1	1		10	17	1
	n	l		۱.٦	.)

Autonomous Institution affiliated to VTU
III Semester B. E. Fast Track ExaminationsJuly-18
Computer ScienceEngineering

DATA STRUCTURES USING C

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from PartA. Part A questions should be answered in the first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART A

1	1.1	Consider a stack of characters with maxsize=8. The current state of	
		stack isA, C, D, F, K, _, _, _ (_ means empty allocated cell). Show the	
		final stack after the following operations:	
		a. Pop(stack, Item)	
		b. Pop(stack, Item)	
		c. Pop(stack, Item)	
		d. Push (stack, R)	
		e. Push (stack, L)	
		f. Push (stack, S)	
		g. Push (stack, P)	
		h. Pop(stack, Item)	01
	1.2	Convert the following infix expression to postfix expression	
		$A + B * (C - (D/E^F) * G) * H.$	02
	1.3	A circular queue of size 5 has three elements 20, 40 and 60 where	
		front=0 and rear=2. Show the value of front and rear after each of these	
		operations.	
		i. insert 50.	
		j. insert 10. k. insert 30.	
		1. delete an item.	02
	1.4	Consider the following recursive function fun(x, y). What is the value of	02
	1.4	fun(4, 3)	
		int fun(int x, int y)	
		f	
		$\int_{0}^{\infty} If(x==0)$	
		return y;	
		return fun(x-1, x+y);	
		}	01

1 [T	
1.5	Traverse the following tree and write its inorder and post order.	
	(A)	
	$\overline{\mathfrak{B}}$	
	(F)	
	(G) (G)	02
1.6	Identify suitable data structure for the following applications:	02
1.0	i. To develop aAadhar card like data repository.	
	ii. Undo functionality in Photoshop or word.	
	iii. Developer wants quick access to the recently accessed data.	
	iv. Fixed phone book with quick lookup.	02
1.7	A has table of length 10 uses open addressing with hash function	02
1.7	h(k)=kmod10 and linear probing. After inserting 6 values into an empty	
	hash table, the table is as shown below.	
	nash table, the table is as shown below.	
	2 42	
	3 23	
	4 34	
	5 52	
	6 46	
	7 33	
	8	
	9	
	Write the order in which the keys could have been added in the table to	00
1.0	get the above table.	02
1.8	Construct binary tree from given traversals	
	Pre order: ABDCEF In order: BDAEFC	
		02
1.9	Post order: DBFECA What is the result of evaluating a prefix expression */b+-dacd where	04
1.9	a=3, b=6, c=1 and d=5.	02
1.10	Differentiate between complete binary tree and strictly binary tree with	04
1.10	example.	02
1.11	Perform find(10) operation on the given splay tree.	04
1,11	(15)	
	(5) (16)	
	3 2	
	(3) (6) (23)	
	(10) (18) (23)	02
		04

PART B

2	a	Write a C program to check whether the given string is a palindrome or not using stack operations.	08
	b	Write recursive C function to find GCD of two numbers.	04
	C	Compare linear and non linear data structures with suitable examples.	04

3	a	Develop C routines to perform following operations on circular queue using arrays: i. Insertion.	
	b	 ii. Deletion. iii. Display. Bring out the difference between: i. malloc and calloc. ii. Enqueue and dequeue. 	10 06
		or OR	00
4	a b c	Write a C program to implement display enqueue and dequeue operations on a linear queue. Mention any two real-time applications of stacks and queues. Bring out difference between linear queue and circular queue and their applications.	08 04 04
		applications.	01
5	а	Write C routine to i. Find and print nth node from last in a single linked list. Check for error condition before deletion.	10
	b c	ii. Concatenate two circular single linked lists. What is a header node? What are the advantages of using header node? Write recursive C routine to print elements of doubly linked list in reverse order without actually reversing the list. OR	10 03 03
6	a b	Write a C program to add two polynomials containing variables using singly linked list. Given a doubly linked list of nodes containing each character of a given string. Write a C function which prints the palindrome of the swing	10
		from the given doubly linked list.	06
7	a b	Write a C function to perform deletion of a node in Binary search tree.	06
	D .	Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an empty AVL tree. Specify type of rotation after each insertion.	10
8	а	What is the difference between BST and heap? For a given sequence of numbers construct a heap. 34, 23, 67, 45, 12, 54, 87, 43, 98, 75, 84, 93, 31.	10
	b	Explain with examples, linear probing, quadratic probing and double hashing techniques for collision avoidance.	06

TICNI					
USIN					

Autonomous Institution affiliated to VTU
III Semester B. E. Fast Track Examinations July-18
Computer Science and Engineering

LOGIC DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

	1 1		
1	1.1	Realize the following Boolean expression using minimum number of	
		NOR gates only: $y = (a + c)(\bar{b} + \bar{d})(\bar{a} + \bar{b} + \bar{c})$.	01
	1.2	Convert the given expression to its minterm canonical form:	
		$f = \bar{a}(\bar{b} + c) + \bar{c}$	01
	1.3	Simplify the given using k-map $f(a, b, c, d) = \sum m(0, 1, 2, 3, 5, 7, 8, 10, 11)$.	
		List all essential prime implicants.	02
	1.4	Define static-1 Hazard, with an example.	01
	1.5	The circuit shown in Figure 1.5 is gated SR latch. Write its truth table	
		and also mention the significance of Enable pin(En).	
		5-0-0	
		6n h	
		R	
		Egne 1.5	02
	1.6	Distinguish between the following:	02
	1.0	i) Latches and flip flops	
		ii) Pulse triggered and Edge triggered flip flops.	02
	1.7	Define setup time and Hold time.	02
	1.8	Draw the circuit diagram for a 2-bit binary ripple up counter using	02
	1.0	positive edge triggered T' flip flop. Also write the waveform for five	
		clock pulses.	02
	1.9	With the help of a state transition diagram, write the excitation table	02
	1.9	_	02
	1 10	for JK flipflop.	02
	1.10	Johnson counter is called as	O1
	1.11	In a SISO shift register, $D_0 = 1$, $D_1 = 0$, $D_2 = 1$ and $D_3 = 1$. After two	0.1
	1 10	clock pulses the data outputs are:	01
	1.12	What are the differences between Mealy and Moore models.	02
	1.13	With an example, illustrate the significance of state assignment.	01

PART-B

		PART-B	
2	a b	Obtain the minimal sum and minimal product for the following Boolean function: $f(a,b,c,d) = (a+\bar{b})(a+c+d)(\bar{a}+\bar{b}+\bar{d})(a+\bar{c}+d)$. Simplify using QuineMcClusky method and determine all prime implicants for the following function:	04
		$f(a,b,c,d) = \sum_{i=1}^{n} m(3,4,5,7,10,12,14,15) + dc(2)$	
	_		08
	С	With a neat circuit diagram, explain the working of a basic two-input <i>TTL NAND</i> gate.	04
		TIENTINE Sacc.	
3	а	Describe with a neat diagram a single decade BCD adder.	06
	b	Differentiate between serial binary adder and fast adder, with the	0.4
	С	help of neat diagrams. Implement the following function pairs using a 3 – 8 line decoder with	04
		minimum gate inputs. i) $f_1(a,b,c) = \sum m(0,1,5,6,7); f_2(a,b,c) = \sum m(1,2,3,6,7)$	
		ii) $f_1(a,b,c) = \sum m(0,2,4); f_2(a,b,c) = \sum m(1,2,4,5,7)$	06
		OR	
4	a	List all the problems associated with an encoder. Write the condensed truth table for a $4-2$ line priority encoder where the highest priority is given to the highest bit position and obtain the minimal sum for the outputs.	06
	b	Realize a 16:1 MUX using a 8:1 multiplexer. Use VEM technique to	
		condense the truth table for the function:	
	С	$f(a,b,c,d) = \sum m(0,1,3,5,6,7,10,12,14)$. Realize the following function using a 3 × 4 × 2 <i>PLA</i> . Draw the logic diagram with the corresponding <i>PLA</i> table.	04
		$f_1(a,b,c) = \sum_{m=0}^{\infty} m(0,1,3,5)$ $f_2(a,b,c) = \sum_{m=0}^{\infty} m(0,2,3,4)$	
		$f_{c}(a,b,c) = \sum_{n=0}^{\infty} m(0,2,3,4)$	0.5
		$f_2(\alpha, \delta, c) = \sum_{i=1}^{n} f_i(\delta, 2, \delta, 1)$	06
5	a	With a neat diagram explain the working of a Master Slave <i>JK</i> flip flop. Also explain 0's catching and how is it overcome.	05
	b	Explain the working of a positive edge triggered 'D' flip flop with its	06
	С	gate diagram. Convert clocked SR flip flop into JK flip flop.	05
	C		
		OR	
6	a	Draw the logic diagram of a 4-bit SISO and PISO shift registers using	
		JK flip flops and explain its working with an example.	06
	b	Explain the working of mod-4 ring counter with a neat diagram.	04
	С	Design a 4-bit Universal Shift register using positive edge triggered 'D' flip flop to operate as indicated in the table below:	
		Mode Select Operation	
		a_1 a_2	
		0 0 Shift right	
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	06

7	a	With the help of a truth table and the timing diagram, construct a mod-9 asynchronous <i>UP</i> counter using negative edge triggered <i>JK</i> flip flop.								
	b	Design a synchronous mod-6 counter using any flip flop, for the following counting sequence: $0 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 1 \rightarrow 0$ Obtain its minimal sum equations.								
8	a	Reduce the number of states using implication table method for the given state table:								
			Present state	Next state	for inputs	Output f	or Inputs			
				x = 0	x = 1	x = 0	x = 1			
			\boldsymbol{A}	A	B	0	0			
			В	D	С	0	1			
			С	F	E	0	0			
			D	D	F	0	0			
			Ε	B	G	0	0			
			F	G	С	0	1			
			G	A	F	0	0			
		Draw the modified state diagram with the help of a modified state table.								
	b	Construct the excitation table, transition table, state table and state								
	~		for the following	•		asio, stat	e table a	ira state		
		$D_A = \bar{A}X$		ing cript coo						
		$T_{R} = B\bar{X}$								
		Y = AB.								
			the type of	seguentia	ıl model r	enresente	ed by th	e given		
		expressi		sequentie	i iiiodoi i	CP1000III	a by th	911011	08	

TIGNI	
USN	

Autonomous Institution affiliated to VTU
IIISemester B. E. Fast Track ExaminationsJuly-18
Computer Science and Engineering
DISCRETE MATHEMATICS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 3. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 4. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART A

1	1.1	How many permutations of the eight letters a, c, f, g, i, t, w, x which starts with t and ends with c.	02
	1.2	how many arrangements of the letters in MISSISSIPPI have no consecutive	
	1.3	S's. Determine the co-efficient of $W^3X^2YZ^2$ in $(2W - X + 3Y - 2Z)^8$	01 02
	1.3	Determine the co-efficient of W X YZ $\operatorname{In}(2W - X + 3Y - 2Z)^{\circ}$ Determine the number of integer solutions of $x_1 + x_2 + x_3 + x_4 = 32$, where	02
	1.7	$ x_1, x_2 \ge 5, x_3, x_4 \ge 7.$	02
	1.5	If p,qare primitive statements write the dual of the logical equivalence	02
	1.0	$(\sim p \lor q) \land (p \land (p \land q)) \Leftrightarrow (p \land q)$	01
	1.6	Let P(x) be the open statement " $x^2 = 2x$ " where the universe comprises all	
	1.0	integers. Determine whether the following statements are true or false.	
		a. p(2)	
		b. fxp(x)	
		c. $\forall x P(X)$	
		d. $P(-2)$.	02
	1.7	Determine the sets A,B where $A - B = \{1,2,4\} B - A = \{7,8\}$ and $A \cup B = \{1,2,4\} B - A = \{7,8\} A$	
		{1,2,4,5,7,8,9}.	02
	1.8	For each of the following functions	
		$g: R \to R$, determine whether the function is one to one and whether it is	
		onto. If the function is not onto, determine the rage $g(R)$.	
	1.0	i) $g(x) = 2x - 3$ ii) $g(x) = x^3$ iii) $g(x) = x^2$ iv) $g(x) = x^2 + x$	02
	1.9	For $A = \{1,2,3,4\}$, let $R = \{(1,1), (1,2), (2,3), (3,3), (3,4)\}$ be a relation on A. draw	00
	1 10	the directed graph G on A that is associated with R^2 and R^4 .	02
	1.10		
		set A, if not explain why it fails to be. $A = \{1,2,3,4,5,6,7,8\};$	
		$A = \{1,2,3,4,3,0,7,0\},$ $A_1 = \{4,5\}$	
		$A_1 = \{4,3\}$ $A_2 = \{1,3,4\}$	
		$A_3 = \{6,8\}$	
		$A_4 = \{2,7\}$	01

1.11	Let C be a set of code words, where $C \subseteq \mathbb{Z}_2^7$. In each of the following, two of	
	e(error pattern), r(received word) and c(code word) are given , with $r = c + e$.	
	Determine the third term. $C = 1010110, r = 1011111$.	01
1.12	Let G be the group of complex numbers $\{1, -1, i, -i\}$ under multiplication.	
	Give its multiplication table. Show that it is a cyclic group.	02

PART B

2	а	 i) How many arrangements are there of all letters in SOCIOLOGICAL? ii) In how many of the arrangements in part (i) are A and G adjacent? iii) In how many arrangements in part(i) are all vowels adjacent? 	06
	b	What is the co-efficient of $a^2b^3c^2d^5$ in the expansion of	
		$(a+2b-3c+2d+5)^{16}$	04
	С	Find the number of integers between 1 and 1000 (both inclusive) that are	
		divisible by none of 5,6 and 8.	06
			_
3	a	Solve the recurrence relation.	06
	b	$2a_{n+2} - 11a_{n+1} + 5a_n = 0, n \ge 0, a_0 = 2, a_{1=} - 8$ Solve the recurrence relation	06
	D	$a_{n+2} - 4a_{n+1} + 3a_n = -200, n \ge 0, a_0 = 3000, a_{1=}3300$	06
	С	Prove the following by mathematical induction.	
	C		
		$1.3 + 2.4 + 3.5 + \dots $	04
		OR	
4	a	Define the following	
•	а	i) The rule of universal specification.	
		ii) The rule of universal generalization.	04
	b	Provide the reasons for the steps verifying the following argument.	
		$\forall x \big[p(x) \to \big(q(x) \land r(x) \big) \big]$	
		$\forall x[p(x)] \land s(x)]$	
		$\overline{\cdot\cdot} \forall x[r(x)] \land s(x)$	
		Steps Reasons	
		1 $\forall x [p(x) \rightarrow (q(x) \land r(x))]$	
		$2 \qquad \forall x[p(x)] \land s(x)]$	
		$3 \qquad p(a) \to (q(a) \land r(a))]$	
		4 $p(a) \wedge s(a)$	
		5 p(a)	
		6 $q(a) \wedge r(a)$	
		7 r(a)	
		8 s(a)	
		$9 r(a) \wedge s(a)$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06
	С	Prove that the following argument is valid:	
		"If the train arrives late and there are no trains at the station then John is	
		late his meeting: John is not late for his meeting.	
		The train did arrive late.	
		Therefore there were taxis at the station".	06
		Incretore mere taxis at the station.	100

5	а	Define the following i) DFA	
		ii) Language of NFA	
		iii) \in -closure (q), where $q \in Q$ of an automation.	06
	b	Give DFA's accepting the following languages over the alphabet $\Sigma = \{a, b\}$	
		i) The language of all strings that do not end with ab.	
		ii) The language of all strings in which the number of a's is even.	10
		OR	
6	a	Consider the NFA below, using the lazy evaluation method, draw the DFA	
		accepting the language which is same as the language accepted by NFA.	
		Da Quality	
		-(A) -(C) -(C)	
		a book	
		Fig. 6(a)	08
	b	Construct NFA- \in to accept strings over $\Sigma = \{a, b, c\}$ such that the string	
		contains any number of a's followed by any number of b's followed by nay	
		number of c's. Convert this NFA-∈ to NFA.	08
7		E 4 (1.2.2.4) I-+ D 1 (2.1-411-41 A d1-41	
'	a	For $A = \{1,2,3,4\}$, Let R and S be the relations on A desgined by $R = \{(1,2), (1,3), (2,4), (4,4)\}$ and $S = \{(1,1), (1,2), (1,3), (2,3), (2,4)\}$	
		Find RoS , SoR , R^2 , R^3 , S^2 and S^3 .	06
	b	Let $A = \{1,2,3,4,5,6,7\}$ and $B = \{v, w, x, y, z\}$. Determine the number of onto	
		functions	
		$f: A \rightarrow B$, where	
		$i) f(A) = \{v, x\}$	
		ii) $f(A) = \{w, x, y\}$ iii) $ f(A) = 2$	
		f(A) = 4	06
	С	For $A = \{a, b, c, d, v, w, x, y, z\}$, consider the poset(A,R)whose Hasse diagram is	
		shown below. Find glb{b,w}, lub{d,x}, least and greatest elements.	
		2 W	
		and the second s	
		C b d	
		Fig. 7 (c)	04
8		Define the hinery energtion on 7 by way = x + x + 1. Verify that (7 a):	
0	a	Define the binary operation on Z by $xoy = x + y + 1$. Verify that (Z, o) is an abelian group.	08
	В	The encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix	
	2	The encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix. $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$	
		i. Determine all code words. What can we say about the error detection	
		capability of this code? What about error correction capability?	
		ii. Find the associated parity check Matrix H.	
		iii. Use H to decode each of the following received words. I. 11011	
		II. 10101	
		III. 11110	08

Autonomous Institution affiliated toVTU
III / IV Semester B. E. Fast Track Examinations July - 18
Common to all Branches
BRIDGE COURSE C PROGRAMMING

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 5. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 6. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Write an algorithm to find largest of two numbers.	02
	1.2	operator cannot be used by floating point data.	01
	1.3	Mention whether the following decimal constants are valid or not	
		valid:	
		a) 12,789	
		b) 85\$	
		c) 3562	
		d) 093.	02
	1.4	Write the output of following statements int $a = -11$, $b = 34$, $c = -7$, $d = 5$.	
		a) $(a > b) \& \& (b > c)$	
		b) $(c == a) (b! = c).$	02
	1.5	Which of the following are valid variables:	
		a) interest \$	
		b) int	
		c) sub script	
		d) arg	
		e) circle.	02
	1.6	Differentiate between + and + +	02
	1.7	The statement causes exit from the loop in which it is	
		present.	01
	1.8	What is the output of the following:	
	1.0	int = 0;	
		$\begin{vmatrix} da & -b \\ do \end{vmatrix}$	
		{	
		<pre>printf("hai");</pre>	
			02
		while(if = 0);	04

```
1.9
       What is the output of the following code:
       main
       {
         int i = 1;
         switch (i)
          case 1: printf ("one");
          case 2: printf ("three");
          case 3: printf("four");
          default: printf ("default");
                                                                                   02
       For reading a character data type value, we must use the
1.10
       specification _
                                                                                   01
       Rectangle symbol in flow-chart represents _
1.11
                                                                                   01
       Distinguish between global and local variables.
1.12
                                                                                   02
```

PART-B

2	а	Write an algorithm and flow chart to find area of a triangle whose	
		sides are given: $[side(S) S = \frac{a+b+c}{2} A = \sqrt{S(S-a)(S-b)(S-c)}]$	08
	b	Explain all the data types in C with their sizes.	08
3	a	With suitable example explain the following operations:	
		i) Bitwise operatorii) Relational operator.	08
	b	Write a C program to compute sum of n even numbers.	08
	S	write a d program to compate sam of never numbers.	
		OR	
4	a	With suitable examples compare the advantages and disadvantages of	
		else-if ladder and switch statement.	08
	b	Write a C program to print the Floyds triangle:	
		$\begin{bmatrix} 1 \\ 23 \end{bmatrix}$	
		456	
		78910	
		11 12 13 14 15	08
5	a	Explain on dimensional and 2 dimensional array initialization with	00
	b	suitable code snippets. Explain the following string handling functions with examples.	08
	D	i) strlen()	
		ii) strcat()	
		iii) strcpy()	
		iv) strcmp().	08
		OR	

6	a b	Write a <i>C</i> program to find the sum of n elements of an array. With suitable code snippets explain how to declare and initialize	08
		string variables.	08
7	а	Explain the function declaration, function call and function definition with example.	08
	b	Create a structure called employee with the following details, ename, eid and designation. Demonstrate how to create a structure employee, create 3 variables of employee, read values into employees and	
		display this detail.	08
8	а	Write a <i>C</i> program to swap two numbers using pointers.	08
	b	Explain fopen() and fclose() with syntax and example.	08