Technical University of Crete School of Electrical and Computer Engineering

Course: Convex Optimization

Instructor: Athanasios P. Liavas Exercise 4 (100/1000)

Report Delivery Date: Dec. 16, 2021

1. (100) Consider the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = -\sum_{i=1}^n \log(x_i)$$
subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, (1)

where $\mathbf{A} \in \mathbb{R}_{+}^{p \times n}$, rank $(\mathbf{A}) = p$, $\mathbf{b} \in \mathbb{R}_{+}^{p}$. (In order to focus on the algorithmic aspects of the problem, we shall generate feasible problems).

- 1. Data generation: In order to guarantee feasibility, we generate **A** with i.i.d. elements, with $A_{i,j} \sim \mathcal{U}[0,1]$, and **x** with i.i.d. elements, with $x_i \sim \mathcal{U}[0,1]$, and set **b** = **Ax**.
- 2. (10) Solution 1: solve problem (1) via cvx.
- 3. (40) Solution 2: solve problem (1) via Newton, starting from a feasible point, as follows:
 - i. compute a feasible point \mathbf{x}_0 via $\operatorname{cvx}(\mathbf{x}_0 > \mathbf{0}, \mathbf{A}\mathbf{x}_0 = \mathbf{b})$;
 - ii. implement the Newton algorithm, starting from \mathbf{x}_0 .
 - iii. in order to understand how the algorithm progresses, in every algorithm iteration, depict in a common plot the cvx solution and the solution estimate, \mathbf{x}_k .
- 4. (30) Solution 3: solve problem (1) via the primal-dual algorithm, starting from point $\mathbf{x}_0 = \mathbf{1}$ (in order to understand how the algorithm progresses, in every algorithm iteration, depict in a common plot the cvx solution and the solution estimate, \mathbf{x}_k).
- 5. (10) Solution 4: derive the problem dual to (1) and solve it via cvx, and then find the primal solution via the solution of the dual.
- 6. (10) For the case with p = 1 and n = 2, plot the convergence of the algorithm towards the solution.