Lecture 11 – 试验设计和方差分析

- 内容大纲
 - 试验/实验设计 Experimental Design
 - 两组以上数据比较
 - 方差分析 ANOVA
 - 多重比较 Planned & unplanned comparisons
 - 总结 Summary
 - R Lab & Discussion

生物统计学 李 勤 生态与环境科学学院

1. 回顾——均值的比较

• *t*-检验

- 一个样本的均值
 - μ ? = μ_0
- 配对样本的均值
 - μ_d ? = 0
- 两个独立样本的均值
 - μ_1 ? = μ_2

Dr. Ray Clark FRPS & Mervyn de Calcina-Goff FRPS/Science Source

Gerald A. DeBoer/ Shutterstock.com

2. 试验设计 Experimental Designs

- 试验研究(Experimental study)的目的: 因果推断
 - vs. 观察研究 (Observational study) —— 相关性推断
- 试验设计的黄金原则:临床试验 (clinical trial)
 - 针对人体进行的两个或两个以上处理的试验;
- 非人体试验 (按地点区分)
 - 实验室试验 laboratory experiments
 - 野外试验 field experiments

© Qin Li @ Greenhouse

2.1 试验设计的原则

- 两项重要原则
 - 减少偏差
 - <u>偏差</u> (bias) 是我们获得的估计值与真实的总体参数 之间的<u>系统性差异</u> (低估或高估);

- 减少抽样误差
 - 抽样误差 (sampling error) 是指由抽样引起的估计值 与真实值 (正在估计的总体参数) 之间的偶然差异 (chance difference);

2.1 试验设计的原则

- 试验单元 (experimental unit)
 - 等同于抽样单元;
 - 相互独立的一个或一组个体(接受相同或不同的处理);

- •一个好的试验
 - · 会将不同处理**随机**分配给**多个独立**的试验单元;

2.2 试验设计的原则1 - 减少偏差

- •目的:测量值能准确反应试验中(感兴趣的)处理的效应;
 - 排除混淆变量对判断试验处理效应影响;
 - E.g., 巧克力和诺贝尔奖
 - 混淆变量: confounding factors (与变量X与Y均相关)

• 方法/措施

- 1. 对照组 (a simultaneous control group)
- 2. 随机化 (randomization)
- 3. 单盲或双盲 (blinding)

2.2 试验设计的原则1 — 减少偏差

- 1. 对照组
 - 同时设置感兴趣的处理组和对照组;
 - 原因:安慰剂效应、测试效应、时间差异等;
 - 做法:
 - 临床试验:
 - 安慰剂、生理盐水等;
 - 实验室试验:
 - 类似的处理方式;
 - 野外试验:
 - 理论上需要类似的处理方式;

2.2 试验设计的原则1 - 减少偏差

• 2. 随机化

- 不同处理应应随机地对样本个体进行实施;
- 目的:并非完全去除混淆变量的影响,而是去除这类因子与处理之间的相关性;
 - 让这种相关性更加均匀地分散在不同处理组中, 从而避免偏差;
- 方法
 - 采用随机数生成器来将不同处理分配给不同的试验单元;
 - e.g., sample()

© Qin Li @ Greenhouse

2.2 试验设计的原则1 - 减少偏差

- 3. 单盲或双盲
 - •目的:去除主观性可能导致的偏差;
 - 如主观判断、过多关注等造成的夸张效应
 - 相比双盲实验: 27% 个
 - (1) 单盲试验
 - 试验单元 (样本个体) 不应知晓何种处理;
 - (2) 双盲试验
 - 试验单元及试验操作者不应知晓何种处理;
 - E.g., 编码标签;

Single-blind study

Double-blind study

- •目的:维系稳定的试验条件;
 - 环境的一致性: 温湿度等(当这些因子不是感兴趣的处理时);
 - 试验单元的一致性: 同一性别、年龄、基因型等;
 - 让结论具有普适性;

• 方法/措施

- 1. 重复单元 (replication)
- 2. 平衡样本 (balance)
- 3. 设置组别 (blocking)

- 1. 重复单元
 - 多个重复试验单元构成所需样本;
 - 排除单元个体间差异对处理效应的影响;
 - 原则上,大样本具有更小的标准误以及可获得假设检验的准确结论;

- 2. 平衡样本
 - 不同处理组具有相同的样本量;
 - 平衡 balanced = same sample size
 - 当 $n_1 = n_2$ 时,SE最小;
 - 均值差异的标准误: $SE_{\bar{Y}_1-\bar{Y}_2} = \sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}$
 - 合并方差 (pooled sample variance): $s_p^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2}$
 - 尤其在样本总量固定的条件下;

- 3. 设置组别
 - 排除其它存在变异的因素的影响;
 - E.g., 空间位置、就诊医院、同窝后代、同天的实验等;
 - 组别内相对均质, 且设置各处理的试验单元;
 - 处理间的差异也在组别内进行评估;
 - 配对样本即组别设置;

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

2.3 课堂讨论

- Q1. 以下措施有助于试验设计中的哪个目标,即减少偏差还是抽样误差?
 - a. 使用基因型一致的动物种群来测试处理效果
 - b. 使用完全随机化的设计
 - c. 将相关的实验单元分组在一起
 - d. 在不知道分配给实验单元的处理类型的情况下进行响应变量的测量
 - e. 使用计算机在每个组别内随机分配处理类型给实验单元

3. 补充阅读——试验设计的样本大小

- •试验单元的多少?
 - •影响因素:
 - 成本
 - 是否能检测出预期效果
 - 置信区间的估计
- 探讨样本大小的目标
 - 达到预定的精度 (precision);
 - 达到预定的功效(power);

3.1 达到预期的精度

- 设定预期的精确度
 - 即设定可以接受的不确定性
- 对两个处理组之间差异的估计
 - 总体的差异: μ₁ μ₂
 - 样本的估计 (95%的置信区间) : $(Y_1 Y_2)$ ± margin error
- 样本量的估计
 - $n = 8(\frac{\sigma}{\text{margin error}})^2$
 - σ: 两个总体的标准差(方差和标准差均相等);
 - *n*: 两个样本大小相等;
 - margin error:误差边际,即置信区间的一半(2SE法则)

3.1 达到预期的精度

- 样本量的估计
 - σ 通常未知,需要通过前期经验/研究或预试验来设定;
- 例子: diet effects on stalk-eyed flies 饮食对杆状眼蝇的影响
 - 假定我们期望获得的误差边际为0.1mm;
 - 依据EXAMPLE 11.2: Eye to eye 的估计: s = 0.398;

•
$$n = 8(\frac{\sigma}{\text{margin error}})^2 = 8 \times (\frac{0.398}{0.1})^2 = 128$$

• 如若两个处理组,总样本为2n = 256

Zimmer, C. Evo Edu Outreach (2008) 1: 487. https://doi.org/ 10.1007/s12052-008-0089-9. Photo courtesy of Gerald Wilkinson, University of Maryland

3.1 达到预期的精度

- 样本量的估计
 - σ通常未知,需要通过前期经验/研究或预试验来设定;
 - 如果总体的 σ 大,则需要大样本来获取高精确度;

3.2 达到预期的功效

• 功效和样本量

- H_0 : $\mu_1 = \mu_2$; H_A : $\mu_1 \neq \mu_2$;
- 当 $|\mu_1 \mu_2| \ge D$ 时,我们认为达到了足够的功效;
 - D不是真实的组间差异, 而是我们关心的某个临界值;
- 统计检验中,通常需要功效达到0.8以上;

• 样本量的估计

- $n \approx 16(\frac{\sigma}{D})^2$
 - (更多请查看Section 14.8 Quick Formula Summary)
- 若设定D = 0.2 mm,则

•
$$n \approx 16 \left(\frac{0.398}{0.2}\right)^2 = 64$$

Zimmer, C. Evo Edu Outreach (2008) 1: 487. https://doi.org/ 10.1007/s12052-008-0089-9. Photo courtesy of Gerald Wilkinson, University of Maryland

4. 方差分析 ANOVA

- ANOVA: the analysis of variance
- •目的: 同时比较2组以上的组间均值;
 - 多次两组间比较(t-test)会造成犯I类错误的概率急剧增大;
 - $1 (1 \alpha)^n$
- One-way ANOVA vs. Two-way ANOVA
 - 一个解释变量 vs. 两个解释变量

?

- 例子: EXAMPLE 15.1: The knees who say night
 - 昼夜节律的调整 (circadian clock)
 - 有研究提出对膝盖后侧的强光照射有助于调整时差;
 - 重新的调查: 三个处理组间是否存在差异?
 - 强光对身体特定部位的照射 (3hrs);
 - 测量褪黑素分泌周期的相位移动;

Oscar Burriel/Science Source

如何进行假设检验?

