MÓDULO 3: OPERADORES E PRODUTO INTERNO

AULA 1

DEFINIÇÃO 01: AUTOVALORES E AUTOVETORES

Seja T: V \rightarrow V um operador linear. Se existirem $\mathbf{v} \in V, \mathbf{v} \neq \mathbf{0}, \lambda \in \mathbb{R}$ tais que

 $\mathbf{T}\mathbf{v} = \lambda \mathbf{v}, \lambda$ é um auto valor de T e \mathbf{v} um autovetor de T associado à λ

DEFINIÇÃO 02: AUTOVALORES E AUTOVETORES DE UMA MATRIZ Dada uma matriz quadrada A de ordem n, o AUTOVALOR e AUTOVETOR de A são aqueles que satisfazem

$$A\mathbf{v} = \lambda \mathbf{v}$$
 ou $A\mathbf{v} = (\lambda I)\mathbf{v}$ ou ainda $(A - \lambda I)\mathbf{v} = \mathbf{0}$

MATLAB / OCTAVE

1)

Exemple:
$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}$$

DEFINIÇÃO 03:

Seja T: V \rightarrow V uma transformação linear. Seja β uma base de V, então temos as equivalências:

$$\mathbf{T}\mathbf{v} = \lambda \mathbf{v} \text{ ou } Det\left(\left[T\right]_{\beta}^{\beta} - \lambda I\right) = 0$$

TEOREMA 1:

Autovetores associados a autovalores distintos são linearmente independentes

COROLÁRIO 1:

Se V é um Espaço Vetorial e T: V \to V é um operador linear que possui autovalores distintos, então V possui uma base cujos vetores são todos autovetores de T

2) VA =

MATRIZ DE TRANSFORMAÇÃO

```
octave:12> % det(v) != 0 -> Conjunto de v é LI
det(v)
ans = 1121/1189
```

```
octave:41> a=[1 1;2 1]
[v,va]=eig(a)
det(v)
a =

1 1
2 1
```

OU... (DEIXANDO EM FRAÇÃO)

24 :	379/1257
Θ	Θ
-1	Θ
Θ	-2
	-1

DEFINIÇÃO 04:

Seja T: V \rightarrow V uma transformação linear. Seja β uma base de V, onde $\beta = \{v_1, v_2, \cdots, v_n\}$ formada por autovetores de T então a matriz $[T]_{\beta}^{\beta}$ será uma matriz diagonal onde os elementos da diagonal principal são os autovalores λ_i

$$[T]_{\beta}^{\beta} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

DEFINIÇÃO 05:

Seja T: $V \rightarrow V$ uma transformação linear. Dizemos que T é um operador DIAGONALIZÁVEL se existe uma base de V cujos elementos são autovetores de T.

EXEMPLOS:

Seign
$$T: \mathbb{A}^3 \to \mathbb{R}^3$$

$$[T]_{\mathcal{L}}^{\mathcal{L}} = \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 3 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & -4 \\ 4 & 3 & 2 &$$

$$T: R^{2} \longrightarrow R^{2}$$
tal que + (x₁y₁) = (2y₁ x)
$$T(x_{1}y_{1}) = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\longrightarrow Autovalores distintes$$

Bare de autoretores
$$\beta$$
 $T \in \text{diagonalizated}$

$$t : R^{2} \longrightarrow R^{2}$$

$$tal que \ t(x, y) = (x + y, 2x + y)$$

$$t(x, y) = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$t \in diagonalizauel$$

AULA 3

Aula: https://www.youtube.com/watch?v=xDBR2VV1HaQ

MÓDULO 3: OPERADORES E PRODUTO INTERNO

POLINÔMIO MINIMAL

DEFINIÇÃO 06: Polinômio de matrizes

Seja $P(x) = a_n x^n + \dots + a_1 x + a_0$ um polinômio e A uma matriz quadrada, então P(A) é a matriz:

$$P(A) = a_n A^n + \dots + a_1 A + a_0 I$$

Quando P(A)=0 dizemos que o polinômio anula a matriz

Exemple 1:

Sejam
$$\rho(x) = x^2 - 9$$
, $q(x) = 2x + 3$, $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$.

