

Matrix Diagonalization

Monjid Younes

French-AZerbaijani University (UFAZ)

1) Definition

Definition		

1) Definition

Definition

ullet Let $A,B\in M_n(\mathbb{K})$, we say that A and B are similar

1) Definition

Definition

• Let $A, B \in M_n(\mathbb{K})$, we say that A and B are **similar** if there exists an invertible matrix $P \in M_n(\mathbb{K})$ such that

$$B = P^{-1}AP$$

1) Definition

Definition

• Let $A, B \in M_n(\mathbb{K})$, we say that A and B are **similar** if there exists an invertible matrix $P \in M_n(\mathbb{K})$ such that

$$B = P^{-1}AP$$

ullet We say that the matrix A is diagonalizable

1) Definition

Definition

• Let $A, B \in M_n(\mathbb{K})$, we say that A and B are **similar** if there exists an invertible matrix $P \in M_n(\mathbb{K})$ such that

$$B = P^{-1}AP$$

• We say that the matrix A is **diagonalizable** when there exists a diagonal matrix $D \in M_n(\mathbb{K})$ such that A and D are similar.

1) Definition

Definition

• Let $A, B \in M_n(\mathbb{K})$, we say that A and B are **similar** if there exists an invertible matrix $P \in M_n(\mathbb{K})$ such that

$$B = P^{-1}AP$$

• We say that the matrix A is **diagonalizable** when there exists a diagonal matrix $D \in M_n(\mathbb{K})$ such that A and D are similar.

Example:

1) Definition

Definition

• Let $A, B \in M_n(\mathbb{K})$, we say that A and B are **similar** if there exists an invertible matrix $P \in M_n(\mathbb{K})$ such that

$$B = P^{-1}AP$$

• We say that the matrix A is **diagonalizable** when there exists a diagonal matrix $D \in M_n(\mathbb{K})$ such that A and D are similar.

Example :

1) Show that the matrices $A=\begin{pmatrix}0&1\\1&1\end{pmatrix}$ and $D=\begin{pmatrix}\frac{1+\sqrt{5}}{2}&0\\0&\frac{1-\sqrt{5}}{2}\end{pmatrix}$ are similar using the matrix $P=\begin{pmatrix}\frac{-1+\sqrt{5}}{2}&\frac{-1-\sqrt{5}}{2}\\1&1\end{pmatrix}$.

1) Definition

Definition

• Let $A, B \in M_n(\mathbb{K})$, we say that A and B are **similar** if there exists an invertible matrix $P \in M_n(\mathbb{K})$ such that

$$B = P^{-1}AP$$

• We say that the matrix A is **diagonalizable** when there exists a diagonal matrix $D \in M_n(\mathbb{K})$ such that A and D are similar.

Example:

- 1) Show that the matrices $A=\begin{pmatrix}0&1\\1&1\end{pmatrix}$ and $D=\begin{pmatrix}\frac{1+\sqrt{5}}{2}&0\\0&\frac{1-\sqrt{5}}{2}\end{pmatrix}$ are similar using the matrix $P=\begin{pmatrix}\frac{-1+\sqrt{5}}{2}&\frac{-1-\sqrt{5}}{2}\\1&1\end{pmatrix}$.
- 2) Deduce that A is diagonalizable.

2) Techniques to determine the similarity of matrices

- 2) Techniques to determine the similarity of matrices
- a) Using the determinant:

Proposition

- 2) Techniques to determine the similarity of matrices
- a) Using the determinant:

Proposition

If A and B are similar, then

- 2) Techniques to determine the similarity of matrices
- a) Using the determinant:

Proposition

If A and B are similar, then

$$det(A) = det(B)$$

- 2) Techniques to determine the similarity of matrices
- a) Using the determinant:

Proposition

If A and B are similar, then

$$det(A) = det(B)$$

Example:

- 2) Techniques to determine the similarity of matrices
- a) Using the determinant:

Proposition

If A and B are similar, then

$$det(A) = det(B)$$

Example:

Show that the matrices
$$A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are not similar.

b) Using the trace:

b) Using the trace:

Proposition:

b) Using the trace:

Proposition:

Let $A, B \in M_n(\mathbb{R})$, then we have

b) Using the trace:

Proposition:

Let $A, B \in M_n(\mathbb{R})$, then we have

b) Using the trace:

Proposition:

Let $A, B \in M_n(\mathbb{R})$, then we have

- $\mathbf{Tr}(A \times B) = \mathsf{Tr}(B \times A).$
- ② If A and B are similar, then Tr(A) = Tr(B)

b) Using the trace :

Proposition :

Let $A, B \in M_n(\mathbb{R})$, then we have

- $Tr(A \times B) = Tr(B \times A).$
- If A and B are similar, then Tr(A) = Tr(B)

Example:

b) Using the trace:

Proposition:

Let $A, B \in M_n(\mathbb{R})$, then we have

- $Tr(A \times B) = Tr(B \times A).$
- \bullet If A and B are similar, then Tr(A) = Tr(B)

Example:

Show that the matrices $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ and $B=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ are not diagonalizable.

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \mathsf{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \mathsf{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \mathsf{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \mathsf{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

then:

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \mathsf{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \mathsf{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

then:

A and B are similar

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \mathsf{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \mathsf{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

then:

A and B are similar and we have

$$B = T^{-1}AT$$

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

then:

A and B are similar and we have

$$B = T^{-1}AT$$

where T is the transition matrix $T_{\mathcal{B},\mathcal{B}'}$.

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

then:

• A and B are similar and we have

$$B = T^{-1}AT$$

where T is the transition matrix $T_{\mathcal{B},\mathcal{B}'}$.

4 If C is a matrix of the same size as A such A and C are similar, then

Proposition

Let E be a Vector Space of finite dimension, $f:E\to E$ a linear application and \mathcal{B},\mathcal{B}' two bases of E. If we denote

$$A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$$
 and $B = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$,

then:

① A and B are similar and we have

$$B = T^{-1}AT$$

where T is the transition matrix $T_{\mathcal{B},\mathcal{B}'}$.

ullet If C is a matrix of the same size as A such A and C are similar, then there exists a basis \mathcal{B}'' such that

$$C = \mathsf{Mat}_{\mathcal{B}'',\mathcal{B}''}(f)$$

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f: \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A,

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f: \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall v \in \mathbb{K}^n, f(v) = A \times v$. Then

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f: \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall \nu \in \mathbb{K}^n, f(\nu) = A \times \nu$. Then

A is diagonalizable \Leftrightarrow there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbb{K}^n such that $\forall i\in\{1,\ldots,n\}, \exists \lambda_i\in\mathbb{K}, f(e_i)=\lambda_i e_i.$

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f : \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall v \in \mathbb{K}^n, f(v) = A \times v$. Then

A is diagonalizable \Leftrightarrow there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbb{K}^n such that $\forall i\in\{1,\ldots,n\}, \exists \lambda_i\in\mathbb{K}, f(e_i)=\lambda_i e_i.$

In which case,

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f : \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall v \in \mathbb{K}^n, f(v) = A \times v$. Then

A is diagonalizable \Leftrightarrow there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbb{K}^n such that $\forall i\in\{1,\ldots,n\}, \exists \lambda_i\in\mathbb{K}, f(e_i)=\lambda_i e_i.$

In which case, if we let P the matrix whose columns are the vectors e_i , then we have

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f : \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall v \in \mathbb{K}^n, f(v) = A \times v$. Then

A is diagonalizable \Leftrightarrow there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbb{K}^n such that $\forall i\in\{1,\ldots,n\}, \exists \lambda_i\in\mathbb{K}, f(e_i)=\lambda_i e_i.$

In which case, if we let P the matrix whose columns are the vectors e_i , then we have

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f : \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall v \in \mathbb{K}^n, f(v) = A \times v$. Then

A is diagonalizable \Leftrightarrow there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbb{K}^n such that $\forall i\in\{1,\ldots,n\}, \exists \lambda_i\in\mathbb{K}, f(e_i)=\lambda_i e_i.$

In which case, if we let P the matrix whose columns are the vectors e_i , then we have

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

<u>Consequence</u>

Let $f \in \mathcal{L}(E)$ where E is a Vector Space of finite dimension.

