# CS492D: Diffusion Models and Their Applications

**Assignment 1 Session** 

SEUNGWOO YOO

Fall 2024 KAIST

# Introduction

In Assignment 1, you will implement the key components of **Denoising Diffusion Probabilistic Models (DDPMs)**.



Denoising Diffusion Probabilistic Models, Ho et al., NeurIPS 2020

# Introduction

The skeleton code and instructions are available at:

https://github.com/KAIST-Visual-AI-Group/Diffusion-Assignment1-DDPM



# Introduction

- All programming assignments are due **two weeks** after the assignment session.
- Late submission will incur 20% penalty for each late day!
- Please carefully check the README of each assignment.

# What to Do: Overview

You need to implement three major components of DDPMs:

- Forward Process:  $q(x_t|x_0)$
- Reverse Process:  $p_{\theta}(x_{t-1}|x_t)$
- Training Objective:  $\| \boldsymbol{\epsilon} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) \|^2$

Is it really that simple...?

# What to Do: Overview

Yes! Even cutting-edge diffusion models are built this way.

By understanding this basic structure, you can begin exploring more advanced models.







Stable Diffusion 3, StabilityAI

Let's begin by modeling a simple distribution of 2D points ("Swiss Roll").



Design a network that takes

• Noisy data  $x_t$ ;

Current diffusion timestep t.

Hint: Use the TimeLinear class.

```
class SimpleNet(nn.Module):
   def __init__(
       self, dim_in: int, dim_out: int, dim_hids: List[int], num_timesteps: int
       super().__init__()
       (TODO) Build a noise estimating network.
           dim_in: dimension of input
           dim_out: dimension of output
           dim_hids: dimensions of hidden features
           num_timesteps: number of timesteps
       ######## TODO ########
   def forward(self, x: torch.Tensor, t: torch.Tensor):
       (TODO) Implement the forward pass. This should output
       the noise prediction of the noisy input x at timestep t.
       Args:
           x: the noisy data after t period diffusion
           t: the time that the forward diffusion has been running
       ######## TODO ########
       return x
```

2d\_plot\_diffusion\_todo/network.py

#### Implement functions

- q\_sample;
- p\_sample;
- p\_sample\_loop;
- compute\_loss.

Check your implementation of q\_sample!



2d\_plot\_diffusion\_todo/ddpm\_tutorial.ipynb

#### Implement functions

```
q_sample;
```

- p\_sample;
- p\_sample\_loop;
- compute\_loss.

```
@torch.no_grad()
def p_sample(self, xt, t):
    One step denoising function of DDPM: x_t \rightarrow x_{t-1}.
        xt (`torch.Tensor`): samples at arbitrary timestep t.
        t (`torch.Tensor`): current timestep in a reverse process.
    Ouptut:
        x_t_prev (`torch.Tensor`): one step denoised sample. (= x_{t-1})
    ####### TODO ########
    if isinstance(t, int):
        t = torch.tensor([t]).to(self.device)
    eps_factor = (1 - extract(self.var_scheduler.alphas, t, xt)) / (
        1 - extract(self.var_scheduler.alphas_cumprod, t, xt)
    eps_theta = self.network(xt, t)
    x_t_prev = xt
    return x_t_prev
```

#### Implement functions

```
q_sample;
```

- p\_sample;
- p\_sample\_loop;
- compute\_loss.

#### Implement functions

```
q_sample;
```

- p\_sample;
- p\_sample\_loop;
- compute\_loss.

```
def compute_loss(self, x0):
   The simplified noise matching loss corresponding Equation 14 in DDPM paper.
    Input:
       x0 (`torch.Tensor`): clean data
        loss: the computed loss to be backpropagated.
    ####### TODO ########
   batch_size = x0.shape[0]
       torch.randint(0, self.var_scheduler.num_train_timesteps, size=(batch_size,))
        .to(x0.device)
        .long()
   loss = x0.mean()
    return loss
```

Train your model and observe how the generated samples and the loss curve evolve over time.





We will now move on to a more interesting example: image generation.



Samples from our model trained using the AFHQ dataset.

Ugh...
Time to write more code...



Samples from our model trained using the AFHQ dataset.

#### **Bring your codes from Task 1!**

The code needs to be modified, but the changes should be kept minimal.

