Εργασία 7

Marios

2024-04-30

Εργασία 5

Scatterplot - Educations impact on life expectancy

```
my_data <- read.csv("C:/Users/mario/Downloads/Life Expectancy
Data.csv")
plot(x = my_data$Life.expectancy, y = my_data$Schooling, xlab = "Life
Expectancy", ylab = "Schooling",
col = "navy")</pre>
```


Παρατηρούμε ότι έχουμε μια ισχυρή συσχέτιση μεταξύ διάρκειας ζωής και επιπέδου εκπαίδευσης, αφού καθώς αυξάμεται το επίπεδο εκπαίδευσης αυξάνεται και η διάρκεια ζωής. Το επιχείρημα αυτό βλέπουμε και παρακάτω ότι όντως ισχύει, καθώς παίρνουμε μέσω της συνάρτησης cor τον αριθμό 0,75 ο οποίος είναι πολύ κοντά στο 1 και άρα έχουμε μια αρκετά ισχυρή θετική συσχέτιση. Ο λόγος είναι κατά πάσα πιθανότητα ότι οι ανρθωποί με χαμηλό επίπεδο μόρφωσης στρέφονται σε χειρονακτικές και ανθυγιεινες εργασίες με αποτέλεσμα να καταπονούν την υγείας τους και να μειώνουν το προσδόκιμο ζωής τους.

```
complete_data <- na.omit(my_data[, c("Schooling", "Life.expectancy")])
correlation_result <- cor(complete_data$Schooling,
complete_data$Life.expectancy, method = "pearson")
print(correlation_result)
## [1] 0.7519755</pre>
```

Boxplot - Life expectancy through years

```
boxplot(Life.expectancy ~ Year, data = my_data, xlab = "Life
Expectancy", ylab = "Year", col="navy")
```



```
boxplot(Life.expectancy ~ Status, data = my_data, xlab = "Life
Expectancy", ylab = "Year", col="navy")
```


Παρατηρούμε το προσδόκιμο ζωής να αυξάνεται με την πάροδο του χρόνου αλλά να είναι και μεγαλυτερο για τις ανεπτυγμένες χώρες. Βλέπουμε επίσης τις τιμές να συσσωρεύονται σε τιμές υψηλότερες από αυτές που έχουμε στον πίνακα my_data και ο λόγος είναι κατά κύριο λόγο ότι οι τιμές που βρίσκονται εκτός από τα boxplots που έχουμε δημιουργήσει είναι outliers, ακραία σημεία που απέχουν από το κύριο σύνολο δεδομένων και γενικότερα παρατηρούμε ότι τα box plots δημιουργούνται εκεί που έχουμε το πλήθος των περισσότερων ηλικών.

Histogram - Life expectancy overview

Histogram of Life Expectancy for Developed Counti

Histogram of Life Expectancy for Developing Count

Στα παραπάνω διαγράματα παρατηρούμε το προσδόκιμο ζωής για ανεπτυγμένες και αναπτυσσόμενες χώρες. Οι ανεπτυγμένες χώρες σε σχέση με τις αναπτυσσόμενες έχουν διαφορά κατά 30 περίπου χρόνια καθώς το προσδόκιμο ζωής ξεκινάει από το 70 ενώ οι για τις αναπτυσσόμενες από το 40.

