







## Tropospheric Ozone Production Pathways with Detailed Chemical Mechanisms

Jane Coates

17th March 2015

#### Outline



#### Introduction and Motivation

Previous Meeting Re-cap

Comparison of O<sub>x</sub> Production in Chemical Mechanisms

Impact of Solvent Speciations on O<sub>3</sub>

Other Contributions

Future Pathways

## Tropospheric Ozone





## Meteorological impacts on O<sub>3</sub> Production





## Modelling



#### Outline



Introduction and Motivation

#### Previous Meeting Re-cap

Comparison of Ox Production in Chemical Mechanisms

Impact of Solvent Speciations on  $O_3$ 

Other Contributions

Future Pathways

## Action Points from Last Meeting



- ► Include CB05 in mechanism comparison study. ✓
- Submit mechanism comparison paper to ACP.
- lacktriangle O  $_3$  concentrations using different solvent sector emissions.  $\checkmark$
- O<sub>x</sub> production under different conditions: use all mechanisms or a subset?
- Use realistic conditions from regional model.

#### Outline



Introduction and Motivation

Previous Meeting Re-cap

Comparison of O<sub>x</sub> Production in Chemical Mechanisms

Impact of Solvent Speciations on O<sub>3</sub>

Other Contributions

Future Pathways

#### Main Research Question



How do the simplification techniques used in different chemical mechanisms affect  $O_{\times}$  production?

#### Chemical Mechanisms



| Chemical<br>Mechanism | Lumping Approach     | Reference                          |
|-----------------------|----------------------|------------------------------------|
| MCM v3.2              | No lumping           | [http://mcm.leeds.ac.uk/MCM/]      |
| MCM v3.1              | No lumping           | [Saunders et al., ACP, 2003]       |
|                       |                      | [Jenkin et al., ACP, 2003]         |
| CRI v2                | Lumped intermediates | [Jenkin et al., AE, 2008]          |
| MOZART-4              | Lumped molecule      | [Emmons et al., GMD, 2010]         |
| RADM2                 | Lumped molecule      | [Stockwell et al., JGR, 1990]      |
| RACM                  | Lumped molecule      | [Stockwell et al., JGR, 1997]      |
| RACM2                 | Lumped molecule      | [Goliff et al., AE, 2013]          |
| CBM-IV                | Lumped structure     | [Gery et al., JGR, 1989]           |
| CB05                  | Lumped structure     | [Yarwood et al., EPA report, 2005] |

## Boxmodel Setup



- MECCA boxmodel over 7 days.
- Initial NMVOC typical of Los Angeles.
- Same NMVOC emissions and reactive carbon in each model run.
- NO source tuned for maximum O<sub>3</sub> production.
- Mechanisms tagged for each NMVOC.

## Organic Degradation Product Tagging





O<sub>X</sub> Production Budgets gged



#### TOPP Calculation



- ► Attribute daily O<sub>×</sub> production to each NMVOC.
- ► Sum daily O<sub>x</sub> production from each NMVOC.
- ▶ Normalise by total emissions of the NMVOC on day 1.











## Reactive Carbon in NO + C<sub>5</sub>O<sub>2</sub> Reaction



#### Conclusions





- Reduced mechanisms break down many VOC faster than MCM.
- Many VOC produce similar Ox to MCM on first day, but not subsequent days.

## Paper Status



► Advanced draft of paper sent for internal review.

Discuss draft as part of this meeting.

#### Outline



Introduction and Motivation

Previous Meeting Re-cap

Comparison of O<sub>x</sub> Production in Chemical Mechanisms

Impact of Solvent Speciations on  $O_3$ 

Other Contributions

Future Pathways

#### Main Research Question



# How does VOC speciation affect

 $O_3$  concentrations in models?

