

Machine Learning INF2008

Lecture 02: The Single Layer Perceptron

Donny Soh

Singapore Institute of Technology

SIT Open House 2023 – The Winners (Judges' Choice)

Most Attractive Booth (Judges' Choice)

Champion: Naval Architecture and Marine Engineering

1st Runner-up: Applied Artificial Intelligence

2nd Runner-up: Physiotherapy

Linear Models 3: Neural Network (Single Layer Perceptron)

$$y = f\left(\sum_{k=1}^{n} m_k * xk + c\right)$$

We "learn" the variables m_i and c

What is a non-linear function?

Classical Machine Learning

Neural Networks (Single Layer Perceptron)

Multiple Linear Regression

Linear Regression

Single Layer Perceptron

Essentially, this means that for some threshold value of t, f(x) is 0 for x < t and f(x) is 1 for x >= t

Let's draw the perceptron to mimic Boolean gates

x1	x2	output	value
0	0	0	False
1	0	1	False
0	1	1	False
1	1	2	True

OR Gate

x1	x2	output	value
0	0	0	False
1	0	1	True
0	1	1	True
1	1	2	True

NOT Gate

x1	output	value
0	0	True
1	-1	False

How about the XOR gate?

XOR Gate

Multi Layer Perceptron is required

Complex Decision Boundaries: How would the representation look like? SINGAPORE INSTITUTE OF TECHNOLOGY X_2 *b*1 X_1 *b*2 and X_2 *b*1 *b*2 *b*3 X_1 *b*3

Complex Decision Boundaries: How would the representation look like? SINGAPORE INSTITUTE OF TECHNOLOGY X_2 b1*b*1 *b*2 X_1 and *b*3 X_2 X_1 *b*4 *b*4 *b*2 *b*3

Complex Decision Boundaries: How would the representation look like with two hidden layers?

Multi Layer Perceptron is required

Intuition: Suppose we have a continuous 2-d real value we wish to model with a neural network.

Intuition: Any continuous real value can be broken up into approximate rectangles.

Challenge: Can we model one rectangle using a MLP?

Challenge: Can we model one rectangle using a MLP?

Challenge: Can we model one rectangle using a MLP?

Complex Decision Boundaries: How would the representation look like with just one hidden layer?

Complex Decision Boundaries: How many neurons would we need if we have only one hidden layer?

Complex Decision Boundaries: How would the representation look like?

What are the steps in training a single layer perceptron?