FUNDE 2004/001321 BUNDESREPUBLIK DEUTSCHLAND

REC'D 0 6 AUG 2004 WIPO **PCT**

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 34 350.4

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Anmeldetag:

25. Juli 2003

Anmelder/Inhaber: Bundesrepublik Deutschland, vertr. d. d.

Bundesministerum für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-

Technischen Bundesanstalt, 38116 Braunschweig/DE

Bezeichnung:

Verfahren zur Bestimmung der Brechzahl bei

interferometrischen Längenmessungen und

Interferometeranordnung hierfür

IPC:

G 01 B 9/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 16. Juli 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Kahla

GRAMM, LINS & PARTNER Patent- und Rechtsanwaltssozietät

CHAMM, LINE & PARTNER GUR, 1 McGor House Sir. 1. D-38122 Remischwong

Bundesrepublik Deutschland, vertr. durch das Bundesministorium für Wirtschaft und Arbeit, dieses vertr. durch den Präsidenten der Physikalisch- Technischen Bundesanstalt Bundesallae 100

38116 Braunschweig

Unser Zeichen/Our ref.: 0454-054 DE-1

Braunschweig:

Patentanwalt Prof. Dipl.-ing. Werner Gramm **
Patentanwalt Dipl.-Phys. Dr. jur. Edgar Lins **
Rochtsanwalt Hanns-Peter Schrammek "
Patentanwalt Dipl.-ing. Thorsten Rohmann **
Rechtsanwalt Christian S. Drzymalia "
Patentanwalt Dipl.-ing. Hans Joachim Gorstein "
Rochtsanwalt Dr. Stofan Risthaus
Patentanwalt Dipl.-ing. Kal Stornebel **

Hannover:

Potentanwähln Dipl.-Chem. Dr. Mortina Läufer **

- · European Patent Altomoy
- Guronpan Tradomark Attorney
- n rugolassen beim LG u. OLG Brannachwarg .

Datum/Date 25. Juli 2003

Verfahren zur Bestimmung der Brechzahl bei interferometrischen Längenmessungen und Interferometeranordnung hierfür

Die Erfindung betrifft ein Verfahren zur Bestimmung der Brechzahl und/oder Kompensation des Brechzahleinflusses bei interferometrischen Längenmessungen mit Hilfe eines mit wenigstens zwei Messstrahlen mit wenigstens definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen beaufschlagten Interferometers, an dessen Ausgang interferometrisch Phasen für die wenigstens zwei Messstrahlen ausgewertet werden, wobei eine dem harmonischen Verhältnis der Frequenzen der Messstrahlen entsprechende Multiplikation der interferometrischen Phasen vorgenommen und wenigstens eine Phasendifferenz der so gebildeten Phasenwerte betrachtet wird.

Die Erfindung betrifft ferner eine Interferometeranordnung zur Durchführung des Verfahrens mit wenigstens einer kohärenten Strahlenquelle zur Generierung wenigstens zweier Messstrahlen mit definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen und einem Interferometer, dessen Ausgangssignale auf einen die Messstrahlen trennenden Strahlteiler gelangen, wobei

Antwort bitte nach / please reply to:

Hannover:

Froundalieo 13 D-30173 Hennover Bundesrepublik Dourschland Tolefon 0511 / 988 75 07 Tolefax 0511 / 988 75 09 Braunschweig:

Theodor-House-Stroße 1 D-38122 Braunachwuig Bundesrepublik Deutschland Teleten 0531 / 28 14 0 - 0 Tulofax 0531 / 28 14 0 - 28

5

10

15

20

25

30

die getrennten Messstrahlen auf opto-elektronische Wandler gelängen und wenigstens eines der Ausgangssignale der opto-elektrischen Wandler einem dem harmonischen Verhältnis der Frequenzen der Messstrahlen entsprechenden Multiplikator zugeführt wird.

Es ist bekannt, Abstandsmessungen bzw. Messungen von Längenänderungen physikalischer Längen mit Hilfe eines Interferometers durchzuführen. Bei einer derartigen Messung wird die optische Weglänge gemessen, die sich aus der physikalischen Weglänge und der integralen Brechzahl des Mediums auf der gemessenen Weglänge zusammensetzt. Der Einfluss der Brechzahl auf die Messung kann dadurch eliminiert werden, dass die Interferometrische Messung mit zwei definierten unterschiedlichen Wellenlängen durchgeführt wird. Da die Brechzahl von der Wellenlänge abhängt, die physikalische Weglänge hingegen von der Wellenlänge unabhängig ist, lassen sich so Informationen über die physikalische Weglänge und die Brechzahl voneinander trennen.

