UNCLASSIFIED

AD NUMBER AD819939 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 08 SEP 1967. Other requests shall be referred to Air Force Technical Applications Center, Washington, DC. **AUTHORITY** AFTAC USAF ltr 28 Feb 1972

FREQUENCY-WAVENUMBER ANALYSIS OF SIGNALS AND NOISE RECORDED AT THE VERTICAL ARRAY AT APACHE, OKLAHOMA

8 September 1967

Prepared For

AIR FORCE TECHNICAL APPLICATIONS CENTER Washington, D. C.

By

R. L. Sax TELEDYNE, INC.

Under

Project VELA UNIFORM

Sponsored By

ADVANCED RESEARCH PROJECTS AGENCY Nuclear Test Detection Office ARPA Order No. 624

FREQUENCY-WAVENUMBER ANALYSIS OF SIGNALS AND NOISE RECORDED AT THE VERTICAL ARRAY AT APACHE, OKLAHOMA

SEISMIC DATA LABORATORY REPORT NO. 196

AFTAC Project No.: VELA T/6702

Project Title: Seismic Data Laboratory

ARPA Order No.: 624

ARPA Program Code No.: 5810

Name of Contractor: TELEDYNE, INC.

Contract No.: F 33657-67-C-1313

Date of Contract: 2 March 1967

Amount of Contract: \$ 1,736,617

Contract Expiration Date: 1 March 1968

Project Manager: William C. Dean (703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign national may be made only with prior approval of Chief, AFTAC.

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract F 33657-67-C-1313.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsibile for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

	Page No
ABSTRACT	
ARRAY RESPONSE	1
AMBIENT NOISE	4
SIGNAL, NOISE PRECEDING SIGNAL, AND CODA	5
FIGURES	
 Simulated Signal Using Acoustic Log Propagation Velocities Measured at APOK 	
2. Simulated Noise	
3. Ambient Noise	
4. Noise Sample Before The Aleutian Earthquake	
5. Main Pulse of The Aleutian Earthquake	
Coda Following The Main Pulse of The Aleutian Earthquake	
7. Mirror Imaged Ambient Noise Sample	
8. Mirror Imaged Noise Before Aleutian Earthquake	
9. Mirror Imaged Main Pulse of Aleutian Earthquake	
10. Mirror Imaged Coda of Aleutian Earthquake	

ABSTRACT

The seismic data analyzed include an Aleutian earthquake, several samples of ambient noise along with the noise occuring before the event, and a 25 second sample of coda following the signal. The signal coda sampled had nearly uniform power. A preliminary interpretation of the noise and signals strongly suggests the importance of energy conversions possibly due to the complex geology at APOK. The geology is known to be very complex and is characterized to first order a thick wedge of low velocity strata imbedded in material of higher propagation velocity. The evidence of conversion is based on the asymmetry of the F-K spectrum of ambient noise with respect to positive and negative wave number. The results indicate a predominance of obliquely incident up-going waves at all frequencies. Further, the signals and coda similarly displayed anomalous down-going pulses attenuated by approximately 6 db with respect to the up-going pulse. Further, the down-going pulse contains lower frequencies than the up-going pulse and has a much lower apparent vertical velocity. The results obtained by mirror imaging the vertical array indicated that a loss of approximately 3 db would be encountered in using a conventional signal model at this site.

ARRAY RESPONSE

Due to the finite dimension of the array and the uneven spacing of sensors, and finite duration of the samples, the response to a sinusoidal wave input can be very complicated and can possibly lead to misinterpretations. For an analysis of the response of a continuous finite array consider the response to sine wave inputs.

$$p(t,x) \begin{cases} \exp\left[i\omega_{O}(t-x/c)\right] + \exp\left[i\omega_{O}(t+x/c)\right] & \text{when and } \\ T_{1} \leq t \leq T_{2} & X_{1} \leq x \leq X_{2} \\ 0 & \text{elsewhere} \end{cases}$$

$$S(\omega) = \frac{1}{i(\omega_0 - \omega)} \left[e^{i(\omega_0 - \omega)T} 2 - e^{i(\omega_0 - \omega)T} 1 \right]$$

$$P_{T}(\omega) = S(\omega) \overline{S(\omega)} = \frac{2 \cdot \left\{1 - \cos \left[(\omega_{o} - \omega) (T_{2} - T_{1})\right]\right\}}{(\omega_{o} - \omega)^{2}}$$

