30. Теорема на Ферма. Теореми за средните стойности (Рол, Лагранж и Коши). Формула на Тейлър

0. Теорема: на Вайерщрас:

Ако функция f е дефинирана и непрекъсната в крайния и затворен интервал [a,b], то тя е ограничена в него и достига своя максимум и минимум.

1. Теорема на Ферма

Деф: Нека $f: D \to \mathbb{R}$, където $D \subseteq \mathbb{R}$.

- а. Казваме, че x_0 е **точка на локален минимум** за f(x), ако: $\exists \delta > 0$: $(x_0 - \delta, x_0 + \delta) \subset D$ и $f(x_0) \leq f(x)$, $x \in (x_0 - \delta, x_0 + \delta)$
- b. Казваме, че x_0 е **точка на локален максимум** за f(x), ако: $\exists \delta > 0: \quad (x_0 - \delta, x_0 + \delta) \subset D \text{ if } f(x_0) \ge f(x), \qquad x \in (x_0 - \delta, x_0 + \delta)$

Казваме, че x_0 е **точка на локален екстремум** за f(x), ако тя е точка на локален минимум или максимум.

Теорема: (НУ за локален екстремум, Ферма)

Ако x_0 е точка на локален екстремум за функцията f(x) и f(x) е диференциуема в x_0 , то $f'(x_0) = 0$

Доказателство:

Понеже
$$f(x)$$
 е диференциуема в т. x_0 , то съществува границата:
$$f'\big(x_0\big)\coloneqq\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

Нека x_0 е точка на локален минимум за f(x). Тогава $\exists \delta > 0$, т.ч. интервалът $(x_0 - \delta, x_0 + \delta)$ се съдържа в дефиниционната област на функцията и

$$f(x_0) \le f(x), \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

Тогава за всяко $x \in (x_0 - \delta, x_0 + \delta), x \neq x_0$ имаме, че:

$$\frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \le 0, & x \in (x_0 - \delta, x_0) \\ \ge 0, & x \in (x_0, x_0 + \delta) \end{cases}$$

Следователно:

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \quad \text{и} \quad \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Получихме, че

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$$

То $f'(x_0)$ е както ≤ 0 , така и ≥ 0 , следователно $f'(x_0) = 0$

Нека x_0 е тоочка на локален максимум за f(x). Тогава x_0 е точка на локален минимум за -f(x) и според вече доказаното $(-f)'(x_0) = 0$, т.е. $-f'(x_0) = 0$. Следователно $f'(x_0) = 0$.

2. Теореми за средните стойности

Теорема 1: Теорема на Рол

Нека f(x) е непрекъсната в [a,b] и диференциуема в (a,b) f(a) = f(b)

Ако f(a) = f(b), то $\exists c \in (a,b): f'(c) = 0$

Доказателство:

Щом f(x) е непрекъсната в [a,b], то от теоремата на Вайерщрас f(x) има най-голяма (НГ) и най-малка (HM) стойност. Ако поне една от тях се достига в т. $c \in (a,b)$, то тя непременно е точка на локален екстремум. Следователно от Теоремата на Ферма имаме, че f'(c)=0

Ако нито НГ, нито НМ стойност на f(x) не се достигат в т. от (a,b), то тогава това става в т. a или в т. b. Но f(a) = f(b), следователно:

$$f_{\rm H\Gamma} = f_{\rm HM} \Rightarrow f(x) \equiv const \Rightarrow f'(x) = 0 \quad \forall x \in (a,b)$$

Теорема 2: Теорема за крайните нараствания, Лагранж

Нека f(x) е непрекъсната в [a,b] и диференциуема в (a,b).

Тогава \exists c ∈ (a,b): f(b) - f(a) = f'(x)(b-a)

Доказателство:

Ще сведем твърдението до теоремата на Рол. Нека $h(x) \coloneqq f(x) - kx, \ x \in [a,b]$, като определяме константата k да е т.ч. h(a) = h(b). Имаме:

$$h(a) = h(b)$$
, r.e. $f(a) - ka = f(b) - kb \iff k = \frac{f(b) - f(a)}{b - a}$

Щом f(x) е непрекъсната в [a,b] и диференциуема в (a,b), то и h(x) е такава.

h(x) удовлетворява предположенията на теоремата на Рол. Прилатаме я и получаваме, че

$$\exists c \in (a,b): \ h'(c)=0$$
 Пресмятаме, че $h'(x)=f'(x)-k$, следователно $f'(c)-k=0$, т.е. $f'(c)=k=\frac{f(b)-f(a)}{b}$

Теорема 3: Обобщена теорема за крайните нараствания, Коши

Нека f(x) и g(x) са непрекъснати в [a,b] и диференциуеми в (a,b).

Нека $g'(x) \neq 0$ при $x \in (a,b)$. Тогава

$$\exists c \in (a,b): \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказателство:

Ще сведем твърдението до теоремата на Рол. Нека $h(x) \coloneqq f(x) - k. g(x), \ x \in [a, b]$, като определяме константата k така, че h(a) = h(b). Имаме:

$$h(a) = h(b) \text{ r.e. } f(a) - kg(a) = f(b) - kg(b)$$

$$\Leftrightarrow k[g(b) - g(a)] = f(b) - f(a) \stackrel{g(b) - g(a) \neq 0}{\Longleftrightarrow} k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Щом f(x) и g(x) са непрекъснати в [a,b] и диференциуеми в (a,b), то и h(x) е такава. h(x) удовлетворява предположенията на теоремата на Рол. Прилатаме я и получаваме, че $\exists c \in (a,b)$: h'(c) = 0

Пресмятаме, че h'(x) = f'(x) - kg'(x). Следователно

$$f'(c) - kg'(c) = 0$$
, T.e. $\frac{f'(c)}{g'(c)} = k = \frac{f(b) - f(a)}{g(b) - g(a)}$

Заб.

От направените предположения за g(x) имаме, че $g(a) \neq g(b)$, защото в противен случай от теоремата на Рол би следвало, че $\exists c \in (a,b) \colon g'(c) = 0$, което е в противоречие с направеното предположение, че $g'(x) \neq 0$ при $x \in (a,b)$.

3. Формула на Тейлър

Теорема 4: Формула на Тейлър

Нека f(x) притежава производни до ред n+1 включително в $(x_0-\delta,x_0+\delta)$, където $\delta>0$. Тогава за всяко $x\in(x_0-\delta,\,x_0+\delta)$ съществува c между x_0 и x, т.ч.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Разписана има вида:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

Доказателство

Лема 1: Нека f(x) притежава производна от ред n в т. x_0 . Тогава

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Притежава свойството $(T_n)^{(i)}(x_0) = f^{(i)}(x_0), i = 0, 1, ..., n.$

Д-во: Имаме

$$\begin{split} \left(\mathbf{T_{n}}\right)^{(i)}(x) &= \left(\sum_{k=0}^{n} \frac{f^{(k)}\big(x_{0}\big)}{k!} \big(x-x_{0}\big)^{k}\right)^{(i)} = \sum_{k=0}^{n} \frac{f^{(k)}\big(x_{0}\big)}{k!} \Big(\big(x-x_{0}\big)^{k}\Big)^{(i)} \\ &= \sum_{k=i}^{n} \frac{f^{(k)}(x_{0})}{k!} k(k-1) \dots \big(k-(i-1)\big) \big(x-x_{0}\big)^{k-i} \end{split}$$
 Следователно $\left(T_{n}\right)^{(i)} \big(x_{0}\big) = f^{(i)}(x_{0})$

Лема 1: Нека $\varphi(x)$ и $\psi(x)$ притежават производни до ред n+1 включително в $\left(\mathbf{x}_0-\delta,\mathbf{x}_0+\delta\right)$, където $\delta > 0$. Нека още

$$\varphi^{(i)}(x_0) = \psi^{(i)}(x_0) = 0, \qquad i = 0, 1, ..., n$$

$$A\psi^{(i)}(x) \neq 0$$
 за $x \in (x_0 - \delta, x_0 + \delta), x \neq x_0$ и $i = 0, 1, ..., n + 1$.

Тогава за всяко $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$ съществува c между x_0 и x, т.ч.

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(c)}{\psi^{(n+1)}(c)}$$

Д-во: Нека $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$ е произволно фиксирано. Прилагаме обобщената теорема за крайните нараствания на Коши (об.т.кр.н.) към φ и ψ в интервала с краища x_0 и x. Получаваме, че съществува c_1 , между x_0 и x, т.ч.

$$\frac{\varphi(x) - \varphi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\varphi'(c_1)}{\psi'(c_1)} = \frac{\varphi'(c_1) - \varphi'(x_0)}{\psi'(c_1) - \psi'(x_0)}$$

Аналогично прилагаме об.т.кр.н. към φ' и ψ' в интервала с краища x_0 и c_1 . Получаваме, че съществува c_2 , между x_0 и c_1 , т.ч.

$$\frac{\varphi'(c_1) - \varphi'(x_0)}{\psi'(c_1) - \psi'(x_0)} = \frac{\varphi''(c_2)}{\psi''(c_2)} = \frac{\varphi''(c_2) - \varphi''(x_0)}{\psi''(c_2) - \psi''(x_0)}$$

Продължавайки така получаваме, че съществуват т. $c_1, c_2, ..., c_{n+1}$ между x_0 и x, т.ч.

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi(x) - \varphi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\varphi'(c_1)}{\psi'(c_1)} =$$

$$= \frac{\varphi'(c_1) - \varphi'(x_0)}{\psi'(c_1) - \psi'(x_0)} = \frac{\varphi''(c_2)}{\psi''(c_2)} =$$

$$= \frac{\varphi''(c_2) - \varphi''(x_0)}{\psi''(c_2) - \psi''(x_0)} = \frac{\varphi'''(c_3)}{\psi'''(c_3)} =$$
...
$$= \frac{\varphi^{(n)}(x) - \varphi^{(n)}(x_0)}{\psi^{(n)}(x) - \psi^{(n)}(x_0)} = \frac{\varphi^{(n+1)}(c_{n+1})}{\psi^{(n+1)}(c_{n+1})}$$

Твърдението на Теорема 4 е тривиално за $x = x_0$, свежда се до $f(x_0) = f(x_0)$.

Нека $x \neq x_0$. Прилагаме Лема 2 с $\varphi(x) \coloneqq f(x) - T_n(x)$ и $\psi(x) \coloneqq \left(x - x_0\right)^{n+1}$. Функцията $\varphi(x)$ удовлетворява предположенията в Лема 2 благодарение на Лема 1, а относно $\psi(x)$ имаме:

$$\psi^{(i)}(x) = (n+1)n \dots (n-i+2)(x-x_0)^{n-i+1}, \qquad i = 0, 1, \dots, n+1$$

Лема 2 влече, че съществува c между x_0 и x, т.ч.

Лема 2 влече, че съществува
$$c$$
 между x_0 и $\frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(c)}{\psi^{(n+1)}(c)} \Rightarrow \varphi(x) = \frac{\varphi^{(n+1)}(c)}{\psi^{(n+1)}(c)} \psi(x)$

Следователно

$$f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$