Fabien Gueret - 28 March 2018 - Iwoka Business Finance

Call Centre / Data Samurai

Ouestions / Answers

- 1. Which agent made the most calls? [1] Agent Orange with 2234 calls.
- For the leads that received one or more calls, how many calls were received on average? [2]
 The leads called at least once received 1.84 calls on average.
 - The leads called at least once received 1.84 calls on average.
- 3. For the leads that signed up, how many calls were received, on average? [2] The signed up were called on average 2.10 times before they were convinced.
- 4. Which agent had the most signups? Which assumptions did you make? (note that there is a many-to-one relationship between calls and leads) [4] The agent Orange had 560 sign ups. We assume un-successful calls are all calls except the "INTERESTED" ones. We assume one phone number has one lead. We assume the sign-ups table corresponds to the interested in the calls table.
- 5. Which agent had the most signups per call? [2]
 But the most efficient agent for the most signups per call is agent Blue.
- 6. Was the variation between the agents' signups-per-call statistically significant? Why? [5]

To determine whether a result is statistically significant, we calculate the p-value associated with a binomial test, which is the probability of observing an effect given that the null hypothesis is true. The null hypothesis is that the Success rate of each agent does not differ from the overall average success rate of the team. Our results:

Agent	Calls	Signups	Success Rate	P value
Black	750	157	0.209	0.0018
Blue	199	58	0.291	0.2939
Green	339	97	0.286	0.2646
Orange	2234	560	0.251	0.3717
Red	1478	424	0.287	0.0162

We reject the null hypothesis for Black and Red, ie their performance is average

7. A lead from which region is most likely to be "interested" in the product? [3] The most interested region is London

- 8. A lead from which sector is most likely to be "interested" in the product? [1] The most interested sector is Consultancy
- 9. Given a lead has already expressed interest and signed up,
 - a. signups from which region are most likely to be approved? [2] The region with the most approved sign-ups is the North-West
 - b. Is this statistically significant? Why? [5]

To determine whether a result is statistically significant, we calculate the p-value associated with a binomial test, which is the probability of observing an effect given that the null hypothesis is true. The null hypothesis is that the approval rate of each region does not differ from the country wide approval rate of sign-ups.

Our results:

Region	Approval Rate	Countrywide	P value
North-West	0.45	0.33	0.0004

We reject the null hypothesis for the North-West ie the difference in approval rate is not significant.

- 10. Suppose you wanted to pick the 1000 leads most likely to sign up (who have not been called so far), based only on age, sector and region.
 - a. What criteria would you use to pick those leads? [10]
 We would use a function of the age, sector and region that would give us a probability of interest/success. We have chose to fit a logistic regression model considering the sample sizes and the number of categories in the predictor variables. We have created bins for the age of the leads first then dichotomised it together with the region and sector

Below the coefficients calculated:

Determ the coefficient	inco carcaracea.
Intercept	-0.08446591
Region_london	1.417680
Region_midlands	-0.654595
Region_north-east	-0.182676
Region_north-west	0.499336
Region_northern-irelan	d -0.157100
Region_scotland	-0.210190
Region_south	-0.301667
Region_south-east	-0.078173
Region_south-west	0.359215
Region_wales	-0.776297
Sector_agriculture	-0.272434
Sector_construction	-0.871275
Sector_consultancy	0.854160
Sector_entertainment	0.262466
Sector_food	-0.079287
Sector_retail	-0.528669
Sector_wholesale	0.550573
Age Bucket_(0, 25]	0.150940
Age Bucket_(25, 50]	0.223575
Age Bucket_(50, 75]	0.178159
Age Bucket_(75, 100]	-0.029826
/15c bachet_(/5, 100]	0.027020

- b. In what sense are those an optimal criteria set? [3]

 The criteria is optimal in the sense that it minimises the error/cost function for the training data.
- c. How many signups would you expect to get based on those called leads, assuming they were being called by random agents? [3]

 According to our model the number of sign ups would be 5263 out of 9994 which is too high and comes from the leads (our test data) and training data overlapping. There are other models that could be used and should be tested to see which one is the most practical at this moment with the possibility to change once the data available is bigger
- d. If you could choose the agents to make those calls, who would you choose? Why? [3]

Owing to the already dubious performance of our first model, adding another set of variables might not be a good idea. Furthermore we could make the hypothesi that the impact of the agent on the call is not region/age/sector specific. In that view, preselecting leads according to the 3 variables first then dividing them amongst the agent according to performance (question 4) and availability (question 1) could be a first strategy

Nevertheless we have a logistic model including the agent impact and out of the coefficients for the agents, Agent Blue seems to be the one with the most positive impact. We would have to test the significance of those coefficients.