Barchart - Status of countries

Count of Countries by Status

1. Διερεύνηση του συνόλου δεδομένων (dataset)

```
my_data <- read.csv("C:/Users/mario/Downloads/Life Expectancy</pre>
Data.csv")
library(ggplot2)
##A dataset with 2938 observations and 22 variables
str(my_data)
## 'data.frame':
                    2938 obs. of 22 variables:
## $ Country
                                            "Afghanistan" "Afghanistan"
                                     : chr
"Afghanistan" "Afghanistan" ...
                                            2015 2014 2013 2012 2011
## $ Year
                                     : int
2010 2009 2008 2007 2006 ...
                                            "Developing" "Developing"
## $ Status
                                     : chr
"Developing" "Developing" ...
## $ Life.expectancy
                                     : num 65 59.9 59.9 59.5 59.2 58.8
58.6 58.1 57.5 57.3 ...
## $ Adult.Mortality
                                     : int 263 271 268 272 275 279 281
287 295 295 ...
## $ infant.deaths
                                     : int 62 64 66 69 71 74 77 80 82
84 ...
## $ Alcohol
                                            0.01 0.01 0.01 0.01 0.01
                                     : num
0.01 0.01 0.03 0.02 0.03 ...
## $ percentage.expenditure
                                     : num 71.3 73.5 73.2 78.2 7.1 ...
## $ Hepatitis.B
                                     : int 65 62 64 67 68 66 63 64 63
64 ...
## $ Measles
                                     : int 1154 492 430 2787 3013 1989
```

```
2861 1599 1141 1990 ...
## $ BMI
                                    : num 19.1 18.6 18.1 17.6 17.2
16.7 16.2 15.7 15.2 14.7 ...
## $ under.five.deaths
                                    : int 83 86 89 93 97 102 106 110
113 116 ...
## $ Polio
                                    : int 6 58 62 67 68 66 63 64 63
58 ...
## $ Total.expenditure
                                    : num 8.16 8.18 8.13 8.52 7.87
9.2 9.42 8.33 6.73 7.43 ...
                                    : int 65 62 64 67 68 66 63 64 63
## $ Diphtheria
58 ...
                                    : num 0.1 0.1 0.1 0.1 0.1 0.1
## $ HIV.AIDS
0.1 0.1 0.1 ...
## $ GDP
                                    : num 584.3 612.7 631.7 670 63.5
. . .
## $ Population
                                   : num 33736494 327582 31731688
3696958 2978599 ...
## $ thinness..1.19.years
                                   : num 17.2 17.5 17.7 17.9 18.2
18.4 18.6 18.8 19 19.2 ...
                                    : num 17.3 17.5 17.7 18 18.2 18.4
## $ thinness.5.9.years
18.7 18.9 19.1 19.3 ...
## $ Income.composition.of.resources: num 0.479 0.476 0.47 0.463
0.454 0.448 0.434 0.433 0.415 0.405 ...
## $ Schooling
                                    : num 10.1 10 9.9 9.8 9.5 9.2 8.9
8.7 8.4 8.1 ...
plot(x = my_data$Life.expectancy, y = my_data$Schooling, xlab = "Life
Expectancy", ylab = "Schooling",
col = "navy")
```


