CLAIMS

What is claimed is:

- 1. An apparatus for testing in an application environment, comprising:
 - a high-frequency probe; and
- a holder adapted to removably connect an optical component to the high-frequency probe and adapted to removably connect the high-frequency probe to an application substrate.
- 2. The apparatus of Claim 1, wherein the holder comprises G10 material.
- 3. The apparatus of Claim 1, wherein the holder comprises Teflon material.
- 4. The apparatus of Claim 1, wherein the high-frequency probe is double-spring loaded.
- 5. The apparatus of Claim 1, wherein the high-frequency probe is single-spring loaded.
- 6. A method for testing an optical component, comprising:
 - connecting the optical component to a high-frequency probe;
 - connecting the high-frequency probe to a golden high-speed electrical component;
 - transmitting a high-speed electrical signal from the golden high-speed electrical component to the
 - optical component; and
 - identifying a response by the optical component to the high-speed electrical signal.
- 7. The method of Claim 6, further comprising evaluating the response by the optical component.
- 8. The method of Claim 6, further comprising adjusting the high-speed electrical signal.
- 9. The method of Claim 7, wherein the step of evaluating the response by the optical component comprises determining if the optical component responds in substantially the same manner as a golden optical component would respond to a substantially equivalent high-speed electrical signal.
- 10. The method of Claim 7, wherein the step of evaluating the response by the optical component comprises comparing if the response is substantially the same as a golden optical component response to a substantially equivalent high-speed electrical signal.
- 11. A method for testing a test component connected to a high-speed electrical component, comprising: connecting a golden optical component to a high-frequency probe;

connecting the high-frequency probe to the high-speed electrical component;

operating the test component in an application environment to cause a transmission of a highspeed electrical signal from the high-speed electrical component to the golden optical component;

and

determining if the golden optical component responds to the high-speed electrical signal.

- 12. The method of Claim 11, further comprising evaluating a response by the golden optical component.
- 13. The method of Claim 11, further comprising adjusting the high-speed electrical signal.
- 14. The method of Claim 12, wherein the step of evaluating a response by the golden optical component comprises determining if the golden optical component responds in substantially the same manner as the golden optical component would respond to a substantially equivalent high-speed electrical signal caused by a golden test component operation.
- 15. The method of Claim 12, wherein the step of evaluating a response by the golden optical component comprises comparing if the response is substantially the same as a second golden optical component response to a substantially equivalent high-speed electrical signal caused by a golden test component operation.
- 16. A method for testing a test component connected to a high-speed electrical component, comprising: connecting a golden optical component to a high-frequency probe; connecting the high-frequency probe to the high-speed electrical component; transmitting a high-speed electrical signal from the golden optical component to the high-speed electrical component; and identifying a response by the test component.
- 17. The method of Claim 16, further comprising evaluating the response by the test component.
- 18. The method of Claim 16, further comprising adjusting the high-speed electrical signal.
- 19. The method of Claim 17, wherein the step of evaluating the response by the test component comprises determining if the test component responds in substantially the same manner as a golden test component would respond.

20. The method of Claim 17, wherein the step of evaluating the response by the test component	
comprises comparing if the response is substantially the same as a golden test component response.	
	,