LINGUAGEM L(G)

CONVENÇÕES

$$x^0 = \varepsilon$$
; $x^1 = x$; $x^2 = xx$; $x^3 = xxx$... $x^n = xxxx$... x n ocorrências de x

<u>DEF</u>: Se X e Y são Linguagens sobre um Alfabeto.

$$XY = \{rs/r \in X \land s \in Y\}$$

 X^n representa a concatenação de X com o próprio X n vezes, $X^0 = \{\epsilon\}$ e $X^1 = X$

$$X^0 = \{\epsilon\},$$

CONVENÇÕES

Ex: Se X={a,b,c} e Y={abb, ba} então

$$X^0 = \{\epsilon\};$$

$$X^1 = \{a,b,c\};$$

$$X^2 = XX = \{aa,bb,cc,ab,ba,bc,cb,ac,ca\};$$

 $X^3=X^2X=\{aaa,abb,acc,aab,aba,abc,acb,aac,aca,baa,bbb,bcc,bab,bba,bbc,bcb,bac,bca,caa,cbb,cab,ccc,cba,cbc,ccb,cac,cca\}.$

CONVENÇÕES

OBS:

$$X^* = \bigcup_{i=0}^{\infty} X^i \quad e \quad X^+ = \bigcup_{i=1}^{\infty} X^i$$

$$\{a,b\}^* = \{ \epsilon \} \cup \{a,b\}^1 \cup \{a,b\}^2 \cup \{a,b\}^3 \cup \{a,b\}^4 \cup ... \cup \{a,b\}^i$$

$$\{a,b\}^+ = \{a,b\}^1 \cup \{a,b\}^2 \cup \{a,b\}^3 \cup \{a,b\}^4 \cup ... \cup \{a,b\}^i$$

$$\{a\}^* = \{ \epsilon, a, a^2, a^3, a^4, ... \}$$

LINGUAGEM L(G)

ESPECIFICAÇÃO:

GRAMÁTICAS

ALFABETO $\begin{cases} \text{Símbolos terminais} : \text{são os únicos a aparecerem nas linguagens. O conjunto de símbolos não Terminais (também conhecidos por variáveis) é notado por <math>\mathbf{N}$ ou $\mathbf{V_N}$, e representam construções intermediárias nas derivações; $\mathbf{V} = \mathbf{V_N} \ \cup \ \mathbf{V_T} \ \mathbf{ou} \ \mathbf{N} \ \cup \ \mathbf{T}$

$$V = V_N \cup V_T \text{ ou } N \cup T$$

(Vocabulário ou Alfabeto)

REGRAS DE responsáveis pela geração dos elementos de L. Tem a forma " $\alpha \to \beta$ " que especifica uma condição para que um string seja gerado onde $\alpha \in V^+$

ELEMENTO
DISTINGUIDO
S - é o símbolo não terminal que representa uma classe especial de strings, usualmente chamado de "sentenças"

GRAMÁTICAS

FORMALMENTE: G=< N, T, P, S>

<u>Produções</u>: Se α → β é uma produção de P na gramática G e α ∈ V⁺ e

$$β ∈ V^*$$
 então $γαδ ⇒ γβδ$, onde $γ ∈ V^*$

Se $\alpha_1, \alpha_2, \alpha_3, \alpha_4, ..., \alpha_m$ são strings em V* e se

$$\alpha_1 \Rightarrow \alpha_{2;\alpha_2} \Rightarrow \alpha_3 \dots \alpha_{m-1} \Rightarrow \alpha_{m,\alpha} \cdot dai$$

$$\alpha_1 \Rightarrow^* \alpha_m$$

12. Dada a gramática G= <N,T,P,S> onde N={S,B}, T={a,b}, P={ S \rightarrow aSa,

$$S \rightarrow aBa, B \rightarrow bB, B \rightarrow b$$
, determine L(G).

$$S \stackrel{2}{\Rightarrow} aBa \Rightarrow aba$$

$$1 \qquad 1 \qquad 1 \qquad 2 \qquad 4 \qquad 4 \qquad 5 \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaSaa = a^3Sa^3 \Rightarrow a^3aBaa^3 \Rightarrow a^3abaa^3 = a^4ba^4$$

$$S \stackrel{1}{\underset{n=1}{\Rightarrow}} * a^{n-1} S a^{n-1} \stackrel{2}{\Rightarrow} a^{n-1} a Baa^{n-1} \stackrel{3}{\underset{m=1}{\Rightarrow}} * a^n b^{m-1} Ba^n \Rightarrow * a^n b^{m-1} ba^n = a^n b^m a^n$$

