

Paraview Jour 2

Slides: http://bit.ly/paraviewday2

Github:

https://github.com/calculquebec/paraview.git

Paraview for large models https://www.paraview.org/gallery/

CTH shock physics simulation with over 1 billion cells of a 10 megaton explosion detonated at the center of the Golevka asteroid.

SEAM Climate Modeling simulation with 1 billion cells modeling the breakdown of the polar vortex, a circumpolar jet that traps polar air at high latitudes.

Turbulence + fire

https://youtu.be/RG0G0VCd41Y?t=69

Figure 1: Instantaneous snapshot of the three-dimensional temperature field of sheared thermal convection at $Ra = 4.6 \times 10^6$ and Re = 6000 [3].

Figure 3: Zoom of an instantaneous snapshot of the temperature field (top) and the vorticity structures (bottom) at $Ra = 2.2 \times 10^6$ and Re = 6000.

Figure 5: Example of a color and opacity transfer functions to highlight hot and cold plumes.

Geological data

Data courtesy of Jonathan Lees and Keehoon Kim, UNC Geological Sciences

Visualization of MIT General Circulation Model data showing surface temperature, VHEr and bathymetry.

Computational fluid dynamics

Notional Missile Warhead Detonation on Vimeo

Paraview Web

DataViewer (beta, big data)

Parallel computing to achieve more

Large tasks: needs performance

One step at a time takes time!

If you can't split your data, you'll fill up the RAM

-> can cause errors and delays

But, but my computer is lame...

Use a supercomputer!

https://ici.radio-canada.ca/premiere/emissions/premiere-heure/segme nts/chronique/67273/colosse-ul-supercalculateur-martine

Maybe she's born with it, maybe it's ParaView

Local mode

Remote mode

Sequential tasks

Use one node, one core DON'T benefit from clusters

Parallel tasks

Can use multiple cores and multiple nodes at

once

Parallel rendering

You can do more with your laptop

All is managed automatically

Extreme visualizations require some code

Two ways to create code

1. Let ParaView record your actions

2. Write it yourself! (i.e. Python code)

1. Let ParaView record

- PV can keep track of every step towards your desired visualization
- Similar to macros in office
 - There's even a specific way to write macros!

Trace: intuitive approach

- Very readable generated code
- A good way to start learning or if you're just dabbling
 - "file -> save state" if you didn't start tracing right away
- If you want to save just a part and not the whole thing, you can save as macros

2. Writing your own pipeline

- Better control
- Add your own comments right away
- You can be specific about your parallel code
- More liberty to use other python modules

2 types of pipelines i PV

Fan out:

Fan in:

Let's try it!

Connect to the cluster

1. Go to the list of usernames

http://bit.ly/pvusernames

2. Find your username, be careful to pick the right one!

3. When it's done, write OK in the confirmation column

Now head over to

paraview.calculquebec.cloud

Username you copied Password:

I'll type it

Once you get there, stop!

Server Options

Reservation	
None	~
Account	
def-sponsor00	~
Time (hours)	
1.0	
Number of cores	
1	
Memory (MB)	
1491	
☐ Enable core oversubscription? Recommended for interactive usage	
GPU configuration	
None	~
User interface	
JupyterLab	~
Start	

Make sure to set these

Server Options

Calcul Québec

In terminal/MobaXterm

Instructions

1. In a terminal on your computer, create an SSH tunnel between the compute node and your computer using the following command:

ssh user40@paraviCopycandtpastexthis1partnode1.int.paraview.calculquebec.cloud:44480

- 2. Start ParaView 5.8.0 on your computer
- 3. Go to File -> Connect
- 4. Click on Add Server
- 5. Enter:
 - o Name: paraview.calculquebec.cloud
 - o Server Type: Client/Server
 - Host: localhost
 - o Port: 11111
- 6. Click on Configure, select Manual
- 7. Click on Save
- 8. Select the server from the list and click on Connect.
- 9. If you refresh this page, you should see "Client connected" in the command-line output section.
- 10. Open a file in ParaView (it will point to your remote filesystem) and visualize it as usual.

Command-line output

Control panel

We'll do this later

In terminal/MobaXterm

git clone https://github.com/calculquebec/paraview eng.git

Copy the output into ParaView

1. Use trace to animate can

- Start trace: tools > start trace + ok
- Can.ex2 + all variables + apply
- Color by EQPS
- Play + rescale + play
- Animation view
- Camera + follow data + "+"
- Stop trace
- File > save as macro
- Reset + click macro

2. Thorax: DICOM

- Unzip data
- Open DICOM file: DICOM reader (directory) + apply
- Rendering: Dicomimage
 - 1. Surface
 - 2. Volume
- Coloring > edit > presets > yellow gray
- Invert

3. Multiple pipelines: lake

- Pipeline 1: Lac_terrain.csv
- Filter: table to points (set x,y,z)
- Close table + open eye
- Color: ombre
- Edit: presets > shades of green
- Invert color

3. Multiple pipelines: lake

- Pipeline 2: lac_full_volume.csv
- Filter: table to points (set x,y,z)
- Close table + open eye
- Color: elevation2
- Edit: presets > black, blue, white
- Adjust gradient

3. Multiple pipelines: lake

- Move terrain down
 - Advanced > transforming > translation
 - -Z = -159
- Make video
 - Animation : orbit + "+"
 - Double click orbit + Path
 - Adjust camera position + ok
 - Mode: Real time Duration: 20s

4. Run parallel script

- Open Python Shell
- Open automatic.py
- Copy lines of code into shell
- Clear
- Click run script

Good to know

1. Ask as much as you'll need

- a. Structured data
 - i. 1 core/20 million cells
 - ii. 1 coeur/5-10 million cells ★★★★
- b. Unstructured data
 - i. 1 core/5-10 million cells 🗸
 - ii. 1 core/250-500k cells ★★★★

Good to know

- 2. Avoid data explosion
- PV tries to avoid making copies: "fake" copies that point to the original
- Some filters: can't escape it! <= avoid if you are about to run out of RAM!

Good to know

3. Cull data

- Right at the beginning!
- Start with a volume, make a surface
- Clip if what you need is inside
- "Extract subset" if you aren't too sure

Rendering options

"Level of detail" (LOD)

Edit -> settings -> Render View

Pleine résolution

Interactif

Minimal

Compressing and shipping data

Algorithms that allow image compression and extraction locally according to your computer's capacities.

Compression et expédition de l'image

Squirt - réduit profondeur des couleurs

Zlib - meilleur résultat, plus lent

LZ4 - récent, rapide

Final exercise

Fill out the survey!

More information

Wiki - ParaView

https://www.paraview.org/Wiki/ParaView

Wiki - Compute Canada

https://docs.computecanada.ca/wiki/ParaView