Physique générale : Électricité Chapitres 1 à 4

0	Conseils généraux			3
1	Grandeurs électriques			
	1.1	Exerci	ices d'application	5
		1.1.1	Ordres de grandeur	5
		1.1.2	Potentiels, tensions et courants	7
		1.1.3	Schématisation	10
		1.1.4	Association de résistances	11

CHAPITRE

()

CONSEILS GÉNÉRAUX

Ce document à pour but de rappeler et résumer les conseils, arguments et astuces qui ont pu être vues et énoncées durant les TDs. Il ne remplace ni les séances en elles-mêmes, où votre participation active est nécessaire (c'est en se trompant qu'on sait comment ne pas faire, et donc comment bien faire), ni les CM de votre professeur-e. J'espère néanmoins qu'il saura vous être utile.

La première partie comporte quelques éléments généraux sur l'électricité. D'autres conseils et éléments importants sont mis en valeur quand ils sont pertinents : le code couleur reste le même, dans le but d'avoir une structure facilement navigable. Les bases de réflexion, données ou définitions, sont en vert. Les résultats importants, propriétés ou résultats à trouver, sont en rouge. Les points pivots de réflexion, démonstration ou outils à choisir judicieusement, sont en bleu. Les côtés pratiques, exemples et applications, sont en gris.

Les premiers exercice du chapitre 1 sont intégralement corrigés, et certains mots importants (comme « divergent ») ont une note de fin du chapitre 1 avec une brève définition. Ces exercices représentent la base de comment construire sa réflexion face à un exercice de physique (d'optique particulièrement), mais ils ne sont pas tous corrigés ainsi. Ainsi, vous verrez qu'après quelques exemples, je vous renvoie aux corrigés que vous avez à disposition sur *Claroline*. Les schémas y sont clairs et j'espère que ma retranscription écrite du raisonnement derrière ces schémas suffiront à vous guider.

Bonne lecture,

Nora NICOLAS – n.nicolas@ipnl.in2p3.fr

Principe des exercices de physique

Tout exercice de physique suit le schéma suivant :

- 1) Lecture de l'énoncé en français et relevé des données;
- 2) Traduction des données en schéma si pertinent, et en expression mathématique si pertinent;
- 3) Compréhension de la réponse attendue;
- 4) Traduction de la réponse attendue en schéma si pertinent, et en expression mathématique si pertinent;
- 5) Détermination d'un ou de plusieurs outils (relation mathématique, règle de construction...) du cours faisant le lien entre les données et la réponse : répéter si besoin d'une réponse intermédiaire;
- 6) Application.

Un exemple est donné partie.

Conseils

Avant d'encadrer un résultat :

- 1) Vérifer la cohérence mathématique avec la ligne précédente : les signes devant les grandeurs, le nombre de grandeurs, ne pas oublier les fonctions inverses...;
- 2) Vérifier l'homogénéité de part et d'autre de l'équation pour les résultats littéraux :
- 3) Vérifier la cohérence physique de la valeur numérique, notamment à l'aide d'un schéma

Important

L'erreur la plus simple mais la plus grave à faire est de se tromper sur une grandeur algébrique.

Toujours vérifier le sens des grandeurs algébriques

CHAPITRE

1

GRANDEURS ÉLECTRIQUES

Exercices d'application

Exercice 1) Ordres de grandeur

Cet exercice ce concentre sur la notion d'intensité en électricité. Faisons tout d'abord un petit rappel du cours.

Définition 1.1.1: Intensité électrique

L'intensité électrique est une grandeur physique décrivant la quantité de charges électriques (exprimées en Coulomb, C) passant par un point d'un circuit à chaque unité de temps (exprimé en seconde, s) :

$$I = \frac{Q}{t} \tag{1.1}$$

L'intensité est ainsi exprimée en Coulomb par seconde, unité que l'on nomme l'Ampère (A). Si les charges sont des électrons se déplaçant dans un fil, le nombre de charges est :

$$Q = N \times e \tag{1.2}$$

où $e = 1.602 \times 10^{-19} \,\mathrm{C}$ est la charge de l'électron (en valeur absolue).

Nous voyons donc que le temps, l'intensité et le nombre de charges sont reliées par les formules 1.1 et 1.2.

Résultats attendus

Les trois questions de l'exercice donnent une grandeur électrique et attendent de vous le calcul d'une grandeur inconnue. Il va donc falloir utiliser les formules précédentes pour exprimer la grandeur inconnue en fonction des données du problème.

