2-2 EJERCICIOS.

1. Show that the cylinder $\{(x, y, z) \in R^3; x^2 + y^2 = 1\}$ is a regular surface, and find parametrizations whose coordinate neighborhoods cover it.

Sea pe $C = \{(x,y,t) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ en coordenadas c:1:ndr;cus:

$$x = r\cos\theta = \cos\theta$$

 $y = r\sin\theta = \sin\theta$
 $z = z$

Tenemos 2 cusos:

1) P = (x,y,z) cumple que $\theta \neq 0$, i.e. $x \neq 1$, $y \neq 0$. Para este caso, $\exists V_p = \{(x,y,z) \in \mathbb{R}^3 \mid y \neq 0\}$ $\cup \{(x,y,z) \in \mathbb{R}^3 \mid x < 0\} \subseteq \mathbb{R}^3$ $\cup V_p = \{(\theta,z) \mid \theta \in]0,2\pi$ $\subseteq V_p \in \mathbb{R}^3 \mid x^2 + y^2 \in \mathbb{R}^3$, donde $V_p \neq U_p$ son abjector con $X : U_p \longrightarrow V_p \cap S = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \in \mathbb{R}^3 \mid x \neq 0\}$ dada como:

 $\forall (\theta, \xi) \in U_{\rho}, \overline{X}, (\theta, \xi) = (\cos\theta, \sin\theta, \xi)$

Con X, cumpliendo:

a) X, es diferenciable, pues las funciones coso, sin b y z tienen derivulus parciules continuos.

b) X_1 es homeomorfismo, pues su inversa $X^-: VpnS \rightarrow Up$, $(x,y,z) \mapsto (unyl(x,y),z)$ es continua (ya que cada función componente es continua).

c) $dX_1(p): IR^2 \rightarrow R^3$ es invectivu. En electo: Como

$$d\bar{X}_{1}(\rho) = \begin{pmatrix} -\sin\theta & 0 \\ \cos\theta & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{\partial\theta}{\partial\lambda}, & \frac{\partial\bar{X}}{\partial\lambda}, \\ \frac{\partial\theta}{\partial\lambda}, & \frac{\partial\bar{X}}{\partial\lambda}, \end{pmatrix}$$

 $\frac{9\theta}{9\overline{k}}$, $\times \frac{95}{9\overline{k}}$, $= (0^{1}-2!M\theta^{1}-\cos\theta) \pm 0^{1}A$ $(\theta^{1}5) \in \mathbb{R}_{5}$

2) P = (x,y,z) Cumple $\theta = 0$, i.e x = 0 y y = 0. Tome $\forall p = \{(x,y,z) \in \mathbb{R}^3 \mid x > 0\}$ y $\forall p = \{(\theta,z) \in \mathbb{R}^3 \mid -\frac{\pi}{2} < \theta < \frac{\pi}{2} \mid y \neq z \in \mathbb{R}^3\} \leq \mathbb{R}^2$, $\forall p \in \mathbb{R}^3 \mid x > 0\}$ $X_2 : U_p \rightarrow V_p \cap S = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \mid y \mid x > 0\}$, como: $\forall (\theta,z) \in U_p$, $X_2(\theta,z) = (\cos \theta, \sin \theta,z)$

Se procede unaloyamente a 1) pura verificur a)-c).
Por 1) y 2), C es sup regular con carta $\{X_i\}_{i=1}^2$.

2. Is the set $\{(x, y, z) \in R^3; z = 0 \text{ and } x^2 + y^2 \le 1\}$ a regular surface? Is the set $\{(x, y, z) \in R^3; z = 0, \text{ and } x^2 + y^2 < 1\}$ a regular surface?

Sol

1) El conjunto $C_1 = \{(x,y,z) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \ y \neq = 0\}$ no es sup regulor. En eteclo, suponga que lo es, entonces para $(1,0,0) \in C_1$, $\exists V \in \mathbb{R}^3$ una vecindad de p = (1,0,0) talque VNS es la gráfica de alguna función. En este caso, VNS es la gráfica de una función $f: U \in \mathbb{R}^2 \rightarrow \mathbb{R}$, la abierto, con $(x,y) \mapsto f(x,y)$, pues si fuera de y,z f: x no podria ser función. As: V = graph(f) Paro como $f: x \in X$ diferenciable, es continua.

