サウンドメディア論第5回

~デジタルサウンドを理解しよう~

目次

- アナログとデジタル
- オーディオデータの仕組み
- テキストデータの仕組み
- 画像データの仕組み
- デジタルの利点 (まとめ)

アナログとは?

ある物の状態を 連続的に変化する物理量で表すこと

デジタルとは?

ある物の状態を 離散的な値で表すこと バラバラの値で表せる

コンピュータで扱える

進数

• 2 進数 : 0, 1 で表現

10進数:人間が主に使用

• 16進数 : 2進数を人間が読みやすくしたもの (短くなる)

• 6 0 進数 : 時計

• 360進数:角度

電圧がかかっていない:0

電圧がかかっている:1

101101101 365 2進数 10進数

接頭辞

SI接頭辞			二進接頭辞			SIとのずれ
キロ	k	10^3	キビ	Ki	2^10	2.40%
メガ	M	10^6	メビ	Mi	2^20	4.86%
ギガ	G	10^9	ギビ	Gi	2^30	7.37%
テラ	Т	10^12	テビ	Ti	2^40	9.95%

連続と離散と近似

連続:境目がない値例)時間、長さ、電圧

離散:明確な境目のある値例)人数、サイコロの出た目、トランプの数字

• 近似:連続量を最も近い離散量へ置き換える例) 身長を0.1cm刻みで測る

信号処理

- 信号:なんらかの「情報」を表すもの
 - アナログ信号:自然界に存在する
 - デジタル信号: 存在しない(コンピュータで扱うため)
- 信号処理:音や光、画像などの信号を数理的手法で分析・加工
 - アナログ信号処理:信号を連続した値として扱う
 - デジタル信号処理: 離散
- アナログとデジタルの相互変換
 - デジタル信号処理をするためにA→D変換
 - デジタルデータを出力するためにD→A変換が必要

アナログとデジタルの変換

- A/D変換:アナログ(連続量)→デジタル(離散量)
 - ・サンプリング(標本化)
 - ・量子化
- D/A変換: デジタル(離散量)→アナログ(連続量)
 - ・オーディオの場合はDACで電圧に変換
- ・一度デジタル化したら完全には復元できない

休憩

目次

- アナログとデジタル
- オーディオデータの仕組み
- デジタルの利点 (まとめ)

小目次:オーディオデータの仕組み

- エンコード(符号化)
 - サンプリング (標本化)
 - 量子化
- デジタルオーディオのデータサイズ
- ・ハイレゾとは
- 拡張子

エンコード(符号化)とは

- データ → 別のデータ
 - サンプリング(標本化)
 - 量子化
- アナログ値をデジタル値に変換
- デジタル値をアナログ値に変換
- 対義語「デコード」 (復号化) 別のデータ → 元のデータ

アナログデータを

サンプリング (標本化) して

量子化する

小目次:オーディオデータの仕組み

- エンコード(符号化)
 - サンプリング(標本化)
 - 量子化
- デジタルオーディオのデータサイズ
- ダイナミックレンジ
- 拡張子
- ・ハイレゾとは

時間軸方向に一定間隔で区切る

時間軸方向に一定間隔で区切る

値を決定する

値を決定する

サンプリング周期・周波数

・サンプリング周期[s] 何秒間隔で区切るか

→ の長さ

・サンプリング周波数[Hz] 1秒にいくつ値をとるか

1秒あたりの ● の数

サンプリング (標本化)

時間軸方向の離散化

- ①時間軸方向に一定間隔で区切る
- ②値を決定する

サンプリングの注意点

- ・波形の急速な変化を再現 → 十分に細かくサンプリング
- 再生したい音の最高周波数成分の2倍以上の サンプリング周波数が必要(サンプリング定理)
 - 例1:最高周波数成分が**8000Hz** の音源
 - → サンプリング周波数は 16000Hz以上が必要
 - 例2: 人間が聞こえる周波数は高々**20000Hz**程度
 - →サンプリング周波数は 40000Hz以上が必要
- サンプリング周波数: 2 = ナイキスト周波数

