

VidyaVikas Education Society's

VIKAS COLLEGE OF ARTS, SCIENCE & COMMERCE

Affliated to University of Mumbai RE-ACCREDITED 'A' GRADE BY NAAC ISO 9001 : 2008 CERTIFIED

Vikas High School Marg, Kannamwar Nagar No 2, Vikhroli (E), Mumbai – 400083

Dr. R. K. Patra Principal	Hon' ble: Shri P. M. Raut Chairman. V. V. Edu. Societ
This is to certify that,	
Student of T.Y.B.Sc. (Computer Science) (Ser nohas satisfactorily complete Data Science in the program of Computer Science MUMBAI for the academic year 2022-2023.	ed the practical work for the Subject
Guided By	Head Of Department
Internal Examiner	External Examiner

Index

Sr. No.	Aim	Sign
1	Practical of Data collection, Data curation and management for Unstructured (NoSQL)	
2	Data Curation and Management using MongoDB and R.	
3	To perform practical of Principal Component Analysis (PCA).	
4	To perform practical of Clustering.	
5	To perform practical of Time-series forecasting.	
6	To perform practical of Simple/Multiple Linear Regression	
7	To perform practical of Logistics Regression	
8	To perform practical of Hypothesis testing	
9	To perform practical of Analysis of Variance	
10	To perform practical of Decision Tree	

<u>Aim</u>: Practical of Data collection, Data curation and management for Unstructured data (NoSQL)

Step 1: Create database and collection in mongodb 4.0 by using MongoDB Compass.

Step 2: Run the following code in R or Rstudio

in stall.packages ('mongolite')

Load the mongolite package library(mongolite)

Connect to the MongoDB database vikas conn <- mongo(collection = "tycs", url = "mongodb://localhost:27017/vikas")

Insert the document into the collection doc <- '{"name": "Aniket", "age": 20}' conn\$insert(doc)

Insert the document into the collection doc <- '{"name": "Mayur", "age": 20}' conn\$insert(doc)

Insert the document into the collection doc <- '{"name": "Kirti", "age": 20}' conn\$insert(doc)

```
# Confirm that the records have been inserted
result <- conn$find()
print(result)
# Find the record of aniket in the collection
result <- conn$find('{"name": "Aniket"}')</pre>
print(result)
#update the age of Aniket to 21
conn$update('{"name": "Aniket"}', '{"$set": {"age": 21}}')
# Print the result
result <- conn$find()
print(result)
#delete the record of Aniket
conn$remove('{"name": "Aniket"}')
# Print the result
result <- conn$find()
print(result)
```


Aim: Practical of Data collection, Data curation and management for Large-scale Data system

```
use tycs
db.dropDatabase()
db.collection1.insert({id:001, Name:"Rajat"})
show collections:
db.collection1.insert({ id: 002, name: "Raj", course: [{name: "CS", duration: 7},
{name: "Java", duration:5}]})
var ins = [ {"StudentID" : 100, "Name" : "Mayur"} , {"StudentID" : 101, "Name" : "kirti"}]
db.collections1.insert(ins);
db.collection1.find()
db.collection1.find().pretty()
db.collection1.find({"id":{$gt:1}}).pretty()
db.collection1.find({"id":{$lt:2}}).pretty()
db.collection1.update({"Name":"Rajat"},{$set:{"Name":"Aniket"}})
db.collection1.find({},{"name":1})
db.collection1.find()
db.collection1.find().sort({id:-1})
```

```
> use tycs;
switched to db tycs
> db.droppDatabase()
{ "ok" : 1 }
> db.collection1.insert({id:001, Name:"Rajat"})
> 2023-04-04719:01:32.355+0530 E QUERY [js] SyntaxError: illegal character @(shell):1:36
> show collections
> show collections;
> db.collection1.insert({id:001, Name:"Rajat"})
WriteResult({ "inserted" : 1 })
> show collections;
collection1
> db.collection1.insert({ id: 002, name:"Raj", course:[{name:"CS", duration:7}, {name:"Java", duration:5}]})
WriteResult({ "inserted" : 1 })
> var ins = [ {"StudentID" : 100, "Name" : "Rajaa"} , {"StudentID" : 101, "Name" : "Raju"}];
> db.collections1.insert(ins);
BulkWriteResult({
    "writeErrors" : [],
    "writeConcernErrors" : [],
    "nInserted" : 0,
    "nModified" : 0,
    "nModified" : 0,
    "nRemoved" : 0,
    "nRemoved" : 0,
    "upserted" : []
})
```

<u>Aim</u>: To perform practical of Principal Component Analysis (PCA).

Program Code:

```
data_iris <- iris[1:4]
cov_data <- cov(data_iris)
Eigen_data <- eigen(cov_data)</pre>
PCA_data <- princomp(data_iris,cor = "False")
Eigen_data$values
PCA_data\$dev^2
PCA_data$loadings[,1:4]
Eigen_data$vectors
summary(PCA_data)
biplot(PCA_data)
screeplot(PCA_data,type = 'lines')
model2 = PCA_data$loadings[,1]
model2_scores <- as.matrix(data_iris)%*%model2
library(class)
install.packages("e1071")
library(e1071)
mod1 <- naiveBayes(iris[,1:4],iris[,5])
mod2 <- naiveBayes(model2_scores,iris[,5])
table(predict(mod1,iris[,1:4]),iris[,5])
table(predict(mod2,model2_scores),iris[,5])
```

<u>Conclusion</u>: Practical of Principal Component Analysis (PCA) has been executed successfully.

OUTPUT: -

<u>Aim</u>: To perform practical of Clustering.

Program Code:

```
install.packages("ggplot2")
library(ggplot2)
scatter <- ggplot(data=iris,aes(x=Sepal.Length,y=Sepal.Width))
scatter + geom_point(aes(color=Species,shape=Species))+
theme_bw()+
xlab("Sepal Length")+ylab("Sepal Width")+
ggtitle("Sepal Length-Width")
ggplot(data=iris,aes(Sepal.Length,fill=Species))+
theme bw()+
geom_density(alpha=0.25)+
labs(x="Sepal.Length",title="Species vs Sepal Length")
vol <- ggplot(data=iris,aes(x=Sepal.Length))
vol + stat density(aes(ymax=..density...ymin=-
..density..,fill=Species,color=Species),geom="ribbon",position="identity")+
facet_grid(.~Species)+coord_flip()+theme_bw()+labs(x="Sepal Length",title="Species vs
Sepal Length")
vol <- ggplot(data=iris,aes(x=Sepal.Width))</pre>
vol + stat density(aes(ymax=..density...ymin=-
..density..,fill=Species,color=Species),geom="ribbon",position="identity")+
facet grid(.~Species)+coord flip()+theme bw()+labs(x="Sepal Width",title="Species vs
Sepal Width")
irisData <- iris[,1:4]
totalwSS<-c()
for(i in 1:15)
{clusterIRIS<- kmeans(irisData,centers = i)
totalwSS[i] <-clusterIRIS$tot.withinss}
plot(x=1:15,y=totalwSS,type="b",xlab="Number of Clusters",ylab="Within groups sum-of-
squares")
install.packages("NbClust")
library(NbClust)
par(mar=c(2,2,2,2))
nb<-NbClust(irisData,method="kmeans")
hist(nb$Best.nc[1,],breaks=15,main="Histogram for Number of Clusters")
install.packages("vegan")
library(vegan)
modelData<-cascadeKM(irisData,1,10,iter=100)
plot(modelData,sortg=TRUE)
```

```
modelData$results[2,]
which.max(modelData$results[2,])
library(cluster)
cl<-kmeans(iris[,-5],2)
dis<-dist(iris[,-5])^2
sil=silhouette(cl$cluster,dis)
plot(sil,main="Clustering Data with silhoutte plot using 2 Clusters",col=c("cyan","blue"))
library(cluster)
cl<-kmeans(iris[,-5],8)
dis<-dist(iris[,-5])^2
sil=silhouette(cl$cluster,dis)
plot(sil,main="Clustering Data with silhoutte plot using 8
Clusters",col=c("cyan","blue","orange","yellow","red","gray","green","maroon"))
install.packages("factoextra")
library(factoextra)
install.packages("clustertend")
library(clustertend)
genx < -function(x)
runif(length(x),min(x),(max(x)))
random_df<-apply(iris[,-5],2,genx)
random_df<-as.data.frame(random_df)</pre>
iris[,-5] < -scale(iris[,-5])
random df<-scale(random df)
res<-get_clust_tendency(iris[,-5],n=nrow(iris)-1,graph=FALSE)
res$hopkins_stat
hopkins(iris[,-5],n=nrow(iris)-1)
res<-get_clust_tendency(random_df,n=nrow(random_df)-1,graph=FALSE)
res$hopkins_stat
```

Conclusion: Practical of Clustering has been executed successfully.

OUTPUT: -

Aim: To perform practical of Time-series forecasting.

Program Code:

```
data(AirPassengers)
class(AirPassengers)
start(AirPassengers)
end(AirPassengers)
end(AirPassengers)
frequency(AirPassengers)
summary(AirPassengers)
plot(AirPassengers)
abline(reg=lm(AirPassengers~time(AirPassengers)))
cycle(AirPassengers)
plot(aggregate(AirPassengers,FUN=mean))
boxplot(AirPassengers~cycle(AirPassengers))
acf(log(AirPassengers))
(fit<-arima(log(AirPassengers),c(0,1,1),seasonal=list(order=c(0,1,1),period=12)))
pred<-predict(fit,n.ahead=10*12)
ts.plot(AirPassengers,2.718^pred$pred,log="y",lty=c(1,3))
```

<u>Conclusion</u>: Practical of Time-series forecasting has been executed successfully.

OUTPUT:

<u>Aim</u>: To perform practical of Simple/Multiple Linear Regression.

Program Code:

```
lsfit(iris$Petal.Length,iris$Petal.Width)$coefficients
plot(iris$Petal.Length,iris$Petal.Width,pch=21,bg=c("red","green3","blue")[unclass(iris$Spe
cies)],main="Iris Data",xlab="Petal length",ylab="Petal width")
abline(lsfit(iris$Petal.Length,iris$Petal.Width)$coefficients.col="black")
lm(Petal.Width~Petal.Length,data=iris)$coefficients
plot(iris$Petal.Length,iris$Petal.Width,pch=21,bg=c("red","green3","blue")[unclass(iris$Spe
cies)],main="Iris Data",xlab="Petal length",ylab="Petal width")
abline(lm(Petal.Width~Petal.Length,data=iris)$coefficients,col="black")
summary(lm(Petal.Width~Petal.Length,data=iris))
plot(iris$Sepal.Width,iris$Sepal.Length,pch=21,bg=c("red","green3","blue")[unclass(iris$Sp
ecies)],main="Iris Data",xlab="Sepal Width",ylab="Sepal Length")
abline(lm(Sepal.Length~Sepal.Width,data=iris)$coefficients,col="black")
summary(lm(Sepal.Length~Sepal.Width,data=iris))
plot(iris$Sepal.Width,iris$Sepal.Length,pch=21,bg=c("red","green3","blue")[unclass(iris$Sp
ecies)],main="Iris Data",xlab="Petal length",ylab="Sepal length")
abline(lm(Sepal.Length~Sepal.Width,data=iris)$coefficients,col="black")
abline(lm(Sepal.Length~Sepal.Width,
  data=iris[which(iris$Species=="setosa"),])$coefficients,col="red")
abline(lm(Sepal.Length~Sepal.Width
    data=iris[which(iris$Species=="versicolor"),])$coefficients,col="green3")
abline(lm(Sepal.Length~Sepal.Width,
    data=iris[which(iris$Species=="virginica"),])$coefficients,col="blue")
lm(Sepal.Length~Sepal.Width,data=iris[which(iris$Species=="setosa"),])$coefficients
lm(Sepal.Length~Sepal.Width,data=iris[which(iris$Species=="versicolor"),])$coefficients
lm(Sepal.Length~Sepal.Width,data=iris[which(iris$Species=="virginica"),])$coefficients
lm(Sepal.Length~Sepal.Width:Species+Species-1,data=iris)$coefficients
summary(lm(Sepal.Length~Sepal.Width:Species+Species-1,data=iris))
summary(step(lm(Sepal.Length~Sepal.Width*species,data=iris)))
lm(Sepal.Length~Sepal.Width:Species+Species-1,data=iris)$coefficients
lm(Sepal.Length~Sepal.Width:Species+Species,data=iris)$coefficients
```

<u>Conclusion</u>: Practical of Simple/Multiple Linear Regression has been executed successfully.

OUTPUT:

Aim: To perform practical of Logistics Regression.

Program Code:

```
library(datasets)
ir data<-iris
head(ir_data)
str(ir_data)
levels(ir_data$species)
sum(is.na(ir data))
ir_data<-ir_data[1:100,]
set.seed(100)
samp<-sample(1:100,80)
ir_test<-ir_data[samp,]</pre>
ir_ctrl<-ir_data[-samp,]</pre>
install.packages("ggplot2")
library(ggplot2)
install.packages("GGally")
library(GGally)
ggpairs(ir_test)
y<-ir_test$Species;x<-ir_test$Sepal.Length
glfit<-glm(y~x,family='binomial')</pre>
summary(glfit)
newdata<-data.frame(x=ir_ctrl$Sepal.Length)</pre>
predicted_val<-predict(glfit,newdata,type="response")</pre>
prediction<-data.frame(ir_ctrl$Sepal.Length,ir_ctrl$Species,predicted_val)</pre>
prediction
qplot(prediction[,1],round(prediction[,3]),col=prediction[,2],xlab='Sepal
Length', ylab='prediction using Logistic Reg.')
```

Conclusion: Practical of Logistics Regression has been executed successfully.

OUTPUT

<u>Aim</u>: To perform practical of Hypothesis testing.

Program Code:

```
 \begin{aligned} x &= c(6.2, 6.6, 7.1, 7.4, 7.6, 7.9, 8, 8.3, 8.4, 8.5, 8.6, \\ &8.8, 8.8, 9.1, 9.2, 9.4, 9.4, 9.7, 9.9, 10.2, 10.4, 10.8, 11.3, 11.9) \\ t.test(x-9, alternative = "two.sided", conf.level = 0.95) \\ x &= c(418, 421, 421, 422, 425, 427, 431, 434, 437, 439, 446, 447, 448, 453, 454, 463, 465) \\ y &= c(429, 430, 430, 431, 36, 437, 440, 441, 445, 446, 447) \\ test2 &< -t.test(x, y, alternative = "two.sided", mu=0, var.equal=F, conf.level=0.95) \\ test2 \end{aligned}
```

Conclusion: Practical of Hypothesis testing has been executed successfully.

OUTPUT-

```
> x=c(6.2,6.6,7.1,7.4,7.6,7.9,8,8.3,8.4,8.5,8.6,
      8.8,8.8,9.1,9.2,9.4,9.4,9.7,9.9,10.2,10.4,10.8,11.3,11.9)
> t.test(x-9,alternative ="two.sided",conf.level = 0.95)
       One Sample t-test
data: x - 9
t = -0.35687, df = 23, p-value = 0.7244
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.7079827 0.4996494
sample estimates:
mean of x
-0.1041667
> x=c(418,421,421,422,425,427,431,434,437,439,446,447,448,453,454,463,465)
> y=c(429,430,430,431,36,437,440,441,445,446,447)
> test2<-t.test(x,y,alternative = "two.sided",mu=0,var.equal=F,conf.level=0.95)
> test2
       Welch Two Sample t-test
data: x and y
t = 1.0123, df = 10.202, p-value = 0.3348
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-44.46343 118.86984
sample estimates:
mean of x mean of y
438.2941 401.0909
```

<u>Aim</u>: To perform practical of Analysis of Variance.

Program Code:

```
y1=c(18.2,20.1,17.6,16.8,18.8,19.7,19.1)
y2=c(17.4,18.7,19.1,16.4,15.9,18.4,17.7)
y3=c(15.2,18.8,17.7,16.5,15.9,17.1,16.7)
y=c(y1,y2,y3)
n=rep(7,3)
n
group =rep(1:3,n)
group
tmp=tapply(y,group,stem)
stem(y)
tmpfn=function(x)c(sum=sum(x),mean=mean(x),var=var(x),n=length(x))
tapply(y,group,tmpfn)
tmpfn(y)
data=data.frame(y=y,group=factor(group))
fit=lm(y~group,data)
anova(fit)
df=anova(fit)[,"Df"]
names(df)=c("trt","err")
df
alpha=c(0.05,0.01)
qf(alpha,df["trt"],df["err"],lower.tail=FALSE)
anova(fit)["Residuals", "Sum Sq"]
anova(fit)["Residuals", "Sum Sq"]/qchisq(c(0.025,0.975),18,lower.tail=FALSE)
```

Conclusion: Practical of Analysis of Variance has been executed successfully.

OUTPUT -

```
> y1=c(18.2,20.1,17.6,16.8,18.8,19.7,19.1)

> y2=c(17.4,18.7,19.1,16.4,15.9,18.4,17.7)

> y3=c(15.2,18.8,17.7,16.5,15.9,17.1,16.7)
> y=c(y1,y2,y3)
> n = rep(7,3)
[1] 7 7 7
> group =rep(1:3,n)
> group
 > tmp=tapply(y,group,stem)
  The decimal point is at the |
  16 | 8
  17 | 6
  18 | 28
  19 i 17
  20 | 1
  The decimal point is at the |
  15 | 9
  16 | 4
  17 | 47
  18 | 47
  19 | 1
  The decimal point is at the |
  16 | 57
  17 | 17
  18 | 8
```

```
> stem(y)
  The decimal point is at the |
  15 | 299
  16 | 4578
17 | 14677
  19 | 117
  20 I 1
> tmpfn=function(x)c(sum=sum(x),mean=mean(x),var=var(x),n=length(x))
> tapply(y,group,tmpfn)
                                      7.000000
130.300000 18.614286 1.358095
        sum
123.600000 17.657143
                          1.409524
                                       7.000000
$`3`
        SIIM
                   mean
                                 var
117.900000 16.842857
                         1.392857
                                       7.000000
> tmpfn(y)
       sum
                   mean
                                 var
371.800000 17.704762 1.798476 21.000000
> data=data.frame(y=y,group=factor(group))
> fit=lm(y~group,data)
> anova(fit)
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
group 2 11.007 5.5033 3.9683 0.03735 *
Residuals 18 24.963 1.3868
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

```
> df=anova(fit)[,"Df"]
> names(df)=c("trt","err")
> df
trt err
  2 18
> alpha=c(0.05,0.01)
> qf(alpha,df["trt"],df["err"],lower.tail=FALSE)
[1] 3.554557 6.012905
> anova(fit)["Residuals","Sum Sq"]
[1] 24.96286
> anova(fit)["Residuals", "Sum Sq"]/qchisq(c(0.025,0.975),18,lower.tail=FALSE)
[1] 0.7918086 3.0328790
```

<u>Aim</u>: To perform practical of Decision Tree .

Program Code:

```
mydata<-data.frame(iris)
attach(mydata)
install.packages("rpart")
library(rpart)
model<-
rpart(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=mydata,method="
class")
plot(model)
text(model,use.n=TRUE,all=TRUE,cex=0.8)
install.packages("tree")
library(tree)
model1<-
tree(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=mydata,method="cl
ass", split="gini")
plot(model1)
text(model1,all=TRUE,cex=0.6)
install.packages("party")
library(party)
model2<-ctree(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=mydata)
plot(model2)
library(tree)
mydata<-data.frame(iris)
attach
model1<-
tree(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=mydata,method="cl
ass",control=tree.control(nobs=150,mincut=10))
plot(model1)
text(model1,all=TRUE,cex=0.6)
predict(model1,iris)(mydata)
model2<-
ctree(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=mydata,controls=c
tree control(maxdepth=2))
plot(model2)
```

Conclusion: Practical of Decision tree has been executed successfully.

OUTPUT

