Continuous Functions

► The last several lectures introduced the spaces in which we carry out research in political science.

- ▶ The last several lectures introduced the spaces in which we carry out research in political science.
- Now we reintroduce functions as relationships between elements in two or more spaces.

- ▶ The last several lectures introduced the spaces in which we carry out research in political science.
- Now we reintroduce functions as relationships between elements in two or more spaces.
- "Sets and spaces provide the basic characters of mathematical analysis, functions provide the plot" (Carter 2001).

- ▶ The last several lectures introduced the spaces in which we carry out research in political science.
- Now we reintroduce functions as relationships between elements in two or more spaces.
- "Sets and spaces provide the basic characters of mathematical analysis, functions provide the plot" (Carter 2001).
- ▶ In this lecture we study functions that preserve the geometric structure of the sets they associate, continuous functions.

▶ A **function** is a rule $f: X \to Y$ that assigns every element x of a set X to a single element of a set Y.

- ▶ A **function** is a rule $f: X \to Y$ that assigns every element x of a set X to a single element of a set Y.
- X is called the domain

- ▶ A **function** is a rule $f: X \to Y$ that assigns every element x of a set X to a single element of a set Y.
- X is called the domain
- Y is called the codomain

- ▶ A **function** is a rule $f: X \to Y$ that assigns every element x of a set X to a single element of a set Y.
- X is called the domain
- Y is called the codomain
- A mapping is denoted y = f(x) and y is referred to as the **image** of x under f.

- A function is a rule f : X → Y that assigns every element x of a set X to a single element of a set Y.
- X is called the domain
- Y is called the codomain
- ▶ A mapping is denoted y = f(x) and y is referred to as the **image** of x under f.
- We typically refer to x as an **independent variable** and y = f(x) as a **dependent variable**.

- A function is a rule f : X → Y that assigns every element x of a set X to a single element of a set Y.
- X is called the domain
- Y is called the codomain
- A mapping is denoted y = f(x) and y is referred to as the **image** of x under f.
- We typically refer to x as an **independent variable** and y = f(x) as a **dependent variable**.
- ▶ The **range** or "image" of $f: X \rightarrow Y$ is the set of all elements in Y that are images of elements in X, denoted

$$f(X) = \{ y \in Y : y = f(x) \text{ for some } y \in Y \}$$

▶ If f(X) = Y, then f maps X onto Y.

- ▶ If f(X) = Y, then f maps X onto Y.
- ▶ If f(x) = f(x') implies x = x', then f is **one-to-one**.

- ▶ If f(X) = Y, then f maps X onto Y.
- ▶ If f(x) = f(x') implies x = x', then f is **one-to-one**.
- ▶ A function f has an **inverse** $f^{-1}: Y \to X$ if and only if f is one-to-one and onto.

- ▶ If f(X) = Y, then f maps X onto Y.
- ▶ If f(x) = f(x') implies x = x', then f is **one-to-one**.
- ▶ A function f has an **inverse** $f^{-1}: Y \to X$ if and only if f is one-to-one and onto.
- A graph of a function

$$graph(f) = \{(x, y) \in X \times Y : y = f(x), x \in X\}$$

▶ Let $f(x) = x^2$ for $X = Y = \mathbb{R}$.

- Let $f(x) = x^2$ for $X = Y = \mathbb{R}$.
- ▶ The range of f is $f(X) = \mathbb{R}_+$.

- Let $f(x) = x^2$ for $X = Y = \mathbb{R}$.
- ▶ The range of f is $f(X) = \mathbb{R}_+$.
- ▶ The function is not onto.

- Let $f(x) = x^2$ for $X = Y = \mathbb{R}$.
- ▶ The range of f is $f(X) = \mathbb{R}_+$.
- ▶ The function is not onto.
- ▶ It is also not one-to-one: $-x^2 = x^2$.

Let $f(x) = x^3$ for $X = Y = \mathbb{R}$.

- Let $f(x) = x^3$ for $X = Y = \mathbb{R}$.
- ▶ The range of f is $f(X) = \mathbb{R}$.

- Let $f(x) = x^3$ for $X = Y = \mathbb{R}$.
- ▶ The range of f is $f(X) = \mathbb{R}$.
- ► Therefore the function is onto.

- Let $f(x) = x^3$ for $X = Y = \mathbb{R}$.
- ▶ The range of f is $f(X) = \mathbb{R}$.
- ▶ Therefore the function is onto.
- ▶ It is also one-to-one.

▶ Let X = {members of the department} and Y = {days of the year}.

- ▶ Let X = {members of the department} and Y = {days of the year}.
- Let $f: X \to Y$ be a rule that assigns each member of the department his or her birthday.

- ▶ Let X = {members of the department} and Y = {days of the year}.
- Let f: X → Y be a rule that assigns each member of the department his or her birthday.
- ▶ Note that this is a function: each member of the department has a unique birthday.

- ▶ Let X = {members of the department} and Y = {days of the year}.
- Let f: X → Y be a rule that assigns each member of the department his or her birthday.
- ▶ Note that this is a function: each member of the department has a unique birthday.
- ▶ Under what conditions is *f* onto?

- ▶ Let X = {members of the department} and Y = {days of the year}.
- Let f: X → Y be a rule that assigns each member of the department his or her birthday.
- ▶ Note that this is a function: each member of the department has a unique birthday.
- ▶ Under what conditions is *f* onto?
- ▶ One-to-one?

Functionals

▶ We will often work with a special type of function in political science that maps into \mathbb{R} .

Functionals

- ▶ We will often work with a special type of function in political science that maps into \mathbb{R} .
- ▶ A **functional** is a real-valued function $f: X \to \mathbb{R}$.

Functionals

- ▶ We will often work with a special type of function in political science that maps into \mathbb{R} .
- ▶ A **functional** is a real-valued function $f: X \to \mathbb{R}$.
- ▶ Utility functions such as $-(x-z)^2$ are functionals.

We also will often use compositions of functions in our research.

- We also will often use compositions of functions in our research.
- ▶ A composition of functions $f: X \to Y$ and $g: Y \to Z$ is denoted $g \circ f$ or g(f(x)) for $x \in X$ and

$$g \circ f : X \to Z$$

- We also will often use compositions of functions in our research.
- ▶ A composition of functions $f: X \to Y$ and $g: Y \to Z$ is denoted $g \circ f$ or g(f(x)) for $x \in X$ and

$$g \circ f : X \to Z$$

• Example Let $f(x,y) = x^{\alpha}y^{\beta}$ and let $g(\cdot) = \ln(\cdot)$.

- We also will often use compositions of functions in our research.
- ▶ A composition of functions $f: X \to Y$ and $g: Y \to Z$ is denoted $g \circ f$ or g(f(x)) for $x \in X$ and

$$g \circ f : X \to Z$$

- Example Let $f(x,y) = x^{\alpha}y^{\beta}$ and let $g(\cdot) = \ln(\cdot)$.
- Note

$$f: \mathbb{R}^2_+ \to \mathbb{R}_+$$

and

$$g:\mathbb{R}_{++} o\mathbb{R}$$

- We also will often use compositions of functions in our research.
- ▶ A composition of functions $f: X \to Y$ and $g: Y \to Z$ is denoted $g \circ f$ or g(f(x)) for $x \in X$ and

$$g \circ f : X \to Z$$

- Example Let $f(x,y) = x^{\alpha}y^{\beta}$ and let $g(\cdot) = \ln(\cdot)$.
- Note

$$f: \mathbb{R}^2_+ \to \mathbb{R}_+$$

and

$$g: \mathbb{R}_{++} \to \mathbb{R}$$

▶ The composition of these two functions is

$$g(f(x)) = \alpha \ln(x) + \beta \ln(y)$$

with
$$g(f(x)): \mathbb{R}^2_+ \to \mathbb{R}$$

► An additional definition will prove useful in defining continuity.

- An additional definition will prove useful in defining continuity.
- ▶ The **inverse image** of a function of a set $T \subseteq Y$ is the set of $x \in X$ that are mapped to a elements $y \in T$

$$f^{-1}(T) = \{x \in X | f(x) \in T\}$$

- An additional definition will prove useful in defining continuity.
- ▶ The **inverse image** of a function of a set $T \subseteq Y$ is the set of $x \in X$ that are mapped to a elements $y \in T$

$$f^{-1}(T) = \{x \in X | f(x) \in T\}$$

▶ Example: Let $f(x) = x^2$ and let $T = [0, 4] \subset \mathbb{R} = Y$.

- An additional definition will prove useful in defining continuity.
- ▶ The **inverse image** of a function of a set $T \subseteq Y$ is the set of $x \in X$ that are mapped to a elements $y \in T$

$$f^{-1}(T) = \{x \in X | f(x) \in T\}$$

- ▶ *Example*: Let $f(x) = x^2$ and let $T = [0, 4] \subset \mathbb{R} = Y$.
- ▶ The inverse image $f^{-1}(T)$ is $[0,2] \subset \mathbb{R} = X$.

▶ Informally, a function is continuous if small changes in *x* produce only small changes in *y*.

