Algorithms

Lecture Topic: NP Completeness (Part 5)

Roadmap of this lecture:

- 1. NP Completeness
 - 1.1 Prove the "Traveling Salesman Problem" is NPC.
 - 1.2 Prove the "Subset Sum Problem" is NPC.

n cities Chicago

Oregon O

O Princeton

O O Pheonix Atlanta

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

How can the salesman visit each city exactly once, and return home via the shortest journey?

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

How can the salesman visit each city exactly once, and return home via the shortest journey?

Known NPC Problems:

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

Hamiltonian cycle

How can the salesman visit each city exactly once, and return home via the shortest journey?

Known NPC Problems:

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

Shortest

Hamiltonian cycle

Input: An undirected complete graph G=(V,E), where every edge $(u,v) \in E$ has a non-negative integer weight w(u,v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Theorem: $TSP \in NPC$.

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

Input: An undirected complete graph G=(V,E), where every edge $(u,v) \in E$ has a non-negative integer weight w(u,v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Known NPC Problems:

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem

Theorem: $TSP \in NPC$.

Proof: 1) $TSP \in NP$.

Certificate: a Hamiltonian cycle of weight $\leq k$.

Polynomial-time verification.

2) Which known NPC problem do we want to reduce to TSP?

We want to prove: Hamiltonian Cycle Problem \leq_p TSP

Input: An undirected graph G = (V, E).

Question: Does G have a Hamiltonian cycle?

Example instance:

Input: An undirected complete graph G=(V,E), where every edge $(u, v) \in E$ has a non-negative integer weight w(u, v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Input: An undirected graph G = (V, E).

Question: Does G have a Hamiltonian cycle?

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u, v) \in E$ has a non-negative integer weight w(u, v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Example instance:

Black edges: weight 0 Red edges: weight 1

Input: An undirected graph G = (V, E).

Question: Does G have a Hamiltonian cycle?

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u, v) \in E$ has a non-negative integer weight w(u, v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Example instance:

Polynomial-time mapping. Does it preserve YES/NO answer?

Black edges: weight 0 Red edges: weight 1

Input: An undirected graph G = (V, E).

Question: Does G have a Hamiltonian cycle?

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u, v) \in E$ has a non-negative integer weight w(u, v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Assume answer "YES"

Black edges: weight 0 Red edges: weight 1

Input: An undirected graph G = (V, E).

Question: Does G have a Hamiltonian cycle?

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u, v) \in E$ has a non-negative integer weight w(u, v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Assume answer "YES"

Answer "YES"

Black edges: weight 0 Red edg

Red edges: weight 1

Input: An undirected graph G = (V, E).

Question: Does G have a Hamiltonian cycle?

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u, v) \in E$ has a non-negative integer weight w(u, v). An integer $k \ge 0$.

Question: Does G have a Hamiltonian cycle of weight $\leq k$?

Answer "YES"

Assume answer "YES"

Black edges: weight 0 Red edges: weight 1

We have proved: Hamiltonian Cycle Problem \leq_p TSP

 $TSP \in NPC$

Quiz questions:

- I. What is the main idea for proving the NP-completeness of TSP?
- 2. Is TSP on a general graph (instead of a complete graph) also NP-complete?

Roadmap of this lecture:

- 1. NP Completeness
 - 1.1 Prove the "Traveling Salesman Problem" is NPC.
 - 1.2 Prove the "Subset Sum Problem" is NPC.

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Example: $S = \{1,2,7\}, t = 8.$

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Example: $S = \{1,2,7\}, t = 8.$

Answer: YES.

$$S' = \{1,7\}.$$

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Example: $S = \{1,2,7\}, t = 6.$

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Example: $S = \{1,2,7\}, t = 6.$

Answer: NO.

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Example:
$$S = \{1,2,7,14,49,98,343,686,2409,2793,16808,17206,117705,117993\}$$

$$t = 138457$$

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Known NPC Problems:

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Example: $S = \{1,2,7,14,49,98,343,686,2409,2793,16808,17206,117705,117993\}$

t = 138457

Answer: Yes.

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Theorem: Subset Sum Problem $\in NPC$.

