Méthodes Statistiques

Corrigé de l'exercice 58

Une enquête sur la répartition des groupes sanguins en fonction du sexe a donné les résultats suivants :

	A	B	AB	O
Hommes	51	12	6	50
Femmes	38	6	5	32

58-1) Calculer les distributions marginales.

	A	B	AB	O	Total
Hommes	51	12	6	50	119
Femmes	38	6	5	32	81
Total	89	18	11	82	200

 $58\text{-}2\,)$ Faire un test d'indépendance de Fisher au seuil 5% pour déterminer si la répartition des groupes sanguins est indépendante du sexe.

On va calculer, dans un tableau similaire, les valeurs théoriques attendues si \mathcal{H}_0 est vraie.

Si l'hypothèse H_0 d'indépendance est vraie, les valeurs attendues sont calculées à partir des sommes marginales. Par exemple, la probabilité d'appartenir au groupe A dans le groupe des hommes devrait être de

$$\frac{89 \times 119}{200} = 52.95$$

car la probabilité globale d'appartenir au groupe A est de $\frac{89}{200}$ et qu'il y a 119 personnes dans ce groupe.

On calcule les autres valeurs de manière similaire et on obtient le tableau suivant :

	A	B	AB	O
Hommes	52.95	10.71	6.54	48.79
Femmes	36.05	7.29	4.46	33.21

On va maintenant effectuer un test d'indépendance de Fisher pour comparer les valeurs observées et les valeurs théoriques au seuil $\alpha=5\%$.

Le test d'ajustement du χ^2 se fait en calculant la statistique suivante

$$Y = \sum \frac{(C_i - O_i)^2}{C_i}$$

où les O_i sont les valeurs observées et les C_i sont les valeurs calculées (théoriques).

Ici, on trouve:

$$Y = \frac{(52.95 - 51)^2}{52.95} + \frac{(10.71 - 12)^2}{10.71} + \frac{(6.54 - 6)^2}{6.54} + \frac{(48.79 - 50)^2}{48.79} + \frac{(36.05 - 38)^2}{36.05} + \frac{(7.29 - 6)^2}{7.29} + \frac{(4.46 - 5)^2}{4.46} + \frac{(33.21 - 32)^2}{33.21}$$

$$= 0.745$$

Le nombre de degrés de liberté est $\nu=(m-1)(n-1)$ lorsque le tableau est de taille (m,n). Ici on trouve $\nu=(2-1)(4-1)=3$.

La valeur critique lue dans la table est $u_c = 7.815$ (à l'intersection de la colonne correspondant à 0.95 et de la ligne correspondant à 3 degrés de liberté).

Puisque $Y < u_c$, on accepte l'hypothèse H_0 .