Durrett Probability: Problems

Youngduck Choi *

Abstract

This work contains solutions to some exercises from Durrett's probability text.

1 Chapter 6: Markov Chains

Question 6.3.3.

6.3.3. First entrance decomposition. Let $T_y = \inf\{n \ge 1 : X_n = y\}$. Show that

$$p^{n}(x,y) = \sum_{m=1}^{n} P_{x}(T_{y} = m)p^{n-m}(y,y)$$

Solution.

Here we assume countable state space. Observe that

$$p^{n}(x,y) = P_{x}(X_{n} = y) = P_{x}(\bigcup_{m=1}^{n} \{T_{y} = m \; ; \; X_{n} = y\}) = \sum_{m=1}^{n} P_{x}(T_{y} = m \; ; \; X_{n} = y)$$
(1)

$$P_{x}(T_{y} = m ; X_{n} = y) = E_{x}(1_{\{X_{n} = y\}} ; T_{y} = m)$$

$$= E_{x}(E_{x}(1_{\{X_{n} = y\}} | \mathscr{F}_{m}); T_{y} = m)$$

$$= E_{x}(E_{x}(1_{\{X_{n-m} = y\}} \circ \theta_{m} | \mathscr{F}_{m}); T_{y} = m)$$

$$= E_{x}(E_{x}(1_{\{X_{n-m} = y\}}; T_{y} = m) = E_{x}(P_{y}(X_{n-m} = y); T_{y} = m)$$
(3)
$$= P_{x}(T_{y} = m)P_{y}(X_{n-m} = y)$$

for any $1 \leq m \leq n$, where (4) holds by definition of conditional expectation and (5) holds by Markov property. Therefore, combining the above result with with (1) gives

$$p^{n}(x,y) = \sum_{m=1}^{n} P_{x}(T_{y} = m)P_{y}(X_{n-m} = y).$$

^{*}Department of Mathematics, Courant Institute of Mathematical Sciences, yc1104@nyu.edu; If you find an error and want to share with me, you can reach me via email.

Here is another approach using strong Markov. We compute

$$p^{n}(x,y) = P_{x}(X_{n} = y) = P_{x}(\bigcup_{m=1}^{n} \{T_{y} = m; X_{n} = y\})$$

$$= E_{x}(1_{\{X_{n-T_{y}} = y\}} \circ \theta_{T_{y}}; T_{y} \leq n) = E_{x}(E_{x}(1_{\{X_{n-T_{y}} = y\}} \circ \theta_{T_{y}} | \mathscr{F}_{T_{y}}); T_{y} \leq n)$$

$$= E_{x}(E_{X_{T_{y}}}(1_{\{X_{n-T_{y}} = y\}}; T_{y} \leq n) = E_{x}(E_{y}(1_{\{X_{n-T_{y}}\}}); T_{y} \leq n)$$

$$= \sum_{m=1}^{n} P_{x}(T_{y} = m)E_{y}(1_{\{X_{n-m} = y\}}) = \sum_{m=1}^{n} P_{x}(T_{y} = m)P^{n-m}(y, y)$$

$$(5)$$

where (4) holds by definition of conditional expectation and (5) holds by the strong Markov property.

Question 6.3.4.

6.3.4. Show that
$$\sum_{m=0}^{n} P_x(X_m = x) \ge \sum_{m=k}^{n+k} P_x(X_m = x)$$
.

Solution.

Let $k \in \mathbb{N}$, and $T_x^k = \inf\{n \geq k : X_n = x\}$. We claim that

$$P_x(X_m = x) = \sum_{l=k}^m P_x(T_x^k = x) p^{m-l}(x, x)$$
 (6)

for any $m \geq k$. Fix $m \geq k$. Then,

$$P_x(X_m = x) = P_x(\bigcup_{l=k}^m \{T_x^k = l; X_m = x\}) = \sum_{l=k}^m P_x(T_x^k = l; X_m = x).$$
 (7)

Now, we compute

$$P_{x}(T_{x}^{k} = l; X_{m} = x) = E_{x}(1_{\{X_{m} = x\}}; T_{x}^{k} = l) = E_{x}(E_{x}(1_{\{X_{m} = x\}} | \mathscr{F}_{l}); T_{x}^{k} = l)$$

$$= E_{x}(E_{x}(1_{\{X_{m-l} = x\}} \theta_{l} | \mathscr{F}_{l}); T_{x}^{k} = l)$$

$$= E_{x}(E_{X_{l}}(1_{\{X_{m-l} = x\}}; T_{x}^{k} = l); T_{x}^{k} = l)$$

$$= E_{x}(P_{x}(X_{m-l}x); T_{x}^{k} = l) = P_{x}(X_{m-l} = x)P_{x}(T_{x}^{k} = l)$$

$$= P_{x}(T_{x}^{k} = l)p^{m-l}(x, x)$$

$$(8)$$

for any $k \leq l \leq m$, where (8) holds by Markov property. Therefore, combining the above result with (7), we have proven (6). Then,

$$\sum_{m=k}^{n+k} P_x(X_m = x) = \sum_{m=k}^{n+k} \sum_{l=k}^{m} P_x(T_x^k = l) p^{m-l}(x, x)$$

$$= \sum_{m=k}^{n+k} p^m(x, x) \left(\sum_{l=k}^{d} P_x(T_x^k = l) \right)$$

$$\leq \sum_{m=k}^{n+k} p^m(x, x) = \sum_{m=k}^{n+k} P_x(X_m = x)$$

Question 6.3.5.

6.3.5. Suppose that S-C is finite and for each $x \in S-C$ $P_x(\tau_C < \infty) > 0$. Then there is an $N < \infty$ and $\epsilon > 0$ so that $P_y(\tau_C > kN) \le (1 - \epsilon)^k$.

Solution.

We assume countable state space. Observe that, for any $x \in S \setminus C$, we can choose $n(x) \in \mathbb{N}$ such that

$$P_x(\tau_C \le n) > 0.$$

Otherwise, for some $x \in S \setminus C$, by continuity of probability,

$$P_x(\tau_C < \infty) = \lim_{k \to \infty} P_x(\tau_C \le k) = 0,$$

which is a contradiction. Now, let

$$N = \max_{z \in S \setminus C} n(x)$$
. and $\epsilon = \min_{z \in S \setminus C} P_z(\tau_C \le N)$.

Trivially,

$$P_u(\tau_C > kN) = 0$$

for any $k \in \mathbb{N}$, and $y \in C$, since $y \in C$ implies $\tau_C = 0$ by definition. Therefore, it suffices to show

$$P_y(\tau_C > kN) \le (1 - \epsilon)^k \tag{9}$$

for all $k \in \mathbb{N}$ and $y \in S \setminus C$. Fix $y \in S \setminus C$. Then,

$$P_y(\tau_C \leq N) \geq \epsilon.$$

and hence

$$P_y(\tau_C > N) \le (1 - \epsilon)$$

Now, we proceed by induction to prove (9). Suppose, for some $k \in \mathbb{N}$ such that $k \geq 2$,

$$P_{\nu}(\tau_C > kN) \le (1 - \epsilon)^k$$
.

We compute

$$P_{y}(T_{c} > (k+1)N) = E_{y}(1_{\{\tau_{C} > kN\}} \circ \theta_{N}; \tau_{C} > N)$$

$$= E_{y}(E_{y}((1_{\{\tau_{C} > kN\}} \circ \theta_{N} | \mathscr{F}_{N}); \tau_{C} > N))$$

$$= E_{y}(E_{X_{N}}((1_{\{\tau_{C} > kN\}}); \tau_{C} > N))$$

$$\leq E_{y}(\sup_{z \in S} P_{z}(\tau_{C} > kN); \tau_{C} > N))$$

$$\leq (1 - \epsilon)^{k} E_{y}(1; \tau_{C} > N)) = (1 - \epsilon)^{k+1}$$
(10)

where (10) holds by Markov Property, which completes the proof.

Question 6.3.6.

6.3.6. Let $h(x)=P_x(\tau_A<\tau_B)$. Suppose $A\cap B=\emptyset,\ S-(A\cup B)$ is finite, and $P_x(\tau_{A\cup B}<\infty)>0$ for all $x\in S-(A\cup B)$. (i) Show that

$$(*) \hspace{1cm} h(x) = \sum_{y} p(x,y) h(y) \quad \text{for } x \notin A \cup B$$

(ii) Show that if h satisfies (*) then $h(X(n \wedge \tau_{A \cup B}))$ is a martingale. (iii) Use this and Exercise 6.3.5 to conclude that $h(x) = P_x(\tau_A < \tau_B)$ is the only solution of (*) that is 1 on A and 0 on B.

