Name	e: Wisc id:
Coin	Changing
	AS 3rd edition (p. 446). Consider the problem of making change for n cents using the fewest number bins. Assume that each coin's value is an integer.
(a)	Describe a greedy algorithm to make change consisting of quarters (25¢), dimes (10¢), nickels (5¢), and pennies (1¢). Prove that your algorithm yields an optimal solution.
	Solution:
(1.)	
(b)	Suppose that the available coins are in the denominations that are powers of c, i.e., the denominations are c^0 , c^1 ,, c^k for some integers $c > 1$ and $k \ge 1$. Show that the greedy algorithm always yields an optimal solution.
	Solution:

Solution:						
		1	C	6.1.1.00		
Give an $O(nk)$ - assuming one of	time algorithm to	hat makes chan	ge for any set	of k different of	coin denomination)n
assuming one of	time algorithm the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	— on,
Give an $O(nk)$ -assuming one of Solution:	time algorithm the coins is a per	hat makes chan	age for any set	of k different α	coin denomination	
assuming one of	time algorithm to the coins is a per	hat makes channny.	age for any set	of k different α	coin denomination	— on,
assuming one of	time algorithm to the coins is a per	hat makes channny.	age for any set	of k different α	coin denomination	 on,
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	on,
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	on,
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	on,
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	on,
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	on,
assuming one of	time algorithm to the coins is a per	hat makes chan	age for any set	of k different of	coin denomination	on

I Love Train Stations

- 2. There are towns that lies on a straight road, and the government is planning to build a railroad path along this road. You, as the project manager of this construction, needs to decide where to build train stations. Every town must be within distance R of a train station. The goal is to minimize the number of train stations built.
 - (a) Consider the following algorithm: repeatedly build train stations where you can maximize the number of towns newly covered. Show that this algorithm is not optimal by giving a counter-example.

Solution:		

(b) Give an algorithm and prove that it's optimal.

Solution:			

Give Me Classroom

Solution:		