MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 13th February 2018 D1 - Lecture 18

Random Attendance: 13th Feb

1	170050010	Arjit Jain Absent
2	170050023	Akshay Yadav
3	170050026	Tushar Gautam
4	170050054	Chaw Akametta Enling
5	170050068	Killari Ramprasad
6	170050069	Gulla Niranjan
7	170050071	Yash Raj
8	170050093	Somavarapu Tarun
9	170050097	Mannem Sai Varshitha
10	170050107	Sarvesh Mehtani
1	170070014	Shriram Girish Lokhande Absent
12	170070019	Titas Chakraborty
13	170070029	Chandra Shekhar
14	17D070001	Rathod Harekrissna Upendra
15	17D070014	Nakrani Prajval Sushil
16	17D070063	Prachi Goel

Diagonalization: Example

Example:
$$A = \begin{pmatrix} 1 & 5 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & 3 \end{pmatrix}$$
 is triangular.

Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

Eigenvectors:
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} -7 \\ -4 \\ 1 \end{pmatrix}$.

Further, $\mathcal{B} = \{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 . Hence $P = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ is invertible, and $AP = \begin{pmatrix} Av_1 & Av_2 & Av_3 \end{pmatrix} = \begin{pmatrix} v_1 & 2v_2 & 3v_3 \end{pmatrix} = P\Lambda$,

where
$$\Lambda = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 \end{pmatrix}$$
. Thus $P^{-1}AP = \Lambda$, i.e., A is diagonalizable.

H. Ananthnarayan

Diagonalization of a Matrix

Question: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Let A be an $n \times n$ matrix with n eigenvectors v_1, \ldots, v_n , associated to eigenvalues $\lambda_1, \ldots, \lambda_n$. If $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis of \mathbb{R}^n , then the matrix $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is invertible.

Moreover,
$$AP = A (v_1 \cdots v_n) = (Av_1 \cdots Av_n)$$

= $(\lambda_1 v_1 \cdots \lambda_n v_n) = P\Lambda$, where $\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$.

Therefore $P^{-1}AP = \Lambda$, i.e., A is similar to a diagonal matrix.

Thus: Eigenvectors diagonalize a matrix

Caution: $\Lambda P \neq P \Lambda$ in general.

When is A Diagonalizable?

Thus, we have proved: If an $n \times n$ matrix A has n linearly independent eigenvectors v_1, \ldots, v_n , then A is diagonalizable.

Moreover, if $\lambda_1, \ldots, \lambda_n$ are the corresponding eigenvalues, then $P^{-1}AP = \Lambda$, where the diagonalizing matrix is $P = (v_1 \cdots v_n)$, and

the diagonal matrix is
$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
, i.e., $P^{-1}AP = \Lambda$, where

The diagonal entries of Λ are eigenvalues of A and

The columns of P are corresponding eigenvectors of A.

Exercise: With the above notation, if $T : \mathbb{R}^n \to \mathbb{R}^n$ is defined by

$$T(v) = Av$$
, and $\mathcal{B} = \{v_1, \dots, v_n\}$, then $[T]_{\mathcal{B}}^{\mathcal{B}} = \dots$

Note: P need not be unique, e.g., replace v_1 by $2v_1$, etc.

5/15

When is A Diagonalizable?

Q: When does *A* have *n* linearly independent eigenvectors?

- If v_1, \ldots, v_r are eigenvectors of A associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$, then v_1, \ldots, v_r are linearly independent.
- *Proof.* Suppose v_1, \ldots, v_r are linearly dependent. Choose a linear relation involving minimum number of v_i 's, say

(1)
$$a_1v_1 + \cdots + a_tv_t = 0$$
. $(1 < t \le r, t \text{ is minimal, } a_i \ne 0)$

Apply A to get
$$a_1\lambda_1v_1 + \cdots + a_t\lambda_tv_t = 0$$
 (2)

$$\lambda_1(1)-(2)$$
 gives $a_2(\lambda_1-\lambda_2)v_2+\cdots+a_t(\lambda_1-\lambda_t)v_t=0$,

which contradicts the minimality of *t*.

- If A has n distinct eigenvalues, then A is diagonalizable.
- *Proof.* If v_1, \ldots, v_n are eigenvectors associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\{v_1, \ldots, v_n\}$ is linearly independent.

Then $P = (v_1 \dots v_n)$ is invertible, and $P^{-1}AP = \Lambda$ as earlier. Hence A is diagonalizable.

When is A Diagonalizable?

