§14. Компактные топологические пространства

Известно, что многие факты математического анализа основаны на одном свойстве отрезка числовой прямой, которое называется леммой Гейне - Бореля -Лебега и заключается в том, что из любого покрытия отрезка открытыми интервалами можно выделить конечное подпокрытие.

Борель Феликс Эдуард Жустен Эмиль (Borel Félix Édouard Justin 1871-1956) - французский математик. Создатель нескольких отраслей современного математического анализа (понятие расширяющихся рядов, меры множества, расширение понятия аналитической функции, диофантовы приближения).

Лебег Анри Леон – (1896-1931) – французский математик, с 1910 г. профессор Парижского университета, один из основателей современной теории функций действительного переменного. Главная заслуга – создание теории меры, понятия измеримой функции и обобщение понятия интеграла (интеграл Лебега).

Обобщение этого факта привело отечественных математиков П.С. Александрова и П.С. Урысона к выделению класса топологических пространств - компактным (бикомпактным) топологическим пространствам.

<u>Определение</u> Система множеств $M = \{M_{\alpha}, \alpha \in I\}$, $M_{\alpha} \subset X$ называетемся **покрытием** пространства X, если $\bigcup_{\alpha} M_{\alpha} = X$. Покрытие называется **открытым** (замкнутым), если все множества M_{α} открыты (замкнуты).

Подсистема системы множеств M, сама являющаяся покрытием пространства X называется **подпокрытием** покрытия M.

<u>Определение</u> Топологическое пространство X называется **ком- пактным**, если оно удовлетворяет условию Бореля - Лебега: из всякого открытого покрытия пространства X, можно выделить конечное подпокрытие.

 $\underline{Teopema}$ Для компактности топологического пространства X необходимо и достаточно, чтобы любое его семейство замкнутых подмножеств с пустым пересечением содержало конечное подсемейство с пустым пересечением

⊳ Необходимость. Пусть X - компактно и $\{F_{\alpha}\}$ - произвольная совокупность замкнутых множеств, причем пересечение $\bigcap_{\alpha} F_{\alpha} = \emptyset$. Рассмотрим семейство множеств $G = \{G_{\alpha}\}$, состоящее из дополнений замкнутых множеств $G_{\alpha} = X \setminus F_{\alpha}$. Воспользуемся формулами де Моргана: $\bigcup_{\alpha} G_{\alpha} = \bigcup_{\alpha} (X \setminus F_{\alpha}) = X \setminus \bigcap_{\alpha} F_{\alpha} = X$, т.е. система множеств G образует открытое покрытие X. В силу компактности X из покрытия G можно выделить конечную систему множеств $\{G_1, G_2, ..., G_n\}$, также являющуюся покрытием. Тогда $\bigcap_{k=1}^n F_k = \bigcap_{k=1}^n (X \setminus G_k) = X \setminus \bigcup_{k=1}^n G_k = X \setminus X = \emptyset$. Необходимость доказана.

Достаточность. Пусть $G = \left\{G_{\alpha}\right\}$ - произвольное открытое покрытие пространства X. тогда система множеств $\left\{F_{\alpha} = X \setminus G_{\alpha}\right\}$ представляет собой семейство замкнутых множеств с пустым пересечением, которое по условию теоремы содержит конечное подсемейство также с пустым пересечением. С точностью до обозначения, будем считать, что это множества $\left\{F_1, F_2, ..., F_n\right\}$ и $\bigcap_{i=1}^n F_i = \varnothing$. Отсюда, по аналогии с первой частью теоремы, следует, что множества $\left\{G_1, G_2, ..., G_n\right\}$ образуют конечное подпокрытие.

<u>Определение</u> Система множеств $\{M_{\alpha}\}$ называется **центриро-ванной,** если любое конечное пересечение этой системы не пусто.

 $\underline{Teopema}$ Для компактности пространства X необходимо и достаточно, чтобы всякая центрированная система его замкнутых множеств имела непустое пересечение.

ightharpoonup Необходимость. Пусть $\{F_{\alpha}\}$ - произвольная центрированная система замкнутых множеств топологического пространства X. Тогда эта система должна иметь непустое пересечение, потому что в противном случае она содержала бы конечную подсистему с пустым пересечением, что противоречило бы центрированности системы $\{F_{\alpha}\}$.

Достаточность. Пусть $\{F_{\alpha}\}$ -произвольное семейство замкнутых множеств топологического пространства X с пустым пересечением. Тогда оно должно содержать конечную подсистему с пустым пересечением, так как в противном случае семейство $\{F_{\alpha}\}$ было бы центрированным и имело, по условию непустое пересечение. Таким образом, мы получили, что любое семейство замкнутых множеств с пустым пересечением топологического пространства X содержит конечную подсистему множеств с пустым пересечением, значит пространство X - компактно. \triangleleft

Компактность и замкнутость

<u>Определение</u> Подмножество $M \subset X$ компактным подмножеством, если подпространство M (т.е. множество M с индуцированной топологией) представляет собой компактное пространство. Подмножество M называется относительно компактным, если компактно его замыкание.

<u>Теорема</u> Замкнутое подмножество компактного пространства компактно.

разамкнуто и содержится в компактном топологическом пространстве и $\{F_{\alpha}\}$ - произвольная центрированная система замкнутых в М множеств. Так как М замкнуто, то и в X эта система будет центрированной системой замкнутых множеств, в силу компактности объемлющего пространства $\bigcap_{\alpha} F_{\alpha} \neq \emptyset$ откуда следует компактность М. ⊲

<u>Теорема</u> Компактное подмножество хаусдорфова пространства замкнуто.

⊳ Пусть F - произвольное компактное подмножество хаудорфова пространства X. Возьмем произвольную точку $a \in X \setminus M$. Воспользуемся хаусдорфовостью пространства X: для точки a и произвольной точки $x \in X$ найдутся непересекающиеся окрестности $a \in V_x$ и $x \in U_x$. Совокупность всех множеств $\left\{U_x\right\}$ образует покрытие пространства X. В силу его компактности выделим конечное подпокрытие $\left\{U_{x1}, U_{x2}, ..., U_{xn}\right\}$. Этим окрестностям соответствуют следующие окрестности точки a: $\left\{V_{x1}, V_{x2}, ..., V_{xn}\right\}$. Пересечение этих окрестностей $\bigcap_{i=1}^n V_{xi} = V_0$ содержит точку

a. Очевидно, что $V_0 \cap M = \emptyset$. Это означает, что точка a не является точкой прикосновения множества M, следовательно множество M содержит все свои точки прикосновения, а значит замкнуто. ⊲

<u>Теорема</u> (О нормальности компакта) Всякий компакт представляет собой нормальное множество.

(Компакт - хаудорфово и компактное пространство). Доказательство теоремы аналогично доказательству предыдущей теоремы.

<u>Определение</u> (П.С. Александров) Точка x_0 пространства X называется **точкой полного накопления множества M,** если для любой окрестности U этой точки множества M и $M \cap U$ равномощны.

 $\underline{Teopema}$ (П.С. Александров) Пространство X компактно тогда и только тогда, когда любое его бесконечное подмножество содержит хотя бы одну точку полного накопления.

Данное утверждение примем без доказательства.

Непрерывные отображения компактных пространств

<u>Теорема</u> Непрерывный образ компактного пространства компактен.

⊳ Пусть $f: X \to Y$ непрерывное отображение компактного пространства X на произвольное топологическое пространство Y и система множеств $G = \left\{G_{\alpha}\right\}$ является некоторым отрытым покрытием пространства Y. Рассмотрим систему множеств $U = f^{-1}(G_{\alpha})$. В силу непрерывности отображения f эта все множества последней системы открыты. Очевидно, что система U образует покрытие пространства X. В силу компактности пространства X покрытие U содержит конечное подпокрытие U, а образы множеств, входящих в U, образуют подпокрытие, покрытия U, что означает компактность пространства U. \triangleleft

Замечание Из теоремы следует, что образ компактного подмножества - есть компактное множество.

<u>Теорема</u> Непрерывное отображение компактного пространства в хаусдорфово пространство есть отображение замкнутое.

ightharpoonup Пусть F произвольное замкнутое подмножество компактного пространства X, следовательно F само является компактным множеством.

В силу предыдущей теоремы и замечания образ этого множества т.е. B = f(F) компактен, компактное подмножество хаусдорфова пространства замкнуто. Следовательно, при непрерывном отображении f образ замкнутого множества - замкнут, значит отображение f замкнуто.

<u>Теорема</u> Непрерывное, взаимно- однозначное отображение f компактного пространства X на хаусдорфово пространство Y является гомеоморфизмом.

ightharpoonup Обозначим через $g: Y \to X$ отображение, обратное к f, а F - произвольное замкнутое подмножество пространства X. Тогда $g^{-1}(F) = f(F)$. Так как отображение f замкнуто, то и $g^{-1}(F)$ замкнуто. Следовательно, при отображении g прообраз замкнутого отображения замкнут, что означает непрерывность обратного к f отображения и, следовательно, отображение f является гомеоморфизмом. \lhd

<u>Теорема</u> (Обобщение теорем Вейерштрасса) Пусть A- компактное подмножество топологического пространства X, а f непрерывная на A вещественная функция, тогда f ограничена и достигает своей точной верхней и нижней граней.

ightharpoonup Пусть выполнены условия теоремы. В данном случае функция - это непрерывное отображение множества A в пространство \mathbf{R}^1 , образ компактного множества при непрерывном отображении компактен. Следовательно множество f(A) компактно. Компактное подмножество хаусдорфова пространства замкнуто, следовательно, f(A) является замкнутым ограниченным множеством на числовой прямой откуда и следует утверждение теоремы \lhd .

§13 Дифференцируемые многообразия

В евклидовых, аффинных и проективных пространствах, благодаря наличию систем координат можно широко применять аналитический аппарат. Проведем ряд рассуждений для топологических пространств, в которых систему координат можно построить в каждой точке.

<u>Определение</u> Вещественным многообразием (или просто многообразием) называется хаусдорфово топологическое пространство со счетной базой, для каждой точки которой существует окрестность, гомеоморфная некоторой области пространства \mathbf{R}^n . При этом натуральное число \mathbf{n} называется размерностью многообразия.

Пусть M^n -n мерное многообразие и B- его произвольная точка. Тогда существует окрестность u точки B, для которой найдется гомеоморфизм $\varphi: u \to v \subset R^n$. Эта конструкция позволяет ввести систему координат B u. Если B \mathbf{R}^n задана система координат, то координаты точки $\varphi(B) = (x^1, x^2, ..., x^n)$ можно считать координатами точки B. Они называют-

ся <u>локальными координатами</u> точки В. Гомеоморфизм φ называется <u>локальным гомеоморфизмом</u>, множество u - <u>координатной окрестностью</u>, пара (u,φ) -<u>локальной картой.</u>

Таким образом, локальная карта на M^n представляет собой локальную систему координат. Одна и таже точка многообразия M^n может принадлежать различным локальным картам, например (u_1, φ_1) и (u_2, φ_2) . Пусть пресечение этих карт не является пустым множеством. Обозначим координаты точки $A \in u_1 \cap u_2$ в первой локальной карте $(x_1^1, x_1^2, x_1^3, ..., x_1^n)$ и $(x_2^1, x_2^2, x_2^3, ..., x_2^n)$ во второй. Тогда

$$\varphi_1(A) = (x_1^1, x_1^2, x_1^3, ..., x_1^n), \quad \varphi_2(A) = (x_2^1, x_2^2, x_2^3, ..., x_2^n).$$

Рассмотрим гомеоморфизм

$$\varphi_2 \circ \varphi_1^{-1} : \varphi_1(u_1 \cap u_2) \to \varphi_2(u_1 \cap u_2),$$

который определяет закон изменения координат и определяется совокупностью n непрерывных функций:

Эти функции называются функциями замены координат.

