Math 104 Practice

Neo Lee

2023 Fall

Chapter 14

Proposition 1. $\sum \frac{n^4}{2^n}$ converges.

Proof. We proceed with Ratio Test.

$$\lim \left| \frac{(n+1)^4}{2^{n+1}} \cdot \frac{2^n}{n^4} \right| = \lim \frac{(n+1)^4}{2n^4}$$
$$= \lim \frac{n^4 + O(n^3)}{2n^4}$$
$$= \frac{1}{2} < 1.$$

Proposition 2. $\sum \frac{2^n}{n!}$ converges.

Proof. We proceed with Ratio Test.

$$\lim \left| \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} \right| = \lim \frac{2}{n+1}$$
$$= 0 < 1.$$

Proposition 3. $\sum \frac{n!}{n^4+3}$ diverges.

Proof. We proceed with Ratio Test.

$$\lim \left| \frac{(n+1)!}{(n+1)^4 + 3} \cdot \frac{n^4 + 3}{n!} \right| = \lim \frac{n(n^4 + 3)}{(n+1)^4 + 3}$$
$$= \lim \frac{n^5 + 3n}{n^4 + O(n^3)}$$
$$= \infty > 1.$$

Hence,

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| = \infty > 1.$$

Proposition 4. $\sum \frac{\cos^2 n}{n^2}$ converges.

Proof. We proceed with Comparison Test.

$$\left|\frac{\cos^2 n}{n^2}\right| \le \frac{1}{n^2}.$$

We know $\sum \frac{1}{n^2}$ converges. Hence, $\sum \frac{\cos^2 n}{n^2}$ converges.

Proposition 5. $\sum_{n=2}^{\infty} \frac{1}{logn}$ diverges.

Proof. We proceed with Comparison Test.

$$\frac{1}{logn} \ge \frac{1}{n}.$$

We know $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges to $+\infty$. Hence, $\sum_{n=2}^{\infty} \frac{1}{\log n}$ diverges to $+\infty$.

Proposition 6. Suppose $\sum a_n = A, \sum b_n = B$ where $A, B \in \mathbb{R}$. Then, $\sum (a_n + b_n) = A + B$.

Proof. Define (a'_n) as the partial sums of (a_n) , (b'_n) as the partial sums of (b_n) , and (c'_n) as the partial sums of $(a_n + b_n)$. Then

$$\sum (a_n + b_n) = \lim c'_n$$

$$= \lim (a'_n + b'_n)$$

$$= \lim a'_n + \lim b'_n$$

$$= A + B.$$

Proposition 7. Suppose $\sum a_n = A$ for $A \in \mathbb{R}$. Then, $\sum ka_n = kA$ for $k \in \mathbb{R}$.

Proof. Define (a'_n) as the partial sums of (a_n) and (c'_n) as the partial sums of (ka_n) . Then

$$\sum (ka_n) = \lim c'_n$$

$$= \lim (ka'_n)$$

$$= k \lim a'_n$$

$$= kA.$$

Proposition 8. Suppose $\sum a_n = A, \sum b_n = B$ where $A, B \in \mathbb{R}$. Then, $\sum (a_n \cdot b_n) = AB$ is not true in general.

Proof. Define $(a_n) = (1, 0, 0, 0, \dots), (b_n) = (1/2)^n$. Then A = 1, B = 2 and AB = 2. But notice $a_n \cdot b_n = 0$ for all $n \neq 0$ and $\sum (a_n \cdot b_n) = a_0 \cdot b_0 = 1 \neq AB = 2$.

Proposition 9. If $\sum |a_n|$ converges and (b_n) is a bounded sequence, then $\sum a_n b_n$ converges. Note: Corollary 14.7 that absolutely convergent series are convergent is a special case when (b_n) is taken to be 1 for all n.

Proof. Since (b_n) is bounded, we know there exists an supremum for $(|b_n|)$, denote $M = max\{\sup(|b_n|), 1\}$. Then, we know there exists $N \in \mathbb{N}$ such that for $n \geq m > N$, $\sum_{k=m}^{n} |a_k| < \frac{\epsilon}{M}$ for all $\epsilon > 0$. Now, take such N and

$$\sum_{k=m}^{n} |a_k| < \frac{\epsilon}{M}$$

$$M \sum_{k=m}^{n} |a_k| < \epsilon$$

$$\left| \sum_{k=m}^{n} a_k b_k \right| \le \sum_{k=m}^{n} |a_k| |b_k| \le \sum_{k=m}^{n} |a_k| M < \epsilon.$$

Hence, $\sum a_n b_n$ satisfies the Cauchy criterion and thus converges.

Proposition 10. If $\sum a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum a_n^p$ converges.

Proof. We know there exists N such that for $n \ge m > N$, $|\sum_{k=m}^n a_k| < \sqrt[p]{\epsilon}$ for all $\epsilon > 0$. Take some $\epsilon > 0$ and such N, then

$$\left| \sum_{k=m}^{n} a_{k} \right| < \sqrt[p]{\epsilon}$$

$$\left| \sum_{k=m}^{n} a_{k} \right|^{p} < \epsilon$$

$$\left| \sum_{k=m}^{n} a_{k}^{p} \right| \le \left| \left(\sum_{k=m}^{n} a_{k} \right)^{p} \right| < \epsilon.$$
(1)

Hence, $\sum a_n^p$ satisfies Cauchy criterion and thus converges.

Note: the left inequality in (1) is true because $a_k \ge 0$ for all k so there are simply extra nonnegative terms in $\left|\left(\sum_{k=m}^{n} a_k\right)^p\right|$.

Proposition 11. If $\sum a_n$ and $\sum b_n$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_n b_n}$ converges. Hint: show $\sqrt{a_n b_n} \le a_n + b_n$ for all n.

Proof. Notice for all n

$$a_n^2 + b_n^2 + 2a_n b_n \ge a_n b_n$$
$$(a_n + b_n)^2 \ge a_n b_n$$
$$a_n + b_n \ge \sqrt{a_n b_n}.$$

Also, we know there exists N_1 such that for $n \ge m > N_1$, $|\sum_{k=m}^n a_k| < \epsilon/2$ and N_2 such that for $n \ge m > N_2$, $|\sum_{k=m}^n b_k| < \epsilon/2$. Now we take $N = \max\{N_1, N_2\}$ for some $\epsilon > 0$. Then, for all $n \ge m > N$

$$\left| \sum_{k=m}^{n} \sqrt{a_n b_n} \right| \le \left| \sum_{k=m}^{n} a_k + b_k \right|$$

$$\le \left| \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k \right|$$

$$\le \left| \sum_{k=m}^{n} a_k \right| + \left| \sum_{k=m}^{n} b_k \right|$$

$$\le \epsilon.$$

Hence, $\sum \sqrt{a_n b_n}$ satisfied Cauchy criterion and thus converges.

Proposition 12. The convergence of a series does not depend on any finite number of terms, though the value of the limit does. More precisely, consider series $\sum a_n$ and $\sum b_n$ and suppose that the set $\{n \in \mathbb{N} : a_n \neq b_n\}$ is finite. Then the series both converge or else the both diverge.

Proof. Without loss of generality, we will focus on $\sum a_n$ and conclude the convergence of $\sum b_n$ based on $\sum a_n$. Also, denote $M = \max\{n \in \mathbb{N} : a_n \neq b_n\}$.

Case 1: $\sum a_n$ converges. We know $\sum a_n$ satisfies Cauchy criterion, thus we know there exists N_1 such that for all $n \geq m > N_1$, $|\sum_{k=m}^n a_k| < \epsilon$ for some $\epsilon > 0$.

Then, let $N_2 = \max\{N_1, M\}$. Since we have set N_2 to be at least M, any terms after N_2 for b_n is the same as a_n . Thus, any statement that holds true for a_n is also true for b_n after N_2 and we can conclude for all $n \ge m > N_2 |\sum_{k=m}^n b_k| < \epsilon$ for some $\epsilon > 0$.

Therefore, $\sum b_n$ satisfies Cauchy criterion too and thus converges.

