线性代数 (B1) 第九次作业

请于 2023 年 5 月 16 日周二上课前在教室里交.

补充习题可视作思考题, 学有余力的同学强烈建议认真完成.

2023 年 5 月 9 日布置的作业

教材习题. P191: #12, #13, #14, #15, #17.

补充习题 1. (1) 设 $\mathbf{u} = (3,1)^{\mathrm{T}}$ 和 $\mathbf{v} = (1,2)^{\mathrm{T}}$ 是 \mathbb{R}^2 中的向量, 并设 \mathbf{u} 和 \mathbf{v} 是一个 2 阶方阵 \mathbf{A} 分别相应于特征值 2 和 3 的特征向量. 设 $\mathscr{A}: \mathbb{R}^2 \to \mathbb{R}^2$ 是线性变换, 由 $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ 给出. 记 $\mathbf{w} = \mathbf{u} + \mathbf{v}$. 画出 $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathscr{A}(\mathbf{u}), \mathscr{A}(\mathbf{v})$ 和 $\mathscr{A}(\mathbf{w})$.

(2) 设 u 和 v 是 A 分别对应于特征值 -1 和 3 的特征向量, 重新做上面的小题.

2023 年 5 月 11 日布置的作业

教材习题. P191-192: #16, #18, #19, #20.

补充习题 2. 证明: 若 $A^{2023} = O$, 则 det(I - 1958A) = 1.

补充习题 3. 设 $\mathbf{A} = (a_{ij})_{3\times 3}$. 若 \mathbf{A} 的特征多项式为 $|\lambda \mathbf{I}_3 - \mathbf{A}| = \lambda^3 + \sigma_1 \lambda^2 + \sigma_2 \lambda + \sigma_3$, 验证 σ_2 是 \mathbf{A} 的所有 2 阶主子式的和.

补充习题 4. 考虑 \mathbb{C} 上的循环矩阵 A 和 C:

$$\boldsymbol{A} = \begin{pmatrix} a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots &$$

- (1) 将 A 表示成 C 的矩阵多项式.
- (2) 证明 C 有 n 个不同的特征值, 从而可以相似对角化.
- (3) 证明 \mathbf{A} 也可以相似对角化.

补充习题 5. 求矩阵
$$\boldsymbol{A} = \begin{pmatrix} 4 & 2 & 3 & 3 \\ 0 & 2 & h & 3 \\ 0 & 0 & 4 & 14 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 中的 h , 使得 $\lambda = 4$ 的特征子空间的维数为 2.

补充习题 6. 在以下题目中,设 A 是线性变换 \triangle 在自然基下的矩阵. 不写出 A,直接描述 (求出) A 的特征值与特征子空间.

- (1) \mathcal{A} 是 \mathbb{R}^2 的相对于某条过原点的直线的反射变换 (镜像映射).