Семейство локальных карт $\{(u_{\alpha}, \varphi_{\alpha})\}$ называется <u>атласом многообразия</u> M^n . Очевидно, что совокупность всех координатных окрестностей образует покрытие многообразия M^n .

Примеры:

1. Пространство $\mathbf{R}^{\mathbf{n}}$ является n - мерным многообразием. Действительно, пространство $\mathbf{R}^{\mathbf{n}}$ является хаусдорфовым пространством со счетной базой. В качестве атласа можно взять атлас состоящий из одной карты: $(\mathbf{R}^{\mathbf{n}}, \mathbf{I})$, где \mathbf{I} - тождественное отображение.

2. Рассмотрим единичную окружность, которую принято обозначать S^1 . $S^1 = \left\{ \left(x_1, x_2 \right) \in R^2 \,,\, x_1^2 + x_2^2 = 1 \right\}$. Пространство S^1 , как подпространство пространства R^2 , является хаусдорфовым и удовлетворяет второй аксиоме счетности. Выберем следующие четыре карты:

- Карта (u_1, φ_1) : $u_1 = \{(x_1, x_2) \in S^1, x_2 > 0\}$, координатный гомеоморфизм φ_1 действует по закону $\varphi_1(x_1, x_2) = x_1$.
- Карта (u_2, φ_2) : $u_2 = \{(x_1, x_2) \in S^1, x_2 < 0\}$, координатный гомеоморфизм φ_2 действует по закону $\varphi_2(x_1, x_2) = x_1$.
- Карта (u_3, φ_3) : $u_3 = \{(x_1, x_2) \in S^1, x_1 > 0\}$, координатный гомеоморфизм φ_3 действует по закону $\varphi_3(x_1, x_2) = x_2$.
- Карта (u_4, φ_4) : $u_4 = \{(x_1, x_2) \in S^1, x_1 < 0\}$, координатный гомеоморфизм φ_4 действует по закону $\varphi_4(x_1, x_2) = x_2$.

Множества u_i являются дуговыми интервалами, гомеоморфизмы можно рассматривать как ортогональные проектирования на ось ОХ или ось ОҮ. Отображения φ_i^{-1} переводят интервал (-1;1) в соответствующие дуговые интервалы:

$$\varphi_1^{-1}(x) = \left(x, \sqrt{1 - x^2}\right), \quad \varphi_2^{-1}(x) = \left(x, -\sqrt{1 - x^2}\right), \\
\varphi_3^{-1}(x) = \left(\sqrt{1 - x^2}, x\right), \quad \varphi_4^{-1}(x) = \left(-\sqrt{1 - x^2}, x\right).$$

Таким образом S^1 представляет собой одномерное многообразие

Возьмем некоторую произвольную точку $A = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, которая принадлежит множествам u_1 и u_2 . Относительно карты $\left(u_1, \varphi_1\right)$ эта точка имеет координату $\varphi_1(A) = \frac{\sqrt{3}}{2}$, относительно карты $\left(u_3, \varphi_3\right)$ координату $\varphi_3(A) = \frac{1}{2}$ Для всех пересечений можно найти законы преобразования координат.

Напомним несколько определений, касающихся дифференцируемых отображений в R^n .

Действительная функция $f: u \to R^1$ называется <u>гладкой</u> или <u>дифференцируемой класса</u> C^r , если на множестве u у неё существуют непрерывные частные производные до порядка r включительно.