DM n°11 (pour le 18/03/2011)

Introduction

Soit $(a_n)_{n\in\mathbb{N}^*}$ la suite réelle définie par :

$$a_n = \frac{1}{n} - \int_n^{n+1} \frac{\mathrm{d}t}{t}.$$

On étudie la série de terme général a_n . On montre qu'elle est convergente et on donne différentes représentations de sa somme, notée γ , et appelée **Constante d'Euler**. Pour cela on commence par étudier la suite $(S_n)_{n\in\mathbb{N}^*}$ définie par :

$$S_n = \sum_{p=1}^n a_p = \sum_{p=1}^n \frac{1}{p} - \int_1^{n+1} \frac{\mathrm{d}t}{t} = \sum_{p=1}^n \frac{1}{p} - \ln(n+1).$$

On s'intéresse également à la suite $(H_n)_{n\in\mathbb{N}}$ définie par $H_0=0$ et pour tout entier $n\geqslant 1$,

$$H_n = \sum_{p=1}^n \frac{1}{p}.$$

PARTIE I : PREMIÈRE APPROCHE DE LA CONSTANTE D'EULER

1) Soit $p \in \mathbb{N}^*$. En encadrant l'intégrale $\int_p^{p+1} \frac{\mathrm{d}t}{t}$, montrer que

$$0 \leqslant a_p \leqslant \frac{1}{p} - \frac{1}{p+1}.$$

- 2) En déduire que la suite $(S_n)_{n\in\mathbb{N}^*}$ est majorée, puis qu'elle est convergente et que sa limite γ appartient à l'intervalle [0,1].
- 3) Vérifier que pour tout $p \in \mathbb{N}^*$ on a :

$$a_p = \frac{1}{p} \int_0^1 \frac{t}{t+p} \mathrm{d}t,$$

puis montrer que pour tout entier $p \ge 2$ on a :

$$\frac{1}{2}\left(\frac{1}{p} - \frac{1}{p+1}\right) \leqslant a_p \leqslant \frac{1}{2}\left(\frac{1}{p-1} - \frac{1}{p}\right).$$

4) En déduire un encadrement de $S_m - S_n$ pour m et n des entiers vérifiant $m > n \ge 1$. Puis montrer que pour tout entier $n \ge 1$ on a :

$$\frac{1}{2n+2} \leqslant \gamma - S_n \leqslant \frac{1}{2n}.$$

5) Conclure qu'on a le développement asymptotique suivant pour la suite $(H_n)_{n\in\mathbb{N}^*}$:

$$H_n \underset{n \to \infty}{=} \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

6) Pour tout $n \in \mathbb{N}^*$ on pose $T_n = S_n + \frac{1}{2n+2}$. Montrer que

$$0 \leqslant \gamma - T_n \leqslant \frac{1}{2n(n+1)}.$$

7) Déterminer un entier $n \in \mathbb{N}^*$ pour lequel T_n est une valeur approchée de γ à 10^{-2} près. Donner alors un encadrement de γ à 10^{-2} près.

PARTIE II : DEUX REPRÉSENTATIONS INTÉGRALES DE LA CONSTANTE D'EULER

Soit I un intervalle non vide de \mathbb{R} , borné ou non et soit $f: I \longrightarrow \mathbb{R}$ une fonction continue par morceaux. On dira que f est **intégrable** sur I si l'intégrale impropre de f sur I est absolument convergente.

On admettra le résultat suivant : Soit I un intervalle non vide de \mathbb{R} , borné ou non et soit $\sum u_n$ une série de fonctions réelles positives, définies, continues par morceaux et intégrables sur l'intervalle I. Si la série de fonctions $\sum u_n$ converge simplement sur I vers une fonction continue par morceaux et si la série numérique $\sum \int_I u_n$ converge, alors, la fonction somme $\sum_{n=0}^{+\infty} u_n$ est intégrable sur I et on a:

$$\int_{I} \left(\sum_{n=0}^{+\infty} u_n \right) = \sum_{n=0}^{+\infty} \int_{I} u_n$$

1) Dans cette question, on se propose de démontrer la convergence de l'intégrale :

$$\int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt.$$

a) Montrer que les deux intégrales suivantes sont convergentes :

$$\int_1^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt \text{ et } \int_1^{+\infty} \frac{e^{-t}}{t} dt.$$

- **b)** Déterminer la limite de $\frac{1}{1-e^{-t}} \frac{1}{t}$ quand $t \to 0^+$.
- c) Conclure.
- 2) Dans cette question on se propose de démontrer que si a et b sont deux réels strictement positifs, alors la fonction $t \mapsto \frac{e^{-at} e^{-bt}}{t}$ est intégrable sur $]0, +\infty[$ et que

$$\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \ln \frac{b}{a}.$$

Soient x et y deux réels strictement positifs.

