CIE 6002 Matrix Analysis

Binghao He

February 26, 2021

Contents

Lecture 2. Fundamental and Basic Operations	
Subspace	
Definition	
Some important subspaces	
Linear independence	
Basis	
Rank	
Nonsingularity/Invertibility	
Determinant	
Vector Norm	
Inner Product	
Projection onto a Subspace	
Projection	
Orthogonal complement	
Sum of subspaces	
Orthogonal Set	
Orthogonal/Unitary Matrix	
Dimensional Theorem	
Complexity of Matrix Computation	
Flops	
Big O notation	
Lecture 3. Least Square Problem (LSP)	
Formulation	
LS problem	
Linear representation of signals	
AR and Polynomial Models	
Autoregressive (AR) model	
Polynomial model	
Basis Representation	
Basis matrix	
Fourier basis	
LTI System	
Lienar time invariant system	
System identification	
Deconvolution	
Toeplitz matrix	

Circulant Matrix	
Lecture 4. Eigenvalues and Eigenvectors	
Diagonalizability	
Similar matrices	
Diagonalizable matrix	
When Diagonalizable	
Distinct eigenvalues	
Repeated eigenvalues	
Symmetric/Hermitian Matrices	
Unitarily diagonalizable	
Schur triangularization	
Variational Characterization of Eigenvalues	
Rayleigh quotient	
Courant-Fischer theorem	
Weyl's inequality	
The Power Method	

Lecture 2. Fundamental and Basic Operations

Subspace

Definition

The set $S \subseteq \mathbb{R}^m$ is a subspace, if for $x, y \in S$ $\alpha x + \beta y = S, \quad \alpha, \beta \in \mathbb{R}^m$

This indicates

$$x_i \in S, \quad i = 1, ..., N \implies \sum_{i=1}^{N} \alpha_i x_i \in S$$

Some important subspaces

1. Span: a collection of vectors

 $span\{a_1,...,a_n\} = \{y \in \mathbb{R}^m | y = \sum_{i=1}^n \alpha_i a_i \alpha_i \in \mathbb{R}\}$

2. Orthogonal complement: given a subspace $S \subseteq$ \mathbb{R}^m

 $S_{\perp} = \{y \in \mathbb{R}^m | y^Tx = 0, \forall x \in S\}$ 3. Range space of A (linear comb. of col. vectors)

 $R(A) = span\{a_1, a_2, ..., a_n\}$ $= \{ y \in \mathbb{R}^m | y = Ax, x \in \mathbb{R}^n \}$

4. Null space of A (linear comb. of col. vectors) $Null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

Linear independence

Given a set $\{a_1, a_2, ..., a_n\}$, we say they are linear independent if

$$\sum_{i=1}^{n} \alpha_i a_i = 0 \Longrightarrow \alpha_i = 0, \forall i = 1, ..., n$$

Basis

 $\{b_1, b_2, ..., b_k\} \subseteq \mathbb{R}^m$ is a basis for the subspace $S \subseteq \mathbb{R}^m$ if $S = span\{b_1, b_2, ..., b_k\}$ and $\{b_1, b_2, ..., b_k\}$ is linear in-

The number of the vectors of the basis for Sk = dim(S)

- 1. k: max number of linear indep. vectors in S
- 2. k: min number of vectors that can span S

Rank

For a matrix $A \in \mathbb{R}^{m \times n}$

$$dim(R(A)) \le min\{m, n\}$$

Rank of a matrix (?)

$$rank(A) = dim(R(A))$$

= max number of linearly indep.
columns(rows) of A
= $rank(A^T)$

And

$$Null(A) = (R(A^T))_{\perp}$$

Nonsingularity/Invertibility

A symmetric matrix $A \in \mathbb{R}^{m \times m}$ is non-singular if

$$Ax = 0 \implies x = 0$$

 \implies columns of A are linearly indep.

$$\Longrightarrow \exists A^{-1} \in \mathbb{R}^{m \times m} \text{ that } AA^{-1} = A^{-1}A = I_m$$

Some properties

1.
$$(AB)^{-1} = B^{-1}A^{-1}$$

2.
$$(A^{-1})^T = (A^T)^{-1}$$

Determinant

For a matrix $A \in \mathbb{R}^{m \times m}$, Inductive

- 1. If m = 1, det(A) = A
- 2. If m > 1, Define: $A_{ij} \in \mathbb{R}^{(m-1)\times(m-1)}$ is a submatrix that removes ith row and jth column of

Define:
$$c_{i}j = (-1)^{i+j} det(A_{ij})$$
.
 $det(A) = \sum_{j=1}^{m} a_{ij} c_{ij} \quad \forall i = 1, ..., m$
 $= \sum_{i=1}^{m} a_{ij} c_{ij} \quad \forall j = 1, ..., m$

For $A, B \in \mathbb{R}^{m \times m}$

- det(AB) = det(A)det(B)
- $det(A) = det(A^T)$
- $det(\alpha A) = \alpha^m det(A)$
- $det(A) = 0 \iff A$ is singular
- $det(A^{-1}) = 1/det(A)$ if A is invertible

Vector Norm

A mapping $f: \mathbb{R}^{>} \to \mathbb{R}$ is a norm if it satisfies that $\forall x, y \in \mathbb{R}^m$

- $f(x) \ge 0$
- f(x) = 0 iff. x = 0
- $f(x+y) \le f(x) + f(y)$
- $f(\alpha x) = |\alpha| f(x)$

Examples

- $||x||_2 = \sqrt{\sum_{i=1}^m |x_i|^2}$ (Euclidean norm) $||x||_1 = \sum_{i=1}^m |x_i|$
- $||x||_{\infty} = \max_{i=1,\dots,m} |x_i|$ $||x||_p = \sqrt[p]{\sum_{i=1}^m |x_i|^p}$

Inner Product

$$\langle x, y \rangle = x^T y$$

$$\langle x, x \rangle = ||x||_2^2$$

Cauchy-Schwarz Inequality

$$|x^T y| \le ||x||_2 \cdot ||y||_2$$

Holder Inequality

$$|x^T y| \le ||x||_p \cdot ||y||_q$$

where

$$1/p + 1/q = 1 \quad , \quad p \cdot q \ge 1$$

Projection onto a Subspace

Projection

Given a set $S \subseteq \mathbb{R}^m$ and a point $y \in \mathbb{R}^m$, the projection of y onto S is

$$y_S = \arg\min_{z \in S} \|z - y\|_2^2$$

Theorem 1

Suppose S is a subspace,

- 1. y_S exists and is unique
- 2. Let $y_S = \Pi_S(y)$ iff. $z^T(y_S - y) = 0 \ \forall z \in S$

Orthogonal complement

 $S_{\perp} = \{ y \in \mathbb{R}^m | y^T x = 0, \forall x \in S \}$ is the orthogonal complement of subspace S.

- Orthogonal complement is a subspace
- $S \cap S_{\perp}$

Theorem 2

Let $S \subseteq \mathbb{R}^m$ be a subspace. For any $y \in \mathbb{R}^m$

$$y = \Pi_S(y) + \Pi_{S_{\perp}}(y)$$

Proof

$$y = \Pi_S(y) + \Pi_{S_\perp}(y)$$

$$\iff z^T \Pi_S(y) = 0 \quad \forall z \in S_\perp$$

Sum of subspaces

For two sets $X, Y \subseteq \mathbb{R}^m$,

$$X + Y = \{x + y \in \mathbb{R}^m\}$$

For a subspace $S \subseteq \mathbb{R}^m$

- 1. $S + S_{\perp} = \mathbb{R}^m$
- 2. $dim(S) + dim(S_{\perp}) = m$
- 3. $(S_{\perp})_{\perp} = S$

Proof

- 1. Comes from Theorem 2
- 2. Let $\{a_1, a_2, ..., a_k\}$ be a basis for S(dim(S) = k)and $\{b_1, b_2, ..., b_\ell\}$ be a basis for $S \perp (dim(S_\perp) =$

$$\{a_1, a_2, ..., a_k\} \cup \{b_1, b_2, ..., b_\ell\}$$
 is

- (a) linear independent
- (b) Span $S + S_{\perp} = \mathbb{R}^m$

Therefore, $dim(S) + dim(S_{\perp}) = m$

3. Obvious

Orthogonal Set

 $\{a_1, a_2, ..., a_n\}$ is orthogonal/orthonormal set if

1.
$$||a_i||_2 = 1 \quad \forall i = 1, ..., n$$

2. $a_i^T a_j = 0 \quad \forall i \neq j$

2.
$$a_i^T a_j = 0 \quad \forall i \neq j$$

The orthogonal set is linear independent.

$$y = \sum_{i=1}^{n} \alpha_i a_i \Longrightarrow \alpha_i = a_i^T y = \alpha ||a_i||_2^2$$

Given a linear independent set $\{a_1, a_2, ..., a_n\}$. The procedure of finding an orthogonal set $\{q_1, q_2, ..., 1_n\}$ so that $span\{a_1, a_2, ..., a_n\} = span\{q_1, q_2, ..., q_n\}$ is called "Gram-Schimit" procedure.

Orthogonal/Unitary Matrix

 $Q = [q_1, q_2, ..., q_m] \in \mathbb{R}^{n \times m}, q_i, i = 1, ..., m$ are orthogonal.

- If m = n,
 - Q is orthogonal matrix $\Longrightarrow Q^TQ = I_m = QQ^T$.
- If n > m,

semi-orthogonal $\Longrightarrow Q^T Q = I_m \neq QQ^T$.

 $Q = [q_1, q_2, ..., q_m] \in \mathbb{C}^{n \times m}, q_i, i = 1, ..., m$ are orthogonal.

- If m=n,
 - Q is unitary matrix $\Longrightarrow Q^HQ = I_m = QQ^H$.

 - semi-unitary $\Longrightarrow Q^HQ = I_m \neq QQ^H$.

If
$$Q \in \mathbb{R}^{n \times m}$$
 $(n > m)$ is semi-orthogonal, $\exists \tilde{Q} \in \mathbb{R}^{n \times (n-m)}$ so that $\begin{bmatrix} Q & \tilde{Q} \end{bmatrix}$ is orthogonal.

Dimensional Theorem

For a matrix $A \in \mathbb{R}^{m \times n}$, it holds dim(R(A)) + dim(Null(A)) = n Proof $dim(R(A^T)) + dim(R(A^T)_{\perp}) = n$ $dim(R(A^T)) = rank(A^T) = rank(A) = dim(R(A))$ $dim(R(A^T)_{\perp}) = Null(A) = n$

Complexity of Matrix Computation

Flops

Arithmetic operations including addition, substraction, multiplication, division.

Big O notation

Big O notation: "order" of the complexity.

$$f(n) = O(g(n))$$

for some g(n) if \exists a constant C > 0 and n_0 so that for $n > n_0$

$$|f(n)| \le C \cdot |g(n)|$$

Examples: for $x \in \mathbb{R}^m$, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times p}$

$$x+y$$
 m flops $O(m)$
 x^Ty $2m-1$ flops $O(m)$
 Ax $n \cdot (2m-1)$ flops $O(nm)$
 AB $p \cdot n \cdot (2m-1)$ flops $O(pnm)$

Lecture 3. Least Square Problem (LSP)

Formulation

LS problem

Given $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_2^2$$

Linear representation of signals

$$y = Ax$$

In practice,

$$y = Ax + v$$

where

- y is the observation (Given)
- A is the model (Given)
- x is the parameter to be estimated/determined
- v is the noice follow multi-variate Gaussian distribution

$$pdf(v) \propto e^{-\|v\|^2}$$

⇒ Maximum likelihood estimator

$$\max_{x} P(y|x) \propto \min_{x} \|y - Ax\|_{2}^{2}$$

AR and Polynomial Models

Autoregressive (AR) model

Given a time series y_t , t = 0, 1, 2, ...,

$$\underbrace{y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots + \alpha_p y_{t-p}}_{\text{AR model}} + \underbrace{v_t}_{\text{noise}}$$

If $\alpha_1, \alpha_2, ..., \alpha_p$ are known, estimate y_t by

$$\hat{y}_t = \underbrace{\alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots + \alpha_p y_{t-p}}_{\text{historical observation}}$$

Collect

$$\underbrace{\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_T \end{bmatrix}}_{y \in \mathbb{R}^T} = \underbrace{\begin{bmatrix} y_0 \\ y_1 & y_0 \\ \vdots & \ddots & \ddots \\ y_{p-1} & \cdots & \cdots & y_0 \\ \vdots & \ddots & \ddots & \vdots \\ y_{T-1} & \cdots & \cdots & y_T \end{bmatrix}}_{A \in \mathbb{R}^{T \times p}} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_p \end{bmatrix}}_{x \in \mathbb{R}^p} + \underbrace{\begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_T \end{bmatrix}}_{v \in \mathbb{R}^T}$$

$$\phi_i = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 \\ e^{j\frac{2\pi}{n}(i-1)} \\ e^{j\frac{2\pi}{n}(i-1) \times 2} \\ \vdots \\ e^{j\frac{2\pi}{n}(i-1) \times n-1} \end{bmatrix} \in \mathbb{R}^n$$

$$\Phi_i \text{ is IDET metric.} \Phi_i^H \text{ is DET metric.} \Phi_i^H \text{ i$$

 \implies Solve LS problem to obtain α_i , i = 1, ..., p

Polynomial model

$$\underbrace{y_t = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \dots + \alpha_p t^p}_{\text{polynomial model}} + \underbrace{v_t}_{\text{noise}}$$

Collect

$$\underbrace{\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_T \end{bmatrix}}_{y \in \mathbb{R}^T} = \underbrace{\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 1 \\ \vdots & & & \\ 1 & t & \cdots & t^p \\ \vdots & & & \\ 1 & T-1 & \cdots & (T-1)^p \end{bmatrix}}_{A \in \mathbb{R}^{T \times p}} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_p \end{bmatrix}}_{x \in \mathbb{R}^p} + \underbrace{\begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_T \end{bmatrix}}_{v \in \mathbb{R}^T}$$

