

SEMICONDUCTORS

Prof. Abidi's Excellent Lecture
at
Lahore University of Management Sciences
https://www.youtube.com/watch?v=KqIOGGjPFQU

>58,000 views!

Semiconductors

- We have talked about
 - Conductors
 - Insulators
- Now we will be talking about something in between
 - Neither conductor nor insulator
 - But can be made to conduct rather well
 - And can be configured to be an excellent insulator

Semiconductors & Dopants

Intrinsic Silicon

IMAGE SOURCE: http://www.exploreroots.com/a3.html

Donor

IMAGE SOURCE: http://www.globalspec.com/learnmore/passive_discrete_devices/diodes/general_purpose_diodes

ACCEPTOR (takes an electron; net negative in crystal)

NOTE: due to thermal energy, there are also a few holes in n-type material, and electrons in p-type material. They are called MINORITY CARRIERS.

Doping Summary

- Adding special impurities to an intrinsic semiconductor
 - P-type
 - Add Group III element (lacking one electron ⇒ extra hole)
 - Immobilized impurity becomes negative when electron arrives
 - Increases hole density (orders of magnitude higher)
 - N-type:
 - Add Group V element ⇒ extra electron
 - Immobilized impurity becomes positive when electron leaves
 - Increases electron density (orders of magnitude higher)

Doping Concentrations

Doping Has Large Impact

(doping 1 part in 10^7):

Intrinsic resistivity of Silicon (ρ_i): 2300 Ω – m Doped resistivity of Silicon (ρ_p): 0.026 Ω – m

~ 5 orders of magnitude!

Carriers

	N-type	P-type
Electrons	MAJORITY	minority
Holes	minority	MAJORITY

P-N Junction Marketing

Thermal energy causes diffusion (think gas laws).

So why don't we end up with an even distribution of electrons in the entire device?

Migration

SOURCE:http://www.optique-ingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu_05.html

An Electric Field Builds Up

Image Source: Wikipedia

You get spontaneous diffusion

"Grass is greener" effect attracts carriers across P-N

junction.

 Recombination of carriers causes depletion region where carriers have migrated away

P-N Junction (Equilibrium)

- You get spontaneous diffusion
 - But diffusion stops when field created by immobile impurities opposes further carrier movement.
 - You essentially have a charged <u>capacitor</u> at the junction (very important in EE115A&B).
 - Built-in voltage: V_{bi} ≈
 0.9 V

P-N Junction Forward Bias

- Apply a voltage to the ends of the P-N junction.
 - +V to P-type & -V to N-type: WE GET CURRENT!

P-N Junction Forward Bias

- +V at P-type repels holes toward junction.
- –V at N-type repels electrons toward junction.
- Both <u>narrow</u> the depletion region.
- Once the electrons are in the P-type material, they recombine with holes in the depletion region, lowering the E-field force.
- When the forward bias voltage is high enough, the E-field force is overcome, the resistance to carrier diffusion is greatly reduced, and <u>current flows</u> <u>freely</u>.

Favorite Question

- When forward-biased, we have holes moving and electrons moving. How do we combine the two?
 - (a) They cancel each other out.
 - (b) The holes don't count; it's all about electron flow.
 - (c) Since we are talking conventional current, the electrons don't count; it's all about the hole flow.
 - (d) They add.
- Answer: (d)

P-N Junction Reverse Bias

- Apply a voltage to the ends of the P-N junction.
 - –V to P-type & +V to N-type: NO CURRENT!

P-N Junction Reverse Bias

- –V at P-type attracts majority carriers (holes) away from junction.
- +V at N-type attracts majority carriers (electrons) away from junction.
- Depletion region E-field widens.
- Resistance increases.
- (Almost) no current flows.

P-N Junction Biasing Summary

- Apply a voltage to the ends of the P-N junction.
 - +V to P-type & -V to N-type: current (forward bias)
 - –V to P-type & +V to N-type: no current (reverse bias)
- What we have here is a <u>diode</u>. It's a one-way valve, AKA check valve.

Diode Symbol

Direction of Conventional Current

Band indicates cathode end

How to Use a Diode?

- In your wall wart!
- What we have in the wall: AC (sinusoidal).
- What we want for the computer: DC.
- We need to <u>rectify</u> the sine wave. Diodes do that.

1N 4004

FULL-WAVE RECTIFICATIONS

CURRENT AMPLIFICA

Gain (current) =
$$\frac{Dic}{Dif} = \frac{(25-15)mA}{(120-80)mA}$$

= $\frac{10e-3}{50e-6} = \frac{250}{250}$

How to Use a Diode?

Then we need to <u>filter</u> the rectified sine wave.

Capacitors do that.

What Should R Be?

Assume 60 Hz, fullwave rectified.

Choose LONG
$$\tau = 20 T = 0.167 s$$

If
$$C = 100 \,\mu$$
 F, then

$$R = \frac{20 \,\text{T}}{100\text{e-}6} = 1.7 \,\text{K}\Omega$$

