# TREK SDK Demo Program User Manual

# **Table of contents**

| Document Version History               | 4  |
|----------------------------------------|----|
| V0.1                                   | 4  |
| V0.2                                   | 4  |
| About This Manual                      | 4  |
| Overview                               | 4  |
| Getting Started                        |    |
| TREK V3 DIO Sample Code                | 4  |
| System Menu                            | 4  |
| Digital Input Status                   | 5  |
| Digital Output Status                  | 5  |
| Testing DIO                            | 5  |
| TREK V3 GSensor Sample Code            | 6  |
| System Menu                            | 6  |
| Testing GSensor                        | 7  |
| TREK V3 ControlPanel Sample Code       | 9  |
| System Menu                            | 9  |
| LCD Brightness Control                 | 10 |
| Hot Key Control                        | 10 |
| Testing Control Panel                  | 11 |
| Testing Brightness Control             | 11 |
| Testing Hot key                        |    |
| Testing Light Sensor                   |    |
| TREK V3 WatchDog Sample Code           | 13 |
| System Menu                            |    |
| Testing Watch Dog                      |    |
| TREK V3 Peripheral Control Sample Code |    |
| System Menu                            |    |
| Testing Peripheral Control             |    |
| Getting Peripheral Power Status        |    |
| Opening Peripheral Power               |    |
| Closing Peripheral Power               |    |
| TREK V3 VCIL Sample Code               |    |
| System Menu                            |    |
| VCIL Control Page                      |    |
| CAN Page                               |    |
| J1708 Page                             |    |
| J1587 Page                             |    |
| ODB2 Page                              |    |
| Testing VCIL                           |    |
| Bus Type Control                       |    |
| Reset Module                           |    |
| Testing CAN                            |    |

# TREK SDK Demo Program User Manual

| Reading Data                                   | 24 |
|------------------------------------------------|----|
| Writing Data                                   | 24 |
| Testing Message Mask                           | 25 |
| Set Mask                                       | 26 |
| Testing J1939                                  | 26 |
| Reading Data                                   | 27 |
| Writing Data                                   | 27 |
| Testing Message Filter                         | 28 |
| Set Message Filter                             | 29 |
| Testing ODB2                                   | 29 |
| Reading Data                                   | 30 |
| Writing Data                                   | 30 |
| Testing Message Filter                         | 31 |
| Set Message Filter                             | 32 |
| Testing J1708                                  | 32 |
| Reading Data                                   | 33 |
| Writing Data                                   | 33 |
| Testing Message Filter                         | 34 |
| Testing J1587                                  | 35 |
| Reading Data                                   | 35 |
| Writing Data                                   | 36 |
| Testing Message Filter                         | 37 |
| TREK V3 VPM Sample Code                        | 37 |
| System Menu                                    | 37 |
| Common page                                    | 38 |
| Low Battery Protection & Ignition Control page | 39 |
| Backup Battery Information page                | 39 |
| Alarm Wakeup Control page                      | 40 |
| Testing VPM                                    | 40 |
| Trouble Shooting                               | 41 |

# **Document Version History**

#### **V0.1**

#### 2014-05-29

Document created

#### **V0.2**

#### 2015-05-29

Modify GSensor Sample

## **About This Manual**

This manual is a guide which dedicated to users how to use the TREK-SDK sample code.

#### **Overview**

TREK SDK provide many types of sample code such as DIO, Control Panel Control, VPM, VCIL etc.

#### These manual include:

- DIO Control Demonstration
- GSensor Demonstration
- Control Panel Demonstration
- Watch Dog Demonstration
- o Peripheral Power Control Demonstration
- VCIL Demonstration
- VPM Demonstration

# **Getting Started**

# **TREK V3 DIO Sample Code**

TREK V3 DIO Sample Code is demonstration of Digital input and output. It can read the digital input status and control digital output by user self.

