

Syntax Applications

- Syntax checking in programming languages
 - Check syntactic correctness
- Most NLP tasks
 - Feature generation for NLP ML-based tasks
- Machine Translation
 - Language to Language syntactic mapping

Syntax aims

- · Study the relational structures among words
- · Define how words are combined to generate "correct" sentences

Go to the kitchen

The to kitchen go

SHRI - Syntax

Syntax Basics

- Grammar: declarative model that defines a language
- Parsing: process of deciding whether a sentence belongs to the language
 - A syntactic structure can then be associated to the sentence

SHRI - Syntax

ercoledì 5 dicembre 2018

ore 2018

Constituent-based representations

- Based on the concept of constituent
- Constituent: span of words (*syntagm*) composing an atomic syntactic structure

[Bring] [me] [the mug] [from the table]

SHRI - Synt

ercoledì 5 dicembre 2018

Outline

- · Constituent-based representation
 - Chomsky hierarchy
 - Ambiguities
 - Parsing
 - · Deterministic vs Statistical
- · Dependency-based representation
 - Dependency relations
 - Parsing

SHRI - Synta

nercoledì 5 dicembre 2018

Constituents

- Sentences (S)
 - [the book is on the table]
- Noun Phrases (NP)
 - [the book] is on the table
- Verb Phrases (VP)
 - the book [is] on the table
- Prepositional Phrases (PP)
 - the book is [on the table]
- ..

Needed to properly express the structure of sentences:

e.g. NP followed by VP

SHRI - Syntax

rcoledì 5 dicembre 2018

How to recognize a constituent?

- A constituent can be:
 - Moved: you can move a constituent while preserving a correct syntactic structure
 - Take the mug from the table [to the tray] → Take the mug [to the tray] from the table
 - Isolated: you can ask questions about a constituent of the sentence
 - Take [the mug] from the table to the tray → What do I need to move? [the mug]
 - Coordinated
 - Take [the mug] and [the glass] from the table to the tray

SHRI - Syntax

ercoledì 5 dicembre 2018

q

What is the goal of a syntactic model?

- Identify constituents
 - [Take] [the mug] [to the kitchen]
- Recognize the correct syntactic structure

$$\begin{split} \text{[[Take]$_{Verb}$ [[the]$_{Det}$ [mug]$_{Noun}$_{NP}$ [[to]$_{Prep}$ [[the]$_{Det}$ \\ & [kitchen]$_{Noun}$_{NP}$_{PP}$]_{S} \end{split}$$

SHRI - Syntax

rcoled) 5 dicembre 2018

40

The theoretical foundation

Noam Chomsky

- Born December 7, 1928
- Currently Professor Emeritus of linguistics at MIT
- Created the theory of generative grammars

Probably the main contributor to modern linguistics

SHRI - Syntax

mercoledì 5 dicembre 2018

11

Preliminary Definitions

- Language
 - "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols."
- Grammar
 - "A grammar can be regarded as a device that enumerates the sentences of a language."
- A grammar generates a language
- A language is defined by a grammar
- Thus, a language L is the set of "strings" that can be generated by the grammar G

SHRI - Syntax

rcoledi 5 dicembre 2018

-

Grammars

A grammar is a tuple $G = (N, \Sigma, P, S)$ where:

- N is a finite set of non-terminals
- Σ is a finite set of terminals and is disjoint from N
- P is a finite set of production rules of the form • $w \in (N \cup \Sigma)^* \rightarrow w \in (N \cup \Sigma)^*$
- $-S \in N$ is the start symbol

SHRI - Syntax

nercoledì 5 dicembre 2018

13

The Chomsky hierarchy

 Languages have different complexity, depending on the production rules

Grammar	Languages	Automaton	Production rules	recursively enumerable
Type-0	Recursively enumerable	Turing machine	$\alpha \to \beta,$ $ \alpha \ge 1$ $ \beta \ge 0$	context-sensitive context-free regular
Type-1	Context-sensitive	Linear-bounded non- deterministic Turing machine	$\alpha \to \beta$, $ \alpha \ge 1$ $ \beta \ge 1$ $ \alpha \le \beta $	
Type-2	Context-free	Non-deterministic pushdown automaton	$A \to \beta$, $ \beta \ge 1$	
Type-3	Regular	Finite state automaton	$A \rightarrow s$ or $A \rightarrow sB$	$s \in \Sigma$ $A, B \in \mathbb{N}$
				$\alpha, \beta \in \{N \cup \Sigma\}^+$
	SHRI - Syntax	mercoledì 5 dicembre 2018		15

Definition of language through a grammar

Let $(A \to \beta)$ be a production rule and $\alpha, \gamma \in \{N \cup \Sigma\}^*$ then $\alpha A \gamma$ directly derives $\alpha \beta \gamma$

Let $\alpha_1, ..., \alpha_n$ be a sequence of direct derivations such that α_i directly derives α_{i+1} then

 α_1 derives α_n

The **language generated by a grammar** is the set of strings of terminal symbols that can be derived from the start symbol *S*.

SHRI - Syntax

ovedì 6 dicembre 2018

14

The Chomsky hierarchy vs NLP

- Context-sensitive languages
 - German
 - Dutch
 - Turkish
- Context-free languages
 - English
 - Italian
 - Most of programming languages
- Regular languages
 - Most of the dialogic interactions

SHRI - Syntax

ercoledì 5 dicembre 2018

..

SHRI - Syntax

Syntactic ambiguity

- Coordination ambiguity
 - different sets of phrases can be conjoined by a conjunction

I saw old men **and** women

- Attachment ambiguity
 - a constituent can be attached to the parse tree at more than one place

We saw the Eiffel Tower flying to Paris

SHRI - Syntax

mercoledì 5 dicembre 2018

21

The Noun Phrase: NP → Det Nominal

- The determiner: a glass, ..., Daniele's glass,
 - Det → simpledet | NP's VP | "none"
- The Nominal:
 - Nominal → Before-Noun Noun After-Noun
- Before the Noun: two friends, the tallest girl, ...
 - Cardinal/ordinal numbers, quantifiers, adjectives
- · After the Noun:

Prepositional phrases
 Non-finite clauses
 Relative clauses
 all people from Spain students arriving from SPV
 colleagues that do research

SHRI - Syntax

mercoledì 5 dicembre 2018

23

Type of syntactic structures

Declarative

– S → NP VP A flight left

Imperative

 $-S \rightarrow VP$ Stop!

Interrogative (Yes/No)

– S → Aux NP VP Does the bus stop here?

Interrogative (Wh)

– S → Wh-NP VP Which flights landed tonight in FCO?

– S → Wh NP Aux NP VP Which flight do you prefer?

SHRI - Syntax

ercoledì 5 dicembre 20

22

The Verb Phrase: NP → Verb [NP] [PP]

Many variations beyond the simple structure:

Sentential complements: I want to go home

VP → Verb S

Compatibility verb-complement:

- Classical Transitive/Intransitive
- Modern English 100+ Subcategories
 - Verb-with-NP-complement → find | leave | ...
 - Verb-with-S-complement → think | believe | ...

SHRI - Syntax

ercoledì 5 dicembre 2018

Coordination

Conjunctions like and, or, but:

- NP → NP and NP
 - I have the bag and the PC
- Nominal → Nominal and Nominal
 - I know the title and editor
- VP → VP and VP
 - The flights leaving FCO and arriving in JFK
- $S \rightarrow S$ and S
 - I like pears and I buy them

 $X \rightarrow X$ and X

SHRI - Syntax

mercoledì 5 dicembre 2018

25

Treebanks

Treebanks are linguistic resources that provide corpora of syntactically annotated sentences (needed for ML parsing)

```
((S
  (NP-SBJ (DT That)
    (JJ cold) (, ,)
                                     (NP-SBJ The/DT flight/NN )
    (JJ empty) (NN sky) )
                                     (VP should/MD
  (VP (VBD was)
                                       (VP arrive/VB
    (ADJP-PRD (JJ full)
                                        (PP-TMP at/IN
      (PP (IN of)
                                           (NP eleven/CD a.m/RB ))
        (NP (NN fire)
                                         (NP-TMP tomorrow/NN )))))
          (CC and)
          (NN light) ))))
  (. .) ))
                                                   (b)
```

Example from PennTreebank

SHRI - Syntax

mercoledì 5 dicembre 2018

7

Dealing with morphology

The book **is** on the table
The book **are** on the table

- · Two solutions:
 - Grammar expansion

S → 3sgNP 3sgVP 3sgNP → Det sgNoun

- Parametrization

 $S(x) \rightarrow NP(x) VP(x)$ $NP(x) \rightarrow Det Nom(x)$ $Nom(x) \rightarrow Nom(x) Noun(x) | Noun(x)$ Noun(sg) \rightarrow flight | plane ... Noun(pl) \rightarrow flights | planes ... V(sg) \rightarrow leaves | ... V(pl) \rightarrow leave | ...

SHRI - Syntax

giovedì 6 dicembre

26

Parsing for Constituency-based representation

Parsing(string) is a decision procedure that returns:

- **yes** (and the corresponding parsing tree), if *string* belongs to the language,
- no, otherwise.

Different possible solutions:

- Deterministic
 - Grammar
- Statistical
 - Grammar + probabilities

SHRI - Syntax

ovedi 6 dicembre 2018

Deterministic parsing

It relies just on the predefined $S \rightarrow NP VP$ grammar and on an algorithm $S \rightarrow AUX NI$

S → Aux NP VP
S → VP
NP → Det Noun
NP → PropN
VP → Verb

Algorithm strategy

Top-Down VS Bottom-up

 Depth-First VS Breadth-First
 Left-To-Right VS Right-To-Left

Agenda

Dynamic Programming

- Depth-First VS Breadth-First

Det → that | this | a

Noun → book | flight | meal | money Verb → book |include | prefer Aux → does PropN → Houston | TWA

"Does this flight include a meal?"

SHRI - Syntax

rcoledì 5 dicembre 2018

29

Deterministic NLP parsers for CFG

- CYK parser (1967)
 - Cocke-Younger-Kasami
 - Requires Normal Form $(A \rightarrow B \ C \text{ or } A \rightarrow a)$
 - bottom-up and dynamic programming
- Earley parser (from 1968)
 - mixed and dynamic programming

SHRI - Syntax

iovedì 6 dicembre 2018

30

Statistical Constituency-based representation

- Syntactic ambiguity can be alleviated through probabilistic parsing
- Idea: compute the probability of each interpretation and choose the most likely one
- How? Probabilistic Context-Free Grammar (PCFG)

SHRI - Syntax

mercoledì 5 dicembre 2018

Probabilistic Context-Free Grammars

Probabilistic augmentation of context-free grammars

· Each production rule is paired with a probability

$$P(A \rightarrow \beta)$$

so that

$$\sum_{\beta} P(A \to \beta) = 1$$

SHRI - Syntax

ercoledì 5 dicembre 2018

Example of PCFG Grammar Lexicon $S \rightarrow NP VP$ $Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$ $S \rightarrow Aux NP VP$ $Noun \rightarrow book [.10] \mid flight [.30]$ $S \rightarrow VP$.05 | meal [.015] | money [.05] $NP \rightarrow Pronoun$.35 | flight [.40] | dinner [.10] .30] $Verb \rightarrow book [.30] \mid include [.30]$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$.20] | *prefer* [.40] $Pronoun \rightarrow I[.40] \mid she[.05]$ $NP \rightarrow Nominal$ $Nominal \rightarrow Noun$ | *me* [.15] | *you* [.40] *Proper-Noun* → *Houston* [.60] $Nominal \rightarrow Nominal Noun$ $Nominal \rightarrow Nominal PP$ | *NWA* [.40] $VP \rightarrow Verb$ $Aux \rightarrow does [.60] \mid can [40]$ $VP \rightarrow Verb NP$ Preposition \rightarrow from [.30] | to [.30] $VP \rightarrow Verb NP PP$ | on [.20] | near [.15] $VP \rightarrow Verb PP$.15] | through [.05] $VP \rightarrow Verb NP NP$.05] $VP \rightarrow VP PP$.15] $PP \rightarrow Preposition NP$ [1.0]

Dependency-based representation

- · Used in most of the modern syntactic parsers
 - Particularly suited for languages with too much flexibility of words order
 - Czech
 - Closer to semantic formalisms
- Focus:
 - Constituent-based grammars: constituents (or syntagms)
 - Dependency-based grammars: dependency relations among words of the sentence

SHRI - Syntax

mercoledì 5 dicembre 2018

35

PCFG for disambiguation

 Given a parse tree T and a sentence S, their joint probability is defined as

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

 Generate all the parse trees and choose the one with highest probability

$$T^*(S) = \operatorname*{argmax}_{T:T \to S} P(T, S)$$

CYC parsers can be extended

SHRI - Syntax

ercoledì 5 dicembre 2018

34

Dependency-based representation

I prefer the morning flight through Denver

- Tree nodes are words (instead of constituents)
- Each connecting (directed!!) arc is labeled with the type of syntactic relationship
 - drawn from a fixed dictionary of grammatical relations

SHRI - Syntax

rcoledì 5 dicembre 2018

- · Each dependency relation is composed of:
 - Label: defines the nature of the dependency relation
 - Head: the word governing the relation (main role of a constituent)
 - Dependent: the direct/indirect dependent of the relation (rest of the words of a constituent)

SHRI - Svnta:

nercoledì 5 dicembre 20

37

Parsing dependency-based representation

There are two main approaches to dependency parsing:

Dynamic Programming:

Optimization-based approaches that search a space of trees for the tree that best matches some criteria

- Treat dependencies as constituents, algorithm similar to CKY
- Examples: MST (Ryan McDonald), Bhonet's parser

Deterministic parsing:

Shift-reduce approaches that take actions based on the current word and state (use classifier to predict next parsing step)

- Example: Malt parser (Joakim Nivre)
- More recently replaced by NN (e.g. SPACY)

SHRI - Syntax

mercoledì 5 dicembre 2018

39

Dependency relations

Relation	Description	Relation	Description
root	Word governing the sentence	case	Prepositions, postpositions
nsubj	Nominal subject	conj	Conjunct
dobj	Direct object	iobj	Indirect object
nmod	Nominal modifier	amod	Adjectival modifier
det	Determiner		

SHRI - Syntax

nercoledì 5 dicembre 201

38

Tools

- Stanford Parser (provides constituent and dependency trees)
- Charniak Parser (constituent parser with discriminative reranker)
- Berkeley Parser (constituent parser with latent variables)
- MST parser (dependency parser, needs POS tagged input)
- Bohnet's parser (dependency parser, needs POS tagged input)
- Malt parser (dependency parser, needs POS tagged input)

SHRI - Syntax

ercoledì 5 dicembre 2018

...

References

 Daniel Jurafsky and James H. Martin. Speech and Language Processing. https://web.stanford.edu/~jurafsky/slp3/

Chapter 10 (excluding 10.5 and 10.6)

Chapter 11.1

Chapter 12.1

Chapter 13.1,2,3

SHRI - Syntax

giovedì 6 dicembre 201