Whitlock & Schluter, The Analysis of Biological Data, 3e $\mbox{@}$ 2020 W. H. Freeman and Company

- 例子: EXAMPLE 15.1: The knees who say night
 - 昼夜节律的调整 (circadian clock)
 - 三个处理组间是否存在差异?
- 假设检验
 - 零假设和备择假设
 - H_0 : $\mu_1 = \mu_2 = \mu_3$;
 - H_A : at least one μ_i is different;
 - 至少有一组的均值与其它组显著不同,并非一定是 $\mu_1 \neq \mu_2 \neq \mu_3$;
 - $\mu_1 = \mu_2 \neq \mu_3$
 - $\mu_1 \neq \mu_2 = \mu_3$
 - $\mu_1 = \mu_3 \neq \mu_2$

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

- 数据中的变异 variance
 - 总体 vs 样本
 - 即使不同总体的均值相等, 但由于抽样误差的存在, 基于样本计算的均值 可能呈现为不同的值;
 - 意味着数值变异的来源之一是抽样误差;

- 数据中的变异
 - 组间变异和组内变异: 变异的分解
 - 如果不同总体(不同处理组)的均值相等,也就是零假设成立时:
 - 组间变异和组内变异一样,即组间差异无显著不同;
 - within-groups variance = among-groups variance
 - 如果不同总体(不同处理组)的均值不相等,也就是零假设不成立时:
 - 组间变异和组内变异不一样,即组间差异显著不同;
 - within-groups variance ≠ among-groups variance

- 方差分析的基本思想: 组间变异和组内变异的比较
 - 不同处理组的样本均值之间的变异是否大于抽样误差导致的变异?
 - 后者即因偶然性所预期的差异;

- 如果组间变异 > 组内变异,则可推断不同总体的均值间存在真正的差异;
 - 即拒绝零假设;

- 方差分析的基本思想: 组间变异和组内变异的比较
 - 变异的衡量: 均方 (mean squares)
 - 组间变异——组间均方:MS_{groups} (group mean squares)
 - 衡量了由组间的差异所造成的数据中的变异;
 - 组内变异——组内均方: MS_{error} (the error mean squares)
 - 衡量了各组内的数据变异;

- 变异分解(Partitioning the sum of squares)
 - SS: sum of squares
 - $SS_{total} = SS_{groups} + SS_{error}$
 - $SS_{total} = \sum_{i} \sum_{j} (Y_{ij} \overline{Y})^2$
 - $SS_{groups} = \sum_{i} n_i (\bar{Y}_i \bar{Y})^2$
 - $SS_{error} = \sum_{i} \sum_{j} (Y_{ij} \overline{Y}_{i})^2$

• 其中:

- $\bar{Y} = \sum_{i} n_{i} \bar{Y}_{i} / N$: 总体均值/ grand mean; N为总样本量;
- Y_{ij} : 各个观察值/测量值; i为第i个处理组, j为该组内第j个个体;
- $\bar{Y}_i = \sum_i Y_{ij} / n_i$: 第i个处理组的均值; n_i 为第i个处理组的样本量;

- 变异分解:均方 mean squares
 - 组间均方 (the group mean squares)
 - $MS_{groups} = \frac{SS_{groups}}{df_{groups}}$
 - $df_{groups} = k 1$, 其中: k 为组数 (number of groups)
 - 衡量了由组间的差异所造成的数据中的变异;
 - 组内均方 (the error mean squares)
 - $MS_{error} = \frac{SS_{error}}{df_{error}}$ • $df_{error} = \sum_{i} (n_i - 1) = N - k$
 - 衡量了各组内的数据变异,类似 pooled sample variance;
 - Assumption: $\sigma_1 = \sigma_2 = \sigma_3$

- 例子: EXAMPLE 15.1: The knees who say night
 - •昼夜节律:三个处理组间是否存在差异?
 - 假设检验
 - H_0 : 三组总体的均值相同;
 - H_A : 至少有一个总体的均值与其它组不同;

• 变异的衡量

•
$$MS_{groups} = \frac{7.224}{3-1} = 3.6122$$

•
$$MS_{error} = \frac{9.415}{22-3} = 0.4955$$

• 检验统计量: F

•
$$F = \frac{\text{MS}_{\text{groups}}}{\text{MS}_{\text{error}}} = \frac{3.6122}{0.4955} = 7.29$$