Solution.

(i) Let $x \in S \setminus (A \cup B)$. Then,

$$1_{\{\tau_A < \tau_B\}} = 1_{\{\tau_A < \tau_B\}} \circ \theta_1.$$

It follows that

$$h(x) = P_{x}(\tau_{A} < \tau_{B}) = E_{x}(1_{\{\tau_{A} < \tau_{B}\}}) = E_{x}(1_{\{\tau_{A} < \tau_{B}\}} \circ \theta_{1})$$

$$= E_{x}(E_{x}(1_{\{\tau_{A} < \tau_{B}\}} \circ \theta_{1} | \mathscr{F}_{1})) = E_{x}(E_{X_{1}}(1_{\{\tau_{A} < \tau_{B}\}}))$$

$$= \sum_{y} P(X_{1} = y)P_{y}(\tau_{A} < \tau_{B}) = \sum_{y} p(x, y)P_{y}(\tau_{A} < \tau_{B})$$
(11)

where (11) holds by Markov property.

- (ii)
- (iii)

Question 6.3.7.

6.3.7. Let X_n be a Markov chain with $S=\{0,1,\ldots,N\}$ and suppose that X_n is a martingale and $P_x(\tau_0 \wedge \tau_N < \infty) > 0$ for all x. (i) Show that 0 and N are absorbing states, i.e., p(0,0) = p(N,N) = 1. (ii) Show $P_x(\tau_N < \tau_0) = x/N$.

Question 6.4.4.

Exercise 6.4.4. Use the strong Markov property to show that $\rho_{xz} \geq \rho_{xy}\rho_{yz}$.

Solution.

The key insight in this problem is that if you shift the chain by a stopping time of one state variable, then the probability of the chain coming back to another fixed state variable decreases. This relation allows one to estimate p_{xz} from below using strong Markov, which in our context is proven for a sequence space(discrete time) of a polish state space, using Monotone class theorem. Recall that to define a shift operator, indexed by ∞ , by convention, we set

$$\theta_{\infty}(w) = \triangle$$

where \triangle is the cemetery sample point we add to $S^{\mathbb{N}}$, for all $w \in S^{\mathbb{N}}$. Therefore, to extend the domain of $T_z = \inf\{n \geq 1 : X_n = z\}$ for any $z \in S$, to include \triangle , if necessary, we define

$$T_z(\triangle) = \infty$$
 so $1_{\{T_z < \infty\}}(\triangle) = 0$,

With this convention.

$$\{w \in S^{\mathbb{N}} : 1_{\{T_z < \infty\}} \circ \theta_{T_y}(w) = 1\} = \{w \in S^{\mathbb{N}} : T_y(w) = n \text{ for some } n \ge 1$$

$$\text{and} \quad T_z^n(w) = \inf\{k \ge n : X_k = z\} < \infty\}$$

$$= \bigcup_{n=1}^{\infty} \{T_y = n \ ; \ T_z^n < \infty\}$$

$$\subset \bigcup_{n=1}^{\infty} \{T_z^n < \infty\} = \{T_z < \infty\}$$

for any $z, y \in S$.

Now, let $x, y, z \in S$. Then,

$$p_{xz} = P_x(T_z < \infty) = E_x(1_{\{T_z < \infty\}}) \ge E_x(1_{\{T_z < \infty\}} \circ \theta_{T_y})$$

$$= E_x(E_x(1_{\{T_z < \infty\}} \circ \theta_{T_y} | \mathscr{F}_{T_y}); T_y < \infty)$$

$$= E_x(E_{X_{T_y}}(1_{\{T_z < \infty\}}; T_y < \infty) = E_x(E_{X_y}(1_{\{T_z < \infty\}}; T_y < \infty)$$

$$= E_x(P_y(T_z < \infty); T_y < \infty) = P_y(T_z < \infty)P_x(T_y < \infty) = p_{xy}p_{yz}$$
(13)

where (12) holds by definition of conditional expectation, and (13) holds by strong Markov. \square

2 Chapter 2: Law of Large Numbers

3 Chapter 4: Random Walks

Question 4.1.1.

Exercise 4.1.1. Symmetric random walk. Let $X_1, X_2, \ldots \in \mathbf{R}$ be i.i.d. with a distribution that is symmetric about 0 and nondegenerate (i.e., $P(X_i = 0) < 1$). Show that we are in case (iv) of Theorem 4.1.2.

Question 4.1.2.

Exercise 4.1.2. Let X_1, X_2, \ldots be i.i.d. with $EX_i = 0$ and $EX_i^2 = \sigma^2 \in (0, \infty)$. Use the central limit theorem to conclude that we are in case (iv) of Theorem 4.1.2. Later in Exercise 4.1.11 you will show that $EX_i = 0$ and $P(X_i = 0) < 1$ is sufficient.

Question 4.1.3.

Exercise 4.1.3. If S and T are stopping times then $S \wedge T$ and $S \vee T$ are stopping times. Since constant times are stopping times, it follows that $S \wedge n$ and $S \vee n$ are stopping times.

Question 4.1.4.

Exercise 4.1.4. Suppose S and T are stopping times. Is S+T a stopping time? Give a proof or a counterexample.

Question 4.1.5.

Exercise 4.1.5. Show that if $Y_n \in \mathcal{F}_n$ and N is a stopping time, $Y_N \in \mathcal{F}_N$. As a corollary of this result we see that if $f: S \to \mathbf{R}$ is measurable, $T_n = \sum_{m \le n} f(X_m)$, and $M_n = \max_{m \le n} T_m$ then T_N and $M_N \in \mathcal{F}_N$. An important special case is $S = \mathbf{R}$, f(x) = x.

4 Chapter 5: Martingales

Question 5.2.1.

Exercise 5.2.1. Suppose X_n is a martingale w.r.t. \mathcal{G}_n and let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Then $\mathcal{G}_n \supset \mathcal{F}_n$ and X_n is a martingale w.r.t. \mathcal{F}_n .

Solution.

Various properties of conditional expectations are used.

We compute

$$E[X_{n+1}|\mathscr{F}_n] = E[X_{n+1}|\mathscr{G}_n|\mathscr{F}_n] \tag{14}$$

$$= E[X_n|\mathscr{F}_n] \tag{15}$$

$$= X_n \tag{16}$$

for all $n \in \mathbb{N}$, where (14) holds by the Tower property, (15) holds by Martingale property of $\{G_n\}$ and (16) holds by measurability of X_n w.r.t \mathscr{F}_n for all $n \in \mathbb{N}$.

Question 5.2.2.

Exercise 5.2.2. Suppose f is superharmonic on \mathbf{R}^d . Let ξ_1, ξ_2, \ldots be i.i.d. uniform on B(0,1), and define S_n by $S_n = S_{n-1} + \xi_n$ for $n \geq 1$ and $S_0 = x$. Show that $X_n = f(S_n)$ is a supermartingale.

Question 5.2.3.

Exercise 5.2.3. Give an example of a submartingale X_n so that X_n^2 is a supermartingale. Hint: X_n does not have to be random.

Solution.

Consider $\{X_n = 0\}$. Then, $\{X_n^2 = 0\}$, so both are processes are martingales, we have the desired example.

Question 5.2.4.

Exercise 5.2.4. Give an example of a martingale X_n with $X_n \to -\infty$ a.s. Hint: Let $X_n = \xi_1 + \cdots + \xi_n$, where the ξ_i are independent (but not identically distributed) with $E\xi_i = 0$.

Question 5.2.5.

Exercise 5.2.5. Let $X_n = \sum_{m \le n} 1_{B_m}$ and suppose $B_n \in \mathcal{F}_n$. What is the Doob decomposition for X_n ?

Question 5.2.6.

5.2.6. Let ξ_1, ξ_2, \ldots be independent with $E\xi_i = 0$ and $\text{var}(\xi_m) = \sigma_m^2 < \infty$, and let $s_n^2 = \sum_{m=1}^n \sigma_m^2$. Then $S_n^2 - s_n^2$ is a martingale.

Question 5.2.7.

5.2.7. If ξ_1,ξ_2,\ldots are independent and have $E\xi_i=0$ then

$$X_n^{(k)} = \sum_{1 \leq i_1 < \ldots < i_k \leq n} \xi_{i_1} \cdots \xi_{i_k}$$

is a martingale. When k=2 and $S_n=\xi_1+\cdots+\xi_n,\, 2X_n^{(2)}=S_n^2-\sum_{m\leq n}\xi_m^2.$