Nearest neighbor search in high dimensional spaces

Ilya Fedorov

March 2020

Content

- Why do we need to optimize KNN?
- Data structures
- Complexity analysis
- Difficulties in high dimensional spaces
- Approximate NN search: Locality Sensitive Hashing
- Approximate NN search: FlyHash
- Approximate NN search: Hierarchical Navigable Small World

Why do we need to optimize KNN?

- Very large datasets
- Very frequent queries
- Duplicates search
- It seems that brute force algorithm doens't use information gained from calculating previous distances: if d(a,b) is big and d(a,c) is small does it mean that d(c,b) is big?

- KD-Tree
- Ball-tree
- Ball*-tree
- R-Tree
- etc...

algorithm: {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional

Algorithm used to compute the nearest neighbors:

- 'ball_tree' will use BallTree
- 'kd tree' will use KDTree
- · 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm based on the values passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

• Tree construction - by $build_node(\{(x_1, y_1), ...(x_N, y_N)\})$:

```
build_node(\Omega): # omega-objects in the node
    if |\Omega| < n_{min}:
       node.objects = \Omega
    else:
        find feature with maximal spread in \Omega:
           x^{i} = \arg\max_{x^{i}} \sigma(x^{i})
        find median \Omega: \mu = median\{x^i\} # yields balanced tree
       node.feature = i
       node.threshold = \mu
       node.left child =
               build_node(\{x_k \in \Omega : x_k^i < \mu\})
       node.right child =
               build_node(\{x_k \in \Omega : x_k^i > \mu\})
    return node
```


Fig. 2: Comparison of the splitting algorithms in ball-tree and ball*-tree

Dolatshah, Mohamad Hadian, Ali Minaei, Behrouz. (2015). Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in metric spaces.

R-tree

Complexity analysis

Complexity analysis

Complexity analysis

Why does it happen?

Weber, Roger et al. "A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces." VLDB (1998).

Observation 1 (Number of partitions)

The most simple partitioning scheme splits the data space in each dimension into two halves. With d dimensions, there are 2^d partitions. With $d \le 10$ and N on the order of 10^6 , such a partitioning makes sense. However, if d is larger, say d = 100, there are around 10^{30} partitions for only 10^6 points—the overwhelming majority of the partitions are empty.

Observation 2 (Data space is sparsely populated) Consider a hyper-cube range query with length l in all dimensions as depicted in Figure 1(a). The probability that a point lies within that range query is given by:

$$P^{d}[s] = s^{d} \qquad (1)$$

Figure 2: The probability function $P^d[s]$.

Observation 3 (Spherical range queries)

The largest spherical query that fits entirely within the data space is the query $sp^d(Q,0.5)$, where Q is the centroid of the data space (see Figure 1(b)). The probability that an arbitrary point R lies within this sphere is given by the spheres volume:

$$P[R \in sp^d(Q, \frac{1}{2})] = \frac{Vol(sp^d(Q, \frac{1}{2}))}{Vol(\Omega)} = \frac{\sqrt{\pi^d \cdot (\frac{1}{2})^d}}{\Gamma(\frac{d}{2} + 1)} \quad (2)$$

If d is even, then this probability simplifies to

$$P[R \in sp^d(Q, \frac{1}{2})] = \frac{\sqrt{\pi^d \cdot (\frac{1}{2})^d}}{(\frac{d}{2})!}$$
 (3)

Observation 4 (Exponentially growing DB size) Given equation (2), we can determine the size a data set would have to have such that, on average, at least one point falls into the sphere $sp^d(Q, 0.5)$ (for even d):

$$N(d) = \frac{(\frac{d}{2})!}{\sqrt{\pi^d} \cdot (\frac{1}{2})^d}$$

$$\tag{4}$$

d	$P[R \in sp^{d}(Q, 0.5)]$	N(d)
2	0.785	1.273
4	0.308	3.242
10	0.002	401.5
20	$2.461 \cdot 10^{-8}$	40'631'627
40	$3.278 \cdot 10^{-21}$	$3.050 \cdot 10^{20}$
100	$1.868 \cdot 10^{-70}$	$5.353 \cdot 10^{69}$

Table 2: Probability that a point lies within the largest range query inside Ω , and the expected database size.

Conclusion 1 (Performance) For any clustering and partitioning method there is a dimensionality \hat{d} beyond which a simple sequential scan performs better. Because equation (17) establishes a crude estimation, in practice this threshold \hat{d} will be well below 610.

Conclusion 2 (Complexity) The complexity of any clustering and partitioning methods tends towards O(N) as dimensionality increases.

Conclusion 3 (Degeneration) For every partitioning and clustering method there is a dimensionality \bar{d} such that, on average, all blocks are accessed if the number of dimensions exceeds \bar{d} .