#### Motivation



## Compared Solvent Speciations



| Speciation | Reference                                   |
|------------|---------------------------------------------|
| эрестации  | Reference                                   |
| TNO        | [Builtjes et al., TNO Report, 2002]         |
| IPCC       | [Ehhalt et al., IPCC Report, 2001]          |
| EMEP       | [Simpson et al., ACP, 2010]                 |
| DE94       | [Friedrich et. al., JAC, 2002]              |
| GR95       | [Sidiropoulos and Tsilingiridis, FEB, 2007] |
| GR05       | [Sidiropoulos and Tsilingiridis, FEB, 2007] |
| UK98       | [Goodwin, UK NAEI report, 2000]             |
| UK08       | [Murrells et al., UK NAEI Report, 2010]     |
|            | ·                                           |

## Boxmodel Setup



- ► MECCA boxmodel over 7 days.
- ▶ Idealised urban area of 1000 km<sup>2</sup>.
- ► Total NMVOC emissions of 1000 ton/day [Warnecke et al., JGR, 2007].
- ▶ NMVOC emissions constant until noon of day 1.

#### Model Scenarios





## **Solvent Speciations in Different Mechanisms**



## O<sub>3</sub> Mixing Ratios: Solvents Only and All Sectors



#### Solvents Only O<sub>3</sub> Mixing Ratios — MCM — MOZART — RADM2 TNO **IPCC DE94 EMEP** 100 Mixing Ratio (ppbv) 5 ppbv 4 ppbv 10 ppbv 6 ppbv **GR05 UK98 UK08 GR95** 80 5 ppbv 40-5 Time (days)

## Solvents Only: Cumulative O<sub>X</sub> Production Budget



## Further Analysis



#### Avg hour-to-hour difference in modeled ozone (µg/m³)



- Representation of VOC between mechanisms,
  e.g. chlorinated VOC.
- Reasons for large differences in boxmodel results, given the regional modelling results.

#### Outline



Introduction and Motivation

Previous Meeting Re-cap

Comparison of O<sub>x</sub> Production in Chemical Mechanisms

Impact of Solvent Speciations on  $O_3$ 

Other Contributions

Future Pathways

#### Other Contributions



#### Presentations and Posters

- ► Poster and presentation at PhD Conference on Earth System Science, Mar 2014.
- Poster at IASS Evaluation, May 2014.
- Poster at Our Climate Our Future (REKLIM) Conference, Oct 2014.
- Presentation at OH Reactivity Specialists Uniting Meeting (ORSUM), Oct 2014.

#### Courses

- Atmospheric Science in Context of Global Change at Potsdam Universität by Prof. Mark Lawrence, Oct 2013 – Jan 2014.
- Presenting Data and Information by Edward Tufte, Feb 2015.

#### Outline



Introduction and Motivation

Previous Meeting Re-cap

Comparison of O<sub>x</sub> Production in Chemical Mechanisms

Impact of Solvent Speciations on O<sub>3</sub>

Other Contributions

Future Pathways

## **Future Modelling**



- Realistic Conditions
  - Include diurnal cycle of boundary layer height and vertical mixing.
  - CARES data for NO<sub>x</sub> and VOC conditions?
- Variable meteorological parameters (temperature, solar radiation).
- O<sub>x</sub> production in different atmospheric regimes.
- Tagging approach used in global model.

## Future Modelling: Vertical Mixing





## **Future Writing**



- Attending 'Scientific Writing for Advanced Doctoral Students' course organised by Galina Churkina.
- ▶ Solvent speciations paper with Erika von Schneidemesser.
- Final paper.
- Thesis.

#### Extra Slides



#### Mean NO source: Solvents Only and All Sectors



#### Mean NO Source: Solvents Only O<sub>3</sub> Mixing Ratios - MCM - MOZART - RADM2 TNO **IPCC DE94 EMEP** 100 -80 Mixing Ratio (ppbv) 10 ppbv 3 ppbv 7 ppbv 10 ppbv **UK98 UK08 GR95 GR05** 80 40 Time (days)





#### **Thesis**



Created base structure based on Andrea's thesis.

Started introduction using literature review.

▶ Planning structure using mind map.