Final Presentation: 2023.12.07

Introduction to Big Data

Prediction of Biological Age Using a Linear and Multiple Regression with Health Examination Data

Team 10: Soonjun Kwon (21900045), Yubin Ham (21900797), Ryumin Lee (22200506)

Content

- 1. Introduction
- 2. Data preparation
- 3. Data analysis
- 4. Conclusion
- 5. Reference

Keywords: #Health Examination Data #Multiple Regression #Prediction #Biological Age

Introduction

Background: Health examination is important in our life where disease can be prevented

- Health examination ("건강검진")
 - Conducted every two years from the age of 20 (when they become adults) in South Korea
 - Prevent the occurrence of disease and improve their lifestyle to live a healthy life
 - Can see obesity, diabetes, dyslipidemia, hypertension and more from results of a health examination
 - As important as recommended by the country

Problem Statement: There are a lot of biological terms and numbers that are difficult to understand and interpret

Proteinuria?

Hemoglobin?

Triglyceride?

Creatinine?

Cholesterol?

AST?

ALT?

LDL (Low HDL (High density lipoprotein) lipoprotein)

Fasting blood glucose (FBG)?

(헬스조선, 2020)

Problem Statement: Many people are facing difficult to understand the results and figures of the medical examination

"직장인 71%, 건강검진 결과지 충분히 이해 못 해"

송고 2020.03.25 09:56 | 수정 2020.03.25 09:56 강승혁 기자 (kang0623@ebn.co.kr) "71% of office workers didn't fully understand the results of the health examination"

GoodRich

건강검진 결과 이해도… 10명 중 7명은

"추가설명필요해요"

· 수도권 거주 25~49세 직접인 1000명 대상조사

(산업경제, 2020)

25~49세 직장인 1000여명에게 물었더니 건강검진 결과지 내용을 충분히 이해하지 못했다는 응답자가 71%였다는 조사결과가 있었다. 수치에 대한 자세한 설명이 없는 데다 어려운 전문용어가 많고 항목이 복잡해 검진 결과의 의미를 정확히 알 수 없다는 것이다. 자주 다니는 병원의 의사가 진료 기록을 보여줘도 뭔 말인지 도통 알 수 없다. 의사가 써주는 처방전도 해석하기 어렵기는 마찬가지다.

(경향신문, 2023)

"There is **no detailed explanation** of the **numbers** in result and have many **difficult technical terms**. So, the meaning of the examination results **cannot be accurately understood**."

Purpose & Goal: Predict biological age through the numbers of health examination items from health examination result sheet

and numbers in result is hard

"Biological Age" (신체나이)

- Can act as one of indicator to make easy to understand of health
- Feel more relatable and understandable
- Can make contribute more to health

Data Preparation

Data Searching: Health examination result data

Data from National Health Interview Survey (NHIS)

We used data from 2017 to 2021

- ☎ 국민건강보험공단_건강검진정보_2017
- № 국민건강보험공단_건강검진정보_2018
- № 국민건강보험공단_건강검진정보_2019
- ☑ 국민건강보험공단_건강검진정보_2020
- ☎ 국민건강보험공단_건강검진정보_2021

Data Description: Column explanation

Name of Column (name in English): Explanation

- 기준년도 (HCHK_YEAR) : Year of health examination
- 가입자일련번호 (IDV_ID) : ID
- 성별코드 (SEX): Gender
- 연령대코드(5세단위) (AGE_GROUP) : Age group
- 시도코드(SIDO): Provinces
- ▶ 신장(5Cm단위) (HEIGHT) : Height
- 체중(5Kg 단위) (WEIGHT): Weight
- 허리둘레 (WAIST): Waist measurement
- 시력(좌) (SIGHT_LEFT) : Sight (left)
- 시력(우) (SIGHT_RIGHT) : Sight (right)
- 청력(좌) (HEAR_LEFT) : Hearing (left)
- 청력(우) (HEAR_RIGHT) : Hearing (right)
- 수축기혈압 (BP_HIGH): Systolic blood pressure
- 이완기혈압 (BP_LWST) : Diastolic blood pressure
- 식전혈당(공복혈당) (BLDS): Fasting blood sugar
- 총콜레스테롤 (TOT_CHOLE): Total cholesterol
- 트리글리세라이드 (TRIGLYCERIDE): Triglyceride
- HDL콜레스테롤 (HDL_CHOLE): HDL cholesterol
-
-
- 제3대구치(사랑니)이상 (WSDM_DIS_YN) : Wisdom teeth
- 치석 (TTR_YN) : Plaque
- 데이터공개일자 (DATA_STD_DT): Date of data created

