Group Structure on an Elliptic Curve

Sam Mergendahl

December 4, 2015

1 / 17

ullet A rational cubic is a cubic polynomial with coefficents in ${\mathbb Q}$

- A rational cubic is a cubic polynomial with coefficents in Q
- Any cubic with a rational point can be transformed through linear transformations into Weierstrass Normal Form

2 / 17

- A rational cubic is a cubic polynomial with coefficents in Q
- Any cubic with a rational point can be transformed through linear transformations into Weierstrass Normal Form

(ie)
$$y^2 = f(x) = x^3 + ax^2 + bx + c$$
 where $a, b, c \in \mathbb{Z}$

- A rational cubic is a cubic polynomial with coefficents in Q
- Any cubic with a rational point can be transformed through linear transformations into Weierstrass Normal Form
 (ie) y² = f(x) = x³ + ax² + bx + c where a, b, c ∈ Z
- Let $C(\mathbb{Q}) = \{P = (x, y) \in C \mid x, y \in \mathbb{Q}\}$ be the set of points on C with rational coordinates

A Couple of Definitions (cont.)

• if f(x) has distinct complex roots we call it an elliptic curve

3 / 17

A Couple of Definitions (cont.)

if f(x) has distinct complex roots we call it an elliptic curve
 (ie) it is non-singular or its discriminant ≠ 0

A Couple of Definitions (cont.)

• if f(x) has distinct complex roots we call it an elliptic curve (ie) it is non-singular or its discriminant $\neq 0$

• How could we make the set of points on the elliptic curve a group?

4 / 17

- How could we make the set of points on the elliptic curve a group?
- Given curve C and $P, Q \in C(\mathbb{Q})$, does the rational line generated from P and Q always intersect C at 3 points?

- How could we make the set of points on the elliptic curve a group?
- Given curve C and P, Q ∈ C(Q), does the rational line generated from P and Q always intersect C at 3 points?
 (eg) y² = x³ + 17 intersect with rational line generated by points

- How could we make the set of points on the elliptic curve a group?
- Given curve C and P, Q ∈ C(Q), does the rational line generated from P and Q always intersect C at 3 points?
 (eg) y² = x³ + 17 intersect with rational line generated by points

- How could we make the set of points on the elliptic curve a group?
- Given curve C and P, Q ∈ C(Q), does the rational line generated from P and Q always intersect C at 3 points?
 (eg) y² = x³ + 17 intersect with rational line generated by points

- How could we make the set of points on the elliptic curve a group?
- Given curve C and P, Q ∈ C(Q), does the rational line generated from P and Q always intersect C at 3 points?
 (eg) y² = x³ + 17 intersect with rational line generated by points

• In general, Bezout's Theorem tells us that two curves (one of degree m and the other of degree n) will intersect at mn points

- In general, Bezout's Theorem tells us that two curves (one of degree m and the other of degree n) will intersect at mn points
- Now, we need to be careful of a few things

- In general, Bezout's Theorem tells us that two curves (one of degree m and the other of degree n) will intersect at mn points
- Now, we need to be careful of a few things
 - projective space

- In general, Bezout's Theorem tells us that two curves (one of degree m and the other of degree n) will intersect at mn points
- Now, we need to be careful of a few things
 - projective space
 - multiplicities

- In general, Bezout's Theorem tells us that two curves (one of degree m and the other of degree n) will intersect at mn points
- Now, we need to be careful of a few things
 - projective space
 - multiplicities
- If we take the tangent line from $P \in C(\mathbb{Q})$ it will intersect at exactly one other rational point

- In general, Bezout's Theorem tells us that two curves (one of degree m and the other of degree n) will intersect at mn points
- Now, we need to be careful of a few things
 - projective space
 - multiplicities
- If we take the tangent line from $P \in C(\mathbb{Q})$ it will intersect at exactly one other rational point
- Unless P is an inflection point, then it has multiplicity three and will not intersect anywhere else

Group Law

Is * a group law?

7 / 17

Group Law

- Is * a group law?
- Not quite, in particular, there is no identitiy element

Group Law

- Is * a group law?
- Not quite, in particular, there is no identitiy element
- Instead let $\mathcal O$ be a fixed point in $C(\mathbb Q)$ and let $P+Q=(P*Q)*\mathcal O$

ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier

- ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier
- Now P + Q is just P * Q reflected about the x-axis

ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier

ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier

- ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier
- Now P + Q is just P * Q reflected about the x-axis

ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier

ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier

ullet Usually work in projective space, so during our Weierstrass transformation we make ${\cal O}$ become "the point at infinity" to make things easier

Closure √

- Closure √
- Identity

- Closure √
- Identity

$$P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P$$

- Closure √
- Identity

$$P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P \checkmark$$

- Closure √
- Identity $P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P \checkmark$
- Existence of Inverses

- Closure √
- Identity $P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P \checkmark$
- Existence of Inverses If P = (x, y), then let $-P = (-x, y) \Rightarrow P + -P = \mathcal{O}$

- Closure √
- Identity $P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P \checkmark$
- Existence of Inverses If P = (x, y), then let $-P = (-x, y) \Rightarrow P + -P = \mathcal{O} \checkmark$

- Closure √
- Identity $P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P \checkmark$
- Existence of Inverses If P = (x, y), then let $-P = (-x, y) \Rightarrow P + -P = \mathcal{O} \checkmark$
- Associativity

- Closure √
- Identity $P + \mathcal{O} = (P * \mathcal{O}) * \mathcal{O} = P \checkmark$
- Existence of Inverses If P = (x, y), then let $-P = (-x, y) \Rightarrow P + -P = \mathcal{O} \checkmark$
- Associativity √

• Let the order of a point P=(x,y) be the smallest $m\in\mathbb{Z}$ st $mP=\mathcal{O}$

- Let the order of a point P = (x, y) be the smallest $m \in \mathbb{Z}$ st $mP = \mathcal{O}$
- Let $\Phi = \{P = (x, y) \in C(\mathbb{Q}) \mid P \text{ has finite order}\} \cup \{\mathcal{O}\}$ be the torsion subgroup of $C(\mathbb{Q})$

- Let the order of a point P=(x,y) be the smallest $m\in\mathbb{Z}$ st $mP=\mathcal{O}$
- Let $\Phi = \{P = (x, y) \in C(\mathbb{Q}) \mid P \text{ has finite order}\} \cup \{\mathcal{O}\}$ be the torsion subgroup of $C(\mathbb{Q})$
 - This is clearly a subgroup:

- Let the order of a point P=(x,y) be the smallest $m\in\mathbb{Z}$ st $mP=\mathcal{O}$
- Let $\Phi = \{P = (x, y) \in C(\mathbb{Q}) \mid P \text{ has finite order}\} \cup \{\mathcal{O}\}$ be the torsion subgroup of $C(\mathbb{Q})$
 - This is clearly a subgroup: if $m_1P_1 + m_2P_2 = \mathcal{O} \Rightarrow m_1m_2(P_1 + P_2) = \mathcal{O}$

- Let the order of a point P = (x, y) be the smallest $m \in \mathbb{Z}$ st $mP = \mathcal{O}$
- Let $\Phi = \{P = (x, y) \in C(\mathbb{Q}) \mid P \text{ has finite order}\} \cup \{\mathcal{O}\}$ be the torsion subgroup of $C(\mathbb{Q})$
 - This is clearly a subgroup: if $m_1P_1 + m_2P_2 = \mathcal{O} \Rightarrow m_1m_2(P_1 + P_2) = \mathcal{O}$
- Because of a surprising theorem by Nagell-Lutz (both independently discovered), we know that if $P=(x,y)\in\Phi$, then $x,y\in\mathbb{Z}$

 \bullet Let \mathbb{F}_p be the field of integers modulo a prime p

- Let \mathbb{F}_p be the field of integers modulo a prime p
- Since our group law didn't use anything specific about \mathbb{Q} (other than it's a field), $C(\mathbb{F}_p)$ is still a group

- Let \mathbb{F}_p be the field of integers modulo a prime p
- Since our group law didn't use anything specific about \mathbb{Q} (other than it's a field), $C(\mathbb{F}_p)$ is still a group
- Visualizing $C(\mathbb{F}_p)$ is difficult

- Let \mathbb{F}_p be the field of integers modulo a prime p
- Since our group law didn't use anything specific about \mathbb{Q} (other than it's a field), $C(\mathbb{F}_p)$ is still a group
- Visualizing $C(\mathbb{F}_p)$ is difficult
 - Remember it represents solutions to polynomial equations

• Let $z \to \hat{z}$ be the "reduction modulo p" map

• Let $z \to \hat{z}$ be the "reduction modulo p" map (eg) if $C: y^2 = x^3 + ax^2 + bx + c$, then $\hat{C}: y^2 = x^3 + \hat{a}x^2 + \hat{b}x + \hat{c}$

• Let $z \to \hat{z}$ be the "reduction modulo p" map (eg) if $C: y^2 = x^3 + ax^2 + bx + c$, then $\hat{C}: y^2 = x^3 + \hat{a}x^2 + \hat{b}x + \hat{c}$ (eg) if $P = (x, y) \in C(\mathbb{Q})$ st $x, y \in \mathbb{Z}$, then $\hat{P} = (\hat{x}, \hat{y}) \in \hat{C}(\mathbb{F}_p)$

