

SMD DATA BOOK

1 9 9 7

SMD DATA BOOK 1997

CMDSH2-3 High Current Schottky Diode in 500-303 case

A new high current Schottky diode has been added to the offering of low and medium current devices. This new 200mA device is 100% higher in current than what is currently available in the Industry. In addition, packaging in the \$UPERmini™ SOD-323 case affords maximum circuit density.

See page 122.

CMDZ5L1 Series of low level, sharp knee SOD-323 Zeners

The first Zener Diode in a SUPERmini™ case! This series of Low Level, high performance devices is specifically designed for super tight real estate applications such as PDA, PC Card, Pager, Cell phone and Notebook computer. Available from 5.1 volts thru 36 volts.

See page 124.

SMA Rectifiers

1.0 Amp rectifiers are now available in the **SUPERmini™** SMA case.

This tiny, new package affords space savings of 30% over the SMB case and weight savings of 44% over the MELF case. Central's high speed fully automated assembly process brings SMA pricing nearly at par with the MELF. The flat SMA package offers distinct manufacturing benefits over the cylindrically shaped MELF. Available Technologies are:

General purpose

CMR1-02M Series

Fast Recovery

CMR1F-02M Series

Ultrafast

CMR1U-01M Series

Schottky

CMSH1-20M Series

See pages 220, 222, 226, and 240.

CMSH1-100 Schottky Rectifier, 100 Volts in SMB case

Central expanded the voltage range on its 1.0 amp SMB Schottky. Previously only 20, 40, and 60 volts were available. Now the added 100 volt has been added as a standard product.

See page 238.

New SMB Rectifiers with 100% higher current ratings

The SMB case is no longer limited to merely 1.0 Amp. Central engineers managed to squeeze a full 2.0 Amps into this small case. These devices bridge the gap between the 1.0 amp SMB and the 3.0 amp SMC case, which is 2 ½ times larger than the SMB.

Available Technologies are:

General Purpose

CMR2-02 Series

Ultrafast

CMR2U-01 Series

Schottky

CMSH2-20 Series

See pages 228, 230, and 242.

DPAK Rectifiers

Due to intense customer demand Central has developed DPAK Schottky and Ultrafast Rectifiers in order to second source Motorola and IR. The initial offering includes:

Ultrafast 3.0 Amp, 200 Volt

CUD3-02 series

Ultrafast 6.0 Amp, 200 Volt

CUD6-02C series

Schottky 3.0 Amp. 40 thru 60 Volt Schottky 6.0 Amp, 40 thru 60 Volt

CSHD3-40 series

CSHD6-40C series

See pages 264, 266, 256, and 260.

DPAK Planar Power Transistors

Finally a second source for Motorola's MJD44H11 and MJD45H11 complementary 8.0 Amp Planar bipolar power transistor. These cool running, fast switching "drop on" replacements have the designation CJD44H11 and CJD45H11 respectively.

See page 84.

CXTA27 High Voltage Darlington in SOT-89 case

60 volt Small Signal Darlington transistors have now been packaged into the high performance SOT-89 case. These devices are suitable for various uses such as PC Card (PCMCIA) modems and other Telecom applications.

See page 286.

SOT-23 and SOD-80 low level and low noise Zener Diodes

Central has expanded it's voltage range on the following series of devices to round out its offering. Devices are now available from 1.8V to 43V.

SOT-23 case: CMPZ4614 thru 4627 and CMPZ4678 thru 4717.

SOD-80 case: CLL4614 thru 4627 and CLL4678 thru 4717.

See pages 210, 212, 112, and 114.

Selected, Special, and Custom SMDs

In addition to our standard surface mounted devices, Central Semiconductor is committed to building Selected. Special, and Custom SMDs.

SELECTED SMD

A selected SMD is a standard device that is selected for an additional or tightened electrical parameter(s).

For example:

CMPT2222A selected for higher voltage

The standard BV_{CEO} is 40 volts min and the customer's application requires 60 volts min.

CZT3019 selected for higher gain

The standard h_{FE} is 100 min, 300 max and the customer's special selection is 160 min, 300 max.

CMPZ5240B selected for tighter tolerance

The standard tolerance is $\pm 5\%$ and the customer requires $\pm 2\%$ tolerance.

SPECIAL SMD

A Special SMD is required when a selection of a standard device is not possible. Normally, this is accomplished through a special diffusion of a standard process.

For example:

CMPD2003 with ultra low leakage

A special diffusion is required to yield a leakage level far below the standard $I_{\mbox{\scriptsize R}}$ of 100nA max.

CXT3904 with extremely high gain

A special diffusion is required to yield a minimum h_{FE} above the standard range of 100 min, 300 max. (example: a range of 320 min, 500 max)

CLLR1U-04 with higher voltage

A special diffusion can be performed to yield a $\ensuremath{\text{B}_{VR}}$ of 600 volts min, instead of 400 volts min.

CUSTOM SMD

A Custom SMD may be developed for a unique customer requirement. Custom devices can be obtained by either assembling one of our standard chips into a different case or by developing a completely new device.

For example:

CXSH-4 is a custom device that was developed for a customer requirement. This device is a Schottky Rectifier (normally built in a MELF or SMB case) assembled into an SOT-89 case to meet a very tight height restriction.

CBR1F-D020S is a custom device. Our standard SMD Bridge Rectifier is built with general purpose chips; this application requires fast recovery chips.

While other manufacturers shy away from Selected and Special and Custom devices, Central is committed to meeting Customer needs for Selected and Special SMDs.

Central will review and determine feasibility of Custom devices.

QUALITY POLICY

- Our definition of quality is Complete Customer Satisfaction
 100% of the time.
- We are dedicated to manufacturing Competitively Priced,
 Quality Products delivered on time and professionally serviced.
- We define **Excellence** as surpassing our customers' expectations.
- Our perpetual challenge is the pursuit of Achieving Excellence in everything we do, and we strive to accomplish this by utilizing Ongoing Training for Continuous Improvement in all areas.
- We recognize that customer satisfaction results in Repeat Business.

Table of Contents

	Page
Index / Cross Reference	8
Leaded To Surface Mount Equivalents	22
Marking Codes	26
Reliability Data	29
Selection Guide	31
Data Sheets	55
Mounting Pad Geometries	325
Mechanical Drawings	333
Engineering Specifications	341

Index/Cross Reference

Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
1N6478	CMR1-02M	EM	48	220	BAS20	CMPD2003	EM	40	132
1N6479	CMR1-02M	EM	48	220	BAS21	CMPD2003	EM	40	132
1N6481	CMR1-04M	EM	48	220	BAS28			40	58
1N6482	CMR1-06M	EM	48	220	BAS29	CMPD1001	EM	40	130
1N6483	CMR1-10M	EM	48	220	BAS31	CMPD1001S	EM	40	130
1N6484	CMR1-10M	EM	48	220	BAS32	CLL4448	EM	40	110
1S2835	CMPD2836	EM	40	134	BAS32L	CLL4448	EM	40	110
1S2836	CMPD2836	EM	40	134	BAS35	CMPD1001A	EM	40	130
1S2837	CMPD2838	EM	40	134	BAS40	CMPSH-3	SE	41	152
1S2838	CMPD2838	EM	40	134	BAS40-04	CMPSH-3S	SE	41	152
1SR154-100	CMR1-02M	EM	48	220	BAS40-05	CMPSH-3C	SE	41	152
1SR154-200	CMR1-02M	EM	48	220	BAS40-06	CMPSH-3A	SE	41	152
1SR154-400	CMR1-04M	EM	48	220	BAS56			40	60
1SR154-600	CMR1-06M	EM	48	220	BAS70	CMPD6263	EM	41	142
1SR154-800	CMR1-10M	EM	48	220	BAS70-04	CMPD6263S	EM	41	142
1SR159-200	CMR1U-02M	EM	50	226	BAS70-05	CMPD6263C	EM	41	142
1SR56-100	CMR1F-02M	EM	49	222	BAS70-06	CMPD6263A	EM	41	142
1SR56-200	CMR1F-02M	EM	49	222	BAT17	CMPD6263	SE	41	142
1SR56-400	CMR1F-04M	EM	49	222	BAT18	CMPD6263	EM	41	142
10MQ060	CMSH1-60M	EM	51	240	BAT54	CMPSH-3	EM	41	152
10MQ040	CMSH1-40M	EM	51	240	BAT54A	CMPSH-3A	EM	41	152
10MF2	CMR1U-02M	EM	50	226	BAT54C	CMPSH-3C	EM	41	152
2N7002			33	56	BAT54S	CMPSH-3S	EM	41	152
30WF10F	CUD3-02	EM	50	264	BAT64	CMPSH-3	EM	41	152
30WF20F	CUD3-02	ΕM	50	264	BAV100	CLL4448	EM	40	110
30WF30F				*	BAV101	CLL2003	EM	40	104
30WF40F				*	BAV102	CLL2003	EM	40	104
30WQ03F	CSHD3-40	EM	51	256	BAV103	CLL2003	EM	40	104
30WQ04F	CSHD3-40	EM	51	256	BAV105	CLL4150	EM	40	108
30WQ05F	CSHD3-60	EM	51	258	BAV70	CMPD2838	EM	40	134
30WQ06F	CSHD3-60	EM	51	258	BAV74	CMPD2838	EM	40	134
50WF10F				*	BAV99	CMPD7000	EM	40	144
50WF20F				*	BAW56	CMPD2836	EM	40	134
50WF30F				*	BAY84	CMPD5001S	EM	40	140
50WF40F				*	BAY85	CMPD2004	EM	40	132
6CWF10F	CUD6-02C	EM	50	266	BAY85S	CMPD2004S	EM	40	132
6CWF20F	CUD6-02C	EM	50	266	BC807			34	*
6CWQ03F	CSHD6-40C	EM	51	260	BC807.16			34	*
6CWQ04F	CSHD6-40C	EM	51	260	BC807.25			34	*
6CWQ05F	CSHD6-60C	EM	51	262	BC807.40			34	*
6CWQ06F	CSHD6-60C	EM	51	262	BC808			34	*
BAR42	CMPSH-3	SE	41	152	BC808.16			34	*
BAR43	CMPSH-3	EM	41	152	BC808.25			34	*
BAR43A	CMPSH3A	EM	41	152	BC808.40			34	*
BAR43C	CMPSH-3C	EM	41	152	BC817			34	*
BAR43S	CMPSH-3S	EM	41	152	BC817.16			34	*
BAS16	CMPD 914	EM	40	128	BC817.25			34	*
BAS17	CBAS17	EM	42	64	BC817.40			34	*
BAS19	CMPD2003	EM	40	132	BC818			34	*
* 0					•				

^{*} Special Order

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	1

Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
BC818.16			34	*	BCP48				*
BC818.25			34	*	BCP49				*
BC818.40			34	*	BCP51, -10, -16	CZT4033	EM	38	310
BC846			34	*	BCP52, -10, -16	CZT4033	EM	38	310
BC846A			34	*	BCP53, -10, -16	CZT4033	EM	38	310
BC846B			34	*	BCP54, -10, -16	CZT3019	EM	38	306
BC847			34	*	BCP55, -10, -16	CZT3019	EM	38	306
BC847A			34	*	BCP56, -10, -16	CZT3019	EM	38	306
BC847B			34	*	BCP68	CBCP68	EM	38	66
BC847C			34	*	BCP69	CBCP69	EM	38	66
BC848			34	*	BCV26			35	*
BC848A			34	*	BCV27			35	*
BC848B			34	*	BCV28	CXTA64	EM	37	284
BC848C			34	*	BCV29	CXTA14	EM	37	284
BC849			34	*	BCV46			35	*
BC849B			34	*	BCV47			35	*
BC849C			34	*	BCV48			35	*
BC850			34	*	BCV49			35	*
BC850B			34	*	BCV49	CXTA27	EM	37	286
BC850C			34	*	BCV71			35	*
BC856			34	*	BCV72			35	*
BC856A	1		34	*	BCW29			35	*
BC856B			34	*	BCW30			35	*
BC857			34	*	BCW31			35	*
BC857A			34	*	BCW32			35	*
BC857B			34	*	BCW33			35	*
BC857C			34	*	BCW60			35	*
BC858			34	*	BCW60A			35	*
BC858A			34	*	BCW60B			35	*
BC858B			35	*	BCW60C			35	*
BC858C			35	*	BCW60D			35	*
BC859			35	*	BCW61			35	*
BC859A			35	*	BCW61A			35	*
BC859B			35	*	BCW61B			35	*
BC859C			35	*	BCW61C			35	*
BC860			35	*	BCW61D			35	*
BC860A			35	*	BCW65			35	*
BC860B			35	*	BCW65A			35	*
BC860C			35	*	BCW65B			35	*
BC868	CBCX68	EM	37	68	BCW65C			35	*
BC869	CBCX69	EM	37	68	BCW66			35	*
BCF29			35	*	BCW66F			35	*
BCF30			35	*	BCW66G			35	*
BCF32			35	*	BCW66H			35	*
BCF33			35	*	BCW67			35	*
BCF70			35	*	BCW67A			35	*
BCF81			35	*	BCW67B			35	*
BCP28	CZTA64	EM	38	318	BCW67C			35	*
BCP29	CZTA14	EM	38	318	BCW68			35	*
					•				

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	

				-	(001111111	aca,			
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
BCW68F			35	*	BFN36	CZTA42	EM	38	320
BCW68G			35	*	BFN37	CZTA92	EM	38	320
BCW68H			35	*	BFN38	CZTA42	EM	38	320
BCW69			35	*	BFN39	CZTA92	EM	38	320
BCW70			35	*	BFS17	CMPT5179	EM	33	182
BCW71			35	*	BFS18			35	*
BCW72			35	*	BFS19			35	*
BCW81			35	*	BFS20			35	*
BCW89			35	*	BSR12	CMPT3640	SE	32	168
BCX17			35	*	BSR13			35	*
BCX18			35	*	BSR14			35	*
BCX19			35	*	BSR15			35	*
BCX20			35	*	BSR16			35	*
BCX51, -10, -16	CXT4033	EM	37	278	BSR17			35	*
BCX52, -10, -16	CXT4033	EM	37	278	BSR17A			35	*
BCX53, -10, -16	CXT4033	EM	37	278	BSR30	CXT4033	SE	37	278
BCX54, -10, -16	CXT3019	EM	37	274	BSR31	CXT4033	SE	37	278
BCX55, -10, -16	CXT3019	EM	37	274	BSR32	CXT4033	SE	37	278
BCX56, -10, -16	CXT3019	EM	37	274	BSR33	CXT4033	SE	37	278
BCX68	CBCX68	EM	37	68	BSR40	CXT3019	SE	37	274
BCX69	CBCX69	EM	37	68	BSR41	CXT3019	SE	37	274
BCX70			35	*	BSR42	CXT3019	SE	37	274
BCX70G			35	*	BSR43	CXT3019	SE	37	274
BCX70H			35	*	BSS63				*
BCX70J			35	*	BSS64				*
BCX70K			35	*	BST15	CXTA92	EM	37	288
BCX71			35	*	BST16	CXTA92	SE	37	288
BCX71G			35	*	BST39	CXTA42	SE	37	288
BCX71H			35	*	BST40	CXTA42	EM	37	288
BCX71J			35	*	BST50	CXTA14	CE	37	284
BCX71K			35	*	BST51				*
BF554				*	BST52				*
BF599				*	BST60	CXTA64	CE	37	284
BF620	CXTA42	EM	37	288	BST61				*
BF621	CXTA92	EM	37	288	BST62				*
BF622	CXTA42	EM	37	288	BSV52			35	*
BF623	CXTA92	EM	37	288	BYD17D	CMR1-02M	CE	48	220
BF720	CZTA42	EM	38	320	BYD17G	CMR1-06M	CE	48	220
BF721	CZTA92	EM	38	320	BYD17J	CMR1-06M	CE	48	220
BF722	CZTA42	EM	38	320	BYD17K	CMR1-10M	CE	48	220
BF723	CZTA92	EM	38	320	BYD17M	CMR1-10M	CE	48	220
BF822				*	BYD37D	CMR1F-02M	CE	49	222
BF823				*	BYD37G	CMR1F-06M	CE	49	222
BFN16				*	BYD37J	CMR1F-06M	CE	49	222
BFN17				*	BYD37K	CMR1F-10M	CE	49	222
BFN18				*	BYD37M	CMR1F-10M	CE	49	222
BFN19				*	BYD77A	CMR1U-01M	CE	50	226
BFN22				*	BYD77B	CMR1U-01M	CE	50	226
BFN23				*	BYD77C	CMR1U-02M	CE	50	226
					1				

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	ЕМ	Exact electrical and mechanical.	
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.]

Industry	Central		Selection	Data	Industry	Central		Selection	Data
Part Number	Part Number	Code	Guide	Sheet	Part Number	Part Number	Code	Guide	Sheet
BYD77D	CMR1U-02M	CE	50	226	CBRHD-10			52	74*
BYD77E	CMR1U-04M	CE	50	226	CCLHM080			47	76
BYD77F	CMR1U-04M	CE	50	226	CCLHM100			47	76
BYD77G	CMR1U-04M	CE	50	226	CCLHM120			47	76
BYM10- 50	CMR1-02M	EM	48	220	CCLHM150			47	76
BYM10- 100	CMR1-02M	EM	48	220	CCLM0035			46	78
BYM10- 200	CMR1-02M	EM	48	220	CCLM0130			46	78
BYM10- 400	CMR1-04M	EM	48	220	CCLM0300			46	78
BYM10- 600	CMR1-06M	EM	48	220	CCLM0500			46	78
BYM10-800	CMR1-10M	EM	48	220	CCLM0750			46	78
BYM10-1000	CMR1-10M	EM	48	220	CCLM1000			46	78
BYM11- 50	CMR1F-02M	EM	49	222	CCLM1500			46	78
BYM11-100	CMR1F-02M	EM	49	222	CCLM2000			46	78
BYM11-200	CMR1F-02M	EM	49	222	CCLM2700			46	78
BYM11-400	CMR1F-06M	EM	49	222	CCLM3500			46	78
BYM11-600	CMR1F-06M	EM	49	222	CCLM4500			46	78
BYM11-800	CMR1F-10M	EM	49	222	CCLM5750			46	78
BYM11-1000	CMR1F-10M	EM	49	222	CHT 918			36	
BYM12- 50	CMR1U-01M	EM	50	226	CHT2222A			36	-
BYM12-100	CMR1U-01M	EM	50	226	CHT2369A			36	
BYM12-150	CMR1U-02M	EM	50	226	CHT2907A			36	There is
BYM12-200	CMR1U-02M	EM	50	226	CJD 31C			39	80
BYM12-300	CMR1U-04M	EM	50	226	CJD 32C			39	80
BYM12-400	CMR1U-04M	EM	50	226	CJD 41C			39	82
BYM13-20	CMSH1-20M	EM	51	240	CJD 42C			39	82
BYM13-30	CMSH1-40M	EM	51	240	CJD 44H11			39	84
BYM13-40	CMSH1-40M	EM	51	240	CJD 45H11			39	84
BYM13-50	CMSH1-60M	EM	51	240	CJD 47			39	86
BYM13-60	CMSH1-60M	EM	51	240	CJD 50			39	86
BZX84C3V3 thru			44	62	CJD 112			39	88
BZX84C33			44	62	CJD 117			39	88
CBAS17			42	64	CJD 122			39	90
CBCP68			38	66	CJD 127			39	90
CBCP69			38	66	CJD 200			39	92
CBCX68			37	68	CJD 210			39	92
CBCX69			37	68	CJD 340			39	94
CBR1-D020S			52	70	CJD 350			39	94
CBR1-D040S			52	70	CJD 2955			39	96
CBR1-D060S			52	70	CJD 3055			39	96
CBR1-D100S			52	70	CJD13003			39	98
CBR1F-D020S			52		CLL 457A			42	100
CBR1F-D040S			52	THE PARTY OF	CLL 459A			42	100
CBR1F-D060S			52	-	CLL 914			40	102
CBR1F-D100S			52		CLL2003			40	104
CBR1U-D010S			52	72	CLL2505			42	106
CBR1U-D020S			52	72 72	CLL4150			40	108
CBRHD-02			52	74	CLL4448			40	110
CBRHD-02			52 52	74 74	CLL4448 CLL4614 thru			45	112
CBRHD-04 CBRHD-06			52	74	CLL4627			45	112*
			32	/4	JLL402/			40	114
* Special Order							,		

Exact electrical equivalent, slight mechanical differences.

EM Exact electrical and mechanical.

CE Closest equivalent (slight to significant electrical and/or mechanical differences)

Exact mechanical equivalent, slight electrical differences.

Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
CLL4678 thru			45	114	CMPT 918			33	154
CLL4717			45	114	CMPT 930			32	156
CLL4729A thru			45	116	CMPT2222A			32	158
CLL4764A			45	116*	CMPT2369			32	160
CLL5226B thru			45	118	CMPT2484			32	162
CLL5257B			45	118	CMPT2907A			32	164
CMDSH-3			41	120	CMPT3019			32	166
CMDSH2-3			41	122	CMPT3640			32	168
CMDZ 5L1 thru			43	124	CMPT3646			32	170
CMDZ36L			43	124	CMPT3904			32	172
CMDZ5221B thru			43	126	CMPT3906			32	172
CMDZ5261B			43	126	CMPT4033			32	174
CMPD 914			40	128	CMPT4401			32	176
CMPD1001			40	130	CMPT4403			32	176
CMPD1001A			40	130	CMPT5086			32	178
CMPD1001S			40	130	CMPT5087			32	178
CMPD2003			40	132	CMPT5088			32	180
CMPD2004			40	132	CMPT5089			32	180
CMPD2004S			40	132	CMPT5179			33	182
CMPD2836			40	134	CMPT5401			33	184
CMPD2838			40	134	CMPT5551			33	186
CMPD4150			40	136	CMPT6427			33	188
CMPD4448			40	138	CMPT6428			32	190
CMPD5001			40	140	CMPT6429			32	190
CMPD5001S			40	140	CMPT6517			33	192
CMPD6263			41	142	CMPT6520			33	192
CMPD6263A			41	142	CMPT8099			32	194
CMPD6263C			41	142	CMPT8599			32	194
CMPD6263S			41	142	CMPTA06			32	196
CMPD7000			40	144	CMPTA13			33	198
CMPF4391			34	146	CMPTA14			33	198
CMPF4392			34	146	CMPTA27			33	200
CMPF4393			34	146	CMPTA29			33	202
CMPF4416A			34	148	CMPTA42			33	204
CMPF5460			34	*	CMPTA44			33	206
CMPF5461			34	*	CMPTA56			32	196
CMPF5462			34	*	CMPTA63			33	198
CMPF5484			34	*	CMPTA64			33	198
CMPF5485			34		CMPTA92			33	204
CMPF5486			34	*	CMPTH10			33	208
CMPFJ174			34	*	CMPZ4614 thru			44	210*
CMPFJ175			34	*	CMPZ4627			44	210*
CMPFJ176			34	*	CMPZ4678 thru			44	212*
CMPFJ310			34	*	CMPZ4717			44	212*
CMPS5064			53	150	CMPZ5221B thru			44	214
CMPSH-3			41	152	CMPZ5261B			44	214
CMPSH-3A			41	152	CMPZDA 3V6 thr	u		44	216
CMPSH-3C			41	152	CMPZDA33V			44	216
CMPSH-3S			41	152	CMR1-02			48	218
* Special Order					1				

С	E	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
s	E	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	

Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
CMR1-02M			48	220	CMST2222A			36	246
CMR1-04			48	218	CMST2907A			36	248
CMR1-04M			48	220	CMST3904			36	250
CMR1-06			48	218	CMST3906			36	250
CMR1-06M			48	220	CQ89D			53	252
CMR1-10			48	218	CQ89DS			53	254
CMR1-10M			48	220	CQ89M			53	252
CMR1F-02M			49	222	CQ89MS			53	254
CMR1F-04M			49	222	CQ89N			53	252
CMR1F-06M			49	222	CQ89NS			53	254
CMR1F-10M			49	222	CSHD3-40			51	256
CMR1U-01			50	224	CSHD3-60			51	258
CMR1U-01M			50	226	CSHD6-40C			51	260
CMR1U-02			50	224	CSHD6-60C			51	262
CMR1U-02M			50	226	CUD3-02			50	264
CMR1U-04			50	224	CUD6-02C			50	266
CMR1U-04M			50	226	CXSH-4			51	268
CMR1U-06			50	224	CXT2222A			37	270
CMR1U-06M			50	226	CXT2907A			37	272
CMR2-02			48	228	CXT3019			37	274
CMR2-04			48	228	CXT3904			37	276
CMR2-06			48	228	CXT3906			37	276
CMR2-10			48	228	CXT4033			37	278
CMR2U-01			50	230	CXT5401			37	280
CMR2U-02			50	230	CXT5551			37	282
CMR2U-04			50	230	CXTA14			37	284
CMR2U-06			50	230	CXTA27			37	286
CMR3-02			48	232	CXTA42			37	288
CMR3-04			48	232	CXTA64			37	284
CMR3-06			48	232	CXTA92			37	288
CMR3-10			48	232	CZS5064			53	290
CMR3U-01			50	234	CZSH-4			51	292
CMR3U-02			50	234	CZT 31C			39	294
CMR3U-04			50	234	CZT 32C			39	294
CMR3U-06			50	234	CZT 122			39	296
CMSD4448			40	236	CZT 127			39	296
CMSH1-20			51	238	CZT 2000			38	298
CMSH1-20M			51	240	CZT 2222A			38	300
CMSH1-40			51	238	CZT 2907A			38	302
CMSH1-40M			51	240	CZT 2955			39	304
CMSH1-60			51	238	CZT 3019			38	306
CMSH1-60M			51	240	CZT 3055			39	304
CMSH1-100			51	238	CZT 3904			38	308
CMSH2-20			51	242	CZT 3906			38	308
CMSH2-40			51	242	CZT 4033			38	310
CMSH2-60			51	242	CZT 5338			39	312
CMSH3-20			51	244	CZT 5401			38	314
CMSH3-40			51	244	CZT 5551			38	316
CMSH3-60			51	244	CZTA14			38	318

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.

				_ 1					
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number (Code	Selection Guide	Data Sheet
CZTA42			38	320	ES1A	CMR1U-01M	EM	50	226
CZTA44			38	322	ES1B	CMR1U-01M	EM	50	226
CZTA64			38	318	ES1C	CMR1U-02M	EM	50	226
CZTA92			38	320	ES1D	CMR1U-02M	EM	50	226
D1F10	CMR1-02M	EM	48	220	ES2A	CMR2U-01	ЕМ	50	230
D1F20	CMR1-02M	EM	48	220	ES2B	CMR2U-01	EM	50	230
D1F40	CMR1-04M	EM	48	220	ES2C	CMR2U-02	ЕМ	50	230
D1F60	CMR1-06M	EM	48	220	ES2D	CMR2U-02	ЕМ	50	230
D1FK20	CMR1F-02M	EM	49	222	ES3A	CMR3U-01	EM	50	234
D1FK40	CMR1F-04M	EM	49	222	ES3B	CMR3U-01	EM	50	234
D1FL20	CMR1U-02M	EM	50	226	ES3C	CMR3U-02	ЕМ	50	234
D1FS4	CMSH1-40M	EM	51	240	ES3D	CMR3U-02	ЕМ	50	234
DA204K	CMPD7000	EM	40	144	FDLL 914A	CLL4448	ЕМ	40	110
DAN202VAK	CMPD2838	EM	40	134	FDLL 914B	CLL4448	EM	40	110
DAN212K	CMPD 914	EM	40	128	FDLL 916A	CLL4448	ЕМ	40	110
DAN217	CMPD7000	EM	40	144	FDLL 916B	CLL4448	EM	40	110
DAP202K	CMPD2836	EM	40	134	FDLL4148	CLL 914	ЕМ	40	102
DAP202VAK	CMPD2836	EM	40	134	FDLL4149	CLL4448	EM	40	110
DF005S	CBR 1-D020S	EM	52	70	FDLL4150	CLL4150	ЕМ	40	108
DF01S	CBR 1-D020S	EM	52	70	FDLL4446	CLL4448	ЕМ	40	110
DF02S	CBR 1-D020S	EM	52	70	FDLL4447	CLL4448	ЕМ	40	110
DF04S	CBR 1-D040S	EM	52	70	FDLL4448	CLL4448	ЕМ	40	110
DF06S	CBR 1-D060S	EM	52	70	FDLL4449	CLL4448	EM	40	110
DF08S	CBR 1-D100S	EM	52	70	FDSO1201	CMPD 914/4448	SE	40	128
DF10S	CBR 1-D100S	EM	52	70	FDSO1203	CMPD7000	SE	40	144
DFA08C	CMR1F-02M	EM	49	222	FDSO1204	CMPD2838	SE	40	134
DFA08E	CMR1F-04M	EM	49	222	FDSO1205	CMPD2836	SE	40	134
DL4001	CMR1-02M	EM	48	220	FDSO4148	CMPD 914	EM	40	128
DL4002	CMR1-02M	EM	48	220	FMMD 914	CMPD 914	ЕМ	40	128
DL4003	CMR1-04M	EM	48	220	FMMD6050	CMPD4448	ЕМ	40	138
DL4004	CMR1-04M	EM	48	220	FMMT 918	CMPT 918	EM	33	154
DL5817	CMSH1-20M	EM	51	240	FMMT2222	CMPT2222A	EM	32	158
DL5818	CMSH1-40M	EM	51	240	FMMT2222A	CMPT2222A	ЕМ	32	158
DL5819	CMSH1-40M	EM	51	240	FMMT2369	CMPT2369	ЕМ	32	160
DL4729A thru	CLL4729A thru	EM	45	116	FMMT2369A				*
DL4764A	CLL4764A	EM	45	116	FMMT2484	CMPT2484	EM	32	162
DLA11C	CMR1U-02M	EM	50	226	FMMT2907	CMPT2907A	ЕМ	32	164
DSM10C	CMR1-02M	EM	48	220	FMMT2907A	CMPT2907A	ЕМ	32	164
DSM10E	CMR1-04M	EM	48	220	FMMT3903	CMPT3904	SE	32	172
DSM10G	CMR1-06M	EM	48	220	FMMT3904	CMPT3904	EM	32	172
DTZ 5.1 thru	CMDZ 5L1 thru	SE	43	124	FMMT3905	CMPT3906	SE	32	172
DTZ36	CMDZ36L	SE	43	124	FMMT3906	CMPT3906	ЕМ	32	172
EGL41A	CMR1U-01M	EM	50	226	FMMT4124	CMPT3904	SE	32	172
EGL41B	CMR1U-01M	EM	50	226	FMMT4125	CMPT3906	SE	32	172
EGL41C	CMR1U-02M	EM	50	226	FMMT5087	CMPT5087	EM	32	178
EGL41D	CMR1U-02M	EM	50	226	FMMTA05	CMPTA06	EM	32	196
EGL41E	CMR1U-04M	EM	50	226	FMMTA06	CMPTA06	EM	32	196
EGL41E	CMR1U-04M	EM	50 ·	226	FMMTA12	CMPTA13	SE	33	198
EGL41G	CMR1U-04M	EM	50	226	FMMTA13	CMPTA13	EM	33	198
***	OWN TIO-O-IVI	LIVI	50	220	I I WIWITATO	JWII IATO		55	100

L	CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	ЕМ	Exact electrical and mechanical.	
	SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.]

				(33)					
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
FMMTA14	CMPTA14	EM	33	198	FTSO4258	CMPT3640	SE	32	168
FMMTA20	CMPT3904	EM	32	172	FTSO4274	CMPT2369	SE	32	160
FMMTA42	CMPTA42	EM	33	204	FTSO4275	CMPT2369	SE	32	160
FMMTA43	CMPTA42	EM	33	204	FTSO4400	CMPT4401	SE	32	176
FMMTA55	CMPTA56	EM	32	196	FTSO4401	CMPT4401	EM	32	176
FMMTA56	CMPTA56	EM	32	196	FTSO4402	CMPT4403	SE	32	176
FMMTA70	CMPT3906	EM	32	172	FTSO4403	CMPT4403	EM	32	176
FMMTA92	CMPTA92	EM	33	204	FTSO5086	CMPT5086	EM	32	178
FMMTA93	CMPTA92	EM	33	204	FTSO5087	CMPT5087	EM	32	178
FTSO 706	CMPT2369	EM	32	160	FTSO5088	CMPT5088	EM	32	180
FTSO 706A	CMPT2369	EM	32	160	FTSO5089	CMPT5089	EM	32	180
FTSO 918	CMPT 918	EM	33	154	FTSO5400	CMPT5401	EM	33	184
FTSO 930	CMPT2484	SE	32	162	FTSO5401	CMPT5401	EM	33	184
FTSO 930A	CMPT2484	SE	32	162	FTSO5550	CMPT5551	ΕM	33	186
FTSO2218	CMPT2222A	SE	32	158	FTSO5551	CMPT5551	EM	33	186
FTSO2218A	CMPT2222A	SE	32	158	FTSO5769	CMPT2369	SE	32	160
FTSO2219	CMPT2222A	EM	32	158	FTSO5770	CMPT 918	SE	33	154
FTSO2219A	CMPT2222A	EM	32	158	FTSO5771	CMPT3640	SE	32	168
FTSO2221	CMPT2222A	SE	32	158	FTSOA05	CMPTA06	EM	32	196
FTSO2221A	CMPT2222A	SE	32	158	FTSOA06	CMPTA06	EM	32	196
FTSO2222	CMPT2222A	EM	32	158	FTSOA12	CMPTA13	SE	33	198
FTSO2222A	CMPT2222A	EM	32	158	FTSOA13	CMPTA13	EM	33	198
FTSO2369	CMPT2369	EM	32	160	FTSOA14	CMPTA14	EM	33	198
FTSO2369A				*	FTSOA20	CMPT3904	EM	32	172
FTSO2484	CMPT2484	EM	32	162	FTSOA42	CMPTA42	EM	33	204
FTSO2904	CMPT2907A	SE	32	164	FTSOA43	CMPTA42	EM	33	204
FTSO2904A	CMPT2907A	SE	32	164	FTSOA55	CMPTA56	EM	32	196
FTSO2905	CMPT2907A	EM	32	164	FTSOA56	CMPTA56	EM	32	196
FTSO2905A	CMPT2907A	EM	32	164	FTSOA70	CMPT3906	EM	32	172
FTSO2906	CMPT2907A	SE	32	164	FTSOL01	CMPT5551	ЕМ	33	186
FTSO2906A	CMPT2907A	SE	32	164	FTSOL51	CMPT5401	EM	33	184
FTSO2907	CMPT2907A	EM	32	164	GF1A	CMR1-02	EM	48	218
FTSO2907A	CMPT2907A	EM	32	164	GF1B	CMR1-02	EM	48	218
FTSO3563	CMPT 918	SE	33	154	GF1D	CMR1-02	EM	48	218
FTSO3638	CMPT4403	SE	32	176	GF1G	CMR1-04	EM	48	218
FTSO3638A	CMPT4403	SE	32	176	GF1J	CMR1-06	EM	48	218
FTSO3639	CMPT3640	EM	32	168	GF1K	CMR1-10	EM	48	218
FTSO3640	CMPT3640	EM	32	168	GF1M	CMR1-10	EM	48	218
FTSO3646	CMPT3646	EM	32	170	GLL4735A thru	CLL4735A thru		45	116
FTSO3903	CMPT3904	SE	32	172	GLL4763A	CLL4763A	EM	45	116
FTSO3904	CMPT3904	EM	32	172	LL4148	CLL 914	EM	40	102
FTSO3905	CMPT3906	SE	32	172	LL4150	CLL4150	EM	40	108
FTSO3906	CMPT3906	EM	32	172	LL4448	CLL4448	EM	40	110
FTSO4123	CMPT3904	SE	32	172	MB2S	CBRHD-02	EM	52	74
FTSO4124	CMPT3904	SE	32	172	MB4S	CBRHD-04	EM	52	74
FTSO4125	CMPT3906	SE	32	172	MB6S	CBRHD-06	EM	52	74
FTSO4126	CMPT3906	SE	32	172	MBAL99	CMPD 914	EM	40	128
FTSO4208	CMPT3640	SE	32	168	MBAS16	CMPD 914	EM	40	128
FTSO4209	CMPT3640	SE	32	168	MBAV70	CMPD2838	EM	40	134
* Special Order					1				

	CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
I	SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	

					,	,			
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
MBAV99	CMPD7000	EM	40	144	MLL4625	CLL4625	EM	45	112
MBAW56	CMPD2836	EM	40	134	MLL4626	CLL4626	EM	45	112
MBRA130	CMSH1-40M	SE	51	240	MLL4627	CLL4627	EM	45	112
MBRA140	CMSH1-40M	EM	51	240	MLL4678 thru	CLL4678 thru	EM	45	114
MBRA160	CMSH1-60M	EM	51	240	MLL4717	CLL4717	EM	45	114
MBRD340	CSHD3-40	EM	51	256	MLL4729A thru	CLL4729A thru	EM	45	116
MBRD360	CSHD3-60	EM	51	258	MLL4764A	CLL4764A	EM	45	116
MBRD640CT	CSHD6-40C	EM	51	260	MLL5226B thru	CLL5226B thru	EM	45	118
MBRD660CT	CSHD6-60C	EM	51	262	MLL5257B	CLL5257B	EM	45	118
MBRL120	CMSH1-20M	EM	51	240	MMBD 101	CMPD6263	EM	41	142
MBRL130	CMSH1-40M	EM	51	240	MMBD 301	CMPSH-3	SE	41	152
MBRL140	CMSH1-40M	EM	51	240	MMBD 352	CMPD6263S	SE	41	142
MBRO520	CMDSH2-3	CE	41	122	MMBD 701	CMPD6263	SE	41	142
MBRO530	CMDSH2-3	CE	41	122	MMBD 914	CMPD 914	EM	40	128
MBRO540				*	MMBD2835	CMPD2836	EM	40	134
MBRS120	CMSH1-20	EM	51	238	MMBD2836	CMPD2836	EM	40	134
MBRS130	CMSH1-40	EM	51	238	MMBD2837	CMPD2838	EM	40	134
MBRS140	CMSH1-40	EM	51	238	MMBD2838	CMPD2838	EM	40	134
MBRS170	CMSH1-100	EM	51	238	MMBD6050	CMPD4448	EM	40	138
MBRS320	CMR3-02	EM	48	232	MMBD6100	CMPD2838	EM	40	134
MBRS330	CMR3-04	EM	48	232	MMBD7000	CMPD7000	EM	40	144
MBRS340	CMR3-04	EM	48	232	MMBF4391	CMPF4391	EM	34	146
MBRS340TS	CMSH3-40	EM	51	244	MMBF4392	CMPF4392	EM	34	146
MBRS360TS	CMSH3-60	ΕM	51	244	MMBF4393	CMPF4393	EM	34	146
MJD 31C	CJD 31C	EM	39	80	MMBR2857	CMPT5179	EM	33	182
MJD 32C	CJD 32C	EM	39	80	MMBR5179	CMPT5179	EM	33	182
MJD 41C	CJD 41C	EM	39	82	MMBS5060	CMPS5064	EM	53	150
MJD 42C	CJD 42C	EM	39	82	MMBS5061	CMPS5064	EM	53	150
MJD 47	CJD 47	EM	39	86	MMBS5062	CMPS5064	EM	53	150
MJD 50	CJD 50	EM	39	86	MMBS5063	CMPS5064	EM	53	150
MJD 112	CJD 112	EM	39	88	MMBS5064	CMPS5064	EM	53	150
MJD 117	CJD 117	EM	39	88	MMBT 918	CMPT 918	EM	33	154
MJD 122	CJD 122	EM	39	90	MMBT2222	CMPT2222A	EM	32	158
MJD 127	CJD 127	EM	39	90	MMBT2222A	CMPT2222A	EM	32	158
MJD 200	CJD 200	EM	39	92	MMBT2369	CMPT2369	EM	32	160
MJD 210	CJD 210	EM	39	92	MMBT2484	CMPT2484	EM	32	162
MJD 340	CJD 340	EM	39	94	MMBT2907	CMPT2907A	EM	32	164
MJD 350	CJD 350	EM	39	94	MMBT2907A	CMPT2907A	EM	32	164
MJD 2955	CJD 2955	EM	39	96	MMBT3638	CMPT4403	SE	32	176
MJD 3055	CJD 3055	EM	39	96	MMBT3638A	CMPT4403	SE	32	176
MJD13003	CJD13003	EM	39	98	MMBT3640	CMPT3640	EM	32	168
MJD44H11	CJD44H11	EM	39	84	MMBT3646	CMPT3646	EM	32	170
MJD45H11	CJD45H11	EM	39	84	MMBT3903	CMPT3904	SE	32	172
MLL 746A thru	CLL5226B thru	EM	45	118	MMBT3904	CMPT3904	EM	32	172
MLL 972B	CLL5256B	SE	45	118	MMBT3906	CMPT3906	EM	32	172
MLL4001	CMR1-02M	EM	48	220	MMBT4123	CMPT3904	SE	32	172
MLL4002	CMR1-02M	EM	48	220	MMBT4124	CMPT3904	SE	32	172
MLL4003	CMR1-02M	EM	48	220	MMBT4125	CMPT3906	SE	32	172
MLL4004	CMR1-04M	EM	48	220	MMBT4126	CMPT3906	SE	32	172
* Special Order					•				

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.

					•	•			
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
MMBT4401	CMPT4401	EM	32	176	MMST4124	CMPT3904	SE	32	172
MMBT4403	CMPT4403	EM	32	176	MMST4126	CMPT3906	SE	32	172
MMBT5086	CMPT5086	EM	32	178	MMST4401	CMPT4401	EM	32	176
MMBT5087	CMPT5087	EM	32	178	MMST4403	CMPT4403	EM	32	176
MMBT5088	CMPT5088	EM	32	180	MMST5086	CMPT5086	EM	32	178
MMBT5089	CMPT5089	EM	32	180	MMST5087	CMPT5087	EM	32	178
MMBT5401	CMPT5401	EM	33	184	MMST5088	CMPT5088	EM	32	180
MMBT5551	CMPT5551	EM	33	186	MMST5089	CMPT5089	ΕM	32	180
MMBT6427	CMPT6427	EM	33	188	MMSZ2V4	BZV55C2V4	SM		*
MMBT6428	CMPT6428	EM	32	190	MMSZ33	BZV55C33	SM		*
MMBT6429	CMPT6429	EM	32	190	MMSZ4678 thru	CLL4678 thru	SM	45	114
MMBT6517	CMPT6517	EM	33	192	MMSZ4717	CLL4717	SM	45	114
MMBT6520	CMPT6520	EM	33	192	MMSZ5226B thru	CLL5226B thru	SM	45	118
MMBT8099	CMPT8099	EM	32	194	MMSZ5257B	CLL5257B	SM	45	118
MMBT8599	CMPT8599	EM	32	194	MRA4003	CMR1-02M	EM	48	220
MMBTA05	CMPTA06	EM	32	196	MRA4004	CMR1-04M	EM	48	220
MMBTA06	CMPTA06	EM	32	196	MRA4005	CMR1-06M	EM	48	220
MMBTA13	CMPTA13	EM	33	198	MRA4006	CMR1-10M	EM	48	220
MMBTA14	CMPTA14	EM	33	198	MRA4007	CMR1-10M	EM	48	220
MMBTA20	CMPT3904	EM	32	172	MRA4935	CMR1F-02M	EM	49	222
MMBTA27	CMPTA27	EM	33	200	MRA4936	CMR1F-04M	EM	49	222
MMBTA42	CMPTA42	EM	33	204	MRA4937	CMR1F-06M	EM	49	222
MMBTA43	CMPTA42	EM	33	204	MURD320	CUD3-02	EM	50	264
MMBTA44	CMPTA44	EM	33	206	MURD620CT	CUD6-02C	EM	50	266
MMBTA56	CMPTA56	EM	32	196	MURS105	CMR1U-01	EM	50	224
MMBTA63	CMPTA63	EM	33	198	MURS110	CMR1U-01	EM	50	224
MMBTA64	CMPTA64	EM	33	198	MURS115	CMR1U-02	EM	50	224
MMBTA70	CMPT3906	EM	32	172	MURS120	CMR1U-02	EM	50	224
MMBTA92	CMPTA92	EM	33	204	MURS130	CMR1U-04	EM	50	224
MMBTA93	CMPTA92	EM	33	204	MURS140	CMR1U-04	EM	50	224
MMBTH10	CMPTH10	EM	33	208	MURS320T3	CMR3U-02	EM	50	234
MMBZ15VD	CMPZDA15V	CE	44	216	MURS340	CMR3U-04	EM	50	234
MMBZ5226 thru	CMPZ5226B th	ru EM	44	214	MURS360	CMR3U-06	EM	50	234
MMBZ5257	CMPZ5257B	EM	44	214	MURS360T3	CMR3U-06	EM	50	234
MMST 918	CMPT 918	EM	33	154	MXT2222	CXT2222A	EM	37	270
MMST-A06	CMPTA06	EM	32	196	MXT2222A	CXT2222A	EM	37	270
MMST-A13	CMPTA13	EM	33	198	MXT2907	CXT2907A	EM	37	272
MMST-A14	CMPTA14	EM	33	198	MXT2907A	CXT2907A	EM	37	272
MMST-A20	CMPT3904	EM	32	172	MXT3904	CXT3904	EM	37	276
MMST-A56	CMPTA56	EM	32	196	MXT3906	CXT3906	EM	37	276
MMST-A63	CMPTA63	EM	33	198	MXTA14	CXTA14	EM	37	284
MMST-A64	CMPTA64	EM	33	198	MXTA27	CXTA27	EM	37	286
MMST-A70	CMPT3906	EM	32	172	MXTA42	CXTA42	EM	37	288
MMST2222	CMPT2222A	EM	32	158	MXTA43	CXTA42	EM	37	288
MMST2222A	CMPT2222A	EM	32	158	MXTA92	CXTA92	EM	37	288
MMST2907	CMPT2907A	EM	32	164	MXTA93	CXTA92	EM	37	288
MMST2907A	CMPT2907A	EM	32	164	PMBD 101	CMPD6263	SE	41	142
MMST3904	CMPT3904	EM	32	172	PMBD 352	CMPD6263S	SE	41	142
MMST3906	CMPT3906	EM	32	172	PMBD 914	CMPD 914	EM	40	128
* 0					1				

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	

					\				
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
PMBD2835	CMPD2836	EM	40	134	PMLL4150	CLL4150	EM	40	108
PMBD2836	CMPD2836	EM	40	134	PMLL4151	CLL4448	SE	40	110
PMBD2837	CMPD2838	EM	40	134	PMLL4153	CLL4448	SE	40	110
PMBD2838	CMPD2838	EM	40	134	PMLL4446	CLL4448	EM	40	110
PMBD6050	CMPD4448	EM	40	138	PMLL4448	CLL4448	EM	40	110
PMBD6100	CMPD2838	EM	40	134	PMLL5226 thru	CLL5226B thru	EM	45	118
PMBD7000	CMPD7000	EM	40	144	PMLL5257	CLL5257B	EM	45	118
PMBF4391	CMPF4391	EM	34	146	PXT2222	CXT2222A	EM	37	270
PMBF4392	CMPF4392	EM	34	146	PXT2222A	CXT2222A	EM	37	270
PMBF4393	CMPF4393	EM	34	146	PXT2907	CXT2907A	EM	37	272
PMBT2222	CMPT2222A	EM	32	158	PXT2907A	CXT2907A	EM	37	272
PMBT2222A	CMPT2222A	EM	32	158	PXT3904	CXT3904	EM	37	276
PMBT2369	CMPT2369	EM	32	160	PXT3906	CXT3904	EM	37	276
PMBT2907	CMPT2907A	EM	32	164	PXT4401	CXT2222A	SE	37	270
PMBT2907A	CMPT2907A	EM	32	164	PXT4403	CXT2907A	SE	37	272
PMBT3640	CMPT3640	EM	32	168	PXTA14	CXTA14	EM	37	284
PMBT3903	CMPT3904	SE	32	172	PXTA27	CXTA27	EM	37	286
PMBT3904	CMPT3904	EM	32	172	PXTA42	CXTA42	EM	37	288
PMBT3906	CMPT3906	EM	32	172	PXTA64	CXTA64	EM	37	284
PMBT4123	CMPT3904	SE	32	172	PXTA92	CXTA92	EM	37	288
PMBT4124	CMPT3904	SE	32	172	PZT2222	CZT2222A	EM	38	300
PMBT4125	CMPT3906	SE	32	172	PZT2222A	CZT2222A	EM	38	300
PMBT4126	CMPT3906	SE	32	172	PZT2907	CZT2907A	EM	38	302
PMBT4401	CMPT4401	EM	32	176	PZT2907A	CZT2907A	EM	38	302
PMBT4403	CMPT4403	EM	32	176	PZT3904	CZT3904	EM	38	308
PMBT5086	CMPT5086	EM	32	178	PZT3906	CZT3906	EM	38	308
PMBT5087	CMPT5087	EM	32	178	PZTA13	CZTA14	EM	38	318
PMBT5088	CMPT5088	EM	32	180	PZTA14	CZTA14	EM	38	318
PMBT5089	CMPT5089	EM	32	180	PZTA42	CZTA42	EM	38	320
PMBT5400	CMPT5401	EM	33	184	PZTA43	CZTA42	EM	38	320
PMBT5401	CMPT5401	EM	33	184	PZTA63	CZTA64	EM	38	318
PMBT5551	CMPT5551	EM	33	186	PZTA64	CZTA64	EM	38	318
PMBTA05	CMPTA06	EM	32	196	PZTA92	CZTA92	EM	38	320
PMBTA06	CMPTA06	EM	32	196	PZTA93	CZTA92	EM	38	320
PMBTA13	CMPTA13	EM	33	198	RB031B-40	CSHD6-40C	EM	51	260
PMBTA14	CMPTA14	EM	33	198	RB035B-40	CSHD3-40	EM	51	256
PMBTA20	CMPT3904	EM	32	172	RB110C	CXSH-4	EM	51	268
PMBTA42	CMPTA42	EM	33	204	RB160L-40	CMSH1-40M	EM	51	240
PMBTA43	CMPTA42	EM	33	204	RB400D	CMPSH-3	SE	41	152
PMBTA55	CMPTA56	EM	32	196	RB420D	CMPSH-3	SE	41	152
PMBTA56	CMPTA56	EM	32	196	RB421D	CMPSH-3	SE	41	152
PMBTA63	CMPTA63	EM	33	198	RB425D	CMPSH-3C	SE	41	152
PMBTA64	CMPTA64	EM	33	198	RB705D	CMSH1-20	EM	51	238
PMBTA70	CMPT3906	EM	32	172	RD411D	CMPSH-3	SE	41	152
PMBTA92	CMPTA92	EM	33	204	RF1A	CMR1U-01	EM	50	224
PMBTA93	CMPTA92	EM	33	204	RF1B	CMR1U-01	EM	50	224
PMBZ5221B thru	CMPZ5221 thru	EM	44	214	RF1D	CMR1U-02	EM	50	224
PMBZ5261B	CMPZ5261B	EM	44	214	RF1G	CMR1U-04	EM	50	224
PMLL4148	CLL 914	EM	40	102	RGL41A	CMR1F-02M	EM	49	222

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	1

Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
501.445	011515 0011								
RGL41B	CMR1F-02M	EM	49	222	S1G	CMR1-04M	EM	48	220
RGL41D	CMR1F-02M	EM	49	222	S1J	CMR1-06M	ΕM	48	220
RGL41G	CMR1F-06M	EM	49	222	S1ZB10	CBRHD-02	EM	52	74
RGL41J	CMR1F-06M	EM	49	222	S1ZB20	CBRHD-02	EM	52	74
RGL41K	CMR1F-10M	EM	49	222	S1ZB40	CBRHD-04	EM	52	74
RGL41M	CMR1F-10M	EM	49	222	S1ZB60	CBRHD-06	EM	52	74
RLR4001	CMR1-02	EM	48	218	S2A	CMR2-02	EM	48	228
RLR4002	CMR1-02	EM	48	218	S2B	CMR2-02	EM	48	228
RLR4003	CMR1-02	EM	48	218	S2D	CMR2-02	EM	48	228
RLR4004	CMR1-04	EM	48	218	S2G	CMR2-04	EM	48	228
RLS4148	CLL 914	EM	40	102	S2J	CMR2-06	EM	48	228
RLS4149	CLL 914	EM	40	102	S2K	CMR2-10	EM	48	228
RLS4150	CLL4150	EM	40	108	S2M	CMR2-10	EM	48	228
RLS4151	CLL4448	SE	40	110	S3A	CMR3-02	EM	48	232
RLS4152	CLL4448	SE	40	110	S3B	CMR3-02	EM	48	232
RLS4153	CLL4448	SE	40	110	S3D	CMR3-02	EM	48	232
RLS4154	CLL4448	EM	40	110	S3G	CMR3-04	EM	48	232
RLS4446	CLL4448	EM	40	110	S3J	CMR3-06	EM	48	232
RLS4447	CLL4448	EM	40	110	S3K	CMR3-10	EM	48	232
RLS4448	CLL4448	EM	40	110	S3M	CMR3-10	EM	48	232
RLS4449	CLL4448	EM	40	110	SGL41-20	CMSH1-20M	EM	51	240
RLS4450	CLL4150	SE	40	108	SGL41-30	CMSH1-40M	EM	51	240
RLS4454	CLL4448	EM	40	110	SGL41-40	CMSH1-40M	EM	51	240
RLZ5227B thru	CLL5227B thru	EM	45	118	SGL41-50	CMSH1-60M	EM	51	240
RLZ5257B	CLL5257B	EM	45	118	SGL41-60	CMSH1-60M	EM	51	240
RS1A	CMR1F-02M	EM	49	222	SM4001	CMR1-02M	EM	48	220
RS1B	CMR1F-02M	EM	49	222	SM4002	CMR1-02M	EM	48	220
RS1D	CMR1F-02M	EM	49	222	SM4002 SM4003	CMR1-02M	EM	48	220
RS1G	CMR1F-04M	EM	49	222	SM4004		EM	48	220
RS1J	CMR1F-06M	EM	49	222	ľ	CMR1-04M		46 48	220
RS2A	CMR2U-01	EM	50	230	SM4005	CMR1-06M	EM		
RS2B	CMR2U-01	EM	50	230	SM4006	CMR1-10M	EM	48	220
RS2D	CMR2U-02	EM	50	230	SM4007	CMR1-10M	EM	48	220
RS2G	CMR2U-04	EM	50	230	SM4933	CMR1F-02M	EM	49	222
RS3A	CMR3U-01	EM	50	234	SM4934	CMR1F-02M	EM	49	222
RS3B	CMR3U-01	EM	50	234	SM4935	CMR1F-02M	EM	49	222
RS3D	CMR3U-02	EM	50	234	SM4936	CMR1F-06M	EM	49	222
RS3G	CMR3U-04	EM	50	234	SM4937	CMR1F-06M	EM	49	222
RS3J	CMR3U-06	EM	50	234	SMBD 914	CMPD 914	EM	40	128
RXT-A14	CXTA14	EM	37	284	SMBD2835	CMPD2836	EM	40	134
RXT-A64	CXTA64	EM	37	284	SMBD2836	CMPD2836	EM	40	134
RXT2222A	CXT2222A	EM	37	270	SMBD2837	CMPD2836	EM	40	134
RXT2907A	CXT2907A	EM	37	272	SMBD2838	CMPD2838	EM	40	134
RXT3904	CXT3904	EM	37	276	SMBD6050	CMPD4448	EM	40	138
RXT3906	CXT3906	EM	37	276	SMBD6100	CMPD2838	EM	40	134
RXTA27	CXTA27	EM	37	286	SMBD7000	CMPD7000	EM	40	144
S1A	CMR1-02M	EM	48	220	SMBT2222	CMPT2222A	EM	32	158
S1B	CMR1-02M	EM	48	220	SMBT2222A	CMPT2222A	EM	32	158
S1D	CMR1-02M	EM	48	220	SMBT2907	CMPT2907A	EM	32	164
* Special Order	OWN (1-02IVI	L.IVI	40	220	SMBT2907A	CMPT2907A	EM	32	164

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.

