Importance of sediment grain size to stocks and stability of organic carbon buried in seagrass soils

Supplementary material

Jason L. Howard \cdot Christian C. Lopes \cdot Claudia I. Carrión \cdot Sara S. Wilson \cdot James W. Fourqurean

Online Resource 1 Map of South Florida including study sites and sites where canvas strips were successfully recovered.

Online Resource 2 Modified Braun-Blanquet abundance scores, their description, and their assigned percent coverage.

BB Score	Description	Assigned percent coverage
0	Species absent from quadrat	0
0.1	Species represented by a solitary short shoot, < 5% cover	0.1
0.5	Species represented by a few (< 5) shoots, < 5% cover	0.5
1	Species represented by many (> 5) shoots, < 5% cover	2.5
2	5% - 25% cover	15
3	25% - 50% cover	37.5
4	50% - 75% cover	62.5
5	75% - 100% cover	87.5

Online Resource 3 Sediment categories and their assigned ranking of increasing coarseness

Sediment Category	Numerical Value	Description				
Mud 1		Individual grains indistinguishable, easily compress hand, sediment remains clumped after compression				
Sandy Mud	2	Majority of grains indistinguishable but textured upon touch, easily compress in hand, sediment remains clumped after compression				
Muddy Sand	3	Sandy texture upon touch but compresses in hand, sediment dissociates upon release with most grain falling in water column				
Sand	4	Clearly distinguishable grains, difficult to compress in hand, grains fall quickly in water				
Coarse Shell	5	Shell and shell remains dominate sediments (approx. 5-10 mm in size)				
Halimeda-Hash 6		Remains of carbonate segments from <i>Halimeda</i> detritt (approx. 5-10 mm in size)				
Rubble	7	Medium size rock (approx. 10-25 mm in size)				
Live Coral	8	Continuous living coral				
Rock	9	Bedrock or solid biogenic carbonate formations				

Online Resource 4 Depiction of single canvas assay deployment apparatus. Strips were deployed at each site (n = 10) at the sediment-water interface and 20 cm depth with foam buoy for easy detection.

Online Resource 5 Summary of sediment and seagrass characteristics measured across study sites.

	n	Fraction of sites where present (%)	mean	SE	median	min	max
LOI (%)	46	-	6.9	0.6	5	3.3	19.5
Corg content (%)	46	-	2.4	0.2	1.7	0.7	8.6
dry bulk density (g cm ⁻³)	46	-	0.7	0	0.7	0.2	1.5
C _{org} density (mg cm ⁻³)	46	-	13.8	0.8	12.9	6.2	27.7
Mud content (%)	45	-	33.1	3.7	28	1.4	90.1
Thalassia coverage (%)	46	93.5	17.8	2.3	15.6	0	60.9
Syringodium coverage (%)	46	50	7.9	2.2	0.4	0	73.3
Halodule coverage (%)	46	34.8	1.5	0.7	0	0	22.3
Total seagrass coverage (%)	46	95.7	1.5	0.7	0	0	22.3
seagass canopy ht. (cm)	44	-	18.8	1.2	17.3	7.9	41.2

Online Resource 6 Map showing (top) surface soil C_{org} density, and (bottom) sediment type across 45 study sites of Florida Bay and the Florida Keys.

Online Resource 7 Summarized breakdown rates of canvas strips buried at 20 cm depth and deployed on the sediment surface

	Tensile strength at T_{final} (N)		Tensile stregth loss (% day ⁻¹)		Weight loss (% day ⁻¹)		Decay rate, <i>k</i> (year ⁻¹)		Decay rate, k (day ⁻¹)	
	Buried	Surface	Buried	Surface	Buried	Surface	Buried	Surface	Buried	Surface
Mean	18.377	31.508	0.00529	0.00499	0.0877	0.077	0.3504	0.3054	0.00096	0.000837
SE	2.683	6.556	0.00006	0.00018	0.005	0.0066	0.022	0.0277	0.00006	0.000076
Median	15.948	16.41	0.00528	0.0052	0.0815	0.0806	0.3215	0.3178	0.000881	0.000871
Max	49.229	127.051	0.00603	0.00628	0.1394	0.1221	0.5854	0.5028	0.001604	0.001377
Min	2.326	4.138	0.00456	0.00261	0.051	0.0191	0.1952	0.0708	0.000535	0.000194
All sites										
Mean ± SE	24.942	2 ± 3.636	0.00514	± 0.00009	0.0824	± 0.0042	0.3279	± 0.0178	0.000898 =	₺ 0.000046

