

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 15 ณ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์ วันอังคารที่ 11 มิถุนายน พ.ศ. 2562 เวลา 8.00 - 13.00 น.

ข้อสอบภาคทฤษฎี

คำชี้แจงการสอบภาคทฤษฎี

- 1. ข้อสอบภาคทฤษฎีมี 12 ข้อ คะแนนรวม 120 คะแนน คิดเป็นร้อยละ 60 ของคะแนนทั้งหมด
- 2. เอกสารข้อสอบภาคทฤษฎี มีทั้งหมด 2 ชุด ให้นักเรียนตรวจสอบรหัสประจำตัวสอบในแต่ละชุดว่า เป็นหมายเลข เดียวกันทุกหน้าและตรงกับรหัสประจำตัวสอบของผู้เข้าสอบก่อนลงมือทำ
 - 2.1. ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 17 หน้า (รวมปก คำชี้แจง ค่าที่กำหนดให้ และตารางธาตุ)
 - 2.2. กระดาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 25 หน้า (รวมปก)
- 3. เอกสารทั้งสองชุดอยู่ในสภาพเรียบร้อย และในแต่ละชุด<u>ห้าม</u>แยกหรือฉีกกระดาษออกจากกัน
- 4. ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำข้อสอบ" และเมื่อประกาศว่า "หมดเวลาสอบ" นักเรียน<u>ต**้อง**</u>หยุดทำข้อสอบทันที และวางเอกสารข้อสอบภาคทฤษฎีและกระดาษคำตอบภาคทฤษฎี อุปกรณ์ เครื่องเขียน เครื่องคิดเลข ไว้บนโต๊ะ และรอให้กรรมการเก็บข้อสอบก่อนออกจากห้องสอบ
- 5. การทำข้อสอบ มีระเบียบดังนี้
 - 5.1. ให้เขียนตอบในกระดาษคำตอบ <u>ด้วยปากกาสีน้ำเงินที่วางไว้บนโต๊ะสอบเท่านั้น หากเขียนด้วยดินสอจะ</u> ไม่ได้รับการตรวจ
 - 5.2. ให้เขียนตอบในกระดาษคำตอบให้ตรงกับข้อ ในกรอบที่กำหนดให้เท่านั้น **ห้ามเขียนนอกกรอบหรือด้านหลัง**ของกระดาษคำตอบ
 - 5.3. กรณีเขียนผิดให้ขีดฆ่าและเขียนใหม่ให้ชัดเจนภายในกรอบที่กำหนดให้ **ห้ามลบด้วยน้ำยาลบคำผิด**
 - 5.4. การทดหรือขีดเขียนอย่างอื่นให้ทำในกระดาษข้อสอบภาคทฤษฎีเท่านั้น
- 6. โจทย์คำนวณให้แสดงวิธีคำนวณตามคำสั่งของโจทย์ในแต่ละข้อ กรณีคำตอบที่เป็นตัวเลข <u>ให้ตอบเป็นเลขทศนิยม</u> <u>หรือเลขนัยสำคัญตามที่กำหนดในโจทย์แต่ละข้อ</u> หากข้อใดไม่ระบุให้ตอบโดยคำนึงถึงเลขนัยสำคัญ
- 7. อนุญาตให้รับประทานอาหารว่างที่วางให้บนโต๊ะในระหว่างการสอบได้
- 8. อนุญาตให้เข้าห้องน้ำในกรณีจำเป็นเท่านั้น โดยยกมือ รอกรรมการผู้คุมสอบอนุญาต (กรรมการลงบันทึกในใบ บันทึกรายงานเหตุการณ์ในระหว่างการสอบ)
- 9. ไม่อนุญาตให้ออกนอกห้องสอบก่อนหมดเวลาสอบ ถ้านักเรียนทำข้อสอบเสร็จก่อนหมดเวลาสอบ สามารถยกมือ ให้กรรมการคุมสอบเก็บข้อสอบและกระดาษคำตอบ แต่นักเรียนต้องนั่งในห้องสอบจนกว่ากรรมการคุมสอบจะ ประกาศให้ "ออกจากห้องสอบได้"
- 10. ห้ามยืมเครื่องเขียนและเครื่องคิดเลขผู้อื่นโดยเด็ดขาด
- 11. ห้ามนำเอกสารใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 12. ห้ามพูด คุย หรือปรึกษากันในระหว่างทำการสอบ หากฝ่าฝืนถือว่า ทุจริตในการสอบ

กรณีทุจริตใด ๆ ก็ตาม นักเรียนจะหมดสิทธิ์ในการแข่งขัน และจะถูกให้ออกจากห้องสอบทันที

กำหนดให้

ค่าคงที่ของแก๊ส (gas constant) = $0.0821 \text{ L atm K}^{-1} \text{ mol}^{-1}$

= 8.314 J K⁻¹ mol⁻¹

เลขอาโวกาโดร (Avogadro's number) = $6.02 \times 10^{23} \text{ mol}^{-1}$

ค่าคงที่ฟาราเดย์ (Faraday's constant) = $96,485 \text{ C} / \text{mol e}^-$

1 ton = 1000 kg

1 kg = 1000 g

1 g = 1000 mg

1 amu = 1.66×10^{-24} g

1 Å = $0.1 \text{ nm} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$

1 atm = 760 mmHg (exactly) = 1.01×10^5 Pa = 14.70 psi (pound per square inch)

1 Pa = 1 kg m⁻¹ s⁻² = 1 N m⁻²

0 °C = 273.15 K

 $t / ^{\circ}F = \frac{9}{5}(t / ^{\circ}C) + 32$

1 J = 1 C⋅V

1 watt (W) = 1 J s^{-1}

อัตราเร็วแสงในสุญญากาศ $c = 3.00 \times 10^8 \, \mathrm{m \ s^{-1}}$

สมการของเนินสต์ : $E=E^\circ-\frac{RT}{n}\ln Q$ $E=E^\circ-\frac{0.0592\ \text{V}}{n}\log Q\quad \vec{\text{n}} \text{ } 25\ ^\circ\text{C}$

ค่าคงที่การลดลงของจุดเยือกแข็ง (freezing-point depression constant, $K_{\rm f}$) ของน้ำ = 1.86 °C kg mol $^{-1}$

Periodic Table of the Elements

1																	18
1			atomic	number													2
H			Sym	nbol													He
1.0	2		atomic	weight								13	14	15	16	17	4.0
3	4]			•							5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
23.0	24.3	3	4	5	6	7	8	9	10	11	12	27.0	28.1	31.0	32.1	35.5	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
85.5	87.6	88.9	91.2	92.9	96.0	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3		178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
(223)	(226)		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(286)	(289)	(289)	(293)	(294)	(294)

Lanthanoid *

Actinoid **

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	138.9	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	(227)	232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

โจทย์ข้อที่ 1 (10 คะแนน)

From the following scheme,

- 1.1 (6 points) Draw all possible structures with stereochemistry of compounds A–F.
- 1.2 (2 points) Draw the structure with stereochemistry of compound **G**. Clearly label each chiral carbon in this molecule with an asterisk (*). What is the absolute configuration at the chiral center?
- 1.3 (1 point) Compound A has a specific rotation of -50° , show your work to calculate the specific rotation of the reaction mixture if only 25% of compound A is converted to compound B, given that there are no other products formed in this reaction.
- 1.4 (1 point) Among A–G, which compound(s) gives a positive result towards 2,4-dinitrophenylhydrazine (2,4-DNP) test?

โจทย์ข้อที่ 2 (10 คะแนน)

Bella carried out her synthetic scheme, laid out below, as her special project.

Bella observed the following findings.

- Finding 1: Compound A was converted to isomers B1 and B2 in the same amount.
- Finding 2: B2 is optically active while B1 is not.
- Finding 3: An amount of gaseous product X was also formed in the conversion of A to C
- Finding 4: Upon treating F with a mixture of sodium nitrite and HCl at 0 °C, the desired compound G was not detected. Instead, a continuous stream of gas Y was observed.
- 2.1 (5 points) Draw a structure for Compounds A, C, D, E, F, H, J and K with correct stereochemistry where applicable.
- 2.2 (2 points) Specify correct wedge-and-dash structures of isomers **B1** and **B2**. Also draw corresponding Fischer projections of **B1** and **B2**.
- 2.3 (1.5 point) What are reagents 1-3?
- **2.4** (0.5 point) What is the structure of the desired Compound **G**?
- 2.5 (1 point) What are Gas X (Finding 3) and Gas Y (Finding 4)?

โจทย์ข้อที่ 3 (10 points)

Carotenoids are natural products found in many kinds of organisms like plants, algae or fungi. They usually have colors in the range of yellow, orange or red.

- 3.1 (0.5 point) What is the most likely UV-visible spectrum for a carotenoid? Circle the letter of the correct answer in the answer sheet.
- **3.2** (1 point) According to the structures of the following carotenoids, predict the order of migration of compounds in a thin layer chromatographic separation using normal silica gel as the stationary phase and dichloromethane as a mobile phase.

Commercial productions of carotenoids can come from both synthetic (chemical) routes or biological routes. Below are parts of the chemical synthesis of zeaxanthin, a biologically important carotenoid known for its role in preventing eye diseases.

3.3 (3.5 points) The first part is the synthesis of the six-membered ring. Identify all compounds and reagents (A–F), where B and C are isomers.

3.4 (5 points) Another part is the modification of the six-membered ring and the final installation of other carbons. Identify **G** and **H**. Also, propose a mechanism (electron-pushing) for steps I and II in the below scheme.

zeaxanthin

โจทย์ข้อที่ 4 (10 คะแนน)

แก๊สโอโซนถูกสร้างขึ้นได้เองตามธรรมชาติจากแก๊สออกซิเจนด้วยการกระตุ้นด้วยแสงยูวีที่มีความยาวคลื่น ≤ 240 nm มีสมการ แสดงปริมาณสารสัมพันธ์ดังนี้

$$3 O_2(g) \xrightarrow{h \mathbf{v}} 2 O_3(g)$$

หากทำการทดลองดังรูป

เริ่มต้นบรรจุแก๊สออกซิเจนในภาชนะปิดสนิทที่ยอมให้แสงยูวีผ่านได้ขนาด 10.00 L ซึ่งต่อกับมานอมิเตอร์แบบปลายเปิด โดย บรรจุแก๊สออกซิเจนให้ระดับปรอทด้านปลายเปิดต่ำกว่าระดับปรอทด้านที่ต่อกับภาชนะ จากนั้นฉายแสงยูวีความยาวคลื่น 200 nm บนภาชนะดังกล่าวด้วยความเข้มแสงคงที่ตลอดการทดลอง และวัดความดันภายในภาชนะเมื่อปฏิกิริยาดำเนินไปที่ เวลาต่าง ๆ กัน กำหนดให้ความดันบรรยากาศ ($P_{\rm atm}$) ขณะที่ทำการทดลองเท่ากับ 759.0 mmHg และอุณหภูมิคงที่ที่ 25.00 °C ได้ผลการทดลองดังนี้

วินาทีที่	ผลต่างความสูงปรอทที่อ่านได้ (∆ <i>h</i> , mmHg)							
วนาทท	การทดลองที่ 1	การทดลองที่ 2						
0.0	739.0	719.0						
10.0	739.5	720.0						
20.0	740.0	721.0						
30.0	741.5	722.0						

สมมติให้แก๊สในการทดลองนี้เป็นแก๊สอุดมคติ

- **4.1** (2 คะแนน) อัตราการสลายตัวของแก๊สออกซิเจน ระหว่างวินาทีที่ 0.0-10.0 ในการทดลองที่ 1 ในหน่วย M/s เป็นเท่าใด
- **4.2** (2 คะแนน) อัตราการเกิดของแก๊สโอโซน ระหว่างวินาทีที่ 0.0-10.0 ในการทดลองที่ 2 ในหน่วย M/s เป็นเท่าใด
- 4.3 (2 คะแนน) อันดับของแก๊สออกซิเจนที่มีต่อการเกิดปฏิกิริยาการผลิตโอโซนนี้เป็นเท่าใด เมื่อกำหนดให้ปริมาณแก๊สโอโซน ที่เกิดขึ้นมีการเปลี่ยนแปลงน้อยมากในช่วงต้นของปฏิกิริยาจนไม่ส่งผลต่ออัตราการเกิดปฏิกิริยา
- **4.4** (4 คะแนน) หากมีการเสนอกลไกการเกิดปฏิกิริยาของการผลิตแก๊สโอโซน 2 แบบดังนี้ แบบที่ 1

งั้นตอนที่ 1:
$$O_2(g)$$
 $\xrightarrow{k_1}$ $O(g) + O(g)$ (กระตุ้นด้วยแสงยูวี, ขั้นกำหนดอัตรา)

ขั้นตอนที่ 2:
$$O(g) + O_2(g)$$
 $\stackrel{k_2}{\rightleftharpoons}$ $O_3(g)$ k_{-2}

แบบที่ 2

ชั้นตอนที่ 1:
$$O_2(g)$$
 $\stackrel{k_1}{\rightleftharpoons}$ $O(g) + O(g)$ (กระตุ้นด้วยแสงยูวี) k_{-1}

ขั้นตอนที่ 2:
$$O(g) + O_2(g) \xrightarrow{k_2}$$
 $O_3(g)$ (ขั้นกำหนดอัตรา)

กฎอัตราและค่าคงที่ (k) ของปฏิกิริยาในรูปของ k_1 , k_{-1} , k_2 และ k_{-2} เป็นอย่างไร หากพิจารณาโดยใช้ steady-state approximation ตามกลไกการเกิดปฏิกิริยาแบบที่ 1 และ 2 และจากผลการทดลองในตาราง กลไกการเกิดปฏิกิริยาควร เป็นแบบที่ 1 หรือ 2

โจทย์ข้อที่ 5 (10 คะแนน)

กำหนดข้อมูลของสาร A ดังนี้

ความดัน (atm)	10	20	30	40	60
จุดเดือด (°C)	120	155	175	185	195
จุดหลอมเหลว (°C)	107	95	83	72	50

ค่า ΔH_{fus} , ΔH_{vap} , ΔH_{sub} , $C_{\text{p}}(s)$, $C_{\text{p}}(l)$ และ $C_{\text{p}}(g)$ ของสาร A คงที่ทุกอุณหภูมิและความดัน

$$\Delta H_{\text{fus}}$$
 = 2,000 J/mol $C_{\text{p}}(s)$ = 30 J/K mol

$$\Delta H_{\text{vap}}$$
 = 3,000 J/mol $C_{\text{p}}(l)$ = 50 J/K mol

$$\Delta H_{\text{sub}}$$
 = 1,000 J/mol $C_{\text{p}}(g)$ = 20 J/K mol

- 5.1 (1 คะแนน) จุดที่ของแข็ง ของเหลวและแก๊สอยู่ในภาวะสมดุล 3 สถานะตรงกับอุณหภูมิและความดันเท่าใด
- 5.2 (1 คะแนน) ที่จุด x ซึ่งตรงกับอุณหภูมิ 120 °C ความดัน 40 atm สาร A มีสถานะเป็นของแข็ง ของเหลว หรือแก๊ส ที่จุด y ซึ่งตรงกับอุณหภูมิ 180 °C ความดัน 16 atm สาร A มีสถานะเป็นของแข็ง ของเหลว หรือแก๊ส
- 5.3 (1 คะแนน) ถ้าลากเส้นตรงจากจุด x ไปจุด y จะผ่านจุดสมดุลระหว่างสถานะ จุดดังกล่าวตรงกับอุณหภูมิและความดัน เท่าใด
- 5.4 (3.5 คะแนน) ถ้าของแข็ง A 1.0 mol ที่ความดัน 10 atm มีการเปลี่ยนแปลงตามสมการ

$$A(s, 100 \degree C) \longrightarrow A(l, 100 \degree C)$$

จะมี ΔH , ΔS และ ΔG เป็นเท่าใด กำหนดให้ $\Delta S = C_{\rm p} \ln(T_2/T_1)$

5.5 (3.5 คะแนน) absolute entropy (S) ของสาร A ที่อุณหภูมิ 140 °C ความดัน 10 atm มีค่าเท่าใด กำหนดให้ $\Delta S_{0-10~K}=2.0~J/K~mol$

โจทย์ข้อที่ 6 (10 คะแนน)

- 6.1 (2.5 คะแนน) พิจารณาโครงสร้างเชิงอิเล็กตรอน (electronic structure) ของโมเลกุลออกซิเจน (O_2) ในชั้นเวเลนซ์ (valence shell)
 - 6.1.1 จงเขียนแผนผังออร์บิทัลเชิงโมเลกุล (MO diagram) ของ O₂ พร้อมทั้งบรรจุอิเล็กตรอนลงในออร์บิทัลเหล่านั้น โดยแสดงลำดับของระดับพลังงานที่ถูกต้องและใช้สัญลักษณ์ต่อไปนี้ในการเรียกชื่อออร์บิทัลต่าง ๆ ในแผนภาพ โดยไม่ต้องวาดรูป

- 6.1.2 จงเขียนโครงสร้างลิวอิสที่ดีที่สุดสำหรับ O₂ พร้อมทั้งอภิปรายความสอดคล้องและ/หรือความแตกต่างที่ทฤษฎี พันธะทั้งสองสามารถอธิบายสมบัติของโมเลกุลนี้ได้
- 6.2 (3 คะแนน) พิจารณาโครงสร้างเชิงอิเล็กตรอนของโมเลกุล O_3 ที่มีรูปร่างเป็นเส้นตรง (linear) ซึ่งเกิดจากอะตอม ออกซิเจน (O^{middle}) ไปแทรกตัวอยู่ตรงกลางระหว่างอะตอมทั้งสองในโมเลกุล O_2 ($O^{left}O^{right}$)

$$O^{left} - O^{middle} - O^{right}$$

- 6.2.1 พิจารณารูปแบบการซ้อนเกย (overlap) ระหว่างออร์บิทัลเชิงอะตอม (atomic orbital, AO) ของ O^{middle} กับ ออร์บิทัลเชิงโมเลกุล (molecular orbital, MO) ของ O_2 และระบุว่าออร์บิทัลคู่ใดบ้างควรเกิดอันตรกิริยา (interaction) ต่อกันได้
- **6.2.2** หากกำหนดให้รูปร่างของออร์บิทัลเชิงโมเลกุลที่พบในโมเลกุล O₃ มีดังนี้

จงเรียงลำดับค่าพลังงานของออร์บิทัลเหล่านี้ โดยการนำชื่อตัวอักษรไปเติมลงในกระดาษคำตอบ

- 6.3 (4.5 คะแนน) พิจารณาโครงสร้างเชิงอิเล็กตรอนของโมเลกุล O₃ ที่มีรูปร่างเป็นมุมงอ (bent) จากการบีบมุมของพันธะใน โมเลกุลเส้นตรงให้เล็กลง แล้วพิจารณาอันตรกิริยาเชิงพันธะที่เปลี่ยนแปลง
 - **6.3.1** จงระบุว่าแต่ละออร์บิทัลจะมีการเปลี่ยนแปลงค่าพลังงานอย่างไร เมื่อโมเลกุล O_3 เปลี่ยนแปลงรูปร่างจาก เส้นตรงให้กลายเป็นมุมงอ
 - 6.3.2 กำหนดค่าระดับพลังงานที่เปลี่ยนแปลงตามมุมของพันธะ ดังแสดงในแผนภาพของวอล์ช (Walsh Diagram)

จงประมาณค่ามุมของโมเลกุลโอโซนในธรรมชาติ พร้อมทั้งอธิบายเหตุผลโดยใช้แผนภาพ

- 6.3.3 จงหาค่าประจุฟอร์มัล (formal charge) ของทุกอะตอมในทั้ง 6 โครงสร้างลิวอิสที่เขียนขึ้นตามทฤษฎีพันธะ เวเลนซ์ (Valence Bond Theory) และเรียงลำดับพลังงานของโครงสร้างเหล่านั้น
- 6.3.4 โครงสร้างลิวอิสใดใกล้เคียงกับโครงสร้างจริงมากที่สุด

โจทย์ข้อที่ 7 (15 คะแนน)

กรดแลกติก (lactic acid, CH₃CH(OH)COOH, $K_a = 1.4 \times 10^{-4}$) เป็นกรดแอลฟาไฮดรอกซี (alpha hydroxy acid, AHA) มี ลักษณะเป็นผลึกมอนอคลินิก ไม่มีสี ละลายน้ำได้ดี ระเหยยาก มีจุดหลอมเหลว 53 °C และมี 2 enantiomers คือ D-lactic acid พบในกากน้ำตาล ไวน์ นมเปรี้ยว และ L-lactic acid เกิดขึ้นในกล้ามเนื้อระหว่างการออกกำลังกายและทำให้เกิดอาการ เมื่อยล้า

- 7.1 (3.5 คะแนน) สารละลายกรดแลกติกในน้ำเข้มข้น 0.0100 m มีจุดเยือกแข็ง −0.0206 °C ร้อยละการแตกตัวของกรด แลกติกในสารละลายนี้มีค่าเท่าใด
- 7.2 (6 คะแนน) สารละลายที่เตรียมจากการผสมสารละลายกรดแลกติก (HL) เข้มข้น 0.85 M ปริมาตร 225 mL กับ สารละลายโซเดียมแลกเทต (sodium lactate, NaL) เข้มข้น 0.75 M ปริมาตร 525 mL มี pH เท่าใด และเมื่อเติม HCl 25 mmol ลงในสารละลายผสมนี้โดยถือว่าปริมาตรของสารละลายไม่เปลี่ยนแปลง สารละลายที่ได้จะมี pH เท่าใด
- 7.3 (2 คะแนน) ถ้านักเรียนนำกรดอ่อนตัวอย่างที่มีลักษณะคล้ายกรดแลกติก 0.412 g มาละลายในน้ำ 100 mL แล้วไทเทรต ด้วยสารละลาย NaOH เข้มข้น 0.125 M ได้กราฟการไทเทรตดังรูป จากผลการทดลองนี้ เป็นไปได้หรือไม่ว่ากรดอ่อน ตัวอย่างเป็นกรดแลกติก อธิบายเหตุผลประกอบให้ชัดเจน

7.4 (3.5 คะแนน) ในการวิเคราะห์ปริมาณกรดแลกติกที่เกิดขึ้นในตัวอย่างเนื้อเยื่อกล้ามเนื้อโดยนำตัวอย่างมาทำปฏิกิริยา กับไฮดรอกไซด์ไอออนที่เกิดขึ้นจากการแยกสลายน้ำด้วยไฟฟ้า (electrolysis) โดยปฏิกิริยาที่แคโทดเป็นดังสมการ

$$2 H_2O(l) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$$

OH⁻ ที่เกิดขึ้นจะทำปฏิกิริยากับกรดแลกติกทันที สังเกตจุดยุติโดยใช้กรด-เบสอินดิเคเตอร์ ถ้าต้องใช้กระแสไฟฟ้า 15.6 mA เป็นเวลา 105 s จึงจะถึงจุดยุติ ตัวอย่างเนื้อเยื่อกล้ามเนื้อมีกรดแลกติกเท่าใด

โจทย์ข้อที่ 8 (12 คะแนน)

Ethylenediaminetetraacetic acid หรือ EDTA (H_4Y) เกิดสารเชิงซ้อนกับไอออนของโลหะหลายชนิดและมีค่าคงที่การเกิด สารเชิงซ้อน (K_f) สูง โดยมีอัตราส่วนโดยโมลของไอออนโลหะต่อ EDTA เป็น 1:1 ไม่ว่าไอออนโลหะจะมีประจุเป็นเท่าใด

- 8.1 (7 คะแนน) เมื่อนำสารละลายเกลือซัลเฟตของโลหะ M (MSO₄) ตัวอย่างมาทำการทดลองที่เกี่ยวข้องกับ EDTA ได้ผล ดังนี้
 - (a) ไทเทรตสารละลาย MSO4 ปริมาตร 100.0 mL ด้วยสารละลาย EDTA พบว่า เมื่อเติมสารละลาย EDTA เข้มข้น 0.0800 M ปริมาตร 50.0 mL EDTA จะทำปฏิกิริยาพอดีกับ MSO4 ดังสมการ

$$Y^{4-}(aq) + M^{2+}(aq) \implies MY^{2-}(aq)$$
 K_{eq}

(b) สร้างเซลล์กัลวานิกที่ประกอบด้วยขั้วไฟฟ้าโลหะ **M** ในสารละลายทั้งหมดที่ได้จากการไทเทรตในข้อ (a) และขั้วไฟฟ้า ทองแดงในสารละลาย CuSO₄ เข้มข้น 1.00 M ปริมาตร 100.0 mL พบว่า วัดศักย์ไฟฟ้าของเซลล์ (*E*_{cell}) ที่ 25 °C ได้เท่ากับ 1.98 V

กำหนดให้ ที่ 25 °C
$$Cu^{2+}(aq) + 2 e^- \longrightarrow Cu(s)$$
 $E^\circ = 0.34 \ V$ $M^{2+}(aq) + 2 e^- \longrightarrow M(s)$ $E^\circ = -1.20 \ V$

- 8.1.1 เซลล์กัลวานิกที่ประกอบด้วยขั้วไฟฟ้า M ในสารละลาย MSO₄ 100.0 mL ก่อนการไทเทรต และขั้วไฟฟ้า Cu ในสารละลาย CuSO₄ เข้มข้น 1.00 M 100.0 mL มีค่าศักย์ไฟฟ้าของเซลล์เท่าใดที่ 25 °C
- 8.1.2 ค่าคงที่สมดุล (K_{eq}) ที่ 25 °C ของปฏิกิริยาการไทเทรตมีค่าเท่าใด
- 8.2 (5 คะแนน) การใช้ EDTA เพื่อหาปริมาณไอออนโลหะในสารตัวอย่างที่มีไอออนโลหะหลายชนิดผสมกันเป็นไปได้ยาก ใน กรณีนี้จำเป็นต้องเติมสารชนิดอื่นซึ่งทำให้ไอออนโลหะบางชนิดในสารตัวอย่างอยู่ในรูปที่ไม่รบกวนการวิเคราะห์ ถ้านำ สารตัวอย่างชนิดหนึ่งที่ประกอบด้วยนิกเกิล เหล็ก และโครเมียม 0.540 g ละลายในกรด แล้วเจือจางจนมีปริมาตร 100.00 mL แล้วทดลองตามขั้นตอนต่อไปนี้
 - <u>ขั้นที่ 1</u> นำสารละลายตัวอย่าง 10.00 mL มาเติม hexamethylenetetramine (HM) มากเกินพอ แล้วไทเทรตด้วย สารละลาย EDTA เข้มข้น 0.0500 M พบว่าที่จุดยุติใช้สารละลาย EDTA ปริมาตร 13.85 mL
 - <u>ขั้นที่ 2</u> นำสารละลายตัวอย่าง 10.00 mL มาเติม pyrophosphate (PR) มากเกินพอ แล้วไทเทรตด้วยสารละลาย EDTA เข้มข้น 0.0500 M พบว่าที่จุดยุติใช้สารละลาย EDTA ปริมาตร 11.60 mL

ร้อยละโดยมวล (%w/w) ของนิกเกิล เหล็ก และโครเมียม ในสารตัวอย่างเป็นเท่าใด

กำหนดให้ HM และ PR เกิดสารเชิงซ้อนกับนิกเกิล เหล็ก และโครเมียม ที่มีอัตราส่วนโดยโมลของไอออนโลหะต่อลิแกนด์ เป็น 1:1 โดยค่าคงที่การเกิดสารเชิงซ้อนในเชิงเปรียบเทียบเป็นดังนี้

$$K_{\text{Fe-EDTA}}, K_{\text{Ni-EDTA}} >> K_{\text{Fe-HM}}, K_{\text{Ni-HM}}$$
 และ $K_{\text{Cr-HM}} >> K_{\text{Cr-EDTA}}$ $K_{\text{Fe-PR}}, K_{\text{Cr-PR}} >> K_{\text{Fe-EDTA}}, K_{\text{Cr-EDTA}}$ และ $K_{\text{Ni-EDTA}} >> K_{\text{Ni-PR}}$

โจทย์ข้อที่ 9 (13.5 คะแนน)

ธาตุ X Y และสารประกอบ Q มีข้อมูลต่าง ๆ ดังนี้

(a) X และ Y เป็นธาตุหมู่หลักในคาบเดียวกันที่มีเลขอะตอมต่อเนื่องกัน และมี phase diagram ดังรูป

