- 1.
- (i) Deduce the Lewis structure of PH₄⁺.

 $\begin{bmatrix} H & -P - H \\ H & -P \end{bmatrix}$

(ii) Predict, giving a reason, the bond angle around the phosphorus atom in PH_{4^+} .

The bond angle is 109.5° because there are 4 electron domain and all of them are bonding pairs so the shape 3 terrachedral (iii) Predict whether or not the P-H bond is polar, giving a reason for your choice.

P-H bond is nonpolar, because I and H have hearly the same electronegativity.

Lewis (electron dot) structures are useful models.

Draw the Lewis (electron dot) structures of PF₃ and PF₄ and use the VSEPR theory to deduce the molecular geometry of each species.

Predict with a reason, whether the molecule PF3 is polar or non-polar.

PF, is polar, because the shape of PFz is

3. Trigonal paramydal and is not symmetric. So the dispoles cannot a. Draw the Lewis structures of oxygen, Oz, and ozone, Oz. cancel out

$$0 = 0$$
 $0 = 0$

b. State the different bond lengths and strengths between the oxygen atoms in O_2 and O_3 in the ozone layer affect radiation reaching the Earth's surface.

The resonance structure of O_3 is O_4 O_5 O_6 O_7 O_7 the bond (eight in O_3 is between single bond and double bond, longer than that of O_2 , so the bond strength in O_3 is smaller than that of O_2

b. Predict, using the VSEPR theory, the geometry of the BrO₃-ion and the O-Br-O

bond angles.

Geometry: trigonal Pyramidial

4 classion domain, 3 bondry pairs Reason: O-Br-O angle: \o]*

a. Draw the Lewis (electron dot) structure of chloromethane CH3Cl.

Hack Car

b. Predict the shape of the chloromethane molecule and the H-C-H bond angle.

Shape: tetrahedral

Bond angle:

Bond angle:
c. Explain why chloromethane is a polar molecule.

Because the dipoles in C-H and e-cl bonds are different, the dipoles cannot be canceled, thus 6. Othod is a polar molecule.

(a) Sketch and state the names of the shapes of the following molecules.

(i) SiH₄

(ii) PH₃

(4)

(b) State the bond angle in SiH₄ and explain why it is greater than that in PH₃.

(2)

(a) (i) H-Si-H tetrahedrah

(fi) H
H-P-H
trigonal pyramidial
H-Si+H
Si+H
PHk
H

Si+H
Flettron Domain 4
Flettron Domain 4
Flettron Domain 4
Flettron Pomain 4
Flettron Phys because
bond mysle 109.5° 107

Predict the shape and bond angles of the following molecules: (a) H_2S (b) CF_4 (c) BCI_3 S+7-2/s=B(f) NH_2CI (g) OF_2 (a) $H-\overline{S}-H$ linear (d) $\overline{F}-N-\overline{F}$ pyramidial ISO(b) $(\overline{F}+\overline{C}-\overline{F})$ tetrahedral (e, |CI|) trijonal pyramidial ISO(c) H-C=NI linear ISO(f) H-C=NI linear ISO(f) H-C=NI linear ISO(f) H-C=NI linear ISO(g) IFI IFI IOF_1 III IOF_2 III III IOF_3 III III

(g) OF₂ 7×2+6/2=10.

(d) NF₃

8.

9.

7.

Predict the shape and bond angles of the following ions: (a) CO_3^{2-} (b) NO_3^{-} $\exists + | + 6 \times 3$ (c) NO_2^{+} $= | 6 \times |$

(c) HCN

(a) $\begin{bmatrix} 10 \\ c - \overline{0} \end{bmatrix}$ Trigonal planar $\begin{bmatrix} 10 \\ 0 \end{bmatrix}$ Planar $\begin{bmatrix} 10 \\ 0 \end{bmatrix}$ Planar $\begin{bmatrix} 10 \\ 0 \end{bmatrix}$ Co $\begin{bmatrix} \overline{0} = N = \overline{0} \end{bmatrix}$ Planar $\begin{bmatrix} 10 \\ 185 \end{bmatrix}$ (d) $\begin{bmatrix} 10 \\ 0 \end{bmatrix}$ V-shape $\begin{bmatrix} 19 \\ 19 \end{bmatrix}$

Put the following species in order of increasing carbon-oxygen bond length:

CO CO₂ CO₃²⁻ CH₃OH

 $|C \equiv 0| \qquad |C \equiv 0| \qquad |C = 0| \qquad |C =$

1

CHAOH 7 CO2 > COL - CO