ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 2.1.4 Определение теплоёмкости твёрдых тел

Рогозин Владимир **Группа Б03-105**

Цель работы: 1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости по экстраполяции отношения $\frac{\Delta Q}{\Delta T}$ к нулевым потерям тепла.

Оборудование: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

Теоретические сведения: В данной работе измеряется количество теплоты ΔQ , подведенное к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла. Тогда теплоемкость можно вычислить по формуле

$$C = \frac{\Delta Q}{\Delta T}$$

Температура исследуемого тела надежно измеряется термометром сопротивления, а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия $P\Delta T$, выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла равно

$$\Delta Q = P\Delta T - \lambda (T - T_{\kappa}) \Delta t \tag{1}$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок калориметра, T — температура тела, $T_{\rm K}$ — комнатная температура, Δt — время, в течение которого идет нагревание. Отсюда получаем основную формулу для нахождения теплоёмкости

$$C = \frac{P - \lambda (T - T_{\kappa})}{\Delta T / \Delta t}$$

В данном соотношении С есть суммарная теплоёмкость калориметра и тела, чтобы найти искомую теплоёмкость, необходимо отдельно измерить теплоёмкость калориметра.

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (1) видно, что при постоянной мощности нагревателя по мере роста температуры количество тепла, передаваемое телу, уменьшается и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и производить все измерения при температурах, мало отличающихся от комнатной. Однако при небольших перегревах возникает большая ошибка в измерении ΔT и точность определения теплоемкости не возрастает. Чтобы избежать этой

трудности, в работе предлагается следующая методика измерений. Зависимость скорости нагревания $\Delta T/\Delta t$ тела от температуры измеряется в широком интервале изменения температур. По полученным данным строится график функции

$$\frac{\Delta T}{\Delta t} = f(T)$$

этот график экстраполируется к температуре $T=T_{\kappa}$, и, таким образом, определяется скорость нагревания при комнатной температуре. При этом при $T=T_{\kappa}$ величина потерь обращается в ноль, а значит

$$C = \frac{P}{(\Delta T/\Delta t)_{T=T_{\kappa}}}$$

Температура измеряется термометром сопротивления, для которого известно, что его сопротивление изменяется по закону

$$R_T = R_0(1 + \alpha \Delta T)$$

где R_T – его сопротивление при T °C, R_0 – сопротивления при 0 °C, α – температурный коэффициент сопротивления меди. Дифферинцируя по времени получим

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt}$$

$$R_0 = \frac{R_{\rm k}}{1 + \alpha \Delta T_{\rm k}}$$

 $R_{\rm k}$ — сопротивление термометра при комнатной температуре. Отсюда получаем формулу для вычисления теплоемкости

$$C = \frac{PR_{\kappa}\alpha}{\left(\frac{dR}{dt}\right)_{T_{\kappa}}(1 + \alpha\Delta T_{\kappa})}$$
 (2)

Экспериментальная установка: Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящике из многослойной клееной фанеры. Внутренние стенки калориметра выполнены из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу. Для выталкивания образца служит винт в донышке внутренней стенки калориметра.

Рис. 1. Схема устройства калориметра

В стенку калориметра вмонтированы электронагреватель и термометр сопротивления. Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая током в нагревателе. Величина сопротивления термометра измеряется мостом постоянного тока.

Рис. 2. Схема включения нагревателя

Обработка данных: При проведении измерений комнатная температура была равна $T_{\rm K}=296~{\rm K}$, при этом $R_{\rm K}=17{,}713~{\rm OM}$, температурный коэффициент сопротивления меди $\alpha=4{,}28{\cdot}10^{-3}~{\rm град}^{-1}$. Сначала определим теплоёмкость калориметра, для этого исследуем зависимость сопротивления термометра от времени с фиксированным шагом $\Delta R=5{\cdot}10^{-2}~{\rm OM}$. Результаты приведены в таблице:

t, c	R, Ом	t, c	R, Ом
0	18,105	423,50	18,455
56,43	18,155	490,80	18,505
113,35	18,205	559,35	18,555
172,05	18,255	629,96	18,605
232,00	18,305	703,84	18,655
295,00	18,355	778,16	18,705
358,61	18,405	854,18	18,755

По данным из таблицы построим график функции R(t) для пустого калориметра.

