heart-deases-predication-1

February 24, 2025

```
[]: import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import pandas as pd
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
     from collections import Counter
     from xgboost import XGBClassifier
     from sklearn.linear_model import LogisticRegression
     from sklearn.metrics import confusion_matrix, accuracy_score,_
      ⇔classification_report
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.model_selection import cross_val_score
[]: data=pd.read_csv("/content/heart.csv")
[]: data.head()
[]:
                       trestbps
                                                                       oldpeak
        age
             sex
                   ср
                                 chol
                                        fbs
                                             restecg
                                                      thalach
                                                                exang
                                                                                 slope
         52
                                                           168
                                                                    0
                                                                            1.0
                                                                                     2
     0
                   0
                            125
                                  212
                                          0
                                                   1
               1
     1
         53
               1
                   0
                            140
                                  203
                                                   0
                                                           155
                                                                    1
                                                                            3.1
                                                                                     0
     2
         70
               1
                    0
                            145
                                  174
                                          0
                                                   1
                                                           125
                                                                    1
                                                                            2.6
                                                                                     0
     3
                            148
                                  203
                                          0
                                                   1
                                                           161
                                                                    0
                                                                            0.0
                                                                                     2
         61
               1
         62
                            138
                                  294
                                                                            1.9
               0
                                          1
                                                   1
                                                           106
                                                                    0
                                                                                     1
            thal
                  target
        ca
     0
         2
               3
                        0
     1
         0
               3
                        0
     2
         0
               3
                        0
     3
         1
               3
                        0
```

This dataset appears to be related to heart disease prediction, with various medical and demographic features :

1. **age** – Age of the individual (numerical).

- 2. sex Gender of the individual (1 = Male, 0 = Female).
- 3. cp (Chest Pain Type) Types of chest pain experienced:
 - 0 = Typical angina
 - 1 = Atypical angina
 - 2 = Non-anginal pain
 - 3 = Asymptomatic
- 4. **trestbps** (**Resting Blood Pressure**) Blood pressure in mm Hg when the patient is at rest.
- 5. **chol (Serum Cholesterol)** Cholesterol level in mg/dl.
- 6. **fbs (Fasting Blood Sugar)** Whether fasting blood sugar is > 120 mg/dl (1 = True, 0 = False).
- 7. restecg (Resting Electrocardiographic Results) Results of ECG at rest:
 - 0 = Normal
 - 1 = Having ST-T wave abnormality
 - 2 = Showing probable or definite left ventricular hypertrophy
- 8. thalach (Maximum Heart Rate Achieved) Maximum heart rate recorded during a stress test.
- 9. exang (Exercise-Induced Angina) Whether the patient experiences angina (chest pain) during exercise (1 = Yes, 0 = No).
- 10. **oldpeak (ST Depression Induced by Exercise)** ST depression measured from rest to peak exercise, indicating ischemia.
- 11. slope (Slope of the Peak Exercise ST Segment) Describes the shape of the ST segment in ECG:
 - 0 = Upsloping
 - 1 = Flat
 - 2 = Downsloping
- 12. **ca** (Number of Major Vessels Colored by Fluoroscopy) Number of major vessels (0-3) detected.

13. thal (Thalassemia Test Result) -

- 1 = Normal
- 2 = Fixed defect (no proper blood flow in some part of the heart)
- 3 = Reversible defect (a blood flow issue that can be corrected)

14. target (Heart Disease Presence) – The output label:

- 1 = Heart disease present
- 0 = No heart disease

```
[]: data.shape
```

[]: (1025, 14)

The dataset have 1025 rows and 14 clinical column

```
[]: data.isnull().sum()
```

```
[]: age
                   0
                   0
     sex
                   0
     ср
     trestbps
                   0
                   0
     chol
     fbs
                   0
     restecg
     thalach
     exang
                   0
     oldpeak
                   0
     slope
                   0
     ca
                   0
                   0
     thal
                   0
     target
     dtype: int64
```

[]: data.describe()

[]:	age	sex	ср	trestbps	chol	\
cou	nt 1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	
mea	n 54.434146	0.695610	0.942439	131.611707	246.00000	
std	9.072290	0.460373	1.029641	17.516718	51.59251	
min	29.000000	0.000000	0.00000	94.000000	126.00000	
25%	48.000000	0.000000	0.00000	120.000000	211.00000	
50%	56.000000	1.000000	1.000000	130.000000	240.00000	

