Data Mining Project2

姓名:電機所 卓冠廷 學號:N26114277

一、目的

本作業利用四個不同的分類器(Dicision Tree、Random Forest、KNN、K-means)做分類,並針對各個模型預測的結果作分析。此次預測的題目為「此作業是否為好作業?」。

二、Input 設計

Attributes: 分四大類(實作的收穫、時間成本、感受、學生能力) 所有 Attributes 都寫成 dictionary 的形式, values 在-2 到 2 之間

▶ 實作的收穫

✓ 'Reward from homework' : 做功課的收穫

✓ 'Course relevance' : 課堂關聯性

✓ 'Interdisciplinary learning' : 跨領域學習

✓ 'Cooperation and Discussion': 團隊合作與討論

以上四項屬性的 values 會相加算出 reward 值

▶ 時間成本

✓ 'Homework numbers' : 功課數量

✓ 'Scale': 作業規模

✓ 'Average time spent': 作業平均花費時間

✓ 'Homework deadlines' : 作業繳交期限

以上四項屬性的 values 會相加算出 time_cost 值

▶ 感受

✓ 'Step by step': 作業難度是否循序漸進

✓ 'Feeling': 做作業時的感受

✓ 'Difficulty of implementation' : 作業實作的難度

✓ 'Difficulty in understanding': 作業理解的難度

以上四項屬性的 values 會相加算出 feel 值

▶ 學生能力

✓ 'Student qualifications' : 學生的資質

✓ 'Student concentration': 學生的專注程度

✓ 'Student responsibility' : 學生的責任感

✓ 'Research relevance' : 學生的研究相關性

以上四項屬性的 values 會相加算出 ability 值

Redundant Attributes:

所有 Redundant Attribute 都寫成 dictionary 的形式, values 在-2 到 2 之間

✓ 'Student weight' : 學生的體重

✓ 'Student height' : 學生的身高

Absolutely Right Rules: (五個規則)

reward*2 (≤-8:低 -8 到 8: 中 ≥8:高)

time cost、feel、ability (≤-4:低 -4 到 4:中≥4:高)

這邊將 reward 乘上兩倍是因為個人認為實作的收穫相對於其他三者,在判斷是否為好作業時較為重要,因此將此分數的權重調高。

Rule1 = reward* $2 \ge 8$ and time cost ≤ -6

(時間成本低,收穫高)

Rule2 = reward* $2 \ge 8$ and feel ≥ 6

(感受好,收穫高)

Rule3 = reward* \geq 8 and ability \geq 6

(學生能力高,收穫高)

Rule4 = reward*2 ≥ 8 and 4 ≥ time_cost ≥ 0 and 6 ≥ feel ≥ 2 and 6 ≥ ability ≥ 2 (時間成本適中,感受適中偏好,學生能力適中偏高,收穫高)

Rule5 = reward*2 ≥ 8 and time_cost ≥ 4 and 6 ≥ feel ≥ 2 and -2 ≥ ability ≥ -6 (時間成本高,感受適中偏好,學生能力適中偏低,收穫高)

資料量:總共生成 10000 筆資料

Rule1:1000 筆

Rule2:1000 筆

Rule3:1000 筆

Rule4:1000 筆

Rule5:1000 筆

隨機產生的資料:5000筆

可以發現 Absolutely Right Rules 的總數大於 Good homeworks,是因為同一筆資料可能同時滿足多個 Rules,而 Bad homeworks的資料數略小於 5000筆,是因為隨機產生的資料(Bad homeworks)可能滿足 Rule1 到 Rule5,產

生結果如下:

```
(DM_hw2) C:\Users\poetr\OneDrive\桌面\hw2>python data_generatorl.py
Rulel numbers: 1060
Rule2 numbers: 1179
Rule3 numbers: 1110
Rule4 numbers: 1200
Rule5 numbers: 1026
Good homeworks numbers: 5001
Bad homeworks numbers: 4999
```

原始資料(data1)

加入干擾:

▶ 加入 Redundant Attributes 產生資料(data2)

```
(DM_hw2) C:\Users\poetr\OneDrive\桌面\hw2>python data_generator2.py
Rulel numbers: 1050
Rule2 numbers: 1180
Rule3 numbers: 1100
Rule4 numbers: 1173
Rule5 numbers: 1021
Good homeworks numbers: 5000
Bad homeworks numbers: 5000
```

