Lista de Exercícios 1

Processamento de imagens (PI28CP)

UTFPR

Prof. Jefferson T. Oliva

1. Os pixeis de uma imagem são representados na matriz abaixo. As pequenas flutuações de intensidade caracterizam a presença de um ruído na imagem.

4	5	7	7	7	8	6
7	6	7	5	7	7	7
6	5	4	10	12	12	11
10	9	8	7	5	5	6
11	8	8	8	7	6	6
5	6	7	6	6	6	6
4	5	10	9	9	8	8

- a) Calcule o Histograma de intensidades de níveis de cinza desta imagem.
- b) Qual o histograma acumulado?
- c) Qual o histograma normalizado?
- d) Qual o histograma acumulado normalizado?
- e) Para se determinar automaticamente a transformação de contraste a partir do histograma, podemos utilizar a fórmula Y = a * X + b, que deve ser aplicada a uma imagem digital. Podemos seguir o procedimento:
 - Percorre-se a imagem X para se descobrir seus valores digitais mínimo e máximo, Xmin e Xmax. Opcionalmente defina um Xmin e um Xmax baseado no histograma da imagem.
 - Calcula-se o parâmetro a, da transformação, pela relação: $a=\frac{255}{Xmax-Xmin}$.
 - Calcula-se o parâmetro b, da transformação, pela relação: b = -a * Xmin
 - Aplica-se essa relação, Y = aX + b, para cada valor pixel da imagem de entrada X obtendo-se o nível digital da imagem de saída Y.;
 - Defina a matriz resultante.
- f) Como fica a representação da imagem comprimida utilizando a seguinte transformação:

$$-A[i,j] <= 8 \to 8$$

$$-8 < A[i,j] < 11 \rightarrow 8$$

-
$$A[i,j]>=11\rightarrow 8$$

Lista de Exercícios (continuação)

2. Implemente um algoritmo Python que receba duas coordenadas de dois pontos P1 e P2 (inicio e fim da região) localizados dentro dos limites do tamanho da imagem, ou seja, esses pontos representam uma região da imagem. O algoritmo deverá transformar o retângulo, definido por P1 e P2 dentro da imagem, em negativo, conforme o exemplo abaixo.

3. Implemente um algoritmo Python que receba duas coordenadas de dois pontos P1 e P2 (inicio e fim da região) localizados dentro dos limites do tamanho da imagem, ou seja, esses pontos representam uma região da imagem. O algoritmo deverá aplicar a equalização de histograma no retângulo, definido por P1 e P2 dentro da imagem.

References

[1] Wiggers, K. L. Processamento de Imagens, Engenharia de Computação, 2024.