

1. Sistemas de Numeração

- Como simplificação, uma base numérica é um conjunto de símbolos (ou algarismos) com os quais podemos representar uma quantidade ou um número.
- A base decimal (base 10) é a mais difundida e é composta por 10 números: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9. Para expressarmos números maiores que 9, devemos somar um dígito ao número original, levando-se então a: 9 + 1 = 10, 99 + 1 = 100, 999 + 1 = 1000 e assim por diante.

1. Sistemas de Numeração

 Tal seqüência repete-se indefinidamente, seguindo o padrão, podemos representar os números como uma seqüência de basen que, neste caso equivale a 10n.

Posição do Dígito	4	3	2	1	0	
Peso	104=10000	10 ³ =1000	102=100	10 ¹ =10	100=1	

- Por exemplo:
 - » O número 1735 seria representado por: $1x10^3 + 7x10^2 + 3x10^1 + 5x10^0 = 1000 + 700 + 30 + 5 = 1735$

1. Sistemas de Numeração

- Com base nesta premissa, podemos representar uma seqüência numérica de base decimal como: $\sum_{i=1}^{s-1} x_i B^i$
- Outras bases possuem representação de seus símbolos similar à base decimal, ou seja, com a sequenciação de símbolos, obedecendo a seus limites de dígitos.

1. Sistemas de Numeração

- $$\begin{split} & \bullet \quad \text{Base} = 10 \text{ (decimal)} \implies 0_{10}, \, 1_{10}, \, 2_{10}, \, 3_{10}, \, 4_{10}, \, 5_{10}, \, 6_{10}, \, 7_{10}, \\ & 8_{10}, \, 9_{10}, \, 10_{10}, \, 11_{10}, \, 12_{10}, \, 13_{10}, \, 14_{10}, \, 15_{10}, \, 16_{10}, \, 17_{10}, \, \ldots \end{split}$$
- Base = 8 (octal) \rightarrow 0₈, 1₈, 2₈, 3₈, 4₈, 5₈, 6₈, 7₈, 10₈, 11₈, 12₈, 13₈, 14₈, 15₈, 16₈, 17₈, 20₈, 21₈, 22₈, 23₈, ...
- Base = 16 (hexadecimal) \rightarrow 0₁₆, 1₁₆, 2₁₆, 3₁₆, 4₁₆, 5₁₆, 6₁₆, 7₁₆, 8₁₆, 9₁₆, A₁₆, B₁₆, C₁₆, D₁₆, E₁₆, F₁₆, 10₁₆, 11₁₆, 12₁₆, 13₁₆, 14₁₆, 15₁₆, 16₁₆, 17₁₆, 18₁₆, 19₁₆, 1A₁₆, 1B₁₆, 1C₁₆, 1D₁₆, ...
- Base = 2 (binária) → 0₂, 1₂, 10₂, 11₂, 100₂, 101₂, 110₂, 111₂, 1000₂, ...

1. Sistemas de Numeração - Conversão

 Para encontrar a correspondência entre um número de base cinco e um número na base decimal, basta computarmos o somatório dos pesos de cada um dos algarismos em relação à base 10.

$$N = A_n B^n + ... + A_3 B^3 + A_2 B^2 + A_1 B^1 + A_0 B^0$$

» Por exemplo, convertendo o número 34, para a base decimal:

n¹	n ⁰	Conversão
3	4	$=3x5^{1} + 4x5^{0} = 15 + 4 = 19$

1. Sistemas de Numeração - Conversão

 Para conversão de um número em qualquer base para a base decimal pode ser feita utilizando uma operação de divisão inteira com resto:

$$N/B = A_nB^{n-1} + ... + A_3B^2 + A_2B^1 + A_1B^0 + A_0B^{-1}$$

» Por exemplo, convertendo o número 53 para a base binária:

Número	Resultado	Resto	Binário
53 / 2	26	1 🛕	1
26 / 2	13	0	01
13 / 2	6	1	101
6/2	3	0	0101
3 / 2	1	1	10101
1/2	0	1	110101

» Desta forma o número decimal 53 equivale a 1101012.

1. Sistemas de Numeração - Conversão

- Números com fração devemos multiplicar a fração pela base até obtermos a precisão deseja.
 - » Por exemplo, convertendo o número 0,828125 para a base binária:

Número	Resultado	Inteiro	Binário
0,828125 x 2	1,65625	1	0,1
0,65625 x 2	1,3125	1	0,11
0,3125 x 2	0,625	0	0,110
0,625 x 2	1,25	1	0,1101
0,25 x 2	0,5	0	0,11010
0,5 x 2	1	1 🔻	0,110101

» Desta forma o número decimal 0,828125 equivale a 0,1101012.

1. Sistemas de Numeração - Conversão

- O projeto de sistemas digitais envolve tipicamente o uso de circuitos integrados formados por componentes semicondutores, os quais são polarizados de forma a se comportar como "chaves digitais".
- Estas chaves podem assumir tipicamente dois valores:
 - » "aberto", permitindo a passagem de corrente elétrica, e
 - » "fechado", impedindo a sua passagem.
- Fazendo a correspondência entre estes estados e os algarimos 0 e 1 (0 para "chave aberta" e 1 para "chave fechada"), pode-se exprimir o estado de um conjunto de chaves digitais na forma de um número de base 2 (número binário).

1. Sistemas de Numeração - Conversão

- Para um número binário qualquer de N dígitos, o menor valor representável é 0 e o maior valor representável é igual a 2^N – 1. Assim, um número de um byte (ou oito bits) pode assumir qualquer valor entre 0 e 2⁸ – 1, ou seja, entre 0 e 255.
- Para bases equivalentes a 2^N (2¹ = 2 binária, 2³ = 8 octal, 2⁴ = 16 hexadecimal), pode-se fazer a equivalência de forma direta.
 - » Assim, o número 2BD₁₆ é equivalente a 1010111101₂.

