Z-Test

Z-Test

- A statistical test for which the distribution of the test statistic under the null hypothesis can be approximated by a normal distribution.
- Because of the central limit theorem, many test statistics are approximately normally distributed for large samples
 - (Usually when sample size \geq 30)
- Z-tests are closely related to t-tests, but t-tests are best performed when an experiment has a small sample size
- T-tests assume the standard deviation is unknown, while z-tests assume it is known.

Lets generate a Population

from scipy.stats import norm

Extract a Sample from the Population

```
sample_size=500
np.random.seed(123)
sample=np.random.choice(pop,size=sample_size)
print("samples",sample[:10])
sample_mean=np.mean(sample)
print("Mean of the samples ",sample_mean)

samples [ 31.0199469 109.59719132 29.49145446 -15.75025585 19.19351326 62.30673661 -7.81839642 39.48893064 16.41863051 -14.84027253]
Mean of the samples 24.547698264765508
```

Probability Distribution of the sample

Q. Does the sample have the same Characterstics of the Population

Q. Is the mean of the Sample equal to the mean of the Population

Lets Find our using Z-Test

Define the Hypothesis

Null Hypothesis

$$H_0: \mu = 25$$

Alternative Hypothesis

$$H_1: \mu \neq 25$$

Calculation of Standard Error for Mean

$$S.E. = \frac{\sigma}{\sqrt{(n)}}$$

s - Population SD

n - Number of samples

```
SE = pop_std/np.sqrt(sample_size)
print("Standard Error SE ",SE)
```

Standard Error SE 1.3416407864998738

Calculation of Z-Statistics

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

or

$$z = \frac{\bar{x} - \mu}{S.E}$$

 \bar{x} - Sample Mean

 μ - Population Mean

s - Standard deviation of population

n - Sample size

S.E. - Standard Error for Mean

zstatistics=(sample_mean-pop_mean)/SE
print("Zstatistics is ",zstatistics)

Zstatistics is -0.3371258087751455

Finding the Z Critical Value

```
significant=0.05
zcritical_l=norm.ppf(q=significant/2)
zcritical_u=-zcritical_l
print("Critical Values are ",zcritical_l,zcritical_u)
```

Critical Values are -1.9599639845400545 1.9599639845400545

Plot in Standard Normal Distribution

Confidence Interval

```
C.I. = \bar{x} \pm SE * critical_{\frac{\alpha}{2}}
```

```
Confidence Interval
Lower limit 22.370432378270255
Upper limit 27.629567621729745
```

Sample Distribution

Sample Distribution (Zoomed)

