### BTP - GROUP\_36

- -Jai Anurag
- -Nishant yadav

Topic: <u>Efficient Storage of Large</u> <u>Language Models on Edge</u> <u>Devices</u>



# **Compressing LLMs**

Make models 10X smaller without sacrificing performance



## "Bigger is Better"

### More Data + More Parameters + More Compute = Better Models



### The Problem

Bigger models mean higher costs

100B Params ⇒ 200GB storage (FP16)







**High Cost** 



High  $CO_2$ 

### **Model Compression**

Reduce ML model size without sacrificing performance





**Less Compute** 



**Less Cost** 



Less  $CO_2$ 

## 3 Ways to Compress LLMs

1) Quantization



2) Pruning



3) Knowledge Distillation



## 1) Quantization

Lowering the precision of model parameters



FP32

INT8

## 1) Quantization

Lowering the precision of model parameters

### **Post-training Quantization**

Train then Quantize



**FP32** → 8-bit, 4-bit

### **Quantization-Aware Training**

Quantize then train



4-bit and lower

## 2) Pruning

Removing unnecessary components from a model



## 2) Pruning

### Removing unnecessary components from a model

### **Unstructured**

Remove individual weights



Greater reduction, but requires specialized hardware

#### **Structured**

Remove entire structures

(e.g. attention heads, neurons, layers)



Less reduction, but parameters can be removed entirely

### 3) Knowledge Distillation

Transfer knowledge from (larger) teacher model to (smaller) student model

### **Soft Targets**

Train student using logits



Note: for NLG model will output 50k logits (one for each token)



### Synthetic Data

### Train student using text





### **QLoRA** (Quantized Low-Rank Adaptation)

LLM fine-tuning made accessible

## Fine-tuning (recap)

Tweaking an existing model for a particular use case.



### The Problem

LLMs are (computationally) expensive





### What is Quantization?

Quantization = splitting range into buckets



4 Ingredients of QLoRA

- 1. 4-bit NormalFloat
- 2. Double Quantization
- 3. Paged Optimizers
- 4. LoRA





quant(quant())



**Ingredient 1: 4-bit NormalFloat** 

A better way to bucket numbers

4-bit e.g. 0101

 $\implies$  2<sup>4</sup> = 16 unique combinations

⇒ 16 buckets for quantizations



### **Ingredient 2: Double Quantization**

Quantizing the Quantization Constants

$$X^{Int8} = round \left( \frac{127}{absmax(X^{FP32})} X^{FP32} \right)$$

= round 
$$\left(c^{\text{FP32}}.X^{\text{FP32}}\right)$$

Takes up precious memory

#### **Double Quantization**

$$C^{Int8} = round \left( \frac{127}{absmax(C^{FP32})} C^{FP32} \right), \longleftarrow$$

Input tensor

Standard Quantization
Min memory, Max bias



Block-wise Quantization More memory, Less bias

## **Ingredient 3: Paged Optimizer**

Looping in your CPU





### **Ingredient 4: LoRA**

Fine-tunes model by adding small set of trainable parameters





Full Fine-tuning: 
$$h(x) = W_0 x$$

$$W_0$$
  $x = h(x)$ 

**LoRA:**  $h(x) = W_0x + \Delta Wx = W_0x + BAx$ 



100-1000X savings!

## **Bringing it all together**



### **Storage Strategies for LLMs on Edge Devices**

Optimizing Model Storage for Resource-Constrained Environments

"How to fit GB-sized LLMs into MB-sized storage?"



### **Storage Solutions for Edge Devices**

Hardware-Specific Storage Strategies

- 1. Flash Memory / eMMC / microSD (RPi, Jetson Nano)
  - Use compressed formats (GGUF, ONNX, TFLite).
  - Example: Llama 3-8B (quantized) on 128GB SD card.
- 2. NOR/NAND Flash (MCUs: ESP32, STM32)
  - TinyML: <10MB models (e.g., Mistral-Tiny).</li>
  - Example: Keyword detection on ESP32.
- 3. **eDRAM/SRAM** (NPUs: EdgeTPU, Coral)
  - Model tiling: Split weights between SRAM/Flash.
  - Example: Pruned LLM on Coral Dev Board

### Efficient LLM Storage Techniques, Shrinking LLMs for Edge Deployment

#### 1. Quantization

- $\circ$  FP32  $\rightarrow$  INT8 (4x smaller) or INT4 (8x smaller).
- o Tools: GPTQ, AWQ, TensorRT.

#### 2. Weight Pruning

 $\circ$  Remove redundant neurons (e.g., 8B  $\rightarrow$  4B model).

#### 3. Adapter Layers (LoRA/PEFT)

Store only fine-tuned layers (MBs instead of GBs).

#### **Floating-Point Format Comparison**



#### **Bullet Points:**

- Match storage type to device (eMMC for SBCs, Flash for MCUs).
- Always quantize & prune models before deployment.
- Use adapters (LoRA) for personalized fine-tuning.
- Offload to external media (SSD > USB > SD Card) for large models.

#### **Tools/Frameworks:**

- Quantization: TensorRT, GPTQ
- Compression: GGUF, ONNX
- Adapters: LoRA, PEFT

### "Our Future Goals"

Real-Time Edge Al: Sensor-Driven LLMs

Connecting Cameras, Microphones & More to Optimized LLMs

**Goal**: <u>"Process multimodal inputs locally with low latency, no cloud dependency."</u>



#### **Use Cases & Technical Pipeline**

Applications & Data Flow

#### Use Cases :

- Smart Surveillance: Anomaly detection (intruders, fires).
- AR Assistants: Scene description for visually impaired.
- Multimodal Chatbots: Smart doorbells with voice+image understanding.

### 2. **Data Pipeline**:

- $\circ$  Step 1: Sensor  $\rightarrow$  Preprocessing (frame  $\rightarrow$  embeddings).
- Step 2: Adaptive sampling (skip frames if resource-constrained).
- Step 3: Streaming inference (token-by-token generation).

### **Optimization Strategies**

#### Making It Work on Edge Devices

### 1. **Model Compression**

- Quantization (FP32 → INT4: 8x smaller).
- Pruning (remove 50% weights with <1% accuracy drop).</li>

#### 2. Edge Runtimes

o TensorRT (NVIDIA), OpenVINO (Intel), TVM (ARM).

#### 3. On-Device Adaptation

- LoRA fine-tuning (store only 2MB adapters, not full model).
- Federated learning (collaborative edge training).

#### 4. Hybrid Edge-Cloud

Offload complex tasks to cloud; edge handles real-time.

### **References:**

- 1) <a href="https://arxiv.org/pdf/2305.14314">https://arxiv.org/pdf/2305.14314</a>
- 2) <a href="https://arxiv.org/pdf/1503.02531">https://arxiv.org/pdf/1503.02531</a>
- 3) <a href="https://arxiv.org/pdf/2106.09685">https://arxiv.org/pdf/2106.09685</a>
- 4) <a href="https://github.com/artidoro/qlora">https://github.com/artidoro/qlora</a>
  - Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer