RSA°Conference2019 Asia Pacific & Japan

SESSION ID: AIR-R01

Insights for Building a Threat Detection Program

Charles Anderson & Chris Ogden

Capability Analytics Team Sony Global Information Security Department

RSAConference2019 Asia Pacific & Japan

Introductions

Charles Anderson

- Associate Director, Capability Analytics Team
- With Sony since 2015
- Leads threat detection, threat hunt, reverse engineering, and SOC capability development

Chris Ogden

- Principal Security Analyst, Capability Analytics Team
- With Sony since 2015
- Primarily developing threat detection content
- Former incident responder
- Dabble in hunt / threat intel / forensics

Outline

Phase 1 - Planning

Phase 2 – Operational Foundation

• Phase 3 – Advance & Innovate

RSAConference2019 Asia Pacific & Japan

Phase 1 Outline - Planning

Prioritize

Discover

Centralize

Prioritize Discover Centralize Standardize

Standardize

Understanding Business Priorities

- Prioritize
 - Intellectual property & other high-value data
 - Key projects or initiatives
 - Critical assets
 - How access to this data is achieved
 - VIP identities
 - Both to the business, and from privilege

INSIGHT

Clearly connect your threat detection capabilities to business priorities to communicate program value

Discover your data, and its gate-keepers

 Collect the data you need to detect threats against the important business systems

Know the gate keepers

• Legal collection concerns?

• 3rd party data sets

INSIGHT

Ally with your data's gatekeepers to use business needs to address legal issues

Centralize and leverage the data

 Can you get data into your SIEM/Log analysis platform, or can you centrally query multiple data repositories from it?

 The program's procedures and documentations are what enable success

Investigating all security alerts/events may be unfeasible

INSIGHT

Your choice of a specific platform isn't the critical success factor for your threat detection program

Avoid email-based alerting

Standardize All Of Your Data

Standardize fieldnames

Consistent formatting

Avoid exceptions

• If all else fails: Alias / Copy

INSIGHT

Condense fields <u>early</u> so you can search for 1 value in 1 field

```
Example: User
Account_Name
Email
User
UserId
dest user
logged_on_user
responseElements.accessKey.userName
src_user
src_user_id
user
userDisplayName
userId
userPrincipalName
user_id
```

RSA Conference 2019 Asia Pacific & Japan

Phase 2: Operational Foundation

Phase 2 Outline: Operational Foundation

Build Alerting Content

Incorporate Automation

Measure Success

Build Base Alerting Content Backdoor EC2/XORDDOS

Pass through alert data

Focus on "how" – "what" comes l

Avoid alarm fatigue with blacklists

Build structure

INSIGHT

Pass-through alerts allow focus on structure & design, not content.

Backdoor EC2/Spambot Backdoor EC2/C&CActivity.B!DNS Backdoor EC2/DenialOfService.Tcp Backdoor EC2/DenialOfService.Udp Backdoor EC2/DenialOfService.Dns Backdoor EC2/DenialOfService.UdpOnTcpPorts Backdoor EC2/DenialOfService.UnusualProtocol Behavior EC2/NetworkPortUnusual Behavior EC2/TrafficVolumeUnusual Trojan EC2/BlackholeTraffic Trojan EC2/DropPoint Trojan EC2/BlackholeTraffic!DNS Trojan EC2/DriveBySourceTraffic!DNS Trojan EC2/DropPoint!DNS Trojan EC2/DGADomainRequest.B Trojan EC2/DGADomainRequest.C!DNS Trojan EC2/DNSDataExfiltration Trojan EC2/PhishingDomainRequest!DNS

Categories

Signatures

Incorporate Automation

Automation requires structure

Improve consistency & efficiency

Program scales faster than personnel

Have modular & repeatable steps

INSIGHT

Almost anything that is procedurally "well defined" can be automated.

Incorporate Automation

How to affect sweeping changes across multiple searches

INSIGHT

Centralized Code enables bulk updates, consistency, future-proofing.

Measure your detection content

 Your threats aren't static, and your corpus of detection content should not be

- 2 Types of measures:
 - Detection Distribution –Coverage
 - Detection Efficacy Quality

INSIGHT

Measuring ensures new detections are needed, and existing detections perform well

Measure Success – Detection Distribution

 Measure your detection content across models and solutions

- Popular examples are distribution of detection content across:
 - Cyber Kill Chain
 - MITRE ATT&CK Framework
 - Enterprise layers: Applications,
 Authentication, Network, Host, Email
 - IT investments: Security solutions, IT solutions

INSIGHT

Vendor managed threat detections are difficult to account for, especially when using detailed distribution models

Measure Success - Detection Distribution Example 1

Measure Success – Detection Distribution Example 2

Measure Success – Detection Efficacy

• How well does my detection content perform?

- What makes good detection content?
 - Detection analysis is fast
 - Investigations are escalated to system owners frequently*
 - Low false positive rates

INSIGHT

Define "good", build an objective measurement, use it to drive your program forward

Measure Success – Enabling Measurement

Work with your analysis teams to generate the data you need

- Minimally, implement the following:
 - Unique identifiers for detection content associated with investigations*
 - Time in analysis
 - Key investigation milestones (e.g. team transitions)
 - Standardize and structure a set of investigation results

INSIGHT

Correlate data across alerting/investigation systems for the best measurements

Measure Success – Detection Efficacy Example

EXAMPLE

	Thusat					LAAIVII
Date	Threat Detection Name	Ticket Count	Notifications Sent	Notification Percentage	Hours in Analysis per Ticket	Total Hours in Analysis
Week 5	Threat Detection 1	40	5	13%	6	240
Week 4	Threat Detection 1	30	10	33%	7	210
Week 3	Threat Detection 1	55	20	36%	6	330
Week 2	Threat Detection 1	40	10	25%	9	360
Week 1	Threat Detection 1	25	5	20%	3	75
Week 0	Threat Detection 1	40	5	13%	5	200

Measure Success – Detection Efficacy Example

RSA°Conference2019 Asia Pacific & Japan

Phase 3: Advance & Innovate

Phase 3 Outline: Advance & Innovate

Enhance with Heuristics

Targeted Alerting

Incorporate Threat Intel

Enhance with Heuristics-Based Alerting

Build Targeted Alerting Content

Look for patterns, habits, default configurations, common themes, etc.

<u>INSIGHT</u>

Tools & actors manifest patterns.

Those patterns remain consistent.

Build Targeted Alerting Content

Examples

Digital Signatures

Monitor Unused Network Space

Malware Config Defaults

Incorporate Threat Intelligence

Implement a threat-driven defensive approach

IOC feeds can be useful for both detection and context

- Review the data you have for patterns:
 - Investigations and incidents
 - Blocked or prevented attacks

RSAConference2019 Asia Pacific & Japan

Recap

Align detections to business interest to show value

Centralize/standardize data as best you can

 Structure and procedure is what makes for a strong threat detection program, and lends to automation

 Decide on measurements for your detection content, and how you use them to improve

MITRE ATT&CK"		Matrices Tactics ▼ Techniques ▼ Groups Software Resources ▼ Blog ☑ Contribute Search site							
Hooking	Name	Description							
Image File Execution Options Injection	APT29	APT29 has bypassed UAC. ^[9]							
Launch Daemon									
New Service	Autolt backdoor	AutoIt backdoor attempts to escalate privileges by bypassing User Access Control. ^[10]							
Path Interception	BlackEnergy	BlackEnergy attempts to bypass default User Access Control (UAC) settings by exploiting a backward-compatibility setting found in Windows 7 and later.[11]							
Plist Modification	BlackEllergy	brack-nergy attempts to bypass default oser Access control (OAC) settings by exploiting a backward-compatibility setting found in willdows 7 and later.							
Port Monitors	BRONZE	BRONZE BUTLER malware xxmm contains a UAC bypass tool for privilege escalation. ^[12]							
Process Injection	BUTLER	71 1 3							
Scheduled Task	Cobalt Group	Cobalt Group has bypassed UAC. ^[13]							
Service Registry									
Permissions Weakness	Cobalt Strike	Cobalt Strike can use a number of known techniques to bypass Windows UAC. ^[14]							
Setuid and Setgid		fact.							
SID-History Injection	Downdelph	Downdelph bypasses UAC to escalate privileges by using a custom "RedirectEXE" shim database. [15]							
Startup Items	Empire								
Sudo	Empire	Empire includes various modules to attempt to bypass UAC for escalation of privileges. ^[16]							
Sudo Caching	FinFisher	FinFisher performs UAC bypass. ^{[17][18]}							
Valid Accounts									
Web Shell	H1N1	H1N1 bypasses user access control by using a DLL hijacking vulnerability in the Windows Update Standalone Installer (wusa.exe). ^[19]							
Defense Evasion +									
Credential Access +	Honeybee	Honeybee uses a combination of NTWDBLIB.dll and cliconfg.exe to bypass UAC protections using DLL hijacking. [20]							

MITRE ATT&CK® ATT&CK® Matrices Tactics ▼ Techniques ▼ Groups Software Resources

SOFTWARE

Overview

3PARA RAT

4H RAT

adbupd

Adups

ADVSTORESHELL

Agent Tesla

Agent.btz

Allwinner

Android Overlay Malware

Android/Chuli.A

ANDROIDOS_ANSERVER.A

AndroRAT

Arp

ASPXSpy

Astaroth

Home > Software > Cobalt Strike

Cobalt Strike

Cobalt Strike is a commercial, full-featured, penetration testing tool which bills itself as "adversary simulation software designed to execute targeted attacks and emulate the post-exploitation actions of advanced threat actors". Cobalt Strike's interactive post-exploit capabilities cover the full range of ATT&CK tactics, all executed within a single, integrated system. [1]

In addition to its own capabilities, Cobalt Strike leverages the capabilities of other well-known tools such as Metasploit and Mimikatz. [1]

Techniques Used

Domain	ID	Name	Use				
Enterprise	T1134	Access Token Manipulation	Cobalt Strike can steal access tokens from exiting processes and make tokens from known cre				
Enterprise	T1197	BITS Jobs	Cobalt Strike can download a hosted "beacon" payload using BITSAdmin. ^[2]				
Enterprise	T1088	Bypass User Account Control	Cobalt Strike can use a number of known techniques to bypass Windows UAC. ^[1]				

Bypassing UAC

1. Create our malicious DLL.

Syntax: msfvenom -p <payload> -f dll -o cryptbase.dll <payload options>

2. Turn our DLL into a cabinet file.

Syntax: makecab <input file> <output file>

```
C:\cryptbase>makecab cryptbase.dll cryptbase.tmp
Cabinet Maker - Lossless Data Compression Tool
100.00% [flushing current folder]
C:\cryptbase>
```

3. Unpack the cabinet using wusa:

Syntax: wusa <input file> /extract:C:\Windows\ehome\

C:\cryptbase>wusa C:\cryptbase\cryptbase.tmp /extract:C:\Windows\ehome

Simulated Content

Original Source Content: https://null-byte.wonderhowto.com/how-to/bypass-uac-using-dll-hijacking-0168600/

Bypassing UAC

Create our malicious DLL.

Syntax: msfvenom -p <payload> -f dll -o cryptbase.dll ...

2. Turn our DLL into a cabinet file.

Syntax: makecab <input file> <output file>

Unpack the cabinet using wusa:

Syntax: wusa <input file> /extract:C:\Windows\ehome\

_time \$	index ✓	sourcetype \$	hostname \$ /	parent_process	1	process	1	command_line \$
2019-06-03 14:54:59	demo	RSA_demo	Ogden-PC	rund1132.exe		cmd.exe		Rename "C:\Windows\System32\cmd.exe" RENAME "C:\Users\Admin\Downloads\Malicious_DLL.dll" "C:\Users\Admin\Downloads\CRYPTBASE.dll" Pack
2019-06-03 14:54:59	demo	RSA_demo	Ogden-PC	rundll32.exe		makecab.ex	e	"C:\Windows\System32\makecab.exe" "C:\Users\Admin\Downloads\CRYPTBASE.dll" "C:\Users\Admin\Downloads\Evil_Cabinet.cab"
2019-06-03 14:54:59	demo	RSA_demo	Ogden-PC	rundl132.exe		wusa.exe		"C:\Windows\System32\wusa.exe" "C:\Users\Admin\Downloads\ <u>Evil_Cabinet.cab</u> " /quiet /extract "C:\Windows\system32\sysprep\"
2019-06-03 14:54:59	demo	RSA_demo	Ogden-PC	rundl132.exe		sysprep.exe	е	"C:\Windows\system32\sysprep\sysprep.exe" (Loads CRYPTBASE.dll from local directory first)
2019-06-03 14:54:59	demo	RSA_demo	Ogden-PC	sysprep.exe		cmd.exe		"C:\Windows\System32\cmd.exe" whoami & ipconfig & net use & dir C:\Users\"

parent_process	process	command_line
rundll32.exe	cmd.exe	cmd.exe RENAME "Malicious_DLL.dll" "CRYPTBASE.dll"
rundll32.exe	makecab.exe	makecab.exe CRYPTBASE.dll Evil_Cabinet.cab
rundll32.exe	wusa.exe	wusa.exe Evil_Cabinet.cab /quiet /extract "C:\Windows\system32\sysprep\"
rundll32.exe	sysprep.exe	sysprep.exe
sysprep.exe	cmd.exe	cmd.exe whoami & ipconfig & net use & dir C:\Users\

Asia Pacific & Japan

Walkthrough – User Account Control Bypass 6


```
index=demo sourcetype=RSA_demo
  ( parent_process = "rundl132.exe" AND process = "makecab.exe" )
  OR
  ( process = "makecab.exe" AND command_line = "*.dl1*" )
  OR
  ( process = "wusa.exe" AND command_line = "*.cab*" )
```

Correlation Search

Time Range

RS∧ Conference 2019 Asia Pacific & Japan

Apply it: Short / Medium / Long-Term

• If you don't have a program, start building

• If you have a program, start measuring

• Establishing a structured foundation sets you up for success in the long-run, even if you make mistakes

 Share with the community the efficacy measurements that matter to your organization!

Q&A Session

Join us for a Q&A discussion session in...