1. R^2 or the log-likelihood?

Info: This post may be of interest to scholars and practitioners who have already used/heard about the \mathbb{R}^2 metric and are familiar with maximum likelihood estimation.

 R^2 is useful when your model outputs fixed uncertainty. But log-likelihood is broader —it can also deal with outputs with non fixed uncertainty!

Let's take a concrete example — this will help us show that log-likelihood is a broader measure than \mathbb{R}^2 . Imagine we have the following test set (data points we have hidden away to assess our model):

Index	Temperature (°C)	Date
m+1	6	12-11-02
m+2	4.3	13-11-02
m+3	5.7	14-11-02
m+4	6.7	15-11-02
m+5	3.9	16-11-02

which represent the factitious temperatures (°C) measured over five consecutive days in London in November 2002. m+5 is the size of our full dataset, m being the size of the training set and $m+1, \ldots m+5$ the indices of the test set. For conciseness, we introduce some mathematical notation: take the recorded temperature values at date $t=m+1\ldots m+5$ to be denoted by $y_t \in \mathbb{R}$; e.g, $y_{m+3}=5.7$ is the temperature recorded on 14-11-02. Our prediction task is shown in figure 1.1, where we are given the pairs

 $(t=1,y_1),\ldots(t=m,y_m)$ as training data and we are asked to predict the question marks for $t=[m+1,\ldots,m+5].$

Figure 1.1

We have also constructed a model to predict those temperature values in the test set. Let's denote the predicted temperature values as $\hat{y_t} \in \mathbb{R}$. Constructing a table with the math notation and inserting the predicted values we have:

t	y_t	$\hat{y_t}$
m+1	6	5.5
m+2	7.3	5.9
m+3	4.1	5
m+4	5.7	6.1
m+5	5.9	5.9
11		

and we can use the values in the table and just plug them in the formula for

K

$$\mathbb{R}^2$$
:

6

m+1

$$1 - \frac{\frac{1}{N} \sum_{t} (y_t - \hat{y}_t)^2}{\frac{1}{N} \sum_{t} (y_t - \bar{y})^2}$$

where \bar{y} is the average of all the recorded y_t values used for training our model. In figure 1.2 we can see the denominator terms in the R^2 , and in figure 1.3 both the denominator and numerator terms.

Figure 1.2

0+3

Let's explore the terms in the formula for R^2 through a probabilistic lens. Then, we can readily see what is R^2 useful for and what it is not. The numerator of the second term in the formula, namely $\sum_t \frac{1}{N} (y_t - \hat{y_t})^2$, is the mean squared error (MSE). The MSE can be viewed as a recipe to assess errors, in which the square operation is placed to avoid errors canceling each other; or, it can be viewed probabilisticly as the result of minimising the negative log-likelihood of the variance term in the following model (call it M1):

$$\hat{y_t} \sim \text{Normal}(f(t), \sigma^2)$$

where we chose to model the mean temperature values (f(t)) based only on

Figure 1.3

time t. This result is not specific to our model, but to any model with a normally distributed random variable with a fixed variance. So, for these models we can write that $MSE = \min_{\sigma^2}$ - Likelihood $(y_1, \ldots, y_m | M1)$ (hereafter Likelihood will be denoted with ℓ).

Likelihood will be denoted with
$$\ell$$
).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

Likelihood will be denoted with ℓ).

Denote the problem of the second term

In the same manner we can think of the denominator of the second term representing the model (call it M2)

$$\hat{y_t} \sim \text{Normal}(\bar{y}, \rho^2)$$

and hence calculating R^2 is the reciprocal value to the maximum likelihood ratio between the fixed variances (in our case σ and ρ) of normally distributed random variables. In other words

$$R^{2} = 1 - \frac{\min_{\sigma^{2}} -\ell(y_{1}, \dots, y_{m}|M1)}{\min_{\rho^{2}} -\ell(y_{1}, \dots, y_{m}|M2)}$$

, and if you model your problem with a fixed variance, then R^2 is just another way to communicate the likelihood ratio. However, if you use a model with non fixed variance, for example $\hat{y_t} \sim \text{Normal}(f(t), \sigma(t)^2)$, evaluating it with R^2 will completely ignore the fact that you have a non fixed variance. An example of such a model is Gaussian Process. Instead, you can just use the likelihood of your model, rather than just plugging the values into the R^2 formula.