ANALYSIS OF BIOLOGIC SAMPLES FOR MORPHINE AND MORPHINE-RELATED COMPOUNDS BY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC METHODS

E. C. HORNING, PH.D., J-P. THENOT, PH.D. AND M. G. HORNING, PH.D.

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Washington, D. C. 20134

Contract No. DAMD 17-74-C-4052

Baylor College of Medicine Houston, Texas 77030

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER TITLE (and Substite) Analysis of Biologic Samples for TYPE OF REPORT & PERIOD COVERED Morphine and Morphine Related Compounds by Gas Final Report Chromatographic-Mass Spectrometric Methods. ORMING ORG. REPORT NUMBER 7-AUTHOR(*) ONTRACT OR GRANT NUMBER(A) E. C. Horning, J. P. Thenot Ph.D.; and DAMD17-74-C-4052[4] M. G. Horning Ph.D. 9. PERFORMING ORGANIZATION HAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNTT NUMBERS 758A Baylor College of Medicine, Houston, Texas 77030 3A762758A833 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE US Army Medical Research and Development Command April 1976 Washington, DC 20314 14. MONITORING AGENCY NAME & ADDRESS(If different trom Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 154. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary and identify by block number) Morphine Gas chromatography Codeine Mass spectrometry Diacetylmorphine Selected ion detection Heroin Mass fragmentography Normorphine Cnemical ionization 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) See next page.

ON OF 1 NOV 65 IS OBSOLETE

is the same of the same

DD 1 JAN 73 1473

052 800

20. Abstract

Methods were investigated for the analysis of biologic samples containing morphine and morphine-related compounds through use of bioanalytical systems involving gas chromatograph-mass spectrometer-computer combined instruments. Most of the work was carried out with a quadrupole mass spectrometer designed for chemical ionization work. Methane was used as the reagent gas.

The studies included the synthesis of stable isotope labeled compounds and derivatives of morphine and morphine-related compounds, and the development of analytical procedures for the determination of free and total morphine and morphine-related compounds in biologic samples. Mass spectral studies were carried out by electron impact ionization, chemical ionization (0.5-1 Torr) and atmospheric pressure ionization mass spectrometry. The procedures were applied in the analysis of a large number of urinary and blood (serum, plasma) samples.

Methods based upon gas chromatograph-mass spectrometer-computer bioanalytical systems show high specificity and high sensitivity in detection, and are generally regarded as reference methods of analysis. The general procedures developed in the course of this work can be used in other applications.

Accession For		
NTIS GIARAI		
DDC TAB		
Unannounced		
Justification		
Ву		
Distribution/		
Avrilability Codes		
	Avail and	or.
Dist	special	
A		

THE THE PARTY OF T

TABLE OF CONTENTS

ABSTRACT

- I. INTRODUCTION
- II. BACKGROUND
- III. SURVEY OF METHODS
 - A. METABOLISM AND DISPOSITION
 - B. SAMPLE ISOLATION PROCEDURES
 - C. GAS CHROMATOGRAPHY
 - D. MASS SPECTROMETRY AND GC-MS-COM METHODS
- IV. EXPERIMENTAL
 - A. SYNTHESIS OF REFERENCE COMPOUNDS
 - B. MASS SPECTRAL DATA
 - C. ANALYSIS OF URINE
 - D. ANALYSIS OF SERUM
 - V. RESULTS AND DISCUSSION
 - A. MASS SPECTRAL DATA
 - B. ANALYSIS OF CRINE
 - C. ANALYSIS OF SERUM
 - VI. CONCLUSIONS
- VII. LITERATURE CITED
- VIII APPENDIX

I. J.NTRODUCTION

At the present time most analytical methods used for the study of organic compounds in complex mixtures of biologic origin fall into one of three categories. Gas phase analytical methods based upon the use of gas chromatograph-mass spectrometer-computer (GC-MS-COM) analytical systems are coming into wide use; they provide the most reliable and effective methods now known for the analysis of drugs and drug metabolites in biologic samples, and they are also used in environmental research studies for the detection and estimation of toxic organic compounds. Procedures based on saturation analysis are also widely used. Protein binding methods have largely been replaced by radioimmunoassay procedures, and a series of special methods have been developed for drug assays. The EMIT (enzyme mediated immunoassay technique) system is now being evaluated in clinical chemistry laboratories for use in estimating blood concentrations of anticonvulsant drugs, and it may prove to be useful in specific applications of this kind. RIA (radioimmunoassay) and FRAT (free radical assay technique) procedures have been used widely. All of these methods are based upon an essentially biological phenomenon, and their chief weakness is that related compounds may interfere with the determination. Liquid chromatographic methods are used for preliminary purification of the sample when this effect is present. A second difficulty when drug studies are involved is that multiple determinations for several drugs or drug metabolites may be required, and the necessary reagents may not be available. A third group of procedures, many of which are still in use, are based upon spectrophotometric or related techniques developed before the introduction of more precise analytical methods. A current example is the use of high performance liquid chromatography, with an ultraviolet absorption detector, for the analysis of drugs in blood. These methods are not usually highly specific or highly sensitive, but they can be used in some applications.

do die in the includence in the property of th

The specific problem under study, described in this report, was to develop and apply analytical procedures for the determination of morphine and morphine-related compounds in blood and in urine, using a gas chromatograph-mass spectrometer-computer analytical system. This approach was taken because methods based upon these systems provide both a high degree of reliability and high sensitivity of detection; wide ranges of concentrations of drugs in biologic fluids can be determined with a degree of specificity not associated with other methods. Procedures based upon these analytical systems are now generally regarded as reference methods.

This report contains a discussion of gas phase analytical procedures for the study of morphine and morphine-related compounds. Other types of methods are not discussed. The experimental procedures which were developed and used are described in detail, and results are given.

II. BACKGROUND

The most important development in analytical chemistry in many years has been the introduction, development and use of gas phase analytical methodology. The initial step in this direction was the

establishment of the basic concepts and technology for the separation of organic compounds by gas chromatography. This was followed by combining gas chromatography with mass spectrometry, leading to a combined instrument in which the mass spectrometer acted as a detector with unparalleled capabilities for identification and quantification. When small computers (4-8K core) were developed for laboratory use, it became possible to design a new kind of instrument: an analytical system based on a combination of a gas chromatograph, a mass spectrometer and a computer. These systems are the most powerful tools now available for the analysis of complex mixtures of biologic origin for compounds other than macromolecules.

The function of the gas chromatograph in an analytical system is to separate components of the mixtures under study. Many investigations have been carried out dealing with both the theory and practice of gas chromatography, but the most important early advances of importance for biologic studies were the development of thin-film columns, the introduction of derivatization procedures for reducing bonding forces between molecules, and the invention of ionization detectors. The first of these developments occurred in 1959-1960. At that time VandenHeuvel, Sweeley and Horning (1) described the preparation of thin-film GC columns prepared with a thermostable liquid film (a methylsiloxage polymer known as SE-30) which were suitable for the separation of storo ds. This work provided the first demonstration of the applicability of GC methods to the separation of an important class of biologic compounds previously thought to be essentially non-volatile and therefore not separable by gas phase methods. (Most organic chemists were aware of the fact that some steroids could be purified by sublimation, but since this was generally carried out under reduced pressure it was thought that a separation which employed atmospheric pressure conditions would not be suitable). Methods for preparing columns of this type, published a few years later (2), are still in use, and the thermostable siloxane polymer SE-30 is still the most widely used of all liquid phases for separations carried out at moderately high temperatures (200-320°). Most of the columns used in this work were SE-30 columns.

The most significant and still most widely used derivatives are trimethylsilyl ethers. These were introduced for steroid separations by Luukkainen, VandenHeuvel, Haahti and Horning (3). At the time that this work was carried out, it was recognized that the most serious difficulty which prevented the wider use of GC methods was the fact that many compounds of biologic significance contained hydroxyl groups, and the resulting hydrogen bonding between molecules made it impossible to volatilize these substances without decomposition. Attempts had been made to use acetyl derivatives in some instances, but when trimethylsilyl dcrivatives were investigated it was found that they were generally superior to other types of derivatives because of their great thermal stability (hydrolysis usually occurs readily, but thermal elimination of trimethylsilanol does not) and volatility. Several new reagents for preparing trimethylsilyl ether derivatives have been introduced since the initial studies, but the principles and practices developed at that time are still valid and silylation is still the most widely used reaction for derivative formation. It was used in this work.

The introduction of the argon ionization detector and the flame ionization detector were important successive steps in the development of gas chromatography, since they permitted relatively small samples to be used. The argon ionization detector is no longer employed, but flame ionization detection is used almost universally as a general, non-specific and sensitive method of GC detection.

The concepts involved in the design of the combined gas chromatograph-mass spectrometer were familiar to a number of scientists during the period 1958-1966. The principal problem was that of Leveloping a "molecule separator" which would lead to exclusion of most of the carrier gas in the effluent stream from a gas chromatograph, while allowing the sample to proceed into the ion source of a mass spectrometer. This problem was solved by Ryhage through the development of a jet-orifice separator (4); other types of separators were introduced later. The Ryhage separator, together with fast scanning, made it possible to design the first commercial combined GC-MS instrument (LKB 9000).

The next significant development was the introduction of the technique of selective ion monitoring by Holmstedt (5). One or more ions characteristic of the substance under study were monitored during the course of a GC separation in a combined GC-MS instrument. By monitoring both an ion or ions from a reference compound (the internal standard) and the compound of interest it was possible to carry out highly sensitive and highly specific quantification procedures. Holmstedt called the procedure "mass fragmentography". This method is widely used, and it was employed in this work.

The development of small laboratory computers made it possible to design analytical systems of the GC-MS-COM type. These are now used with a disk to provide additional storage. Many operating parameters can be controlled by a computer (or by modern circuitry with micro-processors), and the computer is also used for the acquisition and analysis of data. When a computer is employed, it is also possible to use a repetitive scan technique with computer-based analysis of data at the end of the run in order to identify specific compounds. This procedure, developed by Biemann (6), is called "mass chromatography".

All early GC-MS instruments and GC-MS-CCM systems were designed with electron impact (EI) sources. This is the best arrangement when problems of identification are involved. For purposes of quantification, however, chemical ionization (CI) conditions are now generally preferred. The usual reagent gas is methane, although other reagents may be preferred in specific applications.

The current state of development of GC-MS-CCM systems may be summarized in the following way. The mass spectrometer may be an electrical field (quadrupole) instrument, or a magnetic field mass pectrometer. Older magnetic field instruments use magnetic field changes for scanning, and accelerating voltage changes for selective ion detection. Design changes are in process for magnetic field instruments in order to avoid the requirement for relaxacion time. Quadrupole instruments are well suited to computer-based operation and control. Both Cl and EI sources are used; CI conditions are usually employed in quantitative work, while

EI techniques are preferred for identification purposes. The computer is usually a small (4-8K core, 12- or 16-bit) laboratory computer. A disk is often added; provision for visual display of spectra is generally included. Microprocessor control of operation is not yet a fully established technology. The gas chromatograph is usually a packed column instrument of conventional design, although open tubular columns will probably come into wider use in the next few years. Hardware devices for multiple ion detection or selective ion detection (mass fragmentography) are available, but computer-based operation is often preferred.

The system employed in this study was based upon a quadrupole mass spectrometer, with mass range to 800 amu, arranged for chemical ionization. The gas chromatograph was of conventional design, and packed columns (glass) were employed. The computer was a small laboratory computer with a disk, and visual display of spectra was possible. Selective ion detection was employed in quantitative studies.

A prototype atmospheric pressure ionization mass spectrometer was used in some studies. This instrument shows very high sensitivity of detection. Samples were introduced by platinum wire probe. Details are included in a later section.

Investigations were carried out of hydrolysis conditions, extraction and purification methods, procedures for derivative formation, mass spectral characterization and quantitative GC-MS-COM methods for use with morphine and morphine-related compounds. These methods were used for the analysis of urine and blood samples.

III. SURVEY OF METHODS

A. Metabolism and distribution

The literature dealing with morphine and morphine-related compounds is extensive and is distributed through many disciplines. Comparatively little quantitative data relating to morphine metabolism and distribution in humans are available, however, because of the earlier lack of analytical methods with sufficient sensitivity of detection and specificity for use in human studies. The recent review of Boerner, Abbott and Roe (7) summarizes current knowledge of the metabolism of morphine and heroin in humans.

Diacetylmorphine (heroin) is rapidly metabolized to both 6-acetylmorphine and 3-acetylmorphine, but the rate of enzymic hydrolysis of the ester group at the 3-position is considerably faster than that of the corresponding group at the 6-position. As a consequence, the apparent route of metabolism is: 3,6-diacetylmorphine \rightarrow 6-acetylmorphine \rightarrow morphine.

Since hydrolytic enzymes are widely distributed in the hody, the removal of the 3- and 6-acetyl groups probably begins immediately and occurs at many sites after heroin ingestion. The distribution of these three compounds, however, is likely to be somewhat different for each

compound. The rate of entry of diacetylmorphine into the central nervous system is believed to be faster than that of morphine. After a very short period, however, the metabolic processes which occur are those of morphine itself. The concentration of morphine in blood falls relatively rapidly after a single dose of either heroin or morphine, but low concentrations of morphine persist for a long time. The pattern of distribution is not known in detail, but the primary site of metabolism is the liver and excretion occurs both through urinary and biliary pathways.

From a mass transfer point of view, the principal metabolite of morphine is the 3-glucuronide, and urinary excretion is the principal pathway of excretion. The 6-glucuronide is also a human (and animal) metabolite, but the rate of formation of the 6-glucuronide is very much slower than that of the 3-isomer. For example, in the rabbit the 3glucuronide accounted for 45% of administered morphine, while the 6-isomer accounted for 0.3%. The formation of sulfate conjugates from phenols is a common reaction, and in the case of morphine the 3-sulfate would be an expected product. Yeh (8) found that the ratio of 3-glucuronide to 3-sulfate in the human (in a pooled urine experiment) was 4:1. The 3-sulfate accounts for 5-10% of administered morphine. The 6sulfate has not been found as a metabolic product, although it is probably formed in small amount. The rate of reaction of the 6-hydroxyl group is very much slower than that of the 3-hydroxyl group in both types of conjugation reactions. The proportion of glucuronide to sulfate is likely to vary with individuals, and species differences may be large. For example, the sulfate is the major urinary conjugate of morphine in the cat and chicken (9).

The metabolic problems of interest, particularly in terms of physiologically active compounds, involve reactions other than conjugation. Two routes of considerable interest are N-demethylation to form normorphine and 0-methylation to form codeine. Since both types of reactions will occur, another metabolite to be expected is norcodeine (N-demethylation of codeine and O-methylation of normorphine). Compounds in the codeine series can form only 6-conjugates, but normorphine can form both a 3-glucuronide and a 3-sulfate. Since 6-conjugation is a relatively slow reaction, codeine would be an expected urinary product, with little conjugation, while normorphine would presumably be excreted in both free and conjugated form. It has been established in a variety of studies that codeine and normorphine are authentic morphine metabolites, but there is also some disagreement about the extent to which these metabolites (particularly codeine) are formed in the human, and the nature of the conjugated products. One study (10) indicated that about 6% of a total morphine dose was converted to urinary codeine, largely in conjugated form. Since codeine is known to undergo N-demethylation, norcodeine would be an expected metabolite as well under these circumstances. The determination of normorphine is more difficult than that of morphine, but recent studies (8,11,12) indicate that both free (about 1-5%) and conjugated (about 1-3%) normorphine will be present as urinary metabolites of morphine. Yeh (13) found 1% free normorphine and 4% total normorphine.

These metabolites account for about 75-85% of an administered dose of morphine. The fate of the remaining material is not known. Some biliary excretion will occur, but conjugates are generally hydrolyzed in the gut and the biliary products are often reabsorbed. It seems likely that additional morphine metabolites remain to be detected, and these may be formed by known types of reaction. The conversion of a tertamine to an N-oxide is a known metabolic pathway, and morphine N-oxide has been detected as a urinary component after morphine administration (14). A second drug (amiphenizole) was also given at the same time, however, and it is not certain if the N-oxide was a result of enzymic oxidation. A potientially important observation was made in a study (15) of morphine metabolites in rat brain. Two metabolites were detected; these were considered to have catechol or quinoid structures, and they reacted with sulfhydryl groups of proteins. These observations parallel the results of Bolt, Kappus and Remmer (16) with respect to the protein binding of ethynylestradiol after metabolic activation. The P450 oxidation of ethynylestradiol was believed to yield 2-hydroxyethynylestradiol. In the case of morphine, the corresponding compound would be 2-hydroxymorphine.

During the past few years, numerous investigations have established the fact that drugs and other exogenous compounds containing olefinic bonds or aromatic rings are metabolized in part through the epoxide-diol pathway. In some instances epoxides have been found as relatively stable metabolites, and in others the evidence rests upon the isolation of dihydrodiols (from aromatic compounds) or other diols of appropriate structure. The formation of a catechol from a phenolic substance may also depend upon epoxidation, although this view is based upon chemical analogies rather than upon direct evidence. Interest in the epoxide pathway of metabolism has increased in recent years because of demonstrations that epoxides can react with cellular components including cofactors, proteins containing SH groups, and DNA. Specific types of epoxides may be required for reaction with DNA, according to the Hulbert (17) hypothesis, but many epoxides will react with sulfhydryl containing proteins. This may be the basis of the cytotoxicity of epoxides.

In the case of morphine, the expected products of epoxidation would be the 7,8-epoxide, 2-hydroxymorphine, and possibly an 11,12-epoxide. It is probable that the 7,8-epoxide would be formed more rapidly from diacetylmorphine and from 6-acetylmorphine than from morphine. None of these substances has been identified with certainty, but the metabolites of Misra, Mitchell and Woods (15) may be related to 2-hydroxymorphine. The suggestion (15) that altered cellular function, caused by reaction of a metabolite with receptor protein, may be the basis of the development of tolerance is difficult to prove, but there is increasing evidence that epoxides can react with cellular protein. It seems likely that the 7,8-epoxide from morphine, diacetylmorphine and 6-acetylmorphine would be formed by microsomal P450 oxidation, and these compounds may be involved in the development of tolerance.

Recognized major and minor pathways, accounting for 75-85% of administered drug, are shown in Chart 1. Compounds which have not been identified as morphine metabolites but which are probably also formed as human products, include the 3-glucuronide of 6-acety1morphine,

the 6-sulfate of morphine, the 3-glucuronide and 3-sulfate of normorphine (the expected conjugates), norcodeine and unidentified conjugates of codeine. Since the deacetylation reaction occurs very rapidly, studies of the metabolism of diacetylmorphine after an initial period become equivalent to a study of morphine metabolism. The determinations of interest are those of free and conjugated morphine, free and conjugated normorphine and free and conjugated codeine. Low concentrations of morphine last for a long time after the initial period of metabolism.

The chief analytical problems arise from the relatively low concentrations of drug and drug metabolites to be expected in urine and in blood; these problems are discussed in later sections. The isolation of epoxide metabolites, and the detection of 2-hydroxymorphine, were not attempted in this study. These may be important compounds since they may be involved in the development of tolerance.

B. Hydrolysis of conjugates and isolation of samples

The principal urinary compounds arising from diacetylmorphine of morphine ingestion are free morphine, morphine 3-glucuronide and morphine 3-sulfate. Small amounts of normorphine, normorphine 3-glucuronide and normorphine 3-sulfate should also be present, along with a little codeine and norcodeine. In one recent study (18) with several modes of administration of morphine, 65-70% of the dose was excreted in urine as conjugates and 3-9% as free morphine. In another study (13), morphine conjugates amounted to 64% of the dose, while 10% of free morphine was found, along with 4% of normorphine conjugates and 1% of free normorphine (accounting for 83% of the dose).

Although the urinary excretion of morphine occurs relatively rapidly, small amounts continue to be excreted for a long time after an initial dose. The reasons for the retention of morphine in the body are not known; protein binding has been suggested as a possible explanation, and fat solubility may also be involved. As a consequence of this property, however, it is desirable to employ analytical methods capable of detecting and estimating both relatively high concentrations of morphine in urine during the initial period of excretion, and low concentrations for the ensuing hours or days. Since the concentration in blood falls rapidly after the initial dose of diacetylmorphine or morphine, the methods should also be capable of measuring low concentrations in blood of both free and conjugated morphine.