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

circadianAnova <- lm(shift ~ treatment, data = circadian)
anova(circadianAnova)</pre>

- 例子: EXAMPLE 15.1: The knees who say night
 - •昼夜节律:三个处理组间是否存在差异?
 - 假设检验
 - H_0 : 三组总体的均值相同;
 - H_A: 至少有一个总体的均值与其它组不同;
 - 检验统计量:

•
$$F = \frac{MS_{groups}}{MS_{error}} = \frac{3.6122}{0.4955} = 7.29$$

• P值: 与F分布进行比较

•
$$F \sim F_{\alpha(1), df_{group}, df_{error}} = F_{0.05(1), 2, 19}$$

- F是否显著大于1?
- "(1)"表示单侧检验 (查看F分布的右侧)

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

- 例子: EXAMPLE 15.1: The knees who say night
 - •昼夜节律:三个处理组间是否存在差异?
 - 假设检验
 - H_0 : 三组总体的均值相同;
 - H_A: 至少有一个总体的均值与其它组不同;
 - 检验统计量:

•
$$F = \frac{MS_{groups}}{MS_{error}} = \frac{3.6122}{0.4955} = 7.29$$

- P值: 与F分布进行比较
 - P = 0.0045 < 0.05
- •结论: 拒绝零假设
 - 至少有一组的总体均值与其它组的均值不同;

Whitlock & Schluter, *The Analysis of Biological Data*, 3e © 2020 W. H. Freeman and Company

4.2 ANOVA方差分析的前提假设

- ANOVA的前提假设 assumptions
 - 随机样本 (random samples)
 - 变量在每组总体中均呈正态分布 (normal distributions)
 - 每组总体的方差相等 (same variance)

- ANOVA的稳健性
 - · 当样本量较大时,变量偏离正态分布时ANOVA也可以得出可靠结论;
 - 可进行数据转化来查看是否满足正态分布;
 - 当样本量较大且各组样本接近时,方差差异不超过10倍时ANOVA也可以得出可靠结论;

4.3 ANOVA方差分析相关的其它衡量指标

• R^2 (R-squared)

•
$$R^2 = \frac{SS_{groups}}{SS_{total}}$$

- 理解为: 变异被 "不同组" 解释的比例
 - the "fraction of the variation in Y that is explained by groups"

• 例子: 昼夜节律的三个处理组

•
$$R^2 = \frac{7.224}{16.639} = 0.43$$

• 即43%的变异可以被处理组间的差异解释;

4.4 两组间的ANOVA方差分析

- 当k = 2时,
 - ANOVA 和 t-test会得到相同的结论;

- 不同点
 - *t*-test可以被扩展到更泛的检验中,比如:
 - $\mu_1 = \mu_2$, 或
 - $\mu_1 \mu_2 = 10$
 - 当两组间的方差极为不一致时可以应用Welch's t-test;

5. 两组以上的多重比较

- 配对比较/多重比较
 - 计划比较 Planned comparison
 - 试验设计时对明确感兴趣的组间进行比较 (特定的)
 - 需要充足的理由
 - 事后多重比较 Unplanned comparison
 - 多组间的两两配对比较,来找到有差异的处理组(探索性的)
 - 需要明确对犯以类错误的概率的矫正

5.1 计划比较 Planned comparisons

- 计划比较:对进行比较的处理组有明确的考量;
 - 例子: EXAMPLE 15.1: The knees who say night
 - 一开始的目标是要看对Knee强光照射是否影响昼夜节律;
 - 一组比较: Control vs. Knee $(\mu_1? = \mu_2)$
 - 基于t统计量来进行检验和计算置信区间, 其中SE有矫正;
 - 优势: 比两样本t-检验有更高精确度 (更窄的置信区间)

Whitlock & Schluter, *The Analysis of Biological Data*, 3e © 2020 W. H. Freeman and Company

$$SE = \sqrt{MS_{error}(\frac{1}{n_1} + \frac{1}{n_2})}$$

circadianPlanned <- contrast(circadianPairs, method = "pairwise", adjust = "none")</pre> circadianPlanned confint(circadianPlanned) SE df lower.CL upper.CL estimate SE df t.ratio p.value contrast estimate contrast control - knee -0.736control - knee 0.027 0.364 19 0.79 0.027 0.364 19 0.074 0.9418 control - eyes 2.01 1.243 0.364 19 0.480 1.243 0.364 19 3.411 0.0029 control - eves 1.216 0.376 19 0.428 2.00 knee – eyes 1.216 0.376 19 3.231 0.0044 knee - eyes ## Confidence level used: 0.95