- ▶ Informally, a function is continuous if small changes in *x* produce only small changes in *y*.
- Let

$$f:[0,1]\to\{0,1\}$$

map a candidate's vote share in an election to a dummy variable that identifies whether or not he or she won (1) or lost (0) the election.

- ▶ Informally, a function is continuous if small changes in *x* produce only small changes in *y*.
- Let

$$f:[0,1]\to\{0,1\}$$

map a candidate's vote share in an election to a dummy variable that identifies whether or not he or she won (1) or lost (0) the election.

In a two-candidate race, f(x) = 0 for x < 1/2 and f(x) = 1 for x > 1/2.

- ▶ Informally, a function is continuous if small changes in *x* produce only small changes in *y*.
- Let

$$f:[0,1]\to\{0,1\}$$

map a candidate's vote share in an election to a dummy variable that identifies whether or not he or she won (1) or lost (0) the election.

- In a two-candidate race, f(x) = 0 for x < 1/2 and f(x) = 1 for x > 1/2.
- ▶ A small change in x in the neighborhood of 1/2 results in a large change in y.

- ▶ Informally, a function is continuous if small changes in *x* produce only small changes in *y*.
- Let

$$f:[0,1]\to\{0,1\}$$

map a candidate's vote share in an election to a dummy variable that identifies whether or not he or she won (1) or lost (0) the election.

- In a two-candidate race, f(x) = 0 for x < 1/2 and f(x) = 1 for x > 1/2.
- ▶ A small change in *x* in the neighborhood of 1/2 results in a large change in *y*.
- This is a discontinuous function.

Now consider the function

$$f(x,y,z) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 z + \epsilon$$

for $\beta_i, \epsilon, x, y, z \in \mathbb{R}$

Now consider the function

$$f(x, y, z) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 z + \epsilon$$

for β_i , ϵ , x, y, $z \in \mathbb{R}$

Note that a small change in any variable results in only a small change in f(x).

Now consider the function

$$f(x, y, z) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 z + \epsilon$$

for β_i , ϵ , x, y, $z \in \mathbb{R}$

- Note that a small change in any variable results in only a small change in f(x).
- ▶ This is a continuous function.

► Recall that our concept of distance (and hence a formal notion of "small difference") is defined for metric spaces.

- Recall that our concept of distance (and hence a formal notion of "small difference") is defined for metric spaces.
- ▶ A continuous function preserves the geometric structure of the sets it associates i.e. the metric spaces it associates.

- Recall that our concept of distance (and hence a formal notion of "small difference") is defined for metric spaces.
- ▶ A continuous function preserves the geometric structure of the sets it associates i.e. the metric spaces it associates.
- ► For the rest of this lecture we will assume that *X* and *Y* are metric spaces.

Continuity: Epsilon-Delta Characterization

▶ A function $f: X \to Y$ is continuous at x_0 if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for every $x \in X$,

$$d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \epsilon$$

Continuity: Epsilon-Delta Characterization

▶ A function $f: X \to Y$ is continuous at x_0 if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for every $x \in X$,

$$d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \epsilon$$

▶ If a function is continuous for all *x*₀ in its domain, we call the function continuous.

Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?
- ▶ Let $\epsilon > 0$.

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?
- ▶ Let $\epsilon > 0$.
- ► Notice that d(f(x), f(0)) = |f(x) f(0)| = |f(x)|.

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?
- ▶ Let $\epsilon > 0$.
- ► Notice that d(f(x), f(0)) = |f(x) f(0)| = |f(x)|.
- Note that $f(x) \le x^2$ for all x because the range of $sin(\cdot)$ is [-1,1].

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?
- Let ε > 0.
- ▶ Notice that d(f(x), f(0)) = |f(x) f(0)| = |f(x)|.
- Note that $f(x) \le x^2$ for all x because the range of $sin(\cdot)$ is [-1,1].
- Let $\delta = \sqrt{\epsilon}$.

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?
- ▶ Let $\epsilon > 0$.
- ▶ Notice that d(f(x), f(0)) = |f(x) f(0)| = |f(x)|.
- Note that $f(x) \le x^2$ for all x because the range of $\sin(\cdot)$ is [-1,1].
- ▶ Let $\delta = \sqrt{\epsilon}$.
- Now note that $|x 0| < \delta$ implies $x^2 < \delta^2 = \epsilon$.

- Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
- ▶ Is f(x) continuous at x = 0?
- ▶ Let $\epsilon > 0$.
- ▶ Notice that d(f(x), f(0)) = |f(x) f(0)| = |f(x)|.
- Note that $f(x) \le x^2$ for all x because the range of $sin(\cdot)$ is [-1,1].
- ▶ Let $\delta = \sqrt{\epsilon}$.
- ▶ Now note that $|x 0| < \delta$ implies $x^2 < \delta^2 = \epsilon$.
- ► Therefore $|x 0| < \delta$ implies $|f(x) f(0)| < \epsilon$ so f is continuous at x = 0.

▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$
- ▶ We need to show that $d(f(x_0), f(x)) < \epsilon$ for $d(x_0, x)$ sufficiently small where x is an element of the domain.

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$
- sufficiently small where x is an element of the domain. Note that $d(x, x_0) = |x - x_0|$ and observe that

▶ We need to show that $d(f(x_0), f(x)) < \epsilon$ for $d(x_0, x)$

Note that $u(x,x_0) = |x-x_0|$ and observe that

$$|f(x)-f(x_0)| = |2x^2+1-(2x_0^2+1)| = |2x^2-2x_0^2| = 2|x-x_0|\cdot|x+x_0|$$

- Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$
- We need to show that $d(f(x_0), f(x)) < \epsilon$ for $d(x_0, x)$ sufficiently small where x is an element of the domain.
- Note that $d(x, x_0) = |x x_0|$ and observe that

$$|f(x)-f(x_0)| = |2x^2+1-(2x_0^2+1)| = |2x^2-2x_0^2| = 2|x-x_0|\cdot|x+x_0|$$

▶ Note that if $|x - x_0| < k$, then $|x| - |x_0| < k$ or $|x| < |x_0| + k$.

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$
- We need to show that $d(f(x_0), f(x)) < \epsilon$ for $d(x_0, x)$ sufficiently small where x is an element of the domain.
- Note that $d(x, x_0) = |x x_0|$ and observe that

$$|f(x)-f(x_0)| = |2x^2+1-(2x_0^2+1)| = |2x^2-2x_0^2| = 2|x-x_0|\cdot|x+x_0|$$

- ▶ Note that if $|x x_0| < k$, then $|x| |x_0| < k$ or $|x| < |x_0| + k$.
- ▶ By the triangle inequality, $|x + x_0| \le |x| + |x_0| < 2|x_0| + k$

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$
- ▶ We need to show that $d(f(x_0), f(x)) < \epsilon$ for $d(x_0, x)$ sufficiently small where x is an element of the domain.
- ▶ Note that $d(x, x_0) = |x x_0|$ and observe that

$$|f(x)-f(x_0)| = |2x^2+1-(2x_0^2+1)| = |2x^2-2x_0^2| = 2|x-x_0|\cdot|x+x_0|$$

- ▶ Note that if $|x x_0| < k$, then $|x| |x_0| < k$ or $|x| < |x_0| + k$.
- ▶ By the triangle inequality, $|x + x_0| \le |x| + |x_0| < 2|x_0| + k$
- ▶ Therefore

$$|f(x) - f(x_0)| \le 2|x - x_0|(2|x_0| + k)$$

if
$$|x - x_0| < k$$

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- ▶ Take an arbitrary x_0 and $\epsilon > 0$
- ▶ We need to show that $d(f(x_0), f(x)) < \epsilon$ for $d(x_0, x)$ sufficiently small where x is an element of the domain.
- ▶ Note that $d(x, x_0) = |x x_0|$ and observe that

$$|f(x)-f(x_0)| = |2x^2+1-(2x_0^2+1)| = |2x^2-2x_0^2| = 2|x-x_0|\cdot|x+x_0|$$

- ▶ Note that if $|x x_0| < k$, then $|x| |x_0| < k$ or $|x| < |x_0| + k$.
- ▶ By the triangle inequality, $|x + x_0| \le |x| + |x_0| < 2|x_0| + k$
- Therefore

$$|f(x) - f(x_0)| \le 2|x - x_0|(2|x_0| + k)$$

if
$$|x - x_0| < k$$

For $2|x-x_0|(2|x_0|+k)<\epsilon$ to hold, it is sufficient that $|x-x_0|<\frac{\epsilon}{2(2|x_0|+k)}$ and $|x-x_0|< k$

Example (cont.)

▶ So let

$$\delta = \min\{k, \frac{\epsilon}{2(2|x_0|+k))}\}$$

Example (cont.)

So let

$$\delta = \min\{k, \frac{\epsilon}{2(2|x_0|+k))}\}$$

▶ Therefore $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \epsilon$

Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|
- ▶ Let $\epsilon = 1/2$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|
- ▶ Let $\epsilon = 1/2$.
- ▶ If f is continuous, then I can find a δ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|
- ▶ Let $\epsilon = 1/2$.
- ▶ If f is continuous, then I can find a δ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.
- ▶ This is equivalent to finding an open interval $D = (-\delta, \delta)$ such that $x \in D$ implies $|f(x)| < \epsilon$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|
- ▶ Let $\epsilon = 1/2$.
- ▶ If f is continuous, then I can find a δ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.
- ▶ This is equivalent to finding an open interval $D = (-\delta, \delta)$ such that $x \in D$ implies $|f(x)| < \epsilon$.
- ▶ But note that however small we make this interval, if $x \in D$, then $-x \in D$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|
- ▶ Let $\epsilon = 1/2$.
- ▶ If f is continuous, then I can find a δ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.
- ▶ This is equivalent to finding an open interval $D = (-\delta, \delta)$ such that $x \in D$ implies $|f(x)| < \epsilon$.
- ▶ But note that however small we make this interval, if $x \in D$, then $-x \in D$.
- ▶ If x is positive, f(x) = 0 and $f(-x) = 1 > 1/2 = \epsilon$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$
- ► For x = 0 note that d(f(0), f(x)) = d(0, f(x)) = |f(x)|
- ▶ Let $\epsilon = 1/2$.
- ▶ If f is continuous, then I can find a δ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.
- ▶ This is equivalent to finding an open interval $D = (-\delta, \delta)$ such that $x \in D$ implies $|f(x)| < \epsilon$.
- ▶ But note that however small we make this interval, if $x \in D$, then $-x \in D$.
- ▶ If x is positive, f(x) = 0 and $f(-x) = 1 > 1/2 = \epsilon$.
- Therefore the function is not continuous.

Continuity: Sequence Convergence Characterization

▶ The $\epsilon - \delta$ definition of continuity is difficult to work with. Often an alternative and equivalent characterization of continuity is easier:

Continuity: Sequence Convergence Characterization

- The ε δ definition of continuity is difficult to work with. Often an alternative and equivalent characterization of continuity is easier:
- ▶ A function $f: X \to Y$ is continuous if and only if $f(x) = \lim_{n \to \infty} f(x^n)$ for every sequence $x^n \to x$.

Continuity: Sequence Convergence Characterization

- The ε δ definition of continuity is difficult to work with. Often an alternative and equivalent characterization of continuity is easier:
- ▶ A function $f: X \to Y$ is continuous if and only if $f(x) = \lim_{n \to \infty} f(x^n)$ for every sequence $x^n \to x$.
- ▶ This alternative definition implies that values of f(x) are close to $f(x_0)$ when values of x are close to x_0 .

• Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$

- Suppose we take an arbitrary sequence in X such that $\lim x^n = x_0$

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- Suppose we take an arbitrary sequence in X such that $\lim x^n = x_0$
- We have

$$\lim(2x^2+1)=2(\lim x)^2+1=2x_0^2+1=f(x_0)$$

- ▶ Let $f(x) = 2x^2 + 1$ for $X = \mathbb{R}$
- Suppose we take an arbitrary sequence in X such that $\lim x^n = x_0$
- We have

$$\lim(2x^2+1)=2(\lim x)^2+1=2x_0^2+1=f(x_0)$$

▶ Therefore f(x) is continuous.

Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$.
- ▶ To show that f is discontinuous, it is sufficient to find single sequence $x^n \to x_0$ in X such that $\lim f(x^n) \neq f(x_0)$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$.
- ▶ To show that f is discontinuous, it is sufficient to find single sequence $x^n \to x_0$ in X such that $\lim f(x^n) \neq f(x_0)$.
- ► Consider the sequence $x^n = -\frac{1}{n}$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$.
- ▶ To show that f is discontinuous, it is sufficient to find single sequence $x^n \to x_0$ in X such that $\lim f(x^n) \neq f(x_0)$.
- ► Consider the sequence $x^n = -\frac{1}{n}$.
- Note that $\lim x^n = 0$ and $x^n < 0$ for all x^n .

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$.
- ▶ To show that f is discontinuous, it is sufficient to find single sequence $x^n \to x_0$ in X such that $\lim f(x^n) \neq f(x_0)$.
- ▶ Consider the sequence $x^n = -\frac{1}{n}$.
- Note that $\lim x^n = 0$ and $x^n < 0$ for all x^n .
- We therefore have $\lim f(x^n) = \lim 1 = 1 \neq f(x^0) = 0$.

- Let f(x) = 1 for x < 0 and f(x) = 0 for $x \ge 0$.
- ▶ To show that f is discontinuous, it is sufficient to find single sequence $x^n \to x_0$ in X such that $\lim f(x^n) \neq f(x_0)$.
- ▶ Consider the sequence $x^n = -\frac{1}{n}$.
- Note that $\lim x^n = 0$ and $x^n < 0$ for all x^n .
- We therefore have $\lim f(x^n) = \lim 1 = 1 \neq f(x^0) = 0$.
- ▶ Therefore f is discontinuous at x = 0.

