Lecture 04. Molecular design using deep generative model

HITS 임 재 창

목차

- Molecular design with language model
- Molecular design with variational autoencoder

 Molecular design with generative adversarial network (+adversarially regularized autoencoder)

Molecular graph generative model

Scaffold based vs de novo design in deep learning based molecular design

• Generative model이란? Data distribution, P(x) 을 학습하는 것

• Data distribution, P(x)란?

Molecular design using language model

【 HITS "신약개발의 새로운 문회

• 주어진 smiles string piece로 부터 다음 character의 확률을 예측함

[H] [C@] 12C=C[C@H] (0) [C@@H] 30c4c5c(C[C@H] 1N(C)CC[C@@] 235) ccc40

Molecular design using language model

【 HITS "신약개발의 새로운 문회

• 주어진 smiles string piece로 부터 다음 character의 확률을 예측함

생성모델 평가기준

- Validity: the ratio of the number of valid molecules to the number of generated samples. The validity was checked by using RDKit.³⁹
- Uniqueness: the ratio of the number of unrepeated molecules to the number of valid molecules.
- Novelty: the ratio of the number of molecules which are not included in the training set to the number of unique molecules.
- Novel/sample: the ratio of the number of valid, unique, and novel molecules to the total number of generated samples.
- Diversity: $\left(1.0 \frac{1}{N}\sum_{i,j>i} \text{similarity}_{ij}\right)$ for all N molecule pairs (i, j > i) in the test set. The similarity between two molecules was computed with Tanimoto similarity between their Morgan fingerprints 41 with radius of 4 and 2048 bits.

Results

Batch	Generated Example	valid
0	Oc.BK5i%ur+7oAFc7L3T=F8B5e=n)CS6RCTAR((OVCp1CApb)	no
1000	OF=CCC2OCCC)C2)C1CNC2CCCCCCCCCCCCCCCCCC	no
2000	O=C(N)C(=0)N(c1occc10C)c2cccc20C	yes
3000	O=C1C=2N(c3cc(ccc3OC2CCC1)CCCc4cn(c5c(C1)cccc54)C)C	yes

- 최종적으로 976,327번 생성시도, 이중 97.7% valid
- Training set과 겹치는 분자 제거 후: 864,880
- 중복분자 제거 후: 847,955

Results

Results

Molecular design using language model의 장단점

HITS "신약개발의 새로운 문화

장점

- 구현하기 쉬움 (library가 잘 구축 되어있음)
- 학습이 쉬움

단점

• Latent space 분석이 불가능 (latent vector modification이 안됨)

Molecular design using variational autoencoder

´ HITS "신약개발의 새로운 문

VAE: Variational autoencoders

Science 27 Jul 2018: Vol. 361, Issue 6400, pp. 360-365 DOI: 10.1126/science.aat2663

Molecular design using variational autoencoder

HITS "신약개발의 새로운 문회

ACS Cent. Sci. 2018, 4, 2, 268–276

ACS Cent. Sci. 2018, 4, 2, 268–276

Conditional variational autoencoder

HITS "신약개발의 새로운 문회

Journal of Cheminformatics volume 10, Article number: 31 (2018)

J. Chem. Inf. Model. 2019, 59, 1, 43–52

Molecular design using variational autoencoder의 장단점

☑ HITS "신약개발의 새로운 문화

장점

- 구현하기가 상대적으로 수월함
- 난이도 대비 상대적으로 우수한 결과를 보여줌

단점

- Prior assumption이 큰 restriction으로 작용함
- Language modeling (smiles)에서 최적의 모델은 아님

Molecular design with generative adversarial network

HITS "신약개발의 새로운 문화

Generative adversarial network (GAN)

Generative adversarial network

- 이미지 생성에서 최고의 성능을 보이는 GAN, 과연 분자생성에서도 최고의 모델 구조일까?
- GAN은 continuous한 object 생성에 좋은 성능을 보여줌. Language, 분자와 같이 discrete한 object를 생성하기 위해서는 적합하지 않음
- 때문에 분자생성연구에서 GAN은 많이 사용되지 않으며, 사용되는 경우 주로 작은 분자 생성에 사용됨

• RL과 같은 기법과 GAN을 결합하여, 이러한 한계를 극복하려는 시도들이 있음.