2α. Δημιουργία μοντέλου (γραμμικής) παλινδρόμησης

```
library(caTools)
library(ggplot2)
library(patchwork)
##Removing NA's
my_data_clean <- na.omit(my_data)</pre>
#Splitting Data into train and test
set.seed(64)
split <- sample.split(my_data_clean$Life.expectancy, SplitRatio=0.65)</pre>
train = subset(my_data_clean,split==TRUE)
test = subset(my_data_clean,split==FALSE)
##Creating 3 linear regression models
model1 <- lm(Life.expectancy ~ Schooling, data = train)</pre>
model2 <- lm(Life.expectancy ~ Income.composition.of.resources , data</pre>
= train)
model3 <- lm(Life.expectancy ~ Schooling + Alcohol + BMI + GDP +
HIV.AIDS + Income.composition.of.resources + Adult.Mortality +
Population, data = train)
##Projecting the data(summary) of each model and some diagrams
summary(model1)
##
## Call:
## lm(formula = Life.expectancy ~ Schooling, data = train)
##
## Residuals:
```

```
Min
               10 Median
                               30
                                      Max
                    0.894
## -22.638 -3.184
                            4.000 15.531
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 41.28800
                          0.82312
                                    50.16
                                            <2e-16 ***
## Schooling
                          0.06606
                                    34.79
                                            <2e-16 ***
               2.29831
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.143 on 1085 degrees of freedom
## Multiple R-squared: 0.5273, Adjusted R-squared: 0.5269
## F-statistic: 1211 on 1 and 1085 DF, p-value: < 2.2e-16
ggplot(train, aes(Schooling, Life.expectancy)) +
      geom_point() +
      geom abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
```



```
summary(model2)
##
## Call:
## lm(formula = Life.expectancy ~ Income.composition.of.resources,
## data = train)
##
## Residuals:
```

```
Min
                 10
                       Median
                                    30
                                           Max
                       0.6802
## -20.4923 -2.7404
                                3.0399 29.0803
##
## Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                    46.420
                                                 0.671
                                                         69.18
                                                                <2e-16
## Income.composition.of.resources 35.972
                                                         35.29
                                                 1.019
                                                                 <2e-16
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.097 on 1085 degrees of freedom
## Multiple R-squared: 0.5344, Adjusted R-squared: 0.534
## F-statistic: 1245 on 1 and 1085 DF, p-value: < 2.2e-16
m1 <- ggplot(train, aes(Schooling, Life.expectancy)) +</pre>
      geom point() +
      geom_abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
m2 <- ggplot(train, aes(Income.composition.of.resources,</pre>
Life.expectancy)) +
      geom_point() +
      geom abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
m1 + m2
```



```
summary(model3)
##
## Call:
## lm(formula = Life.expectancy ~ Schooling + Alcohol + BMI + GDP +
       HIV.AIDS + Income.composition.of.resources + Adult.Mortality +
##
##
       Population, data = train)
##
## Residuals:
                       Median
##
        Min
                  1Q
                                    3Q
                                            Max
## -14.7784 -2.0982
                       0.0648
                                2.2902 11.0299
## Coefficients:
                                     Estimate Std. Error t value
##
Pr(>|t|)
## (Intercept)
                                    5.324e+01 7.203e-01 73.917 < 2e-
16 ***
## Schooling
                                    9.711e-01
                                               7.530e-02
                                                          12.895 < 2e-
16 ***
## Alcohol
                                   -1.016e-01
                                               3.740e-02
                                                           -2.718
0.00668 **
## BMI
                                    3.342e-02
                                               6.960e-03
                                                           4.801 1.80e-
06 ***
## GDP
                                    8.040e-05
                                               1.206e-05
                                                            6.668 4.13e-
11 ***
## HIV.AIDS
                                   -4.385e-01 2.111e-02 -20.775 < 2e-
16 ***
```

```
## Income.composition.of.resources 1.102e+01 1.108e+00 9.941 < 2e-
16 ***
## Adult.Mortality
                                   -1.823e-02 1.163e-03 -15.679 < 2e-
16 ***
## Population
                                   -1.661e-09 1.354e-09 -1.226
0.22036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.73 on 1078 degrees of freedom
## Multiple R-squared: 0.8269, Adjusted R-squared: 0.8256
## F-statistic: 643.6 on 8 and 1078 DF, p-value: < 2.2e-16
p1 <- ggplot(train, aes(Schooling, Life.expectancy)) +
      geom_point() +
      geom abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
p2 <- ggplot(train, aes(Alcohol, Life.expectancy)) +</pre>
      geom point() +
      geom_abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
p3 <- ggplot(train, aes(BMI, Life.expectancy)) +
      geom point() +
      geom_abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
p4 <- ggplot(train, aes(GDP, Life.expectancy)) +
      geom point() +
      geom_abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
p5 <- ggplot(train, aes(HIV.AIDS, Life.expectancy)) +
      geom point() +
      geom_abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
p6 <- ggplot(train, aes(Income.composition.of.resources,
Life.expectancy)) +
      geom point() +
      geom_abline(aes(intercept = coef(model1)[1],
slope = coef(model1)[2]), colour = "red")
p1 + p2 + p3 + p4 + p5 + p6
```


