

Ψηφιακή Σχεδίαση

Διάλεξη 2 – Αναπαράσταση Αριθμών, Δυαδικοί Αριθμοί, Άλγεβρα Boole

Γεώργιος Κεραμίδας, Επίκουρος Καθηγητής 2° Εξάμηνο, Τμήμα Πληροφορικής

Αντιστοίχιση με ύλη Βιβλίου

• Το συγκεκριμένο σετ διαφανειών καλύπτει τα εξής κεφάλαια/ενότητες:

• Κεφάλαιο 1: 1.3, 1.4, 1.5

• Κεφάλαιο 2: 2.1, 2.2, 2.3

• Βιβλίο [68406394]: Ψηφιακή Σχεδίαση, 5η Έκδοση, Mano Morris, Ciletti Michael

ΕΠΙΠΕΔΑ ΜΕΛΕΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Top-down

Απλές λογικές συναρτήσεις 2 δυαδικών μεταβλητών

• Οι συναρτήσεις αυτές ονομάζονται και λογικές γιατί τις χρησιμοποιούμε στη λογική των προτάσεων που συντάσσουμε καθημερινά.

25 March 2021

Γεώργιος Κεραμίδας / Αριστοτέλειο Πανεπιστήμις

Σύνθεση συναρτήσεων

- Όσο πιο πολύπλοκο γίνεται το σχέδιο, τόσο πιο προφανές γίνεται ότι χρειαζόμαστε κάποιο τυπικό τρόπο, για να βρούμε πότε το Z θα γίνει 1.
- Χρειαζόμαστε συνεπώς μια άλγεβρα!

Τι είναι μια άλγεβρα?

- Μια μαθηματική δομή:
 - Σύνολο ψηφίων & αναπαραστάσεων
 - Σύνολο τελεστών & προτεραιότητες
 - Αξιώματα
 - Θεωρήματα
 - Συναρτήσεις
- Αλγεβρα των φυσικών αριθμών
 - Ψηφίο {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, Αναπαραστάσεις = άπειρο
 - Τελεστές : +, -, *, / Προτεραιότητες : {,[,(, /, *, -, +
 - Αξιώματα : ουδετερότητα του 0 στη +, του 1 στον *, προσεταιριστικότητα του +, επιμεριστικότητα του * ως προς το +, ...
 - Θεωρήματα : x+x = 2x
 - Συναρτήσεις f(x,y) = 3x+5y

Αλγεβρα Boole

- Το 1854 (!!!) ο Αγγλος μαθηματικός George Boole εισήγαγε μια άλγεβρα δύο τιμών : αλήθεια και ψέμα (true, false) .
- Προτάθηκε για το λογισμό της αλήθειας ή του ψέμματος προτάσεων
- П.х.
 - Δεχόμαστε τη πρόταση "Οσοι κάνουν μπάνιο κάθε μέρα έχουν πολλά λεφτά ή δε τους αρέσει η βρωμιά" ως αληθή.
 - Δεχόμαστε και τη πρόταση "Κανένας μηχανικός υπολογιστών δεν έχει πολλά λεφτά" ως αληθή.
 - Εστω η πρόταση "Αν είσαι μηχανικός υπολογιστών και σου αρέσει η βρωμιά, κάνεις μπάνιο κάθε μέρα".
 - Τι μπορούμε να αποφανθούμε για την αλήθεια ή το ψέμα της ?

Shannon

- Σχεδόν ένα αιώνα αργότερα (1938), ο Claude Shannon διαπιστώνει ότι απλά αντιστοιχίζοντας τις "αλήθεια" και "ψέμμα" στο "κλειστός διακόπτης" και "ανοικτός διακόπτης", μπορεί να εφαρμόσει τα όσα ανέπτυξε ο Boole και σε κυκλώματα διακοπτών
- Ετσι η άλγεβρα Boole έγινε "switching algebra".
- Εμείς θα πάμε απλά ένα βήμα πιο πέρα. Αντί για "κλειστός διακόπτης" και "ανοικτός διακόπτης" θα χρησιμοποιούμε τις τιμές δυαδικών μεταβλητών "1" και "0" αντίστοιχα.
- Ετσι έχουμε τη δυαδική άλγεβρα (λογική άλγεβρα)

Απλές λογικές συναρτήσεις 2 δυαδικών μεταβλητών

25 March 2021

Γεώργιος Κεραμίδας / Αριστοτέλειο Πανεπιστήμιο

Αξιώματα

- Δίτιμη άλγεβρα. Κάθε στοιχείο της $X \in \{0,1\}$
- Υπαρξη συμπληρώματος (α')

• Av
$$\alpha = 0 \Rightarrow \alpha' = 1$$
, Av $\alpha = 1 \Rightarrow \alpha' = 0$

- Δύο λογικές πράξεις :
 - Λογική σύζευξη (and / και) : (το σύμβολο μπορεί να παραλείπεται σε απλή παράταξη μεταβλητών)
 - Λογική διάζευξη (or / ή): +
- Οι λογικές πράξεις ακολουθούν τους εξής κανόνες :

$$0 \cdot 0 = 0,$$
 $1 + 1 = 1$
 $1 \cdot 1 = 1,$ $0 + 0 = 0$
 $0 \cdot 1 = 1 \cdot 0 = 0,$ $1 + 0 = 0 + 1 = 1$

• Σε μία σύνθετη συνάρτηση των δύο λογικών πράξεων, οι προτεραιότητες είναι : {, [, (, ', •, +

Θεωρήματα μιας μεταβλητής

(Απόδειξη με εξέταση όλων των δυνατών τιμών της μεταβλητής)

•
$$X + 0 = X$$
, $X • 1 = X$ (Ουδέτερα στοιχεία)

• X + 1 = 1,
$$X • 0 = 0$$
 (Απορροφητικά στοιχεία)

•
$$X + X = X$$
, $X • X = X$ (Αυτοαπορρόφησης)

•
$$X + X' = 1$$
 $X • X' = 0$ (Συμπληρωματικά στοιχεία)

Θεωρήματα δύο και τριών μεταβλητών (1/2)

(Απόδειξη με εξέταση όλων των δυνατών τιμών των δύο μερών)

•
$$X + Y = Y + X$$
,

$$X \bullet Y = Y \bullet X$$

 $X \bullet Y = Y \bullet X$ (Αντιμεταθετική)

•
$$(X + Y) + Z = X + (Y + Z),$$

•
$$(X + Y) + Z = X + (Y + Z)$$
, $(X • Y) • Z = X • (Y • Z)$ (Προσεταιριστική)

• Συμπέρασμα : Σε λογικά γινόμενα ή λογικά αθροίσματα, η χρήση παρενθέσεων είναι προαιρετική. Για παράδειγμα μπορώ να γράφω w + x + y + z αφού όπως κι αν υπολογιστεί αυτή η έκφραση θα πάρω το ίδιο λογικό αποτέλεσμα.

•
$$X \bullet Y + X \bullet Z = X \bullet (Y + Z)$$
, $(X + Y) \bullet (X + Z) = X + (Y \bullet Z)$ (Επιμεριστική)

• Ισχύουν και οι 2 επιμερισμοί. Στην άλγεβρα των αριθμών ισχύει μόνο του x ως προς το +.

Θεωρήματα δύο και τριών μεταβλητών (1/2)

(Απόδειξη με εξέταση όλων των δυνατών τιμών των δύο μερών)

• Παράδειγμα :

Θεωρήματα δύο και τριών μεταβλητών (2/2)

(Απόδειξη με εξέταση όλων των δυνατών τιμών των δύο μερών)

•
$$X + X \bullet Y = X$$
,

•
$$X \bullet Y + X \bullet Y' = X$$
 $(X + Y) \bullet (X + Y') = X$ $(Συνδυασμών)$

- Παράδειγμα : X Y Z' + X Y' Z' + X Y Z + X Y' Z = X Z' + X Z =
- Συμπέρασμα : Σε ένα άθροισμα γινομένων, που κάθε γινόμενο έχει κ μεταβλητές, αν υπάρχουν όλοι οι συνδυασμοί τιμών των κ-1 μεταβλητών τότε μπορούν να διαγραφούν από την έκφραση.

Θεωρήματα γενικευμένου αριθμού μεταβλητών

•
$$X + X + ... + X = X$$
, $X \bullet X \bullet ... \bullet X = X$ (Αυτοαπορρόφησης)

- $(X_1 + X_2 + ... + X_n)' = X_1' \bullet X_2' \bullet ... \bullet X_n'$
- (X₁ X₂ ... Xn)' = X'₁ + X'₂ + ... + X'n (Θεωρήματα De Morgan)
 - Παράδειγμα : Δίδεται η F = (W' X) + (X Y) + [W (X' + Z')].
 - Tóte F' = $((W')' + X') \bullet (X' + Y') \bullet [W' + (X \bullet Z)] =$ = $(W + X') \bullet (X \bullet Y)' \bullet [W' + (X \bullet Z)]$
- $F(X_1, X_2, ..., Xn) = X_1 F(1, X_2, ..., Xn) + X_1' F(0, X_2, ..., Xn)$
- F(X₁, X₂, ... , Xn)=[X₁ + F(0, X₂, ... , Xn) [X₁' + F(1, X₂, ... , Xn)] (Θεωρήματα Shannon)
 - Παράδειγμα : Δίδεται η F(X, W, Z) = X + W Z.
 - Τότε F(0, W, Z) = W Z και F(1, W, Z) = 1.
 - Αρα F = X 1 + X' W Z καθώς και F = (X + W Z) (X' + 1)

•Αναπαράσταση μεγεθών Κωδικοποίηση

Συστήματα αριθμών

• Δεκαδικό σύστημα

$$D_{10} = (d_n 10^n + d_{n-1} 10^{n-1} + ...d_1 10^1 + d_0 10^0 + d_{-1} 10^{-1} + ...d_{-n} 10^{-n})$$

• Παράδειγμα

$$503,14 =$$

$$500 + 0 + 3 + \frac{1}{10} + \frac{4}{100} =$$

$$5 \cdot 10^{2} + 0 \cdot 10^{1} + 3 \cdot 10^{0} + 1 \cdot 10^{-1} + 4 \cdot 10^{-2}$$

Δυαδικό σύστημα

• Στο δυαδικό σύστημα, που έχει βάση το 2, υπάρχουν δύο ψηφία, το 0 και το 1:

$$B_2 = b_n 2^n + b_{n-1} 2^{n-1} + ... b_1 2^1 + b_0 2^0 + b_{-1} 2^{-1} + ... b_{-m} 2^{-m}$$

• Παράδειγμα

- Γενικά ένας δυαδικός αριθμός με n ψηφία μπορεί να παραστήσει ένα εύρος από 2ⁿ δεκαδικούς αριθμούς
- 2 ψηφία (0_3), 5 ψηφία (0_31), 8 ψηφία (0_255)

Μετατροπή δεκαδικού σε δυαδικό

- Μετατροπή ενός ακέραιου δεκαδικού σε δυαδικό → χρησιμοποιείται η διαδικασία της διαδοχικής διαίρεσης
- Παράδειγμα:

Μετατροπή του 19₁₀ στον αντίστοιχο δυαδικό

```
19/2= πηλίκο 9 και υπόλοιπο 1 άρα b_0=1 9/2= πηλίκο 4 και υπόλοιπο 1 άρα b_1=1 4/2= πηλίκο 2 και υπόλοιπο 0 άρα b_2=0 2/2= πηλίκο 1 και υπόλοιπο 0 άρα b_3=0 1/2= πηλίκο 0 και υπόλοιπο 1 άρα b_4=1
```

Μετατροπή του κλασματικού μέρους ενός δεκαδικού αριθμού στον αντίστοιχο δυαδικό:

- Διαδοχικοί πολλαπλασιασμοί. Επαναλαμβάνεται η διαδικασία μέχρι να προκύψει κλασματικό μέρος μηδέν ή να επιτευχθεί η επιθυμητή ακρίβεια.
- Παράδειγμα:
 - Μετατροπή του 0,375 στον αντίστοιχο δυαδικό

$0,375 \times 2 = 0,75$	ακέραιο μέρος	0, κλασματικό	0,75	b ₋₁ =0
0,75 x 2 = 1,5	ακέραιο μέρος	1, κλασματικό	0,5	b ₋₂ =1
0,5 x 2 = 1,0	ακέραιο μέρος	1, κλασματικό	0	b ₋₃ =1
	$B_2 = :,01$	1,		

- Μετατροπή του 28,375 στον αντίστοιχο δυαδικό
- Απάντηση: B₂=: 11100,011₂

Βασικές λογικές πράξεις – λογικές πύλες

- Μία λογική πράξη μεταξύ μεταβλητών είναι μία συνάρτηση που ορίζεται από έναν πίνακα αληθείας (truth table).
- Το αντίστοιχο κύκλωμα ονομάζεται λογική ή ψηφιακή πύλη και παριστάνεται από ένα σύμβολο.
- Τα δυαδικά ψηφία 1 και 0 (αληθής (true), ψευδής (false)), στη φυσική τους υπόσταση είναι δυο διακριτά επίπεδα ηλεκτρικής τάσης (συνήθως στην ιδανική περίπτωση 5V και 0V).

Δυνατοί πίνακες αληθείας στο δυαδικό σύστημα

 Ένας πίνακας αληθείας παριστάνει τη συνάρτηση μεταξύ των εισόδων και της εξόδου ενός λογικού συστήματος. Για δυο εισόδους υπάρχουν τέσσερις πιθανοί συνδυασμοί πραγματικών τιμών: FF, FT, TF, TT

Όλοι οι πίνακες αληθείας για δύο εισόδους Α. Β και μία έξοδο Ζ

	TI	μές :	εισό	δου		
Α	F	F	Т	Τ		
В	F	T	F		Συνάρτηση (έξοδος Ζ)	Σύμβολο
0	F	F	F	F	πάντοτε 0	0
1	F	F	F	Τ	AND	$A \cdot B$
2	F	F	Т	F	-	-
3	F	F	Τ	Т	είσοδος Α	A
4	F	Τ	F	F	-	-
5	F	Τ	F	Τ	είσοδος Β	B
6	F	Τ	Τ	F	XOR	$A \oplus B$
7	F	Τ	Τ	Τ	OR	A + B
8	Т	F	F	F	NOR	$\overline{A+B}$
9	Τ .	F	F	Τ	XNOR	$\overline{A \oplus B}$
10	Τ .	F	Τ	F	Not B	\overline{B}
11	Τ .	F	Τ	Τ	-	-
12	Т	Т	F	F	Not A	\overline{A}
13	T	Т	F	Т	-	-
14	Т	Т	Τ	F	NAND	$\overline{A\cdot B}$
<u>15</u>	Т		T	T	πάντοτε 1	11

25 March 2021 ηροφορικής 23

Άλλοι τρόποι δυαδικής κωδικοποίησης

- Εκτός από την κανονική δυαδική κωδικοποίηση υπάρχουν και άλλοι τρόποι δυαδικής κωδικοποίησης οι οποίοι χρησιμοποιούνται σε διάφορες περιπτώσεις:
- Κωδικοποίηση BCD (Binary Coded Decimal)
- Η κωδικοποίηση καθιστά δυνατή την απλή μετατροπή μεταξύ δυαδικού και δεκαδικού αριθμού. Κάθε ψηφίο ενός δεκαδικού αριθμού αντικαθίσταται από 4 bits του αντίστοιχου δυαδικού του

Μετατροπή του 4510 σε BCD

45₁₀=01000101_{BCD}

Μετατροπή από BCD σε δεκαδικό

Η δυαδική λέξη χωρίζεται σε ομάδες των 4bits ξεκινώντας από το λιγότερο σημαντικό ψηφίο. Κατόπιν η κάθε ομάδα μετατρέπεται στον αντίστοιχο δεκαδικό

Μετατροπή 1010011_{BCD} σε δεκαδικό

Πρόσθεση μηδενικού . Χωρισμός σε ομάδες των 4. Μετατροπή της κάθε

21 ομάδας στον αντίστοιχο δεκαδικό

 $[0101][0011]_{BCD} = 53_{10}$

•	Λύνει κάποιο πρόβλημα
	της δυαδικής
	κωδικοποίησης
_	T / 0/

• Σε μετρήσεις της θέσης ενός αντικειμένου, θα μπορούσε να φαίνεται ότι γειτονικές θέσεις του αντικειμένου διαφέρουν περισσότερο από ένα bit, εάν χρησιμοποιηθεί η απευθείας δυαδική κωδικοποίηση.

	Decimal	Gray Code	
	0	0	
	1	1	
	2	11	Set bit 1. Reflect bit 0
	3	10	Set bit 2. Reflect bits I and 0
	4	110	
	5	111	a .
	6	101	
	7	100	
,	8	1100	Set bit 3. Reflect bits 2, 1 and 0
	9	1101	
,	10	1111	
	11	1110	
	12	1010	
	13	1011	
	14	1001	
	15	1000	
	16	11000	Set bit 4. Reflect bits 3, 2, 1 and 0

• Για να μετατρέψουμε αριθμούς σε κώδικα Gray κάνουμε χρήση της συνάρτησης XOR, η οποία έχει πίνακα αλήθειας:

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Και χρησιμοποιούμε τον παρακάτω αλγόριθμο.

$$g_n = b_n$$

 $g_{n-1} = b_n \oplus b_{n-1}$
 $g_{n-2} = b_{n-1} \oplus b_{n-2}$
 $g_1 = b_2 \oplus b_1$


```
Παράδειγμα : Να μετατραπεί ο 4310
                 σε κώδικα GRAY.
          43_{10} = 101011_2
δηλαδή 43<sub>10</sub> = 101011<sub>2</sub> = 11111
```


$$b_{n} = g_{n}$$

$$b_{n-1} = b_{n} \oplus g_{n-1}$$

$$b_{n-2} = b_{n-1} \oplus g_{n-2}$$

$$\vdots$$

$$b_{1} = b_{2} \oplus g_{1}$$

						ΚΩΔ	ΙΚΑΣ	GRAY	(5 l	oits	;)				
	0	0	0	0	0		0		1	1	0	0	0	16	_
	0	0	0	0	1		1		1	1	0	0	1	17	'
	0	0	0	1	1		2		1	1	0	1	1	18	3
	0	0	0	1	0		3		1	1	0	1	0	19)
	0	0	1	1	0		4		1	1	1	1	0	20)
	0	0	1	1	1		5		1	1	1	1	1	21	
	0	0	1	0	1		6		1	1	1	0	1	22	2
	0	0	1	0	0		7		1	1	1	0	0	23	3
	0	1	1	0	0		8		1	0	1	0	0	24	L .
	0	1	1	0	1		9		1	0	1	0	1	25	5
	0	1	1	1	1		10		1	0	1	1	1	26	6
	0	1	1	1	0		11		1	0	1	1	0	27	,
	0	1	0	1	0		12		1	0	0	1	0	28	3
	0	1	0	1	1		13		1	0	0	1	1	29	
	0	1	0	0	1		14		1	0	0	0	1	30	
ch 20	0	1	0	0	0		15		1	0	0	0	0	31	
LII ZU								1	1	0	0	0	0	32	

31

Κώδικες με ανίχνευση σφάλματος

- Σε όλα τα συστήματα εμφανίζονται σφάλματα. Για παράδειγμα κάποιο 1 μπορεί να μετατραπεί σε ψηφίο 0, είτε κατά τη μετάδοση, είτε γιατί το ψηφιακό σύστημα δεν λειτούργησε σωστά. Μία απλή μέθοδος, ανίχνευσης του σφάλματος, είναι η χρήση του κώδικα ανίχνευσης λάθους, η οποία χρησιμοποιεί ένα επιπλέον ψηφίο ισοτιμίας (parity bit).
- Κώδικες ισοτιμίας

άρτια ισοτιμία

• Δυο είδη {

περιττή ισοτιμία

Κώδικες με ανίχνευση σφάλματος

• Κώδικας περιττής ισοτιμίας

- Το ψηφίο ισοτιμίας είναι 0 αν το σύνολο των ψηφίων, 1, είναι περιττό. Το ψηφίο ισοτιμίας είναι 1 αν το σύνολο των ψηφίων, 1, είναι άρτιο.
- Για παράδειγμα η δυαδική λέξη 010001 έχει αριθμό ψηφίων '1' άρτιο, συνεπώς θα μεταδοθεί με ψηφίο ισοτιμίας '1', είτε: 1 | 010001

• Κώδικας άρτιας ισοτιμίας

- Αντίστροφος της περιττής ισοτιμίας. Το ψηφίο ισοτιμίας είναι 1 αν το σύνολο των '1' είναι περιττό. Το ψηφίο ισοτιμίας είναι 0 αν το σύνολο των '1' είναι άρτιο
- Για παράδειγμα η δυαδική λέξη 10110 έχει αριθμό ψηφίων '1' περιττό, συνεπώς θα μεταδοθεί με ψηφίο ισοτιμίας '1', είτε: 1 | 10110

Γιατί τόση θεωρία?

- Όσα είδαμε έχουν άμεση εφαρμογή στο πραγματικό κόσμο.
- Υπάρχουν έτοιμοι ψηφιακοί σχεδιασμοί οι οποίοι υλοποιούν τις βασικές λογικές συναρτήσεις
- Οι σχεδιασμοί αυτοί ονομάζονται ψηφιακές πύλες.
- Θα εισάγουμε :
 - κάποια σχηματικά για την απεικόνιση αυτών.
 - Ενα πίνακα που δείχνει τη λογική συνάρτηση του κυκλώματος
 - Ο πίνακας αυτός είναι ο πίνακας αληθείας της συνάρτησης, άρα και του ψηφιακού σχεδιασμού.

Ο αντιστροφέας

- Παράγει το συμπλήρωμα μιας δυαδικής μεταβλητής.
- Μπορούμε αντί για το πλήρες σχηματικό του αντιστροφέα, να χρησιμοποιούμε μόνο το κύκλο.
- Είναι διαθέσιμο ως ψηφιακό κύκλωμα σε 6άδες, εντός ενός ολοκληρωμένου με κωδικό 7404.

נ	·—D	>•— x′
x	0 1	1 0 0
x'	1 0	0 1 1
	X	x'
,	0	1
	1	0
νίκης,		

Η πύλη AND δύο μεταβλητών

- Εκτελεί το λογικό AND των δύο μεταβλητών.
- Είναι διαθέσιμο ως ψηφιακό κύκλωμα σε 4άδες, εντός ενός ολοκληρωμένου με κωδικό 7408.

Η πύλη OR δύο μεταβλητών

- Εκτελεί το λογικό OR των δύο εισόδων.
- Είναι διαθέσιμο ως ψηφιακό κύκλωμα σε 4άδες, εντός ενός ολοκληρωμένου με κωδικό 7432.

25 March 2021

Λογικό διάγραμμα

- Η χρήση των σχηματικών των διαφόρων πυλών και η διασύνδεσή τους οδηγεί σε ένα λογικό διάγραμμα που περιγράφει κάποια πιο σύνθετη συνάρτηση.
- Για παράδειγμα:

• Το παραπάνω είναι ένα διάγραμμα που περιγράφει τη συνάρτηση :

$$F_{\Delta}(x, y, z) = x' \bullet z + y' \bullet x$$

Ποιο είναι το λογικό διάγραμμα της G(X, W, Y, Z) = [X' • Y + X] • (Z + W');

- Αν ήθελα το λογικό διάγραμμα της F(x, y, z) = x + y + z πως θα το έφτιαχνα ?
- Από τη θεωρία μου γνωρίζω ότι F(x, y, z) = x + y + z = (x + y) + z και συνεπώς θα μπορούσα να χρησιμοποιήσω κάτι τέτοιο :

- Μήπως υπάρχουν έτοιμες και πύλες περισσότερων εισόδων ?
- Φυσικά! Αυτό όμως δε σημαίνει ότι υπάρχουν οσωνδήποτε εισόδων.
- Κι εδώ πρέπει να διαχωρίσουμε το πραγματικό από τον ιδεατό κόσμο :
 - Στον ιδεατό κόσμο μπορούμε να φτιάχνουμε λογικά διαγράμματα με πύλες όσων εισόδων θέλουμε.
 - Στη πράξη αυτά θα υλοποιηθούν με όσα πραγματικά υπάρχουν.

Ποια συνάρτηση επιτελεί αυτό το κύκλωμα?

Ποιες άλλες συναρτήσεις και πύλες υπάρχουν?

- Πόσες διαφορετικές συναρτήσεις των ν μεταβλητών υπάρχουν ?
 - Μια συνάρτηση ν μεταβλητών, έχει 2^ν πιθανές τιμές εισόδου.
 - Διαφορετική συνάρτηση ← → διαφορετική έξοδος έστω και για κάποιον συνδυασμό εισόδου. Αφού η έξοδός μου για κάθε συνδυασμό εισόδου μπορεί να είναι 0 ή 1 θα υπάρχουν 2² συναρτήσεις.
- Για ν =2 ποιες είναι οι συναρτήσεις που υπάρχουν και ποιες από αυτές είναι χρήσιμες ?

X	у	F ₀	$\boldsymbol{F_1}$	F ₂	F_3	F ₄	F_5	F ₆ .	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	. 0	0	1	1	1	1	1	1	1	1
0	1	1	0									0					
	0	l _	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1			1	0													
Σύμ																	
, ,	στή		•	/		/		⊕	+	1	.Θ	′	C	′	_	1	

- Δυο σταθερές 0, 1.
- Τέσσερις unary συμπληρώματος/ μεταφοράς.
- Δέκα συναρτήσεις με δυαδικούς τελεστές.

Μας ενδιαφέρουν επίσης οι:

x	y	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆ .	<i>F</i> ₇	F ₈	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	. 0	0	1	1	1	1	1	1	1	1
0	1	1										0					
1												1					
1	.1	0	1	0	. 1	0	1	0	1	0	1	, O	1	0	1.	0	1
Σύμ																	
•	στή			/		/		⊕	+	1	ÚO.	,	\subset	′	\supset	1	

- F_{14} που είναι συμπληρωματική της AND. Θα τη λέμε NAND (not AND).
- F₈ που είναι συμπληρωματική της OR. Θα τη λέμε NOR (not OR).
- F₆ που μας δίνει 1 μόνο όταν μόνο 1 είσοδος είναι στο λογικό 1 (για περισσότερες εισόδους, όταν ο αριθμός των 1 στις εισόδους είναι περιττός). Θα την ονομάζουμε αποκλειστικό-OR (eXclusive-OR) XOR.
- F_9 που μας δίνει 1 μόνο όταν μόνο 0 ή 2 είσοδοι είναι στο λογικό 1 (για περισσότερες εισόδους όταν ο αριθμός των 1 στις εισόδους είναι άρτιος). Θα την ονομάζουμε συνάρτηση ισοδυναμίας (not eXclusive-OR) XNOR.

Ετσι έχουμε για τα λογικά μας διαγράμματα : (1/20)

Όνομα .	Γραφικό Σύμβολο	Αλγεβοική Συνάρτηση	Πίνακας Αληθείας
AND KAI	х	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR H	х у —	F=x+y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Αντιστροφέας	x — F	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Απομονωτής	x — F	F = x	x F 0 0 1 1

25 March 2021

φορικής

Ετσι έχουμε για τα λογικά μας διαγράμματα : (2/29)

Όνομα .	Γ <u>ο</u> αφικό Σύμβολο	Αλγεβοική Συνάοτηση	Πίναχας Αληθείας
NAND OXI-KAI	х у	$F = (xy)^{\prime}$	x y F 0 0 1 0 1 1 1 0 1 1 1 0
NOR OYTE	x,	F = (x + y)'	x y F 0 0 1 0 1 0 1 0 0 1 1 0
ΧΟ R Αποκλειστό - Ή	х у —) Б	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0
Ισοδυναμία ή Αποκλειστικό -ΟΥΤΕ	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	$F = xy + x'y'$ $= x \odot y$	x y F 0 0 1 0 1 0 1 0 0 1 1 1

25 March 2021

Γεώργιος Κεραμίδας / Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Τμήμα Πληροφορικής

$$Y = \overline{A \bullet B \bullet C}$$

Α	В	С	Υ
X	X	0	1
Χ	0	Х	1
0	Χ	Х	1
1	1	1	0

$$Y = \overline{A \bullet B \bullet C \bullet D}$$

Α	В	С	D	Y
Χ	Х	Х	0	1
Χ	Х	0	Х	1
Χ	0	Χ	Х	1
0	Х	Х	Х	1
1	1	1	1	0

Κόστος πυλών

- Κοστίζουν όλες οι πύλες το ίδιο ?
- Όχι. Άλλωστε είναι χαρακτηριστικό ότι σε ένα ολοκληρωμένο κύκλωμα έχουμε 6 inverters και μόνο 4 OR, AND, ...
- Το κόστος μιας πύλης εξαρτάται:
 - Από τον αριθμό των εισόδων της. Περισσότεροι είσοδοι => 🕇 κόστος
 - Από τη συνάρτηση που επιτελεί:
 - NAND, NOR οι πιο απλές.
 - AND, OR, ελάχιστα πιο πολύπλοκες (σε επίπεδο transistor).
 - XOR, XNOR αρκετά πιο πολύπλοκες
 - Μεγαλύτερη πολυπλοκότητα => ↑ κόστος

Ισοδύναμες και συμπληρωματικές συναρτήσεις 🌘

- Δύο συναρτήσεις των κ μεταβλητών είναι ισοδύναμες, αν για κάθε συνδυασμό τιμών των μεταβλητών εισόδου, οι συναρτήσεις οδηγούν στην ίδια έξοδο.
 - Συμπέρασμα 1 : Ισοδύναμες συναρτήσεις μπορεί να έχουν διαφορετικές αλγεβρικές εκφράσεις.
 - Συμπέρασμα 2 : Ισοδύναμες συναρτήσεις μπορεί να έχουν διαφορετικά λογικά διαγράμματα.
 - Συμπέρασμα 3 : Ισοδύναμες συναρτήσεις έχουν τον ίδιο πίνακα αληθείας.
- Δύο συναρτήσεις των κ μεταβλητών είναι συμπληρωματικές, αν για κάθε συνδυασμό των μεταβλητών εισόδου, οι συναρτήσεις παράγουν συμπληρωματικές τιμές.

Μεταξύ ισοδύναμων συναρτήσεων κάποιες είναι σαφώς προτιμητέες!

- Η F_3 είναι σαφώς πιο πολύπλοκη συνάρτηση από την F_4 .
- Χρησιμοποιεί περισσότερες πύλες, μα ταυτόχρονα και πύλες με περισσότερες εισόδους.
- Παράλληλα χρησιμοποιεί 4 διαφορετικά ολοκληρωμένα έναντι 3 της F₄.
- Το μεγάλο συνεπώς ερώτημα που προκύπτει είναι πως θα βρω τη συνάρτηση με το ελάχιστο κόστος ανάμεσα στις ισοδύναμες ?
- Αυτό είναι το πιο ενδιαφέρον σημείο του μαθήματος : απλοποίηση συναρτήσεων

Х	у	Z	F_3	F ₄	
0	0	0	0	. 0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	1	1	
1	0	1	1	1	
1	1	0 ر	0	0	56
1	1	1	0	0	- 0

25 March 2021

Η θεωρία παρέχει τη μέθοδο της αλγεβρικής απλοποίησης

• Θυμηθείτε ότι για την F_3 είχαμε ότι :

$$F_3(X, Y, Z) = X \bullet Y' + X' \bullet Y \bullet Z + X' \bullet Y' \bullet Z$$

• Από τη θεωρία βάσει του θεωρήματος των συνδυασμών γνωρίζω ότι :

$$X' \bullet Y \bullet Z + X' \bullet Y' \bullet Z = X' \bullet Z$$

 $A\rho\alpha F_3 = X \bullet Y' + X' \bullet Z = F4.$

- Η αλγεβρική απλοποίηση δεν είναι πάντα τόσο εύκολη!
- Ακόμα χειρότερα, ποτέ δε γνωρίζω αν έχοντας κάνει κάποια στάδια απλοποίησης έχω βρει την απολύτως ελάχιστη ισοδύναμη συνάρτηση.
- Η αλγεβρική απλοποίηση πρέπει να χρησιμοποιείται για συναρτήσεις πολύ λίγων μεταβλητών από έμπειρους σχεδιαστές.

Παραδείγματα αλγεβρικής απλοποίησης

•
$$F(X, Y, Z) = X • Y' • Z + X' • Y • Z + Y • Z =$$

$$= X • Y' • Z + Y • Z \qquad (Απορρόφηση)$$

$$= Z • (X • Y' + Y) \qquad (Επιμεριστική)$$

$$= Z • (X + Y) \qquad (1ο αποδειχθέν θεώρημα)$$

• Υλοποιείστε με τον ελάχιστο αριθμό πυλών τη

F (X, Y, Z) = X • Y' • Z + X • Y' • Z + X • Y • Z' =
$$= X • Y' • Z + X • Y • Z' \qquad (Aυτοαπορρόφηση)$$

$$= X • (Y' • Z + Y • Z') \qquad (Επιμεριστική)$$

$$= X • (Y ⊕ Z) \qquad (συνάρτηση XOR)$$

Προβλήματα & Αλγόριθμοι

- Η αλγεβρική απλοποίηση
 - Είναι δύσκολη
 - Μη ντετερμινιστική
 - Χωρίς σίγουρο αποτέλεσμα
- Θα ήθελα συνεπώς μια ντετερμινιστική μεθοδολογία.
- Στη γλώσσα των υπολογιστών μια μεθοδολογία που αποτελείται από μικρά κατανοητά βήματα και η οποία αν ακολουθηθεί παράγει τη λύση σε κάποιο πρόβλημα ονομάζεται αλγόριθμος.
- Για να εφαρμοστεί κάποιος αλγόριθμος όμως απαιτείται να υπάρχει μια σταθερή αρχική μορφή του προβλήματος.
- Πριν λοιπόν δώσουμε αλγόριθμο απλοποίησης, πρέπει πρώτα να εισάγουμε πρότυπες μορφές έκφρασης μιας συνάρτησης.
- Σε αυτό θα μας βοηθήσουν οι ελαχιστόροι και οι μεγιστόροι.

Πίνακας αλήθειας

- Ισοδύναμες συναρτήσεις έχουν ποικίλες αλγεβρικές αναπαραστάσεις, ποικίλα λογικά διαγράμματα, αλλά κοινό πίνακα αλήθειας.
- Ο πίνακας αλήθειας μας δίνει τη τιμή μιας συνάρτησης για κάθε πιθανό συνδυασμό εισόδων.
- Συνήθως διατάσσουμε τους συνδυασμούς εισόδων σαν αύξοντες δυαδικούς αριθμούς.
- Ο πίνακας αλήθειας μιας λογικής συνάρτησης ν μεταβλητών έχει 2^ν γραμμές.

Οροι, αθροίσματα, γινόμενα

- Μια μεταβλητή στη κανονική ή τη συμπληρωματική της μορφή είναι ένας όρος
 - Παραδείγματα όρων : Χ, Χ', Υ, Ζ'
- Ενα γινόμενο είναι είτε ένας όρος είτε το λογικό AND δύο ή περισσότερων όρων
 - Παραδείγματα γινομένων : Χ, Χ Ζ', Υ Χ', Χ Ζ' Υ'
- Ενα άθροισμα είναι είτε ένας όρος είτε το λογικό OR δύο ή περισσοτέρων όρων
 - Παραδείγματα αθροισμάτων : Χ, Χ + Ζ', Υ+ Χ', Χ + Ζ' + Υ'

Οροι, αθροίσματα, γινόμενα

- Αθροισμα γινομένων (sum of products SOP) είναι κάθε άθροισμα του οποίου οι όροι είναι γινόμενα
 - Παράδειγμα SOP : X + X Z' + Y X' + X Z' Y'
- Γινόμενο αθροισμάτων (product of sums POS) είναι κάθε γινόμενο του οποίου οι όροι είναι αθροίσματα.
 - Παράδειγμα POS : X (X + Z') (Y+ X') (X + Z' + Y')
- Κανονικός όρος είναι ένα άθροισμα ή ένα γινόμενο, στο οποίο κάθε μεταβλητή (κανονική ή συμπληρωμένη) εμφανίζεται μόνο 1 φορά. Κάθε μη κανονικός όρος μπορεί να μετατραπεί μέσω απλοποίησης σε κανονικό.
 - Κανονικοί όροι : X Z' Y', X + Z' + Y'
 - Μη κανονικοί όροι : X Z' Y' X, X + Z' + Y' + Z

Ελαχιστόροι - Μεγιστόροι

- Κάθε κανονικός όρος γινόμενο μιας συνάρτησης κ μεταβλητών, είναι ελαχιστόρος αν περιέχει κ όρους. Κάθε συνάρτηση κ μεταβλητών έχει 2^κ ελαχιστόρους.
 - Η F(X, Y) έχει τους ελαχιστόρους : X' Y', X' Y, X Y' και X Y
 - Κάθε ελαχιστόρος αντιπροσωπεύει μία γραμμή του πίνακα αληθείας
- Κάθε κανονικός όρος άθροισμα μιας συνάρτησης κ μεταβλητών, είναι μεγιστόρος αν περιέχει κ όρους. Κάθε συνάρτηση κ μεταβλητών έχει 2^κ μεγιστόρους.
 - H F(X, Y) έχει τους μεγιστόρους : X' + Y', X' + Y, X + Y' και X + Y
 - Κάθε μεγιστόρος αντιπροσωπεύει μία γραμμή του πίνακα αληθείας

Ελαχιστόροι – Μεγιστόροι και πίνακας αλήθεια

Μεταξύ πίνακα αλήθειας και ελαχιστόρων (μεγιστόρων) υπάρχει μια στενή σχέση. Ο ελαχιστόρος (μεγιστόρος) μπορεί να οριστεί σα το γινόμενο (άθροισμα) που μπορεί να γίνει 1 (0) μόνο για τις τιμές εισόδου μιας και μόνο γραμμής του πίνακα αλήθειας.

			Ελαχ	ιστόροι	Μεγισ	τόξοι
X	y	Z	Όρος	Ονομασία	Όρος	Ονομασία
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	X'+Y+Z'	M_5
1	1	0	xyz'	m_6	X'+Y'+Z	M_6
1	1	1	xyz	m_7	X'+Y'+Z'	M_7

- Μπορούμε να ορίσουμε τη δυαδική τιμή που επαληθεύει τον όρο (κάνει 1 τον ελαχιστόρο ή 0 τον μεγιστόρο) σα το διακριτικό του αντίστοιχου όρου.
 - Π.χ. Ελαχιστόρος 4 = x y' z'. Μεγιστόρος 5 = x' + y + z'

Συνάρτηση σα κανονικό άθροισμα

- Αφού κάθε γραμμή του πίνακα αληθείας αντιστοιχεί σε ένα ελαχιστόρο μπορούμε κοιτώντας το πίνακα αληθείας να δούμε ποιοι ελαχιστόροι επαληθεύουν τη συνάρτηση.
- Το λογικό άθροισμα αυτών μας δίνει την έκφραση της συνάρτησης σα κανονικό άθροισμα.

Συνάρτηση σα κανονικό άθροισμα

• Αφού ισοδύναμες συναρτήσεις έχουν κοινό πίνακα αλήθειας, θα έχουν και κοινά κανονικά αθροίσματα. Συνεπώς το κανονικό άθροισμα είναι μια πρότυπη μορφή πάνω στην οποία μπορώ να εφαρμόσω κάποιον αλγόριθμο.

Συνάρτηση σαν κανονικό γινόμενο

- Αφού κάθε γραμμή του πίνακα αληθείας αντιστοιχεί σε ένα μεγιστόρο μπορούμε κοιτώντας το πίνακα αληθείας να δούμε ποιοί μεγιστόροι δεν επαληθεύουν τη συνάρτηση.
- Το λογικό γινόμενο αυτών μας δίνει την έκφραση της συνάρτησης σα κανονικό γινόμενο.

```
F_3
        y
X
                                      Η συνάρτηση δεν επαληθεύεται αν επαληθεύεται
                                      (παίρνει δηλαδή τη τιμή 0)
                                      ο μεγιστόρος 0
                                      ο μεγιστόρος 2
                                      ο μεγιστόρος 6
                                      ο μεγιστόρος 7
                                   Ισοδύναμα είναι F'_3(x, y, z) = M'_0 + M'_2 + M'_6 + M'_7 =>
                                            F_3(x, y, z) = M_0 \bullet M_2 \bullet M_6 \bullet M_7 =
                                             (x + y + z) \bullet (x + y' + z) \bullet (x' + y' + z) \bullet (x' + y' + z') =
                                             \Pi(0, 2, 6, 7)
```

Συνάρτηση σαν κανονικό γινόμενο

• Αφού ισοδύναμες συναρτήσεις έχουν κοινό πίνακα αλήθειας, θα έχουν και κοινά κανονικά γινόμενα. Συνεπώς το κανονικό γινόμενο είναι μια πρότυπη μορφή πάνω στην οποία μπορώ να εφαρμόσω κάποιον αλγόριθμο.

Μετατροπές μεταξύ κανονικών μορφών

• Αφού κάθε γραμμή του πίνακα αληθείας είναι είτε 0 είτε 1 αν γνωρίζω τη μορφή της συνάρτησης στη μία κανονική μορφή η άλλη προκύπτει από τους όρους που λείπουν.

Π.χ.
$$F(A, B, C) = \Sigma (1,4,6) => F = \Pi (0, 2, 3, 5, 7)$$

 $G(W, X, Y, Z) = \Pi (1, 8, 11, 14, 15) =>$
 $G = \Sigma (0, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13)$

- Είναι επίσης πολύ εύκολο για μια συνάρτηση F να βρώ τη F'
- Ισχύει ότι m'; = M; και φυσικά M'; = m;
- Για παράδειγμα είναι m'0= (x' y' z')' = x + y + z = M0
- Apa av $F(x, y, z) = \Sigma (1, 3, 4) => F = m_1 + m_3 + m_4 =>$
- F' = $(m_1 + m_3 + m_4)' = M_1 \bullet M_3 \bullet M_4 = \Pi(1, 3, 4) = \Sigma(0, 2, 5, 6, 7)$
- Δηλαδή η συμπληρωματική μιας συνάρτησης προκύπτει σα κανονικό άθροισμα των ελαχιστόρων που λείπουν από το κανονικό της άθροισμα

Ελαχιστόροι από Αλγεβρική έκφραση

 x
 y
 z
 Όρος
 Ονομασία

 0
 0
 0
 x'y'z'
 m₀

 0
 0
 1
 x'y'z'
 m₁

 0
 1
 0
 x'yz'
 m₂

 0
 1
 1
 x'yz
 m₃

 1
 0
 0
 xy'z'
 xy'z'

xy'z

xyz'

XYZ

Ελαχιστόροι

 m_5

 m_6

 m_7

$F(X, Y, Z) = X \bullet Y' + X' \bullet Z \bullet Y + X' \bullet Y' \bullet Z$
--

҇Πρόβλημα 2→ Η σειρά είναι λάθος

Πρόβλημα 1 → Λείπει ο όρος Ζ

$$F(X, Y, Z) = X \bullet Y' \bullet (Z+Z') + X' \bullet Y \bullet Z + X' \bullet Y' \bullet Z$$

$$F(X, Y, Z) = X \cdot Y' \cdot Z + X \cdot Y' \cdot Z' + X' \cdot Y \cdot Z + X' \cdot Y' \cdot Z$$

101 100 011 001

5 4 3 1

Ισοδύναμα είναι $F(x, y, z) = m_1 + m_3 + m_4 + m_5 = x'y'z + x'yz + xy'z' + xy'z = Σ(1, 3, 4, 5)$

ργιος Κεραμίδας / Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Τμήμα Πληροφορικής

Να θυμάστε

Πίνακας αλήθειας Κανονικό άθροισμα Κανονικό γινόμενο

πρότυπες μορφές

Αλγεβρική μορφή Λογικό διάγραμμα Λεκτική περιγραφή

μή πρότυπες μορφές

• Πρέπει επίσης να μπορείτε να πηγαίνετε από μη πρότυπες μορφές σε πρότυπες.

Απλοποίηση Συναρτήσεων

- Η πολυπλοκότητα του κυκλώματος που υλοποιεί μια συνάρτηση Boole σχετίζεται άμεσα με την πολυπλοκότητα της αλγεβρικής έκφρασης από την οποία η συνάρτηση υλοποιείται.
- Σκοποί της απλοποίησης
 - Λιγότεροι όροι
 - Απλούστεροι όροι
- Θέλουμε απλές και συστηματικές μεθόδους
- Υπάρχουν :
 - Η μέθοδος του χάρτη (μέθοδος Karnaugh / k-map) : γραφική μέθοδος για συναρτήσεις έως 5 μεταβλητών.
 - Η μέθοδος Quine-McClauskey : αλγεβρική μέθοδος
 - Η μέθοδος Espresso : αλγεβρική μέθοδος
- Οι μέθοδοι αυτοί δε μας δίνουν τις υλοποιήσεις με τις λιγότερες πύλες, αλλά τις απλούστερες υλοποιήσεις με NOT, AND & OR.