Generative Adversarial Nets Machine Learning

Sebastian Bek

University Heidelberg Seminar "Biomedical Image Analysis: Deep Learning" Supervisors: Karl Rohr & Christian Kromm sebibek@gmail.com

17. Juli 2019

Introduction

- Introduction
- 2 Adversarial Nets
- Theory
- Evaluation
- Summary

0000

- Introduction
- 2 Adversarial Nets
- Theory
- 4 Evaluation
- Summary

• Easy-to-Train: propose a new framework for estimating generative models, with the ability to be trained by a standard backpropagation algorithm, through an underlying adversarial process

Theory

- Requirements: quality (proximity to prior distribution) and quantity (diversity)
- Disuse of complicating training and sampling algorithms: e.g. MCMCs (Markov Chain Monte Carlo Methods), approximate inference, score matching. NCE (noise-contrastive estimation)

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 4 / 27

Related Work

0000

Tab.: Challenges in generative modeling:

	Deep directed gra- phical models	Deep undirected graphical models	Generative autoen- coders	Adversarial models
Training (Issues)	Inference needed	Inference needed, MCMC needed to approximate parti- tion function gradi- ent	Tradeoff between mixing and power of reconstruction generation	Synchronizing the discriminator with the generator, Hel- vetica scenario
Sampling	No difficulties	Requires Markov chain	Requires Markov chain	No difficulties
Evaluating $p_g(x)$	may be approxima- ted with AIS	may be approxima- ted with AIS	may be approxi- mated with Parzen density estimation	may be approxi- mated with Parzen density estimation
Model design	Nearly all models	Careful design nee-	Any differentiable	Any differentiable
	incur extreme diffi-	ded to ensure mul-	function is theore-	function is theore-
	culty	tiple properties	tically permitted	tically permitted

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 5 / 27

0000

Police and Counterfeiters

Theory

Generator G: Counterfeiters, producing and using fake curreny

Discriminator D: Police, trying to detect the counterfeit currency and to discern it from the genuine one

Fig.: Indicators of a genuine dollar bill, Source: (1)

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 6 / 27

Introduction

- Introduction
- Adversarial Nets
- Theory
- 4 Evaluation
- Summary

Introduction

Important Terms

prior (data) distribution : $p_{data} = p_z(z) \sim z$

generator function : $G(z, \theta_g)$ θ_g : generator parameters

discriminator function : $D(x, \theta_d)$ θ_d : discriminator parameters

whereas D(x) represents the propability that x is drawn from the training samples (prior data distribution) rather than p_g .

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 8 / 27

Mathematical Formulation

Introduction

Formal Definition

Two-Player Minimax (specific: zero-sum) game with value function V(G, D):

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z))]$$

$$\Rightarrow \max_{G} V(D, G) = 0 \qquad \min_{G} V(D, G) = -\infty$$

outer loop: minimize V(D,G) for 1 step | inner loop: maximize V(D,G) for k steps

- → prevents the network from overfitting the training data
- \rightarrow stop when gradient of G is very small \Rightarrow slowly changing ($\tilde{G} \approx 0$)

17. Juli 2019 Generative Adversarial Nets 9 / 27 Sebastian Bek

Precautions

Introduction

Formal Definition

Two-Player Minimax (specific: zero-sum) game with value function V(G, D):

$$\begin{split} \min_{D} \max_{G} V(D,G) &= \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z))] \\ &\Rightarrow \max V(D,G) = 0 \qquad \quad \min V(D,G) = -\infty \end{split}$$

Caveat: Early Learning

- \rightarrow Gradients of G might be poor/vanishing:
- \Rightarrow D can reject samples with high confidence (log(1 D(G(z))) saturates in this case)
- \Rightarrow instead of minimizing min log(1 D(G(z))), we can assign G to maximize $\log D(G(z)) \rightarrow \text{same fixed point of dynamics, but yields much stronger gradients}$

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 10 / 27

Gradients

Discriminator Gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} [\log D(x^{(i)}) + \log(1 - D(x^{(i)}))]$$

Generator Gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m [\log(1 - D(x^{(i)}))]$$

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 11 / 27

Introduction

- Introduction
- 2 Adversarial Nets
- Theory
- 4 Evaluation
- Summary

Architecture

Introduction

0000

Fig.: Visualization of Architecture (general/DCGAN), Source: (2)

17. Juli 2019 13 / 27 Sebastian Bek Generative Adversarial Nets

Introduction

Global Optima

0000

Discriminator Optimum:

$$D_{\mathsf{G}}^{*}(\mathbf{x}) = rac{p_{\mathsf{data}}(\mathbf{x})}{p_{\mathsf{data}}(\mathbf{x}) + p_{\mathsf{g}}(\mathbf{x})}$$

Generator Optimum:

$$p_g = p_{data} = p_z \Rightarrow D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} = \frac{1}{2}$$

Convergence of the Algorithm

Introduction

Adversarial Nets

Adversarial Nets represent a limited family of generative p_g distributions via the function $G(z, \theta_g)$ with p_g being indirectly optimized through optimization of θ_g . Lack of theoretical validity of multilayer perceptrons, but excellent performance in practice.

Fig.: Visualization of distributions/mapping $z \to x$, Source: (3)

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 15 / 27

Introduction

- Introduction
- 2 Adversarial Nets
- Theory
- Evaluation
- Summary

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 16 / 27

Training

Datasets

Theory

- MNIST
- TED: toronto face database

• CIFAR-10 [21]

Experiments

Test scenario: Estimation of propability of "test set data" under (behind) $p_g \to \text{fit a}$ Gaussian Parzen window to the samples generated with G and report the log-likelihood considering test data samples obtaining variance σ from cross-validation with the test dataset.

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [3]	214 ± 1.1	1890 ± 29
GAN	225 ± 2	2057 ± 26

Tab.: Log-likelihood estimates of p_g

Sampling from the Model - 1

Introduction

Fig.: Visualization of Samples from the model, Source: (3)

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 18 / 27

Summary

Sampling from the Model - 2

Introduction

MNIST dataset

MNIST digits linearly interpolated to evaluate diversity of generative distribution p_g of GAN approach..

Fig.: Linearly interpolating digits in z-space of G after training, Source: ③

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 19 / 27

Application in Biomedical Image Analysis

Application Example: Skin Lesion Segmentation

Introduction

- Generator G: Fully (de-)convolutional neural network to synthesize (generate) valid segmentation masks
- Discriminator D: another convolutional neural network to distinguish synthetic (fake) from real masks

Summary

Skin lesions 101

Fig.: Segmented Skin Lesions, Source: 1

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 20 / 27

¹https://suprememedical.com/Product/skin-lesion-guide

Introduction

Advantages and Disadvantages **Advantages** Disadvantages no need for Markov Chains (MCMCno explicit representation of $p_{\sigma}(x)$ approaches) • D needs to be sufficiently synchronized training through standard backpropagation with G (D must stay inline) • incorporation of wide variety of func-→ avoidance of Helyetica scenario: tions possible \rightarrow applicability G collapsing too many latent z's (e.g. • able to represent sharp, degenerate random variables) to the same sample x, distributions leading to insufficient generative diversity

Theory

Tab.: Advantages and Disadvantages of GANs

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 21 / 27

Introduction

- Introduction
- 2 Adversarial Nets
- Theory
- Evaluation
- **Summary**

Summary

Introduction

 GANs: new framework for estimating generative models defined by multilayer perceptrons (Convolutional Layers) trained by standard backpropagation \rightarrow no need for any Markov chains (MCMC-approaches), which can have problems Mixing (Converging)

Theory

- Results Samples considered to be competitive with those of the state-of-the-art generative models
- Empirical Evaluation (Fitting a Gaussian Parzen window to measure distribution similarity of p_g as log-likelihood metric) indicates comparable scores than achieved for state-of-the-art methods like DBNs. Stacked CAE, GSN, Adversarial nets and comparable validity/representativity

17. Juli 2019 Generative Adversarial Nets 23 / 27 Sebastian Bek

Appraisal

Introduction

- approach is, besides DGMs (directed graphical models), the only one, inducing no problems or further elaborations for sampling (generating samples) or training \rightarrow rather simple implementation
- experiments show comparable similarities against state-of-the-art methods in log-likelhood score and variance in matching the prior distribution p_z with the generative one (p_g) , but the method proposed is regarded to be more simple than others
- the synchronization of D is yet an effortful factor, since sufficient reasoning for the number of steps of the inner loop is needed to avoid the previously named "Helvetica scenario"!
- future applications might involve the synthetic generation of morphologically correct segmentation masks of seperatable objects, fake images (databases), keys/passwords (cryptography), image processing

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 24 / 27

Introduction

Straighforward extensions:

- Conditional generative Model $p(\mathbf{x}|c)$ w. adding condition c
- Learned approximate inference: Predict prior-z w. given latent x
- Modeling of multiple Conditionals: $p(\mathbf{x}_{5}|\mathbf{x}_{6})$
- Semi-Supervised Learning: Better Performance w. partially labeled training data
- Efficiency improvements: Better methods to coordinate G and D, better distributions to sample z from during training

17. Juli 2019 Sebastian Bek Generative Adversarial Nets 25 / 27

Questions?

Introduction

Sources and further reading

Literature

- O Goodfellow, lan, et al. "Generative adversarial nets."
- 2 Izadi, Saeed & Mirikharaji, Zahra & Kawahara, Jeremy & Hamarneh, Ghassan. Generative adversarial networks to segment skin lesions.

Images

- https://www.sevendaysvt.com/vermont/ some-counterfeiters-still-do-it-old-school/Content?oid=3276910
- https://www.altoros.com/blog/the-diversity-of-tensorflow-wrappers
 -gpus-generative-adversarial-networks-etc/ &
 https://medium.freecodecamp.org/an-intuitive-introduction-to-generative
 -adversarial-networks-gans-7a2264a81394
- Goodfellow, Ian, et al. "Generative adversarial nets."