

3

前回の復習(学習アルゴリズム(1))

- 1. 入力パターンベクトル $s_p = (s_{p1}, \cdots, s_{pm})$ と教師信 号 t_p $(p=1,\cdots,P)$ の組を用意する. (P は学習用 データ数)
- 2. 結合荷重 $\mathbf{w} = (w_1, \dots, w_n, w_{n+1})$ の初期値をランダ ムに小さな値に設定する. さらに学習率 η (0 < $n \leq 1$) を設定する.

前回の復習(学習アルゴリズム(2))

3. 学習用データから一つの入力ベクトル $s_p =$ (s_{p1}, \dots, s_{pm}) を選び、 s_p に対するA層の各 ノードの出力 x_{pj} を次の式で計算する。 $x_{pj} = \begin{cases} 1 & (\sum_{i=1}^m c_{ji} s_{pi} - \theta_j \ge 0) \\ 0 & (\sum_{i=1}^m c_{ji} s_{pi} - \theta_j < 0) \end{cases}$

4. x_p からR層の出力 Out_p を次の式で計算する. $Out_p = \begin{cases} 1 & (w \cdot x_p \geq 0) \\ 0 & (w \cdot x_p < 0) \end{cases}$

$$Out_p = \begin{cases} 1 & (\mathbf{w} \cdot \mathbf{x}_p \ge 0) \\ 0 & (\mathbf{w} \cdot \mathbf{x}_p < 0) \end{cases}$$

前回の復習(学習アルゴリズム(3))

- 5. Out_p と t_p を用いて次の式で w を更新する. $w \leftarrow w + \eta (t_p Out_p) x_p$ (注) $x_{n+1} = 1$ なので $x_p \neq 0$
- 6. 全ての s_p に対して w が変化しなければ終了. そうでなければ $3.\sim 5$. を繰り返す.

9/18/2023

本日の内容●学習可能性について●学習できることの証明

単純パーセプトロンの学習可能性(1)

ightharpoonup A層の出力 x_p を二つのクラスに分ける.

 X^+ : R層から1を出力すべきもの($t_p = 1$ のもの)

 X^- : R層から0を出力すべきもの($t_p = 0$ のもの)

次に, X^+ に含まれる x_p について $w \cdot x_p > 0$, X_p^- に含まれる x_p について $w \cdot x_p < 0$ となる w を考える.

S層 A層 R層 $\frac{S_1}{D} = \frac{C_{11}}{D} + \frac{C_{11}}{D$

単純パーセプトロンの学習可能性(2)

8

 $\mathbf{w} \cdot \mathbf{x}_p = w_1 x_{p1} + \dots + w_n x_{pn} + w_{n+1} x_{p(n+1)}$ であり, $\mathbf{w} \cdot \mathbf{x}_p = 0$ は \mathbf{w} を法線ベクトルとする n+1 次元 の超平面を表す.

このようなw は平面 $w \cdot x_p = 0$ で必ず $w \cdot x_p > 0$ (X^+) と $w \cdot x_p < 0$ (X^-) の領域を分けることから, X^+ と X^- の領域が一つの平面で分けられない場合にはw は求まらない。

X⁺ と X⁻ が上のように平面で分けられることを「線形分離可能」という

「線形分離可能」でなければ学習できない

7/18/2023

10 パーセプトロンの収束定理(1)

(定理) *X*⁺ と *X*⁻ が線形分離可能であれば

 $\mathbf{w}_{t+1} = \mathbf{w}_t + \eta(t_p - Out_p)\mathbf{x}_p$ (tは更新回数)

に従って結合荷重を更新すれば有限回で X^+ と X^- を正しく分離する.

(証明) X^+ と X^- を線形分離する w^* (すなわち正解を与える w^*) と学習途中の w_t について, w^* と w_t のなす角を θ とするとき G を次式で定義する. (ただし一般性を失うことなく $\|w^*\| = 1$ と正規化されているとする)

$$G = \frac{w^* \cdot w_t}{\|w_t\|} = \cos(\theta) \le 1$$

/18/2023

11

パーセプトロンの収束定理(2)

$$G = \frac{w^* \cdot w_t}{\|w_t\|} = \cos(\theta) \le 1$$

簡単化のため初期の荷重 $w_0 = 0$ と仮定する.

G の分子について, w_t が更新されるとき, $w^* \cdot w_{t+1} = w^* \cdot (w_t + \eta(t_p - Out_p)x_p)$ $= w^* \cdot w_t + \eta(t_p - Out_p)(w^* \cdot x_p)$ ここで $x_p \in X^+$ なら $w^* \cdot x_p > 0$ であり,このとき $t_p = 1$, $Out_p = 0$ となるので $\eta(t_p - Out_p)(w^* \cdot x_p) > 0$ となる.

 $(x_p \in X^-$ のときも同様に $\eta(t_p - Out_p)(\mathbf{w}^* \cdot \mathbf{x}_p) > 0)$

9/18/202

12

パーセプトロンの収束定理(3)

 η , $t_p - Out_p$, $\mathbf{w}^* \cdot \mathbf{x}_p$ はそれぞれ定数であることから, $\mathbf{w}^* \cdot \mathbf{w}_{t+1} \ge \mathbf{w}^* \cdot \mathbf{w}_t + \delta$ となる δ ($\delta > 0$) が存在する.

$$\mathbf{w}_0 = \mathbf{0}$$
 と仮定すると, $\mathbf{w}^* \cdot \mathbf{w}_N \ge \mathbf{w}^* \cdot \mathbf{w}_0 + N\delta = N\delta$

0/10/2022

13

パーセプトロンの収束定理(4)

$$G = \frac{w^* \cdot w_t}{\|w_t\|} = \cos(\theta) \le 1$$

簡単化のため初期の荷重 $w_0 = 0$ と仮定する.

$$G$$
 の分母の二乗について, w_t が更新されるとき, $\|w_{t+1}\|^2 = w_{t+1} \cdot w_{t+1}$ $= \|w_t\|^2 + 2\eta(t_p - Out_p)(w_t \cdot x_p) + \eta^2(t_p - Out_p)^2 \|x_p\|^2$

9/18/2023

14

パーセプトロンの収束定理(5)

$$\|\mathbf{w}_{t+1}\|^2 = \|\mathbf{w}_t\|^2 + 2\eta(t_p - Out_p)(\mathbf{w}_t \cdot \mathbf{x}_p) + \eta^2(t_p - Out_p)^2 \|\mathbf{x}_p\|^2$$

ここで $x_p \in X^-$ とすると, w_t が更新されている(出力が誤っている)ことから $t_p = 0$, $Out_p = 1$ であり $w_t \cdot x_p \ge 0$ となる.

よって
$$2\eta(t_p - Out_p)(\mathbf{w}_t \cdot \mathbf{x}_p) \le 0$$
 $(\mathbf{x}_p \in X^+ \text{ も同様})$ ここで $\|\mathbf{x}_p\|^2$ の最大値を M とすると, $2\eta(t_p - Out_p)(\mathbf{w}_t \cdot \mathbf{x}_p) + \eta^2(t_p - Out_p)^2 \|\mathbf{x}_p\|^2 \le M$

9/18/2023

