Science des données III : cours 6

Séries spatio-temporelles (partie 5)

Philippe Grosjean & Guyliann Engels

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

http://biodatascience-course.sciviews.org sdd@sciviews.org

Régularisation de séries temporelles

Objectifs du cours

- Pouvoir régulariser une série régulière
- Décider du meilleur pas de temps
- Choisir entre plusieurs méthodes de régularisation

Régularisation

- Série à trous = série régulière mais avec des valeurs manquantes. Dans ce cas, le pas de temps est connu
- Série irrégulière. Il faut décider du meilleur pas de temps (celui pour lequel on doit interpoler moins de valeurs)
- Utilisation des propriétés d'autocorrelation pour interpoler afin de "bricoler" une série régulière
- Méthode acceptable lorsque l'interpolation ne concerne pas trop de données

Choix du pas de temps pour la régularisation

- Fonctions regul.screen() et regul.adj() du package pastecs
- Test de combinaisons de divers pas de temps et de diverses dates de départ avec regul.screen()
- Garder la combinaison qui permet d'interpoler le moins de valeurs possibles
- Choix de la fenêtre de tolérance (pas d'interpolation, mais utilisation directe de la valeur mesurée dans la fenêtre) à l'aide de regul.adj()

Démonstration

Détermination des paramètres de régularisation pour le jeu de données releve (phytoplancton mesuré en une station), exemple de la série Melosul

Méthode de régularisation par valeurs constantes

La méthode par valeurs constantes est la plus simple: elle reporte simplement la valeurs la plus proche rencontrée à gauche (f=1), à droite (f=0), ou combinaison des deux (0>f<1):

$$X_j = x_i \cdot f + x_{i-1} \cdot (1 - f)$$

- Méthode impliquant le moins d'hypothèse sur la forme du signal
- Utile lorsque le signal est plutôt stable

En pratique...

Utiliser regconst() ou regul(method = "c"). Illustration sur relevel\$Melosul. Objet regul avec méthode plot() pour le diagnostic.

Méthode de régularisation linéaire

Interpolation linéaire entre le point avant et le point après :

$$X_j = \frac{(t_i - T_j).x_{i-1} + (T_j - t_{i-1}).x_i}{t_i - t_{i-1}}$$

- Méthode impliquant une variation linéaire ou quasi-linéaire d'un point à l'autre
- Technique la plus universelle (hypothèse raisonnable dans beaucoup de cas)

En pratique...

Utiliser reglin() ou regul(method = "l"). Illustration sur relevel\$Melosul.

Méthode de régularisation par courbes splines

- Interpolation polynômiale, en utilisant deux ou plus de points avant et après la valeur à interpoler
- Formulation mathématique complexe (voir syllabus)
- Prend en compte la variation du signal autour du point à interpoler en utilisant plus d'information que les deux méthodes précédentes
- Méthode efficace, mais attention aux pics et creux artificiels possibles (surtout si des valeurs négatives sont à éviter)

En pratique...

Utiliser regspline() ou regul(method = "s"). Illustration sur relevel\$Melosul.

Méthode de régularisation par les aires

- Utilisation de l'information présente dans une fenêtre glissante de largeur fixe.
- Moyenne des observations présentes dans le fenêtre pondérée par rapport à leur "aire d'influence" (voir schéma dans le syllabus)
- Prend en compte la densité variable d'information disponible localement
- Attention: méthode efficace pour des données physico-chimiques, mais un lissage est également effectué. Donc, le signal n'est plus brut!

En pratique...

Utiliser regarea() ou regul(method = "a"). Illustration sur relevel\$Melosul.

Prédiction (démonstration)

- Les modèles autorégressifs (AR, ARMA, ARIMA, etc.) permettent de modéliser un signal en prenant en compte l'autocorrelation. Ils peuvent être ensuite utilisés à des fins de prédiction
- Souvent, ces prédictions sont peu fiables, surtout pour des données en biologie contenant du bruit important
- Récemment, des techniques plus sophistiquées issues de l'intelligence artificielle apparaisse.

Démonstration

La méthode **prophet** développée par facebook fait partie de ces techniques plus efficaces, ... mais nécessitant beaucoup de données (milliers d'observations, voire bien plus)! Voir https://facebook.github.io/prophet/