Case 2: $\sum a_n$ diverges. Assume for the sake of contradiction that $\sum b_n$ converges. Then there exists N_2 for all $\epsilon > 0$ such that for $n \ge m > N_2$, $|\sum b_n| < \epsilon$. Thus, we can take $N_1 = \max\{N_2, M\}$, which will make sure that for $n \ge m > N_1$, $|\sum_{k=m}^n a_n| < \epsilon$ for each ϵ . But that contradicts that fact that $\sum a_n$ diverges. Hence, $\sum b_n$ must diverge.

Proposition 13. Let (a_n) be a sequence of nonzero real numbers such that the sequence $\left(\frac{a_{n+1}}{a_n}\right)$ of ratios is a constance sequence, then $\sum a_n$ is a geometric series.

Proof. Let $r = \frac{a_{n+1}}{a_n}$ for all n. Then we can define (a_n) recursively such that $a_{n+1} = a_n \cdot r$. Hence, $a_n = a_0 \cdot r^n$. Indeed,

$$\sum a_n = \sum_{k=0}^n a_0 \cdot r^k,$$

which is a geometric series.

Proposition 14. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence such that $\liminf |a_n| = 0$, then there is a subsequence such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.

Proof. Since $\liminf |a_n| = 0$, we know there exists a subsequence of $(|a_n|)$ that converges to 0. Hence, for each ϵ , the set $\{n : \mathbb{N} : |a_n| < \epsilon\}$ is infinite. Then we can construct a subsequence such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.

For each k+1, choose $n_{k+1} > n_k$ such that $|a_{n_{k+1}}| < \frac{1}{2^{k+1}} = b_{k+1}$. Then, for each $k, |a_{n_k}| \le b_k$. Apparently, $\sum b_k$ is a convergent geometric series, thus by comparison test, $\sum_{k=1}^{\infty} a_{n_k}$ converges.

Proposition 15. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. Hint: $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$.

Proof. Notice

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}.$$

Hence,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$
$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)$$
$$= 1.$$

Proposition 16. $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \frac{1}{2}$. Hint: $\frac{k-1}{2^{k+1}} = \frac{k}{2^k} - \frac{k+1}{2^{k+1}}$.

Proof. Notice

$$\begin{split} \sum_{k=1}^{n} \frac{k-1}{w^{k+1}} &= \sum_{k=1}^{n} \left(\frac{k}{2^k} - \frac{k+1}{2^{k+1}} \right) \\ &= \left(\frac{1}{2} - \frac{2}{2^2} \right) + \left(\frac{2}{2^2} - \frac{3}{2^3} \right) + \dots + \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right) \\ &= \frac{1}{2} - \frac{n+1}{2^{n+1}}. \end{split}$$

Hence,

$$\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k-1}{2^{k+1}}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2} - \frac{n+1}{2^{n+1}}\right)$$

$$= \frac{1}{2} - \lim_{k \to \infty} \frac{k}{2^k}$$

$$= \frac{1}{2} - \lim_{k \to \infty} \left(\frac{\sqrt[k]{k}}{2}\right)^k$$

$$= \frac{1}{2}.$$

Proposition 17. Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by comparing with the series $\sum_{n=2}^{\infty} a_n$ where (a_n) is the sequence

$$(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{32}, \frac{1}{32}, \cdots).$$

Note: this is also known as the Cauchy Condensation Test.

Proof. We will show that $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges and thus $\sum_{n=1}^{\infty} \frac{1}{n}$, which differs only by the first term. Notice for all $2^k < n \le 2^{k+1}$, $a_n = \frac{1}{2^{k+1}} \le \frac{1}{n}$. This is true for all $k \in \mathbb{N}$. Hence, $\frac{1}{n} \le a_n$ for all n. Now observe within each interval $(2^k, 2^{k+1}]$, there are 2^k terms. Therefore, $\sum_{n=2^k}^{2^{k+1}} a_n = \frac{1}{2}$ and $\sum_{n=2}^{\infty} a_n = \lim_{k \to \infty} k\left(\frac{1}{2}\right) = \infty.$

Hence, by Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{n}$ also diverges.

Chapter 15

Proposition 18. $\sum \left[sin\left(\frac{n\pi}{6}\right) \right]^n$ diverges.

Proof. Notice that when n=12k+3, $\left[\sin\left(\frac{n\pi}{6}\right)\right]^n=1$. Hence, the summation never converges.

Proposition 19. $\sum \left[\sin \left(\frac{n\pi}{7} \right) \right]^n$ converges.

Proof. We will show that the summation converges absolutely, hence converges.

Notice $\left| sin\left(\frac{n\pi}{7}\right) \right|$ is always between 0 and 1. In fact, it is bounded by above by some r < 1 such that $\left| sin\left(\frac{n\pi}{7}\right) \right| \le r < 1$ and $\left| sin\left(\frac{n\pi}{7}\right) \right|^n \le r^n < 1$. Then by Comparison Test, $\sum \left| sin\left(\frac{n\pi}{7}\right) \right|^n$ converges because $\sum r^n$ converges, which can be shown easily by Ratio Test or Root Test.

Proposition 20. $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if and only if p > 1.

Proof. We proceed with Integral Test with $f(x) = \frac{1}{x(\log x)^p}$. Notice f(x) is continuous, positive, and decreasing for $x \ge 2$. Also, $f(n) = a_n$. Then for $p \ne 1$

$$\lim_{n \to \infty} \int_{2}^{n} \frac{1}{x(\log x)^{p}} dx = \lim_{n \to \infty} \left[\frac{(\log x)^{1-p}}{1-p} \right]_{2}^{n}.$$
 (2)

For p = 1, we have

$$\lim_{n \to \infty} \int_2^n \frac{1}{x(\log x)} dx = \lim_{n \to \infty} \left[\log(\log x) \right]_2^n = \infty.$$
 (3)

Then for (\Rightarrow) direction, we know that if p=1, (2) goes to infinity, thus the summation diverges. If p<1, (1) goes to infinity, thus the summation diverges again. Hence, forward direction is shown by contrapositive. For (\Leftarrow) direction, we know that if p>1, (1) converges, thus the summation converges.

Proposition 21. $\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)}$ diverges.

Proof. We proceed with Integral Test with $f(x) = \frac{1}{x(\log x)(\log \log x)}$. Notice f(x) is decreasing, $f(n) = a_n$, and all a_n are nonnegative. Then

$$\lim_{n \to \infty} \int_4^n \frac{1}{x(\log x)(\log\log x)} dx = \lim_{n \to \infty} \left[\log(\log(\log x))\right]_4^n = \infty.$$

Proposition 22. $\sum_{n=2}^{\infty} \frac{\log n}{n^2}$ converges.

Proof. Integral Test:

We can integrate $f(x) = \frac{\log x}{x^2}$ to get

$$\begin{split} \lim_{n \to \infty} \int_2^n \frac{\log x}{x^2} dx &= \lim_{n \to \infty} \int_2^n -(\log x) d\left(\frac{1}{x}\right) \\ &= \lim_{n \to \infty} \left[-\frac{\log x}{x} \right]_2^n + \lim_{n \to \infty} \int_2^n \frac{1}{x^2} dx \\ &= \lim_{n \to \infty} \left[-\frac{\log x}{x} \right]_2^n - \lim_{n \to \infty} \left[\frac{1}{x}\right]_2^n \\ &= \frac{1}{2}, \end{split}$$

and conclude that $\sum_{n=2}^{\infty} \frac{\log n}{n^2}$ converges.

Comparison Test:

We know that for n > N where N is some constant, $\sqrt{n} > \log n$. This can be proved by obversing that $\sqrt{n} > \log n$ when n = 100, and we see by first derivative that \sqrt{n} has a higher increasing rate than $\log n$ for all n. Hence, we can conclude that $\sqrt{n} > \log n$ for all $n \ge 100$.

Then, we see $\frac{\log n}{n^2} < \frac{1}{n^{3/2}}$ for $n \ge 100$. We know that $\sum \frac{1}{n^{3/2}}$ converges for $p > 1 \Rightarrow \sum_{100}^{\infty} \frac{1}{n^{3/2}}$ converges $\Rightarrow \sum_{100}^{\infty} \frac{\log n}{n^2}$ converges $\Rightarrow \sum_{100}^{\infty} \frac{\log n}{n^2}$ converges.