Online Resource 8 Literature review of decay rates in seagrass ecosystems

Substrate	Details	Additional Notes	Breakdown rate (day ⁻¹)	Citation
Mixed litter	Z. marina	Laboratory experiment	0.004	Godshalk and Wetzel 1978
Seagrass leaves	Z. marina	Laboratory experiment	0.0035	Harrison 1982
Seagrass leaves	Z. marina	Laboratory experiment	0.018	Harrison 1982
Seagrass leaves	T. testudinum	Litterbag measurements	0.0149	Rublee and Roman 1982
Seagrass leaves	Z. marina	Litterbag measurements	0.0136	Pellikaan 1982
Seagrass leaves	Z. marina	Laboratory experiments	0.0357	Pellikaan 1984
Mixed litter	Z. marina	Laboratory experiments	0.0357	Pellikaan 1984
Seagrass leaves	Z. marina	Litterbag measurements	0.0124	Kenworthy and Thayer 1984
Seagrass leaves	C. nodosa	Litterbag measurements	0.023	Kenworthy and Thayer 1984
Seagrass rhyzomes	T. testudinum	Litterbag measurements	0.0007	Kenworthy and Thayer 1984
Seagrass roots	T. testudinum	Litterbag measurements	0.0183	Kenworthy and Thayer 1984
Seagrass roots	Z. marina	Litterbag measurements	0.0048	Kenworthy and Thayer 1984
Seagrass rhyzomes	Z. marina	Litterbag measurements	0.0035	Kenworthy and Thayer 1984
Seagrass leaves	H. stipulacea	Litterbag measurements	0.0032	Wahbeh and Mahasneh 1985
Seagrass leaves	T. testudinum	Litterbag measurements	0.0048	Newell et al 1984
Seagrass leaves	T. testudinum	Litterbag measurements	0.0279	Newell et al 1984
Seagrass leaves	T. testudinum	Literature review	0.0007	Harrison 1989
Seagrass leaves	Z. marina	Literature review	0.007	Harrison 1989
Seagrass leaves	T. testudinum	Literature review	0.017	Harrison 1989
Seagrass leaves	T. testudinum	Literature review	0.0085	Harrison 1989
Seagrass leaves	T. testudinum	Literature review	0.008	Harrison 1989
Seagrass leaves	P. australis	Literature review	0.0013	Harrison 1989
Seagrass leaves	H. tasmanica	Literature review	0.0013	Harrison 1989
Seagrass leaves	C. nodosa	Laboratory experiments	0.0039	Peduzzi and Herndl 1991
Seagrass leaves	P. oceanica	Litterbag measurements	0.0039	Romero et al 1992
belowground biomass	P. oceanica	lepidochronology	0.0002	Romero et al 1992
belowground biomass	P. oceanica	lepidochronology	0.0002	Romero et al 1992
belowground biomass	P. oceanica	lepidochronology	0.0003	Romero et al 1992
Seagrass leaves	Z. noltii	Litterbag measurements	0.0003	Bourgues et al 1996
_	P. oceanica	Oxygen uptake	0.0104	Mateo and Romero 1996
Seagrass leaves				Mateo and Romero 1996
Seagrass leaves	P. oceanica P. oceanica	Litterbag measurements	0.0068	
Seagrass leaves		Litterbag measurements	0.0091	Cebrian et al 1997 Cebrian et al 1997
Seagrass leaves	Z. marina	Litterbag measurements	0.019	
Seagrass leaves	C. nodosa	Litterbag measurements	0.024	Cebrian et al 1997 Mateo and Romero 1997
Seagrass leaves	P. oceanica	Litterbag measurements	0.0205	
Seagrass leaves	C. nodosa	Litterbag measurements	0.0086	Pérez et al 2001
Seagrass leaves	C. nodosa	Litterbag measurements	0.0157	Pérez et al 2001
Seagrass leaves	T. testudinum	Litterbag measurements	0.017	Fourqurean and Schrlau 200
Seagrass rhyzomes	T. testudinum	Litterbag measurements	0.0032	Fourqurean and Schrlau 200
Mangrove leaves	R. mangle	Litterbag measurements	0.0064	Fourqurean and Schrlau 200
Seagrass leaves	Z. noltii	Litterbag measurements	0.016	Machás et al 2006
Seagrass leaves	P. sinuosa	Litterbag measurements	0.0068	Moore and Fairweather 200
Seagrass leaves	A. griffithii	Litterbag measurements	0.0078	Moore and Fairweather 200
Seagrass leaves	A. antarctica	Litterbag measurements	0.0116	Moore and Fairweather 200
Seagrass leaves	Mixed species	Litterbag measurements	0.0094	Moore and Fairweather 200
Seagrass leaves	Z. muelleri	Litterbag measurements	0.0152	Nicastro et al 2012
Seagrass leaves	T. hemprichii	Litterbag measurements	0.011	Chiu et al 2013
Seagrass rhyzomes	T. hemprichii	Litterbag measurements	0.0268	Yano et al 2013
Seagrass leaves	T. hemprichii	Litterbag measurements	0.0394	Yano et al 2013
Seagrass leaves	Z. muelleri	Litterbag measurements	0.0055	Trevathan-Tackett et al 2017

