CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro

Learning Objectives

Define the basic architecture of a neural network

Distinguish between count-based, logistic regression, and neural LMs

Review: Add-λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

Add λ to all the counts

$$p(z) \cong count(z) + \lambda$$

$$= \frac{count(z) + \lambda}{\sum_{v}(count(v) + \lambda)}$$

Review: An Extended Trigram Example

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)	
The film	The	0	1		1/17	
The film	film	0	1	17 (=1+16*1)	1/17	
The film	got	1	2		2/17	
The film	went	0	1		1/17	
		(,				
The film	OOV	0	1		1/17	
The film	EOS	0	1		1/17	
a great	great	0	1	17	1/17	
a great	opening	1	2		2/17	
a great	and	0	1		1/17	
a great	the	0	1		1/17	

Review: Language Model with Maxent n-grams

$$p_n(\mathbf{y}) = \prod_{i=1}^{M} \max(\mathbf{y}, \mathbf{x}_{i-n+1:i-1}, \mathbf{x}_i)$$

$$= \prod_{i=1}^{M} \frac{\exp(\theta_{x_{i}}^{T} f(y, x_{i-n+1:i-1}))}{\sum_{x'} \exp(\theta_{x'}^{T} f(y, x_{i-n+1:i-1}))}$$

Iterate through all possible output vocab types x'---just like in count-based LMs

Review: Maxent Language Models

Maxent Language Models

given some context...

compute beliefs about what is likely...

can we learn word-specific weights (by type)?

NEURAL LMS

W_{i-3} W_{i-2} W_{i-1} $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1}))$

Wi

predict the next word

given some context... **W**_{i-3} W_{i-2} W_{i-1} can we *learn* the feature function(s) for *just* the context? compute beliefs about what is likely... $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot (w_{i-3}, w_{i-2}, w_{i-1}))$ can we learn word-specific weights predict the next word (by type)?

given some context...

create/use
"distributed
representations"...

compute beliefs about what is likely...

predict the next word

 W_i

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word

 W_i

NEURAL LMS

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word

 W_i

11

3/27/2025 NEURAL LMS

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

 e_{i-3} e_{i-2} e_{i-1} matrix-vector $\mathcal{C} = f$ product $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1}))$

predict the next word

 W_i

 W_{i-2}

 W_{i-1}

W_{i-3}

Biologically-Inspired Learning Models: Neuron Unit

Multi-layer Networks: General Structure Example

Multi-layer Networks: General Structure

Multi-layer perceptrons (aka neural networks) will have **inputs**, one or more **hidden layers**, and an **output layer**:

Multi-layer Networks: General Structure

Multi-layer perceptrons (aka neural networks) will have **inputs**, one or more **hidden layers**, and an **output layer**:

Number of inputs, outputs, and number and size of hidden layers can vary

Combination of **different weights** and **different structures** represent different **functions**

We will treat each layer as fully-connected

Each unit in one layer connects to every unit in the next layer

Computing Values: Forward Propagation

Forward propagation calculates the output values for a given set of input values

<u>Algorithm</u>

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

Forward Propagation Example

Calculate the output of the network below, assuming each neuron uses a sigmoid activation function, given 0.05 and 0.1 as inputs.

- 1. Calculate the weighted sum of inputs to each neuron unit
- Evaluate the activation function to determine the output of each neuron unit
- Use outputs as inputs for the next layer

Forward Propagation Example

Calculate inputs to the hidden layer (units h1 and h2):

- $in_{h1} = w_1i_1 + w_2i_2 + b_1$ = .15(.05)+.2(.1)-.35 = .0075+.02-.35 = -.3225
- $in_{h2} = w_3 i_1 + w_4 i_2 + b_2$ = .25(.05)+.3(.1)-.35 = .0125+.03-.35 = -.3075

- L. Calculate the weighted sum of inputs to each neuron unit
- Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

Forward Propagation Example

Calculate <u>outputs</u> to the hidden layer (units h1 and h2):

How do we do this?

Use our activation function!

$$g(x) = \frac{1}{1 + e^{-x}}$$

What will be our *x*?

$$in_{h1} = -.3225$$

 $in_{h2} = -.3075$

- Calculate the weighted sum of inputs to each neuron unit
- Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

out_{h1} = g(in_{h1})
=
$$\frac{1}{1+e^{-in_{h1}}}$$

= $\frac{1}{1+e^{-(-.3275)}}$
= .4188

out_{h2} = g(in_{h2})
=
$$\frac{1}{1+e^{-in_{h2}}}$$

= $\frac{1}{1+e^{-(-.3075)}}$
= .4237

How are Neural Networks used?

Are neural networks supervised or unsupervised learning?

- Inputs to the network are features of our data set
- Outputs to the network are our labels

Can they be used for classification or regression?

• Either!

Network Types: Flat Input, Flat Output

Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model

Maxent Language Models

Common Types of Flat Input, Flat Output

```
Feed forward networks
```

Multilayer perceptrons (MLPs)

General Formulation:

Input: x
Compute:

 $h_0 = x$ for layer I = 1 to L: $h_I = f_I(W_I h_{I-1} + b_I)$ linear layer

hidden state (non-linear) at layer I activation function at I return $\operatorname{argmax} \operatorname{softmax}(\theta h_L)$

In Pytorch (torch.nn):

Activation functions:

https://pytorch.org/docs/stable/nn.html?highlight
=activation#non-linear-activations-weighted-sumnonlinearity

Linear layer:

https://pytorch.org/docs/stable/nn.html#linear-layers

```
torch.nn.Linear(
    in_features=<dim of h<sub>l-1</sub>>,
    out_features=<dim of h<sub>l</sub>>,
    bias=<Boolean: include bias b<sub>l</sub>>)
```

A Neural N-Gram Model

ML/NLP Framework for Learning

Review:

Maximize Log-Likelihood (Classification)

$$=F(\theta)$$

3/27/2025 NEURAL LMS 34

Review: *Minimize* Cross Entropy Loss

Cross entropy: How much \hat{y} differs from the true y

objective is convex (when f(x) is not learned)

ML/NLP Framework for Prediction

Perplexity: Average "Surprisal"

Lower is better : lower perplexity → less surprised

Less certain →
More surprised →
Higher perplexity

More certain →
Less surprised →
Lower perplexity

"A Neural Probabilistic Language Model," Bengio et al. (2003)

BASELINES

LM Name	N- gram	Params.	Test PPL
Interpolation	3		336
Kneser-Ney backoff	3		323
Kneser-Ney backoff	5		321
Class-based backoff	3	500 classes	312
Class-based backoff	5	500 classes	312

"A Neural Probabilistic Language Model," Bengio et al. (2003)

BASELINES

LM Name	N- gram	Params.	Test PPL
Interpolation	3		336
Kneser-Ney backoff	3		323
Kneser-Ney backoff	5		321
Class-based backoff	3	500 classes	312
Class-based backoff	5	500 classes	312

NPLM

N-gram	Word Vector Dim.	Hidden Dim.	Mix with non- neural LM	PPL
5	60	50	No	268
5	60	50	Yes	257
5	30	100	No	276
5	30	100	Yes	252

"we were not able to see signs of over- fitting (on the validation set), possibly because we ran only 5 epochs (over 3 weeks using 40 CPUs)" (Sect. 4.2)

A Closer Look at Neural p(

Won't you please donate?

This is a *class-based* language model, but incorporate the label into the *embedding representation*

Define an embedding method that makes use of the specific label Class

Unlike count-based models, you don't need "separate" models here

LM Comparison for p(

Won't you please donate?

N-GRAM/COUNT-BASED

MAXENT/LR

NEURAL

Class-specific

Class-based

Class-based

Uses features

Uses *embedded* features