

PROPIEDADES DE MATRICES Y DETERMINANTES

(a) Suma de matrices y multiplicación de un escalar por una matriz:

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$\alpha(A+B) = \alpha A + \alpha B$$

4.
$$(\alpha + \beta)A = \alpha A + \beta A$$

5.
$$\alpha(\beta A) = (\alpha \beta) A$$

6.
$$A + 0 = A$$
 Donde "0" es

7.
$$A+(-A)=0$$
 | la matriz nula

(b) Multiplicación de matrices:

1.
$$A(B+C) = AB + AC$$

2.
$$(A+B)C = AC + BC$$

3.
$$A(BC) = (AB)C$$

4.
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

5.
$$A0_n = 0_n A = 0_n$$

6.
$$BI_n = I_n B = B$$

7. En general, $AB \neq BA$ (la multiplicación no es conmutativa)

8. AB = 0 no implica necesariamente que A = 0 ó B = 0

9. AB = AC no implica necesariamente que B = C

(c) Propiedades de la traza:

1.
$$tr(A+B) = tr(A) + tr(B)$$

2.
$$tr(AB) = tr(BA)$$

3.
$$tr(\alpha A) = \alpha \cdot tr(A)$$

4.
$$tr(A^T) = tr(A)$$

(d) Propiedades de matrices diagonales:

Si A y B son matrices diagonales:

1.
$$A + B = diag(a_{11} + b_{11}, a_{22} + b_{22}, ..., a_{nn} + b_{nn})$$

2.
$$AB = diag(a_{11}b_{11}, a_{22}b_{22}, ..., a_{nn}b_{nn})$$

3.
$$\alpha A = diag(\alpha a_{11}, \alpha a_{22}, ..., \alpha a_{nn})$$

(e) Propiedades de la inversa:

1.
$$A^{-1}$$
 es única

2.
$$(A^{-1})^{-1} = A$$

3.
$$(AB)^{-1} = B^{-1}A^{-1}$$

4.
$$(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1} \quad \forall \alpha \neq 0$$

5.
$$(A^n)^{-1} = (A^{-1})^n$$

6.
$$(A^T)^{-1} = (A^{-1})^T$$

7.
$$A^{-1} = \frac{1}{\det(A)} (Adj A)$$
 donde $Adj A$ es la adjunta de A

(f) Propiedades de la transpuesta:

$$\mathbf{1.} \left(A^T \right)^T = A$$

2.
$$(A+B)^T = A^T + B^T$$

$$\mathbf{3.} \left(AB \right)^T = B^T A^T$$

4.
$$(\alpha A)^T = \alpha A^T$$

PROPIEDADES DE MATRICES Y DETERMINANTES

(g) Propiedades de matrices simétricas/antisimétricas:

Si A es una matriz cuadrada:

- 1. $A + A^T = \text{matriz simétrica}$
- **2.** $A A^T = \text{matriz antisimétrica}$

Si A y B son matrices simétricas/antisimétricas:

- 3. A + B también es simétrica/antisimétrica
- 4. αA también es simétrica/antisimétrica
- **5.** AB no necesariamente es simétrica/antisimétrica

(h) Matriz ortogonal:

- **1.** $A^T = A^{-1}$
- **2.** $AA^{T} = A^{T}A = I$

(i) Propiedades de la conjugada:

- 1. $\overline{\left(\overline{A}\right)} = A$
- 2. $\overline{(A+B)} = \overline{A} + \overline{B}$
- 3. $\overline{(AB)} = \overline{A} \cdot \overline{B}$ (en este orden)
- **4.** $\overline{(\alpha A)} = \overline{\alpha} \cdot \overline{A}$

(j) Propiedades de la conjugada-transpuesta:

- $\mathbf{1.} \left(A^*\right)^* = A$
- **2.** $(A+B)^* = A^* + B^*$
- **3.** $(AB)^* = B^*A^*$
- **4.** $(\alpha A)^* = \overline{\alpha} \cdot A^*$

(k) Propiedades de los determinantes:

- **1.** El valor de un determinante no varía si se intercambian sus filas por sus columnas; es decir: $det(A) = det(A^T)$
- **2.** $\det(\lambda A) = \lambda^n \det(A)$ donde *n* es el orden de *A*
- 3. $\det(AB) = \det(A)\det(B)$
- **4.** $\det(A^{-1}) = \frac{1}{\det(A)}$ suponiendo que A^{-1} existe
- **5.** Si todos los elementos de una fila o columna de un determinante son nulos, el valor del determinante es nulo.
- **6.** Si un determinante tiene dos filas o columnas iguales, el valor del determinante es cero.
- 7. Si un determinante tiene dos filas o columnas proporcionales, el valor del determinante es cero.
- **8.** Si todos los elementos de una fila o columna se multiplican por un mismo escalar, el valor del determinante queda multiplicado por dicho escalar.
- **9.** Si en un determinante se intercambian dos de sus filas o columnas, el valor del determinante cambia de signo, pero mantiene su valor absoluto.
- **10.** Si a una fila o columna de un determinante se le suma el múltiplo de cualquier otra (fila o columna), el valor del determinante no varía.
- **11.** El determinante de una matriz triangular es igual al producto de los elementos de su diagonal principal.
- 12. Si det(A) = 0, A es una matriz singular.
- 13. Si $det(A) \neq 0$, A es una matriz no singular.

(l) Propiedad de la adjunta:

1. $A(Adj A) = (Adj A) A = \det(A) \cdot I_n$

donde A es una matriz cuadrada de orden n