Turbomachinery CAD CWM PART 3A

RADIAL FLOW WATER TURBINE

Exercise 2 - Design, Manufacture and Testing of a Runner for Given Operating Point Conditions

Runner Performance

This part of the exercise is concerned with the testing of the runner over a range of flow rates through the turbine. Here, a series of measurements will be taken for varied settings of applied load at a target head and guide vane opening. The performance will be assessed in terms of power efficiency η versus flow rate Q. If a successful design has been achieved, the resulting curve should peak at the design operating point condition Q. Note that 1 bar = 10kPa.

MEASURED QUANTITIES

H FLUID ENERGY HEAD	(bar)
Q FLUID FLOW RATE	(litres/sec)
N RUNNER SPEED	(revs/min)
T ALTERNATOR TORQUE	(Nm)

Power Out

$$P_0 = T \times \omega = T \times N/60 \times 2\pi = 0.10472 \times T \times N (W)$$

Power In

$$P_i = \rho g Q H = 1000 \times 9.81 \times Q \times 10^{-3} \times H \times 10.19$$

= 100 \times Q \times H (W)

Efficiency
$$\eta = P_0/P_i$$

NAME:	COLLEGE:	DATE:
Claudio Vestini	Keble	04/06/2024
DESIGN ANGLES:	$\beta_1 = 107.616$	$\beta_2 = 26.53$

OPERATING POINT:			
H = 0.7 bar	Q = 2.0 l/s	N = 1300 rpm	$\alpha_{\rm o} = 9.8^{\circ}$

 Θ° = Guide Vane Indicator Angle $\approx 63\%$

Use Matlab to Plot efficiency η against volumetric flow Q for the points recorded, along with a best fit curve. Note the value of Q for maximum η . Include a title, a grid, and axes labels and units.

Include the graph and suitable comments in your report.

$$(Q)_{\eta \text{ max}} = 2 \text{ I/s}$$
 $(\eta)_{\text{max}} = 23\%$