Многочлены

1 Разделите с остатком многочлен f(x) на $x-x_0$ и найдите $f(x_0)$

a)
$$f(x) = 2x^5 - 5x^3 - 8x$$
, $x_0 = -3$;

6)
$$f(x) = x^4 - 3x^3 - 10x^2 + 2x + 5$$
, $x_0 = -2$;

B)
$$f(x) = x^5 - x^4 + 2x^2 + 4x - 2$$
, $x_0 = 1$;

r)
$$f(x) = x^6 - 5x^5 + x^3 + 2x - 8$$
, $x_0 = 2$.

2 Определите кратность корня x_0 многочлена f(x):

a)
$$f(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$$
, $x_0 = 2$;

6)
$$f(x) = 3x^5 + 2x^4 + x^3 - 10x - 8$$
, $x_0 = -1$;

B)
$$f(x) = x^6 - 9x^5 + 26x^4 - 10x^3 - 99x^2 + 243x - 216$$
, $x_0 = 3$;

r)
$$f(x) = x^7 - 5x^6 + 11x^5 - 15x^4 + 15x^3 - 11x^2 + 5x - 1$$
, $x_0 = 1$.

З Найдите НОД многочленов и его линейное представление:

a)
$$x^4 + x^3 - 3x^2 - 4x - 1$$
 in $x^3 + x^2 - x - 1$;

б)
$$x^5 + x^4 - x^3 - 2x - 1$$
 и $3x^4 + 2x^3 + x^2 + 2x - 2$;

в)
$$x^6 - 7x^4 + 8x^3 - 7x + 7$$
 и $3x^5 - 7x^3 + 3x^2 - 7$;

г)
$$x^5 - 2x^4 + x^3 + 7x^2 - 12x + 10$$
 и $3x^4 - 6x^3 + 5x^2 + 2x - 2$;

д)
$$x^6 + 2x^4 - 4x^3 - 3x^2 + 8x - 5$$
 и $x^5 + x^2 - x + 1$;

e)
$$x^5 + 3x^4 - 12x^3 - 52x^2 - 52x - 12$$
 m $x^4 + 3x^3 - 6x^2 - 22x - 12$.

[4] Найдите общие корни многочленов $x^4 + 4x^3 - 5x + 2$ и $2x^4 + 8x^3 + 3x^2 - 7x + 1$.

5 Найдите рациональные корни многочленов:

a)
$$x^3 - 6x^2 + 15x - 14$$
;

6)
$$x^4 - 2x^3 - 8x^2 + 13x - 24$$
;

B)
$$x^5 - 7x^3 - 12x^2 + 6x - 36$$
;

r)
$$6x^4 + 19x^3 - 7x^2 - 26x + 12$$
;

д)
$$10x^4 - 13x^3 + 15x^2 - 18x - 24$$
;

e)
$$4x^4 - 7x^2 - 5x - 1$$
;

ë)
$$x^4 + 4x^3 - 2x^2 - 12x + 9$$
;

$$\times$$
 $(x^6 - 6x^5 + 11x^4 - x^3 - 18x^2 + 20x - 8)$

6 Разложите многочлен на неприводимые сомножители над полями рациональных, вещественных и комплексных чисел:

a)
$$x^4 - 1$$
;

б)
$$x^4 + 4x^3 + 11x^2 + 14x + 10$$
, $x_1 = -1 + i$ — корень многочлена;

в)
$$x^5 + x^4 + x^3 - x^2 - x - 1$$
, $x_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ — корень многочлена;

г)
$$x^4 + 6x^3 + 9x^2 + 100$$
, $x_1 = 1 + 2i$ — корень многочлена

$$\Delta$$
) $x^4 + 2x^2 + 4$;

e)
$$x^4 - 3x^2 + 9$$
;

$$\times$$
 $(x^4 - 2x^3 + 2x^2 + 38x - 39);$

3)
$$x^5 + 2x^4 - 20x^3 - 68x^2 - 41x + 30$$
;

и)
$$2x^6 - 14x^5 - x^4 + 45x^3 + 153x^2 + 729x - 2754$$
;

7 Докажите неприводимость над полем рациональных чисел многочленов:

a)
$$x^4 - 8x^3 + 12x^2 - 6x + 2$$
;

6)
$$x^5 - 12x^3 + 36x - 12$$
;

$$B^*$$
) $\chi^{105} - 9$;

$$r^*$$
) $x^{p-1} + x^{p-2} + \ldots + x + 1$, р — простое число;

д*)
$$(x-a_1)(x-a_2)\dots(x-a_n)-1$$
, где a_1,a_2,\dots,a_n — различные целые числа;

$$e^*$$
) $(x-a_1)^2\dots(x-a_n)^2+1$, где a_1,a_2,\dots,a_n — различные целые числа.

 $[7^*]$ Докажите, что всякий многочлен положительной степени с целыми коэффициентами имеет корень в поле \mathbb{Z}_p для бесконечного множества простых чисел p.

8 Найдите сумму квадратов и произведение всех корней многочлена:

a)
$$3x^3 + 2x^2 - 1$$
; 6) $x^4 - x^2 - x - 1$

9 Найдите сумму чисел, обратных всем корням многочлена:

a)
$$3x^3 + 2x^2 - 1$$
; 6) $x^4 - x^2 - x - 1$

10 Определите λ , если один из корней многочлена $x^3 - 7x + \lambda$ равняется удвоенному другому.

11 Сумма двух корней многочлена $2x^3 - x^2 - 7x + \lambda$ равна 1. Найдите λ .

12* Докажите, что при любом натуральном п многочлен $x^{3n} + x^{n+3} - x^n - 1$ делится на $x^2 + x + 1$

13* Разложите на неприводимые сомножители над полем комплексных чисел многочлен $x^3 - 9x^2 + 27x - 81$

[14] Чему равна сумма векторов, идущих из центра правильного многоугольника в его вершины?

15* Вычислите $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}$.

16* Докажите, что $\cos \frac{2\pi}{7}$ является корнем уравнения $8x^3 + 4x^2 - 4x - 1 = 0$ и найдите остальные его корни.