75%	61.000000	1.000000	2.000000	140.000000	275.00000	
max	77.000000	1.000000	3.000000	200.000000	564.00000	
	fbs	restecg	thalach	exang	oldpeak	\
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.000000	
mean	0.149268	0.529756	149.114146	0.336585	1.071512	
std	0.356527	0.527878	23.005724	0.472772	1.175053	
min	0.000000	0.000000	71.000000	0.000000	0.00000	
25%	0.000000	0.000000	132.000000	0.000000	0.00000	
50%	0.000000	1.000000	152.000000	0.000000	0.800000	
75%	0.000000	1.000000	166.000000	1.000000	1.800000	
max	1.000000	2.000000	202.000000	1.000000	6.200000	
	slope	ca	thal	target		
count	1025.000000	1025.000000	1025.000000	1025.000000		
mean	1.385366	0.754146	2.323902	0.513171		
std	0.617755	1.030798	0.620660	0.500070		
min	0.000000	0.000000	0.000000	0.000000		
25%	1.000000	0.000000	2.000000	0.000000		
50%	1.000000	0.000000	2.000000	1.000000		
75%	2.000000	1.000000	3.000000	1.000000		
max	2.000000	4.000000	3.000000	1.000000		

[]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	1025 non-null	int64
1	sex	1025 non-null	int64
2	ср	1025 non-null	int64
3	trestbps	1025 non-null	int64
4	chol	1025 non-null	int64
5	fbs	1025 non-null	int64
6	restecg	1025 non-null	int64
7	thalach	1025 non-null	int64
8	exang	1025 non-null	int64
9	oldpeak	1025 non-null	float64
10	slope	1025 non-null	int64
11	ca	1025 non-null	int64
12	thal	1025 non-null	int64
13	target	1025 non-null	int64

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

Univariate Analysis

```
[]: plt.figure(figsize=(12, 8))
     plt.subplot(2, 3, 1)
     sns.histplot(data['age'], bins=20)
     plt.title('Age Distribution')
     plt.subplot(2, 3, 2)
     sns.histplot(data['trestbps'], bins=20)
     plt.title('Resting Blood Pressure')
     plt.subplot(2, 3, 3)
     sns.histplot(data['chol'], bins=20)
     plt.title('Cholesterol')
     plt.subplot(2, 3, 4)
     sns.histplot(data['thalach'], bins=20)
     plt.title('Maximum Heart Rate')
     plt.subplot(2, 3, 5)
     sns.histplot(data['oldpeak'], bins=20)
     plt.title('ST Depression')
     plt.tight_layout()
     plt.show()
```


Visualize the distribution of categorical variables:

```
[]: plt.figure(figsize=(10, 6))
    plt.subplot(2, 3, 1)
     sns.countplot(x='sex', data=data)
     plt.title('Sex Distribution')
     plt.subplot(2, 3, 2)
     sns.countplot(x='cp', data=data)
     plt.title('Chest Pain Type')
     plt.subplot(2, 3, 3)
     sns.countplot(x='fbs', data=data)
     plt.title('Fasting Blood Sugar')
     plt.subplot(2, 3, 4)
     sns.countplot(x='restecg', data=data)
     plt.title('Resting ECG')
     plt.subplot(2, 3, 5)
     sns.countplot(x='exang', data=data)
     plt.title('Exercise Angina')
     plt.subplot(2, 3, 6)
     sns.countplot(x='slope', data=data)
     plt.title('ST Slope')
     plt.tight_layout()
     plt.show()
```


[]:

Visualize the target variable:

```
[]: sns.countplot(x='target', data=data,palette='Set2')
plt.title('Heart Disease Distribution')
plt.show()
```

<ipython-input-10-67cfcc2798e9>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x='target', data=data,palette='Set2')


```
[]: # bivariate
[]: Heart_disease_present = data['target'].value_counts().get(1, 0) # Get count_
     ofor target = 1, default to 0 if not found
    No_heart_disease = data['target'].value_counts().get(0, 0) # Get count for_
      ⇒target = 0, default to 0 if not found
[]: # Data for the pie chart
    labels = ['Heart disease present', 'No heart disease']
    sizes = [Heart_disease_present, No_heart_disease]
    colors = ['#ff9999', '#66b3ff'] # Color scheme
    explode = (0.1, 0) # To slightly separate the heart patients slice
    # Create Pie Chart
    plt.figure(figsize=(6,6))
    plt.pie(sizes, labels=labels, autopct='%1.1f%%', colors=colors,_
      ⇔explode=explode, startangle=90)
    plt.title("Heart disease Patients vs Non-heart disease Patients")
    plt.show()
```

Heart disease Patients vs Non-heart disease Patients

It is observed that from the given dataset, 51.3~% of the data belongs to heart_disease_patients whereas 48.7~% belongs to No_heart_disease Patients.

```
[]: data['target'].value_counts()

[]: target
    1     526
    0     499
    Name: count, dtype: int64

[]: sns.countplot(data=data,x='sex', hue='target')
    plt.show()
```



```
[]: print(data['sex'].value_counts())
    sex
    1
          713
    0
          312
    Name: count, dtype: int64
[]: Femalepatients = data[(data.sex == 0) & (data.target == 1)]
     Femalepatients
                                                                               oldpeak \
[]:
            age
                 sex
                       ср
                           trestbps
                                       chol
                                             fbs
                                                   restecg
                                                             thalach
                                                                       exang
             58
                    0
                                 100
                                        248
                                               0
                                                                  122
                                                                           0
                                                                                   1.0
     5
                        0
                                                          0
     10
             71
                    0
                        0
                                 112
                                        149
                                               0
                                                          1
                                                                  125
                                                                            0
                                                                                   1.6
     12
             34
                    0
                        1
                                 118
                                        210
                                               0
                                                          1
                                                                  192
                                                                            0
                                                                                   0.7
     15
             34
                    0
                        1
                                 118
                                        210
                                               0
                                                          1
                                                                  192
                                                                                   0.7
                                                                            0
                        2
     16
             51
                                        308
                                               0
                                                                  142
                                                                                   1.5
                    0
                                 140
                                                          0
                                 •••
                                                                                   0.4
     989
             71
                    0
                        1
                                 160
                                        302
                                               0
                                                          1
                                                                  162
                                                                            0
     992
             50
                    0
                        0
                                 110
                                        254
                                               0
                                                          0
                                                                  159
                                                                            0
                                                                                   0.0
     1004
                        2
                                                                  142
                                                                                   1.5
             51
                    0
                                 140
                                        308
                                               0
                                                          0
                                                                            0
     1014
             44
                    0
                        2
                                 108
                                        141
                                               0
                                                          1
                                                                  175
                                                                            0
                                                                                   0.6
```

0.0 slope target ca thal

[226 rows x 14 columns]

Number of female heart patients are 226 out of 312 Females

[]: Male_patients = data[(data.sex == 1) & (data.target == 1)]
Male_patients

[]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	\
	19	58	1	2	140	211	1	0	165	0	0.0	
	22	45	1	0	104	208	0	0	148	1	3.0	
	26	44	1	2	130	233	0	1	179	1	0.4	
	34	50	1	2	129	196	0	1	163	0	0.0	
	36	51	1	3	125	213	0	0	125	1	1.4	
		•••				•••			•••			
	1007	56	1	3	120	193	0	0	162	0	1.9	
	1008	42	1	1	120	295	0	1	162	0	0.0	
	1011	45	1	1	128	308	0	0	170	0	0.0	
	1019	47	1	0	112	204	0	1	143	0	0.1	
	1020	59	1	1	140	221	0	1	164	1	0.0	

	sl	ope	ca	thal	target
19		2	0	2	1
22		1	0	2	1
26		2	0	2	1
34		2	0	2	1
36		2	1	2	1
•••	•••		•••		
1007		1	0	3	1
1008		2	0	2	1
1011		2	0	2	1
1019		2	0	2	1
1020		2	0	2	1

[300 rows x 14 columns]

Number of male heart patients are 300 out of 713 males


```
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
[]: data.drop(['age_group'],inplace = True , axis =1)
```

Bivariate Analysis

```
[]: correlation_matrix = data.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True)
plt.title('Correlation Matrix')
plt.show()
```


Relationship between age and maximum heart rate:

```
[]: sns.scatterplot(x='age', y='thalach', data=data, hue='target',palette='Set2')
plt.title('Age vs. Maximum Heart Rate')
plt.show()
```


Relationship between chest pain type and heart disease:

```
[]: plt.figure(figsize=(10, 6))
sns.countplot(x='cp', hue='target', data=data,palette='Set2')
plt.title('Chest Pain Type vs. Heart Disease')
plt.show()
```



```
[]: plt.figure(figsize=(10, 6))
sns.boxplot(x='target', y='age', data=data, palette='Set2')
plt.title('Age Distribution with Respect to Heart Disease')
plt.show()
```

