- **1.** Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2, ...
 - **a**) f(n+1) = f(n) + 2.
 - **b**) f(n+1) = 3f(n).
 - c) $f(n+1) = 2^{f(n)}$.
 - **d)** $f(n+1) = f(n)^2 + f(n) + 1$.
- **2.** Find f(1), f(2), f(3), f(4), and f(5) if f(n) is defined recursively by f(0) = 3 and for n = 0, 1, 2, ...
 - a) f(n+1) = -2f(n).
 - **b)** f(n+1) = 3f(n) + 7.
 - c) $f(n+1) = f(n)^2 2f(n) 2$.
 - **d**) $f(n+1) = 3^{f(n)/3}$.
- **3.** Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = -1, f(1) = 2, and for n = 1, 2, ...
 - a) f(n+1) = f(n) + 3f(n-1).
 - **b**) $f(n+1) = f(n)^2 f(n-1)$.
 - c) $f(n+1) = 3f(n)^2 4f(n-1)^2$.
 - **d)** f(n+1) = f(n-1)/f(n).
- **4.** Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = f(1) = 1 and for n = 1, 2, ...
 - a) f(n+1) = f(n) f(n-1).
 - **b)** f(n+1) = f(n)f(n-1).
 - c) $f(n+1) = f(n)^2 + f(n-1)^3$.
 - **d)** f(n+1) = f(n)/f(n-1).
- **8.** Give a recursive definition of the sequence $\{a_n\}$, n =1, 2, 3, ... if
 - **a**) $a_n = 4n 2$.
- **b**) $a_n = 1 + (-1)^n$. **d**) $a_n = n^2$.
- **c**) $a_n = n(n+1)$.
- **29.** Devise a recursive algorithm to find the *n*th term of the sequence defined by $a_0 = 1$, $a_1 = 2$, and $a_n = a_{n-1} \cdot a_{n-2}$, for $n = 2, 3, 4, \dots$
- **32.** Devise a recursive algorithm to find the *n*th term of the sequence defined by $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, and $a_n =$ $a_{n-1} + a_{n-2} + a_{n-3}$, for n = 3, 4, 5, ...

In each of 3–15 a sequence is defined recursively. Use iteration to guess an explicit formula for the sequence. Use the formulas from Section 5.2 to simplify your answers whenever possible.

3.
$$a_k = ka_{k-1}$$
, for all integers $k \ge 1$
 $a_0 = 1$

4.
$$b_k = \frac{b_{k-1}}{1 + b_{k-1}}$$
, for all integers $k \ge 1$
 $b_0 = 1$

5.
$$c_k = 3c_{k-1} + 1$$
, for all integers $k \ge 2$
 $c_1 = 1$

H 6.
$$d_k = 2d_{k-1} + 3$$
, for all integers $k \ge 2$
 $d_t = 2$

7.
$$e_k = 4e_{k-1} + 5$$
, for all integers $k \ge 1$
 $e_0 = 2$

8.
$$f_k = f_{k-1} + 2^k$$
, for all integers $k \ge 2$
 $f_1 = 1$

H 9.
$$g_k = \frac{g_{k-1}}{g_{k-1} + 2}$$
, for all integers $k \ge 2$ $g_1 = 1$

Find the first four terms of each of the recursively defined sequences in 1–8.

1.
$$a_k = 2a_{k-1} + k$$
, for all integers $k \ge 2$
 $a_1 = 1$

2.
$$b_k = b_{k-1} + 3k$$
, for all integers $k \ge 2$
 $b_1 = 1$

3.
$$c_k = k(c_{k-1})^2$$
, for all integers $k \ge 1$
 $c_0 = 1$

4.
$$d_k = k(d_{k-1})^2$$
, for all integers $k \ge 1$
 $d_0 = 3$

5.
$$s_k = s_{k-1} + 2s_{k-2}$$
, for all integers $k \ge 2$
 $s_0 = 1, \ s_1 = 1$