Homework 10 Solution

Math 461: Probability Theory, Spring 2021 Daesung Kim

Due date: Apr 19, 2021

1. If X_1, X_2, X_3 are independent random variables that are uniformly distributed over (0, 1), compute the probability that the largest of the three is greater than the sum of the other two.

Solution: By symmetry,

 \mathbb{P} (the largest of the three is greater than the sum of the other two) = $\mathbb{P}(X_1 \ge X_2 + X_3) + \mathbb{P}(X_2 \ge X_3 + X_1) + \mathbb{P}(X_3 \ge X_1 + X_2)$ = $3\mathbb{P}(X_1 \ge X_2 + X_3)$

$$= 3 \int_0^1 \int_0^z \int_0^{z-y} dx dy dz$$
$$= \frac{1}{2}.$$

- 2. Let X_1, X_2, X_3, X_4 be independent uniform random variables on (0,1) and $X_{(i)}$ be the *i*-th smallest random variable between X_1, X_2, X_3, X_4 , for i=1,2,3,4. (That is, $X_{(1)} \leq X_{(2)} \leq X_{(3)} \leq X_{(4)}$.) Define $X=X_{(2)}$ and $Y=1-X_{(3)}$.
 - (a) Find the joint distribution of X and Y.
 - (b) Find the conditional density of Y given X = x for $x \in (0,1)$.

Solution:

(a) For $a, b \in (0, 1)$ with a < 1 - b,

$$F_{X,Y}(a,b) = \mathbb{P}\left(X \leqslant a, Y \leqslant b\right)$$

$$= \mathbb{P}\left(X_{(2)} \leqslant a, X_{(3)} \geqslant 1 - b\right)$$

$$= \binom{4}{2} \mathbb{P}\left(X_1, X_2 \leqslant a \leqslant 1 - b \leqslant X_3, X_4\right)$$

$$= 6a^2b^2.$$

By differentiating with respect to a and b, we have

$$f_{X,Y}(a,b) = \begin{cases} 24ab, & 0 < a+b < 1, a, b \in (0,1), \\ 0, & \text{otherwise.} \end{cases}$$

(b) The marginal density of X for $x \in (0,1)$ is

$$f_X(x) = \int f_{X,Y}(x,y) \, dy = \int_0^{1-x} 24xy \, dy = 12x(1-x)^2.$$

1

So, the conditional density of Y given X = x is

$$f_{Y|X}(y|x) = \begin{cases} \frac{2y}{(1-x)^2}, & 0 < y < 1-x, \\ 0, & \text{otherwise.} \end{cases}$$

3. Let X and Y have joint density function

$$f(x,y) = \frac{1}{x^2y^2}, \ x \geqslant 1, y \geqslant 1.$$

- (a) Compute the joint density function of U = XY, V = X/Y.
- (b) What are the marginal densities?

Solution: (a) $u = xy, v = x/y \Rightarrow x = \sqrt{uv}, y = \sqrt{u/v}$. Note that $x \ge 1, y \ge 1$ implies $v \ge 1/u, u \ge v, u \ge 1, v > 0$. Thus

$$J = \det \begin{bmatrix} y & x \\ 1/y & -x/y^2 \end{bmatrix} = -2x/y$$

and

$$f_{U,V}(u,v) = f(x,y) \cdot \frac{y}{2x} = \frac{1}{2u^2v}, \qquad u \geqslant v \geqslant 1/u, u \geqslant 1, v > 0.$$

(b) The marginal density of U is

$$f_U(u) = \int_0^\infty f_{U,V}(u,v)dv = \int_{1/u}^u \frac{1}{2u^2v}dv = \frac{\log u}{u^2}, u \geqslant 1.$$

The marginal density of V is

$$f_V(v) = \int_0^\infty f_{U,V}(u,v) du = \int_{\max\{v,1/v\}}^\infty \frac{1}{2u^2 v} du = \begin{cases} \frac{1}{2v^2} & \text{if } v \geqslant 1\\ \frac{1}{2} & \text{if } 0 < v < 1. \end{cases}$$

Here we use that $f_{U,V}(u,v)$ is positive only when $u \ge \max\{1, v, 1/v\}$.

4. If X and Y are independent and identically distributed with mean μ and variance σ^2 , find $\mathbb{E}[(X-Y)^2]$.

Solution: We have
$$\mathbb{E}[X-Y]=0$$
 and thus $\mathbb{E}[(X-Y)^2]=\mathrm{Var}(X-Y)=\mathrm{Var}(X)+\mathrm{Var}(-Y)=2\sigma^2$.

5. If $\mathbb{E}[X] = 1$ and $\operatorname{Var}(X) = 4$, find (a) $\mathbb{E}[(2+X)^2]$ and (b) $\operatorname{Var}(4+2X)$.

Solution: (a)
$$\mathbb{E}[(2+X)^2] = \mathbb{E}[4+4X+X^2] = 4+4 \cdot \mathbb{E}[X] + (\mathbb{E}[X]^2 + \text{Var}(X)) = 13$$
 and (b) $\text{Var}(4+2X) = 4 \text{Var}(X) = 16$.

6. The random variables X and Y have a joint density function given by

$$f(x,y) = \begin{cases} 2e^{-2x}/x & \text{if } 0 < x < \infty, 0 < y < x \\ 0 & \text{otherwise.} \end{cases}$$

2

Compute Cov(X, Y).

Solution: We have

$$\begin{split} \mathbb{E}[X] &= \int_0^\infty \int_0^x x \cdot 2e^{-2x}/x dy dx = \int_0^\infty x \cdot 2e^{-2x} dx = 1/2 \\ \mathbb{E}[Y] &= \int_0^\infty \int_0^x y \cdot 2e^{-2x}/x dy dx = \int_0^\infty x \cdot e^{-2x} dx = 1/4 \\ \mathbb{E}[XY] &= \int_0^\infty \int_0^x xy \cdot 2e^{-2x}/x dy dx = \int_0^\infty x^2 \cdot e^{-2x} dx = 1/4. \end{split}$$

Thus $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = 1/4 - 1/2 \cdot 1/4 = 1/8$.

- 7. A total of n balls, numbered 1 through n, are put into n urns, also numbered 1 through n in such a way that ball i is equally likely to go into any of the urns $1, 2, \ldots, i$. Find
 - (a) the expected number of urns that are empty;
 - (b) the probability that none of the urns is empty.

Solution: Let X_j equal 1 if urn j is empty and 0 otherwise. Then

$$\mathbb{E}[X_j] = \mathbb{P}(\text{ ball } i \text{ is not in urn } j, i \geqslant j) = \prod_{i=j}^n (1-1/i) = \frac{j-1}{n}.$$

Hence,

(a)
$$\mathbb{E}[\text{Number of empty bins}] = \sum_{j=1}^{n} \frac{j-1}{n} = \frac{n-1}{2}.$$

(b)
$$\mathbb{P}(\text{None are empty}) = \mathbb{P}(\text{ball } j \text{ is in urn } j, \text{ for all } j) = \prod_{j=1}^{n} \frac{1}{j} = \frac{1}{n!}.$$

8. Consider n independent flips of a coin having probability p of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if n=5 and the outcome is HHTHT, then there are 3 changeovers. Find the expected number of changeovers.

Solution: Let X_i equal 1 if a changeover occurs on the *i*-th flip and 0 otherwise. Then

$$\mathbb{E}[X_i] = \mathbb{P}((i-1) \text{ is H}, i \text{ is T}) + \mathbb{P}((i-1) \text{ is T}, i \text{ is H}) = 2p(1-p), i \ge 2.$$

Thus, expected number of changeovers is $(n-1) \cdot 2p(1-p)$.

9. A group of 20 people consisting of 10 married couples is randomly arranged into 10 pairs of 2 each. Compute the mean and variance of the number of married couples that are paired together.

Solution: Let
$$X_i = \mathbf{1}_{\{\text{pair } i \text{ consists of a married couple}\}}$$
. Thus $\mathbb{E}[X_i] = \mathbb{P}(X_i = 1) = 1/19, \text{Var}(X_i) = \frac{1}{19} \left(1 - \frac{1}{19}\right), \text{Cov}(X_i, X_j) = \mathbb{P}(X_i = 1, X_j = 1) - \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1) = \frac{1}{19 \cdot 17} - \left(\frac{1}{19}\right)^2 \text{ for } i \neq j.$ Hence

$$\operatorname{Var}(X_1 + X_2 + \dots + X_{10}) = 10 \cdot \frac{1}{19} \left(1 - \frac{1}{19} \right) + 10 \cdot 9 \cdot \left[\frac{1}{19 \cdot 17} - \left(\frac{1}{19} \right)^2 \right] = \frac{180 \cdot 18}{19^2 \cdot 17}.$$

10. Let $X_1, X_2, ...$ be independent random variables with common mean μ and common variance σ^2 . Set $Y_n = X_n + X_{n+1} + X_{n+2}, n \ge 1$. For $j \ge 0$, find $Cov(Y_n, Y_{n+j})$.

3

Solution:

$$\begin{split} \operatorname{Cov}(Y_n,Y_n) &= \operatorname{Var}(Y_n) = 3\sigma^2 \\ \operatorname{Cov}(Y_n,Y_{n+1}) &= \operatorname{Cov}(X_n + X_{n+1} + X_{n+2}, X_{n+1} + X_{n+2} + X_{n+3}) \\ &= \operatorname{Cov}(X_{n+1} + X_{n+2}, X_{n+1} + X_{n+2}) = 2\sigma^2 \\ \operatorname{Cov}(Y_n,Y_{n+2}) &= \operatorname{Cov}(X_{n+2},X_{n+2}) = \sigma^2 \\ \operatorname{Cov}(Y_n,Y_{n+j}) &= 0 \text{ when } j \geqslant 3. \end{split}$$