Abstract Algebra Lecture Notes

Simon Xiang

Lecture notes for the Fall 2020 graduate section of Abstract Algebra (Math 380C) at UT Austin, taught by Dr. Ciperiani. I'm currently auditing this course due to the fact that I'm not officially enrolled in it. These notes were taken live in class (and so they may contain many errors). You can view the source code here: https://git.simonxiang.xyz/math_notes/file/freshman_year/abstract_algebra/master_notes.tex.html.

Contents

1	August 26, 2020 1.1 Oops Oops	4
2	August 28, 2020 2.1 Subgroups and Normal Subgroups 2.2 Product and Quotient Groups 2.3 Left and Right Cosets 2.4 Lagrange's Theorem	4 5
3	August 31, 2020 3.1 The Dihedral Group	5
4	September 2, 2020 4.1 The Symmetric Group Rises from the Automorphism Group	6
5	September 4, 2020 5.1 Group Actions	8
6	September 9, 2020 6.1 Transitive and Faithful Actions	0
7	September 11, 2020 1 7.1 Cauchy's Lemma 1 7.2 p-groups 1 7.3 Sylow Theorems 1	2
8	September 14, 2020 1 8.1 Class Introductions (not math) 1 8.2 Sylow Theory 1	3
9	September 16, 2020	4

Contents 2

	9.1 Proving the Sylow Theorems9.2 Applications to Simple Groups9.3 Groups of Order 12 Are Not Simple	15
10	September 18, 2020 10.1 Representation Theory	16
11	September 21, 2020 11.1 Not entirely sure what happened today	17 17
12	September 23, 2020 12.1 Group Automorphisms	
13	September 25, 2020 13.1 Whoops	19
14	September 28, 2020 14.1 The alternating group	
15	September 30, 2020 15.1 Direct products	
16	October 2, 2020 16.1 Something happened here	21 21
17	October 5, 2020 17.1 Composition series of groups	22
18	October 7, 2020 18.1 Big theorems (Burnside, Feit-Thompson)	
19	October 9, 2020	25
20	October 12, 2020 20.1 Ring theory	25 25
21	October 14, 2020 21.1 Subrings	28
22	October 16, 2020 22.1 sad times	28 28
23	October 19, 2020 23.1 Simple rings	

Contents 3

24	October 23, 2020 24.1 Prime ideals 24.2 Rings of fractions	
25	October 26, 2020	31
26	October 28, 2020 26.1 The Chinese remainder theorem	31 32
27	October 30, 2020	33
28	November 2, 2020	33
29	November 4, 2020	34
30	November 6, 2020	34
31	November 9, 2020 31.1 UFD's and primitive elements	35 35
32	November 11, 2020	35
33	November 13, 2020	35
34	November 16, 2020	35
35	November 18, 2020 35.1 Units and irreducible elements in the Gaussian integers	
36	November 20, 2020 36.1 Modules and submodules	
37	November 23, 2020 37.1 Sums, products, and finitely generated modules	38 38 39
38	November 30, 2020 38.1 Noetherian modules	41
39	December 2, 2020	41
40	December 4, 2020 40.1 Further continuation of the proof of Theorem 38.2	42 43

2 August 28, 2020 4

Lecture 1

August 26, 2020

1.1 Oops

Unfortunately, I couldn't attend Lecture 1.

Lecture 2

August 28, 2020

2.1 Subgroups and Normal Subgroups

Lemma 2.1. Let $H \subseteq G$, $\langle G, \cdot \rangle$ a group and $H \neq \emptyset$. Then H is a subgroup of G if and only if $h_1h_2 \in H \implies h_1h_2^{-1} \in H$.

Proof. For all $h_2 \in H$, $h_2^{-1} \in H$ since H is a group. H is closed under multiplication implies $h_1h_2^{-1} \in H$ for all $h_1, h_2 \in H$. Conversely, assume that $h_1h_2 \in H \implies h_1h_2^{-1} \in H$. Then for $h \in H$, $hh^{-1} \in H$ so $1 \in H$. Now that we know $1 \in H$, then for $h \in H$ we have $1 \cdot h \in H \implies h^{-1} \cdot 1 \in H$, so H is closed under inverses. Finally, associativity follows from the fact that $H \subseteq G \implies \forall h \in H, h \in G$ where G is a group, and we are done.

Definition 2.1 (Normal Subgroup). A *subgroup* H of G is normal if $gHg^{-1} = H$ for all $g \in G$.

Example 2.1. Let *G* be abelian: then every subgroup is normal since $ghg^{-1} = gg^{-1}h = h$ for all $g \in G, h \in H$.

Example 2.2. Take $G = S_3$. Then the subgroup $\langle (123) \rangle$ is normal. However, the subgroup $\langle (1,2) \rangle$ is not normal, since $(13)(12)(13)^{-1} = (23) \notin \langle (12) \rangle$.

Example 2.3. Take $SL_n\mathbb{R} \subseteq GL_n\mathbb{R}$, where $SL_n\mathbb{R}$ is the set of matrices with det(A) = 1 for $A \in SL_n\mathbb{R}$. We know $SL_n\mathbb{R}$ forms a subgroup. Question: is $SL_n\mathbb{R}$ normal? Answer: yes.

$$\det(ABA^{-1}) = \det(A)\det(B)\det(A^{-1}) = \det(A)\det(A)^{-1}\det(B) = \det(B).$$

Proposition 2.1. Let H, K be subgroups of G, then $H \cap K$ is a subgroup of G. You can verify this in your free time.

Note: is $H \cup K$ a subgroup? No!

2.2 Product and Quotient Groups

Definition 2.2 (Product Groups). Let G, H be groups. We define the *direct product* $G \times H$ with the group operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$. The identity is just $(1_G, 1_H)$ where 1_G and 1_H denotes the respective identities for G and H. Finally, the inverse is similarly defined as (g_1^{-1}, h_1^{-1}) where g_1^{-1} and h_1^{-1} are the respective inverses for $g_1 \in G$, $h_1 \in H$.

Some examples of product groups include $\mathbb{Z} \times \mathbb{Z}$ (\mathbb{Z} denotes $(\mathbb{Z}, +)$), and $\mathbb{Z} \times \langle \mathbb{R} \setminus \{0\}, \cdot \rangle$

Example 2.4 (Quotient Groups). Let $n \in \mathbb{Z}$, for example $\langle \mathbb{Z}/n\mathbb{Z}, + \rangle$, equivalence relations: modulo n. a, $b \in \mathbb{Z}$, $a \equiv b \mod n \iff n \mid (a-b)$. Equivalence classes: $a + n\mathbb{Z} = \{a + nk \mid k \in \mathbb{Z}\}$. Notation: $\bar{a} = a + n\mathbb{Z} = [a]$. Our set $\mathbb{Z}/n\mathbb{Z} = \{a + n\mathbb{Z} \mid a \in \mathbb{Z}\} = \{a + n\mathbb{Z} \mid a = 0, ..., n-1\}$. $(a + n\mathbb{Z}) + (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z}$, so this is a group operation. In this case, the identity is just $0 + n\mathbb{Z} = n\mathbb{Z}$. We have the inverse of $(a + n\mathbb{Z})$ equal to $(a + n\mathbb{Z})^{-1} = -a + n\mathbb{Z}$.

Remark: $\langle \mathbb{Z}/n\mathbb{Z}, + \rangle$ is a quotient of the group $\langle \mathbb{Z}, + \rangle$ by the subgroup $\langle n\mathbb{Z}, + \rangle$. $\langle 1 \rangle = \mathbb{Z}, \langle 1 + n\mathbb{Z} \rangle = \langle \mathbb{Z}/n\mathbb{Z} \rangle$. Quotient groups in general: *G* a group, *H* a **normal** subgroup.

3 August 31, 2020 5

2.3 Left and Right Cosets

Definition 2.3 (Cosets). Left cosets: $gH = \{gh \mid h \in H\}$. Right cosets: $Hg = \{hg \mid h \in H\}$. G/H - set of left cosets. $H \setminus G$ - set of right cosets.

Observe: Left and right cosets are in bijection with one another. $gH \mapsto Hg$, $gh \mapsto g^{-1}(gh)g = hg$. You can verify that this is a bijection. Let $g_1, g_2 \in G$, what map maps $g_1H \to g_2H$? $g_1h \mapsto (g_2g_1^{-1})g_1h = g_2h$.

Note. We have

$$\bigcup_{g\in G}gH=G.$$

Also: $g_1H \cap g_2H$ is either \emptyset or they are equal. (Equivalence relation).

2.4 Lagrange's Theorem

Proposition 2.2. If G is finite and H a subgroup of G, then |H| | |G|.

Proof. By the statement above,

$$G = \bigcup_{i=1}^{n} g_i H$$

since G is finite for $n \in \mathbb{N}$. Note that this is a disjoint union. So

$$|G| = \sum_{i=1}^{n} |g_i H| = n \cdot |H| \implies |H| \mid |G|.$$

 \boxtimes

Quotient group: G a group, H a normal subgroup, $G/H = \{gH \mid g \in G\}$. The multiplication is defined as $g_1H \cdot g_2H = g_1g_2H$. You can verify this operation is well defined (given that H is normal).

Lecture 3

August 31, 2020

3.1 The Dihedral Group

Example 3.1 (Dihedral Group). Consider the free group $G = \langle g, \tau \rangle$ and the normal subgroup H_n of G generated by

$$g^n, \tau^2, \tau g \tau^{-1} g$$
.

The dihedral group $D_{2n} = G/H_n$ (sometimes denoted D_n), is it automatically normal? What about conjugating by powers of g?

Observe that $\langle g \rangle \simeq \langle gH_n \rangle \subseteq D_{2n}$. $\langle g \rangle$ has order n and is normal (convince yourselves of this). τ has order 2 and so does $\langle \tau g^i \rangle$ for any i. Are these subgroups normal? (Yes sometimes, no some other times).

Consider the following: $2\mathbb{Z} \leq \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} = \{2\mathbb{Z}, 1+2Z\}, \langle (123) \rangle \leq S_3 = S_3/\langle (123) \rangle = \{1_{S_3}, (12)\}, \mathbb{R}^+ \setminus \{0\} \leq \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}/\mathbb{R}^+ \setminus \{0\} = \{\bar{1}, -1\}.$ What distinguishes these groups (they all have order two)?

3.2 Group Homomorphisms, Isomorphisms, and Automorphisms

Definition 3.1 (Homomorphisms). Let G, H be two groups. A map $\phi : G \to H$ is a homomorphism if

$$\phi(g_1g_2) = \phi(g_1) \cdot \phi(g_2).$$

Definition 3.2 (Isomorphism). A map ϕ is an isomorphism is ϕ if a homomorphism and a bijection. If $\phi : G \to H$ is an isomorphism then we write $G \simeq H$.

Definition 3.3 (Automorphism). We have ϕ an automorphism if ϕ is an isomorphism from G onto itself, that is, G = H.

4 September 2, 2020 6

3.3 The First Homomorphism Theorem

Remark 3.1. Let $\phi: G \to H$ be a group homomorphism. Then

- 1. $\phi(1_G) = 1_H$ and $\phi(g^{-1}) = \phi(g)^{-1}$,
- 2. $\phi(G) = \operatorname{im} \phi$ is a subgroup of H,
- 3. $\ker \phi = \{g \in G \mid \phi(g) = 1H\}$ is a normal subgroup of G,
- 4. ϕ is injective \iff ker $\phi = \{1_G\}$,
- 5. If *G* is finite then $|G| = |\ker \phi| \cdot |\operatorname{im} \phi|$.

Theorem 3.1. Let $\phi: G \to H$ be a group homomorphism. Then $\bar{\phi}: G/\ker \phi \to \operatorname{im} \phi$ is an isomorphism.

Proof. Left as an exercise to the reader (verify that $\bar{\phi}$ is well-defined, injective, surjective, and a homomorphism).

Example 3.2. Recall the groups $\mathbb{Z}/2\mathbb{Z} = \langle 1 + 2\mathbb{Z} \rangle$, $S_3/\langle (123) \rangle = \langle (12)\langle (123) \rangle \rangle$, $\mathbb{R} \setminus \{0\}/\mathbb{R}^+ \setminus \{0\} = \langle (-1)\mathbb{R}^+ \setminus \{0\} \rangle$. Then we have isomorphisms onto all of them, so they are the same.

Remark 3.2. Product of groups \iff quotient groups. H, K be groups. $G = H \times K$, $H \simeq H \times \{1_K\} \subseteq G$. ??? $H, K \subseteq G, H \cap K = \{1_G\}, HK = G \implies G \simeq H \times K$ (prove this). $G/H \simeq K$ and G/K = H: relax any of the implications, and the isomorphisms will fail.

Lecture 4

September 2, 2020

Last time: Homomorphisms, Isormorphisms, Automorphisms, trivial maps.

4.1 The Symmetric Group Rises from the Automorphism Group

Example 4.1 (Group of Automorphisms). Let *X* be a finite set. Let

$$S_x := \{f : X \to X \mid f \text{ is bijective}\}$$

Bijections on X preserve X: think of this set as the *group of automorphisms* on X, defined as Aut(X). The group operation is simply function composition. Then the identity element is the identity map, and the inverse of any $f \in S_x$ is $f^{-1} \in S_x$.

Assume that $g: X \to Y$ is a bijection. Then g gives rise to a homomorphism $\phi_g: S_y \to S_x$, $f \mapsto g^{-1}fg$. Verify that this map is well defined and a group homomorphism. Is ϕ_g an isomorphism? If $\phi_g^{-1}: S_x \to S_y$ were well-defined, then ϕ_g is a bijection. Consider $S_y(\phi_g) \to S_x(\phi_g^{-1}) \to S_y$, $f \mapsto g^{-1}fg \mapsto g(g^{-1}fg)g^{-1} = (gg^{-1})f(gg^{-1}) = f$. So $\phi_{g^{-1}}: S_x \to S_y$, $h \mapsto (g^{-1})^{-1}fg^{-1} = gfg^{-1}$.

Conclusion. Two finite sets X, Y have the same cardinality if there exists a bijection $g: X \to Y$. This bijection gives rise to the map $\phi_g: S_y \to S_x$ an isomorphism, so the group of automorphisms S_x depends only on the size of the group (when X is a finite set). Let |X| = n, then $S_x \simeq S_n$.

4.2 On the Symmetric Group

A cycle in S_n : $(\alpha_x, ..., \alpha_k)$ is a k-cycle. $\alpha_1, ..., \alpha_k \in \{1, ..., n\}, a_i \neq a_j \ \forall i \neq j$. We have

$$(\alpha_1, ..., \alpha_k)(m) = \begin{cases} m & \text{if } m \neq \alpha_i \ \forall i = 1, ..., k \\ \alpha_{i+1} & \text{if } m = \alpha_i, i \in \{1, ..., k-1\} \\ \alpha_1 & \text{if } m = \alpha_k. \end{cases}$$

5 September 4, 2020 7

4.3 Transpositions and Cycles

Definition 4.1 (Transpositions). A transposition is a 2-cycle in S_n , denoted

$$(\alpha_1\alpha_2)$$
,

where $\alpha_1 \neq \alpha_2$.

Definition 4.2. Two cycles $(\alpha_1, ..., \alpha_k)(\beta_1, ..., \beta_m)$ are disjoint if $\alpha_i \neq \beta_j$ for all $i \in \{1, ..., k\}$, $j \in \{1, ..., m\}$. Disjoint cycles commute, that is,

$$(\alpha_1, ..., \alpha_k)(\beta_1, ..., \beta_m) = (\beta_1, ..., \beta_m)(\alpha_1, ..., \alpha_k)$$

Lemma 4.1. Every element $s \in S_n$ can be written uniquely (up to reordering) as a product of disjoint cycles.

Proof. Step 1: Let $s \in S_n$. If $s = \operatorname{id}_{\{1,\dots,n\}}$, then $s = 1_{S_n}$. We have $s \neq 1_{S_n} \implies I_0(\neq \emptyset) := \{1 \leq k \leq n, s(k) \neq k\}$. Define $k_1 := \min I_0$. Then

$$\iota_1 := (k_1 s(k_1) s^2(k_1) ...)$$

is an e_1 -cycle where

$$\begin{cases} s^{e_1}(k_1) = k_1 \\ e_1 = \min\{d \in \mathbb{N} \mid s^d(k_1) = k_1\}. \end{cases}$$

Step 2: Now

$$I_1 = I_0 \setminus \{k_1, ..., s^{e_1}(k_1)\}.$$

If $I_1 = \emptyset$, we are done: s = c. If $I_1 \neq \emptyset$: $k_2 = \min I_1$. Set $\iota_2 = (k_2 s(k_2)...)$ an e_2 -cycle where $s^{e_2}(k_2) = k_2$, $e_2 = \min\{d \in \mathbb{N} \mid s^d(k_2) = k_2\}$.

Note. c_1 , c_2 are disjoint cycles.

Step 3: $I_2 = i_1 \setminus \{k_2, s(k_2), ..., s^{e_2-1}(k_2)\}$. If $I_2 = \emptyset$ then we are done, verify $s = c_1 c_2$. If $I_2 \neq \emptyset$ then $k_3 = \min I_2$. Repeat the steps until $I_j = \emptyset \implies s = c_1...c_j$ disjoint cycles by construction. Verify the uniqueness in your free time.

Note. $s \in S_n \implies s = \prod_{i=1}^n c_i$, where the c_i are disjoint cycles.

Claim. The order of s defined as

$$\operatorname{ord} s := \min\{k \in \mathbb{N} \mid s^k = 1_{S_n}\}\$$

is equal to

$$lcm{ord c_i | i = 1, \dots, j},$$

where each ord c_i is the length of each cycle c_i .

Verify that this claim holds in your free time.

Note. We will show next time that every finite group is a subgroup of S_n for some $n \in \mathbb{N}$ (Cayley's Theorem). This shows the importants of permutation groups: they contain all the information you need to know about groups.

Lecture 5

September 4, 2020

5.1 Group Actions

Definition 5.1 (Group Action). An action of a group G on a set X is a map

$$a: G \times X \to X$$
, $(g, x) \mapsto g \cdot x$

such that

5 September 4, 2020 8

- 1. $(1_G, x) \mapsto x$,
- 2. $g_1(g_2 \cdot x) = (g_1g_2) \cdot x$

for all $x \in X$, $g_1, g_2 \in G$. Notation: $G \hookrightarrow X$, G acts on X.

Proposition 5.1. Let G be a group and X a set. Actions of G on X (a: $G \times X \to X$) are in bijection with homomorphisms $\phi: G \to S_X$.

