

🦠 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170705101

FCC REPORT

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Equipment Under Test (EUT)

Product Name: LTE Indoor CPE

Model No.: EG2030C-M2

Trade mark: BaiCells

FCC ID: 2AG32EG2030CM2

Applicable standards: FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 90 Subpart Z

Date of sample receipt: 12 June, 2017

Date of Test: 12 June, to 11 July, 2017

Date of report issued: 11 July, 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2. Version

Version No.	Date	Description
00	11 Jul., 2017	Original

Tested by: Organ (hay Date: 11 Jul., 2017

Test Engineer

Reviewed by: Date: 11 Jul., 2017

Project Engineer

3. Contents

		Page
1. C	OVER PAGE	1
2. VI	ERSION	2
3. C	ONTENTS	3
4. TI	EST SUMMARY	4
	ENERAL INFORMATION	
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T	5
5.3	TEST MODES	
5.4	DESCRIPTION OF SUPPORT UNITS	
5.5	RELATED SUBMITTAL(S) / GRANT (S)	6
5.6	TEST METHODOLOGY	6
5.7	LABORATORY FACILITY	
5.8	LABORATORY LOCATION	
5.9	TEST INSTRUMENTS LIST	7
6. S	YSTEM TEST CONFIGURATION	8
6.1	EUT CONFIGURATION	8
6.2	EUT EXERCISE	8
6.3	CONFIGURATION OF TESTED SYSTEM	8
6.4	DESCRIPTION OF TEST MODES	
6.5	TRANSMIT OUTPUT POWER AND PSD	9
6.6	OCCUPY BANDWIDTH	20
6.7	EMISSION MASK	
6.8	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
6.9	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
6.10		
6.11		
7 T	EST SETUP PHOTO	63
8 EI	UT CONSTRUCTIONAL DETAILS	64

4. Test Summary

Test Item	Section in CFR 47	Result
rest item	FCC	Result
RF Output Power	Part 2.1046 Part 90.1321	Pass
Modulation Characteristics	Part 2.1047	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 90.209	Pass
Emission Mask	Part 90.210(b)	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 90.1323	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 90.1323	Pass
Frequency stability vs. temperature	Part 2.1055(a)(1)(b) Part 90.213(a)	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2) Part 90.213(a)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5. General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Manufacturer	Baicells Technologies Co., Ltd.
Address of Manufacturer:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

5.2 General Description of E.U.T.

Product Name:	LTE Indoor CPE
Model No.:	EG2030C-M2
Operation Frequency range:	Band43: 3650MHz~3700MHz
Modulation type:	BPSK, QPSK, 16QAM
Antenna type:	Omni-directional antenna
Antenna gain:	6 dBi
Power supply:	DC 5V
AC adapter:	Model: ADS-12G-06 05010EPCU
	Input: AC100-240V, 50/60Hz, 0.5 A
	Output: DC 5V, 2000 mA

Test Channel:

Band43

51	ИНz	10MHz		
Channel:	Frequency (MHz)	Channel:	Frequency (MHz)	
Lowest	3652.5	Lowest	3655.0	
Middle	3675.0	Middle	3675.0	
Highest	3697.5	Highest 3695.0		
15	MHz	20MHz		
Channel:	Channel: Frequency (MHz)		Frequency (MHz)	
Lowest	3657.5	Lowest 3660.0		
Middle	3675.0	Middle	3675.0	
Highest	3692.5	Highest	3690.0	

5.3 Test modes

Data mode (QPSK)	Keep the EUT in data communicating mode (QPSK). (5MHz, 10MHz, 15MHz, 20MHz)
Data mode (16QAM)	Keep the EUT in data communicating mode (16QAM). (5MHz, 10MHz, 15MHz, 20MHz)

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
1	/	/	/	/

5.5 Related Submittal(s) / Grant (s)

FCC: This submittal(s) (test report) is filing to comply with Section Part 90 subpart Z of the FCC CFR 47 Rules.

