DS-670-Capstone: Big Data & Business Analytics

Lab 10: Comparison of Results

April 6th 2017, Madhumita D

1. Reference:

Kim, J. H., Shamsuddin, A., & Lim, K. P. (2011). Stock return predictability and the adaptive markets hypothesis: Evidence from century-long US data. Journal of Empirical Finance, 18(5), 868-879.

2. Comparison Table:

Competitor	My Algorithm
Results: Based on the regression metrics	Results: Using a hybrid approach of
used they find evidence that return	neural networks and time series
predictability fluctuates over time and is	analysis, return predictability is
highly governed by changing market	calculated. Based on the overall
conditions. It is also found that during a	forecasted values we can say that the
market crash, no return predictability is	expected return of stocks in last quarter
prominently evident, mostly because of	of 2014 has a negative trend while they
the extreme degree of associated	show a positive trend in the first two
uncertainty. They also state that inflation,	quarters of 2015. However, later in third
risk-free rates and stock market volatility	and fourth quarters in 2015 we see a
influence stock market predictability over	similar negative trend as shown in last
a period of time.	quarter of 2014. On the whole the
	averages depict a huge volatility in stock
	price movements.
Discussion:	Discussion:
Assumption is made that the market	We have assumed that the price for
follows a weak-form of efficient market	each stock is highly influenced by the
hypothesis (EMH).	fundamental factors.
Test for evidence of AMH (adaptive	Test for semi-strong form of efficient
market hypothesis) in return	market hypothesis (EMH) based on
predictability.	return predictability.
Used DJIA index i.e. index created for 30	Used daily closing prices of exchange
blue chip stocks (large cap stocks) for	traded fund (ETF) of both small and large
century-long U.S. stock market data from	cap stocks from the year 2000 to 2017
1900 to 2009.	for U.S. stock market.
1900 to 2009.	101 U.S. Stock Market.
DJIA is used as a technical indicator. The	RSI is used as a technical indicator in our
index is a price-weighted average of 30	analysis. Relative Strength Index
blue-chip stocks, accounting for 25–30%	compares the magnitude of recent gains
-Cuba tatal al a aCUC ataula	and lesses array a married of times become
of the total value of U.S. stocks.	and losses over a period of time based

Regression Analysis was conducted on the measures of return predictability of stocks.	Neural Networks and Factor Models were implemented to forecast the returns of a stock in the market. We use a multivariate time series to study the behaviour of stocks.
Metrics Used – Sequential testing of market efficiency was not taken into consideration.	Metrics Used – Sequential testing of market efficiency played a major role in computing t the returns accurately based on all the historical and present data available.
Metrics Used – Automatic variance ratio (AVR) test is used in testing weak-form of efficiency of financial markets	Metrics Used – Neural Network Weights from 15 training data sets (normalized data) are used to predict the weights in the test data sets to obtain return predictability.
Metrics Used - Automatic portmanteau test (AQ) for testing the auto-correlation of returns which are subject to unknown forms of heteroskedasticity.	Metrics Used – Time series analysis is performed on the weights from the neural networks to analyze if there are any deviations in the predictions.
Metric Used - Generalized spectral test (both linear and non-linear dependence are tested).	Metrics Used – Ranked the test data sets based on predicted returns and grouped these data sets into 5 buckets. These groups are used to study the behaviour of stocks.
All these metrics are used as inputs to regression analysis which does not completely cover the non-linearity of the financial markets.	The metrics used in our algorithm consider the non-linearity of the data. Neural network models are best suited for this kind of data where the model uses a learning algorithm and modelling is based on the data alone.
Deducted that return predictability depends on market conditions which contradicts the initial assumption that the market is weak form of efficient market.	Deducted that predicted returns are dependent on the publically available information or market conditions which proves that markets are semi-strong form efficient.
Their analysis addresses the fact that return predictability has been smaller during economic bubbles than in normal times. Also, return predictability is associated with stock market volatility and economic fundamentals.	Our analysis addresses not only the factors driving performance of the model but also the investability of our model with real-time data. This entails simulation of a portfolio controlling for risk and liquidity of the assets traded.
U.S. Stock markets are susceptible to market conditions such as inflation, crashes and are weak form of efficient markets.	U.S. Stock Markets are highly governed by changing market condition but are semi-strong form of efficient markets.