4. Optimization Methods

Dong-Gyu, Lee

Dept. of Statistics, KU

2020, Feb 18

Contents

- Today's Goal
- Q GD and SGD
- Gradient Basis
- 4 Learning Rate Basis
- Combined Method
- 6 Summary
- Besides..
- 8 Additional Strategies for Optimization
- Mext Time
- Reference

Today's Goal

- In this time, we will focus on how to find the minimum value of the loss function through various algorithms.
- And we will look at the characteristics of each optimizer through a formula and a picture.

Overview

• The key points of our algorithms today are:

출처: 하용호. 자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다

Figure 1: Summary of Algorithms

Gradient Descent(GD)

 The formula below is the basic equation to use when finding the minimum value of the loss function.

$$\omega_{t+1} \leftarrow \omega_t - \eta \frac{\partial L(\omega_t)}{\partial \omega_t}$$

 ω_t : Parameters, $L(\omega_t)$: Loss Function, η : Learning Rate

• This concept can also be felt through the Taylor approximation.

Figure 2: Gradient Descent

SGD

- Stochastic Gradient Descent(SGD)[6] is a way of updating parameters for every single piece of data.
- We will skip the BGD and MB SGD shown in the figure below because we learned about chapter 3.

Figure 3: Comparison between BGD and MB SGD

Gradient Basis: Momentum

- By changing GD's differential term $\frac{\partial L(\omega)}{\partial \omega}$, the Momentum algorithm[7] compensates slightly for the shortcoming of falling into the local minimum, as if inertia worked.
- The algorithm formula is :

$$\nu_{t+1} \leftarrow \gamma \nu_t + \eta \frac{\partial L(\omega_t)}{\partial \omega_t}$$
$$\omega_{t+1} \leftarrow \omega_t - \nu_{t+1}$$

 ω_t : Parameters, $L(\omega_t)$: Loss Function, η : Learning Rate, γ : Momentum (HyperParameter) ν_t : Moment Parameter

Gradient Basis: Momentum

• Momentum is more effective when oscillating.

Figure 4: Comparison between SGD and Momentum

Figure 5: Expected Movement in Momentum

Gradient Basis: NAG

- The momentum algorithm calculates the gradient by substracting the gradient of current point to update the inertia parameter.
- Nesterov Accelerated Gradient(NAG)[4], on the other hand, updates the inertia parameter by subtracting the gradient of the expected destination.

$$\nu_{t+1} \leftarrow \gamma \nu_t + \eta \frac{\partial L(\omega_t - \gamma \nu_t)}{\partial \omega_t}$$
$$\omega_{t+1} \leftarrow \omega_t - \nu_{t+1}$$

 ω_t : Parameters, $L(\omega_t)$: Loss Function, η : Learning Rate, γ : Momentum (HyperParameter) ν_t : Moment Parameter

Gradient Basis: NAG

- NAG can move more effectively than Momentum method.
- In the case of the Momentum method, there is a disadvantage that it can go much further by inertia even when it needs to stop.
- But in the case of the NAG method, parameters change the movement path after moving properly in the direction of momentum.

Figure 6: Comparison between Momentum and NAG

Interim Summary

Learning Rate Basis: AdaGrad

- Adaptive Gradient(AdaGrad)[2] is an algorithm associated with GD's learning rate term, η .
- In other words, the update is performed by giving different learning rates for each parameter.
- At this time gradient change and parameter change are inversely proportional.

$$g_{t+1} \leftarrow g_t + \frac{\partial L(\omega_t)}{\partial \omega_t} \odot \frac{\partial L(\omega_t)}{\partial \omega_t}$$
$$\omega_{t+1} \leftarrow \omega_t - \frac{\eta}{\sqrt{g_{t+1} + \epsilon}} \frac{\partial L(\omega_t)}{\partial \omega_t}$$

 ω_t : Parameters, $L(\omega_t)$: Loss Function, η : Learning Rate, ϵ : Stabilization Parameters \odot : Hadamard Product g_t : Leraning Parameter(Gradient Sqaured)

Learning Rate Basis: AdaGrad

- But AdaGrad's final learning rate is a structure that adds up by squaring gradients.
- This is a fatal flaw leading to slow learning.

Figure 7: AdaGrad

Learning Rate Basis: RMSProp

- It is almost identical to adadelta, which is introduced next slide, but it is introduced here for easy understanding of the concept.
- Root Mean Square Propagation(RMSProp)[9] is a concept that prof. Hinton used to describe adadelta in Coursera.

$$g_t^2 \leftarrow \frac{\partial L(\omega_t)}{\partial \omega_t} \odot \frac{\partial L(\omega_t)}{\partial \omega_t}$$
$$E[g^2]_t \leftarrow \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$
$$\omega_{t+1} \leftarrow \omega_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \frac{\partial L(\omega_t)}{\partial \omega_t}$$

 ω_t : Parameters, $L(\omega_t)$: Loss Function, η : Learning Rate, ϵ : Stabilization Parameters g_t : Gradient

 \odot : Hadamard Product, γ : Hyper Parameter

Learning Rate Basis: RMSProp

• While a gradient squared are just added in AdaGrad, RMSProp takes the form of exponential moving averages.

Figure 8: RMSProp

Learning Rate Basis: Adadelta

- Adadelta[10] is an algorithm designed to avoid a situation where the learning rate in adagrad continues to decrease and eventually converges to zero.
- The characteristics of Adadelta are that the exponential moving average is in both the numerator and denominator, and the learning rate is not exist in the algorithm.

