Analysis of a GRTS Survey Design for a Linear Resource

Thomas Kincaid

September 20, 2013

Contents

1	Preliminaries	1
2	Read the survey design and analytical variables data file	2
3	Analysis of site status evaluation variables	5
4	Analysis of stream condition variables	8
5	Analysis of stream condition variables correcting for population size	10
6	Analysis of quantitative variables	12

1 Preliminaries

This document presents analysis of a GRTS survey design for a linear resource. The linear resource used in the analysis is streams in the Upper Wabash basin in Indiana. The analysis will include calculation of three types of population estimates: (1) estimation of proportion and size (length of streams) for site evaluation status categorical variables; (2) estimation of proportion and size for stream condition categorical variables; and (3) estimation of the cumulative distribution function (CDF) and percentiles for quantitative variables. Testing for difference between CDFs from subpopulations also will be presented.

The initial step is to use the library function to load the spsurvey package. After the package is loaded, a message is printed to the R console indicating that the spsurvey package was loaded successfully.

Load the spsurvey package

```
> # Load the spsurvey package
> library(spsurvey)
>
```

Version 2.5 of the spsurvey package was loaded successfully.

2 Read the survey design and analytical variables data file

The next step is to read the data file, which includes both survey design variables and analytical variables. The read delim function is used to read the tab-delimited file and assign it to a data frame named IN_streams. The nrow function is used to determine the number of rows in the IN_streams data frame, and the resulting value is assigned to an object named nr. Finally, the initial six lines and the final six lines in the IN_streams data frame are printed using the head and tail functions, respectively.

Read the survey design and analytical variables data file

```
> # Read the data file and determine the number of rows in the file
> IN_streams <- read.delim("IN_streams.tab")
> nr <- nrow(IN_streams)
>
```

Display the initial six lines in the data file.

> # Display the initial six lines in the data file
> head(IN_streams)

```
TNT
      siteID xcoord
                                      wgt Strahler_Cat
                                                                  Status
                        ycoord
1 INRB98-001 7574790 12556023 180.49965
                                                    1st Landowner_Denial Target
2 INRB98-002 7490591 12580092 180.49965
                                                                 Sampled Target
                                                    1st
3 INRB98-003 7500191 12545177
                                                                 Sampled Target
                                57.70535
                                                    2nd
4 INRB98-004 7543103 12557747
                                 26.40031
                                                    4th Landowner_Denial Target
5 INRB98-005 7459317 12689535
                                 29.59298
                                                    3rd
                                                                 Sampled Target
6 INRB98-006 7515604 12649037
                                57.70535
                                                    2nd Physical_Barrier Target
  IBI_Score
              IBI_Status QHEI_Score
                                       QHEI_Status
                     <NA>
1
         NA
                                   NA
                                              <NA>
2
         50 Not_Impaired
                                   48
                                          Impaired
3
         22
                 Impaired
                                   65 Not_Impaired
4
         NA
                     <NA>
                                   NA
                                              <NA>
5
         38 Not_Impaired
                                   31
                                          Impaired
6
                     <NA>
                                   NA
                                              <NA>
         NA
```

>

>

Display the final six lines in the data file.

```
> # Display the final six lines in the data file
> tail(IN_streams)
```

	siteID	xcoord	ycoord		wgt	Strah]	Ler_Cat		Status
95	INRB98-095	7503526	12628573	57.7	70535		2nd	Landow	ner_Denial
96	INRB98-096	7496050	12662272	180.4	19965		1st		NonTarget
97	INRB98-097	7483750	12664829	29.5	59298		3rd	Chem	istry_Only
98	INRB98-098	7496653	12634435	180.4	19965		1st		NonTarget
99	INRB98-099	7443579	12609765	26.4	10031		4th		Sampled
100	INRB98-100	7445529	12651391	26.4	10031		4th	Chem	istry_Only
	TNT	IBI_Score	: IBI_St	tatus	QHEI_	Score	QHEI_S	Status	
95	Target	NA	L	<na></na>		NA		<na></na>	
96	NonTarget	NA	L	<na></na>		NA		<na></na>	
97	Target	NA	L	<na></na>		NA		<na></na>	
98	NonTarget	NA	L	<na></na>		NA		<na></na>	
99	Target	48	Not_Impa	aired		78	Not_Imp	paired	
100	Target	NA	L	<na></na>		NA		<na></na>	

The sample of streams in Indiana is displayed in Figure 1. The sample sites for each Strahler order are displayed using a unique color. First, the levels function is used to extract the set of unique Strahler order values, and the result is assigned to object strahler. Next, the rainbow function is called to select a set of four colors, and the result is assigned to object cols. The plot function is then used to produce the basic figure, but plotting of sample points is suppressed. The for function is used to loop through the set of four unique Strahler order values and plot the color-coded points for each Strahler order using the points function. Finally, the legend function is used to add a legend to the figure, and the title function is used to create a figure title.

Plot of Indiana Stream Sites Color-Coded by Strahler Order

Figure 1: Indiana Stream Sample Sites.

3 Analysis of site status evaluation variables

The first analysis that will be examined is calculation of extent estimates for site status evaluation variables. Extent is measured both by the proportion of the resource in status evaluation categories and by size of the resource in each category. For a linear resource like streams, size refers to the length of streams in a category. For calculating extent estimates (and for all of the analyses we will consider), the survey design weights are incorporated into the calculation process. Two site status variables will be examined: (1) status, which classifies streams into seven evaluation categories and (2) TNT, which classifies streams as either "Target" or "NonTarget". The table and addmargins functions are used to create tables displaying the count for each code (level) of the two status variables.

> addmargins(table(IN_streams\$Status))

A table displaying the number of values for each level of the status variable follows:

Physical_Barrier	${\tt NonTarget}$	Landowner_Denial	Chemistry_Only
7	9	19	14
Sum	Unknown	Target_Not_Sampled	Sampled
100	1	2	48

> addmargins(table(IN_streams\$TNT))

A table displaying the number of values for each level of the TNT variable follows:

NonTarget	Target	Sum
10	90	100

The cat.analysis function in the spsurvey package will be used to calculate extent estimates. Four data frames constitute the primary input to the cat.analysis function. The first column (variable) in the four data frames provides the unique identifier (site ID) for each sample site and is used to connect records among the data frames. The siteID variable in the IN_streams data frame is assigned to the siteID variable in the data frames. The four data frames that will be created are named as follows: sites, subpop, design, and data.cat. The sites data frame identifies sites to use in the analysis and contains two variables: (1) siteID - site ID values and (2) Use - a logical vector indicating which sites to use in the analysis. The rep (repeat) function is used to assign the value TRUE to each element of the Use variable. Recall that nr is an object containing the number of rows in the IN_streams data frame. The subpop data frame defines populations and, optionally, subpopulations for which estimates are desired. Unlike the sites and design data frames, the subpop data frame can contain

an arbitrary number of columns. The first variable in the subpop data frame identifies site ID values and each subsequent variable identifies a type of population, where the variable name is used to identify type. A type variable identifies each site with a character value. If the number of unique values for a type variable is greater than one, then the set of values represent subpopulations of that type. When a type variable consists of a single unique value, then the type does not contain subpopulations. For this analysis, the subpop data frame contains three variables: (1) siteID - site ID values, (2) Upper_Wabash - which will be used to calculate estimates for all of the sample sites combined, and (3) Strahler_Order - which will be used to calculate estimates for each Strahler order individually. The Strahler_order variable in the IN_streams data frame is assigned to the Strahler_Order variable in the subpop data frame. The design data frame consists of survey design variables. For the analysis under consideration, the design data frame contains the following variables: (1) siteID - site ID values; (2) wgt - final, adjusted, survey design weights; (3) xcoord - x-coordinates for location; and (4) ycoord - y-coordinates for location. The wgt, xcoord, and ycoord variables in the design data frame are assigned values using variables with the same names in the IN_streams data frame. Like the subpop data frame, the data cat data frame can contain an arbitrary number of columns. The first variable in the data.cat data frame identifies site ID values and each subsequent variable identifies a response variable. The two response variables are Status and Target_NonTarget, which are assigned the status and TNT variables, respectively, in the IN_streams data frame. Missing data (NA) is allowed for the response variables, which are the only variables in the input data frames for which NA values are allowed.

Create the sites data frame.

+

> data.cat <- data.frame(siteID=IN_streams\$siteID,</pre>

Target_NonTarget=IN_streams\$TNT)

Status=IN_streams\$Status,

Use the cat.analysis function to calculate extent estimates for the site status evaluation variables.

```
> # Calculate extent estimates for the site status evaluation variables
> Extent_Estimates <- cat.analysis(sites, subpop, design, data.cat)
>
```

The extent estimates for all basins combined are displayed using the print function. The object produced by cat. analysis is a data frame containing thirteen columns. The first five columns identify the population (Type), subpopulation (Subpopulation), response variable (Indicator), levels of the response variable (Category), and number of values in a category (NResp). A category labeled "Total" is included for each combination of population, subpopulation, and response variable. The next four columns in the data frame provide results for the proportion estimates: the proportion estimate (Estimate.P), standard error of the estimate (StdError.P), lower confidence bound (LCB95Pct.P), and upper confidence bound (UCB95Pct.P). Argument conf for cat.analysis allows control of the confidence bound level. The default value for conf is 95, hence the column names for confidence bounds contain the value 95. Supplying a different value to the conf argument will be reflected in the confidence bound names. Confidence bounds are obtained using the standard error and the Normal distribution multiplier corresponding to the confidence level. The final four columns in the data frame provide results for the size (units) estimates: the units estimate (Estimate.U), standard error of the estimate (StdError.U), lower confidence bound (LCB95Pct.U), and upper confidence bound (UCB95Pct.U).

> # Print the extent estimates for all basins combined > print(Extent_Estimates[c(1:8, 32:34),])

	Type Subpopulation		Indicator		Categor	/ NResp
1	Upper_Wabash	Upper Wabash		Status	Chemistry_Onl;	7 14
2	Upper_Wabash	Upper Wabash		Status	Landowner_Denia	L 19
3	Upper_Wabash	Upper Wabash		Status	NonTarge	5 9
4	Upper_Wabash	Upper Wabash		Status	Physical_Barrie	7
5	Upper_Wabash	Upper Wabash		Status	Sample	d 48
6	Upper_Wabash	Upper Wabash		Status 7	Target_Not_Sample	d 2
7	Upper_Wabash	Upper Wabash		Status	Unknow	1
8	Upper_Wabash	Upper Wabash		Status	Tota	L 100
32	Upper_Wabash	Upper Wabash	Target_N	onTarget	NonTarge	10
33	Upper_Wabash	Upper Wabash	Target_N	onTarget	Targe	90
34	Upper_Wabash	Upper Wabash	Target_N	onTarget	Tota	L 100
	Estimate.P S	StdError.P LC	B95Pct.P	UCB95Pct	.P Estimate.U Std	Error.U
1	6.5597397	1.6598843	.3064261	9.813053	32 482.67548 11	0.03523
2	17.8769326	3.7404140 10	.5458559	25.208009	92 1315.41150 28	5.35722
3	22.0775177	5.0281966 12	. 2224335	31.93260	19 1624.49685 42	3.20639
4	5.5434713	2.4060864	.8276286	10.259314	40 407.89693 17	9.10621

```
5
    46.4405214 5.0106571
                           36.6198139
                                        56.2612289 3417.16319
                                                               427.23184
6
     1.1430273
                0.7450965
                            0.000000
                                         2.6033896
                                                     84.10566
                                                                 54.27639
7
     0.3587901
                0.2951899
                            0.0000000
                                                     26.40031
                                         0.9373516
                                                                 21.63337
   100.0000000
                0.0000000 100.0000000 100.0000000 7358.14992
                                                                536.14393
32
   22.4363077
                5.0285302
                           12.5805696
                                        32.2920459 1650.89716
                                                                423.75896
   77.5636923
                5.0285302
                           67.7079541
                                        87.4194304 5707.25276
                                                                460.82638
34 100.0000000 0.0000000 100.0000000 100.0000000 7358.14992
                                                               536.14393
   LCB95Pct.U UCB95Pct.U
1
    267.01038 698.34058
2
    756.12163 1874.70137
3
    795.02756 2453.96614
4
     56.85522 758.93864
5
  2579.80417 4254.52221
6
      0.00000
               190.48543
7
      0.00000
                68.80094
  6307.32713 8408.97271
   820.34487 2481.44945
33 4804.04965 6610.45587
34 6307.32713 8408.97271
>
```

The write.csv function is used to store the extent estimates as a comma-separated value (csv) file. Files in csv format can be read by programs such as Microsoft Excel.

```
> write.csv(Extent_Estimates, file="Extent_Estimates.csv", sep=",",
+ row.names=FALSE)
```

4 Analysis of stream condition variables

The second analysis that will be examined is estimating resource proportion and size for stream condition variables. Two stream condition variables will be examined: (1) IBL_Status, which classifies streams by IBI (index of biotic integrity) status categories and (2) QHEL_Status, which classifies streams by QHEI (qualitative habitat evaluation index) status categories. The table and addmargins functions are used to create tables displaying the count for each level of the two stream condition variables.

```
> addmargins(table(IN_streams$IBI_Status))
```

A table displaying the number of values for each level of the IBI status variable follows:

```
Impaired Not_Impaired Sum
12 36 48
```

> addmargins(table(IN_streams\$QHEI_Status))

A table displaying the number of values for each level of the QHEI status variable follows:

Impaired	Not_Impaired	Sum
14	34	48

As for extent estimates, the cat.analysis function will be used to calculate condition estimates. The sites data frame for this analysis differs from the one used to calculate extent estimates. The Use logical variables in sites is set equal to the value "Sampled", so that only sampled sites are used in the analysis. The subpop and design data frames created in the prior analysis can be reused for this analysis. The data.cat data frame contains the two stream condition variables: IBL_Status and QHEL_Status. Variables IBL_Status and QHEL_Status in the IN_streams data frame are assigned to IBL_Status and QHEL_Status, respectively.

Create the sites data frame.

Create the data.cat data frame.

Use the cat.analysis function to calculate estimates for the stream condition variables.

```
> # Calculate estimates for the categorical variables
> Condition_Estimates <- cat.analysis(sites, subpop, design, data.cat)
>
```

Print the stream condition estimates for all sites combined.

```
> # Print the condition estimates for all basins combined
> print(Condition_Estimates[c(1:3, 16:18),])
```

```
Type Subpopulation
                                  Indicator
                                                 Category NResp Estimate.P
  Upper_Wabash
                 Upper Wabash
                                IBI_Status
                                                 Impaired
                                                             12
                                                                   27.66052
2
                                                                   72.33948
  Upper_Wabash
                 Upper Wabash
                                IBI_Status Not_Impaired
                                                             36
3
  Upper_Wabash
                 Upper Wabash
                                IBI_Status
                                                    Total
                                                             48
                                                                  100.00000
                                                                   40.90216
16 Upper_Wabash
                 Upper Wabash QHEI_Status
                                                 Impaired
                                                             14
17 Upper_Wabash
                 Upper Wabash QHEI_Status Not_Impaired
                                                             34
                                                                   59.09784
                                                             48
18 Upper_Wabash
                 Upper Wabash QHEI_Status
                                                    Total
                                                                  100.00000
   StdError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U LCB95Pct.U UCB95Pct.U
1
     6.611920
                 14.70139
                            40.61964
                                         945.205
                                                    247.3122
                                                                460.4819
                                                                           1429.928
2
     6.611920
                 59.38036
                            85.29861
                                        2471.958
                                                    345.9131
                                                              1793.9811
                                                                           3149.935
3
     0.000000
                100.00000
                           100.00000
                                        3417.163
                                                    362.5003
                                                              2706.6756
                                                                           4127.651
16
     8.383366
                24.47106
                            57.33325
                                        1397.694
                                                    357.9031
                                                                696.2163
                                                                           2099.171
17
     8.383366
                 42.66675
                            75.52894
                                        2019.470
                                                                           2617.891
                                                    305.3225
                                                              1421.0486
18
     0.000000
                100.00000
                           100.00000
                                        3417.163
                                                    362.5003
                                                              2706.6756
                                                                           4127.651
```

Use the write.csv function to write the condition estimates as a csv file.

>

> write.csv(Condition_Estimates, file="Condition_Estimates.csv")

5 Analysis of stream condition variables correcting for population size

The frame is a data structure containing spatial location data in addition to other attributes regarding a resource of interest and is used to create a survey design. A frame often takes the form of a shapefile. The frame can be used to obtain size values (e.g., length of streams) for the populations and subpopulations examined in an analysis. Examination of the Estimates. U column in the Condition_Estimates data frame produced by cat.analysis reveals that the estimated Total value for both condition variables and each combination of population value and subpopulation value does not sum to the corresponding frame size value. For example, the Total entry in the Estimate. U column for the IBL status variable, population "Upper_Wabash" and subpopulation "Upper Wabash" is 3,417 kilometers (rounded to a whole number). The corresponding frame size value is 7,358 kilometers. The population size) argument to cat. analysis provides a mechanism for forcing the Total category to equal a desired value. First, the c (combine) function is used to create a named vector of frame size values for each basin. Output from the c function is assigned to an object named framesize. The popsize argument is a list, which is a particular type of R object. The popsize list must include an entry for each population type included in the subpop data frame, i.e., Upper_Wabash and Strahler_Order for this analysis. The sum function applied to framesize is assigned to the Upper_Wabash entry in the popsize list. Recall that the Strahler order population type contains subpopulations, i.e., Strahler order categories. When a population

type contains subpopulations, the entry in the popsize list also is a list. The as.list function is applied to framesize, and the result is assigned to the Strahler_Order entry in the popsize list.

Assign frame size values.

```
> framesize < c("1"=4514.450, "2"=1443.260, "3"=740.146, "4"=660.294)
```

Use the cat.analysis function to calculate estimates for the stream condition variables.

- > Condition_Estimates_popsize <- cat.analysis(sites, subpop, design, data.cat,
- + popsize=list(Upper_Wabash=sum(framesize),
- + Strahler_Order=as.list(framesize)))

Print the stream condition estimates for all sites combined.

- > # Print the stream condition estimates for all sites combined
- > print(Condition_Estimates_popsize[c(1:3, 16:18),])

	Туре	Subpopulation	Indic	cator	Category	NResp	Estimate	e.P
1	Upper_Wabash	Upper Wabash	. IBI_St	atus	Impaired	12	27.660)52
2	Upper_Wabash	Upper Wabash	. IBI_St	atus Not_	Impaired	36	72.339	948
3	Upper_Wabash	Upper Wabash	. IBI_St	atus	Total	48	100.000	000
16	Upper_Wabash	Upper Wabash	QHEI_St	atus	Impaired	14	40.902	216
17	Upper_Wabash	Upper Wabash	QHEI_St	atus Not_	Impaired	34	59.097	784
18	Upper_Wabash	Upper Wabash	QHEI_St	atus	Total	48	100.000	000
	StdError.P LO	CB95Pct.P UCB9	5Pct.P E	Estimate.U	StdError	.U LCI	B95Pct.U	UCB95Pct.U
1	6.611920	14.70139 40	.61964	2035.302	486.51	.50	1081.750	2988.854
2	6.611920	59.38036 85	.29861	5322.848	486.51	.50 4	1369.296	6276.400
3	NA	NA	NA	7358.150)	NA	NA	NA
16	8.383366	24.47106 57	.33325	3009.642	616.86	507	1800.618	4218.667
17	8.383366	42.66675 75	.52894	4348.508	616.86	507 3	3139.483	5557.532
18	NA	NA	NA	7358.150)	NA	NA	NA

>

Use the write.csv function to write the condition estimates as a csv file.

> write.csv(Condition_Estimates_popsize, file="Condition_Estimates_popsize.csv")

6 Analysis of quantitative variables

The third analysis that will be examined is estimating the CDF and percentiles for quantitative variables. Two quantitative variables will be examined: (1) IBL_Score - IBI score and (2) QHEL_Score - QHEI score. The summary function is used to summarize the data structure of the two quantitative variables.

```
> summary(IN_streams$IBI_Score)
```

Summarize the data structure of the IBI score variable:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 31.50 36.00 36.12 42.00 54.00 52
```

> summary(IN_streams\$QHEI_Score)

Summarize the data structure of the QHEI score variable:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 25.00 47.75 60.00 59.65 71.25 87.00 52
```

The cont.analysis function will be used to calculate estimates for quantitative variables. Input to the cont.analysis function is the same as input for the cat.analysis function except that the data frame containing response variables is named cont.data rather than cat.data. The sites, subpop, and design data frames created in the analysis of stream condition variables can be reused for this analysis. The data.cont data frome contains the two quantitative variables: IBL_Score and QHEL_Score, which contain the numeric scores for the IBI and QHEI variables, respectively. Variables IBL_Score and QHEL_Score in the IN_streams data frame are assigned to IBL_Score and QHEL_Score, respectively. The popsize argument is included in the call to cont.analysis.

Create the data.cont data frame.

Use the cont.analysis function to calculate CDF and percentile estimates for the quantitative variables.

```
> CDF_Estimates <- cont.analysis(sites, subpop, design, data.cont,
+ popsize=list(Upper_Wabash=sum(framesize),
+ Strahler_Order=as.list(framesize)))</pre>
```

The object produced by cont.analysis is a list containing two objects: (1) CDF, a data frame containing the CDF estimates and (2) Pct, a data frame containing percentile estimates plus estimates of population values for mean, variance, and standard deviation. Format for the CDF data frame is analogous to the data frame produced by cat.analysis. For the CDF data frame, however, the fourth column is labeled Value and contains the value at which the CDF was evaluated. Unlike the data frames produced by the other analysis functions we have examined, the Pct data frame contains only nine columns since there is a single set of estimates rather than two sets of estimates. In addition, the fourth column is labeled Statistic and identifies either a percentile or the mean, variance, or standard deviation. Finally, since percentile estimates are obtained by inverting the CDF estimate, the percentile estimates do not have a standard error value associated with them.

Use the write.csv function to write the CDF estimates as a csv file.

```
> write.csv(CDF_Estimates$CDF, file="CDF_Estimates.csv")
```

The cont.cdfplot function in spsurvey can be used to produce a PDF file containing plots of the CDF estimates. The primary arguments to cont.cdfplot are a character string containing a name for the PDF file and the CDF data frame in the CDF_Estimates object.

Produce a PDF file containing plots of the CDF estimates.

```
> cont.cdfplot("CDF_Estimates.pdf", CDF_Estimates$CDF)
>
```

Print the percentile estimates for IBI score for all sites combined.

> # Print the percentile estimates for IBI score for all sites combined
> print(CDF_Estimates\$Pct[1:10,])

```
Type Subpopulation Indicator
                                              Statistic NResp
                                                                Estimate
   Upper_Wabash
1
                 Upper Wabash IBI_Score
                                                   5Pct
                                                             1
                                                                 0.00000
2
   Upper_Wabash
                 Upper Wabash IBI_Score
                                                  10Pct
                                                             2
                                                                23.39923
3
  Upper_Wabash
                 Upper Wabash IBI_Score
                                                  25Pct
                                                                28.73106
4
  Upper_Wabash
                 Upper Wabash IBI_Score
                                                  50Pct
                                                            23
                                                                34.24697
5
  Upper_Wabash
                 Upper Wabash IBI_Score
                                                  75Pct
                                                            31
                                                                39.58683
6
  Upper_Wabash
                 Upper Wabash IBI_Score
                                                  90Pct
                                                            41
                                                                44.24131
7
  Upper_Wabash
                 Upper Wabash IBI_Score
                                                  95Pct
                                                            44
                                                                48.88966
  Upper_Wabash
                 Upper Wabash IBI_Score
                                                                34.19264
8
                                                   Mean
                                                            48
   Upper_Wabash
                 Upper Wabash IBI_Score
                                               Variance
                                                            48 112.13090
10 Upper_Wabash
                 Upper Wabash IBI_Score Std. Deviation
                                                                10.58919
                                                            48
           StdError LCB95Pct UCB95Pct
                     0.000000
1
                               24.63962
2
                     0.000000 26.64929
```

```
3
                     24.221557
                                32.17595
4
                     31.384275
                                37.06088
5
                     35.911571
                                43.88564
6
                     40.800963
                                51.47035
7
                     41.691545
                                54.00000
    1.7410238506777 30.780300
8
                                37.60499
9
  45.0419816500115 23.850234 200.41156
10 2.12679116946548 6.420754
                                14.75762
>
```

Use the write.csv function to write the percentile estimates as a csv file.

```
> write.csv(CDF_Estimates$Pct, file="Percentile_Estimates.csv")
```

The cont.cdftest function in spsurvey can be used to test for statistical difference between the CDFs from subpopulations. For this analysis we will test for statistical difference between the CDFs for the four Strahler order categories. The cont.cdftest function will test all possible pairs of Strahler order categories. Arguments to cont.cdftest are the same as arguments to cont.analysis. Since we are interested only in testing among Strahler order categories, the subpop data frame is subsetted to include only the siteID and Strahler_Order variables. Note that the popsize argument was modified from prior examples to include only the entry for Strahler_Order.

```
> CDF_Tests <- cont.cdftest(sites, subpop[,c(1,3)], design, data.cont,
+ popsize=list(Strahler_Order=as.list(framesize)))</pre>
```

During execution of the program, a warning message was generated. The warning message is stored in a data frame named 'warn.df'. Enter the following command to view the warning message: warnprnt()

The print function is used to display results for IBI score of the statistical tests for difference between CDFs for Strahler order categories. The object produced by cont.cdftest is a data frame containing eight columns. The first column (Type) identifies the population. The second and third columns (Subpopulation_1 and Subpopulation_2) identify the subpopulations. The fourth column (Indicator) identifies the response variable. Column five contains values of the test statistic. Six test statistics are available, and the default statistic is an F-distribution version of the Wald statistic, which is identified in the data frame as "Wald-F". The default statistic is used in this analysis. For further information about the test statistics see the help file for the cdf.test function in spsurvey, which includes a reference for the test for differences in CDFs. Columns six and seven (Degrees_of_Freedom_1 and Degrees_of_Freedom_2) provide the numerator and denominator degrees of freedom for the Wald test. The final column (p_Value) provides the p-value for the test.

```
> # Print results of the statistical tests for difference between CDFs from
```

> print(CDF_Tests, digits=2)

	Type	Subpoi	oulation_1	Subpopulati	ion_2	Indicator	Wald_F
1	Strahler_Order		 1st	1 1	2nd		
2	Strahler_Order		1st		3rd	IBI_Score	0.314
3	Strahler_Order		1st		4th	IBI_Score	3.535
4	Strahler_Order		2nd		3rd	IBI_Score	0.065
5	Strahler_Order		2nd		4th	IBI_Score	3.554
6	Strahler_Order		3rd		4th	IBI_Score	2.670
7	Strahler_Order		1st		2nd	QHEI_Score	0.989
8	Strahler_Order		1st		3rd	QHEI_Score	1.633
9	Strahler_Order		1st		4th	QHEI_Score	5.631
10	Strahler_Order		2nd		3rd	QHEI_Score	0.406
11	Strahler_Order		2nd		4th	QHEI_Score	3.510
12	${\tt Strahler_Order}$		3rd		4th	QHEI_Score	1.968
	Degrees_of_Free	edom_1	Degrees_o	f_Freedom_2	p_Val	lue	
1		2		21	0.	709	
2		2		23	0.	733	
3		2		17	0.0	052	
4		2		25	0.9	938	
5		2		19	0.0	049	
6		2		21	0.0	093	
7		2		21	0.3	389	
8		2		23	0.3	217	
9		2		17	0.0	013	
10		2		25	0.6	671	
11		2		19	0.0	050	
12		2		21	0.3	165	

Use the write.csv function to write CDF test results as a csv file.

```
> # Write CDF test results as a csv file
> write.csv(CDF_Tests, file="CDF_Tests.csv")
\
```

>

> # Strahler order categories for IBI score