SOGNet: Scene Overlap Graph Network for Panoptic Segmentation

Yibo Yang, Hongyang Li, Xia Li, Qijie Zhao, Jianlong Wu and Zhouchen Lin

Summary

Problem

Panoptic segmentation cannot have overlapping segments. But most cutting-edge high-performance instance segmentation methods adopt the region-based strategy, and output overlapping segments.

Image Instance Segmentation

Panoptic Segmentation

Contributions

- 1. We propose an end-to-end framework, SOGNet, to explicitly encode overlap relations among objects, and resolve the overlap between any pair of objects in a differentiable way.
- 2. State-of-the-art performance on the COCO and Cityscapes datasets.

Architecture

Relations Predicted by SOGNet

The activation on location (i,j) represents that the object i is covered by (lies below) object j. The indices of objects are marked in the images.

♦ Methods

Joint Segmentation

We use ResNet with FPN as the shared backbone of semantic and instance branches. The Mask R-CNN structure is adopted for instance segmentation head. For semantic head, the FPN feature maps first go through three 3x3 deformable convolution layers, and then are up-sampled to the 1/4 scale.

Relational Embedding

$$E_{i|j}^{(c)} = P^{T} \left(\sigma(V^{T} c_{i}) \circ \sigma(U^{T} c_{j}) \right), \quad E^{(c)} = \left[E_{1|1}^{(c)}, E_{1|2}^{(c)}, \dots, E_{N_{inst}|N_{inst}}^{(c)} \right]^{T} \in R^{N_{inst}^{2} \times d_{c}},$$

$$E_{i|j}^{(b)} = K^{T} \left(\frac{x_{i} - x_{j}}{w_{i}}, \frac{y_{i} - y_{j}}{h_{i}}, \log \left(\frac{w_{i}}{w_{i}} \right), \log \left(\frac{h_{i}}{h_{i}} \right) \right)^{T}, \quad E = \left[E^{(m)}, E^{(c)}, E^{(b)} \right] \in R^{N_{inst}^{2} \times d},$$

where \circ denotes the Hadamard product, σ is the ReLU activation, V, U, P and $K \in \mathbb{R}$

Overlap Resolving

 $R^{4\times d_b}$ are linear embeddings, and $d=d_m+d_c+d_b$.

 $E \in R^{N_{inst}^2 \times d} \xrightarrow{fc(d,1), sigmoid, reshape} M \in R^{N_{inst} \times N_{inst}}, \ O = \sigma(M - M^T) \in R^{N_{inst} \times N_{inst}},$

$$A_i' = A_i - A_i \circ \left[s(A_i) \circ s(A_j) \right] O_{ij}, \qquad A_i' = A_i - A_i \circ s(A_i) \circ \sum_{j=1}^{N_{inst}} s(A_j) O_{ij},$$
 (overlap of j on i) (overlap of all the other objects on i)

The computational step of overlap resolving is formulated as:

$$\mathcal{A}' = \mathcal{A} - \mathcal{A} \circ s(\mathcal{A}) \circ (s(\mathcal{A}) \times_3 O^T)$$

where s denotes the sigmoid function, $\mathcal{A} = \begin{bmatrix} A_1, A_2, \dots, A_{N_{inst}} \end{bmatrix} \in R^{H \times W \times N_{inst}}$, and \times_3 denotes the Tucker product along the 3-rd dimension (reshape $s(\mathcal{A})$ as $R^{HW \times N_{inst}}$ for inner product with O^T , and then return to $R^{H \times W \times N_{inst}}$). In this way, our method explicitly encodes overlap relations by O, and is differentiable for resolving the overlap between any pair of objects.

Panoptic Head

Panoptic Head 1: $Z_i = X_i + A'_i$

Panoptic Head 2: $Z_i = k \cdot X_i \circ s(A_i') + A_i'$

where Z_i is the combines logit, and k is a factor to balance the numerical difference between semantic output values and mask logits.

♦ Selected Experimental Results

Models	backbone	PQ	PQ^{Th}	PQ^{St}
	Cityscap	oes		
Q.Li <i>et al.</i>	ResNet-101	53.8	42.5	62.1
Panoptic FPN	ResNet-101	58.1	52.0	62.5
TASCNet	ResNet-50	59.3	56.3	61.5
UPSNet	ResNet-50	59.3	54.6	62.7
SOGNet	ResNet-50	60.0	56.7	62.5
	COCC			
JSIS	ResNet-50	26.9	29.3	23.3
Panoptic FPN	ResNet-101	40.3	47.5	29.5
OCFusion	ResNet-50	41.2	49.0	29.0
UPSNet	ResNet-50	42.5	48.5	33.4
SOGNet	ResNet-50	43.7	50.6	33.2

Arxiv: https://arxiv.org/abs/1911.07527.pdf Contact: ibo@pku.edu.cn