

Final Exam Review

Prof. Joseph Vybihal

Announcements

- Final Exam:
 - Monday, Dec 12, 2 PM
 - Sample final posted

- Final exam office hours
 - Open door & by appointment

Topics on Exam

- MIPS Programming
- Peripheral Interfacing
- Programming Interrupts
- Cache circuit architecture
- Performance & other mathematical calcs.
- Circuit knowledge
 - Floating point programming & circuits
 - Basic circuit architecture

Concepts on Exam

- Sys-calls
- Run-time stack
- Saving registers with subroutines
 - C convention, MIPS convention
- Dynamic Memory
- Basic circuit diagram reading
- Hardware interrupts
- Peripherals
- Performance

Final Exam Format

- 4 questions
 - Definitions (4 of them) $-\frac{3}{4}$ term
 - Two MIPS programming questions
 - Calculations (3 of them) all term
 - (2 bonus questions)
- Rules
 - Closed book, no calculators
 - Answer on exam
 - Part marks given
 - Teacher supplied help sheets

What is covered?

- Everything after the midterm
 - MIPS assembly language programming
 - Circuit interpretation
 - MIPS features
 - caches, virtual memory, dynamic memory, recursion / stacks
 - interrupts and exception handling
 - memory mapped I/O
 - Buses, synchronous vs. asynchronous I/O
- Things you should know but are not tested
 - Digital Math
 - Digital data formats
- Things to know, calculations:
 - Amdahl's Law
 - Polling & Interrupt overhead
 - Cache Performance

Introduction to Computer Systems

MIPS assembly language

MIPS assembly language						
Category	Instruction	Example	Meaning	Comments		
	add	add \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands; exception possible		
	subtract	sub \$1,\$2,\$3	\$1 = \$2 - \$3	3 operands; exception possible		
	add immediate	addi \$1,\$2,100	\$1 = \$2 + 100	+ constant; exception possible		
	add unsigned	addu \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands; no exceptions		
	subtract unsigned	subu \$1,\$2,\$3	\$1 = \$2 - \$3	3 operands; no exceptions		
	add imm. unsign.	addiu \$1,\$2,100	\$1 = \$2 + 100	+ constant; no exceptions		
Arithmetic	Move fr. copr. reg.	mfc0 \$1,\$epc	\$1 = \$epc	Used to get exception PC		
	multiply	mult \$2,\$3	Hi, Lo = \$2 ¥ \$3	64-bit signed product in Hi, Lo		
	multiply unsigned	multu \$2,\$3	Hi, Lo = \$2 ¥ \$3	64-bit unsigned product in Hi, Lo		
	divide	div \$2,\$3	Lo = \$2 ÷ \$3, Hi = \$2 mod \$3	Lo = quotient, Hi = remainder		
	divide unsigned	divu \$2,\$3	Lo = \$2 ÷ \$3, Hi = \$2 mod \$3	Unsigned quotient and remainder		
	Move from Hi	mfhi \$1	\$1 = Hi	Used to get copy of Hi		
	Move from Lo	mflo \$1	\$1 = Lo	Use to get copy of Lo		
	and	and \$1,\$2,\$3	\$1 = \$2 & \$3	3 register operands; logical AND		
	or	or \$1,\$2,\$3	\$1 = \$2 \$3	3 register operands; logical OR		
L	and immediate	andi \$1,\$2,100	\$1 = \$2 & 100	Logical AND register, constant		
Logical	or immediate	ori \$1,\$2,100	\$1 = \$2 100	Logical OR register, constant		
	shift left logical	sll \$1,\$2,10	\$1 = \$2 << 10	Shift left by constant		
	shift right logical	srl \$1,\$2,10	\$1 = \$2 >> 10	Shift right by constant		
	load word	lw \$1,100(\$2)	\$1 = Memory [\$2+100]	Data from memory to register		
Data transfer	store word	sw \$1,100(\$2)	Memory [\$2+100] = \$1	Data from register to memory		
uansici	load upper imm.	lui \$1,100	\$1 = 100 x 2 ¹⁶	Loads constant in upper 16 bits		
	branch on equal	beq \$1,\$2,100	if (\$1 == \$2) go to PC+4+100	Equal test; PC relative branch		
	branch on not eq.	bne \$1,\$2,100	if (\$1!= \$2) go to PC+4+100	Not equal test; PC relative		
Conditional	set on less than	slt \$1,\$2,\$3	if (\$2 < \$3) \$1=1; else \$1=0	Compare less than; 2's complemen		
branch	set less than imm.	slti \$1,\$2,100	if (\$2 < 100) \$1=1; else \$1=0	Compare < constant; 2's comp.		
	set less than uns.	sltu \$1,\$2,\$3	if (\$2 < \$3) \$1=1; else \$1=0	Compare less than; natural number		
	set l.t. imm. uns.	sltiu \$1,\$2,100	if (\$2 < 100) \$1=1; else \$1=0	Compare < constant; natural		
	jump	j 10000	go to 10000	Jump to target address		
Inconditional	jump register	jr \$31	go to \$31	For switch, procedure return		
jump	jump and link	jal 10000	\$31 = PC + 4; go to 10000	For procedure call		
			The second secon			

Given on Exam

THE COLUMN TO TH

MIPS floating-point operands

Name	Example	Comments
32 floating- point registers	\$f0, \$f1, \$f2,, \$f31	MIPS floating-point registers are used in pairs for double precision numbers.
2 ³⁰ memory words	Memory[0], Memory[4], , Memory[4294967292]	Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential words differ by 4. Memory holds data structures, such as arrays, and spilled registers, such as those saved on procedure calls.

MIPS floating-point assembly language

Category	Instruction	Example	Meaning	Comments
	FP add single	add.s \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (single precision)
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)
	FP multiply single	mul.s \$f2,\$f4,\$f6	$$f2 = $f4 \times $f6$	FP. multiply (single precision)
Arithmetic	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)
Anumeuc	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)
	FP multiply double	mul.d \$f2,\$f4,\$f6	$$f2 = $f4 \times $f6$	FP multiply (double precision)
-	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (double precision)
Data	load word copr. 1	lwc1 \$f1,100(\$s2)	\$f1 = Memory[\$s2 + 100]	32-bit data to FP register
transfer	store word copr. 1	swc1 \$f1,100(\$s2)	Memory[$$s2 + 100$] = $$f1$	32-bit data to memory
	branch on FP true	bclt 25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.
Condi-	branch on FP false	bc1f 25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.
tional branch	FP compare single (eq,ne,lt,le,gt,ge)	c.lt.s \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision

Introduction to Computer Systems COMP 273

COCY IN COM II OND III COM
(<u>*</u> <u>*</u>)

