ME5413 Final Project Instructions

Friday, 8 Mar 2024

Overview

In this mini-factory environment:

• 3 target areas

• 1 restricted area

The aim of the project is to design a robot navigation software stack that can:

- From the starting point, move to the given pose within each area in sequence:
 - Assembly Line 1, 2
 - Random Box 1, 2, 3, 4
 - Delivery Vehicle 1, 2, 3

3. Parking Lot

Restricted Area

"Jackal"

Random Blockade

2. Random Boxes

Tasks 1: Mapping

- Map the environment using any algorithm you like
- Evaluate the performance of your SLAM algorithm by comparing your estimated odometry with the ground truth odometry
- In your report:
 - Describe your mapping pipeline in detail
 - Qualitatively and quantitatively analyse your SLAM performance (Figures and Tables)
 - Discuss the challenges you faced and your proposed solutions (with examples and comparisons)

Tasks 2: Navigation

- Navigate your robot through a given sequence of goal poses
- The accuracy is evaluated by calculating the differences between robot's final pose and the goal pose:
 - Position Error
 - Heading Error
- In your report:
 - Describe your navigation pipeline in detail
 - Qualitatively and quantitatively analyse the performance of your navigation stack in multiple metrics
 - Discuss the challenges you faced and your proposed solutions (with examples and comparisons)

Grouping

- Final Project groups:
 - 6 people from 2 or 3 homework groups
 - Total 20 groups
 - Unassigned groups will be assigned by the TAs by Friday, 15 Mar 6pm
- Deadline: Sunday, 7 April 2024 23:59
- Presentations:
 - 12 April and 19 April
 - Presentation slot selection period: 8-15 Mar

Groups (20)		
▶ Final Project Groups 1	5 / 6 students	•
▶ Final Project Groups 2	3 / 6 students	•
▶ Final Project Groups 3	Full 6 / 6 students	•
▶ Final Project Groups 4	Full 6 / 6 students	:
▶ Final Project Groups 5	5 / 6 students	•
▶ Final Project Groups 6	Full 6 / 6 students	•
	Full	•

Presentation

• Presentation: 10 mins

• Live Demo: 5 mins

• Q&A: 3 mins

Date	12-Apr-24	Week 12	Date	19-Apr-24	Week 13
Slot No.	Start Time	Group Number	Slot No.	Start Time	Group Number
1	18:00:00		11	18:00:00	
2	18:18:00		12	18:18:00	
3	18:36:00		13	18:36:00	
4	18:54:00		14	18:54:00	
5	19:12:00		15	19:12:00	
6	19:30:00		16	19:30:00	
7	19:48:00		17	19:48:00	
8	20:06:00		18	20:06:00	
9	20:24:00		19	20:24:00	
10	20:42:00		20	20:42:00	

- Brief explanation of your robot system
 - Diagrams would be useful
 - The algorithms you used for each task
- Problems & Solutions
 - Describe the challenges you encountered and how you overcome them
 - Potential future work: how your system can be improved further
- Videos of your robot

Submission

- Goal sequence is determined by group number.
- E.g Group 17:
 - 1. Assembly Line: 2
 - 2. Random Box: 2
 - 3. Delivery Vehicle: 3
- In your submission (GroupNumber.zip)
 - 1. Report (.pdf, 10 pages max, appendices no limit)
 - 2. Map file (any format)
 - 3. A video showing your robot running along the designated route (.mp4, less than 50 Mb)
 - 4. Presentation Slides (.pptx, less than 200 Mb)
 - 5. Link to your Github repo

Group	Assembly Line 1, 2	Packaging Area 1, 2, 3, 4	Delivery Vehicle 1, 2, 3
1	2	2	2
2	1	3	3
3	2	4	1
4	1	1	2
5	2	2	3
6	1	3	1
7	2	4	2
8	1	1	3
9	2	2	1
10	1	3	2
11	2	4	3
12	1	1	1
13	2	2	2
14	1	3	3
15	2	4	1
16	1	1	2
17	2	2	3
18	1	3	1
19	2	4	2
20	1	1	3

Evaluation Metric

- 1. Peer Review
- 2. Overall Marking

Criteria	Ratings		Pts
Accuracy Compared to Ground Truth	10 to >0.0 Pts Full marks	0 Pts No marks	10 pts
Technical	30 to >0.0 Pts Full marks	0 Pts No marks	30 pts
Effort	20 to >0.0 Pts Full marks	0 Pts No marks	20 pts
Code Style Code Structure / Approach	20 to >0.0 Pts Full marks	0 Pts No marks	20 pts
Report	20 to >0.0 Pts Full marks	0 Pts No marks	20 pts
Tatal points: 100			

Total points: 100

FAQs

Q: Can I change the robot description file given in the project?

- Yes, you can modify the sensor configuration, by adding more sensors or new types of sensors, as well as their locations.
- · However, you are not allowed to modify the mobile base.

Q: Can I use a different robot to do the mapping?

 No, it must be using the same robot mobile base. However, you can use a separate sensor configuration for mapping.

Q: Can I adjust the goal poses given in the config file?

No in principle, but you can slightly adjust it within the vicinity (let's say within 0.1m)

Q: Is there any bonus tasks for the final project?

- If you can package your solution pipeline into a ROS pkg and publish it on GitHub, you will get bonus marks!
- Or demonstrate more advanced capabilities in this environment!