 \implies Solve LS problem to obtain α_i , i = 1, ..., p

Basis Representation

Basis matrix

For $y \in \mathbb{R}^m$, given a set of basis vectors (can be given or learned)

$$\Phi = \{\phi_1, \phi_2, ..., \phi_n\} \in \mathbb{R}^{m \times n}$$

We model

$$y = \sum_{i=1}^{n} \phi_i x_i = \Phi x$$

- $m \gg n$, assume data lies in a low-dimensional
- $m \ll n$, dictionary $\implies x$ is sparse

Fourier basis

Discrete Fourier Transform (DFT) Inverse Discrete Fourier Transform (IDFT)

$$\Phi = [\phi_1, ..., \phi_n] \in \mathbb{C}^{n \times n}$$

$$\phi_i = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 \\ e^{j\frac{2\pi}{n}(i-1)} \\ e^{j\frac{2\pi}{n}(i-1) \times 2} \\ \vdots \\ e^{j\frac{2\pi}{n}(i-1) \times n - 1} \end{bmatrix} \in \mathbb{R}^n$$

- Φ is IDFT matrix, Φ^H is DFT matrix.
- Φ is unitary matrix.

LTI System

Lienar time invariant system

$$- \text{ Linearity } \begin{cases} x_t^1 \to \boxed{\text{LTI}} \to y_t^1 \\ x_t^2 \to \boxed{\text{LTI}} \to y_t^2 \\ \alpha x_t^1 + \beta x_t^2 \to \boxed{\text{LTI}} \to \alpha y_t^1 + \beta y_t^2 \\ - \text{ Time Invariant } x_{t-d} \to \boxed{\text{LTI}} \to y_{t-d} \end{cases}$$

Impulse $\delta(t)$

$$\begin{cases} \delta(t) = 0, t \neq 0 \\ \int_{-\infty}^{+\infty} \delta(t) dt \end{cases}$$

LTI system is characterized by an impulse response

$$h_t$$
, $t = 0, ..., p - 1$

 $\implies x_t$ and y_t is related through "convolution"

$$\begin{array}{ll} y_t &= \sum_{i=1}^p h_i x_{t-i} \\ &= h_t * x_t \end{array}$$

$$x_t \to \overbrace{h_t}^{\text{LTI}} \to y_t$$

System identification

Given $\{y_t\}_{t=0}^{T-1}$ and $\{x_t\}_{t=0}^{T-1}$, find the impulse response

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_p \\ \vdots \\ y_T \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 & x_0 \\ \vdots & \ddots & \ddots \\ x_p & \cdots & \cdots & x_0 \\ \vdots & \ddots & \ddots & \vdots \\ x_{T-1} & \cdots & \cdots & x_{T-p} \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_p \end{bmatrix} + \text{noise}$$

$$\Rightarrow \text{Solve LS problem to obtain } \{h_t\}_{t=0}^p$$

$$Then \\
H \cdot \Phi = H \cdot [\phi_1, ..., \phi_n] \\
= [d_1\phi_1, ..., d_n\phi_n] \\
\Rightarrow \Phi \cdot D$$

$$\xrightarrow{\text{eigen-decomposition of } H} \Leftrightarrow \Phi^H H \Phi = D$$

 \Longrightarrow Solve LS problem to obtain $\{h_t\}_{t=0}^p$

Toeplitz matrix

Circulant Matrix

Circulant matrix is a special case of Toeplitz matrix

$$H = \begin{bmatrix} h_0 & h_{n-1} & \cdots & \cdots & h_1 \\ h_1 & h_0 & h_{n-1} & \cdots & h_2 \\ h_2 & h_1 & h_0 & h_{n-1} & \ddots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ h_{n-1} & \cdots & h_2 & h_1 & h_0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\stackrel{O(n \log n)}{H} \stackrel{O(n \log n)}{\Longrightarrow} H^{-1}$$

The key property:

$$H \cdot \underbrace{\phi_i}_{\text{IDFT}} = d_i \cdot \phi_i \quad , d_i \in \mathbb{R}$$

Let

$$D = \begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & d_n \end{bmatrix}$$

$$H \cdot \Phi = H \cdot [\phi_1, ..., \phi_n]$$

= $[d_1\phi_1, ..., d_n\phi_n]$
= $\Phi \cdot D$

Deconvolution

Given $\{y_t\}_{t=0}^{T-1}$ and $h_{t=0}^p$, find out $\{x_t\}_{t=0}^{T-1}$ Put them into a linear system of equations

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_p \\ \vdots \\ y_T \end{bmatrix} = \underbrace{\begin{bmatrix} h_0 & 0 & \cdots & & & & & 0 \\ h_1 & h_0 & 0 & \cdots & & & \ddots & & \\ \vdots & \vdots & & \ddots & & & & \vdots \\ h_p & h_{p-1} & & \cdots & & h_1 & h_0 \\ \vdots & \ddots & \ddots & & & & \vdots & \vdots \\ 0 & \cdots & h_p & h_{p-1} & \cdots & h_1 & h_0 \end{bmatrix}}_{A \in \mathbb{P}^{T \times T}} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_p \\ \vdots \\ x_T \end{bmatrix} + \text{noise}$$

 \implies Solve LS problem to obtain $\{x_t\}_{t=0}^{T-}$

Lecture 4. Eigenvalues and Eigenvectors

Definition (Eigenvalues and Eigenvector)

Let $A \in \mathbb{R}^{m \times m}$, if a scalar $\lambda \in \mathbb{C}$ and a nonzero vector $v \in \mathbb{C}^m$ satisfy the equation

$$Av = \lambda v$$

then λ is called the eigenvalue of A and v is called the eigenvector of A associated with λ .

$$\underbrace{(A - \lambda I)}_{\text{singular}} v = 0$$

 $\underbrace{(A-\lambda I)}_{\text{singular}}v=0$ $P_A(\lambda)\triangleq \det(A-\lambda I)=\prod_{i=1}^m(\lambda-\lambda_i) \text{ is a polynomial of }\lambda$ with degree m. The equation $P_A(\lambda) \triangleq det(A - \lambda I) = 0$ is called the characteristic equation of A.

For each λ_i find v_i such that

$$(A - \lambda_i I)v_i = 0$$

 $v_i \in Null(A - \lambda_i I)$ and $Null(A - \lambda_i I)$ is the eigenspace for λ_i

- Even if $A \in \mathbb{R}^{m \times m}$ is real-valued, λ_i and v_i could be complex. e.q.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \implies \lambda = \pm j$$

- But if $\lambda_i \in \mathbb{R}$ is real-valued, $v_i \in \mathbb{R}^m$ should be in \mathbb{R}^m .

Diagonalizability

Similar matrices

Definition (Similar matrices)

 $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{m \times m}$ are similar to each other if there exists a nonsingular $S \in \mathbb{R}^{m \times m}$ such that

$$B = SAS^{-1}$$

If A and B are similar to each other, then they have the same eigenvalues.

Proof

$$P_B(\lambda) = det(B - \lambda I)$$

$$= det(SAS^{-1} - \lambda I)$$

$$= det(S(A - \lambda I)S^{-1})$$

$$= det(S)det(A - \lambda I)det(S^{-1})$$

$$= det(A - \lambda I)$$

$$= P_A(\lambda)$$

Diagonalizable matrix

Definition (Diagonalizable)

A matrix $A \in \mathbb{R}^{m \times m}$ is diagonalizable if A is similar to a diagonal matrix.

\implies (Eigenvalue decomposition)

There exists an invertible matrix $V \in \mathbb{R}^{m \times m}$ and a diagonal matrix $D \in \mathbb{R}^{m \times m}$ s.t.

$$A = VDV^{-1}$$

$$AV = VD$$

$$V = [v_1, v_2, ..., v_m] \quad , \quad D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_m \end{bmatrix}$$

 $Av_i = \lambda_i v_i, \quad \forall i = 1, ..., m$

A is diagonalizable *iff*. there is a set of linear indep. vectors which are engenvectors of A. Properties If a matrix $A \in \mathbb{R}^{m \times m}$ is diagonalizable

1.
$$det(A) = \prod_{i=1}^{m} \lambda_i$$

2. $Tr(A) = \sum_{i=1}^{m} \lambda_i$

2.
$$Tr(A) = \sum_{i=1}^{m} \lambda_i$$

3. rank(A) = the number of non-zero eigenvalues

Proof

$$\begin{array}{lll} 1. & \det(A) = \det(VDV^{-1}) = \det(V)\det(D)\det(V^{-1}) = \\ & \det(D) = \prod_{i=1}^m \lambda_i \\ 2. & Tr(A) = Tr(VDV^{-1}) = Tr(DV^{-1}V) = \\ & Tr(D) = \sum_{i=1}^m \lambda_i \end{array}$$

2.
$$Tr(A) = Tr(VDV^{-1}) = Tr(DV^{-1}V) = Tr(D) = \sum_{i=1}^{m} \lambda_i$$

When Diagonalizable

Distinct eigenvalues

Let $\{\lambda_1, \lambda_2, ..., \lambda_k\}_{k \in M}$ $(k \geq 2)$ be a subset of eigenvalues of A and $\lambda_i \neq \lambda_j \ \forall i \neq j$. Then the corresponding eigenvectors, denoted with $v_1, ..., v_k$ respectively, are linearly independent.

If A has $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_k$, then the corresponding eigenvectors $v_1, ..., v_k$ are linear independent. Proof

Suppose $v_1, ..., v_k$ are linearly **dependent**. Then there exists $\alpha_1, \alpha_2, ..., \alpha_k$ not all zero (without losing generality, assume $\alpha_1 \neq 0$) s.t.

$$\sum_{i=1}^{k} \alpha_i v_i = 0$$

Then

$$A \cdot \left(\sum_{i=1}^{k} \alpha_i v_i\right) = \sum_{i=1}^{k} \alpha_i A v_i = \sum_{i=1}^{k} \alpha_i \lambda_i v_i = 0$$

$$\sum_{i=1}^{k-1} \alpha_i \lambda_i v_i + \alpha_k \lambda_k v_k = 0$$

On the other hand,

$$\lambda_k \cdot \left(\sum_{i=1}^k \alpha_i v_i\right) = \sum_{i=1}^k \alpha_i \lambda_k v_i = 0$$
$$\sum_{i=1}^{k-1} \alpha_i \lambda_k v_i + \alpha_k \lambda_k v_k = 0$$

$$(1) - (2)$$
:

$$\sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) v_i = 0$$

Then

$$A \cdot \left(\sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) v_i\right) = \sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) A v_i$$
$$= \sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) \lambda_i v_i$$
$$= 0$$

$$\sum_{i=1}^{k-2} \alpha_i (\lambda_i - \lambda_k) \lambda_i v_i + \alpha_{k-1} (\lambda_{k-1} 0 \lambda_k) \lambda_{k-1} v_{k-1} = 0 \quad (3)$$

On the other hand

$$\lambda_{k-1} \cdot \left(\sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) v_i \right) = \sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) \lambda_{k-1} v_i = 0$$

$$\sum_{i=1}^{k-2} \alpha_i (\lambda_i - \lambda_k) \lambda_{k-1} v_i + \alpha_{k-1} (\lambda_{k-1} 0 \lambda_k) \lambda_{k-1} v_{k-1} = 0$$

$$(3) - (4)$$
:

$$\sum_{i=1}^{k-2} \alpha_i (\lambda_i - \lambda_k) (\lambda_i - \lambda_{k-1}) v_i = 0$$

Repeat until i = 1

$$\alpha_1 \left(\prod_{i=1}^k (\lambda_1 - \lambda_i) \right) v_1 = 0$$

Since $\alpha_1 \neq 0$ and $\prod_{i=1}^k (\lambda_1 - \lambda_i) \neq 0$, so $v_1 = 0$ (Contradict!)

Therefore, $v_1, ..., v_k$ are linearly **independent**

If $A \in \mathbb{R}^{m \times m}$ has m distinct eigenvalues, then A is diagonalizable.

Repeated eigenvalues

Let λ be an eigenvalue of A repeated r times. Define

- Algebra multiplicity: r.
- Geometric multiplicity: $s = dim(Null(A \lambda I))$

Then

$$s \leq r$$

Proof

Let $dim(Null(A - \bar{\lambda}I)) = s$ and $\{q_1, ..., q_s\}$ be an orthogonal basis for $Null(A - \bar{\lambda}I)$.

Then $Q_1 = [q_1, ..., q_s] \in \mathbb{R}^{m \times s}$ is semi-unitary and $\exists Q_2 \in \mathbb{R}^{m \times (m-s)}$ s.t. $Q \triangleq [Q_1, Q_2]$ is unitary.

Consider

$$\boldsymbol{Q}^{H}\boldsymbol{A}\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{Q}_{1}^{H}\boldsymbol{A}\boldsymbol{Q}_{1} & \boldsymbol{Q}_{1}^{H}\boldsymbol{A}\boldsymbol{Q}_{2} \\ \boldsymbol{Q}_{2}^{H}\boldsymbol{A}\boldsymbol{Q}_{1} & \boldsymbol{Q}_{2}^{H}\boldsymbol{A}\boldsymbol{Q}_{2} \end{bmatrix} = \begin{bmatrix} \bar{\boldsymbol{\lambda}}\boldsymbol{I}_{s} & \boldsymbol{Q}_{1}^{H}\boldsymbol{A}\boldsymbol{Q}_{2} \\ \boldsymbol{0} & \boldsymbol{Q}_{2}^{H}\boldsymbol{A}\boldsymbol{Q}_{2} \end{bmatrix}$$

Then

(2)

$$\begin{split} P_A(\lambda) &= P_{Q^H AQ}(\lambda) \\ &= \det(Q^H AQ - \lambda I) \\ &= \det\left(\begin{bmatrix} (\bar{\lambda} - \lambda)I_s & Q_1^H AQ_2 \\ 0 & Q_2^H AQ_2 - \lambda I_{m-s} \end{bmatrix}\right) \\ &= \underbrace{(\bar{\lambda} - \lambda)^s}_{\bar{\lambda} \text{ repeats } s \text{ times}} \det(Q_2^H AQ_2 - \lambda I_{m-s}) \\ &= 0 \end{split}$$

So

$$r \ge s$$

If s = r, A is diagonalizable.

Symmetric/Hermitian Matrices

- Symmetric $A = A^T A \in \mathbb{R}^{m \times n}$
- Hermitian $A = A^H A \in \mathbb{C}^{m \times n}$

Property 1: The eigenvalues of a Hermitian matrix $A \in \mathbb{C}^{m \times n}$ are real-valued.

Proof

Let λ be the eigenvalue of A, v be the eigenvector of A and $||v||_2 = 1$.

$$\Rightarrow Av = \lambda v$$

$$\Rightarrow V^{H} Av = \lambda v^{H} v = \lambda$$

$$\overset{\text{take}^{H}}{\Rightarrow} v^{H} A^{H} v = \lambda^{*}$$

Since A is Hermitian, $A = A^H$ and hence $\lambda = \lambda^*$ So λ is real-valued

Property 2: If $A \in \mathbb{C}^{m \times n}$ is Hermitian and that

- $\lambda_i \neq \lambda_j$ be two eigenvalues,
- v_i, v_j be the corresponding eigenvectors.

Then the eigenvectors are mutually orthogonal. *Proof*

$$\begin{cases} v_i^H A v_j = v_i^H (\lambda_j v_j) = \lambda_j v_i^H v_j \\ v_i^H A v_i = v_j^H (\lambda_i v_i) = \lambda_i v_i^H v_i \stackrel{\text{take}H}{\Longrightarrow} v_i^H A^H v_j = \lambda_i v_i^H v_j \end{cases}$$

Since $v_i^H A^H v_j = v_i^H A v_j$, so we have

$$(\lambda_i - \lambda_j)v_i^H v_j = 0 \Longrightarrow v_i^H v_j = 0$$

Unitarily diagonalizable

If Hermitian/symmetric A is diagonalizable

$$A = VDV^{-1}$$

where

- V contains orthogonal eigenvectors and is unitary matrix,
- D real-valued diagonal eigenvalues.

Therefore, $VV^H = I$ and $V^{-1} = V^H$. Thus,

$$A = VDV^H$$

And we say A is unitarily diagonalizable.

Schur triangularization

Any $A \in \mathbb{C}^{m \times m}$ can be decomposed as an upper trangular matrix.

Theorem 3 (Schur triangularization)

Given $A \in \mathbb{C}^{m \times m}$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_m \in \mathbb{C}$ there exists a unitary matrix $U \in \mathbb{C}^{m \times m}$ such that

$$U^H A U = T \iff A = U T U^H$$

where T is an upper triangular matrix with $[T]_{ii}$

If $A \in \mathbb{C}^{m \times m}$, by Schur triangularization, there exists unitary $U \in \mathbb{C}^{m \times m}$ s.t.

$$U^H A U = T$$

Then by taking H, we have

$$U^H A^H U = T^H$$
$$(=U^H A U)$$

$$T = T^H$$

Since T is an upper triangular matrix, so T^H is a lower triangular matrix. Therefore, T is diagonal. \Longrightarrow

$$U^H A U = T$$

Thus, A is diagonalizable.

Proof for Schur Triangularization (**Theorem 3**) This proof is also an algorithm.

Let $v_1 \in \mathbb{R}^m$ be the eigenvalue of A associated with λ_1 , i.e., $Av_1 = \lambda_1 v_1$. Without losing generality, we can assume $v_1^H v_1 = 1$ and $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_m$

Construct a unitary matrix U_1

$$U_1 = \begin{bmatrix} v_1 & V_1 \end{bmatrix} \in \mathbb{C}^{m \times m}$$

where $V_1 \in \mathbb{C}^{m \times (m-1)}$. U_1 being unitary indicates

$$v_1^H V_1 = \overrightarrow{0}^T$$

Then we have

$$U_1^H A U_1 = \begin{bmatrix} v_1^H \\ V_1^H \end{bmatrix} A \begin{bmatrix} v_1 & V_1 \end{bmatrix} = \begin{bmatrix} v_1^H A v_1 & v_1^H A V_1 \\ V_1^H A v_1 & V_1^H A V_1 \end{bmatrix}$$

where

$$\begin{cases} v_1^H A v_1 = \lambda_1 \\ v_1^H A V_1 \neq \overrightarrow{0} \\ V_1^H A v_1 = \overrightarrow{0} \end{cases}$$

So,

$$U_1^H A U_1 = \begin{bmatrix} \lambda_1 & \times \\ 0 & V_1^H A V_1 \end{bmatrix}$$

Define

$$A_1 \triangleq V_1^H A V_1 \in \mathbb{C}^{(m-1) \times (m-1)}$$

Then

$$P_{A}(\lambda) = \det(A - \lambda I)$$

$$= \det(U_{1}^{H} A U_{1} - \lambda I)^{\dagger}$$

$$= \det\left(\begin{bmatrix} \lambda_{1} & \times \\ 0 & A_{1} \end{bmatrix} - \lambda I\right)$$

$$= \det\left(\begin{bmatrix} \lambda_{1} - \lambda & \times \\ 0 & A_{1} - \lambda I \end{bmatrix}\right)$$

$$= (\lambda_{1} - \lambda) \underbrace{\det(A_{1} - \lambda I)}_{=P_{A_{1}}(\lambda)}$$

†: $A = U_1(U_1^HAU_1)U_1^{-1}$ so A is similar to $U_1^HAU_1$ and hence A and $U_1^HAU_1$ have same eigenvalues.

Therefore, A_1 has eigenvalues $\lambda_2, \lambda_3, ..., \lambda_m$ Let $v_2 \in \mathbb{C}^{m-1}$ be the eigenvector of A_1 associated with

$$U_2 = \begin{bmatrix} v_2 & V_2 \end{bmatrix} \in \mathbb{C}^{(m-1)\times(m-1)}$$

Construct a unitary matrix U_2 $U_2 = \begin{bmatrix} v_2 & V_2 \end{bmatrix} \in \mathbb{C}^{(m-1)\times(m-1)}$ where $V_2 \in \mathbb{C}^{(m-1)\times(m-2)}$. U_2 being unitary indicates $v_2^H V_2 = \overrightarrow{0}^T$

$$\Longrightarrow U_2^H A_1 U_2 = \begin{bmatrix} \lambda_2 & \times \\ 0 & V_2^H A_1 V_2 \end{bmatrix}$$

Let $\tilde{U}_2 = \begin{bmatrix} 1 & 0^T \\ 0 & U_2 \end{bmatrix}$, then \tilde{U}_2 is unitary.

$$\begin{split} \tilde{U}_{2}^{H}[U_{1}^{H}AU_{1}]\tilde{U}_{2} &= \tilde{U}_{2}^{H} \begin{bmatrix} \lambda_{1} & \times \\ 0 & A_{1} \end{bmatrix} \tilde{U}_{2} \\ &= \begin{bmatrix} \lambda_{1} & \times \\ 0 & U_{2}^{H}A_{1}U_{2} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_{1} & \times \\ 0 & \begin{bmatrix} \lambda_{2} & \times \\ 0 & V_{2}^{H}A_{1}V_{2} \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_{1} & \times & \times \\ 0 & \lambda_{2} & \times \\ 0 & 0 & V_{2}^{H}A_{1}V_{2} \end{bmatrix} \end{split}$$

Repeat this operations and we can finally get $\tilde{U}_m^H \cdots \tilde{U}_3^H \tilde{U}_2^H (U_1 A U_1) \tilde{U}_2 \tilde{U}_3 \cdots \tilde{U}_m$

$$= \begin{bmatrix} \lambda_1 & \times & \times & \times \\ & \lambda_2 & \times & \times \\ & & \ddots & \times \\ & & & \lambda_m \end{bmatrix} \triangleq T$$

Therefore,

$$U^H A U = T$$

Variational Characterization of **Eigenvalues**

Rayleigh quotient

Definition (Rayleigh quotient)

$$R(A,x) = \frac{x^H A x}{\|x\|_2^2} = \left(\frac{x}{\|x\|_2}\right)^H A\left(\frac{x}{\|x\|_2}\right)$$

Theorem 4 (Rayleigh-Ritz theorem)

Let $A \in \mathbb{C}^{m \times m}$ be Hermitian, then

$$\begin{array}{ll} \lambda_{\max}(A) &= \max_{x \in \mathbb{C}^m} \frac{x^H A x}{\|x\|_2^2} \\ &= \max_{x \in \mathbb{C}^m} x^H A x \quad (\|x\|_2 = 1) \\ \lambda_{\min}(A) &= \min_{x \in \mathbb{C}^m} \frac{x^H A x}{\|x\|_2^2} \end{array}$$

and

$$\lambda_{\min}(A) \cdot \|x\|_2^2 \le x^H A x \le \lambda_{\max}(A) \cdot \|x\|_2^2$$

Proof

According to the EVD of A,

$$A = V\Lambda V^H = \sum_{i=1}^m (\lambda_i \cdot v_i v_i^H)$$

$$\Rightarrow x^H A x = x^H V\Lambda V^H x$$

$$= \sum_{i=1}^m (\lambda_i \cdot x^H v_i v_i^H x)$$

$$= \sum_{i=1}^m (\lambda_i \cdot |v_i^H x|^2)$$

$$\leq \lambda_{\max}(A) \cdot \sum_{i=1}^m |v_i^H x|^2$$
Since

Since

$$\sum_{i=1}^{m} |v_i^H x|^2 = x^H V V^H x = ||x||_2^2$$

So,

$$x^H A x \le \lambda_{\max}(A) \cdot \|x\|_2^2$$

$$\frac{x^H A x}{\|x\|_2^2} \le \lambda_{\text{(max)}}(A)$$

 $\frac{x^HAx}{\|x\|_2^2} \le \lambda_{\text{(}}\max)(A)$ The equality holds only when $x=v_1$, which is an eigenvector associated with $\lambda_{\max}(A)$ and is called the principal eigenvector.

Courant-Fischer theorem

Theorem 5 (Courant-Fischer theorem)

Let $A \in \mathbb{C}^{m \times m}$ be Hermitian and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \infty$ λ_m are ordered eigenvalues. Then

$$\lambda_{k} = \min_{\omega_{1}, \omega_{2}, \dots, \omega_{k-1}} \left\{ \max_{x \in \mathbb{C}^{m}, x \perp \omega_{1}, \omega_{2}, \dots, \omega_{k-1}} \frac{x^{H} A x}{\|x\|_{2}^{2}} \right\}$$

$$= \max_{\omega_{k+1}, \omega_{k+2}, \dots, \omega_{m}} \left\{ \min_{x \in \mathbb{C}^{m}, x \perp \omega_{k+1}, \omega_{k+2}, \dots, \omega_{m}} \frac{x^{H} A x}{\|x\|_{2}^{2}} \right\}$$

Proof ideas:

1.

$$\max_{x \in \mathbb{C}^m, x \perp v_1, v_2, \dots, v_{k-1}} \frac{x^H A x}{\|x\|_2^2} = \lambda_k$$

where v_k is the eigenvector associated with λ_k of A

$$\max_{x \in \mathbb{C}^m, x \perp \omega_1, \omega_2, \dots, \omega_{k-1}} \frac{x^H A x}{\|x\|_2^2} \geq \lambda_k$$

 $1+2 \Longrightarrow$

$$\min_{\omega_1,\omega_2,...,\omega_{k-1}} \left\{ \max_{x \in \mathbb{C}^m, x \perp \omega_1,\omega_2,...,\omega_{k-1}} \frac{x^H A x}{\|x\|_2^2} \right\} = \lambda_k$$

attained when $\omega_i = v_i \ (i = 1, ..., k - 1)$

Proof Since $A = V\Lambda V^H = \sum_{i=1}^m \lambda_i v_i v_i^H$

$$\max_{x \in \mathbb{C}^m, x \perp v_1, v_2, \dots, v_{k-1}} \frac{x^H A x}{\|x\|_2^2}$$

$$= \max_{x \in \mathbb{C}^m, x \perp v_1, v_2, \dots, v_{k-1}} \frac{\sum_{i=1}^m \lambda_i |v_i^H x|^2}{\|x\|_2^2}$$

$$= \max_{x \in \mathbb{C}^m, x \perp v_1, v_2, \dots, v_{k-1}} \frac{\sum_{i=k}^m \lambda_i |v_i^H x|^2}{\|x\|_2^2}$$

$$\leq \max_{x \in \mathbb{C}^m} \frac{\sum_{i=k}^m \lambda_i |v_i^H x|^2}{\|x\|_2^2} \quad \text{(Relax constraint)}$$

$$\leq \max_{x \in \mathbb{C}^m} \frac{\lambda_k \sum_{i=k}^m |v_i^H x|^2}{\|x\|_2^2}$$

$$\leq \lambda_k \quad \text{(equality attained if } x = v_k \text{)}$$

†:
$$\sum_{i=k}^{m} |v_i^H x|^2 = x^H V V^H x = ||x||_2^2$$
.

Therefore,

$$\max_{x \in \mathbb{C}^m, x \perp v_1, v_2, \dots, v_{k-1}} \frac{x^H A x}{\|x\|_2^2} = \lambda_k$$

2. Let
$$y = V^H x$$

11

$$\max_{x \perp \omega_{1}, \dots, \omega_{k-1}} \frac{x^{H} A x}{\|x\|_{2}^{2}}$$

$$= \max_{x \perp \omega_{1}, \dots, \omega_{k-1}} \frac{x^{H} V \Lambda V^{H} x}{\|x\|_{2}^{2}}$$

$$= \max_{y \perp V^{H} \omega_{1}, \dots, V^{H} \omega_{k-1}} \frac{y^{H} \Lambda y}{\|y\|_{2}^{2}}$$

$$\geq \max_{y \perp V^{H} \omega_{1}, \dots, V^{H} \omega_{k-1}, |y_{k+1} = y_{k+2} = \dots = y_{m} = 0, ||y||_{2} = 1} y^{H} \Lambda y$$

$$= \max_{y \perp V^{H} \omega_{1}, \dots, V^{H} \omega_{k-1}, |y_{1}|^{2} + |y_{2}|^{2} + \dots + |y_{k}|^{2} = 1} \sum_{i=1}^{k} \lambda_{i} |y_{i}|^{2}$$

$$\geq \lambda_{k}$$

Weyl's inequality

For $A, B \in \mathbb{C}^{m \times m}$ be two Hermitian matrices.

1.
$$\lambda_k(A) + \lambda_m(B) \le \lambda_k(A+B) \le \lambda_k(A) + \lambda_1(B)$$

2. $\lambda_{k+1}(A) \leq \lambda_k(X \pm zz^H) \leq \lambda_{k-1}(A)$

3.
$$\lambda_{k+r}(A) \leq \lambda_k(A+B) \leq \lambda_{k-r}(A)$$
 where $rank(B) \leq r$

4.
$$\lambda_{j+k-1}(A+B) \le \lambda_j(A) + \lambda_k(B) \le \lambda_{j+k-m}(A+B)$$

5. Let A_I be the principal submatrix of A associated with subset $I = \{i_1, i_2, ..., i_r\} \subseteq \{1, 2, ..., m\}$

$$\lambda_{k+m-r}(A) \le \lambda_k(A_I) \le \lambda_k(A)$$

6. Let $U \in \mathbb{C}^{m \times r}$ be semiunitary

$$\lambda_{k+m-r} \le \lambda_k(U^H A U) \le \lambda_k(A)$$

Proof 1.

Proof 1.
$$\lambda_k(A+B) = \min_{\omega_1, \dots, \omega_{k-1}} \left\{ \max_{x \in \mathbb{C}^m, x \perp \omega_1, \dots, \omega_{k-1}} \frac{x^H(A+B)x}{\|x\|_2^2} \right\} \quad \dagger \colon rank((A_j))$$

where

$$\frac{x^{H}(A+B)x}{\|x\|_{2}^{2}} = \frac{x^{H}Ax}{\|x\|_{2}^{2}} + \underbrace{\frac{x^{H}Bx}{\|x\|_{2}^{2}}}_{\leq \lambda_{1}(B)}$$

So,

$$\lambda_k(A+B) \leq \min_{\substack{\omega_1, \dots, \omega_{k-1} \\ = \lambda_k(A)}} \left\{ \max_{x \in \mathbb{C}^m, x \perp \omega_1, \dots, \omega_{k-1}} \frac{x^H A x}{\|x\|_2^2} \right\} + \lambda_1(B)$$

Therefore,

$$\lambda_k(A+B) \le \lambda_k(A) + \lambda_1(B)$$

Proof 2.

$$\lambda_{k}(A \pm zz^{H}) = \min_{\omega_{1},...,\omega_{k-1}} \left\{ \max_{x \in \mathbb{C}^{m}, x \perp \omega_{1},...,\omega_{k-1}} \frac{x^{H}(A \pm zz^{H})x}{\|x\|_{2}^{2}} \right\}$$

$$\geq \min_{\omega_{1},...,\omega_{k-1}} \left\{ \max_{x \in \mathbb{C}^{m}, x \perp \omega_{1},...,\omega_{k-1}, [z]} \frac{x^{H}(A \pm zz^{H})x}{\|x\|_{2}^{2}} \right\}$$

$$= \min_{\omega_{1},...,\omega_{k-1},\omega_{k}} \left\{ \max_{x \in \mathbb{C}^{m}, x \perp \omega_{1},...,\omega_{k-1},\omega_{k}} \frac{x^{H}Ax}{\|x\|_{2}^{2}} \right\}$$

$$\geq \min_{\omega_{1},...,\omega_{k-1},\omega_{k}} \left\{ \max_{x \in \mathbb{C}^{m}, x \perp \omega_{1},...,\omega_{k-1},\omega_{k}} \frac{x^{H}Ax}{\|x\|_{2}^{2}} \right\}$$

$$= \lambda_{k+1}(A)$$

Proof

$$\therefore B = \sum_{i=1}^{r} \lambda_i(B) u_i u_i^H$$

$$\therefore A + B = A + \sum_{i=1}^{r-1} \lambda_i(B) u_i u_i^H + \lambda_r(B) u_r u_r^H$$

Define
$$B^{r-k} \triangleq \sum_{i=1}^{r-k} \lambda_i(B) u_i u_i^H \ k = 0, 1, ..., r$$

 $\lambda_{k+1}(A+B^{r-1}) \leq \lambda_k(A+B^{r-1}+\lambda_r(B) u_r u_r^H) \leq \lambda_{k-1}(A+B^{r-1})$
Do again and we get

$$\lambda_{k+2}(A+B^{r-2}) \leq \lambda_{k+1}(A+B^{r-2}+\lambda_{r-1}(B)u_{r-1}u_{r-1}^{H})$$
$$= \lambda_{k+1}(A+B^{r-1})$$

Repeat r times, we can get

$$\lambda_{k+r}(A) \le \lambda_k(A+B) \le \lambda_{k-r}(A)$$
 where $rank(B) \le r$

Proof 4.

Define
$$A_{j-1} = \sum_{i=1}^{j-1} \lambda_i(A) v_i v_i^H$$
 (if $A = V \Lambda V^H$).
Define $B_{k-1} = \sum_{i=1}^{k-1} \lambda_i(B) u_i u_i^H$ (if $B = U \Lambda U^H$).

$$\lambda_j(A) = \lambda_1(A - A_{j-1})$$
$$\lambda_k(B) = \lambda_1(B - B_{k-1})$$

$$\Rightarrow \lambda_{j}(A) + \lambda_{k}(B) = \lambda_{1}(A - A_{j-1}) + \lambda_{1}(B - B_{k-1})
\geq \lambda_{1}(A + B - (A_{j-1} + B_{k-1}))
\geq \lambda_{j+k-1}(A + B)^{\dagger}$$

†: $rank((A_{j-1} + B_{k-1}) \le j + k - 2 \text{ and from } 3.$

$$\begin{aligned} & Proof & 5. \\ & \lambda_k(A) \\ &= \min_{\omega_1, \dots, \omega_{k-1}} \left\{ \max_{x \perp \omega_1, \dots, \omega_{k-1}, \|x\|_2 = 1} x^H A x \right\} \\ &\geq \min_{\omega_1, \dots, \omega_{k-1}} \left\{ \max_{x \perp \omega_1, \dots, \omega_{k-1}, \|x\|_2 = 1, x \in span\{e_{i_1}, \dots, e_{i_r}\}} x^H A x \right\} \\ &= \min_{v_1, \dots, v_{k-1}} \left\{ \max_{y \perp v_1, \dots, v_{k-1}, \|y\|_2 = 1\}} y^H A y \right\}^{\ddagger} \\ &= \lambda_k(A_I) \end{aligned}$$

†:
$$e_i = \begin{bmatrix} \mathbf{0} \\ 1 \\ \mathbf{0} \end{bmatrix}$$
, only the *i*th entry equal to 1.

