Importance of Heat

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~97 Quads

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2002. *Net fossil-fuel electrical imports. June 2004 Lawrence Livermore National Laboratory http://eed.llnl.gov/flow

[&]quot;Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind.

Vehicle Systems

In US, transportation uses ~26% of total energy.

Co-Generation in Residential Buildings

Photo by bunchofpants on Flickr.

In US, residential and commercial buildings consume ~35% energy supply

Photos by arbyreed and toennesen on Flickr.

Industrial Waste Heat

Approximate Temperature Range of Industrial Processes

Fig. ES.1 in Hemrick, James G., et al. "Refractories for Industrial Processing: Opportunities for Improved Energy Efficiency." DOE-EERE Industrial Technologies Program, January 2005.

Renewable Heat Sources

Photos by Jon Sullivan at http://pdphoto.org/ and NASA.

Solar Thermal

Photos of solar hot water tubes removed due to copyright restrictions. Please see, for example,

http://image.made-in-china.com/2f0j00KeoavBGJycbN/Unpressurized-Solar-Water-Heater-VERIOUS-.jpg

http://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpg

http://www.treehugger.com/Solar-Thermal-Plant-photo.jpg

Images by Sandia National Laboratories and NREL.

http://media.photobucket.com/

Direct Energy Conversion

Image removed due to copyright restrictions.

Please see http://web.archive.org/web/20071011185223
/www.eneco.com/images/science-new.jpg

Thermoelectrics

Photovoltaics

http://www.solareis.anl.gov/images/photos/Nrel_flatPV15539.jpg

Image by Nadine Y. Barclay, USAF.

Thermophotovoltaics http://www.keelynet.com/tpvcell.jpg

nttp://www.keerynet.com/tpvcen.jpg

Courtesy of John Kassakian. Used with permission.

Solar Spectrum

Solar Thermophotovoltaics

- Theoretical maximum efficiency: 85.4%; comparable to that of infinite number of multi-junction cells, but with only a single junction PV cell.
- Key Challenges: Selective surfaces absorbing solar radiation but reemitting only in a narrow spectrum near the bandgap of photovoltaic cells, working at high temperatures.

Solar Thermoelectrics

- Low materials cost and low capital cost, potentially high efficiency.
- Key Challenges: Develop materials with high thermoelectric figure of merit; and selective surfaces that absorb solar radiation but do not re-radiative heat.

1st Law of Thermodynamics

Environment

Boundary

Closed:

$$E_2 - E_1 = Q_{12} - W_{12}$$

$$dE = \delta Q - \delta W$$

$$\frac{dE}{dt} = \dot{Q} - \dot{W}$$

State

Properties:

Process

Independent

Process

Dependent

Quantities

$$E = KE + PE + U$$
 (Internal Energy) + ...

Specific Heat
$$C = \frac{du}{dT}$$
 [J/K - kg, or J/K - m³]

2nd Law of Thermodynamics

$$S_2 - S_1 = \oint \frac{\delta Q}{T_{boundary}} + S_{gen} (S_{gen} \ge 0)$$

Entropy

Change

State

Entropy Transfer

Entropy

Generation

Properties

Heat Reservoir T_h

Heat Reservoir T_c

$$\oint dS = 0$$

During a cycle:
$$\oint dS = 0$$
 No entropy generation
$$0 = \frac{Q_h}{T_h} - \frac{Q_c}{T_c}$$

Maximum Efficiency (Carnot Efficiency)
$$\eta = \frac{W}{Q_h} = \frac{Q_h - Q_c}{Q_h} = 1 - \frac{T_c}{T_h}$$

 $T_{\rm h}$ =223 °C, $T_{\rm c}$ =23 °C, η =40%

 $T_{\rm h}$ =5800 K, $T_{\rm c}$ =300 K, η =95%

Thermal power plant η ~40%, IC engines η ~25%

Microscopic Picture of Entropy

For Isolated Systems

Boltzmann Principle

$$S = k_{\scriptscriptstyle R} \ln \Omega$$

- Microstate: a quantum mechanically allowed state
- A total of Ω microstate
- Principle of equal probability: each microstate is equally possible to be observed

