Outline Evaluarea calității softulu Metoda lui Floyc Axiomatizarea lui Hoare Bibliografie

Verificarea și Validarea Sistemelor Soft Curs 8. Corectitudine (Floyd. Hoare. Dijkstra) Partea I

Lector dr. Camelia Chisăliță-Crețu

Universitatea Babeș-Bolyai Cluj-Napoca

25 Aprilie 2023

- Evaluarea calității softului
 - Evaluarea calității softului
 - Verificarea programelor
- 2 Metoda lui Floyd
 - Metoda aserţiunilor inductive
 - Metoda lui Floyd. Parţial corectitudine
 - Metoda lui Floyd. Terminare
- Axiomatizarea lui Hoare
 - Triplete Hoare. Semantică
 - Parţial corectitudine. Reguli deductive
 - Total corectitudine. Reguli deductive
- 4 Bibliografie

Evaluarea calității softului

- calitatea softului
 - conformitatea cu cerințele funcționale și de performanță precizate, documentate explicit în standardele de dezvoltare și caracteristici implicite ale unui produs soft dezvoltat. [Scott Pressman, 2005]
- corectitudine proprietate a unui program de a respecta specificațiile și a oferi rezultate corecte [Fre10].

Verificarea programelor

- metode formale pentru verificarea programelor:
 - bazate pe demonstrarea corectitudinii:
 - asistate de calculator, presupune verificarea corectitudinii codului sursă asociat programului;
 - aplicate programelor care trebuie să se termine și să obțină un rezultat (curs 08);
 - bazate pe modele:
 - automate, presupune verificarea proprietăților programului;
 - aplicate sistemelor concurente; se aplică în etapele post-dezvoltare, e.g., verificarea modelelor.

Metode pentru demonstrarea corectitudinii programelor

- Metoda lui Floyd
 - metoda aserţiunilor inductive;
- Axiomatizarea lui Hoare
 - axiome si reguli deductive:
 - dezvoltarea algoritmilor din specificații;
- Limbajul lui Dijkstra
 - instrucţiuni cu santinelă;
 - non-determinism;
 - derivarea formală a programelor.

Robert W Floyd
(8 Iunie 1936 – 25 Septembrie 2001)

 Sir Charles Antony Richard Hoare (11 January 1934)

Edsger Wybe Dijkstra
 (11 Mai 1930 – 6 August 2002)

Metoda lui Floyd. Metoda aserțiunilor inductive

Aplicabilitate:

- pentru a demonstra:
 - parțial corectitudinea programului;
 - terminarea programului;
 - total corectitudinea = parţial corectitudinea programului + terminarea programului.

Folosește:

- precondiție condiția satisfăcută de datele de intrare ale programului;
- postcondiție condiția care trebuie satisfăcută de rezultatele programului;
- algoritmul descrierea programului (codul sursă);

Etape de aplicare:

- identificarea unui punct de tăietură în fiecare buclă;
- identificarea unei mulțimi de aserțiuni inductive;
- 3 construirea și demonstrarea condițiilor de verificare/terminare.

Parțial corectitudine. Etape de realizare

- 1 se aleg puncte de tăietură în cadrul algoritmului:
 - două puncte de tăietură particulare: un punct de tăietură la începutul algoritmului, un punct de tăietură la sfârșitul algoritmului;
 - cel puțin un punct de tăietură în fiecare instrucțiune repetitivă;
- 2 pentru fiecare punct de tăietură se alege câte un predicat invariant (aserțiune):
 - punctul de intrare $\varphi(X)$;
 - punctul de ieșire $\psi(X,Z)$;
- 3 se construiesc și se demonstrează condițiile de verificare:

 - Y vector de variabile cu rezultate intermediare;
 - 3 $\alpha_{i,j}$ drumul de la punctul de tăietură i la punctul de tăietură j;
 - ① P_i și P_j predicate invariante în punctele de tăietură i și j asociate;
 - **6** $R_{\alpha_{i,i}}(X,Y)$ predicat care dă condiția de parcurgere a drumului α ;
 - **(a)** $r_{\alpha_i,j}(X,Y)$ funcție care indică transformările variabilelor Y de pe drumul α ;

Theorem

1. Dacă toate condițiile de verificare sunt adevărate atunci programul P este parțial corect în raport cu specificația $(\varphi(X), \psi(X, Z))$. [Fre10]

Parțial corectitudine. Exemplu.

- algoritmul pentru ridicarea la putere prin înmulțiri repetate: z = x^y;
- se aleg punctele de tăietură: A, B și C;
- se stabilesc predicatele invariante pentru punctele de tăietură alese: $\varphi(X)$, $\psi(X,Z)$ și $\eta(X,Y)$;
- drumurile α între punctele de tăietură: $\{\alpha_{AB}, \alpha_{BB}, \alpha_{BC}, \alpha_{AC}\}$ $\Rightarrow \{\alpha_{AB}, \alpha_{BB_{atunci}}, \alpha_{BB_{altfel}}, \alpha_{BC}, \alpha_{AC}\};$
- $R_{\alpha_{i,j}}(X,Y)$ predicate pentru parcurgerea drumurilor $\alpha_{i,j}$;
- r_{αi, i}(X, Y) funcții care indică transformările variabilelor Y de pe drumurile α_{i,j};
- pentru fiecare drum α se construiește și se demonstrează condiția de verificare de forma $\forall X \ \forall Y \ (P_i(X,Y) \land R_{\alpha_{i,j}}(X,Y) \rightarrow P_j(X,\ r_{\alpha_{i,j}}(X,Y)));$

Terminarea algoritmului. Etape de realizare.

- se aleg punctele de tăietură în cadrul algoritmului;
- 2 pentru fiecare punct de tăietură se alege câte un predicat invariant;
- se alege o mulţime convenabilă M (i.e., o mulţime parţial ordonată, care nu conţine nici un şir descrescător infinit) şi o funcţie descrescătoare u;
 - în punctul de tăietură i funcția aleasă este $u_i: D_X \times D_Y \to M$;
- se scriu condițiile de terminare:
 - condiția de terminare pe drumul $\alpha_{i,j}$ este: $\forall X \ \forall Y \ (\varphi(X) \land R_{\alpha_{i,j}}(X,Y) \rightarrow (u_i(X,Y) \ > \ u_j(X,\ r_{\alpha_{i,j}}(X,Y))));$
 - dacă s-a demonstrat parțial corectitudinea, atunci condiția de terminare poate fi:

$$\forall X \ \forall Y \ (P_i(X) \land R_{\alpha_{i,j}}(X,Y) \rightarrow (u_i(X,Y) \ > \ u_j(X,\ r_{\alpha_{i,j}}(X,Y))));$$

- se demonstrează condițiile de terminare:
 - lacksquare la trecerea de la un punctul de tăietură i la j valorile funcției u descresc, i.e., $u_i > u_j$.

Theorem

2. Dacă toate condițiile de terminare sunt adevărate atunci programul P se termină în raport cu predicatul $\varphi(X)$. [Fre10]

Sistemul axiomatic al lui Hoare

- Relaţii şi notaţii:
 - deductibilitate: |=;
 g₁, g₂, ..., g_m |= h are semnificația: "formula predicativă h (concluzia) este deductivă din formulele predicative g₁, g₂, ..., g_m (premisele)";
 - implicaţia: ⇒;

```
P \Rightarrow P' are semnificația: "dacă P este satisfăcut atunci are loc și P'";
```

- negația: ¬;
 ¬b are semnificația: "negația expresiei logice b";
- ontributiile lui Hoare:
 - triplet precondiție, bloc de instrucțiuni, postcondiție;
 - axioma atribuirii pentru: instrucțiunea de atribuire;
 - reguli deductive pentru: structura secvențială, structura alternativă și structura repetitivă;
 - demonstrarea parțial și total corectitudinii, dezvoltarea corectă a algoritmilor folosind triplete.

