

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им Н.Э. Баумана)

Информатика

Представление об информации

Определение информации

Термин «информация» происходит от латинского «informatio», что означает «разъяснение», «осведомление», «изложение».

Определение информации

Термин «информация» происходит от латинского «informatio», что означает «разъяснение», «осведомление», «изложение».

Норберт Винер (1894-1964) — американский математик, один из основоположников кибернетики и теории искусственного интеллекта.

Информация есть информация, а не материя или энергия.

Клод Элвуд Шеннон (1916-2001) — американский инженер, криптоаналитик и математик. Является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи.

Информация - это мера снижения неопределенности системы.

Андрей Николаевич Колмогоров (урожденный Катаев) (1903-1987) — русский и советский математик, относящийся к числу крупнейших математиков 20 века. Один из родоначальников современной теории вероятностей.

Предложил *алгоритмический* подход, позволяющий оценить информацию по сложности алгоритма, необходимого для её обработки.

Информация

Это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают степень неопределённости и неполноты имеющихся о них знаний.

Информация

Это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают степень неопределённости и неполноты имеющихся о них знаний.

Данные

Это информация, закодированная определённым образом с целью передачи, обработки, хранения, поиска и извлечения.

При работе с информацией всегда имеются ее *источник* и *потребитель* (получатель).

При работе с информацией всегда имеются ее *источник* и *потребитель* (получатель).

Пути и процессы, обеспечивающие передачу сообщений от источника информации к ее потребителю, называются **информационными коммуникациями**.

При работе с информацией всегда имеются ее *источник* и *потребитель* (получатель).

Пути и процессы, обеспечивающие передачу сообщений от источника информации к ее потребителю, называются **информационными коммуникациями**.

Адекватность информации

Это определённый уровень соответствия создаваемого с помощью полученной информации образа реальному объекту, процессу, явлению и т.п.

Адекватность информации может выражаться в трех формах:

- семантической,
- синтаксической,
- прагматической.

Синтаксическая адекватность отображает формально-структурные характеристики информации и не затрагивает ее смыслового содержания.

Синтаксическая адекватность отображает формально-структурные характеристики информации и не затрагивает ее смыслового содержания.

На синтаксическом уровне учитываются:

- тип носителя и способ представления информации,
- скорость передачи и обработки,
- размеры кодов представления информации,
- надежность и точность преобразования этих кодов и т.п.

Семантическая (смысловая) адекватность определяет степень соответствия образа объекта и самого объекта (предполагает учет смыслового содержания информации).

Семантическая (смысловая) адекватность определяет степень соответствия образа объекта и самого объекта (предполагает учет смыслового содержания информации).

На этом уровне анализируются те сведения, которые отражает информация, рассматриваются смысловые связи.

Прагматическая (потребительская) адекватность отражает отношение информации и её потребителя, соответствие информации цели управления, которая на её основе реализуется.

Меры информации

Для измерения информации вводятся два параметра:

- ullet количество информации I
- ullet объём данных $V_{_{
 m I}}$

Меры информации

Для измерения информации вводятся два параметра:

- ullet количество информации I
- ullet объём данных $V_{_{
 m I}}$

Эти параметры имеют разные выражения и интерпретацию в зависимости от рассматриваемой формы адекватности.

Объем данных $V_{_{\rm д}}$ в сообщении измеряется количеством символов (разрядов) в этом сообщении.

Объем данных $V_{_{\rm I\! I}}$ в сообщении измеряется количеством символов (разрядов) в этом сообщении.

В различных системах счисления один разряд имеет различный вес и соответственно меняется единица измерения данных:

- в двоичной системе счисления единица измерения *бит* (bit, или binary digit, двоичный разряд);
- в десятичной системе счисления единица измерения *дит* (десятичный разряд).

Пример

Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 10111011 имеет объем данных $V_{_{\rm I\!I}} \! = \! 8$ бит.

Пример

Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 10111011 имеет объем данных $V_\pi = 8$ бит.

Пример

Сообщение в десятичной системе в виде шестиразрядного числа 275903 имеет объем данных $V_\pi {=} 6$ дит.

lpha - некоторая система, о которой имеются некоторые предварительные (априорные) сведения

- lpha некоторая система, о которой имеются некоторые предварительные (априорные) сведения
- H(lpha) функция мера неосведомленности о системе, которая в то же время служит и мерой неопределенности состояния системы

- lpha некоторая система, о которой имеются некоторые предварительные (априорные) сведения
- H(lpha) функция мера неосведомленности о системе, которая в то же время служит и мерой неопределенности состояния системы
- eta некоторое сообщение, которое позволяет получателю приобрести дополнительную информацию $I_{eta}(lpha)$

- lpha некоторая система, о которой имеются некоторые предварительные (априорные) сведения
- H(lpha) функция мера неосведомленности о системе, которая в то же время служит и мерой неопределенности состояния системы
- eta некоторое сообщение, которое позволяет получателю приобрести дополнительную информацию $I_{eta}(lpha)$
- $H_{\scriptscriptstyle\beta}(\alpha)$ неосведомленности о системе после получения сообщения

- lpha некоторая система, о которой имеются некоторые предварительные (априорные) сведения
- H(lpha) функция мера неосведомленности о системе, которая в то же время служит и мерой неопределенности состояния системы
- eta некоторое сообщение, которое позволяет получателю приобрести дополнительную информацию $I_{eta}(lpha)$
- $H_{\scriptscriptstyle\beta}(\alpha)$ неосведомленности о системе после получения сообщения
- $I_{\beta}(\alpha)$ = $H(\alpha)$ - $H_{\beta}(\alpha)$ количество информации о системе

- lpha некоторая система, о которой имеются некоторые предварительные (априорные) сведения
- H(lpha) функция мера неосведомленности о системе, которая в то же время служит и мерой неопределенности состояния системы
- eta некоторое сообщение, которое позволяет получателю приобрести дополнительную информацию $I_{eta}(lpha)$
- $H_{\scriptscriptstyle\beta}(\alpha)$ неосведомленности о системе после получения сообщения
- $I_{\beta}(\alpha) = H(\alpha) H_{\beta}(\alpha)$ количество информации о системе

Если конечная неопределенность $H_{\beta}(\alpha)$ обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации:

$$I_{\beta}(\alpha) = H(\alpha)$$

Тогда энтропия системы $H(\alpha)$ может рассматриваться как мера недостающей информации.

Энтропия системы $H(\alpha)$, имеющая N возможных состояний, согласно формуле Шеннона, равна:

$$H(\alpha) = -\sum_{i=1}^{N} P_i \log_2 P_i$$

где P_i – вероятность того, что система находится в i-м состоянии.

Для случая, когда все состояния системы равновероятны, то есть их вероятности равны $P_i \! = \! 1/N$

$$H(\alpha) = -\sum_{i=1}^{N} \frac{1}{N} \log_2 \frac{1}{N}$$

Часто информация кодируется числовыми кодами в той или иной системе счисления.

Одно и то же количество разрядов в разных системах счисления может передать разное количество состояний отображаемого объекта, что можно представить в виде соотношения:

$$N = m^n$$

Здесь N — количество всевозможных отображаемых состояний; m — основание системы счисления (разнообразие символов, применяемых в алфавите); n — количество разрядов (символов) в сообщении.