

Team 29: Automated Greenhouse Chandler Kramer, Samuel Erickson, Mengtian Ke

TA: Skyelar Head

Sponsor: Kevin Nowka

Problem Overview

- The Problem:
 - Greenhouses have no control over their environment
 - This can lead to unhealthy conditions for plants and reduced yields
- Our Solution:
 - An automatic control system that can adjust temperature, humidity, and soil moisture content, based on parameters specified by a remote user. These parameters are sent over wifi to a microcontroller that can automatically control a series of misters, fans, and drippers.

Integrated Project Diagram

Welcome to Automated Greenhouse

Home Greenhouse Greenhouse Greenhouse Greenhouse Greenh

- Created two buck converter circuits to power MCU and Photon Board.
- Prototypes bench tested and integrated with the greenhouse.
- PCBs are soldered and have passed functionality testing.

5V BC Circuit

Power Subsystem

- MCU and Photon Board had difficulties under same power circuit.
- Time constraint with PCB design/shipment.

3.3V BC Circuit

5V BC Circuit Load Regulation Test 4.86 4.85 4.84 2 4.83 4.89 4.79 4.78 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Current Drawn (A)

Power Subsystem

- Specs for BC's (12V 2A, 5V .3A).
- Different source for 3.3V Circuit.
- Data specs.

Power Subsystem

- **PCBs**
- Functionality Testing

MSP432 running control algorithm

- Gets environment parameters from photon board
- 4 relay switching board to control fan/solenoids
- Analog soil moisture sensor and temperature/humidity sensor (I²C)

MCU and Sensor Subsystem

MCU and Sensor Subsystem

- Issues with sensors
 - Signal Integrity
 - Wire runs were shortened, testing involved long periods of the program running to make sure data was being properly processed.
 - Physical Reliability
 - Humidity sensor slow to measure humidity fall-off
 - Soil moisture sensor values often vary wildly
 - Partially mitigated issues with algorithm adjustments, using experimentally determined offsets to adjust for poor sensor data

Client Interface Subsystem

- Build connection among the client interface (html), photon Wifi development board and MCU(MSP432p401r)
- Tested the UART communication between photon Wifi development board and MCU
- Display data every second in the client interface as well as modify temperature, humidity and soil moisture level.

Challenges:

- Photon board does not receive power from the Vin pin
 - used 3.3V instead
- The original MCU board had a broken UART pin
 - exchanged to the backup MCU

Client Interface Subsystem

- Transceiver between photon and MCU board
- Data updates every second
- Client input impacted the effect of greenhouse

Integrated System Results

- Rainy Day Scenario: Greenhouse is too hot, low humidity
- Lower and maintain temperature, raise and maintain humidity, maintain soil moisture content
- Greenhouse was heated to maximize temperature and minimize humidity, heater was on throughout entire test
- Results of 7:30 minute test shown below

Data from Greenhouse Sensors	Temperature (°C)	Relative Humidity (%)	Soil Moisture Content
Initial State	28	63	433
Target State	20	80	390
Final State	20	82	391

Temperature Control

Humidity Control

Soil Moisture Content Control

Conclusions

- Major Changes from FSR/ICD: Two BC circuits for power subsystem, enclosure dimensions, environmental actors upscaled, irrigation system restructured.
- Current status: Integration complete. Testing and Validation complete; Prototype power supplies are validated and integrated in greenhouse. PCB boards are tested but not validated or integrated in enclosure. Expected completion is one week.

Thank You!