

CLAIMS

What is claimed is:

- 1 1. A system comprising:
2 a data filter coupled to a text-to-image converter for
3 converting filtered data into a set of digital images, the set of
4 digital images being defined as a set of texture maps; and
5 a memory analyzer for analyzing set-top box layout and
6 indicating available memory types, the memory analyzer being
7 coupled to a memory distributor, the memory distributor for
8 distributing texture maps.
- 1 2. The system of claim 1, wherein a total size of the set
2 of texture maps is a sum of all texture map sizes.
- 1 3. The system of claim 2, further comprising:
2 a processor coupled to the data filter, the processor
3 executing a first logic in which the total size of the set of
4 texture maps is less than or equal to a memory size; and
5 a second logic if the total size of the set of texture
6 maps is greater than the memory size, then dividing the set of
7 texture maps into at least two groups.
- 1 4. The system of claim 3, wherein a total size of the first
2 group is the largest possible sum of texture map sizes for which
3 the total size of the first group is less than the memory size.

1 5. The system of claim 3, wherein a total size of the
2 second group is the difference between the total size of the set
3 of texture maps and the total size of the first group.

1 6. The system of claim 3, wherein the set of texture maps
2 of the first group is stored in a first memory.

1 7. The system of claim 3, wherein the set of texture maps
2 of the second group is stored in a second memory.

1 8. The system of claim 3, wherein the set of texture maps
2 of the second group are compressed to fit into the first memory.

1 9. The system of claim 8, further comprising a compression
2 engine.

1 10. A method comprising:

2 computing a total size of a set of texture maps;

3 comparing the total size of the set of texture maps with
4 a memory size;

5 dividing the set of texture maps into at least two
6 groups if the total size of the set of texture maps is larger than
7 the memory size, such that the total size of the texture maps in a
8 first group is the largest possible sum of texture map sizes for
9 which the total size of texture maps in the first group is less
10 than the memory size.

1 11. The method of claim 10 wherein computing a total size of
2 a set of texture maps comprises:
3 computing a sum of all texture map sizes.

1 12. The method of claim 10 further comprising:
2 storing the set of texture maps in a first memory if the
3 total size of the set of texture maps is less than or equal to the
4 first memory size.

1 13. The method of claim 10 further comprising:
2 storing a first group of texture maps in a first memory.

1 14. The method of claim 10 further comprising:
2 storing a second group of texture maps in a second
3 memory.

1 15. The method of claim 14 further comprising:
2 compressing the second group of texture maps to fit into
3 C memory if B memory is not available.