Problema 5. Dada una medida m en un semianillo \mathcal{Y}_m sin unidad, sea μ la extensión de Lebesgue de m y \mathcal{Y}_{μ} el correspondiente sistema de todos los conjuntos medibles. Probar que

a) \mathcal{Y}_{μ} es un δ -anillo;

Demostración.

Sean $A_1, A_2, \ldots, A_n, \ldots \in \mathcal{Y}_{\mu}$, $A = \bigcap_{n \in \mathbb{N}} A_n$ y $A' = \bigcup_{n \in \mathbb{N}} A_n$. Ya que $A \subseteq A'$ y \mathcal{Y}_{μ} es un anillo, por definición, existen $B_1, B_2, \ldots, B_t \in \mathcal{Y}_{\mu}$ tales que $A' = A \cup \bigcup_{i=1}^t B_i$, por lo que $(A') \setminus \left(\bigcup_{i=1}^t B_i\right) = A$.

Luego, para cada $n \in \mathbb{N}$ sea $A'_1 = A_1$ y $A'_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$, estos conjuntos son disjuntos a pares y medibles, además $A' = \bigcup_{n \in \mathbb{N}} A'_n$.

Después, para cada $N \in \mathbb{N}$ se obtiene que $\sum_{n=1}^{N} \mu(A'_n) = \mu\left(\bigcup_{n=1}^{N} A'_n\right) \leq \mu^*(A')$. De esta forma, la serie $\sum_{n=1}^{\infty} \mu(A'_n)$ converge y para $\epsilon > 0$ dado, existe $M \in \mathbb{N}$ tal que $\sum_{n>M} \mu(A'_n) < \frac{\epsilon}{2}$. Puesto que $C = \bigcup_{n=1}^{M} A'_n$ es medible, existe $B \in \mathcal{R}(\mathcal{Y}_m)$ tal que $\mu^*(C \triangle B) < \frac{\epsilon}{2}$. Y debido a que $A' \triangle B \subseteq (C \triangle B) \cup \left(\bigcup_{n>M} A'_n\right)$, se tiene que $\mu^*(A' \triangle B) < \mu^*\left((C \triangle B) \cup \left(\bigcup_{n>M} A'_n\right)\right) = \mu^*(C \triangle B) + \mu^*\left(\bigcup_{n>M} A'_n\right) < \epsilon$. Así, A' es medible y por lo tanto A lo es.

Por lo tanto, \mathcal{Y}_{μ} es un δ -anillo.

b) El conjunto

$$A = \bigcup_{k \in \mathbb{N}} A_k \quad \text{donde } A_k \in \mathcal{Y}_{\mu} \forall k \in \mathbb{N}$$

pertenece a \mathcal{Y}_{μ} si y solo si hay una constante C > 0 tal que

$$\mu\left(\bigcup_{k=1}^{n} A_k\right) \le C \quad n \in \mathbb{N}$$