Федеральное государственное бюджетное образовательное учреждение высшего образования. «Национально исследовательский университет «МЭИ» Кафедра ВМСС

Лабораторная работа №7 Цифровой мультиметр Курс: метрология

Группа: А-08-19

Выполнил: Балашов С. А.,

Проверил: Герасимов С. И.

Пункт 1

Задание. Произвести прямое измерение сопротивления R.

Выполнение. С помощью мультиметра произведём прямое измерение сопротивления R.

Результат. R = 5.3 (кОм)

Пункт 2

Задание. По известным метрологическим характеристикам мультиметра рассчитать предельные значения абсолютной погрешности прямого измерения R.

Выполнение. Согласно метрологическим характеристикам мультиметра, абсолютная погрешность прямого измерения сопротивления R находится по формуле: $R_{abc} = \pm (0.8\% \text{ om R} + 2q)$, где q = 10 (Om)

$$R_{abc} = \pm (0.008 * 5.3 * 10^3 + 2 * 10) = \pm 62.4 (O_{M})$$

Результат. $R_{a6c} = \pm 62.4$ (Ом)

Вывод. Любой измерительный прибор обладает определенной погрешностью измерения, называемой инструментальной.

Пункт 3

Задание. Пользуясь эталонным средством измерения (магазин сопротивлений), определить действительное значение погрешности прямого измерения сопротивления R.

Выполнение. Измерив сопротивление магазина сопротивлений с помощью мультиметра, получим следующий результат: $R_0 = 5.25$ (кОм). Далее найдём действительное значение прямого измерения сопротивления R. $\Delta l = R - R_0 = (5.3 - 5.25) * 10^3 = 50$ (Ом)

Результат. $\Delta l = 50 \, (Om)$

Вывод. Для калибровки и сопоставления поверки средств измерений используются специальные приборы - эталонные средства измерения. В данном случае, для поверки мультиметра был использован такое средство - магазин сопротивлений.

Пункт 4

Задание. Проверить, не противоречит ли полученное действительное значение погрешности её предельными значениями.

Выполнение. Проверим, лежит ли полученное действительное значение погрешности в интервале $(-|R_{a6c}|;|R_{a6c}|)$.

-64.4 < 50 < 62.4 - неравенство верное.

Результат. $\Delta l \in (-|R_{abc}|; |R_{abc}|)$

Вывод. Действительное значение погрешности принадлежит посчитанному нами ранее интервалу возможных значений абсолютной погрешности, что говорит об исправности

измерительного прибора (так как реальная погрешность не превышает предельно допустимую).

Пункт 5

Задание. Выбрать и согласовать с преподавателем какой-либо другой способ измерения R.

Результат. По рекомендации преподавателя был выбран метод косвенного измерения и следующие схемы:

a)

б)

Пункт 6

Задание. По выбранному и согласованному с преподавателем способу произвести измерение R.

Выполнение.

а) Выставив на мультиметре диапазон значений напряжения в 20 В, были получены следующие значения напряжений U и $\rm U_0$:

$$U = 6.5 (B), U_0 = 6.7 (B).$$

Согласно расчётной формуле данного метода:

$$R = R_0 * \frac{U}{U_0} = 5.25 * 10^3 * \frac{6.5}{6.7} = 5093.2836 \text{ (Om)}$$

б) Перед измерением R следует посчитать внутреннее сопротивление мультиметра. Для этого составим следующую схему:

Выставив на мультиметре диапазоны значений напряжения в 200 мВ и значений силы тока в 20 мА, были получены следующие значения U_{mA} и I_{mA} :

$$U_{mA} = 26.75 \text{ (MB)}, I_{mA} = 2.5 \text{ (MA)}$$

Далее рассчитаем внутреннее сопротивление мультиметра:

$$R_{mA} = \frac{U_{mA}}{I_{mA}} = \frac{25.75*10^{-3}}{2.5*10^{-3}} = 10.3 \text{ (Om)}$$

Согласно расчётной формуле данного метода:

$$R = R_0 = 5.25 \, (\kappa O_M)$$

Результат. R = 5.25 (кОм)

Вывод. Не всегда представляется возможным измерить какую-либо величину напрямую, поэтому часто используются косвенные методы измерения этих величин. При этом разные способы косвенного измерения могут давать разные приблизительные результаты.

Пункт 7

Задание. С использованием известных характеристик использованных средств измерения рассчитать предельные значения абсолютной погрешности измерения R по пунктам 5-6.

Выполнение.

а) Зная характеристики использованных средств измерения, найдём инструментальную составляющую погрешности:

$$\Delta_{\text{инстр}} = \sum_{i=1}^n |\frac{\partial F}{\partial x_i}| * \Delta x_i$$
, где $F = R = R_0 * \frac{U}{U_0}$ (а значит факторов погрешности $n=3$)

$$\Delta_{\text{uhctp}} = \left| \frac{\partial R}{\partial R_0} \right| * \Delta R_0 + \left| \frac{\partial R}{\partial U_0} \right| * \Delta U_0 + \left| \frac{\partial R}{\partial U} \right| * \Delta U = \left| \frac{U}{U_0} \right| * \Delta R_0 + \left| \frac{R_0}{U_0} \right| * \Delta U_0 + \left| \frac{R_0 * U}{U_0^2} \right| * \Delta U = \left| \frac{R_0 * U}{U_0} \right| * \Delta U_0 + \left$$

$$= \left| \frac{6.5}{6.7} \right| * 0.002 * 5250 + \left| \frac{5250}{6.7} \right| * (0.005 * 6.7 + 0.02) + \left| \frac{5250 * 6.5}{6.7^2} \right| * (0.005 * 6.5 + 0.02) = 92.0183 (Om)$$

Методическая составляющая погрешности:

Для схемы слева справедливо равенство:

$$U = E * \frac{R_v R}{R_v R + R_v R_u + R_u R + R_v R_0 + R R_0}$$

Для схемы справа справедливо равенство:

$$U = E * \frac{R_v * R_0}{R_v R_0 + R_v R_u + R_u R_0 + R_v R + R R_0}$$

Разделив первое уравнение на второе, получим:

$$\frac{U}{U_0} = \frac{R * (R_v R_0 + R_v R_u + R_u R_0 + R_v R + R R_0)}{R_0 * (R_v R + R_v R_u + R_u R + R_v R_0 + R R_0)}$$

 $R = R_0 * \frac{U}{U_0}$, а значит методическая составляющая погрешности:

$$\delta_{\text{\tiny MET}} = \frac{R_{\text{\tiny V}}R_0 + R_{\text{\tiny V}}R_{\text{\tiny M}} + R_{\text{\tiny M}}R_0 + R_{\text{\tiny V}}R + RR_0}{R_{\text{\tiny V}}R + R_{\text{\tiny V}}R_{\text{\tiny M}} + R_{\text{\tiny W}}R + R_{\text{\tiny V}}R_0 + RR_0} = \frac{R_0 + R_{\text{\tiny M}} + \frac{R_{\text{\tiny M}}R_0}{R_{\text{\tiny V}}} + R + \frac{RR_0}{R_{\text{\tiny V}}}}{R + R_{\text{\tiny M}} + \frac{R_{\text{\tiny M}}R_0}{R_{\text{\tiny V}}} + R_0 + \frac{RR_0}{R_{\text{\tiny V}}}} =$$

$$=\frac{\frac{5.25*10^{3}+100+\frac{100*5.25*10^{3}}{1*10^{6}}+5093.2836*10^{3}+\frac{5093.2836*10^{3}*5.25*10^{3}}{1*10^{6}}}{5093.2836*10^{3}+100+\frac{100*5093.2836*10^{3}}{1*10^{6}}+5.25*10^{3}+\frac{5093.2836*10^{3}*5.25*10^{3}}{1*10^{6}}}=0.99990073839\approx1\,(\%)$$

$$\Delta_{\text{MeT}} = \pm \left(\frac{R*\delta_{\text{MeT}}}{100\%} \right) = \pm \left(\frac{5093.2836*1\%}{100\%} \right) = \pm 50.9328(\text{Om})$$

В таком случае:

$$\Delta_{R} = \pm (|\Delta_{\text{ihctp}}| + |\Delta_{\text{met}}|) = \pm (92.0183 + 50.9328) = \pm 142.9511 \text{ (Om)}$$

б) Общая погрешность возникает из-за наличия инструментальной и методической погрешностей, поэтому найдём их для каждой из предложенных в пункте 5 схем.

Зная характеристики использованных средств измерения, найдём инструментальную составляющую погрешности:

$$\Delta_{\text{инстр}=}\sum_{i=1}^n |rac{\partial F}{\partial x_i}|*\Delta x_i,$$
 где $F=R=R_0$ (а значит $n=1$)

$$\Delta_{\text{инстр}} = \left| \frac{\partial R}{\partial R_0} \right| * \Delta R_0 = 1 * \Delta R_0 = 1 * 0.002 * 5250 = 10.5 \text{ (Om)}$$

Методическая составляющая погрешности:

При известном значении R_{mA} можно исключить методическую погрешность внесением поправки и получить исправленный результат косвенного измерения:

$$R = R - R_{\text{mA}} = 5300 - 10.3 = 5289.7 \text{ (OM)}$$

В таком случае:

$$\Delta_R = \pm |\Delta_{\text{uhctp}}| = \pm 10.5 \text{ (Om)}$$

Результат. а)
$$\Delta_R = \pm 142.9511$$
 (Ом)

б)
$$\Delta_{R} = \pm 10.5 \; (Ом)$$

Вывод. Погрешность в общем случае может иметь много составляющих: методическая, инструментальная, дополнительная температурная, частотная и т.д. погрешности. Для различных методов измерения определенные составляющие становятся главными, при этом общее значение погрешности может сильно варьироваться в зависимости от выбранного метода.

Пункт 8

Задание. Используя результаты пунктов 2 и 7, проверить, укладывается ли расхождение результатов измерения R по пунктам 1 и 6 в диапазон возможных значений этого расхождения.

Выполнение.

В п. 2 было произведено прямое измерение, и интервал возможных значений получился равным (5300.0 ± 62.4) (Ом)

В п. 6 было произведено косвенное измерение, и интервал возможных значений получился равным (5090 \pm 140) (Ом)

Вывод.

Из этого можно сделать вывод, что интервал косвенного измерения перекрывает интервал прямого измерения.