实验12-1 牙膏的销售量 (验证, 参见教材P325-331)

下面给出一组数据,其中:

第1列 销售周期;

第2列 某公司牙膏销售价格(元)x4;

第3列 其它厂家平均价格(元)x3;

第4列 广告费用(百万元)x₂;

第5列 价格差(元)x₁(x₃-x₄);

第6列 销售量(百万支)y。

存放在一个名为 mydata.m 的(数据) m 文件中。

· ca · m ·	17 (2011)	/			
1	3.85	3.80	5.50	-0.05	7.38
2	3.75	4.00	6.75	0.25	8.51
3	3.70	4.30	7.25	0.60	9.52
4	3.70	3.70	5.50	0	7.50
5	3.60	3.85	7.00	0.25	9.33
6	3.60	3.80	6.50	0.20	8.28
7	3.60	3.75	6.75	0.15	8.75
8	3.80	3.85	5.25	0.05	7.87
9	3.80	3.65	5.25	-0.15	7.10
10	3.85	4.00	6.00	0.15	8.00
11	3.90	4.10	6.50	0.20	7.89
12	3.90	4.00	6.25	0.10	8.15
13	3.70	4.10	7.00	0.40	9.10
14	3.75	4.20	6.90	0.45	8.86
15	3.75	4.10	6.80	0.35	8.90
16	3.80	4.10	6.80	0.30	8.87
17	3.70	4.20	7.10	0.50	9.26
18	3.80	4.30	7.00	0.50	9.00
19	3.70	4.10	6.80	0.40	8.75
20	3.80	3.75	6.50	-0.05	7.95
21	3.80	3.75	6.25	-0.05	7.65
22	3.75	3.65	6.00	-0.10	7.27
23	3.70	3.90	6.50	0.20	8.00
24	3.55	3.65	7.00	0.10	8.50
25	3.60	4.10	6.80	0.50	8.75
26	3.65	4.25	6.80	0.60	9.21
27	3.70	3.65	6.50	-0.05	8.27
28	3.75	3.75	5.75	0	7.67
29	3.80	3.85	5.80	0.05	7.93
30	3.70	4.25	6.80	0.55	9.26

实验要求:

- 1. 建立 mydata.m;
- 2. 绘制 y 对 x₁ 的散点图。(验证)

程序如下(运行结果与教材 327图1比较):

M=dlmread('mydata.m');%读取 ASCII 码文件

x1=M(:,5); y=M(:,6);plot(x1,y,'bo');

2. 确定 y 对 x_1 的的拟合,绘制散点图与拟合曲线组合图形。(验证) 从 y 对 x_1 的散点图可以发现,可用线性模型(直线)

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

来拟合(其中ε 是随机误差)。

程序如下(运行结果与教材 p327 图 1 比较):

clc;format short g;

M=dlmread('mydata.m');%读取 ASCII 码文件

x1=M(:,5); y=M(:,6);

plot(x1, y, 'bo');

b=regress(y,[ones(size(x1)),x1]); % b=[β0 β1]', 列向量

xx=sort(x1); %按升序排序

yy=[ones(size(xx)),xx]*b;

hold on;

plot(xx, yy, '-r');

hold off;

3. 绘制 y 对 x₂的散点图。(验证)

程序如下(运行结果与教材 p327 图 2 比较):

clc; format short g;

M=dlmread('mydata.m');%读取 ASCII 码文件

x2=M(:,4); y=M(:,6);

plot(x2,y,'bo');

4. 确定 y 对 x_2 的的拟合,绘制散点图与拟合曲线组合图形。(验证) 从 y 对 x_2 的散点图可以发现,可用二次函数模型

$$y = \beta_0 + \beta_1 x_2 + \beta_2 x_2^2 + \varepsilon$$

来拟合。程序如下(运行结果与教材 p327 图 2 比较):

clc;format short g;

M=dlmread('mydata.m');%读取 ASCII 码文件

x2=M(:,4); y=M(:,6);

plot(x2,y,'bo');

b=regress(y,[ones(size(x2)),x2,x2.^2]); % b=[β0 β1 β2]', 列向量

xx=sort(x2);

 $yy=[ones(size(xx)),xx,xx.^2]*b;$

hold on;

plot(xx,yy,'-r');

hold off:

5. y对 x₁, x₂ 的回归模型及其求解,销售量预测。(验证)

综上得回归模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

变量 x_1, x_2 为回归变量,参数 $\beta_0, \beta_1, \beta_2, \beta_3$ 为回归系数。

程序如下(运行结果与教材 p328 表 2 比较和 p329 的相应结果比较):

clc;format compact;format short g;

M=dlmread('mydata.m');%读取 ASCII 码文件

x1=M(:,5); x2=M(:,4); y=M(:,6);

[b,bint,r,rint,stats]=regress(y,[ones(size(x1)),x1,x2,x2. 2],0.05);

disp('β 0,β 1,β 2,β 3 估计值 置信区间');

[b,bint]

R2=stats(1)

F=stats(2)

p=stats(3)

disp('销售量预测');

x1=0.2

x2=6.5

 $y=[1 x1, x2, x2^2]*b$

[提示]

多元线性回归函数调用格式:

[b,bint,r,rint,stats]=regress(y,x,alpha)

用本例说明, 多元回归模型为:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

输入:

y为n(=30)维列向量数据。

x 为对应于回归系数 (β₀, β₁, β₂, β₃)'的数据矩阵 [1 x_1 x_2 x_2 ²] (30×4 矩阵,第 1 列全 1)。

alpha 为置信水平(缺省时为 0.05)。

输出:

b 为 β = (β ₀, β ₁, β ₂, β ₃) '估计值, 4 维列向量。

bint为b的置信区间,4×2矩阵。

r 为残差 n (=30) 维列向量 y-xβ。

rint为r的置信区间,30×2矩阵。

stats 为回归模型的检验统计量,含 4 个值,第 1 个是回归方程的决定系数 R_2 (R 是相关系数),第 2 个是 F 统计值,第 3 个是与 F 统计量对应的概率值 p。

实验报告提交:

- 1. 实验要求1的运行结果。
- 2. 实验要求2的运行结果。
- 3. 实验要求3的运行结果。
- 4. 实验要求 4 的运行结果。
- 5. 实验要求5的运行结果。

实验12-2 牙膏的销售量——模型改进(验证)

仍使用实验 12-1 的数据。

实验要求:

1. y对 x₁, x₂的回归模型的改进和求解,销售量预测。(编程)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_1 x_2 + \varepsilon$$

参考实验 12-1 实验要求 5 的程序,编写一个类似的程序,运行结果与教材 p329 的表 3 及相关结果相比较。

2. 完全二次多项式模型(验证)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon$$

运行以下程序(参考教材 p332):

clear;clc;format compact;format short g;

M=dlmread('mydata.m');%读取 ASCII 码文件

x1=M(:,5); x2=M(:,4); y=M(:,6);

rstool([x1,x2],y,'quadratic')

得以下的交互画面。画面中的两个座标系给出y的估计值和预测区间。

用鼠标移动交互式画面中的十字线,或在图下方的窗口内输入,可改变 x₁ 和 x₂ 的数值。

改变 $x_1=0.2$, $x_2=6.5$, 观察窗口左边的 y 估计值和预测区间。

点击所得交互画面左下方的输出按钮 "Export",所得画面(导出到工作空间)第 1 个复选框是"将 拟合参数存到一个名为 beta 的 MATLAB 变量中",点击 OK。

在命令窗口提示符键入变量名 beta 将得到参数 $(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$ '的值。

实验报告提交:

- 1. 实验要求1的程序和运行结果。
- 2. 实验要求 2 的运行结果: 参数 $(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$ '的值。