

디지털 공학, 집적회로 임베디드 시스템

2016년 3월 25일

트랜지스터(transistor)의 발명

- 1947년 12월 23일, 점접촉식 트랜지스터 발명
- 미국 AT&T Bell 연구소, Barden, Shockley, Brattain, (1956년 노벨 물리학상 수상)

진공관

● 전자회로

- 회로망
- 아날로그 전자회로
- 디지털 전자회로

- 디지털 시스템이 추구하는 목표
 - 더 저렴하게(가격), 더 작게(크기, 부피), 더 가볍게(무게), 더 빠르게(동작속도), 더 전기를 적게 소모(저전력)
 - → 집적회로(IC) 기술이 목표를 가능하게 함.

집적회로 (IC, Integrated Circuit)

1971년, 인텔의 4004 (4-비트 마이크로 프로세서)
 세계 최초의 마이크로 프로세서
 108KHz 동작, 2300개의 트랜지스터 내장

집적회로 (IC, Integrated Circuit)

최근, 인텔 i7-980X CPU (6 Core 프로세서)
 3.33GHz 동작, 11억 7천개의 트랜지스터 내장
 socket 1366

- * 50만개 분량 =
- * 3만배 속도 =

2013년

반도체 메모리

- 황의 법칙이란?
 - 메모리 반도체의 집적도가 해마다 2배씩 증가
 - 황창규 삼성전자 반도체총괄 사장, 2002년 국제반도체 학술회의에서 주장. (현재, KT 회장)
 - 1,999년 256Mb 낸드플래시, 2,000년 512Mb, 2006년 32Gb
 - 2,007년 64Gb 낸드플래시 개발
- 메모리칩
 - 30 나노 공정의 64Gb 낸드플래시 * 16개 = 128GB 메모리 카드
 - 트랜지스터 선폭 : 30 * 10⁻⁹ m
 - 일간신문 800년치 저장, 또는 DVD 급 영화 80편(124시간) 저장 가능

메모리 반도체 산업 (세계 1위)

삼성전자 세계최초 20나노급 D램 양산

반도체 전쟁서 日·대만 초토화시킬 무기 확보

◆20나노 D램 반도체 양산으로 40% 원가 절감 ◆ "마지막 치킨게임의 승자는 삼성전자와 하이닉스"

43조원 규모 세계 D램 시장 한국 지배체제 더 굳어질듯 "최종 승자는 삼성·하이닉스" 나노 기술
1나노미터는 10억분의 1m다.
즉 사람 머리카락의 1만분의 1 굵기로 반도체 회로를 그려넣는 초미세 가공 기술이다. 반도체는 회로선 폭이 가늘 어질수록 원가가 절감되고 에너지 효 육도 높아진다.

2011.9.22 (조선일보)

반도체 제조공정

- IC 칩은 Fabs 이라고 불리는 거대 공장에서 제조
- 축구장 크기의 청정룸(clean room)을 보유

컴퓨팅 패러다임의 변화

- 현재, 모바일 컴퓨팅 시대
- 미래 기술로의 정확한 예측 및 신속한 전환이 필요

컴퓨터, 임베디드 시스템

- 컴퓨터
 - 범용 시스템
- 하드웨어
 - CPU(Intel, AMD)
- 운영체제
 - Windows, Linux 등
- 응용 프로그램
 - 다수 사용자 프로그램 전용 제어 프로그램

- 임베디드 시스템
 - 특정 업무처리 전용
- 하드웨어
 - ARM Core
- 운영체제
 - RTOS, Linux
- 응용 프로그램

스마트폰의 구성 요소

- 하드웨어
 - AP(Application Processor, CPU 역할), 통신모듈, 안테나, 메모리, 디스플레이, 카메라, 영상모듈, 배터리 등
- 운영체제
 - 안드로이드, iOS 등
- 응용 프로그램
 - 다수의 앱(App)
 - Java, C# 등 프로그래밍 언어

모바일 AP(Application Processor)

• 모바일 AP 아키텍쳐를 제공하는 회사

• 코어를 제조하는 대표적인 회사

엑시노스7420: 갤럭시S6

iPhone 시리즈

갤럭시 탭 10.1, 옵티머스 2X

갤럭시S2, 베가레이서 스냅드래곤 810

OMAP

갤럭시 넥서스, 모토로라 레이져

최신 반도체 AP 기술 동향

- 64비트 AP 엑시노스 7420 : 14nm FinFET 공정
- 20nm 공정을 사용하는 32비트 기존 AP에 비해
 40 ~ 50% 성능 향상, 35% 정도 배터리 효율 개선

스마트폰에 사용되는 주요 IC (아이폰 4)