- Let $z \to \hat{z}$ be the "reduction modulo p" map (eg) if $C: y^2 = x^3 + ax^2 + bx + c$, then $\hat{C}: y^2 = x^3 + \hat{a}x^2 + \hat{b}x + \hat{c}$ (eg) if $P = (x, y) \in C(\mathbb{Q})$ st $x, y \in \mathbb{Z}$, then $\hat{P} = (\hat{x}, \hat{y}) \in \hat{C}(\mathbb{F}_p)$
- We know \hat{C} is non-singlular as long as its discriminant $\neq 0$

- Let $z \to \hat{z}$ be the "reduction modulo p" map (eg) if $C: y^2 = x^3 + ax^2 + bx + c$, then $\hat{C}: y^2 = x^3 + \hat{a}x^2 + \hat{b}x + \hat{c}$ (eg) if $P = (x, y) \in C(\mathbb{Q})$ st $x, y \in \mathbb{Z}$, then $\hat{P} = (\hat{x}, \hat{y}) \in \hat{C}(\mathbb{F}_p)$
- We know \hat{C} is non-singlular as long as its discriminant $\neq 0$
 - \hat{C} 's discriminant is \hat{D} where D is the discriminant of C

Field of Integers mod p (cont.)

- Let $z \to \hat{z}$ be the "reduction modulo p" map (eg) if $C: y^2 = x^3 + ax^2 + bx + c$, then $\hat{C}: y^2 = x^3 + \hat{a}x^2 + \hat{b}x + \hat{c}$ (eg) if $P = (x, y) \in C(\mathbb{Q})$ st $x, y \in \mathbb{Z}$, then $\hat{P} = (\hat{x}, \hat{y}) \in \hat{C}(\mathbb{F}_p)$
- ullet We know \hat{C} is non-singlular as long as its discriminant eq 0
 - \hat{C} 's discriminant is \hat{D} where D is the discriminant of C (ie) \hat{C} is non-singular as long as $p \nmid D$ (and $p \neq 2$)

 Since every P ∈ Φ has integer coordinates, our "reduction modulo p" map will make sense:

 Since every P ∈ Φ has integer coordinates, our "reduction modulo p" map will make sense:

(ie)
$$\Phi \to \hat{C}(\mathbb{F}_p)$$
 st $P = (x, y) \mapsto \hat{P} = (\hat{x}, \hat{y})$ (note: $\mathcal{O} \mapsto \mathcal{O}$)

 Since every P ∈ Φ has integer coordinates, our "reduction modulo p" map will make sense:

(ie)
$$\Phi \to \hat{C}(\mathbb{F}_p)$$
 st $P = (x, y) \mapsto \hat{P} = (\hat{x}, \hat{y})$ (note: $\mathcal{O} \mapsto \mathcal{O}$)

• This is a group homomorphism

 Since every P ∈ Φ has integer coordinates, our "reduction modulo p" map will make sense:

(ie)
$$\Phi \to \hat{C}(\mathbb{F}_p)$$
 st $P = (x, y) \mapsto \hat{P} = (\hat{x}, \hat{y})$ (note: $\mathcal{O} \mapsto \mathcal{O}$)

- This is a group homomorphism
 - In fact, $ker() = \mathcal{O}$ so it is one-one

 Since every P ∈ Φ has integer coordinates, our "reduction modulo p" map will make sense:

(ie)
$$\Phi \to \hat{C}(\mathbb{F}_p)$$
 st $P = (x, y) \mapsto \hat{P} = (\hat{x}, \hat{y})$ (note: $\mathcal{O} \mapsto \mathcal{O}$)

- This is a group homomorphism
 - In fact, $ker(\hat{}) = \mathcal{O}$ so it is one-one
- $\#\Phi$ divides $\#\hat{C}(\mathbb{F}_p)$

• Let
$$C: y^2 = x^3 + 3$$

• Let
$$C: y^2 = x^3 + 3$$

•
$$D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$$

• Let
$$C: y^2 = x^3 + 3$$

•
$$D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2 = -243$$

• Let
$$C: y^2 = x^3 + 3$$

•
$$D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2 = -243 = -3^5$$

- Let $C: y^2 = x^3 + 3$
- $D = -4a^3c + a^2b^2 + 18abc 4b^3 27c^2 = -243 = -3^5$
- Now we know there is a 1-1 group homomorphism between Φ and $\hat{C}(\mathbb{F}_p)$ for all primes ≥ 5

- Let $C: y^2 = x^3 + 3$
- $D = -4a^3c + a^2b^2 + 18abc 4b^3 27c^2 = -243 = -3^5$
- Now we know there is a 1-1 group homomorphism between Φ and $\hat{C}(\mathbb{F}_p)$ for all primes ≥ 5
- Let's look at $\hat{C}(\mathbb{F}_5)$ and $\hat{C}(\mathbb{F}_7)$

	X	$x^2 \; (\text{mod } 5)$	$x^3 + 3 \pmod{5}$
	0	0	3
• $\hat{C}(\mathbb{F}_5)$:	1	1	4
□ C(F5).	2	4	1
	3	4	0
	4	1	2

• $\hat{C}(\mathbb{F}_5) = \{(1,2), (1,3), (2,1), (2,4), (3,0), \mathcal{O}\}$

	X	$x^2 \pmod{5}$	$x^3 + 3 \pmod{5}$
	0	0	3
• $\hat{C}(\mathbb{F}_5)$:	1	1	4
□ C(F 5).	2	4	1
	3	4	0
	4	1	2

•
$$\hat{C}(\mathbb{F}_5) = \{(1,2), (1,3), (2,1), (2,4), (3,0), \mathcal{O}\}\$$

 $\Rightarrow \#\hat{C}(\mathbb{F}_5) = 6$

	X	$x^2 \; (\text{mod } 7)$	$x^3 + 3 \pmod{7}$
	0	0	3
	1	1	4
١.	2	4	4
١.	3	2	2
	4	2	4
	5	4	2
	6	1	2

• $\hat{C}(\mathbb{F}_7)$

X	$x^2 \; (\text{mod } 7)$	$x^3 + 3 \pmod{7}$
0	0	3
1	1	4
2	4	4
3	2	2
4	2	4
5	4	2
6	1	2

•
$$\hat{C}(\mathbb{F}_7) = \{(1,2), (1,5), (2,2), (2,5), (3,3), (3,4), (4,2), (4,5), (5,3), (5,4), (6,3), (6,4), \mathcal{O}\}$$

• $\hat{C}(\mathbb{F}_7)$

	X	$x^2 \; (\text{mod } 7)$	$x^3 + 3 \pmod{7}$
	0	0	3
	1	1	4
	2	4	4
•	3	2	2
	4	2	4
	5	4	2
	6	1	2

•
$$\hat{C}(\mathbb{F}_7) = \{(1,2), (1,5), (2,2), (2,5), (3,3), (3,4), (4,2), (4,5), (5,3), (5,4), (6,3), (6,4), \mathcal{O}\}$$

 $\Rightarrow \#\hat{C}(\mathbb{F}_7) = 13$

• $\hat{C}(\mathbb{F}_7)$

	X	$x^2 \; (\text{mod } 7)$	$x^3 + 3 \pmod{7}$
	0	0	3
	1	1	4
١.	2	4	4
•	3	2	2
	4	2	4
	5	4	2
	6	1	2

•
$$\hat{C}(\mathbb{F}_7) = \{(1,2), (1,5), (2,2), (2,5), (3,3), (3,4), (4,2), (4,5), (5,3), (5,4), (6,3), (6,4), \mathcal{O}\}$$

 $\Rightarrow \#\hat{C}(\mathbb{F}_7) = 13$
 $\Rightarrow \#\Phi \text{ divides both 6 and 13}$

• $\hat{C}(\mathbb{F}_7)$:

	X	$x^2 \; (\text{mod } 7)$	$x^3 + 3 \pmod{7}$
	0	0	3
	1	1	4
	2	4	4
	3	2	2
	4	2	4
	5	4	2
	6	1	2

•
$$\hat{C}(\mathbb{F}_7) = \{(1,2), (1,5), (2,2), (2,5), (3,3), (3,4), (4,2), (4,5), (5,3), (5,4), (6,3), (6,4), \mathcal{O}\}$$

 $\Rightarrow \#\hat{C}(\mathbb{F}_7) = 13$
 $\Rightarrow \#\Phi$ divides both 6 and 13
 $\Rightarrow \#\Phi = 1$

	X	$x^2 \; (\text{mod } 7)$	$x^3 + 3 \pmod{7}$
	0	0	3
	1	1	4
• $\hat{C}(\mathbb{F}_7)$:	2	4	4
□ C(F 7).	3	2	2
	4	2	4
	5	4	2
	6	1	2

•
$$\hat{C}(\mathbb{F}_7) = \{(1,2), (1,5), (2,2), (2,5), (3,3), (3,4), (4,2), (4,5), (5,3), (5,4), (6,3), (6,4), \mathcal{O}\}$$

 $\Rightarrow \#\hat{C}(\mathbb{F}_7) = 13$
 $\Rightarrow \#\Phi \text{ divides both 6 and 13}$
 $\Rightarrow \#\Phi = 1 \Rightarrow \Phi = \{\mathcal{O}\}$