Diskretni kapaciteti

Diskretni kapaciteti	
Kanal bez gubitka informacije	$p(X Y) = 1 \parallel 0, samo \ jedna \ 1 \ po \ stupcu \\ C = \max_{p(x_i)} (H(X) - \underbrace{H(X Y)}_{0}) = \max_{p(x_i)} (H(X)) = \log_2(n)$
Deterministički kanal	$\begin{array}{l} p(Y X) = 1 \parallel 0, samo \ jedna \ 1 \ po \ retku \\ C = \max_{p(x_i)} (H(Y) - \underbrace{H(Y X)}_{0}) = \max_{p(x_i)} (H(X)) = \log_2(m) \\ ako \ je \ moguce \ postici \ distribuciju \ od \ X \end{array}$
Diskretni bešumni	$ \begin{aligned} & m = n \\ & p(X Y) = p(Y X) = I_n \\ & H(X Y) = H(Y X) = 0 \\ & C = \max_{p(x_i)} (H(X)) = \log_2(n) \end{aligned} $
Kanal s neovisnim ulazom i izlazom	$\begin{split} &p(Y X) \!=\! 1/n , \forall broju matrici n \! \times \! m \\ &H\left(Y X\right) \! =\! \log_2(n) \\ &H\left(Y\right) \! =\! \log_2(n) \\ &C \! =\! \max_{p(x)} \! \left(H\left(Y\right) \! -\! H\left(Y X\right)\right) \! =\! 0 \end{split}$
WSC (generalizacija BSC)	retci permutacije , \sum ista \forall stupac $H(Y x)$ =entropija u jednomretku $C = \max_{p(x,)}(H(Y) - H(Y X)) = \log_2(n) - H(Y x)$
BEC	$p(X) = \begin{bmatrix} \alpha \\ 1 - \alpha \end{bmatrix}$ $p(Y X) = \begin{bmatrix} p & q & 0 \\ 0 & q & p \end{bmatrix}$ $H(X Y) = (1 - p)H(X)$ $C = \max_{p(x_i)} (H(X) - H(X Y)) = p$
k-BSC	$p(Y X) = \begin{bmatrix} p & q \\ q & p \end{bmatrix}^k = SD^k S^{-1}$ $S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ $S^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$ $D^k = \begin{bmatrix} (p+q)^k & 0 \\ 0 & (p-q)^k \end{bmatrix}$ $p(Y X) = SD^k S^{-1} = \frac{1}{2} \begin{bmatrix} 1 + (p-q)^k & 1 - (p-q)^k \\ 1 - (p-q)^k & 1 + (p-q)^k \end{bmatrix}$

Diskretne entropiie

Diskretile entropije	
Entropija slučajne varijable	$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2(p(x_i))$
Združena entropija	$H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2(p(x_i, y_j))$
Entropija šuma	$H(Y X) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2(p(y_j x_i))$
Ekvivokacija	$H(X Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2(p(x_i y_j))$
Transinformacija (nema minusa)	$I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 \left(\frac{p(x_i, y_j)}{p(x_i) p(y_j)} \right)$

Kodiranja	
Aritmetičko	Dekodiranje: p[] = granice vjerojatnosnih intervala //[0, p_1, p_2, 1] x = poruka for i in range(n): a = index najveceg praga manjeg od x $x = \frac{x - p[a]}{p[a+1] - p[a]}$ print(a) $Kodiranje: p[] = granice vjerojatnostnih intervala //[0, p_1, p_2,, 1] x = poruka D, G = 0, 1 for i in range(n): L = G-D a = x[i] // znak poruke; a je donja granica intervala, a+1 gornja G += p[a]*L D = (1 - p[a+1])*L l(x) = [\log_2\left(\frac{1}{P(x)}\right)] + 1 \ binarnih znamenki P(x) = duljina intervala \ poruke = vjerojatnost \ poruke$
Shannon-Fano	Kodiranje: p[]=lista vjerojatnosti sortirana DESC rekurzivno podijeli ' popola ' na skupove s otprilike istom vj gore ide 0, dolje ide 1 Dekodiranje: citas redomznakove, nikad neces dobit viseznacnost
Huffman	Kodiranje: p[]listavjerojatnosti sortirana DESC uzmi 2 najniža, zbroji, sortiraj veća vj – veća znamenka , manja vj – manja znamenka Dekodiranje: čitaj redom znakove, nećeš dobiti višeznačnost N=d+(d-1)K N – broj znakova d – baza K – visetratnik
LZ77	Kodiranje: n = duljina posmični prozor PP m = duljina prozora za kodiranje PZK while len(poruka) > 0: nadi pattern u PP koji je jednak patternu u PZK (zadnji simbol mora biti u PZK) if exists: print(pomak_od_pocetka_PP, duljina, next) else: print(0, 0, next) pp & pzk += duljina + 1 Dekodiranje: t = trenutni index for x in kodirana_poruka: pomak, duljina, next = x for i in range(duljina): print(dekodirano[t - duljina + i]) print(dext)
LZW	Kodiranje: rr = sljedeci simbol d = dict() while len(poruka) > 0: if rr + next in d: rr += next else: print(d[rr]) dodaj rr+next u d rr = next Dekodiranje: citas kodove i pises kodne rijeci redom iz dekodirane poruke 'ponovo kodiras' tj popunjavas dict kad dode cudni brojcek dobro razmisli sto moze doci poslije
Kraftova nejednakost	$\sum_{i=1}^{n} r^{-l_i} \le 1$ $l_i = duljina i - te kodne rijeci$ $n = broj kodnih rijeci$ $r = velicina abecede$
Srednja duljina, efikasnost, propustnost kanala	$ \bar{L} = \sum_{i=1}^{n} p(x_i) l_i \bar{L} \ge H(X) \forall X \epsilon = \frac{H(X)}{\bar{L}} R = N \frac{H(X)}{t} $

Kvantizacijski šum

S=snaga signala korak kvantizacije $\Delta=\frac{(b-a)}{L}$, L = broj kvantizacijskih razina = 2′, r = broj bitova $Q=uniformna slucajna varijabla na intervalu [\frac{-\Delta}{2},\frac{\Delta}{2}]$ $\sigma_Q^2=\frac{\Delta^2}{12}$

 $\sigma_Q^2 = \frac{\Delta^2}{12}$ $(S/N) = \frac{S}{\sigma_Q^2}$

za $\sin(x) \left[-m_{max} \right.$, $+m_{max} \right]$ vrijedi:

 $(S/N) = \left(\frac{3}{m_{max}^2}\right) 2^{2r} = \frac{3}{2} 2^{2r}$

 $(S/N)_{dB} = 10 \log_{10}(S/N) = 1.76 + 6.02 r$

f(t)	$F(2\pi f)$
$e^{-at}\mu(t),a>0$	$\frac{1}{a+j2\pi f}$
$e^{at}\mu(-t),a>0$	$\frac{1}{a-j2\pi f}$
$e^{-a t },a>0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$e^{-at}\mu(t),a>0$	$\frac{1}{(a+j2\pi f)^2}$
$t^n e^{-at} \mu(t), a > 0$	$\frac{n!}{(a+j2\pi f)^{n+1}}$
$rect(\frac{t}{ au})$	$\tau sinc\left(\frac{2\pi f \tau}{2}\right)$
sinc(Wt)	$\frac{\pi}{W} rect \left(\frac{2 \pi f}{2 W} \right)$
$\Delta\left(\frac{t}{ au}\right)$	$\frac{\tau}{2} sinc^2 \left(\frac{2 \pi f \tau}{4} \right)$
$sinc^2\left(\frac{Wt}{2}\right)$	$\frac{2\pi}{W}\Delta\left(\frac{2\pi f}{2W}\right)$
$e^{-at}\sin(\omega_0 t)\mu(t),a>0$	$\frac{\omega_0}{(a+j2\pi f)^2+\omega_0^2}$
$e^{-at}\cos(\omega_0 t)\mu(t), a>0$	$\frac{a+j2\pi f}{(a+j2\pi f)^2+\omega_0^2}$
$e^{-\frac{t^2}{2\vec{\sigma}}}$	$\sigma\sqrt{2\pi}e^{-\frac{(2\sigma\pi f)^2}{2}}$
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$e^{-j 2\pi f t_0}$
$e^{j\omega_0t}$	$\delta \left(f - \frac{\omega_0}{2 \pi} \right)$
$\sin(2\pi f_0 t)$	$\frac{1}{2j}(\delta(f-f_0)-\delta(f+f_0))$
$\cos(2\pi f_0 t)$	$\frac{1}{2}(\delta(f-f_0)+\delta(f+f_0))$
$\mu(t)$	$\frac{1}{2}\delta(f)$
$rect\left(\frac{t-t_{0}}{W}\right) = \mu((t-t_{0}) - W/2) - \mu((t-t_{0}) + W/2)$	15 10 00 00 W

ViS thingies	
	$\begin{bmatrix} x_2 & \cdots & x_n \\ (x_1) & \cdots & p(x_n) \end{bmatrix}$
i=1	$p(x_i)x_i$, ovaj μ nije $\mu(t)!$ nego je oznaka za očekivanje
$\sigma^2 = D[X] = E$ $D[X] = \sum_{i=1}^{n} (p(i))^{-1}$	$[(X-\mu)^2] = E[X^2] - (E[X])^2$ $(x_i)x_i^2) - \mu^2$
Uniformna	$f_X(x) = \frac{1}{b-a}, \forall x \in [a,b], else \ 0$ $E[X] = \frac{a+b}{2}$ $D[X] = \frac{(b-a)^2}{12}$ $H(X) = \ln(b-a) \text{ nat}$
Eksponencijaln a	$\begin{split} f_X(x) &= \lambda e^{-\lambda x}, \forall x > 0, else 0 \\ E[X] &= \frac{1}{\lambda} \\ D[X] &= \frac{1}{\lambda^2} \\ H(X) &= 1 - \ln(\lambda) \ \textit{nat} \end{split}$
Gaussova (normalna)	$\begin{aligned} f_{x}(x) &= \frac{1}{\sigma \sqrt{2}\pi} e^{\frac{(x-\mu)^{2}}{2\sigma^{2}}}, \forall x \in \mathbb{R} \\ E[X] &= \mu \\ D[X] &= \sigma^{2} \\ H(X) &= \frac{1}{2} \ln(2\pi e \sigma^{2}) \text{ nat} \end{aligned}$
"Šator" (simetrični)	$f_{x}(x) = \frac{1}{W} - \frac{1}{W} \left \frac{x}{W} \right , W = \frac{b - a}{2}$ $E[X] = \frac{a + b}{2}$ $D[X] = \frac{(b - a)^{2}}{24} = \frac{W^{2}}{6}$ $H(X) = \frac{1}{2} + \ln\left(\frac{b - a}{2}\right) nat$
Geometrijska	$X \sim G(p) \Rightarrow p(x_i) = p(1-p)^{k-1}, k \in 1+\infty$ $E[X] = 1/p$ $D[X] = \frac{1-p}{p^2}$ $H[X] = \frac{-(1-p)\log_2(1-p) - p \log_2(p)}{p} bit$
Binomna	$X \sim B(n,p) \rightarrow p(x_i) = {n \choose k} p^k (1-p)^{n-k}, k \in 1n$ $E[X] = np$ $D[X] = np(1-p)$ $H[X] = \frac{1}{2} \log_2(2\pi e n p(1-p)) bit$

 $X \sim P(\lambda) \rightarrow p(x_i) = \frac{\lambda^i e^{-\lambda}}{i!}, i \in 1.. +\infty$

 $E[X] = \lambda$ $D[X] = \lambda$ H[X] = nes uzasno komplicirano, nvm

Poisson

SiS thingies

SiS thingies	
$\mathscr{F}(x(t)) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt = X(f),$	x(t) neperiodična
$\mathcal{F}(x(t)) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt = X(f), x(t) \text{ neperiodična}$ $\mathcal{F}(x(t)) = \frac{1}{T_0} \int_{-T_0/2}^{T/2} x(t) e^{-jk\frac{2\pi}{T_0}t} dt = X(k), x(t) \text{ periodična}$	
$\mathscr{F}^{-1}(X(f)) = \int_{-\infty}^{+\infty} X(f)e^{j2\pi ft} df = x(t)$,X(f) kontinuirana
$\mathscr{F}^{-1}(X(k)) = \sum_{k=-\infty}^{+\infty} X(k) e^{jk\frac{2\pi}{T_0}t}, X(k)$	diskretna
$E = \int_{-\infty}^{+\infty} x(t) ^2 dt, \text{ modul je tu zbog kon}$	mpleksnihbrojeva ,može se ignorirati
$P = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} x(t) ^2 dt, ista stvar zo$	ı modul vrijedi i tu
$x(t)*y(t) = \int_{-\infty}^{+\infty} x(\tau)y(t-\tau) d\tau$ $x(t)*y(t) = X(f)Y(f)$	
Y(f) = X(f) * H(f) izlaz je konvolucija ulaznog signala i	impulsnog odziva
$A \ rect \left(\frac{t - t_0}{W} \right)$	neperiodički: $E = A^2 W$ P = 0
	periodički: E =+∞
	$P = A^2 \frac{W}{T_0}$
$A \Delta \left(\frac{t-t_0}{W}\right)$	neperiodički: $E = \frac{2}{3} A^2 W$ $P = 0$
	periodički: $E = +\infty$ $P = \frac{2}{3} A^2 \frac{W}{T_0}$
$A\sin(2\pi f t) A\cos(2\pi f t)$	$E = +\infty$ $P = \frac{A^2}{2}$
$\int_{-\infty}^{+\infty} \frac{\sin(a \pi x)}{a \pi x} = \frac{1}{a}$ $\int_{-\infty}^{+\infty} \frac{\sin(a \pi x)^{2}}{(a \pi x)^{2}} = \frac{1}{a}$	

Kontinuirane slučajne varijable

Diferencijalna entropija	$H(X) = -\int_{-\infty}^{+\infty} f_X(x) \log_2(f_X(x)) dx \text{ bit}$
Združena entropija	$H(X,Y) = -\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \log_2(f(x,y)) dxdy$
Ekvivokacija	$H(X Y) = -\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \log_2 \left(\frac{f(x, y)}{f_Y(y)} \right) dxdy$
Entropija šuma	$H(Y X) = -\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \log_2 \left(\frac{f(x, y)}{f_X(x)} \right) dxdy$
Transinformacija	$I(X;Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \log_2 \left(\frac{f(x,y)}{f_X(x) f_Y(y)} \right) dx dy$

Kapacitet kontinuiranih kanala

<u> </u>	- tup tiertet i i o i i e i i e i e i e i e i e i e i	
Pojasno neograničeni	$C = \frac{1}{2} \ln \left(1 + \frac{S}{N} \right)$	
Pojasno ograničeni	$C = B \ln \left(1 + \frac{S}{N_0 B} \right) = 2BD$	
Srednja energija po bitu	$E_b = \frac{S}{R_b}, idealnoR_b = C$	
Učinkovitost prijenosog pojasa	$\frac{C}{B} = \log_2\left(1 + \frac{E_b C}{N_0 B}\right)$	

Slučajni signali

oracajin signan	
Šum na izlazu iz kanala	$N = \int_{-\infty}^{+\infty} S_N(f) H(f) ^2 df$
Autokorelacijska funkcija	$R_X(t_1,t_2) = E[X(t_1)X(t_2)]$
Autokovarijanca	$C_X(t_1,t_2) = R_X(t_1,t_2) - E[X(t_1)]E[X(t_2)]$
Stacionarni procesi	$R_{X}(t_{1},t_{2}) = f(\tau), \tau = t_{2} - t_{1} $ $S_{X}(f) = \mathcal{F}\{R_{X}(\tau)\} \Leftrightarrow R_{X}(\tau) = \mathcal{F}^{-1}\{S_{X}(f)\}$ $P = R_{X}(0) = \int_{-\infty}^{+\infty} S_{X}(f) df$ $Gaussov \check{s}um : S_{N} = \frac{N_{0}}{2}$

Matematičke thingies

$$\sum_{i=1}^{n} x^{i} = \frac{1-x^{n}}{1-x}, |x| < 1$$

$$\sum_{i=0}^{+\infty} x^{i} = \frac{1}{1-x}, |x| < 1$$

$$\sum_{i=0}^{+\infty} ix^{i-1} = \frac{d}{dx} = \frac{1}{(1-x)^{2}}, |x| < 1$$

$$\sum_{i=0}^{+\infty} i(i-1)x^{i-2} = \frac{d^{2}}{dx^{2}} = \frac{2}{(1-x)^{3}}, |x| < 1$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

$$\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\cos(a) + \cos(b) = 2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\frac{d}{dx} \log_{a}(x) = \frac{1}{\ln(a)x} \log_{b}(x) = \frac{\log_{a}(x)}{\log_{b}(b)}$$