$$L(G)=\{a^nb^ma^n/ n\geq 1, m\geq 1\}$$

```
DEF: L(G) = \{ w/w \in T^* (ou V_T^*) \land S \Rightarrow^* w \}
<u>exercício 2</u>: G=< N, T, P, S> onde, N={ S}; T = \{0,1\}; P=\{S \rightarrow 0S1; S \rightarrow 01\}
  2
S⇒01 ou;....
S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000S111 \Rightarrow ... \Rightarrow 0^{n-1}S1^{n-1} \Rightarrow 0^n1^n
                                           Daí L(G)=\{0^n1^n/ n \ge 1\}
```

exercício-13: G=<
$$\{S,A,B\},\{a,b\},P,S$$
> onde, P= $\{1.S\rightarrow AB; 2.A\rightarrow aA; 3.A\rightarrow a; 4.B\rightarrow bB; 5.B\rightarrow \epsilon\}$

$$S \xrightarrow{1} AB \xrightarrow{2} aAB \xrightarrow{2} * a^{n-1}AB \xrightarrow{3} a^{n-1}aB \xrightarrow{4} * a^n b^m \xrightarrow{5} \Rightarrow a^n b^m$$

Daí L(G)={
$$a^n b^m / n \ge 1, m \ge 0$$
}

Ex: $a \in L(G)$; aa $\in L(G)$; aaaaaa $\in L(G)$; ab $\in L(G)$; aaabbbb $\in L(G)$

exercício-14: G=< {S, B},{a,b},P, S> onde, P={1. S→aS;
2. S→aB;
3. B→bB;
4. B→
$$\epsilon$$
 }

$$S \xrightarrow{1}_{n-1} * a^{n-1} S \xrightarrow{2} a^{n-1} a B \xrightarrow{3}_{m} * a^{n} b^{m} B \xrightarrow{4} a^{n} b^{m}$$

Daí L(G)=
$$\{a^n b^m / n \ge 1, m \ge 0\}$$

exercício-15: G=< {S, A},{a,b},P, S> onde, P={1. S
$$\rightarrow$$
AbAbA; 2. A \rightarrow aA; 3. A \rightarrow ϵ }

$$S \xrightarrow{1} AbAbA \xrightarrow{2} *a^nAbAbA^3 \Rightarrow a^nbAbA^2 \Rightarrow *a^nba^mAbA^3 \Rightarrow a^nba^mbA^3 \Rightarrow a^nba^mbA^3 \Rightarrow a^nba^mba^r$$

$$\xrightarrow{2} *a^nba^mba^rA \xrightarrow{3} a^nba^mba^r$$

 $L(G)=\{a^nba^mba^r/ n\geq 0, m\geq 0, r\geq 0\}$

exercício-15: G=< {S, A},{a,b},P, S> onde, P={1. S
$$\rightarrow$$
AbAbA; 2. A \rightarrow aA; 3. A \rightarrow ϵ }

$$s \xrightarrow{1} AbAbA \xrightarrow{3} bAbA \xrightarrow{3} bbA \xrightarrow{3} bb$$

$$L(G)=\{a^nba^mba^r/ n\geq 0, m\geq 0, r\geq 0\}$$

Exercício 16: G=< {S, A},{a,b},P, S>
$$P=1. S \rightarrow aS$$
 4. $A \rightarrow bC$ 2. $S \rightarrow bA$ 5. $C \rightarrow aC$ 3. $A \rightarrow aA$ 6. $C \rightarrow \epsilon$

$$L(G) = \{ a^n b a^m b a^r / n \ge 0, m \ge 0, r \ge 0 \}$$

GRAMÁTICAS

exercício-17:
$$G=<\{S,A\},\{a,b\},P,S> \text{ onde, } P=\{1.S\rightarrow AbAbA;}$$

2. $A \rightarrow aA$:

4. A→ε

A⇒* {a,b}*

 $A \stackrel{2}{\Rightarrow} aA \stackrel{3}{\Rightarrow} abA^2 \Rightarrow abaA^3 \Rightarrow abaBA \Rightarrow abaBA \Rightarrow abaBA \Rightarrow abaBA \Rightarrow *$ $A \stackrel{3}{\Rightarrow} bA \stackrel{3}{\Rightarrow} bbA \stackrel{2}{\Rightarrow} bbaA \stackrel{3}{\Rightarrow} bbaA \stackrel{4}{\Rightarrow} bbab$

$$\Rightarrow$$
{a,b}{b}{a,b}*{b}{a,b}*

 $L(G)=\{a,b\}^*\{b\}\{a,b\}^*\{b\}\{a,b\}^*$