Triplete Hoare

- $\{\varphi\}$ P $\{\psi\}$ triplet Hoare, unde:
 - φ este precondiţia;
 - ψ este postcondiţia;
- notaţia are semnificaţia:

"dacă execuția programului P începe dintr-o stare care satisface φ , atunci starea în care se ajunge după execuția lui P va satisface ψ ";

Triplete Hoare. Exemple (1)

Care dintre următoarele triplete sunt valide?

```
① \{x = 5\} \ x := x * 2 \ \{true\};
② \{x = 5\} \ x := x * 2 \ \{x > 0\};
③ \{x = 5\} \ x := x * 2 \ \{x = 10 \ || \ x = 5\};
④ \{x = 5\} \ x := x * 2 \ \{x = 10\};
```

- toate tripletele sunt valide;
- $\{x = 5\}$ x := x * 2 $\{x = 10\}$ cel mai util triplet;
- $\{x = 10\}$ cea mai puternică postcondiție.

Triplete Hoare. Exemple (2)

- Care dintre următoarele triplete sunt valide?
 - ① $\{x = 5 \&\& y = 10\}\ z := x/y \{z < 1\};$
 - ② $\{x < y \&\& y > 0\}\ z := x/y \{z < 1\};$
- toate tripletele sunt valide;
- $\{y \neq 0 \&\& x/y < 1\}$ $z := x/y \{z < 1\}$ cel mai util triplet;
- $\{y \neq 0 \&\& x/y < 1\}$ cea mai slabă precondiție.

Semantica tripletelor Hoare

corectitudine partială

- notație: $\models_{par} \{\varphi\}P\{\psi\}$
- tripletul $\{\varphi\}P\{\psi\}$ este satisfăcut relativ la corectitudinea parțială, dacă pentru orice stare care satisface φ , starea rezultată după execuția programului P satisface postcondiția ψ , având condiția că programul se termină:
- nu garantează că P se termină;

corectitudine totală

- notație: $\models_{tot} \{\varphi\}P\{\psi\}$
- tripletul $\{\varphi\}P\{\psi\}$ este satisfăcut relativ la corectitudinea totală, dacă pentru orice stare care satisface φ , programul P se termină, iar starea rezultată după execuția programului P satisface postcondiția ψ ;
- garantează că P se termină.

Parțial corectitudine. Reguli deductive

- axioma atribuirii;
- regula compunerii secvențiale;
- regula consecinței;
- regula alternanței;
- regula iteraţiei.

Axioma atribuirii

- $\models_{par} \{\varphi(x|e)\}\ x := e \ \{\psi(x)\}$ are semnificația "dacă prin înlocuirea lui x în $\varphi(x)$ cu e obținem o afirmație adevărată, atunci după atribuirea x := e afirmația $\psi(x)$ va fi adevărată."
- Fie tripletul $\{P\}$ $X := Y + 2 \{Q\}$
 - fiind dat Q, care este predicatul pentru care P are loc?
 - pentru orice P astfel încât $[P \Rightarrow \langle X \leftarrow Y + 2 \rangle (Q)]$

Regula compunerii secvențiale

```
• dacă \models_{par} \{\varphi\}S\{\omega\} și \models_{par} \{\omega\}T\{\psi\} atunci \models_{par} \{\varphi\}S; T\{\psi\};
```

Regula consecinței

dacă

$$\begin{split} \varphi_1 &\Rightarrow \varphi_2, \ \models_{\textit{par}} \{\varphi_2\} P\{\psi_2\} \ \text{$;$} \ \psi_2 \Rightarrow \psi_1 \\ \text{atunci} & \models_{\textit{par}} \{\varphi_1\} \ P\{\psi_1\} \end{split}$$

Regula alternanței

dacă

Regula iterației

- Care sunt condițiile de realizare ale structurii repetitive while, astfel încât: $\{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$
 - presupunem că instrucțiunea while se termină , i.e., ¬cond;
 - în general, nu se cunoaște de câte ori se va executa S;
- considerăm un predicat η care rămâne satisfăcut după execuția S:
 - $\{\eta\}S\{\eta\}$ η este un predicat invariant;
 - la ieșirea din buclă avem $\eta \land \neg cond$;
 - pentru stabilirea post-condiției, $\{\eta\}$ trebuie ales astfel încât $[\eta \land \neg cond \Rightarrow \psi]$.

Regula iterației (cont.)

• dacă $\models_{par} \{\varphi \land cond\} S\{\psi\}$ atunci $\{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$, cu condiția că există un predicat invariant η asociat buclei, astfel încât:

```
• [\varphi \Rightarrow \eta] \eta este satisfăcut la intrare în buclă;

• [\eta \land \neg cond \Rightarrow \psi] \eta obține pe \psi la ieșirea din buclă;

• \{cond \land \eta\}S\{\eta\} \eta este satisfăcut la fiecare iterație.
```

Regula iterației. Exemple

Demonstrarea parțial corectitudinii folosind regula iterației:

• Exemplu 1. $z = 2^N$;

Dezvoltarea algoritmilor (parțial corecți), folosind regula iterației:

- Exemplu 2. R = A * B;
- Exemplu 3. $R = A^B$.

Regula iterației. Exemplu 1.

• efectuarea calculului: $z = 2^N$:

```
• \varphi: \{N \ge 0\}

m := 0; \ y := 1;

\eta: \{y = 2^m\}

WHILE (m! = N) \ DO \ \eta: \{y = 2^m\}

y := 2 * y;

m := m + 1

END

\psi: \{y = 2^N\}
```

- trebuie demonstrat că invariantul η
 - este satisfăcut la intrare în buclă;
 - rămâne satisfăcut în buclă $\{\eta\}$ $y := 2 * y; m := m + 1; \{\eta\}$
 - obţine post-condiţia $[\eta \land (m = N) \Rightarrow (y = 2^N)]$.

Regula iterației. Exemplu 2.

• înmulțire prin adunări repetate – "R este A adunat de B ori": R = A * B:

```
• \varphi: \{B \ge 0\}

• \psi: \{R = A*B\} \Rightarrow \{B \ge 0\}S\{R = A*B\}

• rezolvare (dezvoltarea tripletului):

• \varphi: \{B \ge 0\}

"init R"

• WHILE (cond) DO

"update R"

• END

• \psi: \{R = A*B\}
```

- regulă: se înlocuiește în postcondiția ψ unul din termeni cu o variabilă pentru a obține predicatul invariant η asociat buclei, astfel încât $[(\eta \land \neg cond) \Rightarrow \psi]$;
 - se introduce variabila b în ψ și se determină invariantul η asociat buclei, descris prin: R = A * b;
 - pentru a obține postcondiția, se alege cond să fie $(b \neq B)$, unde $[(R = A * b) \land \neg (b \neq B) \Rightarrow (R = A * B)].$

Regula iterației. Exemplu 2 (cont.)

- înmulțire prin adunări repetate:
 - invariantul η : (R = A * b);
 - condiția de execuție a buclei (santinela) cond: $(b \neq B)$;
 - pentru a asigura că invariantul este satisfăcut inițial, se efectuează inițializarea: R := 0; b := 0;
 - în fiecare iterație: (1) *b* este incrementat cu 1; (2) *R* este actualizat, obținând:

```
\varphi : \{B \ge 0\} \\
R := 0; b := 0; \\
WHILE <math>(b \ne B) \text{ DO } \eta : \{R = A * b\} \\
R :=? \Rightarrow R := R + A \\
b := b + 1 \\
END \\
\psi : \{R = A * B\}
```

Regula iterativă. Exemplu 3.

• ridicare la putere prin înmulțiri repetate – "R este A înmulțit de B ori":

```
R=A^{B};
```

- $\{\varphi : (A > 0) \land (B \ge 0)\}\$ S $\{\psi : R = A^B\}$
- rezolvare (dezvoltarea tripletului):
 - pentru obținerea invariantului se înlocuiește în ψ o constantă cu o variabilă, obținându-se: $\eta: R = A^b$;

```
\varphi : \{(A > 0) \land (B \ge 0)\}

R := ?; b := 0; \Rightarrow R := 1;

WHILE (b \ne B) \text{ DO } \eta : \{R = A^b\}

R := ?; \Rightarrow R := R * A;

b := b + 1

END

\psi : \{R = A^B\}
```

Total corectitudine. Reguli deductive

```
atribuire {φ} X := E {ψ} cu condiția că [φ ⇒⟨X ← E⟩(ψ)];
compunere {φ} S; T{ψ} cu condiția că există R astfel încât {φ} S{R} și {R}T{ψ};
alternanță {φ} IF (cond) THEN S ELSE T END {ψ} cu condiția că {φ ∧ cond} S{ψ} și {φ ∧ ¬cond} T{ψ}
```

Observaţie: similar cu regulile corectitudinii parţiale!

Total corectitudine. Iterația.

- fie tripletul $\{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$
- cum demonstrăm că execuția buclei se termină?
- soluţie:
 - se identifică o expresie întreagă V astfel încât:
 - valoarea V este non-negativă (i.e., $V \ge 0$) și
 - valoarea V este strict descrescătoare la fiecare iterație, $\{V = K\}$ S $\{V < K\}$
- V "invariant al buclei", expresia își păstrează caracteristicile de la o iterație la alta.

Total corectitudine. Exemplu

ridicare la putere prin înmulțiri repetate – "R este A înmulțit de B ori":
 R = A^B:

```
• \{(A > 0) \land (B \ge 0)\} S \{R = A^B\}

• invariantul buclei este: \eta : R = A^b \land (B \ge b);

\varphi : \{(A > 0) \land (B \ge 0)\}

R := 1; b := 0;

WHILE (b \ne B) DO \eta : R = A^b \land (B \ge b);

R := R * A;

b := b + 1

END

\psi : \{R = A^B\}
```

- se defineşte V o construcţie care variază la nivelul buclei descris prin expresia (B – b);
- V este strict descrescătoare la fiecare iterație a buclei, deoarece [(B-(b+1))<(B-b)]
- Cum demonstrăm că V este o expresie non-negativă?
 - demonstrând că $(B \ge b)$ este un invariant al buclei.

Total corectitudine. Regula iterației (rezumat)

- pentru a demonstra
 - $\models_{tot} \{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$ se identifică un predicat invariant η al buclei și o expresie V, invariantă la nivelul buclei, astfel încât:
 - η este satisfăcut inițial $[\varphi \Rightarrow \eta]$;
 - η determină obținerea post-condiției prin condiția de ieșire din buclă $[(\eta \land \neg cond) \Rightarrow \psi];$
 - η se menține satisfăcut după execuția blocului S, i.e., $\{\eta\}$ S $\{\eta\}$;
 - expresia V este strict descrescătoare la fiecare iterație $\{V = K\}$ S $\{V < K\}$;
 - expresia V este întotdeauna non-negativă; $[\eta \Rightarrow (V > 0)]$.

Pentru examen...

- metoda lui Floyd:
 - demonstrarea parțial corectitudinii, terminării și total corectitudinii ([Fre10], Cap.1) – probleme:
 - căutarea unei valori într-un șir ordonat (Seminar 5);
 - determinarea celui mai mare divizor comun a două numere naturale (Seminar 5);

Outline Evaluarea calității softului Metoda lui Floyd Axiomatizarea lui Hoare Bibliografie

Triplete Hoare. Semantică Parțial corectitudine. Reguli deductive Total corectitudine. Reguli deductive

Urmează...

Limbajul Dijkstra

Outline Evaluarea calității softului Metoda lui Floyd Axiomatizarea lui Hoare Bibliografie

Bibliografie I

[Fre10] M. Frentiu.

Verificarea și validarea sistemelor soft.

Presa Universitară Clujeană, 2010.