

Punto en el plano

Un punto en el plano de dos dimensiones tiene por coordenadas dos números reales, y se puede representar mediante una estructura con dos campos, cuya definición puede ser la siguiente:

```
typedef struct Punto {
   float x;
   float y;
} Punto;
```

Escribir un programa que contemple las siguientes **funciones que manejen estructuras Punto**, y cuyo prototipo propuesto también se indica:

a) Leer un punto de teclado.

```
void LeerPunto (Punto *);
```

b) Presentar un punto en pantalla.

```
void EscribirPunto (Punto);
```

c) Calcular la distancia entre dos puntos.

```
float DistanciaPuntos (Punto, Punto);
```

d) Determinar el punto medio de la línea que une dos puntos.

```
Punto Punto Punto (Punto, Punto);
```

e) Indicar si dos puntos definen un rectángulo, cuadrado, una línea horizontal, una línea vertical o un punto.

```
Figura Figura Definen Puntos (Punto, Punto);
```

f) Calcular el área de la figura que definen los dos puntos.

```
float AreaFiguraPuntos (Punto, Punto);
```

El cálculo de la figura que definen (**FiguraDefinenPuntos**), se deberá realizar a través de una función que recibirá los dos puntos y devolverá un valor del tipo enumerado **Figura** que definiremos a nivel global de la siguiente forma:

```
typedef enum Figura {
     CUADRADO, RECTANGULO, PUNTO, LINEA_VERTICAL, LINEA_HORIZONTAL
} Figura;
```

El área de la figura que definen los dos puntos (**AreaFiguraPuntos**), será cero si es un punto, una línea vertical o una línea horizontal.

El programa principal deberá leer dos puntos de teclado, y presentar en pantalla los dos puntos leídos, su distancia, su punto medio, indicar mediante un mensaje en pantalla, cual de las figuras anteriores definen, y presentar su área en caso de que se trate de un cuadrado o un rectángulo. Para realizar todas estas acciones deberán utilizarse las funciones creadas anteriormente.

Análisis del problema

La distancia entre dos puntos se calcula como la raíz cuadrada de la suma del cuadrado de la diferencia de sus coordenadas, es decir sqrt (pow (p1.x-p2.x, 2) + pow (p1.y-p2.y, 2))

El punto medio de la línea que los une se calcula

$$p3.x = (p1.x + p2.x) / 2$$

 $p3.y = (p1.y + p2.y) / 2$

Dos puntos en el plano pueden definir:

- Un **punto**: si la coordenada **x** de ambos es la misma, y también la coordenada **y** de ambos es la misma.
- Una **línea horizontal**: si la coordenada y de ambos es la misma, y la x distinta.
- Una **línea vertical**: si la coordenada **x** de ambos es la misma, y la **y** distinta.
- Un cuadrado o un rectángulo si ...

Conocidos p1(x1, y1) y p2(x2, y2), siempre puede calcularse el punto p3 que indica el tercer vértice, como: p3(x1, y2).

Pueden calcularse las longitudes de los lados L1 y L2 como la distancia entre dos puntos, tal como se observa en el dibujo.

Si L1 es igual a L2, entonces se trata de un cuadrado. En casi contrario de un rectángulo. El área será L1 * L2