Homework #5 Automata and Computation Theory Fall 2018

Written by Eric Rothman

November 2, 2018

Problem 1

This question studies the intersection and complementation of context free languages. Consider the languages $A = \{a^m b^n c^n | m, n \ge 0\}$ and $B = \{a^n b^n c^m | m, n \ge 0\}$.

a

Give a context-free grammar for each of A and B. Then, use A and B to show that the class of context free languages is not closed under intersection. A:

$$S - - > aS|C$$

$$C - - > bCc|\epsilon$$

B:

$$S - - > Sc|C$$

 $C - - > aCb|\epsilon$

Lets look at $D = A \cap B$. I will prove that $D = \{a^n b^n c^n | n \ge 0\}$

first direction

$$\begin{split} D \subset \{a^nb^nc^n|n\geq 0\} \\ \text{let } d \in D. \\ \text{So } d \in A \text{ and } d \in B. \end{split}$$

So d is of the form $a^{m_1}b^nc^n$ and of the form $a^nb^nc^{m_2}$ where $n, m_1, m_2 \ge 0$.

So $m_1 = n$ since the number of a's equals the number of b's in the second form and $m_2 = n$ since the number of b's is equal to the number of c's in the first form.

```
So m_1 = n = m_2
So d is of the form a^n b^n c^n, so d \in \{a^n b^n c^n | n \ge 0\}.
```

other direction

```
 \{a^nb^nc^n|n\geq 0\}\subset D  let d\in \{a^nb^nc^n|n\geq 0\} So d is of the form a^nb^nc^n. So d is of the form a^mb^nc^n where m=n, so d\in A. And d is of the form a^nb^nc^m where m=n, so d\in B. Since d\in A and d\in B, so d\in A\cap B, so d\in D. So D=\{a^nb^nc^n|n\geq 0\}
```

We proved in class that $\{a^nb^nc^n|n\geq 0\}$ is a non context free language, but I'll rewrite it for prosperities sake.

Proof of nonCFL

Assume D is a CFL. Then \exists a number p s.t. the pumping lemma holds. Let $S = a^p b^p c^p$. Since |S| = 3p > p, the pumping lemma holds.

So S can be divided into S = uvxyz.

v can contain only one or two symbols since $|vxy| \le p$ and every substring of length p contains at most two symbols since each section of symbols is p long.

y can contain only one or two symbols for the same reason as v.

There are two cases we need to consider.

(1) Both v and y contain only one symbol.

Then at least one symbol is missing in vy and |vy| > 0 So $S' = uv^2xy^2z$ cannot have the same number of a, b, c's So there is a contradiction.

(2) Either v or y contain two symbols.

Since $|vxy| \leq p$ by the conditions of the pumping lemma, at least one symbol is not in vy since every substring of length p contains at most two symbols since each section of symbols is p long.

So $S^\prime=uv^2xy^2z$ cannot have the same numbr of a,b,c's So there is a contradiction.

Since in either case there is a contradiction, the assumption must be false, so D is not a context free language.

Since A and B are context free languages but $D=A\cap B$ is not a context free language, context free languages are not closed under intersection.

b

Use (a) and DeMorgans Law (Textbook Theorem 0.20) to show that the class of context-free languages is not closed under complementation.

proof

FSOC let the class of context free languages be closed under complement.

Let A and B be arbitrary context free languages.

Since CFL's are closed under complement and A and B are CFL's, \bar{A} and \bar{B} are CFL.

By what we proved in class, $C = \bar{A} \cup \bar{B}$ is also a context free language.

Since C is a context free language, \bar{C} is a context free language.

By DeMorgan's law, $\bar{C} = !(\bar{A} \cup \bar{B}) = A \cap B$.

So \bar{C} is equal to the intersection of two CFL's.

Since A and B are arbitrary context free languages and $\bar{C} = A \cap B$ is a CFL, the intersection of all context free languages is a CFl.

So CFL's are closed under intersection.

This contradicts what we proved in part a, so the assumption must be false. So the class of CFL's are not closed under complement.

Problem 2

Let $D = \{xy \mid x, y \in \{0, 1\}^* \text{ and } |x| = |y| \text{ but } x \neq y^{\mathcal{R}} \}$. Give a context-free grammar for D, and formally prove that your grammar generates the give language (using the two directions argument).

 $G: \\ S-->0S0|1S1|A \\ A-->0B1|1B0 \\ B-->0B0|1B1|0B1|1B0|\epsilon$

Proof

We need to prove that L(G) = D, which we will do in the two directions.

First Direction

$$\forall w \in L(G), w \in D.$$

Observe that since every rule that adds a terminal adds two of them, one on either side of the current variable.

Also observe that there is only ever atmost one variable at a time during string generation and the generation must end with that variable becoming an ϵ .

So w can be divided into two sections, one for each side of the variable.

So $w = w_1 w_2$ where the two substrings are divided by where the variable turned into an epsilon.

Since every time a terminal is added two terminals are added with one going into each substring, $|w_1| = |w_2|$.

```
Lets call |w_1| = i
```

Now observe that to stop generating the string, the variable must get the be B, the variable must be A at some time.

During A-->0B1|1B0, a different terminal is added to each substring mandatorily.

WLOG lets say that A occurs at the jth spot in w_1 , and the i-j spot in w_2 , because of how the transitions work the second substring is built backwards.

So w_2^R contains the terminal added during the A transition at the i-(i-j)=jth spot.

So the jth spot of w_1 and w_2^R contains the terminal added by the A transition.

Since A adds a different terminal to each substring, the two characters at the jth spot of w_1 and w_2^R are different characters. So $w_1 \neq w_2^R$, so w = xy where |x| = |y| and $x \neq y^R$.

```
So w \in D.
```

Other Direction

```
prove \forall w \in D, w \in L(G)
```

```
since w \in D, w = xy where |x| = |y| and x \neq y^R.
Let j be the first spot in the string x where x_j \neq y_i^R.
```

This is guarenteed to occur since $x^R \neq y^R$, so there must be at least one spot where the charactors do not match.

So repeat A - - > 0A0|1A1 until we arrive at the jth spot. Since the grammer builds y in reverse, every terminal added to the right is added as the next spot in

This matches w since for every ith spot before the jth one, $x_i = y_i^R$.

At the jth spot transition to having the variable A and then do the transition that matches w.

So if
$$x_j = 0$$
 do $A - - > 0B1$ else if $x_j = 1$ do $A - - > 1B0$.

Then the variable will be B, which can generate any strings x and y from that

So just choose the transitions that build the x and y^R that you are looking for.

Then once the strings are build, do the transition to ϵ which ends the string generation.

```
So the string w = xy was generated using G.
```

So $w \in L(G)$.

So $D \subset L(G)$.

Since $D \subset L(G)$ and $L(G) \subset D$, D = L(G).

So G is the correct grammer for generating D.

Problem 3

Prove that the following language over the alphabet $\Sigma = \{0,1,2\}$ is not context free.

$$C = \{0^a 1^b 2^c | a, b, c \ge 0 \text{ and } a > b \text{ and } a > c\}.$$

PROOF:

FSOC lets assume that C is a CFL. Then \exists a number p such that the pumping lemma holds.

Let $S=0^{p+1}1^p2^p$. |S|=3p+1>p so the pumping lemma holds for this string.

So S = uvxyz

There are a two cases since both v and y can only contain up to two different symbols since $|vxy| \le p$ and each section of S is of length at least p.

Case 1

v or y contains two symbols.

Then $S' = uv^2xy^2z$ is out of order since it would either contain the substring 0101 or 1212, which goes against the form that C requires.

So $S' \notin C$ which contradicts the pumping lemma.

Case 2

v and y contain only one symbol.

Within that there are three different cases.

Case a

v contains 0.

If v contains another symbol besides 0, then it would fall within Case 1.

Since v contains a 0, |v| = t > 0.

Let $S' = uv^0xy^0z = uxz$. Since v is not in S', the number of 0's in $S' = p - t \le p$ since $t \ge 1$.

Now since |vxy| < p and b = p, y cannot contain any 2's without violating this condition.

So S' contains as many 2's as S. Let the number of 2's that S' contain be called c'.

So S' contains p 2's. Since the number of 0's in S', named a' WLOG, is less than or equal to p, and c'=p, $a'\leq c'$.

So $S' \notin C$ which contradicts the pumping lemma.

Case b

```
v or y contains 1 and v does not contain 0. let t=|v|\geq 1, or if |v|=0, t=|y|\geq 1. Let S'=uv^2xy^2z Let b'= number of 1's in S' Since either v contains 1s or y contains 1s, b'=b+t>p. So b'\geq p+1. So b'\geq a' since the number of 0's in S' does not change. So S'\notin C. This contradicts the pumping lemma.
```

Case c

vy contain only 2. let $t=|vy|\geq 1$ by the conditions of the pumping lemma. Let $S'=uv^2xy^2z$ Let c'= number of 2's in S' Since either vy contains 2's, c'=p+t>p So $c'\geq p+1$. So $c'\geq a'$ since the number of 0's in S' does not change. So $S'\notin C$. This contradicts the pumping lemma.

Since in every case there is a contradiction, the assumption must be false. So ${\cal C}$ is not a CFL.

Problem 4

Let B be the language of all palindromes over $\{0,1\}$ containing an equal number of 0s and 1s. Show that B is not context-free.

PROOF:

FSOC lets assume that C is a CFL. Then \exists a number p such that the pumping lemma holds.

Let $S = 1^p 0^{2p} 1^p |S| = 4p > p$, so the pumping lemma holds.

So S = uvxyz.

There are 3 cases.

Case 1

v or y contain two symbols

It is impossible for both v and y to contain two symbols since $|vxy| \le p$ and the distance between the two dividers, the only spot where v or y can contain two different symbols, is a distance of 2p.

So WLOG let v contain the two symbols.

Let
$$S' = uv^2xy^2z$$
.

Since v contains two symbols, S' is of the form $0^p 1^t 0^t 1^{2p+k} 0^p$ or $0^p 1^{2p} 0^t 1^t 0^{p+k}$ where 2t = |v| and |y| = k.

In either form, S' is no longer a palidrome, so $S' \notin B$, which contradicts the pumping lemma.

Case 2

vy contain all of one symbol.

Then v and y are in the same segmant of S since otherwise it would violate the fact that $vxy \leq p$ since there are 2p0's.

Let
$$S' = uv^2xy^2z$$
.

If vy just contains 0's, then there will be more 0's than 1's since |vy| > 0.

If vy just contains 1's, then there will be more 1's than 0's since |vy| > 0.

Either way S' does not contain an equal amount of 0's and 1's, so $S' \notin B$ which contradicts the pumping lemma.

Case 3

v and y contain only one symbol each, but they contain different symbols.

Then either v contains only 1's or 0's.

Let $S' = uv^2xy^2z$.

If v contains only 1's, S' has the form $0^p1^{2p+t}0^{p+j}$ where t=|v| and j=|y| where both are greater than zero otherwise it would be case 2.

If v contains only 0's, S' has the form $0^{p+t}1^{2p+j}0^p$ where t=|v| and j=|y| where both are greater than zero otherwise it would be case 2.

Either way, S' is not longer a palindrome since its form reversed is different from when its normally read.

So $S' \notin B$ which contradicts the pumping lemma

Since in all cases there is a contradiction, the assumption must be false. So B is not a CFL.