Лекция 6. Сложное движение

Сложное движение точки.

 $(0, \vec{e}_{\xi}, \vec{e}_{\eta}, \vec{e}_{\zeta}), (0', \vec{t}, \vec{j}, \vec{k})$ —неподвижный и подвижный реперы. Связанные с ним пространства - абсолютное и относительное соответственно. Движения, скорости и ускорения точек относительно заданных реперов — абсолютные и относительные соответственно. Движение, скорость и ускорение точки подвижного пространства в момент t относительно абсолютного репера называют переносными для точки неподвижного пространства в этот момент.

Относительная производная

Задана вектор функция $\vec{C} = C_x \vec{i} + C_y \vec{j} + C_z \vec{k} \Rightarrow \dot{\vec{C}} = \dot{C_x} \vec{i} + \dot{C_y} \vec{j} + \dot{C_z} \dot{\vec{k}} + \dot{C_x} \dot{\vec{i}} + \dot{C_y} \dot{\vec{j}} + \dot{C_z} \dot{\vec{k}}$. Производные зависят от рассматриваемого пространства.

Теорема (Формулы Пуассона): Подвижный репер (O', \vec{i} , \vec{j} , \vec{k}), жестко связанный с твердым телом, движется относительно неподвижного репера (O, \vec{e}_{ξ} , \vec{e}_{η} , \vec{e}_{ζ}) с угловой скоростью Производные подвижных ортов в неподвижном репере вычисляются по формулам: $\vec{t} = \vec{\omega} \times \vec{i}$, $\vec{j} = \vec{\omega} \times \vec{j}$, $\vec{k} = \vec{\omega} \times \vec{k}$.

Производная функции \vec{C} в подвижном репере называют *относительной* производной (обозначение: $d'\vec{C}/dt$). Производная функции \vec{C} в неподвижном репере называют *абсолютной* производной (обозначение: $d\vec{C}/dt$).

Теорема (формула относительной производной): (в условиях предыдущей теоремы) Относительная и абсолютная производные вектор-функции связаны равенством: $d\vec{C}/dt = d'\vec{C}/dt + \vec{\omega} \times \vec{C}$.

Теорема сложения скоростей: Абсолютная, переносная и относительная скорости движения точки связаны следующим равенством: $\vec{u}=\vec{u}_e+\vec{u}_r$, где \vec{u}_e - переносная скорость точки, а \vec{u}_r - относительная скорость точки.

Теорема сложения ускорений (Формула Криолиса): Абсолютное, переносное, относительное и вращательное ускорения в сложном движении точки связаны следующим равенством: $\vec{w} = \vec{w}_e + \vec{w}_r + \vec{w}_c$, где $\vec{w}_c = 2\vec{w} \times \vec{u}_r$, \vec{w}_e -переносное ускорение, \vec{w}_r - относительное ускорение.

Теорема о сложении угловых скоростей:

Рассмотрим n + 1 репер (O, $\vec{e}_{i,1}$, $\vec{e}_{i,2}$, $\vec{e}_{i,3}$), i \in [1 : n + 1] с центром в неподвижной точке O твердого тела, и предположим, что первый и последний из этих реперов совпадают с неподвижным и подвижным реперами (O, \vec{e}_{ξ} , \vec{e}_{η} , \vec{e}_{ζ}), (O, \vec{i} , \vec{j} , \vec{k}) соответственно, а подвижный репер жестко связан с движущимся твердым телом. При i \in [1 : n] репер (O, $\vec{e}_{i+1,1}$, $\vec{e}_{i+1,2}$, $\vec{e}_{i+1,3}$) движется относительно репера (O, $\vec{e}_{i,1}$, $\vec{e}_{i,2}$, $\vec{e}_{i,3}$) с угловой скоростью $\vec{\omega}_i$. В этом случае говорят, что твердое тело совершает одновременное вращение с угловыми скоростями $\vec{\omega}_1$, ..., $\vec{\omega}_n$ вокруг осей $\vec{\omega}_1/\omega_1$, ..., $\vec{\omega}_n/\omega_n$.

(Формула сложения угловых скоростей) Если твердое тело совершает одновременное вращение вокруг неподвижной точки с угловыми скоростями $\vec{\omega}_1$, ..., $\vec{\omega}_n$, то его угловая скорость вычисляется по формуле: $\vec{\omega} = \vec{\omega}_1 + \dots + \vec{\omega}_n$.