Topología

1 Espacios topológicos

Se dice que p es el límite de una sucesión de reales a_1, \dots, a_n cuando, para todo abierto $p - \epsilon, p + \epsilon$, existe un m tal que para todo $n \ge m$ se cumple que $a_n \in (p - \epsilon, p + \epsilon)$.

Esta noción de intervalo se unifica en el concepto **bola**, y se define la familia de intervalos de un punto p, B(p). Sea X no vacío, para cada $p \in X$ existe una familia B(p). Se dice que B(p) es una **base de entornos abiertos** de p si todas las familias B(p) verifican:

- B1: si $U \subset B(p)$, entonces $p \in U$.
- B2: si $U \in B(p)$ y $V \in B(p)$, existe $W \in B(p)$ tal que $W \subset U \cap V$.
- B3: si $U \in B(p)$, para todo $q \in U$ existe $V \in B(q)$ tal que $V \subset U$.

Esta generalización de conjuntos ($p - \epsilon, p + \epsilon$ nos simplifica y permite expandir la definición de topología, independientemente de una métrica o distancia.

Se llama un **espacio métrico** (X, d) a un conjunto X con una distancia d definida en él. En un espacio métrico se llama **bola abierta** de centro p y radio r al conjunto $E(p, r) = \{t \in X \mid d(p, t) < r\}$. Las familias B(p) de todas las bolas con radios reales cumplen los puntos B1, B2 y B3, por lo que constituyen base de entornos abiertos en (X, d).

Si X es un conjunto en el que se ha definido un sistema de bases de entornos abiertos B(p), un subconjunto $A \subset X$ es un **conjunto abierto** cuando es \emptyset o cuando para cada $t \in A$ existe un subconjunto $U \in B(t)$ tal que $U \subset A$.

En \mathbb{R} la topología usual (T_u) viene dada por $B(p)=(p-\epsilon,p+\epsilon)$. En esta topología, (\mathbb{R},T_u) , cada intervalo abierto (a,b) viene dado como B(t), $t=\frac{a+b}{2}$. El intervalo [a,b) no es abierto, pues para a no existe ningún conjunto $U \in B(a)$ tal que $U \subset [a,b)$.

Dos sistemas de bases de entornos abiertos, B(p), B'(p) son **equivalentes** cuando determinan la misma topología T en X; es decir, que para cada $U \in B(p)$ existe un $U' \in B'(p)$ tal que $U \subset U'$ y que para cada $V' \in B'(p)$ exista un $V \in B(p)$ tal que $V' \subset V$.

1.1 Propiedades de una topología

Sea un conjunto *X*. La topología *T* determinada en *X* cumple:

- P1: $\emptyset \in T \setminus X \in T$.
- P2: Dada una familia de abiertos U_{λ} , $\lambda \in L$ de T, la unión de los elementos, $\bigcup_{\lambda} U_{\lambda}$ es un elemento de T.
- P3: Dada una familia **finita** U_i , $i = 1, \dots, n$ de elementos de T, la intersección de los elementos, $\bigcap_{i=1}^{n} U_i$ es un elemento de T.

Un **espacio topológico** (X, T) es un conjunto no vacío con una topología definida en él. Una familia de subconjuntos de X, H(p) para cada $p \in X$ [SEAN DISCRETOS O CONTINUOS], si cumple P1, P2, P3 entonces, las familias H forman una topología T en X. Si para esa topología existe una métrica d, entonces decimos que es una **topología metrizable**.

Si T, T' son dos topologías de X, y $T \subset T'$, entonces se dice que T es menos **fina** que T'. La topología más fina de todas es la **topología trivial**, dada por $\{\emptyset, X\}$, y la menos fina, o **discreta**, está dada por $\mathcal{P}(X)$, es decir, el conjunto partición de X.

En (X, T) se llama **conjunto cerrado** a un conjunto $M \subset X$ tal que X - M es abierto. Una familia de conjuntos cerrados es (X, T) verifica:

- C1: $\emptyset \in T$ y $X \in T$ son cerrados.
- C2: Dada una familia **finita** de cerrados M_{λ} , $\lambda \in L$ de T, la unión de los elementos, $\bigcup_{\lambda} M_{\lambda}$ es un cerrado.
- C3: Dada una familia M_{λ} , $\lambda \in L$ de elementos de T, la intersección de los elementos, $\bigcap_{L} U_{\lambda}$ es un elemento de T.

Si (X, T) es un estacio topológico y $M \subset X$, la topología $T_M = \{M \cap U\}$ de las intersecciones de M con abiertos U de (X, T) se llama **topología inducida o subordinada** de T. Así, el espacio M, T_M es un subespacio de (X, T).

