Computerized control - state feedback

Kjartan Halvorsen

2018-03-06

Goal of today's lecture

► Understand state feedback design

Stability

A system

$$x(k+1) = \Phi x(k), \quad x(0) = x_0$$

is asymptotically stable if $\lim_{t\to\infty} x(kh) = 0$ for all $x_0 \in \mathbb{R}^n$.

A system is asymptotically stable if and only if all eigenvalues of Φ are inside the unit circle.

Reachability (controllability)

Reachability is the answer to the question "Can we by choosing a suitable input sequence u(k), k = 0, 1, 2, ..., n - 1 reach any point in the state space?"

Consider

$$x(k+1) = \Phi x(k) + \Gamma u(k).$$

With initial state x(0) given. The solution at time n where n is the order of the system is

$$x(n) = \Phi^{n} x(0) + \Phi^{n-1} \Gamma u(0) + \dots + \Gamma u(n-1)$$

= $\Phi^{n} x(0) + W_{c} U$, (1)

where

$$W_c = \begin{bmatrix} \Gamma & \Phi\Gamma & \cdots & \Phi^{n-1}\Gamma \end{bmatrix}$$

$$U = \begin{bmatrix} u(n-1) & u(n-2) & \cdots & u(0) \end{bmatrix}^{\mathrm{T}}$$

Reachability (controllability), contd

To find the input sequence that takes the state to $x(n) = x_d$ we solve the equation

$$x_d = \Phi^n x(0) + W_c U$$

for *U*.

$$U=W_c^{-1}\left(x_d-\Phi^nx(0)\right)$$

This requires the matrix W_x to be invertible. This gives Theorem 3.7 in &&W:

THEOREM 3.7 REACHABILITY The state space system above is reachable if and only if the matrix W_c has rank n.

This is equivalent to

$$\det W_c \neq 0$$
.

State feedback

Have state space model

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$

$$y(k) = Cx(k)$$
 (2)

and measurements (or estimates) of the state vector x(k).

Linear state feedback is the control law

$$u(k) = f((x(k), u_c(k))) = -l_1x_1(k) - l_2x_2(k) - \dots - l_nx_n(k) + mu_c(k)$$

= $-Lx(k) + mu_c(k)$,

where

$$L = \begin{bmatrix} I_1 & I_2 & \cdots & I_n \end{bmatrix}.$$

Insert the control law into the state space model (3) to get

State feedback

Have state space model

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$

$$y(k) = Cx(k)$$
 (3)

and measurements (or estimates) of the state vector x(k).

Linear state feedback is the control law

$$u(k) = -l_1x_1(k) - l_2x_2(k) - \cdots - l_nx_n(k) + mu_c(k) = -Lx(k) + mu_c(k),$$

where

$$L = \begin{bmatrix} I_1 & I_2 & \cdots & I_n \end{bmatrix}.$$

Insert the control law into the state space model (3) to get

$$x(k+1) = (\Phi - \Gamma L)x(k) + m\Gamma u_c(k)$$

$$y(k) = Cx(k)$$
(4)

Pole placement by state feedback

Assume the desired performance of the control system is given as a set of desired closed loop poles p_1, p_2, \ldots, p_n , corresponding to the desired characteristic polynomial

$$a_c(z) = (z - p_1)(z - p_2) \cdots (z - p_n) = z^n + \alpha_1 z^{n-1} + \cdots + \alpha_n.$$
 (5)

With state feedback we get the the closed-loop system

$$x(k+1) = (\Phi - \Gamma L)x(k) + m\Gamma u_c(k)$$

$$y(k) = Cx(k)$$
(6)

with characteristic equation

$$\det(zI - (\Phi - \Gamma L)) = z^n + \beta_1(I_1, \dots, I_n)z^{n-1} + \dots + \beta_n(I_1, \dots, I_n). \tag{7}$$

Equate the coefficients in (5) and (7) to get the system of equations

$$\beta_1(I_1, \dots, I_n) = \alpha_1$$
$$\beta_2(I_1, \dots, I_n) = \alpha_2$$
$$\vdots$$
$$\beta_n(I_1, \dots, I_n) = \alpha_n$$

Pole placement by state feedback, contd.

The system of equations

$$\beta_1(I_1, \dots, I_n) = \alpha_1$$

$$\beta_2(I_1, \dots, I_n) = \alpha_2$$

$$\vdots$$

$$\beta_n(I_1, \dots, I_n) = \alpha_n$$

is always linear in the unknown controller parameters, so it can be written

$$AL^{\mathrm{T}} = \alpha,$$

Where
$$\alpha^{\mathrm{T}} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix}$$
 .

Pole placement and reacability

It can be shown that the controllability matrix W_c is a factor of the matrix A

$$A = \bar{A}W_c$$
.

Hence, in general the system of equations

$$\bar{A}W_cL^{\mathrm{T}} = \alpha \tag{8}$$

has a solution only if W_c is invertible, i.e. the system is *reachable*.

Note that equation (8) can still have a solution for unreachable systems if α is in the *column space* of A, i.e. α can be written

$$\alpha = b_1 A_{:,1} + b_2 A_{:,2} + \cdots + b_m A_{:,m}, \ m < n$$

