Estimating the cognitive functional level in Parkinson's patients using accelerometer data

INDIANA UNIVERSITY

INDIANAPOLIS

Upamanyu Mondal

Preceptor Organization Name, Date

Indiana University, Luddy School of Informatics, Computing, and Engineering **Department of BioHealth Informatics**

Summary/ Abstract

While Montreal Cognitive Assessment (MoCA) is widely used to monitor the cognitive function of Parkinson's patients, it is difficult to continuously monitor the cognitive function outside the clinical setting. Parkinson's disease and its progress are the confounding factor of the decreased cognitive function and the compromised motor performance. We propose to use accelerometer data which can be collected continuously to predict the MoCA scores.

Problem addressed

Continuous monitoring of cognitive function and predicting the MoCA score outside of a clinical environment.

Project Objectives

The main objective of this project was to develop a machine-learning model that utilizes the accelerometer data from the wearable sensor to estimate the Montreal Cognitive Assessment (MoCA) score of individuals suffering from Parkinson's disease.

Tiemline

Jan-Feb

Data Collection Feb-Mar after obtaining permission

Data Cleaning Mar-Apr and Feature extraction

Feature Selection and developing the **Machine learning** pipeline.

Project Execution

Data Collection

- The data was collected from the Parkinson's Progressive Markers Initiative website.
- Data was collected for 271 patients out of which 29 were control.

Data Preprocessing

Python was used to calculate the Euclidean Distance, apply Butterworth filter and filter the data between 9am to 5 pm

Data Analysis

Random Forest model was done with hyperparameter tuning and the performance was evaluated based on RMSE.

Collected Accelerometer Data from Parkinson's Progressive Markers Initiative website

- **Demographic Analysis**
- **Calculating Euclidean Distance**
- Resampling at 100Hz
- Applying Butterworth Filter (Fourth order, 20hz)
- Data Selected from 9am-5pm

Feature extraction using -TSFEL Window size- 5 Mins, 10 Mins, 15 Mins, 1hour, 1 hour+5 mins		389 features extracted	
13 Willis, Illoui, I lic		Statistical calculation of the features	
Features Selection • LASSO	Checking for Correlation with MOCA	2723 features extracted	
ML • Random Forest	Predicted M Score	IOCA	

Project Outcomes				
Model	Time	RMSE	R	
			squared	
RF (LOSOCV)	5Mins(overlap)	2.83	0.048	
RF CV=10	5Mins(overlap)	2.85	0.038	
RF	5Mins(overlap)	2.89	0.061	

Findings/ Conclusions

- Though the RMSE was lower than 3 the model's performance can be improved and the target RMSE should be below 1.73.
- The low R-squared suggest that the model could only explain 4.8% of the variance of the features.
- However, this project helped to develop a pipeline which can improved even further going forward.

Acknowledgements

I extend my deepest appreciation to Dr. Hee Tae Jung and Dr. Jean-Francois Daneault for their guidance and support throughout this project. Their contributions have been invaluable to the successful completion of this project.

References

QR CODE