

WHAT IS CLAIMED IS:

1. An electronic device, comprising:

2 an active region located over a substrate;

3 an undoped layer located over the active region, the undoped

4 layer having a barrier region including aluminum located thereover;

5 and

6 a doped upper cladding layer located over the barrier region.

2. The electronic device as recited in Claim 1 wherein the

2 barrier region is a barrier layer or a number of barrier layers

3 located between a plurality of the undoped layers.

3. The electronic device as recited in Claim 2 wherein the

2 number of barrier layers ranges from about 1 to about 8 layers and

3 each of the number of barrier layers has a thickness of about 1 nm.

4. The electronic device as recited in Claim 1 wherein the

2 barrier region includes an barrier layer consisting of aluminum

3 arsenide, aluminum phosphide, indium aluminum arsenide, indium

4 aluminum arsenide phosphide, or indium aluminum gallium arsenide.

5. The electronic device as recited in Claim 4 wherein the

2 barrier layer comprises between about 5 and about 50 percent
3 aluminum.

6. The electronic device as recited in Claim 1 wherein the
2 barrier region has a thickness of about 1 nm and the undoped layer
3 has a thickness of about 10 nm.

7. The electronic device as recited in Claim 1 wherein the
2 barrier region does not form a p-n junction with the doped upper
3 cladding layer.

8. The electronic device as recited in Claim 1 wherein the
2 doped upper cladding layer is doped with zinc and the barrier
3 region inhibits the diffusion of zinc into the active region.

9. A method of manufacturing an electronic device,

2 including:

3 forming an active region over a substrate;

4 forming an undoped layer over the active region, the undoped
5 layer having a barrier region including aluminum formed thereover;

6 and

7 forming a doped upper cladding layer over the barrier region.

10. The method as recited in Claim 9 wherein the barrier
2 region is a barrier layer or a number of barrier layers located
3 between a plurality of the undoped layers.

11. The method as recited in Claim 10 wherein the number of
2 barrier layers ranges from about 1 to about 8 layers and each of
3 the number of barrier layers has a thickness of about 1 nm.

12. The method as recited in Claim 9 wherein the barrier
2 region includes an aluminum barrier layer consisting of aluminum
3 arsenide, aluminum phosphide, indium aluminum arsenide, indium
4 aluminum arsenide phosphide, or indium aluminum gallium arsenide.

13. The method as recited in Claim 12 wherein the barrier
2 layer comprises between about 5 and about 50 percent aluminum.

14. The method as recited in Claim 9 wherein the barrier
2 region has a thickness of about 1 nm and the undoped layer has a
3 thickness of about 10 nm.

15. The method as recited in Claim 9 wherein the barrier
2 region does not form a p-n junction with the doped upper cladding
3 layer.

16. The method as recited in Claim 9 wherein forming a doped
2 upper cladding layer includes forming a zinc doped upper cladding
3 layer, wherein the barrier region inhibits the diffusion of zinc
4 from the upper cladding layer into the active region.

17. An optical fiber communications system, comprising:

2 an optical fiber;

3 a transmitter and a receiver connected by the optical fiber;

4 and

5 an electronic device, including:

6 an active region located over a substrate;

7 an undoped layer located over the active region, the
8 undoped layer having a barrier region including aluminum located
9 thereover; and

10 a doped upper cladding layer located over the barrier
11 region.

18. The optical fiber communication system recited in Claim

17 wherein the barrier region is a barrier layer or a number of
2 barrier layers located between a plurality of the undoped layers.

19. The optical fiber communication system recited in Claim

17 wherein the transmitter or the receiver includes the electronic
2 device.

20. The optical fiber communication system recited in Claim

17 further including a source or a repeater.