Technische Universität Berlin

Fakultät II – Institut für Mathematik SS 02 Penn-Karras, Bärwolff, Förster, Unterreiter, Borndörfer 22. Juli 2002

Juli – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:							
Neben einem handbeschriebenen mittel zugelassen.	ı A4 Bl	att mit	t Notiz	en sind	keine	weitere	en Hilfs-
Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden.							
Dieser Teil der Klausur umfasst die Verständnisaufgaben, sie sollten ohne großen Rechenaufwand mit den Kenntnissen aus der Vorlesung lösbar sein. Geben Sie, wenn nichts anderes gesagt ist, immer eine kurze Begründung an.							
Die Bearbeitungszeit beträgt 90 Minuten.							
Die Gesamtklausur ist mit 32 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 40 Punkten erreicht werden.							
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 4 Punkte

Skizzieren Sie eine Menge, die abgeschlossen und nicht konvex ist, und begründen Sie Ihre Wahl.

2. Aufgabe 8 Punkte

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ eine Funktion mit $\Delta f = 0$ (d.h. f ist eine harmonische Funktion) gegeben durch

$$f(x, y, z) = 3y^{2}x - x^{3} - 3yz^{2} + y^{3} + x^{2} - z^{2} + 3y - 7.$$

Sei das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ gegeben durch $\vec{v}(x, y, z) = \operatorname{grad} f(x, y, z)$.

- a) Zeigen Sie, dass \vec{v} ein Potential besitzt, und geben Sie ein Potential von \vec{v} an.
- b) Besitzt \vec{v} ein lokales Vektorpotential?
- c) Bestimmen Sie den Wert des Kurvenintegrals $\int_{\vec{c}} \vec{v} \cdot d\vec{s}$, wobei $\vec{c}(t)$ irgendeine spiralförmige Kurve vom Punkt (0,0,0) zum Punkt (1,1,1) ist.

Tip: Der Verständnisteil erfordert keine langen Rechenwege.

3. Aufgabe 11 Punkte

Parametrisieren Sie die (gesamte!) Oberfläche der Menge

$$B = \{(x, y, z)^T \in \mathbb{R}^3 \mid -5 \le z \le -x^2 - y^2 + 4\}$$

mit Hilfe von Zylinderkoordinaten und fertigen Sie eine Skizze an.

4. Aufgabe 9 Punkte

Sei $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein differenzierbares Vektorfeld, das gegeben ist durch

$$\vec{v}(x, y, z) = (x + e^z \cos y, \ y - \frac{z}{1 + x^2}, \ z + 5x^3y)^T.$$

Weiter sei die Menge $B \subset \mathbb{R}^3$ gegeben durch

$$B = \{(x, y, z)^T \in \mathbb{R}^3 \mid 0 \le x \le 1, \ 0 \le y \le 2, \ 0 \le z \le 5 - y\}.$$

Bestimmen Sie das Integral $\iint_{\partial B} \vec{v} \cdot d\vec{O}$ von \vec{v} über die Oberfläche von B (mit nach außen weisendem Normalenvektor).

5. Aufgabe 4 Punkte

Entscheiden Sie mit Begründung, ob folgende Aussage wahr oder falsch ist.

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine stetig differenzierbare Funktion, die keine lokalen Extrema besitzt. Sei $g: \mathbb{R}^2 \to \mathbb{R}$ eine stetig differenzierbare Funktion, die die Menge der Nebenbedingung $G = \{(x,y)^T \in \mathbb{R}^2 \mid g(x,y) = 0\}$ beschreibt. Die Menge G der Nebenbedingung sei unbeschränkt, also nicht kompakt.

Dann besitzt die Funktion f unter der Nebenbedingung g(x,y)=0 auch keine lokalen Extrema.

6. Aufgabe 4 Punkte

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine stetig differenzierbare Funktion. Sei $\vec{\gamma}: [a,b] \to \mathbb{R}^2$ eine parametrisierte Kurve. Für alle $t \in [a,b]$ gelte $f(\vec{\gamma}(t)) = 1$ (also ist die Kurve $\vec{\gamma}$ ein Teil einer Niveaumenge von f).

Bestimmen Sie den Wert des Skalarprodukts grad $f(\vec{\gamma}(t)) \cdot \vec{\gamma}'(t)$.