locus is the soil, e.g., soil in which agricultural crops have been or will be planted, the composition of the active compound may be applied to and optionally incorporated into the soil. For most applications the effective amount may be as low as, e.g. about 10 to 500 g/ha, preferably about 100 to 250 g/ha.

In a further embodiment of the present invention, several of the compounds disclosed above have themselves been found to be novel and useful intermediates in the preparation of the 1,4-disubstituted benzene insecticides disclosed and claimed herein.

Included among these intermediates are those compounds having the formula **XII**:

$$\begin{array}{c}
3 & 2 \\
\hline
 & 5 & 6
\end{array}$$
XII

wherein:

5

A is $-(CH_2)_n$ -U-R²

wherein

25

n is 0 or 1;

U is -C(O)-, -CH₂-, oxygen, or -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl;

 R^2 is selected from hydrogen, halo, hydroxy, and 1-R⁴, wherein: R^4 is

$$z = \begin{bmatrix} 8 & 1 & X \\ 2 & 6 & 5 & 4 \end{bmatrix}$$

R

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

R is $-T-(CH_2)_m-R^1$, where

T is selected from the group consisting of oxygen, nitrogen, and sulfur; m is 0, 1, 2, 3, or 4;

 R^1 is hydrogen, halo, alkyl, or $-N(R^8)(R^9)$; where R^8 and R^9 are independently selected from the group consisting of hydrogen, alkyl, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and $-(CH_2)_p$ - $N(R^{16})(R^{17})$, where

p is 1 or 2;

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxyalkyl, and aminoalkyl.

Some preferred intermediates of formula XII are those in which: n is 1; U is oxygen; R^2 is 1- R^4 , wherein:

R4 is

$$z = \begin{bmatrix} 8 & 1 & X \\ 2 & & & & \\ 5 & & & 4 \end{bmatrix}$$

20

25

5

10

15

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

67

T is oxygen or sulfur;

m is 2; and

R¹ is halo;

Additional preferred intermediates of formula XII are those in which n is 1; 5 U is -CH₂-; R² is 1-R⁴, wherein:

R⁴ is

$$z = \begin{bmatrix} 8 & 1 & X \\ 2 & & & & \\ 5 & & 4 & 3 \end{bmatrix}$$

$$R^4$$

10

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

15

T is oxygen;

m is 0; and

R¹ is hydrogen or alkyl.

20

25

Preferred intermediates of formula XII also include those compounds in which n is 0; U is -C(O); R^2 is hydrogen; T is oxygen; m is 2; and R^1 is -N(R^8)(R^9), where R^8 and R^9 are alkyl as well as those in which n is 0; U is -CH₂-; R^2 is halo or hydroxy; T is oxygen; m is 2; and R^1 is -N(R^8)(R^9); where R^8 and R^9 are alkyl.

In addition to the compounds set forth above, compounds of formula UU, described generally in Schema 3 above and in greater detail below, have also been found to be novel and useful intermediates in the preparation of the 1,4-disubstituted benzene insecticides disclosed and claimed herein:

68

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy; T is selected from the group consisting of oxygen, nitrogen, and sulfur; and R¹⁸ is alkyl.

10

5

While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

5

10

Table 1 Insecticidal Optionally Substituted Benzenes

Formula I (FI)

-T- $(CH_2)_m$ - R^1 Formula II (FII)

-(CH₂)_n-U-R² Formula III (FIII)

$$\bigcup_{\mathsf{R}^3} \mathsf{W}$$

Formula I

A and D are H; R is FII; T is O; m is 2; R^1 is $N(C_2H_5)_2$

	9	, –	, ,			-5/2	
Cmpnd No.	<u>B</u>	<u>n</u>	$\underline{\mathbf{U}}$	$\underline{\mathbb{R}^2}$	X	<u>Y</u>	Z
1	2-FIII	1	N	$1-R^4$	4-C1	H	H
2	3-FIII	1	N	$1-R^4$	4-C1	H	\mathbf{H}

Formula I

B and D are H; R is FII; T is O; m is 2; R^1 is $N(C_2H_5)_2$

Dand Date 11, R 1	5 1 11, 1 15	$C, \text{ III 13 } 2, \text{ IX 13 } \text{ IV}(C_2 \text{II}_5)_2$
Cm	ipnd No.	A
	3	~ n n d
	4	°OC₂H₅
		N
	5	ĊI \
	-	PN
		> - n →
		,) cl
		- -

70 Table 1 (continued)

Formula I

B and D are H; R is FII; T is O; m is 2; R^1 is $N(C_2H_5)_2$

A is FIII; B and D are H;	<u>R is FII</u>	; T is O; m is 2; R^1 is $N(C_2H_5)_2$; n is 1
Cmpnd No.	<u>U</u>	; T is O; m is 2; R^1 is $N(C_2H_5)_2$; n is 1 $\frac{R^2}{R^2}$
8	O	
		I CI
9	O	1
-	•	
		N .
10	O	1
		N T
11	^	ĊF ₃
11	O	l N
		Ċı
12	О	1
		N
		Ť 🍝
12	N.T	
13	N	
14	N	
1.4	1.4	
•		N N

71 Table 1 (continued)

Formula I		
A is FIII; B and D are H;	R is I	FII; T is O; m is 2; R^1 is $N(C_2H_5)_2$; n is 1 R^2
<u>Cmpnd No.</u> 15	<u>U</u> N	<u>R</u> ²
15	N	
16	N	
17	N	X° L
18	N	N CI
19	N	\sim
20	N	
21	О	
22	O	
23	O	N CI
24	0	N CI
25	O	Cl Cl

72 Table 1 (continued)

A is FIII. B and D are U. P is FII.	T is O; m is 2; R^1 is $N(C_2H_5)_2$; n is 1
A ISTIII, D allu D ale II, K ISTII,	$1 18 O, 111 18 2, K 18 N(C_2\Pi_5)_2, 11 18 1$

A is FIII; B and D are H;	R is F	II; T is O; m is 2; R' is $N(C_2H_5)_2$; n is 1
<u>Cmpnd No.</u> 26	<u>и</u>	$\frac{\text{II}; T \text{ is O; m is 2; R}^1 \text{ is N}(C_2H_2)_2; \text{n is 1}}{R^2}$
26	O	1
		%
		l Cl
27	Ο	1
		0
		CI
		CI
28	Ο	1
		CI
29	Ο	<u>.</u>
		CI
		CI
30	О	1
		° ↓ ↓ □
		CI
31	O	
31	•	
		XIII
20	0	. 0- 🍑
32	О	1
		N CI
	_	ĊI
33	Ο	ÇI
. *		
34	O	i
		CI
35	Ο	1
		CI
		OI .

73
Table 1 (continued)

Formula I

A is FIII; E	and D are H;	R is FII;	Γ is O; m is 2; \mathbb{R}^1 is $\mathbb{N}(\mathbb{C}_2\mathbb{H}_5)_2$; n is 1
	Cmpnd No.	$\underline{\mathbf{U}}$	$\frac{\mathbb{R}^2}{\mathbb{R}^2}$
	36	O	1
			CI
	37	О	ļ
			CI
	38	N). I
			N CI
	38	O	G .
	30	J	

Formula I

A is FIII; B and D are H; n is 1; U is N; R² is 1-R⁴; X is 4-Cl; Y and Z are H

Cmpnd No.	<u>R</u>
39	$-N(\overline{C_2}H_5)_2$
40	0~
	`NN
41	. 🗸
	°~°~
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
42	₩
	N

74 Table 1 (continued)

Formula I

A is FIII; B and D are H; R is FII; T is O; n is 0; R² is 1-R⁴; Y and Z are H

TT AD T THI, D dild D die 1.	, 14 15		50,10 151-10, 1	and 2 are 11
Cmpnd No.	<u>m</u>	\mathbb{R}^1	<u>U</u>	<u>X</u>
43	0	CH_3	$\mathrm{C_2H_4}$	4-Br
44	0	CH_3	Q	4-Cl
			,,人,	
4.5	1	1.011	-N N-	4.01
45	1	$1-C_6H_5$	-OC ₂ H ₄ O-	4-Cl
46	1	o'	-CH=N-	4-C1
)~N		
			•	
47	2	$N(C_2H_5)_2$	$-OC_2H_4O-$	4-C1
48	2	$N(C_2H_5)_2$	P	4-C1
			_N _N—	
40	_	NICO II		
49	2	$N(C_2H_5)_2$	-NHC ₂ H ₄ -	4-C1
50	2	$N(C_2H_5)_2$	OCH_2	4-C1
51		$N(C_2H_5)_2$	О	4-C1
52		$N(C_2H_5)_2$	CH_2	4-C1
53		$N(C_2H_5)_2$	SO_2	4-C1
54		$N(C_2H_5)_2$	CO	4-C1
55		$N(C_2H_5)_2$	CF_2	4-C1
56		$N(C_2H_5)_2$	-CH(OH)	4-C1
57		$N(C_2H_5)_2$	-CH ₂ S-	4-C1
58		$N(C_2H_5)_2$	CH_2SO	4-C1
59		$N(C_2H_5)_2$	CH_2SO_2	4-C1
60	2	$-OC_2H_5$	-CH ₂ NH-	4-C1
			~	

Formula I

5 A is FIII; B and D are H; R is FII; T is O; m is 1; n is 1; R^2 is 1- R^4 ; X is 4-Cl; Y and

\underline{Z}	are	\mathbf{H}

Cmpnd No.	$\underline{\mathbf{U}}$
61	O
62	N
63	N

Formula I

A is FIII; B and D are H; R is FII; n is 1; R² is 1-R⁴;

Cmpnd No.	<u>m</u>	$\mathbf{\underline{T}}$	$\overline{\underline{\mathbf{U}}}$	$\underline{\mathbf{R}^{1}}$	X	<u>Y</u>	\overline{z}
64	1	O	N	-CH ₃	4-C1	\mathbf{H}	\mathbf{H}
65	1	O	N	$-CH_2F$	4-C1	H	\mathbf{H}

WO 02/17712

75
Table 1 (continued)

Formula I A is FIII; B and	D are	H·R·	is FII: n i	s 1 · R ² is 1-R ⁴ ·			
Cmpnd No.	m			R ¹	<u>X</u>	Y	<u>Z</u>
66	1	$\frac{\mathbf{T}}{\mathbf{O}}$	<u>и</u> О	N	4-C1	$\dot{\overline{H}}$	H
30	•	Ŭ	Ū	N — N	. 01	**	**
67	1	O	O	N N	4-C1	Н	Н
Hydrochloride Salt				N - N			
68	1	О	O	N /	4-C1	\mathbf{H}	H
				й , и			
				N N CH3			
69	1	O	O	1	4-C1	Н	Н
0)	•	Ū	Ü	λ	4 01		
				N N			•
				N-N			
				H ₅ C ₂			
70	1	O	O	N=N	4-C1	H	H
				$N \sim N - C_2H_5$			
				Ŷ ',			
	_	_		1			
71	2	S	N	$-N(C_2H_5)_2$	4-C1	H	Η .
72 73	2	0	CH_2	$-N(C_2H_5)_2$	4-Br	H	H
73	2 2 2	0	CH_2	$-N(C_2H_5)_2$	4-C1	H	H
74 75	2	0	N	$-N(CH_3)_2$	H	H	H
75 76	2 2	0 0	N N	$-N(C_2H_5)_2$	H H	H H	H H
	2	U	14	−n o	п	п	п
77	2	0	N	NCH	4 D.,	TT	TT ·
77 78	2	0 0	N	$-N(CH_3)_2$ $-N(C_2H_5)_2$	4-Br 4-Br	H H	H H
79	2 2	ŏ	N	$-N(isopropyl)_2$	4-Br	H	H
80	2	ŏ	N		4-Br	H	H
	_		-	−N >O	1 151		11
81	2	O	N	,	4-Br	Н	Н
01	4	O	14	Ľή	T-D1	11	11
82	2	0	N	$-NH(C_2H_5)$	4-C1	H	\cdot H
83	2	Ο	N	$-N(CH_3)_2$	4-C1	H	H
84	2	Ο	N	$-N(C_2H_5)_2$	4-C1	H	\mathbf{H}
85	2	O	N	$-N(C_2H_5)_2$	4-C1	H	H
Chloride Salt							
86	2	0	N	$-N(C_2H_5)_2$	8-C1	H	\mathbf{H}
87	2	0	N	-N(isopropyl) ₂	4-C1	\mathbf{H}	\mathbf{H}
88	2	0	N	$-N(C_4H_9)_2$	4-Cl	H	H
89	2	O	N	-N	4-C1	H	H