Probability
$$P = \frac{1}{\Omega}$$

k_B=1.38x10⁻²³ J/K ---Boltzmann constant

 Constant Temperature and Closed Systems

$$P(E) = Ae^{-E/(k_BT)}$$

Constant Temperature
 But Open Systems

$$P(E) = Ae^{-(E-\mu)/(k_BT)}$$

 μ --- chemical potential (driving force for mass diffusion); average energy needed to move a particle in/out off a system

Maxwell distribution

$$E = \frac{1}{2}m(v_{x}^{2} + v_{y}^{2} + v_{z}^{2})$$

$$P(v_x, v_y, v_z) = A \exp \left[\frac{m(v_x^2 + v_y^2 + v_z^2)}{2k_B T} \right]$$

All Probability must normalize to one

$$1 = \int_{-\infty}^{\infty} d\mathbf{v}_{x} \int_{-\infty}^{\infty} d\mathbf{v}_{y} \int_{-\infty}^{\infty} d\mathbf{v}_{z} A \exp\left[\frac{m(\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2})}{2k_{B}T}\right] \qquad \Longrightarrow \qquad A = \left(\frac{m}{2\pi k_{B}T}\right)^{3/2}$$

tion
$$P(v_x, v_y, v_z) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left[\frac{m(v_x^2 + v_y^2 + v_z^2)}{2k_B T}\right]$$

One molecule

$$\langle E \rangle = \int_{-\infty}^{\infty} d\mathbf{v}_{x} \int_{-\infty}^{\infty} d\mathbf{v}_{y} \int_{-\infty}^{\infty} d\mathbf{v}_{z} \frac{1}{2} m \left(\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}\right) A \exp \left[\frac{m \left(\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}\right)}{2k_{B}T} \right]$$

$$\langle E \rangle = \frac{3}{2} k_B T$$

Equipartition Principle: every quardratic term in microscopic energy contributes k_BT/2.

How much Is k_BT at room temperature

$$k_B T = 1.38 \times 10^{-23} \text{ J/K} \times 300 \text{K} = 5.14 \times 10^{-21} \text{J}$$

= $\frac{5.14 \times 10^{-21} \text{J}}{1.6 \times 10^{-19} \text{ J/eV}} = 26 \text{ meV}$

Oxygen Atom at 300 K
$$v = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} J / K \times 300 K}{16 \times 1.67 \times 10^{-27} kg}} = 220 \text{ m/s}$$

Fermi-Dirac Distribution

- From quantum mechanics
 - Energy levels are quantized
 - Each quantum state can have maximum one electron

Momentum: $p = h/\lambda = \hbar k$

Energy: $E = h \nu = \hbar \omega$

- Planck-Einstein Relation
- Planck constant h=6.6x10⁻³⁴ Js, $\hbar = h/(2\pi)$
- Consider one quantum state with an energy E at constant temperature T. The state can have zero electron (n=0) or one electron (n=1). What is the average number of electrons if one does many observations?

$$1 = \sum_{n=0,1} Ae^{-(E-\mu)/(k_BT)} = A \exp\left(\frac{\mu}{k_BT}\right) \left[1 + \exp\left(-\frac{E}{k_BT}\right)\right]$$

Average number of electrons in the state

Fermi-Dirac Distribution

Average number of electrons in the state

$$f = \sum_{n=0,1} nAe^{-(E-\mu)/(k_BT)} = \frac{1}{\exp\left(\frac{E-\mu}{k_BT}\right) + 1}$$

Fermi-Dirac Distribution

At T=0K, μ is called Fermi level, E_f

Photons and Phonons

- From quantum mechanics
 - EM waves are quantized, basic energy quanta is called a photon
 - Photon has momentum
 - Planck-Einstein Relation
 - Each quantum state of photon (an EM wave mode) can have only integral number of photons
 - **Classical Oscillator**

