ENSIAS A.U. 2021/2022

TP Transmission de données : TP 2

Dans ce TP vous allez utiliser l'outil Simulink de Matlab pour réaliser une étude de la modulation MDP-2 ou BPSK.

I. Domaine temporel:

1. Réalisez sous Simulink le schéma suivant :

- 2. Visualisez les signaux en entrée et en sortie du modulateur BPSK.
- 3. Vérifiez que ce que vous obtenez est conforme avec les définitions vu en cours c'est a dire que c'est bien une modulation BPSK.

II. Domaine fréquentiel

La DSP d'un signal modulé peut être visualisée en utilisant des modèles de Simulink qui facilitent cette tâche comme on le voit sur le schéma suivant :

- 1. Affichez la DSP du signal modulé.
- 2. Changez la fréquence de la porteuse et vérifiez que le spectre glisse avec ce changement à droite et à gauche. Commentez ces résultats.

Paramètres des blocs et de la simulation :

1er cas: domaine temporel:

Bernoulli Random Binary Generator:

Probability of a zero: 0.5; Initial seed: 125; Sample time: 0.1 (temps bit = 0.1sec)

M-PSK Modular Passband

M-ary number: 2; Input type: bit; Constellation Ordering: binary; Symbol Period: 0.1; Baseband samples per symbol: 1; Carrier Frequency: 1000Hz; Carrier initial phase:0 rad;

Output sample time: 1/40000.

Scope et scope1: limit data points to last : non coché.

Paramètres de la simulation : durée de la simulation 0.4 secondes.

2ème cas : domaine fréquentiel:

Bernoulli Random Binary Generator:

Probability of a zero: 0.5; Initial seed: 125; sample time: 0.1 (temps bit=0.1 sec)

M-PSK Modular Passband

M-ary number: 2; Input type: bit; Constellation Ordering: binary; symbol Period: 0.1; Baseband samples per symbol: 1; Carrier Frequency: 1000Hz; Carrier initial phase: 0 rad;

Output sample time: 1/3000.

Buffer:

Output buffer size: 1024 Buffer overlap: 0; Initial conditions: 0.

Magnitude FFT:

Inherit FFT Length from input dimensions: a cocher.

Mean:

Running mean: a cocher.

Vector scope: Input domain: Frequency.

Paramètres de la simulation: durée de la simulation 10 secondes.

Ensuite on relancera la simulation avec deux fréquences de la porteuse différentes : 800 Hz et 1200 Hz.