<ipython-input-26-ffb02d68012b>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

```
sns.boxplot(x='target', y='age', data=data, palette='Set2')
```



```
[]: plt.figure(figsize=(10, 6))
sns.boxplot(x='exang', y='thalach', hue='target', data=data, palette='Set2')
plt.title('Maximum Heart Rate vs Exercise Induced Angina')
plt.show()
```


Cholesterol vs Fasting Blood Sugar (fbs):

```
[]: plt.figure(figsize=(10, 6))
    sns.violinplot(x='fbs', y='chol', data=data, palette='Set2')
    plt.title('Cholesterol Distribution by Fasting Blood Sugar')
    plt.xlabel('Fasting Blood Sugar (FBS)')
    plt.ylabel('Cholesterol Levels')
    plt.show()
```

<ipython-input-28-58dbc364bfe7>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.violinplot(x='fbs', y='chol', data=data, palette='Set2')

Oldpeak vs Slope

```
[]: plt.figure(figsize=(10, 6))
    sns.barplot(x='slope', y='oldpeak', hue='target', data=data, palette='Set2')
    plt.title('Oldpeak Distribution by Slope')
    plt.xlabel('Slope of the ST Segment')
    plt.ylabel('Oldpeak (ST Depression Induced by Exercise)')
    plt.show()
```



```
[]: #Treating the outlier

def ot(data,col):
    Q3=data[col].quantile(0.75)
    Q1=data[col].quantile(0.25)
```

```
IQR=Q3-Q1
UB=Q3+1.5*IQR
LB=Q1-1.5*IQR
upper_ot=data[col]>UB
lower_ot=data[col]<LB
data.loc[upper_ot,col]=data[col].median()
data.loc[lower_ot,col]=data[col].median()
return data</pre>
```

```
[]: for i in data.select_dtypes(include=['int64','float64']): ot(data,i)
```

```
[]: #cheking the outliers
plt.figure(figsize=(18, 6))
data.boxplot()
plt.show()
```


[]: #checking skewness data.skew()

```
[]: age
                -0.248866
                -0.851449
     sex
                 0.529455
     ср
     trestbps
                 0.265765
     chol
                 0.203290
                 0.000000
     fbs
                 0.180440
     restecg
    thalach
                -0.428708
     exang
                 0.692655
     oldpeak
                 0.985010
     slope
                -0.479134
     ca
                 1.138307
     thal
                -0.261968
```

```
-0.052778
     target
     dtype: float64
[]: data['oldpeak'] = np.log1p(data['oldpeak'])
[]: data.skew()
                -0.248866
[]: age
     sex
                -0.851449
                 0.529455
     ср
                 0.265765
     trestbps
     chol
                 0.203290
     fbs
                 0.000000
    restecg
                 0.180440
     thalach
                -0.428708
                 0.692655
     exang
     oldpeak
                 0.315959
     slope
                -0.479134
     ca
                 1.138307
     thal
                -0.261968
                -0.052778
     target
     dtype: float64
    0.0.1 Model prepration
[]: y = data["target"]
     X = data.drop('target',axis=1)
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,__
      →random_state = 0)
[]: scaler = StandardScaler()
     X_train = scaler.fit_transform(X_train)
     X_test = scaler.transform(X_test)
    Before applying algorithm we should check whether the data is equally splitted or not, because if
    data is not splitted equally it will cause for data imbalacing problem
[]: print(y_test.unique())
     Counter(y_train)
    Γ1 0]
[]: Counter({1: 419, 0: 401})
[]: m1 = 'Logistic Regression'
     lr = LogisticRegression()
     model = lr.fit(X_train, y_train)
```

```
lr_predict = lr.predict(X_test)
     lr_conf_matrix = confusion_matrix(y_test, lr_predict)
     lr_acc_score = accuracy_score(y_test, lr_predict)
     print("confussion matrix")
     print(lr_conf_matrix)
     print("\n")
     print("Accuracy of Logistic Regression:",lr_acc_score*100,'\n')
     print(classification_report(y_test,lr_predict))
    confussion matrix
    [[82 16]
     [ 9 98]]
    Accuracy of Logistic Regression: 87.8048780487805
                  precision recall f1-score
                                                  support
               0
                       0.90
                                 0.84
                                           0.87
                                                       98
                       0.86
                                 0.92
               1
                                           0.89
                                                      107
        accuracy
                                           0.88
                                                      205
       macro avg
                       0.88
                                 0.88
                                           0.88
                                                      205
    weighted avg
                       0.88
                                 0.88
                                           0.88
                                                      205
[ ]: m2 = 'Random Forest Classfier'
     rf = RandomForestClassifier(n_estimators=20, random_state=2,max_depth=5)
     rf.fit(X_train,y_train)
     rf_predicted = rf.predict(X_test)
     rf conf matrix = confusion matrix(y test, rf predicted)
     rf_acc_score = accuracy_score(y_test, rf_predicted)
     print("confussion matrix")
     print(rf_conf_matrix)
     print("\n")
     print("Accuracy of Random Forest:",rf_acc_score*100,'\n')
     print(classification_report(y_test,rf_predicted))
    confussion matrix
    [[ 90
            81
     [ 2 105]]
    Accuracy of Random Forest: 95.1219512195122
                  precision recall f1-score
                                                  support
               0
                       0.98
                                 0.92
                                           0.95
                                                       98
```

```
0.93
                                 0.98
               1
                                            0.95
                                                       107
                                            0.95
                                                       205
        accuracy
       macro avg
                       0.95
                                  0.95
                                            0.95
                                                       205
    weighted avg
                       0.95
                                 0.95
                                            0.95
                                                       205
[]: m3 = 'K-NeighborsClassifier'
     knn = KNeighborsClassifier(n_neighbors=10)
     knn.fit(X_train, y_train)
     knn_predicted = knn.predict(X_test)
     knn_conf_matrix = confusion_matrix(y_test, knn_predicted)
     knn_acc_score = accuracy_score(y_test, knn_predicted)
     print("confussion matrix")
     print(knn_conf_matrix)
     print("\n")
     print("Accuracy of K-NeighborsClassifier:",knn_acc_score*100,'\n')
     print(classification_report(y_test,knn_predicted))
    confussion matrix
    [[85 13]
     [ 8 99]]
    Accuracy of K-NeighborsClassifier: 89.75609756097562
                  precision
                               recall f1-score
                                                   support
               0
                                 0.87
                       0.91
                                            0.89
                                                        98
                       0.88
                                 0.93
                                            0.90
                                                       107
                                            0.90
                                                       205
        accuracy
                       0.90
                                 0.90
                                            0.90
                                                       205
       macro avg
                       0.90
                                 0.90
                                            0.90
                                                       205
    weighted avg
[]: m4 = 'DecisionTreeClassifier'
     dt = DecisionTreeClassifier(criterion = 'entropy',random_state=0,max_depth = 6)
     dt.fit(X_train, y_train)
     dt_predicted = dt.predict(X_test)
     dt_conf_matrix = confusion_matrix(y_test, dt_predicted)
     dt_acc_score = accuracy_score(y_test, dt_predicted)
     print("confussion matrix")
     print(dt_conf_matrix)
```

print("Accuracy of DecisionTreeClassifier:",dt_acc_score*100,'\n')

print(classification_report(y_test,dt_predicted))

print("\n")

```
confussion matrix
[[ 94      4]
      [ 4 103]]
```

Accuracy of DecisionTreeClassifier: 96.09756097560975

	precision	recall	f1-score	support
0	0.96	0.96	0.96	98
1	0.96	0.96	0.96	107
accuracy			0.96	205
macro avg	0.96	0.96	0.96	205
weighted avg	0.96	0.96	0.96	205


```
[]: plt.figure(figsize=(15,10))
     # Logistic Regression
     plt.subplot(2, 2, 1)
     plt.title(f'has_heart_disease --- Model: Logistic Regression --- Accuracy: u

√{lr_acc_score:.5f}')
     sns.heatmap(lr_conf_matrix, annot=True, cmap="Blues", fmt="d")
     # Random Forest
     plt.subplot(2, 2, 2)
     plt.title(f'has_heart_disease --- Model: Random Forest --- Accuracy: u

√{rf_acc_score:.5f}')
     sns.heatmap(rf_conf_matrix, annot=True, cmap="Blues", fmt="d")
     # K-Nearest Neighbor
     plt.subplot(2, 2, 3)
     plt.title(f'has_heart_disease --- Model: K-Nearest Neighbour --- Accuracy: L

√{knn_acc_score:.5f}')
     sns.heatmap(knn_conf_matrix, annot=True, cmap="Blues", fmt="d")
     # Decision Tree
     plt.subplot(2, 2, 4)
     plt.title(f'has_heart_disease --- Model: Decision Tree --- Accuracy: __

    dt_acc_score:.5f}')
     sns.heatmap(dt_conf_matrix, annot=True, cmap="Blues", fmt="d")
```

