ERROR DETECTION

Outline

- 1. Error Discovery vs Recovery
- 2. Types of Errors
- 3. Vertical Redundancy (Parity)
- 4. Longitudinal Redundancy (2D-Parity)
- 5. CRC Codes
- 6. Checksums

Discovery vs Recovery

Errors

- Physical layer produces a virtual bit pipe.
- Nyquist's theorem gives the signal frequencies which are sufficient to carry the signal rate.
- Shannon's theorem gives the optimal channel capacity under random noise but gives no idea on how to achieve it.
- Errors still occur due to other sources such as switching effects, cross talk, lightning, etc.
- Error recovery occurs at physical through transport layer but mainly at the data link layer

Transmitted Error Problem

- After meeting a new friend at a party, you want to get his/her cell phone number: ten digits.
- Your friend hands you the telephone number on a scrap of paper as

where? means that the digit is unrecognizable, while * means digit is misrecognizable.

- How do you figure out the missing digit?
 - Call all possible ten numbers!
 - Ask for the number again!
 - Correct it yourself!

Error Recovery

• Error recovery takes on two forms as Error Detection and Error Correction, depending on the requirements of the application.

• Error Detection:

- must be followed by retransmission:
- most often used at higher levels, and
- leads to retransmission strategies discussed later

• Error Correction:

most often used at the physical layer to produce bit pipe
 with low error rate

Types of Errors: Single bit error

• Single bit error:

- Just a single bit changed:from 0 to 1 or from 1 to 0.
- A single bit error may affect a larger block of data bits.
- They are more likely in parallel (because in parallel more bits are sent at the same time) than serial transmissions!

Types of Errors: Burst error

• Burst Error: is a contiguous block of at least two error bits (starting with an error bit and ending with an error bit).

send: 0 1 1 0 0 1 0 1 0 0 1 1 errors $\downarrow \qquad \downarrow \qquad \downarrow$ receive: 0 1 0 0 0 0 0 0 0 0 1 1

- In a burst not all bits between two endpoints are in error!
- Length of a burst error is measured as the *distance* from the first corrupted to the last corrupted bit in this burst.
 - What is the length of the burst above?

Modeling errors

- Errors are notoriously difficult to model.
- Usually we look at the frequency of errors in an application.
 - Error rate: probability a bit is in error (bits are often assumed to be independent).

• Typical error rates

- Wireless links: 10^{-4}

- ISDN line: 10^{-6}

- Optical fiber: 10^{-10}

Example

- A network channel has bit error rate p.
- How many errors do you expect in a packet of length n?

pn

- Assume errors in a packet are independent of each other.
- What is the probability a packet of length n has an error?
 - The probability that a given bit is correct is 1-p.
 - The probability that all bits are correct is $(1-p)^n$.

Pr[Packet has an error] = 1 - Pr[Packet has no error]= $1 - (1 - p)^n$ $\approx 1 - 1/e$,

provided that p = 1/n, where e is Euler's number.

Example

- So, if the bit error rate is 1/n then a packet of length n will have error with a "non-negligible" probability $\sim 1 1/e$.
- Following packet lengths for network types
 - Wireless links: packet length $n = 10^4$ bits
 - ISDN line: packet length $n = 10^6$ bits
 - Optical fiber: packet length $n=10^{10}$ bits will give you probability $\sim 1-1/e$ that a transmitted packet in this medium will have error!
- That's no good!

Concept of Redundancy

- Error detection uses the concept of redundancy:
 - this means adding extra bits at the source in order to detect errors at the destination.
- Example: repeat every bit twice.
 - Receiver will do a bit-by-bit comparison.
 - Error detection system is good but it is not efficient.
- Rather than repeat the whole string twice a shorter stream of bits could be appended.

Modelling errors

• A typical error detection/correction algorithm performs an operation

word
$$\rightarrow$$
 code.

transforming the original word into a code word (or code for short).

- We measure efficiency with the **Redundancy**

$$Redundancy = \frac{length \ of \ code}{length \ of \ word}$$

XOR or mod2

• If $b, b' \in \{0, 1\}$ are bits

$$b \oplus b' = \begin{cases} 0 & \text{if } b = b' = 0 \text{ or } b = b' = 1\\ 1 & \text{otherwise} \end{cases}$$

- Sometimes we also write $b + b' \mod 2$.
- Sometimes we also use it for sequences of bits

$$(x_1x_2\cdots x_n)\oplus (y_1y_2\cdots y_n)=(x_1\oplus y_1)(x_2\oplus y_2)\cdots (x_n\oplus y_n)$$

• Example:

$$(01101) \oplus (10011) = 11110$$

VRC: Vertical Redundancy (or Parity) Check

- Based on bit XORing a sequence $x_1x_2\cdots x_n$.
- Single bit equal to the exclusive-or of the bits is added,

Parity
$$(x_1 x_2 \cdots x_n) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

$$\left(\sum_{i=1}^n x_i\right) \mod 2.$$

- If number of 1 bits is even result is 0, otherwise 1
- Given string x of length n, the codeword of x is a string of length n+1 defined by $C(x)=x\mathrm{Parity}(x)$
- Detects a single error

• Example:

word: 00101010

check bit:

code: 001010101

• When the receiver "receives the code" transmitted through the channel, it checks whether or not the sum of the bits is equal to 0 modulo 2.

