1. Spróbujmy jakościowo przeanalizować długoczasowe zachowania rozwiązań równania

$$\ddot{x} + [2\dot{x}^2 + x^4 - 1]\dot{x} + x^3 = 0.$$
 (1a)

Jest to szczególny przypadek równania

$$\ddot{x} + \gamma(x, \dot{x}) \, \dot{x} + x^3 = 0 \,. \tag{1b}$$

opisującym ruch w potencjale $\frac{1}{4}x^4$ z dynamicznym "tarciem" $\gamma(x,\dot{x})$, zależnym od położenia i predkości.

- (a) Znajdź punkty stacjonarne równania (1a).
- (b) Co się dzieje w przypadkach $\gamma(x, \dot{x}) > 0, \gamma(x, \dot{x}) < 0$?
- (c) Co się dzieje w przypadku $|x| \ll 1$ oraz $|\dot{x}| \ll 1$?
- (d) Co się dzieje w przypadku $|x|\gg 1$ lub $|\dot{x}|\gg 1$?
- (e) Wykaż, że krzywa $\gamma(x, \dot{x}) = 0$, czyli

$$2\dot{x}^2 + x^4 - 1 = 0 \tag{1c}$$

jest krzywą całkową równania (1a). (Wskazówka: Zróżniczkuj równanie (1c).)

- (f) Jeśli spełnione jest równanie (1c), jaki zakres może przybierać zmienna x?
- (g) Załóżmy, że x(t) spełnia równanie (1c). Niech $x(t) \to x(t) + \varepsilon(t)$, $|\varepsilon(t)| \ll 1$. Czy x(t) jest stabilnym rozwiązaniem równania (1a)? (To da się pokazać, ale nie jest to *oczywiste*.)
- 2. Opierając się o równanie (1a), spróbuj wymyślić równanie postaci (1b) posiadające *dwa* cykle graniczne. Jaka będzie stabilność tych cykli?
- 3. **Oscylator Van der Polla** Znajdź punkty stałe i przeprowadź jakościową analizę asymptotycznych rozwiązań równania

$$\ddot{x} + \mu(x^2 - 1)\dot{x} + x = 0, \ \mu \geqslant 0.$$
 (2)

4P. Dla $t\in [0,15]$ rozwiąż numerycznie równanie (2) dla wartości $\mu=1/32,1/16,1/8,1/4,1/2,1,3/2,2,3,5,7,9$. Dla każdej wartości μ dobierz kilka przypadkowych warunków początkowych $(x(0),\dot{x}(0))$. Przedstaw rozwiązania graficznie w postaci krzywych x(t) oraz ich portrety fazowe na płaszczyźnie (x,\dot{x}) .

Zadania oznaczone "P", jeśli występują, są zadaniami programistycznymi. Rozwiązania — kod programu plus wyniki, w tym ewentualne wykresy — proszę mi przesyłać na mój e-mail pawel.gora@uj.edu.pl w ciągu miesiąca od daty widocznej w nagłówku zestawu. Rozwiązanie co najmniej połowy zadań programistycznych zadanych w ciągu semestru jest warunkiem koniecznym uzyskania zaliczenia.

PFG