1

2

3

CLAIMS

What is claimed is:

An MRAM cell comprising:

- a magnetic tunneling junction including 2 a free layer, 3 a pinned layer, and 4 a spacer layer disposed between the free layer and the pinned layer; 5 a digit line including a bit line segment disposed proximate to the magnetic 6 tunneling junction; 7 a bit line including a bit line segment in electrical contact with the magnetic 8 9 tunneling junction; and a magnetic liner layer disposed around the bit line segment and contacting the free 10 11 layer.
 - 2. The MRAM cell of claim 1 wherein the digit line segment is disposed proximate to the pinned layer and the bit line segment is in electrical contact with the free layer.
- 3. The MRAM cell of claim 1 wherein the bit line segment is disposed proximate to the 1 2 pinned layer and the digit line segment is in electrical contact with the free layer.
- 4. The MRAM cell of claim 1 wherein the magnetic liner layer is electrically conductive. 1

- 5. The MRAM cell of claim 1 wherein the bit and digit lines are formed of a metal selected from the group consisting of Cu, W, and Al.
- 1 6. The MRAM cell of claim 1 further including an antiferromagnetic layer disposed adjacent to the pinned layer.
 - 7. The MRAM cell of claim 1 wherein the magnetic liner layer is formed of Permalloy.
 - 1 8. The MRAM cell of claim 7 wherein the Permalloy is between 16 and 22 atomic percent iron.
 - 9. The MRAM cell of claim 7 wherein the Permalloy is Ni₈₁Fe₁₉.
 - 1 10. The MRAM cell of claim 1 wherein the magnetic liner layer has a thickness of about 20Å to about 500Å.
 - 1 11. The MRAM cell of claim 1 wherein the magnetic liner layer has a thickness of about 2 30Å to about 100Å.
 - 1 12. The MRAM cell of claim 1 wherein the magnetic liner layer is formed of a material
 - selected from the group consisting of CoZrCr, CoZrNb, CoZrRe, FeSiAl, FeN,
 - 3 FeAIN, FeRhN, and FeTaN.

1	13. The MRAM cell of claim 1 wherein the pinned layer is two ferromagnetic layers
2	separated by a spacer layer.
1	14. The MRAM cell of claim 1 wherein the free layer is two ferromagnetic layers.
1	15. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer having a magnetization orientation,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer;
8	a bit line including a segment in electrical contact with the free layer;
9	a magnetic liner layer disposed around the bit line segment and contacting the free
10	layer such that a magnetic field encircles the bit line segment.
	·
1	16. The MRAM cell of claim 15 wherein the magnetic liner layer is electrically
2	conductive.
1	17. The MRAM cell of claim 15 wherein the bit and digit lines are formed of a metal
2	selected from the group consisting of Cu, W, and Al.

18. The MRAM cell of claim 15 further including an antiferromagnetic layer disposed 1 adjacent to the pinned layer. 19. The MRAM cell of claim 15 wherein the magnetic liner layer is formed of 1 2 Permalloy. 20. The MRAM cell of claim 19 wherein the Permalloy is between 16 and 22 atomic 1 2 percent iron. 21. The MRAM cell of claim 19 wherein the Hermalloy is Ni₈₁Fe₁₉. 1 22. The MRAM cell of claim 15 wherein the magnetic liner layer has a thickness of 1 about 20Å to about 500Å. 2 23. The MRAM cell of claim 15 wherein the magnetic liner layer has a thickness of 1 about 30Å to about 100Å. 2 24. The MRAM cell of claim 15 wherein the pinned layer is two ferromagnetic layers 1 2 separated by a spacer layer. 25. The MRAM cell of claim 15 wherein the free layer is two ferromagnetic layers. 1

1	26. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer, the digit
8	line segment having a long axis defining a first direction;
9	an electrically insulating spacer layer disposed between the digit line segment and
10	the pinned layer;
11	a bit line including a segment in electrical contact with the free layer, the bit line
12	segment having a long axis defining a second direction substantially
13	perpendicular to the first direction;
14	a magnetic liner layer disposed around the bit line segment and contacting the free
15	layer.
1	27. The MRAM cell of claim 26 wherein the magnetic liner layer is electrically
2	conductive.
1	28. The MRAM cell of claim 26 wherein the bit and digit lines are formed of a metal
2	selected from the group consisting of Qu, W, and Al.
	3 4 5 6 7 8 9 10 11 12 13 14 15

- 29. The MRAM cell of claim 26 further including an antiferromagnetic layer disposed
 adjacent to the pinned layer.
 - 30. The MRAM cell of claim 26 wherein the magnetic liner layer is formed of
- 2 Permalloy.
- 1 31. The MRAM cell of claim 30 wherein the Permalloy is between 16 and 22 atomic
- 2 percent iron.
- 1 32. The MRAM cell of claim 30 wherein the Permalloy is Ni₈₁Fe₁₉.
- 1 33. The MRAM cell of claim 26 wherein the magnetic liner layer has a thickness of
- 2 about 20Å to about 500Å.
- 1 34. The MRAM cell of claim 26 wherein the magnetic liner layer has a thickness of
- 2 about 30Å to about 100Å.
- 1 35. The MRAM cell of claim 26 wherein the pinned layer is two ferromagnetic layers
- 2 separated by a spacer layer.
- 1 36. The MRAM cell of claim 26 wherein the free layer is two ferromagnetic layers:

	1	37. An MRAM cell comprising:
N I	2	a magnetic tunneling junction including
<i>Y</i>	3	a free layer,
Soft S	4	a pinned layer, and
,	5	an insulating spacer layer disposed between the free layer and the pinned
	6	layer;
	7	a digit line including a segment disposed proximate to the pinned layer, the
	8	segment having a long axis defining a first direction;
ja Ci	9	a bit line including
	10	a segment in electrical contact with the free layer and having
Ti Ti	11	a long axis defining a second direction substantially perpendicular
Ųl ≡	12	to the first direction,
ļ# Ņi	13	a bottom surface abutting the free layer,
}: 	14	a top surface opposite the bottom surface, and
₩	15	first and second vertical surfaces opposite one another and
	16	connecting the top and bottom surfaces; and
	17	a magnetic liner layer disposed around the bit line segment and contacting the
	18	first and second vertical surfaces and the top surface.
	1	38. The MRAM cell of claim 37 wherein the magnetic liner layer also contacts the free
	2	layer.

Alcortal

1 39. The MRAM cell of claim 37 wherein the magnetic liner layer is electrically conductive.

40. The MRAM cell of claim 37 wherein the bit and digit lines are formed of a metal

2 selected from the group consisting of Cu, W, and Al.

1 41. The MRAM cell of claim 37 further including an antiferromagnetic layer disposed

2 adjacent to the pinned layer.

1 42. The MRAM cell of claim 37 wherein the magnetic liner layer is formed of

2 Permalloy.

1 43. The MRAM cell of claim 42 wherein the Permalloy is between 16 and 22 atomic

2 percent iron.

1 44. The MRAM cell of claim 42 wherein the Permalloy is Ni₈₁Fe₁₉.

1 45. The MRAM cell of claim 37 wherein the magnetic liner layer has a thickness of

2 about 20Å to about 500Å.

1 46. The MRAM cell of claim 37 wherein the magnetic liner layer has a thickness of

2 about 30Å to about 100Å.

1 .	47. The MRAM cell of claim 37 wherein the pinned layer is two ferromagnetic layers
2	separated by a spacer layer.
1	48. The MRAM cell of claim 37 wherein the free layer is two ferromagnetic layers.
`	
1	49. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer, the digit
8	line segment having a long axis defining a first direction;
9	a bit line including a bit line segment in electrical contact with the free layer and
10	having a long axis defining a second direction substantially perpendicula
11	to the first direction; and
12	a magnetic sheath disposed around the bit line segment and formed from the free
13	layer and a magnetic liner layer.
1	50. The MRAM cell of claim 49 wherein the magnetic liner layer is electrically
2	conductive.

Control

- 52. The MRAM cell of claim 49 further including an antiferromagnetic layer disposed
 adjacent to the pinned layer.
- 53. The MRAM cell of claim 49 wherein the magnetic liner layer is formed of
 Permalloy.
- 54. The MRAM cell of claim 53 wherein the Permalloy is between 16 and 22 atomic percent iron.
- 1 55. The MRAM cell of claim 53 wherein the Permalloy is Ni₈₁Fe₁₉.
- 1 56. The MRAM cell of claim 49 wherein the magnetic liner layer has a thickness of about 20Å to about 500Å.
- 1 57. The MRAM cell of claim 49 wherein the magnetic liner layer has a thickness of about 30Å to about 100Å.
- 58. The MRAM cell of claim 49 wherein the pinned layer is two ferromagnetic layers
 separated by a spacer layer.

1 59. The MRAM cell of claim 49 wherein the free layer is two ferromagnetic layers.

