PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-270031

(43)Date of publication of application: 02.10.2001

(51)Int.C1.

B32B 15/08 B32B 27/18 B32B 27/30 B32B 27/36

(21)Application number: 2000-087862

(71)Applicant: NISSHIN STEEL CO LTD

(72)Inventor: YONEZAWA SHINGO 28.03.2000

TAOMOTO TOSHIE

(54) SHEATHING MATERIAL FOR ANTIDEWING

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To provide a sheathing material for antidewing having excellent corrosion resistance by improving an infrared emissivity by improving a spectral emissivity in a wavelength band of a range of 4 to 6 μm in an organic polymer film of the material and reducing, for example, an antidewing cold insulation thickness of piping of an LNG plant to be operated at a low temperature.

SOLUTION: The organic polymer film having a surface roughness at a centerline mean roughness of 2 to 20 μm , a means wavelength of a waviness of 5 to 60 μm , a minimum value of a spectral emissivity in a wavelength band of a range of 4 to 6 μm of 0.5 or more and an infrared emissivity of 0.85 or more is formed on at least one surface of a metal plate.

LEGAL STATUS

[Date of request for examination]

24.03.2003

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-270031 (P2001-270031A)

(43)公開日 平成13年10月2日(2001.10.2)

(51) Int.Cl.7	識別記号	FI	テーマコード(参考)			
B 3 2 B 15/08		B32B 19	5/08 E 4F100			
27/18		2	7/18 Z			
27/30		2	7/30 A			
27/36		27/36				
•		審査請求	未請求 請求項の数4 OL (全 6 頁)			
(21)出願番号	特顯2000-87862(P2000-87862)	(71) 出顧人	00004581 日新製鋼株式会社			
(22)出顧日	平成12年3月28日(2000.3.28)	東京都千代田区丸の内3丁目4番1号				
(20) 1209 (2		(72)発明者	米澤 信吾 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社技術研究所強装・複合材料研究			
	•		部内			
		(72)発明者	・			
			部内			
		(74)代理人				
	•		弁理士 磯野 道造			
			最終質に続く			

(54) 【発明の名称】 結婚防止用外装材

(57)【要約】

【課題】 外装材の有機高分子被膜において、波長 4~6 μm域での分光放射率を向上させることにより、 赤外線放射率を向上させ、例えば、低温運転されるLN Gプラントなどの配管に対して、結蹊防止保冷厚さを低減し、かつ耐食性に優れた結蹊防止用外装材のの提供を 課題とする。

【解決手段】 金属板の少なくとも片面に、表面粗さが中心線平均粗さで2~20μm、うねりの平均波長が5~60μmであって、波長4~6μm域での分光放射率の最小値が0.5以上、かつ赤外線放射率が0.85以上である有機高分子被膜を形成したことを解決手段とする。

10

【特許請求の範囲】

【請求項 1 】 金属板の少なくとも片面に、表面粗さが中心線平均粗さで $2\sim20\mu$ m、うねりの平均波長が $5\sim60\mu$ mであって、波長 $4\sim6\mu$ m域での分光放射率の最小値が0.5以上、かつ赤外線放射率が<math>0.85以上である有機高分子被膜を形成したことを特徴とする結露防止用外装材。

1

【請求項2】 前記有機高分子被膜が縮み塗料からなることを特徴とする請求項1 に記載の結露防止用外装材。

【請求項3】 前記縮み塗料がポリエステル樹脂系又はアクリル樹脂系である請求項2に記載の結露防止用外 装材。

【請求項4】 前記有機高分子被膜中の平均粒径が2~60μmである骨材を乾燥被膜中体積含有率で30~80%含有することを特徴とする請求項1に記載の結路防止用外装材。

【発明の詳細な説明】

[0001]

(発明の属する技術分野)本発明は、配管などに使用さ 20 れ結蹊防止に有効な結蹊防止用外装材に関する。

[0002]

【従来の技術】LNGブラントに代表される配管の保温・保冷状態はバイブの外部に巻かれる断熱材および外装材に影響される。搬送流体がマイナス百数十で程度の配管の場合、外装材表面で腐食の原因になる結露が生じる恐れがあるため、バイブ外装材の表面温度を露点以上に保持することができるような厚みいわゆる保冷厚さ以上の断熱材が使用される。この保冷厚さについては、例えば、ASTM C 680-69、VDI2055など 30に試算モデルが示されているが、対流による熱伝達率を一定とした場合、外装材表面の放射率が高いほど保冷厚さが薄くなる傾向がある。

【0003】現在、外装材としては一般的に塗装されていないステンレス鋼板、アルミニウムめっき鋼板、アルミニウム板が使用されている。配管の施工上、断熱材の厚みは薄い方が好ましいが、これらの外装材の赤外線放射率は0.2~0.4と低く、設計が適切でなかった場合、昼間日陰になる部分および夜間時に表面に結露を生じることがあった。この結露の発生によって外装材の腐食が発生し進行すると、外装材の交換が必要になり、さらに断熱材部に水分が侵入した場合には、断熱効果が低下して保冷不足になったり、配管自体の腐食も誘発したりして、内部液体の一部が気化し輸送効率が著しく低下するという問題があった。

【0004】前記のような結びを防止するため、例えば 雑誌「配管と装置」96年3月号2~7ページに見られ るように外装材に赤外線放射率0.8~0.85程度の 塗装材を使用することが検討されている。これら塗装材 の使用により前述の外装材と比較して20~30%程度 50

保冷厚さの低減を図ることができると試算されている。 従って、既存の設備・配管に対しても外装材のみを交換 することで、断熱材の厚みを変えることなく、より大き な結蹊防止効果を得ることができる。

[0005]

【発明が解決しようとする課題】ところで、塗装材の被膜の主成分である有機高分子の赤外線放射特性は、図2の分光放射スペクトルにみられるように、波長4~6μmの放射率が他の波長域に比較して低く、このことは全波長域を対象とした赤外線放射率を低下させる原因となっている。この理由は、有機高分子の骨格や官能基の有する固有の振動、回転エネルギーのうち、4~6μmの波長域には、例えばニトリル基などの限られた赤外エネルギーしか存在しないためである。

【0006】有機高分子被膜の放射率は、一般的に被膜厚さに依存するので、膜厚を増加させることによって赤外線放射率を高くすることができる。しかしながらフレコート鋼板においては、各種特性を満足させるため膜厚の上限が設定され、前述の赤外線放射率をさらに大きくすることは不可能であった。そこで赤外線放射率を向上させる手段としては、この波長領域に高放射率を示す粉末を被膜中に含有させる方法しか見出されていなかった。

【0007】本発明は、外装材の有機高分子被膜において、波長4~6µm域での分光放射率を向上させることにより、赤外線放射率を向上させ、例えば、低温運転されるLNGプラントなどの配管に対して、結露防止保冷厚さを低減し、かつ耐食性に優れた結露防止用外装材の提供を課題とする。

[0008]

【課題を解決するための手段】前記課題を解決した本発明の態様は、金属板の少なくとも片面に、表面粗さが中心線平均粗さで2~20μm、うねりの平均波長が5~60μmであって、波長4~6μm域での分光放射率の最小値が0.5以上、かつ赤外線放射率が0.85以上である有機高分子被膜を形成したことを特徴とする結露防止用外装材である。

【0009】前記本発明においては、前記有機高分子被膜が例えばポリエステル系又はアクリル系の縮み塗料からなることを特徴とするか、前記有機高分子被膜中の平均粒径が2~60μmである骨材を乾燥被膜中体積含有率で30~80%含有することを特徴とすることが望ましい。

[0010]

【発明の実施の形態】本発明者らは、結び防止用として、赤外線放射率をさらに(0. 9程度以上まで)向上させる方法として、外装材の被膜表面を表面粗さが中心線平均粗さで $2\sim20~\mu\mathrm{m}$ 、うねりの平均波長を $5\sim60~\mu\mathrm{m}$ とし、波長 $4\sim6~\mu\mathrm{m}$ 域の分光放射率の最小値を0. 5以上とすることが有効であることを見い出した。

