

Variables Aleatorias Poisson

Función de probabilidad y probabilidad acumulada

Dr. Juan Luis Palacios Soto

palacios.s.j.l@gmail.com

Definición (Variable aleatoria Poisson)

La función de probabilidad de una variable aleatoria de Poisson X, la cual representa el número de resultados que ocurren en un intervalo de tiempo dado o región específicos t, denotada por $X \sim Poi(\lambda t)$, se define como

$$P(X = x) = \underline{f(x)} = \frac{e^{-\lambda t}(\lambda t)^x}{x!}, \quad x = 0, 1, 2, 3, ...,$$

donde λ es el número promedio de resultados por unidad de tiempo, distancia, área o volumen.

En Excel "=POISSON.DIST(3,5,0)"

Definición (Variable aleatoria Poisson)

La función de probabilidad de una variable aleatoria de Poisson X, la cual representa el número de resultados que ocurren en un intervalo de tiempo dado o región específicos t, denotada por $X \sim Poi(\lambda t)$, se define como

$$P(X = x) = f(x) = \frac{e^{-\lambda t} (\lambda t)^x}{x!}, \quad x = 0, 1, 2, 3, ...,$$

donde λ es el número promedio de resultados por unidad de tiempo, distancia, área o volumen.

En Excel "=POISSON.DIST(3,5,0)"

El intervalo de tiempo puede ser de cualquier duración, como un minuto, un día, una semana, un mes o incluso un año, o si *t* representa la región específica podría ser un segmento de recta, una área, un volumen o quizá una pieza de material.

Ejemplo si X es Poisson, esta puede representar:

- El número de llamadas telefónicas por hora que recibe una oficina.
- 3 El número de días que una escuela permanece cerrada debido a la nieve durante el invierno.
- 1 El número de juegos suspendidos debido a la lluvia durante la temporada de béisbol.
- 4 El número de ratas de campo por acre.
- 5 El número de bacterias en un cultivo dado.
- 6 El número de errores mecanográficos por página.

Teorema

Sea $X \sim Poi(x; \lambda t)$ una v.a de Poisson de parámetro λt , entonces

$$E(X) = Var(X) = \lambda t.$$

E(X) es el promedio de X.

Var(X) es la varianza de X.

 $SD(X) = \sqrt{Var(X)}$ es la desviación estándar de X.

Ejemplo

Se sabe que en un grupo de Facebook, el número promedio de likes a las publicaciones es de 54, ¿Cuál es la probabilidad de que para mañana se obtengan al menos 50 likes a las publicaciones en el mismo grupo?

$$X \sim Poi(\lambda t) = Poi(54)$$
, $\lambda = 54$, $t = 1$ $\lambda (a)$
 $P(X \ge 50) = P(X = 50) + P(X = 51) + \cdots$
 $P(X \ge 50) = 1 - P(X \le 49)$

= 1-POISSON.DIST(49,54,1) = 0,7 25

Ejemplo

El número promedio de camiones-tanque que llega cada día a cierta ciudad portuaria es 10. Las instalaciones en el puerto pueden alojar a lo sumo 15 camiones-tanque por día. ¿Cuál es la probabilidad de que en un día determinado lleguen más de 15 camiones y se tenga que rechazar algunos?

$$\times \text{NPOi}(10)$$
 $\lambda = 10$
 $t = 1 \text{ d(a.}$
 $P(X > 15) = 1 - P(X \le 15) = 0.04874$
 $\times > 15$
 $\times > 15$

Ejemplo

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. En raras ocasiones la falla puede causar una catástrofe al manejarlo a alta velocidad. La distribución del número de automóviles por año que experimentará la catástrofe es una variable aleatoria de Poisson con $\lambda=5$.

a) ¿Cuál es la probabilidad de que, a lo sumo, 3 automóviles por año de ese modelo específico sufran una catástrofe?

$$X \sim Poi(5)$$
, $t=1$ and $P(X \leq 3) = 0.265$

Ejercicio

N=100,000

Una embotelladora de refrescos sabe que el número de envases llenados que no cumplen con el llenado permitido por la Profeco es del 0.01% de los llenados en un día, que son de 100,000 envases. La cantidad máxima permitida por la Profeco en una revisión rutinaria de envases fuera de la cantidad permitida es a lo más de 10 envases por día, de lo contrario se inhabilita la máquina llenadora. Cuál es la probabilidad de que la Profeco inhabilite la máquina?

X~ bi non (100000,0.0001)

$$P(X > 10) = 1 - P(X \le 10) = 1.$$
1-BINOM.DIST(10,100000,0.0001,1) = 0.4/69
$$P(X > 10) = 10^{5} \cdot 10^{4} = 10^{5-4} = 10 = \lambda \quad \text{for all } 1 = 1.$$

$$P(X > 10) = 10^{5} \cdot 10^{4} = 10^{5-4}$$