HoTT Chapter 2 Exercises

November 17, 2014

```
{-# OPTIONS --without-K #-}
module Ch2 where
open import Base
open import Ch1
```

1

Lemma (2.1.2). For every type A and every x, y, z : A there is a function $(x = y) \to (y = z) \to (x = z)$ written $p \to q \to p \cdot q$, such that $\operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$ for any x : A.

We call $p \cdot q$ the concatenation or composite of p and q.

Exercise 2.1 Show that the three obvious proofs of Lemma 2.1.2 are pairwise equal.

Proof. (this justifies denoting "the" concatenation function as •)

First, we need a type to inhabit. The type of any concatenation operator is

$$\prod_{x,y,z:A} \prod_{p:x=y} \prod_{q:y=z} (x=z)$$

Thus far, the only tool we have to inhabit such a type is path induction. So, we first write down a family

$$D_1(x,y,p): \prod_{z:A} (y=z) \to (x=z)$$

That is, given x, y : A and a path from x to y, we want a function that takes paths from y to z to paths from x to z.

Path induction dictates that we now need a

$$d_1: \prod_{x:A} D(x,x,\mathsf{refl}_x)$$

hence

$$d_1(x): \prod_{z:A} (x=z) \to (x=z)$$

So, given a path from x to z, we want a path from x to z. We'll take the easy way out on this one!

For another construction, we do path induction in "the other direction". That is, we will define

$$D_2: \prod_{y,z:A} \prod_{q:y=z} (x=y) \to (x=z)$$

In other words, given y and z and a path from y to z, we want a function that takes paths from x to y to paths from x to z.

Just like the previous proof, we need a

$$d_2(y): (y=z) \to (y=z)$$

This is a bit trickier in Agda, because we really want to define a curried function

$$(\bullet_2 q) p = p \bullet q$$

However, we also want the type to be exactly the same as the types of the other constructions. Hence, we will use a twist map.

Note that these two constructions use path induction to reduce one side or the other to the "identity" path (in the first case refl_x and in the second case refl_y). We can also do double induction to reduce both p and q to the refl_x and refl_y .

We begin with the same type family as the first proof:

$$D_1: \prod_{x,y:A} \prod_{p:x=y} (y=z) \to (x=z)$$

but we now wish to find a different inhabitant

$$d'_1(x): (x=z) \to (x=z)$$

We will use path induction to construct d'_1 . We introduce a family:

$$E: \prod_{x,z:A} \prod_{q:x=z} (x=z)$$

we now need

$$e(x):(x=x)$$

which is gotten quite easily:

$$e(x) = refl_x$$

We now want to show that these constructions are pairwise equal. By this, we mean "propositional equality" - hence we must find paths between each pair of constructions.

In each case, we perform a double induction on paths, first reducing p to refl, and then reducing q to refl.

```
\bullet_1 = \bullet_2 : \forall \{i\} \{A : Type i\} \{x y z : A\}
      (p : x == y) (q : y == z) \rightarrow p \cdot_1 q == p \cdot_2 q
_1=_2 {i} {A} {_} {_} {z} = ind== D d where
      D : (x y : A) \rightarrow x == y \rightarrow Type i
      D - y p = (q : y == z) \rightarrow p \cdot_1 q == p \cdot_2 q
      d : (x : A) \rightarrow D x x refl
      d _ = ind== E e where
         E : (y_1 z_1 : A) \rightarrow y_1 == z_1 \rightarrow Type i
         E \_ q = refl \cdot_1 q == refl \cdot_2 q
         e : (x_1 : A) 
ightarrow E x_1 x_1 refl
         e_r = refl
\bullet_2 = \bullet_3 : \forall \{i\} \{A : Type i\} \{x y z : A\}
      (p : x == y) (q : y == z) \rightarrow p \cdot_2 q == p \cdot_3 q
_2=_3 {i} {A} {x} {y} {z} = ind== D d where
      D : (x y : A) \rightarrow x == y \rightarrow Type i
      D - y p = (q : y == z) \rightarrow p \cdot_2 q == p \cdot_3 q
      d : (x : A) \rightarrow D \times x \text{ refl}
      d x = ind == E e where
         E : (y_1 z_1 : A) 
ightarrow y_1 == z_1 
ightarrow Type i
         E \_ q = refl \cdot q = refl \cdot q
         e : (x_1 : A) \rightarrow E x_1 x_1 refl
         e _ = refl -- : concat2' refl refl == concat3' refl refl
ullet_1=ullet_3: orall {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) 
ightarrow p ullet_1 q == p ullet_3 q
_1=_3 {i} {A} {_} {_} {z} = ind== D d where
      D : (x y : A) \rightarrow x == y \rightarrow Type i
       \texttt{D} \texttt{ x} \texttt{ y} \texttt{ p} \texttt{ = } (\texttt{q} \texttt{ : } \texttt{y} \texttt{ == } \texttt{z}) \rightarrow \texttt{ p} \overset{\bullet}{}_{1} \texttt{ q} \texttt{ == } \texttt{p} \overset{\bullet}{}_{3} \texttt{ q} 
      \texttt{d} \; : \; (\texttt{x} \; : \; \texttt{A}) \; \rightarrow \; \texttt{D} \; \; \texttt{x} \; \; \texttt{refl}
      d _ = ind== E e where
         E : (y z : A) \rightarrow (q : y == z) \rightarrow Type i
         E _ q = refl _1 q == refl _3 q
         e : (y : A) \rightarrow E y y refl
         e _ = refl -- : concat1' refl refl == concat3' refl refl
```

4

Lemma (2.2.1). The three equalities of proofs constructed in the previous exercise form a commutative triangle. In other words, if the three definitions of concatenation are denoted by $(p \cdot 1q)$, $(p \cdot 2q)$, and $(p \cdot 3q)$, then the concatenated equality

$$(p \cdot {}_1q) = (p \cdot {}_2q) = (p \cdot {}_3q)$$

is equal to the equality

$$(p \cdot {}_1q) = (p \cdot {}_3q)$$

Proof. Despite the fact that we're working with the somewhat myserious type of "equalities of equalities", this remains a statement about the propositional equality of two paths. The only tool we have for establishing such an equality is path induction.

First, we fix the definition of concatenation:

• = _•₁_

We must now show that, for all paths p, q, the proof that $p \cdot _1 q$ is equal to $p \cdot _2 q$ followed by the proof that $p \cdot _2 q$ is equal to $p \cdot _3 q$ is equal to $p \cdot _3 q$.

This is exactly expressed in the following type signature:

Since the theorem is quantified over two paths, we shall do double path induction. So, it really just boils down to the theorem being true when both p and q are the identity.

At this point, it might be helpful to review the definitions of the different concatenation functions. In particular, refl. refl \equiv refl where \cdot is any of \cdot_1 , \cdot_2 , or \cdot_3 .

3

4

Let's try to do it one stage at a time:

- a 0-path is a point in A.
- a 1-path is a path between 0-paths.

The boundary of a 0-path is somewhat mysterious, so we shall leave it undefined.

We now would like to define a 2-path as a path between 1-paths. However, two arbitrary 1-paths look like this:

$$a \xrightarrow{p} b$$

$$a' \xrightarrow{q} b'$$

That is, p and q are paths between different points. Hence, a path between p and q doesn't make sense. That is, it's not well typed.

However, suppose we have paths x, y as follows:

It would certainly make sense to ask for a path of type $p \cdot y = x \cdot q$.

So, it seems that to define 2-paths, we need pairs of 1-paths together with vertical paths like x and y above. So we'll define it as a Σ -type:

$$\sum_{p,q} \sum_{x:src(p)=src(q)} \sum_{y:dst(p)=dst(q)} p \cdot y = x \cdot q$$

We will write down some helper functions and then formalize this:

```
-- Some convenience functions!
src : \forall \{i\} \{A : Type i\} \{a : A\} \{b : A\} \rightarrow a == b \rightarrow A
src {_} {_} {a} {__} p = a
dst : \forall \{i\} \{A : Type i\} \{a : A\} \{b : A\} \rightarrow a == b \rightarrow A
map : \forall {i} {A : Type i} (p : (1-path A)) -> (fst p) == (fst (snd p))
map p = snd (snd p)
2-path : \forall {i} (A : Type i) -> Type i
2-path A = \Sigma (1-path A) \lambda p -> \Sigma (1-path A) \lambda q \rightarrow
  \Sigma ((src (map p)) == (src (map q))) \lambda x \rightarrow \Sigma ((dst (map p)) == (dst (map q))) \lambda y \rightarrow
    x \cdot (map q) == (map p) \cdot y
-- The boundary of a 2 path as a pair of 1 paths
\delta_2 : \forall {i} {A : Type i} -> 2-path A -> (1-path A) \times (1-path A)
\delta_2 {i} {A} (p, (q, (x, (y, \alpha)))) = p, q
   A boundary of a 2-path can be thought of as a loop. We can formalize this:
-- Definition of inverses. This should be put somewhere else.
inverse : \forall {i} {A : Type i} {a : A} {b : A} -> a == b -> b == a
inverse {i} {A} = ind== D d where
  D : (a b : A) (p : a == b) \rightarrow Type i
  D a b _ = b == a
  d:(x:A)\rightarrow D \times x \text{ refl}
  d_r = refl
-- Just to be cute - the boundary of a 2 path as a loop
\delta_2-loop : \forall {i} {A : Type i} -> 2-path A -> 1-path A
\delta_2-loop (p , (q , (x , (y , \alpha)))) =
  (src (map p) , (src (map p) ,
     ((x • (map q)) • (inverse y)) • (inverse (map p))))
```

If one tries to continue in this manner, the Σ -types will become rather large! So it would be nice to appeal to some kind of recursion at this point.

Luckily, it turns out that equality of inhabitants of Σ -types contain all the lower dimensional equalities to make this work!

```
n-path : \forall {i} {A : Type i} -> \mathbb{N} -> Type i n-path {i} {A} 0 = A n-path {i} {A} (S n) = \Sigma (n-path {i} {A} n) \lambda p -> \Sigma (n-path n) \lambda q -> p == q \delta : \forall {i} {A : Type i} -> (n : \mathbb{N}) -> (n-path {i} {A} (S n)) -> (n-path n) \times (n-path n) \delta n p = fst p , fst (snd p)
```