Data of 2020 health examination result

	기준년 도	가입자 일련 번호	시도코 드	성별코 드	연령대 코드(5 세단위)	신장(50m단 위)	체중(5Kg 단위)	허리둘 레	시력 (좌)	시력 (무)	 치아무식증 유무	치 석	데이터 공개 일자
0	2020	1	36	1	9	165	60	72.1	1.2	1.5	 NaN	NaN	2021-12-29
1	2020	2	27	2	13	150	65	81.0	8.0	0.8	 NaN	NaN	2021-12-29
2	2020	3	11	2	12	155	55	70.0	0.6	0.7	 NaN	NaN	2021-12-29
3	2020	4	31	1	13	160	70	90.8	1.0	1.0	 0.0	0.0	2021-12-29
4	2020	5	41	2	12	155	50	75.2	1.5	1.2	 NaN	NaN	2021-12-29
				1		***					 		
999995	2020	999996	41	2	13	145	55	81.0	0.9	1.0	 NaN	NaN	2021-12-29
999996	2020	999997	26	2	12	160	55	76.5	1.5	1.5	 NaN	NaN	2021-12-29
999997	2020	999998	48	1	9	175	70	85.0	1.2	1.2	 NaN	NaN	2021-12-29
999998	2020	999999	48	2	9	160	70	91.0	0.6	0.5	 NaN	NaN	2021-12-29
999999	2020	1000000	28	1	11	160	55	76.1	2.0	2.0	 NaN	NaN	2021-12-29

1000000 rows × 31 column

Columns for items that are included in a health examination

Data Description: Explanation of age group (Dependent variable) column

Column of Age Group

Age Code	Age Group
1	0 ~ 4
2	5 ~ 9
3	10 ~ 14
4	15 ~ 19
5	20 ~ 24
6	25 ~ 29
7	30 ~34
8	35 ~ 39
9	40 ~ 44

Age Code	Age Group
10	45 ~ 49
11	50 ~ 54
12	55 ~ 59
13	60 ~ 64
14	65 ~ 69
15	70 ~ 74
16	75~ 79
17	80 ~ 84
18	85 +

 We have selected columns that can be used to predict biological age (through background research)

2. We have **concatenate** all of DataFrame from 2017 to 2021

```
\#2017~2021~Combine~Data~into~One\\ merged\_health\_df = pd.concat([health\_df\_2017,~health\_df\_2018,~health\_df\_2019,~health\_df\_2020,~health\_df\_2021],~axis=0)
```

3. Changed column names in English

```
# Rename columns with parentheses
merged health df = merged health df.rename(columns={
   '기준년도': 'year',
   '성별코드' 'Gender_Code',
   '연령대코드(5세단위)': 'Age_Code',
   '신장(5Cm단위)': 'Height'.
   '체중(5Kg단위)': 'Weight',
   '허리둘레': 'Waist Circumference'.
   '시력(좌)': 'Vision Left'.
   '시력(우)': 'Vision_Right',
   '청력(좌)': 'Hearing Left'.
   '청력(우)': 'Hearing Right',
   '수축기혈압': 'Systolic_Blood_Pressure',
   '이완기혈압': 'Diastolic_Blood_Pressure',
   '식전혈당(공복혈당)': 'Fasting Blood Sugar',
   '총콜레스테롤': 'Total Cholesterol'.
   '트리글리세라이드': 'Triglycerides',
   'HDL콜레스테롤': 'HDL_Cholesterol',
   'LDL콜레스테롤': 'LDL Cholesterol'.
   '혈색소': 'Hemoglobin'.
   '요단백' 'Proteinuria'
   '혈청크레아티닌': 'Serum Creatinine'.
   '감마지티피': 'Gamma GT'.
   '(혈청지오티)AST': 'AST',
   '(혈청지오티)ALT': 'ALT',
```