2β. Αξιολόγηση μοντέλου παλινδρόμησης

```
##A decrease of errors as we move to models with more variables
SSE1 = sum(model1$residuals^2)
SSE2 = sum(model2$residuals^2)
SSE3 = sum(model3$residuals^2)
SSE1
## [1] 40944.99
SSE2
## [1] 40332.82
SSE3
## [1] 14997.1
##A look at the more "realistic" projection of errors (Decreasing as we
add variables)
RMSE1 <- sqrt(SSE1/nrow(train))</pre>
RMSE1
## [1] 6.137417
RMSE2 <- sqrt(SSE2/nrow(train))</pre>
RMSE2
## [1] 6.091363
```

```
RMSE3 <- sqrt(SSE3/nrow(train))
RMSE3
## [1] 3.714402</pre>
```

2γ. Τροποποίηση μοντέλου παλινδρόμησης

```
#Removal of Population variable
model4 <- lm(Life.expectancy ~ Schooling + Alcohol + BMI + GDP +
HIV.AIDS + Income.composition.of.resources + Adult.Mortality, data =
train)
##R-squared increase due to Population's variable removal(Low
significance).
summary(model4)
##
## Call:
## lm(formula = Life.expectancy ~ Schooling + Alcohol + BMI + GDP +
      HIV.AIDS + Income.composition.of.resources + Adult.Mortality,
##
##
       data = train)
##
## Residuals:
                      Median
##
       Min
                 10
                                   30
                                           Max
## -14.9588 -2.1011
                      0.0444 2.3185 11.0389
## Coefficients:
##
                                    Estimate Std. Error t value
Pr(>|t|)
## (Intercept)
                                   5.317e+01 7.182e-01 74.037 < 2e-
16 ***
                                   9.742e-01 7.528e-02 12.942 < 2e-
## Schooling
16 ***
## Alcohol
                                  -1.019e-01 3.741e-02 -2.725
0.00654 **
## BMI
                                   3.417e-02 6.934e-03 4.928 9.59e-
07 ***
## GDP
                                   8.062e-05 1.206e-05 6.685 3.69e-
11 ***
## HIV.AIDS
                                  -4.378e-01 2.111e-02 -20.745 < 2e-
16 ***
## Income.composition.of.resources 1.096e+01 1.108e+00
                                                          9.899 < 2e-
16 ***
## Adult.Mortality
                                  -1.819e-02 1.163e-03 -15.647 < 2e-
16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.731 on 1079 degrees of freedom
## Multiple R-squared: 0.8266, Adjusted R-squared: 0.8255
## F-statistic: 735 on 7 and 1079 DF, p-value: < 2.2e-16
```

```
##Creating the new SSE and we can see a slightly expected increase of
SSE4 BUT a new RMSE that remained the same.
SSE4 = sum(model4$residuals^2)
SSE4
## [1] 15018.02
RMSE4 <- sqrt(SSE4/nrow(train))
RMSE4
## [1] 3.716991</pre>
```

3. Εφαρμογή πρόβλεψης

```
LifePrediction <- predict(model4, newdata=test)</pre>
LifePrediction
##
                    5
                             6
                                      11
                                               16
                                                         17
                                                                  18
## 63.71923 62.95021 62.54179 60.35783 56.77791 75.80267 77.02429
73.87912
##
         28
                            38
                   30
                                      39
                                               40
                                                         41
                                                                  43
52
## 72.30774 71.96525 74.19718 73.44801 72.51654 70.80037 71.42310
61.39088
##
         54
                   57
                            87
                                      93
                                               94
                                                         98
                                                                  99
104
## 59.12755 57.91836 77.44825 76.20923 76.30060 75.15737 73.07794
72.53564
##
        106
                  107
                           109
                                     110
                                              111
                                                        112
                                                                 115
120
## 70.50833 70.06667 69.75803 69.68916 69.82229 69.82658 88.72263
85.69000
                           132
##
        123
                  131
                                    133
                                              137
                                                        139
                                                                 140
141
## 82.99071 77.68587 82.55272 81.54217 81.53695 79.01567 78.61449
75.80773
##
        144
                  146
                           147
                                     149
                                              151
                                                        153
                                                                 156
157
## 76.32348 73.48917 71.29687 72.42266 71.45216 73.71227 69.82623
69.57887
                  199
                           203
                                     205
                                              226
##
        198
                                                        227
                                                                 228
236
## 65.66092 64.97918 64.23343 63.63265 74.88910 77.96951 72.10307
70.96325
##
        238
                  245
                           246
                                     255
                                              258
                                                        259
                                                                 261
262
## 69.90626 79.84330 78.20284 83.15356 69.95913 74.45923 70.60915
70.72343
##
        263
                  267
                           275
                                     281
                                              284
                                                        286
                                                                 291
297
```

