NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER 1 EXAMINATION 2019-2020 EE3001 – ENGINEERING ELECTROMAGNETICS

November / December 2019

Time Allowed: 21/2 hours

INSTRUCTIONS

- 1. This paper contains 4 questions and comprises 7 pages.
- 2. Answer all 4 questions.
- 3. All questions carry equal marks.
- 4. This is a closed book examination.
- 5. Unless specifically stated, all symbols have their usual meanings.
- 6. A list of formulae and physical constants is provided in Appendix A on pages 5 to 7.
- 7. The Smith Chart may be used in the solution of Question 4. Please put the Smith Chart inside the answer script and tie it with a thread.
- 1. (a) Three parallel circular loops of radius a are located at z = 0, +d, -d respectively in free space with their centers aligned along the z axis. Each circular loop has uniform charge distribution with line charge density ρ_l .
 - (i) Find the electric potential $V_0(z)$, $V_{+d}(z)$, $V_{-d}(z)$ along the z axis due to each circular loop located at z = 0, +d, -d respectively.
 - (ii) Determine the total electric potential V(z) and the electric field intensity $\vec{E}(z)$ along the z axis due to all three circular loops.

(13 Marks)

Note: Question No. 1 continues on page 2.

- (b) Assume that a steady current I flows in each circular loop of part (a) in the counter clockwise direction (as viewed from z > d).
 - (i) Determine the magnetic field intensity $\vec{H}_0(z)$, $\vec{H}_{+d}(z)$, $\vec{H}_{-d}(z)$ along the z axis due to each current loop located at z=0,+d,-d respectively.
 - (ii) Find the total magnetic field intensity at the origin.

(12 Marks)

2. (a) Figure 1 shows a square loop of side length L which has its left side lying at rest along the y axis in free space at time t=0. The whole loop is accelerated with constant acceleration a_0 toward +x direction while being subjected to magnetic flux density of the form $\vec{B} = \frac{-\mu_0}{2\pi x} \vec{a}_z$ T.

Figure 1

- (i) Derive the expression of magnetic flux Φ_m passing through the loop at time t.
- (ii) Determine the induced voltage V_{emf} in the loop at time t.

(10 Marks)

- (b) A 1-MHz plane wave is propagating along the +z direction in a lossy nonmagnetic medium with relative permittivity ε_r and conductivity σ .
 - (i) Let us assume that the medium is a very good conductor. What can you say about the relationship between the real and imaginary parts of propagation constant γ ? What is the phase angle of γ ? Also, what can you say about the relationship between the real and imaginary parts of intrinsic impedance η_c ? What is the phase angle of η_c ?

Note: Question No. 2 continues on page 3.

(ii) Given that $\varepsilon_r = 1$ and $\sigma = 0.01$ S/m, calculate the real and imaginary parts, as well as the magnitude and phase angle of γ and η_c . Are the results consistent with your answers in part (i)? How can you tell whether the assumption of very good conductor is valid or not?

(15 Marks)

3. (a) The electric field of a uniform plane wave (UPW) in air occupying the region $z \le 0$ is given by:

$$\vec{E}_i(z) = (50\vec{a}_x - j140\vec{a}_y) e^{-j6\pi z} V/m$$

The UPW is incident normally on a planar interface with a lossy medium having intrinsic impedance $\eta_c = 150 \angle 0.2 \Omega$ occupying the region $z \ge 0$.

Find the following and state any assumption(s) made:

- (i) The frequency of the UPW.
- (ii) The polarization (Linear, Circular or Elliptical) of the UPW. Briefly explain your answer.
- (iii) The reflection coefficient Γ (in polar form) at the planar interface.
- (iv) The position z at which the total electric field in the air medium is minimum i.e., z_{min} .

(12 Marks)

(b) The magnetic field of a uniform plane wave (UPW) propagating in free space $(z \le 0)$ is given by:

$$\tilde{H}_i = \vec{a}_y 75 e^{-j(0.35x+0.25z)}$$
 mA/m

The UPW is obliquely incident on a lossless dielectric having $\mu = \mu_0$, $\varepsilon = 1.6\varepsilon_0$ at z = 0, and occupying the region $z \ge 0$.

Find the following and state any assumption(s) made:

- (i) The angle of incidence θ_i (in degrees) and angle of transmission θ_i (in degrees) of the incident UPW.
- (ii) The time-average Poynting vector of the incident and reflected waves, i.e., \vec{S}_i and \vec{S}_r .

(13 Marks)

4. (a) A 50 Ω air-filled transmission line is terminated in a load $Z_L = 68 - j27 \Omega$. The line is operating at 900 MHz.

Find the following:

- (i) The reflection coefficient Γ_L (in polar form) and the standing wave ratio (SWR) due to this load.
- (ii) The shortest length of the line to make the impedance at the input end purely resistive and as large as possible.
- (iii) A 75 Ω generator with maximum power available $P_{av} = 5$ W is connected to the transmission line in part (ii). Find the average power delivered to the load.

 (13 Marks)
- (b) A 50-cm long lossless transmission line having characteristic impedance $Z_0 = 75~\Omega$ and a phase velocity $u_p = 3 \times 10^8$ m/s is open-circuited at the load end. A generator having an open-circuit voltage $V_g(t) = 100\cos(4\pi \times 10^8 t \pi/6)$ V and an internal impedance $Z_g = 75~\Omega$ is connected to the transmission line.

Assume that the load is located at z = 0 and the generator is at $z = -\ell$ where ℓ is the length of the transmission line.

Find the following and state any assumption(s) made:

- (i) The input impedance at the source end of the transmission line, i.e., $Z_{in}(-\ell)$.
- (ii) The time-domain expression for the voltge at $z=-\ell$, i.e., $V(-\ell,t)$. (12 Marks)

Note: The Smith chart may be used in the solution of one or both parts of this question. Please put the Smith chart inside the answer script and tie it with a thread.

Appendix A

Physical Constants

Permittivity of free space $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ F/m}$ Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

∇ Operator

$$\nabla V = \vec{a}_x \frac{\partial V}{\partial x} + \vec{a}_y \frac{\partial V}{\partial y} + \vec{a}_z \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \begin{vmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

$$\nabla V = \vec{a}_{r} \frac{\partial V}{\partial r} + \vec{a}_{\phi} \frac{\partial V}{r \partial \phi} + \vec{a}_{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial (rA_{r})}{r \partial r} + \frac{\partial A_{\phi}}{r \partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \vec{A} = \frac{1}{r} \begin{vmatrix} \vec{a}_{r} & r\vec{a}_{\phi} & \vec{a}_{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & rA_{\phi} & A_{z} \end{vmatrix}$$

Electric and Magnetic Fields

$$\vec{E} = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v} \vec{a}_{R}}{R^{2}} dv = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v} \vec{R}}{R^{3}} dv$$

$$V = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v}}{R} dv$$

$$\vec{H} = \frac{1}{4\pi} \int_{C} \frac{\vec{ldl} \times \vec{a}_R}{R^2} = \frac{1}{4\pi} \int_{C} \frac{\vec{ldl} \times \vec{R}}{R^3}$$

$$\oint_C \vec{H} \cdot \vec{dl} = I = \iint_S \vec{J} \cdot \vec{ds}$$

$$emf = \oint_C \vec{E} \cdot \vec{dl} = -\frac{d\Phi_m}{dt} = -\frac{d}{dt} \iint_S \vec{B} \cdot \vec{ds}$$

$$\frac{\text{Maxwell's Equations}}{\nabla \times \tilde{E} = -\frac{\partial \tilde{B}}{\partial t}}$$

$$\nabla \times \tilde{H} = \frac{\partial \tilde{D}}{\partial t} + \tilde{J}$$

$$\nabla \cdot \tilde{D} = \rho$$

$$\nabla \cdot \tilde{B} = 0$$

Complex Propagation Constant

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\varepsilon_c} = j\omega\sqrt{\mu(\varepsilon - j\sigma/\omega)}$$

Complex Intrinsic Impedance

$$\eta_c = \sqrt{\frac{\mu}{\varepsilon_c}} = \sqrt{\frac{\mu}{\varepsilon - j\,\sigma/\omega}}$$

Reflection and Transmission of Electromagnetic Wave

$$\frac{\sin \theta_t}{\sin \theta_i} = \sqrt{\frac{\mu_1 \varepsilon_1}{\mu_2 \varepsilon_2}} \qquad \tan \theta_{B||} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} \qquad \sin \theta_c = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$$

$$\Gamma_{\perp} = \frac{\eta_2 \cos(\theta_i) - \eta_1 \cos(\theta_i)}{\eta_2 \cos(\theta_i) + \eta_1 \cos(\theta_i)} \qquad \qquad \tau_{\perp} = \frac{2\eta_2 \cos(\theta_i)}{\eta_2 \cos(\theta_i) + \eta_1 \cos(\theta_i)}$$

$$\Gamma_{\parallel} = \frac{\eta_2 \cos(\theta_t) - \eta_1 \cos(\theta_i)}{\eta_2 \cos(\theta_t) + \eta_1 \cos(\theta_i)} \qquad \qquad \tau_{\parallel} = \frac{2\eta_2 \cos(\theta_t)}{\eta_2 \cos(\theta_t) + \eta_1 \cos(\theta_i)}$$

Transmission Line

$$V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{+j\beta z}$$

$$I(z) = \frac{1}{Z_o} \{ V_o^+ e^{-j\beta z} - V_o^- e^{+j\beta z} \}$$

$$\beta = \frac{2\pi}{\lambda}$$

$$\Gamma_L = \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_o}{Z_L + Z_o}$$

$$\Gamma(z) = \Gamma_L e^{+j2\beta z}$$
 $-\ell \le z \le 0$

$$Z_{in}(-\ell) = \frac{Z_L + jZ_o \tan(\beta \ell)}{Z_o + jZ_L \tan(\beta \ell)} Z_o$$

END OF PAPER

V= 1 Pe de $V_0(2) = \frac{1}{4\pi \Sigma_0} \int \frac{e^{-\lambda L}}{\sqrt{2^2 \cdot n^2}} dL$ $V_0(z) = \frac{1}{4\pi \xi_0} \int_0^{2\pi} \frac{\rho_e \, a \, d\theta}{\sqrt{z^2 + a^2}} \frac{\rho_e \, (2\pi) \, a}{4\pi \xi_0 \sqrt{z^2 + a^2}} \frac{\rho_e \, a}{\sqrt{z^2 + a^2}} \frac{\rho_e \, a}{\sqrt{z^2 + a^2}}$ $V_{+d}(z) = \frac{1}{4\pi\epsilon_0} \int \frac{e^{-dt}}{\sqrt{(z)^2 + a^2}}$ $V+d (2) = \frac{1}{4\pi \xi_0} \int_{0}^{2\pi} \frac{\rho_e \, a \, d\theta}{\sqrt{\alpha^2 + (z-d)^2}} \frac{\rho_e \, (2\pi)(a)}{4\pi \xi_0 \sqrt{\alpha^2 + (z-d)^2}} \frac{\rho_e \, a}{\sqrt{\alpha^2 + (z-d)^2}} \frac{\rho_e \, a}{\sqrt{\alpha^2 + (z-d)^2}}$ $V = d(2) = \frac{1}{4\pi \epsilon_*} \int \frac{\ell_e d\ell}{(Z^*)^2 + \alpha^2}$ $\frac{V_{-1}(2)}{4\pi \Sigma_{0}} = \frac{1}{\sqrt{\frac{2\pi}{a^{2}+(2+1)^{2}}}} \frac{\rho_{e}(2\pi)(a)}{4\pi \Sigma_{0} \sqrt{\frac{a^{2}+(2+1)^{2}}{a^{2}+(2+1)^{2}}}} \frac{\rho_{e}(2\pi)(a)}{4\pi \Sigma_{0} \sqrt{\frac{a^{2}+(2+1)^{2}}{a^{2}+(2+1)^{2}}}} = \frac{1}{\sqrt{\frac{2\pi}{a^{2}+(2+1)^{2}}}} \frac{\rho_{e}(2\pi)(a)}{\sqrt{\frac{a^{2}+(2+1)^{2}}{a^{2}+(2+1)^{2}}}} = \frac{1}{\sqrt{\frac{2\pi}{a^{2}+(2+1)^{2}}}} \frac{\rho_{e}(2\pi)(a)}{\sqrt{\frac{2\pi}{a^{2}+(2+1)^{2}}}} = \frac{1}{\sqrt{\frac{2\pi}{a^{2}+(2+1)^{2}}}} = \frac{1}{\sqrt{\frac{2\pi}{a^{2}+(2+1$ $= -\nabla V$ $= -\vec{a_x} \frac{\partial V}{\partial x} \pm -\vec{a_y} \frac{\partial V}{\partial y} - \vec{a_z} \frac{\partial V}{\partial z}$ $V = \frac{\rho_e a}{2\Sigma_o} \left(\frac{1}{\sqrt{a^2 + 2^2}} \pm \frac{1}{\sqrt{\alpha^2 + (2 + d)^2}} + \sqrt{\alpha^2 + (2 + d)^2} \right)$ lajii) E = - VV $\frac{\partial V}{\partial x} = \frac{\partial V}{\partial y} = \frac{\partial V}{\partial z} \frac{\ell_{2}\alpha(2z)(-1/2)}{2\xi_{0}(2^{2}+0^{2})^{3/2}} \frac{\ell_{2}\alpha(2z)(z+d)(-1/2)}{2\xi_{0}((z+d)^{2}+\alpha^{2})^{3/2}} \frac{\ell_{2}\alpha(2z-d)(-1/2)}{2\xi_{0}((z-d)^{2}+\alpha^{2})^{3/2}}$ $\vec{f} = 2\vec{a_2} \quad \vec{S} = \alpha \vec{a_r}$ $\vec{R} = \vec{f} - \vec{S} = 2\vec{a_2} - \alpha \vec{a_r}$ $\vec{a_2}$ $\vec{A_1} = \alpha \vec{A_2}$ $\vec{a_{\theta}} \times \vec{a_{z}} = \vec{a_{r}}$ $\vec{a_{\theta}} \times (-\vec{a_{r}}) = \vec{a_{z}} \Rightarrow \text{by sm}$ $\frac{1}{H_0(2)} = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{a^{\frac{1}{4}} d^{\frac{1}{4}} (z \overline{a_2}^2 - a \overline{a_1}^2)}{4\pi} \frac{1}{(2\pi a^2 + z^2)^{3/2}} \frac{1}{4\pi} \left(\frac{2\pi a^2}{(2a^2 + z^2)^{3/2}} \right) \frac{1}{2(a^2 + z^2)^{3/2}} \frac{1}{2(a^2 + z^2)^{3/2}}$ $\frac{1}{4\pi} \frac{1}{\sqrt{2}} = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{a d\phi \, \tilde{a}\phi \, (z \, \tilde{a}_{z}^{2} - a \tilde{a}_{z}^{2})}{(a^{2} + \tilde{z}_{z}^{2})^{3/2}} = \frac{1}{4\pi} \left(\frac{2\pi a^{2} \, \tilde{a}_{z}^{2}}{(a^{2} + (2 - \frac{1}{2})^{2})^{3/2}} \right) = \frac{1a^{2} \, \tilde{a}_{z}^{2}}{2(a^{2} + \frac{2z^{2}}{2})^{3/2}} = \frac{1}{2} \frac{1$ $H_{-1}(2) = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{a \, d\phi \, a\phi(2a_{1}^{2} - aa_{1}^{2})}{(a^{2} + z_{1}^{2})^{3/2}} = \frac{1}{4\pi} \left(\frac{2\pi a^{2} \, a_{2}^{2}}{(a^{2} + (2+1)^{2})^{3/2}} \right) = \frac{Ia^{2}a_{2}^{2}}{2(a^{2} + (2+1)^{2})^{3/2}}$

			di eliyeri	3.174
	b) ii) at z = 0		. 1	S Resident
· · · · · · · · · · · · · · · · · · ·	Htotal = Ho + Htd + H-1		:	
	$= \frac{Ia^2}{2} \left(\frac{1}{a^3} + \frac{1}{(a^2+b^2)^{3/2}} + \frac{1}{(a^2+b^2)^{3/2}} \right)$			
	$= \frac{Ia^2}{2} \left(\frac{1}{a^3} + \frac{2}{(a^2 + d^2)^{3/2}} \right)$			
	,	· · · · · · · · · · · · · · · · · · ·		
.2	a)i) $\vec{B} = \frac{u_0}{2\pi \kappa} \vec{a_2}$ $d\vec{A} = \vec{a_2} dA \vec{a_2} \cdot \vec{a_2} = 1 dA$	* qx qà		
	$\phi = \iint \frac{\vec{B} \cdot d\vec{A}}{\vec{B} \cdot d\vec{A}} = \iint \frac{N_0}{2\pi \times} (\vec{a_1} \cdot \vec{a_2}) \cdot dA = -$	Mo SS dxdy		
	=> define the boundaries		· · · · · · · · · · · · · · · · · · ·	
	$\frac{1}{2}a_0t^2 \leq x \leq L + \frac{1}{2}a_0t^2 \qquad -\frac{L}{2} \leq Y \leq \frac{L}{2}$: : · · · · · · · · · · · · · · · · · ·	·
•.	$\phi_{m} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} a_0 t^2 \frac{2}{2\pi \times 2} dx dy$	$\int \frac{1}{x} = \ln(x) - r$	k	
	$\phi_{m} = -\frac{\mu_{0}}{2\pi} \int_{-L/2}^{L/2} \ln\left(\frac{L + \frac{1}{2}a_{0}t^{2}}{\frac{1}{2}a_{0}t^{2}}\right) dy$			
	$\phi_{m} = \frac{-\lambda_{0}L}{2\pi} \ln \left(\frac{L + \frac{1}{2}a_{0}t^{2}}{\frac{1}{2}a_{0}t^{2}} \right) \implies \text{the flux dire}$	ection—is-out-of-ti	ner paper (ue to negative sign
2	a)ii) $V = N \frac{\partial \phi}{\partial x}$ $N = 1$			
•	V- 11 ∂t			
	$\frac{\partial \phi}{\partial \phi} = \frac{\mu_0 L}{2} \left(\frac{1}{2} \left(\alpha_0 + \frac{1}{2} \left(2 \right) - \frac{1}{2} \left(\alpha_0 + \frac{1}{2} \left(2 \right) \right) \right)$	Nol (act	a.t)	=> Sign doesn't matter
	$\frac{1}{2\pi} \left(\frac{1}{2} a_0 t^2 + \frac{1}{2} a_0 t^2 \right) =$	27 \ \ \frac{1}{2}a_0t^2	L+1a0+2/	only sign of direction
	$e.m.f = \frac{hoL}{2L} \left(\begin{array}{c} a_0 + \frac{2}{L + \frac{1}{L}a_0 + 2} & t \end{array} \right) V$			
				out of into paper
•	=> direction of current is counter-clockwise of loop	this is due to les	nz law as flux	Cust reduce, this induces
	voltage that produces flux out of the paper		-	•
			•.	
		·	·	·
		ام برای منظ یا ۱۰ سامه		<u> </u>
		No. of the Williams		•

 1	Control of the state of the sta
26 ता	$f = direction = \sum_{k=0}^{\infty} \frac{1}{k!} $
	Complex propagation constant >> 8 = jKc = jw THE= jw THE= jw THE= jw The jwes O \are \begin{array}{c} \array \frac{1}{2} \\ \array \equiv \left \]
	$\sqrt{j} = \frac{ +j }{\sqrt{2}} \sqrt{\omega_{MT} + j_{ME}} = \alpha + j_{B} = (1+j)\sqrt{\frac{\omega_{MT}}{2} - \frac{j_{+}j_{0}}{2}}$
	$\frac{1}{16} = \sqrt{\frac{1}{6}} = \sqrt{\frac{1}{100}} = \sqrt{\frac{1}{100}} = e^{\frac{1}{10}} \sqrt{\frac{1}{100}} = > 16 = \frac{11}{08} - 7 \text{ Same Values}$
	L (Nc)=48 (2)
ο̈́ρ	Er=1 and 1=0.01 Ym /we>20=> good conductor. W=211x106Hz
	0 = VIWICO = (30 10 20 20 20 20 20 20 2
	The - VE AMOICE SECTION OF THE TRANSPORT
	= \[\frac{1}{789.556259.68° \(\) = 28.144\[\).34° \(\)_
	∠ CN=) 12.45°
	Because the indicators for good conductors to are 01 = 16 and 2 CM = 1/4 or 45° therice the assumption is true

and the second	VOIDE V SERVICE V VIGRANUT
3) લો	Gien = (50 Qx - 140 Qy) e-1002 ym (c= 15040.2 1)
, (i)	K=677 671= 27/4 => X=1/3m k=27/4=> Wastrumber
	1. f= 8x108 Hz
	f= 8x108Hz= 900 MHz => frequency
<u>(lij</u>	The polarization of UPW ic elliptically polarized because the 100-9x1=900 but 1504) \$150x1
	Note= \$4=90° \$4.0° (Goyl=140 and [Foxl=50
(ક્ષેડ)	Γ= Rc-R1 150c0.2-120Π = 944185 × 2.95 rad.
cłvs	2xeninun-n-vus
	VOICE - VIBRANCY
	·
Enter the second of the second of	

કૃષ્	H = Qy 75 g-1 (0.35x+0.252) MA/m	
Úì	Because the magnetic field has only y-component, the magnetic fi	eld is perpendicularly polarized
	Use the rangle of incidence Bi (in degrees) and the angle of transm	vission de (in degrees) from the appendix.
	ki = 0.35 0x+0.25 0z => 0xi = 0.0137 0x+0.5012 0z	
	ki = 0.4301	Electric field is parallel polarized
	Sin A. Tita	
	Sinde WEI Sind WEO 2079056	Ty = New Hotel = 0.0200
	Sin de = 0.64331	
	A € = 40.030°	Er= [Eo] = 7.0603
		63 = 75 × 101 × 10 -3 = 28.261
ζίὑ	Si = Ok; Leoil Win = Ok 120 min was at the 2x 120 m	S OF OBERTAL TO SENERAL S
	Sr = Oko Ser VOIC 31947 SERVICE = 0.0004 Dec	WERANG SORA
	= 4,237×10-4 a	₩ *
		cr /m
	Si = 0.862 az + 0.6156 az Wm2	
	5r = 0.0003 Qx - 0.0002 Wm2 => 3.447 x10-4 Qx - 2,44	626×10-4a2 W/2
	*	*
	,	
	:	
		· · · · · · · · · · · · · · · · · · ·
· [· ———	

र्व व्य	20-50-52 7L= 60-27 Ω f= 900 NH2 λ.f= 3x108 m/s => λ=1/3 m β= 21/4 = 61 rad/m
(1)	Reflection coefficient $\frac{7}{12} = \frac{7}{21+70} = \frac{10-27}{110-27} = 0.2680 \ \angle -0.75785$
	SWR = 1+1121 = 1.7322 *
	68-27)
<u>(lí)</u>	Using Smith Charl => $2c = \frac{69-27i}{50} = 1.36 - 0.54i = 0.316\lambda$ TG Generator is at 0.35λ TG (Co. 25.36)
	Shortcat length of the line for If be purely resistive => 1 × 1/2 m = 14.47 cm from the generator or -14.47
	4SE Methou.
(111)	$\frac{V_{0}}{V_{0}} = \frac{V_{0}}{V_{0}} = 0.339A$
	1 1 2in (-2) 1 - 20 202 = 86 612 00 [In [2in (-2)]
	VOICE · SERVICE · VIBRANCY
	I Paug for the load => 1/2 Re CVLIx*) = 1/2 Re (29.36 × 0.339) = 4.97 water
	2nd method
	Cakulate equivalent T6 = Zin(2)-Zg = 0.0719
	Parl= (1- res 2) x Par = 4.97 wate
	tant the 15 x do = 1,55 when
	·

(b) Zo=75	<u>sa</u>	W=411x108	=> f=2x108	x1=10,43	B=21/3=41/3	
L=0.5				λ=3/2m		
Up = 32		79=75SL	·			
4 7:00	ZL+jtotan((pe) 7	A. P. 16-	> First => 21=0	<u>· · · · · · · · · · · · · · · · · · · </u>	
(j) tine-2)	ZL+jtotan(Zo+jtLCtan	to (Be)	Open chaut -			
	<u> </u>			<u> </u>		
7	7 1+1	ું ૯-મુંક્ય	a-C*	. т/		
tinc-2	1= 60 ×	1 C-2/PR	25/31 => 25/3	12 SL		
					· ·	
	<u>Ω</u> ,					
ciii Vc-er=	tin Vg =>	$> \frac{1}{2} \frac{1}{3} \pi \times 100^{\circ}$	103 (411X108 - 1/6)			
				ŧ .		
<u> </u>	*	= 50 kg kg (80	8t+1/6) NO14			
,						
T.	T					
lips and	1 Tricles for GE	50012				
		DICE .	SERVIR	e • Viel	MAY	
J Unda	istand to iva	of Trapporties				
		· · · · · · · · · · · · · · · · · · ·		brezanete.		
1 For	uniform plane i	save, make sure to	understand the former	for example, a of wave number k	•	
			· · · · · · · · · · · · · · · · · · ·			
1 Makes	ure to read the q	ruestions very carefu	ully especially quest	ion 3 and 4 regarding	z uniform place www	and transmission
		led and perpendicul		J .	3	· ·
	1 21			_		•
•) Under	tand the use of	snuth chart for qu	Ostron 4			
	0	·				
	4	,	ş. 2.q. 2.2.			44
				· ,		
	· .		·.			1
				<u> </u>		1
l l		the second second				