Endlicher Stichprobenraum

- \bullet Stichprobenraum Ω mit
 - $-1 \le |\Omega| < \infty$
 - jede Wahrscheinlichkeit positiv
 - Summe der Wahrscheinlichkeiten = 1
- Wahrscheinlichkeitsmaß

$$P(A) = \sum_{\omega_k \in A} p_k$$
 (insbesondere $P(\omega_k) = p_k$).

- $-(\Omega,P(\Omega),P)$ definiert Wahrscheinlichkeitsraum
- Probability Mass Function (PMF)
 - \ast Folge der Wahrscheinlichkeiten p_k
- Beispiele
 - Würfeln

Wir haben 2 Würfel und interessieren uns für die Summe der Augenzahlen. Wir setzen $\Omega=\{2,\ldots,12\}$. Bestimme die PMF für dieses Experiment.

 $P_{2} = P \left(\text{ Summe} = Z \right) = \frac{1}{36}$ $P_{3} = P \left(\text{ Summe} = 3 \right) = \frac{2}{36} = \frac{1}{18}$

2 = {2,3,..., 12} We= Le

1 1 Pr

1

- PMF

Beispiel (PMF)

Sei $\Omega = \{1, 2, 3\}$. Es sei die PMF gegeben durch $p_k = c/k, k \in \Omega$. Bestimme c.

 $P_{1} + P_{2} + P_{3} = 1$ $\frac{C}{1} + \frac{C}{2} + \frac{C}{3} = 1$

1

Abzählbarer Stichprobenraum

- Stichprobenraum Ω mit
 - 1 < $|\Omega|$ <==> abzählbar unendlich
 - jede Wahrscheinlichkeit positiv
 - Summe der Wahrscheinlichkeiten = 1
- Wahrscheinlichkeitsmaß

$$P(A) = \sum_{\omega_k \in A} p_k$$

- $-(\Omega,P(\Omega),P)$ definiert Wahrscheinlichkeitsraum
- Beispiel

Wir interessieren uns für die Anzahl von Toren in einem Fußballspiel.

•
$$\Omega = \{0, 1, 2, \ldots\}$$
 und $A = \mathcal{P}(\Omega)$.

▶ Was ist $p_k = P(|\mathsf{Tor}| = k)$? (Statistiken!)