第二节 向量的乘积

- 一、向量的数量积
- 二、向量的向量积
- 三、向量的混合积

一、向量的数量积

引例.设一物体在常力 \vec{F} 作用下,沿与力夹角为 θ 的直线移动,位移为 \vec{s} ,求力 \vec{F} 所做的功。

解: $\overrightarrow{DF} \overrightarrow{AF}$ 上的分力为

$$|\vec{F}|\cos\theta$$

则力产所做的功为

$$W = |\vec{F}| |\vec{s}| \cos \theta$$

1. 定义

设向量 \vec{a} , \vec{b} 的夹角为 θ ,称

$$|\vec{a}||\vec{b}|\cos\theta$$

为 \vec{a} 与 \vec{b} 的数量积(点积),记为 \vec{a} . \vec{b} ,即

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta.$$

注1: 数量积 $\vec{a} \cdot \vec{b}$ 为一个数。

注2: 引例中的功为 $W = \overrightarrow{F} \cdot \overrightarrow{s}$

2. 性质

$$(1) \vec{a} \cdot \vec{a} = |\vec{a}|^2 \triangleq \vec{a}^2$$

(2) \vec{a} , \vec{b} 为任意两个向量,则有 \vec{a} · \vec{b} = 0 $\iff \vec{a} \perp \vec{b}$

推论
$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$
, $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$

3. 运算律

(1) 交换律
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

(2) 结合律 $(\lambda \rightarrow \beta)$ (2) 结合律 $(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$

(3) 分配律
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

例1. 已知向量
$$\vec{a}$$
 , \vec{b} 的夹角 $\theta = \frac{3\pi}{4}$, $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = 3$, $|\vec{a}| = \sqrt{b}$.

解:
$$: |\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - 2 \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^2 - 2|\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos \theta + |\overrightarrow{b}|^2$$

$$= (\sqrt{2})^2 - 2\sqrt{2} \cdot 3 \cdot \cos \frac{3\pi}{4} + 3^2$$

$$= 17,$$

$$\therefore |\vec{a} - \vec{b}| = \sqrt{17}$$

注: 此例相当于余弦定理

例 2. 设
$$\vec{a} + 3\vec{b} \perp 7\vec{a} - 5\vec{b}$$
, $\vec{a} - 4\vec{b} \perp 7\vec{a} - 2\vec{b}$, 且 $|\vec{b}| = 1$,

分别求 $\vec{a}\cdot\vec{b}$, $|\vec{a}|$, 以及 \vec{a} 与 \vec{b} 的夹角 θ .

解 由题设有
$$(\vec{a}+3\vec{b})\cdot(7\vec{a}-5\vec{b})=0$$
, $(\vec{a}-4\vec{b})\cdot(7\vec{a}-2\vec{b})=0$,

$$|\vec{p}| \qquad 7|\vec{a}|^2 + 16\vec{a} \cdot \vec{b} - 15|\vec{b}|^2 = 0, \quad 7|\vec{a}|^2 - 30\vec{a} \cdot \vec{b} + 8|\vec{b}|^2 = 0.$$

消去
$$|\vec{a}|^2$$
, 且 $|\vec{b}|=1$, 得 $2\vec{a}\cdot\vec{b}=1$, 所以 $\vec{a}\cdot\vec{b}=\frac{1}{2}$ 。

代回方程组可得
$$|\vec{a}|=1$$
,

进而
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{1}{2}$$
, 得 $\theta = \frac{\pi}{3}$.

4. 数量积的坐标表示

读
$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}, \ \vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}, \$$

$$\vec{a} \cdot \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \cdot (b_x \vec{i} + b_y \vec{j} + b_z \vec{k})$$

$$\begin{vmatrix} \vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1, & \vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0 \end{vmatrix}$$

$$\vec{a} \cdot \vec{b} = \{a_x, a_y, a_z\} \cdot \{b_x, b_y, b_z\} = a_x b_x + a_y b_y + a_z b_z$$

两向量的夹角公式

当 \vec{a} , \vec{b} 为非零向量时, 由于 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, 得

$$\theta = \arccos \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \arccos \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

特别地, $\vec{a} \perp \vec{b} \iff a_x b_x + a_y b_y + a_z b_z = 0$.

例3. 已知三点 M(1,1,1), A(2,2,1), B(2,1,2), 求

 $\angle AMB$.

