

BOOST CONVERT CONTROL IC

GENERAL DESCRIPTION

The **GS3660B** is a boost topology switching regulator control IC for battery-used applications field. The **GS3660B** includes a totem-pole single output stage for driving NPN transistor or N-MOS, high precision reference (0.5V) for comparing output voltage with feedback amplifier, an internal dead-time control for controlling the minimum duty cycle, programmable soft start with short circuit protection function and logic level control for operating mode or standby mode.

FEATURES

- Wide supply voltage operating range: 1.8 to 15V
- Reference voltage precision: 2%
- Low current consumption: Operation Mode 5.5mA
 Standby-by Mode 1µA
- High speed oscillator frequency: 1MHz max.
- Programmable Soft Start function (SS)
- Short Circuit Protection function(SCP)
- Totem-pole output with adjustable on/off current (for NPN transistors or n-channel MOSFET)
- Logic level control stand-by mode function
- Package: TSSOP8

STEET!

TSSOP8

TYPICAL APPLICATION

- Digital Camera
- PDA
- Portable Equipment

FUNCTIONAL BLOCK DIAGRAM

MARK VIEW

PIN DESCRIPTION

Name	No.	I/O	Description
FB	1	ı	Error amplifier inverting input pin
SCP	2	-	Connected a capacitor Soft start and SCP function pin
V_{CC}	3	Р	IC power supply
EN/OFF	4	ı	Output current setting and control pin
OUT	5	0	Totem-pole output
GND	6	Р	IC ground
osc	7	I	Capacitor and resistor connected for the frequency of oscillation
COMP	8	0	Error amplifier compensation output

DC ELECTRICAL CHARACTERISTICS(Ta=25°C,V_{CC}=+2V, unless otherwise noted)

Under Voltage Lock-Out section (U.V.L.O.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Low threshold voltage	V_{LOW}		-	-	0.9	V
Upper threshold voltage	V_{UPPER}		1.1	1.3	1.5	V

Soft Start section (S.S.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input source current	I _{SS}	V _{SCP} = 0V	-1.5	-1.0	-0.7	μ A
Soft start threshold voltage	V _{SST}		0.8	0.9	1.0	V

Short Circuit Protection section (S.C.P.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input source current	I _{SCP}	V _{SCP} = 0V	-1.5	-1.0	-0.7	μ A
S.C.P. threshold voltage	V_{SCP}		0.7	0.8	0.9	V

Oscillator section

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Oscillation frequency	f	$R_T=3.0K\Omega, C_T=270pF$	400	500	600	KHz
Frequency change with voltage	Δf / ΔV	V _{CC} =2V to 15V	-	2	10	%
Frequency change with temperature	Δf / ΔΤ	Ta = 0°ℂ to 85°ℂ	-	5	-	%

Idle Period Adjustment section

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Maximum duty cycle	т	R_T =3.0k Ω , C_T =270pF,	75		85	%
Maximum duty cycle	I DUTY	V _{FB} =0.8V	73		83	/0

Total device section

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Stand-by current	I _{STANDBY}	Pin4 is open or V _{CC}	-	-	1	μΑ
Average supply current	I _{AVE}	R _B =390Ω,V _{CC} =0~20V	-	5.0	10	mA

DC ELECTRICAL CHARACTERISTICS (Cont.)

Error Amplifier section

PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input threshold v	oltage	V_{FB}	V _{COMP} =450mV	495	500	505	mV
V _⊤ change with v	oltage	$\Delta V_{FB} / \Delta V$	V _{CC} =2V to 15V	-	5	20	mV
V _⊤ change with te	emperature	$\Delta V_{FB} / \Delta T$	Ta = -10°C to 85°C	-	1	-	%
Input bias current		I _B		-1.0	-0.2	1.0	μΑ
Voltage Gain	Voltage Gain			-	100	-	V/V
Frequency bandy	vidth	BW	Av=0 dB	-	6	-	MHz
Output voltage	Positive	V_{POS}		0.78	0.87	-	V
Swing	Negative	V_{NEG}		-	0.05	0.2	V
Output source current		I _{SOURCE}	V _{COMP} =450mV	-	-40	-24	μΑ
Output sink curre	ent	I _{SINK}	V _{COMP} =450IIIV	24	40	-	μΑ

Output section

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output high voltage	V _{OH1}	$R_B=390\Omega$, $I_O=-15mA$	1.0	1.2	-	V
Output high voltage	\/	$R_B=750\Omega$, $I_O=-10$ mA,	0.8	1.0		V
Output high voltage	V_{OH2}	V _{CC} = 1.8V	0.6		-	V
Output saturation voltage	V _{OL1}	$R_B=390\Omega$, $I_O=15mA$	-	0.1	0.2	V
Output saturation voltage		$R_B=750\Omega$, $I_O=10$ mA,		0.1	0.2	V
Output saturation voltage	V_{OL2}	V _{CC} = 1.8V	-	0.1	0.2	V
Output source current	I _{OSOURCE}	R _B =390Ω, Vo=0.9V	-	-40	-20	mA
Output sink current	I _{OSINK}	R _B =390Ω, Vo=0.3V	30	40	-	mA
Internal pull-down resistor	Ro		20	30	40	kΩ

Output Current Setting / Control section

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Pin voltage	V_{BR}	$R_B=390\Omega$	0.15	0.22	0.3	V
Output current setting resistance	R _B	-	300	390	5000	Ω
Input off condition	I _{OFF}		-20	-	0	μΑ
Input on condition	I _{ON}		-	-	-45	μΑ
Pin current range	I _{BR}	-	-1.8	-	-0.1	mA

TYPICAL CHARACTERISTICS

Figure 1

Figure 5

High Level Output

Figure 4

Figure 6

TYPICAL CHARACTERISTICS (Cont.)

TEL:0755-27668758/29469758

Output transistor

The GS3660B has a totem-pole transistor with a 40mA source/sink current rating to drive an external NPN transistor or NMOS directly. The driving current capability depends on a resistor R that is connected to EN/OFF pin (Pin4) of GS3660B. (see fig. 14)

Figure 13. Output transistor driving control circuit

EN/OFF pin can also use to control the output of GS3660B for disable or enable function of system.

Control Pin	Q1	EN/OFF Pin	Output Transistor Function	Mode
Low	Off	Open	Disable	Stand-by
High	On	Bias Current	Enable	Operation

APPLICATION NOTE (1)

Figure 14. DC12V to DC24V Boost Regulator

Figure 15. DC2.5V~DC6V to DC3.3V SEPIC Regulator

$$Vout = \left(1 + \frac{R1}{R2}\right) * 0.5$$

TSSOP8

SYMBOLS	MIN	NOR	MAX
Α	-	-	1.20
A1	0.05	-	0.15
A2	0.96	1.01	1.06
D	2.90	3.00	3.10
E		6.40 BSC	
E1	4.30	4.40	4.50
L	0.45	0.60	0.75
$ heta$ $^{\circ}$	0	-	8

UNIT:MM

NOTE:

- 1.JEDEC OUTLINE:MO-187 AA
- 2.DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE
- 3.DIMENSIONS "E1" DOES NOT INCLUDE INTERLEAD FLASH, OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 PER SIDE.
- 4.DIMENSIONS "0.22" DOES NOT INCLUDE DAMBAR PROTRUSIONS.ALLOWABLE DAMBAR PROTRUSIONS SHALL BE 0.08 MM TOTAL IN EXCESS OF THE '0.22' DIMENSION AT MAXIMUM MATERIAL CONDITION.DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.MINIMIM SPAC BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07MM.
- 5.DIMENSIONS "D" AND 'E1' TO BE DETERMINED AT DATUM PLANE H