République Tunisienne Ministère de l'éducation et de la formation

Classe: 2 Sc2.

Devoir de contrôle n°1

Prof: Hemli Faouzi

De Sciences Physiques

Date: Le:25/10/2010 Dur

Durée : 1 heure

Chimie (8 Points)		
On donne : masse d'un nucléon : $\mathbf{m} = 1,67 \cdot 10^{-27} \mathrm{kg}$. Charge élémentaire : $\mathbf{e} = 1,6.10^{-19} \mathrm{C}$.	Capacités	Barème
Exercice nº1(4 Points)		
Le néon est un élément chimique qui existe dans la nature sous forme d'un mélange de trois isotopes: ²⁰ Ne, ²¹ Ne et *Ne de proportions respectives 90 %; 0,3 % et 9,7 %. 1) Définir les termes suivants: - élément chimique. - isotope	A	2
2) La masse des protons dans un atome de l'isotope 21 Ne est $m_1 = 16,7 \cdot 10^{-27} \cdot kg$. Déterminer le nombre de charge Z du néon.	A	1
3) La masse molaire moyenne du néon est M = 20,197 g.mol ⁻¹ . Déterminer le nombre de masse (x) du troisième isotope.	В	1
Exercice n°2(4 Points)		
Le noyau de l'atome de phosphore(P) renferme 15 neutrons et porte la charge		
électrique $q = 24 \cdot 10^{-19} C$	A	1
 Déterminer le nombre de protons Z contenus dans le noyau de l'atome de phosphore Déduire le nombre de masse A? 	A	1
3) Représenter le symbole du nucléide correspondant.	A	1
4) Donner sa structure électronique.	A	1
Physique (12 Points)		
Exercice N°1 :(7 points)		
On considère deux conducteurs ohmiques C_1 et C_2 de formes cylindriques, constitués de matériaux différents, de même longueur et de sections respectives S_1 et S_2 . Ils sont montés dans un circuit comme l'indique la <u>figure n°1</u>		
1) Le générateur maintient entre ses bornes une tension U = 12 V.		
L'ampèremètre A indique $I = 0,1A$ et l'ampèremètre A_1 indique $I_1 = 0,06A$. a- Déduire l'intensité du courant I_2 qui traverse C_2	A	1
b- Comparer en justifiant les conductibilités électriques de C_1 et de C_2 .	В	1
c- Enoncé la loi d'ohm relative à un conducteur ohmique. Déduire la résistance R_1 de \emph{C}_1 et la résistance R_2 de \emph{C}_2 .	A	1,5
2) Le dipôle C_2 est maintenant remplacé par un dipôle C_3 de même matériau et de même longueur que C_1 , ils sont montés en série dans un même circuit avec le même		

générateur (figure n°2).	Le voltmètre indique $oldsymbol{U}$	= 2	V et l'ampèremètre indique
I=0,05 A			

- a-Calculer la résistance R_3 de C_3 .
- b-Comparer les sections S_1 et S_3 de C_1 et C_3 .Justifier. ?
- 3) On maintient le circuit de la question (2).
- a- Calculer la puissance \mathcal{P}_1 consommée par \mathcal{C}_1 .
- b- Sur C_3 est inscrit : $\mathcal{P}_{max} = 0$,09 W. Ce dipôle fonctionne- t- il dans les conditions normales. Expliquer ?

Figure n°1

Exercice n°2 (5 points)

On considère un dipôle ${\bf D}$ traversé par un courant électrique d'intensité ${\bf I}$ constante, entre ses bornes est appliquée une tension ${\bf U}$.

On donne la courbe de l'énergie électrique consommé par ${\bf D}$ en fonction de la durée $\Delta {\bf t}$

- 1) Donner l'expression de l'énergie ${\cal E}$ en fonction de la durée Δt
- 2) Déterminer l'équation de la courbe $\mathcal{E} = \mathbf{f}(\Delta \mathbf{t})$
- 3) En déduire la valeur de la puissance ${\cal P}$ correspondant à ce dipôle
- 4) Sachant que le dipôle D est un résistor de résistance $R=5\Omega$, déterminer I
- 5) Calculer la valeur U de la tension aux bornes de ce dipôle

Page 2 sur 2

www.devolr@t.net

A 1 A/B 1

A/B

В

В

0,5

1

1

1

A 1 A/B 1

1

A/B