4 Dynamic Programming under Certainty

Exercise 4.1

a. The original problem was

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to

$$c_t + k_{t+1} \leq f(k_t),$$

$$c_t, k_{t+1} \geq 0,$$

for all t = 0, 1, ... with k_0 given. This can be equivalently written, after substituting the budget constraint into the objective function, as

$$\max_{\{k_{t+1}\}_{t+0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u[f(k_t) - k_{t+1}]$$

subject to

$$0 \le k_{t+1} \le f(k_t),$$

for all t = 0, 1, ... with k_0 given. Hence, defining

$$F(k_t, k_{t+1}) = u[f(k_t) - k_{t+1}],$$

and

$$\Gamma(k_t) = \{k_{t+1} \in \mathbf{R}_+ : 0 \le k_{t+1} \le f(k_t)\},\,$$

we obtain the (SP) formulation given in the text.

b. Note that in this case $c_t \in \mathbf{R}_+^l$ for all t = 0, 1, ... and we cannot simply substitute for consumption in the objective function. Instead, define

$$\Gamma(k_t) := \left\{ k_{t+1} \in \mathbf{R}_+^l : (k_{t+1} + c_t, k_t) \in Y \subseteq \mathbf{R}_+^{2l}, c_t \in \mathbf{R}_+^l \right\},\,$$

and

$$\Phi(k_t, k_{t+1}) := \left\{ c_t \in \mathbf{R}_+^l : (k_{t+1} + c_t, k_t) \in Y \subseteq \mathbf{R}_+^{2l} \right\}.$$

Then, let

$$F(k_t, k_{t+1}) = \sup_{c_t \in \Phi(k_t, k_{t+1})} u(c_t),$$

and the problem is in the form of the (SP).

Exercise 4.2

a. Define x_{it} as the *i*th component of the *l* dimensional vector x_t . Hence,

$$\max_{i} x_{it} \le \theta^t \|x_0\|.$$

Let e = (1, ..., 1, ... 1) be an l dimensional vector of ones. Hence, the fact that F is increasing in its first l arguments and decreasing in its last l arguments implies that for all θ

$$F(x_1, x_2) \le F(x_1, 0) \le F(\theta ||x_0|| e, 0)$$

Then, if $\theta \leq 1$, $F(\theta^t ||x_0|| e, 0) \leq F(||x_0|| e, 0)$ and

$$\lim_{n \to \infty} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \leq \lim_{n \to \infty} \sum_{t=0}^{\infty} \beta^t F(\|x_0\| e, 0)$$
$$= \frac{F(\|x_0\| e, 0)}{(1 - \beta)},$$

as $\beta < 1$. Otherwise, if $\theta > 1$, $F(\theta^t ||x_0|| e, 0) \le \theta^t F(||x_0|| e, 0)$ by the concavity of F and

$$\lim_{n \to \infty} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1}) \leq \lim_{n \to \infty} \sum_{t=0}^{\infty} (\theta \beta)^{t} F(\|x_{0}\| e, 0)$$
$$= \frac{F(\|x_{0}\| e, 0)}{(1 - \theta \beta)},$$

as $\beta\theta < 1$. Hence the limit exists.

b. By assumption, for all $x_0 \in X$, $F(x_1,0) \leq \theta F(x_0,0)$. Hence

$$F(x_t, x_{t+1}) \le F(x_t, 0) \le \theta F(x_{t-1}, 0) \le \dots \le \theta^t F(x_0, 0).$$

Then,

$$\lim_{n \to \infty} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \leq \lim_{n \to \infty} \sum_{t=0}^{\infty} (\theta \beta)^t F(x_0, 0)$$
$$= \frac{F(x_0, 0)}{1 - \theta \beta}.$$

Therefore, the limit exists.

