Защита информации

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 8 - Криптографические хэш функции

Хэш функции

Хэш на основе функции сжатия

HMAC

Опр.

детерминированная ф-я H:M o T - хэш функция, если $|M|\gg |T|$

Опр.

Коллизия для H - это пара $m_0, m_1 \in M: H(m_0) = H(m_1)$

Опр.

Функция H наз. *устойчивой к коллизиям*, если для любого явно описанного алгоритма $A \in \operatorname{PPT}$,

 $Adv_{CR}[A,H] = P(A$ дает коллизию для $H) < \varepsilon(log(|T|))$ пренебр. малая.

На практике нужно $\forall A: time(A) < N$ $Adv_{CR}[A,H] = P(A$ дает коллизию для $H) < \varepsilon = const$

Следствие 1: если H уст. к коллизиям, по паре (m, t) трудно найти $m_1: t = H(m_1)$.

Следствие 2: если H уст. к коллизиям, трудно найти два сообщения $m, m_1: H(m) = H(m_1)$

Опр.

Функция H наз. *стойкой к восстановлению прообраза*, если по t трудно найти прообраз m: t = H(m).

$$\forall A \in \text{PPT } Adv_{PI}[A, H] = P(t \xleftarrow{R} T \Rightarrow A(t) = x : H(x) = t) < \varepsilon$$

Утверждение

Если Н стойкая к коллизиям, то она стойкая к восстановлению прообраза.

Док-во

$$x \stackrel{R}{\leftarrow} M$$
, $H(x)=t$. Пусть $A(t)=x':H(x')=t$. Т.к. $|M|\gg |T|$, с высокой вер-ю $x'\neq x$.

(рисунок)

Опр.

Функция Н наз. криптографической хэш функцией, если она стойкая к коллизиям и к восстановлению прообраза.

Утверждение

 \forall хэш функции $H:M \to \{0,1\}^n$ за время $O(2^{n/2})$ можно найти коллизию с вер-тью более 0.5.

Док-во

Применить парадокс дней рождения.

Скорость хэш функций

AMD Opteron, 2.2 GHz, Linux, Crypto++ v5.6

<u>function</u>	digest <u>size (bits)</u>	Speed (MB/sec)	generic attack time
SHA-1	160	153	280
SHA-256	256	111	2 ¹²⁸
SHA-512	512	99	2 ²⁵⁶
	SHA-1 SHA-256	function size (bits) SHA-1 160 SHA-256 256	function size (bits) Speed (MB/sec) SHA-1 160 153 SHA-256 256 111

(Лучший алгоритм поиска коллизий для SHA-1 требует вычисл. хэша для 2^{52} сообщ.)

Поиск коллизий на квантовом компьютере (для справки)

	обычн. комп.	квант. комп.
Блочн. шифр C :	O(K)	$O(K ^{1/2})$
$K \times X \rightarrow X$		
перебор ключей		
Хэш $H:M o T$,	$O(T ^{1/2})$	$O(T ^{1/3})$
поиск коллизий		

Раздел 8 - Криптографические хэш функции

Хэш функции

Хэш на основе функции сжатия

HMA(

Конструкция Меркля-Дамгарда (Merkle-Damgard) - построение хэш функций на основе функции сжатия

По функции сжатия $h: T \times X \to T$ постр. хэш функцию $H: X^{\leq L} \to T$

PB - дополнение до длины блока, $(10..0||msg_len)$, длина поля msg_len - 64 бита

Теорема 1

если h устойчива к коллизиям, то H - тоже.

Т.е., чтобы построить устойч. к коллизиям хэш функцию, достаточно построить устойч. к коллизиям функцию сжатия.

Док-во

покажем, что коллизия h необх. для коллизии H, т.е. коллизия $H \Rightarrow$ коллизия h. Пусть $H(M) = H(M'), \ M \neq M'$. Построим коллизию для h.

Док-во (Продолжение)

В нашей конструкции для M и M^\prime имеем две

последовательности

$$IV = H_0$$
 H_1 ... H_t $h(H_t, M_t||PB) = H_{t+1} = H(M)$
 $IV' = H'_0$ H'_1 ... H'_r $h(H'_r, M'_r||PB') = H'_{r+1} = H(M')$

Справа
$$h(H_t, M_t||PB) = H_{t+1} = H'_{r+1} = h(H'_r, M'_r||PB')$$

Если $H_t \neq H_r'$ или $M_t \neq M_r'$ или $PB \neq PB'$, то имеем коллизию для h на последнем шаге.

Док-во (Продолжение)

Иначе имеем $H_t = H_r' \& M_t = M_r' \& PB = PB'$, след-но t = r.

След-но на предыд. шаге величины были равны:

$$h(H_{t-1}, M_{t-1}) = H_t = H'_t = h(H'_{t-1}, M'_{t-1})$$

Снова, если $H_{t-1} \neq H'_{t-1}$ или $M_{t-1} \neq M'_{t-1}$, то имеем коллизию для h.

Док-во (Продолжение)

След-но на предыд. шаге величины были равны:

$$H_{t-1} = H'_{t-1} \ \& \ M_{t-1} = M'_{t-1}$$

Пройдем по всем шагам, тогда: либо мы встретим коллизию для h,

либо $\forall i \; M_i = M_i'$, т.е. M = M' - против. с тем, что $M \neq M'$.

Ч.т.д.

Функция сжатия на основе блочного шифра

$$(E,D)$$
 - блочный шифр, $E,\ D: K imes \{0,1\}^n o \{0,1\}^n$

Если ф-я сжатия h(H, m) := E(m, H),

то она имеет коллизии (H,m),(H',m'): случ. одноблочные m,m', пусть $H'=D(m',E(m,H)) \Rightarrow h(H',m')=E(m',H')=h(H,m).$

Не годится для конструкции М.-Д.

