Singular value decomposition

We know how to express many linear maps in the form of a diagonal map using a change of variable, by diagonalisation. If \overrightarrow{A} is $n \times n$ and diagonalisable, we can simply express it as $\overrightarrow{A} = \overrightarrow{PDP}^{-1}$, or $\overrightarrow{A} = \overrightarrow{PDP}^{T}$ if \overrightarrow{A} is symmetric. However, for most linear maps, \overrightarrow{A} is either not square, or square but not diagonalisable.

Square matrices also have the concepts of eigenvalues and inverses. However, those do not exist for non-square matrices. It is easy to see that for any $\overrightarrow{A}_{m \times n}$, if $m \neq n$ then there is no vector \overrightarrow{v} such that $\overrightarrow{A} \overrightarrow{v} = \lambda \overrightarrow{v}$, as the dimensions are different on either side of the equation. Inverses are simply not defined for non-square matrices.

We can "express" a non-square matrix as a square matrix by multiplying it by its transpose. For example, given $\overrightarrow{A}_{m\times n}$, we can create a new, **symmetric** matrix $\overrightarrow{B} = \overrightarrow{A}^T \overrightarrow{A}$ whose dimension is $n \times n$. We know that \overrightarrow{B} has n real eigenvalues, but we can show that they are all positive.

Proof. Let $\{\vec{v}_1, \vec{v}_2 \cdots \vec{v}_n\}$ be an orthonormal eigenbasis of \mathbb{R}^n corresponding to $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, for the matrix $\vec{B} = \vec{A}^T \vec{A}$. It can be seen that $\left\| \vec{A} \vec{v}_i \right\|^2 = (\vec{A} \vec{v}_i) \cdot (\vec{A} \vec{v}_i) = \vec{v}_i \cdot (\vec{A}^T \vec{A} \vec{v}_i) = \vec{v}_i \cdot (\lambda_i \vec{v}_i) = \lambda_i$. The last step comes from the fact that the basis given is orthonormal, and so all vectors have magnitude 1. So, we have that $\lambda = \left\| \vec{A} \vec{v}_i \right\|^2$, which means all eigenvalues are positive. \square

We can define the **singular values** of \overrightarrow{A} as the square roots of the eigenvalues of \overrightarrow{B} , that is, $\sigma_i = \sqrt{\lambda_i}$. We know that all the eigenvalues will be positive, so all singular values will be real and positive. It should also be noted that $\sigma_i = \left\| \overrightarrow{A} \overrightarrow{v}_i \right\|$.

Theorem: Let $\{\overrightarrow{v}_1, \overrightarrow{v}_2 \cdots \overrightarrow{v}_n\}$ be an orthonormal eigenbasis of \mathbb{R}^n corresponding to the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ of $\overrightarrow{B} = \overrightarrow{A}^T \overrightarrow{A}$. Assume that r singular values \overrightarrow{A} are equal to 0. Then, $\{\overrightarrow{A}\overrightarrow{v}_1, \overrightarrow{A}\overrightarrow{v}_2 \cdots \overrightarrow{A}\overrightarrow{v}_r\}$ is an orthogonal basis for col \overrightarrow{A} , and therefore rank $\overrightarrow{A} = r$.

Proof. For any $i \neq j$, $(\overrightarrow{A}\overrightarrow{v}_i)/cdot(\overrightarrow{A}\overrightarrow{v}_j) = \overrightarrow{v}_i \cdot (\overrightarrow{A}^T\overrightarrow{A}\overrightarrow{v}_j) = \overrightarrow{v}_i \cdot (\lambda_j \overrightarrow{v}_j) = \lambda_j(\overrightarrow{v}_i \cdot \overrightarrow{v}_j) = 0$. So, we know that all vectors in the set $\left\{ \overrightarrow{A}\overrightarrow{v}_1, \overrightarrow{A}\overrightarrow{v}_2 \cdots \overrightarrow{A}\overrightarrow{v}_n \right\}$

are either orthogonal to each other or $\vec{0}$. But we also know that $\|\vec{A}\vec{v}_i\| = \sigma_i$, so we know which vectors we should remove from this set to retain a set $\{\vec{A}\vec{v}_1, \vec{A}\vec{v}_2 \cdots \vec{A}\vec{v}_r\}$ which *is* orthogonal. We know that this set is linearly independent as all the vectors are orthogonal, and it can also be shown that its span is equal to $\operatorname{col} \vec{A}$. It is given that $\{\vec{v}_1, \vec{v}_2 \cdots \vec{v}_n\}$ spans \mathbb{R}^n , so $\vec{x} \in \mathbb{R}^n \implies \vec{x} = \sum_{i=1}^n c_i \vec{v}_i$ for some constants c_i . Therefore, $\vec{A}\vec{x} = \sum_{i=1}^n c_i \vec{A}\vec{v}_i$, that is, any vector in $\operatorname{col} \vec{A}$ is also in the span of $\{\vec{A}\vec{v}_1, \vec{A}\vec{v}_2 \cdots \vec{A}\vec{v}_r\}$.

Finally, we can define the theoram of single value decomposition. Any matrix $\overrightarrow{A}_{m \times n}$ has r nonzero singular values, where $r \leq m, n$. We create a matrix $\overrightarrow{\Sigma}_{m \times n}$ with these singular values on the main diagonal, and the rest of the entries equal to 0. Then, there exist two orthogonal matrices $\overrightarrow{U}_{m \times m}$ and $\overrightarrow{V}_{n \times n}$ such that $\overrightarrow{A} = \overrightarrow{U} \overrightarrow{\Sigma} \overrightarrow{V}^T$. These two matrices are not unique, and consist of singular vectors: the columns of \overrightarrow{U} are left singular and the columns of \overrightarrow{V} are right singular. Most importantly is the remark that connect singular value decomposition to diagonalisation. If \overrightarrow{A} is $n \times n$ and diagonalisable, then, if we use an eigenbasis for \mathbb{R}^n , in the new coordinate system the map is given by a diagonal matrix (\overrightarrow{D}) . Now, for any $\overrightarrow{A}_{m \times n}$ ($\mathbb{R}^n \to \mathbb{R}^m$, if we use as bases for \mathbb{R}^n and \mathbb{R}^m the column spaces of \overrightarrow{V} and \overrightarrow{U} , respectively, then in the new coordinates the map is also diagonal $(\overrightarrow{\Sigma})$!

Proof. Given $\vec{A}: \mathbb{R}^n \to \mathbb{R}^m$, $\vec{y} = \vec{A}\vec{x} = (\vec{U}\vec{\Sigma}\vec{V}^T)\vec{x}$. Then $\vec{U}^T\vec{y} = \vec{\Sigma}(\vec{V}^T\vec{x})$, and $\vec{U}^{-1}\vec{y} = \vec{\Sigma}(\vec{V}^{-1}\vec{x})$. If the columns of \vec{V} and \vec{U} are used as bases for \mathbb{R}^n and \mathbb{R}^m , we have by definition that $[\vec{y}]_{\vec{U}} = \vec{\Sigma}[\vec{x}]_{\vec{V}}$.

We can also create an orthonormal basis for col \overrightarrow{A} . Given an orthogonal basis $\{\overrightarrow{A}\overrightarrow{v}_1, \overrightarrow{A}\overrightarrow{v}_2 \cdots \overrightarrow{A}\overrightarrow{v}_r\}$, as before, we can create a set $\{\overrightarrow{u}_1, \overrightarrow{u}_2 \cdots \overrightarrow{u}_r\}$ where $\overrightarrow{u}_i = \frac{1}{\sigma_i} \overrightarrow{A}\overrightarrow{v}$; this set will be an orthonormal basis.

Finally, we need to define the earlier referenced notion of singular vectors. Using the set as defined above, we have $\overrightarrow{A}\overrightarrow{v}_i = \sigma_i \overrightarrow{u}_i$. This implies that $\overrightarrow{A}^T \overrightarrow{A} \overrightarrow{v}_i = \sigma_i \overrightarrow{A}^T \overrightarrow{u}_i$. Since \overrightarrow{v}_i is an eigenvector of $\overrightarrow{A}^T \overrightarrow{A}$, $\overrightarrow{A}^T \overrightarrow{u}_i = \sigma_i \overrightarrow{v}_i \implies \overrightarrow{u}_i^T \overrightarrow{A} = \sigma_i \overrightarrow{v}_i^T$. We define \overrightarrow{v}_i as **right singular vectors** and their corresponding \overrightarrow{u}_i as **left singular vectors**.

Therefore, we have a way to create the matrices \vec{V} and \vec{U} . \vec{V} is easy, since it is filled with the vectors $\{\vec{v}_1, \vec{v}_2 \cdots \vec{v}_n\}$ as its columns. The columns of \vec{U} are formed using $\{\vec{u}_1, \vec{u}_2 \cdots \vec{u}_r\}$. However, if r < m, then we need to fill up the rest of the matrix with the orthonormal basis for $\operatorname{col} \vec{A}$, which we know how to calculate. This guarantees the orthogonal properties of \vec{V} and \vec{U} .