

TD 11: RÉVISIONS

Exercice 1. Théorème maître

Quelle est la borne asymptotique des relations de récurrence avec fractionnement suivantes?

1.
$$T(n) = 3T(n/5) + \Theta(n)$$

 $O(n)$
2. $T(n) = 4T(n/4) + \Theta(n)$
 $O(n \log(n))$
3. $T(n) = 6T(n/5) + \Theta(n^2)$
 $O(n^2)$

Exercice 2. Résolution d'une équation de récurrence

Résoudre les équations de récurrence suivantes (faites attention à la résolution du système):

1.
$$a_n = 2a_{n-1} + 3a_{n-2}$$
; $a_0 = 1$ et $a_1 = 3$

$$r^2 - 2r - 3 = 0$$

$$r_1 = -1$$

$$r_2 = 3$$

$$a_n = \alpha_1(-1)^n + \alpha_2 \cdot 3^n$$

$$1 = \alpha_1 + \alpha_2$$

$$3 = -\alpha_1 + 3\alpha_2$$

$$\alpha_2 = 1$$

$$\alpha_1 = 0$$

2.
$$a_n = 5a_{n-1} + 2a_{n-2} - 24a_{n-3}$$
; $a_0 = 1$, $a_1 = -4$ et $a_2 = -4$

$$r^{3} - 5r^{2} - 2r + 24 = 0$$

$$r_{1} = 3$$

$$r_{2} = -2$$

$$r_{3} = 4$$

$$a_{n} = \alpha_{1} \cdot 3^{n} + \alpha_{2}(-2)^{n} + \alpha_{3} \cdot 4^{n}$$

$$1 = \alpha_{1} + \alpha_{2} + \alpha_{3}$$

$$-4 = 3\alpha_{1} - 2\alpha_{2} + 4\alpha_{3}$$

$$-4 = 9\alpha_{1} + 4\alpha_{2} + 16\alpha_{3}$$

$$\alpha_{1} = \frac{4}{5}$$

$$\alpha_{2} = \frac{6}{5}$$

$$\alpha_{3} = 1$$

3.
$$a_n = 5a_{n-1} + 2a_{n-2} - 24a_{n-3}$$
; $a_0 = 1$ et $a_1 = -4$ Même équation caractéristique et racines que pour la question précédente.

$$a_n = \alpha_1 \cdot 3^n + \alpha_2 (-2)^n + \alpha_3 \cdot 4^n$$

$$1 = \alpha_1 + \alpha_2 + \alpha_3$$

$$-4 = 3\alpha_1 - 2\alpha_2 + 4\alpha_3$$

$$\alpha_2 = \frac{4}{3} - \frac{\alpha_1}{6}$$

$$\alpha_3 = -\frac{5\alpha_1}{6} - \frac{1}{3}$$

Exercice 3. Résolution d'une équation de récurrence

Résoudre la relation de récurrence $a_n = a_{n-1}^2 \cdot a_{n-2}^3$, $a_1 = 2$, $a_2 = 4$.

Posez $b_n = log_2(a_n)$

Rappel : Pour tout a, b > 0 et tout 0

 $log_2(a \cdot b) = log_2(a) + log_2(b); log_2(a^p) = plog_2(a); log_2(a) = b \Leftrightarrow a = 2^b$

Résolvez l'équation de récurrence pour b_n et en déduire l'expression de a_n , $b_n = 2b_{n-1} + 3b_{n-2}$, qui se résout de la même façon que l'équation 1) du numéro précédent. On trouve les racines r = 3 et r = -1 pour ensuite déterminer les alphas qui seront $\alpha_1 = -1/4$ et $\alpha_2 = 1/4$. Pour déterminer les alphas, il faut faire attention à bien appliquer le logarithme au deux premiers termes obtenus avec la relation, $a_1 = 2$ et $a_2 = 4$, afin de poser les équations. Il suffit finalement de remettre les b_n en a_n , et pour cela on utilise encore les

formules des logarithmes. On a $b_n = log_2(a_n) = (-1/4) * (-1)^n + (1/4) * (3)^n$ et donc $a_n = \sqrt[4]{2^{-(-1)^n + 3^n}}$.

Exercice 4. Preuve

Prouvez que (nk)! est divisible par $(n!)^k$.

$$\frac{(k \cdot n)!}{(n!)^k} = \frac{1}{(n!)^k} \cdot \left(n! \cdot \frac{(2n)!}{n!} \cdot \frac{(3n)!}{(2n)!} \dots \frac{(k \cdot n)!}{((k-1) \cdot n)!} \right)$$

$$= \frac{n!}{n!0!} \cdot \frac{(2n)!}{n!n!} \cdot \frac{(3n)!}{n! \cdot (2n)!} \dots \frac{(kn)!}{n! \cdot ((k-1-n)!)!}$$

$$= \binom{n}{n} \cdot \binom{2n}{n} \cdot \binom{3n}{n} \dots \binom{k \cdot n}{n}$$

Ce nombre est un produit d'entiers (positifs), c'est donc un entier (positif).

Exercice 5. Propositions

Soit p, q et r les propositions :

p: Vous êtes malade le jour de Noël.

q : Vous avez manqué le party de famille.

r: Vous avez réussi à acheter tous vos cadeaux à temps.

Exprimez chacune des propositions suivantes en langage courant.

1. $p \rightarrow q$

Si vous êtes malade le jour de Noël, alors vous avez manqué le party de famille.

2. $\neg q \leftrightarrow r$

Si vous n'avez pas manqué le party de famille, alors vous avez réussi à acheter tous vos cadeaux à temps et réciproquement.

3. $q \rightarrow \neg r$

Si vous avez manqué le party de famille, alors vous n'avez pas réussi à acheter tous vos cadeaux à temps.

 $4. \ p \vee q \vee r$

Vous êtes malade le jour de Noël ou vous avez manqué le party de famille ou vous n'avez pas acheté tous vos cadeaux de Noël à temps.

Réduisez les expressions suivantes. Sont-elles des tautologies, des contradictions ou des contingences?

- 1. $(p \rightarrow \neg r) \lor (q \rightarrow \neg r)$ $\neg p \lor \neg q \lor \neg r$
- 2. $(p \wedge q) \vee (\neg q \wedge r) \vee (p \wedge r)$

 $(p \wedge q) \vee (\neg q \wedge r)$

Exercice 6. Quantificateurs

Soit C(x,y) l'énoncé « x peut offrir u n c adeau à y », o ù l'univers d u d iscours e st l'ensemble d es êtres humains. Avec les quantificateurs, exprimez les énoncés suivants :

1. Le Père Noël peut offrir un cadeau à tous le monde.

```
\exists x \forall y C(x, y), x \in \{\text{Père Noël}\}\
```

2. Tous le monde peut offrir un cadeau au Père Noël.

```
\exists y \forall x C(x, y), y \in \{\text{Père Noël}\}\
```

3. Personne sauf le Père Noël ne peut offrir un cadeau à tout le monde.

```
\exists ! x \forall y C(x, y), x \in \{\text{Père Noël}\}\
```

4. Tout le monde peut recevoir un cadeau de la part de quelqu'un.

```
\forall y \exists x C(x,y)
```

5. Certaines personnes ne peuvent offrir qu'exactement deux cadeaux.

```
\exists x \exists ! y \exists ! z C(x, y) C(x, z)
```

Exercice 7. Récursivité Donnez

une définition récursive de

1. l'ensemble des entiers positifs impairs.

```
Base : a_0 = 1 Étape récurs. : a_{x+1} = a_x + 2
```

2. l'ensemble des puissances entières positives de 5.

Base:
$$a_0 = 1$$
, $a_1 = 5$ Étape récurs. : $a_{x+1} = a_x * a_1$

3. l'ensemble des entiers qui ne sont pas divisibles par 4.

Base :
$$a_0 = 1$$
 , $a_1 = 2$, $a_2 = 3$ Étape récurs. : $a_{a+3} = a_x + 4$

Exercice 8. Relations

Supposez que R et S sont des relations réflexives dans un ensemble A. Les énoncés suivants sont-ils vrais ou faux ?

- 1. R \cup S est réflexive.
- 2. R \cap S est réflexive.
- 3. $R \oplus S$ est irréflexive.
- 4. R S est irréflexive.
- 5. R ∘S est réflexive.

Tous les énoncés sont vrais.

Exercice 9. Relations

Les graphes orientés suivant sont-ils réflexifs, transiftifs, antisymétriques et/ou symétriques?

Ce graphe est réflexif, mais ni symétrique, ni antisymétrique. Il n'est pas transitif.

Ce graphe est symétrique, donc pas antisymétrique, mais il n'est pas réflexif ni transitif.

Exercice 10. Graphes bipartis et graphes isomorphes Les graphes simples suivants sont-ils bipartis? Sont-ils isomorphes?

Ces graphes ne sont pas bipartis. Toutefois, ils sont isomorphes.