Exercise 4.3

a. Let $v(x_0)$ be finite. Since v satisfies (FE), as shown in the proof of Theorem 4.3, for every $x_0 \in X$ and every $\varepsilon > 0$, there exists $x \in \Pi(x_0)$ such that

$$v(x_0) \le u_n(\underline{x}) + \beta^{n+1}v(x_{n+1}) + \frac{\varepsilon}{2}.$$

Taking the limit as $n \to \infty$ gives

$$v(x_0) \le u(\underline{x}) + \lim \sup_{n \to \infty} \beta^{n+1} v(x_{n+1}) + \frac{\varepsilon}{2}$$

 $\le u(\underline{x}) + \frac{\varepsilon}{2}.$

Since

$$u(x) \le v^* \left(x_0 \right),$$

for all $x \in \Pi(x_0)$, this gives

$$v\left(x_{0}\right) \leq v^{*}\left(x_{0}\right) + \frac{\varepsilon}{2},$$

for all $\varepsilon > 0$. Hence,

$$\upsilon\left(x_{0}\right)\leq\upsilon^{*}\left(x_{0}\right),$$

for all $x_0 \in X$.

If $v(x_0) = -\infty$, the result follows immediately. If $v(x_0) = +\infty$, the proof goes along the lines of the last part of Theorem 4.3. Hence $v(x_0) \leq v^*(x_0)$, all $x_0 \in X$.

b. Since v satisfies FE, by the argument of Theorem 4.3, for all $x_0 \in X$ and $x \in \Pi(x_0)$

$$\upsilon(x_0) \ge u_n(x) + \beta^{n+1} \upsilon(x_{n+1}).$$

In particular, for x and x' as described,

$$v(x_0) \geq \lim_{n \to \infty} u_n(\underline{x}') + \lim_{n \to \infty} \beta^n v(x'_{n+1})$$
$$= u(\underline{x}')$$
$$\geq u(\underline{x})$$

all $x \in \Pi(x_0)$. Hence

$$v(x_0) \ge v^*(x_0) = \sup_{\bar{x} \in \Pi(x_0)} u(\bar{x}),$$

and in combination with the result proved in part a., the desired result follows.

Exercise 4.4

a. Let K be a bound on F and M be a bound on f. Then

$$(Tf)(x) \le K + \beta M$$
, for all $x \in X$.

Hence $T: B(X) \to B(X)$.

In order to show that T has a unique fixed point $v \in B(X)$ we will use the Contraction Mapping Theorem. Note that $(B(X), \rho)$ is

a complete metric space, where ρ is the metric induced by the sup norm.

We will use Blackwell's sufficient conditions to show that T is a contraction. To prove monotonicity, let $f, g \in B(X)$, with $f(x) \leq g(x)$ for all $x \in X$. Then

$$(Tf)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta f(y) \}$$

$$= F(x, y^*) + \beta f(y^*)$$

$$\leq F(x, y^*) + \beta g(y^*)$$

$$\leq \max_{y \in \Gamma(x)} \{ F(x, y) + \beta g(y) \} = (Tg)(x),$$

where

$$y^* = \arg\max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta f(y) \right\}.$$

For discounting, let $a \in \mathbf{R}$. Then

$$T(f+a)(x) = \max_{y \in \Gamma(x)} \{F(x,y) + \beta [f(y) + a]\}$$
$$= \max_{y \in \Gamma(x)} \{F(x,y) + \beta f(y)\} + \beta a$$
$$= (Tf)(x) + \beta a.$$

Hence by the Contraction Mapping Theorem, T has a unique fixed point $v \in B(X)$, and for any $v_0 \in B(X)$,

$$||T^n v_0 - v|| \le \beta^n ||v_0 - v||.$$

That the optimal policy correspondence $G: X \to X$, where

$$G(x) = \{ y \in \Gamma(x) : \upsilon(x) = F(x, y) + \beta \upsilon(y) \},$$

is nonempty is immediate from the fact that Γ is nonempty and finite valued for all x. Hence, the maximum is always attained.

b. Note that as F and f are bounded, $T_h f$ is bounded. Hence $T_h: B(X) \to B(X)$. That T_h satisfies Blackwell's sufficient conditions for a contraction can be proven following the same steps

as in part a. with the corresponding adaptations. Hence, T_h is a contraction and by the Contraction Mapping Theorem it has a unique fixed point $w \in B(X)$.

c. First, note that

$$w_{n}(x) = (T_{h_{n}}w_{n})(x)$$

$$= F[x, h_{n}(x)] + \beta w_{n}[h_{n}(x)]$$

$$\leq \max_{y \in \Gamma(x)} \{F(x, y) + \beta w_{n}(y)\}$$

$$= (Tw_{n})(x)$$

$$= (T_{h_{n+1}}w_{n})(x).$$

Hence for all $n = 0, 1, ... w_n \le Tw_n$. Applying the operator $T_{h_{n+1}}$ to both sides of this inequality and using monotonicity gives

$$Tw_n = T_{h_{n+1}}w_n \le (T_{h_{n+1}})(Tw_n) = T_{h_{n+1}}^2 w_n.$$

Iterating on this operator gives

$$Tw_n \leq T_{h_{n+1}}^N w_n.$$

But $w_{n+1} = \lim_{N \to \infty} T_{h_{n+1}}^N w_n$, for $w_n \in B(X)$. Hence $Tw_n \leq w_{n+1}$ and

$$w_0 \le Tw_0 \le w_1 \le Tw_1 \le \dots \le Tw_{n-1} \le Tw_n \le v.$$

By the Contraction Mapping Theorem,

$$||T^N w_n - v|| \le \beta^N ||w_n - v||.$$

Then,

$$||w_{n} - v|| \leq ||Tw_{n-1} - v|| \leq \beta ||w_{n-1} - v||$$

$$\leq \beta ||Tw_{n-2} - v|| \leq \beta^{2} ||w_{n-2} - v|| \leq ...$$

$$\leq \beta^{n} ||w_{0} - v||$$

and hence $w_n \to v$ as $n \to \infty$.

Exercise 4.5

First, we prove that g(x) is strictly increasing. Towards a contradiction, suppose that there exists $x, x' \in X$ with x < x' such that $g(x) \ge g(x')$. Then as f is increasing, using the first-order condition (5)

$$\beta v'[g(x')] = U'[f(x') - g(x')]$$

< $U'[f(x) - g(x)] = \beta v'[g(x)]$

which contradicts v strictly concave.

We prove next that 0 < g(x') - g(x) < f(x') - f(x), if x' > x. Let x' > x. As g(x) is strictly increasing, using the first-order condition we have

$$U'[f(x) - g(x)] = \beta \upsilon'[g(x)] > \beta \upsilon'[g(x')] = U'[f(x') - g(x')].$$

The result follows from U strictly concave.

Exercise 4.6

a. By Assumption 4.10 $||x_t||_E \le \alpha ||x_{t-1}||_E$ for all t. Hence

$$\alpha \|x_{t-1}\|_E \le \alpha^2 \|x_{t-2}\|_E$$

and

$$||x_t||_E \le \alpha^2 \, ||x_{t-2}||_E$$

The desired result follows by induction.

b. By Assumption 4.10 $\Gamma: X \to X$ is nonempty. Combining Assumptions 4.10 and 4.11,

$$|F(x_t, x_{t+1})| \le B(||x_t||_E + ||x_{t+1}||_E)$$

 $\le B(1 + \alpha) ||x_t||_E$
 $\le B(1 + \alpha)\alpha^t ||x_0||_E$

for $\alpha \in (0, \beta^{-1})$ and $0 < \beta < 1$. So, by Exercise 4.2, Assumption 4.2 is satisfied.

c. By Assumption 4.11 F is homogeneous of degree one, so

$$F(\lambda x_t, \lambda x_{t+1}) = \lambda F(x_t, x_{t+1}).$$

Then

$$u(\lambda x) = \lim_{n \to \infty} \sum_{t=0}^{n} \beta^{t} F(\lambda x_{t}, \lambda x_{t+1})$$
$$= \lambda \lim_{n \to \infty} \sum_{t=0}^{n} \beta^{t} F(x_{t}, x_{t+1}) = \lambda u(x).$$

By Assumption 4.10 the correspondence Γ displays constant returns to scale. Then clearly $x \in \Pi(x_0)$ if and only if $\lambda x \in \Pi(\lambda x_0)$. Hence

$$v^*(\lambda x_0) = \sup_{\lambda \underline{x} \in \Pi(\lambda x_0)} u(\lambda \underline{x})$$
$$= \lambda \sup_{\underline{x} \in \Pi(x_0)} u(\underline{x})$$
$$= \lambda v^*(x_0).$$

By Assumption 4.11,

$$|F(x_t, x_{t+1})| \leq B(||x_t||_E + ||x_{t+1}||_E)$$

$$\leq B(1+\alpha) ||x_t||_E \leq B(1+\alpha)\alpha^t ||x_0||_E.$$

Hence

$$|v^{*}(x_{0})| = \left| \sup_{x \in \Pi(x_{0})} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1}) \right|$$

$$\leq \sup_{x \in \Pi(x_{0})} \sum_{t=0}^{\infty} \beta^{t} |F(x_{t}, x_{t+1})|$$

$$\leq \sum_{t=0}^{\infty} B(1 + \alpha) (\alpha \beta)^{t} ||x_{0}||_{E}$$

$$= \frac{B(1 + \alpha)}{1 - \alpha \beta} ||x_{0}||_{E}.$$

Therefore $v^*(x_0) \leq c ||x_0||_E$, all $x_0 \in X$, where

$$c = \frac{B(1+\alpha)}{1-\alpha\beta}.$$

Exercise 4.7

a. Take f and g homogeneous of degree one, and $\alpha \in \mathbf{R}$, then f+g and αf are homogeneous of degree one, and clearly $\|\cdot\|$ is a norm, so H is a normed vector space. We hence turn to the proof that H is complete. Let $\{f_n\}$ be a Cauchy sequence in H. Then $\{f_n\}$ converges pointwise to a limit function f. We need to show that $f_n \to f \in H$ where the convergence is in the norm of H. The proof of convergence, and that f is continuous, are analogous to the proof of Theorem 3.1. To see that f is homogeneous of degree one, note that for any $x \in X$ and any $\lambda \geq 0$

$$f(\lambda x) = \lim_{n \to \infty} f_n(\lambda x) = \lim_{n \to \infty} \lambda f_n(x) = \lambda f(x).$$

b. Take $f \in H(X)$. Tf is continuous by the Theorem of the Maximum. To show that Tf is homogeneous of degree one, notice that

$$(Tf)(\lambda x) = \sup_{\lambda y \in \Gamma(\lambda x)} \{F(\lambda x, \lambda y) + \beta f(\lambda y)\}$$
$$= \sup_{y \in \Gamma(x)} \lambda \{F(x, y) + \beta f(y)\}$$
$$= \lambda (Tf)(x),$$

where the second line follows from Assumption 4.10.

Exercise 4.8

In order to prove the results, we need to add the restriction that f is non-negative, and strictly positive on \mathbf{R}_{++}^l . As a counterexample without this extra assumption, let $X = \mathbf{R}_+^l$ and consider the function

$$f(x) = \begin{cases} x_1^{1/2} x_2^{1/2} & \text{if } x_2 \ge x_1 \\ 0 & \text{otherwise.} \end{cases}$$

This function is clearly not concave, but is homogeneous of degree one and quasi-concave. To see homogeneity, let $\lambda \in [0, \infty)$ and note that

$$f(\lambda x) = \begin{cases} \lambda x_1^{1/2} x_2^{1/2} & \text{if } x_2 \ge x_1 \\ 0 & \text{otherwise.} \end{cases}$$
$$= \lambda f(x).$$

To see quasi-concavity, let $x, x' \in X$ with $f(x) \ge f(x')$. If f(x') = 0 the result follows from f non-negative. If f(x') > 0, then $x_2 \ge x_1$ and $x'_2 \ge x'_1$, and as f(x) is Cobb-Douglas in this range, it is quasi-concave.

