图论与代数结构 最大流与最小费用流

崔 勇 清华大学计算机系 网络技术研究所

第五章 匹配与网络流

• 网络流图

- 掌握概念, 学习玩命简化的建模思路
- 掌握割切的概念和最大流定理
- 学习算法设计的基本思路
- Ford-Fulkerson最大流标号算法
- 最小费用流
 - 掌握概念, 了解基本求解思路
- 了解互联网中的网络流

- 定义5.5.1
 - 一个运输网络N(或称网络流图)是一个没有自环的有向连通图,它满足:
 - 只有一个负度为0的结点s, 称为源
 - 只有一个正度为0的结点t , 称为汇
 - 每条边(i,j)都有一个非负实数权 c_{ij} ,称为该边的<mark>容量</mark>。如果结点i到j 没有边,则 c_{ii} =0.
- 网络流图:某种物品从产地s通过不同道路到销地t

简化:单一产品、单源单汇、无时间概念

- 在网络流图N中,每条边e_{ij}都给定实数f_{ij},这
 - 一组f_{ij} 称为该网络的允许流,如果f_{ij}满足:
 - 1. f_{ij} <= c_{ij} (容量限制)
 - 2. 对固定的节点i , f_{ij} 之和等于 f_{ji} 之和(i不为s,t)

流量守恒

- 3. f_{si} 之和等于 f_{it} 之和, 记为w
- w称为它的流量

简化:容量有限,产品无限

基于特殊情况,继续给定义

- 在网络N允许流分布f中,满足f_{ij}=c_{ij}的边称为<mark>饱和边</mark>,否则为非饱和边
- 网络的最大流
 - 某允许流分布使流量w最大: $w_0 = \max \sum_{i} f_{si}$
- 如何处理多产地多销地的网络?
 - 增加超发点so和超收点to
 - 增加若干边(s₀,s_i)和(t_j,t₀)
 - 边(s₀,s_i) 的容量是s_i的生产能力
 - $-(t_j,t_0)$ 容量是 t_j 的销售能力
 - 得到一个单源单汇的网络流图

- 定义5.5.2
 - 设S是网络流图N=(V,E) 中的一个 结点集,满足
 - 1. s∈S
 - 2. t∈ \overline{S} , \overline{S} =V-S

 $-(S,\overline{S})$ 中各边的容量之和称为该割切的容量,记为 $C(S,\overline{S})$

- 例5.5.1
 - 令S={s},则(S,\overline{S})={(s,a),(s,c),(s,d)}, $C(S,\overline{S})$ =6
 - 令S={s,a,c},则(S,\overline{S})={(a,b),(c,b),(c,d),(c,t),(s,d)}, $C(S,\overline{S})$ =11
- 定理5.5.1
 - 网络的最大流量小于等于最小的割切容量,即max w≤min C
- 定理5.5.2
 - 网络流图N中, 其最大流量等于最小割切的 容量,即 $\max \omega = \min C(S,S)$

• 增流路径

- 如果网络的允许流并不是最大流,就一定存在着从s到t的一条可以增加流量的路径,简称增流路径
- 图中(a,b), a表示其容量, b表示它当前的流
- 令s,i₁,i₂,...,i_k,t是一条从s到t的路径P_{st}
- 其中若边的方向是从i;到i;+1,则称为前向边
- 如果这条路径上每条边e_{ij}都有f_{ij}<c_{ij},存在增流路径
- 令 $\delta = \min_{e_{ij} \in P_{st}} (c_{ij} f_{ij})$, 使 P_{st} 每条边的流都增加δ
- 结果仍然是网络的允许流分布,但流量比先前增加了δ

增流过程不影响 其他边和节点

• 具有后向边的增流过程

- 汇点的流入量增加1是从i₄获得
- i4要保持流的守恒,应使f34增加1
- i3的守恒是由i3少供应i21个单位流而得到保证
- 增流路径中的后向边eji要求fji>0
- i2由于i3少供应1,因此只有从i1多索取1才能守恒
- 本例增流瓶颈为蓝色后向边,增流量δ=2

- 在包含前向边和后向边的增流路径Pst中
 - 要求前向边e_{ij}满足f_{ij}<c_{ij},向后边e_{ji}满足f_{ji}>0
 - 设P_{st}的全部前向边e_{ij}中,δ₁=min(c_{ij}-f_{ij})
 - -全部后向边 e_{ji} 中, δ_2 = $minf_{ji}$
- 再令 δ =min(δ_1 , δ_2),那么 P_{st} 中可增加流量 δ
- 在网络流图中只存在这两类增流路径

- 例5.5.2
 - 如果最初流量w=0,第一条增流路径如(s,c,b,t)
 - 它全部由前向边组成, $\delta=2$,因此可增流2
 - 当前允许流分布:边(s,c),(c,b),(b,t)的流都是2,其余边均为0
 - 存在增流路(s,a,b,c,d,t)
 - 其中(c,b)是后向边, f_{cb}=2,
 其余都是前向边,满足f_{ij}<c_{ij},
 这条路上δ=1

- 例5.5.2 (续)
 - 因此增流之后得到下图,其中边(c,b)的流为1,这仍然是一个允许流分布
 - 此时网络中已不存在任何增流路径
 - 所以最大流量是 $w_0=3$

第五章 匹配与网络流

- 网络流图
- Ford-Fulkerson最大流标号算法
- 最小费用流
- 互联网中的网络流

- Ford-Fulkerson最大标号算法简介
 - 以定理(最大流等于最小割切容量)为基础
 - (1) 标号过程(寻找增流路径的过程)
 - 从s向t标号,是否能标到t?
 - 如果不能标到t , 则此时f是 最大流 , 其流量为最大流
 - 否则在标号过程中最后能从结点s标到结点t, 即找到s到t的增流路径,转过程(2)

标号过程需明确增流路径和流量

• 沿着这条从s到t的增流路径增流,修正这条路上的流,得到新的允许流分布f',再转(1)

- 结点v的标号(d_ν, δ_ν)
 - 标号过程中每个结点v都有一组标号(d_v , δ_v)
 - d_v 表示标号过程中结点v是因为哪个结点才得到标号的, 称为标号来源结点
 - d_v也表示标号的方向(正向或反向)
 - 若v得到标号,表明网络里存在一条s到v的增流路径P,其最大增流量是 δ_v

算法过程

- 首先对源s标以(-,∞),其中标号来源结点d。的值为空

- 设e是连接u和v的边,假定u已标号,而v尚未标号
- 正向标号:若e=(u,v)且f(e)<c(e),则标号方向为正,v的标号(u+, δ_v),其中 δ_v = min(δ_u ,c(e)-f(e))
- 反向标号:若e=(v, u)且f(e)>0, 则标号方向为负 , v的标号(u⁻, δ_v) , 其中 δ_v = min(δ_u ,f(e))

- 算法过程(续)
 - 在标号过程中,每个结点最多进行一次标号
 - 最终结点t或者能得到标号,或者无法得到标号
 - 若t得到标号,则由标号规则可确定一条s到t的增流路径 P_{st} , 它可以增流 δ_t
 - 增流过程:回溯检索这条路径并修改标号,得到新的允许流分布f'

• Ford-Fulkerson算法描述如下

- -S1. 在给定的网络流图中任一流分布f(如令N中每条边e,都有f(e)=0)
- S2. (标号过程开始) 给s标号(-, ∞)
- -S3. 如果存在一个未标结点v,它可以通过正向标号或反向标号得到标号($u^{+/-}, \delta_v$),则标之并转S4,否则结束(此时f已是最大流分布)
- S4. 如果v=t转S5, 否则转S3

- 算法描述(续)
 - -S5. (增流过程开始),设v的标号是 (d_{v},δ_{v})
 - 1.若 $d_v = u^+$, 则令 $f(u,v) = f(u,v) + \delta_t$
 - 2.若d_v=u⁻, 则令f(u,v)=f(u,v)-δ_t
 - S6. 若u=s, 删去全部标号 转S2, 否则令v=u, 转S5

- 例5.6.1
 - 运输网络N的每条边e都有两个权(c,f)
 - 最初N中每条边有 f(e)=0, 即流量w=0
 - 开始标号时结点s为(-, ∞)

- 依次给结点a,b,c,d和t的标号, 完成标号过程
- 在增流过程中确定了增流路径Pst
- 从后向前回溯, 增流路径: s→a → b → t

- 例5.6.1(续)
 - 标号均为正
 - 所有边都是前向边
 - 每条边可增流 $\delta_t = 2$
 - 进行增流
 - 网络流量w=2
 - 是最大流了吗?