US 4,948,254 beschreibt eine Vorrichtung, die nach dieser Dispersionsmethode arbeitet. Die beiden Wellenlängen werden von einem Argon-Ionen-Laser in Kombination mit einem Frequenzverdopplerkristall geliefert. Durch die Verwendung einer Grundwelle und einer frequenzverdoppelten Welle erhält man für die Interferometrie zwei Wellen, die grundsätzlich phasenstarr sind. Der Verdopplerkristall befindet sich am Anfang der Messstrecke am Messarm eines Zweistrahl-Interferometers, Die hinlaufende Grundwelle erzeugt im Kristall eine kollinear laufende Oberwelle. Beide Wellen durchlaufen die Messstrecke. Beim Rücklauf durch den Kristall erzeugt die Grundwelle eine zweite Oberwelle, die aufgrund der Dispersion im durchlaufenden Medium eine Phasendifferenz gegenüber der ersten Oberwelle aufweist. Diese Phasendifferenz, die gemessen werden muss, stellt das Messsignal dar. Sie ist ein Maß für die Dispersion und damit für die Brechzahlen. Die Phasendifferenz ist nur gering von anderen Einflüssen, wie Position und Bewegungszustand des Interferometers abhängig, sodass die Phasendifferenz ein brauchbares Messsignal für eine genaue Messung darstellt. Problema-

tisch ist allerdings, dass eine genaue Bestimmung der Phasen aufwändig und mit prinzipiellen Messunsicherheiten belastet ist.

US 5,404.222 beschreibt ein ähnliches System, bei dem der Verdopplerkristall vor dem Eintritt des verwendeten Lichts in des Interferometer durchlaufen wird. Außerdem findet eine Frequenzverdopplung am Ausgang des Interferometers statt.

Zur Verbesserung der Messgenauigkeit ist beispielsweise aus US 5,838,485 ein sogenanntes Superheterodyn-Interferometer bekannt. Auch hier wird ein Zwei-Wellenlängen-Interferometer mit harmonisch korrelierten optischen Wellen verwendet, um die Kompensation des Brechzahleinflusses mittels der Dispersionsmethode durchzuführen. Bei dem Superheterodyn-Interferometer werden die interferometrischen Phasen der optischen Grund- und Oberwelle jeweils auf Hochfrequenz-Heterodynfrequenzen abgebildet. Die interferometrische Phase des Heterodynsignals der Grundwelle wird verdoppelt. Die Differenz dieser verdoppelten Phase und der Phase des Heterodynsignals der Oberwelle ist proportional zur Dispersion. Der Vorteil der Superheterodyn-Interferometer besteht darin, dass die Empfindlichkeit der Brechzahlkompensation bezüglich der mechanischen Stabilität des Interferometers wesentlich geringer ist. Die erzielbare Genauigkeit der Messung wird jedoch durch die Bestimmung der Phasendifferenz begrenzt. Die Phasenmessungen müssen für die Hochfrequenzsignale um 1 bis 2 Größenordnungen genauer erfolgen als bei der eigentlichen Längenmessung. Für die Bestimmung der Phasendifferenz ist die Messung zweier unabhängiger Phasen notwendig. Möglichen Nichtlinearitäten bei der Phasenmessung beeinflussen die Messunsicherheit. Die Differenzphase ändert sich periodisch mit der Messstrecke, sodass die Brechzahlbestimmung nicht eindeutig ist. Weiter ist zur Bestimmung der Brechzahl, eine Änderung der Messstrecke erforderlich. Das Verfahren ist somit nur für brechzahlkompensierte Verschiebemessungen, nicht jedoch für brechzahlkompensierte Positionsmessungen, beispielsweise in einem absolut messenden Interferometer, geeignet.

Fax G3 Nr: 683933 von 495312814027 an VERMITTLUNG (Seite 10 von 25) vom 25.07.03 16:54 Uhr - Status: Druckerfehler

Retreff: 25 Seite(n) emnfangen

25

30

`⊿

Aus US 2002/0011086 A1 ist es ferner bekannt, ein Zwel-WellenlängenInterferometer mit einem Refraktometer zu kombinieren, das in der Nähe der interferometrisch zu messenden Strecke plaziert ist. Das Refraktometer, das beispielsweise aus einem abgeglichenen Interferometer fester Weglängen besteht,
wobei die Referenzstrecke im Vakuum und die Messtrecke in der Umgebungsluft
verläuft, dient der Messung der Langzeitänderungen der Brechzahl und kann bei
sich ändernder Luftzusammensetzung zur Bestimmung der inversen Dispersion A
benutzt werden. Mit dieser Ergänzung kann die Brechzahl absolut und eindeutig
bestimmt werden.

10

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs erwähnten Art so zu verbessern, dass eine genauere Kompensation der Brechzahleinflüsse für Präzisionslängenmessungen möglich ist.

20 Zur Lösung dieser Aufgabe ist erfindungsgemäß das Verfahren der eingangs erwähnten Art dadurch gekennzeichnet, dass wenigstens einer der Messstrahlen in seiner Frequenz varlierbar ist und dass aus der gebildeten Phasendifferenz ein Steuersignal zur Veränderung der Frequenz des in seiner Frequenz veränderbaren Messstrahls gebildet wird, mit dem die Frequenz so geregelt wird, dass die Phasendifferenz zu Null wird.

Zur Lösung der Aufgabe ist erfindungsgemäß ferner eine Vorrichtung der eingangs erwähnten Art dadurch gekennzeichnet, dass wenigstens einer der Messstrahlen in seiner Frequenz mittels einer Frequenzsteuerung variierbar ist und dass mittels eines Phasenvergleichers für die Phasen der Ausgangssignale der opto-elektrischen Wandler ein eine Phasendifferenz repräsentierendes Steuersignal generiert und der Frequenzsteuerung zur Bildung eines Regelkreises für die interferometrischen Phasen zugeleitet wird.

30 Erfindungsgemäß wird ein interferometrischer Phasenregelkreis realisiert, der dafür sorgt, dass die integralen optischen Wellenlängen der beiden im Interferometer umlaufenden Strahlen entlang der Messstrecke exakt harmonisch korreliert
sind. Die Korrelation entspricht dem harmonischen Frequenzverhältnis der Felder

der Zwei-Frequenz-Strahlungsquelle. Hierfür wird die Frequenz eines der Messstrahlen um einen gewissen Frequenzbetrag, der Offset-Frequenz, verstellt. Die Differenzfrequenz zwischen dem exakt harmonischen Frequenzverhältnis und der durch den Regelkreis eingestellten Frequenz Ist ein direktes Maß für die integrale Brechzahl auf der Messstrecke. Die Offset-Frequenz lässt sich leicht messen und ist insbesondere unabhängig von der Länge der Messstrecke und von mechanischen Instabilitäten des Interferometers. Da die Messung der Brechzahl erfindungsgemäß auf eine Frequenzmessung zurückführbar ist, wird prinzipiell eine höhere Messgenauigkeit errreicht, da Frequenzen sehr genau messbare physikalisch Größen sind. Weiterhin ist die Frequenzmessung im Gegensatz zur Messung einer perlodischen Phase a priori eindeutig und prinzipiell ohne Effektmodulation messbar.

Die Messung der Offset-Frequenz erfolgt vorzugsweise dadurch, dass wenigstens ein Referenzstrahl mit einer Frequenz erzeugt wird, die etwa der Frequenz eines der Messstrahlen entspricht und mit der Frequenz eines anderen Messstrahls gekoppelt ist und dass eine Frequenzdifferenz zwischen der Frequenz des Referenzstrahls und der Frequenz des entsprechenden Messstrahls gemessen wird.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Interferometer-Anordnung können durch die Anwendung des Superheterodyn-Prinzips modifiziert werden. Insbesondere können dabei den überlagerten Messstrahlen in einem Referenzzweig des Interferometers Hochfrequenzen aufmoduliert werden, die im gleichen harmonischen Verhältnis zueinander wie die Frequenzen der Messstrahlen stehen.

In einer weiteren Modifikation der vorliegenden Erfindung können auch unterschiedliche Polarisationskomponenten verwendet werden, wobei eine Polarisationskomponente gegenüber der anderen um $\pi/2$ mittels einer λ -Verzögerungsplatte verschoben werden kann. Dedurch wird erreicht, dass für eine genaue Auswertung immer Signalanteile zur Verfügung stehen, die nicht Null sind und daher gut messbar sind.

15

20

Die Erfindung soll im Folgenden anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:

- eine schematische Darstellung einer erfindungsgemäßen Interfero-Figur 1 meteranordnung
- Figur 2 eine schematische Darstellung einer Ausführungsform der erfindungsgemäßen Interferometeranordnung Superheterodyn-Interferometer mit zwei Laserquellen

Figur 3 eine Variante der Ausführungsform gemäß Figur 2 mlt einer einzigen Laserquelle.

In der Ausführungsform gemäß Figur 1 ist ein Laser L1 als kohärente Strahlungs-15 ' quelle vorgesehen, der einen Laserstrahl mit der Frequenz V1 als Referenzstrahl und mit einer zweiten Frequenz v_2 als ersten Messstrahl aussendet. Der Laser $\downarrow 1$ kann beispielsweise ein Second Harmonic Generator (SHG) Laser sein, der neben seiner Fundamentalfrequenz V, auch ein frequenzverdoppeltes Feld V, = 2V, emittiert. Die Anwendung der Erfindung ist aber nicht auf eine Frequenzverdopplung beschränkt. Wesentlich ist eine harmonische Korrellerung der Frequenzen in der allgemeinen Form k $1\cdot V_1=k2\cdot V_2$, wobei k1, k2 natürliche Zahlen sind. In einer bevorzugten, einfach zu realisierenden Form gilt $v_2 = N \cdot v_1$ (N natürliche Zahl > 1).

Eine zweite Laserquelle L2 emittiert einen Laserstrahl mit einer dritten Frequenz V3. die der Frequenz V1 entspricht.

In dem dargestellten Ausführungsbelspiel ist die Ausgangsfrequenz des Lasers L2 durch eine Frequenzsteuerung 11 steuerbar. Die Frequenzsteuerung kann ein akustooptischer Modulator (AOM), aber auch ein Frequenzsteuereingang eines in der Frequenz abstimmbaren Lasers L2 sein.

Betreff: 25 Seite(n) empfangen

10

20

.5

10

15

20

30

7

Der Ausgangsstrahl des Lasers L1 gelangt auf einen dichroitischen Strahlteiler DST 11, der den Strahl des Lasers L1 mit der Frequenz v_1 als Referenzstrahl ablenkt und den Strahl mit der Frequenz v_2 als ersten Messstrahl durchlässt. Der erste Messstrahl v_2 durchläuft einen zweiten dichroitischen Strahlteiler DST12 und gelangt in ein Interferometer 13.

