

Supervised Learning: Predicting video games user review scores

Magda Costa – up202207036 Sofia Machado – up202207203

FORMULAÇÃO DO PROBLEMA

Prever se um videojogo tem boas ou más classificações 'bad', 'mediocre', 'good', 'great'.

Base de dados com um total de 5824 inputs

Análise de Dados; Pré-processamento de Dados; Análise Exploratória; Classificação; Comparação Resultados

FORMULAÇÃO DO PROBLEMA

 >

DataSet

01	ld	06	Release Year	11	Companies (e.g., "Electronic Arts, EA Canada)
02	Name	07	Folows (number of people following a game on the IGDB website)	12	Average User Score (0 to 100)
03	Category (e.g., main game, expansion)	80	In a Franchise (e.g., "Star Wars Racer" → True since it belongs to the Star Wars franchise)	13	Average User Rating (bad, mediocre, good or great). Each class represents ~25% of the data.
04	Number of DLCs	09	Genre (e.g., "Action, Sport")	14	Number of reviews by users
05	Number of Expansions	10	Platform (e.g., "Xbox, PC")	15	Summary

Eliminação da coluna que contém os dados 'summary'

Dados Irrelevantes

Entradas Vazias

Remoção das 21 entradas vazias em 'genres' e das 43 em 'companies'. Total de 63 inputs eliminados

Para facilitar o acesso aos dados pré-processados criamos um novo arquivo com os dados modificados Guardar os Novos Dados

Análise Exploratória

Para melhor compreender a distribuição dos dados, transformou-se as 'strings' em 'integers' utilizamos os dados para desenvolver gráficos

Pré-Processamento dos Dados

Esta etapa envolve a aplicação de uma série de técnicas e transformações aos dados brutos com o objetivo de preparálos para a análise e modelagem.

A este processo antecedeu-se uma 'Análise de Dados' para uma melhor identificação de erros ou da relevância dos dados.

CLASSIFICAÇÃO

DEFINIR O TARGER

target_c = 'user_rating'

Configuração

Todas as variáveis (incluindo 'user_score')

Divisão

Preparação para treinar os modelos

Decision Tree

~ 0,99

K-NN

 ~ 0.54

Importância Variáveis

'user_score' com importância de 1.0

CLASSIFICAÇÃO

2

Utilizamos todos os dados exceto o 'user_score'

A remoção do 'user_score' aplica-se nos testes seguintes 3

Removemos as variáveis menos relevantes do teste 2

Neste teste não usamos 'category', 'in_francise', 'n_dlcs', 'n_expansions' Relevância inferior a 0.08 4

Testamos a relevância do 'id' e do 'nome' removendo-os

Não utilizamos: 'category', 'in_francise', 'n_dlcs', 'n_expansions, 'id', 'nome' 5

Apenas dados do tipo 'numerical'

Usamos apenas: 'id',
'n_dlcs', 'n_expansions',
'year', 'follows',
'n_user_reviews'

O 'user_score' influencia altamente os resultados

A remoção dos dados menos relevantes não apresentou resultados muito diferentes A remoção do 'id' e do 'nome' não apresentou resultados muito diferentes A passagem de 'string' para 'numérico' não altera os dados de um modo relevante

COMPARAÇÃO DOS RESULTADOS

Decision Tree

O Teste 2 foi o que apresentou os melhores resultados. Posteriormente realizando um 'Parameter Tuning' foi possível alcançar uma accuracy de 0,642

K-NN

Os melhores resultados foram apresentados pelo Teste 5. Posteriormente realizando um 'Parameter Tuning' foi possível alcançar uma accuracy de 0,689

CONCLUSÃO

- Na análise de dados concluímos que nem todos os dados fornecidos são estritamente necessários para a realização do trabalho e que existiam valores com entradas nulas. Fazendo posteriormente a passagem de string para integer.
- Na classificação, realizamos 5 testes, onde tentamos responder a diversas perguntas, como a importância dos dados e o impacto de dados do tipo string. Tendo sido feito o cross-validation para todos os testes exceto o primeiro, de modo a tornar o parameter tuning mais fácil de calcular. Neste foi apenas escolhido o teste com maior precisão para cada caso.
- Ao comparar os testes constatamos que estes não apresentam uma discrepância de valores, sendo todos muito próximos. De um modo geral concluímos que neste caso o melhor método foi o K-NN, já que atingiu valores mais elevados.

