

Air Quality Forecasting

Wong Zhao Wu

Problem Overview & Modelling Objectives

The <u>training dataset</u> consist of 328 observations from March 2004 to January 2005 with hourly averaged concentrations for CO, Non Metanic Hydrocarbons, Total Nitrogen Oxides (NOx) and Ozone. Test set, on the other hand, consist of 63 observations from February 2005 to April 2005.

Modelling Objectives

To forecast the Air Quality of Carbon Monoxide CO, Nonmethane Hydrocarbon NMHC, Nitrous Oxide NOx and Ozone O3 for the next 63 Days(test size) using Univariate and Multivariate Statistical Model.

CO

NMHC

NOx

03

Pivoting Table

Pivot the dataframe from **stacked format to unstacked format**.

Data Preprocessing

E-Nose Drifting

By using
Temperature< 0 as
the indicator, I have
noticed the randomly
scattered anomaly
data across all
gasses.

Missing Values

-200 is observed as for the **missing** values.

When either one of the gasses is recorded -200, the rest of the gases will also be -200.

Front-Fill Anomalies

Front Filling the anomaly data for the "-200" missing value and "drifted" value.

The same preprocessing process is done for both Train set and Test set.

Time Series Analysis: Stationarity Series

To model a time-series using ARMA model, we need to ensure the time-series is stationary, that is the the mean, variance and covariance does not vary with time.

Data Visualisation

The series does not have a specific trend expect for T with a seemingly inverse "U" shape. However, let us utilize the Dickey Fuller Statistical Test before jumping into the conclusion of stationarity.

Augmented Dickey Test

at Significant level, p=0.05 with, H_0 : Time-Series is Non-Stationary H_1 : Time-Series is Stationary

	Variable	P_Value	Stationary
0	Т	7.839651e-01	False
1	RH	5.004329e-04	True
2	CO	3.744836e-13	True
3	NMHC	4.124349e-03	True
4	NOx	1.459045e-03	True
5	O3	1.514280e-02	True

Time Series Analysis: ACF & PACF

After ensuring our time-series is stationary, ACF and PACF can be helpful for us to **visualising potential trend** as well as **interpret the initial orders** for my time series model.

Observation Summary

Gasses	AR (p lags)	MA (q lags)	Seasonal Trend (m)	Potential Initial Model
со	2	3	-	ARMA(2,3)
NMHC	2	2	Weak Trend every 7 Iteration	ARMA(2,2)/ SARIMA(2,0,2)(1,0, 4,7)
NOx	2	5	Weak Trend every 7 Iteration	ARMA(2,2)/ SARIMA(2,0,5)(1,0, 4,7)
О3	2	3	Weak Trend every 7 Iteration	ARMA(2,3)/ SARIMA(2,0,3)(0,0, 4,7)
CO (d=1)	5	3	Weak Seasonal Trend every 28 Iteration	ARIMA(5,1,3)/SARI MA(5,1,3)(1,1,2,28)
NMHC (d=1)	6	5	Weak Seasonal Trend every 7 Iteration	ARIMA(6,1,5)/ SARIMA(6,1,5)(3,1, 4,7)
NOx (d=1)	6	3	Weak Seasonal Trend every 21 Iteration	ARIMA(6,1,3)/ SARIMA(6,1,5)(2,1, 2,21)
O3 (d=1)	6	5	Weak Seasonal Trend every 21 Iteration	ARIMA(6,1,5)/SARI MA(6,1,5)(1,1,2,21)

Time Series Analysis: Sampling Techniques & Baseline Estimation

An unbiased model evaluation technique is crucial for us to understand the general potential of the model. One way to achieve it is through **training and evaluating the model multiple time each with different window of dataset**. This is where Expanding Window technique comes into play in addition to the **train set split** with test size of 63 observations.

Original article: https://eng.uber.com/omphalos/

Average Baseline Forecast

$$\hat{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

I will be using an <u>Average</u>
<u>Forecast</u> that <u>Predicts Current</u>
<u>Observation based on the Mean</u> of the historical data.

The performance will be **Evaluated Using the Same Expanding Window** techniques as mentioned above.

Time Series Analysis: ARIMA Forecast

Based on the interpreted model from PACF and ACF, I've build the initial ARMA model. However, I realise that it is just performing slightly better than the baseline average forecast for d=0.

Gasses	AR(p significant lags)	I(d integrate lags)	MA(q significant lags)	RMSE	AIC	Baseline
СО	3	1	4	130.167628	1603.053095	153.366220
NMHC	6	1	6	134.313186	1621.743978	146.519079
NOx	8	1	8	146.977765	1664.471816	183.332560
O3	7	1	7	242.780002	1795.741758	257.749546

	RMSE	AIC
CO (2, 0, 3)	150.163563	1622.959167
NMHC (2, 0, 2)	145.953269	1661.373538
NOx (2, 0, 5)	172.189272	1689.601666
O3 (2, 0, 3)	253.258412	1805.618220
CO (5, 1, 3)	130.520877	1609.662279
NMHC (6, 1, 5)	140.630756	1627.391221
NOx (6, 1, 3)	153.317551	1673.488005
O3 (6, 1, 5)	248.079196	1799.304067

Then, I explore ARIMA model further by Grid Searching the orders for my model. I will be fitting different model for each of the gasses and perform hyperparameter tuning independently, using the Expanding Window technique. I will be minimizing the Root Mean Squared Error(RMSE) and Aikeike Information Criteria(AIC) to ensures maximum likelihood and simpleness of my model.

