Discrete Structures

IIIT Hyderabad

Monsoon 2020

Tutorial 11

October 21, 2020

Introduction

- Questions
 - Question 0
 - Question 1
 - Question 2
 - Question 3
 - Question 4

0.1: f, g are bijective. $\implies f \circ g$ is bijective.

Sol:

Assume $f: A \rightarrow B, g: C \rightarrow A$

Proof that it is Injective: Say if $f \circ g(x_1) = g \circ f(x_2)$. Now since f is injective, we must have that $g(x_1) = g(x_2)$ and since g is injective, we must have $x_1 = x_2$. Thus we have proved that $f \circ g(x_1) = g \circ f(x_2) \implies x_1 = x_2$.

Proof that it is Surjective: We need to prove that

$$\forall y \in B, \exists x \in C \text{ such that } f(x) = y$$

Similarly, we say that since f is surjective, we have that

$$\forall y \in B, \exists z \in A \text{ such that } f(z) = y$$

We first use the fact that g is surjective, due to which we have that

$$\forall z \in A, \exists x \in C \text{ such that } g(x) = z$$

We combine the above 2 to get -

$$\forall y \in B, \exists x \in C \text{ such that } f \circ g(x) = y$$

0.2: $f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B)$.

$$x \in f^{-1}(A - B)$$

$$\implies f(x) \in (A - B)$$

$$\implies (f(x) \in A) \land (f(x) \notin B)$$

$$\implies (x \in f^{-1}(A)) \land (x \notin f^{-1}(B))$$

$$\implies x \in f^{-1}(A) - f^{-1}(B)$$

Thus
$$f^{-1}(A - B) \subseteq f^{-1}(A) - f^{-1}(B)$$

$$x \in f^{-1}(A) - f^{-1}(B)x \in f^{-1}(A - B)$$

$$\implies (x \in f^{-1}(A)) \land (x \notin f^{-1}(B))$$

$$\implies (f(x) \in A) \land (f(x) \notin B)$$

$$\implies (f(x) \in A) \land (f(x) \notin B)$$

$$\implies x \in f^{-1}(A) - f^{-1}(B)$$

Thus
$$f^{-1}(A) - f^{-1}(B) \subseteq f^{-1}(A - B)$$

IIIT Hyderabad

0.3: Prove that the statement

$$h(f(x)) = k(f(x)) \implies h = k$$

implies f is onto.

Sol: Assume that f is not onto and that h(f(x)) = k(f(x)). Now we should be able to deduce that $h(y) = k(y) \forall y \in B$. We construct h, k such that

$$h(y) = c_0 \forall y \in B$$
 $k(y) = \begin{cases} c_0 \text{ if } y \in Range(f) \\ c_1 \text{ otherwise} \end{cases}$

(where c_0 and c_1 are 2 distinct). By this construction, we have h(f(x)) = k(f(x)), but $h \neq k$. Which means our assumption should have been wrong.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

0.4: Let $f, g : \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$, $g(x) = x^3$. Prove that the sets Range(f) and Range(g) have same cardinality.

Sol: Construct a mapping h from $Range(f) \rightarrow Range(g)$ such that if $x \in Range(f)$, then $h(x) = x^{\frac{3}{2}}$. It is easy to show that $h(x) \in Range(g)$. Now we prove that this mapping is injective and surjective.

For injective, if $h(x_1) = h(x_2)$, we have $x_1^{\frac{3}{2}} = x_2^{\frac{3}{2}}$, from which we get $x_1^3 = x_2^3$ which implies either $x_1 = x_2$ or $x_1^2 + x_2^2 + x_1x_2 = 0$. We know that $x_1^2 + x_2^2 + x_1x_2 > 0$, as they are in \mathbb{N} , thus $x_1 = x_2$.

For surjective, for any $y \in Range(g)$, we have it's pre-image as $y^{\frac{2}{3}}$ as $h(y^{\frac{2}{3}}) = (y^{\frac{2}{3}})^{\frac{3}{2}} = y$.

Thus the mapping is bijective and the cardinalities are same.

Let a permutation p be :-

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 6 & 7 & 3 & 4 \end{pmatrix}$$

Let q be defined as

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 7 & 4 & 3 & 1 & 2 & 6
\end{pmatrix}$$

Find the permutation $q \circ p$.

Sol:

$$q \circ p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix}$$

7 / 13

Identify all the cycles in p.
Sol:

$$p = (1,2)(3,5,7,4,6)$$

• How many transpositions are there in p? p an odd or even permutation?

$$p = (1,2)(3,5,7,4,6)$$

$$= (1,2)(3,6)(3,5,7,4)$$

$$= (1,2)(3,6)(3,4)(3,5,7)$$

$$= (1,2)(3,6)(3,4)(3,7)(3,5)$$

Odd permutation (5 transpositions)

* Can you give a general formula for number of transpositions ? **Sol:** The number of transpositions in a k-cycle in generally k - 1.

◆ロト ◆個ト ◆重ト ◆重ト ■ 釣りで

2.1: Show that the sets $S = \{x \in \mathbb{C}, |x| = 1\}$ and \mathbb{R} have same cardinality.

Sol: For each element $x \in S$, we can have it as -

$$x = e^{i\theta}$$

For each θ , have a function f which maps it as follows -

$$f(\theta) = tan\left(\frac{\theta}{2}\right)$$

The function above is injective and surjective. Note that the point -1 will not be representable. From the construction, we have cardinality of $S-\{-1\}$ equal to that of $\mathbb R$. The cardinality of $S-\{-1\}$ is equal to that of S, as adding a finite set to an infinite set does not change the cardinality. Thus we have cardinality of S equal to that of $\mathbb R$.

9/13

Let
$$A = \{x \in \mathbb{R} | x \in [0, 1]\}$$

 $B = \{x \in \mathbb{N} | x \text{ is a perfect square}\}$
 $C = \{x \in \mathbb{N} | x < 10\}$

Which of the following are countable?

1 B ∩ C

Sol: $B \cap C = \{1, 4, 9\}$ which is finite and hence countable.

② *B* ∪ *C*

Sol: Construct f such that $f: \mathbb{N} \to \mathbb{N}$, f(2) = 1, f(3) = 2, f(5) = 3, f(6) = 4, f(7) = 5, f(8) = 6 and $\forall n \in B$, $f(n) = \sqrt{n} + 6$. We notice that f is injective as it maps uniquely to each $n \in N$, and surjective as well since we are denumerating the elements.

 \bullet $A \cup B$

Sol: (In this proof I am assuming B is uncountable. Please refer to the slides for the proof.)

Assume $A \cup B$ is countable. Then $\exists f: (A \cup B) \to \mathbb{N}$. But from here, we are able to construct a function $g: B \to X$ such that $\forall b \in B, g(b) = f(b)$, and that $X \subseteq \mathbb{N}$. Since \mathbb{N} is countable, we must have $X \subseteq \mathbb{N}$ also as countable. Cardinality of B is same as X as g is a bijective map from B to X, and so B must also be countable. This is a contradiction and hence $A \cup B$ must be uncountable.

• $A \cap B$ **Sol:** $A \cap B = \{1\}$ which is finite and hence countable.

Sol: We use Cantor's diagonalization argument over here. Let us define a new representation of a subset S_i of B such that

$$S_i = x_{i1}x_{i2}x_{i3}x_{i4}\dots$$

where $x_{ij} = e_{S_i}(j^2)$. For example, if $A = \{4, 9\}$. We have representation as

$$repr(A) = 01100000...$$

Now since $\mathcal{P}(B)$ is countable, we should be able to list each of the subsets as -

$$repr(S_1) = x_{11}x_{12}x_{13}x_{14}...$$

 $repr(S_2) = x_{21}x_{22}x_{23}x_{24}...$
 $repr(S_3) = x_{31}x_{32}x_{33}x_{34}...$
 $repr(S_4) = x_{41}x_{42}x_{43}x_{44}...$
 \vdots

Now construct

$$S = \{\overline{x}_{11}\overline{x}_{22}\overline{x}_{33}\ldots\}$$

We notice that S is not in any of the $S_1, S_2, S_3 \dots$ we listed. Thus our assumption must be wrong that $\mathcal{P}(B)$ is countable. Hence it must be uncountable.

- **4.1**: Find left and right inverses of each of them (wherever exist) -
 - **1** $f: \mathbb{N} \to \mathbb{N}$, f(n) = n + 3**Sol:** Since $2 \notin \text{Range}(f)$, it is not onto. It is one-one. Left-inverse could be -g(n) = n - 3.
 - ② $f: \mathbb{Z} \to \mathbb{E}^*, f(x) = |x| + x$ **Sol:** Since f is not one-one but onto, the right inverse could be $g(x) = \frac{|x|}{2}$.
- **4.2**: Which of the following is/are projections -

- $||x||, f: \mathbb{C} \to \mathbb{C} \text{ Yes},$ ||(||x||)|| = ||x||.
- **4.3:** Find $\sum_{j=1}^{j=100} e_S(j)$ on $U = \mathbb{Z}$, when $f(x) = x^2$, S = Range(f(x)), $f: \mathbb{R} \to \mathbb{R}$. **Sol:** We have this as

$$\sum_{i=1}^{i=100} e_S(k)k$$

$$= 10$$

Note that $e_s(j) = 1$ only for $j \in \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}.$