HW6 MATH 4540

Anthony Jones

March 2022

1 Exercises

1a. Suppose E was some set with measure zero. Then by definition, for $\epsilon > 0$,

$$E \subset \bigcup_{i=1}^{\infty} I_i$$

where $I_i = (a_i, b_i)$ are a sequence of open intervals, and

$$\sum_{i=1}^{\infty} \psi(I_i) < \epsilon$$

where $\psi(I_i) = b_i - a_i$. Suppose $F \subset E$ was some subset. Then

$$F \subset E \subset \bigcup_{i=1}^{\infty} I_i$$

and hence F is also measure zero, as the very same set of intervals can used to similarly construct F such that the second property holds for $\epsilon > 0$.

1b. Suppose E_1 and E_2 were two sets that both have measure zero. Let $\{I_i\}_{i=1}^{\infty}$ and $\{J_i\}_{i=1}^{\infty}$ be the sequences of intervals used to construct both set, and let $\epsilon > 0$. Define $\{K_i\}_{i=1}^{\infty}$ to be the sequence of intervals given by

$$K_i := \left\{ \begin{array}{ll} I_n, & \text{if } i \text{ is odd} \\ J_n, & \text{if } i \text{ is even} \end{array} \right.$$

where $n = \lfloor \frac{i+1}{2} \rfloor$. Or in other words,

$$\{K_i\}_{i=1}^{\infty} = \{I_1, J_1, I_2, J_2, I_3, J_3, \dots\}.$$

Then observe that

$$E_1 \cup E_2 \subset \bigcup_{i=1}^{\infty} (I_i \cup J_i) = \bigcup_{i=1}^{\infty} K_i$$

and likewise

$$\sum_{i=1}^{\infty} \psi(K_i) = \sum_{i=1}^{\infty} \psi(I_i) + \sum_{i=1}^{\infty} \psi(J_i) < 2\epsilon.$$

Because ϵ can be made arbitrarily small, it thus suffices that

$$\sum_{i=1}^{\infty} \psi(K_i) = \sum_{i=1}^{\infty} \psi(I_i) + \sum_{i=1}^{\infty} \psi(J_i) < \epsilon'$$

for all $\epsilon' = 2\epsilon > 0$. Hence the union $E_1 \cup E_2$ has measure zero.

1c. Continuing from above, suppose that E_n has measure zero for each $n \in \mathbb{N}$, and let $\epsilon > 0$. Then, for each n, we can find a sequence of open intervals $\{(I_i)_n\}_{i=1}^{\infty}$ where

$$E_n \subset \bigcup_{i=1}^{\infty} (I_i)_n$$

and

$$\sum_{i=1}^{\infty} \psi((I_i)_n) < \frac{\epsilon}{2^n}.$$

Therefore it follows that, for the sequence $\{I_{in}\}_{i,n=1}^{\infty}$,

$$\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} I_{in} = \bigcup_{i,n=1}^{\infty} I_{in}$$

and

$$\sum_{i,n=1}^{\infty} \psi(I_{in}) = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \psi(I_{in}) < \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon.$$

Hence $\bigcup_{n=1}^{\infty} E_n$ has measure zero.

2. Let $\epsilon > 0$. Note that because \mathbb{Q} is countable, we can enumerate through all the rationals with an arbitrary sequence $(q_n) := \{q_i | q_i \in \mathbb{Q}\}_{i=1}^n = q_1, q_2, q_3, \ldots, q_n \text{ as } n \to \infty$. Define $\{I_n\}_{n=1}^{\infty}$ to be the sequence of intervals given by

$$I_i := (q_i - \frac{\epsilon}{2^{i+2}}, q_i + \frac{\epsilon}{2^{i+2}}).$$

Note that for all $q_i \in (q_n)$, it follows that $q_i \in I_i$, and hence

$$\mathbb{Q} \subset \bigcup_{i=1}^{\infty} I_i.$$

Furthermore, observe that $|I_i| = \frac{2\epsilon}{2^{i+2}} = \frac{\epsilon}{2^{i+1}}$ for all such intervals, and thus

$$\sum_{i=1}^{\infty} |I_i| = \sum_{i=1}^{\infty} \frac{\epsilon}{2^{i+1}} = \frac{\epsilon}{2} < \epsilon.$$

Therefore \mathbb{Q} has measure zero.

3. Note that g(x) is continuous for all $x \notin \mathbb{Z}$, and hence the set of discontinuities of g is countable. Because the discontinuities of g(nx) is a subset of the discontinuities of g(x), the discontinuities of g has measure zero; thus $f \in \mathcal{R}$. Observe that integrating an infinite sum is equivalent to adding the relative integrals of each of its terms:

$$\int_0^1 f \, dx = \int_0^1 \sum_{n=1}^\infty \frac{g(nx)}{n^2} \, dx = \sum_{n=1}^\infty \int_0^1 \frac{g(nx)}{n^2} \, dx.$$

Suppose n was given. Then

$$\int_0^1 \frac{g(nx)}{n^2} \, \mathrm{d}x = \frac{1}{n^2} \int_0^1 g(nx) \, \mathrm{d}x$$

as we are integrating without respect to n. Note that normally

$$\int_0^t g(x) \, \mathrm{d}x = \sum_{k=0}^{m-1} \int_k^{k+1} (x-k) \, \mathrm{d}x,$$

where $m \in \mathbb{N}$ is the smallest natural number less than some $t \in \mathbb{R}$. This can be thought of as adding up the integrals between each of the discontinuities of g, which occur for every natural number. Therefore

$$\int_0^1 g(nx) \, \mathrm{d}x = \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} (nx - k) \, \mathrm{d}x$$

$$= \sum_{k=0}^{n-1} \left[\frac{(k+1)^2}{2n} - \frac{k(k+1)}{n} - \frac{k^2}{2n} + \frac{k^2}{n} \right]$$

$$= \sum_{k=0}^{n-1} \left[\frac{k^2 + 2k + 1}{2n} - \frac{2k^2 + 2k}{2n} - \frac{k^2}{2n} + \frac{2k^2}{2n} \right]$$

$$= \sum_{k=0}^{n-1} \frac{1}{2n} = \frac{1}{2}.$$

Recalling that the solution to the Basel problem is $\pi/6$, we derive:

$$\int_0^1 f \, \mathrm{d}x = \int_0^1 \sum_{n=1}^\infty \frac{g(nx)}{n^2} \, \mathrm{d}x = \sum_{n=1}^\infty \frac{1}{2n^2} = \frac{\pi^2}{12}.$$

4. Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Then, by the Cauchy criterion for convergence, for every $\epsilon > 0$ there is an integer N such that

$$\sum_{k=n}^{m} |a_k| \le \epsilon$$

if $m \ge n \ge N$. Suppose $x \in [-1,1]$. Then for all $k \in N$, $x^k \le 1$, and thus $a_k x^k < |a_k|$.

Therefore

$$\left| \sum_{k=n}^{m} a_k x^k \right| \le \sum_{k=n}^{m} |a_k| \le \epsilon,$$

and hence the Cauchy criterion for uniform convergence on [-1,1] holds.

5a. Suppose f and g were two bounded and continuous functions on [a, b]. Observe that if f = g, f(x) = g(x) for all $x \in [a, b]$, and hence

$$d_1(f,g) = \int_a^b |f - g| dx = \int_a^b 0 dx = 0.$$

Suppose instead that $f(x) \neq g(x)$. Then there must exist at least one $t \in [a,b]$ such that $f(t) \neq g(t)$, and hence |f(t) - g(t)| > 0. Because both f and g are continuous, it follows that so too is |f - g|, and thus it's also integrable. Furthermore, because $|f(x) - g(x)| \geq 0$, and as any sub-interval containing t has a supremum $M_k \geq |f(t) - g(t)| > 0$, the upper integral of |f - g| must be positive:

$$\int_{a}^{b} |f - g| \, \mathrm{d}x = \inf U(f, P) \ge |f(t) - g(t)| * \triangle x_k > 0,$$

Meaning

$$d_1(f,g) > 0.$$

5b. Consider the sequence of functions $\{f_n\}$ defined by

$$f_n(x) := \begin{cases} \frac{n(x-a)}{2(b-a)}, & \text{if } x \in [a, a + \frac{b-a}{n}] \\ \frac{1}{2}, & \text{if } x \in (a + \frac{b-a}{n}, b - \frac{b-a}{n}) \\ \frac{n(x-(b-\frac{b-a}{n})}{2(b-a)}, & \text{if } x \in [b - \frac{b-a}{n}, b] \end{cases}$$

Observe that each function linearly maps the intervals $[a,a+\frac{b-a}{n}]$ and $[b-\frac{b-a}{n},b]$ onto $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$, respectively, and that each has the value of $\frac{1}{2}$ for all other $x\in [a,b]$. Futhermore, because $0\leq f_n(x)\leq 1$ for all $x\in [a,b]$, each f_n is bounded; and because f_n is a combination of line segments all containing common points, each f_n is continuous. Now suppose $n\to\infty$. Then it follows that $f_n(a)=0$ and $f_n(b)=1$, as both are contained in their respective closed interval; yet because $(a+\frac{b-a}{n},b-\frac{b-a}{n})\to (a,b)$, then $f_n(r)=\frac{1}{2}$ for all $r\in (a,b)$. Hence

$$\lim_{n \to \infty} f_n(x) := \begin{cases} 0, & \text{if } x = a \\ \frac{1}{2}, & \text{if } x \in (a, b) \\ 1, & \text{if } x = b \end{cases}$$

Thus the limit of $\{f_n\}$ is discontinuous, and thereby not contained in the set of bounded and continuous functions on [a,b].