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

Known NPC Problems:

- 1) 3-CNF SAT Problem
- 2) Clique Problem
- 3) Vertex Cover Problem
- 4) Hamiltonian Cycle Problem
- 5) Traveling Salesman Problem

Theorem: Subset Sum Problem $\in NPC$.

Proof: 1) Subset Sum Problem $\in NP$.

Certificate: A subset S' whose sum equals t.

Polynomial-time verification.

2) Which known NPC problem do we want to reduce to the "Subset Sum Problem"?

We want to prove 3-CNF SAT Problem \leq_p Subset Sum Problem.

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S'

whose sum equals t?

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S'

whose sum equals t?

All numbers have n+k digits

 $x_1 \qquad x_2$

 C_{2}

 C_3

 C_{Δ}

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S'

whose sum equals t?

x_1	x_2	x_3	C_1	C_2	C_3	C_4
1	0	0				
1	0	0				
(1	0				
(1					
(0	1				
	0	1				

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S'

whose sum equals t?

	x_1	x_2	x_3	C_1	C_2	C_3	C_4
x_1	1	0	0	1			
$\bar{x_1}$	1	0	0	0			
x_2^-	0	1	0	0			
$\bar{x_2}$	0	1	0	1			
x_3^2	0	0	1	0			
$\bar{x_3}$		0	1	1			

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

	x_1	x_2	x_3	C_1	C_2	C_3	C_4
x_1	1	0	0	1	0		
$\bar{x_1}$	1	0	0	0	1		
x_2	0	1	0	0	0		
$\bar{x_2}$	0	1	0	1	1		
	0	0	1	0	0		
$\bar{x_3}$	0	0	1	1	1		

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S'

whose sum equals t?

	x_1	x_2	x_3	C_1	C_2	C_3	C_4
x_1	1	0	0	1	0	0	
$\bar{x_1}$	1	0	0	0	1	1	
x_2	0	1	0	0	0	0	
$\bar{x_2}$	0	1	0	1	1	1	
x_3^2		0	1	0	0	1	
$\bar{x_3}$	0	0	1	1	1	0	

Input: A CNF formula with n variables and k clauses, where each clause is the "OR" of 3 literals.

Question: Does there exist a solution to the variables that make the formula be true?

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

Input: A set S of positive integers.

A target integer t > 0.

Question: Does S have a subset S' whose sum equals t?

	x_1	x_2	x_3	C_1	C_2	C_3	C_4
x_1	1	0	0	1	0	0	1
$\bar{x_1}$	1	0	0	0	1	1	0
	0			0		•	1
$\bar{x_2}$	0	1	0	1	1	1	0
	0	_		0		_	
$\bar{x_3}$	0	0	1	1	1	0	0

Subset Sum Problem

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

All numbers have n+k digits

Subset Sum Problem

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

All numbers have n+k digits

Subset Sum Problem

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Subset Sum Problem

		\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
	x_2	$v_2 = 0$	1	0	0	0	0	1
2n rows	$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
	x_3^2	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	J	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
71, KONNO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3 = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	tarç	get t = 1	1	1	4	4	4	4

2n rows

2k rows

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Polynomial-time mapping.

Does it preserve YES/NO answers?

Subset Sum Problem

target t = 1

	\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
x_1	$v_1 = 1$	0	0	1	0	0	1
$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
x_2	$v_2 = 0$	1	0	0	0	0	1
$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
x_3^2	$v_3 = 0$	0	1	0	0	1	1
$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
J	$s_1 = 0$	0	0	1	0	0	0
	$s_1' = 0$	0	0	2	0	0	0
	$s_2 = 0$	0	0	0	1	0	0
	$s_2' = 0$	0	0	0	2	0	0
	$s_3 = 0$	0	0	0	0	1	0
	$ s_3' = 0 \\ s_4 = 0 $	0	0	0	0	2	0
		0	0	0	0	0	1
_	$s_4' = 0$	0	0	0	0	0	2

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		x_1	\mathcal{X}_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
2n rows	x_2	$v_2 = 0$	1	0	0	0	0	1
211 10 vv 3	$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
	x_3^2	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	3	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2^1 = 0$	0	0	0	1	0	0
21 42.44		$s_{2}^{7} = 0$	0	0	0	2	0	0
2k rows		$s_3^2 = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	targ	et t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
	x_2	$v_2 = 0$	1	0	0	0	0	1
2n rows	$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
	x_3	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	J	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
)1- KONAO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3^- = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	targ	jet t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
2n rows	\mathcal{X}_2	$v_2 = 0$	1	0	0	0	0	1
211 10 WS	$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
	x_3	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	J	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
71- 40140		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3 = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	tarç	get t = 1	1	1	4	4	4	4

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

First n bits are already matched. Why?

