Autoencoders

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

> Mahsa Yazdani Arian Amani

The Power Of Unsupervised Learning

- Huge datasets compared to supervised learning (No need for labeling)
- Can find previously unknown patterns in data that are impossible with supervised learning

Figure: Types of Machine learning: Deep learning (supervised and unsupervised learning)(Jones [2017]), Source

- Compression:
 - ▶ AEs can compress our input into a lower dimensional vector and try to reconstruct the original input from that vector

Figure: Source

- Dimensionality Reduction:
 - ► AEs can perform dimensionality reduction

Figure: Source

Image coloring and noise reduction

IMAGE COLORING

Before After

IMAGE NOISE REDUCTION

Before

After

Figure: Source

Super-Resolution

Figure: Source

What is an Autoencoder?

- An autoencoder is a type of artificial neural network, capable of learning a low dimensional representation of the input data (codings), without supervision (unlabeled training data unsupervised learning)
- Autoencoders take an input *X* and try to predict *X*. We use a bottleneck layer with a smaller dimension compared to the input, to use as the coding.

Figure: Schematic structure of an autoencoder with 3 fully connected hidden layers. The code (z) is the most internal layer, Source

Autoencoders: Structure

- Encoder: compress input into a latent-space of usually smaller dimension. h = f(x)
- Decoder: reconstruct input from the latent space. r = g(f(x)) with r as close to x as possible

- Autoencoders can
 - act as feature detectors
 - be used for unsupervised pretraining of deep neural networks

Autoencoders can be used as generative models. (will be discussed more later in this chapter.)

Watermark removal

Noise reduction

Stacked Autoencoders

- Autoencoders can have multiple hidden layers. In this case they are called *stacked* autoencoders (or *deep autoencoders*).
- Adding more layers helps the autoencoder learn more complex codings. but be careful about overfitting!

Autoencoders & Images

Are normal Autoencoders suitable for working with images?

Autoencoders & Images

Convolutional Autoencoders

Denoising Autoencoders

- Another way to force the autoencoder to learn useful features is to add noise to its inputs.
- Denoising autoencoders train to minimize the loss between x and g(f(x+w)), where w is random noise.
- Denoising autoencoders, with Gaussian noise (left) or dropout (right):

Denoising Autoencoders

A few noisy images (with half the pixels turned off), and the images reconstructed by the dropout-based denoising autoencoder. Notice how the autoencoder guesses details that are actually not in the input, such as the top of the white shirt (bottom row, fourth image).

Denoising Autoencoders

Intuitively, a denoising autoencoder learns a projection from a neighborhood of our training data back onto the training data.

Autoencoder Generative Models

How can we generate **NEW** data with Autoencoders??

hint: Autoencoder learns the feature space!

Walking through an example

We want to reconstruct some shapes.

Walking through an example

Not all of the points in latent space have meaningful reconstructions.

Walking through an example

What we want is something like the following picture. So that with sampling from the latent space, we can generate new shapes.

Variational Autoencoders

instead of directly producing a coding for a given input, the encoder produces a mean coding μ and a standard deviation σ . The actual coding is then sampled randomly from a Gaussian distribution with mean μ and standard deviation σ

Variational Autoencoders

Test

- One
 - One
 - Two
 - ▶ Three
- For two-dimensional tensors, we have a corresponding sum with indices (a, b) for f and (i a, j b) for g, respectively:

$$(f * g)(i,j) = \sum_{a} \sum_{b} f(a,b)g(i-a,j-b)$$

It is given by,

$$w_{t+1} = w_t - \left(\alpha_t / \sqrt{(v_t)}\right) + e * (\delta L / \delta w_t)$$

where,

$$v_t = \beta * v_t + (1 - \beta) * (\delta L / \delta w_t)^2$$

Image References

- https://lilianweng.github.io/posts/2018-08-12-vae/
- https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18
- Aurelien Geron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd. ed.). O'Reilly Media, Inc.
- https://github.com/wojciechmo/vae
- https://ai.googleblog.com/2017/08/making-visible-watermarks-more-effective.html
- https://medium.com/@harishr2301/denoising-autoencoders-996e866e5cd0
- https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787121089/4/ch04lvl1sec51/setting-up-stacked-autoencoders
- https://www.analyticsvidhya.com/blog/2021/01/auto-encoders-for-computer-vision-an-endless-world-of-possibilities/
- https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763
- https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf
- https://towardsdatascience.com/understanding-variational-autoencoders-vaesf70510919f73

References

- Aurelien Geron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd. ed.). O'Reilly Media, Inc.
- https://www.cs.toronto.edu/ rgrosse/courses/csc321 2017/slides/lec20.pdf
- https://www.math.purdue.edu/ buzzard/MA598-Spring2019/Lectures/Lec16%20-%20Autoencoders.pptx
- http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture11.pdf

Thank You!

Any Question?