LRC: Longitudinal Redundancy (or 2d-Parity) Check

• Bits placed in $m \times n$ array with $m, n \geq 2$.

Rows are sent one after the other.

One parity bit used for each row and column (total of m + n bits).

- Detects up to 2 errors
- Corrects a single error
- Often used with ASCII stream (m = 8)

• Consider a sequence of 35 bits:

100101001110101111000110001110011001

• Arrange the sequence as a 5×7 matrix and add the check bits (one for each row and column).

• Transmit as a sequence.

• The receiver arranges the sequence into a matrix

and checks the condition.

• There is a single error! Can you locate the error?

• The receiver arranges the sequence into a matrix

and checks the condition.

- Here there are two errors!
- Can you locate the errors? No!
- You can only detect that two errors occurred!

• It is even possible you will not notice any error!!!

• If all four bits in "boxes" are in error you will not notice anything!

Cyclic Redundancy Check Codes

- Based on the theory of cyclic error-correcting codes.
- Using cyclic codes, encode messages by adding a fixed-length check value, for the purpose of error detection in communication networks.
 - First proposed by W. Wesley Peterson in 1961.
- Most commonly used error detection scheme in use are Cyclic Redundancy Check (CRC) codes.

Polynomials in Z_2

- A polynomial is an expression that can be built from constants and symbols called variables by means of addition, multiplication and exponentiation to a non-negative power.
- A polynomial in a single indeterminate x can always be written (or rewritten) in the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where a_0, \ldots, a_n are constants and x is the variable.

• This can be expressed more concisely by using summation notation:

$$\sum_{i=0}^{n} a_i x^i$$

Polynomials in Z_2

- Two such polynomial expressions may be added, multiplied, divided, etc
- Example: Addition

$$(x^3 + x + 1) + (x^2 + x + 1) = x^3 + x^2$$

• Example: Multiplication

$$(x^3 + x + 1) \cdot (x^2 + x + 1) = x^5 + x^4 + 1$$

Cyclic Redundancy Check Codes: Definitions

- L: length of check bits.
- K: length of data bits.
- Bit strings are treated as polynomials over \mathbb{Z}_2 .
- A bit string $s_{K-1}s_{K-2}\cdots s_1s_0$ is encoded as a polynomial in Z_2 :

$$s(x) = s_{K-1}x^{K-1} + s_{K-2}x^{K-2} + \dots + s_1x + s_0$$

• Addition and multiplication of polynomials is done mod 2

Polynomials and Bit Sequences

• In the transformation between polynomials and bit sequences "missing coefficients of the polynomial" must be included in the bit sequence as 0s.

$$x^{7} + x^{5} + x^{2} + x + 1$$
 \downarrow
 $x^{7} + 0x^{6} + x^{5} + 0x^{4} + 0x^{3} + x^{2} + x + 1$
 \downarrow
10100111

• Conversely, 0s in the bit sequence are missing coefficients in the polynomial.

Polynomials

- A monomial is a number times a power of x: ax^n
 - $-3x^2, 2x^7, 8$ are all monomials.
- A polynomial is a sum or difference of monomials
 - $-4x^5-3x^2-1,4x^2,2$ are all polynomials
- When we write $P(x) = 3x^3 2x^2 + 1$ we say "P of x"
- To add or subtract polynomials, we just collect like terms:
 - Example: $P(x) = x^2 + 3x + 5$ and $Q(x) = 4x^3 2x^2 + 3x 2$
- How do we multiply polynomials?
 - Example: P(x) = 3x + 5 and $Q(x) = 4x^3 + 3x 2$

Polynomials in mod2 Arithmetic

Lets try to do all previous examples mod 2

- A monomial is a number times a power of x:
 - $-3x^2 = x^2, 2x^7 = 0, 8 = 0$ are all monomials.
- A polynomial is a sum or difference of monomials

$$-4x^5-3x^2-1=x^2-1, 4x^2=0, 2=0$$
 are all polynomials

- To add or subtract polynomials, we just collect like terms:
 - Example: $P(x) = x^2 + 3x + 5 = x^2 + x + 1$ and $Q(x) = 4x^3 2x^2 + 3x 2 = x$
- How do we multiply polynomials?
 - Example: P(x) = 3x + 5 = x + 1 and $Q(x) = 4x^3 + 3x 2 = x$

Somehow, things get simpler mod 2!

CRC Algorithm

- 1. **Input:** sequence of data bits of length K and a generator polynomial of degree L.
- 2. Append L bits (also called CRC bits) to the K data bits

$$oxed{DATA bits}
ightarrow oxed{DATA bits} oxed{CRC bits}$$

in such a way that the resulting sequence of bits gives rise to a polynomial that is divisible by the generator polynomial.

- 3. Send these K + L bits.
- 4. At the receiving end compute the data bits and check the error condition.

DATA bits
$$| CRC bits | \rightarrow | DATA bits$$

Computing CRCs

- Data bits: $s(x) = s_{K-1}x^{K-1} + \dots + s_1x + s_0$
- Use a specially chosen function for generating check bits: $g(x) = x^L + g_{L-1}x^{L-1} + \cdots + g_1x + 1$

Note: $g_L = g_0 = 1$

• Divide $s(x)x^L$ by g(x) and set

$$c(x) = \text{Remainder in division} \left[\frac{s(x)x^L}{g(x)} \right]$$

- Check bits: $c(x) = c_{L-1}x^{L-1} + \cdots + c_1x + c_0$
- Codeword:

$$y(x) = s(x)x^{L} + c(x)$$

$$= s_{K-1}x^{L+K-1} + \dots + s_0x^{L} + c_{L-1}x^{L-1} + \dots + c_0$$

Example: CRC(1/2)

- $s(x) = x^2 + 1, g(x) = x^3 + x^2 + 1$
- $c(x) = \text{Remainder in division} \left[\frac{(x^2+1)x^3}{x^3+x^2+1} \right]$
- Elementary division gives that $c(x) = x^2 + x$.

	$x^2 + x$				
$x^3 + x^2 + 1$	x^5		$+x^3$		
	$\int x^5$	$+x^4$		$+x^2$	
		x^4	$+x^3$	$+x^2$	
		x^4	$+x^3$		+x
				$+x^2$	+x

• Codeword is $y(x) = s(x)x^3 + c(x) = x^5 + x^3 + x^2 + x$

Example CRC (2/2)

	110 (Quotient)		
Generator	Message		
$1101(=x^3 + x^2 + 1)$	$101000(=x^5+x^3)$		
$Addition\ mod 2 \rightarrow$	1101		
	1110		
$Addition\ mod 2 \rightarrow$	1101		
	0110 (Remainder)		
	Check bits		

Another Example: Polynomial Division (1/2)

- For D = 1010001101 we have $D(X) = X^9 + X^7 + X^3 + X^2 + 1$
- For P = 110101 we have $P(X) = X^5 + X^4 + X^2 + 1$
- When we divide D(X) by P(X) we should end up with R = 01110, which corresponds to $R(X) = X^3 + X^2 + X$
- Lets check why this is true.

Another Example: Polynomial Division (2/2)

- Let $D(X) = X^9 + X^7 + X^3 + X^2 + 1$, $P(X) = X^5 + X^4 + X^2 + 1$
- Hence, $X^5D(X) = X^{14} + X^{12} + X^8 + X^7 + X^5$
- Then the division $\frac{X^5D(X)}{P(X)} = Q(X) + \frac{R(X)}{P(X)}$ yields

$$P(X) \longrightarrow X^{5} + X^{4} + X^{2} + 1 / X^{14} \qquad X^{12} \qquad X^{8} + X^{7} + X^{5} \qquad \longleftarrow Q(X)$$

$$\underbrace{X^{14} + X^{13} + X^{11} + X^{9}}_{X^{13} + X^{12} + X^{11} + X^{9} + X^{8}}$$

$$\underbrace{X^{13} + X^{12} + X^{10} + X^{8}}_{X^{11} + X^{10} + X^{9} + X^{8}}$$

$$\underbrace{X^{11} + X^{10} + X^{8} + X^{6}}_{X^{9} + X^{8} + X^{7} + X^{6} + X^{5}}$$

$$\underbrace{X^{9} + X^{8} + X^{7} + X^{6} + X^{5}}_{X^{9} + X^{8} + X^{7} + X^{5} + X^{4}}$$

$$\underbrace{X^{7} + X^{5} + X^{4}}_{X^{6} + X^{5} + X^{4}}$$

$$\underbrace{X^{7} + X^{6} + X^{4} + X^{2}}_{X^{6} + X^{5} + X^{3} + X^{4}}$$

$$\underbrace{X^{6} + X^{5} + X^{3} + X}_{X^{3} + X^{2} + X} \longleftarrow R(X)$$

Shift-Register

• Division easily computed in hardware using shift register circuit

- Rectangles store a single bit. The circles \oplus denote XOR gates. Big circles indicate multiplication by g_i .
- Register loaded with L bits: $s_{K-L+1} \cdots s_{K-1} s_K$, with s_K first.
- At each clock pulse a new bit of s(x) comes in at the left. Register reads in corresponding mod 2 sum of feedback plus contents of previous stage. After K shifts the switch to the right moves to the horizontal position and the CRC is read out.

Properties of CRC

Why are all code words divisible by g(x), and vice versa?

- sender computes the code c(x) from s(x) and transmits $y(x) = s(x)x^L + c(x)$
- Computation is done as follows: Let z(x) be quotient of $s(x)x^L/g(x)$, i.e., $s(x)x^L=g(x)z(x)+c(x)$
- Since subtraction is the same as addition mod 2 we get

$$y(x) = s(x)x^{L} + c(x)$$
$$= s(x)x^{L} - c(x)$$
$$= g(x)z(x)$$

Hence, g(x) divides y(x).

• **Recall:** divisibility by g(x) was our error detection condition!

Detecting Single Errors

- Assume receiver gets w(x) = y(x) + e(x), where e(x) represents the errors' polynomial.
- Receiver calculates remainder and if result is zero then accepts, otherwise detects error.
- Can a single error be undetected?
 - Code word y(x) is divisible by g(x).
 - Undetected means e(x) divisible by g(x).
 - Single error implies $e(x) = x^i$ for some i
 - But g(x) has at least two non-zero terms $(x^L, 1)$ and therefore so must e(x).
- It follows that single errors are detected!

Selection of CRCs

- Most important part of implementing the CRC algorithm is the selection of generator polynomial.
- Polynomial is chosen so as to maximize the error-detecting capabilities while minimizing overall collision probabilities.
- Most important attribute is length (largest degree(exponent) +1 of any one term in the polynomial), because of its direct influence on the length of the computed check value.
- Design of the CRC polynomial depends on
 - max length of block to be protected (data + CRC bits),
 - desired error protection features,
 - type of resources for implementing the CRC, and
 - desired performance

Summary of CRCs

Several CRC polynomials have been adopted by the International Telecommunication Union (ITU) and the Consultative Committee for International Telephony and Telegraphy (CCITT).

- CRC-8 (Used in ATM headers): $x^8 + x^2 + x + 1$
- CRC-16 (Used in HDLC): $g(x) = x^{16} + x^{15} + x^2 + 1$
- CRC-CCITT: $g(x) = x^{16} + x^{12} + x^5 + 1$
- CRC-32 (Used in LANs):

$$g(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + 1$$

Checksum

Sender:

- 1. Divide data $B_1 \cdots B_k$ into k blocks B_1, \ldots, B_k each of a fixed size n bits (usually n = 16).
- 2. Append to $B_1 \cdots B_k$ the sum S (**checksum**) modulo $(2^n 1)$.
- 3. send $B_1 \cdots B_k \mid S$

Receiver:

- 1. Detach blocks B_1, \ldots, B_k and S from $B_1 \cdots B_k \mid S$
- 2. Check that

$$\sum_{i=1}^{k} B_i \equiv S \bmod (2^n - 1)$$

Checksum: Example

Let the input have twenty bits and let the block size be n = 5.

Input: 010011101101011111110

- 1. Break into 4 Blocks: 01001 11011 01011 11110
- 2. Convert each block to integers: 9 27 11 30
- 3. Take the sum $mod(2^5 1)$:

$$9 + 27 + 11 + 30 \equiv 77 \equiv 15 \mod (2^5 - 1)$$

4. Convert to binary (block of 5 bits): 01111

Output (append value to input):

This is the output transmitted by the sender.

Exercises^a

- 1. Consider the following two ways to make the correction when discovering that a sequence of bits is in error: 1) Ask for the bits again. 2) Correct them yourself. Discuss advantages and disadvantages.
- 2. Why is is a small frame header desirable?
- 3. The Internet needs a point-to-point protocol (PPP) for a variety of purposes, including router-to-router traffic and home user-to-ISP traffic. Discuss some of the available protocols.
- 4. A bit string, 011110111111011111110, needs to be transmitted at the data link layer. What is the string actually transmitted after bit stuffing?
- 5. To provide more reliability than a single parity bit can give, an error-detecting coding scheme uses one parity bit for checking

^aNot to hand in!

all the odd-numbered bits and a second parity bit for all the even-numbered bits. Discuss advantages and disadvantages.

- 6. What is the remainder obtained by dividing $x^7 + x^5 + 1$ by the generator polynomial $x^3 + 1$?
- 7. Data link protocols almost always put the CRC in a trailer rather than in a header. Why?