Priors and Intro to Bayesian Variable Selection

Hoff Chapter 9, Mixtures of g-Priors Liang et al JASA

October 18, 2017

Outline

- ▶ Priors in Bayesian Regression
- Model Selection

US Air Example

Im summary

```
lm(formula = log(SO2) \sim temp + log(firms) + log(popn) + win
   precip + rain, data = usair)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.7142760 1.6475086 4.075 0.000261 ***
     temp
log(firms) 0.3698588 0.1934076 1.912 0.064289 .
log(popn) -0.1771293 0.2335520 -0.758 0.453428
wind -0.1738606 0.0656713 -2.647 0.012204 *
precip 0.0156032 0.0132718 1.176 0.247893
rain 0.0009153 0.0057335 0.160 0.874104
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
```

Residual standard error: 0.5108 on 34 degrees of freedom Multiple R-squared: 0.5503, Adjusted R-squared: 0.471 F-statistic: 6.936 on 6 and 34 DF, p-value: 7.12e-05

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

 Fisher Information is φX^TX based on a sample of n observations

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T \mathbf{X})^{-1}/\phi)$

- Fisher Information is φX^TX based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE

Unit information prior $\boldsymbol{\beta} \mid \phi \sim N(\hat{\boldsymbol{\beta}}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- Fisher Information is φX^TX based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$

Unit information prior $\boldsymbol{\beta} \mid \phi \sim N(\hat{\boldsymbol{\beta}}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- Fisher Information is φX^TX based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T \mathbf{X})^{-1}/\phi)$

- Fisher Information is φX^TX based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- Posterior mean

$$\frac{n}{1+n}\hat{\beta} + \frac{1}{1+n}\hat{\beta} = \hat{\beta}$$

Unit information prior $\boldsymbol{\beta} \mid \phi \sim N(\hat{\boldsymbol{\beta}}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- Fisher Information is φX^TX based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- Posterior mean

$$\frac{n}{1+n}\hat{\boldsymbol{\beta}} + \frac{1}{1+n}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$$

Posterior Distribution

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathbb{N}\left(\hat{oldsymbol{eta}}, rac{n}{1+n} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

Unit information prior $\beta \mid \phi \sim \mathsf{N}(\hat{\beta}, \mathsf{n}(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- Fisher Information is φX^TX based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- Posterior mean

$$\frac{n}{1+n}\hat{\boldsymbol{\beta}} + \frac{1}{1+n}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$$

Posterior Distribution

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(\hat{oldsymbol{eta}}, rac{n}{1+n} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

Cannot represent real prior beliefs; double use of data

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

▶ Treat β and ϕ independently ("orthogonal parameterization")

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

- ▶ Treat β and ϕ independently ("orthogonal parameterization")
- $ightharpoonup p_{IJ}(oldsymbol{eta}) \propto |\Im(oldsymbol{eta})|^{1/2}$

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

- ▶ Treat β and ϕ independently ("orthogonal parameterization")
- $p_{IJ}(\beta) \propto |\Im(\beta)|^{1/2}$
- ho $p_{IJ}(\phi) \propto |\Im(\phi)|^{1/2}$

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

- ightharpoonup Treat $oldsymbol{eta}$ and ϕ independently ("orthogonal parameterization")
- ▶ $p_{IJ}(\beta) \propto |\Im(\beta)|^{1/2}$
- $ightharpoonup p_{IJ}(\phi) \propto |\Im(\phi)|^{1/2}$

where $\Im(\theta)$ is the Expected Fisher Information matrix

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

- lacktriangle Treat eta and ϕ independently ("orthogonal parameterization")
- $p_{IJ}(\boldsymbol{\beta}) \propto |\mathfrak{I}(\boldsymbol{\beta})|^{1/2}$
- $ightharpoonup p_{IJ}(\phi) \propto |\mathfrak{I}(\phi)||^{1/2}$

where $\mathfrak{I}(\boldsymbol{\theta})$ is the Expected Fisher Information matrix

$$\mathbb{J}(\theta) = -\mathsf{E}\left[\left[\frac{\partial^2 \log(\mathcal{L}(\theta))}{\partial \theta_i \partial \theta_j}\right]\right]$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2}\log(\phi) - \frac{\phi}{2}SSE - \frac{\phi}{2}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2}\log(\phi) - \frac{\phi}{2}SSE - \frac{\phi}{2}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^2 \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} = \begin{bmatrix} -\phi(\mathbf{X}^T \mathbf{X}) & -(\mathbf{X}^T \mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) & -\frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2}\log(\phi) - \frac{\phi}{2}SSE - \frac{\phi}{2}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & -(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X}) & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
E\left[\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right] = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix}$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2} \log(\phi) - \frac{\phi}{2} SSE - \frac{\phi}{2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & -(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X}) & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
E\left[\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right] = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
\mathcal{I}((\boldsymbol{\beta}, \phi)^{T}) = \begin{bmatrix} \phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix}$$

$$\mathbb{J}((\boldsymbol{\beta}, \phi)^{\mathsf{T}}) = \begin{bmatrix} \phi(\mathbf{X}^{\mathsf{T}}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{\mathsf{T}} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix}$$

$$\mathbb{J}((\boldsymbol{\beta}, \phi)^T) = \begin{bmatrix} \phi(\mathbf{X}^T \mathbf{X}) & \mathbf{0}_p \\ \mathbf{0}_p^T & \frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$
$$p_{IJ}(\boldsymbol{\beta}) \propto |\phi \mathbf{X}^T \mathbf{X}|^{1/2} \propto 1$$

$$\mathfrak{I}((\boldsymbol{\beta}, \phi)^{\mathsf{T}}) = \begin{bmatrix} \phi(\mathbf{X}^{\mathsf{T}}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{\mathsf{T}} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
p_{IJ}(\boldsymbol{\beta}) \propto |\phi\mathbf{X}^{\mathsf{T}}\mathbf{X}|^{1/2} \propto 1 \\
p_{IJ}(\phi) \propto \phi^{-1}$$

$$\mathfrak{I}((\boldsymbol{\beta}, \phi)^{T}) = \begin{bmatrix} \phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
p_{IJ}(\boldsymbol{\beta}) \propto |\phi\mathbf{X}^{T}\mathbf{X}|^{1/2} \propto 1 \\
p_{IJ}(\phi) \propto \phi^{-1}$$

Independent Jeffreys Prior is

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

$$\boldsymbol{\beta} \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\boldsymbol{\beta}}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, ||\mathbf{Y} - \mathbf{X}\hat{\beta}||^2/2)$$

$$\beta \mid \mathbf{Y} \sim t_{n-p}(\hat{\beta}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

Formal Posterior Distribution (Show!)

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, \|\mathbf{Y} - \mathbf{X}\hat{\beta}\|^2/2)$$

$$\beta \mid \mathbf{Y} \sim t_{n-p}(\hat{\beta}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

Bayesian Credible Sets $p(\beta \in C_{\alpha}) = 1 - \alpha$ correspond to frequentist Confidence Regions

$$rac{oldsymbol{\lambda}^Toldsymbol{eta}-oldsymbol{\lambda}\hat{eta}}{\sqrt{\hat{\sigma}^2oldsymbol{\lambda}^T(oldsymbol{\mathsf{X}}^Toldsymbol{\mathsf{X}})^{-1}oldsymbol{\lambda}}}\sim t_{n-
ho}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

Formal Posterior Distribution (Show!)

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, ||\mathbf{Y} - \mathbf{X}\hat{\beta}||^2/2)$$

$$\beta \mid \mathbf{Y} \sim t_{n-p}(\hat{\beta}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

Bayesian Credible Sets $p(\beta \in C_{\alpha}) = 1 - \alpha$ correspond to frequentist Confidence Regions

$$\frac{\boldsymbol{\lambda}^T\boldsymbol{\beta} - \boldsymbol{\lambda}\boldsymbol{\hat{\beta}}}{\sqrt{\hat{\sigma}^2\boldsymbol{\lambda}^T(\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{X}})^{-1}\boldsymbol{\lambda}}} \sim t_{n-p}$$

BUT Cannot be used for Model Selection

Zellner's g-prior

Zellner's g-prior(s) $\beta \mid \phi \sim \mathsf{N}(\mathbf{b}_0, g(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

Zellner's g-prior

Zellner's g-prior(s) $\beta \mid \phi \sim N(\mathbf{b}_0, g(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b_0}, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

Zellner's g-prior

Zellner's g-prior(s) $\beta \mid \phi \sim N(\mathbf{b}_0, g(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{oldsymbol{g}}{1+oldsymbol{g}} \hat{oldsymbol{eta}} + rac{1}{1+oldsymbol{g}} \mathbf{b_0}, rac{oldsymbol{g}}{1+oldsymbol{g}} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

Zellner proposed informative choice for the prior mean

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{oldsymbol{g}}{1+oldsymbol{g}} \hat{oldsymbol{eta}} + rac{1}{1+oldsymbol{g}} \mathbf{b_0}, rac{oldsymbol{g}}{1+oldsymbol{g}} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

- Zellner proposed informative choice for the prior mean
- ▶ Invariance under linear transformations of X and Y

$$eta \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b}_0, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Zellner proposed informative choice for the prior mean
- Invariance under linear transformations of X and Y
- Avoids extra inverses beyond those in obtaining OLS estimates (computational)

$$eta \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b}_0, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Zellner proposed informative choice for the prior mean
- Invariance under linear transformations of X and Y
- Avoids extra inverses beyond those in obtaining OLS estimates (computational)
- ▶ $\frac{g}{1+g}$ weight given to the data

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b}_0, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Zellner proposed informative choice for the prior mean
- Invariance under linear transformations of X and Y
- Avoids extra inverses beyond those in obtaining OLS estimates (computational)
- $ightharpoonup \frac{g}{1+g}$ weight given to the data
- ▶ Choice of g?

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b}_0, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Zellner proposed informative choice for the prior mean
- Invariance under linear transformations of X and Y
- Avoids extra inverses beyond those in obtaining OLS estimates (computational)
- $ightharpoonup \frac{g}{1+g}$ weight given to the data
- ▶ Choice of g?
- Same g for intercept and other coefficients

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}^{c}\boldsymbol{\beta} + \epsilon$$

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}^{c}\boldsymbol{\beta} + \epsilon$$

$$ho(\phi) \propto 1/\phi$$

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}^{c}\boldsymbol{\beta} + \epsilon$$

- ho $p(\phi) \propto 1/\phi$

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}^{c}\boldsymbol{\beta} + \epsilon$$

- $ho(\phi) \propto 1/\phi$
- $ightharpoonup p(\alpha \mid \phi) \propto 1$
- $\blacktriangleright \ \beta \mid \alpha, \phi, \gamma \sim \mathsf{N}(0, g\phi^{-1}(\mathbf{X}^{c\prime}\mathbf{X}^c)^{-1})$

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}^{c}\boldsymbol{\beta} + \epsilon$$

- $ho(\phi) \propto 1/\phi$
- $ightharpoonup p(\alpha \mid \phi) \propto 1$
- $ightharpoonup eta \mid lpha, \phi, oldsymbol{\gamma} \sim \mathsf{N}(0, g\phi^{-1}(\mathbf{X}^{c\prime}\mathbf{X}^c)^{-1})$

$$\boldsymbol{\beta} \mid \mathbf{Y}, \alpha, \phi \sim N\left(\frac{g}{1+g}\hat{\boldsymbol{\beta}}, \phi^{-1}\frac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\right)$$

$$\phi \mid \mathbf{Y} \sim \mathsf{Gamma}\left(rac{n-1}{2}, rac{\mathsf{SSE} + rac{1}{1+g}\hat{oldsymbol{eta}}^T(\mathbf{X}^T\mathbf{X})\hat{oldsymbol{eta}}}{2}
ight)$$

joint posterior draws of beta's

Avoid the use of redundant variables (problems with interpretations)

- Avoid the use of redundant variables (problems with interpretations)
- Inclusion of un-necessary terms yields less precise estimates, particularly if explanatory variables are highly correlated with each other

- ► Avoid the use of redundant variables (problems with interpretations)
- Inclusion of un-necessary terms yields less precise estimates, particularly if explanatory variables are highly correlated with each other
- reduced MSE: reduced variance but possibly higher bias

- Avoid the use of redundant variables (problems with interpretations)
- Inclusion of un-necessary terms yields less precise estimates, particularly if explanatory variables are highly correlated with each other
- reduced MSE: reduced variance but possibly higher bias
- ▶ it is too "expensive" to use all variables

▶ Models for the variable selection problem are based on a subset of the X₁,...X_p variables

- Models for the variable selection problem are based on a subset of the X₁,...X_p variables
- ▶ Encode models with a vector $\gamma = (\gamma_1, \dots \gamma_p)$ where $\gamma_j \in \{0,1\}$ is an indicator for whether variable \mathbf{X}_j should be included in the model \mathcal{M}_{γ} . $\gamma_j = 0 \Leftrightarrow \beta_j = 0$

- Models for the variable selection problem are based on a subset of the X₁,...X_p variables
- ▶ Encode models with a vector $\boldsymbol{\gamma} = (\gamma_1, \dots \gamma_p)$ where $\gamma_j \in \{0,1\}$ is an indicator for whether variable \mathbf{X}_j should be included in the model \mathcal{M}_{γ} . $\gamma_j = 0 \Leftrightarrow \beta_j = 0$
- **Each** value of γ represents one of the 2^p models.

- Models for the variable selection problem are based on a subset of the X₁,...X_p variables
- ▶ Encode models with a vector $\gamma = (\gamma_1, \dots \gamma_p)$ where $\gamma_j \in \{0,1\}$ is an indicator for whether variable \mathbf{X}_j should be included in the model \mathcal{M}_{γ} . $\gamma_j = 0 \Leftrightarrow \beta_j = 0$
- **Each** value of γ represents one of the 2^p models.
- ▶ Under model \mathcal{M}_{γ} :

$$\mathbf{Y} \mid \alpha, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\gamma} \sim \mathsf{N}(\mathbf{1}\alpha + \mathbf{X}_{\boldsymbol{\gamma}}\boldsymbol{\beta}_{\boldsymbol{\gamma}}, \sigma^2 \mathbf{I})$$

Where \mathbf{X}_{γ} is design matrix using the columns in \mathbf{X} where $\gamma_j=1$ and $\boldsymbol{\beta}_{\gamma}$ is the subset of $\boldsymbol{\beta}$ that are non-zero.

Posterior model probabilities

$$p(\mathcal{M}_j \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}{\sum_j p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}$$

Posterior model probabilities

$$p(\mathcal{M}_j \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}{\sum_j p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}$$

Marginal likelihod of a model is proportional to

$$p(\mathbf{Y} \mid \mathcal{M}_{\gamma}) = \iint p(\mathbf{Y} \mid \boldsymbol{\beta}_{\gamma}, \sigma^{2}) p(\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\gamma}, \sigma^{2}) p(\sigma^{2} \mid \boldsymbol{\gamma}) d\boldsymbol{\beta} d\sigma^{2}$$

Posterior model probabilities

$$p(\mathcal{M}_j \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}{\sum_j p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}$$

Marginal likelihod of a model is proportional to

$$p(\mathbf{Y} \mid \mathcal{M}_{\gamma}) = \iint p(\mathbf{Y} \mid \boldsymbol{\beta}_{\gamma}, \sigma^{2}) p(\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\gamma}, \sigma^{2}) p(\sigma^{2} \mid \boldsymbol{\gamma}) d\boldsymbol{\beta} d\sigma^{2}$$

▶ Bayes Factor BF[i:j]

$$\frac{P(\mathcal{M}_i \mid \mathbf{Y})}{P(\mathcal{M}_j \mid \mathbf{Y})} = \frac{p(\mathbf{Y} \mid \mathcal{M}_i)}{p(\mathbf{Y} \mid \mathcal{M}_j)} \times \frac{P(\mathcal{M}_i)}{P(\mathcal{M}_j)}$$

Posterior Odds = Bayes Factor \times Prior odds

Posterior model probabilities

$$p(\mathcal{M}_j \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}{\sum_j p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}$$

Marginal likelihod of a model is proportional to

$$p(\mathbf{Y} \mid \mathcal{M}_{\gamma}) = \iint p(\mathbf{Y} \mid \boldsymbol{\beta}_{\gamma}, \sigma^{2}) p(\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\gamma}, \sigma^{2}) p(\sigma^{2} \mid \boldsymbol{\gamma}) d\boldsymbol{\beta} d\sigma^{2}$$

▶ Bayes Factor BF[i : j]

$$\frac{P(\mathcal{M}_i \mid \mathbf{Y})}{P(\mathcal{M}_j \mid \mathbf{Y})} = \frac{p(\mathbf{Y} \mid \mathcal{M}_i)}{p(\mathbf{Y} \mid \mathcal{M}_j)} \times \frac{P(\mathcal{M}_i)}{P(\mathcal{M}_j)}$$

Posterior Odds = Bayes Factor \times Prior odds

▶ Probability $\beta_j \neq 0$: $\sum_{\mathcal{M}_j:\beta_j\neq 0} p(\mathcal{M}_j \mid \mathbf{Y})$ (marginal posterior inclusion probability)

Posterior model probabilities

$$p(\mathcal{M}_j \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}{\sum_j p(\mathbf{Y} \mid \mathcal{M}_j)p(\mathcal{M}_j)}$$

Marginal likelihod of a model is proportional to

$$p(\mathbf{Y} \mid \mathcal{M}_{\gamma}) = \iint p(\mathbf{Y} \mid \boldsymbol{\beta}_{\gamma}, \sigma^{2}) p(\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\gamma}, \sigma^{2}) p(\sigma^{2} \mid \boldsymbol{\gamma}) d\boldsymbol{\beta} d\sigma^{2}$$

▶ Bayes Factor BF[i : j]

$$\frac{P(\mathcal{M}_i \mid \mathbf{Y})}{P(\mathcal{M}_j \mid \mathbf{Y})} = \frac{p(\mathbf{Y} \mid \mathcal{M}_i)}{p(\mathbf{Y} \mid \mathcal{M}_j)} \times \frac{P(\mathcal{M}_i)}{P(\mathcal{M}_j)}$$

Posterior Odds = Bayes Factor \times Prior odds

▶ Probability $\beta_j \neq 0$: $\sum_{\mathcal{M}_j:\beta_j\neq 0} p(\mathcal{M}_j \mid \mathbf{Y})$ (marginal posterior inclusion probability)

Prior Distributions

► Bayesian Model choice requires proper prior distributions on regression coefficients (exception parameters that are included in all models)

Prior Distributions

- ▶ Bayesian Model choice requires proper prior distributions on regression coefficients (exception parameters that are included in all models)
- Vague but proper priors may lead to paradoxes!

Prior Distributions

- ► Bayesian Model choice requires proper prior distributions on regression coefficients (exception parameters that are included in all models)
- Vague but proper priors may lead to paradoxes!
- Conjugate Normal-Gammas lead to closed form expressions for marginal likelihoods, Zellner's g-prior is one of the most popular.

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}_{\gamma}^{c}\boldsymbol{\beta}_{\gamma} + \epsilon$$

Common parameters

$$p(\alpha,\phi)\propto\phi^{-1}$$

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}_{\gamma}^{c}\boldsymbol{\beta}_{\gamma} + \epsilon$$

Common parameters

$$p(\alpha,\phi)\propto\phi^{-1}$$

Model Specific parameters

$$\boldsymbol{\beta}_{\gamma} \mid \alpha, \phi, \boldsymbol{\gamma} \sim \mathsf{N}(0, g\phi^{-1}(\mathbf{X}_{\boldsymbol{\gamma}}^{c} \mathbf{X}_{\boldsymbol{\gamma}}^{c})^{-1})$$

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}_{\gamma}^{c}\boldsymbol{\beta}_{\gamma} + \epsilon$$

Common parameters

$$p(\alpha,\phi)\propto\phi^{-1}$$

Model Specific parameters

$$\boldsymbol{\beta}_{\gamma} \mid \alpha, \phi, \boldsymbol{\gamma} \sim \mathsf{N}(0, g\phi^{-1}(\mathbf{X}_{\gamma}^{c}'\mathbf{X}_{\gamma}^{c})^{-1})$$

• Marginal likelihood of \mathcal{M}_{γ} is proportional to

$$p(\mathbf{Y} \mid \mathcal{M}_{\gamma}) = C(1+g)^{\frac{n-p-1}{2}} (1+g(1-R_{\gamma}^2))^{-\frac{(n-1)}{2}}$$

where R_{γ}^2 is the usual R^2 for model \mathcal{M}_{γ} and C is a constant that is $p(\mathbf{Y} \mid \mathcal{M}_0)$ (model with intercept alone)

Centered model:

$$\mathbf{Y} = \mathbf{1}_{n}\alpha + \mathbf{X}_{\gamma}^{c}\boldsymbol{\beta}_{\gamma} + \epsilon$$

Common parameters

$$p(\alpha, \phi) \propto \phi^{-1}$$

Model Specific parameters

$$oldsymbol{eta}_{\gamma} \mid lpha, \phi, oldsymbol{\gamma} \sim \mathsf{N}(0, g\phi^{-1}(\mathbf{X}_{oldsymbol{\gamma}}^{c\,\prime}\mathbf{X}_{oldsymbol{\gamma}}^{c})^{-1})$$

▶ Marginal likelihood of \mathcal{M}_{γ} is proportional to

$$p(\mathbf{Y} \mid \mathcal{M}_{\gamma}) = C(1+g)^{\frac{n-p-1}{2}} (1+g(1-R_{\gamma}^2))^{-\frac{(n-1)}{2}}$$

where R^2_{γ} is the usual R^2 for model \mathcal{M}_{γ} and C is a constant that is $p(\mathbf{Y} \mid \mathcal{M}_0)$ (model with intercept alone)

• uniform distribution over space of models $p(\mathfrak{M}_{\gamma})=1/(2^p)$

USair Data: Enumeration of All Models

```
library(devtools)
suppressMessages(install_github("merliseclyde/BAS"))
library(BAS)
poll.bma = bas.lm(log(SO2) ~ temp + log(firms) +
                             log(popn) + wind +
                             precip+ rain,
                  data=usair,
                  prior="g-prior",
                  alpha=41, \# g = n
                  n.models=2^7, # enumerate (can omit)
                  modelprior=uniform(),
                  method="deterministic") # fast enumera
```

residual plot)

plot(poll.bma, which=1)

Model Complexity)

plot(poll.bma, which=3)

Inclusion Probabilities)

```
plot(poll.bma, which=4)
```


g(SO2) ~ temp + log(firms) + log(popn) + wind +

Model Space

```
summary(poll.bma)
              P(B != 0 | Y) \mod 1 \mod 2 \mod 3
##
                  1.0000000 1.000000 1.0000000 1.0000000 1
## Intercept
                           1.000000 1.0000000 1.0000000 1
## temp
                  0.9755041
## log(firms)
                 0.7190313 1.000000 1.0000000 1.0000000 1
                  0.2756811 0.000000 0.0000000 0.0000000 1
## log(popn)
                  0.7654485 1.000000 1.0000000 1.0000000 1
## wind
                  0.5993801 1.000000 0.0000000 0.0000000 1
## precip
                  0.3103574 0.000000 1.0000000 0.0000000 0
## rain
## BF
                         NA 1.000000 0.3022674 0.2349056 0
                         NA 0.275800 0.0834000 0.0648000 0
## PostProbs
## R.2
                         NA 0.542700 0.5130000 0.4558000 0
## dim
                         NA 5.000000 5.0000000 4.0000000 6
                         NA 7.616228 6.4197847 6.1676565 6
## logmarg
```

Summary

image(poll.bma)

Coefficients

```
beta = coef(poll.bma, n.models=1)
     beta
##
##
                   Marginal Posterior Summaries of Coefficients:
##
##
                   Using BMA
##
##
               Based on the top 1 models
                                                                        post mean post SD post p(B != 0)
##
## Intercept 3.15300 0.07818 1.00000
## temp -0.07130 0.01268 0.97550
## log(firms) 0.23428 0.08573 0.71903
## log(popn) 0.00000 0.00000 0.27568
## wind -0.17998 0.06128 0.76545
## precip 0.01884 0.00729 0.59938
## rain
                                                 0.00000 0.00000 0.31036
                                                                                                                                                                               <□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
```

Coefficients

par(mfrow=c(2,2)); plot(beta, subset=c(3, 6))

Bayesian Confidence Intervals

```
confint(beta)
##
                   2.5% 97.5%
                                         beta
## Intercept 2.994993257 3.31101398 3.15300362
## temp -0.096926645 -0.04567203 -0.07129934
## log(firms) 0.061014518 0.40753936 0.23427694
## log(popn) 0.000000000 0.00000000 0.00000000
## wind -0.303835463 -0.05612195 -0.17997871
## precip 0.004105874 0.03357242 0.01883915
## rain 0.000000000 0.00000000 0.00000000
## attr(,"Probability")
## [1] 0.95
## attr(,"class")
## [1] "confint.bas"
```