First-order Logic

Simply, What is First Order Logic?

First-order logic is a way of writing and understanding statements about objects and their relationships. It's like a very precise language that helps us describe things clearly and reason about them.

Why Do We Need It?

We need first-order logic to:

- 1. Make clear statements: It helps us avoid confusion by being very specific about what we mean.
- 2. **Solve problems**: It allows us to make logical conclusions and solve problems systematically.
- 3. **Understand relationships**: It helps us describe how different things are connected or related.

Imagine you have a box of toys, and you want to say things about the toys. First-order logic gives you a special way to talk about the toys and their properties.

Basic Ideas:

- Objects: Think of objects as your toys (like a teddy bear, a toy car, and a doll).
- **Properties**: These are things you can say about your toys (like "is red," "has wheels," or "can talk").
- **Relationships**: These are ways your toys can be connected (like "is next to," "is bigger than," or "loves").

Using First-Order Logic:

- 1. Names: We use names to refer to specific toys (like calling the teddy bear "Teddy").
- 2. **Properties**: We use special words to talk about properties. For example:
 - "Teddy is brown" can be written as Brown(Teddy).
- 3. **Relationships**: We use special words for relationships. For example:
 - "Teddy loves Doll" can be written as Loves(Teddy,Doll).
- 4. Quantifiers:
 - Everyone: If you want to say something about all your toys, you use "everyone" (or "all"). For example, "All toys are fun" can be written as $\forall x (\text{Toy}(x) \rightarrow \text{Fun}(x))$.

• **Someone**: If you want to say something about at least one toy, you use "someone" (or "some"). For example, "Some toy is red" can be written as $\exists x(Toy(x) \land Red(x))$.

Relating to Real Life:

- 1. **School**: Think about your classmates. If you want to say "Every student likes recess," you can use first-order logic to write that clearly.
- 2. **Games**: When playing a game, you can use first-order logic to describe rules. For example, "If a player scores, they get a point."

By using first-order logic, you can clearly and precisely describe things in a way that makes it easy to understand and reason about the world around you.

First-order Language: The Language of Predicate Logic

Definition 1:

The language of first-order logic is a

$$L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$$

ordered 5-tuple, where

- 1. $LC = \{\neg, \supset, \land, \lor, \equiv, =, \forall, \exists, ()\}$:, (the set of logical constants).
- 2. Var (= $\{x_n : n = 0, 1, 2, ...\}$) : countable infinite set of variables
- 3. Con = $\bigcup_{n=0}^{\infty} (\mathcal{F}(n) \cup \mathcal{P}(n))$ the set of non-logical constants (at best countable infinite), where
 - (a) $\mathcal{F}(0)$: the set of name parameters,
 - (b) $\mathcal{F}(n)$: the set of n argument function parameters,
 - (c) $\mathcal{P}(0)$: the set of proposition parameters,
 - (d) $\mathcal{P}(n)$: the set of predicate parameters.
- 4. The sets LC, Var, $\mathcal{F}(n)$, $\mathcal{P}(n)$ are pairwise disjoint $(n = 0, 1, 2, \ldots)$.
- 5. The set of terms, i.e. the set Term is given by the following inductive definition:
 - (a) $Var \cup \mathcal{F}(0) \subseteq Term$
 - (b) If $f \in \mathcal{F}(n)$, (n = 1, 2, ...), and $t_1, t_2, ..., t_n \in \text{Term}$, then $f(t_1, t_2, ..., t_n) \in \text{Term}$.
- 6. The set of formulas, i.e. the set Form is given by the following inductive definition:
 - (a) $\mathcal{P}(0) \subseteq \text{Form}$
 - (b) If $t_1, t_2 \in \text{Term}$, then $(t_1 = t_2) \in \text{Form}$
 - (c) If $P \in \mathcal{P}(n)$, $(n \ge 1)$, and $t_1, t_2, \ldots, t_n \in \text{Term}$, then $P(t_1, t_2, \ldots, t_n) \in \text{Form}$.
 - (d) If $A \in \text{Form}$, then $\neg A \in \text{Form}$.

- (e) If $A, B \in \text{Form}$, then $(A \supset B), (A \land B), (A \lor B), (A \equiv B) \in \text{Form}$.
- (f) If $x \in \text{Var}$, $A \in \text{Form}$, then $\forall x A, \exists x A \in \text{Form}$.

Definition 2:

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a language of first-order logic Then the set of atomic formulas of $L^{(1)}$ (in notation AtForm) is the following:

- 1. $\mathcal{P}(0) \subseteq \text{AtForm}$
- 2. If $t_1, t_2 \in \text{Term}$, then $(t_1 = t_2) \in \text{AtForm}$
- 3. If $P \in \mathcal{P}(n)$, $(n \ge 1)$, and $t_1, t_2, \ldots, t_n \in \text{Term}$, then $P(t_1, t_2, \ldots, t_n) \in \text{AtForm}$.

Syntactical Properties of Variables: Free and Bound Variables

Two different uses of variables in first-order formulae: 1. Free variables: used to denote unknown or unspecified objects, as in $(x > 5) \lor (x^2 + x - 2 = 0)$. 2. Bound variables: used to quantify, as in

$$\exists x (x^2 + x - 2 = 0) \text{ and } \forall x (x > 5 \to x^2 + x - 2 > 0).$$

Scope of (an occurrence of) a quantifier in a formula A: the unique subformula $Q \times B$ beginning with that occurrence of the quantifier. An occurrence of a variable x in a formula A is bound if it is in the scope of some occurrence of a quantifier Qx in A. Otherwise, that occurrence of x is free. A variable is free (bound) in a formula, if it has a free (bound) occurrence in it. For instance, in the formula

$$A = (x > \mathbf{5}) \to \forall y (y < \mathbf{5} \to (y < x \land \exists x (x < 3))).$$

the first two occurrences of x are free, while all other occurrences of variables are bound. Thus, the only free variable in A is x, while both x and y are bound in A.

A simplified example:

Imagine you have some toys, and you label them with names. Let's think about how you might use those names when talking about the toys.

- Free Occurrence: When you mention a toy's name directly without any special rules.
 - Example: Saying "x is red" means you are directly talking about the toy named "x."
- Bound Occurrence: When you mention a toy's name but with a rule that applies to all toys or some toys.
 - Example: Saying "For every x, x is red" means you're talking about all toys being red, not just the toy named "x."

Definition:

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $A \in \text{Form}$ be a formula. The set of free variables of the formula A (in notation: FreeVar(A)) is given by the following inductive definition:

- 1. If A is an atomic formula (i.e. $A \in AtForm$), then the members of the set FreeVar(A) are the variables occurring in A.
- 2. If the formula A is $\neg B$, then FreeVar(A) = FreeVar(B).
- 3. If the formula A is $(B \supset C), (B \land C), (B \lor C)$ or $(B \equiv C),$ then $FreeVar(A) = FreeVar(B) \cup FreeVar(C).$
- 4. If the formula A is $\forall x B$ or $\exists x B$, then $\text{FreeVar}(A) = \text{FreeVar}(B) \setminus \{x\}$.

Definition:

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $A \in \text{Form}$ be a formula. The set of bound variables of the formula A (in notation: BoundVar(A)) is given by the following inductive definition:

- 1. If A is an atomic formula (i.e. $A \in At$ Form), then BoundVar $(A) = \emptyset$.
- 2. If the formula A is $\neg B$, then BoundVar(A) = FreeVar(B).
- 3. If the formula A is $(B \supset C), (B \land C), (B \lor C)$ or $(B \equiv C)$, then BoundVar $(A) = \text{BoundVar}(B) \cup \text{BoundVar}(C)$.
- 4. If the formula A is $\forall x B$ or $\exists x B$, then BoundVar(A) = BoundVar(B) $\cup \{x\}$.