Remaining MIPS I	Name	Format	Pseudo MIPS	Name	Forma
exclusive or $(rs \oplus rt)$	xor	R	move have been all the all the second	move	rd,rs
exclusive or immediate	xori	physics:	absolute value	abs	rd,rs
$\operatorname{nor}(\neg(rs \lor rt))$	nor	R	not (¬rs)	not	rd,rs
shift right arithmetic	sra	R	negate (signed or <u>u</u> nsigned)	negs	rd,rs
shift left logical variable	sllv	R	rotate left	rol	rd,rs,rt
shift right logical variable	srlv	R	rotate right	ror	rd,rs,rt
shift right arith. variable	srav	R	mult. & don't check oflw (signed or uns.)	muls :	rd,rs,rt
			multiply & check oflw (signed or uns.)	mulos	rd,rs,rt
move to Hi	mthi	R leve	divide and check overflow	div	rd,rs,rt
move to Lo	mtlo	R	divide and don't check overflow	divu	rd,rs,rt
load halfword	1h	4.5,000	remainder (signed or unsigned)	rems	rd,rs,rt
load halfword unsigned	1hu	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	load immediate	li	rd,imm
store halfword	sh of	r sent sin	load address	1a	rd,addr
load word left (unaligned)	lwl	1.001	load double	1d	rd,addr
load word right (unaligned)	1wr	no I	store double	sd	rd,addr
store word left (unaligned)	swl	rgure Imaa	unaligned load word	ulw	rd,addr
store word right (unaligned)	swr	s test living	unaligned store word	USW	rd,addr
branch on less than zero	bltz	VIII - 1 - 1 - 1	unaligned load halfword (signed or uns.)	u1hs	rd,addr
branch on less or equal zero	blez	Mark I	unaligned store halfword	ush	rd,addr
branch on greater than zero	bgtz	setta kopa	branch	b	Label
branch on ≥ zero	bgez	ridigo. Let es	branch on equal zero	beqz	rs,L
branch on ≥ zero and link	bgezal	Sty I we	branch on ≥ (signed or <u>u</u> nsigned)	bges	rs,rt,L
branch on < zero and link	bltzal	en actions	branch on > (signed or unsigned)	bgts :	rs,rt,L
jump and link register	jalr	R	branch on ≤ (signed or <u>u</u> nsigned)	bles	rs,rt,L
return from exception	rfe	R	branch on < (signed or <u>u</u> nsigned)	blts	rs,rt,L
system call	syscall	R	set equal	seq	rd,rs,rt
break (cause exception)	break	. R	set not equal	sne	rd,rs,rt
move from FP to integer	mfc1	R	set greater or equal (signed or unsigned)	sges	rd,rs,rt
move to FP from integer	mtc1	R	set greater than (signed or unsigned)	sgt s	rd,rs,rt
FP move (<u>s</u> or <u>d</u>)	mov f	R	set less or equal (signed or unsigned)	sles	rd,rs,rt
FP absolute value (<u>s</u> or <u>d</u>)	abs $oldsymbol{f}$	R	set less than (signed or unsigned)	sles	rd,rs,rt
FP negate (<u>s</u> or <u>d</u>)	neg f	R	load to floating point (s or d)	f	rd,addr
FP convert (w, s, or d)	$\operatorname{cvt} ff$	R	store from floating point (s or d)	s $m{f}$	rd,addr
FP compare un (<u>s</u> or <u>d</u>)	c.xn.f	R			

ems		
3 Consister	IN COM PLANTS OF THE PARTY OF T	A COMPANY

Service	System call code	Arguments	Result
print_int	1	\$a0 = integer	
print_float	2	\$f12 = float	
print_double	3	\$f12 = double	
print_string	4	\$a0 = string	
read_int	5		integer (in \$v0)
read_float	6		float (in \$f0)
read_double	7		double (in \$f0)
read_string	8	\$a0 = buffer, \$a1 = length	
sbrk	9	\$a0 = amount	address (in \$v0)
exit	10		

FIGURE A.17 System services.

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
R:	op	rs	rt	rd	shamt	funct

				4.4 /4 44 .
I :	op	rs	rt	address / immediate

J: op target address

op: basic operation of the instruction (opcode)

rs: first source operand register

rt: second source operand register

rd: destination operand register

shamt: shift amount

funct: selects the specific variant of the opcode (function code)

address: offset for load/store instructions (+/-215) immediate: constants for immediate instructions

Name	Register Number	Usage	Preserved on call
\$zero	0	the constant value 0	n.a.
Sat	1	reserved for the assembler	n.a.
v0-v1	2-3	value for results and expressions	no
\$a0-\$a3	4-7	arguments (procedures/functions)	yes
\$t0-\$t7	8-15	temporaries	no
\$s0-\$s7	16-23	saved	yes
\$t8-\$t9	24-25	more temporaries	no
\$k0-\$k1	26-27	reserved for the operating system	n.a.
\$gp	28	global pointer	yes
\$sp	29	stack pointer	yes
\$fp	30	frame pointer	yes
\$ra	31	return address	yes

Questions?

Discussion Problems

- Assembler:
 - O(n) malloc & free implementation
 - Is there an O(1)?
 - Printer polling with address and status bit
 - Direct output to video screen buffer
 - OS buffered
 - Program direct

Problems

- How long would it take to write a 100 character string to a printer command buffer set to 0 for write:
 - Using direct interface to a 200 byte onboard printer buffer? (a move is 10cs)
 - Using polling and no buffer?
 (polling overhead of 30cs)
 - Using interrupts and no buffer?(overhead set 30cs, response 30cs)(does this work?)
 - Using DMA and interrupts with buffer?

Research/Project Opportunities

- Joseph Vybihal
 - The Prometheus Project
 - AI thinking simulation
 - Mobile robotics
 - Vision

COMP 400 COMP 396 Volunteering Summer Projects Work Study