					•	•			
Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet
SMBT3904	CMPT3904	EM	32	172	SO5401	CMPT5401	EM	33	184
SMBT3906	CMPT3906	EM	32	172	SO5550	CMPT5551	EM	33	186
SMBT4124	CMPT3904	SE	32	172	SO5551	CMPT5551	EM	33	186
SMBT4126	CMPT3906	SE	32	172	SOA05	CMPTA06	EM	32	196
SMBT4401	CMPT4401	EM	32	176	SOA06	CMPTA06	EM	32	196
SMBT4403	CMPT4403	EM	32	176	SOA55	CMPTA56	EM	32	196
SMBT5086	CMPT5086	EM	32	178	SOA56	CMPTA56	EM	32	196
SMBT5087	CMPT5087	EM	32	178	SS12	CMSH1-20M	EM	51	240
SMBT5088	CMPT5088	EM	32	180	SS13	CMSH1-40M	EM	51	240
SMBTA05	CMPTA06	EM	32	196	SS14	CMSH1-40M	EM	51	240
SMBTA06	CMPTA06	EM	32	196	SS15	CMSH1-60M	EM	51	240
SMBTA13	CMPTA13	EM	33	198	SS16	CMSH1-60M	EM	51	240
SMBTA14	CMPTA14	EM	33	198	SS22	CMSH2-20	EM	51	242
SMBTA20	CMPT3904	EM	32	172	SS23	CMSH2-40	EM	51	242
SMBTA42	CMPTA42	EM	33	204	SS24	CMSH2-40	EM	51	242
SMBTA43	CMPTA42	EM	33	204	SS25	CMSH2-60	EM	51	242
SMBTA55	CMPTA56	EM	32	196	SS26	CMSH2-60	EM	51	242
SMBTA56	CMPTA56	EM	32	196	SS32	CMSH3-20	EM	51	244
SMBTA63	CMPTA63	EM	33	198	SS33	CMSH3-40	EM	51	244
SMBTA64	CMPTA64	EM	33	198	SS34	CMSH3-40	EM	51	244
SMBTA70	CMPT3904	EM	32	172	SS35	CMSH3-60	EM	51	244
SMBTA92	CMPTA92	EM	33	204	SS36	CMSH3-60	EM	51	244
SMBTA93	CMPTA92	EM	33	204	SXT2222A	CXT2222A	EM	37	270
SO 517	CMPTA13	EM	33	198	SXT2907A	CXT2907A	EM	37	272
SO 642	CMPTA42	EM	33	204	SXT3904	CXT3904	EM	37	276
SO 692	CMPTA92	EM	33	204	SXT3906	CXT3906	EM	37	276
SO 918	CMPT918	EM	33	154	SXTA42	CXTA42	EM	. 37	288
SO 930	CMPT2484	SE	32	162	SXTA43	CXTA42	EM	37	288
SO1711	CMPT2222A	SE	32	158	SXTA92	CXTA92	EM	37	288
SO1893	CMPT2222A	SE	32	158	SXTA93	CXTA92	EM	37	288
SO2221	CMPT2222A	SE	32	158	TM4729A thru	CLL4729A thru	EM	45	116
SO2221A	CMPT2222A	SE	32	158	TM4752A	CLL4752A	EM	45	116
SO2222	CMPT2222A	EM	32	158	TMM5226B thru	CLL5226B thru	EM	45	118
SO2222A	CMPT2222A	EM	32	158	TMM5257B	CLL5257B	EM	45	118
SO2369	CMPT2369	EM	32	160	TMPD 914	CMPD 914	EM	40	128
SO2369A				*	TMPD2835	CMPD2836	EM	40	134
SO2484	CMPT2484	EM	32	162	TMPD2836	CMPD2836	EM	40	134
SO2894	CMPT3640	EM	32	168	TMPD2837	CMPD2838	EM	40	134
SO2906	CMPT2907A	SE	32	164	TMPD2838	CMPD2838	EM	40	134
SO2906A	CMPT2907A	SE	32	164	TMPD4148	CMPD 914	EM	40	128
SO2907	CMPT2907A	EM	32	164	TMPD4150	CMPD4150	EM	40	136
SO2907A	CMPT2907A	EM	32	164	TMPD4448	CMPD4448	EM	40	138
SO3903	CMPT3904	SE	32	172	TMPD6050	CMPD4448	EM	40	138
SO3904	CMPT3904	EM	32	172	TMPD6100	CMPD2838	EM	40	134
SQ3905	CMPT3906	SE	32	172	TMPD7000	CMPD7000	EM	40	144
SO3906	CMPT3906	EM	32	172	TMPF4391	CMPF4391	EM	34	146
SO4401	CMPT4401	EM	32	176	TMPF4392	CMPF4392	EM	34	146
SO4403	CMPT4403	EM	32	176	TMPF4393	CMPF4393	EM	34	146
SO5400	CMPT5401	EM	33	184	TMPT 918	CMPT 918	EM	33	154
* 0									

	CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.	
ſ	SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.	

Industry Part Number	Central Part Number	Code	Selection Guide	Data Sheet	Industry Part Number	Central Part Number	Code	Selection Guide
TMPT2221	CMPT2222A	SE	32	158	UO5B4B48	CBRHD-02	ЕМ	52
TMPT2221A	CMPT2222A	SE	32	158	UO5D4B48	CBRHD-02	EM	52
TMPT2222	CMPT2222A	EM	32	158	UO5G4B48	CBRHD-04	EM	52
TMPT2222A	CMPT2222A	EM	32	158	UO5J4B48	CBRHD-06	ЕМ	52
TMPT2484	CMPT2484	EM	32	162	ZC2800E	CMPD6263	SE	41
TMPT2906	CMPT2907A	SE	32	164	ZC2810E	CMPD6263	SE	41
TMPT2906A	CMPT2907A	SE	32	164	ZC2811E	CMPD6263	SE	41
TMPT2907	CMPT2907A	EM	32	164	ZC5800E	CMPD6263	SE	41
TMPT2907A	CMPT2907A	EM	32	164	ZM4729A thru	CLL4729A	EM	45
TMPT3638	CMPT4403	SE	32	176	ZM4764A	CLL4764A	EM	45
TMPT3638A	CMPT4403	SE	32	176				
TMPT3798	CMPT5086	SE	32	178	l			
TMPT3903	CMPT3904	SE	32	172	ľ			
TMPT3904	CMPT3904	EM	32	172	•			
TMPT3905	CMPT3906	SE	32	172	ł			
TMPT3906	CMPT3906	EM	32	172				
TMPT4124	CMPT3904	SE	32	172				
TMPT4125	CMPT3906	SE	32	172	1			
TMPT4126	CMPT3906	SE	32	172	!			
TMPT4401	CMPT4401	EM	32	176				
TMPT4402	CMPT4403	SE	32	176]			
TMPT4403	CMPT4403	EM	32	176				
TMPT5086	CMPT5086	EM	32	178	l			
TMPT5087	CMPT5087	EM	32	178	İ			
TMPT5088	CMPT5088	EM	32	180				
TMPT5401	CMPT5401	EM	33	184	ļ			
TMPT5550	CMPT5551	EM	33	186	l			
TMPT5551	CMPT5551	EM	33	186				
TMPTA05	CMPTA06	EM	32	196	1			
TMPTA06	CMPTA06	EM	32	196	-			
TMPTA12	CMPTA13	SE	33	198	ļ			
TMPTA13	CMPTA13	EM	33	198	1			
TMPTA14	CMPTA14	EM	33	198	1			
TMPTA20	CMPT3904	EM	32	172				
TMPTA42	CMPTA42	EM	33	204				
TMPTA43	CMPTA42	ЕМ	33	204				
TMPTA55	CMPTA56	EM	32	196				
TMPTA56	CMPTA56	EM	32	196	[
TMPTA63	CMPTA63	EM	33	198				
TMPTA64	CMPTA64	EM	33	198				
TMPTA70	CMPT3906	ЕМ	32	172	}			
TMPTA92	CMPTA92	EM	33	204				
TMPTA93	CMPTA92	EM	33	204				
TMPZ5229 thru	CMPZ5229B thru		44	214				
TMPZ5257	CMPZ5257B	EM	44	214				
U1BC44	CMR1-02M	EM	48	220				
U1DC44	CMR1-02M	EM	48	220				
U1GC44	CMR1-04M	EM	48	220				
U1JC44	CMR1-06M	EM	48	220				
					•			

Data

Sheet

CE	Closest equivalent (slight to significant electrical and/or mechanical differences)	EM	Exact electrical and mechanical.
SE	Exact mechanical equivalent, slight electrical differences.	SM	Exact electrical equivalent, slight mechanical differences.

Leaded to Surface Mount Equivalents

<u>LEADED</u> 1N 914	SMD BAS28 CLL 914 CMPD 914 CMPD2836 CMPD2838 CMPD7000	CASE SOT-143 SOD-80 SOT-23 SOT-23 SOT-23 SOT-23	COMMENTS Dual, Isolated Leadless Switching Diode Single Switching Diode Dual, Common Anode Dual, Common Cathode Dual, In Series
1N 914B	CLL4448 CMPD4448	SOD-80 SOT-23	
1N3600	BAS56 CLL4150 CMPD4150	SOT-143 SOD-80 SOT-23	Dual High Current Diode, Isolated Leadless Switching Diode Single Switching Diode
1N4001	CMR1-02 CMR1-02M	SMB SMA	
1N4002	CMR1-02 CMR1-02M	SMB SMA	
1N4003	CMR1-04 CMR1-04M	SMB SMA	
1N4004	CMR1-04 CMR1-04M	SMB SMA	
1N4005	CMR1-06 CMR1-06M	SMB SMA	
1N4006	CMR1-10 CMR1-10M	SMB SMA	
1N4007	CMR1-10 CMR1-10M	SMB SMA	
1N4148	BAS28 CLL 914 CMPD 914 CMPD2836 CMPD2838 CMPD7000	SOT-143 SOD-80 SOT-23 SOT-23 SOT-23 SOT-23	Dual, Isolated Leadless Switching Diode Single Switching Diode Dual, Common Anode Dual, Common Cathode Dual, In Series
1N4150	BAS56 CLL4150 CMPD4150	SOT-143 SOD-80 SOT-23	Dual High Current Diode, Isolated Leadless Switching Diode Single Switching Diode
1N4448	CLL4448 CMPD2836 CMPD2838 CMPD4448 CMPD7000	SOD-80 SOT-23 SOT-23 SOT-23 SOT-23	Leadless Switching Diode Dual, Common Anode Dual, Common Cathode Single Switching Diode Dual, In Series
1N4933	CMR1U-01 CMR1U-01M	SMB SMA	

Leaded to Surface Mount Equivalents (Continued)

<u>LEADED</u> 1N4934	SMD CMR1U-01 CMR1U-01M	CASE SMB SMA	COMMENTS
1N4935	CMR1U-02 CMR1U-02M	SMB SMA	
1N4936	CMR1U-04 CMR1U-04M	SMB SMA	
1N4937	CMR1U-06 CMR1U-06M	SMB SMA	
1N5817	CMSH1-20 CMSH1-20M	SMB SMA	
1N5818	CMSH1-40 CMSH1-40M	SMB SMA	
1N5819	CMSH1-40 CMSH1-40M	SMB SMA	
1N6263	CMPD6263 CMPD6263A CMPD6263C CMPD6263S	SOT-23 SOT-23 SOT-23 SOT-23	Single Configuration Dual, Common Anode Dual, Common Cathode Dual, In Series
2N 918	CMPT 918	SOT-23	
2N2222A	CMPT2222A CXT2222A CZT2222A	SOT-23 SOT-89 SOT-223	
2N2369	CMPT2369	SOT-23	
2N2484	CMPT2484	SOT-23	
2N2907A	CMPT2907A CXT2907A CZT2907A	SOT-23 SOT-89 SOT-223	
2N3019	CXT3019 CZT3019	SOT-89 SOT-223	
2N3904	CMPT3904 CXT3904 CZT3904	SOT-23 SOT-89 SOT-223	
2N3906	CMPT3906 CXT3906 CZT3906	SOT-23 SOT-89 SOT-223	
2N4033	CXT4033 CZT4033	SOT-89 SOT-223	

Leaded to Surface Mount Equivalents (Continued)

<u>LEADED</u> 2N4391	<u>SMD</u> CMPF4391	CASE SOT-23	COMMENTS
2N4392	CMPF4392	SOT-23	
2N4393	CMPF4393	SOT-23	
2N4401	CMPT4401	SOT-23	
2N4403	CMPT4403	SOT-23	
2N4416A	CMPF4416A	SOT-23	
2N5060 thru 2N5064	CMPS5064	SOT-23	
2N5086	CMPT5086	SOT-23	
2N5087	CMPT5087	SOT-23	
2N5088	CMPT5088	SOT-23	
2N5089	CMPT5089	SOT-23	
2N5179	CMPT5179	SOT-23	
2N5401	CMPT5401 CXT5401 CZT5401	SOT-23 SOT-89 SOT-223	
2N5460	CMPF5460	SOT-23	Special order, consult factory
2N5461	CMPF5461	SOT-23	Special order, consult factory
2N5462	CMPF5462	SOT-23	Special order, consult factory
2N5485	CMPF5485	SOT-23	Special order, consult factory
2N5551	CMPT5551 CXT5551 CZT5551	SOT-23 SOT-89 SOT-223	
2N6427	CMPT6427	SOT-23	
2N6428	CMPT6428	SOT-23	
2N6429	CMPT6429	SOT-23	
2N6517	CMPT6517	SOT-23	
2N6520	CMPT6520	SOT-23	
CDSH-4	CMPSH-3 CMPSH-3A CMPSH-3C CMPSH-3S	SOT-23 SOT-23 SOT-23 SOT-23	Single Configuration Dual, Common Anode Dual, Common Cathode Dual, In Series

Leaded to Surface Mount Equivalents (Continued)

<u>LEADED</u> D44H11 D45H11	SMD CJD44H11 CJD45H11	<u>CASE</u> DPAK DPAK	COMMENTS
CSSD2003	CLL2003 CMPD2003	SOD-80 SOT-23	
MPS650	CBCP68 CBCX68	SOT-223 SOT-89	
MPS750	CBCP69 CBCX69	SOT-223 SOT-89	
MPS8099	CMPT8099	SOT-23	
MPS8599	CMPT8599	SOT-23	
MPSA06	CMPTA06	SOT-23	
MPSA13	CMPTA13	SOT-23	
MPSA14	CMPTA14 CXTA14 CZTA14	SOT-23 SOT-89 SOT-223	
MPSA27	CMPTA27 CZTA27	SOT-23 SOT-89	
MPSA42	CMPTA42 CXTA42 CZTA42	SOT-23 SOT-89 SOT-223	
MPSA44	CMPTA44 CZTA44	SOT-23 SOT-223	
MPSA56	CMPTA56	SOT-23	
MPSA63	CMPTA63	SOT-23	
MPSA64	CMPTA64 CXTA64 CZTA64	SOT-23 SOT-89 SOT-223	
MPSA92	CMPTA92 CXTA92 CZTA92	SOT-23 SOT-89 SOT-223	
MPSH10	CMPTH10	SOT-23	
PN3640	CMPT3640	SOT-23	
PN3646	CMPT3646	SOT-23	

Marking Codes

HALCON MANIET	y coues				
Marking Code	Part Number	Marking Code	Part Number	Marking Code	Part Number
1A	BC846A	5E	BC808.16	8P	CMDZ36L
1B	BC846B	5F	BC808.25	A61	BAS28
1E	BC847A	5G	BC808.40	A82	CMPD2003
1F	BC847B	5P	CMDZ27L	A91	CBAS17
1FF	CMPT5551	6A	BC817.16	AA	BCW60A
1G	BC847C	6B	BC817.25	AAD	CMPD4448
1J	BC848A	6B	CMPF5484	AB	BCW60B
1K	BC848B	6B1	CMPF5485	ABA	CMPD4150
1L	BC848C	6BG	CMPF4416A	AC	BCW60C
1P	CMDZ18L	6C	BC817.40	AD	BCW60D
18A	CMPZ5221B	6E	BC818.16	AG	BCX70G
18B	CMPZ5222B	6E	CMPF5460	AH	BCX70H
18C	CMPZ5223B	6E1	CMPF5461	AJ	BCX70J
18D	CMPZ5224B	6E2	CMPF5462	AK	BCX70K
18E	CMPZ5225B	6F	BC818.25	B2	BSV52
2B	BC849B	6G	BC818.40	BA	BCW61A
2C	BC849C	6G	CMPF4393	BB	BCW61B
2F	BC850B	6H	CMPF5486	вс	BCW61C
2G	BC850C	6J	CMPF4391	BD	BCW61D
2P	CMDZ20L	6K	CMPF4392	BG	BCX71G
ЗА	BC856A	6P	CMDZ30L	вн	BCX71H
3B	BC856B	6S	CMPFJ176	BJ	BCX71J
3E	BC857A	6T	CMPFJ310	вк	BCX71K
3F	BC857B	6W	CMPFJ175	C 02	CMR1-02
3G	BC857C	6X	CMPFJ174	C 02M	CMR1-02M
3J	BC858A	702	2N7002	C 04	CMR1-04
ЗК	BC858B	7P	CMDZ33L	C 04M	CMR1-04M
3L	BC858C	81A	CMPZ5250B	C 06	CMR1-06
3P	CMDZ22L	81B	CMPZ5251B	C 06M	CMR1-06M
4A	BC859A	81C	CMPZ5252B	C 1	BCW29
4B	BC859B	81D	CMPZ5253B	C 1A	CMPT3904
4C	BC859C	81E	CMPZ5254B	C 1D	CMPTA42
4E	BC860A	81F	CMPZ5255B	C 1G	CMPTA06
4F	BC860B	81G	CMPZ5256B	C 1J	CMPT2369
4G	BC860C	81H	CMPZ5257B	C 1K	CMPT6428
4P	CMDZ24L	81J	CMPZ5258B	C 1L	CMPT6429
5A	BC807.16	81K	CMPZ5259B	C 1M	CMPTA13
5B	BC807.25	81L	CMPZ5260B	C 1N	CMPTA14
5C	BC807.40	81M	CMPZ5261B	C 1P	CMPT2222A
1		I		I	

Marking	Codes	(Continued)			
Marking Code	Part Number	Marking Code	Part Number	Marking Code	Part Number
C 1Q	CMPT5088	C 8H	CMPZ5233B	CS 20	CMSH1-20
C1R	CMPT5089	C 8J	CMPZ5234B	CS 20M	CMSH1-20M
C 1U	CMPT2484	C 8K	CMPZ5235B	CS 40	CMSH1-40
C 1V	CMPT6427	C 8L	CMPZ5236B	CS 40M	CMSH1-40M
C 1X	CMPT 930	C 8M	CMPZ5237B	CS 60	CMSH1-60
C 1Z	CMPT6517	C 8N	CMPZ5238B	CS 60M	CMSH1-60M
C 2	BCW30	C 8P	CMPZ5239B	CS100	CMSH1-100
C 2A	CMPT3906	C 8Q	CMPZ5240B	CS220	CMSH2-20
C 2D	CMPTA92	C 8R	CMPZ5241B	CS240	CMSH2-40
C 2F	CMPT2907A	C 8S	CMPZ5242B	CS260	CMSH2-60
C 2G	CMPTA56	C 8T	CMPZ5243B	CS320	CMSH3-20
C 2J	CMPT3640	C 8U	CMPZ5244B	CS340	CMSH3-40
C 2L	CMPT5401	C 8V	CMPZ5245B	CS360	CMSH3-60
C 2P	CMPT5086	C 8W	CMPZ5246B	CU01	CMR1U-01
C 2Q	CMPT5087	C 8X	CMPZ5247B	CU01M	CMR1U-01M
C 2R	CMPT3646	C 8Y	CMPZ5248B	CU02	CMR1U-02
C 2T	CMPT4403	C 8Z	CMPZ5249B	CU02M	CMR1U-02M
C 2U	CMPTA63	C10	CMR1-10	CU04	CMR1U-04
C 2V	CMPTA64	C10M	CMR1-10M	CU04M	CMR1U-04M
C 2W	CMPT8599	C29	CMPTA29	CU06	CMR1U-06
C 2X	CMPT4401	C202	CMR2-02	CU06M	CMR1U-06M
C 2Z	CMPT6520	C204	CMR2-04	CU201	CMR2U-01
C 3A	CMPT3019	C206	CMR2-06	CU202	CMR2U-02
C 3B	CMPT 918	C210	CMR2-10	CU204	CMR2U-04
C 3E	CMPTH10	C302	CMR3-02	CU206	CMR2U-06
C 3Z	CMPTA44	C304	CMR3-04	CU301	CMR3U-01
C 4A	CMPT4033	C306	CMR3-06	CU302	CMR3U-02
C 5C	CMPD7000	C310	CMR3-10	CU304	CMR3U-04
C 5D	CMPD 914	CA2	CMPD2836	CU306	CMR3U-06
C 7	BCF29	CA6	CMPD2838	D 1	BCW31
C 7H	CMPT5179	CF02M	CMR1F-02M	D 2	BCW32
C 8	BCF30	CF04M	CMR1F-04M	D 3	BCW33
C 8A	CMPZ5226B	CF06M	CMR1F-06M	D 7	BCF32
C 8B	CMPZ5227B	CF10M	CMR1F-10M	D 8	BCF33
C 8C	CMPZ5228B	CH1J	CHT2369A	D49	CMPD5001S
C 8D	CMPZ5229B	CH1P	CHT2222A	D53	CMPD2004
C 8E	CMPZ5230B	CH2F	CHT2907A	D76	CMPD6263
C 8F	CMPZ5231B	CH3B	CHT 918	D95	CMPSH-3
C 8G	CMPZ5232B	СКВ	CMPT8099	D96	CMPD6263S

Markin	g Codes	(Continued)			
Marking Code	Part Number	Marking Code	Part Number	Marking Code	Part Number
D97	CMPD6263C	NP	CMDZ5L6	Y 7	BZX84C20
D98	CMPD6263A	OP	CMDZ6L2	Y 8	BZX84C22
DA	BCW67A	P2D	CMPS5064	Y 9	BZX84C24
DA2	CMPD5001	PP	CMDZ6L8	Y10	BZX84C27
DA5	CMPSH-3S	QP	CMDZ7L5	Y11	BZX84C30
DB	BCW67B	RP	CMDZ8L2	Y12	BZX84C33
DB1	CMPSH-3A	S1	CMDSH-3	YP .	CMDZ15L
DB2	CMPSH-3C	S2	CMDSH2-3	YY1	CMPZDA11V
DB6	CMPD2004S	SP	CMDZ9L1	YY2	CMPZDA12V
DC	BCW67C	T1	BCX17	YY3	CMPZDA13V
DF	BCW68F	T2	BCX18	YY4	CMPZDA15V
DG	BCW68G	T7	BSR15	YY5	CMPZDA16V
DH	BCW68H	Т8	BSR16	YY6	CMPZDA18V
EA	BCW65A	TP	CMDZ10L	YY7	CMPZDA20V
EB	BCW65B	U1	BCX19	YY8	CMPZDA22A
EC	BCW65C	U2	BCX20	YY9	CMPZDA24V
EF	BCW66F	U7	BSR13	Z1	BZX84C4V7
EG	BCW66G	U8	BSR14	Z2	BZX84C5V1
EH	BCW66H	U9	BSR17	Z 3	BZX84C5V6
FD	BCV26	U92	BSR17A	Z4	BZX84C6V2
FE	BCV46	UP	CMDZ11L	Z 5	BZX84C6V8
FF	BCV27	VP	CMDZ12L	Z6	BZX84C7V5
FG	BCV47	W 6	BZX84C3V3	Z 7	BZX84C8V2
FG	CMPTA27	W 7	BZX84C3V6	Z8	BZX84C9V1
H1	BCW69	W 8	BZX84C3V9	Z 9	BZX84C10
H2	BCW70	W 9	BZX84C4V3	ZP	CMDZ16L
H3	BCW89	W10	CMPZDA27V	ZZ1	CMPZDA4V7
H7	BCF70	W11	CMPZDA30V	ZZ2	CMPZDA5V1
K1	BCW71	W12	CMPZDA33V	ZZ3	CMPZDA5V6
K2	BCW72	WW7	CMPZDA3V6	ZZ4	CMPZDA6V2
КЗ	BCW81	ww8	CMPZDA3V9	ZZ5	CMPZDA6V8
K7	BCV71	WW9	CMPZDA4V3	ZZ6	CMPZDA7V5
K8	BCV72	XP	CMDZ13L	ZZ7	CMPZDA8V2
K9	BCF81	Y 1	BZX84C11	ZZ8	CMPZDA9V1
L20	CMPD1001	Y 2	BZX84C12	ZZ9	CMPZDA10V
L21	CMPD1001S	Y 3	BZX84C13		
L22	CMPD1001A	Y 4	BZX84C15		
L51	BAS56	Y 5	BZX84C16		
LP	CMDZ5L1	Y 6	BZX84C18		
1		ı		I	1

REL DATA

Power dissipation of a surface mounted discrete semiconductor is dependent on many factors among which are, substrate material/thickness, bonding pad surface area/thickness, and proximity of the device to other components. The most critical of these is substrate material. Due to these variables, power dissipation is listed below as a range.

Power Dissipation

CASE	POWER DISSIPATION RANGE
DPAK	12.5W - 20W
SOT-23	200mW - 400mW
SOT-89	400mW - 1600mW
SOT-143	200mW - 400mW
SOT-223	1000mW - 2000mW
SOD-80	350mW - 600mW
MELF	900mW - 1200mW
SMA	1000mW - 2000mW
SMB	1000mW - 2000mW

The low end of the power dissipation range relates to device dissipation in 'free air @ T_A = 25°C." The upper end of the range relates to optimum dissipation levels which are attainable when the SMD is mounted on an alumina (ceramic) substrate.

Midrange dissipation levels are for traditional glass-epoxy PC boards (FR-4 material).

It is important that the design engineer consider all the factors influencing power dissipation for each application.

Typical Reliability Data, SOT-23 Transistor

TEST	TEST CONDITION	SAMPLE SIZE	UNIT HOURS	NO. FAILURES	FAILURE RATE (1) (%/1000 HRS)
OPERATING LIFE (LOAD LIFE)	T_A =25°C, P=P _D MAX V_{CB} =80% V_{CB} MAX t=1000 hours	1160	1.16x10 ⁶	1	0.18
HIGH TEMPERATURE STORAGE LIFE	T _A =150°C t=1000 hours	1160	1.16x10 ⁶	0	0.08
HIGH TEMPERATURE REVERSE BIAS LIFE	T _A =125°C V _{CB} =80% V _{CB} MAX t=1000 hours	1160	1.16x10 ⁶	2	0.27
HUMIDITY LIFE (MOISTURE RESISTANCE)	T _A =85°C, R.H.=85% MIL-STD 202, Method 103B t=1000 hours, Condition B	1160	1.16x10 ⁶	2	0.27
TEMPERATURE CYCLING (THERMAL SHOCK)	T _L =-55°C, T _H =150°C t _L =t _H =30 min t _{TRANSFER} =2 min. max @ T _A =25°C 5 cycles	1160		1	
PRESSURE COOKER (MOISTURE RESISTANCE)	T _A =122°C, P=2 atmos. 6 hours per cycle 5 cycles (30 hours total)	1160		2	
SOLDERING HEAT (THERMAL SHOCK)	T _A =260°±5°C, 60Sn/40Pb total immersion t _{IMMERSION} =10 [±] 2 sec	360		2	

(1) 60% CONFIDENCE LEVEL

Typical Reliability Data (Continued)

SOT-23 Silicon Diode

TEST and a supplied to the sup	TEST CONDITION	SAMPLE SIZE	UNIT HOURS	NO. FAILURES	FAILURE RATE (1) (%/1000 HRS)
OPERATING LIFE (LOAD LIFE)	T _A =25°C, I _O =80% I _O Rated V _R =80% V _R Rated t=1000 hours	60	6x10 ⁴	0	1.5
HIGH TEMPERATURE STORAGE LIFE	T _A =150°C t=1000 hours	60	6x10 ⁴	1	3.4
HIGH TEMPERATURE REVERSE BIAS LIFE	T _A =125°C V _R =80% V _R Rated t=1000 hours	60	6x10 ⁴	1	3.4
HUMIDITY LIFE (MOISTURE RESISTANCE)	T _A =85°C, R.H.=85% MIL-STD 202, Method 103B t=1000 hours, Condition B	60	6x10 ⁴	0	1.5
TEMPERATURE CYCLING (THERMAL SHOCK)	T _L =-55°C, T _H =150°C t ₁ =t _H =30 min tTRANSFER=2 min max @ T _A =25°C 5 cycles	60		0	
PRESSURE COOKER (MOISTURE RESISTANCE)	T _A =122°C, P=2 atmos. 6 hours per cycle 5 cycles (30 hours total)	60		0	
SOLDERING HEAT (THERMAL SHOCK)	T _A =260°±5°C, 60Sn/40Pb total immersion tIMMERSION=10 ⁺² ₀ sec	360		2	

^{(1) 60%} CONFIDENCE LEVEL

SOT-23 Zener Diode

TEST Section (1997) and the control of the control	TEST CONDITION	SAMPLE SIZE	UNIT HOURS	NO. FAILURES	FAILURE RATE (1) (%/1000 HRS)
OPERATING LIFE	T _A =25°C, P=P _D MAX t=1000 hours	60	6x10 ⁴	0	1.5
HIGH TEMPERATURE STORAGE LIFE	T _A =150°C t=1000 hours	60	6x10 ⁴	0	1.5
HUMIDITY LIFE (MOISTURE RESISTANCE)	T _A =85°C, R.H.=85% MIL-STD 202, Method 103B t=1000 hours, Condition B	60	6x10 ⁴	1	3.4
TEMPERATURE CYCLING (THERMAL SHOCK)	T _L =-55°C, T _H =150°C t ₁ =t _H =30 min tTRANSFER=2 min max @ T _A =25°C 5 cycles	60		0	
PRESSURE COOKER (MOISTURE RESISTANCE)	T _A =122°C, P=2 atmos. 6 hours per cycle 5 cycles (30 hours total)	60		0	
SOLDERING HEAT (THERMAL SHOCK)	T _A =260°±5°C, 60Sn/40Pb total immersion tIMMERSION=10 ⁺² ₀ sec	360		2	

^{(1) 60%} CONFIDENCE LEVEL

Selection Guide

	Page
Small Signal Transistors	32
Small Signal MOSFETs	33
Junction FETs	34
Power Transistors	39
Switching Diodes	40
Schottky Diodes	41
Low Leakage Diodes	42
Stabistor Diodes	42
Zener Diodes	43
Current Limiting Diodes	46
Rectifiers	48
Bridge Rectifiers	52
SCRs	53
Triacs	53

Small Signal Transistors U.S. Specification (Preferred Series)

SOT-23 Case, 350mW

TYPE NO.	вусво	BVCEO	BVEBO	¹ сво '	9 Усв	releasives to	E	@ VCE	@ lc	V _{CE} (SA	r) @ I _C	Cob	17	NF	toff
	* * * * * * * * * * * * * * * * * * *	*BV _{CES}	er samen and and and and and and and and and an	*ICES	Service Services	erve, er con Gwhyestaet Brokel asker	ing the state of	elien Virginish ye.	all consistency of the	ight filosoft and ship of property of the	and and described and mentions to other	Strationalis Strations	તા પામ ન લેવલ તા	6.645.3006 ,653m q. 1748	gustavia autorio ini
en de la companya de La companya de la co La companya de la co	(V)	(V)	(V)	(nA)	(v)	lagada yan enin Mi Ngjarin, ito enin	i i din i amali i di Mandalari	(A)	(mA)	(۷)	(mA)	(pF)	(MHz)	100 PGM	(ns)
The second second	MIN	MIN	MIN	MAX	1.831 (200)	MIN	MAX	in action in terms	esija, la laa sii ka Kassii Maasa Mista	MAX	e teresistenio	MAX	MIN	MAX	MAX
General	Durr		\ mnlif	fior/S	witch	00	Davis	11:					h		
NPN	ruip	JUSE F	Ampin	ilei/S	WILCII	C 3	Device	es are iis	stea in	order of	desce	naing	breako	iown v	onag
CMPT8099	80	80	6.0	100	80	100	300	5.0	1.0	0.4	100	6.0	150	-	-
СМРТ930	45	45	5.0	10	45	100	300	5.0	0.01	1.0	10	8.0	30	3.0	-
CMPT2222A	75	40	6.0	10	60	100	300	10	150	1.0	500	8.0	300	4.0	285
CMPT3904	60	40	6.0	50*	30	100	300	1.0	10	0.3	50	4.0	300	5.0	250
CMPT4401	60	40	6.0	100*	35	100	300	1.0	150	0.75	500	6.5	200	-	255
PNP									•			•	•		•
CMPT8599	80	80	5.0	100	80	100	300	5.0	1.0	0.4	100	4.5	150	-	T -
CMPT2907A	60	60	5.0	10	50	100	300	10	150	1.6	500	8.0	200	-	100
CMPT3906	40	40	5.0	50*	30	100	300	1.0	10	0.4	50	4.5	250	4.0	300
CMPT4403	40	40	5.0	100*	35	100	300	2.0	150	0.75	500	8.5	200	-	255
L	L									1	L	L	1	L	L
Saturato NPN	ed Sv	vitche	S De	evices a	re listed	in orde	er of de	scendin	g f _T .						
CMPT2369	40	15	4.5	400	20	40	120	1.0	10	0.25	10	4.0	500	-	18
CMPT3646	40	15	5.0	500*	20	15	-	1.0	300	0.5	300	5.0	350	-	28
PNP															
CMPT3640	12	12	4.0	10*	6.0	30	120	0.3	10	0.5	50	3.5	300	-	60
							4			***************************************					1
Low No	ise A	mplif	iers	Devices	are list	ed in o	rder of	ascendi	ng NF.						
NPN	1	Т			· · · · · · · · · · · · · · · · · · ·	T	T	1	Т	Τ	T		T		
CMPT5089	30	25	4.5	50	15	400	1,200	5.0	0.1	0.5	10	4.0	50	2.0	-
CMPT2484	60	60	6.0	10	45	250	-	5.0	1.0	0.35	1.0	6.0	-	3.0	-
CMPT5088	35	30	4.5	50	20	300	900	5.0	0.1	0.5	10	4.0	50	3.0	-
CMPT6428	60	50	6.0	10	30	250	650	5.0	0.1	0.6	100	3.0	100	-	-
CMPT6429	55	45	6.0	10	30	500	1,250	5.0	0.1	0.6	100	3.0	100		
PNP															
CMPT5087	50	50	3.0	50	35	250	800	5.0	0.1	0.3	10	4.0	40	2.0	-
CMPT5086	50	50	3.0	50	35	150	500	5.0	0.1	0.3	10	4.0	40	3.0	-
High Cι NPN	ırrent	De	vices are	e listed i	n order	of desc	cending	g breakd	lown vo	oltage.					
CMPT3019	120	80	7.0	10	90	100	300	10	150	0.5	500	12	100	4.0	Γ-
CMPTA06	80	80	4.0	100	80	50	-	1.0	100	0.25	100	-	100	-	-
PNP	L				L	l	L		1		L			L	
CMPT4033	80	80	5.0	50	60	100	300	5.0	100	0.5	500	20	100	Γ.	Π.
3 14000	30	50	0.0		~~	1 .30	550	1 5.5		5.5	550	-	1 .50	!	

4.0

1.0

0.25

Small Signal Transistors U.S. Specification (Preferred Series) SOT-23 Case, 350mW (Continued)

TYPE NO.	висво	BVCEO	BV _{EBO}	Ісво	® V _{CB}	h	FE	@ VCE	@ lc	V _{CE} (SA	T) @ I _C	Cob	fT	NF	toff
		*BVCES		*ICES											
	(V)	(V)	(V)	(nA)	(V)			(V)	(mA)	(V)	(mA)	(pF)	(MHz)	(dB)	(ns)
	MIN	MIN	MIN	MAX		MIN	MAX			MAX		MAX	MIN	MAX	MAX
High Vo NPN	Itage	Devi	ces are	listed in	order o	f desce	ending	breakdo	wn vol	age.					
CMPTA44	450	400	6.0	100	400	30	200	10	10	0.75	50	7.0	20	-	-
CMPT6517	350	350	5.0	50	250	30	200	10	30	1.0	50	6.0	40	-	-
CMPTA42	300	300	6.0	100	200	40	-	10	30	0.5	20	3.0	50	-	-
CMPT5551	180	160	6.0	50	120	80	250	5.0	10	0.2	50	6.0	100	8.0	
PNP															
CMPT6520	350	350	5.0	50	250	30	200	10	30	1.0	50	6.0	40	-	-
CMPTA92	300	300	5.0	250	200	25	-	10	30	0.5	20	6.0	50	-	-
CMPT5401	160	150	5.0	50	120	60	240	5.0	10	0.5	50	6.0	100	8.0	-
RF Osci NPN	illator	D ev	ices are	listed ir	n order d	of desc	ending	f _T .							7
CMPT5179	20	12	2.5	20	15	25	250	1.0	3.0	0.4	10	1.0	900	4.5	-
СМРТН10	30	25	3.0	100	25	60	-	10	4.0	0.5	4.0	0.7	650	-	-

Darlington NPN

30

15

3.0

Devices are listed in order of descending $h_{\mbox{\scriptsize FE}}$.

15

20

1.0

3.0

0.4

10 1.7 600 6.0

10

CMPT6427	40	40	12	50	30	20,000	200,000	5.0	100	1.5	500	7.0	130	10	
CMPTA14	30	30*	10	100	30	20,000		5.0	100	1.5	100	-	125	-	-
CMPTA13	30	30*	10	100	30	10,000	-	5.0	100	1.5	100	-	125	-	-
CMPTA27	60	60*	10	100	50	10,000		5.0	100	1.5	100		125	-	-
CMPTA29	100	100	12	100	80	10,000	-	5.0	100	1.5	100	8.0	125	-	-

PNP

CMPT918

CMPTA64	30	30*	10	100	30	20,000	-	5.0	100	1.5	100	-	125	-	-
CMPTA63	30	30*	10	100	30	10,000	-	5.0	100	1.5	100	-	125	-	-

Shaded areas indicate Darlington.

Small Signal MOSFET

SOT-23 Case

TYPE NO.	r _{DS(ON}) @ I _D	VGS	(th)	BVDSS	C _{iss}	C _{rss}	ton	^t OFF
	(Ω)	(A)	(V)	(V)	(pF)	(pF)	(ns)	(ns)
	MAX	te to 4 days	MIN .	MAX	MIN	MAX	: MAX	MAX	MAX
2N7002	7.5	0.5	1.0	2.5	60	50	5.0	20	20

Junction FETs

SOT-23 Case

TYPE NO.	BVGSS	o!	SS	Vgs	(OFF)	fos(on)	NF **TYP	toff
	(v) Min	(n MIN	va) MAX	(MIN	v) MAX	(Ω) MAX	(dB) MAX	(ns) MAX
Amplifiers I Channel						Management I man	•	Marini de de Caración de la composición dela composición dela composición de la composición dela composición dela composición de la composición de la composición dela composición de la composición dela c
CMPF4416A	35	5.0	15	2.5	6.0	-	2.0	-
CMPF5484*	25	1.0	5.0	0.3	3.0	-	3.0	-
CMPF5485	25	4.0	10	0.5	4.0	-	2.0	-
CMPF5486*	25	8.0	20	2.0	6.0	-	2.0	-
CMPFJ310*	25	24	60	2.0	6.5	-	1.5**	-
Channel								
CMPF5460*	40	1.0	5.0	0.75	6.0	-	2.5	-
CMPF5461*	40	2.0	9.0	1.0	7.5	-	2.5	-
CMPF5462*	40	4.0	16	1.8	9.0	-	2.5	-
witches / Cho	oppers							
CMPF4391	40	50	150	4.0	10	30	-	20
CMPF4392	40	25	75	2.0	5.0	60	-	35
CMPF4393	40	5.0	30	0.5	3.0	100	-	50
Channel				,				
CMPFJ174*	30	2.0	100	5.0	10	85	-	-
CMPFJ175*	30	7.0	60	3.0	6.0	125	-	-
CMPFJ176*	30	2.0	25	1.0	4.0	250	-	-

^{*}Available on special order, consult factory.

Transistors SOT-23 Case Proelectron Series 350mW

		BV _{CBO}	BV _{CEO}	BV _{EBO}		® V _{C8}	h	FE (O V _{CE}	P Ic	V _{CE} (SAT)		Cop	1,	NF	t _{OFF}	MARKING	SIMILAR
TYPE NO.	DESCRIPTION	(VOLTS) MIN	(VOLTS) MIN	(VOLTS) Min	(nA) MAX	(VOLTS)	MIN	MAX	(VOLTS)	(mA)	(VOLTS) Max	(mA)	(pF) MAX	(MHz) TYP	(dB) MAX	(ns) MAX	CODE	LEADED DEVICE
BC807	PNP HIGH CURRENT	50*	45	5.0	100	20	100	600	1.0	100	0.70	500	8.0	100		-		BC327
BC807.16	PNP HIGH CURRENT	50°	45	5.0	100	20	100	250	1.0	100	0.70	500	8.0	100	-	 -	5A	BC327.16
BC807.25	PNP HIGH CURRENT	50*	45	5.0	100	20	160	400	1.0	100	0.70	500	8.0	100	l	 _	5B	BC327.25
BC807.40	PNP HIGH CURRENT	50*	45	5.0	100	20	250	600	1.0	100	0.70	500	8.0	100	-	-	5C	BC327.40
BC808	PNP HIGH CURRENT	30*	25	5.0	100	20	100	600	1.0	100	0.70	500	8.0	100		_		BC328
BC808.16	PNP HIGH CURRENT	30*	25	5.0	100	20	100	250	1.0	100	0.70	500	8.0	100		-	5E	BC328.16
BC808.25	PNP HIGH CURRENT	30*	25	5.0	100	20	160	400	1.0	100	0.70	500	8.0	100	-	_	5F	BC328.25
BC808.40	PNP HIGH CURRENT	30*	25	5.0	100	20	250	600	1.0	100	0.70	500	8.0	100		 	5G	BC328.40
BC817	NPN HIGH CURRENT	50°	45	5.0	100	20	100	600	1.0	100	0.70	500	5.0	200	-	-		BC337
BC817.16	NPN HIGH CURRENT	50*	45	5.0	100	20	100	250	1.0	100	0.70	500	5.0	200	-	 —	6A	BC337.16
BC817.25	NPN HIGH CURRENT	50*	45	5.0	100	20	160	400	1.0	100	0.70	500	5.0	200	 —	-	6B	BC337.25
BC817.40	NPN HIGH CURRENT	50*	45	5.0	100	20	250	600	1.0	100	0.70	500	5.0	200		-	6C	BC337.40
BC818	NPN HIGH CURRENT	30°	25	5.0	100	20	100	600	1.0	100	0.70	500	5.0	200				BC338
BC818.16	NPN HIGH CURRENT	30*	25	5.0	100	20	100	250	1.0	100	0.70	500	5.0	200	-	-	6E	BC338.16
BC818.25	NPN HIGH CURRENT	30*	25	5.0	100	20	160	400	1.0	100	0.70	500	5.0	200	 	-	6F	BC338.25
BC818.40	NPN HIGH CURRENT	30*	25	5.0	100	20	250	600	1.0	100	0.70	500	5.0	200	l—		6G	BC338.40
BC846	NPN LOW NOISE	80	65	6.0	15	30	110	450	5.0	2.0	0.60	100	2.5	300	10			BC546
BC846A	NPN LOW NOISE	80	65	6.0	15	30	110	220	5.0	2.0	0.60	100	2.5	300	10	l —	1A	BC546A
BC846B	NPN LOW NOISE	80	65	6.0	15	30	200	450	5.0	2.0	0.60	100	2.5	300	10	-	1B	BC546B
BC847	NPN LOW NOISE	50	45	6.0	15	30	110	800	5.0	2.0	0.60	100	2.5	300	10	-	ļ	BC547
BC847A	NPN LOW NOISE	50	45	6.0	15	30	110	220	5.0	2.0	0.60	100	2.5	300	10		1E	BC547A
BC847B	NPN LOW NOISE	50	45	6.0	15	30	200	450	5.0	2.0	0.60	100	2.5	300	10	l –	1F	BC547B
BC847C	NPN LOW NOISE	50	45	6.0	15	30	420	800	5.0	2.0	0.60	100	2.5	300	10	 _	1G	BC547C
BC848	NPN LOW NOISE	30	30	5.0	15	30	110	800	5.0	2.0	0.60	100	2.5	300	10	_		BC548
BC848A	NPN LOW NOISE	30	30	5.0	15	30	110	220	5.0	2.0	0.60	100	2.5	300	10	-	1J	BC548A
BC848B	NPN LOW NOISE	30	30	5.0	15	30	200	450	5.0	2.0	0.60	100	2.5	300	10	l-	1K	BC548B
BC848C	NPN LOW NOISE	30	30	5.0	15	30	420	800	5.0	2.0	0.60	100	2.5	300	10		1L	BC548C
BC849	NPN LOW NOISE	30	30	5.0	15	30	200	800	5.0	2.0	0.60	100	2.5	300	4.0	_		BC549
BC849B	NPN LOW NOISE	30	30	5.0	15	30	200	450	5.0	2.0	0.60	100	2.5	300	4.0	l	2B	BC549B
BC849C	NPN LOW NOISE	30	30	5.0	15	30	420	800	5.0	2.0	0.60	100	2.5	300	4.0		2C	BC549C
BC850	NPN LOW NOISE	50	50	5.0	15	30	200	800	5.0	2.0	0.60	100	2.5	300	3.0			BC550
BC850B	NPN LOW NOISE	50	50	5.0	15	30	200	450	5.0	2.0	0.60	100	2.5	300	3.0	 _	2F	BC550B
BC850C	NPN LOW NOISE	50	50	5.0	15	30	420	800	5.0	2.0	0.60	100	2.5	300	3.0	-	2G	BC550C
BC856	PNP LOW NOISE	80	65	5.0	15	30	75	800	5.0	2.0	0.65	100	4.5	150	10	 _		BC556
BC856A	PNP LOW NOISE	80	65	5.0	15	30	125	250	5.0	2.0	0.65	100	4.5	150	10	_	3A	BC556A
BC856B	PNP LOW NOISE	80	65	5.0	15	30	220	475	5.0	2.0	0.65	100	4.5	150	10		3B	BC556B
BC857	PNP LOW NOISE	50	45	5.0	15	30	75	800	5.0	2.0	0.65	100	4.5	150	10	_	l	BC557
BC857A	PNP LOW NOISE	50	45	5.0	15	30	125	250	5.0	2.0	0.65	100	4.5	150	10	l —	3E	BC557A
BC857B	PNP LOW NOISE	50	45	5.0	15	30	220	475	5.0	2.0	0.65	100	4.5	150	10	 	3F	BC557B
BC857C	PNP LOW NOISE	50	45	5.0	15	30	420	800	5.0	2.0	0.65	100	4.5	150	10	l —	3G	BC557C
BC858	PNP LOW NOISE	30	30	5.0	15	30	75	800	5.0	2.0	0.65	100	4,5	150	10	_		BC558
BC858A	PNP LOW NOISE	30	30	5.0	15	30	125	250	5.0	2.0	0.65	100	4.5	150	10		3J	BC558A

SMD Transistors SOT-23 Case 350mW Proelectron Series—Cont'd

TYPE NO.	DESCRIPTION	BV _{CBO} (VOLTS) MIN	BV _{CEO} (VOLTS) MIN	BV _{EBO} (VOLTS) MIN	I _{CBO} (nA) MAX	OV _{CB} (VOLTS)	MIN h _F	e "	@ V _{CE} (® i _C (mA)	V _{CE} (SAT) (VOLTS) MAX	[⊋] l _c (mA)	C _{ob} (pF) MAX	f _T (MHz) TYP	NF (dB) MAX	t _{OFF} (ns) MAX	CODE	LEADE DEVICE
3C858B	PNP LOW NOISE	30	30	5.0	15	30	220	475	5.0	2.0	0.65	100	4.5	150	10	-	3K	BC558
3C858C	PNP LOW NOISE	30	30	5.0	15	30	420	800	5.0	2.0	0.65	100	4.5	150	10	****	3L	BC558
C859	PNP LOW NOISE	30	30	5.0	15	30	125	800	5.0	2.0	0.65	100	4.5	150	4.0	<u> </u> —	1	BC559
C859A	PNP LOW NOISE	30	30	50	15	30	125	250	5.0	2.0	0.65	100	4.5	150	40		4A	BC559
C859B	PNP LOW NOISE	30	30	5.0	15	30	220	475	5.0	20	0.65	100	4.5	150	4.0	-	4B	BC559
2859C	PNP LOW NOISE	30	30	5.0	15	30	420	800	50	2.0	0.65	100	4.5	150	4.0	-	4C	BC559
2860	PNP LOW NOISE	50	45	50	15	30	125	800	5.0	20	0.65	100	4.5	150	30	l —	1	BC560
C860A	PNP LOW NOISE	50	45	5.0	15	30	125	250	5.0	2.0	0.65	100	4.5	150	3.0	l —	4E	BC560
C860B	PNP LOW NOISE	50	45	5.0	15	30	230	475	5.0	2.0	0.65	100	4.5	150	3.0	-	4F	BC560
C860C	PNP LOW NOISE	50	45	5.0	15	30	420	800	5.0	20	0 65	100	4.5	150	30		4G	BC56
CF29	PNP LOW NOISE	32	32	5.0	100	32	120	260	5.0	2.0	0 30	10	4.5	150	4.0	l	C7	1_
CF30	PNP LOW NOISE	32	32	50	100	32	215	500	5.0	2.0	0.30	10	4.5	150	4.0	l —	C8	-
CF32	NPN LOW NOISE	32	32	5.0	100	32	200	450	5.0	2.0	0.25	10	2.5	300	4.0	!	D7	1_
CF33	NPN LOW NOISE	32	320	5.0	100	32	420	800	5.0	2.05	0.25	105	2.5	300	4.0	_	D8	1
CF70	PNP LOW NOISE	50					215	500			0.23	10		150		_	H7	-
	==		45	5.0	100	20			5.0	2.0			4.5		4.0	_	1	-
CF81	NPN LOW NOISE	50	45	5.0	100	20	420	800	5.0	2.0	0.25	10	2.5	300	4.0	I —	K9	1-
CV26	PNP DARLINGTON	40	30	10	100	30	20,000	_	5.0	100	1.0	100	3.5	220	-		FD	MPSA
CV27	NPN DARLINGTON	40	30	10	100	30	20,000	-	5.0	100	10	100	3.5	220		I —	FF	MPSA
CV46	PNP DARLINGTON	80	60	10	100	30	10.000	-	5.0	100	10	100	3.5	220	-		FE	MPS/
CV47	NPN DARLINGTON	80	60	10	100	30	10,000		5.0	100	1.0	100	3.5	220			FG	MPSA
CV71	NPN LOW NOISE	80	60	5.0	100	20	110	220	5.0	2.0	0.25	10	2.5	300	10	I —	K7	
CV72	NPN LOW NOISE	80	60	5.0	100	20	200	450	5.0	2.0	0.25	10	2.5	300	10	l_	K8	1_
CW29	PNP LOW NOISE	32	32	5.0	100	32	120	260	5.0	2.0	0.30	10	4.5	150	10	1_	C1	1_
CW30	PNP LOW NOISE	32	32	5.0	100	32	215	500	5.0	2.0	0.30	10	4.5	150	10	1	C2	1
																_		1-
CW31	NPN LOW NOISE	32	32	5.0	100	32	110	220	5.0	2.0	0.25	10	2.5	300	10	_	D1	1-
CW32	NPN LOW NOISE	32	32	5.0	100	32	200	450	5.0	2.0	0.25	10	2.5	300	10	1-	D2	1-
CW33	NPN LOW NOISE	32	32	5.0	100	32	420	800	5.0	2.0	0.25	10	2.5	300	10	-	D3	1-
CW60	NPN LOW NOISE	32*	32	5.0	20	32	130	630	5.0	2.0	0.55	50	2.5	250	6.0	-		1-
CW60A	NPN LOW NOISE	32*	32	5.0	20	32	120	220	5.0	2.0	0.55	50	2.5	250	6.0		AA	-
CW60B	NPN LOW NOISE	32*	32	5.0	20*	32	180	310	5.0	2.0	0.55	50	2.5	250	6.0	_	AB	_
CW60C	NPN LOW NOISE	32*	32	5.0	20*	32	250	460	5.0	2.0	0.55	50	2.5	250	6.0	_	AC	_
												50						
CW60D	NPN LOW NOISE	32*	32	5.0	20*	32	380	630	5.0	2.0	0.55		2.5	250	6.0	-	AD	
CW61	PNP LOW NOISE	32*	32	5.0	20*	32	120	630	5.0	2.0	0.55	50	4.5	180	6.0	-	1	
CW61A	PNP LOW NOISE	32*	32	5.0	20*	32	120	220	5.0	2.0	0.55	50	4.5	180	6.0	-	BA	-
CW61B	PNP LOW NOISE	32*	32	5.0	20*	32	180	310	5.0	2.0	0.55	50	4.5	180	6.0	-	BB	1-
CW61C	PNP LOW NOISE	32*	32	5.0	20*	32	250	460	5.0	2.0	0.55	50	4.5	180	6.0		BC	_
CW61D	PNP LOW NOISE	32*	32	5.0	20*	32	380	630	5.0	2.0	0.55	50	4.5	180	6.0	_	BD	1-
CW65	NPN HIGH CURRENT	60	32	5.0	20	32	100	630	1.0	100	0.70	500	6.0	170			100	1_
BCW65A	NPN HIGH CURRENT	60	32	5.0	20	32	100	250	1.0	100	0.70	500	6.0	170	!	i	EA	1
												500			_	_		1
CW65B	NPN HIGH CURRENT	60	32	5.0	20	32	160	400	1.0	100	0.70		6.0	170	(1	EB	1
BCW65C	NPN HIGH CURRENT	60	32	5.0	20	32	250	630	1.0	100	0.70	500	6.0	170	-		EC	
CW66	NPN HIGH CURRENT	75	45	5.0	20	45	100	630	1.0	100	0.70	500	6.0	170	-	-		-
CW66F	NPN HIGH CURRENT	75	45	5.0	20	45	100	250	1.0	100	0.70	500	6.0	170	-	l—	EF	
BCW66G	NPN HIGH CURRENT	75	45	5.0	20	45	160	400	1.0	100	0.70	500	6.0	170	-	1-	EG	_
CW66H	NPN HIGH CURRENT	75	45	5.0	20	45	250	630	1.0	100	0.70	500	6.0	170	l —		EH	
BCW67	PNP HIGH CURRENT	45	32	5.0	20	32	100	630	1.0	100	0.70	500	6.0	200	_	l_	1	-
CW67A	PNP HIGH CURRENT	45	32	5.0	20	32	100	250	1.0	100	0.70	500	6.0	200	_	_	DA	_
CW67B	PNP HIGH CURRENT	45	32	5.0	20	32	160	400	1.0	100	0.70	500	6.0	200		l	DB	
												500				_		1-
CW67C	PNP HIGH CURRENT	45	32	5.0	20	32	250	630	1.0	100	0.70		6.0	200	_		DC	
CW68	PNP HIGH CURRENT	60	45	5.0	20	45	100	630	1.0	100	0.70	500	6.0	200		l —	1	
CW68F	PNP HIGH CURRENT	60	45	5.0	20	45	100	250	1.0	100	0.70	500	6.0	200	-	-	DF	-
CW68G	PNP HIGH CURRENT	60	45	5.0	20	45	160	400	1.0	100	0.70	500	6.0	200		-	DG	
CW68H	PNP HIGH CURRENT	60	45	5.0	20	45	250	630	1.0	100	0.70	500	6.0	200	-	-	DH	-
CW69	PNP LOW NOISE	50	45	5.0	100	20	120	260	5.0	2.0	0.30	10	4.5	150	10	_	H1	1-
CW70	PNP LOW NOISE	50	45	5.0	100	20	215	500	5.0	2.0	0.30	10	4.5	150	10		H2	_
CW71	NPN LOW NOISE	50	45	5.0	100	20	110	220	5.0	2.0	0.35	10	2.5	300	10	l_	K1	-
CW72	NPN LOW NOISE	50	45	5.0	100	20	200	450	5.0	2.0	0.25	10	2.5	300	10	I	K2	_
	111 11 2011 110102						200	100			0.20			1000		1	1	1-
CW81	NPN LOW NOISE	50	45	5.0	100	20	420	800	5.0	2.0	0.25	10	2.5	300	10	-	K3	1-
CW89	PNP LOW NOISE	80	60	5.0	100	20	120	260	5.0	2.0	0.30	10	4.5	150	10		Н3	-
CX17	PNP HIGH CURRENT	50*	45	5.0	100	20	100	600	10	100	0.62	500	8.0	100	-	-	T1	
CX18	PNP HIGH CURRENT	50*	25	5.0	100	20	100	600	1.0	100	0.62	500	8.0	100	-	-	T2	-
CX19	NPN HIGH CURRENT	50°	45	5.0	100	20	100	600	1.0	100	0.62	500	5.0	200		l —	U1	
CX20	NPN HIGH CURRENT	30*	25	5.0	100	20	100	600	1.0	100	0.62	500	5.0	200	****	_	U2	
CX70	NPN LOW NOISE	45	45	5.0	20*	45	120	630	5.0	2.0	0.55	50	2.5	250	6.0		1	-
CX70G	NPN LOW NOISE	45*	45	5.0	20.	45	120	220	5.0	2.0	0.55	50	2.5	250	6.0	_	AG	1_
CX70G CX70H	NPN LOW NOISE	45*	45		20	45	180	310	5.0	2.0	0.55	50	2.5	250	6.0	_	AH	_
				5.0										100		-	1	1
CX70J	NPN LOW NOISE	45*	45	5.0	20*	45	250	460	5.0	2.0	0.55	50	2.5	250	6.0	1-	AJ	1-
CX70K	NPN LOW NOISE	45*	45	5.0	20*	45	380	630	5.0	2.0	0.55	50	2.5	250	6.0		AK	
CX71	PNP LOW NOISE	45*	45	5.0	20*	45	120	630	5.0	2.0	0.55	50	4.5	180	6.0		1	-
CX71G	PNP LOW NOISE	45*	45	5.0	20*	45	120	220	5.0	2.0	0.55	50	4.5	180	6.0		BG	-
CX71H	PNP LOW NOISE	45*	45	5.0	20*	45	180	310	5.0	2.0	0.55	50	4.5	180	6.0	-	BH	_
CX71.I	PNP LOW NOISE	45*	45	5.0	20*	45	250	460	5.0	2.0	0.55	50	4.5	180	6.0	_	BI	1_
CX71K	PNP LOW NOISE	45*	45	5.0	20.	45	380	630	5.0	2.0	0.55	50	4.5	180	6.0	1_	BK	1_
	1								!						0.0			1
SR13	NPN AMPL/SWITCH	60	40	5.0	30	50	100	300	10	150	1.60	500	8.0	250MIN	-	285	U7	2N22
SR14	NPN AMPL/SWITCH	75	40	6.0	10	60	100	300	10	150	1.00	500	8.0	300MIN	-	285	U8	2N22
SR15	PNP AMPL/SWITCH	60	40	5.0	20	50	100	300	10	150	1.60	500	8.0	200MIN		100	177	2N29
SR16	PNP AMPL/SWITCH	60	60	5.0	10	50	100	300	10	150	1.60	500	8.0	200MIN		100	T8	2N29
SR17	NPN AMPL/SWITCH	60	40	6.0	50	30	50	150	1.0	10	0.30	50	4.0	250MIN	l_	225	U9	1_
SR17A		60			-	30	1 00	300		10	0.30	50	4.0	300MIN		250	U92	1
ISH1/A ISV52	NPN AMPL/SWITCH NPN SAT SWITCH		40	6.0	50		100		1.0						-			1
		20	12	5.0	100	10	40	120	1.0	10	0.40	50	4.0	500	-	18	B2	2N23

SELECT GUIDE

²/₃ The Size of SOT-23 Case!

Small Signal Transistors

SOT-323 Case, 250mW

The second second with the second sec	weed all provides the property of the property	BVCBO (V)	BVCEO (V)	BVEBO (V)	ICBO ICEV (nA) MAX	e vcb	Service on Service of	FE MAX	O'VCE	@1 ₆ (mA)	VCE(SA (V) MAX	(mA)	C _{ob} (pF) MAX	(MHz)	NF (dB) MAX
CMST2222A	NPN AMPL/SWITCH	75	40	6.0	10	60	100	300	10	150	1.0	500	8.0	300	4.0
CMST2907A	PNP AMPL/SWITCH	60	60	5.0	10	50	100	300	10	150	1.6	500	8.0	200	-
СМЅТЗ904	NPN AMPL/SWITCH	60	40	6.0	50*	30	100	300	1.0	10	0.3	50	4.0	300	5.0
СМЅТЗ906	PNP AMPL/SWITCH	40	40	5.0	50*	30	100	300	1.0	10	0.4	50	4.5	250	4.0

Transistors

CERSOT-23 Case

Bottom View

- Hermetically Sealed, Ceramic Leadless Chip Carrier.
- Ultra Miniature Surface Mount Case.
- Mounts Directly on Standard SOT-23 Mounting Pads.
- Includes PrecapVisual Similar to JANTXV.

TYPE NO.	DESCRIPTION	BVCEO		усво	e inh	FE	@ VCE	@ IC	V _{CE} (SA)	r) @ Ic	Cob	ſτ	NF	toff
Record of the second of the se		(V)	*ICES (nA)	(V)	Service Services	1445 (1842) 344 (1841) - 1844 (1844) 344 - 1844 (1844) 344	(mA)	(V)	(V)	(mA)	(pF)	(MHz)	(db)	(ns)
The property of the second second	and the second s	MIN	MAX		MIN	MAX	Talkering (a)	Service Services	MAX	g Agrandet of the	MAX	MIN	MAX	MAX
CHT918	NPN RF OSC	15	10	15	20		3.0	1.0	0.4	10	1.7	600	6.0	
CHT2222A	NPN AMPL/SWITCH	40	10	60	35		0.1	10	0.3	150	8.0	300		285
					50		1.0	10	1.0	500				
					75		10	10	English of the second	enclar sile				
					100	300	150	10	ndig.					
					50	- ANT	150	1.0						
					40	grady Tea	500	10						
CHT2369A	NPN SAT SWITCH	15	400*	20	40	120	10	1.0	0.2	10	4.0	500		18
			(disk	System Objekti System	30	An all	30	0.4	0.25	30				
		uet i	الامواد بالمواوي مواد بأن يمووي المراد المرادي	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	20		100	1.0	0.5	100				
CHT2907A	PNP AMPL/SWITCH	60	10	50	75		0.1	10	0.4	150	8.0	200		100
		100	Section of the sectio		100		1.0	10	1.6	500				
	Annah hang Annah atau pada Annah atau	ender die	fy .		100		10	10						
	SAN STANDARD	1234			100	300	150	10						
	1824				50		500	10						

Small Signal Transistors

SOT-89 Case, 1.2W

TYPE NO.	вусво	BVCEO	вуЕво			hFE		@ VCE	@ lc	VCE(SAT) @ IC		Cop	fT	NF	toff
	an	BVCES		*ICES	- 00					0.0					١.,
	(V)	(V) MIN	(V)	(nA)	(V)	MIN	мах	(V)	(mA)	(V) MAX	(mA)	(pF)	(MHz)	(dB)	(ns)
	Mille	MIN	MIN	MAX		MIIN	WAX	<u> </u>		WAX	L	MAX	MIN	MAX	MAX
^	. D	/	N 1 ii	e:/C	4										
Genera NPN	Purp	ose A	4mpii	ner/5	witch	ies	Devic	es are li	sted in	order of	desce	nding	breako	nwot	/oltag
CXT2222A	75	40	6.0	10	60	100	300	10	150	1.0	500	8.0	300	4.0	285
CXT3904	60	40	6.0	50*	30	100	300	1.0	10	0.3	50	4.0	300	5.0	250
PNP					L	L	l	1	L			L	1	L	
CXT2907A	60	60	5.0	10	50	100	300	10	150	1.6	500	8.0	200	-	100
CXT3906	60	40	6.0	50*	30	100	300	1.0	10	0.3	50	4.0	300	5.0	250
	L	l						1							L
High Cı	urrent	Dev	vices are	e listed i	n order	of desc	ending	j breakd	own vo	oltage.					
NPN	Τ					1		T		т	T				
CXT3019	140	80	7.0	10	90	100	300	10	150	0.5	500	12	100	4.0	-
CBCX68	25	20	5.0	100	25	85	375	1.0	500	0.5	1,000		65	-	<u> </u>
PNP															
CXT4033	80	80	5.0	50	60	100	300	5.0	100	0.5	500	20	100	-	-
СВСХ69	25	20	5.0	100	25	85	375	1.0	500	0.5	1,000	-	65	-	-
High Vo	Itage	Devi	ces are	listed in	order o	f desce	nding	breakdo	wn vol	tage.					
NPN										•					
CXTA42	300	300	6.0	100	200	40	-	10	30	0.5	20	4.0	50	-	-
CXT5551	180	160	6.0	50	120	80	250	5.0	10	0.2	50	6.0	100	8.0	-
PNP															
CXTA92	300	300	5.0	250	200	25	-	10	30	0.5	20	6.0	50	-	-
CXT5401	160	150	5.0	50	120	60	240	5.0	10	0.5	50	6.0	100	8.0	-
Darling	ton	Devices	are list	ed in ord	der of de	escendi	ng hF	<u>.</u>							
Jai iii ig															
_			44.00	100	30	20,000	-	5.0	100	1.5	100	-	125	-	-
VPN CXTA14	30	30*	10	100	00	'		1	1						
NPN	30 60	30* 60*	10 10	100	50	10,000	-	5.0	100	1.5	100	-	-	-	-
VPN CXTA14	1					10,000	-	5.0	100	1.5	100	-	-	-	

Shaded areas indicate Darlington.

Small Signal Transistors

SOT-223 Case, 2.0W

TYPE NO.	вусво	BVCEO	BVEBO		@ V _{CB}	h	E	@ V _{CE}	@ lc	V _{CE} (SA	T) @ Ic	Cob	1 _T	NF	toff
and the second	Continues and the Continues of the Conti	*BVCES	Marie Aliandera Part Olimbera	*ICES	A construction of the cons	Particles at Martin at the		Missory is a second	r die _{de lee}	The same of the sa					
Fire Sharp of the State of the	(v)	(V)	(v)	(nA)	(x)	Take Salaharan	Nectorial March	(۷)	(mA)	(V)	(mA)	(pF)	(MHz)	(dB)	(ns)
San	MIN	MIN	MIN	MAX	N. Walter	MIN	MAX	erativitation of	in white help	MAX	Trans.	MAX	MIN	MAX	MAX
General	Dur		\ mnli	fior/S	witch		5	0	-44-1				l l	4	
NPN	ruip	iose A	Ampin	iiei/S	WILCI	162	Devic	es are III	stea in	order of	aesce	naing	break	own v	voitag
CZT2222A	75	40	6.0	10	60	100	300	10	150	1.0	500	8.0	300	4.0	285
CZT3904	60	40	6.0	50*	30	100	300	1.0	10	0.3	50	4.0	300	5.0	250
PNP															
CZT2907A	60	60	5.0	10	50	100	300	10	150	1.6	500	8.0	200	-	100
CZT3906	60	40	6.0	50*	30	100	300	1.0	10	0.3	50	4.0	300	5.0	250
											-		•		
High Cւ NPN	ırrent	Dev	vices are	e listed i	n order	of desc	ending	breakd	own vo	oltage.					
CZT3019	120	80	7.0	10	90	100	300	10	150	0.5	500	12	100	4.0	Γ-
CBCP68	25	20	5.0	100	25	85	375	1.0	500	0.5	1,000	-	65	-	-
PNP	•														
CZT4033	80	80	5.0	50	60	100	300	5.0	100	0.5	500	20	100	-	-
СВСР69	25	20	5.0	100	25	85	375	1.0	500	0.5	1,000	-	65	-	-
High Vo NPN	Itage	Devi	ces are	listed in	order o	f desce	nding	breakdo	wn vol	tage.					
CZTA44	450	400	6.0	100	400	50	200	10	10	0.75	50	7.0	20	-	Ι-
CZTA42	300	300	6.0	100	200	40	-	10	30	0.5	20	4.0	50	-	-
CZT5551	180	160	6.0	50	120	80	250	5.0	10	0.2	50	6.0	100	8.0	-
PNP					•										
CZTA92	300	300	5.0	250	200	25	-	10	30	0.5	200	6.0	50	-	-
CZT5401	160	150	5.0	50	120	60	240	5.0	10	0.5	50	6.0	100	8.0	-
	_										•		•	•	
Darling [:] NPN	ton	Devices	are list	ed in ord	der of de	escendi	ng h _F	Ē							
CZTA14	30	30*	10	100	.30	20,000	a or the re-	5.0	100	1.5	100	-	125	The second	Mingraphy Mingraphy
CZT2000	200	200*	10	500	180	3,000	Markey On the P	5.0	160	1.1	80		man and	Protection of	2
PNP	ئىسىدىناناتلانىيە	r min	Maria de la compansión de	Command Salar	<u> </u>	**************************************	In plant was	*****************		Park, A.T. Who	***************************************	Emilion della		2011	erin il.

Shaded areas indicate Darlington.

Note: SOT-223 also mounts directly on DPAK solder pads.

Power TransistorsSOT-223 Case

A Power Transistor Chip in a Small Signal Package!

TYPI	E NO.	DESCRIPTION	lс	PD	вусво	BVCEO	h	h _{FE}		V _{CE(SA}	T) [@] lc	fŢ
			(A)	(W)	(V)	(V)				(V)	(A)	(MHz)
NPN	PNP		MAX		MIN	MIN	MIN	MAX		MAX		MIN
CZT31C	CZT32C	AMPL/SWITCH	3.0	2.0	100	100	10	100	3.0	1.2	3.0	3.0
CZT122	CZT127	DARLINGTON	5.0	2.0	100	100	1,000		3.0	4.0	5.0	4.0
CZT3055	CZT2955	AMPL/SWITCH	6.0	2.0	100	70	20	70	4.0	1.1	4.0	2.5
CZT5338		HIGH CURRENT SWITCH	5.0	2.0	100	100	30	120	2.0	1.2	5.0	30

Shaded areas indicate Darlington.

Power Transistors

DPAK Case

TYPE	ENO.	lc .	PD	BV _{CBO}	BVCEO	h	FE	@ lc	VCE(SA	т) ^{@ І} с	fτ
The second secon		get a god and		*BV _{CEV}					9.0		*TYP
NPN	PNP	(A)	(W)	(V)	8	MIN	MAX	(A)	(V) MAX	(A)	(MHz) MIN
General	Purpose	Ampli	fier/Sv	vitches	Device	es are liste	ed in order	of descen	ding break	down voltag	е.
CJD31C	CJD32C	3.0	15	100	100	10	50	3.0	1.2	3.0	3.0
CJD41C	CJD42C	6.0	20	100	100	15	75	3.0	1.5	6.0	3.0
CJD44H11	CJD45H11	8.0	20	80	80	40		4.0	1.0	8.0	50*
CJD3055	CJD2955	10	20	70	60	20	100	4.0	1.1	4.0	2.0
CJD200	CJD210	5.0	12.5	40	25	45	180	2.0	1.8	5.0	65
High Volt	age Dev	ices are	listed in o	order of de	scending	breakdowi	n voltage.				
CJD13003		1.5	15	700*	400	5.0	25	1.0	3.0	1.5	4.0
CJD50		1.0	15	500	400	30	150	0.3	1.0	1.0	10
CJD340	CJD350	0.5	15	300	300	30	240	0.05			
CJD47		1.0	15	350	250	30	150	0.3	1.0	1.0	10
Darlingto	on										
CJD112	CJD117	2.0	20	100	100	1,000	12,000	2.0	2.0	2.0	25
CJD122	CJD127	8.0	20	100	100	1,000	12,000	4.0	4.0	8.0	4.0

Shaded areas indicate Darlington.

Switching Diodes

TYPE NO.	DESCRIPTION	YRRM	lo	VF	[†] rr	
		(V) MAX	(mA) MAX	(V) MAX	(mA)	(ns) MAX
	SOD-80 Case Devices are listed	in order of as	scending bre	eakdown vo	oltage.	
CLL2003	HIGH VOLTAGE SWITCHING DIODE	250	250	1.0	100	50
CLL914	SWITCHING DIODE	100	200	1.0	10	4.0
CLL4448	SWITCHING DIODE	100	200	1.0	100	4.0
CLL4150	HIGH CURRENT, SWITCHING DIODE	50	300	1.0	200	4.0
CMPD4150	SOT-23 Case Devices are listed					4.0
2 3	SOI-23 Case Devices are listed	in order of as	scending bro	eakdown vo	oltage.	
	SINGLE SWITCHING DIODE	50	300	1.0	200	4.0
CMPD2836	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE	50 75	300 200	1.0 1.0	200 50	6.0
CMPD2836 CMPD2838	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE	50 75 75	300 200 200	1.0 1.0 1.0	200 50 50	6.0 6.0
CMPD2836 CMPD2838 CMPD1001	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE	50 75 75 90	300 200 200 250	1.0 1.0 1.0 1.0	200 50 50 200	6.0 6.0 50
CMPD2836 CMPD2838 CMPD1001	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE	50 75 75	300 200 200	1.0 1.0 1.0	200 50 50	6.0 6.0
CMPD2836 CMPD2838 CMPD1001 CMPD1001A	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE	50 75 75 90	300 200 200 250	1.0 1.0 1.0 1.0	200 50 50 200	6.0 6.0 50
CMPD2836 CMPD2838 CMPD1001 CMPD1001A CMPD1001S	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE DUAL HIGH CURRENT DIODE, COMMON ANODE	50 75 75 90	300 200 200 250 250	1.0 1.0 1.0 1.0	200 50 50 200 200	6.0 6.0 50
CMPD2836 CMPD2838 CMPD1001 CMPD1001A CMPD1001S CMPD914	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE DUAL HIGH CURRENT DIODE, COMMON ANODE DUAL HIGH CURRENT, IN SERIES	50 75 75 90 90	300 200 200 250 250 250	1.0 1.0 1.0 1.0 1.0	200 50 50 200 200 200	6.0 6.0 50 50
CMPD2836 CMPD2838 CMPD1001 CMPD1001A CMPD1001S CMPD914 CMPD4448	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE DUAL HIGH CURRENT DIODE, COMMON ANODE DUAL HIGH CURRENT, IN SERIES SINGLE SWITCHING DIODE	50 75 75 90 90 90	300 200 200 250 250 250 250	1.0 1.0 1.0 1.0 1.0 1.0	200 50 50 200 200 200 10	6.0 6.0 50 50 50 4.0
CMPD2836 CMPD1838 CMPD1001 CMPD1001A CMPD1001S CMPD914 CMPD4448 CMPD7000	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE DUAL HIGH CURRENT DIODE, COMMON ANODE DUAL HIGH CURRENT, IN SERIES SINGLE SWITCHING DIODE SINGLE SWITCHING DIODE	50 75 75 90 90 90 100 100	300 200 200 250 250 250 200 200	1.0 1.0 1.0 1.0 1.0 1.0 1.0	200 50 50 200 200 200 10	6.0 6.0 50 50 50 4.0 4.0
CMPD4150 CMPD2836 CMPD2838 CMPD1001 CMPD1001A CMPD1001S CMPD914 CMPD4448 CMPD7000 CMPD5001 CMPD5001	SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, COMMON ANODE DUAL SWITCHING DIODE, COMMON CATHODE SINGLE HIGH CURRENT DIODE DUAL HIGH CURRENT DIODE, COMMON ANODE DUAL HIGH CURRENT, IN SERIES SINGLE SWITCHING DIODE SINGLE SWITCHING DIODE DUAL SWITCHING DIODE, IN SERIES	50 75 75 90 90 90 100 100	300 200 200 250 250 250 200 200	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	200 50 50 200 200 200 10 100	6.0 6.0 50 50 50 4.0 4.0

BAS28

CMPD2004

CMPD2004S

SOT-143 Case

SINGLE HIGH VOLTAGE SWITCHING DIODE

DUAL HIGH VOLTAGE SWITCHING DIODE, IN SERIES

BAS28	DUAL SWITCHING DIODE, ISOLATED	85	250	1.0	50	6.0
BAS56	DUAL HIGH CURRENT DIODE, ISOLATED	60	200	1.0	200	6.0

SOT-323 Case

SINGLE SWITCHING DIODE 100 200 1.0 100 4.0

300

300

200

200

1.0

1.0

100

100

50

50

Schottky Diodes

TYPE NO. CONFIG	GURATION VRRM	l _F	V _F (@ IF	t _{rr}	СТ
		*lo		1		*TYP
	(V)	(mA)	(V)	(mA)	(ns)	(pF)
	MAX	MAX	MAX		MAX	MAX

30

30

100*

200*

0.55

0.55

50

200

5.0

7.0*

15*

SOD-323 Case

High Current

	CMDSH-3	SINGLE
-	CMDSH2-3	SINGLE

SOT-23 Case

Low Current

CMPD6263	SINGLE	70	15	0.41	1.0	1.0	2.0
CMPD6263A	DUAL, COMMON ANODE	70	15	0.41	1.0	1.0	2.0
CMPD6263C	DUAL, COMMON CATHODE	70	15	0.41	1.0	1.0	2.0
CMPD6263S	DUAL, IN SERIES	70	15	0.41	1.0	1.0	2.0

High Current

CMPSH-3	SINGLE	30	100	0.45	15	5.0	7.0*
CMPSH-3A	DUAL, COMMON ANODE	30	100	0.45	15	5.0	7.0*
СМРЅН-3С	DUAL, COMMON CATHODE	30	100	0.45	15	5.0	7.0*
CMPSH-3S	DUAL, IN SERIES	30	100	0.45	15	5.0	7.0*

Low Leakage Diodes

SOD-80 Case

TYPE NO.	VRRM (V) MAX	JO (mA) MAX	IR € (πA) MAX	VRWN (V)	VF (V) MAX	F (mA)	C _T (pF) MAX
CLL457A	70	200	25	60	1.0	100	6.0
CLL459A	200	200	25	175	1.0	100	8.0
CLL3595	150	150	1.0	125	1.0	200	8.0

Stabistor Diode

SOT-23 Case

TYPE NO.	ľ	<i>(</i>)	@ l _F (mA)	0	F /) MAX	(mA)	p	n	@ l _F (mA)	O	<i>n</i>	© IF (mA)	C	F /) MAX	@ IF (mA)
CBAS17	0.580	0.680	0.1	0.665	0.760	1.0	0.725	0.820	5.0	0.750	0.840	10	0.870	0.960	100

Zener Diodes

POWER	250mW										
1.7° . 1.1											
	mini										
CASE	PREFERRED		SOD-3	323							
ZENER VOLTAGE	INDUSTRY STANDARD	@ I _{ZT} = (mA)	LOW LEVEL SHARP KNEE	@ I _{ZT} = (μΑ)							
1.8											
2.0		ŀ		1							
2.2	CMDZ5221B	20									
2.4	CMDZ5221B CMDZ5222B	20									
2.7	CMDZ5222B	20		 							
2.8	CMDZ5223B	20		1							
3.0	CMDZ5225B	20									
3.3	CMDZ5226B	20									
3,6	CMDZ5227B	20									
3.9	CMDZ5228B	20		1.							
4.3	CMDZ5229B	20									
4.7	CMDZ5230B	20	•								
5.1	CMDZ5231B	20	CMDZ5L1	500							
5.6	CMDZ5232B	20	CMDZ5L6	500							
6.0	CMDZ5233B	20									
6.2	CMDZ5234B	20	CMDZ6L2	500							
6.8	CMDZ5235B	20	CMDZ6L8	500							
7.5	CMDZ5236B	20	CMDZ7L5	500							
8.2	CMDZ5237B	20	CMDZ8L2	500							
8.7	CMDZ5238B	20	01407014								
9.1	CMDZ5239B	20	CMDZ9L1	500							
10	CMDZ5240B CMDZ5241B	20	CMDZ10L CMDZ11L	500							
12	CMDZ5241B CMDZ5242B	20	CMDZ11L CMDZ12L	500							
13	CMDZ5242B	9.5	CMDZ13L	500							
14	CMDZ5243B	9.0	OWIDZIGE	300							
15	CMDZ5245B	8.5	CMDZ15L	500							
16	CMDZ5246B	7.8	CMDZ16L	500							
17	CMDZ5247B	7.4									
18	CMDZ5248B	7.0	CMDZ18L	500							
19	CMDZ5249B	6.6		ļ							
20	CMDZ5250B	6.2	CMDZ20L	500							
22	CMDZ5251B	5.6	CMDZ22L	500							
24	CMDZ5252B	5.2	CMDZ24L	500							
25	CMDZ5253B	5.0									
27	CMDZ5254B	4.6	CMDZ27L	500							
28	CMDZ5255B	4.5									
30	CMDZ5256B	4.2	CMDZ30L	500							
33	CMDZ5257B	3.8	CMDZ33L	500							
36	CMDZ5258B	3.4	CMDZ36L	500							
39	CMDZ5259B	3.2									
43	CMDZ5260B	3.0									
47	CMDZ5261B	2.7		100 100 10							

Zener Diodes (Continued)

POWER					350mW					
		<u> </u>				Na mathiri a Timon	Show to the well-like This This	Ch. 1781. 1888		<u></u>
					^ ^					
					7 T					
					•					
CASE	PREFERRED				SOT-23	3				
ZENER VOLTAGE	INDUSTRY STANDARD	@ l _{ZT} =	LOW NOISE	@ !zt =	LOW LEVEL	@ l _{ZT} =	PROELECTRON SPECIFICATION	DUAL, @ ITT = COMMON		@ l _{ZT} =
VOLIAGE	STANDAND	(mA)	LOW LLVLL	(μ A)		(μΑ)	SPECIFICATION	(mA)	ANODE	(mA)
1.8	CMPZ5221B	20	CMPZ4614*	250	CMPZ4678*	50				AND THE STATE
2.0	CMPZ5222B	20	CMPZ4615*	250	CMPZ4679*	50	1			
2.2	CMPZ5223B	20	CMPZ4616*	250	CMPZ4680*	50				
2.4	CMPZ5224B	20	CMPZ4617*	250	CMPZ4681*	50				Sec. 28.
2.7	CMPZ5225B	20	CMPZ4618*	250	CMPZ4682*	50	\$	100		27.74
3.0	CMPZ5226B	20	CMPZ4619*	250	CMPZ4683*	50	1			
3.3	CMPZ5227B	20	CMPZ4620*	250	CMPZ4684*	50	BZX84C3V3	5.0		AND THE
3.6	CMPZ5228B	20	CMPZ4621*	250	CMPZ4685*	50	BZX84C3V6	5.0	CMPZDA3V6	5.0
3.9	CMPZ5229B	20	CMPZ4622*	250	CMPZ4686*	50	BZX84C3V9	5.0	CMPZDA3V9	5.0
4.3	CMPZ5230B	20	CMPZ4623*	250	CMPZ4687*	50	BZX84C4V3	5.0	CMPZDA4V3	5.0
4.7	CMPZ5231B	20	CMPZ4624*	250	CMPZ4688*	50	BZX84C4V7	5.0	CMPZDA4V7	5.0
5.1	CMPZ5232B	20	CMPZ4625*	250	CMPZ4689*	50	BZX84C5V1	5.0	CMPZDA5V1	5.0
5.6	CMPZ5233B	20	CMPZ4626*	250	CMPZ4690*	50	BZX84C5V6	5.0	CMPZDA5V6	5.0
6.0	CMPZ5234B	20						ar Stylling		
6.2	CMPZ5235B	20	CMPZ4627*	250	CMPZ4691*	50	BZX84C6V2	5.0	CMPZDA6V2	5.0
6.8	CMPZ5236B	20		See Sec.	CMPZ4692*	50	BZX84C6V8	5.0	CMPZDA6V8	5.0
7.5	CMPZ5237B	20			CMPZ4693*	50	BZX84C7V5	5.0	CMPZDA7V5	5.0
8.2	CMPZ5238B	20			CMPZ4694*	50	BZX84C8V2	5.0	CMPZDA8V2	5.0
8.7	CMPZ5239B	20			CMPZ4695*	50	D7V0400V4		0140704014	
9.1	CMPZ5240B	20		700000	CMPZ4696*	50	BZX84C9V1	5.0	CMPZDA9V1	5.0
10	CMPZ5241B	20		1000	CMPZ4697*	50	BZX84C10	5.0	CMPZDA10V	5.0
11	CMPZ5242B	20			CMPZ4698*	50	BZX84C11	5.0	CMPZDA11V	5.0
12	CMPZ5243B CMPZ5244B	9.5 9.0			CMPZ4699* CMPZ4700*	50	BZX84C12	5.0	CMPZDA12V CMPZDA13V	5.0
13	CMPZ5244B	8.5			CMPZ4700*	50 50	BZX84C13	5.0	CWPZDAT3V	5.0
14 15	CMPZ5245B CMPZ5246B	7.8		1	CMPZ4701*	50	BZX84C15	5.0	CMPZDA15V	5.0
16	CMPZ5246B	7.4			CMPZ4702 CMPZ4703*	50	BZX84C16	5.0	CMPZDA15V	5.0
17	CMPZ5247B CMPZ5248B	7.0			CMPZ4703** CMPZ4704*	50	BZX84C18	5.0	CMPZDA16V CMPZDA18V	5.0
18	CMPZ5249B	6.6		15.0	CMPZ4704 CMPZ4705*	50	DZ.704010	2.0	JANI ZDATOV	4.0
19	CMPZ5250B	6.2			CMPZ4705 CMPZ4706*	50	1			
20	CMPZ5251B	5.6		1000	CMPZ4700*	50	BZX84C20	5.0	CMPZDA20V	5.0
22	CMPZ5251B	5.2		- Carlo (1)	CMPZ4707	50	BZX84C22	5.0	CMPZDA20V	5.0
24	CMPZ5253B	5.0			CMPZ4708*	50	BZX84C24	5.0	CMPZDA22V	5.0
25	CMPZ5254B	4.6			CMPZ4710*	50	32,04024		J 2D/24V	1
27	CMPZ5255B	4.5			CMPZ4711*	50	BZX84C27	2.0	CMPZDA27V	2.0
28	CMPZ5256B	4.2		271.71	CMPZ47112*	50	1 22.0102,	1000	J	1000
30	CMPZ5257B	3.8		133	CMPZ4713*	50	BZX84C30	2.0	CMPZDA30V	2.0
33	CMPZ5258B	3.4			CMPZ4714*	50	BZX84C33	2.0	CMPZDA33V	2.0
36	CMPZ5259B	3.2			CMPZ4715*	50	DENO 1000		5.111 LD/100V	
39	CMPZ5260B	3.0			CMPZ4716*	50		15.5		
43	CMPZ5261B	2.7			CMPZ4717*	50	i.			The same

^{*} Available on special order; consult factory.

Zener Diodes (Continued)

POWER			500mW	·			1.0W		
)					
CASE	PREFERRED		SOD-80				MELF		
ZENER VOLTAGE	INDUSTRY STANDARD	@ I _{ZT} = (mA)	LOW LEVEL LOW NOISE	@ I _{ZT} = (μΑ)	LOW LEVEL	^{@ I} ZT ≃ (μA)	GENERAL PURPOSE	@ I _{ZT} = (mA)	
1.8	7		CLL4614*	250	CLL4678	50			
2.0			CLL4615*	250	CLL4679	50			
2.2			CLL4616*	250	CLL4680	50		1	
2.4			CLL4617*	250	CLL4681	50			
2.7			CLL4618*	250	CLL4682	50			
3.0		T	CLL4619*	250	CLL4683	50		T	
3.3	CLL5226B	20	CLL4620*	250	CLL4684	50			
3.6	CLL5227B	20	CLL4621*	250	CLL4685	50	CLL4729A	69	
3.9	CLL5228B	20	CLL4622*	250	CLL4686	50	CLL4730A	64	
4.3	CLL5229B	20	CLL4623*	250	CLL4687	50	CLL4731A	58	
4.7	CLL5230B	20	CLL4624*	250	CLL4688	50	CLL4732A	53	
5.1	CLL5231B	20	CLL4625*	250	CLL4689	50	CLL4733A	49	
5.6	CLL5232B	20	CLL4626*	250	CLL4690	50	CLL4734A	45	
6.0	CLL5233B	20						ł	
6.2	CLL5234B	20	CLL4627*	250	CLL4691	50	CLL4735A	41	
6.8	CLL5235B	20			CLL4692	50	CLL4736A	37	
7.5	CLL5236B	20		1	CLL4693	50	CLL4737A	34	
8.2	CLL5237B	20			CLL4694	50	CLL4738A	31	
8.7	CLL5238B	20			CLL4695	50		İ	
9.1	CLL5239B	20			CLL4696	50	CLL4739A	28	
10	CLL5240B	20			CLL4697	50	CLL4740A	25	
11	CLL5241B	20			CLL4698	50	CLL4741A	23	
. 12	CLL5242B	20			CLL4699	50	CLL4742A	21	
13	CLL5243B	9.5			CLL4700	50	CLL4743A	19	
14	CLL5244B	9.0			CLL4701	50		1	
15	CLL5245B	8.5			CLL4702	50	CLL4744A	17	
16	CLL5246B	7.8			CLL4703	50	CLL4745A	15.5	
17	CLL5247B	7.4			CLL4704	50			
18	CLL5248B	7.0			CLL4705	50	CLL4746A	14	
19	CLL5249B	6.6			CLL4706	50		ł	
20	CLL5250B	6.2			CLL4707	50	CLL4747A	12.5	
22	CLL5251B	5.6			CLL4708	50	CLL4748A	11.5	
24	CLL5252B	5.2			CLL4709	50	CLL4749A	10.5	
25	CLL5253B	5.0			CLL4710	50			
27	CLL5254B	4.6			CLL4711	50	CLL4750A	9.5	
28	CLL5255B	4.5			CLL4712	50			
30	CLL5256B	4.2			CLL4713	50	CLL4751A	8.5	
33	CLL5257B	3.8			CLL4714	50	CLL4752A	7.5	
36					CLL4715	50	CLL4753A*	7.0	
39					CLL4716	50	CLL4754A*	6.5	
43					CLL4717	50	CLL4755A*	6.0	
47							CLL4756A*	5.5	
51							CLL4757A*	5.0	
56				7.9			CLL4758A*	4.5	
62							CLL4759A*	4.0	
68		1				†	CLL4760A*	3.7	
75				10 20		.	CLL4761A*	3.3	
82							CLL4762A*	3.0	
91							CLL4763A*	2.8	
100		h. 1					CLL4764A*	2.5	

^{*} Available on special order; consult factory.

Central Semiconductor Corp.

SELECT GUIDE

Current Limiting Diodes

SOD-80 Case

MAXIMUM RATINGS $(T_L = 75^{\circ}C)$ SYMBOL UNITS Peak Operating Voltage POV 100 ٧ Power Dissipation 800 P_D mW Operation and Storage ٥С Junction Temperature -65 to + 200 T_{J} , T_{stq}

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

TYPE NO	REGULATOR CURRENT (1) Ip@V _T =25V (mA)		DYNAMIC IMPEDANCE Z _T @V _T =25V (MΩ)	KNEE IMPEDANCE Z _K @V _K =6.0V (MΩ)	LIMITING VOLTAGE VL@IL=0.8 Ip MIN (V)	
	MIN	NOM	MAX	MIN	MIN	MAX
CCLM0035	0.010	0.035	0.060	8.0	4.00	0.4
CCLM0130	0.050	0.130	0.210	6.0	2.00	0.6
CCLM0300	0.200 0.310 0.420		4.0	1.00	0.8	
CCLM0500	0.400 0.515 0.630		2.0	0.50	1.1	
CCLM0750	0.600	0.760	0.920	1.0	0.20	1.4
CCLM1000	0.880	1.100	1.320	0.65	0.10	1.7
CCLM1500	1.280	1.500	1.720	0.45	0.07	2.0
CCLM2000	1.680	2.000	2.320	0.35	0.05	2.3
CCLM2700	2.280	2.690	3.100	0.30	0.03	2.7
CCLM3500	3.000 3.550 4.100		0.25	0.02	3.2	
CCLM4500	3.900	4.500	5.100	0.20	0.01	3.7
CCLM5750	5.000	5.750	6.500	0.05	0.005	4.5

^{*} The Temperature Coefficient is measured between the following points: +25°C, +50°C

(1) TESTED USING THE PULSED METHOD. (PULSE WIDTH (ms) = $\frac{27.5}{I_P \text{ NOM (mA)}}$)

High Current, Current Limiting Diodes

SOD-80 Case

MAXIMUM RATINGS $(T_L = 75^{\circ}C)$ SYMBOL UNITS Peak Operating Voltage POV 50 ٧ Power Dissipation P_{D} 800 mW Operation and Storage Junction Temperature T_J, T_{stg} -65 to + 200 oС

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

TYPE NO.	REGULATOR CURRENT (1)				KNEE IMPEDANCE	LIMITING VOLTAGE	
*	Ip@V _T =25V		Z _T @V _T =25V	Z _K @V _K =6.0V	VL@IL=0.8 IPMIN		
	(mA)		(mA)		(ΚΩ)	(V)	
	MIN NOM MAX		MIN	MIN	MAX		
CCLHM080	6.56	8.2	9.84	0.32	15	3.1	
CCLHM100	8.00	10	12	0.17	6.0	3.5	
CCLHM120	9.60	9.60 12 14.4		0.08	3.0	3.8	
CCLHM150	12	15	18	0.03	2.0	4.3	

^{*} The Temperature Coefficient is measured between the following points: +25°C, +50°C

(1) TESTED USING THE PULSED METHOD. (PULSE WIDTH (ms) =
$$\frac{27.5}{\text{IpNOM (mA)}}$$
)

Rectifiers, General Purpose

1.0 to 3.0 Amperes 200 to 1000 Volts

IO (AMPS)	1.	0	2.0	3.0
@ T _A (°C)	25	25	25	25
I _{FSM} (AMPS)	30	30	60	200
CASE	SMA	SN	ИВ	SMC
V _{RRM} (VOLTS)			NEW	
200	CMR1-02M	CMR1-02	CMR2-02	CMR3-02
400	CMR1-04M	CMR1-04	CMR2-04	CMR3-04
600	CMR1-06M	CMR1-06	CMR2-06	CMR3-06
1000	CMR1-10M	CMR1-10	CMR2-10	CMR3-10
V _F MAX @ I _F = I _O	1.1V	1.1V	1.1V	1.2V
I _R MAX @ V _{RRM}	5.0μΑ	10μΑ	0.5μΑ	5.0μΑ

Rectifiers, Fast Recovery

1.0 Ampere 200 to 1000 Volts

I _O (AMPS)	1.0
@ T _A (°C)	25
I _{FSM} (AMPS)	30
CASE	SMA
V _{RRM} (VOLTS)	
200	CMR1F-02M
400	CMR1F-04M
600	CMR1F-06M
1000	CMR1F-10M

V _F MAX @ I _F = I _O	1.3V
Later and the first control of the c	

IR MAX @ VRRM	5.0μΑ
t _{rr} (200V)	150ns
t _{rr} (400V)	150ns
t _{rr} (600V)	250ns
t _{rf} (1000V)	500ns

Rectifiers, Ultra Fast

1.0 to 5.0 Amperes 100 to 600 Volts

Io (AMPS)	1.0		2.0	3.0	4.0	5.0
@T _A (°C)	25	25	25	25	25	25
I _{FSM} (AMPS)	30	30	50	150	70	70
CASE	SMA	SI	MB	SMC	DPAK	
V _{RRM} (VOLTS)						
100	CMR1U-01M	CMR1U-01	CMR2U-01	CMR3U-01		
200	CMR1U-02M	CMR1U-02	CMR2U-02	CMR3U-02	CUD3-02	CUD6-02C
400	CMR1U-04M	CMR1U-04	CMR2U-04	CMR3U-04		
600	CMR1U-06M	CMR1U-06	CMR2U-06	CMR3U-06		
V _F MAX @ I _F = I _O						
100V	1.0V	1.0V	1.0V	1.0V		
200V	1.0V	1.0V	1.0V	1.0V	1.25V	1.25V
400V	1.25V	1.25V	1.25V	1.25V		

IR MAX @ VRRM	5.0μΑ	5.0μΑ	10μΑ	5.0μΑ	20μΑ	20μΑ
t _{rr} (100V thru 200V)	35ns	50ns	50ns	50ns	35ns	35ns
t _{rr} (400V)	50ns	50ns	50ns	50ns		
t _{rr} (600V)	75ns	100ns	50ns	100ns		

1.4V

1.4V

600V

1.4V

1.4V

Rectifiers, Schottky

1.0 to 6.0 Amperes 20 to 60 Volts

I _O (AMPS)	1.0			2.	0	3.	0	6.0
@ T _A (°C)	25	25	25	25	25	25	25	25
I _{FSM} (AMPS)	30	30	10	30	10	150	75	75
CASE	SMA	SMB	SOT-89	SMB	SOT-223	SMC	DF	PAK
V _{RRM} (volts)								
20	CMSH1-20M	CMSH1-20		CMSH2-20		CMSH3-20		
40	CMSH1-40M	CMSH1-40	CXSH-4	CMSH2-40	CZSH-4	CMSH3-40	CSHD3-40	CSHD6-40C
60	CMSH1-60M	CMSH1-60		CMSH2-60		CMSH3-60	CSHD3-60	CSHD6-60C
100		CMSH1-100						
VF MAX @ IF = IO								
20V	0.5V	0.55V		0.5V		0.5V		
40V	0.5V	0.55V	0.55V	0.5V	0.55V	0.5V	0.84V	0.84V
60V	0.7V	0.7V		0.7V		0.7V	0.65V	0.65V
100V		0.85V						
IR MAX @ VRRM	500μΑ	500μΑ	1000μΑ	500μΑ	1000μΑ	500μΑ	100μΑ*	100μΑ*

^{* 40} Volt device

Bridge Rectifiers

Single Phase, Full Wave 0.5 to 1.0 Ampere 100 to 1000 Volts

Io (AMPS)	0.5		1.0	31
@ TA (°C)	25	50	50	25
IFSM (AMPS)	30	50	50	50
	#DBRIDGE™			N
CASE	HD DIP		SMDIP	NEW
VRRM (VOLTS)	GENERAL PURPOSE	GENERAL PURPOSE	FAST RECOVERY	ULTRA FAST RECOVERY
100				CBR1U-D010S
200	CBRHD-02	CBR1-D020S	CBR1F-D020S	CBR1U-D020S
400	CBRHD-04	CBR1-D040S	CBR1F-D040S	
600	CBRHD-06	CBR1-D060S	CBR1F-D060S	
1000	CBRHD-10*	CBR1-D100S	CBR1F-D100S	
				,
V _E MAX @ I _E	1.0V @ 0.4A	1.1V @ 1.0A	1.3V @ 1.0A	1.05V @ 1.0A
R MAX @ VRRM	5.0μΑ	10μΑ	10μΑ	10μΑ

200ns

300ns

500ns

50ns

t_{rr}(100V thru 400V)

trr(600V)

trr(1000v)

^{*} Available on special order only, consult factory.

SCRS (Silicon Controlled Rectifiers)

0.8 Ampere RMS 400 Volts

I _T (AMPS)	0.8			
@ T _C (°C)	67	67		
I _{TSM} (AMPS)	10 10			
0405	001.00	201.000		
CASE	SOT-23	SOT-223		
V _{RRM} (VOLTS)		NEW		
400	CMPS5064	CZS5064		

J _{GT}	200μΑ	200μΑ
У _{GT}	0.8V	0.8V
	5.0mA	5.0mA

Triacs

2.0 Amperes 400 to 800 Volts

IT (AMPS)	2.0				
@ T _C (°C)	80 80				
ITSM (AMPS)	10 10				
CASE					
VRRM (VOLTS)	SOT-89				
400	CQ89D	CQ89DS			
600	CQ89M CQ89MS				
800	CQ89N CQ89NS				

IGT QI	25mA	5.0mA
IGT QII	25mA	5.0mA
IGT QIII	25mA	5.0mA
IGT QIV	25mA	5.0mA
VGT QI - QIV	2.0V	2.0V
TH .	25mA	5.0mA

Detailed Data Sheets

(in alphanumeric order)

2N7002

N-CHANNEL ENHANCEMENT-MODE MOSFET

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N7002 type is a N-Channel Field Effect Transistor, manufactured by the N-Channel DMOS Process, designed for high speed pulsed amplifier and driver applications.

