HWs

Eric Liu

CONTENTS

Chapter 1	General Analysis HW	Page 2
1.1 HW1		2
1.2 HW2		16
1.3 Brunn-Minkowsk	23	
Chapter 2	Complex Analysis HW	Page 24
2.1 HW1		24
		D 05
Chapter 3	PDE INTRO HW	Page 27
3.1 HW1		27
3.2 HW2		30
Chapter 4	DIFFERENTIAL GEOMETRY HW	PACE 31
<u> </u>	DIFFERENTIAL GEOMETRI II W	
4.1 HW1		31
4.2 Appendix	- wa	35
4.3 Example: S^1, \mathbb{R}	$\sqrt{\mathbb{Z}}$ diffeomorphism	36

Chapter 1

General Analysis HW

1.1 HW1

Question 1

Show \mathbb{R}^n is complete.

Proof. Let \mathbf{x}_k be an arbitrary Cauchy sequence in \mathbb{R}^n . We are required to show \mathbf{x}_k converge in \mathbb{R}^n . For each k, denote \mathbf{x}_k by $(x_{(1,k)}, \ldots, x_{(n,k)})$. We claim that for each $i \in \{1, \ldots, n\}$

$$x_{(i,k)}$$
 is a Cauchy sequence

Fix i and $\epsilon > 0$. To show $x_{(i,k)}$ is a Cauchy sequence, we are required to find $N \in \mathbb{N}$ such that for all $r, m \geq N$ we have

$$\left| x_{(i,r)} - x_{(i,m)} \right| \le \epsilon$$

Because \mathbf{x}_k is a Cauchy sequence in \mathbb{R}^n , we know there exists $N \in \mathbb{N}$ such that for all $r, m \geq N$, we have

$$|\mathbf{x}_r - \mathbf{x}_m| < \epsilon$$

Fix such N and arbitrary $r, m \geq M$. Observe

$$|x_{(i,r)} - x_{(i,m)}| \le \sqrt{\sum_{j=1}^{n} |x_{(j,r)} - x_{(j,m)}|^2} = |\mathbf{x}_r - \mathbf{x}_m| < \epsilon$$

We have proved that for each $i \in \{1, ..., n\}$, the real sequence $x_{(i,k)}$ is Cauchy. We now claim that for each $i \in \{1, ..., n\}$, we have

$$\limsup_{r \to \infty} x_{(i,r)} \in \mathbb{R} \text{ and } \lim_{k \to \infty} x_{(i,k)} = \limsup_{r \to \infty} x_{(i,r)}$$

Again fix i. Because $x_{(i,k)}$ is a Cauchy sequence, we know there exists some N such that for all $r, m \geq N$, we have

$$\left| x_{(i,r)} - x_{(i,m)} \right| < 1$$

This implies that for all $r \geq N$, we have

$$x_{(i,r)} < x_{(i,N)} + 1 (1.1)$$

Equation 1.1 then tell us

$$x_{(i,N)} + 1$$
 is an upper bound of $\{x_{(i,r)} : r \ge N\}$

Then by definition of sup, we have

$$\sup\{x_{(i,r)} : r \ge N\} \le x_{(i,N)} + 1 \in \mathbb{R}$$

This then implies $\limsup_{r\to\infty} x_{(i,r)} \in \mathbb{R}$. We now prove

$$\lim_{k \to \infty} x_{(i,k)} = \limsup_{r \to \infty} x_{(i,r)} \tag{1.2}$$

Fix $\epsilon > 0$. We are required to find N such that

$$\forall k \ge N, \left| x_{(i,k)} - \limsup_{r \to \infty} x_{(i,r)} \right| \le \epsilon$$

Because $\{x_{(i,k)}\}_{k\in\mathbb{N}}$ is a Cauchy sequence, we can let N_0 satisfy

$$\forall k, m \ge N_0, \left| x_{(i,k)} - x_{(i,m)} \right| < \frac{\epsilon}{2}$$

Because $\sup\{x_{(i,k)}:k\geq N'\} \setminus \limsup_{r\to\infty} x_{(i,r)}$ as $N'\to\infty$, we know there exists $N_1>N_0$ such that

$$\limsup_{r \to \infty} x_{(i,r)} - \frac{\epsilon}{2} < \sup\{x_{(i,k)} : k \ge N_0\} \le \limsup_{r \to \infty} x_{(i,r)} + \frac{\epsilon}{2}$$

Then because $\limsup_{r\to\infty} x_{(i,r)} - \frac{\epsilon}{2}$ is strictly smaller than the smallest upper bound of $\{x_{(i,k)}: k \geq N_1\}$, we see $\limsup_{n\to\infty} x_{(i,r)} - \frac{\epsilon}{2}$ is not an upper bound of $\{x_{(i,k)}: k \geq N_1\}$. This implies the existence of some N such that $N \geq N_1$ and

$$\limsup_{r \to \infty} x_{(i,r)} - \frac{\epsilon}{2} < x_{(i,N)} \le \limsup_{r \to \infty} x_{(i,r)} + \frac{\epsilon}{2}$$

Now observe that for all $k \geq N$, because $N \geq N_1 \geq N_0$

$$\limsup_{r \to \infty} x_{(i,r)} - \epsilon < x_{(i,N)} - \frac{\epsilon}{2} < x_{(i,k)} < x_{(i,N)} + \frac{\epsilon}{2} \leq \limsup_{r \to \infty} x_{(i,r)} + \epsilon$$

This implies for all $k \geq N$, we have

$$\left| x_{(i,k)} - \limsup_{r \to \infty} x_{(i,r)} \right| \le \epsilon$$

We have just proved Equation 1.2. Lastly, to close out the proof, we show

$$\lim_{k \to \infty} \mathbf{x}_k = \left(\lim_{k \to \infty} x_{(1,k)}, \dots, \lim_{k \to \infty} x_{(n,k)}\right)$$
 (1.3)

Fix $\epsilon > 0$. For each $i \in \{1, \ldots, n\}$, let N_i satisfy

$$\forall r \ge N_i, \left| x_{(i,r)} - \lim_{k \to \infty} x_{(i,k)} \right| \le \frac{\epsilon}{\sqrt{n}}$$

Observe that for all $r \ge \max_{i \in \{1,...,n\}} N_i$, we have

$$\left| \mathbf{x}_r - \left(\lim_{k \to \infty} x_{(1,k)}, \dots, \lim_{k \to \infty} x_{(n,k)} \right) \right| = \sqrt{\sum_{i=1}^n \left| x_{(i,r)} - \lim_{k \to \infty} x_{(i,k)} \right|^2}$$

$$\leq \sqrt{\sum_{i=1}^n \frac{\epsilon^2}{n}} = \epsilon$$

We have proved Equation 1.3.

Question 2

Show \mathbb{Q} is dense in \mathbb{R} .

Proof. Fix $x \in \mathbb{R}$ and $\epsilon > 0$. To show \mathbb{Q} is dense in \mathbb{R} , we have to find $q \in \mathbb{Q}$ such that $|x - q| < \epsilon$.

Let $m \in \mathbb{N}$ satisfy $\frac{1}{m} < \epsilon$. Let n be the largest integer such that $n \leq mx$. Because n is the largest integer such that $n \leq mx$, we know mx - n < 1, otherwise we can deduce $n + 1 \leq mx$, which is impossible, since n + 1 is an integer and n is the largest integer such that $n \leq mx$. We now see that

$$\frac{n}{m} \in \mathbb{Q} \text{ and } \left| x - \frac{n}{m} \right| = \frac{mx - n}{m} < \frac{1}{m} < \epsilon$$

Theorem 1.1.1. (Distance Formula) Given two subsets A, B of a metric space, we have

$$d(A,B) = \inf_{\substack{b \in B \\ 4}} d(A,b)$$

Proof. Fix arbitrary $b \in B$. It is clear that

$$d(A,B) \le d(A,b)$$

It then follows $d(A, B) \leq \inf_{b \in B} d(A, b)$. Fix arbitrary $a \in A$ and $b_0 \in B$. Observe that

$$d(a,b_0) \ge d(A,b_0) \ge \inf_{b \in B} d(A,b)$$

It then follows $\inf_{b \in B} d(A, b) \le d(A, B)$.

Question 3

Let E_1, E_2 be non-empty sets in \mathbb{R}^n with E_1 closed and E_2 compact. Show that there are points $x_1 \in E_1$ and $x_2 \in E_2$ such that

$$d(E_1, E_2) = |x_1 - x_2|$$

Deduce that $d(E_1, E_2)$ is positive if such E_1, E_2 are disjoint.

Proof. Because

- (a) $f(x) \triangleq d(E_1, x)$ is a continuous function on \mathbb{R}^n .
- (b) E_2 is compact.

It now follows by EVT there exists some $x_2 \in E_2$ such that

$$d(E_1, x_2) = \min_{x \in E_2} d(E_1, x) = \inf_{x \in E_2} d(E_1, x) = d(E_1, E_2)$$

where the last equality is proved above. We can now reduce the problem into finding x_1 in E_1 such that

$$d(x_1, x_2) = d(E_1, x_2)$$

For each $n \in \mathbb{N}$, let t_n satisfy

$$t_n \in E_1 \text{ and } d(t_n, x_2) < d(E_1, x_2) + \frac{1}{n}$$

Clearly, t_n is a bounded sequence. Then by Bolzano-Weierstrass Theorem, there exists a convergence subsequence t_{n_k} . Now, because E_1 is closed, we know

$$x_1 \triangleq \lim_{k \to \infty} t_{n_k} \in E_1$$

It then follows from the function $f(x) \triangleq d(x, x_2)$ being continuous on \mathbb{R}^n such that

$$d(x_1, x_2) = \lim_{k \to \infty} d(t_{n,k}, x_2) = d(E_1, x_2)$$

Question 4

Prove that the distance between two nonempty, compact, disjoint sets in \mathbb{R}^n is positive.

Proof. The proof follows from the result in last question while acknowledging compact is closed.

Question 5

Prove that if f is continuous on [a, b], then f is Riemann-integrable on [a, b].

Proof. Let $\overline{\int_a^b} f dx$ and $\underline{\int_a^b} f dx$ respectively denote the upper and lower Darboux sums. We prove that

$$\overline{\int_{a}^{b}} f dx = \int_{a}^{b} f dx$$

Fix ϵ . We reduce the problem into proving the existence of some partition $\{a = x_0, x_1, \dots, x_n = b\}$ such that

$$\sum_{i=1}^{n} \left[M_i - m_i \right] (x_i - x_{i-1}) \le \epsilon$$

where

$$M_i \triangleq \sup_{t \in [x_{i-1}, x_i]} f(t) \text{ and } m_i \triangleq \inf_{t \in [x_{i-1}, x_i]} f(t)$$

Because f is continuous on the compact interval [a, b], we know f is uniformly continuous on [a, b]. Let δ satisfy

$$|x - y| < \delta \text{ and } x, y \in [a, b] \implies |f(x) - f(y)| < \frac{\epsilon}{b - a}$$

Let n satisfy $\frac{b-a}{n} < \delta$. We claim the partition

$$\{a = x_0, x_1, \dots, x_n = b\}$$
 where $x_i \triangleq a + \frac{i(b-a)}{n}$ suffices

Now, by EVT, we know that for each i, there exists some $t_{i,M}, t_{i,m} \in [x_{i-1}, x_i]$ such that

$$f(t_{i,m}) = m_i$$
 and $f(t_{i,M}) = M_i$

Then because

$$|t_{i,m} - t_{i,M}| \le x_i - x_{i-1} \le \frac{b-a}{n} < \delta$$

We know $M_i - m_i < \frac{\epsilon}{b-a}$. This now give us

$$\sum_{i=1}^{n} \left[M_i - m_i \right] (x_i - x_{i-1}) < \sum_{i=1}^{n} \frac{\epsilon}{(b-a)} (x_i - x_{i-1})$$

$$= \frac{\epsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= \frac{\epsilon}{b-a} (b-a) = \epsilon$$

Question 6

Find $\limsup_{n\to\infty} E_n$ and $\liminf_{n\to\infty} E_n$ where

$$E_n \triangleq \begin{cases} \left[\frac{-1}{n}, 1\right] & \text{if } n \text{ is odd} \\ \left[-1, \frac{1}{n}\right] & \text{if } n \text{ is even} \end{cases}$$

Proof. Fix arbitrary $n \in \mathbb{N}$. Let $p, q \geq n$ respectively be odd and even. We see

$$[0,1] \subseteq E_p$$
 and $[-1,0] \subseteq E_q$

This now implies

$$[-1,1] \subseteq \bigcup_{k \ge n} E_k$$

Then because n is arbitrary, it follows

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k = [-1, 1]$$

Again, fix arbitrary $n \in \mathbb{N}$ and $\epsilon > 0$. Let p, q respectively be even and odd integers greater than $\max\{n, \frac{1}{\epsilon}\}$. We now see

$$\epsilon \not\in [-1, \frac{1}{p}] = E_p \text{ and } -\epsilon \not\in [\frac{-1}{q}, 1] = E_q$$

Because ϵ is arbitrary and clearly $0 \in E_k$ for all k, we now see

$$\bigcap_{k>n} E_k = \{0\}$$

Then because n is arbitrary, we see

$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} E_k = \{0\}$$

Question 7

Show that

$$(\limsup_{n\to\infty} E_n)^c = \liminf_{n\to\infty} (E_n)^c$$

and

$$E_n \searrow E \text{ or } E_n \nearrow E \implies \limsup_{n \to \infty} E_n = \liminf_{n \to \infty} E_n = E$$

Proof. Fix arbitrary $x \in (\limsup_{n \to \infty} E_n)^c$. We can deduce

$$\exists n, x \not\in \bigcup_{k \ge n} E_k$$

This implies

$$\exists n, x \in \bigcap_{k \ge n} E_k^c$$

Then we see

$$x\in\bigcup_{n=1}^{\infty}\bigcap_{k\geq n}E_k^c=\liminf_{n\to\infty}E_n^c$$

We have proved $(\limsup_{n\to\infty} E_n)^c \subseteq \liminf_{n\to\infty} E_n^c$. We now prove the converse. Fix arbitrary $x\in \liminf_{n\to\infty} E_n^c$. We can deduce

$$\exists n, x \in \bigcap_{k \ge n} E_k^c$$

This implies

$$\exists n, x \not\in \bigcup_{k \ge n} E_k$$

Then we see

$$x \not\in \bigcap_{n=1}^{\infty} \bigcup_{k>n} E_k = \limsup_{n \to \infty} E_n$$

Theorem 1.1.2. (Equivalent Definition for Limit Superior) If we let E be the set of subsequential limits of a_n

$$E \triangleq \{L \in \overline{\mathbb{R}} : L = \lim_{k \to \infty} a_{n_k} \text{ for some } n_k\}$$

The set E is non-empty and

$$\max E = \limsup_{n \to \infty} a_n$$

Proof. Let $n_1 \triangleq 1$. Recursively, because

$$\sup_{j \ge n_k} a_k \ge \limsup_{n \to \infty} a_n > \limsup_{n \to \infty} a_n - \frac{1}{k} \text{ for each } k$$

We can let n_{k+1} be the smallest number such that

$$a_{n_{k+1}} > \limsup_{n \to \infty} a_n - \frac{1}{k}$$

It is straightforward to check $a_{n_k} \to \limsup_{n \to \infty} a_n$ as $k \to \infty$. Note that no subsequence can converge to $\limsup_{n \to \infty} a_n + \epsilon$ because there exists N such that $\sup_{k \ge N} a_k < \limsup_{n \to \infty} a_n + \epsilon$.

Question 8

Show that

$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$$

Proof. Note that $-a_{n_k}$ converge if and only if a_{n_k} converge. Then if we respectively define E and E^- to be the set of subsequential limits of a_n and $-a_n$, we see

$$E^- = \{ -L \in \mathbb{R} : L \in E \}$$

We now see

$$\lim_{n \to \infty} \sup(-a_n) = \max E^- = -\min E = -\liminf_{n \to \infty} a_n$$

Question 9

Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n \tag{1.4}$$

Proof. Fix arbitrary ϵ . Let N_a, N_b respectively satisfy

$$\sup_{n \geq N_a} a_n \leq \limsup_{n \to \infty} a_n + \frac{\epsilon}{2} \text{ and } \sup_{n \geq N_b} b_n \leq \limsup_{n \to \infty} b_n + \frac{\epsilon}{2}$$

Let $N \triangleq \max\{N_a, N_b\}$. We now see that

$$\limsup_{n \to \infty} (a_n + b_n) \le \sup_{n \ge N} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n + \epsilon$$

The result then follows from ϵ being arbitrary.

Question 10

$$a_n, b_n$$
 is bounded non-negative $\implies \limsup_{n \to \infty} (a_n b_n) \le (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$ (1.5)

Proof. There are three cases we should consider

- (a) Both $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$ equal 0.
- (b) Between $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$, only one of them equals 0.
- (c) Neither $\limsup_{n\to\infty} a_n$ nor $\limsup_{n\to\infty} b_n$ equals to 0.

In the first case, because a_n, b_n are both non-negative, we can deduce

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$

which implies

$$\lim_{n\to\infty} \sup(a_n b_n) = \lim_{n\to\infty} a_n b_n = 0 = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$$

For second case, WOLG, suppose $\limsup_{n\to\infty} a_n = 0$. Fix arbitrary ϵ . We can let N satisfy

$$\sup_{n \ge N} a_n < \frac{\epsilon}{\sup_{n \in \mathbb{N}} b_n}$$

Since for all $n \geq N$, we have

$$a_n b_n \le \frac{b_n \epsilon}{\sup_{k \in \mathbb{N}} b_k} \le \epsilon$$

We now see

$$\limsup_{n \to \infty} (a_n b_n) \le \sup_{n \ge N} a_n b_n \le \epsilon$$

The result

$$\limsup_{n\to\infty} a_n b_n = 0 = \limsup_{n\to\infty} a_n \limsup_{n\to\infty} b_n$$

then follows from ϵ being arbitrary.

Lastly, for the last case, let N_a, N_b respectively satisfy

$$\sup_{n \ge N_a} a_n \le \limsup_{n \to \infty} a_n \sqrt{1 + \epsilon} \text{ and } \sup_{n \ge N_b} b_n \le \limsup_{n \to \infty} b_n \sqrt{1 + \epsilon}$$

Let $N \triangleq \max\{N_a, N_b\}$, because for each $n \geq N$, we have

$$a_n b_n \le (\sup_{k \ge N_a} a_k)(\sup_{k \ge N_b} b_k) \le (1 + \epsilon)(\limsup_{n \to \infty} a_n)(\limsup_{n \to \infty} b_n)$$

It then follows that

$$\limsup_{n \to \infty} (a_n b_n) \le \sup_{n \ge N} (a_n b_n) \le (1 + \epsilon) (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$$

The result then follows from ϵ being arbitrary.

Question 11

Show that if either a_n or b_n converge, the equalities in Equation 1.4 and Equation 1.5 both hold true.

Proof. WOLG, suppose $\lim_{n\to\infty} a_n = L \in \mathbb{R}$. We then see

$$(a_{n_k} + b_{n_k})$$
 converge $\iff b_{n,k}$ converge

Let $E_{a,b}$ and E_b respectively be the set of subsequential limits of $(a_n + b_n)$ and b_n . We now have

$$E_{a,b} = \{L + L_b \in \mathbb{R} : L_b \in E_b\}$$

This give us

$$\lim_{n \to \infty} \sup (a_n + b_n) = \max E_{a,b} = L + \max E_b = \lim_{n \to \infty} \sup a_n + \limsup_{n \to \infty} b_n$$

Now, additionally, suppose a_n, b_n are both bounded and nonnegative. Again because

$$a_{n_k}b_{n,k}$$
 converge $\iff b_{n,k}$ converge

We see

$$E_{a,b} = \{L(L_b) \in \mathbb{R} : L_b \in E_b\}$$

This give us

$$\limsup_{n \to \infty} (a_n b_n) = \max E_{a,b} = L \max E_b = (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$$

Question 12

Give example for which inequality in Equation 1.4 and Equation 1.5 are not equalities.

Proof. If

$$a_n \triangleq \begin{cases} 1 & \text{if } n \text{ is odd} \\ -1 & \text{if } n \text{ is even} \end{cases}$$
 and $b_n \triangleq \begin{cases} -1 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$

we have

$$\limsup_{n \to \infty} (a_n + b_n) = 0 < 2 = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Let L > 1 and

$$a_n \triangleq \begin{cases} L - \frac{1}{k} & \text{if } n = 2k - 1\\ (L - \frac{1}{k})^{-1} & \text{if } n = 2k \end{cases}$$
 and $b_n \triangleq \begin{cases} (L - \frac{1}{k})^{-1} & \text{if } n = 2k - 1\\ (L - \frac{1}{k}) & \text{if } n = 2k \end{cases}$

We have

$$\limsup_{n \to \infty} a_n b_n = 1 < L^2 = \limsup_{n \to \infty} a_n \limsup_{n \to \infty} b_n$$

Question 13

Give an example of a decreasing sequence of nonempty closed sets in \mathbb{R}^n whose intersection is empty.

Proof.

$$F_n \triangleq [n, \infty)$$
 suffices

Question 14

Given an example of two disjoint, nonempty closed sets in E_1 and E_2 in \mathbb{R}^n for which $d(E_1, E_2) = 0$.

Proof. Let

$$E_1 \triangleq \{n - \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N} \text{ and } n \geq 2\} \text{ and } E_2 \triangleq \{n - \frac{1}{2n} \in \mathbb{R} : n \in \mathbb{N} \text{ and } n \geq 2\}$$

To see $E_1 \cap E_2 = \emptyset$, suppose $n - \frac{1}{n} = k - \frac{1}{2k}$ where n, k are two natural numbers greater than 2. We then see $\frac{1}{n} - \frac{1}{2k} = n - k$, which is impossible, since

$$\left| \frac{1}{n} - \frac{1}{2k} \right| < \max\{\frac{1}{2k}, \frac{1}{n}\} < 1$$

The fact E_1, E_2 are closed follows from both of them being totally disconnected. Now observe that for all ϵ , there exists large enough n such that

$$(n+\frac{1}{n})-(n+\frac{1}{2n})<\frac{1}{n}<\epsilon$$

This implies $d(E_1, E_2) = 0$.

Question 15

If f is defined and uniformly continuous on E, show there is a function \overline{f} defined and continuous on \overline{E} such that $\overline{f} = f$ on E.

Proof. Define \overline{f} on E by $\overline{f} = f$. For each $x \in \overline{E} \setminus E$, associate x with a sequence $t_{n,x}$ in E converging to x. We now claim that for each $x \in \overline{E} \setminus E$ the limit

$$\lim_{n\to\infty} f(t_{n,x}) \text{ converge in } \mathbb{R}$$

Fix ϵ . Because f is uniformly continuous on E, we know there exists δ such that

$$a, b \in E \text{ and } |a - b| \le \delta \implies |f(a) - f(b)| < \epsilon$$

Because $t_{n,x}$ converge, we know $t_{n,x}$ is Cauchy, then we know there exists N such that $|t_{n,x}-t_{m,x}|<\delta$ for all n,m>N, we then see that for all n,m>N, we have

$$|f(t_{n,x}) - f(t_{m,x})| < \epsilon$$

This implies $\{f(t_{n,x})\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} , thus converge in \mathbb{R} .

Define

$$\overline{f}(x) \triangleq \lim_{n \to \infty} f(t_{n,x}) \text{ for all } x \in \overline{E} \setminus E$$

We are required to show \overline{f} is also continuous on $\overline{E} \setminus E$. Fix ϵ and $x \in \overline{E} \setminus E$. Let δ satisfy

$$a, b \in E \text{ and } |a - b| \le \delta \implies |f(a) - f(b)| < \frac{\epsilon}{3}$$

We claim

$$\sup_{t \in B_{\frac{\delta}{2}}(x) \cap \overline{E}} \left| \overline{f}(t) - \overline{f}(x) \right| \le \epsilon$$

Fix $t \in B_{\frac{\delta}{2}}(x) \cap \overline{E}$. There are two possibilities

- (a) $t \in E$
- (b) $t \in \overline{E} \setminus E$

If $t \in E$, let n satisfy

$$|f(t_{n,x}) - \overline{f}(x)| < \frac{\epsilon}{3} \text{ and } |t_{n,x} - x| < \frac{\delta}{2}$$

Because

$$|t_{n,x} - t| \le |t_{n,x} - x| + |t - x| < \delta$$

we can deduce $|f(t_{n,x}) - f(t)| < \frac{\epsilon}{3}$. This now give us

$$\left| f(t) - \overline{f}(x) \right| \le \left| f(t_{n,x}) - f(t) \right| + \left| f(t_{n,x}) - \overline{f}(x) \right| < \epsilon$$

If $t \in \overline{E} \setminus E$. Write y = t and let $t_{n,y}$ be the associated sequence in E. Because $y \in B_{\frac{\delta}{2}}(x)$, we know there exists $t_{n,y}$ such that

$$t_{n,y} \in B_{\frac{\delta}{2}}(x) \text{ and } |f(t_{n,y}) - \overline{f}(y)| < \frac{\epsilon}{3}$$

Again, let m satisfy

$$t_{m,x} \in B_{\frac{\delta}{2}}(x)$$
 and $|f(t_{m,x}) - \overline{f}(x)| < \frac{\epsilon}{3}$

We know $|t_{n,y}-t_{m,x}| \leq \delta$ because they both belong to $B_{\frac{\delta}{2}}(x)$. We can now deduce

$$\left|\overline{f}(y) - \overline{f}(x)\right| = \left|\overline{f}(y) - f(t_{n,y})\right| + \left|f(t_{n,y}) - f(t_{m,x})\right| + \left|f(t_{m,x}) - \overline{f}(x)\right| < \epsilon$$

which finish the proof.

Question 16

If f is defined and uniformly continuous on a bounded set E, show that f is bounded on E.

Proof. By last question, we can extend f to a continuous \overline{f} onto \overline{E} . Now because \overline{E} is compact and $|\overline{f}|$ is continuous on \overline{E} , by EVT, there exists $a \in \overline{E}$ such that

$$\sup_{x \in E} |f(x)| \le \max_{x \in \overline{E}} |f(x)| = f(a)$$

1.2 HW2

Question 17

Construct a two-dimensional Cantor set in the unit square $[0,1]^2$ as follows. Subdivide the square into nine equal parts and keep only the four closed corner squares, removing the remaining region (which form a cross). Then repeat this process in a suitably scaled version for the remaining squares, ad infinitum. Show that the resulting set is perfect, has plane measure zero, and equals $\mathcal{C} \times \mathcal{C}$.

Proof. Let $C'_n \subseteq \mathbb{R}^2$ be the result after the *n*th stage of removal, and let $C_n \subseteq \mathbb{R}$ be the result after the *n*th stage of removal in the construction of the classical ternary Cantor set. It is clear that

$$C'_n = C_n \times C_n$$
 for all n

It then follows

$$\bigcap_{n} \mathcal{C}'_{n} = \bigcap_{n} \mathcal{C}_{n} \times \mathcal{C}_{n} = \mathcal{C} \times \mathcal{C}$$

The fact that $\mathcal{C} \times \mathcal{C}$ has plane measure zero follows from Lemma 1.2.1. Fix $(a, b) \in \mathcal{C} \times \mathcal{C}$. Because \mathcal{C} is perfect, there exists some $b' \in \mathcal{C}$ such that

$$0 < |b' - b| < \epsilon$$

To see that C' is perfect, one see that

$$(a,b) \neq (a,b')$$
 and $(a,b') \in \mathcal{C}' \times \mathcal{C}'$ and $|(a,b) - (a,b')| = |b'-b| < \epsilon$

Question 18

Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage, each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no intervals.

Proof. Let $C'_n \subseteq \mathbb{R}$ be the result after the *n*th stage of removal according to the description. Clearly, each C'_n has 2^n amount of connected component, we then can compute the length of $C' \triangleq \bigcap C'_n$ to be

$$1 - \sum_{k=1}^{\infty} 2^{k-1} \delta 3^{-k} = 1 - \frac{\frac{\delta}{3}}{1 - \frac{2}{3}} = 1 - \delta$$

Since each C'_n has 2^n amount of connected component of equal length and $C'_n \subseteq [0,1]$, we know the length of each connected component of C'_n must not be greater than $\frac{1}{2^n}$. It then follows that no interval [a, a+h] can be contained by all C'_n because if [a, a+h] is a subset of some connected component of C'_k of some k, then the measure h = |[a, a+h]| must be smaller than $\frac{1}{2^k}$, which is false when k is large enough.

Question 19

If E_k is a sequence of sets with $\sum |E_k|_e < \infty$, show that $\limsup_{n\to\infty} E_n$ has measure zero.

Proof. Note that

$$\sum_{k=N}^{\infty} |E_k|_e = \left(\sum_{k=1}^{\infty} |E_k|_e - \sum_{k=1}^{N-1} |E_k|_e\right) \to 0 \text{ as } N \to \infty$$

and note for all N we have

$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \subseteq \bigcup_{k=N}^{\infty} E_k$$

Then for arbitrary ϵ , if we let N satisfy $\sum_{k=N}^{\infty} |E_k|_e < \epsilon$, we see that

$$\left| \limsup_{n \to \infty} E_n \right|_e = \left| \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \right|_e \le \left| \bigcup_{k=N}^{\infty} E_k \right|_e \le \sum_{k=N}^{\infty} |E_k|_e < \epsilon$$

Lemma 1.2.1. Given two subsets Z_1, Z_2 of \mathbb{R} , if $|Z_1| = 0$, then $|Z_1 \times Z_2| = 0$.

Proof. Let $A_n \triangleq [n, n+1)$. Because

$$Z_1 \times Z_2 = \bigsqcup_{n \in \mathbb{Z}} Z_1 \times (A_n \cap Z_2)$$

To show $|Z_1 \times Z_2| = 0$, we only have to $|Z_1 \times (A_n \cap Z_2)| = 0$ for all $n \in \mathbb{Z}$. In other words, we can WOLG suppose Z_2 is bounded.

Now, fix ϵ . We are required to find an countable closed cube cover $Q_n \times C_n$ for $Z_1 \times Z_2$ such that $\sum_n |Q_n \times C_n| < \epsilon$. Let $C_n = C$ for all n where C is a compact interval containing Z_2 , and let Q_n be a countable compact interval cover for Z_1 such that $\sum |Q_n| < \frac{\epsilon}{|C|}$. It then follows $\sum_n |Q_n \times C_n| = \sum_n |Q_n| |C| < \epsilon$.

Theorem 1.2.2. (Product of Finite Measure Set) If E_1 and E_2 are measurable subset of \mathbb{R} and $|E_1|, |E_2| < \infty$, then $E_1 \times E_2$ is measurable in \mathbb{R}^2 and

$$|E_1 \times E_2| = |E_1| |E_2|$$

Proof. Write $E_1 \triangleq H_1 \sqcup Z_1$ and $E_2 \triangleq H_2 \sqcup Z_2$ where $H_1, H_2 \in F_\sigma$ and $|H_1| = |E_1|$ and $|H_2| = |E_2|$. Now observe

$$E_1 \times E_2 = (H_1 \times H_2) \cup (Z_1 \times E_2) \cup (E_1 \times Z_2)$$

Note that if we write $H_1 = \bigcap F_{1,n}$ and $H_2 = \bigcap F_{2,n}$, we see $H_1 \times H_2 = \bigcap F_{1,n} \times F_{2,n} \in F_{\sigma}$ in \mathbb{R}^2 , it now follows from Lemma 1.2.1 that $E_1 \times E_2$ is measurable.

Now, let S_n be a decreasing sequence of open set containing E_1 such that $|S_n \setminus E_1| < \frac{1}{n}$, and let T_n be a decreasing sequence of open set containing E_2 such that $|T_n \setminus E_2| < \frac{1}{n}$. In other words,

$$E_1 = S \setminus Z_1 \text{ and } E_2 = T \setminus Z_2 \text{ where } \begin{cases} S \triangleq \bigcap S_n \\ T \triangleq \bigcap T_n \\ |Z_1| = |Z_2| = 0 \end{cases}$$

We now have

$$S \times T = (E_1 \times E_2) \cup (Z_1 \times E_2) \cup (E_1 \times Z_2)$$

This then implies $|S \times T| = |S \times T|_e \le |E_1 \times E_2|_e + |Z_1 \times E_2|_e + |E_1 \times Z_2|_e = |E_1 \times E_2|$, where the last inequality follows from Lemma 1.2.1. The reverse inequality is clear, since $E_1 \times E_2 \subseteq S \times T$. We have proved $|E_1 \times E_2| = |S \times T|$.

Now, for each n, write

$$S_n = \bigcup_{k \in \mathbb{N}} I_{k,S_n}$$
 and $T_n = \bigcup_{k \in \mathbb{N}} I_{k,T_n}$

where $(I_{k,S_n})_k$ and $(I_{k,T_n})_k$ are non-overlapping compact interval. It then follows that

$$|S_n \times T_n| = \sum_{i,j} |I_{i,S_n} \times I_{j,T_n}| = \sum_{i,j} |I_{i,S_n}| \times |I_{j,T_n}| = \sum_i |I_{i,S_n}| \sum_j |I_{j,T_n}| = |S_n| |T_n|$$

Write $S \triangleq \bigcap_{n \in \mathbb{N}} S_n$ and $T \triangleq \bigcap_{n \in \mathbb{N}} T_n$. Because

- (a) Each $S_n \times T_n$ is open.
- (b) $|S_n \times T_n| = |S_n| |T_n|$ is bounded $(:: |S_n| \searrow |E_1| < \infty)$.

(c)
$$S_n \times T_n \setminus S \times T$$

We can now deduce

$$|E_1 \times E_2| = |S \times T| = \lim_{n \to \infty} |S_n \times T_n|$$
$$= \lim_{n \to \infty} |S_n| |T_n|$$
$$= |E_1| |E_2|$$

Question 20

If E_1 and E_2 are measurable subset of \mathbb{R} , then $E_1 \times E_2$ is a measurable subset of \mathbb{R}^2 and $|E_1 \times E_2| = |E_1| |E_2|$

Proof. Define

$$A_n \triangleq \{x \in \mathbb{R} : n \le x < n+1\}$$

Because

$$E_1 = \bigcup_{n \in \mathbb{Z}} E_1 \cap A_n \text{ and } E_2 = \bigcup_{k \in \mathbb{Z}} E_2 \cap A_k$$

We can deduce

$$E_1 \times E_2 = \bigcup_{n,k \in \mathbb{Z}} (E_1 \cap A_n) \times (E_2 \cap A_k)$$

Note that Theorem 1.2.2 tell us $(E_1 \cap A_n) \times (E_2 \cap A_k)$ is measurable, which implies $E_1 \times E_2$ is measurable. Theorem 1.2.2 also tell us $|(E_1 \cap A_n) \times (E_2 \cap A_k)| = |E_1 \cap A_n| |E_2 \cap A_k|$, which allow us to deduce

$$|E_1 \times E_2| = \sum_{n,k \in \mathbb{Z}} |(E_1 \cap A_n) \times (E_2 \cap A_k)| = \sum_{n,k \in \mathbb{Z}} |E_1 \cap A_n| |E_2 \cap A_k|$$
$$= \sum_{n \in \mathbb{Z}} |E_1 \cap A_n| \sum_{k \in \mathbb{Z}} |E_2 \cap A_k| = |E_1| |E_2|$$

Question 21

Give an example that shows that the image of a measurable set under a continuous transformation may not be measurable. See also Exercise 10 of Chapter 7.

Proof. Consider the Cantor-Lebesgue function denoted by $f:[0,1] \to [0,1]$ and denote the classical ternary Cantor set by \mathcal{C} . Let V be a Vitali set contained by [0,1]. Because $f(\mathcal{C}) = [0, 1]$, we know there exists $E \subseteq \mathcal{C}$ such that f(E) = V. Such E is measurable since $|E|_e \leq |\mathcal{C}| = 0$, yet its continuous image V = f(E) is by definition non-measurable.

Question 22

Show that there exists disjoint E_1, E_2, \ldots such that $|\bigcup E_k|_e < \sum |E_k|_e$ with strict inequality.

Proof. Let V be a Vitali Set contained by [0,1]. Enumerate $[0,1] \cap \mathbb{Q}$ by x_n . Define

$$E_n \triangleq \{v + x_n \in \mathbb{R} : v \in V\}$$
 for all n

The sequence E_n is disjoint, since if $p \in E_n \cap E_m$, then there exists some pair v_n, v_m belong to V such that

$$v_n + x_n = p = v_m + x_m \tag{1.6}$$

which is impossible, since Equation 1.6 implies that $v_n \neq v_m$ and v_n, v_m are of difference of a rational number.

Now, note that for arbitrary n and $v \in V$, because $v \in V \subseteq [0,1]$ and $x_n \in [0,1]$, we have $v + x_n \in [0, 2]$. This implies

$$\bigsqcup_{n} E_n \subseteq [0,2] \text{ and } \left| \bigsqcup_{n} E_n \right|_e \le 2$$

Because V is non-measurable by definition, we know $|V|_e > 0$, and since outer measure is translation invariant, we can now deduce

$$\sum_{n} |E_n|_e = \sum_{n} |V|_e = \infty > 2 \ge \left| \bigsqcup_{n} E_n \right|_e$$

Question 23

Show that there exists decreasing sequence E_k of sets such that

- (a) $E_k \searrow E$. (b) $|E_k|_e < \infty$.

(c)
$$\lim_{k\to\infty} |E_k|_e > |E|_e$$

Proof. Let V be a Vitali Set contained by [0,1]. Enumerate $[0,1] \cap \mathbb{Q}$ by x_n . Define

$$V + x_n \triangleq \{v + x_n \in \mathbb{R} : v \in V\}$$

In last question, we have proved that $V + x_n$ is pairwise disjoint. Define for all $n \in \mathbb{N}$

$$E_n \triangleq \bigsqcup_{k > n} V + x_k$$

Observe that

$$E_k \searrow \bigcap E_n = \varnothing$$

which implies $|\bigcap E_n|_e = 0$, but

$$\lim_{n \to \infty} |E_n|_e = \lim_{n \to \infty} \left| \bigsqcup_{k > n} V + x_k \right| \ge \lim_{n \to \infty} |V + x_n| = |V| > 0$$

Question 24

Let Z be a subset of \mathbb{R} with measure zero. Show that the set $\{x^2 : x \in Z\}$ also has measure zero.

Proof. Fix $Z_n \triangleq Z \cap [-n, n]$. Since

$$\left| \{x^2 : x \in Z\} \right| \le \sum_{n=1}^{\infty} \left| \{x^2 : x \in Z_n\} \right|_e$$

We only have to prove

$$\left|\left\{x^2:x\in Z_n\right\}\right|_e=0 \text{ for all } n$$

Fix ϵ, n . Let I_k be a compact interval cover of Z_n such that $\sum |I_k| < \frac{\epsilon}{2n}$. We shall suppose $I_k \subseteq [-n, n]$, since if not, we can just let $I'_k \triangleq I_k \cap [-n, n]$.

Now, define

$$I_k^2 \triangleq \{x^2 : x \in I_k\}$$

Clearly, I_k^2 are all compact intervals, and if we write $I_k \triangleq [a_k, b_k]$, we have the following inequalities

$$\begin{cases} 0 \le a_k \le b_k \implies |I_k^2| = b_k^2 - a_k^2 = |I_k| \, (b_k + a_k) \le 2n \, |I_k| \\ a_k \le 0 \le b_k \implies |I_k^2| = \max\{a_k^2, b_k^2\} \le (b_k - a_k)^2 = |I_k| \, (b_k - a_k) \le 2n \, |I_k| \\ a_k \le b_k \le 0 \implies |I_k^2| = a_k^2 - b_k^2 = |I_k| \, (-a_k - b_k) \le 2n \, |I_k| \end{cases}$$

Note that $\{I_k^2\}_{k\in\mathbb{N}}$ is a compact interval cover of $\{x^2:x\in Z_n\}$, we now see

$$\left| \left\{ x^2 : x \in Z_n \right\} \right|_e \le \sum_k \left| I_k^2 \right| \le 2n \sum_k \left| I_k \right| < \epsilon$$

1.3 Brunn-Minkowski Inequality

Chapter 2

Complex Analysis HW

2.1 HW1

Theorem 2.1.1.

$$(1+i)^n, \frac{(1+i)^n}{n}, \frac{n!}{(1+i)^n}$$
 all diverge as $n \to \infty$

Proof. Note that

$$|(1+i)^n|=2^{\frac{n}{2}}\to\infty \text{ as } n\to\infty$$

This implies (1+i) is unbounded, thus diverge.

Note that

$$\left| \frac{(1+i)^n}{n} \right| = \frac{(\sqrt{2})^n}{n}$$

Observe

$$\frac{(\sqrt{2})^n}{n} = \frac{[(\sqrt{2}-1)+1]^n}{n} = \frac{\sum_{k=0}^n \binom{n}{k} (\sqrt{2}-1)^k}{n}$$
$$\geq \frac{\binom{n}{2} (\sqrt{2}-1)^2}{n} = (n-1) [\frac{(\sqrt{2}-1)^2}{2}] \to \infty \text{ as } n \to \infty$$

This implies $\frac{(1+i)^n}{n}$ is unbounded, thus diverge.

Note that

$$\left| \frac{n!}{(1+i)^n} \right| = \frac{n!}{(\sqrt{2})^n}$$

Note that for all $k \geq 8$, we have

$$\frac{k}{\sqrt{2}} \ge \frac{\sqrt{8}}{\sqrt{2}} = 2$$

This implies

$$\frac{n!}{(\sqrt{2})^n} = \prod_{k=1}^n \frac{k}{\sqrt{2}} = \frac{7!}{(\sqrt{2})^7} \prod_{k=8}^n \frac{k}{\sqrt{2}} \ge \frac{7!}{(\sqrt{2})^7} \prod_{k=8}^n 2 \ge \frac{7!2^{n-8+1}}{(\sqrt{2})^7} \to \infty$$

which implies $\frac{n!}{(1+i)^n}$ is unbounded, thus diverge.

Theorem 2.1.2.

$$n!z^n$$
 converge $\iff z=0$

Proof. If z=0, then $n!z^n=0$ for all n, which implies $n!z^n\to 0$. Now, suppose $z\neq 0$. Let $M\in\mathbb{N}$ satisfy $|z|>\frac{1}{M}$. Observe

$$|n!z^n| = \left| \prod_{k=1}^n kz \right| = \left| \prod_{k=1}^{2M-1} kz \right| \left| \prod_{k=2M}^n kz \right| \ge \left| \prod_{k=1}^{2M-1} kz \right| \left| \prod_{k=2M}^n 2Mz \right| \ge \left| \prod_{k=1}^{2M-1} kz \right| 2^{n-2M+1} \to \infty$$

This implies $n!z^n$ is unbounded, thus diverge.

Theorem 2.1.3.

$$u_n \to u \implies v_n \triangleq \sum_{k=1}^n \frac{u_k}{n} \to u$$

Proof. Because

$$\sum_{k=1}^{n} \frac{u_k}{n} = \sum_{k \le \sqrt{n}} \frac{u_k}{n} + \sum_{\sqrt{n} < k \le n} \frac{u_k}{n}$$

It suffices to prove

$$\sum_{k \le \sqrt{n}} \frac{u_k}{n} \to 0 \text{ and } \sum_{\sqrt{n} < k \le n} \frac{u_k}{n} \to u \text{ as } n \to \infty$$

Because u_n converge, we can let M bound $|u_n|$. Observe

$$\left| \sum_{k \le \sqrt{n}} \frac{u_k}{n} \right| \le \sum_{k \le \sqrt{n}} \left| \frac{u_k}{n} \right| \le \sum_{k \le \sqrt{n}} \frac{M}{n} \le \frac{M\sqrt{n}}{n} = \frac{M}{\sqrt{n}} \to 0 \text{ as } n \to 0 \text{ (done)}$$

Because

$$\sum_{\sqrt{n} < k \le n} \frac{u_k}{n} = \frac{n - \lceil \sqrt{n} \rceil + 1}{n} \sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1}$$

and

$$\lim_{n \to \infty} \frac{n - \lceil \sqrt{n} \rceil + 1}{n} = 1$$

We can reduce the problem into proving

$$\lim_{n \to \infty} \sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1} = u$$

Fix ϵ . Let N satisfy that for all $n \geq N$, we have $|u_n - u| < \epsilon$. Then for all $n \geq N^2$, we have

$$\left| \left(\sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1} \right) - u \right| = \left| \sum_{\sqrt{n} < k \le n} \frac{u_k - u}{n - \lceil \sqrt{n} \rceil + 1} \right|$$

$$\leq \sum_{\sqrt{n} < k \le n} \frac{|u_k - u|}{n - \lceil \sqrt{n} \rceil + 1}$$

$$\leq \sum_{\sqrt{n} < k \le n} \frac{\epsilon}{n - \lceil \sqrt{n} \rceil + 1} = \epsilon \text{ (done)}$$

Chapter 3

PDE intro HW

3.1 HW1

Theorem 3.1.1.

Show $u \mapsto u_x + uu_y$ is non-linear

Proof. See that

$$2u \mapsto 2u_x + 4uu_y \neq 2(u_x + uu_y) \tag{3.1}$$

Theorem 3.1.2.

Solve
$$(1+x^2)u_x + u_y = 0$$

Proof. The characteristic curve has the derivative

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

The solution to this ODE is

$$y = \arctan x + C$$

We now see that the solution to the PDE in Equation 3.1 is

 $u = f((\arctan x) - y)$ where $f : \mathbb{R} \to \mathbb{R}$ is an arbitrary smooth function

A characteristic curve is as followed.

Theorem 3.1.3.

Solve
$$au_x + bu_y + cu = 0$$
 (3.2)

Proof. Fix

$$\begin{cases} x' \triangleq ax + by \\ y' \triangleq bx - ay \end{cases}$$

This map is clearly a diffeomorphism. Compute

$$\begin{cases} u_x = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x} = a u_{x'} + b u_{y'} \\ u_y = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y} = b u_{x'} - a u_{y'} \end{cases}$$

Plugging it back into the PDE in Equation 3.2, we have

$$cu + (a^2 + b^2)u_{x'} = 0 (3.3)$$

If $c = a^2 + b^2 = 0$, then all smooth functions are solution. If $a^2 + b^2 = 0$ but $c \neq 0$, then clearly the only solution is $u = \tilde{0}$. If $a^2 + b^2 \neq 0$ but c = 0, then $u_{x'} = \tilde{0}$, which implies u = f(y') where y' = bx - ay and f can be arbitrary smooth function.

Now, suppose $a^2 + b^2 \neq 0 \neq c$, note that the PDE in Equation 3.3 is just an ODE of the form

$$y + \frac{a^2 + b^2}{c}y' = 0$$
28

The general solution to this ODE is

$$y = Ce^{\frac{-ct}{a^2 + b^2}}$$

In other words, the general solution of the PDE in Equation 3.3 is

$$u = Ce^{\frac{-cx'}{a^2+b^2}} = Ce^{\frac{-c(ax+by)}{a^2+b^2}}$$

3.2 HW2

Question 25

Consider hear flow in a long circular cylinder where the temperature depends only on t and on the distance r to the axis of the cylinder. Here $r = \sqrt{x^2 + y^2}$ is the cylindrical coordinate. From the three dimensional hear equation derive the equation $u_t = k(u_{rr} + \frac{u_r}{r})$

Proof. Write the three dimensional hear equation by

$$u_t = k\Delta u$$

Note that the Laplacian Δu when written in cylindrical coordinate is

$$\Delta u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2} + u_{zz}$$

Because the premise says that u is constant in z and θ , we know $u_{\theta\theta} = u_{zz} = 0$

$$\Delta u = u_{rr} + \frac{u_r}{r}$$

This give us

$$u_t = k(u_{rr} + \frac{u_r}{r})$$

Chapter 4

Differential Geometry HW

4.1 HW1

Abstract

In this HW, we give precise definition to \mathbb{P}^n and $\mathbb{R}P^n$, and we rigorously show

- (a) $\mathbb{R}P^n$ has a smooth structure.
- (b) \mathbb{P}^n is homeomorphic to $\mathbb{R}P^n$
- (c) \mathbb{P}^n has a smooth structure.

Note that in this PDF, brown text is always a clickable hyperlink reference.

Define an equivalence relation on $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ by

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{y} = \lambda \mathbf{x} \text{ for some } \lambda \in \mathbb{R}^*$$

Let $\mathbb{R}P^n \triangleq (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}) \setminus \sim$ be the quotient space and let

$$V_i \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : \mathbf{x}^i \neq 0\}$$
 for each $1 \leq i \leq n+1$

By definition, it is clear that

either
$$\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i$$
 or $\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i^c$

Then if we define $\phi_i: V_i \to \mathbb{R}^n$ by

$$\phi_i(\mathbf{x}) \triangleq \left(\frac{\mathbf{x}^1}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^i}, \frac{\mathbf{x}^{i+1}}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{n+1}}{\mathbf{x}^i}\right)$$

because $\pi(\mathbf{x}) = \pi(\mathbf{y}) \implies \phi_i(\mathbf{x}) = \phi_i(\mathbf{y})$, we can well induce a map

$$\Phi_i: U_i \triangleq \pi(V_i) \subseteq \mathbb{R}P^n \to \mathbb{R}^n; \pi(\mathbf{x}) \mapsto \phi_i(\mathbf{x})$$

Note that one has the equation

$$\Phi_i(\pi(\mathbf{x})) = \phi_i(\mathbf{x}) \text{ for all } \mathbf{x} \in V_i$$

Theorem 4.1.1. (Real Projective Space with a differentiable atlas) We have

 $\mathbb{R}P^n$ with atlas $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ is a differentiable manifold

Proof. We are required to prove

- (a) (U_i, Φ_i) are all charts.
- (b) $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ form a differentiable atlas.
- (c) $\mathbb{R}P^n$ is Hausdorff.
- (d) $\mathbb{R}P^n$ is second-countable.

Because $\pi^{-1}(U_i) = V_i$ and V_i is clearly open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, we know $U_i \subseteq \mathbb{R}P^n$ is open. Note that clearly, $\Phi_i(U_i) = \mathbb{R}^n$. To show (U_i, Φ_i) is a chart, it remains to show that Φ_i is a homeomorphism between U_i and \mathbb{R}^n . It is straightforward to check Φ_i is one-to-one on U_i . This implies Φ_i is a bijective between U_i and \mathbb{R}^n .

Fix open $E \subseteq \mathbb{R}^n$. We see

$$\pi^{-1}(\Phi_i^{-1}(E)) = \phi_i^{-1}(E)$$

Then because $\phi_i: V_i \to \mathbb{R}^n$ is clearly continuous, we see $\phi_i^{-1}(E)$ is open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, and it follows from definition of quotient topology $\Phi_i^{-1}(E) \subseteq \mathbb{R}P^n$ is open. Then because U_i is open in $\mathbb{R}P^n$, we see $\Phi_i^{-1}(E)$ is open in U_i . We have proved $\Phi_i: U_i \to \mathbb{R}^n$ is continuous.

Define $\Psi_i : \mathbb{R}^n \to V_i$ by

$$\Psi(\mathbf{x}^1,\ldots,\mathbf{x}^n) = (\mathbf{x}^1,\ldots,\mathbf{x}^{i-1},1,\mathbf{x}^i,\ldots,\mathbf{x}^n)$$

Observe that for all $\mathbf{x} \in \Phi_i(U_i)$, we have

$$\Phi_i^{-1}(\mathbf{x}) = \pi(\Psi_i(\mathbf{x}))$$

It then follows from $\Psi_i: \mathbb{R}^n \to V_i$ and $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ are continuous that $\Phi_i^{-1}: \mathbb{R}^n \to \mathbb{R}P^n$ is continuous.

We have proved that (Ψ_i, U_i) are all charts. Now, because V_i clearly cover \mathbb{R}^{n+1} , we know U_i also cover $\mathbb{R}P^n$. We have proved $\{(U_i, \Phi) : 1 \leq i \leq n+1\}$ form an atlas. The fact $\mathbb{R}P^n$ is second-countable follows.

Fix $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Phi_i(U_i \cap U_j)$. We compute

$$\begin{split} \Phi_j \circ \Phi_i^{-1}(\mathbf{x}^1, \dots, \mathbf{x}^n) &= \Phi_j \Big([(\mathbf{x}^1, \dots, \mathbf{x}^{i-1}, 1, \mathbf{x}^i, \mathbf{x}^{i+1}, \dots, \mathbf{x}^n)] \Big) \\ &= \begin{cases} \left(\frac{\mathbf{x}^1}{\mathbf{x}^j}, \dots, \frac{\mathbf{x}^{j-1}}{\mathbf{x}^j}, \frac{\mathbf{x}^{j+1}}{\mathbf{x}^j}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^j}, \frac{1}{\mathbf{x}^j}, \frac{\mathbf{x}^i}{\mathbf{x}^j}, \dots, \frac{\mathbf{x}^n}{\mathbf{x}^j} \right) & \text{if } j < i \\ \left(\frac{\mathbf{x}^1}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^{j-1}}, \frac{1}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^i}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{j-2}}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^j}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^n}{\mathbf{x}^{j-1}} \right) & \text{if } j > i \end{cases} \end{split}$$

This implies our atlas is indeed differentiable.

Before we prove $\mathbb{R}P^n$ is Hausdorff, we first prove that $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ is an open mapping. Let $U \subseteq \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ be open. Observe that

$$\pi^{-1}(\pi(U)) = \{ t\mathbf{x} \in \mathbb{R}^{n+1} : t \neq 0 \text{ and } \mathbf{x} \in U \}$$

Fix $t_0 \mathbf{x} \in \pi^{-1}(\pi(U))$. Let $B_{\epsilon}(\mathbf{x}) \subseteq U$. Observe that

$$B_{|t_0|\epsilon}(t_0\mathbf{x}) \subseteq t_0B_{\epsilon}(\mathbf{x}) \subseteq t_0U \subseteq \pi^{-1}(\pi(U))$$

This implies $\pi^{-1}(\pi(U))$ is open. (done)

Now, because π is open, to show $\mathbb{R}P^n$ is Hausdorff, we only have to show

$$R_{\pi} \triangleq \{(\mathbf{x}, \mathbf{y}) \in (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 : \pi(\mathbf{x}) = \pi(\mathbf{y})\}$$
 is closed

Define $f: (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 \to \mathbb{R}$ by

$$f(\mathbf{x}, \mathbf{y}) \triangleq \sum_{i \neq j} (\mathbf{x}^i \mathbf{y}^j - \mathbf{x}^j \mathbf{y}^i)^2$$

Note that f is clearly continuous and $f^{-1}(0) = R_{\pi}$, which finish the proof.

Alternatively, we can characterize $\mathbb{R}P^n$ by identifying the antipodal pints on $S^n \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1\}$ as one point

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{x} = \mathbf{y} \text{ or } \mathbf{x} = -\mathbf{y}$$

and let $\mathbb{P}^n \triangleq S^n \setminus \sim$ be the quotient space.

Theorem 4.1.2. (Equivalent Definitions of Real Projective Space)

 $\mathbb{R}P^n$ and \mathbb{P}^n are homeomorphic

Proof. Define $F: \mathbb{P}^n \to \mathbb{R}P^n$ by

$$\{\mathbf{x}, -\mathbf{x}\} \mapsto \{\lambda \mathbf{x} : \lambda \in \mathbb{R}^*\}$$

It is straightforward to check that F is well-defined and bijective. Define $f: S^n \to \mathbb{R}P^n$ by

$$f = \pi \circ \mathbf{id}$$

where $id: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$ and $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ are continuous. Check that

$$f = F \circ p$$

where $p: S^n \to \mathbb{P}^n$ is the quotient mapping. It now follows from the universal property that F is continuous, and since \mathbb{P}^n is compact and $\mathbb{R}P^n$ is Hausdorff, it also follows that F is a homeomorphism between $\mathbb{R}P^n$ and \mathbb{P}^n .

Knowing that $F: \mathbb{P}^n \to \mathbb{R}P^n$ is a homeomorphism and $\mathbb{R}P^n$ is a smooth manifold, we see that \mathbb{P}^n is Hausdorff and second-countable, and if we define the atlas

$$\{(F^{-1}(U_i), \Phi_i \circ F) : 1 \le i \le n+1\}$$

We see this atlas is indeed smooth, since

$$(\Phi_i \circ F) \circ (\Phi_j \circ F)^{-1} = \Phi_i \circ \Phi_i^{-1}$$

4.2 Appendix

Theorem 4.2.1. (Homeomorphism between Compact Space and Hausdorff Space) Suppose

- (a) X is compact.
- (b) Y is Hausdorff.
- (c) $f: X \to Y$ is a continuous bijective function.

Then

f is a homeomorphism between X and Y

Proof. Because closed subset of compact set is compact and continuous function send compact set to compact set, we see for each closed $E \subseteq X$, $f(E) \subseteq Y$ is compact. The result then follows from $f(E) \subseteq Y$ being closed since Y is Hausdorff.

Theorem 4.2.2. (Hausdorff and Quotient) If $\pi: X \to Y$ is an open mapping, and we define

$$R_{\pi} \triangleq \{(x,y) \in X^2 : \pi(x) = \pi(y)\}$$

Then

 R_{π} is closed $\iff Y$ is Hausdorff

Proof. Suppose R_{π} is closed. Fix some x,y such that $\pi(x) \neq \pi(y)$. Because R_{π} is closed, we know there exists open neighborhood U_x, U_y such that $U_x \times U_y \subseteq (R_{\pi})^c$. It is clear that $\pi(U_x), \pi(U_y)$ are respectively open neighborhood of $\pi(x)$ and $\pi(y)$. To see $\pi(U_x)$ and $\pi(U_y)$ are disjoint, assume that $\pi(a) \in \pi(U_x) \cap \pi(U_y)$. Let $a_x \in U_x$ and $a_y \in U_y$ satisfy $\pi(a_x) = \pi(a) = \pi(a_y)$, which is impossible because $(a_x, a_y) \in (R_{\pi})^c$. CaC

Suppose Y is Hausdorff. Fix some x, y such that $\pi(x) \neq \pi(y)$. Let U_x, U_y be open neighborhoods of $\pi(x), \pi(y)$ separating them. Observe that $(x, y) \in \pi^{-1}(U_x) \times \pi^{-1}(U_y) \subseteq (R_\pi)^c$

4.3 Example: $S^1, \mathbb{R} \setminus \mathbb{Z}$ diffeomorphism

Equip $S^1 \triangleq \{(x,y) \in \mathbb{R}^2 : |(x,y)| = 1\}$ with the standard four projection chart smooth atlas as one of them being

$$V \triangleq \{(x,y) \in \mathbb{R}^2 : y > 0\} \text{ and } \phi_V : V \to \mathbb{R}; (x,y) \mapsto x$$

Let $p: \mathbb{R} \to \mathbb{R} \setminus \mathbb{Z}$ be the quotient map and let

$$U_0 \triangleq p((0,1))$$
 and $U_1 \triangleq p((\frac{-1}{2},\frac{1}{2}))$

which are both open as one can readily check. Define $\phi_0: U_0 \to (0,1)$ by

$$\phi_0(p(t)) \triangleq t_0 \text{ where } t_0 \in (0,1) \text{ and } p(t_0) = p(t)$$

and $\phi_1: U_1 \to (-\frac{1}{2}, \frac{1}{2})$ by

$$\phi_1(p(t)) \triangleq t_0 \text{ where } t_0 \in (-\frac{1}{2}, \frac{1}{2}) \text{ and } p(t_0) = p(t)$$

Clearly, the function $G: \mathbb{R} \setminus \mathbb{Z} \to S^1$ well-defined by $G(p(x)) \triangleq (\cos 2\pi x, \sin 2\pi x)$ is a homeomorphism, as one can check that

- (a) G is a continuous bijection. (Using Universal property of quotient map)
- (b) $\mathbb{R} \setminus \mathbb{Z}$ is compact. (by finite sub-cover definition)
- (c) S^1 is Hausdorff.

We now compute that $\phi_V \circ G \circ \phi_0^{-1}$ is defined on whole (0,1), and is exactly

$$\phi_V \circ G \circ \phi_0^{-1}(t) \triangleq \cos 2\pi t \text{ smooth}$$