Solution Manual to $A\ Course\ in\ Mathematical\ Statistics$ and Large Sample Theory

Kisung You

kyou@nd.edu

Contents

Chapter 1.	Introduction	3
Chapter 2.	Decision Theory	4
Chapter 3.	Introduction to General Methods of Estimation	5
Chapter 4.	Sufficient Statistics, Exponential Families, and Estimation	6
Chapter 5.	Testing Hypotheses	7
Chapter 6.	Consistency and Asymptotic Distributions of Statistics	8

Introduction

- Ex. 1.1. From a population of size N a simple random sample of size n is drawn without replacement, and a real-valued characteristic X measured to yield observations X_j (j = 1, 2, ..., n). Show that
- (a) The way we deal
- (b) the expected squared error of \bar{X} as an estimator of m, i.e., the variance of \bar{X} , is smaller than that of the mean of a simple random sample of the same size n drawn with replacement, and
- (c) the difference between the expected squared errors of the two estimators is O(n/N), as n/N goes to zero.

Decision Theory

- Ex. 2.1. From a population of size N a simple random sample of size n is drawn without replacement, and a real-valued characteristic X measured to yield observations X_j (j = 1, 2, ..., n). Show that
- (a) The way we deal
- (b) the expected squared error of \bar{X} as an estimator of m, i.e., the variance of \bar{X} , is smaller than that of the mean of a simple random sample of the same size n drawn with replacement, and
- (c) the difference between the expected squared errors of the two estimators is O(n/N), as n/N goes to zero.

Introduction to General Methods of Estimation

- Ex. 3.1. From a population of size N a simple random sample of size n is drawn without replacement, and a real-valued characteristic X measured to yield observations X_j (j = 1, 2, ..., n). Show that
- (a) The way we deal
- (b) the expected squared error of \bar{X} as an estimator of m, i.e., the variance of \bar{X} , is smaller than that of the mean of a simple random sample of the same size n drawn with replacement, and
- (c) the difference between the expected squared errors of the two estimators is O(n/N), as n/N goes to zero.

Sufficient Statistics, Exponential Families, and Estimation

- Ex. 4.1. From a population of size N a simple random sample of size n is drawn without replacement, and a real-valued characteristic X measured to yield observations X_j (j = 1, 2, ..., n). Show that
- (a) The way we deal
- (b) the expected squared error of \bar{X} as an estimator of m, i.e., the variance of \bar{X} , is smaller than that of the mean of a simple random sample of the same size n drawn with replacement, and
- (c) the difference between the expected squared errors of the two estimators is O(n/N), as n/N goes to zero.

Testing Hypotheses

- Ex. 5.1. From a population of size N a simple random sample of size n is drawn without replacement, and a real-valued characteristic X measured to yield observations X_j (j = 1, 2, ..., n). Show that
- (a) The way we deal
- (b) the expected squared error of \bar{X} as an estimator of m, i.e., the variance of \bar{X} , is smaller than that of the mean of a simple random sample of the same size n drawn with replacement, and
- (c) the difference between the expected squared errors of the two estimators is O(n/N), as n/N goes to zero.

Consistency and Asymptotic Distributions of Statistics

Ex. 6.1. **ERRATA**

- (a)
- (b) errata cascades
 - Ex. 6.2. (a)
- (b) errata cascades