MAT185 Test 1 Review

QiLin Xue

February 8, 2021

Contents

1 Axioms	1
	1
1.2 important racts	
2 Subspaces	2
Note: Axiom propositions and names will be taken from two sources: Prof. Sean Uppal's notes and Prof. GDE's textbook Medici.	
1 Axioms	
Medici	Uppal
A vector space $\mathcal V$ over a field Γ of elements $\{\alpha,\beta,\gamma,\dots\}$, called scalars, is a set of elements $\{u,v,bmw,\dots\}$ called vectors, such that the following axioms are satisfied:	A real vector space is a set V together with two operations called vector addition and scalar multiplication such that the following axioms hold. For all vectors $\mathbf{x}, \mathbf{y}, \mathbf{Z} \in V$
	and scalars $c,d\in\mathbb{R}$:
1. There exists an operation of vector addition, denoted $m{u} + m{v}$, such that for all $m{u}, m{v}, m{w} \in \mathcal{V}$,	1. (AC) Additive Closure: $\mathbf{x} + \mathbf{y} \in V$
AI. Closure: $oldsymbol{u}+oldsymbol{v}\in\mathcal{V}.$	2. (SC) Scalar Closure: $c\mathbf{x} \in V$.
AII. Associativity: $(u+v)+w=u+(v+w)$. AIII. Zero: There exists a zero or null vector $0\in\mathcal{V}$	3. (AA) Additive Associativity: $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$.
such that $u+0=u$. AIV. Negative: There exists an negative $-u\in\mathcal{V}$ such that $u+(-u)=0$.	4. (Z) Zero vector: There exists a unique vector $0 \in V$ with the property that $\mathbf{x} + 0 = \mathbf{x}$.
2. There exists an operation of scalar multiplication, denoted αu , such that for all $u, v \in \mathcal{V}$ and all	5. (AI) Additive Inverse: There exists a unique vector $-\mathbf{x} \in V$ with the property that $\mathbf{x} + (-\mathbf{x}) = 0$.
$lpha,eta\in\Gamma$, MI. Closure: $lphaoldsymbol{u}\in\mathcal{V}$.	6. (SMA) Scalar Multipication Associativity: $(cd)\mathbf{x} = c(d\mathbf{x})$.
MII. Associativity: $\alpha(\beta u) = (\alpha \beta)u$. MIII. Distributivity:	7. (DVA) Distributivity of Vector Addition: $c(\mathbf{x}+\mathbf{y}) = c\mathbf{x} + c\mathbf{y}$.
(a) $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$ (b) $\alpha(\mathbf{u} + \mathbf{v}) = \alpha\mathbf{u} + \alpha\mathbf{v}$	8. (DSA) Distributivity of Scalar Addition: $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$.
MIV. Unitary: For the identity element $1 \in \Gamma$, $1oldsymbol{u} = oldsymbol{u}$	9. (I) Identity: $1\mathbf{x} = \mathbf{x}$.

1.1 Corrolaries

 \boldsymbol{u} .

MAT185 QiLin Xue

Theorem: The Cancellation Theorem: Let $\mathcal V$ be a vector space, and let $u,v,w\in\mathcal V$. If:

$$u + w = v + w \tag{1}$$

then:

$$u = v \tag{2}$$

Medici

Prop I. For every $u, -u \in \mathcal{V}, -u + u = 0$.

Prop II. For every $u \in \mathcal{V}$, 0 + u = u.

Prop III. Let $u \in V$. Then:

(a) The zero vector $\mathbf{0} \in \mathcal{V}$ is unique.

(b) The negative -u of u is unique.

(c) -(-u) = u.

Prop IV. For $u, v \in \mathcal{V}$, u + v = v + u.

Prop V. For all $u \in \mathcal{V}$ and $\alpha \in \Gamma$:

(a) 0v = 0

(b) $\alpha 0 = 0$

(c) If $\alpha v = 0$, then either $\alpha = 0$ or v = 0.

Prop VI. For all $u \in \mathcal{V}$ and $\alpha \in \Gamma$, $(-\alpha)v = -(\alpha v) = \alpha(-v)$.

Uppal

Prop I. For every $x \in V$, then 0x = 0.

Prop II. For every $\mathbf{x} \in V$, then $(-1)\mathbf{x} = -\mathbf{x}$.

Prop III. For every $x \in V$, then -x + x = 0.

Prop IV. For every $x \in V$, then 0 + x = x.

This introduces an additional axiom:

10. (C) Commutativity: For all vectors $\mathbf{x}, \mathbf{y} \in V$, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.

1.2 Important Facts

You should know and be able to prove the following facts:

• Every vector space is either infinite or contains only the zero vector.

2 Subspaces

Medici

A subspace $\mathcal U$ of a vector space $\mathcal V$ is a subspace of $\mathcal V$ if and only if $\mathcal U$ is itself a vector space over the same field Γ with the same vector addition and scalar multiplication of $\mathcal V$.

To show a subset is a subspace:

SI. Zero: There exists a zero vector $\mathbf{0} \in \mathcal{U}$.

SII. Closure under Vector Addition: $oldsymbol{u}+oldsymbol{v}\in\mathcal{U}.$

SIII. Closure under Scalar Multiplication: $\alpha \boldsymbol{u} \in \mathcal{U}$.

Uppal

A subspace of a vector V is a subset $W\subseteq V$ that is itself a vector space with the same operations of vector addition and scalar multiplication as in V.

To show a subset is a subspace:

- 1. (AC & SC): Sums and scalar multiples of vectors from \boldsymbol{W} are in \boldsymbol{W}
- 2. (Z) W contains the zero vector of V.
- 3. (AI) The additive inverse of each vector in \boldsymbol{W} is in \boldsymbol{W} .

Alternative Formulation: A non-empty subset W of a vector space V is a subspace of V if and only if $c\mathbf{x}+\mathbf{y}\in W$ whenever $\mathbf{x},\mathbf{y}\in W$, and $c\in\mathbb{R}$.