2. Basic Image Features

Eun Yi Kim

Edges

- Abrupt changes in the intensity of pixels
- Discontinuity in image brightness or contrast
- Usually edges occur on the boundary of two regions

Edges

각인 당위 XX. 이어지지 않음두 0.

- Process of identifying edges in an image to be used as a fundamental asset in image analysis
- Locating areas with strong intensity contrasts
- A kind of filtering that leads to useful features

Edge Detection Usage

- Reduce unnecessary information in the image while preserving the structure of the image
- Extract important features of an image
 - Textures and shapes
 - Corners, Lines and Curves
- Recognize objects, boundaries, segmentation
- Part of computer vision and recognition

Edges

- Abrupt changes in the intensity of pixels
- Discontinuity in image brightness or contrast
- Usually edges occur on the boundary of two regions

Differential Operators

Attempt to approximate the gradient at a pixel via masks

Threshold the gradient to select the edge pixels

Differencing 1D Signals

0/7/0/

Gradient in images

Artificial Inteligence & Computer Vision

edge of you My (magnitude, direction + 18)

Two dimensional equivalent of the first order derivative

प्रवाहित प्रियम भार.

magnitude $G[f(x,y)] = \sqrt{G_x^2 + G_y^2}$ direction $\alpha(x,y) = \tan^{-1}(\frac{G_y}{G_x})$

Numerical Approximation of Gradient

• For digital images, the derivatives are approximated by differences.

$$\overline{G_x \cong f[i, j+1] - f[i, j]}$$

$$G_y \cong f[i, j] - f[i+1, j]$$

Differencing masks using first derivatives

Differencing masks using second derivatives

Common Masks for Computing Gradient

Common Masks for Computing Gradient

- let G_v be the response to S_v

On a pixel of the image I
• let
$$G_x$$
 be the response to S_x

Then the gradient is
$$\nabla I = [G_x \ G_y]$$

And
$$g = (G_x^2 + G_y^2)^{1/2}$$
 is the gradient magnitude.
 $\theta = atan2(G_y,G_x)$ is the gradient direction.

Roberts Operator

- Gradient computed across diagonals
- Faster because of 2×2 neighborhood

$$G[f(i,j)] = |f(i,j) - f(i+1,j+1)| + |f(i+1,j) - f(i,j+1)| = |G_x| + |G_y|$$

Convolution masks

$$G_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$G_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

> sympa un'ther saltisum O (direction) in melor thex.

Prewitt Operator

Convolution masks

$$S_{x} = \begin{array}{|c|c|c|c|c|c|} \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$$

$$S_y = \begin{array}{c|cccc} 1 & 1 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -1 & -1 \end{array}$$

Magnitude of the gradient,
$$M = \sqrt{G_x^2 + G_y^2}$$

If $M \ge thresold$, the current pixel is marked as an edge pixel.

$$\theta \approx tan^{-1}(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x})$$

a) Input image

b) Robert

c) Prewitt

9%; R < P

172: R < (5%)

Sobel Operator - CHAMON VIOLES

Convolution masks

$$S_x = \begin{array}{c|cccc} -1 & 0 & 1 \\ \hline -2 & 0 & 2 \\ \hline -1 & 0 & 1 \end{array}$$

Magnitude of the gradient, M

$$M = \sqrt{G_x^2 + G_y^2}$$

If $M \ge thresold$, the current pixel is marked as an edge pixel.

- places an emphasis on pixels closer to the center of the mask.
- most commonly used.

original image

gradient magnitude thresholded → Mol 360.

gradient

magnitude

Input Image

Roberts Operator

Prewitt Operator

Zero Crossing Operators

Ly 2hr 1/42 0/8/24 edge operator

Zero Crossing of.

Motivation: The zero crossings of the second derivative of the image function are more precise than the peaks of the first derivative.

1st derivative

2nd derivative

Zero Crossing Operators

Motivation: The zero crossings of the second derivative
 of the image function are more precise than
 the peaks of the first derivative.

How do we estimate the Second Derivative?

• Laplacian Filter: $\nabla f = \partial f / \partial x + \partial f / \partial y$

0	1	0
1	-4	1
0 1 0	1	0

- Standard mask implementation
- Derivation: In 1D, the first derivative can be computed with mask [-1 0 1]
- The Laplacian mask estimates the 2D second derivative.

Detecting Edges with Laplacian Operator

Edge Detection Background

- Classical gradient edge detection 1사 이분 - Sobel, Prewitt, <u>Kirsch and Robinson</u>

 - Sobel, Prewitt, <u>Kirsch and Robinson</u>

 - Zero-crossing based methods
- Laplacian, LoG
- Gaussian based filters
 - Marr and Hildreth -> Lo Gat will
 - Canny operator

Effect of Noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

• Where is the edge?

Effect of Noise

- Finite difference filters respond strongly to noise
 - -Image noise results in pixels that look very different from their neighb ors
 - -Generally, the larger the noise the stronger the response
- What is to be done? -> 5mothing

Effect of Noise

- Finite difference filters respond strongly to noise
 - -Image noise results in pixels that look very different from their neighbors
 - -Generally, the larger the noise the stronger the response
- What is to be done?
 - Smoothing the image should help, by forcing pixels difference to their neighbors (=noise pixels?) to look more like neighbors

Solution: smooth first

Where is the edge?
 Look for peaks

Laplacian of Gaussian (LoG): Marr and Hildreth Operator

- First smooth the image via a Gaussian convolution.
- Apply a Laplacian filter (estimate 2nd derivative).
- Find zero crossings of the Laplacian of the Gaussian.

Edge location can be estimated with subpixel resolution using linear interpolation

- Where is the edge?
 - -Zero-crossing of bottom graph

Scale space

5 x 5 LoG filter

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

17 x 17 LoG filter

0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1 -1	-1 -1	-3 -3	-3 -3	-2 -3	0	10 4	18 10	21 12	18 10	10 4	0	-2 -3	-3 -3	-3 -3	-1 -1
							_								_
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
-1 0	-1 -1	-3 -2	-3 -3	-3 -3	0 -3	4 0	10 2	12 4	10 2	4 0	0 -3	-3 -3	-3 -3	-3 -2	-1 -1
-1 0 0	-1 -1 -1	-3 -2 -1	-3 -3 -2	-3 -3 -3	0 -3 -3	4 0 -3	10 2 -2	12 4 -3	10 2 -2	4 0 -3	0 -3 -3	-3 -3 -3	-3 -3 -2	-3 -2 -1	-1 -1 -1

Scale (o)

Scale space

Original Image

LoG Filter

Zero Crossings

Scale (o)

Edge Detection Results

Original gray scale

Additive Gaussian Noise

Edge Detection Results

- Roberts operator
 - Poor robustness to noise, low detection

Edge Detection Results

- LoG operator
 - Better robustness to noise, better detection

Implementation issues

- The gradient magnitude is large along a thick "trail" or "ridge", so how do we identify the actual edge points?
- How do we link the edge points to form curves?

Canny Edge Operators on Kidney

