Theory of Automata

Shakir Ullah Shah

Lecture 4

Languages Associated with Regular Expressions

Regular Languages

The language generated by any regular expression is called a regular language.

• It is to be noted that if r_1 , r_2 are regular expressions, corresponding to the languages L_1 and L_2 then the languages generated by $r_1 + r_2$, r_1r_2 (or r_2r_1) and r_1* (or r_2*) are also regular languages.

Note

- It is to be noted that if L₁ and L₂ are expressed by r₁ and r₂, respectively then the language expressed by
- 1. $r_1 + r_2$, is the language $L_1 + L_2$ or $L_1 \cup L_2$
- 2. r_1 r_2 , , is the language L_1 L_2 , of strings obtained by prefixing every string of L_1 with every string of L_2
- 3. r_1^* , is the language L_1^* , of strings obtained by concatenating the strings of L, including the null string.

Rules for language association with R.E's

- Rule 1:
 - The language associated with the regular expression that is just a single letter is that one-letter word alone, and the language associated with Λ is just {Λ}, a one-word language.

Rules for language association with R.E's

• Rule 2:

If r_1 is a regular expression associated with the language L_1 and r_2 is a regular expression associated with the language L_2 , then:

(i) The regular expression $(r_1)(r_2)$ is associated with the product L_1L_2 , that is the language L_1 times the language L_2 :

 $language(r_1r_2) = L_1L_2$

Rules for language association with R.E's

• Rule 2:

(ii) The regular expression $r_1 + r_2$ is associated with the language formed by the union of L_1 and L_2 :

 $language(r_1 + r_2) = L_1 + L_2$

(iii) The language associated with the regular expression $(r_1)^*$ is L_1^* , the Kleene closure of the set L_1 as a set of words:

 $language(r_1^*) = L_1^*$

Finite Languages Are Regular

Theorem 5:

- If L is a finite language (a language with only finitely many words), then L can be defined by a regular expression.
- In other words, all finite languages are regular.

Finite Languages Are Regular

- Proof:
- Let L be a finite language. To make one regular expression that defines L, we insert plus signs between all the words in L e.g.

```
L = {baa,abbba,bababa} is
baa+abbba+bababa
```

- Note:
- This algorithm only works for finite languages because an infinite language would become a regular expression that is infinitely long, which
 FAST Naisoforbiddeinty of Computer and Emerging Sciences, Peshawar

Finite Automata

Finite Automata

- Also known as deterministic finite automaton (DFA), Finite State Automata (FSA) or simply FA
- It is a simple language recognition device.
- It is called deterministic because their operation is completely determined by their input.
- Strings are fed into the device by means of an input tape, which is divided into squares, with one symbol inscribed in each tape square.

Finite Automata

- It is used to determine whether a word does or does not belong to a Regular Language
- User for defining a Regular Language
- Used in Lexical Analyzers

Deterministic Finite Automaton

Notation

Alternative Notation

Flow Chart of FA

head

Initial Configuration

Input Tape

a b b a

Initial state

Scanning the Input

Input finished

accept

Empty Tape

 (λ)

Input Finished

Language Accepted: $L = \{a^n b : n \ge 0\}$

Another Example

Alphabet: $\Sigma = \{1\}$

Language Accepted:

EVEN =
$$\{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$$

= $\{\lambda, 1111111111.\}$

FAST National University of Computer and Emerging Sciences, Peshawar

Formal Definition

Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state (one)

F: set of accepting states

Set of States Q

Example

$$Q = |q_0, q_1, q_2, q_3, q_4, q_5|$$

$$a, b$$

$$a, d$$

Input Alphabet Σ

Initial State q_0

Example

Set of Accepting States $F \subseteq Q$

Example

Transition Function $\delta: Q \times \Sigma \to Q$

$$\delta(q,x)=q'$$

Describes the result of a transition from state Q with symbol x

Example:

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b) = q_5$$

$$\delta(q_2,b) = q_3$$

Transition Table for δ

FAST National University of Computer and Emerging Sciences, Peshawar

Extended Transition Function

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q,w)=q'$$

Describes the resulting state after scanning string W from state q

Example:
$$\delta^*(q_0, ab) = q_2$$

$$\delta^*(q_1,bba)=q_4$$

Special case:

for any state q

$$\delta^*(q,\lambda)=q$$

In general:

$$\delta^*(q, w) = q'$$

implies that there is a walk of transitions

states may be repeated

Language Accepted by DFA

Language of DFA M:

it is denoted as $L^{(M)}$ and contains all the strings accepted by M

We say that a language L' is accepted (or recognized) by DFA M if L(M) = L'

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted b

$$L(M) = | w \in \Sigma^* : \delta^*(q_0, w) \in F$$

Language rejected by M

$$\overline{L(M)} = \left| w \in \Sigma^* : \delta^*(q_0, w) \notin F \right|$$

More DFA Examples

$$\Sigma = \{a, b\}$$

$$L(M) = \{ \}$$

Empty language

$$L(M) = \Sigma^*$$

All strings

$$\Sigma = \{a, b\}$$

$$L(M) = \{\lambda\}$$

Language of the empty string

FAST National University of Computer and Emerging Sciences, Peshawar

Infinite Languages

Example: Σ = {a,b}
 L = {s:|s| is odd}

 $L(M) \neq \{ \text{ all binary strings containing substring } 001 \}$

 $L(M) = \{ \text{ all binary strings without substring 001 } \}$

$$L(M) = \begin{vmatrix} awa: w \in [a,b]^* \\ b & b \\ b & a \end{vmatrix}$$