

# **CHAPTER 1**

# 【課堂活動】

## 1-2.1

| 可逆反應                               | $N_2O_4(g) \rightleftharpoons 2NO_2(g)$        | $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$                      |
|------------------------------------|------------------------------------------------|------------------------------------------------------------------|
| 濃度平衡常數                             | $[\mathrm{NO_2}]^2/[\mathrm{N_2O_4}]$          | $[\mathrm{HI}]^2/[\mathrm{H}_2][\mathrm{I}_2]$                   |
| 分壓平衡常數                             | $P_{{ m NO}_{2}}^{2}/P_{{ m N}_{2}{ m O}_{4}}$ | $P_{\mathrm{HI}}^{2}/P_{\mathrm{H}_{2}}\cdot P_{\mathrm{I}_{2}}$ |
| K <sub>C</sub> 與 K <sub>P</sub> 關係 | $K_{\rm p} = K_{\rm c} \cdot RT$               | $K_{\rm p} = K_{\rm c} \cdot (RT)^0 = K_{\rm c}$                 |

## 1-2.2

| 濃度                 | 甲                     | Z                     | 丙                               | 丁                     |
|--------------------|-----------------------|-----------------------|---------------------------------|-----------------------|
|                    | $H_2CO_3$             | NaCl                  | Na <sub>2</sub> CO <sub>3</sub> | H <sub>2</sub> O      |
| [H <sup>+</sup> ]  | $2.5 \times 10^{-6}$  | $10^{-7}$             | $5.0 \times 10^{-9}$            | $1.0 \times 10^{-7}$  |
| [OH <sup>-</sup> ] | $4.0 \times 10^{-9}$  | 10 <sup>-7</sup>      | $2.0 \times 10^{-6}$            | $1.0 \times 10^{-7}$  |
| [H <sub>2</sub> O] | 55.5                  | 55.5                  | 55.5                            | 55.5                  |
| 水的 K               | $1.8 \times 10^{-16}$ | $1.8 \times 10^{-16}$ | $1.8 \times 10^{-16}$           | $1.8 \times 10^{-16}$ |

## 1-3.2

| 類別   | $A + B \rightleftharpoons C + 2D$ | 加水使濃度減半                                   |                           | 平衡移 |
|------|-----------------------------------|-------------------------------------------|---------------------------|-----|
| 犬只力」 | A+B ← C+2D                        | 反應商 Q。                                    | $Q_{\rm c}$ 與 $K_{\rm c}$ | 動方向 |
| 狀態 1 | aq aq aq aq                       | $Q_{c_1} = K_c \times (\frac{1}{2})^2$    | $Q_{c_1} < K_c$           | 向右  |
| 狀態 2 | aq aq s aq                        | $Q_{c_2} = K_c \times (\frac{1}{2})^0$    | $Q_{c_2} = K_c$           | 不移動 |
| 狀態 3 | aq aq aq s                        | $Q_{c_3} = K_c \times (\frac{1}{2})^{-1}$ | $Q_{c_3} > K_c$           | 向左  |

## 1-3.3

| 類別        | 別 A+B ⇌ C+2D |       | 縮小容器體積使濃度加倍 |      | 平衡移                             |                          |     |
|-----------|--------------|-------|-------------|------|---------------------------------|--------------------------|-----|
| <b>無力</b> | Α.           | т D 4 |             | T 2D | 反應商 Q。                          | $Q_{\rm c}$ 與 $K_{ m c}$ | 動方向 |
| 狀態 4      | g            | g     | g           | g    | $Q_{c_4} = K_c \times (2)^1$    | $Q_{c_4} > K_c$          | 向左  |
| 狀態 5      | g            | g     | S           | g    | $Q_{c_5} = K_c \times (2)^0$    | $Q_{c_5} = K_c$          | 不移動 |
| 狀態 6      | g            | g     | g           | s    | $Q_{c_6} = K_c \times (2)^{-1}$ | $Q_{c_6} < K_c$          | 向右  |

