Übung Zeigen Sie, dass $a^{\frac{1}{2}}-1$ kein Vielfaches von n ist. Angenommen $a^{\frac{1}{2}}-1$ ist ein Vielfaches von n, ohh. $a^{\frac{1}{2}}-1\equiv o\pmod{n}, \text{ bzw. } a^{\frac{1}{2}}\equiv 1\pmod{n}$ Insbesondere ist dann die Periode von $f(x)=a^{x}\pmod{n}$ kleiner oder gleich $f(x)=a^{x}\pmod{n}$ die Periode

Libung Zeige die Konvergenz von Z 2k

Wir verwenden das

Quotientenkriterium: 1st mit einer festen positiven Zahl q < 1 fast immer $|\frac{\alpha_{n+n}}{\alpha_n}| \leq q$,

so muss die Reihe Zan konvergieren (mod zwar sogar absolut).

Betrachte $\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{\frac{k+1}{2^{k+1}}}{\frac{k}{2^k}}\right| = \frac{\frac{k+1}{2^{k+1}}}{\frac{k}{2^k}} = \frac{k+1}{2^k}$ $= \frac{1}{2} + \frac{1}{2^k} \quad \left(\frac{3}{4}\right) \quad \text{für } k \ge 2$

Also konvegiet die Reihe Zk