Devoir à la maison n° 3

À rendre le 22 septembre

Pour tout $n \in \mathbb{N}$, on considère la fonction $F_n : x \mapsto \cos(n \operatorname{Arccos}(x))$.

- 1) Pour chaque $n \in \mathbb{N}$, déterminer l'ensemble de définition de F_n , que l'on notera \mathcal{D}_n .
- 2) Expliciter F_0 , F_1 et F_2 .
- 3) Montrer que, pour tout $x \in \mathcal{D}_3$, $F_3(x) = 4x^3 3x$.
- 4) Soit $x \in [-1, 1]$. Exprimer Arccos(-x) en fonction de Arccos(x).
- 5) En utilisant le résultat de la question précédente, déterminer la parité de F_n pour chaque $n \in \mathbb{N}$.
- **6)** Soit $n \in \mathbb{N}^*$, exprimer $F_{n+1} + F_{n-1}$ en fonction de F_n .
- 7) Retrouver à partir de ce résultat l'expression de F_3 obtenue à la question 3) et déterminer F_4 .
- 8) Déterminer F'_n et F''_n pour tout $n \in \mathbb{N}$. On s'attachera à déterminer les ensembles de dérivabilité des fonctions en jeu.
- 9) Montrer que pour tout $x \in]-1,1[$ et tout $n \in \mathbb{N}$:

$$(1 - x^2)F_n''(x) - xF_n'(x) + n^2F_n(x) = 0.$$

— FIN —