## 1-4.2

|                                                                 |                                                                                                   | K <sub>sp</sub> 的求法   |                                                     |                                                 |  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|-------------------------------------------------|--|
| 類型                                                              | 實例                                                                                                | 已知 s                  | 已知<br>陽離子                                           | 已知<br>陰離子                                       |  |
| AB 型                                                            | $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$                                              | $K_{\rm sp} = s^2$    | $K_{\rm sp} = \left[ A g^+ \right]^2$               | $K_{\rm sp} = [\mathrm{Cl}^-]^2$                |  |
| AB <sub>2</sub> 型或 A <sub>2</sub> B 型                           | $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}$                                                   | $K_{\rm sp} = 4s^3$   | $K_{\rm sp} = 4[{\rm Mg}^{2+}]^3$                   | $K_{\rm sp} = \frac{1}{2} [{\rm OH}^{-}]^{3}$   |  |
| <i>AB</i> <sub>3</sub> 型或 <i>A</i> <sub>3</sub> <i>B</i> 型      | $Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$                                                     | $K_{\rm sp}=27s^4$    | $K_{\rm sp} = 27[{\rm Al}^{3+}]^4$                  | $K_{\rm sp} = \frac{1}{3} [\mathrm{OH}^{-}]^4$  |  |
| A <sub>2</sub> B <sub>3</sub> 型或A <sub>3</sub> B <sub>2</sub> 型 | $\operatorname{Ca_3(PO_4)_2} \Longrightarrow 3\operatorname{Ca}^{2+} + 2\operatorname{PO_4}^{3-}$ | $K_{\rm sp} = 108s^5$ | $K_{\rm sp} = \frac{4}{9} [{\rm Ca}^{2+}]^5$        | $K_{\rm sp} = \frac{27}{8} [{\rm PO_4}^{3-}]^5$ |  |
| ABC 型                                                           | $MgNH_4PO_4 \rightleftharpoons Mg^{2+} + NH_4^+ + PO_4^{3-}$                                      | $K_{\rm sp} = s^3$    | $K_{\rm sp} = [{\rm Mg}^{2+}]^3 = [{\rm NH_4}^+]^3$ | $K_{\rm sp} = [{\rm PO_4}^{3-}]^3$              |  |

| <b>₩</b> Δ #.II                                            | 750 /Tul                                                     | 溶度積 K <sub>sp</sub>   | 溶解度 s                                  |
|------------------------------------------------------------|--------------------------------------------------------------|-----------------------|----------------------------------------|
| 類型                                                         | 實例                                                           | (已知s)                 | (已知 K <sub>sp</sub> )                  |
| AB 型                                                       | $AgCl \rightleftharpoons Ag^+ + Cl^-$                        | $K_{\rm sp} = s^2$    | $s = \sqrt{K_{\rm sp}}$                |
| <i>AB</i> <sub>2</sub> 型或 <i>A</i> <sub>2</sub> <i>B</i> 型 | $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^-$                | $K_{\rm sp} = 4s^3$   | $s = \sqrt[3]{\frac{K_{\rm sp}}{4}}$   |
| AB <sub>3</sub> 型或 A <sub>3</sub> B 型                      | $Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$                | $K_{\rm sp} = 27s^4$  | $s = \sqrt[4]{\frac{K_{\rm sp}}{27}}$  |
| $A_2B_3$ 型或 $A_3B_2$ 型                                     | $Al_2(CO_3)_3 \rightleftharpoons 2AI^{3+} + 3CO_3^{2-}$      | $K_{\rm sp} = 108s^5$ | $s = \sqrt[5]{\frac{K_{\rm sp}}{108}}$ |
| ABC 型                                                      | $MgNH_4PO_4 \rightleftharpoons Mg^{2+} + NH_4^+ + PO_4^{3-}$ | $K_{\rm sp} = s^3$    | $s = \sqrt[3]{K_{\rm sp}}$             |

## 【練習題】

### 練習 1-1.1

(A)

## 練習 1-1.2

(E)

#### 練習 1-2.1

- (1)  $2NH_3(g) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$
- (2)  $K_c = [(NH_4)_2SO_4]/[NH_3]^2[H_2SO_4]$

## 練習 1-2.2

(1) 
$$K_c = \frac{[Cu^{2+}]}{[Ag^+]^2}$$

(2) 
$$K_c = \frac{[\text{HCOOCH}_3]}{[\text{HCOOH}] \cdot [\text{CH}_3\text{OH}]}$$

#### 練習 1-2.3

16.7%

#### 練習 1-3.1

(1) 向左移動;(2) 向左移動

#### 練習 1-3.2

(1)向左;  $(2)\left[Ag^{+}\right]$  增加 、  $\left[Cl^{-}\right]$  降低;  $(3)\,Ag^{+}$  增加 、  $Cl^{-}$  降低 、