- **a.** Pick two arbitrary vectors $x, x' \in X$, and assume that f is non-negative, and strictly positive on \mathbf{R}_{++}^l . We have to consider four cases:
 - i) x = x'
 - ii) $x = \alpha x'$ for any $\alpha \in \mathbf{R}$, and $x \neq 0$, $x' \neq 0$
 - iii) $x \neq \alpha x'$ for any $\alpha \in \mathbf{R}$, and $x \neq 0$, $x' \neq 0$
 - iv) $x \neq x'$ and x = 0 or x' = 0
 - i) and ii) are trivial.
- iii) Suppose $f(x) \geq f(x')$, then f being homogeneous of degree one and non-negative implies that $f(x)/f(x') \geq 1$, so there exist a number $\gamma \in (0,1)$ such that $\gamma f(x) = f(\gamma x) = f(x')$. Hence for any $\lambda \in (0,1)$ we may write

$$f(\gamma x) = \lambda f(\gamma x) + (1 - \lambda)f(x') = f(x').$$

By the assumed quasi-concavity of f, for any $\omega \in (0,1)$,

$$f[\omega \gamma x + (1 - \omega)x'] \ge \omega f(\gamma x) + (1 - \omega)f(x').$$

Then, for any t > 0,

$$f[t\omega\gamma x + t(1-\omega)x'] = tf[\omega\gamma x + (1-\omega)x']$$

$$\geq t\omega f(\gamma x) + t(1-\omega)f(x')$$

$$= t\omega\gamma f(x) + t(1-\omega)f(x').$$

For any $\gamma \in (0,1)$, $[1-\omega(1-\gamma)]^{-1} > 0$, hence choosing

$$t = \left[1 - \omega(1 - \gamma)\right]^{-1}$$

we get

$$f\left[\frac{\omega\gamma}{1-\omega(1-\gamma)}x + \frac{(1-\omega)}{1-\omega(1-\gamma)}x'\right]$$

$$\geq \frac{\omega\gamma}{1-\omega(1-\gamma)}f(x) + \frac{(1-\omega)}{1-\omega(1-\gamma)}f(x'),$$

so if we let $\theta = \omega \gamma / [1 - \omega (1 - \gamma)]$, we obtain

$$f[\theta x + (1 - \theta)x'] \ge \theta f(x) + (1 - \theta)f(x').$$

In order to see that the above expression holds for any θ , define $g_{\gamma}:(0,1)\to(0,1)$ by

$$g_{\gamma}(\omega) = \frac{\omega \gamma}{1 - \omega (1 - \gamma)},$$

which is continuous and strictly increasing. Hence the proof is complete.

iv) Suppose x' = 0. Then, f(x') > 0 or f(x') = 0. In the former case the proof of iii) applies without change. In the latter case f(x') = 0, so for any $x \neq 0$ and $\theta \in (0, 1)$,

$$f[\theta x + (1 - \theta)x'] = f(\theta x) = \theta f(x) + (1 - \theta)f(x').$$

- **b.** Same proof as in case iii) in part a. assuming $f(x) \ge f(x')$ and replacing \ge by > everywhere else.
- **c.** In order to prove that the fixed point v of the operator T defined in (2) is strictly quasi-concave, we need X, Γ , F and β to satisfy Assumptions 4.10 and 4.11. In addition, we need F to be strictly quasi-concave (see part b.). To show this, let $H'(X) \subset H(X)$ be the set of functions on X that are continuous, homogeneous of degree one, quasi-concave and bounded in the norm in (1), and let H''(X) be the set of strictly quasi-concave functions. Since H'(X) is

a closed subset of the complete metric space H(X), by Theorem 4.6 and Corollary 1 to the Contraction Mapping Theorem, it is sufficient to show that $T[H'(X)] \subseteq H''(X)$.

To verify that this is so, let $f \in H'(X)$ and let

$$x_0 \neq x_1$$
, $\theta \in (0,1)$, and $x_\theta = \theta x_0 + (1-\theta)x_1$.

Let $y_i \in \Gamma(x_i)$ attain $(Tf)(x_i)$, for i = 0, 1, and let $F(x_0, y_0) > F(x_1, y_1)$. Then by Assumption 4.10, $y_\theta = \theta y_0 + (1 - \theta)y_1 \in \Gamma(x_\theta)$. It follows that

$$(Tf)(x_{\theta}) \geq F(x_{\theta}, y_{\theta}) + \beta f(y_{\theta})$$

> $F(x_1, y_1) + \beta f(y_1)$
= $(Tf)(x_1),$

where the first line uses (3) and the fact that $y_{\theta} \in \Gamma(x_{\theta})$; the second uses the hypothesis that f is quasi-concave and the quasi-concavity restriction on F; and the last follows from the way y_0 and y_1 were selected. Since x_0 and x_1 were arbitrary, it follows that Tf is strictly quasi-concave, and since f was arbitrary, that $T[H'(X)] \subseteq H''(X)$. Hence the unique fixed point v is strictly quasi-concave.

d. We need X, Γ , F, and β to satisfy Assumptions 4.9, 4.10 and 4.11, and in addition F to be strictly quasi-concave. Considering $x, x' \in X$ with $x \neq \alpha x'$ for any $\alpha \in \mathbf{R}$, Theorem 4.10 applies.

Exercise 4.9

Construct the sequence $\{k_t^*\}_{t=0}^{\infty}$ using

$$k_{t+1} = g\left(k_t\right) = \alpha \beta k_t^{\alpha},$$

given some $k_0 \in X$. If $k_0 = 0$ we have that $k_t^* = 0$ for all t = 0, 1, ... which is the only feasible policy and is hence optimal. If $k_0 > 0$, then for all t = 0, 1, ... we have that $k_{t+1}^* \in int\Gamma(k_t^*)$ as $\alpha\beta \in (0, 1)$.

Let

$$E(x_t, x_{t+1}) := F_y(x_t, x_{t+1}) + \beta F_x(x_t, x_{t+1}).$$

Then for all t = 0, 1, 2, ... we have that

$$\begin{split} E\left(k_{t}^{*},k_{t+1}^{*}\right) &= \beta \frac{\alpha k_{t}^{*\alpha-1}}{k_{t}^{*\alpha}-k_{t+1}^{*}} - \frac{1}{k_{t-1}^{*\alpha}-k_{t}^{*}} \\ &= \beta \frac{\alpha k_{t}^{*\alpha-1}}{k_{t}^{*\alpha}-\alpha\beta k_{t}^{*\alpha}} - \frac{1}{k_{t-1}^{*\alpha}-\alpha\beta k_{t-1}^{*\alpha}} \\ &= \frac{\alpha\beta}{k_{t}^{*}(1-\alpha\beta)} - \frac{1}{k_{t-1}^{*\alpha}(1-\alpha\beta)} \\ &= \frac{1}{k_{t-1}^{*\alpha}(1-\alpha\beta)} - \frac{1}{k_{t-1}^{*\alpha}(1-\alpha\beta)} = 0, \end{split}$$

from repeated substitution of the policy function. Hence the Euler equation holds for all $t=0,1,\ldots$

To see that the transversality condition holds, let

$$T\left(x_{t}, x_{t+1}\right) = \lim_{t \to \infty} \beta^{t} F_{x}\left(x_{t}, x_{t+1}\right) \cdot x_{t}.$$

Then,

$$T(k_t^*, k_{t+1}^*) = \lim_{t \to \infty} \beta^t \frac{\alpha k_t^{*\alpha - 1}}{k_t^{*\alpha} - k_{t+1}^*} k_t$$
$$= \lim_{t \to \infty} \beta^t \frac{\alpha k_t^{*\alpha}}{k_t^{*\alpha} - \alpha \beta k_t^{*\alpha}}$$
$$= \lim_{t \to \infty} \beta^t \frac{\alpha}{(1 - \alpha \beta)} = 0,$$

where the result comes from the fact that $0 < \beta < 1$.