主成分分析

Principal Component Analysis

主成分分析-PCA

由卡尔·皮尔逊于1901年发明,是一种分析、简化数据集的技术。 PCA作为最重要的降维方法之一,在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。

PCA的数学定义是:一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推

卡尔·皮尔逊(Karl Pearson) 1857年 – 1936年 英国数学家和自由思想家

数据降维-百年发展史

主成分分析-理论定义

PCA有2种经常使用的定义,这两种定义会给出相同的算法。1.0

最大方差形式: PCA被定义为数据在低维线性空间(主子空间)

上的正交投影,使得投影数据的方差被最大化。(Hotelling,1933)

最小误差形式: PCA被定义为使得平均投影代价最小的线性投影。 平均投影代价指数据点与其投影之间的平均平方距离。

(Pearson, 1901)

主成分分析-最大方差投影

寻找一个垂直的新的坐标系, 然后将原始数据投影过去

1.找这个坐标系的标准或者目标是什么?

2.为什么要垂直, 如果不是垂直的呢?

主成分分析-最大方差投影

投影:
$$\mathbf{w}^T x$$

方差:
$$\frac{1}{n}\sum_{i=1}^{n}(\mathbf{w}^{T}\boldsymbol{x}_{i})^{2}=\mathbf{w}^{T}S\mathbf{w}$$

$$S = rac{1}{n} \sum_i oldsymbol{x}_i oldsymbol{x}_i^T$$

最大方差:

$$\max_{\mathbf{w}} \quad \mathbf{w}^T S \mathbf{w}$$

$$s.t. \quad \|\mathbf{w}\| = 1$$

拉格朗日乘数法:

$$L = \mathbf{w}^T S \mathbf{w} + \lambda (1 - \mathbf{w}^T \mathbf{w})$$

$$\frac{\partial L}{\partial \mathbf{w}} = 2S\mathbf{w} - 2\lambda\mathbf{w}$$

$$S\mathbf{w} = \lambda \mathbf{w}$$

方差:

$$\mathbf{w}^T S \mathbf{w} = \mathbf{w}^T \lambda \mathbf{w} = \lambda$$

理解, PCA 中, 矩阵特征值和特征向量的由来!

主成分分析-最小重建误差

重建:

对于降维后的数据,将其恢复到原始数据空间内

正交基:

$$\mathbf{u}_1,\cdots,\mathbf{u}_D$$

原始数据:
$$\mathbf{x}_i = \sum_{j=1}^D \alpha_{ij} \mathbf{u}_j$$

基坐标:

$$lpha_{ij} = \mathbf{u}_j^T \boldsymbol{x}_i$$

降维重建:
$$\hat{\boldsymbol{x}}_i = \sum_{j=1}^d \alpha_{ij} \mathbf{u}_j$$

PCs # 30

PCs # 10

PCs # 40

PCs # 20

PCs # 50

主成分分析-最小重建误差

正交基: $\mathbf{u}_1, \cdots, \mathbf{u}_D$

$$\mathbf{u}_1,\cdots,\mathbf{u}_D$$

原始数据:
$$x_i = \sum_{j=1}^{D} \alpha_{ij} \mathbf{u}_j$$

基坐标:

$$lpha_{ij} = \mathbf{u}_i^T \boldsymbol{x}_i$$

降维重建:
$$\hat{\boldsymbol{x}}_i = \sum_{j=1}^d \alpha_{ij} \mathbf{u}_j$$

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|\sum_{j=1}^{D} \alpha_{ij} \mathbf{u}_{j} - \sum_{j=1}^{d} \alpha_{ij} \mathbf{u}_{j}\|^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|\sum_{j=d+1}^{D} \alpha_{ij} \mathbf{u}_{j}\|^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=d+1}^{D} \alpha_{ij}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=d+1}^{D} \mathbf{u}_{j}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{u}_{j}$$

$$= \sum_{i=d+1}^{D} \mathbf{u}_{j}^{T} S \mathbf{u}_{j} \quad \text{等价方差最小}$$

主成分分析-高斯先验误差

从最小重建误差。 我们 可以求解最小二乘法, 从最 🗟 0.2 小二乘法, 我们可以得到高 斯先验误差。

假设 $X_1,...,X_n$ $Y_1,...,Y_n$ 满足如下: $y_i = \alpha + \beta x_i + \epsilon_i \qquad \epsilon_i = y_i - (\alpha + \beta x_i) \qquad$ 其中误差满足正态分布: $\varepsilon_i \sim N(0,\sigma^2)$

那么根据MLE, 我们得到:

$$L(\alpha, \beta, \sigma^2 | \mathbf{y}, \mathbf{x}) = \frac{1}{\sqrt{(2\pi\sigma^2)^n}} \exp{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (\alpha + \beta x_i))^2}$$

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp{-\frac{\epsilon_1^2}{2\sigma^2}\cdot\frac{1}{\sqrt{2\pi\sigma^2}}\exp{-\frac{\epsilon_2^2}{2\sigma^2}\cdot\cdot\cdot\frac{1}{\sqrt{2\pi\sigma^2}}\exp{-\frac{\epsilon_n^2}{2\sigma^2}}}=\frac{1}{\sqrt{(2\pi\sigma^2)^n}}\exp{-\frac{1}{2\sigma^2}\sum_{i=1}^n\epsilon_i^2}$$

求最大值 $\ln L(\alpha, \beta, \sigma^2 | \mathbf{y}, \mathbf{x}) = -\frac{n}{2} (\ln 2\pi + \ln \sigma^2) \left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (\alpha + \beta x_i))^2 \right)$ 求最小值

 $SS(\alpha.\beta) = \sum_{i=1}^{n} (y_i - (\alpha + \beta x_i))^2$ \leftarrow 这个刚好是LSE的表达式

主成分分析-线性流形对齐

如果我们把高斯先验的认 识,到到数据联合分布,但是 如果把数据概率值看成是空间。 那么我们可以直接到达一个新 的空间认知

A. 对所有样本中心化(标准化)

平衡各个特征尺度, 去除量纲影响

$$X' = X - \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$x_j = \frac{x_j - \frac{1}{m} \sum_{i=1}^m x_i}{S}$$

PCA步骤流程

对数据 $X = \{x_1, x_2, ... x_m\}$ 降维

1.对输入样本中心化

- 2.计算协方差矩阵
- 3.求解特征值与特征向量
- 4.按大小排列特征值,取前K 个对应的特征向量组成矩阵P
- 5.对X进行基变换 $Y = R^T X$

B. 计算协方差矩阵

由于对数据集进行了中心化处理,协方差计算无需再考虑均值

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T} = \frac{1}{m} X X^{T}$$

PCA步骤流程

对数据 $X = \{x_1, x_2, ... x_m\}$ 降维

1.对输入样本中心化

2.计算协方差矩阵

3.求解特征值与特征向量

4.按大小排列特征值,取前K 个对应的特征向量组成矩阵P

5.对X进行基变换 $Y = R^T X$

C. 求解特征值与特征向量

常用的特征值求解方法
$$\begin{cases} \varphi(M) = \det(\lambda I - M) = 0 \\ (\lambda I - M)X = \mathbf{0} \end{cases}$$

Python可以使用numpy库实现:

numpy.linalg.eig

PCA步骤流程

对数据 $X = \{x_1, x_2, ... x_m\}$ 降维

1.对输入样本中心化

2.计算协方差矩阵

3.求解特征值与特征向量

4.按大小排列特征值,取前K 个对应的特征向量组成矩阵P

5.对X进行基变换 $Y = R^T X$

D. 特征值排序,构成约简矩阵

- 1) 对于求解出的特征值, 按大小排序。
- 2) 将排序后的前K个特征值对应的特征向量组成约简矩阵R

$$R = (u^{(1)}, u^{(2)}, \dots, u^{(k)})$$

PCA步骤流程

对数据 $X = \{x_1, x_2, ... x_m\}$ 降维

1.对输入样本中心化

2.计算协方差矩阵

3.求解特征值与特征向量

4.按大小排列特征值,取前K 个对应的特征向量组成矩阵R

5.对X进行基变换 $Y = R^T X$

E. 计算新的特征向量

使用约简矩阵R对去中心化的数据降维

$$Y = R^T X$$

附加. 数据还原(重建)

