The Sidelnikov-Shestakov's Attack applied to the Chor-Rivest Cryptosystem

Sylvain Colin & Gaspard Férey

 $March\ 1,\ 2014$

Contents

${\bf Abstract}$ In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on

In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on Reed-Solomon codes. Then we describe how this algorithm can be used to attack the Chor-Rivest Cryptosystem.

1 Introduction

Preliminaries

ntro

1.1 Our Work

efnot

2

2.1 A cryptosystem based on Reed-Solomon codes

We study here the public-key cryptosystem introduced by Niederreiter [?] applied to the generalized Reed-Solomon codes. Let \mathbb{F}_q be a finite field with $q=p^h$ elements and $\mathbb{F}=\mathbb{F}_q\cup\{\infty\}$, where ∞ has natural properties ($1/\infty=0$, etc). We call \mathfrak{A} the following matrix:

$$\mathfrak{A}(\alpha_{1}, \ldots, \alpha_{n}, z_{1}, \ldots, z_{n}) := \begin{pmatrix} z_{1}\alpha_{1}^{0} & z_{2}\alpha_{2}^{0} & \cdots & z_{n}\alpha_{n}^{0} \\ z_{1}\alpha_{1}^{1} & z_{2}\alpha_{2}^{1} & \cdots & z_{n}\alpha_{n}^{1} \\ & & \ddots & \\ z_{1}\alpha_{1}^{k-1} & z_{2}\alpha_{2}^{k-1} & \cdots & z_{n}\alpha_{n}^{k-1} \end{pmatrix} \in \mathcal{M}_{\mathbb{F}_{q}}(k, n)$$

In the considered cryptosystem, the secret key consists of

- $(\alpha_i)_{1 \le i \le n}$ distinct elements of \mathbb{F}_q .
- $(z_i)_{1 \le i \le n}$ elements of $\mathbb{F}_q \{0\}$.
- a random nonsingular $k \times k$ -matrix H over \mathbb{F} .

The public key is

- the representation of the field \mathbb{F} . In particular the polynomial used to define \mathbb{F} is public.
- The two integers k and n such that $0 < k < n \le q$.
- $\bullet M := H \cdot \mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n).$

2.2 Equivalence between Reed-Solomon codes

Sidelnikov and Shestakov show [?] that for all $a \in \mathbb{F}_q - \{0\}$ and $b \in \mathbb{F}_q$, there exists $H_1, H_2, H_3 \in \mathcal{M}_{F_q}(k, k)$ invertible such that

$$\begin{array}{rcl} H_1 \mathfrak{A}(a \cdot \alpha_1 + b, \ \dots, a \cdot \alpha_n + b, c_1 z_1, \ \dots, c_n z_n) & = & \mathfrak{A}(\alpha_1, \ \dots, \alpha_n, z_1, \ \dots, z_n) \\ H_2 \mathfrak{A}\left(\frac{1}{\alpha_1}, \ \dots, \frac{1}{\alpha_n}, d_1 z_1, \ \dots, d_n z_n\right) & = & \mathfrak{A}(\alpha_1, \ \dots, \alpha_n, z_1, \ \dots, z_n) \\ H_3 \mathfrak{A}\left(\alpha_1, \ \dots, \alpha_n, a \cdot z_1, \ \dots, a \cdot z_n\right) & = & \mathfrak{A}(\alpha_1, \ \dots, \alpha_n, z_1, \ \dots, z_n) \end{array}$$

This means that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, for any birationnal transformation

$$\phi: x \mapsto \frac{ax+b}{cx+d}$$

 $M = H_{\phi}\mathfrak{A}(\phi(\alpha_1), \ldots, \phi(\alpha_n), z'_1, \ldots, z'_n)$ and by using the unique transformation ϕ that maps $(\alpha_1, \alpha_2, \alpha_3)$ to $(0, 1, \infty)$, we get that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, M can be uniquely written

$$M = H'\mathfrak{A}(0, 1, \infty, \alpha'_4, \dots, \alpha'_n, 1, z'_2, \dots, z'_n)$$

with H' nonsingular, $z'_i \neq 0$ and α_i distincts elements of $\mathbb{F}_q - \{0, 1, \infty\}$.

3 Attack of Sidelnikov-Shestakov

The attack of Sidelnikov-Shestakov consist of the following steps.

First we realize that the public key can be uniquely written as in the previous section.

$$M = H'\mathfrak{A}(0, 1, \infty, \alpha'_4, \dots, \alpha'_n, 1, z'_2, \dots, z'_n)$$

We compute then the echelon form of M.

$$E(M) = \begin{pmatrix} 1 & 0 & \cdots & 0 & b_{1,k+1} & \cdots & b_{1,n} \\ 0 & 1 & \cdots & 0 & b_{2,k+1} & \cdots & b_{2,n} \\ & & \ddots & & \vdots & & \vdots \\ 0 & \cdots & 0 & 1 & b_{k,k+1} & \cdots & b_{k,n} \end{pmatrix} = H'' \cdot M$$

For $2 \le k \le n-2$, this attack works with a complexity of ...

