Discrete Mathematics Exercise 9

Qiu Yihang, 2020/10/23

1. Solution:

- a) The equivalence class of 1 for this equivalence relation is \mathbb{Z} .
- b) The equivalence class of 1/2 for this equivalence relation is $\{x \mid x = k + \frac{1}{2}, k \in \mathbb{Z}\}$.

2. Proof:

First, we prove the "if" part.

Since P_1 correspond to \mathcal{R}_1 , for any $p_1 \in P_1$, exists $a \in \mathbb{A}$ s.t. $p_1 = [a]_{\mathcal{R}_1}$.

When P_1 is a refinement of P_2 , $\forall p_1 ((p_1 \in P_1) \land (\exists p_2 ((p_2 \in P_2) \land (p_1 \subseteq p_2))))$ $\Rightarrow \forall a ((a \in A) \land (\exists p_2 ((p_2 \in P_2) \land ([a]_{\mathcal{R}_1} \subseteq p_2)))).$

For any $a \in A$, $\exists b ((b \in A) \land ([a]_{\mathcal{R}_1} \subseteq [b]_{\mathcal{R}_2}))$ (because P_2 correspond to \mathcal{R}_2).

Since $a \in [a]_{\mathcal{R}_1}$, $[b]_{\mathcal{R}_2} = [a]_{\mathcal{R}_2}$.

Thus, for any $a \in \mathbb{A}$, $[a]_{\mathcal{R}_1} \subseteq [a]_{\mathcal{R}_2}$, i.e. $\forall a \forall x \ \big((a \in \mathbb{A}) \land (x \in \mathbb{A}) \land (a\mathcal{R}_1 x \to a\mathcal{R}_2 x) \big)$. In other words, $\mathcal{R}_1 \subseteq \mathcal{R}_2$.

Now we prove the "only if" part.

When $\mathcal{R}_1 \subseteq \mathcal{R}_2$, $\forall a \forall x ((a \in \mathbb{A}) \land (x \in \mathbb{A}) \land (a\mathcal{R}_1 x \to a\mathcal{R}_2 x))$,

i.e. $\forall a \ (a \in \mathbb{A}) \land ([a]_{\mathcal{R}_1} \subseteq [a]_{\mathcal{R}_2}).$

Since P_1 correspond to \mathcal{R}_1 , for any $p_1 \in P_1$, exists $a \in \mathbb{A}$ s.t. $p_1 = [a]_{\mathcal{R}_1}$.

Thus, for any $p_1 \in P_1$, exists $a \in \mathbb{A}$ s.t. $p_1 = [a]_{\mathcal{R}_1}$ and $p_2 = [a]_{\mathcal{R}_2}$ s.t. $p_2 \in P_2$, $p_1 \subseteq p_2$. In other words, P_1 is a refinement of P_2 .

In conclusion, $\mathcal{R}_1 \subseteq \mathcal{R}_2$ iff. P_1 is a refinement of P_2 .

QED

3. Proof:

Let $\mathcal{R} \subseteq \mathbb{A} \times \mathbb{A}$.

Lemma. For any $n \in \mathbb{N}^+$, $\mathcal{R}^n \circ \mathcal{R} = \mathcal{R} \circ \mathcal{R}^n$.

Proof.

- 1) n = 1. $\mathcal{R} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{R}$ obviously holds.
- 2) $n \ge 2$.

Since composition is associative, we know $\mathcal{R}^n \circ \mathcal{R} = \mathcal{R}^{n-1} \circ \mathcal{R} \circ \mathcal{R} = \mathcal{R}^{n-1} \circ (\mathcal{R} \circ \mathcal{R}) = \mathcal{R}^{n-1} \circ \mathcal{R}^2 = \dots = \mathcal{R}^2 \circ \mathcal{R}^{n-1} = \mathcal{R} \circ \mathcal{R} \circ \mathcal{R}^{n-1} = \mathcal{R} \circ (\mathcal{R} \circ \mathcal{R}^{n-1}) = \mathcal{R} \circ \mathcal{R}^n.$

Qed.

Now we prove for all positive integers n, \mathbb{R}^n is a symmetric relation.

- 1) n = 1. $\mathcal{R}^n = \mathcal{R}^1 = \mathcal{R}$ is a symmetric relation.
- 2) $n \ge 2$.

IH. When n = k ($k \in \mathbb{N}^+$), \mathcal{R}^n is a symmetric relation.

When n = k + 1, $\mathcal{R}^n = \mathcal{R}^{k+1} = \mathcal{R}^k \circ \mathcal{R}$.

For any $(a,b) \in \mathbb{R}^{k+1}$, exists $c \in \mathbb{A}$ s.t. $a\mathcal{R}c, c(\mathbb{R}^k)b$.

Since both \mathcal{R}^k and \mathcal{R} are symmetric relations, $c\mathcal{R}a, b(\mathcal{R}^k)c$.

Thus, $(b,a) \in \mathcal{R} \circ \mathcal{R}^k$.

According to Lemma, we know $\mathcal{R} \circ \mathcal{R}^k = \mathcal{R}^k \circ \mathcal{R} = \mathcal{R}^{k+1}$. Thus, $(b, a) \in \mathcal{R}^{k+1}$.

In other words, \mathcal{R}^{k+1} is a symmetric relation, i.e. \mathcal{R}^n is a symmetric relation.

Therefore, for all positive integers n, \mathcal{R}^n is a symmetric relation.

QED

4. Proof:

Let $\mathcal{R}, \mathcal{S} \subseteq \mathbb{A} \times \mathbb{A}$.

Lemma 1. $\mathcal{R} \circ \mathcal{S} \subseteq \mathcal{S} \implies \forall n(n \in \mathbb{N}^+) \land (\mathcal{R}^n \circ \mathcal{S} \subseteq \mathcal{S}).$

Proof.

- 1) n = 1. $\mathcal{R} \circ \mathcal{S} \subseteq \mathcal{S}$ obviously holds.
- 2) $n \ge 2$.

IH. When n = k ($k \in \mathbb{N}^+$), $\mathcal{R}^k \circ \mathcal{S} \subseteq \mathcal{S}$, i.e. for any $(a, b) \in \mathcal{R}^k \circ \mathcal{S}$, $(a, b) \in \mathcal{S}$.

When n = k + 1, since $\mathcal{R}^{k+1} \circ \mathcal{S} = \mathcal{R}^k \circ \mathcal{R} \circ \mathcal{S} = \mathcal{R} \circ \mathcal{R}^k \circ \mathcal{S}$, (by 3. Lemma)

we know for any $(a,b) \in \mathbb{R}^{k+1} \circ S$, exists $c \in \mathbb{A}$ s.t. $a(\mathbb{R}^k \circ S)c$, $c\mathbb{R}b$.

Thus, aSc, cSb. So aSb.

In other words, $\mathcal{R}^{k+1} \circ \mathcal{S} \subseteq \mathcal{S}$, i.e. $\mathcal{R}^n \circ \mathcal{S} \subseteq \mathcal{S}$.

Qed.

Lemma 2.
$$\left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S} = \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S}).$$

Proof.

First we prove $\left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S} \subseteq \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S}).$

For any
$$(a,b) \in \left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S}$$
, exists $c \in \mathbb{A}$ s.t. $a\mathcal{S}c, c\left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right)b$.

Thus, exists positive integer n s.t. $(c,b) \in \mathbb{R}^n$, i.e. $c(\mathbb{R}^n)b$.

Thus, $(a,b) \in \mathbb{R}^n \circ \mathcal{S}$.

Thus,
$$(a,b) \in \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S})$$
.

Then we prove
$$\left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S} \supseteq \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S}).$$

For any $(a,b) \in \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S})$, exists positive integer n s.t. $(a,b) \in \mathcal{R}^n \circ \mathcal{S}$.

Thus, exists $c \in \mathbb{A}$ s.t. $aSc, c(\mathbb{R}^n)b$.

