

Analisis Efecto de la menopausia 2019

CEMCAT

Santiago Pérez-Hoyos y Alex Sànchez Unitat d'Estadísitica i Bioinformàtica Vall d'Hebron Institut de Recerca (VHIR)

Efi	ect of menopause in EDSS trajectories for menopausic women	3
	Model of EDSS before-after Menopause	3
	Age and menopause analysis for all women.	.8
	Analysis change 50 years	12

Effect of menopause in EDSS trajectories for menopausic women

Data are available for a total of 490 women in the databases. In this analyis 74 women have been selected for evaluating changes after menopause in EDSS trajectories

All measurements during first year after CIS have not been considered in the analysis

Model of EDSS before-after Menopause

In this section we can found the results related to effect of time before and after menopause. The equation is shown below. The model include time since menopause and time after menopause. The first coefficient is the slope along time and the second is the change of the slope after the menopause. There is an increase of EDSS since the beginning but not change after menopause as can be seen in the figure and in the equation

 $edss=\beta_{0}+\beta_{1}(t_{since,quad\ menopause})+\beta_{2}(t_{after,quad\ menopause})$ Model modmenop1 Number of obs 2,062 Mixed-effects REML regression Group variable: nhc Number of groups = Obs per group: 5 28.2 min = avg = 108 Wald chi2(2) 15.69 Log restricted-likelihood = -1660.0962 0.0004 Prob > chi2 edss | coef. Std. Err. P > |z|[95% Conf. Interval] .0199764 .0598102 2.99 .0206572 .0989631 tmesura 0.003 _cons 0.000 1.409318 .1665705 [95% Conf. Interval] Random-effects Parameters | Estimate Std. Err. nhc: Unstructured var(tmesura) .0220553 .0048391 .0143467 .0339059 .064936 .0390898 .0101225 var(tmesur~r) .0235311 var(_cons) 1.967701 1.408085 cov(tmesura, tmesur~r) -.0203062 .0060359 -.0321364 -.008476 1074445 cov(tmesura,_cons) .1774655 .0357257 .2474865 cov(tmesur~r,_cons) -.1687275 .0478373 -.2624869 -.0749681 var(Residual) | .2183107 .0071685 .2047034 .2328226 LR test vs. linear model: chi2(6) = 4070.54 Prob > chi2 = 0.0000Note: LR test is conservative and provided only for reference.

Model modmenop1g

This is the same model but rearranging the coding, and tmesura is the slope after menopause and tmesura-before the change

Mixed-effects REML regression Group variable: nhc	Number of obs Number of groups	= =	2,062 73
	Obs per group: min avg max	g =	5 28.2 108
Log restricted-likelihood = -1660.0962	<pre>wald chi2(2) Prob > chi2</pre>	= =	15.69 0.0004

edss	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
tmesura	.0501193	.0199345	2.51	0.012	.0110484	.0891901
tmesura_before	.0096909	.028589	0.34	0.735	0463425	.0657243
_cons	1.73579	.1665705	10.42	0.000	1.409318	2.062262

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
nhc: Unstructured var(tmesura) var(tmesur~e) var(_cons) cov(tmesura,tmesur~e) cov(tmesura,_cons) cov(tmesur~e,_cons) var(Residual)	.0205328 .0390898 1.967703 0187836 .008738 .1687276	.0050347 .0101241 .3359608 .0062725 .0306074 .0478585	.0126979 .0235292 1.408081 0310774 0512513 .0749268	.033202 .0649413 2.74974 0064898 .0687274 .2625285

LR test vs. linear model: chi2(6) = 4070.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Next table show the differences before/after relapse

Variable	Effect
Time before menopause	0.0598 (95%CI 0.0207; 0.0990)
Slope after menopause	-0.0097 (95%CI -0.0657; 0.0463)
Time after menopause	0.0501 (95%CI 0.0110; 0.0892)

In next tables a polynomial fractional model has been fitted to relax the linear hypothesis of previous model. All the possible models tested are shown in the list. As it can be see no changes are identified around menopause. The polynomial fractional model suggests only a plateau at the end of follow up after 10 years since menopause. Obviously an infinite increase of EDSS is not reliable

```
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = X^-2*ln(X)-.1830064713
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = X^-1-.6368315999
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = X^-0.5-.798017293
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = ln(X)-.4512500228
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = x^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = X^-1.570273837
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = X^-2.465759924
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-2-.4055544866
-> gen double x_2 = X^3-3.871918297
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-1-.6368315999
-> gen double x_2 = X^-1*ln(X)-.2873702739
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-1-.6368315999
-> gen double x_1 = X^-1-.6368315999
-> gen double x_2 = In(X)-.4512500228
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-1-.6368315999
-> gen double x_2 = X^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-1-.6368315999
-> gen double x_2 = X^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^-1-.6368315999
-> gen double x_2 = X^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_2 = X^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_2 = X^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = X^0-1-.6368315999
-> gen double x_2 = X^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_2 = X^0.5-1.253105679
    (where: X = (x+15.15674161911011)/10)
-> gen double x_2 = X^0.5-1.253105679
    (where: X = (x+15.15674161911011)/10)
-> gen double x_2 = X^0.5-1.253105679
    (where:
```



```
(where: X = (x+15.15674161911011)/10)
    (where: X = (X+15.15674161911011)/10)
-> gen double x_1 = X^-1-.6368315999
-> gen double x_2 = X^3-3.871918297
  (where: X = (X+15.15674161911011)/10)
-> gen double x_1 = X^-0.5-.798017293
-> gen double x_2 = X^-0.5*ln(X)-.3601053216
  (where: X = (X+15.15674161911011)/10)
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^-0.5-.798017293
-> gen double x_2 = ln(x)-.4512500228
  (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^-0.5-.798017293
-> gen double x_2 = x^0.5-1.253105677
  (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^-0.5-.798017293
-> gen double x_2 = x-1.570273837
  (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^-0.5-.798017293
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^-0.5-.798017293
-> gen double x_2 = x^2-2.465759924
  (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^-0.5-.798017293
-> gen double x_2 = x^3-3.871918297
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = ln(x)-.4512500228
-> gen double x_2 = ln(x)^2-.203626583
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = ln(x)-.4512500228
-> gen double x_2 = x^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = ln(x)-.4512500228
-> gen double x_2 = x^0.5-1.253105677
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = ln(X)-.4512500228
-> gen double x_2 = X-1.570273837
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = ln(X)-.4512500228
-> gen double x_2 = x^2-2.465759924
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = ln(X)-.4512500228
-> gen double x_1 = ln(X)-.4512500228
-> gen double x_2 = x^3-3.871918297
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^0.5-1.253105677
-> gen double x_2 = x^3-3.871918297
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^0.5-1.253105677
-> gen double x_2 = x^1.570273837
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^0.5-1.253105677
-> gen double x_2 = x^2-2.465759924
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^3-3.871918297
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x^1.570273837
-> gen double x_2 = x^3-3.871918297
    (where: X = (x+15.15674161911011)/10)
-> gen double x_1 = x-1.570273837
-> gen double x_2 = x^3 - x^
  -> gen double x_2 = X^2-2.465759924

(where: X = (x+15.15674161911011)/10)

-> gen double x_1 = X-1.570273837

-> gen double x_2 = X^3-3.871918297

(where: X = (x+15.15674161911011)/10)

-> gen double x_1 = X^2-2.465759924

-> gen double x_2 = X^2*ln(X)-1.112674222

(where: X = (x+15.15674161911011)/10)

-> gen double x_1 = X^2-2.465759924

-> gen double x_1 = X^3-3.871918297

(where: X = (x+15.15674161911011)/10)

-> gen double x_1 = X^3-3.871918297

-> gen double x_2 = X^3*ln(X)-1.74720322

(where: X = (x+15.15674161911011)/10)
```

Best model has powers 2 2, deviance = 3332.87708144799

active results

This is the best polynomial model fit with powers 2, 2. Better than the equation is the figure of the predictions showed below.

