Voices of Justice

Finding Consensus in the Multitude of Claims

David Kurka Jeremy Pitt

Imperial College London

eCAS Workshop, Augsburg, September 12, 2016

Motivation

Motivation

- · Obtaining feedback from distributed systems can be challenging
 - Ongoing assynchronous activities can't stop
 - Processing burden for large systems
- In a resource allocation scenario how to evaluate the fairness of a distribution?
 - · Whose feedback should be trusted?
 - · How to deal with divergence on the feedback?

Computational Justice Program

Distributive justice: recent problem in computer systems and networks (e.g. operating systems, TCP networks, smart-grids), but longstanding problem in social relations.

Towards a **Computational Justice** Framework: social inspired intelligence applied to technical problems

"Not only must justice be done; it must also be seen to be done"

Problem Statement

- Network setup:
 - \cdot *n* agents, connected in a graph G, performing independent activities and requiring resources to fulfil its tasks
- · Availability and demand of resources:
 - \cdot At a specific time t (turn), an amount of resources P(t) is made available to all agents and should be shared.
 - · Each agent demand $d_i(t)$ $(i \in 1, \ldots, n)$
 - Economy of scarcity: $P(t) < \sum_i d_i(t)$
- Resource allocation:
 - Following an allocation policy, agents receive attributions r_i (0 $\leq r_i(t) \leq d_i(t)$)
 - · No leftovers: $\sum_i r_i(t) = P(t)$

5

Metrics of Satisfaction

- Each turn, agents elaborate a metric of perceived fairness $\phi_i(t)$, influenced both by individual and local perceptions of how resources are being allocated
- · The sum of all individual perceptions ($\Phi(t)=\sum_i\phi_i(t)$) becomes a metric for general satisfaction.

Given a cluster engaged in repeated rounds of resource distribution and agents' personal opinions and interactions, how can we ensure that an allocation is "fair"?

6

Strategy of Solution

Strategy of Solution

- · Use individual subjective assessments
 - · Decentralisated and independent feedback
 - · Convergence of opinions can increase reliability (wisdom of the crowds)
 - · Gives voice to "regular" individuals
- · Questions to be considered:
 - How to deal with malicious agents, trying to misguide the general opinion?
 - · How opinions should be weighted, in case of discordance?

Strategy of Solution

- Opinion Formation agent opinions are formulated, based on individual experience;
- Trust agents observe their environment and, through comparison, define its trusts;
- Influence agents communicate and diffuse opinions through their social influence.

Opinion Formation

Each individual, in light of the amount of resources received over time and the amount of resources demanded, can elaborate a personal opinion of the fairness of an allocation method.

Different possible metrics:

· Average attended demand

$$\phi_i(t) = \frac{\displaystyle\sum_{s=1}^t 1\{r_i(s) = d_i(s)\}}{t}$$

Temporal satisfaction

$$\phi_i(t) = \begin{cases} (1-\alpha) \cdot \phi_i(t-1) + \alpha & \text{if } r_i(t) = d_i(t) \\ (1-\beta) \cdot \phi_i(t-1) & \text{if } r_i(t) < d_i(t) \end{cases}$$

Trust Evaluation

Having formulated its personal opinion, agents then start to observe each other opinions, in order to compare their assessments.

Guiding principles

- Affinity: trust more those who say coherent things (according to yourself!)
- 2. Reinforcement: It takes time to change an impression

Trust Evaluation

1. Accordance index

$$\tau_{ij}(t) = 1 - (1 + \exp^{-k(|\bar{\phi}_{N_i}(t) - \phi_j(t)| - \epsilon_0)})^{-1}$$

where:

$$\bar{\phi}_{N_i}(t) = \frac{1}{|N(i)|+1} \sum_{n \in N(i)-\{j\}+\{i\}} \phi_n(t)$$

2. Trust:

$$T_{ij}(t) = (1-\gamma) \cdot T_{ij}\left(t-1\right) + \gamma \cdot \tau_{ij}(t)$$

$$(T_{i\,j}(0)=1 \ \mathrm{and}\ T_{i\,j}(t)=0 \ \mathrm{if}\ j\notin N(i)$$
)

Influence

Having the personal opinions ϕ and the trust assessments we can model the evolution of opinions under social influence.

$$T = \begin{bmatrix} T'_{11} & T'_{12} & \cdots & T'_{1n} \\ T'_{21} & T'_{22} & \cdots & T'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ T'_{n1} & T'_{n2} & \cdots & T'_{nn} \end{bmatrix}; \qquad T'_{ij} = \frac{T_{ij}}{\sum_{j} T_{ij}}$$

· Iterative process of opinion propagation (DeGroot):

$$\phi^{'}(t) = T^K \phi \qquad (\phi(t) = [\phi_1(t), \dots, \phi_n(t)]^T)$$

· Final opinion:

$$\Phi(t) = \frac{1}{n} \sum_{i} \phi'_{i}(t)$$

Algorithm summary

Figure 1: Complete algorithm

Experiments and Analysis

Exp 1 - Coherence

Can the solution identify and distinguish fair and unfair allocation schemes?

- · Four allocation methods:
 - Rotation
 - · Clique first
 - · Random order
 - · Ration

Exp 1 - Coherence: Rotation

Figure 2: Opinions before and after influence for rotation allocation

Exp 1 - Coherence: Clique First

Figure 3: Opinions before and after influence for clique first allocation

Exp 1 - Coherence: Random Order

Figure 4: Opinions before and after influence for clique first allocation

Figure 5: Opinions before and after influence for ration allocation

Exp 2 - Robustness

Are there mechanisms able to avoid the influence of malicious agents trying to propagate false information?

- Fair allocation (rotation);
- A group of agents always give negative feedback, regardless their situation.

Exp 2 - Robustness

Exp 3 - Resilience

Does it work properly in different topologies and with topology changes?

- Two new topologies tested: small world and random graph
- In each case, a fair (rotation) and unfair (clique first) allocation is tested

Figure 6: Small World Network

Figure 7: Random (Erdos Renyi) Network

Conclusion

Conclusions

- Practical method of evaluating the fairness of a resource allocation, using subjective assessments, information diffusion and influence methods.
- · Main features:
 - Decentralised and independent computation of the fairness of an allocation process;
 - Rapid reaction in case of unfairness even when there is initial divergence of opinions;
 - · Identifying and excluding faulty behaviour (cheating);
 - Robustness to different scenarios and applications.

Acknowledgemnts

- National Council for Scientific and Technological Development (CNPq), Brazil;
- · Diverse colaborators.

