Relaxing Observability Assumption in Causal Inference with Kernel Methods

Yuchen Zhu

with Limor Gultchin, Arthur Gretton, Anna Korba, Matt Kusner, Afsaneh Mastouri, Krikamol Muandet, Ricardo Silva

Talk at When Causal Inference Meets Statistics Quarterly, 20.04.2023

Why relax observability assumptions?

Unobserved confounders:

Simpson's paradox:

Mask interesting relationships:

Kernel Mean Embeddings

$$\mu_{P_X}(x) = \int k(x, y) P_X(y) dy$$

Characteristic kernel:
$$P_X \longmapsto \mu_{P_X}(y)$$

$$\langle \mu_{P_X}, f \rangle_{H_X} = \mathbb{E}_{P_X}[f(X)]$$

Conditional Kernel Mean Embeddings (CME)

$$\mu_{W|a,x,z} := C_{W|A,X,Z} \left(\phi(a) \otimes \phi(x) \otimes \phi(z) \right)$$

$$\widehat{C}_{W|A,X,Z} = \underset{C \in \mathcal{H}_{\Gamma}}{\operatorname{argmin}} \ \widehat{E}(C), \text{ with }$$

$$\widehat{E}(C) = \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i) - C\phi(a_i, x_i, z_i)\|_{\mathcal{H}_{\mathcal{W}}}^2 + \lambda \|C\|_{\mathcal{H}_{\Gamma}}^2$$

$$\widehat{C}_{W|A,X,Z} = \Phi(W)(\mathcal{K}_{AXZ} + m \lambda)^{-1}\Phi^{T}(A,X,Z)$$

Convergence rates are well understood (Singh et al 2019, Mastouri, Zhu, et al 2021)

Connection with Characteristic Functions

Translation invariant:
$$k(x, y) = k(x - y)$$

$$\mu(x) = \int k(x - y)p(y)dy$$

$$\hat{\mu}[\alpha] = \hat{k}[\alpha]\psi[\alpha]$$

Bochner's theorem: \hat{k} is a probability measure.

Connection with Characteristic Functions

KRR estimate of CME:
$$\hat{\mu}_{X|z}^{(s)}(x) = \sum_{j=1}^{s} \hat{\gamma}_{j}^{(s)}(z)k(x_{j}, x)$$

$$\hat{\gamma}_{j}^{(s)}(z) = (K_Z + s\lambda I)^{-1} K_{Zz}$$

Fourier transform:
$$\tilde{\hat{\mu}}_{X|z}^{(s)}(\alpha) = \sum_{j=1}^s \hat{\gamma}_j^{(s)}(z) e^{-i\alpha x_j} \ \tilde{k}(\alpha)$$

$$= \tilde{k}(\alpha) \underbrace{\sum_{j=1}^{s} \hat{\gamma}_{j}^{(s)}(z) e^{-j\alpha x_{j}}}_{=:\hat{\psi}_{\mathcal{P}_{X|z}}^{(s)}(-\alpha)}$$

Connection with Characteristic Functions

$$(x_j, z_j)_{j=1}^s \longrightarrow \operatorname{Have} \hat{\mu}_{X|z}^n(y) = \sum_{j=1}^n \hat{\gamma}_j^n(z) k(x_j, y).$$

Let
$$\hat{\psi}^n_{X|z}(\alpha) := \sum_{j=1}^n \hat{\gamma}^n_j(z) e^{i\alpha x_j}$$
.

Where
$$\hat{\gamma}_j^n(z) = (K_{ZZ} + n\hat{\lambda}^n I)^{-1}K_{Zz}$$
.

Theorem 1. With real, translation-invariant kernel:

$$\hat{\mu}_{X|Z}^n \to^n \mu_{X|Z}$$
 iff $\hat{\psi}_{X|Z}^n \to^n \psi_{X|Z}$ in IFT of kernel.

Kotlarski's Lemma

Lemma 1. Let X_1 , X_2 , X_3 be three independent real random variables, and let

$$Z_1 = X_1 - X_3, Z_2 = X_2 - X_3$$
.

If the characteristic function of the pair (Z_1, Z_2) does not vanish, then the distribution of (Z_1, Z_2) determines the distributions of X_1 , X_2 , X_3 up to a change of the location.

Kotlarski's Lemma

Application in causal inference with corrupted treatments

Application in causal inference with corrupted treatments

Application in causal inference with corrupted treatments

To obtain $\hat{\psi}^n_{A|z}$:

$$\frac{\psi_{A|z}(\alpha)}{\mathbb{E}_{\mathscr{P}_{A|z}}[e^{i\alpha X}](\alpha)} = \exp \begin{bmatrix} \int_{0}^{\alpha} i \frac{\mathbb{E}[Me^{i\nu N}|z]}{\mathbb{E}[e^{i\nu N}|z]} d\nu \\ \frac{\mathbb{E}[e^{i\nu N}|z]}{\psi_{N|z}(\nu)} \end{bmatrix} \tag{1}$$

- 1. Differentiate wrt α to remove integral.
- Replace with sample estimates.

$$\frac{\frac{d}{d\alpha}\hat{\boldsymbol{\psi}}_{A|z}^{n}(\alpha)}{\hat{\boldsymbol{\psi}}_{A|z}^{n}(\alpha)} = \frac{\frac{\partial}{\partial v}\hat{\boldsymbol{\psi}}_{M,N|z}^{n}(v,\alpha)}{\hat{\boldsymbol{\psi}}_{N|z}^{n}(\alpha)}$$
(2)

Measurement Error KIV (MEKIV)

Zhu et al, UAI 2022, Causal Inference with Treatment Measurement Error: A Nonparametric IV Approach.

Advantages of MEKIV

- No distributional assumptions. Further relaxation: Evdokimov and White 2011.
- Very little hyper parameter tuning.
- Models the distributions using mean embeddings and not the full densities.

Summary of techniques and future work

- Kotlarski's Lemma allows us to identify three unseen variables from just two of their linear combinations. Can this be extended further?
- Duality between characteristic functions and mean embeddings.
- Need to relax the additive measurement error assumption.
- Need to relax additive error on outcome assumption.

Proximal Causal Learning Background

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.

Proximal Causal Learning Background

Average causal effect estimation:

$$\mathbb{E}[Y|do(A=a)] = \int_{XW} h(a, w, x) p(w, x) dx dw$$

How to get h?

 $\mathbb{E}[Y - h(A, W, X) \mid A, Z, X] = 0 \quad \text{a.s. } P_{AZX}$

Completeness Condition (Miao et al. 2018)

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.

Proximal Maximum Moment Restriction

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \text{ a.s. } P_{AXZ}$$

- If E[A|B] = 0,
- Then (for g measurable):
- E[Ag(B)] = E[E[Ag(B)|B]]
- $\bullet = E[E[A|B]g(B)] = 0$

$$\mathbb{E}[(Y-h(A,X,W))g(A,X,Z)] = 0 \text{ a.s. } P_{AXZ} \text{ For all } g$$

Precursor loss:

$$R(h) = \sup_{g} (\mathbb{E}[(Y - h(A, W, X))g(A, Z, X)])^{2}$$

PMMR surrogate loss $R_k(h)$ k indexes the kernel.

Mastouri*, **Z.***, et al. Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restrictions. *ICML* 2021.

Proximal Maximum Moment Restriction

Precursor loss:

$$R(h) = \sup_{g} (\mathbb{E}[(Y - h(A, W, X))g(A, Z, X)])^{2}$$

$$R_k(h) = \sup_{g \in \mathcal{H}_{\mathscr{A}\mathscr{Z}\mathscr{X}}, \quad \|g\| \le 1} (\mathbb{E}[(Y - h(A, W, X)) \langle g, k((A, Z, X), \cdot) \rangle])^2$$

$$= \mathbb{E}[(Y - h(A, W, X))(Y' - h(A', W', X'))k((A, Z, X), (A', Z', X'))]$$

V-statistic:
$$R_V(h) := \frac{1}{n^2} \sum_{i,j=1}^n (y_i - h_i)(y_j - h_j) k_{ij}$$
 (reweighed ERM!)