Microscopic Characterization of Hybrid Photo Diode

Departmental Project - 1

Presented By – Mohit Saharan

Supervisor – Prof. Shashi Dugad

CMS Detector

- The CMS detector is designed to study pp collisions at the LHC.
- Hadron Barrel calorimeter and Hadron End-Cap calorimeter are made up of alternating layers of absorber and scintillator.
- Collected scintillation light is transported to photodetectors (HPD in the past, now SIPM)
- Signal loss in HE data was observed over years.
- Decoupling of signal loss due to degradation of HPD and scintillator

http://cms.web.cern.ch/news/cms-detector-design

Signal Collection In HE

• Segmentation into $\eta - \phi$ towers, where η is pseudorapidity,

$$\eta = -\ln(\tan\frac{\theta}{2})$$

• HE is segmented into $\eta - \phi$ towers of granularity

$$\Delta \eta \times \Delta \phi = 0.087 \times 0.087$$
 for $|\eta| < 1.6$, and $\Delta \eta \times \Delta \phi = 0.170 \times 0.170$ for $|\eta| \ge 1.6$

 Optical Decoding Unit(ODU): HE tower mapping on HPD

arXiv:1806.09887 [physics.ins-det]

Hybrid Photo Diode (HPD)

Design of HPD:

- Hexagonal shaped active region
- Fiber Optic Window
- Common photocathode
- 3.3 mm vacuum gap, reverse bias: $V_{gap} = -6 \text{ kV to } -10 \text{ kV}$
- 19 PIN diodes underneath photocathode of size = 5.4 mm and hexagonal in shape, referred as pixels. Reverse bias = -80 V
- 19 output channels

Nucl.Instrum.Meth. A587 (2008) 250-258 CERN-CMS-NOTE-2008-011

HE/RM4, HPD, Rear Vie

arXiv:1806.09887 [physics.ins-det]

Experimental Setup (MROS)

- Green laser: Operated in CW mode at low intensity.
- Motion Controller: Capable of moving the HPD with a resolution of $0.1 \ \mu m$.
- CMOS Camera: Preliminary survey of HPD surface. Helps in roughly finding the focal plane of laser beam.
- Keithley Power Supply: Reverse biasing of PIN diodes (-80 V)
- CAEN HV Module N471A: Reverse biasing of photocathode (-6000 V)
- HPD decommissioned from HE.
- Automation of setup through GPIB interface under LABVIEW based framework.
- Collective current of all the 19 pixels was read instead of individual pixel current.

arXiv:1806.09887 [physics.ins-det]

Focal Plane Determination

- Preliminary survey of HPD surface using CMOS camera revealed mounting imperfections.
- Dynamical adjustment of focal axis coordinate during surface scans
- Alignment of focal plane of laser with HPD surface. Modified knife edge method.
 - Start with expected position of focal plane.
 - For each value of y, HPD is moved in the path of beam (50 steps along x with step size = $5 \mu m$).
 - Boundary between dead and active region of HPD acts as edge.
 - $\frac{dI}{dx}$ vs x is plotted and RMS of Gaussian distribution gives beam spot size.
 - 12 steps along y with step size = $20 \mu m$.

arXiv:1806.09887 [physics.ins-det]

Focal Plane Determination

• The data generated is fitted to functional form

$$\sigma(y - y_o) = \sigma_o \times \sqrt{1 + \left(\frac{M^2 \lambda (y - y_o)}{4\pi \sigma_o^2}\right)^2}$$

where,

 λ is the wavelength of the laser beam (520 nm)

M² is beam quality factor

 σ_0 is the minimum beam spot size

 σ is the beam spot size at a distance $y-y_o$ relative to minima

 y_o is the position of HPD corresponding to the minimum beam spot size

Focal Plane Determination

- Position A:
 - Beam Spot size = 24.5 $\mu m \pm 0.3 \mu m$
 - Focal Plane (y) = 12320.8 $\mu m \pm 0.8 \mu m$
- Position C:
 - Beam Spot size = 23.3 $\mu m \pm 0.4 \mu m$
 - Focal Plane (y) = 12137.1 $\mu m \pm 0.7 \mu m$
- M = 13.5

 Modulation of current near the focal point due to structure of optic fiber window.

Position	Focal Plane (y, mm)
А	12.32
В	12.26
С	12.14
D	12.22
Е	12.32
F	12.26
G	12.14
Н	12.18

Focal point for other positions, Ref: arXiv:1806.09887 [physics.ins-det]

Ultra-Fine Scan

- Step size = $1 \mu m$
- Plot of variation of current along the line
- Side of the square unit = 6.2 μm
- Laser beam spot size < 1.7 μm and < $6.2 \mu m$
 - Much smaller than step size in all the surface scans

Surface scans of HPD and Position Dependent Response

- Full Scan:
 - To analyze the surface of HPD
 - Step size = 200 μm
 - Non Uniform Response
 - Damage in circular regions
 - Pixel 14 Most Damaged
 - Pixels scanned: 14, 13, 11, 18, 5

arXiv:1806.09887 [physics.ins-det]

Localized Scans

- Step size = 75 μm , much greater than beam spot size
- Percentage signal loss in each pixel
 - Mean current in fiber imprint
 - Mean current in undamaged region of pixel

Layer	Radius ($ imes 75~\mu m$)	No. of readings	Mean Current (nA)	Std. Dev (nA)
(1,1)	10	111	50.9	4.9
(79,1)	20	355	46.6	3.7
(1,79)	20	355	43.3	3.5
(79,79)	30	736	44.8	4.0
Mean			46.4	

Layer	Mean Current (nA)	Std. Dev. (nA)	% Signal Loss
5	13.7	1.1	70.6
6	15.1	1.3	67.4
7	16.4	0.8	64.8
8	16.2	0.6	65.1
9	15.6	0.4	66.3
10	19.8	0.9	57.3
11	16.4	0.5	64.8
12	19.2	1.1	58.6
13	17.8	0.5	61.6
14	18.8	0.5	59.5
15	20.3	1.1	56.2
16	22.8	0.9	50.8
17	24.2	1.2	47.8
Mean			60.8

Localized Scans

- Damage increases with pseudorapidity.
- Damage in forward region > Middle region
- Damage in Pixel 14 (tower 28r) > Pixel 6 (tower 28f) and Pixel 18 (tower 28m).
 - 13 fibers coming from very high pseudorapidity region
 - Significant spread damage to neighboring regions

Threshold voltage analysis

• Minimum V_{gap} such that the PIN diodes produce a significant amount of output current.

- \bullet Beyond this V_{gap} , HPD current increases linearly with over voltage.
- Expected increase in threshold voltage of the damaged regions.
- Measurement of threshold voltage in different regions
 - Damaged region Center of 13 fiber imprints of pixel 14
 - Undamaged region 25 randomly chosen points over the active region in the form of 5×5 matrix.

Threshold Voltage Analysis

- Bias voltage across pin diodes = 80 V
- CW mode operation of laser at low intensity
- HV ramped up from 0 to 7000 V in steps of 250 V.
- Mean threshold Volatge in
 - Undamaged region = − 3.405 kV
 - Damaged region = − 3.936 kV
- Conductance increases with layer number

Summary

- The characterization of fiber optic window was done with a step size of 1 μm along transverse axis. It was found to be made up of square units of size = 6.2 μm .
- Localized scans of damaged pixels were done with a step size of 75 μm . The damage to photocathode due to scintillation light is prominent only in the region exposed to optical fiber.
- Damage is higher for regions on photocathode which received light from higher pseudorapidity regions of HE detector.
- The maximum observed signal loss is = 60.8 %.
- Modulus of Threshold voltage was measured in damaged and undamaged regions. Threshold voltage of damaged region is $\sim 500 \text{ V}$ higher than undamaged region.

References

- R A Shukla, V G Achanta, P D Barbaro, S R Dugad, A Heering, S K Gupta, I Mirza, S S Prabhu, P Rumerio, "Microscopic Characterisation of Photo Detectors from CMS Hadron Calorimeter". arXiv:1806.09887 [physics.ins-det].
- Abdullin, S., Abramov, V., Acharya, B. et al. Eur. Phys. J. C (2008) 55: 159. https://doi.org/10.1140/epjc/s10052-008-0573-y.
- Baiatian G. et al. (CMS HCAL Collaboration), "Design, performance, and calibration of CMS hadron endcap calorimeters", CERN-CMS-NOTE-2008-010.
- P. Cushman and B. Sherwood, "Lifetime Studies of the 19-channel Hybrid Photodiode for the CMS Hadronic Calorimeter", Tech. Rep. CMS-NOTE-2008-011 (CERN, Geneva, 2007).
- R. Shukla, S. Dugad, C. Garde, A. Gopal, S. Gupta, and S. Prabhu, Review of Scientific Instruments 85, 023301(2014)