## 70.96831 59.28948	70.61415	64.13769	61.24771	59.59857	59.24307	68.45215
## 299 349	300	303	331	343	345	347
## 57.97932 45.16538	57.29730	60.48927	65.04967	62.30846	59.04865	52.85119
## 352 390	354	355	363	367	368	388
## 42.68667 74.03171	74.74958	74.46332	72.17788	72.36139	72.01322	74.71941
## 392 427	395	398	400	410	418	425
## 73.66723 53.08641	75.44328	71.73568	71.47788	59.90721	62.86495	55.67207
## 455 486	458	460	470	474	482	483
## 70.37015 65.16059	69.12705	70.21647	65.87696	64.22159	61.67037	61.48301
## 489 518	498	499	500	504	506	516
## 56.00337 52.39914	78.92266	83.00447	82.94375	82.07324	78.55886	54.64552
## 530 550	531	533	535	546	547	548
## 57.35297 74.77413	57.14778	56.02928	61.00032	79.24272	78.59640	78.42401
## 551 587	554	564	567	581	583	585
## 76.69059 68.55146						
## 590 605	591	595	600	602	603	604
## 69.94254 57.80695						
## 627 686	629		641	646		682
## 75.15850 74.48634				77.88328	75.49825	77.57634
## 687 775	757	758	760	772	773	774
## 74.86313 74.67837			57.77372			72.11820
## 776 797	780	783	784	785	790	794
## 71.62525 71.58523						
## 798 858	799	801	826	830	833	857
## 71.43796 56.84255	71.22233	70.70126	71.30358	69.76050	68.53065	57.01915

## 864	868	869	877	878	887	889
901 ## 50.75156	80.04934	78.44872	74.50562	74.12399	60.96502	59.94613
74.60302 ## 902 939	904	906	907	914	932	934
## 72.50263 77.55850	77.12719	76.35767	75.84735	69.32783	81.64131	78.31249
## 940 957	942	946	950	951	955	956
## 80.34283 66.71057	79.25046	79.72856	66.64304	65.14224	63.49648	62.72667
## 983 1005	991	993	994	997	1002	1003
## 73.18548 80.82770	71.07784	71.07124	63.18059		83.59810	81.85259
## 1013 1029	1015	1016	1019	1022	1023	1024
## 66.68862 81.10856						
## 1031 1066	1036	1041	1042	1061	1062	1065
## 80.91365 70.80957						
## 1068 1113 ## 69.81724	1069	1078	1079	1080	1082	1094
66.95724 ## 1114	1115	1144	1147	1148	1150	1154
1189 ## 65.68505						_
67.85180 ## 1190	1193	1205	1206	1208	1209	1210
1213 ## 70.59795						68.81089
71.14631 ## 1214	1216	1238	1239	1240	1243	1244
1255 ## 67.51996	67.32112	70.36583	70.14178	69.62923	67.98558	67.45858
_	1274	1275	1278	1281	1287	1291
1292 ## 82.13166	81.21554	78.63573	78.40986	77.57953	83.03788	81.33435
78.33720 ## 1296	1297	1298	1303	1304	1307	1308
1311 ## 78.56673	76.27588	76.07241	72.19305	70.92412	71.40184	73.78449
69.79300 ## 1342 1371	1344	1346	1356	1357	1359	1368
TJ/ T						

