TD Architecture des ordinateurs

Groupe AB

Exercice 1:

entres	<i>M</i>	sortis	
	k 4		
s=ab cm + ab cin a b cm	ζ Δ	Cont	
patien + ab cin 0 0 0	F	0 0	
		0	
cout z a b cin + a b cin 0 1 1	0	1	
+ ab cin + ab cm 100	<u>A</u>	0	
	0	1	
1 1 0	0	1	
		1	
Cout = ab cin + ab cin + ab cin ab on ol			
ab (cin + cin)	11 10		
1 ("conflement") 1	1		
= ab cm + ab cm + ab	a cin		
a(b+ toin) absortion			
= aban + ab + a an cind 00 01	11 18		
b(a+Kcin) absorption 1	1 1		
= ab + a cin + b cin			

A	В	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Pour Cout

Cin\AB	00	01	11	10
0	0	0	1	0
1	0	1	1	1

Pour S

Cin\ AB	00	01	11	10
0	0	1	0	1
1	1	0	1	0

module addbin(a, b, cin : s, cout) $s = /a*/b*cin + /a*b*/cin + a*/b*/cin + a*b*cin \\ cout = a*(b+cin) + b*cin \\ end module$

Exercice 2

```
module adder8(a[7..0], b[7..0], cin: s[7..0], cout) addbin(a[0], b[0], cin: s[0], aux1) addbin(a[1], b[1], aux1: s[1], aux2) addbin(a[2], b[2], aux2: s[2], aux3) addbin(a[3], b[3], aux3: s[3], aux4) addbin(a[4], b[4], aux4: s[4], aux5) addbin(a[5], b[5], aux5: s[5], aux6) addbin(a[6], b[6], aux6: s[6], aux7) addbin(a[7], b[7], aux7: s[7], cout) end module
```

Rappel nombres binaires

```
10101010_b = 170 en codage non signé (128 + 32 + 8 + 2)

10101010_b = -86 en codage signé (-128 + 32 + 8 + 2)

-43 = 11010101<sub>b</sub> (-128 + 64 + 16 + 4 + 1)
```

Exercice 3

```
module addsub32(a[31..0], b[31..0], sub : s[31..0]) 
 bb[31..0] = /sub*b[31..0] + sub*/b[31..0] 
 adder32(a[31..0], bb[31..0],sub : s[31..0],c) 
 end module
```

Exercice 4

```
module addsub32(a[31..0], b[31..0], addsub: s[31..0], V, C)
```

```
bb[31..0] = /addsub*b[31..0] + addsub*/b[31..0]
adder32(a[31..0], bb[31..0],addsub : s[31..0],co)
V = /addsub*a[31]*b[31]*/s[31] + /addsub*/a[31]*/b[31]*s[31]
+ addsub*a[31]*/b[31]*/s[31] + addsub*/a[31]*b[31]*s[31]
C = /addsub*co+addsub*/co
```

end module