

TensorFlow

Курс "Практическое применение по TensorFlow" Шигапова Фирюза Зинатуллаевна 1-й семестр, 2019 г.

https://github.com/Firyuza/TensorFlowPractice

Quiz. Gradient Tape

Will differentiates loss_fn() **AND** other_loss_fn()? Explain.

```
with tf.GradientTape() as t:
  loss = loss_fn()
with tf.GradientTape() as t:
  loss += other_loss_fn()
t.gradient(loss, ...)
```

Create TensorBoard writer

```
self.valid_file_writer = tf.summary.create_file_writer(cfg.train.logs_base_dir + "/valid")
self.train_file_writer = tf.summary.create_file_writer(cfg.train.logs_base_dir + "/train")
```

- ▼ logs
 - train
 - ▶ **alid** valid

Log scalar

Log text (table)

```
tf.summary.text(name, text_data, step=step)
```

Table

```
hyperparameters = [tf.convert_to_tensor(row) for row in rows]
with summary_writer.as_default():
    tf.summary.text(name, tf.stack(hyperparameters), step=step)

Create rows as in table
    Each row: rows = [['key1', 'value1'], ['key2', 'value2']]
```

Log hyperparameters

Adding hyperparameters of the model to the tensorboard

from tensorboard.plugins.hparams import api as hp

Log hyperparameters

Log image

```
tf.summary.image('training_image', [images[0]], step=global_step)
                                                                                                Q Filter tags (regular expressions supported)
                          One image tensor
                                                                                                 training_image
                                                                                                  training_image
tf.summary.image('training_images', images[:4], step=global_step)
                                                                                                  tag: training_image
                                                                                                  Tue Nov 26 2019 22:41:51 GMT+0300 (Москва, стандартное
                             Multiple image tensors
  self.custom category metric = CustomSparseCategoricalAccuracy('custom category metric')
```

Log image

- Log Confusion Matrix
- Log plots

Source: https://www.tensorflow.org/tensorboard/image_summaries; https://stackoverflow.com/questions/41617463/tensorflow-confusion-matrix-in-tensorboard

Log image. Plot

Create figure

```
def image grid(images, class labels, predicted class labels, class name map):
    # Create a figure to contain the plot.
    figure = plt.figure(figsize=(10, 10))
    for i in range(len(images)):
        # Start next subplot.
        plt.subplot(5, 5, i + 1, title='%s %s' %
                                        (class name map[class labels[i]],
                                        class name map[predicted class labels[i]]))
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(images[i], cmap=plt.cm.binary)
    return figure
```

Log image. Plot

Convert figure into PNG image and save in memory

```
def plot to image(figure):
    """Converts the matplotlib plot specified by 'figure' to a PNG image and
    returns it. The supplied figure is closed and inaccessible after this call."""
    # Save the plot to a PNG in memory.
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    # Closing the figure prevents it from being displayed directly inside
    # the notebook.
    plt.close(figure)
    buf.seek(0)
    # Convert PNG buffer to TF image
    image = tf.image.decode png(buf.getvalue(), channels=4)
    # Add the batch dimension
    image = tf.expand dims(image, 0)
    return image
```

valid_images tag: valid_images step 12 504

Wed Dec 04 2019 00:12:53 GMT+0300 (Москва, стандартное время)

valid_images tag: valid_images step 12 504

valid

Wed Dec

Visualize embeddings

TensorBoard.dev

TensorBoard.dev

☑ TensorBoard

☑ TensorFlow

TensorBoard.dev PREVIEW

Easily host, track, and share your ML experiments for free.

A managed TensorBoard experience that lets you upload and share your ML experiment results with anyone.

Get started

Example Colab

TensorBoard.dev

Install the latest TensorBoard. You may need to first uninstall other TensorBoard versions.

\$ pip install -U tensorboard

For help, run "tensorboard dev --help" or "tensorboard dev COMMAND --help" \$ tensorboard dev upload --logdir logs

Upload started and will continue reading any new data as it's added to the logdir. To stop uploading, press Ctrl-C.
View your TensorBoard live at: https://tensorboard.dev/experiment/7nZx2lcBSWq1sw
3JIXUNqw/

MLflow

Open-source platform for managing the end-to-end machine learning lifecycle.

