ALPHASQUAD

Dalil Chablis

Darko Djordjevic

Youssef Hassanein

INTRODUCTION

Adrián Jiménez Pascual

INTRODUCTION

SOMMAIRE

- Structure de projet
- Implémentation du jeu Squadro et des différents joueurs (humain ou IA)
- Interface graphique moderne (Pygame)
- Joueurs intelligents (Alpha-beta pruning et Monte Carlo Tree Search)
- Mode multiplayer (Sockets)

STRUCTURE DE PROJET

Structure de projet générique:

- game.py contient les fonctions communes/spécifiques à tous les jeux de plateau

IMPLEMENTATION DU JEU

Fonctions indispensables:

- getCoupsValides(jeu)
- saisieCoup(jeu) (spécifique à un joueur)
- joueCoup(jeu)
- finJeu(jeu)
- afficheJeu(jeu) / draw_board(jeu)

INTERFACE GRAPHIQUE

- La variable GUI dans game.py -> mode console / GUI
- draw_board(jeu):
 - on blit le background
 - on blit les images
 - on set rect.topleft du pion qui s'est deplacé
- Joueur humain -> détection collision rect / click souris

ALPHA-BETA PRUNING

 $O(b^d)$ $\Omega(b^{rac{d}{2}})$

HEURISTIC

- Fonction d'évaluation → produit scalaire entre un vecteur de poids et un vecteur de fonctions d'évaluations élémentaires
- Nécessité d'avoir un domain knowledge du jeu en question
- Optimisation du vecteur de poids grâce à un algorithme génétique:
 - Initialisation du population avec des vecteurs de poids random (gênes)
 - Fitness function
 - Selection des meilleurs individus
 - Crossovers et mutations

MCTS

Selection

Simulation

Backpropagation

SOCKETS

DEMONSTRATION