

AD-A061 688 OKLAHOMA UNIV NORMAN DEPT OF CHEMISTRY F/G 7/4
119 SN-MOESSBAUER-SPEKTREN VON FUNKTIONELL SUBSTITUIERTEN STANN--ETC(U)
AUG 78 W DU MONT, J L LEFFERTS, J J ZUCKERMAN N00014-77-C-0432
UNCLASSIFIED TR-4 NL
| OF |
AD A061 688

END
DATE FILMED
2 -- 79
DDC

DDC FILE COPY

ADA061688

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(1)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4 ✓		5 ✓
OD COVERED		
119 Sn Moessbauer spectra of functionally substituted stannylenes and their stannio-complexes with chrome, molybdenum, and tungsten-carbonyl acceptors		
7. AUTHOR(s) Wolf-Walther du Mont, J.L. Lefferts and J.J. Zuckerman		8. CONTRACT OR GRANT NUMBER(s) N00014-77-C-0432
9. PERFORMING ORGANIZATION NAME AND ADDRESS University of Oklahoma Department of Chemistry Norman, Oklahoma 73019		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 053-636
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217		12. REPORT DATE 15 August, 1978
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 12
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15. SECURITY CLASS. (of this report) Unclassified
Approved for Public Release, Distribution Unlimited		16. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		Prepared for Publication in the Journal of Organometallic Chemistry
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Tin(II) Phosphines Stannylenes Chromium Carbonyls Tin(II) Arsines Stannylene Complexes Molybdenum Carbonyls Tin(II) Hydroxide Transition Metal-Tin Complexes Tungsten Carbonyls Tin(II) Ligands Tin-119m Mössbauer Spectroscopy		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
119 Sn-Moessbauer data for a series of base-stabilized, intermolecularly associated tin(II) compounds with O-, Cl-, P- and As- atoms bonded to the tin are compared with isomer shifts (I.S.) and quadrupole splittings (Q.S.) of their stannio-complex derivatives with Cr, Mo and W carbonyls. Coordination by the tin lone pair gives rise to a decrease in I.S. of ca. <u>2.1 + 0.2 mm/s</u> and an increase of the Q.S.. Q.S. values reflect the nature of the complexes $(CO)_5M-Sn(Cl)E(t-Bu)_2$ ($M = Cr, W; E = P, As$) which are bridged through $E-E(t-Bu)_2$ groups.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

78 09 28 02 6

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

388120AG
DOC 111 COEKA

OFFICE OF NAVAL RESEARCH

Contract No 00014-77-C-0432

Task No. NR 053-636

6 9 TECHNICAL REPORT, NO. 4

119 ⁶Sn-Mössbauer-Spektren von Funktionell Substituierten

Stannylenen und Ihren Stannio-Komplexen mit Chrom-,
Molybdän- und Wolfram- Carbonyl-Acceptoren

by

10 Wolf-Walther/du Mont, J. L./Lefferts ~~and~~ J. J./Zuckerman

Prepared for Publication

in

The Journal of Organometallic Chemistry

mossbauer

(119 Sn *Mössbauer* Spectra of
Functionally Substituted Stannylenes and
Their Stannio-Complexes with Chrome,
Molybdenum, and Tungsten-Carbonyl
Acceptors).

366

University of Oklahoma
Department of Chemistry
Norman, OK 73019

11 15 August 15, 1978

12 24P.

14 TR-4

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited.

78 09 28 026

403 980

LB

119^{Sn}-MÖSSBAUER-SPEKTREN VON FUNKTIONELL SUBSTITUIERTEN STANNYLENEN
UND IHREN STANNIO-KOMPLEXEN MIT CHROM-, MOLYBDÄN- UND WOLFRAM-
CARBONYL-ACCEPTOREN

WOLF-WALTHER DU MONT

Institut für Anorganische und Analytische Chemie der Technischen
Universität Berlin, Straße des 17.Juni 135, D 1000 Berlin 12,
Deutschland

J.L. LEFFERTS und J.J. ZUCKERMAN

Department of Chemistry, University of Oklahoma, Norman, OK
73019, U.S.A.

(Eingegangen den)

Summary

119m^{Sn}-Moessbauer data for a series of base-stabilized, intermolecularly associated tin(II) compounds with O-, Cl-, P- and As-atoms bonded to the tin are compared with isomer shifts (I.S.) and quadrupole splittings (Q.S.) of their stannio-complex derivatives with Cr, Mo and W carbonyls. Coordination by the tin lone pair gives rise to a decrease in I.S. of ca. 2.1 ± 0.2 mm/s and an increase of the Q.S.. Q.S. values reflect the nature of the complexes $(CO)_5^M-Sn(Cl)E(t-Bu)_2$ ($M = Cr, W; E = P, As$) which are bridged through $\mu-E(t-Bu)_2$ groups.

Zusammenfassung

Die 119m^{Sn}-Mößbauer-Daten einer Reihe von basenstabilisierten bzw. intermolekular assoziierten Zinn(II)-Verbindungen mit O-, Cl-, P- und As-Substituenten am Zinn werden verglichen mit den Isomeriever-schiebungen (I.S.) und Quadrupolaufspaltungen (Q.S.) ihrer Stannio-Komplexderivate mit Pentacarbonylchrom, -molybdän und -wolfram. Koordination über das Elektronenpaar am Zinn

führt zu erniedrigten I.S.-Werten von ca. 2.1 ± 0.2 mm/s und zu vergrößerten Q.S.-Beträgen. Die Q.S. spiegeln die hochassoziierte Natur der Komplexe $(CO)_5^M-Sn(Cl)E(t-Bu)_2$ ($M=Cr, W; E=P, As$) wieder, die durch $\mu-E(t-Bu)_2$ -Gruppen basenverbrückt sind.

Zahlreiche anorganische Zinn(II)-Verbindungen besitzen in festem Zustand Strukturen, die Hinweise liefern auf die stereochemische Aktivität des nichtbindenden Elektronenpaares am Zinn [1, 2]. Der Einfluß der Inanspruchnahme dieses Elektronenpaares zur Komplexbildung mit Übergangsmetallacceptoren auf Struktur und Eigenschaften von hochassoziierten Zinn(II)-Verbindungen wurde bis auf einige anscheinend noch basenhaltige Zinndihalogenidkomplexe noch nicht untersucht, basenfreie Stannio- (Stannylen-) Komplexe sind dagegen bekannt von Stannylenen, die selbst bereits unter Normalbedingungen in unpolaren Lösungsmitteln monomer existenzfähig sind. [3-7] Charakteristische Merkmale der ^{119m}Sn -Mößbauerspektren dieser Stannickomplexe sowie der von MARKS hergestellten basenhaltigen Dialkylzinn-Ylidkomplexe mit $B-(t-Bu)_2$ -Sn-Liganden [8] sind nahezu lagekonstante Isomerieverchiebungen (2.1 ± 0.1 mm/s, praktisch unabhängig von der Koordinationszahl am Zinn) und herausragend große Quadrupolaufspaltungen, die allerdings mit zunehmender Donorfähigkeit des Basenliganden am Zinn etwas kleiner werden.

In Tabelle I und II sind die Isomerieverchiebungen (I.S.) und Quadrupolaufspaltungen (Q.S.) einer Reihe von funktionell substituierten bzw. basenstabilisierten Stannylenen [9, 10] und ihren Pentacarbonylmetall-Stannickomplexen $(CO)_5^M-SnCl_2-B$

($B = \text{THF}, P(\text{t-Bu})_3$) und $(\text{CO})_5\text{M-SnXY}$ ($X = \text{Cl}, Y = P(\text{t-Bu})_2$,
 $Y = \text{As}(\text{t-Bu})_2; X=Y = \text{OH}$) den Daten einiger bekannten Stannio-
bzw. Zinn-Ylid-Komplexe gegenübergestellt.

Isomerieverschiebungen (Tab. I) :

Sowohl phosphin-stabilisierte als auch phosphino- oder arsino-
substituierte Zinn(II)-Halogenide weisen kleinere ^{119}Sn -Mößbauer-
I.S. auf als die zugrundeliegenden Zinndihalogenide. Dieser
Effekt reflektiert die erniedrigte s-Elektronendichte am Kern-
ort aufgrund der verstärkten Abschirmung des Zinnkerns bei
zunehmender Besetzung der 5p-Niveaus (indirekter Einfluß).
Der Vergleich mit den I.S. von ungeladenen Zinn(II)-Verbindungen
verschiedener Koordinationszahlen [1,2] lehrt, daß zwar Aussagen
über die Koordinationszahl am Zinn(II) aus den I.S. allein
nicht sinnvoll sind [11], andererseits können für die Phosphino-
und Arsinostannylene (Tab. I) Strukturen mit engem Sn-Sn-Kontakt
(wie $\text{Sn}=\text{Sn}$ in $\left\{[\text{Me}_3\text{Si}]_2\text{CH}\right\}_2\text{Sn}\right\}_2$ [5] oder Sn-Sn in Polystannanen)
aufgrund der vorliegenden I.S.-Daten ausgeschlossen werden.
Zinn der Koordinationszahl drei ohne Sn-Sn-Bindungen wurde
bei dimerem $\left\{[(\text{Me}_3\text{C})_2\text{P}]_2\text{Sn}\right\}_2$ durch ^{119}Sn - und ^{31}P -NMR-Spektren
bewiesen [12]. Da in den Schwingungsspektren der gemischten
Stannylene $(\text{t-Bu})_2\text{E-Sn-X}$ typische Valenzschwingungsbanden
terminaler Zinn-Halogen-Einheiten auftreten, wird die Formulierung
dieser assoziierten Verbindungen als Koordinationspolymere
mit Phosphino- bzw. Arsino-Verbrückung wie in dimerem Bis-
di-tert-butylphosphinostannylen ihren Eigenschaften am besten
gerecht.

Aus der Untersuchung einer Anzahl von Addukten von Zinndi-
halogeniden mit verschiedenen Donormolekülen wurde abgeleitet,

daß eine Beziehung besteht zwischen der Donorfähigkeit der Basenliganden gegenüber Zinn(II) und den ^{119m}Sn -Isomerieverschiebungen der Addukte [13]. Danach ist die Stärke der Arsen-Verbrückung in Di-tert-butylarsino(chlor)-stannylen vergleichbar mit der Phosphorverbrückung in Di-tert-butylphosphinostannylenen. Dies steht im Einklang mit unserem experimentellen Befund, daß das Arsinostannylen auch bei seiner Synthese aus Triethylphosphin-dichlorstannylen selbst assoziiert, statt ein Phosphinaddukt $\text{Et}_3\text{P-Sn(Cl)As(t-Bu)}_2$ zu bilden [14].

Die Inanspruchnahme des Elektronenpaares am Zinn zur Koordination mit Pentacarbonylmetall(VI)-Acceptoren führt bei allen von uns untersuchten Zinn(II)-Verbindungen zu einer wesentlichen Verringerung der I.S. Diese betragen bei allen Stannio- und Zinnylid-Komplexen praktisch unabhängig von der Zahl und Art der Substituenten am Zinn etwa 2.1 ± 0.2 mm/s, sind also der I.S. von α -Zinn sehr ähnlich. Die I.S.-Daten von Verbindungen mit Zinn-Übergangsmetall-Bindungen erlauben leider weder eine einfache Unterscheidung zwischen formal zwei- oder vierwertigem Zinn noch zwingende Aussagen über die Koordinationszahl am Zinn und die Natur des Übergangsmetalls [8, 15]. Die tatsächliche Abschirmung der Zinnkerne in diesen Verbindungen resultiert aus mehreren Teil-effekten wie s-Elektronenabzug (σ -Donor-Bindung, Umhybridisierung) und zunehmender p- und d-Niveau-Besetzung (π -Rückbindung). Gegenüber den Liganden stark erniedrigte Isomerieverschiebungen wurden auch bei Übergangsmetallkomplexen von Di(cyclopentadienyl)-zinn(II) und Zinn(II)-bis(1,3-diketonaten) gefunden [7, 16].

Die im Gegensatz zu den bei unseren Stannickomplexen beobachteten Koordinationsverschiebungen nur geringen Verschiebungssänderungen bei Bildung der Übergangsmetallkomplexderivate von Di[bis(trimethylsilyl)methyl]zinn(II) ist darauf zurückzuführen, daß in diesem Fall bereits der Stannylenligand als Dimer mit Zinn-Zinn-Bindung vorliegt [15]. Im Fall der Phosphino- und Arsinostannylen-Komplexe erlauben die I.S. vernünftige Aussagen über die Koordinationsweise der Liganden $R_2\bar{E}-\bar{Sn}-Cl$. Die Koordination durch freie

A

B

Elektronenpaare am Phosphor oder Arsen sollte die ^{119m}Sn -Isomerieverschiebungen nicht wesentlich ändern, die Zinn-MB-Resonanzen wären im Bereich von "typischem Zinn(II)" (I.S. > 2.5 mm/s) zu erwarten. Die Lage der Dublettsignale bei 2.1 mm/s beweist die Stannio-Komplexstruktur (A) der Komplexe $(CO)_5M-Sn(Cl)E(t-Bu)_2$ ($M = Cr, W$); bei den Molybdänkomplexen zeigen zusätzliche kleinere Dublettsignale (I.S. > 3 mm/s) die Gegenwart nachweisbarer Mengen der isomeren Phosphin- und Arsinkomplexe (B) an.

Quadrupolaufspaltungen (Tab. II):

Nicht-sphärische Verteilung der Valenzelektronen um den beobachteten Kern ist eine notwendige (aber oft nicht hinreichende) Voraussetzung für das Auftreten von auflösbarer Q.S. bei ^{119m}Sn - γ -Resonanzen. Basenstabilisierte und

funktionell substituierte Stannylene erfüllen diese Voraussetzung ebenso wie die meisten anderen Zinn(II)-Verbindungen. Geht man von Zinndichlorid aus, das in festem Zustand als Koordinationspolymer mit Chlorbrücken beschrieben werden kann [17] und ein kaum auflösbares Q.S. von 0.6 mm/s aufweist [18], so führt sowohl der Ersatz der Brücken-Chloratome durch Phosphino- oder Arsinogruppen als auch die Adduktbildung mit tertiären Phosphinen (unter Bildung monomerer Phosphor-Zinn-Ylide) zu vergrößerten Quadrupolaufspaltungen von 1.4 bis 1.7 mm/s. Für die mehr symmetrischen Trichlorstannate(II) konnten DONALDSON u. Mitarb. auf Basis eines einfachen MO-Modells unter Berücksichtigung des positiven Vorzeichens der Quadrupolkopplungskonstanten eQV_{zz} zeigen, daß der Beitrag des nichtbindenden Elektronenpaars zum elektrischen Feldgradienten mit der I.S. korrelierbar ist [19] (empirisch: Steigende Q.S. bei sinkenden I.S. [13]).

Komplexbildung mit Übergangsmetallacceptoren führt bei Stannylenen und Zinnyliden ebenso wie bei Trichlorstannat(II)-Anionen und Zinn(II)-bis(1,3-diketonaten) [15, 16, 20] zu weiter vergrößerten Q.S. Im Gegensatz zu den I.S. sind die Q.S.-Werte bemerkenswert sensitiv gegenüber Variationen der Substituenten am Zinn: So ist die Aufspaltung in den Tetrahydrofuran-dichlorstannio-Komplexen $M-SnCl_2\text{-THF}$ um etwa 1.6 mm/s kleiner als in dem früher untersuchten Tetrahydrofuran-di-tert-butylstannio-Komplex $M-Sn(t-Bu)_2\text{-THF}$ [8]. Substitution von Tetrahydrofuran durch stärkere Basen (Pyridin bzw. Tri-tert-butylphosphin) führt in beiden Fällen zu deutlich verringerten

Aufspaltungen. Insofern ist für eine gegebene Übergangsmetall-Stannylen-Einheit $M-SnX_2-B$ die Q.S. tatsächlich ein Maß für die Wechselwirkung zwischen komplexgebundenem Zinn(II) und der Base B. Es muß auch noch in Betracht gezogen werden, daß die besonders großen Q.S.-Beträge der $M-Sn(t\text{-}Bu)_2-B$ Komplexe die erhebliche Abweichung der Ligandenanordnung um das Zinnatom von der Tetraedergeometrie wieder spiegeln, während von Chlorostannylen-Komplexen noch keine Strukturdaten bekannt sind. [21].

Die Q.S. der basenfreien Stannylenkomplexe vom Typ $(CO)_5MSn(Cl)ER_2$ sind sehr ähnlich dem Wert von $(CO)_5W-SnCl_2-P(t\text{-}Bu)_3$ (2.1 mm/s), für das die Koordinationszahl 4 am Zinn durch ^{31}P - und ^{119}Sn -NMR-Spektren ($^1J(^{119}\text{Sn}^{31}\text{P})$ - Dublett im Zinn-NMR) bewiesen wurde [22]. Offenbar handelt es sich bei den Stannylenkomplexen mit Phosphino- und Arsino-Substituenten am Zinn um einen neuen Typ von Verbindungen zwischen Zinn(II) und Übergangsmetallacceptoren, nämlich um basen-verbrückte Stannylenkomplexe (Stannio-Komplexe). Die Basenverbrückung liefert anscheinend einen wichtigeren Beitrag zu Stabilisierung der Komplexe vom Typ $(CO)_5M-Sn(Cl)ER_2$ als die bei Carbenekomplexen beachtete "interne Stabilisierung", die bei unseren Verbindungen P-Sn- π -Bindungsverstärkungen implizieren würde. Die Q.S. der Komplexe können ein gewisses Maß für die Stärke der intermolekularen Basenverbrückung darstellen: Die P-Sn- bzw. As-Sn-Assoziation in den Komplexen $(CO)_5M-Sn(Cl)ER_2$ (Q.S. = 2.06 bis 2.37 mm/s) ist stärker als die O-Sn Assoziation in den Komplexderivaten von Zinn(II)hydroxid (Q.S. = 2.72 - 2.76 mm/s). Letztere sind z.B. im Gegensatz zu den $\mu-PR_2-$ und

μ -AsR₂-verbrückten Stanniolkomplexen im Donorsolvens THF

löslich.

Abb.: Strukturvorschlag für Di-tert-butylelement(chlor)stannylene und -stanniolkomplexe

Eine mehr quantitative Diskussion unserer Beobachtungen setzt die Kenntnis der Vorzeichen der Quadrupolkopplungskonstanten, der Temperaturabhängigkeit des γ -Resonanzeffekts und - am besten - der Kristall- und Molekülstrukturen einiger der hier vorgestellten Modellverbindungen voraus. Diese Untersuchungen sind vorgesehen.

Experimentelles

Die funktionell substituierten Stannylene und ihre Komplexderivate wurden aus Zinndichlorid bzw. $(CO)_5M-SnCl_2\text{-THF}$ [3, 23] durch Substitutionsreaktionen mit Di-tert-butyl(trimethylsilyl)phosphin bzw. -arsin hergestellt [9, 14, 23]. Die Komplexe mit $Sn(OH)_2$ -Liganden wurden entsprechend durch Cl/OH Austausch mit Triphenylzinnhydroxid aus den entsprechenden $M-SnCl_2\text{-THF}$ Komplexen hergestellt [24], korrekte Analysendaten liegen vor.

Dank

Unsere Arbeit wurde unterstützt durch das U.S. Office of Naval Research (J.J.Z.) und durch die Deutsche Forschungsgemeinschaft.

Oklahoma / Techn. Universität Berlin (Prof.Dr. H.Schumann).

Literatur

- 1 P.G. Harrison, Coord.Chem.Rev. 20(1976) 1.
- 2 J.A. Zubieta und J.J. Zuckerman, Progr.Inorg.Chem. 24(1978)251.
- 3 D. Uhlig, H. Behrens, und E. Lindner, Z.Anorg.Allg.Chem.401(1973)233.
H. Behrens, M. Moll und E.Sixtus, Z. Naturf. 32 B(1977) 1105.
- 4 A.B. Cornwell und P.G. Harrison, J.Chem.Soc., Dalton Trans (1976)1054.
- 5 J.D. Cotton, P.J. Davidson, und M.F. Lappert, J.Chem.Soc., Dalton Trans. (1976)2275.
- 6 M.F. Lappert und P.P. Power, in "Organotin Compounds: New Chemistry and Applications", Hrsg. J.J. Zuckerman, Adv.Chem.Ser. Nr. 157, Am.Chem.Soc., Washington, DC, (1976) 70.
- 7 A.B. Cornwell, P.G. Harrison und J.A. Richards, J.Organomet.Chem. 108(1976) 47.
- 8 G.W. Gryniewich, B.Y.K. Ho, T.J. Marks, D.L. Tomaja und J.J.Zuckerman, Inorg.Chem. 12 (1973)2522.
- 9 W.-W. du Mont und B. Neudert, Z.Anorg.Allg.Chem. 436(1977)270.
- 10 W.-W. du Mont und B. Neudert, Z.Anorg.Allg.Chem., im Druck
- 11 P.G. Harrison und J.J. Zuckerman, Inorg.Chim.Acta 21(1977) L3.
- 12 W.-W. du Mont und H.-J. Kroth, Angew.Chem. 89(1977) 832; Angew. Chem.Int.Ed.Engl. 16(1977) 792.
- 13 J.D. Donaldson und D.G. Nicholson, J.Chem.Soc. (A) (1970) 145.
- 14 W.-W. du Mont, Inorg.Chim.Acta 29(1978) L195.
- 15 J.D. Cotton, P.J. Davidson, M.F. Lappert, J.D. Donaldson, und J. Silver, J.Chem.Soc,Dalton Trans. (1976) 2286.
- 16 P.G. Harrison und A.B. Cornwell, J.Chem.Soc. Dalton Trans.(1975)1486.
- 17 J.M. van den Berg, Acta Crystallogr. 14(1961) 1002.
- 18 K.D. Bos, E.J. Bulten und J.G. Noltes, J.Organomet.Chem. 39(1972)C52.