Proposition

Let $A \in M_n(\mathbb{K})$ and let $f : \mathbb{K}^n \to \mathbb{K}^n$ be the linear application defined by A, i.e. $\forall v \in \mathbb{K}^n, f(v) = A \times v$. Then

A is diagonalizable \Leftrightarrow there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbb{K}^n such that $\forall i\in\{1,\ldots,n\}, \exists \lambda_i\in\mathbb{K}, f(e_i)=\lambda_i e_i.$

In which case, if we let P the matrix whose columns are the vectors e_i , then we have

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Consequence

Let $f \in \mathcal{L}(E)$ where E is a Vector Space of finite dimension. We say that f is diagonalizable if there exists a basis \mathcal{B} of E composed of eigen-vectors of f such that $\mathrm{Mat}_{\mathcal{B}}(f)$ is diagonal.

Definition

• Let $f: E \to E$ be a linear application.

Definition

• Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.

- Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.
- The scalar λ such that $f(v) = \lambda \cdot v$ is called an eigen-value of f.

- Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.
- The scalar λ such that $f(v) = \lambda \cdot v$ is called an eigen-value of f.
- We say that the vector v is associated to the eigen-value value λ .

- Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.
- The scalar λ such that $f(v) = \lambda \cdot v$ is called an eigen-value of f.
- We say that the vector v is associated to the eigen-value value λ .
- For a fixed $\lambda \in \mathbb{K}$, the set of vectors $v \in E$ such that $f(v) = \lambda \cdot v$

- Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.
- The scalar λ such that $f(v) = \lambda \cdot v$ is called an eigen-value of f.
- ullet We say that the vector v is associated to the eigen-value value λ .
- For a fixed $\lambda \in \mathbb{K}$, the set of vectors $v \in E$ such that $f(v) = \lambda \cdot v$ is called the associated **eigen-space** to λ

- Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.
- The scalar λ such that $f(v) = \lambda \cdot v$ is called an eigen-value of f.
- ullet We say that the vector v is associated to the eigen-value value λ .
- For a fixed $\lambda \in \mathbb{K}$, the set of vectors $v \in E$ such that $f(v) = \lambda \cdot v$ is called the associated eigen-space to λ and is denoted E_{λ} .

Definition

- Let $f: E \to E$ be a linear application. We call an **eigen-vector** of f every vector $v \neq 0$ such that $f(v) = \lambda \cdot v$ with $\lambda \in \mathbb{K}$.
- The scalar λ such that $f(v) = \lambda \cdot v$ is called an eigen-value of f.
- ullet We say that the vector v is associated to the eigen-value value λ .
- For a fixed $\lambda \in \mathbb{K}$, the set of vectors $v \in E$ such that $f(v) = \lambda \cdot v$ is called the associated **eigen-space** to λ and is denoted E_{λ} .

Example:

Let the matrix
$$A=egin{pmatrix}0&1\\1&1\end{pmatrix}$$
 . Find the matrix P such that
$$P^{-1}AP=egin{pmatrix}\lambda_1&0\\0&\lambda_2\end{pmatrix}$$

Proposition

• Let $A \in M_n(\mathbb{K})$ and let f be the application such that f(v) = Av.

Proposition

• Let $A \in M_n(\mathbb{K})$ and let f be the application such that f(v) = Av. Then

 λ is an eigen-value of $f\Leftrightarrow \det(A-\lambda I_n)=0$

Proposition

ullet Let $A\in M_n(\mathbb{K})$ and let f be the application such that f(v)=Av. Then

$$\lambda$$
 is an eigen-value of $f\Leftrightarrow \det(A-\lambda I_n)=0$

ullet The expression $\det(A-\lambda I_n)$ is a polynomial of the variable λ

Proposition

• Let $A \in M_n(\mathbb{K})$ and let f be the application such that f(v) = Av. Then

$$\lambda$$
 is an eigen-value of $f\Leftrightarrow \det(A-\lambda I_n)=0$

• The expression $\det(A - \lambda I_n)$ is a polynomial of the variable λ called the **characteristic polynomial** of A (or of f) and denoted χ_A (or χ_f).

Proposition

ullet Let $A\in M_n(\mathbb{K})$ and let f be the application such that f(v)=Av. Then

$$\lambda$$
 is an eigen-value of $f\Leftrightarrow \det(A-\lambda I_n)=0$

• The expression $\det(A - \lambda I_n)$ is a polynomial of the variable λ called the **characteristic polynomial** of A (or of f) and denoted χ_A (or χ_f).

Example:

1) Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the characteristic polynomial of A.

Proposition

• Let $A \in M_n(\mathbb{K})$ and let f be the application such that f(v) = Av. Then

$$\lambda$$
 is an eigen-value of $f\Leftrightarrow \det(A-\lambda I_n)=0$

• The expression $\det(A - \lambda I_n)$ is a polynomial of the variable λ called the **characteristic polynomial** of A (or of f) and denoted χ_A (or χ_f).

Example:

- 1) Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the characteristic polynomial of A.
- 2) Let the matrix $A = \begin{pmatrix} 6 & 2 & 1 \\ -6 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$.
 - a) Find the characteristic polynomial of A,
 - b) Find the eigen-values and the eigen-vectors of A,
 - c) Diagonalize A.

Proposition

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$.

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$. If A and B are similar, then $\chi_A = \chi_B$.

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$. If A and B are similar, then $\chi_A = \chi_B$.

Proposition

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$. If A and B are similar, then $\chi_A = \chi_B$.

Propositi<u>on</u>

Let $f: E \to E$ be a linear application, and let $\{e_1, \ldots, e_n\}$ be a set of eigen-vectors of f.

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$. If A and B are similar, then $\chi_A = \chi_B$.

Propositi<u>on</u>

Let $f: E \to E$ be a linear application, and let $\{e_1, \dots, e_n\}$ be a set of eigen-vectors of f.

We suppose furthermore that $\forall i \in \{1 \dots n\}$, the vector e_i is associated to the eigen-value λ_i .

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$. If A and B are similar, then $\chi_A = \chi_B$.

Proposition

Let $f: E \to E$ be a linear application, and let $\{e_1, \dots, e_n\}$ be a set of eigen-vectors of f.

We suppose furthermore that $\forall i \in \{1 \dots n\}$, the vector e_i is associated to the eigen-value λ_i .

 \Rightarrow If the scalars $\lambda_1, \ldots, \lambda_n$ are distinct,

Proposition

Let A and B two matrices of $M_n(\mathbb{K})$. If A and B are similar, then $\chi_A = \chi_B$.

Proposition

Let $f: E \to E$ be a linear application, and let $\{e_1, \dots, e_n\}$ be a set of eigen-vectors of f.

We suppose furthermore that $\forall i \in \{1 \dots n\}$, the vector e_i is associated to the eigen-value λ_i .

 \Rightarrow If the scalars $\lambda_1,\ldots,\lambda_n$ are distinct, then the set $\{e_1,\ldots,e_n\}$ is linearly independent

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \dots, e_{in_i}\}$ be a basis of E_{λ_i} .

Propositi<u>on</u>

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \ldots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \dots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

A is diagonalizable if and only if $\sum_{i=1}^m n_i = n$

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \dots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

A is diagonalizable if and only if
$$\sum_{i=1}^m n_i = n$$

In which case, the set $\{e_{ij}\}_{i=1...m,j=1...n_i}$ is a basis of \mathbb{K}^n composed of eigen-vectors of f.

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \ldots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

A is diagonalizable if and only if
$$\sum_{i=1}^m n_i = n$$

In which case, the set $\{e_{ij}\}_{i=1...m,j=1...n_i}$ is a basis of \mathbb{K}^n composed of eigen-vectors of f.

Consequence

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \dots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

A is diagonalizable if and only if
$$\sum_{i=1}^m n_i = n$$

In which case, the set $\{e_{ij}\}_{i=1...m,j=1...n_i}$ is a basis of \mathbb{K}^n composed of eigen-vectors of f.

Consequence

Let $A \in M_n(\mathbb{K})$.

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \ldots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

A is diagonalizable if and only if
$$\sum_{i=1}^m n_i = n$$

In which case, the set $\{e_{ij}\}_{i=1...m,j=1...n_i}$ is a basis of \mathbb{K}^n composed of eigen-vectors of f.