\$ pip install mlflow

MLflow

- MLflow Tracking: log parameters, metrics etc.
- MLflow Projects: save model
- MLflow Models: managing and deploying

MLflow Tracking

- Code Version
- Start & End Time
- Source
- Parameters
- Metrics
- Artifacts

MLflow

import mlflow

Experiment name as global scope for runs

mlflow.set_experiment(cfg.train.experiment name) **ImageClassification** Experiments Default Experiment ID: 1 Artifact Location: file:///home/firiuza/PycharmProjects/TensorflowPractice1/Lesson11/mlruns/1 ImageClassification ▼ Description: <a>☑ Search Runs: metrics.rmse < 1 and params.model = "tree" State: Active -Search Filter Params: alpha, Ir Filter Metrics: rmse, r2 Clear Showing 1 matching run Download CSV & Delete Date User Run Name Tags Parameters Source Version 2019-11-29 02:14:01 firiuza First Train □image... 5ac9ba

MLflow Tracking. Start

```
with mlflow.start_run():
    img_net = ImageClassification()
    img_net.run_train()
```

Using context manager in Python run code within MLflow scope

MLflow Tracking. Start

```
with mlflow.start_run(run_name=cfg.train.run_name):
    mlflow.log_artifact(os.path.abspath(/_file__))
    img_net = ImageClassification()
    img_net.run_train()
```

- Start with defining run_name
- Log code as artifact

MLflow Tracking. Log artifact

Log local files or directory as artifact

mlflow.log_artifact(os.path.abspath(__file__))

MLflow Tracking. Log param

```
mlflow.log_param('lr', cfg.train.learning_rate)
mlflow.log_param('optimizer', cfg.train.optimizer)
```

MLflow Tracking. Log metric

```
from mlflow import log_metric, log_artifact
log metric('validation category accuracy', category metric.result().numpy(), step)
```

MLflow. How to run?

In terminal:

```
cd folder/where/mlruns/exist
```

mlflow ui

```
[2019-12-05 23:02:18 +0300] [9231] [INFO] Starting gunicorn 20.0.2

[2019-12-05 23:02:18 +0300] [9231] [INFO] <u>Listening at: http://127.0.0.1:5000</u> (9231)

[2019-12-05 23:02:18 +0300] [9231] [INFO] Using worker: sync

[2019-12-05 23:02:18 +0300] [9235] [INFO] Booting worker with pid: 9235
```

ImageClassification > First Train -Git Commit: 0fbe352 Date: 2019-12-05 21:59:35 Source: __image_classification.py User: firiuza Duration: 58.9min ▼ Notes None ▼ Parameters Name Value 3e-05 optimizer ADAM ▼ Metrics Name Value validation_category_accuracy 2 0.681 ▼ Tags Value Name Actions

MLflow Models

Save model and allow to deploy on a local machine and to several production environments.

MLflow Projects

Packaging data science code.

Tensorspace js

Neural Network

3D Visualization Framework

Build interactive and intuitive model in browsers

Source: https://tensorspace.org

Tensorspace js. Installation

```
$ conda create -n envname python=3.6
$ source activate envname
$ pip install tensorspacejs
```

Important step:

```
$ tensorspacejs_converter -init
```

Tensorspace js. Convert model

```
tensorspacejs_converter \
    --input_model_from="tensorflow" \
    --input_model_format="tf_keras" \
    --output_layer_names="conv_1,maxpool_1,conv_2,maxpool_2,dense_1,dense_2,softmax" \
    ./rawModel/tf_keras_model.h5 \
    ./convertedModel
```

Assignment

- 1. Add TensorBoard logging into train and validation pipeline:
 - scalar
 - text (config file)
 - hyperparameters
 - images
- 2. Add MLflow into train and validation pipeline:
 - artifact (code files)
 - params
 - metrics
- Commit screenshots with code.