

Claims

1. A method for determining current oxygen loading (mO_2) of a 3-way catalytic converter (6) of a lambda-controlled internal combustion engine (1) having a linear pre-converter lambda probe (5) connected upstream of the catalytic converter, a post-converter lambda probe (7) connected downstream of the catalytic converter, and a device (9) for measuring the air-mass flow rate wherein
5 - a value for current oxygen loading (mO_2) is calculated from the signal of the pre-converter lambda probe (5) and the measured air-mass flow rate through integration over time,
- and said value is set to 0 if the post-converter lambda probe's signal breaks through to rich mixtures.
- 10 15 - a value for current oxygen loading (mO_2) is calculated from the signal of the pre-converter lambda probe (5) and the measured air-mass flow rate through integration over time,
- and said value is set to 0 if the post-converter lambda probe's signal breaks through to rich mixtures.
2. The method as claimed in claim 1 wherein the value for current oxygen loading (mO_2) is calculated using the formula
$$mO_2 = [O_2]_{air} \int_0^t \left(1 - \frac{1}{\lambda}\right) \dot{m}_L dt,$$
where mO_2 is the current oxygen loading, λ is the pre-converter lambda probe's signal, \dot{m}_L is the air-mass flow rate, and $[O_2]_{air}$ is the mass component of oxygen in air.
20
3. The method as claimed in one of the preceding claims wherein a value for the oxygen storage capacity (mO_2_max) of the catalytic converter (6) is adapted based on the difference between oxygen loading (mO_2) determined when the post-converter lambda probe's signal breaks through to lean mixtures and a previous adapted value for the oxygen storage capacity.
25
- 30 4. The method as claimed in one of the preceding claims wherein the value for oxygen loading (mO_2) is set to the oxygen storage capacity (mO_2_max) when the post-converter lambda probe's signal breaks through to lean mixtures.

5. The method as claimed in claim 3 or 4 wherein the current oxygen quotient (q_{O2}) is calculated from the quotient of the catalytic converter's current oxygen loading (m_{O2}) and oxygen storage capacity (m_{O2_max}).

6. A method for regulating, controlling, and/or monitoring the exhaust treatment of a lambda-controlled internal combustion engine (1) having a 3-way catalytic converter (6), a linear pre-converter lambda probe (5) connected upstream of the catalytic converter, a post-converter lambda probe (7) connected downstream of the catalytic converter, and a device (9) for measuring the air-mass flow rate, which method uses values for
10 - the catalytic converter's current oxygen loading (m_{O2}),
15 - the catalytic converter's oxygen storage capacity (m_{O2_max}), and/or
- the current oxygen quotient (q_{O2})
that have been calculated using the method as claimed in one of the preceding claims.

20

7. The method as claimed in claim 6 for diagnosing the catalytic converter (6) wherein
- oscillating of oxygen loading of the catalytic converter (6) with an amplitude above maximum oxygen loading in standard operation is produced during diagnosing through forced activation,
25 - with a defect in the catalytic converter (6) being diagnosed if the oscillation characteristics of the signal of the post-converter lambda probe (7) are outside a target range,
- and with the oxygen quotient (q_{O2}) being set prior to the start of diagnosing to a predetermined target value, in particular to 50%, necessary for diagnosing.

30 8. The method as claimed in claim 6 or 7 for monitoring the

ageing of the catalytic converter (6) wherein

- the adapted value for the oxygen storage capacity (m_{O2_max}) of the catalytic converter (6) is compared with a predetermined threshold value and

5 - the diagnostic method as claimed in claim 6 will be implemented if the maximum oxygen storage capacity (m_{O2_max}) is below the threshold value.

9. The method as claimed in claim 6 for controlling rinsing of

10 the catalytic converter (6) after an overrun fuel-cutoff phase wherein

- a target value for the oxygen quotient (q_{O2}) after an overrun fuel-cutoff phase is pre-specified,

15 - the oxygen quotient is controlled to the target value by the internal combustion engine's lambda controller after an overrun fuel-cutoff phase.

10. The method as claimed in claim 6 for regulating the exhaust treatment of a lambda-controlled internal combustion engine

20 wherein the lambda controller is set in such a way that the oxygen quotient (q_{O2}) is controlled to a target value, in particular to a target value of 50%.

11. The method as claimed in claim 6 for regulating and/or

25 controlling the exhaust treatment of a lambda-controlled internal combustion engine wherein the lambda controller's controlling and regulating interventions are performed taking account of current oxygen loading (m_{O2}), with

- a provided controlling or regulating intervention for making

30 the mixture leaner not taking place if the oxygen quotient (q_{O2}) is above a predetermined first threshold value; and

- a provided controlling or regulating intervention for making the mixture richer not taking place if the oxygen quotient (q_{O2}) is below a predetermined second threshold value.