▶ 加入 Redundant Attributes 並將後 500 筆的 Labels 故意標錯(data3)(訓練出的模型去預測 data2)

```
(DM_hw2) C:\Users\poetr\OneDrive\桌面\hw2>python data_generator3.py
Rule1 numbers: 1066
Rule2 numbers: 1166
Rule3 numbers: 1095
Rule4 numbers: 1186
Rule5 numbers: 1026
Good homeworks numbers: 5500
Bad homeworks numbers: 4500
```

加入 Redundant Attributes 並放寬 Rules,將實作的收穫(reward)從高 (reward ≥ 8)改為適中偏高(6 ≥ reward ≥ 2),亦即調低 reward 的重要程度

```
(DM_hw2) C:\Users\poetr\OneDrive\桌面\hw2>python data_generator4.py
Rule1 numbers: 1100
Rule2 numbers: 1244
Rule3 numbers: 1147
Rule4 numbers: 1262
Rule5 numbers: 1037
Good homeworks numbers: 5191
Bad homeworks numbers: 4809
```

從上圖可見隨機產生的資料(Bad homeworks)有較多被轉換成 Good homeworks, 這是因為每條 Rules 的標準降低所導致

訓練集/測試集:

兩者的比例採 7:3 去做分割,以下為 data1/data2/data3/data4 的分割結果:

```
Shape of datal x_train: (7000, 16)
Shape of datal x_vad: (3000, 16)
Shape of datal y_train: (7000,)
Shape of datal y_vad: (3000,)
Shape of data2 x_train: (7000, 18)
Shape of data2 x_vad: (3000, 18)
Shape of data2 y_train: (7000,)
Shape of data2 y_vad: (3000,)
Shape of data3 x_train: (7000, 18)
Shape of data3 x_train: (7000, 18)
Shape of data3 y_train: (7000,)
Shape of data4 y_train: (7000, 18)
Shape of data4 x_vad: (3000, 18)
Shape of data4 y_train: (7000,)
Shape of data4 y_train: (7000,)
Shape of data4 y_train: (7000,)
```

可以發現 data2/data3/data4 的維度多 2 維,因為 Redundant Attributes 的加入

三、 Decision Tree 分析

decision_tree_data1_max_depth=4.png(清晰圖在 hw2 內)

decision_tree_data2_ max_depth=4.png(清晰圖在 hw2 內)

decision tree data3 max depth=4.png(清晰圖在 hw2 內)

decision_tree_data4_ max_depth=4.png(清晰圖在 hw2 內)

data1/data2/data3/data4 辨識準確度

在 max_depth=4 的情況下,data1 與 data2 影響好壞功課的 Attributes 皆出自於實作的收穫(reward),而 data3 與 data4 的 Decision Tree 因為有錯誤的 Labels 和放寬 Rules 的影響,考量了一些實作的收穫(reward)外的 Attributes,像是 Step by step、Student qualifications、Student responsibility。

decision_tree_data1_ max_depth=7.png(清晰圖在 hw2 內)

decision_tree_data2_ max_depth=7.png(清晰圖在 hw2 內)

decision tree data3 max depth=7.png(清晰圖在 hw2 內)

decision tree data4 max depth=7.png(清晰圖在 hw2 內)

data1/data2/data3/data4 辨識準確度

在 max_depth=7 的情況下,影響好壞功課的 Attributes 並非完全屬於實作的收穫(reward),從 data1 與 data2 來看,實作的收穫(reward)考慮了 4 項

Attributes, 感受(feel)考慮了 3 項 Attributes, 學生能力(ability)考慮了 2 項 Attributes, 時間成本(time_cost)考慮了 1 項 Attributes, 沒有考慮任何 Redundant Attributes, 而 data3 和 data4 的 Decision Treeur 皆考慮了所有的 Attributes(16+2)。

深度對 Decision Tree 的影響:

比較兩種深度的結果跟 Absolutely Right Rules 的關聯,前四層出現的 Attributes 大部分都屬於實作的收穫(reward),因為 5 條 Rules 皆跟 reward 相關,且權重還乘 2 倍;感受(feel)在第 5 層後開始出現,因為 3 條 Rules 跟 feel 相關,且皆希望感受要好或偏好;學生能力(ability)在第 6 層後開始出現,因為 3 條 Rules 跟 ability 相關,分別是學生能力偏低、偏高、高;時間成本(time_cost)在第 7 層才出現,因為 3 條 Rules 跟 time_cost 相關,分別是時間成本低、適中、高,範圍最廣,因此在深度比較深的位置才會影響決策,深度較淺的決策則受到權重較重或範圍較窄的 Attributes 影響,而隨深度的上升,準確度也會上升。

Redundant Attributes 對 Decision Tree 的影響:

比較兩種深度 data3 的 Decision Tree, 會發現深度較淺的情況下,雖有錯誤的 Labels,但不會把 Redundant Attributes 考慮進去,僅考量到較重要的 Attributes 去做決策,而隨著深度的提升,Decision Tree 必須考量到較次要的 Attributes,此時 Redundant Attributes 自然有機會浮現,準確率也會下降較多(max depth=4 下降約 2%, max depth=7 下降約 3%)

放寬 Rules 對 Decision Tree 的影響:

比較 data4 和 data2 的 Decision Tree, 會發現在不同深淺的情況下, data4 考慮的 Attributes 皆比 data2 來的多, 放寬 Rules, 亦即將實作的收穫(reward) 的 Attributes 影響調降,其他的 Attributes 被納入考量,而當有較多 Attributes 需考量時,準確率自然跟著下降。

四、 Random Forest 分析

此模型是基於 Decision Tree 去開發的,由多棵 Decision Trees 去做多數投票機制進行預測,優點在於每棵樹會用到哪些訓練資料及特徵都是隨機決定,且每一棵樹都是獨立的。這邊設定樹的數目為 100 棵,深度一樣以 4 和 7 去做討論

	precision	recall	tl-score	support
Bad homeworks Good homeworks	0.99 0.84	0.81 0.99	0.89 0.91	1500 1500
accuracy macro avg weighted avg	0.91 0.91	0.90 0.90	0.90 0.90 0.90	3000 3000 3000

data1 classification report max depth=4

	precision	recal1	f1-score	support
Bad homeworks Good homeworks	0.96 0.84	0.82 0.97	0.89 0.90	1500 1500
accuracy macro avg weighted avg	0.90 0.90	0.90 0.90	0.90 0.89 0.89	3000 3000 3000

data2 classification report max depth=4

	precision	recal1	f1-score	support
Bad homeworks Good homeworks	0.99 0.81	0.77 0.99	0.86 0.89	1500 1500
accuracy macro avg weighted avg	0.90 0.90	0.88 0.88	0.88 0.88 0.88	3000 3000 3000

data3 classification report max depth=4

_				_
	precision	recall	f1-score	support
Bad homeworks	0.89	0.72	0.79	1453
Good homeworks	0.78	0.92	0.84	1547
accuracy			0.82	3000
macro avg	0.83	0.82	0.82	3000
weighted avg	0.83	0.82	0.82	3000

data4 classification report max depth=4

考慮到不同類別的樣本不均衡,這邊看的是 weighted avg 做比較 data1 和 data2 的結果比較

發現 precision 的部分 datal 高了 1%, 說明 Redundant Attributes 有稍微影響到 precision, 跟 Decision Tree 不一樣,因為 Random forest 的訓練資料及特徵是隨機決定,因此在投票表決階段受較多 Attributes 影響, recall 的部分一樣,表示為真的情況下,正確判斷出來的把握度差不多。

data2 和 data3 的結果比較

發現 recall 的部分 data3 低了 2%,表示錯誤的 Labels 使為真的情況下,正確判斷的把握度下降,但因 Random forest 是經每個 Decision Tree 投票表決,precision 並未因此受到影響。

data2 和 data4 的結果比較

發現 precision 和 recall 分別降低了 7% 和 8%, 放寬 Rules 代表單一 Decision Tree 参考的 Attributes 提升,但因為深度太淺分不太出來,使精準度下降,且表示為真的情況下,正確判斷的把握度也下降。

