Árvores de Segmentos

Tópicos Especiais em Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- Arvores de Segmentos
- Análise

Sumário

Introdução

Introdução

- Considere o seguinte problema, dado uma entrada V[0,n-1] e indices i,j, determinar o índice k, $i \leq k \leq j$ tal que V[k] seja o menor valor possível de V sobre o intervalo [i,j].
- ullet Em caso de empate, pegamos o k mais à esquerda possível.
- Consulta de mínimos sobre intervalos (Range-Minimum-Queries ou RMQ).

RMQ

RMQ

- $\bullet \ \, {\sf Entrada} \colon \, V[0,n-1] \,\, {\sf e} \,\, {\sf indices} \,\, i,j, \,\, 0 \leq i \leq j < n;$
- \bullet Saída: $\mathrm{RMQ}_V(i,j) = \min\{\arg\min\{V[k]|i \leq k \leq j\}\}$

Algoritmo Força-Bruta

- Imediatamente conseguimos elaborar um algoritmo força-bruta.
- $\bullet \ \ \mathsf{Basta} \ \ \mathsf{varrer} \ \ \mathsf{o} \ \ \mathsf{vetor} \ \ V[i,j].$

Algoritmo Força-Bruta

Algorithm 1: BRUTE-FORCE-RMQ

```
Input: V[0,n-1], i,j,0 \leq i \leq j < n
Output: \mathrm{RMQ}_V(i,j)
1 (k,min_k) \leftarrow (i,V[i])
2 for( l \leftarrow i+1; l \leq j; l++)
3  \mid \quad \text{if}(\ V[l] < min_k\ )
4  \mid \quad (k,min_k) \leftarrow (l,V[l])
```

5 return k

Algoritmo Força-Bruta

- Análise de pior-caso: $\Theta(n)$.
- No pior caso, para responder uma consulta precisamos olhar para toda a entrada.
- Precisamos de um método mais eficiente.

Em Busca de um Método mais Eficiente

- Alternativa: Árvores de Segmentos.
- Complexidade de pior caso $\langle \Theta(n), \Theta(\lg n) \rangle$.
- Suporta atualização!

Sumário

Arvores de Segmentos

Árvore de Segmentos

- Em uma árvore de segmentos, cada nó está associado a um intervalo da sequência de entrada.
- \bullet Ao navegar na árvore, podemos responder consultas de RMQ em tempo eficiente.
- Estrutura hierárquica e de natureza recursiva!

Árvore de Segmentos

- Cada nó de uma árvore de segmentos está associado a um intervalo da sequência de entrada.
- A raiz armazena o valor de $RMQ_V(0, n-1)$.
- ullet A i-ésima folha está associada ao valor de $\mathrm{RMQ}_V(i,i).$
- Um nó interno que esteja associado ao intervalo [i,j] armazena o valor $\mathrm{RMQ}_V(i,j)$. Cada nó interno tem dois filhos:
 - Filho da esquerda, definido recursivamente sobre o intervalo $[i, \lfloor (i+j)/2 \rfloor]$.
 - Filho da direita, definido recursivamente sobre o intervalo [|(i+j)/2|+1,j].

Árvore de Segmentos

0 1 2 3 4 5 6V = (18,17,12,20,16,12,21)

Sumário

- Árvores de Segmentos
 - Representação
 - Construção
 - Consultas
 - Atualização

Representação de Árvores de Segmentos

- Podemos simplificar a representação das árvores de segmentos através de vetores.
- Se a entrada V tem tamanho n, a árvore de segmentos terá tamanho máximo 2n-1, pois cada nó interno e a raiz possuem 2 filhos.
- Utilizaremos um vetor T[0,4n-1], com 4n elementos. Para representar a árvore. T[0] não será utilizado. Começamos de T[1] para facilitar a navegação na árvore.

Representação de Árvores de Segmentos

- Com a representação do vetor, podemos navegar na árvore conceitual.
- Seja um nó no índice i do vetor:
 - Filho da esquerda: 2i.
 - Filho da direita: 2i + 1

Representação de Árvores de Segmentos

Algorithm 2: LEFT(x)

Input: x

Output: Filho da esquerda de x no vetor

 $\mathbf{1}$ return 2x

Algorithm 3: RIGHT(x)

Input: x

Output: Filho da direita de x no vetor

1 return 2x+1

Sumário

- Árvores de Segmentos
 - Representação
 - Construção
 - Consultas
 - Atualização

Construção

- Para construir a árvore de segmentos, podemos adotar o seguinte procedimento recursivo.
- Caso base: o nó x é uma folha que representa o intervalo [i,i]. Armazena-se i em x
- Caso geral: o nó x é um nó interno (ou raiz) sobre o intervalo [i,j]. Recursivamente calcula-se os valores para os filhos da direita e da esquerda e, dentre os dois valores, pegamos aquele que referencia o menor valor de mínimo e o armazenamos em x.