- A4(삼성전자): ARM Cortex A8 0.8~1GHz CPU + PowerVR SGX535 GPU
- 듀얼밴드 GSM/GPRS 지원을 위한 SKY 77542 Tx-Rx iPAC FEM(Skyworks)과
 GSM/GRPS 을 지원하기 위한 SKY77541(Skyworks)
- 플래시 메모리 K9PFG08(삼성전자), 오디오 코덱 338S0589(Cirrus Logic), 마그네
 틱 센서 AKM8975, 터치스크린 컨트롤러 343S0499 칩셋(Texas Instruments)
- 와이파이, 블루투스 BCM4329FUBG, GPS 리시버 BCM4750 (Broadcom)
- 그밖에 다수

Apple AP A4, A5

- iPhone 4 AP(7.3mm * 7.3mm)
- iPhone 5 AP(10.09mm * 12.15mm)

터치스크린 컨트롤러

- 터치스크린 컨트롤러 343S0499 칩셋(Texas Instruments)
- 초기, 5개 칩 → 이후, 3개 칩 → 최근, 1칩 (3mm*3mm)

우리나라 5대 수출품

- (2009년) 선박, **이동통신 단말기**, **반도체**, **평판 디스플레이**, 자동차
- (2010년) **반도체**, 선박, **이동통신 단말기**, 석유제품, **자동차**
- (2011년) 선박, 석유제품, **반도체**, **자동차**, **평판 디스플레이**
- (2012년) 석유제품, **반도체**, **자동차**, 선박, **평판 디스플레이**
- (2013년) **반도체**, 석유제품, **자동차**, 석유화학, 일반기계
- (2014년) **반도체**, 석유제품, **자동차**, 일반기계, 석유화학 (통계청 자료)

현재, 우리나라를 먹여 살리는 기술 : **전자공학** 앞으로는 ?

인간이 추구하는 삶

● 편안하고, 즐겁게, 오래 살기

- 통신 및 전자기술 산업
- 엔터테인먼트 및 예술 산업
- 의학, 바이오 및 유전자 기술 산업

미래산업을 바꿀 7대 혁신기술

- 기존 산업질서를 바꾸고, 다른 산업에 영향을 미치면서, 소비자의 행동과 사고를 변화시킬 기술 가운데, 10년 내 구현될 가능성이 큰 기술.
 - ❖ 웨어러블 컴퓨터
 - ❖ 3D 프린팅 기술
 - ❖ 자동주행차
 - ❖ 상황인식 기술
 - ❖ 초경량 소재
 - ❖ 유전자 치료제
 - ❖ 포스트 배터리

(2013년 5월 2일 삼성경제연구소)

웨어러블 컴퓨터

 다양한 정보를 수집・분석하는 컴퓨터를 신체나 의복에 착용하는 것으로 헬스케어 산업과 증강현실 광고시장을 확대할 것으로 전망됨. 시장 규모는 2016년 60억달러에 이를 것으로 추산되며, Google 등 스마트폰 업체들이 적극 참여하고 있음.

Google 안경

3D 프린팅 기술

 3차원 설계도에 따라 한 층씩 소재를 쌓아 올려 입체 형태의 제품을 만드는 기술로 맞춤형 제조가 가능함. 람보르기니는 시제품 제작에 4개월간 4만달러가 들던 것을 3D프린터를 도입해 20일간 3,000달러로 줄였다.

자동 주행차

 스스로 위치와 상황을 감지해 속도와 조향을 제어하는 자동차로 10년 내 생산이 가능할 것으로 보인다. 교통인프라 · 보험 · 의료 · 디자인 산업 등에 파급효과가 크다. 특히, 시각장애인을 위한 이동 서비스 지원 가능함.

상황인식 기술, 초경량 소재

- 상황인식 기술: 사용자 의도를 미리 파악해 적절한 기능을 자동수행 하는 기술이다. 기계사용에 따른 스트레스를 획기적으로 줄인다는 점에서 각광받고 있으며, 오는 2015년에는 세계 스마트폰 사용자의 40%가 상황인식 서비스를 가입할 것으로 전망됨.
- 초경량 소재 : 깃털보다 가벼우면서 전도성 탄성 에너지 흡수 등의 특성도 겸비한 소재. '층간소음' 문제 해결에 이용 가능함.
 - 에어로그래파이트: 밀도가 강철의 4만분의 1, 소재 가운데 가장 가볍지만 전도성, 탄성, 에너지 흡수 등의 특성을 겸비해 다양한 용도로 활용이 가능함.
 - 마이크로래티스

유전자치료제, 포스트 배터리

- 유전자 치료제 : 유전자를 분석하여 질병을 예방하고, 항노화 산업을 부상시킬 수 있는 기술
- 질병 진단을 위한 바이오칩 기술

- 포스트 배터리 : 용량, 모양과 가격을 획기적으로 개선해 다양한 디자인과 제품 개발에 활용 가능
- 고용량 2차전지(전기자동차)