Outils Mathématiques pour l'Ingénieur

Chapitre 1 : Equations différentielles à coefficients constants

I-Notions d'équations différentielles

- > On appelle équation différentielle une équation entre une fonction inconnue et ses dérivées successives jusqu'à un certain ordre appelé ordre de l'équation différentielle.
- On appelle solution d'une équation différentielle d'ordre n ($n \in \mathbb{N}^*$) sur un intervalle I de \mathbb{R} toute fonction n fois dérivable sur I qui vérifie cette équation.

II-Equations différentielles linéaires homogènes

1. Premier ordre

- Une équation différentielle du premier ordre linéaire homogène à coefficients constants s'écrit :ay'+by=0 où a et b sont deux réels, a ≠0.
- Cette équation est dite linéaire car son premier membre est une combinaison linéaire de y et de y' (de la forme ay'+by)
- > Elle est dite à coefficients constants car les coefficients a et b de la combinaison linéaire ay'+by sont des constantes.
- Elle est dite homogène (ou sans second membre) car son second membre est nul.

Théorème

La solution générale de l'équation différentielle ay'+by=0 est :

$$y = Ce^{-\frac{b}{a}t}$$
 où C est une constante.

Cela signifie que pour toute solution y de ay'+by=0, il existe une constante C telle que $y(t)=Ce^{rt}$. Cette constante peut se déterminer par la donnée d'une condition initiale. On dit alors qu'on résout un problème de Cauchy.

2. Second ordre

Une équation différentielle du second ordre linéaire homogène à coefficients constants s'écrit : E : ay''+by'+cy=0 où a, b et c sont des réels, $a \neq 0$.

Définition:

L'équation ar²+br+c=0 est appelée **équation caractéristique** de E. On distingue trois cas suivant la valeur du discriminant $\Delta = b^2 - 4ac$

Théorème

• Si $\Delta > 0$, l'équation caractéristique $ar^2 + br + c = 0$ admet deux racines réelles distinctes

$$r_1=rac{-b+\sqrt{\Delta}}{2a}$$
 et $r_2=rac{-b-\sqrt{\Delta}}{2a}$ alors la solution générale de (E) s'écrit :

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$
 où C_1 et C_2 sont des constantes.

• Si $\Delta=0$, l'équation caractéristique $ar^2+br+c=0$ admet une racine double $r=-\frac{1}{2}$ alors la solution générale de (E) s'écrit :

$$y = e^{rt}(C_1t + C_2)$$
 où C_1 et C_2 sont des constantes.

• Si $\Delta < 0$, l'équation caractéristique $ar^2 + br + c = 0$ admet deux racines complexes conjuguées

$$r = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $r = \frac{-b - i\sqrt{-\Delta}}{2a}$.

On pose $\alpha=\mathrm{Re}(r)=-\frac{b}{2a}$ et $\beta=\mathrm{Im}(r)=\frac{\sqrt{-\Delta}}{2a}$ alors la solution générale de (E) s'écrit :

$$y(t) = e^{\alpha t} [C_1 \cos(\beta t) + C_2 \sin(\beta t)]$$
 où C_1 et C_2 sont des constantes.

III-Equations différentielles linéaires avec second membre

1. Principe générale de résolution

Nous considérons ici des équations différentielles linéaires à coefficients constants avec second membre, c'est-à-dire de la forme :

(E) : ay' + by = g(t) dans le cas du premier ordre,

et de la forme :

(E) : ay'' + by' + cy = g(t) dans le cas du second ordre.

a, b et c sont des réels $(a \neq 0)$ et g(t) est une fonction donnée.

L'équation sans second membre (ou homogène) associée à (E) est : $\begin{pmatrix} \mathsf{E}_0 \end{pmatrix} : ay' + by = 0 \text{ dans le cas du premier ordre,} \\ \left(\mathsf{E}_0\right) : ay'' + by' + cy = 0 \text{ dans le cas du second ordre.}$

Théorème

La solution générale de l'équation différentielle (E) s'écrit :

$$y = y_g + y_p$$

où y_g est la solution générale de $\left(\mathsf{E}_0
ight)$ et y_p est une solution particulière de $\left(\mathsf{E}\right)$.

2. <u>Les solutions particulières</u>

- Le second membre est constant
- Le second membre est un polynôme
- Le second membre g(t)= $ke^{\lambda t}$
- Le second membre est sinusoïdale
- Principe de superposition
- La solution permanente et solution transitoire
- Variation de la constante