4. Draw **box plot** to see the **outliers** of each column values

5. We made a function to **remove outliers** in columns that have outliers.


```
# Define a function to replace outliers with NaN using IQR

def replace_outliers_with_nan_iqr(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    outliers_mask = (df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))
    df[outliers_mask] = np.nan
    return df
```

5. We checked and dropped rows with any NaN values

merged_health_df.isnull().sum() merged health df.dropna(inplace=True) merged health df.isnull().sum() 0 vear Gender Code vear Gender Code Age Code Age Code Height Height Weight 101285 Weight Waist Circumference 37663 Waist Circumference Vision Left 53315 Vision_Left Vision Right 48513 Vision_Right Hearing Left 976 Hearing Left 977 Hearing_Right Hearing Right 91544 Systolic_Blood_Pressure Systolic Blood Pressure Diastolic_Blood_Pressure 100705 Diastolic_Blood_Pressure Fasting Blood Sugar 370721 Fasting_Blood_Sugar Total_Cholesterol 2549273 Total Cholesterol Triglycerides 2660865 Triglycerides HDL_Cholesterol 2571180 HDL Cholesterol LDL Cholesterol 2579245 LDL Cholesterol Hemoglobin 73599 Hemoglobin Proteinuria 50156 Proteinuria Serum_Creatinine 47348 Serum Creatinine AST 334012 AST ALT 372728 ALT Gamma GT 493147 Gamma GT dtype: int64 dtype: int64

6. Data are **preprocessed** to use in the model

Data analysis

Analytic Method: We used multiple linear regression to predict biological age

Multiple Linear Regression

Visualization: To understand and evaluate model

Correlation Heatmap

OLS Regression Results

	OLS Regres					
Covariance Type:	nonrobust			0.517 0.517 8.891e+04 0.00 -3.5955e+06 7.187e+06 7.187e+06		
	coef			P>ltl	[0.025	0.975]
Telight Maist_Circumference Vision_Right Vision_Right Hearing_Left Hearing_Right Hearing_Right Distol ic_Blood_Pressure Fasting_Blood_Supar fotal_Cholesterol Irigiyeerides HLL_Cholesterol LLL_Cholesterol Heacolobin Proteinuria AST AUTHERNICA Lance AST AUTHERNICA Left Le	-1, 3438 -0, 19840 -0, 19864 -0, 19864 -0, 18612 -0, 7724 -0, 18615 -0, 7764 -0, 18616 -0, 10231 -0, 10230 -0, 1038 -0, 1032 -0, 1038 -0, 1037 -0, 10376 -0,	0.005 0.000 0.000 0.005 0.005 0.009 0.009 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	-931,714 421,729 -161,177 -144,476 93,688 83,862 260,419 -102,383 215,180 16,511 -6,680 -37,987 -13,783 -169,776 -2,855 98,203 305,361 -154,687	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-1, 354 -0,097 -0,124 -0,872 -0,783 -0,834 -0,093 -0,009 -0,00 -0 -0,0	-1.334 -0.083 -0.096 0.125 -0.851 -0.762 0.869 0.795 0.041 -0.023 0.011 -0.001 -0.022 -0.007 -0.236 -0.003 0.054
Omnibus: 12458.855 Prob(Omnibus): 0.000 Skew: -0.198 Kurtosis: 3.140		Durbin-Matson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.949 12855.058 0.00 1.61e+04		

QQ Plot

Actual by Predicted

MSE and RMSE

```
[] # Evaluating the model
    r2_value = r2_score(y_test, y_pred)
    mse_value = mean_squared_error(y_test, y_pred)
    rmse_value = np.sqrt(mse_value) #RMSE

print(f'R-squared Value: {r2_value}')
print(f'Mean Squared Error: {mse_value}') #print(f'Root of Mean Squared Error: {rmse_value}') #print RMSE
```

