ME:4140 Modern Robotics & Automation Homework #5

Due: see ICON

Make sure to upload any supporting documents, e.g., hand work, codes, sketches, etc.

Instructions (READ THESE FIRST!)

- To complete this homework, you can use an **Adobe** pdf reader or **Google Chrome** (after completing make sure to download with changes).
- Answer all questions by typing or selecting radio buttons in this document.
- Upload your completed document and any supporting documents, code, sketches, etc., to ICON.
- Round all values to 3 decimal places.

Example #1: what is the value of Pi? Answer: 3.142

Example #2: what is 100/3? Answer: 33.333

Name:

First

Last

Student ID

1. Frame $\{b\}$ initially at T=I, rotates about a screw axis given by $\mathcal{S}_b=\{q,\hat{s},h\}$ by an amount $\theta=\pi/3$, where $q=(2,4,1),\ s=(\frac{\pi}{4},\frac{\pi}{6},\frac{\pi}{6})$ and h=4.

Determine the following:

(a) the screw axis S_b

(b) the new frame configuration T', which is $\{b'\}$ relative to $\{b\}$

- 2. The new frame position $\{a'\}$ has an orientation given by $R = \text{Rot}(\hat{x}_a, \frac{\pi}{6}) \text{Rot}(\hat{y}_a, \frac{\pi}{3})$ and its origin located at (0, 2, 3), both with respect to the original frame position $\{a\}$ given by \mathcal{I} . Using this information determine the following:
 - (a) rotation amount θ
 - (b) the screw axis S_a

3. The robot hand shown in the figure below is holding an apple. The robot is equipped with a force-torque sensor at its wrist that measures forces and torques in $\{f\}$. Frame $\{h\}$ and $\{a\}$ correspond to the center of mass of the hand and apple, respectively. The distances between the frames are $L_1 = 10$ cm and $L_2 = 15$ cm.

(15)

Assuming gravity is 10 m/s^2 and the mass of the apple and hand are 0.1 kg and 0.5 kg, respectively, what is the wrench \mathcal{F}_f , measured by the sensor?

4. Shown below is the KUKA LBR iiwa 7R robot arm in its candlestick configuration. The $\{s\}$ frame is at the base with the \hat{y}_s -axis pointing out of the page and the $\{b\}$ frame is aligned with $\{s\}$ at the end-effector. The screw axes for the seven joints are illustrated (positive rotation about these axes is by the right-hand rule). The axes for joints 1, 3, 5, and 7 are aligned and the axes for joints 2, 4, and 6 are aligned. The lengths are given by $L_1 = 350$, $L_2 = 410$, $L_3 = 410$, and $L_4 = 136$ (all in mm).

(15)

(a) If a force of $f_b = (10, 5, 0)$ N is applied to frame {b} (joint 7), what is the wrench in {b}?

(b) What is the wrench in the base $\{s\}$?