

Assignment problem for MAS

Siarhei Dymkou

Temasek Laboratories

National University of Singapore

T-Lab Building 5A, Engineering Drive 1,05-02 Singapore 117411

Assignment problem by cost criteria

 $A_i, i=1,...,k$ - number of aerobases, $a_i, i=1,...,k$ - capacity (maximal number of homogenous UAVs located in aerobase), $B_j, j=1,...,l$ - areas of operations, $b_j, j=1,...,l$ - numbers of UAVs required for service of B_j zones,

Assignment problem by cost criteria

 $A_i, i = 1, ..., k$ - number of aerobases,

 $a_i, i = 1, ..., k$ - capacity (maximal number of homogenous UAVs located in aerobase),

 $B_j, j = 1, ..., l$ - areas of operations,

 $b_j, j = 1, \ldots, l$ - numbers of UAVs required for service of B_j zones,

 c_{ij} - benfits,

 x_{ij} -number of UAVs from i-th aerobase to j-th zone of area of operation.

Assignment problem by cost criteria

The most of methods include the following basic steps:

- lacksquare To find initial plan x_{ij} ;
- Check optimality condition for that plan;
- Construct the improved plan in case of nonoptimality.

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

$$\sum_{i=1}^{3} x_{ij} = b_j, \ j = 1, 2, 3, 4$$

$$\sum_{j=1}^{4} x_{ij} = a_i, \ i = 1, 2, 3$$

$$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j$$

$$x_{ij} \ge 0, \ x_{ij} \in \mathbb{N}.$$

The condition of that problem can be represented in table form.

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1	x_{11}	x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(\mathbf{a_1}; b_1);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2		x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

 $x_{11} = \min(\mathbf{a_1}; b_1); \ x_{21} = \min(a_2; b_1 - a_1);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2		x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

 $x_{11} = \min(\mathbf{a_1}; b_1); \ x_{21} = \min(a_2; \mathbf{b_1} - \mathbf{a_1});$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2			x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2			x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; \mathbf{b_2});$$

 $x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

 $x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}		x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

 $x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3); \ x_{33} = \min(a_3; b_3 - (a_1 + a_2 - b_1 - b_2));$

 x_{34}

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}			$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3); \ x_{33} = \min(a_3; b_3 - (a_1 + a_2 - b_1 - b_2));$$

$$x_{34} = \min(a_1 + a_2 + a_3 - b_1 - b_2 - b_3; b_4).$$
Assignment problem for the problem of t

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}			$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3); \ x_{33} = \min(a_3; b_3 - (a_1 + a_2 - b_1 - b_2));$$

$$x_{34} = \min(a_1 + a_2 + a_3 - b_1 - b_2 - b_3; b_4).$$
Assignment problem for

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1			0	0	3
A_2				0	5
A_3	0	0		1	2
b_j	4	2	3	1	

$$x_{11} = 3; x_{21} = 1; x_{22} = 2;$$

$$x_{23} = 2; x_{33} = 1;$$

$$x_{34} = 1.$$

Check the optimality

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3	0	0	0	3	
A_2	1			0	5	
A_3	0	0			2	
b_j	4	2	3	1	F=60	
$ u_j $						

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3	0	0	0	3	
A_2	1			0	5	
A_3	0	0			2	
b_j	4	2	3	1	F=60	
ν_j						

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$			0	3	
A_2	$rac{4}{1}$			0	5	
A_3	0	0			2	
b_j	4	2	3	1	F=60	
$ u_j $						

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3 $\stackrel{4}{\uparrow}$	0	0	0	3	
A_2	1	12	$rac{5}{2}$	0	5	
A_3	0	0			2	
b_j	4	2	3	1	F	=60
$ u_j $						

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	$a_i u_i$
A_1	$\frac{4}{3}$				3
A_2	1	12 2		0	5
A_3	0	0		4 1	2
b_j	4	Ż	3	1	F=60
$ u_j $	0				

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

Find a number u_i and ν_j such that

 $u_i + \nu_j \le c_{ij}$, for $x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	$\frac{4}{1}$			0	5	
A_3	0	0			2	
b_j	4	2	3	1	F	=60
$ u_j $	0					

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$	0	0	0	3	4
A_2	1			0	5	- 4
A_3	0	0	6	1	2	
b_j	4	2	3	1	F=	=60
$ u_j $	0					

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}$$
, for $x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$	0	0	0	3	4
A_2	4	2 12 2	5 2	0	5	 4
A_3	0	0	6 1	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0					

