12.
$$proof.$$
 Let $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,则根据 $M = AMA^T$ 知
$$-A_2A_1^T + A_1A_2^T = 0 \qquad (1), \qquad -A_2A_3^T + A_1A_4^T = I_n \quad (2), \\ -A_4A_1^T + A_3A_2^T = -I_n \quad (3), \qquad -A_4A_3^T + A_3A_4^T = 0 \quad (4).$$
 若 A_1 可逆结合 A 的分块可知 $|A| = |A_1| |A_4 - A_3A_1^{-1}A_2| \quad (5)$ 由 (1) 可知 $A_2 = A_1A_2^T (A_1^{-1})^T$ 代入 (2) 可得到 $A_4 - A_3A_1^{-1}A_2 = (A_1^{-1})^T \quad (6)$ 联合 (5) (6) 可知 $|A| = |A_1| |A_4 - A_3A_1^{-1}A_2| = |A_1| |(A_1^{-1})^T| = 1.$

若当 A_1 不可逆时,考虑摄动法处理即可. 从而有 $\det(A) = 1$.