# Operációs rendszerek 1. – 7. előadás Külső készülékek kezelése - Biztonság

#### Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet

E-mail: soossandor@inf.nyme.hu



OPRE1 - 7 - Készülékek-Biztonság

### Tartalomjegyzék

- Ismétlés
  - Emlékeztető az előző órákról
- Külső készülékek és külső kapcsolatok
  - A számítógép belseje és a külvilág
  - Védelem és biztonság
- Befejezés
  - Emlékeztető kérdések



#### Hol tartunk?

- Ismétlés
  - Emlékeztető az előző órákról
- Külső készülékek és külső kapcsolatok
  - A számítógép belseje és a külvilág
  - Védelem és biztonság
- Befejezés
  - Emlékeztető kérdések



### Tárak, tárhierarchia, l

A tárak hierarchikus rendbe szervezettek:

| külső tárak, harmadlagos tárolók |  |  |  |  |  |
|----------------------------------|--|--|--|--|--|
| háttértárak, másodlagos tárolók  |  |  |  |  |  |
| operatív tár, memória            |  |  |  |  |  |
| a processzor regiszterei         |  |  |  |  |  |

- A tárak jellemzői hierarchia szintek szerint:
  - Minél magasabb szinten van egy tároló:
    - annál nagyobb méretű
    - annál lassabb működésű
    - annál nagyobb egységekben címezhető
    - annál hosszabb a tárolási idő





### Tárak, tárhierarchia, II

- Alapvető ellentmondás:
  - A különböző tárolási szintek hatékony kezelése a rendszer teljesítményének egyik kulcsa
  - A műveletek elvégzéséhez az adatoknak a processzor regisztereiben kell lenniük. (Miért?)
  - Az összes szükséges adat szinte soha nem fér el a regiszterekben, sokszor a memóriában sem, néha még a háttértárakon sem
  - A megoldás: az adatokat rendszeresen mozgatni kell a tárolási szintek között
  - Hogyan?
    - regiszterek ↔ memória: processzor
    - memória ↔ háttértár: fájlműveletek
    - háttértár ↔ külső tárak: felhasználói beavatkozás



### Tárak, tárhierarchia, III

- Adatok elérése, címzés a különböző tárolószinteken:
  - regiszterek: minden regiszternek külön neve van, bizonyos műveletek csak bizonyos regiszterekkel végezhetők el
  - memória: minden memóriarekesz külön-külön címezhető
  - háttértár: fájlonként, azon belül rekordonként, blokkonként címezhető
  - külső tár: médiánként címezhető, melyik CD/DVD lemezen, szalagon található a keresett adat
- Az adatok mozgatása kétféleképpen történhet:
  - Explicit: (világosan kifejezett) pl. egy utasítással betöltünk egy fáilt a memóriába
  - Implicit: (rejtett, közvetett) a rendszer végzi a háttérben a kényelem fokozása, vagy a hatékonyság növelése érdekében



### Tárak, tárhierarchia, IV

- A rejtett adatmozgatás tipikus fajtái:
  - Virtualizálás
    - Az alacsonyabb szinten lévő tár címzési módját kiterjesztjük a magasabb szintre
    - Ezzel megnöveljük az alacsonyabb szintű tár méretét (látszólag), de lassabban működik
    - Példa: virtuális memória, lemezen tárolódik, de memória módjára kezeljük, nem fájlként
  - Gyorsítótár (cache)
    - Magasabb szintű elérési módon kezelünk egy alacsonyabb szintű tárat
    - Sokkal gyorsabb
    - De a mérete sokkal kisebb, mint a szimulált tár szokásos mérete
    - Kulcsfontosságú az adatmozgatás szervezése



### Tárak, tárhierarchia, V

- Lokalitási elv: ha egy adatra szükség van, akkor nagy valószínűséggel a környezetében lévő adatokra is szükség lesz
- Ezt használjuk ki a gyorsítótárak adatokkal való feltöltésekor
- Megfelelő adatcserélési algoritmusokkal és a gyorsítótárak megfelelő méretezésével 80 – 99%-os találati arány is elérhető
- Jellegzetes gyorsítótárak:
  - Processzorba épített hardver-gyorsítótárak (utasítás- és adatcache), a memóriában lévő adatok aktuális részét teszik gyorsabban elérhetővé a processzor számára
  - A memóriában kialakított átmeneti tárterületek (buffer-cache) az éppen használatban lévő fájlok adatai egy részének tárolására
  - Memóriában kialakított virtuális diszk (RAM-diszk, elektronikus diszk)
  - A harmadlagos tárak fájlrendszereit tároló mágneslemez területek



### Tárak, tárhierarchia, VI

- Mire kell vigyázni a virtuális tárakkal kapcsolatban?
  - Mi történik, ha szabálytalanul állítjuk le az operációs rendszert?
  - A memóriában lévő adatok váratlanul elvesznek
  - A rejtett adatmozgatások félbeszakadnak
  - A háttértárakon lévő adatok inkonzisztens állapotban maradnak
  - A mágneslemezeken lévő adatokat nem tudjuk elérni a hagyományos eszközökkel, ha azok adminisztrációja nem hibátlan



### Tárak, tárhierarchia, VII

- Hogyan tudunk védekezni az ilyen hibák ellen?
  - Szünetmentes tápegység, akkumulátoros táplálás, notebook
  - Vigyázat! Nem csak áramszünet miatt állhat le szabálytalanul az operációs rendszer!
  - Biztonságos szoftvermegoldások (pl. naplózó fájlrendszer, minden végrehajtott műveletet naplóz a rendszer, így rendszerhiba esetén visszaállítható a korábbi állapot



#### Háttértárak kezelése

- A memória tartalma addig él, amíg a számítógép működik
- A folyamat szempontjából a memóriában lévő adatok addig élnek, amíg a folyamat fut
- Ha valamilyen adatot meg akar őrizni, akkor háttértárra kell menteni
- A háttértárra írandó adatokat fájlokba kell szervezni
- A felhasználó szempontjából az operációs rendszer legfontosabb feladata a fájlok kezelése (DOS-Disk Operating System)



### Fájlkezelés

- A másodlagos és harmadlagos tárolókon csak fájlokban lehet adatokat tárolni
- A fájlok kezelése az operációs rendszer feladata
- Két szint:
  - A fájlok, mint tárolási egységek kezelése (egyben)
    - Fájlnév
    - Hierarchikus könyvtárszerkezet
    - Egy, vagy több gyökér (root)
    - Katalógusfájl (directory)
    - Kötetek (volume)
    - Mount
    - A fájl azonosítása: elérési út + fájlnév
  - A fájlokban lévő adatok kezelése
    - Fájlmodellek
    - Fájlműveletek



### Fájlmodellek

- A fájlban lévő adatok elérésére háromféle fájlmodell használatos:
  - Soros elérésű (szekvenciális, sequential) fájl
    - mint a mágnesszalag
    - csak sorban lehet írni és olvasni
    - fáj|pointer
  - Ø Közvetlen elérésű (direct) fájl
    - bármelyik adatelem bájt, vagy rekord elérhető a sorszáma alapján
  - Indexelt, index-szekvenciális elérésű (index sequential access method, ISAM) fájl
    - adatrekordok, adatmezők
    - kulcsmező(k) alapján lehet elérni az adatokat
    - indextábla, indexfájl, rendezett kulcsok, mutató az adatra
    - adatbázis



### Fájlműveletek

- Megnyitás (open)
- 2 Lezárás (close)
- Végrehajtás (execution)
- Létrehozás (create)
- Törlés (delete)
- Adatelérés, írás, olvasás (write, read)
- Hozzáírás, hozzáfűzés (append)
- Pozícionálás (seek)



