ST 411/511 Outline 8

Reading assignment: Chapter 8. This chapter continues the discussion of simple linear regression (SLR) and considers the assumptions for SLR.

Chapter 8 More on Simple Linear Regression: Assumptions and Models Recall assumptions for SLR:

Case Study 8.1.2: Breakdown time of an insulating fluid.

head(case0802)
Time Voltage Group

1 5.79 26 Group1

2 1579.52 26 Group1

3 2323.70 26 Group1

4 68.85 28 Group2

5 108.29 28 Group2

6 110.29 28 Group2

- > case0802_lm <- lm(Time~Voltage, data=case0802)</pre>
- > plot(case0802_lm, which=1) Same

as with

Fitted values

funnel shape "indicates we should try a log transformation of response.

Recall: Each residual is the difference between the observed data value and the estimated population mean for that observation. The estimated population means are called the

Residuals in one-way ANOVA: $Y_{ij} - \overline{Y}_i$

Y: estimates M2 Till

Residuals in simple linear regression:

estimates u{Yi|Xi} $Y_i - (\beta_0 + \beta_1 X_i)$

Standardized residuals: are divided by an estimate of their standard deviation.

std. res. have a std. dev. of about

Theoretical quantiles: Expected ordered standardized residuals if data are actually

If normal assumption is reasonable, then pts. in normal Q-a plot fall approx. on a 45° line

V log response

- $> case0802_lm_log <- lm(log(Time)~Voltage, data=case0802)$
- > plot(case0802_lm_log, which=1)
- > plot(case0802_lm_log, which=2)

Looks OK

Looks better with los transformation

- > ggplot(case0802, aes(x=Voltage, y=log(Time))) +
- geom_point(size=3) +
- geom_smooth(method=lm)

Slope parameter quantifies relationship between X and population mean of Y.

Estimate Bi to estimate Then deal with transformation.

> summary(case0802_lm_log)

Call:

lm(formula = log(Time) ~ Voltage, data = case0802)

Residuals:

Min 1Q Median 3Q Max -4.0291 -0.6919 0.0366 1.2094 2.6513

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.9555 1.9100 9.924 3.05e-15

 \rightarrow Voltage 0.0574 -8.840 3.34e-13

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.', 0.1 '', 1

Residual standard error: 1 56 -- 7.1

Multiple R-squared: 0.5136, Adjusted R-squared: 0.507 F-statistic: 78.14 on 1 and 74 DF, p-value: 3.34e-13

Back-transforming from a log transformation in Chapter 3:

Interpreting slope β_1 when response Y was log-transformed

If the distribution of the log population is symmetric, then

pop. mean(log(Y)) = pop. median(log(Y))

u { log (4) |X) =

median [log (4) |X]

 $e^{\text{pop. mean}(\log(Y))} = \text{pop. median}(Y)$

 $e^{u \{log(Y)|X\}} =$ $e^{u \{log(Y)|X\}} =$ $median \{Y|X\}$

In the regression setting: $\mu\{\log(Y)|X\} = \beta_0 + \beta_1 X$

en {log(4)|x} = e Bo+Bix median {YIX}

What happens to the median of Y when X is increased by one unit?

 $median\{Y|X\} = e^{\beta_0 + \beta_1 X}$

median $\{Y|X+1\} = e^{\beta_0 + \beta_1(X+1)}$ $= e^{\beta_0 + \beta_1 X} + \beta_1$ $= e^{\beta_0 + \beta_1 X} \cdot e^{\beta_1}$ $= e^{\beta_0 + \beta_1 X} \cdot e^{\beta_1 X} \cdot e^{\beta_1}$ $= e^{\beta_0 + \beta_1 X} \cdot e^{\beta_1}$ $= e^{\beta_0 + \beta_1$

Statistical conclusion: We estimate median break down time decreases by a factor of (e 0.373) to (e 0.622) for each I ku increase A voltage (a5% CI, SLR). Calculate these (Mult. change out in a report doesn't have units.) (but not a test).

ANOVA for Regression

Review: One-way analysis of variance (ANOVA) F-test

	> case0501_aov <- aov(Lifetime~Diet, data=case0501)
	> anova(case0501_aov)
	Analysis of Variance Table
	tra a between dels
	ex 11 mos
	> case0501_aov <- aov(Lifetime~Diet, data=case0501) > anova(case0501_aov) Analysis of Variance Table Response: Lifetime Df Sum Sq/Mean Sq F value Pr(>F)
	Df Sum Sq Mean Sq F value Pr(>F) Diet 5 12734 2546 8 57 104 < 2 2e-16 ***
	Diet. $5 - 12734$ 2546 8 57 104 < 2 2e-16 ***
	Residuals 343 15297 44.6 5eg. mcans
<u></u>	1
10	
	Equal means equal means Signif codes: 0 '***, 0 001 '**, 0 05 ', 0 1 ', 1
	Signif codes: 0 '***' 0 001 ⁽ **' 0 01 '*' 0 05 ' ' 0 1 ' ' 1

Above F-test compares two models

Full model:

 $M(y) = M_i$

Reduced model:

1 { Yij } = M

Null hypothesis tested by F = 57.104 is the restriction on the parameters of the full model that yields the reduced model:

