Welcome to Week 1

Virtual Mentored Academy

Azure Fundamentals

Hello

HELLO my name is

Allen Sanders

Senior Technology Instructor Pluralsight ELS

About me...

- 27+ years in the industry
- 23+ years in teaching
- Certified Cloud architect
- Passionate about learning
- Also, passionate about Reese's Cups!

Agenda

- Speaking the language of Cloud
- Compute, Networking, & Storage
- Security
- Monitoring & Managing

How we're going to work together

- Slides and words to highlight key concepts
- Demos to bring those concepts "to life"
- Lab work (which will take place in sandboxes provided by "A Cloud Guru")
 for hands-on reinforcement
- NOTE: I welcome being interrupted if you need more info, or clarification, or anything else, just break in and ask. I am here to help you.

Speaking the Language of Cloud

Application Hosting

By Application Hosting, we mean the target infrastructure and runtime platform used for deployment and execution of an application or system; can include compute (CPU and server resources), storage, network, data and operating system

Application Hosting – An "Interesting" Example?

Here's an example of someone thinking "outside-of-the-box" when it comes to application hosting!

https://mashable.com/article/pregnancy-test-doom/

What Are the Hosting Options with Cloud?

- IaaS
- PaaS
- Serverless / FaaS
- SaaS
- Containers

What do they all mean?

Pizza-as-a-Service

From a LinkedIn post by Albert Barron from IBM (https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/)

Pizza as a Service

Side-by-Side Comparison

Azure Resource Architecture

Each "level"
(Management Group,
Subscription, and
Resource Group)
provides a boundary
for enforcing security
and policy

Compute, Networking, & Storage

Compute

The Value Proposition

Deploying Web Apps – the "Hard(er)" Way

- Responsible for management of OS
- Responsible for installation & configuration of a web hosting framework
- Responsible for installation & configuration of a runtime
- Responsible for installation & configuration of the app itself

What If We Need More Instances?

- Now our responsibilities (and associated effort) gets multiplied by N
- Also, need new components (like a load balancer)
- Need custom domain management
- Likely need an SSL/TLS framework to support encryption
- Increases complexity

Maybe there's a better way?

Azure App Service + Plan

Azure App Service

- Provides an HTTP-based managed service for hosting web apps and APIs
- Supports multiple development languages
- Relieves operational burden when hosting & exposing a webenabled workload
- Configuration managed via App Service Plan

Azure App Service Plan

- App Service always runs in App Service Plan
- Defines the compute resources used to host and service your web app or API
- Dictates level of isolation for your workload
- Also, used to expose key capabilities like scaling, deployment, encryption, etc.

Azure App Service Plan – Pricing Tiers

LAB:

Azure App Service

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/azure_docker_microservices-public/tree/main/week01/labs/lab01

Azure Function Apps

Azure Functions

- One of Microsoft's serverless offerings on Azure
- As with other serverless offerings, enables focus on application and data (not infrastructure)
- Can implement logic (in multiple languages) in code blocks called "functions"
- Supports multiple types of "triggers"
- Scales automatically to address increases in demand

Azure Functions

If you want to	then
Process file uploads	Run code when a file is uploaded or changed in blob storage.
Process data in real time	Capture and transform data from event and IoT source streams on the way to storage.
Infer on data models	Pull text from a queue and present it to various AI services for analysis and classification.
Run scheduled task	Execute data clean-up code on pre-defined timed intervals.
Build a scalable web API	Implement a set of REST endpoints for your web applications using HTTP triggers.
Build a serverless workflow	Create an event-driven workflow from a series of functions using Durable Functions.
Respond to database changes	Run custom logic when a document is created or updated in Azure Cosmos DB.
Create reliable message systems	Process message queues using Queue Storage, Service Bus, or Event Hubs.

Durable Functions

- Extension of Azure Functions
- Supports stateful functions that can be integrated into orchestrated workflows or entity management algorithms
- As with Azure Functions, supports multiple programming languages
- Also supports multiple patterns
- See https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview for more info

Hosting Plans

- Azure Functions offers multiple types of hosting plans
- Hosting plan drives other features of function app (like scalability, available timeouts, service limits, etc.)
- See https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale for more info

LAB:

Azure Function App

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/azure_docker_microservices-public/tree/main/week01/labs/lab02

Networking

Virtual Networks in Azure

- Provides isolated area of network space in the Cloud for resource deployment
- Can be further subdivided into subnets
- Resources can be deployed into subnets and standard rules in Azure dictate how resources across the network space can integrate
- Additionally, you can define a set of rules (in a Network Security Group) to further control what a resource can connect to or what can be connected to it

Regions and Availability Zones

- Azure provides regions across the globe for deploying resources closer (i.e., lower latency) to consumers of those resources
- Availability Zones within a region help protect against datacenter failure

Geographic Redundancy and BC/DR

- Supports BC/DR (Business Continuity/Disaster Recovery)
- To provide redundancy, replicas of resources can be deployed to multiple regions
- Regions are paired –
 maintenance on pairs is
 coordinated to help minimize
 downtime due to resource failure

Azure Storage

Azure Storage – Benefits Provided

- All data written to account is encrypted
- Supports fine-grained control over access to the data

 Azure handles underlying concerns like hardware, updates, etc.

Durable & Highly Available

Secure

Scalable

Managed

Accessible

- Built in redundancy to protect against hardware failures
- Supports sophisticated replication across data centers or geographies
- High availability for critical data

Designed for Cloud scale and access performance at high demand

- Access possible over HTTP/HTTPS globally
- Client libraries available to support programmatic access in multiple languages
- Azure Storage Explorer provides a nice UI

First Step: Creating an Azure Storage Account

- Multiple methods for creation supported, including Azure PowerShell, Azure Resource
 Manager (ARM) templates a form of Infrastructure-as-Code, Azure CLI, and the Azure Portal
- Requires some configuration details to define where the Storage Account will "live" in Azure –
 the subscription, resource group, and region
- Also, needs a name something globally unique

First Step: Creating an Azure Storage Account

- Performance options include "Standard" and "Premium"
- Standard will be utilized for most workloads
- Premium is reserved for creation of disks used by virtual machines

First Step: Creating an Azure Storage Account

- Multiple redundancy options available
- Protects against data loss with different types of infrastructure failure
- More sophisticated levels of redundancy carry a higher cost

Redundancy Options

Locally Redundant Storage (LRS) **Zone Redundant Storage (ZRS) Geo-Redundant Storage (GRS)** Geo-Zone-Redundant Storage (GZRS)

- Replicates Storage Account 3 times within a single data center in primary region
- Offers least durability does not protect against data center failure
- Lowest-cost option
- Write requests considered complete only after data successfully written to all 3 replicas
- •Replicates Storage Account across 3 availability zones in primary region
- Provides improved durability with protection against a single data center failure
- •Write requests considered complete only after data successfully written to all 3 replicas across the availability zones
- Good option for Azure Files workloads
- Copies data synchronously 3 times within a single physical location in the primary region (using LRS)
- •Then copies data asynchronously to single physical location in a secondary region with substantial distance from the primary region
- Provides improved durability with protection against failure in a region
- •Copies data across 3 availability zones in the primary region
- Also, replicates data using LRS to a data center in a secondary geographic region
- Can provide protection against both data center and region failure
- Most durable but also most expensive

Azure Storage – Types

Azure Storage – Blob

- Supports storage and access to unstructured data
- Can be used to host static resources for serving a simple website
- Can be used to store files, documents, bits of JSON, task definitions, etc.

Azure Storage – Blob

- Can be used in support of audio or video streaming
- Can be used to store backups for Business Continuity/Disaster Recovery (BC/DR)
- Blob data lives in a container you create in the Storage Account represented as a flat-file hierarchy

Azure Storage – Disk

- Provides virtualized backing storage for a virtual machine
- Like a physical disk you'd find in a physical piece of infrastructure
- But implemented as a separate, virtualized storage facility that enables reassociation to different VMs (if required)
- Supports multiple options depending on performance requirements (premium solid-state, standard solid-state, and standard hard disk drives)

Azure Storage – File

- Provides fully managed file shares in the Cloud for use in multiple other service offerings
- Can be mounted in Cloud workloads as well as on-premise workloads
- Offers very robust option for replacing on-premise file servers with a fully managed Cloud service that supports multiple file protocols and access to data across the globe

Azure Storage – Archive

- Tiering is available for Blob containers in an Azure Storage Account
- Offers different combinations of data retrieval performance and cost
- Includes Hot, Cool, and Archive

Azure Storage – Archive

Hot

- Provides fastest retrieval
- Highest storage cost
- Lowest access cost
- No minimum period for data storage

Cool

- Longer retrieval times
- Medium storage costs
- Medium access costs
- 30-day minimum period for data storage

Archive

- Longest retrieval times (on the order of hours)
- Lowest storage cost
- Highest access cost
- 180-day minimum period for data storage

Securing Access to Azure Storage Account

- Multiple levels of security security at the account level, at the container level, and at the individual file level for Blobs
- Uses Microsoft Entra ID Role-Based Access Control (RBAC) to secure at the account level
- Uses access keys to secure at the account level or for individual containers
- Uses something called Shared Access Signature (SAS) to secure at the individual Blob level

Storage Account Access Keys

- Storage Accounts have a primary and secondary access key
- Both a key and a related connection string are available for enabling scripted or programmatic access to the account
- Should be protected and regularly rotated as a best practice for securing data in the account

Shared Access Signature (SAS)

- SAS token can be generated by an authorized user or application for distribution to an end user
- Represents a URI-friendly hashed string derived from the Storage Account access key
- Provides more granular levels of access control on the account

Shared Access Signature (SAS)

- Includes start and end times for limiting access to a specific time window (safer)
- Allows specification of the types of access to allow (read, write, create, list, delete)
- Can be generated for the entire Storage account, for a specific container, or individual files

Stored Access Policy

- Provides a common reference for creating multiple SAS tokens
- The policy defines permissions, time frame, etc. SAS tokens generated from the policy use the common configuration
- Management of the policy can be used to manage all tokens generated from it
- Only applies at the container level, not individual files

LAB:

Azure Storage

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/azure_docker_microservices-public/tree/main/week01/labs/lab03

SQL Server in Azure

SQL Server in Azure - Options

SQL Server on Azure VM

- •Uses a virtual machine created in Azure (laaS)
- •Customer downloads, installs, and manages SQL Server software & instance on the VM

Azure SQL

- Fully managed service
- •Does not provide access to all features available with SQL Server installed on a VM

Azure SQL Managed Instance

- Fully managed service
- •Has more compatibility with on-premise instances and laaS instances installed on a VM
- •Better supports common tools used with SQL Server-based workloads

Azure Cosmos DB

Azure Cosmos DB

- Provides a fully managed NoSQL database platform
- NoSQL is the model used when the data to be stored does not fit a strict schema (or structure)
- Built around the concept of storing data as "documents" hierarchical sets of key/value data that describe an entity
- JSON (or JavaScript Object Notation) is a common document format used for storage

Azure Cosmos DB

- Intended for all types of application use cases
- Provides very fast data access, elastic scalability, and global availability
- Built into the service offering is support for deployment to multiple regions across the world, enabling low latency access for users to locations closest in proximity

Azure Cosmos DB - Resource Model

- Within an Azure subscription, a new Cosmos DB account can be created
- Within the Cosmos DB account, data is stored and organized using a defined hierarchy

Consistency Levels

- With multiple replicas of your data distributed globally, consistency defines how in sync the replicas remain and how quickly out-of-sync issues are corrected
- There are 5 levels provided by Cosmos DB
- Each level provides tradeoffs in terms of data sync and performance

Strong Bounde	ed Staleness	Session	Consistent Prefix Eventual
Stronger Consistency			Weaker Consistency
	Higher availabili	ty, lower latency, higher th	nroughput

Source: https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Strong Consistency

Bounded Staleness

Source: https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Session

Source: https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Consistent Prefix

Eventual

Source: https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Azure Cosmos DB – APIs Supported

Core/SQL API API for MongoDB Cassandra API **Gremlin API** Table API

Azure Database for PostgreSQL

- PostgreSQL is an open-source database product
- Uses tables, columns, rows, and relationships to create a hierarchy of application entities (relational) but also supports non-relational (NoSQL) data
- As with the other types, supports network connectivity for connecting and operating on data remotely
- Azure's service provides a fully managed instance of the DB platform

LAB:

Azure Cosmos DB

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/azure_docker_microservices-public/tree/main/week01/labs/lab04

Security

Microsoft Entra ID

What is it?

- Formerly Azure Active Directory
- Provides cloud-based IAM (Identity & Access Management)
- Enables integrated access to several Microsoft platforms (including Azure, Microsoft 365, etc.)
 as well as linking with multiple SaaS applications
- Organized by tenant represents an organization and helps with managing internal & external user access to resources
- Supports several license types defining levels of access to more advanced capabilities

What is it?

- Built around industry standards (like OAuth 2.0, OpenID Connect, and SAML v2.0)
- Supports multiple identity types work or school accounts, personal Microsoft accounts, and social accounts (Facebook, Google, Twitter, etc.)
- Provides open-source libraries to facilitate programmatic integration
- Portal for managing application registrations (more to come on that)
- Provides APIs to support automatic registration of applications as part of CI/CD pipelines

What is it?

- License types supported include Free, Office 365, Premium P1, and Premium P2
- As expected, the Premium license versions offer more IAM capability but also cost more
- Also provides B2B (Business-to-Business) and B2C (Business-to-Customer) offerings to support access for internal/external users and SSO (Single Sign-On)

IAM - What is it?

- Provides secure storage, management, and access for keys used to encrypt (and decrypt) data
- Key unlocks sensitive information so protection is critical

- Comes in two "flavors"
 - Standard encrypts with a software key
 - Premium secures data using Hardware Security Module (HSM)-protected keys; more secure but also costlier
- Supports API integration for pulling a secret into a runtime workflow
- Also, multiple other Azure services have direct integration with Key Vault built in so that you can easily apply as part of service execution/operation
- Also, can be easily integrated with CI/CD pipelines in Jenkins, GitHub Actions, and Azure DevOps

- Some of the high-level benefits include:
 - Centralization of sensitive detail needed to configure and operate your workloads
 - Granular security, allowing admin to control access through Microsoft Entra ID and Role-Based Access Control (RBAC)
 - Provides robust monitoring capabilities so an organization can see and know who is accessing and how
 - As previously mentioned, integrates seamlessly with other Azure services (e.g., encryption for Azure Disks, sophisticated encryption support in Azure SQL, and secure configuration for Azure App Service)

LAB:

Azure Key Vault

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/azure_docker_microservices-public/tree/main/week01/labs/lab05

Monitoring & Managing

Azure Monitor

Azure Monitor

Infrastructure-as-Code (IaC)

- As the name implies, the definition & configuration of our infrastructure IN code
- Instead of manually creating (inefficient) → automated in scripts that run "at the push of a button"

- If only creating a handful of resources, manual is (probably) fine
- Creating hundreds (or even thousands), not so much!
- Modern DevOps is built around automation quickly tearing down and rebuilding entire sets of infrastructure as and when required

laC – Advantages?

Testable

Repeatable

Auditable

ARM (Azure Resource Manager)

Azure Resource Manager (ARM) Templates

Microsoft's JSON-based IaC solution Supports definition of Cloud resources for Azure in code that adheres to a predefined schema

```
{
    "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
    "languageVersion": "",
    "contentVersion": "",
    "apiProfile": "",
    "definitions": { },
    "parameters": { },
    "variables": { },
    "functions": [ ],
    "resources": [ ], /* or "resources": { } with languageVersion 2.0 */
    "outputs": { }
}
```

Going to briefly look at details for just a few of the available elements

\$schema Element

Location of schema file that defines target version of template language Used to enforce rules around properties, hierarchy, and values applied to each Can be used to automate validation of a given ARM template instance

parameters Element

Optionally allows specification of values that can be inputs at deployment time Limited to 256 parameters in a given template

```
"definitions": {
  "<definition-name": {
    "type": "<data-type-of-definition>",
    "allowedValues": [ "<array-of-allowed-values>" ],
    "minValue": <minimum-value-for-int>,
    "maxValue": <maximum-value-for-int>,
    "minLength": <minimum-length-for-string-or-array>,
    "maxLength": <maximum-length-for-string-or-array>,
    "prefixItems": <schema-for-validating-array>,
    "items": <schema-for-validating-array-or-boolean>,
    "properties": <schema-for-validating-object>,
    "additionalProperties": <schema-for-validating-object-or-boolean>,
    "discriminator": <schema-to-apply>,
    "nullable": <boolean>,
   "metadata": {
     "description": "<description-of-the-type-definition>"
```

variables Element

Optionally allows definition of variables that can be used throughout template – similar to variables used in application code

Can help reduce complex expressions through reusability

functions Element

Optionally allows definition of user-defined, custom functions Allows encapsulation of complex expressions/instructions that are callable by name

resources Element

Required section of template that enables the definition of the actual resources to be deployed See source URL for additional info

outputs Element

Defines values returned from a deployment (i.e., outputs from execution of the deployment) Can be used to return details from deployed resources (e.g., public DNS value)

```
"outputs": {
    "<output-name>": {
        "condition": "<boolean-value-whether-to-output-value>",
        "type": "<type-of-output-value>",
        "value": "<output-value-expression>",
        "copy": {
            "count": <number-of-iterations>,
            "input": <values-for-the-variable>
        }
    }
}
```

Source: https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/syntax

LAB:

ARM Template

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/azure_docker_microservices-public/tree/main/week01/labs/lab06

Thank you!

If you have additional questions, please reach out to me at: asanders@gamuttechnologysvcs.com