Données

- 1) "Un générateur délivre une intensité $I = 3,0 \,\mathrm{A}$." : $I = 3 \,\mathrm{A}$;
- 2) "1000 électrons" : N = 1000;
- 3) "faire circuler 1.10²⁰ électrons chaque seconde" : $N=1\times 10^{20},$ $t=1\,\mathrm{s}.$

Application

1) Le nombre d'électrons émis chaque seconde est donné par :

$$N = \frac{I \times t}{e} \tag{1.3}$$

Avec les données du problème, nous avons :

$$N = \frac{3.0 \times 1}{1.6 \times 10^{-19}} = 1.9 \times 10^{19} \tag{1.4}$$

2) Le temps pour émettre 1000 électrons est donné par :

$$t = \frac{N \times e}{I} = \frac{1000 \times 1.6 \times 10^{-19}}{3.0} \,\text{s} = 5.3 \times 10^{-17} \,\text{s} \qquad (1.5)$$

3) L'intensité correspondante est :

$$I = \frac{N \times e}{t} = \frac{1.0 \times 10^{20} \times 1.6 \times 10^{-19}}{1} \,\text{A} = 16 \,\text{A} \tag{1.6}$$

Important 1.1.1: Important

Dans cet exercice, nous avons dû faire des applications numériques. Il faut alors faire attention à deux choses :

- l'unité : dès que vous remplacez les grandeurs littérales par des valeurs numériques, votre calcul acquiert une unité, qui doit apparaître;
- les chiffres significatifs : le résultat final doit comporter un nombre de chiffres significatifs cohérent avec la précision des données utilisées. Par exemple, l'intensité $I=3.0\,\mathrm{A}$ a deux chiffres significatifs, ce qui va limiter la précision avec laquelle on va utiliser la charge de l'électron à deux chiffres : $e=1.6\times10^{-19}\,\mathrm{C}$. Autre cas, quand on vous dit "par seconde", le temps t a alors la valeur $t=1\,\mathrm{s}$, avec une précision arbitraire, qui sera limitée par la précision des autres données. Il en va de même pour le nombre N=1000 électrons.

Exercice 2) Potentiels, tensions et courants

Définition 1.1.2 : Potentiel et tension électrique

Dans cet exercice, nous allons appliquer les notions de potentiel et de tension électrique, ainsi que celle de sens "conventionnel" du courant.

- 1) Le potentiel électrique peut être vu comme un équivalent de l'altitude en mécanique : si vous êtes en altitude, vous avez le "potentiel" de tomber et de fournir de l'énergie, emmagasinée pendant la chute, en arrivant au sol. Chaque point d'un circuit est ainsi à une certaine "altitude". Si on considère une particule de charge positive, alors cette particule a le comportement intuitif et "tombe" des potentiels les plus élevés vers les plus bas (le + repousse le +). Si cette particule est chargée négativement, comme l'électron, elle "remonte" des bas potentiels vers les plus élevés (le + attire le -).
- 2) La tension électrique est la différence de potentiel entre deux points d'un circuit. Sa notation est intuitive : U_{AB} est la différence de potentiel entre A et B, $V_A V_B$. On la représente par contre

- comme une flèche all ant de B vers A : la flèche suit les potentiels croissants.
- 3) Le sens conventionnel du courant positif est alors l'inverse du sens de circulation des électrons, car ils sont chargés négativement.
- 1) Sur le circuit ci-dessous, on a indiqué le sens de circulation des électrons, donc des potentiels les plus bas vers les plus hauts.

2) Sur le circuit suivant, on a indiqué le sens conventionnel du courant positif, donc des hauts potentiels vers les bas.

- 3) L'analogie de l'altitude pour les potentiels électriques nous donne une intuition pour la valeur du potentiel au point D : ce potentiel doit être compris "entre" ceux des points C et E, car aucune source extérieure ne peut permettre de relever ou d'abaisser artificiellement le point D. Par exemple, $x=2.0\,\mathrm{V}$.
- 4) Sur le circuit ci-dessous, nous avons fléché les tensions en question. Ces

tensions se calculent par différence de potentiel : $U_{AB} = V_A - V_B = 2.0 \,\text{V}$, $U_{FG} = 0 \,\text{V}$, $U_{BG} = 2.0 \,\text{V}$, $U_{CB} = -0.5 \,\text{V}$, $U_{CF} = 1.5 \,\text{V}$, $U_{EC} = -1.5 \,\text{V}$, $U_{CH} = 1.5 \,\text{V}$ et $U_{AE} = 4.0 \,\text{V}$.

Outils du cours

Une tension peut être difficile à calculer au premier coup d'œil. Dans ces cas-là, il peut être utile d'utiliser des points intermédiaires dont on connaît le potentiel, c'est une forme de composition des vecteurs. Par exemple, la tension $U_{\rm AB}$ entre B et A peut être décomposée à l'aide d'un point tiers, C, par la formule $U_{\rm AB} = U_{\rm AC} + U_{\rm CB}$. On peut le démontrer facilement en remplaçant les tensions par des différences de potentiel.

