Labs

Optimization for Machine LearningSpring 2025

EPFL

School of Computer and Communication Sciences

Nicolas Flammarion
github.com/epfml/OptML_course

Problem Set 4, March 21, 2025 (Subgradient Descent)

Subgradient Descent

Solve Exercises 27, 28, 29, 30 and 32 from the lecture notes.

Random Walks

Gradient descent turns up in a surprising number of situations which apriori have nothing to do with optimization. In this exercise, we will see how performing a random walk on a graph can be seen as a special case of gradient descent.

We are given an undirected graph G(V,E) with vertices V=[n] labelled 1 through n, and edges $E\subseteq [n]^2$ such that if $(i,j)\in E$, then $(j,i)\in E$. Further, we assume that the graph is regular in the sense that every edge has the same degree. Let d be the degree of each node such that if we denote $\mathcal{N}(i)=\{j:(i,j)\in E\}$ to be the neighbors of i, then $|\mathcal{N}(i)|=d$. We assume that every node is connected to itself and so $(i,i)\in \mathcal{N}(i)$.

Now we start our random walk from node 1, jumping randomly from a node to its neighbor. More precisely, suppose at time step t we are at node i_t . Then i_{t+1} is picked uniformly at random from $\mathcal{N}(i)$. If we run this random walk for a large enough T steps, we expect that $\Pr(i_T=j)=1/n$ for any $j\in[n]$. This is called the stationary distribution.

Problem A. Let us represent the position at time step t in the graph with $\mathbf{e}_{i_t} \in \mathbb{R}^n$ where the i_t th coordinate is 1 and all others are 0. Then, the vector $\mathbf{x}_t = \mathbb{E}[\mathbf{e}_{i_t}]$ denotes the probability distribtion over the n nodes of the graph. Further, let us denote $\mathbf{G} \in \mathbb{R}^{n \times n}$ be the transition probability matrix such that

$$\mathbf{G}_{i,j} = \begin{cases} \frac{1}{d} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}.$$

Show that

$$\mathbf{x}_{t+1} = \mathbf{G}\mathbf{x}_t \tag{1}$$

Problem B. Simulate the random walk above over a torus and confirm that we indeed converge to a uniform distribution over the nodes. What is the *rate* at which this convergence occurs?

Follow the Python notebook provided here:

colab.research.google.com/github/epfml/OptML_course/blob/master/labs/ex04/template/notebook_lab04.ipynb

Problem C. Define $\mu := \frac{1}{n} \mathbf{1}_n$ be a vector of all 1/n, and a objective function $f : \mathcal{S} \to \mathbb{R}$ as

$$f(\mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu})^{\top} (\mathbf{I} - \mathbf{G})(\mathbf{x} - \boldsymbol{\mu}),$$

defined over the subspace $S \subseteq \mathbb{R}^n$ where $S = \{\mathbf{v} : \mathbf{1}_n^\top \mathbf{v} = 1\}$.

1. Show that f defined above is convex and compute its smoothness constant.

- 2. Show that running gradient descent on f with the correct step-size is equivalent to the random walk step (1).
- 3. Prove that \mathbf{x}_t converges to the distribution $\boldsymbol{\mu}$ at a linear rate i.e. for the random walk on a torus with n nodes,

$$\|\mathbf{x}_t - \boldsymbol{\mu}\|_2^2 \le \left(1 - \frac{1}{n}\right)^t \|\mathbf{x}_0 - \boldsymbol{\mu}\|_2^2 \le \left(1 - \frac{1}{n}\right)^t.$$

Hint: Use that the two largest eigenvalues of G are 1 and $1-\frac{1}{n}$. Also $G\mu=\mu$ and so μ is the eigenvector corresponding to eigenvalue 1.