Marking Code is 702.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS	
Drain-Source Voltage	v_{DS}	60	V	
Drain-Gate Voltage	V_{DG}	60	V	
Gate-Source Voltage	V _{GS}	40	V	
Continuous Drain Current (T _C =25°C)	I _D	115	mA	
Continuous Drain Current (T _C =100°C)	ΙD	75	mA	
Continuous Source Current (Body Diode)	Is	115	mA	
Maximum Pulsed Drain Current	IDM	800	mA	
Maximum Pulsed Source Current	^I SM	800	mA	
Power Dissipation	PD	350	mW	
Operating and Storage	_			
Junction Temperature	T_J, T_stg	-55 to +150	°C	
Thermal Resistance	Θ_{JA}	357	°C/W	

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
^l GSSF	V _{GS} =20V			100	nA
IGSSR	V _{GS} =-20V			-100	nA
^I DSS	V _{DS} =60V, V _{GS} =0			1.0	μΑ
^I DSS	$V_{DS}=60V, V_{GS}=0, T_{A}=125^{\circ}C$			500	μΑ
I _D (ON)	$V_{DS} \ge 2V_{DS(ON)}$, $V_{GS}=10V$	500			mA
BV _{DSS}	I _D =10μA	60	105		V
V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	2.1	2.5	V
V _{DS(ON)}	V_{GS} =10V, I_D =500mA			3.75	V
V _{DS(ON)}	V_{GS} =5.0V, I_D =50mA			1.5	V
rDS(ON)	V_{GS} =10V, I_D =500mA		3.7	7.5	Ω

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
rDS(ON)	V _{GS} =10V, I _D =500mA, T _A =100 ^o C			13.5	Ω
rDS(ON)	V _{GS} =5.0V, I _D =50mA		6.2	7.5	Ω
rDS(ON)	V _{GS} =5.0V, I _D =50mA, T _A =100°C			13.5	Ω
9FS	$V_{DS} \ge 2V_{DS(ON)}$, $I_{D}=200$ mA	80			mmhos
C_{rss}	V _{DS} =25V, V _{GS} =0, f=1.0MHz			5.0	pF
C _{iss}	V_{DS} =25V, V_{GS} =0, f=1.0MHz			50	pF
C _{oss}	V_{DS} =25V, V_{GS} =0, f=1.0MHz			25	pF
ton	V_{DD} =30V, I_{D} =10V, R_{G} =25 Ω , R_{L} =25 Ω			20	ns
^t off	V_{DD} =30V, I_{D} =10V, R_{G} =25 Ω , R_{L} =25 Ω			20	ns
V_{SD}	$V_{GS}=0V$, $I_{S}=11.5$ mA			-1.5	V

LEAD CODE:

- 1) GATE
- 2) SOURCE
- 3) DRAIN

R1

BAS28

DUAL, ISOLATED HIGH SPEED SWITCHING DIODE

MAXIMUM RATINGS (TA=25°C)

Central [™]	
Semiconductor Corp.	

DESCRIPTION:

The CENTRAL SEMICONDUCTOR BAS28 type is a ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded surface mount package with isolated dual diodes, designed for high speed switching applications.

Marking code is A61.

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	75	V
Peak Repetitive Reverse Voltage	V _{BBM}	85	V
Continuous Forward Current	l _F	250	mA
Peak Repetitive Forward Current	I _{FRM}	250	mA
Forward Surge Current, tp=1 μsec.	I _{FSM}	4000	mA
Forward Surge Current, tp=1 msec.	I _{FSM}	2000	mA
Forward Surge Current, tp=1 sec.	I _{FSM}	1000	mA
Power Dissipation	PD	350	mW
Operating and Storage	J		
Junction Temperature	T_{J}, T_{stg}	-65 to +150	οС
Thermal Resistance	ΘιΔ	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _R	V _R =25V, T _A =150 ^o C		30	μΑ
I _R	V _R =75V		1.0	μΑ
I _R	V _R =75V, T _A =150°C		50	μΑ
V _F	I _F =1.0mA		0.715	V
V _F	I _F =10mA		0.855	V
V_{F}	I _F =50mA		1.000	٧
V _F	I _F =150mA		1.250	V
C _T	V _R =0, f=1 MHz		2.0	рF
t _{rr}	$I_F=I_R=10$ mA, $R_L=100\Omega$, Rec. to 1.0)mA	6.0	ns
Q_{S}	$I_F=10$ mA, $V_R=5.0$ V, $R_L=500$ Ω		45	рС
V _{FR}	I _F =10mA, t _r =20ns		1.75	V

LEAD CODE:

- 1) ANODE 1
- 2) ANODE 2
- 3) CATHODE 2
- 4) CATHODE 1

BAS56

DUAL HIGH CURRENT SWITCHING DIODE

MAXIMUM RATINGS (TA=25°C)

DESCRIPTION:

The CENTRAL SEMICONDUCTOR BAS56 type is an ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded surface mount package with isolated dual diodes, designed for high current, high speed switching applications.

Marking code is L51.

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	60	V
Peak Repetitive Reverse Voltage	V_{RRM}	60	V
Continuous Forward Current	۱F	200	mA
Peak Repetitive Forward Current	IFRM	600	mA
Forward Surge Current, tp=1 μsec.	IFSM	4000	mA
Forward Surge Current, tp=1 sec.	^I FSM	1000	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A =25°C unless otherwise noted)

TEST CONDITIONS	MIN	MAX	UNITS
V _R =60V		100	nA
V _R =60V, T _A =150°C		100	μΑ
V _R =75V		10	μΑ
I _F =10mA		0.75	V
I _F =200mA		1.00	V
I _F =500mA		1.25	V
V _R =0, f=1 MHz		2.5	pF
$I_{F}=I_{R}=400$ mA, $R_{L}=100\Omega$, Rec. to 40mA		6.0	ns
I_{F} =10mA, V_{R} =5.0V, R_{L} =500 Ω		50	рС
l _⊏ =400mA, t _r =30ns		1.2	V
I _F =400mA, t _r =100ns		1.5	V
	$V_{R}=60V$ $V_{R}=60V, T_{A}=150^{o}C$ $V_{R}=75V$ $I_{F}=10\text{mA}$ $I_{F}=200\text{mA}$ $I_{F}=500\text{mA}$ $V_{R}=0, f=1 \text{ MHz}$ $I_{F}=I_{R}=400\text{mA}, R_{L}=100\Omega, \text{ Rec. to } 40\text{mA}$ $I_{F}=10\text{mA}, V_{R}=5.0V, R_{L}=500\Omega$ $I_{F}=400\text{mA}, I_{F}=30\text{ns}$	V_{R} =60V V_{R} =60V, T_{A} =150°C V_{R} =75V I_{F} =10mA I_{F} =200mA I_{F} =500mA I_{F} =500mA I_{F} =1 MHz I_{F} = I_{R} =400mA, I_{R} =100 Ω , Rec. to 40mA I_{F} =10mA, I_{R} =5.0V, I_{R} =500 Ω I_{F} =400mA, I_{F} =30ns	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TOP VIEW . 110(2.79) .118(3.00) 004(0.10) 005(0.13) .079(2.01) 3 .098(2.49) 047(1.19) MAXIMUM .051(1.30) .003(0.08) .030(0.76) .014(0.36) .037(0.94) .043(1.09)

LEAD CODE:

- 1) ANODE 1
- 2) ANODE 2
- 3) CATHODE 2
- 4) CATHODE 1

BZX84C3V3 THRU BZX84C33

350mW ZENER DIODE 3.3 VOLTS THRU 33 VOLTS 5% TOLERANCE

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR BZX84C3V3 Series Silicon Zener Diode is a high quality voltage regulator for use in industrial, commercial, entertainment and computer applications.

ABSOLUTE MAXIMUM RATINGS
Power Dissipation (@T _A =25°C)
Operating and Storage Temperature
Thermal Resistance

P_D T_J,T_{stg} ⊖JA 350 mW -65 to +150 °C 357 °C/W

ELECTRICAL CHARACTERISTICS (T_A =25°C), V_F =0.9V MAX @ I_F =10mA FOR ALL TYPES.

SYMBOL

TYPE Zener Voltage Vz@lzī		tage	Test Current	The second secon	imum npedance		Maximum Reverse Current		Maximum Maximum ZenerVoltage Zener Temperature Current Coefficient		Marking Code
	MIN	MAX	^I ZT	Z _{ZT} @l _{ZT}	ZZK	^{®l} zK	I _R @V _R		^l zw	ev _z	
The second secon	Volts	Volts	mÄ	Ω	Ω	mA	μА	Volts	mA	%/°C	The second
BZX84C3V3	3.1	3.5	5.0	95	600	1.0	5.0	1.0	76	-0.06	W6
BZX84C3V6	3.4	3.8	5.0	90	600	1.0	5.0	1.0	69	-0.06	W7
BZX84C3V9	3.7	4.1	5.0	90	600	1.0	3.0	1.0	64	-0.06	W8
BZX84C4V3	4.0	4.6	5.0	90	600	1.0	3.0	1.0	58	-0.05	W9
BZX84C4V7	4.4	5.0	5.0	80	500	1.0	3.0	2.0	53	-0.03	Z1
BZX84C5V1	4.8	5.4	5.0	60	480	1.0	2.0	2.0	49	0.02	Z2
BZX84C5V6	5.2	6.0	5.0	40	400	1.0	1.0	2.0	45	0.03	Z3
BZX84C6V2	5.8	6.6	5.0	10	150	1.0	3.0	4.0	40	0.04	Z4
BZX84C6V8	6.4	7.2	5.0	15	80	1.0	2.0	4.0	37	0.05	Z5
BZX84C7V5	7.0	7.9	5.0	15	80	1.0	1.0	5.0	33	0.05	Z6
BZX84C8V2	7.7	8.9	5.0	15	80	1.0	0.7	5.0	30	0.06	Z7
BZX84C9V1	8.5	9.6	5.0	15	100	1.0	0.5	6.0	27	0.06	Z8
BZX84C10	9.4	10.6	5.0	20	150	1.0	0.2	7.0	25	0.07	Z9
BZX84C11	10.4	11.6	5.0	20	150	1.0	0.1	8.0	23	0.07	Y1
BZX84C12	11.4	12.7	5.0	25	150	1.0	0.1	8.0	21	0.07	Y2
BZX84C13	12.4	14.1	5.0	30	170	1.0	0.1	8.0	19	0.08	Y3
BZX84C15	13.8	15.6	5.0	30	200	1.0	0.05	10.5	17	0.08	Y4
BZX84C16	15.3	17.1	5.0	40	200	1.0	0.05	11.2	16	0.08	Y5
BZX84C18	16.8	19.1	5.0	45	225	1.0	0.05	12.6	14	0.08	Y6
BZX84C20	18.8	21.2	5.0	. 55	225	1.0	0.05	14.0	12	0.08	Y7
BZX84C22	20.8	23.3	5.0	55	250	1.0	0.05	15.4	11	0.09	Y8
BZX84C24	22.8	25.6	5.0	70	250	1.0	0.05	16.8	10	0.09	Y9
BZX84C27	25.1	28.9	2.0	80	300	0.5	0.05	18.9	9	0.09	Y10
BZX84C30	28.0	32.0	2.0	80	300	0.5	0.05	21.0	8	0.09	Y11
BZX84C33	31.0	35.0	2.0	80	325	0.5	0.05	23.1	7	0.09	Y12

LEAD CODE:

- 1) ANODE
- 2) NO CONNECTION
- 3) CATHODE

CBAS17

LOW VOLTAGE STABISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CBAS17 type is a planar epitaxial silicon switching diode, designed for low voltage stabilizing applications.

Marking code is A91.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Peak Repetitive Forward Current	^I FRM	250	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}^{JA}	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V_F	I _F =0.1mA	.580	.665	.680	V
٧F	I _F =1.0mA	.665	.745	.760	V
٧ _F	I _F =5.0mA	.725	.805	.820	V
٧F	I _F =10mA	.750	.825	.840	V
٧ _F	I _F =100mA	.870	.920	.960	V
I _R	V _R =4.0V			5.0	μΑ
C _T	V _R =0, f=1 MHz			140	pF

TOP VIEW .110(2.80) .118(3.00) .003(0.08) 083(2.10) 006(0.15) NOMINAL .041(1.05) NOMINAL . 106 (2.70) MAXIMUM .047(1.19) .005(0.13) . 0 1 4 (0 . 3 5) MAXIMUM .014(0.35) 037(0.94) .050(1.28)

CBCP68 NPN CBCP69 PNP

SILICON COMPLEMENTARY SMALL SIGNAL TRANSISTORS

MAXIMUM RATINGS (T_A=25°C)

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CBCP68, CBCP69 types are complementary silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring high current capability.

	SYMBOL		UNITS
Collector-Emitter Voltage	V_{CES}	25	V
Collector-Emitter Voltage	VCEO	20	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	l _C	1.0	Α
Collector Current-Peak	ICM	2.0	Α
Base Current	lΒ	100	mA
Base Current-Peak	I _{BM}	200	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{CBO}	V _{CB} =25V			10	μΑ
I _{CBO}	V _{CB} =25V, T _A =150°C			1.0	mA
IEBO	V _{EB} =5.0V			10	μΑ
BV _{CBO}	I _C =10μA	25			V
BVCEO	I _C =10mA	20			V
BVEBO	I _E =1.0μA	5.0			V
V _{CE(SAT)}	I _C =1.0A, I _B =100mA			0.5	V
V _{BE(ON)}	V _{CE} =10V, I _C =5.0mA		0.6		V
V _{BE(ON)}	V _{CE} =1.0V, I _C =1.0A			1.0	V
hFE	V _{CE} =10V, I _C =5.0mA	50			

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
hFE	V _{CE} =1.0V, I _C =500mA	85		375	
hFE	V _{CE} =1.0V, I _C =1.0A	60			
f _T	V_{CE} =5.0V, I_{C} =10mA, f=20MHz	65			MHz
C _{ob}	$V_{CB}=5.0V$, $I_{E}=0$, $F=450kHz$		25		pF

LEAD CODE:

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CBCX68 NPN CBCX69 PNP

SILICON COMPLEMENTARY SMALL SIGNAL TRANSISTORS

MAXIMUM RATINGS (T_A=25°C)

DESCRIPTION

The CENTRAL SEMICONDUCTOR CBCX68, CBCX69 types are complementary silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring high current capability.

	SYMBOL		UNITS
Collector-Emitter Voltage	V_{CES}	25	V
Collector-Emitter Voltage	VCEO	20	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	IC	1.0	Α
Collector Current-Peak	lсм	2.0	Ä
Base Current	I _B	100	mA
Base Current-Peak	I _{BM}	200	mA
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	°С
Thermal Resistance	$\Theta_{\sf JA}$	104	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
^I CBO	V _{CB} =25V			100	nA
ICBO	V _{CB} =25V, T _A =150°C			10	μΑ
IEBO	V _{EB} =5.0V			10	μΑ
BVCBO	I _C =10μΑ	25			V
BVCEO	I _C =10mA	20			V
BVEBO	I _E =1.0μΑ	5.0			V
VCE(SAT)	I _C =1.0A, I _B =100mA			0.5	V
VBE(ON)	V _{CE} =10V, I _C =5.0mA		0.6		V
VBE(ON)	V _{CE} =1.0V, I _C =1.0A			1.0	٧

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
hFE	$V_{CE}=10V$, $I_{C}=5.0$ mA	50			
h _{FE}	V_{CE} =1.0V, I_{C} =500mA	85		375	
hFE	$V_{CE}=1.0V, I_{C}=1.0A$	60			
fT	V_{CE} =5.0V, I_{C} =10mA, f=20MHz	65			MHz

LEAD CODE:

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CBR1-D020S SERIES

1.0 AMP DUAL IN LINE BRIDGE RECTIFIER

DESCRIPTION:

The CENTRAL SEMICONDUCTOR
CBR1-D020S series types are silicon full wave
bridge rectifiers mounted in a durable epoxy,
surface mount, molded case, utilizing glass
passivated chips. To order devices on tape
and reel (1,000/13" reel) add TR13 suffix.

NOTE: Also available in East Recovery

NOTE: Also available in Fast Recovery, please contact factory for details.

MAXIMUM RATINGS (T_A=25°C)

		CBR1-	CBR1-	CBR1-	CBR1-	
	SYMBOL	D020S	D040S	D060S	D100S	UNITS
Peak Repetitive Reverse Voltage	v_{RRM}	200	400	600	1000	V
DC Blocking Voltage	V_{R}	200	400	600	1000	V
RMS Reverse Voltage	V _{R(RMS)}	140	280	420	700	V
Average Forward Current (T _A =50°C			1.0			Α
Peak Forward Surge Current	IFSM		50			Α
Operating and Storage						
Junction Temperature	T_{J}, T_{sta}		-65 to +	-150		oC

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C)$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
٧ _F	I _F =1.0A			1.1	٧
I _R	V _R =Rated V _{RRM}			10	μΑ
I _R	V _B =Rated V _{BBM} , T _A =125 ^o C			0.5	mA
ĊĴ	$V_{R}=4.0V$, f=1.0MHz		25		pF

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CBR1U-D010S, CBR1U-D020S types are silicon full wave ultra fast bridge rectifiers mounted in a durable epoxy surface mount molded case, utilizing glass passivated chips.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CBR1U-D010S	CBR1U-D020S	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	100	200	V
DC Blocking Voltage	V_{R}	100	200	V
RMS Reverse Voltage	V _{R(RMS)}	70	140	V
Average Forward Current (TA=40°C	, ,	1.0		Α
Peak Forward Surge Current	I _{FSM}	50		Α
Operating and Storage				
Junction Temperature	T _J ,T _{stg}	-65 to	+150	°C
Thermal Resistance	Θ_{JA}	40		°C/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{F}	I _F =1.0A (Per Diode)		1.05	V
IR	V_R =Rated V_RRM		5.0	μΑ
I_{R}	V _R =Rated V _{RRM} , T _A =125°C		1.0	mA
t _{rr}	I _F =500mA, I _R =1.0A, I _{rr} =250m.	Α	50	ns

Central™ Semiconductor Corp.

FEATURES:

- Truly efficient use of board space, requires only 42mm² of board space vs. 120mm² of board space for industry standard 1.0 Amp surface mount rectifier.
- 50% higher density (amps/mm²) than the industry standard 1.0 Amp surface mount rectifier.
- Glass passivated chips for high reliability.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CBRHD series types are silicon full wave bridge rectifiers mounted in a durable epoxy surface mount molded case, utilizing glass passivated chips.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

		CBRHD	CBRHD	CBRHD	CBRHD)
	SYMBOL	-02	<u>-04</u>	<u>-06</u>	<u>-10</u> *	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	200	400	600	1000	V
DC Blocking Voltage	v_R	200	400	600	1000	V
RMS Reverse Voltage	V _{R(RMS)}	140	280	420	700	V
Average Forward Current (T _A =40°C)(1)	10`		0.	5		Α
Average Forward Current (T _A =40°C)(2)	Ю		0.	.8		Α
Peak Forward Surge Current	^I FSM		3	0		Α
Operating and Storage						
Junction Temperature	T_J, T_stg		-65 to	+150		°C

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
٧ _F	I _F =400mA (Per Diode)			1.0	٧
I _R	V_{R} =Rated V_{RRM}			5.0	μΑ
I_{R}	V _R =Rated V _{RRM} , T _A =125 ^o C			500	μΑ
CJ	V_{R} =4.0V, f=1.0MHz		20		pF

- (1) Mounted on a Glass-Epoxy P.C.B.
- (2) Mounted on a Ceramic P.C.B.
- * Available on special order, please consult factory.

TOP VIEW

75

R1

CCLHM080 THRU CCLHM150

HIGH CURRENT CURRENT LIMITING DIODE

CentralTM Semiconductor Corp.

FEATURES

- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- LEADED DEVICES AVAILABLE
- SPECIAL SELECTIONS AVAILABLE

DESCRIPTION

The CENTRAL SEMICONDUCTOR CCLHM080 series types are high current silicon field effect current regulator diodes designed for applications requiring a constant current over a wide voltage range. These devices are manufactured in the cost effective SOD-80 double plug case which provides many benefits to the user including space savings and improved thermal characteristics. Special selections of Ip (regulator current) are available for critical applications.

MAXIMUM RATINGS (T _L =75°C)	SYMBOL		UNITS
Peak Operating Voltage	POV	50	V
Power Dissipation	P_{D}	800	mW
Operating and Storage Junction Temperature	T_{J}, T_{stg}	-65 to +200	oC

TYPE NO.	TYPE NO. REGULATOR CURRENT (1)		DYNAMIC IMPEDANCE	KNEE IMPEDANCE	LIMITING VOLTAGE	TEMPERATURE COEFFICIENT	
	lp	@V _T =2	5V	Z _T @V _T =25V	Z _K @V _K =6.0V	VL@IL=0.8 IP MIN	тс*
		mA		MΩ	ΚΩ	VOLTS	%/°C
	MIN	NOM	MAX	MIN ,	MIN	MAX	
CCLHM080	6.56	8.20	9.84	0.32	15	3.1	-0.25 TO -0.45
CCLHM100	8.00	10.0	12.0	0.17	6.0	3.5	-0.25 TO -0.45
CCLHM120	9.60	12.0	14.4	0.08	3.0	3.8	-0.25 TO -0.45
CCLHM150	12.0	15.0	18.0	0.03	2.0	4.3	-0.25 TO -0.45

^{*} The Temperature Coefficient is measured between the following points: +25°C, + 50°C.

(1) TESTED USING THE PULSED METHOD. $\left(PULSE \text{ WIDTH (ms)} = \frac{27.5}{\text{Ip NOM (mA)}} \right)$

Marking Codes:

CENTRAL TYPE NO.	BAND 1*	BAND 2	BAND 3
CCLHM080	BLACK	GREEN	YELLOW
CCLHM100	BLACK	ORANGE	PINK
CCLHM120	BLACK	ORANGE	WHITE
CCLHM150	BLACK	ORANGE	LIGHT BLUE

^{*} Cathode Band

CCLM0035 THRU CCLM5750

CURRENT LIMITING DIODE

SOD-80 CASE

DESCRIPTION:

The CENTRAL **SEMICONDUCTOR** CCLM0035 Series types are silicon field effect current regulator diodes designed for applications requiring a constant current over a wide voltage range. These devices are manufactured in the cost effective SOD-80 double plug case which provides many benefits to the user including space savings and improved thermal characteritcs. selections of Ip (regulator current) are available for critical applications.

MAXIMUM RATINGS $(T_I = 75^{\circ}C)$	SYMBOL		UNITS
Peak Operating Voltage	POV	100	V
Power Dissipation	Pn	800	mW
Operation and Storage			
Junction Temperature	T_J, T_stg	-65 to + 200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

TYPE NO.	REGULATOR CURRENT (1)		DENO		DYNAMIC IMPEDANCE	KNEE IMPEDANCE	LIMITING VOLTAGE	TEMPERATURE COEFFICIENT
	Ip 1	@ V _T =	25V	Z _T @ V _T = 25V	Z _K @ V _K = 6.0V	VL @ IL = 0.8 IP MIN	TC*	
		mA		MΩ	MΩ	10 V 10 10 10 10 10 10 10 10 10 10 10 10 10	%/°C	
	MIN	NOM	MAX	MIN	MIN	MAX		
CCLM0035	0.010	0.035	0.060	8.0	4.0	0.4	+2.10 TO +0.10	
CCLM0130	0.050	0.130	0.210	6.0	2.0	0.6	+2.10 TO +0.10	
CCLM0300	0.200	0.310	0.420	4.0	1.0	0.8	+0.40 TO -0.20	
CCLM0500	0.400	0.515	0.630	2.0	0.5	1.1	+0.15 TO -0.25	
CCLM0750	0.600	0.760	0.920	1.0	0.2	1.4	0.0 TO -0.32	
CCLM1000	0.880	1.100	1.320	0.65	0.1	1.7	-0.10 TO -0.37	
CCLM1500	1.280	1.500	1.720	0.45	0.07	2.0	-0.13 TO -0.40	
CCLM2000	1.680	2.000	2.320	0.35	0.05	2.3	-0.15 TO -0.42	
CCLM2700	2.280	2.690	3.100	0.30	0.03	2.7	-0.18 TO -0.45	
CCLM3500	3.000	3.550	4.100	0.25	0.02	3.2	-0.20 TO -0.47	
CCLM4500	3.900	4.500	5.100	0.20	0.01	3.7	-0.22 TO -0.50	
CCLM5750	5.000	5.750	6.500	0.05	0.005	4.5	-0.25 TO -0.53	

^{*} The Temperature Coefficient is measured between the following points: +25°C, + 50°C.

⁽¹⁾ TESTED USING THE PULSED METHOD. PULSE WIDTH (ms) =_ 27.5 Ip NOM (mA)

Marking Codes:

CENTRAL TYPE NO.	BAND 1*	BAND 2	BAND 3
CCLM0035	BLACK	LIGHT BLUE	WHITE
CCLM0130	BLACK	LIGHT BLUE	PINK
CCLM0300	BLACK	LIGHT BLUE	ORANGE
CCLM0500	BLACK	LIGHT BLUE	GREEN
CCLM0750	BLACK	LIGHT BLUE	DARK BLUE
CCLM1000	BLACK	GREEN	PINK
CCLM1500	BLACK	GREEN	ORANGE
CCLM2000	BLACK	GREEN	GREEN
CCLM2700	BLACK	GREEN	LIGHT BLUE
CCLM3500	BLACK	GREEN	DARK BLUE
CCLM4500	BLACK	GREEN	VIOLET
CCLM5750	BLACK	GREEN	WHITE

^{*} Cathode Band

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD31C, CJD32C types are Complementary Silicon Power Transistors manufactured by the epitaxial base process, mounted in a surface mount package designed for power amplifier and high speed switching applications.

MAXIMUM RATINGS (T_C=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	100	V
Collector-Emitter Voltage	V_{CEO}	100	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Continuous Collector Current	lC	3.0	Α
Peak Collector Current	ICM	5.0	Α
Base Current	l _B	1.0	Α
Power Dissipation (T _C =25°C)	P_{D}	15	W
Power Dissipation (T _A =25°C)	P_{D}	1.56	W
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	⊝JC	8.33	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	80.1	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CEO	V _{CE} =60V		50	μΑ
^I CES	V _{CE} =100V		20	μΑ
^I EBO	V _{EB} =5.0V		1.0	mA
BVCEO	I _C =30mA	100		V
V _{CE(SAT)}	I _C =3.0A, I _B =375mA		1.2	V
V _{BE(ON)}	$V_{CE}=4.0V, I_{C}=3.0A$		1.8	V
h _{FE} `´	$V_{CE}=4.0V, I_{C}=1.0A$	25		
hFE	V_{CE} =4.0V, I_{C} =3.0A	10	50	
f _T	V _{CE} =10V, I _C =500mA, f=1.0MHz	3.0		MHz
h _{fe}	V_{CE} =10V, I_{C} =500mA, f=1.0kHz	20		

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD41C, CJD42C types are Complementary Silicon Power Transistors manufactured by the epitaxial base process, mounted in a surface mount package designed for power amplifier and high speed switching applications.

MAXIMUM RATINGS $(T_C=25^{\circ}C)$

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	100	V
Collector-Emitter Voltage	V_{CEO}	100	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Continuous Collector Current	l _C	6.0	Α
Peak Collector Current	^I CM	10	Α
Base Current	l _B	2.0	Α
Power Dissipation (T _C =25°C)	P_{D}	20	W
Power Dissipation (T _A =25°C)	P_{D}	1.75	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	ΘJC	6.25	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	71.4	°C/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CEO}	V _{CE} =60V		50	μΑ
I _{CES}	V _{CE} =100V		10	μΑ
I _{EBO}	V _{EB} =5.0V		500	μΑ
BVCEO	I _C =30mA	100		V
V _{CE(SAT)}	I _C =6.0A, I _B =600mA		1.5	V
V _{BE} (ON)	V_{CE} =4.0V, I_{C} =6.0A		2.0	V
h _{FE} ` ′	V _{CE} =4.0V, I _C =300mA	30		
hFE	V _{CE} =4.0V, I _C =3.0A	15	75	
f _T	V _{CE} =10V, I _C =500mA, f=1.0MHz	3.0		MHz
h _{fe}	V _{CE} =10V, I _C =500mA, f=1.0kHz	20		

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

COMPLEMENTARY SILICON POWER TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD44H11, CJD45H11 types are Complementary Silicon Power Transistors manufactured in a surface mount package designed for switching and power amplifier applications.

MAXIMUM RATINGS (T_C=25°C)

	SYMBOL		UNITS
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	VEBO	5.0	V
Continuous Collector Current	l _C	8.0	Α
Peak Collector Current	^I CM	16	Α
Power Dissipation (T _C =25°C)	P_{D}	20	W
Power Dissipation (T _A =25°C)	P_{D}	1.75	W
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	ΘJC	6.25	°C/W
Thermal Resistance	Θ_{JA}	71.4	°C/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{CES}	V _{CE} =80V			10	μΑ
^I EBO	V _{EB} =5.0V			50	μΑ
BV_{CEO}	I _C =30mA	80			V
VCE(SAT)	I _C =8.0A, I _B =400mA			1.0	V
V _{BE} (SAT)	I _C =8.0A, I _B =800mA			1.5	V
h _{FE} ` ′	$V_{CE}=1.0V, I_{C}=2.0A$	60			
hFE	$V_{CE}=1.0V$, $I_{C}=4.0A$	40			
fŢ	V _{CE} =10V, I _C =500mA, f=20MHz (CJD44H11)		60		MHz
fŢ	V _{CE} =10V, I _C =500mA, f=20MHz (CJD45H11)		50		MHz
c _{ob}	V _{CB} =10V, I _E =0, f=0.1MHz (CJD44H11)		120		pF
Cop	V _{CB} =10V, I _E =0, f=0.1MHz (CJD45H11)		220		pF
$t_d + t_r$	I _C =5.0A, I _{B1} =500mA (CJD44H11)		320		ns
$t_d + t_r$	IC=5.0A, IB1=500mA (CJD45H11)		150		ns

SYMBOL	TEST CONDITIONS MIN	TYP	MAX	UNITS
t _s	I _C =5.0A, I _{B1} =I _{B2} =500mA (CJD44H11, CJD45H11)	450		ns
t _f	I _C =5.0A, I _{B1} =I _{B2} =500mA (CJD44H11)	130		ns
t _f	l _C =5.0A, l _{B1} =l _{B2} =500mA (CJD45H11)	100		ns

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD47, CJD50 types are NPN Silicon Power Transistors manufactured in a surface mount package designed for high voltage applications such as power supplies and other switching applications.

MAXIMUM RATINGS $(T_C=25^{\circ}C)$

	SYMBOL	CJD47	CJD50	UNITS
Collector-Base Voltage	v_{CBO}	350	500	V
Collector-Emitter Voltage	V _{CEO}	250	400	V
Emitter-Base Voltage	V_{EBO}	5.	0	٧
Continuous Collector Current	l _C	1.	0	Α
Peak Collector Current	^I CM	2.	0	Α
Base Current	lΒ	60	0	mA
Power Dissipation (T _C =25°C)	P_{D}	15	5	W
Power Dissipation (T _A =25°C)	P_{D}	1.5	6	W
Operating and Storage	-			
Junction Temperature	T_J, T_stg	-65 to	+150	°C
Thermal Resistance	ΘJC	8.3	3	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	80.	1	°C/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICEO	V _{CE} =150V (CJD47)		200	μΑ
^I CEO	V _{CE} =300V (CJD50)		200	μΑ
^I CES	V _{CE} =350V (CJD47)		100	μΑ
CES	V _{CE} =500V (CJD50)		100	μΑ
¹ EBO	V _{EB} =5.0V		1.0	mA
BV _{CEO}	I _C =30mA (CJD47)	250		V
BVCEO	I _C =30mA (CJD50)	400		V
V _{CE(SAT)}	I _C =1.0A, I _B =200mA		1.0	V
VBE(ON)	$V_{CE}=10V, I_{C}=1.0A$		1.5	V
hFE `	V _{CE} =10V, I _C =300mA	30	150	

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{FE}	V _{CE} =10V, I _C =1.0A	10		
f _T	$V_{CE}=10V$, $I_{C}=200mA$, $f=2.0MHz$	10		MHz
h _{fe}	$V_{CE}=10V, I_{C}=200mA, f=1.0kHz$	25		

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CentralSemiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD112, CJD117 types are Complementary Silicon Power Darlington Transistors manufactured in a surface mount package designed for low speed switching and amplifier applications.

MAXIMUM RATINGS $(T_C=25^{\circ}C)$

,	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	100	V
Collector-Emitter Voltage	v_{CEO}	100	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Continuous Collector Current	$I_{\mathbb{C}}$	2.0	Α
Peak Collector Current	I _{CM}	4.0	Α
Base Current	I _B	50	mA
Power Dissipation (T _C =25°C)	P_D	20	W
Power Dissipation (T _A =25°C)	P_D	1.75	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	oC
Thermal Resistance	ΘlC	6.25	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	71.4	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICEO	V _{CE} =50V		20	μΑ
ICEV	$V_{CE}=80V$, $V_{BE(off)}=1.5V$		10	μΑ
^I CEV	V _{CE} =80V, V _{BE(off)} =1.5V, T _C =125	5°C	500	μΑ
^I CBO	V _{CB} =80V		10	μΑ
I _{CBO}	V _{CB} =100V		20	μΑ
I _{EBO}	V _{EB} =5.0V		2.0	mA
BV_CEO	I _C =30mA		100	V
V _{CE(SAT)}	I _C =2.0A, I _B =8.0mA		2.0	V
V _{CE} (SAT)	I _C =4.0A, I _B =40mA		3.0	V
V _{BE(SAT)}	I _C =4.0A, I _B =40mA		4.0	V

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V _{BE(ON)}	$V_{CE}=3.0V, I_{C}=2.0A$		2.8	V
hFE	$V_{CE}=3.0V, I_{C}=0.5A$	500		
h _{FE}	$V_{CE}=3.0V, I_{C}=2.0A$	1000	12000	
h _{FE}	$V_{CE}=3.0V, I_{C}=4.0A$	200		
f _T	V_{CE} =10V, I_{C} =750mA, f=1.0MHz	25		MHz
C _{ob}	V_{CB} =10V, I_{E} =0, f =0.1MHz (CJD112	2)	100	pF
C _{ob}	V_{CB} =10V, I_E =0, f=0.1MHz (CJD117	7)	200	pF

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD122, CJD127 types are Complementary Silicon Power Darlington Transistors manufactured in a surface mount package designed for low speed switching and amplifier applications.

MAXIMUM RATINGS (T_C=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	100	V
Collector-Emitter Voltage	V _{CEO}	100	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Continuous Collector Current	lc	8.0	Α
Peak Collector Current	^I CM	16	Α
Base Current	l _B	120	mA
Power Dissipation (T _C =25°C)	P_{D}	20	W
Power Dissipation (T _A =25°C)	P_D	1.75	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	ΘĴC	6.25	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	71.4	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CEO	V _{CE} =50V		10	μΑ
^I CEV	$V_{CE}=100V$, $V_{BE(off)}=1.5V$		10	μΑ
I _{CEV}	V _{CE} =100V, V _{BE(off)} =1.5V, T	_C =125°C	500	μΑ
^I СВО	V _{CB} =100V		10	μΑ
I _{EBO}	V _{EB} =5.0V		2.0	mA
BV _{CEO}	I _C =30mA	100		V
V _{CE(SAT)}	I _C =4.0A, I _B =16mA		2.0	V
VCE(SAT)	I _C =8.0A, I _B =80mA		4.0	V
V _{BE} (SAT)	I _C =8.0A, I _B =80mA		4.5	V

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V _{BE(ON)}	V _{CE} =4.0V, I _C =4.0A		2.8	٧
h _{FE} ` ′	V _{CE} =4.0V, I _C =4.0A	1000	12000	
h _{FE}	V_{CE} =4.0V, I_{C} =8.0A	100		
f _T	V_{CE} =4.0V, I_{C} =3.0A, f =1.0MHz	4.0		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz (CJD12	22)	200	рF
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz (CJD12	27)	300	рF
h _{fe}	V_{CE} =4.0V, I_{C} =3.0A, f=1.0kHz		300	

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD200, CJD210 types are Complementary Silicon Power Transistors manufactured in a surface mount package designed for high current amplifier applications.

MAXIMUM RATINGS (T_C=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	40	V
Collector-Emitter Voltage	VCEO	25	V
Emitter-Base Voltage	V_{EBO}	8.0	V
Continuous Collector Current	I _C	5.0	Α
Peak Collector Current	^I CM	10	Α
Base Current	I _B	1.0	Α
Power Dissipation (T _C =25°C)	P_{D}	12.5	W
Power Dissipation (T _A =25°C)	P_D	1.4	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	⊝JC	10	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	89.3	°C/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I СВО	V _{CB} =40V		100	nA
^I CBO	V _{CB} =40V, T _C =125°C		100	μΑ
^I EBO	V _{EB} =8.0V		100	nA
BVCEO	I _C =10mA	25		V
V _{CE(SAT)}	I _C =500mA, I _B =50mA		0.3	V
VCE(SAT)	I _C =2.0A, I _B =200mA		0.75	V
VCE(SAT)	I _C =5.0A, I _B =1.0A		1.8	V
V _{BE} (SAT)	I _C =5.0A, I _B =1.0A		2.5	٧
V _{BE(ON)}	V _{CE} =1.0V, I _C =2.0A		1.6	V
h _{FE} `´´	V _{CE} =1.0V, I _C =500mA	70		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	V _{CE} =1.0V, I _C =2.0A	45	180	
h _{FE}	V _{CE} =2.0V, I _C =5.0A	10		
f _T	$V_{CE}=10V$, $I_{C}=100mA$, $f=10MHz$	65		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=0.1MHz (CJD200)		80	рF
C _{ob}	V _{CB} =10V, I _E =0, f=0.1MHz (CJD210)		120	рF

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD340, CJD350 types are Complementary Silicon Power Transistors manufactured in a surface mount package designed for high voltage general purpose applications.

MAXIMUM RATINGS $(T_C=25^{\circ}C)$

	SYMBOL		UNITS
Collector-Base Voltage	v_{CBO}	300	V
Collector-Emitter Voltage	V _{CEO}	300	V
Emitter-Base Voltage	V_{EBO}	3.0	V
Continuous Collector Current	IC	500	mA
Peak Collector Current	I _{CM}	750	mA
Power Dissipation (T _C =25°C)	P_{D}	15	W
Power Dissipation (T _A =25°C)	P_D	1.56	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	⊝JC	8.33	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	80.1	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =300V		100	μΑ
I _{EBO}	V _{EB} =3.0V		100	μΑ
BV _{CEO}	I _C =1.0mA	300		V
hFE	V _{CE} =10V, I _C =50mA	30	240	

LEAD CODE:

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

R1

Central™ Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD2955, CJD3055 types are Complementary Silicon Power Transistors manufactured by the epitaxial base process, mounted in a surface mount package designed for high current amplifier and switching applications.

MAXIMUM RATINGS (T_C=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	70	V
Collector-Emitter Voltage	VCEO	60	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	l _C	10	Α
Base Current	lΒ	6.0	Α
Power Dissipation (T _C =25°C)	P_D	20	W
Power Dissipation (T _A =25°C)	P_D	1.75	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	ΘJC	6.25	°C/W
Thermal Resistance	$\Theta_{\sf JA}$	71.4	°C/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CEO	V _{CE} =30V		50	μΑ
^I CEV	$V_{CE}=70V$, $V_{BE(off)}=1.5V$		20	μΑ
^I CEV	V _{CE} =70V, V _{BE(off)} =1.5V, T _C =150°	С	2.0	mA
^I CBO	V _{CB} =70V		20	μΑ
^I CBO	V _{CB} =70V, T _C =150°C		2.0	mA
^I EBO	V _{EB} =5.0V		500	μΑ
BVCEO	I _C =30mA	60		V
VCE(SAT)	I _C =4.0A, I _B =400mA		1.1	V
VCE(SAT)	I _C =10A, I _B =3.3A		8.0	V
V _{BE} (ON)	V _{CE} =4.0V, I _C =4.0A		1.8	V
hFE	V _{CE} =4.0V, I _C =4.0A	20	100	
hFE	V _{CE} =4.0V, I _C =10A	5.0		
fT	V _{CE} =10V, I _C =500mA, f=1.0MHz	2.0		MHz

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CJD13003 type is an NPN Silicon Power Transistors manufactured in a surface mount package designed for high voltage, high speed power switching inductive applications.

MAXIMUM RATINGS (T_C=25°C)

	SYMBOL		UNITS
Collector-Emitter Voltage	V_{CEV}	700	V
Collector-Emitter Voltage	VCEO	400	V
Emitter-Base Voltage	V _{EBO}	9.0	V
Continuous Collector Current	l _C	1.5	Α
Peak Collector Current	lсм	3.0	Α
Continuous Base Current	lΒ	750	mA
Peak Base Current	^I BM	1.5	Α
Continuous Emitter Current	lΕ	2.25	Α
Peak Emitter Current	IЕМ	4.5	Α
Power Dissipation (T _C =25°C)	P_{D}	15	W
Power Dissipation (T _A =25°C)	P_{D}^{-}	1.56	W
Operating and Storage	_		
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	ΘJC	8.33	∘C\M
Thermal Resistance	$\Theta_{\sf JA}$	80.1	°C/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
^I CEV	V _{CE} =700V, V _{BE(off)} =1.5V			100	μΑ
^I CEV	V _{CE} =700V, V _{BE(off)} =1.5V, T _C =100°C			2.0	mA
lEBO	V _{EB} =9.0V			1.0	mA
BV _{CEO}	I _C =10mA	400			V
VCE(SAT)	I _C =500mA, I _B =100mA			0.5	V
VCE(SAT)	I _C =1.0A, I _B =250mA			1.0	V
VCE(SAT)	I _C =1.5A, I _B =500mA			3.0	V
VCE(SAT)	I _C =1.0A, I _B =250mA, T _C =100°C			1.0	V

30000			
6	ΑТ	Δ	
	ue		
	1110		
- 000			

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V _{BE(SAT)}	I _C =500mA, I _B =100mA			1.0	V
V _{BE(SAT)}	I _C =1.0A, I _B =250mA			1.2	V
V _{BE} (SAT)	I _C =1.0A, I _B =250mA, T _C =100°C			1.1	V
h _{FE} ` ′	V_{CE} =2.0V, I_{C} =500mA	8.0		40	
hFE	$V_{CE}=2.0V, I_{C}=1.0A$	5.0		25	
fΤ	V_{CE} =10V, I_{C} =100mA, f=1.0MHz	4.0			MHz
C _{ob}	V_{CB} =10V, I_E =0, f=0.1MHz		20		рF
^t d	V _{CC} =125V, I _C =1.0A, I _{B1} =I _{B2} =200m	۹ (1)		0.1	μs
t _r	V _{CC} =125V, I _C =1.0A, I _{B1} =I _{B2} =200m	A (1)		1.0	μs
t_S	V _{CC} =125V, I _C =1.0A, I _{B1} =I _{B2} =200m	4 (1)		4.0	μs
t _f	V _{CC} =125V, i _C =1.0A, I _{B1} =I _{B2} =200m	A (1)		0.7	μs

(1) tp=25μs, Duty Cycle≤1%

All dimensions in inches (mm).

LEAD CODE:

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

R1

CLL457A CLL459A

LOW LEAKAGE SILICON DIODE

SOD-80 CASE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL457A, CLL459A types are silicon planar diodes, manufactured in a hermetically sealed glass surface mount package, designed for low leakage applications.

Marking Code: Cathode band.

MAXIMUM RATINGS: (T_A=25°C)

SYMBOL	<u>CLL457A</u>	<u>CLL459A</u>	UNITS
v_{RRM}	70	200	V
V _{RWM}	60	175	V
lo	2	200	mA
ΙF	į	500	mA
^I FSM		4.0	Α
P_{D}	į	500	mW
T_{J}, T_{sta}	-65	to +200	оC
Θ_{JA}	;	350	°C/W
	VRRM VRWM IO IF IFSM PD	VRRM 70 VRWM 60 IO 2 IF 8 IFSM PD 8 TJ,Tstg -65	VRRM 70 200 VRWM 60 175 IO 200 IF 500 IFSM 4.0 PD 500 TJ,Tstg -65 to +200

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)

		CLL	457A	CLL	159A	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
BV_R	I _R =100μA	70		200		V
I _R	V _R =Rated V _{RWM}		25		25	nA
I _R	V _R =Rated V _{RWM} , T _A =150°C		5.0		5.0	μΑ
٧ _F	I _F =100mA		1.0		1.0	V
C _T	$V_{R}=0$, f=1.0MHz		6.0		6.0	рF

R1

CLL914

HIGH SPEED SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL914 type is an ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in a hermetically sealed glass surface mount package, designed for high speed switching applications.

Marking code: Cathode Band.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	75	V
Peak Repetitive Reverse Voltage	V _{RRM}	100	V
Continuous Forward Current	۱۴	250	mA
Peak Repetitive Forward Current	IFRM	250	mA
Forward Surge Current, tp=1 μsec.	IFSM	4000	mA
Forward Surge Current, tp=1 sec.	^I FSM	1000	mA
Power Dissipation	P_{D}	500	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +200	°C
Thermal Resistance	Θ_{JA}	350	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{BR}	I _R =100μΑ	100		V
IR	V _R =20V		25	nA
I _R	V _R =75V		5.0	μΑ
٧ _F	I _F =10mA		1.0	V
CT	V _R =0, f=1 MHz		4.0	рF
t _{rr}	$I_R=I_F=10$ mA, $R_L=100\Omega$, Rec.	to 1.0mA	4.0	ns

CLL2003

HIGH VOLTAGE SWITCHING DIODE

Central ** Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL2003 type is a silicon switching diode manufactured by the epitaxialplanar process, designed for applications requiring high voltage capability. **Marking Code: Cathode band.**

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	250	V
Peak Repetitive Reverse Voltage	V_{RRM}	250	V
Average Forward Current	IO	200	mA
Continuous Forward Current	l _{E.}	250	mA
Peak Repetitive Forward Current	I _{FRM}	625	mA
Forward Surge Current, tp=1 μs	IFSM	4000	mA
Forward Surge Current, tp=1 s	IFSM	1000	mA
Power Dissipation	PD	500	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +200	οС
Thermal Resistance	Θ_{JA}	350	oC/M

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C \text{ unless otherwise noted})$

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
BV _R	I _R =100μA	250		V
I _R	V _R =200V		100	nA
IR	V _R =200V, T _A =150 ^o C		100	μΑ
٧ _F	I _F =100mA		1.00	V
VF	I _F =200mA		1.25	V
C _T	V _R =0, f=1 MHz		5.0	pF
t _{rr}	I _F =I _R =30mA, RECOV. TO 3.0mA,			
	$R_L=100\Omega$		50	ns

CLL3595

LOW LEAKAGE SILICON DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL3595 type is an epitaxial planar silicon diode, manufactured in a hermetically sealed glass surface mount package, designed for low leakage, high conductance applications. Marking Code: Cathode Band.

MAXIMUM RATINGS: (T_A=25°C)

SYMBOL		UNITS
V_{RRM}	150	٧
V_{RWM}	125	٧
IO	150	mA
ΙF	225	mA
i _f	600	mA
^I FSM	500	mA
^I FSM	4.0	Α
P_{D}	500	mW
T _J ,T _{stq}	-65 to +200	°C
Θ_{JA}	350	°C/W
	V _{RRM} V _{RWM} I _O I _F I _{FSM} I _{FSM} P _D T _J ,T _{stg}	VRRM 150 VRWM 125 IO 150 IF 225 if 600 IFSM 500 IFSM 4.0 PD 500 TJ,Tstg -65 to +200

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
BV_R	I _R =100μΑ	150		V
I _R	V _R =125V		1.0	nA
^I R	V _R =125V, T _A =125 ^o C		500	nA
^I R	V _R =125V, T _A =150 ^o C		3.0	μΑ
^I R	V _R =30V, T _A =125°C		300	nA
V_{F}	I _F =1.0mA	0.52	0.68	V
V_{F}	I _F =5.0mA	0.60	0.75	V
V_{F}	I _F =10mA	0.65	0.80	V
V_{F}	I _F =50mA	0.75	0.88	V
V_{F}	I _F =100mA	0.79	0.92	V
V_{F}	I _F =200mA	0.83	1.00	V

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
C _T	$V_{R}=0$, f=1.0MHz		8.0	рF
t _{rr}	V_{B} =3.5V, I_{f} =10mA, R_{I} =1.0k Ω		3.0	μs

CLL4150

HIGH SPEED SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL4150 type is an ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in a hermetically sealed glass surface mount package, designed for high speed switching applications.

Marking Code: Cathode Band.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	50	V
Peak Repetitive Reverse Voltage	V_{RRM}	50	V
Continuous Forward Current	lF	300	mA
Peak Repetitive Forward Current	IFRM	600	mA
Forward Surge Current, tp=1 μsec.	IFSM	4000	mA
Forward Surge Current, tp=1 sec.	IFSM	1000	mA
Power Dissipation	P_{D}	500	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +200	oC
Thermal Resistance	$\Theta_{\sf JA}$	350	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
BV _R	I _R =5.0μΑ	75		V
I _R	V _R =50V		100	nA
ν _F	I _F =1.0mA	0.54	0.62	V
V _F	I _F =10mA	0.66	0.74	V
٧F	I _F =50mA	0.76	0.86	V
V _F	I _F =100mA	0.82	0.92	V
V _F	I _F =200mA	0.87	1.0	V
CT	V _R =0, f=1 MHz		4.0	pF
t _{rr}	$I_{R}=I_{F}=10$ mA, $R_{L}=100\Omega$, Rec.	to 1.0mA	4.0	ns

CLL4448

HIGH SPEED SWITCHING DIODE

MAXIMUM RATINGS (T_A=25°C)

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL4448 type is a ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in a hermetically sealed glass surface mount package, designed for high speed switching applications.

Marking Code: Cathode Band.

	SYMBOL		UNITS
Continuous Reverse Voltage	V_{R}	75	V
Peak Repetitive Reverse Voltage	V_{RRM}	100	V
Continuous Forward Current	lF	250	mA
Peak Repetitive Forward Current	FRM	250	mA
Forward Surge Current, tp=1 μsec.	^I FSM	4000	mA
Forward Surge Current, tp=1 sec.	^I FSM	1000	mA
Power Dissipation	P_{D}	500	mW
Operating and Storage			
Junction Temperature	T_J, T_sta	-65 to +200	°C
Thermal Resistance	T _J ,T _{Stg} ⊖ _{JA}	350	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{BR}	I _R =5.0μΑ	75		V
V _{BR}	I _R =100μA	100		V
I _R	V _R =20V		25	nA
٧F	I _E =5.0mA	0.62	0.72	V
٧ _F	I _F =100mA		1.0	V
CT	V _R =0, f=1 MHz		4.0	pF
^t rr	$I_R=I_F=10$ mA, $R_L=100\Omega$, Rec.	. to 1.0mA	4.0	ns

CLL4614 THRU CLL4627

500mW LOW NOISE ZENER DIODE **5% TOLERANCE**

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL4614 Series Silicon Zener Diode is a high quality voltage regulator designed for low leakage, low current and low noise applications.

Marking Code: Cathode Band

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (@ T_A=25°C) Operating and Storage Temperature SYMBOL P_{D}

T_J,T_{stg}

500 -65 to +200 UNITS mW oC

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C) V_F=1.0V MAX @ I_F=200mA FOR ALL TYPES.$

Type No.	Zener Voltage	Test Current	Maximum Zener Impedance	Contract of the Contract of th	Maximum Reverse Leakage Current		Maximum Noise Density
	Vz @ IZT	lzt	Z _{ZT} @ I _{ZT}	I _R @	V _R	lzm	N _D @ I _{ZT} =250μA
	VOLTS	μA	Ω	μA	VOLTS	mA	μ ν/√Hz
CLL4614*	1.8	250	1200	7.5	1.0	120	1.0
CLL4615*	2.0	250	1250	5.0	1.0	110	1.0
CLL4616*	2.2	250	1300	4.0	1.0	100	1.0
CLL4617*	2.4	250	1400	2.0	1.0	95	1.0
CLL4618*	2.7	250	1500	1.0	1.0	90	1.0
CLL4619*	3.0	250	1600	0.8	1.0	85	1.0
CLL4620*	3.3	250	1650	7.5	1.5	80	1.0
CLL4621*	3.6	250	1700	7.5	2.0	75	1.0
CLL4622*	3.9	250	1650	5.0	2.0	70	1.0
CLL4623*	4.3	250	1600	4.0	2.0	65	1.0
CLL4624*	4.7	250	1550	10	3.0	60	1.0
CLL4625*	5.1	250	1500	10	3.0	55	2.0
CLL4626*	5.6	250	1400	10	4.0	50	4.0
CLL4627*	6.2	250	1200	10	5.0	45	5.0

^{*} Available on special order; consult factory.

CLL4678 THRU CLL4717

500mW LOW LEVEL ZENER DIODE 5% TOLERANCE

SOD-80 CASE

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (@ T_A = 50°C) Operating and Storage Temperature

DESCRIPTION:

The CENTRAL SEMICONDUCTOR L4678 Series Silicon Zener Diode is a high quality voltage regulator designed for applications requiring an extremely low operating current and low leakage. Marking Code: Cathode Band

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C) V_F=1.5V MAX @ I_F=100mA FOR ALL TYPES$

SYMBOL		UNITS
PD	500	mW
T_{J} , T_{STG}	-65 to +200	°C

Туре No.	Nominal Zener Voltage Vz @ IzT	Test Current Izt	Maximum Reverse Leakage Current IR @ VR		Maximum Voltage Change* ΔV _Z	Maximum Zener Current	
	Volts	μA	μА	Volts	Volts	mA	
CLL4678	1.8	50	7.5	1.0	0.70	120.0	
CLL4679	2.0	50	5.0	1.0	0.70	110.0	
CLL4680	2.2	50	4.0	1.0	0.75	100.0	
CLL4681	2.4	50	2.0	1.0	0.80	95.0	
CLL4682	2.7	50	1.0	1.0	0.85	90.0	
CLL4683	3.0	50	0.8	1.0	0.90	85.0	
CLL4684	3.3	50	7.5	1.5	0.95	80.0	
CLL4685	3.6	50	7.5	2.0	0.95	75.0	
CLL4686	3.9	50	5.0	2.0	0.97	70.0	
CLL4687	4.3	50	4.0	2.0	0.99	65.0	
CLL4688	4.7	50	10	3.0	0.99	60.0	
CLL4689	5.1	50	10	3.0	0.97	55.0	
CLL4690	5.6	50	10	4.0	0.96	50.0	
CLL4691	6.2	50	10	5.0	0.95	45.0	
CLL4692	6.8	50	10	5.1	0.90	35.0	
CLL4693	7.5	50	10	5.7	0.75	31.8	
CLL4694	8.2	50	1.0	6.2	0.50	29.0	
CLL4695	8.7	50	1.0	6.6	0.10	27.4	
CLL4696	9.1	50	1.0	6.9	0.08	26.2	
CLL4697	10	50	1.0	7.6	0.10	24.8	
CLL4698	11	50	0.05	8.4	0.11	21.6	
CLL4699	12	50	0.05	9.1	0.12	20.4	
CLL4700	13	50	0.05	9.8	0.13	19.0	
CLL4701	14	50	0.05	10.6	0.14	17.5	
CLL4702	15	50	0.05	11.4	0.15	16.3	

^{*} Δ V_Z=V_Z@100 μ A MINUS V_Z @ 10 μ A.

Type No.	Nominal Zener Voltage Vz @ IzT	Test Current IZT	Leakage	n Reverse e Current @ V _R	Maximum Voltage Change* ΔV _Z	Maximum Zener Current IZM	
	Volts	μΑ	μА			mA	
CLL4703	16	50	0.05	12.1	0.16	15.4	
CLL4704	17	50	0.05	12.9	0.17	14.5	
CLL4705	18	50	0.05	13.6	0.18	13.2	
CLL4706	19	50	0.05	14.4	0.19	12.5	
CLL4707	20	50	0.01	15.2	0.20	11.9	
CLL4708	22	50	0.01	16.7	0.22	10.8	
CLL4709	24	50	0.01	18.2	0.24	9.9	
CLL4710	25	50	0.01	19.0	0.25	9.5	
CLL4711	27	50	0.01	20.4	0.27	8.8	
CLL4712	28	50	0.01	21.2	0.28	8.5	
CLL4713	30	50	0.01	22.8	0.30	7.9	
CLL4714	33	50	0.01	25.0	0.33	7.2	
CLL4715	36	50	0.01	27.3	0.36	6.6	
CLL4716	39	50	0.01	29.6	0.39	6.1	
CLL4717	43	50	0.01	32.6	0.43	5.5	

CLL4729A THRU CLL4764A

1.0W ZENER DIODE 5% TOLERANCE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL4729A Series Silicon Zener Diode is a high quality voltage regulator for use in surface mount industrial, commercial, entertainment and computer applications.

Marking Code: Cathode Band

TYPE NO.	TYPE NO. ZENER VOLTAGE VZ @ IZI		TEST MAXIMUM ZENER IMPEDANCE CURRENT				AREVERSE RENT	MAXIMUM D
			Z _{Z1} @ _{Z1}	Z _{Z2}	@ I _{Z2}	IR @ VR		¹ ZM
	VOLTS	mA	Ω	Ω	mA	μА	VOLTS	mA
CLL4729A	3.6	69	10	400	1.0	100	1.0	1260
CLL4730A	3.9	64	9.0	400	1.0	50	1.0	1190
CLL4731A	4.3	58	9.0	400	1.0	10	1.0	1070
CLL4732A	4.7	53	8.0	500	1.0	10	1.0	970
CLL4733A	5.1	49	7.0	550	1.0	10	1.0	890
CLL4734A	5.6	45	5.0	600	1.0	10	2.0	810
CLL4735A	6.2	41	2.0	700	1.0	10	3.0	730
CLL4736A	6.8	37	3.5	700	1.0	10	4.0	660
CLL4737A	7.5	34	4.0	700	0.5	10	5.0	605
CLL4738A	8.2	31	4.5	700	0.5	10	6.0	550
CLL4739A	9.1	28	5.0	700	0.5	10	7.0	500
CLL4740A	10	25	7.0	700	0.25	10	7.6	454
CLL4741A	11	23	8.0	700	0.25	5.0	8.4	414
CLL4742A	12	21	9.0	700	0.25	5.0	9.1	380
CLL4743A	13	19	10	700	0.25	5.0	9.9	344
CLL4744A	15	17	14	700	0.25	5.0	11.4	304
CLL4745A	16	15.5	16	700	0.25	5.0	12.2	285
CLL4746A	18	14	20	750	0.25	5.0	13.7	250
CLL4747A	20	12.5	22	750	0.25	5.0	15.2	225
CLL4748A	22	11.5	23	750	0.25	5.0	16.7	205
CLL4749A	24	10.5	25	750	0.25	5.0	18.2	190
CLL4750A	27	9.5	35	750	0.25	5.0	20.6	170
CLL4751A	30	8.5	40	1000	0.25	5.0	22.8	150
CLL4752A	33	7.5	45	1000	0.25	5.0	25.1	135
CLL4753A*	36	7.0	50	1000	0.25	5.0	27.4	125
CLL4754A*	39	6.5	60	1000	0.25	5.0	29.7	115
CLL4755A*	43	6.0	70	1500	0.25	5.0	32.7	110
CLL4756A*	47	5.5	80	1500	0.25	5.0	35.8	95
CLL4757A*	51	5.0	95	1500	0.25	5.0	38.8	90
CLL4758A*	56	4.5	110	2000	0.25	5.0	42.6	80
CLL4759A*	62	4.0	125	2000	0.25	5.0	47.1	70
CLL4760A*	68	3.7	150	2000	0.25	5.0	51.7	65
CLL4761A*	75	3.3	175	2000	0.25	5.0	56	60
CLL4762A*	82	3.0	200	3000	0.25	5.0	62.2	55
CLL4763A*	91	2.8	250	3000	0.25	5.0	69.2	50
CLL4764A*	100	2.5	350	3000	0.25	5.0	76	45

^{*} Available on special order only, please consult factory.

CLL5226B THRU CLL5257B

500 mW ZENER DIODE 5% TOLERANCE

Central"
Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CLL5226B Series Silicon Zener Diode is a high quality voltage regulator for use in industrial, commercial, entertainment and computer applications. Higher voltage devices are available on special order.

Marking Code: Cathode Band

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (@ $T_A = 50^{\circ}C$) Operating and Storage Temperature $\begin{array}{ccc} \textbf{SYMBOL} & \textbf{UNITS} \\ P_D & 500 & \text{mW} \\ T_J, T_{\text{Sta}} & -65 \text{ to } +200 & {}^{\text{O}}\text{C} \end{array}$

ELECTRICAL CHARACTERISTICS (TA=25°C), VF=1.1V MAX @ IF=200mA FOR ALL TYPES.

TYPE NO.	ZENER VOLTAGE Vz @ IZT	TEST CURRENT IZT	Maximum Zener Impedance ^Z ZT [@] ^I ZT			Current		ener Impedance Maximum Reverse VOLTAGE Current TEMPERATUR COEFFICIEN		MAXIMUM ZENER VOLTAGE TEMPERATURE COEFFICIENT OVZ
	VOLTS	mA	Ω	Ω	mA	μА	VOLTS	%/°C		
CLL5226B	3.3	20	28	1600	0.25	25	1.0	-0.070		
CLL5227B	3.6	20	24	1700	0.25	15	1.0	-0.065		
CLL5228B	3.9	20	23	1900	0.25	10	1.0	-0.060		
CLL5229B	4.3	20	22	2000	0.25	5.0	1.0	±0.055		
CLL5230B	4.7	20	19	1900	0.25	5.0	2.0	±0.030		
CLL5231B	5.1	20	17	1600	0.25	5.0	2.0	±0.030		
CLL5232B	5.6	20	11	1600	0.25	5.0	3.0	+0.038		
CLL5233B	6.0	20	7.0	1600	0.25	5.0	3.5	+0.038		
CLL5234B	6.2	20	7.0	1000	0.25	5.0	4.0	+0.045		
CLL5235B	6.8	20	5.0	750	0.25	3.0	5.0	+0.050		
CLL5236B	7.5	20	6.0	500	0.25	3.0	6.0	+0.058		
CLL5237B	8.2	20	8.0	500	0.25	3.0	6.5	+0.062		
CLL5238B	8.7	20	8.0	600	0.25	3.0	6.5	+0.065		
CLL5239B	9.1	20	10	600	0.25	3.0	7.0	+0.068		
CLL5240B	10	20	17	600	0.25	3.0	8.0	+0.075		
CLL5241B	11	20	22	600	0.25	2.0	8.4	+0.076		
CLL5242B	12	20	30	600	0.25	1.0	9.1	+0.077		
CLL5243B	13	9.5	13	600	0.25	0.5	9.9	+0.079		
CLL5244B	14	9.0	15	600	0.25	0.1	10	+0.082		
CLL5245B	15	8.5	16	600	0.25	0.1	11	+0.082		
CLL5246B	16	7.8	17	600	0.25	0.1	12	+0.083		
CLL5247B	17	7.4	19	600	0.25	0.1	13	+0.084		
CLL5248B	18	7.0	21	600	0.25	0.1	14	+0.085		
CLL5249B	19	6.6	23	600	0.25	0.1	14	+0.086		
CLL5250B	20	6.2	25	600	0.25	0.1	15	+0.086		
CLL5251B	22	5.6	29	600	0.25	0.1	17	+0.087		
CLL5252B	24	5.2	33	600	0.25	0.1	18	+0.088		
CLL5253B	25	5.0	35	600	0.25	0.1	19	+0.089		
CLL5254B	27	4.6	41	600	0.25	0.1	21	+0.090		
CLL5255B	28	4.5	44	600	0.25	0.1	21	+0.091		
CLL5256B	30	4.2	49	600	0.25	0.1	23	+0.091		
CLL5257B	33	3.8	58	700	0.25	0.1	25	+0.092		

CMDSH-3

SUPER-MINI SCHOTTKY DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMDSH-3 type is a Silicon Schottky Diode, manufactured in a super-mini surface mount package, designed for fast switching applications requiring a low forward voltage drop.

UNITS

Marking Code is S1.

MAXIMUM RATINGS: (T_A=25°C)

	01111202		0
Peak Repetitive Reverse Voltage	V_{RRM}	30	٧
Average Forward Current	IO	100	mA
Forward Surge Current, tp=10 ms	I _{FSM}	750	mA
Power Dissipation	P_D	250	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	500	°C/W

SYMBOL

ELECTRICAL CHARACTERISTICS: (T_A=25°C)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
B_VR	I _F =100μA	30			V
٧ _F	I _F =2.0mA		0.30		V
٧ _F	I _F =15mA		0.36		V
٧ _F	I _F =50mA		0.47	0.55	V
٧ _F	I _F =100mA		0.58	0.80	V
I_{R}	V _R =25V			1.0	μΑ
C _T	V _R =10V, f=1.0 MHz		7.0		pF

TOP VIEW . 0 4 5 (1 . 15) . 0 5 3 (1 . 35) . 0 1 4 (0 . 3 5)

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMDSH2-3 type is a Silicon Schottky Diode, manufactured in a super-mini surface mount package, designed for fast switching applications requiring a low forward voltage drop.

Marking Code is S2.

MAXIMUM RATINGS: (T_A=25°C)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	30	٧
Average Forward Current	IO	200	mA
Forward Surge Current, tp=10 ms	I _{FSM}	1.0	Α
Power Dissipation	P_D	250	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	500	°C/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
B_VR	I _F =100μA	30			V
٧ _F	I _F =2.0mA		0.26		V
V_{F}	I _F =15mA		0.32		V
٧ _F	I _F =100mA		0.42		V
٧ _F	I _F =200mA		0.49	0.55	V
^I R	V _R =30V		0.40	50	μΑ
C _T	V_{R} =10V, f=1.0 MHz		15		pF

TOP VIEW . 0 4 5 (1 . 15) . 0 5 3 (1 . 35) . 0 1 4 (0 . 35)

LOW LEVEL ZENER DIODE 250mW, 5.1 VOLTS THRU 36 VOLTS

ABSOLUTE MAXIMUM RATINGS:

Power Dissipation (@T_A=25°C)
Operating and Storage Temperature
Thermal Resistance

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMDZ5L1 Series Silicon Low Level Zener Diode is a high quality voltage regulator specifically designed for operation at $500\mu A$. Manufactured in a supermini surface mount package, designed for applications requiring a low operating current, low leakage, a sharp knee and tight real estate situations.

SYMBOL		UNIT
P_{D}	250	mW
T_J , T_{stq}	-65 to +150	°C
Θ.ΙΔ	500	°C/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C)

TYPE	ZENER VOLTAGE VZ@ IZT		TEST CURRENT	MAXIMUM ZENER IMPEDANCE	MAXIMUM REVERSE CURRENT		MARKING	
	MIN	NOM	MAX	IZT	Z _{ZT} @ I _{ZT}	I _R @) V _R	
	(v)	(V)	(V)	(µA)	(Ω)	(μΑ)	(V)	
CMDZ5L1	4.84	5.1	5.37	500	350	1.0	1.5	LP
CMDZ5L6	5.31	5.6	5.92	500	90	1.0	2.0	NP
CMDZ6L2	5.86	6.2	6.53	500	90	1.0	2.0	OP
CMDZ6L8	6.47	6.8	7.14	500	60	1.0	3.5	PP
CMDZ7L5	7.06	7.5	7.84	500	60	1.0	3.5	QP
CMDZ8L2	7.76	8.2	8.64	500	60	1.0	6.0	RP
CMDZ9L1	8.56	9.1	9.55	500	60	1.0	6.0	SP
CMDZ10L	9.45	10	10.55	500	80	1.0	8.0	TP
CMDZ11L	10.44	11	11.56	500	80	1.0	8.0	UP
CMDZ12L	11.42	12	12.60	500	80	1.0	10.5	VP
CMDZ13L	12.47	13	13.96	500	80	1.0	10.5	ХP
CMDZ15L	13.84	15	15.52	500	80	1.0	11.5	YP
CMDZ16L	15.37	16	17.09	500	80	1.0	14	ZP
CMDZ18L	16.94	18	19.03	500	80	1.0	16	1 P
CMDZ20L	18.86	20	21.08	500	100	1.0	18	2 P
CMDZ22L	20.88	22	23.17	500	100	1.0	20	3 P
CMDZ24L	22.93	24	25.57	500	120	1.0	22	4 P
CMDZ27L	25.10	27	28.90	500	150	1.0	24	5 P
CMDZ30L	28.00	30	32.00	500	200	1.0	27	6 P
CMDZ33L	31.00	33	35.00	500	250	1.0	30	7 P
CMDZ36L	34.00	36	38.00	500	300	1.0	33	8 P

TOP VIEW . 0 4 5 (1 . 15) . 0 5 3 (1 . 35) . 0 1 4 (0 . 35)

SUPER-MINI ZENER DIODE 2.4 VOLTS THRU 47 VOLTS 250mW, 5% TOLERANCE

ABSOLUTE MAXIMUM RATINGS:

Power Dissipation (@T_A=25^oC)
Operating and Storage Temperature
Thermal Resistance

Central Market Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMDZ5221B Series Silicon Zener Diode is a high quality voltage regulator, manufactured in a super-mini surface mount package, designed for use in industrial, commercial, entertainment and computer applications.

	UNIT
250	mW
-65 to +150	οС
500	°C/W
	-65 to +150

ELECTRICAL CHARACTERISTICS: (T_A=25°C), V_F=0.9V MAX @ I_F=10mA FOR ALL TYPES.

TYPE ZENER VOLTAGE Vz @ IZT		NGE			AXIMUM IMPEDENCE		MAXIMUM REVERSE CURRENT		MAXIMUM ZENER VOLTAGE TEMPERATURE COEFFICIENT	
	MIN	MOM	MAX	lzt	Z _{ZT} @ I _{ZT}	ZZK @	lzk	I _R	@ V _R	COEFFICIENT
	VOLTS	VOLTS	VOLTS	mA	Ω	Ω	mA	μΑ	VOLTS	%/°C
CMDZ5221B	2.280	2.4	2.520	20	30	1200	0.25	100	1.0	-0.085
CMDZ5222B	2.375	2.5	2.625	20	30	1250	0.25	100	1.0	-0.085
CMDZ5223B	2.565	2.7	2.835	20	30	1300	0.25	75	1.0	-0.080
CMDZ5224B	2.660	2.8	2.940	20	30	1400	0.25	75	1.0	-0.080
CMDZ5225B	2.850	3.0	3.150	20	29	1600	0.25	50	1.0	-0.075
CMDZ5226B	3.135	3.3	3.465	20	28	1600	0.25	25	1.0	-0.070
CMDZ5227B	3.420	3.6	3.780	20	24	1700	0.25	15	1.0	-0.065
CMDZ5228B	3.705	3.9	4.095	20	23	1900	0.25	10	1.0	-0.060
CMDZ5229B	4.085	4.3	4.515	20	22	2000	0.25	5.0	1.0	±0.055
CMDZ5230B	4.465	4.7	4.935	20	19	1900	0.25	5.0	2.0	±0.030
CMDZ5231B	4.845	5.1	5.355	20	1,7	1600	0.25	5.0	2.0	±0.030
CMDZ5232B	5.320	5.6	5.880	20	11	1600	0.25	5.0	3.0	+0.038
CMDZ5233B	5.700	6.0	6.300	20	7.0	1600	0.25	5.0	3.5	+0.038
CMDZ5234B	5.890	6.2	6.510	20	7.0	1000	0.25	5.0	4.0	+0.045
CMDZ5235B	6.460	6.8	7.140	20	5.0	750	0.25	3.0	5.0	+0.050
CMDZ5236B	7.125	7.5	7.875	20	6.0	500	0.25	3.0	6.0	+0.058
CMDZ5237B	7.790	8.2	8.610	20	8.0	500	0.25	3.0	6.5	+0.062
CMDZ5238B	8.265	8.7	9.135	20	8.0	600	0.25	3.0	6.5	+0.065
CMDZ5239B	8.645	9.1	9.555	20	10	600	0.25	3.0	7.0	+0.068
CMDZ5240B	9.500	10	10.50	20	17	600	0.25	3.0	8.0	+0.075
CMDZ5241B	10.45	11	11.55	20	22	600	0.25	2.0	8.4	+0.076
CMDZ5242B	11.40	12	12.60	20	30	600	0.25	1.0	9.1	+0.077

ELECTRICAL CHARACTERISTICS: (T_A=25°C), V_F=0.9V MAX @ I_F=10mA FOR ALL TYPES.

TYPE	ZENER VOLTAGE Vz @ IZT		TEST CURRENT	MAXIMUM ZENER IMPEDENCE			MAXIMUM REVERSE CURRENT		MAXIMUM ZENER VOLTAGE TEMPERATURE COEFFICIENT	
	MIN	NOM	MAX	^I ZT	Z _{ZT} @ I _{ZT}	ZZK @ IZK		I _R @ V _R		
	VOLTS	VOLTS	VOLTS	mA	Ω	Ω	mA	μΑ	VOLTS	%/°C
CMDZ5243B	12.35	13	13.65	9.5	13	600	0.25	0.5	9.9	+0.079
CMDZ5244B	13.30	14	14.70	9.0	15	600	0.25	0.1	10	+0.082
CMDZ5245B	14.25	15	15.75	8.5	16	600	0.25	0.1	11	+0.082
CMDZ5246B	15.20	16	16.80	7.8	17	600	0.25	0.1	12	+0.083
CMDZ5247B	16.15	17	17.85	7.4	19	600	0.25	0.1	13	+0.084
CMDZ5248B	17.10	18	18.90	7.0	21	600	0.25	0.1	14	+0.085
CMDZ5249B	18.05	19	19.95	6.6	23	600	0,25	0.1	14	+0.086
CMDZ5250B	19.00	20	21.00	6.2	25	600	0.25	0.1	15	+0.086
CMDZ5251B	20.90	22	23.10	5.6	29	600	0.25	0.1	17	+0.087
CMDZ5252B	22.80	24	25.20	5.2	33	600	0.25	0.1	18	+0.088
CMDZ5253B	23.75	25	26.25	5.0	35	600	0.25	0.1	19	+0.089
CMDZ5254B	25.65	27	28.35	4.6	41	600	0.25	0.1	21	+0.090
CMDZ5255B	26.60	28	29.40	4.5	44	600	0.25	0.1	21	+0.091
CMDZ5256B	28.50	30	31.50	4.2	49	600	0.25	0.1	23	+0.091
CMDZ5257B	31.35	33	34.65	3.8	58	700	0.25	0.1	25	+0.092
CMDZ5258B	34.20	36	37.80	3.4	70	700	0.25	0.1	27	+0.093
CMDZ5259B	37.05	39	40.95	3.2	80	800	0.25	0.1	30	+0.094
CMDZ5260B	40.85	43	45.15	3.0	93	900	0.25	0.1	33	+0.095
CMDZ5261B	44.65	47	49.35	2.7	105	1000	0.25	0.1	36	+0.095

All dimensions in inches (mm). TOP VIEW

CMPD914

HIGH SPEED SWITCHING DIODE

DESCRIPTION

The CENTRAL SEMICONDUCTOR CMPD914 type is a ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded surface mount package, designed for high speed switching applications.

Marking code is C5D.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	75	V
Peak Repetitive Reverse Voltage	V_{RRM}	100	V
Continuous Forward Current	l _F	250	mA
Peak Repetitive Forward Current	I _{FRM}	250	mA
Forward Surge Current, tp=1 μsec.	l _{FSM}	4000	mA
Forward Surge Current, tp=1 msec.	^I FSM	2000	mA
Forward Surge Current, tp=1 sec.	I _{FSM}	1000	mA
Power Dissipation	P_D	350	mW
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	οС
Thermal Resistance	$\Theta_{\sf JA}$	357	oC/M

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{BR}	I _R =100μΑ	100		V
I _R	V _R =20V		25	nA
I _R	V _R =75V		5.0	μΑ
V_{F}	I _F =10mA		1.0	V
C _T	V _R =0, f=1 MHz		4.0	pF
t _{rr}	$I_R=I_F=10$ mA, $R_L=100\Omega$, Rec.	to 1.0mA	4.0	ns

CMPD1001 CMPD1001A CMPD1001S

HIGH CURRENT SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD1001 series types are silicon switching diodes manufactured by the epitaxial planar process, designed for applications requiring high current capability.

The following configurations are available:

CMPD1001 CMPD1001S SINGLE

DUAL, IN SERIES

CMPD1001A

DUAL, COMMON ANODE

MARKING CODE: L20

MARKING CODE: L21 MARKING CODE: L22

MAXIMUM RATINGS (TA=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	90	V
Continuous Forward Current	l _E	250	mA
Peak Repetitive Forward Current	, FRM	600	mA
Peak Repetitive Reverse Current	IRRM	600	mA
Forward Surge Current, tp=1 μs	^I FSM	6000	mA
Forward Surge Current, tp=1 s	I _{FSM}	1000	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	TJ,T _{stg}	-65 to +150	oC
Thermal Resistance	$\Theta_{\sf JA}$	357	oC/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
B_{VR}	I _R =100 μΑ	90		٧
¹ B	V _R =90V		100	nA
I _R	V _R =90V, T _A =150 ^o C		100	μΑ
VF	I _F =10mA		0.75	V

SYMBOL	TEST CONDITIONS MIN	MAX	UNIT
٧ _F	I _E =50mA	0.84	V
٧F	I _E =100mA	0.90	V
٧ _F	I _F =200mA	1.00	V
٧F	I _F =400mA	1.25	V
C _T	$V_{R}=0$, f=1 MHz	35	pF
t _{rr}	$I_F=I_R=30$ mA, RECOV. TO 3.0mA, $R_L=100\Omega$	50	ns

CMPD2003 CMPD2004 CMPD2004S

HIGH VOLTAGE SWITCHING DIODE

The following configurations are available:

CMPD2003 SINGLE MARKING CODE: A82
CMPD2004 SINGLE MARKING CODE: D53
CMPD2004S DUAL, IN SERIES MARKING CODE: DB6

MAXIMUM RATINGS (T_A=25°C)

			CMPD2004	
	SYMBOL	CMPD2003	CMPD2004S	UNITS
Continuous Reverse Voltage	v_R	200	240	V
Peak Repetitive Reverse Voltage	V_{RRM}	250	300	V
Peak Repetitive Reverse Current	IO	200	200	mA
Continuous Forward Current	۱Ē	250	225	mA
Peak Repetitive Forward Current	IFRM	625	625	mA
Forward Surge Current, tp=1 μs	^I FSM	4000	4000	mA
Forward Surge Current, tp=1 s	^I FSM	1000	1000	mA
Power Dissipation	PD	35	0	mW
Operating and Storage				
Junction Temperature	T _J ,T _{stg}	-65 to	+150	oC
Thermal Resistance	$\Theta_{\sf JA}$	35	7	oC/W

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD2003, CMPD2004, CMPD2004S types are silicon switching diodes manufactured by the epitaxial planar process, designed for applications requiring high voltage capability.

CMDDOOGA

		CMPD2003	<u>CMPD2004</u> <u>CMPD2004S</u>	
SYMBOL	TEST CONDITIONS	MIN MAX	MIN MAX	UNIT
B_{VR}	I _R =100 μA	250	300	V
I _R	V _R =200V	100	-	nA
l _R	V _R =200V, T _A =150 ^o C	100	-	μΑ
^I R	V _R =240V	-	100	nA
^I R	V _R =240V, T _A =150 ^o C	-	100	μΑ
٧F	I⊨=100mA	1.0	1.0	V

		<u>CMPD2004</u> CMPD2003 CMPD2004S				
SYMBOL	TEST CONDITIONS	MIN	<u>72003</u> MAX	MIN	MAX	UNIT
٧ _F	I _F =200mA		1.25		-	V
C _T	∨ _R =0, f=1 MHz		5.0		5.0	pF
t _{rr}	IF=IR=30mA, RECOV. TO	3.0mA,				
	$R_L=100\Omega$		50		50	ns

CMPD2836 CMPD2838

DUAL SILICON SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD2836, CMPD2838 types are ultra-high speed silicon switching diodes manufactured by the epitaxial planar process, in an epoxy molded surface mount package, designed for high speed switching applications.

The following configurations are available:

CMPD2836 DUAL, COMMON ANODE MARKING CODE: CA2
CMPD2838 DUAL, COMMON CATHODE MARKING CODE: CA6

MAXIMUM RATINGS (TA=25°C)

SYMBOL		UNITS
v_{RRM}	75	V
lo	200	mA
^I FM	300	mA
PD	350	mW
T_{J}, T_{sta}	-65 to +150	°C
Θ_{JA}^{TA}	357	oC/M
	VRRM I _O I _{FM} P _D T _J ,T _{stg}	VRRM 75 IO 200 IFM 300 PD 350 TJ,T _{stg} -65 to +150

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV_R	I _R =100μΑ	75			V
l _R	V _R =50V			100	nA
V _F	I _F =10mA			1.0	V
V _F	I _F =50mA			1.0	V
٧ _F	I _F =100mA			1.2	V
C _T	V _R =0, f=1 MHz		1.5	4.0	pF
t _{rr}	$I_R=I_F=10$ mA, $R_L=100\Omega$, Rec. to 1.0mA			4.0	ns

CMPD4150

HIGH CURRENT HIGH SPEED SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD4150 type is an ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded surface mount package, designed for high speed switching applications.

Marking code is ABA.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_{R}	50	V
Peak Repetitive Reverse Voltage	V_{RRM}	50	V
Continuous Forward Current	l _F	250	mA
Peak Repetitive Forward Current	IFRM	250	mA
Forward Surge Current, tp=1 μsec.	^I FSM	4000	mA
Forward Surge Current, tp=1 sec.	^I FSM	1000	mA
Power Dissipation	PD	350	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	oC
Thermal Resistance	Θ_{JA}	357	oC/M

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
IR	V _R =50V		100	nA
V _F	I _F =1.0mA	0.54	0.62	V
v _F	I _F =10mA	0.66	0.74	V
v _F	I _F =50mA	0.76	0.86	V
v _F	I _F =100mA	0.82	0.92	V
V _F	I _F =200mA	0.87	1.0	V
C _T	∨ _R =0, f=1 MHz		4.0	pF
t _{rr}	$I_{R}=I_{F}=10$ mA, $R_{I}=100\Omega$, Rec.	to 1.0mA	4.0	ns

CMPD4448

HIGH SPEED SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD4448 type is a ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded surface mount package, designed for high speed switching applications.

Marking code is AAD.

MAXIMUM RATINGS (T_A=25°C)

SYMBOL		UNITS
v_R	75	V
V_{BRM}	100	V
l _E	250	mA
^I FRM	250	mA
^I FSM	4000	mA
^I FSM	1000	mA
PD	350	mW
T_{J}, T_{sta}	-65 to +150	°C
$\Theta_{\sf JA}$	357	oC/M
	V _R V _{RRM} I _F I _{FRM} I _{FSM} I _{FSM} P _D T _J ,T _{stg}	V _R 75 V _{RRM} 100 I _F 250 I _{FRM} 250 I _{FSM} 4000 I _{FSM} 1000 P _D 350 T _J ,T _{stg} -65 to +150

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{BR}	I _R =5.0μΑ	75		V
V _{BR}	I _R =100μA	100		V
^I R	V _R =20V		25	nA
VF	I _E =5.0mA	0.62	0.72	V
٧F	I _F =100mA		1.0	V
CT	V _R =0, f=1 MHz		4.0	pF
t _{rr}	$I_R=I_F=10$ mA, $R_L=100\Omega$, R	ec. to 1.0mA	4.0	ns

R2

CMPD5001 CMPD5001S

HIGH CURRENT INDUCTIVE LOAD SWITCHING DIODE

The following configurations are available:

CMPD5001

SINGLE

CMPD5001S

DUAL, IN SERIES

MAXIMUM RATINGS (T_A=25°C)

Central [™]	
Semiconductor Corp.	

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD5001 series types are silicon switching diodes manufactured by the epitaxial planar process, designed for switching inductive load applications requiring extremely high current capability.

MARKING CODE: DA2
MARKING CODE: D49

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	120	V
Continuous Forward Current	lF.	400	mA
Peak Repetitive Forward Current	l _{FRM}	800	mA
Peak Repetitive Reverse Current	I _{BBM}	600	mA
Forward Surge Current, tp=1 μs	I _{FSM}	6000	mA
Forward Surge Current, tp=1 s	IFSM	1500	mA
Power Dissipation	PD	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	oC
Thermal Resistance	$\Theta_{\sf JA}$	357	oC/W

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C)$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
B_{VR}	I _R =1.0mA	120	175	V
IR	V _R =90V		100	nA
I _R	V _R =90V, T _A =150 ^o C		100	μΑ
V_{F}	I _E =10mA		0.75	V
V_{F}	I _F =50mA		0.84	V
٧ _F	I _F =100mA		0.90	V
٧F	I _F =200mA		1.00	V

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{F}	I _F =400mA		1.25	V
CT	$V_{R}=0$, f=1 MHz		35	рF
t _{rr}	$I_F=I_R=30$ mA, RECOV. TO 1.0mA, $R_L=100\Omega$		60	ns
t _{rr}	$I_F=I_R=10$ mA, RECOV. TO 1.0mA, $R_L=100\Omega$		50	ns

CMPD6263 **CMPD6263A** CMPD6263C **CMPD6263S**

SCHOTTKY DIODES

DESCRIPTION:

SEMICONDUCTOR The CENTRAL CMPD6263 Series types are Silicon Schottky diodes designed for low current surface mount fast switching applications requiring a low forward voltage drop.

The following configurations are available:

SINGLE	MARKING CODE: D76
DUAL, COMMON ANODE	MARKING CODE: D98
DUAL, COMMON CATHODE	MARKING CODE: D97
DUAL, IN SERIES	MARKING CODE: D96
	DUAL, COMMON CATHODE

MAXIMUM RATINGS (T_A=25°C)

,	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	70	V
Continuous Forward Current	l _E	15	mA
Forward Surge Current, tp=1.0 s	l _{FSM}	50	mA
Power Dissipation	PD	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}^{JA}	357	oC/M

ELECTRICAL CHARACTERISTICS (T_A=25^oC)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
B_{VR}	I _R =10μΑ	70			V
٧F	I _F =1.0mA		395	410	mV
I _R	Ÿ _R =50V		98	200	nA
ĊŢ	V _R =0V, f=1.0MHz			2.0	рF

CMPD6263C

R2

CMPD7000

DUAL SILICON SWITCHING DIODE SERIES CONNECTION

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPD7000 type is an ultra-high speed silicon switching diodes manufactured by the epitaxial planar process, in an epoxy molded surface mount package, connected in a series configuration, designed for high speed switching applications.

Marking Code is C5C.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{BRM}	100	V
Average Forward Current	lo	200	mA
Peak Forward Current	IFM	500	mA
Power Dissipation	PD	350	mW
Operating and Storage	_		
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BVR	I _R =100μA	100			٧
I _R	V _R =50V			300	nA
I _R	V _B =50V, T _A =125°C			100	μΑ
I _R	VR=100V			500	nA
ν̈́F	I _F =1.0mA	0.55		0.70	V
٧ _F	I _F =10mA	0.67		0.82	V
٧ _F	I _F =100mA	0.75		1.10	V
CT	V _R =0, f=1 MHz			1.5	pF
t _{rr}	I_R =IF=10mA, R_L =100 Ω , Rec. to 1.0mA		2.0	4.0	ns

CMPF4391 CMPF4392 CMPF4393

N-CHANNEL JFET

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPF4391 series types are N-Channel Silicon Field Effect Transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for switching applications.

Marking Codes are 6J, 6K, and 6G Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Drain-Gate Voltage	$v_{\sf GD}$	40	V
Gate-Source Voltage	V_{GS}	40	V
Drain-Source Voltage	V_{DS}	40	V
Gate Current	l _G	50	mA
Power Dissipation	PD	350	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

		<u>CMPI</u>	F4391	<u>CMPI</u>	F4392	CMPI	F4393	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
l _{GSS}	V _{GS} =20V		0.1		0.1		0.1	nΑ
IGSS	V _{GS} =20V, T _A =100°C		0.2		0.2		0.2	μΑ
IDSS	V _{DS} =20V	50	150	25	75	5.0	30	mA
I _D (OFF)	V _{DS} =20V, V _{GS} =12V		0.1		-		-	nA
ID(OFF)	V _{DS} =20V, V _{GS} =7.0V		-		0.1		-	nA
D(OFF)	V _{DS} =20V, V _{GS} =5.0V		-		-		0.1	nA
ID(OFF)	$V_{DS}=20V, V_{GS}=12V, T_{A}=100^{\circ}C$		0.2		-		-	μΑ
ID(OFF)	V _{DS} =20V, V _{GS} =7.0V, T _A =100°C		-		0.2		-	μΑ
^I D(OFF)	V _{DS} =20V, V _{GS} =5.0V, T _A =100°C		-		-		0.2	μΑ
BVGSS	I _G =1.0μA	40		40		40		V
V _{GS(OFF}) V _{DS} =20V _, I _D =1.0nA	4.0	10	2.0	5.0	0.5	3.0	V
$V_{GS(f)}$	I _G =1.0mA		1.0		1.0		1.0	V
V _{DS(ON)}	I _D =12mA		0.4		-		-	V
V _{DS} (ON)	I _D =6.0mA		-		0.4		-	V
V _{DS(ON)}	I _D =3.0mA		-		-		0.4	V

		CMPF4391	CMPF4392	CMPF4393
SYMBOL	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX UNITS
rDS(ON)	I _D =1.0mA, V _{GS} =0	30	60	100 Ω
^r ds(ON)	V_{GS} =0, I_D =0, f=1.0kHz	30	60	100 Ω
C _{iss}	V_{DS} =20V, V_{GS} =0, f=1.0MHz	14	14	14 pF
C_{rss}	V_{GS} =12V, V_{DS} =0, f=1.0MHz	3.5	-	- pF
C_{rss}	$V_{GS} = 7.0V$, $V_{DS} = 0$, $f = 1.0MHz$	-	3.5	- pF
C_{rss}	V_{GS} =5.0V, V_{DS} =0, f=1.0MHz	-	~	3.5 pF
^t ON	$I_{D(ON)}=12mA$	15	-	- ns
^t ON	$I_{D(ON)}=6.0$ mA	-	15	- ns
^t ON	I _{D(ON)} =3.0mA	-	-	15 ns
^t OFF	V _{GS(OFF)} =12V	20	-	- ns
^t OFF	V _{GS(OFF)=7.0} V	-	35	- ns
^t OFF	VGS(OFF)=5.0V	-	***	50 ns

- 1) DRAIN
- 2) SOURCE
- 3) GATE

CMPF4416A SILICON N-CHANNEL JFET

CentralTM Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPF4416A type is an epoxy molded N-Channel Silicon Junction Field Effect Transistor manufactured in an SOT-23 case, designed for VHF amplifier and mixer applications. **Marking code is 6BG.**

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Drain-Source Voltage	V_{DS}	35	V
Gate-Source Voltage	V _{GS}	35	V
Gate Current	IG	10	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	$T_{J,T_{stg}}$	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
l _{GSS}	V _{GS} =20V		1.0	nA
I _{DSS}	V _{DS} =15V, V _{GS} =0	5.0	15	mA
BVGSS	I _G =1.0μΑ	35		V
V _{GS(off)}	V _{DS} =15V, ID=1.0nA	2.5	6.0	V
9fs	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 1.0$ kHz	4.5	7.5	mmhos
C _{iss}	V _{DS} =15V, V _{GS} =0, f=1.0MHz		4.5	pF
C _{rss}	V _{DS} =15V, V _{GS} =0, f=1.0MHz		1.2	pF
NF	V _{DS} =15V, V _{GS} =0, f=1.0kHz, R _G =	=1.0M Ω	2.5	dB

- 1) DRAIN
- 2) SOURCE
- 3) GATE

CMPS5064

SILICON CONTROLLED RECTIFIER

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPS5064 type is an epoxy molded PNPN Silicon Controlled Rectifier manufactured in an SOT-23 case, designed for control systems and sensing circuit applications.

PTIMIL

Marking code is P2D.

MAXIMUM RATINGS (T_A=25°C)

	STWIDGE		UNITS
Peak Repetitive Off-State Voltage	v_{DRM}	400	V
Peak Repetitive Reverse Voltage	V _{RRM}	400	V
RMS On-State Current	IT(RMS)	0.8	Α
Average On-State Current (T _C =67°C)	lT(AV)	0.51	Α
Power Dissipation	PD	350	mW
Operating and Storage	_		
Junction Temperature	T _J ,T _{stg}	-65 to +150	oC
Thermal Resistance	$\Theta_{\sf JA}$	357	oC/M

SVMROL

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C)$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{DRM}	$V_D=400V$, $R_{GK}=1K\Omega$, $T_C=125$ °C		50	μΑ
IRRM	$V_{D}=400V, R_{GK}=1K\Omega, T_{C}=125^{O}C$		50	μΑ
V_{T}	I _T =1.2A		1.7	V
l _{GT}	V_D =7.0V, R_L =100 Ω , R_{GK} =1K Ω		200	μΑ
v_{GT}	V_D =7.0V, R_L =100 Ω , R_{GK} =1 $K\Omega$		0.8	V
V_{GD}	V_{D} =400V, R_{L} =100 Ω , T_{C} =125 O C	0.1		V
lΗ	V_{D} =7.0, R_{GK} =1 $K\Omega$		5.0	mA
^t ON	V_D =400V, I_{GT} =1.0mA, R_{GK} =1.0 Ω , di/d	lt=6.0A/μs	2.8 TYP	μs

- 1) CATHODE
- 2) GATE
- 3) ANODE

CMPSH-3 CMPSH-3A CMPSH-3C CMPSH-3S SCHOTTKY DIODES

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPSH-3 Series types are Silicon Schottky diodes designed for surface mount fast switching applications requiring a low forward voltage drop.

The following configurations are available:

CMPSH-3	SINGLE	MARKING CODE: D95
CMPSH-3A	DUAL, COMMON ANODE	MARKING CODE: DB1
CMPSH-3C	DUAL, COMMON CATHODE	MARKING CODE: DB2
CMPSH-3S	DUAL, IN SERIES	MARKING CODE: DA5

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	30	V
Continuous Forward Current	۱F	100	mA
Peak Repetitive Forward Current	^I FRM	350	mA
Forward Surge Current, tp=10 ms	^I FSM	750	mA
Power Dissipation	P_D	350	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	oС
Thermal Resistance	ΘΙΔ	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
B_{VR}	I _R =100μA	30			V
VF	I _F =2.0mA		0.29	0.33	V
٧F	I _F =15mA		0.40	0.45	V
٧F	I _F =100mA		0.74	1.00	V
l _R	V _R =25V		90	500	nA
^I R	$V_{R}=25V, T_{A}=100^{o}C$		25	100	μΑ
CT	$V_{R}=1.0V$, f=1 MHz		7.0		pF
t _{rr}	$I_{F}=I_{R}=10$ mA, $I_{rr}=1.0$ mA, $R_{L}=100\Omega$			5.0	ns

CMPT918

NPN SILICON RF TRANSISTOR

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT918 type is an NPN silicon RF transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high frequency (VHF/UHF) amplifier and oscillator applications.

Marking code is C3B.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	30	V
Collector-Emitter Voltage	VCEO	15	V
Emitter-Base Voltage	V_{EBO}	3.0	V
Collector Current	lc	50	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	oC
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CBO	V _{CB} =15V		10	nA
BV _{CBO}	I _C =1.0μA	30		V
BVCEO	I _C =3.0mA	15		V
BVEBO	I _E =10μΑ	3.0		V
V _{CE} (SAT)	I _C =10mA, I _B =1.0mA		0.4	V
V _{BE} (SAT)	I _C =10mA, IB=1.0mA		1.0	V
hFE	V _{CE} =1.0V, I _C =3.0mA	20		
fΤ	$V_{CE}=10V$, $I_{C}=4.0$ mA, $f=100$ MHz	600		MHz
C_{ob}	$V_{CB}=0V$, $I_{E}=0$, $f=1.0MHz$		3.0	рF
C_{ob}	V_{CB} =10V, IE=0, f=1.0MHz		1.7	pF
C _{ib}	V _{EB} =0.5V, I _C =0, f=1.0MHz		2.0	pF
Pout	V_{CB} =15V, I_{C} =8.0mA, f=500MHz	30		mW
G _{pe}	V_{CB} =12V, I_{C} =6.0mA, f=200MHz	11		dB
NĖ	V_{CE} =6.0V, I_{C} =1.0mA, R_{S} =50 Ω , f=60I	MHz	6.0	dB

LEAD CODE:

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

DATA SHEET

CMPT930 NPN SILICON TRANSISTOR

DESCRIPTION

The CENTRAL SEMICONDUCTOR CMPT930 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose amplifier applications.

Marking Code is C1X.

MAXIMUM RATINGS (T_A=25^oC)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	45	V
Collector-Emitter Voltage	V _{CEO}	45	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	I _C	30	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	$T_{J,T_{stg}}$	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	oC/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =45V		10	nA
ICEO	V _{CF} =5.0V		10	nA
ICES	V _{CF} =45V		10	nA
IEBO	V _{FB} =5.0V		10	nA
BV _{CBO}	I _C =10μΑ	45		V
BVCEO	I _C =10mA	45		V
BVEBO	I _E =10μΑ	5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =0.5mA		1.0	V
V _{BE} (SAT)	I _C =10mA, I _B =0.5mA	0.6	1.0	V
h _{FE}	$V_{CF} = 5.0 \text{V}, I_{C} = 10 \mu \text{A}$	100	300	
h _{FE}	V _{CF} =5.0V, I _C =500μA	150		
hFE	$V_{CF} = 5.0V, I_{C} = 10mA$		600	
fT	V _{CF} =5.0V, I _C =500mA, f=30MHz	30		MHz
Ċ _{ob}	$V_{CB}=5.0V, I_{F}=0, f=1.0MHz$		8.0	pF
NF	$V_{CF}=5.0V$, $I_{C}=10$ mA, $R_{S}=10$ k Ω ,			
	f=10Hz to 15.7kHz		3.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT2222A

NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT2222A type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

Marking Code is C1P.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	75	V
Collector-Emitter Voltage	VCEO	40	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	IC C	600	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I СВО	V _{CB} =60V		10	nA
ICBO	V _{CB} =60V, T _A =125°C		10	μΑ
ICEV	$V_{CE} = 60V, V_{EB} = 3.0V$		10	nA
IEBO	V _{EB} =3.0V		10	nA
BV _{CBO}	I _C =10μΑ	75		V
BVCEO	I _C =10mA	40		V
BVEBO	I _E =10μΑ	6.0		V
VCE(SAT)	I _C =150mA, I _B =15mA		0.3	V
VCE(SAT)	I _C =500mA, I _B =50mA		1.0	V
V _{BE} (SAT)	$I_C=150$ mA, $I_B=15$ mA	0.6	1.2	V
VBE(SAT)	I _C =500mA, I _B =50mA		2.0	V
hFE	$V_{CE}=10V$, $I_{C}=0.1$ mA	35		
hFE	$V_{CE}=10V$, $I_{C}=1.0$ mA	50		
hFE	$V_{CE}=10V$, $I_{C}=10mA$	75		
h _{FE}	V _{CE} =1.0V, I _C =150mA	50		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	V _{CE} =10V, I _C =150mA	100	300	
hFE	V _{CE} =10V, I _C =500mA	40		
f _T	V_{CE} =20V, I_{C} =20mA, f=100MHz	300		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		8.0	pF
C_{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz		25	рF
h _{ie}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	2.0	8.0	$k\Omega$
h _{ie}	$V_{CE}=10V$, $I_{C}=10mA$, $f=1.0kHz$	0.25	1.25	$k\Omega$
h _{re}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz		8.0	x10 ⁻⁴
h _{re}	V_{CE} =10V, I_{C} =10mA, f=1.0kHz		4.0	x10 ⁻⁴
h _{fe}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	50	300	
h _{fe}	V_{CE} =10V, I_{C} =10mA, f=1.0kHz	75	375	
h _{oe}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	5.0	35	μmhos
h _{oe}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz	25	200	μmhos
rb'C _C	V_{CB} =10V, I_E =20mA, f=31.8MHz		150	ps
NF	V_{CE} =10V, I_{C} =100μA, R_{S} =1.0k Ω ,	f=1.0kHz	4.0	dB
^t d	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{F}	_{B1} =15mA	10	ns
t _r	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _F	_{B1} =15mA	25	ns
t _s	V _{CC} =30V, I _C =150mA, I _{B1} =I _{B2} =15	5mA	225	ns
t _f	V_{CC} =30V, I_{C} =150mA, I_{B1} = I_{B2} =15	5mA	60	ns

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT2369

NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT2369 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for ultra high speed switching applications.

Marking Code is C1J.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	40	V
Collector-Emitter Voltage	VCES	40	V
Collector-Emitter Voltage	VCEO	15	V
Emitter-Base Voltage	V _{EBO}	4.5	V
Collector Current	IC	500	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =20V		0.4	μΑ
ICBO	V _{CB} =20V, T _A =125°C		30	μΑ
BV _{CBO}	I _C =10μΑ	40		V
BVCES	I _C =10μA	40		V
BVCEO	I _C =10mA	15		V
BVEBO	I _F =10μΑ	4.5		٧
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.25	V
VBE(SAT)	I _{C=} 10mA, I _B =1.0mA	0.7	0.85	V
hFE	V _{CE} =1.0V, I _C =10mA	40	120	
hFE	V _{CE} =2.0V, I _C =100mA	20		
C _{ob}	V_{CB} =5.0V, I_{E} =0, f =1.0MHz		4.0	pF
fΤ	V_{CE} =10V, I_{C} =10mA, f =100MHz	500		MHz
t _s	$V_{CC}=3.0V$, $I_{C}=I_{B1}=I_{B2}=10mA$		13	ns
ton	V_{CC} =3.0V, I_{C} =10mA, I_{B1} =3.0mA		12	ns
toff	V _{CC} =3.0V, I _C =10mA, I _{B1} =3.0mA,	l _{B2} =1.5mA	18	ns

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT2484

NPN SILICON LOW NOISE TRANSISTOR

The CENTRAL SEMICONDUCTOR CMPT2484 type is an NPN silicon low noise transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for low noise amplifier applications.

Marking Code is C1U.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	VCEO	60	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	lC	50	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =45V		10	nA
ICBO	V _{CB} =45V, T _A =150°C		10	μΑ
IEBO	V _{EB} =5.0V		10	nA
BV _{CBO}	I _C =10μA	60		V
BVCEO	I _C =10mA	60		V
BV _{EBO}	I _E =10μA	5.0		V
VCE(SAT)	I _C =1.0mA, I _B =100μA		0.35	V
VBE(ON)	V _{CE} =5.0V, I _C =1.0mA		0.95	V
hFE	V _{CE} =5.0V, I _C =1.0mA	250		
hFE	V _{CE} =5.0V, I _C =10mA		800	
C _{ob}	$V_{CB}=5.0V, I_{E}=0, f=1.0MHz$		6.0	pF
C _{ib}	$V_{EB}=0.5V$, $I_{C}=0$, $f=1.0MHz$		6.0	pF
NF	V_{CE} =5.0V, I_{C} =10μA, RS=10k Ω			
	f=1.0kHz, BW=200Hz		3.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT2907A

PNP SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT2907A type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

Marking Code is C2F.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	VCEO	60	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	l _C	600	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	Tյ,T _{stg}	-65 to +150	οС
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICBO	V _{CB} =50V		10	nA
ICBO	V _{CB} =50V, T _A =125°C		10	μΑ
ICEV	V _{CE} =30V, V _{BE} =0.5V		50	nA
BV _{CBO}	I _C =10μA	60		V
BVCEO	I _C =10mA	60		V
BVEBO	I ⊏ =10μΑ	5.0		V
VCE(SAT)	I _C =150mA, I _B =15mA		0.4	V
VCE(SAT)	I _C =500mA, I _B =50mA		1.6	V
VBE(SAT)	I _C =150mA, I _B =15mA		1.3	V
VBE(SAT)	I _C =500mA, I _B =50mA		2.6	V
h _{FE}	V _{CE} =10V, I _C =0.1mA	75		
hFE	V _{CF} =10V, I _C =1.0mA	100		
hFE	V _{CE} =10V, I _C =10mA	100		
hFE	V _{CE} =10V, I _C =150mA	100	300	

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{FE}	V _{CE} =10V, I _C =500mA	50		
f _T	V_{CE} =20V, I_{C} =50mA, f=100MHz	200		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		8.0	pF
C _{ib}	$V_{BE}=2.0V$, $I_{C}=0$, $f=1.0MHz$		30	pF
t _{on}	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		45	ns
^t d	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		10	ns
t _r	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		40	ns
toff	$V_{CC}=6.0V$, $I_{C}=150mA$, $I_{B1}=I_{B2}=15mA$		100	ns
t _S	V _{CC} =6.0V, I _C =150mA, I _{B1} =I _{B2} =15mA		80	ns
t _f	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		30	ns

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT3019 NPN SILICON TRANSISTOR

DESCRIPTION

The CENTRAL **SEMICONDUCTOR** CMPT3019 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for very high current, general purpose amplifier applications.