## 73.84729	73.24058	72.58795	71.18761	70.58109	69.48792	63.03668
58.42564 ## 1375	1381	1383	1384	1387	1389	1446
1447 ## 52.20946 75.43454	73.53816	73.33180	73.27457	69.62746	63.63909	76.28364
## 1448 1466	1450	1452	1453	1457	1460	1465
## 79.25115 74.24434	76.46425	75.27377	74.90777	72.30703	75.40848	74.43363
## 1467 1486	1471	1472	1473	1474	1476	1480
## 73.91727 41.94420	69.52761	69.88269	69.74371	67.78450	56.65276	54.25797
## 1492 1534	1495	1496	1498	1525	1527	1531
## 62.05676 78.06172	61.88854	61.69943	61.29947	76.84350	78.21593	79.21358
## 1537 1552	1538	1540	1546	1547	1550	1551
## 76.31061 74.97852	76.10348	83.97783	85.89500	75.31562	80.87838	80.08598
## 1558 1591	1559	1562	1575	1581	1583	1590
## 64.80315 75.24314						
## 1592 1640	1610	1617	1621	1626	1630	1636
## 72.82655 76.88390						
## 1641 1676	1645	1653	1655	1661	1669	1673
## 76.70327 72.43985						
## 1685 1725		1687				
## 73.66519 73.81310						
## 1727 1753	1728					
## 67.86265 72.33308						
## 1756 1784		1767				
## 69.33038 67.97388						
## 1787 1819						
## 63.56168 66.89041	62.22468	61.62775	67.61736	64.46864	69.01283	68.78264

## 1820	1823	1824	1825	1831	1834	1865
1868 ## 66.01353	67.77363	67.35513	63.71498	86.13558	80.29256	69.86954
69.31268 ## 1873	1874	1875	1876	1882	1883	1898
1901 ## 67.85268	67 70667	67 31821	67 00771	57 31885	56 60548	59 21808
58.07881	07.70007		0,.00,,1	37.31003	30.00310	33.21000
## 1902 1963	1944	1945	1948	1950	1952	1954
## 57.13257 75.08738	64.67195	64.47850	63.76374	62.74180	62.43121	61.13200
## 1965 1989	1968	1969	1970	1973	1977	1979
## 73.45255	72.74219	73.17353	71.60368	72.43823	64.96500	64.31208
59.33360 ## 1990	1993	1994	1995	1996	2000	2003
2009 ## 58.91774	72.00367	71.32899	71.26487	73.57999	70.16721	69.69229
74.36599 ## 2010	2012	2013	2017	2019	2025	2026
2028 ## 73.75822	73 40547	74 89439	72 33938	71 63631	68 66141	68 28244
68.17457						
## 2032 2048	2039	2041	2042	2043	2044	2045
## 67.83860 74.89502	67.16361	80.35928	76.24536	76.90209	76.91768	78.54712
## 2051	2057	2061	2066	2124	2131	2132
2133 ## 75.88006	76.66559	78.57174	78.59733	75.69597	71.84118	71.19336
70.39065 ## 2140	2149	2162	2164	2205	2209	2215
2216 ## 72.89033	68 73372	62 052/18	59 92639	73 35510	70 36626	70 75554
73.55433						
## 2219 2259	2220	2226	2230	2251	2257	2258
## 66.83736 60.28167	67.56787	65.00585	63.49861	64.50806	60.57063	63.78522
## 2270 2306	2283	2286	2287	2299	2300	2305
## 73.78499	75.43894	72.18358	74.27013	59.23104	66.35610	56.12495
63.00354 ## 2364	2367	2368	2371	2372	2377	2395
2400 ## 66.33843	65.73889	65,63688	67.87340	67.23005	62,09152	65.09214
57.26097						
## 2403 2446	2404	2407	2431	2438	2439	2441

## 52.19251 71.79458	51.48240	53.44848	78.84476	78.44363	76.89031	77.86784	
## 2447 2478	2449	2450	2451	2454	2475	2476	
## 72.54083 71.61539	71.40995	71.79194	71.62986	70.92754	72.14625	72.09538	
## 2479 2553	2484	2491	2498	2504	2507	2551	
## 73.66903 68.29474	72.41169	61.42948	50.66042	36.41163	79.22147	68.66653	
## 2556 2576	2559	2561	2564	2566	2572	2575	
## 69.12828 73.81130	68.67658	67.99484	67.24402	66.72559	72.53571	71.16136	
## 2577 2619	2580	2581	2585	2603	2605	2608	
## 70.96387 65.26203	69.26897	68.82510	66.97061	69.86928	69.83208	69.05011	
## 2621 2644	2623	2624	2625	2635	2636	2643	
## 64.67407 77.10886	61.91900	60.36286	59.47520	75.34720	75.32164	72.57298	
## 2645 2669	2646	2653	2655	2663	2667	2668	
## 74.54805 77.17002	73.33327	72.93595	72.50059	69.04351	75.56169	77.34052	
## 2672 2689	2674	2677	2678	2680	2683	2688	
## 76.76968 70.91976	76.48150	75.35245	73.56150	74.59252	78.32842	72.95379	
## 2700 2719	2701	2704	2708	2709	2711	2717	
## 68.19493 59.11247	72.34654	60.72469	58.53497	58.79509	60.06203	61.14537	
## 2721 2813	2722	2725	2732	2733	2740	2741	
## 57.97212 77.65728	63.70091	56.06461	75.08624	71.83085	71.28142	70.92829	
## 2819 2835	2821	2823	2825	2831	2832	2834	
## 75.47068 69.21770	75.63431	75.44966	74.60938	70.02253	68.54554	69.46473	
	2838	2846	2848	2851	2854	2908	
## 68.88820 52.92697		68.08201	69.30514	68.72703	62.04212	64.92289	
## 2925 ## 57.90630							

Παρατηρούμε ότι οι τιμές που έχουμε είναι κοντά στο διάστημα 60-75 κατά μέσω όρο που είναι και η πρόβλεψη ουσιαστικά ότι βρισκόμαστε κοντά σε αυτό τον αριθμό όσον αφόρα το προσδόκιμο ζωής.

Εργασία 6

1. Διερεύνηση του συνόλου δεδομένων (dataset)

```
##Loading-Cleaning-Splitting | Data-Libraries
Data <- read.csv("C:/Users/mario/Downloads/framingham.csv")
library(ggplot2)
library(caTools)
CleanData <- na.omit(Data)
set.seed(964)
split <- sample.split(CleanData$TenYearCHD,SplitRatio=0.65)
train = subset(CleanData,split==TRUE)
test = subset(CleanData,split==FALSE)
nrow(train)
## [1] 2378
nrow(test)
## [1] 1280</pre>
```

2α. Δημιουργία μοντέλου (λογιστικής) παλινδρόμησης

```
framinghamLog <- glm(TenYearCHD ~ ., data = train, family=binomial)</pre>
```

2β. Αξιολόγηση μοντέλου παλινδρόμησης

```
summary(framinghamLog)
##
## Call:
## glm(formula = TenYearCHD \sim ., family = binomial, data = train)
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -8.043e+00 8.866e-01 -9.072 < 2e-16 ***
## male
                  4.594e-01 1.345e-01 3.416 0.000635 ***
                   6.213e-02 8.248e-03 7.533 4.96e-14 ***
## age
                  -2.795e-02 6.074e-02 -0.460 0.645421
## education
## currentSmoker
                   8.256e-02 1.921e-01 0.430 0.667417
## cigsPerDay
                   1.528e-02 7.560e-03 2.021 0.043290 *
## BPMeds
                   8.769e-02 2.936e-01 0.299 0.765190
## prevalentStroke 8.524e-01 5.952e-01 1.432 0.152130
## prevalentHyp
                   1.684e-01 1.747e-01
                                         0.964 0.335130
## diabetes
                   2.809e-01 4.319e-01
                                         0.650 0.515461
## totChol
                   2.284e-05 1.494e-03
                                         0.015 0.987805
                   1.900e-02 4.902e-03 3.876 0.000106 ***
## sysBP
## diaBP
                  -7.285e-03 8.044e-03 -0.906 0.365095
```

```
## BMI
                   2.045e-02 1.579e-02
                                         1.295 0.195406
## heartRate
                  -5.887e-03 5.294e-03 -1.112 0.266155
                   7.192e-03 2.806e-03
                                         2.563 0.010375 *
## glucose
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
                                     degrees of freedom
##
      Null deviance: 2028.7 on 2377
## Residual deviance: 1787.2 on 2362 degrees of freedom
## AIC: 1819.2
##
## Number of Fisher Scoring iterations: 5
```