波長4~6μmの赤外線の放射率を向上させるために、 有機高分子被膜の表面形状を本発明に規定した中心線平 均粗さで2~20μm、うねりの平均波長が5~60μ mとすれば効果が得られることについて、発明者らは、 顔料粒径が塗膜の隠べい性に影響を及ぼす場合と同様の 作用が働くためと推定している。

【0011】 着色顔料の粒径と光の反射、吸収などの光学特性との関係は、これまで多くの研究者によって研究されてきた。その結果、良好な隠へい力や着色力を得るためには、最適な顔料粒径が存在することが明らかにされている。最適粒径は顔料の屈折率によって変化するが、屈折率の高いルチル型酸化チタンで光の波長の1/2倍の粒径、屈折率の比較的低い黄酸化鉄で光の波長の1倍の粒径である。Kirchhoffの法則より吸収率と放射率は等しいことから、吸収率を放射率と置き換えて考えることが可能である。すなわち、光の効率的な反射、吸収/放射が行われる粒径は、対象とする光の波長の少なくとも1/2倍以上必要であることが導かれる。

【0012】被膜表面において、平滑な表面に比較して 粗度の大きな表面が高い放射率を示すことについては、 当然、表面粗度の大きい表面は表面積が拡大されること によって、放射性を高めるからであると考えられるが、 それだけでは、有機高分子被膜の放射特性の中でとりわ け波長4~6μmの領域の分光放射率を大幅に向上する ことを説明できない。本発明者らは、顔料粒径と光の反 射、吸収/放射特性との関係と同様の作用が被膜表面で 生じ、この作用が赤外線放射率の向上に大きく寄与する ためであると推察する。

【0013】さらに、本発明で注目した波長4 \sim 6 μ m の領域の赤外線を放射するためには、目的波長の1/2 30倍である 2μ m以上、 20μ m以下の中心線平均粗さを有し、うねりの平均波長が $5\sim$ 6 0μ mと規定することで達成することが可能となる。中心線平均粗さが 2μ m より小さいか、うねりの平均波長が $5\sim$ 6 0μ mでない場合、上記の作用を得ることができないため、目的とする波長4 \sim 6 μ mの領域の分光放射率を向上することができない。又、中心線平均粗さが 20μ mより大きいものは成形加工時に被膜の割れを生じやすく、対磨耗性も劣るため実用性を満足しない。本発明の被膜表面形状を形成することにより、波長4 \sim 6 μ mの分光放射率の最 40小値は平滑な表面が $0.3\sim$ 0.4程度(図26 μ mの分光放射なであるのに比較して、図10の分光放射スペクトルに示すように0.5以上に向上させることが可能となった。

【0014】本発明の赤外線放射率の高い外装材が結路 防止に有効に働くのは、以下に説明する作用によると考えられる。本発明の結び防止用外装材がLNGなど極低温の流体を輸送する保冷配管の外装材として使用される環境において、外装材表面温度は周囲環境の温度より低い状態となる。この場合、熱の移動は周囲環境から外装材の方向に生じることになるため、外装材の吸収率、す 50 い。

なわち、放射率が高いほど外装材表面の温度は上昇し、 露点以上に保つことが容易となる。環境の温度は、LN Gが産出される熱帯地域においては最高 40 Cを越える ことが考えられる。このような高温からは主として波長 $3\sim50~\mu$ mの赤外線が放射される。放射される赤外線 の内、よりエネルギーの大きい短波長の $4\sim6~\mu$ mの分 光放射率を0.5 以上にすることは、従来の有機高分子 被覆外装材に比較して、外装材表面温度を露点以上に保 つことに有利に働き、その結果、断熱材の厚さを減少さ せることが可能となる。

