Parcial Final

Nicolás Patalagua

Universidad Sergio Arboleda

Scikit-learn

<u>Scikit-learn</u> (formerly scikits.learn and also known as sklearn) is a free software machine learning libilianguage. It features various classification, regression and clustering algorithms including support veboosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scier

Variables

- EXAM1 -> Puntuación Examen 01
- EXAM2 -> Puntuación Examen 02
- EXAM3 -> Puntuación Examen 03
- FINAL -> Puntuación Examen Final (Variable Target)

En primer lugar se cargan las bibliotecas con sus módulos correspondientes.

```
import numpy as np #Soporte para vectores y matrices
import pandas as pd #Manipulación y análisis de datos
import seaborn as sns #Graficos elegantes
import matplotlib.pyplot as plt #Diseño y realización de graficas
#incorporar las gráficas en este documento
%matplotlib inline
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureW import pandas.util.testing as tm

from sklearn.model_selection import train_test_split #Dividir dataset en trenes aleat from sklearn.linear_model import LinearRegression #Regresión lineal de mínimos cuadra from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score #Error cuadratico medio, error absoluto medio y r2 score.

Se realiza la exploración y preparación del dataset.

```
#Exportamos el dataset
ObjData=pd.read_csv('data03.csv')
```

#Presentar la cabecera del dataset
ObjData.head()

₽		EXAM1	EXAM2	EXAM3	FINAL
	0	73	80	75	152
	1	93	88	93	185
	2	89	91	90	180
	3	96	98	100	196
	4	73	66	70	142

#Presentar la cantidad de filas y columnas:
ObjData.shape

┌⇒ (103, 4)

#A las notas sin valor le asignamos una nota 0
ObjData.fillna(0)

₽		EXAM1	EXAM2	EXAM3	FINAL
	0	73	80	75	152
	1	93	88	93	185
	2	89	91	90	180
	3	96	98	100	196
	4	73	66	70	142
	98	74	83	89	161
	99	99	75	79	159
	100	95	75	75	157
	101	72	95	74	158
	102	84	80	82	204

#Exploramos un poco los datos
print("Información del dataset:\n")
ObjData.info()

С→

Información del dataset:

#Verificamos el tipo de dato de cada columna ObjData.dtypes

```
EXAM1 object
EXAM2 object
EXAM3 object
FINAL int64
dtype: object
```

```
#Convertir los objevt a int
ObjData["EXAM1"] = pd.to_numeric(ObjData["EXAM1"],errors='coerce')
ObjData["EXAM2"] = pd.to_numeric(ObjData["EXAM2"],errors='coerce')
ObjData["EXAM3"] = pd.to_numeric(ObjData["EXAM3"],errors='coerce')
```

ObjData.dtypes

```
EXAM1 float64
EXAM2 float64
EXAM3 float64
FINAL int64
dtype: object
```

#Realizamos un resumen estadistico
print("Resumen estadístico:")
ObjData.describe().T

Resumen estadístico:

	count	mean	std	min	25%	50%	75%	max
EXAM1	102.0	79.421569	11.770441	45.0	73.00	79.5	87.0	107.0
EXAM2	100.0	78.270000	11.331421	46.0	70.75	78.0	87.0	103.0
EXAM3	98.0	79.581633	11.681268	49.0	73.00	77.5	90.0	106.0
FINAL	103.0	159.970874	26.345910	97.0	144.50	158.0	177.0	227.0

Realizamos los diagramas de dispersion de cada nota contra el target

```
plt.figure(figsize=(12, 4))
plt.scatter(
    ObjData['EXAM1'],
    ObjData['FINAL'],
```

```
c='m'
)
plt.title("Gráfico Dispersión Examen 1 vs Nota final", fontsize=16, fontweight='bold'
plt.xlabel("Examén 1")
plt.ylabel("Nota final")
plt.show()
```



```
plt.figure(figsize=(12, 4))
plt.scatter(
    ObjData['EXAM2'],
    ObjData['FINAL'],
    c='r'
)
plt.title("Gráfico Dispersión Examen 2 vs Nota final", fontsize=16, fontweight='bold'
plt.xlabel("Examén 2")
plt.ylabel("Nota final")
plt.show()
```



```
plt.scatter(
    ObjData['EXAM3'],
    ObjData['FINAL'],
    c='orange'
)
plt.title("Gráfico Dispersión Examen 3 vs Nota final", fontsize=16, fontweight='bold'
plt.xlabel("Examén 3")
plt.ylabel("Nota final")
plt.show()
```


Los gráficos de dispersión se usan para trazar puntos de datos en un eje vertical y uno horizontal, me cuánto afectan las variables EXAM1, EXAM2 y EXAM3 respecto a la nota final.

Realizar la grafica de dispersión par por variables

```
#Dispersion par por variables
sns.pairplot(ObjData)
```

₽

En este caso se dice que las variables son incorreladas y la nube de puntos tiene una forma redonde

Realizamos la grafica de distribución

```
print('Gráfico de distribución')
filas = 2
columnas = 2
fig, ax = plt.subplots(nrows=filas, ncols=columnas, figsize=(16,4))
columna = ObjData.columns
index = 0
for i in range(filas):
    for j in range(columnas):
        sns.distplot(ObjData[columna[index]], ax = ax[i][j], kde_kws={'bw':0.1})
        index = index + 1
plt.tight_layout()
```


La gráfica de la distribución normal tiene la forma de una campana, por este motivo también es conc gráfico, el área sombreada corresponde a la probabilidad de encontrar un valor de la variable que sea

Realizar la matriz de correlación

La matriz de covarianzas muestra los valores de covarianza, que miden la relación lineal de cada

#Matriz de Correlación
ObjMC=ObjData.corr()
ObjMC

₽		EXAM1	EXAM2	EXAM3	FINAL
	EXAM1	1.000000	0.389820	0.262478	0.034589
	EXAM2	0.389820	1.000000	0.149500	0.231203
	EXAM3	0.262478	0.149500	1.000000	0.185858
	FINAL	0.034589	0.231203	0.185858	1.000000

Realizamos el mapa de calor para representar la correlación

```
#Realizamos el mapa de calor
fig, ax = plt.subplots(figsize = (16,8))
sns.heatmap(ObjMC, annot=True)
```

С→

<matplotlib.axes._subplots.AxesSubplot at 0x7fe9325624a8>

Un gráfico de calor se usa para visualizar la relación numérica existente entre las variables EXAM1, E

```
#Presentar el indice de la matriz de correlación
ObjMC.index
```

```
Index(['EXAM1', 'EXAM2', 'EXAM3', 'FINAL'], dtype='object')
```

ObjMC.dtypes

```
EXAM1 float64
EXAM2 float64
EXAM3 float64
FINAL float64
dtype: object
```

Creamos el modelo de regresión lineal para predecir la nota final. Para estimar los coeficientes se us

```
def relacionFeatures(correlacionData, umbral):
    feature = []
    valor = []
    for i, index in enumerate(correlacionData.index):
        if abs(correlacionData[index]) > umbral:
            feature.append(index)
            valor.append(correlacionData[index])
    df = pd.DataFrame(data = valor, index = feature, columns=['Valor Correlación'])
    return df

#Realizamos el calculo del umbral 0.25
umbral = 0.25
valorCorrelacion = relacionFeatures(ObjMC['FINAL'], umbral)
valorCorrelacion
```

```
Valor Correlación
FINAL 1.0
```

```
#Realizamos el calculo del umbral 0.75
umbral = 0.75
valorCorrelacion = relacionFeatures(ObjMC['FINAL'], umbral)
valorCorrelacion
```

```
Valor Correlación
FINAL 1.0
```

ObiModelo = LinearRegression()

#Representamos los datos de correlación correctos
ObjDt = ObjMC[valorCorrelacion.index]
ObjDt.head()

₽		EXAM1	EXAM2	EXAM3	FINAL
	EXAM1	1.000000	0.389820	0.262478	0.034589
	EXAM2	0.389820	1.000000	0.149500	0.231203
	EXAM3	0.262478	0.149500	1.000000	0.185858
	FINAL	0.034589	0.231203	0.185858	1.000000

Ajustar el modelo de regresión lineal y predecir. Se realizara en torno a Exam 1 y a la nota final, y otro

```
#Seleccionamos las variables dependiente e independiente
#Seleccionamos las variables dependiente e independiente
X = ObjData['EXAM1'].values.reshape(-1,1)
y = ObjData['FINAL'].values.reshape(-1,1)
# Selección a modelo lineal
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state