Hand Signals With Visual Data

CAPSTONE PROJECT

PROJECT PROPOSAL BY AYUSHYA, OMAR, CHRIS, GERRY

HAND SIGNALS WITH VISUAL DATA OVERVIEW

Our Idea

Our team would like to build a software that could allow for hand gestures to control a computer with the use of a camera in a way similar to the mouse.

Role of Deep Learning

Deep learning would allow for the recognition of hand gestures and number of fingers. The combination of these two feature sets would allow for a fully customizable gesture system.

HAND SIGNALS WITH VISUAL DATA OUR IDEA

Challenges

Optimizing for on device deep learning

Training a Convolutional Neural Network to recognize gestures like scrolling, pinching, waving, and rotating

Real time finger detection allowing for counting the number of fingers being held up, this could be additionally be trained to detect a folded finger

Gathering a sufficiently large dataset to train new models

TECHNOLOGIES USED

HAND SIGNALS WITH VISUAL DATA PROGRESS UPDATE

What we have tried

- → Trying and testing available libraries (OpenPose based on CMU Caffe)
- Looking for pre-trained models and datasets

Our plan moving forward

From our tests so far we are leaning towards using OpenPose and CMU's Hand Database. This would allow us with a sufficiently large and varied database allowing for the customization that we plan on delivering.

TECHNOLOGIES USED

Electron Framework

Framework for creating native applications with web technologies

Node.js Runtime

An asynchronous event driven JavaScript runtime for application backends

React

React is a JavaScript library for building user interfaces

OpenPose

Real-time system to jointly detect human body, hand, facial, and foot keypoints

OpenCL

OpenCL

A framework for programs that execute across hardware accelerators

Python

Interpreted high-level language of choice for OpenPose API

TECHNOLOGIES USED HOW IT WILL WORK

TECHNOLOGIES USED HOW IT WILL LOOK

TECHNOLOGIES USED SOFTWARE FEATURES

Input

The user will be able to use any camera input - this will make the program accessible on every platform.

Target Platforms

The software should work on all major desktop operating systems - Windows, MacOS, and Linux.

Customization

The software will allow for triggering built-in OS shortcuts from custom gesture and finger count combinations.

Privacy

The software will only collect images from users if given explicit permission - the models will be stored locally on the users' machines allowing for private use.

MAKING THE TEAM TEAM ROLES

Frontend and Design

- Use Electron Javascript framework to easily build native cross platform applications
- Design a modern responsive and easy to use interface

Data Management

- → Take advantage of Python packages to collect necessary data
- → Make sure data is consistent

Backend APIs

- → Create OTA model update system
- Create gesture and action linking system
- → Implement background services

Gesture Recognition Model Research & Development

→ A team effort to create models that will allow real-time gesture detection on the end user's local environment

OPENPOSE WHAT IT IS

The first real-time multi-person system to jointly detect human body, hand, facial, and foot keypoints.

Library Built On Caffe

Caffe is a deep learning framework built by the AI division at UC Berkeley - the version used by OpenPose however, is a version modded by Carnegie Mellon University.

OPENPOSE —— HOW IT WORKS

OPENPOSE — HOW WE WILL USE IT

As an end goal, we will use the existing model from OpenPose and modify it to predict the number and position of fingers. We can use the hand database made available by CMU Panoptic Dataset for re-training purposes.

CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network is an algorithm which takes in an input image, assigns weights and biases to object in the image and be able to differentiate one from another.

Input data

CMU Panoptic hand gesture dataset

Loading data

Load images into an array for storing the image and the other array for the label

Creating CNN Model

To simplify the idea, we're using a linear regression model to create a simple model.

CNN applies a series of filter to raw pixel data of an image to extract and learn higher-level features

COMPONENTS OF A CNN

CONVOLUTIONAL NEURAL NETWORK COMPONENTS

THREE MAIN COMPONENTS

<u>Convolutional Layer:</u> applies a specific number of convolutional filters to the image

<u>Pooling layer:</u> downsample the extracted image data to reduce the dimensionality of the feature map in order to decrease processing time

<u>Fully connected layer:</u> Perform classification on the feature extracted by the convolutional layer and downsampled by the pooling layer.

CONVOLUTIONAL NEURAL NETWORK TRAINING MODEL

Requirements to train the network

Loss Function

softmax_cross_entropy_with_logits function, which take in the output of the final layer and the training target vector and compares them

Optimizer

Takes in a learning rate that minimizes the loss function

Correct Prediction and Accuracy

Correct prediction operation returns value determining whether the neural network has correctly predicted the digit. Accuracy operation uses the result obtained from correct prediction operation and return the mean accuracy of the tensor

Perform the training accuracy

Using the dataset, run the loss function and optimizer operations for the number of batch and epoch that was initialized and calculate the accuracy obtained at each step

DEMO

THANK YOU

REFERENCES

OpenPose

https://github.com/CMU-Perceptual-Computing-Lab/openpose

Handtrack.js

https://github.com/victordibia/handtrack.js/ Library for prototyping real-time hand detection

Gesture Recognition

https://github.com/asingh33/CNNGestureRecognizer https://github.com/avidLearnerInProgress/hand-gesture-recognition Projects with examples for gestures recognition

TensorFlow Examples

https://github.com/tensorflow/examples https://github.com/tensorflow/examples/.../gesture_classification General examples from tensorflow on gesture classification and object recognition

Kaggle Dataset

https://www.kaggle.com/.../hand-gesture-recognition-database-with-cnn/ Database is composed by 10 different hand-gestures