PHẦN II. MŨ VÀ LOGARIT

LŨY THÙA VÀ HÀM SỐ LŨY THÙA.

1. KHÁI NIÊM LŨY THỪA.

+ Lũy thừa với số mũ nguyên.

Cho n là một số nguyên dương.

Với a là số thực tùy ý, lũy thừa bậc n của a là tích của n thừa số a.

$$a^n = \underbrace{a.a....a}_{n}$$
 (*n* thừa số).

Với $a \neq 0$.

$$a^0 = 1 \qquad \qquad a^{-n} = \frac{1}{a^n}$$

Ta gọi a là cơ số, m là mũ số. Và chú ý 0^0 và 0^{-n} không có nghĩa.

+ Một số tính chất của lũy thừa

• Giả thuyết rằng mỗi biểu thức được xét đều có nghĩa:

$$\begin{split} a^{\alpha} \cdot a^{\beta} &= a^{\alpha + \beta}; \ \frac{a^{\alpha}}{a^{\beta}} &= a^{\alpha - \beta}; \ (a^{\alpha})^{\beta} &= a^{\alpha . \beta} \ ; \ (ab)^{\alpha} &= a^{\alpha} \cdot b^{\alpha}; \\ \left(\frac{a}{b}\right)^{\alpha} &= \frac{a^{\alpha}}{b^{\alpha}}; \ \left(\frac{a}{b}\right)^{-\alpha} &= \left(\frac{b}{a}\right)^{\alpha} \ . \end{split}$$

• Nếu a > 1 thì $a^{\alpha} > a^{\beta} \Leftrightarrow \alpha > \beta$;

Nếu 0 < a < 1 thì $a^{\alpha} > a^{\beta} \Leftrightarrow \alpha < \beta$.

- Với moi 0 < a < b, ta có: $a^m < b^m \Leftrightarrow m > 0$; $a^m > b^m \Leftrightarrow m < 0$
- Chú ý:
- + Các tính chất trên đúng trong trường hợp số mũ nguyên hoặc không nguyên.
- + Khi xét lũy thừa với số mũ $\,0\,$ và số mũ nguyên âm thì cơ số $\,a\,$ phải khác $\,0\,$.
- + Khi xét lũy thừa với số mũ không nguyên thì cơ số a phải dương.

+ **Phương trình** $x^n = b$.

Ta có kết quả biện luận số nghiệm của phương trình $x^n = b$ như sau:

• Trường hợp n lẻ:

Với mọi số thực b, phương trình có nghiệm duy nhất.

- Trường hợp n chẵn:
 - + $V \acute{o}i \ b < 0$, phương trình vô nghiệm.
 - + $V \acute{o}i \ b = 0$, phương trình có một nghiệm $\ x = 0.$
- + Với~b>0, phương trình có hai nghiệm trái dấu, kí hiệu giá trị dương là $\sqrt[n]{b}$, còn giá trị âm là $-\sqrt[n]{b}$.

Một số tính chất của căn bậc n

Với $a,b \in \mathbb{R}; \mathbf{n} \in \mathbb{N}^*$, ta có:

$$\begin{array}{ll} + \sqrt[2n]{a^{2n}} = \left| a \right|, \forall \, a \, ; \\ + \sqrt[2n]{ab} = \sqrt[2n]{\left| a \right|} \cdot \sqrt[2n]{\left| b \right|}, \forall \, ab \geq 0 \, ; \\ + \sqrt[2n]{a} = \frac{2^n \sqrt{\left| a \right|}}{b} = \frac{2^n \sqrt{\left| a \right|}}{2^n \sqrt{\left| b \right|}}, \forall \, ab \geq 0, b \neq 0 \, ; \\ + \sqrt[2n+1]{a} = a, \forall \, a \, . \\ + \sqrt[2n+1]{ab} = \sqrt[2n+1]{a} \cdot \sqrt[2n+1]{b}, \forall \, a, b \geq 0, b \neq 0 \, . \\ + \sqrt[2n+1]{a} = \frac{2^n \sqrt{\left| a \right|}}{b} = \sqrt[2n+1]{a} \cdot \sqrt[2n+1]{b}, \forall \, a, \forall \, b \neq 0 \, . \\ \end{array}$$

Nguyễn Chiến - Hồng Quân: 0973.514.674

 $\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m, \forall a > 0, n$ nguyên dương, mnguyên.

, $\sqrt[n]{\sqrt[n]{a}} = \sqrt[nm]{a}, \forall a \geq 0, n, m$ nguyên dương.

 $_{+}$ Nếu $\frac{p}{n} = \frac{q}{m}$ thì $\sqrt[n]{a^p} = \sqrt[m]{a^q}$, $\forall a > 0, m, n$ nguyên dương p, q nguyên.

Đặc biệt: $\sqrt[n]{a} = \sqrt[m]{a^m}$.

2. HÀM SỐ LŨY THỪA.

+ Khái niệm.

Xét hàm số $y = x^{\alpha}$, với α là số thực cho trước.

Hàm số $y = x^{\alpha}$, với $\alpha \in \mathbb{R}$, được gọi là hàm số lũy thừa.

Chú ý.

Tập xác định của hàm số lũy thừa $y = x^{\alpha}$ tùy thuộc vào giá trị của α . Cụ thể.

 \bullet Với lpha nguyên dương, tập xác định là \mathbb{R} .

ullet Với lpha nguyên âm hoặc bằng 0 , tập xác định là $\mathbb{R}\setminus\{0\}$.

• Với α không nguyên, tập xác định $(0;+\infty)$.

+ Khảo sát hàm số lũy thừa.

• Tập xác định của hàm số lũy thừa $y=x^{\alpha}$ luôn chứa khoảng $(0;+\infty)$

với mọi $\alpha \in \mathbb{R}$. Trong trường hợp tổng quát, ta khảo sát hàm số $y=x^{\alpha}$ trên khoảng này.

$y=x^{\alpha}, \alpha>0.$	$y = x^{\alpha}, \alpha < 0.$		
1. Tập xác định: $(0;+\infty)$.	1. Tập xác định: $(0;+\infty)$.		
2. Sự biến thiên $y' = \alpha . x^{\alpha - 1} > 0 \forall x > 0.$	2. Sự biến thiên $y' = \alpha.x^{\alpha-1} < 0 \qquad \forall x > 0.$		
Giới hạn đặc biệt: $\lim_{x\to 0^+} x^{\alpha} = 0, \lim_{x\to +\infty} x^{\alpha} = +\infty.$ Tiệm cận: không có. 3. Bảng biến thiên. $\frac{x}{y} \begin{vmatrix} 0 & +\infty \\ + & +\infty \end{vmatrix}$	Giới hạn đặc biệt: $\lim_{x\to 0^+} x^{\alpha} = +\infty, \lim_{x\to +\infty} x^{\alpha} = 0.$ Tiệm cận: Ox là tiệm cận ngang. Oy là tiệm cận đứng. 3. Bảng biến thiên.		
y +∞ 0	$ \begin{array}{c cccc} x & 0 & +\infty \\ \hline y' & - \\ \hline y & +\infty \end{array} $		

→ 0

Đồ thị của hàm số.

Đồ thị của hàm số lũy thừa $y = x^{\alpha}$ luôn đi qua điểm I(1;1).

• Khảo sát hàm số mũ $y = a^x$, $(a > 0, a \ne 1)$.

r	(-)
$y=a^{x},$	a >	· 1)

- 1. Tập xác định: \mathbb{R} .
- 2. Sự biến thiên.

$$y' = a^x \ln a > 0, \forall x.$$

Giới hạn đặc biệt:

$$\lim_{x \to -\infty} a^x = 0, \qquad \lim_{x \to +\infty} a = +\infty.$$

Tiệm cận:

Ox là tiệm cận ngang.

3. Bảng biến thiên.

24	$-\infty$		0		1		
<i>x</i>	+∞						
y'		+		+		+	
y	 	1					

Đồ thị như hình sau.

 $y = a^x, (a < 1)$

- 1. Tập xác định: \mathbb{R} .
- 2. Sự biến thiên.

$$y' = a^x \ln a < 0, \forall x$$

Giới hạn đặc biệt:

$$\lim_{x \to -\infty} a^x = +\infty, \qquad \lim_{x \to +\infty} a^x = 0.$$

Tiệm cận:

Ox là tiệm cận ngang.

3. Bảng biến thiên.

x	$-\infty$	()	1	
	+∞ -∞				
y'		_	_		_
	+∞_				
0.1		$\overline{1}$			
y				\overline{a}	\rightarrow
	0				

Đồ thị như hình sau.

LOGARIT VÀ HÀM SỐ LOGARIT

1. KHÁI NIÊM -TÍNH CHẤT VÀ QUY TẮT TÍNH LOGARIT.

+ Khái niệm Logarit.

Cho hai số dương a, b với $a \neq 1$. Số α thỏa mãn đẳng thức $a^{\alpha} = b$ được gọi là logarit cơ số a của b và được kí hiệu là $\log_a b$.

$$\alpha = \log_a b \Leftrightarrow a^{\alpha} = b.$$

Không có logarit của số âm và số 0.

Bảng tóm tắt công thức Mũ-loarrit thường gặp:

•
$$a^0 = 1, (a \neq 0).$$

$$\bullet \quad \left(a\right)^1 = a$$

$$\bullet \quad \left(a\right)^{-\alpha} = \frac{1}{a^{\alpha}}$$

$$\bullet \quad \frac{\left(a\right)^{\alpha}}{\left(a\right)^{\beta}} = \left(a\right)^{\alpha-\beta}$$

•
$$(a)^{\alpha} \cdot (b)^{\beta} = (a)^{\alpha+\beta}$$

• $(a)^{\alpha} \cdot (b)^{\alpha} = (a.b)^{\alpha}$

$$\bullet \quad \left(a\right)^{\alpha}.\left(b\right)^{\alpha} = \left(a.b\right)^{\alpha}$$

$$\bullet \quad \frac{\left(a\right)^{\alpha}}{\left(b\right)^{\alpha}} = \left(\frac{a}{b}\right)^{\alpha}, \left(b \neq 0\right)$$

•
$$(a)^{\frac{\alpha}{\beta}} = \sqrt[\beta]{(a)^{\alpha}}, (\beta \in \mathbb{N}^*)$$

• $(a^{\alpha})^{\beta} = (a)^{\alpha\beta}$

$$\bullet \quad \left(a^{\alpha}\right)^{\beta} = \left(a\right)^{\alpha\beta}$$

•
$$(a)^{\alpha} = b \Rightarrow \alpha = \log_a b$$

•
$$\log_a 1 = 0, (0 < a \ne 1)$$

•
$$\log_a a = 1, (0 < a \neq 1)$$

•
$$\log_a a^{\alpha} = \alpha, (0 < a \neq 1)$$

•
$$\log_{a^{\alpha}} a = \frac{1}{\alpha}, (0 < a \ne 1)$$

•
$$\log_a b^{\alpha} = \alpha . \log_a b, (a, b > 0, a \neq 1)$$

•
$$\log_{a^{\beta}} b = \frac{1}{\beta} \cdot \log_a b$$

•
$$\log_{a^{\beta}} b^{\alpha} = \frac{\alpha}{\beta} . \log_a b$$

•
$$\log_a b + \log_a c = \log_a (bc)$$

•
$$\log_a b - \log_a c = \log_a \left(\frac{b}{c}\right)$$

•
$$\log_a b = \frac{1}{\log_a a}$$
.

2. BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT.

+ Bất phương trình mũ cơ bản.

Bất phương trình mũ cơ bản có dạng $a^x > b$ (hoặc $a^x \ge b, a^x < b, a^x \le b$) với $a > 0, a \ne 1$.

Ta xét bất phương trình có dạng $a^x > b$.

- Nếu $b \le 0$, tập nghiệm của bất phương trình là \mathbb{R} , vì $a^x > b, \forall x \in \mathbb{R}$.
- Nếu b>0 thì bất phương trình tương đương với $a^x>a^{\log_a b}$

Với a > 1, nghiệm của bất phương trình là $x > \log_a b$.

Với 0 < a < 1, nghiệm của bất phương trình là $x < \log_a b$.

Ta minh họa bằng đồ thị sau:

• Với a > 1, ta có đồ thị

• Với 0 < a < 1, ta có đồ thị

+ Bất phương trình logarit cơ bản.

Bất phương trình logarit cơ bản có dạng $\log_a x > b$ (hoặc $\log_a x \ge b, \log_a x < b, \log_a x \le b$) với $a > 0, a \ne 1$.

Xét bất phương trình $\log_a x > b$.

- Trường hợp a > 1, ta có: $\log_a x > b \Leftrightarrow x > a^b$.
- Trường hợp 0 < a < 1, ta có: $\log_a x > b \Leftrightarrow 0 < x < a^b$.

Ta minh họa bằng đồ thị như sau.

- \bullet Với a>1, ta có đồ thị sau.
- \bullet Với 0 < a < 1, ta có đồ thị sau.

Quan sát đồ thị, ta thấy rằng:

• Trường hợp a > 1: $\log_a x > b$

khi và chỉ khi $x > a^b$.

• Trường hợp 0 < a < 1:

 $\log_a x > b$ khi và chỉ khi $0 < x < a^b$.

