CS 470 Deep Learning Practice Day 5

Yechan Hwang yemintmint@kaist.ac.kr

Motivation

Let's say that we want to deal with sequential data such as speech, text, audio or video

DNA sequence data

Temporal sequence

Audio data

Motivation

- Let's say that we want to deal with sequential data such as speech, text, audio or video
- Our model should be able to
 - (1) process data of arbitrary length

DNA sequence data

Temporal sequence

Audio data

Motivation

- Let's say that we want to deal with sequential data such as speech, text, audio or video
- Our model should be able to
 - (1) process data of arbitrary length
 - (2) interpret the meaning contained in the order of data

DNA sequence data

Temporal sequence

Audio data

• Option 1 : MLP

- Option 1 : MLP
- What if we change the sequence length?

- Option 1 : MLP
- What if we change the sequence length?
 - We cannot reuse the same network for handling sequences in different length
 - It is because the network parameter fixes the length of the sequences

- Option 2 : CNN
- What if we change the sequence length?
 - We can reuse the same network by sliding convolution filters over the sequence.

- Option 2 : CNN
- What if we change the sequence length?
 - We can reuse the same network by sliding convolution filters over the sequence.

Cell 1	Cell 2	Cell 3
--------	--------	--------

Word 1 Word 2	Word 3	Word 4	Word 5
---------------	--------	--------	--------

- Option 2 : CNN
- What if we change the sequence length?
 - We can reuse the same network by sliding convolution filters over the sequence.

- Option 2 : CNN
- What if we change the sequence length?
 - We can reuse the same network by sliding convolution filters over the sequence.

Cell 1	Cell 2	Cell 3
--------	--------	--------

Word 1	Word 2	Word 3	Word 4	Word 5
--------	--------	--------	--------	--------

- Option 2 : CNN
- What if we change the sequence length?
 - We can reuse the same network by sliding convolution filters over the sequence.

Cell 1	Cell 2	Cell 3
--------	--------	--------

Word 1 Word 2 Word 3	Word 4	Word 5	Word 6	Word 7
----------------------	--------	--------	--------	--------

- Option 2 : CNN
- What if we change the sequence length?
 - We can reuse the same network by sliding convolution filters over the sequence.
- Problems?
 - The hidden representation grows with the length of the sequence.
 - The receptive field is fixed. (More critical!)

- Suitable for sequence data with important temporal dynamics
 - It can handle arbitrary input length and consider the order of time units
- It can remember its input by using its internal memory
 - The current output result is affected by the result of the previous time step

One to many

Many to one

Many to many

- One to many model
- Example : Generating sentence that explains the input image

- Many to one model
- Example : Sentence sentiment analysis

- Many to many model
- Example : Translating sentences

- Many to many model
- Example : Translating sentences
- Don't have to make output every time

How to calculate the hidden state of RNNs

$$h_t = f_W(h_{t-1}, x_t)$$

How to calculate the hidden state of RNNs

Weights for RNN

• Let's assume that some hidden state has a large node value at early time step and we use ReLU as an activation function.

- Let's assume that some hidden state has a large node value at early time step and we use ReLU as an activation function.
- Then at the next time step, this large value is again multiplied by W_{hh} and can output larger value.

- Let's assume that some hidden state has a large node value at early time step and we use ReLU as an activation function.
- Then at the next time step, this large value is again multiplied by W_{hh} and can output larger value.

- Let's assume that some hidden state has a large node value at early time step and we use ReLU as an activation function.
- Then at the next time step, this large value is again multiplied by W_{hh} and can output larger value.
- Therefore, if we use ReLU in RNN, activation value can explode (use tanh or sigmoid instead).

Training RNN

- RNNs forward through entire sequence to compute loss at each time step's output, then backward through entire sequence to compute gradient
- When training RNN, backpropagation through time is used
 - Passes the error gradient with respect to the weights at each time step into every previous time step

Total loss $L = \sum L_t$

Backpropagation through time (BPTT)

BPTT computes derivative of the error w.r.t the weights at every time step

Backpropagation through time (BPTT)

BPTT computes derivative of the error w.r.t the weights at every time step

Vanishing Gradient Problem

- The hidden-to-hidden connections in standard RNN can cause gradient vanishing during backprop
- Vanishing gradient is the problem that the gradient value gets small as the time step accumulates.
- This happens because small gradient values (e.g. between 0 and 1 with sigmoid) are multiplied repeatedly

$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k}^{t-1} \frac{\partial h_{j+1}}{\partial h_j}$$

The girl is sitting on the chair and, ..., drinking juice with _____ mother.

Vanishing Gradient Problem

• tanh can prevent vanishing gradient problem to some extent since its gradient value is usually larger than sigmoid's gradient value

□ Tanh

Sigmoid		
f(x)	$\frac{1}{1+e^{-x}} \ (\ y: 0 \sim 1)$	
$\frac{d}{dx}f(x)$	$\frac{1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right)(y':0\sim0.25)$	

Tanh		
f(x)	$\frac{e^x - e^{-x}}{e^x + e^{-x}} \text{ (y: -1~1)}$	
$\frac{d}{dx}f(x)$	$1 - \tanh(x)^2 (y': 0 \sim 1)$	

- RNNs addressing vanishing/exploding gradients
 - A recurrent neural network variety designed to retain long-term dependencies
 - Helps dealing with both the vanishing and exploding gradient problem
 - The key idea is an additive connection of previous memories passed through time

Overview

- Information is passed through two variables
- There are four switch variables that determines how the information flows through time

- The forget gate decides whether to throw away information from the previous cell state
 - If C_{t-1} should be removed, small f_t is multiplied to C_{t-1}
 - If C_{t-1} should be retained, large f_t is multiplied to C_{t-1}

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- The input gate behaves similarly to forget gates with new inputs
- ullet Candidate new information \widetilde{C}_t is computed with the current input and previous hidden units
 - If new information should be added, large i_t is multiplied to \widetilde{C}_t and added to C_{t-1}
 - If new information should not be added, small i_t is multiplied to \widetilde{C}_t and added to C_{t-1}

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

• The new cell state is calculated as weighted summing between the previous cell state and the newly created candidate information

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

• An output gate determines what to output from the current cell state for the next hidden state in the LSTM

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Preprocessing text data

- To handle the text dataset, we first need to transform the data into a form that can be used for training
- Two common methods for preprocessing text data
 - (1) One-hot encoding
 - (2) Word embedding

Revisit: One-hot Encoding

- One-hot encoding is a very sparse vector representation of sentences
- Representing each word in the vocabulary as "one-hot" encoded index
- To represent each word
 - (1) create a zero vector with length equal to the number of the vocabularies
 - (2) place one in the index that corresponds to the word

One-hot encoding

Example sentence:
"The cat sat on the mat"

Revisit: One-hot Encoding

- One-hot encoding has some downsides
 - (1) One-hot encoding is very inefficient
 - An one-hot encoded vector is sparse (meaning most indicies are zero)
 - (2) One-hot encoding cannot incorporate semantics between each word
 - Every token in one-hot encoding is equally distant away from all the others

Revisit: One-hot Encoding

- One-hot encoding has some downsides
 - (1) One-hot encoding is very inefficient
 - An one-hot encoded vector is sparse (meaning most indicies are zero)
 - (2) One-hot encoding cannot incorporate semantics between each word
 - Every token in one-hot encoding is equally distant away from all the others
 - It would be good if similar words are encoded into similar vectors

Word embeddings

- Word embeddings give us a way to use an efficient, dense representation in which similar words have a similar encoding
- Importantly, we do not have to specify this encoding by hand
 - they are trainable parameters : weights are learned by the model during training
 - the neural network captures the token's meaning as a vector
- Word embeddings can be 8-dimensional up to 1024-dimensions
- A higher dimensional embedding can capture fine-grained relationships between words, but takes more data and time to learn

A 4-dimensional embedding

•••

Example of word embeddings

- Nearest words for query word 'study' :
 - Research, analysis, discovery
- Nearest words for query word 'skill' :
 - ability, strength, talent

Example of word embeddings

We can consider embedded words have relations

woman – queen + man = king

Papers related to word-embeddings

- CBoW, Skip-gram: https://arxiv.org/pdf/1301.3781v3.pdf
- GloVe: https://www.aclweb.org/anthology/D14-1162.pdf
- fastText: https://arxiv.org/pdf/1607.04606v2.pdf