Understanding ROC and AUC

A Practical Guide to Evaluating Binary Classification Models

-MUKESH KUMAR

AGENDA

- What is ROC?
 - Receiver Operating Characteristic Curve.
- What is AUC?
 - Area Under the Curve.
- Importance:
 - Used to evaluate and compare Binary classification models.

What is ROC?

- ROC stands for Receiver Operating Characteristic.
- It is a graphical representation used to evaluate the performance of a **binary classification** model by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various classification thresholds.

Key Concepts

- True Positive Rate (TPR): Sensitivity, Recall.
- False Positive Rate (FPR)

7

Predicted

True Positive Rate (TPR)

Also Known As: Sensitivity, Recall

 The proportion of actual positive cases correctly identified by the model.

 It measures how effectively the model captures positive cases.

True Positive Rate (TPR)

$$\text{TPR} = \frac{\text{True Positives (TP)}}{\text{True Positives (TP)} + \text{False Negatives (FN)}}$$

Why It's Important:

- A high TPR indicates that the model is good at identifying positive cases.
- It's particularly crucial in scenarios where missing a positive case (False Negative) has a significant cost, such as detecting diseases.

False Positive Rate (FPR)

 The proportion of actual negative cases incorrectly identified as positive by the model.

It measures how often the model falsely alarms.

$$FPR = \frac{False\ Positives\ (FP)}{False\ Positives\ (FP) + True\ Negatives\ (TN)}$$

Comparison Between TPR and FPR

Metric	Focus	Ideal Value	Key Use Case
True Positive Rate	Captures positives correctly	High (near 1)	Diagnosing diseases, spam detection
False Positive Rate	Avoids false alarms	Low (near 0)	Fraud detection, security applications

Important Note

- ROC/AUC is specifically applicable to classification models, not regression models
- ROC (Receiver Operating Characteristic) curves and AUC (Area Under the Curve) are designed to evaluate a model's ability to distinguish between classes (e.g., positive and negative).

How ROC is Constructed

Steps:

- Vary the decision threshold.
- Calculate TPR and FPR for each threshold.
- Plot TPR vs. FPR.

AUC Explained

- AUC quantifies the area under the ROC curve.
- Ranges:
 - 1.0: Perfect model.
 - 0.5: Random guess.
- Importance:
 - Higher AUC means better model performance.

Practical Use Cases

- When to use ROC/AUC:
 - Imbalanced datasets.
 - Comparing multiple models.
- Real-world examples:
 - Medical diagnosis.
 - Fraud detection.

Limitations

Refer notebook

Conclusion

- ROC helps visualize classification performance.
- AUC provides a single metric for comparison.
- Threshold tuning is crucial for optimizing model performance.

Code

```
from sklearn.metrics import roc_auc_score, roc_curve, auc
```

```
# Compute ROC curve and ROC area
fpr, tpr, _ = roc_curve(y_test, y_score)
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, lw=2, label=f'{model_name} (AUC = {roc_auc:.2f})')
```

Lw = linewidth

- Relationship to ROC Curve
- The ROC curve plots TPR (y-axis) vs. FPR (x-axis) at various thresholds.
- An ideal model achieves:
 - High TPR (close to 1) for all thresholds.
 - Low FPR (close to 0)