NOVA

IMS

Information Management School

A Statistical and Machine Learning Approach for **Assessing the Impact of Financial Research Reports** on Clients' Trading Behavior

Diogo Tomás dos Santos Peixoto

Dissertation

Advisor: Professor Mauro Castelli

Date: 02nd February 2024

Introduction

Introduction

Who is BNP Paribas:

BNP Paribas is a <u>market maker</u> that buys and sells securities on its account.

How market makers make money:

The <u>price difference</u> between buying and selling a security to a client.

How clients invest:

Send a price request (RFQ) to *n* market makers, who reply with a <u>price quote</u>. After, they decide with whom to <u>trade</u>.

BNP Goal:

Having more clients request an (RFQ), and subsequently perform a <u>trade</u> with them. They believe <u>research</u> reports can help with this.

Research report example

Research Problem

What is the impact that BNP Paribas research reports with <u>bond</u> trade suggestions have on clients' trade behaviour?

Business model studied flowchart

Literature Review

Literature Review

Data analyses can have two goals:

- Explanation:
 - Understand the relationship between the input and the response variables.
 - Usually taught in the economics and statistics field.
- Prediction:
 - Forecast responses to forthcoming input variables.
 - Usually taught in machine learning and data mining fields.

The research problem is an **explanation task**.

Historically, different models were used mainly for different purposes:

Cultures	Models	Model Evaluation
The data modelling culture	linear regression logistic regression Cox model	Goodness-of-fit tests and residual examination
The algorithm modelling culture	y unknown x decision trees neural nets	Measured by predictive accuracy

The two cultures to analyze data as defined by Breiman, L. (2001)

Literature Review

The article by Shmueli and Koppius (2011) points out the following about <u>linear regression models</u>:

"...although it can be used for building an <u>explanatory statistical model</u> as well as a <u>predictive model</u>, the two resulting models will differ in many ways. The differences are (...) from the <u>data</u> used to estimate the model (e.g., variables included and excluded, form of the variables, treatment of missing data), to how <u>performance</u> is assessed (model validation and evaluation)".

Even for <u>explanation tasks</u>, the <u>predictive analytics framework</u> can be useful:

- A good predictive power is a good reason for accepting the explanation.
- Compare different models.

Which <u>algorithms</u> fit better under the <u>explanatory task paradigm</u>?:

- Traditional <u>machine learning</u> algorithms like neural networks <u>do not explain the results</u> in a way humans can understand. They are more suitable for predictive tasks.
- Regression models, also called white boxes, provide results more explainable and transparent.
- Explainable machine learning methods are not reliable. They explain how the model works not the world.

Conclusion: Based on the nature of the research problem at hand (<u>explanation task</u>) and the literature review, the problem has been initially addressed with a **logistic regression** model with an <u>explanatory statistical approach</u>.

Data and Models

Data Assembly

- Trades dataset with all the RFQs per client and bond security.
- **Tradeideas** dataset with BNP research teams' advice to buy or sell bond securities.
- **Telemetry** dataset with clients' records opening emails and downloading the research reports.

Data Sources and field identification to establish the data linkage

Data Assembly

TRADE_ID	Client Name	Trade Date	Bond Security Name	TELEMETRY_ID	Report Title	Send	Opened	Downloaded	RFQ
1004	Confidential	2022-02-28	SPMIM 3 3/4 09/08/23	2500	Saipem - Where there's a well there's a way	1	1	0	YES
3050	Confidential	2022-02-28	ROLLS 4 5/8 02/16/26	3156	Credit Strategy RV - Closing Long Cash/CDS basis on € ROLLS 4.625% 11/25- 2/26	1	1	0	YES
	Confidential			/19560	Colombia rates: 1y1y IBR payer	1	0	0	NO
	Confidential			721452	Chinese property pre- sales update 12 Nov 2021	1	1	0	NO

Data linkage output

Descriptive Statistics

Dependent Variable	Number of Observations	Total Number of Observations
RFQ=0	387746	421218
RFQ=1	33472	421218

Number of Observations

Dependent Variable	% Distribution
RFQ=0	92,05%
RFQ=1	7,95%

Dataset class distribution

Variable	Total Number of Distinct Values			
Client	859			
Report	606			
ISIN*1	793			
Ticker*1	320			

Main variables distinct count

IMS Information Management School

Models Comparison

Measurements		Standard Statistics (Traditional Regression)	Machine Learning
Goal?		the relationship between variables	Generally better for predictions
Scientific Question?		How/why it happens? What will happen?	
	Type of Data	Linear Data	Linear or non-linear
	Training-Test Datasets?	No	Yes
	Model Building Constraints	Must adhere to the threoretical model (e.g. in terms of forms, variables, specification).	Less constraints
	IVIOGEI EVAIIIATION	strength-of-fit measures	Predictive power is measured by accuracy of out-of-sample predictions

Comparison of standard statistic vs. machine learning approach

Standard Statistics Logistic Regression

- 1. Feature Selection
- Selection Model Criteria
- Model Results

1. Feature Selection

Goal:

- Find a <u>few</u> meaningful features based on <u>domain knowledge</u> that make the mode interpretable and explain the data.
- Select <u>independent variables</u> that are reasonably <u>associated</u> with the response variable.
- 1. Chi-squared test: checks whether two categorical variables are independent.

 H_0 : the variables are independent vs H1: the variables are dependent

2. Built stacked bar charts using the contingency table frequencies – visualization aid.

3. Cramer's V test - quantify the association between variables

Cramer's V	Correlation Effect Interpretation
> 0.35	Large effect
0.21 < 0.35	Medium effect
<0.21	Small effect

Cramer's V interpretation

1. Feature Selection

Category	Profile	Variables Name	Meaning	Туре
_		T10_only	The top ten bank clients worldwide, which are also called Titanium 10.	D'anna
[Client Identification	C100_only	The top ninety clients worldwide, after the Titanium 10.	Binary
		Customer_Sector	The sector in the market the client belongs to.	Categorical Nominal
l r	Client Opened_only		The client opened the email sent with a report attached but had not downloaded it.	
Independent	Telemetry ndependent	Downloaded_only	The client downloaded the report attached to the email.	
Variables		Purchased_ISIN _Before_Only	Clients have bought that ISIN before the first time it was ever suggested in a report.	Binary
[Client Historical Behaviour	Purchased_Ticker _Before_Only	Clients have bought that Ticker before the first time it was ever suggested in a report but have not bought that ISIN before, meaning the variable "Purchased_ISIN_Before	
		Dowloaded _interaction	_Only" would be null. The ratio between the number of reports downloaded against the total reports received.	Categorical Ordinal
Dependent Variable	-	RFQ	Request for Quotation	Binary

2. Selection Model Criteria

Akaike information criteria (AIC) – a statistical measure commonly used to compare models with different numbers of parameters.

Formula - AIC

$$AIC = -2ln(L_m) + 2q \quad (3.7)$$

Notation

- L_m is the value of the likelihood model fitted.
- q is the number of independent variables.

Model	Description	AIC
Α	All IV(s)	167028
В	All IV(s) - opened_only	167162
С	All IV(s) - purchased_ticker_before_only	172090
D	downloaded_only + purchased_isin_before_only	176516
E	All IV(s) - downloaded_only + purchased_isin_before_only	210428

Notes: • The mathematical signs (-) and (+) represent a variable excluded or included in the model, respectively.

3. Model Results

- Pseudo r-squared = 0.2855. The model fits well with the dataset.
- Variables with the highest association with the outcome variable are <u>download</u> and <u>purchased isin before</u>.
- All the variables are <u>statistically significant</u> apart from the dummy "downloaded_interaction_medium".
- Marginal effects allow interpretation of the independent features on the probability scale.
- Downloading a report is associated with a <u>12% higher</u> <u>likelihood_of</u> requesting an RFQ.