解:
$$\overrightarrow{MA} = \{1, 1, 0\}, \overrightarrow{MB} = \{1, 0, 1\}$$

$$\text{DI} \quad \cos \angle AMB = \frac{\overrightarrow{MA} \cdot \overrightarrow{MB}}{|\overrightarrow{MA}||\overrightarrow{MB}|}$$

$$= \frac{1 \times 1 + 1 \times 0 + 0 \times 1}{\sqrt{1^2 + 1^2 + 0^2} \sqrt{1^2 + 0^2 + 1^2}} = \frac{1}{2},$$

故
$$\angle AMB = \frac{\pi}{3}$$

二、向量的向量积

引例.设O为杠杆L的支点,有一个与杠杆夹角为 θ 的力 \overrightarrow{F} 作用在杠杆的P点上,求力 \overrightarrow{F} 作用在杠杆上的力矩 \overrightarrow{M} (向量)。

$$\left| \overrightarrow{M} \right| = \left| OQ \right| \left| \overrightarrow{F} \right| = \left| \overrightarrow{OP} \right| \left| \overrightarrow{F} \right| \sin \theta$$

 $\overrightarrow{OP}, \overrightarrow{F}, \overrightarrow{M}$ 符合右手规则

$$\overrightarrow{M} \perp \overrightarrow{OP}$$
 $\overrightarrow{M} \mid \overrightarrow{F}$

$$|OQ| = |\overrightarrow{OP}| \sin \theta$$

1. 定义

设 \vec{a} , \vec{b} 的夹角为 θ ,定义

向量
$$\vec{c}$$
 { \vec{d} : $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \theta$
 方向: \vec{a} , \vec{b} , \vec{c} 符合右手规则

称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的向量积(叉积),记作

$$\vec{c} = \vec{a} \times \vec{b}$$
.

注1: 向量积 $\vec{a} \times \vec{b}$ 为一个向量。

注2: 引例中的力矩 $\overrightarrow{M} = \overrightarrow{OP} \times \overrightarrow{F}$

注3: 右图平行四边形面积 $S = |\overrightarrow{a} \times \overrightarrow{b}|$

2. 性质

$$(1) \overrightarrow{a} \times \overrightarrow{a} = 0$$

$$(2)$$
 \overrightarrow{a} , \overrightarrow{b} 为任意向量,则 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ $\Leftrightarrow \overrightarrow{a} // \overrightarrow{b}$

(3)
$$\vec{a} \times \vec{b} \perp \vec{a}$$
, $\vec{a} \times \vec{b} \perp \vec{b}$

3. 运算律

(1) 反交换律
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

(2) 分配律
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

(3) 结合律
$$(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b})$$

推论
$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}, \vec{i} \times \vec{j} = \vec{k}, \vec{j} \times \vec{i} = -\vec{k},$$

 $\vec{j} \times \vec{k} = \vec{i}, \vec{k} \times \vec{j} = -\vec{i}, \vec{k} \times \vec{i} = \vec{j}, \vec{i} \times \vec{k} = -\vec{j}.$

4. 向量积的坐标表示式

设
$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
, $\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$, 则
$$\vec{a} \times \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \times (b_x \vec{i} + b_y \vec{j} + b_z \vec{k})$$

$$= a_x b_x (\vec{i} \times \vec{i}) + a_x b_y (\vec{i} \times \vec{j}) + a_x b_z (\vec{i} \times \vec{k})$$

$$+ a_y b_x (\vec{j} \times \vec{i}) + a_y b_y (\vec{j} \times \vec{j}) + a_y b_z (\vec{j} \times \vec{k})$$

$$+ a_z b_x (\vec{k} \times \vec{i}) + a_z b_y (\vec{k} \times \vec{j}) + a_z b_z (\vec{k} \times \vec{k})$$

$$= (a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j}$$

$$+ (a_x b_y - a_y b_x) \vec{k}$$

向量积的行列式表示

$$\vec{a} \times \vec{b} = (a_{y}b_{z} - a_{z}b_{y})\vec{i} + (a_{z}b_{x} - a_{x}b_{z})\vec{j} + (a_{x}b_{y} - a_{y}b_{x})\vec{k}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} \vec{i} + \begin{vmatrix} \vec{a}_{z} & a_{x} \\ b_{z} & b_{x} \end{vmatrix} \vec{j} + \begin{vmatrix} \vec{a}_{x} & a_{y} \\ b_{x} & b_{y} \end{vmatrix} \vec{k}$$