Control

√60. A method of fabricating an MRAM cell comprising:

- 2 providing a substrate;
- forming a digit line on the substrate;
- forming an insulating spacer including a contact via over the bit line;
- forming a bottom lead over the insulating spacer;
- forming a magnetic tunnel junction stack over the bottom lead;
- 7 forming a first liner layer over the magnetic tunnel junction;
- 8 forming a bit line over the magnetic tunnel junction stack; and
- 9 forming a second liner layer over the bit line.
- 1 61. The method of claim 60 wherein forming the bit line includes
- forming and patterning an oxide layer on the substrate;
- depositing a conductive metal; and
- 4 planarizing a top surface of the conductive metal.
- 1 62. The method of claim 61 wherein the conductive metal is selected from the group
- 2 consisting of copper, tungsten, and aluminum
- 1 63. The method of claim 61 wherein planarizing is performed by CMP.

1	64. The method of claim 60 wherein forming the bottom lead is performed by depositing
2	a conductive metal selected from the group consisting of copper, tungsten, and
3	aluminum.
1	65. The method of claim 60 wherein forming the bottom lead includes a patterning step.
1	66. The method of claim 60 wherein forming the magnetic tunnel junction stack includes
2	forming a first ferromagnetic layer over the bottom lead;
3	forming a tunneling barrier layer over the first ferromagnetic layer; and
4	forming a second ferromagnetic layer over the tunneling barrier layer.
	·
1	67. The method of claim 66 wherein forming the magnetic tunnel junction stack further
2	includes forming an antiferromagnetic layer between the first ferromagnetic layer
3	and the bottom lead.
1	68. The method of claim 66 wherein forming the magnetic tunnel junction stack further
2	includes forming an antiferromagnetic above the second ferromagnetic layer.
1	69. The method of claim 66 wherein forming the magnetic tunnel junction stack further
2	includes a patterning step.
1	70. The method of claim 60 further comprising forming an insulating material layer over

the insulating spacer.

2

Al .

- 1 71. The method of claim 70 wherein forming an insulating material layer includes
- forming a trench therein and over the magnetic tunnel junction stack.
- 72. The method of claim 71 wherein the trench has first and second sidewalls.
- 1 73. The method of claim 72 wherein the first liner layer is formed on the first and second
- 2 sidewalls.
- 1 74. The method of claim 60 wherein the first liner layer is formed with a thickness in the
- 2 range of about 20Å to about 500Å.
- 1 75. The method of claim 60 wherein the first liner layer is formed by ion beam
- 2 deposition or physical vapor deposition
- 1 76. The method of claim 60 wherein the first liner layer is formed of Permalloy.
- 1 77. The method of claim 60 further comprising forming a stop layer over the first liner
- 2 layer.
- 1 78. The method of claim 77 further comprising forming a seed layer over the stop layer.
- 1 79. The method of claim 60 wherein forming the bit line includes forming a seed layer.

1 80. The method of claim 60 wherein the bit line is formed of a conductive metal selected

from the group consisting of copper, tungsten, and aluminum.

- 81. The method of claim 60 wherein forming the bit line includes a planarization.
- 1 82. The method of claim 81 wherein forming the bit line includes an ion beam etch.
- 1 83. The method of claim 60 wherein forming the second liner layer includes
- 2 forming and patterning a mask; and
- 3 removing portions of the second liner layer.
- 1 84. The method of claim 60 wherein the second liner layer is formed with a thickness in
- the range of about 20Å to about 500Å.
- 1 85. The method of claim 60 wherein the second liner layer is formed of Permalloy.
 - 86. A method of fabricating an MRAM cell comprising:
- 2 \ providing a digit line;
- 3 forming a magnetic tunnel junction stack over the digit line;
- 4 forming a bit line; and
- forming a magnetic liner layer over the bit line and in contact with the magnetic
- 6 tunnel junction stack.

A 0	1	87. The method of claim 86 wherein forming a magnetic tunnel junction stack includes
K	^ 2	forming a free ferromagnetic layer and wherein the magnetic liner layer is formed
Cark Lv.	3	in contact with the free ferromagnetic layer.
\mathcal{C}		
	1	88. A method of storing a bit of data in an MRAM cell, comprising:
	2	pinning a magnetic orientation of a first ferromagnetic layer in a magnetic tunnel
	3	junction;
	4	simultaneously generating
	5	a first write current in a digit line including segment proximate to the
	6	magnetic tunnel junction and
ä gi	7	a second write current in a bit line including segment proximate to the
	8	magnetic tunnel junction, the write currents being sufficient to
þi Dj	9	produce a magnetic field capable of orienting a magnetic domain
	10	of a second ferromagnetic layer in the magnetic tunnel junction;
≒# ##	11	and
	12	maintaining the orientation of the magnetic field of the second ferromagnetic
	13	layer by creating a magnetic loop around the bit line.