CLAIMS

1. (currently amended) A compound of Compounds of the general formula (I)

wherein

A represents an aryl or heteroaryl ring,

 R^1 , R^2 and R^3 independently from each other represent hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

 R^4 represents C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_2 - C_6 -alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- C_1 - C_6 -alkylaminocarbonyl, C_3 - C_6 -

cycloalkylaminocarbonyl, N-(heterocyclyl)-aminocarbonyl or cyano, wherein C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, mono- and di- C_1 - C_6 -alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C_1 - C_4 -alkoxy, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, amino, mono- and di- C_1 - C_4 -alkylamino, aminocarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylcarbonylamino, phenyl, heteroaryl and heterocyclyl, and wherein phenyl can be further substituted with halogen and wherein N-(heterocyclyl)-aminocarbonyl can be further substituted with C_1 - C_4 -alkyl or benzyl,

R⁵ represents C₁-C₄-alkyl,

R⁶ represents a group of the formula

which can be substituted by up to two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and phenoxy which for its part can be further substituted by halogen or trifluoromethyl, <u>or</u>

which are substituted by one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxycarbonylamino, oxo, N— C_1 - C_6 -alkylimino, N— C_1 - C_6 -alkoxyimino, benzyl and 5- to 6-membered heterocyclyl which for its part can be further substituted by C_1 - C_4 -alkyl, or

R⁶ represents a group of the formula

wherein Z represents CH2 or N-R^{6A}, wherein R^{6A} represents hydrogen, C₁-C₆-alkyl, C₁- C_6 -alkylcarbonyl or C₁- C_6 -alkoxycarbonyl, or

wherein R^{6B} is selected from the group consisting of phenyl or 5- to 6-membered heteroaryl each of which can be further substituted by up to three radicals independently selected from the group consisting of halogen, trifluoromethyl, nitro, cyano, C_1 - C_6 -alkyl, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and C_1 - C_6 -alkylcarbonyl C_3 - C_8 -cycloalkyl C_1 - C_6 -alkyl which is substituted by hydroxy, C_1 - C_6 -alkoxy, di- C_1 - C_6 -alkylamino, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, 5- to 6-membered heterocyclyl or by 5- to 6-membered heteroaryl or phenyl which for their part can be further substituted by up to three radicals independently selected from the group consisting of C_1 - C_4 -alkyl, halogen and hydroxycarbonyl C_1 - C_6 -alkoxycarbonyl, C_1 - C_1 -alkyl,

R⁶ represents a group of the formula

<u>or</u>

R⁶ represents a group of the formula

wherein R^{6C} represents hydrogen or $C_1\text{-}C_4\text{-}alkyl$, and R^{6D} represents hydrogen or halogen, or

R⁶ represents a group of the formula

wherein n represents an integer of 1 or 2, or

 R^6 represents mono- or di-C₁-C₆-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by: phenyl or 5- to 6-membered heteroaryl each of which are further substituted by one, two or three radicals independently selected from the group consisting of halogen, nitro, cyano, trifluoromethyl, C₁-C₄-alkyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, di-C₁-C₄-alkylamino, hydroxycarbonyl and C₁-C₄-alkoxycarbonyl:[[,]] C₁-C₆-alkoxy which is further substituted by hydroxy, C₁-C₄-

alkoxy, di- C_1 - C_4 -alkylamino, C_1 - C_4 -alkoxycarbonyl or hydroxycarbonyl;[[,]] phenoxy; N- C_1 - C_4 -alkyl-N-phenylamino; C_3 - C_8 -cycloalkyl; cyano; or by a group of the formula

wherein R^{6E} represents C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which for its part can be further substituted by halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, or

 R^6 represents N-C₁-C₆-alkyl-N-C₃-C₈-cycloalkylaminocarbonyl wherein the alkyl moiety can be further substituted by phenyl, 5- to 6-membered heteroaryl, hydroxycarbonyl, or C_1 -C₆-alkoxycarbonyl, or

 R^6 represents arylaminocarbonyl wherein the aryl moiety is further substituted by one, two or three radicals independently selected from the group consisting of trifluoromethyl and C_1 - C_4 -alkyl, or

 R^6 represents N-C₁-C₆-alkyl-N-arylaminocarbonyl wherein the aryl moiety is substituted by one, two or three radicals independently selected from the group consisting of C₁-C₄-alkyl and halogen, and/or wherein the alkyl moiety is substituted by phenyl, or

wherein R^{6F} represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, or C_1 - C_6 -alkoxycarbonyl,

 R^7 represents hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

and

 Y^1 , Y^2 , Y^3 , Y^4 and Y^5 independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

or a tautomer or pharmaceutically acceptable salt thereof and their salts, hydrates and/or solvates, and their tautomeric forms.

2. (currently amended) A compound Compounds of general formula (I) according to claim 1, wherein

A represents an aryl or heteroaryl ring,

 R^1 , R^2 and R^3 independently from each other represent hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

 R^4 represents C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- C_1 - C_4 -alkylaminocarbonyl or cyano, wherein C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C_1 - C_4 -alkoxy, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, amino, mono- and di- C_1 - C_4 -alkylamino, aminocarbonyl, mono- and di- C_1 - C_4 -alkylamino, aminocarbonyl, mono- and heteroaryl,

R⁵ represents C₁-C₄-alkyl,

which are substituted by one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxycarbonylamino, oxo, pyrrolidino, piperidino and morpholino, or

R⁶ represents a group of the formula

wherein R^{68} is selected from the group consisting of phenyl or pyridyl, each of which can be further substituted by up to three radicals independently selected from the group consisting of halogen, trifluoromethyl, nitro, cyano, C_1 - C_6 -alkyl, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, and C_1 - C_6 -alkylcarbonyl, [[,]] C_1 - C_6 -alkyl, which is substituted by hydroxy, C_1 - C_6 -alkoxy, di- C_1 - C_6 -alkylamino, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, 5-to 6-membered heterocyclyl or by 5- to 6-membered heteroaryl or phenyl which for their part can be further substituted by up to three radicals independently selected from the group consisting of C_1 - C_4 -alkyl, halogen and hydroxycarbonyl, [[,]] and C_1 - C_6 -alkoxycarbonyl, or

 R^6 represents mono- or di- C_1 - C_6 -alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by: phenyl or 5- to 6-membered heteroaryl, each of which are further substituted by one, two, or three radicals independently selected from the group consisting of halogen, nitro, cyano, trifluoromethyl, C_1 - C_4 -alkyl, hydroxy, C_1 - C_4 -alkoxy, trifluoromethoxy, di- C_1 - C_4 -alkylamino, hydroxycarbonyl, and C_1 - C_4 -alkoxycarbonyl.

 C_1 - C_6 -alkoxy which is further substituted by hydroxy, C_1 - C_4 -alkoxy, di- C_1 - C_4 -alkylamino, C_1 - C_4 -alkoxycarbonyl, or hydroxycarbonyl; [[,]] or by a group of the formula

wherein R^{6E} represents C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which for its part can be further substituted by halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, or

 R^6 represents N-C₁-C₆-alkyl-N-C₃-C₈-cycloalkylaminocarbonyl wherein the alkyl moiety can be further substituted by phenyl, 5- to 6-membered heteroaryl, hydroxycarbonyl or C₁-C₆-alkoxycarbonyl,

 R^7 represents hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further

substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

and

Y¹, Y², Y³, Y⁴, and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

3. (currently amended) A compound Compounds of general formula (I) according to claim 1 or 2, wherein

A represents a phenyl or pyridyl ring,

R¹, R², and R³ independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl, or trifluoromethoxy,