76
Table 1 (continued)

A is FIII; B an	d D are	H; R i	s FII; n	is 1; R ² is 1-R ⁴ ;			
Cmpnd No.	m	<u>T</u> O	<u>U</u> N	$\underline{\mathbf{R}^{1}}$	<u>X</u> 4-Cl	<u>Y</u> H	<u>Z</u> H
90	<u>m</u> 2	О	N	Γ_{N}	4-C1	Н	H
91	2	О	N	_N	4-C1	Н	Н
92	2	О	N		4-C1	Н	Н
93	2	О	N	-N	4-C1	Н	Н
94	3	O	N	$-N(CH_3)_2$	4-C1	н	н.
95	3 3 3	Ō	N	$-N(C_4H_9)_2$	4-C1	H	H
96	3	O	N	-N_0	4-C1	Н	Н
97	4	O	N	$-N(C_4H_9)_2$	4-C1	H	H
98	2	Ο	О	-	4-C1	Н	Н
99	2	Ο	0	-N	4-Cl	Н	Н
100	2	О	O	-N	4-Cl	Н	Н
101	2	О	Ο	-N	4-C1	Н	Н
102	2	O	Ο	-v	4-C1	Н	Н
. 103	2	O	О	-N	4-C1	Н	Н
104	2	Ο	O	-N	4-Cl	Н	Н
105	2	O	O	-N	4-C1	Н	Н

77
Table 1 (continued)

A is FIII; B an	A is FIII; B and D are H; R is FII; n is 1; R ² is 1-R ⁴ ;									
<u>Cmpnd No.</u> 106	<u>m</u> 2	T O	<u>U</u> O	$-\frac{\mathbb{R}^1}{}$	<u>X</u> 4-Cl	<u>Y</u> H	<u>Z</u> H			
107	2	Ο	O	-N	4-Cl	6-C1	Н			
108	2	Ο	O	-NO^	4-Cl	Н	Н			
109	2	Ο	O	-N	4-Cl	Н	Н			
110	2	Ο	O		4-Cl	Н	H			
111	2	0	O	-N	4-Cl	Н	Н			
112	2	O	O		4-Cl	Н	Н.			
113	2	O	О	-N_N	4-C1	Н	H			
114	2	O	O	-N_N_0^	4-Cl	Н	Н			
115	2	Ο	0	-N	4-C1	Н	Н			
116	2	O	Ο	-N_N L	4-Cl	Н	Н			
117	2	O	O	-N_N	4-Cl	Н	Н			

78
Table 1 (continued)

A is FIII; B and D are H; R is FII; n is 1; R ² is 1-R ⁴ ;									
<u>Cmpnd No.</u> 118	<u>m</u> 2	TO	<u>U</u> O	$\frac{\underline{R}^1}{-N}$ s	<u>X</u> 4-Cl	<u>Y</u> H	<u>Z</u> H		
119	2	O	Ο	-N_0	4-Cl	Н	Н		
120	2	O	Ο	-N_O	4-Cl	Н	Н		
121 -	2	O	O	N	4-Cl	Н	Н		
122	2	О	O	ai'	4-Cl	Н	Н		
123	2	О	O	, ai	4-Cl	Н	Н		
124	2	O	Ο	N CH ₃	4-C1	Н	Н		
125	2	O	Ο	Neres CH ₃	4-C1	Н	Н		
126	2	O	О	_N	4-C1	Н	Н		
127	2	О	O	-N_N-(4-Cl	Н	H		
128	2	O	Ο	N	4-Cl	Н	Н		
129	2	0	O	-N-(4-Cl	Н	Н		
130	2	О	O	_N-\(\bigcirc_\)-\(\coregin{array}{c} \coregin{array}{c} arra	4-C1	H .	Н		

79 Table 1 (continued)

Formula I

A is FIII: B and D are H: B is FII: n is 1: B² is

A is FIII; B and D are H; R is FII; n is 1; R ² is 1-R ⁴ ;									
Cmpnd No.	<u>m</u>	T	<u>U</u>	<u>R</u> ¹	X	Y	<u>Z</u>		
131	2	О	Ο	H ₃ C — CH ₃	4-C1	Н	Н		
132	2	O	O	CH ₃	4-C1	Н	Н		
133	2	О	Ο	N N	4-C1	Н	H		
134	2	O	O	OMe MeO N	4-Cl	Н	Н		
135	2	0	O	H ₃ C $\stackrel{\text{CH}_3}{\longrightarrow}$ $\stackrel{\text{N}}{\nearrow}$	4-C1	Н	н		
136	2	О	O	H₃Ċ N	4-Cl	Н	Н		
137	2	Ο	Ο	OMe	4-C1	Н	Н		
138	2	Ο	О		4-C1	Н	Н		
139	2	Ο	Ο	-N CH ₃	4-C1	Н	Н		
140	2	О	O	$H_3C \xrightarrow{CH_3}$	4-C1	Н	Н		
141	2	Ο	Ο	-N	4-C1	Н	Н		
142	2	О	Ο	-N	5-C1	6-C1	Н		
143	2	O	Ο	C ₂ H ₅ , N—	4-C1	Н	H		

80 Table 1 (continued)

A is FIII. B an	d D are	H·R:	s FII· n	is 1; R ² is 1-R ⁴ ;			
Cmpnd No.		<u>T</u>		$\frac{R^1}{R^1}$	X	Y	<u>Z</u>
144	<u>m</u> 2	Ō	$\frac{\mathbf{O}}{\Pi}$	-N s	<u>X</u> 4-Cl	Y H	H
145	2	O	O	_N	4-C1	Н	Н
146	2	Ο	O	-N,CH3	4-C1	Н	Н
147	2	Ο	O	_N	4-C1	Н	Н
148	2	Ο	Ο	-N	4-C1	Н	Н
149	2	0	0		4-C1	Н	Н
150	2	O	O	-N	4-C1	Н	H
151	2	O	0		4-C1	Н	Н
152	2	O	0	N O O	4-C1	Н	Н
153	2	O	Ο	-NNN-	4-C1	Н	Н
154	2	Ο	О	-N_>	4-C1	Н	Н
155	2	O	O	-N_N-(CF3	4-C1	Н	Н

81
Table 1 (continued)

<u>Formula 1</u>							
A is FIII; B ar	d D are	H; R i	s FII; n	is 1; R^2 is 1- R^4 ;			
Cmpnd No.	<u>m</u>	<u>T</u> O	<u>U</u>	$\underline{\mathbf{R}^1}$	X	$\frac{Y}{H}$	<u>Z</u>
156	2	О	О	N_N-\F	<u>X</u> 4-Cl	H	H
157	2	Ο	Ο	-N_N-\(\bigcirc_{\text{\text{CH}}}\)	4-C1	Н	H
158	2	O	O	-N_N-_CI	4-C1	Н	Н.
159	2	O	O	и о сн ₃	4-Cl	Н	Н
160	2	O	O	N N	4-C1	Н	Н
161	2	O	Ο		4-Cl	Н	Н
162	2	Ο	Ο	-N N	4-Cl	Н	Н
163	2	Ο	Ο	H ₃ C N	4-Cl	Н	Н
164	2	Ο	O	-N $N N N N N N N N N-$	4-Cl	H	Н
165	2	Ο	Ο	H_3C N- CH_3	4-Cl	Н	H
166	2	Ο	O	CH ₃	4-Cl	Н	Н
167	2	Ο	O	-N	4-Cl	Н	Н
168	2	Ο	O	N	4-C1	Н	H .

82 Table 1 (continued)

romula i	-	** -		24			
A is FIII; B and	D are	H; R	is FII; n				
<u>Cmpnd No.</u>	<u>m</u>	$\frac{\mathbf{T}}{\mathbf{O}}$	<u>U</u>	$\underline{\mathbf{R}^{1}}$	X	Y	\overline{z}
169	<u>m</u> 2	Ο	О		<u>X</u> 4-Cl	$\frac{Y}{H}$	<u>Z</u> H
				-N. A.			
				~ 'N' ~			
150	_	_	_				
170	2	O	О	H ₃ C	4-C1	H	\mathbf{H}
171	2	O	O	•	4-C1	H	\mathbf{H}
212	_	•	Ŭ	Ν¬	4-01	11	11
				\ _ \			
170	_		•	IV—	4 01		**
172	2	O	O	ЙН	4-C1	H	H
				0-N			
173	2	O	O		4-C1	H	Н
2.0	_	Ü	Ū	NH	4.01	11	11
				\triangle			
				N-N			
174	2	O	O	N	4-C1	\mathbf{H}	H
				, NH			
				s '— n			
175	2	О	O	OCF ₃	4-C1	\mathbf{H}	\mathbf{H}
				《_ 》			
176	2	0	0	Н	4 (1	7.7	**
170	2	О	O	√ ₩_	4-C1	H	H
				\bigcirc OCF $_3$			
177	2	O	О	$-OC_4H_9$	4-C1	H	H .
178	2	ŏ	Ö	-N(C ₂ H ₅)(OCH ₃)	4-C1	H	H
179	2	ŏ	o	$-N(C_2H_5)_2(OCH_3)$			
180	2	o	0		4-Cl	H	H
	2			$-NHC_6H_5$	4-Cl	H	H
181	2	О	О	-N=O	4-C1	6-C1	H
182	2	O	O		4-C1	6-C1	H
Hydrochloride Salt				-N=O			
183	2	O	O		5.01	((1	TT
105	2	U	U	N=O	5-C1	6-C1	H
	_		•	<u> </u>			•
184	2	O	O	$-NH(C_2H_5)$	4-C1	H	H
185	2	Ο	Ο	$-NH(C_2H_5)$	4-C1	H	\mathbf{H}
Hydrochloride Salt				. -			

83
Table 1 (continued)

<u>Formula I</u>							
A is FIII; B and	D are	H; R i	s FII; n	is 1; R^2 is 1- R^4 ;			
Cmpnd No.	<u>m</u>	<u>T</u>	<u>U</u>	R^1	<u>X</u>	<u>Y</u>	<u>Z</u>
186	$\frac{\overline{2}}{2}$	\bar{o}	\bar{o}	$-N(\overline{C_2H_5})_2$	2-C1	$\overline{\overline{H}}$	$\overline{\overline{\mathbf{H}}}$
187	2	O	O	$-N(C_2H_5)_2$	3-C1	Н	Н
188	2	O	O	$-N(C_2H_5)_2$	4-C1	Н	Н
189	2	О	O	$-N(C_2H_5)_2$	4-C1	Н	\mathbf{H}
Chloride Salt							
190	2	O	O	$-N(C_2H_5)(CH_3)_2$	4-C1	\mathbf{H}	H
Iodide Salt	_	_	_				
191	2	O	O	-N(CH2CN(C2H5)	4-C1	H	H
192	2	Ο	0	$-N(C_2H_5)(CH_3)$	4-C1	H	H
193	2	О	О	$-N(C_2H_5)(CH_3)$	4-C1	H	H
Hydrochloride Salt	•	_	0) III (D	4 (71	**	
194	2	0	0	-NHtBu	4-C1	H	H
195	2	0	0	$-N(C_3H_6)(OC_2H_5)$	4-Cl	H	H
196	2	0	0	-N(CH ₂ CH=CH ₂) ₂	4-Cl	H	H
197	2	0	0	-NCH ₂ C(OCH ₃) ₂	4-C1	H	H
198	2	0	0	-NC ₃ H ₆ OCH ₃	4-C1	H	H
199	2	0	0	-NC ₄ H ₉	4-C1	H	H
200	2	0	0	-N(CH ₃)C ₂ H ₄ CN	4-Cl	H	H
201	2	0	0	$-N(C_2H_5)C_4H_9$	4-C1	H	H
202	2	0	O	$-N(C_4H_9)_2$	4-C1	H	H
203	2	0	0	-N(isopropyl) ₂	4-C1	H	H
204	2	0	O	$-N(C_6H_{13})_2$	4-C1	H	H
205	2	0	0	$-N(CH_3)C_{17}H_{35}$	4-C1	H	H
206	2	0	O	$-N(C_2H_5)_2$	5-C1	H	H
207	2	0	O	$-N(C_2H_5)_2$	6-C1	\mathbf{H}	H
208	2	O	O	$-N(C_2H_5)_2$	7 - Cl	\mathbf{H}	\mathbf{H}
209	2	O	O	$-N(C_2H_5)_2$	8-C1	H	\mathbf{H}
210	2	О	O	$-N(C_2H_5)_2$	2-C1	4-C1	H
211	2	O	O	$-N(C_2H_5)_2$	2-C1	5-C1	\mathbf{H}
212	2	O	O	$-N(C_2H_5)_2$	2-C1	6-C1	\mathbf{H}
213	2	О	O	$-N(C_2H_5)_2$	2-C1	8-C1	\mathbf{H}
214	2	O	O	$-N(C_2H_5)_2$	4-C1	5-C1	6-C1
215	2	О	O	$-N(C_2H_5)_2$	4-C1	5-C1	\mathbf{H}
216	2	О	О	$-N(C_2H_5)_2$	4-C1	6-C1	H
217	2	O	O	$-N(C_2H_5)_2$	4-C1	6-C1	H
Chloride Salt							
218	2	О	O	$-N(C_2H_5)_2$	4-C1	6-C1	H
Sulfonic Salt		_					
219	2	О	О	$-N(C_2H_5)_2$	4-C1	6-C1	\mathbf{H}
Trifluoroacetic Salt	•	_	_	37/C 77 \			
220 Methylbenzenesulfonic	2	O	O	$-N(C_2H_5)_2$	4-C1	6-C1	H
Salt							
221	2	Ο	Ο	$-N(C_2H_5)_2$	4-C1	7-C1	H

84
Table 1 (continued)

A is FIII; B and	i D are	H: R i	s FIJ: n i	s 1: R ² is 1-R ⁴ :			
Cmpnd No.	m	<u>T</u>	<u>U</u>	$\frac{R^{1}}{R^{1}}$	<u>X</u>	<u>Y</u>	<u>Z</u>
222	2	ō	ō	$-N(\overline{C_2}H_5)_2$	4-Cl	8-C1	H
223	2	O	O	$-N(C_2H_5)_2$	5-C1	6-C1	\mathbf{H}
224	2	O	O	$-N(C_2H_5)_2$	5-Cl	6-C1	H
Chloride salt				(2 3/2			
225	2	O	O	$-N(C_2H_5)_2$	5-C1	6-C1	\mathbf{H}
Phosphoric salt				. 2 3/2			
226	2	O	Ο	-NHtBu	5-C1	6-C1	H
227	2	O	О	$-N(C_2H_5)_2$	6-Cl	8-C1	\mathbf{H}
228	2	O	Ο	$-N(C_2H_5)_2$	4-Br	\mathbf{H}	\mathbf{H}
229	2	O	O	$-N(C_2H_5)_2$	6-Br	\mathbf{H}	\mathbf{H}
230	2	O	O	$-N(C_2H_5)_2$	5-Br	\mathbf{H}	\mathbf{H}
231	2	Ο	Ο	$-N(C_2H_5)_2$	4- F	\mathbf{H}	\mathbf{H}
232	2	Ο	О	$-N(C_2H_5)_2$	$4-CF_3$	\mathbf{H}	\mathbf{H}
233	2	Ο	Ο	$-N(C_2H_5)_2$	6-CF ₃	\mathbf{H}	\mathbf{H}
234	2	O	Ο	$-N(C_2H_5)_2$	$4-N_3$	\mathbf{H}	\mathbf{H}
235	2	O	O	$-N(C_2H_5)_2$	4-OCH ₃	\mathbf{H}	\mathbf{H}
236	2	Ο	Ο	$-N(C_2H_5)_2$	4-OCH3	\mathbf{H}	H
Chloride Salt							
237	2	О	О	$-N(C_2H_5)_2$	5-OCH3	\mathbf{H}	H
238	2	О	О	$-N(C_2H_5)_2$	4-NO ₂	H	H
239	2	O	О	$-N(C_2H_5)_2$	4-CN	H	H
240	.2	О	О	$-N(C_2H_5)_2$	2-CH ₃	\mathbf{H}	\mathbf{H}
241	2	О	O	$-N(C_2H_5)_2$	6-CH ₃	H	H
242	2	O	О	$-N(C_2H_5)_2$		H	H
243	2	O	O	$-N(C_2H_5)_2$		\mathbf{H}	\mathbf{H}
				. 2 0,2	-o-()-c	.[
					•		
244	2	Ο	O	$-N(C_2H_5)_2$	5-C1	$6-CF_3$	\mathbf{H}
245	2	O	O	$-N(C_2H_5)_2$	5-C1	6-Br	\mathbf{H}
246	2	O	O	$-N(C_2H_5)_2$	5-C1	6-I	H
247	2	O	O	$-N(C_2H_5)_2$	5-I	6-C1	H
248	2	O	O	$-N(C_2H_5)_2$	5-C1	6-OCF ₃	Н
249	2	O	O	$-N(C_2H_5)_2$	5-C1	6-CN	H
250	2	O	O	$-N(C_2H_5)_2$	5-C1	6-NO ₂	H
251	2	O	O	$-N(C_2H_5)_2$	5-CF ₃	6-C1	H
252	2	O	Ο	$-N(C_2H_5)_2$	5-OCH ₃	6-C1	H
253	2	O	O	$-N(C_2H_5)_2$	4-CF ₃	6-C1	H
254	2	O	O	1 22	5-Cl	6-C1	H
							_
				'`}/			
				/			

85
Table 1 (continued)

Formula I

A is FIII: B and D are H: B is FII: n is 1: B^2 is $1-B^4$.

A is rill; b an	a D are	H; K	15 F11; n 1:	S 1; R 1S 1-R;			
Cmpnd No.	<u>m</u>	<u>T</u>	<u>U</u>	$\underline{\mathbf{R}^{1}}$	X	<u>Y</u>	Z
255	2	O	CH ₂	-v	5-C1	6-Cl	Н .
256	2	0	О	-N	5-C1	6-C1	Н
257	2	Ο	S	$-N(C_2H_5)_2$	5-C1	6-C1	\mathbf{H}
258	2	Ο	SO_2	$-N(C_2H_5)_2$	5-C1	6-C1	\mathbf{H}
259	3	Ο	O	$-N(C_2H_5)_2$	4-C1	\mathbf{H}	H
260	4	Ο	O	$-N(C_2H_5)_2$	4-C1	H	H

Please note that Compound No. 261 is a mixture of Compound 212 and (2-(4-((2,4,6-trichloronaphthyloxy)methyl)phenoxy)ethyl)diethylamine.

5 Formula I

A is FIII; R is FII; T is O; m is 2; R^1 is $-N(C_2H_5)_2$; R^2 is $1-R^4$; X is 4-Cl; Y and Z are H

					
Cmpnd No.	<u>B</u>	<u>D</u>	<u>n</u>	<u>U</u>	
262	2-F	\mathbf{H}	1	N	
263	2-OCH ₃	\mathbf{H}	1	N	
264	3-OCH ₃	\mathbf{H}	1	N	
265	$3-OCH_3$	5 -OCH $_3$	1	N	
266	$5-(OC_2H_4N(C_2H_5)_2)$	Н	1	N	
267	2-C1	${f H}$	1	N	
268	3-C1	\mathbf{H}	1	N	
269	2-C1	3-C1	1	N	
270	2-C1	6-C1	1	N	
271	3-C1	5 - C1	1	N	
272	3 - C1	5-C1	0	0	
)~N	

10 Formula I

A and D are H; R is FII; T is O; m is 2; R¹ is N(C₂H₅)₂

						3/2	
Cmpnd No.	<u>B</u>	<u>n</u>	<u>U</u>	$\underline{\mathbf{R}^2}$	<u>J</u>	L	<u>W</u>
273	5-FIII	1	N	$1-R^3$	4-C1	$\overline{\mathbf{H}}$	H
274	6-FIII	1	N	$1-R^3$	4-C1	H	H

Formula I

A is FIII; B and D are H; R is FII; T is O; m is 2; n is 1; U is O

86 Table 1 (continued)

$\underline{\mathbf{R}^1}$	R^2
	
-N_N-	-CI
-N_N^O_	————cı
$-N(C_2H_5)_2$	CI

Formula I

A is FIII: B and D are H: B is FII: m is 2: T is O: P¹ is N(C H): n is 1: P² is 1 D³

A is FII	I; B and D are H; R	is FII; m i	is 2; T is O; \mathbb{R}^1 is -N	$N(C_2H_5)_2$; n is	1; R^2 is 1	-R ³ ;
	<u>mpnd No.</u>	$\underline{\mathbf{u}}$	<u>J</u>	<u>L</u>	W	
	278	N	H	H	\cdot H	
	279	N	2-OCF ₃	Н	H	
	280	N	4-OCF ₃	H	H	
	281	N	2-OC ₆ H ₅	\mathbf{H}	\mathbf{H}	
	282	N	$3-OC_6H_5$	H	H	
	283	N	2-C1	H	H	
	284	N	4-C1	H	H	
	285	N	2-C1	3-C1	\mathbf{H}	
	286	N	2-C1	3-C1	4-C1	
	287	N	2-C1	4-C1	\mathbf{H}	
	288	N	2-C1	4-C1	5-C1	
	289	N	3-C1	4-C1	\mathbf{H}	
	290	N	3-C1	5-C1	\mathbf{H}	
	291	N	$2-C_6H_5$	\mathbf{H}	\mathbf{H}	
	292	N	$2-C_6H_5$	4-C1	H	
	293	N	$3-C_6H_5$	4-C1	H	
	294	N	2 - F	3-F	H	
	295	N	2 - F	3-F	4-F	
	296	N	2 - F	4-F	\mathbf{H}	
	297	N	2-F	4-F	5-F	
	298	N	$2-CH_3$	$3-CH_3$	H	
	299	N	$2-CH_3$	$4-CH_3$	\mathbf{H}	
	300	N	2-OCH ₃	$4-OCH_3$	\mathbf{H}	
	301	N	2-OCH ₃	5-OCH ₃	\mathbf{H}	
	302	N	3-OCH ₃	5-OCH ₃	\mathbf{H}	
	303	О	3-OCH₃	5-OCH ₃	H	
	304	Ο	Н	H	\mathbf{H}	
	305	О	2-C1	\mathbf{H}	H	
	306	О	4-C1	\mathbf{H}	H	
	307	Ο	2-C1	3-C1	H	
	308	Ο	2-C1	3-C1	4-C1	
	309	Ο	2-C1	4-CI	H	

87
Table 1 (continued)

Formula I	iDare H. Dis	FII: m is	2; T is O; R ¹ is -N	(CU) : n is	1. D ² is 1.	D ³ •
	mpnd No.				<u>W</u>	<u>, </u>
	310	$\overline{\mathbf{U}}$	<u>J</u> 2-Cl	<u>L</u> 4-Cl	<u>vv</u> 5-Cl	
	311	Ö	2-Cl	5-C1	H	
	312	o	2-C1 2-C1	6-C1	H	
	313	o	3-Cl	4-Cl	H	
	314	Ö	3-C1	5-Cl	H	
	315	o	2-C1	4-Br	H	
	316	o	2-Cl	6-Br	H	
	317	ŏ	2-Cl	5-CH ₃	H	
	318	ŏ	2-C(CH ₃) ₃	H	H	
	319	Ö	$3-C(CH_3)_3$	H	H	
	320	Ö	$4-C(CH_3)_3$	H	H	
	321	Ö	2-isopropyl	H	H	
	322	0	$4-C_3H_7$	H	H	
	323	ŏ	4-OCH ₃	H	H	
	324	Ö	4-OCF ₃	H	H	
	325	ŏ	2-CN	H	H	-
	326	ŏ	5-CN	H	H	
	327	ŏ	2-NC(O)CH ₃	H	H	
	328	Ö	2-C(O)OC ₂ H ₅	H	H	
	329	Ö	4-C(O)CH ₃	H	H	
	330	Ö	2-C(O)CH ₃	3-OCH ₃	H	
	331	Ö	2-C(O)CH ₃	4-OCH ₃	H	
	332	Ö	2-CH ₃	4-Cl	H	
	333	Ö	3-CH ₃	4-C1	H	
	334	Ö	$2-NO_2$	4-C1	H	
	335	Ö	21102	4-C1	H	
		Ŭ	2 [. 01	11	
			2-[(o-N)]			
	336	O	r ı	4-C1	5-CH ₃	
			2-			•
			~ [o-ii]			
	337	O	2-CH_3	$4-CH_3$	\mathbf{H}	
	338	O	2-CH_3	$3-CH_3$	$5-CH_3$	
	339	О	$2-CH_3$	$3-CH_3$	$6-\mathrm{CH}_3$	
	340	O	2 -OCH $_3$	$4-CH_3$	H	
	341	O	2-Br	4-Br	H	
	342	O	2-Br	6-Br	H	
	343	O	2-Br	$4-CH_3$	\mathbf{H}	
	344	O	2-Br	$4-CH_3$	6-Br	
	345	O	2-F	3-F	\mathbf{H}	
	346	O	2 - F	5-F	\mathbf{H}	