Let
$$Y(k) = Y_1 (\omega_0/c - k) + Y_2 (\omega_0 + k)$$

$$Y_1(k) = \frac{1}{i(\omega_0/c - k)} \left[e^{i(\omega_0/c - k) X_2 - e^{i(\omega_0/c + k) X_2}} \right]$$

$$Y_2(k) = \frac{1}{i(\omega_0/c + k)} \left[e^{i(\omega_0/c + k) X_2} - e^{i(\omega_0/c + k) X_1} \right]$$

$$P_{X}(k) = (Y_{1} + Y_{2}) (\bar{Y}_{1} + \bar{Y}_{2}) = Y_{1}\bar{Y}_{1} + Y_{2}\bar{Y}_{2} + (Y_{1}\bar{Y}_{2} + Y_{2}\bar{Y}_{1})$$

$$Y_{1}\overline{Y}_{1} = \frac{2 \cdot \{1 - \cos [(\omega_{0}/c - k) (X_{2} - X_{1})]\}}{(\omega_{0}/c - k)^{2}}$$

$$Y_{2}\overline{Y}_{2} = \frac{2 \cdot \{1 - \cos [(\omega_{0}/c + k) (X_{2} - X_{1})]\}}{(\omega_{0}/c + k)^{2}}$$

$$Y_{1}\bar{Y}_{2} + Y_{2}\bar{Y}_{1} = \frac{2}{(\omega_{0}/c - k)(\omega_{0}/c + k)} \left\{ \cos 2kX_{2} + \cos 2kX_{1} - \cos \left[(\omega_{0}/c - k)X_{1} - (\omega_{0}/c + k)X_{2} \right] - \cos \left[(\omega_{0}/c - k)X_{2} - (\omega_{0}/c + k)X_{1} \right] \right\}$$

The total power response of the array is

$$R(\omega) = P_{T}(\omega) P_{X}(k)$$

From this it is clear that the response of the F-K spectrum to a sinusoidal wave of given frequency and wave number is a complicated function of both frequency and wave number and in practice is even much more so due to finite and uneven sampling in space. Thus to make rigorous use of the F-K analysis

as a tool one should compare a model with the observed data, and conclude that the model is adequate only if the F-K spectra qualitatively match the model. In this preliminary report, this is not stressed enough, but as a cautionary aid the response of an impulse for the case of infinite apparent vertical phase velocity is shown with each F-K spectrum, and several synthetic cases are run for simple models of a signal and a model of the ambient noise.

The signal model is generated with 1.25 cps pulse with a .8 second echo at the source and with a receiver echo delayed by using appropriate uphole times obtained from propagation velocities observed at APOK and with a surface reflection coefficient of 0.9. The signal model F-K spectrum is shown on Figure 1. The split peak in the spectrum is due to the source echo which nulls at 1.25 cps. The strip at the bottom shows the array response.

The noise is simulated by taking random numbers from a Gaussian population and passing them through a tuned filter at .25 cps and 2.0 cps to obtain a model of the noise at the surface. The model of the noise at underlying depth is obtained from a stationary Markov chain; for example, the noise at the ith level is taken as a fraction of the noise of the (i - 1)th channel added to a new random realization passed through the tuned filters. An example of this noise model is shown on Figure 2. It is similar to ambient noise observed at APOK (see Figure 3), except that the highly correlated noise peaks observed in the signal band (.7<f<2.) were not put into the model. In the model the sharp spectral peak at .25 cps (Figure 2) is for highly correlated noise between channels contrasted with that at 2.0 cps where the noise which is uncorrelated between channels, with the results that the peak is spread broadly over all wave numbers.

