

Progettazione e Analisi di Algoritmi A.A. 2016/2017

Verifica numerica di alcuni risultati presenti nell'articolo "Summations in Bernoulli's Triangle via Generating Functions", Kamilla Oliver, Helmut Prodinger, Journal of Integer Sequences, Vol. 20 (2017)

Francesco Mucci 6173140

Abstract

Obiettivo del lavoro è verificare numericamente il valore di particolari somme di elementi appartenenti all' m-esimo Triangolo di Bernoulli. Tali somme e le loro funzioni generatrici sono introdotte ed analizzate nell'articolo "Summations in Bernoulli's Triangle via Generating Functins" di K. Oliver e H. Prodinger.

La verifica numerica verrà effettuata tramite lo strumento di calcolo simbolico Maple.

1 Introduzione

Sia

$$B(1, n, k) = \binom{n}{k},$$

$$B(m+1, n, k) = \sum_{j=0}^{k} B(m, n, j) \text{ per } m \ge 1,$$

la relazione di ricorrenza che definiscie gli elementi dell' m-esimo Triangolo di Bernoulli. Definiamo due distinte procedure che mi permettono di calcolare tali elementi:

```
Bernoulli := \mathbf{proc}(m, n, k)
 option remembe;
 if m = 0 then error " m must be greater than 0" end if;
 if m = 1 then
  binomial(n, k);
   add(Bernoulli(m-1, n, j), j=0..k);
 end if;
end proc
Bernoulli := \mathbf{proc}(m, n, k)
                                                                                                      (1)
    option remembe;
   if m = 0 then error "m must be greater than 0" end if;
   if m = 1 then binomial(n, k) else add(Bernoulli(m - 1, n, j), j = 0..k) end if
end proc
B := \mathbf{proc}(m, n, k)
 option remember.
 if m = 0 then error " m must be greater than 0" end if;
 if k = 0 then 1;
 elif m = 1 then binomial(n, k);
 else B(m, n, k-1) + B(m-1, n, k) end if;
end proc;
B := \mathbf{proc}(m, n, k)
                                                                                                      (2)
    option remember;
   if m = 0 then error "m must be greater than 0" end if;
   if k=0 then 1 elif m=1 then binomial(n,k) else B(m,n,k-1)+B(m-1,n,k) end if
end proc
```

Dunque, eseguiamo un semplice test per verificare che le due procedure producano gli stessi elementi.

```
testB := \mathbf{proc}(m, N)
\mathbf{local} \ i, j;
\mathbf{for} \ i \ \mathbf{from} \ 0 \ \mathbf{to} \ N \ \mathbf{do}
\mathbf{for} \ j \ \mathbf{from} \ 0 \ \mathbf{to} \ N \ \mathbf{do} \ print([m, i, j], Bernoulli(m, i, j), B(m, i, j)) \mathbf{end} \ \mathbf{do};
\mathbf{end} \ \mathbf{do};
\mathbf{end} \ \mathbf{proc};
testB := \mathbf{proc}(m, N)
\mathbf{local} \ i, j;
(3)
```

```
for i from 0 to N do
        for j from 0 to N do
            print([m, i, j], Bernoulli(m, i, j), B(m, i, j))
        end do
    end do
end proc
testB(0,2);
testB(1,2);
testB(2, 2);
testB(3,2);
Error, (in Bernoulli) m must be greater than 0
                                            [1, 0, 0], 1, 1
                                            [1, 0, 1], 0, 0
                                            [1, 0, 2], 0, 0
                                            [1, 1, 0], 1, 1
                                            [1, 1, 1], 1, 1
                                            [1, 1, 2], 0, 0
                                            [1, 2, 0], 1, 1
                                            [1, 2, 1], 2, 2
                                            [1, 2, 2], 1, 1
                                            [2, 0, 0], 1, 1
                                            [2, 0, 1], 1, 1
                                            [2, 0, 2], 1, 1
                                            [2, 1, 0], 1, 1
                                            [2, 1, 1], 2, 2
                                            [2, 1, 2], 2, 2
                                            [2, 2, 0], 1, 1
                                            [2, 2, 1], 3, 3
                                            [2, 2, 2], 4, 4
                                            [3, 0, 0], 1, 1
                                            [3, 0, 1], 2, 2
                                            [3, 0, 2], 3, 3
                                            [3, 1, 0], 1, 1
                                            [3, 1, 1], 3, 3
                                            [3, 1, 2], 5, 5
                                            [3, 2, 0], 1, 1
                                            [3, 2, 1], 4, 4
                                            [3, 2, 2], 8, 8
                                                                                                          (4)
```

Per la precisione, i Triangoli di Bernoulli sono definiti come Matrici Triangolari inferiori. E' possibile

verificare che il primo di questi Triangoli coincide con il Triangolo di Tartaglia-Pascal.

```
Bernoulli triangle := proc(m, N, M)
  local T, i, j;
  if m = 0 then error " m must be greater than 0" end if;
  T := Matrix(N, M, 0);
  for i from 1 to N do
   for j from 1 to M do T[i, j] := B(m, i-1, j-1) end do;
   T := MTM[tril](T);
  end do:
  eval(T);
  end proc
Bernoulli\ triangle := \mathbf{proc}(m, N, M)
                                                                                                     (5)
    local T, i, j;
    if m = 0 then error "m must be greater than 0" end if;
    T := Matrix(N, M, 0);
    for i to N do
        for j to M do T[i,j] := B(m,i-1,j-1) end do; T := MTM[tril](T)
    end do;
    eval(T)
end proc
Pascal\ triangle := \mathbf{proc}(N :: integer)
local i, j, P;
P := matrix(N, N, 0);
for i from 1 to N do P[i, 1] := 1; P[i, i] := 1 end do;
for i from 3 to N do
  for j from 2 to i - 1 do P[i, j] := P[i - 1, j - 1] + P[i - 1, j] end do;
end do;
evalm(P);
end proc
Pascal\ triangle := \mathbf{proc}(N::integer)
                                                                                                     (6)
    local i, j, P;
    P := matrix(N, N, 0);
    for i to N do P[i, 1] := 1; P[i, i] := 1 end do;
    for i from 3 to N do
        for i from 2 to i-1 do
            P[i,j] := P[i-1,j-1] + P[i-1,j]
        end do
    end do;
    evalm(P)
end proc
Pascal triangle(10)
```

(7)

(8)

Bernoulli triangle(1, 10, 10)

La prima serie di osservazioni di Oliver e Prodinger sottolineano come le somme iterate che definiscono gli elementi di interesse possono essere ridotte ad una singola sommatoria:

$$B(2, n, k) = \sum_{h=0}^{k} \binom{n}{h},$$

$$B(3, n, k) = \sum_{h=0}^{k} \binom{n}{h} (k+1-h),$$

$$B(4, n, k) = \sum_{h=0}^{k} \binom{n}{h} \binom{k+2-h}{2},$$
ed in generale
$$B(m, n, k) = \sum_{h=0}^{k} \binom{n}{h} \binom{k+m-2-h}{m-2}.$$

Andiamole a verificare numericamente.

Per le prime tre verrà costruita la rappresentazione matriciale (prime dieci righe e colonne), mentre per l'ultima si farà uso di una coppia di test.

$$B2(n,k) := add(\operatorname{binomial}(n,h), h = 0..k)$$

$$B2 := (n,k) \rightarrow add(\operatorname{binomial}(n,h), h = 0..k)$$
(9)

 $B2_t := (n, k) \rightarrow add$ (binomial (n - 1, h - 1), h = 0..k)

#le matrici sono indicizzate a partire da 1; usiamo questo accorgimento per non perdere la prima riga e colonna

$$B2_t := (n,k) \mapsto add\left(\binom{n-1}{h-1}, h = 0..k\right)$$
(10)

 $M2 := matrix(10, 10, B2 \ t)$

MTM[tril](M2) #consideriamo solo la parte triangolare inferiore

 $Bernoulli\ triangle(2, 10, 10)$

 $B3(n, k) := add(binomial(n, h) \cdot (k + 1 - h), h = 0..k)$

$$B3 := (n, k) \rightarrow add(\text{binomial}(n, h)) (k+1-h), h = 0..k)$$
(14)

 $B3_t(n, k) := add(binomial(n - 1, h - 1) \cdot (k + 1 - h), h = 0..k)$

$$B3_t := (n, k) \rightarrow add(binomial(n-1, h-1)) (k+1-h), h = 0..k)$$
 (15)

 $M3 := matrix(10, 10, B3_t)$

$$M3 := \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 \\ 1 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 \\ 1 & 5 & 12 & 20 & 28 & 36 & 44 & 52 & 60 & 68 \\ 1 & 6 & 17 & 32 & 48 & 64 & 80 & 96 & 112 & 128 \\ 1 & 7 & 23 & 49 & 80 & 112 & 144 & 176 & 208 & 240 \\ 1 & 8 & 30 & 72 & 129 & 192 & 256 & 320 & 384 & 448 \\ 1 & 9 & 38 & 102 & 201 & 321 & 448 & 576 & 704 & 832 \\ 1 & 10 & 47 & 140 & 303 & 522 & 769 & 1024 & 1280 & 1536 \\ 1 & 11 & 57 & 187 & 443 & 825 & 1291 & 1793 & 2304 & 2816 \end{bmatrix}$$

MTM[tril](M3)

Bernoulli_triangle(3, 10, 10)

$$B4(n,k) := add(\text{binomial}(n,h) \cdot \text{binomial}(k+2-h, 2), h = 0..k); \\ B4 := (n,k) \rightarrow add(\text{binomial}(n,h) \text{ binomial}(k+2-h, 2), h = 0..k)$$
 (19)
$$B4_t(n,k) := add(\text{binomial}(n-1,h-1) \cdot \text{binomial}(k+2-h, 2), h = 0..k)$$

 $B4_t := (n, k) \rightarrow add(binomial(n-1, h-1) binomial(k+2-h, 2), h=0..k)$ (20) M4 := matrix(10, 10, B4 t)

(21)

(22)

(23)

MTM[tril](M4)

8

Bernoulli_triangle(4, 10, 10)

Ed infine:

 $Bm(m, n, k) := add(binomial(n, h) \cdot binomial(k + m - 2 - h, m - 2), h = 0..k)$

```
Bm := (m, n, k) \rightarrow add (binomial(n, h) binomial(k + m - 2 - h, m - 2), h = 0..k)
                                                                                                          (24)
test1Bm := proc(m, N)
local i, j;
for i from 0 to N do
  for j from 0 to N do print([m, i, j], B(m, i, j), Bm(m, i, j)) end do;
end do;
end proc;
                                                                                                           (25)
test1Bm := proc(m, N)
    local i, j;
    for i from 0 to N do
        for j from 0 to N do
            print([m, i, j], B(m, i, j), Bm(m, i, j))
        end do
    end do
end proc
test1Bm(1, 2);
test1Bm(2, 2);
test1Bm(3, 2);
test1Bm(4, 2);
test1Bm(5, 2);
                                            [1, 0, 0], 1, 1
                                            [1, 0, 1], 0, 0
                                            [1, 0, 2], 0, 0
                                            [1, 1, 0], 1, 1
                                            [1, 1, 1], 1, 1
                                            [1, 1, 2], 0, 0
                                            [1, 2, 0], 1, 1
                                            [1, 2, 1], 2, 2
                                            [1, 2, 2], 1, 1
                                            [2, 0, 0], 1, 1
                                            [2, 0, 1], 1, 1
                                            [2, 0, 2], 1, 1
                                            [2, 1, 0], 1, 1
                                            [2, 1, 1], 2, 2
                                            [2, 1, 2], 2, 2
                                            [2, 2, 0], 1, 1
                                            [2, 2, 1], 3, 3
                                            [2, 2, 2], 4, 4
                                            [3, 0, 0], 1, 1
                                            [3, 0, 1], 2, 2
                                            [3, 0, 2], 3, 3
```

```
[3, 1, 0], 1, 1
                                            [3, 1, 1], 3, 3
                                            [3, 1, 2], 5, 5
                                            [3, 2, 0], 1, 1
                                            [3, 2, 1], 4, 4
                                            [3, 2, 2], 8, 8
                                            [4, 0, 0], 1, 1
                                            [4, 0, 1], 3, 3
                                            [4, 0, 2], 6, 6
                                            [4, 1, 0], 1, 1
                                            [4, 1, 1], 4, 4
                                            [4, 1, 2], 9, 9
                                            [4, 2, 0], 1, 1
                                            [4, 2, 1], 5, 5
                                           [4, 2, 2], 13, 13
                                            [5, 0, 0], 1, 1
                                            [5, 0, 1], 4, 4
                                          [5, 0, 2], 10, 10
                                            [5, 1, 0], 1, 1
                                            [5, 1, 1], 5, 5
                                           [5, 1, 2], 14, 14
                                            [5, 2, 0], 1, 1
                                            [5, 2, 1], 6, 6
                                           [5, 2, 2], 19, 19
                                                                                                         (26)
test2Bm := proc(N, STEP)
local m, i, j, res;
res := true;
for m from 1 to N by STEP do
 for i from 0 to N by STEP do
 for j from 0 to N by STEP do
   if B(m, i, j) \neq Bm(m, i, j) then res := false end if;
 end do;
 end do;
end do;
eval(res);
end proc;
test2Bm := proc(N, STEP)
                                                                                                         (27)
    local m, i, j, res;
    res := true;
    for m by STEP to N do
        for i from 0 by STEP to N do
```

```
for j from 0 by STEP to N do

if B(m, i, j) <> Bm(m, i, j) then res := false end if

end do

end do;

eval(res)

end proc

test2Bm(100, 10) true (28)
```

Nell'articolo viene dimostrato teoricamente che la funzione generatrice associata alla sequenza costituita da gli elementi del primo Triangolo di Bernoulli è

$$F_1(z,y) = \sum_{k=0}^{n} {n \choose k} z^n y^k = \frac{1}{1 - z (1 + y)}.$$

Verifichiamolo sfruttando le potenzialità di calcolo simbolico di Maple.

Prima di tutto ridefiniamo la procedura per il calcolo dell' m-esimo elemento del Triangolo di Bernoulli in modo che gli elementi triangolari superiori siano tutti 0.

```
B \ tri := \mathbf{proc}(m, n, k)
 option remember;
 if m = 0 then error " m must be greater than 0" end if;
 if k = 0 then 1;
  elif n < k then 0;
  elif m = 1 then binomial(n, k);
 else B_{tri}(m, n, k-1) + B_{tri}(m-1, n, k) end if;
end proc;
B \ tri := \mathbf{proc}(m, n, k)
                                                                                                         (29)
    option remember;
    if m = 0 then error "m must be greater than 0" end if;
    if k = 0 then
    elif n < k then
        0
    elif m = 1 then
        binomial(n, k)
    else
        B \ tri(m, n, k-1) + B \ tri(m-1, n, k)
    end if
end proc
```

Definiamo la funzione generatrice degli elementi del primo Triangolo di Bernoulli in forma chiusa e non.