Найдем значение $\frac{dR}{dt}$ для каждого из отрезков кривой R(t), заключенного между соседними точками графика, и построим график зависимости $\frac{dR}{dt}(R)$, проэкстраполируем полученный график к значению $R=R_{T_\kappa}$. Из графика получаем

$$k = d(\frac{dR}{dt})/dR = (-4,000 \pm 0,105) \cdot 10^{-4} \ c^{-1}, \ \varepsilon \approx 2,63\%$$

 $b = (8,166 \pm 0,002) \cdot 10^{-3} \ \text{Om} \cdot c^{-1}, \ \varepsilon \approx 0,025\%$

$$\left(\frac{dR}{dt}\right)_{T_{\kappa}} = k \cdot R_k + b = (1,070 \pm 0,028) \cdot 10^{-3} \text{ Om} \cdot c^{-1}, \ \varepsilon \approx 2,63\%$$

Мощность нагревателя равна P=10,8 Ватт, по формуле (2) рассчитаем теплоёмкость калориметра

$$C_{\mathrm{кал}} = (696,63 \pm 18,32)$$
 Дж $\cdot K^{-1}, \ \varepsilon \approx 2,63\%$

Далее, тем же способом определим теплоёмкости железа, латуни и алюминия, для этого будем измерять зависимость R(t) для калориметра с образцом при фиксированном шаге $\Delta R = 5 \cdot 10^{-2}$ Ом. Результаты измерений приведены в таблице ниже:

Железо		Латунь		Алюминий	
t, c	R, Om	t, c	R, Ом	t, c	R, Ом
0	18,335	0	18,035	0	18,565
59,68	18,385	37,46	18,085	72,06	18,615
144,19	18,435	102,70	18,135	149,85	18,665
230,30	18,485	176,96	18,185	232,61	18,715
321,27	18,535	255,07	18,235	317,87	18,765
412,11	18,585	333,80	18,285	405,18	18,815
509,25	18,635	417,98	18,335	497,66	18,865
607,45	18,685	503,04	18,385	590,57	18,915
708,79	18,735	588,02	18,435	689,41	18,965
812,22	18,785	680,65	18,485	787,11	19,015
921,24	18,835	770,86	18,535	890,68	19,065
1030,35	18,885	865,48	18,585	996,69	19,115
1143,92	18,935	961,31	18,635	1105,56	19,165
1257,40	18,985	1062,10	18,685	1216,52	19,215

Для построения графиков зависимости $\frac{dR}{dt}(R)$ для каждого из образцов были исключены первые две точки зависимости R(t).

$$k_{\text{жел}} = d(\frac{dR}{dt})/dR = (-2,822 \pm 0,156) \cdot 10^{-4} \ c^{-1}, \ \varepsilon \approx 5,53\%$$

$$b_{\text{жел}} = (5,778 \pm 0,002) \cdot 10^{-3} \ \text{Ом} \cdot c^{-1}, \ \varepsilon \approx 0,034\%$$

$$(\frac{dR}{dt})_{T_{\text{K}}} = k \cdot R_k + b = (7,795 \pm 0,431) \cdot 10^{-4} \ \text{Ом} \cdot c^{-1}, \ \varepsilon \approx 5,53\%$$

$$C_1 = (946,67 \pm 52,35) \ \text{Дж} \cdot K^{-1}, \ \varepsilon \approx 5,53\%$$

При этом учтём, что

$$\varepsilon_{C_{\mathrm{жел}}}^2 = \varepsilon_{C_1}^2 + \varepsilon_{C_{\mathrm{кал}}}^2$$

$$C_{\text{жел}} = C_1 - C_{\text{кал}} = (250,04 \pm 15,31) \text{ Дж} \cdot K^{-1}, \ \varepsilon \approx 6,12\%$$

Масса образца железа равна $m_{\rm жел} = (813.2 \pm 0.1)$ г, отсюда

$$C_{\text{жел}} = (307,55 \pm 18,82) \ \text{Дж} \cdot K^{-1} \text{кг}^{-1}, \ \varepsilon \approx 6,12\%$$

Далее найдем молярную теплоёмкость железа по формуле $C_{\text{мол}} = C_{\text{жел}} \cdot \mu_{\text{жел}}$, где $\mu_{\text{жел}} = 0,056~\text{кг} \cdot \text{моль}^{-1}$ молярная масса железа.

$$C_{\text{мол}} = (17{,}223 \pm 1{,}054) \; \text{Дж} \cdot K^{-1}$$
моль $^{-1}$

Табличные значения для удельной и молярной теплоёмкостей железа соответственно равны

$$C_{\mathrm{жел}} = 460~\mathrm{Дж} \cdot K^{-1} \mathrm{кг}^{-1},~C_{\mathrm{мол}} = 25{,}67~\mathrm{Дж} \cdot K^{-1} \mathrm{моль}^{-1}$$

Полученные значения отличаются на $\varepsilon = 33{,}14\%$ от табличных значений.

