COMP229: Introduction to Data Science Lecture 15: a simple linear regression

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

Regression means "go backward"

Sir Francis Galton (1822–1911) was the first scientist to apply regression to biological data.

He noticed that taller-than-average parents tend to have children who also taller-than-average, but not as tall as their parents. He called this observation "regression toward the mean".

If a scatterplot looks linear, we can try to find the best line that fits (approximates) this scatterplot.

The regression line for a scatterplot

Definition 15.1. For a scatterplot of n data points (x_i, y_i) , the *least-squares regression line* has an equation y = ax + b that minimises the sum of squares $f(a, b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$. Here x_i, y_i are given values, while a, b are unknown coefficients.

 $|ax_i + b - y_i|$ is the vertical distance from the point (x_i, y_i) to the line y = ax + b, study hours not along the perpendicular.

Formulae for the regression line

Vertical distances help to get an easy solution.

Claim 15.2. For *n* points (x_i, y_i) the regression line is y = ax + b with $a = r_{xy} \frac{s_y}{s_x}$ and $b = \bar{y} - a\bar{x}$.

Here $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ are sample means.

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}, \ s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2}$$
 are sample standard deviations, and the sample correlation is
$$r_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}.$$

Example regression line

Sample means:
$$\bar{x} = 3$$
, $\bar{y} = 5$. Sample standard deviations: $s_x = \sqrt{\frac{1}{4}(2 \cdot 2^2 + 2 \cdot 1^2)} = \sqrt{2.5}$, $s_y = \sqrt{\frac{1}{4}(2 \cdot 4^2 + 2 \cdot 2^2)} = \sqrt{10}$. The correlation is $r_{xy} = \frac{(-2)(-4) + (-1)(-2) + 1 \cdot 2 + 2 \cdot 4}{4s_x s_y} = \frac{20}{4\sqrt{25}} = 1$ (no calculator needed). Use Claim 15.2.

Error of the regression line

By Claim 15.2 the regression line y = ax + b has the gradient (slope) $a = r_{xy} \frac{s_y}{s_x} = \frac{\sqrt{10}}{\sqrt{2.5}} = \sqrt{4} = 2$ and $b = \bar{y} - a\bar{x} = 5 - 2 \cdot 3 = -1$.

The resulting regression line y = 2x - 1 accidentally passes through all the given points (x_i, y_i) . Hence the minimum of the error function $f(a, b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$ is 0 (all terms vanish).

A proof of the formula for b

Proof of Claim 15.2. We find a, b that minimise the quadratic function $f(a, b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \ge 0$.

At any local minimum the derivatives with respect to the variables a,b must be zero: $\frac{\partial f}{\partial a} = 0 = \frac{\partial f}{\partial b}$.

With respect to b, the derivative of $(ax_i + b - y_i)^2$ is $2(ax_i + b - y_i)$. Take the sum over i = 1, ..., n.

$$0 = \frac{\partial f}{\partial b} = 2\sum_{i=1}^{n} (ax_i + b - y_i), \ a\sum_{i=1}^{n} x_i + nb = \sum_{i=1}^{n} y_i.$$

After dividing by n, we get $a\bar{x} + b = \bar{y}$, $b = \bar{y} - a\bar{x}$.

Shift the plane: $(\bar{x}, \bar{y}) \mapsto (0, 0)$

 $b = \bar{y} - a\bar{x}$ means that (\bar{x}, \bar{y}) is in y = ax + b.

If we shift the plane by moving (\bar{x}, \bar{y}) to (0, 0), the line $y = ax + (\bar{y} - a\bar{x})$ becomes y = ax, so we may assume that $\bar{x} = 0 = \bar{y}$ and b = 0.

Since
$$r_{xy} = \frac{\sum_{i=1}^{n} x_i y_i}{(n-1)s_x s_y}$$
 and $(n-1)s_x^2 = \sum_{i=1}^{n} x_i^2$,

the formula
$$a = r_{xy} \frac{s_y}{s_x}$$
 becomes $a = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$.

Notice that y = ax + b isn't symmetric with respect to x, y, i.e. swapping x, y will give another regression line x = cy + d

A proof of the formula for a

It remains to use $\frac{\partial f}{\partial a} = 0$ for $f(a, 0) = \sum_{i=1}^{n} (ax_i - y_i)^2$. With respect to a, the derivative of $(ax_i - y_i)^2$ is $2(ax_i - y_i)x_i$. The extra factor x_i is due to the chain rule (as the derivative of the internal function). Take the sum over $i = 1, \ldots, n$.

$$0 = \frac{\partial f}{\partial a} = 2 \sum_{i=1}^{n} (ax_i - y_i) x_i, \ a \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i.$$

Finally, we get $a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$ as required.

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Find the regression line for

X	1	2	3	4	5
y	3	1	2	1	3

Another regression line

The sample means are $\bar{x} = 3$ and $\bar{y} = 2$.

The sample standard deviations are

$$s_x = \sqrt{\frac{2 \cdot 2^2 + 2 \cdot 1^2}{4}} = \sqrt{2.5}, \ s_y = \sqrt{\frac{4 \cdot 1^2}{4}} = 1.$$

The correlation is
$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{(-2) \cdot 1 + (-1)^2 + 1 \cdot (-1) + 2 \cdot 1}{4\sqrt{2.5}} = 0.$$

The regression line y = ax + b has the coefficients $a = r_{xy} \frac{s_x}{s_y}$ and $b = \bar{y} - a\bar{x}$.

Answer to the quiz and summary

- The *least-squares regression line* minimises the sum of squared vertical distances.
- The regression line y = ax + b has the coefficients $a = r_{xy} \frac{s_x}{s_y}$ and $b = \bar{y} a\bar{x}$ and passes through the point (\bar{x}, \bar{y}) , where \bar{x}, \bar{y} are sample means; s_x , s_y are the sample standard deviations; r_{xy} is the correlation.