AgCl 增加

### 練習 1-3.3

(A)

## 練習 1-3.4

(B)(C)(D)

## 練習 1-4.1

- (1)  $K_{sp} = [Ca^{2+}][F^{-}]^{2}$
- (2)  $K_{sp} = [Ba^{2+}][SO_4^{2-}]$
- (3)  $K_{\rm sp} = [{\rm Mg}^{2+}][{\rm NH_4}^+][{\rm PO_4}^{3-}]$

## 練習 1-4.2

 $10^{-4} \, \text{M}$ 

#### 練習 1-4.3

(1) 1.0×10<sup>-10</sup>;(2) 10<sup>4</sup> 倍

## 【章末習題】

## 基礎題

1.(C) 2.(D) 3.(C) 4.(A)(B) 5.(B) 6.(A)(E) 7.(E) 8.(B)(C)(D)(E)

## 進階題

1.(C) 2.(D) 3.(B)(E) 4.(C)(E) 5.(B)(D)

## 素養題

- 1.(1) 不同;「溴化銀的光照反應」為氧化還原反應,而「定影過程 的基本反應」非氧化還原反應,因此兩者反應類型不同;
- (2)(C);
- (3)(D)
- 2.(1) ADH 對乙醇的親和性比對甲醇還要高,甲醇便不會轉化成有 毒的甲醛或甲酸;
- (2)  $K = \frac{[CH_3OH]}{[CO][H_2]^2}$ ;
- (3) 減小;因為由圖中甲醇的產量在  $500\,^{\circ}$ C 時比在  $300\,^{\circ}$ C 時低,可知生成甲醇為放熱反應,故溫度升高時,K 值會減小;
- (4) (B)(D

## **CHAPTER 2**

## 【課堂活動】

2 - 2.1

> \ < ; = \ = ; < \ >

## 【練習題】

練習 2-1.1

(B)(E)

### 練習 2-1.2

(A) HCl ; (B) NH $_4^+$  ; (C) CH $_3$ COOH ; (D) H $_3$ PO $_2$  ; (E) HS $^-$ 

練習 2-1.3

(C)

練習 2-2.2

(A)(C)(E)

練習 2-3.1-1

 $K_a = 1 \times 10^{-4}$ 

練習 2-3.1-2

強酸:(C);弱酸(A)

練習 2-3.2

 $K_{\rm b} = 1 \times 10^{-5}$ 

練習 2-3.3

(A)(C)(E)

練習 2-4.1

(A)(C)

練習 2-4.2

(A)(B)(D)

練習 2-5.1-1

(C)(E)

練習 2-5.1-2

(1) 9.26; (2) 9.04; (3) 9.48

練習 2-5.2

0.10 M CH<sub>3</sub>COOH(aq) 需取 8.5×10<sup>2</sup> mL;

0.10 M CH<sub>3</sub>COONa(aq) 需取 1.5×10<sup>2</sup> mL

練習 2-5.3

1:6.2

練習 2-6.1

(1)由黃色變藍色;(2)(D)

練習 2-6.2

A點:NH3;B點:NH3與NH4Cl

C點:NH<sub>4</sub>Cl;D點:HCl與NH<sub>4</sub>Cl

## 【章末習題】

## 基礎題

1.(B)(C)(D) 2.(E) 3.(C) 4.(C) 5.(E) 6.(B)(C) 7.(B) 8.(C)(E)

#### 進階題

1.(B)(C)(E) 2.(B)(E) 3.(A) 4.(B)(C) 5.(C)

## 素養題

1.(1)(C);

(2)(E);

(3) 空氣中的酸性氣體二氧化碳與整人墨水接觸後, 會降低溶液 的 pH 值, 使的瑞香草酚酞由藍色轉呈無色。可直接在藍色整人 墨水中打入 CO₂ 氣泡或倒入 HCl 溶液,會發現顏色由藍色變成 無色來驗證;

- (4) 再倒入一些 NaOH 溶液,則會發現顏色由無色變成藍色;
- (5) 氫氧化鈉溶液 + 瑞香草酚酞 + 酚酞。鹼性環境中,瑞香草酚 酞呈藍色,酚酞呈紅色,兩者混合可呈現紫色

2.(1) X = 1;

(2) A 點導電度最大,主要溶質為 HCl; C 點導電度最小,此時

恰中和,主要溶質為 NaCl;

(3) a = 0.1 M;

(4)因離子濃度:A點>C點