FÓRMULAS QUÍMICAS

SUSTANCIAS IÓNICAS Las sustancias iónicas se representan a través de su **fórmula empírica**

SUSTANCIAS MOLECULARES

Las sustancias moleculares se representan a través de su **fórmula molecular**, si bien existen otras formas de visualizarlas, como son las fórmulas estructurales y los modelos moleculares

ALGO MÁS SOBRE LAS MOLECULAS

(y sus representaciones)

FÓRMULA MOLECULAR

Indica el número exacto de los átomos de cada elemento que se encuentran en la molécula: H_2O , CO_2 H_2O_2 , O_2

FÓRMULA EMPÍRICA

Indica qué elementos están presentes y cuál es la proporción mínima (en números enteros) entre sus átomos, en algunos casos coincide con la fórmula molecular: por ejemplo H_2O , CO_2

FÓRMULA ESTRUCTURAL

Muestra cómo están unidos los átomos en una molécula entre sí, por ejemplo: O = C = O

Los modelos moleculares muestran la distribución tridimensional que tienen los átomos en una molécula

UN POCO DE EJERCICIO...

EJERCICIO 1

La fórmula molecular de la glucosa ($C_6H_{12}O_6$) coincide con su fórmula empírica?

¿CÓMO LO RESOLVEMOS?

Resolución:

Lo que informa la fórmula molecular de la glucosa es que en cada molécula hay 6 átomos de carbono (C), 12 átomos de hidrógeno (H) 6 átomos de oxígeno. Como la fórmula empírica es la mínima proporción de números enteros entre los átomos que forman la molécula, es este caso los **tres** números (6, 12 y 6) son divisibles por 6, por lo tanto la fórmula empírica de la glucosa es: CH_2O .

Entonces, contestando al enunciado: la fórmula molecular de la glucosa ($C_6H_{12}O_6$) no coincide su fórmula empírica (CH_2O)

OTRO EJERCICIO RESUELTO

Nota: el número que aparece abajo a la derecha del símbolo químico (el subíndice) es su **atomicidad**, e indica el número de átomos de ese elemento que hay en la molécula. En este caso: la atomicidad del carbono y del oxígeno es 6 y la del hidrógeno es 12

EJERCICIO 2

Una molécula triatómica formada por oxígeno y azufre tiene el doble de átomos de oxígeno que de azufre: escribir su fórmula empírica y molecular

Nota: se usa el prefijo di, tri, tetra, penta etc antes de la palabra atómica para indicar cuántos átomos en total tiene la molécula, no importa de qué elemento.

EJERCICIO 3

Cuáles de las siguientes moléculas tienen la misma fórmula empírica:

- a) C_2H_4

- b) CH_4 c) C_6H_6 d) C_6H_{12} e) C_9H_6

EJERCICIO 4

El ácido acético está representado en el modelo molecular de la izquierda, donde los carbonos son grises, los hidrógenos blancos y los oxígenos rojo. Indicar cuál es la fórmula empírica y molecular del acético

EJERCICIO 5

Escribir la fórmula empírica de la sacarosa (azúcar común), cuya fórmula molecular es $C_{12}H_{22}O_{11}$

BIBLIOGRAFÍA

- □ QUÍMICA BÁSICA. Di Risio, C; Roverano, M; Vazquez, I. 6° ed mejorada. Ciudad Autónoma de Buenos Aires: CCC Editorial Educando, 2018.
- □ QUÍMICA. Chang, R, 10° edición. Traducido de la décima edición de: chemistry, by Raymond Chang, copyright © 2010 by The McGraw-Hill companies, inc. all rights reserved. ISBN: 978-007-351109-2
- ☐ Las imágenes de los modelos moleculares fueron realizadas con el programa Avogadro, el resto de las imágenes son de distintas fuentes