Logit Marginal	Effects						
Dep. Variable:	rfq						
Method:	dydx						
At:	overal1						
		dy/dx	std err	z	P> z	[0.025	0.975
t10_only		0.0583	0.002	28.130	0.000	0.054	0.06
c100_only		0.0212	0.001	25,429	0.000	0.020	0.02
opened_only		0.0099	0.001	11.507	0.000	0.008	0.01
downloaded_only		0.1200	0.002	54.779	0.000	0.116	0.12
purchased_isin_before_d	nly	0.3618	0.003	126.715	0.000	0.356	0.36
purchased_ticker_before	only	0.0887	0.001	70.991	0.000	0.086	0.09
downloaded_interaction_	small	-0.0087	0.001	-6.255	0.000	-0.011	-0.00
downloaded_interaction	medium	0.0007	0.001	0.503	0.615	-0.002	0.00
downloaded interaction	high	0.0112	0.001	8.151	0.000	0.008	0.01
customersector AM / INS	/ PENSION	0.0730	0.004	17.771	0.000	0.065	0.08
customersector_BANK / [0.0992	0.005	18.368	0.000	0.089	0.11
customersector_HEDGE FL	INDS	0.0693	0.006	11.459	0.000	0.057	0.08
customersector PRIVATE	BANK / WM	0.1454	0.009	16.846	0.000	0.128	0.16

Logistic regression model average marginal effects

	Logit Regressio						
Dep. Variable:		No. Observ		421218			
Model:	Logit	Df Re	siduals:	421	204		
Method:	MLE	Df	Model:		13		
Date:	Tue, 26 Sep 2023	Pseudo	R-squ.:	0.2	855		
Time:	18:14:59	Log-Like	elihood:	-835	500.		
converged:	True	ı	LL-Null:	-1.1687e-	+05		
Covariance Type:	nonrobust	LLR	o-value:	0.0	000		
		coef	std err	z	P> z	[0.025	0.975]
	const	-6.0811	0.072	-83.925	0.000	-6.223	-5.939
	t10_only	0.8421	0.025	33.462	0.000	0.793	0.891
	c100_only	0.3649	0.014	25.972	0.000	0.337	0.392
	opened_only	0.1759	0.015	11.663	0.000	0.146	0.205
	downloaded_only	1.5033	0.021	71.339	0.000	1.462	1.545
purchas	ed_isin_before_only	3.4470	0.024	146.428	0.000	3.401	3.493
purchased	l_ticker_before_only	1.5492	0.024	63.882	0.000	1.502	1.597
downloade	ed_interaction_small	-0.1572	0.026	-6.080	0.000	-0.208	-0.107
downloaded_i	interaction_medium	0.0104	0.024	0.434	0.664	-0.037	0.057
download	ed_interaction_high	0.1955	0.024	8.265	0.000	0.149	0.242
customersector_A	AM / INS / PENSION	1.2511	0.068	18.368	0.000	1.118	1.385
customersec	tor_BANK / DEALER	1.4782	0.069	21.552	0.000	1.344	1.613
customerse	ctor_HEDGE FUNDS	0.9736	0.072	13.565	0.000	0.833	1.114
customersector_P	RIVATE BANK / WM	1.7045	0.075	22.701	0.000	1.557	1.852

Logistic regression model results in Statsmodels library

Machine Learning

- 1. Classification Prediction Evaluation Metrics
- 2. Models Results

Note: Feature selection has been done previously based on:

- Domain Knowledge
- Statistical Tests
- Logistic Regression

1. Classification Prediction Evaluation Metrics

Threshold metrics (e.g., accuracy and F-measure) – are used to minimize the number of classification errors.

Ranking metrics (e.g., ROC curve and AUC) - are concerned with evaluating classifiers based on how effective they are at separating classes.

Probability metrics (e.g., Brier Score and LogLoss) – these metrics measure the deviation from the true probability. They quantify the uncertainty in a classifier's predictions.

The article by Kuhn and Johnson (2013) states:

"...we desire that the <u>estimated class probabilities</u> are <u>reflective of the true underlying probability of the sample</u>. That is, the predicted class probability (or probability-like value) needs to be well-calibrated. To be well-calibrated, the probabilities must effectively reflect the true likelihood of the event of interest.".

Conclusion: The nature of the research problem (<u>explanation task</u>) leads to choosing the <u>probability metrics</u>.

2. Model Results – Random Under Sampling

Dataset	Number of Observations	% Of Full Dataset
Train	336974	80%
Test	84244	20%

Train and test dataset number of observations

Random Under Sampling:

- Improves the threshold metric F1 score.
- Worsens the probability metrics Log Loss and Brier Score.

Logistic regression model metric results on the test dataset, trained with different class distributions

2. Model Results – LR vs. Random Forest

Why use the Random Forest?

- It is an interpretable algorithm that renders <u>feature importance</u>.
- It is an algorithm with a good performance/accuracy

purchased_isin_before_only	0.630442
downloaded_only	0.144939
downloaded_interaction_high	0.038421
t10_only	0.032058
purchased_ticker_before_only	0.031507
c100_only	0.026275
opened_only	0.018043
customersector_AM / INS / PENSION	0.017671
customersector_BANK / DEALER	0.016006
customersector_HEDGE FUNDS	0.013998
downloaded_interaction_small	0.012844
downloaded_interaction_medium	0.010072
customersector PRIVATE BANK / WM	0.007722

Random Forest feature importance results

- Machine learning with a <u>predictive</u> <u>analytics</u> framework allows compare <u>different model algorithms.</u>
- <u>LR</u> and <u>Random Forest</u> provide similar results.

Model	Average Predicted (RFQ=1) *1	Metrics			
		Threshold	Ranking	Probability	
		F1-score	AUC	Brier	Log
				Score	Loss
Logistic	7,92%	0,26	0,87	0,057	0,197
Regression	7,5270	0,20	0,07	0,037	0,137
Random Forest	7,91%	0,25	0,88	0,056	0,195

^{*1 –} it is the mean of the predicted probabilities for each observation belonging to class 1.

Classification metric results in the test dataset

2. Model Results - Logistic Regression

- Statsmodels vs. ScikitLearn libraries
- The <u>partial dependence plot</u> uses the <u>marginal</u> effect technique.
- The logistical regression <u>mathematical concept</u>
 remains the same, and as expected, the results too.

Model agnostic interpretation techniques

Logistic regression partial dependence plot results

Causal Inference

Causal Inference

- Causality subject aims to answer how much a phenomenon X impacts an outcome Y.
- Causal inference could be solved with regression models if all the confounders were accounted.
- A confounding variable is a variable that correlates with both the <u>treatment</u> (download the report) and the outcome variable.
- In observation studies it is very difficult to make sure all confounders are accounted for.
- Example of <u>confounders difficult to measure</u> and include on this project:
 - Client satisfaction and trust in BNP Paribas
 - Other market maker's reports with their Tradeideas
- Conclusion: the regression results must be presented with phrases like "is associated with" and "is likely to cause", rather than statements that imply causation, such as "causes" or "results in".

Other Results

Other Results

The results show that <u>downloading</u> or not a report **has no impact** on the client making a trade with BNP or another market maker competitor.

Figure 30: Tradestatus variable proportion bar chart against the variable downloaded_only

Conclusions

Conclusions

- Historically, <u>classical statistical education</u> focuses on <u>explanatory statistical modelling</u> and statistical inference, while <u>machine learning</u> focuses on <u>predictive tasks</u>.
- Important to understand if the research problem is an <u>explanatory</u> or <u>predictive</u> task. It has an impact on:
 - The algorithms chosen and their evaluation metrics.
 - Feature selection.
- The clients who **download** the research report show, on average, a **12%** higher likelihood of <u>requesting an RFQ</u>.
- Clients who purchased a specific bond security before the first time it was ever suggested by the bank have
 36% higher chances of requesting an RFQ.
- The reports do <u>not influence</u> whether the client the client conducts a <u>trade</u> with BNP or with another market maker's competitor.
- The results should **not** be read from a <u>causal perspective</u>.

Thank You

Address: Campus de Campolide, 1070-312 Lisboa, Portugal

Phone: +351 213 828 610 Fax: +351 213 828 611