One Photon

Energy: $E = h \nu = \hbar \omega$

Momentum: $p = h/\lambda = \hbar k$

$$h = 6.6 \times 10^{-34} \text{ Js}; \hbar = h/(2\pi)$$

Energy of a quantum state:

$$E = \left(n + \frac{1}{2}\right)\hbar\omega \quad n = 0, 1, 2...$$
Zero point energy

Natural Frequency

$$\nu = \frac{1}{2\pi} \sqrt{\frac{K}{M}}$$
 Energy of Mode
$$E = \left(n + \frac{1}{2}\right)\hbar\omega \quad n = 0, 1, 2...$$

Basic vibrational energy quanta hv is called a phonon

Bose-Einstein Distribution

 Consider one quantum state in thermal equilibrium

$$P(E_n) = Ae^{-(E_n - \mu)/(k_B T)}$$

Bose-Einstein Distribution

Average number of photons/phonons in one mode (quantum state)

$$f = \frac{1}{\exp\left(\frac{E - \mu}{k_B T}\right) - 1}$$

Usually μ=0

Heat Transfer Modes

Heat Conduction

Fourier Law

$$\dot{Q} = -kA \frac{dT}{dx}$$
 [W]

Cross-
Thermal Sectional
Conductivity Area
[W/m-K]
Materials Property

Heat Flux

$$\dot{q} = -k \frac{dT}{dx} (= -k\nabla T) \left[W/m^2 \right]$$

Convection

Newton's law of cooling

$$\dot{Q} = hA(T_w - T_a)$$

Convective Heat Transfer Coefficient [W/m²K] Flow dependent

- Natural Convection
- Forced Convection

Thermal Radiation

Stefan-Boltzmann Law for Blackbody

$$\dot{Q} = A \sigma T^4$$

Stefan-Boltzmann Constant $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$

Heat transfer

$$\dot{Q} = AF \, \varepsilon \sigma \left(T_{hot}^{4} - T_{cold}^{4} \right)$$

View factor F=1 for two

Emissivity of two surfaces

parallel plates

Heat Conduction

Heat Conduction

1D, no heat generation

$$\dot{Q} = kA \frac{T_{hot} - T_{cold}}{L} = \frac{T_{hot} - T_{cold}}{R_{th}}$$

Thermal Resistance

$$R_{th} = \frac{L}{kA}$$

Heat Current Q

$$\mathsf{T}_{\mathsf{hot}} \quad \mathsf{R}_{\mathsf{th}} \quad \mathsf{T}_{\mathsf{colo}}$$

Convection $R_{th} = \frac{1}{hA}$

$$R_{th} = \frac{1}{hA}$$

Heat Conduction: Kinetic Picture

$$q_{x} = \frac{1}{2} \left(nEv_{x} \right)_{x-v_{x}\tau} - \frac{1}{2} \left(nEv_{x} \right)_{x+v_{x}\tau}$$

$$q_x = -v_x \tau \frac{d(Env_x)}{dx} = -\frac{v^2 \tau}{3} \frac{dU}{dT} \frac{dT}{dx}$$

$$= -\frac{\mathbf{v}^2 \mathbf{\tau}}{3} \mathbf{C} \frac{\mathbf{dT}}{\mathbf{dx}} = -k \frac{dT}{dx}$$

Thermal Conductivity $k = \frac{1}{3}Cv\Lambda$

- Energy per particle: E [J]
- Number of particles per unit volume: n [1/m³]
- Average random velocity of particles v
- Average time between collision of two particles τ---relaxation time
- Average distance travelled between collision Λ=ντ---Mean free path
- Volumetric specific heat

$$C = \frac{dU}{dT} \left[\frac{J}{m^3 K} \right]$$

Thermal Radiaton: Planck's Law

Basic Relations

Frequency ν Angular Frequency $\omega=2\pi\nu$

Wavelength λ

Wavevector magnitude $k=2\pi/\lambda$

Wavevector $\mathbf{k} = (\mathbf{k}_{x}, \mathbf{k}_{y}, \mathbf{k}_{z})$

$$c = v\lambda$$
 \Longrightarrow $\omega = ck = c\sqrt{k_x^2 + k_y^2 + k_z^2}$

 $\omega(k)$: Dispersion relation (linear)

How much energy in the cavity?

$$L_{x} = \frac{\lambda_{x}}{2}, 2\frac{\lambda_{x}}{2}, ..., n_{x} \frac{\lambda_{x}}{2}, ...$$

$$k_{x} = n_{x} \frac{2\pi}{2L_{x}}$$
Two polarization

$$U = 2\sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} \hbar \omega f(\omega, T) =$$

$$2\int_{0}^{\infty} \frac{dk_x}{(2\pi/2L_x)} \int_{0}^{\infty} \frac{dk_y}{(2\pi/2L_y)} \int_{0}^{\infty} \frac{dk_z}{(2\pi/2L_z)} \hbar \omega f(\omega, T)$$

$$= 2\int_{-\infty}^{\infty} \frac{dk_x}{(2\pi/L_x)} \int_{-\infty}^{\infty} \frac{dk_y}{(2\pi/L_y)} \int_{-\infty}^{\infty} \frac{dk_z}{(2\pi/L_z)} \hbar \omega f(\omega, T)$$

Thermal Radiaton: Planck's Law

$$U = \frac{2V}{8\pi^3} \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} \hbar \omega f(\omega, T) dk_x dk_y dk_z$$

$$= \frac{2V}{8\pi^3} \int_{0}^{\infty} \hbar \omega f(\omega, T) 4\pi k^2 dk$$

$$= \frac{2V}{8\pi^3} \int_{0}^{\infty} \hbar \omega f(\omega, T) 4\pi \left(\frac{\omega}{c}\right)^2 d\left(\frac{\omega}{c}\right)$$

$$\frac{U}{V} = \int_{0}^{\infty} \hbar \omega f(\omega, T) \frac{\omega^2}{\pi^2 c^3} d\omega$$

$$= \int_{0}^{\infty} \hbar \omega f(\omega, T) D(\omega) d\omega$$

$$= \int_{0}^{\infty} u(\omega) d\omega$$

 $D(\omega)$ -density of states per unit volume per unit angular frequency interval Energy density per ω interval

$$u(\omega) = \hbar \omega f(\omega, T) D(\omega)$$

$$= \frac{\hbar \omega^{3}}{\pi^{2} c^{3}} \frac{1}{\exp\left(\frac{\hbar \omega}{k_{B} T}\right) - 1}$$
 Planck's law

Intensity: energy flux per unit solid angle

Solid Angle

$$d\Omega = \frac{dA_p}{R^2}$$

 4π

Per unit wavelength interval

Solid Angle
$$d\Omega = \frac{dA_p}{R^2} \qquad I(\lambda) = \left| \frac{I(\omega)d\omega}{d\lambda} \right| = \frac{4\pi c\hbar}{\lambda^5} \frac{1}{\exp\left(\frac{2\pi\hbar c}{k_B T \lambda}\right) - 1}$$
 whole space

Planck's law

Thermal Radiaton: Planck's Law

Emissive Power

$$\dot{Q}(\lambda) = A\pi I(\lambda)$$

$$= A \frac{\hbar \omega^{3}}{4\pi^{2}c^{2}} \frac{1}{\exp\left(\frac{\hbar \omega}{k_{B}T}\right) - 1}$$

Total

$$\dot{Q} = \int_{0}^{\infty} \dot{Q}(\lambda) d\lambda = A \, \sigma T^{4}$$

Wien's displacement law

$$\lambda_{\text{max}}T = 2898 \text{ K}\mu\text{m}$$

MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.