Résumé

Les Supernovae de Type Ia (SNe Ia) sont des corps célestes de luminosité transitoire résultant de l'explosion d'étoiles. Elles sont de nos jours au cœur des analyses de cosmologie observationnelle par leur régularité dans leur luminosité libérée, ce qui permet à différents sondages et télescopes d'en mesurer la distance et donc le taux d'expansion de l'Univers.

Cependant, la nature détaillée des SNe Ia reste incertaine, et ces études reposent sur des lois empiriques et notamment sur la distinction en deux populations de SNe Ia qui auraient des propriétés différentes. À mesure que les statistiques des relevés augmentent, la question des incertitudes systématiques astrophysiques se pose, notamment celle de l'évolution des populations de SNe Ia.

Dans cette perspective, nous implémentons des tentatives d'amélioration de notre connaissance de la physique des SNe Ia par le biais de l'étude de corrélations entre leurs propriétés et leur environnement. Nous avons montré l'existence d'un biais en lien avec la masse globale de la galaxie hôte d'une SN, et mis en évidence l'exitence de sous-populations basées sur l'âge qui pourraient être plus pertinentes en tant que traceur de la différence des propriétés observées dans les SNe.

Notre thèse s'appuie sur cette hypothèse et le lien établi par des études précédentes entre l'étirement des SNe et leur âge. Dans cette thèse, nous étudions la dépendance au redshift de l'étirement de courbe de lumière issu d'un ajustement par SALT2 de SNe Ia, qui est une propriété purement intrinsèque des SNe, afin de sonder sa dérive potentielle avec le redshift. Nous modélisons différentes dépendances et donnons les résultats de notre analyse : nous y verrons que la dérive astrophysique des propriétés des SNe Ia est fortement favorisée et que les modèles de distribution sous-jacente d'étirements constants avec le redshift sont exclus comme étant de bonnes représentations des données par rapport à notre modèle de référence.

L'impact de cette modélisation sur la détermination des paramètres cosmologiques a été étudiée par le biais de simulations numériques, et indiquent un biais jusqu'à 4% de la valeur du paramètre d'état de l'énergie sombre, w, si ces corrélations ne sont pas prises en compte.