Mein Dokument

Dein Name

28. Juni 2025

Kapitel 1

Grundlagen

1.1 Grundgleichungen der Weber-Kraft

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right)$$

Daraus folgt die Bewegungsgleichung:

$$\ddot{r}-r\dot{\varphi}^2=-\frac{GM}{r^2}\left(1-\frac{\dot{r}^2}{c^2}+\frac{r\ddot{r}}{2c^2}\right)$$

1.2 Klassische Lösung (0. Ordnung)

Für $c \to \infty$ ergibt sich die Kepler-Bahn:

$$r_0(\varphi) = \frac{a(1 - e^2)}{1 + e\cos\varphi}$$

$$a_0(\varphi) = -\frac{GM}{r_0^2(\varphi)}$$

1.3 Relativistische Korrektur (1. Ordnung)

Störungsansatz für die Beschleunigung:

$$a(\varphi) = a_0(\varphi) + \frac{GM}{c^2}a_1(\varphi) + \mathcal{O}(1/c^4)$$

Einsetzen in die Bewegungsgleichung liefert den Korrekturterm:

$$a_1(\varphi) = \frac{GM}{r_0^2(\varphi)} \left(\frac{3h^2}{r_0^2(\varphi)} - \frac{h^2}{2GMr_0(\varphi)} \left(\frac{dr_0}{d\varphi} \right)^2 \right)$$

1.4 Beschleunigung bis zur 1. Ordnung

$$a(\varphi) = -\frac{GM}{r_0^2(\varphi)} \left[1 - \frac{1}{c^2} \left(\frac{3h^2}{r_0^2(\varphi)} - \frac{h^2}{2GMr_0(\varphi)} \left(\frac{dr_0}{d\varphi} \right)^2 \right) \right]$$

Hinweis: $r_0(\varphi)$ ist die klassische Kepler-Lösung, h der spezifische Drehimpuls.

1.5 Explizite Form mit Bahnelementen

Einsetzen von
$$r_0(\varphi) = \frac{a(1-e^2)}{1+e\cos\varphi}$$
:

$$a(\varphi) = -\frac{GM(1 + e\cos\varphi)^2}{a^2(1 - e^2)^2} \left[1 - \frac{3h^2(1 + e\cos\varphi)^2}{c^2a^2(1 - e^2)^2} + \frac{h^2e^2\sin^2\varphi}{2c^2GMa^3(1 - e^2)^3} (1 + e\cos\varphi)^3 \right]$$

1.6 Theoretische Grundlage

$$r(\phi) = r_{\text{ART}}(\phi) + \delta r(\phi)$$

Hier ist $r_{\text{ART}}(\phi)$ die analytische Näherung (ART-genau) und $\delta r(\phi)$ die numerisch berechnete Korrektur.

1.7 Schrittweitensteuerung

Die Schrittweite $\Delta \phi$ wird dynamisch aus den analytischen Ableitungen bestimmt:

$$\Delta \phi = \min \left(\Delta \phi_{\max}, \frac{\epsilon}{|w(\phi)| + |v(\phi)|} \right)$$

mit $v(\phi) = \frac{dr}{d\phi}$ und $w(\phi) = \frac{d^2r}{d\phi^2}$ aus der ART-Näherung.

1.8 Numerische Korrektur

In jedem Schritt wird nur die Abweichung von der ART-Näherung numerisch integriert:

 $\delta r(\phi + \Delta \phi) = \delta r(\phi) + \text{Numerische Integration von (DGL - ART-Ableitung)}$

1.9 Gesamtlösung

Die finale Lösung kombiniert beide Anteile:

$$r(\phi + \Delta\phi) = r_{\text{ART}}(\phi + \Delta\phi) + \delta r(\phi + \Delta\phi)$$

1.10 Kartesische Koordinaten

$$\vec{r}(\phi) = \begin{pmatrix} x(\phi) \\ y(\phi) \end{pmatrix}$$
$$r(\phi) = \sqrt{x(\phi)^2 + y(\phi)^2}$$
$$\omega(\phi) = \frac{d\phi}{dt} = \frac{h}{r(\phi)^2}$$

1.11 Weber-Kraft in kartesischer Form

$$\vec{F} = -\frac{GMm}{r^3} \vec{r} \left(1 - \frac{|\dot{\vec{r}}|^2}{c^2} + \frac{\vec{r} \cdot \ddot{\vec{r}}}{2c^2} \right)$$

Zeitliche Ableitungen 1.12

$$\dot{\vec{r}} = \omega \frac{d\vec{r}}{d\phi} = \omega \vec{r}'$$
$$\ddot{\vec{r}} = \omega^2 \vec{r}'' + \omega \frac{d\omega}{d\phi} \vec{r}'$$

$$\ddot{\vec{r}} = \omega^2 \vec{r}^{"} + \omega \frac{d\omega}{d\phi} \vec{r}^{"}$$

1.13 Skalarprodukte

$$|\dot{\vec{r}}|^2 = \omega^2 (x'^2 + y'^2)$$
$$\vec{r} \cdot \ddot{\vec{r}} = \omega^2 (xx'' + yy'') + \omega \frac{d\omega}{d\phi} (xx' + yy')$$

1.14 Differential gleichung für $x(\phi)$

$$x'' = \frac{1}{1 + \frac{GM}{2c^2r}} \left[\frac{2(x'^2 + y'^2)}{r^2} x - \frac{GM}{\omega^2 r^3} x \left(1 - \frac{\omega^2 (x'^2 + y'^2)}{c^2} \right) \right]$$

1.15 Differential gleichung für $y(\phi)$

$$y'' = \frac{1}{1 + \frac{GM}{2c^2r}} \left[\frac{2(x'^2 + y'^2)}{r^2} y - \frac{GM}{\omega^2 r^3} y \left(1 - \frac{\omega^2 (x'^2 + y'^2)}{c^2} \right) \right]$$

1.16 Differential gleichung für $\omega(\phi)$

$$\frac{d\omega}{d\phi} = -\frac{2h}{r^3}(xx' + yy')$$

Zusammenfassung des DGL-Systems 1.17

$$\vec{Y} = \begin{pmatrix} x \\ y \\ x' \\ y' \\ \omega \end{pmatrix}$$

$$\vec{Y} = \begin{pmatrix} x \\ y \\ x' \\ y' \\ \omega \end{pmatrix}$$

$$\frac{d\vec{Y}}{d\phi} = \begin{pmatrix} x' \\ y' \\ x'' \\ y'' \\ \omega' \end{pmatrix}$$

1.18 Koordinatensystem und Basisvektoren

$$\begin{split} \hat{e}_r &= \cos\phi \,\hat{i} + \sin\phi \,\hat{j} \\ \hat{e}_\phi &= -\sin\phi \,\hat{i} + \cos\phi \,\hat{j} \\ \vec{r} &= r\hat{e}_r, \quad \dot{\vec{r}} &= \dot{r}\hat{e}_r + r\dot{\phi}\hat{e}_\phi \end{split}$$

1.19 Post-Newtonische Kraft in vektorieller Form

$$\vec{F} = -\frac{GMm}{r^2} \left(1 - \frac{|\dot{\vec{r}}|^2}{c^2} + \frac{(\vec{r} \cdot \ddot{\vec{r}})}{2c^2} \right) \hat{e}_r$$

${\bf 1.20}\quad {\bf Geschwindigkeits quadrat}$

$$|\dot{\vec{r}}|^2 = \dot{r}^2 + r^2 \dot{\phi}^2$$

${\bf 1.21}\quad Beschleunigungsskalar produkt$

$$\vec{r} \cdot \ddot{\vec{r}} = r \ddot{r} - r^2 \dot{\phi}^2$$

1.22 Bewegungsgleichung in vektorieller Form

$$m\ddot{\vec{r}} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2 + r^2 \dot{\phi}^2}{c^2} + \frac{r\ddot{r} - r^2 \dot{\phi}^2}{2c^2} \right) \hat{e}_r$$

${\bf 1.23}\quad {\bf Differential gleichungs system}$

$$\begin{cases} \frac{d^2x}{d\phi^2} = f_x \left(x, y, \frac{dx}{d\phi}, \frac{dy}{d\phi} \right) \\ \frac{d^2y}{d\phi^2} = f_y \left(x, y, \frac{dx}{d\phi}, \frac{dy}{d\phi} \right) \end{cases}$$

1.24 Explizite DGL für x-Komponente

$$\frac{d^2x}{d\phi^2} = \frac{\frac{GMm^2}{L^2}\frac{x}{r^3} - \frac{x}{r^2} - \frac{GM}{c^2}\left[\frac{1}{r^2}\left(\frac{dx}{d\phi}\frac{dy}{d\phi}(y\frac{dx}{d\phi} - x\frac{dy}{d\phi}) + \frac{x}{2r^4}\left((\frac{dx}{d\phi})^2 + (\frac{dy}{d\phi})^2\right)\right)\right]}{1 - \frac{GM}{2c^2r}}$$

1.25 Explizite DGL für y-Komponente

$$\frac{d^2y}{d\phi^2} = \frac{\frac{GMm^2}{L^2}\frac{y}{r^3} - \frac{y}{r^2} - \frac{GM}{c^2} \left[\frac{1}{r^2} \left(\frac{dx}{d\phi} \frac{dy}{d\phi} (x \frac{dy}{d\phi} - y \frac{dx}{d\phi}) + \frac{y}{2r^4} \left((\frac{dx}{d\phi})^2 + (\frac{dy}{d\phi})^2 \right) \right) \right]}{1 - \frac{GM}{2c^2r}}$$

1.26 Transformiertes System 1. Ordnung

$$\begin{cases} \frac{dx}{d\phi} = v_x \\ \frac{dy}{d\phi} = v_y \\ \frac{dv_x}{d\phi} = f_x(x, y, v_x, v_y) \\ \frac{dv_y}{d\phi} = f_y(x, y, v_x, v_y) \end{cases}$$

1.27 Klassische Weber-Kraft (Elektrodynamik)

$$F_{Weber}^{EM} = \frac{Qq}{4\pi\epsilon_0 r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{2r\ddot{r}}{c^2}\right) \hat{r}$$

1.28 Quantisierte Weber-Kraft (Gittermodell)

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

1.29 Elektrisches Feld als Deformationsgradient

$$\vec{E} = \frac{\Delta(\text{Zellvolumen})}{L_p^3} \cdot \hat{r}$$

1.30 Universelle Weber-Kraft

$$F_{universal} = \frac{K \cdot V_1(t) V_2(t)}{(nL_p)^2} \left(1 - \frac{v_{eff}^2}{c^2} + \frac{\beta L_p a_{eff}}{c^2} \right) \hat{r}$$

1.31 Energie-Impuls-Beziehung für Photonen

$$E = \hbar \nu = \frac{hc}{\lambda}$$

1.32 Webers Gravitationskraft

$$F = \frac{G \cdot M \cdot m}{r^2} \cdot \left[1 - \frac{v^2}{c^2} + \frac{r \cdot a}{c^2}\right]$$

1.33 Theorievergleich: ART vs. Weber

Aspekt	ART	Weber
Raummodell	Raumzeitkrümmung	Direkte Teilchenwechselwirkung
Gravitationswellen	Vorhanden	Nicht existent
Schwarze Löcher	Singularitäten	Keine Singularitäten
Galaxienrotation	Dunkle Materie benötigt	Natürliche Erklärung
Quantenkompatibilität	Problemhaft	Einfacher quantisierbar

1.34 Vorteile der Weber-Theorie

- Erklärt Galaxienrotation ohne Dunkle Materie
- Vermeidet Singularitäten
- Leichter mit Quantenphysik vereinbar
- Direkte Kräfte zwischen Teilchen (keine Raumkrümmung)

1.35 Historische Dominanz der ART

- Frühe experimentelle Bestätigung (1919)
- $\bullet\,$ Einsteins Bekanntheit
- Forschungsinfrastruktur auf ART ausgerichtet
- $\bullet\,$ Weber-Theorie als ältmodischäbgetan

1.36 Quantengravitation mit Weber

- $\bullet\,$ Keine Hawking-Strahlung vorhergesagt
- $\bullet\,$ Neue Gravitationssignal-Typen möglich
- Direkte Quantisierung der Kraftgleichung
- \bullet Kompatibel mit Quantenfeld theorien

1.37 Modifizierte Weber-Kraft (gravitativ)

$$F_{Weber}^{Grav} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \hat{r}$$

1.38 Periheldrehung des Merkur

$$\Delta\theta = \frac{6\pi GM}{ac^2(1-e^2)}$$

1.39 All gemeine $\beta\text{-Formel}$

$$\beta = 2 \cdot \left(\frac{1}{2}\right)^{\delta} \cdot \left(1 - \frac{mc^2}{E}\right)$$

1.40 Universelle Weber-Kraft für Massen

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right)$$

${\bf 1.41}\quad {\bf Gravitations well engleichung}$

$$\Box h_{\mu\nu} = -\frac{16\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} \beta \cdot \partial_t^2 Q_{\mu\nu} \right)$$

1.42 Quantisierte Weber-Kraft (QED)

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

1.43 Frequenzabhängige Lichtablenkung

$$\Delta\phi \sim \frac{4GM}{c^2b} \left(1 + \frac{\lambda_0^2}{\lambda^2}\right)$$

1.44 Hamiltonian des Dodekaeder-Gitters

$$\mathcal{H} = \sum_{\text{Kanten}} \epsilon (V_i(t) - V_j(t))^2$$