$$\begin{split} k_{\text{лат}} &= d(\frac{dR}{dt})/dR = (-3,285 \pm 0,209) \cdot 10^{-4} \ c^{-1}, \ \varepsilon \approx 6,36\% \\ b_{\text{лат}} &= (6,627 \pm 0,003) \cdot 10^{-3} \ \text{Om} \cdot c^{-1}, \ \varepsilon \approx 0,045\% \\ (\frac{dR}{dt})_{T_{\text{K}}} &= k \cdot R_k + b = (8,071 \pm 0,513) \cdot 10^{-4} \ \text{Om} \cdot c^{-1}, \ \varepsilon \approx 6,36\% \\ C_2 &= (923,54 \pm 52,35) \ \text{Дж} \cdot K^{-1}, \ \varepsilon \approx 6,36\% \\ \varepsilon_{C_{\text{лат}}}^2 &= \varepsilon_{C_2}^2 + \varepsilon_{C_{\text{кал}}}^2 \\ C_{\text{лат}} &= C_2 - C_{\text{кал}} = (226,91 \pm 15,11) \ \text{Дж} \cdot K^{-1}, \ \varepsilon \approx 6,66\% \end{split}$$

Масса образца латуни равна $m_{\rm лат} = (868,7\pm0,1)$ г, отсюда

$$C_{\text{пат}} = (261,21 \pm 18,82) \ \text{Дж} \cdot K^{-1} \text{кг}^{-1}, \ \varepsilon \approx 6,66\%$$

Далее найдем молярную теплоёмкость латуни по формуле $C_{\text{мол}} = C_{\text{лат}} \cdot \mu_{\text{лат}}$, где $\mu_{\text{лат}} = 0.064~\text{kg} \cdot \text{моль}^{-1}$ молярная масса латуни.

$$C_{\text{мол}} = (16,717 \pm 1,113) \ \text{Дж} \cdot K^{-1}$$
моль

Табличные значения для удельной и молярной теплоёмкостей латуни соответственно равны

$$C_{\text{лат}} = 377 \ \text{Дж} \cdot K^{-1} \text{кг}^{-1}, \ C_{\text{мол}} = 24,13 \ \text{Дж} \cdot K^{-1} \text{моль}^{-1}$$

Полученные значения отличаются на $\varepsilon = 30{,}72\%$ от табличных значений.

$$k_{\mathrm{a}\mathrm{J}} = d(\frac{dR}{dt})/dR = (-3,130\pm0,137)\cdot10^{-4}\ c^{-1},\ \varepsilon\approx4,38\%$$

$$b_{\mathrm{a}\mathrm{J}} = (6,449\pm0,002)\cdot10^{-3}\ \mathrm{Om}\cdot c^{-1},\ \varepsilon\approx0,031\%$$

$$(\frac{dR}{dt})_{T_{\mathrm{K}}} = k\cdot R_{k} + b = (9,045\pm0,396)\cdot10^{-4}\ \mathrm{Om}\cdot c^{-1},\ \varepsilon\approx4,38\%$$

$$C_{3} = (814,87\pm35,69)\ \mathrm{Дж}\cdot K^{-1},\ \varepsilon\approx4,38\%$$

$$\varepsilon_{C_{\mathrm{a}\mathrm{J}}}^{2} = \varepsilon_{C_{3}}^{2} + \varepsilon_{C_{\mathrm{Ka}\mathrm{J}}}^{2}$$

$$C_{\mathrm{a}\mathrm{J}} = C_{3} - \mathrm{C}_{\mathrm{Ka}\mathrm{J}} = (118,24\pm6,04)\ \mathrm{Дж}\cdot K^{-1},\ \varepsilon\approx5,11\%$$
 Масса образца алюминия равна $m_{\mathrm{a}\mathrm{J}} = (294,2\pm0,1)$ г, отсюда
$$C_{\mathrm{a}\mathrm{J}} = (401,90\pm20,54)\ \mathrm{Дж}\cdot K^{-1}_{\mathrm{K}\Gamma}^{-1},\ \varepsilon\approx5,11\%$$

Далее найдем молярную теплоёмкость алюминия по формуле $C_{\text{мол}} = C_{\text{ал}} \cdot \mu_{\text{ал}}$, где $\mu_{\text{ал}} = 0.027~\text{кг} \cdot \text{моль}^{-1}$ молярная масса алюминия.

$$C_{\text{мол}} = (10,851 \pm 0,555) \ \text{Дж} \cdot K^{-1}$$
моль $^{-1}$

Табличные значения для удельной и молярной теплоёмкостей алюминия соответственно равны

$$C_{\text{ал}} = 900 \; \text{Дж} \cdot K^{-1}$$
кг $^{-1}, \; C_{\text{мол}} = 24{,}30 \; \text{Дж} \cdot K^{-1}$ моль $^{-1}$

Полученные значения отличаются на $\varepsilon = 55{,}35\%$ от табличных значений.

Вывод: В данной работе были измерены удельные и молярные теполёмкости трёх металлов: железа, латуни и алюминия. Результаты не совпали с табличными значениями ни для одного из образцов, расхождение с табличными значениями чуть более $\varepsilon=30\%$ для латуни и железа, и более $\varepsilon=50\%$ для алюминия.