Quais petinômies anulam a matriz? $\frac{1}{2} = \frac{1}{2} =$

DEFINIÇÃO 07: Polinômio Minimal

Seja A uma matriz quadrada. O polinômio minimal de A é um polinômio:

$$m(x) = a_n x^n + \dots + a_1 x + a_0$$

Tal que

- i) m(A)=0 isto é m(x0 anula a matriz A
- ii) m(x) é o polinômio de menor grau entre aqueles que anulam A

TEOREMA 2:

Seja T: V \rightarrow V uma transformação linear. Seja α uma base de V. Então T é diagonalizável se e somente se, o polinômio minimal de $[T]^{\alpha}_{\alpha}$ é da forma

$$m(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_r)$$

Com $\lambda_1 \cdots \lambda_r$ distintos

TEOREMA 3: Cayley-Hamilton

Seja T: V \rightarrow V um operador linear e α uma base de V e p(x) o polinômio característico de T, então

$$p([T]^{\alpha}_{\alpha}) = 0$$

As raízes do polinômio minimal são as mesmas raízes do polinômio característico

TEOREMA 5:

Sejam $\lambda_1 \cdots \lambda_r$ os autovalores distintos de um operador linear T. Então T será diagonalizável se, e somente se o polinômio

$$(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_r)$$

Anular a matriz de T.

Aula: https://www.youtube.com/watch?v=xDBR2VV1HaQ

MÓDULO 3: OPERADORES E PRODUTO INTERNO

POLINÔMIO MINIMAL

DEFINIÇÃO 06: Polinômio de matrizes

Seja $P(x) = a_n x^n + \dots + a_1 x + a_0$ um polinômio e A uma matriz quadrada, então P(A) é a matriz:

$$P(A) = a_n A^n + \dots + a_1 A + a_0 I$$

Quando P(A)=0 dizemos que o polinômio anula a matriz

[-1 4]
Sejam $p(x) = x^2 - 9$, $q(x) = 2x + 3$, $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$.
Quais polinômios anulam a matriz? 1-Substitui x pela matriz A 2- Multiplica os idependentis pela I.
P(A) = A2 -91 = [-14] [-14] -9[10] = [90] - [90] = [00]
$P(A) = A^{2} - 9I = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 9 \end{bmatrix}$ $\therefore P(A) \text{ anula } A$
$Q(A) = 2 \cdot A + 3I = 2 \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 8 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 4 & 5 \end{bmatrix}$
[21] [01] [42] [03] [45]

DEFINIÇÃO 07: Polinômio Minimal

Seja A uma matriz quadrada. O polinômio minimal de A é um polinômio:

$$m(x) = a_n x^n + \dots + a_1 x + a_0$$

Tal que

- i) m(A)=0 isto é m(x0 anula a matriz A
- ii) m(x) é o polinômio de menor grau entre aqueles que anulam A

TEOREMA 2:

Seja T: V \to V uma transformação linear. Seja α uma base de V. Então T é diagonalizável se e somente se, o polinômio minimal de $[T]^{\alpha}_{\alpha}$ é da forma

$$m(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_r)$$

Com $\lambda_1 \cdots \lambda_r$ distintos

TEOREMA 3: Cayley-Hamilton

Seja T: $V \rightarrow V$ um operador linear e α uma base de V e p(x) o polinômio característico de T, então

$$p([T]^{\alpha}_{\alpha}) = 0$$

Seja	[T] x	= [c d	1							
Entãe	e pelin	rêmie co	racterístic	: غد ه						
ρ(λ)	. = A ·	- XI) *	lab cd	- y[0!]] . [a-	λ β [· (a-2)(c	1-2) - b.c		
					R SE DA ZE					
P([T] _~) = (a	.1 - [T]~) (aI	-[T] _«	- pc[4	<u></u>]	[-c		T-1	
	=(a	[10]	(ab))	d[10]-	[ab]) -	bc [1 o]	-c(0+bc	010	- [bc o
) = [b.	cd +ca -ta 75q	[be 0]	; [00]
		00	c d (od cd	[bc		/ L o	bc	o bc	[00]

TEOREMA 4:

As raízes do polinômio minimal são as mesmas raízes do polinômio característico

TEOREMA 5:

Sejam $\lambda_1 \cdots \lambda_r$ os autovalores distintos de um operador linear T. Então T será diagonalizável se, e somente se o polinômio

$$(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_r)$$

Anular a matriz de T.

AULA 4 AULA PRODUTO INTERNO

PRODUTO INTERNO

DEFINIÇÃO 08: PRODUTO INTERNO

Seja V um espaço vetorial real. Um produto interno sobre V é uma função que a cada par de vetores v_1 e v_2 associa um número real denotado $\langle v_1, v_2 \rangle$ satisfazendo as propriedades:

- i) $\langle \boldsymbol{v}, \boldsymbol{v} \rangle \geq 0$ para todo $\boldsymbol{v} \in \langle \boldsymbol{v}, \boldsymbol{v} \rangle = \boldsymbol{0}$ se e somente se $\boldsymbol{v} = \boldsymbol{0}$
- ii) $\langle \propto v_1, v_2 \rangle = \propto \langle v_1, v_2 \rangle$, $\forall \propto$
- iii) $\langle \boldsymbol{v}_1 + \boldsymbol{v}_2, \boldsymbol{v}_3 \rangle = \langle \boldsymbol{v}_1, \boldsymbol{v}_3 \rangle + \langle \boldsymbol{v}_2, \boldsymbol{v}_3 \rangle$
- iv) $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_2, \boldsymbol{v}_1 \rangle$

exemplos

DEFINIÇÃO 09

Seja V um espaço vetorial, diz-se que dois vetores \boldsymbol{v} e \mathbf{w} de V são ortogonais se

$$\langle \boldsymbol{v}, w \rangle = 0$$

Notação: $\boldsymbol{v} \perp \mathbf{w}$

Propriedades:

- a) $0 \perp v$ para todo $v \in V$
- b) $v \perp w$ implica que $w \perp v$
- c) Se $v \perp w$ para todo $w \in V$ então v = 0
- d) Se $v_1 \perp \mathbf{w}$ e $v_2 \perp \mathbf{w}$ então $(v_1 + v_2) \perp \mathbf{w}$
- e) Se $v \perp w$ e \propto é um escalar então $\propto v \perp w$

TEODEMA 6.

I EUKEMA O:

Sejam $\{v_1, v_2, \cdots, v_n\}$ um conjunto de vetores não nulos, dois a dois ortogonais, isto é

 $\langle \pmb{v}_i, \pmb{v}_j \rangle = 0$ para i $\neq j$ então $\langle \pmb{v}_i, \cdots, \pmb{v}_n \rangle$ é Linearmente Independente

DEFINIÇÃO 10:

Diz-se que uma base $\{v_1, v_2, \cdots, v_n\}$ de V é Base ortogonal se $\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = 0$ para i $\neq j$, isto é os vetores são dois a dois ortogonais

DEFINIÇÃO 11:

Seja V um espaço com produto interno. Definimos a NORMA ou COMPRIMENTO de um vetor $oldsymbol{v}$ por

$$\|v\| = \sqrt{\langle v, v \rangle}$$

Se $\|\mathbf{v}\| = \mathbf{1}$, \mathbf{v} é chamado de vetor unitário e \mathbf{v} está normalizado

PROPRIEDADES DA NORMA:

- i) $||v|| \ge 0$ e||v|| = 0 se e somente se v = 0
- ii) $\| \propto v \| = | \propto | \| v \|$
- iii) $|\langle v, w \rangle| \le ||v|| \, ||w|| \, \text{DESIGUALDADE DE CAUCHY-SCHUWARZ}$
- *iv)* $||v+w|| \le ||v|| + ||w||$ DESIGUALDADE TRIANGULAR

Schuwarz

Cauchy

DEFINIÇÃO 12:

Seja V um espaço vetorial, e dois vetores \boldsymbol{v} e \mathbf{w} de V. O ângulo entre \boldsymbol{v} e \mathbf{w} será

$$cos\theta = \left| \frac{\langle v, w \rangle}{\|v\| \|w\|} \right|$$

DEFINIÇÃO 13:

Seja V um espaço vetorial com produto interno. Diz-se que uma base $\{v_1, v_2, \dots, v_n\}$ de V é ortonormal se for ortogonal e cada vetor for unitário, isto é:

$$\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = \begin{cases} 0, se \ i \neq j \\ 1, se \ i = j \end{cases}$$


```
11) < ~ v, w> = < ~(x1, x2, x1), (91, 42, 45) >
                      «x3.42 + «x2.42 + «x3.43
                      a (x2.92 + x2.42 + x3.43)
                       スくず、かと ok
    iii) マナマン(iii)
                       = <(x1, x2, x3)+(y1, y2, y3), ($1, 22, 23)>
                         · (x+432, x2+432, x3+43), (20, 22, 23)
                          = ( 21 (x1+41) + 22 (x2+42) + 23 (x3+43))
                          = (21. x1 + 51. 41 + 52. x2 + +2. 42 + 53. x3 + 23. 43)
                          : ((21.x1 + 22.x2 + 25.x3) + (25.91 + 22.42 + 23.45)
                          = < (x1, x2, x3), (21, 22, 23) > + <(y1, y2, y3), (41, 21, 23))
                          ・ くず、な> + くが、な> 0と
    iv) ---
                                             PROPRIE DADE
 Ex. Norma de um produto escalar
                                             11) 11x 71 (xv, xv)
    V . (x1, x2, x3)
((ex, xx, xx), (ex, xx, xx)) = \(\sigma(xx, xx, xx)), (xx, xx, xx))
                                                        = (Cexiexe, ex3), (execexions)
                                                       = V xxx2 + x xx2 + xxx2
                    5 V x, x, + x2 x2 + x3 x3
                                                        . 1x1 V x12+x2+x3' - 1x111111
                     1 Vx12 + Y2 + x32
 Ex: A base (us, uz, us) & uma bare entegenal?
      u1 : (0,1,0) u2 = (1,0,1) u3 = (1,0,-1)
 1) Ortogonois 2a2
    11 III = V<u, us> = v(0,1,0),(0,1,0) 1 V 0 + 12 + 0 = 1
    11 4211 = J < 42, 42) = J 1 +0 132 : J2
     11 mis 11 = V < us, us> - JE2+0+(-1)2 = V2
                                                                  - Ketter unitari
```

2) Normalização

AULA 5

https://www.youtube.com/watch?v=qBswq4XnZZA

Processo de Gram-Schmidt

Para converter uma base $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ numa base ortogonal $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$, efetue as seguintes contas.

Passo 1. $\mathbf{v}_1 = \mathbf{u}_1$

Passo 2.
$$\mathbf{v}_2 = \mathbf{u}_{\mathbf{Z}} - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Passo 3.
$$\mathbf{v}_{3} = \mathbf{u}_{3} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2}$$

Passo 4.
$$\mathbf{v}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{\|\mathbf{v}_3\|^2} \mathbf{v}_3$$

(continue até r passos)

Passo opcional. Para converter a base ortogonal numa base ortonormal $\{q_1, q_2, \dots, q_r\}$, normalize os vetores da base ortogonal.

Considere o espaço vetorial R³ com o produto interno euclidiano. Aplique o processo de Gram-Schmidt para transformar os vetores de base

$$\mathbf{u}_1 = (1, 1, 1), \quad \mathbf{u}_2 = (0, 1, 1), \quad \mathbf{u}_3 = (0, 0, 1)$$

em uma base ortogonal $\{v_1, v_2, v_3\}$ e, depois, normalize os vetores da base ortogonal para obter uma base ortonormal $\{q_1, q_2, q_3\}$.

Solução

Assim,

Passo 1. $\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$

Passo 2. $\mathbf{v}_2 = \mathbf{u}_2 - \operatorname{proj}_{\mathbf{w}_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$

 $\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right), \quad \mathbf{v}_3 = \left(0, -\frac{1}{2}, \frac{1}{2}\right)$

$$= (0, 1, 1) - \frac{2}{3}(1, 1, 1) = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

formam uma base ortogonal de R3. As normas desses vetores são

$$\|\mathbf{v}_1\| = \sqrt{3}, \quad \|\mathbf{v}_2\| = \frac{\sqrt{6}}{3}, \quad \|\mathbf{v}_3\| = \frac{1}{\sqrt{2}}$$

Passo 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \operatorname{proj}_{\mathbf{w}_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$
 de modo que uma base ortonormal de R^3 é
$$= (0, 0, 1) - \frac{1}{3}(1, 1, 1) - \frac{1/3}{2/3} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right) \qquad \mathbf{q}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right),$$

$$\mathbf{q}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{\mathbf{v}_3}{\|\mathbf{v}_3$$

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \quad \mathbf{q}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

$$\mathbf{q}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \blacktriangleleft$$

Ex 12) Boldrini, pg 248

 Seja P₂ o espaço das funções polinomiais reais de grau menor ou igual a dois. Definimos em P2

$$\langle f, g \rangle = \int_{-1}^{1} f(t) \cdot g(t) dt$$

Considere W o subespaço de P_2 gerado pelos vetores p(t) = 1 e q(t) = 1 - t.

- a) <f, g > é um produto interno?
- b) Se a resposta de (a) for afirmativa determine uma base ortogonal para W.

$$V_{2} = U_{2} - \langle U_{2}, V_{L} \rangle$$

$$= \langle (0, 1, 1) - \langle (0, 1, 2), (0, 1, 1, 1) \rangle$$

$$= \langle (0, 1, 1) - \langle (0, 1, 2), (0, 1, 1, 1) \rangle$$

$$= \langle (0, 1, 1) - \frac{\langle (0, 1, 2), (0, 1, 1, 1) \rangle}{\langle \sqrt{12+12+42} \rangle^{2}} \cdot (1, 1, 1)$$

$$V_{8} = U_{8} - \frac{\langle \mathcal{H}_{3}, V_{1} \rangle}{\|V_{3}\|^{3}} \cdot V_{1} - \frac{\langle \mathcal{H}_{3}, V_{2} \rangle}{\|V_{2}\|^{2}} \cdot V_{2}$$

$$= (0,0,1) - \frac{\langle (0,0,1), (1,1,1) \rangle}{3} \cdot \frac{\langle (1,1,1) \rangle}{3} \cdot \frac{\langle (0,0,1), (-\frac{1}{2}, \frac{1}{3}, \frac{1}{3}) \rangle}{\frac{(\frac{1}{3})^{2} + (\frac{1}{3})^{2}}{3} \cdot \frac{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})}} \cdot \frac{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})}{\frac{(\frac{1}{3})^{2} + (\frac{1}{3})^{2}}{3} \cdot \frac{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})}}$$

$$= (0,0,1) - \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

$$= (0,0,1) - (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) - (\frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

$$= (0,0,1) - (0, \frac{1}{6}, \frac{1}{6})$$

ORTO NORMALIZAÇÃO

$$Q_{1} = \underbrace{(1,1,1)}_{||V_{1}||} \longrightarrow \underbrace{(1,1,1)}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3},\frac{1}{3})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3})}_{||V_{2}||} \longrightarrow \underbrace{(\frac{1}{3},\frac{1}{3}$$

$$Q^{3} = \frac{(0, \frac{1}{2}, \frac{1}{2})}{\|V_{3}\|} \longrightarrow \frac{(0, \frac{1}{2}, \frac{1}{2})}{\sqrt{(\frac{1}{2})^{2} + (\frac{1}{2})^{2}}} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

$$\downarrow \frac{1}{2}$$

$$2\sqrt{\frac{1}{2}} = \sqrt{1 \cdot \frac{1}{2}} = \sqrt{2}$$

QL =	VI	٠.	4							
	11 V2/1		12				5/2	, +	7	
Q2 =	√2		t		-+		CV		3)	
	11/21	Ve	+,-+>	1	12/3					
			4	ı 	-F %	= \(\frac{1}{1} \)	ш.	t' 1	1.	1 - 2
			-1		7	-1	Ha.	3 1	3	3 3

Auto vetores Autovalores

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 antity return antity valor de unmarked the product of the prod

Ab : 26 Se verdadeiro : 6 é um auto netor associado a 2.

A - Matriz quadroida

2 = Acto water

b - Veter ñ nulo - Auto veter asseciada a λ 9 pertence as domínio de A.

Propriedades (Observações)

- Hatriz 4 precisa ser quadrada
- · Autovalores e autovetores estas sempre juntos
- · Cada autoretor só pode estar associado a um autoralor
- A pede son O, mas b NÃO!
- Autovalores podem estar associados a mais de um autovetor

Le multiplicidade me vai ser a dimensão dos auto-espaços que o autoretor vai estar associados

Exemplos
$$\rightarrow \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \cdot \lambda \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

(1°) Achando os autovalores (2)

$$\begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 - \lambda & -3 \\ 2 & -1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 - \lambda & -3 \\ 2 & -1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 - \lambda & -3 \\ 2 & -3 \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \lambda^2 - 3\lambda + 2 = 0 \\ \lambda^2 - 3\lambda + 2 = 0 \end{bmatrix}$$

$$\begin{bmatrix} \lambda & -3y & 0 & 0 & (1,1), (2,2), \dots \\ 2x - 2y & = 0 \end{bmatrix}$$

$$\begin{bmatrix} \lambda & 2 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \lambda & -3y & 0 & 0 & (1,1), (2,2), \dots \\ 2x - 2y & = 0 & (3,2), (1,1) \end{bmatrix}$$

$$\begin{cases} 2x - 3y & 0 & 0 & (2,2), (1,1) \\ 2x - 3y & = 0 & (3,2), (1,1) \end{cases}$$