

BJT- Transistor de Junções Bipolar

ECM305 Sistemas Eletrônicos

Sergio Ribeiro Augusto

Objetivo

- Demonstrar o princípio de funcionamento do transistor de junções bipolar e aplicações como chave:
 - constituição física;
 - simbologia
 - curvas características;
 - modos de saturação e corte;
 - Transistor atuando como chave
 - Aplicações e exercícios

Estrutura Física e Simbologia

•O transistor bipolar de junção (TBJ) consiste de três regiões semicondutoras: região de emissor, região de base e região de coletor. Dependendo da dopagem da região podemos ter transistor tipo NPN ou PNP

Transistor npn

Transistor pnp

$$I_{B} \underbrace{\overset{(Emissor)}{\overset{E}{\downarrow}} I_{E}}_{(Base)} I_{E} = I_{C} + I_{B}$$

$$C \downarrow I_{C}$$

$$(Coletor)$$

Modos de Operação

Innação Dogo Colotor

O transistor consiste de duas junções PN, a junção base-emissor e base-coletor. Dependendo da condição de polarização (direta ou reversa) de cada junção, obtém-se diferentes modos de operação.

Modos de Operação

Mada

Modelo de Ebers and Moll (NPN)

MOUO	Junção Dase-Emissor	Junção Dase-Coletor
Corte	Polarização reversa	Polarização reversa
Ativo	Polarização direta	Polarização reversa
Saturação	Polarização direta	Polarização direta

Obs: modo ativo usado em amplificação. corte/saturação em aplicações de chaveamento e lógica

Innaça Daga Emiggan

Tensões e Correntes nos transistores NPN e PNP

Leis de Kirchhoff:

$$I_{E} = I_{C} + I_{B}$$

$$V_{CE} = V_{CB} + V_{BE} (NPN)$$

$$V_{FC} = V_{BC} + V_{FB} (PNP)$$

Correntes no TBJ NPN no Modo Ativo

- OBS: para PNP substituir v_{RF} por v_{FR}
- Corrente de Coletor
 - IC é praticamente a corrente do diodo polarizado diretamente em JBE

$$I_C = I_S e^{v_{BE}/V_T}$$
 $V_T \approx 25 \text{ mV (temperatura ambiente)}$

Corrente de Base

- I_B é uma parcela muito pequena de I_C (pouca recombinação e baixa dopagem)

$$I_B = \frac{I_C}{\beta} = \left(\frac{I_S}{\beta}\right) e^{\left(v_{BE}/V_T\right)}$$
 β típico é elevado (ex: 100 a 500)

Corrente de Emissor

$$I_{E} = I_{C} + I_{B} (I_{E} \approx I_{C})$$

$$I_{E} = \left(\frac{\beta + 1}{\beta}\right) I_{C} = \left(\frac{\beta + 1}{\beta}\right) I_{S} e^{\left(v_{BE}/V_{T}\right)} \qquad I_{E} = \frac{I_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right) e^{\left(v_{BE}/V_{T}\right)}$$

Correntes no TBJ Modo Ativo (cont.)

- β = ganho de corrente em Emissor-Comum ($\beta \approx h_{FE}$);
- α é definido como ganho de corrente em Base-Comum e vale ≈ 1 (0,9 a 0,998).

$$I_C = \alpha I_E$$

$$\alpha = \left(\frac{\beta}{\beta + 1}\right)$$

$$\beta = \left(\frac{\alpha}{\alpha - 1}\right)$$

Configurações básicas EC,BC,CC

Curvas Características Base Comum

Característica de Saída BC (NPN)

• Base é o terminal comum para entrada e saída. Todas as tensões são tomadas em relação à base.

Característica de entrada BC (NPN)

- Sinal é injetado entre emissor e base e retirado entre coletor e base.
- •Tensão emissor-base é a tensão de entrada e a tensão coletor-base é a tensão de saída (NPN).
- •A corrente de emissor é a corrente de entrada e a correnet de coletor é a tensão de saída.

