This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Network01a 001 10.0 points

The volume of traffic (in average number of vehicles per minute) through three intersections is shown in

Find all possible values for x_2 in terms of a free variable s.

1.
$$x_2 = 15 + s$$

2.
$$x_2 = 20 + s$$

3.
$$x_2 = 70 + s$$

4.
$$x_2 = 5 + s$$

5.
$$x_2 = 35 + s$$

$\begin{array}{c} {\rm Span02a} \\ {\rm 002} \quad {\rm 10.0~points} \end{array}$

For each of the following pairs of vectors $\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^3 determine whether

$$H = \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}\$$

is a line in \mathbb{R}^3 .

I:
$$\mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 6 \\ -4 \\ -2 \end{bmatrix}$,

II:
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 6 \\ -2 \\ -4 \end{bmatrix}$,

III:
$$\mathbf{u} = \begin{bmatrix} -2\\1\\-3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$.

- 1. I and III
- **2.** II only
- **3.** I only
- 4. II and III
- **5.** I and II
- **6.** III only

LinTrans02a 003 10.0 points

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-2\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix},$$

determine $T(\mathbf{x})$ when $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

1.
$$T(\mathbf{x}) = \begin{bmatrix} 6 \\ -6 \end{bmatrix}$$

2.
$$T(\mathbf{x}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

3.
$$T(\mathbf{x}) = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$

4.
$$T(\mathbf{x}) = \begin{bmatrix} 5 \\ -5 \end{bmatrix}$$

$$5. T(\mathbf{x}) = \begin{bmatrix} 5 \\ -6 \end{bmatrix}$$

LinTrans03b 004 10.0 points

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$T(x_1, x_2) = (4x_1 + x_2, -3x_1 + 2x_2).$$

Determine A so that T can be written as the matrix transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$.

1.
$$A = \begin{bmatrix} 4 & 0 & -3 \\ 0 & 1 & 1 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 1 & -3 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 4 & -3 \\ 1 & 2 \end{bmatrix}$$

$$4. A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$

InverseMatrix03a 005 10.0 points

Determine the product AB^{-1} when

$$A = \begin{bmatrix} 2 & 1 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -5 & 2 \\ -2 & 3 & -1 \end{bmatrix}.$$

1.
$$AB^{-1} = [12 -10 -3]$$

2.
$$AB^{-1} = [8 - 8 - 3]$$

3.
$$AB^{-1} = [12 -8 -3]$$

4.
$$AB^{-1} = [8 -10 -5]$$

5.
$$AB^{-1} = [12 -8 -5]$$

6.
$$AB^{-1} = [8 -8 -5]$$

InvertibleTF01c 006 10.0 points

If A is an $n \times n$ matrix, when does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for each \mathbf{b} in \mathbb{R}^n ?

- 1. ALWAYS
- 2. NEVER

3. SOMETIMES

LUDecomp05b 007 10.0 points

Determine the unique solution x_2 of the matrix equation

$$A\mathbf{x} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -9 \\ 24 \\ 35 \end{bmatrix}$$

when A has an LU-decomposition

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 & 2 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix}.$$

- 1. $x_2 = 3$
- **2.** $x_2 = 0$
- 3. $x_2 = 2$
- **4.** $x_2 = 1$
- 5. $x_2 = 4$

NullSpace01a 008 10.0 points

Find a matrix A so that Nul(A) is the set of all vectors

$$H = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a+4b = 2c, \\ 3a = c+d, \end{array} \right\}$$

in \mathbb{R}^4 .

1.
$$A = \begin{bmatrix} 1 & -4 & -2 & 0 \\ 3 & 0 & 1 & 1 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & 4 & -2 & 0 \\ 3 & 0 & -1 & -1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & 4 & 2 & 0 \\ 3 & 0 & 1 & 1 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & -4 & 2 & 0 \\ 3 & 0 & -1 & -1 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -4 & 2 & 0 \\ 3 & 0 & 1 & 1 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 4 & -2 & 0 \\ 3 & 0 & -1 & 1 \end{bmatrix}$$

$\begin{array}{cc} SpanningT/F01a \\ 010 & 10.0 \ points \end{array}$

Three vectors in \mathbb{R}^5 always span \mathbb{R}^5 . True or False?

