

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Sequence Alignment

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAACCCTAA

Unit 2:

Global Alignment by Dynamic Programming

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

Pairwise Sequence Alignment: in Maths

- Input data:
 - Two sequences S1 and S2
- Parameter(s)
 - A scoring function f for
 - Substitutions
 - Gaps
- Output:
 - The optimal alignment of S1 and S2, which has the maximal score.

$$\underset{ali}{\operatorname{arg\,max}}(f(ali(S1,S2)))$$

Sequence Alignment: Enumerate?

LSPADK L-SPADK L-SPADK

LTPEEK LTPEEK- LT-PEEK
-----LSPADK L-S-P-A-D-K-

LTPEEK------

$$\begin{pmatrix}
2n \\
n
\end{pmatrix} = \frac{(2n)!}{(n!)^2}$$

Copyright © Peking University

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} = \frac{(2*300)!}{(300!)^2} \approx 7 \times 10^{88}$$

The visible universe is estimated to contain $10^{78} \sim 10^{80}$ atoms (source: wikianswers) only!

(Source: http://discoverystudentadventures.blogspot.com/2011/11/10-mind-bending-facts-about-universe.html)

Copyright © Peking University

Sequence Alignment: What is the computational Algorithm?

MV-LSP MVHLTP

HBA_HUMAN	1	MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-D	48
HBB_HUMAN	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	48
HBA_HUMAN	49	LSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR	93
HBB_HUMAN	49	LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	98
HBA_HUMAN	94	VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR	142
HBB HUMAN	99	VDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYOKVVAGVANALAHKYH	147

A residue can either

- Align to other residue, or
- Align to a gap


```
# Aligned sequences: 2
    HBA HUMAN
    HBB HUMAN
# Matrix: EBLOSUM62
# Gap penalty: 10.0
# Extend penalty: 0.5
# Length: 149
# Identity:
              65/149 (43.6%)
# Similarity:
              90/149 (60.4%)
# Gaps:
               9/149 ( 6.0%)
 Score: 292.5
HBA HUMAN
                                                                48
                    1:|.:|:.|.|.||| :..|.|.|||.|:.::|.|:.:|.
HBB HUMAN
                1 MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGD
                                                                48
HBA HUMAN
                        HBB HUMAN
                                                              142
HBA HUMAN
                 147
HBB HUMAN
               99 VDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
```

	С	s	Т	Р	A	G	N	D	E	0	Н	R	К	М	I	L	v	F	Y	М	
¢	9																				С
S T P A		4 1 -1 1	5 -1 0 -2	7 +1 +2	4	Ġ															ян на п
N D E		1 0 0	-1 -1 -1	+2 -1 -1 +1	-2 -2 -1 -1	0 -1 -2 -2	6 1 0	6 2 0	5 2	5											n D E
H R K	-3 -3	-1 -1 0	-2 -1 -1	-2 -2 -1	-2 -1 -1	-2 -2 -2	1 0 0	-1 -2 -1	0 0 1	0 1 1	8 0 -1	5 2	5								H R K
M I L V	-1 -1 -1 -1	-1 -2 -2 -2	-1 -1 -1 0	-2 -3 -3 -2	-1 -1 -1 0	-3 -4 -4 -3	-2 -3 -3 -3	-3 -3 -4 -3	-2 -3 -3 -2	0 -3 -2 -2	-2 -3 -3 -3	-1 -3 -2 -3	-1 -3 -2 -2	5 1 2 1	4 2 3	4	4				M I L V
F Y W	-2 -2 -2	-2 -2 -3	-2 -2 -2	-4 -3 -4	-2 -2 -3	-3 -3 -2	-3 -2 -4	-3 -3 -4	-3 -2 -3	-3 -1 -2	-1 2 -2	-3 -2 -3	-3 -2 -3	0 -1 -1	0 -1 -3	0 -1 -2	-1 -1 -3	6 3 1	7 2	11	F Y W
	С	S	T	P	A	G	N	D	E	Q	Н	R	K	M	I	L	V	F	Y	W	

Affine gap penalty: opening a gap receives a penalty of d; extending a gap receives a penalty of e. So the total Penalty for a gap with length n would be:

Penalty = $d + (n-1)^* e$

Final Score = (sum of substitution scores) + (-1) * (sum of Gap Penalty)

Copyright © Peking University

The best alignment that ends at a given pair of symbols is the best alignment of the sequences up to that point, plus the best alignment for the two additional symbols.

New Best Alignment = Previous Best + Local Best

Copyright © Peking University

Dynamic Programming

Dynamic Programming solves problems by combining the solutions to sub-problems.

- 1. Break the problem into smaller sub-problems.
- 2. Solve these sub-problems optimally recursively.
- 3. Use these optimal solutions to construct an optimal solution for the original problem.

MV-LSP MVHLTP

HBA_HUMAN	1	MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-D	48
HBB_HUMAN	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	48
HBA_HUMAN	49	LSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR	93
HBB_HUMAN	49	LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	98
HBA_HUMAN	94	VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR	142
HBB HUMAN	99	VDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYOKVVAGVANALAHKYH	147

A residue can either

- Align to other residue, or
- Align to a gap

The best alignment that ends at a given pair of symbols is the best alignment of the sequences up to that point, plus the best alignment for the two additional symbols.

New Best Alignment = Previous Best + Local Best

Copyright © Peking University

Sequence alignment with Dynamic Programming: the Formula

- Align two sequences: x and y
 - F (i,j) is the score of the best alignment between $x_{1...i}$ and $y_{1...j}$
 - s(A,B) is the score for substituting A with B; d is the (linear) gap penalty

$$F(0,0) = 0$$

$$F\left(i,j\right) = \max \begin{cases} F\left(i-1,j-1\right) + s\left(x_{i},y_{j}\right) & x_{i} \text{ aligned to } y_{j} \\ F\left(i,j\right) + d & x_{i} \text{ aligned to } a \text{ } gap \\ F\left(i,j-1\right) + d & y_{j} \text{ aligned to } a \text{ } gap \end{cases}$$

Copyright © Peking University

$$F(0,0) = 0$$

$$F\left(i,\,j\right) = \max \begin{cases} F\left(i-1,\,j-1\right) + s\left(x_i,\,y_j\right) & \textbf{x}_i \text{ aligned to } \textbf{y}_j \\ F\left(i-1,\,j\right) + d & \textbf{x}_i \text{ aligned to } \textbf{a} \text{ } \textbf{gap} \\ F\left(i,\,j-1\right) + d & \textbf{y}_j \text{ aligned to } \textbf{a} \text{ } \textbf{gap} \end{cases}$$

$$F(i-1, j-1)$$

$$S(x_{i}, y_{j})$$

$$F(i, j-1)$$

$$d$$

$$F(i-1, j)$$

$$F(i, j)$$

Transversion

Purine	А	G
Pyrimidine	С	Т
		1

Transition

Scoring Nucleotide

A nucleotide substitution matrix:

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Input Sequence 1: AAG

Input Sequence 2: AGC

	Α	С	G	Т
А	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

For simplicity, let's set (i.e. linear gap penalty)

gap OPEN (d) = gap EXTEND (e) =
$$-5$$

C-ACAT
$$(-7) + (-5) + (-7) + (-5) + 2 + 2 = -20$$
Copyright © Peking University

Dynamic Programming Matrix

	А	А	G
Α			
G			
С			

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

		А	А	G
	0			
А				
G				
С				

$$F(0,0) = 0$$

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) + d \\ F(i, j-1) + d \end{cases}$$

	Α	С	G	Т
А	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

Δ

-7						0
2			0 -	- 5 →	-10 →	-15
F	(i, j-1)	А	-5 →			
)	d	G	-10 ↓			
	F(i,j)	С	-15			

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

$$F(i-1, j-1)$$

$$S(x_i, y_j)$$

$$F(i-1, j)$$

$$F(i, j-1)$$

$$d$$

$$F(i, j-1)$$

$$d$$

$$F(i, j)$$

$$-5 + (-5) = -10$$

 $0 + 2 = 2$
 $-5 + (-5) = -10$

Copyright © Peking University

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

	Α	С	G	Τ
А	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

Traceback: Decode the "Real" Alignment

 Trace back to the upper left. Each arrow introduces one symbol at the end of each aligned sequence.

A	A	G	_
_	A	G	C
A	A	G	_
A	_	G	C

		A	А	G
	0 🛨	-5		
А		2 —	-3	
G				-1
С				-6

Copyright © Peking University

Summary Questions

- Why can we build pairwise alignment by dynamics programming algorithm?
 - Is there any assumption(s)?

- Do you think these assumptions reasonable?
 - Why?

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

