449 Homework #4

- 1-2) Look up the function $\xi(r)$ in the spin-orbit Hamiltonian $H_{\rm so}=\xi(r)\,\boldsymbol{L}\cdot\boldsymbol{S}$ for hydrogen. Be sure to write it in atomic units. Calculate the matrix $H_0+H_{\rm so}$ using the $2\mathrm{p}...5\,p\,P_j$ states as a basis. Find the $2\,pP_{3/2}-2\,pP_{1/2}$ energy splitting. Compare to what you get by simply calculating $\langle H_{\rm so} \rangle$ and subtracting.
- 3-5) Townsend 11.1, 5, 7.
- 6) Use appropriate Clebsch-Gordan coefficients to calculate the g_j factors for a 2D_j state.
- 7) The $97d^2D_j$ states of Rb have a fine-structure splitting of $h \times 12.2$ MHz. Calculate the energy levels as a function of magnetic field, and make a plot showing both the exact results and the approximate answers from 5).