ЛАБОРАТОРНАЯ РАБОТА № 5 Численное решение дифференциальных уравнений

Цель: освоить методы вычисления определенных интегралов.

1. Порядок выполнения

- 1) Найдите шаг интегрирования h для решения задачи Коши ($\dot{x} = f(t, x)$, $x(a) = x_0$, $t \in [a, b]$) методом Эйлера с точностью $\varepsilon = 0.001$.
- 2) Найдите решение задачи Коши ($\dot{x} = f(t, x), x(a) = x_0, t \in [a, b]$) методом Эйлера с точностью $\varepsilon = 0.001$.
- 3) Найдите шаг интегрирования h для решения задачи Коши ($\dot{x} = f(t, x), x(a) = x_0, t \in [a, b]$) методом Рунге-Кутта с точностью $\varepsilon = 0.001$.
- 4) Найдите решение задачи Коши ($\dot{x} = f(t, x)$, $x(a) = x_0$, $t \in [a, b]$) методом Рунге-Кутта с точностью $\varepsilon = 0.001$.
- 5) Найдите точное решение задачи Коши ($\dot{x} = f(t,x)$, $x(a) = x_0$, $t \in [a,b]$). Сравните точное решение с приближенными. Найдите максимум модуля отклонения в узловых точках приближенных решений от точного.

2. Содержание отчета

- 1) Исходные данные.
- 2) Исходные тексты функций.
- 3) Результаты вычислительных экспериментов.
- 4) График точного и приближенных решений.
- 5) Сравнительный анализ методов решения дифференциальных уравнений.
- 6) Выводы.

3. Варианты исходных данных

Вариант	Уравнение	x_0	а	b
1	$\dot{x} + tx = (1 - t)e^t x^2$	1	0	1.6
2	$t\dot{x} + x = 2x^2 \ln t$	0.5	1	5
3	$2t\dot{x} + 2x = tx^2$	2	1	1.8
4	$\dot{x} + 4t^3x = 4(t^3 + 1)e^{-4t}x^2$	0.5	0	1
5	$t\dot{x} - x = -x^2(2\ln t + \ln^2 t)$	1	1	3
6	$\dot{x} + tx = 0.5(t+1)e^{-t}x^2$	2	0	2
7	$3(t\dot{x}+x)=x^2\ln t$	1.5	1	3
8	$2\dot{x} + x\cos(t) = x^{-1}\cos(t)$	2	0	4
9	$\dot{x} + 4t^3x = 4x^2e^{4t}(1-t^3)$	-1	0	0.8
10	$3\dot{x} + 2tx = 2tx^{-2}e^{-2t^2}$	-1	0	1
11	$2t\dot{x} - 3x = -(5t^2 + 3)x^3$	0.5	1	5
12	$3t\dot{x} + 5x = (4t - 5)x^4$	1	1	2.6
13	$\dot{x} + x\cos(t) = x^{-1}\cos(t)$	2	0	1.6
14	$3(t\dot{x}+x)=tx^2$	1	1	5
15	$\dot{x} - x = 2tx^2$	0.2	-1	0.6
16	$2t\dot{x} - 3x = -(20t^2 + 12)x^3$	0.25	1	5
17	$\dot{x} + 2tx = 2t^3x^3$	1	0	1
18	$t\dot{x} + x = x^2 \ln(t)$	0.5	1	5
19	$2\dot{x} + 3x\cos(t) = (8 + 12\cos(t))e^{2t}x^{-1}$	2	0	2
20	$4\dot{x} + t^3x = (t^3 + 8)e^{-2t}x^2$	0.5	0	2.4