"If x is a non zero non unit in a ring of Krull type A, then each valued prime P of A with x ϵ P; contains a unique minimal subvalued prime satisfying x ϵ Q \subseteq P." We shall call Q, the minimal subvalued prime of x in P.

Now let x be a non zero non unit in an HCF ring of Krull type and let P_1, P_2, \ldots, P_n be the only valued primes contains a unique minimal subvalued prime Q_i containing x ($i=1,2,\ldots,n$). Here we note that unlike a *GKD, a ring of Krull type admits valued primes $P_{\alpha}, P_{\beta} \in \{P_{\alpha}\}$ (the family defining the ring of Krull type) such that $P_{\alpha} \cap P_{\beta}$ contains non zero prime of Krull type) such that $P_{\alpha} \cap P_{\beta}$ contains non zero prime of Krull type) such that $P_{\alpha} \cap P_{\beta}$ contains non zero prime ideals. And so the minimal subvalued primes $Q_i \cap P_{\beta} \cap P_{\beta}$ of x not arise, because then $Q_i \cap P_{\beta} \cap P$

Striking repetitions out of { Q_i } $j_{i=1}$ and denoting the set of distinct minimal subvalued primes of x by { q_i } $j_{j=1}$ we can regroup $\{P_i\}_{i=1}^n$ after a suitable permutation of

of x in P; and P; both.

{ Pt } as $\{ Pt \} \text{ as}$ We shall call the set $\Pi_j = \{ P_K \in \{ Pt \}_{i=1}^n | q_j \subset P_K \}$

of x containing q; only(smong all q; of course). Now let y be such that y ϵ q, q, q, q

are distinct we can have such a y), then since R is an HCF domain and R_{q_1} is a valuation domain, $(y,x) = d_1 \in q_1 - q_2$, domain and R_{q_1} is a valuation domain, $(y,x) = d_1 \in q_1 - q_2$, domain and R_{q_1} is a valuation domain, (y,x) = 1 (since d_1 is the HCF) and because of the HCF property (x',y') = 1 in R_{q_1} that is at least one of x',y' is not in q_1 but since $x,y \in q_1$ distinct one of x',y' is not in q_1 but since $x,y \in q_1$ that is at least one of x',y' is not in q_1 but since $x,y \in q_1$.