

Hochschule für Technik und Wirtschaft Berlin

Wilhelminenhofstraße 75A, 12459 Berlin

 $\label{eq:Fachbereich 1}$ Ingenieurwissenschaften - Energie und Information Regenerative Energien (B)

Windversuch vom 26.05.2023

Betreuerin: Joachim Twele Gruppe: 5

Name	Matrikelnummer
Johannes Tadeus Ranisch	578182
Markus Jablonka	580234
Niels Feuerherdt	577669
Katharina Jacob	578522
Lukas Aust	574051

Inhaltsverzeichnis

1	Ver	suchsziele	1
2	The	eoretischer Hintergrund	1
	2.1	Der Leistungsbeiwert c_P	1
	2.2	Der Momentenbeiwert c_M	2
	2.3	Der Schubbeiwert c_S	2
	2.4	Verzögerung der Windgeschwindigkeit	2
3	Ver	suchsbeschreibung	3
4	Vor	bereitungsfragen	4
	4.1	Wozu wird der Leistungsbeiwert c_P in der Praxis benötigt?	4
	4.2	Leiten Sie den theoretisch maximalen Wert des Leistungsbeiwerts c_P her	4
	4.3	Geben Sie Abschätzungen für den Schubbeiwert c_S im Stillstand und bei Leer-	
		laufdrehzahl an und begründen Sie diese.	4
	4.4	Wozu wird der Momentenbeiwert c_M in der Praxis benötigt?	4
	4.5	Wozu wird der Schubbeiwert c_S in der Praxis benötigt?	4
	4.6	Leiten Sie den Wert des Schubbeiwerts c_S für die Auslegungsschnelllaufzahl λ her.	4
5	Ver	suchsdurchführung	4
6	Aus	wertung	5
	6.1	Anlaufverhalten	5
	6.2	Leerlauf und Maximale Schnelllaufzahl	5
	6.3	Dimensionslose Kennzahlen	5
7	Que	ellen	6

Abbildungsverzeichnis

1	Berechnete Leistungsbeiwerte c_P des Rotors der Labor-Windkraftanlage in Ab-	
	hängigkeit der Schnelllaufzahl λ für unterschiedliche Blatt (Pitch-)Winkel.[1] $$	1
2	Berechnete Momentenbeiwert c_M des Rotors der Labor-Windkraftanlage in Ab-	
	hängigkeit der Schnelllaufzahl λ für unterschiedliche Blatt (Pitch-)Winkel.	2
3	Berechneter Schubbeiwert c_s des Rotors der Labor-Windkraftanlage in Abhän-	
	gigkeit der Schnelllaufzahl λ für unterschiedliche Blatt (Pitch-) Winkel 	3
4	Verzögerung in der geschlossenen Stromröhre nach Betz $v_1 \cdot \frac{1}{3} = v_3$ und $v_1 \cdot \frac{2}{3} = v_2$	3
5	Verzögerung in der geschlossenen Stromröhre nach Betz $v_1 \cdot \frac{1}{3} = v_3$ und $v_1 \cdot \frac{2}{3} = v_2$	3

Tabellenverzeichnis

1 Versuchsziele

Im Rahmen des Versuchs werden Verschiedene Charakteristika der Windkraftanlage untersucht. Als erstes wird das Anlaufverhalten des Rotors in Abhängigkeit vom Blattwinkel (Pitch) untersucht. Anschließend werden weitere Messungen gemacht mit denen die Dimenensionslosen Kennzahlen und die maximale Schnellaufzahl der Windkraftanlage bestimmt werden kann.

2 Theoretischer Hintergrund

Um den theoretischen Hintergrund dieses Versuchs verstehen zu können, wird im folgenden auf den Leistungsbeiwert c_p , den Momentenbeiwert c_m und den Schubbeiwert c_s eingegangen. Abschließend wird noch auf die Windgeschwindigkeiten und deren Verzögerung eingegangen.

2.1 Der Leistungsbeiwert c_P

Der Leistungsbeiwert c_p ist wie folgt definiert.

$$c_p = \frac{P_{WEA}}{P_{Wind}} \tag{1}$$

$$c_p = \frac{M \cdot 2 \cdot \pi \cdot n_{Rotor}}{\frac{\rho_{Luft}}{2} \cdot \pi \cdot \frac{d_{Rotor}^2}{4} \cdot v_{Wind}^3}$$
 (2)

Wie in ?? zu sehen bildet sich c_P aus dem Quotienten der Mechanischen- und der Windleistung. In ?? ist dabei zu sehen wie c_P von Anlagenspezifischen Eigenschaften beeinflusst wird. Typischerweise wird der Leistungsbeiwert c_P dabei über die Schnelllaufzahl λ aufgetragen. Dabei bildet die Schnelllaufzahl das Verhältnis der Umfangsgeschwindigkeit an der Blattspitze u_{tip} zur ungestörten Windgeschwindigkeit ab wie in Formel 3 zu sehen.

$$\lambda = \frac{u_{tip}}{u_{Wind}} = \frac{\pi \cdot n_{Rotot \cdot d_{Rotor}}}{v_{Wind}} \tag{3}$$

Abbildung 1: Berechnete Leistungsbeiwerte c_P des Rotors der Labor-Windkraftanlage in Abhängigkeit der Schnelllaufzahl λ für unterschiedliche Blatt (Pitch-)Winkel.[1]

2.2 Der Momentenbeiwert c_M

Der Momentenbeiwert beschreibt das Betriebsverhalten des Rotors bezüglich der Drehmomentabgabe, mit dessen Hilfe sich eine Aussage über das Anlaufverhalten aus dem Stillstand machen lässt. Dabei ergibt er sich aus dem Verhältnis des abgegebenen Drehmoments zum Luftkraftmoment, dass auf die Rotorfläche wirkt.

