## Predicting COVID-19 Using Demographic Data

Caroline Clark, Feras Atwal, James Lee October 30<sup>th</sup>, 2020



# Predicting COVID-19 Using Demographic Data

Caroline Clark, Feras Atwal, James Lee October 30<sup>th</sup>, 2020



# Can we predict COVID-19 severity using demographic data?



## Project Pipeline



DATA COLLECTION



DATA PRE-PROCESSING



DATA VISUALIZATION



**MODELING** 



MAKING THE DATA INTERACTIVE

### **Data Collection**

# Census Bureau



#### County-level

#### Area

Population Density

#### Demographics

- Age
- Gender
- Race

#### **Economic Indicators**

- Income Per Capita
- Household Income
- Median Worker Income

#### **Health Indicators**

Obesity Rates

#### COVID-19

- Tests
- Cases
- Fatalities



# Five States with the Most COVID-19 Data

# COVID-19 Statistics Vary Widely Among Counties





# High COVID Case Counties Likely to be Younger, Have Lower Income Per Capita





# Low COVID Case Counties Likely to have Insurance Coverage, Lower Pop. Density





## Modeling Successes and Challenges

| Region          | Best Regression<br>R2 Score | Best Classification<br>Accuracy Score | Classification<br>Baseline |
|-----------------|-----------------------------|---------------------------------------|----------------------------|
| All Five States | 47%                         | 63%                                   | 42%                        |
| California      | 75%                         | 93%                                   | 66%                        |
| Florida         | 76%                         | 71%                                   | 71%                        |
| Illinois        | 32%                         | 73%                                   | 54%                        |
| New York        | 81%                         | 94%                                   | 81%                        |
| Texas           | 49%                         | 59%                                   | 40%                        |

#### Predictors Varied in State-Level Models





#### Predictors Varied in State-Level Models





#### Predictors Varied in State-Level Models





## Conclusions and Key Challenges







Ongoing event

Widely varying data

More features

# Kenosha tago Gary Evansville

Demo: Interacting with Demographic Data and Classification Model

# Thank you

# Appendix

## In California, Testing and Race Emerged as Strongest Predictors





# In Florida, Race Emerged as Strongest Predictors





## In Illinois, Age and Being Insured Emerged as Strongest Predictors





# In New York, Race and Age Emerged as Strongest Predictors





# In Texas, Race and Income Emerged as Strongest Predictors





## Highest Death Rate Counties by State



## Highest Case Counties by State



### Lowest Case Counties by State



## Lowest Cases/100 People Counties by State



## Highest Cases/100 People Counties by State

