Estruturas de Dados - Árvore Binária

Árvore

- Árvore: grafo acíclico e conexo
 - acíclico: grafo sem ciclos
 - conexo: grafo no qual existe um caminho entre quaisquer dois vértices
- Toda árvore é um grafo bipartido e planar
 - bipartido: podemos separar os vértices do grafo em dois conjuntos U e V, de modo que todas as arestas ligam um vértice de U a um vértice de V
 - planar: grafo que pode ser representado num plano sem que suas arestas se cruzem

Árvore binária

- Árvore (arbitrária): um nó pode ter uma quantidade arbitrária de filhos
- Árvore binária: um nó pode ter no máximo 2 filhos
- ullet Uma árvore binária ${\mathcal T}$ é definida recursivamente da seguinte forma
 - ullet se T=arnothing, T não possui nós, logo dizemos que a árvore T é vazia
 - se $T \neq \emptyset$, existe um nó r, chamado de raiz de T, tal que os demais nós estão divididos em duas árvores binárias diferentes, denominadas sub-árvore esquerda e sub-árvore direita de r
- Estrutura de uma árvore binária:

r (nó raiz)		
sub-árvore	sub-árvore	
esquerda	direita	

Árvore binária: estrutura

- Uma árvore é formada por um conjunto de nós
 - se esse conjunto é vazio, a árvore é vazia
 - se esse conjunto não é vazio, existe um nó raiz r
- Estrutura de um nó:

chave (ou chaves)	
esq: raiz da	dir: raiz da
sub-árvore	sub-árvore
esquerda	direita

Obs: uma sub-árvore pode ser vazia!

Árvore binária: representação gráfica

• Representação gráfica de uma árvore binária:

Árvore binária: representação gráfica

• Esse caso também representa uma árvore binária?

Árvore binária: representação gráfica

• Esse caso também representa uma árvore binária?

Sim, pois cada nó contém no máximo 2 filhos!

Árvore binária: características

 Caso um nó tenha as duas sub-árvores vazias, chamamos esse nó de folha

- Seja T uma árvore binária com n nós
 - T tem 2n sub-árvores
 - T possui n+1 sub-árvores vazias
 - T possui pelo menos uma folha
 - T possui no máximo $\left| \frac{n+1}{2} \right|$ folhas

Árvore binária: definições

- Caminho em uma árvore: sequência $v_0, v_1, v_2, \ldots, v_\ell$ de nós tal que $v_{i+1} = v_i \rightarrow esq$ ou $v_{i+1} = v_i \rightarrow dir$ para todo $i \in \{0, \ldots, \ell-1\}$, com comprimento mínimo de ℓ nós
- Altura de um nó v: maior comprimento de um caminho de v até uma folha
 - altura da árvore: altura da raiz r
- Nível (ou profundidade) de um nó ν : quantidade de passos (arestas) do caminho da raiz até ν
 - obs: não confundir nível e altura de um nó!
- Árvore completa: todos os nós que possuem sub-árvore vazia estão no último ou no penúltimo nível
 - Árvore completa: altura mínima para qualquer árvore com n nós
 - altura de uma árvore completa com n nós: $h(n) = 1 + \lfloor \log n \rfloor$
- Árvore cheia: todas as folhas estão no mesmo nível