4 Application to the Chor-Rivest Cryptosystem

4.1 The Chor-Rivest Cryptosystem

Secret keys consist of

- an element $t \in GF(q)$ with algebraic degree h
- a generator g of $GF(q)^*$
- an integer $d \in \mathbb{Z}_{q-1}$
- a permutation π of $\{0,...,p-1\}$.

Public keys consist of all

$$c_i = d + \log_a(t + \alpha_{\pi(i)}) \mod q - 1$$

4.2 A First Attack using Reed-Solomon codes

We have for all j

$$g^{c_j} = g^d \cdot (t + \alpha_{\pi(j)}) = A + \alpha_{\pi(j)} \cdot B$$

where $\alpha_{\pi(j)} \in GF(p)$ and A and B are elements of $GF(p^h) \subset GF(p)[X]$ and can be seen as polynomials of the variable X with coefficients in GF(p). Then if we consider an other generator g_0 of GF(q), we have $g_0 = g^u$ and

$$g_0^{c_j} = (A(X) + \alpha_{\pi(j)} \cdot B(X))^u \mod \mu(X)$$

where μ is the polynomial of degree h defining the field GF(q).

As an attempt to guess g, we can choose a random generator g_0 and compute the quantities

$$g_0^{c_j} = \sum_{i=0}^{h-1} P_i(\alpha_{\pi(j)}) X^i$$

where P_i is a polynomial with coefficients in GF(p). P_i depends on A(X), B(X), u and obviously on i. However, P_i does not depend on j.

Besides, we have

• deg $P_i \leq u$ since the coefficients of $(A(X) + \alpha_{\pi(j)} \cdot B(X))^u$ seen in GF(p)[X] are polynomials of degree smaller than u in $\alpha_{\pi(j)}$.

When we compute the remain in the division of this polynomial by $\mu(X)$, these coefficients remain polynomials of degree smaller than u in $\alpha_{\pi(j)}$.

• deg $P_i < p$ since $\alpha_{\pi(j)}^p = \alpha_{\pi(j)}$.

We now consider the matrix

$$\mathfrak{A} := \left(\alpha_{\pi(j)}^i\right)_{0 \le i, j \le p-1} \in \mathcal{M}_{\mathbb{F}_p}(p, p)$$

We call

- $P_i[j] \in GF(p)$ the j-th coefficient of the polynomial P_i .
- $H = (P_i[j])_{i,j} \in \mathcal{M}_{\mathbb{F}_p}(h,p)$
- $M = (P_i(\alpha_{\pi(j)}))_{i,j} \in \mathcal{M}_{\mathbb{F}_p}(h,p).$

$$H \cdot \mathfrak{A} = M$$

We suppose now that we try to guess the private generator g but only find a generator g_0 such that $g_0 = g^u$ with u < h.

We can compute the elements $g_0^{c_j} \in GF(q)$, the coefficients $P_i(\alpha_{\pi(j)}) \in GF(p)$ and eventually the matrix M.

Since deg $P_i \leq u$, we know that only the u first columns of the matrix H are non zero. Therefore we consider now the matrix H' build from the u first columns of H (the other columns being equal to 0) and \mathfrak{A}' the u first rows of \mathfrak{A} . We get

$$H' \cdot \mathfrak{A}' = M$$

We suppose now that the first u rows of M are linearly independent. This allow us to consider only the first u lines of the matrices H' and M (H'' and M'') which gives us

$$H'' \cdot \mathfrak{A}' = M''$$

with

- $H'' \in \mathcal{M}_{\mathbb{F}_p}(u, u)$
- $\mathfrak{A}' \in \mathcal{M}_{\mathbb{F}_p}(u,p)$
- $M'' \in \mathcal{M}_{\mathbb{F}_p}(u,p)$

We use then the attack described in the first section to compute \mathfrak{A}' which yields the permutation π .

4.2.1 Problem

It seems quite unlikely that $g_0 = g^u$ with a small u. Indeed, there are $\phi(p^h - 1)$ generators which is comparable to p^h and the order of h is only (in the suggested parameters) around 24.

This could be solved if we had a way to rapidly check whether one generator is a small power of an other.

4.2.2 Further...

If u is a small multiple of p, the previous arguments still apply since then u = pu' with u' < h and we get

$$g_0^{c_j} = \left(\left(A(X) + \alpha_{\pi(i)} B(X) \right)^p \right)^{u'} = \left(A^p(X) + \alpha_{\pi(i)}^p B^p(X) \right)^{u'} = \left(A'(X) + \alpha_{\pi(i)} B'(X) \right)^{u'}$$

This only changes the polynomials A and B but still allow to compute the permutation $\pi(i)$ on these conditions.

We actually also have this conclusion if u is a small multiple of p^r for all $0 \le r < h$. In fact a condition for the previous to work is that when u is written in base p, the sum of its digits does not exceed h.

Remains to see how many different u this methods allows to check... Is it reasonable to try this method with several value for g_0 until we find g? I guess not...

Besides, as explained in Sidelnikov and Shestakov's article, if the previous reasoning excludes a set of candidates u_i , it also excludes $p \cdot u_i$ and even $p^r \cdot u_i$ for all $0 \le r < h$. Actually, this doesn't excludes any more candidate since the writing of $p \cdot u_i$ and u^i modulo $p^h - 1$ in base p are just rotated.

5 Conclusions