One hot encoding and the Multinomial

EE-209 - Eléments de Statistiques pour les Data Sciences

One hot encoding

When working with a nominal or ordinal variable X taking values in $\{1,\ldots,K\}$, it is always more convenient in statistics and machine learning to work with its **indicator vector** representation often called **one hot encoding**:

$$Z = (Z_1, \dots, Z_K)$$
 with $Z_1 = 1_{\{X=1\}}, \dots, Z_K = 1_{\{X=K\}}.$

This called **one hot encoding** because Z_k takes values in $\{0,1\}$ and $Z_1 + \ldots + Z_K = 1$.

Example: For
$$X$$
 taking values in $\{1, \ldots, 4\}$ with $P_X(k) = \pi_k$.

$P_X(x)$	x	z
π_1	1	(1,0,0,0)
π_2	2	(0, 1, 0, 0)
π_3	3	(0,0,1,0)
π_4	4	(0,0,0,1)

Note that we have:

$$\mathbb{E}[Z_k] = \mathbb{P}(Z_k = 1) = \mathbb{P}(X = k) = \pi_k$$

Continuing with the same example on the next slide...

Ecounts from sampling a discrete r.v. and the Multinomial

Sampling n = 17 independent values from X:

x_i	$P_X(x_i)$	z_{i1}	z_{i2}	z_{i3}	z_{i4}
1	π_1	1	0	0	0
4	π_4	0	0	0	1
1	π_1	1	0	0	0
2	π_2	0	1	0	0
4	π_4	0	0	0	1
4	π_4	0	0	0	1
1	π_1	1	0	0	0
3	π_3	0	0	1	0
4	π_4	0	0	0	1
2	π_2	0	1	0	0
4	π_4	0	0	0	1
3	π_3	0	0	1	0
3	π_3	0	0	1	0
4	π_4	0	0	0	1
3	π_3	0	0	1	0
3	π_3	0	0	1	0
1	π_1	1	0	0	0
		n_1	n_2	n_3	n_4

-	71 T		Ů	Ü	Ŭ
		n_1	n_2	n_3	n_4
Cou	nts	4	2	5	6

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n P_X(x_i)$$
$$= \pi_1^{n_1} \pi_2^{n_2} \pi_3^{n_3} \pi_4^{n_4}$$

The probability of the observed sequence depends only on the counts, but...

$$\mathbb{P}(N_1 = n_1, \dots, N_4 = n_4) = \binom{n}{n_1, n_2, n_3, n_4} \pi_1^{n_1} \pi_2^{n_2} \pi_3^{n_3} \pi_4^{n_4}$$

with the multinomial coefficient

$$\binom{n}{n_1, n_2, n_3, n_4} := \frac{n!}{n_1! \, n_2! \, n_3! \, n_4!},$$

which counts the number of ways that a sequence of n numbers in $\{1,2,3,4\}$ in which 1,2,3 and 4 appears respectively exactly n_1,n_2,n_3,n_4 times.

Multinomial random variable

Multinomial pmf

A vector of discrete r.v. (N_1, \ldots, N_K) is said to follow jointly a multinomial distribution with parameters n and (π_1, \ldots, π_K) and we write $(N_1, \ldots, N_K) \sim \mathcal{M}(n, (\pi_1, \ldots, \pi_k))$ if $N_1 + \ldots + N_K = n$ and

$$\mathbb{P}(N_1 = n_1, \dots, N_K = n_K) = \binom{n}{n_1, \dots, n_K} \pi_1^{n_1} \dots \pi_K^{n_K},$$

with $\binom{n}{n_1} = \frac{n!}{n_1! n_{K!}}$, the multinomial coefficient.

Remark:

$$(N_1, N_2) \sim \mathcal{M}(n, (\pi_1, 1 - \pi_1)) \quad \Leftrightarrow \quad N_1 \sim \mathsf{Bin}(n, \pi_1).$$

U The "Multinoulli"?

What happens for $(N_1, \ldots, N_K) \sim \mathcal{M}(1, (\pi_1, \ldots, \pi_K))$?

- (N_1,\ldots,N_K) is a vector of counts such that $N_1+\ldots+N_k=1$ so it has to be an indicator vector !
- Moreover 1! = 0! = 1 so $\binom{n}{n_1, \dots, n_K} = 1$ for all possible values of n_1, \dots, n_K .
- So if $(Z_1,\ldots,Z_K)\sim \mathcal{M}(1,(\pi_1,\ldots,\pi_K)),$ then it is an indicator vector and

$$\boxed{\mathbb{P}(Z_1=z_1,\ldots,Z_K=z_k)=\pi_1^{z_1}\ldots\pi_K^{z_K}}$$

• The distribution of the indicator vector is therefore the counterpart of the Bernoulli and becomes the Bernoulli for K=2.

U The Bernoulli, the Binomial, the "Multinoulli" and the Multinomial

$Z \sim Ber(\pi)$	$(Z_1,\ldots,Z_K)\sim \mathcal{M}(1,\pi_1,\ldots,\pi_K)$
$P_Z(z) = \pi^z (1 - \pi)^{1 - z}$	$P_{oldsymbol{Z}}(oldsymbol{z}) = \pi_1^{z_1} \dots \pi_K^{z_K}$
$N_1 \sim Bin(n,\pi)$	$(N_1,\ldots,N_K)\sim \mathcal{M}(n,\pi_1,\ldots,\pi_K)$
$P_{N_1}(n_1) = \binom{n}{n_1} \pi^{n_1} (1 - \pi)^{n - n_1}$	$P_{\mathbf{N}}(\mathbf{n}) = \begin{pmatrix} n \\ n_1, \dots, n_K \end{pmatrix} \pi_1^{n_1} \dots \pi_K^{n_K}$

with

$$\binom{n}{i} = \frac{n!}{(n-i)!i!} \quad \text{and} \quad \binom{n}{n_1, \dots, n_K} = \frac{n!}{n_1! \dots n_K!}$$