Recit-10

December 14, 2020

Definition

A context-free grammar is in Chomsky normal form if all productions are of the form

$$A \rightarrow BC$$

or

$$A \rightarrow a$$

where $A, B, C \in V$ and $a \in T$.

Q1) Convert the following CFG to Chomsky Normal Form;

$$S \rightarrow ASB$$

$$A o aAS|a|\epsilon$$

$$B \rightarrow SbS|A|bb$$

Eliminate ϵ productions, $A \rightarrow \epsilon$;

$$S \rightarrow ASB|SB$$

$$A \rightarrow aAS|a|aS$$

$$B \rightarrow SbS|A|bb|\epsilon$$

Next eliminate $B \to \epsilon$;

$$S \rightarrow ASB|SB|AS|S$$

$$A \rightarrow aAS|a|aS$$

$$B \rightarrow SbS|A|bb$$

Recall

Algorithm for computing the CNF of a grammar G;

- eliminate (a) epsilon productions, (b) unit productions, (c) useless symbols (first non generating then non reachable).
- ② For every production including a terminal, call t, replace t symbol with a variable G_t that generates corresponding the terminal. And introduce the production $G_t \rightarrow t$.
- ③ Replace every production of the type $A \rightarrow B_1B_2...Bn$ for $n \geq 3$ with the productions: $A \rightarrow B_1C_1$, $C_1 \rightarrow B_2C_2,..., C_{n-2} \rightarrow B_{n-1}B_n$ where C_i , i = 1,...,n-2 are new variables.

3/14

Next, remove all unit rules! Begin by removing $B \rightarrow A$;

$$S \rightarrow ASB|SB|AS|S$$

$$A \rightarrow aAS|a|aS$$

$$B \rightarrow SbS|aAS|a|aS|bb$$

We can directly eliminate $S \rightarrow S$;

$$S \rightarrow ASB|SB|AS$$

$$A \rightarrow aAS|a|aS$$

$$B \rightarrow SbS|aAS|a|aS|bb$$

Recall

Algorithm for computing the CNF of a grammar G;

- eliminate (a) epsilon productions, (b) unit productions, (c) useless symbols (first non generating then non reachable).
- ② For every production including a terminal, call t, replace t symbol with a variable G_t that generates corresponding the terminal. And introduce the production G_t → t.
- ⓐ Replace every production of the type $A \rightarrow B_1B_2...Bn$ for $n \geq 3$ with the productions: $A \rightarrow B_1C_1$, $C_1 \rightarrow B_2C_2$, ..., $C_{n-2} \rightarrow B_{n-1}B_n$ where C_i , i = 1, ..., n-2 are new variables.

Replace each non terminal t with variables G_t and introduce the rule $G_t \rightarrow t$;

$$S
ightarrow ASB|SB|AS$$
 $A
ightarrow G_aAS|G_a|G_aS$ $B
ightarrow SG_bS|G_aAS|G_a|G_aS|G_bG_b$ $G_a
ightarrow a$ $G_b
ightarrow b$

Recall

Algorithm for computing the CNF of a grammar G;

- eliminate (a) epsilon productions, (b) unit productions, (c) useless symbols (first non generating then non reachable).
- 2 For every production including a terminal, call t, replace t symbol with a variable G_t that generates corresponding the terminal. And introduce the production $G_t \rightarrow t$.
- $\begin{array}{l} \textbf{ 3} \quad \text{Replace every production of the type } A \rightarrow B_1B_2...Bn \\ \text{ for } n \geq 3 \text{ with the productions: } A \rightarrow B_1C_1, \\ C_1 \rightarrow B_2C_2..., C_{n-2} \rightarrow B_{n-1}B_n \text{ where } C_i, \\ i = 1,...,n-2 \text{ are new variables.} \end{array}$

5 / 14

Step 3)

$$S
ightarrow AC_1|SB|AS$$
 $A
ightarrow G_aC_2|G_a|G_aS$
 $B
ightarrow SC_3|G_aC_2|G_a|G_aS|G_bG_b$
 $G_a
ightarrow a$
 $G_b
ightarrow b$
 $C_1
ightarrow SB$
 $C_2
ightarrow AS$
 $C_3
ightarrow G_bS$

Replace each non terminal t with variables G_t and introduce the rule $G_t \rightarrow t$;

$$S
ightarrow ASB|SB|AS$$
 $A
ightarrow G_aAS|G_a|G_aS$ $B
ightarrow SG_bS|G_aAS|G_a|G_aS|G_bG_b$ $G_a
ightarrow a$ $G_b
ightarrow b$

$$S
ightarrow AC_1|SB|AS$$
 $A
ightarrow G_aC_2|G_a|G_aS$
 $B
ightarrow SC_3|G_aC_2|G_a|G_aS|G_bG_b$
 $G_a
ightarrow a$
 $G_b
ightarrow b$
 $C_1
ightarrow SB$
 $C_2
ightarrow AS$

 $C_3 \rightarrow G_h S$

Definition

A context-free grammar is in Chomsky normal form if all productions are of the form

$$A \rightarrow BC$$

or

$$A \rightarrow a$$

where $A, B, C \in V$ and $a \in T$.

Recit-10

CYK algorithm checks the membership of a given string w for a given grammar G as follows;

Recall

- Algorithm works only if the grammar is in CNF.
- ② Given $w = a_1 a_2 a_3 ... a_n$, define $w_{ij} = a_i ... a_j$.
- **3** Define subsets of V, $V_{ij} = \{A \in V : A \Rightarrow^* w_{ij}\}$

Q2) Given the string w = aabbb and the grammar G;

$$S \rightarrow AB$$

 $A \rightarrow BB|a$
 $B \rightarrow AB|b$

check if $w \in L(G)$.

$$V_{ij} = \bigcup \{X : X \to YZ \text{ s.t. } Y \in V_{ik}, Z \in Vk + 1, j\} \text{ for } k = i, ..., j - 1$$

Recit-10 December 14, 2020 8 / 14

$$S \rightarrow AB$$

 $A \rightarrow BB|a$

B o AB|b

Recall

- Algorithm works only if the grammar is in CNF.
- ② Given $w = a_1 a_2 a_3 ... a_n$, define $w_{ij} = a_i ... a_j$.
- **3** Define subsets of V, $V_{ij} = \{A \in V : A \Rightarrow^* w_{ij}\}$

Similar to the first step analysis method; first define V_{ii} sets.

$$w_{11} = a$$
, $w_{22} = a$,
 $w_{33} = b$, $w_{44} = b$, $w_{55} = b$

$$V_{11} = A$$
, $V_{22} = A$,
 $V_{33} = B$, $V_{44} = B$, $V_{55} = B$

$$w_{12} = aa$$
, $w_{23} = ab$, $w_{34} = bb$, $w_{45} = bb$.

$$V_{12}=\{X:X o YZ,Y\in\{A\},Z\in\{A\}\}$$
, there is no AA in the rules. $V_{12}=\emptyset$

$$V_{23} = \{X : X \rightarrow YZ, Y \in \{A\}, Z \in \{B\}\},$$
 since we have $S \rightarrow AB$ and $B \rightarrow AB$; $V_{23} = \{S, B\}$

Similarly;

$$V_{34} = \{A\}, \ V_{45} = \{A\}$$

$$w_{13} = aab, \ w_{24} = abb, \ w_{35} = bbb$$

$$V_{24} := V_{22}.V_{34} \cup V_{23}.V_{44}$$
 $\{X: X \to YZ, Y \in V_{22}, Z \in V_{34}\} =$ $= \{X: X \to YZ, Y \in \{A\}, Z \in \{A\}\} = \emptyset, \text{ no production for } AA.$ $\{X: X \to YZ, Y \in V_{23}, Z \in V_{44}\} =$ $= \{X: X \to YZ, Y \in \{S, B\}, Z \in V_{B}\} = \{A\} \text{ since } A \to BB, \text{ no production for } SB.$
$$V_{24} = \emptyset \cup \{A\} = \{A\}$$
 Similarly, $V_{13} = \{S, B\}$ $V_{35} = \{S, B\}$

$$w = aabbb$$

Similarly, you can find $V_{25} = \{S, B\}$, $V_{14} = \{A\}$

$$V_{15} := V_{14}.V_{55} \cup V_{13}.V_{45} \cup V_{12}.V_{35} \cup V_{11}.V_{25}$$

$${X:X \to YZ, Y \in V_{14}, Z \in V_{55}} =$$

$$= \{X: X \to YZ, Y \in \{A\}, Z \in \{B\}\} = \{S, B\}, \text{ since } S \text{ and } B \to AB.$$

$${X:X \to YZ, Y \in V_{11}, Z \in V_{25}} =$$

$$= \{X : X \to YZ, Y \in \{A\}, Z \in V_{S,B}\} = \{S,B\} \text{ since } S \text{ and } B \to AB,$$
 and no production for AS .

and no production for A5.

• • •

$$s \in V_{15}$$

DONE!
$$S \in V_{15}$$

Q3

Construct a PDA that accepts the languages of the following grammar. It is already in GNF.

$$S
ightarrow aABA|aBB$$
 $A
ightarrow bA|b$ $B
ightarrow cB|c$

Definition

A context-free grammar is said to be in Greibach normal form if all productions have the form

$$A \rightarrow \alpha x$$

where $a \in T$ and $x \in V^*$

$$S o aABA|aBB$$
 $A o bA|b$ $B o cB|c$ $Q=\{q_0,q_1\},\ \Sigma=\{a,b,c\},\ \Gamma=\{A,B\},\ F=\{q_1\}$ $\delta(q_0,a,e)=(q_1,ABA),\ \delta(q_0,a,e)=(q_1,BB)$ $\delta(q_1,b,A)=(q_1,A),\ \delta(q_1,b,A)=(q_1,e)$ $\delta(q_1,c,B)=(q_1,e)$