Mixed-effects ML regression
Group variable: nhc

Number of obs = 2,062
Number of groups = 73

Obs per group:

			avg = max =	28.2 108			
Log likelihood = -1666.438	25	Wald chi2(Prob > chi		14.85 0.0006			
y Coef.	Std. Err. z	P> z	[95% Conf.	Interval]			
x_1 .502703 x_2 3381193 _cons 1.786862	.1643987 3.06 .1494617 -2.26 .1592483 11.22	0.024	.1804874 631059 1.474741	.8249186 0451797 2.098983			
Random-effects Parameter	's Estimate S	td. Err.	[95% Conf.	Interval]			
nhc: Unstructured sd(x_ sd(x_ sd(_cor corr(x_1,x_ corr(x_2,_cor	2) 1.030922 s) 1.348356 2) 9558002 s) .79003	: : : : :	· · · · · · · · · · · · · · · · · · ·	:			
sd(Residua	.1) .4684917						
LR test vs. linear model: chi2(6) = 4015.23							

Note: LR test is conservative and provided only for reference.

Age and menopause analysis for all women

The model evaluates the EDSS trajectories by age in a linear way. The first coefficient is the slope along age and the second is the difference of level between menopausic and no menopausic women. We did not find any difference for menopause variables. Age was centered at 45 years so the zero has a meaning

edss=\beta_{0}+\beta_{1}(t_{since age})								
Model modprine					-			
Mixed-effects Group variable	REML regression			Number Number	of obs = of groups =	13,718 490		
				Obs per	group: min = avg = max =	1 28.0 110		
Log restricted	d-likelihood = -:	13806.368		Wald ch Prob >	ni2(2) = chi2 =	23.07 0.0000		
edss	Coef. S	td. Err.	Z	P> z	[95% Conf.	Interval]		
	.0249001 .0							
menop Menopause _cons	 0853178 .: 1.62141 .:	1337793 0806567	-0.64 20.10	0.524 0.000	3475203 1.463326	.1768847 1.779494		
Random-effec	cts Parameters	 Estimat	e Std	 . Err.	[95% Conf.	Interval]		
nhc: Unstructu	ured var(edat) var(_cons) cov(edat,_cons)	.010038 11.2463 322832	35 .00 32 .95 27 .02	08092 92961 72597	.0085715 9.514899 3762607	.0117566 13.29281 2694047		
	var(Residual)	F						
LR test vs. linear model: chi2(3) = 19079.92								
Note: LR test is conservative and provided only for reference.								

VHIR-UEB-FOR-011 v.01

The model evaluates the existence of interaction among age and menopause. The p value for interaction is 0.02 indicating a higher slope for menopause group.

Model modintera

Mixed-effects REML regression
Group variable: nhc

Number of obs = 13,718
Number of groups = 490

Obs per group:

edss	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
edat_45	.0195063	.0057318	3.40	0.001	.0082722	.0307404
menop Menopause intermenop _cons	.260536 .0302737 1.555431	.2048803 .0135525 .0858697	1.27 2.23 18.11	0.203 0.025 0.000	141022 .0037114 1.387129	.6620939 .0568361 1.723732

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
nhc: Unstructured var(edat_45) var(_cons) cov(edat_45,_cons)	.0099746 2.514731 .128433	.0008037 .1834704 .0109022	.0085174 2.179663 .1070651	.0116811 2.901307 .1498009
var(Residual)	.3563939	.0044695	.3477406	.3652625
LR test vs. linear model: chi2	Prob > chi	2 = 0.0000		

Note: LR test is conservative and provided only for reference.

Akaike's information criterion and Bayesian information criterion

Model	l Obs	11(null)	11(model)	df	AIC	BIC
	13,718	·	-13807.26	8	27630.52	27690.73

Note: N=Obs used in calculating BIC; see [R] BIC note.

Next table shows the slopes and differences of trajectories between menopause and no menopause. It seems menopause are more accelarated than non menopause. In the second part of the table it can bi seen that the slop is .019 for non menopausic women and 0.049 for menopause women.

