Exercise Sheet 2

Nguyen Xuan Binh 887799

Aalto University, Finland

Exercise 1 (PRGs can leak half their input). Let $f: \{0,1\}^* \to \{0,1\}^*$ be a PRG. We define

$$g_f(x) = f(x_\ell)||x_r||$$

Here, x_{ℓ} consists of the first $\lceil |x|/2 \rceil$ bits of x and x_r consists of the last $\lfloor |x|/2 \rfloor$ bits of x, i.e., $x = x_{\ell} || x_r$.

Task: Prove via reduction that if f is a PRG, then g_f is a PRG, too.

— Base case: |x| = 1

When |x| = 1, then $x_{\ell} = x_1$ and $x_r = x_{empty}$. In other words, x_{ℓ} is the one bit and x_r is empty. Applying the PRG g_f to x, we have:

$$g_f(x) = f(x_1),$$

which is a PRG because f is a PRG and the output of g_f is completely derived from f. Therefore, the base case of the proof is correct. Additionally, it follows that the first bit cannot be a hardcore bit, since, if the function leaks its first half, then it also leaks the first bit, so, given f(x), the first bit of x would then be easy to distinguish. A same analysis applies to any input bit. Therefore, we assume that at the base case, the first bit is not hardcore bit, but it has already become pseudorandom thanks to f(x). Any other bits thus can be hardcore bit

— Induction steps:

Assume that $g_f(x)$ is a PRG at the stage $|x| = \lambda$, or x_r is PRG. We need to prove that $g_f(x)$ is also a PRG at the stage $|x| = \lambda + 1$, or x_r is still PRG. There are two distinct cases, which are odd and even values of λ .

- When λ is even, then $x_{\ell} = x_{1 \to \frac{\lambda}{2}}$ and $x_r = x_{\frac{\lambda}{2}+1 \to \lambda}$. The size of x_{ℓ} is then the first $\frac{\lambda}{2}$ bits and the size of x_r is the last $\frac{\lambda}{2}$ bits. In the next induction step, $x_{\ell} = x_{1 \to \frac{\lambda}{2}+1}$ and $x_r = x_{\frac{\lambda}{2}+2 \to \lambda+1}$. The size of x_{ℓ} is then the first $\frac{\lambda}{2}+1$ bits and the size of x_r is the last $\frac{\lambda}{2}$ bits. Since the added bit in the next step belongs to x_{ℓ} , it will be generated by f and is still PRG. Because x_r is unchanged in the next step and is assumed to be PRG, it means that g_f is PRG as well when $|x| = \lambda + 1$.
- When λ is odd, then $x_{\ell} = x_{1 \to \frac{\lambda+1}{2}}$ and $x_{r} = x_{\frac{\lambda+1}{2}+1 \to \lambda}$. The size of x_{ℓ} is then the first $\frac{\lambda+1}{2}$ bits and the size of x_{r} is the last $\frac{\lambda+1}{2} 1$ bits. In the next induction step, $x_{\ell} = x_{1 \to \frac{\lambda+1}{2}}$ and $x_{r} = x_{\frac{\lambda+1}{2}+2 \to \lambda+1}$. The size of x_{ℓ} is then the first $\frac{\lambda+1}{2}$ bits and the size of x_{r} is the last $\frac{\lambda+1}{2}$ bits. In this case, the introduced bit is added to x_{r} . Since at the base case, the hardcore bit should not be the first bit but can be any other bit, we can regard this new leaked bit added to x_{r} as the hardcore bit. Since x_{r} is stretched by s(n) = 1 by a hardcore bit, x_{r} at the next induction step is still PRG because x_{r} is assumed to be PRG at the current step. Since g_{f} is PRG at the next induction step for both odd and even λ and g_{f} is also PRG at the base case, it is true that g_{f} is actually a PRG (proven).

Exercise 2 (Some OWFs are not PRGs). Assume the existence of length-preserving one-way functions.

Task: Show that there exists a length-expanding one-way function h which is not a PRG.

First of all, we call this length-preserving OWF as f(x) and the length-expanding OWF as h(x), with the stretch $s(n) = \lambda$. Because f(x) is OWF, it must also be a PRG according to the Hill's Theorem. We can prove the existence of h(x) such that it is not a PRG as follows:

$$h(x) := f(x)||0^{\lambda}||$$

This basically means that h(x) is f(x) concatenated with 0s of size λ . Because f(x) is OWF, appending zeros or any constant array of bits to any image of x via f(x) also results in a unique output, making h(x) an OWF. However, h(x) is definitely not a PRG, because of the deterministic constant 0s appending at the end, making the output not random anymore. For example, consider an adversary $\mathcal A$ that tries to determine whether h(x) is ideal or real PRG. Due to the consistent 0s left appending, $\mathcal A$ can be sure that the OWF is not an ideal PRG, as they can input any preimage to h(x) and receive the same last number of 0 bits. Therefore, there exists a length-expanding OWF such that it is not a PRG (proven).