AMBIENT NOISE

The ambient noise spectrum derived from a four minute sample is shown on Figure 3. Comparing this with noise generated from a Markovian process, the .25 and 2.0 cps peaks are of similar character suggesting very high correlation between channels for the .25 cps peak and very low correlation for the 2.0 cps noise peak. The principal difference between the observed noise at APOK on Figure 3 and the synthetic noise generated using the extremely simple linear state model is a rotation of the whole pattern toward negative wave This same effect can be produced by inputing the random function to a process which produces negative delays or lead time equal to X/C representing conversion to up-going waves where the apparent vertical phase velocity C is obtained from the slope of the line shown on Figure 3. The value obtained for C is approximately 12 km/sec corresponding to an incidence angle of about 75°. This suggests the possibility of Stonely waves guided upwards along the thick low-velocity layer, dipping 15°. This possibility is qualitatively consistent with the anomalous signal shown on Figure 5.

Other differences between observed noise on Figure 3 and the model on Figure 2 are the three noise peaks at 1.0 cps, 1.4 cps, and 1.6 cps. The 1.0 and 1.4 peaks appear to be highly correlated between channels; the 1.6 shows low correlation in the noise between adjacent channels. These peaks in the signal band appear to have nearly infinite vertical phase velocity and are probably due to Rayleigh waves, i.e., vertical and possibly also horizontal standing waves trapped in the basin bounded by higher velocity basement complex rocks.

SIGNAL, NOISE PRECEDING SIGNAL, AND CODA

A 30-second noise sample before the arrival of the Aleutian event is shown on Figure 4. Comparing this with the amient noise samples on Figure 3 we note the same asymmetry in the F-K spectrum. In addition, up-going body waves are indicated by peaks at .85 cps, 1.25 cps, 1.5 cps and 2.0 cps. There is much weaker indication of down-going waves at .85 cps, down by 3 db from the up-going waves. Waves of infinite vertical phase velocity (possibly Rayleigh waves,) are indicated by the series of peaks occurring along the frequency axis at k = 0. For this sample, these peaks are indicated with approximately the same power as the up-going body waves.

A 6-second sample of the earthquake pulse is shown on Figure 5. The up-going pulse gives spectral peaks at .85 cps, 1.20 cps, and 1.9 cps. The apparent vertical phase velocity is approximately the same as that shown by Figure 4 for the noise preceding the signal. Lower than expected vertical phase velocities suggest departure from the simple model of a pulse and echo based on acoustic log velocities (Figure 1). The apparent velocities are lower by at least fifteen to twenty percent. Also, the down-going earthquake pulse is even more anomalous. The amplitude is down 6 db from that of the up-going pulse; the apparent vertical velocity is very low; and the .85 cps peak down-going phase appears to contain lower frequency. A possible explanation of the anomalous signal can be based on dipping beds.

This may help to explain the anomalous low amplitude down-going reflection. The anomalous apparent vertical velocities may result from forward scattered P-S conversions, especially at the surface, due to anomalously high angle of emergence. Looking again at Figure 5, there appears to be signal peaks at nearly infinite vertical phase velocity.

Although possibly due to the array response, no such effect is observed on the simulated signal on Figure 1 which, of course, uses the same array geometry.

A 30-second sample of the coda following the signal is shown on Figure 6. These show apparent spectral peaks in the signal at .8 cps, 1.1 cps, and 1.35 cps. The overall character of the coda F-K spectrum is more similar to the signal than the noise preceding the signal, but is yet considerably different in detail from that of the signal.

Figures 7, 8, 9, and 10 are processed by taking the mirror image of the vertical array, which aligns the upgoing and down-going pulses into a single step-out pattern. This will attenuate conversions to up or down-goind P or S waves and amplify normally reflected P pulses and Rayleigh waves. It will also effectively double the aperture of the array for these kinds of waves. Figure 7 for the ambient noise shows body waves down 3 to 6 db from those of apparently infinite vertical phase velocity. Similar results are shown for the noise before the Aleutian event on Figure 8, also showing the noise field to be down considerably lower in the signal event. However, due to the grossly anomalous nature of the signal at APOK, the signal and coda are also down by 6 db compared to 3 db for the noise preceding the signal. Thus a loss of at least 3 db is expected if the signal model at APOK is taken as a normal upgoing pulse and echo. For the imaged array, the frequency of F-K spectral peaks appear to be more consistent between the signal and its coda. The imaging techniques appears to eliminate conversions other than a simple echo at the surface.