Agent_black -0.733619
Agent_blue 0.726713
Agent_green 0.132170
Agent_orange -0.306021
Agent_red 0.246731

Below Python code and output

```
Code
```

-*- coding: utf-8 -*-

Created on Tue Mar 27 11:45:31 2018

@author: Fabien Gueret 4

Data Samurai Challenge

Call Centre

Data

1.leads.csv. This is a list of fictitious company directors, with some basic data about them and their company.

2.calls.csv. This is a list of fictitious calls made by an outbound call centre. The call centre consists of several agents,

who make calls one after the other. They don't get to choose who to call, the system does. The objective of the call is to

get the lead to signup on the website. When they finish a call, they mark down the outcome, from a fixed list of possible outcomes.

Note that a single lead may be called multiple times.

3.signups.csv. This is a list of leads who signed up after being called by someone from the call centre.

Each signup was risk assessed and either approved or rejected for a loan.

Dependencies

....

#Data management library import pandas as pd #Time management library import datetime as dt # Database Library import numpy as np # Statistics

from scipy import stats

Open csv files and save data in Dataframes #### # paths

```
leadfile = 'leads.csv'
callfile = 'calls.csv'
signupfile = 'signups.csv'
# inflow of data
leads = pd.read csv(leadfile, header = 0, index col=0, converters = {'Age':int})
print(leads.head())
calls = pd.read csv(callfile,header = 0,index col=3)
print(calls.head())
signups = pd.read_csv(signupfile,header = 0,index_col=0)
print(signups.head())
#### 1. Which agent made the most calls? ####
agents activity = calls.groupby('Agent').count().drop(['Call Outcome'],axis=1)
#print(agents activity)
prolific agent = agents activity.sort values(['Phone Number'], ascending=False).head(1)
print(prolific_agent)
#### 2. For the leads that received one or more calls, how many calls were received on
average? ####
lead_contacts = calls.groupby('Phone Number').count()
avg calls number = lead contacts['Call Outcome'].mean()
print(avg_calls_number)
#### 3. For the leads that signed up, how many calls were received, on average?
signed ups phone number= pd.merge(signups, leads, how='left', left index= True,
right_index=True)
signed_up_calls = pd.merge(signed_ups_phone_number, calls, how='left', left_on= 'Phone
Number', right_on= 'Phone Number')
signed_up_call_counts = signed_up_calls.groupby('Phone Number').count()
signed up call avg = signed up call counts['Call Outcome'].mean()
print(signed_up_call_avg)
```