The method closen for hydrolysis of urinary and blood conjugates of morphine was adapted from techniques used in the study of human urinary steroids. The enzyme was Glusulase; this contains both glucuronidases and sulfatases. The hydrolysis rates of glucuronides and sulfates with this enzyme mixture are influenced by steric effects, but both 3- and 6-conjugates of morphine are hydrolyzed relatively easily. Urinary rates may be slowed by inhibitors (13).

The method used for the extraction of morphine was based upon studies of salt-solvent pair extraction of drugs (19). The fluid (urine or diluted 3:2 plasma or serum) was saturated with ammonium carbonate

and extracted with ethyl acetate. Free morphine is extracted under these conditions; the initial extraction process, however, yields a mixture that requires additional treatment. Morphine and its basic metabolites (normorphine, codeine) were returned to an aqueous phase by extraction of the organic phase with dilute hydrochloric acid. The reextraction of the aqueous solution was carried out with 3:1 chloroform: isopropanol after saturation with ammonium carbonate. This procedure provides a sample suitable for derivatization and instrumental analysis.

When enzymic hydrolysis of urine was employed, morphine and its basic metabolites were removed from aqueous solution by ion exchange chromatography (AG50W). After elution with hydrochloric acid (4N), the desired compounds were extracted with ethyl acetate/ammonium carbonate.

In previous studies, the extraction of normorphine has been recognized as being more difficult than that of morphine. It is necessary to employ alkaline conditions (a pH of 9.3-9.4 has been recommended), and chloroform:isopropanol 3:1 is usually employed for solvent extraction (20). Sodium chloride is often added to depress the solubility of morphine and normorphine in the aqueous phase. The organic bases are returned to an aqueous phase by extraction with dilute hydrochloric acid, and reextracted in the same fashion as in the original extraction step.

The initial solvent extraction provides a sample containing both neutral and basic substances. Neutral materials are largely eliminated when a reextraction step is employed. The effectiveness of the extraction depends upon the pH of the aqueous solution and the extracting solvents, and upon a salting-out affect. The recommended pH varies form 9.4 to 10.3; chloroform:isopropanol 3:1 was the preferred extractant mixture in earlier studies.

Ion exchange column chromatographic procedures have been widely used for the selective removal of bases from biologic samples. In this study, the chief problem proved to be that of separating urinary neutral and basic components, and an ion exchange procedure proved to be satisfactory.

Acidic, alkaline and enzymic procedures have all been used for the hydrolysis of morphine conjugates; alkaline conditions result in very low recovery of free drug, possibly because of air oxidation. The recovery after acidic or enzymic hydrolysis is about the same (95-100%). The use of Glusulase is necessary in order to hydrolyze sulfate as well as glucuronide conjugates.

The direct study of glucuronides by gas phase procedures is possible; the most satisfactory derivatives are the methyl ester-trimethylsilyl ethers. Conjugates of morphine have not been studied in this way, however, since the analytical information that is usually needed is that resulting from an estimation of free and conjugated morphine. In this work, free and conjugated values were determined.

C. Gas chromatography

The most satisfactory derivative of morphine for analytical purposes is the ditrimethylsilyl ether. The phenolic group, and the allylic hydroxyl group, are readily converted to trimethylsilyl ethers by the usual silylating reagents. Bis-trimethylsilylacetamide, bis-trimethylsilyltrifluoracetamide or N-trimethylsilylimidazole may be used; the reaction may be catalyzed by the addition of trimethylchlorosilane, but this is not required. The trimethylsilyl (TMS) derivative has good gas chromatographic properties.

A STATE OF THE STA

This derivative was employed by Wilkinson and Way (21) in an early quantitative study of morphine metabolism, and it has been used many times in later investigations. Although trimethylsilyl ethers undergo hydrolysis relatively easily, they are thermally stable and show little adsorption on GC columns. Column loss may occur if acidic conditions develop on the column packing; the best way of avoiding this circumstance is to employ an initial 1-2 cm zone of 10% SE-30 packing, according to the practice described by Thenot and Horning (22). The TMS derivative was used in the present study and in the recent method described by Clarke and Foltz (23). Other studies (24-30) have also been based upon the use of TMS derivatives.

Codeine forms a 6-trimethylsilyl ether; this derivative is suitable for analytical studies. Diacetylmorphine does not require derivative formation. 6-Acetylmorphine forms a 3-trimethylsilyl ether. Normorphine forms a ditrimethylsilyl ether, in the same fashion as morphine. The secondary amino group will also react with most silylating reagents, but not with N-trimethylsilylimidazole, to yield an N-trimethylsilyl derivative. Compounds of this type are active silylating agents, and when they are employed as derivatives it is not unusual to find both the free amine and the N-trimethylsilyl derivative present during the GC separation.

Acetyl derivatives of amines have frequently been used in GC identification studies, but the perfluoracyl derivatives usually have better GC properties. Ebbinghausen, Mowat, Vestergaard and Kline (31) recently developed an analytical procedure for the study of morphine and codeine based upon the use of the trifluoracetyl derivative (morphine) and the heptafluorobutyryl derivative (codeine). Smith and Cole (32) used the 3-trifluoracetyl derivative of 6-acetylmorphine in a study of diacetylmorphine metabolism. Ebbinghausen, Mowat and Vestergaard (33) used trifluoracetyl derivatives in a study of codeine metabolism. Diacetylmorphine has been detected and quantified in illicit preparations (34-36).

An internal standard is usually employed when quantitative studies are carried out by GC techniques. Tetraphenylethylene was used in the early work of Wilkinson and Way (21); this is suitable when a flame ionization detector is employed. Smith and Cole (32) used a nitrogen detector; the internal standard was ethylmorphine acetate.

A number of screening procedures in which the identification step is based upon GC data have been described. Derivative formation is not necessary if the purpose is to detect diacetylmorphine or methadone but most screening procedures have as their purpose the detection of a number of drugs. The problems associated with the development and use of screening methods are manifold. The method of "on-column" silylation (37) is useful in screening work, but in research studies involving quantitative work it is desirable to complete the derivatization step before the sample is analyzed.

ing in a designate dels a solut dels designations de la designation de la designation de la designation de la d

D. Mass spectrometry and GC-MS-COM methods

Analytical systems based upon a combination of a gas chromatograph, a mass spectrometer and a computer, and operated as a single instrumental system, provide the most powerful and most reliable method of analysis now known for the study of complex mixtures of biologic origin. They are particularly valuable in studies of drugs and drug metabolism. The function of the gas chromatograph is to separate components of the mixtures under investigation. For example, most drugs yield multiple metabolites; some metabolites may have a physiological action related to that of the original drug, some may have toxic properties due to their specific structure, and some may be inactive. The structural differences introduced through metabolic transformations are usually such that separation of the parent drug and individual metabolites is possible with ordinary GC columns. It is usually necessary to prepare derivatives prior to the instrumental analysis step, since many metabolites contain polar groups which would lead to undue adsorption if derivatives were not prepared. The mass spectrometer provides an intermittent or continuous record of mass spectral data. If the primary purpose of the analysis is to obtain qualitative data, the system may be operated manually so that mass spectra are obtained for each peak detected in the GC effluent stream. In this mode of operation, the "total ion current" is usually used as a guide to determine when spectra should be obtained. A second mode of operation, given the descriptive name of mass chromatography, involves the continuous cycling of the mass spectrometer to provide a series of mass spectra obtained throughout the separation process. Each scan may require about 2 to 6 seconds, depending upon the mass range selected for the scan. Some relaxation time is required between scans when the scan is accomplished by magnetic field changes; if the scan involves electrical field or accelerating voltage changes, the cycling is essentially continuous. An analysis may require 5-10 min if only one or two compounds are under study; if multicomponent analyses are needed, the analysis time may be 30-60 min or more. The mass spectral data are subjected to computer-based analysis. The programs may be relatively simple, but generally a sophisticated program is required in order to deal with problems of incomplete separation. The greatest value of this approach lies in its unparalled capabilities for the detection, often in ' small amount, of specific compounds of interest because of their beneficial or toxic physiological action. For this reason, electron impact spectra are almost always obtained for analysis. It is also possible in some instances to employ a charge transfer mode of operation with nitrogen as a carrier gas, but this form of operation has never been investigated in detail. The advantage of using fragmentation spectra lies in the fact that it is usually possible to arrive at a unique identification when EI mass spectral data are combined w_h GC data. Retention behavior is a physical property which is based upon the free energy of solution of the solute under the conditions of the separation, while the fragmentation spectrum is based upon the chemical structure of the compound.

Some types of isomers give virtually identical EI mass spectra, but the retention times will be different. Structurally unrelated compounds may show virtually identical retention behavior with a specific column, but the EI spectra will be different. Identifications based upon criteria involving both physical properties and chemical structure have high validity.

Analytical systems are also used for quantitative purposes. The usual mode of operation is to monitor two or more ions during the course of the separation. The technique was originally called mass fragmentography; other terms that have been used are multiple ion detection, selective ion detection and selected ion detection. In early applications, EI conditions were used with magnetic field instruments, and the usual procedure was to monitor at least two ions derived from the compound under study, and one or two ions derived from an internal reference compound. Response factors were needed to relate observed ion intensities to mass relationships, and ratio measurements were carried out to compare ion intensities for the compound under study and the internal standard. Two fragment ions, or the molecular ion (M') and a fragment ion, were used to decrease the possibility of interference from other compounds. Two recent developments in quantitative work have been the use of chemical ionization techniques and the use of stable isotope labeled compounds. The advantage of CI over EI techniques is that it is usually possible to choose an ion found in high yield as the ion whose intensity is to be used (this is frequently the protonated molecule, MH') and it is usually possible to conserve the stable isotope label in the ion used for quantification. The preferred stable isotope label is C, since there is no discernable isotope effect in the separation or ionization processes for C compounds. It is customary to introduce three or more C atoms. The adsorption losses will be the same for both labeled and unlabeled compounds, and the retention behavior will be the same. Deuterium labeled compounds are also used. These are usually satisfactory, although there may be a recognizable difference in retention behavior (and perhaps in adsorption losses). For compounds with NCH, groups, the usual label is NCD2. Homologs and analogs have also been used as internal standards. They are less satisfactory than stable isotope labeled compounds, but they have been used in some applications. The usual practice is to monitor two or four ions (one or two each for the compound under investigation and one or two each for the internal standard), and most programs allow for the monitoring of eight ions if necessary (for multicomponent analyses).

The technical problems associated with quantitative work are not . simple. From an instrumental point of view, it is necessary to employ power supplies of high stability in quadrupole instruments, and to have a means of detecting or correcting drift for both magnetic field and electrical field instruments. The peak setting is usually made to the nearest 0.1 amu, and adjustments for mass defects may be required. Derivatives should be selected to minimize adsorption losses, and the sample size should be large enough to avoid errors in ion intensity measurements.

In this work, an electrical field (quadrupole) instrument was used in the CI mode with methane as the carrier gas. A conventional 4 mm glass GC column was employed for the separation processes. The internal standard was morphine—d₃ (NCD₃ morphine) prepared from ordinary morphine by N-demethylation followed by conversion to the NCD₃ compound. Two ions were monitored for morphine and for the internal standard. For morphine, these were at 340.2 (corresponding to (MH-90)) and 414.2 (corresponding to (MH-15)) for the plasma analyses, and 430.2 (corresponding to MH) and 414.2 for the urinary analyses. The corresponding ions were higher by 3 amu for the internal standard. The formation of an ion at (MH-15) is normally observed for trimethylsilyl derivatives of all kinds; derivatives of alcohols also usually show strong (MH-90) ions under methane CI conditions.

This approach was also used by Clarke and Foltz (23). The same internal standard was used, and morphine ions at 340 amu (MH-90) and at 414 amu (MH-15) were employed; the di-TMS derivative was prepared with bistrimethylsilylacetamide.

A related approach based upon trifluoracetyl and heptafluorobutyryl derivatives was used by Ebbighausen, Mowat, Vestergaard and Kline (31) and by Ebbighausen, Mowat and Vestergaard (33).

A number of reference substances were prepared and studied by mass spectrometry during the course of this work, and analytical procedures were also employed for the detection of diacetylmorphine, 6-acetylmorphine, codeine and normorphine. Both diacetylmorphine and 6-acetylmorphine are short-lived in the human, but normorphine and codeine should be present in low amount in parallel with morphine concentrations.

Since it was expected that low concentrations in plasma would be encountered, a study was carried out of ionization reactions in an atmospheric pressure ionization (API) mass spectrometer. This is a new instrument (38-43) showing subpicogram sensitivity of detection, in which the ionization process is carried out at atmospheric pressure in a small reaction chamber external to the mass analyzer region of a quadrupole mass spectrometer. Conditions were examined for the formation of MH' and M' ions. For diacetylmorphine, morphine and codeine, one of the problems in analysis is that the group attached at the 6-position (hydroxyl, acetyl, trimethylsilyloxy) is readily lost under both EI and CI conditions, with the result that MH or M ions are present in low intensity. When M' ions are formed from these substances by charge transfer from nitric oxide ions (NOT), however, the MT ions are the base peak. This observation by Jardine and Fenselau (44) was confirmed in API studies. The predominant reaction observed was M ion formation, through charge transfer.

IV. EXPERIMENTAL

A. Synthesis of reference compounds

1. Acyl derivatives

Acetyl derivatives of alcohols or phenols are best prepared by reaction with acetic anhydride, usually in pyridine solution. The preparation of acetylcodeine is a typical procedure. Thirty mg (0.01 mM) of codeine were dissolved in 5 ml of pyridine. One ml of acetic anhydride was added and the mixture was allowed to stand for 24 hours. Ice and water were added, and the product was extracted with 5 portions of 10 ml of chloroform. The combined extracts were dried over anhydrous sodium sulfate, and the solvents were evaporated. The yield was 31 mg (77%) of 6-acetylcodeine as the acetate salt.

The preparation of perfluoroacyl derivatives was described by Ebbinghausen, Mowat, Vestergaard and Kline (31).

2. Alkyl derivatives

The procedure used in this work was first described by Corey (45,46) and later employed by Hakomori (47) for the permethylation of sugars and by Haegele et al (48) for the peralkylation of peptides and amino acids. The preparation of diethylmorphine was carried out in the following way. Morphine hydrochloride (10.7 mg, 0.1 mM) was dissolved in 600 µl of dimethylsulfoxide (distilled over calcium hydride). To this solution, 150 pl of a 1 M solution of methylsulfinylmethide carbanion was added. The reaction mixture was sonicated for 10 minutes to break gel particles which were formed. This was followed by the addition of 10.5 µl of ethyl iodide (equimolar excess) and the reaction mixture was sonicated for 50 minutes. Ice and water were added (approximately 1 ml) and the diethylmorphine was extracted with 2 ml of chloroform. The chloroform solution was washed 3 times with 1 ml portions of water, and the solvent was removed with a stream of nitrogen. The reaction is conveniently carried out in a 3.5 ml screw cap vial, which is flushed with nitrogen when reagents are added, since the carbanion solution is extremely sensitive to moisture and to oxygen. The yield was 10.9 mg (96%).

Dimethylmorphine and ethylcodeine were prepared in the same fashion. Deuterated derivatives were also prepared.

3. Trimethylsilyl (TMS) derivatives

The procedure described by Thenot and Horning (49) was used with slight modification. In a typical procedure, $100\text{--}200~\mu\mathrm{g}$ of compound was reacted with $100~\mu\mathrm{l}$ of silylating reagent (bistrimethylsilylacetamide or bistrimethylsilyltrifluoracetamide) at $60\text{--}100^{\circ}\mathrm{C}$ for $60~\mathrm{minutes}$. Aliquots of these solutions were injected.

The expected derivatives were obtained from morphine, codeine and 6-acetylmorphine. Normorphine formed a tri-TMS derivative. Deuterated derivatives were also prepared.

carbamate ester which does not require the preparation of normorphine as the starting compound for the introduction of the N-CD $_3$ group.

The most satisfactory method involved the use of ethyl chloroformate to effect N-demethylation of morphine, leading to formation of the corresponding normorphine carbamate as described by Elison et al. (51). The reduction of N-carbophenoxynormorphine, according to Abdel-Monem and Portoghese (52), and reduction of N-trichlorocarbethoxynormorphine, as described by Montzka et al. (53), were not as satisfactory.

c. Synthesis of 0³,0⁶,N-tricarbethoxynormorphine

The procedure described by Elison et al.(51) was followed without major change, but the final product was identified as $0^{\circ}, 0^{\circ}, N$ -tricarbethoxynormorphine, and not $0^{\circ}, N$ -dicarbethoxynormorphine as indicated by the authors.

Normorphine as the free base (28 mg, 0.01 mM), 0.4 ml (4 mM) of ethyl chloroformate, and 1 g (20 mM) of potassium hydroxide in 6 ml of water and 10 ml of chloroform were shaken in a separatory funnel for 15 minutes. The chloroform layer was collected, and the aqueous phase was extracted with 2 portions of 10 ml of chloroform. The combined chloroform extracts were washed with 1N hydrochloric acid and with water. The chloroform solution was evaporated. The yield was 44.2 mg (88%) of a slightly yellow, resin-like material identified by its mass spectrum as a diester carbamate.

d. Preparation of N-CD₃-morphine (morphine-d₃)

0³,0⁶,N-tricarbethoxynormorphine (79 mg, 0.162 mM) was dissolved in 5 ml of tetrahydrofuran. (The tetrahydrofuran was freshly distilled from lithium aluminum hydride.) To this solution, a suspension of 42 mg (1 mM) of lithium aluminum deuteride in 2 ml of tetrahydrofuran was added dropwise and with stirring. After the addition was completed, the reaction mixture was heated under reflux for 2 hours. Ethyl acetate was added to destroy excess reagent. This was followed by the addition of 25 ml of 2N hydrochloric acid and 4 g of potassium tartrate, and the mixture was heated under reflux for 2 hours. After adjusting the pH to 8.3 with aqueous potassium hydroxide, the mixture was extracted with methylene chloride for 24 hours by using a continuous extractor. After evaporation of the solvent, 22 mg (47%) of N-CD₃-morphine (morphine-d₃) was obtained.

B. Mass spectral data

1. Electron impact mass spectra

Electron impact mass spectra were obtained with an LKB 9000 GC-MS combined instrument. The conditions were: ionizing voltage, 20 eV; current, 60 μ A; accelerating voltage, 3.5 kV. The column was a 9 ft x 4 mm id glass coil containing 1% SE-30 liquid phase on 100-120 mesh Gas Chrom Q. Helium was used as the carrier gas. Both temperature programmed and isothermal conditions were used.

2. Chemical ionization mass spectra

Chemical ionization mass spectra were obtained with a Finnigan 3200 quadrupole mass spectrometer designed for chemical ionization work. Methane was used as the carrier and reagent (0.5-1 Torr) gas. The ionizing voltage was 100 eV. The glass column (U-tube) was 6 ft x 4 mm id containing 1% SE-30 liquid phase on 100-120 mesh Gas Chrom Q. Both temperature programmed and isothermal conditions were used. The mass range extended to 800 amu.

3. Atmospheric pressure ionization mass spectra

The atmospheric pressure ionization mass spectrometer was a prototype instrument. The mass analyzer was a quadrupole mass spectrometer equipped with pulse counting circuitry. The ionization chambers utilized a Ni source or a corona discharge source. Details of the design and operation of this instrument have been published (38-43). Samples were introduced with a platinum wire probe. A liquid chromatograph-mass spectrometer-computer system was also used.

C. Analysis of urine

1. Free morphine and other bases in urine

a. Extraction and derivatization

The extraction step was carried out by the salt-solvent pair extraction procedure of M. G. Horning et al. (19). Ammonium carbonate (solid) was added to saturate 5.0 ml of urine, to which 1.5 μ g of morphine-d₃ (NCD₃-morphine) had been added, and the aqueous solution was extracted twice with 5 ml portions of ethyl acetate. The combined organic extracts were dried with anhydrous sodium sulfate, and the solvent was evaporated with the aid of a nitrogen stream.

For the determination of morphine, the sample was converted to derivative form by treatment with bistrimethylsilylacetamide (25-50 μ); 25 μ l was used when morphine concentrations were low) at 60° for 20 min. Under these conditions morphine forms a ditrimethylsilyl derivative, while codeine forms a monotrimethylsilyl derivative. 6-Acetylmorphine forms a monotrimethylsilyl derivative, but diacetylmorphine remains unchanged. For the determination of normorphine, 25 μ l of N-trimethyl-

4. Preparation of internal reference compounds labeled with deuterium

Internal reference compounds labeled with stable isotopes are the most suitable standards for quantitative analysis by gas chromatograph-mass spectrometer-computer techniques. Deuterium labeled standards possess physical properties nearly identical with their corresponding unlabelled analogues but they are distinguishable by mass spectrometry. Due to the ease and low cost of synthesis, deuterium labeled internal standards are commonly used for the purpose of quantitative analysis of drugs and drug metabolites. Since many drugs contain an N-methyl function, the most accessible site for the introduction of the deuterium label is by forming the N-demethylated compound (normorphine in this work) which in turn is then alkylated using \underline{d}_3 -labeled methyl iodide to form the N- \underline{d}_3 -labelled drug (N- \underline{d}_3 -morphine); the reduction of the carbamate with lithium aluminum deuteride is another method.

a. Preparation of normorphine

Cyanogen bromide method of von Braun (50)

Diacetylmorphine acetate (215 mg, 0.5 mM) was dissolved in 4 ml of anhydrous chloroform. A solution of 96 mg of cyanogen bromide (0.9 mM) in 1 ml of chloroform was added to the solution, and the reaction mixture was heated under reflux for 2.5 hours. The chloroform was evaporated, and the residue was treated with 5 ml of boiling water. The solution was allowed to cool and the precipitate was removed by filtration. After recrystallization from ethanol/water, colorless needles of diacetyl-N-cyanonormorphine were obtained. The yield was 164 mg (86%).

Upon refluxing 121 mg (0.33 mMol) of diacetyl-N-cyanonormorphine for 5 minutes with concentrated hydrochloric acid, the two ester functions were saponified and N-cyanonormorphine crystallized from the cooled mixture. To complete the crystallization process, the mixture was refrigerated overnight. The product was removed by filtration. The yield was 94 mg (95%).

N-Cyanonormorphine was converted to normorphine by refluxing 94 mg (0.317 mM) with 60 ml of 6% hydrochloric acid for 6 hours. The solvent was removed in vacuo and the residue was dissolved in ethanol. Normorphine hydrochloride was precipitated upon addition of n-pentane. Storage of the mixture (freezer) completed the precipitation process. The product was removed by filtration, washed with cold n-pentane, and dried. The yield was 79 mg (81%) of normorphine hydrochloride.

b. Preparation of morphine-N-CD₃ (morphine-d₃)

The synthesis of morphine labeled with deuterium in the N-methyl group may be accomplished either through direct methylation of normorphine with \underline{d}_3 -methyl iodide or by the reduction of a carbamate ester of normorphine with lithium aluminum deuteride. The direct route was used by Ebbighausen <u>et al.</u>, but as expected the yield was low and other products were obtained as well (codeine- \underline{d}_6 , unreacted normorphine and norcodeine- \underline{d}_3). The method of choice is therefore the utilization of a

silylimidazole was used as the derivatizing reagent under the same conditions; a ditrimethylsilyl derivative was formed. (Conversion to a tritrimethylsilyl derivative occurs with bistrimethylsilylacetamide).

b. GC-MS-COM procedure

A Finnigan Model 3200 GC-MS combined instrument, with a Model 6000 data system, was employed. Methane was used as the carrier and reagent (0.5-1 Torr) gas. A 6 ft x 4 mm id glass U-tube column with 1% SE-30 on 100-120 mesh Gas Chrom Q column packing was used for separation and sample introduction. The column was programmed at $4^{\rm O}$ /minute from $180^{\rm O}$. The ionizing voltage was $100~\mu A$. A solvent/reagent bypass was used.

The system was calibrated with perfluorotributylamine, and then with an authentic sample of the ditrimethylsilyl derivative of morphine.

The ions of interest for the quantification of morphine are at 430.2, 414.2 and 340.2 amu. These correspond to the ions MH, (MH-16) and (MH-90). The related ions for morphine—d₃ are 3.0 amu greater. A study of possible interferences indicated that measurements of each pair of these ions from morphine and morphine—d₃ would be satisfactory; the ions at 414.2/417.2 and 430.2/433.2 amu were chosen. After calibration with an authentic sample of the TMS derivative of morphine, the values 414/417 and 430/433 amu were used.

Ratios of ion intensity values were used to calculate the morphine concentration in the sample. No examples of interference from other substances were encountered, but two pairs of ions were always monitored in order to decrease the possibility of error due to unrecognized interference by other urinary components.

Derivatized samples were subjected to analysis for codeine and normorphine. The codeine analysis was based upon a comparison of ion intensities at 372 anu (MH^T) for codeine and at 433 amu (MH^T for morphine-d₃), after determination of the response factor under the conditions of operation. Normorphine was not detected in any sample.

Urinary samples which were relatively high in morphing concentration were examined for the presence of discetylmorphine (370 and 328 amu) and 6-acetylmorphine (as the TMS derivative with ions at 400 and 358 amu). These compounds were not detected in any sample.

2. Total morphine and other bases in urine

a. Hydrolysis, extraction, purification and derivatization

A 5.0 ml sample of urine, to which 1.5 µg of morphine— \underline{d}_3 had been added, was adjusted to pH 4.5 with 0.5 g of sodium acetate trihydrate and a few drops of acetic acid, and 0.2 ml of Glusulase (Endo Laboratories Inc., Garden City, New York) was added (this corresponds to 30,000 units of β -glucuronidase and 3,000 units of sulfatase). The mixture was kept at 37 for 18 hours. This condition results in the

hydrolysis of morphine glucuronide and morphine sulfate, but it also liberates free steroids from urinary conjugated steroids. Direct extraction results in a mixture containing both morphine and urinary steroids; a fractionation step is necessary before analysis.

Ion exchange fractionation. A small ion exchange column containing 0.30 g of the sulfonic acid ion exchange resin AG 50W-X8 (200-400 mesh) (Bio Rad Laboratories, Richmond, California) in the acid form was prepared in a disposable Pasteur pipette. The flow rate was controlled (at the exit) at 1.5 ml/minute through use of a four-channel peristaltic pump. The hydrolyzed urine sample was passed through the column, and the column was washed with 10 ml of 0.2 N hydrochloric acid. Morphine was eluted with 25 ml of 4N hydrochloric acid. The eluate was evaporated at 40-50 under reduced pressure.

This procedure was developed with the aid of $^{14}\mathrm{C}\text{-labeled}$ morphine, as indicated later.

Fractionation by back extraction. The hydrolyzed urine was extracted as described for the isolation of free morphine samples by extraction with ethyl acetate after saturation with ammonium carbonate. Hexane (1 ml) was added to the ethyl acetate solution from the initial extraction. Morphine was extracted into an aqueous solution by washing the organic solution with 2 x 1 ml of 0.1 N hydrochloric acid. The aqueous solution was extracted with ethyl acetate (5 ml) after saturation with solid ammonium carbonate. The ethyl acetate solution was dried with anhydrous sodium sulfate, and the solvent was evaporated with the aid of a nitrogen stream.

<u>Direct extraction</u>. The hydrolyzed urine was extracted with ethyl acetate after saturation with solid ammonium carbonate, as described for the isolation of free morphine samples. The resulting mixture contained the urinary steroids androsterone, etiocholanolone and dehydroepiandrosterone, as well as morphine.

Recovery experiments. Radioactive morphine (N-14CH₃), was obtained from Amersham Searle Corp., Arlington Heights, Illinois. This material was used in recovery studies of three procedures: direct extraction, extraction followed by back extraction into aqueous solution, and isolation through use of an ion exchange column. In each instance, the final sample was prepared in scintillation vials; the residue obtained after evaporation of the solvent was dissolved in 0.5 ml of methanol, and 10 ml of toluene/POPOP solution was added for counting.

<u>Preparation of derivatives</u>. These were prepared in the same way as described for free morphine samples.

Trimethylsilyl derivatives of androsterone, etiocholanolone and dehydroepiandrosterone were prepared employing the conditions used for morphine samples. The methoxime-trimethylsilyl derivatives of these steroids were prepared in the usual way (54).

b. GC analyses

Gomparisons of retention behavior for the trimethylsilyl derivatives of morphine, codeine and normorphine, and for diacetyl morphine, with the properties of the trimethylsilyl derivatives of androsterone, etiocholanolone and dehydroepiandrosterone, indicated that interference would be expected under the usual conditions, based on use of SE-30 columns. Methylene unit (MU) values were compared for a 1% SE-30 column.

c. GC-MS-COM analyses.

Instrumental analyses of samples were carried out in the same way as for free morphine determinations.

Studies were made by selective ion detection to determine the degree of overlap of urinary steroids and morphine and related substances in the separation process.

Comparisons of results indicated that a fractionation or purification step would be required in order to prevent interference by steroids in the morphine determination. The procedure selected for use was the ion exchange method of sample isolation. This method was used in subsequent urinary analyses.

D. Analysis of serum

1. Free morphine and other bases in serum

a. Extraction, purification and derivatization

Serum samples were extracted by the salt-solvent pair procedure of M. G. Horning et al. (19) as described for urine analyses. One ml of serum, to which $1.5~\mu g$ of morphine-d, had been added, was extracted twice with 5 ml of ethyl acetate. Hexane (1 ml) was added to the combined ethyl acetate extracts and the organic phase was washed twice with 1 ml of 0.1N hydrochloric acid. The aqueous phase containing morphine and other bases was then extracted with ethyl acetate or with a mixture of chloroform-isopropanol (3:1) after neutralization and saturation with solid ammonium carbonate. The organic solution, dried with anhydrous sodium sulfate, was evaporated with the aid of a nitrogen stream. The residue was treated with 25-50 μ l of bistrimethylsilylacetamide at 60 for 20 minutes. Trimethylsilyl derivatives of morphine, codeine and normorphine were formed under these conditions.

In some experiments, proteins were precipitated with tungstic or trichloroacetic acid prior to the extraction step. Lower recoveries were obtained, due to protein binding. The most satisfactory extraction method was that described here.

b. GC-MS-COM analyses

Analyses of serum samples were carried out in the same way as for urine samples. The ions which were monitored were at 414/417 and 340/343 amu.

When the back extraction procedure was used, there was no interference with morphine determinations by endogenous substances.

2. Total morphine and other bases in serum

a. Hydrolysis, extraction, purification and derivatization

The internal standard (1.0 µg) was added to the serum sample (1 ml) and the solution was adjusted to pH 4.5 with acetate buffer after 3:2 dilution with water. The conjugated morphine was hydrolyzed, employing the same conditions as described for total morphine determinations in urine. After hydrolysis, the sample was extracted, purified and derivatized by procedures identical to those described for free morphine determinations in serum.

In some experiments, samples of 0.1 or 0.2 ml were analyzed; these were diluted to 0.5 ml before hydrolysis, and a correspondingly lower amount of morphine- \underline{d}_3 was added.

b. GC-MS-COM analyses

Analyses of serum samples were carried out in the same way as for free morphine measurements.

After enzymic hydrolysis and purification by back extraction, serum samples gave cleaner mass fragmentograms than urine samples.

V. RESULTS AND DISCUSSION

A. Mass spectral data

1. Electron impact mass spectra

The chief value of electron impact (EI) mass spectral data lies in uses in detection and identification studies, although quantitative work is carried out in some laboratories by EI techniques. In this work, where the objectives involved quantitative measurements, a study of EI spectra in the morphine series was carried out to determine if there were any advantages to be gained by using EI methods with a variety of morphine derivatives. The structures of all compounds used in this work were also validated by EI procedures.

The behavior of organic bases under EI conditions is not always predictable, but M jons are often formed; (M-H) ions may also be present. Fragmentation pathways may lead to cleavage products with or without a nitrogen-containing group. For morphine, and morphine-related compounds, elimination of the substituent at the 6-position (Chart 2) and elimination of most of the ring structure containing the 6-position, occurs relatively easily. The base peak is usually M⁺, but for diacetyl-morphine the most prominent ion corresponds to (M-CH₂CO)⁺; this is not unexpected for acetates. The major ions for morphine itself are at 285, 215 and 162 amu. The molecular ion $(M')_{\perp}$ at 285 amu is the base peak; the ion at 215 amu corresponds to $(M-70)^{+}$, indicating loss of most 30f the ring containing the 6-position. 0^{3} , 0^{6} -Dimethylmorphine and 0^{6} 0^{6} -Dimethylmorphi diethylmorphine had good gas chromatographic properties, and the mass spectra were very similar, allowing for the difference in substituent groups. The major ions corresponded to M^{\dagger} . Groups that were eliminated from dimethylmorphine led to ions at $(M-15)^{\dagger}$, $(M-31)^{\dagger}$ and $(M-84)^{\dagger}$; the $(M-84)^{\dagger}$ ion for dimethylmorphine corresponds to $(M-70)^{\dagger}$ for morphine and $(M-98)^{\dagger}$ or 243 amu in the diethylmorphine mass spectrum. The ions at 176 and 178 amu for dimethylmorphine correspond to the ions at 190 and 192 amu for diethylmorphine, suggesting that these fragments contain one of the 0° or 0° substituent groups. The spectra for the deuterated derivatives dimethylmorphine- \underline{d}_6 and diethylmorphine- \underline{d}_{10} showed ions at 179 and 181 amu, and at 195 and 197 amu respectively, ndicating that these ions contain only one substituent group of the 0^3 and 0^6 pair.

Diacetylmorphine has been used as a derivative in gas chromatographic studies, and 6-acetylmorphine is a metabolite of diacetylmorphine. The most suitable derivative of 6-acetylmorphine is 0 -trimethylsilyl-0 -acetylmorphine. Mass spectra of these compounds are in the Figures.

 0^3 , 0^6 -Ditrimethylsilylmorphine is a good derivative of morphine for quantitative studies. The major EI peak is at 429 amu, corresponding to M^{*}; the ions at 234 and 236 amu correspond to ions found at 176 and 178 amu for dimethylmorphine. The $\frac{1}{40}$ derivative shows the expected shifts in amu values. A prominent peak at (M-90) was not present (elimination

of trimethylsilanol) for the derivative, but the elimination evidently occurred to give an ion at $(N-90-15)^{-1}$ or 324 amu.

The mass spectrum of morphine-d₃ (NCD₃-morphine) showed a shift of the major peaks of morphine to 288 (M⁺), 218 and 165 amu; these were all shifted by 3 amu, indicating that the NCD₃ group was present in these ions. In the spectrum of the ditrimethylsilyl derivative, ions at 432 amu, or M⁻, 417, 404, 290, 239, 237, 199 and 149 amu all showed a shift of 3 amu, indicating that all of these ions contained the NCD₃ group.

The TMS derivative of 6-acetylmorphine has good gas chromatographic properties. A characteristic mass spectrum showing ions at 399, 357, 234 and 196 amu was obtained. These ions correspond to M^+ , $(M-42)^+$ corresponding to $(M-CH_2CO)^+$, and to the ions at 234 and 196 amu found in the mass spectrum of 2 0,0 -ditrimethylsilylmorphine. This indicates that the ions at 234 and 196 amu contained the aromatic ring with its 3-substituent group, and as shown earlier, the NCH₂ group.

Mass spectra were also obtained for a group of compounds in the normorphine series. When the NH group was present, the base peak was a cleavage product; when the NSi(CH₃)₃ group was present, the molecular ion was the base peak. The peak at 222 amu for the ditrimethylsilyl derivative of normorphine probably corresponds to the peak at 237 observed for the related derivative of morphine.

Intermediates in syntheses leading to morphine-d, were also characterized by their mass spectra. These spectra are included in the Figures.

2. Chemical ionization mass spectra

All methane chemical ionization mass spectra obtained for morphine and morphine derivatives, and for related compounds, showed well defined fragmentation patterns. Ions due to MH and M were present, along with ions resulting from the elimination of the substituent group at the 6-position. Small peaks corresponding to (M+29) and (M+41) were also present.

Morphine showed ions at 286, 285, 284 and 268 amu, corresponding to MH, M, (M-H) and (MH-18). Ions from the ditrimethylsilyl derivative of morphine were found at 430, 429, 428, 414 and 340 amu. These correspond to MH, M, (M-H), (MH-16) and (MH-90). The methyl group elimination leading to the (MH-CH₄) ion involves a trimethylsilyl group, and not the NCH₂ group.

The same effects are shown in the methane chemical ionization mass spectrum of the 0-trimethylsilyl derivative of morphine. The base peak corresponds to (MH-18), arising from the elimination of the 6-hydroxyl group as water. Other peaks were found to correspond to MH, M and (M-H), and to (MH-CH_L).

Diacetylmorphine showed ions at 370, 369, 368 and 310 amu, corresponding to MH, M, (M-H) and (MH-CH₃COOH). The base peak resulted from the elimination of the subscituent group in the 6-position.

Codeine gave the expected jons at 300, 299, 298 and 382 amu, corresponding to MH, M, (M-H) and (MH-18), with the latter ion as the base peak. 6-Acetylcodeine showed ions at 342, 341, 340 and 282 amu, corresponding to MH, M, (M-H) and (MH-CH₃COOH).

Normorphine showed ions at 272, 271, 270 and 254 amu, corresponding to MH, M, (M-H) and (MH-18), with the MH ion as the base peak. The tritrimethylsilyl derivative of pormorphine gave ions at 488, 487, 472 and 398 amu, corresponding to MH, M, (MH-16) and (MH-90).

Isobutane CI spectra were similar to methane CI spectra, but the mass spectrum of the ditrimethylsilyl ether showed only two (rather than three) major peaks, corresponding to MH and (MH-90). The same effect was found in the mass spectrum of the trimethylsilyl derivative of normorphine. This difference is characteristic of the reagents.

The condition chosen for quantitative work was based on chemical ionization with methane as the reagent gas, and with perivatives obtained by silylation.

3. Atmospheric pressure ionization mass spectra

The observation that chemical ionization mass spectra of morphine and related compounds, obtained with methane or isobutane as reagent gases, usually led to fragment ions as the base peaks (due to elimination of the 6-position substituent group) led Jardine and Fenselau (44) to investigate the use of nitric oxide as a reagent gas. It was found that M ions were formed by charge transfer, and that fragmentation did not occur. Similar studies were carried out by atmospheric pressure ionization techniques. It is not difficult to use 0.1% nitric oxide in helium as the ionizing gas, since a heated filament is not present. Both morphine, codeine and diacetylmorphine formed M' ions by charge transfer, as indicated in the Figures. This is a satisfactory method for the ionization of morphine and morphine-related compounds, and it may be used to detect impurities in morphing-related preparations. For example, a sample of acetylcodeine (0 -methyl-0 -acetylmorphine) was analyzed by atmospheric pressure ionization mass spectrometry with nitric oxide as the reagent gas. The original sample evidently contained free morphine, since the minor components were found to be diacetylmorphine, a monoacetylmorphine, and morphine, as well as codeine.

A sample of the trimcthylsilyl derivative of codeine gave an unusual mass spectrum indicating the presence of a codeine-related impurity; this result requires further study.

In a separate study of the use of a liquid chromatograph-mass spectrometer-computer analytical system based on API mass spectrometry, the sensitivity of detection of dicthylmorphine was investigated. The

 $\frac{d}{10}$ labeled substance was employed, since this would be required as an internal reference compound for the diethyl derivative. About 1 ng could be detected (Figure 40); the limiting sensitivity of detection of the LC-MS(API)-COM system is about 0.5 ng. On a concentration basis, this is about the same as the subpicogram sensitivity of detection demonstrated for the API mass spectrometer alone.

B. Analysis of urine

1. Free morphine and other bases in urine

Exploratory studies with the procedure described in the Experimental Section indicated that interfering substances were not likely to be encountered in urine except after hydrolysis. The free morphine method, with the ditrimethylsilyl derivative, was then applied to a number of urine samples. The internal reference compound was morphined $(NCD_3$ -morphine). To avoid the possibility of error, two ions were monitored, as indicated in the procedure.

The results of a series of urinary analyses are in the Appendix. Since morphine is excreted largely in conjugated form, the concentrations of morphine as free morphine are much less than those expressed as total morphine for all samples containing an appreciable concentration of morphine. For samples containing only trace amounts of morphine, the concentrations may be nearly the same. Free codeine was found in samples obtained soon after drug ingestion in amounts corresponding to 1-5% of the morphine concentration.

Diacetylmorphine and free 6-acetylmorphine were not detected in urine samples, for those samples containing relatively large amounts of morphine.

2. Total morphine and other bases in urine

The determination of total morphine concentration in urine presents a number of difficulties. Yeh (13) found that the hydrolysis of the 3-glucuronide of morphine was slow and dependent upon the volume of urine. This effect may be due to unrecognized inhibitors, but a more likely source of difficulty lies in the fact that steroid glucuronides are present and these may act as competitive substrates. When a large excess of enzyme was used, the hydrolysis of conjugates was complete. Direct extraction, however, yielded a sample that was not suitable for analysis. Continued study of the problem indicated that steroids were responsible for the observed interferences. This may also have been the source of the interferences described by Ikekawa et al. (55) for samples obtained by acid hydrolysis of urine.

Figures 41 and 42 show the nature of the problem, and two solutions. Ion monitoring at 430.2, 414.2 and 340.2 amu for the ditrimethylsilyl ether of morphine, and at the corresponding masses for the derivative of morphine- $\frac{d}{d}$ (3 amu greater) showed a considerable amount of interference due to other compounds. Back extraction into an aqueous solution, followed by reextraction, gave suitable samples (Figure 41). The use of an ion exchange column also gave good results. The analytical samples prepared in this way were free of interference from steroids (Figure 42).

Chart 3 shows the origin of the interference due to urinary steroids. Trimethylsilyl derivatives of androsterone, etiocholanolone and dehydroepiandrosterone are eluted from non-polar columns with nearly the same retention time as the trimethylsilyl derivative of morphine. These three steroids, under the conditions used for the derivatization of morphine, will form both the expected 0'-trimethylsilyl derivatives and the derivatives of the enol form of the steroids (0',0''-ditrimethylsilyl derivatives), as indicated in Chart 2. The GC separation with an SE-30 column of the O-trimethylsilyl derivatives of androsterone and dehydroepiandrosterone, and of the ditrimethylsilyl derivative of morphine, is shown in Figure 43. This was obtained by selective ion monitoring under CI conditions. The $0^3,0^{17}$ -ditrimethylsilyl derivatives of androsterone and etiocholanolone are also not well separated from the morphine derivative, so that interference may be expected from three steroid derivatives: the two derivatives of the enol forms of androsterone and etiocholanolone, and the O-derivative of dehydroepiandrosterone. Introduction of the ion exchange procedure for sample treatment resulted in analytical samples which were free of interference from steroids. Figure 42 shows the change in a typical sample; the ion exchange procedure decreases greatly the degree of interference for morphine-do ions which would otherwise be present.

The conditions for the elution of morphine from the ion exchange column were established by use of radioactive morphine. Figure 44 shows the elution step as accomplished with 4N hydrochloric acid.

Urinary samples were analyzed for total morphine content after hydrolysis and with use of the ion exchange method of sample purification. The results are in the Tables in the Appendix. The excretion of morphine occurs relatively rapidly, but small amounts are present in urine for a number of days after the major period of excretion has ended. This effect has been noted previously. The urinary excretion of morphine occurs primarily through conjugation.

Normorphine was not detected as a urinary metabolite.

In a few instances a slight increase in urinary morphine was noted well after establishment of trace excretion concentrations. The effect is not believed to be due to analytical artifacts or interference from unknown sources (for example, a human metabolite), but the increases are also so small that direct drug ingestion is not likely. Indirect transfer through smoke may be a possibility; this is known to occur for nicotine.

C. Analysis of serum

The determination of morphine in plasma, serum or cerebrospinal fluid, for samples containing relatively low concentrations of morphine, is difficult because of the small sample size available for analysis, and because of sample loss during the process of isolation and transfer into a small volume of derivatization reagent(s). These problems were discussed by Wilkinson and Way (21) for a gas chromatographic method based upon the use of the ditrimethylsilyl ether of morphine as the derivative of choice for the determination. Some sample loss was en-

countered due to the adsorption of morphine hydrochloride on glass during the concentration of a lN hydrochloric acid extract. The internal reference compound was tetraphenylethylene.

The method developed in the course of this work involved extraction by the salt/solvent procedure of M. G. Horning et al. (19), followed by back extraction with 0.1% hydrochloric acid (after the addition of hexane to depress the solubility of morphine hydrochloride in the organic solution), and reextraction with chloroform:isopropanol (3:1) after saturation with ammonium carbonate. The final evaporation of the transfer solvent (methanol) and the derivatization step were carried out in conical tubes (Reactivials). In this sequence of steps, the back extraction showed considerable losses until hexane was added to the ethyl acetate solution containing the sample.

The internal reference compound was morphine- \underline{d}_3 , and the instrumental analysis was carried out by GC-MS-COM techniques using methane chemical ionization. The ion pairs which were monitored were at 414/417 and 340/343 amu; the derivatives were the ditrimethylsilyl ethers of morphine and morphine- \underline{d}_3 . The instrumental analysis procedures were similar to those used in urinary analyses.

Morphine concentrations were determined both as free morphine and as total morphine, after enzymic hydrolysis with Glusulase of diluted samples.

Blood samples (serum or plasma) from humans and from animal experiments with baboons were analyzed both for free and total morphine. The results are in the Appendix.

Figure 45 shows a comparison of morphine analyses both before and after enzymic hydrolysis. Most of the morphine in blood, after morphine or diacetylmorphine ingestion, is present in conjugated form. From urinary studies, the major conjugate is known to be the 3-glucuronide. The transformation of diacetylmorphine into 6-acetylmorphine and morphine is extremely rapid; in the dog (32) the half-lives of the acetylated compounds are a few minutes.

VI. CONCLUSIONS

The most reliable and satisfactory methods for the analysis of biologic samples containing morphine and morphine-related compounds are based upon the use of gas chromatograph-mass spectrometer-computer analytical systems. In this work, a system based upon a quadrupole (electrical field) mass spectrometer was employed; the instrument was designed for chemical ionization work, and methane was used as the reagent gas.

A series of studies were carried out which included the synthesis of stable isotope labeled compounds and of a variety of derivatives of morphine and morphine-related compounds, and the development of analytical procedures for the determination of free and total morphine and morphine-related compounds in biologic samples. Mass spectral studies

were carried out by electron impact ionization, chemical ionization (0.5-1 Torr) and atmospheric pressure ionization mass spectrometry. The methods were applied in the analysis of a large number of urinary and some blood (serum, plasma) samples.

The procedures developed and applied in the course of this work can be used in other applications. Methods based upon GC-MS-COM systems show high specificity and high sensitivity in detection, and are generally regarded as reference methods of analysis.

METABÓLIC PATHWAY OF DIACETYLMORPHINE

Chart 1

THE PROPERTY OF THE PROPERTY O

 $R_1 = H$ R₂ = H MORPHINE $R_1 = CH_3$ R₂ = H CODEINE 0³, 0⁶-DIACETYLMORPHINE $R_1 = CH_3CO$ $R_2 = CH_3CO$ 0⁶-ACETYLMORPHINE $R_1 = H$ $R_2 = CH_3CO$ 0³, 0⁶-DIMETHYLMORPHINE $R_1 = CH_3$ $R_2 = CH_3$ 0³, 0⁶-DIETHYLMORPHINE $R_1 = C_2 H_5$ $R_2 = C_2 H_5$ 0³, 0⁶-DITRIMETHYLSILYLMORPHINE $R_1 = Si(CH_3)_3$ $R_2 = Si(CH_3)_3$ 0^3 -METHYL- 0^6 -ETHYLMORPHINE $R_1 = CH_3$ $R_2 = C_2H_5$

NORMORPHINE SERIES : NH IN PLACE OF NCH3

Titles to Figures

- Figure 1. Mass spectrum of morphine; EI, 20 eV.
- Figure 2. Mass spectrum of 0³,0⁶-dimethylmorphine; EI, 20 eV.
- Figure 3. Mass spectrum of deuterium labeled 0^3 , 0^6 -dimethylmorphine, with deuterium (d₆) labels in the methyl groups; EI, 20 eV.
 - Figure 4. Mass spectrum of 0³,0⁶-diethylmorphine; EI, 20 eV.
- Figure 5. Mass spectrum of deuterium labeled 0^3 , 0^6 -diethyl-morphine, with deuterium (d_{10}) labels in the ethyl groups; EI, 20 eV.
 - Figure 6. Mass spectrum of diacetylmorphine; EI, 20 eV.
- Figure 7. Mass spectrum of 0^3 , 0^6 -ditrimethylsilylmorphine; EI, 20 eV.
- Figure 8. Mass spectrum of deuterium labeled 0^3 , 0^6 -ditrimethylsilylmorphine, with deuterium (d_{18}) labels in the trimethylsilyl groups; EI, 20 eV.
- Figure 9. Mass spectrum of deuterium labeled morphine, with deuterium (\underline{d}_3) labels in the N-methyl group; EI, 20 eV.
- Figure 10. Mass spectrum of deuterium labeled $0^3, 0^6$ -ditrimethylsilylmorphine, with deuterium (\underline{d}_3) labels in the N-methyl group; EI, 20 eV.
 - Figure 11. Mass spectrum of 0 -acetylmorphine; EI, 20 eV.
- Figure 12. Mass spectrum of deuterium labeled 0^6 -acetylmorphine, with deuterium (\underline{d}_3) labels in the N-methyl group; EI, 20 eV.
- Figure 13. Mass spectrum of 0^3 -trimethylsilyl- 0^6 -acetylmorphine; EI, 20 eV.
- Figure 14. Mass spectrum of 0³,0⁶-ditrimethylsilylnormorphine; EI, 20 eV.
- Figure 15. Mass spectrum of 0^3 , 0^6 , N-tritrimethylsilylnormorphine; EI, 20 eV.
- Figure 16. Mass spectrum of 0^3 -methyl- 0^6 -trimethylsilylnor-morphine; EI, 20 eV.
- Figure 17. Mass spectrum of 0^3 -methyl- 0^6 , N-ditrimethylsilyl-normorphine; EI, 20 eV.
- Figure 18. Mass spectrum of 0^3 , 0^6 -diacetyl-N-cyanonormorphine; EI, 20 eV.

- Figure 19. Mass spectrum of N-cyanonormorphine; EI, 20 eV.
- Figure 20. Mass spectrum of 0³,0⁶,N-tricarbethoxynormorphine.
- Figure 21. Mass spectrum of morphine; CI, methane.
- Figure 22. Mass spectrum of 0^3 , 0^6 -ditrimethylsilylmorphine; CI, methane.
- Figure 23. Mass spectrum of 0^3 -trimethylsilylmorphine; CI, methane.
 - Figure 24. Mass spectrum of 0³,0⁶-diacetylmorphine; CI, methane.
- Figure 25. Mass spectrum of 0^3 -methylmorphine (codeine); CI, methane.
- Figure 26. Mass spectrum of 0^3 -methyl- 0^6 -trimethylsilylmorphine (0^6 -trimethylsilyl ether of codeine); CI, methane.
- Figure 27. Mass spectrum of 0^3 -methyl- 0^6 -acetylmorphine (0^6 -acetyl derivative of codeine); CI, methnae.
 - Figure 28. Mass spectrum of normorphine; CI, methane.
- Figure 29. Mass spectrum of 0^3 , 0^6 , N-tritrimethylsilylnormorphine; CI, methane.
 - Figure 30. Mass spectrum of morphine; CI, isobutane.
- Figure 31. Mass spectrum of 0^3 , 0^6 -ditrimethylsilylmorphine; CI, isobutane.
 - Figure 32. Mass spectrum of 0³,0⁶-diacetylmorphine; CI, isobutane.
- Figure 33. Mass spectrum of 0^3 -methylmorphine (codeine); CI, isobutane.
- Figure 34. Mass spectrum of 0^3 -methyl- 0^6 -acetylmorphine (0^6 -acetyl derivative of codeine); CI, isobutane.
 - Figure 35. Mass spectrum of normorphine; CI, isobutane.
- Figure 36. Mass spectrum of 0^3 , 0^6 , N-tritrimethylsilylnormorphine; CI, isobutane.
- Figure 37. Mass spectrum of a sample of codeine derivatized by formation of the 0 trimethylsilyl ether; API, nitric oxide.

Figure 38. Upper panel: mass spectrum of 0^3 , 0^6 -diacetylmorphine; AFI, nitric oxide. Lower panel: mass spectrum of a sample of codeine derivatized by acetylation; API, nitric oxide. Some unreacted codeine was present. Morphine was also present as an impurity, leading to te presence of 0^3 , 0^6 -diacetylmorphine, a monoacetylmorphine and morphine in the analytical sample.

Figure 39. Upper panel: mass spectrum of morphine; API, nitric oxide. Lower panel: mass spectrum of codeine; API, nitric oxide.

Figure 40. Detection of 0^3 , 0^6 -diethylmorphine- \underline{d}_{10} (labeled with deuterium in the ethyl groups) with a LC-MS-COM system based on an API mass spectrometer.

Figure 41. Selective ion detection charts for the analysis of morphine in urine, employing the 0 $^{\circ}$,0 $^{\circ}$ -ditrimethylsilyl ether of morphine as the derivative, and with CI (methane) mode of operation. Left panel: analysis of a sample extracted directly from urine. Right panel: analysis of a sample partially purified by back extraction. In both instances the internal standard was morphine- \underline{d}_3 (NCD $_3$ -morphine).

Figure 42. Selective ion detection charts for the analysis of morphine in urine, employing the $0^{\circ},0^{\circ}$ -ditrimethylsilyl ether of morphine as the derivative, and with CI (methane) mode of operation. Left panel: analysis of a sample extracted directly from urine. Right panel: analysis of a sample partially purified by an ion exchange procedure. In both instances the internal standard was morphine- \underline{d}_3 (NCD₃-morphine).

Figure 43. Selective ion detection chart showing the interference of the trimethylsilyl ether derivative of dehydroepiandrosterone with the 0,0 ditrimethylsilyl ether derivative of morphine. The trimethylsilyl ether derivative of androsterone is eluted before the derivative of morphine; the corresponding derivative of etiocholanolene is also eluted before the derivative of morphine.

Figure 44. Elution of morphine from an ion exchange column (AG 50Wx8) with 4N hydrochloric acid.

Figure 45. Selective ion detection charts showing the analysis of a plasma sample for free (left panel) and total (right panel) morphine. Morphine- $\frac{d}{d}$ (NCD₃-morphine) was used as the internal standard; the derivatives were the $\frac{d}{d}$ 0 -ditrimethylsilyl ethers.

organisations of the commence of the part of the part

Figure 7

Figure 8

Figure 10

tersocrats lister in the differential between the position of the time in the contract of the

igure 20

the property of the property o

API MASS SPECTRUM 0.1% NITRIC OXIDE IN HELIUM

 M^+

API MASS SPECTRA

0.1% NITRIC OXIDE HELIUM

200°C

Figure 41

Figure 42

MORPHINE, ANDROSTERONE, DHEA TMS DERIVATIVES

Alternative Control

14_{C-MORPHINE} + HYDROLYZED URINE AG 50W x 8 resin

Figure 44

MORPHINE (PLASMA)

Figure 45

VII. LITERATURE CITED

- 1. W. J. A. VandenHeuvel, C. C. Sweeley and E. C. Horning. Separation of steroids by gas chromatography. J. Am. Chem. Soc., 82, 3481 (1960).
- 2. E. C. Horning, W. J. A. VandenHeuvel and B. G. Creech. Separation and determination of steroids by gas chromatography. "Methods of Biochemical Analysis", Vol. XI, Ed. D. Glick, Interscience Publ., New York, N.Y., 1963.
- 3. T. Luukkainen, W. J. A. VandenHeuvel, E. O. A. Haahti and E. C. Horning. Gas chrom tographic behavior of trimethylsilyl ethers of steroids. Biochim. Biophys. Acta, <u>52</u>, 599 (1961).
- 4. R. Ryhage. Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns. Anal. Chem., 36, 759 (1964).
- 5. C-G. Hammar, B. Holmstedt and R. Ryhage. Mass fragmentography: Identification of chlorpromazine and its metabolites in human blood by a new method. Anal. Biochem., 25, 532 (1968).
- 6. R. A. Hites and K. Biemann. Computer evaluation of continuously scanned mass spectra of gas chromatographic effluence. Anal. Chem., 42, 855 (1970).
- 7. U. Boerner, S. Abbott and R. L. Roe. The metabolism of morphine and heroin in man. Drug Metab. Rev., 4, 39 (1975).
- 8. S. Y. Yeh. Isolation and identification of morphine ethereal sulfate, normorphine and normorphine conjugate as morphine metabolites in man. Fed. Proc., 32, 763 (1963).
- 9. J. M. Fujimoto and V. B. Haarstad. The isolation of morphine ethereal sulfate from urine of the chicken and cat. J. Pharmacol. Exp. Ther., 165, 45 (1969).
- 10. U. Boerner and S. Abbott. New observations in the metabolism of morphine. The formation of codeine from morphine in man. Experientia, 29, 180 (1973).
- 11. S. Y. Yeh. Report of the Committee on Problems of Drug Dependence, National Academy of Sciences, National Research Council, N. Y. Academy of Sciences, 1973, p. 215.
- 1?. U. Boerner, R. L. Roe and C. E. Becker. Detection, isolation and characterization of normorphine and norcodeine as morphine metabolites in man. J. Pharm. Pharmacol., <u>26</u>, 393 (1974).
- 13. S. Y. Yeh. Urinary excretion of morphine and its metabolites in morphine-dependent subjects. J. Pharmacol. Exp. Ther., 192, 201 (1975).

- 14. J. T. Woo, G. A. Gaff and M. R. Fennessy. A note on the effects of 2,4-diamino-5-phenylthiazole and 1,2,3,4-tetrahydro-9-amino-acridine on morphine metabolism. J. Pharm. Pharmacol., 20, 763 (1968).
- 15. A. L. Misra, C. L. Mitchell and L. A. Woods. Persistence of morphine in central nervous system of rats after a single injection and its bearing on tolerance. Nature, 232, 48 (1971).
- 16. H. M. Bolt, H. Kappus and H. Remmer. Studies on the metabolism of ethynylestradiol in vitro and in vivo: the significance of 2-hydroxylation and the formation of polar products. Xenobiotica, 3, 773 (1973).
- 17. P. B. Hulbert. Carbonium ion as ultimate carcinogen of polycyclic aromatic hydrocarbons. Nature, 256, 146 (1975).
- 18. S. F. Brunk and M. Delle. Morphine metabolism in man. Clin. Pes., 21, 467 (1973).
- 19. M. G. Horning, P. Gregory, J. Nowlin, M. Stafford, K. Lertratanangkoon, C. Butler, W. G. Stillwell and R. M. Hill. Isolation of drugs and drug metabolites from biological fluido using salt-solvent pairs. Clin. Chem., 20, 282 (1974).
- 26. K. Milthers. Normorphine, nalorphine and morphine. Quantitative separation and determination of small amounts in blood and tissues. Acta Pharmacol. Toxicol., 18, 199 (1961).
- 21. C. R. Wilkinson and E. L. Way. Sub-microgram estimation of morphine in biological fluids by gas-liquid chromatography. Biochem. Pharmaol., 18, 1435 (1969).
- 22. J-P. Thenot and E. C. Harning. GC behavior of 3-ketosteroid nethoximes. Application to GC studies of adrenocortical steroid hormone MO-TMS derivatives. Anal. Letters, 5, 801 (1972).
- 23. P. A. Clarke and R. L. Foltz. Quantitative analysis of morphine in urine by gas₂chromatography-chemical ionization-mass spectrometry with [N-C H₃] morphine as an internal standard. Clin. Chem., 20, 465 (1974).
- 24. D. E. Fry, P. D. Wills and R. G. Twycross. The quantitative determination of morphine in urine by gas-liquid chromatography and variations in excretion. Clin. Chim. Acta, 51, 183 (1974).
- 25. F. Fish and W. D. C. Wilson. Gas chromatographic determination of morphine and cocaine in urine. J. Chromatogr., 40, 164 (1969).
- 26. R. Truhaut, A. Esmailzadeh, J. Lebbe, J-P. Lafarge and N. P. Lich. Contribution a la recherche et au dosage de la morphine dan l'urine par chromatographie en phase gazeuse. Ann. Biol. chim., 32, 429 (1974).

- 27. G. J. Digregorio and C. O'Brien. Chromatographic detection of narcotic antagonists in human urine. J. Chromatogr., 101, 424 (1974).
- 28. H. E. Sine, N. P. Kubasik and J. Waytash. Simple gas-liquid chromatographic method for confirming the presence of alkaloids in urine. Clin. Chem., 19, 340 (1973).
- 29. S. Felby, H. Christensen and A. Lund. Morphine concentrations in blood and organs in cases of fatal poisoning. Foren. Sci., 3, 77 (1974).
- 30. K. D. Parker, J. A. Wright, A. F. Halpern and C. H. Hine. Preliminary report on the detection and quantitation of opiates and certain other drugs of abuse as trimethylsilyl derivatives by gas-liquid chromatography. J. Foren. Sci. Soc., 10, 17 (1970).
- 31. W. O. R. Ebbinghausen, J. H. Mowat, P. Vestergaard and N. S. Kline. Stable isotope method for the assay of codeine and morphine by gas chromatography-mass spectrometry, A feasibility study. Adv. Biochem. Pharmacol., 7, 135 (1973).
- 32. D. A. Smith and W. J. Cole. Rapid and sensitive gas chromatographic determination of diacetylmorphine and its metabolite monoacetylmorphine in blood using a nicrogen detector. J. Chromatogr., 105, 377 (1975).
- 33. W. O. R. Ebbinghausen, J. Mowat and Per Vestergaard. Mass fragmenta-graphic detection of normorphine in urine of man after codeine intake. J. Pharm. Sci., 62, 146 (1973).
- 34. J. M. Moore and F. E. Berra. Rapid gas chromatographic assay for heroin in illicit preparations. Anal. Chem., 44, 385 (1972).
- 35. G. R. Nakamara, T. T. Noguchi, D. Jackson and D. Banks. Forensic identification of heroin in illicit preparations using integrated gas chromatography and mass spectrometry. Anal. Chem., 44, 408 (1972).
- 36. P. de Zan and J. Fasanello. The quantitative determination of heroin in illicit preparations by gas chromatography. J. Chromatogr. Sci., <u>10</u>, 333 (1972).
- 37. H. V. Street. Gas-liquid chromatography of submicrogram amounts of drugs. IV. Identification of barbiturates, hydantoins, amides, imides, carbamates, phenylbutazone, carboxylic acids and hydrazine derivatives by direct derivative formation within the gas chromatograph. J. Chromatogr., 41, 358 (1969).

Rain Constant Constant Solven Constant Constant Constant Constant Constant Constant Constant Constant Constant

- 38. E. C. Horning, M. G. Horning, D. I. Carroll, I. Dzidic and R. N. Stillwell. A new picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem., 45, 936 (1973).
- 39. D. I. Carroll, I. Dzidic, R. N. Stillwell, M. G. Horning and E. C. Horning. A subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry. Anal. Chem., 46, 706 (1974).

- 40. E. C. Horning, D. I. Carroll, 1. Dzidie, K. D. Haegele, M.G. Horning and R. N. Stillwell. Liquid chromatograph-mass spectrometer analytical systems. A continuous flow system based on atmospheric pressure ionization mass spectrometry. J. Chromatogr., 99, 13 (1974).
- 41. E. C. Horning, D. I. Carroll, 1. Dzidic, K. D. Haegele, M. G. Horning and E. N. Stillwell. Atmospheric pressure ionization (API) mass spectrometry. S tent mediated ionization of sample introduced in solution and in a liquid chromatograph effluent stream. J. Chromatogr. Sci., 12, 725 (1974).
- 42. I. Dzidic, D. I. Carroll, R. N. Stillwell and E. C. Horning. Atmospheric pressure ionization (API) mass spectrometry. Formation of phenoxide ions from chlorinated aromatic compounds. Anal. Chem., 47, 1308 (1975).
- 43. D. I. Carroll, f. Dzidic, R. N. Stillwell, K. D. Haegele and E. C. Horning. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal. Chem., 47, 2369 (1975).
- 44. I. Jardine and C. Fenselau. Charge exchange mass spectra of morphine and tropane alkaloids. Anal. Chem., 47, 730 (1975).
- 45. E. J. Corey and M. Chaikovsky. Methylsulfinyl carbanion. J. Amer. Chem. Soc., 84, 866 (1962).

onning of the constant of the

- 46. E. J. Corpy and M. Chaikovsky. Methylsulfinyl carbanion (CH₂-SO-CH₂). Formation and applications to organic synthesis. J. Amer. Chem. Soc., 87, 1345 (1975).
- 47. S-I. Hakomori. A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethylsulfoxide. J. Biochem., 55, 205 (1964).
- 48. K. D. Haegele, G. Holzer, W. Parr, C. H. Nakagawa and D. M. Desiderio. Mass spectrometry of synthetic oligopeptides N,0-permethylated, N-acetylated derivatives. Biomed. Mass Spectr., 1, 175 (1974).
- 49. P. A. Leclercq and D. M. Desiderio. A laboratory procedure for the acylation and permethylation of oligopeptides on the microgram scale. Anal. Letters, 4, 305 (1971).
- 50. J. von Braun, Eerichte. Untersuchungen über morphium alkaloide. Berichte, 47, 2312 (1914).

51. C. Elison, H. W. Elliot, M. Look and H. Rapoport. Some aspects of the fate and relationship of the N-methyl group of morphine to its pharmacological activity. J. Med. Chem., $\underline{6}$, 237 (1963).

- 52. M. M. Abdel-Monem and P. S. Portoghese. N-demethylation of morphine and structurally related compounds with chloroformate esters. J. Med. Chem., 15, 208 (1972).
- 53. T. A. Montzka, J. D. Matiskella and R. A. Partyka. 2,2,2-Trichloroethyl chloroformate: Λ general reagent for demethylation of tertiary methylamines. Tetrahedron Lett., 14, 1325 (1974).
- 54. J-P. Thenot and E. C. Horning. MO-TMS derivatives of human urinary steroids for GC and GC-MS studies. Anal. Letters, 5, 21 (1972).
- N. Ikekawa, K. Takayama, E. Hosoya and T. Oka. Determination of morphine in urine by gas chromatography. Anal. Biochem., 28, 156 (1969).

VIII. APPENDIX

PHASE I

SYMBOLS:

- ND -- Never detected
- + -- Trace detected (amount too small to measure)
- R -- Repeat analysis (value changed from 1st results sent)
- * -- Corrected result, error on first results sent
- o -- Results not sent previously

GC-MS Metabolites	Nor-morphine %		ON O	GN	GN	QN	QN QN	QN	ND	QN	QN	Œ.		QN	QN.	
GC Metal	Codeine %		+	QN ON	NO	QN	QN	QX	QN	QN	Q	Q		ND	N ON	
Frat	Value		5.850	0,0,0	0.042	0.011	0.020	0.020	0.040	0.010	0.025	0.035		2.840	0.190	
GC-MS	Free Morphine ug/ml	i u	0.35	0.03	0.00	00.00	* * * * * * * * * * * * * * * * * * * *	1	*** *** ***	00.0	00.0	00.0		0.32	0.03	
GC-MS	ιοται Morphine μg/ml	α 7 τ	10.0	0.08	0.04	0.02	0.01	00.00	00.00	0.01	0.01	0.01		3.79	0.28	
Special	obertment wo.	6-12205		6-12435	6-12504	6-13034	6-12936	6-12708	6-12567	6-12462	6-12935	6-12702		6-12332	6-12770	
Patient/Dav		1-0		1-5	1-7	1-12	2-0	2-1	2-3	2-4	2-5A	2-5B	,	3~1	3-3	

{	Specimen No.	GC-MS Total Norphine ug/ml	GC-MS Free Morphine µg/ml	Frat Value	Metal Codeine	GC-MS Metabolites ine Nor-morphine %
6-12236	9	0.00	0.00	0.037	QN	CIN
6-12570	0	00.0	00.00	0.170	N	αN
6-12505	Ю	00.00	0.00	0.008	N	- GN
6-12366	v.c	00.00	0,30	900.0	QN QN	ND
6-12433	~	00.0	0.00	0.022	GN	ΩŅ
6-12535	10	00.0	0.00	0.017	ON	QN
6-13033		0.00	0.00	0.017	a _N	C)
6-12764		0.35	0.02	0.470	a	Q.
6-12832		0.11	0.00	0.165	£ 8	! 9
6-12510		0.03	0.00	0.028	QX	į (ž
6-12501		0.04	03.0	0.122	ND	S
6-12904	_	0.01	0.00	0.170	QN	ŒN
6-12531		0.02	0.00	0.012	QN QN	Œ

Marie Marie & Sir.

٠.

MS lites Nor-morphine %	2	ON	NO ON	S S	CN	ON.	QN	ON	QN	QN	ND	CN.	ę,
GC-MS Metabolites Codeine Nor-m		CN CN	QN	GN	QN	QN Q	CN CN	ON	QN	QN	QN QN	QN ON	Q.
Frat Value		0.041	0.062	0.004	2.500	0.910	0.001	0.037	0.004	0.073	0.130	0.940	0.010
GC~MS Free Morphine ug/ml		0.00	02.0	0,00	0.17	0.05	00.00	٠٠.٥٥	!!!	-	0.01	ń.12	00.00
GC-MS Total Morphine 1,g/ml		0.01	0.02	00.0	3,87	69.0	0.03	0.01	00.0	03.0	0.12	1.06	0.01
Specimen No.		6-12963	6-12139	6-13009	6-12432	6-12837	6-1.2539	6-12709	6-12169	6-12831	6-12040	6-12116	6-12234
Patient/Day		4-10	4-11	4-12	5-2	5–3	5-6	5-8	59	5-10	0-9	61	6-4A

?

THE PROPERTY OF THE PROPERTY O

eterebenden begenden begenden bei besten begenden begenden begreen beg

Patient/Day	Specimen No.	GC-MS Total Morphine µg/ml	GC-MS Free Morphine µg/ml	Frat Value	GC Metal Codcine %	GC-MS Metabolites sine Nor-morphine
6-4B	6-12503	0.03	0.00	0.020	QN QN	CIN
6-5	6-12509	0.01	00.0	0.000	QN	QN
7-2	6-12335	0.97	0.04	2.310	QN	ND
8-0	6-12166	723	72.6	21.263	1.59	+
 	6-12934	52.1	4.71	18.800	96.0	QN
0-6	6-12962	7.5.6	0.43	5.140	1.05	QN
9-1	6-12336	3.57	0.11	2.300	+	QN
10-0	6-13107	3.20	0.07	3.760	1.37	QN ON
10-1	6-12561	83.9	1.57	14.300	ES.	ON
11-0	6-12931	00.0	Cymp as a	0.025	ON	ND

and have but the

ALTERNATION OF THE PROPERTY OF

GC-MS Frat Metabolites Value Codeine Nor-morphine	ON GN OO	(A) 0.18 ND	00 2.05 ND	GN GN O8	82 ND ND	30 ND ND	82 ND ND	30 ND ND	t5 ND ND	ON ON 80	23 ND ND	.2 ON ON
Frat Value	12.600	3.900	3.200	2.280	0.182	0.030	0.082	0.030	0.045	0.008	0.023	0.012
GC-MS Free Morphine ug/ml	0.31	0.32	4.32	0.11	0.00	00.0	00.0	0.00	00.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00.00	0.00
GC-MS Total Morphine ug/ml	9.73	14.8	3.54	2,83	4.12	0.02	0.01	60,03	0.01	00.00	0.01	0.03
Specimen No.	6-12767	6-12161	6~12334	6-12736	6-12207	6-12340	4=14岁4	6=12438	6-12370	6=1 3068	6-12706	6-12165
Patient/D&y	12-0	13-0A	13-0B	1-51	13-2	13-4	13-5	4-1-1	13mB	g=61	13-10	13-11

GC-MS Metabolites ine Nor-morphine	СN	QN.	QN	QN	GN	ND	ON	CIN	ND	ON	QN	eg.
GC Metat Codeine %	QN	MD	06.0	0.32	QN ON	CN	QN Q	QN	QN	QX QX	QN	0.85
Frat Value	0.062	090.0	6.530	4.010	0.140	0.085	0.152	0.116	0.082	0.065	0.030	2.600
GC-MS Free Morphine µg/ml	0.00	0.01	0.44	0.18	0.03	1 1 1	0.02	0.01	700 000 000 000	00.0	00.0	0.97
CC-MS Total Morphine uS/ml	0.02	0.02	18.2	3.46	0.10	0.04	0.02	0.03	00.0	0.02	0.01	2.52
Specimen No.	6-12201	6-12352	6–12303	6-12464	6-12803	6-12361	6-12502	6-12568	6-12268	6-12508	6-12106	6-12436
Pacient/Day	13-12	13-12B	14-1	14-2	14-3	14-6	14-7	14-8	14-93	.14-9B	14-10	14-12

										•				•		
GC-MS Metabolites fine Nor-morphine	!	QN N	QN	OM	Ę	g &	Ę	Q		Ę) <u>f</u>		QN	Q.	, QN	N CN
Meta Codeine %	į	QN.	£	QN	g	QN	0.779			QN	Ę) §	Q.	2	SS SS	QN Q
Frat Value	1 500) i	0.02/	0.054	0.028	900.0	6.980	2.40		8.400	0.041	0.035		0.017	0.008	600.0
GC-MS Free Morphine µg/ml	0.04			00.0	The state cape cape	-	0.79	0.24		0.48	-	0.01		00.0	400 day may nay	
GC-MS Total Morphine ug/ml	1.36	0.02	•	0.01	00.0	0.00	24.6	3.49		8.26	00.00	0.02	0.02	i	0.00	0.01
Specimen No.	6-12304	6-12108	6_19207	/0671-0	6-12563	6-12835	6–12565	6-12209	00101	0-12132	6-12133	6-12410	6-12733	70701 9	0-12434	6-12910
Patient/Day	15-2	1.5-7	15-9	, r	07-51	15-14	16-0	16-1	17-0) i	17-8A	17-8B	17-9	17-10		L/~TI

(<u> </u>				-					-	~	•	
GC-MS Metabolites Sine Nor-morphine %		QN	ON .	an.	QN.	CIN CIN	CN	CN.	QN	CN	QN	QN	χίχ
GC Metab Codeine %		GN	Q.	QN QN	QN QN	QN	SS.	ON	ND	QN	QX	QN.	QN
Frat Value		0.011	0.000	0.016	0.010	0.009	0.001	0.000	2.870	1.860	1.300	0.220	0.170
GC-MS Free Morphine ug/ml		1 1	00.0		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ł !		90.0	0.19	0.10	0.10	0.02
GC-MS Total Morphine µg/ml		0.01	0.01	0.02	0.00	0.00	0.00	0.00	3.64	1.58	0.55	0,16	9°°0
Specimen No.		6-12240	6-12067	6-12261	6-12306	6-12104	6-12468	6-12802	6-12066	6-12333	6-12237	6-12305	6-12905
Pacient/Day		17-12	17-13	19-1A	19-1B	19-3	19-4	19-5	20-2	7-02	30-5	. 20~6	20-7

Patient/Day	Specimen No.	GC-MS Total Morphine µg/ml	GC-MS Free Morphine ug/ml	Frat Value	GC Metab Codeine %	GC-MS Metabolites :ine Nor-morphine
20-9	6-12208	0.01	0.00	0.050	QN	CIN
20-9B	6-12365	0.01		0.023	Ø	ę ex
20-10A	6-12235	0.00	00.0	0.049	S S	QX
20-10B	6-12363	00.0	***	000.0	æ	ON CHARLES
20-11	6-1290 <u>1</u>	0.04	00.0	0.004	Q _N	QX
20-12	6-13103	00,00	1	0.007	QN	Ŕ
20-13	6-12532	00.0	-	0.035	N	a QX
20-14	6-12206	2.62	0.42	3.500	5.21	E CEN
21-1	6-12063	31.7	2.63	6.520	1.04	ĘX.
21-2	6-12102	3.36	0.41	2.720	+	l §
21-3	6-12467	1.14	0.25	1.480	S) <u> </u>
21-8	6-12406	0.07	0.03	0.450	Ø	
21-10	6~12808	0.08	0.02	0.251	QX	N QN

Patient/Day	Specimen No.	GC~MS Total Mcrphine µg/ml	GC-MS Free Morphine ug/ml	Frat Value	GC Metab Codeine %	GC-MS Metabolites sine Nor-morphine %
21-11	6-12867	0.08	1	0.299	Ø	ON
21-13	6-12131	0.02	0.01	0.114	QN	MD
22-1	6-12266	3.70	0.15	2.900	+	QN
22-2	6-12836	96°0	0.08	1.160	CN	CN
22-4	6-12470	0.01		0.035	QN	QN
22-6	6-12431	0.00	1	0.054	QN	QN
22-8	6~12810	0.01	! ! !	0.089	MD	QN
22-9	6-12701	0.01		0.042	QN	QN
. 22-10A	6-12863	00°0	1 1	0.020	CN	MD
22-10B	6-12202	0.00	00.0	0.035	QN Q	QN
22-11	6-12069	0,03	1	0.035	QN	QN
22-12	6-12466	0.01	1 1	0.057	QN	Ď.

7.