Curvas Características Emissor Comum

- Esta configuração é a mais utilizada em circuitos transistorizados. Diversos parâmetros dos transistores fornecidos pelos manuais técnicos têm como referência a configuração de emissor comum.
- O terminal emissor é o ponto comum. Todas as tensões são tomadas em relação ao emissor.
- Sinal é injetado entre base e emissor e retirado entre coletor e emissor.
- •Tensão base-emissor é a tensão de entrada e a tensão coletor-emissor é a tensão de saída (NPN p/PNP V_{ER} e V_{EC}).
- •A corrente de base é a corrente de entrada e a corrente de coletor é a corrente de saída.
- $I_C = \beta I_B$ (Obs: característica de saída para vaolres de I_B maiores são mais inclinadas \rightarrow efeito Early)

Efeito Early

- As linha de IB na característica de saída em EC são mais inclinadas do que as de IE em base comum devido ao efeiro *Early*
- O efeito *Early* pode ser resumido da seguinte forma:
 - para um dado valor de V_{BE} , aumentando V_{CE} há um aumento na tensão reversa na junção coletor-base, aumentando o tamanho da região de depleção desta junção; em contraposição resulta em um aumento da corrente de saturação, proporcionalmente aumentando a corrente de coletor i_C .

Curvas Características EC (cont.)

- Analisando a característica $i_C \times V_{CE}$ para o transistor BJT podemos perceber que:
 - constitui-se de linhas retas com inclinação finita dependendo da tensão V_{BE} (e consequentemente da corrente I_{B}).

Curvas Características Coletor Comum

- •O terminal coletor é o ponto comum. Todas as tensões são tomadas em relação ao coletor.
- Sinal é injetado entre base e coletor e retirado no emissor.
- •Tensão coletor-base é a tensão de entrada e a tensão coletor-emissor é a tensão de saída (NPN).
- •A corrente de base é a corrente de entrada e a corrente de emissor é a corrente de saída.

Regiões de Funcionamento de um Transistor (Modos de Operação)

No funcionamento de um transistor distinguem-se 3 regiões:

REGIÃO ATIVA

- Um transistor encontra-se a funcionar na zona ativa se tiver a junção base-emissor (BE) diretamente polarizada e a junção base-coletor (BC) reversamente polarizada.
- Na região ativa pode-se considerar V_{BE} =0,7 V (cte-silício) e $I_C = \beta * I_B \ (I_C = h_{FE} * I_B)$

REGIÃO DE CORTE

• Caracteriza-se pela ausência de corrente de coletor $(I_C=0)$ e conseqüentemente $V_{CE}=V_{CC}$. Para tal é necessário fazer $I_B\cong 0$ (Obs: $V_{BE}<0.5$ V). Pode-se também definir transistor no corte quando ambas as juncões , base-coletor e base-emissor estiverem reversamente polarizadas.

REGIÃO DE SATURAÇÃO

- O transistor estará saturado quando ambas as junções, base-emissor e base-coletor, estiverem diretamente polarizadas.
- Para garantir a saturação é necessário que $I_C/I_B << \beta$, como β tem uma grande variação (entre mesmos transistores e temperatura), utiliza-se $I_C/I_B < \beta$ mínimo (ou valor mínimo de h_{FE} dado no manual). Ex: $I_B > I_C/\beta$ mínimo, $I_B = OF*I_C/\beta$ mínimo, onde OF é um fator de sobre-excitação ("overdrive"), usualmente na faixa de 2 a 10, e com $I_B < I_B$ máximo de manual)
- Na saturação e o valor da tensão base-emissor (V_{BE}) é tipicamente 0.8V e V_{CE} aproximadamente 0,2V (para transistores de silício)

Aplicações de cada Região

 Usa-se o transistor na região ativa para aplicações de amplificação e nas regiões de corte e saturação em circuitos digitais e chaveamento (liga/desliga).

Reta de carga (Ex: Emissor comum)

- Lugar geométrico de todos os pontos quiescentes possíveis para uma determinada polarização.
- Ponto quiescente ou de operação (Q): ponto em torno do qual o transistor funcionará. Escolhe-se um ponto na região ativa em aplicações de amplificação.

Usa-se a reta de carga para obtermos I_C e V_{CE} . Aplicando Kirchhoff para o circuito do coletor (malha de saída):

$$V_{CC} = R_C * I_C + VCE$$

$$I_C = -(1/R_C)*V_{CE} + V_{CC}/R_C \rightarrow \text{Reta de Carga}$$

Nesta equação existem duas incógnitas, I_C e V_{CE} . Usa-se o gráfico $I_C \times V_{CE}$ do transistor para obter a solução em função de I_B .

Extremos da reta de carga:

$$V_{CE} = 0 \rightarrow IC = V_{CC} / R_C$$

 $I_C = 0 \rightarrow V_{CE} = VCC$

A partir da reta de carga e definido uma corrente IB chega-se aos valores de I_C e V_{CE} .

