7. 体上の線形代数・体上の多項式環 (追加)

問題 7.3. 有限体 $\mathbb{F}_2=\mathbb{Z}/2\mathbb{Z}$ 上の多項式環 $\mathbb{F}_2[x]$ において、次の多項式を因数分解 せよ.

$$(1) x^2 + 1$$

(1)
$$x^2 + 1$$
 (2) $x^3 + x^2 + x + 1$ (3) $x^3 + x + 1$ (4) $x^3 + 1$

(3)
$$x^3 + x + 1$$

$$(4) x^3 + 1$$

問題 7.4. 有限体 $\mathbb{F}_3=\mathbb{Z}/3\mathbb{Z}$ 上の多項式環 $\mathbb{F}_3[x]$ において, 次の多項式を因数分解 せよ.

$$(1) x^2 + 1$$

(2)
$$x^2 + 2$$

(3)
$$x^2 + x + 1$$

(2)
$$x^2 + 2$$
 (3) $x^2 + x + 1$ (4) $x^3 + x^2 + x + 1$

$$(5) x^3 + 2x^2 + 2$$

(6)
$$x^3 + x + 2$$

(5)
$$x^3 + 2x^2 + 2$$
 (6) $x^3 + x + 2$ (7) $x^3 + x^2 + 2x + 2$ (8) $x^4 + x^3 + x + 1$

(8)
$$x^4 + x^3 + x + 1$$

8. 体の拡大

L を体, K をその部分体とする. このとき K から見た場合, L は K の拡大体であ るという. またこの状況を L/K と表すこともある. L を K-ベクトル空間とみたとき の次元 $\dim_K L$ を [L:K] と書き, L/K の拡大次数という.

問題 8.1. 次の体の拡大 L/K の拡大次数 [L:K] を求めよ.

(1)
$$L = \mathbb{Q}(\sqrt{2}, \sqrt{3}), K = \mathbb{Q}$$

(2)
$$L = \mathbb{Q}(\sqrt{2}, \sqrt{3}), K = \mathbb{Q}(\sqrt{2})$$

(3)
$$L = \mathbb{Q}(\sqrt[3]{2}), K = \mathbb{Q}$$

(4)
$$L = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}), K = \mathbb{Q}$$

(5)
$$L = \mathbb{Q}(\sqrt{2} + \sqrt{3}), K = \mathbb{Q}$$

(6)
$$L = \mathbb{Q}(\sqrt{2} + \sqrt{3}), K = \mathbb{Q}(\sqrt{6})$$

(7)
$$L = \mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{3}), K = \mathbb{Q}$$

代数拡大.

L を体 K の拡大体とする. $a \in L$ について, あるゼロでない K 係数多項式 $f(x) \in L$ $K[x] \setminus \{0\}$ が存在して f(a) = 0 となるとき, a は K 上代数的であるという. 特に, \mathbb{Q} 上代数的な複素数を代数的数と呼び、そうでないものを超越数と呼ぶ、

体拡大 L/K について, L のすべての元が K 上代数的であるとき, L/K は代数拡 大であるという.

問題 8.2. $[L:K]<\infty$ ならば L/K は代数拡大であることを示せ.

問題 8.3. L を体, M を L の部分体, K を M の部分体とする (つまり $K \subset M \subset L$). このとき, L/M, M/K が共に代数拡大ならば L/K も代数拡大であることを示せ.