降维后的数据也可以还原到原始空间中:

$$X_{approx} = RY$$

PCA步骤流程

对数据 $X = \{x_1, x_2, ... x_m\}$ 降维

1.对输入样本中心化

2.计算协方差矩阵

3.求解特征值与特征向量

4.按大小排列特征值,取前K 个对应的特征向量组成矩阵R

5.对X进行基变换 $Y = R^T X$

主成分分析-K值选取

PCA算法需要人为指定降维后的维度数k,如果k值选取太大,则性能提升不大,如果k值太小,则会丢失过多信息。可以使用以下方法评估k值选取

投影均方误差

$$\frac{1}{m} \sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}$$

数据总变差

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

评估方法

$$\frac{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m} \|x^{(i)}\|^{2}} \le \varepsilon \longleftarrow \varepsilon \mathbb{R} \mathbb{R} 0.01, \ 0.0001$$

主成分分析-综合评价

优势

PCA不要求数据呈正态分布,主成分就是按数据离散程度最大的方向对基组进行旋转

PCA通过对原始变量进行综合与简化,可以客观地确定各个指标的权重,避免主观判断的随意性

劣势

PCA类似于有损压缩, 会导致数据信息丢失

PCA降低数据维度, 避免维数过高导致的训练问题, 但也会带来过拟合现象

PCA在计算协方差矩阵,特征值、特征向量时,比较耗时

数据降维方法比较

PCA

LDA

主成分分析

线性判别分析

线性方法

线性方法

无监督学习

有监督学习

保证样本在空间中 保持原来变量信息 保证样本在空间 中有最佳的可分 离性

保留样本拥有最大 方差 保证类别内距离 越近越好,类别 间距离越远越好

以鸢尾花卉数据集(Iris)为例,演示PCA算法过程:

类	攻据集包含150条4维数据,每一	条数据
属于	(setosa, versicolor, virginica)	内的一
种		

这里使用PCA方法将其降至2维,并可 视化降维后数据点

萼片长度	萼片宽度	花瓣长度	花瓣宽度	类别
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
7.0	3.2	4.7	1.4	Iris-versicolor
6.4	3.2	4.5	1.5	Iris-versicolor
5.8	2.7	5.1	1.9	Iris-virginica
6.5	3.2	5.1	2.0	Iris-virginica
•••	•••	•••		

平均值

第一步:中心化操作

萼片长度	萼片宽度	花瓣长度	花瓣宽度	类别
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
7.0	3.2	4.7	1.4	Iris-versicolor
6.4	3.2	4.5	1.5	Iris-versicolor
5.8	2.7	5.1	1.9	Iris-virginica
6.5	3.2	5.1	2.0	Iris-virginica
•••				
5.844	3.055	3.758	1.198	

第一步:中心化操作

萼片长度	萼片宽度	花瓣长度	花瓣宽度	类别
0.742	-0.4453	2.357	0.998	Iris-setosa
0.9453	0.0547	2.357	0.998	Iris-setosa
-1.156	-0.1445	-0.9414	-0.2021	Iris-versicolor
-0.5547	-0.1445	-0.742	-0.3018	Iris-versicolor
-0.457	-0.2461	-2.242	-1.302	Iris-virginica
0.04297	0.3555	-1.344	-0.702	Iris-virginica

第二步: 求协方差矩阵

[0.6854026845637584, -0.039272231543624164, 1.273489932885906, 0.5167785234899329]

 $[-0.039272231543624164, \, 0.1880243288590604, \, -0.32172818791946306, \, -0.11797399328859061]$

[1.273489932885906, -0.32172818791946306, 3.1124161073825505, 1.2961409395973154]

[0.5167785234899329, -0.11797399328859061, 1.2961409395973154, 0.5826342281879194]

协方差矩阵的特征值:

第三步: 求解特征值、特征向量

```
[4.22396988 0.24215651 0.07857844 0.02377251]
协方差矩阵的特征向量:
[ 0.36158919 -0.65615687 -0.58012383 0.31963693]
[-0.08228975 -0.730109 0.59493085 -0.32592413]
[ 0.85655687 0.17550995 0.07085606 -0.48008959]
[ 0.35887601 0.0748016 0.55180889 0.74907922 ]
```

第四步:特征值排序,构成约简矩阵

协方差矩阵的特征值:

[4.22396988 0.24215651 0.07857844 0.02377251]

协方差矩阵的特征向量:

第五步: 生成降维数据并可视化

数据可视化

原始数据

前200个主成分

前300个主成分

主成分分析-作业

任务:

在MNIST数据集上使用PCA降维,并选择任意算法实现手写数字分类。将train-images-idx3-ubyte.gz中的前6000张图像和train-labels-idx1-ubyte.gz中的前6000个标签作为样本,对t10k-images-idx3-ubyte.gz中的前500张图像进行分类。

提交:

- 1、代码文件。对数据读入、PCA,分类器等部分标出位置。
- 2、说明文档。文档中必须包含2个分类正确率(使用PCA及不使用PCA)、PCA的k值选取,以及k值对应的 ϵ 。

主成分分析-作业

评分标准:

- 1、基础分50分。每晚交12小时扣5分
- 2、代码 20分。数据读入、PCA、分类算法。
- 3、正确率 15分。给出2个准确率10分。高于85%,每增加1%,加1分
- 4、报告15分。基础分8分。给出K值选择过程并计算 ε ,加3分。

数学基础-协方差矩阵

协方差(Covariance)可以反映随机变量间的线性相关关系。

$$Cov(X,Y) = E\left((X - \mu_x)(Y - \mu_y)\right) = E(XY) - \mu_x \ \mu_y = \sum (x_i - \bar{x})(y_i - \bar{y})$$

对于矩阵M, 协方差矩阵可以表示为:

$$M = \begin{pmatrix} x_1 & x_2 & \dots & x_m \\ y_1 & y_2 & \dots & y_m \end{pmatrix} \quad Cov(M) = \begin{pmatrix} \frac{1}{m} \sum_{i=1}^m (x_1 - \mu_x)^2 & \frac{1}{m} \sum_{i=1}^m (x_1 - \mu_x)(y_1 - \mu_y) \\ \frac{1}{m} \sum_{i=1}^m (x_1 - \mu_x)(y_1 - \mu_y) & \frac{1}{m} \sum_{i=1}^m (y_1 - \mu_y)^2 \end{pmatrix}$$

数学基础-特征值、特征向量

特征值 \downarrow 对于 $m \times m$ 的方阵M,特征向量方程为: $M\mu_i = \lambda_i \mu_i$ 特征向量

$$-$$
般的求解方法:
$$\begin{cases} \varphi(M) = \det(\lambda I - M) = 0 \\ (\lambda I - M)X = \mathbf{0} \end{cases}$$

数学基础-特征值、特征向量

Jacobi 方法

对于实对称矩阵M,则必有正交矩阵W,使:

$$W^{T}MW = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{n} \end{bmatrix} = \Lambda$$

其中 Λ 的对角线是M的n个特征值,W的第i列对应特征值 λ_i 的特征向量

定义旋转矩阵P:

$$\begin{bmatrix} 1 & 0 & 0 \\ cos\phi & -sin\phi \\ ... & 0 & 0 & ... \\ sin\phi & cos\phi \\ 0 & ... & 1 \end{bmatrix}$$

迭代计算 P^TMP ,使得主对角线外的元素趋向于0

数学基础-奇异值分解

对于 $m \times n$ 的矩阵M, 其SVD分解形式为:

U,V都是酉矩阵,即满足 $U^TU = I,V^TV = I$

除了主对角线上的元素以外全为0, 主对角线上的每个元素都称为奇异值 σ

$$(AA^T)\mu_i = \lambda_i \mu_i$$

$$m \times m$$

求出的m个特征值和特征向量u,将特征向量 $m \times m$ 的矩阵U,U也被称为A的左奇异向量

求出的n个特征值和特征向量v,将特征向量s张成 $n \times n$ 的矩阵v,v也被称为A的右奇异向量

SVD性质: 可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵

$$A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}$$
$$\approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{T}$$