5.2 多重比较 Unplanned comparisons

- 多重配对比较: unplanned/非计划的
 - E.g., 所有组间的两两配对比较;
 - Tukey-Kramer test是最常用的一种方法
 - Tukey's HSD test
 - 检验统计量: *q*
 - 自由度*N* − *k*
 - (具体计算可查看 Section 15.8 Formula Summary)
 - 对以类错误概率的矫正
 - 所有配对比较的检验中,出现至少一次\类错误的 概率不超过显著性水平α。
 - 其它矫正方法
 - Bonferroni, Dunnett's Test, etc.

a vs b: significantly different

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

5.2 多重比较 Unplanned comparisons

- 多重配对比较: unplanned/非计划的
 - E.g., 所有组间的两两配对比较;
 - Tukey-Kramer test是最常用的一种方法
 - 检验统计量: *q*
 - 基于 MS_{error} , 自由度N-k

```
q = \frac{\overline{Y_i} - \overline{Y_j}}{SE}
```

$$SE = \sqrt{MS_{error}(\frac{1}{n_1} + \frac{1}{n_2})}$$

```
circadianPairs <- emmeans(circadianAnova, "treatment")
circadianUnplanned <- contrast(circadianPairs, method = "pairwise", adjust = "tukey")
circadianUnplanned</pre>
```

```
## contrast estimate SE df t.ratio p.value
## control - knee 0.027 0.364 19 0.074 0.9970
## control - eyes 1.243 0.364 19 3.411 0.0079
## knee - eyes 1.216 0.376 19 3.231 0.0117
##
## P value adjustment: tukey method for comparing a family of 3 estimates
```

5.2 多重比较 Unplanned comparisons

- 多重配对比较: unplanned/非计划的
 - E.g., 所有组间的两两配对比较;
 - Tukey-Kramer test是最常用的一种方法
 - 检验统计量: *q*
 - 基于 MS_{error} , 自由度N-k
 - 前提假设
 - 和ANOVA一致;
 - 相对保守 conservative
 - 在各组样本量不一致时, 犯I类错误的概率比 α 要低;
 - (更难拒绝零假设)

$$q = \frac{\overline{Y_i} - \overline{Y_j}}{SE}$$

$$SE = \sqrt{MS_{error}(\frac{1}{n_1} + \frac{1}{n_2})}$$

6. 补充阅读——固定效应与随机效应

- One-way ANOVA: 单因子方差分析
 - 单因子: 也是固定效应 = fixed effect
 - 也是我们感兴趣的,在收集和分析数据前所设计的处理组(direct interest);
 - 例子: 临床研究中不同的药物、人群中的年龄/性别等等;
 - 一般不会把结果推演到其它(未设定)的组中;
- Random-effects ANOVA: 随机效应方差分析
 - 非固定处理,从总体中随机选择的 (random chosen)
 - 组间差异结果一般可推演到不同组所在的总体;
 - 一般不重复使用的分组;
 - 例子: 人群中的家庭、总体中的个体;

- 主要应用场景
 - 估计方差成分(variance components)来评估<u>测量误差</u>的重要性;
 - 量化: 随机抽取的分组间的方差 vs. 组内的方差;
- 例子: 竹节虫的股骨 EXAMPLE 15.6: Walking-stick limbs
 - •数据:25个标本,两次股骨长度测量;
 - 分组:每个竹节虫个体即为一组(随机效应组)

##		specimen	femurLength	meanFemur
##	1	1	0.26	0.26
##	2	1	0.26	0.26
##	3	2	0.23	0.21
##	4	2	0.19	0.21
##	5	3	0.25	0.24
##	6	3	0.23	0.24

© Patrick Nosil

- 例子: 竹节虫的股骨 EXAMPLE 15.6: Walking-stick limbs
- 方差成分:包括两个水平的随机效应
 - 组内变异 within-group variance
 - σ^2
 - ANOVA assumption假设: 各组的组内变异是一致的;
 - 该例子中是因测量误差导致的 (measurement error) ;
 - 组间变异 among-group variance
 - σ_A^2
 - 每组有自己的均值;
 - 各组的均值服从某个正态分布;
 - 该正态分布服从 $N(\mu_A, \sigma_A)$