‡: Define
$$y \in \mathbb{C}^r$$
, $y_{\ell} = x_{i_{\ell}}$ ($\ell = 1, ..., r$) and take $v_i \in \mathbb{C}^r$, $(v_i)_{\ell} = (\omega_i)_{i_{\ell}}$

Proof 6. Let
$$\tilde{U} = [\underbrace{U}_{\in \mathbb{C}^{m \times r}}, \underbrace{\bar{U}}_{\in \mathbb{C}^{m \times r}}]$$
 be unitary. Then
$$\tilde{U}^H A \tilde{U} = \begin{bmatrix} U^H A U & \times \\ \times & \times \end{bmatrix}$$

where $U^H A U$ is the principal submatrix of $\tilde{U}^H A \tilde{U}$ with I = 1, 2, ..., r

Therefore,

$$\lambda_k(A) = \lambda_k(\tilde{U}^H A \tilde{U}) \ge \lambda_k(U^H A U)$$

The Power Method

The power method is a simple method to obtain eigenvector/eigenvalue of a matrix, particularly for large scale problem.

Algorithm 1 (Power Method)

Given a matrix $A \in \mathbb{C}^{m \times m}$ and $v^0 \in \mathbb{C}^m$

$$v^{(k+1)} \leftarrow \frac{A \cdot v^{(k)}}{\|A \cdot v^{(k)}\|_2}$$

until a stopping condition is met.

 $\Longrightarrow v^{(k+1)}$ takes as an estimate of the **principle eigenvector** of A.

Assumption:

- A is diagonalizable (in particular, A is Hermitian (symmetric)). $A = V\Lambda V^H$.
- $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_m|$ and $|\lambda_1| > |\lambda_2|$

$$v^{(k+1)} = \frac{A \cdot v^{(k)}}{\|A \cdot v^{(k)}\|_2} = \frac{A^{k+1} \cdot v^{(0)}}{\|A^{k+1} \cdot v^{(0)}\|_2}$$

Consider $A^k x$, x satisfies $[V^H x]_1 \neq 0$. $(x \text{ is } v^{(0)})$ Let $\alpha = V^H x$

$$A^{k} \cdot x = (V\Lambda^{k}V^{H}) \cdot x = V\Lambda^{k}\alpha$$
Let $V = [v_{1}, v_{2}, ..., v_{m}]$

$$A^{k} \cdot x = V\Lambda^{k}\alpha$$

$$= \sum_{i=1}^{m} v_{i} \cdot \lambda_{i}^{k} \cdot \alpha_{i}$$

$$= v_{1}(\lambda_{1}\alpha_{1}) + \sum_{i=2}^{m} \alpha_{i}\lambda_{i}^{k}v_{i}$$

$$= \lambda_{1}^{k}\alpha_{1}(v_{1} + \sum_{i=2}^{m} \frac{\alpha_{i}}{\alpha_{1}} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}v_{i})$$

 \Longrightarrow

$$||r_k||_2 = ||\sum_{i=2}^m \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k v_i||_2$$

$$\leq \sum_{i=1}^m \frac{\alpha_i}{\alpha_1} \cdot \left(\frac{\lambda_i}{\lambda_1}\right)^k \cdot ||v_i||_2$$

$$\leq |\frac{\lambda_2}{\lambda_1}|^k \cdot \sum_{i=1}^m |\frac{\alpha_i}{\alpha_1}| \to 0 \text{ as } k \to \infty$$

Consider $c_k = \frac{|\alpha_1||\lambda_1^k|}{\alpha_1\lambda_1^k}$ and $\lim_{k\to\infty} c_k \cdot \frac{A^k \cdot x}{\|A^k \cdot x\|_2}$

$$c_k \cdot \frac{A^k \cdot x}{\|A^k \cdot x\|_2}$$

$$= \frac{|\alpha_1||\lambda_1^k|}{\alpha_1 \lambda_1^k} \cdot \frac{1}{\|A^k \cdot x\|_2^{\dagger}} \cdot \lambda_1^k \alpha_1 \left(v_1 + \sum_{i=2}^m \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1} \right)^k v_i \right)$$

$$= \frac{|\alpha_1||\lambda_1^k|}{\sqrt{\sum_{i=1}^m (\lambda_i^k)^2 \alpha_i^2}} \cdot \left(v_1 + \sum_{i=2}^m \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1} \right)^k v_i \right)$$

$$\uparrow : \|A^k x\|_2 = \|V \Lambda^k V^H x\|_2 = \|V \Lambda^k \alpha\|_2 = \|\Lambda^k \alpha\|_2 =$$

$$\sqrt{\sum_{i=1}^m (\lambda_i^k \alpha_i)^2}$$

$$\vdots \frac{|\alpha_1||\lambda_1^k|}{\sqrt{\sum_{i=1}^m (\lambda_i^k)^2 \alpha_i^2}} = \frac{|\alpha_1||\lambda_1^k|}{\sqrt{(\lambda_1^k)^2 \alpha_1^2 + \sum_{i=2}^m (\lambda_i^k)^2 \alpha_i^2}}$$

$$= \frac{|\alpha_1||\lambda_1^k|}{\sqrt{(\lambda_1^k)^2 \alpha_1^2 + \sum_{i=2}^m (\lambda_i^k)^2 \alpha_i^2}}$$

$$= \frac{1}{\sqrt{1 + \sum_{i=2}^m \left(\frac{\lambda_i}{\lambda_1}\right)^{2k} \left(\frac{\alpha_i}{\alpha_1}\right)^2}}$$

Since
$$\sum_{i=2}^{m} \left(\frac{\lambda_i}{\lambda_1}\right)^{2k} \left(\frac{\alpha_i}{\alpha_1}\right)^2 \to 0$$
 as $k \to \infty$, so $\frac{|\alpha_1||\lambda_1^k|}{\sqrt{\sum_{i=1}^{m} (\lambda_i^k)^2 \alpha_i^2}} \to 1$ as $k \to \infty$.

Therefore, $\lim_{k\to\infty} c_k \cdot \frac{A^k \cdot x}{\|A^k \cdot x\|_2} \to v_1$.

Deflation:

$$A = \sum_{i=1}^{m} \lambda_i v_i v_i^H$$

= $\lambda_1 v_1 v_1^H + \sum_{i=2}^{m} \lambda_i v_i v_i^H$

Obtain $A^{(1)} = A - \lambda_1 v_1 v_1^H$ and apply power method to obtain v_2 .

Obtain $A^{(2)} = A - \lambda_2 v_2 v_2^H$ and apply power method to obtain v_3 .

..