Ho: M,= . = M_I = M

(improvement in model sit) (extra complex	
(improvement) (extra complex	i+
F -statistic = $\frac{\text{(residual SS(reduced) - residual SS(full))}}{\text{(af(reduced) - df(full))}}$	
$\sigma_{\rm f,ll}^2$	
Is improvement in	
Is improvement in full model model fit worth extra?	
Residuals for any model: Observed value – Fitted value from model	
Residuals for separate means model: $V_{ii} = \overline{V}_i$ $V_{ii} = \overline{V}_i$ Residuals for separate means model: $V_{ii} = \overline{V}_i$ $V_{ii} = \overline{V}_i$	
$Y_{ij}-\overline{Y_i}$	
Residuals for equal means model: $P_{ij} - \overline{Y}$ est. Peph mean if all Y55 have same poph mean $Y_{ij} - \overline{Y}$	
df = residual degrees of freedom	
1 - 1 to mean parameters	
Residual degrees of freedom for separate means model:	
N-I I=# groups=6 for dict stud	ļу

Residual degrees of freedom for equal means model:

1-1

Above F-test compares two models

Full model:
$$5LR$$
 $M_{i}^{2} | X_{i}^{2} = \beta_{o} + \beta_{i} X_{i}^{2}$

Reduced model:
$$equal$$
 means $equal$ here we will call here we will call here where $equal$ here we will call here $equal$ e

Null hypothesis tested by F = 78.141 is the restriction on the parameters of the full model that yields the reduced model:

Ho.
$$\beta_i = 0$$
 This test null hypothesis of no relationship between explanatory var. and popin mean response.

ata 55

 $F\text{-statistic} = \underbrace{\{\text{residual SS(reduced)} - \text{residual SS(full)}\}/\{\text{df(reduced)} - \text{df(full)}\}}_{\text{residual SS(reduced)}}$

Residuals for any model: Observed value – Fitted value from model

Residuals for simple linear regression (SLR) model:

 $Y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 X_i)$ estimated poin mean \widehat{X}_i

obs. estimated pain means model $Y_i - \overline{Y}$ under equal means model degrees of freedom with B_i .

Residual degrees of freedom for SLR model:

Bod By are the parameters

Residual degrees of freedom for equal means model:

n-1

extra df 15 diff. in # parameters

Analysis of variances tables for the insulating fluid data from a simple linear regression analysis **DISPLAY 8.8** and from a separate-means (one-way ANOVA) analysis (a): Analysis of variance table from a simple linear regression analysis Source Sum of squares d.f. Mean square F-statistic p-value Regression 190.1514 1 190.1514 78.14 < 0.0001 Residual 180.0745 74 2.4334 75 Total 370.2258 compares Residual sum of $\hat{\sigma}^2$ in regression regression squares, regression model and equalmodel means models (b): Analysis of variance table from a one-way analysis of variance Source F-statistic Sum of squares d.f. Mean square p-value 196.4774 6 32.7462 < 0.0001 Between groups 13.00 Within groups 173.7484 69 2.5181

75

Residual sum of

squares, separate-

means model

Separate Means Model

370.2258

Total

ANOVA (b) is one-way ANOVA with same data as (a).

 $\hat{\sigma}^2$ in separate-

means model

compares

separate-means

and equal-

means models

use Voltage as able 5 rouping variable ANOUA (6)

> case0802_aov_log <- aov(log(Time)~as.factor(Voltage), data=case0802)</pre>

> anova(case0802_aov_log)

Analysis of Variance Table

Response: log(Time)

Df Sum Sq Mean Sq F value

as.factor(Voltage) 6 196.5 32.75

Residuals

173.8

otal

370.3) of 455 for equal means

0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1 Signif. codes:

Lack of (Linear) Fit F-Test Not on final
Full model:

Sep. means (more parameters)

Reduced model: SLR

Null hypothesis: Ho: group pop'n means fall on a line defined by a linear function of explanatory var.

 $F\text{-statistic} = \frac{\{\text{residual SS(SLR)} - \text{residual SS(sep. means})\}/\{\text{df(SLR)} - \text{df(sep. means})\}}{\hat{\sigma}_{\text{sep. means}}^2}$

residual SS(SLR)= 180.0745 (res. SS ANOVA (a))

residual SS(sep. means)= 173.7484 (res. 55 ANOVA (b))

residual df(sep. means)= 69

 $\hat{\sigma}_{\text{sep. means}}^2 = 2.5181$

 $F = \frac{(180.0745 - 173.7484)/(74 - 69)}{2.5181}$

~ 0.502

DISPL	.AY 8.10 Composite a	nalysis of variance ta	ble with	F-test for lack of fit		
	Source of variation	Sum of squares	d.f.	Mean square	F-statistic	<i>p</i> -value
	Between groups Regression Lack of fit Within groups	196.4774 190.1514 6.3260 173.7484	6 1 5 69	32.7462 190.1514 1.2652 2.5181	75.51 0.50	<0.0001 <0.0001 0.78
	Total	370.2258	75		/\	0.502
	Normal type items of Italicized items com Boldface items are r	e from separate-mea	n analys			
				extra	x 55	4 14
						linear
				t:+ +		
Sta	t. conclu	ision fo	r	lack c	÷ + -	t test
- I		-a 4hc	1	060 (m	eun	09)
1 - 0	t dann	time	i.	s not	lin	early
cal	4	o Volt	490	2 (0 % 0.	78,
160	ck of t	it test),			
)			wk-t	ranst	orm
hec	Jot 50 Luse	. J 09 Wa	3	to s	atisti	Y
ine	arity as	ssumpt.	on	-		