Abstract algebra I Homework 2

B13902022 賴昱錡

Due: 24th September 2025

1)

(a)

Take the sum of 14 and 13, and it's 27 modulo 30, $27 \notin G_1$ thus, G_1 is not a subgroup of G.

(b)

We can show that the subset G_2 is a subgroup of G by showing G_2 is non-empty and closed under addition (+) and inverses:

- The identity element of G_2 is 0, since the result of g + 0 = 0 + g = g modulo 30 is unchanged.
- $0+0 \equiv 0 \pmod{30}$, thus, $g^{-1}=0$ when g=0. All the other non-zero elements $\in G_2$ can be written as the form $2k, k \in [1, 14], k \in \mathbb{N}$. Assume g=2k, then there must exists an element $h=2(15-k) \in G_2$ such that $g+k \equiv 0 \pmod{30}$. Thus, every element in G_2 has an inverse element in G_2 .
- Take the sum of any two elements $x, y \in G_2$. Their sum is even, and the result modulo 30 must be a even number less than 30, which implies $x + y \in G_2$. Thus, G_2 is closed under addition.

(c)

Take the sum of 1 and 29, and it's 0 modulo 30, $0 \notin G_3$ thus, G_3 is not a subgroup of G.

2)

(i)

Proof. Since H is not empty, we can choose $x, y \in G$.

By the closedness of inverse, the inverse of x exists and belongs to the H, let $y = x^{-1}$.

By the closedness of *, $x * x^{-1} = e \in H$, where e is the identity element of H. Thus, the identity of H exists.

Since H is closed under products, and inverse for each element exists, and the identity for H exists. It's a group and $H \subset G$, so H is a subgroup of G.

(ii)

For simplicity, I denote the determinant of a n by n matrix A as |A|.

Since the determinant of an identity matrix I_n is 1, $SL_n(\mathbb{R}) \neq \emptyset$.

For any matrices $a, b \in SL_n(\mathbb{R})$, suppose c = ab, then c must be a real matrix (all entries are real), also, |c| = |a||b| = 1 * 1 = 1, the determinant of c is also 1. Thus, $c \in SL_n(\mathbb{R})$. Here proves the closedness of matrix multiplication.

Claim 1: Real $n \times n$ matrix A is invertible if and only if $|A| \neq 0$

Proof. Suppose A is invertible, then there exists a matrix B such that AB = I. |I| = |A||B| = 1, |A| can't be zero.

Assume $|A| \neq 0$, then $B = \frac{1}{|A|} \operatorname{adj}(A)$ (B is also a real $n \times n$ matrix) satisfies AB = BA = I where $\operatorname{adj}(A)$ is the classical adjoint matrix of A and I is the identity matrix.

Thus, $|A| \neq 0$ is necessary and sufficient.

By claim 1, every element in $SL_n(\mathbb{R})$ has its inverse due to their non-zero determinant. Suppose A is any matrix in $SL_n(\mathbb{R})$, and its inverse is A^{-1} , then $AA^{-1} = A^{-1}A = I$, $|A||A^{-1}| = |I| = 1$, thus, $|A^{-1}| = 1$.

Hence, the inverse of A, i.e., A^{-1} is also in $SL_n(\mathbb{R})$. Here the closedness of inverse is proved. By the subgroup criterion proved in 2(i), $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$. 3)

(a)

First, we need to prove that the set S_n has n! elements.

Proof. Let's call the two sets A and B. $A = \{1, 2, ..., n\}, B = \{1, 2, ..., n\}$. And A is mapped to B.

Since the map is bijective, for 1 in A, there are n choices to be mapped, after 1 is mapped, 2 in A has n-1 choices to be mapped, and so on.

Thus, there are
$$n(n-1)(n-1)\dots 1=n!$$
 types of bijection.

Then we need to show that S_n is a group (there the operation is the composition of two bijective functions)

Proof. For the closedness, if $f, g \in S_n$, then their composition (written as $(f \circ g)(x) = f(g(x))$) is also bijective trivially. Thus, $f \circ g \in S_n$.

For the associativity, suppose we have three bijections $f, g, h \in S_n$, take any integer $x \in 1, 2, ..., n$. Then $f \circ (g \circ h)(x) = f \circ g(h(x)) = f(g(h(x)))$ and $(f \circ g) \circ h(x) = (f \circ g)(h(x)) = f(g(h(x)))$. The composition of bijections are associative.

The identity element in S_n is the mapping id where id maps i to i for all $i \in 1, 2, ..., n$, such that for every element τ in S_n , we have id $\circ \tau(x) = \tau \circ id(x)$, where $x \in \{1, 2, ..., n\}$.

Since every element in S_n is a bijective mapping, by definition, we must can find an inverse operation/element for every element in S_n .

In conclusion, S_n is a group with order n!.

(b)

Let's call the subset H ($H \subset S_2$). Obviously the H is not empty. For compositions of any $\tau, \sigma \in H$, we have a bijection fixing 1 again, thus, H is closed under the composition.

Since every bijection has its inverse operation, also, $\forall \sigma \in H$, 1 is fixed (always mapped to 1), σ^{-1} is also a bijection fixing 1, which implies $\sigma^{-1} \in H$. Thus, H is closed under taking inverses.

Hence, by the subgroup criterion proved in 2(i), the given subset is a subgroup of S_4 .

Since the subset is the collection of bijections fixing 1, the bijective mapping $\{2,3,4\} \rightarrow \{2,3,4\}$ have 3! possibilities by the proposition in 3(a). Hence, the order of the group is 6.

(c)

The identity element in the group for matrices multiplication is the identity matrix $I_{2\times 2}$.

For
$$a$$
, $a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $a^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $a^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $a^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2\times 2}$. Thus, $o(a) = 4$. For b , $b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, $b^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $b^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2\times 2}$, thus, $o(b) = 3$.

4)

For simplicity, for a generator c of a cyclic group, the order of it I may type it as |x| or o(x), so are the order of groups. And the greatest common divisor of two positive integer a, b is denoted as (a, b) or gcd(a, b).

(a)

Theorem 1. Bézout's identity

Let $a, b \in \mathbb{Z}, ab \neq 0$

 $d = \gcd(a, b)$ be the greatest common divisor of a and b.

Then $\exists x, y \in \mathbb{Z}$ such that ax + by = d. Also, d is the smallest positive integer combination of a and b.

Proof. Given any two non-zero integer a, b, Let set $S = \{ax + by : x, y \in \mathbb{Z} \land ax + by > 0\}$

It's trivial that S is not an empty set (For example, a > 0, x = 1, y = 0 or a < 0, x = 1, y = 0, $ax + by \in S$, thus, S is not an empty set). Since all elements in S are positive integers, by well ordering principle, S contains a least element d. And write it as the form d = au + bv, where u and v are integers.

Consider a's euclidean division: $a = qd + r, q \in \mathbb{Z}, 0 \le r < d$, we have:

$$r = a - qd = a - q(au + bv) = a(1 - qu) - bqv$$

Because both 1 - qu and qv are integers, $r \in S \cup \{0\}$ (because $0 \le r < d$). Also, d is the least element in S, this implies that r is not belonging to S, it must be 0. Thus, d|a. Similarly, d|b.

Consider arbitrary common divisor c of $a, b, \exists s, t$ such that a = cs, b = ct. So, d = au + bv = c(us + vt), because $us + vt \in \mathbb{Z}$, we know $c|d \wedge c \leq d$.

Since d is greater than all divisors, $d = \gcd(a, b)$, it's also the least element in S by previous definition.

Claim 2: If x is the generator of cyclic group H, then the order of H is the same as x (If one side of this equality is infinite, so is the other).

Proof. Let |x| = n and first consider the case when $n < \infty$. The elements $1, x, x^2, \ldots, x^{n-1}$ are distinct since if $x^a = x^b, 0 \le a < b < n$ then $x^{b-a} = 1$, which contradict n being the smallest positive power give the identity. Also, we can write any integer power t as the form $t = ns + r, 0 \le r < n$. Hence, $x^t = x^{ns+r} = (x^n)^s x^r = x^r \in \{1, x, \ldots, x^{n-1}\}$, x can generate all elements in H.

Suppose $|x| = \infty$ so no power of x is the identity, If $x^a = x^b$ for some a and b, with a < b, then $x^{b-a} = 1$ induced a contradiction. Distinct power of x are distinct elements of |H|, so $|H| = \infty$ is true.

Claim 3: Let G be an arbitrary group, $x \in G$ and let $m, n, n\mathbb{Z}$. If $x^n = 1$ and $x^m = 1$, then $x^d = 1$, where d = (m, n) In particular, if $x^m = 1$ for some $m \in \mathbb{Z}$, then |x| divides m.