Die Frequenz v_3 des zweiten Lasers L2 wird durch die Frequenzsteuerung 11 beeinflusst und tritt als Frequenz v_3 aus der Frequenzsteuerung 11 als zweiter Messstrahl aus. Er wird durch einen neutralen Strahlteiler ST11 in zwei Anteile geteilt, von denen einer aus dem Strahlengang abgelenkt und auf einen Spiegel S11 geleitet wird, wodurch der Teilstrahl auf einen welteren neutralen Strahlteiler ST12 gelangt, wodurch der abgelenkte Anteil des zweiten Messtrahls v_3 kollinear dem von dem dichroitischen Strahlteiler DST11 abgelenkten Referenzstrahl überlagert wird. Der überlagerte Messstrahl gelangt auf einen Fotodetektor PD11. Stimmen die Frequenzen v_3 und v_4 überein, entsteht eine Differenzfrequenz $\Delta v = 0$. Liegt jedoch eine Frequenzabweichung vor, wird eine Schwingungsfrequenz $\Delta v = |v_4 - v_3|$ mit Hilfe eines Frequenzzählers FZ gemessen.

Der durch den Strahlteiler ST11 transmittierte Strahlenteil des zweiten Messstrahls v₃ wird über einen Spiegel S12 und den dichroitischen Strahlteiler DST12 dem ersten Messstrahl v₂ kollinear überlagert, sodass beide Messstrahlen v₂, v₃ auf einen Strahlteiler ST13 des Interferometers 13 gelangen. Der neutrale Strahlteiler ST13 teilt den ankommenden Messstrahl (gebildet aus den überlagerten Messstrahlen v₁, v₂) in einen auf einen Referenzspiegel S13 geleiteten Referenzarm und einen mit einem Messspiegel S14 gebildeten Messarm des Interferometers 13. Die vom Referenzspiegel S13 und vom Messspiegel S14 reflektierten Strahlen werden durch den Strahlteiler ST13 überlagert und gelangen auf einen dichroitischen Strahlteiler DST13 am Ausgang des Interferometers 13. Durch den dichroitischen Strahlteiler DST13 werden die beiden Frequenzen v₁, v₃ voneinander getrennt, da die Frequenz v₃ durch den dichroitischen Strahlteiler DST13 auf den Fotodetektor PD13 abgelenkt wird, während die Frequenz v₂ des ersten

Messstrahls durch den dichroitischen Strahlteiler DST13 hindurchläuft und auf einen Photodetektor PD12 gelangt.

Mittels einer der bekannten Methoden zur Detektion der interferometrischen Phase werden die von den Messstrahlen V_2 , V_3 erzeugten Phasen $\Phi 2$ und $\Phi 3$ mittels geeigneter Auswerteelektroniken 14, 15 separiert und verarbeitet.

Für die Phasen gilt

10
$$\Phi 2 = \frac{4\pi \cdot L \cdot n_j \cdot \nu_j}{c} \text{ und}$$

$$\Phi 3 = \frac{4\pi \cdot L \cdot n_3 \cdot n_3}{c}$$

wobei n₂, n₃ die integrale Brechzahl entlang der Strecke L bei der optischen Frequenz V₂ bzw. V₃ ist und c die (Vakuum-)Lichtgeschwindigkeit darstellt.

Da die Frequenzen V_2 und V_3 ' harmonisch zu $V_2 = N \cdot V_3$ ' korreliert und der Frequenzregelbereich der Frequenzsteuerung 11 nur kleine Änderungen der Frequenzbewirkt, wie unten noch näher erläutert wird, gilt $V_2 \approx N \cdot V_3$ '.

Dann gilt auch

$$\Phi_2 \approx N \cdot \Phi_3$$

In einer Multiplikationsstufe 16 wird die interferometrische Phase Φ_3 mit dem Faktor N multipliziert und die so gebildete Phase mit der Phase Φ_2 in einem Phasenkomperator 17 verglichen, indem die Differenz

$$\Delta \Phi = \Phi_2 \cdot N \cdot \Phi_3$$

30

gebildet wird. Dieses Differenzsignal wird über einen Regelverstärker 18, der im dargestellten Ausführungsbeispiel ein Pl-Verstärker (Proportional-Integral-Verstärker) ist, verstärkt und der Frequenzsteuerstufe 11 so zugeleitet, dass als Regelkriterium

$$\Delta \Phi = 0$$

5

gilt. Somit wird ein interferometrischer Phasenregelkreis realisiert, der dafür sorgt, dass die integralen optischen Wellenlängen der beiden im Interferometer umlaufenden Strahlen entlang der Messstrecke L des Interferometers 13 exakt harmonisch korreliert sind gemäß

$$N \cdot \lambda_2 = \lambda_3$$
, mit $\lambda_2 = \frac{c}{v_2 n_3}$, $\lambda_3 = \frac{c}{v_3 n_3}$.

Damit lässt sich aus der Kenntnis der optischen Frequenz V₂ und der Messung der Frequenzdifferenz ΔV in dem Frequenzzähler FZ die integrale Brechzahl n2 aus

$$n_2 = \frac{v_2 i N \cdot \Delta v}{v_1 + N \cdot \Delta v - N \cdot A \cdot \Delta v}$$

20 berechnet. Die in diesem Ausdruck enthaltene inverse Dispersion A, die als

$$A = \frac{n_2 - 1}{n_2 - n_3}$$

definiert ist, lässt sich für Messstrecken in Luft normaler Zusammensetzung aus der so genannten modifizierten Edlen Formel berechnen (vgl. G. Bönsch, E. Potulski "Measurement of the refractive index of air and comparison with modified Edlen's formulae", Metrologia 35 (1998), 133-139) bestimmen oder mit Hilfe einer geeigneten Vorrichtung messen (vgl. z.B. US 2002/001086 A1).

Die physikalische Weglängendifferenz L im Interferometer ergibt sich damit zu

$$L = \frac{\phi_3 \cdot c}{4\pi \cdot n_2 \cdot v_2} - \frac{\phi_3 \cdot c}{4\pi \cdot \frac{\nu_2 + N \cdot \Delta v}{\nu_3 + N \cdot \Delta v - N \cdot A \cdot \Delta v}} = \frac{c \cdot \phi_3 \cdot (v_1 + N \cdot \Delta v - N \cdot A \cdot \Delta v)}{4 \cdot \pi \cdot v_2 \cdot (v_2 + N \cdot \Delta v)}$$

Daher lassen sich mit der Erfindung bei einer Verschiebemessung des Messspiegels S14 oder bei einer Positionsmessung sowohl die Brechzahl als auch die Brechzahlfluktuationen antlang der zu messenden Strecke mit hoher Präzision kompensieren. Bei dem in Figur 2 dargestellten Ausführungsbeispiel emittiert der erste Laser L1 die Frequenzen V_1 , V_2 , während der zweite Laser L2 als in seiner Frequenz abstimmbarer Laser ausgebildet ist und daher die Frequenz v_a abstrahlt. Zur Messung der Frequenzdifferenz $\Delta V = |V_3 - V_1|$ sind – wie in Figur 1 – der dichroitische Strahlteiler DST21, die neutralen Strahlteiler ST 21 und ST22 und der Spiegel S21 vorgesehen. Die optische Frequenzdifferenz wird durch den Photodetektor 21 elektrisch umgesetzt und in dem Frequenzzähler FZ elektrisch ausgewertet. Der zweite Messstrahl v3 wird über den Spiegel S22 und den Strahlteiler ST23 erst im Messstrahl V2 überlagert und in dieser Form auf das Interferometer 13' geleitet. Durch den Neutralstrahlteiler ST 23 werden die überlagerten Strahlen aber auch über einen Spiegel S23 auf einen akustooptischen Modulator (AOM) 20 geführt, der zumindest Teile der beiden Strahlen in der Frequenz definiert verschiebt. Hierbei wird die Frequenz des Strahls der optischen Frequenz V_2 um die (Radio-) Frequenz 2Ω und die Frequenz des Strahls der optischen Frequenz V_3 um die Frequenz Ω verschoben. Hierzu werden die Frequenzen Ω , 2Ω über einen Hachfrequenzgenerator 21 auf einen Steuereingang des AOM 20 geleitet. Die beiden optischen Strahlen durchlaufen kollinear den AOM. Da gemäß dem dargestellten Ausführungsbeispiel die optischen Frequenzen V_3 und V_2 in sehr guter Näherung das gleiche Frequenzverhältnis bilden wie die Hochfrequenzen Ω , und 2Ω , ist die Bragg-Bedingung im AOM in einer Raumrichtung gleichzeitig für die optische Frequenz V_3 und die Hochfrequenz Ω elektronisch und optisch gefiltert, wie unten noch erläutert wird, und stört daher das hier beschriebene Messverfahren nicht.

20

25

, 30

Die beiden im Strahlteiler ST23 kollinear überlagerten Teilstrahlen, die direkt in das Interferometer 13' geleitet werden, treten durch den Strahlteiler ST24 hindurch und werden an einem innerhalb der Mess-Weglänge L verschiebbaren Reflektor 21 reflektiert und durch den Strahlteiler ST24 auf einen dichroitischen Strahlteiler 22 geleitet. In dem dargestellten Ausführungsbeispiel ist der Reflektor 21 als verspiegeltes Dachkantenprisma ausgeführt. Am Ausgang des Strahlteilers 24 sind die reflektierten Messstrahlen mit den durch den AOM 20 modulierten Referenzstrahlen kollinear überlagert. Der dichroitische Strahlteiler DST22 separiert die Strahlen in zwei Teilstrahlen, die mittels Photodetektoren PD23 und PD24 in elektrische Signale umgesetzt werden. Der durch den dichroitischen Strahlteiler DST22 hindurchtretende Anteil weist eine Schwebung der Frequenz 2 Ω auf. Diese wird mittels eines geeigneten Bandpassfilters BP21 aus dem elektrischen Signal mit der Frequenz 2 Ω extrahlert. Analog erzeugen die an dem dichroitischen Strahlteiler DST22 reflektierten Strahlen auf dem Detektor PD23 ein Schwebungssignal der Frequenz Ω , das aus dem Detektorsignal wiederum mittels eines geeigneten Bandpassfilters BP22 der Frequenz Ω extrahiert wird.

Bei diesem Heterodyn-Interferometer wird die durch eine Verschiebung des Reflektors 21 erzeugte interferometrische Phasenverschiebung zwischen Referenzund Messstrahl auf eine gleich große Phasenverschiebung der Heterodynfrequenz abgebildet. Da v_2 ungefähr $2 \cdot v_3$ und damit auch für die optischen Wellenlängen $\lambda_3 \approx 2 \cdot \lambda_2$ gilt, ist in dem hier beschriebenen Doppel-Heterodyn-Interferometer bei einer Verschiebung des Reflektors 21 die resultierende Phasenverschiebung des Heterodynsignals der Frequenz 2 Ω etwa doppelt so groß wie die resultierende Phasenverschiebung des Heterodynsignals der Frequenz Ω . Die letztere Phasenverschiebung wird mit Hilfe eines Hochfrequenz-Frequenzverdopplers 22 verdoppelt und die Phase des verdoppelten Signals mit einem Phasenkomperator DBM in Form eines doppelt balancierten Mischers mit der Phase des Heterodynsignals der Frequenz 2 Ω verglichen. Der Phasenkomperator enthält ein nachgeschaltetes Tiefpassfilter mit geeigneter Grenzfrequenz $<<4\,\Omega$.

Fax G3 Nr: 683933 von 495312814027 an VERMITTLUNG (Selte 18 von 25) rom 25.07.03 16:54 Uhr - Status: Druckerfehler

3etreff: 25 Seite(n) empfången

Die Frequenz des vom Laser L2 emittierten Strahls V_3 wird mit Hilfe eines Pl-Reglers 23 soweit verändert, dass das Ausgangssignal des Phasenkomperator DBM verschwindet, sodass für die optischen Wellenlängen gilt λ_3 =2· λ_2 . Um die Eindeutigkeit der Regelung herzustellen, die durch das periodische Ausgangssignal des DBM nicht für sich sichergestellt ist, kann man eine kleine Weglängendifferenz ΔL der Messlänge L des Interferometers 13' einstellen. Die Weglängendifferenz ΔL muss so die Bedingung für das mehrdeutige Ausgangssignal des DBM eine größere einzustellende Frequenzdifferenz ΔV als maximale Differenzfrequenz ΔV_{max} vorgegeben wird. In diesem Falls ist die Regelung eindeutig mit nur einem ΔV möglich:

Somit ist wieder ein interferometrischer Phasenregelkreis realisiert, der dafür sorgt, dass $\lambda_3=2\cdot\lambda_2$ gilt. Es gilt:

$$n_2 = \frac{\nu_2 + 2 \cdot \Delta \nu}{\nu_2 + 2 \cdot \Delta \nu - 2 \cdot A \cdot \Delta \nu}$$

und für die physikalische Weglängendifferenz L im Interferometer

$$L = \frac{c \cdot \phi_2 \cdot (\nu_2 + 2 \cdot \Delta \nu - 2 \cdot A \cdot \Delta \nu)}{2 \cdot \pi \cdot \nu_2 \cdot (\nu_2 + 2 \cdot \Delta \nu)}$$

20 Die hierfür benötigte Phase Φ₂ kann mittels bekannter Techniken, etwa mittels einem kommerziell erhältlichen I/Q-Demodulator 24 gewonnen werden.

Eine mögliche Modifikation der Ausführung der Erfindung gemäß Figur 2, die mit nur einem Laser L1 auskommt, ist in Figur 3 dargestellt. Der vom Laser L1 emittierte Strahl der Frequenz v_1 wird mittels eines sehr breitbandigen, beispielsweise akustooptischen Frequenzschiebers AOM 36 um die Frequenz Δv in der Frequenz verschoben, sodass $v_3 = v_1 + \Delta v$ gilt.

Derartige breitbandige Frequenzschleber mit spannungsgesteuertem Mikrowellentrelber (VCO) 35 sind kommerziell erhältlich. Im Übrigen entspricht das Ausfüh-

Betreff: 25 Seite(n) empfangen

rungsbeispiel im Wesentlichen der Figur 2, wobei sich das als Messsignal dienende Maß für die Frequenzdifferenz unmittelbar aus der Frequenz des VCO 35 ergibt.

5 Li/ho

GRAMM, LINS Patent- und Rechtsanwaltssozietät Gusellschalt bargerlinhea

CHAMM, LING & PARTNER CON, Throdor-Ticuza-Str. 1, 0-20122 Braumchie

Bundesrepublik Deutschland, vertr. durch das Bundesministerium für Wirtschaft und Arbeit, dieses vertr. durch den Präsidenten der Physikalisch- Technischen Bundesenstalt Bundesalice 100

38116 Braunschweig:

Unser Zeichen/Our ref .: 0454-054 DE-1

Braunschweig:

Patentanwalt Prof. Dipl.-Ing. Werner Gramm' ** Patentanwalt Dipl. Phys. Dr. jur. Edgar Lins ** Rochtsanwalt Hanns-Peter Schrammek " Patentanwalt Dipi.-Ing. Thorsten Rehmann 1 Rechtsanwalt Christian S. Drzymalla Patentanwait Dipl.-Ing. Hans Joachim Garstein* Rechtsanwalt Dr. Stefan Risthaus Patentanwalt Dipl.-Ing. Kai Stornebel

Hannover:

Potontanwältin Dipl.-Chem. Dr. Martine Löufer

- European Patent Attemey
- European Trademark Attorney
- ij zugeknismi benn LG u. OEG Braunschweig

Datum/Date 25. Juli 2003

Patentansprüche

Verfahren zur Bestimmung der Brechzahl und/oder Kompensation des Brechzahleinflusses bei Interferometrischen Längenmessungen mit Hilfe eines mit wenigstens zwei Messstrahlen (V2, V3) mit wenigstens definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen beaufschlagten Interferometers (13, 13'), an dessen Ausgang interferometrisch Phasen für die wenigstens zwei Messstrahlen (v_2 , v_3) ausgewertet werden, wobei eine dem harmonischen Verhältnis der Frequenzen der Messstrahlen (v_2 , v_3) entsprechende Multiplikation der interferometrischen Phasen vorgenommen und wenigstens eine Phasendifferenz der so gebildeten Phasenwerte betrachtet wird, dadurch gekennzeichnet, dass wenigstens einer der Messstrahlen (v3) in seiner Frequenz variierbar ist und dess aus der gebildeten Phasendifferenz ein Steuersignal zur Veränderung der Frequenz des in seiner Frequenz veränderbaren Messstrahls (V3) gebildet wird, mit dem die Frequenz so geregelt wird, dass die Phasendifferenz zu Null wird.

