MATH 185: Homework 2

William Guss 26793499 wguss@berkeley.edu

January 28, 2016

1.

Definition 1. A set $S \subset \mathbb{C}$ is bounded if and only if there exists $z \in \mathbb{C}$ such that for every $s \in S$, $|s| \leq |z|$

Definition 2. Alternatively, a set $S \subset \mathbb{C}$ is bounded if and only if there is an r such that $S \subset B_r(0)$, where $B_s(z)$ is the ball of radius s with center z.

Theorem 1. If $(z_n)_{n=1}^{\infty}$ is a convergent sequence of compex numbers, then the sequence is bounded.

Proof. Take the value set $S = \{z_n\}$. Then suppose there were no r such that $S \subset B_r(0)$. If this is the case, the countability of S implies that for every $n, S \cap B_n(0)$ is finite. Since $z_n \to z$, take $N \in \mathbb{N}$ such that N > |z|. Such an n exists by the archimedian principle of \mathbb{R} . Then $S \cap N$ must be finite.

Take $\epsilon = N - |z|$, then there is an M such that for all m > M, $d(z_n, z) < \epsilon$. That is there are infinite elements within ϵ of z, and thereby there are infinite elements in $S \cap B_N(0)$. This is a conradiction to its finiteness.

Therefore it must be that the value set is contained within the N ball, and therefore, (z_n) is bounded.

2. Exercise II.1.11

Theorem 2. The function $Arg : \mathbb{C} \to \mathbb{R}$ is continuous except for along the line $L = \{z : z = 0, Re(z) < 0\}.$

Proof. A function is continuous if and only if it preserves limits. Specifically, if $\lim_{h\to x} f(h) = f(x)$ implies that f is continuous at h. Consider the restricted Arg function, say $A: \mathbb{C} \setminus L \to \mathbb{R}$. Then it is clear that $\lim_{\mathbb{C} \setminus L} A(h) = (-\pi, \pi)$, since if a point is within an ϵ neighborhood of another point, its gradial distance is proportionate to \sin^{-1} of its ϵ distance, (a continuous function).

However consider any $z \in L$ Such that $h \to z$ approaches from the upper half plane and $g \to z$ from the lower. Clearly $Arg(h) \to \pi$ and $Arg(g) \to -\pi$, so no limit exists and the function is not continuous at z. This completes the proof.