Variable	Effect
Principal effect age	0.0249 (95%CI 0.0147; 0.0351)
Principal effect menopause	-0.0853 (95%CI -0.3475; 0.1769)
Interaction model	
Age effect no menopause	0.0195 (95%CI 0.0083; 0.0307)
Menopause difference at 45	0.2605 (95%CI -0.1410; 0.6621)
Interaction (change in slope for menopause)	0.0303 (95%CI 0.0037; 0.0568)
Age effect menopause	0.0498 (95%CI 0.0257; 0.0738)

This figure have the results of the two slopes for both groups.

Women EDSS Trajectories

If we fit separated models by group the results are similar, In the next models we add age at cis in order to control differences in slope. There results are simila but confidence interval crosses each other.

eass	[Соет.	Sta. Err.	z	P> Z	[95% Conf.	Interval
edat_45 age_at_cis _cons	.0221992 .1395424 1.23265	.0056832 .0667987 .1774878	3.91 2.09 6.94	0.000 0.037 0.000	.0110603 .0086193 .88478	.0333381 .2704654 1.580519

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
nhc: Unstructured var(edat_45) var(_cons)	.0093225 2.432053	.0008267 .1968176	.0078351 2.075335	.0110922

cov(edat_45,_cons)	.1251733	.0115837	.1024696	.147877
var(Residual)	.3628917	.0049718	.3532768	.3727683
LR test vs. linear model: chi2(3	3) = 14812.	 69	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

Menopause							
Model modmeno	p 						
Mixed-effects Group variable	REML regression e: nhc			Number o	f obs = f groups =	2,235 74	
				Obs per (group: min = avg = max =	2 30.2 110	
Log restricted	d-likelihood = -2	2189.0935		Wald chii Prob > cl	2(2) = ni2 =	13.14 0.0014	
edss	Coef. St	d. Err.	z	P> z	[95% Conf.	Interval]	
edat_45 age_at_cis _cons	.0483314 .0 .3469604 .2 .1.311061 .4	0141408 3 2452486 1 1197655 3	.42 .41 .12	0.001 0.157 0.002	.0206159 133718 .4883363	.0760469 .8276388 2.133787	
Random-effe	cts Parameters	Estimate	 Std	. Err.	[95% Conf.	 Interval]	
nhc: Unstructi	ured var(edat_45) var(_cons) (edat_45,_cons)	.0134166 2.724464 .1250286	. 47	25857 48581 91663	.0091959 1.936072 .0678636	.0195745 3.833897 .1821935	
	var(Residual)	.3221485	.01	00314	.3030752	.3424221	
LR test vs. 1	inear model: chi2	2(3) = 3265.5	9		Prob > chi	2 = 0.0000	

Note: LR test is conservative and provided only for reference.

Analysis change 50 years

Mixed-effects REML regression

In this analysis data from all women EDSS trajectories have been collected. The aim is to test the change of Eddss trajectories before and after 50 years.

For the analysis we kept women that have a CIS between 18 and 55 five years old. and we compare menopause and not menopause data

All measurements during first year after CIS have not been considered in the analysis

The model include time since age 50 and time after age 50. The first coefficient is the slope along time and the second is the change of the slope after the age 50.

 $edss= \beta_{0} + \beta_{1}(t_{since} \quad age}) + \beta_{2}(t_{after} \quad age})$

This first model fits the change of EDSS trend after 50 years for all the women groups

Model mod_501

Number of obs =

Prob > chi2 = 0.0000

Group variable: nhc	Number of groups	5 =	445
	av	n = /g = ax =	1 26.3 108
Log restricted-likelihood = -10515.653	Wald chi2(2) Prob > chi2	= =	65.44 0.0000
		C	

edss	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
tmesura	.0469072	.0058893	7.96	0.000	.0353644	.0584499
tmesura_after	055515	.0209388	-2.65	0.008	0965542	0144758
_cons	1.985081	.1043908	19.02	0.000	1.780479	2.189684

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
nhc: Unstructured var(tmesura) var(tmesur~r) var(_cons) cov(tmesura,tmesur~r) cov(tmesura,_cons)	.0113488 .0480606 4.025592 01645 .1833124 3968059	.0009695 .0143522 .312853 .0032418 .0160679 .0729744	.0095991 .0267669 3.456828 0228038 .15182 5398331	.0134173 .0862941 4.687937 0100962 .2148049
cov(tmesur~r,_cons) var(Residual)		.0038014	.2715324	.2864354

Note: LR test is conservative and provided only for reference.