a) Démontrer que :

$$\int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{ax}^{bx} \frac{e^{-t}}{t} dt - \int_{ay}^{by} \frac{e^{-t}}{t} dt.$$

b) Montrer que pour $a \leq b$ on a pour tout réel z > 0:

$$e^{-bz} \ln \frac{b}{a} \leqslant \int_{az}^{bz} \frac{e^{-t}}{t} dt \leqslant e^{-az} \ln \frac{b}{a}$$

c) Montrer que

$$\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \ln \frac{b}{a}.$$

- 3) Une première représentation intégrale de la constante d'Euler.
 - a) Démontrer que pour pour tout réel t > 0 on a :

$$\frac{1}{1 - e^{-t}} = \sum_{n=0}^{+\infty} e^{-nt} \qquad \text{et} \qquad \frac{1}{t} = \sum_{n=0}^{+\infty} \left(\frac{e^{-nt} - e^{-(n+1)t}}{t} \right).$$

b) En déduire que pour pour tout réel t > 0 on a :

$$e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) = \sum_{n=0}^{+\infty} \left(e^{-(n+1)t} - \frac{e^{-(n+1)t} - e^{-(n+2)t}}{t} \right).$$

c) Démontrer que pour tout réel t > 0, on a :

$$1 - \frac{1 - e^{-t}}{t} \geqslant 0.$$

d) Retrouver alors la convergence de l'intégrale $\int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt$ et démontrer l'égalité :

$$\gamma = \int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt.$$

4) Une deuxième représentation intégrale de la constante d'Euler.

Soit y un réel strictement positif.

a) Calculer $\int_{u}^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt$, puis déduire que

$$\lim_{y\to 0^+} \left(\ln y + \int_y^{+\infty} \frac{\mathrm{e}^{-t}}{1-\mathrm{e}^{-t}} \mathrm{d}t\right) = 0.$$

b) Démontrer que :

$$\gamma + \int_{y}^{+\infty} \frac{e^{-t}}{t} dt = \int_{0}^{y} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt + \int_{y}^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt.$$

c) En déduire que :

$$\lim_{y \to 0^+} \left(\gamma + \ln y + \int_y^{+\infty} \frac{e^{-t}}{t} dt \right) = 0.$$

d) Démontrer que la fonction $t\mapsto \mathrm{e}^{-t}\ln t$ est intégrable sur $]0,+\infty[$ et que :

$$\int_0^{+\infty} e^{-t} \ln t dt = \lim_{y \to 0^+} \left(e^{-y} \ln y + \int_y^{+\infty} \frac{e^{-t}}{t} dt \right).$$

e) Conclure alors que :

$$\gamma = -\int_0^{+\infty} e^{-t} \ln t \, dt.$$

PARTIE III : POUR UNE VALEUR APPROCHÉE DE LA CONSTANTE D'EULER

1) a) Démontrer l'égalité suivante :

$$\int_0^1 \left(\frac{1}{t} - \frac{e^{-t}}{1 - e^{-t}} \right) dt = \int_1^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt.$$

3

(Indication : on pourra calculer chacune des deux intégrales).

b) En utilisant l'égalité obtenue en II.3)d), démontrer que :

$$\gamma = \int_0^1 \frac{1 - e^{-t}}{t} dt - \int_1^{+\infty} \frac{e^{-t}}{t} dt.$$

2) Soit F la fonction définie par $F(x) = \sum_{k=0}^{+\infty} \frac{H_k}{k!} x^k$.

(On rappelle que $H_0 = 0$ et pour $k \ge 1, H_k = \sum_{p=1}^k \frac{1}{p}$.)

- a) Montrer que F est définie et dérivable sur \mathbb{R} .
- **b)** Démontrer que pour tout réel x > 0 on a :

$$F'(x) - F(x) = \frac{1}{x}(e^x - 1).$$

c) Montrer alors que pour tout réel x > 0 on a :

$$F(x) = e^x \int_0^x \frac{1 - e^{-t}}{t} dt.$$

3) Déduire des questions précédentes que pour tout réel x>0 on a :

$$\gamma + \ln x = e^{-x} F(x) - \int_x^{+\infty} \frac{e^{-t}}{t} dt.$$

4) Soit un entier $n \ge 1$ et soit un entier $a \ge 2$. Montrer que :

$$\sum_{k=an+1}^{+\infty} \frac{H_k}{k!} n^k \leqslant \frac{n^{an+1}}{(an)!} \sum_{k=0}^{+\infty} \left(\frac{1}{a}\right)^k \leqslant \frac{a}{a-1} \frac{\sqrt{n}}{\sqrt{2\pi a}} \left(\frac{e}{a}\right)^{an}.$$

(Indication : on pourra admettre et utiliser l'inégalité : $n! \geqslant \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ pour tout $n \in \mathbb{N}$.