88
Table 1 (continued)

Formula I

A is FIII; B	and D are H; R	is FII; m is	2; T is O; R ¹ is -1	$V(C_2H_5)_2$; n is	: 1; R ² is 1-	R³;
	mpnd No.	<u>U</u>	<u>J</u>	<u>L</u>	W	
	347	O	2-F	6-F	\mathbf{H}	
	348	О	3-F	5-F	\mathbf{H}	
	349	Ο	4-F	6-F	\mathbf{H}	
	350	О	3-F	4-F	6-F	
	351	Ο	$3-CF_3$	H	\mathbf{H}	•
	352	O	2-CF ₂	5-CF ₂	Ħ	

nula I		_		
	B and D are H; n is 1;			
<u>Cmpnd</u>	<u>R</u>	X	$\underline{\mathbf{Y}}$	<u>Z</u>
<u>No.</u> 353	−n N-CH₂CH₃	4-Cl	Н	Н
354	−N N-CH₂CH₃	4-C1	6-C1	Н
355	−N N-CH₂CH₃	5-Cl	6-C1	Н
356	-n_n^o+	5-C1	6-Cl	Н
357	−N N-CH₂CH₃	5-C1	6-Br	Н
358	-NN_	5-C1	6-C1	Н
359	-N_N_	5-Cl	6-C1	$\mathbf{H}_{_{_{\mathbf{c}}}}$
360	−N√N-CH ₃	5-C1	6-C1	Н
361	-n_\n_\	5-C1	6-Cl	Н
362	-N_X_0_]	5-Cl	6-C1	Н
363	CH ₃ -N-CH ₂ CH ₃	4-Cl	6-C1	Н
364	-NN-CH ₂ CH(CH ₃) ₂	5-C1	6-Cl	Н

89
Table 1 (continued)

Cmpnd	<u>R</u>	X	Y	<u>Z</u>
<u>No.</u> 365	-N_N_ CI-	5-Cl	6-C1	Н
366	-N_N	5-C1	6-Cl	Н
367	−N N-CH ₃	5-C1	6-Cl	Н
368	−NN-CH₂CH₂CH₃	5-C1	6-Cl	Н
369	-NN-CH(CH ₃) ₂	5-C1	6-C1	Н
370	−N N-CH₂CH₂F	5-C1	6-C1	Н
371	-N_N-\	5-C1	6-Cl	Н

A is FIII; B an	d D are	H; R is F	II; T is O; n is 1; \mathbb{R}^2 is	1-R ⁴ ; Z is	H		
Cmpnd No.	<u>m</u> 0	<u>n</u> 1	<u>R</u> 1	X	<u>Y</u>	<u>U</u> O	
372	0	1	, н.,	5-C1	6-C1	O	
373	0	1		5-C1	6-C1	O	
374	0	1	N-CH ³	4-C1	Н	O	
375	0	1	N-CH ₂ CH ₃	4-C1	Ή	O	*
376	1	1	H ₃ C-N	5-Cl	6-Cl	O	
377	1	1	CH ₃ CH ₂ —N	5-Cl	6-C1	O	
378	1	1	CH ₃	5-Cl	6-C1	O	
379	2	0	$-N(C_2H_5)_2$	4-C1	H	-CH ₂ 0CH ₂	

Table 2
Characterizing Data

Cmpd No	Empirical Formula	Melting Point/Physical State
1	C ₂₃ H ₂₇ ClN ₂ O	OIL
2	$C_{23}H_{27}CIN_2O$	OIL
3	$C_{20}^{23}H_{33}^{27}N_3O_3$	OIL
4	$C_{23}H_{29}CIN_2O$	OIL
5	$C_{24}H_{30}CIN_3O_2$	OIL
6	$C_{24}H_{29}CIN_2O$	OIL
7	$C_{23}H_{25}CIN_2O_2$	SOLID
8	$C_{24}H_{28}CINO_2$	SOLID
9	$\mathrm{C_{22}H_{26}N_2O_2}$	SOLID
10	$C_{23}H_{25}F_3N_2O_2$	SOLID
11	$C_{22}H_{25}CIN_2O_2$	OIL
12	$C_{22}H_{25}FN_2O_2$	OIL
13	$C_{23}H_{28}N_2O$	OIL
14	$C_{22}H_{27}N_3O$	LIQUID
15	$C_{22}H_{27}N_3O$	LIQUID
16	$C_{22}H_{27}N_3O$	SOLID
17	$\mathrm{C_{23}H_{31}ClN_2O_2}$	OIL
18	$C_{18}H_{24}CIN_3O$	LIQUID
19	$\mathrm{C_{24}H_{32}ClN_3O_2}$	93-95 °C
20	$C_{23}H_{31}CIN_2O$	OIL
21	$C_{25}H_{27}NO_3$	SOLID
22	$C_{21}H_{25}N_3O_2$	OIL
23	$\mathrm{C_{21}H_{24}ClN_3O_2}$	OIL
24	$C_{13}H_8F_5NO_2S$	
39	$C_{21}H_{23}CIN_2$	OIL
40	$C_{25}H_{30}CIN_3O$	OIL
41	$C_{28}H_{36}CIN_3O_2$	FOAM
43	$C_{19}H_{17}BrO$	OIL
44	$C_{18}H_{15}ClN_2O_2$	220 °C >
45	$C_{25}H_{21}ClO_3$	106-107 °C
46	$C_{23}H_{23}ClN_2O_2$	OIL
47	$C_{24}H_{28}CINO_3$	OIL
48	$C_{23}H_{26}ClN_3O_2$	210 °C >
49	$C_{25}H_{31}CIN_2O$	OIL
60	$C_{21}H_{22}CINO_2$	OIL
61	$C_{20}H_{15}Cl_3O_2$	SOLID
62	$C_{19}H_{16}CINO_3$	90-92 °C
63	$C_{23}H_{25}CIN_2O_2$	123-125 °C

91
Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
64	C ₁₉ H ₁₈ CINO	92-93 °C
65	$C_{19}H_{17}CIFNO$	SOLID
66	$C_{20}H_{17}CIN_4O_2$	122-124 °C
67	$C_{19}H_{16}CIN_4O_2.C1$	SOLID
68	$C_{20}H_{17}ClN_4O_2$	159-161 °C
69	$C_{21}H_{19}ClN_4O_2$	104-106 °C
70	$C_{21}H_{19}ClN_4O_2$	SOLID
71	$C_{23}H_{27}CIN_2S$	OIL
72	$C_{24}H_{28}BrNO$	OIL
73	$C_{24}H_{28}CINO$	OIL
74	$C_{21}H_{24}N_2O$	LIQUID
75	$C_{23}H_{28}N_2O$	OIL
76	$C_{23}H_{26}N_2O_2$	SOLID
77	$C_{21}H_{23}BrN_2O$	LIQUID
78	$C_{23}H_{27}BrN_2O$	SOLID
79	$C_{25}H_{31}BrN_2O$	SOLID
80	$C_{23}H_{25}BrN_2O_2$	SOLID
81	$C_{23}H_{25}BrN_2O$	SOLID
82	$C_{21}H_{23}CIN_2O$	184-187 °C
83	$C_{21}H_{23}CIN_2O$	LIQUID
84	$C_{23}H_{27}CIN_2O$	OIL
85	$C_{23}H_{27}CIN_2O.CIH$	
86	$C_{23}H_{27}CIN_2O$	PASTE
87	$C_{25}H_{31}CIN_2O$	SOLID
88	$C_{27}H_{35}CIN_2O$	LIQUID
89	$C_{23}H_{25}CIN_2O_2$	SOLID
90	$C_{23}H_{25}CIN_2O$	SOLID
91	$C_{22}H_{23}CIN_2O_3$	102-104 °C
92	$C_{24}H_{27}CIN_2O_3$	OIL
93	$C_{24}H_{27}CIN_2O$	SOLID
94	$C_{22}H_{25}CIN_2O$	SOLID
95	$C_{28}H_{37}CIN_2O$	LIQUID
96	$C_{24}H_{27}CIN_2O_2$	LIQUID
97	$C_{29}H_{39}CIN_2O$	LIQUID
98	$C_{25}H_{27}ClO_2$	LIQUID
99	$C_{25}H_{28}CINO_2$	SOLID
100	$C_{25}H_{26}CINO_2$	SOLID
101	$C_{24}H_{26}CINO_2$	89-90 °C
102	$C_{25}H_{28}CINO_2$	OIL
103	$C_{25}H_{28}CINO_2$	OIL
104	$C_{25}H_{28}CINO_2$	OIL
105	$C_{26}H_{30}CINO_2$	60-65 °C
106	$C_{26}H_{30}CINO_2$	OIL

92 Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
107	$C_{26}H_{29}Cl_2NO_2$	OIL ·
108	$C_{27}H_{30}CINO_4$	85-87 °C
109	$C_{30}H_{30}CINO_2$	89-91 °C
110	$C_{31}H_{30}CINO_3$	112-115 °C
111	$C_{31}H_{32}CINO_2$	88-91 °C
112	$C_{25}H_{28}CINO_2$	SOLID
113	$C_{23}H_{25}CIN_2O_2$	OIL
114	$C_{26}H_{29}CIN_2O_4$	OIL
115	$C_{29}H_{29}CIN_2O_2$	OIL
116	$C_{30}H_{29}CIN_2O_3$	OIL
117	$C_{30}H_{31}ClN_2O_2$	71-73 °C
118	$C_{23}H_{24}CINO_2S$	OIL
119	C ₂₅ H ₂₈ CINO ₃	OIL
120	$C_{25}H_{28}CINO_3$	OIL
121	$C_{28}H_{28}CINO_2$	LIQUID
122	$C_{26}H_{32}CINO_2$	88-90 °C
123	$C_{26}H_{32}CINO_2$	OIL
124	$C_{26}H_{30}CINO_2$	OIL
125	$C_{26}H_{30}CINO_2$	OIL
126	$C_{24}H_{26}CINO_2$	SEMI SOLID
127	$\mathrm{C_{29}H_{35}ClN_2O_2}$	91-92 °C
128	$C_{28}H_{26}CINO_2$	SYRUP
129	$C_{29}H_{31}ClN_2O_2$	SYRUP
130	$C_{27}H_{23}ClF_3NO_3$	SYRUP
131	$C_{23}H_{26}CINO_2$	58-59 °C
132	$C_{27}H_{32}CINO_2$	OIL
133	$C_{25}H_{23}CIN_2O_2$	OIL
134	$C_{28}H_{28}CINO_4$	96-98 °C
135	$C_{28}H_{34}CINO_2$	OIL
136	$C_{27}H_{26}CINO_3$	95-96 °C
137	$C_{26}H_{23}Cl_2NO_2$	87-88 °C
138	$C_{30}H_{37}CIN_2O_2$	OIL
139	$C_{27}H_{26}CINO_2$	OIL
140	$C_{28}H_{34}CINO_2$	OIL
141	$C_{23}H_{24}CINO_2$	75-77 °C
142	$C_{23}H_{23}Cl_2NO_2$	152-154 °C
143	$C_{27}H_{32}CINO_2$	OIL
144	$C_{22}H_{22}CINO_2S$	83-86 °C
145	$C_{28}H_{32}CINO_2$	OIL
146	$C_{26}H_{30}CINO_2$	OIL
147	$C_{26}H_{30}CINO_2$	OIL
148	$C_{26}H_{30}CINO_2$	OIL
149	$C_{30}H_{27}ClN_2O_2$	131-135 °C

93 Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
150	$C_{23}H_{22}CINO_2$	OIL
151	$C_{23}H_{27}CIN_2O_2$	OIL
152	$C_{29}H_{27}CIN_2O_2$ $C_{30}H_{29}CIN_2O_3$	133-136 °C
153	$C_{30}H_{29}CIN_2O_3$ $C_{30}H_{31}CIN_2O_3$	OIL
154	$C_{30}H_{31}CIN_{2}O_{3}$ $C_{24}H_{24}CINO_{2}$	90-91 °C
155	$C_{24}H_{24}CINO_2$ $C_{30}H_{28}CIF_3N_2O_2$	80-82 °C
156	$C_{30}H_{28}CIFN_2O_2$	120-121 °C
157	$C_{29}I_{28}CII_{12}C_{2}$ $C_{31}H_{31}CIN_{2}O_{3}$	OIL
158	$C_{36}H_{34}Cl_2N_2O_2$	OIL
159	$C_{36}H_{34}C_{12}H_{2}C_{2}$ $C_{27}H_{30}CINO_{4}$	OIL
160	$C_{29}H_{35}CIN_2O_3$	OIL
161	$C_{30}H_{30}CINO_3$	123-125 °C
162	$C_{28}H_{28}CIN_3O_2$	OIL
163	$C_{28}H_{27}CIN_2O_2$	OIL
164	$C_{29}H_{28}CIN_3O_4$	164-166 °C
165	$C_{26}H_{31}CIN_2O_2$	83-89 °C
166	$C_{25}H_{31}CIN_2O_2$	OIL
167	$C_{29}H_{35}CIN_2O_2$	135-140 °C
168	$C_{28}H_{32}CINO_2$	OIL
169	$C_{27}H_{27}CIN_2O_2$	OIL
170	$C_{28}H_{28}CINO_2$	OIL
181	$C_{23}H_{25}Cl_2NO_3$	OIL
183	$C_{23}H_{25}Cl_2NO_3$	81-87 °C
184	$C_{21}H_{22}CINO_2$	LIQUID
185	C ₂₁ H ₂₃ ClNO ₂ .Cl	201-203 °C
186	$C_{23}H_{26}CINO_2$	LIQUID
187	$C_{23}H_{26}CINO_2$	OIL
188	$C_{23}H_{26}CINO_2$	OIL
189	C ₂₃ H ₂₆ ClNO ₂ .ClH	SOLID
190	C ₂₃ H ₂₇ ClNO ₂ .I	LIQUID
191	$C_{23}H_{23}CIN_2O_2$	LIQUID
192	$C_{22}H_{24}CINO_2$	SOLID
193	$C_{22}H_{25}ClNO_2.Cl$	SOLID
194	$C_{23}H_{26}CINO_2$	84-85 °C
195	$C_{24}H_{28}CINO_3$	SYRUP
196	$C_{25}H_{26}CINO_2$	OIL
197	$C_{23}H_{26}CINO_4$	OIL
198	$C_{23}H_{26}CINO_3$	SEMI-SOLID
199	$C_{23}H_{26}CINO_2$	138-145 °C
200	$C_{23}H_{23}CIN_2O_2$	OIL
201	$C_{25}H_{30}ClNO_2$	OIL
202	$C_{27}H_{34}CINO_2$	OIL
203	$C_{25}H_{30}CINO_2$	OIL

94 Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
204	$C_{31}H_{42}CINO_2$	OIL
205	$C_{38}H_{56}CINO_2$	63-64 °C
206	$C_{23}H_{26}CINO_2$	LIQUID
207	$C_{23}H_{26}CINO_2$	LIQUID
208	$C_{23}H_{26}CINO_2$	OIL
209	$C_{23}H_{26}CINO_2$	LIQUID
210	$C_{23}H_{25}Cl_2NO_2$	OIL
211	$C_{23}H_{25}Cl_2NO_2$	OIL
213	$C_{23}H_{25}Cl_2NO_2$	LIQUID
214	$C_{23}H_{24}Cl_3NO_2$	SOLID
215	$C_{23}H_{25}Cl_2NO_2$	LIQUID
216	$C_{23}H_{25}Cl_2NO_2$	OIL
217	C ₂₃ H ₂₅ Cl ₂ NO ₂ .ClH	200 °C >
218	C ₂₃ H ₂₅ Cl ₂ NO ₂ .CH ₄ O ₃ S	SOLID
219	C ₂₃ H ₂₅ Cl ₂ NO ₂ .C ₂ HF ₃ O ₂	SOLID
220	$C_{23}H_{25}Cl_2NO_2.C_7H_8O_3S$	SOLID
221	$C_{23}H_{25}Cl_2NO_2$	PASTE
222	$C_{23}H_{25}Cl_2NO_2$	PASTE
223	$C_{23}H_{25}Cl_2NO_2$	OIL
224	$C_{23}H_{26}Cl_2NO_2.Cl$	204-206 °C
225	$C_{23}H_{25}Cl_2NO_2.H_3O_4P$	SOLID
226	$C_{23}H_{25}Cl_2NO_2$	215-217 °C
227	$C_{23}H_{25}Cl_2NO_2$	OIL
228	$C_{23}H_{26}BrNO_2$	OIL
229	$C_{23}H_{26}BrNO_2$	SOLID
230	$C_{23}H_{26}BrNO_2$	SOLID
231	$C_{23}H_{26}FNO_2$	SOLID
232	$C_{24}H_{26}F_3NO_2$	OIL
233	$C_{24}H_{26}F_3NO_2$	COLORLESS OIL
234	$C_{23}H_{28}N_2O_2$	OIL
235	$C_{24}H_{29}NO_3$	OIL
236	$C_{24}H_{29}NO_3.ClH$	SOLID
237	$C_{24}H_{29}NO_3$	OIL
238	$C_{23}H_{26}N_2O_4$	OIL
239	$C_{24}H_{26}N_2O_2$	OIL
240	$C_{24}H_{29}NO_2$. OIT
241	$C_{24}H_{29}NO_2$	SOLID
242	$C_{29}H_{30}FNO_2$	67-71 °C
243	$C_{29}H_{30}CINO_3$	OIL
259	$C_{24}H_{28}CINO_2$	LIQUID
260	$C_{25}H_{30}CINO_2$	LIQUID
261	$C_{23}H_{25}Cl_2NO_2.C_{23}H_{24}Cl_3NO_2$	LIQUID
262	C ₂₃ H ₂₆ CIFN ₂ O	LIQUID

95
Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
263	$C_{24}H_{29}CIN_2O_2$	LIQUID
264	$C_{24}H_{29}CIN_2O_2$	SOLID
265	$C_{25}H_{31}CIN_2O_3$	LIQUID
266	$C_{29}H_{40}CIN_3O_2$	LIQUID
267	$C_{23}H_{26}Cl_2N_2O$	LIQUID
268	$C_{23}H_{26}Cl_2N_2O$	LIQUID
269	$C_{23}H_{25}Cl_3N_2O$	SOLID
270	$C_{23}H_{25}Cl_3N_2O$	SOLID
271	$C_{23}H_{25}Cl_3N_2O$	SOLID
272	$C_{23}H_{23}Cl_3N_2O_2$	SOLID
273	$C_{19}H_{25}CIN_2O$	LIQUID
274	$C_{19}H_{25}CIN_2O$	LIQUID
275	$C_{20}H_{25}CIN_2O_2$	OIL
276	$C_{24}H_{31}CIN_2O_4$	OIL
277	$C_{20}H_{26}CINO_2$	OIL
278	$C_{19}H_{26}N_2O$	OIL
279	$C_{20}H_{25}F_3N_2O_2$	OIL
280	$C_{20}H_{25}F_3N_2O_2$	OIL
281	$C_{25}H_{30}N_2O_2$	OIL
282	$C_{25}H_{30}N_2O_2$	OIL
283	$C_{19}H_{25}CIN_2O$	OIL
284	$C_{19}H_{25}CIN_2O$	OIL
285	$C_{19}H_{24}Cl_2N_2O$	OIL
286	$C_{19}H_{23}Cl_3N_2O$	OIL
287	$C_{19}H_{24}Cl_2N_2O$	OIL
288	$C_{19}H_{23}Cl_3N_2O$	OIL
289	$C_{19}H_{24}Cl_2N_2O$	OIL
290	$C_{19}H_{24}Cl_2N_2O$	OIL
291	$C_{25}H_{30}N_2O$	LIQUID
292	$C_{25}H_{29}CIN_2O$	LIQUID
293	$C_{25}H_{29}ClN_2O$	LIQUID
294	$C_{19}H_{24}F_2N_2O$	OIL
295	$C_{19}H_{23}F_3N_2O$	OIL
296	$C_{19}H_{24}F_2N_2O$	OIL
297	$C_{19}H_{23}F_3N_2O$	OIL
298	$C_{21}H_{30}N_2O$	OIL
299	$C_{21}H_{30}N_2O$	OIL
300	$C_{21}H_{30}N_2O_3$	OIL
301	$C_{21}H_{30}N_2O_3$	OIL
302	$C_{21}H_{30}N_2O_3$	OIL
303	$C_{21}H_{29}NO_4$	LIQUID
304	$C_{26}H_{31}NO_3$	SOLID
305	$C_{19}H_{24}CINO_2$	SOLID

96 Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
306	C ₁₉ H ₂₄ CINO ₂	SOLID
307	$C_{19}H_{23}Cl_2NO_2$	LIQUID
308	$C_{19}H_{23}Cl_3NO_2$	SOLID
309	$C_{19}H_{23}Cl_2NO_2$	LIQUID
310	$C_{19}H_{23}Cl_{2}NO_{2}$	LIQUID
311	$C_{19}H_{23}Cl_2NO_2$	LIQUID
312	$C_{19}H_{23}Cl_2NO_2$	LIQUID
313	$C_{19}H_{23}Cl_2NO_2$	SOLID
314	$C_{19}H_{23}Cl_2NO_2$	SEMI-SOLID
315	$C_{19}H_{23}BrClNO_2$	SOLID
316	$C_{19}H_{23}BrClNO_2$	LIQUID
317	$C_{20}H_{26}CINO_2$	LIQUID
318	$C_{23}H_{33}NO_2$	LIQUID
319	$C_{23}H_{33}NO_2$	SOLID
320	$C_{23}H_{33}NO_2$	LIQUID
321	$C_{22}H_{31}NO_2$	LIQUID
322	$C_{22}H_{31}NO_2$	SOLID
323	$C_{20}^{22}H_{27}NO_3$	SOLID
324	$C_{20}H_{24}F_3NO_3$	SOLID
325	$C_{20}H_{24}N_2O_2$	LIQUID
326	$C_{20}H_{24}N_2O_2$	LIQUID
327	$C_{21}H_{28}N_2O_3$	SOLID
328	$C_{22}H_{29}NO_4$	SOLID
329	$C_{21}H_{27}NO_3$	LIQUID
330	$C_{22}H_{29}NO_4$	LIQUID
331	$C_{22}H_{29}NO_4$	SOLID
332	$C_{20}H_{26}CINO_2$	LIQUID
333	$C_{20}H_{26}CINO_2$	SOLID
334	$C_{19}H_{23}ClN_2O_4$	LIQUID
335	$C_{22}H_{25}CIN_2O_3$	LIQUID
336	$C_{23}H_{27}CIN_2O_3$	LIQUID
337	$C_{21}H_{29}NO_2$	LIQUID
338	$C_{22}H_{31}NO_2$	SOLID
339	$C_{22}H_{31}NO_2$	SOLID
340	$C_{21}H_{29}NO_3$	LIQUID
341	$C_{19}H_{23}Br_2NO_2$	SOLID
342	$C_{19}H_{23}Br_2NO_2$	LIQUID
343	$C_{20}H_{26}BrNO_2$	LIQUID
344	$\mathrm{C}_{20}\mathrm{H}_{25}\mathrm{Br}_2\mathrm{NO}_2$	SOLID
345	$\mathrm{C_{19}H_{23}F_2NO_2}$	SOLID
346	$C_{19}H_{23}F_2NO_2$	LIQUID
347	$C_{19}H_{23}F_2NO_2$	LIQUID
348	$C_{19}H_{23}F_2NO_2$	LIQUID

97
Table 2 (continued)

Cmpd No	Empirical Formula	Melting Point/Physical State
349	$C_{19}H_{23}F_2NO_2$	LIQUID
350	$C_{19}H_{22}F_3NO_2$	LIQUID
351	$C_{20}H_{24}F_3NO_2$	LIQUID
352	$C_{21}H_{23}F_6NO_2$	LIQUID
353	$C_{23}H_{24}ClN_2O$	SOLID
354	$C_{23}H_{24}Cl_2N_2O$	SOLID
355	$C_{23}H_{24}Cl_2N_2O$	SOLID
356	$C_{26}H_{28}Cl_2N_2O_3$	SOLID
357	$C_{23}H_{24}BrClN_2O$	150-151 °C
358	$C_{27}H_{30}Cl_2N_2O$	142-145 °C
359	$C_{26}H_{28}Cl_2N_2O$	131-133 °C
360	$C_{23}H_{22}Cl_2N_2O$	135-137 °C
361	$C_{25}H_{28}Cl_2N_2O$	SOLID
363	$C_{24}H_{26}Cl_2N_2O$	SOLID
364	$C_{25}H_{28}Cl_2N_2O$	SOLID
365	$C_{28}H_{25}Cl_3N_2O$	SOLID
366	$C_{21}H_{20}Cl_2N_2O$	SOLID
267	$C_{22}H_{22}Cl_2N_2O$	SOLID
368	$C_{24}H_{26}Cl_2N_2O$	SOLID
369	$C_{24}H_{26}Cl_2N_2O$	SOLID
370	$C_{23}H_{23}Cl_2FN_2O$	SOLID
371	$C_{27}H_{24}Cl_2N_2O$	SOLID
372	$C_{24}H_{27}Cl_2NO_2$	OIL
373	$C_{27}H_{31}Cl_2NO_2$	OIL
374	$C_{23}H_{24}CINO_2$	SEMI-SOLID
375	$C_{24}H_{26}CINO_2$	OIL
376	$C_{24}H_{25}Cl_2NO_2$	OIL
377	$C_{25}H_{27}Cl_2NO_2$	OIL
378	$C_{23}H_{23}Cl_2NO_2$	SOLID
379	$C_{24}H_{28}CINO_2$	SOLID

