import pandas as pd
import numpy as np

customers=pd.read_csv("/content/Customers.csv")

customers.sample(4)

products=pd.read_csv("/content/Products.csv")

products.sample(4)

Double-click (or enter) to edit

transactions=pd.read_csv("/content/Transactions.csv")

 ${\tt transactions.sample(4)}$

 $\verb|customer_transactions=pd.merge(customers, transactions, on="CustomerID", how="inner")|\\$

customer_transactions.sample(3)

→		CustomerID	CustomerName	Region	SignupDate	TransactionID	ProductID	TransactionDate	Quantity	TotalValue	Price
	575	C0115	Joshua Hamilton	Asia	2024-11-11	T00959	P037	2024-09-29 10:16:02	2	919.72	459.86
	199	C0042	Heather Riley	North America	2023-03-15	T00614	P076	2024-04-28 14:38:55	1	429.29	429.29
	∢										→

data=pd.merge(customer_transactions,products,on="ProductID",how="inner")
df=data

df.sample(3)

→		CustomerID	CustomerName	Region	SignupDate	TransactionID	ProductID	TransactionDate	Quantity	TotalValue	Price_x	Product
	78	C0017	Jennifer King	Europe	2023-12-05	T00854	P059	2024-07-14 10:29:11	1	303.20	303.20	Sound'
	255	C0053	Albert Burke	Europe	2022-06-18	T00497	P087	2024-06-21	4	1160.68	290.17	Tec Ru ▶

Exploratory data analysis

```
df.columns
df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1000 entries, 0 to 999
    Data columns (total 13 columns):
                         Non-Null Count
     # Column
                                         Dtype
     0 CustomerID
                         1000 non-null
                                          object
         CustomerName
                          1000 non-null
     1
                                          object
         Region
                          1000 non-null
                                          object
         SignupDate
                          1000 non-null
                                          object
         TransactionID
                          1000 non-null
                                          object
         ProductID
                          1000 non-null
                                          object
         TransactionDate 1000 non-null
                                          object
         Quantity
                          1000 non-null
                                          int64
         TotalValue
                          1000 non-null
                                          float64
         Price x
                          1000 non-null
                                          float64
     10 ProductName
                          1000 non-null
                                          object
     11 Category
                          1000 non-null
                                          object
     12 Price_y
                          1000 non-null
                                          float64
    dtypes: float64(3), int64(1), object(9)
    memory usage: 101.7+ KB
df.isnull().sum()
<del>_____</del>
                     0
       CustomerID
      CustomerName
                     0
                     0
         Region
       SignupDate
                     0
       TransactionID
                     0
        ProductID
      TransactionDate 0
         Quantity
                     0
        TotalValue
                     0
         Price_x
                     0
       ProductName
                     0
        Category
         Price_y
                     0
    dtyne: int64
df.describe()
\overline{2}
                                       Price_x
                                                  Price_y
               Quantity
                        TotalValue
      count 1000.000000
                        1000.000000
                                    1000.00000
                                               1000.00000
      mean
               2.537000
                         689.995560
                                     272.55407
                                                272.55407
               1.117981
                         493.144478
                                     140.73639
                                                 140.73639
      std
      min
               1.000000
                          16.080000
                                      16.08000
                                                  16.08000
      25%
               2.000000
                         295.295000
                                     147.95000
                                                 147.95000
      50%
               3.000000
                         588.880000
                                     299.93000
                                                299.93000
      75%
               4.000000
                        1011.660000
                                     404.40000
                                                 404.40000
                        1991.040000
               4.000000
                                     497.76000
                                                 497.76000
      max
```

df.duplicated().sum()

```
<del>→</del> 0
```

```
df['SignupDate'] = pd.to_datetime(df['SignupDate'])
df['TransactionDate'] = pd.to_datetime(df['TransactionDate'])
print(df.dtypes)
→ CustomerID
                                 object
                                 object
object
     CustomerName
     object
TransactionID object
ProductID
TransactionID object
     Region
     TransactionDate datetime64[ns]
     Quantity
                                  int64
     TotalValue
                                float64
     Price_x
                               float64
     ProductName
                                object
     Category
                                object
     Price_y
                               float64
     dtype: object
import seaborn as sns
print(df['Region'].value_counts())
sns.countplot(data=df, x='Region')
plt.title('Region Distribution')
plt.show()
sns.countplot(data=df, x='Category')
plt.title('Category Distribution')
plt.show()
```

→ Region South America 304 North America 244 234 Europe Asia 218

Name: count, dtype: int64

corr_matrix = df[['Quantity', 'TotalValue', 'Price_x', 'Price_y']].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') plt.title('Correlation Matrix') plt.show()

 $\overline{\mathbf{T}}$

```
sns.scatterplot(data=df, x='Quantity', y='TotalValue')
plt.title('Quantity vs TotalValue')
plt.show()

sns.scatterplot(data=df, x='Price_x', y='Price_y')
plt.title('Price_x vs Price_y')
plt.show()
```



```
sns.boxplot(data=df, x='Quantity')
plt.title('Quantity Outliers')
plt.show()

sns.boxplot(data=df, x='TotalValue')
plt.title('TotalValue Outliers')
plt.show()
```


df['DaysSinceSignup'] = (pd.Timestamp.now() - df['SignupDate']).dt.days

print(df[['CustomerID', 'DaysSinceSignup']].head())

	CustomerID	DaysSinceSignup
0	C0001	931
1	C0001	931
2	C0001	931
3	C0001	931
4	C0001	931
	1	0 C0001 1 C0001 2 C0001 3 C0001

BUSINESS INSIGHTS

data['Quantity'].value_counts()

}		count
	Quantity	
	4	261
	3	254
	2	246
	1	239

dtype: int64

top_5_products

Quantity

ProductName	
ActiveWear Smartwatch	100
SoundWave Headphones	97
HomeSense Desk Lamp	81
ActiveWear Rug	79
SoundWave Cookbook	78

dtype: int64

```
import matplotlib.pyplot as plt
colors = ['r', 'b', 'g', 'y', 'c']
plt.bar(top_5_products.index, top_5_products.values, color=colors)
plt.xlabel('Product Name')
plt.ylabel('Total Quantity Sold')
plt.title('Top 5 Products by Quantity Sold')
plt.xticks(rotation=45)
for i, value in enumerate(top_5_products.values):
   plt.text(i, value / 2, str(value), ha='center', va='center', color='white', fontsize=10)
plt.show()
```


Top 5 Products by Quantity Sold 100 80 Total Quantity Sold 60 40 20 Active Med Smartuatin Soundwave Headphones Hone Sense Desk Lamp Soundinate Control Active west Russ

Product Name

```
import matplotlib.pyplot as plt
Quantity = data['Quantity'].value_counts()
colors = ['r', 'b', 'g', 'y']
plt.bar(Quantity.index, Quantity.values, color=colors)
plt.xlabel('Quantity')
plt.ylabel('Count')
plt.title('Frequency of Quantities Sold')
plt.xticks((1,2,3,4))
plt.show()
```


data['Region'].value_counts()

region_product_quantity = data.groupby(['Region', 'ProductName'])['Quantity'].sum().reset_index()
most_bought_products = region_product_quantity.loc[region_product_quantity.groupby('Region')['Quantity'].idxmax()]
print(most_bought_products)

_		Region	ProductName	Quantity
	39	Asia	HomeSense T-Shirt	28
	67	Europe	ActiveWear Rug	30
	170	North America	SoundWave Headphones	37
	196	South America	ActiveWear Smartwatch	38

region_product_quantity

>		Region	ProductName	Quantity
	0	Asia	ActiveWear Biography	2
	1	Asia	ActiveWear Cookbook	8
	2	Asia	ActiveWear Cookware Set	12
	3	Asia	ActiveWear Headphones	15
	4	Asia	ActiveWear Jacket	23
	247	South America	TechPro Running Shoes	5
	248	South America	TechPro Smartwatch	17
	249	South America	TechPro T-Shirt	20
	250	South America	TechPro Textbook	20
	251	South America	TechPro Vase	17
	252 rc	ws × 3 columns		
	4			

top_customers = transactions.groupby('CustomerID')['TotalValue'].sum().sort_values(ascending=False).head(10)
top_customers.plot(kind='bar')
plt.show()


```
transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate'])
transactions['Month'] = transactions['TransactionDate'].dt.month
monthly_sales = transactions.groupby('Month')['TotalValue'].sum()
monthly_sales.plot(kind='line')
plt.show()
```



```
data['TransactionDate'] = pd.to_datetime(data['TransactionDate'])
data['YearWeek'] = data['TransactionDate'].dt.strftime('%Y-%U')
weekly_trend = data.groupby('YearWeek').agg({'TransactionID': 'count', 'TotalValue': 'sum'}).reset_index()
weekly_trend.rename(columns={'TransactionID': 'TransactionCount'}, inplace=True)
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.plot(weekly_trend['YearWeek'], weekly_trend['TransactionCount'], marker='o', label='Transaction Count')
plt.xticks(rotation=90)
plt.xlabel('Week (Year-Week)')
plt.ylabel('Transaction Count')
plt.title('Weekly Transaction Trend')
plt.title('Weekly Transaction Trend')
plt.legend()
plt.grid()
plt.tight_layout()
plt.show()
```



```
data['TransactionDate'] = pd.to_datetime(data['TransactionDate'])
data['DayOfWeek'] = data['TransactionDate'].dt.day_name()
daywise_transactions = data.groupby('DayOfWeek').agg({'TransactionID': 'count'}).reset_index()
daywise_transactions.rename(columns={'TransactionID': 'TransactionCount'}, inplace=True)
daywise_transactions = daywise_transactions.set_index('DayOfWeek').reindex(['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Fri
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.bar(daywise_transactions.index, daywise_transactions['TransactionCount'], color='skyblue')
plt.xlabel('Day of the Week')
plt.ylabel('Transaction Count')
plt.title('Total Transactions by Day of the Week')
plt.xticks(rotation=45)
plt.show()
```


data.info()

4

 $\overline{\Rightarrow}$

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1000 entries, 0 to 999