Situações particulares do método simplex:

- Selecção de um vértice admissível inicial
 - Se n\u00e3o existir, problema \u00e9 imposs\u00e3vel.
- Repetir
 - Selecção da coluna pivô:
 - Coeficiente mais negativo na linha da função objectivo
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da linha pivô:
 - Menor razão (lado direito/coluna pivô) positiva (i.e., coef.col.>0)
 - (em caso de empate, o próximo vértice é degenerado)
 - Se não existir coef.col.>0, solução óptima é ilimitada.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)
- O que é um algoritmo?
- O algoritmo simplex converge?

Degenerescência: caracterização

Vértice degenerado: geometria

- Normalmente, o vértice é definido pela intersecção de (n-m) hiperplanos (i.e., há (n-m) restrições activas).
- Um vértice é degenerado se o número de hiperplanos for maior.

Vértice degenerado: várias bases, a mesma solução básica

- Uma *base* é um conjunto de variáveis básicas (de vectores linearmente independentes).
- Resolvendo o sistema de equações em ordem às variáveis básicas (da base), obtém-se uma solução básica (vértice).
- Pode haver várias bases (quadros simplex) cuja solução corresponda ao mesmo vértice (solução básica), que é *degenerado*.

Domínio ilimitado (aberto)

 O domínio é ilimitado quando se pode caminhar ao longo de um raio (= semi-recta) permanecendo no domínio admissível.

Um raio é um conjunto de pontos

• $R = \{ x : x = v + \theta . d, \theta \in \mathbb{R}_+ \}$, sendo $v \in \mathbb{R}^n$ um vértice e $d \in \mathbb{R}^n$ uma direcção (um vector não-nulo).

Domínio ilimitado: como identificar no quadro simplex?

Quadro simplex: como identificar um raio?

- Há uma coluna de uma variável não-básica em que os coeficientes das restrições são todos ≤ 0.
- Exemplo:

$$\begin{cases} s_1 & = & 0 + 1x_1 - 1x_2 \\ z & = & 0 + 1x_1 + 1x_2 \end{cases} \qquad \frac{z \quad x_1 \quad x_2 \quad s_1}{s_1 \quad 0 \quad -1 \quad 1 \quad 1 \quad 0}$$

Ao longo de um raio, todos os pontos são admissíveis, porque:

- há uma única variável não-básica que aumenta de valor,
- todas as vars básicas aumentam (coef. < 0) ou mantêm o valor (coef.=0),
- sendo portanto $x, s \ge 0$.

Exemplo: domínio ilimitado e solução óptima ilimitada

3. Vértice admissível inicial

- E se não houver um vértice admissível (quadro simplex) inicial?
- Exemplo: problema com restrições de ≥.
- O Método das 2 Fases
 - Fase I: obter um vértice admissível inicial
 - Fase II: aplicar algoritmo simplex

Um problema com restrições de ≥ e de minimização

- Há uma relação este problema e o que vimos anteriormente.
- Iremos explorar essa relação depois.

Transformação na forma canónica

sendo $u \in \mathbb{R}_+^{m \times 1}$ um vector de variáveis de folga da mesma dimensão que $b \in \mathbb{R}^{m \times 1}$.

Transformação Inequações → Equações

- Qualquer inequação do tipo ≥ pode ser transformada numa equação (equivalente), introduzindo uma variável adicional, designada por variável de folga, com valor não-negativo.
- Exemplo:

$$\begin{cases} 3x_1 + 2x_2 & \ge 120 \\ x_1, x_2 & \ge 0 \end{cases} \Rightarrow \begin{cases} 3x_1 + 2x_2 - 1u_1 & = 120 \\ x_1, x_2, u_1 & \ge 0 \end{cases}$$

- O número de unidades produzidas numa solução $(x_1, x_2)^t$ é igual ao valor da função linear: $3x_1 + 2x_2$.
- u_1 (variável de folga) é o número de unidades produzidas em excesso relativamente às necessárias (no exemplo, 120).
- Há autores que designam estas variáveis por variáveis de excesso.

Exemplo: transformação na forma canónica

Modelo original

• Variáveis de decisão: *y*₃, *y*₄, *y*₅.

$$\min z = 120y_3 + 80y_4 + 30y_5$$

$$3y_3 + 1y_4 + 1y_5 \ge 12$$

$$2y_3 + 2y_4 \ge 10$$

$$y_3, y_4, y_5 \ge 0$$

Modelo na forma canónica (equivalente ao modelo original)

- Variáveis de decisão: y₃, y₄, y₅.
- Variáveis de excesso: y_1, y_2 .

$$\min z = 120y_3 + 80y_4 + 30y_5$$

$$-1y_1 + 3y_3 + 1y_4 + 1y_5 = 12$$

$$-1y_2 + 2y_3 + 2y_4 = 10$$

$$y_1, y_2, y_3, y_4, y_5 \ge 0$$

Não há um vértice admissível inicial, porque ...

o lado direito é positivo e não há uma matriz identidade no quadro :

Z	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
0	-1	0	3	1	1	12
0	0	-1	2	2	0	10

Lembrete: antes havia um vértice admissível inicial, porque:

- as restrições eram todas de \leq (havia uma matriz identidade $I_{m \times m}$), e
- os coeficientes do lado direito eram todos ≥ 0.
- Quando não há um vértice admissível inicial, usa-se o:

Método das 2 Fases:

- na Fase I, resolve-se um problema auxiliar para tentar encontrar um vértice admissível inicial.
- Se se conseguir encontrar, na Fase II, aplica-se o algoritmo simplex; caso contrário, o problema é impossível.

Método das 2 fases: estratégia

Fase I: adicionar variáveis artificiais e minimizar a sua soma

• resolver problema auxiliar (1a é a soma das variáveis artificiais):

$$min z_a = 1a$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $a \in \mathbb{R}^{m \times 1}_+$, $\mathbf{1} = [1, 1, ..., 1]$ um vector linha com m elementos.

- Se $(\min z_a = 1 = 0) \Rightarrow a = 0$ (todas as variáveis artificiais = 0) \Rightarrow há um vértice admissível que obedece às restrições originais;
- caso contrário (min z_a > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.

Fase II: optimizar problema original

- Existe um vértice admissível inicial para o algoritmo simplex;
- o optimiza-se a função objectivo (original) do problema.

Fase I: adicionar vars artificiais a_1 e a_2 , e min z_a

- Função objectivo da Fase I: $\min z_a = 1a_1 + 1a_2$.
- Equação da linha da função objectivo: $z_a 1a_1 1a_2 = 0$

80	Za	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	0 1	10
z_a	1	0	0	0	0	0	- 1	- 1	0

- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.
- O quadro seguinte é válido; vamos minimizar a função auxiliar za:

_		z _a	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
	a_1	0	-1	0	3	1	1	1	0	12
	a_2	0	0	-1	2	2	0	0	1	10
	z _a	1	-1	-1	5	3	1	0	0	22

Fase I: iterações

	Za	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	1	10
Za	1	-1	-1	5	3	1	0	0	22
	Za	y_1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> 3	0	-1/3	0	1	1/3	1/3	1/3	0	4
a_2	0	2/3	-1	0	4/3	-2/3	-2/3	1	2
Za	1	2/3	-1	0	4/3	-2/3	-5/3	0	2
	Za	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	a_1	a_2	
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	1/2	-1/4	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	-1/2	3/4	3/2
Za	1	0	0	0	0	0	-1	-1	0

- Solução óptima: $\min z_a = 0$.
- Foi encontrado um vértice admissível.

Fase I: conclusão

- O vértice admissível é $(y_1, y_2, y_3, y_4, y_5)^t = (0, 0, 7/2, 3/2, 0)^t$.
- Variáveis artificiais (a_1, a_2) e função objectivo auxiliar (z_a) não são necessárias na Fase II, e podem ser eliminadas.

	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>У</i> 3	-1/2	1/4	1	0	1/2 -1/2	7/2
<i>y</i> 4	1/2	-3/4	0	1	-1/2	3/2

• Na Fase II, iremos optimizar a função objectivo original (z), partindo do vértice admissível encontrado na Fase I.

Fase II: função objectivo original

- Função objectivo da Fase II: min $z = 120y_3 + 80y_4 + 30y_5$.
- Equação da linha da função objectivo: $z 120y_3 80y_4 30y_5 = 0$

	Z	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3		<i>y</i> 5	
<i>У</i> 3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	1/2	1/4 -3/4	0	1	-1/2	3/2
Z	1	0	0	-120	-80	-30	0

- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.
- O quadro seguinte é válido; vamos optimizar a função original z:

	Z		<i>y</i> ₂		<i>y</i> ₄	<i>y</i> 5	
У3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	-1/2 1/2	-3/4	0	1	-1/2	3/2
Z	1	-20	-30	0	0	-10	540

- O primeiro vértice admissível encontrado é a solução óptima
- (problema de minimização e nenhum coeficiente na linha da função objectivo é positivo).
- Isto nem sempre acontece!

Conclusão

- Há outros algoritmos para resolver problemas de programação linear, como os métodos de pontos interiores.
- O algoritmo simplex permanece competitivo, embora tenham sido identificados problemas em que os métodos de pontos interiores têm melhor desempenho.