Molecular design with generative adversarial network

HITS "신약개발의 새로운 문회

Algorithm	Valid	Unique	Novel
CharacterVAE	10.3	67.5	90.0
GrammarVAE	60.2	9.3	80.9
GraphVAE	55.7	76.0	61.6
GraphVAE/imp	56.2	42.0	75.8
GraphVAE NoGM	81.0	24.1	61.0
MolGAN	98.1	10.4	94.2

arXiv:1805.11973

Adversarially regularized autoencoder (ARAE)

HITS "신약개발의 새로운 문회

VAE와 GAN의 장점을 취합하여 만든 모델

- VAE의 prior를 GAN의 adversarial training으로 대체하여 VAE의 단점 보완
- Adversarial training을 latent space (continuous)에 적용하여 GAN의 단점 보완

장점

• Prior를 가정하지 않기 때문에 restriction으로 인한 부작용이 없음

단점

- Discrete한 object에서 좋은 성능을 내지 못함 (작은 분자들만 적용가능)
- 추가적인 module (RL)등이 필요함

Graph vs smiles

Smiles의 문제점 및 graph의 장점

- 유사한 분자가 매우 다른 smiles로 표현됨 (학습에 어려움이 가중됨)
- Graph가 smiles보다 분자를 표현할 수 있는 보다 자연스러운 representation

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1

Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

- 분자는 2D, smiles (=sequence)는 1D
- 2D 그래프를 어떻게 생성할 것인가?

Node-level: At each step, a new node is added

https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/graph-generative-models

Model	% valid	% novel	% valid and novel
SMILES VAE	0.804 ± 0.016	0.986 ± 0.000	0.793 ± 0.016
SMILES GRU1	0.886 ± 0.002	0.984 ± 0.000	0.872 ± 0.002
SMILES GRU2	0.932 ± 0.002	0.965 ± 0.001	0.899 ± 0.002
SMILES LSTM	0.935 ± 0.006	0.975 ± 0.001	0.912 ± 0.006
MoIMP ($\alpha = 1.0$)	0.952 ± 0.002	0.98 ± 0.001	0.933 ± 0.001
MoIMP ($\alpha = 0.8$)	0.962 ± 0.002	0.984 ± 0.001	0.946 ± 0.001
MoIMP ($\alpha = 0.6$)	0.963 ± 0.001	$0.988 \pm 0.001**$	0.951 ± 0.001
MoIRNN ($\alpha = 1.0$)	0.967 ± 0.001	0.959 ± 0.000	0.928 ± 0.001
MoIRNN ($\alpha=0.8$)	0.970 ± 0.001	0.976 ± 0.001	0.947 ± 0.001
MoIRNN ($\alpha = 0.6$)	0.970 ± 0.001	0.985 ± 0.000	0.955 ± 0.001***

Journal of Cheminformatics volume 10, Article number: 33 (2018)

장점

• 이론적 및 직관적으로 분자를 가장 잘 표현할 수 있는 representation으로서, 모델학습과정을 효율적으로 만들어줄 수 있음

단점

- 학습과정 및 모델 구현이 복잡함. (GPU 최적화가 어려움)
- 몇몇 task에 대해서 (약간의) 좋은 성능을 보여주지만 이론적 당위성과 별개로, smiles에 비해 뛰어난 성능을 보여주는 결과들이 없음. (smiles에서는 안되는 것이 graph로 하면 되는 경우 보고된 바 없음)

Scaffold based vs de novo design

- 이상적으로 de novo design이 가장 좋은 접근법
- 대부분의 현재 deep learning기반 분자 생성모델들은 de novo design에 focusing되어 있음.
- 하지만 광대한 chemical space를 scratch에서 탐색하는 것은 현실적이지 않음
- 실제로는 활성이 검증된 scaffold들로 출발하는 경우가 더 많음
- 이러한 현실을 반영하는 deep learning model이 필요함

• 주어진 scaffold에 atom과 bond를 추가하는 방식으로 새로운 분자를 디자인

Algorithm 1 Scaffold-based graph generation

```
Inputs: G, S, \mathbf{y}, \mathbf{y}_S
  1: G_0 \leftarrow S
  2: \tilde{\mathbf{y}} \leftarrow \operatorname{concat}(\mathbf{y}, \mathbf{y}_S)
  3: if G \neq (\emptyset, \emptyset) then
           (\mathbf{H}_{V(G)}, \mathbf{H}_{E(G)}) \leftarrow \mathsf{embed}(G)
           \mathbf{H}_{V(G)} \leftarrow \mathsf{propagate}^{(k)}\left(\mathbf{H}_{V(G)}, \mathbf{H}_{E(G)}, 	ilde{\mathbf{y}}
ight)
               \mathbf{z} \sim \mathsf{reparam} \circ \mathsf{readout}\left(\mathbf{H}_{V(G)}
ight)
  7: else
                \mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)
  9: end if
10: \tilde{\mathbf{z}} \leftarrow \operatorname{concat}(\mathbf{z}, \tilde{\mathbf{y}})
11: (\mathbf{H}_{V(G_0)}, \mathbf{H}_{E(G_0)}) \leftarrow \text{embed}(G_0)
12: \mathbf{H}_{V(G_0)} \leftarrow \mathsf{propagate}^{(k)} \left( \mathbf{H}_{V(G_0)}, \mathbf{H}_{E(G_0)}, \tilde{\mathbf{y}} \right)
13: t \leftarrow 1
14: v_t \sim \text{Cat} \circ \text{addNode} \left( \mathbf{H}_{V(G_{t-1})}, \mathbf{H}_{E(G_{t-1})}, \tilde{\mathbf{z}} \right)
15: while v_t \neq \mathsf{STOP} do
           V(G_t) \leftarrow V(G_{t-1}) \cup \{v_t\}
16:
           \mathbf{H}_{V(G_t)} \leftarrow \mathbf{H}_{V(G_{t-1})} \cup \{ \text{initNode} \left( v_t, \mathbf{H}_{V(G_{t-1})} \right) \}
17:
```

▷ Whole/scaffold graphs and properties

▶ Learning phase

∨ Vector representation of the target graph

▷ Generation phase

Node and edge feature vectors
 Initial update of the scaffold nodes
 Node addition counter
 Sample a node type or STOP

▷ Add the new node▷ Initialize and add a new node vector

▶ Prepare edge additions

▶ Edge addition counter

Scaffold based graph generative model

```
\mathbf{H}_{V(G_t)} \leftarrow \mathbf{H}_{V(G_{t-1})} \cup \{ \text{initNode} (v_t, \mathbf{H}_{V(G_{t-1})}) \}
                                                                                                                                   ▶ Initialize and add a new node vector
17:
             E_{t,0} \leftarrow E(G_{t-1}); \mathbf{H}_{E_{t,0}} \leftarrow \mathbf{H}_{E(G_{t-1})}
18:
             i \leftarrow 1
19:
             e_{t,i} \sim \mathrm{Cat} \circ \mathsf{addEdge}\left(\mathbf{H}_{V(G_t)}, \mathbf{H}_{E_{t.i-1}}, 	ilde{\mathbf{z}}
ight)
                                                                                                                                               Sample an edge type or STOP
20:
             while e_{t,i} \neq \mathsf{STOP} do
21:
                   v_{t,i} \sim \operatorname{Cat} \circ \operatorname{selectNode} \left( \mathbf{H}_{V(G_t)}, \mathbf{H}_{E_{t,i-1}}, \tilde{\mathbf{z}} \right)
                                                                                                                                                       ▶ Sample a node to connect
22:
                   E_{t,i} \leftarrow E_{t,i-1} \cup \{(v_t, v_{t,i})\}
                                                                                                                                        \triangleright Add the new edge (with type e_{t,i})
23:
                   \mathbf{H}_{E_{t,i}} \leftarrow \mathbf{H}_{E_{t,i-1}} \cup \{ \text{initEdge} \left( e_{t,i}, \mathbf{H}_{V(G_t)} \right) \}
                                                                                                                                    ▶ Initialize and add a new edge vector
24:
                   i \leftarrow i + 1
25:
                   e_{t,i} \sim \operatorname{Cat} \circ \mathsf{addEdge}\left(\mathbf{H}_{V(G_t)}, \mathbf{H}_{E_{t|i-1}}, 	ilde{\mathbf{z}}
ight)
                                                                                                                                        Sample a next edge type or STOP
26:
             end while
27:
             \mathbf{H}_{E(G_t)} \leftarrow \mathbf{H}_{E_{t,i-1}}
28:
            E(G_t) \leftarrow E_{t,i-1}
29:
            G_t \leftarrow (V(G_t), E(G_t))
            t \leftarrow t + 1
31:
            v_t \sim \operatorname{Cat} \circ \operatorname{\mathsf{addNode}} \left( \mathbf{H}_{V(G_{t-1})}, \mathbf{H}_{E(G_{t-1})}, \tilde{\mathbf{z}} \right)
                                                                                                                                       Sample a next node type or STOP
33: end while
34: G_t^* \sim \operatorname{Cat} \circ \operatorname{selectIsomer} (G_t, \tilde{\mathbf{z}})

    Assign the stereoisomerism

35: return G_t^*
```


Improve potency of scaffold against XXX target

HITS "신약개발의 새로운 문회

Improve potency of scaffold against XXX target

MD calculation

- MMPBSA with charmm36 force field
- Reference setting: compare MD results (1ns MD production * 20 trajectory) with experimental results of XXXX and the given scaffold
- 1ns*1 trajectory for the proposed molecules
- Protein structure from PDBID XXX

Thank you