29. Demuestre que para cualesquiera números reales a y b, la matriz $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ tiene valores característicos $a \pm ib$.

De los problemas 30 al 36 suponga que la matriz A tiene valores característicos $\lambda_1, \lambda_2, \ldots, \lambda_k$

- **30.** Demuestre que los valores característicos de A^{T} son $\lambda_1, \lambda_2, \ldots, \lambda_k$
- 31. Demuestre que los valores característicos de αA son $\alpha \lambda_1, \alpha \lambda_2, \ldots, \alpha \lambda_k$
- **32.** Demuestre que A^{-1} existe si y sólo si $\lambda_1, \lambda_2, \ldots, \lambda_k \neq 0$.
- *33. Si A^{-1} existe, demuestre que los valores característicos de A^{-1} son $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_k}$
- **34.** Demuestre que la matriz $A \alpha I$ tiene valores característicos $\lambda_1 \alpha$, $\lambda_2 \alpha$, ... $\lambda_k \alpha$.
- *35. Demuestre que los valores característicos de A^2 son $\lambda_1^2, \lambda_2^2, \ldots, \lambda_k^2$
- *36. Demuestre que los valores característicos de A^m son λ_1^m , λ_2^m , ..., λ_k^m para m = 1, 2, 3, ...
- 37. Sea λ un valor característico de A con \mathbf{v} como el vector característico correspondiente. Sea $p(\lambda)$ = $a_0 + a_1\lambda + a_2\lambda^2 + \cdots + a_n\lambda^n$. Defina la matriz p(A) por $p(A) = a_0I + a_1A + a_2A^2 + \cdots + a_nA^n$. Demuestre que $p(A)\mathbf{v} = p(\lambda)\mathbf{v}$.
- **38.** Utilizando el resultado del problema 37, demuestre que si $\lambda_1, \lambda_2, \ldots, \lambda_k$ son valores característicos de A, entonces $p(\lambda_1), p(\lambda_2), \ldots, p(\lambda_k)$ son vectores característicos de p(A).
- **39.** Demuestre que si *A* es una matriz diagonal, entonces los valores característicos de *A* son las componentes de la diagonal de *A*.

$$\textbf{40. Sea} \ A_1 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \ A_2 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \ A_3 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \ A_4 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Demuestre que para cada matriz $\lambda=2$ es un valor característico con multiplicidad algebraica 4. En cada caso calcule la multiplicidad geométrica de $\lambda=2$.

- *41. Sea A una matriz real de $n \times n$. Demuestre que si λ_1 es un valor característico complejo de A con vector característico \mathbf{v}_1 , entonces $\overline{\lambda}_1$ es un valor característico de A con vector característico $\overline{\mathbf{v}}_1$.
- 42. Una matriz de probabilidad es una matriz de $n \times n$ que tiene dos propiedades:
 - a) $a_{ii} \ge 0$ para toda i y j.
 - b) La suma de las componentes en cada columna es 1.

Demuestre que 1 es un valor característico de toda matriz de probabilidad.

43. Sea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matriz de 2×2 . Suponga que $b \neq 0$. Sea m una raíz (real o compleja) de

la ecuación

$$bm^2 + (a-d)m - c = 0$$

Demuestre que a + bm es un valor característico de A con vector característico correspondiente $\mathbf{v} = \begin{pmatrix} 1 \\ m \end{pmatrix}$. Esto proporciona un método sencillo para calcular los valores y vectores

característicos de las matrices de 2×2 . [Este procedimiento apareció en el artículo "A Simple Algorithm for Finding Eigenvalues and Eigenvectors for 2×2 Matrices" de Tyre A. Newton en el *American Mathematical Monthly*, 97(1), enero de 1990, pp. 57-60.]

Matriz de probabilidad