Proof. Given an action $a: G \times X \to X$, define $\phi_a: G \to S_X$, $g \mapsto (x \mapsto a(g,x))$, $a(g,x) \in X$. Verify that

- 1. $x \mapsto a(g,x)$ is a bijection on X ($\iff [x \mapsto a(g,x)] \in S_x$),
- 2. ϕ_a is a homomorphism.

Given $\phi: G \to S_X$ a homomorphism, define $a_\phi: G \times X \to X$, $(g, x) \mapsto \phi(g)(x) \in X$. We have to verify that

 \boxtimes

- 1. a_{ϕ} is a group action, i.e., a_{ϕ} is a well-defined map.
- 2. $a_{\phi}(1_G, x) = x$. $\phi(1_G)(x) = 1_{S_v}(x) = \mathrm{id}_X(x) = x$.
- 3. $a_{\phi}(g_1, a_{\phi}(??))$

Finally, we must verify that

$$a \mapsto \phi_a \mapsto a_{\phi_a} = a$$

and

$$\phi \mapsto a_{\phi} \mapsto \phi_{a_{\phi}} = \phi.$$

5.2 Orbits and Stabilizers

Given an action $a: G \times X \to X$ and an element $x \in X$, we can talk about the *orbit* of this action under x.

Definition 5.2 (Orbits). We define an *orbit* of x as

$$G \cdot x = \{g \cdot x \mid g \in G\}.$$

Definition 5.3 (Stabilizer). We define the *stabilizer* of x as

$$G_r = \{ g \in G \mid g \cdot x = x \}.$$

Remark 5.1. We have $1_G \in G_x$ for all $x \in X$.

Claim. G_x is a subgroup of G. To show this, note that

- 1. $1_G \in G_x \iff (1_G, x) = x$,
- 2. $g \in G_x \implies g^{-1} \in G_x$. To see this, note that $g^{-1}(gx) = g^{-1}x$ (since g is in the stabilizer subgroup) and $(g^{-1}g)x = 1_G x = x$, which implies $g^{-1}x = x$, so $g^{-1} \in G_x$.
- 3. $g_1, g_2 \in G_x \implies g_1g_2 \in G_x$. $(g_1g_2)x = g_1(g_2x) = g_1(x)$ since g_2 stabilizes x, which implies $g_1x = x$ since g_1 also stabilizes x, and we are done.

Definition 5.4 (Transitive Action). An action is transitive if

$$Gx = X$$

for some $x \in X$. Prove that if you have this property for some $x \in X$, then this is the same as every $x \in X$ having this property.

Lemma 5.1. If $x, y \in X$ lie in the same orbit (there exists a $g \in G$ such that gx = y), then $G_x = g^{-1}G_yg$.

5 September 4, 2020 9

Proof. We have

$$h \in G_y \iff hy = y$$

 $\implies hgx = gx$
 $\implies g^{-1}hgx = g^{-1}(gx) = (g^{-1}g)x = x.$

So $g^{-1}hg \in G_x$, which implies $g^{-1}G_yg \subseteq G_x$. To prove the reverse inclusion, let $h \in G_x$. Then

$$h \in G_x \iff hx = x$$

 $\implies hg^{-1}y = g^{-1}y$
 $\implies ghg^{-1}y = g(g^{-1}y) = (gg^{-1})y = y.$

Ø

So $ghg^{-1} \in G_v \implies gG_xg^{-1} \subseteq G_v \implies G_x \in g^{-1}G_vg$, and we are done.

Lemma 5.2. Let $G \hookrightarrow X$. Then two orbits are either equal or disjoint.

Proof.
$$G_x \cap G_y \neq \emptyset \implies G_x = G_y$$
. Let $z \in G_x \cap G_y \implies G_x = G_z = G_y$.

General idea of group actions: for every element of the set, you have its stabilizer, and you can look at its orbits (are the same or are they disjoint?).

5.3 Quotient Group of Orbits

Let $G \hookrightarrow X$, $x \in X$. Consider the map

$$G/G_x \to G_x$$
, $gG_x \mapsto g \cdot x$.

Notice this is well defined because $gh \mapsto gh \cdot x = g(hx) = gx$ since $h \in G_x$.

Claim. The map $G/G_x \mapsto G_x$ is a bijection.

Surjectivity follows from the definition of an orbit, and injectivity ... is up to you to prove. (Not hard, think about the definitions). But what does this mean?

Proposition 5.2. *If G is finite, then the size of each orbit divides the size of G.*

Proof.
$$x \in X$$
, $G_x \longleftrightarrow G/G_x \Longrightarrow |G_x| = |G/G_x| |G|$.

Example 5.1. Every group acts on itself in three different ways, that is, $G \hookrightarrow X$, X = G.

- 1. Left multiplication: $g \cdot x = gx$,
- 2. Conjugation: $g \cdot x = gxg^{-1}$,
- 3. Right multiplication: $g \cdot x = xg^{-1}$ (if we define it as xg some properties of group actions will not hold). Why? $(g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$.

Orbits and Stabilizers WRT the above actions:

- 1. Gx = X = G for all $x \in X$, $G_x = 1_G$,
- 2. $Gx = \text{conjugacy class of } x, G_x = \text{centralizer of } x = \{g \in G \mid gx = xg\},\$
- 3. Gx = X = G for all $x \in X$, $G_x = 1_G$.

Proposition 5.3. Let G be a group of order n, then $G \simeq \text{subgroup of } S_n$.

6 September 9, 2020 10

 $\Downarrow \Downarrow \Downarrow$ This is scratch work for some old Putnam problem about binary operations I was working out $\Downarrow \Downarrow \Downarrow$ Let $a,b\in H$. Then we WTS $a*b\in H$. Let $x\in S$, then a*b*s=a*s*b (since $b\in H$) = s*a*b since $a\in H$ and we are done.

Let $a, b \in H$. We WTS $a * b \in H$. We have (a * b) * (a * b) = a * (b * a) * b since * is associative = a * (a * b) * b since * is commutative = (a * a) * (b * b) since * is associative = a * b since $a, b \in H$, and we are done.

Try
$$a * (b * c) * (b * c)$$

Let $a, b, c \in S$. First, we want to show (a*b)*c = a*(b*c). We have (a*b)*c = (a*(b*b))*c = ((b*b)*c)*a = ((b*c)*b)*a = (b*a)*(b*c) = (

((a*a)*(b*b))*c = ((a*(b*b))*a)*c

Let $a, b \in S$. Then a * b = (a * a) * b = (a * a) * (b * b) = (a * (b * b)) * a = ((b * b) * a) * a

Proof. Let $a, b \in S$. Then a * b = (a * b) * (a * b) = (b * (a * b)) * a = ((a * b) * a) * b = ((b * a) * a) * b = ((a * a) * b) * b = (b * b) * (a * a) = b * a. Associativity follows, (a * b) * c = (b * c) * a = a * (b * c) by our newly established commutativity.

⊠

Lecture 6

September 9, 2020

6.1 Transitive and Faithful Actions

Group actions are connected to Representation Theory, a step forward from group actions (eg a group acting on a vector space). Then you can understand your "random group" through Linear Algebra.

Proposition 6.1. Let G be a group of order n, then G is isomorphic to a subgroup of S_n .

Proof. Consider $G \hookrightarrow G$, $g \mapsto [x \mapsto gx]$, with the corresponding homomorphism $\varphi \colon G \to S_G \simeq S_n$. Ker $\varphi = g \in \operatorname{Ker} \varphi \iff \varphi(g) = 1_G$, since $x \mapsto gx$, $x = gx \implies g = 1_G$. φ is an injective homomorphism implies that $\varphi \colon G \to \operatorname{Im} \varphi \subseteq S_n$ is an isomorphism.

Definition 6.1 (Faithful Group Actions). Let $G \hookrightarrow X$. Then the group action is faithful if

$$\bigcap_{x \in X} G_x = \{1_G\}.$$

(Recall that the G_x are the stabilizing sets of x).

Example 6.1. Let *G* be a group, *H* some subgroup of *G*. Consider X = G/H to be the set of left cosets. Then $G \hookrightarrow X$, $g \cdot (xH) = gxH$.

Orbits: $O_{xH} = G/H$, since $(yx^{-1})xH = yH$ for all $x, y \in G$. This is an example of a *transitive* group action. Stabilizers: $G_{xH} = \{y \in G \mid yxH = xH\}$. $yxH = xH \iff x^{-1}yxH = H \iff x^{-1}yx \in H \iff y \in xHx^{-1}$. So $G_{xH} = xHx^{-1}$.

Example 6.2. Let $G \hookrightarrow X$, $X = \{xHx^{-1} \mid x \in G\}$, $H \subseteq G$. Then the action is given by

$$g \cdot xHx^{-1} = gxHx^{-1}g^{-1},$$

which works because $gxH(gx)^{-1} \in X$. Then $O_{xHx^{-1}} = X$ for all $x \in G$ (so the action is transitive). What is the stabilizer of an element? Let $x = 1_G$, then $G_H = \{g \in G \mid gHg^{-1} = H\} =: N_G(H)$ ($N_G(H)$) denotes the normalizer of H in G). Verify that $G_{xHx^{-1}} = xN_G(H)x^{-1}$.

7 September 11, 2020 11

6.2 Normal Subgroups from Group Actions

Theorem 6.1. Let $H \leq G$ be a subgroup of index n. Then there exists an $N \leq G$ such that $N \leq H$, $|G/N| \mid n!$.

Proof. Consider $G \hookrightarrow G/H$, $g \cdot xH = gxH$. Observe that |G/H| = n. Then

$$\varphi: G \to S_{G/H} \simeq S_n$$
.

Let $N = \operatorname{Ker} \varphi = \bigcap_{x \in G} G_{xH}$. $x = 1_G \implies G_H = H$, gH = H. Since N is the kernel of a group homomorphism, it is automatically a normal subgroup of G. $\operatorname{Ker} \varphi = N \implies \varphi : G/N \hookrightarrow S_n$. $G/N \simeq \operatorname{im} \varphi \leq S_n$ which implies $|G/N| = |\operatorname{im} \varphi| |S_n| = n! \implies |G/N| |n!$.

 \boxtimes

Corollary 6.1. If G has a group of finite index, then G has a normal subgroup of finite index.

Corollary 6.2. Let G be a finite group and p be the smallest prime that divides |G|. Then every subgroup of index p is normal.

Proof. We have $H \le G$ such that [G:H] = p. Then by our theorem, there exists some normal subgroup $N \le H$ such that $N \le H$, |G/N|p!. $p! = p \cdot (p-1)!$, which is only divisible by primes smaller than p. But |G| is not divisible by any primes smaller than p, or any of the (p-1)!, so $\gcd(|G/N,(p-1)!) = 1$, which implies $|G/N| = p \implies N = H$, so H is normal. \boxtimes

6.3 The Class Equation

Let $G \hookrightarrow X$ (Z(G) denotes the center of the group). Then

- 1. $G/G_x \longleftrightarrow G_x$ a bijection $\Longrightarrow [G:G_x] = |G_x|$. This is a bijection because $gG_x = \{gh \mid h \in G_x\} \mapsto ghx = gx$.
- 2. X is a disjoint union of the distinct orbits. $1_G x = x \to x \in G_x$ and two orbits are equal or disjoint. So |x| = number of orbits of size $1 + \sum$ sizes of other larger distinct orbits. If $Gx = \{x\}$, x is a fixed point of the action, so the number of orbits of size 1 are the fixed points of the action. $G \hookrightarrow G$ by conjugation, $g \cdot x = gxg^{-1} \implies |G| = |Z(G)| + \sum$ larger distinct conjugacy classes. This is known as *the class equation*. Formally,

$$|G| = |Z(G)| + \sum [G : C_G(g)], C_G(g) = G_g.$$

The conjugacy class of $x \in G = Gx = [G:G_x]$.

What can we tell from the class equation? If $|G| = p^n$ for p a prime, then $x \notin Z(G) \Longrightarrow [G : C_G(x)]$ is divisible by $p. p^n = |Z(G)| + p \cdot m$ for $m \in \mathbb{Z}$. In addition, $Z(G) \ni 1_G \Longrightarrow p \mid |Z(G)|$. Non trivial by the way.

Lecture 7

September 11, 2020

Last time: we had a proposition that said let p be a prime, G a group of order p^n for some $n \in \mathbb{N}$. Then G has a non-trivial center, more precisely, $|Z(G)| = p^m$ for some $m \ge 1$.

7.1 Cauchy's Lemma

Dr. Ciperiani assumes we already know the Sylow theorems... why UNT.

Lemma 7.1 (Cauchy's Lemma). Let p be a prime such that $p \mid |G|$. Then G has an element of order p.

7 September 11, 2020 12

Proof. Consider $X = \{(a_1 \cdots a_p)\}$ such that $a_i \in G$, $a_1 \cdots a_p = 1_G$. Observe $|X| = |G|^{p-1}$ (p is uniquely determined by varying the values of $a_1 \cdots a_{p-1}$ and letting p equal the inverse of such elements). The group $\mathbb{Z}/p\mathbb{Z}$ acts on X as such: $\overline{1}(a_1 \cdots a_p) := (a_2 \cdots a_p a_1)$, $\overline{n}(a_1 \cdots a_p) := (a_{1+n}, \cdots a_p, a_1, \cdots a_n)$. Verify that this is a group action. Since $|\mathbb{Z}/p\mathbb{Z}| = p$, we have $|O_{(a_1 \cdots a_p)}| = 1$ or $p \cdot |O_{(a_1 \cdots a_p)}| = 1 \iff O_{(a_1 \cdots a_p)} = \{(a_1 \cdots a_p)\} \iff a_1 = a_2 = \dots = a_p = a$. $(a \cdots a) \in X \implies a^{p-1}$, so $(1_G \cdots 1_G) \in X$. $O_X = \{X\} \iff X \in X^G$. So $X = X^G \cup (\cup \text{ distinct orbits with more than 1 element)}$, and all of these are disjoint unions. This implies $|X| = |X^G| + \sum \text{ sizes of nontrivial distinct orbits, which are all equal to <math>p$. So $|G|^{p-1} = |X|^G + pk$, where k is the number of distinct non-trivial orbits. This implies $|X^G| = |G|^{p-1} - pk$ which is divisible by $p \implies p \mid |X^G|$, furthermore $(1_G \cdots 1_G) \in X^G \implies |X^G| \ge 1$. $p \mid |X^G| \implies \exists a \in G \setminus 1_G$ such that $(a \cdots a) \in X^G \implies a^p = 1_G$, $a \ne 1_G \implies a = p$.

7.2 p-groups

p-groups are groups G such that $|G| = p^n$ for $n \in \mathbb{N}$.

Proposition 7.1. Let p be a prime, G a group of order p^n . Then G has a chain of normal subgroups of order p^k for all $k \le n$. For example, there exists

$$\{1_G\} \leq G_1 \leq G_2 \cdots \leq G_n = G$$

such that $G_i \leq G$ for all $0 \leq i \leq n$, $|G_i| = p^i$.

Proof. We prove this proposition by induction. Assume $n \ge 1$. Then $|Z(G)| = p^k$ for some $k \ge 1$. By Cauchy's Lemma, there exists some $g \in Z(G)$ such that g has order p. Set $N = \langle g \rangle \trianglelefteq G$. $n = 1 : \{1_G\} \trianglelefteq G$, $|\{1_G\}| = p^0$, $|G| = p^1$. Assume the hypothesis is true for $|G| = p^{n-1}$. To show the hypothesis is true for $|G| = p^n$: Consider $\pi : G \to G/N$. We have $|G/N| = \frac{|G|}{|N|} = \frac{p^n}{p} = p^{n-1}$. By the induction hypothesis there exists $\{1_G\} \trianglelefteq \overline{G_1} \trianglelefteq \overline{G_2} \cdots \trianglelefteq \overline{G_{n-1}} = G/N$. Verify that $G_{i+1} := \pi^{-1}(\overline{G_i}) \trianglelefteq G$, $|\pi^{-1}(\overline{G_i})| = p^{i+1}$, and $\{1_G\} \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_n = G$ (G_1 has order g). It is crucial that g is in the center of g.

7.3 Sylow Theorems

p denotes a prime, and *G* a group of order $p^r m$ where $p \nmid m, r \in \mathbb{N}$.

Definition 7.1 (Sylow). A Sylow p-subgroup of G is a subgroup of G of order p^r .

Theorem 7.1. G is a group of order $p^r m$ where p is a prime, $p \nmid m, m \in \mathbb{N}, r \in \mathbb{N}$. Then

- 1. Sylow p-subgroups exist,
- 2. They are all conjugate (in particular they are isomorphic),
- 3. Every p-subgroup of G lies within a Sylow p-subgroup,
- 4. $n_p :=$ the number of Sylow p-subgroups of G, $n_p = [G : N_G(P)]$ where P is a Sylow p-subgroup (P-Sylow a p-subgroup). In particular, $n_p \mid m$,
- 5. $n_p \equiv 1 \pmod{p}$,
- 6. $n_p = 1 \iff$ there is a unique Sylow p-subgroup which is normal in G.

When you do the proof, things will just "click" together.

Example 7.1. Let *G* be a group of order $6 = 2 \cdot 3$. So 2-Sylows, 3-Sylows exists. $n_2 \equiv 1 \pmod{2}$, $n_2 \mid 3 \implies n_2 = 1$ or 3. $n_3 \equiv 1 \pmod{3}$, $n_3 \mid 2 \implies n_3 = 1$. $n_2 = n_3 = 1 \implies G \simeq P_2 \times P_3$ where P_2 is the 2-Sylow and P_3 is the 3-Sylow. $n_2 = 3$ and $n_3 = 1$ happens when $G \simeq S_3$.

Wow, this was a dense lecture.

8 September 14, 2020 13

Lecture 8

September 14, 2020

8.1 Class Introductions (not math)

Zoom classes suck: time for brief introductions. About Dr. Ciperiani: Number Theory, Elliptic Curves, Princeton, Albania, Smith \implies France, Colombia, MSRI, UT! Swimming and Traveling, two kids (2 and 6).

I'm omitting the rest of the personal introductions for privacy, but all my class mates are very interesting and cool people.

8.2 Sylow Theory

Last time: Sylow Theorems. Let p be a prime.