Proposition 23. If (a_n) is a decreasing sequence of real numbers and if $\sum a_n$ converges, then $\lim na_n = 0$.

Proof. Since $\sum a_n$ converges, we know it satisfies Cauchy criterion. In other words, there exists N such that for $n \ge m > N$,

$$\left| \sum_{k=m}^{n} a_k \right| = \sum_{k=m}^{n} a_k < \frac{\epsilon}{2}.$$

Notice (a_n) is a decreasing sequence and $\lim a_n = 0$ is a necessary condition for $\sum a_n$ to converge, hence all a_n are non-negative. Therefore, we can remove the absolute value.

In particular, for m = N + 1,

$$(n-N)a_n \le \sum_{k=N+1}^n a_k$$

$$na_n \le \sum_{k=N+1}^n a_k + Na_n.$$
(4)

Note that since (a_n) converges to 0 and all a_n are non-negative, we know there exists N' such that

$$a_n = |a_n - 0| < \frac{\epsilon}{2N}.$$

Therefore, putting back to (4), as long as $n > \max\{N, N'\}$

$$|na_n - 0| = na_n \le \sum_{k=N+1}^n a_k + Na_n < \frac{\epsilon}{2} + N \frac{\epsilon}{2N} = \epsilon.$$

Chapter 17

Proposition 24. \sqrt{x} is continuous on its domain $[0, \infty)$.

Proof. We consider non-negative sequences (x_n) because any sequence with negative terms would not make sense on $f(x_n)$.

We have to show that if (x_n) converges to some $x_0 \in [0, \infty)$, $f(x_n) = \sqrt{x_n}$ converges to $\sqrt{x_0}$. In other words, we seek to find N such that for $\epsilon > 0$, as long as n > N,

$$|\sqrt{x_n} - \sqrt{x_0}| < \epsilon.$$

Consider $x_0 = 0$, since $(x_n) \to 0$, there exists some N such that for n > N,

$$|x_n| < \epsilon^2$$

$$\sqrt{|x_n|} < \epsilon$$

$$|\sqrt{x_n}| < \epsilon.$$

Therefore, \sqrt{x} is continuous at x = 0.

For $x_0 > 0$, we need to show the existence of N such that for n > N,

$$\begin{aligned} |\sqrt{x_n} - \sqrt{x_0}| &< \epsilon \\ \left| \frac{x_n - x_0}{\sqrt{x_n} + \sqrt{x_0}} \right| &< \epsilon \\ \left| \frac{x_n - x_0}{\sqrt{x_n} + \sqrt{x_0}} \right| &\le \left| \frac{x_n - x_0}{\sqrt{x_0}} \right| &< \epsilon \\ \left| \frac{x_n - x_0}{\sqrt{x_0}} \right| &< \epsilon \\ \left| \frac{x_n - x_0}{\sqrt{x_0}} \right| &< \epsilon \end{aligned}$$

Indeed, there exists such N because (x_n) converges to x_0 .

Proposition 25. If $m \in \mathbb{N}$, then the function $f(x) = x^m$ is continuous on \mathbb{R} .

Proof. Suppose an arbitrary sequence (x_n) that converges to $x_0 \in \mathbb{R}$, then

$$\lim f(x_n) = \lim x_n^m$$

$$= (\lim x_n)^m$$

$$= x_0^m$$

$$= f(x_0).$$

Corollary 26. Every polynomial function $p(x) = a_0 + a_1x + \cdots + a_nx^n$ is continuous on \mathbb{R} .

Proof. Let $f_k = a_k x^k$ for $k \in [0, n]$. We have shown in previous proposition that x^k is continuous for $k \in [1, n]$. Notice $x^0 = 1$ is continuous on \mathbb{R} apparently because every sequence (x_n) that converges to 1 will have $(x_n)^0 = 1$.

Therefore, f_k is continuous on \mathbb{R} because it's a scalar multiple of a continuous function. Consequently, p(x) is continuous on \mathbb{R} because it's a sum of continuous functions.

Proposition 27. A rational function is a function f of the form p/q where p,q are polynomial functions. The domain of f is $\{x \in \mathbb{R} : q(x) \neq 0\}$. Then every rational function is continuous.

Proof. From Corollary 26, we know every polynomial is continuous on \mathbb{R} and of course on $\mathbb{R}\setminus\{x:q(x)=0\}$. Hence p/q is continuous since it's a division of two continuous functions where $q\neq 0$.

Proposition 28. $\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$.

Proof. Assume f > g, then

$$\frac{1}{2}(f+g) - \frac{1}{2}|f-g| = \frac{1}{2}(f+g) - \frac{1}{2}(f-g)$$

$$= g$$

$$= \min(f,g).$$

Assume $g \geq f$, then

$$\frac{1}{2}(f+g) - \frac{1}{2}|f-g| = \frac{1}{2}(f+g) - \frac{1}{2}(g-f)$$

$$= f$$

$$= \min(f, g).$$

Proposition 29. $\min(f,g) = -\max(-f,-g)$.

Proof.

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

$$\max(-f,-g) = \frac{1}{2}(-f-g) + \frac{1}{2}|-f+g|$$

$$\max(-f,-g) = -\frac{1}{2}(f+g) + \frac{1}{2}|g-f|$$

$$-\max(-f,-g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$$

$$-\max(-f,-g) = \min(f,g).$$

Corollary 30. If f and g are continuous at x_0 in \mathbb{R} , then $\min(f,g)$ is continuous at x_0 .

Proof.
$$f, g \in C^0(x_0) \Rightarrow f + g, f - g \in C^0(x_0) \Rightarrow f + g, |f - g| \in C^0(x_0) \Rightarrow \frac{1}{2}(f + g), \frac{1}{2}|f - g| \in C^0(x_0) \Rightarrow \frac{1}{2}(f + g) + \frac{1}{2}|f - g| \in C^0(x_0) \Rightarrow \min(f, g) \in C^0(x_0).$$

Proposition 31. $g(x) = x^3$ is continuous on \mathbb{R} .

Proof. Consider arbitrary $c \in \mathbb{R}$. We seek to find δ such that for $|x - c| < \delta$, $|x^3 - c^3| < \epsilon$. Let's evaluate $|x^3 - c^3|$:

$$|x^{3} - c^{3}| = |x - c||x^{2} + xc + c^{2}|$$

$$\leq |x - c|(|x^{2}| + |xc| + |c^{2}|).$$

For |x-c| < 1, then

$$|x^2| + |xc| + |c^2| < |c+1|^2 + |c+1||c| + |c^2|.$$

Let $M = |c+1|^2 + |c+1||c| + |c^2| > 0$. Hence, let $|x-c| < \delta = \min\{\epsilon/M, 1\}$, then

$$|x^3 - c^3| < |x - c|M < \frac{\epsilon}{M}M = \epsilon.$$

Proposition 32. Let f be a continuous real-valued function with domain (a, b). If f(r) = 0 for each rational number r in (a, b), then f(x) = 0 for all $x \in (a, b)$.

Proof. We will show that if there are some $x_0 \in (a,b)$ such that $f(x_0) = c \neq 0$, then f is not continuous at x_0 , hence not continuous on (a,b).

Assume for the sake of contradiction that there exists $x_0 \in (a,b) \setminus \mathbb{Q}$ such that $f(x_0) = c \neq 0$. Let $\epsilon = \frac{|c|}{2}$. However for $|f(x_0) - f(x)| < \epsilon$, there does not exist δ such that $|x - x_0| < \delta \Rightarrow |f(x_0) - f(x)| < \epsilon$ because there is always a rational number $x' \in (x_0 - \delta, x_0 + \delta)$ according to the density of \mathbb{Q} , and $|f(x') - f(x_0)| = |c| > \epsilon$. Then, the contradiction that f is not continuous is reached.

Corollary 33. Let f and g be continuous real-valued functions on (a,b) such that f(r) = g(r) for each rational number r in (a,b), then f(x) = g(x) for all $x \in (a,b)$.

