Собствени вектори и собствени стойности на линеен оператор.

Нека V е линейно порстранство над числово поле F с базис e_1, \ldots, e_n и $\varphi \in \text{Hom}(V)$. Ако матрицата на φ спрямо този базис е A, то полиномът

$$\chi_A(\lambda) = \det(A - \lambda E)$$

се нарича характеристичен полином на φ , а корените му $\lambda_1, \ldots, \lambda_n$ се наричат характеристични корени на φ .

Казваме, че векторът $v \in V$ е собствен вектор на оператора φ , ако $v \neq o$ и $\varphi(v) = \lambda v$ за някакво число $\lambda \in F$. (С други думи може да кажем, че собствените вектори на φ са тези, които само сменят големината и/или посоката си под негово влияние, но не се "завъртат".) Числото λ се нарича собствена стойност на оператора φ , съответстваща на собствения вектор v. Оказва се, че собствените стойности на φ съвпадат точно с тези характеристични корени $\lambda_1, \ldots, \lambda_k \in F$, които принадлежат на числовото поле, над което V е линейно пространство.

Ако v е собствен вектор на φ с матрица A (спрямо фиксиран базис), на който съответства собствената стойност λ , то от равенството $\varphi(v) = \lambda v$, записано в матричен вид

$$Av = \lambda v$$

следва равенството

$$(A - \lambda E)v = o,$$

откъдето става ясно, че собственият вектор v, съответстващ на собствената стойност λ е някакво решение на хомогенната система с матрица $A-\lambda E$.

Задача 1. Намерете характеристичните корени на матрицата

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}.$$

Peшение. Имаме, че характеристичният полином на A е

$$\chi_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} \cos \alpha - \lambda & \sin \alpha \\ -\sin \alpha & \cos \alpha - \lambda \end{vmatrix} =$$
$$= (\cos \alpha - \lambda)^2 + \sin^2 \alpha = 1 - 2\lambda \cos \alpha + \lambda^2.$$

Тогава характеристичните корени на A са корните на уравнението

$$\lambda^2 - (2\cos\alpha)\lambda + 1 = 0,$$

а именно $\lambda_{1,2} = \cos \alpha \pm i \sin \alpha$.

Задача 2. Линейният оператор $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ има матрица

$$A = \begin{pmatrix} 2 & -2 & 2 \\ -2 & -1 & 4 \\ 2 & 4 & -1 \end{pmatrix}$$

спрямо фиксиран базис. Намерете собствените му стойности и съответсващите им собствени вектори.

Решение. За да намерим собствените стойности решаваме характеристичното уравнение

$$\chi_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} 2 - \lambda & -2 & 2 \\ -2 & -1 - \lambda & 4 \\ 2 & 4 & -1 - \lambda \end{vmatrix} + = \\
= \begin{vmatrix} 2 - \lambda & -2 & 2 \\ 0 & 3 - \lambda & 3 - \lambda \\ 2 & 4 & -1 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 2 - \lambda & -2 & 2 \\ 0 & 1 & 1 \\ 2 & 4 & -1 - \lambda \end{vmatrix} + = \\
= (3 - \lambda) \begin{vmatrix} 2 - \lambda & 0 & 4 \\ 0 & 1 & 1 \\ 2 & 0 & -5 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 2 - \lambda & 4 \\ 2 & -5 - \lambda \end{vmatrix} = \\
= (3 - \lambda)[(2 - \lambda)(-5 - \lambda) - 8] = (3 - \lambda)(\lambda^2 + 3\lambda - 18) = \\
= (3 - \lambda)^2(\lambda + 6) = 0.$$

чиито корени очевидно са $\lambda_{1,2}=3, \lambda_3=-6$. И трите характерисични корена са реални и следователно собствените стойности на φ са $\lambda_{1,2}=3$ и $\lambda_3=-6$.

Собствената стойност $\lambda=3$ е двукратен характеристичен корен и следователно търсим два линйно независими собствени вектора, които й отговарят. За да намерим собствени вектори, отговарящ на собствената стойност $\lambda=3$, търсим линейно независими ненулеви решения на хомогенната система с матрица

$$A - \lambda E = A - 3E = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix}.$$

Правим гаусовите преобразувания

$$\begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \xleftarrow{-1}_{+}^{-2} \xrightarrow{2}_{+} \rightarrow \begin{pmatrix} -1 & -2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

И ако изберем x_2 и x_3 са свободни параметри, то намираме, че $x_1 = -2x_2 + 2x_3$. Тогава решенията имат вида

$$(-2x_2+2x_3,x_2,x_3)$$

и едно фиксирано решение при $x_2=1, x_3=0$ е $v_1=(-2,1,0),$ а друго, при $x_2=0, x_3=1$ е $v_2=(2,0,1).$ Тогава собствените вектори v_1,v_2 съответсвтат на собствената стойност $\lambda=3.$

За да намерим собствен вектор, отговарящ на собствената стойност $\lambda = -6$, търсим ненулево решение на хомогенната система с матрица $A - \lambda E = A + 6E$. Продължете по същия начин, както по-горе. Един възможен собствен вектор е w = (1, 2, -2).

Понякога ни интересува, спрямо кой базис на линейното пространство V, матрицата на линейния оператор $\varphi \in \mathrm{Hom}(V)$ има най-прост вид. Ако намерим базис от линейно независими собствени вектори на φ , то от равенствата $\varphi(v_i) = \lambda_i v_i$ ще следва, че матрицата на φ спрямо този базис е диагонална и по диагонала стоят точно съответстващите на собствените вектори собствени стойности.

Задача 3. Нека e_1, e_2, e_3 е базис на линейното пространство V и $\varphi \in \text{Hom}(V)$. Намерете базис на V, в който операторът φ има диагонална матрица D, ако φ действа по правилото

$$\varphi(x_1e_1 + x_2e_2 + x_3e_3) = (2x_1 - 2x_2 - 4x_3)e_1 + (-2x_1 + 5x_2 - 2x_3)e_2 + (-4x_1 - 2x_2 + 2x_3)e_3.$$

Решение. Първо, трябва да намерим матрицата на φ в дадения базис $\{e\}$. За целта трябва да видим как действа φ върху всеки от базисните вектори. За да видим как действа φ на e_1 , задаваме $x_1=1, x_2=x_3=0$ и тогава според правилото, по което действа φ получаваме

$$\varphi(e_1) = 2e_1 - 2e_2 - 4e_3.$$

За да видим как действа φ на e_2 , задаваме $x_2=1, x_1=x_3=0$ и тогава

$$\varphi(e_2) = -2e_1 + 5e_2 - 2e_3.$$

За да видим как действа φ на e_2 , задаваме $x_3=1, x_1=x_2=0$ и тогава получаваме

$$\varphi(e_3) = -4e_1 - 2e_2 + 2e_3.$$

Следователно матрицата на φ спрямо базиса $\{e\}$ е

$$A = \begin{pmatrix} 2 & -2 & -4 \\ -2 & 5 & -2 \\ -4 & -2 & 2 \end{pmatrix} .$$

По познатия начин намерете, че собствените стойности на φ са $\lambda_{1,2}=6,\lambda_3=-3,$ и един набор от линейно независими съответстващи им собствени вектори е

$$v_1 = (1, 0, -1), v_2 = (1, -4, 1), v_3 = (2, 1, 2).$$

Тогава v_1, v_2, v_3 образуват базис $\{v\}$ на V и спрямо него матрицата на φ е

$$D = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$