Internetworking Tutorial 2 – Solutions

Addressing and Subnetting

Remember:

IP Address Classes

Class A	1 – 127	(Network 127 is rese Leading bit pattern	rved for 0	r loopback and internal testing) 00000000.000000000.00000000.00000000 Network . Host . Host . Host	
Class B	128 – 191	Leading bit pattern	10	1000000.00000000.00000000.00000000 Network . Network . Host . Host	
Class C	192 – 223	Leading bit pattern	110	11000000.000000000.00000000.0000000000	
Class D	224 – 239	(Reserved for multicast)			
Class E	240 – 255	(Reserved for experi	mental,	, used for research)	

Private Address Space

Class A	10.0.0.0 to 10.255.255.255
Class B	172.16.0.0 to 172.31.255.255
Class C	192.168.0.0 to 192.168.255.255

Default Subnet Masks

Class A	255.0.0.0
Class B	255.255.0.0
Class C	255.255.255.0

Exercise 1:Convert the following binary numbers to decimal by using the provided table

Binary Value	128 = 2 ⁷	64=2 ⁶	32=2 ⁵	16=2 ⁴	8=2 ³	4=2 ²	2=21	1=2 ⁰	Decimal Value
00011011	0	0	0	1	1	0	1	1	27
10101010	1	0	1	0	1	0	1	0	170
01101111	0	1	1	0	1	1	1	1	111
11111000	1	1	1	1	1	0	0	0	248
00100000	0	0	1	0	0	0	0	0	32
01010101	0	1	0	1	0	1	0	1	85
00111110	0	0	1	1	1	1	1	0	62
00000011	0	0	0	0	0	0	1	1	3
11101101	1	1	1	0	1	1	0	1	237
11000000	1	1	0	0	0	0	0	0	192

Exercise 2:Convert the following decimal numbers to binary and complete the provided table.

Decimal	128	64	32	16	8	4	2	1
Value								
255	1	1	1	1	1	1	1	1
192	1	1	0	0	0	0	0	0
172	1	0	1	0	1	1	0	0
<mark>256</mark>		nary bits to esented	None of the octets of an IPv4 address can have a decimal value of more than 255				ue of more	
1	0	0	0	0	0	0	0	1
13	0	0	0	0	1	1	0	1
204	1	1	0	0	1	1	0	0
10	0	0	0	0	1	0	1	0
98	0	1	1	0	0	0	1	0
179	1	0	1	1	0	0	1	1
224	1	1	1	0	0	0	0	0
239	1	1	1	0	1	1	1	1

Exercise 3:

Identify the Class the following IP addresses belong to. Advise the provided information on the first page.

IP Address	Class
10.250.1.1	A
150.10.15.0	В
1492.14.2.0	Invalid IP
148.17.9.1	В
193.42.1.1	С
126.8.156.4	В
220.200.24.1	С
231.230.46.58	D
177.100.18.4	В
119.18.46.9	A
249.240.82.79	Е
199.156.76.57	С
10. <mark>256</mark> .2.3	Invalid IP
95.0.21.90	A

IPv4 address can NOT hold a decimal value per octet (8 bits field) greater than 255. Check in Exercise 2, 255 is the largest decimal value that can be represented by using 8 binary bits.

Exercise 4:

Identify the network and host portions for the following IP addresses.

IP Address	Network address (network ID)	Host address (host ID)		
10.250.1.1	10.0.0.0	0.250.1.1		
150.10.15.0	150.10.0.0	0.0.15.0		
1492.14.2.0	Invalid IP – it includes a valu	ue greater than 255		
148.17.9.1	148.17.0.0	0.0.9.1		
193.42.1.1	19342.1.0	0.0.0.1		
126.8.156.4	126.0.0.0	0.8.156.4		
220.200.24.1	220.200.24.0	0.0.0.1		
231.230.46.58	Class D address – cannot be splitted			
177.100.18.4	177.100.0.0	0.0.18.4		
119.18.46.9	119.0.0.0	0.18.46.9		
249.240.82.79	Class E – cannot be splitted.			
199.156.76.57	199.156.76.0	0.0.0.57		
10 <mark>.256</mark> .2.3	Invalid IP – it includes a value greater than 255			
95.0.21.90	95.0.0.0	0.0.21.90		

Exercise 5:

Calculate the network address and host address for the following IP addresses as defined by the provided custom subnet mask.

For example:

156.222.32.27 / 255.255.255.0 → 156.222.32.0 (network) and 0.0.0.27 (host)

IP Address / Subnet mask	Network Address (Network ID)	Host Address (Host ID)
188.11.18.3 / 255.255.0.0	188.11.0.0	0.0.18.3
10.11.48.81 / 255.255.255.0	10.11.48.0	0.0.0.81
192.168.23.185 / 255.255.255.0	192.168.23.0	0.0.0.185
150.203.23.19 / 255.255.0.0	150.203.0.0	0.0.23.19
10.11.12.13 / 255.0.0.0	10.0.0.0	0.11.12.13
186.14.25.114 / 255.255.255.0	186.14.25.0	0.0.0.114
199.21.201.152 / 255.0.0.0	199.0.0.0	0.21.201.152
191.55.168.123 / 255.255.255.0	191.55.168.0	0.0.0.123
28.252.250.254 / 255.255.0.0	28.252.0.0	0.0.250.254
192.168.254.254 / 255.255.0.0	192.168.0.0	0.0.254.254
10.1.5.254 / 255.255.255.0	10.1.5.0	0.0.0.254

Exercise 6:

For the following IP address and the provided subnet mask calculate the number of subnets and hosts you have for each subnet.

<u>Scenario 1 - Default subnet mask</u>

- IP address: 192.100.10.0
- Number of subnets = 1 (There are no subnets, only the single class C network with address 192.100.10.0. as we are using the default mask.
- Number of hosts per subnet = Like every **Class C** network, it holds (2^8) 256 hosts **in total**. The usable host addresses are 254.

Scenario 2 – Custom subnet mask

- IP address: 192.100.10.0
- Custom Subnet mask: 255.255.255.240 Convert the mask into binary: 111111111111111111111111111111110000
- Number of subnets = The custom subnet mask is different by **4 bits** from the default mask (255.255.255.0). These **4** different bits can provide **16 (2^4) subnets.**
- Number of hosts per subnet = The remaining 4 bits from the Host ID will provide 16 addresses (total) per subnet, of which 14 are usable.