

Analysis of Variance

What is ANOVA?

- ANOVA (ANalysis Of VAriance) is a statistical method for testing the equality of several population means.
 - ANOVA is designed to detect differences among means from populations subject to different groups often called as treatments
 - ■ANOVA tests for the equality of several population means by calculating and analyzing the two estimators of the population variance. Hence, the name analysis of variance.
- This technique was developed by Statistician Prof. Ronald Fisher

Ronald Fisher

One-Way

ANOVA

1-way ANOVA Model

- In 1-way, we think of any observation value(univariate) to be comprised of
 - An overall effect
 - Group or treatment effect
 - Error

Example

- Consider an agricultural experiment, in which we check the yield of a crop planted on a plot of land.
- Suppose that we divide the plot in 4 parts in the interest of applying 4 different treatments (fertilizers) to the parts.
- In the four parts, suppose that we are able to plant 6, 7, 5 and 6 plants respectively.

1	П	III	IV
y ₁₁	y_{21}	y ₃₁	<i>y</i> ₄₁
y_{12}	${oldsymbol y}_{22}$	y_{32}	y_{42}
y_{13}	$\boldsymbol{y_{23}}$	y_{33}	y_{43}
<i>y</i> ₁₄	$\boldsymbol{y_{24}}$	y_{34}	y_{44}
<i>y</i> ₁₅	${oldsymbol y}_{25}$	y_{35}	y_{45}
<i>y</i> ₁₆	y_{26}		y_{46}
	${oldsymbol y}_{27}$		

where , y_{ij} : yield (kg) of j^{th} plant from i^{th} part of the plot

Example

• After a certain period (an year), we note down the yields of all the plants as follows:

1	II	III	IV
23.4	34.2	23.8	36.7
24.1	45.2	24.5	39.5
19.6	24.9	29.3	43.2
23.9	40.3	18.3	50.2
29.4	39.4	19.4	47.2
21.9	35.3		34.1
	38.4		

Statements of Hypothesis

• The hypothesis test of analysis of variance:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_r$$

 H_1 : Not all μ_i (i = 1, ..., r) are equal

• In our example,

H₀:
$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_1 : Not all μ_i (i = 1,2,3,4) are equal

Hypothesis Test of ANOVA

- In an analysis of variance:
 - We have r independent random samples, each one corresponding to a population subject to a different treatment.
 - We have:
 - n = n₁+ n₂+ n₃+ ...+n_r total observations.
 - r sample means: x1, x2, x3, ..., xr
 - r sample variances: \$12, \$22, \$32, ...,\$r2
 - These sample variances can be used to find a pooled estimator of the population variance.

Result of ANOVA

Sources of Variation	Sums of Squares	Degrees of freedom	Mean Square	F Ratio	P-Value
Treatment	SSTR	r – 1	MSTR=SSTR $/ (r - 1)$	NACTO /NACE	
Error	SSE	n – r	MSE = SSE / (n - r)	— MSTR/MSE	
Total	SST	n – 1			

$$SSTR = \sum_{i} \frac{(\sum_{j} y_{ij})^{2}}{n_{i}} - \frac{(\sum_{j} \sum_{i} y_{ij})^{2}}{n}$$

$$SSE = \sum_{j} \sum_{i} y_{ij}^{2} - \sum_{i} \frac{(\sum_{j} y_{ij})^{2}}{n_{i}}$$

$$SST = \sum_{j} \sum_{i} y_{ij}^{2} - \frac{(\sum_{j} \sum_{i} y_{ij})^{2}}{n}$$

Example

1	II	III	IV
23.4	34.2	23.8	36.7
24.1	45.2	24.5	39.5
19.6	24.9	29.3	43.2
23.9	40.3	18.3	50.2
29.4	39.4	19.4	47.2
21.9	35.3		34.1
	38.4		

- In our example, r = 4, n = 6+7+5+6 = 24
- Our Python, function anova_lm() calculates not only the means and variances but also all the sums of squares

ANOVA in Python

```
Syntax:
```

anova_lm(*args, **kwargs)

Where

args: fitted linear model results instance

One or more fitted linear models

scale: float

Estimate of variance, If None, will be estimated from the largest model. Default is None.

test: str {"F", "Chisq", "Cp"} or None

Test statistics to provide. Default is "F".

typ: str or int {"I","II","III"} or {1,2,3}

The type of ANOVA test to perform.

R Program and Output

```
In [39]: import pandas as pd
    ...: from statsmodels.stats.anova import anova lm
    ...: from statsmodels.formula.api import ols
        ####################Example 1############
    ...: agr = pd.read csv("G:/Statistics (Python)/Datasets/Yield.csv")
    ...: agrYield = ols('Yield ~ Treatments', data=agr).fit()
    ...: table = anova lm(agrYield, typ=2)
    ...: print(table)
                         df
                                           PR(>F)
                sum sq
Treatments
           1551.607762 3.0 18.293252
                                         0.000006
Residual
            565.457238 20.0
                                    NaN
                                              NaN
```

As p-value < 0.01, we can reject H₀ at 1% level of significance. Hence, we conclude that the yields are significantly different for all the 4 treatments.

- We assume independent random sampling from each of the r populations
- We assume that the *r* populations under study:
 - are normally distributed,
 - with means μ_i that may or may not be equal,
 - but with equal variances, σ_i^2 .

Statements of Hypothesis

• The hypothesis test of analysis of variance:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_r$$

 H_1 : Not all μ_i (i = 1, ..., r) are equal

• In our example,

H₀:
$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_1 : Not all μ_i (i = 1,2,3,4) are equal

Further Analysis

Tukey's Test in Python

The p-values for pair-wise comparisons namely II & I, IV & I, III & II, IV & III indicate that they have significant differences.

Further Studies

- Two way ANOVA: The way we analyzed the effect of one factor variable, we can also analyze the effects of two factor variables with interaction or without interactions.
- The design we saw is called Completely Randomized Design
- There are also following designs in this field of study of statistics:
 - Factorial Design
 - Lattice Design
 - Split Plot Design
 - Repeated Measures Design
 - Multivariate Analysis of Variance

Case: Funds

- A magazine reports percentage returns and expense ratios for stock and bond funds. The data FUNDS.csv are the expense ratios for 10 midcap stock funds, 10 small-cap stock funds, 10 hybrid stock funds, and 10 specialty stock funds.
- Test for any significant difference in the mean expense ratio among the four types of stock funds.

Thank You