# Ismétlés vége



#### Hol tartunk?

- Ismétlés
  - Emlékeztető az előző órákról.
- Külső készülékek és külső kapcsolatok
  - A számítógép belseje és a külvilág
  - Védelem és biztonság
- Befejezés
  - Emlékeztető kérdések



# A számítógép belseje és a külvilág, l

- Eddig a virtuális gépek olyan objektumaival foglalkoztunk, amelyek a számítógép belsejében találhatók:
  - processzor
  - folyamatok
  - tárak
- Most nézzük, hogyan kapcsolódik a számítógép a külvilághoz!
- Ezeket az eszközöket összefoglaló szóval perifériának nevezzük:
- A határvonal nem éles, pl. a külső tárakat is szoktuk perifériának nevezni
- Nagyon sokféle periféria létezik és ezek száma folyamatosan nő
- Ahhoz, hogy az operációs rendszerek használni tudják ezeket, minden eszközzel nagyobbá és bonyolultabbá kellene válniuk



# A számítógép belseje és a külvilág, II

- Hogy ezt elkerüljük, szabványos módszereket alakítunk ki a perifériák kezelésére
- Két fő típus: (igazából nagyon hasonlítanak egymásra)
  - Fájl
    - Mindent fájlként kezelünk, amibe lehet írni és lehet belőle olvasni
    - Az eszközöket különböző fájlműveletekkel kezeljük: megnyitás, lezárás, írás, olvasás, léptetés, stb.
    - Ilyen eszközök például: képernyő, nyomtató, terminál
    - A fájlműveletek implementálásakor vesszük figyelembe az egyéni részleteket



# A számítógép belseje és a külvilág, III

- Logikai periféria
  - Absztrakt (virtuális) bemeneti/kimeneti (B/K, I/O) eszköz
  - A programozónak nem kell foglalkoznia azzal, hogy milyen valóságos eszköz van a logikai periféria mögött
  - Ezt nevezzük készülékfüggetlen programozásnak
  - A program futtatásakor az operációs rendszer majd hozzárendel valamilyen fizikai eszközt minden logikai perifériához
  - A fizikai eszköz gyártója ír egy eszközmeghajtó programot (device driver), ami ténylegesen megvalósítja a logikai műveleteket



### Hálózati kapcsolatok kezelése, l

- Speciális eset az, amikor a számítógéphez csatlakozó külső eszköz maga is egy számítógép
- Ennek megvalósítására speciális eszközöket építünk a számítógépekbe (hálózati csatoló - network adapter). Ez a fizikai eszköz
- Logikai szinten (szoftveresen) logikai csatlakozókat (socket) hoz létre az operációs rendszer
- Ha összekapcsoljuk két különböző számítógép socketjeit, akkor ezen a kapcsolaton keresztül kommunikálhat egymással a két számítógép
- Ezután egyszerűen fájl típusú perifériaként kezeljük a kapcsolatot



### Hálózati kapcsolatok kezelése, II

 Egyre közelít egymáshoz a két számítógép és a két folyamat közötti kommunikáció módja, működhetnek üzenetsorok, csővezetékek, különböző pufferek két távoli számítógép között



#### Hol tartunk?

- Ismétlés
  - Emlékeztető az előző órákról.
- Külső készülékek és külső kapcsolatok
  - A számítógép belseje és a külvilág
  - Védelem és biztonság
- Befejezés
  - Emlékeztető kérdések



### Védelem és biztonság, l

- Amíg egy számítógépet csak egy felhasználó használ és nem kapcsoljuk össze a külvilággal, addig a védelem és a biztonság kérdése nem játszik nagy szerepet
- Amikor egy számítógépet egynél több felhasználó használ, vagy összekapcsoljuk azt a külvilággal, akkor feltétlenül védelmezni kell belülről és kívülről egyaránt