5.6 Test Methodology

FCC: Both conducted and radiated testing were performed according to the procedures document on TIA/EIA 603 and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax: +86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: CCISE1707051

Report No: CCISE170705101

5.9 Test Instruments list

J.9 Test ilisti u	Cal. Date Cal. Due date					
Test Equipment	Manufacturer	Model No.	Inventory No.	(mm-dd-yy)	(mm-dd-yy)	
3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	07-22-2017	07-21-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018	
Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018	
Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018	
Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018	
Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018	
Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018	
Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018	
Spectrum Analyzer 20Hz-26.5GHz	Agilent	N9020A	MY50510123	02-25-2017	02-24-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018	
Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018	
Coaxial Cable	CCIS	N/A	CCIS0016	02-25-2017	02-24-2018	
Coaxial Cable	CCIS	N/A	CCIS0017	02-25-2017	02-24-2018	
Coaxial cable	CCIS	N/A	CCIS0018	02-25-2017	02-24-2018	
Coaxial Cable	CCIS	N/A	CCIS0019	02-25-2017	02-24-2018	
Coaxial Cable	CCIS	N/A	CCIS0087	02-25-2017	02-24-2018	
Signal Generator	Rohde & Schwarz	SMR 20	CCIS0024	02-25-2017	02-24-2018	
Signal Generator	Rohde & Schwarz	SMX	CCIS0064	02-25-2017	02-24-2018	
Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	02-25-2017	02-24-2018	
Universal radio communication tester	Anritsu	MT8820C	CCIS0170	02-25-2017	02-24-2018	

Report No: CCISE170705101

6. System test configuration

6.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

6.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency which was for the purpose of the measurements.

6.3 Configuration of Tested System

6.4 Description of Test Modes

The EUT has been tested under operating condition.

EUT staying in continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing.

The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for three modes with power adaptor, earphone and Data cable. The worst-case H mode.

6.5 Transmit Output Power and PSD

Test Requirement:	FCC part90.1321(a)				
Test Method:	FCC part2.1046 and KDB 971168 D01				
Limit:	Mobile and portable stations are limited to 1 watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliwatts in any one-megahertz slice of spectrum.				
Test setup:	1. Transmit Output Power:				
	EUT ATT Communication Tester				
	Note: Measurement setup for testing on Antenna connector				
	2. PSD:				
	EUT Splitter Communication Tester				
	SPA				
	Note: Measurement setup for testing on Antenna connector				
Test Procedure:	Transmit Output Power: The transmitter output was connected to a calibrated attenuator, the other end of which was connected to the simulated station. Transmitter output power was read off in dBm. 2. PSD: RBW=1MHz, VBW=3MHz, Detector mode= RMS, Trace mode: Power averaging over 100 sweeps				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

	LTE Band 43 for Power				
Modulation	Frequency (MHz)	Output Power (dBm)	Antenna gain (dBi)	EIRP (dBm)	Limited (dBm)
	3652.50	14.67	6	20.67	
QPSK(5MHz)	3675.00	14.77	6	20.77	
	3697.50	15.22	6	21.22	23.01
	3652.50	14.44	6	20.44	23.01
16QAM(5MHz)	3675.00	14.99	6	20.99	
	3697.50	15.38	6	21.38	
	3655.00	14.62	6	20.62	
QPSK(10MHz)	3675.00	14.63	6	20.63	
	3695.00	14.96	6	20.96	00.00
	3655.00	14.68	6	20.68	26.02
16QAM(10MHz)	3675.00	14.80	6	20.80	
	3695.00	14.59	6	20.59	
	3657.50	14.60	6	20.60	
QPSK(15MHz)	3675.00	14.47	6	20.47	
	3692.50	14.38	6	20.38	07.70
	3657.50	14.24	6	20.24	27.78
16QAM(15MHz)	3675.00	15.09	6	21.09	
	3692.50	14.26	6	20.26	
	3660.00	14.32	6	20.32	
QPSK(20MHz)	3675.00	13.72	6	19.72	
	3690.00	14.14	6	20.14	00.00
	3660.00	13.96	6	6 19.96	29.03
16QAM(20MHz)	3675.00	14.31	6	20.31	
	3690.00	14.32	6	20.32	

Note: Limit=30dBm+10log(bandwidth/25MHz)

Test plot as below:

5MHz

Lowest channel

Middle channel

Highest channel

10MHz

QPSK

16QAM

Lowest channel

Middle channel

Highest channel

15MHz

QPSK

16QAM

Lowest channel

Middle channel

Highest channel

20MHz

QPSK

VBW 3 0000 Mile: Semanting 20000 Mile: Fig. First Sur. Fig. First Sur.

16QAM

Lowest channel

Middle channel

Highest channel

	Ľ	TE Band 43 for F	PSD		
Modulation	Frequency (MHz)	Output Power (dBm)	Antenna gain (dBi)	PSD (dBm)	Limited (dBm)
	3652.50	9.18	6	15.18	
QPSK(5MHz)	3675.00	9.38	6	15.38	
	3697.50	9.08	6	15.08	
	3652.50	8.90	6	14.90	16.02
16QAM(5MHz)	3675.00	9.60	6	15.60	
	3697.50	9.79	6	15.79	
	3655.00	7.08	6	13.08	
QPSK(10MHz)	3675.00	7.89	6	13.89	
	3695.00	7.99	6	13.99	16.02
	3655.00	6.72	6	12.72	
16QAM(10MHz)	3675.00	7.85	6	13.85	
	3695.00	7.87	6	13.87	
	3657.50	6.15	6	12.15	
QPSK(15MHz)	3675.00	6.21	6	12.21	
	3692.50	6.06	6	12.06	
	3657.50	6.61	6	12.61	16.02
16QAM(15MHz)	3675.00	6.16	6	12.16	
,	3692.50	7.08	6	13.08	
	3660.00	5.40	6	11.40	
QPSK(20MHz)	3675.00	5.40	6	11.40	-
	3690.00	6.19	6	12.19	
	3660.00	4.85	6	10.85	16.02
16QAM(20MHz)	3675.00	5.26	6	11.26	
, ,	3690.00	4.85	6	10.85	

6.6 Occupy Bandwidth

Measurement Data:

Measurement Data:				
Bandwidth(MHz)	Modulation	Test Channel	99% Occupy bandwidth (MHz)	
5	QPSK	Lowest	4.54	
		Middle	4.52	
		Highest	4.52	
	16QAM	Lowest	4.52	
		Middle	4.53	
		Highest	4.52	
10	QPSK	Lowest	9.13	
		Middle	9.08	
		Highest	9.04	
	16QAM	Lowest	9.08	
		Middle	9.08	
		Highest	9.05	
15	QPSK	Lowest	13.49	
		Middle	13.47	
		Highest	13.50	
	16QAM	Lowest	13.48	
		Middle	13.49	
		Highest	13.53	
20	QPSK	Lowest	17.89	
		Middle	17.87	
		Highest	17.87	
	16QAM	Lowest	17.87	
		Middle	17.90	
		Highest	17.91	

6.7 Emission Mask

Test Requirement:	FCC part 90.210(b) and KDB 971168 D01		
Limit:	Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB. (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.		
Test setup:	EUT Splitter Communication Tester SPA SPA Note: Measurement setup for testing on Antenna connector		
Test Procedure:	 The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. RBW=100kHz, VBW=1MHz, Detector mode= RMS, Trace mode: Power averaging over 100 sweeps 		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	PASS		

6.8 Out of band emission at antenna terminals

Test plots as follows (worst case): Spurious emission LTE band 43 for Test Frequency: 30MHz~26GHz Test Mode: 16QAM for 5MHz Test channel: Lowest channel Avg Type Lag-Put Avgstuid 1010 Avg Type Lag-Put Avgirned 1010 PRINTER - Trip free Barr Ref 24.00 dBm Ref 24.00 dBm 30MHz~1GHz 1GHz~26GHz Test channel: Middle channel Avg Type: Lag-Put Avgstraid, 10110 Avg Type: Lag-Put Avgstraid: 10110 Ref 24.00 dBm Ref Offset 4 d0 Ref 24.00 dBm #VBW 3.0 MHz eVEW 3.0 MHz 30MHz~1GHz 1GHz~26GHz Test Channel: Highest channel Avg Type Lag-Put Avgstuid 1010 Avg Type Lag-Per Avgrand 1010 Ref Offset 4 d0 Ref 24,00 dBm 47.008 Ref 24.09 dBm eVBW 3.0 MHz #VEW 3.0 MHz 30MHz~1GHz 1GHz~26GHz

