Неравенство Маклорена и Ко

- **1.** Известно, что уравнение $ax^5 + bx^4 + c = 0$ имеет три различных кор- ня. Докажите, что уравнение $cx^5 + bx + a = 0$ также имеет три различных корня.
- **2** (**Неравенство Маклорена**). Пусть a_1, a_2, \ldots, a_n различные положительные числа. Обозначим через

$$b_k = \frac{\sum a_{i_1} a_{i_2} \dots a_{i_k}}{C_n^k}.$$

Докажите неравенства:

- a) $b_1 \ge \sqrt{b_2}$;
- б) $b_k \geqslant \sqrt[k]{b_{k+1}b_{k-1}}$, $(k=2,\ldots n-1)$; в) $\sqrt[k]{b_k} \geqslant \sqrt[k+1]{b_{k+1}}$, $(k=2,\ldots n-1)$.
- **3.** Про корни x_1, x_2 двух квадратных многочленов $ax^2 + bx + b$ и $ax^2 + ax + b$ известно, что $x_1x_2 = 1$, найдите x_1 .
- **4.** Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
- **5.** У многочлена $P(x) = x^n + p_{n-1}x^{n-1} + \ldots + p_0$ есть n действительных корней, причём коэффициенты $p_i, p_{i+1}, \ldots, p_j$ положительны. Докажите, что существует такой индекс k $(i \leqslant k \leqslant j)$, что $p_i \leqslant \ldots \leqslant p_k \geqslant \ldots \geqslant p_i$.
- **6.** Рассмотрим многочлен $p(x) = \frac{(1-(1-x)^n)^2}{x}, n > 1.$
- а) Докажите, что производная p'(x) имеет на интервале (0,1) ровно один корень.
- b) Докажите, что уравнение $p(x) = p(x^2)$ имеет в интервале (0,1) единственное решение.