Е	SE 271	First	Exam	Name:
Fall,	2009			ID Number:
	ot place your answers o problem is worth 25 pc		s front page.	
Prob.	1:			
Prob.	2:			
Prob.	3:			

Prob. 4:

Prob. 1:

Find the Thevenin equivalent circuit as seen from the terminals: a,b.

To GET isc:

KVL AROUND THE LOOP L: -4 - 2isc + 6ise = 0

So,
$$Y_{TH} = \frac{v_{oc}}{i_{sc}} = \frac{6}{1} = 6 \Lambda$$

THEVENIN'S CIRCUIT 15:

Prob. 2:

Find the output voltage v_o . Use the virtual-short virtual-open model for the op-amps. (Resistor values are in $k\Omega$.)

$$\frac{3-v_{x}}{2} + \frac{v_{y}-v_{x}}{2} = 0$$

$$v_{x} = v_{y} + \frac{4}{4+8}$$

$$W_{y} = 3v_{x}$$

$$W_{y} = 3v_{x}$$

$$W_{y} = 3v_{x}$$

$$W_{y} = -9v$$

$$V_{x} = -9v$$

$$W_{y} = -9v$$

$$W_{y} = -3v_{y} + 3v_{y} - v_{y} = 2v_{y}$$

$$W_{y} = -3v_{y} + 3v_{y} - v_{y} = 2v_{y}$$

$$W_{y} = -3v_{y} + 3v_{y} - v_{y} = 2v_{y}$$

ALSO

$$\frac{v_{y}}{3} + \frac{5}{3} + \frac{v_{0}}{3} = 0$$

$$So, \quad v_{0} = -v_{1} - v_{2} + v_{3} = 0$$

Prob. 3:

Using a nodal analysis, determine the node voltage v_2 .

PUT A BALLOON AROUND THE 21 DEPENDENT

INSIDE THAT BALLOOM:

$$v_2 - v_1 = 2i = 2 \frac{v_2}{4} = \frac{v_2}{2}$$
, $i = \frac{v_2}{4}$

$$THVS, \left[-2v_1 + v_2 = 0\right]$$

ON THE BALLOON: KCL

SOLVING THE SECOND AND THIRE EQUATIONS:

$$v_2 = \frac{18}{5}$$

Prob. 4:

Do a mesh analysis to write two simultaneous equations in i_1 and i_2 as the unknowns. Display your answer by filling in the appropriate numbers in the following matrix equation.

(2) Appended communication
$$i_2 - i_1 = 6N = 6 \times 3i_1 = 18i_1$$

Thus, $-19i_1 + i_2 = 0$

THEN, KVL AROUND OUTER LOOP:
$$-2 + 3i, + 4i_2 + 5 = 0$$
THUS,
$$3i_1 + 4i_2 = -3$$