Estruturas Discretas

Relações Introdução e definições

Profa. Helena Caseli helenacaseli@dc.ufscar.br

Relação

- É uma comparação entre objetos
 - Relaciona pares de objetos por meio de uma "associação" entre eles
 - É, portanto, um conjunto de pares ordenados
- Exemplos
 - Maior do que
 - É paralelo a
 - É subconjunto de
- Algumas relações abordadas neste curso
 - Relação de equivalência
 - Relação de ordem
 - Funções

Relação

- Par ordenado
- Produto cartesiano
- Relação (definição)
 - Autorrelação
 - Relações sobre mais de dois conjuntos
- Operações
- Representação gráfica
- Relação de igualdade
- Relação inversa

Par ordenado

- Um par de elementos da forma (x, y) onde
 - x é o primeiro elemento do par e
 - y é o segundo elemento do par
 - → A ordem é importante!
 - (a, b) = (c, d) se e somente se a = c e b = d
 - $(a, b) \neq (b, a)$ a menos que a = b
- Exemplo
 - Os conjuntos {1, 2} e {2, 1} são iguais
 - Mas os pares ordenados (1, 2) e (2, 1) não são iguais!

Produto cartesiano

 O produto cartesiano de dois conjuntos A e B é o conjunto de todos os pares ordenados (a, b) com o primeiro elemento em A e o segundo em B

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}$$

- → Denotado por $A \times B$ e $A^2 = A \times A$
- Exemplo
 - Sejam A = {1, 2} e B = {3, 4}
 - $A \times B = \{ (1, 3), (1, 4), (2, 3), (2, 4) \}$
 - B \times A = { (3, 1), (3, 2), (4, 1), (4, 2) }
 - $A^2 = \{ (1, 1), (1, 2), (2, 1), (2, 2) \}$
 - $A^3 = \{ (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2) \}$

Produto cartesiano

- IMPORTANTE
 - A ordem dos conjuntos altera o resultado do produto cartesiano

$$A \times B \neq B \times A$$

Para conjuntos A e B finitos, o número de elementos no produto cartesiano é:

$$|A \times B| = |A| * |B|$$

- Produto cartesiano de
 - Três conjuntos = conjuntos de triplas
 - ...
 - n conjuntos = conjunto de n-tuplas

Produto cartesiano

- Exemplo
 - Sejam A = { 1, 2 }, B = { a, b, c } e C = { x, y }
 - A × B × C = { (1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y), (2, a, x), (2, a, y), (2, b, x), (2, b, y), (2, c, x), (2, c, y) }
 - $|A \times B \times C| = |A| * |B| * |C| = 2 * 3 * 2 = 12$

Produto cartesiano

- O produto cartesiano pode ser estendido para qualquer número finito de conjuntos
- Para quaisquer conjuntos A_1 , A_2 , ..., A_n , o conjunto de todas as n-tuplas (a_1 , a_2 , ..., a_n) onde $a_1 ∈ A_1$, $a_2 ∈ A_2$, ..., $a_n ∈ A_n$ é chamado de produto cartesiano de A_1 , A_2 , ..., A_n n
 - Denotado por $A_1 \times A_2 \times ... A_n$ ou $\prod_{i=1}^n A_i$

Relação

 Uma relação R de A para B é um subconjunto de A × B

$$R \subseteq A \times B$$

- Uma relação é, portanto, um conjunto de pares ordenados
- Uma relação distingue os pares ordenados que satisfazem a "regra" que a define
 - x R y indica que o par ordenado (x, y) satisfaz a relação R
 - → Dizemos que *x* é R-relacionado a *y*
- → R pode ser definida com palavras ou listando seus elementos (nesse caso não é preciso uma "regra")

- Autorrelação (ou endorrelação)
 - Uma autorrelação R é um subconjunto de A × A

$$R \subseteq A \times A$$

ou

$$R \subseteq A^2$$

→ Nesse caso diz-se que R é uma relação sobre ou em A

Relações sobre mais do que dois conjuntos

• Sejam A = $\{1, 2, 3\}$, B = $\{a, b, c\}$, C = $\{x, y\}$ e R uma relação sobre A × B × C

$$R = \{(1, b,y), (1,c,x), (2,b,x), (2,b,y), (3,a,y)\}$$

 De forma geral, dados n conjuntos A₁, A₂, ..., A_n, uma relação n-ária R pode ser definida sobre o produto cartesiano

$$A_1 \times A_2 \times ... A_n$$

Sendo que R será formado por n-tuplas da forma
 (a₁, a₂, ..., a_n)

tal que
$$a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n$$

Relação

- Exemplo
 - Seja A = {1, 2}
 - $A^2 = \{ (1, 1), (1, 2), (2, 1), (2, 2) \}$
 - Os pares ordenados de A² que satisfazem as relações a seguir seriam:
 - Relação de "igualdade" = (1, 1) e (2, 2)
 - Relação de "menor do que" = (1, 2)

Relação

Sejam A = { 1, 2, 3, 4 } e B = { 4, 5, 6, 7 } os conjuntos a seguir representam relações entre quais conjuntos?

- a) $C = \{ (1, 1), (2, 2), (3, 3), (4, 4) \}$
- b) $D = \{ (1, 2), (3, 2) \}$
- c) $E = \{ (1, 4), (1, 5), (4, 7) \}$
- d) $F = \{ (4, 4), (5, 2), (6, 2), (7, 3) \}$
- e) $G = \{ (1, 7), (7, 1) \}$

RESPOSTAS

- a) Relação em A
- b) Relação em A
- c) Relação de A para B
- d) Relação de B para A
- e) É uma relação, mas não é de A para B nem de B para A

Relação

Para cada uma das relações binárias R definidas a seguir em N, sublinhe apenas os pares ordenados que pertencem a R:

```
a) x R y ↔ x = y + 1;
(2, 2), (2, 3), (3, 3), (3, 2)
b) x R y ↔ x divide y;
(2, 4), (2, 5), (2, 6)
c) x R y ↔ x é ímpar;
(2, 3), (3, 4), (4, 5), (5, 6)
d) x R y ↔ x > y<sup>2</sup>;
```

Um número natural x divide outro número natural y quando o resultado da divisão de y/x é um número natural.

d)
$$x R y \leftrightarrow x > y^2$$
; (1, 2), (2, 1), (5, 2), (6, 4), (4, 3)

Operações

- Todas as operações sobre conjuntos se aplicam às relações
 - Já que uma relação nada mais é do que um conjunto de pares ordenados
- Exemplo
 - Sejam R e S duas relações em \mathbb{N} definidas por x R y \leftrightarrow x = y e x S y \leftrightarrow x < y. Então
 - a) a relação R \cup S é descrita como: x (R \cup S) y \leftrightarrow x \leq y
 - b) a relação R' é descrita como: $x R' y \leftrightarrow x \neq y$
 - c) a relação S' é descrita como: $x S' y \leftrightarrow x \ge y$
 - d) o conjunto que representa a relação R ∩ S é Ø

Representação gráfica

- Matriz retangular
 - As linhas são nomeadas com os elementos de A e as colunas, com os de B
 - Cada posição da matriz terá 1 ou 0, dependendo se a (a ∈ A) está ou não relacionado com b (b ∈ B)
 - Exemplo
 - Sejam $A = \{1, 2, 3\} e B = \{x, y, z\}$

• R = { (1, y), (1, z), (3, y) } de A para B pode ser representada como

	X	У	Z
1	0	1	1
2	0	0	0
3	0	1	0

Representação gráfica

- Diagrama de setas (Diagrama de Venn)
 - Os elementos de A e B são representados em dois discos disjuntos e setas são inseridas de a (a ∈ A) para b (b ∈ B), se a estiver relacionado com b
 - Exemplo
 - Sejam $A = \{1, 2, 3\} e B = \{x, y, z\}$

• R = { (1, y), (1, z), (3, y) } de A para B pode ser representada como

Representação gráfica

- Grafo orientado para uma autorrelação
 - Os elementos do conjunto A são representados por vértices do grafo e setas são inseridas de a (a ∈ A) para b (b ∈ A), se a estiver relacionado com b
 - Exemplo
 - Seja A = {1, 2, 3, 4}
 - R = { (1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3) } em pode ser representada como

Representação gráfica

 Para cada uma das representações gráficas a seguir, liste os pares ordenados correspondentes

a)

c)	2
	3

b)

	a	b	С
1	0	1	1
2	1	0	0

RESPOSTAS

Representação gráfica

Seja A = { 1, 2, 3 }, represente graficamente cada

uma das relações a seguir em A

a)
$$x R y \leftrightarrow x = y$$

b)
$$x S y \leftrightarrow x < y$$

c) x (R
$$\cup$$
 S) y

Relação de igualdade

- Também conhecida como identidade ou relação diagonal
- A relação igualdade I sobre A é a relação em A definida por

$$I = \{ (a, a) | a \in A \}$$

- Lê-se: "O conjunto dos pares formados pelo mesmo elemento a, tal que a pertence ao conjunto A".
- Exemplo
 - Dado o conjunto A = {1, 2, 3, 4}
 - A relação de igualdade em A é I = { (1, 1), (2, 2), (3, 3), (4, 4) }

- Relação de igualdade Representação gráfica
 - Exemplo
 - Dado o conjunto A = {1, 2, 3}
 - A relação de igualdade em A é I = { (1, 1), (2, 2), (3, 3) }

	1	2	3
1	1	0	0
2	0	1	0
3	0	0	1

Relação inversa

- A inversa de uma relação R de A para B é a relação formada de B para A invertendo-se a ordem de todos os pares ordenados em R
- → Denota-se por R⁻¹

$$R^{-1} = \{ (x, y) \mid (y, x) \in R \}$$

- Exemplo
 - Sejam A = { 1, 2, 3 } e B = { x, y, z } conjuntos e R = { (1, y), (1, z), (3, y) }
 - $R^{-1} = \{ (y, 1), (z, 1), (y, 3) \}$

Relação inversa – Representação gráfica

- Exemplo
 - Sejam A = { 1, 2, 3 } e B = { x, y, z } conjuntos e R = { (1, y), (1, z), (3, y) }

	X	У	Z
1	0	1	1
2	0	0	0
3	0	1	0

Relação inversa – Representação gráfica

- Exemplo
 - Sejam A = { 1, 2, 3 } e B = { x, y, z } conjuntos e R = { (1, y), (1, z), (3, y) }
 - $R^{-1} = \{ (y, 1), (z, 1), (y, 3) \}$

	1	2	3
X	0	0	0
у	1	0	1
Z	1	0	0

 $\begin{array}{c|c}
A & B \\
\hline
1 & x \\
\hline
2 & y \\
\hline
3 & z
\end{array}$

Matriz transposta da matriz original

Diagrama obtido invertendose o sentido de todas as setas

Relação de igualdade

- Dado o conjunto A = { a, b, x, z }
 - a) Liste os elementos presentes na relação de igualdade (I) em A
 - b) Represente graficamente a relação I

Relação inversa

- Sejam A = { a, b, c } e B = { x, a, z } conjuntos e R = { (a, x), (a, a), (c, z), (b, a) }
 - a) Liste os elementos presentes na relação inversa R-1
 - b) Represente graficamente a relação R-1

RESPOSTAS

a)
$$R^{-1} = \{ (x, a), (a, a), (z, c), (a, b) \}$$

b)

	a	b	С
X	1	0	0
a	1	1	0
Z	0	0	1