This is not evidently geometric. To make the connection, we need to use some facts about equalities of sigma types.

```
\Sigma == : \forall \{i\} \{A : Type i\} \{P : A \rightarrow Type i\}
  \rightarrow {w : \Sigma A P} \rightarrow {w' : \Sigma A P} \rightarrow w == w'
     \rightarrow (\Sigma ((fst w) == (fst w')) \lambda p
        -> (transport {i} {i} {A} P p (snd w)) == (snd w'))
\Sigma == \{i\} \{A\} \{P\} = ind == D d where
  D : (w : \Sigma \land P) \rightarrow (w' : \Sigma \land P) \rightarrow w == w' \rightarrow Type i
  D w w' \underline{\ } = (\Sigma ((fst w) == (fst w')) \lambda p
                  -> (transport {i} {i} {A} P p (snd w)) == (snd w'))
  d : (w : \Sigma A P) \rightarrow D w w refl
  d_{-} = refl_{-}, refl_{-}
\Sigma==-inv : \forall {i} {A : Type i} {P : A -> Type i}
  \rightarrow {w : \Sigma A P} \rightarrow {w' : \Sigma A P}
     \rightarrow (\Sigma ((fst w) == (fst w')) \lambda p
        -> (transport {i} {i} {A} P p (snd w)) == (snd w'))
           -> w == w'
\Sigma==-inv {i} {A} {P} {w} {w'} \alpha = p-ind (snd w) (snd w') q where
  p = fst \alpha
  q = snd \alpha
  p-ind = ind== D d p where
     D : (w_1 \ w'_1 : A) \rightarrow (p : w_1 == w'_1) \rightarrow Type i
     D w_1 w'_1 p = \Pi (P w_1) \lambda w_2 -> \Pi (P w'_1) \lambda w'_2
                       \rightarrow (q : (transport P p w_2) == w'_2) \rightarrow (w_1 , w_2) == (w'_1 , w'_2)
     d:(x:A) \rightarrow D \times x \text{ refl}
     d \times x_1 \times_2 q = ind == E e q where
        E: (w_2 w_2': (P x)) \rightarrow (q: (transport P refl w_2) == w_2') \rightarrow Type i
        E w_2 w_2' q = (x , w_2) == (x , w_2')
        e:(y:(Px)) \rightarrow Eyyrefl
        e_r = refl
```

Lemma. If n > 1, then the boundary of an n-path is a closed (n - 1)-path.

Proof. The following code corresponds to this diagram:

$$\begin{array}{ccc}
a & \xrightarrow{p} b \\
\downarrow x & \downarrow x \\
\downarrow x & \downarrow p' \\
a' & \xrightarrow{q} b'
\end{array}$$

```
\delta' : \forall {i} {A : Type i} -> {n : \mathbb{N}}
    -> (n-path {i} {A} (S (S n))) -> (n-path (S n))
\delta' {i} {_} {n} \alpha = a' , ( a' , q • (inverse p') ) where
   -- first, unpack \alpha
   a : n-path n
   a = fst (fst \alpha)
   b : n-path n
   b = fst (snd (fst \alpha))
   p : a == b
   p = snd (snd (fst \alpha))
   a': n-path n
   a' = fst (fst (snd \alpha))
   b': n-path n
   b' = fst (snd (fst (snd \alpha)))
   q : a' == b'
   q = snd (snd (fst (snd <math>\alpha)))
   -- Apply first sigma equality
   P : n-path n \rightarrow Type i
   P p = \Sigma (n-path n) \lambda q -> p == q
   t : \Sigma (a == a') \lambda x \rightarrow (transport P x (b , p)) == (b' , q)
   t = \Sigma == (snd (snd \alpha))
   x : a == a'
   x = fst t
   -- Apply second (nested) sigma equality
   P' : n-path n -> Type i
   P' c = a' == c
   y': \Sigma (n-path n) \lambda c \rightarrow a' == c
   y' = transport P x (b , p)
   t' : y' == (b', q)
   t' = snd t
   t'' : \Sigma ((fst y') == b') \lambda y -> (transport P' y (snd y')) == q
   t'' = \Sigma == t'
   y : fst y' == b'
   y = fst t'
   \alpha': (transport P' y (snd y')) == q
```

```
\alpha' = \text{snd t''}

p' : a' == b'

p' = src \alpha'
```

5

6

Lemma. Let p: x = y in A. Then for all z: A, the function $p \cdot - : (y = z) \rightarrow (x = z)$ is an equivalence.

Proof. An obvious candidate for a quasi-inverse would be a map that concatinates with inverse(p).

We need to use the groupoid laws for \bullet , as well as whiskering over higher paths.