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$			0	3	4
A_2	4 1	2 12 2	5 2	0	5	 4
A_3	0	0	6 1	1	2	
b_{j}	4	2	3	1	F	=60
$ u_j $	0	8				

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	4		5	0	5	 4
A_3	0	0	6	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8	P			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	$rac{4}{1}$	12	5	0	5	- 4
A_3	0	0	6	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8	1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	4			0	5	4
A_3	0		1		2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8	/1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$				3	4
A_2	4 1	12 2	5 2	0	5	4
A_3	0	0	1	4 1	2	→ 5
b_j	4	2	3	1	F	=60
$ u_j $	0	8	1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$				3	4
A_2	4			0	5	4
A_3	0			$1 \qquad \stackrel{4}{{\int}}$	2	5
b_j	4	2	3	1	F	=60
$ u_j $	0	8	1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1			0	0	3	4
A_2				0	5	4
A_3	0			$1 \qquad \stackrel{4}{{\int}}$	2	5
b_j	4	2	3	1	F=60	
$ u_j $	0	8	 1	→ -1		

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

				<u> </u>		
	B_1	B_2	B_3	B_4	a_i	u_i
A_1	4 3		0	0	3	4
A_2	4		$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$		5	4
A_3	0	0			2	5
b_j	4	2	3/	1	F	=60
$ u_j $	0	8		-1		

Denote by \bar{c}_{ij}

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$
 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	3	0	0	0	3 4
A_2	4 4 1	12 12 2	5 5 2		5 4
A_3	0	0		4 4 1	2 5
b_j	4	2	3/	1	F=60
$ u_j $	0	8		-1	

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	3 4 4	6 0	8 0	$\begin{pmatrix} & & 2 \\ & 0 & \end{pmatrix}$	3 4
A_2	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$			1 0	5 4
A_3	8 0	10 0			2 5
b_j	4	2	3/	1	F=60
$ u_j$	0	8		-1	

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A_1		12 6	5 8	3 2	3 4
A_{\perp}		0	0	0	
A_2			5 5	3 1	5 4
112			2	0	
A_3	5 8	13 10	6 6		2 5
113	0	0	1		
b_j	4	2	3	1	F=60
$ u_j$	0	8	1/	-1	

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$a_i \mid u_i \mid$
A_1	4 4	12 6	5 8	3 2	3 4
711	3	0	0		
A_2	4 4		5 5	3 1	5 4
112	1	2	2	0	
A_3	5 8	13 10	6 6		2 5
713	0	0	1 /		
b_{j}	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

Check our conditions

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4	12 6 6	5 🗸 8	3 1 2	3 4
711	3	0	0	0	
A_2	4 4			3 2 1	5 4
A_2	1			0	0 4
A_3	5 🗸 8	13 3 10			2 5
A3	0				
b_j	4	2	3	1	F=60
$ u_j$	0	8	1	-1	

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $\bar{c}_{ij} - c_{ij} \le 0, \text{ for } x_{ij} = 0$

Check our conditions

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4 3	12-6 6 0	5 √ 8 0	$\begin{bmatrix} 3 & 1 & 2 \\ & 0 \end{bmatrix}$	3 4
A_2	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$	$\begin{array}{ccc} 12 & 12 \\ & 2 & \end{array}$		$egin{array}{cccc} 3 & 2 & 1 \\ & 0 \end{array}$	5 4
A_3	5 √ 8 0	13 \ 3 10			2 5
b_j	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

$$c_{ij}^- - c_{ij} > 0 \to \max, \ for \ x_{ij} = 0$$

Find the maximal admissible value of θ

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4 3	$12\begin{pmatrix} 6 & 6 \\ \theta & \end{pmatrix}$	5 √ 8 0	$\begin{bmatrix} 3 & 1 & 2 \\ & 0 \end{bmatrix}$	3 4
A_2	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$			$egin{array}{cccccccccccccccccccccccccccccccccccc$	5 4
A_3	5 ✓ 8 0	13 3 10 0	6 6 1		2 5
b_{j}	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

$$c_{ij} - c_{ij} > 0 \rightarrow \max, for x_{ij} = 0$$

The maximal admissible value of θ

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1		12 6 6	5 🗸 8	3 1 2	3 4
7 - 1	$3 - \theta$	heta	0	0	
A_2			5 5	3 2 1	5 4
112	$1 + \theta$	$2 - \theta$	2	0	0 7
A_3	5 √ 8	13 3 10	6 6	4 4	2 5
A3	0	0		1	
b_j	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

$$\min(3 - \theta; 2 - \theta) = 0 \Longrightarrow \theta = 2$$

$New\ feasible\ solution:$

	B_1	B_2	B_3	B_4	$ a_i $	u_i
A_1	4 4	12 6 6	5 √ 8 0	$\begin{array}{cccc} 3 & 1 & 2 \\ & 0 \end{array}$	3	4
A_2	4 4	12 12 0	5 5	$egin{array}{cccc} 3 & 2 & 1 \\ & 0 \end{array}$	5	4
A_3	5 √ 8 0	13 3 10 0	6 6	4 4	2	5
b_j	4	2	3	1	F	=48
$ u_j $	0	8	1	-1		

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1			√ 8	2	3
711			0	0	
A_2		12		1	5
A_2				0	
1	√ 8	10			2
A_3	0				
b_j	4	2	3	1	F=48
$ u_j $					

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	$egin{array}{cccc} 4 & 4 & 4 \ 1 & & & \end{array}$		5 ✓ 8 0	$\begin{array}{ccc} 3 & 2 \\ 0 & \end{array}$	3 4
A_2	4 4 3	$ \begin{array}{ccc} 6 & \checkmark & 12 \\ & 0 \end{array} $	5 5 2	3 1 0	5 4
A_3	5 ✓ 8 0	7 ✓ 10 0		4 4 1	2 5
b_j	4	2	3	1	F=48
$ u_j $	0	2	1	-1	

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$		5 √ 8 0	$\begin{array}{ccc} 3 & 2 \\ 0 & \end{array}$	3 4
A_2	4 4 3	$ \begin{array}{ccc} 6 & \checkmark & 12 \\ & 0 \end{array} $	$5 \qquad 5$ $2 \qquad - \qquad \theta$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	5 4
A_3	5 ✓ 8 0	$ \begin{array}{ccc} 7 & \checkmark & 10 \\ & 0 \end{array} $	$ \begin{array}{cccc} 6 & & 6 \\ 1 & + & \theta \end{array} $	$ \begin{array}{cccc} 4 & 4 \\ 1 & - \theta \end{array} $	2 5
b_{j}	4	2	3	1	F=48
$ u_j $	0	2	1	-1	

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1			√ 8	2	3
			0	0	
A_2		✓ 12			5
		0			
A_3	✓ 8	√ 10		4	2
	0	0		0	
b_j	4	2	3	1	F=46
$ u_j $					

 $Find\ new\ potentials:$

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$		5 ✓ 8 0	$ \begin{array}{ccc} 1 & \checkmark & 2 \\ & 0 \end{array} $	3 4
A_2	4 4 3	$ \begin{array}{ccc} 6 & \checkmark & 12 \\ & 0 \end{array} $	5 5 1	1 1 1	5 4
A_3	5 ✓ 8 0	$ \begin{array}{ccc} 7 & \checkmark & 10 \\ & 0 \end{array} $	6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 5
b_{j}	4	2	3	1	F=46
$ u_j$	0	2	1	-3	

$$\min F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$

Example (Optimal solution)

Optimal schedule problem on time interval [0, H] can be formulated as:

$$J_{1}(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_{i} - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_{i}(t + \Delta) = a_{i}(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_{i}), \ i = 1, \dots, k;$$

$$b_{j}(t + \Delta) = b_{j}(t) - \sum_{i=1}^{k} x_{ij}(t - h_{i} + t_{ij}) + \sum_{i=1}^{k} x_{ij}(t - h_{i} + t_{ij}), \ j = 1, \dots, l;$$

$$a_{i}(t) + \sum_{j=1}^{l} x_{ij}(t) = a_{i}, \ i = 1, \dots, k; \quad b_{j}(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_{j}, \ j = 1, \dots, l.$$

[0,H] is the given period for service of $B_1,B_2,...,B_j,...,B_l$ zones of area of operation. It is assumed that each one time service of each zone B_j requests includes at least b_j numbers of UAVs, $j=1,\ldots,l$. Also, assume that we have k aerobases $A_1,A_2,...,A_i,...,A_k$ with $a_1,a_2,...,a_i,...,a_k$ number of UAVs.

Optimal schedule problem on time interval [0, H] can be formulated as:

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), \ i = 1, \dots, k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^{k} x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^{k} x_{ij}(t - h_i + t_{ij}), \ j = 1, \dots, l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, \dots, k; \quad b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, \dots, l.$$

Divide the interval [0,H] by the moments $t=i\Delta,\ i=1,2,...,\nu,$ where $\nu=\left\lfloor\frac{H}{\Delta}\right\rfloor$ denotes the integer part of the fraction $\frac{H}{\Delta}$.

