 2	Prediction	NORMAL	NORMAL	NORMAL	NORMAL
	Confidence	92.93%	75.63%	99.84%	99.90%

Demo

Thank You