Advanced Quantum Theory_ Exercise Sheet 10

Problem 16

Within the first-order of the Born approximation, we know the scattering amplitude,
$$f(k,k') = -\frac{m}{2\pi\hbar^2} \int V(x) e^{i(k-k')x} dx^3 = : \widetilde{f}(k-k')$$

$$\widetilde{f}(k) = -\frac{m}{2\pi\hbar^2} \int e^{ikx} V(x) dx^3 \qquad (Choose now spherical coordinates with k=NkN o_2)$$

$$= -\frac{m}{2\pi\hbar^2} \int_0^\infty \int_0^\pi \int_0^{2\pi} e^{ilk|l| r\cos\theta} V_0 e^{-\alpha r^2} r^2 \sin\theta d\theta dr$$

$$= -\frac{mV_0}{\hbar^2} \int_0^\infty r^2 e^{-\alpha r^2} \int_0^\pi e^{ilk|l| r\cos\theta} \sin\theta d\theta dr$$

$$= -\frac{mV_0}{\hbar^2} \int_0^\infty r^2 e^{-\alpha r^2} \int_0^\pi e^{ilk|l| r\cos\theta} d\theta dr$$

$$= \frac{(Substitution with 2(\theta) = -\sin\theta)}{2!(\theta) = -\sin\theta} \int_0^{\cos(\pi)} e^{ilk|l| r^2} d\theta d\theta d\theta d\theta d\theta$$

$$= \frac{1}{2!(\hbar l| r} \left[e^{ilk|l| r} - e^{-ilk|l| r} \right] = \frac{2\sin(l|\hbar|l| r)}{|l|\hbar|l| r}$$

$$= -\frac{2mV_0}{\hbar^2 |l|\hbar|l|} \int_0^\infty r e^{-\alpha r^2} \sin(l|\hbar|l| r) dr$$

Osing some after work:
$$\int_{0}^{\infty} r e^{-\alpha r^{2}} \sin(\beta r) dr = \int_{0}^{\infty} r e^{-\alpha r^{2}} dr \left|_{r} \sin(\beta r)\right|_{r=0}^{\infty} \int_{0}^{\infty} \int_{r=0}^{\infty} dr \left|_{r} \beta \cos(\beta r)\right| dr$$
(here we use:
$$\int_{0}^{\infty} e^{-\alpha r^{2}} dr \left|_{r} = \frac{e^{-\alpha r^{2}}}{2\alpha} + C\right| = \frac{e^{-\alpha r^{2}}}{2\alpha} \sin(\beta r) \left|_{r=0}^{\infty} \int_{0}^{\infty} e^{-\alpha r^{2}} dr \left|_{r} \beta \cos(\beta r)\right| dr$$

$$\left(\cos(\beta r) = \frac{1}{2} \left[e^{i\beta r} + e^{-i\beta r}\right]\right) = \frac{\beta}{2\alpha} \int_{0}^{\infty} e^{-\alpha r^{2}} \cos(\beta r) dr$$

$$= \frac{\beta}{4\alpha} \left[\int_{0}^{\infty} \exp\left(-\alpha r^{2} + i\beta r\right) dr + \int_{0}^{\infty} \exp\left(-\alpha r^{2} - i\beta r\right) dr\right]$$

more extra work: (analog for second term) $\int_{0}^{\infty} \exp\left(-\alpha r^{2} + i\beta r\right) dr = \int_{0}^{\infty} \exp\left[-\left(\sqrt{\alpha} r - \frac{i\beta}{2\sqrt{\alpha}}\right)^{2} - \frac{\beta^{2}}{4\alpha}\right] dr$ $\left(\mu(r) := \sqrt{\alpha} r - \frac{i\beta}{2\sqrt{\alpha}}\right)^{2} = e^{-\frac{\beta^{2}}{4\alpha}} \int_{0}^{\infty} \exp\left[-\left(\sqrt{\alpha} r - \frac{i\beta}{2\sqrt{\alpha}}\right)^{2}\right] dr$ $= \frac{1}{\sqrt{\alpha}} e^{-\frac{\beta^{2}}{4\alpha}} \int_{0}^{\infty} \exp\left[-\left(\sqrt{\alpha} r - \frac{i\beta^{2}}{2\sqrt{\alpha}}\right)^{2}\right] dr$ $= \frac{1}{\sqrt{\alpha}} e^{-\frac{\beta^{2}}{4\alpha}} \int_{0}^{\infty} e^{-\frac{\mu^{2}}{\alpha}} d\mu(z)$ $= \frac{1}{\sqrt{\alpha}} e^{-\frac{\beta^{2}}{4\alpha}} d\mu(z)$ $= \frac{1}{\sqrt{\alpha}} e^{-\frac{\beta^{2}}{4\alpha}} d\mu(z)$ $= \frac{\sqrt{\pi}}{2\sqrt{\alpha}} e^{-\frac{\beta^{2}}{4\alpha}} d\mu(z)$ $= \frac{\sqrt{\pi}}{2\sqrt{\alpha}} e^{-\frac{\beta^{2}}{4\alpha}} d\mu(z)$

inserting 'ence work' into 'extra word'.

$$\Rightarrow \int_{\infty}^{\infty} r e^{-cxr^{2}} \sin (\beta r) dr - \frac{\sqrt{\pi} B}{4 x^{3/2}} e^{-\frac{\beta^{2} t}{4 x}}$$
inverting 'extra work' into computation.

$$\Rightarrow \widehat{f}(k) = -\frac{\sqrt{\pi} m V_{0}}{2k^{2} x^{3/2}} e^{-\frac{11k! V_{0}}{4 x}} (here we wod: \beta = 11k! t)$$

$$\Rightarrow \widehat{f}(k) = \widehat{f}(11k! t^{2}) \quad Additionally: ||11k - k'||^{2} = ||11k||^{2} - 2||x||^{2} + ||11k'||^{2}}$$

$$\Rightarrow f(\mathcal{G}) = \widehat{f}(11k - k'|t^{2}) \quad (||11k|| = ||11k||t^{2}) - 2||x||^{2} (1 - \cos \theta)$$

$$= \widehat{f}(2||11k||^{2} (1 - \cos \theta)) \quad = 4||11k||^{2} \sin^{2} \frac{\partial}{\partial x}|$$

$$= \widehat{f}(2||11k||^{2} (1 - \cos \theta)) \quad = 4||11k||^{2} \sin^{2} \frac{\partial}{\partial x}|$$

$$\Rightarrow \frac{f(\mathcal{G})}{2k^{2} x^{3/2}} = \frac{\sqrt{\pi} m V_{0}}{2k^{2} x^{3/2}} \exp\left[-\frac{11k||^{2}}{2k}(1 - \cos \theta)\right] = -\frac{\sqrt{\pi} m V_{0}}{2k^{2} x^{3/2}} \exp\left[-\frac{11k||^{2}}{x^{2}}(1 - \cos \theta)\right]$$
(2)
$$\frac{d\sigma}{d\Omega}(9) \stackrel{(sof)}{=} |f(n\theta)|^{2} = \frac{\pi}{4k^{2}} \frac{m^{2} V_{0}}{\sqrt{2}} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] \sin \theta d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] \sin \theta d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] \sin \theta d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2(0)}^{2(0)} \exp\left[-\frac{11k||^{2}}{\alpha}(1 - \cos \theta)\right] d\theta$$

$$= \frac{\pi^{2} m^{2} V_{0}^{2}}{2k^{2} x^{2}} \int_{2$$

of coefficients of in- and at-

(1) A₀ should be regular =>
$$u_0(0) = 0$$
 in - and at - guing wave $u_0(r) = \alpha \left[\lambda \tanh(\lambda r) - ik\right] e^{ikr} + \beta \left[\lambda \tanh(\lambda r) + ik\right] e^{-ikr}$

$$=> 0 = u_0(0) = -ik\alpha + ik\beta => \alpha = \beta$$

$$= \frac{1}{2} \int_{0}^{\infty} \left[u_{0}(0) - \frac{1}{2} \left(\frac{1}{2}$$

doing some extra work for scattering amplitude: $x,y,a,b \in \mathbb{R}$ | computation of (x+iy)(a+ib) = -x+iy | coefficient

applying on $u_0(r)$: $\lambda \tanh(\lambda r) \xrightarrow{r \to \infty} \lambda = : \times k = : y$ $\Rightarrow a + ib = \frac{k^2 - \lambda^2}{1^2 + k^2} + i \cdot \frac{2k\lambda}{1^2 + k^2} = \frac{k^2 - \lambda^2 + 2ik\lambda}{\lambda^2 + k^2}$

for scattering amplitude:
$$1 + 2ik f_0(k) = a + ib$$

$$\Rightarrow f_0(k) = \frac{a + ib - 1}{2ik} = \frac{k^2 - \lambda^2 + 2ik\lambda - k^2 - \lambda^2}{2ik(\lambda^2 + k^2)}$$

$$= \frac{\lambda}{\lambda^2 + k^2} - \frac{\lambda^2}{ik(\lambda^2 + k^2)} = \frac{\lambda}{\lambda^2 + k^2} \left(1 + i\frac{\lambda}{k}\right)$$

We know: $f_0(k) = \frac{1}{k(\cot \delta_0 - i)} \implies \cot \delta_0 = i + \frac{1}{k} \frac{1}{k \cdot \int_0^{-1} (k)}$ $= \cot \delta_0 = i + \frac{1^2 + k^2}{\lambda k} (1 + i \frac{\lambda}{k})^{-1} = i + \frac{\lambda^2 + k^2}{\lambda} (k + i \lambda)^{-1}$ $= i + \frac{\lambda^2 + k^2}{\lambda} \frac{k - i \lambda}{k^2 + \lambda^2} = i + \frac{k}{\lambda} - i = \frac{k}{\lambda}$

$$\Rightarrow$$
 $\int_{\infty} = \arctan\left(\frac{\lambda}{k}\right)$

(2) σ is dominated by s-waye $\Rightarrow \sigma = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l \approx \frac{4\pi}{k^2} \sin^2 \delta_0$ Additionally we know: $f_o(k) = \frac{1}{k} e^{i\delta_o} \sin \delta_0 \Rightarrow |f_o(k)|^2 = \frac{1}{k^2} \sin^2 \delta_0$ $\Rightarrow \sigma \approx 4\pi |f_o(k)|^2 = \frac{4\pi\lambda^2}{(\lambda^2 + k^2)^2} (\lambda + \frac{\lambda^2}{k^2}) = \frac{4\pi\lambda^2}{k^2(\lambda^2 + k^2)}$

(3) We know:
$$E \propto k^2 \implies (\lim f E \rightarrow 0 \iff \lim f k^2 \rightarrow 0)$$

$$\implies \phi = \frac{4\pi \lambda^2}{k^2(\lambda^2 + k^2)} \implies \infty, k^2 \rightarrow 0$$

This makes sense:

The given potential is a long-range potential because it will never be zero. For small energies one has long wavelengths which are blen able to interact with the potential everywhere. Therefore the total cross section should be infinite.