 R^4 represents C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or cyano, wherein C_1 - C_6 -alkylcarbonyl and C_1 - C_6 -alkoxycarbonyl can be substituted with one to two identical or different radicals selected from the group consisting of hydroxy, methoxy, hydroxycarbonyl, methoxycarbonyl, amino, mono- and d_1 - C_1 - C_4 -alkylamino,

R⁵ represents methyl,

which are substituted by one or two radicals independently selected from the group consisting of C_1 - C^{4a} lkyl, hydroxy, C_1 - C_4 -alkoxy, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonylamino, oxo, pyrrolidino, piperidino and morpholino, or

R⁶ represents a group of the formula

wherein R^{6B} is selected from the group consisting of_phenyl or pyridyl each of which can be further substituted by up to three radicals independently selected from the group consisting of fluoro, chloro, trifluoromethyl, nitro, cyano, C_1 - C_4 -alkyl, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl and C_1 - C_4 -alkylcarbonyl, [[,]] C_1 - C_4 -alkyl which is substituted by hydroxy, C_1 - C_4 -alkoxy, di- C_1 - C_4 -alkylamino, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, tetrahydrofuryl, morpholinyl, thienyl or by phenyl which for its part can be further substituted by up to three radicals independently selected from the group consisting of C_1 - C_4 -alkyl, fluoro, chloro and hydroxycarbonyl, [[,]] and C_1 - C_4 -alkoxycarbonyl, []

 R^6 represents mono- or di- C_1 - C_4 -alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by phenyl, pyridyl or pyrimidinyl each of which are further substituted by one, two or three radicals independently selected from the group consisting of fluoro, chloro, nitro, cyano, trifluoromethyl, C_1 - C_4 -alkyl, hydroxy, C_1 - C_4 -alkoxy, trifluoromethoxy, di- C_1 - C_4 -alkylamino, hydroxycarbonyl and C_1 - C_4 -alkoxy which is further substituted by hydroxy, C_1 - C_4 -alkoxy, di- C_1 - C_4 -alkoxycarbonyl or hydroxycarbonyl;[[,]] or by a group of the formula

wherein R^{6E} represents C_1 - C_4 -alkyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl or phenyl which for its part can be further substituted by fluoro, chloro, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, or

 R^6 represents N-C₁-C₄-alkyl-N-C₃-C₆-cycloalkylaminocarbonyl wherein the alkyl moiety can be further substituted by phenyl, furyl, pyridyl, hydroxycarbonyl or C₁-C₄-alkoxycarbonyl,

R⁷ represents hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

and

Y¹, Y², Y³, Y⁴ and Y⁵ each represent CH.

4. (currently amended) A compound Compounds of general formula (I) according to claim 1, 2 or 3, wherein

A represents a phenyl ring,

R¹ represents hydrogen,

R² represents cyano, bromo or nitro,

R³ represents hydrogen,

 R^4 represents C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl or cyano, wherein C_1 - C_4 -alkylcarbonyl and C_1 - C_4 -alkoxycarbonyl can be substituted with hydroxycarbonyl or C_1 - C_4 -alkoxycarbonyl,

R⁵ represents methyl,

which are substituted by one or two radicals independently selected from the group consisting of C_1 - C_4 -alkyl, hydroxy, C_1 - C_4 -alkoxy, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonylamino, oxo, pyrrolidino, piperidino and morpholino, or

R⁶ represents a group of the formula

wherein R^{6B} is selected from the group consisting of phenyl or pyridyl each of which can be further substituted by up to three radicals independently selected from the group consisting of fluoro, chloro, trifluoromethyl, nitro, cyano, C_1 - C_4 -alkyl, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl and C_1 - C_4 -alkylcarbonyl; [[,]] C_1 - C_4 -alkyl which is substituted by hydroxy, C_1 - C_4 -alkoxy, di- C_1 - C_4 -alkylamino, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, tetrahydrofuryl, morpholinyl, thienyl or by phenyl which for its part can be further substituted by up to three radicals independently selected from the group consisting of C_1 - C_4 -alkyl, fluoro, chloro and hydroxycarbonyl; [[,]] and C_1 - C_4 -alkoxycarbonyl, or

 R^6 represents mono- or di- C_1 - C_4 -alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by phenyl, pyridyl or pyrimidinyl each of which are further substituted by one, two or three radicals independently selected from the group consisting of fluoro, chloro, nitro, cyano, trifluoromethyl, C_1 - C_4 -alkyl, hydroxy,

 C_1 - C_4 -alkoxy, trifluoromethoxy, di- C_1 - C_4 -alkylamino, hydroxycarbonyl and C_1 - C_4 -alkoxy which is further substituted by hydroxy, C_1 - C_4 -alkoxy, di- C_1 - C_4 -alkylamino, C_1 - C_4 -alkoxycarbonyl or hydroxycarbonyl [[,]] or by a group of the formula

wherein R^{6E} represents C_1 - C_4 -alkyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl or phenyl which for its part can be further substituted by fluoro, chloro, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, or

 R^6 represents N-C₁-C₄-alkyl-N-C₃-C₆-cycloalkylaminocarbonyl wherein the alkyl moiety can be further substituted by phenyl, furyl, pyridyl, hydroxycarbonyl or C₁-C₄-alkoxycarbonyl,

R⁷ represents trifluoromethyl or nitro,

and

Y¹, Y², Y³, Y⁴ and Y⁵ each represent CH.

5. (currently amended) A compound Compounds of general formula (I) according to claim 1 to at least one of claims 1 to 4, wherein A is phenyl, R¹ is hydrogen, R² is cyano, R³ is hydrogen, R⁴ is acetyl, methoxycarbonyl, ethoxycarbonyl or cyano, R⁵ is methyl, and R⁷ is trifluoromethyl or nitro.

6-13. (canceled)

14. (currently amended) A pharmaceutical The composition comprising containing at least one compound of general formula (I) or (IA), as defined in claims 1 to 12, and a pharmacologically acceptable excipient diluent and a compound of formula (I)

wherein

A represents an aryl or heteroaryl ring,

R¹, R², and R³ independently from each other represent hydrogen, halogen, nitro, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy or trifluoromethoxy, wherein

 C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy.

R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₂-C₆-alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₆-alkylaminocarbonyl, C₃-C₆-cycloalkylaminocarbonyl, N-(heterocyclyl)-aminocarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₆-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, amino, mono- and di-C₁-C₄-alkylamino, aminocarbonyl, mono- and di-C₁-C₄-alkylamino, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, c₁-C₄-alkylcarbonylamino, phenyl, heteroaryl and heterocyclyl, and wherein phenyl can be further substituted with halogen and wherein N-(heterocyclyl)-aminocarbonyl can be further substituted with C₁-C₄-alkyl or benzyl,

R⁵ represents C₁-C₄-alkyl,

which can be substituted by up to two radicals independently selected from the group consisting of C₁-C₆-alkyl, C₁-C₆-alkoxy, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and phenoxy which for its part can be further substituted by halogen or trifluoromethyl, or

R⁶ represents a group of the formula

which are substituted by one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonylamino, oxo, N— C_1 - C_6 -alkylimino, N— C_1 - C_6 -alkylimino, N— C_1 - C_6 -alkylimino, benzyl and 5- to 6-membered heterocyclyl which for its part can be further substituted by C_1 - C_4 -alkyl, or

wherein Z represents CH2 or N-R^{6A}, wherein R^{6A} represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl or C_1 - C_6 -alkoxycarbonyl, or

R⁶ represents a group of the formula

wherein R^{6B} is selected from the group consisting of: phenyl or 5- to 6-membered heteroaryl each of which can be further substituted by up to three radicals independently selected from the group consisting of halogen, trifluoromethyl, nitro, cyano, C_1 - C_6 -alkyl, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and C_1 - C_6 -alkylcarbonyl;[[,]] C_3 - C_8 -cycloalkyl; C_1 - C_6 -alkyl which is substituted by hydroxy, C_1 - C_6 -alkoxy, di- C_1 - C_6 -alkylamino, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, 5- to 6-membered heterocyclyl or by 5- to 6-membered heteroaryl or phenyl which for their part can be further substituted by up to three radicals independently selected from the group consisting of C_1 - C_4 -alkyl, halogen and hydroxycarbonyl;[[,1] 5- to 6-membered heteroarylcarbonyl; and C_1 - C_6 -alkoxycarbonyl, or

<u>or</u>

R⁶ represents a group of the formula

wherein R^{6C} represents hydrogen or C₁-C₄-alkyl, and R^{6D} represents hydrogen or halogen, or

R⁶ represents a group of the formula

wherein n represents an integer of 1 or 2, or

R⁶ represents mono- or di-C₁-C₆-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by: phenyl or 5- to 6-membered heteroaryl each of which are further substituted by one, two or three radicals independently selected from the group consisting of halogen, nitro, cyano, trifluoromethyl, C₁-C₄-alkyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, di-C₁-C₄-alkylamino, hydroxycarbonyl and C₁-C₄-alkoxycarbonyl;[[,]] C₁-C₆-alkoxy which is further substituted by hydroxy, C₁-C₄-alkoxy, di-C₁-C₄-alkylamino, C₁-C₄-alkoxycarbonyl or hydroxycarbonyl;[[,]] phenoxy; N-C₁-C₄-alkyl-N-phenylamino; C₃-C₈-cycloalkyl; cyano; or by a group of the formula

wherein R^{6E} represents C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl or phenyl which for its part can be further substituted by halogen, C₁-C₄-alkyl or C₁-C₄-alkyl or C₁-C₄-alkoxy, or

 R^6 represents N-C₁-C₆-alkyl-N-C₃-C₈-cycloalkylaminocarbonyl wherein the alkyl moiety can be further substituted by phenyl, 5- to 6-membered heteroaryl, hydroxycarbonyl, or C_1 -C₆-alkoxycarbonyl, or

R⁶ represents arylaminocarbonyl wherein the aryl moiety is further substituted by one, two or three radicals independently selected from the group consisting of trifluoromethyl and C₁-C₄-alkyl, or

R⁶ represents N-C₁-C₆-alkyl-N-arylaminocarbonyl wherein the aryl moiety is substituted by one, two or three radicals independently selected from the group consisting of C₁-C₄-alkyl and halogen, and/or wherein the alkyl moiety is substituted by phenyl, or

R⁶ represents a group of the formula

wherein R^{6F} represents hydrogen, C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, or C₁-C₆-alkoxycarbonyl,

 R^7 represents hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

and

Y¹, Y², Y³, Y⁴, and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

or a tautomer or pharmaceutically acceptable salt thereof.

15-20. (canceled)

21. (new) A method of controlling chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction, or development of heart failure in a human or animal comprising the step of administering to a human or animal a compound of formula (I)

wherein

A represents an aryl or heteroaryl ring,

 R^1 , R^2 , and R^3 independently from each other represent hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

 R^4 represents C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_2 - C_6 -alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- C_1 - C_6 -alkylaminocarbonyl, C_3 - C_6 -cycloalkylaminocarbonyl, N-(heterocyclyl)-aminocarbonyl or cyano, wherein C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, mono- and di- C_1 - C_6 -alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C_1 - C_4 -alkoxy, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, amino, mono- and di- C_1 - C_4 -alkylamino, aminocarbonyl, mono- and di- C_1 - C_4 -alkylamino, aminocarbonyl, heteroaryl and heterocyclyl, and wherein phenyl can be further substituted with halogen and wherein N-(heterocyclyl)-aminocarbonyl can be further substituted with C_1 - C_4 -alkyl or benzyl,

