实验二 两位二进制数运算电路

2019010175 孔瑞阳 计科 91

一、实验电路的设计

输入:

设二进制数 A 为 A1A0, 二进制数 B 为 B1B0, 运算符为 K (0表示+, 1表示-)。

输出:

当结果 L 为正数时,输出为 $L_2L_1L_0$; 当结果 L 为负数时,输出 L2L1L0 为 L 的补码表示,其中 L2 为符号位。

逻辑设计:

当 K = 0 或 B = 0 时, 结果为:
$$\frac{A_1}{L_2} \frac{A_0}{L_1} \frac{A_0}{L_0}$$
。

当 K=1 且 B \neq 0 时,考虑将 $-B_1B_0$ 转化为补码表示,即: 1 ($B_0 \oplus B_1$) B_0

所以结果为:
$$\begin{array}{c} 0 & A_1 & A_0 \\ + & 1 & B_0 \oplus B_1 & B_0 \\ \hline L_2 & L_1 & L_0 \end{array}$$
。

综合两式,结果为:
$$\frac{0}{L_2} \frac{A_1}{L_1} \frac{A_0}{L_0}$$
。

根据竖式可以写出 $L_2L_1L_0$ 的逻辑表达式:

$$L_0 = B_0 \oplus A_0$$

$$L_1 = B_1 \oplus A_1 \oplus [(K \oplus A_0)B_0]$$

$$L_2 = (KB_0 + KB_1) \oplus [(A_1, A_0B_0, (KB_0) \oplus B_1)$$
 三人表决器]

电路设计:

根据逻辑设计画出如下电路图:

搭建电路如下:

二、实验数据整理

Α	В	K	L	Α	В	K	L
00	00	0	000	10	00	0	010
00	01	0	001	10	01	0	011
00	10	0	010	10	10	0	100
00	11	0	011	10	11	0	101
01	00	0	001	11	00	0	011
01	01	0	010	11	01	0	100
01	10	0	011	11	10	0	101
01	11	0	110	11	11	0	110

Α	В	K	L	Α	В	K	L
00	00	1	000	10	00	1	010
00	01	1	111	10	01	1	001
00	10	1	110	10	10	1	000
00	11	1	101	10	11	1	111
01	00	1	001	11	00	1	011
01	01	1	000	11	01	1	010
01	10	1	111	11	10	1	001
01	11	1	110	11	11	1	000

和预测结果相同。

以下是部分验证图片:

KO-K4 分别表示 A1A0B1B0K, L0-L2 分别表示 L2L1L0。

01+10=011

11+10=101

00-11=101

10-01=001

10-11=111