$$F_BI := (z, y) \to \frac{1}{1 - z \cdot (1 + y)}$$

$$F_BI := (z, y) \to \frac{1}{1 - z \cdot (y + 1)}$$

$$G_BI := sort(mtaylor(F_BI(z, y), \{z, y\}, 17), z, ascending)$$

$$G_BI := 1 + yz + z + y^2z^2 + 2yz^2 + z^2 + y^3z^3 + 3y^2z^3 + 3yz^3 + z^3 + y^4z^4 + 4y^3z^4 + 6y^2z^4$$

$$+ 4yz^4 + z^4 + y^5z^5 + 5y^4z^5 + 10y^3z^5 + 10y^2z^5 + 5yz^5 + z^5 + y^6z^6 + 6y^5z^6 + 15y^4z^6$$

$$+ 20y^3z^6 + 15y^2z^6 + 6yz^6 + z^6 + y^7z^7 + 7y^6z^7 + 21y^5z^7 + 35y^4z^7 + 35y^3z^7 + 21y^2z^7$$

$$+ 7yz^7 + z^7 + y^8z^8 + 8y^7z^8 + 28y^6z^8 + 56y^5z^8 + 70y^4z^8 + 56y^3z^8 + 28y^2z^8 + 8yz^8$$

$$+ z^8 + 36y^7z^9 + 84y^6z^9 + 126y^5z^9 + 126y^4z^9 + 84y^3z^9 + 36y^2z^9 + 9yz^9 + z^9$$

$$+ 210y^6z^{10} + 252y^5z^{10} + 210y^4z^{10} + 120y^3z^{10} + 45y^2z^{10} + 10yz^{10} + z^{10} + 462y^5z^{11}$$

$$+ 330y^4z^{11} + 165y^3z^{11} + 55y^2z^{11} + 11yz^{11} + z^{11} + 495y^4z^{12} + 220y^3z^{12} + 66y^2z^{12}$$

$$+ 12yz^{12} + z^{12} + 286y^3z^{13} + 78y^2z^{13} + 13yz^{13} + z^{13} + 91y^2z^{14} + 14yz^{14} + z^{14}$$

$$+ 15yz^{15} + z^{15} + z^{16}$$

Utilizzando il seguendo metodo che mi permette di estrarre il coefficiente di $z^n y^k$, andiamo a verificare che i coefficienti siano corretti.

```
coefficient(f, n, k) := coeff(coeff(f, z, n), y, k)
                         coefficient := (f, n, k) \rightarrow coeff(coeff(f, z, n), y, k)
                                                                                                               (32)
coefficient\ test := \mathbf{proc}(f, m, N, M)
 local i, j;
 for i from N to M do
  for j from N to M do print([m, i, j], coefficient(f, i, j), B tri(m, i, j)) end do;
end do:
end proc;
coefficient\ test := \mathbf{proc}(f, m, N, M)
                                                                                                               (33)
    local i, j;
    for i from N to M do
         for j from N to M do
             print([m, i, j], coefficient(f, i, j), B tri(m, i, j))
         end do
    end do
end proc
coefficient test (G B1, 1, 5, 8)
                                              [1, 5, 5], 1, 1
                                              [1, 5, 6], 0, 0
                                              [1, 5, 7], 0, 0
                                              [1, 5, 8], 0, 0
                                              [1, 6, 5], 6, 6
```

La forma chiusa della funzione generatrice degli elementi dell' m-esimo Triangolo di Bernoulli è

$$F_m(z,y) = \sum_{k=0}^{n} B(m,n,k) \cdot z^n y^k = \frac{1}{1 - z (1 + y)} \cdot \frac{(1 - z \cdot y)^{m-1}}{(1 - 2 \cdot z \cdot y)^{m-1}}.$$

Eseguiamo le dovute riprove:

$$F_Bm(m, z, y) := \frac{1}{1 - z \cdot (1 + y)} \cdot \frac{(1 - z \cdot y)^{m-1}}{(1 - 2 \cdot z \cdot y)^{m-1}}$$

$$F_Bm := (m, z, y) \to \frac{(1 - zy)^{m-1}}{(1 - z(1 + y))(1 - 2zy)^{m-1}}$$
(35)

$$G_B m_2 := mtaylor(F_B m(2, z, y), \{z, y\}, 17)$$

$$G_B m_2 := 256 y^8 z^8 + 502 y^7 z^9 + 848 y^6 z^{10} + 1024 y^5 z^{11} + 794 y^4 z^{12} + 378 y^3 z^{13} + 106 y^2 z^{14}$$

$$+ 16 y z^{15} + z^{16} + 255 y^7 z^8 + 466 y^6 z^9 + 638 y^5 z^{10} + 562 y^4 z^{11} + 299 y^3 z^{12} + 92 y^2 z^{13}$$

$$+ 15 y z^{14} + z^{15} + 128 y^7 z^7 + 247 y^6 z^8 + 382 y^5 z^9 + 386 y^4 z^{10} + 232 y^3 z^{11} + 79 y^2 z^{12}$$

$$+ 14 y z^{13} + z^{14} + 127 y^6 z^7 + 219 y^5 z^8 + 256 y^4 z^9 + 176 y^3 z^{10} + 67 y^2 z^{11} + 13 y z^{12} + z^{13}$$

$$+ 64 y^6 z^6 + 120 y^5 z^7 + 163 y^4 z^8 + 130 y^3 z^9 + 56 y^2 z^{10} + 12 y z^{11} + z^{12} + 63 y^5 z^6$$

$$+ 99 y^4 z^7 + 93 y^3 z^8 + 46 y^2 z^9 + 11 y z^{10} + z^{11} + 32 y^5 z^5 + 57 y^4 z^6 + 64 y^3 z^7 + 37 y^2 z^8$$

$$+ 10 y z^9 + z^{10} + 31 y^4 z^5 + 42 y^3 z^6 + 29 y^2 z^7 + 9 y z^8 + z^9 + 16 y^4 z^4 + 26 y^3 z^5 + 22 y^2 z^6$$

$$+ 8 y z^7 + z^8 + 15 y^3 z^4 + 16 y^2 z^5 + 7 y z^6 + z^7 + 8 y^3 z^3 + 11 y^2 z^4 + 6 y z^5 + z^6 + 7 y^2 z^3$$

$$+ 5 y z^4 + z^5 + 4 y^2 z^2 + 4 y z^3 + z^4 + 3 y z^2 + z^3 + 2 y z + z^2 + z + 1$$

[2, 6, 5], 63, 63

$$coefficient_test(G_Bm_2, 2, 5, 8) \\ [2, 5, 5], 32, 32 \\ [2, 5, 6], 0, 0 \\ [2, 5, 7], 0, 0 \\ [2, 5, 8], 0, 0$$

[2, 6, 6], 64, 64 [2, 6, 7], 0, 0 [2, 6, 8], 0, 0 [2, 7, 5], 120, 120 [2, 7, 6], 127, 127 [2, 7, 7], 128, 128 [2, 7, 8], 0, 0 [2, 8, 5], 219, 219 [2, 8, 6], 247, 247 [2, 8, 7], 255, 255 [2, 8, 8], 256, 256

(37)

2 Una particolare sommatoria

Prendiamo in considerazione la seguente sommatoria che coinvolgono alcuni particolari elemnti dell' mesimo Triangolo di Bernoulli:

$$sI_{m, n} = \sum_{k=0}^{\frac{n}{2}} B(m, n-j, n-2j).$$

Come dimostrato da Oliver e Prodinger, la funzione generatrice associata alla sequenza con doppio indice $(sI_{m,n})$ è la seguente:

$$G(sI_{m,n}) = \frac{1}{1 - z - z^2} \cdot \frac{(1 - 2 \cdot z)}{1 - 2 \cdot z - w \cdot (1 - z)} = \frac{t}{-z^2 - z + 1} \cdot \sum_{m \ge 0} \frac{(1 - z)^m}{(1 - 2z)^m} \cdot w^m.$$

