Problemas propuestos

Abraham Martín del Campo

6 de Diciembre del 2016

- 1. Sea \prec el orden (no graduado) lexicográfico inverso: $x^{\alpha} \succ x^{\beta}$ si la última entrada distinta de cero de $\alpha \beta$ es negativa. ¿Es esto un orden monomial?
- 2. Considera el ideal generado por

$$xy^3 + xz^3 + x - 1, yz^3 + yx^3 + y - 1, zx^3 + zy^3 + z - 1.$$

Usando Macaulay2 o cualquier otro programa de álgebra conmutativa, calcula una base de Gröbner con respecto a \prec_{lig} y a \prec_{lex} . ¿Cuántos polinomios tiene cada base? ¿Cuál es el grado máximo de los elementos de las bases de Gröbner para cada caso?

- 3. Muestra que un ideal I es homogéneo si y sólo si I tiene una base de Gröbner homogénea.
- 4. Si \prec es un orden monomial, muestra las siguientes inclusiones:

$$\operatorname{in}_{\prec}(I) \subseteq \operatorname{in}_{\prec}(\sqrt{I}) \subseteq \sqrt{\operatorname{in}_{\prec}(I)}$$

- 5. Si $\mathcal{A} \subseteq \mathbb{Z}^n$ es un conjunto finito de exponentes de monomios de Laurent, muestra que la función $\varphi_{\mathcal{A}}: (\mathbb{C}^{\times})^n \to \mathbb{P}^{\mathcal{A}}$ es injectiva si y sólo si \mathbb{Z}^n es generado afinmente por \mathcal{A} (i.e., las diferencias $\alpha \beta$ con $\alpha, \beta \in \mathcal{A}$ generan linealmente a \mathbb{Z}^n).
- 6. Muestra que la función de Hilbert H(t) de el anillo $\mathbb{C}[x_0,\ldots,x_n]_d$ de polinomios homogéneos de grado d es $\binom{n+d}{n} = \frac{d^n}{n!} + t.o.m$. en d.