$$c_M = \frac{M}{\frac{\rho_{Luft}}{2} \cdot \pi \cdot \frac{d_{Rotor}^3}{8} \cdot v_{Wind}^2} \tag{4}$$

Des Weiteren gilt der Zusammenhang:

$$c_M = c_p \cdot \lambda \tag{5}$$

Bei Schnellläufern ist der Momentenbeiwert beim Anlaufen sehr gering. Dies ist Bauartspezifisch bei Schnellläufern und in Abbildung 2 zu sehen. Noch quelle in die Abbildung (Skript Twele)

Abbildung 2: Berechnete Momentenbeiwert c_M des Rotors der Labor-Windkraftanlage in Abhängigkeit der Schnelllaufzahl λ für unterschiedliche Blatt (Pitch-)Winkel.

2.3 Der Schubbeiwert c_S

Der Schubbeiwert c_s ist sehr wichtig um die Windkraftanlage Struktur-mechanisch zu dimensionieren. Dabei ergibt der Schubbeiwert aus der dynamischen Staukraft auf die Rotorfläche.

$$c_s = \frac{F_S}{\frac{\rho_{Luft}}{2} \cdot \pi \cdot \frac{d_{Rotor}^2}{4} \cdot v_{Wind}^2} \tag{6}$$

Der Schubbeiwert hat sein Minimum im Stillstand und sein Maximum im Leerlauf. Hier entspricht der Widerstandsbeiwert etwa dem einer Scheibe. Höhere Schubbeiwerte bedeuten, dass sie die Windkraftanlage im Propelerbetrieb befindet. Wieder Quelle rein!!!

2.4 Verzögerung der Windgeschwindigkeit

Wie von Betz beschrieben liegt der optimale Arbeitspunkt einer Windkraftanlage bei einem Verhältnis von $v_1 \cdot \frac{1}{3} = v_3$ 4. Dabei ist in Abbildung 5 noch die Erweiterung von Glauert zu sehen, der die maximale Verblockung der Stromröhre im Leerlauf als Grenzfall berücksichtigt.

Abbildung 3: Berechneter Schubbeiwert c_s des Rotors der Labor-Windkraftanlage in Abhängigkeit der Schnelllaufzahl λ für unterschiedliche Blatt (Pitch-)Winkel.

Abbildung 4: Verzögerung in der geschlossenen Stromröhre nach Betz $v_1 \cdot \frac{1}{3} = v_3$ und $v_1 \cdot \frac{2}{3} = v_2$

Abbildung 5: Verzögerung in der geschlossenen Stromröhre nach Betz $v_1 \cdot \frac{1}{3} = v_3$ und $v_1 \cdot \frac{2}{3} = v_2$

3 Versuchsbeschreibung

4 Vorbereitungsfragen

4.1 Wozu wird der Leistungsbeiwert c_P in der Praxis benötigt?

Der Leistungsbeiwert c_P ist der tatsächliche Anteil der Energie des Windes, der in mechanische Energie umgesetzt werden kann und beschreibt den Wirkungsgrad einer Wind-Energie-Anlage. Er wird nach ?? oder ?? bestimmt und ist, wie in ?? erkennbar von den anlagenspezifischen Eigenschaften beeinflusst.

4.2 Leiten Sie den theoretisch maximalen Wert des Leistungsbeiwerts c_P her.

Der maximale Leistungsbeiwert, auch Betz'scher Leistungsbeiwert, von knapp 60% wird wie folgt bestimmt.

$$P_{WKA} = \frac{1}{2} \cdot \rho \cdot A \cdot v_2 \cdot (v_1^2 - v_3^2) \tag{7}$$

$$v_2 = \frac{v_1 + v_3}{2} \tag{8}$$

In 7 wird durch 8 v_2 eliminiert, wodurch diese dann klar als die Leistung des Windes mit dem Leistungsbeiwert erkennbar ist.

$$P_{WKA} = \frac{1}{2} \cdot \rho \cdot A \cdot v_1^3 \cdot \frac{1}{2} \left(1 - \frac{v_3^2}{v_1^2} + \frac{v_3}{v_1} - \frac{v_3^3}{v_1^3} \right) \tag{9}$$

Unter der Annahme das $x = \frac{v_3}{v_1}$ entspricht, entsteht eine einfache Quadratische (Gleichung 10). Diese Wird abgeleitet um Lokale Extrempunkte zu bestimmen (Gleichung 11).

$$c_{P,MAX} = \frac{1}{2} \cdot (1 - x^2 + x - x^3) \tag{10}$$

$$c_{P,MAX} = \frac{1}{2} \cdot (-3x^2 - 2x + 1) \tag{11}$$

Die Extrempunkte $x_{1/2} = \frac{1}{3}, -1 \ c_{P,MAX}(\frac{1}{3}) = 0, 59 = 59\%$

- 4.3 Geben Sie Abschätzungen für den Schubbeiwert c_S im Stillstand und bei Leerlaufdrehzahl an und begründen Sie diese.
- 4.4 Wozu wird der Momentenbeiwert c_M in der Praxis benötigt?
- 4.5 Wozu wird der Schubbeiwert c_S in der Praxis benötigt?
- 4.6 Leiten Sie den Wert des Schubbeiwerts c_S für die Auslegungsschnelllaufzahl λ her.

5 Versuchsdurchführung

- 6 Auswertung
- 6.1 Anlaufverhalten
- 6.2 Leerlauf und Maximale Schnelllaufzahl
- 6.3 Dimensionslose Kennzahlen

7 Quellen