

5. Partial Modeling, Regression

Course > Unit 6 Linear Regression > Lecture 19: Linear Regression 1 > Function, and Conditional Quantiles

5. Partial Modeling, Regression Function, and Conditional Quantiles Partial Modeling, Regression Function, and Conditional Quantiles

Given a joint probability distribution ${f P}$ for the random pair (X,Y), the **regression function** of Y with respect to X is defined as

$$u\left(x
ight) = \mathbb{E}\left[Y|X=x
ight] = \sum_{\Omega_Y} y \cdot \mathbf{P}\left(Y=y \mid X=x
ight)$$

which tells us the average value of Y given the knowledge that X=x. In the case of continuous distributions where we can compute the conditional density f(y|x), the expression on the right hand side is replaced with an integral:

$$\mathbb{E}\left[Y|X=x
ight]=\int_{\Omega_{Y}}yf\left(y|x
ight)dy$$

A Linear Model

1/1 point (graded)

Assume (X,Y) is a pair such that Y=3X+5+arepsilon where $arepsilon\sim\mathcal{N}\left(0,1
ight)$, independent of X. What is $\mathbb{E}\left[Y|X=x
ight]$?

STANDARD NOTATION

Solution:

From the definition:

$$egin{aligned}
u\left(x
ight) &= \mathbb{E}\left[Y|X=x
ight] \\ &= \mathbb{E}\left[3X+5+arepsilon\mid X=x
ight] \\ &= \mathbb{E}\left[3x+5+arepsilon
ight] \\ &= 3x+5+\mathbb{E}\left[arepsilon
ight] \end{aligned} \qquad ext{(linearity of expectation)} \\ &= 3x+5. \end{aligned}$$

Linear models of the type $Y=a+bX+\varepsilon$ – hence the name **Linear Regression** – are the main focus of this chapter.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Note: The notions of conditional expectation and conditional variance as random variables, $\mathbb{E}[Y|X]$ and $\mathsf{Var}(Y|X)$, are not to be confused with the expectation and variance of Y given X=x. In this lecture, we are interested in these quantities not as random variables, but as constants for each X = x.

Concept Check: Conditional Quantile

1/1 point (graded)

Let (X,Y) be a pair of RVs with joint density f(x,y)=x+y, over the sample space $\Omega=[0,1]^2$.

For a given x, what is the value $q_{\alpha}(x)$ such that $P[Y \leq q_{\alpha}(x) | X = x] = 1 - \alpha$? That is, what is the conditional $(1 - \alpha)$ -quantile function (of x) of Y|X=x?

$$-x+\sqrt{x^2+(2\cdot x+1)\cdot (1-lpha)}$$

STANDARD NOTATION

Solution:

We know from a previous problem that for this joint distribution on (X,Y), the conditional pdf h(y|x), $0 \le x \le 1$ is given as

$$h\left(y|x
ight)=rac{x+y}{x+rac{1}{2}}, \ \ 0\leq y\leq 1.$$

In order to find the $(1-\alpha)$ -quantile value for each x, we need to solve for z (hiding the dependency on x for simplicity) in

$$\int_0^z rac{x+y}{x+rac{1}{2}}\mathrm{d}y = (1-lpha)\,,$$

from which we can obtain that $q_{lpha}\left(x
ight)=z=rac{1}{2}\left(-2x+\sqrt{4x^{2}+8\left(1-lpha
ight)\left(x+0.5
ight)}
ight).$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 6 Linear Regression:Lecture 19: Linear Regression 1 / 5. Partial Modeling, Regression Function, and Conditional Quantiles

Add a Post

Show all posts ▼

There are no posts in this topic yet.

by recent activity ▼

..

© All Rights Reserved