• 删去所有标号 , 从s开始重新标号

 得到新增流路径 (s,c,d,t),可增流δt =2,此时w=4

- 经过标号过程又得到一条增流路径(s,c,b,a,d,t)
- 此时边(a,b)是后向边, 其余都是前向边
- 增流:这时向前边的流增1而后向边的流减1,总流量w=5

- 例5.6.1 (续)
 - 再从S开始标号,只能标到c,无法标到t
 - 因此不存在s到t的增流路, w=5是最大流
 - 令得到标号的结点属于S , 其余结点属于S
 - 此时(S, \overline{S})={(s,a),(c,b),(c,d)}, $C(S, \overline{S})$ =5,满足定理5.5.2

- Ford-Fulkerson算法的问题
 - 在算法中,对结点的标号顺序是任意的
 - 即算法可以任选一条s到t的增流路径

- 算法复杂性可能会依赖于任选的参数
- 容量是无理数时算法可能失效 (需要执行无数步)
- Edmonds-Karp算法
 - 严密的标号算法
 - 每次沿一条最短的增流路径增流

广探法, 先标号先检查

第五章 匹配与网络流

- 网络流图
- Ford-Fulkerson最大流标号算法
- 最小费用流
- 互联网中的网络流

- CEO关心的不仅仅是最大流
 - 一之前的算法只考虑了最大流,没有考虑网络在运输的时候 产生的费用
- 最小费用流问题
 - 如果每条边既有容量,又有单位流量费用,如何从源s以最小费用向目的t发送给定流量w?

- 例5.8.1
 - 一批货物要从工厂运至车站,可以有多条线路进行选择,在不同线路上 每吨货的运费不相同,而且每条线路的运货能力有限,怎样运输才能使 运费最省?
- 例5.8.2
 - 旅行社安排一批游客,要从甲地飞到乙地,怎样安排才能使旅费最省?
 - 建模: 节点代表机场, 边表示各个机场间的航班, 容量是航班的有效座位数, 费用则是机票费

- 设e=(i,j)为网络流图N中的一条边
 - cii代表该边的容量, aii表示单位量的费用(即运价), fii是该边的当前流
- 优化目标和约束条件
 - 最小化费用,给定从s到t的流量w
- 最小费用流问题(建模与代数表示)

min
$$\sum_{eij} a_{ij} f_{ij}$$
, s.t.

- 1. $0 \le f_{ij} \le c_{ij}$,
- 2. $\sum_{i} f_{ij} = \sum_{i} f_{ji}$, $i \neq s,t$
- 3. $\sum_{j} f_{sj} = \sum_{j} f_{jt} = w$

- 解决该问题的一个较好方法是瑕疵算法 (需要线性规划知识)
- 简单方案的设计思路
 - 寻找最小费用路径, 然后增加流量
 - 优先选取单位流量费用小的边以及道路
 - 把费用看作边的长度
 - 寻找s到t的最短增流路
 - 最终流量达到w, 总费用也一般最小

• 算法描述

- -1. 初始流分布 f_0 使每条边e都为f(e)=0
- 2. 当前允许流分布下,修改各边费用:

$$a_{ij}^* = a_{ij}, \qquad 0 \le f_{ij} \le c_{ij}$$
 $a_{ij}^* = \infty, \qquad f_{ij} = c_{ij}$ 饱和边 $a_{ij}^* = -a_{ji}, \qquad f_{ji} > 0$ 鼓励减少使用量

- -3. 以 a_{ij}^* 为边长,找s到t的最短增流路,得到增流量 δ_t
- -4. 若 $δ_t+w_0≥w$,则 $δ_t=w-w_0$,进行最后一次增流,结束;否则转5
- -5. 进行增流(由 δ_t 修改允许流),转2

- 例5.8.3
 - 运输网络的每条边都有运价和容量
 - 初始流量 $w_0=0$,各边的费用 ${a_{ij}}^*=a_{ij}$
 - P(s,a,b,t)是当前的最短增流路增流量 δ_t =1,即总流量 w_0 =1
 - 增流后每边第3个权为当前流量
 - 当前总费用为6(对照原图)
 - 修改各边的费用a_{ij}*

- 例5.8.3 (续)
 - 当边(i,j)(i,j≠s,t)的f_{ij}>0时,就对应
 存在一条边(j,i),并且a_{ji}*=-a_{ij}, c_{ji}=f_{ij},
 f_{ji}=0,再求s到t的最短增流路
 - P=(s,b,a,t)是当前的最短增流路
 - $-\delta_t=1$,费用为10
 - 总流量w₀=2
 - 总费用∑a_{ij}f_{ij}=6+10=16
 - 原图不存在增流路径,得到最小费用流

