mtcoils math

Carmelo Mordini

mtcoils

Static B field calculator for arbitrary configurations of coils

The math

Each coil is defined by

- the (inner) radius R_{in}
- a number of radial and axial turns N_r and N_z
- the radial and axial wire thickness l_r , l_z

And its field is obtained by summing $N_r \times N_z$ coils of radius $R_{in} + l_r(i+1/2)$ $(i=0...N_r-1)$ posititoned at $z_j = l_z(j-(N_z-1)/2)$ $(j=0...N_z-1)$. The composite coil is placed at the origin, the plane z=0 corresponding to the middle of the block. For the radial and azimuthal components of the field we use Eq. 24-25 in [1].

Arbitrary configurations are specified by a position vector r_0 and a unit vector \hat{n} normal to the plane of the coil. The field at a point r will lay on the plane specified by $x = r - r_0$ and \hat{n} and will be given by

$$\begin{cases} x = z \,\hat{n} + \rho \,\hat{u} \\ \vec{B} = B_z \,\hat{n} + B_r \,\hat{u} \end{cases}$$