LOAN

ANALYSIS

Brief about DATASET

- It contains 25 columns and 30,000 rows.
- There are no NA values in the dataset.
- Default Payment is our dependent variable, which consist of 2 variables 1 and 0, which describes s/he will pay the loan and s/he will not pay the loan.
- The rest columns contain their data like previous payments, gender, qualification, and their credit amount.

STEPS

- CHANGING THE COLUMNS TO FACTOR, WHICH CONTAINS FACTOR ELEMENTS.
- CHEKING THE BIASNESS IN THE DEPENDENT VARIABLE.
- CHANGING GENDER COLUMN ELEMENTS TO THE RELEVANT VALUE
 1 STANDS FOR MALE AND 2 STANDS FOR FEMALE.
- ► CHANGING QUALIFICATION COLUMN ELEMENT TO RELEVANT VALUES AS GIVEN IN THE DESCRIPTION FILE.
- VISUALIZING THE DATA.
- RANDOMLY SHUFFLING DATA.
- REMOVING INSIGNIFICANT COLUMNS
- SUBESTTING THE DATASET INTO TEST AND TRAIN DATASET.
- ► APPLYING THE MACHINE LEARNING ALGORITHM TO FIND THE BEST MODEL.

Changing columns to factor

```
"Gender",
"Academic_Qualification",
"Marital",
"Repayment_Status_Jan"
"Repayment_Status_Feb",
"Repayment_Status_March",
"Repayment_Status_April",
"Repayment_Status_May",
"Repayment_Status_June",
"Default_Payment"
```

These are columns that are needed to be changed

Changing elements of columns

IN GENDER COLUMN:

1=MALE

2=FEMALE

IN QUALIFICATION

COLUMN:

1=UNDERGRADUATE

2=GRADUATE

3=POSTGRADUATE

4=PROFESSIONAL

5=OTHER

6=UKNOWN

CHECKING THE BIASNESS

0 (Not Paid) IS OCCURING 23364 TIMES IN THE DATASET WHILE 1 (Paid) IS OCCURING ONLY 6636 TIMES, CLEARLY THERE IS CLASS BIASNESS IN THE MODEL.

CLEARLY
THERE ARE
MORE
FEMALES
WHO FAILED
TO PAY THE
LOAN.

RANDOMLY SHUFFLING DATA TO AVOID BIASNESS

Sub setting into training and test data set

Training data contains 70% of actual dataset.

Test data contains the 30% of actual dataset.

APPLYING ALGORITHMS

USING LOGISTIC

REGRESSION:

ACCURACY OF THE

MODEL: 0.8255

USING SVM:

ACCURACY OF THE

MODEL: 0.8375