UBMK'21

Deep Learning Based Topic Classification for Sensitivity Assignment to Personal Data

- Dr Apdullah Yayık*, Huawei Turkey R&D Center
- Hasan Apik, Mobildev
- Dr Ayşe Tosun, Istanbul Technical University

^{*} former Mobildev employee

Introduction

- Article 6 in PDPR defines a special category of personal data that reveal the tendency of a religion, a belief, a sexual choice, the state of health, or convictions for any crime.
- By this definition, topic of a textual content directly affects severity of personal data in its context.
- We aim to model non-linear relations in Turkish textual contents through an expanded dataset to predict their topic.
- The model is deployed inside our existing personal data exploration tool,
 Datamin.

Datamin

- Al-driven solution to provide PDPR compliance.
- Detection of 77 number personal entity types through regex, look-up tables and Bi-LSTM-based named entity recognition on over 30 file extensions.
- Person-based grouping that intends to associate personal data entities with their belongings.

finance

IBAN no
tax no
bank credit card number
bank credit number
bank customer number
bank account number
policy number
bank name
insurance company
central registry system no
credit number
bank name
customer number

bank name
policy number
insurance company
bank account number
bank branch name
bank branch code
bank name

health

blood group drug disease organization health

contact

phone number home phone number mobile e-mail IMEI number tel number (fax) address address no

location

cyber operation security ip address (v4) ip address (v6)

profession

university name primary school high school diploma number graduated program education type class number studying program

id

id number human name surname human name surname father name mother name date of birth place of birth registered province registered distinct sub-distinct driving license document no paper no register no class passport no mother maiden name

religious

gender

religious tendency

volume no

household no

id card serial no

other

vehicle plate no organisation municipality institution industry service military status exemption postpone demobilization marriage date divorce date

marketing

organisation accommodation restaurant travel mall

criminal offence

record achieve record

Extending Datamin

 Sensitivity assignment module, developed in this study, assigns a high-sensitivity to the personal data entities only supposed they appear in the textual context whose topic is religion, justice, or health.

Dataset and Cleaning Operations

- The dataset released by Yıldırım et al. was expended by adding instances of health, religion, and justice.
- 31K instances each of which are formed by paragraphs or sentences, and contains a total of 6M words 30K of which are unique.

Class	number of	words			
	instances	number of total	number of unique	mean ± ste	
Politics	2549	652K	2522	255.67±4.06	
Economy	3962	912K	3704	230.20 ± 2.83	
Culture	1852	378K	1551	204.10 ± 4.15	
Health	3078	540K	2892	175.20 ± 2.82	
Sport	10679	1.6M	10149	157.16 ± 1.30	
Technology	1471	246K	1339	167.00 ± 3.24	
Religion	4914	68K	4645	13.80 ± 0.12	
Justice	2547	50K	2417	20.00 ± 0.33	

Models, Fasttext

- Trains a logistic regression with minimizing negative likelihood through the generic stochastic gradient descent algorithm (Ir=0.7)
- Represents the inputs as the average of the n-gram word vectors (100 dimension)
- Has hierarchical softmax layers.

Models, BERT and BERTurk

- Trained by concurrently optimizing 2 loss functions for the following tasks:
 - predict masked language model
 - predict consecutive sentences in the given textual content.
- Represents words
 - Segmentation, position and token embeddings
- Has 12 transformer blocks in 12 attention heads, and 768 hidden sizes.

Evaluation - 1

• 10% test (left), 20% test (right)

Model Precision		Recall	F1 Score	
fasttext	94.33 ± 0.99	95.20 ± 0.88	94.73 ± 0.67	
BERT-based BERTurk-based	93.25 ± 1.73 97.09 ± 0.96	93.59 ± 1.96 97.61 ± 0.75	93.29 ± 1.37 97.33 ± 0.77	

Model	Precision	Recall	F1 Measure
fasttext BERT-based BERTurk-based	93.47 ± 1.50	95.57 ± 2.26	94.37 ± 1.40
	93.85 ± 1.82	95.02 ± 1.27	94.31 ± 1.00
	97.27 ± 1.29	98.56 ± 0.28	97.88 ± 0.68

- median and average values of the performance measures are around 95%
- a recall rate between 70% and 85%
- a precision and F1-measure rate between 80% and 87%

Evaluation - 2

- Performance measures of the models are closer.
- Nemenyi and Mann-Whitnet posthoc testa are employed on model predictions
- BERT and fasttext models acts similarly at identifying the topic of a document.

Ratio	Post-Hoc	Model	fasttext	Bb	BTb
10 %	Nemenyi	fasttext	1		
		Bb	0.900	1	
		BTb	0.286	0.381	1
	Mann-Whitney	fasttext	1		
		Bb	0.606	1	
		BTb	0.046	0.1365	1
20 % -	Nemenyi	fasttext	1		
		Bb	0.517	1	
		BTb	0.411	0.900	1
	Mann-Whitney	fasttext	1		
		Bb	0.170	1	
		BTb	0.126	0.859	1

Train and Inference Resources

- Fasttext model
 - has almost 10X less memory-usage,
 - can be trained in almost 250X faster,
 - can make inference in almost 350X faster

		fasttext	BERT-based	BERTurk-based	
	duration	1 minute 35 sec	7 hour 45 minutes 56 sec	6 hours 15 minutes 32 sec	
Model Train	memory usage	1 GB	14 GB	9 GB	
	hardware	GPU Nvidia Tesla V4, 256 GB RAM			
	duration of an instance	1.6 ms	569 ms	615 ms	
Model	hardware	CPU 8 Core, 16 GB RAM			
Test Execution	model size	6.4 MB	438 MB	442 MB	
	memory usage	12 MB	987 MB	1.1 GB	
	CPU level	1	46	52	

Discussion and Future Work

• Fasttext model is integrated to Datamin product since low resource usage in every steps of its ML life-cycle.

References

- [1] M. Amasyalı and T. Yıldırım, "Otomatik haber metinleri sınıflandırma," SIU 2004, pp. 224–226, 2004.
- [2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding," *arXiv* preprint arXiv:1810.04805, 2018.
- [3] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, "Bag of tricks for efficient text classification," arXiv preprint arXiv:1607.01759, 2016.