8

10

Construção

```
Algorithm 4: BUILD-ST(V, x, i, j)
  Input: V[0, n-1], x, i, j
  Output: T[0, 4n - 1]
1 if( i = j ) T[x] \leftarrow i
2 else
      BUILD-ST(V, LEFT(x), i, |(i+i)/2|)
      BUILD-ST(V, RIGHT(x), |(i+j)/2| + 1, j)
      l = T[\text{LEFT}(x)]
     r = T[RIGHT(x)]
      if V[l] < V[r]
        T[x] = l
     else
         T[x] = r
```


Árvores de Segmentos: Consultas de RMQ

• Chamada inicial: BUILD-ST(T, V, 1, 0, n - 1).

Árvores de Segmentos: Construção

V = (18,17,12,20,16,12,21)

Análise: Construção

- A árvore de segmentos pode ser construída em tempo $\Theta(n)$.
- A árvore possui 2n-1 nós e durante a construção e processamos cada nó exatamente 1 vez com tempo de processamento constante.

Sumário

- Árvores de Segmentos
 - Representação
 - Construção
 - Consultas
 - Atualização

Árvores de Segmentos

Árvores de Segmentos: Consultas de RMQ

- Para responder consultas de RMQ, podemos navegar na árvore.
- Suponha um determinado nó x sobre um intervalo [l,r]. Queremos responder $\mathrm{RMQ}_V(i,j)$.
- Temos três casos:
 - **1** $[l,r] \cap [i,j] = \emptyset$: retorna-se indefinição, pois o nó não contribui para responder a consulta de mínimo.
 - ② $[l,r]\subseteq [i,j]$: o intervalo do nó [l,r] contribui parcialmente para a resposta de $\mathrm{RMQ}_V(i,j)$. Retornamos T[x]
 - ③ [l, r] ∩ [i, j] ≠ ∅: o nó em si não contribui para a resposta, mas os seus descendentes podem contribuir, procedemos recursivamente para os nós filhos.

Árvores de Segmentos: Consultas de RMQ

```
Algorithm 5: ST-RMQ(T, V, x, l, r, i, j)
  Input: T[0, 2n-1], V[0, n-1], x, l, r, i, j
  Output: RMQ_V(i, j)
1 if( i > r \lor j < l ) return \bot
2 else if (l > i \land r < j) return T[x]
3 rmq_l \leftarrow \text{ST-RMQ}(T, V, \text{LEFT}(x), l, |(l+r)/2|, i, j)
4 rmq_r \leftarrow \text{ST-RMQ}(T, V, \text{RIGHT}(x), |(l+r)/2| + 1, r, i, j)
5 if (rmq_l = \bot) return rmq_r
6 else if (rmq_r = \bot) return rmq_l
7 if (V[rmq_l] \leq V[rmq_r])
      return rmq_l
  return rmq_r
```


Árvores de Segmentos: Consultas de RMQ

 $\bullet \ \, {\sf Chamada \ inicial:} \ \, {\sf ST-RMQ}(T,V,1,0,n-1,i,j). \\$

Árvores de Segmentos: Consultas de RMQ

0 1 2 3 4 5 6V = (18,17,12,20,16,12,21)

Análise: Consultas de RMQ

- Durante a consulta sobre a árvore, visita-se no máximo 4 nós por nível.
- \bullet Como são $\Theta(\lg n)$ níveis, o tempo total da consulta é $\Theta(\lg n).$

Análise: Consultas de RMQ

Teorema

No máximo 4 nós por nível são visitados durante a consulta de $\mathrm{RMQ}_V(i,j).$

Análise: Consultas de RMQ

Demonstração.

A prova é por indução.

- Caso base: no primeiro nível apenas a raiz é acessada.
- Hipótese de Indução: no i-ésimo nível $n \leq 4$ nós são visitados.
- Passo de indução: precisamos mostrar que no i+1-ésimo nível $n \leq 4$ nós são acessados.

Análise: Consultas de RMQ

Demonstração.

Se no i-ésimo nível 1 ou 2 nós são visitados, teremos que no i+1-ésimo nível acessamos no máximo 4 nós. Só precisasmos nos preocupar no caso em que acessamos 3 ou 4 nós no i-ésimo nível.

Análise: Consultas de RMQ

Demonstração.

Se no i-ésimo nível 1 ou 2 nós são visitados, teremos que no i+1-ésimo nível acessamos no máximo 4 nós. Só precisasmos nos preocupar no caso em que acessamos 3 ou 4 nós no i-ésimo nível.

Suponha que visitemos n=4 nós no i-ésimo nível, v_1,v_2,v_3,v_4 . A união dos intervalos cobertos por estes representam um intervalo $[l,r]\supseteq [i,j]$.

Estes nós também estão dispostos consecutivamente na árvore, quando lidos da esquerda para a direita.

Análise: Consultas de RMQ

Demonstração.

Podemos dizer que v_2 e v_3 , os nós do meio, cobrem intervalos $[l',r']\subset [i,j]$ e $[l'',r'']\subset [i,j]$ isto é, ambos os intervalos estão contidos em [i,j]. Mais do que isto, podemos dizer que $[l',r']\cup [l'',r'']\subset [i,j]$. Caso contrário, a existência de v_1 e v_2 seria negada, uma vez que v_3 e v_4 já cobririam todo o intervalo [l,r]

Logo, os nós v_2 e v_3 não geram chamadas recursivas.

Conclui-se que apenas os nós v_1 e v_2 podem gerar, no máximo, 2 chamadas recursivas cada e portanto, no i+1-ésimo nível, no máximo 4 nós são visitados.

Análise: Consultas de RMQ

Demonstração.

Análise: Consultas de RMQ

Demonstração.

A prova para n=3 é análoga, mas no caso, apenas o nó v_2 não gera chamadas recursivas, enquanto v_1 e v_3 potencialmente geram duas chamadas recursivas cada.

Sumário

- Árvores de Segmentos
 - Representação
 - Construção
 - Consultas
 - Atualização

Árvores de Segmentos: Atualização

- ullet Supondo que um valor V[k] seja atualizado, como propagar essa atualização na árvore de segmentos?
- Atualização bottom-up. Primeiro atualizamos a folha que corresponde ao intervalo [k,k] e depois atualizamos os ancestrais desta folha na volta da recursão.
- Todos os nós do caminho da raiz até a folha afetada são (potencialmente) atualizados.

Arvores de Segmentos: Atualização

Algorithm 6: ST-UPDATE(T, V, x, l, r, k, value)

Input: T[0, 2n - 1], V, x, l, r, k, value

Output: $T \in V$ atualizados.

- 1 if (l = r)2 $V[k] \leftarrow value$ return
- 4 $mid \leftarrow \lfloor (l+r)/2 \rfloor$
- 5 if (k < mid) ST-UPDATE(T, LEFT(x), l, mid, k, value)
- 6 else ST-UPDATE(T, RIGHT(x), mid + 1, r, k, value)
- 7 $value_l \leftarrow T[\text{LEFT}(x)]$
- 8 $value_r \leftarrow T[RIGHT(x)]$
- 9 if $(V[value_l] \leq V[value_r])$ $T[x] \leftarrow value_l$
- 10 else $T[x] \leftarrow value_r$

Árvore de Segmentos: Atualização

• Chamada inicial: ST-UPDATE(T, V, 1, 0, n - 1, k, value).

Árvores de Segmentos: Atualização

0 1 2 3 4 5 6V = (18,17,12,20,16,12,21)

Análise: Atualização

- No máximo 1 nó em cada nível é atualizado.
- Temos $\Theta(\lg n)$ níveis.
- Tempo de atualização $\Theta(\lg n)$.

Sumário

Análise

Análise: Árvores de Segmentos

- \bullet Estrutura extremamente poderosa para responder $\mathrm{RMQ}_V(i,j)$ em tempo eficiente.
- Pode ser modificada para outros problemas que exigem outros tipos de consultas sobre intervalos. É uma estrutura bastante flexível.
- Tempo de construção: $\Theta(n)$.
- Tempo de consulta: $\Theta(\lg n)$.
- Tempo de atualização: $\Theta(\lg n)$.
- $\langle \Theta(n), \Theta(\lg n), \Theta(\lg n) \rangle$.