Mean Squared Error: 3.6446431769905527

Root of Mean Squared Error: 1,909094858038896

Interpretation: Correlation heatmap on Age group by other columns

Interpretation: OLS Regression Results & VIF

Coefficient and p-value

All less than 5% (Not a coincidence)

"Statistically significant"

Multicollinearity

Interpretation: OLS Regression Results & VIF

		sion Resu	lts			
Dep. Variable: Model: Method: Date: Tu Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Age_Code OLS Least Squares e, 05 Dec 2023 15:52:53 1744685 1744666 18 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		1. -3.6 7. 7.		
	coef	std err	t	P> t	[0.025	0.975]
Intercept Gender_Code Height Weight Waist_Circumference Vision_Left Vision_Bight Hearing_Left Hearing_Right Systolic_Blood_Pressure Diastolic_Blood_Pressure Tasting_Blod_Sugar Total_Cholesterol Hemoglobin Proteinuria Serum_Creatinine AST ALT Gamma_GT	e -0.0230 0.0285 0.0007 -0.2351 -0.0112 0.5186 0.0925 -0.0340 -0.0053	0.063 0.005 0.000 0.000 0.005 0.005 0.005 0.009 0.000 0.000 4.11e-05 0.001 0.000 0.000	287. 369 -272. 832 -295. 830 -323. 710 440. 483 -162. 993 -145. 802 94. 339 84. 782 259. 255 -101. 533 219. 008 16. 539 -166. 338 -2. 967 102. 655 292. 880 -140. 307 -40. 655	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,00	17, 949 -1, 436 -0, 088 -0, 095 0, 129 -0, 886 -0, 794 0, 844 0, 777 0, 90 0, 023 0, 028 0, 001 -0, 238 -0, 019 0, 509 0, 092 -0, 035 -0, 006	18. 196 -1. 415 -0. 087 -0. 087 -0. 130 -0. 130 -0. 130 -0. 130 -0. 130 -0. 080 -0. 029 -0. 001 -0. 232 -0. 004 -0. 529 -0. 034 -0. 005
Omnibus: 13495.999 Prob(Omnibus): 0.000 Skew: -0.207 Kurtosis: 3.141		Durbin- Jarque-l Prob(JB Cond. N	Bera (JB):):	13		

p-value has decreased 0.004 to 0.003

VIF		38362
	Variable	VIF
0	Gender_Code	3.252247
1	Height	3,553476
2	Weight	4.927063
3	Waist_Circumference	3.222488
4 5	Vision_Left	2.234359
5	Vision_Right	2.228342
6	Hearing_Left	1.441493
7	Hearing_Right	1.439179
8	Systolic_Blood_Pressure	2.133992
9	Diastolic_Blood_Pressure	2.030912
10	Fasting_Blood_Sugar	1.104184
11	Total_Cholesterol	1.050850
12	Hemoglobin	2.014896
13	Proteinuria	1.002936
14	Serum_Creatinine	1.379661
15	AST	1.802978
16	ALT	2.213108
17	Gamma_GT	1.445966

Interpretation: QQ plot & R squared value

Normality test

Points lies on the line well so the model follows normal distribution

R squared value

```
[] #import packages to caculate R squared score
from sklearn.metrics import r2_score

# Calculate R squared score
r2_value = r2_score(y_test, y_pred) #caculate R squared score
print(f'R-squared Value: {r2_value}') #print R squared score

# Calculate adjusted R squared
n = len(y_test) #number of validation set
k = X_test.shape[1] #number of predictors (number of column)
adjusted_r2_value = 1 - ((1 - r2_value) + (n - 1) / (n - k - 1)) #
print(f'Adjusted R-squared Value: {adjusted_r2_value}') #print adj
```

R-squared Value: 0.5125971364862545 Adjusted R-squared Value: 0.5125719923218857

Interpretation: Actual by Predicted and MSE & RMSE

MSE & RMSE

```
[] # Evaluating the model
    r2_value = r2_score(y_test, y_pred)
    mse_value = mean_squared_error(y_test, y_pred)
    rmse_value = np.sqrt(mse_value) #RMSE

print(f'R-squared Value: {r2_value}')
    print(f'Mean Squared Error: {mse_value}')
    print(f'Root of Mean Squared Error: {rmse_value}') #print RMSE
```

Mean Squared Error: 3.6446431769905527 Root of Mean Squared Error: 1.909094858038896

Conclusion

Conclusion: We have tested model with input

Randomly selected 10 data from DataFrame

```
# Select 10 random rows random_rows = merged_health_df.sample(n=10)
```

Input for model

```
gender = row['Gender_Code']
height = row['Height']
weight = row['Weight']
waist_circumference = row['Waist_Circumference']
vision left = row['Vision Left']
vision right = row['Vision Right']
hearing left = row['Hearing Left']
hearing_right = row['Hearing_Right']
systolic bp = row['Systolic Blood Pressure']
diastolic bp = row['Diastolic Blood Pressure']
fasting_blood_sugar = row['Fasting_Blood_Sugar']
total_cholesterol = row['Total_Cholesterol']
hemoglobin = row['Hemoglobin']
proteinuria = row['Proteinuria']
serum_creatinine = row['Serum_Creatinine']
ast = row['AST']
alt = row['ALT']
gamma_gt = row['Gamma_GT']
```

Prediction of biological age

Row 562850: Actual Age Code: 9.0 Predicted Age Code: 10.551680661378985 Bow 996948: Actual Age Code: 10.0 Predicted Age Code: 10.492293119304025 Bow 730156: Actual Age Code: 9.0 Predicted Age Code: 8.826687538294419 Bow 499504: Actual Age Code: 17.0 Predicted Age Code: 16,22515095957945 Bow 147488: Actual Age Code: 11.0 Predicted Age Code: 12.295394383004297 Row 22551: Actual Age Code: 11.0 Predicted Age Code: 11.83068099601828 Row 895529: Actual Age Code: 10.0 Predicted Age Code: 11.000846754943328 Row 639115: Actual Age Code: 9.0 Predicted Age Code: 8.951380627567692 Row 463071: Actual Age Code: 9.0 Predicted Age Code: 9,158815857815979 Row 710238: Actual Age Code: 9.0 Predicted Age Code: 10.703892792171349

Conclusion: Multiple linear regression model that could predict the biological age using values in health examination data

- Predict the biological age in 'Age code'
- Provide one of indicator that could make easy to understand about health using values that are hard to understand

Discussion

- Predict 'Age Code', not actual age
- Make big difference (5 years for each code)
- Have to find way to increase fitness & error
- If we can, it would be better to get a data with actual age.

ow 562850: Actual Age Code: 9.0	Age Code
Predicted Age Code: 10.551680661378985	1
ow 996948: Actual Age Code: 10.0	2
Predicted Age Code: 10.492293119304025	3
ow 730156: Actual Age Code: 9.0	4
Predicted Age Code: 8.826687538294419	5
ow 499504:	6
Actual Age Code: 17.0 Predicted Age Code: 16.22515095957945	7
ow 147488:	8
Actual Age Code: 11.0 Predicted Age Code: 12.295394383004297	9
ow 22551: Actual Age Code: 11.0	Age Code
Predicted Age Code: 11.83068099601828	10
ow 895529: Actual Age Code: 10.0	11
Predicted Age Code: 11.000846754943328	12
ow 639115: Actual Age Code: 9.0	13
Predicted Age Code: 8.951380627567692	14
ow 463071: Actual Age Code: 9.0	15
Predicted Age Code: 9.158815857815979	16
οw 71Π238:	47

Actual Age Code: 9.0

Age Group

10 ~ 14 15 ~ 19

20 ~ 24 25 ~ 29

Age Group

45 ~ 49 50 ~ 54

55 ~ 59

60 ~ 64 65 ~ 69

70 ~ 74 75~ 79

80 ~ 84

85 +

18

Reference

- https://health.chosun.com/site/data/html_dir/2016/11/30/2016113001291.html
- https://m.khan.co.kr/opinion/yeojeok/article/202303052038005#c2b
- https://ebn.co.kr/news/view/1027995
- https://www.cuemath.com/outlier-formula/

Thank you