Thus,
$$a\mathcal{S}c$$
, $(c,b) \in \left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right)$.

Thus,
$$(a,b) \in \left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S}$$
.

Qed.

Firstly, we prove "⇒" holds.

From Lemma 1, we know for all positive integers $n, \mathcal{R}^n \circ \mathcal{S} \subseteq \mathcal{S}$.

From **Lemma 2**, we know for any $(a,b) \in \left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S}, \ (a,b) \in \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S}).$

Thus, exists positive integer n s.t. $(a,b) \in \mathbb{R}^n \circ \mathcal{S}$.

Thus, $(a,b) \in \mathcal{S}$.

So
$$\left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S} \subseteq \mathcal{S}$$
.

Now we prove "←" holds by contradiction.

If $\mathcal{R} \circ \mathcal{S} \nsubseteq \mathcal{S}$, then exists $(a,b) \in \mathcal{R} \circ \mathcal{S}$ s.t. $(a,b) \notin \mathcal{S}$.

Thus,
$$(a,b) \in \bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S})$$
. (By Lemma 2)

Since
$$\left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S} \subseteq \mathcal{S}$$
, i.e. $\bigcup_{n=1}^{\infty} (\mathcal{R}^n \circ \mathcal{S}) \subseteq \mathcal{S}$ (By Lemma 2), $(a,b) \in \mathcal{S}$.

Contradiction.

Therefore, $\mathcal{R} \circ \mathcal{S} \subseteq \mathcal{S}$.

In conclusion, $\mathcal{R} \circ \mathcal{S} \subseteq \mathcal{S} \Leftrightarrow \left(\bigcup_{n=1}^{\infty} \mathcal{R}^n\right) \circ \mathcal{S} \subseteq \mathcal{S}$.

QED

5. a) Proof:

- 1) It's obvious that there's no integer n s.t. $a < n \le a$, i.e. $a \mathcal{R} a$. Thus, \mathcal{R} is reflexive.
- 2) When $aRb \wedge bRc$, we prove aRc by contradiction.

If $\neg a \mathcal{R} c$, then exists an integer n s.t. $c < n \le a$.

Therefore, either $c < n \le b$ or $b < n \le a$, i.e. $\neg a \mathcal{R} b \lor \neg b \mathcal{R} c$. Contradiction.

Thus, $a\mathcal{R}b \wedge b\mathcal{R}c \rightarrow a\mathcal{R}c$, i.e. \mathcal{R} is transitive.

3) Exists a = 1/2, b = 0 s.t. $a\mathcal{R}b$ and $b\mathcal{R}a$. Thus, \mathcal{R} is not antisymmetric.

Since \mathcal{R} is reflexive and transitive but is not antisymmetric, \mathcal{R} is a preorder on \mathbb{R} but is not a partial order on \mathbb{R} .

QED

b) Proof:

Since \mathcal{R} is a preorder, \mathcal{R} is transitive.

In this case, $\mathcal{R} \subseteq T \to \mathcal{R} \subseteq T$ obviously holds. Thus, $\forall T \ (\mathcal{R} \subseteq T \land \mathbf{Transitive}(T) \to \mathcal{R} \subseteq T)$.

Because $\mathcal{R} \subseteq \mathcal{R}$, \mathcal{R} is transitive and $\forall T \ (\mathcal{R} \subseteq T \land \mathbf{Transitive}(T) \to \mathcal{R} \subseteq T)$, \mathcal{R} is the transitive closure of itself, i.e. $\mathcal{R} = \mathcal{R}^+$.

QED

c) Proof:

Since \mathcal{R} is a preorder, \mathcal{R} is reflexive and transitive.

- 1) Since for any $a \in A$, $a\mathcal{R}a$, we know $a(\mathcal{R}^{-1})a$.
 - Thus, $\forall a (a \in \mathbb{A}) \land a(\mathcal{R} \cap \mathcal{R}^{-1})a$, i.e. $\mathcal{R} \cap \mathcal{R}^{-1}$ is reflexive.

2) For any $a(\mathcal{R} \cap \mathcal{R}^{-1})b$, $a\mathcal{R}b \wedge a(\mathcal{R}^{-1})b$, i.e. $a\mathcal{R}b \wedge b\mathcal{R}a$.

Thus, $a\mathcal{R}b \wedge b\mathcal{R}a \wedge a(\mathcal{R}^{-1})b \wedge b(\mathcal{R}^{-1})a$.

Thus, $b(\mathcal{R} \cap \mathcal{R}^{-1})a$.

So, for any $a(\mathcal{R} \cap \mathcal{R}^{-1})b$, $b(\mathcal{R} \cap \mathcal{R}^{-1})a$. In other words, $\mathcal{R} \cap \mathcal{R}^{-1}$ is symmetric.

3) For any $a(\mathcal{R} \cap \mathcal{R}^{-1})b$ and $b(\mathcal{R} \cap \mathcal{R}^{-1})c$, $a\mathcal{R}b \wedge a(\mathcal{R}^{-1})b \wedge b\mathcal{R}c \wedge b(\mathcal{R}^{-1})c$. Since both \mathcal{R} and \mathcal{R}^{-1} are transitive, we know $a\mathcal{R}c \wedge a(\mathcal{R}^{-1})c$. Thus, $a(\mathcal{R} \cap \mathcal{R}^{-1})c$. In other words, $\mathcal{R} \cap \mathcal{R}^{-1}$ is transitive.

Therefore, $\mathcal{R} \cap \mathcal{R}^{-1}$ is reflexive, symmetric and transitive. In other words, $\mathcal{R} \cap \mathcal{R}^{-1}$ is an equivalence relation on \mathbb{A} .

QED

d) Proof:

Since \mathcal{R} is a preorder, \mathcal{R} is reflexive and transitive.

- 1) For any $b \in \mathbb{B}$, exists $a \in \mathbb{A}$ s.t. b = [a]. Since \mathcal{R} is reflexive, $a\mathcal{R}a$, we know $([a], [a]) \in \mathcal{S}$, i.e. $(b, b) \in \mathcal{S}$. In other words, \mathcal{S} is reflexive on \mathbb{B} .
- 2) For any $x, y \in \mathbb{B}$, exists $a, b \in \mathbb{A}$ s.t. x = [a], y = [b]. When $(x, y) \in \mathcal{S} \land (y, x) \in \mathcal{S}$, i.e. $([a], [b]) \in \mathcal{S} \land ([b], [a]) \in \mathcal{S}$, we know from the definition that $a(\mathcal{R} \cap \mathcal{R}^{-1})b \land b(\mathcal{R} \cap \mathcal{R}^{-1})a$, i.e. [a] = [b], i.e. x = y. Thus, for any $x, y \in \mathbb{B}$, $x\mathcal{S}y \land y\mathcal{S}x \rightarrow x = y$.

In other words, S is antisymmetric on \mathbb{B} .

3) For any $x, y, z \in \mathbb{B}$, exists $a, b, c \in \mathbb{A}$ s.t. x = [a], y = [b], z = [c]. When $x \mathcal{S} y \wedge y \mathcal{S} z$, i.e. $([a], [b]) \in \mathcal{S} \wedge ([b], [c]) \in \mathcal{S}$, we know from the definition that $a(\mathcal{R} \cap \mathcal{R}^{-1})b \wedge b(\mathcal{R} \cap \mathcal{R}^{-1})c$. Thus, $a(\mathcal{R} \cap \mathcal{R}^{-1})c$. (We have proved that $\mathcal{R} \cap \mathcal{R}^{-1}$ is transitive in c).)

Thus, for any $x, y, z \in \mathbb{B}$, $x \mathcal{S} y \wedge y \mathcal{S} z \to x \mathcal{S} z$.

In other words, S is transitive on \mathbb{B} .

Therefore, S is reflexive, antisymmetric and transitive.

In other words, S is a partial order on \mathbb{B} .

QED