ACCQ 201 - Structures algébriques finies

1 Groupes

Relations d'équivalence et structures quotient

Def. Une **relation** \mathcal{R} sur un ensemble E est la donnée d'une partie $\mathcal{R} \subset E \times E$. On écrit $x\mathcal{R}y$ si $(x,y) \in \mathcal{R}$.

Def. Une relation \mathcal{R} sur E est dite :

- réflexive si $\forall x \in E, x \mathcal{R} x$,
- symétrique si $\forall x, y \in E, (x\mathcal{R}y) \implies (y\mathcal{R}x)$,
- transitive si $\forall x, y, z \in E, (x\mathcal{R}y \text{ et } y\mathcal{R}z) \implies x\mathcal{R}z$

et on dit que c'est une relation d'équivalence si ces trois conditions sont vérifiées. Dans ce cas on note aussi $x \sim_{\mathcal{R}} y$ ou encore $x \equiv y \mod \mathcal{R}$.

Def. Soit \sim une relation d'équivalence sur E et $A \subset E$. On dit que A est une classe d'équivalence pour la relation \sim si A est non vide, $\forall x, y \in A, x \sim y$ et $\forall x \in A, \forall y \notin A, x \not\sim y$.

Not. On note E/\sim l'ensemble des classes d'équivalences pour \sim , appelé **ensemble quotient** de E par \sim .

Prop. Les classes d'équivalence forment une partition de E.

Cor. On
$$a |E| = \sum_{A \in E/\sim} |A|$$
.

On dispose de la projection canonique de E sur E/\sim , $\pi\colon x\mapsto \bar x=\{y\in E\mid x\sim y\}$, où x est un représentant de $\bar x$. On dit que $\mathcal S\subset E$ est un **système de représentants** si $\pi_{|\mathcal S}\colon \mathcal S\overset{\sim}{\to} E/\sim$.

Th. Soit $f: E \to F$ une application. On a équivalence entre les deux assertions suivantes :

- 1. f est compatible à \sim , i.e. $\forall x, y \in E, x \sim y \implies f(x) = f(y)$
- 2. $\exists g \colon E / \sim \rightarrow F, f = g \circ \pi$.

Si ces conditions sont vérifiées, cette application g est unique. On dit qu'elle est l'application déduite de f par passage au quotient par \sim .

Def. Un **groupe** (G, *, e) est la donnée de G non vide, * une loi de composition interne et $e \in G$ tels que * est associative, e est neutre et tout élement est inversible. On dit que ce groupe est **abélien** si * est commutative.

Def. Un sous-ensemble H du groupe G est appelé **sous groupe** si : $e \in H$, il est stable par inversion et par composition.

Prop. Une intersection quelconque de sous-groupes de G est encore un sous-groupe de G.

Prop. Soit G un groupe et $S \subset G$. Notons $\langle S \rangle \subset G$ l'intersection de tous les sous-groupes de G qui contiennent S. Alors $\langle S \rangle$ est un sous-groupe de G contenant S et c'est le plus petit d'entre eux. On l'appelle **sous-groupe** engendré par S dans G.

Prop. On a aussi $S = \{s_1^{m_1} * \cdots * s_r^{m_r} \mid r \in \mathbb{N}, s_i \in S, m_i \in \mathbb{Z}\}.$

Prop. Soit H un sous-groupe de G. On définit $x \sim y \iff x^{-1}y \in H$. Alors \sim est une relation d'équivalence et G/\sim est noté G/H $(x \mod H) = xH$.

Def. Soit H un sous-groupe de G. On définit l'**indice** de H dans G par [G:H]=|G/H| (éventuellement infini).

Prop. Soit G un groupe fini. Alors tout sous-groupe H de G est fini, d'indice fini et on a $|G| = |H| \cdot [G:H]$.

Action d'un groupe sur un ensemble

Def. Une action de (G, *, e) sur un ensemble X est la donnée d'une application $G \times X \to X \atop (g, x) \mapsto g \cdot x$ telle que $\forall x \in X, e \cdot x = x$ et $\forall g, g' \in G, \forall x \in X, g \cdot (g' \cdot x) = (g * g') \cdot x$.

Def. Soit G agissant sur X. Pour tout élément $x \in X$, on définit son stabilisateur $G_x = \{g \in G \mid g \cdot x = x\}$ et son orbite $O_x = G \cdot x = \{g \cdot x \mid g \in G\}$.