R⁵ represents C₁-C₄-alkyl,

which can be substituted by up to two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and phenoxy which for its part can be further substituted by halogen or trifluoromethyl, or

R⁶ represents a group of the formula

which are substituted by one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonylamino, oxo, N— C_1 - C_6 -alkylimino, N— C_1 - C_6 -alkoxyimino, benzyl and 5- to 6-membered heterocyclyl which for its part can be further substituted by C_1 - C_4 -alkyl, or

wherein Z represents CH2 or N-R^{6A}, wherein R^{6A} represents hydrogen, C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl or C₁-C₆-alkoxycarbonyl, or

R⁶ represents a group of the formula

wherein R^{68} is selected from the group consisting of: phenyl or 5- to 6-membered heteroaryl each of which can be further substituted by up to three radicals independently selected from the group consisting of halogen, trifluoromethyl, nitro, cyano, C_1 - C_6 -alkyl, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and C_1 - C_6 -alkylcarbonyl;[[,]] C_3 - C_8 -cycloalkyl; C_1 - C_6 -alkyl which is substituted by hydroxy, C_1 - C_6 -alkoxy, di- C_1 - C_6 -alkylamino, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, 5- to 6-membered heterocyclyl or by 5- to 6-membered heteroaryl or phenyl which for their part can be further substituted by up to three radicals independently selected from the group consisting of C_1 - C_4 -alkyl, halogen and hydroxycarbonyl;[[,]] 5- to 6-membered heteroarylcarbonyl; and C_1 - C_6 -alkoxycarbonyl, or

or

R⁶ represents a group of the formula

wherein R^{6C} represents hydrogen or $C_1\text{-}C_4\text{-}alkyl$, and R^{6D} represents hydrogen or halogen, or

R⁶ represents a group of the formula

wherein n represents an integer of 1 or 2, or

R⁶ represents mono- or di-C₁-C₆-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by: phenyl or 5- to 6-membered heteroaryl each of which are further substituted by one, two or three radicals independently selected from the group consisting of halogen, nitro, cyano, trifluoromethyl, C₁-C₄-alkyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, di-C₁-C₄-alkylamino, hydroxycarbonyl and C₁-C₄-alkoxycarbonyl;[[,]] C₁-C₆-alkoxy which is further substituted by hydroxy, C₁-C₄-alkoxy, di-C₁-C₄-alkylamino, C₁-C₄-alkoxycarbonyl or hydroxycarbonyl;[[,]] phenoxy; N-C₁-C₄-alkyl-N-phenylamino; C₃-C₈-cycloalkyl; cyano; or by a group of the formula

wherein R^{6E} represents C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which for its part can be further substituted by halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, or

 R^6 represents N-C₁-C₆-alkyl-N-C₃-C₈-cycloalkylaminocarbonyl wherein the alkyl moiety can be further substituted by phenyl, 5- to 6-membered heteroaryl, hydroxycarbonyl, or C_1 -C₆-alkoxycarbonyl, or

 R^6 represents arylaminocarbonyl wherein the aryl moiety is further substituted by one, two or three radicals independently selected from the group consisting of trifluoromethyl and C_1 - C_4 -alkyl, or

 R^6 represents N-C₁-C₆-alkyl-N-arylaminocarbonyl wherein the aryl moiety is substituted by one, two or three radicals independently selected from the group consisting of C₁-C₄-alkyl and halogen, and/or wherein the alkyl moiety is substituted by phenyl, or

R⁶ represents a group of the formula

wherein R^{6F} represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, or C_1 - C_6 -alkoxycarbonyl,

 R^7 represents hydrogen, halogen, nitro, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy or trifluoromethoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

and

Y¹, Y², Y³, Y⁴, and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

or a tautomer or pharmaceutically acceptable salt thereof.