MATH 108 PROOF PORTFOLIO

CARLOS HUANG

1. A DIRECT PROOF

Definition 1.1. We say that m is divisible by n if there exists an $k \in \mathbb{Z}$ such that m = nk for $m, n \in \mathbb{Z}$.

Definition 1.2. We say that a function is injective if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Definition 1.3. We say that a function $X \rightarrow Y$ is surjective if for all $y \in Y$, there exist a $x \in X$ such that f(x) = y.

Proposition 1.4 (Homework 5, Problem 6a). (a) 5⁶⁰⁰ is not divisible by 3.

Proof. We want to show that $5^{600} \neq 3j$ for some $j \in \mathbb{Z}$, by definition 1.1. This means that $5^{600} \neq 0 \pmod{3}$. Notice that $5 \pmod{3} = -1$. This indicates that $5^{600} \equiv -1^{600} \pmod{3}$. Note that $-1^{2k} = 1$, where $k \in \mathbb{N}$. Let k = 300. Notice that $-1^{600} = -1^{2(300)} = -1^{2k} = 1$. Since $1 \neq 0 \pmod{3}$, 5^{600} is not divisible by 3.

2. Proof using a contrapositive

Proposition 2.1 (Homework 3, Problem 5b). (b) Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.

Proof. By contrapositive, it is equivalent to prove "if a is even, then a^2 is divisible by 4."

By the definition of even numbers, let a = 2k for some $k \in \mathbb{Z}$.

Then

$$(2k)^2 = 4k^2.$$

Since the intergers are closed under multiplication, $k^2 \in \mathbb{Z}$. Let $p = k^2$. Notice that $a^2 = 4p$, so 4 divides a, by definition 1.1. Thus, a^2 is divisible by 4, by proof of contrapositive.

3. Proof by Contradiction

Proposition 3.1 (Homework 3, Problem 6). 6. Use proof by contradiction for the following statement. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.

Proof. The contradition of the statement above is if $a^2 + b^2 = c^2$ and a and b are odd.

By the definition of odd integers, a = 2k + 1 and b = 2m + 1 for some $k, m \in \mathbb{Z}$.

Then

$$c^{2} = (2k + 1)^{2} + (2m + 1)^{2}$$

$$= 4k^{2} + 4k + 1 + 4m^{2} + 4m + 1$$

$$= 4k^{2} + 4m^{2} + 4k + 4m + 2$$

$$= 2(2k^{2} + 2m^{2} + 2k + 2m + 1).$$

Let $t = 2k^2 + 2m^2 + 2k + 2m + 1$. Notice that c^2 is an even integer such that $c^2 = 2t$. This means that c is an even integer. Let c = 2q for some $q \in \mathbb{Z}$. Then, $c^2 = (2q)(2q) = 4q^2$. This implies that c^2 is divisible by 4, by definition 1.1. Note, however, that c^2 is also equal to 2t, which is not divisible by 4, by definition 1.2. This is a contradiction. Hence the original statement holds.

4. If and only if (equivalence) proof

Proposition 4.1 (Homework 5, Problem 2a). a) Given sets A, B and C. Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Proof. We need to show that $A \times (B \cup C) \subset (A \times B) \cup (A \times C)$ and $(A \times B) \cup (A \times C) \subset A \times (B \cup C)$.

Proof:

Let $x \in (A \times B) \cup (A \times C)$.

This means that $x \in (A \times B)$ or $x \in (A \times C)$.

Let $x = (x_1, x_2)$.

So $x_1 \in A$ and $x_2 \in B$ or $x_1 \in A$ and $x_2 \in C$.

Since $x_1 \in A$ and x_2 is an element of either B or C, so $x \in A \times (B \cup C)$.

Thus, $A \times (B \cup C) \subset (A \times B) \cup (A \times C)$.

Let $(x1, x2) \in A \times (B \cup C)$.

Then, $x_1 \in A$ and $x_2 \in (B \cup C)$.

So, $x_1 \in A$ and $x_2 \in B$ or $x_2 \in C$.

We see that x_2 can be in either set B or C.

This means that $(x_1, x_2) \in A \times B$ or $(x_1, x_2) \in A \times C$.

Therefore, $(A \times B) \cup (A \times C) \subset A \times (B \cup C)$.

5. An induction (or strong induction) proof

Proposition 5.1 (Practice Problems, Problem 1a).

$$\sum_{k=0}^{n} (2k+1) = (n+1)^{2}.$$

Proof. Proof by induction

For the base case, we consider n = 0. Note that

$$\sum_{k=0}^{0} (2k+1) = 2(0) + 1 = 1$$

Also, note that

$$(n+1)^2 = (0+1)^2 = 1$$

Thus, the base case holds for n = 0.

Inductive Hypothesis: Assume that $\sum_{k=0}^{n} (2k+1) = (n+1)^2$ is true for some $n \le j$ where $j \in \mathbb{Z}_{\ge 0}$. We want to prove that $\sum_{k=0}^{j+1} (2k+1) = (n+2)^2$.

Then

$$\sum_{k=0}^{j+1} (2k+1) = \sum_{k=0}^{j} (2k+1) + 2(j+1) + 1$$

$$= (k+1)^2 + 2(j+1) + 1$$
 by Inductive Hypothesis,
$$= j^2 + 2j + 1 + 2j + 2 + 1$$

$$= j^2 + 4j + 4$$

$$= (j+2)(j+2) = (j+2)^2.$$

By induction, the statement holds for all $n \geq 0$.

6. A PROOF INVOLVING SETS

Proposition 6.1 (Midterm, Problem 4). Suppose that A, B and C are sets. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof. We need to show that $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$ and $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

Let $x \in A \cup (B \cap C)$.

```
So, x \in A or x \in (B \cap C).
Then, x \in A or x \in B and x \in C.
It follows that, x \in (A \cup B) and x \in (A \cup C).
Hence, x \in (A \cup B) \cap (A \cup C).
```

Let $x \in (A \cup B) \cap (A \cup C)$. Then, $x \in (A \cup B)$ and $x \in (A \cup C)$. So, $x \in A$ or $x \in B$ and $x \in A$ or $x \in C$. Note $x \in A$ or $x \in (B \cap C)$. It is clear that $x \in A \cup (B \cap C)$.

Therefore, we see that $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$ and $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

7. AN INJECTIVITY AND SURJECTIVITY OF A FUNCTION PROOF

Proposition 7.1 (Practice Problem Final, Problem 6c). (6c) $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, f(x) = 7x + 4.

Proof. Note that $7x_1 + 4 = 7x_2 + 4$. By subtracting 4 and then multiplying $\frac{1}{7}$ on each side, we have that $x_1 = x_2$, by definition 1.2. Thus, this function is injective. Since there exist a $y \in R_{\geq 0}$ such that f(x) = y for all $x \in R_{\geq 0}$, so y = 7x + 4, by definition 1.3. This means that x = (y - 4)/7. This means that f(x) = f((y - 4)/7) = 7((y - 4)/7) + 4 = y. Thus, this function is also surjective.