

secret behind the smile!

HELLO!

I am Elijah Appiah from Ghana.

I am an Economist by profession.

I love everything data, so I love R!

You can reach me:

eappiah.uew@gmail.com

Lesson Goals

Provide compact introduction to allow readers learn about visualization techniques.

Emphasize the strong connections between visualizations and insight.

Datasets

- mtcars: base R
- wage1: wooldridge package
- diamonds: ggplot2 package

Variables

Categorical

Nominal – names, labels, categories with no natural order

e.g. gender, countries

Ordinal – categories with an order

e.g. Likert Scales

Numeric

Discrete – counts

e.g. number of cylinders of a vehicle

Continuous – measured even within an interval

e.g. height, weight

Variables (e.m)

Discrete – represents counts

e.g. number of students, grade levels, gender, number of blue marbles in a jar, etc.

Continuous – represents measurable amounts

e.g. height, weight, temperature, distance, etc.

GGPL0T2

GRAMMAR OF GRAPHICS PLOTS

GGPLOT2 LAYERS

GGPLOT2 LAYERS

GGPLOT2

The package is

ggplot2

The function is

ggplot()

Layer: DATA

ggplot(data = df)

Blank canvas with grey background

The aesthetic attributes include:

x, y, colour (or color), shape, size, fill, alpha, etc...

Aesthetics are mapped in the aes() function in the ggplot() function.

```
ggplot(data = df, mapping = aes())
```

Aesthetic attributes

ggplot(data = df, aes())

Aesthetic attributes

ggplot(df, aes())

Aesthetic attributes

ggplot(mtcars, aes(x = mpg))

ggplot(mtcars, aes(x = mpg, y = hp))

- The visual elements of plots are defined by geoms.
- It is specified as **geom_*()**.

 where * denotes the specific *type of plot* to create.
- A bar plot will be geom_bar()
- A histogram will be geom_histogram()
- A scatter plot will be geom_point()

Don't worry......we will be going into details soon.....

The geometric objects (or geoms) are **added** (+) to the **ggplot()** function.

Example:

 $ggplot(mtcars, aes(x = mpg)) + geom_histogram()$

 $ggplot(mtcars, aes(x = mpg, y = hp)) + geom_point()$

Now, let's practice

ONE VARIABLE

Discrete	Continuous
Bar Plot – geom_bar()	Histogram – geom_histogram()
	Density Plot – geom_density()
	Dot plot – geom_dot()
	Frequency Polygons – geom_freqpoly()

- geom_bar() display distribution of discrete variables.
- geom_histogram() bin and count continuous variable, display
 with bars.
- geom_density() smoothed density estimate.
- geom_dotplot() stack individual points into a dot plot.
- geom_freqpoly() bin and count continuous variable, display
 with lines.

Now, let's practice

TWO VARIABLES

Both Continuous	One Continuous, One Discrete
Scatter plot – geom_point()	<pre>Bar plot - geom_col() or geom_bar(stat="identity")</pre>
Quantile plot – geom_quantile()	Box Plot – geom_boxplot()
Rug plot – geom_rug()	Violin plot – geom_violin()
Text labels – geom_text()	

- geom_point() scatterplot.
- geom_quantile() smoothed quantile regression.
- geom_rug() marginal rug plots.
- geom_text() text labels.
- geom_col()/geom_bar(stat="identity") bar chart of precomputed summaries.
- geom_boxplot() boxplots.
- geom_violin() show density of values in each group.

Now, let's practice

TWO VARIABLES

At Least One Discrete	Show Distribution (continuous)
Count plot— geom_count()	Hexagonal Heatmap – geom_hex()
<pre>Jitter plot- geom_jitter()</pre>	Heatmap – geom_bin2d()
	Density plot – geom_density2d()

- geom_count() count number of points at distinct locations.
- geom_jitter() randomly jitter overlapping points.
- geom_hex() bin into hexagons and count.
- geom_bin2d() smoothed 2d density estimate.
- geom_density2d() smoothed 2d density estimate.

Now, let's practice

TWO VARIABLES

One Time, One Continuous	Display Uncertainty
Line plot – geom_line()	<pre>geom_crossbar()</pre>
Area plot – geom_area()	<pre>geom_errorbar()</pre>
Step plot - geom_step()	<pre>geom_linerange()</pre>
	<pre>geom_pointrange()</pre>

- geom_line() line plot.
- geom_area() area plot.
- geom_step() step plot.
- geom_crossbar() vertical bar with center.
- geom_errorbar() error bars.
- Geom_linerange() vertical line.
- geom_pointrange() vertical line with center.

Now, let's practice

TWO VARIABLES

```
geom_map() - for map data
```

THREE VARIABLES

```
geom_contour() - contours.
geom_tile() - tile the plane with rectangles.
geom_raster() - equal sized tiles (fast version of geom_tile())
```

THANKS!

Any questions?

You can find me at: eappiah.uew@gmail.com