Instructor: Luan Duong, Ph.D.

Electronic Submission: 11:59 pm, Monday Mar 24, 2025

Point: 25 points (5% of total grade)

Notes:

 $K = 2^{10}$; $M = 2^{20}$; $G = 2^{30}$; index always starts from 0 (e.g. page 0 is the first page) All memory is byte addressable (unless otherwise stated in the question) If a number has no special mark (i.e. 3251), it is a decimal number. If a number ends with 'b' (i.e. 01100000b), it is a binary number. If a number starts with '0x' (i.e. 0xFF10), it is a hexadecimal number.

Question 1: Paging [11 points]

Let's try paging again! Suppose 16-bit addresses are used for both virtual address and physical address. Suppose page/frame size is 256 bytes.

- 1) How many bits are used for page number and how many bits are used for the offset? [0.5 point]
- 2) What is the maximum number of pages a process can have? [0.5 point]
- 3) Suppose each entry in the page table takes 4 bytes (including frame number, valid bit, and some other bits). Suppose an OS uses an array to store the page table. What is the size of a page table? [0.5 point]
- 4) Suppose the first 3 pages of a process are mapped to frames 100 to 102, and the last 3 pages of the process are mapped to frames 5 to 7. All other pages are invalid. Draw the page table (include valid bit and frame number). [2 points]
- 5) Translate the following virtual addresses to physical addresses (show how you get the answers): [2 points] Note: same as your mid-journey test, you do not need to convert them to decimal numbers. Use the simplified calculation.
 - a) 0x01CC
 - b) 0x02FF
 - c) 0x0301

d) 0xFF01

- 6) Now suppose the OS is using two-level page table. Draw the page table. Suppose frames 8 to 99 are free so that you can allocate space for the page table there. Also suppose the page table directory always takes several consecutive full frames (e.g. If it is 2 bytes, it takes one frame; if it is 257 bytes, it takes 2 consecutive frames.) [3 points]
- 7) What is the size of this two-level page table? [0.5 point]
- 8) Repeat 5) on the two-level page table and show how you get the answers. [2 points]

Question 2: Page Replacement Policy [7.2 points]

Agents, please fill in the blank by tracing the following Paging Algorithms and determine if the page fault happens for each page reference. Suppose you only have 3 frames in your main memory and the system starts from a 'fresh'/empty memory. If there is a tie, choose the lowest-numbered page.

Page Reference Stream: 4, 2, 3, 4, 1, 3, 2, 4, 5, 4, 3, 2

FIFO Algorithm [2.4 points]												
	4	2	3	4	1	3	2	4	5	4	3	2
Frame 1												
Frame 2												
Frame 3												
Page Faults?												

Optimal Algorithm [2.4 points]												
	4	2	3	4	1	3	2	4	5	4	3	2

Frame 1						
Frame 2						
Frame 3						
Page Faults						

LRU (Least Recently Used) Algorithm [2.4 points]												
	4	2	3	4	1	3	2	4	5	4	3	2
Frame 1												
Frame 2												
Frame 3												
Page Faults												

Question 3: Disk Writing [6.8 points]

For a <u>6,000-RPM</u> disk, assume its <u>average seek time</u> is 5 msec, its <u>average data</u> <u>transfer speed</u> is 100 MB/sec, and the <u>sector size</u> is 512 bytes. (In this problem, assume that 1 MB = 1×10^6 bytes; 1 msec = 0.001 sec; throughput means the amount of data transferred divided by time.) [Ref: Lecture Topic 6a, Slide 47]

- 1) How long does it take to access 1MB of contiguous data on average? What is the average throughput (bytes read per second) if the user accesses 1MB for each I/O read operation? Assume the data are perfectly aligned on the disk [3.4 points]
- 2) How long does it take to access **100 MB** of contiguous data (on average)? What is the average throughput (bytes read per second) if the user accesses 100 MB for each I/O read operation? Assume the data are perfectly aligned on the disk. [3.4 points]