Numerical Methods for Polynomial Root-finding Problem

Jianxiang Fan and Nir Boneh

Polynomial Root-finding

$$p_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n$$

- 1. Finding Eigenvalues of the Companion Matrix
 - Francis's Algorithm with Double-shift
 - "Fast" QR Algorithm (*) (2010)
- 2. Iterative Approximation
 - Newton-Horner Method
 - Muller's Method

Companion Matrix

$$p_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n$$

$$A = \begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ & & 1 & -a_{n-1} \end{bmatrix} \quad \text{Upper Hessenberg}$$

The characteristic function of A is $p_n(x)$

Francis's Alg: Single-shift vs. Double-shift

Single shift

- Only practical when all eigenvalues are real
- \circ Complex shift $\mu =>$ Complex matrix (A μ I)

Double shift

- Real or conjugate pairs
- \circ If ρ1 and ρ2 are conjugate pairs $(Aho_2I)(Aho_1I)$ is real

An Iteration of Double-shift Francis's

Step 1

 Pick shifts ρ1 and ρ2, which are eigenvalues of the 2×2 submatrix in the lower right corner of A

Step 2

- \circ Don't need to compute $\,(Aho_2I)(Aho_1I)\,$
- Just need the first column $x = p(A)e_1 = (A \rho_2 I)(A \rho_1 I)e_1$. which only has nonzero entries in its first 3 positions.
- Constant FLOPs

An Iteration of Double-shift Francis's (Cont.)

Step 3

- Compute a Householder reflector Q_0 , such that $Q_0x = \alpha e_1$, where $\alpha = \pm ||x||_2$
- Since x only has nonzero entries in its first 3 positions, just need to compute a 3×3 householder reflector
- Constant FLOPs

An Iteration of Double-shift Francis's (Cont.)

Step 4

- Use Q_0 to perform a similarity transformation: $A => Q_0^*AQ_0$
- Combining 3 rows and then 3 columns, 15n + 27 FLOPs
- Create the bulge

```
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *</t
```

An Iteration of Double-shift Francis's (Cont.)

Step 5

 \circ Bulge chasing $\hat{A}=Q_{n-2}^*\cdots Q_1^*Q_0^*AQ_0Q_1\cdots Q_{n-2}$

$$Q_k = \begin{bmatrix} I_k & & & \\ & \tilde{Q}_k & & \\ & & I_{n-k-3} \end{bmatrix} \qquad Q_{n-2} = \begin{bmatrix} I_{n-2} & & & \\ & \tilde{Q}_{n-2} \end{bmatrix}$$

$$Q_{n-2} = \begin{bmatrix} I_{n-2} & \\ & \tilde{Q}_{n-2} \end{bmatrix}$$

 Q_k is 3×3 Householder reflector $k = 0, 1, \cdots, n - 3.$

$$Q_{n-2}$$
 is 2×2 Givens rotator

FLOPs: $15*n + 15*(n-1) + ... + 15*4 = 15/2 * n^2$

Deflation

- Doesn't always cause convergence to a triangular form
- Pairs of complex conjugate eigenvalues emerge in 2×2 blocks along the main diagonal of a block triangular matrix
- Check subdiagonal elements

$$|a_{k+1,k}| \le u(|a_{kk}| + |a_{k+1,k+1}|)$$

"Fast" QR algorithms for Companion Matrices

- Double-shift Francis's: O(n^2) FLOPs each iteration
- Hidden properties of companion matrix
- D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani and I. Gohberg, A Fast Implicit QR Eigenvalue Algorithms for Companion Matrices, Linear Algebra Appl., April (2010)
- O(n) FLOPs each iteration, with constant factor 243 theoretically
- Implement single-shift version based on their paper
- A brief introduction

H_n Class Matrix

$$A = \begin{bmatrix} 0 & & & 1 \\ 1 & 0 & & & 0 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & 0 \\ & & & 1 & 0 \end{bmatrix} - \begin{bmatrix} p_0 + 1 \\ p_1 \\ \vdots \\ p_{n-1} \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$H \in \mathcal{H}_n$$
 if there exist $U \in \mathbb{C}^{n \times n}$ unitary and $\mathbf{z}, \mathbf{w} \in \mathbb{C}^n$ such that

$$H = U - \mathbf{z}\mathbf{w}^T$$

Generating Elements

Lemma 3.2: (Decomposition of U): If $A = U - \mathbf{z}\mathbf{w}^T \in \mathcal{H}_n$, there exist n - 2 unitary matrix $\mathcal{V}_{n-1}, \mathcal{V}_{n-2}, \cdots, \mathcal{V}_2, n - 2 \ 3 \times 3$ unitary matrix $\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_{n-2}$ and β_i , such that

$$\beta_n = w_n, \begin{bmatrix} \beta_k \\ 0 \end{bmatrix} = \mathcal{V}_k^* \begin{bmatrix} w_k \\ \beta_{k+1} \end{bmatrix}, k = n - 1, n - 2, \dots, 2$$
$$U = V_{n-1} V_{n-2} \cdots V_2 F_1 F_2 \cdots F_{n-2}$$

where

$$V_k = \begin{bmatrix} I_{k-1} & & & \\ & \mathcal{V}_k & & \\ & & I_{n-k-1} \end{bmatrix}, k = 2, \dots, n-1$$

$$F_k = \begin{bmatrix} I_{k-1} & & & \\ & \mathcal{F}_k & & \\ & & I_{n-k-2} \end{bmatrix}, k = 1, \dots, n-2$$

Generating Elements (Cont.)

Generating Elements are not easy to be manipulated under the QR iteration.

Upper generators

Theorem 3.3: Suppose $\{\mathcal{V}_k\}_2^{n-1}$, $\{\mathcal{F}_k\}_1^{n-2}$, \mathbf{z} , \mathbf{w} are the generating elements of an \mathcal{H}_n class matrix $A = U - \mathbf{z}\mathbf{w}^T \in \mathcal{H}_n$. The entries $u_{i,j}$, $\max\{1, i-2\} \leq j \leq n, 1 \leq i \leq n$, satisfy the following relations

$$u_{i,j} = \mathbf{g}_i^T B_{i,j}^{\times} \mathbf{h}_j \text{ for } j - i \ge 0$$

$$u_{i,j} = \sigma_i \text{ for } 1 \le i = j + 1 \le n$$

where the vectors h_k and the matrices B_k are determined by the formulas

$$h_k = \mathcal{F}_k(1:2,1), \quad B_{k+1} = \mathcal{F}_k(1:2,2:3), \quad 1 \le k \le n-2$$

and the vectors \mathbf{g}_k and the numbers σ_k are computed recursively

$$\Gamma_{1} = (0 1), \quad \boldsymbol{g}_{1}^{T} = (1 0)$$

$$\begin{bmatrix} \sigma_{k} & \boldsymbol{g}_{k+1}^{T} \\ * & \Gamma_{k+1} \end{bmatrix} = \mathcal{V}_{k+1} \begin{bmatrix} \Gamma_{k} & 0 \\ 0 & 1 \end{bmatrix} \mathcal{F}_{k}, \quad (k = 1, \dots, n-2)$$

$$\sigma_{n-1} = \Gamma_{n-1} \boldsymbol{h}_{n-1}, \quad \boldsymbol{g}_{n}^{T} = \Gamma_{n-1} B_{n-1}$$

with the auxiliary variables $\Gamma_k \in \mathbb{C}^{1 \times 2}$.

Iteration with Single-shift

Given the generating elements

$$V_k (k = 2, \dots, n-1), \mathcal{F}_k (k = 1, \dots, n-2), \mathbf{z}, \mathbf{w}$$

- (1) Using algorithm from Theorem 3.3 compute upper generators \mathbf{g}_i , \mathbf{h}_i $(i = 1, \dots, n)$, B_k $(k = 2, \dots, n)$ and σ_k $(k = 1, \dots, n-1)$.
 - (2) Set $\beta_n = z_n$ and for $k = n 1, \dots, 3$ compute

$$\beta_k = \mathcal{V}_k^*(1, 1:2) \begin{bmatrix} z_k \\ \beta_{k+1} \end{bmatrix}$$

- (3) Using upper generators, σ_k and shift α to compute the Givens rotation matrices \mathcal{G}_k $(k = 1, \dots, n-1)$ and the updated perturbation vectors $\mathbf{z}^{(1)}, \mathbf{w}^{(1)}$
- (4) Using β_k and the Givens rotation matrices \mathcal{G}_k $(k = 1, \dots, n-1)$ to compute the generating elements $\mathcal{V}_k^{(1)}$ $(k = 2, \dots, n-1), \mathcal{F}_k^{(1)}$ $(k = 1, \dots, n-2)$

Try to implement in Matlab...

- Single shift (OK)
- Deflation?
 - Good news: Subdiagonal and diagonal elements can be represented by upper generators
 - Should reconstruct A to get sub-block? Become very unstable!
- Double shift?
- Large constant factor, lots of memory manipulation...

Newton-Horner Method

- An approximate polynomial root finding method
- Composed of two methods:
 - Newton Method
 - Horner Method

Newton's Method

• The Newton method takes a guess for the root of a function, x_0 and finds a better approximation with each iteration.