- 例子: 竹节虫的股骨 EXAMPLE 15.6: Walking-stick limbs
- 方差成分:包括两个水平的随机效应
 - 组内变异 within-group variance
 - σ^2
 - 最佳估计为: MS_{error}
 - 组间变异 among-group variance
 - σ_A^2
 - 最佳估计为: $s_A^2 = \frac{MS_{groups} MS_{error}}{n}$
 - n为每组内的样本量;
 - 前提: 每组内样本量一样;

ANOVA table

$$MS_{error} = 0.000356 \text{ cm}^2$$

$$s_A^2 = \frac{0.002464 - 0.000356}{2} = 0.00105 \text{ cm}^2$$

- 例子: 竹节虫的股骨 EXAMPLE 15.6: Walking-stick limbs
- 方差成分:包括两个水平的随机效应
 - 组内变异 within-group variance
 - σ^2
 - 最佳估计为: MS_{error}
 - 组间变异 among-group variance
 - σ_A^2
 - 最佳估计为: $s_A^2 = \frac{MS_{groups} MS_{error}}{n}$
 - n为每组内的样本量;
 - 前提:每组内样本量一样;

```
MS_{\rm error} = 0.000356~{\rm cm}^2 s_{\rm A}^2 = \frac{0.002464 - 0.000356}{2} = 0.00105~{\rm cm}^2 walkingstickAnova <- lme(fixed = femurLength \sim 1, random = \sim 1|specimen, data = walkingstick) walkingstickVarcomp <- VarCorr(walkingstickAnova) walkingstickVarcomp
```

0.0003559996 0.01886795

StdDev

specimen = pdLogChol(1)

Residual

Variance

(Intercept) 0.0010539182 0.03246411

6.2 随机效应的重复性 Repeatability

- 例子: 竹节虫的股骨 EXAMPLE 15.6: Walking-stick limbs
- 重复性 Repeatability

•
$$\frac{s_{\rm A}^2}{s_{\rm A}^2 + \rm MS_{error}}$$

 $MS_{error} = 0.000356 \text{ cm}^2$

$$s_{\rm A}^2 = \frac{0.002464 - 0.000356}{2} = 0.00105 \text{ cm}^2$$

Repeatability =
$$\frac{0.00105}{0.002464 - 0.000356} = 0.75$$

- 即,组间成分所占比例
- 分母: the total amount of measurement variance in the population
- Repeatability 趋近 0,则表明数据变异主要由组内变异导致;
- Repeatability 趋近 1,则表明数据变异主要由组间变异导致;
- 反映了方差成分的大小,是对特定总体参数的估计;
 - 它只适用于随机效应;
 - 不要与R² 混淆(基于平方和,可用于固定/随机效应);

6.3 随机效应方差分析的前提假设

- Assumptions for random-effects ANOVA
 - 各组组内数据为随机样本;
 - 各组组内数据均服从正态分布;
 - 各组的方差相等;
 - 各组组间数据也构成随机样本;
 - 各组组间数据也服从正态分布;

与 one-way ANOVA一致

7. 小结

- 试验设计的原则是减少偏差和抽样误差;
- •减少偏差的方法包括:
 - 1. 进行试验组的同时设置控制组;
 - 2. 将处理随机地分配给试验单元;
 - 3. 进行单盲或双盲试验来避免主观性效应;
- 减少抽样误差的方法包括:
 - 1. 大量重复的试验单元;
 - 2. 权衡不同处理组的样本量大小;
 - 3. 当存在其它变异条件下设置组别;

7. 小结

- 方差分析 (ANOVA) 检验多组均值之间的差异
 - 通过比较组内均方和组间均方来进行;
 - 统计检验量为: $F = \frac{MS_{groups}}{MS_{error}}$
 - 当F > 1时,拒绝零假设,表明组间差异大于仅由抽样误差导致的差异;
 - R²衡量了组间设置对解释数据变异的百分比;
- 方差分析的前提假设包括
 - 随机样本、变量在各组内呈正态分布、不同组的总体的方差一致;
 - 方差分析对偏离正态分布和方差不一致具有稳健性;
- 方差分析中的组间设置属于固定效应