Übung 04

Bestandsmanagement unter Unsicherheit

Aufgabe 1: Bestandsgrößen im Zeitverlauf

Ein Händler für hochwertige Espressomaschinen nutzt zur Steuerung seines Lagers eine (s,q)-Politik mit kontinuierlicher Überwachung. Die Politik ist wie folgt definiert:

- Bestellpunkt (Meldebestand) \boldsymbol{s} : 100 Maschinen
- Bestellmenge q: 250 Maschinen
- Wiederbeschaffungszeit *L*: 3 Wochen (deterministisch)

Der Händler startet in Woche 0 mit den folgenden Beständen:

- Physischer Bestand I_0^P : 120 Maschinen
- Bestellbestand (offene Bestellungen) I_0^O : 0 Maschinen

Wöchentliche Nachfragen (deterministisch für diese Aufgabe):

Woche (t)	1	2	3	4	5	6
Nachfrage d_t	30	40	50	45	60	55

Ihre Aufgaben:

1. **Tabelle ausfüllen:** Füllen Sie die folgende Tabelle aus. Verfolgen Sie alle Bestandsgrößen über den Zeitraum von 6 Wochen. Eine Bestellung wird am Ende der Woche ausgelöst, in der der disponible Bestand den Meldebestand s erreicht oder unterschreitet. Der Wareneingang erfolgt dann genau L=3 Wochen später zu Beginn der Woche.

Woche (t)	Nach-frage d_t	Disp. Bestand (Anfang)	Bestel- lung? (Menge)	Disp. Bestand (Ende)	Phys. Bestand (Ende)	Bestellbe- stand (Ende)	Fehlbe- stand (Ende)
0	-	-	-	120	120	0	0
1	30	120	?	?	?	?	?
2	40	?	?	?	?	?	?
3	50	?	?	?	?	?	?
4	45	?	?	?	?	?	?
5	60	?	?	?	?	?	?
6	55	?	?	?	?	?	?

Aufgabe 2: Sicherheitsbestand und Servicegrade

Ein Online-Händler für ein populäres Smartphone-Modell möchte seinen Lagerbestand optimieren. Die wöchentliche Nachfrage ist annähernd normalverteilt mit einem **Mittelwert von 50 Stück** und einer **Standardabweichung von 15 Stück**. Die Wiederbeschaffungszeit vom Hersteller beträgt konstant **4 Wochen**. Der Händler nutzt eine Politik der kontinuierlichen Überprüfung.

Ihre Aufgaben:

- 1. **Mittelwert und Standardabweichung:** Berechnen Sie den Mittelwert und die Standardabweichung der Nachfrage während der Wiederbeschaffungszeit (dem Risikozeitraum).
- 2. **Bestellpunkt und Sicherheitsbestand:** Der Händler strebt einen α -Servicegrad (Zyklus-Servicegrad) von 99% an. Das bedeutet, die Wahrscheinlichkeit eines Fehlbestands während eines Bestellzyklus soll nur 1% betragen. Welcher Bestellpunkt (reorder point) s muss gewählt werden? Wie hoch ist der resultierende Sicherheitsbestand?
- 3. **Erwartete Fehlmenge:** Gegeben der Bestellpunkt s aus Teil 2: Berechnen Sie die erwartete Fehlmenge pro Bestellzyklus E(B). Nutzen Sie dafür die standardisierte Einheiten-Verlustfunktion, die approximiert werden kann als $\phi(z)-z(1-\Phi(z))$, wobei z der Sicherheitsfaktor ist und $\phi(z)$ bzw. $\Phi(z)$ die Dichte- bzw. Verteilungsfunktion der Standardnormalverteilung sind.
- 4. **Servicegrad:** Wenn der Händler eine feste Bestellmenge von q = 500 Stück verwendet, welchen β -Servicegrad (Mengen-Servicegrad) erreicht er mit seiner Politik?

Aufgabe 3: Diskrete Nachfrage und Faltung

Ein kleiner Kiosk verkauft eine spezielle importierte Limonade. Die tägliche Nachfrage ist nicht normalverteilt, sondern folgt einer einfachen diskreten Verteilung:

Nachfrage (D) pro Tag	0 Flaschen	1 Flasche	2 Flaschen
Wahrscheinlichkeit P(D)	0.2	0.6	0.2

Die Wiederbeschaffungszeit beträgt genau 2 Tage.

Ihre Aufgaben:

- 1. Wahrscheinlichkeitsverteilung: Leiten Sie die Wahrscheinlichkeitsverteilung für die Gesamtnachfrage Y_2 über den Risikozeitraum von 2 Tagen her. (Tipp: Nutzen Sie die Faltung der Verteilung mit sich selbst).
- 2. **Fehlbestandswahrscheinlichkeit:** Wenn der Kioskbesitzer einen Bestellpunkt von s=3 Flaschen festlegt, wie hoch ist die Wahrscheinlichkeit, dass es zu einem Fehlbestand kommt (d.h. der α -Servicegrad nicht eingehalten wird)?
- 3. **Erwartete Fehlmenge:** Berechnen Sie die erwartete Fehlmenge E(B) für den Bestellpunkt s=3.