Table 3

Insecticidal Activity of 1,4-Disubstituted Benzenes
Incorporated into the Diet (SRTD) of Tobacco Budworm

5

-	D / C	D (C 1	
Cmpd No.	Rate of Application 1	Percent Growth <u>Inhibition²</u>	Percent Mortality ³
Cinpu No.	Application ²	mmortion2	Mortanty
8	4.6	11	
10	4.6	35	
20	5.6	12	
21	5.6	20	
47	4.6	23	
49	4.6	16	
66	4.6	9	
68	5.6	16	
72	5.6	23	
73	5.6	24	
	5.6	20	
77	5.6	17	
78	5.6	12	
	5.6	0	
79	6.6	-4	
80	5.6	12	
82	5.6	12	
84	6.6	-20	
	6.6	34	
	5.6	11	
85	6.6	20	,, e-c
	5.6	15	
87	6.6	-2	
88	5.6	1	
89	5.6	12	
93	6.6	3	
94	4.6	18	
99	6.6	6	
100	6.6	6	
101	6.6	14	
102	6.6	7	
103	5.6	25	
104	5.6	21	
105	4.6	24	
106	6.6	35	
107	6.6	17	
111	5.6	1	
112	5.6	26	
113	5.6	-3	
114	5.6	0	
117	5.6	10	

99 Table 3 (continued)

Cmpd No.	Rate of Application 1	Percent Growth Inhibition ²	Percent Mortality ³
118	4.6	6	den die die
121	4.6	12	
122	5.6	23	
123	5.6	30	
124	5.6	20	
125	5.6	18	
126	6.6	14	
130	6.6	17	
131	6.6	25	
132	5.6	27	w
133	4.6	28	
134	4.6	12	
135	5.6	24	
136	4.6	33	
137	4.6	28	
138	4.6	27	
139	4.6	26	
140	5.6	32	
141	6.6	24	
142	6.6	32	
143	4.6	22	
144	4.6	20	
145	5.6	29	
146	5.6	25	
147	5.6	33	
148	5.6	4	
149	5.6	22	
150	5.6	12	
151	5.6	5	
152	4.6	16	
153	4.6	19	
154	6.6	27	¢*
161	5.6	23	
163	5.6	24	ps = 45
166	5.6	24	
181	6.6	43	
183	6.6	28	
	6.6	18	
184	5.6	43	
187	4.6	14	
188	6.6	1	
	6.6	19	the day and
	6.6	-1	
190	5.6	4	
191	6.6	6	
192	6.6	2	
193	6.6	4	

100 Table 3 (continued)

		_	
a	Rate of	Percent Growth	Percent
Cmpd No.	Application ¹	Inhibition ²	Mortality ³
194	6.6	10	
195	5.6	19 30	, and 144, and
196			
196 197	5.6	20	
	4.6	43	
198	5.6	21	
199	5.6	9	
200	5.6	19	
201	5.6	13	
202	5.6	20	
203	6.6	14	
206	6.6	12	
207	6.6	20	
209	6.6	17	
213	4.6	3	
214	6.6	18	
215	6.6	8	
216	6.6	2	
	6.6	1	
	6.6	1	
	6.6	14	Printer Inc.
217	6.6	26	
5	6.6	34	
218	6.6	28	
219	6.6	16	
220	6.6	28	
221	6.6	13	
222	6.6	24	
223	6.6	63	
	7.6	3	
	7.6	17	
224	6.6	81	
	6.6	20	
	6.6	32	
226	6.6	59	
227	4.6	7	
228	6.6	17	
	6.6	5	
	6.6	0	
229	6.6	14	
230	6.6	12	
231	5.6	3	
232	6.6	25	
	6.6	1	
233	6.6	17	
234	5.6	-3	
236	4.6	14	
237	5.6	12	
451	J.0	14	

WO 02/17712 PCT/US01/26962

101 Table 3 (continued)

	Rate of	Percent Growth	Percent
Cmpd No.	Application ¹	Inhibition ²	Mortality ³
•••			
238	6.6	22	
239	5.6	5	
241	5.6	8	
242	6.6	11	
243	6.6	10	
262	4.6	7	
263	5.6	26	
264	6.6	19	
267	4.6	7	
273	5.6	5	
290	5.6	· 1	
306	4.6	-2	
308	5.6	18	
313	4.6	37	
350	4.6	21	
353	3.6	100	100
	4.6	100	67
	5.6	45	
	6.6	21	
354	3.6	100	100
	4.6	100	100
	5.6	96	17
	6.6	-2	
355	3.6	100	100
	4.6	100	100
	5.6	96	17
	6.6	-2	
356	3.6	2	
330	4.6	-4	
357	3.6	100	100
337	4.6	50	99
	5.6	50	15
360	3.6	73	13
300	4.6	11	
364	4.6	83	
304	5.6	•3 -1	
365	3.6		
303	4.6	28	
366		18	
300	3.6	82	
	4.6	47	
0.67	5.6	3	100
367	3.6	100	100
	4.6	100	100
	5.6	98	33
	6.6	25	
368	3.6	100	100
	4.6	100	100

WO 02/17712 PCT/US01/26962

102
Table 3 (continued)

Cmpd No.	Rate of Application 1	Percent Growth <u>Inhibition</u> 2	Percent Mortality ³
	5.6	102	50
	6.6	36	
369	3.6	100	100
	4.6	100	100
	5.6	100	83
	6.6	28	
372	3.6	100	100
	4.6	100	100
	5.6	100	100
	6.6	42	
373	3.6	100	100
	4.6	97	17
	5.6	37	
•	6.6	-1	
374	3.6	100	100
	4.6	98	50
	5.6	41	
	6.6	-1	
375	3.6	101	100
	4.6	85	17
	5.6	23	
376	3.6	100	100
	4.6	100	1 00
	5.6	89	
	6.6	22	
377	3.6	100	100
	4.6	99	67
	5.6	59	
	6.6	4	
378	3.6	100	100
	4.6	100	100
	5.6	101	83
A.W.C	6.6	48	
379	3.6	86	33
	4.6	11	

FOOTNOTES

% Mortality = $TD/TI \times 100$

¹ The rate of application is expressed as the negative log of the molar concentration of the test compound in the diet.

² Percent growth inhibition is derived from the total weight of the insects (IW) at each rate of application in the test relative to the total weight of insects in an untreated control, % Gr. Inh. = [IW (control) - I (test)/IW (control)] x 100.

³ Percent mortality is derived from the number of dead insects (TD) relative to the total number of insects (TI) used in the test,

WE CLAIM:

1. A compound of formula I:

$$\begin{array}{c|c}
3 & 2 \\
\hline
 & 5 & 6
\end{array}$$

wherein:

5

10

A is selected from the group consisting of hydrogen; aryl; alkylheterocyclyl; alkenylaminopolycyclyl; alkenylaminoheterocyclyl; alkylaminopolycyclyl; carbonylaminopolycyclyl; where the aryl, heterocyclyl and polycyclyl moieties are optionally substituted with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, or aryl; and Formula III, where Formula III is

15

wherein

n is 0 or 1;

20

U is selected from the group consisting of -CH₂-, -O-CH₂-, oxygen, sulfur, sulfonyl, alkyl, oxyalkyloxy, alkenylamino, cabonylamino and -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, haloalkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl;

25

R² is selected from aryl; alkylpolycyclyl; heterocyclyl; polycyclyl; where the aryl, heterocyclyl and polycyclyl moieties are optionally substituted with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl,

haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, or aryl; $1-R^3$; $1-R^4$; and $2-R^4$, wherein: R^3 is

 \mathbb{R}^3

where J, L, and W are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkenyl, alkoxy, haloalkoxy, aminoalkoxy, nitrilyl, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, aryl, aryloxy, and heterocyclyl, where the aryl and heterocyclyl moieties may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, or haloalkoxy; R^4 is

15

10

5

$$z = \begin{bmatrix} 8 & 1 & X \\ 2 & 5 & 4 & 3 \end{bmatrix}$$

$$R^4$$

20

25

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, aryloxy, and heterocyclyl, where the phenyl, aryl, and heterocyclyl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

B and D are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyaminoalkyl, 2-(Formula III), 3-(Formula III), 5-(Formula III), and 6-(Formula III), wherein Formula III, n, U, R², R³, R⁴, R⁵, J, L, W, X, Y, and Z are as defined above;

R is -T-(CH₂)_m-R¹, -N(R⁶)(R⁷) or heterocyclyl, where the heterocyclyl moiety may be optionally substituted with halogen, hydroxy, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, alkylaza, arylcarbonyl, benzyl, allyl, propargyl, alkylamino; where the aryl moiety may be optionally substituted with halogen, hydroxy, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl;

T is selected from the group consisting of -CH₂-, carbonyl, oxygen, nitrogen, and sulfur;

m is 0, 1, 2, 3, or 4;

R¹ is selected from the group consisting of -N(R⁸)(R⁹); alkyl; aryl; -C(O)N(R¹²)(R¹³); oxyalkyl; haloalkyl; heterocyclyl; cycloalkyl; -N(O)(R¹⁴)(R¹⁵); -P(O)(R¹⁴)(R¹⁵); -P(S)(R¹⁴)(R¹⁵); alkylamino, where the aryl and heterocyclyl moieties may be optionally substituted with halogen, hydroxy, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl; where

20

15

 R^6 , R^7 , R^8 , R^9 , R^{12} , R^{13} , R^{14} and R^{15} are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkylthio, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and - $(CH_2)_p$ -N(R^{16})(R^{17}), where

p is 1 or 2;

25

30

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl; and the corresponding agriculturally acceptable salts thereof.

2. A compound of claim 1 wherein

A is selected from the group consisting of hydrogen; alkylaminopolycyclyl; carbonylaminopolycyclyl; where the polycyclyl moieties are optionally substituted

with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, or aryl; and Formula III, where Formula III is

5

$-(CH_2)_n-U-R^2$

Ш

wherein

n is 0 or 1;

U is selected from the group consisting of -CH₂-, oxygen, and -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl;

R² is selected from aryl, alkylpolycyclyl; heterocyclyl; polycyclyl; where the aryl, heterocyclyl and polycyclyl moieties are optionally substituted with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, or aryl; and 1-R³, wherein R³ is:

 \mathbb{R}^3

20

15

where J, L, and W are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkenyl, alkoxy, haloalkoxy, nitrilyl, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, aryl, and aryloxy, where the aryl moieties may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, or haloalkoxy;

25

B and D are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyaminoalkyl;

R is $-T-(CH_2)_m-R^1$, where

T is selected from the group consisting of -CH₂-, oxygen, nitrogen, and sulfur;

m is 1, 2, 3, or 4;

 R^1 is $-N(R^8)(R^9)$; where

 R^8 and R^9 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and -(CH₂)_p-N(R^{16})(R^{17}), where p is 1 or 2;

10 R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl; and the corresponding agriculturally acceptable salts thereof.

3. A compound of claim 1 wherein

A is selected from the group consisting of hydrogen; alkylaminopolycyclyl; and carbonylaminopolycyclyl; where the polycyclyl moieties are optionally substituted with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, or aryl; and Formula III, where Formula III is

 $-(CH_2)_n-U-R^2$

III

wherein

25 n is 0 or 1;

U is selected from the group consisting of -CH₂-, oxygen, alkyl, oxyalkyloxy, alkenylamino, cabonylamino and -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl;

R² is selected from aryl; alkylpolycyclyl; heterocyclyl; polycyclyl; where the aryl, heterocyclyl and polycyclyl moieties are optionally substituted with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, or aryl; and 1-R⁴, wherein R⁴ is

$$\begin{array}{c|c}
7 & 8 & 1 & X \\
\hline
2 & & & & & \\
6 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
8 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & & & & & \\
\hline
9 & & &$$

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

15

20

25

10

B and D are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkoxyaminoalkyl;

R is -T- $(CH_2)_m$ - R^1 or heterocyclyl, where

the heterocyclyl moiety may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl, benzyl, allyl, propargyl;

T is selected from the group consisting of -CH₂-, oxygen, nitrogen, and sulfur;

m is 1, 2, 3, or 4;

 R^1 is selected from the group consisting of $-N(R^8)(R^9)$; alkyl; aryl; -C(O)N(R¹²)(R¹³); oxyalkyl; haloalkyl; heterocyclyl; cycloalkyl; and -N(O)(R¹⁴)(R¹⁵), where the aryl and heterocyclyl moieties may be optionally

10

15

20

25

substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl; where

 R^8 , R^9 , R^{12} , R^{13} , R^{14} and R^{15} are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and - $(CH_2)_p$ -N $(R^{16})(R^{17})$, where

p is 1 or 2;

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl;

and the corresponding agriculturally acceptable salts thereof.

