

Serverless COMPUTING

Serverless

is the next logical evolution in Cloud Native Software Development

CNCF Projects representing a I.Cncf.io particularly well-traveled path

CLOUD NATIVE SOFTWARE DEVELOPMENT IS

COMPLEX.

DOCKER, YAML, MICROSERVICES, KUBERNETES, ET.AL.

Traditionelle Cloud-basierte Anwendungsarchitektur

Traditionelle Cloud-basierte Anwendungsarchitektur

Kein Server ist einfacher zu verwalten, als kein Server!

Werner Vogels, CTO, Amazon

Serverless computing refers to a new model of cloud native computing,

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications.

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications. It leverages a finer-grained deployment model

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications. It leverages a finer-grained deployment model where applications, bundled as one or more functions, are uploaded to a platform

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications. It leverages a finer-grained deployment model where applications, bundled as one or more functions, are uploaded to a platform and then executed, scaled, and billed in response to the exact demand needed at the moment.

Serverless Anwendungsarchitektur

Serverless Anwendungsarchitektur

Out-of the Box Self-scaling Fully Managed Backend

Dev Components

Ops Components

Decomposition Trade-Offs

- More flexible to scale
- + Runtime isolation (crash, slow-down, ...)
- + Independent releases, deployments, teams
- + Higher resources utilisation

- Distribution debt: Latency, Consistency
- Increased infrastructure complexity
- Increased troubleshooting complexity
- Increased integration complexity

Functions

as preferred Serverless Application

Programming Model

EVENT-DRIVEN ARCHITECTURE

enables loosly coupled reactive

software components and services.

Create Thumbnails the AWS Lambda Way

Use Case 1 Hybrid Architectures

- Kombination von Microservice Architektur
 mit Event Driven Architecture
- Nutzung von Function Services für Eventgetriebene Use Cases
- Reduzierter Ressourcen-Verbrauch durch Scale-to-Zero
- Integration in bestehende Enterprise PaaSUmgebung

Use Case 2 Edge und Fog Computing

- Anbindung unserer LoRaWan Raum-Sensoren mittels Serverless Backend
- Couch Projekt: Nutzung von FaaS auf LowPower Devices

See the serverless interactive display at s.cncf.io

Installable

Platform

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications. This landscape illustrates a finer-grained deployment model where applications, bundled as one or more functions, are uploaded to a platform and then executed, scaled, and billed in response to the exact demand needed at the moment

Cloud Native Landscape

Brown Street,	-
	0 1
	×11 1 × 12 1
	1000
	A PARTY
	7.14 1.25

MY CRITERIA TO CHOOSE THE IDEAL FAAS PLATFORM

- > OPEN SOURCE NO INITIAL \$\$\$ AND NO VENDOR LOCK-IN PLEASE
- > MATURITY GOOD AND ACTIVE COMMUNITY, LITTLE ISSUES, FREQUENT RELEASES
- > USE CASES GENERAL PURPOSE, ENTERPRISE, BIG DATA, AI, EDGE COMPUTING
- > APPROACHABLE QUICK START AND SUFFICIENT DOCUMENTATION
- > LANGUAGE RUNTIMES PLEASE MORE THAN JAVASCRIPT!
- > DEVELOPER FRIENDLY TOOLS & FRAMEWORKS, LOCAL RUNTIME, TESTING, IDE SUPPORT
- > OPERABILITY EASY SETUP. SUPPORTED PLATFORMS, TECHNOLOGY FOOTPRINT
- > INTEGRATION SUPPORTED TRIGGERS, INFRASTRUCTURE, PLUGINS, STANDARDS
- > PERFORMANCE GOOD COLD STARTUP PERFORMANCE AND THROUGHPUT

See the serverless interactive display at s.cncf.io

-Hested-

Installable

Platform

Cloud Native Landscape

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications. This landscape illustrates a finer-grained deployment model where applications, bundled as one or more functions, are uploaded to a platform and then executed, scaled, and billed in response to the exact demand needed at the moment

See the serverless interactive display at s.cncf.io

-Hested-

Kubeless

Platform

Installable

Cloud Native Landscape

Serverless computing refers to a new model of cloud native computing, enabled by architectures that do not require server management to build and run applications. This landscape illustrates a finer-grained deployment model where applications, bundled as one or more functions, are uploaded to a platform and then executed, scaled, and billed in response to the exact demand needed at the moment

Records and the American	-	
		0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		E de
	- H	5 0 -6
	A	
	1,1	100

Die Kandidaten

- OpenFaas https://www.openfaas.com
- Fissionhttps://fission.io
- Kubelesshttps://kubeless.io
- Nucliohttps://nuclio.io
- Knativehttps://knative.dev/
- Kyma https://kyma-project.io

L ANGU AGE	GENERATION	PLATFORMS	RUNTIMES	TRIGGERS
GO	2ND	K8S	GO, PYTHON, NODEJS, JAVA/JVM	CRON, HTTP, NATS, AZURE QUEUE STORAGE, KAFKA, KUBEWATCH
GO	2ND	K8S	NODEJS, JAVA, GO, JVM, PYTHON, PHP, RUBY, NET CORE, BALLERINA, VERT.X	
GO	1ST	K8S, DOCKER	GO, C#. JAVA8. DOCKERFILE. NODEJS. PHP. PYTHON. RUBY	HTTP. CRON, KAFKA, AWS SNS. S3. CLOUDEVENTS. IFTTT. REDIS, MQTT, NATS
GO	2ND	DOCKER, K8S, AWS, GCP	NET CORE, GO. JAVA, NODEJS, PYTHON, SHELL	CRON, EVENTHUB, HTTP, KAFKA, KINESIS, NATS, RABBITMQ, MQTT
SCALA	2ND	K8S, MESOS, DOCKER, OPENSHIFT	NODEJS, SWIFT, JAVA, GO SCALA, PYTHON, PHP, RUBY, NET CORE, BALLERINA	. CLOUDANT, RSS, KAFKA, JIRA, BLUEMIX PUSH, SLACK, GITHUB
GO	1ST	DOCKER, K8S	JAVA, GO. NODEJS, PYTHON, RUBY	НТТР

IT DEPENDS ON YOUR USE CASE.

- > FISSION IS A PRETTY COMPLETE PLATFORM.
- > OPENFAAS IS VERY POPULAR WITH AN ACTIVE COMMUNITY.
 CURRENTLY THE ONLY ONE WITH SUPPORT FOR ARM DEVICES.
- > NUCLIO IS FAST, LIGHTWEIGHT AND HAS SUPPORT FOR MANY TRIGGERS. PROMISING ROADMAP.
- > **KUBELESS** IS LIGHTWEIGHT AND SIMPLE.