Horner's Method

- Horner Method's objective is to find a solution to a polynomial given input x and minimize the amount of total flops.
- Horner states that polynomials can be rewritten as p(x) = q(x) * (x a) + c and if x equals a then the solution to the polynomial is c.
- For example $p(x) = x^3 2x^2 5x + 6$ can be rewritten as $p(x) = (x^2 5) * (x 2) 4$ and if x = 2 then, the solution is clearly -4.

Horner's Method Code

```
function [px, pprimex] = Horner(x)

pprimex = 0.0

px = c(1)

for i = 2:n

pprimex = pprimex * x + px

px = px * x + c(i)

end
```

 It uses about 2n flops. Where a normal fully evaluated computation would use about n^2 /2 + n/2 flops

Deflation

- Combining both methods gives us a way to find one of the roots, but how do we find the others? Deflation!
- If you find root r1 for p(x) you can create a new polynomial p2(x) = p(x)/ (x r1). p2(x) will contain all the original roots of p(x) except r1. Then you can continue with p3(x) and so on till pn(x) to find all roots.

Muller's Method

 Based off the secant method, uses two initial guesses and linear interpolation.

Muller's Method

Uses three initial guesses and quadratic interpolation.

Convergence Rate

Newton's Method

 \circ Error in the kth iteration: $e_k = x_k - x^*$

$$e_{k+1} = \frac{f''(\xi_k)}{2f'(x_k)}e_k^2$$

Example $f(x) = x^2 - 3$

k	x_k	$ e_k $
0	1.0	0.73205080756888
1	2.0	0.26794919243112
2	1.75	0.01794919243112
3	1.73214285714286	0.00009204957398
4	1.73205081001473	0.00000000244585

$$|f''(\sqrt{3})/2f'(\sqrt{3})| \approx 0.2886751.$$

 $|e_4|/|e_3|^2 \approx 0.2886598$

Convergence Rate (Cont.)

- Muller's Method
- Order of convergence: ~1.84

- Francis's Algorithm with double shift
- Shifts picking: eigenvalues of the 2×2 submatrix in the lower right corner of A
- Generally cubic, worst case quadratic

Conditioning of Polynomial Root-finding

- In general ill-conditioned
- Example: $x^2 2x + 1 = 0$ => $x_1 = 1$, $x_2 = 1$ $x^2 - 2.00001x + 1 = 0$ => $x_1 = 1.0032$, $x_2 = 0.9968$

Relative error in coefficient: $5 \times 10^{(-6)}$

Relative error in roots: 0.0032

• Wilkinson's Polynomial: $w(x) = (x-20)(x-19)...(x-1) = x^20 - 210x^19 + ...$ Perturb: $-210 = > -210 - 2^{-23}$ $x_{16} = 16 = > 16.73 + 2.81i$

• Condition number of root x_i w.r.t the perturbation of a_i

$$\frac{|\delta x_j|}{|x_i|} / \frac{|\delta a_i|}{|a_i|} = \frac{|a_i x_j^{i-1}|}{|f'(x_i)|}$$
 Cond₁₆: O(10¹⁰)

An Important Lesson

DON'T compute the eigenvalues of a matrix by finding coefficients of the characteristic polynomial, and then solving its roots by Newton-Horner.

Reference

- [1] J. G. F. Francis, The QR transformation. II, Comput. J. 4 (1961/1962), 332-345.
- [2] David S. Watkins, Francis's Algorithm, The American Mathematical Monthly 118(5), May (2011)
- [3] D. A. Bini, Y. Eidelman, L. Gemignani and I. Gohberg, Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices, SIAM. J. Matrix Anal. & Appl., 29(2), (2007), 566-585.
- [4] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani and I. Gohberg, A Fast Implicit QR Eigenvalue Algorithms for Companion Matrices, Linear Algebra Appl., April (2010)
- [5] D. Bindel, S. Chandresekaran, J. Demmel, D. Garmire, and M. Gu, A Fast and Stable Nonsymmetric Eigensolver for Certain Structured Matrices, Technical report, University of California, Berkeley, CA, (2005)
- [6] A. Quarteroni, R. Sacco, F. Saleri Numerical Mathematics, Second Edition, TAM37, Springer, Berlin (2007)
- [7] Lloyd N. Trefethen, David Bau III, Numerical Linear Algebra, SIAM: Society for Industrial and Applied Mathematics (1997)
- [8] Biswa Nath Datta, Numerical Linear Algebra and Applications, Second Edition, SIAM:
 Society for Industrial and Applied Mathematics (2010)