Learning Rate Basis: Adadelta

• Assuming that γ , ϵ , and ω_1 are known, the algorithm is as follows :

$$\begin{array}{ll} \textbf{1} & \text{Initialize } E[g^2]_0 = 0, \ E[\Delta\omega^2]_0 = 0 \\ \textbf{2} & \text{For } t = 1:T \text{ , Do} \\ \textbf{3} & g_t^2 \leftarrow \frac{\partial L(\omega_t)}{\partial \omega_t} \odot \frac{\partial L(\omega_t)}{\partial \omega_t} \\ \textbf{4} & E[g^2]_t \leftarrow \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2 \\ \textbf{5} & \Delta\omega_t (=\omega_{t+1}-\omega_t) \leftarrow -\frac{\sqrt{E[\Delta\omega^2]_{t-1}+\epsilon}}{\sqrt{E[g^2]_t+\epsilon}} \frac{\partial L(\omega_t)}{\partial \omega_t} \\ \textbf{6} & E[\Delta\omega^2]_t \leftarrow \gamma E[\Delta\omega^2]_{t-1} + (1-\gamma)\Delta\omega_t^2 \\ \textbf{7} & \omega_{t+1} \leftarrow \omega_t + \Delta\omega_t \end{array}$$

 ω_t : Parameters, $L(\omega_t)$: Loss Function $\underline{g_t}$: Gradient ϵ : Stabilization Parameters, \odot : Hadamard Product γ : Hyper Parameter

 In step 5, the gradient coefficient of Adadelta is calculated by taking a suitable approximation instead of calculating the Hessian.
And this is mathematically valid.

- Adaptive Moment Estimation(Adam) algorithm[3], which is widely used today, is important because it greatly reduces the risk of falling into the local minima or staying saddle point.
- Adam is an algorithm that combines the AdaGrad and Momentum methods.
- All the "Adaptive" methodologies we have seen so far have the effect of maximizing any information about slight parameter change.

- Assuming that $(\beta_1, \ \beta_2) \in [0,1)$, ϵ , and ω_1 are known, the algorithm is as follows :
 - ① Initialize $m_0 = 0$, $v_0 = 0$
 - ② For t = 1 : T, Do
 - $g_t^2 \leftarrow \frac{\partial L(\omega_t)}{\partial \omega} \odot \frac{\partial L(\omega_t)}{\partial \omega}$
 - $m_t \leftarrow \beta_1 m_{t-1} + (1-\beta_1)g_t$
 - $v_t \leftarrow \beta_2 v_{t-1} + (1 \beta_2) g_t^2$
 - $\mathbf{6} \qquad \omega_{t+1} \leftarrow \omega_t \frac{\eta}{\sqrt{v_t + \epsilon}} \frac{\sqrt{1 \beta_2^t}}{1 \beta_1^t} m_t$
 - ω_t : Parameters, $L(\omega_t)$: Loss Function g_t : Gradient
 - ϵ : Stabilization Parameters, \odot : Hadamard Product

 $\beta_1,\ \beta_2$: Hyper Parameter, m_t : Momentum

 v_t : Decay Parameter

- In Keras, the initial values of the adam parameter are as follows: $\eta = 0.001, \ \beta_1 = 0.9, \ \beta_2 = 0.999, \ \epsilon = \textit{None}$
- Remember to set the initial value of the epsilon parameter.

Figure 9: Adam

- In Adam, the β_1 and ϵ parameters are especially important.
- Empirically, when solving the regression problem, it is known that the ϵ is good at 10^{-2} or 10^{-4} values.
- And in the case of classification, ϵ may use 10^{-8} .
- If I want to feel the effect of inertia, then use adam, otherwise RMSProp is fine.

Summary

• The .gif below has some problems with Momentum and NAG.

Summary

Besides..

- Another optimization algorithm, there are Adamax[3], NAdam[1], AMSGrad[5] and so on.
- In summary :
 - Adamax : Replace with the expression $v_t = \beta_2^{\infty} v_{t-1} + (1 \beta_2^{\infty})|g_t|^{\infty}$ in Adam alogrithm step 5. $(=max(\beta_2 \cdot v_{t-1}, |g_t|))$
 - NAdam : NAG + Adam
 - **3** AMSGrad : Use the maximum of past squared gradients v_t rather than the exponential average to update the parameters.

Figure 10: MSE Change for Each Epoch

Besides..

• The overall algorithm is summarized as follows :

Figure 11: Total Summary

Additional Strategies for Optimization

- Training data should "be mixed" at every epoch.
- "Curriculum Learning" that learns easy data first and then difficult data is important.
- First of all, "Batch Normalization(BN)" is the most important
- For faster learning, "applying noise to the gradient" is also useful.
- Be careful to have proper "Early Stopping" and "learning rate".
- After the appropriate epoch, you can artificially slow down the learning speed through the "Learning Decay".
- There is also a "Cyclical Learning Rate" [8] that gives a period to the value of learning rate.

Additional Strategies for Optimization

• The application of the Cyclical Learning Rate is as follows :

Figure 12: Snapshot Ensemble with CLR

Next

- Next time, we'll deal with the followings:
 - 1 Initial value problems in parameters.
 - 2 Type of loss function.
 - More complex CNN models.
 - 4 About the RNN Model.
- Of course, Python code learning proceeds at the same time.

Reference I

- [1] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.
- [2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(Jul):2121–2159, 2011.
- [3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [4] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o $(1/k^2)$. In *Doklady an ussr*, volume 269, pages 543–547, 1983.
- [5] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237, 2019.
- [6] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.

Reference II

- [7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
- [8] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 464–472. IEEE, 2017.
- [9] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. *COURSERA: Neural networks for machine learning*, 4(2):26–31, 2012.
- [10] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.