

One-for-All: Proposal Masked Cross-Class Anomaly Detection

AAAI2023 Main Track

Xincheng Yao Shanghai Jiao Tong University

Coauthors: Chongyang Zhang, Ruogi Li, Jun Sun, Zhenyu Liu

Outline

- 1 Motivation
- 2 Background & Related Works
- 3 Our Approach: PMAD
- 4 Experiments
- 5 Ablations
- 6 Conclusions and Limitations

Motivation

Single-Class Setting (One-for-One)

Previous methods often need to train a specific model for each object class.

- The one-for-one paradigm would require more computational and memory overhead.
- More resources are required to store different model weights in real-world applications.
- E.g., MVTecAD dataset has 15 classes, previous methods need to train 15 models.
- The trained models cannot generalize directly to new classes, which may cause the system to fail in new scenarios.

Motivation

Multi-Class Setting (One-for-Many)

Multi-Class Setting (one-for-many)

One unified model is trained and then used for multiple known classes.

One unified model is more attractive to real-world applications.

Model needs to be class agnostic!

Motivation

Cross-Class Setting (One-for-All)

One unified model is trained with normal data from seen classes, and aims to detect anomalies from both seen and unseen classes.

• This is the final goal for anomaly detection: one unified and generalizable model.

Model needs to be class agnostic and class adaptive!

Background & Related Works

Anomaly Detection:

Anomaly detection aims to distinguish an instance containing anomalous patterns from those normal samples, and further localize those anomalous regions.

Reconstruction-based Anomaly Detection:

These methods are based on the assumption that reconstruction models trained by normal samples only can reconstruct normal regions, but fail in abnormal regions.

Masked Image Modeling:

MIM-based patch-level reconstruction models are more adaptive and generalizable for unseen classes than conventional image-level reconstruction models.

Proposal Masked Anomaly Detection, Model Overview:

Three parts: MAE-based patch-level reconstruction, prototype-guided proposal masking, visual tokens based anomaly scoring.

MAE-based Patch-level Reconstruction:

Network Architecture

- Standard ViT structure as both the encoder and decoder.
 - In the AD task, the decoder matters.

Combinational Masking

- Random Masking
- Blockwise Masking (continuous regions)
 - Dynamic Masking...

Why patch-level reconstruction?

- The model learns how to utilize the contextual relationship to infer the features of masked patches.
- Even in unseen classes, the masked patches can be reconstructed well by employing the non-masked patches.

Prototype-guided Proposal Masking:

Why & Goal & How

- Why: Random and blockwise masking may leak a large amount of abnormal information.
- Goal: Masking suspicious anomaly proposals as much as possible.
- **How:** Forming an abnormality ranking of image patches, and selecting the top m percent of the image patches as masked patches.

Prototype-guided Proposal Masking:

"Mis-masking" Issue

- Normal patches are incorrectly masked in unseen classes.
- The normal patterns of unseen classes may be significantly different from the known patterns.
- Nominal prototypes guidance: The distribution of normal residual features would not be remarkably shifted from the learned distribution even in unseen classes.
- The distribution of normal residual features can be also significantly simplified.

Visual Tokens based Anomaly Scoring:

Anomaly Scoring

- We calculate cross-entropy to measure the uncertainty of each patch.
- The larger the uncertainty, the more likely the patch is to be abnormal.

$$s = -\sum_{i=1}^{|\mathcal{V}|} p_i \log(p_i)$$

Why & How

- Raw pixels as targets have a potential risk of overfitting to local statistics and high-frequency details.
- It would be affected by the image details.
- **Visual Tokens:** we follow DALL-E to compress an image with a dVAE codebook, each patch is encoded into a discrete visual token.

Experiments

Datasets:

- MVTecAD: 5534 high-resolution images, 15 categories, 73 anomaly types, and 1900 abnormal regions.
- BTAD: This dataset contains 2830 real-world images of 3 industrial products.

Metrics:

 Area under the curve of the receiver operating characteristic (AUROC), image-level and pixel-level.

Settings:

- Multi-Class Setting: train models with all classes from the dataset simultaneously.
- Cross-Class Setting: select some classes as training classes and the remaining classes for testing.