## Védelem és biztonság, II

- Definíciók:
  - Védelem:
    - Védelemnek nevezzük eljárásoknak és módszereknek azon rendszerét, mely lehetőséget teremt a számítógép erőforrásainak programok, folyamatok, illetve felhasználók által történő elérésének szabályozására
    - A rendszer belső objektumaival foglalkozik
  - ② Biztonság:
    - A rendszer biztonsága annak a mértéke, hogy mennyire lehetünk bizonyosak a számítógépes rendszer, illetve a rendszerben tárolt adatok sérthetetlenségében
    - A rendszer külvilággal való kapcsolatával foglalkozik



OPRE1 - 7 - Készülékek-Biztonság

### Védelem, l

- Tehát védelemnek fogjuk nevezni a rendszer biztonságának azt a részterületét, ami azzal foglalkozik, hogy a rendszerben legálisan jelenlévő objektumok milyen módon férhetnek hozzá egymáshoz
- Például:
  - Milyen fájlokhoz férhet hozzá egy felhasználó?
  - Milyen memóriaterületet írhat/olvashat egy folyamat?



#### Védelem, II

#### Rendszermodell

- A rendszer különböző objektumok halmaza (hardver-szoftver eszközök, fájlok, processzorok, szemaforok, várakozási sorok, adatszerkezetek, nyomtatók, tárolók, stb.)
- Az objektumokat valamilyen módon tudjuk azonosítani, névvel, számmal, . . .
- Az objektumok a típusuktól függően különböző műveletekkel rendelkeznek, ezekkel kezelhetők
- A folyamatok ilyen műveletek sorozatai
- (Lásd később Objektum-orientált programozás, OOP!)
- Minden művelethez rendelhetünk jogosultsági előírásokat
- A műveletet csak az végezheti el, aki rendelkezik a szükséges jogosultságokkal

### Védelem, III

- Hogyan szervezzük meg a védelmet?
- Ideális helyzet, legbiztonságosabb
  - Minden folyamat minden pillanatban csak azokat a jogosítványokat birtokolja, amelyekre szüksége van a következő művelet végrehajtásához
- Miért jó ez?
  - Központilag szabályozzuk a jogosultságokat (odaadjuk-elvesszük)
  - Mindig lehet tudni, hogy ki-mit képes megcsinálni
  - ⊕ Könnyen visszakereshető a "tettes"
  - Csökkentjük a véletlen hibázás esélyét
- Miért nem jó ez?
  - Óriási adminisztratív terhelést okoz
  - Gyakorlatban megvalósíthatatlan
  - → Csak nagyon speciális rendszerekben képzelhető el



### Védelmi tartomány, l

- A megoldás: Védelmi tartományok kialakítása
- Védelmi tartomány:
  - Objektumokon végrehajtható műveletekre szóló jogosítványok gyűjteménye
  - Tartalmazhat egy adott objektumon végezhető különböző műveleteket
  - Tartalmazhat különböző objektumokat is rajtuk végezhető műveletekkel
  - Egy-egy objektum-művelet páros több tartományban is szerepelhet
  - A védelmi tartomány lehet statikus, vagy dinamikus

Statikus: egy folyamat futása alatt végig ugyanabban a tartományban marad

Dinamikus: a folyamat tartományt válthat a futása során



### Védelmi tartomány, II

- A védelmi tartományokat egy elérési mátrixban definiálhatjuk
- Lássunk egy-egy példát egy statikus és egy dinamikus tartományokat leíró elérési táblázatra!



## Védelmi tartomány, III,

#### Elérési mátrix statikus védelmi tartományokkal

|             |   | objektumok    |         |               |           |  |  |
|-------------|---|---------------|---------|---------------|-----------|--|--|
|             |   | adat.txt      | doc.doc | help.bat      | nyomtató  |  |  |
| tartományok | A | olvasás       |         | olvasás       |           |  |  |
|             | В |               |         |               | nyomtatás |  |  |
|             | С |               | olvasás | végrehajtás   |           |  |  |
|             | D | olvasás, írás |         | olvasás, írás |           |  |  |



## Védelmi tartomány, IV

#### Elérési mátrix dinamikus védelmi tartományokkal

|             |   | objektumok      |         |                  | tartományok    |        |        |        |        |
|-------------|---|-----------------|---------|------------------|----------------|--------|--------|--------|--------|
|             |   | adat.txt        | doc.doc | help.bat         | printer        | A      | В      | С      | D      |
| tartományok | Α | olvasás         |         | olvasás          |                |        | váltás |        |        |
|             | В |                 |         |                  | nyomta-<br>tas |        |        | váltás | váltás |
|             | С |                 | olvasás | yégre-<br>hajtás |                |        |        |        |        |
|             | D | olyasás<br>írás |         | olyasás<br>írás  |                | váltás |        |        |        |



OPRE1 - 7 - Készülékek-Biztonság

### Védelmi tartomány, V

- A védelmi tartományok használata
  - A folyamat elinduláskor besoroljuk azt valamelyik védelmi tartományba
  - Ez meghatározza, hogy mit tehet meg a folyamat és mit nem
  - Ha dinamikus tartományokat használ a rendszer, akkor a folyamat megteheti, hogy átvált egy másik engedélyezett tartományba



## Biztonság, I

- Eddig a védelemmel foglalkoztunk, ami a rendszer belső problémája volt, most áttérünk a rendszer külső védelmére, ezt nevezzük biztonságnak
  - Egy számítógépes rendszer biztonsága, annak a bizonyosságnak mértéke, hogy a rendszer, illetve a rendszerben tárolt információ nem sérülhet meg, vagy illetéktelenül nem kerülhet ki a rendszerből
- A védelem keretében alapvetően véletlen problémák, programhibák, programok káros mellékhatásai ellen védekezik a rendszer
- Ezzel szemben a biztonság érdekében fel kell készülnünk a szándékos és rosszindulatú támadásokra is
- Megvalósítható-e tökéletesen biztonságos rendszer?

## Biztonság, II

- Nincsen abszolút biztonságos rendszer
- Csak relatívan lehet vizsgálni a kérdést
- Legyen "drágább" a támadás, mint az elérhető haszon
- Ha egyszerűen pénzről lenne szó, akkor ez könnyen mérhető lenne, de
  - mennyibe kerül az adat?
  - mennyibe kerül egy adat illetéktelen megváltoztatása?
  - mennyi kárt okoz egy adat illetéktelen megszerzése, és/vagy eltüntetése?
- Ezeket a kérdéseket kell mérlegelni és megválaszolni a biztonsági rendszer megtervezésekor



OPRE1 - 7 - Készülékek-Biztonság

## Biztonság, III

- Csak úgy lehet elérni a kívánt biztonságot, ha teljes rendszert építünk ki
  - Nem tekinthetünk biztonságosnak egy rendszert, ha informatikailag mindent megtettünk a védelem érdekében, de a nyilvános folyosón áll a szerver, ahol bárki elviheti
- A sérülések oka lehet:
  - véletlen
  - szándékos
    - adatok illetéktelen olvasása
    - adatok illetéktelen módosítása
    - adatok tönkretétele



OPRE1 - 7 - Készülékek-Biztonság

### Felhasználók azonosítása

- A rendszerhez való jogosulatlan hozzáférés megakadályozásának első lépése a felhasználók azonosítása
- Három módszer:
  - a felhasználó azonosítása személyes tulajdonságai alapján: ujjlenyomat, retinamintázat, aláírás, stb. (Biometrikus azonosítás)
  - 2 a felhasználó azonosítása a birtokában lévő tárgyak alapján: kulcs, azonosító kártya, stb.
  - a felhasználó azonosítása csak általa ismert információ alapján: név, jelszó, esetleg algoritmus
- Az 1. és 2. kategória esetén szükség van speciális perifériákra
- A legelterjedtebb módszer a jelszavas azonosítás





