Deep Learning CS577

IMAGE CLASSIFICATION WITH VISION TRANSFORMER

Mohammad Ausaf Ali Haqqani (A20516413)

Bhoomika Panduranga (A20503493)

Contents:

- Abstract
- Problem Statement
- Proposed Solution
- Implementation
- Results
- Conclusion
- Future work
- References

Abstract

TRANSFORMERS

NLP

COMPUTER VISION

CNN

Problem Statement

CNN Classifier << Pure Transformer

CNN Classifier << Pure Transformer

Proposed Solution

ViT

CIFAR100

Tokens ->Patches

Supervised Learning

IMPLEMENTATION

Transformer Architecture

ResNet101V2 Architecture

IMPLEMENTATION

Results

Resnet101v2- 30 epochs

Transformer – 30 epochs

Conclusion

Large Dataset

Laige Dataset

Scalable

Economical

TPU

Future work

- Pretrain on large datasets
- ViT Segmentation and detection
- Q Explore self supervised pre- training methods
- Further scaling

References

- [1].https://keras.io/examples/vision/image_classification_with_vision_transformer/
- [2]. https://arxiv.org/abs/2010.11929
- [3]. Bello, B. Zoph, Q. Le, A. Vaswani, and J. Shlens. Attention augmented convolutional networks. In ICCV, 2019.
- [4]. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pretraining of deep bidirectional transformers for language understanding. In NAACL, 2019.

Thank you