2 Base de una topología

Dada una topología T en X, la **base de la topología**, B, es una familia de conjuntos tal que cualquier abierto no vacío $U \subset T$ es una unión de elementos de B. $\forall U \subset T$, $U = \cup_i B_i$

Sea X un conjunto y $F = \{A_{\lambda}\}_{{\lambda} \in L}$ una familia de subconjuntos de X. Una condución necesaria y suficiente para que F sea base de X es:

- I: $\bigcup_{\lambda} \{A_{\lambda}\} = X$
- II: Si A_{λ} , A_{μ} son dos elementos de F, y $A_{\lambda} \cap A_{\mu} \neq \emptyset$, para cualquier punto $t \in A_{\lambda} \cap A_{\mu}$ existe $A_{\nu} \in F$ tal que $t \in A_{\nu}$

2.1 1er y 2º axioma de numerabilidad

Un espacio (X, T) verifica el 1er axioma de numerabilidad si para todo $x \in X$ existe una base de entornos de x que sea numerable. Un espacio (X, T) verifica el 2° axioma de numerabilidad cuando su topología tiene una base numerable.

2.2 Topología engendrada for una familia de subconjuntos

Cualquier familia $\{A_{\lambda}\}$ de X que cumpla I es una subase de una topología de X. Si $H = \{A_{\lambda}\}$ cumple I y II, la familia B formada por las intersecciones (y uniones) finitas de H es base para alguna topología de X y se llama **topología engendrada**.

3 Entornos en un espacio topológico

Sea (X, T) un espacio topológico, y $p \in X$. $A \subset X$ es entorno de p si existe un abierto U de la topología T tal que $p \in U \subset A$. No todo entorno ha de ser abierto. Por ejemplo, [0, 1) es entorno de 1/2 (existe $U = (1/2 - 1/4, 1/2 + 1/4) \subset [0, 1)$, pero no de 0 (ningún abierto en T cumple $U \subset [0, 1)$.

Los sistemas de entornos E(p) para X cumplen:

- E1: Si $A \in E(p)$, entonces $p \in A$.
- E2: Si $A \in E(p)$, todo subconjunto $A' \subset X$ tal que $A' \supset A$ pertenece a E(p) [porque $p \in A'$].
- E3: Si A, $A' \in E(p)$, entonces $A \cap A' \in E(p)$. Esto es aplicable a un número finito de intersecciones.
- E4: Si $A \in E(p)$, A, existe $U \in E(p)$ tal que para todo $q \in U$, $A \in E(q)$.

Sea $p \in (X, T)$, y E(p) su sistema de entornos. Una subfamilia A(p) de E(p) es un sistema fundamental de entornos (abiertos o no) de p [base de entornos] si todo entorno de p contiene un elemento de A(p).

Los sistemas de bases de entornos B(p) resultan ser sistemas fundamentales de entornos. P. ej. en (\mathbb{R}, T_u) cada punto x tiene una base de entornos numerable, los intervalos abiertos de radio racional: $\{(x-r,x+r)\}_{0< r\in \mathbb{Q}}$).

Un espacio topológico métrico verifica el primer axioma de numerabilidad, pues $\{(x-r,x+r)\}_{0< r\in \mathbb{Q}}$ es un sistema de entornos numerable.

4 Subconjuntos en un espacio topológico

Todo punto en un espacio topológico puede ser de 3 tipos distintos. Si consideramos el espacio (X, T) y $M \subset T$, entonces

- $t \in X$ es un punto **interior** a M ($t \in int(M)$) si existe algún entorno $V \subset M$ [$V \cap M \neq \emptyset$].
- $t \in X$ es un punto **exterior** a M ($t \in ext(M)$) si existe un entorno V de t que no corta a M [$V \cap M = \emptyset$].
- $t \in X$ es un punto frontera $(t \in front(M))$ si para todo entorno $V, V \cap M \neq \emptyset$ y $V \cap (X M) \neq \emptyset$.

El interior de M, int(M) es el mayor abierto contenido en M. ext(M) también es un conjunto abierto, y front(M) es siempre cerrado.

De esta clasificación pueden crearse más definiciones.

- $t \in X$ es **adherente** a M si para todo entorno V(t) es $V \cap M \neq \emptyset$. $adh(M) = \overline{M} = int(M) \cup front(M)$.
 - $t \in X$ es un punto de **acumulación** de M si todo entorno V(t) corta a M en algún punto distinto de t; es decir, $(V \{t\}) \cap M \neq \emptyset$. El conjunto de puntos de acumulación se denomina **derivado** de M, o der(M).
 - *t* ∈ *X* es **aislado** cuando existe algún entorno V(t) tal que $(V \{t\}) \cap M = \emptyset$.

En ((X, T), un conjunto M es cerrado sii contiene todos sus puntos de acumulación.

En un espacio (X, T) un subconjunto M es denso en X si adh(M) = X. Por ejemplo, \mathbb{Q} es denso en

 \mathbb{R} , porque para todo entorno de \mathbb{R} siempre hay un racional. Un subconjunto es denso sii para todo abierto no vacío $U \subset X$ se tiene que $U \cap M \neq \emptyset$.

Un espacio topológico es **separable** si tiene un subconjunto numerable y denso.

5 Sucesiones, límites de sucesiones

Una **sucesión** en un conjunto X es una aplicación $s: \mathbb{N} \to X$; $s(i) \mapsto a_i$. Cuando se tiene una aplicación $f: X \to Y$ y una sucesión $s: \mathbb{N} \to X$, definimos la sucesión $s': \mathbb{N} \to Y$ a la composición $s' = f \circ s$ de modo que s'(i) = f o $s(i) = f(a_i) \in Y$. La sucesión $s(i) = a_i$ se representa por $s(i) = a_i$.

Dada una sucesión $\{a_i\}$ en X, se define $A_m = \{a_i \in s \mid i \geq m\}$. Se tiene que $A_m \neq \emptyset$ y $A_k \subset A_m \cap A'_m \iff k = max(m, m')$.

Si X es un conjunto, una base de filtro X es una familia $\mathcal{B} = \{A_{\lambda}\} \subset X$ que verifica que (1) $A_{\lambda} \neq \emptyset$ y (2) dados A_{λ} , A_{μ} existe $A_{\nu} \in \mathcal{B}$ tal que $A_{\nu} \subset A_{\lambda} \cap A_{\mu}$. En un espacio (X, T), una base de entornos E(p) es una base \mathcal{B} .

Dadas dos bases de filtro $\mathcal{B}, \mathcal{B}'$, se dice que \mathcal{B}' es **más fina** que \mathcal{B} cuando para todo $A \in \mathcal{B}$, existe $A' \in \mathcal{B}'$ tal que $A' \subset A$.

Si $\mathcal{B} = \{A_{\lambda}\}$, las imágenes $\{f(A_{\lambda})\}$ forman una base de filtro en Y, Y se representa por $f(\mathcal{B})$. Si $\mathcal{B}' = \{A'_{\lambda}\}$ es una base de filtro en Y y $\forall \lambda$ $A'_{\lambda} \cap f(X) \neq \emptyset$, entonces $\{f^{-1}(A'_{\lambda})\}$ forman una base de filtro en X y se representa por $f^{-1}(\mathcal{B}')$.

Si consideramos la sucesión $f : \mathbb{N} \to \mathbb{N}$, los conjuntos $\mathbb{N}_m = \{i \in N \mid i \geq m\}$ forman una base de filtro \mathcal{F} en \mathbb{N} , llamada base de filtro de Fréchet.

p es el **punto límite** de $\{a_i\}$ si dado un entorno U de p, existe m tal que $A_m \subset U$. Asimismo, p es un punto límite de \mathcal{B} en un espacio topológico (X,T) si dado un entorno U de p, existe un $A_\lambda \in \mathcal{B}$ tal que $A_\lambda \subset U$.

Un espacio topológico (X,T) verifica el **axioma de separación** T_2 cuando, dados $p,q \in X$ existen dos entornos U(p), V(q) tales que $U \cap V = \emptyset$. Este espacio se denomina también **espacio de Hausdorff**. Por ejemplo, (\mathbb{R}, T_u) es de Hausdorff, porque si se toman $p,q \in \mathbb{R}$, y d = |p-q|, entonces $U = (p-\frac{d}{2}, p+\frac{d}{2})$ y $V = (q-\frac{d}{2}, q+\frac{d}{2})$ son disjuntos.

Sea $\mathcal{B} = \{A_{\lambda}\}$ una base en un espacio de Hausdorff. Si \mathcal{B} es convergente a p, éste es el único punto límite de \mathcal{B} .

Sea $s = \{a_i\}$. $p \in X$ es un **punto de aglomeración** de s si se verifica que para todo entorno U de p y para todo A_m de la base de filtro de Fréchet de la sucesión, es $A_m \cap U \neq \emptyset$.

Si $s = \{a_i\}$ es una sucesión en (X, T), el conjunto de puntos de aglomeración de s es $\bigcap_{m \in \mathbb{N}} \{adh(A_m)\}$.

Si \mathcal{B} es una base de filtro en (X,T), p es de aglomeración cuando para todo entorno U de p y para todo $A_{\lambda} \in \mathcal{B}$, $U \cap A_{\lambda} \neq \emptyset$. El conjunto $\cap_{\lambda} \{adh(A_m)\}$ es el conjunto de puntos de aglomeración de \mathcal{B} .