Elementary Graph Algorithms

Graphs

- Graph G = (V, E)
 - V = set of vertices
 - $E = \text{set of edges} \subseteq (V \times V)$
- Types of graphs
 - » Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - » Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - » Weighted: each edge has an associated weight, given by a weight function $w: E \to \mathbb{R}$.
 - » Dense: $|E| \approx |V|^2$.
 - » Sparse: $|E| << |V|^2$.
- $\bullet |E| = O(|V/^2)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - » Symmetric if *G* is undirected.
 - » Not necessarily so if G is directed.
- An edge (u, v) is said to be incident to u and v
- Degree of a vertex in undirected graph is the number of edges incident to it.
- In-degree of a vertex in directed graph is the number of edges entering it.
- Out-degree of a vertex in directed graph is the number of edges leaving it.

Graphs

- A path from u_0 to u_k is a sequence of vertices $\langle u_0, u_1, u_2, u_3, \dots, u_k \rangle$ such that $(u_i, u_{i+1}) \in E, \forall i = 0, 1, 2, \dots, (k-1)$. The length of the path is k.
- If there is a path exist between u_i and u_j we say that u_j is reachable from u_i . It is a cycle if $u_i = u_j$.
- If G is connected:
 - » There is a path between every pair of vertices.
 - $|E| \ge |V| 1$.
 - » Furthermore, if |E| = |V| 1, then G is a tree.

Representation of Graphs

Two standard ways.

» Adjacency Lists.

» Adjacency Matrix.

Adjacency Lists

- Consists of an array Adj of |V| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

Storage Requirement

- For directed graphs:
 - » Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = |E|$$

No. of edges leaving *v*

- » Total storage: $\Theta(V+E)$
- For undirected graphs:
 - » Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{degree}(v) = 2|E|$$

No. of edges incident on v. Edge (u,v) is incident on vertices u and v.

» Total storage: $\Theta(V+E)$

Pros and Cons: adj list

Pros

- » Space-efficient, when a graph is sparse.
- » Can be modified to support many graph variants.

Cons

- » Determining if an edge $(u,v) \in G$ is not efficient.
 - Have to search in u's adjacency list. $\Theta(\text{degree}(u))$ time.
 - $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner.
- *A* is then given by:

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	1 0 0 0	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1 0 1 0	0	1
4	1	0	1	0

 $A = A^{T}$ for undirected graphs.

Space and Time

- Space: $\Theta(V^2)$.
 - » Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E$: $\Theta(1)$.
- Can store weights instead of bits for weighted graph.

Graph-searching Algorithms

- Searching a graph:
 - » Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - » Breadth-first Search (BFS).
 - » Depth-first Search (DFS).

Breadth-first Search

• Input: Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.

Output:

- » d[v] = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
- » $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - *u* is *v*'s predecessor.
- » Builds breadth-first tree with root *s* that contains all reachable vertices.

Definitions:

Path between vertices u and v: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u=v_1$ and $v=v_k$, and $(v_i,v_{i+1}) \in E$, for all $1 \le i \le k-1$.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - » A vertex is "discovered" the first time it is encountered during the search.
 - » A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - » White Undiscovered.
 - » Gray Discovered but not finished.
 - » Black Finished.
 - Colors are required only to reason about the algorithm. Can be implemented without colors.

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
2
             do color[u] \leftarrow white
3
                 d[u] \leftarrow \infty
4
                  \pi[u] \leftarrow \text{nil}
    color[s] \leftarrow gray
    d[s] \leftarrow 0
7
    \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
9
    enqueue(Q,s)
10 while Q \neq \Phi
             \mathbf{do} \ \mathbf{u} \leftarrow \mathrm{dequeue}(\mathbf{Q})
11
12
                          for each v in Adj[u]
13
                                        do if color[v] = white
14
                                                     then color[v] \leftarrow gray
15
                                                             d[v] \leftarrow d[u] + 1
16
                                                             \pi[v] \leftarrow u
17
                                                             enqueue(Q,v)
                          color[u] \leftarrow black
18
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v

d[v]: distance from s to v

 $\pi[u]$: predecessor of v

Q: s 0

Q: w r 1 1

Q: r t x 1 2 2

Q: t x v 2 2 2

Q: x v u 2 2 3

Q: v u y 2 3 3

Q: u y 3 3

Q: y 3

 \mathbf{Q} : \varnothing

BF Tree

Analysis of BFS

- Initialization takes O(V).
- Traversal Loop
 - » After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V).
 - » The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.

Breadth-first Tree

- For a graph G = (V, E) with source s, the **predecessor** subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $V_{\pi} = \{ v \in V : \pi[v] \neq \text{NIL} \} \cup \{ s \}$
 - $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
 - » V_{π} consists of the vertices reachable from s and
 - » for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called **tree edges**. $|E_{\pi}/=|V_{\pi}/-1$.

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex *v*.
- When all edges of *v* have been explored, backtrack to explore other edges leaving the vertex from which *v* was discovered (its *predecessor*).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Input: G = (V, E), directed or undirected. No source vertex given!
- Output:
 - » 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
 - » $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS(*G*)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

$\overline{\text{DFS-Visit}(u)}$

- 1. $color[u] \leftarrow GRAY \ \nabla$ White vertex u has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
 - 5. **then** $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken u;$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Analysis of DFS

- ♦ Loops on lines 1-3 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- ◆ DFS-Visit is called once for each white vertex v ∈ V when it's painted gray the first time. Lines 4-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v ∈ V} |Adj[v]| = Θ(E)$
- Total running time of DFS is $\Theta(V+E)$.

DFS-Visit(u)

- 1. $color[u] \leftarrow GRA$ has been discove
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Aa$
- 5. **do if** *color*[
- 6. **then**
- 7.
- 8. $color[u] \leftarrow BL$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow$

Parenthesis Theorem

Theorem 22.7

In any depth-first search of a (directed or undirected) graph G = (V, E), for any two vertices u and v, exactly one of the following three conditions holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
 - So d[u] < d[v] < f[u] < f[v] cannot happen.
 - Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

Example (Parenthesis Theorem)

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

Example (Parenthesis Theorem)

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq \text{NIL}\}.$
 - » How does it differ from that of BFS?
 - » The predecessor subgraph G_{π} forms a *depth-first forest* composed of several *depth-first trees*. The edges in E_{π} are called *tree edges*.

Definition:

Forest: An acyclic graph G that may be disconnected.

White-path Theorem

Theorem 22.9

v is a descendant of u if and only if at time d[u], there is a path u-v consisting of only white vertices. (Except for u, which was just colored gray.)

Classification of Edges

- Tree edge: an edge in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Classification of Edges

Observations:

- 1. In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.
- 2. A self loop becomes a back edge.

Identification of Edges

- Edge type for edge (u, v) can be identified when it is first explored by DFS.
- Identification is based on the color of v.
 - » White tree edge.
 - » Gray back edge.
 - » Black forward or cross edge.

BFS vs DFS

BFS DFS

- Uses Queue dataUses Stack structure
- Used to find single
 Path may not be the source shortest path in an unweighted graph
- Does not guarantee the total coverage
- Suitable for searching vertices which are closer to the given source

- data structure.
- shortest.

- Guarantees the total coverage
- Suitable when there are solutions away from the selected source

Applications of BFS and DFS

BFS Applications

- Finding the shortest path in a graph
- Finding the MST
- Realization of P2P Networks
- Neighbour Searching
- GPS Navigation
- Broadcasting
- Route Finding

DFS applications

- Cycle detection in a graph.
- Path finding.

- Topological sorting
- Finding the SCC of a graph

Application of BFS

Testing the Bipartiteness of a graph

Bipartite graph

• A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V.

Bipartite graph

Bipartite graph

- A bipartite graph is an undirected graph G = (V, E) in which the nodes can be colored red or blue such that every edge has one red and one blue end.
- A bipartite graph is a graph that does not contain any odd-length cycles.

BFS and Bipartiteness

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

BFS and Bipartiteness

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

Suppose no edge joins two nodes in the same layer. By previous lemma, all edges join nodes on adjacent levels.

Bipartition:

red = nodes on odd levels, blue = nodes on even levels.

Case (i)

BFS and Bipartiteness

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii) Suppose (x, y) is an edge & x, y in same level Lj. Let z = their lowest common ancestor in BFS tree. Let Li be level containing z. Consider cycle that takes edge from x to y, then tree from y to z, then tree from z to x. Its length is $\frac{1}{y} + \frac{1}{y} + \frac{1}{y$

Bipartiteness Testing

- ◆ How can we test if G is bipartite?
 - » Do a BFS starting from some node s.
 - » Color even levels "blue" and odd levels "red".
 - » Check each edge to see if any edge has both endpoints the same color.

Bipartiteness Testing

