A useful fact. The solution to (b) involves a sum of terms (the sum of node degrees) that we want to show is asymptotically sub-quadratic. Here's a fact that's useful in this type of situation.

Lemma: Let a_1, a_2, \ldots, a_n be integers, each between 0 and n, such that $\sum_i a_i \ge \varepsilon n^2$. Then at least $\frac{1}{2}\varepsilon n$ of the a_i have value at least $\frac{1}{2}\varepsilon n$.

To prove this lemma, let k denote the number of a_i whose value is at least $\frac{1}{2}\varepsilon n$. Then we have $\varepsilon n^2 \leq \sum_i a_i \leq kn + \frac{1}{2}(n-k)\varepsilon n \leq kn + \frac{1}{2}\varepsilon n^2$, from which we get $k \geq \frac{1}{2}\varepsilon n$.

- (a) For each edge e = (u, v), there is a path P_{uv} in H of length at most $3\ell_e$ indeed, either $e \in F$, or there was such a path at the moment e was rejected. Now, given an pair of nodes $s, t \in V$, let Q denote the shortest s-t path in G. For each edge (u, v) on Q, we replace it with the path P_{uv} , and then short-cut any loops that arise. Summing the length edge-by-edge, the resulting path has length at most 3 times that of Q.
- (b) We first observe that H can have no cycle of length ≤ 4 . For suppose there were such a cycle C, and let e = (u, v) be the last edge added to it. Then at the moment e was considered, there was a u-v path Q_{uv} in H of at most three edges, on which each edge had length at most ℓ_e . Thus ℓ_e is not less than a third the length of Q_{uv} , and so it should not have been added.

This constraint implies that H cannot have $\Omega(n^2)$ edges, and there are several different ways to prove this. One proof goes as follows. If H has at least εn^2 edges, then the sum of all degrees is $2\varepsilon n^2$, and so by our lemma above, there is a set S of at least εn nodes each of whose degrees is at least εn . Now, consider the set Q of all pairs of edges (e,e') such e and e' each have an end equal to the same node in S. We have $|Q| \ge \varepsilon n {\varepsilon n \choose 2}$, since there are at least εn nodes in S, and each contributes at least ${\varepsilon n \choose 2}$ such pairs. For each edge pair $(e,e') \in Q$, they have one end in common; we label(e,e') with the pair of nodes at their other ends. Since $|Q| > {n \choose 2}$ for sufficiently large n, the pigeonhole principle implies that some two pairs of edges (e,e'), $(f,f') \in Q$ receive the same label. But then $\{e,e',f,f'\}$ constitutes a four-node cycle.

For a second proof, we observe that an n-node graph H with no cycle of length ≤ 4 must contain a node of degree at most \sqrt{n} . For suppose not, and consider any node v of H. Let S denote the set of neighbors of v. Notice that there is no edge joining two nodes of S, or we would have a cycle of length 3. Now let N(S) denote the set of all nodes with a neighbor in S. Since H has no cycle of length 4, each node in N(S) has exactly one neighbor in S. But $|S| > \sqrt{n}$, and each node in S has $\geq \sqrt{n}$ neighbors other than v, so we would have |N(S)| > n, a contradiction. Now, if we let g(n) denote the maximum number of edges in an n-node graph with no cycle of length 4, then g(n) satisfies the recurrence $g(n) \leq g(n-1) + \sqrt{n}$ (by deleting the lowest-degree node), and so we have $g(n) \leq n^{3/2} = o(n^2)$.

 $^{^{1}}$ ex616.972.80