$$= \begin{vmatrix} a_{y} & a_{z} \\ b_{y} & b_{z} \end{vmatrix} \vec{i} + \begin{vmatrix} a_{z} & a_{x} \\ b_{z} & b_{x} \end{vmatrix} \vec{j} + \begin{vmatrix} a_{x} & a_{y} \\ b_{x} & b_{y} \end{vmatrix} \vec{k}$$

$$= \begin{cases} \begin{vmatrix} a_{y} & a_{z} \\ b_{y} & b_{z} \end{vmatrix}, \begin{vmatrix} a_{z} & a_{x} \\ b_{z} & b_{x} \end{vmatrix}, \begin{vmatrix} a_{x} & a_{y} \\ b_{x} & b_{y} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{2}$$

三阶行列式

$$a_{31}$$
 a_{32} a_{33}

规律:

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.$$

例4. 已知三点 A(1,2,3), B(3,4,5), C(2,4,7), 求三角形 ABC 的面积。

解:如图所示,

$$S_{\Delta ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

$$= \frac{1}{2} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 2 & 2 \\ 1 & 2 & 4 \end{vmatrix} = \frac{1}{2} |4\vec{i} - 6\vec{j} + 2\vec{k}|$$

$$=\frac{1}{2}\sqrt{4^2+(-6)^2+2^2}=\sqrt{14}$$

例 5. 某向量同时垂直于向量 $\vec{a} = \{1,1,1\}$ 和向量

$$\vec{b} = \{1,0,-1\}$$
, 求此向量的方向余弦.

解 由向量积的定义知,所求向量可取为

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = -\vec{i} + 2\vec{j} - \vec{k} = \{-1, 2, -1\}$$

因此
$$\vec{c} = \frac{1}{\sqrt{6}} \{-1, 2, -1\}.$$
 考虑到 $\vec{c} = -\vec{c}$ 均垂直于 \vec{a}, \vec{b} ,

故所求方向余弦为

$$\cos \alpha = \mp \frac{1}{\sqrt{6}}, \cos \beta = \pm \frac{2}{\sqrt{6}}, \cos \gamma = \mp \frac{1}{\sqrt{6}}.$$

三、向量的混合积

1. 定义 已知三向量 \vec{a} , \vec{b} , \vec{c} ,称数量

$$(\vec{a} \times \vec{b}) \cdot \vec{c} \stackrel{ilf}{=} [\vec{a} \vec{b} \vec{c}]$$

为 \vec{a} , \vec{b} , \vec{c} 的混合积.

几何意义:

以 \vec{a} , \vec{b} , \vec{c} 为棱作平行六面体,则其 底面积 $A = |\vec{a} \times \vec{b}|$, 高 $h = |\vec{c}| |\cos\theta|$

$$V = Ah = |\overrightarrow{a} \times \overrightarrow{b}| |\overrightarrow{c}| |\cos \theta| = |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}|$$
$$= |[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]|$$

2. 混合积的坐标表示

$$\vec{a} = \{a_{x}, a_{y}, a_{z}\}, \quad \vec{b} = \{b_{x}, b_{y}, b_{z}\}, \quad \vec{c} = \{c_{x}, c_{y}, c_{z}\}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} = \left\{ \begin{vmatrix} a_{y} & a_{z} \\ b_{y} & b_{z} \end{vmatrix}, \begin{vmatrix} a_{z} & a_{x} \\ b_{z} & b_{x} \end{vmatrix}, \begin{vmatrix} a_{x} & a_{y} \\ b_{x} & b_{y} \end{vmatrix} \right\}$$

$$\begin{bmatrix} \overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \end{bmatrix} = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} c_x + \begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix} c_y + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} c_z$$

$$= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

- 3. 性质
- (1) 三个非零向量 \vec{a} , \vec{b} , \vec{c} 共面的充要条件是 $[\vec{a}\vec{b}\vec{c}]=0$
- (2) 轮换对称性:

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}]$$

(可用三阶行列式推出)

利用反对称性,可得

$$\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = - \begin{bmatrix} \vec{b} \vec{a} \vec{c} \end{bmatrix}$$

例6. 已知一四面体的顶点 $A_k(x_k, y_k, z_k)$ (k = 1, 2, 3, 4), 求该四面体体积.

解: 已知四面体的体积等于以向量 $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_3}$, $\overrightarrow{A_1A_4}$

为棱的平行六面体体积的 $\frac{1}{6}$,故

$$V = \frac{1}{6} \left[\overrightarrow{A_1 A_2} \overrightarrow{A_1 A_3} \overrightarrow{A_1 A_4} \right]$$

$$= \frac{1}{6} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix}$$

例7. 证明四点 A(1,1,1), B(4,5,6), C(2,3,3),

D(10,15,17)共面.

证: 因

$$[\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}]$$

$$= \begin{vmatrix} 3 & 4 & 5 \\ 1 & 2 & 2 \\ 9 & 14 & 16 \end{vmatrix} = 0$$

故A,B,C,D四点共面.

内容小结

设
$$\vec{a} = \{a_x, a_y, a_z\}$$
, $\vec{b} = \{b_x, b_y, b_z\}$, $\vec{c} = \{c_x, c_y, c_z\}$
加減: $\vec{a} \pm \vec{b} = \{a_x \pm b_x, a_y \pm b_y, a_z \pm b_z\}$
数乘: $\lambda \vec{a} = \{\lambda a_x, \lambda a_y, \lambda a_z\}$
数量积: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
向量积: $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$
混合积: $[\vec{a} \vec{b} \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$

向量的位置关系

$$\vec{a}//\vec{b} \iff \vec{a} \times \vec{b} = \vec{0} \iff \frac{b_x}{a_x} = \frac{b_y}{a_y} = \frac{b_z}{a_z}$$

$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0 \iff a_x b_x + a_y b_y + a_z b_z = 0$$

$$\vec{a}, \vec{b}, \vec{c} \not + \vec{a} \iff (\vec{a} \times \vec{b}) \cdot \vec{c} = 0$$

$$\iff \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0$$

思考与练习

1. 设 $\vec{a} = \vec{i} + 2\vec{j} - \vec{k}$, $\vec{b} = -\vec{i} + \vec{j}$, 计算 $\vec{a} \cdot \vec{b}$ 及 $\vec{a} \times \vec{b}$, 并求 \vec{a} , \vec{b} 夹角 的正弦与余弦.

答案:
$$\vec{a} \cdot \vec{b} = 1$$
, $\vec{a} \times \vec{b} = (1, 1, 3)$

$$\cos \theta = \frac{1}{2\sqrt{3}}, \quad \sin \theta = \sqrt{\frac{11}{12}}$$

2. 用向量方法证明正弦定理:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

证: 由三角形面积公式

$$S_{\Delta ABC} = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{AB}|$$

$$= \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}| = \frac{1}{2} |\overrightarrow{CB} \times \overrightarrow{CA}|$$

因
$$|\overrightarrow{AC} \times \overrightarrow{AB}| = b \cdot c \cdot \sin A$$

$$|\overrightarrow{BA} \times \overrightarrow{BC}| = c \cdot a \cdot \sin B$$

$$|\overrightarrow{CB} \times \overrightarrow{CA}| = a \cdot b \cdot \sin C$$

所以
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

备用题

1. 已知向量 \overrightarrow{a} , \overrightarrow{b} 的夹角 $\theta = \frac{3\pi}{4}$, $|\overrightarrow{a}| = \sqrt{2}$, $|\overrightarrow{b}| = 3$, $|\overrightarrow{b}| = 3$, $|\overrightarrow{a}| = \sqrt{2}$, $|\overrightarrow{b}| = 3$,

$$\therefore |\vec{a} - \vec{b}| = \sqrt{17}$$

2. 在顶点为A(1,-1,2), B(1,1,0) 和C(1,3,-1)的

三角形中, 求AC边上的高BD.

解:
$$\overrightarrow{AC} = (0,4,-3)$$

$$\overrightarrow{AB} = (0, 2, -2)$$

三角形 ABC 的面积为

$$S = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{AB}| = \frac{1}{2} \sqrt{(-2)^2 + 0^2 + 0^2} = 1$$

而
$$|\overrightarrow{AC}| = \sqrt{4^2 + (-3)^2} = 5$$
, $S = \frac{1}{2} |\overrightarrow{AC}| |BD|$

故有
$$1 = \frac{1}{2} \cdot 5 \cdot |BD| \qquad \therefore |BD| = \frac{2}{5}$$