Theorem 8.1. Let G be a group of order $p^r m$ where $p \nmid m, r \in \mathbb{N}$. Then

- 1. Sylow p-subgroups exist,
- 2. They are all conjugate,
- 3. Every p-subgroup of G lies in some Sylow p-subgroup of G,
- 4. Let $n_p :=$ the number of Sylow p-subgroups of G, P be a Sylow p-subgroup. Then $n_p = [G : N_G(P)]$, where $N_G(P)$ is the normalizer of P in G. In particular, $n_p \mid m = [G : P]$.
- 5. $n_p \equiv 1 \pmod{p}$,
- 6. $n_p = 1$ if and only if $P \leq G$.

We introduce our key lemma:

Lemma 8.1. Let P denote any maximal p-subgroup of G, $N = N_G(P)$. If Q is any p-subgroup of N, then $Q \subseteq P$. Consequently, $p \nmid [N : P]$.

Proof. Consider the map

$$\pi: N \to \overline{N} = N/P$$
.

Then $\pi(Q) = \overline{Q}$. Q a p-subgroup $\Longrightarrow |\overline{Q}| = p^m$. $\pi^{-1}(\overline{Q}) = QP \supseteq P$, $|QP| = |\overline{Q}| \cdot |P| = p^m \cdot |P| \Longrightarrow QP = P$, P is maximal. So QP is a p-subgroup, $p^m = 1$, $p \mid [\overline{N}:P] \Longrightarrow p \mid |N/P| \Longrightarrow$ by Cauchy's Lemma that there exists a $g \in N/P$ such that ord g = p. Take $\pi^{-1}\langle g \rangle = \langle P, g \rangle$, $|\pi^{-1}\langle g \rangle| = p|P|$. $\pi \colon \langle P, g \rangle \to \langle g \rangle$, $\ker \pi|_{\langle P,g \rangle} = P$.

$$O \to \underset{\ker \pi}{P} \to \langle P, g \rangle \xrightarrow{\pi} \langle g \rangle \to O$$

implies

$$kP, g > |= |\operatorname{im} \pi| \cdot |\ker \pi| = p|P|,$$

M

 $\langle P, g \rangle \not\supseteq P$, since P is maximal.

Now let's prove the theorem.

Proof. Let P be a maximal p-subgroup of G. We have

$$X = \{ g P g^{-1} \mid g \in \}$$

Observe that

- 1. $|X| = [G : N_G(P)],$
- 2. Every element of X is a maximal p-subgroup of G, $gPg^{-1} \not\subseteq Q$ a p-subgroup $\implies P \not\subseteq g^{-1}Qg$ which is false since P is a maximal p-subgroup,

9 September 16, 2020 14

Fine. (One of Dr. Ciperiani's (lovingly) idiosyncracies). We have P acting on X by conjugation. The only fixed point of X under the action of P is P, ie, $X^P = P$.

Claim. If
$$gPg^{-1} \in X^p \iff P \subseteq N_G(gPg^{-1})$$
, ie, $h(gPg^{-1})h^{-1} = gPg^{-1}$ for all $h \in P$, then (??) $P = gPg^{-1}$.

The first claim said that $|X^P| = |\{p\}| = 1$. Nontrivial orbits of X under the action of P have size dividing |P|. This implies that the size is equal to p^k for some $k \in \mathbb{N}$. $|X| = |X^P| + \sum$ sizes of distinct larger orbits, all of which are powers of P. Since $X^P| = 1$, we have $|X| \equiv 1 \pmod{p}$. Whoops, we're a little overtime. We have one more claim to prove before completing the proof of the Sylow Theorems, then we will be done.

Lecture 9

September 16, 2020

Last time: we were proving a big theorem. Let's move onto our second claim:

9.1 Proving the Sylow Theorems

Claim. X contains all maximal p-subgroups of G.

Proof. Suppose Q is a maximal p-subgroup of G such that $Q \notin X$. Consider the action of Q on X by conjugation (since Q is a subgroup of G). Examine X^Q , the set of fixed points of X under the action of Q. $X^G \ni gPg^{-1}$ for some $g \in G$. Then

$$X^Q \ni gPg^{-1} \iff Q \subseteq N_G(gPg^{-1}).$$

But by our key lemma, $Q \subseteq gPg^{-1}$, both sets are maximal. So $Q = gPg^{-1}$, a contradiction, since we assumed $Q \notin X$.

Claim. This is the second claim: $X^Q = \emptyset$ implies $X = \coprod$ nontrivial orbits of X under the action of Q. But all of the orbits have size p^k for some $k \in \mathbb{N}$, which implies

$$|X| = \sum_{i=1} p^{k_i} \equiv 0 \pmod{p}$$

for $k_i \in \mathbb{N}$, a contradiction. Wait, did we just reach a contradiction twice? We assumed the assumtion failed and then got this, concluding the proof of Claim 2.

We want to find the order of *P*: We have

$$G$$
 $M_G(P)$
 $N_G(P)$
 $M_G(P)$
 $M_G(P)$

which implies $P \mid [G:P] \cdot |G| = [G:P] \cdot |P| \Longrightarrow |P| = p \Longrightarrow P$ is a Sylow p-subgroup of G. Claim 2 implies $n_p = |X| = [G:N_G(P)]$. Then this implies $n_p \mid [G:P] = \frac{m \cdot p^r}{p^r} = m$. For S, $n_p = |X| \equiv 1 \pmod{p}$ by Claim 1(b), and for S, S, S and we are done. S

10 September 18, 2020 15

9.2 Applications to Simple Groups

Definition 9.1 (Simple Groups). A group G is simple if its only normal subgroups are $\{1_G\}$ and G.

Example 9.1. Let *G* be a *p*-group, ie $|G| = p^n$ for $n \in \mathbb{N}$. $Z(G) = p^r$, $r \ge 1 \implies$ there exists a $g \in Z(G)$ such that ord g = p. This implies $\langle g \rangle \le G$ has order *p*. So *G* is normal if and only if |G| = p. (Was it supposed to be simple?)

Example 9.2. Let *G* be a group of order pq where p,q are primes, $p \neq q$. Assume p < q. Then $n_q \mid p$ and $n_q \equiv 1 \pmod{q}$. Together, these imply that $n_q = 1 \implies p$ -Sylow of *G* is normal in *G*. So *G* is not simple.

9.3 Groups of Order 12 Are Not Simple

Example 9.3. Let *G* be a group of order p^2q where p,q are distinct primes. Say p > q. Then $n_p \equiv 1 \pmod{p}$ and $n_p \mid q$, which together imply that $n_p = 1$ and *G* is not simple.

Now assume p < q: then $n_p \equiv 1 \pmod p$ and $n_p \mid q$. So we have two possibilities: $n_p = 1$ or q (if $q \equiv 1 \pmod p$). Look at the q-Sylows, so we have $n_q \equiv 1 \pmod p$ and $n_q \mid p^2$. This implies $n_q = 1$ or p^2 if $p^2 \equiv 1 \pmod q$. We just argued that $q \nmid p-1$ since p < q, so $q \mid p+1$. The only way this happens is if the equality with p^2 holds. So p = 2 and q = 3, there's no other scenario.

We conclude that G is not simple $(n_q=1)$ or $|G|=2^2\cdot 3$. Can this group be simple? Also, can we have $|G|=p^2q$ such that p<q and $n_p=p$, $n_q=p^2$? $n_q=p^2\Longrightarrow G$ has p^2 distinct subgroups of order $q\Longrightarrow$ has $(q-1)\cdot p^2$ distinct elements of order q. S is the set of elements of G with order G. S is Sylow G-subgroups, $|G\setminus S|=p^2q-(q-1)p^2=p^2$. So we have space for exactly one Sylow G-subgroup. Therefore G-subgroups, so G is not simple.

Corollary 9.1. Let G be a nontrivial group of order less than 60. Then G is simple if and only if |G| is prime.

Proof. $|G| \in \{p^n, pq, p^2q, 2 \cdot 3 \cdot 5, 2^3 \cdot 3, 2^3 \cdot 5, 2^3 \cdot 7, 3^3 \cdot 2\}$, where p, q are distinct primes. We have to refute these possibilites, to be continued next time.

Lecture 10

September 18, 2020

Last time: proving a corollary. I wish I was in the Canvas... We deal with many many cases.

Example 10.1. $|G| = 2 \cdot 3 \cdot 5$.

- $n_5 = 1$ or $6 \implies G$ has (5-1)6 elements of order 5.
- $n_3 = 1$ or $10 \implies G$ has (3-1)6 elements of order 3.

So $|G| > 4 \cdot 6 + 20 = 44$, which is false since |G| = 30. Now let $|G| = 2 \cdot 3 \cdot 7$. $n_7 = 1 \implies G$ is not simple. $|G| = 2^3 \cdot \implies n_3 = 1$ or 4, $n_2 = 1$ or 3. Let P_2 be the 2-Sylow: $[G: P_2] = 3$. We have an older theorem: there exists an $N < P_2$ such that $N \le G$ and $3 \le [G: N] \mid 3! = 6$, which implies N is nontrivial or the full group, so G is not simple.

10.1 Representation Theory

We have group actions connected to some representations, and we use these representations to talk about our groups. Representation theory is the study of linear algebra to deduce things about groups.

Claim. Group actions of *G* gives rise to representations of *G*. (The other way holds, but is not as useful).

We have seen for a group G acting on a set X, we have a bijective map $\varphi: G \to S_X$ a group homomorphism. Each group action corresponds to a homomorphism, that is,

$$g \cdot x \longrightarrow \varphi : g \mapsto (x \mapsto g \cdot x).$$

10 September 18, 2020 16

For the other way around,

$$g \cdot x := \varphi(g)(x) \longleftarrow \varphi$$
.

Definition 10.1 (Representations). A representation of G on an \mathbb{F} -vector space V is a homomorphism

$$\varphi: G \to \mathrm{GL}(V),$$

where GL(V) is just the set of automorphisms $Aut(V \to V)$ from V onto V (automorphisms are just invertible linear maps).

10.2 Linear Actions

How are group actions related to representation theory?

Definition 10.2. A group action *G* on the vector space *V* is *linear* if the maps induced by the elements of your group $v \to g \cdot v$ are linear for all $g \in G$.

Proposition 10.1. Linear actions of G are in bijection with representations of G. To see this, $g \cdot v \longrightarrow \varphi : g \mapsto (v \mapsto g \cdot v)$, $v \in V$, $g \in G$. Verify that φ is a homomorphism. For the other way, $\varphi : G \to GL(V)$, $g \cdot v = \varphi(g)(v)$.

Proof. Things we have to do:

- 1. Verify that $g \cdot v$ is a linear group action.
- 2. Verify that $\varphi(g) \in GL(V)$. Also verify that φ is a homomorphism (this is trivial).

Let G a group acting on a set X. We want to construct a linear action of G using this given action. Let $V = \bigoplus \mathbb{F}e_x$, where e_x is a basis element. Then the action of G on V is defined as follows: let

$$v \in V \implies v = \sum_{x \in X} a_x e_x$$

where $a_x \in \mathbb{F}$, $a_x = 0$ for all but finitely many $x \in X$ (denoted by the convention "almost all"). Then

$$g \cdot := \sum a_x e_{g \cdot x} \in V.$$

Claim. The action of *G* on *V* is linear. Verify this in your free time.

10.3 Regular Representations

Definition 10.3 (Regular Representations). Consider the corresponding representation $\varphi: G \to GL(V)$. This representation has a special name: observe $\varphi(g)$ is a *permutation matrix* whos entries are 0 or 1 if x is finite. Permutation matrices simply permute (rearrange) the basis elements. This is called the *regular* representation.

Example 10.2. Consider the action *G* on *G* by left multiplication. Then

$$V_{\mathrm{reg}} := \bigoplus_{g \in G} \mathbb{F}e_g, \quad \varphi_{\mathrm{reg}} \colon G \to \mathrm{GL}(V_{\mathrm{reg}}).$$

is the regular representation of G. If G is finite, then V_{reg} is finite dimensional. Multiplicity, irreducability (throwback to last semester!). We call a space irreducable if we can't find a subspace such that we can restrict this homomorphism to the subspace.

If this is gibberish, just know that the regular representation will contain **all** the information you need to know about your group (wow!).

Definition 10.4. Let *V* be a finite dimensional vector space over \mathbb{F} . Then the *character* of a representation $\varphi : G \to GL(V)$ is defined as

$$\operatorname{char} \varphi : G \to F, \quad g \mapsto \operatorname{tr} \varphi(g).$$

The amazing thing is that your character will determine your representation uniquely. Let's continue this next time (this is making much more sense than Sylow whatever).

 \boxtimes

11 September 21, 2020 17

Lecture 11

September 21, 2020

Last time: Representation Theory. Recall that if X is finite and we have a group G acting on X, then we have a representation $\varphi \colon G \to \operatorname{GL}(V)$, where $V = \bigoplus_{x \in X} \mathbb{F} e_x$ for \mathbb{F} a field. Recall again that the matrix corresponding to $\varphi(g)$ consists of 0's and 1's. When does the following hold?

$$\varphi(g) = \begin{pmatrix} 1 & \cdots \\ \vdots & \ddots \end{pmatrix}$$

Note that $\varphi(g)_{ii} = 1 \iff gx_i = x_i, \ \varphi(g)_{ii} = 0 \iff gx_i \neq x_i$. Let $\chi := \operatorname{char} \varphi$. Then $\chi(g) = \operatorname{tr} \varphi(g) = |\{x \in X \mid gx = x\} = x^g$. Note that $\chi(g)$ is an integer.

11.1 Not entirely sure what happened today...

Theorem 11.1. Let G be a group, X a finite set such that G acts on X. Let χ be the character of the representation induced from the action of G on X. Then the number of orbits is equal to

$$\frac{1}{|G|}\sum_{g\in G}\chi(g).$$

Proof. Consider

$$S = \{(x, g) \mid x \in X, g \in G \text{ such that } gx = x\}.$$

Computer the number of #S in two different ways:

- 1. Fix $g \in G$. Then $\#\{(x,g) \in S \mid g \text{ is fixed}\} = \#x^g = \chi(g)$. Define the set above as S_g : then $S = \coprod_{g \in G} S_g$ which implies $\#S = \sum_{g \in G} \chi(g)$.
- 2. Let $S = \{(x, g) \mid x \in X, g \in G, gx = x\}$. Fix x such that $S_x = \{(x, g) \in S \mid x \text{ is fixed}\}$. Then the number of S_x 's is equal to $|G_x|$ where G_x denotes the stabilizer of x. Recall $x' < g_0 \cdot x \implies G_{x'} = g_0 G_x g_0^{-1}$. Then

$$S = \coprod_{x \in X} S_x \implies \#S = \sum_{x \in X} \#S_x$$

$$= \sum_{x \in X} |G_x|$$

$$= \sum_{\text{distinct orbits}} |G_x|$$

$$= \sum_{\text{distinct orbits}} |G_x|$$

 \boxtimes

Then (1) and (2) together imply the number of orbits is equal to $\frac{1}{|G|} \sum_{g \in G} \chi(g)$.

Corollary 11.1. Let G act on X transitively. Assume that |X| > 1. Then there exists a $g \in G$ such that fixes no element of x (ie, $\#x^g = 0$).

Proof. We have by the theorem that the number of orbits is equal to $\frac{1}{|G|}\sum_{g\in G}|x^g|$. Since we only have one orbit (since the action is transitive), $|G|=\sum_{g\in G}\#X^g$ and the number of $x^g\in \mathbb{N}$, together these imply that the number of X^g is equal to 1. This is false since the number of $X^{1_G}=|X|>1$, therefore the number of $x^g=0$ for some $g\in G$.

Corollary 11.2. If H is a proper subgroup of G and G is finite, then

$$G \neq \bigcup_{g \in G} gHg^{-1}$$
.

Proof. Let G act on G/H by left multiplication. Let $k \in G$. Then $g \in G_{kH} \iff gkH = kH \iff gk \in kH \iff g \in kHk^{-1}$. Let $g \in G$: then $X^g = \{kH \mid g \in kHk^{-1}\}$. If $G = \bigcup_{k \in G} kHk^{-1}$, then for every $g \in G$, there exists some k_0 such that $g \in k_0Hk_0^{-1}$. This subsequently implies that for all $g \in G$, $x^g \ni k_0H$ for some k_0 , contradicting Corollary one and two (insert ref later, just the previous two).

12 September 23, 2020 18

Lecture 12

September 23, 2020

Last time: we finished a corollary that a group is never a union of conjugates of a subgroup. It is essential that G is finite. For example, $GL_n(\mathbb{C})$ is a union of conjugate subgroups¹.

12.1 Group Automorphisms

Today we'll talk about automorphisms of a group. We'll notate this as

$$Aut(G)$$
 = the group of automorphisms $G \rightarrow G$,

the operation is clearly composition. We can think of this as a subgroup of S_G , but in general, we won't have equality here. For any normal subgroup $H \subseteq G$, we have a map $\varphi : G \to \operatorname{Aut} H$, where $g \mapsto (h \mapsto ghg^{-1})$. It's easy to see that φ is a group homomorphism.

Proposition 12.1. Let H be a subgroup of G. Then the normalizer of H in G quotient the centralizer of H in G, denoted $N_G(H)/C_G(H)$, is isomorphic to a subgroup of the automorphism group of H denoted Aut H. In particular, $G/Z(G) \hookrightarrow \operatorname{Aut} G$. There won't be a proof for this, but just find a map from the normalizer to $\operatorname{Aut} H$, and look at the kernel of φ . Then it will follow from the FHT.

Definition 12.1. Let G be a group. The image of G/Z(G) in Aut G is the group of inner automorphisms of G, denoted Inn(G). The inner automorphisms of G can be given by

Inn
$$G = \{ [G \to G \mid g \mapsto g_0 g_0^{-1}] \mid g_0 \in G \}.$$

Here's something that make sense when you think about it: a group G is abelian iff $Inn G = \{id_G\}$. So inner automorphisms tell you nothing about an abelian group.

Example 12.1. What is $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$? $\mathbb{Z}/n\mathbb{Z}$ is abelian which implies $\operatorname{Inn}(\mathbb{Z}/n\mathbb{Z}) = \{\operatorname{id}\}$. Let $\varphi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be an isomorphism. The thing about cyclic groups is that if we know where something sends a generator, then we are done. Let's say n=6 and $1\mapsto 2$: is this possible? Since these are automorphisms, we have to send generators to generators, so no. So $\varphi_a(\overline{k}) = \overline{ak}$. So φ_a is uniquely determined by $a = \varphi[1+n\mathbb{Z}]$. φ_a is surjective implies that a is a generator of $\mathbb{Z}/n\mathbb{Z}$, which his equivalent to the fact that $a \in \mathbb{Z}$, $\gcd(a,n) = 1^2$. Recall that $\mathbb{Z}/n\mathbb{Z}$ is a ring, so $a \in (\mathbb{Z}/n\mathbb{Z})^*$, the group of units. Hence

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^*$$

and Aut($\mathbb{Z}/n\mathbb{Z}$) < Inn($\mathbb{Z}/n\mathbb{Z}$) = {id}.

12.2 Inner automorphisms of S_n

Example 12.2. We have our other extreme: in the symmetric group on n letters (it's leaking!), we have

$$\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n) \cong S_n$$

for all $n \neq 6$. Observe that $\operatorname{Inn}(S_n) < \operatorname{Aut} S_n$, and that $\operatorname{Inn}(S_n) \cong S_n/Z(S_n)$. What's the center of S_n ? Since every element of S_n can be written as a product of disjoint cycles. If we understand what conjugation does to cycles, we understand what conjugation does to an element of S_n . Let $\sigma, \tau \in S_n$, where $\sigma: i \to \sigma(i)^3$. Then $\tau \sigma \tau^{-1}: \tau(i) \to \tau \sigma(i) \to \tau(\sigma(i))$. So if $\sigma = (a_1, \dots, a_{k_1})(b_1, \dots, b_{k_1}) \cdots$ a product of disjoint cycles, then

$$\tau \sigma \tau^{-1} = (\tau(a_1)\tau(a_2)\cdots(\tau(a_{k_1}))(\tau(b_1)\tau(b_2)\cdots(\tau(b_{k_2}))\cdots$$

Lemma 12.1. *If* n > 2, then $\mathbb{Z}(S_n) = \mathrm{id}$.

¹The subgroups are the upper triangular matrices.

²Finally, I understand when she tells me something is obvious that it is indeed, obvious.

³Very informal abuse of notation here, think of it intuitively.

14 September 28, 2020 19

Lemma 12.2. For every $\sigma, \tau \in S_n$, σ and $\tau \sigma \tau^{-1}$ have the same⁴ cycle composition into disjoint cycles.

Proposition 12.2. Two elements of S_n are conjugate in S_n if and only if they have the same cycle decomposition.

Proof. (\Longrightarrow) follows from our lemma.

(\iff) Let $\sigma_1, \sigma_2 \in S_n$ with the same cycle decomposition. Write σ_1 and σ_2 are a product of disjoint cycles by ordering the cycles in increasing length including all 1-cycles. Let τ be the ith element of the cycle decomposition of σ_1 , which must map to the ith element of the cycle decomposition of σ_2 . Together, these give the fact that $\tau \in S_n$: all the elements appear (including 1-cycles) and no elements repeat because these are disjoint cycles. Notice that $\tau \in S_n$ and $\sigma_2 = \tau \sigma_1 \tau^{-1}$, then this finishes the proof.

Corollary 12.1. The number of conjugacy classes of S_n is equal to the number of partitions of n.

Eg, you can break up n=3 as n=1+1+1,1+2,3. So S_3 has three conjugacy classes. Observe that this proposition implies that $\operatorname{Aut} S_n = \operatorname{Inn} S_n$ iff every automorphism $\varphi: S_n \to S_n$ preserves the cycle decomposition, that is, $(\sigma, \varphi(\sigma))$ have the same cycle decomposition. We start with an automorphism, and we have to show that it sends a-cycles to a-cycles for $1 \le a \le n$, and then everything follows. So we start with 2-cycles, and that's when it breaks: a 2-cycle can go to a disjoint product of 3-cycles.

Apparently today we only covered half of what Dr. Ciperiani thought we would cover. Should we go faster?? Hmm...

Lecture 13

September 25, 2020

13.1 Whoops

Whoops, I was working on some Dehn presentation homework problem for Algebraic Topology (due at 1:00), and couldn't make it to class today.

Lecture 14

September 28, 2020

14.1 The alternating group

We have S_n generated by transpositions: this is because S_n is generated by cycles, which are generated by transpositions. Within $S_n = \langle \text{transpositions} \rangle$, we have $A_n = \langle \text{pairs of transpositions} \rangle$. For $\tau \in S_n$, elements of $\tau A_n \tau^{-1}$ still has an even number of transpositions. For example, say $\tau = (12)(14)(46)$, then $\tau^{-1} = (46)(14)(12)$. We know $\sigma \in A_n$ is a product of an even number of transpositions, say 2n. Then $\tau \sigma \tau^{-1}$ is a product of $2m + 2 \cdot 3$ transpositions, which is even, so $\tau \sigma \tau^{-1} \in A_n$ for all $\sigma \in A_n$. Hence $\tau A_n \tau^{-1} \subseteq A_n$ for all $\tau \in S_n$, which implies that $A_n \subseteq S_n$.

Observe that (12)(13) = (12)(31) = (132). If two cycles are adjacent and have a number in common, then we can transform it into a 3-cycle as shown above. Also observe that $(12)(34) = (12)(23)(23)(34) = (123)(234)^5$. So we can write any two adjacent cycles by a product of two or less 3-cycles. Hence A_n is generated by 3-cycles, and any even transposition can be written as a product of 3-cycles.

⁴By "same", we mean they have the same length.

⁵I like how the thing we struggle the most with is manually calculating what cycles are.

15 September 30, 2020 20

14.2 A_n is simple for $n \ge 5$

Dr. Ciperiani just told some story that I lost, but it's in the book (Dummit and Foote).

Lemma 14.1. Let (abc), $(ijk) \in A_n$ for $n \ge 5$. Then $\pi(abc)\pi^{-1} = (ijk)$ for some $\pi \in A_n$.

Note that this would be no suprise if $\pi \in S_n$.

Proof. We know that there exists $\pi' \in S_n$ such that $(ijk) = \pi'(abc)\pi'^{-1}$. If $\pi' \in A_n$, then set $\pi = \pi'$ and we are done. If $\pi' \notin A_n$, we know there exists some (kd) that is a conjugate of (abc), that is, $k, d \neq a, b, c$, which we can do since $n \geq 5$.So

$$\pi'(kd)(abc)(kd)^{-1}\pi'^{-1} = \pi'(abc)\pi'^{-1} = (ijk).$$

 \boxtimes

Then set $\pi = \pi^{-1}(kd)$, together with the fact that $\pi' \notin A_n$ we have $\pi \in A_n$.

Theorem 14.1. A_n is simple in S_n for every $n \ge 5$.

Proof. Say we have some nontrivial subgroup $N \le A_n$. We want to show $N = A_n$. If $N = A_n$, then of course N contains a 3-cycle. By our lemma, if N contains a 3-cycle, then $N = A_n$ (N is normal, conjugates). So $N = A_n \iff N$ contains a 3-cycle.

Let $\pi \in N \setminus \{id\}$ such that π fixes as many symbols as possible. We will choose an element of N that fixes more symbols than π , which is a contradiction. Suppose π is not a 3-cycle (if not, then $N = A_n$). Then

- 1. $\pi = (12)(34)\cdots$ (we get this by conjugation) moves at least four symbols, starting with a product of two disjoint transpositions.
- 2. $\pi = (123 \cdots) \cdots$ moves two more symbols, say 4, 5. π cannot equal (1234), since π is even and 4-cycles don't live in A_n .

Consider $\sigma = (345)$, $\pi' = \sigma^{-1}\pi^{-1}\sigma\pi \in N$, since $\pi \in N$, $\sigma \in A_n$ ($N \subseteq A_n \subseteq S_n$). Notice that $\pi(x) = x$ implies that $\pi'(x) = x$ for any x > 5. For π' ,

$$1 \stackrel{\pi}{\mapsto} 2 \stackrel{\sigma}{\mapsto} 2 \stackrel{\pi^{-1}}{\mapsto} 1 \stackrel{\sigma^{-1}}{\mapsto} 1.$$

which implies $\pi'(1) = 1$. So π' fixes more elements than π . Now we want to show that $\pi' \neq \text{id}$. Now $\pi'(2) = 2$, so this isn't very helpful. What's $\pi'(3)$? in case 1, $\pi' : 3 \mapsto 4 \mapsto 5$, and 5 either maps to 5 or some k > 5 (because the cycles are disjoint). If $5 \mapsto 5$, then $5 \stackrel{\sigma^{-1}}{\mapsto} 4$, and if $5 \mapsto k$, $k \stackrel{\sigma^{-1}}{\mapsto} k$ for some $k \geq 5$, which together imply $\pi'(3) > 3$. For case 2, $\pi' : 2 \stackrel{\pi}{\mapsto} 3 \stackrel{\sigma}{\mapsto} 4 \stackrel{\pi^{-1}}{\mapsto}$? Either $\pi = (12345) \cdots$, $(1234)(5 \cdots)$, $(123)(45) \cdots (123)(45 \cdots)$. In the first two cases, $4 \stackrel{\pi^{-1}}{\mapsto} 3$, in the third case, $4 \stackrel{\pi^{-1}}{\mapsto} 5$, and in the fourth case, $4 \stackrel{\pi^{-1}}{\mapsto} k$ for k > 5. None of these are 2, so $\pi'(2) \neq 2$, which implies π' is not the identity. This is a contradiction, since the π' we constructed lives in N, is not the identity, and fixes more symbols than π . So π is a 3 - cycle, which implies $N = A_n$ by the lemma. Therefore A_n is simple in S_n for all $n \geq 5$.

Lecture 15

September 30, 2020

Last time: if we proved that if $n \ge 5$, then A_n is simple in S_n . Today we'll talk about products of groups. We've pretty much seen this before, let's breeze through it.

15.1 Direct products

Recall direct products: we start with two group G_1 and G_2 . The cartesian product $G_1 \times G_2$ is the direct product of G_1 and G_2 , we associate this with a binary operation componentwise by letting

$$(g_1, g_2)(g'_1, g'_2) = (g_1g'_1, g_2g'_2).$$

16 October 2, 2020 21

You can verify that this is well defined and the group satisfies the group axioms. We often use these to understand bigger groups by letting them be the direct product of smaller groups. If H, K are two normal subgroups such that

$$\begin{cases} H \cap K = \{1_G\} \\ HK = G, HK := \{hk \mid h \in H, k \in K\} \end{cases}$$

as sets, then $G \simeq H \times K$. How do we show this? We need a map: simply take $(h, k) \mapsto hk$. To verify that it's a group homomorphism, we need normality: surjectivity is by the second condition, and injectivity follows from the fact that the intersection is trivial.

15.2 Semidirect products

Now let's talk about semidirect products. These are a little more interesting, a generalization of direct products. Let G be a group and H, K two subgroups of G such that only one of them (say H) is normal in G, their intersection is the identity, and HK = G. Then G is the *semidirect product* of H and K in G, ie, $G \simeq H \rtimes K$. We could also write the conditions as

$$\begin{cases} H \leq G \\ H \cap K = \{1_G\} \\ HK = G. \end{cases}$$

Remark 15.1. We have $H \rtimes K = H \times K$ as sets. How will define a multiplication on this set? We have

$$(h,k)(h',k') = hkh'k' = h(kh'k^{-1})kk' = (h(kh'k^{-1}),kk')$$

since $(kh'k^{-1}) \in H$ by the normality of H. Notice that the conjugation action of K on H determines the product operation on $H \rtimes K$. Here $\varphi \colon K \to \operatorname{Aut} H$, $k \mapsto (h \mapsto khk^{-1})$ an automorphism. More generally, if we have two groups G_1, G_2 and a homomorphism $\varphi \colon G_2 \to \operatorname{Aut} G_1$, then we can define the corresponding semidirect product $G_1 \rtimes G_2 = G_1 \times G_2$ (as sets) by

$$(g_1, g_2)(g_1', g_2') = (g_1\varphi(g_2)(g_1'), g_2g_2').$$

From here, it's easy to see that if φ is the trivial map, then this is simply the direct product of the two sets, that is, $\varphi(G_2) = \{ \mathrm{id}_{G_1} \} \iff G_1 \rtimes G_2 \simeq G_1 \times G_2.$

We use this concept to understand bigger groups in terms of their subgroups. Consider groups of order pq where p,q are distinct primes. G has a p-Sylow P and a q-Sylow Q. If Q is normal, then $n_q \equiv 1 \pmod q$, $nq \mid p \Longrightarrow n_q = 1$. $|Q| = q \Longrightarrow Q \simeq \mathbb{Z}/q\mathbb{Z}$ and $|P| = p \Longrightarrow P \simeq \mathbb{Z}/p\mathbb{Z}$. Together, we have $Q \cap P = \{1_G\}, (|Q|, |P|) = 1, |QP| = \frac{|Q|\cdot|P|}{|Q\cap P|} = \frac{pq}{1}$. So we have $Q \subseteq G$, $Q \cap P = \{1_G\}, QP = G$, and we conclude that $G = Q \rtimes P$.

To understand this fully we need to look at the homomorphisms $\varphi: P \to \operatorname{Aut} Q$. We have

$$\varphi: \mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \simeq (\mathbb{Z}/q\mathbb{Z})^*, (n \mapsto kn) \mapsto k,$$

where $q \nmid k$. This map is uniquely determined up to isomorphisms of $\mathbb{Z}/p\mathbb{Z}$ itself. We have two possibilities:

- 1. $q \not\equiv 1 \pmod{p}$. Then $\varphi(P) = \{1_G\}$. Hence $G \simeq Q \times P$.
- 2. $q \equiv 1 \pmod{p}$. Then φ ?? Something happened, but I gotta run to my next class.

Lecture 16 -

October 2, 2020

16.1 Something happened here...

Today: we're finishing what we should have finished last week. I don't really know what's going on... should have payed more attention during the Sylow unit. We have seen that $n_p = 1$ or $n_q = 1$ for P or Q normal in G.

17 October 5, 2020 22

Furthermore, $P \cap Q = \{1_G\}$ since |P| and |Q| are coprime. This implies that PQ has order $|P| \cdot |Q| = |G|$, and these imply that G = PQ. Together, we have that G is a semidirect product of P and Q (depending on which one is normal).

Example 16.1. If $|G| = 2^2 \cdot 3$ for G a group, let p = 2 and q = 3. Then P is a 2-Sylow implies P is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Similarly, Q a 3-Sylow implies $Q \cong \mathbb{Z}/3\mathbb{Z}$. We know that $n_2 = 1$ or $n_3 = 1$ or $n_3 = 1$. Then $n_2 = n_3 = 1 \implies P, Q \subseteq G$, $P \cap Q = 1$, PQ = G. Together these imply that $G \cong P \times Q$. I'm not entirely sure what happened here either...

Lecture 17

October 5, 2020

Last time: I missed a section on group extensions. I hope they're similar to field extensions, and splitting fields.

17.1 Composition series of groups

Preview: Jordan Holder theorem.

Definition 17.1 (Composition series). Let *G* be a group. Then the *composition series* of *G* is a sequence of subgroups such that

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_r = 1$$
,

where G_i/G_{i+1} is simple for all i. The G_i/G_{i+1} are called *composition factors* of G, and r is the length of the composition series.

Question: do we know the composition series exist? Are they unique? Some information about the composition series are their length (r) and their composition factors. The existence is obvious once you think about it: take G_1 a maximal normal subgroup, that is, G_1 is not contained in a normal subgroup $H ext{ } ext{$

Example 17.1. Take $S_4 \triangleright A_4 \triangleright \{1, (12)(34), (13)(24), (14)(23)\}$ (note that two transpositions have order 2, so the last group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ since there are four elements of order 2). From here, you can find two distince composition series $\{1, (12)(34)\} \triangleright 1$ and $\{1, (13)(24)\} \triangleright 1$, showing that uniqueness of composition series does not hold.

17.2 The Jordan-Hölder theorem

Theorem 17.1 (Jordan-Hölder theorem). Any two composition series of G are equivalent: that is, they have the same length and the same composition factors up to reordering.

Proof. We do this proof by induction. Recall the second isomorphism theorem, which says that if we have *A* and *B* are subgroups of a group *G* such that one of them (say *B*) is normal in *G*, then $AB \leq G$, $B \leq AB$, $A \cap B \leq A$, and $AB/B \simeq A/A \cap B$. Say we have two composition series of *G* such that

18 October 7, 2020 23

Assume $r \le s$. Use induction on $\min(r,s)$. If r=1, then G is simple implies s=1 (this is the base case). Now assume r>1: if $A_1=B_1$, then we can use the induction hypothesis on $A_1=B_1=G$. Now if $A_1 \ne B_1$, then $A_1B_1=A_0$ or $B_0=G$ by the maximality of A_1 , since $A_1B_1 \le G$. Define $C_2=A_1\cap B_1$, then we construct an intermediate series as follows:

Note that $A_1/C_2 \simeq A_1B_1/B_1 \simeq B_0/B_1$, $B_1/C_2 \simeq A_0/A_1$. Use the induction hypothesis to compare the branch of $A_1 = C_1$ into A_2 and C_2 , which implies r = t and A_i/A_{i+1} corresponds to C_j/C_{j+1} up to reordering, for $i, j \geq 2$. $\langle visible \, conf \, usion \rangle$: similarly, we can do the same thing with the branch B_1 into C_2 and C_3 , all the way down to $C_r = 1$ and $C_3 = 1$. Then by the induction hypothesis, $C_3 = 1$ and $C_3/C_{j+1} \simeq C_3/C_{j+1}$, where $C_3/C_{j+1} \simeq C_3/C_{j+1}$ are $C_3/C_{j+1} \simeq C_3/C_{j+1}$.

For finite simple groups, this tells us nothing. Are we talking about the classification of finite simple groups now?? They have been classified up to isomorphism as $\mathbb{Z}/p\mathbb{Z}$ for p a prime, A_n for $n \ge 5$, group of Lie type PSL(n,q) (the quotient by diagonal matrices), and 26 sporadic groups.

17.3 Solvable groups

From Dr. Ciperiani's point of view, these are the most beautiful groups. For G finite, we have $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_r = 1$, G_i/G_{i+1} simple. G is *solvable* if and only if G_i/G_{i+1} is cyclic, which implies they're isomorphic to cyclic groups of prime order, since they are simple. An equivalent definition is that G has a subnormal series with abelian quotients, ie for $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_r = 1$, G_i/G_{i+1} abelian. The other direction is really easy if we have the classification of finitely generated abelian groups.

Lecture 18

October 7, 2020

Last time: I missed something about solvable arbitrary groups. We have G is solvable \iff there exists a subnormal series of abelian quotients \iff $G^{(k)}=1$ for some k, where $G^{(0)}=G$, $G^{(k)}=[G^{(k-1)},G^{(k-1)}]$, the commutator subgroup of $G^{(k-1)}$. This is defined as $\{ghg^{-1}h^{-1}\mid g,h\in G^{(k-1)}\}$.

Lemma 18.1. If $N \triangleleft G$ and G/N is abelian, then $N > \lceil G, G \rceil$.

Proof. (\iff) We have

$$G = G^{(0)} \triangleright G^{(1)} \triangleright \cdots \triangleright G^{(k)} = 1,$$

 $G^{(i)}/G^{(i+1)}$ abelian.

(\Longrightarrow) We have $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_r = 1$, G_i/G_{i+1} abelian for all $0 \le i < r$. By our lemma, $G_1 \supseteq G^{(1)}$, which implies $G_2 \supseteq G^{(2)}$, and continue on in this way.

18 October 7, 2020 24

18.1 Big theorems (Burnside, Feit-Thompson)

Do not quote the theorems... what?

Theorem 18.1 (Burnside's theorem). For G a group, if $|G| = p^a q^b$ for p, q primes, then G is solvable.

Theorem 18.2 (Feit-Thompson theorem). *If* |G| *is odd, then G is solvable.*

Proposition 18.1. *Let* G *be a group and* $H \leq G$. *Then*

- 1. G is solvable \Longrightarrow H is solvable.
- 2. For $H \subseteq G$, if G is solvable, then G/H is solvable.
- 3. For $H \leq G$, if H and G/H are solvable, then G is solvable.

Proof. ok

- 1. $G^{(k)} = 1$ for some k. $H \subseteq G \implies H^{(k)} \subseteq G^{(k)} = \{1\} \implies H^{(k)} = \{1\} \implies H$ is solvable.
- 2. $G^{(k)} = \{1\} \implies G^k$. $G \twoheadrightarrow G/H \implies G^{(k)} \twoheadrightarrow G/H^{(k)}$, together these imply that $G/H^{(k)} = 1$.
- 3. I only had time to make a fancy diagram.

$$G \xrightarrow{\varphi} \Rightarrow \overline{G} = G/H$$

$$G_1 \longleftrightarrow \overline{G_1}$$

$$\vdots$$

$$\nabla$$

$$\vdots$$

$$H_0 = H = G_r \longleftrightarrow \overline{G_r} = 1$$

$$\nabla$$

$$H_1$$

$$\vdots$$

$$H_s = \{1_G\}$$

I'm not entirely sure what happened here either...

Proposition 18.2. *G* is nilpotent implies that *G* is solvable.

Example 18.1. S_3 is solvable but not nilpotent. $S_3^1 = A_3 = S_3^k$ for all k.

Example 18.2. Any finite *p*-group is nilpotent. Key input: the center of such groups is nontrivial.

Theorem 18.3. For G a finite group, G is nilpotent if and only if all of its Sylow subgroups are normal. This implies that G is a direct product of all its Sylow subgroups.

 \boxtimes

Outline of a proof: the key step is that if G is nilpotent, then $G \nleq G \Longrightarrow N_G(H) \ngeq H$. Set $N := N_G(P)$, where P is a Sylow subgroup of G. Prove that $N_G(N) = N$, hence N = G.

18.2 Classification of finite abelian groups

Let G be a finite abelian group. Then $|G| = \prod_{i=1}^r p_i^{e_i}$, where $p_i \neq p_j$ for all i = j. Let P_i be the p_i -Sylow of G. G is abelian implies that $P_i \leq G$. $P_i \cap P_j = 1$ since their orders are coprime for all $i \neq j$. $P_i \leq G$ for all i, and $\prod |P_i| = |G|$. Together, these imply that $G \simeq P_1 \times \cdots \times P_r$. Later, we'll analyze the abelian p-groups. Til next time.

⁶The notation → means the map is a surjection.

20 October 12, 2020 25

Lecture 19

October 9, 2020

Unfortunately, I had homework for alg top due at 1:00, and couldn't make it today.

Lecture 20

October 12, 2020

20.1 Ring theory

New topic! We've officially finished group theory, and now we're talking about rings. We'll go a little slower since most undergrad courses spend a lot of time on groups but not so much on rings, however, we won't go as slow as an undergrad course.

Definition 20.1 (Ring). A **ring** is a set R with two binary operations, denoted "+" and " \cdot " such that

- 1. $\langle R, + \rangle$ is an abelian group.
- 2. Multiplication is associative, that is, (ab)c = a(bc) = abc for $a, b, c \in R$.
- 3. Distributive laws hold, that is,

$$\begin{cases} (a+b)c = ac + bc \\ a(b+c) = ab + ac. \end{cases}$$

A ring is **commutative** if multiplication is commutative, ie, ab = ba for all $a, b \in R$. We always have an additive identity since R is an abelian group, but not always a multiplicative identity. A ring is said to have multiplicative identity if there exists some $1_R \in R$ such that $1_R \cdot a = a \cdot 1_R = a$ for all $a \in R$, and we say R is a **unital ring**. Notation: usually we denote 1_R with 1.

Example 20.1. Some basic examples of rings:

- $\langle \mathbb{Z}, +, \cdot \rangle$ with the standard addition and multiplication is a commutative unital ring.
- For $n \in \mathbb{N}$ where $n \neq 1$, $\langle n\mathbb{Z}, +, \cdot \rangle$ is also a commutative ring, but it has no unity.
- $(\mathbb{Q}, +, \cdot)$, \mathbb{R} , \mathbb{C} , $\mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{Z}$ are all rings. We'll leave out the addition and multiplication symbols when it's clear by context what they are. In particular, all the rings above are commutative.
- $\langle M_{n\times n}(\mathbb{R}), +, \cdot \rangle$ is a non-commutative ring with identity.
- The quaternions $\mathbb{H} = \{a + bi + cj + dk \mid i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i\}$ form a ring for $a, b, c \in \mathbb{R}^7$. The addition is given by $(a_1 + b_1i + c_1j + d_1k) + (a_2 + b_2i + c_2j + d_2k) = (a_1 + a_2) + (b_1 + b_2)i + (a_2 + b_2i + c_2j + d_2k) = (a_1 + a_2) + (b_1 + b_2)i + (a_2 + b_2i + c_2j + d_2k) = (a_1 + a_2) + (a_2 + b_2i + c_2j +$

⁷We denote this with $\mathbb H$ because $\mathbb H$ is for "Hamilton".

20 October 12, 2020 26

 $(c_1 + c_2)j + (d_1 + d_2)k$, and multiplication is defined similarly, that is,

$$(a_1 + b_1 i + c_1 j + d_1 k) \cdot (a_2 + b_2 i + c_2 j + d_2 k)$$

$$= a_1 a_2 + a_1 b_2 i + a_2 c_2 j + a_1 d_2 j$$

$$+ b_1 a_2 i + b_1 b_2 i^2 + b_1 c_2 i j + b_1 d_2 i k$$

$$+ \cdots$$

$$+ \cdots$$

$$= a_1 a_2 + a_1 b_2 i + a_1 c_2 j + a_1 d_2 k$$

$$+ (-b_1 b_2) + b_1 a_2 i - b_1 d_2 j + b_1 c_2 k$$

$$+ \cdots$$

$$+ \cdots$$

Note that \mathbb{H} is a unital with with $1 = 1_{\mathbb{H}}$, furthermore, every element of \mathbb{H} as a multiplicative inverse, because

$$(a+bi+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}.$$

Hence \mathbb{H} is a non-commutative division ring.

Definition 20.2 (Division ring). A unital ring R is called a **division ring** if for all $r \in R \setminus \{0\}$, there exists an $r^{-1} \in R$ such that $r \cdot r^{-1} = r^{-1} \cdot r = 1_R$. Verify that it's unique in your free time.

Definition 20.3 (Zero divisors and units). An element $a \in R \setminus \{0\}$ is called a **zero divisor** if there exists some $b \in R \setminus \{0\}$ such that ab = 0 or ba = 0. An element $a \in R$ is called a **unit** is there exists some $b \in R$ such that $ab = ba = 1_R$. Verify that zero divisors can't be units and the other way around, unless we're dealing with the trivial field $\mathbb{F} = \{0\}$.

Proposition 20.1. *If R is a ring, then*

- 1. $0 \cdot a = a \cdot 0 = 0$ for all $a \in R$.
- 2. (-a)b = a(-b) = -ab,
- 3. (-a)(-b) = ab,
- 4. The multiplicative identity is unique, and (-1)a = -a for all $a \in R$.

Proof. Somewhat basic.

Corollary 20.1. Let R be a unital ring. If $R \neq \{0\}$ then $1_R \neq 0$.

Lemma 20.1. Let R be a unital ring, and $R^{\times} :=$ the set of units of R. Then $\langle R^{\times} \rangle$ is a group.

Note that this doesn't hold if *R* doesn't have unity, since there is no such thing as an empty group.

Example 20.2. Let $R = \langle M_{n \times n}(\mathbb{R}), +, \cdot \rangle$. Then

$$R^{\times} = \{A \in M_{n \times n}(\mathbb{R}) \mid \det(A) \neq 0\} = \operatorname{GL}_n(\mathbb{R}).$$

 \boxtimes

Lemma 20.2 (Left cancellation). Let R be a ring, $a, b, c \in R$, and a not a zero divisor. Then ab = ac implies that either a = 0 or b = c.

Proof. $ab = ac \implies a(b-c) = 0$ which implies either a = 0 or b-c = 0 since a is not a zero divisor, and we are done.

Definition 20.4 (Integral domain). A commutative ring with multiplicative identity $1 \neq 0$ is called an **integral domain** if it has no zero divisors.

21 October 14, 2020 27

Definition 20.5 (Field). A commutative unital ring *R* such that $R \setminus \{0\} = R^{\times}$ is called a **field**.

Proposition 20.2. A finite integral domain is a field.

Proof. Let R be a finite integral domain. We want to show that every $a \in R \setminus \{0\}$ is a unit. Let $a \in R \setminus \{0\}$, then $R = \{0, a_1, \cdots, a_n\}$, where $a_i \neq a_j$ for all $i \neq j$, and $a_i \neq 0$ for all i. We have $aR = \{0, aa_1, \cdots, aa_n\} \subseteq R$, so $aR \subseteq R$. Equality holds if and only if the sets are in bijection, or |aR| = |R|. Now $|aR| \leq n$ if and only if $aa_i = 0$ for some i or $aa_i = aa_j$ for some $i \neq j$. The first condition is automatically ruled out by assumption, since a cannot be a zero divisor. Similarly, $aa_i = aa_j$ where $a_i \neq a_j$ (since $i \neq j$) implies that a = 0 or $a_i = a_j$ by Lemma 20.2, both of which are false. Therefore $|aR| = n + 1 = |R| \implies aR = R$. $1 \in R = aR$ implies that there exists some $i \in \{1, \cdots, n\}$ such that $aa_i = 1$. Hence $\mathbb{R} \setminus \{0\} = \mathbb{R}^\times$.

Next time: we'll talk about subrings and stuff.

Lecture 21

October 14, 2020

I was a little bit late to class today, but let's talk about subrings.

21.1 Subrings

Definition 21.1 (Subring). Let *R* be a ring. Then a subset $R' \subseteq R$ is a **subring** if

- 1. $\langle R', + \rangle$ is a subgroup of $\langle R, + \rangle$,
- 2. R' is closed under multiplication.

Example 21.1. We know $\langle \mathbb{Z}, +, \cdot \rangle$ is a ring. Then $\langle n\mathbb{Z}, +, \cdot \rangle$ is a subgroup of \mathbb{Z} , for $n \in \mathbb{Z} \setminus \{0\}$.

More examples: let X be a set, R a ring. Let F(X,R) be set of functions $f: X \to R$. Then $(f_1 + f_2)(x) := f_1(x) + f_2(x)$ for all $x \in X$. That is, for all $f_1, f_2 \in F(X,R)$, $f_1 + f_2$ is a new function also in F(X,R). Multiplication is defined similarly, for $f_1, f_2 \in F(X,R)$, we have $(f_1f_2)(x) = f_1(x)f_2(x) \in F(X,R)$ for $x \in R$. Verify that R a ring implies that F(X,R) is also a ring. Additive identity: zero map, multiplicative identity: map that sends everything to 1.

Note. If R' is a subring of R, then F(X,R') is a subring of F(X,R).

Example 21.2. Here are some examples from number theory: we know $\mathbb{C} = \mathbb{R}(i)$ for $i = \sqrt{-1}$. Then take the algebraic numbers $\overline{\mathbb{Q}} \subseteq \mathbb{C}$, where

$$\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \exists p(x) \in \mathbb{Z}[x] \text{ s.t. } p(\alpha) = 0 \}.$$

Within the ring $\langle \mathbb{C}, +, \cdot \rangle$, we have $\langle \overline{\mathbb{Q}}, +, \cdot \rangle$ a subring of \mathbb{C} . We can define the algebraic integers as the set $\{\alpha \in \mathbb{C} \mid \exists p(x) \text{ monic } \in \mathbb{Z}[x] \text{ s.t. } p(\alpha) = 0\}$. In particular, algebraic integers are a subring of $\overline{\mathbb{Q}}$. Transcendental numbers, however, don't form a subring: $(-\pi) + (\pi + 2) = 2$ not transcendental.

Example 21.3. Some simpler examples: let $K = \mathbb{Q}[\sqrt{d}]^8$, where d is a square-free integer. Then by definition we have

$$K = \{a_1 + a_2 \sqrt{d} + a_3 (\sqrt{d})^3 + \dots \mid a_i \in \mathbb{Q}\}$$

for a finite sequence of terms. Then this set is equal to $\{a_1 + a_2\sqrt{d} \mid a_i \in \mathbb{Q}\}$. Then $R = \mathbb{Z}[\sqrt{d}] = \{a_1 + a_2\sqrt{d} \mid a_i \in \mathbb{Z}\}$ a subring of $\mathbb{Q}[\sqrt{d}] = \mathbb{Q}(\sqrt{d})$. Furthermore, $O_K \subseteq \mathbb{R}$ the set of algebraic integers that lie in K is a subring of K, and the equality holds if $d \equiv 2$ or 3 (mod 4). If $d \equiv 1 \pmod{4}$, then $O_K = \mathbb{Z}\left[\frac{1+\sqrt{2}}{4}\right] \leftarrow$ (not sure if this last one is right).

⁸Recall the difference between a field adjoin an element (denoted with parentheses) and the field with "division" of elements (denoted with square brackets)!

22 October 16, 2020 28

21.2 Polynomial rings

From now on rings will have identity, and will be denoted with just R.

Definition 21.2 (Polynomial ring). Let R be a ring. Then R[x] is the set of polynomials with coefficients in R and variable x. Note that R[x] is a ring. Some properties of R[x]: it's commutative iff R is (and vice versa). Note that $R \hookrightarrow \text{constant polynomials } \subseteq R[x]$.

Proposition 21.1. If R is an integral domain, then R[x] is also an integral domain. Furthermore, the units of R[x] are just the units of R, since $\deg(fg) = \deg f + \deg g$ implies that $fg(x) = 1_R \implies \deg f + \deg g = 0$, which isn't possible in an integral domain. (wait, addition)?

Definition 21.3 (Group rings). Let R be a commutative ring with identity, and G a finite group $G = \{g_1, \dots, g_n\}$ (we define things this way for simplicity). Then

$$RG = \{ \sum a_i g^i \mid a_i \in \mathbb{R} \}.$$

Addition and multiplication are what you think they are:

$$\left(\sum_{i=1}^{n} a_{i} g^{i}\right) + \left(\sum_{i=1}^{n} b_{i} g^{i}\right) := \sum_{i=1}^{n} (a_{i} + b_{i}) g_{i}$$

$$\left(\sum_{i=1}^{n} a_{i} g^{i}\right) \cdot \left(\sum_{j=1}^{n} b_{j} g_{j}\right) = \sum_{i,j=1}^{n} a_{i} j_{j} g_{i} g_{j} = \sum_{k=1}^{n} c_{k} g_{k},$$

where $c_j = \sum_{i,j=1}^n a_i b^j \in R$, $g_i g_j = g_k$. Note that RG commutative implies that G is abelian. Let's look at the zero divisors in RG: $(1-g)(1+g+\cdots+g^{n-1})=1-g^n=1-1=0$, so the set of zero divisors in G is always nonempty (given G nontrivial). If G is trivial then RG = R.

21.3 Ring homomorphisms

Definition 21.4 (Ring homomorphism). Let R, S be rings. A map $varphi: R \rightarrow S$ is a ring homomorphism if

- 1. $\varphi: \langle R, + \rangle \to \langle S, + \rangle$ is a group homomorphism,
- 2. $\varphi(r_1r_2) = \varphi(r_1) \cdot \varphi(r_2)$.

Note that φ is a ring isomorphism if φ is bijective.

Example 21.4. Let R be a ring, $X \neq \emptyset$ a set. Let $a \in X$, define $\varphi_a : F(X,R) \to R$ by $f \mapsto f(a)$, then φ_a is a ring homomorphism. $\varphi : \mathbb{Z} \to n\mathbb{Z}$, $x \mapsto nx$ is a ring homomorphisms iff $n = \pm 1$, $\varphi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $\varphi(x) := x + n\mathbb{Z}$ is also a ring homomorphism.

Lecture 22

October 16, 2020

22.1 sad times

Once again, I was busy with alg top homework://

⁹This wouldn't be true if every nontrivial element of G had infinite order, so that's why we specified G to be finite.

23 October 19, 2020 29

Lecture 23

October 19, 2020

Last time: we talked about ideals.

23.1 Simple rings

Definition 23.1 (Simple ring). A ring R is **simple** of $\{0\}$ and R are the only ideals of R.

Remark 23.1. If *R* is a division ring, then *R* must be simple. However, the converse doesn't necessarily hold, as we will see very soon.

Theorem 23.1. Let R be a division ring. Then the ring $M_n(R)$ is simple, where $M_n(R)$ is the set of $n \times n$ matrices with entries from R.

Proof. Let

$$E_{ij} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 \ 0 & \ddots & \vdots & \ddots & 0 \ 0 & \cdots & 1 & \cdots & 0 \ 0 & \ddots & \vdots & \ddots & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

where the single 1 is at the *i*'th and *j*'th positions. These matrices are called **elementary matrices**. Notice that $E_{ij}E_{kl} = S_{jk}E_{i\ell}$, where $S_{jk} = 0$ if $j \neq k$ and 1 if j = k. Let I be an ideal of $M_n(R)$. Assume $I \neq 0$, which implies that there exists an $A \in I$ such that $A \neq 0$. Now $A = \sum a_{ij}E_{ij}$ where the a_{ij} are entries of A. Now $A \neq 0$ if and only if $a_{ij} \neq 0$ for some pair (i, j). Now

$$I \ni E_{\ell i_0} A E_{j_0 k} = a_{i_0 j_0} E_{\ell k}$$

by the theorem last week (I missed it). Since R is a division ring, we can multiply by inverses to get $a_{i_0j_0}^{-1} a_{i_0j_0} E_{\ell k} \in I$. But wait, $a_{i_0j_0}^{-1} \notin$ the ideal! It still works, since we can see this as $a_{i_0j_0}^{-1} I_n \in M_n(R)$. This implies that $E_{\ell k} \in I$, for all $\ell, k \in \{1, \dots, n\}$. Then

$$I_n = \sum_{\ell=1}^n E_{\ell\ell} \in I \implies I = M_n(R).$$

 \boxtimes

concluding the proof.

Remark 23.2. This shows that the condition for being simple is weaker than a division ring. Basically, are there zero divisors? If we take $E_{ij} \cdot E_{k\ell}$, this product is always equal to zero for all $i \neq k$, so these elementary matrices are zero divisors in $M_n(R)$. So $M_n(R) \setminus \{0\}$ aren't all units, therefore $M_n(R)$ is not a division ring.

23.2 Prime and maximal ideals

Definition 23.2 (Maximal ideals). Let I be an ideal of a ring R. Then I is **maximal** if $I \neq R$ and I is not included in any other proper ideal of R. That is, if $I \subseteq J$ where I and J are both ideals, then I = J or J = R.

Proposition 23.1. Let R be a unital ring. Then every proper ideal of R is contained in a maximal ideal.

General idea: take an ideal, if it's maximal, we're done, if not, it must be a subset of some other ideal. Keep going on and on: but what if the end isn't maximal? Then take the union: what if that isn't maximal? We need a lemma.

Lemma 23.1 (Zorn's Lemma). Suppose that a poset¹⁰ P has the property that every chain (ie a totally ordered subset) has an upper bound. Then P has a maximal element.

¹⁰The reason why ideals are posets is because any two distinct ideals need not be comparable (that is, one doesn't have to be a sub-ideal of the other).

24 October 23, 2020 30

Proof. Basically, work with the subset of ideals that form a chain: then this has to have a maximal element. Let *I* be a proper ideal of a unital ring *R*. Define

$$P_I := \{J \text{ an ideal of } R \mid I \subseteq J \neq R\}.$$

The proof proceeds by applying Zorn's lemma to P_I . We claim that every chain in P_I has an upper bound. $I \subset J_1 \subseteq J_2 \subseteq \cdots \subseteq J_k \subseteq \cdots$ implies that $J = \bigcup_{k=1}^{\infty} J_k$ an ideal of R. To show that $J \in P_I$, note that this is equivalent to $I \subset J$ and $J \neq R$. The first condition is clear. Now $J \neq R \iff 1 \in J$. If $1 \in J$, then $1 \in J_n$ for some n which implies that $J_n = R$ which is false, since $J_n \subseteq P_I$. Now apply Zorn's lemma to P_I , which tells us that P_I contains a maximal ideal, implying that I is included in some maximal ideal, finishing the proof.

Proposition 23.2. A commutative ring with identity is a field if and only if $\{0\}$ is a maximal ideal.

Proof. This isn't too surprising. Since $a \in R \setminus \{0\}$ implies that $aR \supsetneq \{0\}$ an ideal (which is nonzero since it contains $a \cdot 1_R = a$). Then this must be all of R, and $ab_\alpha = 1_R$ for some $b_\alpha \in R$. R is commutative implies that $b_\alpha a = 1_R$, so a is a unit. This finishes the nontrivial direction, the other direction is trivial and you should do it in your free time

Corollary 23.1. Let R be a commutative ring with unity, and I an ideal of R. Then R/I is a field if and only if I is a maximal ideal.

Proof. Apply Proposition 23.2 to R/I, where the identity is I.

M

Proof. We know $\ker \varphi$ is an ideal of R a field. Then by Proposition 23.2, $\ker \varphi = 0$ or R is, which isn't possible since φ is nonzero.

Corollary 23.2. Let R be a field, and $\varphi: R \to S$ for φ some non-zero ring homomorphism. Then φ is injective.

Lecture 24

October 23, 2020

Last week we had a test, which I didn't go to because I'm not in the class.

24.1 Prime ideals

Example 24.1. Let $R = \mathbb{Z}[x] \supset \langle x \rangle = I$. Recall the ideal generated by x, denoted $\langle x \rangle$, is the set of polynomials with constant term zero, or the polynomials such that 0 is a root of the polynomial. Then $R/I \simeq \mathbb{Z}$, since every polynomial will get crushed to its constant term. Is I maximal? No, since \mathbb{Z} isn't a field.

If $J = \langle x, 5 \rangle$, what is R/J? This is equal to $\mathbb{Z}/5\mathbb{Z}$, since any integer that's a multiple of 5 will live in J, and we can adjust by multiples of 5. This is determined by the isomorphism $p(x) \mapsto p(0) \pmod{5}$. So this is a field, since 5 being prime implies that $\mathbb{Z}/5\mathbb{Z}$ is a finite integral domain, which implies that it's a field. Then $\langle x, 5 \rangle$ is maximal.

Definition 24.1 (Prime ideals). Let R be a commutative ring with identity. Then P is a prime ideal if $P \neq R$, and if $ab \in P$, it follows that either $a \in P$ or $b \in P$.

Proposition 24.1. Let R be a commutative ring with unity and P be an ideal. Then P is prime if and only if R/P is an integral domain.

Proposition 24.2. Let R be a commutative ring with unity and P be an ideal. Then P is maximal implies that P is prime. However, the converse does not hold.

Proof. Now P is maximal if and only if R/P is a field, and P is prime if and only if R/P is an integral domain. But every field is an integral domain, showing the implication. An example to disprove the converse: let $R = \mathbb{Z}[x]$ and $I = \langle x \rangle$. Now $\mathbb{R}/I \simeq \mathbb{Z}$ is an integral domain but not a field, so I is prime but not maximal iff $I \subsetneq J = \langle x, 5 \rangle \subsetneq \mathbb{Z}[x]$.

Remark 24.1. In the integers, the only prime ideal that isn't maximal is $\langle 0 \rangle$.

26 October 28, 2020 31

24.2 Rings of fractions

Let's start with a commutative ring R. Pick a nonempty set $S \subseteq R$ such that $0 \in S$ and S is closed under multiplication. That is, for all $s_1, s_2 \in S$, $s_1s_2 \in S$. Consider the following equivalence relation on $R \times S$: we say

$$(r_1, s_1) \underset{S}{\sim} (r_2, s_2)$$
 if there exist $s', s'' \in S$ st $\begin{cases} r_1 s' = r_2 s'', \\ s_1 s' = s_2 s''. \end{cases}$

Verify in your free time that this is an equivalence relation. Let $S^{-1}R :=$ the set of equivalence classes of $R \times S$ with respect to \sim . Note that $\frac{r}{s}$ is how the equivalence class of (r,s) is notated.

Define the following operations on $S^{-1}R$:

- $\bullet \quad \frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2},$
- $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$. This is why we wanted S closed under multiplication.

Under these operations, $S^{-1}R$ has a commutative ring structure with identity. How does this new ring relate to R?

Remark 24.2. Consider the inclusion map $\iota: R \hookrightarrow S^{-1}R$, where $r \mapsto \frac{rs}{s}$, independent of the choice of $s \in S$, due to our definition of the equivalence classes. Note that if S contains one of the zero divisors but not the other, then ι is not injective, since $\ker \iota = \{0\}$ is just saying that S contains no zero divisors.

Assume *R* has a multiplicative identity, then by functorality (speculation) we have an induced inclusion $R^{\times} \hookrightarrow (S^{-1}R)^{\times}$. What are the units in the group $(S^{-1}R)^{\times}$? Is this inclusion surjective? Note that

$$(S^{-1}R)^{\times} \supseteq R^{\times} \cup \left\{ \frac{s_1}{s_2} \mid s_1, s_2 \in S \right\},$$

is the \supseteq an equality? I missed something.

Definition 24.2 (Ring of fractions). Let R be a commutative ring, S a multiplicatively closed subset of R such that the set of zero divisors is not contained in S, and neither is zero. Then the ring $S^{-1}R$ is the **ring of fractions** of S with respect to R. If R is an integral domain, then the ring $(R \setminus \{0\})^{-1}R$ is the **field of fractions** or the **quotient field** of R. We denote this as Frac(R).

Lecture 25

October 26, 2020

Whoops, missed this lecture. It was about more on fraction rings.

Lecture 26

October 28, 2020

Let $R = \mathbb{Z}$. What are we talking about? Fix a prime p, consider the following:

- $S_p = p\mathbb{Z} \setminus \{0\}$
- $S'_p = \mathbb{Z}/p\mathbb{Z}$
- $S_p'' = \{p^n \mid n \in \mathbb{N}\}$
- $S_{pq} = pq\mathbb{Z} \setminus 0, q \in \mathbb{Z}$

26 October 28, 2020 32

- $S_p^{-1}\mathbb{Z} = \{\frac{a}{pk} \mid a \in \mathbb{Z}, pk \in \mathbb{Z}\}$
- $S_{pq} \subseteq S_p \implies S_{pq}^{-1} \mathbb{Z} \subseteq S_p^{-1} \mathbb{Z}$, by our theorem (I missed it).

Theorem 26.1. Let R be a commutative ring, S a nonempty multiplicity closed subset of R such that $0 \notin S$ and S having no zero divisors. Let Q be a ring with $\varphi: R \to Q$ an injective homomorphism such that $\varphi(S) \subseteq Q^{\times}$. Then there exists a $\Phi: S^{-1}R \to Q$ an injective ring homomorphism such that

commutes (ie $S^{-1}R$ is the smallest ring containing R where the elements of S become units).

So we have our theorem that I missed. From there, we can show everything that happened above (not easy).

26.1 The Chinese remainder theorem

Recap: let *R* be a commutative ring with identity $1 \neq 0$, and *I*, *J* be two ideals of *R*. Note that

- I + J is an ideal of R, where addition is just addition of sets
- IJ := the ideal generated by ij for all $i \in I, j \in J$. Note that $IJ \subseteq I \cap J$.

Definition 26.1 (Co-maximality). Two ideals $I, J \subseteq R$ are **co-maximal** if I + J = R.

Theorem 26.2 (Chinese remainder theorem). Let I_1, \dots, I_k be ideals of R. The map

$$R \to R/I_1 \times \cdots \times R/I_k$$
, $r \mapsto (r + I_1, \cdots, r + I_k)$

is a ring homomorphism with $I_1 \cap \cdots \cap I_k$. If for each pair $(i, j) \in \{1, \cdots, k\}$ the ideals I_i and I_j are maximal, then the map is surjective and

$$\ker \varphi = I_1 \cdot I_2 \cdot \dots \cdot I_k$$
.

Proof. Take $\varphi: R \to R/I_1 \times \cdots \times R/I_k$. We have $\varphi = (\varphi_1, \cdots, \varphi_k)$ where $\varphi_j: R \to R/I_j$ a homomorphism with I_j as its kernel implies that φ is a homomorphism and $\ker \varphi = \bigcap_{j=1}^k I_j$. We proceed by induction: note that our base case is when there are two ideals. For the base case, let k=2. We have $\varphi: R \to R/I_1 \times R/I_2$, and $I_1+I_2=R$. We want to show that

- (a) im $\varphi = R/I_1 \times R/I_2$,
- (b) $\ker \varphi = I_1 I_2$.

For (a), note that $I_1 + I_2 = R$ implies that $\varphi_1(I_2) = R/I_1$, similarly $\varphi_2(I_1) = R/I_2$. Also, $I_1 + r = r + I_1$ for $r \in I_2$. We have $\varphi(I_2) = (R/I_1, 0)$, $\varphi(I_1) = (0, R/I_2)$. So

$$\varphi(R) = \varphi(I_1 + I_2) = (0, R/I_2) + (R/I_1, 0) = (R/I_1, R/I_2)$$

which implies that φ is surjective.

For (b), does $\ker \varphi = I_1 \cap I_2 \stackrel{?}{=} I_1 I_2$? $I_1 + I_2 = R$ implies that $1 = c_1 + c_2$ with $c_1 \in I_1$, $c_2 \in I_2$. So $c = c \cdot 1 = \subseteq 1 + cc_2$ for all $c \in R$. Let $c \in I_1 \cap I_2$. $c \in I_1 \implies cc_2 \in I_1 I_2$ and $c \in I_2 \implies cc_1 \in I_1 I_2$, together these imply $c \in I_1 I_2$, hence $I_1 \cap I_2 = I_1 I_2$.

28 November 2, 2020 33

Lecture 27

October 30, 2020

Missed this lecture due to Alg top fridays.

Lecture 28

November 2, 2020

Gov test later today, writing notes on Arrow's impossibility theorem, showed up late.

28.1 PID's and prime elements

Definition 28.1 (Prime and irreducible elements). Let *R* be an integral domain, and $x \in R$. Then

- x is **prime** if (x) is a prime ideal.
- x is **irreducible** if x = ab implies that a or b is a unit, for $a, b \in R$.

Remark 28.1. Prime implies irreducible. If $x \in (x)$ is prime, then $x = a \cdot b$ implies that a or b are in (x), so b or a is a unit, which is true iff x is irreducible.

Corollary 28.1. Let R be a PID. Then x is prime if and only if x is irreducible.

Proof. (\iff) Let x be irreducible, and R a PID. Then (x) is maximal implies that (x) is prime, which is true iff x is prime. To see that (x) is maximal, $x \in (x) \subsetneq (y) \subsetneq R \implies x = y \cdot z$, z is not a unit, y is not a unit. (??)

28.2 3 is irreducible in $\mathbb{Z}[\sqrt{-5}]$

What are the units in $\mathbb{Z}[\sqrt{-5}]$? They are exactly the elements such that

$$(a+b\sqrt{-5})(a-b\sqrt{-5}) = a^2 + 5b^2 = 1.$$

This only happens if $a = \pm 1$ and b = 0, so the units are just $\{\pm 1\}$. (Yay I answered the question correctly!)

Claim. 3 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.

Proof. Note that

$$3 = (a + b\sqrt{-5})(c + d\sqrt{-5})$$

$$= ac - 5bd + \sqrt{-5}(bd + ad)$$

$$\implies 3 = ac - 5bd \quad \text{since } \sqrt{-5} \text{ is irrational,}$$

$$0 = bd + ad.$$

Then

$$3dc = adc^2 = 5bcd^2 = ad(c^2 + 5d^2).$$

Now $d\left(3c-a\left(c^2+5d^2\right)\right)=0$ implies that d=0 or $3c=a(c^2+5d^2)$. d=0 implies that $3=ac+bc\sqrt{-5}$ which implies that 3=ac and bc=0, since $\sqrt{-5}$ isn't rational. Now bc=0 implies that b=0 (since c can't be zero or else the top part would fail), and 3=ac. So either a or c is a unit, and a is irreducible in $\mathbb{Z}[\sqrt{-5}]$ (given that d=0).

Let's go onto our second possibility, where $3c = a(c^2 + 5d^2)$, $a, c \in \mathbb{Z}^+$. Now $c^2 \le 3c$, and $c \le 3$. So there are now four potential values for c:

30 November 6, 2020 34

• c = 1. Then $3 = a(1 + 5d^2)$, which implies that $3 = a(1 + 5d^2)$, so a = 3, d = 0 (why does d = 1, a = 2 not work?) So $c + d\sqrt{-5} = 1$ a unit.

- c = 2. Then $6 = a(4 + 5d^2)$, so a = 1, and $6 = 4 + 5d^2$. This isn't possible.
- c=3. Then $9=a(9+5d^2)$, so a=1, d=0. Now $bd=-ad \implies 3b=0 \implies b=0$, so $a+b\sqrt{-5}=1$, and we are done.

This finishes every case that we need to consider, and we conclude that 3 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.

This is a way of proving that things aren't PID's (irreducible elements that aren't prime). This takes us toward UFD's (which is not the direction we wanted to take), so take this an example, which shows the importance of PID's. Now rings where every ideal is generated by one element are super special, but a ring in which every ideal is finitely generated is also special.

28.3 Noetherian rings

Definition 28.2 (Noetherian rings). A commutative ring is **Noetherian** if every ascending chain of ideals terminates. That is, for

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_i \subseteq \cdots$$

then $I_i = I_{i+1}$ for all $j \gg 0^{11}$.

Proposition 28.1. A ring R is Noetherian iff every ideal of R is finitely generated.

Proof. Let R be Noetherian, and I be an ideal that is **not** finitely generated. Pick an element $r_1 \in I$ and set $I_1 = (r_1)^{12}$. Since I isn't finitely generated, then there exists an $r_2 \in I \setminus I_1$. Set $I_2 = (r_1, r_2)$. Note that $I_1 \subsetneq I_2$. Then by the fact that I isn't finitely generated, there exists an $r_3 \in I \setminus I_2$, set $I_3 = (r_1, r_2, r_3)$. Repeat indefinitely, so

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots \subsetneq I_i \subsetneq \cdots \subsetneq I$$
,

where $I_j = (r_1, \dots, r_j)$. Since I isn't finitely generated, there exists an $r_{j+1} \in I \setminus I_j$, set $I_{j+1} = (r_1, \dots, r_j, r_{r+1})$. This produces an infinite strictly increasing chain of ideals, which is not possible since R is Noetherian.

Problem. Show that a finite group G cannot be written as the union of two of its proper subgroups. Does the same hold for three?

Solution. Let G be a finite group with H, K < G. Let $a \in G \setminus H$. Then $a \in K$, similarly we have $b \in G \setminus K$ such that $b \in H$. But $ab \in G = H \cup K$ implies that $ab \in H$ or $ab \in K$, a contradiction since $a \notin H$ and $b \notin K$: they can't both be in either H or K, and we are done.

Counter example: let $\mathbb{H} = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk \rangle$, where the identity is 1, denote the common element by -1. Then $\langle i \rangle \cup \langle j \rangle \cup \langle k \rangle = \mathbb{H}$, where each subgroup is proper.

Lecture 29

November 4, 2020

Why did I miss this class again?

Lecture 30

November 6, 2020

Alg top fridays

¹¹This is standard notation.

 $^{^{12}}$ l'm swapping over to this notation for an ideal generated by an element, since everyone else seems to do it.

35 November 18, 2020 35

Lecture 31

November 9, 2020

Came a little (20 minutes) late to class.

31.1 UFD's and primitive elements

Lemma 31.1. Let R be a UFD, $f(x) \in R[x]$, and $d = \gcd$ of the coefficients of f(x). Then $f(x) = df^*(x)$ where $f^*(x) \in R[x]$ and f^* is primitive.

Proof. Let $f(x) = a_n x^n + \cdots + a_0$, $a_i \in R$, and $d = \gcd(a_n, \cdots, a_0) \implies a_i' = a_i/a \in R$. This implies that $f = df^*$ where $f(x)^* = a_n' x^n + \cdots + a_0'$. What is $\gcd(a_n', \cdots, a_0') = c = ?$ Not entirely sure what's going on anymore. In this case, I think primite refers to a generator of the multiplicative groups of a finite field.

Lemma 31.2. Let R be a UFD, $f(x) \in (\operatorname{Frac} R)[x]$. Then $f(x) = \left(\frac{a}{b}\right) f^{\times}(x)$ where $a, b \in R$ such that $\gcd(a, b)$ a unit, and $f^{\times}(x) \in R[x]$ and f^{*} is primitive. Moreover, (a, b, f^{*}) uniquely determine R up to units.

Proof. Let $f(x) = \left(\frac{a_n}{b_n}\right) x^n + \dots + \frac{a_0}{b_0}$ such that $a_i, b_i \in R$, and $\gcd(a_i, b_i) = 1$ for all i. Then define $b := \operatorname{lcm}(b_n, \dots, b_0)$, this tells us that $f(x) = \frac{1}{b} \left(a'_n x^n + \dots + a'_0\right)$ where $a'_i = b \frac{a_i}{b_i} \in R$. Set $a = \gcd(a'_n, \dots, a'_0)$, then $a'_n x^n + \dots + a'_0 = a(a''_n x'' + \dots + a'''_0)$ where $a'_i = \frac{a'_i}{a} \in R$. Our lemma says that $f^*(x) = a''_n x'' + \dots + a''_0 \in R[x]$ a primitive. Hence $f(x) = \frac{a}{b} f^*(x)$ for $a, b \in R$, $f^*(x)$ primitive.

How do we know that $\gcd(a,b)$ is a unit? This is true iff there is no irreducible $p \in R$ such that $p \mid \gcd(a,b)$, which is true iff $p \mid a, p \mid b$. Now $p \mid a = \gcd(a'_n, \cdots, a'_0)$ iff $p \mid |a'_i$ for all i, and $p \mid b = \operatorname{lcm}(b_0, \cdots, b_n)$ iff there exists an i_0 such that $p \mid b_{i_0}$. p irreducible dividing both b_{i_0} and $p \mid b^{\frac{a_{i_0}}{b_{i_0}}}$ implies that $p \mid (b_{i_0}, a_{i_0}) = a$ unit, a contradiction.

November 11, 2020

November 13, 2020

Alg top fridays

Lecture 35

November 16, 2020

November 18, 2020

I think I was sick or busy for the last week, sadly.

35 November 18, 2020 36

35.1 Units and irreducible elements in the Gaussian integers

Last time we were looking at the Gaussian integers $\mathbb{Z}[i]$ and proved that it's a Euclidian domain, which means it's a PID and subsequently a UFD. What are the irreducible elements of $\mathbb{Z}[i]$? We also proved that an element is a unit iff the norm is 1. What are the irreducible elements then?

Lemma 35.1. Every irreducible element of $\mathbb{Z}[i]$ divides a prime of \mathbb{Z} .

Proof. Let $\pi \in \mathbb{Z}[i]$ irreducible, then $N(\pi) = \pi \cdot \overline{\pi} \in \mathbb{Z}^+$ for $\pi \cdot \overline{\pi} = p_1^{e_1} \cdots p_n^{e_n}$ primes of \mathbb{Z} . Then since $\mathbb{Z}[i]$ is a UFD then $\pi \mid p_i$ for some $\in \{1, \dots, n\}$.

Question: Let $\pi \in \mathbb{Z}[i]$ be irreducible. What can we say about the factorization of $N(\pi)$?

Note that $\alpha \mid \beta$ in $\mathbb{Z}[i]$ implies that $\overline{\alpha} \mid \overline{\beta}$ in $\mathbb{Z}[i]$. $N(\pi) = \pi \cdot \overline{\pi} \in \mathbb{Z} \implies \pi \cdot \overline{\pi} = p_1^{e_1} \cdots p_n^{e_n}$ in $\mathbb{Z}[i]$ a UFD. So $\pi \mid p_1$ (reorder the primes if necessary) if and only if $p_1 = \pi \cdot \alpha$ for some $\alpha \in \mathbb{Z}[i]$ and so $p_1 = \overline{p_1} = \overline{\pi} \cdot \overline{\alpha}$. So $\pi \nmid p_j$, and $\overline{\pi} \nmid p_j$ for all j > 1. Hence $N(\pi) = \pi \cdot \pi = p_1^e$. What is e? $p = \pi \cdot \alpha$ implies that $N(p) = p^2 = N(\pi) \cdot N(\alpha)$, so $N(\pi) \mid p^2$ and therefore $N(\pi)$ is equal to either p or p^2 , that is, $N(\pi) = p^e$ for $e \in \{1, 2\}$. So that's the first step. **Conclusion:** Given a prime $p \in \mathbb{Z}$, either p remains irreducible in $\mathbb{Z}[i]$ for $p = \alpha \cdot \overline{\alpha}$ where $\alpha \in \mathbb{Z}[i]$, $N(\alpha) = p$.

Proposition 35.1. Let p be a prime in \mathbb{Z} . Then p is not irreducible in $\mathbb{Z}[i]$ if and only if $p = a^2 + b^2$ with $a, b \in \mathbb{Z}$.

Observe that a prime $p \in \mathbb{Z}$ is of the form $p \equiv 1 \pmod{4}$, $p \equiv 2 \pmod{4}$ (iff p = 2), or $p \equiv 3 \pmod{4}$. Now p = 2 implies that 2 = (1+i)(1-i) which isn't irreducible in $\mathbb{Z}[i]$, but now $(1\pm i)$ is irreducible in $\mathbb{Z}[i]$. $p = a^2 + b^2$ means that $a^2 \equiv 0$ or $1 \pmod{4}$, and $b^2 \equiv 0$ or $1 \pmod{4}$. Then p is odd means that $p \equiv 1 \pmod{4}$.

Proposition 35.2. For p a prime in \mathbb{Z} , if $p \equiv 3 \pmod{4}$ then p is irreducible in $\mathbb{Z}[i]$.

Proposition 35.3. For p a prime in \mathbb{Z} , if $p \equiv 1 \pmod{4}$ then p is not irreducible in $\mathbb{Z}[i]$. More precisely, $p = \pi \cdot \overline{\pi}$ where π is irreducible in $\mathbb{Z}[i]$.

Lemma 35.2. Let p be a prime of \mathbb{Z} . Then $p \mid (n^2 + 1)$ for some $n \in \mathbb{Z}$ if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof. For p = 2, $2 \mid (1^2 + 1)$. Assume p is odd. Then $p \mid (n^2 + 1)$ is the same as saying $n^2 \equiv -1 \pmod{p}$. This is equivalent to the fact that $\operatorname{ord}(n) = 4$ in $(\mathbb{Z}/p\mathbb{Z})^*$. Now every finite subgroup of a multiplicative group of a field is cyclic (I slightly remember this from AA!), so $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic. Hence $(\mathbb{Z}/p\mathbb{Z})^*$ has an element of order 4 iff $4 \mid (\mathbb{Z}/p\mathbb{Z})^* \mid \text{iff } 4 \mid (p-1) \mid \text{iff } p \equiv 1 \pmod{4}$. So if p is odd then $p \mid (n^2 + 1)$ for some $n \in \mathbb{Z}$ iff $p \equiv 1 \pmod{4}$.

Proof. This proof is for Proposition 35.3. $p \equiv 1 \pmod{4} \iff p \mid (n^2+1) \text{ with } n \in \mathbb{Z}$. Then $p \mid (n^2+1) = (n+i)(n-i)$ means that $p \mid (n+i) \text{ or } p \mid (n-i)$. Notice that $p \mid (n+i) \implies p \mid (n+i) \iff p \mid (n-i)$, and similarly $p \mid (n-i) \implies p \mid (n+i)$. Hence $p \mid (n\pm i) \implies p \mid ((n+i)-(n-i)) = 2i$. So $p \mid i((i+1)(1-i))$. If p were irreducible in $\mathbb{Z}[i]$, then $p = (1\pm i)$ or $i(1\pm i)$ or $\pm 1(1\pm i)$, which is clearly false since p is a real number and the options are all complex. So p is reducible in $\mathbb{Z}[i]$.

 \sim

Here's a summary of the irreducibles of $\mathbb{Z}[i]$. They are

- 1 ± i
- $p \in \mathbb{Z}$ where p is a prime, $p \equiv 3 \pmod{4}$
- a+ib where $a,b\in\mathbb{N}$ such that a^2+b^2 is an odd prime ($\equiv 1\pmod{4}$).

35.2 Fermat's two squares theorem

Corollary 35.1. A prime in \mathbb{Z} equals the sum of two squares of integers if and only if $p \equiv 1 \pmod{4}$.

This is precisely Fermat's two square theorem. I don't know why this needed its entire own subsection, but it does.

 \sim

36 November 20, 2020 37

Another summary. We have

Fields \subseteq Euclidian domains \subseteq PID's \subseteq UFD's \subseteq Integral domains

For (counter)examples of the non-equalities in order, take \mathbb{Z} a Euclidian domain not a field, $\mathbb{Z}\left[\frac{1+\sqrt{-13}}{2}\right]$ a PID not a Euclidian domain, R a PID means R a UFD but R[x,y] a UFD not a PID, and $\mathbb{Z}[\sqrt{-5}]$ an integral domain without unique factorization. Next time, we'll talk about modules.

Lecture 36

November 20, 2020

I'm here on Friday?? Let's talk about modules.

36.1 Modules and submodules

Definition 36.1 (Modules). Let *R* be a ring. A **left R-module** is an abelian group $\langle M, + \rangle$ endowed with a map $R \times M \to M$, $(r, m) \mapsto rm$ such that:

- 1) (r+s)m = rm + sm (Distributive over *R*)
- 2) (rs)m = r(sm) (Associative)
- 3) r(m+n) = rm + rn (Distributive over M)

If *R* has a multiplicative identity, then assume that $1_R m = m$. A similar definition follows for **right modules**, an abelian group with a map $M \times R \to M$ with corresponding properties.

Example 36.1. Here are some examples of modules.

- Let V be a vector space over some field \mathbb{F} . Then V is an \mathbb{F} -module. In fact, any \mathbb{F} -module for \mathbb{F} a field is simply a vector space.
- If G is an abelian group, then G is a \mathbb{Z} -module. How do we define mg?
 - 1. If m > 0, then $mg = g + \cdots + g$.
 - 2. If m < 0, then $mg = (-g) + \cdots + (-g)$.
 - 3. Finally, $0_{\mathbb{Z}}g = 0_G$.

Note. A note on terminology: If we say M is an R-module, this means that M is a left R-module unless otherwise explicitly stated.

Definition 36.2 (Submodules). Let R be a ring, M an R-module. A subgroup N of M is an R-submodule of M if $R \times N \to N$, ie N is closed under multiplication by R, which is the same as saying that $rn \in N$ for all $n \in N$ and all $r \in R$.

36.2 Examples of modules

Example 36.2. We have \mathbb{R}^n an \mathbb{R} -module. We can also view it as a \mathbb{Q} -module. $\mathbb{Q}^n \subseteq \mathbb{R}^n$ is a \mathbb{Q} -submodule of \mathbb{R}^n , but it is NOT an \mathbb{R} -submodule of \mathbb{R}^n . (Multiply some rationals and irrationals together and see what happens).

Say we have M an abelian group. We can look at its endomorphism ring

$$\operatorname{End}(M) := \{ \varphi : M \to M \mid \varphi \text{ is a group homomorphism} \},$$

which is a ring with respect to pointwise addition and function composition.

37 November 23, 2020 38

Proposition 36.1. Let M be an abelian group and R a ring. Then M is an R-module if and only if there exists a homomorphism $R \to \operatorname{End} M$, such that if R has unity then $1_R \mapsto \operatorname{id}_M$.

Proof. (\Longrightarrow) Assume M is an R-module, we need to define $\varphi: R \to \operatorname{End}(M), r \mapsto (m \mapsto rm)$. To verify that $\varphi(r) \in \operatorname{End} M$, we want to show that φ is a homomorphism and that if R has unity then $\varphi(1_R) = \operatorname{id}_M$. You can do so in your free time.

(\iff) Assume that $\varphi: R \to \operatorname{End}(M)$ is a ring homomorphism and if R has unity then $\varphi(1_R) = \operatorname{id}_M$. Now M is an abelian group, hence M is an R-module if we have a map $R \times M \to M$ such that the module properties hold. Define $rm = \varphi(r)(m)$. You can verify that the properties hold in your free time.

Example 36.3. Let *G* be a group, *X* be a set. Then having a group homomorphism $G \to S_X$ is the same has having a *G*-action on *X*. Also, if *X* is an abelian group, then *X* is a $\mathbb{Z}[G]$ -module, where

$$\mathbb{Z}[G] := \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{Z} \right\}, \quad \left(\sum_{g \in G} a_g g \right) \cdot x := \sum_{g \in G} a_g (g \cdot x) \in X.$$

Example 36.4. Another example. Say V is a vector space over \mathbb{F} a field. Let $\varphi: V \to V$ be a linear transformation. We can think of V as an $\mathbb{F}[x]$ -module, where for $p(x) \in \mathbb{F}[x]$, we define $p(x)v := p(\varphi)(v) \in V$. Now W is an $\mathbb{F}[x]$ -submodule of V if W is a subspace of V as a vector space, and $p(x)w \in W$ for all $w \in W$, $p(x) \in \mathbb{F}[x]$. Since W is a subspace, this holds exactly when $xw \in W$ for all $w \in W$, which is the same as saying $\varphi(w) \in W$ for all $w \in W$. So $\varphi(W) \subseteq W$, that is, W is closed under the linear transformation φ .

In summary, W is an $\mathbb{F}[x]$ -submodule of V if

- 1. *W* is a subspace of *V* as an *F*-vector space, and
- 2. *W* is closed under φ , that is, $\varphi(W) \subseteq W$.

Example 36.5. We have V a vector space over \mathbb{F} iff V is an $\mathbb{F}[x]$ module if there exists a $\varphi: V \to V$ a linear transformation. So V is an $\mathbb{F}[x,y]$ -module if there exist $\varphi,\psi:V\to V$ linear transformations such that $\varphi\psi=\psi\varphi$, where $p(x,y)v:=p(\varphi,\psi)(v)$.

Example 36.6. If we have G a finite group and \mathbb{F} a field, then V is an $\mathbb{F}[G]$ -module iff V is an \mathbb{F} -module which is equivalent to saying that V is a vector space over \mathbb{F} for a homomorphism $G \to GL(V)$.

Lecture 37

November 23, 2020

Came a little late, was making a big matrix.

37.1 Sums, products, and finitely generated modules

Note. A note on notation. We denote the set of *R*-module homomorphisms from $M \to N$ by $\operatorname{Hom}_R(M, N)$. You can verify in your free time that $\operatorname{Hom}_R(M, N)$ is itself an *R*-module.

Proposition 37.1. Let M, N be R-modules and $\varphi: M \to N$ be an R-module homomorphism. Then

1. missed it

Definition 37.1. Let *M* be an *R*-module and *N* be an *R*-submodule of *M*. Then

$$M/N = \{m + N \mid m \in M\}$$

is an *R*-module. We say that M/N is the **quotient module** of M by N.

To verify that M/N is an R-module, we need to show that:

37 November 23, 2020 39

- 1. M is an abelian group, N a subgroup implies that M/N is an abelian group.
- 2. The map $R \times M/N \to M/N$ defined by $(r, m+N) \mapsto rm + N$ satisfies the necessary properties.

Theorem 37.1. Let R be a ring, M,N be R-modules, and $\varphi: M \to N$ be an R-module homomorphism. Then $M/\ker \varphi \simeq \operatorname{im} \varphi$.

Definition 37.2. Let *R* be a ring, *M* an *R*-module, and *A*, *B* be submodules of *M*. Then

$$A + B := \{a + b \mid a \in A, b \in B\}$$

is a submodule of M.

Definition 37.3. Let *R* be a ring, *M* be an *R*-module, and $A \subseteq M$. Then

$$RA := \begin{cases} 0 & \text{if } A = \emptyset, \\ \{\sum_{i=1}^{n} r_i a_i \mid r_i \in R, a_i \in A\} & \text{otherwise} \end{cases}$$

is an R-submodule of M. We say that RA is **generated** by A, or that A is a **generating set** for RA. We won't give any examples, because you already have plenty from linear algebra (consider the spanning set, etc). We also say that a submodule N of M is **finitely generated** if there exists a finite set A such that N = RA.

Example 37.1 (Direct sums and products). As a \mathbb{Q} -module, \mathbb{R}^n is *not* finitely generated, but $\mathbb{Q}^n \subseteq \mathbb{R}^n$ a submodule of \mathbb{R}^n is finitely generated.

Definition 37.4. Let R be a ring, and M, \dots, M_k be R-modules. Then $M_1 \times \dots \times M_k$ is an R-module with respect to componentwise addition and multiplication by $r \in R$. More generally, let $\{M_i \mid i \in I\}$ be R-modules. Then

$$\bigoplus_{i \in I} M_i := \left\{ \sum_{i \in I} a_i \mid a_i = 0 \text{ for all but finitely many } i \in I \right\}$$

is an R-module, and we call this the **direct sum** of the M_i . Similarly,

$$\prod_{i\in I}:=\left\{(a_i)_{i\in I}\,\middle|\,a_i\in M_i\right\}$$

is defined as the **direct product** of the M_i for $i \in I$ and is also an R-module.

Proposition 37.2. Let M be an R-module, N_1, \dots, N_K be submodules of M. Then the map

$$\pi: N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k, \quad (n_1, \cdots, n_k) \mapsto n_1 + \cdots + n_k$$

is a surjective R-module homomorphism.

Note. Note that π is injective iff $x \in N_1, \dots, N_k$ is written uniquely as a sum $x = \sum_{i=1}^n n_i$ with $n_i \in N_i$ iff $N_i \cap (N_1 + \dots + \hat{N}_i + \dots + \hat{N}_i) = 0$ for all i.

Definition 37.5 (Free generators). An R-module is **free** on the subset $A \subseteq M$ if for all $x \in M$, there exists a unique $(a_1, \dots, a_n) \in A$ and unique $r_1, \dots, r_n \in R$ such that $x = r_1 a_1 + \dots + r_n a_n$. Then we say that A is a set of **free generators** of M.

37.2 Simple modules and Schur's Lemma

Definition 37.6 (Simple modules). A *R*-module *M* is **simple** if its only submodules are 0 and itself.

In group theory, simple groups are somewhat complicated, but for modules it's much "simpler" (hahaha) because we're dealing with *abelian* groups.

Proposition 37.3. A simple R-module is isomorphic to R/m for some m a maximal ideal of R or R itself.

38 November 30, 2020 40

Proof. Let M be a simple R-module. If M=0, then M=R/R so check. If $M\neq 0$, then we have some $x\in M\setminus\{0\}$ $\Longrightarrow Rx\subseteq M$, but $Rx\neq 0$ since $x\neq 0$, so Rx=M since M is simple. In essence, every non-zero element generates M. Consider the map $\varphi:R\to Rx$, $r\mapsto rx$. Set $m=\ker\varphi$, this is an ideal of R. If this ideal isn't maximal, then $Rx\simeq R/\ker\varphi$ as R-modules (OK not sure if my logic is right here).

Note. The second item is presented without much context, and it's up to you to sit down and wrap your head around it (also very important).

- 1. An *R*-submodule of *R* is an ideal of *R*.
- 2. Submodules of $R/\ker\varphi$ are in bijection with the ideals $I\subseteq R$ such that $I\supseteq\ker\varphi$.

Hence M is simple iff ker φ is maximal.

Lemma 37.1 (Schur's Lemma). Let R be a ring, M,N be simple R-modules. Then any non-zero homomorphism $\varphi: M \to N$ is an isomorphism.

Proof. Now $\ker \varphi = 0$ whenever $\ker \varphi$ is a submodule of M and $\varphi \neq$ the zero map. Furthermore, $\operatorname{im} \varphi$ is a submodule of N and $\varphi \neq 0$ means that $\operatorname{im} \varphi = N$ since N is simple. So $\ker \varphi = 0$ and $\operatorname{im} \varphi = N$ together imply that φ is 1-1 and onto, and therefore an isomorphism.

Lecture 38

November 30, 2020

What's a tensor? It's how to create a third module from two other modules.

38.1 Noetherian modules

Definition 38.1 (Noetherian modules). Let *M* be a (left) *R*-module for *R* a ring. Then *M* is **Noetherian** *R*-module if it satisfies the ascending chain condition on submodules, ie every sequence of submodules

$$M_1 \subseteq M_2 \subseteq \cdots$$

has a maximal element M_m , ie $M_k = M_m$ for all $k \ge m$. This is the same idea we talked about with Noetherian rings, in which every ascending chain of ideals terminates.

Note. A ring *R* is Noetherian iff *R* is Noetherian as an *R*-module, since *R*-submodules of *R* are just ideals of *R*.

Theorem 38.1. Let R be a ring, and M be an R-module. Then TFAE:

- 1) M is Noetherian,
- 2) Every non-empty set of submodules of M contains a maximal element with respect to inclusion,
- 3) Every submodule of M is finitely generated, in particular, M itself is finitely generated.

Proof. The proof is the same as the one for Noetherian rings, it's also in the book.

Definition 38.2 (Rank). Let R be an integral domain, M be an R-module. We define the notion of rank M := maximal number of linear independent elements of M. Recall that $\{m_1, \dots, m_k\} \subseteq M$ are linearly independent if $r_1m_1 + \dots + r_km_k = 0 \implies r_1 = \dots = r_k = 0$.

M

Proposition 38.1. Let R be an integral domain, and M be a free R-module of rank $n < \infty$. Then any n + 1 elements of M are linearly dependent over R.

39 December 2, 2020 41

Proof. Let $F := \operatorname{Frac}(R)$, and M be free of rank n, which means that $M \simeq \overbrace{R \times \cdots \times R} \hookrightarrow F \times \cdots \times F$, $M \hookrightarrow F^n$, an n-dimensional vector space over F. Then (n+1) elements of M $\{m_1, \cdots, m_{n+1}\} \subseteq M \hookrightarrow F^n$ implies that $\{m_1, \cdots, m_{n+1}\}$ are linearly independent over F. Then there exist $(\alpha_1, \cdots, \alpha_{n+1}) \in F^{n+1} \setminus \{0\}$ such that $\sum_{i=1}^{m+1} \alpha_i m_i = 0$, and $\alpha_i \in F$ implies that $\alpha_i = a_i/b_i$ for $a_i, b_i \in R$, $b_i \neq 0$ for all i. Then

$$\sum_{i=1}^{n+1} r_i m_i = 0 \text{ with } r_i = a_i \frac{b}{b_i} \text{ where } b = \prod_{i=1}^{n+1} b_i.$$

 \boxtimes

So $(r_1, \dots, r_{n+1}) \in \mathbb{R}^{n+1} \setminus \{0\}$ since R is an integral domain, which is what we wanted.

38.2 Annihilators and torsion

Definition 38.3 (Torsion). Let *R* be an integral domain, *M* be an *R*-module. Then we define the **torsion submodule** as

Tor
$$M := \{ m \in M \mid rm = 0 \text{ for some } r \in R \setminus 0 \}$$

Note that this is defined as a set, but you can indeed verify that this is a submodule of R. If M is free, then Tor M = 0, since there are no relations on any m.

Definition 38.4 (Annihilator). Let N be a submodule of M an R-module. Then we define the **annihilator** of N as

$$Ann(N) := \{ r \in R \mid rn = 0 \ \forall n \in N \}.$$

Note that Ann(N) is an R-ideal. If $L \subseteq N$ are both submodules of N, then we have $Ann(L) \supseteq Ann(N)$. Clearly the annihilator of a free module is zero, since annihilating creates relations.

Example 38.1. Note that Ann(Tor M) may or may not be trivial. For example, let $M = \mathbb{Q}/\mathbb{Z} = \left\{\frac{a}{b} + \mathbb{Z} \mid 0 \le a < b\right\}$ as a \mathbb{Z} -module (convince yourself of the equality as sets). Then Tor(M) = M, since $b\left(\frac{a}{b} + \mathbb{Z}\right) = \mathbb{Z} = 0_{\mathbb{Q}/\mathbb{Z}}$. So Ann(Tor M) = Ann(M), but Ann(M), but Ann(M) = 0. To see this, let M = M, then M = M is an example of a non-Noetherian M-module (not finitely generated).

38.3 Modules over PIDs

Now we get to state and prove the main theorem that we've been working toward.

Theorem 38.2. Let R be a PID, M be a free module of rank m, and N a submodule of M. Then

- 1) N is free of rank $n \leq m$,
- 2) There exists a basis of M given by $\{y_1, \dots, y_m\}$ such that $\{a_1y_1, \dots, a_ny_n\}$ is a basis of N with $a_1, \dots, a_n \in R$ such that $a_1 \mid a_2 \mid \dots \mid a_n$.

Proof. If N=0, then $M \simeq Ry_1 + \cdots + Ry_m \simeq \overbrace{R \times \cdots \times R}$ since M is free of rank m and n=0 (nothing left to say here, think of this as an exceptional case). Now assume that $N \neq 0$. We'll finish this next time. This result leads into a lot of useful linear algebra results.

Lecture 39

December 2, 2020

Last time, to fill in a gap M being free of rank n means by definition that M has an R-basis with n-elements.

Proof. To finish the proof of Theorem 38.2, let M be a free R-module for R a PID of rank m, and N be a nontrivial submodule of M.

40 December 4, 2020 42

Claim. *N* is a free module of rank $n \le m$. Consider the *R*-module homomorphisms $\varphi : M \to R$. Then *N* being a submodule of *M* implies that $\varphi(N)$ is an *R*-submodule of *R*, so $\varphi(N) = (a_{\varphi})$ with $a_{\varphi} \in R$. Consider the set of all such ideals

 $\sum = \{(a_{\varphi}) \mid \varphi \in \operatorname{Hom}_{R}(M,R)\},\,$

we have $\Sigma \neq \emptyset$ since $\varphi \colon m \mapsto 0$ an R-module homomorphisms for all $m \in M$ implies that $(0) \in \Sigma$, so $\Sigma \neq \emptyset$. How do we know $\Sigma \neq \{(0)\}$? M being a free module of rank m iff there exsits a set $\{x_1, \cdots, x_m\}$ an R-basis of M by definition, so consider the set of projection maps $\pi_j \colon M \to R$, $\sum_{i=1}^m r_i x_i \mapsto r_j$ which is well defined since we have an R-basis, so we have an R-module homomorphism. Then $\pi = (\pi_1, \cdots, \pi_m) \colon M \to R^m$ is the canonical R-module isomorphism. Now $N \neq 0$ says that $\pi(N) \neq 0$, which subsequently implies that $\pi_j(N) \neq 0$ for some j. The fact that $\pi_j \in \operatorname{Hom}_R(M,R)$ implies that $\Sigma \neq 0$ (not just nonempty, but also nonzero).

Since R is a PID, then R is Noetherian so Σ has a maximal element with respect to inclusion, ie there exists a homomorphism $\varphi_1 \colon M \to R$ such that $\varphi_1(N)$ is not strictly contained in any other ideal of Σ . Let a_1 (formerly a_{φ_1}) $\in R$ such that $\varphi_1(N) = (a_1)$. Choose $z \in N$ such that $\varphi_1(z) = a_1$. Subclaim:

$$a_1 \mid \varphi(z)$$
 for all $\varphi \in \operatorname{Hom}_R(M,R)$.

For the proof of the subclaim, fix $\varphi \in \operatorname{Hom}_R(M \to R)$. Consider $(a_1, \varphi(z))$ an ideal of R. Since R is a PID, $(a_1, \varphi(z)) = (d)$, so $d = a_1r_1 + \varphi(z)r_2$ with $r_1, r_2 \in R$. Consider $\varphi' = r_1\varphi_1 + r_2\varphi$, since $\varphi_1, \varphi \in \operatorname{Hom}_R(M,R)$ we have $\varphi' \in \operatorname{Hom}_R(M,R)$. $\varphi'(z) = d$ and $\varphi' \in \operatorname{Hom}_R(M,R)$ says that $\varphi'(N) \in \Sigma$ and $\varphi'(N) \subseteq (d)' \supseteq (a_1)$. By the maximality of $(a_1), a_1 = d \cdot u$ with u a unit of R. Then $(a_1, \varphi(z)) = (a_1) \implies a_1 \mid \varphi(z)$, finishing the subclaim.

Consider the projections $\pi_1(z), \dots, \pi_m(z)$. We know $\pi_j \in \operatorname{Hom}_R(M, R)$, so by our subclaim $a_1 \mid \pi_j(z)$ for all $j \in \{1, \dots, m\}$. So we can write $\pi_j(z) = a_1b_j$ with $b_j \in R$, set $y_1 = \sum_{i=1}^m b_i x_i$, we get that $z = a_1y_1$. Then $\varphi_1(z) = a_1$ implies that $\varphi_1(y_1) = 1$ since R is an integral domain. Subclaim two:

$$M \simeq Ry_1 \oplus \ker \varphi_1$$
 by the map $\psi : x \mapsto (\varphi_1(x), x - \varphi_1(x)y_1)$.

For the proof of this, set $\psi_1: R \to Ry$, $x \mapsto \varphi_1(x)y_1$. ψ_1 is an R-module homomorphism since φ_1 is. Set $\psi_2: M \to \ker \varphi$, $x \mapsto x - \varphi_1(x)y_1$. Then $\psi_2(M) \subseteq \ker \varphi \iff \varphi(x - \varphi_1(x)y_1) = 0$. $\varphi_1(x - \varphi_1(x)y_1) = \varphi(x) - \varphi_1(x)\varphi_1(y_1) = \varphi_1(x) - \varphi_1(x) = 0$, so we land in the right place. $\psi_2 = \operatorname{id} - \psi_1$ both R-module homomorphisms implies that ψ_2 is an R-module homomorphism, so ψ is an R-module homomorphism as well. We need to verify that ψ is injective and surjective. $x \in M$ implies that $x = \psi_1(x) + \psi_2(x)$, so ψ is injective.

To see that ψ is surjective, note that

$$\begin{aligned} \psi_1|_{Ry_1} &= \mathrm{id} \\ \psi_2|_{\ker \varphi_1} &= \mathrm{id} \end{aligned} \Longrightarrow \begin{aligned} & (z_1z_2) \in Ry_1 \oplus \ker \varphi_1 \\ & \psi_2|_{\ker \varphi_1} &= \mathrm{id} \end{aligned} \Longrightarrow \begin{aligned} & (z_1z_2) \in Ry_1 \oplus \ker \varphi_1 \\ & \psi_1(z_1+z_2) \oplus \psi_2(z_1+z_2) \\ & \psi_1(z_1) \ , \ \psi_2(z_2) \end{aligned} \end{aligned} \Longrightarrow \psi \text{ is surjective.}$$

Hence ψ is an *R*-module isomorphism. Subclaim three:

$$N \stackrel{\psi}{\simeq} Ra_1 y_1 \oplus N \cap \ker \varphi$$
.

Proof: $\psi: N \to Ry_1 \oplus \ker \varphi$, $n \mapsto (\psi_1(n), \psi_2(n))$, $\psi_1(n) = \varphi_1(n)y_1 \in \varphi_1(N)y_1 = a_1Ry_1 = Ra_1y_1$. $\psi_2(n) \in \ker \varphi$, to show $\psi_2(n) \in N$, $\psi_2(n) = n - \psi_1(n)y_1 \in n + Ra_1y_1 \in N$.

Lecture 40

December 4, 2020

Wow, I haven't seen a proof span three lectures before.

40 December 4, 2020 43

40.1 Further continuation of the proof of Theorem 38.2

To show N is free of rank $n \le m$, we will use induction on $n := \operatorname{rank} N$. n = 0 iff N is torsion, so $N \subseteq \operatorname{tors} M = 0$ since M is free, therefore N = 0 and thus N is free. So this is the base case.

Now rank N=n implies that rank $(N \cap \ker \varphi_1) \le n-1$. By the induction hypothesis, we get that $N \cap \ker \varphi_1$ is a free module, and $N \simeq Ra_1y_1 \oplus N \cap \ker \varphi_1$ is free as a direct sum of free modules. So rank $N=1+k \le 1+(m-1)=m$, so rank $N \le m$.

Claim. There exists a basis $\{y_1, \dots, y_m\}$ of M such that $\{a_1y_1, \dots, a_ny_n\}$ a basis of N with $a_1 \mid a_2 \dots \mid a_n$.

For the proof of this second claim, use induction on the rank of M. $M \simeq Ry_1 \oplus \ker \varphi$, $\ker \varphi \subseteq M$. By Part 1, $\ker \varphi$ is free means that rank $\ker \varphi \leq m-1$. The base case is where rank M=1, so $M \simeq Ry_1$, $N \simeq Ra_1y_1$, and we are done. $N \cap \ker \varphi$ is contained in $\ker \varphi_1$ of rank m-1, use the induction hypothesis. So there exists a basis $\{y_2, \cdots, y_m\}$ of $\ker \varphi$ such that $\{a_2y_2, \cdots, a_ny_n\}$ is a basis of $N \cap \ker \varphi_1$ and $a_2 \mid |\cdots \mid a_n$. Hence $\{y_1, \cdots, y_m\}$ is a basis of M and $\{a_1y_2, \cdots, a_ny_n\}$ is a basis of N. Subclaim: $a_1 \mid a_2$. To see this, $\pi_2 \colon M \to R$ is an R-module homomorphism $\sum r_i y_i \mapsto r_2, \pi_2(N) = \pi_2(N \cap \ker \varphi_1) = a_2R$, so $\pi_2(N) \in \sum$ and therefore $a_1 \mid a_2$. So we have $a_1 \mid a_2 \mid \cdots \mid a_n$, and we are done.

Whew!

Theorem 40.1. Let R be a PID, M be a finitely generated R-module. Then

$$M \simeq R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_t),$$

where $r \in \mathbb{Z}^+$ and $a_i \in R$ such that $a_1 \mid \cdots \mid a_t$. (Note that r denotes rank and a_i denotes torsion).

Proof. Let $M = \langle x_1, \dots, x_n \rangle$ with $x_i \in M$. Consider $\pi : R^n \to M$, $(r_i, \dots, r_n) \mapsto \sum_{i=1}^n r_i x_i$ a surjective R-module homomorphism. Note that R^n is a free module of rank $R^n = n$, $\ker \pi \subseteq R^n$. By Theorem 38.2, $\ker \pi$ is free of rank $k \le n$ and there exists a basis $\{y_1, \dots, y_n\}$ of R^n such that $\{c_1y_2, \dots, c_ky_k\}$ is a basis of $\ker \pi$ with $c_1 \mid \dots \mid c_k$. So

$$M \simeq R^n / \ker \pi \simeq \left(\bigoplus_{i=1}^n R y_i \right) / \left(\bigoplus_{i=1}^k R c_i y_i \right) \simeq \bigoplus_{i=1}^k R / (c_i) \oplus R^{n-k} \simeq R^r \oplus \bigoplus_{i=1}^t R / (a_i)$$

 \boxtimes

where r = n - k, and c_1, \dots, c_e are units in R, $a_i = c_{e+i}$ not a unit. Note that $a_1 \mid \dots \mid a_t$.

Corollary 40.1. Let R be a PID, M is a finitely generated R-module. Then

- 1) $M_{tor} \simeq \bigoplus_{i=1}^{t} R/(a_i)$ with $a_1 \mid \cdots \mid a_t$.
- 2) M is free iff $M_{tor} = 0$.
- 3) $M \simeq R \oplus M_{tors}$ where r = rank M.

Theorem 40.2. Let R be a PID, M be a finitely generated R-module. Then

$$M \simeq R^r \oplus \bigoplus_{i=1}^n R/p_i^{e_i}$$

where $r = \text{rank } M \in \mathbb{Z}^+$, $e_i \in \mathbb{N}$, p_i not necessarily distict primes of R.