- (b) อะตอมของธาตุ X และ Y ในสถานะพื้น (ground state) มีจำนวนอิเล็กตรอนเดี่ยว (unpaired electrons) รวมกัน น้อยกว่า 5 ตัว โดยสารประกอบ XF_n ซึ่งเสถียรและไม่ใช่สารกัมมันตรังสี มีมุมพันธะที่มากที่สุดเท่ากับ 180°
- (c) **Q** คือ สารประกอบคอปเปอร์ของ **Y** ซึ่งมีโครงสร้างผลึกหลายแบบ เช่น γ β และ α ขึ้นกับอุณหภูมิและความดัน โดย γ -Q ซึ่งอยู่ในระบบลูกบาศก์ที่เกิดจากการจัดเรียงตัวแบบชิดที่สุด (closest packing) มีความหนาแน่น 5.57 g/cm³ และ α -Q มีโครงสร้างผลึกแบบ NaCl

ตอบคำถามต่อไปนี้โดยใช้สัญลักษณ์ตามตารางธาตุ

- 9.1 (1.5 คะแนน) หากพิจารณาเฉพาะข้อมูล (a) เท่านั้น ธาตุ X อาจเป็นธาตุใดได้บ้าง
- 9.2 (1.5 คะแนน) วาดรูปโครงสร้างสาร trioxide ของ X ที่แสดงจำนวนพันธะ พร้อมประจุและ/หรืออิเล็กตรอนคู่โดดเดี่ยว ของอะตอมกลาง (ถ้ามี) มุมพันธะที่เล็กที่สุดมีค่าใกล้เคียงเท่าใด
- 9.3 (3 คะแนน) ธาตุ Y คือธาตุใด กรดออกโซ (หรือกรดออกซี) ของ Y ที่มีเลขออกซิเดชันเท่ากับ 3 มีสูตรและชื่อสะกดด้วย อักษรอังกฤษอย่างไร การจัดเรียงอิเล็กตรอนแบบย่อ (condensed electron configuration) ของ Y หลังจากดึง เวเลนซ์อิเล็กตรอนออก 1 ตัวเขียนได้อย่างไร
- 9.4 (2.5 คะแนน) หากรัศมีของไอออนบวกใน γ-Q มีค่า 77 pm ความยาวด้านของ unit cell มีค่ากี่อังสตรอม รัศมีของ ไอออนลบมีค่ากี่พิโคเมตร อัตราส่วนของรัศมีไอออนที่มีขนาดเล็กกว่าต่อไอออนที่มีขนาดใหญ่กว่ามีค่าเท่าใด
- 9.5 (2 คะแนน) วาดรูปแสดงตำแหน่งของจุดแลตทิชของ γ-Q ตามแกน z ที่ระยะต่าง ๆ โดยใช้ แทนไอออนบวก และ
 О แทนไอออนลบ
- 9.6 (3 คะแนน) หากสารละลายอิ่มตัวของ γ-Q ในน้ำ 175 mL มี Q ละลายอยู่ 73.5 μg เมื่อนำผลึก Q ไปละลายใน สารละลายแคลเซียมของ Y 15.0 μM การละลายของ Q เปลี่ยนไปกี่เปอร์เซ็นต์

โจทย์ข้อที่ 10 (9.5 คะแนน)

จากข้อมูลเกี่ยวกับสารประกอบโคออร์ดิเนชันต่อไปนี้

- (a) มีสูตรโมเลกุลคือ $KM(CrO_4)Cl_2(NH_3)_4$ เมื่อ M คือธาตุแทรนซิชันคาบแรก
- (b) มีโครงสร้างสเตอริโอไอโซเมอร์ 2 แบบ คือ A (สีแดง) และ B (สีน้ำเงิน)
- (c) เมื่อสาร **A** หรือ **B** 1 โมล ทำปฏิกิริยาพอดีกับ $AgNO_3$ 2 โมล จะได้ตะกอนสีแดง 1 โมล ตกลงมาทันที
- (d) หลังจากปฏิกิริยาในข้อ (c) สาร **A** 1 โมลจะทำปฏิกิริยาอย่างช้า ๆ กับ $Ag_2C_2O_4$ 1 โมล ได้ตะกอนสีขาว 2 โมล แต่ สาร **B** ไม่ทำปฏิกิริยากับ $Ag_2C_2O_4$

จงตอบคำถามต่อไปนี้

- 10.1 (2.5 คะแนน) วาดโครงสร้างสเตอริโอไอโซเมอร์ของไอออนเชิงซ้อนในสารประกอบ A และ B สารประกอบชนิดใดมี optical isomer
- 10.2 (2 คะแนน) เขียนสมการแสดงปฏิกิริยาการตกตะกอนในข้อ (c) และ (d)
- 10.3 (1.5 คะแนน) ถ้าวัดสมบัติแม่เหล็กของสาร A และ B ผลที่ได้แสดงว่าเป็นไดอะแมกเนติก จงทำนายว่า M คือโลหะใด มี เลขออกซิเดชันเท่าใด และเขียน d-splitting diagram ของ M พร้อมทั้งบรรจุอิเล็กตรอน
- 10.4 (1 คะแนน) อ่านชื่อสารประกอบโคออร์ดิเนชัน $KM(CrO_4)Cl_2(NH_3)_4$ ด้วยอักษรภาษาอังกฤษ
- 10.5 (2.5 คะแนน) คำนวณหาจุดเยือกแข็งตามทฤษฎีของสารละลายในน้ำของสารประกอบโคออร์ดิเนชัน K**M**(CrO₄)Cl₂(NH₃)₄ เข้มข้น 0.10 M เมื่อกำหนดให้ความหนาแน่นของสารละลายเป็น 1.03 g cm⁻³

