Primer Parcial

12 d'abril de 2024

1. Sigui $f:(a,b)\to (0,+\infty)$ una funció diferenciable. Definim

$$M = \{(x, y, z, t) \in \mathbb{R}^4 \mid \sqrt{x^2 + y^2 + z^2} = f(t), \ t \in (a, b)\}$$

- (a) Demostreu que M és una subvarietat de \mathbb{R}^4 .
- (b) Doneu un atles per M.
- (c) Demostreu que els camps $X = y\partial/\partial z z\partial/\partial y$, $Y = z\partial/\partial x x\partial/\partial z$ i $Z = x\partial/\partial y y\partial/\partial x$ són tangents a M.
- (d) Comproveu que [X, Y] = -Z.
- (e) Comproveu que $M \cap \{(x, y, z, t) \in \mathbb{R}^4 \mid t = c\}$ és una subvarietat per tot $c \in (a, b)$. Deduïu que els camps X, Y i Z són linealment dependents en el tangent de cada punt de M.

Solució: a) El conjunt M és $F^{-1}(0)$ on $F(x,y,z,t)=x^2+y^2+z^2-f^2(t)$. Tenim que $dF=(2x,2y,2z,2f'f)\neq 0$ ja que x,y,z no poden ser zero simultàniament. Llavors 0 és valor regular i M és subvarietat.

- b) Si $(x,y,z,t) \in M$ tenim $x^2 + y^2 + z^2 = f^2(t)$ llavors sempre hi ha dues variables entre x,y,z que la suma dels seus quadrats és menor que $f^2(t)$. Si $x^2 + y^2 < f^2(t)$ considerem $U = \{(x,y,t) \in \mathbb{R}^3 : x^2 + y^2 < f^2(t), t \in (a,b)\}$ i les parametritzacions $\varphi_{\pm}^{-1}(x,y,t) = (x,y,\pm\sqrt{f^2(t)-x^2-y^2},t) \in M$. Llavors $(V_{\pm} = \varphi_{\pm}^{-1}(U), \varphi_{\pm})$ és una carta local. Amb les altres variables fem el mateix i obtenim un atles amb sis cartes locals.
- c) Tenim

$$dF \cdot X = (2x, 2y, 2z, 2f'f) \begin{pmatrix} 0 \\ -z \\ y \\ 0 \end{pmatrix} = 0, \quad dF \cdot Y = 0, \quad dF \cdot Z = 0.$$

Llavors són camps tangents a M.

d) Derivem les funcions coordenades x, y, z, t i ho veiem (o fem directament els claudàtors):

$$[X,Y](x) = XY(x) - YX(x) = X(z) - Y(0) = y,$$

$$[X,Y](y) = XY(y) - YX(y) = X(0) - Y(-z) = -x,$$

$$[X,Y](z) = XY(z) - YX(z) = X(-x) - Y(y) = 0 - 0 = 0$$

i $[X,Y] = y\partial_x - x\partial_y = -Z$. Directament amb claudàtors

$$[X,Y] = [y\partial_z - z\partial_y, z\partial_x - x\partial_z] = y\partial_x - x\partial_y = -Z.$$

e) $S=M\cap\{(x,y,z,t)\in\mathbb{R}^4\mid t=c\}$ és una esfera de radi f(t) i és antiimatge de (0,0) per $(F,G)(x,y,z,t)=(x^2+y^2+z^2-f^2(t),t-c)$. És valor regular ja que (dF,dG) té rang 2 a tot S. Com que $d(F,G)\cdot X=d(F,G)\cdot Y=d(F,G)\cdot Z=0$ els camps X,Y,Z són tangents a S que és de dimensió 2, llavors els camps són linealment dependents a cada punt.

2.— Es considera la varietat, difeomorfa a \mathbb{R}^3 ,

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\} \subset Gl(3, \mathbb{R}).$$

(a) Proveu que H és grup de Lie (grup de Heisenberg).

- (b) Comproveu que els camps $V_1 = \partial/\partial x, V_2 = \partial/\partial y + x\partial/\partial z, V_3 = \partial/\partial z$ són invariants per l'esquerra (és a dir que $dL_g \cdot V_i|_{gh}$ on $L_g(h) = g \cdot h$).
- (c) Considerem a H la mètrica g que fa de $\{V_1, V_2, V_3\}$ una base ortonormal a cada punt. Expresseu el tensor mètric g en les coordenades (x, y, z).
- (d) Decidiu si l'aplicació $i(g) = g^{-1}$ és isometria.
- (e) Sabem que les equacions de les geodèsiques en les coordenades (x, y, z) són

$$x'' - xy'^{2} + y'z' = 0$$
$$y'' + xx'y' - x'z' = 0$$
$$z'' + (x^{2} - 1)x'y' - xx'z' = 0.$$

Determineu els símbols de Christoffel en aquest sistema de coordenades.

- (f) Calculeu els parèntesis de Lie $[V_i, V_j]$ per i, j = 1, 2, 3. Comproveu que $\nabla_{V_1} V_2 = \frac{1}{2} V_3$, $\nabla_{V_2} V_3 = \frac{1}{2} V_1$ i $\nabla_{V_1} V_3 = -\frac{1}{2} V_2$ per la connexió riemanniana ∇ en (H, g).
- (g) Comproveu que la corba $x = t\cos\theta, y = t\sin\theta, z = \frac{1}{2}t^2\cos\theta\sin\theta$ amb $\cos\theta\sin\theta \neq 0$ és una geodèsica de (H,g).

Solució: a) Es comprova fàcilment que és subgrup del grup de Lie $\mathrm{Gl}(3,\mathbb{R})$. Identifiquem l'element

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} de \ H \ amb \ (x, y, z) \in \mathbb{R}^3. \ Si \ g = (a, b, c) \ i \ h = (x, y, z) \ llavors$$

$$qh^{-1} = (a - x, b - y, -ay + xy + c - z)$$

que és C^{∞} de $H \times H$ en H. Aleshores H és grup de Lie.

b) Tenim que si $L_g(h) = gh$ és la translació per l'esquerra llavors $dL_g \cdot v = g \cdot v$ (producte ordinari de matrius). Els camps s'identifiquen amb les matrius reals 3×3 següents

$$V_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, V_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Es una comprovació que $dL_gV_i(h) = V_i(gh)$. Fem els cas V_2 , si g = (a,b,c) i h = (x,y,z) llavors gh = (a+x,b+y+c+z+ay) i

$$dL_g V_2(h) = dL_{(a,b,c)} \cdot V_2(x,y,z) = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & a+x \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = V_2(gh).$$

Els altres casos es fan de forma similar.

c) Si $G = (g_{ij})$ denota el tensor mètric en coordenades x, y, z, imposant l'ortonormalitat de la base $\{V_1, V_2, V_3\}$ veiem que la matriu de Gram en el punt $(x, y, z) \in H$ és

$$G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + x^2 & -x \\ 0 & -x & 1 \end{pmatrix}.$$

O bé en llenguatge tensorial el tensor mètric q és

$$q = dx \otimes dx + (1+x^2)dy \otimes dy + dz \otimes dz - x(dy \otimes dz + dz \otimes dy)$$

(si escrivim l'element de longitud podem posar $ds^2 = dx^2 + dy^2 + (dz - xdy)^2$).

d) Tenim que $i(x,y,z)=(x,y,z)^{-1}=(-x,-y,xy-z).$ Llavors

$$i^*g = d(-x) \otimes d(-x) + (1 + (-x)^2)d(-y) \otimes d(-y) + d(xy - z) \otimes d(xy - z) + \cdots$$

Acabem els càlculs i obtenim

$$i^*g = (1+y^2)dx \otimes dx + dy \otimes dy + dz \otimes dz - y(dx \otimes dz + dz \otimes dx) \neq g$$

llavors i no és isometria.

e) Les equacions de les geodèsiques són

$$x_k'' + \sum_{ij} \Gamma_{ij}^k x_i' x_j' = 0, \quad k = 1, 2, 3$$

amb $x_1 = x, x_2 = y, x_3 = z$. Comparem amb

$$x'' - xy'^{2} + y'z' = 0$$

$$y'' + xx'y' - x'z' = 0$$

$$z'' + (x^{2} - 1)x'y' - xx'z' = 0.$$
(1)

i veiem que els símbols de Christoffel no nuls són

$$\begin{split} \Gamma^1_{22} &= -x, & \Gamma^1_{23} &= \frac{1}{2}, & \Gamma^2_{12} &= \frac{1}{2}x, \\ \Gamma^2_{13} &= -\frac{1}{2}, & \Gamma^3_{12} &= \frac{1}{2}(x^2 - 1), & \Gamma^3_{13} &= -\frac{1}{2}x. \end{split}$$

f) Un senzill càlcul mostra que $[V_1, V_2] = V_3$ i $[V_1, V_3] = [V_2, V_3] = 0$.

Per calcular les derivades covariants que es demanen podem fer servir els símbols de Christoffel o be fer servir la relació

$$g(\nabla_{V_i}V_j, V_k) = \frac{1}{2}(g([V_i, V_j], V_k) + g([V_k, V_i], V_j) - g([V_j, V_k], V_i))$$

que es compleix per ser ∇ connexió riemanniana i per ser $\{V_1, V_2, V_3\}$ base ortonormal. Per exemple

$$g(\nabla_{V_1}V_2,V_3) = \frac{1}{2}(g([V_1,V_2],V_3) + g([V_3,V_1],V_2) - g([V_2,V_3],V_1)) = \frac{1}{2}g([V_1,V_2],V_3) = \frac{1}{2}g(V_3,V_3) = \frac{1}{2}g(V_3$$

$$g(\nabla_{V_1}V_2, V_1) = g(\nabla_{V_1}V_2, V_2) = 0$$

llavors

$$\nabla_{V_1} V_2 = \frac{1}{2} V_3.$$

En els altres casos podem procedir de manera similar.

g) Substituïm $x(t) = t \cos \theta, y(t) = t \sin \theta, z(t) = \frac{1}{2}t^2 \cos \theta \sin \theta$ en les equacions de les geodèsiques (1) i es comprova que les compleixen. Per tant la corba donada és una geodèsica en (H, g).

3.— Qüestions

Per a cadascuna de les afirmacions següents, determineu si és certa o falsa. Justifiqueu la vostra decisió en cada cas amb un breu argument o bé amb un contraexemple.

- (a) Siguin (x_1, \ldots, x_n) coordenades locals d'una varietat diferenciable llavors $[\partial/\partial x_i, \partial/\partial x_j] = 0$.
- (b) Siguin M una varietat i $f: M \to \mathbb{R}^n$ un aplicació diferenciable i injectiva. Aleshores la imatge f(M) és una subvarietat de \mathbb{R}^n .
- (c) La longitud la corba de \mathbb{R}^3 amb el producte $g_p = 4\langle , \rangle_{p,\text{eucl}}/(1+||p||^2)^2$ amb $||\cdot||$ la norma euclidiana, donada per c(t) = (0,t,0) té longitud infinita.
- (d) El transport paral·lel conserva els angles.

Solució:

(a) Certa. Són camps coordenats i

$$\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right] = \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\partial^2}{\partial x_j \partial x_i} = 0.$$

També podem avaluar sobre cada x_k :

$$\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right](x_k) = \frac{\partial}{\partial x_i}\delta_{jk} - \frac{\partial}{\partial x_j}\delta_{ik} = 0 - 0 = 0.$$

(b) Falsa. Apliquem un segment obert de manera que un extrem s'acosta a la part central (dibuix). Podem considerar f(t) que val t si $t \in (-1,0)$ i $(\cos(t-\pi/2), \sin(t-\pi/2)+1)$ si $t \in (0,2\pi)$.

Figura 1: Al (0,0) la topologia de $(-1,2\pi)$ i la induïda no coincideixen.

(c) Falsa. És la imatge d'un meridià per la estereogràfica de l'esfera de radi 1 i la seva longitud és π . Si fem el càlcul hem de fer la integral

$$\int_0^\infty ||c'||dt = \int_0^\infty \sqrt{\frac{4\langle (0,1,0), (0,1,0)\rangle_{\mathrm{eucl}}}{(1+t^2)^2}} = 2\int_0^\infty \frac{dt}{(1+t^2)} = 2\lim_{t\to +\infty} \arctan(t) = \pi$$

que és finita.

(d) Certa. Si V(t), W(t) són camps paral·lels al llarg de c(t) tenim

$$c'g(V(t), W(t)) = g(\nabla_{c'}V, W) + g(V, \nabla_{c'}W) = 0$$

Llavors el producte g(V(t), W(t)) és constant i l'angle és igual al que formen el vectors inicials.

Totes les respostes han d'estar degudament justificades.

No es pot fer servir calculadora. Entregeu exercicis (teoria i problemes) diferents en fulls separats posant nom, cognom(s) i NIU a cada full. La durada de la prova és de 150 minuts.