BGP Blackholing Attack Defense

Loïc Miller

Supervised by Cristel Pelsser and Stéphane Cateloin 18 janvier 2019

Université de Strasbourg

BGP - BORDER GATEWAY PROTOCOL¹

Figure 1: Propagation de messages BGP

¹V. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271. RFC Editor, Jan. 2006. URL: http://www.rfc-editor.org/rfc/rfc4271.txt.

BGP - Border Gateway Protocol¹

Figure 1: Propagation de messages BGP

¹Rekhter, Li, and Hares, A Border Gateway Protocol 4 (BGP-4).

BGP - BORDER GATEWAY PROTOCOL¹

Figure 1: Propagation de messages BGP

¹Rekhter, Li, and Hares, A Border Gateway Protocol 4 (BGP-4).

BGP - Border Gateway Protocol¹

Figure 1: Propagation de messages BGP

¹Rekhter, Li, and Hares, A Border Gateway Protocol 4 (BGP-4).

BGP - Border Gateway Protocol¹

Figure 1: Propagation de messages BGP

¹Rekhter, Li, and Hares, A Border Gateway Protocol 4 (BGP-4).

Figure 2: Attaque par déni de service

Figure 2: Attaque par déni de service

DDOS - ATTAQUES PAR DÉNI DE SERVICE DISTRIBUÉ

Figure 3: Attaque par déni de service distribué

DDOS - ATTAQUES PAR DÉNI DE SERVICE DISTRIBUÉ

Figure 3: Attaque par déni de service distribué

Figure 4: Mitigation par blackholing

Figure 5: Mitigation par blackholing

■ Peut-on utiliser le blackholing à mauvais escient?

- Peut-on utiliser le blackholing à mauvais escient?
- Types d'attaques possibles?

- Peut-on utiliser le blackholing à mauvais escient?
- Types d'attaques possibles?
- Mesures de protections existantes?

- Peut-on utiliser le blackholing à mauvais escient?
- Types d'attaques possibles?
- Mesures de protections existantes? Sont-elles suffisantes?

Figure 6: Hijack d'un préfixe

²Pavlos Sermpezis et al. "ARTEMIS: Neutralizing BGP Hijacking within a Minute". In: arXiv preprint arXiv:1801.01085 (2018).

Figure 6: Hijack d'un préfixe

 $^{^2\}mbox{Sermpez}\mbox{is et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".}$

Figure 6: Hijack d'un préfixe

²Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 6: Hijack d'un préfixe

²Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 6: Hijack d'un préfixe

²Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 6: Hijack d'un préfixe

²Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

BGP BLACKHOLING (TYPE-O)

Figure 7: Blackhole d'un préfixe

BGP BLACKHOLING (TYPE-O)

Figure 7: Blackhole d'un préfixe

BGP BLACKHOLING (TYPE-O)

Figure 7: Blackhole d'un préfixe

BGP BLACKHOLING (TYPE-O)

Figure 7: Blackhole d'un préfixe

Figure 8: Utilisation de la RPKI

³M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet Routing. RFC 6480. RFC Editor, Feb. 2012. URL: http://www.rfc-editor.org/rfc/rfc6480.txt.

Figure 8: Utilisation de la RPKI

³Lepinski and Kent, An Infrastructure to Support Secure Internet Routing.

Figure 8: Utilisation de la RPKI

³Lepinski and Kent, An Infrastructure to Support Secure Internet Routing.

Figure 8: Utilisation de la RPKI

³Lepinski and Kent, An Infrastructure to Support Secure Internet Routing.

Figure 8: Utilisation de la RPKI

³Lepinski and Kent, An Infrastructure to Support Secure Internet Routing.

Figure 9: Hijack d'un préfixe

⁴Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 9: Hijack d'un préfixe

⁴Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 9: Hijack d'un préfixe

⁴Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 9: Hijack d'un préfixe

⁴Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 9: Hijack d'un préfixe

⁴Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 9: Hijack d'un préfixe

⁴Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 10: Blackhole d'un préfixe

Figure 11: Propagation de messages BGPsec

⁵M. Lepinski and K. Sriram. BGPsec Protocol Specification. RFC 8205. RFC Editor, Sept. 2017.

Figure 11: Propagation de messages BGPsec

⁵Lepinski and Sriram, **BGPsec Protocol Specification**.

Figure 11: Propagation de messages BGPsec

⁵Lepinski and Sriram, BGPsec Protocol Specification.

Figure 11: Propagation de messages BGPsec

⁵Lepinski and Sriram, BGPsec Protocol Specification.

Figure 11: Propagation de messages BGPsec

⁵Lepinski and Sriram, **BGPsec Protocol Specification**.

Figure 12: Hijack d'un préfixe

⁶Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 12: Hijack d'un préfixe

⁶Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 12: Hijack d'un préfixe

⁶Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 12: Hijack d'un préfixe

⁶Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute".

Figure 13: Blackhole d'un préfixe

Figure 13: Blackhole d'un préfixe

UNE TAXONOMIE POUR LES ATTAQUES PAR BLACKHOLING

Security Deployment		Hijack		On Path
	Type-o	Type-N	Type-U	
BGPsec (full)	✓	✓	✓	-
BGPsec (partial)	√/-	√	√/-	-
RPKI (full)	✓	-	-	-
RPKI (partial)	√/-	-	-	-
No security	-	-	-	-

Table 1: Securité des communautés contre les hijacks exacts

Security Deployment		Hijack	
	Type-o	Type-N	Type-U
BGPsec (full)	✓	✓	✓
BGPsec (partial)	√	√/-	√/-
RPKI (full)	✓	✓	✓
RPKI (partial)	√	√/-	√/-
No security	-	-	-

Table 2: Securité des communautés contre les hijacks de sous-préfixes

BONNES PRATIQUES POUR LE BLACKHOLING

	On Path	On Path (Infraction)		Hijack	
			Type-N	Type-U	Туре-о
No rule	-	-	-	-	-
Legitimate peer	-	-	-	✓	-
RPKI	-	-	-	-	✓
BGPsec	-	-	✓	✓	-
Legitimate peer RPKI	-	-	-	\checkmark	\checkmark
Legitimate peer BGPsec	-	-	✓	✓	-
RPKI BGPsec	-	-	\checkmark	\checkmark	\checkmark
Legitimate peer RPKI BGPsec	-	-	✓	✓	✓

Table 3: Protection assurée par les bonnes pratiques

BONNES PRATIQUES POUR LE BLACKHOLING

	On Path	On Path (Infraction)		Hijack	
			Type-N	Type-U	Type-o
Direct connection	✓	✓	✓	-	-
Legitimate peer Direct connection	✓	✓	✓	✓	-
RPKI Direct connection	✓	✓	✓	-	✓
BGPsec Direct connection	✓	✓	✓	✓	-
Legitimate peer RPKI Direct connection	✓	✓	✓	✓	✓
Legitimate peer BGPsec Direct connection	✓	✓	✓	✓	-
RPKI BGPsec Direct connection	✓	✓	✓	✓	✓
Legitimate peer RPKI BGPsec Direct connection	✓	✓	✓	✓	✓

Table 4: Protection assurée par l'addition d'une règle aux bonnes pratiques

BONNES PRATIQUES POUR LE BLACKHOLING

	On Path	On Path (Infraction)		Hijack	
			Type-N	Type-U	Type-o
Direct connection	✓	✓	✓	-	-
Legitimate peer Direct connection	✓	✓	✓	✓	-
RPKI Direct connection	✓	✓	✓	-	✓
BGPsec Direct connection	✓	✓	✓	✓	-
Legitimate peer RPKI Direct connection	✓	✓	✓	✓	✓
Legitimate peer BGPsec Direct connection	✓	✓	✓	✓	-
RPKI BGPsec Direct connection	✓	✓	✓	✓	✓
Legitimate peer RPKI BGPsec Direct connection	✓	✓	✓	✓	✓

Table 5: Protection assurée par l'addition d'une règle aux bonnes pratiques

■ Bonnes pratiques additionnelles.

UNE SOLUTION PASSANT PAR BGPSEC

UNE SOLUTION PASSANT PAR BGPSEC

■ Association entre les communautés et un AS.

UNE SOLUTION PASSANT PAR BGPSEC

■ Association entre les communautés et un AS.

Figure 14: BGPsec_PATH attribute

Figure 15: BGPsec_PATH_COMMUNITIES attribute

Figure 16: Propagation de messages BGPsec (modifié)

Figure 17: Topologie de test

Figure 17: Topologie de test

Suppositions

- Le détecteur connait la topologie.
- Le détecteur connait les relations entre les AS.
- L'attaquant potentiel se trouve dans l'AS path.

Figure 17: Topologie de test

Suppositions

- Le détecteur connait la topologie.
- Le détecteur connait les relations entre les AS.
- L'attaquant potentiel se trouve dans l'AS path.

Résultats

■ On Path : AS3 ■ On Path (Infraction) : AS4

■ Type-N :

■ Type-o : AS5

Figure 17: Topologie de test

Figure 17: Topologie de test

■ Taxonomies des attaques par blackholing.

- Taxonomies des attaques par blackholing.
- Des solutions passant par de bonnes pratiques.

- Taxonomies des attaques par blackholing.
- Des solutions passant par de bonnes pratiques.
- Une solution passant par une extension de BGPsec.

- Taxonomies des attaques par blackholing.
- Des solutions passant par de bonnes pratiques.
- Une solution passant par une extension de BGPsec.
- Un outil capable de détecter les attaquants potentiels.

■ Tester ces contributions théoriques.

- Tester ces contributions théoriques.
- Extension du modèle d'attaque.

- Tester ces contributions théoriques.
- Extension du modèle d'attaque.
- Préciser l'extension de BGPsec.

- Tester ces contributions théoriques.
- Extension du modèle d'attaque.
- Préciser l'extension de BGPsec.
- Amélioration de l'outil.

BIBLIOGRAPHIE

Lepinski, M. and S. Kent. An Infrastructure to Support Secure Internet Routing. RFC 6480. RFC Editor, Feb. 2012. URL: http://www.rfc-editor.org/rfc/rfc6480.txt.

Lepinski, M. and K. Sriram. BGPsec Protocol Specification. RFC 8205. RFC Editor, Sept. 2017.

Netlab. Insight into Global DDoS Threat Landscape. https://ddosmon.net/insight/. [Online; accessed 24-August-2018]. Aug. 2018.

Rekhter, Y., T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271. RFC Editor, Jan. 2006. URL: http://www.rfc-editor.org/rfc/rfc4271.txt.

Sermpezis, Pavlos et al. "ARTEMIS: Neutralizing BGP Hijacking within a Minute". In: arXiv preprint arXiv:1801.01085 (2018).

Bonnes pratiques additionnelles

- Un filtre sortant pour les announces BGP plus spécifiques.
- Un filtre pour les announces BGP moins spécifiques (/24 pour IPv4; /19 pour IPv6).
- Un filtre entrant sur le résultat de la validation d'origine.
- Un filtre entrant sur le résultat de la validation BGPsec.