【0015】本発明者らは、本発明の4~6µm域の分 光放射率の最小値が0.5以上を示す形状を持つ有機高 分子被膜をより容易に形成する方法を見出した。一つ は、例えば、縮み塗料(表面張力、硬化速度の異なる2 種類以上の樹脂を組み合わせた塗料であって、焼き付け 硬化後、凹凸形状を形成する塗料)を選択し、適切な条 件で塗装・焼き付け硬化させることによって本発明に規 定する表面形状を持った被膜を形成させる方法である。 縮み塗料の樹脂系としては、特に限られるものではない が、例えばポリエステル樹脂またはアクリル樹脂などが あげられる。塗装条件としては、平均被膜厚として、少 なくとも 1.2 μ m以上を形成することが望ましい。 1.2 μπ未満であると被膜厚に依存する赤外線放射率が下地 金属板の放射率を反映して低くなり、本発明規定の赤外 線放射率0.85以上を達成できないためである。焼き 付け硬化条件としては、公知のプレコートメタル用縮み 塗料の焼き付け条件、例えば、180~250℃で30 ~120秒間焼き付ける方法を採用すればよい。

【0016】もう一つの方法は、有機高分子被膜中に平 均粒径が2~60µmである骨材を乾燥被膜中体積含有 室で30~80%含有させる方法である。骨材の粒径が 2μm未満の場合中心線平均粗さが2μm以下となり、 60 µmを超えるとうねりの平均波長が60 µmを超え るため、ともに本発明の規定範囲を満足しない。骨材の 乾燥被膜中体積含有率が30%未満の場合、うねりの平 均波長が60μmを超え、本発明の規定範囲を達成しな い。一方骨材の乾燥被膜中体積含有率が80%を超える と、被膜中に占めるバインダーの比率が小さくなり、被 膜の凝集力の不足したもろい被膜となるため実用に耐え られなくなる。この場合の有機高分子被膜は、樹脂系が 例えばポリエステル樹脂、アクリル樹脂、フッ素樹脂、 エポキシ樹脂、塩化ビニル樹脂、ウレタン樹脂、シリコ ン樹脂、シリコン変性ポリエステル樹脂の少なくとも1 種以上を選択したプレコートメタル用塗料を使用して、 適当な焼き付け条件、例えば180~250℃で30~ 120秒焼き付ければよい。なお、骨材の種類は、例え は、ガラスピーズ、シリカ粒子、ナイロンピーズ、ポリ エステルビーズ、ポリアクリロニトリルビーズ、PTF E粒子、アクリルビーズ等、無機物、有機物を問わな

5

[0017] 本発明の結蹊防止用外装材の基板である金属板には、耐食性の良好なめっき鋼板、例えば、アルミニウムめっき鋼板、亜鉛ーアルミニウム合金合金めっき鋼板、亜鉛めっき鋼板など、ステンレス鋼板、アルミニウム板などが使用できる。

【0018】さらに赤外線放射率の向上を図る場合には、被膜中に赤外線高放射性材料粉末を一種以上添加してもよい。このような粉末としては、セラミックス粉末、遷移元素の酸化物又は複合酸化物粉末、カーボンブラックなどがある。具体的には、セラミックス粉末とし 10 て、TiC、TiN、TiB,、TiO、ZrCなどがあり、遷移元素の酸化物又は複合酸化物粉末としては、Fe,O,、MnO,、CoO, CuO, Cr,O,、NiOなどがある。

【0019】なお、本発明の有機高分子被膜を形成しないもう一方の面については被膜の有無を規定しないが、 結露による腐食防止のためには、同様に適当な被膜を形成しておくことが望ましい。

[0020] (実施例)本発明の実施例を比較例、従来例とともに以下に説明する。

実施例1

板厚0.5mmの溶融アルミニウムめっき鋼板の基材の片面に、アルカリ脱脂処理後、リン酸クロメート処理を施した。そして、顔料組成を乾燥被膜に占める割合がTiO、(平均粒径 $0.23\mu m$) $50質量%、カーボンブラック(平均粒径<math>0.02\mu m$) $0.5質量%であるポリエステル樹脂系縮み塗料を乾燥後の被膜厚が<math>20\mu m$ となるよう塗装、乾燥して外装材を製造した。

【0021】実施例2

実施例1において乾燥後被膜厚を12μmとした以外は 30 実施例1と同様な操作を行い外装材を製造した。

【0022】比較例1

実施例1 において、塗料を同一顔料組成のポリエステル 樹脂系塗料に変更した以外は実施例1 と同様な操作を行 い外装材を製造した。

[0023] 実施例3

実施例1において、塗料を同一顔料組成のポリエステル 樹脂系塗料に変更し、平均粒径が25μmのナイロンピーズを乾燥被膜中体積含有率が30%となるよう混合した後、塗装、乾燥した以外は実施例1と同様な操作を行 40い外装材を製造した。

[0024] 実施例4

実施例1において、塗料を同一顔料組成のポリエステル

樹脂系塗料に変更し、平均粒径が25μmのナイロンビーズを乾燥被膜中体積含有率が80%となるよう混合した後、塗装、乾燥した以外は実施例1と同様な操作を行い外装材を製造した。

【0025】比較例2

実施例1 において、塗料を同一顔料組成のポリエステル 樹脂系塗料に変更し、平均粒径が25 μmのナイロンビ ーズを乾燥被膜中体積含有率が20%となるよう混合し た後、塗装、乾燥した以外は実施例1と同様な操作を行 い外装材を製造した。

【0026】比較例3

実施例1において、塗料を同一顔料組成のポリエステル 樹脂系塗料に変更し、平均粒径が70μmのナイロンビ ーズを乾燥被膜中体積含有率が50%となるよう混合し た後、乾燥後被膜厚が65μmとなるよう塗装、乾燥し た以外は実施例1と同様な操作を行い外装材を製造し た。

[0027] 実施例5

板厚0.5mmのクロム系ステンレス鋼SUS430 2B仕上げ材からなる基材の片面に、アルカリ脱脂処理 後、塗布型クロメート処理液を塗布、乾燥した。そし て、実施例1と同じポリエステル樹脂系縮み塗料を乾燥 後の被膜厚が20μmとなるように塗装、乾燥して外装 材を製造した。

[0028] 実施例6

板厚 0.5 mmの5% A 1 溶融亜鉛めっき鋼板からなる 基材の片面に、酸洗処理後、塗布型クロメート処理液を 塗布、乾燥した。そして、実施例1と同一顔料組成のア クリル樹脂系縮み塗料を乾燥後の被膜厚が20μmとな るように塗装、乾燥して外装材を製造した。

[0029] 従来例

実施例1において、塗装する塗料をアクリルクリアーとし、乾燥後被膜厚を2μmとした以外は実施例1と同様な操作を行い外装材を製造した。

【0030】下記表 1 化、実施例 $1\sim6$ 、比較例 $1\sim3$ 、従来例で各々製造した外装材の被膜特性を示す。なお、赤外線放射率は、放射計(Device & Service社製AERD型)を用いて波長 $3\sim30~\mu$ mの範囲の全放射率を測定して、赤外線放射率とした。また、波長 $4\sim6~\mu$ mの分光放射率は、CI systems社製 SR IR spectroradio meterを用いて計測した。

[0031]

【表1】

区分	基材積·類	樹脂系	膜厚	赤外線	放射率	組さ	平均波長	額料濃度	粒径
	as 171 131 X4	सम्बद्धाः सर	(μm)	放射率	最小位	(μm)	(μm)	(%)	(μm)
実施例 1		ポリエステル格み	20	0. 92	0.65	10	3 5	0	
実施例2			1 2	0.87	0. 57	7	30	0	_
比較例1		ポリエステル	20	0. 80	0.35	1	150	0	-
実施例3	Al めっき鋼板		20	0.86	0.54	4	40.	30	25
実施例4			20	0.87	0.56	6	30	80	25
比较到2			20	0.83	0.45	2	80	20	2 5
比較例3			6 5	0.84	0.47	3	100	50	70
実施例5	SUS430	ポリエステル組み	20	0. 92	0.63	10	3 5	0	-
実施例6	5%AlーZn めっき鋼板	アクリル縮み	20	0. 90	0.60	8	3 5	0	_
従来例	Al めっき郵板	アクリルクリアー	2	0. 37	0.38	0. 5	100	0	-

(5)

- (注1) 関厚は平均皮膜厚である。
- (注2) 放射率最小値は波長4~6 µmの分光放射率の最小値である。
- (注3) 粗さは中心線平均あらさで、波長はうねりの平均波長である。

【0032】表1に示すように、本発明実施例1~6はいずれも、表面粗さが中心線平均粗さで2μm以上で20μm以下、うねりの平均波長が5μm以上で60μm以下であって、波長4~6μm域での分光放射率の最小値が0.5以上、かつ赤外線放射率が0.85以上であるという本発明の数値限定範囲に入っているが、比較例1~3及び従来例は上記の数値限定範囲を満足していない。

【0033】次いで、断熱材の厚さを変えることによ り、結蹊の有無を見る試験を行った。試験は雰囲気20 *C、相対湿度60%の屋内で行った。図3に示すように 直径150mm、長さ400mmの円筒状鋼製容器(板 30 厚2mm) 1の底面に設けた注入口2より液体窒素を注 入し、密閉した。鋼製容器1の両底面に直径350m m、厚さ250mmの円柱状断熱材3をそれぞれ被覆し た。なお、断熱材にはJIS A 9514規格の保温 板1種2号に相当する硬質ウレタンフォーム成型品を切 出して使用した。続いて測定面である側面に上記と同一 の断熱材4を設定厚さに巻き付けて被覆し、この外面に 表1に示した外装材5を隙間無く巻き付け、バンド止め して固定した。結露発生の有無の判定は、鋼製容器外面 に接触させた熱電対によって示される温度が-150℃ 以下に60分以上保持されたのを確認後、外装材表面を 目視観察して行った。各外装材について断熱材厚さを減 少していき、結露の発生が起こらない最小の厚さ(結路 非発生最小断熱材厚さ)を記録した。調査結果を下記表 2に示す。

(0034)

【表2】

区分	結算非発生
	最小断熱材厚さ(mm)
実施例1	150
実施例2	170
比較例1	200
実施例3	180
実施例4	180
比較例2	220
比較例3	210
実施例 5	150
実施例 6	160
従来例	250

【0035】表1、表2より赤外線放射率、波長4~6 μmの分光放射率の最小値が大きくなる程、結露非発生最小断熱材厚さは小さくなることが分かる。即ち、本発明の範囲でない比較例1~3、従来例の場合、結露非発生最小断熱材厚さは大きくなるのに対して、本発明品の範囲である4~6μmの分光放射率が0.5以上、赤外線放射率が0.85以上である実施例1~6の場合に、断熱材厚さの低減効果が得られたことが分かる。

[0036]

(発明の効果)本発明は以下のような優れた効果を奏する。

- (1)請求項1に係る本発明の結蹊防止用外装材によれば、高放射率であることから、断熱保冷材の厚さが小さくて済むため、LNGプラント等の設備コストの削減が図れる。同時に、塗装鋼板を使用することにより外装材の耐食性の向上を図ることもできる。
- (2)請求項2~請求項4のいずれか1項に係る本発明 50 の結蹊防止用外装材によれば、請求項1に規定した本発

明の結露防止用外装材を容易に得ることができる。 【図面の簡単な説明】

【図1】 本発明の結蹊防止用外装材における分光放射スペクトルの一例を示す図である。

【図2】 従来の塗装材における分光放射スペクトルの一例を示す図である。

【図3】 結露非発生最小断熱材厚さを求めるための*

【図1】

【図3】

*実験装置の斜視図である。

【符号の説明】

- 1 鋼製容器
- 2 注入口
- 3 円柱状断熱材
- 4 側面断熱材
- 5 外装材

【図2】

10

フロントページの続き

Fターム(参考) 4F100 AA20 AA36 AB01A AB10

AK01B AK01C AK25B AK25C
AK41B AK41C BA02 BA03
BA06 BA10B BA10C BA13
CA24B CA24C CC00B CC00C
DD07B DD07C EJ69 GB90
JA20B JA20C JB02 JN30B
JN30C YY00B YY00C