- 1. TRUE
- 2. FALSE

$\begin{array}{c} Rank02c \\ 009 \quad 10.0 \ points \end{array}$

Determine the rank of the matrix

$$A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & -2 & -6 \\ -2 & 2 & 3 \end{bmatrix}.$$

- 1. rank(A) = 5
- **2.** rank(A) = 3
- **3.** rank(A) = 4
- **4.** rank(A) = 1
- **5.** rank(A) = 2

$\begin{array}{cc} Compute Determinant 01 \\ 011 & 10.0 \ points \end{array}$

Compute the determinant of the following elementary matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}.$$

- 1. 1 + k
- **2.** 1
- **3.** 1 k
- **4.** 0
- **5.** *k*

6

The set

$$H = \left\{ \begin{bmatrix} a+2b \\ a-b \\ 3b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

is a subspace of \mathbb{R}^3 .

True or False?

- 1. TRUE
- 2. FALSE

$\begin{array}{cc} Det Prop TF01c \\ 012 & 10.0 \ points \end{array}$

If the columns of an $n \times n$ matrix A are linearly dependent, then $\det A = 0$.

True or False?

- 1. TRUE
- 2. FALSE

$\begin{array}{cc} {\bf Subspace TF01} \\ {\bf 013} & {\bf 10.0 \ points} \end{array}$

Let H be the set of points inside and on the unit circle in the xy-plane. That is, let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$.

H is a subspace of \mathbb{R}^2 . True or false?

- 1. FALSE
- 2. TRUE

Find a basis for the Null space of the matrix

$$A = \begin{bmatrix} 2 & 4 & -10 & -14 \\ -1 & 1 & 2 & 1 \\ 1 & 3 & -6 & -9 \end{bmatrix}.$$

- 1. $\left\{ \begin{bmatrix} -3\\-2\\0\\1 \end{bmatrix} \right\}$
- $\mathbf{2.} \left\{ \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$
- $\mathbf{3.} \left\{ \begin{bmatrix} 3 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$
- $4. \left\{ \begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\}$
- $\mathbf{5.} \left\{ \begin{bmatrix} -3\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\-2\\0\\1 \end{bmatrix} \right\}$
- $\mathbf{6.} \ \left\{ \begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0\\1 \end{bmatrix} \right\}$

BasisCol01b 016 10.0 points

Find a basis for the column space of the matrix

$$A = \begin{bmatrix} 2 & -2 & 8 & 2 \\ 1 & -2 & 5 & 3 \\ -2 & 0 & -6 & -1 \end{bmatrix}.$$

- 1. $\left\{ \begin{bmatrix} 2\\3\\-1 \end{bmatrix} \right\}$
- $\mathbf{2.} \ \left\{ \begin{bmatrix} -2\\-2\\0 \end{bmatrix}, \begin{bmatrix} 8\\5\\-6 \end{bmatrix} \right\}$
- $\mathbf{3.} \left\{ \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \begin{bmatrix} 8\\5\\-6 \end{bmatrix}, \begin{bmatrix} 2\\3\\-1 \end{bmatrix} \right\}$
- $4. \left\{ \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \begin{bmatrix} -2\\-2\\0 \end{bmatrix} \right\}$
- 5. $\left\{ \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix} \right\}$
- **6.** $\left\{ \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \begin{bmatrix} -2\\-2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\-1 \end{bmatrix} \right\}$

with respect to the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\}$$

for \mathbb{R}^3 .

$$\mathbf{1.} \ \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}$$

2. no such x exists

$$\mathbf{3.} \ \mathbf{x} = \begin{bmatrix} 0 \\ -1 \\ 5 \end{bmatrix}$$

$$\mathbf{4.} \ \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$$

$$\mathbf{5.} \ \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ -5 \end{bmatrix}$$

LinIndSetsTF01b 017 10.0 points

When $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$ are vectors in \mathbb{R}^n and

$$H = \operatorname{Span}\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\},\,$$

then $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p\}$ is a basis for H.