Akaike's information criterion and Bayesian information criterion

Model	Obs	11(null)	11(model)	df	AIC	BIC
. 1	11,701		-10515.65	10	21051.31	21124.98
	Note: N=Obs	used in	calculating	BIC; see	[R] BIC not	e.

Next table show the differences before/after relapse

LR test vs. linear model: chi2(6) = 19371.97

Slope Time before age 50	0.0469 (95%CI 0.0354; 0.0584)
Slope change after age 50	-0.0555 (95%CI -0.0966; -0.0145)
Slope Time after age 50	-0.0086 (95%CI -0.0454; 0.0282)

Women EDSS Trajectories

The second model model include time since age 50 and time after age 50 and the interaction with menopause cases . The first coefficient is the slope along time and the second is the change of the slope for menopausic before 50. The third is the change of the slope for Non menopausic after 50 and forth is the change after 50 for menopuasic

 $edss=\beta_{0}+\beta_{1}(t_{since}\quad age))+\beta_{1}(t_{since}\quad age))+\beta_{1}(t_{since}\quad age))+\beta_{2}(t_{since}\quad age))+\beta_{2}(t_{$ $+\beta_{2menop}(t_{after \quad age_menop}) +\beta_{3menop}$

Model mod_502

max =

Number of obs = Number of groups = 11,701 Mixed-effects REML regression Group variable: nhc Obs per group: min = 26.3 avg = 108

Wald chi2(5) Prob > chi2 67.16 Log restricted-likelihood = -10509.82 0.0000

edss	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
tmesura	.0426002	.0063552	6.70	0.000	.0301442	.0550562
mtmesura	.0250607	.0174326	1.44	0.151	0091065	.0592279
tmesura_after	0710376	.0403965	-1.76	0.079	1502132	.008138
mtmesura_after	0041706	.0526933	-0.08	0.937	1074475	.0991063
menop	.1376491	.2639848	0.52	0.602	3797515	.6550497
_cons	1.951056	.1160924	16.81	0.000	1.723519	2.178593

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
nhc: Unstructured var(tmesura) var(tmesurar) var(mtmesurar) var(mtmesurar) var(mtmesurar) var(_cons) cov(tmesura, tmesurar) cov(tmesura, mtmesurar) cov(tmesura, mtmesurar) cov(tmesura,cons) cov(tmesura,cons)	.0108214 .0354614 .0074835 .0163814 4.028209 0131156 0018245 0062389 .1826928	.000964 .0211234 .3127148 .0042378 	.0090878 .0110336 3.45965 0214215 	.0128857 .1139708 4.690205 0048096
cov(tmesur~r,mtmesu~r) cov(tmesur~r,_cons) cov(mtmesura,mtmesu~r) cov(mtmesura,_cons) cov(mtmesu~r,_cons)	.0029211 3571311 0004263 .000429 0746024	.101328i	5557306 	1585316
var(Residual)	.2789247	.0038008	.2715738	. 2864746

LR test vs. linear model: chi2(15) = 19054.99Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference. Warning: convergence not achieved $% \left(1\right) =\left\{ 1\right\} =\left$

Akaike's information criterion and Bayesian information criterion

Model	l Obs	11(null)	11(model)	df	AIC	BIC
·	11,701		-10509.82	19	21057.64	21197.62

Note: N=Obs used in calculating BIC; see [R] BIC note.

Next table show the slopes by menopause group before and after 50 years

Variable	Effect
Slope Time before age 50 no menopausic	0.0426 (95%CI 0.0301; 0.0551)
Change slope before age 50 for menopausic (interaction)	0.0251 (95%CI -0.0091; 0.0592)
Change slope Time after age 50	-0.0710 (95%CI -0.1502; 0.0081)
Change slope after age 50 for menopausic (interaction)	-0.0042 (95%CI -0.1074; 0.0991)
Menopause diffferences at age 50	0.1376 (95%CI -0.3798; 0.6550)

Women EDSS Trajectories

