DEPARTMENT OF ELECTRONIC AND TELECOMMUNICATION UNIVERSITY OF MORATUWA

EN3030: CIRCUITS AND SYSTEMS DESIGN

INSTRUCTION SET ARCHITECTURE

Mendis N. P. A. 180398A Kumarasinge H. A. N. H. 180337M Nagasinghe K.R.Y 180411K Thalagala B. P. 180631J

Date of submission: 15th December 2021

1. INSTRUCTION SET

1.1. PROGRAM CONTROL

START/INITIALIZE

- 1. $PC \leftarrow 0$
- 2. $IR \leftarrow 0$

FETCH

- 1. AR \leftarrow PC
- 2. DR \leftarrow M, PC \leftarrow PC+1
- 3. IR \leftarrow DR, AR \leftarrow PC

<u>NOP</u>

IDLE processor

CLAC

1. AC \leftarrow 0, Z=1

<u>ENDOP</u>

End all operations

JUMP INSTRUCTIONS

JUMP

- 1. READ
- 2. AC \leftarrow IM(τ)
- 3. PC ← AC

JMPZ

- 1. READ
- 2. AC \leftarrow IM(τ)

- 3. PC ← AC
- 4. PC ←PC+1
- 5. READ

<u>JMPNZ</u>

- 1. AC \leftarrow IM(τ)
- 2. PC ← AC
- 3. PC ←PC+1

1.2. LOAD AND STORE INSTRUCTIONS

LDIAC

- 1. MEM READ
- 2. AC \leftarrow IM(τ)
- 3. PC ←PC+1

LDAC

- 1. AC ← AC
- 2. READ

- 3. DR \leftarrow M(τ)
- 4. AC \leftarrow DR

STAC

- 1. READ AC to bus
- 2. AR \leftarrow AC
- 3. $M \leftarrow AC$

1.3. MOVE INSTRUCTIONS

MOVR

1. $R \leftarrow AC$

MOVACR1

1. R1 ← AC

MOVACR2

1. R2 ← AC

MOVACR3

1. R3 ← AC

MOVACR4

1. R4 ← AC

MOVACR5

1. R5 ← AC

MOVRAC

AC ← R

MOVR1AC

AC ← R1

MOVR2AC

AC ← R2

MOVR3AC

1. AC ← R3

MOVR4AC

AC ← R4

MOVR5AC

AC ← R5

<u>MOVAC</u>

PC ← AC

2. AR \leftarrow PC

1.4. ARITHMETIC AND LOGICAL OPERATIONS

ALU BASED

ADD

AC ← AC+R

<u>SUB</u>

AC ← AC-R

MULTIPLY

AC ← AC*R

DIVIDE

1. AC \leftarrow AC/R

AND

1. AC ← AC & R

XOR

AC ← AC XOR R

OR

AC ← AC|R

NOT

1. AC $\leftarrow \overline{AC}$

LSHIFT

AC ← AC<<R

RSHIFT

1. AC ← AC>>R

DEDICATED ADDER BASED

INCREMENT PC

1. PC ← PC+1

INCREMENT AC

AC ← AC+1

INCREMENT R

1. PC ← PC+1

INCREMENT R1

1. R1 ← R1+1

INCREMENT R2

1. R2 ← R2+1

INCREMENT R3

1. R3← R3+1

2. STATE DIAGRAM

3. DATA PATH