Time Series Analysis: ARIMA Forecast

Based on the cross-validated result, it seems that ARIMA is able to **Perform** better than the Interpreted Value. Let us visualise the prediction by plotting it out.

By visualising the test set, I realise that the Univariate ARIMA Model is just oscillating with a specific trend around the average. Besides, I also realised that ARIMA Model works fine for NMHC and NOx however it seems to be underfitting for CO and O3.

Time Series Analysis: ARIMAX Forecast

Correlation Matrix

It seems that the Exogenous Variable (i.e. T, RH) has **moderate linear relationship** with our target variables which corroborate the notion of Multivariate Model.

Gasses	AR(p significant lags)	I(d integrate lags)	MA(q significant lags)	RMSE	AIC
СО	2	1	4	169.775843	1571.226480
NMHC	5	1	8	142.601644	1602.235755
NOx	7	1	7	155.411699	1649.813866
О3	7	0	8	262.8634024	1811.5783

From the cross-validated result as well as through visualizing the final test result, I have noticed that ARIMAX is much better at capturing the general trend of movement for the data than ARIMA model.

Besides, I also printed out the model summary and realise that the **coefficients are significantly different from zero**, implying that eXogenous variables is useful for our forecasting.

Т	16.0404
RH	3.9266

T	12.5272
RH	1.3188
Т	-12.2610

RH	-3.6351
Т	3.0492

	7	•	07	-
RH	6		61	6

Time Series Analysis: Seasonal ARIMAX

Seasonal ACF and PACF

By analysing the ACF and PACF of seasonal trend for multiples of 7, I can interpret the P and Q order for the Seasonal Component of ARIMA as documented below:

Gasses	d	m	Р	Q
СО	0	7	None	None
NMHC	0	7	1	4
NOx	0	7	1	4
O3	0	7	0	4
CO (d=1)	1	28	0	2
NMHC (d=1)	1	7	3	4
NOx (d=1)	1	21	2	2
O3 (d=1)	1	21	1	2

Time Series Analysis: SARIMAX Forecast

Based on the interpreted model from seasonal PACF and ACF, I have build the model as a comparison towards our cross-validated result.

	RMSE	AIC
NMHC: (2,0,2),(1,0,4,7)	173.150673	1625.627387
NOx: (2,0,5),(1,0,4,7)	235.109636	1709.281055
O3: (2,0,3),(0,0,4,7)	351.066904	1813.067125
CO: (5,1,3),(1,1,2,28)	186.473693	1292.835844
NMHC: (6,1,5),(3,1,4,7)	134.082659	1546.460306
NOx: (6,1,5),(2,1,2,21)	135.550182	1436.865677
O3: (6,1,5),(1,1,2,21)	239.958456	1542.921261

Gas	ARIMA Order	Seasona I Order	RMSE	AIC	Baseline
CO	(4,1,1)	(1,1,3,21)	125.195855	1358.510975	153.366220
NMHC	(4,1,3)	(3,1,1,7)	125.161663	1525.092355	146.519079
NOx	(2,1,4)	(1,1,2,21)	130.787961	1427.906009	183.332560
О3	(4,1,4)	(1,1,1,21)	234.168264	1536.897802	257.749546

From tobservation, it seems that all SARIMAX model is able to perform better than pure ARIMAX except for O3 gas. he SARIMAX Hence for the final submission, I will be using SARIMAX for all 3 other gases but ARIMAX with O3.

Kaggle Test Set Prediction

Visualise the Drifting

By visualizing the endogenous variable in my test set, I realise the same drifting event has occurred. Has I have cleaned the test set by the front-filling method.

Generate Final Prediction

Finallly,I have trained my final SARIMAX model based on the orders as shown in the table below for the final Kaggle Submission via Kaggle API. Before I submit the forecasted value, I have **padded the missing values with -200**.

Gasses	р	d	q	Р	D	Q	M	
СО	4	1	1	1	1	3	21	
NMHC	4	1	3	3	1	1	7	
NOx	2	1	4	1	1	2	21	
О3	7	0	9	0	0	0	0	

Thank You

Personal Learning Journey

This is the first time that I embarked on solving a time-series related project and given the limited time I have, the best I can do is just to interpret the ACF and PACF Plots, Tune a Simple ARIMA, ARIMAX and SARIMAX model and implement some cross-validation techniques like Expanding Window selection. I hope that I build a more robust model by utilising LSTM Networks (to maybe to predict some stock price next time).

CREDITS: This presentation template was created by Slidesgo, including icons by Faticon, and Infographics & images by Freepik

Please keep this slide for attribution