Опр.

Функция сжатия Дэвиса-Мейера (Davies, Meyer) - это $h(H,m)=E(m,H)\oplus H.$

Теорема 2

Пусть (E,D) - идеальный шифр (т.е. это |K| различных перестановок множества M). Тогда для того, чтобы найти коллизию функции Дэвиса-Мейера h(H,m)=h(H',m'), необх. не менее $O(2^{n/2})$ вычислений шифра.

Т.е. достигается теоретическая граница. Без док-ва.

Другие варианты с одним \oplus не уст. к коллизиям. Без док-ва.

(*) С двумя \oplus многие варианты уст. к коллизиям, но это медленнее на целый \oplus , напр.

$$h(H, m) = E(m, H) \oplus H \oplus m$$

$$h(H, m) = E(H \oplus m, m) \oplus m$$

Пример

X/ф SHA-256 (2001):

- Конструкция Меркля-Дамгарда
- Функция сжатия Дэвиса-Мейера
- Блочный шифр SHACAL-2

Функция сжатия, основанная на задаче из класса NP

Выберем случайное простое число p длиной 2000 бит и случайные целые $1 \le u, v \le p-1$.

Пусть $h(H_i, m_i) = u^{H_i} \cdot v^{m_i} \mod p$ (операции в конечном поле \mathbb{Z}_p)

Утверждение

Чтобы найти коллизию для h, необх. найти дискретный логарифм нек. элемента из \mathbb{Z}_p , а это - задача из класса NP.

Недостаток h: медленно работает.

Раздел 8 - Криптографические хэш функции

Хэш функции

Хэш на основе функции сжатия

HMAC

MAC на основе хэш функции, устойчивой к коллизиям Общий вид.

Пусть $I=(S,V): K\times M\to T$ - МАС короткого сообщения, напр., AES для неск. блоков. Пусть $H:M^{big}\to M$.

Определим
$$I^{big}=(S^{big},V^{big}):K imes M^{big} o T:S^{big}(k,m)=S(k,H(m)),\ V^{big}(k,m,t)=V(k,H(m),t)$$

(рисунок)

Пример

 $S(k,m) = AES_{2-block-cbc}(k, SHA256(m))$ - криптостойкий MAC.

Теорема 3 (Достаточность)

Если I - криптостойкий MAC и H^{big} устойчивая к коллизиям x/φ , то I^{big} - криптостойкий MAC.

Док-во (Набросок. От противного.)

Пусть $y := H(m), \ t := S(k, y) = S(k, H(m)).$

- 1) A может найти $m' \neq m$: H(m') = H(m). Против.: H устойч. к коллизиям.
- 2) A не может найти коллизию H, но может найти новую верную пару (m,t) для I^{big}
- \Leftrightarrow A может найти новую верную пару (y,t) для I. Против.:

МАС / - криптостойкий.

Ч.т.д.

(рисунок)

Теорема 4 (Необходимость)

Если I^{big} криптостойкий, то H устойчивая к коллизиям $\mathbf{x}/\mathbf{\phi}$.

Док-во

```
(От противн.) Пусть злоум-к может найти коллизию m_0 \neq m_1: H(m_0) = H(m_1). Тогда S^{big} не криптостойкий:
```

- 1) злоум-к получает $t=S(k,m_0)$
- 2) злоум-к предъявляет пару (m_1, t) . Ч.т.д.

HMAC - Hash-MAC

MAC на основе x/ф SHA-256

Хэш Меркля-Дамгарда, устойч. к коллизиям. Построим МАС на его основе.

Примитивно: S(k,m) = H(k||m) или k вместо IV...

Проблема: $S(k,m) \Rightarrow S(k,m||PB||w) = h(w,S(k,m))$

Опр.

HMAC: $S(k, m) = H(k \oplus opad || H(k \oplus ipad || m))$. H - это SHA256.

opad, ipad - разные, открытые, одноблочные константы.

 $\Rightarrow k_1, k_2$ разные. (Похоже на СВС-МАС.)

 $\hat{H}:=H(k_1,\cdot)$ - SHA256, параметризованная секр. ключом $k_1.$ Устойчивая к коллизиям по m.

 $h(k_2, \cdot)$ - ф. сжатия Д.-М., уст. к коллизиям по m.

MAC \hat{h} : $S(k_2, m) = h(k_2, m)$.

Теорема 5

Пусть \hat{H} - устойчивая к коллизиям х/ф. Пусть \hat{h} - криптостойкий МАС для сообщений фикс. длины. Тогда HMAC - криптостойкий МАС для сообщений произв. длины.

Док-во (Набросок)

Аналогично тому, что было ранее для МАС.

Срок жизни ключа: НМАС криптостойкий при $q^2/|T|<arepsilon$

HMAC используется: в TLS/SSL и во мн. др. сетевых протоколах.

Атаки на HMAC по сторонним каналам Side-channel attacks

по времени выполнения сравнения. Тривиальный программный код:

```
def Verify(key, msg, t):
  return t == HMAC(key, msg)
```

Размер тэга - 256 бит. Сравнение ленивое, побайтно.

Злоум-к за 256 запросов может узнать правильное значение первого байта тэга. Потом - второго байта...

Поэтому - решение:

Напишем код, который принудительно сравнивает все байты... компилятор может соптимизировать!

```
def Verify(key, msg, t):
  mac = HMAC(key, msg)
  return HMAC(key, mac) == HMAC(key, t)
```

Злоум-к не знает, какие значения сравниваются.

Литература к лекции

нет