NOME_______MAT. _____FIRMA_____

ESERCIZIO 2

Siano dati:

 $P_1 = 75 \text{ W}$ $Q_1 = 75 \text{ VAR}$ $E_1 = 200 \text{ V}_{RMS} \text{ f} = 100 \text{Hz}$

- a) Trascurando inizialmente Z₂ calcolare il modulo delle
- correnti $\overline{I_{L1}}$, $\overline{I_{L2}}$, $\overline{I_{L3}}$ b) Trovare il valore dell'impedenza capacitiva $\overline{Z_2}$ che serve per rifasare il circuito
- c) ricalcolare le tre correnti $\overline{I_{L1}}$, $\overline{I_{L2}}$, $\overline{I_{L3}}$ considerando $\overline{Z_2}$ appena calcolata

ESERCIZIO 3 $\alpha \overline{V}_1$ \var_2 (1)

Siano Dati:

$$\begin{array}{lll} R_1 = 1 \; \Omega & R_2 = 1 \; \Omega & \chi_{C1} = \text{-}1 \; \Omega & \alpha = 1 \\ \overline{I}_1 = 1 \; A & \overline{I}_2 = 4 \; A & \end{array} \label{eq:rate_eq}$$

- Valori espressi con i valori di picco.

 a) Calcolare le tensioni V₁ e V₂.

 b) Calcolare la potenza complessiva erogata dai due generatori di corrente indipendenti

ESERCIZIO 4

Siano dati:

$$R_1 = 3 \Omega$$
 $R_2 = 3 \Omega$ $R_3 = 1 \Omega$ $L = 1 mH$ $V_1 = 9 V$ $V_2 = 9 V$ $\alpha = 1$

Il circuito opera a regime per t<1 e l'interruttore si chiude a t= 1ms.

- a) Calcolare $i_L(t \ge 1)$ e disegnarne l'andamento nel tempo.
- b) Calcolare $i_{R2}(t)$ e disegnarne l'andamento nel tempo.
- c) Calcolare la potenza p(t) nell'induttore.