Syntactical Properties of Variables: Free and Bound Occurrences Definition:

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language, $A \in \text{Form}$ be a formula, and $x \in Var$ be a variable.

- 1. A fixed occurrence of the variable x in the formula A is free if it is not in the subformulae $\forall xB$ or $\exists xB$ of the formula A.
- 2. A fixed occurrence of the variable x in the formula A is bound if it is not free.

Remarks:

- 1. If x is a free variable of the formula A (i.e. $x \in \text{FreeVar}(A)$), then it has at least one free occurrence in A.
- 2. If x is a bound variable of the formula A (i.e. $x \in \text{BoundVar}(A)$), then it has at least one bound occurrence in A.
- 3. A fixed occurrence of a variable x in the formula A is free if
 - it does not follow a universal or an existential quantifier, or
 - it is not in a scope of a $\forall x$ or a $\exists x$ quantification.
- 4. A variable x may be a free and a bound variable of the formula $A:(P(x) \wedge \exists x R(x))$

Definition:

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

- 1. If FreeVar(A) $\neq \emptyset$, then the formula A is an open formula.
- 2. If FreeVar(A) = \emptyset , then the formula A is a closed formula.

Interpretation and Assignment in First-order Logic

Interpretations

Interpretations provide the meaning for the symbols used in a first-order logic formula. An interpretation consists of a domain of discourse and an assignment of meanings to the non-logical symbols (constants, function symbols, and predicates) in the formula.

Components of an Interpretation:

- 1. **Domain of Discourse** (D): A non-empty set of objects that the variables can refer to.
- 2. **Interpretation of Constants**: Each constant symbol is assigned a specific object in the domain.
 - Example: If a is a constant, it might be assigned to a particular object in the domain D.
- 3. **Interpretation of Function Symbols**: Each n-ary function symbol is assigned an n-ary function from the domain to the domain.
 - Example: If f is a unary function, it might be interpreted as a function $f: D \to D$.
- 4. **Interpretation of Predicate Symbols**: Each n-ary predicate symbol is assigned an n-ary relation over the domain.
 - Example: If P is a binary predicate, it might be interpreted as a relation $P \subseteq D \times D$.

Variable assignment

A variable assignment is a function that assigns values from the domain of discourse to the variables in a formula. This helps to evaluate the truth of formulas involving variables under a given interpretation.

How Variable Assignment Works:

- Suppose we have a variable assignment σ :
 - $-\sigma(x)$ assigns a value from the domain D to the variable x.
 - For example, if the domain D is the set of natural numbers $\{1,2,3,\ldots\}$, and $\sigma(x)=3$, then x is assigned the value 3.

Example Consider a domain $D = \{1, 2, 3\}$.

Interpretation:

- Constants: $a \to 1$
- Functions: $f \to \text{the function defined by } f(x) = x + 1 \text{ (assuming we interpret addition in a natural way)}$
- Predicates: $P \to \{(1), (2)\}$ (meaning P(x) is true if x is 1 or 2)

Variable Assignment:

• $\sigma(x)=2$

Formula Evaluation:

- Atomic Formula: P(x)
- Check $P(\sigma(x))$: Since $\sigma(x) = 2$, and 2 is in the set $\{1, 2\}$, P(x) is true.
- Quantified Formula: $\forall x P(x)$
- Check P(x) for all x in D:
- x = 1 : P(1) is true.
- x = 2 : P(2) is true.
- x = 3 : P(3) is false.
- Since P(3) is false, $\forall x P(x)$ is false.

