第一小题

进程	已获得资源	最大资源数	还需资源数	系统剩余	
	(Allocation)	(MAX)	(Need)	(Availble)	
	A B C D	A B C D	A B C D	A B C D	
P0	0 0 3 2	0 0 4 4	0 0 1 2	2 6 4 4	
P1	1 1 0 0	2 6 5 0	1 5 5 0		
P2	1 2 4 2	3 7 11 12	2 5 7 10		
Р3	0 3 3 2	0 7 7 4	0 4 4 2		
P4	0 0 1 4	0 6 6 8	0 6 5 4		

进程	可用资源 (Work)	还需资源 (Need)	已获得资源 (Allocation)	可用资源+已获得 资源 (Work+Allocatio n)	是否完 成 (finish)
	A B C D	A B C D	A B C D	A B C D	
P0	2 6 4 4	0 0 1 2	0 0 3 2	2 6 7 6	T
Р3	2 6 7 6	0 4 4 2	0 3 3 2	2 9 10 8	T
P1	2 9 10 8	1 5 5 0	1 1 0 0	3 10 10 8	T
P4	3 10 10 8	0 6 5 4	0 0 1 4	3 10 11 12	Т
P2	3 10 11 12	2 5 7 10	1 2 4 2	4 12 15 14	Т

存在安全序列: $P0 \rightarrow P3 \rightarrow P1 \rightarrow P4 \rightarrow P2$, 所以系统此时处于安全状态

第2小题

Request2(1, 2, 2, 2) \leq Need2(2, 5, 7, 10) Request2(1, 2, 2, 2) \leq Available2(2, 6, 4, 4)

系统先假定可为 P2 分配资源,并修改已分配资源数,还需资源数,系统剩余资源数

进程	已获得资源 (Allocation)	最大资源数 (MAX)	还需资源数 (Need)	系统剩余 (Availble)
	A B C D	A B C D	A B C D	A B C D
P0	0 0 3 2	0 0 4 4	0 0 1 2	1 4 2 2
P1	1 1 0 0	2 6 5 0	1 5 5 0	
P2	2 4 6 4	3 7 11 12	1 3 5 8	
Р3	0 3 3 2	0 7 7 4	0 4 4 2	
P4	0 0 1 4	0 6 6 8	0 6 5 4	

进程	可用资源 (Work)	还需资源 (Need)	已获得资源 (Allocation)	可用资源+已获得资 源 (Work+Allocation)	是否 完成 (fini sh)
	A B C D	A B C D	A B C D	A B C D	T
P0	1 4 2 2	0 0 1 2	0 0 3 2	1 4 5 4	T
Р3	1 4 5 4	0 4 4 2	0 3 3 2	1 7 8 6	T
P4	1 7 8 6	0 6 5 4	0 0 1 4	1 7 9 10	T
P1	1 7 9 10	1 5 5 0	1 1 0 0	2 8 9 10	T
P2	2 8 9 10	1 3 5 8	2 4 6 4	4 12 15 14	T

因为通过银行家算法分析, 当进程 P2 发出 request (1, 2, 2, 2) 时,资源分配存在安全 序列:

P0→P3→P4→P1→P2, 系统可以分配资源