5) En déduire que pour tout entier $n \ge 1$ on a :

$$\left| \gamma + \ln n - e^{-n} \sum_{k=0}^{an} \frac{H_k}{k!} n^k \right| \leqslant \frac{a}{a-1} \frac{e^{-n} \sqrt{n}}{\sqrt{2\pi a}} \left(\frac{e}{a} \right)^{an} + \frac{e^{-n}}{n}.$$

6) Décrire une méthode permettant le calcul d'une valeur approchée de γ à 10^{-10} près. (On ne demande pas le calcul d'une telle valeur approchée.)

PARTIE IV : La constante d'Euler somme de la série de Vacca (1910)

Pour tout entier $p \ge 0$, on pose :

$$v_p = p\left(\sum_{k=2^p}^{2^{p+1}-1} \frac{(-1)^k}{k}\right).$$

1) a) En séparant les termes d'indices pairs et ceux d'indices impairs dans l'expression de v_p , montrer que pour tout entier $p \ge 1$ on a :

$$v_p = p(\sigma_{p-1} - \sigma_p)$$
 où $\sigma_p = \sum_{h=2p}^{2^{p+1}-1} \frac{1}{h}$.

b) En déduire que pour tout entier $n \ge 1$ on a :

$$\sum_{p=1}^{n} v_p = \sum_{p=0}^{n-1} \sigma_p - n\sigma_n.$$

c) Montrerque pour tout entier $n \ge 1$ on a :

$$\sum_{n=0}^{n-1} \sigma_p = H_{2^n} - \frac{1}{2^n}.$$

d) En utilisant le développement asymptotique de H_n , obtenu en I. 5), conclure que la série de terme général v_p est convergente et qu'on a :

$$\sum_{p=1}^{+\infty} v_p = \gamma.$$

2) On pose, pour tout $n \in \mathbb{N}^*$,

$$u_n = (-1)^n \frac{\lfloor \log_2 n \rfloor}{n}$$

où \log_2 désigne la fonction logarithme en base 2 et |x| désigne la partie entière du réel x.

- a) Expliquer pourquoi le critère spécial des séries alternées ne permet pas de montrer la convergence de la série de terme général u_n .
- b) Soit n un entier naturel et soit m un entier tel que : $2^{n+1} \leq m < 2^{n+2}$. Montrer que

$$\left| \sum_{k=2n+1}^{m} \frac{(-1)^k}{k} \right| \leqslant \frac{1}{2^n},$$

puis en déduire que :

$$\left| \sum_{k=2n+1}^{m} u_k \right| \leqslant \frac{n+1}{2^n}.$$

c) Soit n un entier naturel et soit m un entier tel que : $2^{n+1} \leq m < 2^{n+2}$. Montrer que

$$\sum_{k=1}^{m} u_k = \sum_{p=0}^{n} v_p + \mathcal{O}\left(\frac{n}{2^n}\right)$$

et en déduire que la série de terme général u_n converge et que l'on a :

$$\sum_{n=1}^{+\infty} u_n = \gamma.$$

3) On pose pour tout entier naturel n:

$$r_n = \sum_{k=2^n}^{+\infty} \frac{(-1)^k}{k}.$$

5

a) Montrer que la série de terme général r_n est absolument convergente.

b) Exprimer v_k en fonction de k, r_k et r_{k+1} . Montrer ensuite que

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} r_k - nr_{n+1}.$$

Conclure que:

$$\gamma = \sum_{n=1}^{+\infty} \left(\sum_{k=2^n}^{+\infty} \frac{(-1)^k}{k} \right) = \sum_{n=1}^{+\infty} \left(\sum_{j=0}^{+\infty} \frac{(-1)^j}{2^n + j} \right)$$

PARTIE V: LA FORMULE DE GOSPER (1972)

Dans cette partie on désigne par \mathcal{F} le \mathbb{R} -espace vectoriel des suites réelles indexées par \mathbb{N} . Si $x=(x_k)_{k\in\mathbb{N}}$ est un élément de \mathcal{F} , on notera aussi x[k] le terme x_k de la suite x. On considère l'endomorphisme Δ de \mathcal{F} défini par :

$$\forall x \in \mathcal{F}, \forall k \in \mathbb{N}, \ \Delta(x)[k] = x[k] - x[k+1].$$

Pour $n \in \mathbb{N}^*$, on note Δ^n l'endomorphisme de \mathcal{F} obtenu en composant Δ avec lui même n fois et on pose $\Delta^0 = \mathrm{Id}_{\mathcal{F}}$.

