COMPSCI 5100 ML & Al for Data Science

Ali Gooya

ali.gooya@glasgow.ac.uk

Detour...

Classification: Part III

Performance evaluation

Evaluation strategy

How to split data for training and testing

Evaluation metrics

How to measure performance accurately

Benchmarking

Compare results against other 'known' results

Evaluation strategy

Cross validation

Evaluation strategy

- Leave one subject out
 - Particularly useful for classification tasks involving humancentric data

image from: medium.com

Evaluation strategy

- Random train:test splits
 - Particularly useful for very large datasets
 - CV may be difficult
 - Randomly choose 70-80% data for training and rest for testing

Performance metrics

- Performance metrics are important to
 - Compare performances of multiple classifiers
 - Compare performance of the same classifier under different conditions
 - Tune hyperparameters
- No metric is perfect; each gives you some insights
- Practical tip: Use multiple evaluation metrics

Accuracy

- Accuracy = Number of correctly classified samples
 Total number of test samples
- Often expressed in %
- Simple, intuitive, widely used

Disadvantage: Doesn't take into account class imbalance:

- ▶ We're building a classifier to detect a rare disease.
- Assume only 1% of population is diseased.
- ▶ Diseased: t = 1
- ▶ Healthy: t = 0
- ▶ What if we always predict healthy? (t = 0)
- ► Accuracy 99%
- But classifier is rubbish!

Weighted accuracy (WA):

Accuracies computed per class, averaged across all classes

[Content from Dr. Ke Yuan's slide]

Confusion matrix

True class													
			10	11	12	13	14	15	16	18	18	19	20
SS	1		4	2	0	2	10	4	7	1	12	7	47
	2		0	0	4	18	7	8	2	0	1	1	3
	3		0	0	1	0	1	0	1	0	0	0	0
 	4		1	0	1	28	3	0	0	0	0	0	0
b													
<u>.</u>							÷						
Predicted class	16	l	3	2	2	5	17	4	376	3	7	2	68
-	17		1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- ▶ Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc
 - ▶ 16: talk.religion.misc
 - ▶ 20: soc.religion.christian
- Maybe these should be just one class?
- ► Maybe we need more data in these classes?
- Confusion matrix helps us direct our efforts to improving the classifier.

[Content from Dr. Ke Yuan's slide]

Precision

Example:

1: Diseased 0: Healthy

$$\frac{\mathsf{TP}}{\mathsf{Precision}} = \frac{\mathsf{TP}}{\mathsf{TP+FP}}$$

- Among all people classified as 'diseased', how many are actually diseased
- Perfect precision = no FP
- Higher the better

Recall or Sensitivity

Example:

1: Diseased 0: Healthy

Sensitivity
$$S_e = \frac{\text{TP}}{\text{TP+FN}}$$

- Among all diseased people, how many are correctly identified
- Sensitivity = recall
- Perfect recall = no FN
- Higher the better

Specificity

Example:

1: Diseased 0: Healthy

Specificity
$$S_p = \frac{\text{TN}}{\text{TN+FP}}$$

- Among all healthy people, how many are classified as healthy.
- Higher the better

Optimizing sensitivity and specificity

- We would like both to be as high as possible.
- Often increasing one will decrease the other.
- Balance will depend on application:
- e.g. diagnosis:
 - We can probably tolerate a decrease in specificity (healthy people diagnosed as diseased)....
 - ...if it gives us an increase in sensitivity (getting diseased people right).

[Slide courtesy: Dr. Ke Yuan]

ROC

- Many classification algorithms involve setting a threshold.
- e.g. Logistic Regression:

$$p(t_{new} = 1 | \mathbf{x}_{new}, \mathbf{w}) > 0.5$$

- However, we could use any threshold we like....
- ► The Receiver Operating Characteristic (ROC) curve shows how S_e and $1 S_p$ vary as the threshold changes.

[Slide courtesy: Dr. Ke Yuan]

ROC, AUC

[Image from Wikipedia]

```
from sklearn.model selection import train test split
from sklearn import metrics
from sklearn.datasets import load breast cancer
breast cancer = load breast cancer()
X = breast cancer.data
t = breast cancer.target
X train, X test, y train, y test = train test split(X,t,test size=0.30, random sta
te=123)
clf1 = LogisticRegression().fit(X train, y train)
y pred1 = clf1.predict(X test)
y pred proba1 = clf1.predict proba(X test)[:,1]
fpr1, tpr1, _ = metrics.roc_curve(y_test, y_pred_probal)
auc1 = metrics.roc auc score(y test, y pred probal)
plt.plot(fpr1,tpr1,'ro-',label="breast cancer data, auc="+str(auc1))
plt.legend(loc=4)
plt.show()
```


Try it on a breast cancer dataset

Plot ROC of a Logistic Regression model

F1

Metric combining Precision and Recall

$$. \quad \mathbf{F1} = \frac{2}{\text{Precision}^{-1} + \text{Recall}^{-1}} = \frac{2TP}{2TP + FP + FN}$$

- Bounded between 0 to 1
- Higher the better

Summary

- Evaluation protocol and metrics are equally important
- Should be chosen based on data and application