A SOUTH SOUTH

		GC~MS	GC-MS	Frat	GC Metab	GC-MS Metabolites
Patient/Day	Specimen No.	Total Morphine µg/ml	Free Morphine µg/ml	Value	Codeine %	Nor-morphine %
23-1	6-12405	4.41	0.51	3.900	ŀ	}
23-2	6-12908	6:59	0.65	4.520	+	. QN
23~3	6-12339	1.86	0.11	1.200	M	QN
23-4	6-12134	0.09	00.0	0.041	QN	QN
23-5	6-12704	0.04	0.02	900.0	MD	QN
23–9	6-12308	00.0	. 00°0	0.017	ON	QN
23-10	6-12801	00.0	1	0.010	MD	QN
23-13	6-12137	00.0	1 1	0.020	MD	QN
23-14	6-13010	00.0		0.004	QN	QN
24-1	6-12806	2.67	0.14	2,200	QN	Ď
24-2	6-12210	0.61	0.05	0.840	OK.	Q <u>N</u>
24-4	6-1256	0.01	00.00	0.922	ND	QN
24-6	6-12533	00.0	00.0	0.017	QN	QN
				-		

GC-MS Metabolites ine Nor-morphine	4.	ON S	2 g	·	(IN CAN	G S	M	. Q	·	es.	QN	άŃ	
GC Metab Codeine %	ģ	2 £		Ę	g 8	Q.	ON.	e e	C¥.	Q.	æ	QN	
Frat Value	0.030	0.0.0	0.006	9.016	0.016	900~0	0.002	0.540	0.230	0.063	0.302	0.020	
GC-MS Free Morphine ug/ml	\$ 44	0.04		1	** ** ** ***		!	0.03	0.01	00.0	***	1 - -	
GC-MS Total Morphine µg/ml	0,09	0.04	00.0	, 00°0	0.00	05.0	то о	89.3	0.97	6.01	0.00	00.0	
Specimen No.	6-12062	6-12705	6-12834	6-12036	6-12907	6-12710	6-12809	6-12964	6-12805	6-12238	6-12707	6-12961	•
Patient/Day	24-8	24-12	24-13	25-0	25-2	25–3	25-6	27-2	27-4	27-5	27-6	27-7	_

WHIP THE WALL SOUTH SOUT

of property of the property of

	-	È		~							,		•		~ -		
GC~MS Metabolites	Nor-morphine %		+	QN	A	QN	QN.	CJ.		CIN	ND	QX -	ND .	Ę	Q.	GN .	QN.
GC Meta	Codeine %		CN	QN		Q.	æ	CN		E S	ES.	Qίχ	CIN	1.00	•	. +	Ø
Frat	Value		0.022	0.062	0.009	0.001	0.004	0.002	٠	1.700	0.490	0.301	0.065	8,720)	2,046	0.083
SW-D5	Free Morphine 'zg/ml		4. W. W.				4 11 22 2	9. on 90 to	-	0.15	0.02	0.01	0.00	0.74		60.0	00.00
GC-MS	Total Morphine ug/ml		00.0	00.00	0.00	0.00	0.01	0.01		1,79	0.35	0.14	95.0	12.7		1.87	0.03
	Specimen No.		6-12569	6-12103	6-12070	6-12469	6-12140	6-12168		6-12838	6-13036	6-13058	6-13105	6-13035		.,-12965	6-13039
	Patient/Day	•	27-8	27-1C	27-113	27-11B	27-12	27-13		2R-2	28-4	2,8,-5	28-13	30-3		30-6	33-10

ç

. ue						-		-			· , ,
GC-MS Metabolites ine Nor-morphine	ON ON	QN	Q	CIX	Ê	QN .	άχ	ON.	QN .	QN	QN
GC Metal Vodeine %	QN.	QN QN	QN	Ŕ	ON O	CIN	CIN	Ŕ	Ř	QN	QN .
Frat Value	0.174	0.000	0.022	0.001	0.017	0.008	0,012	0.035	0.012	0.057	0.140
GC-MS Free Morphine ug/ml	00.00	00.0	00.0		1		0.01	1	00.0	***	00.0
GC-MS Total Morphine ug/ml	0.08	0.01	0.01	0.01	0.01	0.01	0.02	. 0.01	0.02	0.01	0.05
Specimen No.	6-13004	6-13007	6-13005	6–13006	6-12970	6-13003	.6-12968	6-13102	6-12966	6-13040	6-12439
Patient/Day	31-5	31-6	31-8	32-6	32-8	33-9	34-7	35-4	36-3	7-96	37.22

THE SECTION OF THE SE

Patient/Day	Specimen No.	GC~MS Tote,1 Morphine ug/m1	GC-MS Free Morphine	Frat Value	Merah Codeine %	Merabolites Codeine Nor-morphine % %	1
							-
38-0	6-12938	9,38	4.18	14.400	£	ОМ	
99-1	6–12906	0.01	00.00	0.012	Ø	QX.	•
99-2	6-12302	0.00	क्षक प्राप्त कर कर	0.030	QN	QN QN	
8-66	6-12865	00.0		900.0	CN CN	QN *	
99-14	6-12262	0.00	!	0.045	QN	MD	

REPEATS FROM PHASE I AS REQUESTED BY ARMY

Patient/Day	Specimen No.	GC-MS Total Morphine µg/ml	GC-MS Free Morphine µg/ml
4-3	6~12764	0.27	0.01
4-7	6-12501	90.0	0.01
6-7	6-12531	0.02	00.00
4-12	6-13009	0.01	0.00

Andrew Contraction of the Contra

PHASE II

SYMBOLS:

- ND -- Never detected
- + -- Trace detected (amount too small to measure)
- R -- Repeat analysis (value changed from lst results sent)
- * -- Corrected result, error on first results sent
- o -- Results not sent previously

Patient/Day	Specimen No.	Total Volume (m1)	GC- Total N ug/ml	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morr	GC-MS Free Morphine g/ml mg/24 hr	Frat Value µg/ml	GC-MS Metabol Codeine N	GC-MS Metabolites Fine Nor-morphine
				•		6	i C	Ę	ş
1-0	6-00708	925	4.28	3.96	0.34	0.31	5.85	ON.	ON.
1-1	6-00714	475	6.31	3,00	0.43	0.20	5.70	QN	QN O
1-2	No Specimen	-	1	1	1		1.71	1	
1-3	6-00736	445	0.41	0.18	0.01	00.00	0.67	ON	ON
1-4	6-00741	525	0.02	0.01	00.0	00.0	0.017	Q.	QN
1-5	6-00761	1065	0.01	0.01	00.0	00.0	0.004	QN	CIN
1-6	6-00769	880	0.01	0.01	0.01	0.01	0.063	QN QN	QN
1-7	6-00794	360	0.01	0.01	0.01	00.00	0.042	QN	QN
1-8	6-00795	615	0.01	00.00	00.0	00.0	0.028	ON	ND
1-9	96-00-9	585	0.01	00.0	00.0	00.0	0.023	QN QN	QN
1-10	00800-9	055	00.0	00.0	00.0	00.0	0.023	QN Q	QN
1-11	80900-9	555	00.00	00.00	0.00R	0.00 ^R	00.0	N O	ND
1-12	6-00619	2325	0.01	0.01	00.0	00.0	0.017	ĞN	QN N

one.

GC-MS Metabolites ine Nor-morphine	CN CN	QN .	QN	CN CN	QN	QN	QN	Q	QN	CEX	Ð		, QN
GC Metab Codeine %	QN	N Q	QN	ON	QN	QN	QN	GZ.	+	QN QN	NO	NO	M
Frat Value µg/ml	00.0	0.002	0.016	0.004	0.001	0.035	0.025	00.0	12.600	2.840	2.800	0.190	0.037
s rphine mg/24 hr	00.0	00.00	00.0	0.00	0.00	0.00	0.00	00.0	1.39	0.51	0.13	00.00	00.0
GC-MS Free Morphine ug/ml mg/24	00.00	0.00	0.00	0.00	00.00	00.00	00.0	00.00	2.60	0.30	0.23	*00.0	00.0
GC-MS Total Morphine g/ml mg/24 hr	0.00	0.00	00.00	0.00	00.00	0.01	00.00	00.00	9.87	3.28	96.0	0.12	0.02
GC-MS Total Mor µg/ml m	0.00	00.00	00.00	0.00	00.00	0.01	00.00	0.01	18.4	1.91	1.77	0.20	0.04
Total Volume (m1)	705*	1915	1675	1120	1005	820	1270	515	535	1720	540	607	485
Specimen No.	6-00707	6-00713	6-00725	6-00735	6-00743	6-00760	0//00-9	6-00793	6-00724	6-00737	6-00742	6-00759	89200-9
Patient/Day	2-0	2-1	2-2	2–3	2-4	2-5	2-6	2-7	3-0	3- <u>í</u>	3-2	é e	3-4

までは、10mmでは、10m

MS Lites Nor-morphine %		ON	£	Ġ.	QN QN	QN	QN		NO ON	Q.	!	1	ł	ND	Ŕ
GC-MS Metabolites Godeine Nor-m		QN	QN QN	NO	QN	QN	QN		.61	.10		1	į.	ND	QN.
Frat Value ug/ml		0.037	0.017	00.00	900.0	0.022	0.017	,	35.4	6.521	5,4	0.47	0.260	0.165	0.030
MS rphine mg/24 hr	,	0.00 ^K	00.00	0.00R	00.00	0.00	00.0			1.33	****		40 gg da	0.01	00.0
GC-MS Free Morphine ug/ml mg/24	t	0.00 ^K	00.0	0.00R	00.00	00.00	0.00		6.56	0.70	1	\$ \$ 1		0.01	00.0
GC-MS Total Morphine g/ml mg/24 hr		0.01	0.28	00.00	00.00	00.00	00.0			21.9	!	1 1	***	0.04	0.01
GC- Total N ug/ml		0.01	0.33	00.00	0.01	00.00	00.00	0	8.04	11.6	1	l	1	0.05	0.01
Total Volume (ml)		535	845	885	615	715	750			1885	1		.	695	750
Specimen No.		.6-00797	6-00798	66200-9	10900-9	60900-9	6-00618	0,000	9T900-9	6-00633	No Specimen	No Specimen	No Specimen	6-00407	6-00412
Patient/Day		3–5	3-6	3-7	3-8	3-9	3-10	c V	† 1	4-1	. 4-2	4-3	4-4	4-5	4-6

* ~

ne .		-		-					; ;				
GC-MS Metabolites ine Nor-morphine	i	ÇZ.	i	QN.	<u>Q</u>	[-	1	QX	2	Œ	QN.	Q.	ON .
G Metal Codeine %	ļ	+	a a	ON	QN	į	;	æ	S.	N CD	- GZ	CEN .	œ.
Frat Value µg/ml	0.122	0.170	0.012	0.041	0.062	0.004	•	04.40	2.50	0.910	0.023	0,002	0.001
MS rphine mg/24 hr	40 141 141	0.00	i t	0.00	0.00	1		0.33	00.0	10.01	00.00	00.0	0.00
GC-MS Free Morphine ug/ml mg/24	!	00.00	!	00.0	00.00		1 1	0.30	00.00	1,0.0	00.00	0.00	00.00
GC-MS Total Morphine g/ml mg/24 hr	1	0.05	40 40 40	0.03	0.01	!	***************************************	4.57	2.69	0.32	00.00	0.00	00.00
GC-MS Total Mor ug/ml	!	0.07	1	0.03	0.03	!	**	4.15	2.99	0.47*	00.00	00.00	0.00
Total Volume (ml)	1	069	Ī	760	855	!	•	1100	006	685	1270	1495	1620
Specimen No.	No Specimen	6~00445	No Specimen	6-00469	6-00497	No Specimen	No Specimen	6-00634	6-00650	6-00665	6-00693	6-00403	6~00/13
Patient/Day	4-7	48	4-9	4-10	4-11	4-12	5-0	5-1	5-2	5-3	5~4	55	15 10

ខ្				-	-		. ``.' - <u>.</u>		~	ē,				
GC-MS Metabolites e Nor-morphine		QN	QN	QX	Ø.	EX.	a Q	E E	Ř	B	Q.	NO	QN.	E
Met Codeine %		, QN	QN	QN QN	QN.	QN	Ø.	QN	Ø	8	ďΧ	Q	£	ON
Frat Value ug/ml	?	0.020	0.037	0.004	0.073	0.050	0.130	0.940	0.054	0.012	0.010	0.025	0.025	0,035
ds rphine mg/24 hr		0.00	00.00	0.00	0.00	0.00	00.0	0.05	10.0	00.0	0.00	00.0	0.00	00.0
GC-MS Free Morphine pg/ml mg/24		00.00	00.0	00.00	00.00	00.00	0.01	0.04	0.01	00.00	00.00	00.00	00.0	00.00
GC-MS Total Morphine g/ml mg/24 hr	-	00.00	10~0	0.01	00.00	00.0	0.24	1.10	0.01	00.00	00*0	00.0	0.01	00.0
GC-MS Total Mor ug/ml m		00.00	0.01	0.01	00.00	00.0	0.61	08.0	0.01	00.00	00.0	00.00	10.0	0.00
Total Volume (ml.)		940	935	1215	910	905	385	1375	1250	1090	1560	1950	870	795
Specimen No.		6-00459	97700-9	6-00458	6-00470	86700-9	6-00617	6-00635	5900-9	99900-9	96900-9	6-00400	6-00433	6-00454
Patient/bay	and the state of t	5~7	5-8	5~9	5~19	5-11	0-9	6-1	6-2	6-3	<i>4</i> ,−9	, d	11-0	11-11

Patient/Day	Specimen No.	Total Volume (ml)	GO Total h ug/ml	GC-MS Total Morphine g/ml mg/24 hr	GC Free M µg/ml	GC-MS Free Morphine g/ml mg/24 hr	Frat Value µg/ml	Meta Codeine %	GC-MS Metabolltes ne Nor-morphine
									4
11-2	No Specimen	!	1		!		1	1	Î
11-3	No Specimen	1	ļ	1	1		1	1	!
11-4	96700-9	1740	0.01	0.02	00.00	00.0		- Q	Ø
11-5	6-01319	1510	00.00	00.0	00.00	00.00	!	Ø.	£
11-6	6-01339	920	00.00	00.00	0.00R	0.00R	•	<u>B</u>	Q
11-7	6-01344	1240	00.00	00.0	0.00	00.00	1	Ŗ	R
1:1-8	6-01367	530	0.01	0.00	00.0	00.0	-	Æ	Ø
11-17	12-10384	390	00.0	00.0	00.00	0.00	!	QN.	QN CN
13-0.	99700-9		3.47		0.45		3.90	2.82	Q
13-1	6-00493	675	1.43	0.97	0.13	60.0	2.28	0.91	QX
13-2	6-01320	1440	0.11	0.16	0.01	0.01	0.1820	- 8	Æ
13-3	6-01340	510	0.03	0.01	00.00	0.00	0.054	£	Æ
13-4	6-01346	860	0.01	10.0	00.00	0.00	0.030	QX	î Ž

ĝ

2

0.030

0.00

0.00

Patient/Day	Specimen No.	Total Volume (m1)	GC-MS Total Mor ug/ml m	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morphine ig/ml mg/24	MS rphine mg/24 hr	Frat Value µg/ml	Met Codeine %	GC-MS Metabolites e Nor-morphine
13-5	6-01365	1610	0.01	0.01	00.0	0.00	0.082	QN	QN
13-6	No Specimen	! !	1	!	!	!	!	ŧ	1
13-7	6-01388	880	10.0	00.00	00.00	0.00	0.030	QN QN	ON
13-8	6-01399	675	0.01	10.0	0.00	0.00	0.045	CN	ND
13-9	12-10246	1650	00.00	00.0	00°0	0.00	0.008	QN	QN
13-10	12-10262	1080	0.01	0.01	00.0	0.00	0.023	QN	QN
13-11	12-10291	750	00.0	00.0	00.0	00.0	0.012	QN	ND CN
13-12	12-10335	2120	0.01	0.02	00.00	00.0	0.062	CN	QN QN
13,-13	12-10371	2390	00.00	00.0	00.00	00.0	0.012	ON	QN
13-14	12-10382	1120	00.0	0.00	00.00	00.0	0.007	Ø	ON O
14-0	No Specimen	****	1	1		!	-	ł	1
14-1	6-00494	880	11.8	16.4	0.31	0.27	6.53	S S	QN
14-2	No Specimen	! !	3	:	\$ *		4.01	i	ł

_										_			
GC-MS Metabolites ne Nor-morphine $\%$	æ	Q _X	QN	QN	QN	QN	QX	QN	, ND o	QN	QN	i	ľ
G Meta Codeine %	QN	Q _E	QN.	QN	QN	QN	M	QN	NDo	MD	QN	ł	-
Frat Value µg/ml	0.140	0.082	0.082	0.085	0.152	0.116	0.082	0.030		2.60	0.030	0.057	
GC-MS Free Morphine g/ml mg/24 hr	00.0	00*0.	00.0	00.0	00.0	00.00	00.0	00.0	0.00	00.0	00.0	‡ ‡	-
GC-MS Free Mor µg/ml m	0.01	00.00	00.00	00.00	00.00	00.00	0.00	0.00	00.00	0.00	00.ú	i	***
GC-MS Total Morphine g/ml mg/24 hr	0.03	0.02	0.02	0.02	0.03	0.01	0.01	00.0	00.0	0.60	0.00	ł	1
GC Totai] µg/ml	90.0	0.02	0.02	0.03	90.0	0.01	0.02	0.01	00.0	0.01	00.00	i i	ĺ
Total Volume (m1)	510	870	905	470	470	495	490	850	630	455	685	l i	
Specimen No.	6-01341	6-01347	6-01366	6-01370	6-01387	6-01400	12-10247	12-10261	12-10292	12-10336	12-10370	No Specimen	No. Specimen
Patient/Day	14-3	14-4	14-5	14-6	14-7	14-8	14-9	14-10	14-11	14-12	14-13	14-14	15-0

. ne			•	~						~	•	` .		•
GC-MS Metabolites Nor-morphine	S S	CIN	ł	B	2	CN CN	Q	QX	QN -	QN QN	CN	QN	oau	· Q .
Met. Codeine	ON ON	e:		GN.	QN	ND	Æ	QN	Ş	ON ON	ŬN.	QN .	NDO	E C
Frat Value ug/ml	6.12	1.50		0.015	0.016	0.052	0.025	0.039	0.054	0.016	0.662	0.017		900:0
dS rphine mg/24 hr	0.20	9.04		00.0	00.0	00.0	00.0	00:0	00.00	0.00	00:0	0.0c ^R	0.00	0.00
GC-MS Free Morphine ug/ml mg/24	90.0	0.03	1	9°°0	0.00	00.00	00.0	0.00	00°0	0.00	00.3	0.00R	0.00	00.00
GC-MS Total Morphine g/ml mg/24 hr	3.29	1.35	ļ	0,02	0.00	0.00	00.00	0.00	00.00	00.00	00.00	00.0	0.00	00.00
GC-MS Total Mor ug/ml m	1.01	1.03	1	0.02	0.00	0.00	0.00	00.00	0.00	00.00	09.0	0.00	0.00	00.00
Total Volume (m1)	3258	1310	<u> </u>	1133	1100	1.000	640	480	430	1240	068	1270	1490	110C
Specimen No.	6-00495	6-01321	No Specimen	6-01345	6-01364	6-01369	6-01386	6-01397	12-10248	12-11259	12-10293	12-10334	12-10372	12-10383
Patient/Day	15-1	15-2	15-3	15-4	15-5	15-6	15-7	15-8	15-9	15-10	15-11	15-12	15-13	15-14

hine	,	-		~						2	*	* .	•
GC-MS Metabolites e Nor-morphine		Ę			} §				Ę	9	8 - 8	É	<u>g</u>
Me Codeine %		Ę		2 8) <u> </u>		QN	8	1%	C _S	2	. R	QX
Frat Value µg/ml		0.020	0.016	00.00	0.009	100°C	0.00	18.6	2.9	1.16	0.110	0.035	0.017
GC-MS Free Morphine 8/ml mg/24 hr		0,00	00.00	0.00	0.00	0.00	00.0	1	0.15	0.03	0.01	0.00	00.0
GC Free Mu ug/ml		0.00	0.00	0.00	00.00	0.00	00.00		0.15	0.04	0.01	00.00	00.0
GC-MS Total Morphine g/ml mg/24 hr		0.70	00.00	00.00	00.00	00.0	0.00	,	3.46	3.62	0.04	0.01	0.00
GC Total 1 ug/ml		0.03	0.00	00.0	0.03	00.00	0.00	!	3.42	5.06	0.05	0.01	00.0
Total Volume (m1)		580	1505	1570	1395	1500	016	!	1014	715	795	1185	1530
Specimen No.		12-10217	12-10242	12-10264	12-10295	12-10339	12-10365	No Specimen	12-10546	12-10574	12-10589	12-10810	12-10829
Patient/Day		19-0	19-1	19-2	19-3	59~4	19-5	22-0	22-1	22-2,0	22-3 ₀	22-4	22-5

1130 Car

ဍ				,	-						,		
GC-MS Metabolites e Nor-morphine %	N QN	CN	Q.		CN CN	CN	QX	CX	QN	QN	, QN	QN Q	QN
Met Codeine %	ND	QN	ON	ŧ	CN	QN	ON	N N	QN	***	0.45%	QN	QN
Frat Value ug/ml	0.054	0.020	0.089	0.042	0.035	0.035	0.057	0.045	0 013	13.63	3.90	4.52	1.20
GC-MS Free Morphine g/ml mg/24 hr	00.0	00.0	00.0	į	00.0	00.0	00.0	00.0	00.0	2.70	1.26	0.20	0.05
GC. Free Mu ug/ml	00.00	00.00	00.00	ļ	00.00	00.0	0.00	00.00	0.00	3.18	0.67	0.33	0.08
GC-MS Totai Morphine g/ml mg/24 hr	00.00	00.00	00.0	1	00.0	00.00	0.03	0.00	00.0	31.5	14.2 *	2.28	0.49
д	00.0	00.0	00.0	1	00.00	00.00	0.04	00.00	0.00	37.7	7.61	3.87	0.75
Total Volume (m1)	006	740	610	1	1120	1110	605	1000	630	850	1875	290	650
Specimen No.	12-10841	12-10857	12-10868	No Specimen	12-10892	12-10910	12-10925	12-10947	12-10966	12-10524	12-10543	12-10571	12-10588
Patient/Day	22-6	22-7	22-8	22-9	22-10	22-11	22-12	22-13	22-14	. 23-0	23-1	23-2	23-3

-	1						•		-	-					
GC-MS Metabolites e Nor-Morphine %	•	ND	NO ON	NO	ON	QN	QN	QN	ON	•	ON	É	, CM	QN	
Me: Codeine %		QN QN	QN QN	ND CN	QN	QN QN	+	CN CN	E	!	ON ON	Q.	æ	ON	
Frat Value µg/ml		0.041	900.0	0.035	0.015	.037	.017	.010	.062	* 00.	.020	.004	7.47	2.20	
GC-MS Free Morphine g/ml mg/24 hr		00.0	00.0	00.0	0.01	00.00	0.01	0.02	0.02	!	0.01	00.0	0.08	0.55	
GC Free M ug/ml		00.0	0.00	00.00	0.01	0.00	0.01	0.01	0.01	1	0.01	0.00	0.17	0.14	
GC-MS Total Morphine g/ml mg/24 hr		0.03	0.01	0.05	0.02	0.01	0.01	0.01	1.23	1	0.01	0.01	4.91	13.0	
GC Total } µg/ml		0.02	0.01	90.0	0.01*	0.01	0.01	0.01	0.67	\$ 8 6	0,01	0.01	11.1	3.36	
Total Volume (ml)		1400	1800	760	2030	1100	1270	1600	1845	1 1	1185	1470	077	3880	
Specimen No.		12-10807	12-10826	12-10843	12-10859	12-10870	12-10884	12-10893	12-10911	No Specimen	12-10948	12-10967	12-10525	12-10544	
Patient/Day		23-4	23-5	23-6	23-7	23-8	23-9	23-10	23-11	23-12	23–13	. 23–14	24-0	24-1	

を できる できる できる

deal.

GC-MS Frat Metabolites Value Codeine Nor-Morphine µg/ml % %	.840 ND ND	.023 ND ND	.022 ND ND	.028 ND ND	ON ON 710.	.049 ND ND	.030 ND ND	.004 · ND ND	ON ON	.028 ND ND	.072 ND ND	ON ON ON 900.	.028 ND ND
E & H		•	·		·	·	·	·	•	٠.	٠,	٠.	Ÿ.
GC-MS Free Morphine g/ml mg/24 hr	0.20	0.00	0.01	00.0	00.0	00.0	0.01	00.0	0.01	0.00	0.03	00.0	0.01
GC Free M ug/ml	0.05	00.0	0.01	00.00	00.0	00.0	0.01	00.0	0.01	00.0	0.02	00.00	0.01
GC-MS Total Morphine g/ml mg/24 hr	1.45	0.02	0.01	00.0	0.00	0.00	0.01	0.00	0.01	0.03	0.04	0.01	0.01
GC Total µg/ml	0.34	0.01	0.01	00.0	00.00	00.00	0.01	00.00	0.01	0.01	0.03	0.01	0.01
Total Volume (ml)	4240	1930	1580	2510	1915	1690	1000	2385	1640	2025	1420	1580	1350
Specimen No.	12–10572	12-10590	12-10808	12-10827	12-10842	12-10858	12-10869	12-10882	12-10894	12-10912	12-10920	12-10949	12-10968
Patient/Day	24-2	24-3	24-4	24-5	24-6	24-7	. 24-8	24-9	24-10	24-11	24-12	24-13	24-14

A Company of the Company of the contraction of the

GC-MS Metabolites ine Nor-Morphine	QN ON	QN	Q	ΩN	QX	æ	N
GC Metab Codeine %	Ø	GN GN	GN	æ	QN	M	QN
Frat Value ug/ml	.016	.016	.016	900.	.011	000.	.002
GC-MS Free Morphine ug/ml mg/24 hr	0.00	0.00R	0.00R	0.01	0.00R	0.00	0.00
GC-MS Free Morph ug/ml mg/	0.01	0.00R	0.00R	10.0	0.00R	0.00	00.00
GC-MS Total Morphine 1g/ml mg/24 hr	00.0	*00.0	0.02	0.01	00.00	10.0	00.00
GC Total l ug/ml	0.01	00.0	0.02	0.01	00.00	0.01	00.0
Total Volume (m1)	300	1310	1245	860	1185	1045	220
Specimen No.	12-10526	12-10545	12-10573	12-10587	12-10809	12-10828	12-10844
Patient/Day	25-0	25-1	25-2	25-3	. 25-4	25-5	25-6

PHASE III

SYMBOLS:

A STATE OF THE PROPERTY OF THE

- ND -- Never detected
- + -- Trace detected (amount too small to measure)
- R -- Repeat analysis (value changed from 1st results sent)
- * -- Corrected result, error on first results sent
- o -- Results not sent previously

Patient/Day	Specimen No.	Total Volume (ml)	GC Total] µg/ml	GC-MS Total Morphine g/ml mg/24 hr	GC Free M µg/m1	GC-MS Free Morphine g/ml mg/24 hr	Frat Value µg/ml	G Meta Codeine %	GC-MS Metabolites ne Nor-morphine
							,		
16-0	12-10218	610	9.68	4.07	0.83	0.50	96.98	0.54	QN N
16-1	12-10244	725	2.63	1.91	0.24	0.17	2.40	0.65	QN
									-
17-0	12-10216	069	8.65	5.97	08.0	0.55	8.4	0.36	CIN
17-1	12-10243	1430	16.6	23.8	0.74	1.06	5.4	QN QN	QN
17-2	12-10263	2130	3.77	8.03	0.35	0.73	3.2	QN.	QN.
17-3	12-10294	510	0.72	0.37	0.17	60.0	0.94	æ	CIN CIN
17-4	12-10338	820	0,12	0.10	0.09	0.07	0.17	B	CIN CIN
17-5	12-10368	999	0.05	0.03	0.05	0.03	0.24	e E	ES .
17-6	12-10385	820	0.05	0.04	0.05	0.05	0.07	QN QN	QN
17-71	12-10523	650	90.0	90.0	0.07	0.04	0.08	QN .	S
17-8	12-10541	1700	0.01	0.02	0.0	0.0	0.41	QN.	CN CN
17-9,	12-10569	1785	1.49	2.66	90.0	0.11	0.02	QN	QN
17-10	12-10593	925	0.01	0.01	0.0	0.0	0.01	Q ₂	QN

4)				•					٠		* **		`		
GC-MS Metabolites ine Nor-morphine		Ø	R	ON	1	QX	Æ	QN .	QN	N)	Q.	QN	. Q	£ Q	
GC Metab Codeine %		Q.	QN	QN ON	ate of	1.56	0.48	0.48	0.87	0.43	QN.	QX	ę.	GZ GZ	
Frat Value µg/ml		0.01	0.01	0.0	16.4		2.87	1.40	1.86	1.30	0.22	0.17	0.07	0.05	
GC-MS Free Morphine g/ml mg/24 nr	***************************************	0.0	6.13	0.13	*	0.90	0.15	0,05	6.07	0.05	0.01	0.0	0.0	0.0	
GC Free M ug/ml	steel and the steel stee	0.0	0.10	0.13	1	1.50	0.14	0.05	0.10	90.0	0.01	0.0	0.0	0.0	
GC-MS Total Morphine g/ml mg/24 hr		0.02	0.35	0.31	!	4.46	1.31	0.72	0.62	0.37	0.13	0.13	0.02	0.05	
GC Total µg/ml		0.01	0.29	0.26	3 4 1	7.44	1.26	0.84	0.92	0.47	0.12	0.10	0.03	0.03	
Total Volume (ml)		1560	1245	1195	. !	009	1040	860	670	797	1120	1330	,002	066	
Specimen No.		12-10805	12-10824	12-10845	No Specimen	12-10296	12-10337	12-10367	12-10386	12-10522	12-10542	12-10570	12-10592	12-10806	
Patient/Day		17-11	17-12	17-13	20-0	20-1	20-2	. 20-3	20-4	20-5	20-6	20-7	20-8	20-9	

GC-MS Metabolites ine Nor-morphine	QN	QN	CN.	QN	QN		QN	GN GN	SN SN	la de la constante de la const	!	CN.	
G Metal Codeine %	ND	N ON	N ON	8	2.59	ł	0.13	QN	1.41	-		3.87	ł
Frat Value µg/ml	0.05	0.0	0.01	0.04	3.50	1	6.52	2.72	1.48	1.04	v	0.58	0.46
GC-MS Free Morphine g/ml mg/24 hr	0.0	0.0	0.0	0.0	0.11	,	0.68	0.05	0.15		\$ 1	0.02	1
GC. Free M µg/ml	0.0	0.0	0.0	0.0	0.17	1	1.02	0.12	0.13	9	# #	90.0	\$ 9 1
GC-MS Total Morphine g/ml mg/24 hr	 0.07	0.03	0.03	0.01	1.01	;	50.3	1.11	1.27	•	1	0.10	
GC Total] ug/ml	90.0	0.04	0.02	0.04	1.62	i	75.7	2.58	1.13	, ,	!	0.31	1
Total Volume (m1)	1320	720	1770	375	620	1	665	430	1125	1	ļ	335	4
Specimen No.	12-10825	12-10839	12-10855	12-10866	12-10886	No Specimen	12-10297	12-10340	12-10366	No Specimen	No Specimen	12-10540	No Specimen
Patient/Day	20-10	20-11	20-12	20-13	20-14	21-0	21-1	21-2	21-3	21-4	21-5	21-6	21-7

The same of the same of

Patient/Dav	Specimen No.	Total Volume	GC Total	GC-MS Total Morphine	GC Free M	GC-MS Free Morphine	Frat Value	GC- Metabo Codeine	GC-MS Metabolites ine Nor-morphine
		(m1)	µg/m1	mg/24 hr	µg/m1	mg/24 hr	µg/m1	%	
	•								
21-8	12-10591	1	0.23	1	0.03	1	0.45	4.00	CIN
21~9	12-10804	610	0.18	0.11	0.03	0.02	0.36	ND	QN.
21-10	12-10823	530	0.16	0.08	0.02	0.01	0.251	2.56	QN
21-11	12-10843	470	0.13	90.0	0.12	0.01	0.299	QN	QN
21-12	12-10856	016	90.0	0.05	0.01	0.01	0.093	MD	QN
21–13	12-10867	565	0.07	0.04	0.01	0.0	0.114	ND	QN.
21-14	12-10888	099	0.05	0.03	0.01	0.01	0.130	NO ON	QN
27-0	No Specimen	!	!	1		!	20.5	*	1
27-1	6-00499	1:495	2.21	3.30	0.11	0.17	2.64	2.81	Q.
27-2	6-01323	1585	0.44	0.70	0.02	0.02	.54	QN.	GN.
27-3	6-10343	1435	0.13	0.19	0.01	0.01	.15	QN QN	QN.
27-4	6-10348	1120	0.07	0.08	00.00	00.00	.13	QN Q	QN
27-5	6-10368	1800	0.02	0.03	0.02	0.03	.063	N Q	QN

and the second s

GC-MS Metabolites ine Nor-morphine		Q	QN	QN	Q.	N)	ON O	ŔŊ	QN	QX	<u>R</u>	N N	1	QN	
GC Metal Codeine %		QN	ND CN	N ON	Q.	ND	Q.	QN	QN QN	19.71	QN	QN QN	;	1.36	
Frat Value ug/ml		90.	.02	.022	000.	.062	600.	.004	.002	4.70	<u>.</u>	1.70	1	64.	
GC-MS Free Morphine g/ml mg/24 hr	i c	00.0	00.00	00.00	00.00	00.00	0.00	00.00	00.00	1.42	0.19	0.02	*	0.01	
GC. Free Mu ug/ml	ć	9	0.00	00.00	00.00	0.00	00.00	00.0	00.00	0.95	0.15	0.02	1	0.01	
GC-MS Totál Morphine g/ml mg/24 hr	0	•	0.02	0.01	0.01	00.00	00.00	00.00	00.0	13.85	2.71	0.36	1	0.10	
GC Totál l µg/ml	00	•	0.01	0.01	0.01	0.00	00.00	00.00	00.00	9.23	2.11	0.39	ļ	0.22	
Total Volume (m1)	1260		1214	1.470	1540	1210	1520	1000	2100	1500	1285	076	1	760	
Specimen No.	6-01372		6-01385	6-01398	12-10245	12-10260	12-10290	12-10333	12-10369	12-10913	12-10950	12-10977	No Specimen	12-10402	
Patient/Day	27–6	! !	27-7	27-8	27-9	27-10	27-11	27-12	27–13	28-0	28-1	28-2	28–3	28-4	

The state of the s

Patient/Day	Specimen No.	Total Volume (m1)	GC Total l ug/ml	GC-MS Total Morphine g/ml mg/24 hr	GC. Free Mu ug/ml	GC-MS Free Morphine g/ml mg/24 hr	Frat Value µg/ml	GC Metab Codeine %	GC-MS Metabolites ine Nor-morphine
	de une des des des des la companya de la companya d								•
28-5	12-10418	980	0.10	0.10	0.01	0.01	.301	.97	QN O
28-6	12-10450	1645	0.02	0.03	00.00	00.00	.190	trace	QN
28-7	12-10458	610	0.02	0.01	0.01	0.01	.012	QN	QN
28-8	12-10486	1150	0.14	0.16	00.00	00.00	.035	2.96	QN.
28-9	12-10717	740	0.00	00.0	00.0	00.00	.019		QN
28-10	12-10746	820	00.00	00.00	00.00	00.0	.043	QN QN	QN
28-11	12-10763	1355	0.01	0.01	00.0	00.00	.004	trace	QN.
28-12	12-10794	1330	00.0	00.0	00.00	00.00	.017	ON	QŃ
28-13	12-11916	1520	00.00	00.0	00.00	00.00	.065	QN	Q.
28-14	No Specimen	!	!		!		.084	1	1
29-0	12-10915	1000	527 .	527	27.4	27.4	13.2	0.65	QN.
29–1	No Specimen	!			!	1	1	!	!
29-2	12-10946	740	63.10	69.94	6.08	4.50	6.7	0.45	Ŕ
	•								

13 A TO

MS Lites Nor-morphine %	QN	ł	QN	Q.	QN	1	}	QN	Q.	NO ON	-	QN	QN
GC-MS Metabolites Codeine Nor-m	1.56	i	0.33	3.24	0.33	i	1	MD MD	N O	ND	· ·	CN	CIN.
Frat Value µg/ml	10.54	4.60	6.60	8.50	4.13	15.40	1 1	5.20	8.72	3.05	1	2.04	1.40
fS rphine mg/24 hr	2.95		0.54	7.04	0.42	i i		1.29	0.47	0.21	!	0.12	0.09
GC-MS Free Morphine ug/ml mg/24	5.23	!	1.36	8.24	0.39		1	1.38	1.45	0.29	1	0.12	0.11
MS orphine mg/24 hr	30.7	1 5 2	6.94	44.3	6.23		1	21.5	6.20	3.78		2.45	1.38
GC-MS Total Morphine µg/ml mg/24 }	54.3	i 9 0	17.3	51.9	5.82	1	1	23.2	19.3	5.15	1	2.45	1.74
Total Volume (m1)	565	!	400	855	1070	!	!	930	320	735	1	1000	790
Specimen No.	12-10964	No Specimen	12-10401	12-10416	12-10448	No Specimen	No Specimen	12-10954	12-10965	12-10978	No Specimen	12-10426	12-10451
Patient/Day	29–3	29-4	29~5	29–6	29–7	30-0	30-1	30-2	30~3	30-4	30-5	30-6	2-08

STOP IN

.

Patient/Day	Specimen No.	Total Volume (m1)	GC- Tctal h ug/ml	GC-MS Total Morphine g/ml mg/24 hr	GC Free M µg/ml	GC-MS Free Morphine g/ml mg/24 hr	Frat Value µg/ml	Metal Codeino %	Metabolites inc Nor-morphine %
÷	, , , , , , , , , , , , , , , , , , ,	6	•						
308	12-10459	068	0.40	0.35	0.02	0.02	0.38	QN QN	QN QN
36-9	12-10487	720	0.11	0.08	0.01	00.0	0.17	QN	ND CN
30-10	12-10718	980	0.04	0.04	0.01	0.01	0.083	QN	QN
30~11	12-10747	1070	0.02	0.02	00.00	00.0	0.016	ON	ON
30-12	12-10765	1205	0.01	0.02	0.00	00.0	0.043	M	QN N
30-13	No Specimen	1	1	1	Î	•		1	!
30-14	12-11917	1080	0.02	0,03	00.0	0.00	0.027	Q.X	ND
31-0	12-10980	1455	8.73	12.68	0.55	0.79	4.60	QN Q	Ø
31-1	12-10405	1805	7,13	12.87	0.40	0.73	3.80	QN	QN
31-2	12-10424	009	4.08	2.45	0.19	0.12	3.12	ON	QN
31+3	12-10453	505	0.19	0.09	0.01	00.00	9.27	CN	E S
31-4	12-10461	835	0.04	0.03	00.0	0.00	.072	CN	Q.
31-5	12-1.0489	920	0.09	0.08	0.01	0.01	0.174	es G	QN

GC-MS

al I	Ì						,								
GC-MS Metabolites eine Nor-morphine %		ON	QN	QN CN	QN	QN	QN	QN QN	QN	QN.	QN	QX	QX	Q	
GC- Metabo Codeine %		QN ON	ND	QN	QX	QN	QN	R	N ON	5.24	2.07	0.42	+	+	
Frat Value ug/ml		0.000	0.004	0.022	0.035	0.050	0.076	# # #	t ::	3.76	2.98	1.20	0.074	0.027	
GC-MS Free Morphine g/ml mg/24 hr		00.0	00.0	00.0	00.00	00.0	00.0	00.0	00.00	0.20	0.28	0.09	0.01	0.01	
GC. Free Mu ug/ml		00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	0.28	0.19	90.0	0.01	0.01	
GC-MS Total Morphine g/ml mg/24 hr		00.00	00.00	00.00	00.00	00.0	00.00	00.00	0.00	2.51	4.71	1.56	0.08	0.01	
GC-MS Total Mor ug/ml		00.00	00.0	00.00	00.0	00.0	00.00	00.00	00.00	3.59	3.23	96.0	0.07	0.01	
Total Volume (ml)		1160	086	1770	1335	830	940	1320	1800	700	1460	1630	1100	985	
Specimen No.		12-10720	12-10749	12-10769	12-10797	12-11911	12-11930	12-11945	12-11963	12–10979	12-10404	12-10422	12-10452	12-10460	
Patient/Day		31-6	31-7	31-8	31-9	31-10	31-11	31-12	31-13	32-0	32-1	32-2	323	32-4	

Party Silly Statement of the Statement of the Control of the Statement of

GC-MS Metabolites ine Nor-morphine	ļ	CN.	QN.	Œ	1	QX.	Ð	Ð	QN.	Ø	1	Q	QN
GC. Metal Codeine %	l	33.33	N QN	QN	}	Ø.	œ	+	+	5.05	1	Q.	QN
Frat Value µg/ml	1	0.001	0.000	0.017	1	900.0	0.035	00.0	00.00	3.90	2.44	1.24	0.29
lS orphine mg/24 hr	1	0.00	00.00	00.0	1	00.0	0.00	00.0	00.0	0.16	1	0.03	0.01
GC-MS Free Morphine ug/ml mg/24	1	00.00	00.00	00.00	1	00.00	00.0	00.00	00.00	0.26	!	90.0	0.01
GC-MS Total Morphine g/ml mg/24 hr	1	0.02	00.00	00.00	1 1	00.00	0.00	00.00	00.00	2.98	1	0.32	0.10
GC-MS Total Mor ug/ml m	1	0.01	00.00	00.00		00.00	0.01	00.0	00.0	4.81	l	0.58	0.14
· Total Volume (m1)	!	1770	1420	1575	1	1320	730	1640	1620	620		545	710
Specimen No.	No Specimen	12-10719	12-10748	12-10767	No Specimen	12-11910	12-11929	12-11944	12-11962	12-10981	No Specimen	12-10426	12-10454
Patient/Day	32-5	32-6	32-7	32-8	32-9	32-10	32-11	32-12	32-13	33-0	33-1	33-2	33-3

. روهار コスカライルの人のないのであることのこと なっとこ

The state of the s

								ပ္ပံ	GC-MS
		Total	25	GC-MS	GC-MS	MS	Frat	Metal	Metabolites
Patient/Day	Specimen No.	Volume (m1)	Total ug/ml	Total Morphine g/ml mg/24 hr	Free M µg/ml	Free Morphine g/ml mg/24 hr	Value µg/ml	Codeine %	Nor-morphine %
			,						
33-4	1.2-10462	096	0.02	0.02	0.01	0.01	0.028	S.	E
33–5	12-10490	405	0.01	00.00	0.00	0.00	0.028	QN	CK CK
336	12-10721	705	0.01	0.01	00.0	00.00	0.035	NG CN	QN.
33-7	12-10750	096	0.01	0.01	0.00	0.00	0.028	QN	Q.
33-8	12-10771	980	0.01	00.00	0.00	00.0	00000	Q	G
33–9	12-10798	835	0.01	00.0	00.0	00.00	0.008	QX QX	QN
33-10	12-11912	1160	0.00	00.00	0.00	00.00	0.042	QN	Q _N
33-11	12-11931	096	0.00	00.0	0.00	00.0	0.065	<u>S</u>	GN.
33-12	12-11946	1040	0.00	00.00	0.00	00.0	t I	£	EN.
33-13	12-11964	1300	00.00	00.00	00.00	0.00	1	Ð	QN

