Software Information

General information

TESPy Version: 0.4.3-005 - Grassmann's Graph

CoolProp version: 6.4.1 Python version: 3.8.12

Documentation generated: January 28, 2022

Parameter highlighting

 $\begin{array}{ll} \mbox{Variable component parameters:} & italic \\ \mbox{Specified input parameter:} & \mbox{normal font} \end{array}$

Paremeter "input value": Varying values depending on the parameter influence or optimization approach

1 Connections in design mode

1.1 Specified connection parameters

Table 1: Specified connection parameters

	m in kg/s (1)	p in bar (2)	T in $^{\circ}$ C (3)	x in - (4)	$Td_bp in °C (5)$
label					
1	-	-	input value	-	-
7	-	-	-	-	-2.0
12	-	-	-	0.50	-
10	-	-	-	0.50	-
20	-	0.6000	5.0	-	-
22	-	0.6000	-	-	-
30	20.000	-	140.0	1.00	-
32	180.000	-	140.0	0.00	-

1.2 Equations applied

$$0 = \dot{m} - \dot{m}_{\rm spec} \tag{1}$$

$$0 = p - p_{\text{spec}} \tag{2}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{3}$$

$$0 = h - h\left(p, x_{\text{spec}}\right) \tag{4}$$

$$0 = \Delta T_{\text{spec}} - T_{\text{sat}}(p) \tag{5}$$

1.3 Specified fluids

Table 2: Specified fluids

	R245ca (6)	air (7)	water (8)
label			
6	1.000	0.000	0.000
20	0.000	1.000	0.000
30	0.000	0.000	1.000
32	0.000	0.000	1.000

1.4 Equations applied

$$0 = x_{R245ca} - x_{R245ca,spec} \tag{6}$$

$$0 = x_{\text{air}} - x_{\text{air,spec}} \tag{7}$$

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{8}$$

1.5 Referenced temperature

Table 3: Specified reference values for temperature

	reference	factor in -	delta in °C
label			
0	21	1	input value

1.6 Equation applied

$$0 = \text{value} - \text{value}_{\text{ref}} \cdot \text{factor} + \text{delta} \tag{9}$$

2 User defined equations in design mode

2.1 Equation for "ihe deshuperheat ratio" (10)

$$0 = h_3 - h_2 - x_{\text{IHE}} \cdot (h_3 - h(p_2, T_5 + \Delta T_{\text{t,u,min}}))$$
(10)

3 Components in design mode

3.1 Components of type CycleCloser

3.1.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{12}$$

3.2 Components of type Turbine

3.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(14)

3.2.2 Inputs specified

Table 4: Parameters of components of type Turbine

3.2.3 Equations applied

$$0 = -\left(h_{\text{out}} - h_{\text{in}}\right) + \left(h_{\text{out,s}} - h_{\text{in}}\right) \cdot \eta_{\text{s}} \tag{15}$$

3.3 Components of type HeatExchanger

3.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{16}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$

$$\tag{17}$$

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(18)

3.3.2 Inputs specified

Table 5: Parameters of components of type HeatExchanger

	ttd_l (19)	pr1 (20)	pr2 (21)
label			
internal heat exchanger	-	0.98	0.98
preheater	-	0.98	0.98
geobrine evaporator	8.00	0.98	-

3.3.3 Equations applied

$$0 = ttd_{l} - T_{\text{out},1} + T_{\text{in},2} \tag{19}$$

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{20}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{21}$$

3.4 Components of type Condenser

3.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(23)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(24)

3.4.2 Inputs specified

Table 6: Parameters of components of type Condenser

	ttd_u (25)	pr1 (26)	pr2 (27)
label			
condenser	10.00	1.00	0.99
geosteam evaporator	-	-	-

3.4.3 Equations applied

$$0 = ttd_{u} - T_{sat}(p_{in,1}) + T_{out,2}$$
(25)

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{26}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{27}$$

3.5 Components of type Pump

3.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{28}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(29)

3.5.2 Inputs specified

Table 7: Parameters of components of type Pump

3.5.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out.s}} - h_{\text{in}})$$
(30)

3.6 Components of type Drum

3.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(31)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \,\forall fl \in \text{network fluids}, \,\forall j \in \text{outlets}$$
(32)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$
 (33)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(34)

$$0 = h_{\text{out},1} - h(p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h(p_{\text{out},2}, x = 1)$$
(35)

3.7 Components of type Splitter

3.7.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (36)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
(37)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (38)

$$0 = p_{\text{in},1} - p_{\text{in},i} \,\forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \,\forall j \in \text{outlets}$$
(39)

3.8 Components of type Merge

3.8.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$

$$(40)$$

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot x_{fl,\text{in},i} - \dot{m}_{\text{out}} \cdot x_{fl,\text{out}} \,\forall fl \in \text{network fluids}, \,\forall i \in \text{inlets}$$
(41)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \dot{m}_{\text{out}} \cdot h_{\text{out}} \ \forall i \in \text{inlets}$$

$$(42)$$

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(43)

3.9 Components of type Compressor

3.9.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$\tag{44}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$

$$(45)$$

3.9.2 Inputs specified

Table 8: Parameters of components of type Compressor

$$\begin{array}{c} & \text{eta_s } (46) \\ \\ \text{label} \\ \\ \\ \text{air fan} \end{array}$$

3.9.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{s} + (h_{\text{out.s}} - h_{\text{in}})$$
(46)

4 Busses in design mode

4.1 Bus "net power output"

This bus is used for postprocessing only.

Table 9: Results overview for bus net power output

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
turbine	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	0.97
feed pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$rac{\dot{E}_{ m comp}}{\eta}$	0.97
air fan	$\dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in})$	$rac{\dot{E}_{ m comp}}{\eta}$	0.97

4.2 Bus "cycle gross power output"

This bus is used for postprocessing only.

Table 10: Results overview for bus cycle gross power output

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
turbine feed pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in}) \ \dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$		1.00 1.00

4.3 Bus "thermal input"

This bus is used for postprocessing only.

Table 11: Results overview for bus thermal input

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
preheater geobrine evaporator geosteam evaporator	$\dot{m}_{ ext{in},1} \cdot (h_{ ext{out},1} - h_{ ext{in},1}) \dot{m}_{ ext{in},1} \cdot (h_{ ext{out},1} - h_{ ext{in},1}) \dot{m}_{ ext{in},1} \cdot (h_{ ext{out},1} - h_{ ext{in},1})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	-1.00