Practice 3

We highly encourage being environment friendly and trying all problems on your own.

1. Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem both as fractional knapsack and 0/1 knapsack.

value(\$US)	20	30	65	40	60
weight(Lbs)	10	20	30	40	50
value/weight	2	1.5	2.1	1	1.2

- 2. A simple scheduling problem. We are given jobs $j_1, j_2...j_n$, all with known running times $t_1, t_2...t_n$, respectively. We have a single processor. What is the best way to schedule these jobs in order to minimize the average completion time. Assume that it is a nonpreemptive scheduling: once a job is started, it must run to completion. The following is an instance.
 - a) $(j_1, j_2, j_3, j_4) : (15, 8, 3, 10)$
- 3. Single-source shortest paths. The following is the adjacency matrix, vertex A is the source.

4. All-pairs shortest paths. The adjacency matrix is as same as that of problem 3.(Use Floyd or Johnson's algorithm)