Problem:

Let \$ABC\$ be a triangle inscribed in circle Let the tangents to $\$ omega\$ at \$B\$ and \$C\$ intersect at point \$D\$, and let $\$ intersect $\$ intersect $\$ omega\$ at \$P\$. If \$AB=5\$, \$BC=9\$, and \$AC=10\$, \$AP\$ can be written as the form $\$ of the form $\$ where \$m\$ and \$n\$ are relatively prime integers. Find \$m + n\$.

Response:

To solve the problem, we start by noting that $\(D\)$ is the intersection of the tangents to the circumcircle $\(\)$ at $\(B\)$ and $\(C\)$. This means that $\(D\)$ is the excenter of the triangle $\(ABC\)$ opposite to $\(A\)$. By the properties of tangents from a point to a circle, $\(DB = DC\)$. [score=0.20]

We use the fact that $\(AD\)$ is the angle bisector of $\(AD\)$ when extended to intersect the circumcircle again at $\(P\)$. By the Angle Bisector Theorem, we know that the ratio of the segments created by the angle bisector on $\(BC\)$ is equal to the ratio of the other two sides of the triangle. Therefore, we have: $\(BC\)$ is equal to the ratio of the other two sides of the triangle. Therefore, we have: $\(BD\)$ we can use the $\(BB\)$ and $\(BC\)$ is the intersection of the tangents at $\(BC\)$ and $\(BC\)$ is the intersection of the tangents at $\(BC\)$ and $\(CC\)$, we have: $\(BC\)$ and $\(BC\)$ is $\(BC\)$. Therefore, $\(BD\)$ and $\(BC\)$ is $\(BC\)$. [score=0.66]