#### **System Menu**

TREK V3 DIO Sample Code as below figure



- 1. Library Version
- 2. Digital Input Status
- 3. Control Digital Output
- 4. Start Monitor Button

# **Digital Input Status**

Digital Input HIGH/1 as below figure



• Digital Input LOW/0 as below figure



**Note**: If your Digital Input is floating, it value should be HIGH since the port is pull High by default

#### **Digital Output Status**

 If Digital Output Pin is checked, the Digital Output should be HIGH/1 otherwise be LOW/0

# **Testing DIO**

1. Connecting DO to DI as below figure



- 2. Opening "TREK\_V3\_Sample\_Code\_DIO.exe"
- 3. Press "Start Monitor DI Stats" Button to enable monitoring DI Status as below figure

  Start Monitor DI Status
- 4. Control the Digital Output Pin as below figure



You should see the "Digital Input" Pin control affected by "Digital Output" Pin as below figure



# **TREK V3 GSensor Sample Code**

TREK V3 GSensor Sample Code is demonstration of reading GSensor status.

#### **System Menu**

TREK V3 GSensor Sample Code as below figure



- 1. Library Version
- 2. ON/OFF Monitor GSenor status
- 3. GSenor Polling Data Value
- 4. Get/Set GSensor Resolution
- 5. Get/Set GSensor Wakeup Threshold Value
- 6. Get/Set GSensor Alarm Threshold Value
- 7. Enable/Disable Alarm Mode
- 8. Clear Alarm Value
- 9. GSensor Alarm Value

#### **Testing GSensor**

- 1. Opening "TREK\_V3\_Sample\_Code\_GSensor.exe"
- 2. Pushing monitor GSenor status to ON as below figure



3. Moving target machine

4. You should see the X,Y,Z value affected by motion



- 5. Testing Alarm trigger receive
- 6. Check the Active Alarm



7. To shock target machine bigger the Alarm threshold

8. You should see the Alarm value push in view



# **TREK V3 ControlPanel Sample Code**

TREK V3 ControlPanel Sample Code is demonstration of controlling panel like LCD brightness, Hot key status and light sensor status.

#### **System Menu**

TREK V3 Control Panel Sample Code as below figure



- Library Version
- 2. Firmware Version and Model Name from panel
- Set/Get the variety Level of LCD Brightness
- 4. Set/Get the Duty Cycle of various levels with Brightness

- 5. Set/Get the Duty Cycle of Hot Key LED Light
- 6. Select Read Data Mode of Hot Key
- 7. Hot key Status
- 8. Light Sensor Status
- 9. Temperature Sensor Status
- 10. Reset Firmware

#### LCD Brightness Control

• Specifies the maximum/minimum/current level as below figure



Note: Level Range is limited to 0-30 and Current level can't out of range.

Specifies the duty cycle of level as below figure



**Note**: Duty Cycle Range is limited to 1-100. 100 represents the brightest.

#### Hot Key Control

• Specifies the duty cycle of Hot key LED light as below figure



Note: Duty Cycle Range is limited to 1-100. 100 represents the brightest.

Hot key status.



"1" indicate hot key press. On the other hand "0" indicate hot key no press

# **Testing Control Panel**

- 1. Connecting display panel to target machine
- 2. Opening "TREK\_V3\_Sample\_Code\_ControlPanel.exe"
- You should see the panel firmware version on the screen without any error message as below figure



#### **Testing Brightness Control**

1. Selecting "Get" radio and press "Apply" button as below figure



2. You can see current brightness level on screen as below figure



- 3. Selecting "Set" radio button
- 4. Input level which you want. For example, set Current level to 5
- 5. Press "Apply" button to apply brightness setting
- 6. You should see the brightness changed. If you following step 4's example, the brightness becomes dark
- 7. You can adjust the range of level like step 3-5

If you want change the duty cycle of level, following the instruction:

1. Input level which you want to configure. For example, select level 10



- 2. Input the Duty cycle which you want. For example, set duty cycle to 50
- 3. Press "Apply" button to apply duty cycle to level
- 4. You should see the brightness changed. If you following step 1-2, the brightness becomes dark at level 10

#### **Testing Hot key**

- 1. Press display panel hot key
- 2. You should see the Key Status changed 1 as below figure



If you want change the duty cycle of key LED light, following the instruction:

- 1. Input the duty cycle of LED. For example set duty cycle to 50
- 2. Press "Set LED Duty Cycle" Button as below figure



You should see the LED light changed. If you following step 1-2, the LED light becomes dark

#### **Testing Light Sensor**

- 1. Covering the light sensor on display panel
- 2. You should see the light sensor value changed as below figure



3. Remove the cover, you should see the sensor value return to original value

# **TREK V3 WatchDog Sample Code**

TREK V3 Watch Dog Sample Code is demonstration of controlling Watch Dog.