The concept of interpretation is a crucial component of the semantics of any logical system. It shows the possibilities how to gives 'meanings' (semantic values) to parameters (nonlogical constants). In first-order logic

- name parameters (members of $\mathcal{F}(0)$) represent proper names;
- function parameters (members of $\mathcal{F}(n)$) represent operations;
- propositional parameters (members of $\mathcal{P}(0)$) represent propositions;
- one-argument predicate parameters (members of $\mathcal{P}(1)$) represent properties;
- n-argument predicate parameters (members of $\mathcal{P}(n), n \geq 1$) represent n-argument relations.

Definition: (Interpretation of first-order logic)

The ordered pair $\langle U,\rho\rangle$ is an interpretation of the language $L^{(1)}$ if

- 1. $U \neq \emptyset$ (i.e. U is a nonempty set);
- 2. $Dom(\rho) = Con;$
 - (a) If $a \in \mathcal{F}(0)$, then $\rho(a) \in U$;
 - (b) If $f \in \mathcal{F}(n)$ $(n \neq 0)$, then $\rho(f)$ is a function from $U^{(n)}$ to U;
 - (c) If $p \in \mathcal{P}(0)$, then $\rho(p) \in \{0, 1\}$;
 - (d) If $P \in \mathcal{P}(n)$ $(n \neq 0)$, then $\rho(P) \subseteq U^{(n)}$.

Definition: (Assignment in a given interpretation)

The function v is an assignment relying on the interpretation $\langle U, \rho \rangle$ if the followings hold:

- 1. Dom(v) = Var;
- 2. If $x \in Var$, then $v(x) \in U$.

Definition: (Modified assignment)

Let v be an assignment relying on the interpretation $\langle U, \rho \rangle, x \in Var$ and $u \in U$.

$$v[x:u](y) = \begin{cases} u, & \text{if } y = x; \\ v(y), & \text{otherwise.} \end{cases}$$

for all $y \in Var$.

Central Logical Concepts of Classical First-order Logic

Definition: (Model of a set of formulae)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $\Gamma \subseteq \text{Form}$ be a set of formulae. An ordered triple $\langle U, \rho, v \rangle$ is a model of the set Γ , if

- 1. $\langle U, \rho \rangle$ is an interpretation of $L^{(1)}$;
- 2. v is an assignment relying on $\langle U, \rho \rangle$;
- 3. $|A|_{v}^{\langle U,\rho\rangle}=1$ for all $A\in\Gamma$.

Definition: (Model of a formula)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $A \in \text{Form}$ be a formula. A model of a formula A is the model of the singleton $\{A\}$.

Definition: (Satisfiability of a set of formulae)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $\Gamma \subseteq \text{Form}$ be a set of formulae. $\Gamma \subseteq \text{Form}$ is satisfiable if it has a model. (If there is an interpretation and an assignment in which all members of the set Γ are true.)

Definition: (Satisfiability of a formula)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $A \in \text{Form}$ be a formula. The formula A is satisfiable, if the singleton $\{A\}$ is satisfiable. (If there is an interpretation and an assignment in which the formula A is true.)

Remarks:

- A satisfiable set of formulas does not involve a logical contradiction; its formulae may be true together.
- A satisfiable formula may be true.
- If a set of formulas is satisfiable, then its members are satisfiable.
- But: all members of the set $\{P(a), \neg P(a)\}\$ are satisfiable, and the set is not satisfiable.

Definition: (Unsatisfiability of a set of formulae)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $\Gamma \subseteq \text{Form}$ be a set of formulae. The set $\Gamma \subseteq \text{Form}$ is unsatisfiable if it is not satisfiable.

Remark:

An unsatisfiable set of formulae involves a logical contradiction. (Its members cannot be true together.)

Definition: (Unsatisfiability of a formula)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $A \in \text{Form}$ be a formula. The formula A is unsatisfiable if the singleton $\{A\}$ is unsatisfiable.

Remark:

An unsatisfiable formula involves a logical contradiction. (It cannot be true, i.e. it is false with respect to all interpretations and assignment.)

Definition: (Logical consequence of a set of formulae)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language, Γ, \subseteq Form be a set of formulae and $A \in$ Form be a formula. The formula A is the logical consequence of the set of formulae Γ if the set $\Gamma \cup \{\neg A\}$ is unsatisfiable. (Notation: $\Gamma \models A$)

Definition: (Logical consequence of a formula)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language, and $A, B \in \text{Form}$ be formulae. The formula B is the logical consequence of the formula A if $\{A\} \models B$. (Notation: $A \models B$)

Definition: (Validity of a formula)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language, and $A \in \text{Form}$ be a formula. The formula A is valid if $\emptyset \models A$. (Notation: $\models A$)

Definition: (Logical equivalence)

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language, and $A, B \in \text{Form}$ be formulae. The formulae A and B are logically equivalent if $A \models B$ and $B \models A$. (Notation: $A \Leftrightarrow B$)

Normal Forms

- A base is a set of truth functors whose members can express all truth functors.
 - For example: $\{\neg, \supset\}, \{\neg, \land\}, \{\neg, \lor\}$
 - 1. $(p \land q) \Leftrightarrow \neg (p \supset \neg q)$
 - 2. $(p \lor q) \Leftrightarrow (\neg p \supset q)$
 - Truth functor Sheffer: $(p \mid q) \Leftrightarrow_{\text{def}} \neg (p \land q)$
 - Truth functor neither-nor: $(p||q) \Leftrightarrow_{\text{def}} (\neg p \land \neg q)$
 - Remark: Singleton bases: $(p \mid q), (p||q)$

Definition: Let $L^{(0)} = \langle LC, \text{Con}, \text{Form} \rangle$ be a language of propositional logic and $p \in \text{Con}$ a propositional parameter. Then the formulae $p, \neg p$ are literals (where p is the base of the literals).

Definition: If the formula A is a literal or a conjunction of literals, then A is an elementary conjunction.

Definition: If the formula A is a literal or a disjunction of literals, the A is an elementary disjunction.

Remark: If the literals of an elementary conjunction/disjunction have different bases, then the elementary conjunction/disjunction represents an interpretation (or a family of interpretations).

Definition: A disjunction of elementary conjunctions is a disjunctive normal form.

Definition: A conjunction of elementary disjunctions is a conjunctive normal form.

Definition:

Let $L^{(1)} = \langle LC, Var, \text{Con}, \text{Term}, \text{Form} \rangle$ be a first order language and $A \in \text{Form be a formula}$.

The formula A is prenex if

- 1. there is no quantifier in A or
- 2. the formula A is in the form $Q_1x_1Q_2x_2...Q_nx_nB(n=1,2,...)$, where
 - (a) there is no quantifier in the formula $B \in Form$;
 - (b) $x_1, x_2 \dots x_n \in \text{Var}$ are diffrent variables;
 - (c) $Q_1, Q_2, \dots, Q_n \in \{ \forall, \exists \}$ are quantifiers.

Sequent calculus

Definition:

Logical calculus is a formal system used to derive logical conclusions from premises through a series of rules and logical operations. It consists of:

- **Syntax**: The formal structure of expressions, including variables, constants, functions, predicates, connectives (like \land , \lor , \rightarrow , $\leftrightarrow \neg$), and quantifiers (\forall , \exists).
- Inference Rules: The logical rules that dictate how new statements (conclusions) can be derived from existing statements (premises).

Components

- 1. **Axioms**: Basic assumptions or self-evident truths.
- 2. **Inference Rules**: Procedures for deriving new statements from existing ones (e.g., Modus Ponens, Universal Instantiation).

Sequent Calculus

Definition

Sequent calculus is a logical system for proving the validity of logical statements through sequents.

A **sequent** is an expression of the form: $\Gamma \vdash \Delta$

Where Γ (the antecedent) and Δ (the consequent) are sets (or multisets) of formulas). The sequent means "if all formulas in Γ are true, then at least on formula in Δ is true"