Daniel Perry (dperry@cs.utah.edu) cs6210 / Fall 2005 Homework 5

I implemented newtons algorithm, and it seemed to work perfectly for almost any situation (I tried values of P (p-th root) from 2 to 30, and values of A from 2 to 15). In every case it came up with the exact same answer as the math.h function pow(), or came within 10e-7 of it (that was the difference between iterations I used to stop iterating).

Some results:

2 2 1.4142135 5 18 8 1.122462 20 14 1.1410545 29 2 1.0241896 29 14 1.0952712	Some results.				
18 8 1.122462 20 14 1.1410545 29 2 1.0241896 29 14 1.0952712	P (power)	A	A^(1/P)	iterations	
20 14 1.1410545 29 2 1.0241896 29 14 1.0952712	2	2	1.4142135	5	
29 2 1.0241896 29 14 1.0952712	18	8	1.122462	9	
29 14 1.0952712	20	14	1.1410545	13	
	29	2	1.0241896	5	
	29	14	1.0952712	13	
30 132 1.1767544	30	132	1.1767544	50	

2)

a)Analysis is attached to back (handwritten paper). summary:

g1 – diverges

g2 – converges

g3 – converges

g4 - converges

b) By implementing the four fixed point problems I found the implementation matched my analysis. I found that g1 diverged, g2 would converge, g3 would converge about half the time of g2, and g4 would converge just under half the time of g3. Results:

xθ	g1 iterations	g2 iterations	g3 iterations	g4 iterations
5	diverges	45	20	7
10	diverges	46	20	8
20	diverges	46	20	9

3) In this implementation I found that both types of sampling (a-uniform, b-chebyshev's zeros), had similar results with the max difference between the interpolation and the original function with values of j very small. However as j increased, the uniform

Daniel Perry (dperry@cs.utah.edu) cs6210 / Fall 2005 Homework 5

sampling slowly increased in max difference, while the chebyshev zeros sampled implementation didn't increase in difference as much.

Results.

j	max diff w/ Uniform	max diff w/ Chebyshev
3	0.646154	0.828912
4	0.707014	1.09565
6	0.432692	0.846387
8	0.247359	0.703027
10	0.298402	0.570512
16	2.09904	0.264316

I've attached my code as well. It can also be found at http://www.cs.utah.edu/~dperry/classes/cs6210/.