I Burde + Caquer
Donde Solve Mego
Esi Mergesont an destruct n=2k
Want to auspur in sorted order.
a, aa a_{n+1} — a. a_n a_{n+1} — a_n a_n a_{n+1} — a_n a
merge ()
1: 1) 22 37 9 10 15 25 26 R: 10 8 11 27 28 40 41 50
mege (1) (2) (6) 7 8 9 10 11 15 25 24 77 27 28 18 17 1
50

If T(n) is # of companion to sail n items substituing + nsubstituing + n= 8 T(=) + 3n $\leq 2^{k} T\left(\frac{n}{i^{k}}\right) + kn$ if k=logn $=\frac{\log n}{2} + \left(\frac{n}{2\log n}\right) + \log_{2} n \cdot n$ (1) + log_n n muge = 860)

n muge I'm smylepts 1. 1.

Shepi =
$$nd + a \left(\frac{n}{b}\right)^d + a^2 \left(\frac{n}{b^2}\right)^d + ...^{\frac{1}{2}}$$

$$|ast lead| + a \left(\frac{n}{b^2}\right)^d + ...^{\frac{1}{2}}$$

$$|ast lead| + a$$

Observe

$$= 0lk$$

no contactor
a upmanic 1
all terms our
$$= 1 + ct + c^{k} + c^{k} + c^{k} + c^{k}$$

$$= 1 + ct + c^{k} + c^{k} + c^{k} + c^{k}$$

$$= 1 - c^{k+1}$$

$$= 1 - c^{k+1}$$

$$= 1 - c^{k+1}$$
If $c < 1$

$$= \frac{c^{k+1} - 1}{c - 1}$$
If $c > 1$

$$= \frac{c^{k+1} - 1}{c - 1}$$
If $c > 1$

$$= \frac{c^{k+1} - 1}{c - 1}$$
If $c > 1$

$$= \frac{c^{k} - 1}{c - 1}$$
If $c > 1$

$$= \frac{c^{k} - 1}{c - 1}$$

$$= \frac{c^{k} - 1}{c$$

Pride a log
$$b^n = n^{\log_b a}$$

Pride $\log_b n = n^{\log_b a}$

Pride $\log_b (a^{\log_b n}) = \log_b n \cdot \log_b a$
 $= \log_b (n^{\log_b a})$
 $= \log_b (n^{\log_b a})$

In the second of $\log_b n$

The second of $\log_b n$

The second of $\log_b n$
 $\log_b a$
 \log_b

General:

$$T(n) : a T(\frac{1}{n}) + f(n)$$

$$General:$$

$$T(n) = \Theta(n^{100} \text{s}^{a}) \text{ if }$$

$$Call I \qquad f(n) = O(n^{100} \text{s}^{a} - \epsilon)$$

$$Call I \qquad f(n) = O(n^{100} \text{s}^{a} - \epsilon)$$

$$Call I \qquad f(n) = O(n^{100} \text{s}^{a} - \epsilon)$$

$$F(n) = \Theta(n^{100} \text{s}^{a} - \epsilon) \text{ if }$$

$$F(n) = \Theta(n^{100} \text{s}^{a} - \epsilon)$$

$$F(n) = \Theta(n^{100} \text{s}^{a} - \epsilon)$$

$$F(n) = \Theta(n^{100} \text{s}^{a} - \epsilon)$$

$$F(n) = O(n^{100} \text{s}^{a} - \epsilon)$$

$$F(n) = O(n^{100}$$