Laboratorium podstaw techniki cyfrowej		Czas zajęć	środa 13:30
Zadanienr 1	Temat: Synteza liczników	Data oddania	4.11.2020
	synchronicznych i asynchronicznych	opracowania:	
Imię i Nazwisko:		Nr Albumu:	160128
PTCLABID:		15	

1. Opis zadania

- licznik synchroniczny projektowany metodą syntezy (przerzutniki JK) liczący w kodzie wykorzystywanym w Ćw.1 (proszę użyć podany indywidualny (dla PTCID) kod nie będący NKB, użyć unikalne wartości kodu, pozostałe pominąć), przy użyciu przerzutników JK, 1 pkt
- licznik asynchroniczny projektowany metodą syntezy (przerzutniki D) modulo N, gdzie N= (9 + RESZTA(PTCID/7)) przy użyciu przerzutników D (np. wg podanego wzoru dla PTCID= 9 należy zaprojektować licznik modulo 11). Licznik modulo N to licznik o cyklu zliczania równym N okresom sygnału zegarowego licznika. Kolejne stany

2. Licznika synchronicznego

Ciąg przejść licznika: 0 -> 3 -> 2 -> 6 -> 1 -> 4 -> RESET

Stan poprzedni	Stan następny
0	3
1	4
2	6
3	2
4	0
6	1

Tabela 1 Tabelka stanów obecnego i następnego licznika

Stan poprzedni	Stan następny
000	011
001	100
010	110
011	010
100	000
110	001

Tabela 2Tabelka stanów obecnego i następnego licznika w NKB

	I		1					
	QC QB QA	Stan następny	JC	KC	JB	KB	JA	KA
0	000	011	0	-	1	1	1	ı
3	011	010	0	-	-	0	-	1
2	010	110	1	-	-	0	0	-
6	110	001	-	1	-	1	1	-
1	001	100	1	-	0	-	-	1
4	100	000	-	1	0	-	0	-

Tabela 3 Tabelka Wyznaczenia funkcji wejść dla przerzutników JK w liczniku synchronicznym metodą syntezy dla przerzutnika JK

```
JC = \sum(1, 2), d(4, 6, 5, 7)
KC = \sum(6, 4), d(0, 1, 2, 3, 5, 7)
JB = \sum(0), d(2, 3, 5, 6, 7)
KB = \sum(6), d(0, 1, 4, 5, 7)
JA = \sum(0, 6), d(1, 3, 5, 7)
KA = \sum(1, 3), d(0, 2, 4, 5, 6, 7)
```

QC\QB QA	0,0	0,1	1,1	1,0
0	0	1	0	1
1	Ø	Ø	Ø	Ø

Tabela 4 Tablica Karno dla funkcji realizowanej dla JC

QC\QB QA	0,0	0,1	1,1	1,0
0	Ø	Ø	Ø	Ø
1	1	Ø	Ø	1

Tabela 5 Tablica Karno dla funkcji realizowanej KC

QC\QB QA	0,0	0,1	1,1	1,0
0	1	0	Ø	Ø
1	Ø	Ø	Ø	Ø

Tabela 6 Tablica Karno dla funkcji realizowanej dla JB

QC\QB QA	0,0	0,1	1,1	1,0
0	Ø	Ø	0	0
1	Ø	Ø	Ø	1

Tabela 7 Tablica Karno dla funkcji realizowanej KB

QC\QB QA	0,0	0,1	1,1	1,0
0	1	Ø	Ø	0
1	0	Ø	Ø	1

Tabela 8 Tablica Karno dla funkcji realizowanej JA

QC\QB QA	0,0	0,1	1,1	1.0
0	Ø	1	1	Ø
1	Ø	Ø	Ø	Ø

Tabela 9 Tablica Karno dla funkcji realizowanej KA

JC = QB'QA + QBQA'

KC = 1

JB = QC'QA'

KB = QC

JA = QC'QB'+QCQB

KA = 1

Rys. 1 Wykonany układ licznika synchronicznego mod(6) dla systemu liczenia 0, 3, 2, 6, 1, 4

Rys. 2 Przebieg czasowy dla licznika synchronicznego mod(6) z okresem zegara Tclk = 3.1[ns] nie spełniający kryterium poprawności. Brak odpowiedzi.

Rys. 3 Przebieg czasowy dla licznika synchronicznego mod(6) z okresem zegara Tclk = 3.2[ns] z zaznaczonym okresem sygnaułu wyjściowego o najdłuższym okresie T = 6*Tclk spełniający kryterium poprawności.

3. Licznika asynchroniczny

Wejście przerzutnika	QD	QC	QB	QA
0	0	0	0	<mark>0</mark>
1	0	0	0	<mark>1</mark>
2	0	0	1	<mark>0</mark>
3	0	0	<mark>1</mark>	<mark>1</mark>
4	0	1	0	<mark>0</mark>
5	0	1	<mark>0</mark>	<mark>1</mark>
6	0	1	1	<mark>0</mark>
7	<mark>0</mark>	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>
8	1	0	0	0
9	1	0	0	1
CLK	NIE QA	NIE QB	NIE QA	CLK

Tabela 7 Tabelka w której ustalane są wejścia zegara dla przerzutników

Zmiana Stanów Przerzutników:

- Licznik działa w kodzie NKB, a zmiany stanów przerzutników występują w określonych stanach, zaznaczonych na żółto.
- Na niebiesko zaznaczono stany wystąpienia zbocz zegarowych wynikających z funkcji wejść zegarowych.
- Aby przejść do kolejnego stanu, potrzebne jest aktywne zbocze narastające sygnału zegarowego.

Taktowanie Przerzutników:

- QA (najmłodszy bit): Przerzutnik QAjest taktowany bezpośrednio z zewnętrznego zegara CLK, ponieważ najmłodszy bit wymaga częstych zboczy narastających.
- QB:
- Sygnał QA' (komplementarne wyjście QA) ma zbocze narastające tam, gdzie jest potrzebne dla przerzutnika QB.
- o Dlatego sygnał QA' służy jako zegar CLKB dla przerzutnika QB.
- o Przerzutnik QB nie otrzymuje zbocza aktywnego w stanach 0, 2, 4, 6, 8, co pozwala na dowolne wartości funkcji wzbudzeń w tych stanach.
- QC:
- Sygnał QB' (komplementarne wyjście QB) ma zbocze narastające w stanach, w których jest potrzebne dla przerzutnika QC.
- o Sygnał QB' pełni funkcję zegara CLKC dla przerzutnika QC.

• Przerzutnik QC nie otrzymuje zbocza aktywnego w stanach 0, 1, 2, 4, 5, 6, 8, 9, dzięki czemu w tych stanach wartość funkcji wzbudzeń QC może być dowolna.

QD:

- o Sygnał QA' ma zbocze narastające w stanach, gdzie jest ono wymagane dla przerzutnika QD.
- Po użyciu sygnału QA' jako zegara CLKD dla QD, przerzutnik ten nie otrzymuje zbocza aktywnego w stanach 0, 2, 4, 6, 8, co pozwala na dowolne wartości funkcji wzbudzeń dla tych stanów.
- Wyjątek: Dla stanów 1, 3, 5 wartość funkcji wzbudzeń QD nie jest dowolna, ponieważ pojawiają się zbocza aktywne zegara.

Otrzymuje więc takie funkcje wejść D przerzutników:

DA = \sum (0, 2, 4, 6, 8), d(10, 11, 12, 13, 14, 15)

DB = $\sum (1, 5)$, d(0, 2, 4, 6, 8, 10-15)

 $DC = \Sigma(3)$, d(0, 1, 2, 4, 5, 6, 8, 9, 10-15)

DD = \sum (7), d(0,2,4,6,8,10-15)

QD, QC \ QB, QA	0,0	0, 1	1, 1	1.0
0, 0	1	0	0	1
0, 1	1	0	0	1
1, 1	Ø	Ø	Ø	Ø
1, 0	1	0	Ø	Ø

Tabela 8 Tablica Carno dla wejścia D przerzutnika A

QD, QC \ QB, QA	0,0	0, 1	1, 1	1, 0
0, 0	Ø	1	0	Ø
0, 1	Ø	1	0	Ø
1, 1	Ø	Ø	Ø	Ø
1, 0	Ø	0	Ø	Ø

Tabela 9 Tablica Carno dla wejścia D przerzutnika B

QD, QC \ QB, QA	0, 0	0, 1	1, 1	1, 0
0, 0	Ø	Ø	1	Ø
0, 1	Ø	Ø	0	Ø
1, 1	Ø	Ø	Ø	Ø
1, 0	Ø	Ø	Ø	Ø

Tabela 10 Tablica Carno dla wejścia D przerzutnika C

QD, QC \ QB, QA	0,0	0, 1	1, 1	1,0	
0, 0	Ø	Ø	Ø	Ø	
0, 1	Ø	Ø	4.1	Ø	
1, 1	Ø	Ø	Ø	Ø	
1, 0	Ø	0	Ø	Ø	

Tabela 11 Tablica Carno dla wejścia D przerzutnika D

DA = DA'

DB = QD'QB'

DC = QC'

DD = QB QC

Rys. 5 Wykonany układ licznika asynchronicznego mod(10)

Rys. 4 Przebieg czasowy dla licznika asynchronicznego mod(10) z okresem zegara Tclk = 2.8[ns] z zaznaczonym okresem sygnaułu wyjściowego o najdłuższym okresi T = 10*Tclk w przybliżeniu, spełniający kryterium poprawności (kolejne stany stabilne są poprawne).

Rys. 6 Przebieg czasowy dla licznika asynchronicznego mod(10) z okresem zegara Tclk = 2.7[ns] dla którego ktyterium poprawności nie jest spełnione (kolejne stany nie są poprawne)

Indeks komentarzy

- 4.1 niepoprawna tablica dla DD!
- 5.1 zastosowano niewłaściwe (por. opis tematu projektu) kryterium poprawnego działania licznika zastosowano niezdefiniowane/ niezrozumiałe kryterium