E' nostro interesse andare a verificare i seguenti risultati:

$$\begin{array}{l} \text{per } m{=}1 \\ sI_{1,\;n} = Fibonacci_{n\;+\;1}; \\ \\ \text{per } m{=}2 \\ sI_{2,\;n} = 2^{n\;+\;1} - Fibonacci_{n\;+\;2}; \\ \\ \text{per } m{=}3 \\ sI_{3,\;n} = (n-1)\cdot 2^n + Fibonacci_{n\;+\;3}; \\ \\ \text{per } m{=}4 \\ sI_{4,\;n} = \left(\frac{n^2}{4} + \frac{n}{4} + 4\right)\cdot 2^n - Fibonacci_{n\;+\;4}; \\ \\ \text{per } m{=}5 \\ sI_{5,\;n} = \left(\frac{n^3}{24} + \frac{n^2}{4} + \frac{53\cdot n}{24} - 4\right)\cdot 2^n + Fibonacci_{n\;+\;5}. \end{array}$$

Definiamo, inanzitutto, una funzione che ci permetta di calcolare la sommatoria d'interessa.

$$s1m := (m, n) \to add \left(B_{tri}(m, n - j, n - 2 \cdot j), j = 0 ... \frac{n}{2} \right)$$

$$s1m := (m, n) \mapsto add \left(B_{tri}(m, n - j, n - 2j), j = 0 ... \frac{n}{2} \right)$$
(38)

Definiamo, inoltre, la funzione generatrice associata.

$$F_SIm := (z, w, N) \rightarrow \frac{1}{1 - z - z^2} \cdot sum \left(\frac{(1 - z)^m}{(1 - z)^m} \cdot w^m, m = 0 ... N \right)$$

$$F_S1m := (z, w, N) \mapsto \frac{\sum_{m=0}^{N} \frac{(1-z)^m w^m}{(1-2z)^m}}{1-z-z^2}$$
(39)

Per un fissato m=k, la funzione generatrice associata alla sequenza $(sI_{k,n})$ può essere ottenuta estraendo il coefficiente di w^{k-1} dalla funzione generatrice appena definita.

Dunque, partendo dal caso m=1:

$$F_S11 := coeff(F_S1m(z, w, 10), w, 0);$$

$$F_S11 := \frac{1}{-z^2 - z + 1}$$
(40)

Essendo che

$$G(Fibonacci_n) = \frac{z}{-z^2 - z + 1}$$
,

risulta che

$$\frac{1}{-z^2-z+1} = G(Fibonacci_{n+1}),$$

quindi,

$$s11_short2 := n \rightarrow Fibonacci(n+1);$$

 $s11_short2 := n \mapsto Fibonacci(n+1)$ (41)
 $G_S11 := series(F_S11, z, 10)$

$$G_{S11} := 1 + z + 2z^{2} + 3z^{3} + 5z^{4} + 8z^{5} + 13z^{6} + 21z^{7} + 34z^{8} + 55z^{9} + O(z^{10})$$
(42)

Eseguiamo un controllo più preciso:

```
Fibonacci := \mathbf{proc}(n)
 option remember;
 if n \leq 1 then n
 else Fibonacci(n-1) + Fibonacci(n-2) end if;
end proc;
Fibonacci := \mathbf{proc}(n)
                                                                                                   (43)
    option remember;
    if n \le 1 then n else Fibonacci(n-1) + Fibonacci(n-2) end if
end proc
test \ s1m := proc(m, s1m \ short, \ N, STEP)
local i, G S1m;
G SIm := series(coeff(F SIm(z, w, 10), w, m-1), z, N+1);
for i from 0 to N by STEP do
 print([i], coeff(G Slm, z, i), slm(m, i), slm short(i));
end do:
```

```
end proc;
test \ s1m := \mathbf{proc}(m, s1m \ short, N, STEP)
                                                                                             (44)
   local i, G S1m;
   G SIm := series(coeff(F SIm(z, w, 10), w, m - 1), z, N + 1);
   for i from 0 by STEP to N do
       print([i], coeff(G Slm, z, i), slm(m, i), slm short(i))
   end do
end proc
test s1m(1, s11 \text{ short2}, 100, 10);
                                        [0], 1, 1, 1
                                      [10], 89, 89, 89
                                [20], 10946, 10946, 10946
                             [30], 1346269, 1346269, 1346269
                          [40], 165580141, 165580141, 165580141
                      [50], 20365011074, 20365011074, 20365011074
                   [60], 2504730781961, 2504730781961, 2504730781961
               [70], 308061521170129, 308061521170129, 308061521170129
            [80], 37889062373143906, 37889062373143906, 37889062373143906
        [90], 4660046610375530309, 4660046610375530309, 4660046610375530309
    [100], 573147844013817084101, 573147844013817084101, 573147844013817084101
                                                                                             (45)
```

Passiamo al caso m=2 e ripetiamo i passaggi appena svolti:

$$F_S12 := coeff(F_S1m(z, w, 10), w, 1);$$

$$F_S12 := \frac{1 - z}{(-z^2 - z + 1)(1 - 2z)}$$
(46)

Usando la decomposizione a frazioni parziali,

$$F_S12 := expand(convert(F_S12, parfrac, z));$$

$$F_S12 := -\frac{2}{-1+2z} + \frac{z}{z^2+z-1} + \frac{1}{z^2+z-1}$$

$$series(op(F_S12)[1], z, 10);$$

$$series(op(F_S12)[2], z, 10);$$

$$series(op(F_S12)[3], z, 10);$$

$$2+4z+8z^2+16z^3+32z^4+64z^5+128z^6+256z^7+512z^8+1024z^9+O(z^{10})$$

$$-z-z^2-2z^3-3z^4-5z^5-8z^6-13z^7-21z^8-34z^9+O(z^{10})$$

$$-1-z-2z^2-3z^3-5z^4-8z^5-13z^6-21z^7-34z^8-55z^9+O(z^{10})$$

$$-1-z-2z^2-3z^3-5z^4-8z^5-13z^6-21z^7-34z^8-55z^9+O(z^{10})$$

$$-1-z-2z^2-3z^3-5z^4-8z^5-13z^6-21z^7-34z^8-55z^9+O(z^{10})$$

$$-1-z-2z^2-3z^3-5z^4-8z^5-13z^6-21z^7-34z^8-55z^9+O(z^{10})$$

$$-1-z-2z^2-3z^3-5z^4-8z^5-13z^6-21z^7-34z^8-55z^9+O(z^{10})$$

Dunque, ricordando che

$$G(2^n) = \frac{1}{1-2z}$$
,

è immediato il seguente risultato:

$$s1_{2, n} = 2 \cdot 2^n - Fibonacci_n - Fibonacci_{n+1}$$

= $2^{n+1} - Fibonacci_{n+2}$.

Eseguiamo il dovuto controllo:

$$s12_short \coloneqq n \rightarrow 2^{n+1} - Fibonacci(n+2);$$

$$s12_short \coloneqq n \mapsto 2^{n+1} - Fibonacci(n+2)$$

$$(49)$$

$$test_sIm(2, s12_short, 100, 10);$$

$$[0], 1, 1, 1$$

$$[10], 1904, 1904, 1904$$

$$[20], 2079441, 2079441$$

$$[30], 2145305339, 2145305339, 2145305339$$

$$[40], 2198755341256, 2198755341256, 2198755341256$$

$$[50], 2251766862405149, 2251766862405149, 2251766862405149$$

$$[60], 2305838956474156071, 2305838956474156071, 2305838956474156071$$

$$[70], 2361182742980810727584, 2361182742980810727584, 2361182742980810727584$$

$$[80], 2417851577923467627800761, 2417851577923467627800761, 2417851577923467627800761$$

$$[2417851577923467627800761]$$

$$[90], 2475880071030646745051902019, 2475880071030646745051902019, 2475880071030646745051902019$$

[100], 2535301199529086110800327411576, 2535301199529086110800327411576, 2535301199529086110800327411576 (50)

Per m=3 risulta

$$F_S13 := coeff(F_S1m(z, w, 10), w, 2);$$

$$F_S13 := \frac{(1-z)^2}{(-z^2 - z + 1)(1-2z)^2}$$
(51)

 $F_S13 := expand(convert(F_S13, parfrac, z));$

$$F_{S13} := \frac{2}{-1+2z} + \frac{1}{(-1+2z)^2} - \frac{z}{z^2+z-1} - \frac{2}{z^2+z-1}$$
 (52)

```
series(op(F_S13)[1], z, 10); #fg di -2^{n+1}
series(op(F_S13)[2], z, 10); #fg di (n+1) \cdot 2^n
series(op(F_S13)[3], z, 10); #fg di Fibonacci(n)
series(op(F_S13)[4], z, 10); #fg di 2 \cdot \text{Fibonacci}(n+1)
```

$$-2 - 4z - 8z^{2} - 16z^{3} - 32z^{4} - 64z^{5} - 128z^{6} - 256z^{7} - 512z^{8} - 1024z^{9} + O(z^{10})$$

$$1 + 4z + 12z^{2} + 32z^{3} + 80z^{4} + 192z^{5} + 448z^{6} + 1024z^{7} + 2304z^{8} + 5120z^{9} + O(z^{10})$$

$$z + z^{2} + 2z^{3} + 3z^{4} + 5z^{5} + 8z^{6} + 13z^{7} + 21z^{8} + 34z^{9} + O(z^{10})$$

$$2 + 2z + 4z^{2} + 6z^{3} + 10z^{4} + 16z^{5} + 26z^{6} + 42z^{7} + 68z^{8} + 110z^{9} + O(z^{10})$$
(53)

Si vede immediatamente che il primo, il terzo ed il quarto termine delle decomposizione a frazioni parziali sono rispettivamente le funzioni generatrici di -2^{n+1} , $Fibonacci_n$ e 2 $Fibonacci_{n+1}$. Consideriamo il terzo termine:

$$\frac{1}{(-1+2z)^2} = \frac{1}{-1+2z} \cdot \frac{1}{-1+2z}$$

$$= G(-2^n) G(-2^n)$$

$$= G(\sum_{k=0}^{n} 2^k 2^{n-k})$$

usando Maple per trovare una forma chiusa alla sommatoria,

$$sum(-2^{k} \cdot (-2^{n-k}), k=0..n)$$

$$2^{n} (n+1)$$
(54)
risulta che $\frac{1}{n}$ è funzione generatrice di $2^{n} (n+1)$

risulta che $\frac{1}{(-1+2z)^2}$ è funzione generatrice di 2^n (n+1).

Quindi

$$sI_{3, n} = 2^n (n+1) - 2^{n+1} + Fibonacci_n + Fibonacci_{n+1} + Fibonacci_{n+1}$$

= $(n-1) \cdot 2^n + Fibonacci_{n+3}$.

Eseguiamo la riprova:

$$s13_short := n \rightarrow Fibonacci(n+3) + (n-1) \cdot 2^n;$$

$$s13_short := n \mapsto Fibonacci(3+n) + (n-1) \cdot 2^n$$

$$test_s1m(3, s13_short, 100, 10)$$

$$[0], 1, 1, 1$$

$$[10], 9449, 9449, 9449$$

$$[20], 19951601, 19951601, 19951601$$

$$[30], 31142037474, 31142037474, 31142037474$$

$$[40], 42881386977701, 42881386977701, 42881386977701$$

$$[50], 55169148751579749, 55169148751579749, 55169148751579749$$

$$[60], 68022375329274291426, 68022375329274291426, 68022375329274291426$$

$$[70], 81460822636016912985649, 81460822636016912985649, 81460822636016912985649$$

[90], 110176663508599004881143932674, 110176663508599004881143932674,

[80], 95505139848750557896543401, 95505139848750557896543401,

95505139848750557896543401

Spostiamoci al caso m=4:

F S14 := coeff(F S1m(z, w, 10), w, 3);

$$F_S14 := \frac{(1-z)^3}{\left(-z^2 - z + 1\right) (1-2z)^3}$$
 (57)

 $F_S14 := expand(convert(F_S14, parfrac, z))$

$$F_S14 := -\frac{4}{-1+2z} - \frac{1}{2(-1+2z)^3} - \frac{1}{2(-1+2z)^2} + \frac{2z}{z^2+z-1} + \frac{3}{z^2+z-1}$$
 (58)

 $series(op(F S14)[1], z, 10); # fg di 4 \cdot 2^n$

$$series(op(F_S14)[2], z, 10); #fg di \frac{2^n (n+2) (n+1)}{4}$$

$$series(op(F_S14)[3], z, 10); #fg di -2^{n-1}(n+1)$$

$$series(op(F_S14)[4], z, 10); #fg di -2 \cdot Fiboncacci(n)$$

$$series(op(F S14)[5], z, 10); #fg di -3 \cdot Fibonacci(n+1)$$

$$4 + 8z + 16z^{2} + 32z^{3} + 64z^{4} + 128z^{5} + 256z^{6} + 512z^{7} + 1024z^{8} + 2048z^{9} + O(z^{10})$$

$$\frac{1}{2} + 3z + 12z^{2} + 40z^{3} + 120z^{4} + 336z^{5} + 896z^{6} + 2304z^{7} + 5760z^{8} + 14080z^{9} + O(z^{10})$$

$$-\frac{1}{2} - 2z - 6z^2 - 16z^3 - 40z^4 - 96z^5 - 224z^6 - 512z^7 - 1152z^8 - 2560z^9 + O(z^{10})$$

$$(-2) z - 2 z^{2} - 4 z^{3} - 6 z^{4} - 10 z^{5} - 16 z^{6} - 26 z^{7} - 42 z^{8} - 68 z^{9} + O(z^{10})$$

$$-3 - 3 z - 6 z^{2} - 9 z^{3} - 15 z^{4} - 24 z^{5} - 39 z^{6} - 63 z^{7} - 102 z^{8} - 165 z^{9} + O(z^{10})$$
(59)

Per quanto visto in precedenza, non risulta difficile notare che il primo, il terzo, il quarto ed il quinto termine della decomposizione a frazioni parziali sono rispettivamente le funzioni generatrici di $4 \cdot 2^n$, $-(n+1) \cdot 2^{n-1}$, $-2 \cdot Fibonacci_n$ e $-3 \cdot Fibonacci_{n+1}$.

Soffermiamoci con più attezione sul secondo termine

$$-\frac{1}{2(-1+2z)^3} = -\frac{1}{2} \cdot \frac{1}{(-1+2z)^2} \cdot \frac{1}{(-1+2z)}$$
$$= -\frac{1}{2} \cdot G((n+1)2^n) \cdot G(-2^n)$$
$$= -\frac{1}{2} \cdot G\left(\sum_{k=0}^n (-2^k(k+1)2^{n-k})\right)$$

ed idenfichiamo una forma chiusa per la sommatoria

$$-\frac{1}{2} \cdot sum(2^k \cdot (k+1) \cdot (-(2^{n-k})), k=0..n)$$

$$\frac{2^{n}(n+1)}{4} + \frac{2^{n}(n+1)^{2}}{4} \tag{60}$$

simplify(%)

$$\frac{2^{n}(n+2)(n+1)}{4}$$
 (61)

Dunque, risulata che $-\frac{1}{2(-1+27)^3}$ sia la funzione generatrice di $\frac{2^n(n+2)(n+1)}{4}$.

Alla luca di ciò, possiamo affermare che $-\frac{4}{-1+2z} - \frac{1}{2(-1+2z)^3} - \frac{1}{2(-1+2z)^2}$ è la funzione generatrice di

$$normal\left(\frac{2^{n} (n+2) (n+1)}{4} + 42^{n} - 2^{-1+n} (n+1), expanded\right)$$

$$\frac{2^{n} n^{2}}{4} + \frac{2^{n} n}{4} + 42^{n}$$
(62)

Quindi, in coclusione,

$$sI_{4, n} = \left(\frac{1}{4}n^2 + \frac{1}{4}n + 4\right)2^n - 2 \cdot Fibonacci_n - 3 \cdot Fibonacci_{n+1}$$
$$= \left(\frac{n^2}{4} + \frac{n}{4} + 4\right)2^n - Fibonacci(n+4).$$

Controlliamo il risultato evidenziato:

$$s14_short := n \rightarrow \left(\frac{n^2}{4} + \frac{n}{4} + 4\right) \cdot 2^n - Fibonacci(n+4);$$

$$s14_short := n \mapsto \left(\frac{1}{4} n^2 + \frac{1}{4} n + 4\right) 2^n - Fibonacci(n+4)$$
(63)

test s1m(4, s14 short, 100, 10)

[10], 31879, 31879, 31879

[20], 114248416, 114248416, 114248416

[30], 253934238489, 253934238489, 253934238489

[40], 455197112490531, 455197112490531, 455197112490531

[50], 722264703971972024, 722264703971972024, 722264703971972024

[60], 1059534852123482513221, 1059534852123482513221, 1059534852123482513221

[70], 1471607453919283644789359, 1471607453919283644789359.

1471607453919283644789359

[80], 1963295530893657135906462736, 1963295530893657135906462736, 1963295530893657135906462736

[90], 2539633990574217359735685122369, 2539633990574217359735685122369, 2539633990574217359735685122369

Infine, adiamo ad analizzare il caso m=5:

F S15 := coeff(F S1m(z, w, 10), w, 4);

$$F_S15 := \frac{(1-z)^4}{(-z^2 - z + 1)(1-2z)^4}$$
 (65)

 $F_S15 := expand(convert(F_S15, parfrac, z))$

$$F_S15 := \frac{6}{-1+2z} + \frac{1}{4(-1+2z)^4} + \frac{7}{4(-1+2z)^2} - \frac{5}{z^2+z-1} - \frac{3z}{z^2+z-1}$$
 (66)

series(op(F_S15)[1], z, 10); #fg di -6·2ⁿ
series(op(F_S15)[2], z, 10); #```\fg di
$$\frac{7}{4} \cdot 2^n \cdot (n+1)$$

series(op(F_S15)[4], z, 10); #fg di 5·Fibonacci(n+1)
series(op(F_S15)[5], z, 10); #fg di 3·Fibonacci(n)
-6 - 12 z - 24 z² - 48 z³ - 96 z⁴ - 192 z⁵ - 384 z⁶ - 768 z² - 1536 z³ - 3072 z⁰ + O(z¹0)
 $\frac{1}{4} + 2z + 10z² + 40z³ + 140z⁴ + 448z⁵ + 1344z⁶ + 3840z² + 10560z³ + 28160z⁰ + O(z¹0)
 $\frac{7}{4} + 7z + 21z² + 56z³ + 140z⁴ + 336z⁵ + 784z⁶ + 1792z² + 4032z³ + 8960z⁰ + O(z¹0)
5 + 5z + 10z² + 15z³ + 25z⁴ + 40z⁵ + 65z⁶ + 105z² + 170z³ + 275z⁰ + O(z¹0)
3z + 3z² + 6z³ + 9z⁴ + 15z⁵ + 24z⁶ + 39z² + 63z³ + 102z⁰ + O(z¹0)$$

Risulta abbastanza immediato che

$$\frac{6}{-1+2z} = -6 G(2^{n}),$$

$$\frac{7}{4(-1+2z)^{2}} = \frac{7}{4} G(2^{n} (n+1)),$$

$$-\frac{5}{z^{2}+z-1} = 5 \cdot G(Fibonacci_{n+1}),$$

$$-\frac{3z}{z^{2}+z-1} = 3 \cdot G(Fibonacci_{n});$$

spendiamo, invece, qualche parola in più per il secondo termine della decomposizione in frazioni parziali:

$$\frac{1}{4(-1+2z)^4} = \frac{1}{4} \cdot \frac{1}{(-1+2z)^2} \cdot \frac{1}{(-1+2z)^2}$$

$$= \frac{1}{4} \cdot G((n+1) \cdot 2^n) \cdot G((n+1) \cdot 2^n)$$

$$= \frac{1}{4} \cdot G\left(\sum_{k=0}^{n} 2^k (k+1) (n-k+1) 2^{n-k}\right).$$

quindi, tale termine è la funzione generatrice di

$$\frac{1}{4} \cdot sum(2^{k} \cdot (k+1) \cdot (n-k+1) \cdot (2)^{n-k}, k=0..n)$$

$$\frac{2^{n} n (n+1)}{8} + \frac{5 \cdot 2^{n} (n+1)}{24} + \frac{n \cdot 2^{n} (n+1)^{2}}{8} - \frac{2^{n} (n+1)^{3}}{12} + \frac{2^{n} (n+1)^{2}}{8}$$
(68)

simplify(%)

$$\frac{2^{n}(n+3)(n+2)(n+1)}{24}$$
 (69)

Conseguentemente, $\frac{6}{-1+2z} + \frac{1}{4(-1+2z)^4} + \frac{7}{4(-1+2z)^2}$ è la funzione generatrice di

$$normal\left(\frac{2^{n}(n+3)(n+2)(n+1)}{24} + \frac{7}{4} \cdot 2^{n} \cdot (n+1) - 6 \cdot 2^{n}, expanded\right)$$

$$\frac{2^{n}n^{3}}{24} + \frac{2^{n}n^{2}}{4} + \frac{53 \cdot 2^{n}n}{24} - 4 \cdot 2^{n}$$
(70)

Risulta che

$$\begin{split} sI_{5,\,n} &= \left(\frac{n^3}{24} + \frac{n^2}{4} + \frac{53 \cdot n}{24} - 4\right) \cdot 2^n + 3 \cdot Fibonacci_n + 5 \cdot Fibonacci_{n+1} \\ &= \left(\frac{n^3}{24} + \frac{n^2}{4} + \frac{53 \cdot n}{24} - 4\right) \cdot 2^n + Fibonacci(n+5) \,. \end{split}$$

Per concludere, eseguiamo la consueta verifica numerica:

$$s15_short := n \to \left(\frac{n^3}{24} + \frac{n^2}{4} + \frac{53 \cdot n}{24} - 4\right) \cdot 2^n + Fibonacci(n+5);$$

$$s15_short := n \mapsto \left(\frac{1}{24} n^3 + \frac{1}{4} n^2 + \frac{53}{24} n - 4\right) 2^n + Fibonacci(n+5)$$
(71)

test s1m(5, s15 short, 100, 10)

[10], 87394, 87394, 87394

[20], 496575761, 496575761, 496575761

[30], 1516401118409, 1516401118409, 1516401118409

[40], 3464562274025346, 3464562274025346, 3464562274025346

[50], 6687564111252338349, 6687564111252338349, 6687564111252338349

[60], 11562073326117445076381, 11562073326117445076381, 11562073326117445076381

- [70], 18496624071796347321547714, 18496624071796347321547714, 18496624071796347321547714
- [80], 27933439988275317207672025241, 27933439988275317207672025241, 27933439988275317207672025241
- [90], 40350346095529089149903219400129, 40350346095529089149903219400129, 40350346095529089149903219400129
- [100], 56262770415233548055093533586971426, 56262770415233548055093533586971426, **(72)** 56262770415233548055093533586971426

3 Un' altra sommatoria

Considerando la successiva sommatoria analizzata da Oliver e Prodinger:

$$s3_{m, n} = \sum_{k=0}^{\frac{n}{2}} B(m, n-j, j).$$

Per *m*=1 è possibile ricondursi, struttando la proprietà di Simmetria del coefficiente binomiale, alla sommatoria precedentemente analizzata:

$$s3_{1, n} = \sum_{k=0}^{\frac{n}{2}} B(1, n-j, j) = \sum_{k=0}^{\frac{n}{2}} \binom{n-j}{j} = \sum_{k=0}^{\frac{n}{2}} \binom{n-j}{n-2 \cdot j} = \sum_{k=0}^{\frac{n}{2}} B(1, n-j, n-2 \cdot j) = s1_{1, n}.$$

Dunque, per quanto verificato in precedenza, $s3_{1, n} = Fibonacci_{n+1}$.

Per m = 2, come dimostrato dagli autori dell'articolo, la funzione generatrice associata alla sequenza $(s3_{2, n})$ è la seguente:

$$G(s3_{2,n}) = \frac{(z+2)}{1-z-z^2} - \frac{(1+2\cdot z)}{1-2\cdot z^2},$$

e, partendo da essa, non è difficile verificare che

$$s3_{2, n} = Fibonacci_{n+3} - 2^{\left\lfloor \frac{(n+1)}{2} \right\rfloor}.$$

Definiamo la funzione per il calcolo della sommatoria di interessa

$$s3m := (m, n) \rightarrow add \left(B_tri(m, n - j, j), j = 0 \dots \frac{n}{2} \right)$$

$$s3m := (m, n) \mapsto add \left(B_tri(m, n - j, j), j = 0 \dots \frac{n}{2} \right)$$
(73)

e la funzione generatrice per il caso m = 2

$$F_S32 := \frac{(z+2)}{1-z-z^2} - \frac{(1+2\cdot z)}{1-2\cdot z^2}$$

$$F_S32 := \frac{z+2}{1-z-z^2} - \frac{1+2z}{1-2\cdot z^2}$$
(74)

che può essere decomposta in

 $F_S32 := sort(expand(F_S32), z, ascending)$

$$F_S32 := \frac{2}{1 - z - z^2} - \frac{1}{1 - 2z^2} + \frac{z}{1 - z - z^2} - \frac{2z}{1 - 2z^2}$$
 (75)

$$series(op(F_S32)[1], z, 10); \# fg \ di \ 2 \cdot Fib(n+1)$$

$$series(op(F_S32)[2], z, 10); \# fg \ di \ -2^{\frac{n}{2}} \ sen \ e \ pari, 0 \ altrimenti$$

$$series(op(F_S32)[3], z, 10); \# fg \ di \ Fib(n)$$

$$series(op(F_S32)[4], z, 10); \# fg \ di \ -2^{\frac{n+1}{2}} \ sen \ e \ dispari, 0 \ altrimenti$$

$$2 + 2z + 4z^2 + 6z^3 + 10z^4 + 16z^5 + 26z^6 + 42z^7 + 68z^8 + 110z^9 + O(z^{10})$$

$$-1 - 2z^2 - 4z^4 - 8z^6 - 16z^8 + O(z^{10})$$

$$z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + 13z^7 + 21z^8 + 34z^9 + O(z^{10})$$

$$(-2)z - 4z^3 - 8z^5 - 16z^7 - 32z^9 + O(z^{11})$$

$$(76)$$

Si vede facilemente che il primo ed il terzo termine delle decomposizione sono rispettivamente la funzione generatrice di $2 \cdot Fibonacci_{n+1}$ e di $Fibonacci_n$.

Per quanto riguarda il secondo termine, abbiamo la funzione generatrice di -2^n composta con z^2 , cioè, della sequenza (-2^n) intervallata da 0

$$[z^n] \left(-\frac{1}{1-2z^2} \right) = \begin{cases} -2^{\frac{n}{2}} & \text{se } n \text{ è pari,} \\ 0 & \text{altrimenti.} \end{cases}$$

di conseguenza,

$$[z^n] \left(-\frac{2 \cdot z}{1 - 2 z^2} \right) = 2 \cdot [z^{n-1}] \left(-\frac{1}{1 - 2 z^2} \right)$$

$$= \begin{cases} -2 \cdot 2^{\frac{n-1}{2}} & \text{se } n \text{ è dispari,} \\ 0 & \text{altrimenti.} \end{cases}$$

$$= \begin{cases} -\frac{n+1}{2} & \text{se } n \text{ è dispari,} \\ 0 & \text{altrimenti.} \end{cases} .$$

Dunque,

$$[z^n]\left(-\frac{1}{1-2z^2}-\frac{2z}{1-2z^2}\right)=-2^{\left\lfloor\frac{(n+1)}{2}\right\rfloor};$$

e, quindi, risulta che

$$s3_{2,\;n} = 2 \cdot Fibonacci_{n+1} + Fibonacci_{n} - 2^{\left \lfloor \frac{(n+1)}{2} \right \rfloor} = Fibonacci_{n+3} - 2^{\left \lfloor \frac{(n+1)}{2} \right \rfloor}.$$

Eseguiamo un test di controllo:

```
s32\_short := n \to Fibonacci(n+3) - 2^{\text{floor}\left(\frac{n+1}{2}\right)}
                        s32\_short := n \mapsto Fibonacci(3+n) - 2^{\left\lfloor \frac{1}{2} + \frac{n}{2} \right\rfloor}
                                                                                                     (77)
test \ s3m := proc(m, F \ S3m, s3m \ short, N, STEP)
 local i, G S3m;
 G S3m := series(F S3m, z, N + 1);
 for i from 0 to N by STEP do print([i], s3m \ short(i), coeff(G \ S3m, z, i), \ s3m(m, i)) end do;
test \ s3m := proc(m, F \ S3m, s3m \ short, N, STEP)
                                                                                                     (78)
    local i, G S3m;
    G S3m := series(F S3m, z, N + 1);
    for i from 0 by STEP to N do
        print([i], s3m \ short(i), coeff(G \ S3m, z, i), s3m(m, i))
    end do
end proc
test s3m(2, F S32, s32 short, 100, 10)
                                            [0], 1, 1, 1
                                       [10], 201, 201, 201
                                   [20], 27633, 27633, 27633
                               [30], 3491810, 3491810, 3491810
                            [40], 432445861, 432445861, 432445861
                        [50], 53282736741, 53282736741, 53282736741
                    [60], 6556396578018, 6556396578018, 6556396578018
                [70], 806481173311025, 806481173311025, 806481173311025
             [80], 99193753583127721, 99193753583127721, 99193753583127721
       [90], 12200125230749787906, 12200125230749787906, 12200125230749787906
   [100], 1500519410306989240653, 1500519410306989240653, 1500519410306989240653
                                                                                                     (79)
```

Per concludere, andiamo a verificare i risultati riportati per il caso m=3:

$$G(s3_{3,n}) = \frac{3 \cdot z + 5}{1 - z - z^2} - \frac{1}{2} \cdot \frac{1 + 2 \cdot z}{(1 - 2 \cdot z^2)^2} - \frac{1}{2} \cdot \frac{7 + 12 \cdot z}{(1 - 2 \cdot z^2)^2},$$

$$s3_{3, n} = \begin{cases} Fibonacci_{n+5} - 2^{\frac{n}{2} - 1} \cdot \left(\frac{n}{2} + 8\right) & se \ n \ \grave{e} \ pari, \\ Fibonacci_{n+5} - 2^{\frac{n-1}{2}} \cdot \left(\frac{n-1}{2} + 7\right) \ altrimenti. \end{cases}$$

$$F_S33 := \frac{3 \cdot z + 5}{1 - z - z^2} - \frac{1}{2} \cdot \frac{1 + 2 \cdot z}{\left(1 - 2 \cdot z^2\right)^2} - \frac{1}{2} \cdot \frac{7 + 12 \cdot z}{\left(1 - 2 \cdot z^2\right)^2}$$

$$F_S33 := \frac{3z + 5}{1 - z - z^2} - \frac{1 + 2z}{2\left(1 - 2z^2\right)^2} - \frac{7 + 12z}{2\left(1 - 2z^2\right)^2}$$
(80)

