

Teoria da Computação

Conjuntos, Relações, Funções e Enumeração

versão 1.1

Prof. DSc. Fabiano Oliveira fabiano.oliveira@ime.uerj.br

 Uma família é uma reunião de objetos definidos. Tais objetos são chamados de elementos.

 Um conjunto é uma família com elementos distintos.

- Como expressar conjuntos?
 - Diagrama (oval com bolinhas dentro representando os elementos)
 - A = {<elemento1>, <elemento2>, ...}
 - A = {<domínio de x> | <restrição sobre x> }
 - A = {<fórmula(x)> : <domínio de x> |<restrição sobre x> }

• Exemplos:

- \circ A = { 0, 2, 4, 6, 8, 10 }
- $\circ A = \{ 2i : i \in \mathbb{N} \mid i \leq 5 \}$
- A = { i : i ∈ N | i ≤ 10, i é par }, ou,
 simplesmente, A = { i ∈ N | i ≤ 10, i é par}

- Cardinalidade de um conjunto X, denotado por |X|, é o seu número de elementos.
- O conjunto universo de um conjunto X é o conjunto de todos os possíveis elementos que são permitidos pertencer a X.

- Operações sobre um conjunto:
 - *União*: $x \in A \cup B \Leftrightarrow x \in A \text{ ou } x \in B$
 - Interseção: $x \in A \cap B \Leftrightarrow x \in A \in x \in B$
 - *Diferença*: $x \in A \setminus B \Leftrightarrow x \in A \in x \notin B$
 - Complemento: x ∈ A^C ⇔ x ∈ U \ A
 (onde U é o universo de A)

Dois conjuntos A e B são *disjuntos* se
 A ∩ B = ∅

Relação Útil: Note que A = B ⇔ A ⊆ B e B ⊆
 A

 O conjunto potência de um conjunto A, denotado por P(A), é o conjunto de todos os subconjuntos de A.

Determine:

- P({1, 2})
- |P({1, 2, 3})|
- $|P(\{ N \in \mathbb{N} \mid N \le 340 \})|$

• **Útil**: $|P(A)| = 2^{|A|}$

 Uma tupla é um conjunto ordenado de elementos, denotado por (a₁, a₂, ..., a_N) (onde a ordenação é dada pela ordem dos elementos na tupla)

Exemplo:

- (100, Fabiano, Rua 35, 30000-021)
 pode representar um endereço
- (2, 3, 2, 5, 5) pode representar o resultado de 5 lançamentos sucessivo de um dado
- Aplicação: modelagem de registro de banco de dados

• O *produto cartesiano* de A_1 por A_2 por ... por A_N , denotado por $A_1 \times A_2 \times ... \times A_N$, é $\{(a_1, a_2, ..., a_N) : a_1 \in A_1, a_2 \in A_2, ..., a_N \in A_N\}$.

Determine:

- $\{1, 2\} \times \{3, 4\}$
- {1, 2} × Ø
- {a, b, c} × {c, d} × {e}
- $|A_1 \times A_2 \times ... \times A_N|$

Um conjunto A a uma potência k é
 A × A × ... × A (k vezes)

Determine:

- {cara, coroa}³
- {abc, d}²
- $\{a, b, c\}^1$
- {a, b, c}⁰

 Uma relação é um subconjunto de um produto cartesiano.

Determine:

- $\{(x, y) \in \{1, 2\} \times \{3, 4\} \mid x+y \in par \}$
- { (x, y) ∈ {abc, d}² | x concatenado com y tem comprimento ≥ 4}

Aplicação: Consulta em Banco de Dados

Uma relação é dita ser *n-ária* se for subconjunto de um produto cartesiano envolvendo n conjuntos.
 (Logo, se n=1 a relação é unária, se n=2 é binária, se n=3 é ternária, e assim por diante.)

Uma *função* é uma relação binária f tal que se (x, y) ∈ f e (x, z) ∈ f, então y = z
 Ex.: f = { (x, y) ∈ {1, 2} × {3, 4} | x+y é par } f = { (1, 3), (2, 4) }
 ou, em notação que já conhecem,

(continuação) ou ainda:

```
f: \{1, 2\} \rightarrow \{3, 4\} tal que:
f(1) = 3
f(2) = 4
```

Aplicação: Computação define uma função

 Se f é tal que f(x) não possui imagem, dizemos que f é indefinida no ponto x.

Exemplo:

$$f(x) = sqrt(x) / x$$

Em que pontos f é indefinida para $x \in \mathbb{R}$?

Domínio / Contradomínio / Imagem:

f: A \rightarrow B denota que para todo x \in A, f é definida em x e se f(x) = y, então y \in B

A: domínio de f

B: contradomínio de f

 $\{ f(x) : x \in A \}$: Imagem de f

Determine domínio/contradomínio/imagem:

- f do slide anterior
- g: $\mathbb{N} \to \mathbb{R}$ tal que g(x) = sqrt(x)

Seja f: A → B. Se f(x) ≠ f(y) para todo x ≠ y, então f é *injetiva* (para cada y ∈ B, existe <u>no máximo</u> um x ∈ A tal que f(x) = y)

Determine se são injeções:

f:
$$\mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$; $g: \mathbb{R}^+ \to \mathbb{R}^+$, $g(x) = \operatorname{sqrt}(x)$

Seja f: A → B. Se para todo y ∈ B existe x ∈ A tal que f(x) = y, então f é sobrejetiva (para cada y ∈ B, existe no mínimo um x ∈ A tal que f(x) = y)

Determine se são sobrejeções:

f:
$$\mathbb{N} \to \mathbb{N}$$
, $f(x) = x^2$; $g: \mathbb{R}^+ \to \mathbb{R}^+$, $g(x) = sqrt(x)$

Se f: A → B é injetiva e sobrejetiva, então f é bijetiva

(para cada $y \in B$, existe <u>exatamente</u> um $x \in A$ tal que f(x) = y)

Determine se são bijeções:

f:
$$\mathbb{N} \to \mathbb{N}$$
, $f(x) = x^2$; $g: \mathbb{R}^+ \to \mathbb{R}^+$, $g(x) = \operatorname{sqrt}(x)$

Seja f: A → B bijetiva. A função f⁻¹: B → A tal que f⁻¹(y) = x ⇔ f(x) = y é chamada de inversa de f

Determine a função f⁻¹:

Seja f: A → B e g: B → C. A função h: A → C definida por h(x) = g(f(x)) é chamada de composta, denotada por f o g

Determine a função f o g: A → C:

 Se R é uma relação binária, podemos escrever (x, y) ∈ R ou, simplesmente, x R y

Exemplo:

Seja $\leq \mathbb{N} \times \mathbb{N}$ a relação dos pares de números naturais onde o primeiro é menor que o segundo. Podemos escrever, portanto, que:

 $(3, 4) \in <$, ou que 3 < 4

Seja R uma relação binária de A × A. A
 potência k de R é a relação composta R o R
 o ... o R (k vezes)

Exemplo: Seja ESTRADA a relação de pares de cidades num país que possuem um trecho de estrada ligando-as diretamente. Determine o que representam:

- a relação ESTRADA²
- a relação ESTRADA^k
- o mínimo k para o qual $(x, y) \in ESTRADA^k$

Seja R uma relação binária de A × A. O fechamento reflexivo-transitivo x R* y é uma relação de A × A tal que x R* y ⇔ x R^k y para algum k ∈ N*

Exemplo: Seja ESTRADA a relação do slide anterior. O que representa a relação ESTRADA*?

 Um conjunto A é enumerável se é vazio ou se existe uma função sobrejetora f: N → A

Perguntas:

- N é enumerável?
- Z é enumerável?
- o Q é enumerável?
- R é enumerável?

Teorema:

Se A é um conjunto finito, então A é enumerável.

