

Applied Research Methods (MULT30018)

Tutorial 5 Nhan La

- W1. Introduction
- W2. Descriptive statistics
- W3. Crosstabs and correlations
- W4. Regression 1
- W5. Regression 2
- W6. Experiments
- W7. Counterfactuals
- W8. Mixed methods
- W9. Group presentations
- W10. Final assignment workshop

Tutorial Objectives

- Review basics of regression
- Get to know the assumptions of linear regressions
 - Collinearity problem
- SPSS practice
 - Group activity

What have we known about regression?

- Purpose
- Formulation
- Interpretation
 - Line and slope
 - Coefficients
 - Significance
 - Model fit (R-squared)
 - Perfect model?
 - Degrees of freedom
 - Standard error

What have we known about regression?

Linear regression assumptions:

- Linearity in parameters between the dependent variable and independent variables
 - Violation: non-linear relationships
- Error term has expected value (or mean value) of 0
 - Violation: intercept is biased
- Error term has constant value across variables and over time
 - Violation: model uncertainty
- Random sampling
 - Violation: serial correlation/autocorrelation
- Error term is uncorrelated with independent variables
 - Violation: omitted variable bias
- Multicollinearity
 - Violation: model uncertainty/unstability

What have we known about regression?

- The dependent variable must have 3 or more categories that can be ranked
- Need theory to run meaningful regressions
 - Junk-in, junk-out
- Linear regression only measures linear associations
- Only make predictions within sample range

Identify and address multicollinearity

Satisfaction with your life [V23] = Marital status [Recoded] + Scales of income [V239]

Identify and address multicollinearity

- Identify a dependent variable and two or three independent variables
 - Choose one that need dichotomisation
- Run the regressions, including multicollinearity test
- Discuss the findings in class
 - What percentage of the variance in the outcome variable do your predictors explain as a whole?
 - Which of your predictors was relatively the most important in explaining the dependent variable?
 - O Which predictors are positively and which are negatively associated with the dependent variable?
 - To what magnitude does each of the independent variables affect your dependent variable?
 - How many cases (i.e., participants) are included in your regression model?
 - Are there any problems with multicollinearity?
 - Should you include all of the independent variables in your model, or should you drop some of them?

?