Proof. By Theorem 1 there exists integers a and b such that d = an + bm, d = (m, n). Thus, $x^d = x^{an+bm} = (x^n)^a (x^m)^b = 1$, this proves the first assertion.

If $x^m = 1$, let n = |x|. If m = 0, n|m is trivially true. Assume m is not zero, by preceding result, $x^d = 1$, d = (m, n). Since $0 < d \le n$ and n is the smallest positive power of x which gives the identity, we must have d = n, that is n|m as the claim said.

Claim 4: Let G be a group, let $x \in G$ and let $a \in \mathbb{Z} - \{0\}$, if $o(x) = n < \infty$, then $o(x^a) = \frac{n}{(n,a)}$.

Proof. Let $y = x^a$, (n, a) = d and write n = db, a = dc for suitable $b, c \in \mathbb{Z}$, b > 0. Since d is the greatest common divisor, b and c are coprime, i.e., (b, c) = 1

Note that $y^b = x^{ab} = x^{bdc} = (x^n)^c = 1$. By Claim 3 applied to $\langle y \rangle$, we have |y||b, Let k = |y|. Then $x^{ak} = y^k = 1$.

By Claim 3 applied to $\langle x \rangle$, n|ak,i.e.,db|dck, thus b|ck. Since (b,c)=1, b|k. Since b and |y| divides each other, we have |y|=o(y)=b,i.e, $o(x^a)=\frac{n}{(n,a)}$.

Claim 5: Let $H = \langle x \rangle$. Assume $o(x) = n < \infty$. Then $H = \langle x^a \rangle$ if and only if (a, n) = 1.

Proof. If $|x| = n < \infty$. Claim 2 says x^a generates a subgroup of H of order $|x^a|$. The subgroup equals |H| only when $|x| = |x^a|$. By Claim 4, $|x^a| = |x|$ if and only if $\frac{n}{(a,n)} = n$, i.e., (n,a) = 1.

What we wants to prove is (k, n) = 1 is sufficient and necessary for g^k being a generator of G.

For the sufficiency of (k,n)=1, by Theorem 1, there must exists $a,b \in \mathbb{Z}$ such that an+bk=1. Since, an+bk=1, bk=-an+1 and (bt)k=-(at)n+t. We have $g^{(bt)k}=g^{-(at)n}g^t$, and $(g^k)^{bt}=g^t$. For integer $t \in [1,n]$, g^k can generate the group $\{1,g,g^2,\ldots,g^{n-1}\}$.

Claim 5 already proves the necessity. Hence, if g is a generator of G, then g^k is a generator of G iff (n, k) = 1.

(b)

Claim 6: Every subgroup of H is cyclic. More precisely, if $K \leq H$, then either $K = \{1\}$ or $K = \langle x^d \rangle$, where d is the smallest positive integer such that $x^d \in K$.

Proof. Let $K \leq H$. If $K = \{1\}$, the claim is true for the subgroup. Assume $K \neq \{1\}$. Thus $\exists a \neq 0$ such that $x^a \in K$. Since K is a group, $x^{-a} = (x^a)^{-1} \in K$, K always contains some positive power of x. Define P as:

$$P = \{b | b \in \mathbb{Z}^+ \text{ and } x^b \in K\}$$

By proposition above, P is obviously a nonempty set of positive integers. Also by well ordering principle, P has a minimum element d. Because K is a subgroup and $x^d \in K$, cyclic group $\langle x^d \rangle \leq K$. All elements in K have the form x^a for some integers a, we can written it as a = qd + r where $0 \leq r < d$.

Then $x^r = x^a(x^d)^{-q} \in K$ since bot x^a and x^d are in K. The only possibility of r is zero since d is the minimum element of P. Thus, $x^a = (x^d)^q \in \langle x^d \rangle$. We now have $K \leq \langle x^d \rangle$.

Hence, $K = \langle x^d \rangle$ and the claim is proved.

Let $d = \frac{n}{m}$ and apply claim 4, we obtain that $\langle x^d \rangle$ is a subgroup of order m, which proves the existence of a subgroup of order m.

Suppose K is any subgroup of G of order m. By claim 6 we have $K = \langle x^b \rangle$ where b is the smallest positive integer such that $x^b \in K$.