Marking Code is C3A.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	120	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	VEBO	7.0	V
Collector Current	lc	500	Α
Collector Current (Peak)	lсм	1.0	Α
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	$T_{J,T_{stg}}$	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

SYMBOL	TEST CONDITIONS MIN	MAX	UNITS
I _{CBO}	V _{CB} =90V	10	nA
IEBO	V _{EB} =5.0V	10	nA
BV _{CBO}	I _C =100μA 120		V
BVCEO	I _C =30mA 80		V
BV _{EBO}	I _E =100μA 7.0		V
V _{CE} (SAT)	I _C =150mA, I _B =15mA	0.2	V
VCE(SAT)	I _C =500mA, I _B =50mA	0.5	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA	1.1	V
h _{FE} ` ′	$V_{CE}=10V, I_{C}=0.1mA$ 50		
h _{FE}	$V_{CE}=10V, I_{C}=10mA$ 90		
h _{FE}	$V_{CE}=10V, I_{C}=150mA$ 100	300	
h _{FE}	$V_{CE}=10V, I_{C}=500mA$ 50		
f _T	V _{CE} =10V, I _C =50mA, f=1.0MHz 100		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$	12	pF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz	60	pF
NF	V_{CE} =10V, I_{C} =100mA, R_{S} =1k Ω , f=1.0kHz	4.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT3640

PNP SILICON TRANSISTOR

MAXIMUM RATINGS (T_A=25°C)

CentralSemiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT3640 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for saturated switching applications. Marking code is C2J.

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	12	V
Collector-Emitter Voltage	VCEO	12	V
Emitter-Base Voltage	V_{EBO}	4.0	V
Collector Current	IC	80	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICES	V _{CE} =6.0V		10	nA
ICES	$V_{CE}=6.0V, T_{A}=65^{o}C$		10	μ A
l _B	V _{CE} =6.0V, V _{EB} =0		10	nA
BV _{CBO}	I _C =100μA	12		V
BVCEO	I _C =10mA	12		V
BVEBO	I _E =100μA	4.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.20	V
VCE(SAT)	IC=50mA, IB=5.0mA		0.60	V
V _{CE} (SAT)	$I_{C}=10\text{mA}, I_{B}=1.0\text{mA}, T_{A}=65^{\circ}\text{C}$		0.25	V
V _{BE} (SAT)	I _C =10mA, I _B =0.5mA	0.75	0.95	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA	0.80	1.00	V
V _{BE} (SAT)	$I_C=50$ mA, $I_B=5.0$ mA		1.50	V
hFE	V _{CE} =0.3V, I _C =10mA	30	120	

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{FE}	$V_{CE}=1.0V$, $I_{C}=50mA$	20		
fT	V _{CE} =5.0V, I _C =10mA, f=100MHz	500		MHz
C _{ob}	V _{CB} =5.0V, I _E =0, f=1.0MHz		3.5	pF
C _{ib}	V_{BE} =0.5V, I_{C} =0, f=1.0MHz		3.5	pF
^t d	V _{CC} =6.0V, V _{BE} =1.9, I _C =50mA, I _{B1} =5.0mA		10	ns
t _r	V _{CC} =6.0V, V _{BE} =1.9, I _C =50mA, I _{B1} =5.0mA		30	ns
t _S	V_{CC} =6.0V, I_{C} =50mA, I_{B1} = I_{B2} =5.0mA		20	ns
t _f	V _{CC} =6.0V, I _C =50mA, I _{B1} =I _{B2} =5.0mA		12	ns
^t on	V_{CC} =6.0V, V_{BE} =1.9, I_{C} =50mA, I_{B1} =5.0mA		25	ns
^t on	V _{CC} =1.5V, I _C =10mA, I _{B1} =0.5mA		60	ns
^t off	V _{CC} =6.0V, V _{BE} =1.9, I _C =50mA, I _{B1} =5.0mA		35	ns
^t off	V_{CC} =1.5V, I_{C} =10mA, I_{B1} = I_{B2} =0.5mA		75	ns

DATA SHEET

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT3646 NPN SILICON TRANSISTOR

MAXIMUM RATINGS (T_A=25°C)

CentralTM Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT3646 type is an NPN Silicon Transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high current, ultra high speed switching applications.

Marking code is C2R.

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	40	V
Collector-Emitter Voltage	VCES	40	V
Collector-Emitter Voltage	VCEO	15	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	IC	200	mA
Power Dissipation	$P_{\mathbf{D}}$	350	mW
Operating and Storage	_		
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	oC/M

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CES}	V _{CE} =20V		0.5	μΑ
ICES	V _{CE} =20V, T _A =65°C		3.0	μΑ
BV _{CBO}	I _C =100μA	40		V
BVCES	I _C =10μΑ	40		V
BVCEO	I _C =10mA	15		V
BVEBO	I _F =100μΑ	5.0		V
VCE(SAT)	$I_{C}=30$ mA, $I_{B}=3.0$ mA		0.20	V
VCE(SAT)	I_{C} =30mA, I_{B} =3.0mA, I_{A} =65°C		0.30	V
VCE(SAT)	I _C =100mA, I _B =10mA		0.28	V
VCE(SAT)	I _C =300mA, I _B =30mA		0.50	V
VBE(SAT)	I _C =30mA, I _B =3.0mA	0.75	0.95	V
VBE(SAT)	I _C =100mA, I _B =10mA		1.20	V
VBE(SAT)	IC=300mA, IB=30mA		1.70	V
hFE	$V_{CE}=0.4V$, $I_{C}=30$ mA	30	120	
hFE	$V_{CE}^{-}=0.5V, I_{C}^{-}=100mA$	25		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	$V_{CE}=1.0V$, $I_{C}=300$ mA	15		
fT	$V_{CE}=10V$, $I_{C}=30$ mA, $f=100$ MHz	350		MHz
C _{ob}	$V_{CB} = 5.0V$, $I_{E} = 0$, $f = 1.0MHz$		5.0	рF
C _{ib}	$V_{BE} = 0.5V, I_{C} = 0, f = 1.0MHz$		8.0	рF
ton	V _{CC} =10V, I _C =300mA, I _{B1} =30mA		18	ns
toff	V _{CC} =10V, I _C =300mA, I _{B1} =I _{B2} =30	mA	28	ns
tS	V _{CC} =10V, I _C =I _{B1} =I _{B2} =10mA		18	ns

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT3904 NPN CMPT3906 PNP

COMPLEMENTARY SILICON TRANSISTORS

MAXIMUM RATINGS (T_A=25°C)

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT3904, CMPT3906 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose amplifier and switching applications.

CMDT2006

Marking Codes are C1A, C2A Respectively.

	SYMBOL	CMPT3904	CMPT3906	UNITS
Collector-Base Voltage	V_{CBO}	60	40	V
Collector-Emitter Voltage	V_{CEO}	40	40	V
Emitter-Base Voltage	V_{EBO}	6.0	5.0	V
Collector Current	lC		200	mA
Power Dissipation	P_{D}		350	mW
Operating and Storage				
Junction Temperature	T_J, T_stg	-6	65 to +150	°C
Thermal Resistance	Θ_{JA}		357	°C/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

		CIMP	13904	CIMPI	3906	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CEV	$V_{CE}=30V$, $V_{EB}=3.0V$		50		50	nA
^I BL	$V_{CE}=30V$, $V_{EB}=3.0V$		50			nA
BV _{CBO}	I _C =10μA	60		40		V
BV _{CEO}	I _C =1.0mA	40		40		V
BV _{EBO}	I _E =10μΑ	6.0		5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.20		0.25	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.30		0.40	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA	0.65	0.85	0.65	0.85	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		0.95		0.95	V
h _{FE}	V _{CE} =1.0V, I _C =0.1mA	40		60		
hFE	$V_{CE}=1.0V, I_{C}=1.0mA$	70		80		
hFE	V _{CE} =1.0V, I _C =10mA	100	300	100	300	
hFE	$V_{CE}=1.0V$, $I_{C}=50mA$	60		60		
hFE	V _{CE} =1.0V, I _C =100mA	30		30		

CMDT2004

		CMP'	<u>Г3904</u>	<u>CMP</u>	T3906	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
f _T	V_{CE} =20V, I_{C} =10mA, f=100MHz	300		250		MHz
C_{ob}	V_{CB} =5.0V, I_E =0, f =1.0MHz		4.0		4.5	pF
C _{ib}	V_{BE} =0.5V, I_{C} =0, f=1.0MHz		8.0		10	pF
h _{ie}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	1.0	10	2.0	12	kΩ
h _{re}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	0.5	8.0	0.1	10	x10 ⁻⁴
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	100	400	100	400	
h _{oe}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	1.0	40	3.0	60	μmhos
NF	$V_{CE}=5.0V, I_{C}=100mA, R_{S}=1.0k\Omega$					
	f=10Hz to 15.7kHz		5.0		4.0	dB
t_d	V _{CC} =3.0V, V _{BE} =0.5, I _C =10mA, I _{B1} =	1.0mA	35		35	ns
t _r	V _{CC} =3.0V, V _{BE} =0.5, I _C =10mA, I _{B1} =	1.0mA	35		35	ns
t_s	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0mA	١	200		225	ns
t _f	V_{CC} =3.0V, I_{C} =10mA, I_{B1} = I_{B2} =1.0mA	١	50		75	ns

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT4033 PNP SILICON TRANSISTOR

DESCRIPTION

The CENTRAL **SEMICONDUCTOR** CMPT4033 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for very high current, general purpose amplifier applications.

Marking Code is C4A.

MAXIMUM RATINGS	$(T_{\Delta}=25^{\circ}C)$
------------------------	----------------------------

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	80	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	lC	500	mA
Collector Current (Peak)	ICM	1.0	Α
Power Dissipation	PD	350	mW
Operating and Storage	-		
Junction Temperature	$T_{J,T_{stg}}$	-65 to +150	οС
Thermal Resistance	$\Theta_{.IA}$	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =60V		50	nA
IEBO	V _{EB} =5.0V		10	nA
BV _{CBO}	I _C =10μΑ	80		V
BVCEO	I _C =10mA	80		V
BVEBO	I _E =10μΑ	5.0		V
V _{CE(SAT)}	I _C =150mA, I _B =15mA		0.15	V
VCE(SAT)	I_{C} =500mA, I_{B} =50mA		0.50	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA		0.90	V
VBE(SAT)	I _C =500mA, I _B =50mA		1.10	V
h _{FE}	$V_{CE} = 5.0V, I_{C} = 0.1 \text{mA}$	75		
hFE	$V_{CE} = 5.0 \text{V}, I_{C} = 100 \text{mA}$	100	300	
h _{FE}	$V_{CE} = 5.0V, I_{C} = 500 \text{mA}$	70		
fT	V _{CE} =10V, I _C =50mA, f=1.0MHz	100		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		20	рF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz		110	pF

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT4401 NPN CMPT4403 PNP

COMPLEMENTARY SILICON TRANSISTORS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT4401, CMPT4403 types are

CMPT4401, CMPT4403 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose amplifier and switching applications.

Marking Codes are C2X, C2T Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	CMPT4401	CMPT4403	UNITS
Collector-Base Voltage	V _{CBO}	60	40	V
Collector-Emitter Voltage	VCEO	40	40	V
Emitter-Base Voltage	V_{EBO}	6.0	5.0	V
Collector Current	^I C	600)	mA
Power Dissipation	P_{D}	350)	mW
Operating and Storage				
Junction Temperature	T_J, T_stg	-65 to -	+150	οС
Thermal Resistance	$\Theta_{\sf JA}$	357	7	oC\M

		CMPT4401	CMPT4403	
SYMBOL	TEST CONDITIONS	MIN MAX	MIN MAX	UNITS
^I CEV	V_{CE} =35V, V_{EB} =0.4V	0.1	0.1	μΑ
^I BEV	V_{CE} =35V, V_{EB} =0.4V	0.1	0.1	μΑ
BV _{CBO}	I _C =100μA	60	40	V
BVCEO	I _C =1.0mA	40	40	V
BVEBO	I _E =100μA	6.0	5.0	V
V _{CE(SAT)}	I _C =150mA, I _B =15mA	0.40	0.40	V
VCE(SAT)	I _C =500mA, I _B =50mA	0.75	0.75	V
VBE(SAT)	I _C =150mA, I _B =15mA	0.75 0.95	0.75 0.95	V
V _{BE} (SAT)	I _C =500mA, I _B =50mA	1.2	1.3	V
h _{FE} ` ′	$V_{CE}=1.0V, I_{C}=0.1mA$	20	30	
^h FE	$V_{CE}=1.0V$, $I_{C}=1.0mA$	40	60	
h _{FE}	V_{CE} =1.0V, I_{C} =10mA	80	100	

		CMP.	<u> </u>	CMP.	T4403	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
hFF	V _{CF} =1.0V, I _C =150mA	100	300	-	-	
hFF	V _{CF} =2.0V, I _C =150mA	-	_	100	300	
hFE	V _{CE} =2.0V, I _C =500mA	40		20		
fT	V _{CE} =10V, I _C =20mA, f=100MHz	250		200		MHz
C _{ob}	V _{CB} =5.0V, I _E =0, f=1.0MHz		6.5		8.5	рF
C_{ib}	$V_{BE}=0.5V, I_{C}=0, f=1.0MHz$		30		30	pF
h _{ie}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	1.0	15	1.5	15	kΩ
h _{re}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	0.1	8.0	0.1	8.0	x10 ⁻⁴
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	40	500	60	500	
h _{oe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	1.0	30	1.0	100	μmhos
t_d	V_{CC} =30V, V_{BE} =2.0, I_{C} =150mA, I_{B}	₃₁ =15mA	15		15	ns
t _r	V _{CC} =30V, V _{BE} =2.0, I _C =150mA, I _B	₃₁ =15mA	20		20	ns
t _s	V _{CC} =30V, I _C =150mA, I _{B1} =I _{B2} =15	mA	225		225	ns
t _f	V _{CC} =30V, I _C =150mA, I _{B1} =I _{B2} =15	mA	30		30	ns

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT5086 CMPT5087

PNP SILICON TRANSISTOR

Central ** Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT5086, CMPT5087 types are PNP silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring high gain and low noise.

Marking Codes are C2P and C2Q Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	50	V
Collector-Emitter Voltage	VCEO	50	V
Emitter-Base Voltage	V _{EBO}	3.0	V
Collector Current	I _C	50	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	ΘΙΔ	357	°C/W

		CMP.	T5086	CMP.	T5087	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CBO	V _{CB} =10V		10		10	nA
I _{CBO}	V _{CB} =35V		50		50	nA
BV _{CBO}	I _C =100μA	50		50		V
BVCEO	I _C =1.0mA	50		50		V
BV _{EBO}	I _E =100μA	3.0		3.0		V
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.30		0.30	V
V _{BE(SAT)}	I _C =10mA, I _B =1.0mA		0.85		0.85	V
h _{FE} ` ′	V_{CE} =5.0V, I_{C} =0.1mA	150	500	250	800	
h _{FE}	V_{CE} =5.0V, I_{C} =1.0mA	150		250		
h _{FE}	$V_{CE}=5.0V$, $I_{C}=10mA$	150		250		
f _T	V_{CE} =5.0V, I_{C} =500 μ A, f=20MHz	40		40		MHz
C _{ob}	V_{CB} =5.0V, I_{E} =0, f =1.0MHz		4.0		4.0	pF
h _{fe}	V_{CE} =5.0V, I_{C} =1.0mA, f=1.0kHz	150	600	250	900	

			CMPT5086		CMPT5087	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
NF	V_{CE} =5.0V, I_{C} =20mA, R_{S} =10k Ω					
	f=10Hz to 15.7kHz		3.0		2.0	dB
NF	V_{CE} =5.0V, I_{C} =100μA, R_{S} =3.0k Ω , f=1.0kHz		3.0		2.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT5088 CMPT5089

NPN SILICON TRANSISTORS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT5088, CMPT5089 types are NPN silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring high gain and low noise.

Marking Codes are C1Q, C1R Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	CMPT5088	CMPT5089	UNITS
Collector-Base Voltage	V_{CBO}	35	30	V
Collector-Emitter Voltage	VCEO	30	25	. \
Emitter-Base Voltage	V _{EBO}	4	.5	V
Collector Current	^I C	5	50	mA
Power Dissipation	P_{D}	35	50	mW
Operating and Storage				
Junction Temperature	T_J, T_stg	-65 to	+150	°C
Thermal Resistance	Θ_{JA}	35	57	°C/W

		CMP.	T5088	CMP ⁻	Г5089	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CBO	V _{CB} =20V		50		-	nA
^I СВО	V _{CB} =15V		-		50	nA
^I EBO	V _{EB} =3.0V		50		-	nA
^I EBO	V _{EB} =4.5V		-		100	nA
BV _{CBO}	I _C =100μΑ	35		30		V
BV_CEO	I _C =1.0mA	30		25		V
BV _{EBO}	I _E =100μA	4.5		4.5		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.5		0.5	V
V _{BE(SAT)}			8.0		8.0	V
h _{FE} ` ´	V_{CE} =5.0V, I_{C} =0.1mA	300	900	400	1200	
hFE	V_{CE} =5.0V, I_{C} =1.0mA	350		450		
hFE	V_{CE} =5.0V, I_{C} =10mA	300		400		
f_T	V_{CE} =5.0V, I_{C} =500 μ A, f=20MHz	50		50		MHz
C _{ob}	V_{CB} =5.0V, I_{E} =0, f=1.0MHz		4.0		4.0	pF

		CMPT5088		CMP	CMPT5089	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
C _{ib}	V_{BE} =0.5V, I_{C} =0, f=1.0MHz		10		10	рF
h _{fe}	V_{CE} =5.0V, I_{C} =1.0mA, f =1.0kHz	350	1400	450	1800	
NF	V_{CE} =5.0V, I_{C} =100 μ A, R_{S} =10 $k\Omega$					
	f=10Hz to 15.7kHz		3.0		2.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT5179

NPN SILICON RF TRANSISTOR

MAXIMUM RATINGS (T_A=25°C)

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT5179 type is an NPN silicon RF transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for low noise, high frequency amplifier and high output oscillator applications.

Marking code is C7H.

	SYMBOL		UNITS
Collector-Base Voltage	V _{CBO}	20	V
Collector-Emitter Voltage	VCEO	12	V
Emitter-Base Voltage	V _{EBO}	2.5	V
Collector Current	IC C	50	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	οС
Thermal Resistance	ΘιΔ	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
^I СВО	V _{CB} =15V			20	nA
BV_{CBO}	I _C =10μA	20			٧
BVCEO	I _C =3.0mA	12			V
BVEBO	I _E =10μA	2.5			V
VCE(SAT)	I _C =10mA, I _B =1.0mA			0.4	٧
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA			1.0	V
hFE	V _{CE} =1.0V, I _C =3.0mA	25			
fT	V _{CE} =6.0V, I _C =5.0mA, f=100MHz	900	1450		MHz
C _{cb}	V_{CB} =10V, I_{E} =0, f=0.1 to 1.0MHz			1.0	pF
h _{fe}	$V_{CE}=6.0V$, $I_{C}=2.0$, $f=1.0kHz$	25			
Gpe	V_{CE} =6.0V, I_{C} =5.0mA, f=200MHz	15			dB
NÉ	V_{CE} =6.0V, I_{C} =1.5mA, R_{S} =50 Ω , f=20	0MHz		4.5	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT5401

PNP SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT5401 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage amplifier applications. **Marking Code is C2L.**

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	160	V
Collector-Emitter Voltage	VCEO	150	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	I _C	500	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	oC
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I СВО	V _{CB} =100V		50	nA
ICBO	$V_{CB} = 100V, T_A = 150^{\circ}C$		50	μΑ
BV _{CBO}	I _C =100μA	160		V
BVCEO	I _C =1.0mA	150		V
BVEBO	I _E =10μΑ	5.0		V
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.2	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.5	V
VBE(SAT)	I _C =10mA, I _B =1.0mA		1.0	V
VBE(SAT)	I _C =50mA, I _B =5.0mA		1.0	V
h _{FE} ` ′	$V_{CE}=5.0V$, $I_{C}=1.0mA$	50		
hFE	$V_{CE}=5.0V$, $I_{C}=10mA$	60	240	
hFE	$V_{CE}=5.0V$, $I_{C}=50mA$	50		
f _T	$V_{CE}=10V$, $I_{C}=10mA$, $f=100MHz$	100	300	MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz		6.0	pF

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	40	200	
NF	V_{CE} =5.0V, I_{C} =200μA, R_{S} =10 Ω			
	f=10Hz to 15.7kHz		8.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT5551

NPN SILICON TRANSISTOR

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT5551 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage amplifier applications.

Marking Code is 1FF.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	180	V
Collector-Emitter Voltage	VCEO	160	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	lC	600	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C)$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CBO	V _{CB} =120V		50	nA
ICBO	V _{CB=} 120V, T _A =100°C		50	μΑ
BV _{CBO}	I _C =100μA	180		V
BVCEO	I _C =1.0mA	160		V
BVEBO	I _E =10μA	6.0		V
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.15	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.20	V
V _{BE(SAT)}	I _C =10mA, I _B =1.0mA		1.00	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		1.00	V
hFE	V _{CE} =5.0V, I _C =1.0mA	80		
hFE	V _{CE} =5.0V, IC=10mA	80	250	
hFE	V _{CE} =5.0V, I _C =50mA	30		
fT	V _{CE} =10V, I _C =10mA, f=100MHz	100	300	MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz		6.0	pF

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{fe}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	50	200	
NF	VCE=5.0V, I_{C} =200μA, R_{S} =10 Ω			
	f=10Hz to 15.7kHz		8.0	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT6427

NPN SILICON DARLINGTON TRANSISTOR

DESCRIPTION:

CENTRAL **SEMICONDUCTOR** The CMPT6427 type is a NPN Silicon Darlington Transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high gain.

Marking Code is C1V.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	40	V
Collector-Emitter Voltage	VCEO	40	V
Emitter-Base Voltage	V _{EBO}	12	V
Collector Current	¹ C	500	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICBO	V _{CB} =30V		50	nA
ICEO	V _{CE} =25V		1.0	μΑ
IEBO	V _{BE} =10V		50	nA
BV _{CBO}	I _C =100μA	40		V
BVCEO	I _C =10mA	40		V
BV _{EBO}	I _E =10μΑ	12		V
V _{CE(SAT)}	I _C =50mA, I _B =0.5mA		1.20	V
V _{CE} (SAT)	I _C =500mA, I _B =0.5mA		1.50	V
V _{BE(SAT)}	I _C =500mA, I _B =0.5mA		2.00	V
V _{BE(ON)}	$V_{CE}=5.0V$, $I_{C}=50mA$		1.75	V
hFE	$V_{CE}=5.0V$, $I_{C}=10mA$	10K	100K	
hFE	$V_{CE}=5.0V$, $I_{C}=100mA$	20K	200K	
hFE	V _{CE} =5.0V, I _C =500mA	14K	140K	
f _T	V _{CE} =5.0V, IC=10mA, f=100MHz	130		MHz

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		7.0	рF
C _{ib}	$V_{BE}=0.5V, I_{C}=0, f=1.0MHz$		15	pF
N_{F}	$V_{CE}=5.0V$, $I_{C}=1.0$ mA, $R_{S}=100$ k Ω ,			
	f=1.0kHz TO 15.7kHz		10	dB

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT6428 CMPT6429

NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT6428, CMPT6429 types are NPN Silicon Transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high gain amplifier applications.

Marking Codes are C1K and C1L Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	<u>CMPT6428</u>	CMPT6429	UNITS
Collector-Base Voltage	$V_{\sf CBO}$	60	55	V
Collector-Emitter Voltage	VCEO	50	45	V
Emitter-Base Voltage	V_{EBO}		6.0	V
Collector Current	lc	2	200	mA
Power Dissipation	P_{D}	3	350	mW
Operating and Storage	_			
Junction Temperature	T_J, T_stg	-65 t	o +150	оC
Thermal Resistance	$\Theta_{\sf JA}$	3	357	°C/W

		CMF	PT6428	CMP	T6429	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
I _{CBO}	V _{CB} =30V		10		10	nA
^I CEO	V _{CE} =30V		100		100	nA
^I EBO	V _{BE} =5.0V		10		10	nA
BV _{CBO}	I _C =100μA		60		55	V
BV _{CEO}	I _C =1.0mA		50		45	V
V _{CE(SAT)}	I _C =10mA, I _B =0.5mA		0.20		0.20	V
VCE(SAT)	I _C =100mA, I _B =5.0mA		0.60		0.60	V
V _{BE(ON)}	V_{CE} =5.0V, I_{C} =1.0mA	0.56	0.66	0.56	0.66	V
h _{FE} ` ′	$V_{CE}=5.0V, I_{C}=10\mu A$	250		500		
hFE	$V_{CE}=5.0V, I_{C}=100\mu A$	250	650	500	1250	
hFE	V_{CE} =5.0V, I_{C} =1.0mA	250		500		
hFE	V_{CE} =5.0V, I_{C} =10mA	250		500		
f _T	V_{CE} =5.0V, I_{C} =1.0mA, f=100MHz	100	700	100	700	MHz

		CMPT	6428	CMP	T6429	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
C _{ob}	V_{CB} =10V, I_{E} =0, f =1.0MHz		3.0		3.0	pF
C _{ib}	$V_{BE}=0.5V$, $I_{C}=0$, $f=1.0MHz$		8.0		8.0	pF

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT6517 NPN CMPT6520 PNP

COMPLEMENTARY SILICON HIGH VOLTAGE TRANSISTORS

Central Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT6517, CMPT6520 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage driver and amplifier applications.

Marking Codes are C1Z and C2Z Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	350	V
Collector-Emitter Voltage	VCEO	350	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	lC .	500	mA
Base Current	ΙΒ	250	mA
Power Dissipation	$\bar{P_D}$	350	mW
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	οС
Thermal Resistance	Θ_{JA}	357	oC/M

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CBO	V _{CB} =250V		50	nA
^I EBO	V _{EB} =5.0V (CMPT6517)		50	nA
^I EBO	V _{EB} =4.0V (CMPT6520)		50	nA
BV _{CBO}	I _C =100μΑ	350		V
BV _{CEO}	I _C =1.0mA	350		V
BVEBO	I _E =10μA (CMPT6517)	6.0		V
BVEBO	I _E =10μA (CMPT6520)	5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.30	V
VCE(SAT)	I _C =20mA, I _B =2.0mA		0.35	V
VCE(SAT)	I _C =30mA, I _B =3.0mA		0.50	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		1.0	V
V _{BE} (SAT)	$I_{C}=10$ mA, $I_{B}=1.0$ mA		0.75	V
V _{BE} (SAT)	I _C =20mA, I _B =2.0mA		0.85	V

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V _{BE(SAT)}	I _C =30mA, I _B =3.0mA		0.90	V
V _{BE} (ON)	$V_{CE}=10V$, $I_{C}=100mA$		2.0	V
h _{FE} ` ´	V_{CE} =10V, I_{C} =1.0mA	20		
h _{FE}	$V_{CE}=10V$, $I_{C}=10mA$	30		
h _{FE}	$V_{CE}=10V$, $I_{C}=30mA$	30	200	
h _{FE}	$V_{CE}=10V$, $I_{C}=50mA$	20	200	
h _{FE}	$V_{CE}=10V$, $I_{C}=100mA$	15		
f _T	V_{CE} =20V, I_{C} =10mA, f=20MHz	40	200	MHz
C_{cb}	V_{CB} =20V, I_{C} =0, f=1.0MHz		6.0	рF
C _{eb}	V_{EB} =0.5V, I_{E} =0, f=1.0MHz (CMPT6	5517)	80	pF
C _{eb}	V_{EB} =0.5V, I_{E} =0, f=1.0MHz (CMPT6	5520)	100	pF

DATA SHEET

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPT8099 NPN CMPT8599 PNP

COMPLEMENTARY SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPT8099, CMPT8599 types are Complementary Silicon Transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for general purpose audio amplifier applications.

CMDTOFOO

Marking Codes are CKB and C2W Respectively.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	<u>CMPT8099</u>	CMPT8599	UNITS
Collector-Base Voltage	V_{CBO}	80	80	V
Collector-Emitter Voltage	V_{CEO}	80	80	V
Emitter-Base Voltage	V_{EBO}	6.0	5.0	V
Collector Current	l _C	50	00	mA
Power Dissipation	P_{D}	35	50	mW
Operating and Storage				
Junction Temperature	T_J, T_stg	-65 to -	+150	°C
Thermal Resistance	Θ_{JA}^{-1}	35	7	°C/W

		CIMP	18099	CMP	<u> 18599</u>	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
I _{CBO}	V _{CB} =80V		0.1		0.1	μΑ
^I EBO	V _{BE} =6.0V		0.1		-	μΑ
I _{EBO}	V _{BE} =4.0V		-		0.1	μΑ
BV _{CBO}	I _C =100μA	80		80		V
BV _{CEO}	I _C =10mA	80		80		V
BV _{EBO}	I _E =10μA	6.0		5.0		V
V _{CE} (SAT)	I _C =100mA, I _B =5.0mA		0.4		0.4	V
V _{CE} (SAT)	I _C =100mA, I _B =10mA		0.3		0.3	V
V _{BE} (ON)	VCE=5.0V, I _C =10mA	0.6	8.0	0.6	8.0	V
h _{FE} ` ′	V _{CE} =5.0V, I _C =1.0mA	100	300	100	300	
h _{FE}	$V_{CE}=5.0V$, $I_{C}=10mA$	100		100		

		<u>CMPT8099</u>	<u>CMPT8599</u>	
SYMBOL	TEST CONDITIONS	MIN MAX	MIN MAX	UNITS
h _{FE}	V_{CE} =5.0V, I_{C} =100mA	75	75	
fT	V _{CE} =5.0V, I _C =10mA, f=100MHz	150	150	MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$	6.0	4.5	pF
C _{ib}	$V_{BE}=0.5V, I_{C}=0, f=1.0MHz$	25	30	рF

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPTA06 NPN CMPTA56 PNP

COMPLEMENTARY SILICON TRANSISTORS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTA06, CMPTA56 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

Marking Codes are C1G, C2G Respectively.

MAXIMUM RATINGS (TA=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	80	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	V _{EBO}	4.0	V
Collector Current	l _C	500	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C)$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =80V		100	nΑ
^I CEO	V _{CE} =60V		100	nΑ
BVCEO	I _C =1.0mA	80		V
BVEBO	I _E =100μA	4.0		V
V _{CE(SAT)}	I _C =100mA, I _B =10mA		0.25	V
V _{BE(ON)}	V _{CE} =1.0V, I _C =100mA		1.20	V
h _{FE} ` ′	V _{CE} =1.0V, I _C =10mA	50		
h_{FE}	V _{CE} =1.0V, I _C =100mA	50		
fT	V _{CE} =2.0V, I _C =10mA, f=100MHz (CMPTA06)	100		MHz
f _T	V _{CE} =1.0V, I _C =100mA, f=100MHz(CMPTA56)	50		MHz

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPTA13 CMPTA14 NPN CMPTA63 CMPTA64 PNP

SILICON COMPLEMENTARY DARLINGTON TRANSISTORS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTA13, CMPTA63 series types are complementary silicon Darlington transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high gain.

Marking Codes are C1M, C1N, C2U and C2V Respectively.

MAXIMUM RATINGS (TA=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	30	V
Collector-Emitter Voltage	VCES	30	V
Emitter-Base Voltage	V _{EBO}	10	V
Collector Current	IC	500	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage	_		
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	Θ_{JA}	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =30V		100	nA
I _{EBO}	V _{BE} =10V		100	nA
BV _{CES}	I _C =100μA	30		V
V _{CE} (SAT)	I _C =100mA, I _B =0.1mA		1.5	V
V _{BE} (ON)	V _{CE} =5.0V, I _C =100mA		2.0	V
hFE	V _{CE} =5.0V, I _C =10mA (CMPTA13, CMPTA63)	5,000		
hFE	V _{CE} =5.0V, I _C =10mA (CMPTA14, CMPTA64)	10,000		
hFE	V _{CE} =5.0V, I _C =100mA (CMPTA13, CMPTA63)	10,000		
hFE	V _{CE} =5.0V, I _C =100mA (CMPTA14, CMPTA64)	20,000		
fT	V _{CE} =5.0V, I _C =10mA, f=100MHz	125		MHz

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPTA27

SILICON DARLINGTON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTA27 type is a Silicon Darlington Transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high gain.

Marking Code is FG.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	VCES	60	V
Emitter-Base Voltage	V_{EBO}	10	V
Collector Current	l _C	500	mA
Power Dissipation	P_{D}	350	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	oC
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CES	V _{CE} =50V		500	nA
I _{CBO}	V _{CB} =50V		100	nA
I _{EBO}	V _{BE} =10V		100	nA
BVCES	I _C =100μA	60		V
BV _{CBO}	I _C =100μA	60		V
V _{CE(SAT)}	I _C =100mA, I _B =0.1mA		1.5	V
V _{BE(ON)}	V_{CE} =5.0V, I_{C} =100mA		2.0	V
h _{FE} `´	V_{CE} =5.0V, I_{C} =10mA	10,000		
h _{FE}	V_{CE} =5.0V, I_{C} =100mA	10,000		
fΤ	V_{CE} =5.0V, I_{C} =10mA, f=100MHz	125		MHz

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

MAXIMUM RATINGS: (T_A=25°C)

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTA29 is a Silicon NPN Darlington Transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high voltage and high gain. Marking Code is C29.

	SYMBOL		UNITS
Collector-Base Voltage	v_{CBO}	100	V
Collector-Emitter Voltage	v_{CES}	100	V
Emitter-Base Voltage	V_{EBO}	12	V
Collector Current	l _C	500	mA
Power Dissipation	P_D	350	mW
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	$^{\mathrm{o}}C$
Thermal Resistance	Θ_{JA}	357	°C/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CES	V _{CE} =80V		500	nA
I _{CBO}	V _{CB} =80V		100	nA
I _{EBO}	V _{BE} =10V		100	nA
BV _{CES}	I _C =100μA	100		V
BV _{CBO}	I _C =100μA	100		V
BV _{EBO}	I _E =10μA	12		V
V _{CE(SAT)}	$I_C=10$ mA, $I_B=10$ μ A		1.2	V
V _{CE} (SAT)	$I_C=100$ mA, $I_B=100$ mA		1.5	V
V _{BE(ON)}	V_{CE} =5.0V, I_{C} =100mA		2.0	V

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	V _{CE} =5.0V, I _C =10mA	10,000		
h _{FE}	V_{CE} =5.0V, I_{C} =100mA	10,000		
f _T	V_{CE} =5.0V, I_{C} =10mA, f=100MHz	125		MHz
C _{ob}	V_{CB} =10V, I_{E} =0, f =1.0MHz		8.0	pF

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPTA42 NPN CMPTA92 PNP

SILICON COMPLEMENTARY HIGH VOLTAGE TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTA42, CMPTA92 types are complementary surface mount epoxy molded silicon planar epitaxial transistors designed for high voltage applications.

OMBTAGO

Marking Codes are C1D, C2D Respectively.

MAXIMUM RATINGS (T_A=25°C)

SYMBOL	CMPTA42	CMPTA92	UNITS
V_{CBO}	300	300	V
VCEO	300	300	V
V_{EBO}	6.0	5.0	V
lC	5	00	mA
P_{D}	3	50	mW
T_J, T_sta	-65 t	o +150	оC
Θ_{JA}	3	57	oC/W
	VCEO VEBO IC PD	VCBO 300 VCEO 300 VEBO 6.0 IC 5 PD 3	VCBO 300 300 VCEO 300 300 VEBO 6.0 5.0 IC 500 PD 350 TJ,Tstg -65 to +150

		CMP	<u>TA42</u>	CMP	TA92	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CBO	V _{CB} =200V		100		250	nA
l _{EBO}	V _{BE} =6.0V		100		-	nA
I _{EBO}	V _{BE} =3.0V		-		100	nA
BV _{CBO}	I _C =100μA	300		300		V
BV CEO	I _C =1.0mA	300		300		V
BV EBO	I _E =100μA	6.0		5.0		V
VCE(SAT)	I _C =20mA, I _B =2.0mA		0.5		0.5	V
V _{BE} (SAT)	I _C =20mA, I _B =2.0mA		0.9		0.9	V
h _{FE} ` ´	V_{CE} =10V, I_{C} =1.0mA	25		25		
hFE	V _{CE} =10V, I _C =10mA	40		40		
h _{FE}	V _{CE} =10V, I _C =30mA	40		25		
f⊤	V _{CE} =20V, I _C =10mA, f=100MHz	50		50		MHz
C _{ob}	V_{CB} =20V, I_E =0, f=1.0MHz		3.0		6.0	pF

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPTA44

NPN SILICON EXTREMELY HIGH VOLTAGE TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTA44 type is a surface mount epoxy molded silicon planar epitaxial transistors designed for extremely high voltage applications.

Marking Code is C3Z.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS	
Collector-Base Voltage	V_{CBO}	450	V	
Collector-Emitter Voltage	VCEO	400	V	
Emitter-Base Voltage	V_{EBO}	6.0	V	
Collector Current	lC	300	mA	
Power Dissipation	P_{D}	350	mW	
Operating and Storage				
Junction Temperature	T_{J}, T_{stg}	-65 to +150	oC	
Thermal Resistance	Θ_{JA}	357	oC/M	

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C)$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =400V		100	nA
CES	V _{CE} =400V		500	nA
I _{EBO}	V _{BE} =4.0V		100	nA
BV _{CBO}	I _C =100μA	450		V
BVCES	I _C =100μA	450		٧
BVCEO	I _C =1.0mA	400		V
BVEBO	I _E =10μΑ	6.0		V
VCE(SAT)	I _C =1.0mA, I _B =0.1mA		0.40	V
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.50	V
VCE(SAT)	I_{C} =50mA, I_{B} =5.0mA		0.75	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA		0.75	V
hFE	V _{CE} =10V, I _C =1.0mA	40		
hFE	V _{CE} =10V, I _C =10mA	50	200	

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	$V_{CE}=10V$, $I_{C}=50mA$	45		
hFE	V _{CE} =10V, I _C =100mA	20		
fT	$V_{CE}=10V$, $I_{C}=10$ mA, $f=10$ MHz	20		MHz
C _{ob}	V _{CB} =20V, I _E =0, f=1.0MHz		7.0	рF
C _{ib}	$V_{EB}=0.5V$, $I_{C}=0$, $f=1.0MHz$		130	рF

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPTH10

NPN SILICON RF TRANSISTOR

SOT-23 CASE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPTH10 type is an NPN silicon RF transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for low noise UHF/VHF amplifier and high output oscillator applications.

Marking code is C3E.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	30	V
Collector-Emitter Voltage	VCEO	25	V
Emitter-Base Voltage	V _{EBO}	3.0	V
Power Dissipation	PD	350	mW
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	оС
Thermal Resistance	$\Theta_{\sf JA}$	357	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =25V		100	nA
IEBO	V _{EB} =2.0V		100	nA
BV _{CBO}	I _C =100μA	30		V
BVCEO	I _C =1.0mA	25		V
BVEBO	I _E =10μA	3.0		V
V _{CE(SAT)}	I _C =4.0mA, I _B =0.4mA		0.50	V
V _{BE(ON)}	$V_{CE}=10V$, $I_{B}=4.0mA$		0.95	V
h _{FE} ` ′	$V_{CE}=10V$, $I_{C}=4.0$ mA	60		
fT	$V_{CE}=10V$, $I_{C}=4.0$ mA, $f=100$ MHz	650		MHz
C_{cb}	V_{CB} =10V, I_{E} =0, I_{E} =1.0MHz		0.70	pF
C _{rb}	V_{CB} =10V, I_{E} =0, f =1.0MHz		0.65	pF
rb'C _C	V_{CB} =10V, I_{C} =4.0mA, f=31.8MHz		9.0	ps

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMPZ4614 THRU CMPZ4627

350mW LOW NOISE ZENER DIODE 5% TOLERANCE

DESCRIPTION:

The CENTRAL SEMIONDUCTOR CMPZ4614 Series Silicon Zener Diode is high quality voltage regulator designed for low leakage, low current and low noise applications.

ELECTRICAL CHARACTERISTICS

(TA=25°C) VF=1.0 MAX @ IF=200mA FOR ALL TYPES.

TYPE NO.	ZENER VOLTAGE Vz @ I _{ZT}	TEST CURRENT IZT	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT}	LEAKAGE	REVERSE CURRENT	MAXIMUM ZENER CURRENT	MAXIMUM NOISE DENSITY N _D @ I _{ZT} =250μA	
	VOLTS	μΑ	Ω	μA VOLTS		mA	μV// Hz	
CMPZ4614*	1.8	250	1200	7.5	1.0	120	1.0	
CMPZ4615*	2.0	250	1250	5.0	1.0	110	1.0	
CMPZ4616*	2.2	250	1300	4.0	1.0	100	1.0	
CMPZ4617*	2.4	250	1400	2.0	1.0	95	1.0	
CMPZ4618*	2.7	250	1500	1.0	1.0	90	1.0	
CMPZ4619*	3.0	250	1600	0.8	1.0	85	1.0	
CMPZ4620*	3.3	250	1650	7.5	1.5	80	1.0	
CMPZ4621*	3.6	250	1700	7.5	2.0	75	1.0	
CMPZ4622*	3.9	250	1650	5.0	2.0	70	1.0	
CMPZ4623*	4.3	250	1600	4.0	2.0	65	1.0	
CMPZ4624*	4.7	250	1550	10	3.0	60	1.0	
CMPZ4625*	5.1	250	1500	10	3.0	55	2.0	
CMPZ4626*	5.6	250	1400	10	4.0	50	4.0	
CMPZ4627*	6.2	250	1200	10	5.0	45	5.0	

^{*} Available on special order only, please consult factory.

CMPZ4678 THRU CMPZ4717

350mW LOW LEVEL ZENER DIODE **5% TOLERANCE**

DESCRIPTION:

The CENTRAL **SEMICONDUCTOR** CMPZ4678 Series Silicon Zener Diode is a high quality voltage regulator designed for applications requiring an extremely low operating current and low leakage.

ELECTRICAL CHARACTERISTICS

 $(T_{\Delta}=25^{\circ}C)$ V_F=1.5V MAX @ I_F=100mA FOR ALL TYPES.

Type No.	Nominal Zener Voltage Vz @ l _{Z1}	Test Current	LEAKAG	IM REVERSE SE CURRENT © VR	Maximum Voltage Change** ^{ΔV} Z	Maximum Zener Current ⁱ zm mA	
	Volts	μA	µА	Volts	Volts		
CMPZ4678*	1.8	50	7.5	1.0	0.70	120.0	
CMPZ4679*	2.0	50	5.0	1.0	0.70	110.0	
CMPZ4680*	2.2	50	4.0	1.0	0.75	100.0	
CMPZ4681*	2.4	50	2.0	1.0	0.80	95.0	
CMPZ4682*	2.7	50	1.0	1.0	0.85	90.0	
CMPZ4683*	3.0	50	0.8	1.0	0.90	85.0	
CMPZ4684*	3.3	50	7.5	1.5	0.95	80.0	
CMPZ4685*	3.6	50	7.5	2.0	0.95	75.0	
CMPZ4686*	3.9	50	5.0	2.0	0.97	70.0	
CMPZ4687*	4.3	50	4.0	2.0	0.99	65.0	
CMPZ4688*	4.7	50	10	3.0	0.99	60.0	
CMPZ4689*	5.1	50	10	3.0	0.97	55.0	
CMPZ4690*	5.6	50	10	4.0	0.96	50.0	
CMPZ4691*	6.2	50	10	5.0	0.95	45.0	
CMPZ4692*	6.8	50	10	5.1	0.90	35.0	
CMPZ4693*	7.5	50	10	5.7	0.75	31.8	
CMPZ4694*	8.2	50	1.0	6.2	0.50	29.0	
CMPZ4695*	8.7	50	1.0	6.6	0.10	27.4	
CMPZ4696*	9.1	50	1.0	6.9	0.08	26.2	
CMPZ4697*	10	50	1.0	7.6	0.10	24.8	
CMPZ4698*	11	50	0.05	8.4	0.11	21.6	
CMPZ4699*	12	50	0.05	9.1	0.12	20.4	

 $^{^{\}star}$ Available on special order only, please consult factory. ** $\Delta V_Z{=}V_Z@$ 100µA MINUS $V_Z~@~10\mu A.$

Type No.	Nominal Zener Voltage Test Current MAXIMUM REVE LEAKAGE CURR		SE CURRENT	Maximum Voltage Change** ΔV7	Maximum Zener Current	
	Vz @ IZT	^I ZT	l _R '	I _R @ V _R		łzm
	Volts	μА	μΑ	Volts	Volts	mA
CMPZ4700*	13	50	0.05	9.8	0.13	19.0
CMPZ4701*	14	50	0.05	10.6	0.14	17.5
CMPZ4702*	15	50	0.05	11.4	0.15	16.3
CMPZ4703*	16	50	0.05	12.1	0.16	15.4
CMPZ4704*	17	50	0.05	12.9	0.17	14.5
CMPZ4705*	18	50	0.05	13.6	0.18	13.2
CMPZ4706*	19	50	0.05	14.4	0.19	12.5
CMPZ4707*	20	50	0.01	15.2	0.20	11.9
CMPZ4708*	22	50	0.01	16.7	0.22	10.8
CMPZ4709*	24	50	0.01	18.2	0.24	9.9
CMPZ4710*	25	50	0.01	19.0	0.25	9.5
CMPZ4711*	27	50	0.01	20.4	0.27	8.8
CMPZ4712*	28	50	0.01	21.2	0.28	8.5
CMPZ4713*	30	50	0.01	22.8	0.30	7.9
CMPZ4714*	33	50	0.01	25.0	0.33	7.2
CMPZ4715*	36	50	0.01	27.3	0.36	6.6
CMPZ4716*	39	50	0.01	29.6	0.39	6.1
CMPZ4717*	43	50	0.01	32.6	0.43	5.5

^{*} Available on special order only, please consult factory.

^{**} ΔV_Z=V_Z@ 100μA MINUS V_Z @ 10μA.

CMPZ5221B THRU CMPZ5261B

350 mW ZENER DIODE 5% TOLERANCE

ABSOLUTE MAXIMUM RATINGSPower Dissipation (@ T_A=25°C)
Operating and Storage Temperature

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPZ5221B Series Silicon Zener Diode is a high quality voltage regulator for use in industrial, commercial, entertainment and computer applications. Higher voltage devices are available on special order.

ELECTRICAL CHARACTERISTICS (TA=25°C), VF=0.9V MAX @ IF = 10mA FOR ALL TYPES.

ТҮРЕ		IER VOLT <i>i</i> V _Z @ I _{ZT}		TEST CURRENT	MAXIMUM ZI		1.14. 1	MAXIMUN	REVERSE RENT	MAX TEMP. COEFF.	MARKING CODE
	MIN	NOM	MAX	lzT .	Z _{ZT} @ I _{ZT}	ZZK @ IZK		In @ Vn		ΘVZ	
	VOLTS	VOLTS	VOLTS	mA	· · · · · · Ω · · · · · · · ·	Ω	mA	μA	VOLTS	%/°C	
CMPZ5221B	2.280	2.4	2.520	20	30	1200	0.25	100	1.0	-0.085	18A
CMPZ5222B	2.375	2.5	2.625	20	30	1250	0.25	100	1.0	-0.085	18B
CMPZ5223B	2.565	2.7	2.835	20	30	1300	0.25	75	1.0	-0.080	18C
CMPZ5224B	2.660	2.8	2.940	20	30	1400	0.25	75	1.0	-0.080	18D
CMPZ5225B	2.850	3.0	3.150	20	29	1600	0.25	50	1.0	-0.075	18E
CMPZ5226B	3.135	3.3	3.465	20	28	1600	0.25	25	1.0	-0.070	C8A
CMPZ5227B	3.420	3.6	3.780	20	24	1700	0.25	15	1.0	-0.065	C8B
CMPZ5228B	3.705	3.9	4.095	20	23	1900	0.25	10	1.0	-0.060	C8C
CMPZ5229B	4.085	4.3	4.515	20	22	2000	0.25	5.0	1.0	±0.055	C8D
CMPZ5230B	4.465	4.7	4.935	20	19	1900	0.25	5.0	2.0	±0.030	C8E
CMPZ5231B	4.845	5.1	5.355	20	17	1600	0.25	5.0	2.0	±0.030	C8F
CMPZ5232B	5.320	5.6	5.880	20	11	1600	0.25	5.0	3.0	+0.038	C8G
CMPZ5233B	5.700	6.0	6.300	20	7.0	1600	0.25	5.0	3.5	+0.038	C8H
CMPZ5234B	5.890	6.2	6.510	20	7.0	1000	0.25	5.0	4.0	+0.045	C8J
CMPZ5235B	6.460	6.8	7.140	20	5.0	750	0.25	3.0	5.0	+0.050	C8K
CMPZ5236B	7.125	7.5	7.875	20	6.0	500	0.25	3.0	6.0	+0.058	C8L
CMPZ5237B	7.790	8.2	8.610	20	8.0	500	0.25	3.0	6.5	+0.062	C8M
CMPZ5238B	8.265	8.7	9.135	20	8.0	600	0.25	3.0	6.5	+0.065	C8N
CMPZ5239B	8.645	9.1	9.555	20	10	600	0.25	3.0	7.0	+0.068	C8P
CMPZ5240B	9.500	10	10.50	20	17	600	0.25	3.0	8.0	+0.075	C8Q
CMPZ5241B	10.45	11	11.55	20	22	600	0.25	2.0	8.4	+0.076	C8R
CMPZ5242B	11.40	12	12.60	20	30	600	0.25	1.0	9.1	+0.077	C8S
CMPZ5243B	12.35	13	13.65	9.5	13	600	0.25	0.5	9.9	+0.079	C8T
CMPZ5244B	13.30	14	14.70	9.0	15	600	0.25	0.1	10	+0.082	C8U

TYPE		IER VOLT	AGE	TEST CURRENT	MAXIMUM Z	ENER IMP	EDANCE		N REVERSE RENT	MAX. TEMP. COEFF.	MARKING CODE
	MIN	Vz @ IZT MIN NOM MAX IZT		Z _{ZT} @ I _{ZT}	Z _{ZT} @ I _{ZT} Z _{ZK} @ I _{ZK}		I _B @ V _B		ΘVZ	-	
	VOLTS	VOLTS	VOLTS	mA	Ω	Ω	mA	μА	VOLTS	%/°C	
CMPZ5245B	14.25	15	15.75	8.5	16	600	0.25	0.1	11	+0.082	C8V
CMPZ5246B	15.20	16	16.80	7.8	17	600	0.25	0.1	12	+0.083	C8W
CMPZ5247B	16.15	17	17.85	7.4	19	600	0.25	0.1	13	+0.084	C8X
CMPZ5248B	17.10	18	18.90	7.0	21	600	0.25	0.1	14	+0.085	C8Y
CMPZ5249B	18.05	19	19.95	6.6	23	600	0.25	0.1	14	+0.086	C8Z
CMPZ5250B	19.00	20	21.00	6.2	25	600	0.25	0.1	15	+0.086	81A
CMPZ5251B	20.90	22	23.10	5.6	29	600	0.25	0.1	17	+0.087	81B
CMPZ5252B	22.80	24	25.20	5.2	33	600	0.25	0.1	18	+0.088	81C
CMPZ5253B	23.75	25	26.25	5.0	35	600	0.25	0.1	19	+0.089	81D
CMPZ5254B	25.65	27	28.35	4.6	41	600	0.25	0.1	21	+0.090	81E
CMPZ5255B	26.60	28	29.40	4.5	44	600	0.25	0.1	21	+0.091	81F
CMPZ5256B	28.50	30	31.50	4.2	49	600	0.25	0.1	23	+0.091	81G
CMPZ5257B	31.35	33	34.65	3.8	58	700	0.25	0.1	25	+0.092	81H
CMPZ5258B	34.20	36	37.80	3.4	70	700	0.25	0.1	27	+0.093	81J
CMPZ5259B	37.05	39	40.95	3.2	80	800	0.25	0.1	30	+0.094	81K
CMPZ5260B	40.85	43	45.15	3.0	93	900	0.25	0.1	33	+0.095	81L
CMPZ5261B	44.65	47	49.35	2.7	105	1000	0.25	0.1	36	+0.095	81M

R2

CMPZDA3V6 THRU CMPZDA33V

DUAL ZENER DIODE 3.6 VOLTS THRU 33 VOLTS 350mW, 5% TOLERANCE

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMPZDA3V6 Series Silicon Dual Zener Diode is a high quality voltage regulator, connected in a common anode configuration, for use in industrial, commercial, entertainment and computer applications.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (@T_A=25^oC) Operating and Storage Temperature Thermal Resistance

SYMBOL		UNIT
P_{D}	350	mW
TJ,T _{stg}	-65 to +150	oC
Θ_{JA}^{-1}	357	oC/M

ELECTRICAL CHARACTERISTICS ($T_A=25^{\circ}C$), $V_F=0.9V$ MAX @ $I_F=10$ mA FOR ALL TYPES.

TYPE NO.	ZEN VÖLT VZ @		TEST CURRENT	MAXIMUM ZENER IMPEDANCE			MAXIMUM REVERSE CURRENT		MAXIMUM ZENER CURRENT	MAXIMUM ZENER VOLTAGE TEMPERATURE COEFFICIENT	MARKING CODE
	MIN	MAX	IzT	Z _{ZT} @ I _{ZT}	ZZK @ IZK		I _B	@ VR	J _{ZM}	Θ٧Ζ	Constitution of the
	VOLTS	VOLTS	mA	Ω	Ω	mA	μА	VOLTS	mA	%/ºC	A STATE OF THE STA
CMPZDA3V6	3.4	3.8	5.0	95	600	1.0	2.0	1.0	45	-0.06	WW7
CMPZDA3V9	3.7	4.1	5.0	90	600	1.0	2.0	1.0	43	-0.06	ww8
CMPZDA4V3	4.0	4.6	5.0	90	600	1.0	1.0	1.0	40	-0.05	WW9
CMPZDA4V7	4.4	5.0	5.0	80	500	1.0	3.0	2.0	38	-0.03	ZZ1
CMPZDA5V1	4.8	5.4	5.0	60	480	1.0	2.0	2.0	35	0.02	ZZ2
CMPZDA5V6	5.2	6.0	5.0	40	400	1.0	1.0	2.0	32	0.03	ZZ3
CMPZDA6V2	5.8	6.6	5.0	10	150	1.0	3.0	4.0	28	0.04	ZZ4
CMPZDA6V8	6.4	7.2	5.0	15	80	1.0	2.0	4.0	25	0.05	ZZ5
CMPZDA7V5	7.0	7.9	5.0	15	80	1.0	1.0	5.0	23	0.05	ZZ6
CMPZDA8V2	7.7	8.7	5.0	15	80	1.0	0.7	5.0	21	0.06	ZZ7
CMPZDA9V1	8.5	9.6	5.0	15	100	1.0	0.5	6.0	18	0.06	ZZ8
CMPZDA10V	9.4	10.6	5.0	20	150	1.0	0.2	7.0	16	0.07	ZZ9
CMPZDA11V	10.4	11.6	5.0	20	150	1.0	0.1	8.0	15	0.07	YY1
CMPZDA12V	11.4	12.7	5.0	25	150	1.0	0.1	8.0	13	0.07	YY2
CMPZDA13V	12.4	14.1	5.0	30	170	1.0	0.1	8.0	12	0.08	YY3
CMPZDA15V	13.8	15.6	5.0	30	200	1.0	0.05	10.5	11	0.08	YY4
CMPZDA16V	15.3	17.1	5.0	40	200	1.0	0.05	11.2	10	0.08	YY5
CMPZDA18V	16.8	19.1	5.0	45	225	1.0	0.05	12.6	9.2	0.08	YY6
CMPZDA20V	18.8	21.2	5.0	55	225	1.0	0.05	14.0	8.3	0.08	YY7
CMPZDA22V	20.8	23.3	5.0	55	250	1.0	0.05	15.4	7.6	0.09	YY8
CMPZDA24V	22.8	25.6	5.0	70	250	1.0	0.05	16.8	7.0	0.09	YY9
CMPZDA27V	25.1	28.9	2.0	80	300	0.5	0.05	18.9	6.2	0.09	W10
CMPZDA30V	28.0	32.0	2.0	80	300	0.5	0.05	21.0	5.6	0.09	W11
CMPZDA33V	31.0	35.0	2.0	80	325	0.5	0.05	23.1	5.0	0.09	W12

CMR1-02 CMR1-04 CMR1-06 CMR1-10

GENERAL PURPOSE RECTIFIER 1.0 AMP, 200 THRU 1,000 VOLTS

FEATURES:

- LOW COST
- HIGH RELIABILITY
- SPECIAL SELECTIONS AVAILABLE
- GLASS PASSIVATED CHIP
- SUPERIOR LOT TO LOT CONSISTENCY
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD

DESCRIPTION: The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Silicon Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 12mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25^oC unless otherwise noted)

	SYMBOL	CMR1-02	CMR1-04	CMR1-06	CMR1-10	UNITS
Peak Repetitive Reverse Voltage	v_{RRM}	200	400	600	1000	V
DC Blocking Voltage	V _R	200	400	600	1000	V
RMS Reverse Voltage	V _R (RMS)	140	280	420	700	V
Average Forward Current(T _A =75°C			1.0)		Α
Peak Forward Surge Current (8.3m	s) IFSM		30)		Α
Operating and Storage						
Junction Temperature	T_{J} , T_{stg}		-65 to -	+175		oC
Thermal Resistance	ΘJL		20)		oC/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
٧ _F	I _F =1.0A		1.1	V
I _R	V _R =Rated V _{RRM}		10	μΑ
IR	V _R =Rated V _{RRM} , T _A =125 ^o C		50	μΑ

DEVICE	MARKING CODE
CMR1-02	C02
CMR1-04	C04
CMR1-06	C06
CMR1-10	C10

FEATURES:

- SUPER MINIATURE CASE
- SPECIAL SELECTIONS AVAILABLE
- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD
- GLASS PASSIVATED CHIP

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Silicon Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications where small size is required. The SMA case occupies 30% less board space than the SMB case. To order devices on 12mm Tape and Reel (5000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

SYMBOL (CMR1-02M	CMR1-04M	CMR1-06M	CMR1-10M	UNITS
ge V _{RRM}	200	400	600	1000	V
v_R	200	400	600	1000	V
V _{R(RMS}	3) 140	280	420	700	V
100°C) l _O	•	1.	0		Α
3.3ms) I _{FSM}	1	3	0		Α
T_{J} , T_{stq}		-65 to	+150		°C
Θ_{JL}		3	0		°C/W
	ge V _{RRM} V _R V _R (RMS 100°C) I _O 3.3ms) I _{FSM} T _J ,T _{stg}	ge V _{RRM} 200 V _R 200 V _R (RMS) 140 100°C) I _O 3.3ms) I _{FSM}	ge V _{RRM} 200 400 V _R 200 400 V _R (RMS) 140 280 100°C) I _O 1. 3.3ms) I _{FSM} 3 T _J ,T _{stg} -65 to	ge V _{RRM} 200 400 600 V _R 200 400 600 V _R (RMS) 140 280 420 100°C) I _O 1.0 3.3ms) I _{FSM} 30 T _J ,T _{stg} -65 to +150	V _R 200 400 600 1000 V _R (RMS) 140 280 420 700 100°C) I _O 1.0 3.3ms) I _{FSM} 30 T _J ,T _{stg} -65 to +150

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V_F	I _F =1.0A			1.1	V
I _R	V _R =Rated V _{RRM}			5.0	μΑ
^I R	V _R =Rated V _{RRM} , T _A =125°C	;		50	μΑ
CJ	V _R =4.0V, f=1.0MHz		8.0		pF

MARKING CODE
C02M
C04M
C06M
C10M

Central[™] Semiconductor Corp.

FEATURES:

- SUPER MINIATURE CASE
- SPECIAL SELECTIONS AVAILABLE
- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD
- GLASS PASSIVATED CHIP

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Fast Recovery Silicon Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications where small size is required. The SMA case occupies 30% less board space than the SMB case. To order devices on 12mm Tape and Reel (5000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMR1F	CMR1F	CMR1F	CMR1F	:
		-02M	-04M	-06M	-10M	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	200	400	600	1000	V
DC Blocking Voltage	v_R	200	400	600	1000	V
RMS Reverse Voltage	V _{R(RMS}) 140	280	420	700	V
Average Forward Current (T _L =120		,	1	.0		Α
Peak Forward Surge Current (8.3r	ns) I _{FSM}		3	0		Α
Operating and Storage						
Junction Temperature	T_{J} , T_{stg}		-65 to	+150		°C
Thermal Resistance	ΘJL		3	30		°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I_{R}	V _R =Rated V _{RRM}			5.0	μΑ
I_{R}	V _R =Rated V _{RRM} , T _A =125°C			200	μΑ
V_{F}	I _F =1.0A			1.3	V
C_J	V _R =4.0V, f=1.0MHz		15		рF

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
t _{rr}	I _F =0.5A, I _R =1.0A, Recover to 0.25A (CMR1F-02M, -04M)			150	ns
t _{rr}	I _F =0.5A, I _R =1.0A, Recover to 0.25A (CMR1F-06M)			250	ns
t _{rr}	I _F =0.5A, I _R =1.0A, Recover to 0.25A (CMR1F-10M)			500	ns

DEVICE	MARKING CODE
CMR1F-02M	CF02M
CMR1F-04M	CF04M
CMR1F-06M	CF06M
CMR1F-10M	CF10M

CMR1U-01 CMR1U-02 CMR1U-04 CMR1U-06

ULTRA FAST RECOVERY RECTIFIER 1.0 AMP, 100 THRU 600 VOLTS

FEATURES:

- LOW COST
- SPECIAL SELECTIONS AVAILABLE
- HIGH RELIABILITY
- SUPERIOR LOT TO LOT CONSISTENCY
- GLASS PASSIVATED CHIP
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Silicon Ultra Fast Recovery Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 12mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

s	YMBOL	CMR1U 01	CMR1U 02	CMR1U 04	CMR1U 06	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	100	200	400	600	V
DC Blocking Voltage	v_{R}	100	200	400	600	V
RMS Reverse Voltage	V _{R(RMS}) 70	140	280	420	V
Average Forward Current(TA=75		,	1	.0		Α
Peak Forward Surge Current (8.3	ms) I _{FSM}		3	30		Α
Operating and Storage						
Junction Temperature	T _J ,T _{stg}		-65 to	+175		$^{\mathrm{o}}C$
Thermal Resistance	ΘJL		2	20		oC/W

SYMBOL	TEST CONDITIONS MIN	MAX	UNITS
I _R	V _R =Rated V _{RRM}	5.0	μΑ
^I B	V _R =Rated V _{RRM} , T _A =125 ^o C	100	μΑ
VF	I _F =1.0A, (CMR1U-01, CMR1U-02)	1.00	V
VF	I _F =1.0A, (CMR1U-04)	1.25	٧
٧ _F	I _F =1.0A, (CMR1U-06)	1.40	V
t _{rr}	IF=0.5A, IR=1.0A, Recover to 0.25A (CMR1U-0	1, -02, -04) 50	ns
t _{rr}	IF=0.5A, IR=1.0A, Recover to 0.25A (CMR1U-0	6) 100	ns

	,
DEVICE	MARKING CODE
CMR1U-01	CU01
CMR1U-02	CU02
CMR1U-04	CU04
CMR1U-06	CU06

ULTRA FAST RECOVERY RECTIFIER
1.0 AMP, 100 THRU 600 VOLTS

DESCRIPTION:

FEATURES:

- SUPER MINIATURE CASE
- SPECIAL SELECTIONS AVAILABLE
- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- "C" BEND CONSTRUCTION PROVIDES STRAIN
- GLASS PASSIVATED CHIP RELIEF
 WHEN MOUNTED ON PC BOARD

The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Ultra Fast Recovery Silicon Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications where small size is required. The SMA case occupies 30% less board space than the SMB case. To order devices on 12mm Tape and Reel (5000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMR1U	CMR1U	CMR1U	CMR1U	
		-01M	-02M	-04M	-06M	UNITS
Peak Repetitive Reverse Voltage	v_{RRM}	100	200	400	600	V
DC Blocking Voltage	v_R	100	200	400	600	V
RMS Reverse Voltage	V _{R(RMS)}	70	140	280	420	V
Average Forward Current(TA=75°			1.0)		Α
Peak Forward Surge Current (8.3)	ms) I _{FSM}		30)		Α
Operating and Storage						
Junction Temperature	T_J, T_{stg}		-65 to	+175		°C
Thermal Resistance	ΘJL		30			°C/W

SYMBOL	TEST CONDITIONS N	IIN	MAX	UNITS
۱ _B	V _R =Rated V _{RRM}		5.0	μΑ
٧ _F	I _F =1.0A, (CMR1U-01M, CMR1U-02M)		1.00	V
٧ _F	I _F =1.0A, (CMR1U-04M)		1.25	V
V_{F}	I _F =1.0A, (CMR1U-06M)		1.40	V
t _{rr}	I _F =0.5A, I _R =1.0A, Recover to 0.25A (CMR1U-01M, -02M)	ı	35	ns
t _{rr}	I_F =0.5A, I_R =1.0A, Recover to 0.25A (CMR1U-04M)		50	ns
t _{rr}	I_F =0.5A, I_R =1.0A, Recover to 0.25A (CMR1U-06M)		75	ns

MARKING CODE
CU01M
CU02M
CU04M
CU06M

FEATURES:

- LOW COST
- SPECIAL SELECTIONS AVAILABLE
- HIGH RELIABILITY
- SUPERIOR LOT TO LOT CONSISTENCY
- GLASS PASSIVATED CHIP
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2.0 Amp Surface Mount Silicon Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 12mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

:	SYMBOL (CMR2-02	CMR2-04	CMR2-06	CMR2-10	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	200	400	600	1000	٧
DC Blocking Voltage	v_R	200	400	600	1000	V
RMS Reverse Voltage	V _{R(RMS}	S) 140	280	420	700	V
Average Forward Current (T _A =50°C)	10	•	2.	0		Α
Peak Forward Surge Current (8.3ms)	IFSM		6	0		Α
Operating and Storage						
Junction Temperature	T_{J} , T_{stg}		-65 to	+150		°C
Thermal Resistance	ΘJL		2	0		°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V_{F}	I _F =2.0A			1.1	V
I _R	V _R =Rated V _{RRM}			0.5	μΑ
I _R	V _R =Rated V _{RRM} , T _A =125°C			125	μΑ
t _{rr}	I _F =0.5A, I _R =1.0A, Recover to 0.25A			2.5	μs
CJ	V _R =4.0V, f=1.0MHz		30		pF

DEVICE	MARKING CODE
CMR2-02	C202
CMR2-04	C204
CMR2-06	C206
CMR2-10	C210

FEATURES:

- LOW COST
- SPECIAL SELECTIONS AVAILABLE
- HIGH RELIABILITY
- SUPERIOR LOT TO LOT CONSISTENCY
- GLASS PASSIVATED CHIP
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2.0 Amp Surface Mount Silicon Ultra Fast Recovery Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 12mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMR2U	CMR2U	CMR2U	CMR2U	
		-01	-02	-04	-06	UNITS
Peak Repetitive Reverse Voltage	v_{RRM}	100	200	400	600	V
DC Blocking Voltage	v_R	100	200	400	600	V
RMS Reverse Voltage	V _{R(RMS}	70	140	280	420	V
Average Forward Current (T _A =50°C)		,	2	.0		Α
Peak Forward Surge Current (8.3ms) I _{FSM}			50		Α
Operating and Storage						
Junction Temperature	T_{J}, T_{stg}		-65 t	o +150		°C
Thermal Resistance	ΘJL		2	0		°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
^I R	V _R =Rated V _{RRM}			10	μΑ
I _R	V _R =Rated V _{RRM} , T _A =100°C			50	μΑ
V_{F}	I _F =2.0A, (CMR2U-01, CMR2U-02)			1.00	V
V_{F}	I _F =2.0A, (CMR2U-04)			1.25	V
V_{F}	I _F =2.0A, (CMR2U-06)			1.40	V
t _{rr}	I _F =0.5A, I _R =1.0A, Recover to 0.25A			50	ns
CJ	V _R =4.0V, f=1.0MHz		50		pF

DEVICE	MARKING CODE
CMR2U-01	CU201
CMR2U-02	CU202
CMR2U-04	CU204
CMR2U-06	CU206

CMR3-02 CMR3-04 CMR3-06 CMR3-10

GENERAL PURPOSE RECTIFIER 3.0 AMP, 200 THRU 1,000 VOLTS

FEATURES:

- LOW COST
- SPECIAL SELECTIONS AVAILABLE
- HIGH RELIABILITY
- SUPERIOR LOT TO LOT CONSISTENCY
- GLASS PASSIVATED CHIP
- "C" BEND CONSTRUCTION
 PROVIDES STRAIN RELIEF WHEN
 MOUNTED ON PC BOARD

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 3.0 Amp Surface Mount Silicon Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 16mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMR3-02	CMR3-04	CMR3-06	CMR3-10	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	200	400	600	1000	٧
DC Blocking Voltage	v_{R}	200	400	600	1000	V
RMS Reverse Voltage	V _{R(RMS}	3) 140	280	420	700	V
Average Forward Current(T _A =75°C		,	;	3.0		Α
Peak Forward Surge Current (8.3m	ns) I _{FSM}		2	:00		Α
Operating and Storage						
Junction Temperature	T_{J} , T_{stg}		-65 t	o +175		$^{\mathrm{o}}C$
Thermal Resistance	⊖JL			10		oC/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{F}	I _F =3.0A		1.2	V
I _R	V _R =Rated V _{RRM}		5.0	μΑ
^I R	V_R =Rated V_{RRM} , T_A =125 o C		250	μΑ

Marking Codes:

DEVICE	MARKING CODE
CMR3-02	C302
CMR3-04	C304
CMR3-06	C306
CMR3-10	C310

R1

CMR3U-01 CMR3U-02 CMR3U-04 CMR3U-06 ULTRA FAST RECOVERY RECTIFIER 3.0 AMP. 100 THRU 600 VOLTS

FEATURES:

- LOW COST
- SPECIAL SELECTIONS AVAILABLE
- HIGH RELIABILITY
- SUPERIOR LOT TO LOT CONSISTENCY
- GLASS PASSIVATED CHIP
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 3.0 Amp Surface Mount Silicon Ultra Fast Recovery Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 16mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMR3U	CMR3U	CMR3U	CMR3U	
		-01	-02	-04	-06	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	100	200	400	600	V
DC Blocking Voltage	V_{R}	100	200	400	600	V
RMS Reverse Voltage	V _{R(RMS)}	70	140	280	420	V
Average Forward Current(T _A =75°C)			3.	.0		Α
Peak Forward Surge Current (8.3ms)) I _{FSM}		15	60		Α
Operating and Storage						
Junction Temperature	T_{J} , T_{stg}		-65 to	+175		$^{\mathrm{o}}C$
Thermal Resistance	ΘJL			10		oC/W

SYMBOL	TEST CONDITIONS MIN	MAX	UNITS
^I R	V _R =Rated V _{RRM}	5.0	μΑ
l _R	V _R =Rated V _{RRM} , T _A =100°C	500	μΑ
٧ _F	I _F =3.0A, (CMR3U-01, CMR3U-02)	1.00	V
VF	I _F =3.0A, (CMR3U-04)	1.25	٧
V_{F}	I _F =3.0A, (CMR3U-06)	1.40	V
t _{rr}	I _F =500mA, I _R =1.0A, Irr=250mA (CMR3U-01, -02, -04)	50	ns
t _{rr}	I _E =500mA, I _R =1.0A, Irr=250mA (CMR3U-06)	100	ns

DEVICE	MARKING CODE
CMR3U-01	CU301
CMR3U-02	CU302
CMR3U-04	CU304
CMR3U-06	CU306

CMSD4448

SUPER-MINI HIGH SPEED SWITCHING DIODE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMSD4448 type is a ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded supermini surface mount package, designed for high speed switching applications.

MAXIMUM RATINGS: (T_A=25°C)

	SYMBOL		UNITS
Continuous Reverse Voltage	v_R	75	V
Peak Repetitive Reverse Voltage	v_{RRM}	100	V
Continuous Forward Current	۱F	250	mA
Peak Repetitive Forward Current	IFRM	250	mA
Forward Surge Current, tp=1 μsec.	^I FSM	4000	mA
Forward Surge Current, tp=1 sec.	l _{FSM}	1000	mA
Power Dissipation	P_{D}	250	mW
Operating and Storage			
Junction Temperature	TJ,T _{stg}	-65 to +150	$^{\mathrm{o}}C$
Thermal Resistance	$\Theta_{\sf JA}$	500	oC/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
V_{BR}	I _R =5.0μA	75		V
V_{BR}	I _R =100μA	100		V
^I R	V _R =20V		25	nA
V_{F}	I _F =5.0mA	0.62	0.72	V
V_{F}	I _F =100mA		1.0	V
C _T	V _R =0, f=1 MHz		4.0	pF
t _{rr}	$I_R=I_F=10$ mA, $R_L=100\Omega$, $F_L=100$	Rec. to 1.0mA	4.0	ns

FEATURES:

- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD
- SPECIAL SELECTIONS AVAILABLE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Silicon Schottky Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 12mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMSH1 -20	CMSH1 -40	CMSH1 -60	CMSH1 -100	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	20	40	60	100	V
DC Blocking Voltage	V_{R}	20	40	60	100	V
RMS Reverse Voltage	V _{R(RM}	S) 14	28	42	70	V
Average Forward Current(TA=75°C		,	1	.0		Α
Peak Forward Surge Current (8.3r	ns) I _{FSM}		3	30		Α
Operating and Storage						
Junction Temperature	T_{J}, T_{stg}	a	-65 to	o +150		°C
Thermal Resistance	Θ.ΙΙ	<i>3</i>	2	20		°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V_{F}	I _F =1.0A (CMSH1-20 AND CMSH1-40)			0.55	V
V_{F}	I _F =1.0A (CMSH1-60)			0.70	V
٧ _F	I _F =1.0A (CMSH1-100)			0.85	V
I_{R}	V _R =Rated V _{RRM}			0.50	mA
I _R	V _R =Rated V _{RRM} , T _A =125°C			20	mA

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CJ	V _R =4.0V, f=1.0MHz, (CMSH1-20 AND CMSH1-40)		110		рF
CJ	V _R =4.0V, f=1.0MHz, (CMSH1-60)		80		рF
C_J	V _R =4.0V, f=1.0MHz, (CMSH1-100)		50		pF

DEVICE	MARKING CODE
CMSH1-20	CS20
CMSH1-40	CS40
CMSH1-60	CS60
CMSH1-100	CS100

FEATURES:

- SUPER MINIATURE CASE
- SUPERIOR LOT TO LOT CONSISTENCY
- LOW COST
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD
- HIGH RELIABILITY
- SPECIAL SELECTIONS AVAILABLE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 1.0 Amp Surface Mount Silicon Schottky Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications where small size is required. The SMA case occupies 30% less board space than the SMB case. To order devices on 12mm Tape and Reel (5000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMSH1-20M	CMSH1-40M	CMSH1-60M	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	20	40	60	V
DC Blocking Voltage	V_{R}	20	40	60	V
RMS Reverse Voltage	V _{R(RMS)}	14	28	42	V
Average Forward Current(T _L =75°C		1.0	1.0		Α
Average Forward Current(T _L =100°0	C) Io			1.0	Α
Peak Forward Surge Current (8.3m	s) I _{FSM}	30	30	30	Α
Operating and Storage					
Junction Temperature	T_{J}, T_{stq}		-65 to +150		°C
Thermal Resistance	ΘJL	30	30	30 °	C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
٧ _F	I _F =1.0A (CMSH1-20M AND CMSH1-40M)			0.50	V
V_{F}	I _F =1.0A (CMSH1-60M)			0.70	V
I_{R}	V _R =Rated V _{RRM}			0.50	mA
I_{R}	V _R =Rated V _{RRM} , T _A =100°C			10	mΑ
CJ	V_R =4.0V, f=1.0MHz, (CMSH1-20M AND CM	ISH1-40 I	M) 100		рF
CJ	V_{R} =4.0V, f=1.0MHz, (CMSH1-60M)		80		рF

DEVICE	MARKING CODE
CMSH1-20M	CS20M
CMSH1-40M	CS40M
CMSH1-60M	CS60M

FEATURES:

- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD
- SPECIAL SELECTIONS AVAILABLE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2.0 Amp Surface Mount Silicon Schottky Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 12mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

		CMSH2	CMSH2	CMSH2	
	SYMBOL	-20	-40	-60	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	20	40	60	V
DC Blocking Voltage	V_{R}	20	40	60	V
RMS Reverse Voltage	V _{R(RMS)}	14	28	42	V
Average Forward Current(T _A =55°C)	lo `		2.0		Α
Peak Forward Surge Current (8.3ms)	^I FSM		30		Α
Operating and Storage					
Junction Temperature	T_{J}, T_{stg}		-65 to +150)	°C
Thermal Resistance	Θ_{JI}		20		°C/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I_{R}	V _R =Rated V _{RRM}			0.50	mA
I _R	V _R =Rated V _{RRM} , T _A =100°C			20	mA
٧ _F	I _F =2.0A (CMSH2-20 AND CMSH2-40)			0.50	V
٧ _F	I _F =2.0A (CMSH2-60)			0.70	V
CJ	V _R =4.0V, f=1.0MHz, (CMSH2-20 AND CMSH2-4	-0)	150		pF
CJ	V _R =4.0V, f=1.0MHz, (CMSH2-60)		120		pF

DEVICE	MARKING CODE
CMSH2-20	CS220
CMSH2-40	CS240
CMSH2-60	CS260

CMSH3-20 CMSH3-40 CMSH3-60

SCHOTTKY BARRIER RECTIFIER 3.0 AMP, 20 THRU 60 VOLTS

FEATURES:

- LOW COST
- SUPERIOR LOT TO LOT CONSISTENCY
- HIGH RELIABILITY
- "C" BEND CONSTRUCTION PROVIDES STRAIN RELIEF WHEN MOUNTED ON PC BOARD
- SPECIAL SELECTIONS AVAILABLE

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 3.0 Amp Surface Mount Silicon Schottky Rectifier is a high quality, well constructed, highly reliable component designed for use in all types of commercial, industrial, entertainment, computer, and automotive applications. To order devices on 16mm Tape and Reel (3000/13" Reel), add TR13 suffix to part number.

MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

	SYMBOL	CMSH3-20	CMSH3-40	CMSH3-60	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	20	40	60	V
DC Blocking Voltage	v_{R}	20	40	60	V
RMS Reverse Voltage	V _{R(RMS)}	14	28	42	V
Average Forward Current(T _A =75°C)	lo` ´		3.0		Α
Peak Forward Surge Current (8.3ms)	^I FSM		150		Α
Operating and Storage					
Junction Temperature	T_{J} , T_{stg}		-65 to +150	•	оС
Thermal Resistance	⊝JL		10	•	oC/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _R	V _R =Rated V _{RRM}			500	μΑ
I _R	V _R =Rated V _{RRM} , T _A =10	O _O C		20	mA
V_{F}	I _F =3.0A (CMSH3-20 AND	CMSH3-4	-0)	0.50	V
٧ _F	I _F =3.0A (CMSH3-60)			0.70	V

DEVICE	MARKING CODE
CMSH3-20	CS320
CMSH3-40	CS340
CMSH3-60	CS360

CMST2222A

SUPER-MINI NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMST2222A type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a super-mini surface mount package, designed for small signal general purpose and switching applications.

MAXIMUM RATINGS: (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	75	V
Collector-Emitter Voltage	V_{CEO}	40	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Collector Current	^I C	600	mA
Power Dissipation	PD	250	mW
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	оС
Thermal Resistance	$\Theta_{\sf JA}$	500	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICBO	V _{CB} =60V		10	nA
I _{CBO}	$V_{CB}=60V, T_{A}=125^{o}C$		10	μΑ
I _{EBO}	V _{EB} =3.0V		10	nA
^I CEV	$V_{CE}=60V$, $V_{EB}=3.0V$		10	nA
BV _{CBO}	I _C =10μΑ	75		V
BV _{CEO}	I _C =10mA	40		V
BV _{EBO}	I _E =10μΑ	6.0		V
V _{CE(SAT)}	I_C =150mA, I_B =15mA		0.3	V
V _{CE} (SAT)	I _C =500mA, I _B =50mA		1.0	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA	0.6	1.2	V
V _{BE} (SAT)	I _C =500mA, I _B =50mA		2.0	٧
h _{FE} ` ′	$V_{CE}=10V$, $I_{C}=0.1$ mA	35		
hFE	$V_{CE}=10V$, $I_{C}=1.0mA$	50		
h _{FE}	V_{CE} =10V, I_{C} =10mA	75		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	V _{CE} =10V, I _C =150mA	100	300	
hFE	$V_{CE}=1.0V$, $I_{C}=150$ mA	50		
hFE	$V_{CE}=10V$, $I_{C}=500$ mA	40		
fT	V _{CE} =20V, I _C =20mA, f=100MHz	300		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz		8.0	pF
C _{ib}	$V_{EB} = 0.5V$, $I_{C} = 0$, $f = 1.0MHz$		25	рF
h _{ie}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	2.0	8.0	$k\Omega$
h _{ie}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz	0.25	1.25	kΩ
h _{re}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz		8.0	x10 ⁻⁴
h _{re}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz		4.0	x10 ⁻⁴
h _{fe}	V _{CE} =10V, I _C =1.0mA, f=1.0kHz	50	300	
h _{fe}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz	75	375	
h _{oe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	5.0	35	μmhos
h _{oe}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz	25	200	μmhos
rb'C _C	V_{CB} =10V, I_E =20mA, f=31.8MHz		150	ps
NF	$V_{CE}=10V$, $I_{C}=100$ mA, $R_{S}=1.0$ k Ω , $f=1.0$ kHz		4.0	dB
^t d	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA		10	ns
t _r	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA		25	ns
ts	V _{CC} =30V, I _C =150mA, I _{B1} =I _{B2} =15mA		225	ns
t _f	V _{CC} =30V, I _C =150mA, I _{B1} =I _{B2} =15mA		60	ns

LEAD CODE:

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CMST2907A

SUPER-MINI PNP SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMST2907A type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a super-mini surface mount package, designed for small signal general purpose and switching applications.

MAXIMUM RATINGS: (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	$V_{\sf CBO}$	60	V
Collector-Emitter Voltage	V_{CEO}	60	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	l _C	600	mA
Power Dissipation	P_{D}	250	mW
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	$^{\mathrm{o}}C$
Thermal Resistance	$\Theta_{\sf JA}$	500	oC/M

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =50V		10	nA
I _{CBO}	$V_{CB} = 50V, T_A = 125^{\circ}C$		10	μΑ
^I CEV	$V_{CE}=30V$, $V_{BE}=0.5V$		50	nA
BV _{CBO}	I _C =10μΑ	60		V
BV _{CEO}	I _C =10mA	60		V
BV _{EBO}	I _E =10μΑ	5.0		V
V _{CE(SAT)}	I _C =150mA, I _B =15mA		0.4	V
V _{CE} (SAT)	I _C =500mA, I _B =50mA		1.6	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA		1.3	V
V _{BE(SAT)}	I _C =500mA, I _B =50mA		2.6	V
hFE	V_{CE} =10V, I_{C} =0.1mA	75		
hFE	V_{CE} =10V, I_{C} =1.0mA	100		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{FE}	$V_{CE}=10V$, $I_{C}=10mA$	100		
hFE	$V_{CE}=10V$, $I_{C}=150mA$	100	300	
hFE	V _{CE} =10V, I _C =500mA	50		
fT	V _{CE} =20V, I _C =50mA, f=100MHz	200		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz		8.0	рF
C _{ib}	V_{BE} =2.0V, I_{C} =0, f=1.0MHz		30	pF
ton	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA		45	ns
^t d	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA		10	ns
t _r	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA		40	ns
^t off	V _{CC} =6.0V, I _C =150mA, I _{B1} =I _{B2} =15mA		100	ns
t _s	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		80	ns
t _f	V _{CC} =6.0V, I _C =150mA, I _{B1} =I _{B2} =15mA		30	ns

LEAD CODE:

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

SUPER-MINI COMPLEMENTARY SILICON TRANSISTORS

MAXIMUM RATINGS: (T_A=25°C)

Central [™]
Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMST3904, CMST3906 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a super-mini surface mount package, designed for small signal general purpose amplifier and switching applications.

	SYMBOL	CMST3904	<u>CMST3906</u>	UNITS
Collector-Base Voltage	V_{CBO}	60	40	٧
Collector-Emitter Voltage	V _{CEO}	40	40	٧
Emitter-Base Voltage	V_{EBO}	6.0	5.0	V
Collector Current	^I C	200	0	mA
Power Dissipation	P_{D}	25	0	mW
Operating and Storage				
Junction Temperature	T_J, T_stg	-65 to	+150	$^{\mathrm{o}}C$
Thermal Resistance	$\Theta_{.1\Delta}$	50	O	oC/W

		CMS ⁷	Г3904	CMS ⁻	Г3906	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CEV	$V_{CE} = 30V, V_{EB} = 3.0V$		50		50	nA
BV _{CBO}	I _C =10μΑ		60		40	V
BV _{CEO}	I _C =1.0mA		40		40	V
BVEBO	I _E =10μΑ		6.0		5.0	V
V _{CE(SAT)}	I_{C} =10mA, I_{B} =1.0mA		0.20		0.25	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.30		0.40	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA	0.65	0.85	0.65	0.85	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		0.95		0.95	V
h _{FE} `	$V_{CE}=1.0V, I_{C}=0.1mA$	40		60		
h _{FE}	$V_{CE}=1.0V$, $I_{C}=1.0mA$	70		80		
hFE	V_{CE} =1.0V, I_{C} =10mA	100	300	100	300	

		<u>CMS</u>	T3904	CMS ⁻	T3906	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
hFE	V _{CE} =1.0V, I _C =50mA	60		60		
hFE	V _{CE} =1.0V, I _C =100mA	30		30		
f _T	V_{CE} =20V, I_{C} =10mA, f=100MHz	300		250		MHz
C _{ob}	V_{CB} =5.0V, I_{E} =0, f=1.0MHz		4.0		4.5	рF
C _{ib}	$V_{BE}=0.5V, I_{C}=0, f=1.0MHz$		8.0		10	pF
h _{ie}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	1.0	10	2.0	12	kΩ
h _{re}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	0.5	8.0	0.1	10	x10 ⁻⁴
h _{fe}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	100	400	100	400	
h _{oe}	V_{CE} =10V, I_{C} =1.0mA, f =1.0kHz	1.0	40	3.0	60	μmhos
NF	V_{CE} =5.0V, I_{C} =100mA, R_{S} =1.0k Ω					
	f=10Hz to 15.7kHz		5.0		4.0	dB
t _d	V_{CC} =3.0V, V_{BE} =0.5, I_{C} =10mA, I_{B1}	=1.0mA	35		35	ns
t _r	V_{CC} =3.0V, V_{BE} =0.5, I_{C} =10mA, I_{B1}	=1.0mA	35		35	ns
t _S	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0n	nA	200		225	ns
tf	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0n	nA	50		75	ns

LEAD CODE:

- 1) BASE
- 2) EMITTER
- 3) COLLECTOR

CQ89D CQ89M CQ89N

2.0 AMP TRIAC 400 THRU 800 VOLTS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CQ89D series types are epoxy molded silicon triacs designed for full wave AC control applications featuring gate triggering in all four (4) quadrants.

MAXIMUM RATINGS $(T_C=25^{\circ}C)$

	SYMBOL	CQ89D	CQ89M	CQ89N	UNITS
Peak Repetitive Off-State Voltage	v_{DRM}	400	600	800	٧
RMS On-State Current (T _C =80°C)	^I T(RMS)		2.0		Α
Peak One Cycle Surge (10ms)	^I TSM		10		Α
Peak Gate Current	^I GM		1.0		Α
Average Gate Power Dissipation	P _{G(AV)}		0.1		W
StorageTemperature	T _{stg}		-45 to +150		$^{\mathrm{o}}C$
Junction Temperature	T_J		-45 to +125		$^{\mathrm{o}}C$
Thermal Resistance	Θ_{J-C}		10		oC/W

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
^I DRM	V _D =Rated V _{DRM}			5.00	μ A
^I DRM	V_{D} =Rated V_{DRM} , T_{C} =125 o C			200	μΑ
I _{GT}	V _D =12V, QUAD I, II, III, IV			25	mA
lн	V _D =12V			25	mA
v_{GT}	V _D =12V			2.00	٧
V_{TM}	I _T =3.0A			1.75	V
dv/dt	$V_{D=\frac{2}{3}}V_{DRM}, T_{C}=125^{o}C$	100			V/µs

BOTTOM VIEW

LEAD CODE:

- 1) GATE
- 2) MT2
- 3) MT1

2.0 AMP TRIAC 400 THRU 800 VOLTS

MAXIMUM RATINGS (T_C=25°C)

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CQ89DS series types are epoxy molded silicon triacs designed for full wave AC control applications featuring gate triggering in all four (4) quadrants.

	SYMBOL	CQ89DS	CQ89MS	CQ89NS	UNITS
Peak Repetitive Off-State Voltage	v_{DRM}	400	600	800	٧
RMS On-State Current (T _C =80°C)	IT(RMS)		2.0		Α
Peak One Cycle Surge (10ms)	^I TSM		10		Α
Peak Gate Current	^I GM		1.0		Α
Average Gate Power Dissipation	P _{G(AV)}		0.1		W
StorageTemperature	T _{stq}		-45 to +15	0	$^{\mathrm{o}}C$
Junction Temperature	Tj		-45 to +12	5	$^{\mathrm{o}}C$
Thermal Resistance	Θ J-C		10		oC/W

ELECTRICAL CHARACTERISTICS ($T_C=25^{\circ}C$ unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{DRM}	V _D =Rated V _{DRM}			5.0	μΑ
I _{DRM}	V _D =Rated V _{DRM} , T _C =125°C			200	μΑ
^l GT	V _D =12V, QUAD I, II, III, IV			5.0	mA
l _H	V _D =12V			5.0	mA
v_{GT}	V _D =12V			2.0	V
v_{TM}	I _T =3.0A			1.75	V
dv/dt	$ m V_{D}$ = $ m / V_{DRM}$, $ m T_{C}$ =125 o C	30			V/μs

BOTTOM VIEW

- 1) GATE
- 2) MT2
- 3) MT1

The CENTRAL SEMICONDUCTOR CSHD3-40 is a Silicon Schottky Rectifier designed for surface mount fast switching applications requiring a low forward voltage drop.

MAXIMUM RATINGS: (T_C=25°C unless otherwise noted)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	40	V
Average Rectified Forward Current ($T_C=120$ °C)	IO	3.0	Α
RMS Forward Current	^I F(RMS)	6.0	Α
Peak Forward Surge Current (tp=10ms)	^I FSM	75	Α
Peak Repetitive Reverse Surge Current (tp=2µs)	IRRM	1.0	Α
Critical Rate of Rise of Reverse Voltage	dV/dt	1000	V/μs
Operating and Storage			
Junction Temperature	T _J , T _{stg}	-65 to +150	°C
Thermal Resistance	ΘJC	5.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
I_{R}	V _R =40V		100	μΑ
l _R	V _R =40V, T _C =125°C		10	mA
V_{F}	I _F =3.0A, T _C =125°C		0.57	V
٧ _F	I _F =6.0A		0.84	V

LEAD CODE:

- 1) NO CONNECTION
- 2) CATHODE
- 3) ANODE
- 4) CATHODE

PIN 2 IS COMMON TO THE TAB (4).

The CENTRAL SEMICONDUCTOR CSHD3-60 is a Silicon Schottky Rectifier designed for surface mount fast switching applications requiring a low forward voltage drop.

MAXIMUM RATINGS: (T_C=25°C unless otherwise noted)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	60	V
Average Rectified Forward Current ($T_C=120$ °C)	lo	3.0	Α
RMS Forward Current	^I F(RMS)	6.0	Α
Peak Forward Surge Current (tp=10ms)	IFSM	50	Α
Peak Repetitive Reverse Surge Current (tp=2µs)	^I RRM	1.0	Α
Critical Rate of Rise of Reverse Voltage	dV/dt	1000	V/μs
Operating and Storage			
Junction Temperature	T _J , T _{stg}	-65 to +150	°C
Thermal Resistance	ΘJC	3.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
I_{R}	V _R =60V		30	μΑ
^I R	V _R =60V, T _C =125°C		10	mA
٧ _F	I _F =3.0A		0.65	V
٧ _F	I _F =3.0A, T _C =125°C		0.59	V

- 1) NO CONNECTION
- 2) CATHODE
- 3) ANODE
- 4) CATHODE

PIN 2 IS COMMON TO THE TAB (4).

The CENTRAL SEMICONDUCTOR CSHD6-40C is a Silicon Schottky Rectifier designed for surface mount fast switching applications requiring a low forward voltage drop.

MAXIMUM RATINGS: $(T_C=25^{\circ}C \text{ unless otherwise noted})$

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	v_{RRM}	40	V
Average Rectified Forward Current ($T_C=120$ °C)	Ю	3.0	Α
RMS Forward Current	^I F(RMS)	6.0	Α
Peak Forward Surge Current (tp=10ms)	^I FSM	75	Α
Peak Repetitive Reverse Surge Current (tp=2µs)	^I RRM	1.0	Α
Critical Rate of Rise of Reverse Voltage	dV/dt	1000	V/μs
Operating and Storage			
Junction Temperature	T _J , T _{stg}	-65 to +150	°C
Thermal Resistance, Per Diode	Θ JC	5.5	°C/W

$\textbf{ELECTRICAL CHARACTERISTICS PER DIODE:} \ (T_{\hbox{\scriptsize C}} = 25 ^{\circ} \hbox{\scriptsize C unless otherwise noted})$

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
I_{R}	V _R =40V		100	μΑ
I _R	V_{R} =40V, T_{C} =125°C		10	mA
V_{F}	I _F =3.0A, T _C =125°C		0.57	V
V_{F}	I _F =6.0A		0.84	V

LEAD CODE:

- 1) ANODE #1
- 2) CATHODE
- 3) ANODE #2
- 4) CATHODE

PIN 2 IS COMMON TO THE TAB (4).

The CENTRAL SEMICONDUCTOR CSHD6-60C is a Silicon Schottky Rectifier designed for surface mount fast switching applications requiring a low forward voltage drop.

MAXIMUM RATINGS: (T_C=25°C unless otherwise noted)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	v_{RRM}	60	V
Average Rectified Forward Current (T _C =120°C)	lo	3.0	Α
RMS Forward Current	IF(RMS)	6.0	Α
Peak Forward Surge Current (tp=10ms)	^I FSM	50	Α
Peak Repetitive Reverse Surge Current (tp=2μs)	^I RRM	1.0	Α
Critical Rate of Rise of Reverse Voltage	dV/dt	1000	V/μs
Operating and Storage			
Junction Temperature	Т _Ј , Т _{stg}	-65 to +150	°C
Thermal Resistance, Per Diode	ΘJC	3.5	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE: (TC=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
I _R	V _R =60V		30	μΑ
I _R	V _R =60V, T _C =125°C		10	mA
V _F	I _F =3.0A		0.65	V
V _F	I _F =3.0A, T _C =125°C		0.59	V

LEAD CODE:

- 1) ANODE #1
- 2) CATHODE
- 3) ANODE #2
- 4) CATHODE

PIN 2 IS COMMON TO THE TAB (4).

R1

The CENTRAL SEMICONDUCTOR CUD3-02 is a Silicon Ultra-Fast Recovery Rectifier designed for surface mount ultra fast switching applications requiring a low forward voltage drop.

MAXIMUM RATINGS: $(T_C=25^{\circ}C \text{ unless otherwise noted})$

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	200	V
Peak Non Repetitive Surge Reverse Voltage	v_{RSM}	200	V
Average Rectified Forward Current (T_C =130°C)	lo	4.0	Α
RMS Forward Current	^I F(RMS)	10	Α
Peak Forward Surge Current (tp=10ms)	^I FSM	70	Α
Operating and Storage			
Junction Temperature	T_J, T_stg	-40 to +150	°C
Thermal Resistance	Θ JC	5.0	°C/W

ELECTRICAL CHARACTERISTICS: $(T_C=25^{\circ}C \text{ unless otherwise noted})$

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
I_{R}	V _R =200V		20	μΑ
I_{R}	V _R =200V, T _C =100°C		500	μΑ
٧F	I _F =12A		1.25	٧
V_{F}	I _F =4.0A, T _C =100°C		0.85	V
t _{rr}	$V_R=30V$, $I_F=1.0A$, $di/dt=50A/ms$		35	ns

LEAD CODE:

- 1) NO CONNECTION
- 2) CATHODE
- 3) ANODE
- 4) CATHODE

PIN 2 IS COMMON TO THE TAB (4).

R1

The CENTRAL SEMICONDUCTOR CUD6-02C is a Silicon Ultra-Fast Recovery Rectifier designed for surface mount ultra fast switching applications requiring a low forward voltage drop.

MAXIMUM RATINGS: (T_C=25°C unless otherwise noted)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	200	V
Peak Non Repetitive Surge Reverse Voltage	v_{RSM}	200	V
Average Forward Current Per Diode ($T_C=130^{\circ}C$)	IO	5.0	Α
Average Forward Current Per Device ($T_C=130^{\circ}C$)	IO	10	Α
RMS Forward Current Per Diode	I _{F(RMS)}	10	Α
Peak Forward Surge Current Per Diode (tp=10ms)	I _{FSM}	70	Α
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-40 to +150	°C
Thermal Resistance, Per Diode	Θ JC	5.0	°C/W
Thermal Resistance, Per Device	Θ JC	2.7	°C/W

ELECTRICAL CHARACTERISTICS: $(T_C=25^{\circ}C \text{ unless otherwise noted})$

SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
I_{R}	V _R =200V		20	μΑ
I_{R}	$V_R=200V, T_C=100$ °C		500	μΑ
V_{F}	I _F =10A		1.25	V
V_{F}	I _F =5.0A, T _C =100°C		0.85	V
t _{rr}	V_R =30V, I_F =1.0A, di/dt=50A/ms		35	ns

LEAD CODE:

- 1) ANODE #1
- 2) CATHODE
- 3) ANODE #2
- 4) CATHODE

PIN 2 IS COMMON TO THE TAB (4).

CXSH-4

SCHOTTKY BARRIER RECTIFIER

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXSH-4 type is a schottky barrier rectifier mounted in an epoxy molded case using a metal to silicon junction to yield low forward voltage drop. This device utilizes a single chip with anode connections made to PIN 1 and PIN 3.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	40	V
DC Blocking Voltage	V _R	40	V
RMS Reverse Voltage	V _{R(RMS)}	28	V
Average Forward Current	lo	1.0	Α
Peak Forward Surge Current(8.3ms, Non-Rep.)	^I FSM	10	Α
Operating and Storage Junction Temperature	T _J ,T _{stg}	-65 to +150	°C

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _R	V _R =40V		1.0	mA
I _R	V _R =40V, T _A =100 ^o C		10	mA
ν̈́F	I _F =1.0A		0.55	V

LEAD CODE:

- 1) ANODE
- 2) CATHODE
- 3) ANODE

PIN 2 IS COMMON TO THE TAB.

CXT2222A

NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXT2222A type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	75	V
Collector-Emitter Voltage	VCEO	40	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Collector Current	IC	600	mA
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}	104	oC/M

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =60V		10	nA
ICBO	V _{CB} =60V, T _A =125°C		10	μΑ
IEBO	V _{EB} =3.0V		10	nA
ICEV	$V_{CE}=60V$, $V_{EB}=3.0V$		10	nA
BV _{CBO}	I _C =10μΑ	75		V
BVCEO	I _C =10mA	40		V
BV _{EBO}	I _E =10μΑ	6.0		V
V _{CE(SAT)}	I _C =150mA, I _B =15mA		0.3	V
VCE(SAT)	I _C =500mA, I _B =50mA		1.0	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA	0.6	1.2	V
V _{BE} (SAT)	I _C =500mA, I _B =50mA		2.0	V
h _{FE} `´´	$V_{CE}=10V$, $I_{C}=0.1$ mA	35		
hFE	$V_{CE}=10V$, $I_{C}=1.0$ mA	50		
h _{FE}	$V_{CE}=10V$, $I_{C}=10mA$	75		

SYMBOL	TEST CONDITIONS MIN	MAX	UNITS
hFE	$V_{CE}=10V, I_{C}=150mA$ 100	300	
hFE	$V_{CE}=1.0V, I_{C}=150mA$ 50		
hFE	$V_{CE}=10V, I_{C}=500mA$ 40		
fŢ	V _{CE} =20V, I _C =20mA, f=100MHz 300		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$	8.0	pF
C _{ib}	$V_{EB}=0.5V$, $I_{C}=0$, $f=1.0MHz$	25	pF
h _{ie}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$ 2.0	8.0	$k\Omega$
h _{ie}	$V_{CE}=10V, I_{C}=10mA, f=1.0kHz$ 0.25	1.25	$k\Omega$
h _{re}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	8.0	x10 ⁻⁴
h _{re}	$V_{CE}=10V$, $I_{C}=10mA$, $f=1.0kHz$	4.0	x10 ⁻⁴
h _{fe}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$ 50	300	
h _{fe}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz 75	375	
h _{oe}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$ 5.0	35	μmhos
h _{oe}	$V_{CE}=10V$, $I_{C}=10$ mA, $f=1.0$ kHz 25	200	μmhos
rb'C _C	V_{CB} =10V, I_E =20mA, f=31.8MHz	150	ps
NF	V_{CE} =10V, I_{C} =100μA, R_{S} =1.0kΩ, f =1.0kH:	z 4.0	dB
t_d	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA	A 10	ns
t _r	V _{CC} =30V, V _{BE} =0.5, I _C =150mA, I _{B1} =15mA	A 25	ns
t _S	V _{CC} =30V, I _C =150mA, I _{B1} =I _{B2} =15mA	225	ns
t _f	V_{CC} =30V, I_{C} =150mA, I_{B1} = I_{B2} =15mA	60	ns

BOTTOM VIEW . 173 (4.39) . 181(4.60) .055(1.40) .063(1.60) .063(1.60) .071(1.80) LEAD CODE: . 154(3.91) .092(2.34) . 100(2.54) . 165 (4.19) 1) EMITTER 2) COLLECTOR 1 3 2 3) BASE . 0 1 5 (0 . 3 8) .015(0.38) .031(0.80) .021(0.53) .039(1.00) .059(1.50) .013(0.33) 118(3.00)

CXT2907A

PNP SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXT2907A type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	VCEO	60	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	lc	600	mA
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	104	°C/W

$\textbf{ELECTRICAL CHARACTERISTICS} \quad (T_A = 25^{O}\text{C unless otherwise noted})$

TEST CONDITIONS	MIN	MAX	UNITS
V _{CB} =50V		10	nA
V _{CB} =50V, T _A =125°C		10	μΑ
$V_{CE}=30V$, $V_{BE}=0.5V$		50	nA
I _C =10μΑ	60		V
I _C =10mA	60		V
I _F =10μΑ	5.0		V
I _C =150mA, I _B =15mA		0.4	V
I _C =500mA, I _B =50mA		1.6	V
I _C =150mA, I _B =15mA		1.3	V
I _C =500mA, I _B =50mA		2.6	٧
V _{CF} =10V, I _C =0.1mA	75		
V _{CF} =10V, I _C =1.0mA	100		
V _{CE} =10V, I _C =10mA	100		
	V_{CB} =50V V_{CB} =50V, T_{A} =125°C V_{CE} =30V, V_{BE} =0.5V I_{C} =10 μ A I_{C} =10 μ A I_{C} =150 μ A I_{C} =500 μ A, I_{B} =50 μ A I_{C} =500 μ A, I_{B} =50 μ A I_{C} =150 μ A, I_{B} =15 μ A I_{C} =150 μ A, I_{C} =100 μ A, I_{C} =100 μ A	$\begin{array}{c} V_{CB} = 50V \\ V_{CB} = 50V, \ T_A = 125^{o}C \\ V_{CE} = 30V, \ V_{BE} = 0.5V \\ I_{C} = 10\mu A & 60 \\ I_{C} = 10mA & 60 \\ I_{E} = 10\mu A & 5.0 \\ I_{C} = 150mA, \ I_{B} = 15mA \\ I_{C} = 500mA, \ I_{B} = 50mA \\ I_{C} = 150mA, \ I_{B} = 15mA \\ I_{C} = 500mA, \ I_{B} = 50mA \\ V_{CE} = 10V, \ I_{C} = 0.1mA & 75 \\ V_{CE} = 10V, \ I_{C} = 1.0mA & 100 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h_{FE}	V _{CE} =10V, I _C =150mA	100	300	
hFE	V _{CE} =10V, I _C =500mA	50		
f _T	V_{CE} =20V, I_{C} =50mA, f=100MHz	200		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		8.0	рF
C _{ib}	$V_{BE}=2.0V, I_{C}=0, f=1.0MHz$		30	рF
^t on	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		45	ns
^t d	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		10	ns
t _r	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		40	ns
^t off	V _{CC} =6.0V, I _C =150mA, I _{B1} =I _{B2} =15mA		100	ns
t _s	V _{CC} =6.0V, I _C =150mA, I _{B1} =I _{B2} =15mA		80	ns
t _f	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		30	ns

BOTTOM VIEW . 173 (4.39) . 181(4.60) .055(1.40) .063(1.60) .063(1.60) .071(1.80) .092(2.34) . 154(3.91) . 165(4.19) . 100(2.54) . 0 1 5 (0 . 3 8) .031(0.80) .015(0.38) .021(0.53) .016(0.41) .039(1.00) .059(1.50) .013(0.33) . 118 (3.00)

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CXT3019

NPN SILICON TRANSISTOR

The CENTRAL SEMICONDUCTOR CXT3019 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high current general purpose amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	140	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	V _{EBO}	7.0	V
Collector Current	IC	1.0	Α
Collector Current (Peak)	ICM	1.5	Α
Power Dissipation	PD	1.2	W
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	oС
Thermal Resistance	$\Theta_{\sf JA}$	104	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =90V		10	nA
IEBO	V _{EB} =5.0V		10	nA
BV _{CBO}	I _C =100μΑ	140		V
BVCEO	I _C =30mA	80		V
BVEBO	I _E =100μΑ	7.0		V
VCE(SAT)	I _C =150mA, I _B =15mA		0.2	V
VCE(SAT)	I _C =500mA, I _B =50mA		0.5	V
VBE(SAT)	I _C =150mA, I _B =15mA		1.1	V
hFE	$V_{CE}=10V$, $I_{C}=0.1$ mA	50		
hFE	V _{CE} =10V, I _C =10mA	90		
hFE	V _{CE} =10V, I _C =150mA	100	300	
hFE	V _{CE} =10V, I _C =500mA	50		
hFE	V _{CE} =10V, I _C =1.0A	15		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
fT	V_{CE} =10V, I_{C} =50mA, f=1.0MHz	100		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		12	рF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz		60	pF
NF	V_{CE} =10V, I_{C} =100μA, R_{S} =1kΩ, f =1.0kHz		4.0	dB

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CXT3904 NPN CXT3906 PNP

COMPLEMENTARY SILICON TRANSISTORS

Central[™] Semiconductor Corp.

DESCRIPTION

The CENTRAL SEMICONDUCTOR CXT3904, CXT3906 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

OVTOOO

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	CXT3904	CXT3906	UNITS
Collector-Base Voltage	V_{CBO}	60	40	V
Collector-Emitter Voltage	VCEO	40	40	V
Emitter-Base Voltage	V _{EBO}	6.0	5.0	V
Collector Current	lc	20	0	mA
Power Dissipation	P_{D}	1.2	2	W
Operating and Storage				
Junction Temperature	T_J, T_stg	-65 to -	+150	°C
Thermal Resistance	$\Theta_{\sf JA}$	10	4	oC/W

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

		CXI	3904	CXT	<u> 3906</u>	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CEV	V _{CE} =30V, V _{EB} =3.0V		50		50	nA
BV CBO	I _C =10mA	60		40		V
BV _{CEO}	I _C =1.0mA	40		40		V
BVEBO	I _E =10μΑ	6.0		5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.20		0.25	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.30		0.40	V
V _{BE(SAT)}	I _C =10mA, I _B =1.0mA	0.65	0.85	0.65	0.85	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		0.95		0.95	V
h _{FE} ` ′	$V_{CE}=1.0V$, $I_{C}=0.1mA$	40		60		
hFE	$V_{CE}=1.0V$, $I_{C}=1.0mA$	70		80		
hFE	$V_{CE}=1.0V$, $I_{C}=10mA$	100	300		100	300
h _{FE}	V_{CE} =1.0V, I_{C} =50mA	60		60		

0VT0004

		CXT	<u> 3904</u>	CXT	<u> 3906</u>	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
hFE	V _{CE} =1.0V, I _C =100mA	30		30		
fΤ	V_{CE} =20V, I_{C} =10mA, f =100MHz	300		250		MHz
C _{ob}	V _{CB} =5.0V, I _E =0, f=1.0MHz		4.0		4.5	рF
C _{ib}	$V_{BE}=0.5V, I_{C}=0, f=1.0MHz$		8.0		10	рF
h _{ie}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	1.0	10	2.0	12	kΩ
h _{re}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	0.5	8.0	0.1	10	x10 ⁻⁴
h _{fe}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	100	400	100	400	
hoe	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	1.0	40	3.0	60	mmhos
NF	$V_{CE}=5.0V, I_{C}=100\mu A, R_{S}=1.0k\Omega$					
	f=10Hz to 15.7kHz		5.0		4.0	dB
t _d	$V_{CC}=3.0V$, $V_{BE}=0.5$, $I_{C}=10$ mA, $I_{B1}=$	1.0mA	35		35	ns
tr	V _{CC} =3.0V, V _{BE} =0.5, I _C =10mA, I _{B1} =	1.0mA	35		35	ns
ts	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0mA	4	200		225	ns
tf	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0mA	4	50		75	ns

BOTTOM VIEW . 173 (4.39) .055(1.40) .063(1.60) .063(1.60) .071(1.80) .092(2.34) . 154(3.91) . 165(4.19) .100(2.54) 3 . 0 1 5 (0 . 3 8) . 0 3 1 (0 . 8 0) .015(0.38) .021(0.53) .016(0.41) .039(1.00) .059(1.50) .013(0.33) . 118(3.00)

LEAD CODE:

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

R2

CXT4033

PNP SILICON TRANSISTOR

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Central[™] Semiconductor Corp.

DESCRIPTION

The CENTRAL SEMICONDUCTOR CXT4033 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high current general purpose amplifier applications.

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	80	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	VEBO	5.0	V
Collector Current	lC	1.0	Α
Collector Current (Peak)	^I CM	1.5	Α
Power Dissipation	PD	1.2	W
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	104	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =60V		50	nA
IEBO	V _{EB} =5.0V		10	nA
BV _{CBO}	I _C =10μA	80		V
BVCEO	I _C =10mA	80		V
BVEBO	I _E =10μΑ	5.0		V
VCE(SAT)	I _C =150mA, I _B =15mA		0.15	V
VCE(SAT)	I _C =500mA, I _B =50mA		0.50	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA		0.90	V
VBE(SAT)	I _C =500mA, I _B =50mA		1.10	V
hFE	$V_{CE}=5.0V$, $I_{C}=0.1$ mA	75		
hFE	VCE=5.0V, I _C =100mA	100	300	
hFE	V _{CE} =5.0V, I _C =500mA	70		
h _{FE}	$V_{CE}=5.0V, I_{C}=1.0A$	25		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
f _T	V_{CE} =10V, I_{C} =50mA, f=1.0MHz	100		MHz
Cob	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		20	pF
C _{ib}	$V_{EB} = 0.5V$, $I_{C} = 0$, $f = 1.0MHz$		110	рF

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CXT5401

PNP SILICON TRANSISTOR

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXT5401 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	160	V
Collector-Emitter Voltage	VCEO	150	V
Emitter-Base Voltage	VEBO	5.0	V
Collector Current	lC	500	mÅ
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	οС
Thermal Resistance	Θ_{JA}	104	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =120V		50	nA
I _{CBO}	V _{CB} =120V, T _A =100°C		50	μΑ
BV _{CBO}	I _C =100μA	160		V
BVCEO	I _C =1.0mA	150		V
BV _{EBO}	I _E =10μΑ	5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.2	V
V _{CE(SAT)}	I _C =50mA, I _B =5.0mA		0.5	V
V _{BE(SAT)}	I _C =10mA, I _B =1.0mA		1.0	V
V _{BE(SAT)}	I _C =50mA, I _B =5.0mA		1.0	V
h _{FE} ` ′	V _{CE} =5.0V, I _C =1.0mA	50		
hFE	V _{CE} =5.0V, I _C =10mA	60	240	
hFE	V _{CE} =5.0V, I _C =50mA	50		
f _T	V_{CE} =10V, I_{C} =10mA, f=100MHz	100	300	MHz

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		6.0	pF
h _{fe}	V_{CE} =10V, I_{C} =1.0mA, f =1.0kHz	40	200	
NF	V_{CE} =5.0V, I_{C} =200 μ A, R_{S} =10 Ω			
	f=10Hz to 15.7kHz		8.0	dB

BOTTOM VIEW

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CXT5551

NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXT5551 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	180	V
Collector-Emitter Voltage	VCEO	160	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Collector Current	l _C	600	mA
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	Θ_{JA}	104	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICBO	V _{CB} =120V		50	nA
I _{CBO}	V _{CB} =120V, T _A =100°C		50	μΑ
BV _{CBO}	I _C =100mA	180		V
BVCEO	I _C =1.0mA	160		V
BVEBO	I _E =10mA	6.0		V
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.15	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.20	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA		1.00	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		1.00	V
hFE	$V_{CE}=5.0V$, $I_{C}=1.0mA$	80		
hFE	$V_{CE}=5.0V$, $I_{C}=10mA$	80	250	
h _{FE}	$V_{CE}=5.0V$, $I_{C}=50mA$	30		
f_{T}	V_{CE} =10V, I_{C} =10mA, f=100MHz	100	300	MHz

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		6.0	pF
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	50	200	
NF	$V_{CE}=5.0V$, $I_{C}=200$ mA, $R_{S}=10$ W			
	f=10Hz to 15.7kHz		8.0	dB

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CXTA14 NPN CXTA64 PNP

SILICON COMPLEMENTARY DARLINGTON TRANSISTORS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXTA14, CXTA64 types are complementary silicon Darlington transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high gain.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	30	V
Collector-Emitter Voltage	VCEO	30	V
Emitter-Base Voltage	VEBO	10	V
Collector Current	IC	500	mA
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	T_{J}, T_{stg}	-65 to +150	°C
Thermal Resistance	Θ.ΙΑ	104	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =30V		100	nA
ICEO	V _{CE} =10V		100	nA
BVCES	I _C =100μA	30		V
V _{CE(SAT)}	I _C =100mA, I _B =0.1mA		1.5	V
VBE(ON)	$V_{CE}=5.0V$, $I_{C}=100$ mA		2.0	V
hFE	$V_{CE}=5.0V$, $I_{C}=10mA$	10,000		
hFE	V _{CE} =5.0V, I _C =100mA	20,000		
fT	V _{CE} =5.0V, I _C =10mA, f=100MHz	125		MHz

BOTTOM VIEW

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

The CENTRAL SEMICONDUCTOR CXTA27 type is a NPN Silicon Darlington Transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring high voltage.

MAXIMUM RATINGS (T _A =25°C)	SYMBOL		UNITS
Collector-Emitter Voltage	V_{CES}	60	V
Emitter-Base Voltage	V_{EBO}	10	V
Collector Current	l _C	500	mA
Power Dissipation	P_{D}	1.2	W
Operating and Storage			
Junction Temperature	Tյ,T _{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	104	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CBO	V _{CB} =50V		100	nA
^I CES	V _{CE} =50V		500	nA
I _{EBO}	V _{EB} =10V		100	nA
B _{VCBO}	I _C =100μA	60		V
B _{VCES}	I _C =100μA	60		V
V _{CE(SAT)}	I _C =100mA, I _B =0.1mA		1.5	V
V _{BE(ON)}	V_{CE} =5.0V, I_{C} =100mA		2.0	V
h _{FE} `´	V_{CE} =5.0V, I_{C} =10mA	10,000		
hFE	V_{CE} =5.0V, I_{C} =100mA	10,000		
f _T	V_{CE} =5.0V, I_{C} =10mA, f=100MHz	125		MHz

BOTTOM VIEW

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

CXTA42 NPN CXTA92 PNP

SILICON COMPLIMENTARY HIGH VOLTAGE TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXTA42, CXTA92 types are complementary surface mount epoxy molded silicon planar epitaxial transistors designed for high voltage applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	CXTA42	<u>CXTA92</u>	UNITS
Collector-Base Voltage	V_{CBO}	300	300	V
Collector-Emitter Voltage	VCEO	300	300	V
Emitter-Base Voltage	V _{EBO}	6.0	5.0	V
Collector Current	lc	50	00	mA
Power Dissipation	P_{D}	P _D 1.2		W
Operating and Storage				
Junction Temperature	T _J ,T _{stg}	-65 to	+150	оС
Thermal Resistance	$\Theta_{\sf JA}$	10	04	°C/W

		CXT	<u>A42</u>	CXT	Г А 92	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CBO	V _{CB} =200V		100		250	nA
l _{EBO}	V _{BE} =6.0V		100		-	nA
^I EBO	V _{BE} =3.0V		-		100	nA
BV _{CBO}	I _C =100μA	300		300		V
BV_CEO	I _C =1.0mA	300		300		٧
BV _{EBO}	I _E =100μA	6.0		5.0		V
V _{CE(SAT)}	I _C =20mA, I _B =2.0mA		0.5		0.5	V
V _{BE(SAT)}	I _C =20mA, I _B =2.0mA		0.9		0.9	V
h _{FE} ` ′	$V_{CE}=10V$, $I_{C}=1.0mA$	25		25		
h _{FE}	$V_{CE}=10V$, $I_{C}=10mA$	40		40		
hFE	V_{CE} =10V, I_{C} =30mA	40		25		
f⊤	V_{CE} =20V, I_{C} =10mA, f=100MHz	50		50		MHz
C _{ob}	V_{CB} =20V, I_E =0, f=1.0MHz		3.0		6.0	pF

- 1) EMITTER
- 2) COLLECTOR
- 3) BASE

DESCRIPTION

The CENTRAL SEMICONDUCTOR CZS5064 type is an epoxy molded PNPN Silicon Controlled Rectifier manufactured in an epoxy molded surface mount package, designed for control systems and sensing circuit applications.

MAXIMUM RATINGS (T_A=25°C unless otherwise noted)

	SYMBOL		UNITS
Peak Repetitive Off-State Voltage	v_{DRM}	400	V
Peak Repetitive Reverse Voltage	V_{RRM}	400	V
RMS On-State Current	IT(RMS)	0.8	Α
Average On-State Current (T _C =67°C)	^I T(AV)	0.51	Α
Operating Junction Temperature	Tj`	-40 to +125	°С
Storage Temperature	T _{stg}	-40 to +150	oС
Thermal Resistance	$\Theta_{J}\overset{\circ}{A}$	150	oC/M
Thermal Resistance	Θ JC	25	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I DRM	V_D =400V, R_{GK} =1K Ω , T_C =125 o C		50	μΑ
^I RRM	V_D =400V, R_{GK} =1K Ω , T_C =125°C		50	μΑ
V_{T}	I _T =1.2A		1.7	V
^l GT	V_D =7.0V, R_L =100 Ω , R_{GK} =1 $K\Omega$		200	μΑ
v_{GT}	V_D =7.0V, R_L =100 Ω , R_{GK} =1 $K\Omega$		0.8	V
V_{GD}	V_D =400V, R_L =100 Ω , T_C =125 $^{\rm o}$ C	0.1		V
lН	$V_D=7.0$, $R_{GK}=1K\Omega$		5.0	mA
^t ON	V_D =400V, I_{GT} =1.0mA, I_F =1.0A,			
	R_{GK} =1.0 Ω , di/dt=6.0A/ μ s	2.	8 TYP	μs

- 1) CATHODE
- 2) ANODE
- 3) GATE
- 4) ANODE

CZSH-4

SCHOTTKY BARRIER RECTIFIER

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZSH-4 type is a schottky barrier rectifier mounted in an epoxy molded case using a metal to silicon junction to yield low forward voltage drop. This device utilizes a single chip with anode connections made to PIN 1 and PIN 3.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	40	V
DC Blocking Voltage	V_{R}	40	V
RMS Reverse Voltage	V _{R(RMS)}	28	V
Average Forward Current	lo` ´	2.0	Α
Peak Forward Surge Current (8.3ms, Non-Rep.)	^I FSM	10	Α
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	oC

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _R	V _R =40V		1.0	mA
I _R	V _R =40V, T _A =100°C		10	mA
٧F	I _F =1.0A		0.50	V
٧ _F	I _F =2.0A		0.60	V

LEAD CODE:

- 1) ANODE
- 2) CATHODE
- 3) ANODE
- 4) CATHODE

R2

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT31C and CZT32C types are surface mount epoxy molded complementary silicon transistors manufactured by the epitaxial base process, designed for surface mounted power amplifier applications up to 3.0 amps.

MAXIMUM RATINGS: (T_A=25°C)

SYMBOL		UNITS
V_{CBO}	100	٧
V_{CEO}	100	V
V_{EBO}	5.0	٧
IC	3.0	Α
^I CM	6.0	Α
I _B	1.0	Α
P_D	2.0	W
T_J, T_sta	-65 to +150	$^{\mathrm{o}}C$
$\Theta_{\sf JA}$	62.5	oC/W
	VCEO VEBO IC ICM IB PD	VCBO 100 VCEO 100 VEBO 5.0 IC 3.0 ICM 6.0 IB 1.0 PD 2.0 TJ,Tstg -65 to +150

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CES}	V _{CE} =100V		200	μΑ
ICEO	V _{CE} =60V		300	μΑ
I _{EBO}	V _{EB} =5.0V		1.0	mA
BVCEO	I _C =30mA	100		V
* VCE(SAT)	I _C =3.0A, I _B =375mA		1.2	V
* VBE(ON)	V_{CE} =4.0V, I_{C} =3.0A		1.8	V
* h _{FE} `´´	V _{CE} =4.0V, I _C =1.0A	25		
* h _{FE}	V_{CE} =4.0V, I_{C} =3.0A	10	100	
f⊤	V_{CE} =10V, I_{C} =500mA, f=1.0MHz	3.0		MHz

^{*} Pulsed, 2%D.C.

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT122, CZT127 types are Complementary Silicon Power Darlington Transistors manufactured in a surface mount package designed for low speed switching and amplifier applications.

MAXIMUM RATINGS: $(T_A=25^{\circ}C)$

	SYMBOL		UNITS
Collector-Base Voltage	$V_{\sf CBO}$	100	V
Collector-Emitter Voltage	V_{CEO}	100	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	lc	5.0	Α
Peak Collector Current	^I CM	8.0	Α
Base Current	lΒ	120	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage			, , , , , , , , , , , , , , , , , , ,
Junction Temperature	T_{J}, T_{stg}	-65 to +150	$^{\mathrm{o}}C$
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CEO	V _{CE} =50V		500	μΑ
I _{CBO}	V _{CB} =100V		200	μΑ
I _{EBO}	V _{EB} =5.0V		2.0	mA
BV_CEO	I _C =30mA	100		V
V _{CE(SAT)}	I _C =3.0A, I _B =12mA		2.0	V
VCE(SAT)	I _C =5.0A, I _B =20mA		4.0	V
V _{BE(ON)}	$V_{CE}=3.0V, I_{C}=3.0A$		2.5	V
h _{FE}	V_{CE} =3.0V, I_{C} =500mA	1000		
h _{FE}	$V_{CE}=3.0V, I_{C}=3.0A$	1000		
f _T	V_{CE} =4.0V, I_{C} =3.0A, f=1.0MHz	4.0		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz (CZT12	22)	200	pF
C _{ob}	V_{CB} =10V, I_E =0, f=1.0MHz (CZT12	27)	300	pF

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT2000

NPN SILICON EXTREMELY HIGH VOLTAGE DARLINGTON TRANSISTOR

Central ** Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT2000 type is an NPN Epitaxial Planar Silicon Darlington Transistor manufactured in an epoxy molded surface mount package, designed for applications requiring extremely high voltages and high gain capability.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	200	V
Collector-Emitter Voltage	V _{CES}	200	V
Emitter-Base Voltage	V_{EBO}	10	V
Collector Current	lc	600	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	oC
Thermal Resistance	Θ_{JA}	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =180V		500	nA
IEBO	V _{BE} =10V		100	nA
BVCES	I _C =1.0mA	200		V
VCE(SAT)	I _C =20mA, I _B =25μA		0.9	V
VCE(SAT)	I _C =80mA, I _B =40μA		1.1	V
VCE(SAT)	I _C =160mA, I _B =100μA		1.2	V
V _{BE(ON)}	$V_{CE}=5.0V$, $I_{C}=160$ mA		2.0	V
h _{FE}	$V_{CE}=5.0V, I_{C}=100\mu A$	3,000		
hFE	$V_{CE}=5.0V$, $I_{C}=10mA$	3,000		
hFE	V _{CE} =5.0V, I _C =160mA	3,000		

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT2222A

NPN SILICON TRANSISTOR

DESCRIPTION

The CENTRAL SEMICONDUCTOR CZT2222A type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for general purpose amplifier and switching applications.

MAXIMUM RATINGS (T_A=25°C)

SYMBOL		UNITS
V_{CBO}	75	V
VCEO	40	V
V_{EBO}	6.0	V
l _C	600	mA
P_{D}	2.0	W
T_{J}, T_{sta}	-65 to +150	oC
Θ_{JA}^{Tag}	62.5	°C/W
	VCBO VCEO VEBO IC PD	VCBO 75 VCEO 40 VEBO 6.0 IC 600 PD 2.0 TJ,Tstg -65 to +150

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =60V		10	nA
ICBO	V _{CB} =60V, T _A =125°C		10	μΑ
IEBO	V _{EB} =3.0V		10	nA
ICEV	V _{CE} =60V, V _{EB} =3.0V		10	nA
BV _{CBO}	I _C =10μΑ	75		V
BVCEO	I _C =10mA	40		V
BVEBO	I _E =10μΑ	6.0		V
VCE(SAT)	I _C =150mA, I _B =15mA		0.3	V
VCE(SAT)	I _C =500mA, I _B =50mA		1.0	V
VBE(SAT)	I _C =150mA, I _B =15mA	0.6	1.2	V
VBE(SAT)	I _C =500mA, I _B =50mA		2.0	V
h _{FE} ` ′	$V_{CE}=10V$, $I_{C}=0.1mA$	35		
hFE	$V_{CE}=10V$, $I_{C}=1.0mA$	50		
h _{FE}	$V_{CE}=10V$, $I_{C}=10mA$	75		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	$V_{CE}=10V$, $I_{C}=150mA$	100	300	
hFE	$V_{CE}=1.0V, I_{C}=150mA$	50		
hFE	$V_{CE}=10V$, $I_{C}=500mA$	40		
fΤ	$V_{CE}=20V$, $I_{C}=20mA$, $f=100MHz$	300		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		8.0	рF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz		25	рF
h _{ie}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	2.0	8.0	kΩ
h _{ie}	$V_{CE}=10V$, $I_{C}=10mA$, $f=1.0kHz$	0.25	1.25	kΩ
h _{re}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$		8.0	x10 ⁻⁴
h _{re}	$V_{CE}=10V$, $I_{C}=10mA$, $f=1.0kHz$		4.0	x10 ⁻⁴
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	50	300	
h _{fe}	$V_{CE}=10V$, $I_{C}=10mA$, $f=1.0kHz$	75	375	
h _{oe}	$V_{CE}=10V$, $I_{C}=1.0mA$, $f=1.0kHz$	5.0	35	μmhos
h _{oe}	$V_{CE}=10V$, $I_{C}=10mA$, $f=1.0kHz$	25	200	μmhos
rb'C _C	V_{CB} =10V, I_{E} =20mA, f=31.8MHz		150	ps
NF	V_{CE} =10V, I_{C} =100μA, R_{S} =1.0k Ω , f=1.0	OkHz	4.0	dB
^t d	$V_{CC}=30V$, $V_{BE}=0.5$, $I_{C}=150$ mA, $I_{B1}=10$	15mA	10	ns
t _r	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =	15mA	25	ns
t _s	V_{CC} =30V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		225	ns
t _f	V_{CC} =30V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		60	ns

CZT2907A

PNP SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT2907A type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for general purpose amplifier and switching applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	VCEO	60	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	IC	600	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I CBO	V _{CB} =50V		10	nA
ICBO	V _{CB} =50V, T _A =125°C		10	μΑ
ICEV	V _{CE} =30V, V _{BE} =0.5V		50	nA
BV _{CBO}	I _C =10μA	60		V
BV _{CEO}	I _C =10mA	60		V
BVEBO	I _E =10μΑ	5.0		V
V _{CE(SAT)}	I _C =150mA, I _B =15mA		0.4	V
VCE(SAT)	I _C =500mA, I _B =50mA		1.6	V
VBE(SAT)	I _C =150mA, I _B =15mA		1.3	V
VBE(SAT)	$I_C=500$ mA, $I_B=50$ mA		2.6	V
hFE	$V_{CE}=10V$, $I_{C}=0.1$ mA	75		
hFE	$V_{CE} = 10V, I_{C} = 1.0 \text{mA}$	100		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
hFE	V _{CE} =10V, I _C =10mA	100		
hFE	V _{CE} =10V, I _C =150mA	100	300	
hFE	V _{CE} =10V, I _C =500mA	50		
fT	V_{CE} =20V, I_{C} =50mA, f=100MHz	200		MHz
C _{ob}	V_{CB} =10V, I_{E} =0, f=1.0MHz		8.0	pF
C _{ib}	$V_{BE}=2.0V, I_{C}=0, f=1.0MHz$		30	pF
ton	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		45	ns
t _d	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		10	ns
t _r	V_{CC} =30V, V_{BE} =0.5, I_{C} =150mA, I_{B1} =15mA		40	ns
^t off	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		100	ns
t _S	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		80	ns
t _f	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		30	ns

LEAD CODE:

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

R2

2.0W SURFACE MOUNT COMPLEMENTARY SILICON POWER TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT2955 and CZT3055 types are surface mount epoxy molded complementary silicon transistors manufactured by the epitaxial base process, designed for surface mounted power amplifier applications up to 6.0 amps.

MAXIMUM RATINGS: (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	100	V
Collector-Emitter Voltage	V _{CER}	70	V
Collector-Emitter Voltage	V_{CEO}	60	V
Emitter-Base Voltage	V_{EBO}	7.0	V
Collector Current	l _C	6.0	Α
Base Current	l _B	3.0	Α
Power Dissipation	P_{D}	2.0	W
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	$^{\mathrm{o}}C$
Thermal Resistance	$\Theta_{\sf JA}$	62.5	oC/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICEO	V _{CE} =30V		700	μ A
ICEV	$V_{CE}=100V$, $V_{EB(off)}=1.5V$		1.0	mA
I _{EBO}	V _{EB} =7.0V		5.0	mA
BV _{CER}	I_{C} =30mA, R_{BE} =100 Ω	70		V
BV _{CEO}	I _C =30mA	60		V
* VCE(SAT)	I _C =4.0A, I _B =400mA		1.1	V
* V _{BE(ON)}	V_{CE} =4.0V, I_{C} =4.0A		1.5	V
* h _{FE} `	V_{CE} =4.0V, I_{C} =4.0A	20	70	
* h _{FE}	V_{CE} =4.0V, I_{C} =6.0A	5.0		
f _T	V_{CE} =10V, I_{C} =500mA, f=1.0MHz	2.5		MHz

^{*} Pulsed, 2% D.C.

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT3019

NPN SILICON TRANSISTOR

Central Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT3019 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high current general purpose amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	120	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	V _{EBO}	7.0	V
Collector Current	IC	1.0	Α
Collector Current (Peak)	ICM	1.5	· A
Power Dissipation	PD	2.0	W
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =90V		10	nA
IEBO	V _{EB} =5.0V		10	nA
BV _{CBO}	I _C =100μA	120		V
BVCEO	I _C =30mA	80		V
BVEBO	I _E =100μΑ	7.0		V
VCE(SAT)	I _C =150mA, I _B =15mA		0.2	V
VCE(SAT)	I _C =500mA, I _B =50mA		0.5	V
VBE(SAT)	I _C =150mA, I _B =15mA		1.1	V
hFE	$V_{CE}=10V$, $I_{C}=0.1$ mA	50		
hFE	$V_{CE}=10V$, $I_{C}=10mA$	90		
hFE	$V_{CE}=10V$, $I_{C}=150mA$	100	300	
hFE	V _{CE} =10V, I _C =500mA	50		
hFE	V _{CE} =10V, I _C =1.0A	15		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
f⊤	$V_{CE}=10V$, $I_{C}=50mA$, $f=1.0MHz$	100		MHz
C _{ob}	V_{CB} =10V, I_{E} =0, f=1.0MHz		12	рF
C _{ib}	$V_{EB}=0.5V$, $I_{C}=0$, $f=1.0MHz$		60	рF
NF	V_{CE} =10V, I_{C} =100 μ A, R_{S} =1 $k\Omega$, f=	1.0kHz	4.0	dB

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT3904 NPN CZT3906 PNP

COMPLEMENTARY SILICON TRANSISTORS

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT3904, CZT3906 types are complementary silicon transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for small signal general purpose and switching applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	CZT3904	CZT3906	UNITS
Collector-Base Voltage	v_{CBO}	60	40	V
Collector-Emitter Voltage	VCEO	40	40	V
Emitter-Base Voltage	V_{EBO}	6.0	5.0	V
Collector Current	l _C	20	00	mA
Power Dissipation	P_{D}	2.	0	W
Operating and Storage				
Junction Temperature	T_{J}, T_{stg}	-65 to	+150	°C
Thermal Resistance	$\Theta_{\sf JA}$	62	.5	oC/W

		CZT	<u>3904</u>	CZT	<u> 3906</u>	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CEV	V_{CE} =30V, V_{EB} =3.0V		50		50	nA
BV _{CBO}	l _C =10μΑ	60		40		V
BV CEO	I _C =1.0mA	40		40		V
BV _{EBO}	I _E =10μΑ	6.0		5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.20		0.25	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.30		0.40	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA	0.65	0.85	0.65	0.85	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		0.95		0.95	V
h _{FE} `´´	$V_{CE}=1.0V$, $I_{C}=0.1mA$	40		60		
hFE	$V_{CE}=1.0V$, $I_{C}=1.0mA$	70		80		
hFE	$V_{CE}=1.0V$, $I_{C}=10mA$	100	300	100	300	
hFE	V_{CE} =1.0V, I_{C} =50mA	60		60		
h _{FE}	V_{CE} =1.0V, I_{C} =100mA	30		30		

		CZT	3904	CZT:	3906	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
fŢ	V _{CE} =20V, I _C =10mA, f=100MHz		300	250		MHz
C _{ob}	V_{CB} =5.0V, I_{E} =0, f =1.0MHz		4.0		4.5	pF
C _{ib}	$V_{BE}=0.5V$, $I_{C}=0$, $f=1.0MHz$		8.0		10	рF
h _{ie}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	1.0	10	2.0	12	kΩ
h _{re}	$V_{CE}=10V, I_{C}=1.0mA, f=1.0kHz$	0.5	8.0	0.1	10	x10 ⁻⁴
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	100	400	100	400	
h _{oe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	1.0	40	3.0	60	μmhos
NF	$V_{CE}=5.0V$, $I_{C}=100\mu A$, $R_{S}=1.0k\Omega$					
	f=10Hz to 15.7kHz		5.0		4.0	dB
^t d	V _{CC} =3.0V, V _{BE} =0.5, I _C =10mA, I _{B1} =1	l.0mA	35		35	ns
t _r	V_{CC} =3.0V, V_{BE} =0.5, I_{C} =10mA, I_{B1} =1	l.0mA	35		35	ns
t _s	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0mA		200		225	ns
t _f	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0mA	L	50		75	ns

LEAD CODE:

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

R2

CZT4033

PNP SILICON TRANSISTOR

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT4033 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high current general purpose amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	80	V
Collector-Emitter Voltage	VCEO	80	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	lc	1.0	Α
Collector Current (Peak)	ICM	1.5	Α
Power Dissipation	P_{D}	2.0	W
Operating and Storage			
Junction Temperature	Tյ,T _{stg}	-65 to +150	oC
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =60V		50	nA
I _{EBO}	V _{EB} =5.0V		10	nA
BV _{CBO}	I _C =10μA	80		V
BVCEO	I _C =10mA	80		V
BVEBO	I _E =10μA	5.0		V
V _{CE(SAT)}	I _C =150mA, I _B =15mA		0.15	V
VCE(SAT)	I _C =500mA, I _B =50mA		0.50	V
V _{BE} (SAT)	I _C =150mA, I _B =15mA		0.90	V
V _{BE} (SAT)	I _C =500mA, I _B =50mA		1.10	V
h _{FE} ` ′	V _{CE} =5.0V, I _C =0.1mA	75		
hFE	V _{CE} =5.0V, I _C =100mA	100	300	
hFE	V _{CE} =5.0V, I _C =500mA	70		
hFE	$V_{CE}=5.0V, I_{C}=1.0A$	25		
f _T	V_{CE} =10V, I_{C} =50mA, f=1.0MHz	100		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz		20	рF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz		110	pF

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT5338

NPN SILICON POWER TRANSISTOR

MAXIMUM RATINGS (T_A=25°C)

Central[™] Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT5338 type is an NPN silicon power transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high current amplification and switching capability.

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	100	V
Collector-Emitter Voltage	VCEO	100	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	lC	5.0	Α
Base Current	I _B	1.0	Α
Power Dissipation	P_{D}	2.0	W
Operating and Storage	_		
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	Θ.ΙΔ	62.5	°C/W

ELECTRICAL CHARACTERISTICS $(T_A=25^{\circ}C \text{ unless otherwise noted})$

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
l _{CBO}	V _{CB} =100V		10	μΑ
I _{EBO}	V _{BE} =6.0V		100	μΑ
ICEO	V _{CE} =90V		100	μΑ
BVCEO	I _C =50mA	100		V
VCE(SAT)	I _C =2.0A, I _B =200mA		0.7	V
VCE(SAT)	I _C =5.0A, I _B =500mA		1.2	V
V _{BE} (SAT)	I _C =2.0A, I _B =200mA		1.2	V
VBE(SAT)	I _C =5.0A, I _B =500mA		1.8	V
h _{FE} ` ′	V_{CE} =2.0V, I_{C} =500mA	30		
h _{FE}	$V_{CE}=2.0V, I_{C}=2.0A$	30	120	
h _{FE}	V_{CE} =2.0V, I_{C} =5.0A	20		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
fΤ	V_{CE} =10V, I_{C} =500mA, f=10MHz	30		MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		250	pF
C _{ib}	V_{BE} =2.0V, I_{C} =0, f=1.0MHz		1000	рF
^t d	V_{CC} =40V, V_{BE} =3.0V, I_{C} =2.0A, I_{B1} =200mA		100	ns
t _r	V_{CC} =40V, V_{BE} =3.0V, I_{C} =2.0A, I_{B1} =200mA		100	ns
t _S	V_{CC} =40V, I_{C} =2.0A, I_{B1} = I_{B2} =200mA		2.0	μs
t _f	V_{CC} =40V, I_{C} =2.0A, I_{B1} = I_{B2} =200mA		200	ns

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT5401

PNP SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT5401 type is an PNP silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	160	V
Collector-Emitter Voltage	VCEO	150	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	lC	600	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage	_		
Junction Temperature	T_J, T_stg	-65 to +150	οС
Thermal Resistance	Θ_{JA}	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =100V		50	nA
ICBO	V _{CB} =100V, T _A =150°C		50	mA
I _{EBO}	V _{EB} =3.0V		50	nA
BV _{CBO}	I _C =100μA	160		V
BV _{CEO}	I _C =1.0mA	150		V
BVEBO	I _E =10μΑ	5.0		V
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.2	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.5	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA		1.0	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		1.0	V
h _{FE} ` ′	$V_{CE}=5.0V$, $I_{C}=1.0mA$	50		
hFE	V_{CE} =5.0V, I_{C} =10mA	60	240	
h _{FE}	V_{CE} =5.0V, I_{C} =50mA	50		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
f _T	$V_{CE}=10V$, $I_{C}=10mA$, $f=100MHz$	100	300	MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		6.0	pF
h _{fe}	$V_{CE}=10V$, $I_{C}=1.0$ mA, $f=1.0$ kHz	40	200	
NF	V_{CE} =5.0V, I_{C} =200μA, R_{S} =10 Ω			
	f=10Hz to 15.7kHz		8.0	dB

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZT5551

NPN SILICON TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZT5551 type is an NPN silicon transistor manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for high voltage amplifier applications.

MAXIMUM RATINGS (T_A=25°C)

SYMBOL		UNITS
V_{CBO}	180	V
VCEO	160	V
V_{EBO}	6.0	V
^I C	600	mA
P_{D}	2.0	W
_		
T_{J}, T_{sta}	-65 to +150	οС
$\Theta_{\sf JA}$	62.5	°C/W
	VCEO VEBO I _C P _D	VCBO 180 VCEO 160 VEBO 6.0 IC 600 PD 2.0 T_J,T _{stg} -65 to +150

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =120V		50	nA
I _{CBO}	V _{CB} =120V, T _A =100°C		50	μΑ
I _{EBO}	V _{EB} =4.0V		50	nA
BV _{CBO}	I _C =100μA	180		V
BV _{CEO}	I _C =1.0mA	160		V
BV _{EBO}	I _E =10μΑ	6.0		٧
V _{CE(SAT)}	I _C =10mA, I _B =1.0mA		0.15	V
VCE(SAT)	I _C =50mA, I _B =5.0mA		0.20	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA		1.00	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA		1.00	V
hFE	V_{CE} =5.0V, I_{C} =1.0mA	80		
hFE	V_{CE} =5.0V, I_{C} =10mA	80	250	
h _{FE}	V_{CE} =5.0V, I_{C} =50mA	30		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
f _T	V_{CE} =10V, I_{C} =10mA, f=100MHz	100	300	MHz
C _{ob}	$V_{CB}=10V$, $I_{E}=0$, $f=1.0MHz$		6.0	рF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=1.0MHz		20	pF
h _{fe}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	50	200	
NF	V_{CE} =5.0V, I_{C} =200 μ A, R_{S} =10 Ω			
	f=10Hz to 15.7kHz		8.0	dB

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 3) COLLECTOR

CZTA14 NPN CZTA64 PNP

SILICON COMPLEMENTARY DARLINGTON TRANSISTORS

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZTA14, CZTA64 types are complementary silicon Darlington transistors manufactured by the epitaxial planar process, epoxy molded in a surface mount package, designed for applications requiring extremely high gain.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	30	V
Collector-Emitter Voltage	VCEO	30	V
Emitter-Base Voltage	V_{EBO}	10	V
Collector Current	lC	1,000	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage			
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
ICBO	V _{CB} =30V		100	nA
^I CEO	V _{CE} =10V		100	nA
BV _{CES}	I _C =100μA	30		V
V _{CE(SAT)}	I _C =100mA, I _B =0.1mA		1.5	V
V _{BE(ON)}	$V_{CE}=5.0V, I_{C}=100mA$		2.0	٧
h _{FE} `´´	V _{CE} =5.0V, I _C =10mA	10,000		
hFE	V_{CE} =5.0V, I_{C} =100mA	20,000		
f_T	V_{CE} =5.0V, I_{C} =10mA, f=100MHz	125		MHz

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZTA42 NPN CZTA92 PNP

COMPLEMENTARY SILICON HIGH VOLTAGE TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZTA42, CZTA92 types are complementary surface mount epoxy molded silicon planar epitaxial transistors designed for high voltage applications.

MAXIMUM RATINGS (T_A=25°C)

	SYMBOL	CZTA42	CZTA92	UNITS
Collector-Base Voltage	V_{CBO}	300	300	V
Collector-Emitter Voltage	VCEO	300	300	V
Emitter-Base Voltage	V _{EBO}	6.0	5.0	V
Collector Current	IC	50	00	mA
Power Dissipation	P_{D}	2	.0	W
Operating and Storage				
Junction Temperature	T_J, T_stg	-65 to	o +150	οС
Thermal Resistance	$\Theta_{\sf JA}$	62	2.5	oC/M

		CZT	A42	CZT	A92	
SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
^I CBO	V _{CB} =200V		100		250	nA
I _{EBO}	V _{BE} =6.0V		100		-	nA
^I EBO	V _{BE} =3.0V		-		100	nA
BV _{CBO}	I _C =100μA	300		300		V
BVCEO	I _C =1.0mA	300		300		V
BV _{EBO}	I _E =100μA	6.0		5.0		V
V _{CE(SAT)}	I _C =20mA, I _B =2.0mA		0.5		0.5	V
V _{BE} (SAT)	I _C =20mA, I _B =2.0mA		0.9		0.9	V
h _{FE} ` ´	V_{CE} =10V, I_{C} =1.0mA	25		25		
hFE	$V_{CE}=10V$, $I_{C}=10mA$	40		40		
h _{FE}	V _{CE} =10V, I _C =30mA	40		25		
fΤ	V_{CE} =20V, I_{C} =10mA, f=100MHz	50		50		MHz
C_{ob}	V_{CB} =20V, I_E =0, f=1.0MHz		3.0		6.0	pF

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

CZTA44

NPN SILICON EXTREMELY HIGH VOLTAGE TRANSISTOR

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CZTA44 type is a surface mount epoxy molded silicon planar epitaxial transistors designed for extremely high voltage applications.

MAXIMUM RATINGS (T_A=25°C)

(A = -,	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	450	٧
Collector-Emitter Voltage	VCEO	400	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	IC	300	mA
Power Dissipation	P_{D}	2.0	W
Operating and Storage			
Junction Temperature	T _J ,T _{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	62.5	°C/W

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
^I СВО	V _{CB} =400V		100	nA
CES	V _{CE} =400V		500	nA
I _{EBO}	V _{BE} =4.0V		100	nA
BV _{CBO}	I _C =100μA	450		V
BVCES	I _C =100μA	450		V
BVCEO	I _C =1.0mA	400		V
BVEBO	l _E =10μΑ	6.0		V
V _{CE(SAT)}	I _C =1.0mA, I _B =0.1mA		0.40	V
VCE(SAT)	I _C =10mA, I _B =1.0mA		0.50	V
VCE(SAT)	$I_C=50$ mA, $I_B=5.0$ mA		0.75	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA		0.75	V
h _{FE}	$V_{CE}=10V$, $I_{C}=1.0mA$	40		
hFE	V _{CE} =10V, I _C =10mA	50	200	
hFE	VCE=10V, I _C =50mA	45		

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h _{FE}	V _{CE} =10V, I _C =100mA	20		
fT	$V_{CE}=10V$, $I_{C}=10$ mA, $f=10$ MHz	20		MHz
Ċ _{ob}	$V_{CB} = 20V, I_{E} = 0, f = 1.0MHz$		7.0	pF
C _{ib}	$V_{EB} = 0.5V$, $I_{C} = 0$, $f = 1.0MHz$		130	pF

- 1) BASE
- 2) COLLECTOR
- 3) EMITTER
- 4) COLLECTOR

Mounting Pad Geometries

Mounting Pad Geometries

Mounting Pad Geometries

Mechanical Drawings

Mechanical Drawings

Dimensions in inches (mm).

PIN 2

ANODE

CATHODE

CATHODE

SOURCE*

GATE

EMITTER

CATHODE

CATHODE

CATHODE

EMITTER

MT2

COLLECTOR

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

SOT-143	DIODE (DUAL,	ISOLATED)
SOT-223	TRANSISTOR	
SOT-223	SCR	

DPAK TRANSISTOR DPAK RECTIFIER (SINGLE) DPAK RECTIFIER (DUAL, COMMON CATHODE) PIN 1

ANODE
ANODE
CATHODE
ANODE
DRAIN*
ANODE
CATHODE
BASE
ANODE
CATHODE
BASE
ANODE
EMITTER
GATE
ANODE
BASE

PIN 1

ANODE #1

BASE

CATHODE

PIN 1

BASE

ANODE #1

NO CONNECTION

ANODE

PIN 2 ANODE #2 COLLECTOR ANODE

PIN 2

COLLECTOR CATHODE CATHODE #1, #2 PIN 3

CATHODE CATHODE ANODE CATHODE, ANODE GATE CATHODE ANODE COLLECTOR CATHODE ANODE ANODE BASE MT1 **ANODE** COLLECTOR CATHODE

PIN 3 PIN 4

CATHODE #2 CATHODE #1

EMITTER COLLECTOR

GATE ANODE

CATHODE

CATHODE #1, #2

PIN 3 TAB
EMITTER COLLECTOR

ANODE

ANODE #2

* SOURCE AND DRAIN ARE INTERCHANGEABLE ON JFETs.

Engineering Specifications

	Page
Tape and Reel Dimensions and Orientation	342
Reel Labeling Information	345
Standard Packaging Base	345
Device Marking Information	345
Reel Packing Details	346
Package Labeling	347
Bar Code Identification Label	348

Tape Dimensions and Orientation (Dimensions in mm.)

8 mm

SOT-23 7 . 7 8 . 3 3 . 9 4 . 1 1 . 5

Direction of Unreeling

Tape Dimensions and Orientation (Dimensions in mm.)

(Continued)

12 mm

Tape Dimensions and Orientation (Dimensions in mm.)

(Continued)

16 mm

Direction of Unreeling

Reel Labeling Information

Each reel is labeled with the following information:

Central Part Number Customer Part Number Purchase Order Number Quantity Lot Number Ship Date Marking Code *

* Applies to SOT-23, SOT-143, SOT-323, SOD-323, HD DIP, SMA, SMB & SMC devices only.

Device Marking Information

	-
Case	Marking Details
DPAK	Full Part Number
HD DIP	4 Digit Code
SMA	4-5 Digit Code
SMB	3-4 Digit Code
SMC	3-4 Digit Code
SMDIP	Full Part Number
SOD-80	Cathode Band
SOD-32	3 2 Digit Code
SOT-23	2-3 Digit Code
SOT-89	Full Part Number
SOT-14	3 2-3 Digit Code
SOT-22	3 Full Part Number
SOT-32	3 2-3 Digit Code

Taped & Reeled Packaging Base

PACKAGE	TAPE WIDTH (mm)	REEL SIZE (INCH)	QUANTITY PER REEL
DPAK*	16	13	2,500
HD DIP*	12	13	3,000
SMA*	12	13	5,000
SMB*	12	13	3,000
SMC*	16	13	3,000
SMDIP*	16	13	1,000
SOD-80	8	7 13	2,500 10,000
SOD-323	8	7 13	3,000 10,000
SOT-23	8	7 13	3,000 10,000
SOT-89	12	7 13	1,000 4,000
SOT-143	8	7 13	3,000 10,000
SOT-223	12	7 13	1,000 4,000
SOT-323	8	7 13	3,000 10,000

^{*} Available on 13" reels only.

Bulk Packed Packaging Base

PACKAGE	QUANTITY	
DPAK	100 / Vial	
HD DIP	100 / Sleeve	
SMA	1K / Vial	
SMB	500 / Vial	
SMC	100 / Vial	
SMDIP	50 / Sleeve	
SOD-80	1K / Vial	
SOD-323	1K / Vial	
SOT-23	1K / Vial	
SOT-89	1K / Vial	
SOT-143	1K / Vial	
SOT-223	250 / Vial	
SOT-323	1K / Vial	

Reel Packing Details

DEVICE QUANTITY PER BOX				BOX DIMENSIONS		SHIPPING WEIGHT	
	REELS PER BOX	INCH	СМ	LB	KG		
DPAK TR13	13K	13 Reels	14 X14 X 8	36 X 36 X 20	22	10	
HD DIP TR13	39K	13 Reels	14 X 14 X 8	36 X 36 X 20	31	14	
SMA TR13	55K	11 Reels	14 X 14 X 8	36 X 36 X 20	22	10	
SMB TR13	33K	11 Reels	14 X 14 X 8	36 X 36 X 20	22	10	
SMC TR13	39K	13 Reels	14 X 14 X 8	36 X 36 X 20	22	10	
SMDIP TR13	13K	13 Reels	14 X 14 X 8	36 X 36 X 20	22	10	
SOD-80 TR	25K	10 Reels	8 X 8 X 4	20 X 20 X 10	4	2	
	47.5K	19 Reels	8 X 8 X 8	20 X 20 X 20	7	4	
SOD-323 TR	30K	10 Reels	8 X 8 X 4	20 X 20 X 10	3	2	
	57K	19 Reels	8 X 8 X 8	20 X 20 X 20	5	3	
SOT-23 TR	30K	10 Reels	8 X 8 X 4	20 X 20 X 10	3	2	
	57K	19 Reels	8 X 8 X 8	20 X 20 X 20	5	3	
SOT-89 TR	7K	7 Reels	8 X 8 X 4	20 X 20 X 10	3	2	
	14K	14 Reels	8 X 8 X 8	20 X 20 X 20	6	3	
SOT-143 TR	30K	10 Reels	8 X 8 X 4	20 X 20 X 10	3	2	
	57K	19 Reels	8 X 8 X 8	20 X 20 X 20	5	3	
SOT-223 TR	7K	7 Reels	8 X 8 X 4	20 X 20 X 10	4	2	
	14K	14 Reels	8 X 8 X 8	20 X 20 X 20	7	4	
SOT-323 TR	30K	10 Reels	8 X 8 X 4	20 X 20 X 10	3	2	
	57K	19 Reels	8 X 8 X 8	20 X 20 X 20	5	3	

ORDERING INFO:

- For devices taped and reeled on 7" reels, add TR suffix to part number.
- For devices taped and reeled on 13" reels, add TR13 suffix to part number
- For devices bulk packed, add BK suffix to part number.
- All SMDs are available bulk packed, for prototype and manual placement applications.
- Bulk SMDs are shipped in black plastic, antistatic vials with hinged lids.

Labeling Specification

- **1.0. Purpose:** This Specification defines the layout and identification of the Inner Carton/Reel Label used by Central Semiconductor Corp.
 - 1.1. This label must be affixed to each inner carton/reel in the shipment.
 - 1.2. Label Information and Layout:

1) CENTRAL P/N:	Line 1) Central Part Number Number (Up to 25 Characters)
2) CUSTOMER P/N:	Line 2) Customer Part Number (Up to 25 Characters)
3) PURCHASE O/N:	Line 3) Customer's Purchase Order Number (Up to 25 Characters)
4) QUANTITY:	Line 4) Quantity of Devices. (Up to 15 Characters)
5) LOT NUMBER:	Line 5) Lot Number of the Devices. (Up to 25 Characters)
6) DATE CODE:	Line 6) Date Code of the Devices. (Up to 5 Characters)
7) SHIP DATE:	Line 7) Ship Date - The day cartons are shipped from Central. (Month-Day-Year)
8) MARKING CODE:	Line 8) Marking of the Device. (Applies to HD DIP, SOT-23, SOT-143, SOT-323, SOD-323, SMA, SMB and SMC Devices only.)

Bar Code Identification Label

Note: Bar Code Label Available Upon Request.

6)P/N: XXXXXXXXXX

- **1.0. Purpose:** This Specification defines the layout and identification of the Bar Code Label used by Central Semiconductor Corp.
 - 1.1. This label must be affixed to each carton in the shipment and to the reverse side of the packing slip.
 - 1.2. Bar codes are type 3-of-9 (Code 39) Symbology.
 - 1.3. Label Information and Layout:

Line 1) Customer Purchase Order Number (Up to 30 Characters)

Line 2) Customer Part Number (Up to 30 Characters)

Line 3) Total Quantity in Shipment. (Up to 15 Characters)

Line 4) Total Number of Cartons in Shipment. (Up to 2 Characters)

Line 5) Ship Date - The day cartons are shipped from Central.

(Month-Day-Year)

Line 6) Central Semiconductor Corp., Hauppauge, NY USA Central Part Number (Up to 30 Characters)

Label Size - 4" x 5"

MANUFACTURERS OF WORLD CLASS DISCRETE SEMICONDUCTORS

145 Adams Avenue Hauppauge, NY 11788 USA Tel (516) 435-1110 Fax (516) 435-1824