Your GAN is secretly an Energy-Based Model Principles of Applied Statistics project, Skoltech

Alsu Vakhitova Saveliy Galochkin Anton Zubekhin

21.12.21

Problem statement

How can one improve the quality of GAN samples?

- Discriminator Rejection Sampling
- Metropolis-Hastings GAN
- Discriminator Optimal Transport

Drawbacks: inefficient or implying mode collapse

Idea: Consider GAN as Energy-Based Model and sample from latent space

GAN

Original data: $(X_1, \ldots, X_N) \in \mathbb{R}^{N \times d}, X_i \sim p_d$

Generator $G:~\mathcal{Z}
ightarrow X$, $z \in \mathcal{Z}: z \sim p_z$

Discriminator $D: X \to \mathbb{R}$

EBM

State space: χ

Energy: $E: \chi \to \mathbb{R}$

Boltzmann distribution: $p(x) = e^{-E(x)}/Z$, $x \in \chi$

Normalizing constant: $Z = \int e^{-E(x)} dx$

Trained GAN with generator distribution p_g , we assume G(z) is imperfect Discriminator is almost optimal: $D(x) \approx \frac{p_d(x)}{p_d(x) + p_g(x)}$ Logit of D(x): d(x), $D(x) = \sigma(d(x))$ $D(x) \approx \frac{1}{1 + \exp(-d(x))}$

Logit of
$$D(x)$$
: $d(x)$, $D(x) = \sigma(d(x))$

$$D(x) \approx \frac{1}{1 + \exp(-d(x))}$$

Energy-Based Model: $p_d^* = p_g(x)e^{d(x)}/Z_0$ If $D = D^*$, D^* - optimal discriminator, then $p_d^* = p_d$

Main Theorem

For data generating distribution p_d , generator distribution p_g with generator $G: \mathcal{Z} \to X$, where latent space \mathcal{Z} has prior distribution $p_0(z)$, we define Boltzmann distribution $p_d^* = e^{\log p_d(x) + d(x)}/Z_0$. For discriminator D(x) its logit is $d(x): D(x) = \sigma(d(x))$. If p_g and p_d have the same support, then defining energy function $F(z) = -\log p_0(z) - d(G(z))$ and its Boltzmann distribution

 $E(z) = -\log p_0(z) - d(G(z))$ and its Boltzmann distribution $p_t(z) = e^{-E(z)}/Z$ we have:

- $p_d^* = p_d$ when D is the optimal discriminator
- If we sample $z \sim p_t$, and x = G(z), then $x \sim p_d^*$

Note: now we can sample from the above Boltzmann distribution with some MCMC sampler

Sampling for WGAN

Wasserstein GANs (WGANs) target Kantorovich-Wasserstein distance, so its objectives are

$$L_D = \mathbb{E}_{p_g} [D(x)] - \mathbb{E}_{p_d} [D(x)]$$

$$L_G = -\mathbb{E}_{p_0} [D(G(x))]$$

where D has to be K-Lipshitz function

Note: WGAN leads to EBM with $E(z) = -\log p_0(z) - D(G(z))$

Mode collapse issue

If G cannot recover some of the modes in p_d , p_d^* also cannot **Idea**: add some Gaussian noise $z' \sim \mathcal{N}(0,1)$ New generator: $G(z,z') = G(z) + \varepsilon z'$

Sampling algorithm

Algorithm Discriminator Driven Langevin Sampling

Input: $N \in \mathbb{N}_+, \ \varepsilon > 0$

Output: Latent code $z_N \sim p_t(z)$

Sample $z_0 \sim p_0(z)$

while i < N do

$$n_i \sim \mathcal{N}(0,1)$$

$$z_{i+1} = z_i - \frac{\varepsilon}{2} \nabla_z E(z) \Big|_{z_i} + \sqrt{\varepsilon} n_i$$

$$i = i + 1$$

end

Experiments

For experiments we took

- 2d mixture of 25 Gaussians
- Swiss roll dataset
- CIFAR10

For synthetic data we used custom WGAN, for image dataset a pretrained SNGAN was used

Experiments with synthetic data

2d mixture of 25 Gaussians generation

Experiments with synthetic data

Swiss Roll generation

Vanilla GAN EMD = 0.076409

 $\varepsilon = 10^{-2}$ EMD = 0.066459

 $\varepsilon = 10^{-3}$ EMD = 0.056704

 $\varepsilon = 10^{-4}$ EMD = 0.077774

 $\varepsilon = 10^{-5}$ EMD = 0.06915

Experiments on CIFAR10

 $\varepsilon =$ 0.01, noise $\sim \mathcal{N}(\text{0,0.1})$, vanilla FID: 19.31, DDLS FID: 33.13

DDLS sampling for 500 iterations, plot each 25th

Conclusions

- On synthetic data the quality of DDLS samples is significantly better
- Tuning Langevin step size is important
- DDLS tends to oversaturate colors in images
- A more detailed study of DDLS image generation is required
- DDLS sampling is much less time consuming then retraining GAN

Contribution:

Alsu Vakhitova: Gaussian mixture experiments

Saveliy Galochkin: Swiss roll experiments

Anton Zubekhin: CIFAR10 experiments, presentation preparation

References

Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling: arXiv:2003.06060

Thank you for your attention!