_	Sollowing linear program in standard equation form: $\max_{x_1} x_2 + 2x_3 - 3x_3 + 7x_5 \\ x_1 + 2x_2 + 2x_3 + x_4 = 3 \\ x_1 + 2x_2 + 7x_3 + x_6 = 3 \\ 2x_1 + 4x_2 + 7x_3 + x_6 \ge 0$		
Justify your answers. i. $x^T = (1, 1, 0, 0, 0, 0)$ ii. $x^T = (1, 0, 0, 2, 2, 4)$ iii. $x^T = (0, 0, 0, 3, 3, 6)$	am via the simplex method		
(ci)		vlle,	
(ili) essev		puo ndent	
Risolva		NOSNO.	
>=	$4 = -x_1 - 2x_2 - x_4 + 3$ $5 = -x_1 - 2x_2 - 7x_3 + 3$ $\Rightarrow lottims e' 21.$		
	g = -2x ₁ -4x ₂ -7x ₃ +6		
	nsider the polyhedron P equal to the convex hull of points $\{a_1, \dots, a_n\}$. Prove that if v is a vertex of P then $v = a_i$ for some		
	Lets assume that v is not equal to a_i for some i , since the convex hull is the union of all convex combinations, v is a convex combination of a_1, \ldots, a_n	of	
	$v = \sum_{i=1}^n eta_i a_i, \sum_{i=1}^n eta_i = 1, eta_i \geq 0 \ orall i$		
	v is a vertex, so $\exists c, lpha$ such that $c^T v = lpha$		
	$c^T a_i < lpha, orall i$ we can rewrite $c^T v$ as follows		
	$c^T v = c^T \sum_{i=1}^n eta_i a_i = \sum_{i=1}^n eta_i c^T a_i$		
	since $\sum \beta_i = 1$, we can rewrite α as follows		
	$\alpha = \sum_{i=1}^{n} \beta_i \alpha$		
	Since for each $i, c^T a_i < \alpha$, we get $\sum_{i=1}^n a_i = \sum_{i=1}^n a_i$		
	$\sum_{i=1}^n \beta_i c^T a_i < \sum_{i=1}^n \beta_i \alpha = \alpha$ but $\alpha = c^T v$		
	but $\alpha = c^{-}v$ $\sum_{i=1}^{n} \beta_{i}c^{T}a_{i} < \sum_{i=1}^{n} \beta_{i}\alpha = c^{T}v$		
	and $c^Tv=\sum_{i=1}^neta_ic^Ta_i$		
	$c^{T}v = \sum_{i=1}^{n} eta_i c^{T} a_i < \sum_{i=1}^{n} eta_i lpha = c^{T}v$		

is a contraddiction, so it is impossible that v is a convex combination of the $\alpha_i \implies v = \alpha_i$ for some i.

 $c^T v < c^T v$

we get