Antwort bitto nach / please reply to:

Hannover: .

10

Freundallee 13 0-30173 Hannovar Bundosrepublik Deutschland Toleton 0511 / 988 75 07 Tolelax 0511 / 988 75 09

Braunschweig: ·

Theodor-Houss-Straße 1 D-38122 Braunschweig Bundogropublik Dautochland Tololon 0531 / 28 14 0 - 0 Tololon 0531 / 28 14 0 - 28

etreff: 25 Seite(n) empfangen

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Referenzstrahl (V₁) mit einer Frequenz erzeugt wird, die etwa der Frequenz eines der Messstrahlen (V₃) entspricht und mit der Frequenz eines anderen Messstrahls (V₂) gekoppelt ist und dass eine Frequenzdifferenz zwischen der Frequenz des Referenzstrahls (V₁) und der Frequenz des entsprechenden Messstrahls (V₃) gemessen wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass einer der Messstrahlen (v2) und der Referenzstrahl (v1) durch eine kohärente Strahlenquelle (L1) mit einem Frequenzmultiplizierer generiert werden.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass beide Messstrahlen (v₂, v₃) mittels eines Frequenzschiebers (36) aus einem Strahl einer kohärenten Strahlenquelle (L1) abgeleitet werden.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass den überlagerten Messstrahlen (v_2, v_3) in einem Referenzzweig des Interferometers (13') Hochfrequenzen $(\Omega, 2\Omega)$ aufmoduliert werden, die im gleichen harmonischen Verhältnis zueinander wie die Frequenzen eines der Messstrahlen (v_2) zu dem Referenzstrahl (v_3) .
- 6. Interferometeranordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, mit wenigstens einer kohärenten Strahlenquelle (L1, L2) zur Generierung wenigstens zweier Messstrahlen (V2, V3) mit definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen und einem Interferometer (13, 13'), dessen Ausgangssignale auf einen die Messstrahlen trennenden Strahlteiler (DST 13, DST 22', DST 32) gelangen, wobei die getrennten Messstrahlen auf opto-elektronische Wandler (PD12, PD13; PD22, PD23; PD32, PD33) gelangen und wenigstens eines der Ausgangssignale der opto-elektrischen Wandler einem dem harmonischen Verhältnis der Frequenzen der Messstrahlen (v2, v3) entsprechenden Multiplikator (16, 22, 32) zugeführt wird, dadurch gekennzeich-

3etreff: 25 Seite(n) empfangen

15

20

3

net, dass wenigstens einer der Messstrahlen (V₃) in seiner Frequenz mittels einer Frequenzsteuerung (18, 23, 35) variierbar ist und dass mittels eines Phasenvergleichers (17, DBM) für die Phasen der Ausgangssignale der opto-elektrischen Wandler (PD12, PD13, PD22, PD23; PD32, PD33) ein eine Phasendifferenz repräsentierendes Steuersignal generiert und der Frequenzsteuerung (18, 23, 35) zur Bildung eines Regelkreises für die interferometrischen Phasen (Φ₂, Φ₃) zugeleitet wird.

- 7. Interferometeranordnung nach Anspruch 6, dadurch gekennzeichnet, dass die kohärente Strahlungsquelle (L1, L2) zur Generierung wenigstens eines Referenzstrahls (V₁) ausgelegt ist, dessen Frequenz etwa der Frequenz eines der Messstrahlen (V₃) entspricht und mit der Frequenz eines anderen Messstrahls (V₂) harmonisch gekoppelt ist.
- Interferometeranordnung nach Anspruch 6 oder 7, gekennzeichnet durch einen einer kohärenten Strahlenquelle (L1, L2) zugeordneten Frequenzmultiplizierer.
- 9. Interferometeranordnung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass in einem Referenzzweig des Interferometers (13, 13') ein Frequenzmodulator (30) eingesetzt ist dessen Steuerung mit einem Hochfrequenzgenerator für zwei Hochfrequenzen (Ω, 2 Ω) verbunden ist, deren Frequenzen im Verhältnis der Frequenzen der Messstrahlen (V₂, V₃) zueinander stehen.