- 3. Show that the two-sheeted cone, with its vertex at the origin, that is, the set $\{(x, y, z) \in R^3; x^2 + y^2 z^2 = 0\}$, is not a regular surface.
- Dom: Suponyumos que 20 sup. regular. Como $(0,0,0) \in 20 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = 0\}$ $\subseteq \mathbb{R}^3$, $\exists V_0 \subseteq \mathbb{R}^3$ y $U_0 \subseteq \mathbb{R}^3$ abiertos, y $X_0 : U_0 \longrightarrow V_0 \cap 20$ tal que X_0 cumple 2).

Si $K \subseteq \mathbb{R}^2$ es un conexo en Uo que contiene a $\overline{X}_0(0,0,0)$ (i.e $K \subseteq U_0$ conexo y $\overline{X}_0(0,0,0) \in K$), tal que $K \setminus \{\overline{X}_0(0,0,0)\}$ es conexo (lo unterior se avyumenta por aná lisis), entonces como $\overline{X}_0: U_0 \to V_0 \cap S$ es homeomor fismo, preserva conexidad, luogo $\overline{X}_0(K \setminus \{\overline{X}_0(0,0,0)\}) = \overline{X}_0(K) \setminus \{(0,0,0)\}$ as conexo.

Pero, este conjunto no es conexo. Seun $P_1, P_2 \in X_0(K) \setminus \{(0,0,0)\}$, Como $K \setminus \{\overline{X_0}'(0,0,0)\}$ es conexo, $\exists \alpha : [0,1] \rightarrow K \setminus \{\overline{X_0}'(0,0,0)\}$ continua $\bigcap \alpha(0) = \overline{X_0}'(P_1)$ $\alpha(1) = \overline{X_0}'(P_2)$.

Si $P_1 = (x_1, y_1, z_1) \sqcap z_1 > 0$ y $P_2 = (x_2, y_2, z_2) \sqcap z_2 < 0$, (omo $X_0 \circ \alpha : [0,1]$ $\rightarrow X_0(K) \setminus \{(0,0,0)\}$ es un cumino que une a P_1 y P_2 , el cuál es continuo (por Ser X_0 y α continuus), $\exists P_3 \in X_0(K) \setminus \{(0,0,0)\} \sqcap P_3 = (x_3, y_5, z_1)$ y $z_5 = 0$. Pero, $(x_3, y_3, z_3) \in X_0(K) \setminus \{(0,0,0)\} \Leftrightarrow x_1^2 + y_1^2 = 0 \Leftrightarrow x_2 = y_3 = 0 \Leftrightarrow (x_3, y_5, z_5) = (0,0,0)$ $)_{K_C}$.

Luego Xo(K) \{(0,0,0)} no es conexo. Ast 2C no es sup. regular

4. Let $f(x, y, z) = z^2$. Prove that 0 is not a regular value of f and yet that $f^{-1}(0)$ is a regular surface.

Dem: Con $f: \mathbb{R}^3 \rightarrow \mathbb{R}$, Su devivudu Será: $df(p) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{pmatrix}|_{p}$ $= \begin{pmatrix} 0 & 0 & 2z \end{pmatrix}|_{p}$

Cuundo p= (0,0,0): df(p)= (0 0 0) = 0:183 -> 18, la cual no es suprayectiva.

Por tanto, (0,0,0) no es un valor regular de f. Pero:

$$f'(\{0\}) = \{(x,y,z) | z = 0\}$$

es sup. regular, pues Pares sup. regular.

*5. Let $P = \{(x, y, z) \in R^3; x = y\}$ (a plane) and let $\mathbf{x}: U \subset R^2 \longrightarrow R^3$ be given by $\mathbf{x}(u,v)=(u+v,u+v,uv),$

where $U = \{(u, v) \in \mathbb{R}^2; u > v\}$. Clearly, $\mathbf{x}(U) \subset P$. Is \mathbf{x} a parametrization of P?

Sol.

Seu (x,y,z) = P, entonces para que P = X(4), en este caso, debemos encontrar u, ve lk, u < v m

 $Si \propto = 0$, entonces $u+v=0 \Rightarrow u=-v$, as: $uv=(-v)v=-v^2$, como $v^2>0 \Rightarrow -v^3$ €0, asi el punto (0,0,1) ¢ X(u). Portanto, X no es una parametrización de P

- **6.** Give another proof of Prop. 1 by applying Prop. 2 to h(x, y, z) = f(x, y) z.
- 7. Let $f(x, y, z) = (x + y + z 1)^2$.
 - a. Locate the critical points and critical values of f.

Dem:

Rocordando que:

PROPOSITION 1. If $f: U \rightarrow R$ is a differentiable function in an open set U of R2, then the graph of f, that is, the subset of R3 given by (x, y, f(x, y)) for $(x, y) \in U$, is a regular surface.

Dem:

Seu
$$h(x,y,z) = f(x,y) - z$$
, $\forall (x,y,z) \in U \times \mathbb{R}$. Veumos que:
 $h'(\{0\}) = \{(x,y,z) \mid f(x,y) - z = 0 \mid y \mid (x,y) \in U\}$
 $= \{(x,y,f(x,y)) \mid (x,y) \in U\}$
 $= graph(f)$

Por lo que para probar que graph (1) es sup. regular, busta probar que h es diterenciable en UXR, y que D es un valor regular de h.

Como Jes diterenciable:

$$dh(\rho) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & 1 \end{pmatrix}\Big|_{P}$$

donde $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ y 1 son funciones continuas, $\forall p \in U$. Luego h es diterenciable. Veumos que 0 es un valor regular de h. S; $(x,y,z) \in UxIR$ son π $h(x,y,z) = f(xy) - z = 0 \Rightarrow f(x,y) = z$, i.e. h(x,y,f(x,y)) = 0, entonces:

$$(u, v, f) \longrightarrow u \xrightarrow{\partial f} (\partial f + v \xrightarrow{\partial f} (\partial f + f) + f$$

donde p = (x, y, f(x, y)) Si $\alpha \in \mathbb{R}$, $f(0,0, \alpha) \in \mathbb{R}$ m $dh(x, y, f(x, y))(0,0, \alpha) = \alpha$

i.e, dh(x,y,f(x,y)) es suproyectivu, as: p es un punto regular y 0 es un volor regular. Por la proposición 2, $h'(\{0\}) = graph(f)$ es una sup. regular.

7. Let $f(x, y, z) = (x + y + z - 1)^2$.

- a. Locate the critical points and critical values of f.
- **b.** For what values of c is the set f(x, y, z) = c a regular surface?
- c. Answer the questions of parts a and b for the function $f(x, y, z) = xyz^2$.

a) Como f tiene derivudas parciales continuas, y pe 123:

$$df(p) = \left(2(x+y+z-1) 2(x+y+z-1) 2(x+y+z-1) \right) \Big|_{p}$$

 $df(p):\mathbb{R}^3 \rightarrow \mathbb{R}$ no es suprayectiva cuando $2(x+y+z-1)|_{p}=0$, i.e.

i.e, los puntos criticos de festán en el plano P={(x,y,z) \in IR3 | x+y+z-1=0}.
b) Para que f(x, y,z) = C sea sup regular, entonces: f diferenciable y, ser c>0 un punto regular.

8. Let $\mathbf{x}(u, v)$ be as in Def. 1. Verify that $d\mathbf{x}_q \colon R^2 \longrightarrow R^3$ is one-to-one if and only if $\frac{\partial \mathbf{x}}{\partial u} \wedge \frac{\partial \mathbf{x}}{\partial v} \neq 0.$

501

Sid\(\frac{1}{4} : IR^2 -> IR3, q \in U es uno a uno:

$$Ker(dX_{4}) = \{(0,0)\}$$

$$\angle \Rightarrow dX_4(\alpha, \gamma) = (0,0,0) \iff (x, \gamma) = 0, i.e.$$

$$\angle \Rightarrow dX_4(0,0) = \begin{pmatrix} \frac{\partial \alpha}{\partial x}(4) & \frac{\partial \alpha}{\partial y}(4) \\ \frac{\partial \alpha}{\partial x}(4) & \frac{\partial \alpha}{\partial y}(4) \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \frac{\partial \overline{X}}{\partial u}(4) \quad \gamma \quad \frac{\partial \overline{X}}{\partial v}(4) \quad Son \quad J.i.$$

$$\Leftrightarrow \frac{\partial \overline{X}}{\partial u}(4) \quad \chi \quad \frac{\partial \overline{X}}{\partial v} \neq \overrightarrow{O} \in \mathbb{R}^{3}$$

9. Let V be an open set in the xy plane. Show that the set

$$\{(x, y, z) \in R^3; z = 0 \text{ and } (x, y) \in V\}$$

is a regular surface.

