• Assume $n = 2^m$ nodes for a moment

A "complete" Chord ring

At most one of each Gon

• E.g. 1-to-0

At most one of each Gon

• E.g. 1-to-0

At most one of each Gon

• E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0

- At most one of each Gon
- E.g. 1-to-0
- What happened?
 - We constructed the binary number 15!
 - Routing from x to y
 is like computing
 y x mod n by
 summing powers of 2

- At most one of each Gon
- E.g. 1-to-0
- What happened?
 - We constructed the binary number 15!
 - Routing from x to y
 is like computing
 y x mod n by
 summing powers of 2

- At most one of each Gon
- E.g. 1-to-0
- What happened?
 - We constructed the binary number 15!
 - Routing from x to y
 is like computing
 y x mod n by
 summing powers of 2

- At most one of each Gon
- E.g. 1-to-0
- What happened?
 - We constructed the binary number 15!
 - Routing from x to y
 is like computing
 y x mod n by
 summing powers of 2

- At most one of each Gon
- E.g. 1-to-0
- What happened?
 - We constructed the binary number 15!
 - Routing from x to y
 is like computing
 y x mod n by
 summing powers of 2

- At most one of each Gon
- E.g. 1-to-0
- What happened?
 - We constructed the binary number 15!
 - Routing from x to y
 is like computing
 y x mod n by
 summing powers of 2

Diameter: log n (1 hop per gon type) Degree: log n (one outlink per gon type)

What is happening here? Algebra!

What is happening here? Algebra!

- Underlying group-theoretic structure
 - Recall a group is a set S and an operator such that:
 - S is closed under •
 - Associativity: (AB)C = A(BC)
 - There is an *identity* element $I \in S$ s.t. IX = XI = X for all $X \in S$
 - There is an inverse $X^{-1} \subseteq S$ for each element $X \subseteq S$ s.t. $XX^{-1} = X^{-1}X = I$
- The generators of a group
 - Elements $\{g_1, ..., g_n\}$ s.t. application of the operator on the generators produces all the members of the group.
- Canonical example: $(Z_n, +)$
 - Identity is 0
 - A set of generators: {1}
 - A different set of generators: {2, 3}

Cayley Graphs

- The Cayley Graph (S, E) of a group:
 - Vertices corresponding to the underlying set S
 - Edges corresponding to the actions of the generators
- (Complete) Chord is a Cayley graph for $(Z_n, +)$
 - $-S = Z \mod n \ (n = 2^k).$
 - Generators $\{1, 2, 4, ..., 2^{k-1}\}$
 - That's what the gons are all about!
- Fact: Most (complete) DHTs are Cayley graphs
 - And they didn't even know it!
 - Follows from parallel InterConnect Networks (ICNs)
 - Shown to be group-theoretic [Akers/Krishnamurthy '89]

Cayley Graphs

- The Cayley Graph (S, E) of a group:
 - Vertices corresponding to the underlying set S
 - Edges corresponding to the actions of the generators
- (Complete) Chord is a Cayley graph for $(Z_n, +)$
 - $-S = Z \mod n \ (n = 2^k).$
 - Generators $\{1, 2, 4, ..., 2^{k-1}\}$
 - That's what the gons are all about!
- Fact: Most (complete) DHTs are Cayley graphs
 - And they didn't even know it!
 - Follows from parallel InterConnect Networks (ICNs)
 - Shown to be group-theoretic [Akers/Krishnamurthy '89]

Note: the ones that aren't Cayley Graphs are *coset graphs*, a related group-theoretic structure

So...?

- Two questions:
 - How did this happen?
 - Why should you care?

How Hairy met Cayley

How Hairy met Cayley

- vork?
- What do you want in a structured network?
 - Uniformity of routing logic
 - Efficiency/load-balance of routing and maintenance
 - Generality at different scales
- Theorem: All Cayley graphs are vertex symmetric.
 - I.e. isomorphic under swaps of nodes
 - So routing from y to x looks just like routing from (y-x) to 0
 - The routing code at each node is the same! Simple software.
 - Moreover, under a random workload the routing responsibilities (congestion) at each node are the same!
- Cayley graphs tend to have good degree/diameter tradeoffs
 - Efficient routing with few neighbors to maintain
- Many Cayley graphs are hierarchical
 - Made of smaller Cayley graphs connected by a new generator
 - E.g. a Chord graph on 2^{m+1} nodes looks like 2 interleaved (half-notch rotated) Chord graphs of 2^m nodes with half-notch edges
 - Again, code is nice and simple

How Hairy met Cayley

- What do you want in a structured network?
 - Uniformity of routing logic
 - Efficiency/load-balance of routing and maintenance
 - Generality at different scales
- Theorem: All Cayley graphs are vertex symmetric.
 - I.e. isomorphic under swaps of nodes
 - So routing from y to x looks just like routing from (y-x) to 0
 - The routing code at each node is the same! Simple software.
 - Moreover, under a random workload the routing responsibilities (congestion) at each node are the same!
- Cayley graphs tend to have good degree/diameter tradeoffs
 - Efficient routing with few neighbors to maintain
- Many Cayley graphs are hierarchical
 - Made of smaller Cayley graphs connected by a new generator
 - E.g. a Chord graph on 2^{m+1} nodes looks like 2 interleaved (half-notch rotated) Chord graphs of 2^m nodes with half-notch edges
 - Again, code is nice and simple

Upshot

- Good DHT topologies will be Cayley/Coset graphs
 - A replay of ICN Design
 - But DHTs can use funky "wiring" that was infeasible in ICNs
 - All the group-theoretic analysis becomes suggestive
- Clean math describing the topology helps crisply analyze efficiency
 - E.g. degree/diameter tradeoffs
 - E.g. shapes of distribution/aggregation trees
- Really no excuse to be "sloppy"

- Everybody sends their message to node 0
- Assume greedy jumps (increasing Gon-order)
- Intercept messages and aggregate along the way

- Everybody sends their message to node 0
- Assume greedy jumps (increasing Gon-order)
- Intercept messages and aggregate along the way

- Everybody sends their message to node 0
- Assume greedy jumps (increasing Gon-order)
- Intercept messages and aggregate along the way

- Everybody sends their message to node 0
- Assume greedy jumps (increasing Gon-order)
- Intercept messages and aggregate along the way

Binomial Tree!!

Aggregation in Koorde

Recall the DeBruijn graph:

- Each node x points to $2x \mod n$ and $(2x + 1) \mod n$

Aggregation in Koorde

Recall the DeBruijn graph:

- Each node x points to $2x \mod n$ and $(2x + 1) \mod n$

(But note: not node-symmetric)