Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer Ludwig-Maximilians-Universität München Institut für Informatik 27. November 2017

4. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 4-1 (Landau Symbole; 4 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen für $x \to \infty$.

a)
$$x^2 + 9x = O(x^2)$$

c)
$$x + \sin x = O(x)$$

b)
$$x^3 + 9x = O(x^2)$$

d)
$$e^x = O(2^x)$$

Aufgabe 4-2 (Trigonometrische Funktionen)

- a) Vereinfachen Sie $\arccos\left(\sin\left(x+\frac{\pi}{2}\right)\right)$.
- b) Welchen Wert erhalten Sie für x = 5?

Aufgabe 4-3 (Trigonometrische Funktionen) Für welche Werte $c \in \mathbb{R}$ und $d \in \mathbb{R}$ gilt folgende Gleichung für alle $x \in \mathbb{R}$?

$$\sin\left(x + \frac{\pi}{3}\right) = c\sin(x) + d\cos(x)$$

Aufgabe 4-4 (Komplexe Zahlen; 4 Punkte) Für welche reellen Zahlen $x \in \mathbb{R}$ und $y \in \mathbb{R}$ gelten jeweils folgende Gleichungen?

a)
$$y \cdot e^{ix} = 3i$$

b)
$$y \cdot e^{ix} = 1 + \sqrt{3}i$$

c)
$$y \cdot e^{ix} = 2\sqrt{3} - 2i$$

Aufgabe 4-5 (Komplexe Zahlen; 4 Punkte) Lösen Sie folgende Gleichungen über den komplexen Zahlen. Geben Sie alle Lösungen konkret in der Form z = x + iy für reelle x und y an.

a)
$$z^2(1+i) = 2z$$

b)
$$z^2 - 2iz + 8 = 0$$

c)
$$z^6 = 1$$

Hinweis: Es kann hilfreich sein, für z den Ausdruck x+iy einzusetzen und dann nach reellen Lösungen für x und y zu suchen.

Aufgabe 4-6 (Komplexe Zahlen) Für welche komplexen Zahlen z gelten die folgenden Aussagen jeweils?

a)
$$|z+i| \le |z-1|$$

$$b) \ \frac{\overline{z}}{z} = 1$$

Zeichnen Sie die Menge der Punkte, für die die Aussagen jeweils gelten, in der komplexen Zahlenebene.

Abgabe: Sie können Ihre Lösung bis zum Freitag, den 08.12. um 10 Uhr über UniWorX abgeben. Es werden Dateien im txt-Format (reiner Text) oder im pdf-Format akzeptiert.