Removing
Redundancies From
Data: Principle
Component Analysis

COMS21202, Part III

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

1

Objectives

- OUnderstand potential harm of high dimensionality of dataset
- OUse Principle Component Analysis (PCA) to remove "redundant" dimensions from data.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

2

High Dimensionality, Good? Bad?

- $OX = \{x_i\}_{i=1}^n, x \in \mathbb{R}^d.$
- Ols a large d always a good thing?
 - \bigcirc We have more info as d grows!
 - ${\color{red} \circ} \otimes$ LS does not work when d>n
 - $\bigcirc \otimes$ Large d causes overfitting
 - OMore ⊗ ?

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Curse of Dimensionality (CoD)

- OCoD is a generic term referring to the fact that many machine learning algorithms scale very poorly with d, in terms of performance.
 - OMany geometry concepts work differently in higher dimensional space.
 - One of those concepts is "locality".
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

4

5

The Vanishing Neighborhood

- OThe neighborhood cube quickly vanishes as *d* increases.
- OAs a result, your k-nearest neighbors are **no longer** in the neighborhood V_0 .
- OThese neighbors are no longer good at predicting the label of x_0 .
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

OCan we reduce the dimensionality of	
X without losing too much information?	
Song Liu (<u>song.liu@bristol.ac.uk)</u> , Lecturer in Data Science and A.I.	
7	
,	
Reduce the Dimensionality	
using Feature Transform	-
OWe want to find a feature transform	
$f(x) \in \mathbb{R}^m$, where $m \ll d$.	
O f transforms original input x to a subspace as $R^m \subset R^d$.	
OWe assume our dataset is centered :	-
$oldsymbol{\circ} rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i = oldsymbol{0}$	-
Olf dataset X' is not centered:	
OCentering: $\forall_i x_i = x_i' - \frac{1}{n} \sum_{i=1}^n x_i'$	
Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.	<u></u>
8	
Reduce the Dimensionality	
using Feature Transform	
OWhat is the optimal strategy of	
selecting $f(x)$?	
\circ Want to reduce dimension using f .	
Owhile preserving as much info as possible!	
OLet's look at this problem from data compression perspective!	
• Song Liu (<u>song.liu@bristol.ac.uk)</u> , Lecturer in Data Science and A.I.	

Linear Codec OSuppose $f(x) = Bx^T$, $B \in R^{m \times d}$. OSuppose $f'(z) = B'z^T$, $B' \in R^{d \times m}$. OWe can learn a codec by O $\min_{B,B'} \sum_{i=1}^n \left| \left| x_i^T - B'Bx_i^T \right| \right|^2$ OHowever, there are so many possible candidates B and B'! OSolving above problem is hard. • Song Liu (song Liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Linear Codec

- OWe need to put **constraints** on the **B** and **B'** to make our problem easier.
- One possible constraint is:
 - $\mathbf{O}B' = B^{\mathsf{T}}$
 - $\bigcirc BB' = BB^{\mathsf{T}} = I$
- OSuch a codec actually defines an **orthogonal projection of** *X*.
 - OShow **B**'**B** is an orth. projection matrix
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

13

Orthogonal Projection $x_i - x_i'$ $x_i - x_i'$ $x_i' = B^T B x_i^T$ $z_i = f(x_i) = B x_i^T \text{ is called an } \mathbf{embedding} \text{ of } x_i,$ $B \text{ is called } \mathbf{embedding} \text{ matrix.}$ $\cdot \text{ Song Liu } \underbrace{ \text{(song.liu@bristol.ac.uk)}}_{\text{Lecturer in Data Science and A.l.}$

14

Minimizing Projection Error

- $\left| \bigcap_{\boldsymbol{B},\boldsymbol{B},\boldsymbol{B}^{\mathsf{T}}=\boldsymbol{I}} \sum_{i=1}^{n} \left| \left| \boldsymbol{x}_{i}^{\mathsf{T}} \underline{\boldsymbol{B}}^{\mathsf{T}} \underline{\boldsymbol{B}} \boldsymbol{x}_{i}^{\mathsf{T}} \right| \right|^{2}$
 - OWe minimize square error between original data points and its projection.
- OThe above problem is equivalent to:
 - $\bigcap_{B,BB^{\mathsf{T}}=I} \operatorname{tr}(BX^{\mathsf{T}}XB^{\mathsf{T}})$
 - OLive demonstration
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

16

Minimizing Projection Error

- $\bigcap_{B,BB^{\top}=I} \operatorname{tr}(BX^{\top}XB^{\top})$
- Remarkably, this seemingly complex optimization has an analytical solution:
- OLet $[(\lambda_1, v_1), ..., (\lambda_m, v_m)]$ be sorted eigenvalue and eigenvec of X^TX .
 - $\bigcirc \lambda_1 \geq \lambda_2 \dots \geq \lambda_m$
 - $\widehat{OB} = [v_1, v_2, ..., v_m]^T$ is an optimal solution, suppose v_i is a column vector.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

17

Principle Component Analysis

- OAs X is a centered dataset, $OX^TX = n \cdot cov[x]$ (PC: show it!)
- OComputing \hat{B} via computing sorted eigenvectors of cov[x] is called Principle Component Analysis (PCA).
- Finally, embedding $\hat{f}(x_i) = \hat{B}x_i^T \in \mathbb{R}^m$ is called **PCA embedding** of x_i .
 - ${ ilde{O}}m$ dimensional "compression" we want!
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Refresh: Eigenvectors and Eigenvalues

- OGiven a square $n \times n$ matrix A, If there exists non-zero vector v such that
- $\bigcirc Av = \lambda v, v \in \mathbb{R}^n$
- OThen λ is an eigenvalue and v is an eigenvector of A.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

19

20

22

23

Conclusion

- Curse of Dimensionality
 - Od increases, performance may decrease.
- OPrinciple Component Analysis
 - OFinding an embedding matrix \hat{B} by computing sorted eigenvalue/vectors of cov[x].
 - OPCA Embedding: $\hat{f}(x_i) = \hat{B}x^T$.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.