Proof. Let f(r) = g(r) = c and define f'(x) = f(x) - c and g'(x) = g(x) - c. Then from Proposition 33, we know f'(x) = g'(x) = 0 because f' and g' are continuous and f'(r) = g'(r) = 0. Therefore, $f'(x) = g'(x) = 0 \Rightarrow f'(x) + c = g'(x) + c = c \Rightarrow f(x) = g(x) = c$ for all $x \in (a, b)$.

Proposition 34. Let h(x) = x for rational numbers x and h(x) = 0 for irrational numbers, then h in continuous only at x = 0.

Proof. $x_0 = 0$: Let $\epsilon > 0$. Then for $|x - x_0| < \epsilon$, $|h(x) - h(x_0)| = |h(x) - 0| < \epsilon$ because for irrational numbers x, $|h(x) - 0| = 0 < \epsilon$, and for rational numbers x, $|h(x) - 0| = |x - 0| < \epsilon$.

 $x_0 \neq 0$ and irrational: Let $\epsilon = \frac{|x_0|}{2}$. Assume for the sake of contradiction that there exists δ such that $|x - x_0| < \delta \Rightarrow |h(x) - 0| < \epsilon$. However, by density of $\mathbb Q$ there exists a rational number $x' \in (x_0 - \delta, x_0 + \delta)$ such that $|x'| > |x_0| [x' \in (x_0, x_0 + \delta) \text{ if } x_0 > 0, x' \in (x_0 - \delta, x_0) \text{ if } x_0 \leq 0]$. Then $|h(x') - 0| = |x'| > |x_0| > \epsilon$. $x_0 \neq 0$ and rational: Let $\epsilon = \frac{|x_0|}{2}$. Assume for the sake of contradiction that there exists δ such

that $|x - x_0| < \delta \Rightarrow |h(x) - x_0| < \epsilon$. However, by density of irrationals there exists an irrational number $x' \in (x_0 - \delta, x_0 + \delta)$. Then $|h(x') - x_0| = |0 - x_0| = |x_0| > \epsilon$.

Proposition 35. For each nonzero rational number x, write $x = \frac{p}{q}$ where p,q are integers with no common factors and q > 0, and then define $f(x) = \frac{1}{q}$. Also define f(0) = 1 and f(x) = 0 for all $x \in \mathbb{R} \setminus \mathbb{Q}$. Thus f(x) = 1 for each integer, $f(\frac{1}{2}) = f(\frac{-1}{2}) = f(\frac{3}{2}) = \cdots = \frac{1}{2}$, etc. Then f is continuous at each point of $\mathbb{R} \setminus \mathbb{Q}$ and discontinuous at each point of \mathbb{Q} .

Proof. Discontinuous on \mathbb{Q} : Let $x_0 \in \mathbb{Q}$. Define a sequence of irrational numbers (x_n) that converges to x_0 , but $f(x_n) = 0$ for all n and obviously $\lim x_n = 0 \neq f(x_0)$ [notice $f(x_0)$ is never 0 for rational number x_0].

Continuous on $\mathbb{R}\setminus\mathbb{Q}$: Let $x_0\in\mathbb{R}\setminus\mathbb{Q}$ and $\epsilon>0$. Then let $N=\min\{n>\frac{1}{\epsilon}:n\in\mathbb{N}\}$. Now consider the interval $I=(x_0-1,x_0+1)$. We know there is only a finite number of $\frac{p}{q}\in I$ such that q< N [consider q=N-1, there are only finite multiples of $\frac{1}{q}\in I$ because the multiple will eventually "step over" the interval; this is true all for q< N]. Since there is only a finite number of such fractions, we can take the

fraction that is closest to x_0 , denote r, and let $\delta = |r - x_0|$. Then, the interval $(x_0 - \delta, x_0 + \delta)$ only contains

either irrational numbers or $\frac{p}{q}$ with $q \ge N > \frac{1}{\epsilon}$. Therefore, for rational x such that $|x - x_0| < \delta$, $f(x) \le \frac{1}{N} < \epsilon \Rightarrow |f(x) - f(x_0)| = |f(x) - 0| < \epsilon$. Obviously for irrational x, $|f(x) - f(x_0)|$ is always 0.

Intuition: We can zoom into x_0 to find an interval where only very very small mesh of fractions is contained in there because all larger fractions would "step over" the interval