VIDEO SENSORS

Catalin Golban, Anca Foloba

CONTENTS

CONTENTS

Slide structure

- Introduction to video sensors
- 2. What are images and how are they represented?
- 3. Calibration
- 4. Distortions
- 5. Projective geometry
- 6. 3D Reconstruction

INTRODUCTION TO VIDEO SENSORS

Bosch Engineering Center Cluj

Automated driving activities

SOFTWARE ENGINEERING

Radar Systems

Connectivity

Ultrasonic Systems

Video Systems

Central processing unit

Electric Power Steering

INTRODUCTION TO VIDEO SENSORS What are we doing in Cluj?

- main responsibilities on video area
 - Software development and pre-development for mono and stereo video systems
 - Computer vision, image processing and machine learning algorithms development for driver assistance and automated driving

INTRODUCTION TO VIDEO SENSORS

What algorithms are we developing in Cluj – some examples

visual odometry

3D free-space

Deep learning

Off-road

INTRODUCTION TO VIDEO SENSORS

Goal for today

3D reconstruction

INTRODUCTION TO VIDEO SENSORS Pinhole camera & geometric model

pinhole camera model – the light passes through the pinhole and projects an inverted image → it
has small amount of light

WHAT ARE IMAGES AND HOW ARE THEY REPRESENTED?

WHAT ARE IMAGES AND HOW ARE THEY REPRESENTED? What is an image?

image – depicts the visual perception which has the appearance of some object, person, landscape,
 etc.

an image can be two-dimensional such as a photograph, or three-dimensional such as a hologram
or statue

moving image – a video

Hologram – Source – https://www.technobuffalo.com/wp-content/uploads/2015/12/Hologram-Pyramid-1.jpeg

Photograph

- photograph image created using a camera
- the light is captured by the camera it falls on a light-sensitive surface and then it is encoded in a digital format

Photograph

Digital image

- · numeric representation of an image
- represented as a vector or as a matrix
- each numerical value corresponds to a single pixel from the image

Digital image

- most common model to represent a color image is RGB (Red, Green, Blue) → each pixel is represented by three values – amount of red, green and blue
- this will use more amount of memory than gray-scale images

CALIBRATION

CALIBRATION General concepts

- Computer vision getting 3D information from 2D image data → the parameters of the model
 used for transformation of the 3D points to 2D pixels must be known
- Calibration needed in order to obtain a good projection of the world in the image plane
 - **Intrinsic** parameters
 - Extrinsic parameters
- Calibration
 - Static calibration (happens before the actual usage of the video sensor)
 - Online (while driving the de-calibration is detected)
 - geometric model is not fixed, it changes in time => online calibration

CALIBRATION

Intrinsic parameters of the camera - definitions

- 0 camera center
- u_0 , v_0 principal point
- u, v image coordinates
- f focal length distance from O to principal point
- dpx, dpy size of pixels
- f_x , f_y focal length in pixels units

Intrinsic parameters of the camera - image plane

- the problem presented in the XOZ plane compute the u coordinate for the 3D point
- the problem presented in the YOZ plane compute the v coordinate for the 3D point

Intrinsic parameters of the camera - image plane

• the u and v can be obtained using similar triangles

$$\frac{(u-u_0)\cdot dpx}{f} = \frac{x}{z} \qquad \frac{(u-u_0)}{f_x} = \frac{x}{z}$$

$$\frac{(u-u_0)}{f_x} = \frac{x}{z}$$

$$\frac{(v-v_0)\cdot dpy}{f} = \frac{y}{z}$$

$$\frac{(v-v_0)}{f_v} = \frac{y}{z}$$

CALIBRATION

Intrinsic parameters of the camera – matrix form

Intrinsic parameters

- there are 5 intrinsic parameters, which describes the internal geometry and optical characteristics of the camera - focal length, image sensor format and principal point
- it can be modelled using the following matrix $K = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$, where:
 - $f_x = f \cdot dpx$ and $f_y = f \cdot dpy$ represent the focal length in term of pixels, with dpx and dpy being the scale factors and f the focal length
 - u_0 and v_0 represent the principal point
 - Matrix based projection formula (equivalent to the one from the previous slide): $\begin{bmatrix} u \\ v \\ -K \end{bmatrix} \sim K \cdot \begin{bmatrix} x \\ y \end{bmatrix}$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim K \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

CALIBRATION

Parameters of the camera

Extrinsic parameters

- represent position and orientation of the camera in the car (world) coordinate system
 - Convention use the center of the rear axis
- R matrix for each axis and T represents the translation vector applied on the system
- they can be written in the following form $[R|T] = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$
- there are three rotations applied in 3D space pitch, roll and yaw

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim K \cdot \left(R \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} + T \right) = K \cdot [R|T] \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

CALIBRATION Static calibration

- align the camera towards a static calibration target with a specific visual pattern
- camera detects the calibration target in the image sets the detected position in relation to the target's expected position computes the intrinsic and extrinsic parameters

CALIBRATION Online calibration

- starts from knowing the exact position of the camera with respect to the world system of coordinates
- detect a de-calibration of the camera as soon as possible since an initially determined calibration may change dynamically due to external influences (ex; heavy baggage)

General aspects

- distortion alteration of the original image
- In the presence of distortions the perspective projection model does not hold

Radial Distortion - Source - Dynamic Vision, T. Schon

Types of distortion

1. Radial distortion

- induced by the curve of the lens
- there are two types barrel distortion or pincushion distortion

Types of distortion

1. Radial distortion

Types of distortion

2. Tangential distortion

• induced by the misalignment of the center of camera lens and camera sensors

Types of distortion

2. Tangential distortion

General aspects

- a branch of geometry which deals with the properties of the objects that are invariant under projective transformations
- this can be applied after the elimination of the lens distortions (i.e. when the image formation model can be modeled based on a perspective projection)
- projective geometry is a very useful tool in computer vision

General aspects

- difference between Euclidean and projective geometry:
 - Euclidean geometry describe objects "as they are" (unchanged by rigid motions)
 - projective geometry describe objects "as they appear"

References and example result from projective geometry

- https://www.amazon.com/Multiple-View-Geometry-Computer-Vision/dp/0521540518
- http://robotics.stanford.edu/~birch/projective/
- http://robotics.stanford.edu/~birch/projective/projective.pdf
- https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
- http://mathworld.wolfram.com/ProjectiveGeometry.html

 H_{image} , H_1 , H_2 — homography matrices

$$P_1 = H_1 \cdot P$$

$$P_2 = H_2 \cdot P$$

$$H_{image} = H_2 \cdot H_1^{-1}$$

$$P_2 = H_{image} \cdot P_1$$

Transfer via plane

For details see the references

3D RECONSTRUCTION General concepts

- 3D reconstruction the process of creating the 3D shape and position of real objects from images
- in computer vision for automated driving
 - · using the stereo system two cameras from different positions, targeting the same scene
 - · using the mono system same camera, targeting the same scene at different points in time

Inverse problem

compute x and y coordinates

$$\frac{(u-u_0)}{f_x} = \frac{x}{z}$$

$$\frac{(u-u_0)\cdot z}{f_x} = x$$

$$\frac{(v - v_0)}{f_y} = \frac{y}{z}$$

$$\frac{(v - v_0) \cdot z}{f_v} = y$$

Disparity review

Disparity

used to determine the depth of an object using the stereo system – we assume that the two cameras
are already rectified

d -> disparity -> displacement of the projection between the left & right image

3D RECONSTRUCTION **Disparity**

Disparity is small in far range and big in close range

Disparity = displacement between left & right images

Disparity

3D reconstruction

Disparity is small in far range and big in close range

