Relatório LAMIA 25 Prática: Métricas e Validação de Modelos de Aprendizado de Máquina (III)

Kaique Medeiros Lima

1 Introdução

Este card abordará o uso do SHAP (Shapley Additive Explanations) como uma ferramenta para interpretar modelos de machine learning, explicando como ele auxilia na compreensão das contribuições individuais de cada variável para a previsão do modelo. Além disso, será feita uma análise comparativa entre diferentes modelos de aprendizado de máquina, destacando suas vantagens, desvantagens e aplicações em diferentes contextos.

2 Descrição da atividade

2.1 Explain Machine Learning Models with SHAP in Python

2.1.1 Explicação de Modelos com SHAP

O vídeo ensina a utilizar o SHAP (Shapley Additive Explanations) para interpretar decisões de modelos de machine learning. O SHAP é baseado na Teoria dos Jogos e oferece uma abordagem para explicar modelos que não possuem interpretabilidade nativa, como Support Vector Machines (SVM). O autor menciona que alguns modelos, como árvores de decisão, possuem explicabilidade inerente, enquanto outros apenas geram previsões sem justificar as decisões tomadas. Métodos como SHAP e LIME são úteis nesses casos, pois permitem visualizar a influência de cada variável no resultado.

2.1.2 Exemplo Prático: Uso do SHAP com SVM

No exemplo prático, é utilizado o conjunto de dados breast cancer do pacote sklearn.datasets, onde os dados são divididos entre treino e teste. Um modelo de SVM linear (LinearSVC) é treinado e avaliado, atingindo uma precisão de 92,9%. No entanto, por não fornecer explicações sobre suas decisões, o SHAP é empregado para interpretar os resultados. O KernelExplainer do SHAP é aplicado pra calcular os valores SHAP e gerar um summary_plot, que exibe a importância de cada variável na predição. Segue o summary_plot gerado:

2.1.3 Visualização das Decisões com SHAP

Além do summary_plot, o autor demonstra como visualizar decisões individuais utilizando o force_plot, que ilustra como cada característica influencia a classificação de um exemplo específico. Ele destaca que algumas variáveis, como a worst area, exercem maior impacto na decisão final, deslocando a previsão para um lado ou outro da escala de classificação. Essa análise permite compreender melhor o funcionamento do modelo em nível granular.

2.1.4 Importância das Características

Por fim, o vídeo mostra como calcular a importância das características somando os valores absolutos dos SHAP values e ordenando os atributos do maior para o menor impacto. Essa análise fornece insights sobre quais características exercem maior influência nas decisões do modelo, mesmo que ele não forneça essa informação diretamente.

2.2 COMPARANDO MODELOS DE MACHINE LEARNING!!

2.2.1 Modelos Preditivos

Os modelos preditivos podem ser classificados em duas categorias principais: regressão e classificação. Os modelos de regressão são utilizados para estimar valores numéricos contínuos, como prever o preço de um imóvel com base em suas características ou a variação do preço de uma ação ao longo do tempo. Já os modelos de classificação têm o objetivo de categorizar dados em classes distintas, como identificar se um e-mail é spam ou não, ou determinar se uma fruta em uma imagem é uma laranja ou uma maçã. Enquanto a regressão busca prever quantidades, a classificação foca na atribuição de rótulos a partir de padrões nos dados.

2.2.2 Matriz de Confusão

Para medir o desempenho de um modelo, são utilizadas algumas métricas baseadas em cálculos matemáticos, que ajudam a verificar se ele está ajustado corretamente. A principal métrica a se considerar inicialmente é a matriz de confusão, uma tabela que organiza os resultados previstos pelo modelo e os compara com os valores reais.

Por exemplo, imagine um modelo treinado para reconhecer maçãs em um conjunto de 100 imagens. Se o modelo previu corretamente a presença de uma maçã, esse caso é registrado como verdadeiro positivo. Se apontou uma maçã onde não havia uma, é um falso positivo. Um falso negativo ocorre quando o modelo não identificou uma maçã que estava presente, enquanto o verdadeiro negativo representa uma previsão correta de que não havia uma maçã. No exemplo abaixo, a matriz de confusão de um modelo de classificação binária é apresentada utilizando classificação de Churns:

Matriz de confusão		Modelo	
		Não Churn	Churn
VERDADEIRO	Não Churn	1	1
	Churn	1	5

A análise dessa matriz possibilita entender as dificuldades do modelo e identificar formas de melhorar sua taxa de acertos, como aumentar a precisão de 65% para um valor mais elevado.

2.2.3 Acurácia e Precisão

A taxa de acertos do modelo, chamada de acurácia, é determinada pela razão entre o número de previsões corretas e o total de previsões realizadas. Esse indicador fornece uma visão geral do desempenho do modelo, mas pode ser insuficiente em contextos com classes desbalanceadas.

Por outro lado, a precisão mede a confiabilidade das previsões positivas, ou seja, quantas das amostras classificadas como positivas realmente pertencem à classe positiva. Ela é calculada pela seguinte fórmula:

2.2.4 Recall e Especificidade

O recall, ou sensibilidade, é calculado a partir de uma única coluna da matriz. Suponha que a classe correta seja "positivo" e que o modelo tenha acertado 50 previsões e errado outras 50. O recall, então, é dado por:

$$\frac{\text{Verdadeiro Positivo}}{\text{Verdadeiro Positivo} + \text{Falso Negativo}} = 50\%.$$

Outra métrica relevante é a especificidade, utilizada no cálculo da curva ROC. Ela é obtida dividindo o número de verdadeiros negativos pelo total de verdadeiros negativos somados aos falsos positivos.

2.2.5 Curva ROC

A curva ROC é construída ao comparar a taxa de verdadeiros positivos (recall) com a taxa de falsos positivos (1 - especificidade) para diferentes valores de limiar do modelo. Esses limiares representam os pontos de corte que determinam a partir de qual probabilidade uma amostra é classificada como positiva. Por exemplo, um modelo pode considerar uma amostra como positiva apenas se a probabilidade prevista for maior que 50%, mas esse valor pode ser ajustado para priorizar maior sensibilidade ou maior especificidade. Ao testar vários limiares e registrar os respectivos valores de recall e taxa de falsos positivos, é possível traçar a curva ROC, que fornece uma visão ampla do desempenho do modelo sob diferentes configurações, auxiliando na escolha do melhor equilíbrio entre sensibilidade e especificidade.

3 Conclusão

Nesse card, foi discutido o uso do SHAP para interpretar modelos de machine learning e a comparação de diferentes modelos preditivos. O SHAP é uma ferramenta útil para explicar decisões de modelos complexos, como SVM, e visualizar a importância de cada variável nas previsões. Já a comparação de modelos envolve a análise de métricas como matriz de confusão, precisão, recall, especificidade e curva ROC, que permitem avaliar o desempenho e a confiabilidade dos algoritmos. Essas técnicas são essenciais para garantir a qualidade das previsões e identificar possíveis melhorias nos modelos de machine learning.