

Takeaways

- what Koopmans functionals are
- the results Koopmans functionals give
- koopmans v1.0b has just been released!

Failures of DFT

- band gap is almost universally too small
- problems with "strongly correlated" systems (e.g. TMOs)
- problems with vdW interactions
- eigenvalues are formally meaningless
- self-interaction error
- static correlation error

Self-interaction error

Self-interaction error

Self-interaction error

Consequences for band gaps, densities, band structures, spectra...

	DFT+ <i>U</i>	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \forall i$ (canonical orbitals)
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$ (variational orbitals)
correction applied to	selected subspaces only (e.g. 3d orbitals)	the entire system
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	variational (minimising) orbitals
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	$\{\alpha_i\}$, defined with respect to charged excitations

How can we address self-interaction in a computationally efficient way?

- --- Koopmans spectral functionals
 - theory
 - results
 - outstanding problems
 - future directions and lessons we can learn

By way of introduction: DFT+U

Key idea: construct a functional such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial \mathsf{E}_{\mathsf{Koopmans}} / \partial f_i$$

Key idea: construct a functional such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

possess two key properties:

• they are independent of the corresponding occupancies f_i

Key idea: construct a functional such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

possess two key properties:

 they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i, ⇒ E is linear in N)

Key idea: construct a functional such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

- they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i, ⇒ E is linear in N)
- they are equal to the corresponding total energy difference $E_i(N-1) E(N)$

Key idea: construct a functional such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

- they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i, ⇒ E is linear in N)
- they are equal to the corresponding total energy difference $E_i(N-1)-E(N) \rightarrow$ orbital energies have meaning, are more accurate

Key idea: construct a functional such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial \mathsf{E}_{\mathsf{Koopmans}} / \partial f_i$$

- they are independent of the corresponding occupancies f_i ($\Leftrightarrow E$ is linear in f_i , $\Rightarrow E$ is linear in N)
- they are equal to the corresponding total energy difference $E_i(N-1)-E(N) \rightarrow$ orbital energies have meaning, are more accurate

I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905

I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905

I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905

I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905

I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905

I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

	DFT+U	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	
by construction	corrects local curvature in total energies	
correction applied to	selected subspaces only (e.g. 3d orbitals)	
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	

	DFT+U	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on f_i $\forall i$
by construction	corrects local curvature in total energies	
correction applied to	selected subspaces only (e.g. 3d orbitals)	
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	

	DFT+U	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \ \forall i$
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$
correction applied to	selected subspaces only (e.g. 3d orbitals)	
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	

	DFT+U	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \ \forall i$
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$
correction applied to	selected subspaces only (e.g. 3d orbitals)	the entire system
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho] + \sum_i \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_i \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

orbital density dependence

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$
$$v_i^{\mathsf{KI}}/\alpha_i = -E_{\mathsf{H}}[n_i] + E_{\mathsf{xc}}[\rho] - E_{\mathsf{xc}}[\rho - n_i] - \int d\mathbf{r}' v_{\mathsf{xc}}(\mathbf{r}', [\rho]) n_i(\mathbf{r}')$$

orbital density dependence

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$
$$v_i^{\mathsf{KI}}/\alpha_i = -E_{\mathsf{H}}[n_i] + E_{\mathsf{xc}}[\rho] - E_{\mathsf{xc}}[\rho - n_i] - \int d\mathbf{r}' v_{\mathsf{xc}}(\mathbf{r}', [\rho]) n_i(\mathbf{r}')$$

- orbital density dependence
- variational (localised, minimising) vs canonical (delocalised, diagonalising) orbitals

(a) variational

(b) canonical

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$
$$v_i^{\mathsf{KI}}/\alpha_i = -E_{\mathsf{H}}[n_i] + E_{\mathsf{xc}}[\rho] - E_{\mathsf{xc}}[\rho - n_i] - \int d\mathbf{r}' v_{\mathsf{xc}}(\mathbf{r}', [\rho]) n_i(\mathbf{r}')$$

- orbital density dependence
- variational (localised, minimising) vs canonical (delocalised, diagonalising) orbitals
- screening

$$\frac{dE}{df_i} \approx \alpha_i \frac{\partial E}{\partial f_i}$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$
$$v_i^{\mathsf{KI}}/\alpha_i = -E_{\mathsf{H}}[n_i] + E_{\mathsf{xc}}[\rho] - E_{\mathsf{xc}}[\rho - n_i] - \int d\mathbf{r}' v_{\mathsf{xc}}(\mathbf{r}', [\rho]) n_i(\mathbf{r}')$$

- orbital density dependence
- variational (localised, minimising) vs canonical (delocalised, diagonalising) orbitals
- screening

$$\frac{dE}{df_i} \approx \alpha_i \frac{\partial E}{\partial f_i} \Longrightarrow \varepsilon_i^{\mathsf{Koopmans}} = \frac{\partial E_{\mathsf{Koopmans}}}{\partial f_i} \approx E_i(N-1) - E(N)$$

	DFT+ <i>U</i>	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \ \forall i$
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$
correction applied to	selected subspaces only (e.g. 3d orbitals)	the entire system
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	
corrective parameters are	$\{U^{I}\}$, defined with respect to charge-neutral excitations (if using LR)	

	DFT+U	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \ \forall i$
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$
correction applied to	selected subspaces only (e.g. 3d orbitals)	the entire system
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	variational (minimising) orbitals
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	

Koopmans spectral functionals: comparing

	DFT+ <i>U</i>	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \ \forall i$
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$
correction applied to	selected subspaces only (e.g. 3d orbitals)	the entire system
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	variational (minimising) orbitals
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	$\{\alpha_i\}$, defined with respect to charged excitations

Koopmans spectral functionals: comparing

	DFT+ <i>U</i>	Koopmans
designed to correct SIE, as defined by	erroneous global curvature in total energies	dependence of ε_i on $f_i \forall i$ (canonical orbitals)
by construction	corrects local curvature in total energies	removes dependence of ε_i on f_i and guarantees $\varepsilon_i = E_i(N \pm 1) - E(N)$ (variational orbitals)
correction applied to	selected subspaces only (e.g. 3d orbitals)	the entire system
orbitals defined by	Hubbard projectors (atom-centred, frozen, incomplete)	variational (minimising) orbitals
corrective parameters are	$\{U^I\}$, defined with respect to charge-neutral excitations (if using LR)	$\{\alpha_i\}$, defined with respect to charged excitations

Koopmans spectral functionals: IPs

Ionisation potentials = $E(N-1) - E(N) \stackrel{?}{=} -\varepsilon_{HO}$ of 100 molecules (the GW100 set) cf. CCSD(T)

Koopmans spectral functionals: IPs

Ionisation potentials = $E(N-1) - E(N) \stackrel{?}{=} -\varepsilon_{HO}$ of 100 molecules (the GW100 set) cf. CCSD(T)

Koopmans spectral functionals: EAs

Electron affinities = $E(N) - E(N+1) \stackrel{?}{=} -\varepsilon_{LU}$ of molecules cf. CCSD(T)/exp

For 15 of the GW100 molecules with bound LUMOs

For the NaCl molecule

Figures from Linscott et al. (in prep)

Koopmans spectral functionals: spectra

N. Colonna et al. "Koopmans Spectral Functionals in Periodic-Boundary Conditions". 2021

Koopmans spectral functionals: practical limitations

- determining $\{\alpha_i\}$
- how to treat metals?
- limitations of the orbital-density-dependent framework

Screening coefficients $\{\alpha_i\}$ must be determined first, either (a) via Δ SCF calculations (using a supercell) or

¹ N. Colonna et al. *JCTC* 14.5 (2018), 2549.

Screening coefficients $\{\alpha_i\}$ must be determined first, either (a) via Δ SCF calculations (using a supercell) or

¹ N. Colonna et al. *JCTC* 14.5 (2018), 2549.

Screening coefficients $\{\alpha_i\}$ must be determined first, either (a) via Δ SCF calculations (using a supercell) or (b) via DFPT¹ (using a primitive cell)

¹ N. Colonna et al. *JCTC* 14.5 (2018), 2549.

Screening coefficients $\{\alpha_i\}$ must be determined first, either (a) via Δ SCF calculations (using a supercell) or (b) via DFPT¹ (using a primitive cell)

¹ N. Colonna et al. *JCTC* 14.5 (2018), 2549.

Screening coefficients $\{\alpha_i\}$ must be determined first, either (a) via Δ SCF calculations (using a supercell) or (b) via DFPT¹ (using a primitive cell)

¹ N. Colonna et al. *JCTC* 14.5 (2018), 2549.

² A. Ferretti et al. *Phys. Rev. B* 89.19 (2014), 195134.

a natural generalisation in the direction of spectral functional theory²

² A. Ferretti et al. *Phys. Rev. B* 89.19 (2014), 195134.

- a natural generalisation in the direction of spectral functional theory²
- ODD functional means that we know $\hat{H}|\varphi_i\rangle$ for variational orbitals $\{|\varphi_i\rangle\}$ but we don't know \hat{H} in general

- a natural generalisation in the direction of spectral functional theory²
- ODD functional means that we know $\hat{H}|\varphi_i\rangle$ for variational orbitals $\{|\varphi_i\rangle\}$ but we don't know \hat{H} in general
- Difficulties when it comes to calculating transport properties/spectra

- a natural generalisation in the direction of spectral functional theory²
- ODD functional means that we know $\hat{H}|\varphi_i\rangle$ for variational orbitals $\{|\varphi_i\rangle\}$ but we don't know \hat{H} in general
- Difficulties when it comes to calculating transport properties/spectra
- Perhaps a DFT+U-projector approach is more convenient?

Koopmans spectral functionals: off-diagonal occupancies

Recap from earlier

Key idea: construct a functional such that the *variational* orbital energies

$$arepsilon_i^{\mathsf{Koopmans}} = \langle arphi_i | H | arphi_i
angle = \partial \mathsf{E}_{\mathsf{Koopmans}} / \partial f_i$$

possess two key properties:

- they are independent of the corresponding occupancies fi
- they are equal to the corresponding total energy difference $E_i(N-1) E(N)$

Koopmans spectral functionals: off-diagonal occupancies

Recap from earlier

Key idea: construct a functional such that the *variational* orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial \mathcal{E}_{\mathsf{Koopmans}} / \partial f_i$$

possess two key properties:

- they are independent of the corresponding occupancies fi
- they are equal to the corresponding total energy difference $E_i(N-1)-E(N)$

zero band gap ightarrow occupancy matrix for variational orbitals is off-diagonal

Summary: Koopmans spectral functionals

- orbital-density-dependent corrective terms to semi-local DFT
- comparable computational cost to DFPT
- KS eigenvalues are meaningful
- accuracy comparable to GW

caveats:

- orbital density dependence has limitations
- complicated workflow (not for much longer!)
- only for insulators

Summary: thoughts on the way forward

For Koopmans...

- framing Koopmans with frozen-orbital/projector-like picture
- prediction of α_i
- scope for addressing static correlation error
- off-diagonal terms

For corrections to SIE more generally...

- we can gain ground by thinking about KS energies and not just total energies
- indeed, KI corrects KS energies while leaving total energies untouched!

Acknowledgements

FNSNF

SWISS NATIONAL SCIENCE FOUNDATION

Look out for our papers & code release later this year (follow <u>ded_linscott</u> for updates/get in touch for alpha access!)

Shameless postdoc/fellowship plug?

For further reading on Koopmans functionals, see I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 15.3 (2019), 1905; N. L. Nguyen et al. *Phys. Rev. X* 8.2 (2018), 021051; N. Colonna et al. *JCTC* 14.5 (2018), 2549