Log magnitude-Angle Diagram (Nichals plot)

=> Plot |G(jw)|d8 vs. &G(jw) as w u Aries from

\$ to 00

- => Angle in deg is honizontal Axis
- => Magnotide in dB is vertical Axis
- => Plot usually centered so "origin" corresponds to

-188 in phase, ØdB in magnitude

Log magnitude-Angle Diagram (Nichals plot)

=> Plot |G(jw)|de vs. &G(jw) as w u Aries from

 $\phi \leftrightarrow \infty$

- => Angle in deg is horizontal Axis
- => Magnotide in dB is vertical Axis
- => Plot usually centered so "origin" corresponds to
 - -180° in phase, ØdB in magnitude
 - => "Origin" of plot corresponds to
 -1 point on polar diagram

- => Primary use is to exsily see margins, measured along orthogonal AXFS relative to "origin"
- => Phase margin measured along horrzontal Axis to magnitude crossover point
 - => positive if crossing is to right of "origin"
 negative otherwise
- => Gain margin (in dB) measured along vertical Axis
 to phase crossover point
 - => Positive if crossing is below "origin"
 negative otherwise.

- => Primary use is to exsily see margins, measured along orthogonal AXES relative to "origin"
- => Phase margin measured along horrzontal Axis to magnitude crossover point
 - => positive if crossing is to right of "origin"
 negative otherwise
- => Gain margin (in dB) measured along vertical Axis
 to Phase crossover point
 - => Positive if crossing is below "origin"
 regative otherwise.
- => Why is proximity of polar/Nichals to -1 so important??