Práctica 9 - Tautologías, Contradicciones, equivalencias lógicas, conectivas.

1.- Retome el Ejercicio 1 de la Práctica 1:

- a.- Seleccione un par de enunciados que sean lógicamente equivalentes (que tengan el mismo significado). Demuéstrelo mediante tablas de verdad.
 - i: "Si Juan contrata un informático entonces el proyecto tendrá éxito"
 - ii: "Si el proyecto no tiene éxito entonces Juan no ha contratado un informático"
 - p: Juan contrata un informático
 - o q: El proyecto es exitoso
 - Tabla de verdad i:

р	q	$p \to q$
V	V	v
V	f	f
f	V	v
f	f	v

• Tabla de verdad ii:

р	q	٦р	¬q	¬q → ¬p
v	v	f	f	V
V	f	f	٧	f
f	V	V	f	f
f	f	v	V	f

 Como los valores de verdad de la última columna de cada tabla son iguales, se puede concluir que ambos enunciados son lógicamente equivalentes.

- b.- Para cada ítem construya un enunciado que sea lógicamente equivalente.
- i.- "Juan necesita un matemático o un informático."
 - "Juan no necesita un matemático y no necesita un informático"
- ii.- "Si Juan necesita un informático entonces necesita un matemático."
 - "Si Juan no necesita un matemático, entonces no necesita un informático"
- iii.- "Si Juan no necesita un matemático entonces necesita un informático."
 - "Si Juan no necesita un informático, entonces necesita un matemático"
- 2.- Sean A, B fbfs que cumplen que (¬A V B) es tautología. Sea C una fbf cualquiera. Determinar, si es posible, cuáles de las siguientes fbfs son tautologías y cuáles contradicciones. Justificar las respuestas.
 - Para que la fórmula (¬A V B) sea una tautología, se tienen que dejar de tener en cuenta los casos en que A=V y B=F, ya que en esos casos toma el valor de verdad F.

i.
$$((\neg(A \rightarrow B)) \rightarrow C)$$

Α	В	С	¬(A → B)	$((\neg(A\toB))\toC)$
V	V	V	F	V
V	V	F	F	V
٧	F	٧	V	V
٧	F	F	V	F
F	V	V	F	V
F	V	F	F	V
F	F	V	F	V
F	F	F	F	V

• Quitando los casos en que V(A)=V y V(B)=F, armando la tabla de verdad, llegamos a que $((\neg(A \to B)) \to C)$ es una tautología.

ii.
$$(C \rightarrow ((\neg A) \lor B))$$

Α	В	С	٦A	(¬A) ∨ B	(C → ((¬A) ∨ B))
V	V	V	F	V	V
V	V	F	F	V	V
V	F	V	F	-	-
V	F	F	F	-	-
F	V	V	V	V	V
F	V	F	٧	V	V
F	F	V	٧	V	V
F	F	F	V	V	V

 Quitando los casos en que V(A)=V y V(B)=F, armando la tabla de verdad, llegamos a que (C → ((¬A) V B)) es tautología.

iii.
$$((\neg A) \rightarrow B)$$

Α	В	٦A	((¬A) → B)
٧	V	F	V
٧	F	F	-
F	V	V	V
F	F	V	F

 Quitando los casos en que V(A)=V y V(B)=F, armando la tabla de verdad, llegamos a que ((¬A) → B) no es tautología ni contradicción. 3.- ¿Es cierto que dadas A y B fbfs cualesquiera, siempre ocurre que si A y A → B son tautologías entonces B también lo es? Fundamentar. Ejemplificar con algunos ejemplos concretos escritos en lenguaje natural.

Se puede demostrar por el absurdo. Asumimos que las hipótesis son verdaderas y la conclusión falsa:

- a. A es una tautología
- b. $A \rightarrow B$ es una tautología
- c. B no es una tautología

Por (c), sabemos que existe un valor de verdad tal que v(B)=F

- Teniendo en cuenta a, para todo valor v(A)=V
- Teniendo en cuenta b, para todo valor $v(A \rightarrow B) = V$
- Por definición de valoración, por (a) y (b), sabemos que v(B) = V, ya que si tomara el valor F, (b) no se cumpliría.

