Junrui GPT Behavioral Corpus — Strategic Evaluation Report

Updated: 27 May 2025 | Author: Junrui Huang

<u>Overview</u>

This report evaluates a curated corpus of 134 structured GPT interaction samples, authored and behavior-tagged by Junrui Huang. The corpus is constructed not as a series of prompts, but as dialogue environment modules—each encoding specific rhythm, emotional containment, or non-generative behavior signals.

Primary objective

To assess whether this corpus can support GPT rhythm-aware persona training and non-generative behavioral modeling in a scalable and precision-aligned way.

Structural Integrity and Annotation Quality

Metric	Value	Note
Total Samples	134	All JSON-structured, P001–P134
Instruction-Response Structure	100%	Clean, paired user & ideal AI utterances
Behavior Tags / Sample	2.14	Enabling supervised behavioral indexing
Language	Primarily Chinese (Simplified), 5 bilingual samples provided	Translation-ready corpus

Behavioral Coverage & GPT-Relevant Dimensions

Behavioral Module	Coverage	Interpretation	
Structural Reasoning	99.3% (133/134)	Nested instruction logic & chaining	
Rhythm Modulation	83.6% (112/134)	Tempo-aware language control	
Collaborative Turn Design	36.6% (49/134)	Dynamic response sharing	
Non-Generative States	22.4% (30/134)	Intentional pause, presence, withholding	
Closure / Finality Modeling	35.1% (47/134)	End-boundaries, step completion, silence	

Corpus Differentiation vs. Mainstream Training Sets

Metric	Junrui Corpus	Mainstream	Differentiator
Rhythm sensitivity	83.6%	Rare	Enables tempo modeling
Behavioral tags	2.14/sample	~0.3	Precise alignment labels
Non-generative states	22.4%	<1%	Underrepresented dimension
GPT deviation rate	61.5%	~15%	Persona divergence activated
Coherence origin	1 user-generated system	Multisource	Consistent language base

<u>Benchmark Comparison — Junrui Corpus vs. Mainstream High-Quality AI Training Data</u>

Metric	Mainstream Training Data	Junrui GPT Corpus (134 samples)	Value Advantage
Structural Completeness	~90% (requires cleaning)	100% (fully structured JSON)	Training-ready, no preprocessing
Behavioral Tag Density	< 0.3 tags/sample	2.14 tags/sample	Rich metadata for supervised learning
Behavioral Module Coverage	Single-task orientation	5/5 modules present	Supports full persona architecture
Non-Generative Behavior Rate	< 1%	22.4%	Enables restraint modeling
Rhythm & Pacing Traits	Rare	83.6%	Controls generation pacing/density
Structural Reasoning Depth	Mostly shallow logic	99.3%	Nested chaining & systemic goals
GPT Response Shift Activation	~10–15%	61.5%	Triggers non-default behavior modes
Corpus Coherence Source	Multi-source aggregate	Single-author language system	Persona consistency for fine-tuning

GPT Simulation Findings

In live GPT-4 simulations, the following response adaptations were consistently triggered by the corpus:

- 61.5% response rhythm deviations
- 22.4% non-generative behaviors (intentional silence, deferral, "pause holding")
- Clear persona-layer modulation without prompt-tuning

Application Potential

The corpus is best suited for:

- Persona-layer instruction tuning (beyond prompt-format finetuning)
- Prototype design for GPTs with rhythm or restraint awareness
- Emotional co-presence and reflective dialog modeling
- Future therapeutic or educational dialogue systems needing silence, mirroring, or space-holding logic

Corpus Sustainability & Author Profile

This corpus is not static. It originates from a coherent, reproducible author persona capable of generating hundreds of high-integrity behavioral samples under rhythm regulation protocols. This makes it suitable for ongoing co-development.

- Author: Junrui Huang
- Background: Real estate, negotiation psychology, management research
- Dialogue system tested: GPT-4 (chat.openai.com)
- Bilingual readiness: Native Chinese / Fluent English
- Data form: Full JSON corpus, including 5 bilingual sample conversions

Recommendation

The corpus exhibits sufficient novelty, coherence, and behavioral density to qualify as an experimental training base for OpenAI's research in:

- GPT restraint systems
- Non-generative persona prototypes
- Meta-dialogue pacing systems
- Rhythm-based alignment frameworks

We recommend piloting a behavior-modulation prototype or rhythm-tuned micromodel to assess integration viability.