湛江一中 2023 届高三卓越班 NLXF2023—17

高三数学一轮复习——数列讲义——数列递推、迭代(1)

■一阶递推

1. 迭加: $a_{n+1} = a_n + f(n)$ (一阶迭加)

【例 1】设数列 $\{a_n\}$ 是首项为 $a_1 = \frac{8}{3}$,满足 $a_n = a_{n-1} - \frac{7}{4n^2 - 1}(n = 2, 3, \Lambda)$,求 $\{a_n\}$ 通项公式.

2. 迭乘: $a_{n+1} = a_n \cdot f(n)$ (一阶迭乘)

【例 2】已知数列 $\{a_n\}$ 是首项为 $a_1=2$,满足 $a_n=5^{1-n}a_{n-1}$,求 $\{a_n\}$ 通项公式.

3. 迭代: $a_{n+1} \cdot f(n+1) = a_n \cdot f(n) = \Lambda = a_1 \cdot f(1)$ (一阶迭代之构造常数数列法)

【例 3】已知数列 $\{a_n\}$ 满足: $a_1=1$, $na_{n+1}=2(a_1+a_2+\Lambda+a_n)$, 求 $\{a_n\}$ 的通项公式.

【例 4】已知数列 $\{a_n\}$ 满足: $na_{n+1}=(2n+1)a_n-(n+1)a_{n-1}$, $a_1=1$, $a_2=3$, 求 $\{a_n\}$ 的通项公式.

$$\left\{\frac{a_n}{h(n)}\right\} (或\{a_nh(n)\})$$
 是常数数列 , $\frac{a_n}{h(n)} = \frac{a_1}{h(1)} (或 a_nh(n) = a_1h(1))$ ∴ $a_n = a_1 \cdot \frac{h(n)}{h(1)} ($ 或 $a_n = a_1 \cdot \frac{h(1)}{h(n)}$

注意: 如果 $f(n) = \frac{h(n+1)}{h(n-1)} \Big($ 或 $f(n) = \frac{h(n-1)}{h(n+1)} \Big)$, 则 $\frac{a_{n+1}}{h(n)h(n+1)} = \frac{a_n}{h(n)h(n-1)} \Big(a_{n+1}h(n)h(n+1) = a_nh(n)h(n-1)\Big)$

【例 5】设数列 $\{a_n\}$ 的前n项和 S_n ,若 $3S_n=a_n(n+2)$, $a_1=2$,求数列 $\{a_n\}$ 的通项.

有的时候需要添加一项,有的时候需要添加两项,具体题目按需要去添加.

【例 6】设数列 $\{a_n\}$ 的前n项和 S_n ,若 $a_1=1$, $2S_n=n(3n-1)a_n$,求数列 $\{a_n\}$ 的通项.

5. 递推式 $a_{n+1} = f(n)a_n + g(n)$, $a_1 = a$

迭代法之辅助数列模型:
$$f(n) = \frac{h(n+1)}{h(n+1)}$$
, 则 $\frac{a_{n+1}}{h(n+1)} = \frac{a_n}{h(n)} + \frac{g(n)}{h(n+1)}$, 再用迭加法求出

$$\frac{a_n}{h(n)} = \frac{g(n-1)}{h(n)} + \frac{g(n-2)}{h(n-1)} + \Lambda + \frac{g(1)}{h(2)} + \frac{a_1}{h(1)} \Rightarrow a_n = h(n) \left[\frac{g(n-1)}{h(n)} + \frac{g(n-2)}{h(n-1)} + \Lambda + \frac{g(1)}{h(2)} + \frac{a_1}{h(1)} \right]$$

注意: 如果
$$f(n) = \frac{h(n+1)}{h(n-1)}$$
,则 $\frac{a_{n+1}}{h(n)h(n+1)} = \frac{a_n}{h(n)h(n-1)} + \frac{g(n)}{h(n)h(n+1)}$,再用迭加法求出.

【例 7】已知数列
$$\{a_n\}$$
是首项为 $a_1 = 4$, $a_{n+1} = \frac{5n+7}{5n+2}a_n + 7(5n+7)$, 求 $\{a_n\}$ 通项公式.

【例 8】已知数列
$$\{a_n\}$$
是首项为 $a_1=1$, $a_{n+1}=\frac{3n+4}{3n-2}a_n+9$,求 $\{a_n\}$ 通项公式.

6. 递推式 $a_{n+1} = ka_n + f(n)(k \neq 0, 1)$

递推式 $a_{n+1} = ka_n + f(n)(k \neq 0, 1)$ 转化为 $a_{n+1} + g(n+1) = k[a_n + g(n)], g(n)$ 为待定系数

- 1. 当 f(n) = A 时, $a_{n+1} + \frac{A}{k-1} = k\left(a_n + \frac{A}{k-1}\right)$, $\left\{a_n + \frac{A}{k-1}\right\}$ 是以 $a_1 + \frac{A}{k-1}$ 为首项,k为公比的等比数列.
- 2. 当 $f(n) = Ak^n$ 时,同除以 k^n ,得: $\frac{a_{n+1}}{k^n} = \frac{a_n}{k^{n-1}} + A$ 数列 $\left\{ \frac{a_n}{k^{n-1}} \right\}$ 是以 a_1 为首项,A为公差的等差数列,则 $\frac{a_n}{k^{n-1}} = a_1 + A(n-1)$.
- 4. $f(n) = Aq^n + B$ 转化成 $a_{n+1} + xq^{n+1} + y = k(a_n + xq^n + y)$ 即 $\begin{cases} kx xq = A \\ ky y = B \end{cases}$ 解出 A, B; 可得数列 $\begin{cases} a_n + xq^n + y \end{cases}$ 是以 $a_1 + xq + y$ 为首项, k 为公比的等比数列, $a_n + xq^n + y = (a_1 + xq + y) \cdot k^{n-1}$ $\therefore a_n = (a_1 + xq + y) \cdot k^{n-1} xq^n y$.
- 5. $a_{n+1} = ka_n + an + b$ 转化成 $a_{n+1} + A(n+1) + B = k(a_n + An + B)$ 即 $\begin{cases} kA A = a \\ kB B A = b \end{cases}$ 解出 A, B; 可得数列 $\{a_n + An + B\}$ 是以 $a_1 + A + B$ 为首项, k 为公比的等比数列, $a_n + An + B = (a_1 + A + B) \cdot k^{n-1}$ $\therefore a_n = (a_1 + A + B) \cdot k^{n-1} An B$.
- 6. $a_{n+1} = ka_n + an^2 + bn + c$ 转化成 $a_{n+1} + A(n+1)^2 + B(n+1) + C = k(a_n + An^2 + Bn + C)$, 即 $\begin{cases} kA A = a \\ kB B 2A = b \end{cases}$ 解出 A + B + C 为首项, k 为公比的等比数列,

$$a_n + An^2 + Bn + C = (a_1 + A + B + C) \cdot k^{n-1} : a_n = (a_1 + A + B + C) \cdot k^{n-1} - An^2 - Bn - C$$
.

【例 9】已知数列
$$\{a_n\}$$
是首项为 $a_1 = \frac{2}{3}$,满足 $a_{n+1} = \frac{2a_n}{a_n+1} (n=1,2,\Lambda)$.

(1) 求
$$\{a_n\}$$
通项公式; (2) 求数列 $\left\{\frac{n}{a_n}\right\}$ 的前 n 项和 S_n .

【例 10】设数列 $\{a_n\}$ 是首项为 $a_1=1$,满足 $a_n=3a_{n-1}+2n+5(n=2,3,\Lambda)$,求 $\{a_n\}$ 通项公式.

【例 11】设数列
$$\{a_n\}$$
是首项为 $a_1=3$,且 $a_n=3a_{n-1}+5\cdot 7^{n-2}+2(n=2,3,\Lambda)$,求 $\{a_n\}$ 通项公式.

【例 12】设数列 $\{a_n\}$ 是首项为 $a_1=1$,满足 $a_{n+1}=2a_n-n^2+3n(n=1,2,\Lambda)$.

- (1) 是否存在 λ , μ , 使得数列 $\{a_n + \lambda n^2 + \mu n\}$ 成等比数列? 若存在,求出 λ , μ 的值,若不存在,说明理由.
- (2) 设数列 $\{b_n\}$ 满足 $b_n = \frac{1}{a_n + n 2^{n-1}}$, $\{b_n\}$ 的前n项和 S_n ,证明: 当 $n \ge 2$ 时, $\frac{6n}{(n+1)(2n+1)} \le S_n < \frac{5}{3}$.