VFKSPTRM SIMULATED SIGNAL

SAMPLING HOLE = 20.40 STANTING PUINT = 308 TOTAL POINTS = 120

CHANNEL ID	SCALE FACTOR	DEPTH	₩ H	STHEOL
A1	1.00	.015	3 - 4 -	v
A2	1.00	1.060	6 - ¥	6
A 5	1.00	1.998	12 - 19	2
AA	1+00	2.290	16 - 21	
45	1.66	2.910	24 21	

Figure 1. Simulated signal using acoustic log propagation velocities measured at APOV

VYKSPTRM SIMULATED AMBIENT HOISE

SEIDMOLHAM NO. = 1 NO. OF CHANNEL = 8

BAMPLING PAIS = 20.88 SIAHIING POINT = 1 TOTAL 20INTS = 4888

INC. NO. OF CHANNEL = 8

INC. OF CHANNEL = 8

	GHANNOL ID	SCALE FACTOR	DSPTH	J 0	SYMOOL
	A1	1.00	.020	6 - 3	•
gar over quite a a racina vir à limite	A2	1.00	1.000	6 - 9	
	A3	1.00	1.070	12 - 15	2
	A4	1.00	2.278	18 - 21	•
	44	1.00	2.000	24 - 27	

Figure 2. Simulated noise

VFKSPTRM AMBIENT NOISE STATION APOK

BEISHOGRAP No 7843	NG: OF CHANNEL
SAMPLING HAIS . SE-DO STARTING P	DINT . 1 TOTAL POINTS . 4886
THE NUMBER UP SHOOTHING TIME . 5	

			0 •	STHEQL
CHANNEL ID	SCALE FACTOR	GEPTH -	8 - 3	•
Du 6	1.00	.020		6
044	1.00	1.000	12 - 19	•
0 w 3	1.00	1.070	18 - 21	•
DMS	1.00	2.270	24 - 87	•
n				

Figure 3. Ambient noise

VEKSPTRM AMBIENT NOISE STATION APOK

Figure 4. Noise sample before the Aleutian Earthquake

SEISMOGMAN NO. B CHANNEL = 9
SAMPLING RAIS * 20.88 STARTING POINT * 668 TOTAL POINTS * 128
THE NUMBER UP SHOOTHING THE A.S.

· · · · · · · · · · · · · · · · · · ·	HANNEL TO	SCALE FACTOR	DEPTH	D e	SYHBOL
	Dus	1.60	.019	. 3	0.5
	Dw4	1.00	1.880	4 - 9	•
	Dw3	1.00	1.990	12 - 19	2
	DMS	1.80	2.200	18 - 21	Ya.
	041	1.00	2.910	24 - 27	the comment of the same of the
		•			

Figure 5. Main pulse of the Aleutian Earthquake

VFKSPTRM ALEUTIAN EARTHQUAKE CODA

8616HODRSH NO. = HO. OF CHANNEL . SAMPLING MATE - 20-66 - . STARTING POINT - 600 SCALE FACTOR DEPTH -.4940 -14000 -.4000 THE HAX: VALUE = 4,16178 89 0 2000 .4000 .61 85 555 + 55 566 = 65

Figure 6. Coda following the main pulse of the Aleutian Earthquake

				,	VEKSITE	M MMBTH	NT NOIS	SE STATION	APOK	1		
	SFI	эмобкат н	0. 4 7	143			NU.	OF CHANK	FL = 10	(MIRROR	IMAGED)	
		PETRO HAT	E # 27,00		HE POIN	T	1T	TAL POIN	15 × 4096			
	THE	. WHIMPEN O	F S400[HIN	3 TIME # 5								
			HANNET TO		ALE FAC	10R	DE	Рүн				
			0"1		1.00		-2	.888				
			U 2		1.00		-2	.270		UB		
			043		1.00			.970		. 3		•
			894		1.00		-1	.600				
			0.45		1.00		•	.028	12	- 15		
			- 100 		1:00			.020		- 21		
			044		1.00		1	.668		- 37		
			0.43		1.00		1	.978		-		
•			Dv2		1.00		···	,27g				
•	A 17		041		1.00		2	.880				
•				*	.2000	16		VALUE -	6.8125E	85 .808n	. 0.000 1.	
.50	**********			•					*******			
-	1 *****				***	***		********			1	
	į				ļ						1	
.25	*		·;			-88888-		Ag				
-	1 800	#8488	********		1 40 8	335	e 68 1		*********	-	1 888	
			355555555	1 2/2222	1999 2	w/ i 6	5 5551	555555	1 (53555555) 535555	1		
.00	888	8-0-26 35355	27272777	55555	55555	4.7	22222	55555	5333333	22224		
	1 94888488	1001	1 - 8#	808	1 68	555	78 1	88	085		18888988	_
		1 606640 1 606640	1 6"88 848447668 8884848688	1 68008808	1 8888 1888 8		6 6666 1 6 6666 1		16686 1666666666 166666666	1880 ; 88 80 8880 ; 88 80	1	
. 75	1 80	*	1884848888	+-68888848	8-90-88+ 8 808 E	A	8-8688 B	-88888888 #88888	+684468486 668666886	•• 1	1 88	•
	1	1	1 84468588 1 8446858	8#25858 8#868#8	1 68 8	(2)	8 88 1	88888	445666666	<u> </u>	1	_
	i		ABABBA	200700	8888 8		6 6666	10000	1 00000			
.50					8668	848	8.4-886	1000-				•
	1		PROSER		1686 8		8 8881	88888888	18888888			
	į	1	. #888488	1 8800	8468 8				16566666		i	į
.25		• • • • • • • • • • • • • • • • • • • •	REBUREN	Beh	8588	{2}	88886		80088888 1688888 .	• • • • • • • • • • • • • • • • • • • •	••••	
			1	E 1779	888 .	8 1 8	. 886	N88	1 :	*********	••••••••	
	ļ			8888	888 .	8 1 A	. 866	8888	in :			
. 00			*		8.88	0-45-0	8 886	888868	0660			
	+ .:::::::	*******		87 8868	1989 .8	5 6	8. 6881	1989	×		*******	-
	!:::· ·		****	866	888	88 88 881888	. 86	388 388	.::	l ::::::::	r ::::	
.75	****		l ":::		B	88168			1		1	
		1		1	1	00000			1		1	<u> </u>
	AABd			80 HH808		600	0.88	80000	66		1	į
1200	1		8884848484 8884848484	1 80498		V22)	2 86	80008	1860588866		1	i
. 50	AABd	1 88	1 5555	806488 4	555 5	1 1 5	2 227	2 48888	8 2222	1 8A	860	i
	### ##################################		+	055-000 1 555 0 1855 5 55555 55	9 9 9 9 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	6000	7272 8 866	22 2222 2 2222 6 722 6 722	1227 222 1 666 6666668	+-553 1555 90899 5555 90899 555 98999 55 98999	900000-55- 900000 55 900000 55 900000	
. 25	1 24 habb	1 48 1 44 1 44 1 44 1 44 1 44 1 44 1 44	1 64606	1 55 80	1 27	روبع	6 666	22 222	1 66666	1222 88886	00000 55	!
. 25	77 500				12222	86666	2222	222 88 2	52.455555	1 888		Ĭ
	1 6	650	1 2525555	1 48 44	2 82		28 .					
. 27) # 1884 88	650 65	1 2525555	1 88 88 888 • 888	2 62	5551555	7888 T	88 88 1888 . 88	1 6	848 ···		

Figure 7. Mirror imaged ambiend noise sample

VEKSPTRM AMBIENT NOISE, STATION APOK

SETSHOUGHAN NO. . 6353 NO. OF CHANNEL . 10 (MIRROR IMAGED)

BANFLING HATE R 20.00 STARTING POINT . 1 TOTAL POINTS . 512

THE NUMBER UF SHOOTHING TIME . 2

GHANNEL ID	SCALE FACTOR	DESTH	D 0	SAMBOL
Dw1	1.08	-2.910	0 - 3	0
D# 5	1.08	-2.298	6 - 9	8
Du3	1.00	-1.990	12 - 15	. 2
Du 4	1.00	-1.688	18 - 21	•
Dus	1.00	115	24 - 27	•
Dus	1.00	.015		
Du4	1.60	1.888		
D#3	1.80	1.990		
Dug	1.88	2.290		
Dw1	1.00	2.910		

Figure 8. Mirror imaged noise before Aleutian Earthquake

SFISHOGHAM NO. = 6373 NO. OF CHANNEL = 18 (MIRROR IMAGED)

SAMPLING RAIS = 28.08 STARTING POINT = 888 TOTAL POINTS = 512

THE NUMBER UP SHOOTHING TIME = 2

	UMANNEL 10	SCALE FACTOR	DESTH	0 0	SYMBOL
	041	1.80	-2.910	0 - 3	0
	0 4 5	1.80	-2.298	6 - 9	6
	De3	1.00	-1,998	12 - 15	2
	DW4	1.00	-1.680	18 - 21	
	045	1.80	015	24 - 27	•
A A 110	0u5	1.00	,815	TO AND ADDRESS IN EMPLOYMENT OF EACH AND A AND	
	Dw4	1.00	1.680		
	0w3	1.00	1.990		
	042	1.00	2.290		
	0w1	1.00	2.910		

Figure 9. Mirror imaged main pulse of Aleutian Earthquake

	SFISHOGHAM HO. # 6393	Marie Company	ND. OF CHANNE	L a 10 (MIRROR IMA	GED)
	SAMPLING RATE . 20.00	STARTING POINT = 66	TOTAL POINT	S = 128	
	THE NUMBER OF SHOOTHING T	MF = 0			
	CHANNE: 1D	SCALE FACTOR	DEPTH	U B	OYHODL
	Dw1	1.00	-2.910	9 - 3	
	DnS	1.00	-2 - 29 8	6 + 9	6
	Uu3	1.00	-1.998	12 - 15	5
	DW4	1.00	-1.880	18 - 21	
	Du5	1.00	015	24 - 27	
	Du5	1.00	. 015	egit gegen oder gittere i 1 11 - 1	
	U+4	1.00	1.680		
	DH3	1.00	1,990		
	DA 5	1.00	2.290	anne de est el Tarist ico de arabet degeniros e elidido s en espera e e	
- nt-od-terrore	Dw1	1.00	2.910		

Figure 10. Mirror imaged coda of Aleutian Barthquake

Security Classification

DOCUMENT C	ONTROL DATA - RAD		
(Security electrication of title, body of obstract and inde			
Miles - Arest	,		MITY CLASSIFICATION
TELEDYNE, INC.	-	Unclassif	ied
ALEXANDRIA, VIRGINIA	'	& SROUP	
3. REPORT TITLE			
FREQUENCY-WAVENUMBER ANALYSIS O	F SIGNALS AND	NOISE RECO	ORDED AT THE
VERTICAL ARRAY AT APACHE, OKLAH			
4. DESCRIPTIVE HOTES (Type at report and inclusive dates)			
Scientific			
S. AUTHOR(S) (Leel name, firel name, initial)			
Sax, Robert L.			
September 8, 1967	7# TOTAL NO. OF PAGE	78. NO	. OF REPS
September 0, 1307			
	Se ORIGINATOR'S REF	(E)REGNUN TRO	
F 33657-67-C-1313	196		
	1 _		
VELA T/6702	AA OTHER RECORT NO	VEL (Any other me	mbore that may be exciseed
ARPA Order No. 624	this report)	And the sale of th	Meets met met ee statenes
• ARPA Program Code No. 5810			
19. AVAILABILITY/LIMITATION NOTICES			
This document is subject to spec	cial export co	ntrols and	each trans-
mittal to foreign governments or			
with prior approval of Chief, Al			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITA	RY ACTIVITY	
	ADVANCED RES	SEARCH PRO	JECTS AGENCY
	NUCLEAR TEST	r DETECTIO	N OFFICE
AV	MASHINGTON	D C	

13. ABSTRACT

The seismic data analyzed include an Aleutian earthquake, several samples of ambient noise along with the noise occuring before the event, and a 25 second sample of coda following the signal. The signal coda sampled had nearly uniform power. A preliminary interpretation of the noise and signals strongly suggests the importance of energy conversions possibly due to the complex geology at APOK. The geology is known to be very complex and is characterized to first order a thick wedge of low velocity strata 'abedded in material of higher propagation velocity. The evidence of conversion is based on the asymmetry of the F-K spectrum of ambient noise with respect to positive and negative wave number. The results indicate a predominance of obliquely incident up-going waves at all frequencies. Further, the signals and code similarly displayed anomalous down-going pulses aftenuated by approximately 6 db with respect to the up-going pulse. Further, the down-going pulse contains lower frequencies than the up-going pulse and has a much lower apparent vertical velocity. The results obtained by mirror imaging the vertical array indicated that a less of approximately 3 db would be encountered in using a conventional signal model at this site.

4	rity Classification		(A	LINK	8	LINK C	
KEY WORDS	ROLE	WT	ROLE	wT	ROLE	WT	
Seismology	1200						
Seismic Nois	e			!			
Deep Well							
Spectrum							
Signal Analy	sis						
		i i					
			1				
			<u> </u>	!!!		j .	

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name end eddress of the contractor, subcontractor, grentee, Department of Defense activity or other organization (corporate author) leaving the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Date" is included. Merking is to be in accordance with appropriete security regulations.
- 25. GROUP: Autor stic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional merkings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all cepltal letters. Titles in all cases should be uncleasified. If a meeningful title cennot be selected without classification, show title classification in all capitele in paranthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: !' appropriate, enter the type of report, e.g., interim, p:ogreee, summery, annuer, or final. Give the aclusive dates when a specific reporting period is cover.
- 5. AU. riOR(S): Enter the name(s) of author(s) es shown on or in the report. Enter tast name, first name, middle initial. If militery, show rank and brench of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as dey, month, year; or month, year. If more then one date appears on the report, use dete of publication.
- 7e. TOTAL NUMBER OF PAGES: The total page count chould follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES: Enter the total number of references alted in the report.
- 8s. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 85, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(5): If the report has been assigned any other re, ort numbers (either by the originator or by the aponeor), class exter this number(s).
- IO. AVAILABILITY/LIMITATION NOTICES. Enter eny limitations on further dissemination of the report, either than those

imposed by security ciseafficetion, using etendard stetements such as:

- (I) "Queiffied requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement end dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. militery egencies may obtain copies of this report directly from DDC. Other qualified users shell request through
- (5) "All distribution of this report is controlled. Qualified DDC users shell request through

if the report has been furnished to the Office of Technical Services, Department of Commerce, for eale to the public, indicete this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory eponsoring (paying for) the recearch and development. Include address.
- 13. -ABSTRACT: Enter en abetract giving a brief and factual eummery of the document indicetive of the report, even though it may also eppear eleewhere in the body of the technical raport. If edditional epace is raquired, a continuation sheet shall be ettached.

It is highly desirable that the abstract of classified raports be unclessified. Each paragraph of the abstract shall end with an indication of the military accurity classification of the information in the paragraph, rapresented us (TS), (S), (C), or (V).

There is no limitation on the length of the abstract. However, the auggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or abort phrases that cherecierize a report and may be used an index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, end weights is optional.