

INTRODUCTION

MISSION

- Réaliser une première étude de faisabilité d'un moteur de classification d'articles
- Basé sur une image et une description
- Pour l'automatisation de l'attribution de la catégorie de l'article

OBJECTIFS

- Rendre plus fiable l'attribution de catégorie
- Faciliter l'expérience utilisateur et vendeur dans la mise en ligne et la recherche de produits

PRÉSENTATION DES DONNÉES

3 NIVEAUX DE CATÉGORISATION

Seul le premier nous permet une lisibilité et interprétabilité des données

Home Furnishing

Les niveaux 2 et 3 de l'arborescence du site sont trop complexes

PRÉSENTATION DES DONNÉES

Produits

1050

produits par catégorie

150

Nombre max de mots

371

RÉPARTITION DE LA QUANTITÉ DE MOTS PAR PRODUITS

PARTIE TEXTE

PIPELINE DU TRAITEMENT DES DONNÉES TEXTUELLES

1. FEATURE EXTRACTION

- 2. t-SNE (Reduction de dimension)
- 3. CLUSTERING (Partitionnement non supervisé)
- 4. RAND MEASURE (Analyse de similarité)

PRINCIPE

Algorithme de représentation vectorielle du nombre d'occurrence de mots d'un dictionnaire

INCONVÉNIANT

toute information sur l'ordre ou la structure des mots dans le document est rejetée.

PREPROCESSING

def transform_bow_lem_fct(desc_text) :
 word_tokens = tokenizer_fct(desc_text)
 sw = stop_word_filter_fct(word_tokens)
 lw = lower_start_fct(sw)
 lem_w = lemma_fct(lw)
 transf_desc_text = ' '.join(lem_w)
 return transf_desc_text

HYPERPARAMS

stop_words='english' max_df=0.95 min_df=1

CountVectorizer

PRINCIPE

Simple comptage de mots dans le corpus

EXEMPLES (1050 lignes, 5843 colonnes)

	abroad	absolut	absorb	abstract	abstrct	ac	accent	access	accessori	accid
0	0	0	0	4	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0

CountVectorizer

BAG-OF-WORDS TF-IDF

PRINCIPE

Calcul de la fréquence d'apparition des mots, ainsi que pénalisation des fréquences élevée dans le corpus

EXEMPLES (1050 lignes, 5843 colonnes)

	abroad	absolut	absorb	abstract	abstrct	ac	accent	access	accessori	accid
0	0.0	0.0	0.000000	0.171482	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.052647	0.000000	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0

TF-IDF

PRINCIPE

Les mots qui partagent des contextes similaires (par réduction de dimension) sont représentés par des vecteurs numériques proches.

PREPROCESSING

```
def transform_dl_fct(desc_text) :
    word_tokens = tokenizer_fct(desc_text)
# sw = stop_word_filter_fct(word_tokens)
    lw = lower_start_fct(word_tokens)
# lem_w = lemma_fct(lw)
    transf_desc_text = ' '.join(lw)
    return transf_desc_text
```

3

```
def transform_bow_lem_fct(desc_text) :
    word_tokens = tokenizer_fct(desc_text)
    sw = stop_word_filter_fct(word_tokens)
    lw = lower_start_fct(sw)
    lem_w = lemma_fct(lw)
    transf_desc_text = ' '.join(lem_w)
    return transf_desc_text
```

Word2Vec

CBOW

PRINCIPE

- Basé sur les Google news
- Embedding statique
- Réseau de neurone avec une couche caché
- Vecteur retenu représente les poids de la couche cachée

HYPERPARAMS

w2v_window=5 w2v_min_count=1 w2v_epochs=485 w2v_size=550

Word2Vec

USE

PRINCIPE

- Universal Sentence Encoder
- Basé sur Wikipédia
- Réseau de neurone basé sur l'architecture Transformers
- Sentence embedding

HYPERPARAM

batch_size=10

USE

BERT

PRINCIPE

- Bidirectional Encoder Representations from Transformers
- Basé sur Wikipédia
- Réseau de neurone basé sur l'architecture Transformers
- Embedding dynamique (se base sur les phrases)
- Modèle bidirectionnel (mots avant et après la cible)

HYPERPARAM

batch_size=10

BERT

PARTIE IMAGE

PIPELINE DU TRAITEMENT DES IMAGES

1. FEATURE EXTRACTION

- 2. CLUSTERING DESCRIPTEURS
- 3. PCA & t-SNE (Reduction de dimension)
- 4. RAND MEASURE (Analyse de similarité)

PRÉALABLE AU TRAITEMENT DES IMAGES

PREPROCESSING

NUANCES DE GRIS

3

SUPPRESSION DU BRUIT

4

EGALISATION DE L'HISTOGRAMME

5

REDIMENSION 255 X 255

PRINCIPE

- Détecte des points d'intérêt à différentes échelle de zoom de l'image et par comparaison de filtrage gaussien successif
- Les descripteurs ou points d'intérêt sont identifiés grâce aux fortes variations d'intensité ou de couleur des pixels
- Ils sont invariants par rotation, changement d'échelle et exposition

PROBLÈME

Le nombre de descripteurs varie pour chaque image, ce qui rend impossible l'utilisation des descripteurs comme feature

SOLUTION

Faire un Bag Of Visual Words via un MiniBatchKMeans pour déterminer le nombre de descripteurs par cluster pour chaque image (principe de récurrence)

SIFT (Scale-Invariant feature transform)

TSNE selon les vraies classes

TSNE selon les clusters

TRANSFER LEARNING

PRINCIPE

- Convolutional Neural Networks (Deep Learning)
- Utiliser un modèle de Deep Learning pre-entrainé sur des millions d'images
- Enlever la dernière couche du modèle et faire un predict pour créer des features
- Transférer ses larges connaissance au dataset actuel

Transfer learning: idea

TRANSFER LEARNING

CNN

TSNE selon les vraies classes

0,3908

CONCLUSION

- La segmentation est automatisable malgré des scores perfectibles (ARI à 0,39 et 0,55)
- Il serait préférable de clusteriser via les données images et textuelles conjointement
- Il est impératif d'utiliser des catégories larges de produit
- Cette mise en place sera certainement plus efficace que le système actuel d'attribution manuel

MERCI POUR VOTRE ÉCOUTE