IF3111 - Operasi Aljabar Relasional

Wikan Danar Departemen Teknik Informatika Institut Teknologi Bandung

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Relational Algebra

- Procedural language
- · Six basic operators
 - select
 - project
 - union
 - set difference
 - cartesian product
 - rename
- The operators take one or more relations as inputs and give a new relation as a result.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Select Operation

- Notation: $\mathbf{s}_{p}(\mathbf{r})$
- p is called the selection predicate
- Defined as:

$$\mathbf{S}_{p}(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of terms connected by : \land (and), \lor (or), \neg (not)

Each term is one of:

<attribute > op <attribute > or <constant >

• Example of selection: $\mathbf{S}_{branch-name = "Perryridge"}(account)$

 A
 B
 C
 D

 a
 a
 1
 7

 a
 b
 5
 7

 b
 b
 12
 3

 b
 b
 23
 10

Α	В	С	D
a	a	1	7
b	b	23	10

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional Page 3

op is one of: $=, \neq, >, \geq. <. \leq$

Project Operation

• Notation:

$$\Pi_{A1, A2, ..., Ak}$$
 (r)

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of *k* columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- E.g. To eliminate the $\it branch-name$ attribute of $\it account$ $\Pi_{\it account-number,\ \it balance}$ (account)

Relation r

Α	В	С
a	10	1
a	20	1
b	30	1
b	40	2

 $\prod_{A,C} (r)$

Α	C		Α	C
а	1	=	а	1
a	1		b	1
b	1		b	2
b	2			

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid.
 - 1. r, s must have the same arity (same number of attributes)
 - 2. The attribute domains must be *compatible* (e.g., 2nd column of *r* deals with the same type of values as does the 2nd column of *s*)
- E.g. to find all customers with either an account or a loan $\Pi_{customer-name}$ (depositor) $\cup \Pi_{customer-name}$ (borrower)

r	Α	В
	a	1
	a	2
	b	1

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Set Difference Operation

- Notation r − s
- · Defined as:

$$r - s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between *compatible* relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Cartesian-Product Operation

- Notation r x s
- · Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = AE$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

r	Α	В
	a b	1 2

C D E

a 10 a

b 10 a

b 20 b

g 10 b

С rx s a b a 1 b a g b 2 a b 2 b b b

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional Page 7

 $D \mid E$

10 a

10

20 b

10

10

10

20

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

$$\mathbf{r}_{x}(E)$$

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

$$r_{X(A1, A2, ..., An)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A1, A2,, An.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \ x \ s)$

r x s

Α	В	С	D	Ε
a	1	a	10	а
a	1	b	10	а
a	1	b	20	b
a	1	g	10	b
b	2	a	10	а
b	2	b	10	а
b	2	b	20	b
b	2	g	10	b

 $\sigma_{A=C}(r x s)$

Α	В	С	D	Ε
a	1	a	10	a
b	2	b	20	a
b	2	b	20	b

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Banking Example

- branch (branch-name, branch-city, assets)
- customer (customer-name, customer-street, customer-only)
- account (account-number, branch-name, balance)
- loan (loan-number, branch-name, amount)
- depositor (customer-name, account-number)
- borrower (customer-name, loan-number)

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 ________ IF3111 – Aljabar Relasional

Example Queries

• Find all loans of over \$1200:

 $\sigma_{amount > 1200}$ (loan)

 Find the loan number for each loan of an amount greater than \$1200

 $\prod_{loan-number} (\sigma_{amount > 1200} (loan))$

 Find the names of all customers who have a loan, an account, or both, from the bank

 $\Pi_{\it customer-name}$ (borrower) $\cup \Pi_{\it customer-name}$ (depositor)

 Find the names of all customers who have a loan and an account at bank.

 $\prod_{customer-name}$ (borrower) $\cap \prod_{customer-name}$ (depositor)

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Example Queries (Cont.)

• Find the names of all customers who have a loan at the Perryridge branch.

$$\prod_{customer-name} (\sigma_{branch-name="Perryridge"} \\ (s_{borrower.loan-number=loan.loan-number} (borrower x loan)))$$

Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

```
\begin{split} &\Pi_{customer-name} (\sigma_{branch-name = "Perryridge"} \\ &(\sigma_{borrower.loan-number = loan.loan-number} (borrower x loan))) &- \\ &\Pi_{customer-name} (depositor) \end{split}
```


IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Example Queries (Cont.)

• Find the names of all customers who have a loan at the Perryridge branch.

```
- Query 1

\Pi_{\text{customer-name}}(\sigma_{\text{branch-name}} = \text{"Perryridge"} (
\sigma_{\text{borrower.loan-number}}(\text{borrower x loan})))
- Query 2
\Pi_{\text{customer-name}}(\sigma_{\text{loan.loan-number}} = \text{borrower.loan-number} (
(\sigma_{\text{branch-name}} = \text{"Perryridge"} (\text{loan})) \times \text{borrower}))
```

- Find the largest account balance
 - Rename account relation as d

```
\Pi_{\textit{balance}}(\textit{account}) - \Pi_{\textit{account.balance}} (\sigma_{\textit{account.balance}} < \textit{d.balance} (\textit{account} \times r_{\textit{d}} (\textit{account})))
```


IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $-E_1 \cup E_2$
 - $-E_1-E_2$
 - $-E_1 \times E_2$
 - \mathbf{s}_{p} (E₁), P is a predicate on attributes in E₁
 - $\Pi_S(E_1)$, S is a list consisting of some of the attributes in E_1
 - $-\mathbf{r}_{x}(E_{1})$, x is the new name for the result of E_{1}

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Additional Operations

Some additional operations are defined that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- Assume:
 - r, s have the same arity
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

r	А	В
	α α β	1 2 1

s	А	В
	αβ	2 3

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Natural-Join Operation

- Notation: r ⋈ s
- Let r and s be relations on schemas R and S respectively.
 Then, r ⋈ s is a relation on schema R ∪ S obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where

r Ms

- t has the same value as t_r on r
- t has the same value as t_s on s

r	Α	В	С	D
	a	1	a	а
	b	2	g	а
	g a	4	$oldsymbol{g}{oldsymbol{b}}$	b
	a	1	$oldsymbol{g}{oldsymbol{b}}$	а
	d	2	b	b

B D E

1 a a
3 a b
1 a g
2 b d
3 b Î

С D Ε В a a a a a g a a g а a g g а d

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional Page 17

Example:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

Result schema = (A, B, C, D, E)

 $r \triangleright \triangleleft s$ is defined as:

$$\prod_{r,A, r,B, r,C, r,D, s,E} (\mathbf{O}_{r,B=s,B} \wedge_{r,D=s,D} (r \times s))$$

Division Operation

- Notasi: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where

-
$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

- $S = (B_1, ..., B_n)$
The result of $r \div s$ is a relation on schema
 $R - S = (A_1, ..., A_m)$

А	В		В		А
а	1	ĺ	1		а
a	2		2		b
a	2 3			l	
b	1		s		r÷ s
g	1				
d	1				
a b g d d d Î Î b	3				
d	3 4				
\hat{I}	6				
$\mid \widehat{I} \mid$	1				
b	2				

 $r \div s = \{ t \mid t \in \prod_{R-S}(r) \land \forall u \in s (tu \in r) \}$

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional Page 18

Property

•Let
$$q - r \div s$$

•Then q is the largest relation satisfying $q \times s \subseteq r$

Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let $S \subseteq R$

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r))$$

To see why

• $\prod_{R-S,S}(r)$ simply reorders attributes of r

• $\prod_{R-S}(\prod_{R-S}(r) \ge s) - \prod_{R-S,S}(r)$) gives those tuples t in $\prod_{R-S}(r)$ such that for some tuple $u \in s$, $tu \notin r$.

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - · a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$temp1 \leftarrow \prod_{R-S} (r)$$

$$temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$$

$$result = temp1 - temp2$$

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- May use variable in subsequent expressions.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Example Queries

• Find all customers who have an account from at least the "Downtown" and the Uptown" branches.

```
Query 1 \Pi_{\text{CN}}(\sigma_{\textit{BN="Downtown"}}(\textit{depositor} \ \textit{abdount})) \cap \\ \Pi_{\textit{CN}}(\sigma_{\textit{BN="Uptown"}}(\textit{depositor} \ \textit{abdount})) where \textit{CN} denotes customer-name and \textit{BN} denotes \textit{branch-name}. \text{Query 2} \Pi_{\textit{customer-name, branch-name}}(\textit{depositor} \ \textit{abdount}) \div \textbf{r}_{\textit{temp(branch-name)}}(\textit{("Downtown"), ("Uptown")}))
```


IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Extended Relational-Algebra-Operations

- Generalized Projection
- Outer Join
- Aggregate Functions

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Generalized Projection

• Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{\text{F1. F2. Fn}} (E)$$

- E is any relational-algebra expression
- Each of F_1 , F_2 , ..., F_n are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation *credit-info(customer-name, limit, credit-balance)*, find how much more each person can spend:

 $\Pi_{customer-name, \ limit-credit-balance}$ (credit-info)

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Aggregate operation in relational algebra

 $g_{1, G2, ..., Gn} g_{F1(A1), F2(A2), ..., Fn(An)} (E)$ - E is any relational-algebra

- expression
- G_1 , G_2 ..., G_n is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A_i is an attribute name

sum-C $g_{\text{sum(c)}}(r)$ 27

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Page 23

Result of aggregation does not have a name

Can use rename operation to give it a name

branch-name 9 sum(balance) as sum-balance (account)

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional Page 24

Uses null values:

- •null signifies that the value is unknown or does not exist
- •All comparisons involving *null* are (roughly speaking) **false** by definition.

Will study precise meaning of comparisons with nulls later

	Outer	Join		111.)	
loan			borr	ower	
loan-number	branch-name	amount	cus	tomer-name	loan-number
L-170	Downtown	3000	Jon	es	L-170
L-230	Redwood	4000	Smi	th	L-230
L-260	Perryridge	1700	Hay	es	L-155
loan 🖂 borrowe	er loan-numbe	r branch-	name	amount	customer-name
	L-170	Downtow	n	3000	Jones
	L-230	Redwood		4000	Smith
	L-260	Perryridg	е	1700	null
loan ⊃ ⊄bor	rower				_
loan-number	branch-name	amount	cus	tomer-name	
L-170	Downtown	3000	Jon	es	7
L-230	Redwood	4000	Smi	th	
L-260	Perryridge	1700	null		
L-155	null	null	Hay	es	

Contoh untuk left outer join dan full outer join

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving *null* is *null*.
- · Aggregate functions simply ignore null values
 - Is an arbitrary decision. Could have returned null as result instead.
 - We follow the semantics of SQL in its handling of null values
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
 - Alternative: assume each null is different from each other
 - Both are arbitrary decisions, so we simply follow SQL

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Null Values

- Comparisons with null values return the special truth value unknown
 - If false was used instead of unknown, then not (A < 5)would not be equivalent to A >= 5
- Three-valued logic using the truth value *unknown*:
 - OR: (unknown **or** true) = true, (unknown or false) = unknown (unknown **or** unknown) = unknown
 - AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
 - NOT: (not unknown) = unknown
 - In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating
- All these operations are expressed using the assignment operator.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query.

Delete all accounts at branches located in Needham.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Insertion

- To insert data into a relation, we either:
 - specify a tuple to be inserted
 - write a query whose result is a set of tuples to be inserted
- · in relational algebra, an insertion is expressed by:

$$r \leftarrow r \cup E$$

where r is a relation and E is a relational algebra expression.

• The insertion of a single tuple is expressed by letting *E* be a constant relation containing one tuple.

Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

$$r_1 \leftarrow (\sigma_{branch-name = Perryridge^-}(borrower \mid o \bowtie))$$

$$account \leftarrow account \cup \prod_{branch-name, account-number,200} (r_1)$$

$$depositor \leftarrow depositor \cup \prod_{customer-name, loan-number} (r_1)$$

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F1, F2, \dots, Fl_r} (r)$$

- Each F_i is either
 - the *i*th attribute of *r*, if the *i*th attribute is not updated, or,
 - if the attribute is to be updated F_i is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

$$account \leftarrow \quad \prod_{AN,\ BN,\ BAL^{-1.06}} (\sigma_{BAL>10000}(account)) \\ \quad \cup \quad \prod_{AN,\ BN,\ BAL^{-1.05}} (\sigma_{BAL\ \pounds10000}(account))$$

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Views

- In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual relations stored in the database.)
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

View Definition

 A view is defined using the create view statement which has the form

create view v as <query expression>

where <query expression> is any legal relational algebra query expression. The view name is represented by *v.*

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

View Examples

• Consider the view (named *all-customer*) consisting of branches and their customers.

create view all-customer as

$$\prod_{\textit{branch-name, customer-name}} (\textit{depositor} \quad \textit{ack} \textit{bunt})$$

$$\cup \prod_{\textit{branch-name, customer-name}} (\textit{borrower} \quad \textit{loak})$$

■ We can find all customers of the Perryridge branch by writing:

$$\prod_{\textit{branch-name}} (\sigma_{\textit{branch-name} = \text{``Perryridge''}}(\textit{all-customer}))$$

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Updates Through View

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.
- Consider the person who needs to see all loan data in the *loan* relation except *amount*. The view given to the person, *branch-loan*, is defined as:
 - create view branch-loan as $\prod_{\mathit{branch-name, loan-number}}$ (loan)
- Since we allow a view name to appear wherever a relation name is allowed, the person may write:
 branch-loan ← branch-loan ∪ {("Perryridge", L-37)}
- The previous insertion must be represented by an insertion into the actual relation loan from which the view branch-loan is constructed.

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional

Updates Through Views (Cont.)

- An insertion into loan requires a value for amount. The insertion can be dealt with by either.
 - rejecting the insertion and returning an error message to the user.
 - inserting a tuple ("L-37", "Perryridge", null) into the loan relation
- Some updates through views are impossible to translate into database relation updates
 - create view v as $\sigma_{branch-name = "Perryridge"}$ (account)) v \leftarrow v \cup (L-99, Downtown, 23)
- Others cannot be translated uniquely
 - all-customer ← all-customer ∪ {("Perryridge", "John")}
 - Have to choose loan or account, and create a new loan/account number!

IF-ITB/WD dari Silberschatz, modifikasi TW/6 Okt'03 IF3111 – Aljabar Relasional Page 36

One view may be used in the expression defining another view