Prop. Le stabilisateur G_x est un sous-groupe de G.

Prop. La relation \sim définie par $(x \sim x') \iff (\exists g \in G, x' = g \cdot x)$ est une relation d'équivalence. Les orbites de l'action sont alors précisément le classes d'équivalences pour \sim .

Ex. Des actions classiques de H sur G, avec H sous-groupe de G, sont :

- 1. translation à gauche, $(h, x) \mapsto xh^{-1}$,
- 2. translation à droite, $(h, x) \mapsto hx$,
- 3. conjugaison, $(h, x) \mapsto hxh^{-1}$.

Prop. Soit G agissant sur X. Alors $\forall x \in X$, $g \mapsto g \cdot x$ induit par passage au quotient une bijection $G/G_x \stackrel{\sim}{\to} O_x$ et en particulier $|O_x| = [G:G_x]$.

Th (Formule de Burnside). Soit G un groupe fini agissant sur X fini. Alors

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\{x \in X \mid g \cdot x = x\}|$$

autrement dit le nombre d'orbites de l'action est égal à l'espérance du nombre de points fixes d'un élément aléatoire de G.

Morphismes

Def. Un **(homo)morphisme** de (G, *, e) dans (G', *', e') est une application $f: G \to G'$ telle que : f(e) = e', $\forall x \in G, f(x^{-1}) = f(x)^{-1}$, $\forall x, y \in G, f(x * y) = f(x) *' f(y)$. Pour G = G' c'est un **endomorphisme**, si f est bijective c'est un **isomorphisme** et pour les deux à la fois c'est un **automorphisme**.

Prop. Les images directes et réciproques de sous-groupes par un morphisme de groupes sont des sous-groupes.

Def. Soit $f: G \to G'$ un morphisme de groupes. Alors

- 1. $Ker(f) = f^{-1}(e')$ est un sous-groupe de G appelé **noyau** de f,
- 2. Im(f) = f(G) est un sous-groupe de G' appelé **image** de f.

Prop. Un morphisme $f: G \to G'$ est injectif si et seulement si $Ker(f) = \{e\}$.

Groupe quotient d'un groupe abélien par un sous-groupe

Soit H s-g de (G, +, 0) abélien.

Lem. On munit G/H d'une structure de groupe abélien avec la loi + telle que $\bar{a} + \bar{b} = (a+H) + (b+H) = (a+b) + H = \overline{a+b}$. L'ensemble quotient muni de cette loi est appelé **groupe quotient** de G par H.

Prop. La projection canonique $\pi: G \to G/H$ est un morphisme de groupes, surjectif, de noyau H.

Th. Les sous-groupes de G/H sont en bijection avec les sous-groupes de G contenant H.

Morphisme défini par passage au quotient

Th (de factorisation). Soient $f: G \to G'$ un morphisme de groupes abéliens, H un s-g de G et $\pi: G \to G/H$ la projection canonique. Alors

$$(H \subset \operatorname{Ker}(f)) \iff (\exists !g \colon G/H \to G', f = g \circ \pi)$$

et on dit que g se déduit de f par passage au quotient par H. De plus, on a alors Im(g) = Im(f) et Ker(g) = Ker(f)/H. Cor. Si $f: G \to G'$ est un morphisme de groupes abéliens, f induit par passage au quotient un isomorphisme

$$G/\operatorname{Ker}(f) \stackrel{\sim}{\to} \operatorname{Im}(f)$$
.

En particulier, si G est fini on a $|G| = |Ker(f)| \cdot |Im(f)|$.

Sous-groupes monogènes, ordre d'un élément

Def. Si $x \in G$, on définit l'**ordre** de x, noté $\omega_G(x)$ comme le plus petit $n \in \mathbb{N}^*$ tel que $x^n = e$ s'il existe, et $+\infty$ sinon.

Lem. Soit $f: G \to G'$ un morphisme de groupes injectif. Alors $\forall x \in G, \omega(f(x)) = \omega(x)$.

Lem. Pour tout diviseur d de $\omega(x)$ on a $\omega(x^d) = \frac{w(x)}{d}$.

Lem. Soit G un groupe. Pour tout $x \in G$, il existe un unique morphisme de groupes $f_x \colon \mathbf{Z} \to G$ envoyant $1 \operatorname{sur} x$, c'est $k \mapsto x^k$ et son image est $\langle x \rangle$.

Lem. Tout s-g non nul H de $(\mathbf{Z}, +, 0)$ est de la forme $H = N\mathbf{Z}$ où $N = [\mathbf{Z} : H] = \min(H \cap \mathbf{N}^*)$.

Prop. Soit G un groupe et $x \in G$.

- 1. $Si \ \omega(x) = \infty, f_x \colon \mathbf{Z} \xrightarrow{\sim} \langle x \rangle.$
- 2. Si $\omega(x) < \infty$, $\operatorname{Ker}(f_x) = \omega(x)\mathbf{Z}$, f_x induit par passage au quotient un isomorphisme entre $\mathbf{Z}/\omega(x)\mathbf{Z}$ et $\langle x \rangle = \{e, x, x^2, \dots, x^{\omega(x)-1}\}$.

Dans les deux cas $|\langle x \rangle| = \omega(x)$.

Cor. Soit x d'ordre fini. Alors $\forall n \in \mathbf{Z}, (x^n = e) \iff (\omega(x) \mid n)$.

Th (Lagrange). Soit G un groupe fini. Alors, pour tout $x \in G$, $x^{|G|} = e$ et $\omega(x)|G$.

Groupes cycliques

Prop. Soit (G, *, e) un groupe fini, N = |G| son ordre et $g_0 \in G$. Les assertions suivantes sont équivalentes :

- (i) g_0 est d'ordre N,
- (ii) $G = \langle g_0 \rangle$,
- (iii) il existe un isomorphisme $\varphi \colon \mathbf{Z}/N\mathbf{Z} \xrightarrow{\sim} G$ qui envoie $\bar{1}$ sur g_0 ,
- (iv) tout élément $g \in G$ peut s'écrire $g = g_0^n$ pour un certain $n \in \mathbb{N}$.

Def. Un groupe fini vérifiant les assertions précédentes est appelé **groupe cyclique**. On dit que g_0 est un **générateur** de G.

Prop. Soit $N \in \mathbf{N}^*$.

- 1. Si $d \mid n, d\mathbf{Z}/N\mathbf{Z} = \left\{ \overline{0}, \overline{d}, \dots, \overline{\left(\frac{N}{d}-1\right)} d \right\}$ est un sous groupe de $\mathbf{Z}/N\mathbf{Z}$. Inversement, tout s-g de $\mathbf{Z}/N\mathbf{Z}$ est de cette forme pour un entier d divisant N uniquement déterminé, mettant en bijection les s-g de $\mathbf{Z}/N\mathbf{Z}$ et les diviseurs de N.
- 2. Si d_1 et d_2 divisent N, on a $(d_2\mathbf{Z}/N\mathbf{Z} \subset d_1\mathbf{Z}/N\mathbf{Z}) \iff (d_1 \mid d_2)$.
- 3. Le sous-groupe $d\mathbf{Z}/N\mathbf{Z}$ est cyclique, d'ordre $\frac{N}{d}$ et d'indice $[\mathbf{Z}/N\mathbf{Z}:d\mathbf{Z}/N\mathbf{Z}]=d$.
- 4. Les éléments de $d\mathbf{Z}/N\mathbf{Z}$ sont les éléments de $\mathbf{Z}/N\mathbf{Z}$ (additif) dont l'ordre divise $\frac{N}{d}$.
- 5. Soit $x \in \mathbf{Z}$. On a $\langle \bar{x} \rangle = d\mathbf{Z}/N\mathbf{Z}$ où $d = \operatorname{pgcd}(x, N)$. Alors x est d'ordre $\frac{N}{d}$ (additif). En particulier, \bar{x} est générateur de $\mathbf{Z}/N\mathbf{Z}$ si et seulement si x est premier avec N.

Cor (**Bézout**). *Soit* $a, b \in \mathbf{Z}$ *non tous les deux nuls. Alors* $\exists m, n \in \mathbf{Z}, ma + nb = \operatorname{pgcd}(a, b)$.

Cor. Soit (G, *, e) groupe cyclique d'ordre N. Alors pour tout $y \in G$ et $d \mid N$ on a $(\exists x \in G, y = x^d) \iff \left(y^{\frac{N}{d}} = e\right)$. Pour $k \in \mathbf{N}^*$ on a $(\exists x \in G, y = x^d) \iff \left(y^{\frac{N}{\operatorname{pgcd}(N,k)}} = e\right)$. En particulier, si k est premier avec N, tout élément de G est une puissance k-ième.