Assignment 2

Ayman Shahriar, UCID: 10180260

October 31, 2019

1) We will prove that $L = \{a^i b^j c^k : i = j \land i = k\}$ is not regular using the pumping lemma and contradiction

Proof. Suppose L is regular. Then it has a pumping length $n \geq 0$

Let $w = a^n b^n c^n$. Then $w \in L$ because n = n, and note that $|w| = |a^n b^n c^n| = 3n > n$

Suppose w = xyz such that $|xy| \le n$ and $|y| \ge 1$ (so $y \ne \epsilon$)

Then since $w = a^n b^n c^n$ and $|xy| \le n$, we must have that $xy = a^p a^q$ for some 0 (that is, <math>xy can only consist of a's).

Let $x = a^p, y = a^q$ (where $p \ge 0$ and $q \ge 1$ since $y \ne \epsilon$)

Then $z = a^{n-p-q}b^nc^n$

Now consider the word $w^{(0)} = xy^0z$

$$w^{(0)} = xy^0z = a^pb^{n-p-q}b^nc^n = a^{n-q}b^nc^n$$

Since $n-q \neq n$ (because $q \geq 1$), it means that $w^{(0)}$ is not an element of L.

So the pumping lemma does not hold for this language, which contradicts the assumption that this language is regular.

Thus, L is not regular \Box

2) We will prove that $L = \{0^i 1^j : i \neq j\}$ is not regular using pumping lemma, contradiction and closure properties.

Proof. Suppose L is regular. Then it's complement $\overline{L} = \Sigma^* - L$ should also be regular.

Note that $\overline{L} = \{0^i 1^j : i = j\}$

Since \overline{L} is regular, it has a pumping length $n \geq 0$

Let $w = 0^n 1^n$. Then $w \in \overline{L}$ because n = n, and note that $|w| = |0^n 1^n| = 2n \ge n$

Now suppose w = xyz where $|xy| \le n$ and $|y| \ge 1$ (so $y \ne \epsilon$).

Since $w = 0^n 1^n$ and $|xy| \le n$, it must be that $xy = 0^a 0^b$ for some $0 < a + b \le n$ (That is, xy can only consist of zeros)

Let
$$x = 0^a, y = 0^b$$
 (where $a \ge 0$ and $b \ge 1$ because $y \ne \epsilon$)

Then
$$z = 0^{n-a-b}1^n$$

Now, consider the word $w^{(0)} = xy^0z$

$$w^{(0)} = xy^0z = 0^a0^{n-a-b}1^n = 0^{n-b}1^n$$

However, since $n-b \neq n$ (where $b \geq 1$), it means that $w^{(0)}$ is not an element of \overline{L} . So the pumping lemma does not hold for \overline{L} , which means that \overline{L} is not regular.

And since \overline{L} is not regular, it means that L must have not been regular to begin with, so we get a contradiction.

Thus,
$$L$$
 is not regular.

3) Let
$$\Sigma = {\emptyset, \epsilon, a, b, (,), +, \star}$$

Then the context free grammar that generates all strings in Σ^* that are valid regular expressions would be:

$$S \to SS|S + S|S\star$$

$$S \to (S)$$

$$S \to \emptyset |\epsilon| a |b$$