| Notes | Mark Scheme                      | Syllabus |  |
|-------|----------------------------------|----------|--|
|       | A Level Examinations – June 2002 | 9709     |  |

## Mark Scheme Notes

- Marks are of the following three types.
  - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
  - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
  - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
   B2,1,0 means that the candidate can earn anything from 0 to 2.
   The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f. or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

| Notes | Mark Scheme                      | Syllabus |  |
|-------|----------------------------------|----------|--|
|       | A Level Examinations – June 2002 | 9709     |  |

- The following abbreviations may be used in a mark scheme or used on the scripts.
  - AEF Any Equivalent Form (of answer is equally acceptable).
  - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid).
  - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear).
  - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed).
  - CWO Correct Working Only often written by a 'fortuitous' answer.
  - ISW Ignore Subsequent Working.
  - MR Misread.
  - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate).
  - SOS See Other Solution (the candidate makes a better attempt at the same question).
  - SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## **Penalties**

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through," marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA-1 This is deducted from A or B marks in the case of premature approximation. The PA-1 penalty is usually discussed at the meeting.



**JUNE 2002** 

## **GCE Advanced Subsidiary Level**

## **MARK SCHEME**

MAXIMUM MARK: 75

SYLLABUS/COMPONENT:9709/1

MATHEMATICS (Pure 1)



| Page 1 | Mark Scheme                       | Syllabus | Paper |
|--------|-----------------------------------|----------|-------|
|        | AS Level Examinations – June 2002 | 9709     | 1     |

| 1. x+2y=9 solved with xy+18=0<br>2y <sup>2</sup> -9y-18=0 or x <sup>2</sup> -9x-36=0<br>x= 12, y=-1.5 and x=-3, y= 6.                                                 | MI<br>AI<br>DMI<br>AI  | Complete elimination of x or y  Correct 3-term equation (not = 0)  Correct method of solving quadratic=0  Everything ok.                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                       | 4                      | Condone simple algebraic errors in first M1<br>Guesswork B2 B2                                                                                       |
| 2. (i) sinx tanx=sinx sinx+cosx<br>sinxtanx = (1-cos <sup>2</sup> x)+ cosx                                                                                            | Bl I                   | Uses t=s/c and uses s <sup>2</sup> +c <sup>2</sup> =1 correctly.                                                                                     |
| (ii) $2\sin x = 3 \rightarrow 2c^2 + 3c - 2 = 0$<br>$\cos x = 0.5$ $x = 60^{\circ}$<br>or $x = 300^{\circ}$ .                                                         | MI<br>DMI<br>AI<br>AI√ | Forms a 3 term quadratic in cosine Solves = 0 Correct only For 360 - (his answer) - loses this if other answers in range 0 to 360. Needs M1 and DM1  |
| 3 (i) P is (9,9)                                                                                                                                                      | B1 1                   | Guesswork B2 B2  Correct only – needs both coordinates.                                                                                              |
| (ii) Area under curve = ∫ydx<br>= 3x <sup>(3/2)</sup> ÷ (3/2)<br>Use of limits in either part<br>Area = 54<br>Area under line = ½x <sup>2</sup> or uses ½bh<br>= 40.5 | MI<br>Al<br>DMI        | used once to find area under a curve or line correct only use of his limits correctly  Anywhere – correct attempt at area of triangle                |
| Subtract the areas → 13.5                                                                                                                                             | A1 5                   | Correct only.                                                                                                                                        |
| 4 (i) $a=12$ $a+4d=18$ $\therefore d=1.5$<br>$S_{25} = 25/2(24 + 24 \times 1.5)$                                                                                      | B1<br>MI               | Correct only Use of S <sub>n</sub> formula.                                                                                                          |
| $= 750$ (ii) $a=12$ $ar^4 = 18$ $r^4 = 1.5$ $= 13 \text{ th term} = ar^{12}$ $= 12 \times (1.5)^3$                                                                    | A1 3<br>M1 A1<br>M1    | Correct only.  Correct method for r or r <sup>4</sup> (needs ar <sup>4</sup> )  Needs ar <sup>12</sup> and method for subbing r (or r <sup>4</sup> ) |
| = 40.5 or 40.6                                                                                                                                                        | A1 4                   | Correct only.                                                                                                                                        |

| Page 2 | Mark Scheme                       |  | Paper |
|--------|-----------------------------------|--|-------|
|        | AS Level Examinations – June 2002 |  | 1     |

| 5 (i) $MO = 4i-6k$<br>MC = 4i+4j+6k                                                                                                                | B1<br>B2,1       | Correct only One off for each error in i, j and k.                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|
| (ii) MO.MC = $16+0-36 = -20$<br>= $\sqrt{(4^2+6^2)}\sqrt{(4^2+4^2+6^2)\cos\theta}$                                                                 | MI<br>MI MI      | Use of $a_1b_1+a_2b_2+a_3b_3$<br>Use of $a_1^2b_2$ cos $\theta$ Use of Modulus. |
| Angle = 109.7°. (allow 109.6)                                                                                                                      | A1 4             | Correct only.                                                                   |
|                                                                                                                                                    |                  | No penalty for use of column vectors.                                           |
| 6 $f(x) = a \sin x + b$<br>(i) $f(\pi \div 2) = 2$ $a+b=2$<br>$f(3\pi \div 2) = -8$ $-a+b=-8$<br>Solution $a=5, b=-3$                              | B1<br>B1<br>B1 3 | Correct only Correct only Correct only                                          |
| (ii) $5\sin x-3=0$ $\sin x=3/5$<br>x = 0.64<br>or $x = 2.50$                                                                                       | BI√<br>BI√ 2     | For sin <sup>-1</sup> (-b/a)<br>For π - his answer                              |
| (iii) y                                                                                                                                            | B2,1 2           | Just one cycle Starts on negative y-axis Max about correct Min about correct.   |
| 7 (i) $\sin(\frac{1}{2} \text{ angle}) = 16/20$                                                                                                    | MI<br>Al 2       | Sine in 90° triangle – or cosine rule                                           |
| Required angle = 1.855 radians<br>(ii) Area of sector = $\frac{1}{2}$ r <sup>2</sup> $\theta$<br>= 371 cm <sup>2</sup> .                           | MI<br>Al 2       | Correct only (answer was given)  Correct formula used.  Correct only.           |
| (iii) Area = Circle – rectangle – sector + triangle                                                                                                | MI               | Correct logic – independent of method                                           |
| $= \pi r^2 + 1 \times b + \frac{1}{2} r^2 \theta + \frac{1}{2} b h \text{ (or } \frac{1}{2} ab \sin C)$ $= 502 \text{ cm}^2 \text{ (accept } 501)$ | DM1<br>A1 3      | Correct attempt at all parts. Correct only                                      |
|                                                                                                                                                    |                  |                                                                                 |
|                                                                                                                                                    |                  |                                                                                 |

| Page 3 | Mark Scheme                       | Syllabus | Paper |
|--------|-----------------------------------|----------|-------|
| i      | AS Level Examinations – June 2002 | 9709     | 1     |

| 8 (i) $192\pi = \pi r^2 + 2\pi rh$                                 | M1         | Tries to relate surface area and (1 or 2) circles.                             |
|--------------------------------------------------------------------|------------|--------------------------------------------------------------------------------|
| leads to $h=(192\pi - \pi r^2) \div 2r\pi$                         | Al<br>Ml   | Correct only.  Subs for h into a correct volume formula.                       |
| $V = \pi r^2 h$ $V = \frac{1}{2}\pi (192 r - r^3)$                 | Ai 4       |                                                                                |
| V-RI II V-72R(1921-1)                                              |            | Miswell was given. (bewale lotterious alls)                                    |
| (ii) $dV/dr = \frac{1}{2}\pi(192-3r^2)$                            | MI         | Attempt to differentiate.                                                      |
| = 0 when r=8                                                       | DMI A1     | Attempt to set to 0. Correct only.                                             |
| o when to                                                          | 3          |                                                                                |
| (iii) value of V=1610 (or512 $\pi$ )                               | Al         |                                                                                |
|                                                                    | At         | Correct only – could be in (ii)                                                |
| $d^2V/dr^2 = \frac{1}{2}\pi(-6r)$ Negative                         | M1         | Any correct method for max/min,                                                |
| maximum.                                                           | AIV        | Correct conclusion ( must have second                                          |
|                                                                    | 3          | differential correct, but for his "r")                                         |
|                                                                    |            |                                                                                |
| 9 (i) At P(1,5), $x=1$ m=4/3                                       | BI         | Correct only                                                                   |
| Gradient of normal $= -\frac{3}{4}$                                | M1         | Use of m <sub>1</sub> m <sub>2</sub> = -1                                      |
| Eqn of normal $y-5=-\frac{3}{4}(x-1)$                              | MI         | Correct form – though may put y=0 at start                                     |
| Puts $y=0$ , $x=23/3$                                              | Al 4       | Correct only                                                                   |
| (ii) $y = 12(2x+1)^{-1} \div -1 \div 2$                            | мі         | For 12 $(2x+1)^k \div k - no$ other "x" anywhere.                              |
| (u) y = 12 (2x+1) +-1 +2                                           | Al         | For $k=-1$ and $\div 2$ .                                                      |
| y=-6/(2x+1)+c $c=7$                                                | MIAI       | Needs an attempt at integration, plus use of C                                 |
| , - ,                                                              | 4          |                                                                                |
| (ii) $dx/dt = 0.3$                                                 | B1         | Fact only                                                                      |
| $dy/dt = dy/dx \times dx/dt$                                       | Ml         | Correct relation between rates of change used                                  |
| $= 4/3 \times 0.3 = 0.4$                                           | A1 3       | Correct only. (condone use of $\delta x$ , $\delta y$ )                        |
|                                                                    |            | Nb could get M1 A1 for (ii) if in (i).                                         |
| 10 f:x→3x+2                                                        |            |                                                                                |
| $g:x\rightarrow 6\div(2x+3)$                                       | 1,4,       | Puts g into f – order correct (or f=3 $\rightarrow$ x= $\frac{1}{3}$ )         |
| (i) $fg(x) = 3  18 \div (2x+3) + 2 = 3$                            | M1<br>DM1  | Correct method of solution (or $f = \frac{1}{3} \rightarrow x = \frac{7}{2}$ ) |
| solution of this                                                   | A1 3       | Correct only                                                                   |
| $x = 7.5 \text{ or } 7\frac{1}{2}$ .                               |            | Correct only                                                                   |
| (ii) 4 1 / 4 + 4 1 / 4 - 14 1                                      |            |                                                                                |
|                                                                    |            |                                                                                |
| y=5'6)                                                             | Bl         | Graph of f(x) - needs m>1, +ve y intercept                                     |
| (8)                                                                | BI<br>B1 3 | Graph of $f^{-1}(x)$ – needs m<1. +ve x-intercept                              |
| ×                                                                  | B1 3       | Some idea of reflection in y=x - stated ok.                                    |
| - <del>-                                  </del>                   |            |                                                                                |
| (iii) $f^{-1}(x) = \frac{1}{3}(x-2)$                               | B1         | Correct only                                                                   |
| $y = 6 \div (3x+2)$ makes x the subject and                        | MI         | Any valid method                                                               |
| swops x and y $\rightarrow \frac{1}{2}(6/x-3)$                     | Αl         | Correct only - any form.                                                       |
| ,                                                                  |            |                                                                                |
| $\frac{1}{3}(x-2) = \frac{1}{2}(6/x-3) \rightarrow 2x^2 + 5x = 18$ | Mi         | Complete method of solution                                                    |
| x = 2 or x = -4.5                                                  | A1 5       | Correct only                                                                   |
|                                                                    |            |                                                                                |
|                                                                    | 1          | <u></u>                                                                        |