Continuity: Inverse Image Characterization

▶ A third characterization of continuity is often useful in proofs that require or seek to establish continuity.

Continuity: Inverse Image Characterization

- ▶ A third characterization of continuity is often useful in proofs that require or seek to establish continuity.
- A function f: X → Y is continuous if and only if the inverse image of any open (closed) subset of Y is an open (closed) subset of X.

▶ Let
$$f(x) = x^3$$

- ▶ Let $f(x) = x^3$
- ightharpoonup Consider the subset of its codomain (0,2)

- ▶ Let $f(x) = x^3$
- ► Consider the subset of its codomain (0,2)
- ► The inverse image $f^{-1}((0,8))$ is the set of all points x in the domain of x^3 such that $x^3 \in (0,8)$.

- ▶ Let $f(x) = x^3$
- ► Consider the subset of its codomain (0,2)
- ► The inverse image $f^{-1}((0,8))$ is the set of all points x in the domain of x^3 such that $x^3 \in (0,8)$.
- ► Therefore $f^{-1}((0,2)) = (0,2)$.

- ▶ Let $f(x) = x^3$
- Consider the subset of its codomain (0,2)
- ► The inverse image $f^{-1}((0,8))$ is the set of all points x in the domain of x^3 such that $x^3 \in (0,8)$.
- ► Therefore $f^{-1}((0,2)) = (0,2)$.
- Note that this is an open subset of $X = \mathbb{R}$.

Let f(x) = 1 for all x.

- ▶ Let f(x) = 1 for all x.
- ▶ Consider a subset of the codomain, (-1,1).

- ▶ Let f(x) = 1 for all x.
- ▶ Consider a subset of the codomain, (-1,1).
- ▶ The inverse image under (-1,1) is \emptyset which is open.

- Let f(x) = 1 for all x.
- ▶ Consider a subset of the codomain, (-1,1).
- ▶ The inverse image under (-1,1) is \emptyset which is open.
- Now consider (0,2).

- Let f(x) = 1 for all x.
- ▶ Consider a subset of the codomain, (-1,1).
- ▶ The inverse image under (-1,1) is \emptyset which is open.
- ▶ Now consider (0, 2).
- ▶ The inverse image under (0,2) is \mathbb{R} .

Continuity: Inverse Image Characterization

Using this result to show that a function is continuous can be difficult because we have to evaluate every subset of the codomain.

Continuity: Inverse Image Characterization

- Using this result to show that a function is continuous can be difficult because we have to evaluate every subset of the codomain.
- ▶ It is easier to use the definition to show discontinuity because we only need to find a single example of a set that violates the result.

▶ Let f(x) = x for $x \le 0$ and let f(x) = x + 1 for x > 0.

- Let f(x) = x for $x \le 0$ and let f(x) = x + 1 for x > 0.
- ▶ Consider the open subset of the codomain $(-1,1) \subset Y$.

Example

- Let f(x) = x for $x \le 0$ and let f(x) = x + 1 for x > 0.
- ▶ Consider the open subset of the codomain $(-1,1) \subset Y$.
- ▶ The inverse image under (-1,1) is (-1,1] which is not open.

Example

- Let f(x) = x for $x \le 0$ and let f(x) = x + 1 for x > 0.
- ▶ Consider the open subset of the codomain $(-1,1) \subset Y$.
- ▶ The inverse image under (-1,1) is (-1,1] which is not open.
- ▶ Therefore f(x) is not continuous.

▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- Note that $\lim kf(x_n) = k \lim f(x_n) = kf(x_0)$.

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- Note that $\lim kf(x_n) = k \lim f(x_n) = kf(x_0)$.
- ▶ Therefore kf is continuous at x_0 .

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- Note that $\lim kf(x_n) = k \lim f(x_n) = kf(x_0)$.
- ▶ Therefore kf is continuous at x_0 .
- Now consider |f| at x_0 .

