ime Sezies Assignments 3
Obtain MA(1), MA(2) and MA(q) process.
(i) MA(1): 1st Order Maving Average y=u+u_t-0, ll_t-1
$E(y_{\ell}) = U$ $Voe(y_{\ell}) = (1+Q^2)e^2$
$ACV f = V(t) = Gv \left(\mathcal{J}_{\xi} \circ \mathcal{J}_{\xi-n} \right)$ $f \circ \mathcal{J}_{\xi} \circ \mathcal{J}_{\xi-1}$ $Y(t) = Gv \left(\mathcal{J}_{\xi} \circ \mathcal{J}_{\xi-1} \right)$
$Y(t) = (ov (y_t sy_{t-1}))$ $= E((y_t - u)(y_{t-1} - u))$
= E (4+4-0,4-4) (4+4-0,4-4)
$= E \left[(U_{\xi} - 0_{1} U_{\xi-1}) (U_{\xi-1} - 0_{1} U_{\xi-2}) \right]$ $= E \left[(U_{\xi} - 0_{1} U_{\xi-1}) (U_{\xi-1} - 0_{1} U_{\xi-2}) (U_{\xi-1} - 0_{1} U_{\xi-2}) \right]$
9,2 Ut 1 (t-1) 1 2 t-2.
$= -\theta_{\xi}e^{2}$ $\theta = n = 2$ $\Upsilon(2) = \operatorname{Cov}(y_{\xi} + y_{\xi-2})$
$= E\left((\mathcal{U}_{1} - 0, \mathcal{U}_{1}) - 0, \mathcal{U}_{1} \right)$

=0

$$Y(k) = (-6) = 2$$

$$V(k) = (-6) = 2$$

ACF =
$$g(k)$$

 $g(0)$
 $g(0)$

Therefore, Auto correlation becomes 0 when K>0 in MA(1) process

$$E(y_{t}) = \mu$$
, $V(y_{t}) = (1+Q^{2}+Q^{2})e^{2}$

$$= \sum_{k=1}^{\infty} \left(\frac{\partial k}{\partial t} \right) = E \left(\frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} \right)$$

$$= E \left(\frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} \right)$$

$$= E \left(\frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} - \frac{\partial k}{\partial t} \right)$$

$$= -0.6^{2} + 0.0.6^{2}$$
$$= (-0.40.0.2)6^{2}$$

$$rac{1}{\sqrt{9}} = \frac{1}{\sqrt{9}} = \frac$$

So, ACVF =
$$(-0, +00)e^2$$
 $k=\pm 1$
 $-0e^2$ $k=\pm 2$
 0 Otherwise

this shows that all autocovariance depends on log

ACF =
$$\begin{cases} 1 & \text{for } K = 0 \\ 0 + 0 & 0 \\ 1 + 0^2 + 0^2 \end{cases}$$

O2

 $\begin{cases} 1 + 0^2 + 0^2 \\ 1 + 0^2 + 0^2 \end{cases}$

O2

 $\begin{cases} 1 + 0^2 + 0^2 \\ 1 + 0^2 + 0^2 \end{cases}$

OX

 $\begin{cases} 1 + 0^2 + 0^2 \\ 1 + 0^2 + 0^2 \end{cases}$

PAGE NO.: DATE: / /

(p) AM (iii)

$$E(y_{t}) = U$$
; $Vor(y_{t}) = (1+\theta_{1}^{2} + ... + \theta_{q}^{2}) e^{2}$

$$= E\left[\left(y - E(y_t)\right)\left(y_{t-K} - E(y_{t-K})\right)\right]$$

ACF:
$$\left(-\left(q+\frac{2}{1+1}e^{2}+\frac{2}{1+1}e^{2}\right)\right)$$

$$\left(1+\frac{2}{2}e^{2}\right)e^{2}$$

$$\left(1+\frac{2}{1+1}e^{2}\right)e^{2}$$

$$\left(1+\frac{2}{1$$

4