正则语言的性质

- 正则语言的泵引理
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

正则语言的封闭性

定义

正则语言经某些运算后得到的新语言仍保持正则, 称正则语言在这些运算下封闭.

正则语言 L 和 M, 在这些运算下封闭

- 并: L∪M交: L∩M
- 连接: LM 反转: $L^R = \{w^R \mid w \in L\}$
- 闭包: L^* 同态: $h(L) = \{h(w) \mid w \in L,$ 同态 $h: \Sigma \to \Gamma^*\}$
- → 补: Ī
 ・ 逆同态:
- $\not E: L-M$ $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \subseteq \Gamma^*, \, \operatorname{\mathbf{p}} \stackrel{.}{\sim} h: \Sigma \to \Gamma^* \}$

定理 6 (并/连接/闭包的封闭性)

证明: 由正则表达式的定义得证.

正则语言在并, 连接和闭包运算下保持封闭.

如果 $L \in \Sigma$ 上的正则语言, 那么 $\overline{L} = \Sigma^* - L$ 也是正则的.

证明:

设接受语言 L 的 DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

即 L(A) = L. 构造 DFA

$$B = (Q, \Sigma, \delta, q_0, Q - F)$$

 $w \in \overline{L} \iff \hat{\delta}(q_0, w) \notin F \iff \hat{\delta}(q_0, w) \in Q - F \iff w \in \mathbf{L}(B). \quad \Box$

则有
$$\overline{L} = \mathbf{L}(B)$$
, 因为 $\forall w \in \Sigma^*$

$$\mathbf{A} \cap \mathbf{A} = \mathbf{B}(\mathbf{B}), \ \mathbf{A} \cap \mathbf{A} \subset \mathbf{B}$$

注意

使用这种方法求正则语言的补时, DFA 不能有缺失状态.

例 8.

若
$$\Sigma = \{0,1\}, L = \{\varepsilon\}$$
 的 DFA 如图, 请给出 \overline{L} 的 DFA. start $\longrightarrow \widehat{Q_0}$

应使用完整的 DFA 去求补:

start
$$\longrightarrow (q_0)$$
 $0, 1$ $q_1 \supset 0, 1$

思考题

如何求正则表达式的补?

例 9. 证明 $L_{nea} = \{w \mid w \text{ 由数量不相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$ 不是正则的.

- 由泵引理不易直接证明 L_{neq} 不是正则的
- 因为无论如何取 w, 将其分为三部分 w = xuz 时,
- 都不易产生 L_{neg} 之外的串

• 由补运算的封闭性, 所以 L_{neq} 也不是正则的

• 而证明 $L_{eq} = \overline{L_{neq}}$ 非正则很容易

定理8

若 DFA A_L , A_M 和 A 的定义如下

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

$$A = (Q_L \times Q_M, \Sigma, \delta, (q_L, q_M), F_L \times F_M)$$

其中

$$\delta: (Q_L \times Q_M) \times \Sigma \to Q_L \times Q_M$$
$$\delta((p,q),a) = (\delta_L(p,a), \delta_M(q,a)).$$

则对任意 $w \in \Sigma^*$,

$$\hat{\delta}((q_L, q_M), w) = (\hat{\delta}(q_L, w), \hat{\delta}(q_M, w)).$$

证明: 通过对w 的归纳来证明. 归纳基础: 当 $w = \varepsilon$ 时

$$\hat{\delta}((q_L, q_M), \varepsilon) = (q_L, q_M)$$
 $\hat{\delta}$ 的定义
$$= (\hat{\delta}_L(q_L, \varepsilon), \hat{\delta}_M(q_M, \varepsilon))$$
 同理

归纳递推: 当
$$w=xa$$
 时 $\hat{\delta}((q_L,q_M),xa)=\delta(\hat{\delta}((q_L,q_M),x),a)$

$$w = xa$$
 时
$$= \delta(\hat{\delta}((q_L, q_M), x), a) \qquad \qquad \hat{\delta}$$
 的定义
$$= \delta((\hat{\delta}(q_L, x), \hat{\delta}(q_M, x)), a) \qquad \qquad$$
 归纳假设

$$(\hat{\delta}_M(q_M,x),a)$$
 归纳假设 $(\hat{\delta}_M(q_M,x),a)$ δ 的构造 $(\hat{\delta}_M(q_M,x),a)$

$$H(\hat{\delta}_M(q_M,x),a))$$
 δ 的构造

$$= (\delta_L(\hat{\delta}_L(q_L, x), a), \delta_M(\hat{\delta}_M(q_M, x), a)) \quad \delta$$
 的构造
$$= (\hat{\delta}_L(q_L, xa), \hat{\delta}_M(q_M, xa)) \qquad \qquad \hat{\delta}$$
 的定义 \square

如果 L 和 M 是正则语言, 那么 $L \cap M$ 也是正则语言.

