COL 351: Analysis and Design of Algorithms

Lecture 18

Hash Function

Definition: A function that can be used to map data of arbitrary size to fixed-size output.

Examples:

$$x \mapsto x \pmod{n}$$

 $x \mapsto (2x^2 + 4x - 5) \pmod{n}$

Applications:

Message Digest

Password Verification

Data-structures

Block-chains

Two applications of Hash Functions

1. Set Membership

2. Pattern Matching

Set Membership

Given: A universe U = [1, 2, ..., M], and a set $S \subseteq [1, M]$ of size n.

Goal: Find a data-structure of O(n = |S|) size that answers for any $x \in [1,M]$ query of form:

"Does $x \in S$?"

Set Membership

Given: A universe U = [1, 2, ..., M], and a set $S \subseteq [1, M]$ of size n.

Goal: Find a data-structure of O(n = |S|) size that answers for any $x \in [1,M]$ query of form:

"Does
$$x \in S$$
?"

	Search-Time	Space
Boolean Array (Yes/No)	<i>O</i> (1)	O(M)
	O(n)	O(n)
AVL Tree storing S	$O(\log n)$	O(n)

Hash Table

Eq: H(3) = 3 mod n

Given: Hash Function $H: U \rightarrow [0, n-1]$.

Table T of size n:

T[i] — List storing $\{z \in S \mid H(z) = i\}$

Search-Query(*z*)

- 1. Compute i = H(z)
- 2. Scan the link-list stored at T[i]
- 3. If $z \in T[i]$ return "Found", else return "Not-found"

Table T

$$\sum_{i=0}^{n-1} T[i] = O(n)$$

$$H(z) = z \mod n$$

- Bad for sets like $S = \{n, 2n, 3n, ..., n^2\}$
- Good for a random S

```
Reason:
We will have
|T[0]| = n
|T[i]| = 0, for i > 0
```

$$H(z) = z \mod n$$

Suppose $S = \{s_1, s_2, ..., s_n\}$ where every s_i is a uniformly random integer in U = [1, M].

Question: For random $x, y \in U$, what is collision probability (probability that H(x) = H(y))?

Solution:

Suppose
$$i = H(x)$$
.

$$\operatorname{Prob}(H(y) = i) = \frac{|\{i, n+i, 2n+i, \dots\}|}{M} \approx \frac{1}{n}$$

Eq. M = 1000 Now, for random
$$y \in [1,1000]$$

 $|S| = 10$ Prob $(y \mod 10 = 7) = \frac{1}{10}$, i.e. $\frac{1}{n}$

$$H(z) = z \mod n$$

Suppose $S = \{s_1, s_2, ..., s_n\}$ where every s_i is a uniformly random integer in U = [1, M].

Question: For a given $x \in [1, M]$, what is expected time to verify if $x \in S$?

Solution:

Suppose i = H(x).

$$\operatorname{Exp}(|T[i]|) = 1 + \sum_{y \in S \setminus \{x\}} \operatorname{Prob}(H(y) = i) = 1 + (\gamma - 1)(\frac{1}{\gamma}) = O(1)$$

Thus, time to search x is sum of

- (i) Time to compute i = H(x), and
- (ii) |T[i]| which is O(1) on expectation.

$$|T[i]| = 1 + \sum_{y \in S \setminus \S_{R}} 1_{H(y)} = i$$

Each $y \in S \setminus \S_{R}$ contributes one

unit to T[i] iff H(y)=i.

$$H(z) = z \mod n$$

• Works well for a random *S*

• What if *S* is <u>not</u> random?

$$F(z) = (r \cdot z) \mod p$$
 (Here, p is a prime).

Eg. of a different number system

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

New addition "
$$\oplus$$
": $a \oplus b = a + b \mod 7$

New product "
$$\otimes$$
": $a \otimes b = a \otimes b \mod 7$

$$5 \oplus ? = 0$$
 $5 \otimes ? = 1$ Ans = 3

$$\beta$$
ms = 2

Additive inverse

Multiplicative inverse

$$\frac{\text{Remouk}}{\text{PC}_i} = 0 \pmod{p}$$

$$\text{for } i \in [1, p-1]$$

$$F(z) = (r \cdot z) \mod p$$
 (Here, p is a prime).

Claim 1: For any
$$r \in [1, p-1]$$
, we have $r^{p-1} = 1 \mod p$

Suppose claim holds for
$$x \leq p-1$$
.

$$(x+1)^{p} = x^{p} + \sum_{i=1}^{p-1} p = x^{p} + \sum_{i=1}^{p-1$$

de places divide 2+1. we prove the claim.

$$F(z) = (r \cdot z) \mod p$$
 (Here, p is a prime).

Claim 2: F(z) is invertible, and its inverse is given by $F^{-1}(y) := (r^{p-2} y) \mod p$

Proof:

$$F(z) = (r \cdot z) \mod p$$
 (Here, p is a prime).

Claim 3: If $r \in [1, p-1]$ was random, then for any $z, i \in [1, p-1]$, we have

$$\operatorname{Prob}(F(z) = i) = \frac{1}{p-1}.$$

Note: 3, i are fined, but
$$r$$
 is random.

$$F(3) = i \iff r \ 3 \pmod{p} = i \iff r = 3^{p-2} i \pmod{p}$$

So, Prob
$$(F(3) = i) = Prob (r = 3^{b-2} i \pmod{b})$$

This is
$$\left(\frac{1}{p-1}\right)$$
 as r has $p-1$ possiblities

$$F(z) = (r \cdot z) \mod p$$
 (Here, p is a prime).

Claim 1: For any
$$r \in [1, p-1]$$
, we have $r^{p-1} = 1 \mod p$

Claim 2:
$$F(z)$$
 is invertible, and its inverse is given by $F^{-1}(y) := (r^{p-2} y) \mod p$

Claim 3: If
$$r \in [1, p-1]$$
 was random, then for any $z, i \in [1, p-1]$, we have

$$\operatorname{Prob}(F(z) = i) = \frac{1}{p-1}.$$

Both input/output sets have size p-,