# Intro to ML

December 15<sup>th</sup>, 2021



### 110上期末教學意見調查

#### 令 教務處課務組



### 懶人包

2021.12.10~2022.01.10上午9:00

### 抽獎獎品有哪些?

| 品名                            | 數量 |
|-------------------------------|----|
| iPad Air 64GB Wi-Fi           | 1  |
| Apple Watch S7 41mm搭<br>配運動錶帶 | 4  |
| BIRDYEDGE G3 (輕量)電動<br>滑板車    | 4  |

填卷截止後一周內·以電腦亂數抽出獲獎 者並公布於課務組網頁。

### 求關注幫高調

懇請幫忙 分享宣傳



### 《班級鼓勵獎》獎金有多少?

填卷率高的班級發給鼓勵金(獲獎率約10%)。

首獎: 共1班 獎金 5,000元 貳獎: 共1班 獎金 4,000元 參獎: 共1班 獎金 3,000元 特別獎: 共15班 獎金各2,000元

★首獎、貳獎、參獎全校限各1班。

### 去哪查排名?

課務組網頁 每個工作天更新 最新排名



比賽得獎金! 加碼抽大獎!

#### CHAPTER 20:

# Design and Analysis of ML Experiments

## Algorithm Preference

- Criteria (Application-dependent):
  - Misclassification error, or risk (loss functions)
  - Training time/space complexity
  - Testing time/space complexity
  - Interpretability
  - Easy programmability
- Cost-sensitive learning

## Guidelines for ML experiments

- A. Aim of the study
- B. Selection of the response variable
- C. Choice of factors and levels
- D. Choice of experimental design
- E. Performing the experiment
- F. Statistical Analysis of the Data
- G. Conclusions and Recommendations

## Resampling and K-Fold Cross-Validation

- The need for multiple training/validation sets
   {X<sub>i</sub>,V<sub>i</sub>}<sub>i</sub>: Training/validation sets of fold i
- K-fold cross-validation: Divide X into k,  $X_i$ , i=1,...,K

$$\mathcal{V}_1 = \mathcal{X}_1$$
  $\mathcal{T}_1 = \mathcal{X}_2 \cup \mathcal{X}_3 \cup \cdots \cup \mathcal{X}_K$   
 $\mathcal{V}_2 = \mathcal{X}_2$   $\mathcal{T}_2 = \mathcal{X}_1 \cup \mathcal{X}_3 \cup \cdots \cup \mathcal{X}_K$   
 $\vdots$   
 $\mathcal{V}_K = \mathcal{X}_K$   $\mathcal{T}_K = \mathcal{X}_1 \cup \mathcal{X}_2 \cup \cdots \cup \mathcal{X}_{K-1}$ 

## Performance Measures

|            | Predicted class    |                    |
|------------|--------------------|--------------------|
| True Class | Yes                | No                 |
| Yes        | TP: True Positive  | FN: False Negative |
| No         | FP: False Positive | TN: True Negative  |

- Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives

- Precision = # of found positives / # of found= TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

# Plotting over Different Decision Thresholds



## ROC curve



### Precision and Recall



Precision: 
$$\frac{a}{a + b}$$

Recall: 
$$\frac{a}{a + c}$$

(a) Precision and recall



(b) Precision 
$$= 1$$



(c) Recall 
$$= 1$$