Step	Algorithm: $C := AB^T + BA^T + C$
1a	$\{C = \widehat{C}$
4	$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$
3	while $m(C_{BR}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C) \end{array} \right\}$
	Determine block size b
5a	$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ A_1 \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ B_1 \\ \hline B_2 \end{array}\right) $ where C_{11} is $b \times b$, A_1 and B_1 have b rows
	$\left(\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6	$ \left\{ \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ A_2B_0^T + \widehat{C}_{20} & A_2B_1^T + \widehat{C}_{21} & A_2B_2^T + B_2A_2^T + \widehat{C}_{22} \end{pmatrix} $
	$C_{11} := A_1 B_1^T + B_1 A_1^T + C_{11}$
8	$C_{10} := A_1 B_0^T + C_{10}$
	$C_{21} := B_2 A_1^T + C_{21}$
7	$ \left\{ \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} C_{00} & * & * \\ A_1 B_0^T + \widehat{C}_{10} & A_1 B_1^T + B_1 A_1^T + \widehat{C}_{11} & * \\ A_2 B_0^T + \widehat{C}_{20} & A_2 B_1^T + B_2 A_1^T + \widehat{C}_{21} & A_2 B_2^T + B_2 A_2^T + \widehat{C}_{22} \end{pmatrix} \right\} $
5b	$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right) , \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c c} A_0 \\ \hline A_1 \\ \hline A_2 \end{array}\right) , \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline B_1 \\ \hline B_2 \end{array}\right) $
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{BR}) < m(C))$
1b	$\{C := AB^T + BA^T + \widehat{C}.$

Step	Algorithm: $C := AB^T + BA^T + C$	
1a	{	1
4		
4	where	
2	WHELE	}
3	while do	J
<u> </u>	(do	1
2,3	^	}
	Determine block size b	
5a		
	where	
		1
6		}
8		
J		
7		
		1
5b		
2		
	endwhile	
2,3		}
1b	{	7
		_

Ia $\{C = \hat{C}\}$ 4 where 2 \lambda 3 while do 2.3 \lambda 5a where 6 \lambda 8 \lambda 7 \lambda 5b \lambda 2 \lambda endwhile \lambda 2.3 \lambda \tau(\circ) 1b $\{C := AB^T + BA^T + \hat{C} = A$	Step	Algorithm: $C := AB^T + BA^T + C$	
where 2	1a	$\{C=\widehat{C}$	}
2	4	whove	
2,3 {	2	where {	$\left. \right\}$
Determine block size b where {	3	while do	
5a where 6 8 7 5b 2 endwhile 2,3 A-(2,3		$\left. \right\}$
where 6 8 7 5b 2 endwhile 2,3		Determine block size b	
6 { 8	5a		
8 7 {		where	
7 { 5b 2 { endwhile 2,3 {	6		$\left. \right\}$
5b 2 { endwhile 2,3 {	8		
2 { endwhile 2,3 {	7		$\left. \begin{array}{c} - \\ \end{array} \right\}$
endwhile 2,3 {	5b		
$2,3 \left\{ \qquad \qquad \land \neg (\qquad) \right\}$	2		$\left. \begin{array}{c} - \\ \end{array} \right\}$
		endwhile	
1b $\{C := AB^T + BA^T + \widehat{C}.$	2,3	$\bigg \bigg\{ \hspace{1cm} \wedge \neg (\hspace{1cm}) \hspace{1cm} \\$	$\left. \right\}$
	1b	$\{C := AB^T + BA^T + \widehat{C}.$	}

4 where 2 $ \begin{cases} \begin{pmatrix} C_{TL} & * \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \hat{C}_{TL} & * \\ A_B B_T^T + \hat{C}_{BL} & A_B B_B^T + B_B A_B^T + \hat{C}_{BR} \end{pmatrix} $ 3 while do $ \begin{pmatrix} C_{TL} & * \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \hat{C}_{TL} & * \\ A_B B_T^T + \hat{C}_{BL} & A_B B_B^T + B_B A_B^T + \hat{C}_{BR} \end{pmatrix} \land $ Determine block size b ia where $ \begin{pmatrix} 6 & \\ 8 & \\ 8 & \\ 8 & \\ 8 & \\ 8 & \\ 8 & \\ 8 & \\ 6 & \\ 8 & \\ $
where $ \begin{pmatrix} C_{TL} & * \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{C}_{TL} & * \\ A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{pmatrix} $ while $ \begin{pmatrix} C_{TL} & * \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{C}_{TL} & * \\ A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{pmatrix} \wedge $ Determine block size b where $ \begin{pmatrix} b & \\ c &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \frac{1}{\sqrt{C_{BL}}} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge \\ \text{Determine block size } b \\ \text{Sa} \qquad \text{where} \\ 6 \qquad \left\{ \begin{array}{c c} C_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge \\ \text{Solution} \qquad \text{Solution} $
Determine block size b where {
Determine block size b where {
where 6 {
6 {
8
7 \{ \}
ib Sib
$ \begin{pmatrix} C_{TL} & * \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{C}_{TL} & * \\ A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{pmatrix} $
endwhile
$,3 \left\{ \left(\frac{C_{TL}}{C_{BL}} \middle * \atop C_{BR} \right) = \left(\frac{\widehat{C}_{TL}}{A_B B_T^T + \widehat{C}_{BL}} \middle A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \right) \land \neg () \right\}$
b $\{C := AB^T + BA^T + \widehat{C}.$

Step	Algorithm: $C := AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
4	where	
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$	$\left. \right\}$
3	while $m(C_{BR}) < m(C)$ do	
2,3	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C) $	
	Determine block size b	
5a	and and	
	where (_
6		$\left. ight\}$
8		
7		$\left. \begin{array}{c} - \\ \end{array} \right\}$
5b		
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $	igg
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{BR}) < m(C))$	$\left. \begin{array}{c} \\ \end{array} ight\}$
1b	$\{C := AB^T + BA^T + \widehat{C}.$	}

Step	Algorithm: $C := AB^T + BA^T + C$
1a	$\{C = \widehat{C}\}$
4	$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows
2	$ \left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $
3	while $m(C_{BR}) < m(C)$ do
2,3	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C) $
	Determine block size b
5a	whore
	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{BR}) < m(C)) \right\}$
1b	$\{C := AB^T + BA^T + \widehat{C}.$

Step	Algorithm: $C := AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
4	$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows	
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$	igg
3	while $m(C_{BR}) < m(C)$ do	
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C)$	$\left. \begin{array}{c} \\ \end{array} \right\}$
5a	Determine block size b $ \begin{pmatrix} C_{TL} & * \\ C_{BL} & C_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ C_{20} & C_{21} & C_{22} \end{pmatrix}, \begin{pmatrix} A_T \\ A_B \end{pmatrix} \rightarrow \begin{pmatrix} A_0 \\ A_1 \\ A_2 \end{pmatrix}, \begin{pmatrix} B_T \\ B_B \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \\ B_1 \\ B_2 \end{pmatrix} $ where C_{11} is $b \times b$, A_1 and B_1 have b rows	
6		$\left. \begin{array}{c} \\ \end{array} \right\}$
8		
7		$\left. \begin{array}{c} \\ \end{array} \right\}$
5b	$ \left(\begin{array}{c c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c c} A_0 \\ \hline A_1 \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline B_1 \\ B_2 \end{array}\right) $	
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $	igg
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{BR}) < m(C))$	$\left. \right\}$
1b	$\{C := AB^T + BA^T + \widehat{C}.$	}

Step	Algorithm: $C := AB^T + BA^T + C$
1a	$\{C = \widehat{C}$
4	$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $
3	while $m(C_{BR}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C) \end{array} \right\}$
5a	Determine block size b $ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ A_1 \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ B_1 \\ \hline B_2 \end{array}\right) $ where C_{11} is $b \times b$, A_1 and B_1 have b rows
6	$ \left\{ \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ C_{20} & C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ A_2 B_0^T + \widehat{C}_{20} & A_2 B_1^T + \widehat{C}_{21} & A_2 B_2^T + B_2 A_2^T + \widehat{C}_{22} \end{pmatrix} \right\} $
8	
7	
5b	$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c} A_0 \\ \hline A_1 \\ A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline B_1 \\ B_2 \end{array}\right) $
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{BR}) < m(C)) \right\} $
1b	$\{C := AB^T + BA^T + \widehat{C}.$

Step Algorithm:
$$C := AB^T + BA^T + C$$

1a $\{C = \widehat{C}\}$

4 $C \to \left(\frac{C_{TL}}{C_{BL}} | \frac{*}{C_{BR}} | \text{s} \times (1 + C_{BR}) \right)$, $A \to \left(\frac{A_T}{A_B}\right)$, $B \to \left(\frac{B_T}{B_B}\right)$

where C_{BR} is 0×0 , A_R and B_R have 0 rows

2 $\left\{\left(\frac{C_{TL}}{C_{BL}} | \frac{*}{C_{BR}} | \text{s} \times (1 + C_{BR}) \right)$

3 while $m(C_{BR}) \times m(C)$ do

2,3 $\left\{\left(\frac{C_{TL}}{C_{BL}} | \frac{*}{C_{BR}} | \text{s} \times (1 + C_{BL}) \right) \right\}$

Determine block size b

$$\left(\frac{C_{TL}}{C_{BL}} | \frac{*}{C_{BR}} | \text{s} \times (1 + C_{BL}) \right)$$

$$\left(\frac{C_{OO}}{C_{II}} | \frac{*}{*} \times (1 + C_{BL}) \right)$$

$$\left(\frac{C_{OO}}{C_{II}} | \frac{*}{*} \times (1 + C_{II}) \right)$$

$$\left(\frac{C_{O$$

$$\begin{array}{lll} & & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\$$

Algorithm: $C := AB^T + BA^T + C$
$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows
while $m(C_{BR}) < m(C)$ do
Determine block size b $ \begin{pmatrix} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} C_{00} & * & * \\ C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{pmatrix}, \begin{pmatrix} A_T \\ A_B \end{pmatrix} \rightarrow \begin{pmatrix} A_0 \\ A_1 \\ A_2 \end{pmatrix}, \begin{pmatrix} B_T \\ B_B \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \\ B_1 \\ B_2 \end{pmatrix} $ where C_{11} is $b \times b$, A_1 and B_1 have b rows
$C_{11} := A_1 B_1^T + B_1 A_1^T + C_{11}$ $C_{10} := A_1 B_0^T + C_{10}$ $C_{21} := B_2 A_1^T + C_{21}$
$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c} A_0 \\ \hline A_1 \\ A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline B_1 \\ B_2 \end{array}\right) $
endwhile

Algorithm: $C := AB^T + BA^T + C$

$$C o \left(\begin{array}{c|c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) , A o \left(\begin{array}{c|c} A_T \\ \hline A_B \end{array} \right) , B o \left(\begin{array}{c|c} B_T \\ \hline B_B \end{array} \right)$$

where C_{BR} is 0×0 , A_B and B_B have 0 rows

while $m(C_{BR}) < m(C)$ do

Determine block size b

$$\left(\begin{array}{c|c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c|c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right) , \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ \hline A_1 \\ \hline A_2 \end{array}\right) , \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline B_1 \\ \hline B_2 \end{array}\right)$$

where C_{11} is $b \times b$, A_1 and B_1 have b rows

$$C_{11} := A_1 B_1^T + B_1 A_1^T + C_{11}$$

$$C_{10} := A_1 B_0^T + C_{10}$$

$$C_{21} := B_2 A_1^T + C_{21}$$

$$\left(\begin{array}{c|c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} C_{00} & * & * \\ \hline C_{10} & C_{11} & * \\ \hline C_{20} & C_{21} & C_{22} \end{array}\right) , \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c} A_0 \\ \hline A_1 \\ A_2 \end{array}\right) , \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline B_1 \\ B_2 \end{array}\right)$$

endwhile