Οι μεταβλητές που έχουν ισχυρή συσχέτιση με την εξαρτημένη μεταβλητή είναι οι παρακάτω:

- age, με significance *** που είναι ιδιαιέτερα σημαντικό.
- male με significance *** που είναι ιδιαιέτερα σημαντικό.
- cigsPerDay με significance * που δεν έχει τόσο μεγάλη σημαντικότητα για το μοντέλο μας.
- sysBP με significance *** που είναι ιδιαιέτερα σημαντικό.
- glucose με significance *** που είναι ιδιαιέτερα σημαντικό.

Επίσης το Residual deviance είναι 1787.2 σε σύγκριση με το Null deviance των 2028.7, υποδεικνύοντας ότι το μοντέλο έχει μειωμένη απόκλιση (σφάλμα) και έτσι βελτιώνει την πρόβλεψη σε σύγκριση με ένα μοντέλο χωρίς προβλεπτικούς παράγοντες. Το AIC του μοντέλου είναι 1819.2, το οποίο βοηθά στη σύγκριση μοντέλων. Όσο χαμηλότερο είναι το AIC, τόσο καλύτερα ταιριάζει το μοντέλο στα δεδομένα, λαμβάνοντας υπόψη τον αριθμό των προβλεπτικών παραγόντων.

3. Εφαρμογή πρόβλεψης

```
predictTest <- predict(framinghamLog, type="response", newdata=test)
summary(predictTest)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01700 0.06394 0.11459 0.15213 0.20357 0.81105</pre>
```

- (Min.): Η ελάχιστη προβλεπόμενη πιθανότητα (0.01700).
- (1st Qu.): Το 25% των προβλεπόμενων δεδομένων είναι μικρότερο του (0.06394) ενώ το 75% είναι μεγαλύτερο από αυτόν τον αριθμό
- (Median): Το 50% είναι μικρότερο του (0.11459) και το άλλο μισό μεγαλύτερο.
- (Mean): Η μέση προβλεπόμενη πιθανότητα (0.15213).
- (3rd Qu.): Το 75% είναι μικρότερο του (0.20357) και το υπόλοιπο μεγαλύτερο.
- (Max.): Η μέγιστη προβλεπόμενη πιθανότητα (0.81105).

```
##Confusion Matrix showing us, 1070 false negatives and 15 true
negatives and 182 false positives and 13 true positives.
table(test$TenYearCHD, predictTest > 0.5)
##
##
       FALSE TRUE
##
     0 1070
               15
               13
##
     1
         182
##Data already cleaned in the beginning no need for cleaning. No
missing values.
library(ROCR)
ROCRpred <- prediction(predictTest, test$TenYearCHD)</pre>
ROCRperf <- performance(ROCRpred, "tpr", "fpr")</pre>
plot(ROCRperf,colorize = TRUE)
plot(ROCRperf, colorize = TRUE,
print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7))
```



```
as.numeric(performance(ROCRpred, "auc")@y.values)
## [1] 0.7346426
##Number of registrations in the "new" set are answered above and they
are the following.
nrow(train)
## [1] 2378
```

```
nrow(test)
```

[1] 1280