miguelfagundez.com

Teoría Sección 07 - Normalización.

- ¿Que es una dependencia funcional?

Decimos que un atributo B es dependiente funcional de A (pueden ser varios atributos de A) si el valor de A determina un valor simple de B en todo momento.

La notación sería algo como:

$$A \longrightarrow B$$

$$A_1, A_2, ..., A_n \longrightarrow B$$

Ejemplo:

studentID	dentID Curso Costo		NivelStud
100	Matematica	150	Avanzado
100	Fisica	175	Intermedio
150	Fisica	175	Basico
175	Quimica	120	Avanzado
175	Biologia	100	Intermedio
200	Matematica	150	Basico
210	Fisica	175	Avanzado

Curso "Fundamentos para el diseño de base de datos relacionales" Material teórico.

Instructor: Miguel Fagundez

miguelfagundez.com

- ¿Que es una dependencia transitiva?

Decimos que existe una dependencia transitiva cuando hay una dependencia intermedia. Tomando 3 atributos A, B y C y se cumple que A → B y B → C podemos decir que la dependencia transitiva existe en la tabla.

La notación sería algo como:

$$A \longrightarrow B \longrightarrow C$$

Ejemplo:

studentID	Residencia	Costo	
100	AlphaBeta	1100	studentID → Residencia
110	Perkin	1200	studentID Costo Dependencias Funcionales
120	Gatewarm	1150	Residencia Costo
130	Perkin	1200	Como resultado tenemos la siguiente dependencia
140	Lionside	1220	transitiva:
150	AlphaBeta	1100	studentId → Residencia → Costo
160	Lionside	1220	

- ¿Que es una normalización en BD?

Es una técnica que ayuda a desarrollar la estructura lógica de los datos de un sistema informático en el modelo relacional.

Fue introducida por E.F. Codd en 1972 donde define una estrategia de diseño de abajo hacia arriba, partiendo de los atributos y estos se van agrupando en tablas según su afinidad.

miguelfagundez.com

Los objetivos de la normalización son:

- 1. Controlar la redundancia de la información.
- 2. Evitar pérdidas de información.
- 3. Mantener la consistencia de los datos.
- 4. Capacidad para representar toda la información.
- ¿Cuáles son los pasos para realizar la normalización?

Al aplicar esta técnica nos debemos asegurar que cada relación o tabla cumple con ciertas reglas o condiciones.

Si alguna regla o condición no se cumple, entonces esa tabla se debe descomponer en varias relaciones que si cumplan con esa regla.

Normalmente, con realizar una normalización de <u>1era, 2da, y 3era</u> forma es suficiente para tener un modelo estable y menos susceptible a las anomalías estudiadas en este curso.

En general, los pasos son:

- 1. Descomponer todos los grupos de datos en atributos atómicos (1FN), además de que cada tabla debe poseer su PK.
- 2. Eliminar todas las relaciones en la que los datos no dependan completamente de la llave primaria de la tabla (2FN).
- 3. Eliminar todas las relaciones que contengan dependencias transitivas (3FN).

miguelfagundez.com

- 1era Forma Normal (1FN o 1NF).

Descomponer todos los grupos de datos en atributos atómicos, buscar redundancias y la tabla debe poseer, al menos, una clave primaria.

Chequeamos que nuestros datos no sean compuestos, algunos ejemplos comunes:

- Nombre de personas.
- Direcciones.
- Números de teléfonos.

Ejemplo:

idEmp	Nombre	Telefono	Verificamos:
e0001	Pablo Perez	444-4444	- Datos atómicos
e0002	Andrea Vargas	111-1111, 222-2222	- Redundancias 🙂

>	idEmp	Nombre	Apellido	Telefono
	e0001	Pablo	Perez	444-4444
	e0002	Andrea	Vargas	111-1111
	e0002	Andrea	Vargas	222-2222

Verificamos:

- PK 😃
- Datos atómicos
- Redundancias

miguelfagundez.com

		idEmp	Telefono	Verificamos:
idEmp Nombre	Apellido	e0001	444-4444	- PK
e0001 Pablo	Perez	e0002	111-1111	- Datos
e0002 Andrea	Vargas	e0002	222-2222	- Redur
		C0002		

- 2da Forma Normal (2FN o 2NF).

La tabla debe estar en 1FN y a su vez cada atributo no clave es total y funcionalmente dependiente de su clave primaria.

Debemos chequear las dependencias funcionales de la tabla.

A: clave primaria.

B: los campos de la tabla.

Ejemplo:

idEmp	Nombre idArea		NroHoras
c0001	Pablo	a0001	45
c0002	Andrea	a0002	30
c0003	Carlos	a0003	32

Buscamos las dependencias funcionales:

idEmp → Nombre
idEmp, idArea → NroHoras

miguelfagundez.com

idEmp	Nombre
c0001	Pablo
c0002	Andrea
c0003	Carlos

idEmp	idArea	NroHoras
c0001	a0001	45
c0002	a0002	30
c0003	a0003	32

Buscamos descomponer en diferentes tablas tantas dependencias funcionales consigamos (hay que analizarlas).

- <u>3era Forma Normal (3FN o 3NF).</u>

La tabla debe estar en 2FN y a su vez ningún atributo no clave debe estar envuelto en una dependencia transitiva.

Debemos chequear las dependencias transitivas de la tabla.

$$A \longrightarrow B \longrightarrow C$$

A: clave primaria o campos de la tabla.

B, **C**: el resto de los campos de la tabla.

Ejemplo:

NTorneo	Año	NGanador	DOB	Dependencias Funcionales:
Master 1	1998	Carlos	14 Marzo 1980	
Master 2	1998	Andres	12 Diciembre 1979	NTorneo, Año → NGanador
Master 1	1999	Carlos	21 Enero 1981	NGanador>DOB
Master 3	1999	Susana	13 Febrero 1977	Por tanto, DOB depende
Master 2	1999	Andrea	14 Mayo 1980	transitivamente de la clave primaria.

Curso "Fundamentos para el diseño de base de datos relacionales" Material teórico.

Instructor: Miguel Fagundez

miguelfagundez.com

13 Abril 1978	is	Lu	000	2000	ster 1	N
	13 Abril 1978	is 13 Abril 1978	Luis 13 Abril 1978	Luis 13 Abril 1978	2000 Luis 13 Abril 1978	Master 1 2000 Luis 13 Abril 1978

NGanador	DOB	
Carlos	14 Marzo 1980	
Andres	12 Diciembre 1979	
Carlos	21 Enero 1981	
Susana	13 Febrero 1977	
Andrea	14 Mayo 1980	
Luis	13 Abril 1978	

NTorneo	Año	NGanador
Master 1	1998	Carlos
Master 2	1998	Andres
Master 1	1999	Carlos
Master 3	1999	Susana
Master 2	1999	Andrea
Master 1	2000	Luis

A pesar de poner la tabla en 3FN, notamos que las mismas no se encuentran 1FN, ya que la primera tabla carece de clave primaria y en la segunda puede ocurrir una anomalía de modificación. Por tanto corregimos ambos casos y tenemos:

ID	NGanador	DOB
1	Carlos	14 Marzo 1980
2	Andres	12 Diciembre 1979
3	Carlos	21 Enero 1981
4	Susana	13 Febrero 1977
5	Andrea	14 Mayo 1980
6	Luis	13 Abril 1978

NTorneo	Año	IDfk
Master 1	1998	1
Master 2	1998	2
Master 1	1999	3
Master 3	1999	4
Master 2	1999	5
Master 1	2000	6

La tabla se encuentra en 3FN y podemos pasar a la <u>fase de implementación</u> en un manejador de base de datos como Oracle, SQLite o MySQL.