

EE2022 Electrical Energy Systems

Generators

Lecturer: Dr. Sangit Sasidhar (elesang)

Slides prepared by Dr. Panida Jirutitijaroen

Department of Electrical and Computer Engineering

Control of complex power output Loading capability of a generator

CONTROL OF REAL AND REACTIVE POWER OUTPUT

Real Power Output: Summary

- Mechanical power input is increased by increasing the torque (τ).
 This results in a larger power angle and higher electrical power output.
- Steady-state stability limit is reached when power angle becomes 90 degrees.

Control of Real Power Output

- |E|, |V| remains unchanged.
- Power angle increases as a result of higher mechanical power input.
- Load current | | increases because the electrical power output is increased.
- The power factor will now change because the power angle is increased while the internal voltage magnitude is kept constant.
- We need to adjust the excitation voltage to keep the power factor constant.

Control of Real Power Output

Reactive Power Output: Summary

- When we increase field current, the magnetic field is intensified. As a result, internal excitation voltage is increased. The reactive power output is increased.
- Two operating conditions of a generator: supplying reactive power is called overexcited and absorbing reactive power is called underexcited.

Control of Reactive Power Output

- |V|and power angle remains unchanged.
- The current magnitude and angle, θ (power factor) will change as a result of the change in excitation voltage magnitude.
- We can now adjust the excitation voltage to maintain the power factor of the original load.

Control of Reactive Power Output

Control of Complex Power Supplied

δ X III

Vary the mechanical power input \rightarrow change in power angle.

Vary the field current → change in excitation voltage magnitude. →

Loading Capability of a Generator

- Generator's loading capability is characterized by three main factors.
 - 1. Rotor heating limit: This limit is caused by the heating limit of a conductor in field winding at the rotor.
 - 2. Stator heating limit: This limit is caused by the heating limit of a conductor in armature winding at the stator.
 - 3. Stability limit: This limit is caused by the maximum power angle of 90 degrees before the machine runs out of synchronism.

 Out $\rho_{max} = 137mU$

Loading Capability of a Generator

- Rotor heating limit (field winding)
- Stator heating limit (armature winding)

Source: http://www.ece.ualberta.ca/~knight/ee332/synchronous/ratings/power_limits.html

Power Limits of a Generator

 $Q_{3\Phi} = 3 \frac{|V||E|}{X} \cos(\delta) - 3 \frac{|V|^2}{X}$ $P_{3\Phi} = 3 \frac{|V||E|}{X} \sin(\delta)$

Scaled Lagging Power Factor Phasor Diagram

Source: http://www.ece.ualberta.ca/~knight/ee332/synchronous/ratings/power_limits.html

Generator Loading Capability

Generator Capability: Overexcited

Source: FACILITIES INSTRUCTIONS, STANDARDS, AND **TECHNIQUES Volume** 1-4 "PERMISSIBLE LOADING **OFGENERATORS AND** LARGE MOTORS", **FACILITIES ENGINEERING BRANCH DENVER** OFFICE DENVER, **COLORADO**, UNITED STATES DEPARTMENT OF THE INTERIORBUREAU OF RECLAMATIONREVISE **D MARCH 1991**

Figure 4. - Generator capability curve (overcited operation)

Generator Capability: Underexcited

Figure 5. - Generator capability curve (underexcited operation).

Source: FACILITIES INSTRUCTIONS, STANDARDS, AND **TECHNIQUES Volume** 1-4 "PERMISSIBLE LOADING OFGENERATORS AND LARGE MOTORS", **FACILITIES** ENGINEERING BRANCH DENVER OFFICE DENVER, **COLORADO, UNITED** STATES DEPARTMENT OF THE INTERIORBUREAU OF RECLAMATIONREVISE **D MARCH 1991**

Generation, Transmission and Distribution

Summary

$$Q_{31} = 3|V|IEI Cons - 3|V|^2$$

Class Quiz

- When: 5 pm, Monday April 13, 2015
- Where: LT5
- What: Generators
- 3%
- Make up Mid Term
 - When : 5pm, Wednesday, April 15, 2015
 - Where: To be Confirmed
 - What: Transformers, Per Unit System, Renewable Energy
 - **10%**