Malha de entrada:

$$I_B = (V_{BB} - V_{BE})/R_B$$
 ($V_{BE} = 0.7V \rightarrow \text{região ativa}$)

Exemplo Polarização Simples EC na Região ativa

Objetivo: escolher o ponto Q de trabalho do transistor, ou seja, dados I_{CQ} e V_{CEQ} desejados, determinar R_B e R_C .

Malha de Saída:

$$R_C = \frac{V_{CC} - V_{CEQ}}{I_{CQ}}$$

Malha de Entrada:

$$R_C = \frac{V_{CC} - V_{CEQ}}{I_{CQ}} \qquad \qquad R_B = \frac{V_{BB} - V_{BE}}{I_{BQ}} \qquad \qquad I_{BQ} = \frac{I_{CQ}}{\beta}$$

$$I_{BQ} = \frac{I_{CQ}}{\beta}$$

Malha de Saída:

$$R_C = \frac{V_{CC} - V_{ECQ}}{I_{CQ}}$$

Malha de Entrada:

$$R_{C} = \frac{V_{CC} - V_{ECQ}}{I_{CQ}} \qquad R_{B} = \frac{V_{BB} - V_{EB}}{I_{BQ}} \qquad I_{BQ} = \frac{I_{CQ}}{\beta}$$

Obs: existem circuito melhores para polarização. Este depende fortemente de β que varia entre componentes do mesmo tipo e também com a temperatura, não sendo usado em projetos práticos.

Exemplo

No circuito da figura temos $V_{CC}=V_{BB}=15$ V. Considere o transistor com β nominal de 200. Determinar R_B e R_C para termos o ponto de polarização do transistor em $I_C=6$ mA e $V_{CE}=5,5$ V. Traçar a reta de carga.

Reta de Carga: $I_C = -(1/R_C)^* V_{CE} + V_{CC}/R_C$ $I_C = -(1/1583)^* V_{CE} + 15/1583$

Extremos

$$V_{CE} = 0 \rightarrow IC = V_{CC} / R_C = 15 \text{V} / 1583\Omega = 9,5 \text{ mA}$$

 $I_C = 0 \rightarrow V_{CE} = VCC = 15 \text{V}$

Circuito de Polarização Prático

- O circuito abaixo é bastante utilizado em polarização de BJT.
- Não é objetivo do nosso curso estudá-lo, mas deduzindo suas equações mostra-se que a corrente I_E pode ser feita insensível às variações de β e V_{BE} , projetando o circuito dadas as condições fornecidas.

$$I_E = \frac{V_{BB} - V_{BE}}{R_E + R_B/(\beta + 1)}$$

Para IE ser insensível às variações de β e VBE:

$$R_E \gg \frac{R_B}{\beta + 1}$$

$$V_{BB} \gg V_{BE}$$

Limites dos transistores - SOA

Figure 6. Maximum Rated Forward Bias Safe Operating Area

- I_{CM}: valor máximo que a corrente contínua do coletor pode atingir
- •PCmáx: valor máximo da potência média dissipada no coletor (PCmax = $V_{CE} * I_{C}$)
- •BVCBO: tensão de ruptura entre coletor e base quando o emissor está aberto
- BVCEO: tensão de ruptura entre coletor e emissor quando a base está aberta

BC546/547/548/549/550

Exemplo de Folha de Dados: BC547

BC546/547/548/549/550

Switching and Applications

- High Voltage: BC546, V_{CEO}=65V
- Low Noise: BC549, BC550
- Complement to BC556 ... BC560

1. Collector 2. Base 3. Emitter

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage : BC546	80	V
10000	: BC547/550	50	V
	: BC548/549	30	V
V _{CEO}	Collector-Emitter Voltage : BC546	65	V
	: BC547/550	45	V
	: BC548/549	30	V
V _{EBO}	Emitter-Base Voltage : BC546/547	6	V
,	: BC548/549/550	5	V
Ic	Collector Current (DC)	100	mA
Pc	Collector Power Dissipation	500	mW
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 1 50	°C

Exemplo de Folha de Dados: BC547

Electrical	Characteristics	T _a =25°C unless otherwise noted
------------	-----------------	---