Ejemplo en lenguaje natural:

- "Si la pelota es redonda, entonces la pelota al empujarla gira"
- A: "La pelota es redonda" ⇒ Tautología
- B: "La pelota al empujarla gira" ⇒ Tautología
- A → B ⇒ Tautología
- 4.- Sea A una fbf donde aparecen sólo los conectivos ∧, ∨, ¬. Sea A' la fbf que se obtiene a partir de A reemplazando cada ∧ por ∨ y cada ∨ por ∧. ¿Si A es una tautología, A' también lo es? Justificar. Ejemplificar con algunos ejemplos escritos en lenguaje natural.

Se puede demostrar que esto no se cumple a través de un contraejemplo.

- Sea A = (p V (¬p)), siendo A una tautología
- El enunciado dice que A' es cómo A pero con las conectivas invertidas, en ese caso A' = (p V (¬p))

р	٦р	A = (p ∨ (¬p))	A' = (p ∨ (¬p))
V	F	V	F
F	V	V	F

 A es una tautología y A' una contradicción, por lo tanto, si A es una tautología con sólo conectivos Λ, V, ¬, entonces A' no es tautología.

5.- Demostrar que cualquier tautología proposicional que esté escrita usando los conectivos ¬, ∨, ∧,→ contiene alguna ocurrencia ya sea del símbolo "¬" o del símbolo "→". Idea: Demostrar que cualquier fórmula que contenga sólo la conjunción y disyunción puede tomar el valor F.

Se puede demostrar que esto se cumple usando inducción.

- Sea A una fbf tal que sólo cuenta con las conectivas {V, ∧}
- Sea v una valuación, que asigna el valor (F) a todas las letras, es decir, v(pi)=F para todo pi. En esa valuación, A también va a tomar el valor falso, v(A)=F
- Sea N un número natural que representa la cantidad de conectivos de la fbf
- Caso Base (N=0)
 - No hay conectivos, por lo tanto A es atómica
 - A=p1, v(p1)=F, por lo tanto, v(A)=F
- Hipótesis Inductiva (HI): Asumimos que para toda fbf A que sólo contiene {V, ∧}, con N o menos conectivos, v(A)=F
- Caso N+1
 - A puede ser de dos formas:
 - A = (B V C)
 - \blacksquare A = (B \land C)
 - Tanto B como C tienen N o menos conectivos, por lo tanto, para B y C vale (HI), o sea, v(B)=F y v(C)=F. Y por definición semántica de ∧ y V, v(A)=F para ambos casos.
- v(A)=F para cualquier fbf con conectivas {V, ∧}. A no es una Tautología

p1	p2	A (fbf con conectivas ∨, ∧)
V	V	?
V	F	?
F	V	?
F	F	F

Las conectivas V, Λ no alcanzan para escribir tautologías, se tienen que usar otros conectivos además de esos.

6.- ¿Es cierto que en el Cálculo de Enunciados pueden escribirse dos fbfs que tengan diferentes letras de proposición y aún así ambas fbfs sean lógicamente equivalentes?. Fundamentar.

Lo que dice el enunciado es cierto, supongamos que tengo $(p \to q)$ y $(r \to s)$, al probar que sean lógicamente equivalentes, $((p \to q) \leftrightarrow (r \to s))$, la prueba es verdadera:

(p → q)	(r → s)	$((p\toq) \leftrightarrow (r\tos))$
V V V	V V V	V
V F F	VFF	V
FVV	FVV	V
FFV	FFV	V

7.- Para las tablas dadas a continuación, encontrar al menos dos fbf del Cálculo de Enunciados que las tenga por tablas de verdad. Ayuda: alcanza con usar p, q, ¬, ∧, ∨.

Tabla 1:

р	q	f?
V	٧	V
٧	F	٧
F	٧	V
F	F	V

- $\bullet \quad ((p \ \lor \ (\neg p) \ \lor \ (q \ \lor \ (\neg q))$
- ((p ∨ q) ∨ (¬q))

Tabla 2:

р	q	f?
V	٧	>
٧	F	F
F	٧	V
F	F	F

- (q ∧ (p ∨ q))
- ((p ∨ (¬p)) ∧ q)

Tabla 3:

р	q	f?
V	V	٧
V	F	٧
F	V	F
F	F	F

- (p ∧ (p ∨ q))
- (p ∧ (p ∨ (¬p)))

8.- Determinar cuáles de las siguientes fbfs son lógicamente implicadas por la fbf (A ∧ B).
Fundamentar. Def. de implicación lógica, ver def.
1.7 del Hamilton.

Tabla de verdad de A ∧ B

Α	В	A∧B
٧	V	V
٧	F	F
F	٧	F
F	F	F

i.- A

Α	В	A∧B	$(A \land B) \rightarrow A$
V	V	٧	V
٧	F	F	V
F	٧	F	V
F	F	F	V

 A ∧ B implica lógicamente a A porque construimos la tabla de verdad y la implicación es una tautología.

ii.- B

Α	В	A∧B	$(A \land B) \rightarrow B$
V	٧	V	V
V	F	F	V
F	٧	F	V
F	F	F	V

 A ∧ B implica lógicamente a B porque construimos la tabla de verdad y la implicación es una tautología

iii.- A V B

A	В	A ∧ B	A∨B	
V	V	V	V	V
V	F	F	V	V
F	٧	F	V	V
F	F	F	F	V

 A ∧ B implica lógicamente a A ∨ B porque construimos la tabla de verdad y la implicación es una tautología iv.- ¬A ∨ B

A	В	A ∧ B	¬A ∨ B	$(A \land B) \to (\neg A \lor B)$
٧	V	V	V	V
٧	F	F	F	V
F	V	F	V	V
F	F	F	V	V

 A ∧ B implica lógicamente a ¬A ∨ B porque construimos la tabla de verdad y la implicación es una tautología

$$v.- \neg B \rightarrow A$$

A	В	A ∧ B	¬B → A	
٧	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

• A \wedge B implica lógicamente a \neg B \rightarrow A porque construimos la tabla de verdad y la implicación es una tautología

$$vi.-A \longleftrightarrow B$$

Α	В	A∧B	A <-> B	(A ∧ B) → (A <-> B)
V	>	V	V	V
V	F	F	F	V
F	٧	F	F	V
F	F	F	V	V

 A ∧ B implica lógicamente a A ←→ B porque construimos la tabla de verdad y la implicación es una tautología vii.- $A \rightarrow B$

Α	В	A∧B	$A \rightarrow B$	$(A\wedgeB)\to(A\toB)$
٧	V	V	V	V
V	F	F	F	V
F	V	F	V	V
F	F	F	V	V

• A \wedge B implica lógicamente a A \rightarrow B porque construimos la tabla de verdad y la implicación es una tautología

viii.-
$$\neg B \rightarrow \neg A$$

Α	В	A ∧ B	¬В → ¬А	$ \begin{array}{c} (A \wedge B) \to (\neg B \to \\ \neg A) \end{array} $
٧	>	V	V	V
V	F	F	F	V
F	٧	F	V	V
F	F	F	V	V

- A \land B implica lógicamente a ¬B \rightarrow ¬A porque construimos la tabla de verdad y la implicación es una tautología
- El resultado es el mismo que el del inciso (vii), ya que $(A \rightarrow B) \Leftrightarrow (\neg B \rightarrow \neg A)$

ix.-
$$B \rightarrow \neg A$$

Α	В	A∧B	B→¬A	$(A\wedgeB)\to(B\to \negA)$
٧	٧	V	F	F
٧	F	F	V	V
F	٧	F	V	V
F	F	F	V	V

 A ∧ B no implica lógicamente a B → ¬A porque construimos la tabla de verdad y la implicación no es una tautología (es contingencia) 9.- Sea la relación \leq tal que dadas fbfs A , B se cumple que A \leq B si A \rightarrow B es una tautología. Dadas las fbfs: p, p \rightarrow q, \neg p, p \wedge \neg p, r \vee \neg r, organizarlas bajo la relación \leq . Representar gráficamente.

La idea del ejercicio es ir haciendo las tablas con cada combinación, por ejemplo:

р	q	$(p \to (p \to q))$
V	٧	V
٧	F	F
F	٧	V
F	F	V

• $(p \to (p \to q))$ no es una tautología, por lo tanto, no se cumple que $p \le (p \to q)$ Y así siguiendo con el resto de las fbfs.

10.- Sea A una fbf donde aparecen sólo los conectivos ∧, ¬. Sea A' la fbf que se obtiene a partir de A reemplazando cada ∧ por ∨ y cada letra de proposición por su negación (o sea, cada p por ¬p, cada q por ¬q, etc.). ¿Es cierto que A' es lógicamente equivalente a ¬A ? Fundamentar. Ejemplificar con algunos ejemplos concretos escritos en lenguaje natural.

Demostración por inducción:

- Sea n el número de conectivos que aparecen en A
- Caso base (n = 0)
 - Sea A = p; A' = ¬p; y ¬A = ¬p
 - o En este caso, A' es trivialmente equivalente a ¬A
 - Paso de inducción: Supongamos que n > 0, A tiene n conectivos y que toda forma enunciativa con menos de n conectivas posee la propiedad requerida.

Hay 2 formas de construir las formas enunciativas.

Caso 1: A es de la forma (¬B)

- B tiene n-1 conectivas, así que por hipótesis de inducción B' es lógicamente equivalente a ¬B
- Pero A' es ¬B'. Por lo tanto, A' es lógicamente equivalente a ¬(¬B). Partiendo de la definición del caso, A es de la forma ¬B, entonces reemplazamos y nos queda que A' lógicamente equivalente a ¬A
- Caso 2: A es de la forma (B ∧ C)
 - B y C contiene cada una menos de n conectivas, así que B' y C' son lógicamente equivalentes a ¬B y ¬C respectivamente
 - Entonces tenemos que A' es (B' V C'). Invertimos el símbolo siguiendo la definición de la proposición que se quiere probar
 - (B' ∨ C') ⇔ (¬B ∨ ¬C)
 - (¬B V ¬C) se puede escribir como ¬(B ∧ C)
- Por la definición del caso tenemos que A es de la forma (B ∧ C), entonces reemplazamos
- Por lo tanto, llegamos a la conclusión de que A' ⇔ ¬(A)

Queda demostrado bajo inducción que A' ⇔ ¬A

- 11.- Sea # el operador binario definido como p#q =def (p $\land \neg q$) \lor ($\neg p \land q$). Def. de implicación lógica, ver def. 1.7 del Hamilton.
- i.- Probar que # es asociativo, es decir, x#(y#z) es lógicamente equivalente a (x#y)#z.

x	Y	Z	Y#Z=(Y	X#(Y#Z)= (X \ (¬(Y#Z)) \((¬X \ (Y#Z))	⇔	X#Y=(X ∧¬Y) ∨ (¬X ∧ Y)	(X#Y)#Z= ((X#Y) ∧ (¬Z)) ∨ ((¬(X#Y)) ∧ Z)
V	V	V	F	V	٧	F	V
V	V	F	V	F	٧	F	F
V	F	V	V	F	٧	V	F
V	F	F	F	V	٧	V	V
F	V	V	F	F	٧	V	F
F	V	F	V	V	٧	V	V
F	F	V	V	V	٧	F	V
F	F	F	F	F	٧	F	F

- # es asociativo porque doble implicación entre x#(y#z) y (x#y)#z es una tautología.
- ii.- Probar que # es conmutativo, es decir, y#z es lógicamente equivalente a z#y.

Y	Z	Y#Z=(Y ∧ ¬Z) ∨ (¬Y ∧ Z)	‡	Z#Y=(Z ∧ ¬Y) ∨ (¬Z ∧ Y)
V	٧	F	٧	F
V	F	V	>	V
F	>	V	>	V
F	F	F	>	F
٧	٧	F	٧	F
٧	F	V	٧	V
F	V	V	٧	V
F	F	F	V	F

• # es conmutativo, ya que la doble implicación entre Y#Z y Z#Y es una tautología

12.- Demostrar que las siguientes fórmulas son lógicamente equivalentes.

//Lo dejo de repaso =)

i- $(p \rightarrow q)$ es lógicamente equivalente a $(\neg p \lor q)$

(p	\rightarrow	q)	\longleftrightarrow	(¬p	>	q)
٧	>	٧	F	F	H	>
٧	F	F	V	F	F	F
F	٧	٧	V	V	٧	٧
F	٧	F	V	٧	٧	F

• La doble implicación entre ambas fbfs no es una tautología, por lo tanto no son lógicamente equivalentes.

ii- $(p \leftrightarrow q)$ es lógicamente equivalente a $((p \rightarrow q) \land (q \rightarrow p))$

(p	\longleftrightarrow	q)	\longleftrightarrow	((p	\rightarrow	q)	٨	(q	\rightarrow	p))
٧	V	٧	٧	٧	٧	٧	٧	V	٧	٧
٧	F	F	٧	V	F	F	F	F	٧	٧
F	F	V	V	F	V	٧	F	٧	F	F
F	V	F	V	F	V	F	٧	F	٧	F

• Dado que la doble implicación entre ambas fbfs es una tautología, ambas fbfs son lógicamente equivalentes.

iii- (¬(p ∧ q)) es lógicamente equivalente a (¬p ∨ ¬q)

iv- (¬(p ∨ q)) es lógicamente equivalente a (¬p ∧ ¬q)

Tanto (iii) como (iv) son lógicamente equivalentes por de De Morgan.