GANPAT UNIVERSITY

U.V.PATEL COLLEGE OF ENGINEERING 2CEIT401: OPERATING SYSTEM

ASSIGNMENT: 2 – APRIL 2023

- 1. What are the operations are performed on semaphore? write solution for readers- writers classic problem using semaphore.
- 2. What is the use of monitor? Discuss dining philosopher problem's solution using monitor.
- 3. What is semaphore? Write solution for bounded buffer producer-consumer problem using semaphore.
- 4. Define critical section. Discuss solution of Critical section problem.
- 5. Define Deadlock. Describe necessary conditions for the deadlock.
- 6. Describe the usage of resource allocation graph (RAG) with reference to deadlock of the system.
- 7. Draw the resource allocation graph of the system.

Allocation	Request
R1→P2, R1→P3,	P1→R1, P3→R2
R2→P1, R2→P4	

Will deadlock occurs or not? Consider two instances of each resource type R1 &R2.

8.

Consider the following snapshot of system.

Processes	Allocation				Max				Available				
	A	В	\mathbf{C}	D	\mathbf{A}	В	C	D	A	В	C	D	
PO	0	0	1	2	0	0	1	2	2	1	0	0	
P1	2	0	0	0	2	7	5	0					
P2	0	0	3	4	6	6	5	6					
P3	2	3	4	4	4	3	5	6					
P4	0	3	3	2	0	6	5	2					

Answer the following question using Banker's Algorithm:

- What is the content of matrix Need?
- ii) Is the system in safe state? If yes then write a safe sequence.
- iii) If a request from process P1 arrives for (0, 1, 0, 0) can the request granted immediately?
- 9. Explain paging with diagram.
- 10. Explain different paging implementation techniques.
- 11. Explain segmentation with paging.
- 12. Why there a need of virtual memory? Explain following terms:
- (i) Valid invalid bit
- (ii) COW
- (iii) Dirty bits
- (iv) Thrashing
- 13. Consider a system with byte-addressable memory, 32 bit logical addresses, 2 kilobyte page size and page table entries of 4 bytes each. The size of the page table in the system in megabytes is

- 14. Consider a single level paging scheme with a TLB. Assume no page fault occurs. It takes 9 ns to search the TLB and 100 ns to access the physical memory. If TLB hit ratio is 80%, the effective memory access time is _____ msec.
- 15. For given reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 apply FIFO, Optimal & LRU page replacement algorithms & analyze which is more efficient. Also calculate the page fault percentage in each.

Note: Assignment-2 is only for those students who will get less than 8 marks in second internal exam.