

Entry2DA Course Series

Python Foundation – Python 101

Quynh-Anh Dang, Data Scientist

Section 1: Review

Machine Learning approaches

Regression vs Classification

Regression: outputs are continuous numbers

Classification: outputs are discrete labels

Section 2: Classification

Classification

Binary classification

Multi-class classification

Classification

Predict: if a customer would click an Ad or not?

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0
									2.00	
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00	1
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01	1
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57	1
998	55.55	19	41920.79	187.95	Proactive bandwidth-monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54	0
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21	1)

Classification algorithms

- Logistic Regression
- Decision Tree
- Random Forest
- Naive Bayes
- K-Nearest Neighbors
- Support Vector Machine
- Gradient Boosting

•

Logistic regression

Logistic Regression

Logistic Regression

Logistic regression = find the best-fitting S-shaped curve that maps the input features to the probability of the positive class (class 1)

Logistic Regression

Evaluation

Confusion Matrix

Basic Terminology:

- True Positives (TP): dự đoán
 là 1 và thực sự là 1
- True Negatives (TN): dự
 đoán là 0 và thực sự là 0
- False Positives (FP): dự
 đoán là 1 thực sự 0
- False Negatives (FN): dự
 đoán là 0 thực sư là 1

Accuracy

$$Accuracy = \frac{TP + TN}{Total\ number\ observation}$$

→ Out of the predictions made by the model, what percentage is correct?

Precision, Recall

$$Precision = \frac{TP}{TP + FP}$$

→ Out of all the YES predictions, how many of them were correct?

- $Recall = \frac{TP}{TP + FN}$
- → How good was the model at predicting real YES events?

F1-Score

$$F1 \, Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

→ Harmonic mean of the precision and recall

AUC/ROC Curve

Choose the right metric

Choose accuracy

- The cost of FP and FN are roughly equal.
- The benefit of TP and TN are roughly equal.

Choose Precision

- The cost of FP is much higher than a FN.
- The benefit of a TP is much higher than a TN.

Choose recall

- The cost of FN is much higher than a FP.
- The cost of a TN is much higher than a TP.

ROC AUC & Precision – Recall curves

- Use ROC when the dealing with balanced data sets.
- Use precision-recall for imbalanced data sets.

Problems

Overfitting/ Underfitting

Overfitting/ Underfitting

	Underfitting	Overfitting
Reasons	 The model is too simple. The input features which is used to train the model is not the adequate representations of underlying factors influencing the target variable. The size of the training dataset used is not enough. Excessive regularization are used to prevent the overfitting, which constraint the model to capture the data well. Features are not scaled. 	 The model is too complex. The size of the training data.
Techniques to Reduce	 Increase model complexity. Increase the number of features, performing feature engineering. Remove noise from the data. Increase the number of epochs or increase the duration of training to get better results. 	 Increase training data. Reduce model complexity. Early stopping during the training phase (have an eye over the loss over the training period as soon as loss be gins to increase stop training). Use regularization

Imbalanced dataset

Thank you