Deep Learning

Lecture 2

Bias in Deep Learning

- **■** Bias is an additional parameter in a neural network that lets the model adjust its output independently of the input.
- **■** This is equivalent to the intercept in a linear equation y=mx+b
- **■** It allows the activation function to shift horizontally.
- It enables the network to better fit the data—even when all input features are zero.

Role of Bias

Why Bias

Weights Initialization in Deep Learning

- 1. Zero Initialization
- 2. Random Initialization
- 3. Xavier (Glorot) Initialization
- 4. He Initialization

Zero Initialization

- **■** Setting all weights to zero causes all neurons to learn the same features, making them redundant
- **■** This prevents the network from learning properly.

Zero Initialization

- Small random values (e.g., Gaussian or Uniform distribution) are assigned to break symmetry.
- Weights are assigned from a uniform distribution between a range, typically:
- W = np.random.uniform(-0.1, 0.1, size=(layer_size, prev_layer_size))

A Simple 3-Layer Neural Network

Assume we have a network with:

- Input layer (5 neurons)
- Hidden layer (4 neurons)
- Output layer (3 neurons)

We initialize weights for:

- 1. Hidden Layer: Weights connect 5 input neurons to 4 hidden neurons → Shape (4, 5)
- 2. Output Layer: Weights connect 4 hidden neurons to 3 output neurons → Shape (3, 4)

Weight Matrix Shape: (4, 5)

```
[[ 0.01 -0.02 0.005 0.01 -0.01 ]
```

[-0.005 0.03 -0.02 0.02 -0.01]

[0.01 -0.01 0.02 -0.005 0.01]

[-0.02 0.015 -0.01 0.03 -0.02]]

Xavier (Glorot) Initialization

- Used for sigmoid and tanh activation functions.
- Weights are drawn from a normal or uniform distribution with variance controlled by the number of inputs and outputs.
- Low variance → Small weights → Vanishing gradients (slow learning).
- ► High variance → Large weights → Exploding gradients (unstable learning).
- Techniques like **Xavier** and **He initialization** set variance based on **the number of neurons** in the layer to ensure stable learning.
- $ightharpoonup W = np.random.randn(n_out, n_in) * np.sqrt(2 / (n_in + n_out))$

Xavier (Glorot) Initialization

He Initialization

- Used for ReLU and Leaky ReLU activation functions.
- → Helps prevent the vanishing gradient problem.
- \blacksquare W = np.random.randn(n_out, n_in) * np.sqrt(2 / n_in)

He Initialization

Leaky Relu

- Leaky ReLU is an **activation function** used in neural networks to solve the **dying ReLU problem** (when neurons output zero and stop learning).
- It introduces a small **negative slope** for negative inputs instead of setting them to zero.

Leaky Relu

$$f(x) = egin{cases} x, & ext{if } x > 0 \ lpha x, & ext{if } x \leq 0 \end{cases}$$

Where α is a small positive constant (e.g., 0.01) that allows a small slope in the negative region.

Leaky Relu

https://www.researchgate.net/publication/358306930_cardiGA N_A_Generative_Adversarial_Network_Model_for_Design_and_ Discovery_of_Multi_Principal_Element_Alloys/figures?lo=1&utm_s ource=google&utm_medium=organic