Consequence

Let $A \in M_n(\mathbb{K})$. If the characteristic polynomial of A has n distinct roots of \mathbb{K} ,

Proposition

Let $A \in M_n(\mathbb{K})$ and let f be the associated linear application to A. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the distinct roots of the characteristic polynomial of A.

For each λ_i , let n_i be the dimension of the associated eigen-space $E_{\lambda_i} = Ker(f - \lambda_i Id_E)$, and let $\{e_{i1}, e_{i2}, \dots, e_{in_i}\}$ be a basis of E_{λ_i} .

Then

A is diagonalizable if and only if
$$\sum_{i=1}^m n_i = n$$

In which case, the set $\{e_{ij}\}_{i=1...m,j=1...n_i}$ is a basis of \mathbb{K}^n composed of eigen-vectors of f.

Consequence

Let $A \in M_n(\mathbb{K})$. If the characteristic polynomial of A has n distinct roots of \mathbb{K} , then A is diagonalizable.

Exercise:

Show that the following matrix is diagonalizable :

$$A = \begin{pmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{pmatrix}$$

Theorem

Let $A \in M_n(\mathbb{K})$. Then A is diagonalizable if and only if

Theorem

Let $A \in M_n(\mathbb{K})$. Then A is diagonalizable if and only if

lacktriangle its characteristic polynomial χ_A is written as

Theorem

Let $A \in M_n(\mathbb{K})$. Then A is diagonalizable if and only if

lacktriangle its characteristic polynomial χ_A is written as

$$\chi_{A}(\lambda) = (-1)^{n} (\lambda - \lambda_{1})^{\alpha_{1}} (\lambda - \lambda_{2})^{\alpha_{2}} \dots (\lambda - \lambda_{p})^{\alpha_{p}}$$

with $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ and $\alpha_1 + \ldots + \alpha_p = n$.

Theorem

Let $A \in M_n(\mathbb{K})$. Then A is diagonalizable if and only if

lacktriangle its characteristic polynomial χ_A is written as

$$\chi_{A}(\lambda) = (-1)^{n} (\lambda - \lambda_{1})^{\alpha_{1}} (\lambda - \lambda_{2})^{\alpha_{2}} \dots (\lambda - \lambda_{p})^{\alpha_{p}}$$

with $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ and $\alpha_1 + \ldots + \alpha_p = n$.

 $\Rightarrow \alpha_i$ is called the **multiplicity** of the eigen-value λ_i .

Theorem

Let $A \in M_n(\mathbb{K})$. Then A is diagonalizable if and only if

lacktriangle its characteristic polynomial χ_A is written as

$$\chi_{A}(\lambda) = (-1)^{n} (\lambda - \lambda_{1})^{\alpha_{1}} (\lambda - \lambda_{2})^{\alpha_{2}} \dots (\lambda - \lambda_{p})^{\alpha_{p}}$$

with $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ and $\alpha_1 + \ldots + \alpha_p = n$.

 $\Rightarrow \alpha_i$ is called the **multiplicity** of the eigen-value λ_i .

 $oldsymbol{\circ}$ the dimensions of the eigen-spaces E_{λ_i} are maximal,

Theorem

Let $A \in M_n(\mathbb{K})$. Then A is diagonalizable if and only if

lacktriangle its characteristic polynomial χ_A is written as

$$\chi_{A}(\lambda) = (-1)^{n} (\lambda - \lambda_{1})^{\alpha_{1}} (\lambda - \lambda_{2})^{\alpha_{2}} \dots (\lambda - \lambda_{p})^{\alpha_{p}}$$

with $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ and $\alpha_1 + \ldots + \alpha_p = n$.

 $\Rightarrow \alpha_i$ is called the **multiplicity** of the eigen-value λ_i .

 \odot the dimensions of the eigen-spaces E_{λ_i} are maximal, i.e.

$$\dim(E_{\lambda_i}) = \alpha_i$$

Exercise:

Show that the following matrix is diagonalizable :

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

END

References:

-Pierre Cuillot, Cours Concis, IRMA.