Experiments

Results under the Multi-Class Setting:

Datasets	Multi-Class Setting									
Datasets	DFR	PaDiM	PatchSVDD	DRAEM	MSFD	CFLOW	PMAD (ours)			
Carpet	0.975/0.982	0.997/0.985	0.399/0.698	0.967/0.979	0.992/0.988	0.988/0.975	0.990/0.979			
Grid	0.923/0.953	0.845/0.870	0.685/0.696	0.995/0.990	1.000/0.970	0.959/0.941	0.962/0.956			
Leather	0.972/0.991	1.000/0.988	0.727/0.732	0.993/0.985	1.000/0.972	1.000/0.981	1.000/0.992			
Tile	0.885/0.807	0.956/0.923	0.886/0.738	1.000/0.989	0.999/0.950	0.979/0.922	0.998/0.945			
Wood	0.991/0.935	0.989/0.916	0.946/0.774	1.000/0.954	0.983/0.930	0.990/0.927	0.996/0.890			
Bottle	0.956/0.916	0.997/0.975	0.806/0.830	0.996/0.884	0.999/0.959	0.987/0.964	0.998/0.984			
Cable	0.680/0.809	0.759/0.929	0.572/0.805	0.648/0.776	0.824/0.937	0.804/0.929	0.935/0.954			
Capsule	0.832/0.969	0.789/0.979	0.706/0.878	0.739/0.603	0.649/0.943	0.755/0.977	0.805/0.970			
Hazelnut	0.991/0.980	0.988/0.972	0.883/0.935	0.971/0.984	0.980/0.972	0.971/0.957	0.996/0.974			
Metal nut	0.828/0.851	0.949/0.948	0.404/0.715	0.858/0.627	0.936/0.937	0.878/0.844	0.980/0.917			
Pill	0.777/0.906	0.787/0.955	0.756/0.895	0.891/0.936	0.883/0.876	0.880/0.907	0.894/0.934			
Screw	0.751/0.972	0.677/0.962	0.409/0.843	0.924/0.971	0.476/0.881	0.595/0.939	0.733/0.966			
Toothbrush	0.831/0.959	0.878/0.977	0.781/0.844	0.975/0.983	0.728/0.983	0.780/0.957	0.958/0.982			
Transistor	0.700/0.752	0.929/0.958	0.672/0.905	0.820/0.741	0.988/0.957	0.867/0.923	0.972/0.933			
Zipper	0.919/0.951	0.865/0.969	0.727/0.681	0.998/0.984	0.888/0.880	0.922/0.957	0.960/0.961			
MVTecAD Mean	0.867/0.916	0.894/0.954	0.691/0.798	0.918/0.891	0.888/0.944	0.890/0.940	0.945/0.956			
Product 1	0.998/0.967	0.984/0.955	0.896/0.601	0.969/0.890	0.968/0.942	0.980/0.953	0.979/0.965			
Product 2	0.866/0.960	0.839/0.948	0.725/0.812	0.772/0.928	0.796/0.955	0.825/0.952	0.834/0.957			
Product 3	0.980/0.981	0.992/0.995	0.783/0.827	0.996/0.939	0.926/0.988	0.986/0.994	1.000/0.996			
BTAD Mean	0.948/0.969	0.938/0.966	0.801/0.746	0.912/0.919	0.897/0.962	0.930/0.966	0.938/0.973			

- Baseline methods drop dramatically under the multi-class setting.
- We beat the best competitor (DRAEM) under the multi-class setting by a large margin (2.7%).

Experiments

Results under the Cross-Class Setting:

Datasets	Seen Classes	Unseen Classes	Cross-Class Setting							
Datasets	(train)	(test)	DFR	PaDiM	PatchSVDD	DRAEM	MSFD	CFLOW	RegAD	PMAD (ours)
MVTecAD		Grid	0.673/0.409	0.688/0.560	0.888/0.728	0.919/0.597	0.657/0.393	0.897/0.849	0.774/0745	0.950/0.907
	Seen Textures	Tile	0.716/0.335	0.935/0.864	0.937/0.817	0.608/0.769	0.659/0.652	0.891/0.904	0.891/0.857	0.895/0.921
	Seen lextures	Wood	0.986/0.764	0.987/0.895	0.934/0.775	0.711/0.661	0.845/0.896	0.964/0.913	0.956/0.913	0.989/0.860
		Mean	0.792/0.502	0.870/0.773	0.920/0.773	0.766/0.676	0.720/0.647	0.917/0.889	0.874/0.838	0.945/0.896
		Hazelnut	0.943/0.958	0.795/0.917	0.882/0.945	0.472/0.858	0.422/0.840	0.725/0.889	0.832/0.908	0.984/0.953
		Metal nut	0.534/0.653	0.446/0.719	0.358/0.734	0.525/0.521	0.799/0.780	0.454/0.610	0.610/0.889	0.936/0.811
	Seen Objects	Pill	0.533/0.758	0.470/0.786	0.784/0.905	0.669/0.677	0.683/0.805	0.405/0.708	0.526/0.901	0.870/0.901
	Seen Objects	Toothbrush	0.572/0.892	0.361/0.875	0.789/0.865	0.606/0.926	0.642/0.949	0.519/0.887	0.647/0.934	0.794/0.959
		Zipper	0.394/0.733	0.291/0.837	0.793/0.786	0.474/0.498	0.914/0.948	0.772/0.925	0.720/0.925	0.889/0.933
		Mean	0.595/0.799	0.473/0.827	0.721/0.847	0.549/0.696	0.692/0.864	0.565/0.804	0.667/0.911	0.895/0.911
	Seen Textures	Carpet	0.475/0.229	0.979/0.986	0.836/0.805	0.789/0.605	0.970/0.981	0.970/0.981	0.887/0.891	0.995/0.984
		Leather	0.695/0.770	0.999/0.984	0.986/0.898	0.819/0.814	0.995/0.989	1.000/0.989	0.913/0.958	1.000/0.987
		Mean	0.585/0.499	0.989/0.985	0.911/0.852	0.804/0.709	0.982/0.985	0.985/0.985	0.900/0.924	0.997/0.986
		Bottle	0.410/0.574	0.770/0.796	0.968/0.905	0.538/0.697	0.794/0.907	0.813/0.872	0.868/0.903	1.000/0.963
MVTecAD	Seen Objects	Cable	0.534/0.699	0.530/0.686	0.771/0.829	0.398/0.337	0.608/0.747	0.446/0.718	0.594/0.825	0.889/0.944
WIV IECAD		Capsule	0.244/0.895	0.401/0.905	0.711/0.908	0.259/0.801	0.686/0.855	0.519/0.891	0.623/0.969	0.794/0.959
		Screw	0.506/0.924	0.553/0.919	0.463/0.795	0.879/0.892	0.519/0.887	0.439/0.907	0.658/0.949	0.617/0.954
		Transistor	0.354/0.571	0.445/0.453	0.570/0.802	0.492/0.358	0.430/0.676	0.411/0.585	0.595/0.938	0.918/0.841
		Mean	0.409/0.733	0.536/0.752	0.697/0.848	0.513/0.617	0.607/0.814	0.525/0.795	0.668/0.917	0.844/0.932
	Product 1	Product 2	0.832/0.810	0.731/0.748	0.725/0.809	0.766/0.503	0.763/0.898	0.701/0.858	0.660/0.794	0.858/0.956
BTAD		Product 3	0.911/0.747	0.565/0.809	0.788/0.861	0.385/0.580	0.679/0.916	0.903/0.925	0.698/0.764	1.000/0.996
		Mean	0.872/0.778	0.648/0.778	0.756/0.835	0.576/0.542	0.721/0.907	0.802/0.892	0.679/0.779	0.929/0.976
	Product 2	Product 1	0.508/0.550	0.343/0.735	0.892/0.475	0.868/0.560	0.527/0.333	0.589/0.706	0.731/0.845	0.978/0.964
		Product 3	0.714/0.549	0.718/0.711	0.764/0.845	0.551/0.698	0.696/0.402	0.621/0.801	0.598/0.741	1.000/0.996
		Mean	0.611/0.550	0.531/0.723	0.828/0.660	0.709/0.629	0.611/0.368	0.605/0.753	0.665/0.793	0.989/0.980
	Product 3	Product 1	0.624/0.671	0.422/0.771	0.939/0.551	0.746/0.630	0.607/0.661	0.912/0.872	0.723/0.785	0.977/0.964
		Product 2	0.719/0.721	0.691/0.701	0.706/0.801	0.542/0.475	0.765/0.873	0.760/0.821	0.608/0.761	0.820/0.957
		Mean	0.672/0.696	0.556/0.736	0.823/0.676	0.644/0.553	0.686/0.767	0.836/0.846	0.666/0.773	0.898/0.960