25

GRAMM, LINS & PARTNER GbR

Zusammenfassung

Zur Bestimmung der Brechzahl und/oder Kompensation des Brechzahleinflusses bei interferometrischen Längenmessungen mit Hilfe eines mit wenigstens zwei Messstrahlen (V_2, V_3) mit wenigstens definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen beaufschlagten Interferometers (13, 13'), an dessen Ausgang interferometrisch Phasen für die wenigstens zwei Messstrahlen (V_2 , V_3) ausgewertet werden, wobei eine dem harmonischen Verhältnis der Frequenzen der Messstrahlen (V_2 , V_3) entsprechende Multiplikation der interferometrischen Phasen vorgenommen wenigstens Phasendifferenz der so gebildeten Phasenwerte betrachtet wird, vorgesehen, dass wenigstens einer der Messstrahlen (V3) in seiner Frequenz varlierbar ist und dass aus der gebildeten Phasendifferenz ein Steuersignal zur Veränderung der Frequenz des in seiner Frequenz veränderbaren Messstrahls (V3) gebildet wird, mit dem die Frequenz so geregelt wird, dass die Phasendifferenz zu Null wird. Hierdurch kann die Ermittlung der Brechzahl oder die Längenmessung durch eine Messung einer Frequenzdifferenz erfolgen.

(Fig. 1)

10

1.5

20

Li/ho

Feld Nr. VIII (iv) ERKLÄRUNG: ERFINDERERKLÄRUNG (nur im Hinblick auf die Bestimmung der Vereinigten Staaten von Amerika)

Die Erklärung muß dem in Abschnitt 214 vorgeschriebenen Wortlaut entsprechen; siehe Anmerlangen zu den Feldern VIII, VIII (i) bis (v) (allgemein) und insbesondere die Anmerlangen zum Feld Nr. VIII (iv). Wird dieses Feld nicht benutzt, so sollte dieses Blatt dem Antrag nicht beigefügt werden.

Erfindererklürung (Regeln 4.17 Ziffer iv und 51bis.1 Absatz a Ziffer iv) im Hinblick auf die Bestimmung der Vereinigten Staaten von Amerika:

Ich erkläre hiermit an Eides Statt, daß ich nach bestem Wissen der ursprüngliche, erste und alleinige Erfinder (falls nachstehend nur ein Erfinder angegeben ist) oder Miterfinder (falls nachstehend mehr als ein Erfinder angegeben ist) des beanspruchten Gegenstandes bin, für den ein Patent beantragt wird.

Diese Erklärung wird im Hinblick auf und als Teil dieser internationalen Anmeldung abgegeben (falls die Erklärung zusammen mit der Anmeldung eingereicht wird).

Diese Erklärung wird im Hinblick auf die internationale Anmeldung Nr. PCTDE. 20.04/.001.321...abgegeben (falls diese Erklärung nach Regel 26ter eingereicht wird).

Ich erkläre hiermit an Eides Statt, daß mein Wohnsitz, meine Postanschrift und meine Staatsangehörigkeit den neben meinem Namen aufgeführten Angaben entsprechen.

Ich bestätige hiermit, daß ich den Inhalt der oben angegebenen internationalen Anmeldung, einschließlich ihrer Ansprüche, durchgesehen und verstanden habe. Ich habe im Antragsformular dieser internationalen Anmeldung gemäß PCT Regel 4.10 sämtliche Auslandsanmeldungen angegeben und habe nachstehend unter der Überschrift "Frühere Anmeldungen", unter Angabe des Aktenzeichens, des Staates oder Mitglieds der Welthandelsorganisation, des Tages, Monats und Jahres der Anmeldung, sämtliche Anmeldungen für ein Patent bzw. eine Erfinderurkunde in einem anderen Staat als den Vereinigten Staaten von Amerika angegeben, einschließlich aller internationalen PCT-Anmeldungen, die wenigstens ein anderes Land als die Vereinigten Staaten von Amerika bestimmen, deren Anmeldetag dem der Anmeldung, deren Priorität beansprucht wird, vorangeht.

•••••••••••••••••••••••••••••••••••••••
Ich erkenne hiermit meine Pflichtzur Offenbarung jeglicher Informationen an, die nach meinem Wissen zur Prüfung der Patentfähigkeit in Einklang mit Title 37, Code of Federal Regulations, § 1.56 von Belang sind, einschließlich, im Hinblick auf Teilfortsetzungsanmeldungen, Informationen, die im Zeitraum zwischen dem Anmeldetag der früheren Patentanmeldung und dem internationalen PCT-Anmeldedatum der Teilfortsetzungsanmeldung bekannt geworden sind.
Ich erkläre hiermit, daß alle in der vorliegenden Erklärung von mir gemachten Angaben nach bestem Wissen und Gewissen der Wahrheit entsprechen, und femer, daß ich diese eidesstattliche Erklärung in Kenntnis dessen ablege, daß wissentlich und vorsätzlich falsche Angaben oder dergleichen gemäß § 1001, Title 18 des US-Codes strafbar sind und mit Geldstrafe und/oder Gefängnis bestraft werden können und daß derartige wissentlich und vorsätzlich falsche Angaben die Rechtswirksamkeit der vorliegenden Patentanmeldung oder eines aufgrund deren erteilten Patentes gefährden können.
Name: Dr. Bernd Bodermann
Wohnsitz: Braunschweig/Deutschland
(Stadt und US-Staat, falls anwendbar, sonst Land)
Postanschrift: Odastraße.4
D-38122 Braunschweig
Staatsangehörigkeit: .deutsch
Unterschrift des Erfinders: Der A. Podense
Name:
Wohnsitz: (Stadt und US-Staat, falls anwendbar, sonst Land)
Postanschrift:

Staatsangehörigkeit:
Unterschrift des Erfinders:

Diese Erklärung wird auf dem folgenden Blatt fortgeführt, "Fortsetzungsblatt für Feld Nr. VIII (iv)".

Frühere Anmeldungen: