

Gradient Descent for Deep Matrix

Factorization

Dynamics and Implicit Bias towards Low Rank

Donata Buožytė

July 15th, 2022

Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit Bias towards Low Rank

Hung-Hsu Chou¹, Carsten Gieshoff¹, Johannes Maly², and Holger Rauhut¹

¹Chair for Mathematics of Information Processing, RWTH Aachen University, Germany ²Department of Scientific Computing, KU Eichstaett/Ingolstadt, Germany

August 30, 2021

Outline

- Introduction
- Dynamics of Gradient Descent with Identical Initialization
- Dynamics of Gradient Descent with Perturbed Initialization
- Implicit Bias of Gradient Descent
- 5 Summary: Central Observations

Motivation

theoretical studies	real situations
neural network trained with the	neural networks trained with the
(stochastic) gradient descent results	SDG lead to models
in zero training error	that generalize pretty well
ightarrow model is overfitting	

Motivation

theoretical studies	real situations
neural network trained with the	neural networks trained with the
(stochastic) gradient descent results	SDG lead to models
in zero training error	that generalize pretty well
ightarrow model is overfitting	

observations:

- optimization algorithms introduce implicit bias towards certain solutions
- SGD converges to linear functions described by a low rank matrix

Motivation

theoretical studies	real situations
neural network trained with the	neural networks trained with the
(stochastic) gradient descent results	SDG lead to models
in zero training error	that generalize pretty well
ightarrow model is overfitting	

observations:

- optimization algorithms introduce implicit bias towards certain solutions
- SGD converges to linear functions described by a low rank matrix

 \Rightarrow key task: understand nature of implicit bias

Feed Forward Neural Networks General Case

- $h: \mathbb{R}^{n_0} \to \mathbb{R}^{n_N}, h(x) = g_N \circ \ldots \circ g_1(x), N > 1$ with:
 - \square layers: $g_k: \mathbb{R}^{n_{k-1}} \to \mathbb{R}^{n_k}, h_k(x) = \sigma(W_k x + b_k)$
 - \square weight matrices: $W_k \in \mathbb{R}^{n_k \times n_{k-1}}$
 - \square bias terms: $b_k \in \mathbb{R}^{n_k}$
 - \square activation function: $\sigma: \mathbb{R} \to \mathbb{R}$, in general non-linear

Feed Forward Neural Networks General Case

- $h: \mathbb{R}^{n_0} \to \mathbb{R}^{n_N}, h(x) = g_N \circ \ldots \circ g_1(x), N > 1$ with:
 - \square layers: $g_k: \mathbb{R}^{n_{k-1}} \to \mathbb{R}^{n_k}$, $h_k(x) = \sigma(W_k x + b_k)$
 - \square weight matrices: $W_k \in \mathbb{R}^{n_k \times n_{k-1}}$
 - \square bias terms: $b_k \in \mathbb{R}^{n_k}$
 - \square activation function: $\sigma: \mathbb{R} \to \mathbb{R}$, in general non-linear
- loss function: $\mathcal{L}: \mathbb{R}^{n_N} \times \mathbb{R}^{n_N} \to \mathbb{R}_+$
- approach in supervised learning:

$$\min_{W_1,\dots,W_N} \frac{1}{M} \sum_{i=1}^M \mathcal{L}(h(x_i), y_i)$$

Feed Forward Neural Networks Linear Case

Inear neural networks: $\sigma(x) = x$, $b_k = 0$, hence $h_{\text{linear}}(x) = W_N \dots W_1 x$

Feed Forward Neural Networks Linear Case

- \blacksquare linear neural networks: $\sigma(x)=x$, $b_k=0$, hence
 - $h_{\text{linear}}(x) = W_N \dots W_1 x$
- approach with quadratic loss:

$$\min_{W_1,\dots,W_N} \frac{1}{M} \sum_{i=1}^M ||W_N \dots W_1 x_i - y_i||_2^2 \tag{1}$$

Feed Forward Neural Networks Linear Case

- linear neural networks: $\sigma(x) = x$, $b_k = 0$, hence
 - $h_{\mathrm{linear}}(x) = W_N \dots W_1 x$
- approach with quadratic loss:

$$\min_{W_1,\dots,W_N} \frac{1}{M} \sum_{i=1}^M \|W_N \dots W_1 x_i - y_i\|_2^2 \tag{1}$$

it can be shown: if $\operatorname{span}(\{x_i\}_{i=1}^M) = \mathbb{R}^{n_0}$, then the set of minimizers of (1) is equivalent to the set of minimizers of

$$\min_{W_1, \dots, W_N} \|W_N \dots W_1 - \hat{W}\|_F^2 \tag{2}$$

 $(\hat{W} = \text{ground truth matrix})$

Frobenius Norm

For $A \in \mathbb{R}^{m \times n}$:

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2$$

$$= \operatorname{trace}(A^T A)$$

$$= \operatorname{trace}((U\Sigma V^T)^T (U\Sigma V^T))$$

$$= \operatorname{trace}(\Sigma^T \Sigma)$$

$$= \sum_{i=1}^r \sigma_i^2$$

Gradient Descent

For the loss function:

$$\mathcal{L}(W) = \frac{1}{2} \|W - \hat{W}\|_F^2, \quad \nabla_W \mathcal{L}(W) = (W - \hat{W})$$
(3)

$$\nabla_{W_j} \mathcal{L}(W) = (W_N \dots W_{j+1})^T \nabla_W \mathcal{L}(W) (W_{j-1} \dots W_1)^T$$
(4)

Gradient Descent

For the loss function:

$$\mathcal{L}(W) = \frac{1}{2} \|W - \hat{W}\|_F^2, \quad \nabla_W \mathcal{L}(W) = (W - \hat{W})$$
(3)

$$\nabla_{W_j} \mathcal{L}(W) = (W_N \dots W_{j+1})^T \nabla_W \mathcal{L}(W) (W_{j-1} \dots W_1)^T$$
(4)

the gradient descent is defined as:

$$W_j^{(0)} = \alpha W_0 \tag{5}$$

$$W_j^{(k+1)} = W_j^{(k)} - \eta \nabla_{W_j} \mathcal{L}(W^{(k)})$$
(6)

Outline

- Introduction
- Dynamics of Gradient Descent with Identical Initialization
- Dynamics of Gradient Descent with Perturbed Initialization
- Implicit Bias of Gradient Descent
- 5 Summary: Central Observations

Consider the (discrete) dynamics

$$W_{j}^{(0)} = \alpha W_{0}$$

$$W_{j}^{(k+1)} = W_{j}^{(k)} - \eta \nabla_{W_{j}} \mathcal{L}(W^{(k)})$$

with an identical initialization $W_0 = I$.

Now let $(W_j^{(k)})_{j=1}^N$ be solutions of the discrete dynamics with identical initialization and $\hat{W} = V\Lambda V^T$ the eigendecomposition of the symmetric ground truth matrix \hat{W} .

Now let $(W_j^{(k)})_{j=1}^N$ be solutions of the discrete dynamics with identical initialization and $\hat{W} = V\Lambda V^T$ the eigendecomposition of the symmetric ground truth matrix \hat{W} . Then:

- 1. $D^{(k)} = D_j^{(k)} \coloneqq V^T W_j^{(k)} V \quad \forall j \text{ are real, diagonal, identical}$
- 2. $D^{(k)}$ follows the dynamics $D^{(k+1)} = D^{(k)} \eta(D^{(k)})^{N-1}((D^{(k)})^N \Lambda)$

Hence by definition:

- $W_i^{(k)} = VD^{(k)}V^T \quad \forall j, k$
- $W_N^{(k)} \dots W_1^{(k)} = (VD^{(k)}V^T)^N = V(D^{(k)})^N V^T \quad \forall k$

Hence by definition:

- $W_i^{(k)} = V D^{(k)} V^T \quad \forall j, k$
- $W_N^{(k)} \dots W_1^{(k)} = (VD^{(k)}V^T)^N = V(D^{(k)})^N V^T \quad \forall k$

Additionally: as $D^{(k)}$ is diagonal, the dynamics can be reformulated as

$$d_{ii}^{(k+1)} = d_{ii}^{(k)} - \eta (d_{ii}^{(k)})^{N-1} ((d_{ii}^{(k)})^N - \lambda_i)$$
(7)

where λ_i is the corresponding eigenvalue of \hat{W} .

Theorem 2.1 $N \geq 2$, $\lambda \in \mathbb{R}$, $\alpha > 0$, $\{d^{(k)}\}_k$ the solution of (7). Let $M = \max(\alpha, |\lambda|^{\frac{1}{N}})$ and η be s.t.

$$0<\eta<\begin{cases} \frac{1}{2NM^{2N-2}} & \text{if } \lambda\geq 0\\ \frac{1}{(3N-2)M^{2N-2}} & \text{if } \lambda<0. \end{cases}$$

Additionally let $\epsilon \in (0, |\alpha - \lambda_+^{\frac{1}{N}}|)$ the desired error and $T = \min\{k : |d^{(k)} - \lambda_+^{\frac{1}{N}}| \le \epsilon\}$ the minimal number of steps needed to achieve the desired error.

Then: $T \leq T_N^{\mathrm{Id}}(\lambda, \epsilon, \alpha, \eta)$.

(Note: T_N^{Id} is an estimation of the required number of steps with 5 different cases depending on the input values.)

Recovery of positive eigenvalues

Theorem 2.2 $N \geq 2$, $\hat{W} = V\Lambda V^T \in \mathbb{R}^{n \times n}$ an eigendecomposition the symmetric matrix \hat{W} .

Let $W^{(k)}=W^{(k)}_N\dots W^{(k)}_1$ with $W^{(k)}_j$ defined by (5)-(6) with loss function (3), $W_0=I$ and $\alpha>0$.

Let $M = \max(\alpha, \|\hat{W}\|_2^{\frac{1}{N}})$ and η be s.t.

$$0 < \eta < \frac{1}{(3N-2)M^{2N-2}}. (8)$$

Then: $\lim_{k\to\infty}W^{(k)}=V\Lambda_+V^T$ and the error is the diagonal matrix $E^{(k)}=V^TW^{(k)}V-\Lambda_+.$

Recovery of positive eigenvalues: Example

$$\hat{W} = \begin{pmatrix} 7/3 & 10/3 & -4 & 2/3 \\ 10/3 & 10/3 & 5 & 5/3 \\ -4 & 5 & 4 & 1 \\ 2/3 & 5/3 & 1 & -5 \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix}$$

$$N = 3, \ \alpha = 0.1$$

Recovery of positive eigenvalues

Conclusion of Theorem 2.2:

the dynamics

$$W_{j}^{(0)} = \alpha I$$

$$W_{j}^{(k+1)} = W_{j}^{(k)} - \eta \nabla_{W_{j}} \mathcal{L}(W^{(k)})$$

can recover the non-negative eigenvalues of \hat{W} under certain conditions.

Outline

- Introduction
- Dynamics of Gradient Descent with Identical Initialization
- Opposition of State of Stat
- Implicit Bias of Gradient Descent
- 5 Summary: Central Observations

Dynamics of Gradient Descent with Perturbed Initialization

Idea:

instead of initializing all $W_j^{(0)}$ with only αI , perturb the initialization slightly by for example using

$$W_j^{(0)} = \begin{cases} (\alpha - \beta)I & \text{if } j = 1\\ \alpha I & \text{otherwise} \end{cases}$$
 (9)

with $0 < \beta < \alpha$.

Recovery of arbitrary eigenvalues

Theorem 3.1 $N \geq 2$, $\hat{W} = V\Lambda V^T \in \mathbb{R}^{n \times n}$ an eigendecomposition the symmetric matrix \hat{W} .

Let $W^{(k)} = W_N^{(k)} \dots W_1^{(k)}$ with $W_j^{(k)}$ defined by (5) and the perturbed initialization (9) with loss function (3) and $W_0 = I$.

Let $M=\max(\alpha,\|\hat{W}\|_2^{\frac{1}{N}})$, $0<\frac{\beta}{c-1}<\alpha$, $c\in(1,2)$ with c being the maximal real solution of $1=(c-1)c^{N-1}$ and η be s.t.

$$0 < \eta < \frac{1}{9N(cM)^{2N-2}}. (10)$$

Then: $\lim_{k\to\infty}W^{(k)}=V\Lambda V^T=\hat{W}$ and the error is the diagonal matrix $E^{(k)}=V^TW^{(k)}V-\Lambda$.

Recovery of arbitrary eigenvalues: Example

$$\hat{W} = \begin{pmatrix} 7/3 & 10/3 & -4 & 2/3 \\ 10/3 & 10/3 & 5 & 5/3 \\ -4 & 5 & 4 & 1 \\ 2/3 & 5/3 & 1 & -5 \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix}$$

$$N = 3, \ \alpha = 0.1, \ \beta = 0.05$$

Recovery of arbitrary eigenvalues

First conclusion of Theorem 3.1:

the dynamics

$$\begin{split} W_j^{(0)} &= \begin{cases} (\alpha - \beta)I & \text{if } j = 1 \\ \alpha I & \text{otherwise} \end{cases} \\ W_j^{(k+1)} &= W_j^{(k)} - \eta \nabla_{W_j} \mathcal{L}(W^{(k)}) \end{split}$$

can recover the all eigenvalues of \hat{W} under certain conditions.

Recovery of arbitrary eigenvalues: Example

Recovery of arbitrary eigenvalues

Second conclusion of Theorem 3.1:

there are two different regimes of the dynamic:

1. if $\lambda_i > 0$: dynamics behave as in 2.2 ("only positive eigenvalues")

Recovery of arbitrary eigenvalues

Second conclusion of Theorem 3.1:

there are two different regimes of the dynamic:

- 1. if $\lambda_i > 0$: dynamics behave as in 2.2 ("only positive eigenvalues")
- 2. if $\lambda_i < 0$: at first $(\lambda_i)_+$ is approximated up to β and only after reaching that level forced to take negative values

Eigenvalue Recovery for Different Depths: Example

Eigenvalue Recovery for Different Depths

Outline

- Introduction
- Dynamics of Gradient Descent with Identical Initialization
- Dynamics of Gradient Descent with Perturbed Initialization
- Implicit Bias of Gradient Descent
- 5 Summary: Central Observations

Implicit Bias Towards Low-Rank: Example

Implicit Bias Towards Low-Rank

The Theorems 2.2 and 3.1 suggest:

as dominant eigenvalues will be approximated faster: stopping the gradient descent at a suitable finite k will result in a low rank matrix $W^{(k)}$

Implicit Bias Towards Low-Rank

The Theorems 2.2 and 3.1 suggest:

- as dominant eigenvalues will be approximated faster: stopping the gradient descent at a suitable finite k will result in a low rank matrix $W^{(k)}$
- it can be shown: effective rank of $W^{(k)}$ drops to one, then monotonically increases to plateau on effective ranks of various low-rank approximations of \hat{W}

Effective rank:
$$1 \leq r(W) = \frac{\|W\|_*}{\|W\|_2} = \frac{\sum_j \sigma(A)_j}{\|W\|_2} \leq \operatorname{rank}(W)$$

Effective Rank: Example

$$\hat{W} = \begin{pmatrix} 7/3 & 10/3 & -4 & 2/3 \\ 10/3 & 10/3 & 5 & 5/3 \\ -4 & 5 & 4 & 1 \\ 2/3 & 5/3 & 1 & -5 \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix}$$

$$N = 3, \ \alpha = 0.1, \ \beta = 0.05$$

Effective Rank: Example

Effective Rank: Example

Outline

- Introduction
- Dynamics of Gradient Descent with Identical Initialization
- Dynamics of Gradient Descent with Perturbed Initialization
- Implicit Bias of Gradient Descent
- Summary: Central Observations

Central Observations

Three central observations:

- 1. recovery of positive eigenvalues
- 2. recovery of arbitrary eigenvalues
- 3. implicit bias towards low-rank

Gradient Descent for Deep Matrix Factorization

Thank you for your attention!