DATA SCIENCE JOB ANALYSIS

A presentation by Jessica Hoang, Ariba Anees & Nagulan Nathan OPMA419 W22 Group 3

Table of Contents

PROBLEM

What is our topic?

IMPORTANCE

Why did we choose this topic?

DATA

Data source and preparation

Table of Contents

ANALYSIS

k-NN Linear Regression Regression Tree Random Forest Tableau

RECOMMENDATION AND VISUALS

What do we recommend to our fellow data analysts?

CHALLENGES

What were the challenges and limitations of the project?

Which algorithm most accurately predicts average salary for data science jobs in the US? What variables are significant predictors?

Why Did We Choose This Topic?

Data Workflow

Kaggle

Data downloaded as Excel csv

Data Cleaning II

In RapidMiner, we selected attributes, set role, and changed the data types as needed and made dummy variables

Data Cleaning I

Within Excel, unnecessary columns and rows with missing data removed

Analysis

Using RapidMiner to try different algorithms and Tableau for supplementary visualizations

What Our Raw Data From Kaggle Looks Like

1/4	Α	В	C D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W
1	index	Job Title	Salary Esti Job Des	cri Rating	Company	Location	Headquart	Size	Founded	Type of ov I	ndustry	Sector	Revenue	Competito	Hourly	Employer	Lower Sala	Upper Sala	Avg Salary	company_	Job Location	Age Py
2		0 Data Scien	\$53K-\$91K Data	3.	8 Tecolote	Albuquerq	Goleta, CA	501 - 1000	1973	Company - A	Aerospace	Aerospace	\$50 to \$10	-1		0 (53	91	72	Tecolote F	NM	48
3		1 Healthcare	\$63K-\$112 What Y	ou 3.	4 University	Linthicum,	Baltimore,	10000+	1984	Other Orga	Health Ca	r Health Car	\$2 to \$5 b	i -1		0 (63	112	87.5	University	MD	37
4		2 Data Scien	\$80K-\$90K KnowB	4, 4.	8 KnowBe4	Clearwate	Clearwate	501 - 1000	2010	Company - S	Security S	Business S	\$100 to \$5	-1		0 (08	90	85	KnowBe4	FL	11
5		3 Data Scien	\$56K-\$97K *Organ	za 3.	8 PNNL	Richland,	Richland, \	1001 - 500	1965	Governme E	nergy	Oil, Gas, E	\$500 millio	Oak Ridge		0 (56	97	76.5	PNNL	WA	56
6		4 Data Scien	\$86K-\$143 Data	2.	9 Affinity	New York	New York,	51 - 200	1998	Company - A	Advertisin	Business S	Unknown	Commerce	E	0 (86	143	114.5	Affinity So	NY	23
7		5 Data Scien	\$71K-\$119 CyrusO	ne 3.	4 CyrusOne	Dallas, TX	Dallas, TX	201 - 500	2000	Company - F	Real Estat	Real Estat	\$1 to \$2 b	i Digital Rea	3	0 (71	119	95	CyrusOne	TX	21
8		6 Data Scien	\$54K-\$93K Job	4.	1 ClearOne	Baltimore	, Baltimore,	501 - 1000	2008	Company - E	Banks & C	Finance	Unknown	-1		0 (54	93	73.5	ClearOne	MD	13

- 13	Χ	γ		Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	
	Python	spark	â	aws	excel	sql	sas	keras	pytorch	scikit	tensor	hadoop	tableau	bi	flink	mongo	google_a	an job_title_s	seniority_	Degree	
48	1	1	0		0	1	0	1	0 0)	0	0 (0	1	1	0	0	0 data scient	na	M	
37		1	0		0	0	0	0	0 ()	0	0 (0	0	0	0	0	0 data scient	na	M	
11		1	1		0	1	1	1	0)	0	0	O	0	0	0	0	0 data scient	na	M	
56		1	0		0	0	0	0	0 ()	0	0 (0	0	0	0	0	0 data scient	na	na	
23		1	0		0	1	1	1	0)	0	0	O	0	0	0	0	0 data scient	na	na	
21		1	0		1	1	1	0	0 ()	0	0	0	0	1	0	1	0 data scient	na	na	
13	(O	0		0	1	0	0	0)	0	0 (0	0	0	0	0	0 data scient	na	na	
	1.6	2				(4)		_			_		_		_	_	_			12.70	

Lots of Columns!

What Our Cleaned Data Looks Like

Slightly less Columns!

The RapidMiner Data Preparation

We omitted the index and Job_Title as well and made dummy variables as needed..... Now let's jump into the analysis!

For k-NN, to ensure scales do not skew euclidean distance

Our Analysis: k-NN

	RMSE	R^2	Average Error
Training	28.707	0.454	-3.985
Validation	32.137	0.242	-4.773

We used a k of 10 as it yielded the lowest RMSE from k of 1-10 on the Validation set

Our Analysis: Linear Regression

MOST SIGNIFICANT PREDICTOR AT 95% (with all predictors)

0.0000.0010.003GooglePythonSASSQLAnalytics

MOST SIGNIFICANT PREDICTOR AT 95% (comparing skills to each other)

0.0000.0020.0120.026PythonSASSQLGoogle
Analytics

Our Analysis: Linear Regression

NEGATIVE COEFFICIENT ANALYSIS

SQL: -7.88

Google Analytics: -69.85

PERFORMANCE MEASURES

	RMSE	R^2	Average Error
Training	22.557	0.654	-0.000
Validation	34.801	0.278	3.032

Our Analysis: Regression Tree

	RMSE	R^2	Average Error
Training	28.795	0.437	0.000
Validation	31.435	0.267	0.213

Our Analysis: Random Forest

	RMSE	R^2	Average Error
Training	33.001	0.474	-0.071
Validation	32.757	0.289	-1.720

Based on our analysis, the Regression Tree algorithm performed better in RMSE and average error than all other algorithms.

Recommendations

ALGORITHM

Regression Tree had the lowest RMSE on the validation set

SKILLS

Be skillful in Flink, Python, SAS, and MongoDB

JOB ROLE

Work as a machine learning engineer

INDUSTRY

Work in the trucking industry

LOCATION

Work in Rhode Island

SIZE

Work for a company with 51-200 employees

Amount of Jobs by Sector "

Skills in Demand

Distribution of Data Science Jobsa and Average Salary by State

Average Salary by Job Title •

Challenges & Limitations Faced

DIRTY DATA

There were missing values, and redundant columns that were time intensive for cleaning, or data that needed restructuring for Tableau

HIGH # OF CATEGORICAL PREDICTORS

Most data was polynominal, computationally intensive for BE when there are too many dummy variables

ROWS OF DATA

Just over 700 rows of data was not ideal especially when partitioned for algorithms like k-NN