6.9 Field strength of spurious radiation measurement

Test Requirement:	Part 90.1323	
Test Method:	FCC part2.1053 and KDB 971168 D01	
Limit:	-13dBm	
Limit: Test setup:		
	Substituted method: Autenna mast Ground plane d: distance in meters Autenna mast S.G. Substituted Dipole or Horn Antenna Bi-Log Autenna or Horn Antenna	
Test Procedure:	 The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. The frequency range up to tenth harmonic was investigated for each 	

	of three fundamental frequency (low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method. 4. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency. ERP / EIRP = S.G. output (dBm) + Antenna Gain(dB/dBi) – Cable Loss (dB)
Test Uncertainty:	± 4.88 dB
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details.
Test results:	Passed
Remark:	During the test, pre-scan the QPSK, 16QAM modulation, and found the QPSK modulation is the worst case.

accompand Data (waret acca)

Measurement Data (worst case):					
		LTE Band 43			
		5MHz for QPSK			
Frequency (MHz)	Spurious Emission		Limit (dBm)	Decult	
Frequency (MHZ)	Polarization	Level (dBm)	Lillill (ubill)	Result	
Test channel: Lowest channel					
7305.00	Vertical	-45.70			
10957.50	V	-34.41			
14610.00	V	-31.67	- 13	Daga	
7305.00	Horizontal	-45.70	-13	Pass	
10957.50	Н	-37.28			
14610.00	Н	-31.83			
·	Т	est channel: Middle cha	nnel		
7350.00	Vertical	-43.22		Davis	
11025.00	V	-35.30			
14700.00	V	-31.05	- 13		
7350.00	Horizontal	-44.26	-13	Pass	
11025.00	Н	-39.92			
14700.00	Н	-31.52			
·	Te	est channel: Highest cha	annel		
7395.00	Vertical	-43.76			
11070.00	V	-36.28			
14790.00	V	-32.36]	Door	
7395.00	Horizontal	-44.28	-13	Pass	
11070.00	Н	-34.56			
14790.00	Н	-31.83			

Remark:

^{1.} The emission levels of below 1 GHz are very lower than the limit and not show in test report.

10MHz for QPSK				
[70 00 00 00 (MALLE)	Spurious	s Emission	Lineit (dDne)	Dooult
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	Te	est channel: Lowest cha	annel	
7310.00	Vertical	-45.24		
10985.00	V	-34.39		
14620.00	V	-31.64	-13	Pass
7310.00	Horizontal	-45.15	-13	Pass
10985.00	Н	-37.58		
14620.00	Н	-31.59		
	To	est channel: Middle cha	annel	
7350.00	Vertical	-43.51		Pass
11025.00	V	-35.89		
14700.00	V	-31.58	-13	
7350.00	Horizontal	-44.25	-13	
11025.00	Н	-39.34		
14700.00	Н	-31.31		
	Te	est channel: Highest cha	annel	
7390.00	Vertical	-43.26		
11065.00	V	-36.61		
14780.00	V	-32.58	40	Door
7390.00	Horizontal	-44.56	-13	Pass
11065.00	Н	-34.25		
14780.00	Н	-31.26		

Remark:

1. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

15MHz for QPSK				
Frague a ou (NALLE)	Spurious	s Emission	Limeit (dDms)	Danult
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	Te	est channel: Lowest cha	annel	
7315.00	Vertical	-45.73		
10990.00	V	-34.61		
14630.00	V	-31.42	-13	Pass
7315.00	Horizontal	-45.12	-13	Pass
10990.00	Н	-37.71		
14630.00	Н	-31.36		
	Te	est channel: Middle cha	annel	
7350.00	Vertical	-43.50		Pass
11025.00	V	-35.88		
14700.00	V	-31.25	-13	
7350.00	Horizontal	-44.89	-13	
11025.00	Н	-39.25		
14700.00	Н	-31.26		
	Te	est channel: Highest ch	annel	
7385.00	Vertical	-43.56		
11060.00	V	-36.39		
14770.00	V	-32.26	-13	Pass
7385.00	Horizontal	-44.56	-13	F 455
11060.00	Н	-34.12		
14770.00	Н	-31.26		

Remark:

^{1.} The emission levels of below 1 GHz are very lower than the limit and not show in test report.

