form of the imaginary part.



FIG. 17: Conductivities and  $\Delta W$  for a fixed  $\lambda \omega_{sf}$ . Top –  $\omega_{sf}=26\,meV,\lambda=1,\omega_o=40\,meV,Z_o=0.77$  Bottom –  $\omega_{sf}=2.6\,meV,\lambda=10,\omega_o=13.5\,meV,Z_o=1.22$ . The zero crossing for  $\Delta W$  is not affected by a change in  $\lambda$  because it is determined only by  $\lambda \omega_{sf}$ . We set  $\Delta=30\,meV$ .



FIG. 18: The behavior of Kubo sums in the CB model. Note that the spectral weight in the NS is always larger than in the SCS. We set  $\omega_{sf}=26\,meV, \lambda=1$ , and  $\Delta=30\,meV$ .

We performed the same calculations of conductivities and optical integrals as in the previous three cases. The results are summarized in Figs. 17 - 22. Fig 17 shows conductivities in the NS and the SCS for two couplings  $\lambda=1$  and  $\lambda=10$  (keeping  $\lambda\omega_{sf}$  constant). Other parameters  $Z_o$  and  $\omega_o$  are calculated according to the discussion after Eq 21. for  $\omega_{sf}=26\,meV,~\lambda=1$ , we find  $\omega_o=40\,meV,~Z_o=0.77$ . And for  $\omega_{sf}=2.6\,meV,~\lambda=10$ , we find  $\omega_o=13.5\,meV,~Z_o=1.22$ . Note that the conductivity in the SCS starts at  $2\Delta+\omega_o$  (i.e. the resonance energy



FIG. 19: The evolution of the optical integrals in the NS and the SCS in the CB model. Note that about  $\sim 75\%$  of the spectral weight is recovered up to  $1\,eV$ . We set  $\omega_{sf}=26\,meV$ ,  $\lambda=1$ , and  $\Delta=30\,meV$ .



FIG. 20:  $\Delta W$  (in meV) for  $\lambda = 1 \text{(top)}$  and  $\lambda = 10 \text{(bottom)}$ . We used  $\omega_{sf} = 26 \, meV/\lambda$  and  $\Delta = 30 meV$ . The zero crossing is not affected because we keep  $\lambda \omega_{sf}$  constant. The notable difference is the widening of the dip at a larger  $\lambda$ .