Assignments

• Assignment 1: The Binary Search and Information Entropy (10-09-2018)

- 1. Average information content is given by the formula, $\langle I \rangle = -k \sum_i P_i \log_2 P_i$, in which k is a constant and P_i is the probability of an event.
 - (a) For a two-outcome problem (e.g. a coin toss), show that $\langle I \rangle$ peaks at P = 1/2.
 - (b) Apply a very small perturbation as $P=(1/2)+\epsilon$, in which $\epsilon \ll 1/2$. Show that in this perturbative approach $\langle I \rangle \simeq a b\epsilon^2$, with a=k and $b=4k/\ln 2$. Hint: $\ln(1+x) \simeq x$, when $x \ll 1$.
 - (c) Plot $\langle I \rangle$ versus P for both the actual function and the approximate function together and then compare the graphs for closeness on the line $\langle I \rangle = 0$. For plotting choose k = 1.

Assignment 2: An Astrophysical Inflow (10-09-2018)

1. In the problem of spherically symmetric astrophysical accretion, interstellar fluid matter (a very thin gas) travels a great distance (almost from infinity) along radial lines and falls on to a massive star (or a neutron star or even a black hole) located at the origin of coordinates. The star can be treated as a point-like particle, and the rate of the fluid flow (matter flowing in unit time) on to it is given as

$$\dot{m} = \pi G^2 M^2 \frac{\rho_{\infty}}{c_s^3(\infty)} \left(\frac{2}{5 - 3\gamma}\right)^{(5 - 3\gamma)/2(\gamma - 1)}$$

in which G is Newton's universal gravitational constant, M is the mass of the central astrophysical object, ρ_{∞} is the constant density of the gas at infinity, $c_s(\infty)$ is the speed of sound at infinity, and γ is a dimensionless number called the polytropic exponent $(1 \le \gamma \le 5/3)$. The velocity of the fluid flow v, as a function of the radial distance from the centre r, is given by the equation

$$f(v,r) \equiv \frac{v^2}{2} + n\left(\frac{\dot{\mu}}{vr^2}\right)^{1/n} - \frac{GM}{r} - nc_s^2(\infty) = 0$$
 (1)

with $\dot{\mu}=(\dot{m}/4\pi\rho_\infty)c_s^{\ 2n}(\infty)$ and $n=1/(\gamma-1)$. Solve Eq.(1) by the bisection method to find v(r), using the values $M=2\times 10^{30}\,\mathrm{kg},\,c_s(\infty)=10\,\mathrm{km~s^{-1}},\,\rho_\infty=10^{-21}\,\mathrm{kg~m^{-3}}$ and n=2.5. These values are typical of accretion of the interstellar medium on to a star. Each value of r in Eq.(1) will give a set of two real and physical roots of v. The plot of v(r) is shown in Fig. 1, in which v is scaled as the Mach number, $v(r)/c_s(r)$. Obtain a similar plot. Values of $c_s(r)$ can be found from $c_s(r)=c_s(\infty)(\rho/\rho_\infty)^{(\gamma-1)/2}$ with $\rho\equiv\rho(r)$ being another function of r given by $\rho(r)=\dot{m}/(4\pi v r^2)$. Also scale the radial distance by $7\times 10^8\,\mathrm{m}$, and then take its base-10 logarithm in the horizontal axis of the graph. For every value of r, run a bisection code going from v=0 to $v=10^5\,\mathrm{ms^{-1}}$, with a step-size of 0.0010. Converge on a root with a relative error tolerance of $|\epsilon|=10^{-10}$.

Figure 1: A plot of the Mach number, v/c_s , against the radial distance r (given on a base-10 logarithmic scale).

• Assignment 3: A Nuclear Outflow (01-10-2018)

1. High-energy impacts and collisions among elementary particles can result in an outflow of nuclear fluid. The rescaled equations of the steady outflow are

$$xyR^2 = 1, (2)$$

$$y^2 + 3x^2 - 4x = B, (3)$$

in which x is the density of the fluid, y is its velocity, R is the radial distance, and B is a constant.

- (a) Using Eq. (2), eliminate x in Eq. (3) to get a quartic equation in $y \equiv y(R)$. Also find dy/dR to check for turning and singular points of y(R).
- (b) Analytically solve the quartic equation $y \equiv y(R)$. For B = 2, plot R along the horizontal axis and y along the vertical axis of a graph.
- (c) Further, the velocity of an acoustic wave in the nuclear matter is $u^2 = x(3x 2)$. On the same graph now plot R versus u. Your complete graph should look like Fig. 2 below.

Figure 2: y(R) is the inner continuous curve and u(R) is the outer dotted curve.

• Assignment 4: The Hydraulic Jump (01-10-2018)

- 1. In a hydraulic jump, the height of a flowing liquid increases abruptly, without any pumping action. In a steady one-dimensional liquid flow, the rescaled equation of the flow is $4H H^4 = 3(X D)$, in which H is the flow height, X is the distance, and D is a constant.
 - (a) Restrict your study to the range $X \ge 0$, and first analyse all the implications of dH/dX.
 - (b) Analytically solve the quartic equation $H \equiv H(X)$. For the condition X = H = 0, plot X along the horizontal axis and H along the vertical axis of a graph. On the same graph, repeat the plotting exercise for H = 1 when X = 2. Your complete graph should look like Fig. 3 below.

Figure 3: A plot of two solutions of H against X.

• Assignment 5: The Liénard System (29-10-2018)

1. The general mathematical form of a Liénard system is that of a nonlinear oscillator equation,

$$\ddot{\phi} + \epsilon \mathcal{H}(\phi, \dot{\phi})\dot{\phi} + \mathcal{V}'(\phi) = 0, \tag{4}$$

in which, \mathcal{H} is a nonlinear damping coefficient and \mathcal{V} is the "potential" of the system (with the prime on it indicating its derivative with respect to ϕ). Choose $\mathcal{H}(\phi,\dot{\phi})=\mathcal{A}\phi+\mathcal{B}\dot{\phi}$ and $\mathcal{V}(\phi)=\mathcal{C}(\phi^2/2)+\epsilon\mathcal{D}(\phi^3/3)$, with the constant coefficients, $\mathcal{A}=\mathcal{B}=0.03$, $\mathcal{C}=1$ and $\mathcal{D}=-1$. Also choose the parameter $\epsilon=1$. It is a "switch" parameter. When $\epsilon=0$ nonlinearity disappears and when $\epsilon=1$, nonlinearity is active. We decompose the second-order differential equation into a coupled first-order system. To that end, on introducing a new variable, ψ , equation (4) can be recast as

$$\dot{\phi} = \psi$$

$$\dot{\psi} = -\epsilon \left(\mathcal{A}\phi + \mathcal{B}\psi \right) \psi - \left(\mathcal{C}\phi + \epsilon \mathcal{D}\phi^2 \right). \tag{5}$$

Apply the fourth-order Runge-Kutta method on this system. Solve separately for the two initial conditions $(\phi, \psi) = (0.95, 0), (1.05, 0)$. Plot ϕ versus ψ . It should look like the figure below.

Figure 4: The closed ellipse is due to $\epsilon = 0$. The other curves are for $\epsilon = 1$. The initial condition (0.95, 0) gives the spiral and the initial condition (1.05, 0) gives the open curve.