References

- Bourgues S, Auby I, de Wit R, Labourg PJ (1996) Differential anaerobic decomposition of seagrass (*Zostera noltii*) and macroalgal (*Monostroma obscurum*) biomass from arcachon bay (france). In: Coastal Lagoon Eutrophication and Anaerobic Processes, Springer, pp 121–131
- Cebrian J, Duarte CM, Marbà N, Enríquez S (1997) Magnitude and fate of the production of four cooccurring western Mediterranean seagrass species. Marine Ecology Progress Series pp 29–44
- Chiu SH, Huang YH, Lin HJ (2013) Carbon budget of leaves of the tropical intertidal seagrass *Thalassia hemprichii*. Estuarine, Coastal and Shelf Science 125:27–35
- Fourqurean JW, Schrlau JE (2003) Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay, USA. Chemistry and Ecology 19(5):373–390
- Godshalk GL, Wetzel RG (1978) Decomposition of aquatic angiosperms. III. (*Zostera marina* L. and a conceptual model of decomposition. Aquatic Botany 5:329–354
- Harrison PG (1982) Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of (*Zostera marina*). Marine Biology 67(2):225–230
- Harrison PG (1989) Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquatic Botany 35(3-4):263–288
- Kenworthy JW, Thayer GW (1984) Production and decomposition of the roots and rhizomes of seagrasses, (*Zostera marina*) and (*Thalassia testudinum*), in temperate and subtropical marine ecosystems. Bulletin of Marine Science 35(3):364–379
- Machás R, Santos R, Peterson B (2006) Elemental and stable isotope composition of *Zostera noltii* (Horneman) leaves during the early phases of decay in a temperate mesotidal lagoon. Estuarine, Coastal and Shelf Science 66(1-2):21–29
- Mateo MA, Romero J (1996) Evaluating seagrass leaf litter decomposition: an experimental comparison between litter-bag and oxygen-uptake methods. Journal of Experimental Marine Biology and Ecology 202(2):97–106
- Mateo MA, Romero J (1997) Detritus dynamics in the seagrass *Posidonia oceanica*: elements for an ecosystem carbon and nutrient budget. Marine Ecology Progress Series 151(1):43–53
- Moore TN, Fairweather PG (2006) Decay of multiple species of seagrass detritus is dominated by species identity, with an important influence of mixing litters. Oikos 114(2):329–337
- Newell SY, Fell JW, Statzell-Tallman A, Miller C, Cefalu R (1984) Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics. Aquatic Botany 19(1-2):183–192
- Nicastro A, Onoda Y, Bishop MJ (2012) Direct and indirect effects of tidal elevation on eelgrass decomposition. Marine Ecology Progress Series 456:53–62
- Peduzzi P, Herndl GJ (1991) Decomposition and significance of seagrass leaf litter (*Cymodocea nodosa*) for the microbial food web in coastal waters (Gulf of Trieste, Northern Adriatic Sea). Marine Ecology Progress Series pp 163–174
- Pellikaan GC (1982) Decomposition processes of eelgrass, Zostera marina L. Hydrobiological Bulletin 16(1):83-92

- Pellikaan GC (1984) Laboratory experiments on eelgrass (*Zostera marina* L.) decomposition. Netherlands journal of sea research 18(3-4):360–383
- Pérez M, Mateo MA, Alcoverro T, Romero J (2001) Variability in detritus stocks in beds of the seagrass *Cymodocea nodosa*. Botanica marina 44(6):523–531
- Romero J, Pergent G, Pergent-Martini C, Mateo MA, Regnier C (1992) Marine Ecology 13(1):69-83
- Rublee PA, Roman MR (1982) Decomposition of turtlegrass (*Thalassia testudinum* Konig) in flowing sea-water tanks and litterbags: compositional changes and comparison with natural particulate matter. Journal of Experimental Marine Biology and Ecology 58(1):47–58
- Trevathan-Tackett SM, Seymour JR, Nielsen DA, Macreadie PI, Jeffries TC, Sanderman J, Baldock J, Howes JM, Steven ADL, Ralph PJ (2017) Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology 93(6)
- Wahbeh MI, Mahasneh AM (1985) Some aspects of decomposition of leaf litter of the seagrass (*Halophila stipulacea* from the Gulf of Aqaba (Jordan). Aquatic Botany 21(3):237–244
- Yano Y, Adulyanukosol K, Tsuchiya M (2013) The decomposition characteristics of the seagrass *Thalassia hemprichii* in Okinawa, Japan. Galaxea, Journal of Coral Reef Studies 15:22–33