- 19 J.D. Donaldson, D.C. Puxley und M.J. Tricker, J.Inorg.Nucl.Chem. 37(1975) 655.
- 20 M.J. Mays und P.L. Sears, J.Chem.Soc., Dalton Trans. (1974) 2254, zit.Lit.
- 21 M.D. Brice und F.A. Cotton, J.Am.Chem.Soc. 95(1973)4529.
- 22 W.-W. du Mont, J.Organomet.Chem. 153(1978) C11.
- 23 W.-W. du Mont, J.Organomet.Chem. 131(1977) C37; W.-W. du Mont und B. Neudert, Chem.Ber. 111(1978)2267.
- 24 W.-W. du Mont und B. Neudert, Veröff. in Vorbereit.
- 25 W.D. Honnick und J.J. Zuckerman, Inorg.Chem. 15(1976)3034.

TABELLE I

119m Sn-MÖSSBAUER-ISOMERIEVERSCHIEBUNGEN VON ZINN(II)-VERBINDUNGEN UND IHREN PENTACARBONITMETALL(VI)-KOMPLEXDERIVATEN (mm/s) [a]

Ligand L:	L	L-Cr(CO) ₅	L-Mo(CO) ₅	L-W(CO) ₅
	δ'	δ	δ	δ
t-Bu ₂ P-Sn-Cl	2.96 [9]	2.32	2.28 [b]	2.16
t-Bu ₂ P-Sn-Br	3.08			
t-Bu ₂ As-Sn-Cl	3.03	2.26		2.11
t-Bu ₃ P-SnCl ₂	3.20 [10]			2.05
(THF) _n SnCl ₂	3.34 (n=2) [13]	2.19 (n=1)		2.16 (n=1)
Sn(OH) ₂	2.78 [25]	1.95		1.98
[$(Me_3Si)_2CH$] ₂ Sn	2.16 (dimer [15]) 2.21 [15]		2.15 [15]	
THF-Sn(t-Bu) ₂	—	2.11 [8]		
py-Sn(t-Bu) ₂	—	2.01 [8]		

[a] Aufgenommen bei 77 K gegen $Ca^{119m}SnO_3$ (New England Nuclear Corp.) an einem Ranger Engineering Mößbauer Spektrometer. Die I.S. (± 0.02 mm/s) beziehen sich auf $CaSnO_3$ als Standard.

[b] Weiteres schwaches Dublettsignal $\delta = 3.5$ mm/s, $\Delta = \underline{ca.} 1.9$ mm/s

TABELLE II:

119m -Sn-MÖSSBAUER-QUADRUPOLAUFSPALTUNGEN VON ZINN(II)-VERBINDUNGEN UND IHREN
PENTACARBONYLMETALL(VI)-KOMPLEXDERIVATEN [a] (mm/s)

Ligand L:	L	L-Cr(CO) ₅	L-Mo(CO) ₅	L-W(CO) ₅
		Δ	Δ	Δ'
t-Bu ₂ P-Sn-Cl	1.68 [9]	2.12	2.17	2.17
t-Bu ₂ P-Sn-Br	1.61			
t-Bu ₂ As-Sn-Cl	1.69	2.06		2.37
t-Bu ₃ P-SnCl ₂	1.043 [10]			2.07
(THF) _n SnCl ₂	1.68 (n=2) [13]	2.69 (n=1)		2.085 (n=1)
Sn(OH) ₂	2.20 [25]	2.72		2.76
{(Me ₃ Si) ₂ CH} ₂ Sn	2.31 (dimer [15])	4.43 [15]	4.57 [15]	
THF-Sn(t-Bu) ₂	---	4.41 [8]		
py-Sn(t-Bu) ₂	---	3.44 [8]		

[a] ± 0.04 mm/s