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Ісво	Collector Cut-off Current	V _{CB} =30V, I _E =0			15	nA
h _{FE}	DC Current Gain	V _{CE} =5V, I _C =2mA	110		800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		90 200	250 600	mV mV
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		700 900		mV mV
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA V _{CE} =5V, I _C =10mA	580	660	700 720	mV mV
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=100MHz		300		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		3.5	6	pF
C _{ib}	Input Capacitance	V _{EB} =0.5V, I _C =0, f=1MHz		9		pF
NF	Noise Figure : BC546/547/548 : BC549/550 : BC549 : BC550	V_{CE} =5V, I_{C} =200 μ A f=1KHz, R_{G} =2K Ω V_{CE} =5V, I_{C} =200 μ A R_{G} =2K Ω , f=30~15000MHz		2 1.2 1.4 1.4	10 4 4 3	dB dB dB

h_{FE} Classification

Classification	Α	В	С
h _{FE}	110 ~ 220	200 ~ 450	420 ~ 800

Exemplo de Folha de Dados: BC547

CD Familie Semiconduster Corporation Service Corporation (CD Familie Semiconduster Corporation

Exemplos Encapsulamento

Transistor como Chave

Os dois modos extremos de operação (corte e saturação) são muito utilizados se o transistor é usado como chave, tais como em aplicações de lógica e acionamento liga-desliga de cargas.

Região de Corte

- Como dito anteriormente, o funcionamento na zona de corte (interruptor aberto) caracteriza-se pela ausência de corrente de coletor (IC =IE= 0) e consequentemente $V_{CE} = V_C = V_{CC}$.
- Para tal é necessário fazer $I_B \cong 0$ ($V_{BE} < 0.5 \text{V} \implies V_I < 0.5 \text{V}$ para transistores de silício).
- Comporta-se como uma chave aberta.

Região de Saturação

•No funcionamento na zona de saturação (interruptor fechado) temos uma tensão $V_{CE} = V_C$ praticamente nula ($\cong 0.2 \text{V}$ para transistores de Silício), $V_{BE} \cong 0.8 \text{V}$, sendo que a corrente de coletor I_C atinge a o seu valor máximo, limitado apenas pela resistência de coletor R_C ($I_C = V_{CC} / R_C$).

Modelo do transistor na saturação

$$v_{BE} = 0.8 v$$
 $v_{EB} = 0.8 v$
 $v_{EC_{sat}} = 0.2 v$
 $v_{EB} = 0.8 v$
 $v_{EC_{sat}} = 0.2 v$
 $v_{ED} = 0.8 v$
 $v_{EC_{sat}} = 0.2 v$
 $v_{ED} = 0.8 v$
 $v_{EC_{sat}} = 0.2 v$

Resumo Condições de Projeto

- Para garantirmos o corte, $I_B \cong 0 \ (V_{BE} < 0.5 \text{V} \rightarrow V_I < 0.5 \text{V})$ Para determinarmos $R_B \in R_C$ devemos, por exemplo, definir/escolher uma corrente de coletor deseiada quando o corrente de coletor de definir/escolher uma corrente de coletor desejada quando o transistor estiver no estado saturado, $I_{C(sat)}$. Então:

$$R_{c} = \frac{V_{cc} - V_{CE(sat)}}{I_{C(sat)}} \qquad V_{CE(sat)} = 0.2 \text{ V}$$

Calculamos I_B para garantirmos a saturação:

$$\frac{I_C}{I_B} < \beta_{min} = > \frac{I_C}{I_B} < h_{FE(min)} = > I_B > \frac{I_{C(sat)}}{h_{FE(min)}}$$
 (por exemplo $I_B = OF*I_{C(sat)} / h_{FE(min)}$) Onde OF é o fator de sobre-excitação

E determinamos R_B ($V_{BE(sat)} = 0.8 \text{ V}$):

$$R_B = \frac{V_I - V_{BE(sat)}}{I_B}$$

Obs: R_R seria o valor comercial igual ou menor a esse valor. Definido R_B , a corrente I_B final deve ser menor que a corrente máxima permitida para o componente escolhido ($I_R < I_R$ máximo)

Muitas vezes temos uma carga R_C já implícita no coletor (por exemplo um relé de tensão V_{CC}). Nessa caso, precisamos calcular apenas o valor de R_B que garanta a saturação para a corrente necessária para acionar tal carga.

Exemplo inversor

O inversor da figura deve ser projetado de modo que opere com transistores cujos valores de h_{FE} variem na faixa de 80 a 200 e tenha uma corrente de coletor quando saturado de 3,2mA . Determinar R_C e R_B que permitam tal funcionamento.