- 例5.8.4
 - 多源多汇网络(花费,容量)
 - 发点a,b均可供应2个单位
 - 收点c,e各接收1,2个单位
 - 增设一个超发点s

•
$$a_{sa}=0$$
 , $c_{sa}=2$; $a_{sb}=0$, $c_{sb}=2$

- 增设一个超收点t
 - $a_{ct}=0$, $c_{ct}=1$; $a_{et}=0$, $c_{et}=2$
- 转为单源单汇

找<s,t>最小花费路径

 w_0 =0,最短增流路径 P_1 =(s,b,c,t), δ_t =1

- 例5.8.4(续)
 - $-w_0=0$,最短增流路径 $P_1=(s,b,c,t)$, $\delta_t=1$

增流修改权值后, 再找<s,t>可增流 最小花费路径

 $w_0=1$,找到最短增流路径 $P_2=(s,b,e,t)$, $\delta_t=1$

- 例5.8.4(续)
 - 沿(s,b,e,t)增流,再找<s,t>可增流最小花费路径

 w_0 =2,最短增流路径 P_3 =(s,a,d,c,e,t), δ_t =1

• 例5.8.4(续)

第五章 匹配与网络流

- 网络流图
- Ford-Fulkerson最大流标号算法
- 最小费用流
- 互联网中的网络流

图论中的应用趣题

• 城市修路问题:道路通过时延为I(x), 其中x为该边的流量大小

最大流与互联网路由

• 互联网路由

- 算法 v.s. 协议, 集中式 v.s. 分布式
- 互联网设计原则:面向可扩展的端到端原则
- 互联网采用可扩展的分布式路由(甚至是单一最佳路由)

互联网路由优化

- 互联网路由中设置的"费用"
 - 路由信息协议RIP
 - 只关心跳数——最小跳数路由
 - 开放式最短路径优先协议OSPF
 - 通过设置链路权值w, 计算最短路
 - 权值设置为链路带宽的倒数
 - 多条"最短路"之间有可能同时使用
 - 域间路由协议BGP
 - 权值设置考虑"策略"("热土豆")

传输协议:从单径到多径

- 互联网的核心承载协议
 - 负责端到端的传输控制, 单路径传输
 - 如何努力提高流量?拥塞控制是核心
- 多路径传输
 - 多路径之间的调度,避免浪费好路径

P2P网络

- C/S模式: client-server
 - 从中心服务器下载,可扩展性?
 - 不赚钱就要省钱: 爱奇艺的大红包
- P2P网络(应用层网络)
 - 没有中心服务器,同时从多个机器下载/上传
 - 谁有什么内容?我从哪里取最好?

Server-based

P2P-network

迅雷路由器 全球第一台 会赚钱的路由器

总结:网络流

• 网络流图概念

- 掌握概念, 学习玩命简化的建模, 分析网络流图的增流思路
- 掌握割切的概念和最大流定理
- Ford-Fulkerson最大流标号算法
 - 通过寻找从s到t的增流路径,不断增流
 - 标号的设计思路:增流路径、流量大小、前后方向
- 最小费用流
 - 掌握概念, 了解基本求解思路
- 了解互联网中的网络流

本周作业

• P137习题六

- 最大流和最小割切:第2题
- 网络流图的证明题:第4题
- 补充题1: 假如我是欧拉
 - 中午12:15六教下课,千军万马去清芬园吃饭
 - 请尝试分别从单个学生、班级整体和学校的角度,给出不同的优化目标, 并列举可能需要考虑的多种约束条件
- 补充题2: 假如我是欧拉
 - 总结创新或著书立说的基本方法(即本书中有哪些一步步创新的思路),
 并给出具体示例。不少于3条基本方法。

长期作业

- 第13周周一课前提交:图论应用技术报告PPT
 - 给出实际问题, 进行图论建模, 尝试设计求解思路并分析优缺点
 - 8页以内PPT,不用编程序,不用细节推导
- 制作PPT小技巧
 - 技术思路, 难点, 思路清晰, 重点明确(不要细节)
 - 活用例子,图文并茂,内容简洁(避免主谓宾)
 - 尽量使用PPT模板(活用Tab键)
 - 站在听众角度,引起思考和互动
 - 常见问题:文字太多、字体太小、颜色不清、布局太乱
- 本学期最后一次课前:完成图论内容的初步复习

