Predicting NFL Play Calling

Using Historic Play-By-Play Data

Executive Summary

- Top NFL teams look to improve strategic decision making
- Detailed NFL Play-by-Play data is available
- Machine learning models trained on past season
- A neural network model predicted 72.2% of the 2022 season's plays

Research Question:

What is the next type of play (run or pass) given the current game state and previous plays?

Dataset

- Made available through the *nflfastR* package
- Contains:
 - 24 seasons
 - □ **6,418** games
 - □ **1,148,717** plays
- Each play has **300**+ variables

Utility

- **Defense:** Predict offensive play to limit success
- Offense: Understand current play call predictability and evaluate
- NFL: Increased strategic decision making
 - = Increased entertainment value
 - = Increased viewership

Methodology

Naive Bayes

- Classification algorithm based on *Bayes' Theorem*
- Assumes independent variables
- Calculates probability per variable

$$P(A|B) = \frac{P(A|B) P(A)}{P(B)}$$

Random Forest

- Ensemble of decision trees
- Subset of samples and features per tree
- Aggregates predictions of every tree

Feed Forward Neural Network

- Basic artificial neural network
- Composed of input, hidden, and output layers of neurons
- Weights given to inputs and activation function applied with neuron

Analysis

Pass and	Run Pe	ercentage	hy Te:	am and	Season	1999-202	2

									ass and		ercent													
ARI	60.9		58.2	58.8	58.8	55.1	66.7	58.1		65.0	64.1	65.6	61.4	65.6	60.5	61.2	59.4	63.7	62.2	61.2	61.0	56.0	57.4	62.4
ATL	59.7	62.4	55.7	50.1	54.0	46.1	49.1	46.7	61.4	46.6	57.5	56.3	59.1	63.5	69.1	64.1	61.7	58.5	56.6	65.9	67.8	62.8	61.5	45.0
BAL	57.8	49.3	54.8	55.7	46.9	50.8	57.4	54.9	57.2	45.5	52.8	53.5	56.4	56.4	61.6	57.2	64.6	66.6	57.1	52.9	46.7	45.4	56.8	50.5
BUF	51.8	55.4	60.0	63.5	57.0	50.6	54.1	53.4	51.3	54.6	53.9	58.0	60.8	55.6	52.0	61.1	50.6	51.6	52.8	54.2	55.4	63.4	60.6	60.5
CAR	64.2	64.2	63.6	53.6	48.5	57.9	50.9	58.3	54.8	48.3	49.2	55.5	56.0	53.7	52.5	55.1	51.0	57.3	53.8	59.6	64.4	59.7	59.4	50.6
CHI	65.0	58.0	53.3	60.8	55.8	55.8	49.4	52.2	59.2	56.8	61.9	56.4	53.5	54.0	60.7	65.6	54.7	61.1	55.1	55.9	61.6		56.3	44.6
CIN	58.2	51.2	58.9	59.9	54.4	56.8	56.7	56.9	59.4	57.9	51.3	59.7	56.7	59.0	57.9	53.1	55.0	57.9	60.5		63.5	60.8	60.0	63.7
CLE	63.7	60.9	55.3	59.6	57.6	52.6	58.4	60.6	56.8	56.2	48.8	56.2	59.9	60.6	68.0	53.0	64.0	64.6	62.0	60.6	60.0	52.8	54.6	52.8
DAL	52.9	51.0	47.0	55.4	52.7	55.1	51.6	54.1	57.6	59.9	57.9	59.1	60.4	67.0	65.6	51.1	58.3	52.0	52.7	57.6	58.5	61.4	60.5	53.3
DEN	55.8	54.6	53.6	57.3	48.9	51.3	48.9	50.6	56.5		57.7		45.7	56.7	61.8	60.3	60.3	60.6	58.1		57.7	57.9	56.5	59.3
DET	65.4	54.9	66.0	62.8	61.9	57.7	58.0	68.8	66.8	61.4	60.5	62.3	67.5	66.4	60.3	63.4	66.3	65.1	63.6	60.9		63.1	59.7	56.6
GB	62.7	61.1	57.2	58.4	49.4	58.5	62.6	60.9	61.0	57.3	59.8	58.5		59.6	57.6	57.6	59.7	65.5	61.9	67.9	61.2	57.3	59.5	57.4
HOU				55.4	53.0	52.2	54.4	55.3	57.3	57.8	60.3	59.3	48.1	54.9		48.8	59.3	57.2	56.4	56.3	58.4	64.2	58.4	61.3
IND	58.6	57.9	57.2	59.5	57.4	57.8	56.3	56.2	58.1	62.8	64.1	64.1	60.1	61.4		63.6	63.5		55.1	63.0	54.3	56.9	53.4	60.6
JAX	52.9	55.8	61.6	52.6	53.0	55.3	53.1	49.1	50.2	58.1	56.4	50.1	51.9	64.2	63.1	63.9	65.5	63.1	51.4	59.0		66.4		59.9
KC	50.6		55.8	52.1	56.0	55.0	51.6	50.2		60.8	57.1	48.1	52.7	50.7	58.1	56.9	55.0	60.2	59.9	62.1		63.8	63.3	62.4
LA	59.1	62.7	59.0	66.6	62.0		63.3	60.5	61.1	58.1	58.8	59.7	60.1	59.7	56.7	59.2	54.1		56.8	57.3	62.6	56.6	60.4	59.6
LAC	60.7	63.4	56.9	55.1	57.1	48.6	54.4	49.0	51.3	56.0	57.4	56.3	58.8	58.8	53.6	60.7	64.7	61.1	59.8	60.0	63.7	59.1	63.4	66.1
LV	54.3	49.2	55.6		57.2	65.7	64.1	58.5	49.4	50.1	56.8	52.1	54.4	63.7	56.7	66.2	64.1	60.4	61.9	61.6	56.2	56.2	63.4	59.5
MIA	58.6	49.1	51.1	48.0	50.1		57.0	61.5	60.3	55.0	53.3	57.8	53.3	56.3	65.6	62.3	65.4	56.6	64.3	58.4	66.5	58.9	60.5	62.9
MIN	57.4	55.9	61.5	56.2	53.4	61.7	60.2	57.0	48.6	49.4	56.0	55.6	55.8	52.3	58.7	58.3	51.8	63.1	55.1	65.1	52.6	54.6	58.7	65.0
NE	59.4	58.8	54.3	62.3	55.9	50.1	58.0	55.4	58.9	54.1	58.4	55.9	60.0	57.3	58.7		66.3	57.4	60.8	55.9	60.2	49.2	55.1	59.1
NO	56.6	53.1	59.3	57.9	56.5	59.7	58.6	58.4	63.4	62.3	56.1	65.6		66.0	63.8	63.3	64.6	63.8	57.3	55.5	61.3	53.9	52.2	54.7
NYG	60.5	51.9	58.6	54.8	63.2	55.4	56.5	54.8	55.0	51.5	56.9	54.6	61.2	58.5	61.9	59.1	62.1	62.6	62.4	64.4	64.7	59.9	60.4	53.6
NYJ	51.9		53.0	56.7	56.7	48.8	57.9	52.9	56.0	57.6	41.3	51.1	57.3	52.4	52.0	52.1	59.0	58.6	57.3	58.4	60.8	57.6	63.7	62.9
PHI	55.9		57.4	55.9	57.2		65.2	58.2	60.6	61.1	62.8	59.7	57.0	62.0	54.1	58.8		59.9	56.9		59.2		50.7	51.1
PIT	54.4	47.8	46.1	55.7	56.5	40.3	43.6	55.7	50.9	54.9	58.6	52.6	58.6	60.0		62.0	63.1	60.1		68.4	58.8	67.0	64.3	55.4
SEA	58.7	57.8	52.2	59.1	56.8	56.5	50.1	53.8	60.5	55.2		62.3	56.1	46.4	48.1	49.4	54.3	60.4	60.3	47.8	55.1	60.6	57.2	60.1
SF	59.2	59.5	51.8	57.3	52.4	59.9	50.9	52.9	62.0	59.2		57.9	51.9	49.4	48.5	54.2		54.3		58.4	49.8	58.8	52.1	52.2
TB	50.7	50.1		57.9	59.8	59.5	54.7	58.7	55.3	57.4	58.2	55.4	64.8	59.3	57.7		55.9	58.6		63.8		63.4	67.4	68.9
TEN	53.2	47.8	54.6	51.8	51.8	60.3		50.4	48.4	49.6	50.0	55.9		61.0	55.6			53.4	56.3	52.2	51.9	50.3	51.8	51.6
WAS	55.4	57.4	49.0	58.2	58.1	54.4	50.4	50.5	53.9	54.2	60.0	65.5	61.9	48.6	59.2	60.4	59.6	63.1	59.7	57.6	60.1	63.1	55.7	53.5
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022

Analysis

Naive Bayes Results

Encoded	Coach/Team	Balanced	Accuracy	AUC
No	No	No	64.90%	0.694
Yes	No	No	66.77%	0.722
Yes	Yes	No	66.71%	0.724
Yes	Yes	Yes	<u>66.71%</u>	<u>0.725</u>

Random Forest Results

Encoded	Coach/Team	Balanced	Accuracy	AUC
No	No	No	70.88%	0.781
Yes	No	No	70.70%	0.780
Yes	Yes	No	<u>71.22%</u>	<u>0.786</u>
Yes	Yes	Yes	70.98%	0.785

Neural Network Results

Hidden Layers	Layer Nodes	Activation	Accuracy	Loss
3	256	relu	<u>71.90%</u>	<u>0.5471</u>
2	256	relu	71.73%	0.5498
1	32	relu	71.39%	0.5593
1	128	tanh	70.70%	0.5692
3	32	relu	71.57%	0.5594

2022 Season Test Results

Algorithm	Accuracy				
Naive Bayes	69.24%				
Random Forest	71.60%				
Neural Network	<u>72.20%</u>				

Data Visualizations

Recommendations and Next Steps

Gradient Boosting (XGBoost)

- Ensemble of decision trees like random forest
- New trees focus on previous trees mistakes
- Increased performance with unbalanced datasets

Recurrent Neural Network

- Each individual play sample includes previous plays
- LSTM allows selective retaining and releasing of previous data
- Previous research saw increased performance with play history

Further Investigation

- Imbalanced (pass-heavy) predictions
- Relationship between predictability and win percentage
- Game impact of mispredicted run plays vs. pass plays

Thank you!