证明 1: 由
$$L \cap M = \overline{\overline{L} \cup \overline{M}}$$
 得证. \square

证明 2: 由定理 8 构造识别
$$L \cap M$$
 的 DFA A , 则 $\forall w \in \Sigma$

证明 2: 由定理 8 构造识别
$$L \cap M$$
 的 DFA A , 则 $\forall w \in \Sigma^*$, $w \in L \cap M \iff \hat{\delta}_L(q_L, w) \in F_L \land \hat{\delta}_M(q_M, w) \in F_M \iff (\hat{\delta}_L(q_L, w), \hat{\delta}_M(q_M, w)) \in F_L \times F_M \iff \hat{\delta}((q_L, q_M), w) \in F_L \times F_M \iff w \in \mathbf{L}(A).$

因此
$$L(A) = L \cap M$$
, 所以 $L \cap M$ 也是正则的.

例10. 如果已知语言

$$L_{01} = \{0^n 1^n \mid n \ge 0\}$$

不是正则的, 请用封闭性证明语言

$$L_{eq} = \{w \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$$

也不是正则的

证明:

- 首先, 因为 0*1* 是正则语言;
- **2** for $L_{01} = \mathbf{L}(\mathbf{0}^*\mathbf{1}^*) \cap L_{eq}$;
- **3** 如果 L_{eq} 是正则的, L_{01} 必然也是正则的;
- $oldsymbol{\Phi}$ 因为已知 L_{01} 不是正则的, 所以 L_{eq} 一定不是正则的. \Box

.

思考题

为什么又能用 L_{eq} 的子集 L_{01} 是非正则的,来证明 L_{eq} 是非正则的呢?

例 11. 如果 L_1 和 L_2 都不是正则的, 那么 $L_1 \cap L_2$ 一定不是正则的吗? 不一定. 因为, 如果令

 $L_1 = \{0^n 1^n \mid n \ge 0\}$

 $L_1 \cap L_2 = \{\varepsilon\}$

$$L_2 = \{a^n b^n \mid n \ge 0\}$$

显然两者都不是正则语言, 但

是正则语言.

证明: $L-M=L\cap \overline{M}$.

如果 L 和 M 都是正则语言, 那么 L-M 也是正则的.

定理 10 (差运算封闭性)

字符串
$$w=a_1a_2\dots a_n$$
 的反转, 记为 w^R , 定义为

于行中
$$w = a_1 a_2 \dots a_n$$
 的及我,记为 w^2 ,足又为

 $w^R = a_n a_{n-1} \dots a_1.$

 $L^R = \{ w^R \in \Sigma^* \mid w \in L \}.$

于行中
$$w=a_1a_2\ldots a_n$$
 的及转,记为 w^{**} ,足

语言 L 的反转, 记为 L^R , 定义为

定理 11 (反转的封闭性)

如果 L 是正则语言, 那么 L^R 也是正则的.

两种证明方法:

• 对正则表达式 E 的结构归纳. 往证

$$\mathbf{L}(E^R) = (\mathbf{L}(E))^R.$$

• 由识别 L 的 DFA $A=(Q,\Sigma,\delta_A,q_0,F)$,构造识别 L^R 的 ε -NFA $B=(Q,\Sigma,\delta_B,q_s,\{q_0\})$

- \bullet 将 A 的初始状态 q_0 , 改为唯一的接受状态;
- ② 将 A 的边调转方向: 如果 $\delta_A(q,a) = p$, 那么 $\delta_B(p,a) = q$;
- **3** 新增初始状态 q_s , 且令 $\delta_B(q_s,\varepsilon) = F$;
- 4 往证 $L(B) = L^R$.

例 12. 语言 L 及其反转 L^R 分别为

$$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 01. \}$$

 $L^{R} = \{w \in \{0, 1\}^{*} \mid w \text{ starts with } 10.\}$

正则表达式分别为
$$L = (\mathbf{0} + \mathbf{1})^* \mathbf{0} \mathbf{1}$$

$$L = (0+1) \cdot 01$$
 $L^R = 10(0+1)^*$

$$L^R=\mathbf{10}(\mathbf{0}+\mathbf{1})^*.$$

$$\begin{array}{cccc}
0, 1 \\
\downarrow & 0 \\
\downarrow & 0 \\
\downarrow & 0
\end{array}$$
start $\xrightarrow{q_0}$ $\xrightarrow{q_1}$ $\xrightarrow{q_2}$

0, 1

证明· 往证如果有正则表达式 E, 则存在正则表达式 E^R 使

$$\mathbf{L}(E^R) = (\mathbf{L}(E))^R.$$

归纳基础.

$$\bullet$$
 当 $E = \emptyset$ 时, 有 $\emptyset^R = \emptyset$;

$$\mathbf{y}$$
 $F - \mathbf{c}$ 时 有 $\mathbf{c}^R - \mathbf{c}$

② 当
$$E = \varepsilon$$
 时, 有 $\varepsilon^R = \varepsilon$;

$$\mathbf{P}$$
 当 $E = \boldsymbol{\varepsilon}$ 时, 有 $\boldsymbol{\varepsilon}^R = \boldsymbol{\varepsilon}$

都满足 $\mathbf{L}(E^R) = (\mathbf{L}(E))^R$, 因此命题成立.

3 $\forall a \in \Sigma$, 当 $E = \mathbf{a}$ 时, 有 $\mathbf{a}^R = \mathbf{a}$:

归纳递推. **1** $\exists E = E_1 + E_2 \ \text{tt}, \ \forall E_1 + E_2 = E_1^R + E_2^R$

$$(\mathbf{L}(E_1+E_2))^R$$

$$(\mathbf{L}(E_1 + E_2))^R$$

= $(\mathbf{L}(E_1) \cup \mathbf{L}(E_2))^R$

$$= (\mathbf{L}(E_1) \cup \mathbf{L}(E_2))^R$$
 正则表达式的加
$$= \{w^R \mid w \in \mathbf{L}(E_1) \cup w \in \mathbf{L}(E_2)\}$$
 语言的反转

$$|w \in \mathbf{L}(E_1) \cup w \in \mathbf{L}(E_2)\}$$
 符言 $(E_1))^R \cup (\mathbf{L}(E_2))^R$ 同上

$$= (\mathbf{L}(E_1))^R \cup (\mathbf{L}(E_2))^R \qquad \qquad \square \perp$$

$$(E_1))^R \cup (\mathbf{L}(E_2))^R$$
 同上 F^R 日始

$$=\mathbf{L}(E_1^R)\cup\mathbf{L}(E_2^R)$$
 归纳假设
$$=\mathbf{L}(E_1^R+E_2^R)$$
 正则表达式的加

$$=\mathbf{L}(E_1^R)\cup\mathbf{L}(E_2^R)$$
 归纳假设

归纳递推:

① 当 $E = E_1 + E_2$ 时,有 $(E_1 + E_2)^R = E_1^R + E_2^R$ ② 当 $E = E_1 E_2$ 时,有 $(E_1 E_2)^R = E_2^R E_1^R$ $(\mathbf{L}(E_1 E_2))^R = (\mathbf{L}(E_1) \mathbf{L}(E_2))^R$ $= \{w_1 w_2 \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2)\}^R$

 $= \{(w_1w_2)^R \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2)\}\$

 $= \{w_2^R \mid w_2 \in \mathbf{L}(E_2)\}\{w_1^R \mid w_1 \in \mathbf{L}(E_1)\}$

 $= \{w_2^R w_1^R \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2)\}$

 $= (\mathbf{L}(E_2))^R (\mathbf{L}(E_1))^R$

 $= \mathbf{L}(E_{2}^{R})\mathbf{L}(E_{1}^{R}) = \mathbf{L}(E_{2}^{R}E_{1}^{R})$

正则表达式的连接

语言的连接

语言的反转

语言的连接

语言的反转

正则表达式的连接

字符串的反转

归纳递推:

② 当
$$E = E_1 E_2$$
 时,有 $(E_1 E_2)^R = E_2^R E_1^R$

③ 当
$$E = E_1^*$$
 时,有 $(E_1^*)^R = (E_1^R)^*$

$$({\bf L}(E_1^*))^R$$

$$= \{ (w_1 w_2 \dots w_n)^R \mid n \ge 0, w_i \in \mathbf{L}(E_1) \}$$

$$= \{ w_n^R w_{n-1}^R \dots w_1^R \mid n \ge 0, w_i \in \mathbf{L}(E_1) \}$$

$$= \{ w_n^R w_{n-1}^R \dots w_1^R \mid n \ge 0, w_i^R \in \mathbf{L}(E_1^R) \}$$

 $= \{w_1 w_2 \dots w_n \mid n \geq 0, w_i \in \mathbf{L}(E_1)\}^R$

$$= \{ w_1 w_2 \dots w_n \mid n \ge 0, w_i \in \mathbf{L}(E_1^R) \}$$

= $\mathbf{L}((E_1^R)^*)$

正则表达式的闭包

语言的反转

归纳假设

变量重命名

字符串的反转

都满足
$$(\mathbf{L}(E))^R = \mathbf{L}(E^R)$$
, 因此命题成立, 所以 L^R 也是正则语言.

同态

定义

$$\forall a \in \Sigma, \ h(a) \in \Gamma^*.$$

扩展 h 的定义到字符串,

$$(1) \quad h(\varepsilon) = \varepsilon$$

$$(2) \quad h(xa) = h(x)h(a)$$

再扩展
$$h$$
 到语言, 对 $\forall L \subseteq \Sigma^*$,

$$h(L) = \{h(w) \mid w \in L\}.$$

例 13. 若由
$$\Sigma = \{0,1\}$$
 到 $\Gamma = \{a,b\}$ 的同态函数 h 为

则
$$\Sigma$$
 上的字符串 0011, 在 h 的作用下

$$h(0011) = h(0)h$$

h(0011) = h(0)h(0)h(1)h(1)

$$h(0.011) - h(0)h(0.011)$$

语言 L = 1*0 + 0*1, 在 h 的作用下, h(L) 为:

则 Σ 上的字符串 0011, 在 h 的作用下

 $h(0) = ab, h(1) = \varepsilon.$

 $=abab\varepsilon\varepsilon=abab$

 $= (\varepsilon)^*(ab) + (ab)^*(\varepsilon)$

 $h(\mathbf{1}^*\mathbf{0} + \mathbf{0}^*\mathbf{1}) = (h(\mathbf{1}))^*h(\mathbf{0}) + (h(\mathbf{0}))^*h(\mathbf{1})$

 $= (ab)^*$

定理 12 (同态的封闭性)

若 L 是字母表 Σ 上的正则语言, h 是 Σ 上的同态, 则 h(L) 也是正则的.

• 若 L 的正则表达式为 E, 即 $L = \mathbf{L}(E)$, 按如下规则构造表达式 h(E)

$$h(\emptyset) = \emptyset$$
 $h(\mathbf{r} + \mathbf{s}) = h(\mathbf{r}) + h(\mathbf{s})$
 $h(\varepsilon) = \varepsilon$ $h(\mathbf{rs}) = h(\mathbf{r})h(\mathbf{s})$
 $\forall a \in \Sigma, \ h(\mathbf{a}) = h(a)$ $h(\mathbf{r}^*) = (h(\mathbf{r}))^*$

• 往证 $\mathbf{L}(h(E)) = h(\mathbf{L}(E))$,而 h(E) 显然也是正则表达式,因此 h(L) 正则

证明: 对 E 的结构归纳, 往证 $\mathbf{L}(h(E)) = h(\mathbf{L}(E))$. 归纳基础:

 $h(\mathbf{L}(\boldsymbol{\varepsilon})) = h(\{\boldsymbol{\varepsilon}\}) = \{\boldsymbol{\varepsilon}\} = \mathbf{L}(\boldsymbol{\varepsilon}) = \mathbf{L}(h(\boldsymbol{\varepsilon}))$

 $h(\mathbf{L}(\emptyset)) = h(\emptyset) = \emptyset = \mathbf{L}(\emptyset) = \mathbf{L}(h(\emptyset))$

 $h(\mathbf{L}(\mathbf{a})) = h(\{a\}) = \{h(a)\} = \mathbf{L}(h(a)) = \mathbf{L}(h(\mathbf{a}))$

所以命题成立.

•
$$\forall a \in \Sigma, \ \text{\exists} \ E = \mathbf{a} \ \text{t}$$

•
$$\forall a \in \Sigma, \ \exists \ E = \mathbf{a} \ \forall$$

归纳递推: 假设对正则表达式 F, G 分别有

$$\mathbf{L}(h(F)) = h(\mathbf{L}(F)), \ \mathbf{L}(h(G)) = h(\mathbf{L}(G))$$

当 E = F + G 时:

$$h(\mathbf{L}(F+G)) = h(\mathbf{L}(F) \cup \mathbf{L}(G))$$
 正则表达式的加
$$= h(\mathbf{L}(F)) \cup h(\mathbf{L}(G)) \qquad h$$
作用在每个集合的串上
$$= \mathbf{L}(h(F)) \cup \mathbf{L}(h(G)) \qquad$$
归纳假设
$$= \mathbf{L}(h(F) + h(G)) \qquad$$
正则表达式的加
$$= \mathbf{L}(h(F+G)) \qquad h(F+G)$$
的定义

- 当 E = FG 时: 略

逆同态

定义

若 h 是字母表 Σ 到 Γ 的同态, 且 L 是 Γ 上的语言, 那么使 $h(w) \in L$ 的 w $(w \in \Sigma^*)$ 的集合, 称为语言 L 的 h 逆, 记为 $h^{-1}(L)$, 即

$$h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}.$$

定理 13 (逆同态的封闭性)

如果 h 是字母表 Σ 到 Γ 的同态, L 是 Γ 上的正则语言, 那么 $h^{-1}(L)$ 也是正则语言.

证明: 由 L 的 DFA $A = (Q, \Gamma, \delta, q_0, F)$, 构造识别 $h^{-1}(L)$

的 DFA
$$B = (Q, \Sigma, \delta', q_0, F),$$

其中

为证明
$$\mathbf{L}(B) = h^{-1}(L)$$
, 先证明 $\hat{\delta}'(q, w) = \hat{\delta}(q, h(w))$.

对 |w| 归纳, 往证 $\hat{\delta'}(q,w) = \hat{\delta}(q,h(w))$.

■ 归纳基础: 若
$$w = \varepsilon$$

$$\hat{\delta}(q, h(\varepsilon)) = \hat{\delta}(q, \varepsilon) = q = \hat{\delta}'(q, \varepsilon),$$

$$\hat{\delta}'(q,xa) = \delta'(\hat{\delta}'(q,x),a)$$
 $\hat{\delta}'$ 定义
$$= \delta'(\hat{\delta}(q,h(x)),a)$$
 归纳假设
$$= \hat{\delta}(\hat{\delta}(q,h(x)),h(a))$$
 δ' 构造
$$= \hat{\delta}(a,h(x)h(a))$$
 DFA 节例 5

$$= \hat{\delta}(q, h(xa)).$$
 所以 $\forall w \in \Sigma^*, \hat{\delta'}(q_0, w) = \hat{\delta}(q_0, h(w)) \in F$, 即 w 被 B 接受当且仅当 $h(w)$ 被 A 接受, B 是识别 $h^{-1}(L)$ 的 DFA, 因此 $h^{-1}(L)$ 是正则的. \square

例 14. Prove that $L = \{0^n 1^{2n} \mid n > 0\}$ is a language not regular.

证明: 饭问念
$$h: \{0,1\} \to \{0,1\}^*$$

那么

h(0) = 0,

$$h(0) = 0$$

证明: 设同态 $h: \{0,1\} \rightarrow \{0,1\}^*$ 为

h(1) = 11,

 $h^{-1}(L) = \{0^n 1^n \mid n \ge 0\} = L_{01},$

我们已知 L_{01} 非正则, 由封闭性, L 不是正则的.

例 15. 若语言 $L = (\mathbf{00} + \mathbf{1})^*$, 同态 $h: \{a, b\} \rightarrow \{0, 1\}^*$ 为

$$h(a) = 01, h(b) = 10,$$

请证明 $h^{-1}(L) = (\mathbf{ba})^*$.

证明: 往证 $h(w) \in L \iff w = (ba)^n$.

(\Leftarrow) 若 $w = (ba)^n$, 雨 h(ba) = 1001, 因此 $h(w) = (1001)^n \in L$.

(⇒) 若 $h(w) \in L$, 假设 $w \notin (\mathbf{ba})^*$, 则只能有四种情况:

1 w 以 a 开头, 则 h(w) 以 01 开头, 显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;

② w 以 b 结尾, 则 h(w) 以 10 结尾, 显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;

3 w 有连续的 a, 即 w = xaay, 则 h(w) = z1010v, 则显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;

④ w 有连续的 b, 即 w = xbby, 则 h(w) = z0101v, 则显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;

因此 w 只能是 $(ba)^n, n \ge 0$ 的形式.