休憩

小目次:オーディオデータの仕組み

- エンコード(符号化)
 - サンプリング(標本化)
 - 量子化
- デジタルオーディオのデータサイズ
- ダイナミックレンジ
- 拡張子
- ・ハイレゾとは

振幅軸方向を一定ステップ数で分割

振幅軸方向を一定ステップ数で分割

サンプリング値を近似

サンプリング値を近似

サンプリング値を近似

量子化ビット数

・量子化ビット数[bit]量子化のステップ数を決める値

N:ステップ数

Q:量子化ビット数

$$N = 2^Q$$

量子化

振幅方向の離散化

①振幅軸方向を一定ステップ数で分割

②サンプリング値を近似

量子化ビット数「大」

・量子化ビット数[bit] 量子化のステップ数を決める値

N:ステップ数

Q:量子化ビット数

$$N = 2^Q$$

量子化ビット数「小」

・量子化ビット数[bit]量子化のステップ数を決める値

N:ステップ数

Q:量子化ビット数

$$N = 2^Q$$

量子化ビット数

・量子化ビット数

大きい

再現性 :高い(精度が高い)

データ量:大きい

小さい

再現性 : 低い (精度が低い)

データ量:小さい

量子化雜音

• 小数点以下の切り捨てや四捨五入によって起こるまるめ誤差

4bit: $-8 \sim 7$

8bit: -128~127

16bit: -32768~32767

24bit: -8388608~8388607

量子化ビット数を変えて聞き比べ

量子化 ビット数	16ビット	12ビット	8ビット	4ビット	3ビット
音					

量子化ビット数が小さいほど雑音が大きい ⇒振幅の変動が捉えられない

例:2ビット量子化

値の範囲をはみ出したら 値が強制的に丸められる

小目次:オーディオデータの仕組み

- エンコード(符号化)
 - サンプリング (標本化)
 - 量子化
- ・デジタルオーディオのデータサイズ
- 拡張子
- ・ハイレゾとは

データサイズ

- ファイルサイズ[byte]= (量子化bit数×サンプリング周波数×ch数×秒数) ÷8
- 転送レート[bps]=量子化bit数×サンプリング周波数×ch数
- ※ch数=チャンネル数(ステレオは2, モノラルは1)

実際に計算してみる

条件

量子化bit数:16

サンプリング周波数:44100Hz

チャンネル数:ステレオ

時間:4分

実際に計算してみる

```
ファイルサイズ
{16[bit] x 44100[Hz] x 2[ch] x 4 x 60} / 8 ≒ 40.4 MB
転送レート
{16[bit] x 44100[Hz] x 2[ch] } ≒ 1.35 Mbps
```

小目次:オーディオデータの仕組み

- ・エンコード (符号化)
 - サンプリング (標本化)
 - 量子化
- デジタルオーディオのデータサイズ
- 拡張子
- ハイレゾとは

ハイレゾ

- CD-DAのサンプリングパラメータより解像度が高いオーディオ
- Hi(高い)+ Resolution(解像度、分解能)

• CD : 44.1kHz/16bit

• ハイレゾ:192kHz/24bit

• 情報量は約6.5倍

参考: https://www.sony.jp/high-resolution/about/

音楽向け圧縮形式[拡張子]

- WAV: 非圧縮[.wav]
 - 音質の劣化なく音楽データを保存
- MP3:非可逆圧縮[.mp3]
 - 人間に聞こえない周波数帯をカットし小さく圧縮
 - 一度圧縮すると元に戻せない
- FLAC:可逆圧縮[.flac]
 - 音情報を削ることなく圧縮、CDの1/5サイズで同等音質になる
 - wav → flac → wav といった変換が可能

参考: https://www.wondershare.jp/music-convert/flac-to-mp3.html

目次

- アナログとデジタル
- オーディオデータの仕組み
- デジタルの利点 (まとめ)

デジタルの利点(まとめ)

- コンピュータで扱える
- ・ 劣化しても復元可能=ノイズに強い
- 複製が容易になる