■二阶递推

$$-$$
, $a_{n+1} = pa_n + qa_{n-1}(a_1 = a, a_2 = b, n \ge 2)$

1. 设
$$a_{n+1}-\alpha a_n=\beta(a_n-\alpha a_{n-1})$$
 与 $a_{n+1}=pa_n+qa_{n-1}$ 比较,得 $\alpha+\beta=p,\alpha\cdot\beta=-q$,可知:

- α , β 是方程 $x^2 px q = 0$ 的两根, 容易求得 α , β .
- (I) 当 $\alpha \neq \beta$ 时,数列 $\{a_{n+1} \alpha a_n\}$ 是以 $a_2 \alpha a_1$ 为首项, β 为公比的等比数列

同时满足数列 $\{a_{n+1}-eta a_n\}$ 是以 $a_2-eta a_1$ 为首项,lpha为公比的等比数列

则有
$$\left\{egin{align*} &a_{n+1} - lpha a_n = (b - lpha a)eta^{n-1} \ &a_{n+1} - eta a_n = (b - eta a)lpha^{n-1} \ &a_{n+1} - eta a_n = (b - eta a)lpha^{n-1} - (b - eta a)lpha^{n-1}
ight]
ight.$$

特例: 当p+q=1 时, $a_{n+1}-a_n=-qa_n+qa_{n-1}$, $\therefore \{a_{n+1}-a_n\}$ 是以b-a为首项,-q为公比的等比数列

 $\therefore a_{n+1} - a_n = (b-a)(-q)^{n-1}$,同时 $a_{n+1} + qa_n = a_n + qa_{n-1}$, $\therefore \{a_{n+1} + qa_n\}$ 是以b + qa为常数的数列

故可以求出: $a_n = a + \frac{(b-a)\left[1-\left(-q\right)^{n-1}\right]}{1+q}$.

特征根解方程法: 令 $a_n = x \cdot \alpha^n + y \cdot \beta^n$, 再将 a_1, a_2 代入即可秒杀.

(II) 当 $\alpha = \beta$ 时,设 $a_{n+1} - \alpha a_n = \alpha (a_n - \alpha a_{n-1}) = \alpha^{n-1} (b - \alpha a)$,两边同除以 α^{n-1} 得: $\frac{a_{n+1}}{\alpha^{n-1}} - \frac{a_n}{\alpha^{n-2}} = b - \alpha a$ 数列 $\left\{\frac{a_n}{\alpha^{n-2}}\right\}$ 是以 αa 为首项, $b - \alpha a$ 为公差的等差数列, $\therefore \frac{a_n}{\alpha^{n-2}} = \alpha a + (n-1)(b - \alpha a)$

特征根解方程法: 令 $a_n = (xn + y)\alpha^n$, 再将 a_1, a_2 代入即可秒杀.

【例 1】已知数列 $\{a_n\}$ 中, $a_1 = \frac{4}{3}$, $a_2 = \frac{13}{9}$,且 $3a_n + a_{n-2} = 4a_{n-1} (n \ge 3)$,则 $a_n = \underline{\hspace{1cm}}$

【例 2】已知数列 $\{a_n\}$ 是首项为 $a_1=1$, $a_2=4$,且 $a_{n+2}=5a_{n+1}-6a_n$,求: $\{a_n\}$ 通项公式.

【例 3】设 p,q 为实数, α , β 是方程 $x^2-px+q=0$ 的两根,数列 $\left\{a_n\right\}$ 是首项为 $a_1=p$, $a_2=p^2-q$, $a_{n+2}=pa_{n+1}-qa_n$.

- (1) 证明: $\alpha + \beta = p, \alpha \cdot \beta = q$;
- (2) 求 $\{a_n\}$ 通项公式;
- (3) $p=1, q=\frac{1}{4}$, 求 $\{a_n\}$ 的前n项和 S_n .

淇江一中 2023 届高三卓越班 NLXF2023—17

高三数学一轮复习——数列讲义——数列递推、迭代(2)

二、斐波那契数列

定义: 一个数列,前两项都为 1,从第三项起,每一项都是前两项之和,那么这个数列称为斐波那契数列,又称黄金分割数列; 表达式 $F_0=1, F_1=1, F_n=F_{n-1}+F_{n-2}\;(n\in N^+)$

通项公式:
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$
 (又叫"比内公式",是用无理数表示有理数的一个范例)

比较有趣的是:一个完全是自然数的数列,通项公式竟然是用无理数表示的.