4. A compound of claim 3 wherein A is hydrogen or Formula III, where Formula III is

-(CH₂)_n-U-R²

wherein

n is 0 or 1;

U is selected from the group consisting of -CH₂-, oxygen, and -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl;

R² is selected from alkylpolycyclyl; heterocyclyl; polycyclyl; where the heterocyclyl and polycyclyl moieties are optionally substituted with one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, or aryl; and 1-R⁴, wherein R⁴ is

$$z = \begin{bmatrix} 8 & 1 & X \\ 2 & & & \\ 5 & & 4 & 3 \end{bmatrix}$$

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

B and D are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkoxyaminoalkyl;

10 R is $-T-(CH_2)_m-R^1$ or heterocyclyl, where

the heterocyclyl moiety may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl, benzyl, allyl, propargyl;

T is selected from the group consisting of oxygen, nitrogen, and sulfur; m is 1, 2, 3, or 4;

 R^1 is selected from the group consisting of -N(R^8)(R^9); alkyl; aryl; - $C(O)N(R^{12})(R^{13})$; oxyalkyl; haloalkyl; heterocyclyl; cycloalkyl; and - N(O)(R^{14})(R^{15}), where the aryl and heterocyclyl moieties may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy,

alkoxycarbonyl, aryl, arylcarbonyl; where

 R^8 , R^9 , R^{12} , R^{13} , R^{14} and R^{15} are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and - $(CH_2)_p$ -N(R^{16})(R^{17}), where

p is 1 or 2;

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl;

and the corresponding agriculturally acceptable salts thereof.

5. A compound of claim 4 wherein

5

25

20

15

30

PCT/US01/26962

A is Formula III, where Formula III is

$-(CH_2)_n-U-R^2$

III

5 wherein

n is 1;

U is oxygen or -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl; R² is 1-R⁴, wherein R⁴ is

10

15

25

$$z = \begin{bmatrix} 8 & 1 & X \\ 2 & & & \\ 5 & & 4 & 3 \end{bmatrix}$$

$$R^4$$

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted

B and D are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkoxyaminoalkyl;

R is $-T-(CH_2)_m-R^1$ or heterocyclyl, where

the heterocyclyl moiety may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl, benzyl, allyl, propargyl;

with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

T is oxygen or nitrogen;

m is 1, 2, 3, or 4;

10

25

R¹ is selected from the group consisting of -N(R⁸)(R⁹); alkyl; aryl; -C(O)N(R¹²)(R¹³); oxyalkyl; haloalkyl; heterocyclyl; cycloalkyl; and -N(O)(R¹⁴)(R¹⁵), where the aryl and heterocyclyl moieties may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl; where

 R^8 , R^9 , R^{12} , R^{13} , R^{14} and R^{15} are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and - $(CH_2)_n$ - $N(R^{16})(R^{17})$, where

p is 1 or 2;

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl;

and the corresponding agriculturally acceptable salts thereof.

15 6. A compound of claim 5 wherein A is Formula III, where Formula III is

$$-(CH2)n-U-R2$$

III

wherein

U is oxygen or -NR⁵, where R⁵ is hydrogen; R² is 1-R⁴, wherein R⁴ is

 \mathbb{R}^4

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl,

alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

B and D are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkoxyaminoalkyl;

R is $-T-(CH_2)_m-R^1$ or heterocyclyl; where

the heterocyclyl moiety may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl, benzyl,

10 allyl, propargyl;

T is oxygen or nitrogen;

m is 2;

 R^1 is $-N(R^8)(R^9)$ or $-N(O)(R^{14})(R^{15})$, where R^8 , R^9 , R^{14} , and R^{15} are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and $-(CH_2)_n-N(R^{16})(R^{17})$, where

p is 1 or 2;

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl;

and the corresponding agriculturally acceptable salts thereof.

7. A compound of claim 6 wherein

A is Formula III, where Formula III is

 $-(CH_2)_n$ -U- R^2

III

wherein

U is O or -NR⁵, where R⁵ is hydrogen;

R² is selected from 1-R⁴, wherein R⁴ is

30

25

15

20

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

10 B and D are hydrogen;

5

R is $-T-(CH_2)_m-R^1$; where

T is oxygen;

R¹ is -N(R⁸)(R⁹) or -N(O)(R¹⁴)(R¹⁵), where R⁸, R⁹, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, and carbonylamino; and the corresponding agriculturally acceptable salts thereof.

8. A compound of claim 6 wherein A is Formula III, where Formula III is

-(CH₂)_n-U-R²

III

wherein

U is O;

R² is selected from 1-R⁴, wherein R⁴ is

25

15

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

10 B and D are hydrogen;

5

R is heterocyclyl; where

the heterocyclyl moiety may be optionally substituted with halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonyl, aryl, arylcarbonyl, benzyl, allyl, propargyl;

and the corresponding agriculturally acceptable salts thereof.

- 9. A composition containing an insecticidally effective amount of a compound of claim 1 in admixture with at least one agriculturally acceptable extender or adjuvant.
- 10. A method of controlling insects that comprises applying to locus where control is desired an insecticidally effective amount of a composition of claim 9.
 - 11. A compound of formula XII:

$$R = \begin{cases} 3 & 2 \\ 5 & 6 \end{cases}$$

XII

25

wherein:

A is $-(CH_2)_n - U - R^2$

wherein

n is 0 or 1;

U is -C(O)-, -CH₂-, oxygen, or -NR⁵, where R⁵ is selected from the group consisting of hydrogen, hydroxy, alkyl, sulfonylalkyl, cabonylamino, and carbonylalkyl;

 R^2 is selected from hydrogen, halo, hydroxy, and 1-R⁴, wherein: R^4 is

$$\begin{array}{c|c}
7 & 8 & 1 \times 2 \\
\hline
2 & 6 & 5 \times 4
\end{array}$$

 \mathbb{R}^4

10

15

5

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy;

R is $-T-(CH_2)_m-R^1$, where

T is selected from the group consisting of oxygen, nitrogen, and sulfur; m is 0, 1, 2, 3, or 4;

R¹ is hydrogen, halo, alkyl, or -N(R⁸)(R⁹); where R⁸ and R⁹ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acetyl, alkoxycarbonyl, alkoxyalkyl, aminoalkyl, carbonylamino, and -

25 $(CH_2)_p$ -N(R¹⁶)(R¹⁷), where

p is 1 or 2;

WO 02/17712 PCT/US01/26962

117

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkoxyalkyl, and aminoalkyl.

12. A compound of formula UU:

$$R^{18}$$
 D Z X

UU

5

10

where X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, amino, azido, carboxyl, alkyl, alkynyl, haloalkyl, haloalkylthio, nitrilyl, alkenyl, alkoxy, haloalkoxy, carbonyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, phenyl, aryl, and aryloxy, where the phenyl and aryl moieties may be optionally substituted with halogen, haloalkyl, haloalkyl, alkoxy, or haloalkoxy; T is selected from the group consisting of oxygen, nitrogen, and sulfur; and R¹⁸ is alkyl.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 March 2002 (07.03.2002)

PCT

(10) International Publication Number WO 02/017712 A3

(51) International Patent Classification⁷: C07C 217/58, A01N 33/04, 43/42, C07D 295/20, C07C 251/24, C07D 209/46, C07C 217/20, C07D 215/44, 215/38, 215/40, 215/22, 215/24, 217/22, 295/08, C07C 235/56, 211/59, 233/43, 271/28, 275/34, 275/40, 217/92

(21) International Application Number: PCT/US01/26962

(22) International Filing Date: 29 August 2001 (29.08.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/229,701 1 September 2000 (01.09.2000) US 60/277,203 20 March 2001 (20.03.2001) US

- (71) Applicant: FMC CORPORATION [US/US]; 1735 Market Street, Philadelphia, PA 19103 (US).
- (72) Inventors: THEODORIDIS, George; 45 Monroe Lane, Princeton, NJ 08540 (US). QI, Hongyan; 30 Birch Drive, Plainsboro, NJ 08536 (US). ROWLEY, Elizabeth; 27 Pointer Place, Kendall Park, NJ 08824 (US). ALI, Syed, E; 34 Amsterdam Road, Yardville, NJ 08620 (US). CRAWFORD, Ellen, M; 7 Dominion Drive, Jackson, NJ 08527 (US). CULLEN, Thomas, G.; 7 Shepley Street, Andover, Essex Country, MA 01810-1308 (US). YEAGER, Walter, H.; 274 Hickory Road, Yardley, PA 19067 (US). DUGGAN, Christina, B; 8016 Tamarron Drive, Plainsboro, NJ 08536 (US). BARRON, Edward;

3292 Nottingham Way, Trenton, NJ 08019 (US). **COHEN, Daniel, H.**; 39 Vandeventer Avenue, Princeton, NJ 08542 (US).

- (74) Agents: SHEEHAN, John, M. et al.; FMC Corporation, 1735 Market Street, Philadelphia, PA 19103 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 12 June 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DISUBSTITUTED BENZENES AS INSECTICIDES

WO 02/017712

(57) Abstract: Compounds of formula (I): wherein A, B, D, and R are as defined herein and their agriculturally acceptable salts are disclosed as effective insecticides. In addition, compositions comprising an insecticidally effective amount of a compound of Formula (I) in admixture with at least one agriculturally acceptable extender or adjuvant and methods of controlling insects comprising applying said compositions to locus on crops where control is desired are disclosed. It is emphasized that his abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims (see 37 C.F.R. 1.72(b)).

Interpional Application No PCT/US 01/26962

		PCT/US 01/26962		
	### COTO OF SUBJECT MATTER COTO COTO OF SUBJECT MATTER COTO COTO OF SUBJECT MATTER COTO OF	7/44 C07D215/38 7/22 C07D295/08		
	SEARCHED			
Minimum do	ocumentation searched (classification system followed by classification ${\tt C07C-C07D-A01N}$	tion symbols)		
Documenta	tion searched other than minimum documentation to the extent that	such documents are included in	the fields searched	
Electronic d	tata base consulted during the international search (name of data b	ase and, where practical, search	n terms used)	
EPO-In	ternal, WPI Data, PAJ, BEILSTEIN Da	ta, CHEM ABS Data	1	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.	
Х	US 4 183 949 A (BRANDES WILHELM 15 January 1980 (1980-01-15) column 1, line 1 -column 3, line example 32		1-10	
Α	EP 0 331 529 A (UBE INDUSTRIES; KENKYUSHO (JP)) 6 September 1989 (1989-09-06) page 3, line 1 - line 30 tables 1A,,1B claim 1	RIKAGAKU	1-10	
Α	US 4 145 439 A (KRAUS PETER ET A 20 March 1979 (1979-03-20) column 1, line 1 -column 2, line table 1 examples 6-8,10,12 table 2	60	1-10	
	·	-/		
X Furti	her documents are listed in the continuation of box C.	X Patent family membe	rs are listed in annex.	
"A" docume consic "E" earlier of filing of "L" docume which citation "O" docume other of the other of the other of the oth	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international late ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but han the priority date claimed actual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report		
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epc nl, Fax: (+31-70) 340-3016	Authorized officer O'Sullivan,	Р	

Interpional Application No PCT/US 01/26962

. CLASSIFICATION OF SUBJECT MATTER PC 7 C07C211/59 C07C ÏPC 7 C07C233/43 C07C271/28 C07C275/34 C07C275/40 C07C217/92 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category of US 3 987 102 A (KARRER FRIEDRICH) 1 - 10Α 19 October 1976 (1976-10-19) column 5, line 17 - line 37 1 - 10US 5 569 664 A (LYGA JOHN W ET AL) Α 29 October 1996 (1996-10-29) Further documents are listed in the continuation of box C. Patent family members are listed in annex. Χ χ ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 04. 02. 2003 13 January 2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 O'Sullivan, P

Internal Application No PCT/US 01/26962

		PCT/US 01/26962
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Citation of document, with indication, where appropriate, or the relevant passages	relevant to dain no.
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 3325434 XP002213708 abstract & CROSSLEY ET AL: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 74, 1952, pages 573-577, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863	11
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2520198 XP002226603 abstract & ROHMANN, C ET AL: ARCHIV DER PHARMAZIE UND BERICHTE DER DEUTSCHEN PHARMAZEUTISCHEN GESELLSCHAFT., vol. 294, no. 9, 1961, pages 538-549, VERLAG CHEMIE, WEINHEIM., DE ISSN: 0376-0367	11
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2527029 XP002226604 abstract & ROHMANN, C ET AL: ARCHIV DER PHARMAZIE UND BERICHTE DER DEUTSCHEN PHARMAZEUTISCHEN GESELLSCHAFT., vol. 294, no. 9, 1961, pages 538-549, VERLAG CHEMIE, WEINHEIM., DE ISSN: 0376-0367	11
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2558639 XP002226605 abstract & COSSEY, H D ET AL: JOURNAL OF THE CHEMICAL SOCIETY., 1965, pages 954-973, CHEMICAL SOCIETY, LONDON, GB ISSN: 0368-1769	11

Interpional Application No PCT/US 01/26962

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.							
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2944661 XP002226606 abstract & ALBRIGHT, J D ET AL: JOURNAL OF MEDICINAL CHEMISTRY., vol. 26, no. 10, 1983, pages 1393-1411, AMERICAN CHEMICAL SOCIETY., US ISSN: 0022-2623	11						
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 6718497 XP002226607 abstract & BELLUCCI, C ET AL: FARMACO., vol. 44, no. 12, 1989, pages 1167-1192, SOCIETA CHIMICA ITALIANA, PAVIA., IT ISSN: 0014-827X	11						
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2103329 XP002226608 abstract & COLLINS ET AL: JOURNAL OF PHARMACY AND PHARMACOLOGY, vol. 14, 1962, pages T48-T56, LONDON, GB ISSN: 0022-3573	11						
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2831482 XP002226609 abstract & FREUNDENREICH, C ET AL: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 106, no. 11, 1984, pages 3344-3353, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863							
	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2944661 XP002226606 abstract & ALBRIGHT, J D ET AL: JOURNAL OF MEDICINAL CHEMISTRY., vol. 26, no. 10, 1983, pages 1393-1411, AMERICAN CHEMICAL SOCIETY., US ISSN: 0022-2623 DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 6718497 XP002226607 abstract & BELLUCCI, C ET AL: FARMACO., vol. 44, no. 12, 1989, pages 1167-1192, SOCIETA CHIMICA ITALIANA, PAVIA., IT ISSN: 0014-827X DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2103329 XP002226608 abstract & COLLINS ET AL: JOURNAL OF PHARMACY AND PHARMACOLOGY, vol. 14, 1962, pages T48-T56, LONDON, GB ISSN: 0022-3573 DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2831482 XP002226609 abstract & FREUNDERNEICH, C ET AL: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 106, no. 11, 1984, pages 3344-3353, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863						

Interponal Application No PCT/US 01/26962

0.10		PCT/US 01/26962
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 3325434 XP002226610 abstract & CROSSLEY ET AL: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 74, 1952, pages 573-577, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863	11
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 5433887 XP002226611 abstract & HILBORN, J W ET AL: CANADIAN JOURNAL OF CHEMISTRY., vol. 70, no. 3, 1992, pages 992-999, NATIONAL RESEARCH COUNCIL. OTTAWA., CA ISSN: 0008-4042	11
X	DE 234 795 C (ACTIEN-GESELLSCHAFT FÜR ANILIN-FABRIKATION) 20 May 1911 (1911-05-20) page 1, column 2, line 61 page 2, column 1, line 32 page 2, column 2, line 48	11
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2452671 XP002213707 abstract & LEZNOFF, C C ET AL: CANADIAN JOURNAL OF CHEMISTRY., vol. 50, 1972, pages 528-533, NATIONAL RESEARCH COUNCIL. OTTAWA., CA ISSN: 0008-4042	12

	FC1/03 01/20902
	Relevant to claim No.
Oration of document, with indication, where appropriate, or the relevant passages	nelevani to dam No.
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2619465 XP002226612 abstract & SIEGRIST, A E ET AL: HELVETICA CHIMICA ACTA., vol. 52, 1969, pages 2521-2554, VERLAG HELVETICA CHIMICA ACTA. BASEL., CH ISSN: 0018-019X	12
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 4442848 XP002226613 abstract & AMIN, S ET AL: JOURNAL OF ORGANIC CHEMISTRY., vol. 46, no. 11, 1986, pages 2394-2398, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0022-3263	12
US 4 016 195 A (PINTSCHOVIUS ULRICH ET AL) 5 April 1977 (1977-04-05) column 17; example 111; table	12
DE 40 10 325 A (CIBA GEIGY AG) 4 October 1990 (1990-10-04) page 2, line 1 - line 54	1-10
US 4 859 706 A (BUERSTINGHAUS RAINER ET AL) 22 August 1989 (1989-08-22) column 3, line 25 - line 44 example 1	1-10
US 4 837 217 A (OGURA TOMOYUKI ET AL) 6 June 1989 (1989-06-06) column 1, line 9 - line 15 table 1	1-10
	Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 2619465 XP002226612 abstract & SIEGRIST, A E ET AL: HELVETICA CHIMICA ACTA., vol. 52, 1969, pages 2521-2554, VERLAG HELVETICA CHIMICA ACTA. BASEL., CH ISSN: 0018-019X DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 4442848 XP002226613 abstract & AMIN, S ET AL: JOURNAL OF ORGANIC CHEMISTRY., vol. 46, no. 11, 1986, pages 2394-2398, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0022-3263 US 4 016 195 A (PINTSCHOVIUS ULRICH ET AL) 5 April 1977 (1977-04-05) column 17; example 111; table DE 40 10 325 A (CIBA GEIGY AG) 4 October 1990 (1990-10-04) page 2, line 1 - line 54 US 4 859 706 A (BUERSTINGHAUS RAINER ET AL) 22 August 1989 (1989-08-22) column 3, line 25 - line 44 example 1 US 4 837 217 A (OGURA TOMOYUKI ET AL) 6 June 1989 (1989-06-06) column 1, line 9 - line 15

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 1-12 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely the subject-matter of claim 5 with the following adjustments:

U is 0, NR5, CH2

R is -T-(CH2)m-R1, heterocycle or N(R6)(R7)

R2 is 1-R4 as in claim 5 (naphth), or R2 = other rings, restricted only to those of the examples.

Additionally the compound falling under the scope of the above restriction have been selected only insofar as they mention a corresponding use as an Insecticide.

The intermediate compounds of claims 11 and 12 are searched insofar as they lead to final products within the scope of the abovementioned restriction.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-10 partially

Compounds of the incomplete search restriction where R = -T - (CH2)m - R1

2. Claims: 1-10 partially

Compounds of the incomplete restriction where R = N(R6)(R7)

3. Claims: 1-10 partially

Compounds of the incomplete restriction where R = heterocycle

4. Claims: 1-10 partially

The examples where R2 of claim 5 is not a naphthalene or substituted naphthalene ring.

5. Claim : 11

Intermediates of claim $11\ \mathrm{according}\ \mathrm{to}\ \mathrm{the}\ \mathrm{incomplete}$ restriction

6. Claim: 12

Intermediates of claim 12 according to the incomplete restriction

formation on patent family members

Interponal Application No PCT/US 01/26962

				1 01/03	01/26962
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4183949	A	15-01-1980	DE AT BE BR CS DD EG FR BP NL PT SU TR ZA	2708440 A1 359776 B 134378 A 864301 A1 7801138 A 200158 B2 135344 A5 86578 A 13132 A 2381741 A1 1566237 A 53105469 A 7802104 A 204926 A1 67688 A , B 7802114 A 665772 A3 20055 A 4293566 A 7801094 A	31-08-1978 25-11-1980 15-04-1980 24-08-1978 31-10-1978 29-08-1980 02-05-1979 27-08-1978 31-12-1980 22-09-1978 30-04-1980 13-09-1978 29-08-1978 02-07-1979 01-03-1978 27-08-1978 30-05-1979 01-07-1980 06-10-1981 31-01-1979
EP 0331529	Α	06-09-1989	EP JP	0331529 A2 2196774 A	06-09-1989 03-08-1990
US 4145439	A	20-03-1979	DE AT AU BE BR CH CS DDK EG FR GB IL PT SE TR US ZA	2631948 A1 357820 B 504277 A 524159 B2 2700777 A 856812 A1 7704656 A 1110257 A1 634967 A5 197296 B2 134185 A5 319777 A 12867 A 2358104 A1 1582022 A 52515 A 53012423 A 7707826 A 199604 A1 66802 A ,B 7708182 A 19389 A 4220663 A 7704235 A	19-01-1978 11-08-1980 15-12-1979 02-09-1982 18-01-1979 16-01-1978 16-05-1978 06-10-1981 15-03-1983 30-04-1980 14-02-1979 16-01-1978 31-12-1981 10-02-1978 31-12-1981 03-02-1978 17-01-1978 28-03-1978 17-01-1978 28-03-1978 01-08-1977 16-01-1978 20-02-1979 02-09-1980 28-06-1978
US 3987102	А	19-10-1976	CH CH AT AT AU BE CA DD DE	599752 A5 585515 A5 332680 B 316274 A 6803874 A 813831 A1 1046071 A1 112209 A5 2418295 A1	31-05-1978 15-03-1977 11-10-1976 15-01-1976 20-11-1975 17-10-1974 09-01-1979 05-04-1975 07-11-1974

formation on patent family members

Intermional Application No PC1/US 01/26962

						01/26962
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 3987102	A		FR GB HK IL JP JP MY NL SU US ZA	1053758 1324691 50018628 60041041	A A B C A B A A A A	29-11-1974 09-03-1977 07-12-1979 31-10-1977 10-10-1981 27-06-1986 27-02-1975 13-09-1985 31-12-1980 22-10-1974 15-09-1979 13-06-1978 08-05-1979 30-04-1975
US 5569664	A	29-10-1996	US US US US	5639763 6017931 6214845 6184234	A B1	17-06-1997 25-01-2000 10-04-2001 06-02-2001
DE 234795	С		NONE			
US 4016195	A	05-04-1977	DE US BE CA CH DD FR GB IT NL US	982128 579665 1763771 97904 2117470 1379051 943766 7116652	A A1 A1 B5 A A5 A5 A5 A	15-06-1972 18-05-1976 08-06-1972 20-01-1976 15-09-1976 15-03-1976 20-05-1973 21-07-1972 02-01-1975 10-04-1973 12-06-1972 02-07-1974
DE 4010325	Α	04-10-1990	DE	4010325	A1	04-10-1990
US 4859706	A	22-08-1989	DE AT BR CA DE EP IL JP JP JP ZA	3628082 62473 8704226 1292245 3769248 0258733 83416 2063287 7094415 63051365 8706094	T A A1 D1 A2 A C B A	03-03-1988 15-04-1991 12-04-1988 19-11-1991 16-05-1991 09-03-1988 15-01-1992 24-06-1996 11-10-1995 04-03-1988 26-04-1989
US 4837217	А	06- 06-1989	JP JP AU AU BG BR CA CN	62207262 61243078 585972 5636586 50939 50711 8601764 1278574 86102700	A B2 A A3 A3 A	11-09-1987 29-10-1986 29-06-1989 23-10-1986 15-12-1992 15-10-1992 23-12-1986 02-01-1991 17-12-1986

INTERNATIONAL SEARCH REPORT formation on patent family members

Interplication No PCT/US 01/26962

US 4837217 A DE 3680137 D1 14-08-1991 EP 0199281 A2 29-10-1986 ES 8800207 A1 01-01-1988 HU 41223 A2 28-04-1987 IN 164861 A1 24-06-1989 NZ 215872 A 28-10-1988 TR 22532 A 12-10-1987 YU 60286 A1 31-12-1987	Patent document cited in search report	Publication date		Patent family member(s)	Publication date
ZA 8602936 A 30-12-1986	US 4837217 A		EP ES HU IN NZ TR YU DD	0199281 A2 8800207 A1 41223 A2 164861 A1 215872 A 22532 A 60286 A1 261736 A5	29-10-1986 01-01-1988 28-04-1987 24-06-1989 28-10-1988 12-10-1987 31-12-1987 09-11-1988