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- Note that $\lim kf(x_n) = k \lim f(x_n) = kf(x_0)$.
- ▶ Therefore kf is continuous at x_0 .
- Now consider |f| at x_0 .
- By the reverse triangle inequality,

$$||f(x_n)| - |f(x_0)|| \le |f(x_n) - f(x_0)|$$

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- Note that $\lim kf(x_n) = k \lim f(x_n) = kf(x_0)$.
- ▶ Therefore kf is continuous at x_0 .
- Now consider |f| at x_0 .
- By the reverse triangle inequality,

$$||f(x_n)| - |f(x_0)|| \le |f(x_n) - f(x_0)|$$

Now consider $\epsilon > 0$

- ▶ Let f be a real-valued function with domain $X \subseteq \mathbb{R}$. If f is continuous at x_0 in X, then |f| and kf, $k \in \mathbb{R}$ are continuous at x_0 .
- ▶ **Proof**: Consider the sequence $x_n \to x_0$ in the domain of f.
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- Note that $\lim kf(x_n) = k \lim f(x_n) = kf(x_0)$.
- ▶ Therefore kf is continuous at x_0 .
- Now consider |f| at x_0 .
- By the reverse triangle inequality,

$$||f(x_n)| - |f(x_0)|| \le |f(x_n) - f(x_0)|$$

- Now consider $\epsilon > 0$
- ▶ Because $\lim f(x_n) = f(x_0)$, there exists an N such that n > N implies $||f(x_n)| |f(x_0)|| < \epsilon$ and thus $\lim |f(x_n)| = |f(x_0)|$.

▶ If f and g are real-valued functions and continuous at x_0 , then

- ▶ If f and g are real-valued functions and continuous at x_0 , then
- i) f + g is continuous at x_0

- ▶ If f and g are real-valued functions and continuous at x_0 , then
- i) f + g is continuous at x_0
- ii) fg is continuous at x_0

- ▶ If f and g are real-valued functions and continuous at x_0 , then
- i) f + g is continuous at x_0
- ▶ ii) fg is continuous at x₀
- ▶ iii) $\frac{f}{g}$ is continuous at x_0 if $g(x_0) \neq 0$.

 $ightharpoonup x_0$ is in the domain of f and g.

- \triangleright x_0 is in the domain of f and g.
- Let x_n be a sequence in the intersection of their domains that converges to x_0 .

- \triangleright x_0 is in the domain of f and g.
- ▶ Let x_n be a sequence in the intersection of their domains that converges to x_0 .
- ▶ Because each is continuous, we have $\lim f(x_n) = f(x_0)$ and $\lim g(x_n) = g(x_0)$.

- ▶ x₀ is in the domain of f and g.
- Let x_n be a sequence in the intersection of their domains that converges to x_0 .
- ▶ Because each is continuous, we have $\lim f(x_n) = f(x_0)$ and $\lim g(x_n) = g(x_0)$.
- Therefore

$$\lim(f+g)(x_n) = \lim[f(x_n) + g(x_n)] = \lim f(x_n) + \lim g(x_n)$$
$$= f(x_0) + g(x_0) = (f+g)(x_0)$$

- \triangleright x_0 is in the domain of f and g.
- Let x_n be a sequence in the intersection of their domains that converges to x_0 .
- ▶ Because each is continuous, we have $\lim f(x_n) = f(x_0)$ and $\lim g(x_n) = g(x_0)$.
- Therefore

$$\lim(f+g)(x_n) = \lim[f(x_n) + g(x_n)] = \lim f(x_n) + \lim g(x_n)$$
$$= f(x_0) + g(x_0) = (f+g)(x_0)$$

▶ Therefore f + g is continuous at x_0 .

- ▶ x₀ is in the domain of f and g.
- Let x_n be a sequence in the intersection of their domains that converges to x_0 .
- ▶ Because each is continuous, we have $\lim f(x_n) = f(x_0)$ and $\lim g(x_n) = g(x_0)$.
- Therefore

$$\lim(f+g)(x_n) = \lim[f(x_n) + g(x_n)] = \lim f(x_n) + \lim g(x_n)$$
$$= f(x_0) + g(x_0) = (f+g)(x_0)$$

- ▶ Therefore f + g is continuous at x_0 .
- ▶ A similar proof establishes that fg and f/g are continuous at x_0 .

▶ If f is continuous at x_0 and g is continuous at $f(x_0)$, then g(f(x)) is continuous at x_0 .

- ▶ If f is continuous at x_0 and g is continuous at $f(x_0)$, then g(f(x)) is continuous at x_0 .
- ▶ **Proof**: x_0 is in the domain of f and $f(x_0)$ is in the domain of g

- ▶ If f is continuous at x_0 and g is continuous at $f(x_0)$, then g(f(x)) is continuous at x_0 .
- ▶ **Proof**: x_0 is in the domain of f and $f(x_0)$ is in the domain of g
- Let x_n be a sequence such that x_n is in the domain of f and $f(x_n)$ is in the domain of g converging to x_0 .