Theorem A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors. In particular, \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof. (
$$\Leftarrow$$
): Done! To prove (\Rightarrow), assume $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is an invertible matrix such that $P^{-1}AP = \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$. Then

$$AP = P\Lambda$$
, i.e. $(Av_1 \ldots Av_n) = (\lambda_1 v_1 \ldots \lambda_n v_n)$. Therefore

 v_1, \ldots, v_n are eigenvectors of A. They are linearly independent since P is invertible.

Question: Is every matrix is diagonalizable? A: No.

Examples:
$$Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 no eigenvalues (over \mathbb{R})!

$$P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 not enough eigenvectors!

Summary: Diagonalizability

Let A be $n \times n$.

- A is diagonalizable $\Leftrightarrow \mathbb{R}^n$ has a basis, say $\mathcal{B} = \{v_1, \dots, v_n\}$, of eigenvectors of A, associated to eigenvalues $\lambda_1, \ldots, \lambda_n$. In this case, $P^{-1}AP = \Lambda$, where $P = (v_1 \cdots v_n)$ and Λ is a diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$.
- If A is diagonalizable, and T is the linear operator defined by Tx = Ax, then $[T]_{\mathcal{B}}^{\mathcal{B}} = \Lambda$. Thus diagonalization of A is the same as finding a basis w.r.t. which the matrix of T (defined by Tx = Ax) is diagonal.
- Eigenvectors associated to distinct eigenvalues are linearly independent. In particular, if A has n distinct eigenvalues, A is diagonalizable.

Question: If λ and μ are eigenvalues of A and B respectively, then are $\lambda\mu$ and $\lambda+\mu$ eigenvalues of AB and A+B respectively?

Reading Slide - Eigenvalues of AB and A + B

• If λ is an eigenvalue of A, μ is an eigenvalue of B, is $\lambda\mu$ an eigenvalue of AB?

False Proof.
$$ABx = A(\mu x) = \mu(Ax) = \lambda \mu x$$
.

This is false since A and B may not have same eigenvector x.

• Ex:
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

The eigenvalues of A and B are 0,0 and that of AB are 1,0.

- Eigenvalues of A+B are NOT $\lambda+\mu$. In above example, $A+B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ has eigenvalues 1, -1.
- If A and B have same eigenvectors associated to λ and μ , then $\lambda\mu$ and $\lambda + \mu$ are eigenvalues of AB and A + B respectively.

9/15

Q: When do *A* and *B* have the same eigenvectors?

Extra Reading: Simultaneous Diagonalizability

- Assume A and B are diagonalizable. Then A and B have same eigenvector matrix S if and only if AB = BA.
- **Proof.** (\Rightarrow) Assume $S^{-1}AS = \Lambda_1$ and $S^{-1}BS = \Lambda_2$, where Λ_1 and Λ_2 are diagonal matrices.

Then
$$AB=(S\Lambda_1S^{-1})(S\Lambda_2S^{-1})=S(\Lambda_1\Lambda_2)S^{-1}$$
 and $BA=S(\Lambda_2\Lambda_1)S^{-1}.$

Since $\Lambda_1\Lambda_2=\Lambda_2\Lambda_1$, we get AB=BA.

• (Part of \Leftarrow) Assume AB = BA. If $Ax = \lambda x$, then $ABx = B(Ax) = B(\lambda x) = \lambda Bx$. If Bx = 0, then x is an eigenvector of B, associated to $\mu = 0$. If $Bx \neq 0$, then x and Bx both are eigenvectors of A, associated to λ .

Special case: Assume all the eigenspaces of A are one dimensional. Then $Bx = \mu x$ for some scalar $\mu \Rightarrow x$ is an eigenvector of B. We will not prove the general case.

Eigenvalues of A^k

- If $Av = \lambda v$, then $A^2v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda^2 v$. Similarly $A^kv = \lambda^k v$ for any $k \ge 0$. Thus if v is an eigenvector of A with associated eigenvalue λ , then v is also an eigenvector of A^k with associated eigenvalue λ^k for
 - v is also an eigenvector of A^k with associated eigenvalue λ^k for $k \ge 0$. If A is invertible, then $\lambda \ne 0$. Hence, the same also holds for k < 0 since $A^{-1}v = \lambda^{-1}v$.
- If A is diagonalizable, then $P^{-1}AP = \Lambda$ is diagonal where columns of P are eigenvectors of A. Since $(P^{-1}A^kP) = \Lambda^k$, which is diagonal, we see that A^k is diagonalizable, and the eigenvectors of A^k are same as eigenvectors of A. Similarly, the same also holds for k < 0 if A is invertible.

11 / 15

Reading Slide - Application: Fibonacci Numbers

Let $F_0 = 0$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$ for $k \ge 2$ define the Fibonacci sequence. What is the kth term?

If
$$u_k = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
, then $\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_k \\ F_{k-1} \end{pmatrix}$, i.e., $u_k = Au_{k-1}$ for $n \ge 1$, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow u_k = A^k u_0$ for $k \ge 1$.

Characteristic polynomial of *A*: $\lambda^2 - \lambda - 1$

Eigenvalues:
$$\lambda_1 = \frac{1+\sqrt{5}}{2}$$
, $\lambda_2 = \frac{1-\sqrt{5}}{2}$.

There are 2 distinct eigenvalues \Rightarrow the associated eigenvectors x_1 and x_2 are linearly independent $\Rightarrow \{x_1, x_2\}$ is a basis for \mathbb{R}^2 .

Write
$$u_0 = c_1 x_1 + c_2 x_2$$
. Then $u_k = A^k u_0 = A^k (c_1 x_1 + c_2 x_2)$

$$=c_1A^kx_1+c_2A^kx_2=c_1\left(\frac{1+\sqrt{5}}{2}\right)^kx_1+c_2\left(\frac{1-\sqrt{5}}{2}\right)^kx_2.$$

Q: Find x_1 , x_2 , c_1 and c_2 and get the exact formula for F_k .

An Application: Predator-Prey Model

Let the owl and rat populations at time k be O_k and R_k respectively. Owls prey on the rats, so if there are no rats, the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%.

In particular, the rat and owl populations dependence is as follows:

$$O_{k+1} = 0.5O_k + 0.4R_k$$

 $R_{k+1} = -pO_k + 1.1R_k$

The term -p calculates the rats preyed by the owls.

Thus, if
$$P_k = \begin{pmatrix} O_k \\ P_k \end{pmatrix}$$
 and $A = \begin{pmatrix} 0.5 & 0.4 \\ -p & 1.1 \end{pmatrix}$, then $P_{k+1} = AP_k$ for all k . In particular, $P_k = A^k P_0$.

Exercise: If we start with a certain initial population of owls and rats, how many will be there in, say, 50 years, i.e., given P_0 , what is P_{50} ? What is the steady state, i.e., what is $\lim_{k\to\infty} P_k$?

An Application: Steady State

Suppose we have a system where the current state u_k depends on the previous one u_{k-1} linearly, i.e., $u_k = Au_{k-1}$. Then observe that $u_k = A^k u_0$. The steady state of the system is $u_\infty = \lim_{k \to \infty} (u_k)$. How do we find this?

- If u_0 is an eigenvector of A associated to λ , then $u_k = \lambda^k u_0$.
- Let v_1, \ldots, v_r be eigenvectors of A associated respectively to $\lambda_1,\ldots,\lambda_r$. If $u_0\in \operatorname{Span}\{v_1,\ldots,v_r\}$, i.e., $u_0=c_1v_1+\cdots+c_rv_r$ for scalars c_1, \ldots, c_r , then

 $u_k = A^k u_0 = c_1 A^k v_1 + \cdots + c_r A^k v_r = c_1 \lambda_1^k v_1 + \cdots + c_r \lambda_r^k v_r$. In particular, if A is diagonalizable, then there is a basis of \mathbb{R}^n of eigenvectors of *A*. Hence, this is applicable to every $u_0 \in \mathbb{R}^n$.

Let A be diagonalizable, and u_k represent population.

- Under what conditions will there be a population explosion?
- What conditions will force the population to become extinct?
- When does it stabilise (to a non-zero value)?

Hint: Depends on $|\lambda_i|$.

Complex Eigenvalues

Ex: Rotation by 90° in \mathbb{R}^2 is given by $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. It has no

eigenvectors since rotation by 90° changes the direction. It has no real eigenvectors.

Q has eigenvalues, but they are not real. $\det(Q - \lambda I) = \lambda^2 + 1 \Rightarrow \lambda_1 = i$ and $\lambda_2 = -i$, where $i^2 = -1$. Let us compute the eigenvectors.

$$(Q-iI)x_1 = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} x_1 = 0 \Rightarrow x_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix},$$
$$(Q+iI)x_2 = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} x_2 = 0 \Rightarrow x_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

The eigenvalues, though imaginary, are distinct, hence eigenvectors are linearly independent.

If
$$P = \begin{pmatrix} x_1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
, then $P^{-1}QP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.