Aluno: Cleiton Moya de Almeida EST5104 - Inferência Bayesiana Prof. Josemar Rodrigues 27/04/2025

Avaliação #1

Questão 1 - Intervalos de confiança

Na primeira questão, assumimos o modelo binomial $X \sim \text{Binomial}(n, \theta)$ e construímos 4 intervalos:

- Intervalo de credibilidade de Jeffrey (bayesiano);
- Intervalo de credibilidade de Jeffrey modificado (bayesiano);
- Intervalo de confiança de Wald (frequentista);
- Intervalo de confiança de Wald modificado (frequentista).

1.1 Intervalo de Jeffrey

Para o modelo binomial, a priori de Jeffrey é dada pela distribuição Beta com parâmetros $\alpha = \beta = 1/2$ (Berger, 2005):

$$\pi(\theta) \sim \text{Beta}(\alpha = 1/2, \beta = 1/2)$$
 (1)

Das listas e exercícios anteriores, sabemos que a distribuição Beta é conjugada com a Binomial; então, a posteriori é também Beta com parâmetros atualizados:

$$\pi(\theta|x) \sim \text{Beta}(x + 1/2, n - x + 1/2)$$
 (2)

Construímos então o intervalo 95% de Jeffrey à partir dos quantis da posteriori:

- $a_{0.025}$ é o 0.025 quantil de $\pi(\theta|x)$, ou seja, $P(\theta|x < a_{0.025}) = \int_{-\infty}^{a_{0.025}} \pi(\theta|x) d\theta = 0.025$.
- $b_{0.975}$ é o 0.975 quantil de $\pi(\theta|x)$, ou seja, $P(\theta|x < b_{0.975}) = \int_{-\infty}^{b_{0.975}} \pi(\theta|x) d\theta = 0.975$.

No R, utilizamos a função queta() para calcular estes quantis. Para termos um exemplo numérico, calculamos na tabela 1 estes coeficientes considerando n=50 e x=1,25,49.

	x = 1		x = 25		x = 49	
	$a_{0.025}$	$b_{0.975}$	$a_{0.025}$	$b_{0.975}$	$a_{0.025}$	$b_{0.975}$
Jeffrey	0.002	0.090	0.365	0.635	0.910	0.998
Jeffrey modificado	0.002	0.090	0.365	0.635	0.910	0.998
Wald	-0.019	0.059	0.361	0.639	0.941	1.019
Wald modificado	-0.006	0.117	0.367	0.633	0.883	1.006

Tabela 1: Intervalos calculados para n = 50 e = 1, 25, 49.

1.2 Intervalo de Jeffrey Modificado

O intervalo de Jeffrey modificado altera o intervalo de Jeffrey para os casos extremos em que x = 0 ou x = n:

- Se x = 0, o IC passa a ser $[0, b_{0.975}]$;
- Se x = n, o IC passa a ser $[a_{0.025}, 1]$;
- Nos demais casos, o IC é o mesmo do item anterior: $[a_{0.025}, b_{0.975}]$,

onde $a_{0.025}$ e $b_{0.975}$ são os mesmos coeficientes calculados no item anterior.

Na tabela 1, note que para os casos x=1, x=25 e x=49, o intervalo de Jeffrey modificado é equivalente ao intervalo de Jeffrey normal. Para n=50 e x=0 (caso não mostrado na tabela), o $a_{0.025}$ do Intervalo de Jeffrey normal fica aproximadamente igual $10^{-5} \approx 0$, enquanto que no intervalo modificado este valor seria exatamente 0.

1.3 Intervalo de Wald

O intervalo de confiança 95% de Wald (para grandes amostras) é construído aproximandose a variável X binomial por uma variável normal com média e variância iguais à distribuição binomial ($\mu = n\theta$, $\sigma^2 = \theta(1-\theta)$), resultando na seguinte variável com distribuição normal padrão:

$$Z = \frac{X - n\theta}{\sqrt{(n\theta(1 - \theta))}} = \frac{\hat{\Theta} - \theta}{\sqrt{\frac{\theta(1 - \theta)}{n}}}$$
(3)

Isto conduz ao seguinte intervalo de confiança:

$$\theta \in [a_{0.025}, b_{0.975}] = \left[\hat{\theta} - z_{0.025} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}, \ \hat{\theta} + z_{0.025} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}\right]$$
(4)

onde $\hat{\theta} = x/n$ e $z_{0.025} = 1.96$ é o 0.025 quantil da distribuição normal padrão.

Na tabela 1, note que os intervalos de Wald ficaram próximos aos de Jeffrey para os exemplos numéricos considerados. Porém, como trata-se e uma aproximação normal, $a_{0.025}$ pode resultar em valores negativos e $b_{0.025}$ valores maiores do 1, o que não é condizente com o espaço paramétrico de θ .

Figura 1: Função de densidade de probabilidade para $\pi(\theta) \sim \text{Beta}(2,2)$ (interpretação bayesiana do intervalo de Wald modificado)

1.4 Intervalo de Wald Modificado

No intervalo de Wald modificado, adota-se

$$\hat{\Theta} = \frac{X+2}{n+4}.\tag{5}$$

Então, na eq. (4), substitui-se $\hat{\theta}$ por $\hat{\theta}' = (x+2)/(n+4)$.

Na tabela 1, é possível observar que, nos pontos extremos (x = 1 e x = 49), os intervalos de Wald modificado ficaram maiores que os intervalos de Wald padrões e maiores que os de Jeffrey e Jeffrey modificado.

Interpretação Bayesiana

Com uma visão bayesiana, podemos interpretar o novo estimador adotado,

$$\hat{\theta}' = \frac{x+2}{n+4} \tag{6}$$

como a média da posteriori $\pi(\theta|x)$, a qual segue a distribuição Beta quando assumimos uma priori também Beta.

Sabemos que, para $\theta \sim \text{Beta}(\alpha', \beta')$, $E[\theta] = \frac{\alpha'}{\alpha' + \beta'}$. No caso de $\pi(\theta|x)$, temos $\alpha' = x + \alpha$ e $\beta' = n - x + \beta$, o que resulta em

$$E[\theta] = \frac{a+x}{\alpha+\beta+n}. (7)$$

Comparando a eq. (6) com a eq. (7), teríamos $\alpha = \beta = 2$. Ou seja, a interpretação bayesiana é de que estaríamos adotando uma priori Beta com parâmetros $\alpha = \beta = 2$.

Para melhor analisarmos, plotamos na fig. 1 a função densidade de probabilidade desta priori. Observe que esta priori dá maior importância à região central do intervalo $\theta \in [0,1]$. Então, a interpretação bayesiana do intervalo de Wald modificado é que estamos informado, à priori, que o parâmetro θ tem maior probabilidade de estar na região central do intervalo, e não nos extremos.

Questão 2 - Simulação

Nesta questão, realizamos o estudo de simulação para verificar empiricamente a probabilidade de cobertura de θ para cada um dos intervalos analisados no item anterior.

Adotamos o seguinte procedimento:

- Chamamos θ_{nat} o parâmetro gerado pela natureza. Para melhor estudar o comportamento nos extremos, discretizamos o intervalo $\theta_{nat} \in [0, 1]$ como segue o $\{0, 0.001, 0.002, \dots, 0.10, 0.11 \dots 0.89, 0.900, 0.901, \dots 1\};$
- Para cada θ_{nat} , geramos 10.000 amostras de $x \sim \text{Binomial}(n, \theta_{nat})$.
- Para cada amostra, construímos os intervalos de Jeffrey, Jeffrey modificado, Wald e Wald modificado e verificamos se o θ_{nat} pertence a cada um destes intervalos. À partir disto, calculamos a probabilidade de cobertura para cada θ_{nat} como sendo a frequência em que este θ_{nat} ocorreu dentre os 10.000 intervalos geradas (de cada tipo).

A fig. 2 mostra o resultado do estudo. Podemos observar que:

Figura 2: Probabilidade de cobertura

- 1. Para a região central do espaço paramétrico, $0.2 \le \theta \le 0.8$, os 4 intervalos tiveram desempenho semelhante, tendo a probabilidade de cobertura convergido para 0.95, conforme esperado.
- 2. Para a região dos extremos, $\theta < 0.2$ e $\theta > 0.8$, observa-se que a probabilidade de cobertura ficou aquém do esperado para o intervalo de Wald. Já para o Wald modificado, a probabilidade de cobertura ficou acima do esperado para os extremos.
- 3. Comparando o Jeffrey com o Jeffrey modificado, o Jeffrey apresenta desempenho degradado para valores de θ iguais a zero ou muito próximos a zero. Já o Jeffrey modificado não apresenta este problema.

Questão Você acredita que o intervalo de IC de Jeffrey modificado é superior aos demais em termos da probabilidade de cobertura 95%? Você recomenda este intervalo para n pequeno?

Sim, no estudo de simulação o intervalo de Jeffrey modificado apresentou desempenho superior aos demais quando analisada toda a extensão do espaço paramétrico, incluindo valores de θ muito próximos ou iguais aos extremos (0 e 1). Para valores pequenos de n, o teste também é preferido, visto que a aproximação normal do IC de Wald passa a não ser mais válida. Uma outra vantagem é que os intervalos de credibilidade bayesianos possuem interpretação mais fácil do que os intervalos de confiança frequentistas.

Implementação

A implementação foi feita em R.

O código está disponível no repositório www.github.com/cleitonmoya/ib.

Bibliografia

Berger, James O. (2005). Objective Bayesian Statistical Inference. Apresentação. Acessado em 26/04/2024. URL: https://blogs.kent.ac.uk/jonw/files/2015/04/Berger2005.pdf.