, , ,		• • •		
	precision	recall	fl-score	support
Bad homeworks Good homeworks	1.00 0.87	0.85 1.00	0.92 0.93	1500 1500
accuracy macro avg weighted avg	0.93 0.93	0.92 0.92	0.92 0.92 0.92	3000 3000 3000

data1 classification report max depth=7

	precision	recall	f1-score	support
Bad homeworks Good homeworks	1.00 0.87	0.85 1.00	0.92 0.93	1500 1500
accuracy macro avg weighted avg	0.93 0.93	0.92 0.92	0.92 0.92 0.92	3000 3000 3000

data2 classification report max depth=7

	precision	recall	fl-score	support
Bad homeworks Good homeworks	1.00 0.85	0.83 1.00	0.90 0.92	1500 1500
accuracy macro avg weighted avg	0.93 0.93	0.91 0.91	0.91 0.91 0.91	3000 3000 3000

data3 classification report max depth=7

_				-
	precision	recall	f1-score	support
Bad homeworks Good homeworks	0.94 0.83	0.80 0.95	0.86 0.89	1453 1547
accuracy macro avg weighted avg	0.89 0.89	0.87 0.88	0.88 0.88 0.88	3000 3000 3000

data4 classification report max depth=7

考慮到不同類別的樣本不均衡,這邊看的是 weighted avg 做比較 data1 和 data2 的結果比較

發現 precision 和 recall 都一樣,說明 Redundant Attributes 在深度較高的情況下對精確度和召回率影響不大,可能是深度高時考量的 Attributes 本身就較多, Redundant Attributes 的影響被淡化導致。

data2 和 data3 的結果比較

與淺層結果差不多,故不多做討論。

data2 和 data4 的結果比較

與淺層相比,precision 和 recall 下降程度較小,單一 Decision Tree 参考的 Attributes 雖提升,但因為深度提升,分類效果較好,使得 precision 和 recall 下降程度減少。

深度對分類結果的影響:

由以上結果可發現,隨深度提高,不同 data 的 precision 和 recall 皆隨之提高,模型對不同干擾的抵抗能力也都有明顯的提升,錯誤的 Labels 對 recall 的影響較高,放寬 Rules 則會對同時對 precision 和 recall 造成影響。

五、K Nearest Neighbor 分析

此模型會在訓練資料集中尋找 k 個與 Input 向量 x 最近的向量的集合,然後把 x 的類別歸類為這 k 個樣本中類別數最多的那一類,也因為最後有類似投票的環節產生,為了避免平手的狀況,二元分類時,k

	precision	recall	f1-score	support
Bad homeworks	0.98	0.83	0.90	1500
Good homeworks	0.85	0.98	0.91	1500
			0.00	2000
accuracy			0.90	3000
macro avg	0.91	0.90	0.90	3000
weighted avg	0.91	0.90	0.90	3000

data1 classification report n neighbors = 3

_	_			
	precision	recall	f1-score	support
Bad homeworks Good homeworks	0.97 0.83	0.81 0.98	0.88 0.90	1500 1500
accuracy macro avg weighted avg	0.90 0.90	0.89 0.89	0.89 0.89 0.89	3000 3000 3000

data2 classification report n neighbors = 3

	precision	recall	f1-score	support
Bad homeworks	0.98	0.76	0.86	1500
Good homeworks	0.80	0.98	0.88	1500
accuracy	0.00	0.07	0.87	3000
macro avg	0.89	0.87	0.87	3000
weighted avg	0.89	0.87	0.87	3000

data3 classification report n neighbors = 3

_	_	· —		
	precision	recall	f1-score	support
Bad homeworks	0.93	0.77	0.84	1453
Good homeworks	0.81	0.94	0.87	1547
accuracy			0.86	3000
macro avg	0.87	0.85	0.86	3000
weighted avg	0.87	0.86	0.86	3000

data4 classification report n neighbors = 3

考慮到不同類別的樣本不均衡,這邊看的是 weighted avg 做比較 data1 和 data2 的結果比較

發現 precision 和 recall 的部分 data1 高了 1%, 說明 Redundant Attributes 對原始資料產生了干擾,這跟 k 值太小有關,只要有兩個 neighbors 選某個 Labels 就會被分類成此 Labels。

data2 和 data3 的結果比較

錯誤的 Labels 使 precision 和 recall 皆下降,尤其在 recall 的部分下降比較多,因此可推論錯誤的 Labels 對於 recall 的影響較大。

data2 和 data4 的結果比較

發現 precision 和 recall 都降低了 3%,表示放寬 Rules 會同時對 precision 和 recall 造成影響。

•/ [
	precision	recall	f1-score	support
Bad homeworks	1.00	0.79	0.88	1500
Good homeworks	0.83	1.00	0.91	1500
accuracy			0.90	3000
macro avg	0.91	0.90	0.89	3000
weighted avg	0.91	0.90	0.89	3000

data1 classification report n neighbors = 43

	precision	recall	f1-score	support
Bad homeworks Good homeworks	1.00 0.83	0.79 1.00	0.88 0.91	1500 1500
accuracy macro avg weighted avg	0.91 0.91	0.90 0.90	0.90 0.89 0.89	3000 3000 3000

data2 classification report n neighbors = 43

	precision	recall	f1-score	support
Bad homeworks	1.00	0.74	0.85	1500
Good homeworks	0.79	1.00	0.89	1500
250117201			0.87	3000
accuracy macro avg	0.90	0.87	0.87	3000
weighted avg	0.90	0.87	0.87	3000

data3 classification report n neighbors = 43

	precision	recall	f1-score	support
Bad homeworks	1.00	0.73	0.85	1453
Good homeworks	0.80	1.00	0.89	1547
accuracy			0.87	3000
macro avg	0.90	0.87	0.87	3000
weighted avg	0.90	0.87	0.87	3000

data4 classification report n neighbors = 43

考慮到不同類別的樣本不均衡,這邊看的是 weighted avg 做比較 data1 和 data2 的結果比較

發現 precision 和 recall 的分數都一樣,說明 Redundant Attributes 對原始資料沒影響,k 值提高,經分類的結果較不容易受干擾。

data2 和 data3 的結果比較

與 n neighbors = 3 結果差不多,故不多做討論

data2 和 data4 的結果比較

	precision	recall	f1-score	support
Bad homeworks Good homeworks	1.00 0.79	0.73 1.00	0.84 0.89	1453 1547
accuracy macro avg weighted avg	0.90 0.89	0.86 0.87	0.87 0.86 0.86	3000 3000 3000

data4_classification_report_n_neighbors = 53

從上圖可以發現,在放寬 Rules 的情形下,過高的 k 值(n_neighbors = 53) 反而 f1-score 分數較低(降低 1%),這是因為 k 值太大可能會將不相干的 樣本點考慮進來。

k 值對分類結果的影響:

由以上結果可發現,k值上升,可降低干擾的影響,但k值過大,在放 寬 Rules 的 data4 卻呈現反效果,因為考慮了不相干的樣本點,但就整體 而言,k值上升,不同 data 的 precision 和 recall 皆隨之提高,模型對不

六、K-means 分析

會隨機設定 k 個群心,以 2 元分類來說,k=2,接著計算樣本到群心的距離,將樣本分配到距離最近的群心,再從各個分群中隨機選出新的群心,重複此步驟值到群心不變動。以下設定 max_iter=100,亦即執行一次 K-means 的最大疊代次數為 100 次,n_init=10,用不同的初始化群心運行的次數。由于 K-Means 若初始設定的群心不優,容易陷入局部最佳解,因此需要多跑幾次選擇較好的聚類结果。

	precision	recall	f1-score	support
Bad homeworks	0.21	0.19	0.20	1500
Good homeworks	0.25	0.27	0.26	1500
accuracy			0.23	3000
macro avg	0.23	0.23	0.23	3000
weighted avg	0.23	0.23	0.23	3000

data1_classification_report

	_			
	precision	recall	f1-score	support
Bad homeworks Good homeworks	0.78 0.79	0.80 0.78	0.79 0.79	1500 1500
accuracy macro avg weighted avg	0.79 0.79	0.79 0.79	0.79 0.79 0.79	3000 3000 3000

data2 classification report

	_		_ 1	
	precision	recall	f1-score	support
Bad homeworks	0.78	0.80	0.79	1500
Good homeworks	0.79	0.78	0.79	1500
accuracy			0.79	3000
macro avg	0.79	0.79	0.79	3000
weighted avg	0.79	0.79	0.79	3000

data3_ classification report

	precision	recall	f1-score	support
Bad homeworks Good homeworks	0.68 0.72	0.72 0.68	0.70 0.70	1453 1547
accuracy macro avg weighted avg	0.70 0.70	0.70 0.70	0.70 0.70 0.70	3000 3000 3000

data4_ classification_report

考慮到不同類別的樣本不均衡,這邊看的是 weighted avg 做比較 data1 和 data2 的結果比較

從結果來看,加入 Redundant Attributes 對 data 聚群分類的效果較佳,這可能跟 Rules 訂定的嚴厲程度有關。Rules 越嚴厲,代表個別 Attributes 的資料會分較開,較容易分群,但若只能劃分為兩類,同時又有多個 Attributes 資料分很開,想精準的切成兩群難度就很高了,而 Redundant Attributes 的加入(資料是隨機產生,呈高斯分布),使高維度資料的離散程度相對減少,因此分群的效果提升。

data2 和 data3 的結果比較

錯誤的 Labels 在此模型中影響不大,分類效果差不多。

data2 和 data4 的結果比較

發現 precision 和 recall 都降低了 2%,表示放寬 Rules 使得個別 Attributes 的資料較為考攏,不易分群,雖有 Redundant Attributes 的幫助,但分群的效果相比 data2 來的差

K-means 分類效果討論:

由以述的結果比較可總結,想提升 K-means 分類效果可從兩方面下手,一是提升 Rules 的嚴厲程度,使個別 Attributes 的資料分較開,易於分群,二是加入呈高斯分布的 Redundant Attributes,使高維度資料離散程度相對減少,下方是不加 Redundant Attributes,但放寬 Rules 的條件 (data5)經 K-means 跑出的分類結果。

	precision	recall	f1-score	support
Bad homeworks Good homeworks	0.68 0.72	0.72 0.68	0.70 0.70	1453 1547
accuracy macro avg weighted avg	0.70 0.70	0.70 0.70	0.70 0.70 0.70	3000 3000 3000

data5 classification report

比較 data1 和 data5, 會發現雖然沒有 Redundant Attributes,僅放寬 Rules,但分類效果相較 data1 好很多(23%提升到 70%)

七、綜合模型評估與討論

模型分類效果評估

根據上述四種模型的分類效果進行排序,可得以下結果:

data1: Random Forest > Decision Tree ≒ KNN > K-means

data2: Random Forest > Decision Tree ≒ KNN > K-means

data3: Random Forest > Decision Tree ≒ KNN > K-means

data4: Random Forest > Decision Tree ≒ KNN > K-means

Random Forest > Decision Tree

前者跟後者的差異在於引進了隨機取樣和表決的機制,同時也是後者的延伸運用,因此分類效果較佳

KNN > K-means

兩者都用到K值作為模型的重要參數,同時也須計算空間中點的距離,差別就在於前者的最終目的是做分類,屬於監督式學習的一種,但沒有 Loss function 的存在,僅與旁鄰中出現最多的分類標籤去經多數決進行預測,而後者是希望聚類,將空間中距離近的點分配在同一群,尋找最終的群心,

屬於非監督式學習的一種。從學習方式上來看,監督式學習有參考的目標,自然分類的效果會較非監督式學習來的好。

不同干擾對模型的影響

> 加入 Redundant Attributes

對於 Decision Tree、Random Forest、KNN 的 precision 和 recall 影響較小,但在 K-means 影響很大

▶ 錯誤的 Labels

對於 Decision Tree、Random Forest、KNN 的 precision 和 recall 都有影響,其中 recall 影響較大,但對 K-means 的影響較小

▶ 放寬 Rules

對於 Decision Tree、Random Forest、KNN 的 precision 和 recall 都有影響,此干擾比錯誤的 Labels 影響還大,對 K-means 的影響也很大

各模型面對不同干擾的處理方式

> 加入 Redundant Attributes

在 Random Forest 和 Decision Tree 模型中,透過將深度調低,能減少 Redundant Attributes 對模型效果的影響。

在 KNN 模型中,則是通過調高 k 值,來減少此干擾。

在 K-means 模型中,適當加入此干擾,有機會提升模型分類效果。

▶ 錯誤的 Labels

只有 Random Forest 的隨機取樣和表決的機制比較有機會規避掉此問題。

▶ 放寬 Rules

在 Random Forest 和 Decision Tree 模型中,透過將深度調高,使考慮的 Attributes 增加,能提升模型分類效果。

在 KNN 模型中,也可以通過調高 k 值,來減少此干擾,但 k 值也不能過大,怕考慮了不相干的樣本點導致反效果。

在 K-means 模型中,適當加入此干擾,有機會提升模型分類效果。