SI231b: Matrix Computations

Lecture 17: QR Iteration for Eigenvalue Computations

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology

ShanghaiTech University

Nov. 11, 2021

Unnormalized Simultaneous Iteration

Define $V^{(0)}$ to be the $n \times r$ matrix,

$$V^{(0)} = \begin{bmatrix} v_1^{(0)} & v_2^{(0)} & \cdots & v_r^{(0)} \end{bmatrix}.$$

After k steps of applying A, we obtain

$$V^{(k)} = A^k V^{(0)} = \begin{bmatrix} v_1^{(k)} & v_2^{(k)} & \cdots & v_r^{(k)} \end{bmatrix}.$$

Assume

1. The leading r + 1 eigenvalues are distinct in absolute value;

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_r| > |\lambda_{r+1}| \ge |\lambda_{r+2}| \ge \cdots |\lambda_n|$$

- 2. All the leading principle sub-matrices $Q^TV^{(0)}$ are nonsingular.
 - Q is the matrix with q_1, q_2, \dots, q_r as columns;
 - q_1, q_2, \dots, q_r are eigenvectors associated with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$.

Unnormalized Simultaneous Iteration

choose $V^{(0)}$ with r linear independent columns

for
$$k=1,\ 2,\ \cdots$$

$$\mathsf{V}^{(k)}=\mathsf{AV}^{(k-1)}$$

$$\mathsf{Q}^{(k)}\mathsf{R}^{(k)}=\mathsf{V}^{(k)}$$
 reduced QR factorization end

Under the assumptions, we have as $k \to \infty$,

For real symmetric matrix A (Q has orthonormal columns)

$$\|\mathsf{q}_{i}^{(k)}-(\pm q_{i})\|=\mathcal{O}(C^{k}),$$

for $1 \le j \le r$, where C < 1 is the constant

$$C = \max_{1 \le k \le r} \frac{|\lambda_{k+1}|}{|\lambda_k|}$$

For unsymmetric matrix A (Q does not have orthonormal columns)

$$\mathcal{R}(\mathsf{Q}^{(k)}) o \mathcal{R}(\mathsf{Q})$$

Simultaneous Iteration

For Unnormalized Simultaneous Iteration, as $k \to \infty$, the vectors $q^{(1)}, q^{(2)}, \cdots$, $\mathbf{q}^{(r)}$ all converge to multiples of the same dominant eigenvector $\mathbf{q}_1.$ Therefore, they form an ill-conditioned basis of span $\{q^{(1)}, q^{(2)}, \dots, q^{(r)}\}$.

The remedy is simple, we should build orthonormal basis at each iteration \rightsquigarrow Simultaneous Iteration/Subspace Iteration

Subspace Iteration:

random selection $Q^{(0)}$ with orthonormal columns for $k=1, 2, \cdots$ $Z_{\nu} = AQ^{(k-1)}$ $Z_k = Q^{(k)}R^{(k)}$ reduced QR factorization end

- \triangleright Z_k and $Q^{(k)}$ has the same column space
- \triangleright equal to the column space of $A^kQ^{(0)}$

Subspace Iteration

- $ightharpoonup \mathcal{R}(Q^{(k)})$ converge to subspace associated with r largest eigenvalues in magnititude (dominant invariant subspace).
- $\blacktriangleright \lambda \left(\left(\mathsf{Q}^{(k)} \right)^H \mathsf{A} \mathsf{Q}^{(k)} \right) \to \left\{ \lambda_1, \ \lambda_2, \ \cdots, \lambda_r \right\}$
- $\left| \lambda_i^{(k)} \lambda_i \right| = \mathcal{O}\left(\left| \frac{\lambda_{r+1}}{\lambda_i} \right|^k \right), \ i = 1, \ 2, \ \cdots, \ r$
- ▶ also called simultaneously iteration or orthogonal iteration
- ightharpoonup when r = n, it coincides with QR iteration

QR Iteration:

```
\mathsf{A}^{(0)}=\mathsf{A} for k=1,\ 2,\ \cdots \mathsf{Q}^{(k)}\mathsf{R}^{(k)}=\mathsf{A}^{(k-1)}\quad \mathtt{QR} \text{ factorization of } \mathsf{A}^{(k-1)} \mathsf{A}^{(k)}=\mathsf{R}^{(k)}\mathsf{Q}^{(k)} end
```

Facts:

- $ightharpoonup A^{(k)}$ is similar to A
- ightharpoonup Eigenvalues of $A^{(k)}$ should be easier to compute than that of A.
- ► A^(k) should converge fast (expected) to a form whose eigenvalues are easily computed.
 - upper triangular form

Challenges of QR Iteration

For an $n \times n$ matrix A, each iteration requires $\mathcal{O}(n^3)$ flops to compute the QR factorization.

► too computationally expensive!

Improvement:

Perform a similarity transform A to obtain a form $A^{(0)} = (Q^{(0)})^H A Q^{(0)}$

- ▶ the QR decomposition of A⁽⁰⁾ should be computationally cheap
- ▶ $A^{(k)}$ ($k = 1, 2, \cdots$) should have similar structure with $A^{(0)}$ so that the QR decomposition at each iteration is computationally cheap

Motivation: perform similarity transform A to an upper Hessenberg form (zeros below the first subdiagonal), i.e., $Q^HAQ = H$ where

Advantage: QR factorization of an upper Hessenberg matrix requires $\mathcal{O}(n^2)$ flops (how?).

▶ by using Givens rotations

QR Iteration with Hessenberg Reduction:

$$\mathsf{A}=\mathsf{Q}^H\mathsf{H}\mathsf{Q},\ \mathsf{A}^{(0)}=\mathsf{H},\ \mathsf{H}$$
 is upper Hessenberg for $k=1,\ 2,\ \cdots$
$$\mathsf{Q}^{(k)}\mathsf{R}^{(k)}=\mathsf{A}^{(k-1)}\quad \mathtt{QR} \text{ factorization of } \mathsf{A}^{(k-1)}$$

$$\mathsf{A}^{(k)}=\mathsf{R}^{(k)}\mathsf{Q}^{(k)}$$
 end

Key: $A^{(k)}$ is of upper Hessenberg form (how to preserve?)

by using Givens rotations to compute the QR factorization (how to prove?)

Benefit: $\mathcal{O}(n^2)$ flops for QR factorization.

For an $n \times n$ matrix $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$.

A Naive Try

Let Q_1 be the Householder reflection matrix that reflects a_1 to $-\text{sign}(a_1(1))\|a_1\|_2e_1$,

Mission failed!

Less Ambitious Try

Let $\tilde{a}_1 = A(2:n,1)$ and Q_1 be the Householder reflection matrix that reflects \tilde{a}_1 to $-\text{sign}(\tilde{a}_1(1))\|\tilde{a}_1\|_2e_1$,

Repeat the above procedure to the 2nd column of $Q_1AQ_1^H \cdots$

Given an $n \times n$ matrix A, the following algorithm reduces A to an upper Hessenberg form.

Hessenberg Reduction:

```
for k = 1: n - 2

x = A(k+1:n, k)

v_k = sign(x(1))||x||_2e_1 + x

v_k = \frac{v_k}{||v_k||_2}

A(k+1:n, k:n) = A(k+1:n, k:n) - 2v_k(v_k^H A(k+1:n, k:n))

A(1:n, k+1:n) = A(1:n, k+1:n) - 2(A(1:n, k+1:n)v_k)v_k^H

end
```

Failure of QR Iteration

Example:

Consider the following matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{Q^{(0)}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{R^{(0)}}$$

$$A^{(1)} = R^{(0)}Q^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = A^{(0)}$$

No convergence of $A^{(k)}$ observed.

To make QR iteration converge, i.e., $A^{(k)}$ converge to a upper triangular matrix, **shift** is required.

Shifted QR Iteration

Shifted QR Iteration:

$$\mathsf{A}=\mathsf{Q}^H\mathsf{H}\mathsf{Q}$$
 , $\mathsf{A}^{(0)}=\mathsf{H}$, H is upper Hessenberg for $k=1,\ 2,\ \cdots$
$$\mathsf{Q}^{(k)}\mathsf{R}^{(k)}=\mathsf{A}^{(k-1)}-\mu_k\mathsf{I}\quad \mathsf{QR} \text{ factorization of } \mathsf{A}^{(k-1)}-\mu_k\mathsf{I}$$

$$\mathsf{A}^{(k)}=\mathsf{R}^{(k)}\mathsf{Q}^{(k)}+\mu_k\mathsf{I}$$
 end

Facts:

- ► A^(k) has same eigenvalues with A (requires a proof)
- \blacktriangleright shift μ_k may differ from iteration to iteration

Shifted QR Iteration

Selection of Shift

- ▶ Raleigh Quotient shift: $\mu_k = A^{(k-1)}(n,n)$
 - no guarantee on convergence
 - if converged, order of convergence is cubic
- ▶ Wilkinson shift

Denote the lower-rightmost 2×2 matrix of $A^{(k-1)}$ by

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The Wilkinson shift is chosen as the eigenvalue of B that is closer to d.

 always converge for Hermitian/real symmetric matrices with cubic convergence rate (quadratic convergence for the worst case)

References

1. J. H. Wilkinson. Global convergence of tridiagonal QR algorithm with origin shifts. Linear Algebra and its Applications, 1(3): 409 – 420, 1968.

15 / 18

Brief Summary

- Power iteration
 - compute the largest eigenvalue in magnitude
 - convergence may be slow if $|\lambda_2|$ is close to $|\lambda_1|$
 - deflation technique (making a nonzero eigenvalue to zero) can be used to compute the second largest eigenvalue im magnititude
 - lackbox For real symmetric/Hermitian case, $A=A-\lambda_1 v_1 v_1^H$
 - complicated for unsymmetric/non-Hermitian case, investigate by yourself if interested.
- ► Inverse iteration (with shift)
 - compute the smallest eigenvalue in magnitude
 - ullet when coming with shift μ , it computes the eigenvalues closest to μ

Brief Summary

► Subspace iteration

- A block version of the power iteration, or power iteration applied to a subspace
- compute a few largest eigenpairs in magnititude
- inverse iteration can also be applied in the subspace iteration
- when starting with full space, it coincides with QR iteration.

▶ QR iteration

- compute all eigenvalues/eigenvectors
- to reduce computational complexity, Hessenberg reduction is required before the iteration
- shift is required to obtain convergence

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013. 1997.

Chapter 7.3, 8.2, 8.3