- q\_sample → add\_noise;
- p\_sample → step;
- compute\_loss → get\_loss.

```
2d_plot_diffusion_todo/ddpm.py
```

```
def add noise(
   self,
   x_0: torch.Tensor,
   t: torch.IntTensor,
   eps: Optional[torch.Tensor] = None,
   A forward pass of a Markov chain, i.e., q(x_t | x_0).
   Input:
       x_0 (`torch.Tensor [B,C,H,W]`): samples from a real data distribution q(x_0).
       t: (`torch.IntTensor [B]`)
       eps: (`torch.Tensor [B,C,H,W]`, optional): if None, randomly sample Gaussian noise in the function.
       x_t: (`torch.Tensor [B,C,H,W]`): noisy samples at timestep t.
       eps: ('torch.Tensor [B,C,H,W]'): injected noise.
                 = torch.randn(x_0.shape, device='cuda')
   ####### TODO ########
   x_t = None
   return x_t, eps
```

image\_diffusion\_todo/scheduler.py

```
@torch.no_grad()
def p_sample(self, xt, t):
   One step denoising function of DDPM: x_t \rightarrow x_{t-1}.
   Input:
       xt (`torch.Tensor`): samples at arbitrary timestep t.
       t (`torch.Tensor`): current timestep in a reverse process.
   Ouptut:
       x_t_prev (`torch.Tensor`): one step denoised sample. (= x_{t-1})
   ####### TODO ########
   if isinstance(t, int):
       t = torch.tensor([t]).to(self.device)
   eps_factor = (1 - extract(self.var_scheduler.alphas, t, xt)) / (
       1 - extract(self.var_scheduler.alphas_cumprod, t, xt)
   ).sqrt()
   eps_theta = self.network(xt, t)
   x_t_prev = xt
   return x_t_prev
```

2d\_plot\_diffusion\_todo/ddpm.py

image\_diffusion\_todo/scheduler.py

2d\_plot\_diffusion\_todo/ddpm.py

image\_diffusion\_todo/scheduler.py

After implementing the functions, start training the model by running

python train.py

The results will be saved under results directory.





Generate the images using the trained model by running

```
python sampling.py \
--ckpt_path {CKPT} --save_dir {SAVE}

√ diffusion-ddpm-09-06-145659

                                                                                     step=0-0.png
                                                                                     step=0-1.png
                                                                                     step=0-2.png
                                                                                     step=0-3.png
                                                                                     step=200-0.png
                                                                                     step=200-1.png
                                                                                     step=200-2.png
                                                                                     step=200-3.png

    step=400-0.png

                                                                                     step=400-1.png
                                                                                     step=400-2.png
                                                                                      step=400-3.png
```

Generate the images using the trained model by running

```
python sampling.py \
--ckpt_path {CKPT} --save_dir {SAVE}
```







Samples generated using our model.



Prepare the data for evaluation by running

python dataset.py (Only once!)

This will create the eval directory under data/afhq.

Do NOT forget to run this. Otherwise, you will get incorrect FIDs!



FID: 229.33834138594412

FID: 10.844529455220403



FID scores across different test sets using the same generated samples.

# What to Submit

Compile the following items into a PDF file: {NAME}\_{ID}.pdf.

#### Task 1

- A screenshot of the loss curve;
- A screenshot of the Chamfer Distance;
- A visualization of samples generated using your DDPM.

#### Task 2

- A screenshot of the computed FID;
- At least 8 images generated using your DDPM.

# What to Submit

Create a single ZIP file {NAME}\_{ID}.zip including:

- The PDF file formatted following the guideline;
- Your code without checkpoints for DDPMs and the Inception Network

Your score will be deducted by 10% for each missing item.

Please check carefully!

# Grading

You will receive up to 20 points from this assignment.

#### Task 1

- 10 points: Achieve CD lower than 20.
- 5 points: Achieve CD greater, or equal to 20 and less than 40.
- 0 point: Otherwise.

# Grading

You will receive up to 20 points from this assignment.

#### Task 2

- 10 points: Achieve FID lower than 20.
- 5 points: Achieve FID greater, or equal to 20 and less than 40.
- 0 point: Otherwise.

# Demo

# Thank You