20MHz for QPSK				
Fragueray (MIII-)	Spuriou	s Emission	Limeit (alDine)	Decult
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	Т	est channel: Lowest cha	nnel	
7320.00	Vertical	-45.11		
10995.00	V	-34.14		
14640.00	V	-31.58	-13	Pass
7320.00	Horizontal	-45.26	-13	Fa55
10995.00	Н	-37.09		
14640.00	Н	-31.25		
	Т	est channel: Middle cha	nnel	
7350.00	Vertical	-43.71		Pass
11025.00	V	-35.88		
14700.00	V	-31.42	-13	
7350.00	Horizontal	-44.82	-13	
11025.00	Н	-39.56		
14700.00	Н	-31.58		
	T	est channel: Highest cha	nnel	
7380.00	Vertical	-43.42		
11055.00	V	-36.92		
14760.00	V	-32.44	1	Pass
7380.00	Horizontal	-44.25	13	Pass
11055.00	Н	-34.89		
14760.00	Н	-31.23		

Remark:

1. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

6.10 Frequency stability V.S. Temperature measurement

Test Requirement:	FCC Part90.213(a)				
Test Method:	FCC Part2.1055(a)(1)(b)				
	FCC:				
	Frequency range (MHz)	Fixed and base stations (±ppm)	Mobile sta Over 2 watts output power	tions (±ppm) 2 watts or less output power	
	Below 25	100	100	200	
	25-50	20 5	20	50 50	
	72-76 150-174	5	5	50	
	216-220	1.0		1.0	
1.2 - 9	220-222 421-512	0.1 2.5	1.5 5	1.5 5	
Limit:	806-809	1.0	1.5	1.5	
	809-824 851-854	1.5 1.0	2.5 1.5	2.5 1.5	
	854-869	1.5	2.5	2.5	
	896-901	0.1	1.5	1.5	
	902-928 902-928	2.5 2.5	2.5 2.5	2.5 2.5	
	929-930	1.5			
	935-940 1427-1435	0.1 300	1.5 300	1.5 300	
	Above 2450	300	300	300	
Test setup:		Spectrum analyzer Att.	Temperature Chambe		
Tost procedure:		asurement setup for testing on .	Constant of the Constant of th	- 100.0	
Test procedure:	supply and inp 2. RF output wa	ut rated voltage.	a frequency cou	external DC power	
		=		h o r	
	Set the spectr frequency rescrete reference frequency	um analyzer RBV llution and measu uency.	re EUT 25℃ oper	obtain the desired ating frequency as	
	temperature si frequency.	tabilized for appro	oximately 30 min	o -30° C. After the utes recorded the	
	· · · · · · · · · · · · · · · · · · ·	easure with 10°C +50°C reached	increased per stag	ge until the highest	
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.				

Measurement Data (the worst channel):

	LTE band 43 for	QPSK	
Power supplied (Vac)	Temperature (°C)	Fred	quency error
rower supplied (vac)	upplied (vac) Temperature (C)	Hz	ppm
	Reference Frequen	cy: Lowest channel=36	52.5MHz (for 5MHz)
	-20	180	0.049281
	-10	165	0.045175
	0	190	0.052019
	10	132	0.036140
	20	174	0.047639
	30	185	0.050650
	40	164	0.044901
	55	142	0.038877
	Reference Frequence	cy: Lowest channel=36	55.0MHz (for 10MHz)
	-20	185	0.050616
	-10	123	0.033653
	0	165	0.045144
	10	148	0.040492
	20	170	0.046512
	30	128	0.035021
	40	108	0.029549
120	55	116	0.031737
120	Reference Frequence	cy: Lowest channel=36	57.5MHz (for 15MHz)
	-25	165	0.045113
	-10	123	0.033630
	0	133	0.036364
	10	104	0.028435
	20	144	0.039371
	30	171	0.046753
	40	180	0.049214
	55	155	0.042379
	Reference Frequency:	Lowest channel=3660	.0MHzMHz (for 20MHz)
	-20	181	0.049454
	-10	171	0.046721
	0	148	0.040437
	10	176	0.048087
	20	180	0.049180
	30	144	0.039344
	40	123	0.033607
	55	160	0.043716

