Course: Introduction to AI

Prof. Ahmed Guessoum The National Higher School of AI

Chapter 8

First-Order Logic

Outline

- Representation Revisited
 - Combining the best of formal and natural languages
- Syntax and Semantics of First-Order Logic
 - Models for first-order logic
 - Symbols and interpretations
 - Terms
 - Atomic sentences
 - Complex sentences
 - Quantifiers

Outline

- Equality
- An alternative semantics?
- Using First-Order Logic
 - Assertions and queries in first-order logic
 - The kinship domain
 - Numbers, sets, and lists
 - The Wumpus world
- Knowledge Engineering in First-Order Logic
 - The knowledge-engineering process
 - The electronic circuits domain (self study)

Introduction

- In the previous chapter, we saw :
 - How an KB agent can <u>represent its world</u> and deduce what actions to take.
 - That <u>propositional logic</u> can be used <u>as</u> representation language.
 - That <u>PL</u> sufficed to <u>illustrate</u> the <u>basic concepts of</u> <u>logic and KB agents</u>.
- PL does <u>not</u> allow a <u>representation</u> of the knowledge of complex environments in a <u>concise way</u>.
- In this chapter, we examine First-Order Logic (FOL), which is sufficiently expressive to represent a good deal of our commonsense knowledge.

Representation Revisited

- Programming languages (C++, Java, etc.) are the most used formal languages.
 - Programs represent only computational processes.
 - Data structures in programmes represent facts; e.g. a 4×4 array to represent the contents of the wumpus world and a statement like World[2,2]←Pit to assert that there is a pit in [2,2].
 - <u>Databases</u> allow to <u>store and retrieve data</u>.
 - Programming languages <u>lack any general mechanism for</u> <u>deriving facts from others</u>: an update to a data structure is done by a <u>domain-specific procedure</u> as designed <u>by the</u> <u>programmer</u> from his own knowledge of the domain.
- This **procedural** approach can be contrasted with the **declarative** nature of propositional logic, in which <u>knowledge</u> and inference are separate, and inference is entirely <u>domain</u> independent.

Representation Revisited

- Data structures in programs and databases do not allow such statements as:
 - "There is a pit in [2,2] or [3,1]" or
 - "If the wumpus is in [1,1] then he is not in [2,2]."
- Advantages of Propositional Logic:
 - It is a <u>declarative language</u>: one states <u>what is *true* about the world.</u>
 - Powerful enough to deal with partial information, using disjunction and negation.
 - Its property of **compositionality**: In a compositional language, the meaning of a sentence is a function of the meaning of its parts.
- <u>Drawback of PL</u>: it <u>lacks the expressive power to concisely</u> describe an environment with many objects.
- We had to write 1 rule about breezes and pits for each square:

$$B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$$

Combining the best of formal and natural languages

- In natural language we refer to objects, relations and functions to describe the "world":
 - Objects: people, houses, numbers, theories, Larbi BenMhidi, colours, chess games, wars, centuries . . .
 - Relations: can be unary relations or **properties** such as red, round, prime, multistoried . . ., or more general n-ary relations such as brother of, bigger than, inside, part of, has colour, occurred after, owns, comes between, . . .
 - <u>Functions</u>: father of, best friend, beginning of,

. .

Combining the best of formal and NL

- Assertions in NL can be thought of as referring to objects and properties or relations.
- "One plus two equals three."
 - Objects: one, two, three;
 Relation: equals; Function: plus.
- "Squares neighbouring the wumpus are smelly."
 - Objects: wumpus, squares; <u>Property</u>: smelly; <u>Relation</u>: neighbouring.
- "Good Khalifa Jawad ruled The Land in 200."
 - Objects: Jawad, The Land, 200; <u>Relation</u>: ruled; <u>Properties</u>: Good Khalifa.
- The language of first-order logic, is built around objects and relations.
- It can express facts about some or all of the objects in the universe

Syntax and Semantics of FOL

- Recall that <u>models</u> for propositional logic <u>link proposition</u> <u>symbols</u> to <u>truth values</u>.
- Models for FOL are much more interesting.
- They have objects in them! The domain of a model is the set of objects or domain elements it contains. The domain is required to be nonempty—every possible world must contain at least one object. Example:
- Objects: Harun Rachid, The Wise, Khalifa from 149 to 193; his son Khalifa Mohamed Jawad, ruled from 193 to 198; the left legs of Rachid and Jawad; and a crown
- Relations: Rachid and Jawad are brothers.
- Formally, a relation is a set of tuples of objects that are related. So: {< Harun Rachid, Khalifa Jawad Mohamed>,
 Khalifa Jawad Mohamed, Harun Rachid>}

Figure 8.2 A model containing five objects, two binary relations, three unary relations (indicated by labels on the objects), and one unary function, left-leg.

Syntax and Semantics of FOL

- A crown on head of Jawad,
 < the crown, King Jawad>
- "brother" and "on head" are binary relations.
- Unary relations:
 - the "person" property is true for Rachid and Jawad;
 - "khalifa" property true for Jawad only (say after death of Rachid);
 - the "crown" property is true only of the crown.
- Certain kinds of relationships are best considered as functions (mappings):
 - ◆ <Rachid the Wise> → Rachid's left leg
 - ◆ <Khalifa Jawad> → Jawad's left leg .

Symbols and interpretations

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
          AtomicSentence \rightarrow Predicate | Predicate(Term, ...) | Term = Term
         ComplexSentence \rightarrow (Sentence) \mid [Sentence]
                                      \neg Sentence
                                      Sentence \wedge Sentence
                                      Sentence V Sentence
                                      Sentence \Rightarrow Sentence
                                      Sentence \Leftrightarrow Sentence
                                       Quantifier Variable, . . . Sentence
                        Term \rightarrow Function(Term, ...)
                                       Constant
                                       Variable:
                 Quantifier \rightarrow \forall \mid \exists
                   Constant \rightarrow A \mid X_1 \mid John \mid \cdots
                    Variable \rightarrow a \mid x \mid s \mid \cdots
                   Predicate \rightarrow True \mid False \mid After \mid Loves \mid Raining \mid \cdots
                   Function \rightarrow Mother | LeftLeq | \cdots
OPERATOR PRECEDENCE : \neg,=,\wedge,\vee,\Rightarrow,\Leftrightarrow
```

Figure 8.3 The syntax of first-order logic with equality, specified in Backus-Naur form

Symbols and interpretations

For example,

- constant symbols: Rachid and Jawad;
- Predicate symbols: Brother, OnHead, Person, Khalifa, and Crown;
- Function symbol: LeftLeg.
- Each predicate and function symbol comes with an arity that fixes the number of arguments.
- As in propositional logic, every <u>model</u> must provide the information required to <u>determine if any given sentence is</u> <u>true or false</u>.
- → in addition to its objects, relations, and functions, each model includes an interpretation that specifies exactly which objects, relations and functions are referred to by the constant, predicate, and function symbols.

Symbols and interpretations

- Intended interpretation: what each symbol is really referring to.
 - Rachid: Harun Rachid the wise Khalifa
 - Jawad: Khalifa Mohamed Jawad
 - Brother: refers to the brotherhood relation
 - OnHead: refers to the "on head" relation that holds between the crown and Khalifa Jawad.
 - Likewise for Person, Khalifa, and Crown
 - LeftLeg function....
- Obviously, other interpretations of the symbols, relations, and functions are possible. We keep the "intuitive" one.
- In summary, a model in FOL consists of a set of objects and an interpretation that maps constant symbols to objects, predicate symbols to relations on those objects, and function symbols to functions on those objects.

15

Terms & Atomic Sentences

- **Terms**: The formal semantics of terms is straightforward. Consider a term $f(t_1, \ldots, t_n)$.
 - The function symbol f refers to some function in the model (call it F);
 - the argument terms refer to objects in the domain (call them d_1, \ldots, d_n); and
 - the term as a whole refers to the object that is the value of the function F applied to d_1, \ldots, d_n .
 - Example: LeftLeg(Jawad) refers to Khalifa Jawad's left leg.
- **Atomic sentences** (or **atom** for short): it is formed from a predicate symbol optionally followed by a parenthesized list of terms, e.g. *Brother* (*Rachid* , *Jawad*).
- Atomic sentences can have complex terms as arguments:
 Married(Father (Rachid), Mother (Jawad))

- An atomic sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects referred to by the arguments.
- More complex sentences can be constructed using logical connectives with the same syntax and semantics as in propositional calculus.
 - ¬Brother (LeftLeg(Rachid), Jawad)
 - Brother (Rachid, Jawad) ∧ Brother (Jawad, Rachid)
 - Khalifa(Rachid) ∨ Khalifa(Jawad)
 - ¬Khalifa(Rachid) ⇒ Khalifa(Jawad)
- Quantifiers: Universal and existential
- Universal quantification (∀): in FOL, they allow to easily express statements like "Squares neighbouring the wumpus are smelly" and "All khalifas are persons":
 - $\forall x \text{ khalifa}(x) \Rightarrow \text{Person}(x)$.

- By convention, variables are lowercase letters.
- A variable is a term → a variable can be the argument of a function. E.g., LeftLeg(x).
- A term with no variables is called a ground term.
- <u>Vx P</u> is true in a given model if P is true in all possible **extended interpretations** constructed from the interpretation given in the model, where each extended interpretation specifies a domain element to which x refers.
- E.g. consider the model shown in Figure 8.2 and the intended interpretation that goes with it. The interpretation can be extended in five ways:

```
x \rightarrow Rachid the Wise, \qquad x \rightarrow Khalifa Jawad,
```

 $x \rightarrow Rachid's left leg, \qquad x \rightarrow Jawad's left leg,$

 $x \rightarrow \text{the crown.}$

- The universally quantified sentence
 ∀x Khalifa(x) ⇒ Person(x) is true in the original model if the sentence Khalifa (x) ⇒ Person(x) is true under each of the five extended interpretations.
- That is, the universally quantified sentence is equivalent to asserting the following five sentences:
- 1. Rachid the Wise is a Khalifa \Rightarrow Rachid the Wise is a person.
- 2. Jawad is a Khalifa \Rightarrow Jawad is a person.
- 3. Rachid's left leg is a Khalifa \Rightarrow Rachid's left leg is a person.
- 4. Jawad's left leg is a Khalifa ⇒ Jawad's left leg is a person.
- 5. The crown is a Khalifa \Rightarrow the crown is a person.
- Note that the 2nd statement is indeed intended but not the others. But since they are all implications, even if the premise is false, the conclusion is true.

- Existential quantification (∃): e.g. Khalifa Jawad has a crown on his head:
 - $\exists x Crown(x) \land OnHead(x, Jawad)$.
- <u>∃x P is true</u> in a given model <u>if P is true in *at least one* extended interpretation that assigns x to a domain element.</u>
- That is, at least one of the following is true:
- 1. Rachid the Wise is a crown A Rachid the Wise is on Jawad's head;
- 2. Khalifa Jawad is a crown A Khalifa Jawad is on Jawad's head;
- 3. Rachid's left leg is a crown A Rachid's left leg is on Jawad's head;
- 4. Jawad's left leg is a crown A Jawad's left leg is on Jawad's head;
- 5. The crown is a crown A the crown is on Jawad's head.
- The fifth assertion is true, so the existentially quantified sentence is true.
- Just as ⇒ appears to be the natural connective to use with ∀,
 ∧ is the natural connective to use with ∃.

Nested quantifiers:

- "Brothers are siblings" $\forall x \forall y \text{ Brother } (x, y) \Rightarrow \text{Sibling}(x, y)$
- Siblinghood is a symmetric relationship:
 ∀ x, y Sibling(x, y) ⇔ Sibling(y, x)
- "Everybody loves somebody": ∀ x ∃ y Loves(x, y)
- "There is someone who is loved by everyone":
 ∃ y ∀ x Loves(x, y)
- Some confusion can arise when two quantifiers are used with the same variable name. Consider the sentence