2n rows

2k rows

Subset Sum Problem

_	\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
x_1	$v_1 = 1$	0	0	1	0	0	1
$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
\mathcal{X}_2	$v_2 = 0$	1	0	0	0	0	1
$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
x_3^{-}	$v_3 = 0$	0	1	0	0	1	1
$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
3	$s_1 = 0$	0	0	1	0	0	0
	$s_1' = 0$	0	0	2	0	0	0
	$s_2 = 0$	0	0	0	1	0	0
	$s_2' = 0$	0	0	0	2	0	0
	$s_3 = 0$	0	0	0	0	1	0
	$s_3' = 0$	0	0	0	0	2	0
	$s_4 = 0$	0	0	0	0	0	1
_	$s_4' = 0$	0	0	0	0	0	2
tar	get t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
2n rows	\mathcal{X}_2	$v_2 = 0$	1	0	0	0	0	1
ZIL TOVVS	$\bar{x_2}$	$v_2' = 0$	1	0		1	1	0
	x_3	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
		$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
2k rows		$s_2' = 0$	0	0	0	2	0	0
ZK TOVVS		$s_3 = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	tar	get t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
2n rows	\mathcal{X}_2	$v_2 = 0$	1	0	0	0	0	1
ZIL TOVVS	$\bar{x_2}$	$v_2' = 0$	1	0	\bigcirc	1	1	0
	x_3^2	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	J	$s_1 = 0$	0	0	(1)	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
71- KONNO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3^- = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	. —		1	1			4	
	targ	et $t = 1$			4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
2n rows	\mathcal{X}_2	$v_2 = 0$	1	0	0	0	0	1
211 10VVS	$\bar{x_2}$	$v_2' = 0$	1	0	1 (1	1	0
	x_3	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
		$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_{2} = 0$	0	0	0	1	0	0
71- KONNO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3^- = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	targ	jet t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		\boldsymbol{x}_1	\mathcal{X}_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0		1	0
2n rows	\mathcal{X}_2	$v_2 = 0$	1	0	0	0	0	1
211 10 WS	$\bar{x_2}$	$v_2' = 0$	1	0	1		1	0
	x_3	$v_3 = 0$	0	1	0	0	1	1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	J	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
71, KONNO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3^- = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	tarç	get t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
2n rows	x_1 x_1 x_2 x_2	$v_1 = 1$ $v'_1 = 1$ $v'_2 = 0$ $v'_2 = 0$	0 0 1	0 0 0 0	1 0 0	0 1 0		1 0 1 0
	x_3 x_3	$v_{2} = 0$ $v_{3} = 0$ $v_{3} = 0$ $s_{1} = 0$ $s'_{1} = 0$	0 0 0 0	1 1 0 0	0 1 1 2	0 1 0 0	0 0 0	1 0 0
2k rows		$ \begin{array}{c} s_1 \\ s_2 = 0 \\ s_2' = 0 \\ s_3 = 0 \\ s_3' = 0 \\ s_4' = 0 \end{array} $	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 2 0 0 0	0 0 1 2	0 0 0 0 0
	targ	$s_4' = 0$ $et t = 1$	0	0	4	0	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

		\boldsymbol{x}_1	\mathcal{X}_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1		0
2n rows	x_2	$v_2 = 0$	1	0	0	0	0	1
211 10 VV 3	$\bar{x_2}$	$v_2' = 0$	1	0	1	1		0
	x_3^2	$v_3 = 0$	0	1	0	0		1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	3	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2 = 0$	0	0	0	1	0	0
71- KONNO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3^- = 0$	0	0	0	0	\bigcirc	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	targ	et t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

			x_1	x_2	x_3	C_1	C_2	C_3	C_4
		x_1	$v_1 = 1$	0	0	1	0	0	1
2n rows		$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
		x_2	$v_2 = 0$	1	0	0	0	0	1
		$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
		x_3	$v_3 = 0$	0	1	0	0	1	
		$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
		J	$s_1 = 0$	0	0	1	0	0	0
			$s_1' = 0$	0	0	2	0	0	0
			$s_2 = 0$	0	0	0	1	0	0
			$s_2' = 0$	0	0	0	2	0	0
2k rows			$s_3^- = 0$	0	0	0	0	1	0
			$s_3' = 0$	0	0	0	0	2	0
			$s_4 = 0$	0	0	0	0	0	1
			$s_4' = 0$	0	0	0	0	0	2
		targ	get t = 1	1	1	4	4	4	4

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem

			\boldsymbol{x}_1	x_2	x_3	C_1	C_2	C_3	C_4
2n rows		x_1	$v_1 = 1$	0	0	1	0	0	1
		$\bar{x_1}$	$v_1' = 1$	0	0	0	1	1	0
		x_2	$v_2 = 0$	1	0	0	0	0	1
		$\bar{x_2}$	$v_2' = 0$	1	0	1	1	1	0
		x_3^2	$\bar{v_3} = 0$	0	1	0	0	1	
		$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
			$s_1 = 0$	0	0	1	0	0	0
			$s_1' = 0$	0	0	2	0	0	0
			$s_2 = 0$	0	0	0	1	0	0
2k rows			$s_2' = 0$	0	0	0	2	0	0
			$s_3 = 0$	0	0	0	0	1	0
			$s_3' = 0$	0	0	0	0	2	0
			$s_4 = 0$	0	0	0	0	0	1
			$s_4' = 0$	0	0	0	0	0	2
		targ	get t = 1	1	1	4	4	4	4

Assume "YES".

Subset Sum Problem Answer is "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

2n rows

2k rows

Subset Sum Problem Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

$$x_1 = ?$$

$$x_2 = ?$$

$$x_3 = ?$$

Subset Sum Problem Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

$$x_1 = 0$$
 $x_2 = ?$
 $x_3 = ?$

Subset Sum Problem Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = ?$$

Subset Sum Problem Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Subset Sum Problem Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Sum is at least 1. Why?

Subset Sum Problem Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Sum is at least 1. Why?

Subset Sum Problem

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Sum is at least 1.

Subset Sum Problem

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Sum is at least 1.

	Sum is at least 1.							
		x_1	x_2	x_3	C_1	C_2	C_3	C_4
	x_1	$v_1 = 1$	0	0	1	0	0	1
	$\bar{x_1}$	$v_1' = 1$	0	0	0	1		0
211 rows	x_2	$v_2 = 0$	1	0	0	0	0	1
2n rows	$\bar{x_2}$	$v_2' = 0$	1	0	1	1 (0
	x_3^2	$v_3 = 0$	0	1	0	0		1
	$\bar{x_3}$	$v_3' = 0$	0	1	1	1	0	0
	3	$s_1 = 0$	0	0	1	0	0	0
		$s_1' = 0$	0	0	2	0	0	0
		$s_2^1 = 0$	0	0	0	1	0	0
11- KONNO		$s_2' = 0$	0	0	0	2	0	0
2k rows		$s_3 = 0$	0	0	0	0	1	0
		$s_3' = 0$	0	0	0	0	2	0
		$s_4 = 0$	0	0	0	0	0	1
		$s_4' = 0$	0	0	0	0	0	2
	targ	et t = 1	1	1	4	4	4	4

Subset Sum Problem

Assume "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

Solution:

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

Sum is at least 1.

Answer is "YES".

Subset Sum Problem

Answer is "YES".

Example instance:

$$\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \vee \bar{x_2} \vee \bar{x_3}$$

$$C_2 = \bar{x_1} \vee \bar{x_2} \vee \bar{x_3}$$

$$C_3 = \bar{x_1} \vee \bar{x_2} \vee x_3$$

$$C_4 = x_1 \vee x_2 \vee x_3$$

$$n = 3, k = 4$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

"YES" for 3-CNF SAT Problem "YES" for Subset Sum Problem

3-CNF SAT Problem $\leq_{\mathcal{D}}$ Subset Sum Problem

$$\leq_p$$

Subset Sum Problem $\in NPC$

Quiz questions:

- I. What is the main idea for proving the NP-completeness of the "Subset Sum Problem"?
- 2. What are applications of the "Subset Sum Problem"?