4. Which agent had the most signups? Which assumptions did you make? (note that there

```
is a many-to-one relationship between calls and leads) ####
success_calls = calls[calls['Call Outcome']=='INTERESTED']
agents_success = success_calls.groupby('Agent').count().drop(['Call Outcome'],axis=1)
best agent = agents success.sort values(['Phone Number'], ascending=False).head(1)
print('Best Agent ', best_agent)
#### 5. Which agent had the most signups per call? ####
agent_effort_to_signup = pd.merge(agents_activity,agents_success,how='left', left index= True,
right index=True)
agent_effort_to_signup['Success Rate']= agent_effort_to_signup['Phone
Number_y']/agent_effort_to_signup['Phone Number_x']
efficient_agent = agent_effort_to_signup.sort_values(['Success Rate'],
ascending=False).drop(['Phone Number_y','Phone Number_x'],axis=1).head(1)
print('Efficient Agent', efficient agent)
#### 6. Was the variation between the agents' signups-per-call statistically significant? Why?
# Ho : p1 = avq Ha p1!= avq
avg_success = agent_effort_to_signup['Phone Number_y'].sum()/ agent_effort_to_signup['Phone
Number x'].sum()
agent_effort_to_signup['p_value']=[stats.binom_test(row[1],row[0],avg_success) for index , row
in agent_effort_to_signup.iterrows()]
print(agent_effort_to_signup)
#### 7.A lead from which region is most likely to be "interested" in the product? ####
lead_regions= pd.merge(leads, calls, how='right', left_on= 'Phone Number', right_on='Phone
Number')
# calculate the number of interest number by region
lead_interested_by_regions = lead_regions.loc[lead_regions['Call
Outcome']=='INTERESTED'].groupby('Region').count()
# calculate the number of unique phone numbers called by region (many calls for one number!)
lead phone number = calls.groupby('Phone Number').count()
all phone numbers regions=pd.merge(lead phone number,leads,how='left', left index= True,
```

```
right on='Phone Number')
all leads called by regions = all phone numbers regions.groupby('Region').count()
interested_region_data=pd.merge(lead_interested_by_regions,all_leads_called_by_regions,how
='inner', left_index= True, right_index=True)
interested region data['InterestedvsAll']=interested region data['Age x']/interested region data
a['Age_y']
most interested region = interested region data.sort values(['InterestedvsAll'],
ascending=False).head(1)
print('Interested region : ',most_interested_region['InterestedvsAll'])
#### 8.A lead from which sector is most likely to be "interested" in the product? ####
# calculate the number of interest number by sectors
lead interested by_sectors = lead_regions.loc[lead_regions['Call
Outcome']=='INTERESTED'].groupby('Sector').count()
all leads called by sectors = all phone numbers regions.groupby('Sector').count()
interested_sector_data=pd.merge(lead_interested_by_sectors,all_leads_called_by_sectors,how='i
nner', left_index= True, right_index=True)
interested sector data['InterestedvsAll']=interested sector data['Age x']/interested sector data[
'Age_y']
most interested sector = interested sector data.sort values(['InterestedvsAll'],
ascending=False).head(1)
print('Interested sector : ', most_interested_sector['InterestedvsAll'])
#### 9.Given a lead has already expressed interest and signed up, ####
#### 9.a.signups from which region are most likely to be approved? ####
signups info = pd.merge(signups, leads, how = 'left', left index = True, right index = True)
signups_region = signups_info.groupby('Region').count()
approved_signups_region = signups_info.loc[signups_info['Approval
Decision']=='APPROVED'].groupby('Region').count()
approved_region_data=pd.merge(signups_region, approved_signups_region,how='inner',
left_index= True, right_index=True)
approved_region_data['ApprovedvsAll']=approved_region_data['Age_y']/approved_region_dat
a['Age_x']
most_approved_region = approved_region_data.sort_values(['ApprovedvsAll'],
ascending=False).head(1)
print('Approved region : ', most_approved_region['ApprovedvsAll'])
```

```
#### 9.b.Is this statistically significant? Why? ####
# Ho : p1 = avg Ha p1!= avg
avg approved = signups.loc[signups['Approval
Decision']=='APPROVED'].count()/signups.count()
avg =avg_approved.sum()
approved region data['average']=ava
approved_region_data['p_value']=[stats.binom_test(row[4],row[0],avg) for index , row in
approved_region_data.iterrows()]
print(approved region data)
#### 10 Suppose you wanted to pick the 1000 leads most likely to sign up (who have not been
called so far), based only on age, sector and region.####
#### 10.a. What criteria would you use to pick those leads? ####
all_called = pd.merge(calls,leads, how ='left', left_on = 'Phone Number', right_on = 'Phone
Number')
conditions = [
  (all called['Call Outcome'] == 'INTERESTED'),
  (all called['Call Outcome'] == 'NOT INTERESTED')]
choices = [1,0]
all_called['Signup']=np.select(conditions, choices, default='rid')
all called = all called.loc[all called['Signup']!='rid']
# Bin the Age
all_called['Age Bucket']= pd.cut(all_called['Age'],range(0,125,25))
#clean up before binarisation
all_called=all_called.drop(['Phone Number', 'Age', 'Agent', 'Call Outcome'],axis=1)
# Binaries predictors and target
training_data = pd.get_dummies(all_called)
training_data= training_data.drop(['Signup_0'],axis=1)
#print(training_data.columns.values)
#Import Library
from sklearn.linear_model import LogisticRegression
# Create logistic regression object
model = LogisticRegression()
# X (predictor) and Y (target) for training data set and x test(predictor) of test dataset
```

```
X = training_data.drop(['Signup_1'],axis=1).values
X_data=training_data.drop(['Signup_1'],axis=1)
y= training_data['Signup_1'].values
# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)
#Equation coefficient and Intercept
coeff =model.coef [0]
features =X_data.columns.values
print('Intercept: \n', model.intercept_)
Results = pd.DataFrame(list(zip(features,coeff)),columns= ['features', 'estimated_Coefficients'])
print(Results)
#### 10.b.In what sense are those an optimal criteria set?
#### 10.c. How many signups would you expect to get based on those called leads, assuming
they were being called by random agents?
all leads = leads[['Region', 'Sector', 'Age']]
#print(all leads)
# Bin the Age
all_leads['Age Bucket']= pd.cut(all_leads['Age'],range(0,125,25))
#clean up before binarisation
all_leads=all_leads.drop(['Age'],axis=1)
# Binaries predictors and target
testing_data = pd.get_dummies(all_leads)
#print(testing_data.columns.values)
#Predict Output
x_test = testing_data.values
predicted= model.predict(x_test)
print('Predicted signps',sum(predicted),' on ', len(leads))
#### 10.d.If you could choose the agents to make those calls, who would you choose? Why?
all called = pd.merge(calls,leads, how ='left', left on = 'Phone Number', right on = 'Phone
```

```
Number')
conditions = [
   (all_called['Call Outcome'] == 'INTERESTED'),
  (all_called['Call Outcome'] == 'NOT INTERESTED')]
choices = [1,0]
all called['Signup']=np.select(conditions, choices, default='rid')
all called = all called.loc[all called['Signup']!='rid']
# Bin the Age
all_called['Age Bucket']= pd.cut(all_called['Age'],range(0,125,25))
#clean up before binarisation
all called=all called.drop(['Phone Number','Age','Call Outcome'],axis=1)
# Binaries predictors and target
training_data = pd.get_dummies(all_called)
training_data= training_data.drop(['Signup_0'],axis=1)
#print(training data.columns.values)
# Create 2nd logistic regression object
model2 = LogisticRegression()
# X (predictor) and Y (target) for training data set and x test(predictor) of test dataset
X = training_data.drop(['Signup_1'],axis=1).values
X_data=training_data.drop(['Signup_1'],axis=1)
y= training_data['Signup_1'].values
# Train the model using the training sets and check score
model2.fit(X, y)
model2.score(X, y)
#Equation coefficient and Intercept
#print('Coefficient: \n', model2.coef_)
print('Intercept: \n', model2.intercept_)
coeff =model2.coef [0]
features =X_data.columns.values
Results = pd.DataFrame(list(zip(features,coeff)),columns= ['features', 'estimated Coefficients'])
print(Results)
```

Output

Python 3.6.3 | Anaconda custom (64-bit) | (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)]

Type "copyright", "credits" or "license" for more information.

IPython 6.1.0 -- An enhanced Interactive Python.

runfile('F:/New folder/Job Search/iwoca/callcentre.py', wdir='F:/New folder/Job Search/iwoca')

Phone Number Region Sector Age

Name

Isabela MEZA 175718505368 north-west wholesale 19

Deangelo LEE 937521423043 north-west retail 38

Rosia MENDEZ 403640999962 midlands agriculture 40

Jeremiah GALLOWAY 946740713605 scotland food 23

Sarah POPE 264176984341 midlands retail 18

Phone Number Call Outcome Agent

Call Number

0 83473306392 NOT INTERESTED orange

1 762850680150 CALL BACK LATER orange

2 476309275079 NOT INTERESTED orange

3 899921761538 CALL BACK LATER rec

4 906739234066 CALL BACK LATER orange

Approval Decision

Lead

Tyree TERRY APPROVED

Ansel WOOD REJECTED

Ludwig DIAZ APPROVED

Mack ARELLANO APPROVED

Judy HENDRICKS REJECTED

Phone Number

Agent

orange 2234 1.839587932303164 2.09895833333333335

Best Agent Phone Number

Agent

orange 560

Efficient Agent Success Rate

Agent

blue 0.291457

Phone Number_x Phone Number_y Success Rate p_value

_

black	750	157	0.209333 0.001754
blue	199	58	0.291457 0.293865
green	339	97	0.286136 0.264620
orange	2234	560	0.250671 0.371723
red	1478	424	0.286874 0.016189

Interested region: Region

london 0.756757

Name: InterestedvsAll, dtype: float64

Interested sector : Sector consultancy 0.651515

Name: InterestedvsAll, dtype: float64

Approved region: Region north-west 0.452381

Name: ApprovedvsAll, dtype: float64

Approval Decision_x Phone Number_x Sector_x Age_x \

Region

Region			
london	25	25	25 25
midlands	91	91	91 91
north-east	82	82	82 82
north-west	210	210	210 210
northern-ireland	24	24	24 24
scotland	82	82	82 82
south	32	32	32 32
south-east	86	86	86 86
south-west	102	102	102 102
wales	34	34	34 34

Approval Decision_y Phone Number_y Sector_y Age_y \setminus

Region				
london	2	2	2	2
midlands	26	26	26	26
north-east	20	20	20	20
north-west	95	95	95	95
northern-ireland	6	6	6	6
scotland	37	37	37	37
south	12	12	12	12
south-east	29	29	29	29

south-west	25	25	25	25
wales	5	5	5	5

ApprovedvsAll average p_value

Region	
london	0.080000 0.334635 0.005102
midlands	0.285714 0.334635 0.374400
north-east	0.243902 0.334635 0.100593
north-west	0.452381 0.334635 0.000424
nor the rn-ireland	0.250000 0.334635 0.517108
scotland	0.451220 0.334635 0.034372
south	0.375000 0.334635 0.708273
south-east	0.337209 0.334635 1.000000
south-west	0.245098 0.334635 0.058888
wales	0.147059 0.334635 0.018305
Intercepts	

Intercept:

[-0.08446591]

[-0.00440371]						
	features estimated_Coefficients					
0	Region_london	1.417680				
1	Region_midlands	-0.654595				
2	Region_north-east	-0.182676				
3	Region_north-west	0.499336				
4	Region_northern-ireland	-0.157100				
5	Region_scotland	-0.210190				
6	Region_south	-0.301667				
7	Region_south-east	-0.078173				
8	Region_south-west	0.359215				
9	Region_wales	-0.776297				
10	Sector_agriculture	-0.272434				
11	Sector_construction	-0.871275				
12	Sector_consultancy	0.854160				
13	Sector_entertainment	0.262466				
14	Sector_food	-0.079287				
15	Sector_retail	-0.528669				
16	Sector_wholesale	0.550573				
17	Age Bucket_(0, 25]	0.150940				
18	Age Bucket_(25, 50]	0.223575				
19	Age Bucket_(50, 75]	0.178159				
20	Age Bucket_(75, 100]	-0.029826				
Predicted signps 5263 on 9994						

Intercept: [0.06597395]

	features estimat	ted_Coefficients
0	Agent_black	-0.733619
1	Agent_blue	0.726713
2	Agent_green	0.132170
3	Agent_orange	-0.306021
4	Agent_red	0.246731
5	Region_london	1.492626
6	Region_midlands	-0.665632
7	Region_north-east	-0.184671
8	Region_north-west	0.537006
9	Region_northern-ireland	-0.194053
10	Region_scotland	-0.187785
11	Region_south	-0.235415
12	Region_south-east	-0.069980
13	Region_south-west	0.402555
14	Region_wales	-0.828678
15	Sector_agriculture	-0.224853
16	Sector_construction	-0.906547
17	Sector_consultancy	0.901235
18	Sector_entertainment	0.291083
19	Sector_food	-0.062458
20	Sector_retail	-0.526341
21	Sector_wholesale	0.593855
22	Age Bucket_(0, 25]	0.114009
23	Age Bucket_(25, 50]	0.202811
24	Age Bucket_(50, 75]	0.126109
25	Age Bucket_(75, 100]	-0.039033