Theoretische Mechanik Hausaufgabenblatt Nr. 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 22, 2023)

Problem 1. (a) Bestimmen Sie alle komplexwertigen Lösungen der Gleichung

$$x^2 = u + iv.$$

in Abhängigkeit von $u, v \in \mathbb{R}$

(b) Führen Sie das Nullstellenproblem

$$ax^2 + bx + c = 0.$$

mit $a\in\mathbb{C}\setminus 0, b\in\mathbb{C}, c\in\mathbb{C}$ auf den Fall in (a) zurück. Geben Sie weiterhin eine geschlossene Darstelling aller Lösungen für den Fall a=1 an.

Hat alles geklappt, sollte bei Ihnen speziell für den Fall a=1 und Im(b)=Im(c)=0 die entsprechende Mitternachtsformel dastehen.

Proof. (a)
$$|x^2| = |x|^2 = |u + iv| = \sqrt{u^2 + v^2}$$

Daraus folgt:

$$|x| = (u^2 + v^2)^{1/4},$$

$$x = (u^2 + v^2)^{1/4} e^{i\theta}$$
.

Setze es in $x^2 = u + iv$ ein und löse die Gleichungen für θ . Sei $\varphi = \operatorname{atan}_2(u, v)$ Dann ist:

$$\theta = \frac{\varphi}{2} \text{ oder } \theta = \frac{\varphi + 2\pi}{2}.$$

(b)
$$ax^{2} + bx + c = 0 \implies x^{2} + \frac{b}{a}x + \frac{c}{a} = 0,$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

d.h.

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = \left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$
$$x = -\frac{b}{2a} + p$$

wobei p die Lösung zu $p^2 = \frac{b^2}{4a^2} - \frac{c}{a}$ ist.

Problem 2. Finden Sie für die Polynome $p, d \in \mathbb{C}[x]$ jeweils solche $q, r \in \mathbb{C}[x]$ mit $\deg(r) < \deg(d)$, dass p = qd + r gilt.

(a)
$$p = x^7 + x^5 + x^3 + 1, d = x^2 + x + 1$$

(b)
$$p = x^5 + (3-i)x^3 - x^2 + (1-3i)x + 1 + i, d = x^2 + i$$

(c) Wie sehen s, r aus, wenn man in (a) und (b) jeweils die Rollen von p und d vertauscht? D.h. bestimmen Sie $s, r \in \mathbb{C}[x]$ mit deg $r < \deg p$, sodass d = sp + r gilt.

Proof. (a)
$$x^{5} - x^{4} + x^{3}$$

$$x^{2} + x + 1) \overline{)x^{7} + x^{5} + x^{3} + 1}$$

$$\underline{-x^{7} - x^{6} - x^{5}}$$

$$-x^{6}$$

$$\underline{-x^{6} + x^{5} + x^{4}}$$

$$x^{5} + x^{4} + x^{3}$$

$$\underline{-x^{5} - x^{4} - x^{3}}$$

$$1$$

Daher

$$q = x^5 - x^4 + x^3, r = 1.$$

(b)
$$q = x^3 + (3-2i)x - x, r = -(1+6i)x + (1+2i)$$

(c)
$$r = d, s = 0$$

Problem 3. Seien

$$A = \begin{pmatrix} 1 & 2 & 1 & 5 \\ 2 & 1 & -1 & 4 \\ 1 & 0 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -38 \\ -46 \\ -18 \end{pmatrix}, c = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

gegeben.

- (a) Bestimmen Sie Im(A) und ker(A)
- (b) Bestimmen Sie Lös(A, b) und Lös(A, c).

Proof. (a)

$$\begin{pmatrix} 1 & 2 & 1 & 5 \\ 2 & 1 & -1 & 4 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -3 & -3 & -6 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -3 & -3 & -6 \\ 0 & -2 & -2 & -4 \end{pmatrix} \xrightarrow{R_2 \times -\frac{1}{3}} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -1 & 1 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & -2 & -2 & -4 \end{pmatrix} \xrightarrow{R_3 + 2R_2} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Daraus folgt

$$\operatorname{im}(A) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Sei dann $(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$. Wenn $(x_1, x_2, x_3, x_4)^T \in \ker(A)$, gilt

$$t_3 := x_3$$

$$t_4 := x_4$$

$$x_1 = x_3 - x_4 = t_3 - t_4$$

$$x_2 = -x_3 - 2x_4 = -t_3 - 2t_4$$

Daraus folgt:

$$\ker(A) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
2 & 1 & -1 & 4 & | & -46 \\
1 & 0 & -1 & 1 & | & -18
\end{pmatrix}
\xrightarrow{R_2 - 2R_1}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & -3 & -3 & -6 & | & 30 \\
1 & 0 & -1 & 1 & | & -18
\end{pmatrix}
\xrightarrow{R_3 - R_1}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & -3 & -3 & -6 & | & 30 \\
0 & -2 & -2 & -4 & | & 20
\end{pmatrix}$$

$$\xrightarrow{R_2 \times -\frac{1}{3}}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & 1 & 1 & 2 & | & -10 \\
0 & -2 & -2 & -4 & | & 20
\end{pmatrix}
\xrightarrow{R_3 + 2R_2}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & 1 & 1 & 2 & | & -10 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_1 - 2R_2}
\begin{pmatrix}
1 & 0 & -1 & 1 & | & -18 \\
0 & 1 & 1 & 2 & | & -10 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

Ausserdem

Problem 4. Gegeben seien die \mathbb{R} -Vektorräume V mit Basis $B_V = \{v_1, v_2, v_3\}$ und Basis $B_W = \{w_1, w_2, w_3\}$. Wir definieren einen linearen Operator $T: V \to W$ wie folgt:

$$T(v_1) = w_1 + w_3$$
 $T(v_2) = w_1 + w_2, T(v_3) = -w_1 - w_2 - w_3.$

(a)
$$w_1, w_2, w_3 \in \text{span} \{T(v_1), T(v_2), T(v_3)\}, \text{ weil}$$

$$w_1 = T(v_1) + T(v_2) + T(v_3)$$

$$w_2 = (-1)(T(v_3) + T(v_1))$$

$$w_3 = (-1)(T(v_2) + T(v_3))$$

Daraus folgt:

$$W = \text{span}(w_1, w_2, w_3) = \text{span}(T(v_1), T(v_2), T(v_3)).$$

Daraus folgt:

$$im(T) = \mathbb{R}^3, \quad \ker(T) = \{0\}.$$

(b)