By claim 4:

$$\frac{n}{d} = m = |K| = |x^b| = \frac{n}{\gcd(n, b)}$$

Hence, d = (n, b), and d|b. Since b is a multiple of d, $x^b \in \langle x^d \rangle$. So $K = \langle x^b \rangle \leq \langle x^d \rangle$. Since $|\langle x^d \rangle| = m = |K|$ we have $K = \langle x^d \rangle$. Here proves the uniqueness of subgroup with order m.

(c)

 $S_3 = \{id, (12), (13), (23), (123), (132)\}$ where id is the identity element, and (12), (13), (23) are the transposition between 1 and 2, 1 and 3, 2 and 3. (123) is the rotation, i.e., 1 goes to 2, 2 goes to 3. (132) is the rotation, i.e., 1 goes to 3, 3 goes to 2.

Assume S_3 to be a cyclic group of order 6, then by claim 2, the order of S_3 's generator is also 6.

|id| = 1, |(12)| = 2, |(13)| = 2, |(23)| = 2, |(123)| = 3, |(132)| = 3, there's no element with order 6, which contradicts our previous assumption. Hence, S_3 is not a cyclic group!

5)

(a)

Proof. First we need to prove that the operation is well-defined, i.e., the choice of reprentatives doesn't affect results. Suppose xN = aN, yN = bN for some $x, y, a, b \in G$, then by the property of a normal subgroup we have:

$$(a * b)N = a(bN) = a(yN) = a(Ny) = (aN)y = (xN)y = x(Ny) = x(yN) = (x * y)N$$

 $(aN) \cdot (bN) = (xN) \cdot (yN)$

Hence, the well-definedness of the operation is proved.

Suppose $g_1, g_2 \in G$ (they are chose arbitrarily). Then since $g_1 * g_2 \in G$, $(g_1 * g_2)N$ is also the left coset of N in G, so $g_1N \cdot g_2N = (g_1 * g_2)N \in G/N$. The closedness under the operation is proved.

Suppose $g_1, g_2, g_2 \in G$ (they are chose arbitrarily). Then $((g_1N \cdot g_2N) \cdot g_3N) = (g_1 * g_2)N \cdot g_3N = ((g_1 * g_2) * g_3)N = (g_1 * (g_2 * g_3))N = g_1N \cdot (g_2 * g_3)N = g_1N \cdot (g_2N \cdot g_3N)$. There the associativity of G/N is proved.

For every element in G/N, eN = N is the identity where e is the identity element of G, since for any $g \in G$, $eN \cdot gN = (e * g)N = (g * e)N = gN \cdot eN = gN$. Thus, the identity of G/N exists.

For every element in G, there exists inverse of it. Hence, for any $g \in G$, $g^{-1}N \cdot gN = (g^{-1} * g) = (g^{-1} * g)N = g^{-1}N \cdot gN = eN = N$, also $g^{-1}N \in G/N$, so $g^{-1}N$ is the inverse of gN. Thus, G/N is closed under taking inverse.

From the propositions above, we know G/N is a group under the operation given by $g_1N \cdot g_2N = (g_1 * g_2)N$.

(b)

Choose g = (13), then $gH = \{(13), (132)\}$ and $Hg = \{(13), (123)\}$. Since $gH \neq Hg$, H is not a normal subgroup of S_3 .

Here, the multiplication/composition like $\tau \sigma, \tau, \sigma \in H$, means doing σ first, then doing τ .

(c)

Since elements in the abelian group (G,*) are commutative, i.e., for any $a,b\in G$, we have a*b=b*a.

Let's choose one arbitrarity elements $g \in G$, consider the subgroup as $B = \{a_1, a_2, \dots, a_m\}$. Then $gB = \{g * a_1, g * a_2, \dots, g * a_m\}$, and $Bg = \{a_1 * g, a_2 * g, \dots, a_m * g\}$. since $g * a_i = a_i * g$ for all i, we have gB = Bg.

Hence, by the definition, every subgroup of an abelian group is normal.

(d)

One example is the quaternion group Q, Q = 1, i, j, k, -1, -i, -j, -k, where 1 is the identity element, $(-1)^2 = 1$ and all the other elements are square root of -1, such that $i^2 = j^2 = k^2 = ijk = -1$, (-1)i = -i, (-1)j = -j, (-1)k = -k, and ij = k, ji = -k, jk = i, kj = -i, ki = j, ik = -j. (the remaining relations can be decuced from these relations)