Die ökologischen Folgen des Sandabbaus

Der Sandabbau

Sand ist nach Wasser der am zweithäufigsten geförderte Rohstoff weltweit und für die verschiedenste Industrien essentiell. Nach Schätzungen des UN-Umweltprogramm werden jährlich ca. 40-50 Mrd. Tonnen Sand produziert (Stand 2019). Dies entspricht etwa der doppelten Sedimentfracht aller Flüsse der Erde. Da sich Wüstensand auf Grund seiner Körnung nicht für die Nutzung im Bausektor eignet, wird für die Herstellung von Zement vor allem Sand aus Flussbetten oder Sandgruben gewonnen. Um der immensen Nachfrage gerecht zu werden, wird mittlerweile immer mehr Sand aus entlegeneren Regionen genutzt und auch aus dem Meer gewonnen.² Das gewinnbringende Geschäft fördert zusätzlich korrupte und Vorschriften und Gesetze missachtende Geschäftspraktiken, was zu einer unkontrollierten Entnahme von Sand führt.¹ Die daraus resultierenden gravierenden Umweltschäden wirken sich auf die soziale Ebene aus und fügen sich in ein bestehendes Geflecht aus Klimawandel und globalem Wirtschaftssystem ein.

Sandbildung

Sand entsteht durch die ca. 200 Mio. Jahre lange Erosion von Liefergestein. Wind, Wasser und Eis lösen, transportieren und sortieren Partikel heraus und lagern diese wieder ab. Industrieller Abbau findet erst seit ungefähr 200 Jahren statt und hat mittlerweile den Punkt erreicht an dem mehr abgebaut als gebildet wird. 1,2,4

Küstenerosion

- Weniger Schutz vor Fluten/Stürmen¹
- Meerwasser kann in Grundwasser eindringen und Böden versalzen⁵
- z.T. Verschwinden ganzer Inseln²
- Wasserläufe, Meeresströmung werden beeinflusst⁹

Abbau/Aufspühlung Küste und Meer

- Organismen werden beeinträchtigt,
 Sedimentzusammensetzung verändert sich,
 Schadstoffe werden gelöst⁴
- Jahrzehntelang Krater im Meeresboden⁴
- Schädigung Mangrovenwälder, diese bieten Lebensraum und Schutz vor Fluten, Erosion⁹

Fauna

- Großer Sedimenttransport beim Abbau kann Habitate zerstören⁶
- Durch zu viele Sedimente weniger Licht, beeinflusst Wachstum von Algen, Organismen⁷
- Veränderte Strömungen,
 Sedimentationszusammensetzung bedroht
 Habitate^{2,8}
- Verringerung Benthische Biomasse 80%: Fische, Seevögel verlieren Nahrungsgrundlage⁸
- Lärmbelästigung (auch an Land)⁸
- Beeinflussung Laichgründe, Routen⁶
- Zerstörung Habitate durch Schaffung Infrastruktur für Abbau⁶
- Generelle Änderung des Ökosystems (Wasserqualität, Temperatur⁶

Sedimenttransport

- Staudämme verknappen Wasser, Sedimente werden gestaut, Sand wird nicht nachgeführt.⁵
- Dadurch: Fließgeschwindigkeit höher, Erosion Küsten und Ufer¹
- Fehlende Nährstoffe im Küstenbereich und Überschwemmungsgebieten⁶

Abbau in Flüssen

- Sensibles Gleichgewicht von Strömung, Neigung, Sedimentgröße und –menge, jede Änderung hat Folgen⁶
- Kann Grundwasserneubildung beeinträchtigen²
- Grundwasser sinkt ab, dadurch weniger kaltes
 Wasser in Flüssen, Beeinträchtigungen für Tierarten^{1,6}
- Meerwasser kann eindringen⁵
- Veränderung PH-Wert und Gewässerstruktur⁷
- Pegel sinkt ab, Nebenflüsse können austrocknen⁷

Ufergebiet

- Überflutung von Auen, Überflutungsgebiet kann durch niedrigeren Wasserspiegel ausbleiben⁶
- Abbau in Ufernähe,
 Überschwemmungsgebiet fördert Erosion bei Überschwemmung⁶
- Bebauung, Verfüllung Überschwemmungsgebiet, Feuchtgebiet verhindert Versickerung und stört Wasserkreislauf¹

Landwirtschaft

- Wird durch Salzwasser bedroht⁵
- Ausweichen auf anderen
- Landwirtschaftsformen Bsp. Garnelenzucht²

(Beispielhafte Darstellung der ökologischen Folgen des Sandabbaus)

Soziale Auswirkungen der ökologischen Folgen

- Verschlechterung Lebensqualität durch Verschmutzung von Wasser, Luft und Böden¹⁰
- Verlust Lebensgrundlage für Landwirt*Innen, Fischer*Innen und Tourismus¹⁰
- Zerstörung von Eigentum ¹⁰
- Wassermangel 10
- Grenzverschiebungen und Konflikte auf Grund Landverlust²

Klimawandel

- Großer Energieaufwand, CO² Ausstoß bei Transport und Verarbeitung¹
- Externalisierung der Kosten und Risiken des Abbaus, geht einher mit externalisierten Kosten des Klimawandels^{2,12}
- Abbauregionen in Gebieten die weniger für Klimawandel verantwortlich sind, werden durch Abbau vulnerabler für Klimawandel^{2,12}

Deltas

Sinken auf Grund fehlender

Sedimentzufuhr ab¹

Aussichten

Die Krise um den Sandabbau ist mittlerweile ein vielfach betrachtetes Phänomen. Vor allem in Südostasien wird versucht dem Abbau mit Verboten entgegen zu wirken. Diese Maßnahmen fördern jedoch illegale und kriminelle Strukturen. Alternativ wird bereits an nachhaltigen Baustoffen geforscht, die dahinterliegenden Dynamiken bleiben jedoch bestehen. Die Komplexität der Problematik verhindert eine zeitnahe Lösung, zeigt jedoch auch beispielhaft auf, dass hinter einem Phänomen wie dem Sandabbau zahlreiche Ursachen stecken. Legt man den Fokus z.B. auf das globale Wirtschaftssystem, vertritt u.a. der Geograph David Harvey die Ansicht, dass die Abkehr von dem kapitalistischen System essentiell für das Überleben der Menschheit ist. Allerdings sei dies zu Zeit unrealistisch, weshalb eine langsame Transformation angestrebt werden müsse. La

Quellen: 1: John, Robert (2021): Sand: Konflikte um einen der wichtigsten Baustoffe. Jiftung Asienhaus. Online: https://www.asienhaus. Online: https://de.wecteezy.com/gratis-wektor/haus. Online: https://www.asienhaus. Online: https://de.wecteezy.com/gratis-wektor/fasienhaus. Online: https://de.wecteezy.com/gratis-wektor/fasienhaus. Online: