The next AMPLab: Real-time Intelligent Secure Execution

Ion Stoica
October 26, 2016

Berkeley's AMPLab

2011 - 2016

- Mission: "Make sense of big data"
- 8 faculty, 60+ students

Governmental and industrial founding

AMPLab Goal and Impact

Goal: Next generation of open source data analytics stack for industry & academia Berkeley Data Analytics Stack (BDAS)

What is next?

databricks

RISE: Real-time Intelligent Secure Execution

RISELab

From live data to real-time decisions

AMPLab

From batch data to advanced analytics

Why?

Data only as valuable as the decisions it enables

Forrester's 2016 Predictions: Turn Data Into Insight And Action

Posted by Brian Hopkins on November 9, 2015

Why?

Data only as valuable as the decisions it enables

What does this mean?

- Faster decisions better than slower decisions
- Decisions on fresh data better than decisions on stale data
- Decisions on personalized data better than on generic data

Goal

Real-time decisions

decide in ms

on live data

the current state of the environment

with strong security

privacy, confidentiality, integrity

Typical decision system

Why is it hard?

Want high quality decisions

- Sophisticated, e.g., fraud, forecast, fleet of drones
- Accuracy, low false positives and negatives
- Robust to noisy and unforseen data

Want low latency for both updates and decisions

Want strong security: privacy, confidential, integrity

Example: Zero-time defense

Problem: zero-day attacks can compromise millions of hosts in seconds

Solution: analyze network flows to detect attacks and patch hosts/software in real-time

Intermediate data: create attack model

• Decision: detect attack, patch

Quality	sophisticated, accurate, robust
Latency	update (sec) / decision (ms)
Security	privacy (encourage users to share logs), integrity

Application	Quality	Latency		Coougity
Application		Update	Decision	Security
Zero-time defense	sophisticated, accurate, robust	sec	ms	privacy, integrity
Parking assistant	sophisticated, robust	sec	sec	privacy
Disease discovery	sophisticated, accurate	hours	sec/min	privacy, integrity
IoT (smart buildings)	sophisticated, robust	min/hour	sec	privacy, integrity
Earthquake warning	sophisticated, accurate, robust	min	ms	integrity
Chip manufacturing	sophisticated, accurate, robust	min	sec/min	confidentiality, integrity
Fraud detection	sophisticated, accurate	min	ms	privacy, integrity
"Fleet" driving	sophisticated, accurate, robust	sec	sec	privacy, integrity
Virtual companion	sophisticated, robust	min/hour	sec	integrity
Video QoS at scale	sophisticated	min	ms/sec	privacy, integrity

Challenges

RISE Lab

Automated decisions on live data are hard

Real-time, sophisticated decisions that guarantee worst-case behavior on noisy and unforseen live data

Poor security: exploits are daily occurrences

Ensure privacy and integrity without impacting functionality

One-off solutions, expensive, slow to build

General platform:

Secure Real-time Decision Stack

Research directions

Systems: 100x lower latency, 1,000x higher concurrency than today's Spark

Machine learning: Robust, on-line ML algorithms

Security: achieve privacy, confidentiality, and integrity without impacting performance or functionality

Early work

Drizzle

Opaque

Streaming

Micro-batching vs. record-at-a-time

Micro-batching (e.g., Spark) inherits batch's properties

- fault-tolerance
- straggler mitigation
- optimizations
- unification with other libraries

Record-at-a-time (e.g., Storm, Flink), typically lower latency

Yahoo's streaming benchmark

Input: 20M JSON ad-events / second, 100 campaigns

Output: ad counts per campaign over a 10sec window

Latency: (end of window) – (time last event was processed)

SLA: 1sec

Findings: Storm, Flink provide indeed lower latency than Spark

Drizzle

Goal: reduce Spark streaming latency by at least 10x

Key observation: consecutive iterations use same DAG

Solution: push scheduling decisions to workers

Latency

Latency

Latency, w/ ReduceBy optimization

Latency, w/ ReduceBy optimization

four nines SLA: 8.6 sec per day exceeding SLA

Early results

Drizzle

Opaque

State-of-the-art security today

Authentication, encryption at-rest and in-motion

Not enough if OS or hypervisor compromised, and attacker get root access

State-of-the-art security today

Authentication, encryption at-rest and in-motion

Not enough if attacker can observe network and memory access patters

Opaque

Leverage Intel's SGX: hardware enclave Implement secure distributed relational algebra

databricks

Opaque: two modes

Encryption mode

- Protect against compromised software (e.g., OS)
- Full data encryption, authentication, and computation verification in hardware enclave

Oblivious mode

Additionally, hide data access pattern

Opaque: Big Data Benchmark

Opaque: Big Data Benchmar Encrypted operators implemented in C++ 100 SparkSQL Opaque encryption Opaque oblivious 10 Runtime (s) 0.1

Query 2

0.01

Query 1

Query 3

Opaque: Big Data Benchmar

Up to 100x slower but 1,000x faster than state-of-the-art

Next AMPLab: RISELab

Goal: develop Secure Real-time Decision Stack, an open source platform, tools and algorithms for real-time decisions on live data with strong security

Already promising results

Expect much more over the next five years!

Thank you

databricks

AMPLab alumni presenting here

Example: "Fleet" driving

Problem: suboptimal driving decisions

Solution: collect & leverage info from other cars and drivers in real-time

 Intermediate data: automatically annotate maps, actions of other drivers

Decision: avoid obstacles, congestions

Quality	sophisticated, accurate, noise tolerant
Performance	sec (decision) / sec (update)
Security	privacy, data integrity

Not only hypothetical

Attacks getting root access by exploiting OS/DBs vulnerabilities

THE WALL STREET JOURNAL.

BUSINESS

Anthem: Hacked Database Included 78.8 Million People

Health insurer says data breach affected up to 70 million Anthem

members

Conficker Showdown: No End In Sight

Reinfected machines likely part of the 5.5 to 6 million-strong Conficker headcount

NEWS

Hackers gain root access to WordPress servers

Attacks exploiting access pattern leakages

Observing and Preventing Leakage in MapReduce*

Olga Ohrimenko Microsoft Research oohrim@microsoft.com Christos Gkantsidis

Microsoft Research

Manuel Costa Microsoft Research manuelc@microsoft.com

Markulf Kohlweiss Microsoft Research christos.gkantsidis@microsoft.com markulf@microsoft.com

Cédric Fournet Microsoft Research fournet@microsoft.com

Divya Sharma Carnegie Mellon University divvasharma@cmu.edu

Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating Systems

Yuanzhong Xu The University of Texas at Austin yxu@cs.utexas.edu

Weidong Cui Microsoft Research wdcui@microsoft.com

Marcus Peinado Microsoft Research marcuspe@microsoft.com