PHASE IV

	Patient/day	Specimen No.	Total Volume		rphine	GC-MS Free Morphine	nine	Frat Value	GC-MS Metabolites Codeine Nor-Mo	GC-MS Metabolites Codeine Nor-Morphine
			mI	ng/ml	mg/24 hr	µ1/m1	mg/24 hr	ng/ml	%	%
	1-0	8-00708	925	4.28	3.96	0.340	0.310	5.85	NO ON	QN
	1-1	6-00714	475	6.31	3.00	0.430	0.200	5.70	NO	QN QN
·	1-2	no specimen						1.71		
	1~3	6-00736	445	0.410	0.182	0.010	0.004	0.67	ND	ON
	1-4	6-00741	525	0.020	0.011	0.003	0.001	0.017	MD	QN QN
	15	6-00761	1065	0.013	0.014	0.002	0.004	0.004	ND	QN
	1-6	6-00769	880	0.011	0.010	0.012	0.011	0.063	QN	QN
	1-7	6-00794	360	0.013	0.005	900.0	0.002	0.042	ON ON	MD
	1-8	96-00198	615	0.005	0.003	0.003	0.002	0.028	QN QN	MD
	19	96200-9	585	0.005	0.003	0.002	0.001	0.023	QN Qu	MD
	1-10	6-00800	740	0.003	0.001	0.004	0.002	0.023	QN	ON
	1-11	90900-9	555	0.001	0.001	0.025	0.014	0	QN	CN
	1-12	6-00619	2325	0.005	0.012	0	0	0.017	QN	QN
	2-0	6-00707	405	0.004	0.003	0.004	0.003	0	QN	QN
	2-1	6-00713	1915	0.003	900.0	0	0	0.002	QN	QN
		•								
()	Professional section of the section	THE PROPERTY OF THE PROPERTY O			The Minister of the Manager and the Minister of the Minister o	a e e a e e e e e e e e e e e	•	\$.	٠	
	southern .	ì	Y							

Patient,'day	Specimen No.	Total Volume ml	GC-MS Total Mo	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morphine ug/ml mg/	hine mg/24 hr	Frat Value	GC-MS Metabolites Codeine Nor-Morphine	ine
2-2	6-00725	1675	2	0.004	0	0	0.016	2	
2-3	6-00735	1120	0.002	0.002	0	0	0.004	ON ON	
2-4	6-00743	1005	0.002	0.002	0	0	0.001	ON ON	
2-5	09200-9	820	0.007	0.005	0	0	0.035	UD UN	
2–6	0-00770	1270	0.002	0.003	0	0	0.025	UN UN	
2-7	6-00793	515	0.008	0.004	0	0	Ċ	UD UD	
3-0	6-00724	535	18.4	9.87	2.60	1.39	12.6	QN +	
3-1	6-00737	1120	1.90	3.27	0.299	0.514	2.84	UN UN	
3-2	6-00742	540	1.77	0.958	0.233	0.126	2.80	UN ON	
3–3	ć~00759	603	0.201	0.122	0.033	0.002	0.190	ON ON	
3-4	9-00768	485	0.040	0.020	0	0	0.037	ON ON	
3–5	6-00797	535	0.010	900.0	0.053	0.029	0.037	CIN	
3-6	96-007-98	845	0.334	0.283	0	0	0.017	GN GN	
3-7	6-00799	885	0.003	0.003	0.017	0.015	0	UN ON	
3-8	6-00601	615	0.005	0.003	0.004	0.003	900.0	GN GN	
-									

The state of the s

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Mo ug/ml m	GC-MS Total Morphine <u>g/ml mg/24</u> hr	GC-MS Free Morphine µg/ml mg/	ohine mg/24 hr	Frat Value µg/ml	GC-MS Metabolites Codeine Nor-Mo	GC-MS Metabolites Codeine Nor-Morphine
39	60900-9	715	0.003	0.002	0	0	0.022	Ø	QN
3-10	6-00618	750	0.004	0.003	0.002	0.001	0.017	QN	QN
	;								
0-7	6-00616		40.8		6.56		35.4	0.61	NO ON
4-1	6-00633	1885	11.6	21.9	0.703	1.32	6.52	0.10	M
4-2	no specimen						5.4		
4-3	no specimen						0.47		
7-7							0.260		
4-5	6-00407	969	0.052	0.036	0.010	0.007	0.165	QN	QN QN
9-4	6-00412	750	0.014	0.010	0.004	0.004	0.030	MD	E
4-7	no specimen						0.122		
48	6-00445	069	0.073	0.050	0	0	0.170	+	Q.
64	no specimen						0.012		
4-10	6-00469	160	0.034	0.026	0.003	0.002	0.041	ND	QN
4-13	2-00497	355	0.010	0.009	0.004	0.003	0.062	QN	QN QN
4-12	no specimen						0.004		

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Moo	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morphine ug/ml mg/	ohine mg/24 hr	Frat Value	GC-MS Metabolites Codeine Nor-Mo	GC-MS Metabolites Codeine Nor-Morphine
50	no specimen								
5-1	6-00634	1100	4.15	4.56	.302	.332	4.40	QN	ND
5-2	9-00650	006	2.99	2.69	0	0	2.50	QN Q	QN QN
5-3	9-00665	685	.047	.032	.012	.008	0.910	QN	QN
5-4	6-00693	1270	0	0	0	0	0.023	QN	QN
55	6-00408	1495	0	0	0	0	0,002	QN	Q _N
5-6	6-00413	1620	0	0	0	0	0.001	QN	QN
5-7	6-00429	076	0	0	0	0	0.020	QN	Q.
5-8	9-700446	935	.008	.008	.001	.001	0.037	Q.	Q.
59	600458	1215	900•	.007	.002	.002	0.004	QN	QN
5~10	6-00470	910	.004	.003	.002	.002	0.073	Q.	QN
5-11	6-00498	905	.003	.003	600.	.007	0.050	Q.	QN
0-9	6-00617	385	609.	.235	.005	.002	0.130	MD	ON
6-1	6-00635	1375	.800	1.100	.035	.048	0.940	CIN	Q
6-2	6-00651	1250	.011	.014	.007	.008	0.054	, QN	QN

The state of the s

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Mou	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morphine	phine mg/26, hr	Frat Value	GC-MS Metabolites Codeine Nor-Mo	GC-MS Metabolites Codeine Nor-Morphine
6-3	99900-9	1090		.003	.003	003	#B/ IIII	9	9
6-4	76900-9	1560	ç	Č			0.012	Š	ON.
,		2007	700.	• 004	.002	.004	0.010	ON	QN
. 5-9	6-00409	1950	.002	.004	.003	.005	0.025	ND	QN QN
11-0	6-00433	870	900.	900.	0	0	0.025	£	E
11-1	6-00454	795	.003	.002	0	0	0.035) <u> </u>	} §
11-2	no specimen)	
11-3	no specimen								
11-4	96-00496	1740	600.	.015	.002	.003		æ	Ę
11-5	6-01319	1510	0	0	.003	.005		} §	<u> </u>
11-6	6-01339	920	.002	.002	.014	.013			£ 5
11-7	6-01344	1240	.002	.002	0	0) <u> </u>
11-8	6-01367	530	900.	.003	.002	.001			
11-17	12-10384	390	0	0	.004	.001		QN	
~									
13-0	6-00468		3.47		.447		3.90	2.82	QN

PART AND BACK

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Mou	-MS Morphine mg/24 hr	GC-MS Free Morphine ug/ml mg/	hine mg/24 hr	Frat Value µg/ml	GC-MS Metabolites Codeine Nor-Mo	GC-MS Metabolites Codeine Nor-Morphine % %
13-1	6-00493	675	1.42	596.	.134	060.	2.28	0.91	QN
13-2	6-01320	1440	.114	.164	.005	.007	0.182	QN	QN QN
13-3	6-01340	510	.028	.014	.004	.002	0.054	QN	CIN
13-4	6-01346	860	.011	600.	.003	.003	0.030	CN	ND
13-5	6-01365	1610	.005	600.	.003	900.	0.082	ON CO	QN
13~6	no specimen								
13-7	6-01388	880	.005	.004	0	0	0.030	N N	ND
13-8	6-01399	675	.014	.010	.003	.002	0.045	CN	QN
13-9	12-10246	1650	.004	900.	0	0	0.008	QN	QN
13-10	12-10262	1080	900.	.007	.001	.001	0.023	QN QN	CN
13-11	12-10291	750	.004	.003	0	0	0.012	ND	R
13-12	12-10335	2120	.011	.023	.002	.004	0.062	CN	QN
13-13	12-10371	2390	.001	.003	.001	.002	0.012	Q.	QN QN
13-14	12-10382	1120	.001	.002	.001	.001	0.007	QN	QN
14-0	no specimen						*		
14-1	96-00494	880	11.8	10.4	0.311	0.274	6.53	QN	QN
14-2	no specimen						4.01		

¢.

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Morphine ug/ml mg/24 h	4S forphine mg/24 hr	GC-MS Free Morphine ug/ml mg/	ohine mg/24 hr	Frat Value µg/ml	GC- Metabo Codeine 1 %	GC-MS Metabolites Codeine Nor-Morphine
14-3	6-01341	510	0.057	0.029	0.005	0.002	0.140	QN	QN
14-4	6-01347	870	0.023	0.020	0.003	0.002	0.082	N	Ð
14-5	6-01366	905	0.018	0.017	0.003	0.003	0.082	NO	Q.
14-6	6-01370	470	0.031	0.015	0	0	0.085	QN	QN
14-7	6-01387	470	0.061	0.028	0	0	0.152	QN	QN QN
14-8	6-01400	495	0.013	0.006	0.004	0.002	0.116	QN	QN QN
14-9	12-10247	767	0.016	0.008	0.003	0.001	0.082	QN	QN
14-10	12-10261	850	0.005	0.004	0.002	0.002	0.030	Q.	QN
14-11	12-10292	630	0.003	0.002	0.001	0.001	*		
14-12	12-10336	455	0.005	0.002	0	0	2.60	QN Q	CN CN
14-13	12-10370	685	0.002	0.001	0	0	0.030	QN	S S
14-14	no specimen						0.057		
15-0	no specimen						*		
15-1	6-00495	3258	1.01	3.29	0.061	0.199	6.12	ND	ND
15-2	6-01321	1310	1.03	1.34	0.031	0.041	1.50	N Q	S S
15-3	no specimen						*		

on the great and the

Fatient/day	Specimen No.	Total Volume ml	GC-MS Total Mo ug/ml m	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morphine ug/ml mg/	ohine mg/24 hr	Frat Value ug/ml	GC-MS Metabolites Codeine Nor-Mo	GC-MS Metabolites Codeine Nor-Morphine
15-4	6-01345	1130	0.015	0.017	0.001	0.001	0.016	Ø	QN Qu
155	6-01364	1100	0.003	0.003	0	0	0.016	ND	Q.
1.5-6	6-01369	1000	0.004	0.004	0	0	0.052	ND	QN
15-7	6-01386	940	0.001	0.001	0.002	0.001	0.025	ND	QN Q
15-8	6-01397	480	0.003	0.002	0.001	0	0.030	N QN	QN
15-9	12-10248	430	0.001	0	0.002	0.001	0.054	QN	QN Qu
15-10	12-10259	1240	0	0	0.002	0.003	0.016	ND CN	QN
15-11	12-10293	890	0	0	0	0	0.062	ND	CIN
15-12	12-10334	1270	0	0	0.016	0.020	0.017	QN	QN
15-13	12-10372	1490					*		
15-14	12-10383	1100	0.001	0.002			900.0	QN CN	QN QN
		,							
19-0	12-10217	580	.002	.001	0	0	.020	QN	QN
19-1	12-10242	1505	.003	.004	.003	.004	.016	CN	QN
19-2	12-10264	1570	.002	.003	.003	.004	0	QN	QN QN
1.9-3	12-10295	1395	.003	.004	.002	.002	600.	QN	QN
19-4	12-10339	1500	.001	.001	.001	.002	.001	<u>R</u>	QN.

The second second

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Morphine ug/ml mg/24 h	fS forphine mg/24 hr	GC-MS Free Morphine ug/ml mg/	hine mg/24 hr	Frat Value µg/ml	GC-MS Metaboli Codeine Nor %	GC-MS Metabolites Codeine Nor-Morphine
19–5	12-10365	910	.001	.001	.002	.002	0.	Ð	QN QN
22-0	no specimen						18.6		
22-1	12-10546	1014	3.45	3.46	.149	.151	2.9	H	CN
22-4	12-16810	1185	* 800	.010	.004	.005	0.035	ON	QN Q
22-5	12-10829	1530	0	0	.003	.004	0.017	ON O	QN
22-6	12-10841	006	.002	.001	0	0	0.054	CN	QN
22-7	12-10857	140	0	0	0	0	0.020	Q	QN Q
22-8	12-10868	610	0	0	0	0	0.089	QN	QN
22-9	no specimen						0.042	NO	QN
22-10	12-10892	1120	0	0	0	0	0.035	Q.	QN
22-11	12-10910	1110	0	0	0	0	0.035	QX	QN
22-12	12-10925	605	.044	.027	0	0	0.057	QN	QN
22-13	12-10947	7000	.001	.001	0	0	0.045	QX	QN
22-14	12-10966	630	0	0	0	0	0.013	QN SN	QN
						-			
23-0	12-10524	850	37.7	31.5	3.17	2.70	13.6	•05	QN

The state of the s

Patient/doy	Specimen No.	Total Volume ml	GC-MS Total Mo ug/ml m	-MS Morphine mg/24 hr	GC-MS Free Morphine ug/m3 mg/	ohine mg/24 hr	Frat Value ug/ml	GC-MS Metabolites Codeine Nor-Mo	GC-MS M&&abolitss Codeine Nor-Morphine
23-,1	12-10543	1875	7.60	1.42	.671	1.25	3.90	.0045	QN
23-2	12-10571	590	3.87	2.28	.333	197	4.52	NE	Ua
23-3	12-10588	650	.752	687.	.080	.052	1.20	QN	QN
73-4	1.2-10807	1400	.020	.027	.001	.002	.041	Ģ	ΩN
23-5	12-10826	1800	900.	.010	.304	.007	900,	Q	QN
23-6	12-10843	760	.063	.048	.003	.002	.035	S S	CN
23-7	12-1.0859	2030	,002	.015	÷005	.310	.015	ND	QN CN
23-8	3.2-10870	1100	900.	.007	.004	.004	. 337	ON.	QN
23-9	12-10884	1270	.010	.012	600,	.011	.017	+	ON ON
23-10	12-10893	1600	.005	.008	.011	.017	.010	QN	QN.
23-11	12-10911	1845	.668	1.23	.008	.015	.062	S S	QN QN
23-12	no specimen						.094		QN
23-13	12-10948	1185	.005	900.	.005	90v·	.020	Q.	æ
22-14	12-10967	1470	.007	.010	.003	.003	.004	ON	NO ON
-									
24-0	12-10525	C77	11.1	4.91	.169	.075	7.47	QN	CN CN
24-1	12-1.0544	3880	3,35	13.0	.141	.547	2.26	QN	QN

CONTRACTOR CONTRACTOR

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Morphine <u>ug/ml</u> mg/24 h	fS forphine mg/24 hr	GC-MS Free Morphine ug/ml mg/	hine mg/24 hr	Frat Value	GC-M3 Metabolites Codeine Nor-Mo	GC-M3 Metabolites Codeine Nor-Morphine
24-2	12-10572	4240	.342	1.44	940.		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9	4/
24-3	12-10590	1930	600.	.017	0	0		2 9	Q !
24-4	12-10808	1580	900.	.010	.005	800		<u> </u>	
24-5	12-10827	2510	.001	.004	2003		770.	Q ,	QN
24-6	12-10842	1915	0	c) 		070.	Q	QN
24-7	12-10858	1600	, 6	•	•	5	.10.	S.	ND Q
•		7020	•004	.007	0	0	.049	ND	S
24-8	12-10869	1000	900.	900.	.010	.010	.030	QN	QN.
249	12-10882	. 2385	0	0	.002	900.	.004	Ę	! §
24-10	12-10894	1640	.005	*000	800.	.014	X		
24-11	12-10912	2025	.014	.027	0	· ·	000	j j	
24-12	12-10927	1420	031		,	.	070.	QN	QN
Ç1 /C	; ; ;) ! !	100.	240.	870.	.026	.072	Q.	ND
24-13	12-10949	1580	.007	.011	0	0	900.	ND ON	QN
24-14	12-10968	1350	600.	.013	*000	.011	.028	QN	QN
2.5-0	12-10526	300	900.	.002	.013	.002	.016	Đ.	CN.
25-1	12-10545	1310	.002	0	.022	.028	.016	§) <u> </u>
25-2	12-10573	1245	.018	.023	.202	.251	.016	E E	Q Q

. . .

Patient/day	Specimen No.	Total Volume ml	GC-MS Total Morphine ug/ml mg/24 hr	GC-MS Total Morphine g/ml mg/24 hr	GC-MS Free Morphine ug/ml mg/2	GC-MS ree Morphine ug/ml mg/24 hr	Frat Value µg/ml	GC-MS Metaboli Codeine Nor-	GC-MS Metabolites Codeine Nor-Morphine
25-3	12-10587	860	900.	.005	.010	.003	900.	S	QN
25-4	12-10809	1185	.003	.003	.023	.027	.011	Q	QX QX
25-5	12-10828	1045	900•	900.	0	0	000.	S	NO
25-6	12-10844	220	.001	0	0	0	.002	NO ON	Ø

and the second second

THE REPORT OF THE PARTY OF THE

Baboon serum samples (all have the prefix FJSBP520)

The second of th

	Free Morphine	ug/m1	0.00	10.0	0.13	0.02	0.00	00.00	SNÒ	SNO	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00
		Sample	61.	62.	63.	. 49	65.	.99	. 79	.89	.69	70.	71.	72.	73.	74.	75.	76.
	Free Morphine	ug/ml	00.00	00.00	0.09	0.00	00.00	0.00	00.00	0.00	0.00	0.02	0.00	00.00	00.00	00.00	00.00	00.0
•		Sample	31.	32.	33.	34.	35.	36.	37.	38.	39.	.04	41.	42.	43.	. 44.	45.	46.
•	Free Morphine	ug/ml	90.0	0.07	0.05	0.03	0.49	0.03	0.12	0.10	0.02	0.03	0.00	60.0	00.00	0.00	0.00	0.00
		Sample		2.	ë.	. 4	5,	• 9	7.	.	.6	10.	11.	12.	13.	14.	15.	16.

Free Morphine	Sample ug/ml	77. 0.00	78. 0.00	SND .e7	80. 0.00	81. 0.00			84. 0.00	85. 0.02	86. 0.01	•			
Free Morphine	ug/ml	00.0	00.00	00.00	SNÒ	SNÒ	0.17	0.00	SMÒ	00.0	00.00	0.00	00.0	0.00	0.00
	Sample	. 74	48.	.64	50.	51.	52.	53.	54.	55.	56.	57.	58.	.65	.09
Free Morphine	ug/ml	00.00	0.00	0.00	0.00	60.0	ÓNS	0.01	0.16	0.05	0.00	0.00	0.16	00.00	0.12
	Sample	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.

" profess"

; -

QNS means quantity not sufficient to do the analysis.

123,020

DISTRIBUTION LIST

4 copies

HQDA (SGRD-AJ)

Washington DC 20314

12 copies

Defense Documentation Center (DDC)

ATTN: DDG-TCA Cameron Station

Alexandria, Virginia 22314

1 copy

Superintendent

Academy of Health Sciences, US Army

ATTN: AHS-COM

Fort Sam Houston, Texas 78234

1 copy

Dean

School of Medicine

Uniformed Services University of the

Health Sciences

Office of the Secretary of Defense

6917 Arlington Road

Bethesda, Maryland 20014