	LTE band 43 for	16QAM	
Damas and its d () (a.s.)	Temperature (°C)	Fred	quency error
Power supplied (Vac)		Hz	ppm
	Reference Frequen	cy: Lowest channel=36	52.5MHz (for 5MHz)
	-25	123	0.033676
	-10	165	0.045175
	0	181	0.049555
	10	175	0.047912
	20	141	0.038604
	30	132	0.036140
	40	105	0.028747
	55	118	0.032307
	Reference Frequenc	cy: Lowest channel=365	55.0MHz (for 10MHz)
	-20	123	0.033653
	-10	151	0.041313
	0	168	0.045964
	10	149	0.040766
	20	175	0.047880
	30	148	0.040492
	40	109	0.029822
100	55	160	0.043776
120	Reference Frequence	cy: Lowest channel=365	57.5MHz (for 15MHz)
	-25	180	0.049214
	-10	171	0.046753
	0	146	0.039918
	10	123	0.033630
	20	136	0.037184
	30	105	0.028708
	40	118	0.032262
	55	141	0.038551
	Reference Frequency:	Lowest channel=3660.	.0MHzMHz (for 20MHz)
	-20	165	0.045082
	-10	180	0.049180
	0	132	0.036066
	10	136	0.037158
	20	150	0.040984
	30	148	0.040437
	40	171	0.046721
	55	105	0.028689

6.11 Frequency stability V.S. Voltage measurement

Test Requirement:	FCC Part 90.213(a	FCC Part 90.213(a)				
Test Method:	FCC Part 2.1055(a)(1)(b) and KDB 971168 D01					
	FCC:					
	Frequency range (MHz)	Fixed and base stations (±ppm)	Mobile sta Over 2 watts output power	ations (±ppm) 2 watts or less output power		
	Below 25 25–50	100 20	100 20	200 50		
	72-76	5		50		
	150-174 216-220	5 1.0	5	50 1.0		
	220-222	0.1	1.5	1.5		
Limit:	421-512 806-809	2.5 1.0	5 1.5	5 1.5		
	809-824	1.5	2.5	2.5		
	851-854 854-869	1.0 1.5	1.5 2.5	1.5 2.5		
	896-901	0.1	1.5	1.5		
	902–928 902–928	2.5 2.5	2.5 2.5	2.5 2.5		
	929-930	1.5				
	935-940 1427-1435	0.1 300	1.5 300	1.5 300		
	Above 2450					
Test setup:			Temperature Chambe	er		
	Spectru	am analyzer Att.	EUT			
			Variable Power	Supply		
	Note: Measurement s	etup for testing on Antenna	connector			
Test procedure:	 Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change. 					
Test Instruments:	Refer to section 5.	Refer to section 5.9 for details				
Test mode:		Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.				
Test results:	Passed	Passed				
Remark:		of all modulations horst modulation sho				

Measurement Data (the worst channel):

LTE band 43 for QPSK					
Tomporature (°C)	Dower supplied (\/ds)	Fred	quency error		
Temperature (°C)	Power supplied (Vdc)	Hz	ppm		
	Reference Frequency	y: Lowest channel=36	52.5MHz (for 5MHz)		
	108	68	0.018617		
	120	90	0.024641		
	132	74	0.020260		
	Reference Frequency	: Lowest channel=365	55.0MHz (for 10MHz)		
	108	68	0.018605		
	120	90	0.024624		
25	132	77	0.021067		
25	Reference Frequency: Lowest channel=3657.5MHz (for 15MHz)				
	108	74	0.020232		
	120	80	0.021873		
	132	90	0.024607		
	Reference Frequency	: Lowest channel=366	60.0MHz (for 20MHz)		
	108	96	0.026230		
	120	78	0.021311		
	132	80	0.021858		

LTE band 43 for 16QAM					
Temperature (°C)	Power supplied (Vdc)	Frequency error			
Temperature (C)		Hz	ppm		
	Reference Frequency	y: Lowest channel=36	52.5MHz (for 5MHz)		
	108	48	0.013142		
	120	59	0.016153		
	132	90	0.024641		
	Reference Frequency	: Lowest channel=365	55.0MHz (for 10MHz)		
	108	90	0.024624		
	120	86	0.023529		
25	132	74	0.020246		
25	Reference Frequency: Lowest channel=3657.5MHz (for 15MHz)				
	108	65	0.017772		
	120	90	0.024607		
	132	84	0.022967		
	Reference Frequency	: Lowest channel=366	60.0MHz (for 20MHz)		
	108	98	0.026776		
	120	81	0.022131		
	132	74	0.020219		