โจทย์ข้อที่ 11 (5 คะแนน)

- 11.1 (1.5 คะแนน) ในตริกออกไซด์ หรือ ในโตรเจนมอนอกไซด์ (NO) เป็นแก๊สไม่มีสีและมี unpaired electron อยู่ 1 ตัว
 - 11.1.1 จงวาดโครงสร้างลิวอิสที่เป็นไปได้ของ NO พร้อมระบุประจุฟอร์มัลของแต่ละอะตอมในโครงสร้าง
 - 11.1.2 วงกลมล้อมรอบโครงสร้างที่เสถียรที่สุด พร้อมระบุเหตุผล
- 11.2 (2 คะแนน) จงเติมอิเล็กตรอนลงใน Molecular Orbital Diagram ของในตริกออกไซด์ (NO) โดยระบุชื่อออร์บิทัลทุก ชนิดให้ครบถ้วน
- 11.3 (0.5 คะแนน) อันดับพันธะของในตริกออกไซด์ (NO) โดยใช้ Molecular Orbital Diagram เท่ากับเท่าใด
- **11.4** (1 คะแนน) เรียงลำดับพลังงานไอออไนเซชันลำดับที่ 1 (${\rm IE}_1$) ของอะตอม ${\rm N}$, อะตอม ${\rm O}$ และโมเลกุล ${\rm NO}$ จากน้อยไปมาก

โจทย์ข้อที่ 12 (5 คะแนน)

ทรายโมนาไซต์จัดเป็นแหล่งแร่ที่มีธาตุแรร์เอิร์ทอยู่รวมกันหลายชนิด และยังมีธาตุกัมมันตรังสีได้แก่ทอเรียมและยูเรเนียมปนอยู่ เล็กน้อย จากการสกัดแยกแร่ด้วยวิธีย่อยในสารละลายด่างที่ร้อนและผ่านกระบวนการหลายขั้นตอน จนแยกได้ตะกอนไฮดรอก ไซด์ของทอเรียมและยูเรเนียม กับสารละลายคลอไรด์ของกลุ่มแรร์เอิร์ท สารประกอบเหล่านี้ล้วนมีเลขออกซิเดชัน +4 ซึ่งใน ที่สุดจะแยกเป็นโลหะแต่ละชนิดได้

- 12.1 (0.5 คะแนน) U(IV) มีการจัดเรียงอิเล็กตรอนแบบย่ออย่างไรตามหลักเอาฟบาว
- 12.2 (1.5 คะแนน) จากสถิติ คนที่อาศัยอยู่ในบริเวณที่มีทรายโมนาไซต์จะเป็นมะเร็งปอดเนื่องจากหายใจเอาเรดอนซึ่งเกิดจาก การสลายตัวของยูเรเนียมและทอเรียมเข้าไปด้วย โดยเรดอนสลายตัวต่อไปอีกให้ ไอโซโทป X กับ อนุภาค z กำหนดให้ X อยู่หมู่เดียวกับกำมะถัน และเรดอนเป็นชนิด ²²²Rn จงเขียนสมการนิวเคลียร์แสดงการสลายตัวของเรดอน โดยใช้สัญลักษณ์ตามตารางธาตุ
- **12.3** (1.5 คะแนน) เก็บตัวอย่างอากาศซึ่งมี ²²²Rn 1000 อะตอม ในภาชนะปิดขนาด 10 ลิตร เมื่อเวลาผ่านไป 20 วัน จะเหลือ ²²²Rn กี่อะตอม ถ้า ²²²Rn มีครึ่งชีวิต 3.8 วัน
- 12.4 (1.5 คะแนน) ทอเรียมที่แยกออกมาจากทรายโมนาไซต์สามารถนำไปผลิตไอโซโทปของยูเรเนียมที่ใช้เป็นเชื้อเพลิง นิวเคลียร์ได้ดังสมการ

232
Th + n \longrightarrow 233 Th $\stackrel{\beta^-}{\longrightarrow}$ 233 Pa $\stackrel{\beta^-}{\longrightarrow}$ 233 U

ถ้าเริ่มด้วย 232 Th 1 g ปฏิกิริยาที่ทำให้เกิด 233 Th มีการเปลี่ยนแปลงพลังงานอย่างไร ตอบในหน่วย kJ กำหนดให้ มวล 232 Th = 232.0381 amu, 233 Th = 233.04158 amu และ n = 1.00867 amu