```
\forall x (Crown(x) \lor (\exists x Brother (Rachid, x)))
```

- The rule is that a variable belongs to the innermost quantifier that mentions it; then it will not be subject to any other quantification.
- So the innermost x is not impacted by ∀ x → the sentence is equivalent to ∀ x (Crown(x) ∨ (∃ z Brother (Rachid, z)))

- Connections between ∀ and ∃: through negation
- $\forall x \neg Likes(x, Peas)$ is equivalent to $\neg \exists x Likes(x, Peas)$
- "Everyone likes ice cream": ∀x Likes(x, IceCream) is equivalent to ¬∃x ¬Likes(x, IceCream)
- De Morgan's rules:

$$\forall x \neg P \equiv \neg \exists x P$$
 $\neg (P \lor Q) \equiv \neg P \land \neg Q$ $\neg \forall x P \equiv \exists x \neg P$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\forall x P \equiv \neg \exists x \neg P$ $P \land Q \equiv \neg (\neg P \lor \neg Q)$ $\exists x P \equiv \neg \forall x \neg P$ $P \lor Q \equiv \neg (\neg P \land \neg Q)$

- <u>Equality</u>: this symbol is used to say <u>two terms refer to the</u> <u>same object</u>. E.g., Father(Jawad) = Hassan
- To say that Rachid has at least two brothers, we would write
 ∃ x, y Brother (x, Rachid) ∧ Brother (y, Rachid) ∧ ¬(x=y).

An alternative semantics?

- Suppose that we believe that Rachid has two brothers, Jawad and Ghassan.
- Writing Brother (Jawad, Rachid) ∧ Brother (Ghassan, Rachid) is not good enough!
- It does not exclude other brothers.
- The correct translation of "Rachid's brothers are Jawad and Ghassan" is as follows:

```
Brother (Jawad, Rachid) \land Brother (Ghassan, Rachid) \land Jawad \ne Ghassan \land \forall x Brother (x, Rachid) \Rightarrow (x= Jawad \lor x= Ghassan)
```

 Can we devise a semantics that allows a more straightforward logical expression?

An alternative semantics?

- 1. Unique-names assumption: Every constant symbol is taken to refer to a distinct object.
- **2. Closed-world assumption:** Atomic sentences not known to be true are assumed to be false.
- **3. Domain closure**: Each model contains no more domain elements than those named by the constant symbols.
- Under the resulting semantics, called database semantics to distinguish it from the standard semantics of FOL, the sentence Brother (Jawad, Rachid) A Brother (Ghassan, Rachid) does indeed state that Rachid's two brothers are Jawad and Ghassan.
- Note: there is no one "correct" semantics for logic.
- The usefulness of any proposed semantics depends on:
 - Its <u>conciseness</u> and <u>intuitiveness</u>, and
 - Ease and <u>naturalness</u> of the corresponding <u>rules of inference</u>

Using First-Order Logic

- Assertions and queries in first-order logic: We will use TELL and ASK as for Propositional Logic:
- Jawad is a Khalifa, Rachid is a person, and all Khalifas are persons.
 - TELL(KB, Khalifa(Jawad)) .
 - TELL(KB, Person(Rachid)) .
 - TELL(KB, $\forall x \, Khalifa(x) \Rightarrow Person(x)$).
- Query the KB using ASK. E.g.,
 - ASK(KB, Khalifa(Jawad)) returns true
- Questions asked with ASK are called queries or goals.
- A query that is logically entailed by the KB should return true.
 - ASK(KB, Person(Jawad)) returns true

Assertions and queries in FOL

- Asking quantified queries:
 - ASK(KB, ∃x Person(x)) returns true
- This is not useful because we would like to know this x who is a Person.
- Another function, ASKVARS, does this:
 - ASKVARS(KB, Person(x)) can return all such x
 - Here we get two answers: {x/Jawad} and {x/Rachid}
 - Such an answer is called a substitution or binding list.
- ASKVARS will be used with KBs consisting of Horn Clauses only.

The kinship (family relations) domain

- There are binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, etc.
- Functions: *mother, father*
- Different sentences about the kinship domain, e.g.

```
\forall m,c Mother(c)=m\Leftrightarrow Female(m) \land Parent(m,c)
\forall w,h Husband(h,w)\Leftrightarrow Male(h) \land Spouse(h,w)
\forall x Male(x)\Leftrightarrow \neg Female(x)
\forall p,c Parent(p,c)\Leftrightarrow Child(c,p)
\forall g,c Grandparent(g,c)\Leftrightarrow \exists p \ Parent(g,p) \land Parent(p,c)
\forall x,y Sibling(x,y)\Leftrightarrow x\neq y \land \exists p \ Parent(p,x) \land Parent(p,y)
```

- These sentences can be viewed as axioms of the kinship domain.
- These axioms provide the basic factual information from which useful conclusions can be derived.

The kinship (family relations) domain

- The definitions "bottom out" at a basic set of predicates
 (Child, Spouse, and Female) in terms of which the others are
 ultimately defined.
- This basic set of (primitive) predicates is not unique.
- **Theorems** are sentences that are entailed by the axioms. E.g. $\forall x,y$ Sibling $(x,y) \Leftrightarrow$ Sibling(y,x)
- It can be entailed from the definition of sibling.
- Some axioms are definitions (Mother, Husband, Male, Parent, Grandparent, Sibling)
- Other axioms are not definitions; e.g. about the predicate Person because no complete information to define it.
- <u>Axioms can</u> also <u>be</u> plain <u>facts</u>, such as *Male(Jim)* and Spouse(Jim, Laura).
- Note that ¬Spouse(George, Laura) is not inferred even if we add Jim ≠ George. An axiom is missing for this.

- Let us describe the theory of natural numbers.
- We need
 - a predicate NatNum, true for natural numbers
 - a constant symbol 0 and
 - one function symbol, *S* (*successor*).
- Peano axioms recursively define natural numbers & addition.
 - NatNum(0) .
 - $\forall n \ NatNum(n) \Rightarrow NatNum(S(n))$
- So the natural numbers are 0, S(0), S(S(0)), etc.
- We also need axioms to constrain the successor function:
 - $\forall n \ 0 \neq S(n)$ $\forall m,n \ m=n \Rightarrow S(m)=S(n)$
- We define addition in terms of the successor function:

$$\forall m \ NatNum(m) \Rightarrow +(0,m) = m$$
.

$$\forall m, n \ NatNum(m) \land \ NatNum(n) \Rightarrow +(S(m), n) = S(+(m, n))$$

 Using infix notation for + and S(n) as n+1, the last axiom becomes:

```
\forall m, n \ NatNum(m) \land NatNum(n) \Rightarrow

(m+1) + n = (m+n) + 1
```

- This axiom reduces addition to a repeated application of the successor function.
- Once we have addition, it is straightforward to define multiplication as repeated addition, exponentiation as repeated multiplication, integer division and remainders, prime numbers, and so on.
- the whole of number theory can be built up from one constant, one function, one predicate and four axioms.

30

- A theory of sets:
- The empty set is a <u>constant</u> written as {}.
- There is one <u>unary predicate</u>, **Set**, which is true of sets.
- The <u>binary predicates</u> are
 - x∈ s (x is a member of set s)
 - $s1 \subseteq s2$ (set s1 is a subset, not necessarily proper, of s2).
- The <u>binary functions</u> are
 - \$1 ∩ \$2\$ (intersection of two sets),
 - ◆ s1 ∪ s2 (union of two sets), and
 - {x/s} (the set resulting from adjoining element x to set s).
- One possible set of axioms is as follows:
- 1. The only sets are the empty set and those made by adjoining something to a set:

$$\forall s \ Set(s) \Leftrightarrow (s=\{\}) \ \lor \ (\exists x,s2 \ Set(s2) \land s=\{x/s2\}) \ .$$

2. The empty set has no elements adjoined into it. In other words, there is no way to decompose {} into a smaller set and an element:

$$\neg \exists x,s \quad \{x/s\} = \{\}$$

3. Adjoining an element already in the set has no effect:

$$\forall x,s \ X \in S \Leftrightarrow S = \{x/s\}$$

4. The only members of a set are the elements that were adjoined into it. This is expressed recursively, :

$$\forall x,s \quad x \in S \iff \exists y,s2 \quad (s = \{y \mid s2\} \land (x = y \lor x \in s2))$$

5. A set is a <u>subset</u> of another set if and only if all of the first set members are members of the second set:

$$\forall s1,s2 \quad s1 \subseteq s2 \Leftrightarrow (\forall x \ x \in s1 \Rightarrow x \in s2)$$

6. Two sets are equal if and only if each is a subset of the other:

$$\forall s1,s2 \ (s1=s2) \Leftrightarrow (s1 \subseteq s2 \land s2 \subseteq s1)$$

7. An <u>object is in the intersection</u> of two sets if and only if it is a member of both sets:

$$\forall x,s1,s2 \quad x \in (s1 \cap s2) \Leftrightarrow (x \in s1 \land x \in s2)$$

8. An <u>object is in the union</u> of two sets if and only if it is a member of either set:

$$\forall x,s1,s2 \quad x \in (s1 \cup s2) \Leftrightarrow (x \in s1 \lor x \in s2)$$

The Wumpus world

 The percept sentence stored in the KB must include both the percept and the time at which it occurred:

```
Percept ([Stench, Breeze, Glitter, None, None], 5)
```

 The actions in the wumpus world can be represented by logical terms:

```
Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb.
```

- To determine the best action, the agent executes the query ASKVARS(∃a BestAction(a, 5))
- This returns a binding list such as {a/Grab}
- The raw percept data implies certain facts about the current state. E.g.:

```
\forall t, s, g, m, c   Percept ([s, Breeze, g, m, c], t) \Rightarrow Breeze(t) \forall t, s, b, m, c   Percept ([s, b, Glitter, m, c], t) \Rightarrow Glitter (t)
```

• Etc.

The Wumpus world

- Simple "reflex" behaviour can also be implemented by quantified implication sentences. E.g.
 - $\forall t$ Glitter(t) \Rightarrow BestAction(Grab, t)
- Given the percept and preceding rules, the following conclusion is reached:
 - BestAction(Grab, 5)
- Let us represent the environment:
- Adjacency of any two squares can be defined as

```
\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow (x=a \land (y=b-1 \lor y=b+1)) \lor (y=b \land (x=a-1 \lor x=a+1))
```

- No need to distinguish between pits → It is simpler to use a unary predicate Pit that is true of squares containing pits.
- A constant Wumpus will achieve the purpose.
- At(Agent, s, t) means that the agent is at square s at time t.

The Wumpus world

- The wumpus's location is fixed → ∀t At(Wumpus, [2, 2], t)
- To say that objects can be at only one location at a time:

$$\forall x,s1,s2,t \quad At(x,s1,t) \land At(x,s2,t) \Rightarrow s1=s2$$

- Given its current location, the agent can infer properties of the square from properties of its current percept.
- if the agent is at a square and perceives a breeze, then that square is breezy:

$$\forall s, t \mid At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$$

- Note that since Pits do not move, Breezy has no time argument.
- FOL just needs one axiom:

$$\forall s \; Breezy(s) \Leftrightarrow \exists r \; Adjacent \; (r, s) \land Pit(r)$$

 We need just one successor-state axiom for each predicate, rather than a different copy for each time step. E.g. for Arrow:

 $\forall t \; HaveArrow(t+1) \Leftrightarrow (HaveArrow(t) \land \neg Action(Shoot, t))$

The knowledge engineering process

All Knowledge engineering projects include the following steps:

- 1. <u>Identify the task</u>: The knowledge engineer (KE) must:
 - Delineate the range of questions that the KB will support
 - Delineate the kinds of facts that will be available for each problem instance.
 - So here define what knowledge must be represented in order to connect problem instances to answers.
 - This step is analogous to the PEAS process for designing agents.
- 2. Assemble the relevant knowledge:
 - This process is called knowledge acquisition.
 - Either the KE is an expert and he/she will write the needed K. or he/she is not, hence the need to sit with an expert to explicit the K.
 - At this stage, the knowledge is not represented formally.

The knowledge engineering process

- Decide on a vocabulary of predicates, functions, and constants:
 - That is, translate the important domain-level concepts into logic-level names.
 - Decide on what should be an object, a predicate, or a function.
 - The result is a vocabulary, known as the **ontology** of the domain.
- 4. Encode general knowledge about the domain: The KE writes down the axioms for all the vocabulary terms.
 - This defines as thoroughly as possible the meaning of the terms.
 - The KE checks these axioms with the expert correcting what needs be, returning to step 3 and iterating through the process.

The knowledge engineering process

- 5. Encode a description of the specific problem instance:
 - This step involves writing simple atomic sentences about instances of concepts that are already part of the ontology.
 - For a logical agent, problem instances are supplied by the sensors.
 - Any other KB is supplied with additional sentences that represent these problem instances (just like input data).
- 6. Pose queries to the inference procedure and get answers: i.e.
 - Let the inference procedure operate on the axioms and problem-specific facts to derive the new K. the KE seeks.
- 7. Debug the knowledge base :
 - I.e. notice places where the chain of reasoning stops unexpectedly.
 - Identify any missing axioms or axioms that are too weak.
 - Add these to the KB and iterate.

The electronic circuits domain

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Homework: Read in your textbook Section **8.4.2**"The electronic circuits domain".

Slides based on the textbook

 Russel, S. and Norvig, P. (2020) **Artificial** Intelligence, A Modern Approach (4th Edition), **Pearson Education** Limited.