Recurrent Neural Network (RNN) under Different Levels of Noise Improve The Accuracy of Identification of Truck Types by Using

M. E. Rinker, Sr. School of Construction Management

Master Thesis Defense

Pleader: Qian Shi

Chair: Dr. Flood

Committee members:

Dr. Costin & Dr. Gheisari

2/28/2020 RNK 312

Weigh-in-Motion (WIM) Problem

Weigh-in-Motion (WIM)

WIM problem is to determine the properties of the passing truck from bridge strain responses without causing the truck to stop completely. It can be divided into 3 parts:

- ※ Process of identification
- * Truck type classification
- **XX** Obtain Axle loading, axle spacing, and speed of Truck

02

significantly improve the efficiency of road

01 Efficient

transportation and avoid potential traffic

accidents.

02 Economical

Construction costs on weighting stations and highway auxiliary roads can be avoided.

Truck Attribute

Figure 3-2. Nine truck types used in this research adopted from Gagarin and Flood's result (<u>Gargarin</u> & Flood, 1994)

Number of patterns for one truck: 2500

Total number of patterns : 2500 * 9 = 22500

- Axle load varies
- Axle spacing varies

Truck Tuno			Axle Loads (KN)	ads (KN)				Axle S	Axle Spacings (m)	(m	
adkı vanı	0.000	2013	2 3	-		10	6 1 and 2	2 and 3 3 and 4 4 and 5 5 and 6	3 and 4	4 and 5	5 and 6
1	1 13.3-53.4 8.8-80.1	8.8-80.1					2.74-6.10				
2	2 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1				2.74-6.10	1.22			
3	3 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1				2.74-4.98	5.49-11.6			
4	4 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	1.22	1.22	VIII.COST	
5	5 13.3-62.3 8.8-71.2	8.8-71.2	8.8-71.2	8.8-80.1			2.74-6.10	1.22	1.22 6.10-11.6		
9	6 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	6.10-11.6	1.22		
7	7 13.3-53.4 8.8-71.2	8.8-71.2	8.8-71.2	8.8-80.1	8.8-80.1		2.74-6.10	1.22	1.22 6.10-11.6	1.22	
80	13.3-53.4	8.8-71.2	8 13.3-53.4 8.8-71.2 8.8-71.2 8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1	2.74-6.10	1.22	1.22 6.10-11.6	1.22	1.22
6	13.3-53.4	8.8-80.1	9 13.3-53.4 8.8-80.1 8.8-80.1 8.8-80.1 8.8-80.1	8.8-80.1	8.8-80.1		2.74-5.49	5.49	3.05	5.49	nest

Figure 3-3Axle load range and spacing range of nine truck types adopted from Gagarin and Flood's result (<u>Gargarin</u> & Flood, 1994)

Massively Parallel Processing

Self-learning, Self-organizing

Adaptive Adaptive

Distributed Storage

Conventional Artificial Neural Network

Self-organizing network (SORG)

Input: Vector of real-values

Output: Binary values.

Type 1:1 All the other type: 0

Binary networking system (EHAM)

Input: matrix of binary values.

Output: Sams as SORG

Support Vector Machine (SVM)

SVM one-vs-all

Input: Time-series data

Classification: Nine sub-model

Output: Binary values.

Input: Time-series data

Classification: 36 Nine sub-Model

Output: Binary values

Literature Review: Deep Learning (Deep Neural Network)

Recurrent Neural Network (RNN)

- Time series data
- Stimulate dependency
- Memory function

Convolutional neural network (CNN)

Feature maps

- Grid-like data
- Static analysis
- Public feature extraction

Bridge Model

Number of patterns for each truck	2500
Velocity of Truck Sample frequency	2H 09
Velocity of Truck	10 m/s
Bridge Length	100 m

Truck Attribute

Figure 3-2. Nine truck types used in this research adopted from Gagarin and Flood's result (<u>Gargarin</u> & Flood, 1994)

Number of patterns for one truck: 2500

Total number of patterns : 2500 * 9 = 22500

- Axle load varies
- Axle spacing varies

Touch Tuno			Axle Los	Axle Loads (KN)				Axle S	Axle Spacings (m)	(n	
adkı vanı	0.000	25.5	2 3	-		10	6 1 and 2	2 and 3 and 4 4 and 5 5 and 6	3 and 4	4 and 5	5 and 6
1	1 13.3-53.4 8.8-80.1	8.8-80.1					2.74-6.10				
2	2 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1				2.74-6.10	1.22			
3	3 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1				2.74-4.98	5.49-11.6			
4	4 13.3-53.4 8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	1.22	1.22	VIII.COST	
5	5 13.3-62.3 8.8-71.2	8.8-71.2	8.8-71.2	8.8-80.1			2.74-6.10	1.22	1.22 6.10-11.6		
9	6 13.3-53,4 8.8-80.1		8.8-80.1	8.8-80.1			2.74-5.49	6.10-11.6	1.22		
7	7 13.3-53.4 8.8-71.2	8.8-71.2	8.8-71.2	8.8-80.1	8.8-80.1		2.74-6.10	1.22	1.22 6.10-11.6	1.22	*******
60	13.3-53.4	8.8-71.2	8 13.3-53.4 8.8-71.2 8.8-71.2 8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1	2.74-6.10	1.22	1.22 6.10-11.6	1.22	1.22
6	13.3-53.4	8.8-80.1	9 13.3-53.4 8.8-80.1 8.8-80.1 8.8-80.1 8.8-80.1	8.8-80.1	8.8-80.1		2.74-5.49	5.49	3.05	5.49	nest

Figure 3-3Axle load range and spacing range of nine truck types adopted from Gagarin and Flood's result (<u>Gargarin</u> & Flood, 1994)

Partial Data Plot

Truck 8

Truck 5

Truck 3

Truck 1

Noise Free VS Noise Level 10%

White Gaussian noise

 $\sigma_{np} = \sigma_{nf} + RMS(\sigma_{nf}) * N_i * N_{rand}$ (3.4) Where σ_{np} = Noise polluted Stress response of the Bridge, σ_{nf} = Noise free Stress response of the Bridge, RMS = Root mean Square Value, N_t = Level of Noise, N_{rand} = Random noise vector with zero mean and one standard Deviation

the response recording system cannot record the strain response accurately. So we use White Gaussian Noise to simulate the deficiency of the measurement system.

Recurrent Neural Network (RNN)

Figure 4-1. An unrolled RNN

Learning over a long-time range

Suitable for time-series data

Data	Normalization		Input: Time-	series data.	Output:	[001000000]
Data	Separation		Accuracy 45%: Training Input: Time-	5%: Validation	50%: Testing	
Metrics			Accuracy			
Categorical	Variables	Form	One-hot	Encoding		
Architecture Normalized Categorical Metrics Data	Exponential Variables	Function	Softmax			
Architecture			ensorFlow Long short- Softmax	term	memory	(LSTM)
Software	Library		TensorFlow			
Programming	Language		Python			

Accuracy and Loss Plot For 5% Level Noise from TensorFlow

Misclassification Results by RNN

Experiment Results and Analysis

Better Accuracy

Better Anti-Noise Ability

Unsolved Problem and Future Work

Extensibility

Combine with other Machine learning Models

Get real data from relevant agencies. (If possible)

Combined with the trend of modern modes of transportation. e.g.: Truck Platooning

Truck Platooning

Truck Platooning

Truck platooning is the linking of two or more trucks in convoy, using connectivity technology and automated driving support systems. These vehicles automatically maintain a set, close distance between each other when they are connected for certain parts of a journey, for instance on motorways.

Truck Platooning is a very promising mode of transportation. In future work, we can also add this type of truck to the classification.