#### **System Menu**

TREK V3 Watch Dog Sample Code as below figure



- 1. Library Version
- 2. Range of Watch Dog timer
- 3. Set/Get Watch Dog time
- 4. Enable Watch Dog timer
- 5. Reload the watchdog timer to prevent the system from rebooting

#### **Testing Watch Dog**

- 1. Opening "TREK\_V3\_Sample\_Code\_Watch\_Dog.exe"
- 2. Press "Get Range" button to check the range of watch dog timer
- Input the time which you want system keep alive. For example 1 minute as below figure



- 4. Press "Start WD Timer" to enable watch dog timer
- 5. Press "Trigger timer" to tell the watch dog system still alive
- 6. If system not trigger watch dog in the setting time, you should see the system automotive reboot

**CAUTION**: This demonstration may reboot your system, if you enable watch dog timer and not trigger watch dog timer in time.

# **TREK V3 Peripheral Control Sample Code**

TREK V3 Peripheral Control Sample Code is demonstration of controlling peripheral power.

#### **System Menu**

TREK V3 Peripheral Control Sample Code as below figure



- 1. Library Version
- 2. Select Peripheral
- 3. Select Set or Get function

#### **Testing Peripheral Control**

#### **Getting Peripheral Power Status**

- 1. Opening "TREK\_V3\_Sample\_Code\_PeripheralCtrl.exe"
- 2. Selecting module, For example "WIFI".
- 3. Selecting "Get" radio button
- 4. Press "Apply" button
- 5. You should see the peripheral power status as below figure



For example. Selecting WIFI module. I can see the WIFI module is enable.

#### **Opening Peripheral Power**

If you want close the specified peripheral power, following the instruction:

- 1. Opening "TREK\_V3\_Sample\_Code\_PeripheralCtrl.exe"
- 2. Selecting module, For example "WIFI"
- 3. Selecting "Set" radio button
- 4. Press "Enable/Disable" combo box and selecting "Enable"
- 5. Press "Apply" button
- 6. You should see the peripheral power is on

**Note**: System need a little time to enable peripheral.

#### Closing Peripheral Power

If you want close the specified peripheral power, following the instruction:

- 1. Opening "TREK\_V3\_Sample\_Code\_PeripheralCtrl.exe"
- 2. Selecting module, For example "WIFI"
- 3. Selecting "Set" radio button
- 4. Press "Enable/Disable" combo box and selecting "Disable"
- 5. Press "Apply" button
- 6. You should see the peripheral power is closed

# **TREK V3 VCIL Sample Code**

TREK V3 VCIL Sample Code is demonstration of Vehicle Communication Interface Layer(VCIL) which let user easily to use vehicle protocol.

#### **System Menu**

TREK V3 VCIL Sample Code as below figure



- 1. VCIL Control page
- 2. CAN page
- 3. J1708 page
- 4. J1939 page
- 5. J1587 page
- 6. OBD2 page

**VCIL Control Page** 

# VCIL Control page as below figure



- 1. Library Version
- 2. Firmware Version
- 3. Reset firmware to default
- 4. (CAN/J1939/OBD2) Channel 1 bus type control
- 5. (CAN/J1939/OBD2) Channel 2 bus type control
- 6. (J1708/J1587) Channel 1 bus type control

Note: Each channel only can select one bus type at same time.

**CAN Page** 

# • CAN page as below figure



- Bus Speed
- 2. Read Data control (Press "Start" to monitor bus to read)
- 3. Read Data method
- 4. Read Data list
- 5. Write Data control
- 6. CAN bus message mask control

J1708 Page

J1708 page as below figure



- Read Data control (Press "Start" to monitor bus to read)
- 2. Read Data list
- 3. Write Data control
- 4. J1708 bus message filter control
- 5. Message filter list

#### J1939 Page

J1939 page as below figure



- 1. Read Data control (Press "Start" to monitor bus to read)
- 2. Read Data list
- 3. Write Data control
- 4. J1939 bus message filter control
- 5. J1939 Address mapping

#### J1587 Page

J1587 page as below figure



- Read Data control (Press "Start" to monitor bus to read)
- 2. Read Data list
- 3. Write Data control
- 4. J1587 bus message filter control
- 5. Message filter list

#### **ODB2** Page

ODB2 page as below figure



- Read Data control (Press "Start" to monitor bus to read)
- 2. Read Data list
- 3. Write Data control
- 4. ODB2 bus message filter control

#### **Testing VCIL**

- 1. Opening "TREK\_V3\_Sample\_Code\_VCIL.exe"
- Select VCIL port and speed for your platform. For example, select the port number 8 on TREK-674



3. Selecting "VCIL Control" page as below figure



4. You should see the firmware version on this page when success opening VCIL.

# **Bus Type Control**

- 1. Selecting "VCIL Control" page
- 2. Press combo box on the channel which you want to configure as below figure



3. Selecting Bus type

**Note**: Each channel only can select one bus type at same time.

#### Reset Module

- 1. Selecting "VCIL Control" page
- 2. Press "Reset Module" button as below figure



CAUTION: When reset module, all configure for each bus reset to default value.

## **Testing CAN**

- 1. Selecting "VCIL Control" page
- 2. Press combo box on the channel and select "CAN" as below figure



# Reading Data

1. Selecting "CAN" page as below figure



Set CAN bus speed. For example 250K

- 2. Checked "Show Data"
- 3. Press "Start" button to receive CAN bus data
- 4. You should see the data came from the CAN bus and show on the list

#### Writing Data

1. Selecting "CAN" page as below figure



Set CAN bus speed. For example 250K

- 2. Filling the CAN bus data prepare to send
- 3. Press "Write" button to send CAN bus data as above figure
- 4. You should see the data on the receiver

#### **Testing Message Mask**

- 1. Selecting "VCIL Control" page
- 2. Press combo box on the channel and select "CAN + Mask" as below figure



#### Set Mask

1. Selecting "CAN" page as below figure



Set CAN bus speed. For example 250K

- 2. Configure the Message mask
- 3. Press "Set Mask" button to apply the mask to bus
- 4. You should see the mask was applied on the bus.
- If you set a mask to bus. You should not see the specified CAN ID on the read data list if the ID not passed for the mask

#### Mask Rule:

- The CAN Message ID & operator "Mask" equal the "ID" & operator "Mask" PASS
- The CAN Message ID & operator "Mask" not equal the "ID" & operator "Mask" NO
   PASS

For example, as above figure setting. If the input CAN Message ID is 0x123, the result passed. Since 0x123 & 0xffff equal the ID 0x123 & 0xffff.

If the input CAN data ID is 0x120, the result not passed. Since 0x120 & 0xffff not equal the ID 0x123 & 0xffff.

#### **Testing J1939**

Selecting "VCIL Control" page

2. Press combo box on the channel and select "J1939" as below figure



#### **Reading Data**

1. Selecting "J1939" page as below figure



- 2. Checked "Show Data"
- 3. Pull TrackBar "ON" to receive J1939 data
- 4. You should see the data came from the J1939 and show on the list

#### Writing Data

1. Selecting "J1939" page as below figure



- 2. Filling the J1939 data prepare to send
- 3. Press "Write" button to send J1939 data as above figure
- 4. You should see the data on the receiver

#### **Testing Message Filter**

- Selecting "VCIL Control" page
- 2. Press combo box on the channel and select "J1939 + Mask" as below figure



#### Set Message Filter

1. Selecting "J1939" page as below figure



- 2. Select Channel and specified PGN to filter
- 3. Press "Add Channel, PGN" button to add the rule to filter
- 4. You should see the filter was applied on the bus
- 5. The system ignores all PGN is not on the list

For example, as above figure setting. The system can receive the PGN equal to 0xFEF6, otherwise no.

#### **Testing ODB2**

1. Selecting "VCIL Control" page

2. Press combo box on the channel and select "ODB2" as below figure



#### **Reading Data**

1. Selecting "ODB2" page as below figure



- 2. Checked "Show Data"
- 3. Pull TrackBar "ON" to receive ODB2 data
- 4. You should see the data came from the ODB2 and show on the list

#### Writing Data

1. Selecting "ODB2" page as below figure



- 2. Filling the ODB2 data prepare to send
- 3. Press "Write" button to send ODB2 data as above figure
- 4. You should see the data on the receiver

#### **Testing Message Filter**

- Selecting "VCIL Control" page
- 2. Press combo box on the channel and select "ODB2 + Mask" as below figure



#### Set Message Filter

1. Selecting "ODB2" page as below figure



- 2. Select Channel and specified PID to filter
- 3. Press "Add Channel, PID" button to add the rule to filter
- 4. You should see the filter was applied on the bus
- 5. The system ignores all PID is not on the list

For example, as above figure setting. The system can receive the PID equal to 0x00, otherwise no.

#### **Testing J1708**

1. Selecting "VCIL Control" page

2. Press combo box on the channel and select "J1708" as below figure



#### **Reading Data**

1. Selecting "J1708" page as below figure



- 2. Checked "Show Data"
- 3. Press "Start" button to receive J1708 data
- 4. You should see the data came from the J1708 and show on the list

#### Writing Data

1. Selecting "J1708" page as below figure



- 2. Filling the J1708 data prepare to send
- 3. Press "Write" button to send J1708 data as above figure
- 4. You should see the data on the receiver

#### **Testing Message Filter**

1. Selecting "J1708" page as below figure



- 2. Enter specified MID to filter
- Press "Add MID" button to add the rule to filter

- 4. You should see the filter was applied on the bus
- 5. The system ignores all MID is not on the list

# **Testing J1587**

- 1. Selecting "VCIL Control" page
- 2. Press combo box on the channel and select "J1587" as below figure



#### **Reading Data**

1. Selecting "J1587" page as below figure



- 2. Checked "Show Data"
- 3. Press "Start" button to receive J1587 data
- 4. You should see the data came from the J1587 and show on the list

#### Writing Data

1. Selecting "J1587" page as below figure



- 2. Filling the J1587 data prepare to send
- 3. Press "Write" button to send J1587 data as above figure

4. You should see the data on the receiver

#### **Testing Message Filter**

1. Selecting "J1587" page as below figure



- 2. Enter specified MID to filter
- 3. Press "Add MID" button to add the rule to filter
- 4. You should see the filter was applied on the bus
- 5. The system ignores all MID is not on the list

# **TREK V3 VPM Sample Code**

TREK V3 VPM Sample Code is demonstration of vehicle power management (VPM).

#### **System Menu**

TREK V3 VPM Sample Code as below figure



- 1. Common page
- 2. Low Battery Protection & Ignition Control page
- 3. Backup Battery Information page
- 4. Alarm Wakeup Control page

#### Common page

VPM Common page as below figure



- 1. Library Version
- 2. Firmware Version

- 3. Car Battery Mode (Decide LBP what voltage mode to use)
- 4. Current Battery Voltage
- 5. Ignition Status
- 6. Mode Control
- 7. Wakeup Source Control

#### Low Battery Protection & Ignition Control page

VPM Low Battery Protection & Ignition Control page as below figure



- 1. Low Battery Protection Control
- 2. Ignition Control

Backup Battery Information page

Backup Battery Information as below figure



# Alarm Wakeup Control page

Alarm Wakeup Control as below figure



- 1. Alarm wakeup Status Control
- 2. RTC Timer Control
- 3. Alarm Wakeup Time Control

# **Testing VPM**

1. Opening "TREK\_V3\_Sample\_Code\_VPM.exe"

2. You should see the firmware version and voltage below figure



# **Trouble Shooting**

Coming soon