

jest definiowany przez określenie:

- a) zbioru liter wejściowych V(X) i wyjściowych Y,
- b) zbioru stanów wewnętrznych S,
- c) funkcji przejść (ozn. δ),
- d) funkcji wyjść (ozn. λ).

Funkcja przejść i wyjść

Funkcja przejść: $\delta: S \times X \rightarrow S$

Funkcja wyjść:

 λ : **S** × **X** \rightarrow **Y** (tzw. automat Mealy'ego)

 λ : **S** \rightarrow **Y** (tzw. automat Moore'a)

Automat może być zupełny lub niezupełny

Specyfikacja automatu

Tablica przejść-wyjść automatu: Mealy'ego Moore'a

	V_1	V_2	V_1	V_2
S_1	S ₂	S ₁	y ₁	y ₂
S_2	S ₃	S ₂	y ₃	y ₁
S_3	S ₂	S ₁	y ₂	y ₃

	V_1	V_2	V_3	У
S_1	S ₂	S ₁	S_3	y ₂
S_2	S_3	S ₁	S ₂	y ₁
S_3	S ₁	S_3	S ₂	y ₃

Mealy'ego $\begin{array}{c} & \dots \text{ i graf} \\ & \\ v_2/y_2 \\ & \\ v_1/y_1 \\ & \\ v_2/y_3 \\ & \\ v_1/y_2 \\ & \\ & \\ v_1/y_3 \\ & \\ \end{array}$

Układ sekwencyjny

Układy sekwencyjne:

Synchroniczne (BP zbudowany z przerzutników synchronicznych)

Asynchroniczne (BP realizują opóźnienia lub przerzutniki asynchroniczne)

Synchroniczne układy sekwencyjne

Przerzutniki

Przerzutnik

W zależności od rodzaju wejść informacyjnych wyróżniamy przerzutniki typu: **D**, **T**, **SR** oraz **JK**.

Przerzutniki

Przerzutnik jest określony:

- rablicą przejść,
- równaniem charakterystycznym,
- rablicą wzbudzeń.

Równanie charakterystyczne: $Q' = f(I_1, I_2, Q)$

Przerzutniki – tablice wzbudzeń

Q Q'	D	Т	SR	JK
00				
01				
10				
11				

D – delay **T** – trigger

S – Set (wejście włączające)

R – Reset (wejście wyłączające)

J – wejście włączające

K – wejście wyłączające

Przebiegi czasowe – przerzutnik typu D

Przebiegi czasowe – przerzutnik typu T

Przebiegi czasowe - porównanie

Synteza układów sekwencyjnych

Etapy syntezy:

- synteza abstrakcyjna (utworzenie tablicy przejść-wyjść)
- redukcja (minimalizacja) liczby stanów
- kodowanie stanów, liter wejściowych i wyjściowych
- synteza kombinacyjna (obliczanie funkcji wzbudzeń przerzutników i funkcji wyjściowych)

Obliczanie funkcji sterujących wejściami przerzutników (funkcje wzbudzeń)

$$Q' = f(X,Q)$$

Obliczanie funkcji wyjściowych

$$Y = f(Q)$$
 (Moore)

$$Y = f(X,Q)$$
 (Mealy)

Przykład syntezy (detektor sekwencji)

Wystarczą dwa przerzutniki

Na razie staramy się spełnić wyłącznie warunek jednoznaczności kodowania

Obliczanie funkcji wzbudzeń i wyjściowych

QQ'	D	-	S Q10	X QQ	0	1	0	1
00	0		Α	00	01	00	0	0
01	1		В	01	11	00	0	0
10	0		С	11	11	00	0	1
11	1		(-)	10	- 1		_	_
		Q1Q0 X 0 1 00 01 11 10 D1=Q1 Q1'=D1			D0=Q0 D'=)'	Y	Y

Schemat logiczny detektora sekwencji

Przykład... Realizacja T

QQ'	Τ
00	0
01	1
10	1
11	0

Y – jak poprzednio

T P W

T1

 $T1 = \overline{Q}1Q0\overline{x} + xQ1 \quad T0 = \overline{x}\overline{Q}0 + xQ0 \quad Y - jak \ poprzednio$

Przykład... Realizacja JK

Schemat logiczny detektora (JK)

$$J1 = \overline{x}Q0$$
 $K1 = x$

$$J0 = \overline{x}$$
 $K0 = x$

Y – jak poprzednio

Zadanie: licznik mod. 5 ze sterowaniem

a - Upp - dio zero i e liutza qui i e roducato i e rod

Licznik ze sterowaniem...

Synteza kombinacyjna układów sekwencyjnych może być zazwyczaj jest) procesem żmudnym,

trzeba przetwarzać ogromne

vpełnione

nkami.

komputerowego projektowania jest całkowicie zautomatyzowany.

Specyfikacja automatu

Nie wnikając w szczegóły takiego zapisu (będą one omawiane na innych wykładach) trzeba podkreślić, że jest to wierne odwzorowanie tablicy przejść wyjść automatu.

	tabl	ica_	
prz	ejsc	-wyj	SC

AHDL VHDL

Na przykład licznik ze sterowaniem...

s X	00	01	10	Y
S0	S1	S4	S0	0
S1	S2	S0	SO	0
S2	S3	S1	SO	0
S 3	S4	S2	S0	0
S4	S0	S3	S0	1

TABLE					
%	current	current	t	next	next %
%	state	input		state	output %
	s,	v[]	=>	s,	y;
	s0,	B"00,,	=>	s1,	0;
	s0,	B"01"	=>	s4,	0;
	s0,	B"1X,,	=>	s0,	0;
	s1,	B"00,,	=>	s2,	0;
	s1,	B"01,,	=>	s0,	0;
	s1,	B"1X,,	=>	s0,	0;
	s2,	B"00,,	=>	s3,	0;
	s2,	B"01,,	=>	s1,	0;
	s2,	B"1X,,	=>	s0,	0;
	s3,	B"00,,	=>	s4,	0;
	s3,	B"01,,	=>	s2,	0;
	s3,	B"1X,,	=>	s0,	0;
	s4,	B"00,,	=>	s0,	1;
	s4,	B"01,,	=>	s3,	1;
	s4,	B"1X,,	=>	s0,	1;
END TABLE:	•			-	•

END TABLE;

zapisany w języku AHDL, po wprowadzeniu...

...specyfikacji do edytora tekstowego

W

ZPT

i uruchomieniu kompilatora...

...zostanie automatycznie zrealizowany bez udziału projektanta.

W

T P W

Funkcje wzbudzeń licznika

(fragment raportu kompilatora):

odpowiadają one tabelkom Karnaugha podanym na planszy nr 25

Porównanie realizacji "ręcznej" z realizacją komputerową (a)

x ₁ x ₂ Q2Q1Q0	00	01	11	10
000	0	1	0	0
001	0	0	0	0
011	(1)	0	0	0
010	0	0	0	0
110	_	_	_	_
111	$\overline{(-)}$	_	_	_
101	_	_	_	_
100	0	0	0	0

D2

ręczna	
C	

x ₁ x ₂ Q2Q1Q0	00	01	11	10
000	0	1	0	0
001	0	0	0	0
011		0	0	0
010	0	0	0	0
110	_	_	_	_
111	_	_	_	_
101	_	_	_	_
100	0	0	0	0

komputerowa

D2

Porównanie realizacji "ręcznej" z realizacją komputerową (b)

x_1x_2 Q2Q1Q0	00	01	11	10
000	0	0	0	0
001	(1)	0	0	0
011	0	1	0	0
010	1	0	0	0
110			_	_
111	_		J_	_
101	E		_	_
100	0	1	0	0

ręczna D1

x ₁ x ₂ Q2Q1Q0	00	01	11	10
000	0	0	0	0
001	(1)	0	0	0
011	0		0	0
010	1	0	0	0
110	_		_	_
111	_		J_	_
101	_	_	_	
100	0	1	0	0

komputerowa

D1

Porównanie realizacji "ręcznej" z realizacją komputerową (c)

$\begin{array}{c} x_1 x_2 \\ Q2Q1Q0 \end{array}$	00	01	11	10
000	(1)	0	0	0
001	0	0	0	0
011	0	0	0	0
010	1	1	0	0
110	_		_	_
111	_	_	_	_
101	_	_	_	_
100	0	1	0	0

Q2Q1Q0	00	01	11	10
000	(1)	0	0	0
001	0	0	0	0
011	0	0	0	0
010	1	1	0	0
110	_		_	_
111	_	_	_	-
101		_	_	
100	0	1	0	0

ręczna D0

komputerowa

D0

Komentarz

Różnice w wyrażeniach boolowskich obliczonych przez kompilator z tymi obliczonymi poprzednio wynikają z faktu, że minimalizacja "ręczna" była wykonana dokładniej.

Czy to jest niedoskonałość kompilatora?

Raczej jego "spryt", gdyż w realizacji na strukturach typu
PAL oba rozwiązania zajmują taką samą liczbę linii iloczynu,
czyli kompilator nie jest nadgorliwy.

Wniosek

Skoro kompilator oblicza funkcje wzbudzeń automatycznie, to umiejętność ta nie jest w dzisiejszych czasach sprawą najważniejszą. Z przymrużeniem oka należy więc traktować nauczanie w wielu laboratoriach układów logicznych Naszego Wydziału "sprytnych" sposobów obliczania funkcji wzbudzeń metodą "pogrubionych zer lub pogrubionych jedynek".

Lepiej skoncentrować się na tych metodach i procedurach syntezy logicznej, które nie są jeszcze wbudowane do systemów komercyjnych.