

Mathematical Foundations for Data Science (Probability)

Lecture 01: Sample Space, Events, Probability Measure and its Properties, Examples of Probability Assignment

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

10 August 2024

Probability Theory - Humble Beginnings

• Bernoulli (1713) and de Moivre (1718) gave the first definition of probability:

$$probability \ of \ an \ event = \frac{\text{\# favourable outcomes}}{\text{total number of outcomes}}.$$

- Cournot (1843):
 - "An event with very small probability is morally impossible; an event with very high probability is morally certain."
- French mathematicians of the day were satisfied with the "frequentist" approach to probability, but not the German and English mathematicians of the day
- Frequentist approach could not satisfactorily explain certain paradoxes

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

• Mid-point of chord should lie inside incircle of radius 1/2

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

• Mid-point of chord should lie inside incircle of radius 1/2

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

Mid-point of chord should lie inside incircle of radius 1/2
 Answer: 1/4

• Angle between chord and tangent at A should be between $\pi/3$ and $2\pi/3$

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

Mid-point of chord should lie inside incircle of radius 1/2
 Answer: 1/4

• Angle between chord and tangent at A should be between $\pi/3$ and $2\pi/3$

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

• Mid-point of chord should lie inside incircle of radius 1/2Answer: 1/4

• Angle between chord and tangent at A should be between $\pi/3$ and $2\pi/3$

Answer: 1/3

 Mid-point of chord should be between O and projection of O onto side BC

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

• Mid-point of chord should lie inside incircle of radius 1/2Answer: 1/4

• Angle between chord and tangent at A should be between $\pi/3$ and $2\pi/3$

Answer: 1/3

 Mid-point of chord should be between O and projection of O onto side BC.

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

Mid-point of chord should lie inside incircle of radius 1/2
 Answer: 1/4

• Angle between chord and tangent at A should be between $\pi/3$ and $2\pi/3$

Answer: 1/3

 Mid-point of chord should be between O and projection of O onto side BC

Answer: 1/2

Borel to the Rescue

- Contributions to Measure Theory by Borel (1894) provided a shift in perspective
- Countable unions played a key role in Borel's theory
- Kolmogorov's genius was in applying Borel's theory to formalise the axioms of probability, laying the foundation stone for modern probability theory
- For more details on the history of probability, see [Shafer and Vovk, 2018] and [Kolmogorov, 2004]

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

• If our interest is in the face that shows, then $\Omega = \{H, T\}$

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

- If our interest is in the face that shows, then $\Omega = \{H, T\}$
- If our interest is in the velocity with which the coin lands on ground, then $\Omega = [0, \infty) = \mathbb{R}_+$

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

- If our interest is in the face that shows, then $\Omega = \{H, T\}$
- If our interest is in the velocity with which the coin lands on ground, then $\Omega=[0,\infty)=\mathbb{R}_+$
- If our interest is in the number of times coin flips in air, then $\Omega=\mathbb{N}$

Example: Toss a coin n times, for some $n < \infty$.

Interest: faces that show up

$$\Omega = \{H, T\}^n$$

Example: Toss a coin infinitely many times.

Interest: faces that show up

$$\Omega = \{H, T\}^{\infty}$$

Event

Informal Definition (Event)

Informally,^a an event is a subset of outcomes "of interest" to us.

^aWe shall give a more formal definition of an event later.

Example: Toss a coin 3 times; interest is in the faces that show up $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

Event A of interest: at least 2 heads show up

Event

Informal Definition (Event)

Informally,^a an event is a subset of outcomes "of interest" to us.

^aWe shall give a more formal definition of an event later.

Example: Toss a coin 3 times; interest is in the faces that show up $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

Event A of interest: at least 2 heads show up

$$A = \{HHH, THH, HTH, HHT\}$$

Note

If an outcome $\omega \in A$ occurs, we say that the event A occurs.

Algebra

Definition (Algebra)

Let Ω be a sample space.

A collection \mathscr{A} of subsets of Ω is called an algebra if it satisfies the following properties:

- 1. $\Omega \in \mathscr{A}$.
- 2. $A \in \mathscr{A} \implies A^c \in \mathscr{A}$ (closure under complements).
- 3. $A, B \in \mathscr{A} \implies A \cup B \in \mathscr{A}$.

Property 3 above implies, by mathematical induction, that

$$A_1,A_2,\ldots,A_n\in\mathscr{A}\implies\bigcup_{i=1}^nA_i\in\mathscr{A}\quad\text{for all }n\in\mathbb{N}\quad\text{(closure under finite unions)}.$$

Exercise

Show that an algebra is closed under finite intersections.

Algebra - Examples

$$\Omega = \{1, 2, \dots, 6\}$$
 – outcomes of single throw of dice

- $\mathscr{A} = \{\emptyset, \Omega\}$
- $\mathscr{A}=\mathbf{2}^\Omega$ = collection of all subsets of Ω
- $\mathscr{A} = \Big\{\emptyset, \Omega, \{1\}, \{2, 3\}, \Big\}$

Algebra - Examples

 $\Omega = \{1, 2, \dots, 6\}$ – outcomes of single throw of dice

- $\mathscr{A} = \{\emptyset, \Omega\}$
- $\mathscr{A}=\mathbf{2}^\Omega$ = collection of all subsets of Ω
- $\bullet \ \, \mathscr{A} = \bigg\{\emptyset, \Omega, \{1\}, \{2,3\}, \{1,2,3\}, \{4,5,6\}, \{1,4,5,6\}, \{2,3,4,5,6\}\bigg\}$