- Para $V_I = V_{LOW} = 0$ V, $I_B = 0$ ($V_{BE} < 0.5$ V) e $V_o = +5$ V (corte \rightarrow ok)
- Para $V_I = V_{HIGH} = 5$ V devemos ter o transistor saturado:

$$R_{C} = \frac{V_{CC} - V_{CE(sat)}}{I_{C(sat)}} \implies R_{C} = \frac{(5 - 0.2)V}{3.2 * 10^{-3}} = 1.5k\Omega$$

$$I_{B} > \frac{I_{C(sat)}}{h_{FE(min)}} \implies I_{B} > \frac{3.2 * 10^{-3}}{80} = 40\mu A \implies R_{B} < \frac{V_{I} - V_{BE(sat)}}{I_{B}} \implies R_{B} < \frac{(5 - 0.8)}{40 * 10^{-6}} \implies R_{B} < 105k\Omega$$

Considerando um fator de sobre-excitação, por exemplo, 10 para I_B temos:

$$R_B = \frac{(5-0.8)}{400*10^{-6}} = 10.5k\Omega$$
 $R_C = 1.5k\Omega$ e $R_B = 10.5k\Omega$

Exemplo Acionamento de um Led

• Um circuito integrado fornece na saída no máximo 5mA. Para acender um LED de alto brilho precisa-se de pelo menos 20mA. Para isso, usa-se um transistor para amplificar a corrente. A tensão de condução do LED é 2,2V. Quais os valores máximos que R_C e R_B deverão ter? Considere β variando na faixa de 100 a 500.

Resolução

- Quando o nível de tensão de saída do CI for OV, o transistor não conduz. Logo, a corrente no LED é zero e o LED não acende (corte →OK).
- Quando a voltagem é 5V, a corrente no LED (coletor) deve ser 20mA, com o transistor saturado ($V_{CE} = 0.2V$).

$$R_{c} = \frac{V_{CC} - V_{LED} - V_{CE(sat)}}{I_{C(sat)}} \Rightarrow R_{c} = \frac{(5 - 2, 2 - 0, 2)V}{20 * 10^{-3}A} = 130\Omega$$

Para valores acima de 130Ω a corrente seria menor que 20mA. Usaríamos um valor comercial de 120Ω

Considerando 20 mA no coletor
$$I_B > \frac{I_{C(sat)}}{h_{FE(min)}} \implies I_B > \frac{20*10^{-3}}{100} = 200\mu A \implies R_B < \frac{(5-0.8)}{200*10^{-6}}$$
 (usando o valor de R_C teórico): $R_B < 4k\Omega$

Exemplo Acionamento usando Transistor PNP

- Se $V_1 = 0 \Rightarrow$ Transistor saturado, portanto LED aceso;
- Se $V_I = V_{CC} \Rightarrow$ Transistor em corte, portanto LED apagado.

Exemplo de Aplicação

Acionamento de cargas com sinal PWM (exemplo: motor CC)

Características:

- sinal de entrada é digital (por exemplo, usando microcontrolador), com frequência fixa e alta e largura de pulso variável

Exemplo de Aplicação (cont.)

▶ Acionamento bidirecional de cargas com sinal PWM (Ponte H)

Características:

transistores como chave, máxima tensão no motor: próximo de 12 V

Transistores Darlington

São transistores especiais que apresentam um par de transistores em um mesmo dispositivo que funciona como um único transistor com um β extremamente alto (da ordem de 1000 a 20000).

Transistores Darlington

Analisando a figura temos:

$$I_{C1} = \beta_1 I_{B1}$$

$$I_{C2} = \beta_2 I_{B2}$$

•
$$I_{E1} = (\beta_1 + 1) I_{B1}$$

$$I_{E2} = (\beta_2 + 1) I_{B2}$$

- Como $I_{B2} = I_{E1}$, temos:
- $I_{C2} = \beta_2(\beta_1 + 1)I_{B1}$
- Logo:
- $I_{C} = I_{C1} + I_{C2} = (\beta_{1} + \beta_{2} * \beta_{1} + \beta_{2})I_{B1}$
- $I_C = (\beta_1 + 1)(\beta_2 + 1) I_{B1}$
- $Como I_{B1} = I_B e \beta_1 \beta_2 \gg 1$
- temos:

$$I_C = \beta_1 \beta_2 I_B \rightarrow I_C / I_B = \beta_{TOTAL} = \beta_{1*} \beta_2$$

Também: $V_{BE} = V_{be1} + V_{be2}$

Obtemos um elevado valor de β_{TOTAL}

Acopladores ou Isoladores Ópticos (Optoacopladores)

• Um acoplador óptico combina um dispositivo emissor de luz com um dispositivo sensível à luz em um único encapsulamento.

Acopladores ou Isoladores Ópticos (Optoacopladores)

- Exemplo de aplicações:
 - acoplamento óptico transmissão de sinais digitais com isolação galvânica.
 - sensores óticos para encoders;
 - sistemas de fim de curso em automação.