Dem.: Se A = ∅, então vale o teorema. Caso contrário, dê uma ordem qualquer aos elementos de A. Para todo x ∈ A, defina f(i-1) = x onde i é a posição de x na ordem. Em seguida, para todo i > |A|, defina f(i-1) = y, onde y é o primeiro elemento da ordem. Note que f: ℕ → A é uma sobrejeção, logo A é enumerável.

Teorema:

Um conjunto infinito A é enumerável \Leftrightarrow existe uma função injetora g: A $\to \mathbb{N}$.

Dem.: Seja A um conjunto infinito.

(\Rightarrow) Suponha A enumerável, e portanto existe f: $\mathbb{N} \to A$. Crie g: $A \to \mathbb{N}$ tal que, para todo $y \in A$, $g(y) = \min \{ x \in \mathbb{N} \mid f(x) = y \}$. Note que g é definida em todos os pontos pois f é sobrejetora. Além disso, g é injetora, pois caso contrário, existiriam $y_1 \neq y_2$ tais que $g(y_1) = g(y_2)$ e isto não é possível, pois implicaria $f(x) = y_1$ e $f(x) = y_2$ para algum $x \in \mathbb{N}$, contradizendo f ser função.

Dem.: (continuação)

(**⇐**) Suponha que existe uma função injetora g: $A \to \mathbb{N}$. Crie f: $\mathbb{N} \to A$ tal que, para todo $x \in \mathbb{N}$, se existe $y \in A$ tal que g(y) = x, então defina f(x) = y. Caso contrário, defina f (x) igual a um elemento arbitrário de A. Note que f é sobrejetora pois A é o domínio de g. Além disso, f está definida em todos os pontos.

Teorema:

Um conjunto infinito A é enumerável \Leftrightarrow existe uma bijeção f: A $\to \mathbb{N}$.

Dem.: Seja A um conjunto infinito.

(**⇐**): Suponha que existe uma bijeção f: A $\rightarrow \mathbb{N}$. Logo, a bijeção f⁻¹: $\mathbb{N} \rightarrow A$ mostra que A é enumerável.

(\Rightarrow) Suponha A enumerável, e portanto existe f: $\mathbb{N} \to A$. Crie g: $A \to \mathbb{N}$ tal que, para todo $y \in A$, $g(y) = \min \{ x \in \mathbb{N} \mid f(x) = y \}$. Como visto em teorema anterior, g é injetora. Defina g': $A \to \mathbb{N}$ tal que g'(y) = i, então y é elemento que possui a (i+1)-ésima menor imagem em g. Logo, g' é definida em todos os pontos e é bijetora.

• **Exemplo**: Z é enumerável.

Seja f: $\mathbb{N} \to \mathbb{Z}$ tal que f(x) = -x/2, se x é par, e f(x) = (x+1)/2, se x for ímpar. Logo, f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2, f(4) = -2, f(5) = 3, f(6) = -3, etc. Claramente, f é uma sobrejeção e definida em todos os pontos. Logo, \mathbb{Z} é enumerável.

• **Exemplo**: N × N é enumerável.

Defina sobrejeção f: $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ com o seguinte algoritmo:

```
procedimento Enumera() n \leftarrow 0 para \ i \leftarrow 0 \ até \approx faça para \ j \leftarrow 0 \ até \ i \ faça defina \ f(n) = (i-j,j) n \leftarrow n+1 fim-para fim-para fim-procedimento
```


Exercício: ② é enumerável.
 (Use como base o exemplo anterior.)

Teorema:

P(ℕ) não é enumerável.

Dem.: DIAGONALIZAÇÃO:

Por absurdo, suponha que existe sobrejeção f: $\mathbb{N} \to P(\mathbb{N})$. Seja $X = \{ j \in \mathbb{N} \mid j \notin f(j) \}$. Por definição, $X \in P(\mathbb{N})$. Note que para todo $k \in \mathbb{N}$, ou:

- k ∈ f(k) e, portanto, k ∉ X, ou
- $k \notin f(k)$ e, portanto, $k \in X$

Logo, f(k) sempre difere de X em ao menos um elemento. Portanto, X não pertence a imagem de f, o que é absurdo.