证明: 线性递推数列的特征方程为: $x^2 = x + 1$, 解得: $x_1 = \frac{1 + \sqrt{5}}{2}$, $x_2 = \frac{1 - \sqrt{5}}{2}$ 则 $F_n = c_1 x_1^n + c_2 x_2^n$

斐波那契数列的一些性质:

求和问题: ① $S_n = a_{n+2} - 1$; ② $a_1 + a_3 + a_5 + \Lambda$ $a_{2n-1} = a_{2n}$; ③ $a_2 + a_4 + a_6 + \Lambda$ $a_{2n} = a_{2n+1} - 1$.

证 明 : ① $a_{n+2} = S_{n+2} - S_{n+1} = (a_{n+2} - a_{n+1}) + (a_{n+1} - a_n) + \Lambda + (a_2 - a_1) + a_1 = a_n + a_{n-1} + \Lambda + a_1 + a_1 = S_n + 1$, 故

 $S_n = a_{n+2} - 1$,此证明方法也是错位相减的一种特例

② $a_1+a_3+\cdots+a_{2n-1}=a_1+\left(a_1+a_2\right)+\left(a_3+a_4\right)+\cdots+\left(a_{2n-3}+a_{2n-2}\right)=a_1+S_{2n-2}=a_{2n}$,此证明过程也需要利用① 的结论.

这三个式子用数学归纳法证明也非常简单,无需强化记忆,每次列出前几项比划一下,考试中如果出现需要这些结论的,拿出前几项及时推导即可.

平方和问题: $a_1^2 + a_2^2 + \cdots + a_n^2 = a_n a_{n+1}$ (根据面积公式推导,如下图)

构造正方形来设计面积, $a_1^2 + a_2^2 + a_3^2 = S_1 + S_2 + S_3 = (a_1 + a_2)(a_2 + a_3) = a_3 a_4$,以此类推,也可以用数学归纳法证明,知道一个大致的方向即可.

製项问题:
$$\frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \dots + \frac{1}{a_{2n-3}a_{2n-1}} + \frac{1}{a_{2n-2}a_{2n}} = \frac{1}{a_2} \left(\frac{1}{a_1} - \frac{1}{a_3} \right) + \frac{1}{a_3} \left(\frac{1}{a_2} - \frac{1}{a_4} \right) + \dots + \frac{1}{a_{2n-2}} \left(\frac{1}{a_{2n-3}} - \frac{1}{a_{2n-1}} \right)$$

$$+\frac{1}{a_{2n-1}}\left(\frac{1}{a_{2n-2}}-\frac{1}{a_{2n}}\right)=\frac{1}{a_1a_2}-\frac{1}{a_{2n-1}a_{2n}}.$$

注意:如果是斐波那契数列的部分项求和也可以,比如 $\frac{p}{a_m a_{m+2}} + \frac{p}{a_{m+1} a_{m+3}} + \Lambda + \frac{p}{a_{m+n-2} a_{m+n}} = \frac{p}{a_{m+1}} \left(\frac{1}{a_m} - \frac{1}{a_{m+n}} \right)$

前提就是必须隔项,否则无法裂项相消.

【例 4】已知数列 $\{a_n\}$ 满足: $a_1 = \frac{1}{3}$, $a_2 = \frac{1}{3}$, $a_{n+1} = a_n + a_{n-1} (n \in N^*, n \ge 2)$, 则 $\frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \frac{1}{a_3a_5} + \ldots + \frac{1}{a_{2019}a_{2021}}$ 的整

数部分为()

- A. 6
- B. 7

C. 8

D. 9

【例 5】斐波那契数列中,若 $a_1 = a_2 = 1$, $a_{n+2} = a_{n+1} + a_n (n \in N^*)$, S_n 为斐波那契数列的前 n 项和,则下列式子中成立的是(

A. $S_{2019} = a_{2020} + 1$

B. $S_{2019} = a_{2021}$

C. $a_1 + a_3 + \Lambda + a_{2019} = a_{2021}$

D. $a_2 + a_4 + \Lambda + a_{2018} = a_{2019} - 1$

三、 二阶构造的周期数列

若数列 $\{a_n\}$ 满足 $a_{n+2}=a_{n+1}-a_n(n\in N^*)$,或者 $a_n=\frac{a_{n-1}}{a_{n-2}}(n\geqslant 3)$,则数列 $\{a_n\}$ 是周期为6的数列.

【例 6】已知数列 $\{a_n\}$ 中, $a_1=1$, $a_2=3$, $a_{n+2}=a_{n+1}-a_n(n\in N^*)$ 则 $\{a_n\}$ 前 100 项之和为(

- A. 5
- B. 20

C = 300

D. 652

四 、 二阶递推式: $a_{n+1}=pa_n+qa_{n-1}+A(a_1=a,a_2=b,n\geq 2)$

(1)
$$\stackrel{\text{def}}{=} p + q = 1 \stackrel{\text{pr}}{=} 1$$
, $a_{n+1} - a_n = -q(a_n - a_{n-1}) + A$, $\therefore a_{n+1} - a_n + \frac{A}{-q-1} = \left(a_{n+1} - a_n + \frac{A}{-q-1}\right) (-q)$,

(2) 当 $p+q \neq 1$ 时,设 $a_{n+1}-\alpha a_n=\beta(a_n-\alpha a_{n-1})+A$ 与 $a_{n+1}=pa_n+qa_{n-1}+A$ 比较,得 $\alpha+\beta=p,\alpha\cdot\beta=-q$,可知, α , β 是方程 $x^2-px-q=0$ 的两根,容易求得 α , β .

(I) 当
$$\alpha \neq \beta$$
时,数列 $\left\{a_{n+1} - \alpha a_n + \frac{A}{\beta - 1}\right\}$ 是以 $b - \alpha a + \frac{A}{\beta - 1}$ 为首项, β 为公比的等比数列同时满足数列 $\left\{a_{n+1} - \beta a_n + \frac{A}{\alpha - 1}\right\}$ 是以 $b - \beta a + \frac{A}{\alpha - 1}$ 为首项, α 为公比的等比数列

则有
$$\begin{cases} a_{n+1} - \alpha a_n + \frac{A}{\beta - 1} = \left(b - \alpha a + \frac{A}{\beta - 1}\right) \beta^{n-1} \\ a_{n+1} - \beta a_n + \frac{A}{\alpha - 1} = \left(b - \beta a + \frac{A}{\alpha - 1}\right) \alpha^{n-1} \end{cases}$$
 两式联立,消去 a_{n+1} 得 a_n .

暴力特征根解法: $a_n = x \cdot \alpha^n + y \cdot \beta^n + z$, 代入 a_1 , a_2 , a_3 即可解得.

$$\text{(II)} \; \stackrel{\text{\tiny def}}{=}\; \alpha = \beta \; \text{\tiny III}, \quad \stackrel{\text{\tiny def}}{=}\; \alpha a_n + \frac{A}{\alpha - 1} = \alpha \left(a_n - \alpha a_{n-1} + \frac{A}{\alpha - 1} \right) \\ \Rightarrow a_{n+1} - \alpha a_n + \frac{A}{\alpha - 1} = \alpha^{n-1} \left(b - \alpha a + \frac{A}{\alpha - 1} \right),$$

数列 $\left\{a_{n+1}-\alpha a_n+\frac{A}{\alpha-1}\right\}$ 是以 $b-\alpha a+\frac{A}{\alpha-1}$ 为首项, α 为公比的等比数列 , 将 上 式 子 两 边 同 除 以 α^{n-1} 得 :

$$\frac{a_{n+1}}{\alpha^{n-1}} - \frac{a_n}{\alpha^{n-2}} + \frac{A}{(\alpha-1)\alpha^{n-1}} = b - \alpha a + \frac{A}{\alpha-1} \text{ , } \Leftrightarrow \frac{a_{n+1} + x}{\alpha^{n-1}} - \frac{a_n + x}{\alpha^{n-2}} = b - \alpha a + \frac{A}{\alpha-1} \text{ 通 过 以 上 两 式 子 比 较 得 :}$$

$$\frac{x}{\alpha^{n-1}} - \frac{x}{\alpha^{n-2}} = \frac{A}{(\alpha - 1)\alpha^{n-1}} \Rightarrow x = -\frac{A}{(\alpha - 1)^2},$$
数列
$$\left\{ \frac{a_n - \frac{A}{(\alpha - 1)^2}}{\alpha^{n-2}} \right\}$$
是以
$$\left\{ a - \frac{A}{(\alpha - 1)^2} \right\}$$
 a为首项, $b - \alpha a + \frac{A}{\alpha - 1}$ 为公差的等

差数列.

暴力特征根法: $a_n = (xn + y)\alpha^n + z$, 代入 a_1 , a_2 , a_3 即可解得.

【例7】已知数列 $\{a_n\}$ 是首项为 $a_1=1$, $a_2=5$,且 $a_{n+2}=2a_{n+1}-a_n+8$,求: $\{a_n\}$ 通项公式.

【例 8】已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=8$, $a_{n+1}=6a_n-9a_{n-1}+4(n\geq 2)$

- (1) 是否存在实数 p,r,使数列 $\left\{a_{n+1}+pa_n+r\right\}$ 为等比数列?若存在,求出实数 p,r若不存在,说明理由;
- (2) 是否存在实数 λ ,使数列 $\left\{\frac{a_n+\lambda}{3^{n-2}}\right\}$ 为等差数列?若存在,求出实数 λ 和 $\left\{a_n\right\}$ 的通项公式,若不存在,说明理由.

【例 9】已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=4$, $a_{n+1}=3a_n+10a_{n-1}+1(n\geq 2)$, ,求 $\{a_n\}$ 通项公式.

■数列的本质一函数迭代

一、函数迭代和数列的关系

已知函数 y = f(x) 满足 $a_{n+1} = f(a_n)$,则一定有 $a_{n+1} = f(a_n) = f_2(a_{n-1}) = L$ $f_n(a_1)$,故函数 y = f(x) 通过反复迭代产生的一系列数构成了数列 $\{a_n\}$ 或者记为 $\{b_n\}$ 、 $\{x_n\}$,而数列的每一项与函数迭代的关系可以如下表所示:

下面以函数 y = 2x + 1 和数列 $a_{n+1} = 2a_n + 1$

数列	a_1	a_2	a_3	a_4	a_5	a_6	•••••	a_n	a_{n+1}
函数	х	f(x)	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	•••••	$f_{n-1}(x)$	$f_n(x)$
数列	1	х	7	15	31	63		$2^{n}-1$	$2^{n+1}-1$
数列	-1	-1	-1	-1	-1	-1		-1	-1
函数	x	2x+1	4x+3	8 <i>x</i> + 7	16 <i>x</i> +15	32x + 31		$2^{n-1}x + 2^{n-1} - 1$	$2^n x + 2^n - 1$

可以发现:

- 1. 数列的递推式和函数的迭代式是有着相同的法则的,故数列的任何一项 $\left(a_{n},a_{n+1}\right)$ 都在函数 y=f(x) 上.
- 2. 数列的通项公式是函数对 a_1 迭代 n-1 次的结果,即 $a_n=f_{n-1}(a_1)$,每一次由于迭代产生出的因变量成为下一次 迭代的自变量.
 - 3. 数列的首相 a_1 对整个数列有很大的影响,当迭代不断重复出现同一结果时,我们将其称为不动点.

二、 函数的迭代图像——蛛网图

函数的迭代图像,简称蛛网图或者折线图,函数 y = f(x) 和直线 y = x 共同决定.

其步骤如下:

1. 在同一坐标系中作出 y = f(x) 和 y = x 的图像(草图),并确定不动点. (如图 1 所示)

(a,d) (a,d) (a,d)

- 2. 在找出不动点之后,确定范围,将不动点之间的图像放大,并找出起始点 a_1 (如图 2 所示)
- 3. 由 a_1 向 y = f(x) 作垂直于 x 轴的直线与 y = f(x) 相交,并确定交点 (a_1, a_2) .
- 4. 由 (a_1,a_2) 向 y=x 作平行于 x 轴的直线与 y=x 相交,并确定交点 (a_2,a_2) .
- 5. 由 (a_2,a_2) 向 y=f(x) 作垂直于 x 轴的直线与 y=f(x) 相交,并确定交点 (a_2,a_3) .

重复 4, 5, 直至找到点 (a_n, a_{n+1}) 的最终去向.

【例 1】设数列 $\{a_n\}$ 满足 $a_1 = 1, a_{n+1} = 2a_n + 1$,求 $\{a_n\}$ 的通项公式.

【例 2】设数列 $\{a_n\}$ 满足 $a_1=a(a>0), a_{n+1}=2\sqrt{a_n}$,证明:存在常数 M,使得对于任意的 $n\in N^*$,都有 $a_n\leq M$.

湛江一中 2023 届高三卓越班 NLXF2023—17

高三数学一轮复习——数列讲义——数列递推、迭代(3)

【例 3】首项为正数的数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{1}{4}(a_n^2 + 3), n \in N^*$,若对 $n \in N^*$,一切都有 $a_{n+1} > a_n$,求 a_1 的取值范围.

 (a_1a_2) (a_1a_3) (a_2a_3) (a_3a_4) (a_4a_5) (a_5a_6) (a_5a_6) (a_5a_6) (a_5a_6)

三、 蛛网图与数列的单调性

定理 1: y = f(x) 的单调增区间存在两个不动点 x_1 , x_2 ($x_1 < x_2$),且在两个不动点之间形成一上凸的图形时,(如图 9)则数列 $a_{n+1} = f(a_n)$ 在两个不动点之间的区间是递增的,即 $a_{n+1} > a_n$,在两不动点以外的区间则是递减的,即 $a_{n+1} < a_n$.

定理 2: y = f(x) 的单调增区间存在两个不动点 x_1 , x_2 ($x_1 < x_2$),且在两个不动点之间形成一下凹的图形时,(如图 10)则数列 $a_{n+1} = f(a_n)$ 在两个不动点之间的区间是递减的,即 $a_{n+1} < a_n$,在两不动点以外的区间则是递增的,即 $a_{n+1} > a_n$.

综上可得,当 y=f(x)的单调增区间位于上凸内或者下凹外时,即当迭代起点 a_1 位于此区域时,一定有 $a_{n+1}>a_n$ 同理,当迭代起点 a_1 位于单调增区间的上凸外或者下凹内时,一定有 $a_{n+1}< a_n$.

数列的极限

根据蛛网图可知,当一数列 $\{a_n\}$ 为单调上凸曲线时,迭代点 (a_n,a_{n+1}) 会无限靠近大的不动点 x_2 ,我们将这个大的不动点 x_2 称为数列 $\{a_n\}$ 的极限,记为 $\lim_{n\to\infty}a_n=x_2$;当一数列 $\{a_n\}$ 为单调下凹曲线时,迭代点 (a_n,a_{n+1}) 会无限靠近小的不动点 x_1 ,我们将这个小的不动点 x_1 称为数列 $\{a_n\}$ 的极限,记为 $\lim_{n\to\infty}a_n=x_1$.

几种常见的函数迭代图(未画折线)

$$y = a(x-h)^2 + h(a>0)$$
 $y = a(x-h)^2 + h(a<0)$

$$y = \sqrt{ax + b} (a > 0, b > 0)$$
 $y = \frac{ax + b}{cx + d} (a > b)$

顶点为不动点抛物线

顶点为不动点的抛物线

横着的抛物线

二四象限反比例函数的平移函数

请思考: $\lim_{n\to\infty} a_n = h$

 $\lim_{n\to\infty} a_n = h$

 $\lim_{n\to\infty} a_n = x_1$

 $\lim_{n\to\infty} a_n = x_2$

四、 由耐克函数的迭代产生的数列

- 1. 已知函数 $f(x) = \frac{1}{2}x + \frac{a}{x}(a > 0)$,数列 $\left\{a_n\right\}$ 满足 $a_{n+1} = f(a_n)$,求不动点得, $x_0 = \frac{1}{2}x_0 + \frac{a}{x_0}$,故不动点 $\left(\sqrt{2a},\sqrt{2a}\right)$ 为耐克函数的顶点(图 11),思考:为什么 $f(x) = \frac{1}{2}x + \frac{a}{x}(a > 0)$ 的不动点一定是顶点?
- 2. 已知函数 $f(x) = \frac{1}{2}(x-h) + \frac{a}{x-h} + h(a>0)$, 数列 $\{a_n\}$ 满足 $a_{n+1} = f(a_n)$, 求此函数的不动点得, $x_0 h = \frac{1}{2}(x_0 h) + \frac{a}{x_0 h}$, $x_0 = \sqrt{2a} + h$, 故可知不动点 $\left(\sqrt{2a} + h, \sqrt{2a} + h\right)$ 为耐克函数的顶点(图 12).

 (a_1,a_2) (a_1,a_2) (a_1,a_2) (a_1,a_2) (a_2,a_3) (a_3,a_4) (a_4,a_5) (a_4,a_5) (a_4,a_5) (a_5,a_4) (a_5,a_5) $(a_5$

结论: 耐克函数一般为收缩函数, 即 $x_0 < a_{n+1} < a_n < a_{n-1} < L < a_2 < a_1$.

【例 4】数列
$$\{x_n\}$$
满足 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{4}{x_n}\right) (n \in N^*)$,若 $\lim_{n \to \infty} x_n = A(A > 0)$,则 $A = \underline{\qquad}$.

【例 5】数列
$$\{x_n\}$$
满足 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) (a > 0, n \in N^*)$,若 $\lim_{n \to \infty} x_n = A(A > 0)$,则 $A = \underline{\qquad}$.

【例 6】设
$$a>2$$
,数列 $\left\{x_n\right\}$ 满足 $x_1=a$, $x_{n+1}=\frac{x^2_n}{2(x_n-1)}(n\in N^*)$,求证: $x_n>2$,且 $\frac{x_{n+1}}{x_n}<1$.

【例7】数列
$$\{a_n\}$$
满足: $a_1=2$, $a_{n+1}=\frac{a_n}{2}+\frac{1}{a_n}$, 求证: $1 < a_n < \frac{3}{2}+\frac{1}{n}$.

五、迭代函数与周期数列问题

已知 $a_{n+1} = \frac{aa_n + b}{ca_n + d} (ad < bc)$,求 $\{a_n\}$ 的通项可由函数 $y = f(x) = \frac{ax + b}{cx + d}$ 和直线 y = x 的折线图决定. 函数 y = f(x)

和直线 y = x 一定没有交点,即函数 y = f(x) 一定没有不动点.

定理 3 当
$$f(x) = f^{-1}(x)$$
时, $f_{2n-1}(x) = f(x)$; $f_{2n}(x) = x$.

例如: $f(x) = \pm \frac{a}{x} (a \in R)$ (反比例函数,如图 13); f(x) = a - x (与直线 y = x 垂直的直线,如图 14)

 $f(x) = \frac{ax+b}{cx+d}$, 当 a+d=0 (将反比例函数 $y=\frac{k}{x}(k>0)$ 向右向上移动相等的距离得到的图像,如图 15)

定理 4 函数 $f(x) = \frac{ax+b}{cx+d}$, 当 $(a+d)^2 = ad-bc$ 时, $f_{3n-2}(x) = f(x)$; $f_{3n-1}(x) = f_2(x)$; $f_{3n}(x) = x$

(将反比例函数 $y = \frac{k}{x}(k < 0)$ 仅向右或者向上移动相同单位得到的图像,如图 16,图 17)。

定理 5 函数
$$f(x) = \frac{ax+b}{cx+d}$$
, 当 $(a+d)^2 = 2(ad-bc)$ 时, $f_{4n-3}(x) = f(x)$; $f_{4n-2}(x) = f_2(x) = -\frac{1}{x}$;

 $f_{4n-1}(x) = f_3(x)$; $f_{4n}(x) = x$ (将反比例函数 $y = \frac{k}{x}(k < 0)$ 向右向下移动相等的距离得到的图像,如图 18).

*定理 6 函数 $f(x) = \frac{ax + b}{cx + d}$, 当 $(a + d)^2 = 3(ad - bc)$ 时,每迭代六次为一周期;当 $(a + d)^2 \ge 4(ad - bc)$,则

【例 8】设 S 是实数集 R 的真子集,且满足下列两个条件:①1 $\not\in S$; ②若 $a \in S$.则1 $-\frac{1}{a} \in S$,问:

(1) 若 $2 \in S$,则S中一定还有哪几个数? (2)集合S中能否只有一个元素?说明理由.

【例 9】已知集合 A 的元素全为实数,且满足:若 $a \in A$,则 $\frac{1+a}{1-a} \in A$.

不会出现迭代周期.

- (2) 0 是不是集合 A 中的元素?请你设计一个实数 $a \in A$,再求出 A 中的所有元素?
- (3) 根据(1)(2), 你能得出什么结论.

【例 10】已知数列 $\{a_n\}$ 中, $a_1=2, a_n=\frac{1+a_{n-1}}{1-a_{n-1}}$,求 $\{a_n\}$ 的通项公式.

六、摆动数列以及由求导构造函数单调性来解决数列问题

由反比例(递减函数)函数迭代构成的摆动数列,如图 19 所示,当 f(x) 在区间为减函数时,和直线 y=x 相交于不动点,那么由此函数迭代构成的数列为摆动数列,即奇数项和偶数项构成相反的单调性,但都螺旋靠近不动点,极限也是不动点。如图 19 所示 $a_1 < a_3 < a_5 < \Lambda < a_{2n-1}$,同时 $a_2 > a_4 > a_6 > \Lambda > a_{2n}$;如图 20 所示 $a_1 > a_3 > a_5 > \Lambda > a_{2n-1}$,同时 $a_2 < a_4 < a_6 < \Lambda < a_{2n}$.