Application

- $U_{AG} = U_{AB} + U_{BG}$
- $U_{AD} = U_{AB} + U_{BD}$
- 6) Les points E, F, G et H sont reliés par des fils, sans dipôles intermédiaires. Ils sont donc au même potentiel.

Important 1.1.2: Potentiel dans un circuit

Dans un circuit, tous les points reliés par des fils sans dipôles intermédiaires sont au même potentiel. Ils sont en fait considérés comme un seul point dans un circuit. Il peut être utile de se servir de cette propriété pour redessiner un circuit sous une forme plus simple.

Exercice 3) Schématisation

Définition 1.1.3 : Résistances équivalentes et associations de résistances

Très souvent, un circuit électrique contient de nombreuses résistances. Ces résistances peuvent être :

- en série : elles sont sur une même branche, aucune branche tierce ne part du point qui les sépare R_1
- en dérivation : elles sont situées sur deux branches connectées à

On note symboliquement que deux résistances sont en série par $R_1 + R_2$, elles sont alors équivalentes à une seule résistance de valeur :

$$R_{\text{série}} = R_1 + R_2 \tag{1.7}$$

On note symboliquement que deux résistances sont en dérivation par $R_1//R_2$, elles sont alors équivalentes à une seule résistance de valeur :

$$R_{\text{dérivation}} = \frac{R_1 \times R_2}{R_1 + R_2} \tag{1.8}$$

Conseils

Lors de la transformation d'une formule symbolique d'une association de résistance en schéma, il est conseillé de commencer par les parenthèses les plus intérieures, puis d'ajouter les éléments en allant vers l'extérieur des parenthèses. Comme pour la multiplication \times et l'addition +, le symbole // est prioritaire devant le symbole +. N'oubliez pas les

branches de sortie afin de définir explicitement quel est le dipôle final.

Exercice 4) Association de résistances

Conseils

Dans cet exercice, on va exprimer la résistance équivalente d'un circuit, symboliquement, à l'aide des signes // et +. Le plus simple est de procéder par étapes afin d'identifier les couples de résistances en série et en dérivation, et de les remplacer par leur résistance équivalente. Pour ce faire, on se rappelle que d'après la définition 1.1.2, on peut déplacer les points le long de fils tant qu'on ne traverse pas de dipôle.

1) - Dans le schéma 1, R_1 et R ne sont ni en série ni en dérivation, il y a un nœud entre les deux, qui part sur une autre branche. r et r_2 ne sont pas en parallèle, il y a une résistance (R) sur la branche transverse. R_2 et R: aucun. R_3 et r_2 : aucun. R_3 et R_2 sont en série.

- Dans le schéma 2, R_1 et R: aucun. r et r_2 : aucun. R_3 et r_2 sont en parallèle, ce qui est bien visible si on déplace le point B en bas à gauche du schéma.
- Dans le schéma 3, R_1 et R sont en série. R_2 et R: aucun. r et r' sont en parallèle, si on prend les deux résistances en bas à gauche du schéma.
- 2) On va faire en détails le cas du schéma 1.

Sur ce circuit, R_3 et R_2 sont en série. Nous les remplaçons par une résistance équivalente $R_{eq,1} = R_3 + R_2$. Le nouveau schéma est :

Maintenant, on voit que r_2 et $R_{\rm eq,1}$ sont en parallèle. On les remplace par la résistance équivalente $R_{\rm eq,2}=r_2//R_{\rm eq,1}$. Le nouveau schéma est :

R et $R_{\rm eq,2}$ sont en série, on les remplace par la résistance équivalente $R_{\rm eq,3}=R+R_{\rm eq,2}$:

r et $R_{\rm eq,3}$ sont en parallèle, on les remplace par $R_{\rm eq,4}=r//R_{\rm eq,3}$:

 R_1 et $R_{\text{eq},4}$ sont en série. La résistance totale entre A et B est :

$$R_{\text{eq}} = R_1 + R_{\text{eq},4}$$

$$= R_1 + (r//R_{\text{eq},3})$$

$$= R_1 + (r//[R + R_{\text{eq},2}])$$

$$= R_1 + (r//[R + \{r_2//R_{\text{eq},1}\}])$$

$$= R_1 + (r//[R + \{r_2//(R_3 + R_2)\}])$$
(1.9)

Une fois ce calcul terminé, on peut vérifier par le chemin inverse que la schématisation de la résistance équivalente 1.9 donne bien le schéma de départ.

