Reversible Computing

ian.mcloughlin@atu.ie

Last updated: 26 September 2023

Logical Reversibility

x_1	x_2	\wedge
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|c}
x & \bar{x} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Landauer's Principle

 $\Delta E \ge kT \ln 2$

 $k = 1.380649 \times 10^{-23} \mathrm{JK}^{-1}$

 $\Delta E \geq (1.380649 \times 10^{-23})(293)(0.693147) \approx 2.8 \times 10^{-21} \mbox{J}$ at $20^{\circ}\mbox{C}^{\scriptscriptstyle 1}$

XOR

x_1	x_2	\oplus
0	0	0
0	1	1
1	0	1
1	1	0

R. Landauer. Irreversibility and heat generation in the computing process. *IBM Journal of Research and Development*, 5(3):183–191, 1961. DOI: 10.1147/rd.53.0183

Charles H. Bennett. The thermodynamics of computation—a review. *International Journal of Theoretical Physics*, 21 (12):905–940, Dec 1982. ISSN 1572-9575. DOI: 10.1007/BF02084158. URL https://doi.org/10.1007/BF02084158

Charles H. Bennett. Notes on landauer's principle, reversible computation and maxwell's demon, 2003 ¹ Somewhere in th

CNOT

x_1	x_2	x_1	$x_1 \oplus x_2$
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Toffoli

$$y=x_3\oplus(x_1\wedge x_2)$$

λ	1	x_2	<i>x</i> ₃	$ x_1 $	x_2	y
(0	0	0	0	0	0
(C	0	1	0	0	1
(C	1	0	0	1	0
(C	1	1	0	1	1
	1	0	0	1	0	0
	1	0	1	1	0	1
	1	1	0	1	1	1
	1	1	1	1	1	0

Fredkin

$$y_1 = x_1 \oplus (x_0 \wedge (x_1 \oplus x_2))$$

$$y_2 = x_2 \oplus (x_0 \wedge (x_1 \oplus x_2))$$

x_0	x_1	x_2	$ x_0 $	y_1	<i>y</i> ₂
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	1