Optimal schedule problem on time interval [0, H] can be formulated as:

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{t} x_{ij}(t) + \sum_{j=1}^{t} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k; \quad b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$$

 Δ — is a small number

Divide the interval [0,H] by the moments $t=i\Delta,\ i=1,2,...,\nu$, where $\nu=\left[\frac{H}{\Delta}\right]$ denotes the integer part of the fraction $\frac{H}{\Delta}$.

Optimal schedule problem on time interval [0, H] can be formulated as:

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k; \quad b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$$

 Δ — is a small number

Divide the interval [0, H] by the moments $t = i\Delta, \ i = 1, 2,, \nu$, where $\nu = \left[\frac{H}{\Delta}\right]$

denotes the integer part of the fraction $\frac{H}{\Delta}$. Hence, we have the time interval partition $0 < \Delta < 2\Delta < \ldots < i\Delta < (i+1)\Delta < \ldots < H.$

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k; \quad b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$$

- $oldsymbol{\square}$ $x_{ij}(t)$ number of UAVs from $A_i \to oldsymbol{\square}$ t_{ij} flight time from $A_i \to B_j$ zone; B_j at t; $oldsymbol{\square}$ k and l are the number of
- $m{ ilde b}_j(t)$ number of UAVs that are $m{ ilde b}_i$ is the flight endurance from serving the B_j at t; A_i-th aerobase.

$$J_{1}(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_{i} - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_{i}(t + \Delta) = a_{i}(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_{i}), \ i = 1, \dots, k;$$

$$b_{j}(t + \Delta) = b_{j}(t) - \sum_{j=1}^{k} x_{ij}(t - h_{i} + t_{ij}) + \sum_{i=1}^{k} x_{ij}(t - h_{i} + t_{ij}), \ j = 1, \dots, l;$$

$$a_{i}(t) + \sum_{j=1}^{l} x_{ij}(t) = a_{i}, \ i = 1, \dots, k; \quad b_{j}(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_{j}, \ j = 1, \dots, l.$$

- $oldsymbol{x_{ij}(t)}$ number of UAVs from $A_i o oldsymbol{D}$ t_{ij} flight time from $A_i o B_j$ zone; B_j at t;
- \bullet $a_i(t)$ number of UAVs at A_i at t; aerobases and zones respectively;
- $b_j(t)$ number of UAVs that are h_i is the flight endurance from serving the B_j at t; $A_i th$ aerobase.

$$J_1(x) = \sum_{t=0}^{\nu} \boldsymbol{x_{ij}(t)}(h_i - 2t_{ij}) \rightarrow \max_{x_{ij}(t), t = 0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = \boldsymbol{a_i(t)} - \sum_{j=1}^{l} \boldsymbol{x_{ij}(t)} + \sum_{j=1}^{l} x_{ij}(t - h_i), \ i = 1, \dots, k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^{k} x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^{k} x_{ij}(t - h_i + t_{ij}), \ j = 1, \dots, l;$$

$$\boldsymbol{a_i(t)} + \sum_{j=1}^{l} \boldsymbol{x_{ij}(t)} = a_i, \ i = 1, \dots, k; \quad b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, \dots, l.$$

$$\boldsymbol{x_{ij}(t)} - \text{number of UAVs from } A_i \rightarrow \boldsymbol{y} \quad t_{ij} - \text{flight time from } A_i \rightarrow B_j \text{ zone};$$

$$\boldsymbol{B_j} \text{ at } t;$$

$$\mathbf{x}_{ij}(t)$$
- number of UAVs from $A_i o \mathbf{D}$ t_{ij} - flight time from $A_i o B_j$ zone

- k and l are the number of $a_i(t)$ - number of UAVs at A_i at t; aerobases and zones respectively;
- $b_i(t)$ number of UAVs that are lacksquare h_i is the flight endurance from serving the B_i at t; $A_i - th$ aerobase.

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$
$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), \ i = 1, \dots, k;$$

$$b_{j}(t+\Delta) = b_{j}(t) - \sum_{i=1}^{k} x_{ij}(t-h_{i}+t_{ij}) + \sum_{i=1}^{k} x_{ij}(t-h_{i}+t_{ij}), \ j=1,...,l;$$

$$a_{i}(t) + \sum_{j=1}^{l} x_{ij}(t) = a_{i}, \ i=1,...,k; \quad b_{j}(t) + \sum_{i=1}^{k} x_{ij}(t-t_{ij}) = b_{j}, \ j=1,...,l.$$

$$x_{ij}(t) \text{- number of UAVs from } A_{i} \rightarrow b_{j} \text{ zone};$$

$$B_{j} \text{ at } t;$$

$$k \text{ and } l \text{ are the number of } b_{j}(t) = b_{j}(t) + b_{j}(t) +$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k; \quad b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$$

- $a_i(t)$ number of UAVs at A_i at t; aerobases and zones respectively;
- $b_i(t)$ number of UAVs that are h_i is the flight endurance from serving the B_i at t; $A_i - th$ aerobase.

$$J_{1}(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_{i} - 2t_{ij}) \rightarrow \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_{i}(t + \Delta) = a_{i}(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_{i}), \ i = 1, \dots, k;$$

$$b_{j}(t + \Delta) = b_{j}(t) - \sum_{i=1}^{k} x_{ij}(t - h_{i} + t_{ij}) + \sum_{i=1}^{k} x_{ij}(t - h_{i} + t_{ij}), \ j = 1, \dots, l;$$

$$a_{i}(t) + \sum_{j=1}^{l} x_{ij}(t) = a_{i}, \ i = 1, \dots, k; \quad b_{j}(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_{j}, \ j = 1, \dots, l.$$

- $x_{ij}(t)$ number of UAVs from $A_i \to \mathcal{P}$ t_{ij} flight time from $A_i \to B_j$ zone; B_i at t;
- $a_i(t)$ number of UAVs at A_i at t;
- $b_i(t)$ number of UAVs that are h_i is the flight endurance from serving the B_i at t;
- k and l are the number of aerobases and zones respectively;
 - $A_i th$ aerobase.

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$
$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), \ i = 1, \dots, k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^{k} x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^{k} x_{ij}(t - h_i + t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k; \quad b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$$

- lacksquare $x_{ij}(t)$ number of UAVs from $A_i o lacksquare$ t_{ij} flight time from $A_i o B_j$ zone; B_i at t; k and l are the number of
- $a_i(t)$ number of UAVs at A_i at t; aerobases and zones respectively;
- $b_j(t)$ number of UAVs that are $oldsymbol{I}$ by h_i is the flight endurance from serving the B_j at t;
 - $A_i th$ aerobase.

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t) \underbrace{(h_i + 2t_{ij})}_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t + b_i) i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t + h_i) + t_{ij}) + \sum_{i=1}^k x_{ij}(t + h_i) + t_{ij}), j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k; \quad b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$$

- lacksquare $x_{ij}(t)$ number of UAVs from $A_i o lacksquare$ t_{ij} flight time from $A_i o B_j$ zone; B_i at t;
- $a_i(t)$ number of UAVs at A_i at t;
- $b_j(t)$ number of UAVs that are $oldsymbol{D}_i$ is the flight endurance from serving the B_i at t;
- k and l are the number of aerobases and zones respectively;
 - $A_i th$ aerobase.

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t+\Delta) = a_i(t) - \sum_{j=1}^l x_{ij}(t) + \sum_{j=1}^l x_{ij}(t-h_i), \ i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The number of UAVs at A_i aerobase at the next moment $t + \Delta$ is composed by :

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The number of UAVs at A_i aerobase at the next moment $t + \Delta$ is composed by :

by the UAVs that are being at the previous moment t

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), \ i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The number of UAVs at A_i aerobase at the next moment $t + \Delta$ is composed by :

- by the UAVs that are being at the previous moment t
- lacksquare UAVs that are returned during the period $[t,t+\Delta]$

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The number of UAVs at A_i aerobase at the next moment $t + \Delta$ is composed by :

- by the UAVs that are being at the previous moment t
- lacksquare UAVs that are returned during the period $[t,t+\Delta]$
- UAVs that were send to zones at the moment t

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The initial conditions are $a_i(0) = a_i$, i = 1, 2, ..., k.

- by the UAVs that are being at the previous moment t
- UAVs that are returned during the period $[t, t + \Delta]$
- UAVs that were send to zones at the moment t

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^l x_{ij}(t) + \sum_{j=1}^l x_{ij}(t - h_i), \ i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The number of UAVs that will serve the B_j zone at the next moment $t + \Delta$

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), \ i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The number of UAVs that will serve the B_j zone at the next moment $t + \Delta$

- UAVs that are serving this zone at before time moment t and having sufficient flight endurance;
- plus UAVs that reach this zone during the period $[t, t + \Delta]$;
- minus UAVs that are out-of-fuel to the moment t

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^l x_{ij}(t) + \sum_{j=1}^l x_{ij}(t - h_i), \ i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The initial conditions are $b_j(0) = b_j$, j = 1, 2, ..., l.

