Aluno: André Santos Rocha Ra: 235887

Problema 1: D - Power of Matrix

Dada uma matriz quadrada M e um número inteiro n, queremos computar M elevado a n.

1.1 Ideia de solução

Para este problema, usaremos a exponenciação rápida de matrizes por uma estratégia de divisão e conquista. Para um n=0, devolvemos a matriz identidade. Para um n par, $A^n = A^{\frac{n}{2}} \times A^{\frac{n}{2}}$. Para um n ímpar, $A^n = A \times A^{\frac{n}{2}} \times A^{\frac{n}{2}}$. Assim, é possível obter o resultado esperado de uma forma otimizada.

1.2 Detalhes de implementação

Sabemos que a multiplicação de matrizes exige um algoritmo $O(m^3)$. Com isso, junto à exponenciação por divisão e conquista, alcançamos uma complexidade de $O(m^3 \log n)$.

Problema 2: F - XORinacci

Neste problema, queremos determinar o enésimo termo de uma sequência chamada XORinacci. Sabemos que f(0)=a, f(1)=b, $f(n)=f(n-1)\oplus f(n-2)$, onde \oplus é a operação bitwise XOR.

2.1 Ideia de solução

Para este problema, perceba que $f(2) = b \oplus a$, $f(3) = f(2) \oplus f(1) = b \oplus a \oplus b = a$, $f(4) = f(3) \oplus f(2) = a \oplus b \oplus a = b$, $f(5) = f(4) \oplus f(3) = a \oplus b$. Ora, como f(5) = f(2), f(4) = f(1), f(3) = f(0), teremos que $f(6) = f(2) \oplus f(1) = f(3) = f(0)$, e também que f(7) = f(1), f(8) = f(2). Dessa forma, percebemos que f(0), f(1) e f(2) seguirão sendo repetidos nessa sequência. Então para obter f(n), basta observar a qual elemento na sequência f(0), f(1) e f(2) ele corresponde e devolver seu valor.

2.2 Detalhes de implementação

Perceba que para descobrir o que devolver entre f(0), f(1) e f(2), podemos realizar a operação n%3 e devolver f(n%3), que será exatamente o resultado que procuramos.