Pour tout entier $n \in \mathbb{N}$ et pour tout entier $p \in [0, n], \binom{n}{p}$ désigne le coefficient binômial :

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

1) Démontrer que pour tout $n \in \mathbb{N}$, pour tout $x \in \mathcal{F}$ et pour tout $k \in \mathbb{N}$ on a :

$$\Delta^{n}(x)[k] = \sum_{p=0}^{n} (-1)^{p} \binom{n}{p} x_{p+k}.$$

(Indication : écrire $\Delta = \operatorname{Id}_{\mathcal{F}} - T$ où T est l'endomorphisme de \mathcal{F} défini, pour tout $x \in \mathcal{F}$ et pour tout $k \in \mathbb{N}$, par : T(x)[k] = x[k+1].)

2) Soit $(u_p)_{p\in\mathbb{N}}$ une suite réelle convergente et de limite ℓ . On se propose de montrer que :

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{n=0}^n \binom{n}{p} u_p = \ell.$$

- a) Soit $p \in \mathbb{N}$. Montrer que la suite $\left(\frac{\binom{n}{p}}{2^n}\right)_{n \geq p}$ converge vers 0.
- b) On suppose dans cette question $\ell = 0$. Montrer que

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p = 0.$$

(Indication : On pourra utiliser l'égalité suivante :

$$\frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p = \frac{1}{2^n} \sum_{p=0}^k \binom{n}{p} u_p + \frac{1}{2^n} \sum_{p=k+1}^n \binom{n}{p} u_p$$

et, étant donnée un réel $\varepsilon > 0$, choisir un entier k suffisamment grand pour que l'on ait

$$\left| \frac{1}{2^n} \sum_{p=k+1}^n \binom{n}{p} u_p \right| < \frac{\varepsilon}{2}.)$$

- c) Conclure pour le cas général où ℓ est quelconque.
- 3) Dans cette question, on se propose de démontrer la propriété suivante : Soit $x = (x_k)_{k \in \mathbb{N}} \in \mathcal{F}$. Si la série $\sum (-1)^k x_k$ converge, alors, la série de terme général $\frac{\Delta^n(x)[0]}{2^{n+1}}$ converge et on a :

$$\sum_{k=0}^{+\infty} (-1)^k x_k = \sum_{n=0}^{+\infty} \frac{\Delta^n(x) [0]}{2^{n+1}}.$$

On pose, pour tout $N \in \mathbb{N}$:

$$U_N = \sum_{k=0}^{N} (-1)^k x_k$$
 et $V_N = \sum_{n=0}^{N} \frac{\Delta^n(x)[0]}{2^{n+1}}$.

a) Démontrer que

$$V_N = \frac{1}{2^{N+1}} \sum_{q=0}^{N} {N+1 \choose q+1} U_q.$$

(on pourra observer que pour tout $k \in \mathbb{N}$, $(-1)^k x_k = U_k - U_{k-1}$, avec, par convention, $U_{-1} = 0$).

b) En déduire que la série de terme général $\frac{\Delta^{n}(x)[0]}{2^{n+1}}$ converge et que :

$$\sum_{n=0}^{+\infty} \frac{\Delta^n(x) [0]}{2^{n+1}} = \sum_{k=0}^{+\infty} (-1)^k x_k.$$

4) On considère dans cette question un entier $n\geqslant 1$ ainsi que la suite $x=(x_j)_{j\in\mathbb{N}}$ définie par :

$$x_j = \frac{1}{2^n + j}.$$

a) Montrer que pour tout entier $m \ge 0$ on a :

$$\Delta^{m}(x)[0] = \frac{1}{2^{n}} \frac{1}{\binom{2^{n}+m}{m}}.$$

Indication: On pourra admettre et utiliser le résultat suivant : Pour $m, n \in \mathbb{N}$ on a :

$$\int_0^1 x^n (1-x)^m dx = \frac{m! n!}{(m+n+1)!}$$

b) En déduire que :

$$\gamma = \sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty} \frac{1}{2^{m+n+1}} \frac{1}{\binom{2^n+m}{m}}.$$

c) Conclure que la constante d'Euler peut s'écrire :

$$\gamma = \frac{1}{2} + \sum_{p=2}^{+\infty} \frac{1}{2^{p+1}} \sum_{k=1}^{p-1} \frac{1}{\binom{2^{p-k}+k}{k}}.$$