Отчёт по работе 3.2.8

Релаксационные колебания Карташов Констанин Б04-005

I Анотация

Цель работы: Изучение вольт-амперной характеристики нормального тлеющего разряда; исследование релаксационного генератора на стабилитроне.

Оборудование:

- ⊳ Стабилитрон СГ-2
- ⊳ Амперметр
- ⊳ Вольтметр
- Магазин сопротивлений
- ⊳ Магазин ёмкостей
- ⊳ Источник питания
- ⊳ Осциллограф
- ⊳ Генератор звуковой частоты

II Теоретическая часть

і Некоторые сведения

Релаксационные колебания — это такие колебания, в которых происходит зарядка и разрядка всего одного накопителя энергии. В нашем случае накопителем энергии является конденсатора, а режим зарядки и разрядки регулируется газоразрядным диодом — стабилитроном. Стабилитрон нелинейный элемент, пропускающий ток при достижении потенциала зажигания V_1 , и перестающий пропускать его при достижения потенциала затухания $V_2 < V_1$, за счёт чего обеспечиваются колебания. Период колебания такой схемы определяется временем зарядки конденсатора.

Напряжение на кондесаторе, когда выключен стабилитрон:

$$RC\frac{dV}{dt} = U - V,$$

проинтегрировав, и подставив начальное напряжения V_1 , конечное V_2 и время $au_{\text{заж}}$:

$$V_1 = U - (U - V_2)e^{\tau_{\text{3ax}}/RC},$$

$$T \approx \tau_{\text{\tiny 3aT}} = RC \ln \left(\frac{U - V_2}{U - V_1} \right).$$

Рис. 1: Принципиальная схема релаксационного генератора

Рис. 2: Схема установки для изучения характеристик стабилитрона

III Экспериментальная часть

і Измерение ВАХ стабилитрона

Соберём установку для снятия ВАХ (рис. 2). В первую очередь определим потенциалы зажигания и гашения. Для этого постепенно будем повышать напряжение, до зажигания диода, напряжение при котором диод зароится будет потенциалом загорания V_1 . Проведём те же самые действия, но при уменьшении напряжения и найдём потенциал гашения. Получаем:

$$V_1 = 96 \text{ B}, \quad V_2 = 76 \text{B}.$$

Теперь снимем ВАХ для зажжённого стабилитрона. Будем снимать значения тока сначала повышая напряжение, а затем его понижая. Результаты занесём в таблицу, и по ним построим график.

По графику видим, что все точки лежат на прямой, как и должно быть в теории. Аппроксимирующую прямую посчитаем пользуясь методом наименьших квадратов. И изобразим её на графике. Точку не лежащую на прямой ($I=5.5~\mathrm{mA},\,U=10$) из расчётов исключим.

U, B	88.8	96.5	105.6	107.5	115.2	110.2	100.4
I, мА	2.9	4.2	5.9	6.3	7.7	6.8	5.1
U, B	95.7	90.8	88.8	84.2	82.9	78.6	76.8
I, м A	4.2	3.3	2.9	2.1	1.9	1.1	0.8

Таблица 1: Значения снятые для построения ВАХ стабилитрона

Рис. 3: График измеренной ВАХ стабилитрона

По полученной прямой рассчитаем значения для тока зажигания и потухания. Из чего получим:

$$I_1 = 4.2 \text{ MA}, \quad I_2 = 0.6 \text{ MA}.$$

іі Изучение осциллограммы релаксационных колебаний

Соберём экспериментальную установку (рис. 4). Выставим значения R=900 кОм, $C=5\cdot 10^{-2}$ мкФ. Выставим напряжение U=118.5 В $\approx 1.2V_1$.

Получим на осциллографе изображение пилообразных колебаний (рис. 5). По изображению оценим $\tau_{\text{заг}}:\tau_{\text{пот}}=70:3,$ т.е. можно считать, что $\tau_{\text{пот}}\ll\tau_{\text{заг}}.$

Уменьшая сопротивление магазина найдём критическое сопротивление при котором колебания останавливаются. Получим $R_{\rm кp}=120$ кОм. Теоретическое значение для $R_{\rm kp}=(U-V_2)/I_2=(118.5-76)/0.6=71$ кОм. Из этого можно сделать заключение, что V_2 для динамического значительно случая ниже, чем для статического.

Рис. 4: Схема установки для исследования релаксационных колебаний.

ііі Получение фигур Лиссажу и изучение частоты колебаний

Восстановим исходные параметры релаксационного генератора. Теперь подадим на вход осциллографа X синусоидальных сигнал с генератора звуковых частот. И пронаблюдаем фигуры Лиссажу для различных отношений частот (рис. 6 – 10).

Теперь измерим зависимость частоты колебаний от ёмкости конденсатора при постоянном сопротивлении, и зависимость частоты от сопротивления при постоянной ёмкости. Для измерения частоты будем подбирать частоту генератора звуковых сигналов так, чтобы получались фигуры Лиссажу отношения 1:1.

Измерим $\nu(C)$ при R=600 кОм. Данные занесём в таблицу 2.

C , мк $\Phi \cdot 10^{-3}$	50	40	30	20	15	10	8	5
ν, Гц	39.6	45.8	60.4	90.2	119	180	226	363
T, MC	25.3	21.8	16.6	11.1	8.4	5.6	4.4	2.8

Таблица 2: Данные измерения зависимости частоты от ёмкости

Измерим $\nu(R)$ при $C=5\cdot 10^{-2}$ мкФ. Данные занесём в таблицу 3.

R, кОм	900	800	700	600	200	400	300	200	130
ν, Гц	25.1	28.7	32.8	38.2	46.1	57.4	75.4	106.3	147
T, MC	39.8	34.8	30.5	26.2	21.7	17.4	13.3	9.4	6.8

Таблица 3: Данные измерения зависимости частоты от сопротивления

Теоретическая зависимость определяется по формуле:

$$T \approx \tau_{\text{\tiny 3AT}} = RC \ln \left(\frac{U - V_2}{U - V_1} \right). \label{eq:tau_sat}$$

На графиках построим точки из табл. 2 и 3, и теоретическую зависимость. Видим, что наклон теоретического и действительного графика сильно отличаются. По наклону графика найдём действительное значения для V_2 , считая, что V_1 постоянно.

Рис. 5: Изображение пилообразных колебаний полученных на осциллографе

IV Выводы

Мы изучили нелинейную характеристику стабилитрона, сняв потенциалы зажигания и потухания, и показав, что между ними существует линейный участок.

 ${
m MЫ}$ показали, что в схеме с конденсатором происходят релаксационные колебания, причём V_2 в них отличается от ранее измеренного.

Получили изображение пилообразных колебаний,и фигур Лиссажу для них, показав возможную схему для получения генератора развёртки на осциллографе.

Так же мы сняли зависимости периода T(C) и T(R), на основе чего почитали значения для V_2 .

Рис. 6: Фигура Лиссажу для отношения Рис. 7: Фигура Лиссажу для отношения частот 1:1 частот 1:2

Рис. 8: Фигура Лиссажу для отношения Рис. 9: Фигура Лиссажу для отношения частот 1:3 частот 2:1

Рис. 10: Фигура Лиссажу для отношения частот 3:1

Рис. 11: График зависимости T(C)

Рис. 12: График зависимости T(R)