2	В	D
0010	1011	1101

1. Sistemas de Numeração - Sinal

- No sistema decimal, o símbolo '-' é usado para indicar números negativos e '+' (ou simplesmente um espaço vazio) para números positivos.
- Para permitir números com sinal na base, utiliza-se um dígito (normalmente o mais significativo) para representá-lo.
- Com isto ganha-se a possibilidade de representar inteiros negativos, mas a faixa de representação é reduzida porque tem-se agora somente (n-1) dígitos para representar a magnitude.
 - » Por exemplo, para decimal com dois dígitos: tem-se a faixa de 0 até 99; com a representação em sinal magnitude obtém-se a faixa de -9 até +9 e duas representações para o zero: -0 e +0.

1. Sistemas de Numeração - Sinal

- De um modo geral, para uma base qualquer, das Bⁿ combinações possíveis usam-se somente 2*Bⁿ⁻¹-1 (descontando-se o duplo zero).
 - » No exemplo acima, das 100 combinações são utilizadas somente 19, ou seja, 2*10²⁻¹-1 = 20-1 = 19.

1. Sistemas de Numeração - Valor Numérico

Um número em sinal magnitude, independente de qual a base utilizada, é formado por duas parcelas, escritas lado a lado. A parcela à esquerda (S(a)) representa o sinal e a parcela à direita (M(a)) a magnitude:

a = S(a)M(a)

Número	Binário
+3	011
+2	010
+1	001
+0	000
-0	100
-1	1 01
-2	110
-3	111

1. Sistemas de Numeração - Valor Numérico ■ Para base 2 com quatro dígitos, tem-se 15 combinações. A metade é 7.5 (7 arredondando-se); assim os números de 0 a 6 são positivos, e os de 7 a 14 são negativos: » 2*B ⁿ⁻¹ -1 = 2*2*4-1 = 2*3.1 = 16-1 = 15 representações 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0111 0110 0101 0100 0011 0010 0001 0001 1001 1011 1100 1101 1110 S(a) S(c) S(d) M(d) Exemplo + + + M(a) + M(c) 5 + 7 = 12 + - se M(a)≥M(c),+ M(a) - M(c) 7 + -5 = 2 se M(a)>M(c),- M(c) - M(a) 5 + -7 = -2 se M(a)≤M(c),- M(c) - M(a) - 5 + 7 = -2 se M(a)≤M(c),- M(c) - M(a) - 5 + 7 = 2															
combinações. A metade é 7.5 (7 arredondando-se); assim os números de 0 a 6 são positivos, e os de 7 a 14 são negativos:	1. Sistemas de Numeração – Valor Numérico														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	combinações. A metade é 7.5 (7 arredondando-se); assim os números de 0 a 6 são positivos, e os de 7 a 14 são negativos:								e);						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	1 0 110	0 101	0 100	0 011	0 010	0001	0000	1 001	1010	1011	1 100	1 101	1 110	1111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		S(a)	S(c))	:	S(d)			M(d)			Exem	plo	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+		+		+ M(a)			a) + N	+ M(c) 5 + 7 = 12					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_			M(a) + M(c)		-5 + -7 = -12						
- + se $M(a) < M(c)$, - $M(a) - M(c)$ -7 + 5 = -2	+			_		se M(a)≥M(c),+		(c),+	M(a) - M(c)		7 + -5 = 2				
										5 + -7 = -2					
se M(a) <m(c).+ -="" <math="" m(a)="" m(c)="">-5+7=2</m(c).+>		_		+		. , . , .		(c),-	M(a) - M(c)		-7 + 5 = -2		2		
						se M(a	a)≤M	(c),+	M(c) – N	l(a)	-5+	7 = 2		

1. Sistemas de Numeração – Complemento B-1	<u>A</u> Anhanguera
 Para permitir que a operação de soma seja realizad forma única, sem preocupação com os sinais dos operandos, é utilizada a representação em complemento. 	da de
 Números positivos são representados na forma noi e números negativos são representados em complemento. 	mal,

1. Sistemas de Numeração - Subtração

 A operação de subtração, seja qual for o método de representação utilizado, pode ser facilmente realizada transformando-a em uma soma:

$$d = a - c = a + (-c)$$

• Assim, para realizar subtrações, pode-se simplesmente trocar o sinal do subtraendo e somá-lo ao minuendo. A troca de sinal e a soma seriam então realizadas de acordo com o sistema de representação utilizado.

1. Sistemas de Numeração - Estouro

Sinal de A	Sinal de B	Sinal de D (obtido)	Sinal de D (real)	Estouro?
+	+	+	+	Não
+	+	-	+	Sim
-	-	-	-	Não
_	_	+	_	Sim
+	-	+/-	+/-	Nunca
-	+	-/+	-/+	Nunca

- Se dois operandos tiverem sinais diferentes nunca ocorre estouro.
- Se os dois operandos tiverem mesmo sinal e o resultado da soma tiver sinal diferente dos mesmos, ocorreu estouro e o resultado é incorreto.

1. Sistemas de Numeração - Estouro

- Ex.: Números de 4 bits:
 - » 1111+0001=1110 **→** -7+1=-6 (correto: sem estouro e sem vai um)

 - » 1111+1001=0001 → -8+(-1)=1 (errado, deveria ser –9; estouro: estouro com vai um)
 - » 0111+1001 = 0110 → 7+(-1) = 6 (correto - sem estouro com vai 1)
 - » 0111+0011= 1010 **→** 7+3=-2

(errado, deveria ser 10; sem estouro mais com vai um; bit mais significativo é número negativo)