σ -Algebra – Motivation

Toss a coin until first head shows up $\Omega = \{H, TH, TTH, TTTH, \dots\}$

$$\mathscr{A} = \left\{ \emptyset, \Omega, \{H\}, \{TH\}, \{TTH\}, \{TTTH\}, \dots \right.$$

$$\left\{ H, TH\}, \{H, TTH\}, \{H, TTTH\}, \dots \right.$$

$$\left\{ H, TH, TTH\}, \{H, TH, TTTH\}, \dots \right\}$$

Event of interest A = # of tosses is even $A = \{TH, TTTH, \ldots\}$

σ -Algebra – Motivation

Toss a coin until first head shows up $\Omega = \{H, TH, TTH, TTTH, \dots\}$

$$\mathscr{A} = \left\{ \emptyset, \Omega, \{H\}, \{TH\}, \{TTH\}, \{TTTH\}, \dots \right.$$

$$\left\{ H, TH\}, \{H, TTH\}, \{H, TTTH\}, \dots \right.$$

$$\left\{ H, TH, TTH\}, \{H, TH, TTTH\}, \dots \right\}$$

Event of interest A = # of tosses is even $A = \{TH, TTTH, \ldots\} \notin \mathscr{A}$

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

• Elements of a σ -algebra are called events

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathcal{F}$ is also referred to as an \mathcal{F} -measurable set

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathscr{F}$ is also referred to as an \mathscr{F} -measurable set
- ullet Every σ -algebra is also an algebra, but the converse is not true

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathscr{F}$ is also referred to as an \mathscr{F} -measurable set
- Every σ -algebra is also an algebra, but the converse is not true
- The pair (Ω, \mathscr{F}) is called a measurable space

Probability Measure

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Probability Measure)

A function $\mathbb{P}:\mathscr{F}\to[0,1]$ is called a probability measure if the following properties are satisfied:

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. If A_1, A_2, \ldots is a countable collection of mutually disjoint sets, with $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$ and $A_i \cap A_j = \emptyset$ for all $i \neq j$, then

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i).$$

The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• For any two disjoint sets $A, B \in \mathscr{F}$,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• For any $n \in \mathbb{N}$ and a collection of mutually disjoint sets $B_1, \ldots, B_n \in \mathscr{F}$,

$$\mathbb{P}\left(\bigcup_{i=1}^n B_i\right) = \sum_{i=1}^n \mathbb{P}(B_i).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• For any set $A \in \mathscr{F}$,

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• (Monotonicity property)

For any two sets $A, B \in \mathscr{F}$ such that $A \subseteq B$,

$$\mathbb{P}(A) \leq \mathbb{P}(B)$$
.

Corollary

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. For all $A, B \in \mathscr{F}$ such that $A \subseteq B$,

$$\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• For any two sets $A, B \in \mathscr{F}$,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• (Inclusion-Exclusion Principle)

For any
$$n\in\mathbb{N}$$
 and sets $A_1,\ldots,A_n\in\mathscr{F}$,

$$\mathbb{P}\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \cdots + (-1)^{n+1} \, \mathbb{P}\left(igcap_{i=1}^n A_i
ight).$$

Continuity of Probability Measure - 1

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, where $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\mathbb{P}\left(\lim_{n o\infty}A_n
ight)=\lim_{n o\infty}\mathbb{P}(A_n).$$

Continuity of Probability Measure - 2

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• If $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$, where $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mathbb{P}\left(\bigcap_{i=1}^{\infty}A_i\right)=\mathbb{P}\left(\lim_{n o\infty}A_n
ight)=\lim_{n o\infty}\mathbb{P}(A_n).$$

Union Bound

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• For any $A_1, A_2, \ldots \in \mathscr{F}$,

$$\mathbb{P}\left(igcup_{n=1}^{\infty}A_i
ight)\leq \sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

Union Bound

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• For any $A_1, A_2, \ldots \in \mathscr{F}$,

$$\mathbb{P}\left(igcup_{n=1}^{\infty}A_i
ight)\leq \sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

Corollary

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. For any two sets $A, B \in \mathscr{F}$,

$$\mathbb{P}(A \cup B) < \mathbb{P}(A) + \mathbb{P}(B)$$
.

More generally, for any $n \in \mathbb{N}$ and sets $A_1, \ldots, A_n \in \mathscr{F}$,

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n \mathbb{P}(A_i).$$

Probability Assignment - Examples

•
$$\Omega = \{H, T\}, \quad \mathscr{F} = 2^{\Omega} = \left\{\emptyset, \Omega, \{H\}, \{T\}\right\}$$

•
$$\Omega = \{1, 2, \dots, 6\},$$

$$\mathscr{F} = \left\{\emptyset, \Omega, \{1\}, \{2, 3\},\right\}$$

Probability Assignment - Examples

$$ullet$$
 $\Omega=\{H,T\}, \quad \mathscr{F}=\mathbf{2}^{\Omega}=\left\{\emptyset,\Omega,\{H\},\{T\}
ight\}$

$$\begin{aligned} \bullet & & \Omega = \{1,2,\ldots,6\}, \\ & & \mathscr{F} = \left\{\emptyset,\Omega,\{1\},\{2,3\},\{1,2,3\},\{4,5,6\},\{1,4,5,6\},\{2,3,4,5,6\}\right\} \end{aligned}$$

Some remarks:

•
$$\mathbb{P}(A) = 0 \implies A = \emptyset$$

•
$$\mathbb{P}(A) = 1 \implies A = \Omega$$

References

Shafer, G. and Vovk, V. (2018).
The origins and legacy of Kolmogorov's Grundbegriffe.
arXiv preprint arXiv:1802.06071.