- If f is continuous at x_0 and g is continuous at $f(x_0)$, then g(f(x)) is continuous at x_0 .
- ▶ **Proof**: x_0 is in the domain of f and $f(x_0)$ is in the domain of g
- Let x_n be a sequence such that x_n is in the domain of f and $f(x_n)$ is in the domain of g converging to x_0 .
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.

- ▶ If f is continuous at x_0 and g is continuous at $f(x_0)$, then g(f(x)) is continuous at x_0 .
- ▶ **Proof**: x_0 is in the domain of f and $f(x_0)$ is in the domain of g
- Let x_n be a sequence such that x_n is in the domain of f and $f(x_n)$ is in the domain of g converging to x_0 .
- ▶ Because f is continuous at x_0 , $\lim f(x_n) = f(x_0)$.
- ▶ Because $f(x_n)$ converges to $f(x_0)$ and g is continuous at $f(x_0)$, we have

$$\lim g(f(x_n)) = g(f(x_0))$$

A continuous functional $f: X \to Y$ on a compact set achieves a maximum and a minimum (Weierstrass theorem).

- A continuous functional $f: X \to Y$ on a compact set achieves a maximum and a minimum (Weierstrass theorem).
- ▶ **Proof**: Note that because X is bounded, f(x) has a supremum.

- A continuous functional $f: X \to Y$ on a compact set achieves a maximum and a minimum (Weierstrass theorem).
- ▶ **Proof**: Note that because X is bounded, f(x) has a supremum.
- We need to show that the supremum of the function's image is contained within the image.

- A continuous functional $f: X \to Y$ on a compact set achieves a maximum and a minimum (Weierstrass theorem).
- ▶ **Proof**: Note that because X is bounded, f(x) has a supremum.
- We need to show that the supremum of the function's image is contained within the image.
- $\blacktriangleright \text{ Let } M = \sup_{x \in X} f(x).$

- A continuous functional $f: X \to Y$ on a compact set achieves a maximum and a minimum (Weierstrass theorem).
- ▶ **Proof**: Note that because X is bounded, f(x) has a supremum.
- ▶ We need to show that the supremum of the function's image is contained within the image.
- $\blacktriangleright \text{ Let } M = \sup_{x \in X} f(x).$
- ▶ Take a sequence $f(x_n) \in Y$ with $f(x_n) \to M$.

- A continuous functional $f: X \to Y$ on a compact set achieves a maximum and a minimum (Weierstrass theorem).
- ▶ **Proof**: Note that because X is bounded, f(x) has a supremum.
- ▶ We need to show that the supremum of the function's image is contained within the image.
- $\blacktriangleright \text{ Let } M = \sup_{x \in X} f(x).$
- ▶ Take a sequence $f(x_n) \in Y$ with $f(x_n) \to M$.
- ▶ Then $x_n \in X$.

▶ Recall the Bolzano-Weierstrass Theorem: every sequence in a compact set $S \subseteq \mathbb{R}^n$ has a convergent subsequence which converges to a point in S.

- ▶ Recall the Bolzano-Weierstrass Theorem: every sequence in a compact set $S \subseteq \mathbb{R}^n$ has a convergent subsequence which converges to a point in S.
- ▶ Therefore because X is compact, we can find a convergent subsequence $x_{n_k} \to x_0$ where $f(x_{n_k}) \to M$.

- ▶ Recall the Bolzano-Weierstrass Theorem: every sequence in a compact set $S \subseteq \mathbb{R}^n$ has a convergent subsequence which converges to a point in S.
- ▶ Therefore because X is compact, we can find a convergent subsequence $x_{n_k} \to x_0$ where $f(x_{n_k}) \to M$.
- Applying the limit definition of continuity, we have $\lim f(x_{n_k}) = f(x_0) = M$.

- ▶ Recall the Bolzano-Weierstrass Theorem: every sequence in a compact set $S \subseteq \mathbb{R}^n$ has a convergent subsequence which converges to a point in S.
- ▶ Therefore because X is compact, we can find a convergent subsequence $x_{n_k} \to x_0$ where $f(x_{n_k}) \to M$.
- Applying the limit definition of continuity, we have $\lim f(x_{n_k}) = f(x_0) = M$.
- ▶ Therefore $f(x_0) = M$

- ▶ Recall the Bolzano-Weierstrass Theorem: every sequence in a compact set $S \subseteq \mathbb{R}^n$ has a convergent subsequence which converges to a point in S.
- ▶ Therefore because X is compact, we can find a convergent subsequence $x_{n_k} \to x_0$ where $f(x_{n_k}) \to M$.
- Applying the limit definition of continuity, we have $\lim f(x_{n_k}) = f(x_0) = M$.
- ▶ Therefore $f(x_0) = M$
- ▶ The same proof can be applied to the infimum of the set.