Programming Abstractions

Lecture 33: Continuation Passing Style

Continuations

Suppose expression E contains a subexpression S

The **continuation** of S in E consists of all of the steps needed to complete E after the completion of S

```
Example: (- 4 (+ 1 1))
```

- ► The subexpression S, (+ 1 1), is called the redex ("reducible expression")
- ► The continuation is (- 4 □) where □ takes the place of S

► The continuation of (bar (* 2 3)) is (displayIn (foo □))

```
What is the continuation of (fact (sub1 n)) in the expression (* n (fact (sub1 n)))
```

```
A. (* n (fact (sub1 n)))

B. (* n (fact (sub1 □)))

C. (* n (fact □))

D. (* n □)
```

A continuation is really a dynamic construct

A continuation is determined by the expression's evaluation context at run time (define (fact n) (cond [(zero? n) 1] [else (* n (fact (sub1 n)))])) At the point 1 is evaluated in the call (fact 0), the continuation is At the point 1 is evaluated in the call (fact 1), the continuation is (* 1 -) At the point 1 is evaluated in the call (fact 2), the continuation is

Key: The continuation is all the rest of computation

Continuations can be quite complicated!

Starting with a positive integer *n*, construct a sequence where each successive term is obtained by the current term *n*

- ► If the current term *n* is 1, then stop.
- ▶ If the current term *n* is even, the next term is *n* / 2
- If the current term n is odd, the next term is 3n + 1

(The Collatz conjecture says that the sequence produced starting with any positive integer eventually stops.)

```
(define (collatz n)
  (cond [(= 1 n) '(1)]
       [(even? n) (cons n (collatz (/ n 2)))]
       [else (cons n (collatz (add1 (* 3 n))))]))
```

Continuations of '(1) in the call (collatz n) for several values of n

```
(define (collatz n)
  (cond [(= 1 n) '(1)]
       [(even? n) (cons n (collatz (/ n 2)))]
       [else (cons n (collatz (add1 (* 3 n))))]))
```

Continuations of '(1) in the call (collatz n) for several values of n > n = 1: -

(define (collatz n)

```
(define (collatz n)
  (cond [ (= 1 n) ' (1) ]
         [(even? n) (cons n (collatz (/ n 2)))]
         [else (cons n (collatz (add1 (* 3 n)))]))
Continuations of '(1) in the call (collatz n) for several values of n
• n = 1: \Box
  n = 2: (cons 2 \square) 
- n = 3:
  (cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 -)))))
▶ n = 4: (cons 4 (cons 2 \Box))
```

```
(define (collatz n)
  (cond [ (= 1 n) ' (1) ]
         [(even? n) (cons n (collatz (/ n 2)))]
         [else (cons n (collatz (add1 (* 3 n)))]))
Continuations of '(1) in the call (collatz n) for several values of n
• n = 1: \Box
  n = 2: (cons 2 \square) 
- n = 3:
  (cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 -)))))
-n = 4: (cons 4 (cons 2 -))

ightharpoonup n = 5: (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 \Box)))))
```

```
(define (length lst)
  (cond [(empty? lst) 0]
         [else (add1 (length (rest lst)))]))
What is the continuation at the point 0 is evaluated in the call
(length '(a b c))
A. 3
B. (length 1st)
C. (add1 (length -))
D. (add1 (add1 (add1 0)))
E. (add1 (add1 -)))
```

Viewing continuations as procedures

We can view a continuation as a procedure of one argument

```
Example: (- 4 (+ 1 1))

The continuation is (- 4 □) where □ takes the place of S

(λ (x) (- 4 x))

Example: (displayln (foo (bar (* 2 3))))

The continuation of (bar (* 2 3)) is (displayln (foo □))

(λ (x) (displayln (foo x)))
```

Continuation-passing style

A new way to implement recursive procedures

- Each procedure has an extra continuation parameter typically called k
- The continuation k says what to do with the result

Continuation-passing style example

Summing numbers in a list

Two things to notice:

- In the base case, we call the continuation with our base value (k 0)
- In the recursive case, we pass a new continuation procedure that calls k with the result of adding x to the head of 1st

Calling our function

What should we use as the top-level continuation when we call sum-k?

It depends what we want to do with it, typically, we'd want to return the value

• We can use $(\lambda (x) x)$ which Racket predefines as identity

```
(sum-k'(1 2 3 4) identity) => 10
```

Compare with accumulator-passing style

In CPS, the extra parameter is a procedure that says what to do with the result of the computation

In APS, the extra parameter is the intermediate value in the computation

CPS guidelines for recursive procedures

Continuations are procedures with 1 argument

The recursive procedure has a continuation parameter, k

The continuation argument is called once for each branch of computation (think base case and recursive case)

Not calling the continuation on one of the cases is a common mistake

At the top-level, the continuation is usually identity

Recursive calls must be tail-recursive

Reverse in CPS

Note: this is spectacularly inefficient

- (reverse 1st) takes time O(n) where n is the length of the list
- (reverse-k lst identity) takes time O(n²)

Append in CPS

```
What is the run time of append-k?
(define (append-k lst1 lst2 k)
  (cond [(empty? lst1) (k lst2)]
         [else (append-k (rest lst1)
                            lst2
                            (\lambda (x) (k (cons (first lst1) x)))))
Let m be the length of 1st1 and n be the length of 1st2
A. O(1)
B. O(m)
C. O(n)
D. O(m + n)
E. O(mn)
```

Comparing append in CPS to normal recursion

```
(define (append-k lst1 lst2 k)
  (cond [(empty? lst1) (k lst2)]
         [else (append-k (rest lst1)
                           lst2
                           (\lambda (x) (k (cons (first lst1) x)))))
(define (append lst1 lst2)
  (cond [(empty? lst1) lst2]
         [else (cons (first lst1)
                       (append (rest lst1) lst2))))
In append, the continuation of the recursive call is (cons (first lst1) -) plus
all of the other earlier recursive calls (example on next slide)
```

This is identical to the passed-in continuation in append-k where k is going to perform the work of the other recursive calls

Continuation example

Appending '(1 2 3) to '(a b c)

Step	lst1	append's recursive continuation	k argument to append-k's recursive call (expanded)
0	'(1 2 3)	(cons 1 -)	(λ (x) (k (cons 1 x)))
1	'(23)	(cons 1 (cons 2 -))	(λ (x) (k (cons 1 (cons 2 x))))
2	'(3)	(cons 1 (cons 2 (cons 3 -)	(λ (x) (k (cons 1 (cons 2 (cons 3 x)))))
3	'()		

- append's continuations also include the top-level continuation the table omits
- k in append-k's recursive calls aren't expanded, they're the closure
 (λ (x) (k (cons (first lst1) x))) with k bound to the previous closure and lst1 bound to the corresponding lst1 argument in the table
- CPS makes the continuations explicit

So what good is this?

Programming with explicit continuations gives you a lot of control

E.g., you can *ignore* the continuation that is built up and do something else!

Consider our standard sum procedure

```
(define (sum lst)
  (cond [(empty? lst) 0]
      [else (+ (first lst) (sum (rest lst)))]))
```

Suppose we want to modify this to return #f if 1st contains an element that isn't a number

What goes wrong with this approach?

```
(define (sum lst)
  (cond [(empty? lst) 0]
       [(not (number? (first lst))) #f]
       [else (+ (first lst) (sum (rest lst)))]))
```

- A. Nothing. It's perfect
- B. (sum '(foo 1 2 3)) will fail
- C. (sum '(1 2 foo 3)) will fail
- D. B and C

A working attempt with CPS

Since CPS uses tail-recursion, we can ignore our built-up continuation k and just return #f (define (sum-k lst k) (cond [(empty? lst) (k 0)] [(not (number? (first lst))) #f] [else (sum-k (rest lst) (λ (x) (k (+ x (first lst))))])) (sum-k '(1 2 3 foo 4) identity) => #f

A better approach

Bad element: foo

We can use an error continuation This lets the caller decide what to do with the error (define (sum-k lst k err) Normal base case uses (k •) (cond [(empty? lst) (k 0)} [(not (number? (first lst))) (err (first lst))] [else (sum-k (rest lst) $(\lambda (x) (k (+ x (first lst))))$ err)])) Error case uses (err •) > (sum-k '(1 2 3 foo 4)identity (λ (bad) (printf "Bad element: -s n" bad)))

Write some CPS

map-k: CPS version of map

collatz-k: CPS version of collatz

fib-k: CPS version of fib

map-k-k: CPS version of map that takes a CPS f