$11a_{224} (K11a_{224})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{44} - u^{43} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{44} - u^{43} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{9} - 4u^{7} + 5u^{5} - 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} - 5u^{10} + 9u^{8} - 4u^{6} - 6u^{4} + 5u^{2} + 1 \\ u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 4u^{6} + 8u^{4} - u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{22} + 9u^{20} + \dots + 2u^{2} + 1 \\ -u^{24} + 10u^{22} + \dots - 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{42} - 17u^{40} + \dots - u^{2} + 1 \\ -u^{42} + 16u^{40} + \dots + 4u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{42} - 17u^{40} + \dots - u^{2} + 1 \\ -u^{42} + 16u^{40} + \dots + 4u^{4} + 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{41} 64u^{39} + \cdots + 4u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{44} - u^{43} + \dots + u^2 - 1$
c_2	$u^{44} + 23u^{43} + \dots + 2u + 1$
c_3, c_9, c_{10}	$u^{44} + u^{43} + \dots - 2u - 1$
c_4, c_5, c_8	$u^{44} - 3u^{43} + \dots - 10u + 5$
c_7, c_{11}	$u^{44} - 3u^{43} + \dots + 70u - 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{44} - 23y^{43} + \dots - 2y + 1$
c_2	$y^{44} - 3y^{43} + \dots - 10y + 1$
c_3, c_9, c_{10}	$y^{44} - 35y^{43} + \dots - 2y + 1$
c_4, c_5, c_8	$y^{44} + 41y^{43} + \dots - 270y + 25$
c_7, c_{11}	$y^{44} + 29y^{43} + \dots - 6454y + 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.136420 + 0.070861I	-1.83859 - 0.36732I	-5.44983 + 0.09330I
u = 1.136420 - 0.070861I	-1.83859 + 0.36732I	-5.44983 - 0.09330I
u = 0.011664 + 0.857762I	7.59511 - 2.36662I	-0.82199 + 3.38645I
u = 0.011664 - 0.857762I	7.59511 + 2.36662I	-0.82199 - 3.38645I
u = -0.072887 + 0.852785I	2.26398 + 8.63330I	-5.49078 - 6.17544I
u = -0.072887 - 0.852785I	2.26398 - 8.63330I	-5.49078 + 6.17544I
u = 0.058073 + 0.845269I	5.01784 - 3.75852I	-2.18404 + 2.68935I
u = 0.058073 - 0.845269I	5.01784 + 3.75852I	-2.18404 - 2.68935I
u = -0.066510 + 0.814340I	0.820194 + 0.338577I	-7.27786 - 0.02628I
u = -0.066510 - 0.814340I	0.820194 - 0.338577I	-7.27786 + 0.02628I
u = -1.209090 + 0.176546I	-3.07255 + 4.10165I	-9.63918 - 6.97252I
u = -1.209090 - 0.176546I	-3.07255 - 4.10165I	-9.63918 + 6.97252I
u = -1.207320 + 0.344488I	-2.67222 + 3.85231I	-10.89580 - 3.96243I
u = -1.207320 - 0.344488I	-2.67222 - 3.85231I	-10.89580 + 3.96243I
u = -1.199240 + 0.400757I	-1.19898 - 4.13238I	-8.61614 + 2.75656I
u = -1.199240 - 0.400757I	-1.19898 + 4.13238I	-8.61614 - 2.75656I
u = 1.216460 + 0.389904I	1.45135 - 0.67916I	-5.37325 + 0.I
u = 1.216460 - 0.389904I	1.45135 + 0.67916I	-5.37325 + 0.I
u = -1.28385	-5.57163	-16.6130
u = 1.261750 + 0.397871I	3.71994 - 2.13541I	0
u = 1.261750 - 0.397871I	3.71994 + 2.13541I	0
u = -1.280990 + 0.395746I	3.57613 + 6.86218I	0
u = -1.280990 - 0.395746I	3.57613 - 6.86218I	0
u = -1.336030 + 0.128402I	-5.89939 + 3.18300I	-11.60255 + 0.I
u = -1.336030 - 0.128402I	-5.89939 - 3.18300I	-11.60255 + 0.I
u = 1.353960 + 0.106974I	-9.55253 + 0.87557I	-15.7624 + 0.I
u = 1.353960 - 0.106974I	-9.55253 - 0.87557I	-15.7624 + 0.I
u = 1.354080 + 0.142889I	-9.09797 - 7.70313I	-14.6073 + 0.I
u = 1.354080 - 0.142889I	-9.09797 + 7.70313I	-14.6073 + 0.I
u = 1.314770 + 0.363443I	-3.50174 - 4.58387I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.314770 - 0.363443I	-3.50174 + 4.58387I	0
u = -1.312960 + 0.381210I	0.73171 + 8.16553I	0
u = -1.312960 - 0.381210I	0.73171 - 8.16553I	0
u = 1.322850 + 0.383944I	-2.10496 - 13.07590I	0
u = 1.322850 - 0.383944I	-2.10496 + 13.07590I	0
u = -0.371942 + 0.476818I	-3.72132 + 5.60891I	-9.34455 - 7.77746I
u = -0.371942 - 0.476818I	-3.72132 - 5.60891I	-9.34455 + 7.77746I
u = -0.442174 + 0.385790I	-4.03922 - 2.47426I	-10.82917 - 0.27323I
u = -0.442174 - 0.385790I	-4.03922 + 2.47426I	-10.82917 + 0.27323I
u = 0.334945 + 0.405418I	-0.74838 - 1.34331I	-6.21576 + 4.98012I
u = 0.334945 - 0.405418I	-0.74838 + 1.34331I	-6.21576 - 4.98012I
u = 0.101961 + 0.483460I	0.81833 - 1.69616I	-1.98579 + 6.04080I
u = 0.101961 - 0.483460I	0.81833 + 1.69616I	-1.98579 - 6.04080I
u = 0.348278	-0.869874	-12.9060

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{44} - u^{43} + \dots + u^2 - 1$
c_2	$u^{44} + 23u^{43} + \dots + 2u + 1$
c_3, c_9, c_{10}	$u^{44} + u^{43} + \dots - 2u - 1$
c_4, c_5, c_8	$u^{44} - 3u^{43} + \dots - 10u + 5$
c_7, c_{11}	$u^{44} - 3u^{43} + \dots + 70u - 7$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{44} - 23y^{43} + \dots - 2y + 1$
c_2	$y^{44} - 3y^{43} + \dots - 10y + 1$
c_3, c_9, c_{10}	$y^{44} - 35y^{43} + \dots - 2y + 1$
c_4, c_5, c_8	$y^{44} + 41y^{43} + \dots - 270y + 25$
c_7, c_{11}	$y^{44} + 29y^{43} + \dots - 6454y + 49$