Datasets	Seen Classes	Unseen Classes	Cross-Class Setting							
Datasets	(train)	(test)	DFR	PaDiM	PatchSVDD	DRAEM	MSFD	CFLOW	RegAD	PMAD (ours)
S	Seen Objects	Carpet	0.456/0.202	0.944/0.978	0.532/0.656	0.514/0.506	0.863/0.945	0.948/0.976	0.880/0.899	0.985/0.971
		Grid	0.665/0.284	0.674/0.461	0.886/0.635	0.360/0.480	0.962/0.937	0.744/0.831	0.683/0.688	0.912/0.920
		Leather	0.617/0.611	0.982/0.977	0.754/0.670	0.429/0.482	0.812/0.970	0.914/0.986	0.899/0.967	1.000/0.984
	Seen Objects	Tile	0.598/0.310	0.915/0.775	0.837/0.796	0.823/0.525	0.721/0.746	0.773/0.856	0.838/0.856	0.987/0.936
		Wood	0.984/0.846	0.976/0.853	0.905/0.775	0.907/0.612	0.806/0.890	0.835/0.899	0.854/0.869	0.983/0.885
MVTecAD		Mean	0.664/0.451	0.898/0.809	0.783/0.707	0.607/0.521	0.833/0.898	0.843/0.909	0.831/0.856	0.973/0.939
	Seen Textures	Bottle	0.362/0.474	0.817/0.775	0.811/0.859	0.629/0.272	0.891/0.879	0.887/0.832	0.863/0.920	0.953/0.935
		Cable	0.530/0.715	0.512/0.722	0.569/0.810	0.466/0.336	0.615/0.779	0.607/0.742	0.565/0.795	0.918/0.932
		Capsule	0.271/0.865	0.469/0.909	0.651/0.919	0.724/0.727	0.510/0.815	0.619/0.849	0.641/0.970	0.659/0.928
		Hazelnut	0.906/0.932	0.831/0.928	0.864/0.945	0.537/0.928	0.621/0.884	0.739/0.866	0.858/0.933	0.891/0.925
		Metal nut	0.607/0.634	0.430/0.725	0.471/0.797	0.464/0.536	0.731/0.769	0.653/0.600	0.600/0.881	0.753/0.662
		Pill	0.560/0.701	0.532/0.736	0.755/0.900	0.635/0.690	0.648/0.620	0.527/0.637	0.573/0.900	0.770/0.860
		Screw	0.636/0.911	0.547/0.915	0.227/0.835	0.974/0.587	0.947/0.894	0.447/0.885	0.667/0.948	0.575/0.885
		Toothbrush	0.492/0.843	0.392/0.864	0.797/0.861	0.631/0.862	0.525/0.815	0.533/0.845	0.664/0.942	0.892/0.920
		Transistor	0.382/0.584	0.291/0.837	0.686/0.919	0.198/0.557	0.648/0.660	0.439/0.638	0.539/0.910	0.867/0.805
		Zipper	0.576/0.674	0.331/0.826	0.730/0.637	0.522/0.542	0.881/0.801	0.736/0.923	0.728/0.927	0.871/0.917
		Mean	0.532/0.733	0.535/0.800	0.656/0.848	0.578/0.604	0.702/0.792	0.619/0.782	0.670/0.913	0.815/0.877

- Our method can outperform these SOTA methods significantly.
- For texture classes, outperform by (2.5%/0.7% and 0.8%/0.1%).
- For object classes, outperform by (17.4%/4.7% and 14.7%/8.4%).

Ablations

Ablation study results:

Alt	Multi-Class Setting	
	MVTecAD	
Network Structure	Asymmetric Architecture (MAE)	0.918/0.937
Network Structure	ViT structure	0.945/0.956
	Random Masking	0.929/0.945
Training Masking Strategy	Blockwise Masking	0.939/0.950
	Combinational Masking	0.945/0.956
	Raw Pixels	0.773/0.712
Reconstruction Objective	Deep Features	0.844/0.867
Ţ.	Visual Tokens	0.945/0.956
	Random Masking	0.730/0.667
Inference Masking Strategy	Blockwise Masking	0.749/0.700
	Proposal Masking	0.945/0.956

Reconstruction Objective

- Raw pixels will result in much worse performance.
- Visual tokens can achieve better results than deep features.

Network Structure

 The ViT architecture can achieve much better detection results than the asymmetric architecture.

Training Masking Strategy

 Our combinational masking strategy can enable the network to learn better reconstruction capabilities, thus achieving better detection results.

Inference Masking Strategy

• The proposal masking strategy can achieve a significant performance gain, because the suspicious abnormal patches will be masked as much as possible.

Conclusions and Limitations

Conclusions:

- Class adaptability is a critical but still not well-studied issue in the AD community.
- We propose a novel PMAD approach based on two key designs: MAE-based patch-level reconstruction and prototype-guided proposal masking.
- Our model illustrates better class adaptability than SOTA methods under multi- and cross-class settings.
- Masked AutoEncoder is suitable for multi- and cross-class anomaly detection, and should be exploited more.

Limitations:

- Our model can only reconstruct 16x16 image patches, but cannot reconstruct more finegrained image patches.
- Thus, the anomaly localization ability of our model is limited.
- Future Work: employ hierarchical transformers and design a multi-scale masking strategy.

Thanks!

Contact Us: sunny_zhang@sjtu.edu.cn