 $F_S33 := sort(expand(F_S33), z, ascending)$

$$F_S33 := \frac{5}{1 - z - z^2} - \frac{4}{(1 - 2z^2)^2} + \frac{3z}{1 - z - z^2} - \frac{7z}{(1 - 2z^2)^2}$$
(81)

(82)

 $series(op(F_S33)[1], z, 10); #fg di 5 \cdot Fib(n+1)$ $series(op(F_S33)[2], z, 10);$ $series(op(F_S33)[3], z, 10); #fg di 3 \cdot Fib(n)$ $series(op(F_S33)[4], z, 10);$ $5 + 5z + 10z^2 + 15z^3 + 25z^4 + 40z^5 + 65z^6 + 105z^7 + 170z^8 + 275z^9 + O(z^{10})$ $-4 - 16z^2 - 48z^4 - 128z^6 - 320z^8 + O(z^{10})$ $3z + 3z^2 + 6z^3 + 9z^4 + 15z^5 + 24z^6 + 39z^7 + 63z^8 + 102z^9 + O(z^{10})$

Prima di fare qualunque riflessione, eseguiamo una verifica numerica e commentiamo i risultati:

(-7) z - 28 $z^3 - 84$ $z^5 - 224$ $z^7 - 560$ $z^9 + O(z^{11})$

```
s33 \ short := \mathbf{proc}(n) \ \#come \ ci \ posso \ arrivare?
local res:
res := Fibonacci(n + 5);
if (n \mod 2 = 0) then res := res - 2^{\frac{n}{2} - 1} \cdot (\frac{n}{2} + 8);
else res := res - 2^{\frac{n-1}{2}} \cdot \left(\frac{n-1}{2} + 7\right) end if;
eval(res);
end proc;
s33 \ short := \mathbf{proc}(n)
                                                                                                                        (83)
    local res;
     res := Fibonacci(n + 5);
    if n \mod 2 = 0 then
         res := res - 2^{(1/2 * n - 1)} * (1/2 * n + 8)
     else
         res := res - 2^{(1/2 * n - 1/2)} * (1/2 * n + 13/2)
     end if;
     eval(res)
end proc
```

```
test_s3m(3, F_S33, s33_short, 100, 10)

[0], 1, 1, 1

[10], 402, -158, 402

[20], 65809, 29969, 65809

[30], 8850633, 7130313, 8850633

[40], 1120223106, 1046822786, 1120223106

[50], 139030214317, 136094201517, 139030214317

[60], 17147279082909, 17034536191389, 17147279082909

[70], 2110746343603138, 2106537275653058, 2110746343603138

[80], 259669108632055961, 259515177004167321, 259669108632055961

[90], 31939502249129745857, 31933960710525754817, 31939502249129745857

[100], 3928381113509572729634, 3928184081025875270434, 3928381113509572729634

(84)
```

L'esecuzione del test stampa [i], $s33_short(i)$, $coeff(series(F_S33, z, N+1), z, i)$, s3m(3, i): risulta evidente che la funzione generatrice fornita non sia corretta, anche se il risultato finale lo è.

Con una più attenta analisi ci potevamo accorgere in anticipo della discrepanza, infatti:

$$\begin{bmatrix} z^n \end{bmatrix} \frac{5}{1 - z - z^2} = 5 \cdot Fibonacci_{n+1},$$
$$\begin{bmatrix} z^n \end{bmatrix} \frac{3z}{1 - z - z^2} = 3 \cdot Fibonacci_n,$$

dunque,

$$[z^n] \frac{5}{1-z-z^2} + \frac{3z}{1-z-z^2} = Fibonacci_{n+5};$$

inoltre,

$$[z^n] - \frac{4}{(1-2z^2)^2} = -4 \cdot [z^n] \left(\frac{1}{1-2z^2}\right) \cdot \left(\frac{1}{1-2z^2}\right)$$

$$= \begin{cases} -4\left(\sum_{k=0}^{\frac{n}{2}} (2^{2 \cdot k}) \cdot \left(2^{\frac{n}{2}} - 2k\right)\right) & \text{se } n \in \text{pari}, \\ 0 & \text{altrimenti.} \end{cases}$$

Usiamo Maple per ottenere una forma chiusa:

$$-4 \cdot sum \left(2^{2 \cdot k} \cdot 2^{\left(\frac{n}{2} - 2 \cdot k\right)}, k = 0 \dots \frac{n}{2} \right)$$

$$-42^{\frac{n}{2}}\left(\frac{n}{2}+1\right)$$
 (85)

quindi,

$$[z^n] - \frac{4}{(1-2z^2)^2} = \begin{cases} -4 \cdot 2^{\frac{n}{2}} \left(\frac{n}{2} + 1\right) sen \ \grave{e} \ pari, \\ 0 \qquad altrimenti. \end{cases}$$

Di conseguenza, risulta che

$$[z^{n}] - \frac{7z}{(1-2z^{2})^{2}} = -7 \cdot [z^{n-1}] \left(\frac{1}{1-2z^{2}}\right) \cdot \left(\frac{1}{1-2z^{2}}\right)$$

$$= \begin{cases} -7 \cdot 2^{\frac{n-1}{2}} \left(\frac{n-1}{2} + 1\right) & \text{se n $\`{e}$ dispari,} \\ 0 & \text{altrimenti.} \end{cases}$$

Dunque, analizzando unicamente la funzione generatrice fornita (che risulta essere non corretta), troveremmo che

$$s3_{3, n} = \begin{cases} Fibonacci_{n+5} - 4 \cdot 2^{\frac{n}{2}} \left(\frac{n}{2} + 1\right) & se \ n \ \grave{e} \ pari, \\ Fibonacci_{n+5} - 7 \cdot 2^{\frac{n-1}{2}} \left(\frac{n-1}{2} + 1\right) & altrimenti. \end{cases}$$

Controlliamo se otteniamo effettivamente i coefficienti della funzione generatrice:

```
s33_short_new := proc(n)
local res;

res := Fibonacci(n + 5);

if (n mod 2 = 0) then res := res-4 2^{\frac{n}{2}} \left(\frac{n}{2} + 1\right);

else res := res-7 2^{\frac{n}{2} - \frac{1}{2}} \left(\frac{n}{2} + \frac{1}{2}\right) end if;

eval(res);
end proc;

s33_short_new := proc(n)

local res;

res := Fibonacci(n + 5);
if n mod 2 = 0 then

res := res - 4 * 2^(1/2 * n) * (1/2 * n + 1)
else
```

```
res := res - 7 * 2^{(1/2 * n - 1/2)} * (1/2 + 1/2 * n)
   end if;
   eval(res)
end proc
test s3m(3, F S33, s33 \text{ short new}, 100, 10)
                                       [0], 1, 1, 1
                                 [10], -158, -158, 402
                               [20], 29969, 29969, 65809
                            [30], 7130313, 7130313, 8850633
                       [40], 1046822786, 1046822786, 1120223106
                    [50], 136094201517, 136094201517, 139030214317
                [60], 17034536191389, 17034536191389, 17147279082909
             [70], 2106537275653058, 2106537275653058, 2110746343603138
          [80], 259515177004167321, 259515177004167321, 259669108632055961
      [90], 31933960710525754817, 31933960710525754817, 31939502249129745857
  [100], 3928184081025875270434, 3928184081025875270434, 3928381113509572729634]
                                                                                          (87)
```

Adesso i coefficienti tornano, ma non ci danno il valore della sommatoria d'interesse: dunque, la funzione generatrice riportata nell'articolo non è corretta.