Here are some groupoid laws:

```
\cdot-inv-l : \forall {i} {A : Type i} {a b : A} -> (p : a == b) -> ((inverse p) \cdot p) == refl
•-inv-l {i} {A} {a} {b} = ind== D d where
  D : (a b : A) \rightarrow (p : a == b) \rightarrow Type i
  D _ p = ((inverse p) • p) == refl
  d : (x : A) \rightarrow D \times x \text{ refl}
  d = refl
-inv-r : \forall {i} {A : Type i} {a b : A} -> (p : a == b) -> p • (inverse p) == refl
--inv-r {i} {A} {a} {b} = ind== D d where
  D : (a b : A) \rightarrow (p : a == b) \rightarrow Type i
  D _ p = p • (inverse p) == refl
  d : (x : A) \rightarrow D \times x \text{ refl}
  d = refl
-func : ∀ {i} {A : Type i} {a : A} {b : A} {c : A} -> (p : a == b) -> (b == c) -> (a == c)
-func p q = p \cdot q
\cdot-id-l : \forall {i} {A : Type i} {a b : A} -> (p : a == b) -> refl \cdot p == p
--id-l {i} {A} {_} = ind== D d where
  D : (a b : A) -> (p : a == b) \rightarrow Type i
  D_p = (refl \cdot p) == p
  d : (x : A) \rightarrow D \times x \text{ refl}
  d = refl
•-id-r : ∀ {i} {A : Type i} {a b : A} -> (p : a == b) -> p • refl == p
```

```
--id-r {i} {A} {_} = ind== D d where
  D : (a b : A) \rightarrow (p : a == b) \rightarrow Type i
  D_p = p \cdot refl == p
  \texttt{d} \; : \; (\texttt{x} \; : \; \texttt{A}) \; \rightarrow \; \texttt{D} \; \; \texttt{x} \; \; \texttt{refl}
  d = refl
\bullet-assoc : \forall {i} {A : Type i} {w x y z : A}
  \rightarrow (p : w == x) \rightarrow (q : x == y) \rightarrow (r : y == z)
     \rightarrow p · (q · r) == (p · q) · r
-assoc {i} {A} {_} {_} {y} {z} = ind== D d where
  D : (w x : A) \rightarrow (p : w == x) \rightarrow Type i
  D_x p = (q : x == y) \rightarrow (r : y == z) \rightarrow p \cdot (q \cdot r) == (p \cdot q) \cdot r
  d:(x:A) \rightarrow D \times x \text{ refl}
  d _ = ind== E e where
     E : (x y : A) \rightarrow (q : x == y) \rightarrow Type i
     E_y q = (r : y == z) \rightarrow refl \cdot (q \cdot r) == (refl \cdot q) \cdot r
     e : (x : A) \rightarrow E \times x refl
     e _ = ind== F f where
       F : (y z : A) \rightarrow (r : y == z) \rightarrow Type i
       F_z r = refl \cdot (refl \cdot r) == (refl \cdot refl) \cdot r
       f : (x : A) \rightarrow F x x refl
       f _ = refl
   And whiskering for 2-paths (really, n+2 paths...)
whisk-r : \forall {i} {A : Type i} {x y z : A} {p p' : x == y} -> (q : y == z)
  -> (p == p') -> ((p \cdot q) == (p' \cdot q))
whisk-r {i} {_} {x} {y} {z} {_} q = ind== D d where
  D : (p p' : x == y) \rightarrow (\alpha : p == p') \rightarrow Type i
  D p p' \alpha = ((p \cdot q) == (p' \cdot q))
  d:(p:x==y) \rightarrow D p p refl
  d = refl
whisk-1 : \forall {i} {A : Type i} {x y z : A} {q q' : y == z} -> (p : x == y)
  -> (q == q') -> ((p • q) == (p • q'))
whisk-l {i} {_} {x} {y} {z} {_} p = ind== D d where
  D : (q q' : y == z) \rightarrow (\beta : q == q') \rightarrow Type i
  D q q' \beta = ((p \cdot q) == (p \cdot q'))
  d:(q:y==z) \rightarrow D q q refl
  d = refl
```

We now define the quasi inverse to $p \cdot -$ as $p^{-1} \cdot -$. To do this, we need homotopies from $(p \cdot -) \circ (p^{-1} \cdot -) \sim id$ and $(p^{-1} \cdot -) \circ (p \cdot -) \sim id$. By definition, $(p \cdot -) \circ (p^{-1} \cdot -) \equiv (p \cdot p^{-1} \cdot -)$, so we really just need a 2-path $p \cdot p^1 = \text{refl}$ (and a 2-path for the symmetric case). This follows from the groupoid laws above:

Now, we simply observe that every quasi-inverse is an equivalence.

```
--equiv : ∀ {i} {A : Type i} {x y z : A}
-> (p : x == y) -> (is-equiv' (_•_ {i} {A} {x} {y} {z} p))
--equiv p = q-inv-to-equiv' (_•_ p) (•-qinv p)
```

7

8

9

10

11

Oh boy! Homotopy pullbacks!

First, let's define a homotopy commutative diagram. We will stick to the notation used in the book.

The following Σ -type is the type of all pullback squares given types P, A, B, C.

$$P \xrightarrow{h} A$$

$$\downarrow k \qquad \qquad \downarrow f$$

$$B \xrightarrow{g} C$$

```
com-sq : \forall {i} {A B C : Type i} -> (f : A -> C) -> (g : B -> C) -> (P : Type i) -> Type i com-sq {_} {A} {B} {__} f g P = \Sigma (P -> A) \lambda h -> \Sigma (P -> B) \lambda k -> (f \circ h) == (g \circ k)
```

A pullback square is a commutative square together with a certain equivalence. The book defines this in terms of a "canonical pullback" that is defined

in terms of composition. This is analogous to defining pullbacks in a category \mathcal{C} in terms of presheaves over \mathcal{C} . A diagram is a pullback square if the upper left corner represents a functor that is equivalent to the pullback of the diagram.

```
open import FunExt
precomp : \forall {i} {A B C : Type i} -> (A -> B) -> (B -> C) -> (A -> C)
precomp f g = g \circ f
precomp-happly : \forall {i} {A B X : Type i} -> (f : X -> A) -> (g g' : A -> B)
  -> (\alpha : (g == g'))
    -> (x : X)
      -> (happly (g \circ f) (g' \circ f) (ap (precomp f) \alpha) x) == (happly g g' \alpha) (f x)
precomp-happly {i} {A} {B} {X} f g g' \alpha = ind== D d \alpha where
  D : (g g' : A -> B) -> (g == g') -> Type i
  D g g' \alpha = (x : X)
    -> (happly (g \circ f) (g' \circ f) (ap (precomp f) \alpha) x) == (happly g g' \alpha) (f x)
  d:(g:A\rightarrow B)\rightarrow Dggrefl
  d g x = refl
homotopy-square : \forall {i} {A B : Type i} -> (f g : A -> B) -> (H : f ~ g)
  -> (x y : A) -> (p : x == y) -> ((H x) \cdot (ap g p)) == ((ap f p) \cdot (H y))
homotopy-square {i} {A} {B} f g H x y = ind== D d where
  D : (x y : A) \rightarrow (p : x == y) \rightarrow Type i
  D \times y p = ((H \times) \cdot (ap g p)) == ((ap f p) \cdot (H y))
  d:(x:A) \rightarrow D \times x \text{ refl}
  d x = -id-r (H x)
ap-id : \forall {i} {A : Type i} {x y : A} -> (p : x == y) -> ap id p == p
ap-id \{i\} \{A\} p = ind== D d p where
  D : (x y : A) \rightarrow (x == y) \rightarrow Type i
  D_p = ap id p == p
  d:(x:A) \rightarrow D \times x \text{ refl}
  d = refl
homotopy-equiv-square : \forall {i} {A : Type i} -> (f : A -> A) -> (H : f ~ id)
  -> (x : A) -> H (f x) == ap f (H x)
homotopy-equiv-square f H x = (inverse (\cdot-id-r (H (f x)))
                                  • (inverse (whisk-l (H (f x)) (•-inv-r (H x)))
                                  • (-assoc (H (f x)) (H x) (inverse (H x))
                                  whisk-r (inverse (H x))
                                        (inverse (whisk-1 (H (f x)) (ap-id (H x)))
                                  homotopy-square f id H (f x) x (H x)))))
                                  • (inverse (-assoc (ap f (H x)) (H x) (inverse (H x)))

    (whisk-l (ap f (H x)) (-inv-r (H x))
```

```
o-app : \forall {i} {A B C : Type i} {x y : A} -> (p : x == y) -> (f : A -> B) -> (g : B -> C)
  \rightarrow (ap g (ap f p)) == ap (g \circ f) p
\circ-app {i} {A} {_} {_} {x} {y} p f g = ind== D d p where
  D : (x y : A) \rightarrow (x == y) \rightarrow Type i
  D \times y p = (ap g (ap f p)) == ap (g \circ f) p
  d : (x : A) \rightarrow D x x refl
  dx = refl
-- Theorem 2.4.3 from the book
q-inv-to-equiv : \forall {i} {A B : Type i} -> (f : A -> B)
  -> (q-inv f) -> (is-equiv f)
q-inv-to-equiv {i} {A} {B} f (g , (\epsilon , \eta)) =
  record { g = g ; \epsilon = \epsilon' ; \eta = \eta ; \tau = \lambda a -> (inverse (\tau a)) } where
  \epsilon' : (b : B) -> f (g b) == b
  \varepsilon' b = (inverse (\varepsilon (f (g b))) ) • (ap f (\eta (g b)) • \varepsilon b)
  \eta-\epsilon-square : (a : A) ->
     ap f (\eta (g (f a))) \cdot (\epsilon (f a)) == \epsilon (f (g (f a))) \cdot (ap f (\eta a))
  \eta-\epsilon-square a =
    whisk-r (\epsilon (f a)) ((ap (ap f) (homotopy-equiv-square {i} {A} (g \circ f) \eta a))
                             • (o-app (η a) (g o f) (f)) )
     • (whisk-r (\epsilon (f a)) (inverse (\circ-app (\eta a) f (f \circ g)))
    • (inverse (homotopy-square (f \circ g) id \epsilon (f (g (f a))) (f a) (ap f (\eta a)))
     • whisk-l (\epsilon (f (g (f a)))) (ap-id (ap f (\eta a))) ))
  \tau: (a : A) \rightarrow \epsilon' (f a) == ap f (\eta a)
  \tau a = whisk-l (inverse (ε (f (g (f a))))) (η-ε-square a)
         • (•-assoc (inverse (\epsilon (f (g (f a))))) (\epsilon (f (g (f a)))) (ap f (\eta a))
         • (whisk-r (ap f (\eta a)) (•-inv-l (\epsilon (f (g (f a)))))
         • •-id-l (ap f (η a))))
\circ-functor : \forall {i} {A B C : Type i}
  -> (f : A -> B) -> (g : B -> C) -> (g' : B -> C)
     -> (g == g') -> (g \circ f) == (g' \circ f)
o-functor f g g' = ap (precomp f)
happly-path : \forall {i} {A B : Type i}
  \rightarrow (f g : A \rightarrow B) \rightarrow (\alpha : f == g) \rightarrow (\beta : f == g)
     \rightarrow (happly f g \alpha) == (happly f g \beta) \rightarrow \alpha == \beta
happly-path f g \alpha \beta \psi = (inverse (h-inv-h f g \alpha)) • (\psi' • h-inv-h f g \beta) where
     \psi': (funext f g (happly f g \alpha)) == (funext f g (happly f g \beta))
     \psi' = (ap (funext f g)) \psi
p-map : \forall {i} {A B C : Type i} -> (f : A -> C) -> (g : B -> C)
  -> (P : Type i) -> (X : Type i) -> (com-sq f g P)
     -> (X -> P) -> (com-sq f g X)
```

• -- id-r (ap f (H x))))

```
p-map f g P X sq l = h \circ l , (k \circ l , ap (precomp l) \alpha ) where
    h = fst sq
    k = fst (snd sq)
    \alpha = \text{snd} (\text{snd sq})
open import Agda. Primitive using (lsuc)
-- A square (P, _, _) over f,g is a pullback if for all types X,
-- the induced function from maps from X to P to commutative squares
-- over f,g is an equivalence.
is-pullback : \forall {i} {A B C : Type i}
  -> (f : A -> C) -> (g : B -> C) -> (P : Type i)
    -> (com-sq f g P) -> Type (lsuc i)
is-pullback {i} f g P \alpha = \Pi (Type i) \lambda X -> is-equiv (p-map f g P X \alpha)
-- pullback type of f, g
pullback : \forall {i} {A B C : Type i} -> (f : A -> C) -> (g : B -> C) -> Type i
pullback {i} {A} {B} f g = \Sigma A \lambda a -> \Sigma B \lambda b -> (f a) == (g b)
-- pullback type together with projection maps
pullback-sq : \forall {i} {A B C : Type i} -> (f : A -> C) -> (g : B -> C)
  -> (com-sq f g (pullback f g))
-- construct a homotopy and use function extensionality
pullback-sq {_}} {A} {B} f g = h , (k , (funext (f \circ h) (g \circ k) \alpha )) where
  P = pullback f g
  h : P -> A
 h = fst
  k : P -> B
  k p = fst (snd p)
  \alpha : \Pi P \lambda p \rightarrow (f (h p)) == (g (k p))
  \alpha = \lambda p \rightarrow \text{snd (snd p)}
-- We need to factor maps from X to f,g through P
factor : \forall {i} {A B C : Type i} {f : A -> C} {g : B -> C} {X : Type i}
  \rightarrow (com-sq f g X) \rightarrow (X \rightarrow (pullback f g))
factor \{ \} \{ \} \{ \} \{ \} \{ \} \{ \} \{ \} (h', (k', \alpha')) x =
  h' x , (k' x , (happly (f \circ h') (g \circ k') \alpha') x)
pullback-is-pullback : \forall {i} {A B C : Type i} -> (f : A -> C) -> (g : B -> C)
  -> (is-pullback f g (pullback f g) (pullback-sq f g))
pullback-is-pullback {_} {A} {B} f g X =
  (q-inv-to-equiv (p-map f g P X P-sq) p-map-q-inv) where
   P = pullback f g
   P-sq = pullback-sq f g
   h = fst P-sq
```

```
k = fst (snd P-sq)
\alpha = \text{snd} (\text{snd } P-\text{sq})
\alpha': \Pi P \lambda p \rightarrow (f (h p)) == (g (k p))
\alpha' = \lambda p \rightarrow snd (snd p)
p-map-q-inv : q-inv (p-map f g (pullback f g) X (pullback-sq f g))
p-map-q-inv = factor, (\epsilon, \eta) where
  -- components of the quasi-inverse
  \varepsilon : (sq : (com-sq f g X)) -> (p-map f g P X P-sq (factor sq) == sq)
  \varepsilon sq = \Sigma==-inv (refl , (\Sigma==-inv (refl ,
                 (happly-path (f \circ h') (g \circ k') (snd (snd sq')) (snd (snd sq)) \beta )))) where
     1 : X -> P
     1 = factor sq
     h' = fst sq
     k' = fst (snd sq)
     sq' = p-map f g P X P-sq 1
     \psi : (x : X) -> ((happly (f \circ h') (g \circ k') (snd (snd sq'))) x == (happly (f \circ h) (g \circ
     \psi = precomp-happly 1 (f \circ h) (g \circ k) \alpha
     \varphi: (x : X) -> ((happly (f \circ h) (g \circ k) \alpha) (1 x)) == \alpha' (1 x)
     \varphi x = (happly (happly (f \circ h) (g \circ k) \alpha) \alpha' (h-h-inv (f \circ h) (g \circ k) \alpha')) (1 x)
     \beta : (happly (f \circ h') (g \circ k') (snd (snd sq'))) == (happly (f \circ h') (g \circ k') (snd (snd sq'))
     \beta = funext
           (happly (f \circ h') (g \circ k') (snd (snd sq')))
           (happly (f \circ h') (g \circ k') (snd (snd sq)))
          \lambda x \rightarrow \psi x \cdot \phi x
  \eta : (1 : X -> P) -> factor (p-map f g P X P-sq 1) == 1
  \eta 1 = funext 1' 1 \beta where
     1' = factor (p-map f g P X P-sq 1)
     \gamma' : \Pi X \lambda x \rightarrow (f (h (1 x))) == (g (k (1 x)))
     \gamma' x = snd (snd (1' x))
     \gamma : \Pi X \lambda x \rightarrow (f (h (1 x))) == (g (k (1 x)))
     \gamma x = \text{snd} (\text{snd} (1 x))
     \psi: (x : X) -> (\gamma' x == (happly (f \circ h) (g \circ k) \alpha) (1 x))
     \psi = precomp-happly 1 (f \circ h) (g \circ k) \alpha
     \varphi : (x : X) -> (happly (f \circ h) (g \circ k) \alpha) (1 x) == \gamma x
     \varphi x = (happly (happly (f \circ h) (g \circ k) \alpha)
                     (\lambda p \rightarrow snd (snd p))
                        (h-h-inv (f \circ h) (g \circ k) (\lambda p \rightarrow (snd (snd p))))) (1 x)
     \beta : \Pi X \lambda x \rightarrow 1' x == 1 x
     \beta = \lambda x \rightarrow \Sigma == -inv ( refl , (\Sigma == -inv ( refl , \psi x • \phi x )))
```

13

Show that $(2 \simeq 2) \simeq 2$.

First, we must define equivalence of types.

```
\_\simeq\_ : \forall {i} -> (A B : Type i) -> Type i \_\simeq\_ A B = \Sigma (A -> B) \lambda f -> is-equiv(f)
```

I guess we should define 2 as well:

```
data Two : Type_0 where 0_2 : Two 1_2 : Two 1_2 : Two 1_2 : Two 1_3 : Two 1_4 : Type i} -> C -> C -> Two -> C rec_2 c_0 c_1 0_2 = c_0 rec_2 c_0 c_1 1_2 = c_1 ind_2 : \forall {j} -> (C : Two -> Type j) -> C 0_2 -> C 1_2 -> \Pi Two C ind_2 C c_0 c_1 0_2 = c_0 ind_2 C c_0 c_1 1_2 = c_1
```

While we're at it, I suppose we should prove that anything in ${\bf 2}$ is equal to 0_2 or 1_2 :

```
elems-of-two : (x : Two) -> Coprod (x == 0_2) (x == 1_2)
elems-of-two x = ind<sub>2</sub> D (inl refl) (inr refl) x where
D : Two -> Type _
D x = Coprod (x == 0_2) (x == 1_2)
```

Also, we would like to know that $0 \neq 1$. With the above theorem, this would imply that **2** has two distinct path components.

To do this, we will show that if 0 = 1 then the empty type is inhabited. We will need the encode-decode method for **2**. (Actually, only encode is necessary, but I'll do both for the same of completeness.)

```
--encode-decode for Two code_2 : Two -> Two -> Type_0
```

```
code_2 O_2 O_2 = Unit
code_2 1_2 1_2 = Unit
code_2 O_2 I_2 = Empty
code_2 1_2 0_2 = Empty
r_2: (x : Two) -> code<sub>2</sub> x x
r_2 O_2 = unit
r_2 1_2 = unit
encode_2 : \{x y : Two\} \rightarrow (x == y) \rightarrow code_2 x y
encode_2 \{x\} \{y\} p = transport (code_2 x) p (r_2 x)
\mathtt{decode}_2 \;:\; \{\mathtt{x}\;\; \mathtt{y}\;:\; \mathtt{Two}\} \;\to\; \mathtt{code}_2 \;\; \mathtt{x}\;\; \mathtt{y}\; \text{->}\; \mathtt{x}\; \text{==}\;\; \mathtt{y}
decode_2 \{0_2\} \{0_2\} = \lambda \_ \rightarrow refl
decode_2 \{0_2\} \{1_2\} = \lambda ()
decode_2 \{1_2\} \{0_2\} = \lambda ()
decode_2 {1<sub>2</sub>} {1<sub>2</sub>} = \lambda \_ \rightarrow refl
Two-distinct : O_2 == I_2 \rightarrow Empty
Two-distinct p = encode_2 p
```

Now, let's start picking apart automorphisms of 2.

We must define a map $2 \to 2^2$ and show that it is an equivalence.

Or, by univalence, we could find a path in the universe $2 = 2^2$.

Well, I know how to construct a function, but I'm not sure how to construct a path in the universe (other than using the univalence axiom itself).

First, we'll show that automorphisms cannot send 0 and 1 to equal inhabitants. This is accomplished by using the structure of the equivalence to show that such a path would imply 0=1.

```
Two-auto-distinct : {f : Two \simeq Two} 
-> ((fst f) 0<sub>2</sub>) == ((fst f) 1<sub>2</sub>) -> Empty 
Two-auto-distinct {f , (equiv g \eta \epsilon \tau)} p = 
Two-distinct (inverse (\eta 0<sub>2</sub>) • (ap g p • \eta 1<sub>2</sub>))
```

Now we will define automorphisms of ${\bf 2}$ corresponding to 0 and 1. As you might imagine, 0 will correspond to the identity and 1 will correspond to the twist map.

```
Two-auto : Two -> (Two \simeq Two)
Two-auto 0_2 = f , q-inv-to-equiv f f-q-inv where f : Two -> Two f = rec_2 0_2 1_2
```

```
f-homotopy : (f \circ f) ~ id
  f-homotopy x = is-one-or-other p where
    p : Coprod (x == 0_2) (x == 1_2)
    p = (elems-of-two x)
    is-one-or-other : Coprod (x == 0_2) (x == 1_2) \rightarrow (f (f x)) == x
    is-one-or-other (inl p0) = (ap (f \circ f) p0) • inverse p0
    is-one-or-other (inr p1) = ap (f \circ f) p1 • inverse p1
  f-q-inv : q-inv f
  f-q-inv = f , (f-homotopy , f-homotopy)
Two-auto 1_2 = f , q-inv-to-equiv f f-q-inv where
  f : Two -> Two
  f = rec_2 1_2 0_2
  f-homotopy: (f o f) ~ id
  f-homotopy x = is-one-or-other p where
    p : Coprod (x == 0_2) (x == 1_2)
    p = (elems-of-two x)
    is-one-or-other : Coprod (x == 0_2) (x == 1_2) \rightarrow (f (f x)) == x
    is-one-or-other (inl p0) = (ap (f \circ f) p0) • inverse p0
    is-one-or-other (inr p1) = ap (f o f) p1 • inverse p1
  f-q-inv : q-inv f
  f-q-inv = f , (f-homotopy , f-homotopy)
```

We would like to construct a quasi inverse to this map to show that it is an equivalence. The inverse will take an automorphism to its evaluation on 0.

```
Two-auto-inv : (Two \simeq Two) -> Two Two-auto-inv (f , _) = f 0_2
```

Now comes the more difficult part. We need two homotopies to demonstrate that this is indeed a quasi-inverse.

One is quite easily obtained by induction over **2**.

The other direction is harder for a few reasons. We essentially need to do case analysis on (f0) where f is an automorphism. To this, need to prove some lemmas of the form "if x is equal to 0, then the above functions applied to x behave as if they were applied to 0".

```
open import Agda. Primitive using (lzero)
```

```
Two-auto-paths : (f : Two \simeq Two) \rightarrow (fst f) 0_2 == 0_2 \rightarrow (fst f) 1_2 == 1_2
Two-auto-paths (f , \psi) p = derp image-1<sub>2</sub> where
  image-1_2 = elems-of-two (f 1_2)
  \texttt{derp} \; : \; \texttt{Coprod} \; \; ((\texttt{f} \; \; 1_2) \; \texttt{==} \; \; 0_2) \; \; ((\texttt{f} \; \; 1_2) \; \texttt{==} \; \; 1_2) \; \rightarrow \; \texttt{f} \; \; 1_2 \; \texttt{==} \; \; 1_2
  derp (inl p0) = Empty-elim {lzero} {\lambda x \rightarrow f 1_2 == 1_2} (Two-auto-distinct {(f , \psi)} (p · i:
  derp (inr p1) = p1
Two-auto-path-0_2 : (x : Two) 
ightarrow (x == 0_2) 
ightarrow (fst (Two-auto x)) 0_2 == 0_2
Two-auto-path-0_2 x p = happly (fst (Two-auto x)) (fst (Two-auto 0_2))
                              (fst (\Sigma== (ap Two-auto p))) 0_2
Two-auto-path-1_2 : (x : Two) 
ightarrow (x == 1_2) 
ightarrow (fst (Two-auto x)) 0_2 == 1_2
Two-auto-path-1_2 x p = happly (fst (Two-auto x)) (fst (Two-auto 1_2))
                              (fst (\Sigma== (ap Two-auto p))) 0_2
Two-auto-path-0_2-1_2 : (x : Two) \rightarrow (x == 0_2) \rightarrow (fst (Two-auto x)) 1_2 == 1_2
Two-auto-path-0_2-1_2 x p = happly (fst (Two-auto x)) (fst (Two-auto 0_2))
                             (fst (\Sigma== (ap Two-auto p))) 1_2
Two-auto-path-1_2-1_2 : (x : Two) \rightarrow (x == 1_2) \rightarrow (fst (Two-auto x)) 1_2 == 0_2
Two-auto-path-1_2-1_2 x p = happly (fst (Two-auto x)) (fst (Two-auto 1_2))
                              (fst (\Sigma== (ap Two-auto p))) 1_2
```

Finally, we construct the homotopies of the quasi equivalence:

```
Two-ε : (f : (Two \simeq Two)) -> (Two-auto (Two-auto-inv f)) == f
Two-ε (f , \psi) = \Sigma==-inv (funext (fst (Two-auto (Two-auto-inv (f , \psi)))) f H , {!!}) where
 H : (x : Two) \rightarrow (fst (Two-auto (Two-auto-inv (f, \psi))) x) == (f x)
 H O_2 = pick-one image-O_2 where
    image-0_2 = elems-of-two (f 0_2)
    pick-one : Coprod ((f 0_2) == 0_2) ((f 0_2) == 1_2)
      pick-one (inl p0) = Two-auto-path-0_2 (f 0_2) p0 • inverse p0
    pick-one (inr p1) = Two-auto-path-1_2 (f 0_2) p1 • inverse p1
  H 1_2 = pick-one image-1_2 where
    image-O_2 = elems-of-two (f O_2)
    image-1_2 = elems-of-two (f 1_2)
    pick-one : Coprod ((f 1_2) == 0_2) ((f 1_2) == 1_2)

ightarrow fst (Two-auto (Two-auto-inv (f , \psi))) 1_2 == f 1_2
    pick-one (inl p0) = pick-another image-0_2 where
        pick-another : Coprod ((f O_2) == O_2) ((f O_2) == O_2)

ightarrow fst (Two-auto (Two-auto-inv (f , \psi))) 1_2 == f 1_2
        pick-another (inl q0) = Empty-elim {lzero}
```

```
{} \lambda x \rightarrow fst (Two-auto (Two-auto-inv (f , \psi))) 1_2 == f 1_2}
           (Two-auto-distinct \{f , \psi \}(q0 \cdot inverse p0))
         pick-another (inr q1) = Two-auto-path-1_2-1_2 (f 0_2) q1 • inverse p0
    pick-one (inr p1) = pick-another image-0_2 where
         pick-another : Coprod ((f 0_2) == 0_2) ((f 0_2) == 1_2)

ightarrow fst (Two-auto (Two-auto-inv (f , \psi))) 1_2 == f 1_2
         pick-another (inl q0) = Two-auto-path-0_2-1_2 (f 0_2) q0 • inverse p1
         pick-another (inr q1) = Empty-elim {lzero}
           \{\lambda \ x 
ightarrow 	ext{fst (Two-auto-inv (f , $\psi$))) } 1_2 == f 1_2 \}
           (Two-auto-distinct \{f, \psi\} (q1 • inverse p1))
  \tau : transport is-equiv
                   (funext (fst (Two-auto (Two-auto-inv (f , \psi)))) f H)
                   (snd (Two-auto (f 0_2)))
        == ψ
  \tau = \{!!\}
Two-auto-is-equiv : is-equiv Two-auto
Two-auto-is-equiv = q-inv-to-equiv Two-auto (Two-auto-inv , (Two-\epsilon , Two-\eta))
```

Suppose the equality reflection rule holds for a type A. Now show that A is a set.