

Навчання з підкріпленням

Лекція 5: Планування за допомогою динамічного програмування

Кочура Юрій Петрович iuriy.kochura@gmail.com @y_kochura

Сьогодні

- Вступ
- Оцінка стратегії
- Ітерація стратегії

Вступ

Динамічний: послідовний або часовий компонент задачі

- лінійне програмування
- нелінійне програмування

Динамічний: послідовний або часовий компонент задачі

Програмування: оптимізація задачі (наприклад, стратегії)

- лінійне програмування
- нелінійне програмування

• Метод вирішення складних задач

Динамічний: послідовний або часовий компонент задачі

- лінійне програмування
- нелінійне програмування

- Метод вирішення складних задач
- Шляхом розбиття їх на підзадачі

Динамічний: послідовний або часовий компонент задачі

- лінійне програмування
- нелінійне програмування

- Метод вирішення складних задач
- Шляхом розбиття їх на підзадачі
 - Розв'язати підзадачі

Динамічний: послідовний або часовий компонент задачі

- лінійне програмування
- нелінійне програмування

- Метод вирішення складних задач
- Шляхом розбиття їх на підзадачі
 - Розв'язати підзадачі
 - Об'єднати рішення підзадач

Динамічне програмування— це загальний метод вирішення задач, які мають дві властивості:

- Оптимальна підстуктура
 - Виконуєтсья принцип оптимальності

Динамічне програмування— це загальний метод вирішення задач, які мають дві властивості:

- Оптимальна підстуктура
 - Виконуєтсья принцип оптимальності
 - Оптимальне рішення можна розкласти на підзадачі

Динамічне програмування — це загальний метод вирішення задач, які мають дві властивості:

- Оптимальна підстуктура
 - Виконуєтсья принцип оптимальності
 - Оптимальне рішення можна розкласти на підзадачі
- Перекриття підзадач
 - Підзадачі повторюються багато разів

Динамічне програмування— це загальний метод вирішення задач, які мають дві властивості:

- Оптимальна підстуктура
 - Виконуєтсья принцип оптимальності
 - Оптимальне рішення можна розкласти на підзадачі
- Перекриття підзадач
 - Підзадачі повторюються багато разів
 - Розв'язок можна зберегти та повторно використовувати

Динамічне програмування — це загальний метод вирішення задач, які мають дві властивості:

- Оптимальна підстуктура
 - Виконуєтсья принцип оптимальності
 - Оптимальне рішення можна розкласти на підзадачі
- Перекриття підзадач
 - Підзадачі повторюються багато разів
 - Розв'язок можна зберегти та повторно використовувати
- Марковський процес прийняття рішень задоволяняє обидві властивості
 - Рівняння Беллмана дає рекурсивне розкладання

Динамічне програмування— це загальний метод вирішення задач, які мають дві властивості:

- Оптимальна підстуктура
 - Виконуєтсья принцип оптимальності
 - Оптимальне рішення можна розкласти на підзадачі
- Перекриття підзадач
 - Підзадачі повторюються багато разів
 - Розв'язок можна зберегти та повторно використовувати
- Марковський процес прийняття рішень задоволяняє обидві властивості
 - Рівняння Беллмана дає рекурсивне розкладання
 - Функція цінності зберігає та повторно використовує рішення

Приклад

[ipynb]

Планування за допомогою динамічного програмування

- Динамічне програмування передбачає повне знання MDP
- Використовується для планування в МDР
- Для передбачення:
 - \circ Вхід: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ та стратегія π або: MRP $\langle \mathcal{S}, \mathcal{P}^\pi, \mathcal{R}^\pi, \gamma \rangle$
 - \circ Вихід: функція цінності v_π
- Або для управління:
 - \circ Вхід: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma
 angle$ Вихід: оптимальна функція цінності v_*

Інші застосування динамічного програмування

Динамічне програмування використовується для вирішення багатьох інших проблем, наприклад:

- Алгоритми планування (Scheduling algorithms)
- Алгоритм рядка (String algorithms), напр. вирівнювання послідовності
- Алгоритми на графах (Graph algorithms), напр. алгоритми пошуку найкоротшого шляху
- Графова модель (Graphical models), напр. алгоритм Вітербі
- Біоінформатика, напр. граткові моделі

- ullet Задача: оцінити дану стратегію π
- Розв'язок: ітеративна оцінка рівняння Беллмана
- $ullet v_1
 ightarrow v_2
 ightarrow \cdots
 ightarrow v_\pi$

- ullet Задача: оцінити дану стратегію π
- Розв'язок: ітеративна оцінка рівняння Беллмана
- $ullet v_1 o v_2 o \cdots o v_\pi$
- Синхронна оцінка:
 - $\circ~$ На кожній ітерації k+1
 - \circ Для всіх станів $s \in \mathcal{S}$
 - \circ Оновити $v_{k+1}(s)$ з $v_k(s')$
- Збіжність до v_{π} буде доведена пізніше

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s) arbitrarily, for s \in \mathcal{S}, and V(terminal) to 0 Loop: \Delta \leftarrow 0 Loop for each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \Delta \leftarrow \max(\Delta,|v-V(s)|) until \Delta < \theta
```

Приклад

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R_t = -1$$
 on all transitions

- ullet Епізодичний MDP без знецінювання ($\gamma=1$)
- Нетермінальні стани: $\mathcal{S}=1,\cdots,14$
- ullet Чотири дії можливі для кожного стану: $\mathcal{A} = \operatorname{left}, \operatorname{right}, \operatorname{up}, \operatorname{down}$
- Термінальні стани позначені сірим кольором (два квадрати)
- Дії, що виходять із сітки, залишають стан без змін
- Винагорода становить -1, доки не буде досягнуто термінального стану
- Агент дотримується стратегії:

$$\pi(n|\cdot)=\pi(s|\cdot)=\pi(e|\cdot)=\pi(w|\cdot)=0.25$$

Ітеративна оцінка стратегії

greedy policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

	\longleftrightarrow	$ \longleftrightarrow$	\longleftrightarrow		
\Leftrightarrow	\longleftrightarrow	\longleftrightarrow	\leftrightarrow	_	random
\Leftrightarrow	\Rightarrow	\longleftrightarrow	\Leftrightarrow		policy
. 1 .	. † .	Lt.			

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Ітерація стратегії

Як вдосконалити стратегію?

ullet Дано стратегію π

Як вдосконалити стратегію?

- Дано стратегію π
 - \circ Оцінка стратегії π :

$$v(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s
ight]$$

 \circ Вдосконалення стратегії, діючи жадібно щодо v_{π} :

$$\pi' = \operatorname{greedy}(v_\pi)$$

- У розглянутому попередньому прикладі вдосконалена стратегія була оптимальною: $\pi' = \pi_*$
- У загальному випадку потрібно виконати більше ітерацій вдосконалення стратегії
- Процес ітеративної оцінки стратегії завжди збігається до π_*

Ітерація стратегії

- ullet Оцінка стратегії: обчислення v_π
 - Ітеративна оцінка стратегії
- ullet Вдосконалення стратегії: отримання $\pi' \geq \pi$
 - Жадівне вдосконалення стратегії

Кінець

Література

- David Silver, Lecture 3: Planning by Dynamic Programming
- R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction. Ch. 4 Dynamic Programming