		Date	:
x = 4 (mod 5)	$m_1 = 5$	$M_{\rm M} = 1$	(mod m.)
$\chi \equiv 6 \pmod{8}$	m2= 8	May = 3	(mod m ₂) (mod m ₃)
2 = 8 (mod 9)	m3= 9	M34 = 1	(mod ma)
		(3	• •
$product = 5 \times 8 \times 9 =$	360	. 4	
			:
$M_1 = 360 = 360$			/
m, 5		, ř	
$M_{\lambda} = 360 = 360$	= 45		
m ₂ &			
M ₃ = 360 = 360	= 40		. •
m 3	1	5	
$M_{i,y} \equiv 1 \pmod{m_i}$	May = Kr	nod ma) May	13=1 (mod m3)
$M_{i}y \equiv 1 \pmod{m_{i}}$ ① $72y \equiv 1 \mod 75$ ②	$\frac{145y}{2} \equiv 1 (r$	nod 8) 340y	$\equiv 1 \pmod{9}$
y = 3	4 = 5	y_=	7.
	-(3	() 3	,
1) 72 y = 1 (mod 5)	1 1.1	
7275 -	→ · greater ¬	number on lef	t side
72 = 5.14 + 2	- 2 ≡	72 - 5 (14)	_(1)
5=2.2+1	1 =	5-2(2)-	_(ii)
2 = 2 1.2+0			
1			
$(ii) \mid = 5 - 2(2)$	· substil	tute value of	2 from t
1 = 5-2(72-5(14	1)) eq		1
1 = 1(5) - 2(72) + 28	(5)		
1 = -2 (72) + 20	7(5)		
V			

Victory

Page No.

Date:
Now -2 is the inverse so multiply
-2 on both sides of 1
$72(-2) \equiv 1(-2) \pmod{5}$
$y = -2 \mod 5 \qquad -2 \mod 5 = 3$
$y = 3 \pmod{5}$ $y = 3$
2 45 y = 1 (mod 8)
45 > 8
$45 = 8.5 + 5 \longrightarrow 5 = 45 - 5(8)$ (1)
$8 = 5.1 + 3 \longrightarrow 3 = 8 - 1(5) (11)$
$5 = 3.1 + 2 \longrightarrow 2 = 5 - 1(3) (iii)$
$3 = 2.1 + 1 \longrightarrow 1 = 3 - 1(2) (iv)$
2 = 1.2 + 0
10) 1 = 2 = 1/2) - Substitute ma (311) -1 C 2
((v) $1 = 3 - 1(2)$ — substitute req (iii), ral of 2 1 = 3 - 1(5 - 1(3))
1 = 3 - 1(5) + 1(3)
1 = 1(3) - 1(5) + 1(3)
1 5 + 2(2)
1 = -5 + 2(8 - 1(5)) $1 = -5 + 2(8 - 1(5))$
1 = -5 + 2(8) - 2(5)
2(5) 1 2(1)
1 = 2(8) - 3(45 - 5(8)) Substitute eq (1), val of
1 = a(8) - 3(45) + (8)
1 = 17(8) - 3(45)
Victoru
Page No.

Date:_____

$$40 > 9$$
 $40 = 9.4 + 4 \longrightarrow 4 = 40 - 9(9) - (1)$
 $9 = 4.2 + 1 \longrightarrow 1 = 9 - 2(4) - (1)$
 $4 = 1.4 + 0$

$$\binom{1}{1} = 9 - 2 (4)$$
 — substitute eq $\frac{1}{2}$ val of $\frac{4}{1}$ = $9 - 2 (40 - 9(4))$
 $1 = 1(9) - 2 (40) + 8 (9)$

$$\frac{1 = 1(1) - 2(10) + 0(1)}{1 - 2}$$

$$1 = 9(9) - 2(40)$$

$$40y_{3} = 1 \pmod{9}$$

 $40(-2)y_{3} = -2 \pmod{9}$

$$y = -2 \mod 9$$
 $y = 7 \mod 9$
 $y = 7 \mod 9$
 $y = 7 \mod 9$
 $y = 7 \mod 9 = 7$

 $n = 4 \mod 5$ $n = 6 \mod 8$ $n = 8 \mod 9$ $n = 4 \mod 5$ $n = 6 \mod 8$ $n = 8 \mod 9$ $n = 6 \mod 8$ $n = 8 \mod 9$ $n = 6 \mod 8$ $n = 8 \mod 9$ $n = 6 \mod 8$ $n = 8 \mod 9$ n = 72 n = 73 n = 45 n = 40 n = 73 n = 45 n = 40 $n = 6 \mod 8$ $n = 8 \mod 9$ $n = 8 \mod 9$ ai N = 864 + 1350 + 2240n = 4454 4454 mod 360 = 134 x = 4454 (mod 360) is 134. Hence N