#### Jelszavas azonosítás

- Nem igényel speciális eszközt
- Veszélyek:
  - a jelszó megfejtése, kitalálása
  - a jelszó ellopása, lehallgatása
- Védekezés a jelszófejtés ellen:
  - Nehezen kitalálható jelszó választása
  - Megfelelő hosszúságú jelszavak
  - A jelszavak gyakori cseréje
  - Hiba esetén lassítás, letiltás
- Védekezés a jelszólopás ellen
  - Nem jelenik meg a jelszó a képernyőn
  - Csak titkosított csatornán engedünk bejelentkezést
  - A jelszót egyirányú kódolással tároljuk
  - A kódolt jelszavakat is csak a rendszergazda olvashatja
  - Ne írjuk fel a jelszót!
  - Jelszó helyett algoritmikus azonosítás ( ) ( ) ( ) ( )



### Külső támadások, I

- Fajtái:
  - Vírusok, férgek
  - Szolgáltatásbénítás (DoS)
  - Betörés (hacker, cracker)
- Férgek:
  - önálló életre képes, és magától terjed
  - nem kell hozzá hordozó program
- Vírusok:
  - hordozó programra van szüksége
  - azt megfertőzve terjed
- Védekezés:
  - Tűzfal



### Külső támadások, II

- Állandóan futó, rendszeresen frissített vírusvédelmi program
- Szolgáltatásbénítás
  - Denial of Service
  - Olyan mennyiségű kérést intézünk a szerverhez, amennyit nem tud kiszolgálni
- Hacker
  - nem ártó szándékú, feltöri a gépet és értesíti a rendszergazdát
- Cracker
  - Rossz szándékú



### Külső támadások, III

- Védekezés
  - Tűzfal
  - Biztonsági frissítések rendszeres telepítése
  - Friss alkalmazások használata
  - Körültekintő konfigurálás
    - Csak a szükséges programok fussanak
    - Csak a szükséges dolgokat érjék el a felhasználók
  - A rendszer állandó figyelése, naplózása
  - Gyanú esetén riasztás



### Külső támadások, IV

- Tűzfal (firewall)
  - Eredetileg olyan házfal, amin nincs ablak, ezért lassabban terjed át rajta a tűz
  - Az informatikában olyan (biztonságos) gép, vagy program, amin a védett gép vagy hálózat forgalma áthalad, és csak azok a csomagok mehetnek rajta keresztül, amelyeket kimondottan megengedünk
  - A gyakorlatban ez leggyakrabban azt jelenti, hogy portszintű szűrést végzünk a forráscím (és a célcím) ill. további feltételek vizsgálata alapján
  - Ma már elengedhetetlen minden számítógépen



#### Hol tartunk?

- Ismétlés
  - Emlékeztető az előző órákról.
- Külső készülékek és külső kapcsolatok
  - A számítógép belseje és a külvilág
  - Védelem és biztonság
- Befejezés
  - Emlékeztető kérdések



#### Emlékeztető kérdések

- Milyen módokon kezelhetjük egységes formában a különböző perifériákat?
- 4 Hogyan kezeli az operációs rendszer a hálózati kapcsolatokat?
- Mit nevezünk "Védelem"-nek ebben az összefüggésben?
- Mit nevezünk "Biztonság"-nak ebben az összefüggésben?
- Hogyan szervezzük meg a rendszer védelmét?
- Mit nevezünk védelmi tartománynak? Hogyan lehet definiálni, dokumentálni? Milyen fajtái vannak?
- Milyen lehetőségek vannak a felhasználók azonosítására?
- Mire kell figyelni a jelszavas védelem kialakításakor?
- Milyen külső támadásokra kell felkészülni a rendszer tervezésekor?
- Hogyan védekezhetünk ezek ellen?



### Befejezés

Köszönöm a figyelmet!