True or False?

- 1. TRUE
- 2. FALSE

CoordVec02a 018 10.0 points

Find the vector \mathbf{x} in \mathbb{R}^3 having coordinate vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix}$$

Let V be a vector space. If dim V = n and if S spans V, then S is a basis for V.

True or False?

- 1. FALSE
- 2. TRUE

$$\mathbf{2.} \ P_{\mathcal{C} \leftarrow \mathcal{B}} \ = \ \begin{bmatrix} -9 & 6 \\ -4 & 2 \end{bmatrix}$$

3.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}$$

4.
$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} -6 & 9 \\ -2 & 4 \end{bmatrix}$$

5.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 6 & -9 \\ 2 & -4 \end{bmatrix}$$

6.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 9 & 6 \\ -4 & -2 \end{bmatrix}$$

$\begin{array}{cc} RankTF03 \\ 020 & 10.0 \ points \end{array}$

When A is a 5×7 matrix, the largest possible dimension of the row space of A is 5.

True or False?

- 1. TRUE
- 2. FALSE

022 (part 2 of 2) 10.0 points

Determine $[\mathbf{x}]_{\mathcal{C}}$ when

$$\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2.$$

Determine the change of coordinates matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ from basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ to $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ of a vector space V when

$$\mathbf{b}_1 = 6\mathbf{c}_1 - 2\mathbf{c}_2, \quad \mathbf{b}_2 = 9\mathbf{c}_1 - 4c_2.$$

1.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 9 & -6 \\ 4 & -2 \end{bmatrix}$$

1.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\mathbf{2.} \ [\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

3.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$$

4.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

5.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

6.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

Eigenspace02a 023 10.0 points

Find a basis for the eigenspace of the matrix

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix},$$

corresponding to the eigenvalue $\lambda = -2$.

$$\mathbf{1.} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{2.} \quad \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\mathbf{4.} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

5.
$$\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

EigenTrans01a 024 10.0 points

The vectors \mathbf{u}_1 and \mathbf{u}_2 shown in

are eigenvectors corresponding to eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$ respectively for a 2×2 matrix A.

Which of the following graphs contains the vector $A(\mathbf{u}_1 + \mathbf{u}_2)$?

2.

4.

5.

6.

EigenvalueTF02a 025 10.0 points

If A is an $n \times n$ matrix and $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector of A.

True or False?

- 1. FALSE
- 2. TRUE

Eigenvalue04a 026 (part 1 of 2) 10.0 points

Determine the Characteristic Polynomial of the matrix $\,$

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

1.
$$6 - 10\lambda + 6\lambda^2 + \lambda^3$$

2.
$$4 - 10\lambda + 6\lambda^2 - \lambda^3$$

3.
$$6 + 4\lambda - 10\lambda^2 + \lambda^3$$

4.
$$4 - 4\lambda + 10\lambda^2 - \lambda^3$$

5.
$$6 + 10\lambda - 6\lambda^2 + \lambda^3$$

6.
$$4 + 4\lambda - 10\lambda^2 - \lambda^3$$

027 (part 2 of 2) 10.0 points

One eigenvalue of the matrix A in part (i) is $\lambda=2$. Determine all the other eigenvalues.

1.
$$\lambda = 1 \pm \sqrt{2}$$

2.
$$\lambda = 2\sqrt{2} \pm 2$$

3.
$$\lambda = 2 \pm \sqrt{2}$$

4.
$$\lambda = 1 \pm 2\sqrt{2}$$

5.
$$\lambda = 2\sqrt{2} \pm 1$$

6.
$$\lambda = 2 \pm 2\sqrt{2}$$

Diagonalize03a 028 10.0 points

Find a matrix P so that

$$P\begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} P^{-1}, \quad d_1 \ge d_2$$

is a diagonalization of the matrix

$$A = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$$

1.
$$P = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$$

2.
$$P = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

3.
$$P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

4.
$$P = \begin{bmatrix} -2 & 1 \\ -1 & 1 \end{bmatrix}$$

5.
$$P = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

6.
$$P = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$$

For **u** and **v** in \mathbb{R}^n and any scalar c,

$$\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

True or False?

- 1. FALSE
- 2. TRUE

OrthoProj04a 030 10.0 points

Determine the vector \mathbf{z} in \mathbb{R}^3 such that $\mathbf{y} - \mathbf{z}$ is the projection of \mathbf{y} in $\mathrm{Span}(\mathbf{u})$ when

$$\mathbf{y} = \begin{bmatrix} 9 \\ -5 \\ 2 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

$$\mathbf{1.} \ \mathbf{z} = \begin{bmatrix} 6 \\ -2 \\ -4 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{z} = \begin{bmatrix} -6 \\ 2 \\ 4 \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{z} = \begin{bmatrix} -9 \\ 3 \\ 6 \end{bmatrix}$$

$$\mathbf{4.} \ \mathbf{z} = \begin{bmatrix} 9 \\ -3 \\ -6 \end{bmatrix}$$

OrthogProj01a 031 10.0 points

Determine the orthogonal projection of

$$\mathbf{y} = \begin{bmatrix} -2 \\ -1 \\ -11 \end{bmatrix}$$

onto the subspace W of \mathbb{R}^3 spanned by

$$\mathbf{u}_1 = \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1\\2\\-2 \end{bmatrix}.$$

$$\mathbf{1.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} -1 \\ -8 \\ 5 \end{bmatrix}$$

$$\mathbf{2.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$$

$$\mathbf{3.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} 4 \\ -8 \\ -5 \end{bmatrix}$$

4.
$$\operatorname{proj}_W \mathbf{y} = \begin{bmatrix} 4 \\ 2 \\ -5 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{v}_1 = \begin{bmatrix} -2\\1\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1\\5\\-2 \end{bmatrix}.$$

$$\mathbf{3.} \ \mathbf{v}_1 = \begin{bmatrix} 1\\-1\\-3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4\\7\\-1 \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

4.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix}$$

5.
$$\mathbf{v}_1 = \begin{bmatrix} -2\\1\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\-3 \end{bmatrix}$$

GramSchmidt04a 03210.0 points

Find an orthogonal basis for the column space of A when

$$A = \begin{bmatrix} 1 & -1 & -3 \\ -1 & 2 & 1 \\ -3 & 4 & 7 \end{bmatrix}$$

$$\mathbf{1.} \ \mathbf{v}_1 = \begin{bmatrix} -2\\1\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4\\7\\-1 \end{bmatrix}$$

LeastSquares02a 033 10.0 points

Find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ when

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -4 \end{bmatrix}.$$

- **2.** $\begin{bmatrix} 15 \\ 4 \\ 0 \end{bmatrix}$
- 4. $\begin{bmatrix} 25 \\ 19 \\ 2 \end{bmatrix}$ 5. $\begin{bmatrix} 23 \\ -3 \\ -5 \end{bmatrix}$

RegressionLine01a $\mathbf{034}$ 10.0 points

Find the x-intercept of the Least Squares Regression line y = mx + b that best fits the data points

$$(-1, 1), (0, -2), (1, 3).$$

OrthogDiag01b 035 10.0 points

When

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

are eigenvectors of a symmetric 2×2 matrix A corresponding to eigenvalues

$$\lambda_1 = 5, \qquad \lambda_2 = -15,$$

find matrices D and P in an orthogonal diagonalization of A.