from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

ls drive/MyDrive/'Colab Notebooks'/bmi.csv

→ 'drive/MyDrive/Colab Notebooks/bmi.csv'

ls drive/MyDrive/'Colab Notebooks'/'income(1) (1).csv'

'drive/MyDrive/Colab Notebooks/income(1) (1).csv'

import pandas as pd
import numpy as np
from scipy import stats

df=pd.read_csv("drive/MyDrive/Colab Notebooks/bmi.csv")
df

\rightarrow		Gender	Height	Weight	Index	
	0	Male	174	96	4	ıl.
	1	Male	189	87	2	+/
	2	Female	185	110	4	
	3	Female	195	104	3	
	4	Male	149	61	3	
	495	Female	150	153	5	
	496	Female	184	121	4	
	497	Female	141	136	5	
	498	Male	150	95	5	
	499	Male	173	131	5	
	500 rc	ws × 4 cc	lumns			

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.head()

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.dropna()

$\overrightarrow{\Rightarrow}$		Gender	Height	Weight	Index	
	0	Male	174	96	4	
	1	Male	189	87	2	
	2	Female	185	110	4	
	3	Female	195	104	3	
	4	Male	149	61	3	
	495	Female	150	153	5	
	496	Female	184	121	4	
	497	Female	141	136	5	
	498	Male	150	95	5	
	499	Male	173	131	5	
	500 rc	ws × 4 co	lumns			

max_vals = np.max(np.abs(df[['Height','Weight']]))
max_vals
max_vals

→ 199

df1=pd.read_csv("drive/MyDrive/Colab Notebooks/bmi.csv")
df1

\Rightarrow		Gender	Height	Weight	Index	
	0	Male	174	96	4	
	1	Male	189	87	2	
	2	Female	185	110	4	
	3	Female	195	104	3	
	4	Male	149	61	3	
4	195	Female	150	153	5	
4	196	Female	184	121	4	
4	197	Female	141	136	5	
4	198	Male	150	95	5	
4	199	Male	173	131	5	
50)() ro	ws × 4 co	lumns			
Next s	teps:	: Gene	rate code	with df1		View recommended plots New interactive sheet
sc=Stan	ndard Heigh H(10)	dScaler(ht','Wei) ght']] =	sc.fit_	_transf	ardScaler form(df1[['Height','Weight']])
0		Male	174	96	4	
1		Male	189	87	2	
2		emale	185	110	4	
3	B Fe	emale	195	104	3	
4	ļ	Male	149	61	3	
5		Male	189	104	3	
6		Male	147	92	5	
7		Male	154	111	5	
8		Male	174	90	3	
	-			00	9	
O.) F	emale	169	103	4	

df2[['Height','Weight']]=Scaler.fit_transform(df2[['Height','Weight']])

Scaler=Normalizer()

df2

 $\overline{\mathcal{F}}$

Next steps: Generate code with df2

View recommended plots

New interactive sheet

df3=pd.read_csv("drive/MyDrive/Colab Notebooks/bmi.csv")
df3

	Gender	Height	Weight	Index					
0	Male	174	96	4	ıl.				
1	Male	189	87	2	+//				
2	Female	185	110	4					
3	Female	195	104	3					
4	Male	149	61	3					
495	Female	150	153	5					
496	Female	184	121	4					
497	Female	141	136	5					
498	Male	150	95	5					
499	Male	173	131	5					
500 rows × 4 columns									

https://colab.research.google.com/drive/1al9E08sxF7T7BjZHBy8EHWI64aUsadox#scrollTo=OA8Tu63hkmVS&printMode=true

```
Generate code with df3
                                        View recommended plots
 Next steps:
                                                                       New interactive sheet
from sklearn.preprocessing import MaxAbsScaler
Scaler=MaxAbsScaler()
df3[['Height','Weight']]=Scaler.fit_transform(df3[['Height','Weight']])
\overrightarrow{\Rightarrow}
           Gender
                    Height Weight Index
                   0.874372 0.60000
       0
             Male
                   0.949749 0.54375
             Male
           Female 0.929648 0.68750
       3
                   0.979899 0.65000
                                         3
             Male 0.748744 0.38125
                                         3
      495
           Female 0.753769 0.95625
      496
           Female 0.924623 0.75625
      497
           Female 0.708543 0.85000
                                         5
                                         5
      498
             Male
                   0.753769 0.59375
      499
             Male 0.869347 0.81875
                                         5
     500 rows × 4 columns
              Generate code with df3
                                        View recommended plots
 Next steps:
                                                                       New interactive sheet
df4=pd.read csv("drive/MyDrive/Colab Notebooks/bmi.csv")
from sklearn.preprocessing import RobustScaler
Scaler=RobustScaler()
df4[['Height','Weight']]=Scaler.fit transform(df4[['Height','Weight']])
df4.head()
```

```
\rightarrow
         Gender
                   Height
                             Weight Index
      0
           Male
                 0.125000 -0.178571
           Male
                 0.660714 -0.339286
      2 Female
                 0.517857 0.071429
                                         3
      3 Female
                0.875000 -0.035714
           Male -0.767857 -0.803571
              Generate code with df4
                                       View recommended plots
 Next steps:
                                                                     New interactive sheet
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn.feature selection import RFE
from sklearn.linear_model import RidgeCV,LassoCV,Ridge,Lasso
from sklearn.feature selection import SelectKBest
from sklearn.feature selection import mutual info classif
from sklearn.feature_selection import mutual_info_regression
from sklearn.feature_selection import chi2
df=pd.read csv('drive/MyDrive/Colab Notebooks/income(1) (1).csv')
df.columns
→ Index(['age', 'JobType', 'EdType', 'maritalstatus', 'occupation',
            'relationship', 'race', 'gender', 'capitalgain', 'capitalloss',
            'hoursperweek', 'nativecountry', 'SalStat'],
           dtype='object')
df1=df.drop(["Name","sex","Ticket","cabin","embarked"],axis=1)
```

```
KeyError
                                               Traceback (most recent call last)
     <ipython-input-24-957512aa0a29> in <cell line: 1>()
     ----> 1 df1=df.drop(["Name","sex","Ticket","cabin","embarked"],axis=1)
                                        3 frames
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in drop(self, labels, errors)
        7068
                     if mask.any():
        7069
                        if errors != "ignore":
     -> 7070
                             raise KeyError(f"{labels[mask].tolist()} not found in axis")
                         indexer = indexer[~mask]
        7071
        7072
                    return self.delete(indexer)
     KeyError: "['Name', 'sex', 'Ticket', 'cabin', 'embarked'] not found in axis"
             Explain error
 Next steps:
df1.columns
→ Index(['Gender', 'Height', 'Weight', 'Index'], dtype='object')
import pandas as pd
from sklearn.feature_selection import SelectKBest
from sklearn.feature selection import chi2
data=pd.read csv('drive/MyDrive/Colab Notebooks/bmi.csv')
data=data.dropna()
df.columns
→ Index(['age', 'JobType', 'EdType', 'maritalstatus', 'occupation',
            'relationship', 'race', 'gender', 'capitalgain', 'capitalloss',
            'hoursperweek', 'nativecountry', 'SalStat'],
           dtype='object')
df
```

0 0 28 United-States less than or equal to 50,000	11.
0 0 40 United-States less than or equal to 50,000	*/
0 0 40 United-States greater than 50,000	
0 0 40 Mexico less than or equal to 50,000	
0 0 35 United-States less than or equal to 50,000	
	50,000 0

import pandas as pd
import numpy as np
from scipy.stats import chi2_contingency
import seaborn as sns
tips=sns.load_dataset('tips')
tips.head()

\Rightarrow		total_bill	tip	sex	smoker	day	time	size	
	0	16.99	1.01	Female	No	Sun	Dinner	2	11.
	1	10.34	1.66	Male	No	Sun	Dinner	3	
	2	21.01	3.50	Male	No	Sun	Dinner	3	
	3	23.68	3.31	Male	No	Sun	Dinner	2	
	4	24.59	3.61	Female	No	Sun	Dinner	4	