1)

Temos que $\hat{C} = 60^{\circ}$

Segundo o enunciado, as retas **m** e **n**são tangentes à circunferência.

Dado que ambas são concorrentes e
equidistam do centro **O** da
circunferência, concluímos que seu prolongamento
chegará ao ponto médio da reta \overline{AB} formada,
se apresentando então como a mediana do segmento \overline{AB} ,
que determina que as retas **m** e **n** possuem a mesma distância
de $M_{\overline{AB}}$, e portanto, a mesma medida. Sendo assim, temos
que os ângulos **a** e **b** serão congruentes, valendo 60° cada:

$$\frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ} \rightarrow a = b = c = 60^{\circ}$$

Se todos os ângulos são congruentes, temos que este triângulo

só pode ser equilátero. Um triângulo equilátero, com uma circunferência inscrita e equidistante dos lados, terá todos os seus pontos notáveis no centro dessa mesma circunferência, logo, podemos estabelecer uma relação $\frac{2}{1}$ na mediana $\mathbf{M}_{\overline{AB}}$, onde:

$$\frac{2}{1} = \frac{x}{1} \rightarrow x = 2 \qquad R:(D) \ 2$$

As bissetrizes formam dois ângulos Opostos pelo Vértice, onde:

$$2 \cdot 50^{\circ} + 2 \cdot \hat{T} = 360^{\circ}$$

$$2\hat{T} = 360^{\circ} - 100^{\circ}$$

$$2\hat{T} = 260^{\circ} \rightarrow \hat{\mathbf{T}} = \mathbf{130}^{\circ}$$

Sendo T o Incentro do triângulo, temos que ambas as retas que foram formadas são bissetrizes e congruentes, formando um triângulo isóceles, onde:

$$130^{\circ} + 2x = 180^{\circ}$$

$$2x = 50^{\circ}$$

$$x = 25^{\circ}$$

Com a formação de uma asa delta, temos que:

$$a + 25^{\circ} + 25^{\circ} = 130^{\circ}$$

$$a = 130^{\circ} - 50^{\circ}$$

$$a = 80^{\circ}$$

$$R: (E) 80^{\circ}$$

De acordo com o enunciado, temos um triângulo inscrito dentro de uma circunferência, onde um de seus lados passa pelo ponto **C** que está no centro dela.

Sendo essa reta obrigatoriamente o **di**â**metro D** desta circunferência,
podemos concluir que o triângulo formado só pode ser **ret**â**ngulo**, pois estará inscrito
em uma **semicircunfer**ência.

É visto que o ponto **C** será o ponto médio da hipotenusa desse triângulo, que respeitará também os critérios estabelecidos pelos Pontos Notáveis BICO. Ao lado, temos um exemplo de triângulo retângulo inscrito em uma semicircunferência.

R:(B) É retângulo.

4)

$$x + \frac{8}{16} = \frac{9}{16}$$

$$x = \frac{9}{16} - \frac{8}{16}$$
$$x = \frac{1}{16}$$

$$R:(E) \frac{1}{16}$$

De acordo com o enunciado, o diâmetro \mathbf{D} da circunferência é igual a $\frac{3}{8}$.

Dado que o ângulo \hat{R} possui 60° ($180^{\circ} - 60^{\circ} - 60^{\circ}$), e os pontos

A, B, C são tangentes à circunferência, temos que o triângulo formado pelas retas que passam por esses pontos será equilátero.

Portanto, podemos estabelecer uma relação $\frac{2}{1}$ na mediana \overline{RA} :

$$\frac{2}{1}=\frac{2r}{r}$$

Sendo o raio
$$r = \frac{D}{2}, r = \frac{\frac{3}{8}}{\frac{2}{2}} = \frac{3}{16}$$

$$E\ 2r = \frac{6}{16}$$
, $logo: \overline{RA} = \frac{3}{16} + \frac{6}{16} = \frac{9}{16}$

Sabendo a medida da mediana \overline{RA} , podemos estabelecer com as distâncias das retas paralelas (par de paralelas) $r \parallel s \parallel t$ que:

$$\frac{9}{16} = x + \frac{8}{16}, \quad sendo \quad \frac{8}{16} = \frac{1}{2}, com \ denominador \ igual \ (16)$$

5)

R

10-cm

M

10-cm

C

Temos que o ponto médio M divide o segmento \overline{AC} , que mede 20cm, em dois outros segmentos \overline{MC} e \overline{MA} , medindo 10 cm cada. Sabendo que esse triângulo retângulo pode ser inscrito em uma circunferência com centro M, concluímos que \overline{MB} terá 10cm, pois será equivalente ao raio dessa mesma circunferência.

$$raio = \overline{MB} = \overline{MC} = \overline{MA} = 10cm$$

$$\overline{MB} = 10CM$$

Podemos concluir que o triângulo \triangle **MBC** é isóceles, pois possui dois lados congruentes $\overline{\textbf{MC}}$ e $\overline{\textbf{MB}}$, logo:

$$\hat{y} = \hat{c} \rightarrow \hat{y} = 20^{\circ}$$

Se $\hat{y} = 20^{\circ}$, temos que o ângulo \hat{x} , que está entre a bissetriz que divide o ângulo reto pela metade e a mediana \overline{MB} , será:

$$\hat{x} + \hat{y} + 45^{\circ} = 90^{\circ}$$

$$\hat{x} + 20^{\circ} + 45^{\circ} = 90^{\circ}$$

$$\hat{x} = 90^{\circ} - 45^{\circ} - 20^{\circ}$$

$$\hat{x} = 25^{\circ}$$

$$(R \ a) = 10cm \ | \ R \ b): 25^{\circ}$$

6)

$$\frac{2}{1} = \frac{x}{r}$$

$$x = 2r$$

$$R: (C) 2r$$

Segundo o enunciado, as retas \overline{PA} e \overline{PB} são tangentes à circunferência.

Dado que ambas são concorrentes e

equidistam do centro $\mathbf{0}$ da

circunferência, concluímos que o prolongamento da reta $\overline{P0}$ chegará ao ponto médio da reta \overline{AB} formada,

se apresentando então como a mediana do segmento \overline{AB} .

Um triângulo equilátero, com uma circunferência inscrita e

equidistante dos lados, terá todos os seus pontos notáveis

no centro dessa mesma circunferência, logo, podemos

estabelecer uma relação $\frac{2}{1}$ na mediana $M_{\overline{AB}}$, onde: