MM54HC138/MM74HC138 3-to-8 Line Decoder

General Description

This decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. The circuit features high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM54HC138/MM74HC138 has 3 binary select inputs (A, B, and C). If the device is enabled these inputs determine which one of the eight normally high outputs will go low. Two active low and one active high enables (G1, $\overline{G2A}$ and $\overline{G2B}$) are provided to ease the cascading of decoders.

The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally and pin equivalent to the 54LS138/74LS138. All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 20 ns
- Wide power supply range: 2V-6V
- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Connection and Logic Diagrams

Order Number MM54HC138 or MM74HC138

Truth Table

Inputs				Outputs								
Enable Select				Outputs								
G1	G2 *	С	В	Α	Y0	Y1	Y2	Y3	Y 4	Y5	Y 6	Y7
Х	Н	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	X	X	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

* G2 = G2A + G2B

H=high level, L=low level, X=don't care

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\rm CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temp. (T_L) (Soldering 10 seconds) 260°C

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temp. Range (TA)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V_{IH}	Minimum High Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V 6.0V		3.15 4.2	3.15 4.2	3.15 4.2	V V
V _{IL}	Maximum Low Level		2.0V		0.5	0.5	0.5	V
	Input Voltage**		4.5V 6.0V		1.35 1.8	1.35 1.8	1.35 1.8	V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V}, T_{A}\!=\!25^{\circ}\text{C}, C_{L}\!=\!15\,\text{pF}, t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PLH}	Maximum Propagation Delay, Binary Select to any Output		18	25	ns
t _{PHL}	Maximum Propagation Delay, Binary Select to any Output		28	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, G1 to any Output		18	25	ns
t _{PHL}	Maximum Propagation Delay G2A or G2B to Output		23	30	ns
t _{PLH}	Maximum Propagation Delay G2A or G2B to Output		18	25	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_f = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
t _{PLH}	Maximum Propagation Delay Binary Select to any Output Low to High		2.0V 4.5V 6.0V	75 15 13	150 30 26	189 38 32	224 45 38	ns ns ns
t _{PHL}	Maximum Propagation Delay Binary Select to any Output High to Low		2.0V 4.5V 6.0V	100 20 17	200 40 34	252 50 43	298 60 51	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay G1 to any Output		2.0V 4.5V 6.0V	75 15 13	150 30 26	189 38 32	224 45 38	ns ns ns
t _{PHL}	Maximum Propagation Delay G2A or G2B to Output		2.0V 4.5V 6.0V	82 28 22	175 35 30	221 44 37	261 52 44	ns ns ns
t _{PLH}	Maximum Propagation Delay G2A or G2B to Output		2.0V 4.5V 6.0V	75 15 13	150 30 26	189 38 32	224 45 38	ns ns ns
t _{TLH} , t _{THL}	Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{IN}	Maximum Input Capacitance			3	10	10	10	pF
C _{PD}	Power Dissipation Capacitance	(Note 5)		75				pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC} \ f + I_{CC}$

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408