- UAVs that are serving this zone at before time moment t and having sufficient flight endurance;
- plus UAVs that reach this zone during the period $[t, t + \Delta]$;
- lacktriangle minus UAVs that are out-of-fuel to the moment t

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t+\Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t-h_i), i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

The variables $x_{ij}(t)$ at each moment t satisfy the following conditions:

The first one images the fact that the being UAVs can be allocated among zones. The second one means that at each moment the service request should be satisfied.

Objective functions

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

- 1. The total service time for multiple zones
 - 2. The total number of UAVs "circles"
- 3. The total unobservable time for multiple zones

Objective functions

$$J_2(x) = \sum_{t=0}^{\nu} x_{ij}(t)$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

- 1. The total service time for multiple zones
 - 2. The total number of UAVs "circles"
- 3. The total unobservable time for multiple zones

Objective functions

$$J_3(x) = \sum_{t=0}^{\nu} x_{ij}(t)(H - h_i - 2t_{ij})$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

- 1. The total service time for multiple zones
 - 2. The total number of UAVs "circles"
- 3. The total unobservable time for multiple zones

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

- $0 \le y \le T$, the portion of "resource" assigned for the zone $0 \le k \le n$
- $f_i(t_i)$ the "benefit" of this assignment (probability of targets detection in Z_i or the square of observed area in Z_i)

Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

$$B_k(y) = \max_{t_i} \sum_{i=2}^{k} f_i(t_i),$$

$$\sum_{i=2}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

Let $z, \ 0 \le z \le y$ be the number of UAVs assigned for the zone Z_k . Then benefit is equal $f_k(z)$. The rest UAVs y-z should be distributed among the remained (k-1) zones. And optimal distribution among (k-1) zones is determined by $B_{k-1}(y-z)$.

$$P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

$$B_k(y) = \max_{t_i} \sum_{i=2}^{k} f_i(t_i),$$

$$\sum_{i=2}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

Therefore, if the given resource is equal y, then after the assignment of z portion for zone Z_k the total profit of all k zones is $f_k(z) + B_{k-1}(y-z)$

$$B_k(y) = \max_{t_i} \sum_{i=2}^{k} f_i(t_i),$$

$$\sum_{i=2}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

Invariant embedding of the problem into
$$P(k, y), k \in [1; n]; y \in [0; T],$$
 then define the Bellman function;

Construct the Bellman equation;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

Hence, the optimal distribution z_k^0 , $0 \le z_k^0 \le y$, for the given zone Z_k is determined by

$$f_k(z_k^0) + B_{k-1}(y - z_k^0) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y - z) \right]$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

$$B_k(y) = \max_{t_i} \sum_{i=2}^{k} f_i(t_i),$$

$$\sum_{i=2}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function:
- Construct the Bellman equation;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

 $\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$

Optimal distribution of the initially given resource y among all k zones is equal $B_k(y)$

$$B_k(y) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y-z) \right]$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

$$B_k(y) = \max_{t_i} \sum_{i=2}^{k} f_i(t_i),$$

$$\sum_{i=2}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

Bellman equation

$$B_k(y) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y-z) \right]$$

$$B_1(y) = \max_{t_1} \sum_{i=1}^{1} f_1(t_1),$$

$$\sum_{i=1}^{1} t_1 \le y, \ t_1 \ge 0,$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

Bellman equation

$$B_k(y) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y-z) \right]$$

$$B_1(y) = f_1(y)$$

$$\sum_{i=1}^{n} f_i(t_i) \to \max$$

$$\sum_{i=1}^{n} t_i \le T, \ t_i \ge 0, i = 1, ..., n$$

Bellman equation

$$B_k(y) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y-z) \right]$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
- Solve the Bellman equation, and apply the solution of it to initial problem

$$\Rightarrow P(k,y): \sum_{i=1}^{k} f_i(t_i) \to \max,$$

$$\sum_{i=1}^{k} t_i \le y, \ t_i \ge 0, i = 1, ..., k$$

$$B_1(y) = f_1(y)$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
 - Solve the Bellman equation, and apply the solution of it to initial problem

$$k = 2: B_2(y) = \max_{0 \le z \le y} \left[f_2(z) + B_1(y - z) \right]$$
$$= \max_{0 \le z \le y} \left[f_2(z) + f_1(y - z) \right]$$

Bellman equation

$$B_k(y) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y-z) \right]$$

$$B_1(y) = f_1(y)$$

- Invariant embedding of the problem into $P(k,y), k \in [1;n]; y \in [0;T],$ then define the Bellman function;
- Construct the Bellman equation;
 - Solve the Bellman equation, and apply the solution of it to initial problem

$$k = 2: B_2(y) = \max_{0 \le z \le y} \left[f_2(z) + B_1(y - z) \right]$$
$$= \max_{0 \le z \le y} \left[f_2(z) + f_1(y - z) \right]$$

$$k = 3$$
:

$$B_3(y) = \max_{0 \le z \le y} \left[f_3(z) + B_2(y - z) \right]$$

Bellman equation

$$B_k(y) =$$

$$\max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y-z) \right]$$

$$B_1(y) = f_1(y)$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
- Solve the Bellman equation, and apply the solution of it to initial problem

$$k = 2: B_2(y) = \max_{0 \le z \le y} \left[f_2(z) + B_1(y - z) \right]$$

$$= \max_{0 \le z \le y} \left[f_2(z) + f_1(y - z) \right]$$

$$B_3(y) = \max_{0 \le z \le y} \left[f_3(z) + B_2(y - z) \right]$$

Proceeding sequentially this procedure we will determine the functions

$$B_4(y), B_5(y), ..., B_n(y).$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
 - Solve the Bellman equation, and apply the solution of it to initial problem

$$k = 2: B_2(y) = \max_{0 \le z \le y} \left[f_2(z) + B_1(y - z) \right]$$

$$= \max_{0 \le z \le y} \left[f_2(z) + f_1(y - z) \right]$$

$$B_3(y) = \max_{0 \le z \le y} \left[f_3(z) + B_2(y - z) \right]$$

Proceeding sequentially this procedure we will determine the functions

$$B_4(y), B_5(y), ..., B_n(y).$$

In final, the function value $B_n(T)$ presents the maximal profit for the initial allocation problem.

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
- Solve the Bellman equation, and apply the solution of it to initial problem

Optimal distribution z_k^0 , $0 \le z_k^0 \le y$, for the given zone Z_k is determined by

$$f_k(z_k^0) + B_{k-1}(y - z_k^0) = \max_{0 \le z \le y} \left[f_k(z) + B_{k-1}(y - z) \right]$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
- Solve the Bellman equation, and apply the solution of it to initial problem

Put $k=n,\;y=T$ and find the value $t_n^0\doteq z^0(T)$ for the zone Z_n

$$f_n(z_n^0) + B_{n-1}(T - z_n^0) = \max_{0 \le z \le T} \left[f_n(z) + B_{n-1}(T - z) \right]$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
- Solve the Bellman equation, and apply the solution of it to initial problem

Put $k=n,\;y=T$ and find the value $t_n^0 \doteq z^0(T)$ for the zone Z_n

$$f_n(z_n^0) + B_{n-1}(T - z_n^0) = \max_{0 \le z \le T} \left[f_n(z) + B_{n-1}(T - z) \right]$$

$$k=n-1,\;y=T-t_n^0\;{\rm and}$$
 find the value $t_{n-1}^0\doteq z^0(T-t_n^0)$

$$f_{n-1}(z_{n-1}^{0}) + B_{n-2}(T - z_{n-1}^{0}) = \max_{0 \le z \le T - t_{n}^{0}} \left[f_{n-1}(z) + B_{n-2}(T - t_{n}^{0} - z) \right]$$

$$t_n^0, t_{n-1}^0, \ldots, t_2^0, t_1^0$$

Put $k=n,\;y=T$ and find the value $t_n^0\doteq z^0(T)$ for the zone Z_n

$$f_n(z_n^0) + B_{n-1}(T - z_n^0) = \max_{0 \le z \le T} \left[f_n(z) + B_{n-1}(T - z) \right]$$

- Invariant embedding of the problem into $P(k, y), k \in [1; n]; y \in [0; T],$ then define the Bellman function;
- Construct the Bellman equation;
- Solve the Bellman equation, and apply the solution of it to initial problem

Continue this procedure we will find

the optimal solution of our problem

$$k=n-1,\;y=T-t_n^0\;{\rm and}$$
 find the value $t_{n-1}^0\doteq z^0(T-t_n^0)$

$$f_{n-1}(z_{n-1}^{0}) + B_{n-2}(T - z_{n-1}^{0}) = \max_{0 \le z \le T - t_{n}^{0}} \left[f_{n-1}(z) + B_{n-2}(T - t_{n}^{0} - z) \right]$$

The problem is to find an optimal allocation of the given UAVs to serve the given zone Z_1, Z_2, Z_3 such that to maximize the total "benefit" (for example, the "benefit" of service in the given zone for each UAV can be interpreted as the number of the detected targets).

