编译原理HW5 习题答案

负责助教: 陈胤合 chenyh18@mail.ustc.edu.cn 4.3 为文法

S→(L) | a (a) 写一个语法制导定义,它输出括号的对数。

 $L \rightarrow L, S \mid S$

解: (a)拓广文法后写出语法制导定义。

	产生式	语义规则
$S' \rightarrow S$	$S' \rightarrow S$	print(S.val)
$S \rightarrow (L)$	$S \rightarrow (L)$	S.val = L.val + 1
$S \rightarrow a$	$S \rightarrow a$	S.val = 0
$L \rightarrow L_1$, S	$L \rightarrow L_1$, S	$L.val = L_1.val + S.val$
$L \rightarrow S$	$L \rightarrow S$	L.val = S.val

4.3 为文法

S→(L) | a (b) 写一个语法制导定义,它输出括号嵌套的最大深度。

 $L \rightarrow L, S \mid S$

解: (b)拓广文法后写出语法制导定义。

	产生式	语义规则
$S' \longrightarrow S$	$S' \rightarrow S$	print(S.val)
$S \rightarrow (L)$	$S \rightarrow (L)$	S.val = L.val + 1
$S \rightarrow a$	$S \rightarrow a$	S.val = 0
$L \rightarrow L_1$, S	$L \rightarrow L_1$, S	$L.val = max(L_1.val, S.val)$
$L \rightarrow S$	$L \rightarrow S$	L.val = S.val

注: max(a, b) = a > b? a: b

4.5 为下面文法写一个语法制导的定义,它完成一个句子的 while-do 最大嵌套层次的计算并输出这个计算结果。

$$S \rightarrow E$$

 $E \rightarrow \text{while } E \text{ do } E \mid id := E \mid E + E \mid id \mid (E)$

解:	产生式	语义规则
	$S \rightarrow E$	print(E.val)
	$E \rightarrow \text{while } E_1 \text{ do } E_2$	$E.val = max(E_1.val, E_2.val) + 1$
	$E \rightarrow id := E_1$	$E.val = E_1.val$
	$E \rightarrow E_1 + E_2$	$E.val = max(E_1.val, E_2.val)$
	$E \rightarrow id$	E.val = 0
	$E \rightarrow (E_1)$	$E.val = E_1.val$

注: max(a, b) = a > b? a: b

4.9 用S的综合属性val给出下面文法中S产生的二进制数的值。例如,输入101.101时, S.val = 5.625。

$$S \rightarrow L.L \mid L$$

 $L \rightarrow LB \mid B$
 $B \rightarrow 0 \mid 1$

(b) 用**L属性定义**决定 S.val。在该定义中,B的唯一综合属性是c(还需要继承属性),它给出由B产生的位对最终值的贡献。例如,101.101的最前一位和最后一位对值 5.625的贡献分别是 4和 0.125。

解: 先改写文法区分小数点两侧。

$$S \rightarrow L.R \mid L$$

$$L \rightarrow LB \mid B$$

$$R \rightarrow BR \mid B$$

$$B \rightarrow 0 \mid 1$$

4.9 解:根据改写后的文法构造L属性定义。

	产生式	语义规则
	$S \rightarrow L.R$	L.w = 1; $R.w = 0.5$; $S.val = L.val + R.val$;
$S \rightarrow L.R \mid L$	$S \rightarrow L$	L.w = 1; $S.val = L.val$
$L \rightarrow LB \mid B$	$L \rightarrow L_1B$	$L_1.w = L.w * 2; B.w = L.w; L.val = B.c + L_1.val$
$R \rightarrow BR \mid B$	$\Gamma \rightarrow B$	B.w = L.w; L.val = B.c;
$B \rightarrow 0 \mid 1$	$R \rightarrow BR_1$	$B.w = R.w; R_1.w = R.w / 2; R.val = B.c + R_1.val$
	$R \rightarrow B$	B.w = R.w; R.val = B.c;
	$B \rightarrow 0$	B.c = 0;
	$B \rightarrow 1$	B.c = B.w;

4.9 去年给的一个解法并不满足L属性定义的要求

4.9

i是B的继承属性,c和val是综合属性

S→L.R	S.val = L.val + R.val
S→L	S.val = L.val
$L \rightarrow BL_1$	B.i = L1.cX2; L.c=L1X2; L.val=L1.val + B.c
L→B	B.i=1; L.c=1; L.val = B.c;
$R \rightarrow R_1 B$	B.i=R1.c/2; R.c=R1.c/2 R.val=R1.val+B.c
R→B	B.i=0.5; R.c=0.5; R.val=B.c;
B → 0	B.c=0;
B → 1	B.c=B.i;

4.3.1 L属性定义

语法制导定义是 L 属性的,如果每个产生式 $A \rightarrow X_1 X_2 \cdots X_n$ 的每条语义规则计算的属性是 A的综合属性;或者计算的是 X_i 的继承属性($1 \le j \le n$),它仅依赖:

- (1) 该产生式中 X_i 左边符号 $X_1, X_2, \cdots, X_{i-1}$ 的属性;
- (2) A 的继承属性。

显然,S 属性定义属于 L 属性定义,因为限制(1)和(2)仅对继承属性进行限制。

这里B.i依赖L₁.c, 但是L₁在B的右侧

4.12 文法如下

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

解: (a)翻译方案:

(a) 写一个翻译方案,它输出每个a的嵌套深度。例如,对于句子(a,(a,a)),输出的结果是122。

$$S' \rightarrow S$$
 $\{S.d = 0\}$
 $S \rightarrow \{L.d = S.d + 1;\}$
 $\{S.d = 0\}$
 $\{L.d = S.d + 1;\}$
 $\{S.d = L.d;\}$
 $\{C.d = S.d + 1;\}$
 $\{C.d = S.d + 1;\}$

4.12 文法如下

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

解: (b)翻译方案:

(b) 写一个翻译方案,它打印出每个a在句子中是第几个字符。例如,当句子是(a,(a,(a,a),(a)))时,打印的结果是2581014。

$$S' \rightarrow \{S.I = 0\}$$

 $S \rightarrow \{L.I = S.I + 1;\}$
 $\{S.r = L.r + 1;\}$
 $\{S.r = S.I + 1; print(S.r);\}$
 $\{S.r = S.I + 1; print(S.r);\}$
 $\{S.I = L.I;\}$
 $\{S.I = L_1, r + 1;\}$
 $\{S.I = L_1, r + 1;\}$
 $\{S.I = S.r\}$
 $\{S.I = S.r\}$
 $\{S.I = S.r\}$
 $\{S.I = S.r\}$

4.14 程序的文法如下 (b) 写一个翻译方案, 打印该程序每个变量 id 的嵌套深度。

$$\mathsf{P} \to \mathsf{D}$$

 $D \rightarrow D$; D | id : T | proc id; D; S

解:翻译方案:

$$P \rightarrow \{D.d = 1\}$$

$$D \rightarrow \{D_1.d = D.d;\}$$
 $D_1;$

$$D_1$$
;

$$\{D_2.d = D.d;\}$$

$$D_2$$

$$D \rightarrow$$

$$id : T$$
 {print(D.d);}

$$D \rightarrow$$

proc id; {print(D.d);
$$D_1.d = D.d + 1$$
;} D1; S

4.15 下面是构造语法树的一个 S 属性定义。将这里的语义规则翻译成 LR 翻译器的栈操作代码段。

产生式	语义规则
$E \rightarrow E_1 + T$	E.nptr = mkNode('+', E ₁ .nptr, T.nptr)
$E \rightarrow E_1 - T$	E.nptr = mkNode('-', E ₁ .nptr, T.nptr)
$E \rightarrow T$	E.nptr = T.nptr
$T \rightarrow (E)$	T.nptr = E.nptr
$T \rightarrow id$	T.nptr = mkLeaf(id, id.entry)
$T \rightarrow num$	T.nptr = mkLeaf(num , num .entry)

4.15 下面是构造语法树的一个 S 属性定义。将这里的语义规则翻译成 LR 翻译器的栈操作代码段。

产生式	语义动作翻译成的代码段
$E \rightarrow E_1 + T$	stack[top-2].val = mkNode('+', stack[top-2].val, stack[top].val)
$E \rightarrow E_1 - T$	stack[top-2].val = mkNode('-', stack[top-2].val, stack[top].val)
$E \rightarrow T$	
$T \rightarrow (E)$	stack[top-2].val = stack[top-1].val
$T \rightarrow id$	stack[top].val = mkLeaf(id , stack[top].val)
$T \rightarrow num$	stack[top].val = mkLeaf(num , stack[top].val)