Compilaa

Análisis Léxico Rec.

Patrones de lexemas

Figura 3.10: Una gramática para las instrucciones de bifurcación

```
\begin{array}{lll} \textit{digitos} & \rightarrow & \texttt{[0-9]} \\ \textit{digitos} & \rightarrow & \textit{digito}^+ \\ \textit{numero} & \rightarrow & \textit{digitos} \, (. \, \textit{digitos})? \, (\, \texttt{E} \, \texttt{[+-]}? \, \textit{digitos} \,)? \\ \textit{letra} & \rightarrow & \texttt{[A-Za-z]} \\ \textit{id} & \rightarrow & \textit{letra} \, (\, \textit{letra} \, | \, \textit{digito} \,)^* \\ \textit{if} & \rightarrow & \texttt{if} \\ \textit{then} & \rightarrow & \texttt{then} \\ \textit{else} & \rightarrow & \texttt{else} \\ \textit{oprel} & \rightarrow & < \, | \, > \, | \, < = \, | \, > = \, | \, = \, | \, < > \end{array}
```

Figura 3.11: Patrones para los tokens del ejemplo 3.8

$$ws \rightarrow (blanco \mid tab \mid nuevalinea)^+$$

Tokens, patrones y valores

LEXEMAS	NOMBRE DEL TOKEN	Valor del atributo
Cualquier ws	<u> </u>	_
if	if	2-1
Then	then	(i.—, i
else	else	(i—
Cualquier id	id	Apuntador a una entrada en la tabla
Cualquier numero	numero	Apuntador a una entrada en la tabla
<	oprel	LT
<=	oprel	LE
=	oprel	EQ
<>	oprel	NE
>	oprel	GT
>=	oprel	GE

Figura 3.12: Tokens, sus patrones y los valores de los atributos

Automa

Diagramas de transición

Diagrama de transición

- Un diagrama de transición es la representación gráfica de un patrón o expresión regular
- Está formado de nodos o círculos llamados estados
- Cada estado es una condición derivada del lexema
- Cada estado se conecta a otro a través de líneas etiquetadas con símbolos
- Un diagrama posee un estado de inicio y estados de finalización o aceptación.

Diagrama de transición

Figura 3.13: Diagrama de transición de estados para oprel

identificadores

Figura 3.14: Un diagrama de transición de estados para identificadores (id) y palabras clave

Figura 3.15: Diagrama de transición hipotético para la palabra clave then

Números sin signo

Figura 3.16: Un diagrama de transición para los números sin signo

Delimitador

Figura 3.17: Un diagrama de transición para el espacio en blanco

Autómatas Finitos

Autómatas finitos

- Un autómata finito es un reconocedor de cadenas y pueden de tipo AFN o AFD
- Un AFN
 - No tiene restricciones en las etiquetas, incluye ε
 - Son fáciles de generar y difíciles de programar
- Un AFD
 - Limita las etiquetas de salida de los estados a una. No existe ϵ .
 - Son fáciles de programar

AFN

• Posee:

- Es un conjunto de estados S
- Un conjunto de símbolos de entrada Σ donde ϵ no pertenece a Σ
- Una función de transición para cada estado y para cada símbolo Σ U $\{\epsilon\}$
- Un estado So de S que es el estado inicial
- Un conjunto de estados F, suconjunto de S, que representan los estados finales o de aceptación

AFN

Figura 3.24: Un autómata finito no det

ESTADO	a	b	ϵ
0	$\{0,1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

Figura 3.25: Tabla de transición para el AFN de la figura 3.24

Ejercicios

- Cómo sería el AFN que reco
 - -a|(ab+)
 - $bc|c^*$
 - -(a|b)*c|b
 - (abb|bba)*
 - a*b*a*
 - aa*|bb*

Figura 3.26: AFN que acepta a **aa***|**bb***

AFN

• ¿Qué cadenas reconoce?

Figura 3.30: AFN para el ejercicio 3.6.4

Figura 3.29: AFN para el ejercicio 3.6.3

AFD

- Es un caso especial de AF donde
 - Cada estado tiono un colo doctino con la misma eticueta
 - No hay é∣

Figura 3.36: Resultado de aplicar la construcción de subconjuntos a la figura 3.34

Programación de un AFD

AFN a partir de una exp. regular

Algoritmo de McNaughton-Yamada-Thompson

 $-\epsilon$

Si N(s) y N(t) son autómatas pa entonces s|t

Figura 3.40: AFN para la unión de dos expresiones regulares

AFN a partir de una exp. regular

Para r=st se tiene

– Para r=s*

Figura 3.42: AFN para el cierre de una expresión regular

Ejercicio

- Obtenga el AFN-€ de la expresión
 - (a|b)b
 - -ab*(a|b)
 - -(a|b)*abb

Ejercicios

- En el diseño de su lenguaje, incluye identificadores, números al menos una sentencia condicional y un ciclo. Elabore AFN que reconozca todos los lexemas de su lenguaje y obtenga los AFD.
- Identificadores
- Números
- Palabras reservadas
- operadores

Referencias

- Aho,
- Imágenes
 - Elaboración propia
 - Aho/Setti Text book

Lexemas y gramáticas

Lexemas

Tokens

Persona come platillo

• La **gramática** sería

Sentencia
Persona Accion Platillo

Persona □ Hugo | Paco | Luis

Platillo □ manzana | lechuga | jitomate

Accion □ come | elige

