1. Übungsblatt

Aufgabe 1

Aufgabe 2

(a) Das Gaußsche Gesetz besagt:

$$\int \vec{E} \ d\vec{A} = \frac{Q}{\epsilon_0}$$

Da \vec{E} unabhängig vom Ort auf der Fläche A ist und dazu parallel zum Normalenvektor liegt, kann der Betrag von \vec{E} aus dem Integral gezogen werden.

 \vec{E} und \hat{n} zeigen jedoch in verschiedene Richtungen; \hat{n} von der Erde weg, das elektrische Feld richtugn Erde. Daher entsteht ein negatives Vorzeichen.

Die Flächenladungsdichte σ lautet somit:

$$\begin{split} \int \vec{E} \ d\vec{A} &= -|\vec{E}| \int d\vec{A} = -|\vec{E}| *A = \frac{Q}{\epsilon_0} \\ \Rightarrow \sigma &= \frac{Q}{A} = -E * \epsilon_0 \end{split}$$

(b) Wenn man die Ladungsdichte σ aus (a) mit der Fläche Amultipliziert erhält man die Gesamtladung:

$$Q_{Gesamt} = \sigma * A = -EA\epsilon_0 = -\epsilon_0 * E * 4\pi r_E^2$$

(c) Die Kraft die auf eine Kugel wirkt ist die Summe aus Gewichtskraft und Coulomkraft. Aus dem zweiten newtonschen Axiom folgt dann die Beschleunigung.

$$F_{Gesamt} = F_G + F_{Co} = mg + E * q_{Kugel} \Rightarrow a = g + \frac{E * q_{Kugel}}{m}$$

Aus der Formel für den freien Fall können wir die benötigten Zeiten für den Fall bestimmen:

$$\Delta h = \frac{1}{2}a * (\Delta t)^2$$

$$\Rightarrow \Delta t = \sqrt{\frac{2 * \Delta h}{a}}$$

$$\Delta t_{ungeladen} = \sqrt{\frac{2 * \Delta h}{g}} = \sqrt{\frac{2 * 2m}{10m/s^2}} \approx 0.6325s$$

$$\Delta t_{geladen} = \sqrt{\frac{2 * \Delta h}{g + \frac{E * q_{Kugel}}{m}}} = \sqrt{\frac{4m}{10m/s^2 + \frac{150N/C*100\mu C}{0.1Kg}}} = \sqrt{\frac{4m}{10m/s^2 + 0.15m/s^2}} \approx 0.6278s$$

Die geladene Kugel erreicht somit die Erde ungefähr 0.0047s schneller als die Ungeladene.

Aufgabe 3

Aufgabe 4

Aufgabe 5

a) Nabla in Kugelkoordinaten:

$$\nabla = \hat{e}_r \cdot \partial_r + \hat{e}_\theta \cdot \frac{1}{r} \partial_\theta + \hat{e}_\phi \cdot \frac{1}{r \sin \theta} \partial_\phi$$

Die Divergenz eines Radialfeldes $\vec{E}(\vec{r}) = \alpha r^{\beta} \hat{e}_r$ lautet dadurch:

$$\vec{\nabla} \cdot \vec{E}(\vec{r}) = \left(\hat{e}_r \partial_r + \hat{e}_\theta \frac{1}{r} \partial_\theta + \hat{e}_\phi \frac{1}{r \sin \theta} \partial_\phi\right) \cdot \alpha r^\beta \hat{e}_r$$

$$= \left(\hat{e}_r * \partial_r (\alpha r^\beta \hat{e}_r) + \hat{e}_\theta * \frac{1}{r} \partial_\theta (\alpha r^\beta \hat{e}_r) + \hat{e}_\phi * \frac{1}{r \sin \theta} \partial_\phi (\alpha r^\beta \hat{e}_r)\right)$$

$$= \left(\hat{e}_r \cdot \hat{e}_r \cdot \alpha \beta r^{\beta - 1} + \frac{1}{r} \cdot \hat{e}_\theta \cdot \hat{e}_\theta \alpha r^\beta + \frac{1}{r \sin \theta} \cdot \hat{e}_\phi \cdot \hat{e}_\phi \cdot \alpha r^\beta\right)$$

$$= \left(\alpha \beta r^{\beta - 1} + \frac{1}{r} \alpha r^\beta + \frac{1}{r \sin \theta} \alpha r^\beta\right)$$

$$= \left(\alpha \beta r^{\beta - 1} + \alpha r^{\beta - 1} + \alpha r^{\beta - 1}\right)$$

$$= \alpha (\beta + 2) r^{\beta - 1}$$

Da $\nabla \cdot \vec{E}(\vec{r}) = 1$ für alle r erfüllt sein soll, muss die Gleichung unabhängig von r sein:

$$\begin{array}{ll} \alpha(\beta+2)r^{\beta-1}\stackrel{!}{=}1 & \Rightarrow \beta=1 \text{ damit Gleichung unabhängig von r ist} \\ \Leftrightarrow \alpha*3=1 \\ \Leftrightarrow \alpha=\frac{1}{3} \end{array}$$

Aufgabe 6