Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible by the i^th prime number. If it is, stack it in pile B_i . Otherwise, stack it in stack A_i . Store the values in B_i from top to bottom in answers. In the next iteration, do the same with the values in stack A_i . Once the required number of iterations is complete, store the remaining values in A_i in answers, again from top to bottom. Return the answers array.

Example

$$A = [2, 3, 4, 5, 6, 7]$$

 $q = 3$

An abbreviated list of primes is [2, 3, 5, 7, 11, 13]. Stack the plates in reverse order.

$$A_0 = [2, 3, 4, 5, 6, 7]$$

 $answers = []$

Begin iterations. On the first iteration, check if items are divisible by $oldsymbol{2}$.

$$A_1=[7,5,3]$$

$$B_1 = [6,4,2]$$

Move B_1 elements to answers.

$$answers = [2,4,6]$$

On the second iteration, test if A_1 elements are divisible by ${f 3}.$

$$A_2 = [7, 5]$$

$$B_2 = [3]$$

Move B_2 elmements to answers.

$$answers = [2,4,6,3]$$

And on the third iteration, test if $A_{\mathbf{2}}$ elements are divisible by $\mathbf{5}$.

$$A_3 = [7]$$

$$B_3=[5]$$

Move B_2 elmements to answers.

$$answers = [2,4,6,3,5]$$

All iterations are complete, so move the remaining elements in A_3 , from top to bottom, to answers.

$$answers = [2,4,6,3,5,7]$$
. Return this list.

Function Description

Complete the waiter function in the editor below.

waiter has the following parameters:

- *int number[n]:* the numbers on the plates
- int q: the number of iterations

Returns

• int[n]: the numbers on the plates after processing

Input Format

The first line contains two space separated integers, n and q.

The next line contains n space separated integers representing the initial pile of plates, i.e., A.

Constraints

$$1 \leq n \leq 5 imes 10^4$$
 $2 \leq number[i] \leq 10^4$
 $1 \leq q \leq 1200$

Sample Input 0

```
5 1
3 4 7 6 5
```

Sample Output 0

```
4
6
3
7
5
```

Explanation 0

Initially:

$$A = [3, 4, 7, 6, 5] < -TOP$$

After 1 iteration (divide by 2, the 1st prime number):

$$A_1 = [5, 7, 3] < -TOP$$

$$B_1 = [6, 4] < -TOP$$

Move B_1 elements to answers.

$$answers = [4, 6]$$

All iterations are complete, so move A_1 elements to answers.

$$answers = [4, 6, 3, 7, 5].$$

Sample Input 1

```
5 2
3 3 4 4 9
```

Sample Output 1

```
4
4
9
3
3
```

Explanation 1

Initially:

$$A = [3, 3, 4, 4, 9] < -TOP$$

After $\mathbf{1}^{st}$ iteration (divide by 2):

$$A_1 = [9, 3, 3] < -TOP$$

$$B_1$$
 = [4, 4]<-TOP

Move B_1 to answers.

answers=[4,4]

After 2^{nd} iteration (divide by 3):

$$A_2$$
 = []<- TOP

$$B_2$$
 = [3, 3, 9]<-TOP

Move $B_{\mathbf{2}}$ elements to answers.

$$\mathit{answers} = [4,4,9,3,3]$$

There are no values remaining in $A_{\mathbf{2}}.$