[]: <Axes: title={'center': 'has_heart_disease --- Model: Decision Tree --- Accuracy: 0.96098'}>

0.0.2 Model Evaluation

```
[]: model_ev

[]: Model Accuracy
```

Logistic Regression 87.804878
 Random Forest 95.121951
 K-Nearest Neighbour 89.756098
 Decision Tree 96.097561

```
[]: colors = ['red','green','blue','gold','silver','yellow','orange',]
    plt.figure(figsize=(8,4))
    plt.title("barplot Represent Accuracy of different models")
    plt.ylabel("Accuracy %")
    plt.xlabel("Algorithms")
    plt.bar(model_ev['Model'],model_ev['Accuracy'],color = colors)
```


Cross Validation score

```
[]: LR_Validation=cross_val_score(lr,X_train,y_train,cv=5).mean()
    RF_Validation=cross_val_score(rf,X_train,y_train,cv=5).mean()
    KNN_Validation=cross_val_score(knn,X_train,y_train,cv=5).mean()
    DT_Validation=cross_val_score(dt,X_train,y_train,cv=5).mean()
```

```
[]: print("Cross validation Score Summary:")
    print("Logistic Regression Accuracy: ",LR_Validation*100)
    print("Random Forest Accuracy: ",RF_Validation*100)
    print("KNN Accuracy: ",KNN_Validation*100)
    print("Decision Tree Accuracy: ",DT_Validation*100)
```

Cross validation Score Summary:

Logistic Regression Accuracy: 84.87804878048782

Random Forest Accuracy: 91.58536585365853

KNN Accuracy: 83.78048780487805

Decision Tree Accuracy: 91.09756097560975

```
[]: CVD_Accuracies = CVD_Accuracies = CVD_Accuracies = CVD_Accuracies = CVD_Accuracies = CVD_Accuracies, KNN_Validation*100,DT_Validation*100]

plt.figure(figsize=(10, 6))
plt.bar(model_ev['Model'], CVD_Accuracies, color=['skyblue', 'lightcoral', CVD_Accuracies, color=
```

```
plt.title('Cross-Validation Accuracy Summary', fontsize=16)
plt.ylabel('Accuracy (%)', fontsize=14)
plt.xlabel('Models', fontsize=14)
plt.ylim(0, 100) # Set y-axis limit to 100%

for i, v in enumerate(CVD_Accuracies):
    plt.text(i, v + 1, str(round(v, 2)) + '%', ha='center', fontsize=12)

plt.show()
```


0.0.3 Conclusion

- 1. Extreme Random Forest gives the best Accuracy compared to other models
- 2. Exercise induced angina, Chest pain is major symptoms of heart attack.

In summary:

- Overall Performance: All models (Logistic Regression, Random Forest, K-Nearest Neighbors, and Decision Tree) have high accuracy, ranging from 83.7% to 91.5%, indicating they are good at predicting heart disease.
- Model Observations:
 - Logistic Regression: 84.8% accuracy, with some misclassifications.
 - Random Forest: 91.5% accuracy, the most accurate model with few misclassifications.
 - K-Nearest Neighbors: 83.7% accuracy, with slightly more false negatives.
 - **Decision Tree**: 91.1% accuracy, similar to Random Forest with low misclassifications.

Key Takeaways: - Chest Pain Type (cp) is the most important feature for predicting heart disease. - Number of Major Vessels (ca) is the second most important feature. - Thallium Stress Test Result (thal) is also a key feature. - Other important features include oldpeak, exang, sex, and slope.

Confusion Matrix terms: - True Positives: Correctly predicted heart disease. - True Negatives: Correctly predicted no heart disease. - False Positives: Incorrectly predicted heart disease. - False Negatives: Incorrectly predicted no heart disease.

 $\label{link:thm:dataset_link:thm:datas$

 $project_file_link: "https://colab.research.google.com/drive/1Qrhc7YEUgDNquOMexM5woweC_5C_LeLR? uspared to the control of the$