$$n = 3, T = 5$$

t	0	1	2	3	4	5
$f_1(t)$	0	1	2	3	4	5
$f_2(t)$	0	0	1	2	4	7
$f_3(t)$	0	2	2	3	3	5

By the definition of Bellman function the optimal solution of the problem is determined by the function value

$$B_3(5) = \max_{0 \le z \le 5} \left[f_3(z) + B_2(5-z) \right] =$$

$$\max \left\{ f_3(0) + B_2(5); f_3(1) + B_2(4); f_3(2) + B_2(3); f_3(3) + B_2(2); f_3(4) + B_2(1); f_3(5) + B_2(0) \right\}$$

where
$$B_2(y)$$
 are determined by $B_2(y) = \max_{0 \le z \le y} \left[f_2(z) + B_1(y-z) \right]$

 $B_1(y)$ from initial conditions

$$B_1(y) = f_1(y) : B_1(0) = 0, \ B_1(1) = 1, \ B_1(2) = 2, \ B_1(3) = 3, \ B_1(4) = 4, \ B_1(5) = 5.$$

n	=	3,	T	=	5
---	---	----	---	---	---

t	0	1	2	3	4	5
$f_1(t)$	0	1	2	3	4	5
$f_2(t)$	0	0	1	2	4	7
$f_3(t)$	0	2	2	3	3	5

y	0	1	2	3	4	5
$B_1(y)$	0	1	2	3	4	5
$B_2(y)$	0	1(0)	2(0)	3(0)	4(0,4)	7(5)
$B_3(y)$	0	2(1)	3(1)	4(1)	5(1)	7(0)

Bellman function values $B_k(y)$ is accompanied (in braces) by the arguments $z_k^0(y)$ at which this value is achieved.

$$B_3(5) = \max \left\{ f_3(0) + B_2(5); f_3(1) + B_2(4); f_3(2) + B_2(3); f_3(3) + B_2(2); f_3(4) + B_2(1); \right\}$$

n	=	3,	T	=	5
---	---	----	---	---	---

$oxed{t}$	0	1	2	3	4	5
$f_1(t)$	0	1	2	3	4	5
$f_2(t)$	0	0	1	2	4	7
$f_3(t)$	0	2	2	3	3	5

y	0	1	2	3	4	5
$B_1(y)$	0	1	2	3	4	5
$B_2(y)$	0	1(0)	2(0)	3(0)	4(0,4)	7(5)
$B_3(y)$	0	2(1)	3(1)	4(1)	5(1)	7(0)

The maximal efficiency is achieved at $t_3^0 \doteq z^0(5) = 0$. Hence, the rest 5 - 0 = 5 of UAVs should be distributed between zones Z_2 and Z_1 .

$$B_3(5) = f_3(0) + B_2(5) = 7$$

n	=	3,	T	=	5
---	---	----	---	---	---

$oxed{t}$	0	1	2	3	4	5
$f_1(t)$	0	1	2	3	4	5
$f_2(t)$	0	0	1	2	4	7
$f_3(t)$	0	2	2	3	3	5

y	0	1	2	3	4	5
$B_1(y)$	0	1	2	3	4	5
$B_2(y)$	0	1(0)	2(0)	3(0)	4(0,4)	7(5)
$B_3(y)$	0	2(1)	3(1)	4(1)	5(1)	7(0)

The maximal efficiency is achieved at $t_2^0 \doteq z^0(5) = 5$. Hence, for the zone Z_1 is no UAVs for their service.

$$Z_3: B_3(5) = f_3(0) + B_2(5) = 7$$

 $Z_2: B_2(5) = 7$

	n	=	3,	T	=	5
--	---	---	----	---	---	---

t	0	1	2	3	4	5
$f_1(t)$	0	1	2	3	4	5
$f_2(t)$	0	0	1	2	4	7
$f_3(t)$	0	2	2	3	3	5

y	0	1	2	3	4	5
$B_1(y)$	0	1	2	3	4	5
$B_2(y)$	0	1(0)	2(0)	3(0)	4(0,4)	7(5)
$B_3(y)$	0	2(1)	3(1)	4(1)	5(1)	7(0)

The maximal efficiency is achieved at $t_2^0 \doteq z^0(5) = 5$. Hence, for the zone Z_1 is no UAVs for their service.

$$Z_3: B_3(5) = f_3(0) + B_2(5) = 7$$

 $Z_2: B_2(5) = 7$

Optimal distribution of five UAVs: $t_1^0=0,\ t_2^0=5,\ t_3^0=0.$

DP advantages/disatvantages

- Objectives with very general functional forms may be handled and a global optimal solution is always obtained
- "Curse of dimensionality"- the number of states grows exponentially with the number of dimensions of the problem