Dem:

Sea $f: V \subseteq \mathbb{R}^2 \to \mathbb{R}$ dudu como: $\forall (x,y) \in V$, f(x,y) = 0. Como fes diserenciable, V es abierto, enfonces graph(f) es una Sup. regular, donde:

graph
$$(J) = \{ (x,y,f(x,y)) | (x,y) \in V \}$$

= $\{ (x,y,z) | (x,y) \in V | z = 0 \}$

10. Let C be a figure "8" in the xy plane and let S be the cylindrical surface over C (Fig. 2-11); that is,

$$S = \{(x, y, z) \in R^3; (x, y) \in C\}.$$

Is the set S a regular surface?

Sol

No, pues la superticie tiene autointersecciones.

11. Show that the set $S = \{(x, y, z) \in R^3; z = x^2 - y^2\}$ is a regular surface and check that parts a and b are parametrizations for S:

a.
$$\mathbf{x}(u, v) = (u + v, u - v, 4uv), (u, v) \in \mathbb{R}^2$$
.

*b. $\mathbf{x}(u, v) = (u \cosh v, u \sinh v, u^2), (u, v) \in \mathbb{R}^2, u \neq 0.$

Which parts of S do these parametrizations cover?

Dem:

Seu f: \mathbb{R}^3 $\longrightarrow \mathbb{R}$ dada como: $\forall (x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = x^2 - y^2 - z$. Claramente fes diserenciable, con dtp, pe \mathbb{R}^3 :

 $df_{p} = (2x - 2y - 1)|_{p} : \mathbb{R}^{3} \rightarrow \mathbb{R}$

donde 0 es un valor regular. En efecto, si $(x_0,y_0,7_0) \in \mathbb{R}^3$ on $f(x_0,y_0,7_0) = 0$, enlonces:

As. $\forall (u,v,w) \in \mathbb{R}^3$, $df(x_0,y_0,z_0)(u,v,w) = 2x_0u - 2y_0v - w$. Vermos que es suproyectiva. En efecto: Si $f \in \mathbb{R}$, $\exists (0,0,+) \in \mathbb{R}^3$ $\cap df(x_0,y_0,z_0)(0,0,-f) = f$.

Portunto, O es valor regular de df (xo, 1/6, 20). Portunto, el conjunto:

$$\int \left(\{0\} \right) = \left\{ (x, y, z) \in |X^3| \right\} \left(x, y, z \right) = 0 \right\} \\
= \left\{ (x, y, z) \in |X^3| \right\} \\
= S$$

Es sup. royular

a) Considere $X(R^2) = \{(u+v, u-v, 4uv) \mid (u,v) \in R^2 \}$. Vermos que $X: R^2 \rightarrow S$. Sea $(u,v) \in R^2$, entonces $X(u,v) \in R^2$ pages:

$$(u+v)^2 - (u-v)^2 = u^2 + 2uv + v^2 - u^2 + 2uv - v^2$$

=4uv

además es bijectiva. Si $(x,y,z) \in S$, $\exists u = \frac{1}{2}(x+y), v = \frac{1}{2}(x-y)$, con $(u,v) \in \mathbb{R}^2$ $\bigcap \overline{X}(u,v) = (x,y), (x+y)(x-y)$ = (x,y,z)

y, es inyectiva, pues si $\mathbb{E}(u,v) = \overline{\mathbb{E}}(u',v') \Rightarrow u+v=u'+v'$, u-v=u'-v', $9uv=9u'v' \Rightarrow u=u'$, v=v'

También es diferenciable, pues tiene derivadas parciales continuas, y su inversa: $\overline{\chi}'(x,y,z) = (\frac{1}{2}(x+y), \frac{1}{2}(x-y))$

es continua Además:

$$\begin{split} \mathbb{X}_{u} &= \left(1,1,4v\right), \mathbb{X}_{v} = \left[1,-1,4u\right] \\ &= > ||\mathbb{X}_{u}^{1}\mathbb{X}_{v}||^{2} = ||\left(-4u-4v,-4v+4u,-2\right)||^{2} \\ &= ||\mathbb{X}_{u}^{2} + 32v^{2} + 4 \neq 0, \forall \left(u,v\right) \in |\mathbb{R}^{2}| \\ ||uego \mathbb{X} \text{ es parumetrización de S. } \left(d\mathbb{X}_{q} \text{ es } 1-1\right). \end{split}$$

b) Recordandoque:

Senh(x) =
$$\frac{e^{x} - \bar{e}^{x}}{2}$$

Cosh(x) = $\frac{e^{x} + \bar{e}^{x}}{2}$

Vermos que \overline{X} es parametrización $Si(u,v) \in IR^2$: $\underline{X}(u,v) = \left(u \frac{e^2 + e^2v}{2}, u \frac{e^2 - e^2v}{2}, u^2\right)$

y :

$$\frac{u^2}{4} \left(e^{2v} + 2^{-2v} + 2 \right) - \frac{u^2}{4} \left(e^{2v} + e^{-2v} - 2 \right) = \frac{u^2}{4} \cdot 4$$

$$= u_3$$

As. Z: R³ → S. A demás

12. Show that $\mathbf{x} : U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by

 $\mathbf{x}(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u), \quad a, b, c \neq 0,$ where $0 < u < \pi, 0 < v < 2\pi$, is a parametrization for the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Describe geometrically the curves u = const. on the ellipsoid.

Dom:

Tome $U=J0, T_1[X]0, 2T_1[Para(u,v) \in U fenemos que <math>X(u,v) \in E^2(E^2 eselel; psoide en IR^3)$. En efecto: como X(u,v) = (asinucos v, bsinusinv, ccos u), enton-ces:

 $\frac{\alpha_s 2! y_s n \cos_s n}{\alpha_s} + \frac{\rho_s 2! y_s n 2! y_s n}{\rho_s 2! y_s n^2 n} + \frac{\alpha_s}{c_s \cos_s n} = 2! y_s n^2 + \cos_s n$

· X(u,v) E E , Y (u,v) EU. Veamos que es suprayectiva.

- *13. Find a parametrization for the hyperboloid of two sheets $\{(x, y, z) \in R^3; -x^2-y^2+z^2=1\}$.
- 14. A half-line $[0, \infty)$ is perpendicular to a line E and rotates about E from a given

Sol.

Sea I: IRx JO27 (->IR dula como:

X(u,v)=(sinh u cos v, sinhusinu, coshu)

x está bien de) inido, y t (u, v & 132:

- Sinhiucosiv - Sinhiusiniv + coshiu = - Sinhiu + coshiv

- (

Luego $\Sigma(u) \subseteq H = \{ (x/y,z) \in IR^3 | -x^2-y^2+z^2=1 \}$ Ya sabemos que H es sup. regular. Para ver que Σ es parametrización de H, solo basta probar que para $p \in \Sigma(u)$, Σ Cample ser disterenciable γ $d\Sigma_q : IR^2 \to IR$ con $\Sigma(q) = P$ es suprayectiva (γ ver que Σ es uno a uno).

Veumos que es diterenciable, pues sus funciones componentes son todas decluse Coo(R)

Ahoru, su diferencial:

$$d\bar{x}_{4} = \begin{pmatrix} coshu cosv - sinhu sinv \\ coshu sinv & Sinhu cosv \\ Sinhu & 0 \end{pmatrix}$$

Veamos que es saprayectivo, pues:

$$||Xu^{2}||^{2} = ||(Sinh^{2}ucosv, Sinh^{2}usinv, - Sinhucoshusin^{2}v - Sinhucoshucos^{2}v)||^{2}$$

$$= Sinhucos^{2}v + Sinh^{2}u Sin^{2}v + Sinh^{2}ucosh^{2}u$$

$$= Sinh^{2}u(Sinh^{2}u + cosh^{2}u)$$

$$= Sinh^{2}u(1+2sinh^{2}u) \neq 0, \forall u \in ||R|$$

14. A half-line $[0, \infty)$ is perpendicular to a line E and rotates about E from a given initial position while its origin 0 moves along E. The movement is such that when $[0, \infty)$ has rotated through an angle θ , the origin is at a distance $d = \sin^2(\theta/2)$ from its initial position on E. Verify that by removing the line E from the image of the rotating line we obtain a regular surface. If the movement were such that $d = \sin(\theta/2)$, what else would need to be excluded to have a regular surface?

301

Suponiendo que la rectu se encuentra en (0,0,0) Cuandó $\theta = 0$. Veamos que es una Curva regular. Sea

$$\underline{x}$$
: $]0,\infty[x]0,2\pi[\rightarrow S$
 $(t,\theta)\mapsto(t\cos\theta,t\sin\theta,\sin^2(\theta/2))$

Claramente X, es tunción continua, y diferenciable pues sus derivadas parciales son todas continuas, y su inversa:

$$\Sigma'(t\cos\theta, t\sin\theta, \sin^2(\theta/2) = (t, \theta)$$

es continua. Aqui tenemos:

$$dx_{q} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \\ 0 & \frac{\sin\theta}{2} \end{pmatrix} \bigg|_{G}$$

donde: $X_{1+} \wedge \overline{X}_{10} = \left(S_{11} \theta \frac{S_{11} \theta}{2} \right) - \cos \theta \frac{S_{11} \theta}{2}$

$$\Rightarrow \| \chi_{1} \wedge \chi_{10} \|^{2} = \left(\frac{\sin \theta}{4} + \frac{1}{2} \right)^{2} \neq 0 \quad \forall \quad (f, \theta) \in]0, \infty \left[\times \right] 0, 2\pi \left[\left(\frac{\sin \theta}{4} + \frac{1}{2} \right)^{2} \right] = 0$$

Asid $X_{14}es$ 1-1. Para un punto $peS m \theta = 0$, tomamos $X_2:]0,00[x]_{-11,7}[\longrightarrow S co-$

Mo:

$$\overline{X}_{2}(1,\theta) = (t\cos\theta, t\sin\theta, \sin^{2}(\frac{\theta}{2}))$$

la cuul cumple lo mismo que X. Luego S es sup. regular.

En el otro caso hay que limitar el valor de θ para que no hayu auto-intersecciones. En este caso: $\theta \in [0,2\pi[$ (ó excluir los valores pares de $\overline{11}$).

*15. Let two points p(t) and q(t) move with the same speed, p starting from (0, 0, 0) and moving along the z axis and q starting at (a, 0, 0), $a \neq 0$, and moving parallel to the y axis. Show that the line joining p(t) to q(t) describes a set in R^3 given by y(x - a) + zx = 0. Is this a regular surface?

Dem:

Veumos que el Conjunto:

$$S = \{(x,y,z) \in |R^3| \ y(x-a) + z = 0\}$$

es sup. regular o no. Sea J: 183 -> 18 dada como:

$$f(x,y,z) = y(x-u) + zx$$

Entonces:

$$d_{p} = (y + z \times -a \times) : \mathbb{R}^{s} \to \mathbb{R}$$

tiene como valor regular a 0, pues:

$$\Leftrightarrow$$
 y=7, $x=\alpha$ y $x=0$.

Como u = 0, entonces x = 0. As: Utp es Suprayectiva. Luego notiene puntos criticos. Luego O es vulor regular de f, asi:

$$S = \frac{1}{3} (\{0\})$$
 es sup regular.

Veamos que el conjunto se tormu por esa rectu.

- 16. One way to define a system of coordinates for the sphere S^2 , given by $x^2 + y^2 + (z 1)^2 = 1$, is to consider the so-called *stereographic projection* $\pi: S^2 \sim \{N\} \longrightarrow R^2$ which carries a point p = (x, y, z) of the sphere S^2 minus the north pole N = (0, 0, 2) onto the intersection of the xy plane with the straight line which connects N to p (Fig. 2-12). Let $(u, v) = \pi(x, y, z)$, where $(x, y, z) \in S^2 \sim \{N\}$ and $(u, v) \in xy$ plane.
 - a. Show that π^{-1} : $R^2 \longrightarrow S^2$ is given by

$$\pi^{-1} \begin{cases} x = \frac{4u}{u^2 + v^2 + 4}, \\ y = \frac{4v}{u^2 + v^2 + 4}, \\ z = \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}. \end{cases}$$

- b. Show that it is possible, using stereographic projection, to cover the sphere with two coordinate neighborhoods.
- 17. Define a regular curve in analogy with a regular surface. Prove that

Para un punto pe Pxy = IR2, 31. rectu digamos Lp: IR -> IR3 tul que estu conoctu a N y a p. En efecto:

S: p=(x,y,0), entonces el vector $\vec{v}=(0,0,2)-(x,y,0)=(-x,-y,2)$ colocado en parantu a (0,0,2). Sea $l_p(t)=p+\vec{v}t$, $l_p(t)=p+\vec{v}t$. It is curva parametriza a una recha que

Conectua p con N, pues:

$$l_{\rho}(0) = \rho \quad , \quad L_{\rho}(1) = (x, y, 0) + (-x, -y, 2) \cdot 1$$

= (0, 0, 2)
= N

Veumos que Tr(1p) n52 (IN) = \$ (mis uin, construée un punto). En efecto:

Si intersectur, entonces:

$$= > (\chi^{2} + y^{2} + 4) + (-2\chi^{2} - 2y^{2} - 4) + (\chi^{2} + y^{2}) = 0 \quad \text{Por tunto}$$

$$= > + 2 \left(\frac{-\chi^{2} - y^{2} - \lambda}{\chi^{2} + y^{2} + 4} \right) + \frac{\chi^{2} + y^{2}}{\chi^{2} + y^{2} + 4} = 0$$

$$= > + = \frac{2\chi^{2} + 2y^{2} + 4}{\chi^{2} + y^{2} + 4} + \frac{\chi^{2} + y^{2} + 2\chi^{2} + 2\chi^{2}}{(\chi^{2} + y^{2} + 4)^{2}} - \frac{4\chi^{2} + 4\chi^{2}}{\chi^{2} + y^{2} + 4}$$

$$= > + = \frac{\chi^{2} + 2y^{2} + 4}{\chi^{2} + y^{2} + 4} + \frac{\chi^{2} + \chi^{2} + 2\chi^{2} + 2\chi^{2}}{(\chi^{2} + y^{2} + 4)^{2}} - \frac{4\chi^{2} + 4\chi^{2}}{\chi^{2} + y^{2} + 4}$$

$$= \frac{\chi^{1}+\gamma^{1}+2}{\chi^{1}+\gamma^{1}+1} + \frac{1/2}{\chi^{1}+\gamma^{1}+4} = \frac{1/2}{\chi^{1}+\gamma^{1}+4} = \frac{1/2}{\chi^{1}+\gamma^{1}+4} + \frac{1/2}{\chi^{1}+\gamma^{1}+4} = \frac{1/2}{\chi^{1}+\gamma^{1}+4} + \frac{1/2}{\chi^{1}+\gamma^{1}+4} = \frac{1/2}{\chi^{1}+\gamma^{$$

S:
$$f = \frac{1}{x^2 + y^2 + 4} (x^2 + y^2 + 4) = 1$$
, $l_p(f) = N$. En otro (aso:

$$I_{\rho}(f) = \left(\frac{\lambda_{1} + \lambda_{1} + 4}{\lambda_{1} + \lambda_{2}} + \frac{\lambda_{1} + \lambda_{2} + 4}{\lambda_{1} + \lambda_{2} + 4} + \frac{\lambda_{1} + \lambda_{2} + 4}{\lambda_{1} + \lambda_{2} + 4} + \frac{\lambda_{1} + \lambda_{2} + 4}{\lambda_{1} + \lambda_{2} + 4} + \frac{\lambda_{1} + \lambda_{2} + 4}{\lambda_{1} + \lambda_{2} + 4} + \frac{\lambda_{1} + \lambda_{2} + 4}{\lambda_{1} + \lambda_{2} + 4} + \frac{\lambda_{1} + \lambda_{2} + \lambda_{2} + 4}{\lambda_{1} + \lambda_{2} + \lambda_{2} + 4} + \frac{\lambda_{1} + \lambda_{2} + \lambda_$$

Por tunto. Y (u,v) EIR2, Ti': IR2 -> 52/4N) estú dadu como:

$$\prod_{i=1}^{n} (u,v) = \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2)}{u^2 + v^2 + 4} \right)$$

Por construcción, II está bien definida y es suprarectiva

Este mismo procedimiento lo podemos hacer, tomando el plano $P = \{(x,y,z) \in \mathbb{R}^3 | z = 2\}$ y trazando la recta desde S = (0.0.0) (al polo sur), obteniendo el resultado anterior.

- 17. Define a regular curve in analogy with a regular surface. Prove that
 - a. The inverse image of a regular value of a differentiable function

$$f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$$

is a regular plane curve. Give an example of such a curve which is not connected.

b. The inverse image of a regular value of a differentiable map

$$F: U \subset \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

is a regular curve in R^3 . Show the relationship between this proposition and the classical way of defining a curve in R^3 as the intersection of two surfaces.

*c. The set $C = \{(x, y) \in \mathbb{R}^2; x^2 = y^3\}$ is not a regular curve.

Dem:

Det Una Curva regular, es un conjunto C tulque y pec Junu vecindad Ven IR y un mapeo X: U -> VNS, U = IR abjecto tul que:

- l. X es diterenciable
- 2 X es homeomortismo
- 3 yeu, dz: 1h -> 1h2 es uno a uno

De a):

Sea $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $a \in \mathbb{R}$ un valor regular de f, con f diferenciable. Probanemos que $C = f'(\{a\}) \subseteq \mathbb{R}^2$

es curvu regular. Seu $p \in f^{-1}(\{a\})$, entonces f(p) = a. Corno e es valor regular, p es punlo regular de f, el diferencial $df_p: IR^2 \rightarrow IR$ es suprayectiva.

*18. Suppose that
$$f(x, y, z) = u = \text{const.}$$
, $g(x, y, z) = v = \text{const.}$, $h(x, y, z) = w = \text{const.}$,

describe three families of regular surfaces and assume that at (x_0, y_0, z_0) the Jacobian

$$\frac{\partial(f,g,h)}{\partial(x,y,z)}\neq 0.$$

Prove that in a neighborhood of (x_0, y_0, z_0) the three families will be described by a mapping F(u, v, w) = (x, y, z) of an open set of R^3 into R^3 , where a local parametrization for the surface of the family f(x, y, z) = u, for example, is obtained by setting u = const. in this mapping. Determine F for the case where the three families of surfaces are

$$f(x, y, z) = x^2 + y^2 + z^2 = u = \text{const.}; \qquad \text{(spheres with center } (0, 0, 0));$$

$$g(x, y, z) = \frac{y}{x} = v = \text{const.}, \qquad \text{(planes through the } z \text{ axis)};$$

$$h(x, y, z) = \frac{x^2 + y^2}{z^2} = w = \text{const.}, \qquad \text{(cones with vertex at } (0, 0, 0)).$$

Sol. Sea $F^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$ dada como:

 $\forall (x,y,z) \in \mathbb{R}^3, \ F^{-1}(xy,z) = (f(xy,z),g(x,y,z),h(x,y,z))$

Como describen 3 fumilius de sup. regulares, f,g, h: 1R3 -> 1R son diferenciables. Entonces:

$$\frac{\partial x}{\partial \mu} \frac{\partial x}{\partial \mu} \frac{\partial x}{\partial \mu} \frac{\partial x}{\partial \mu}$$

$$\frac{\partial x}{\partial \mu} \frac{\partial y}{\partial \mu} \frac{\partial y}{\partial \mu}$$

$$\frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \mu} \frac{\partial x}{\partial \nu}$$

$$\frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \mu} \frac{\partial x}{\partial \nu}$$

$$\frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \nu}$$

$$\frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \nu}$$

$$\frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \nu} \frac{\partial x}{\partial \nu}$$

Por hip. en (xo, yo, 20) EIR3, | df q | 70, donde q=(xo, yo, 20). Lueyo, por el terrema de la func. inversa, existen vecindades V de q y le de f'm

$$t_{-i}: \Lambda \longrightarrow \kappa$$

es difeomorfismo local. As: Feslá bien definida, i.e F(u,v,w) = (x,y,z) es diferenciable.

Let $\alpha: (-3,0) \longrightarrow \mathbb{R}^2$ be defined by (Fig. 2-13)

$$\alpha(t) \begin{cases} = (0, -(t+2)), & \text{if } t \in (-3, -1), \\ = \text{regular parametrized curve joining } p = (0, -1) \text{ to } q = \left(\frac{1}{\pi}, 0\right), \\ & \text{if } t \in \left(-1, -\frac{1}{\pi}\right), \\ & = \left(-t, -\sin\frac{1}{t}\right), & \text{if } t \in \left(-\frac{1}{\pi}, 0\right). \end{cases}$$

Figure 2-13

It is possible to define the curve joining p to q so that all the derivatives of α are continuous at the corresponding points and α has no self-intersections. Let C be the trace of α .

- **a.** Is C a regular curve?
- **b.** Let a normal line to the plane R^2 run through C so that it describes a "cylinder" S. Is S a regular surface?

Notus:

1) angl: RxIR -> [0,271] es la función que mide elángulo + entre 2 vectores: