GEL-2001: Analyse des signaux

Mini-test 2 A2009: Solutions

Département de génie électrique et de génie informatique

Problème 1 (1 pt)

a)

On demande si l'expression suivante est vraie ou fausse:

$$G(\omega) * H(\omega) \Leftrightarrow h(t) * q(t)$$
.

Cette affirmation est bien sûr erronée considérant la dualité entre la convolution et la multiplication. C'est donc FAUX.

b)

On demande si la réponse impulsionnelle suivante et celle d'un filtre causal:

$$h(t) = -e^{-t}U(-t).$$

Par définition, pour qu'un filtre soir causal, sa réponse impulsionnelle doit être nulle pour tous les t < 0 (Ref. Notes de cours §6.4.1). Dans ce cas, la fonction h(t) est clairement non nulle pour tous les t négatifs. Alors, le filtre ne peut pas être causal et l'énoncé est donc \mathbf{FAUX} .

c)

On demande si la réponse en fréquence $H(\omega)=1$ correspond à un filtre causal. La transformée de Fourier de la réponse en fréquence correspond à la réponse impulsionnelle et, dans ce cas, donne une impulsion à t=0. Le critère de causalité énoncé plus tôt est donc respecté et cet énoncé est **VRAI**.

 \mathbf{d}

On demande si l'énoncé mathématique suivant est vrai:

$$x(t) * \delta(t - a) = x(a).$$

Tenant compte des propriétés de la fonction delta-dirac dans le produit de convolution, la fonction x(t) devrait plutôt être décalé. L'énoncé est donc \mathbf{FAUX} .

Problème 2 (2 pt)

Soit un filtre RC ayant une réponse impulsionnelle de la forme:

$$h(t) = e^{-t/RC}U(t)$$
.

On demande de trouver la sortie de ce filtre pour une entrée x(t) = Rect(t). On demande aussi de faire la convolution de manière graphique considérant que la constante RC est de 1 seconde.

On veut calculer la convolution:

$$\{x * h\} (t) = \int_{-\infty}^{+\infty} h(u)x(t-u)du.$$

Graphiquement, on a:

Pour $t \in]-\infty, -1/2], y(t) = 0$ puisque à la fois x(t) et h(t) sont nuls.

Pour $t \in [-1/2, 1/2]$, on a:

$$y(t) = \int_{0}^{t+1/2} e^{-u} du = 1 - e^{-(t+1/2)}.$$

Pour $t \in [1/2, \infty]$, on a:

$$y(t) = \int_{t-1/2}^{t+1/2} e^{-u} du$$

$$= e^{-t} (e^{1/2} - e^{-1/2})$$

= $2 \sinh(1/2)e^{-t}$.

Finalement, on a:

$$y(t) = \begin{cases} 0 & \text{pour} \quad t < -\frac{1}{2} \\ 1 - e^{-(t+1/2)} & \text{pour} \quad -\frac{1}{2} \le t \le \frac{1}{2} \\ 2\sinh(1/2)e^{-t} & \text{pour} \quad t > \frac{1}{2} \end{cases}$$
 (1)

Problème 3 (2 pt)

On demande de tracer le résultat de la convolution suivante:

$$y(t) = \operatorname{Tri}(t) * \delta_{T_s}(t)$$
,

où la période du peigne de dirac, T_s , est de 10.

On demande aussi l'expression analytique de $Y(\omega)$, la transformée de Fourier de y(t). On calcule :

$$\begin{split} Y(\omega) &= \mathcal{T}\mathcal{F}\left\{\mathrm{Tri}(t) * \delta_{T_s}(t)\right\}\,, \\ &= \mathcal{T}\mathcal{F}\left\{\mathrm{Tri}(t)\right\} \times \mathcal{T}\mathcal{F}\left\{\delta_{T_s}(t)\right\}\,, \\ &= \mathrm{Sa}^2(\omega/2) \times \delta_{\omega_s}(\omega)\,. \\ &= \mathrm{Sa}^2(\omega/2) \times \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(\omega - n\frac{2\pi}{T_s})\,. \end{split}$$

Le graphique de cette expression est le suivant:

