INDEX

SR. NO.	TOPIC	DATE	SIGNATURE
1	a. Perform conditional formatting on a datasheet using various criteria		
	b. Creative pivot table to analyse and summarise data		
	c. Use VLOOKUP function to retrieve information from a different worksheet or a table		
	d. Perform what if analysis using goal sick to determine input values for desired output		
2.	Data frames and basic data pre processing		
3.	Feature scaling and dummification		
4.	Hypothesis testing		
5.	ANOVA (Analysis of Variance)		
6.	Regression and its types		
7.	Logistic regression and decision tree		
8.	K means clustering		
9.	Principal component analysis PCA		
10.	Data visualisation and story telling		

PRACTICAL NO. -1

A. Perform conditional formatting on a dataset using various criteria.

Steps

Step 1: Go to conditional formatting > Greater Than

Step 2: Enter the greater than filter value for example 2000.

Step 3: Go to Data Bars > Solid Fill in conditional formatting.

B. Create a pivot table to analyse and summarize data.

Steps

Step1: - Select the entire table and go to Insert Tab PivotChart > Pivotchart Step2:- Select "New Worksheet" in the create pivot chart window.

Step 3: Select and drag attributes in the below boxes.

C. Use VLOOKUP function to retrieve information from a different worksheet or table.

Steps

Step 1: click on an empty cell and type the following command.

=VLOOKUP(B3, B3:D3,1, TRUE)

D. Perform what-if analysis using Goal Seek to determine input values for desired output.

Steps

Step 1: In the Data tab go to the what if analysis>Goal seek.

Step 2: Fill the information in the window accordingly and click ok.

PRACTICAL NO. 2

AIM:- Data Frames and Basic Data Pre-Processing

A. Read Data from CSV and JSON files into a data frame.

```
#Read data from a csv file
import pandas as pd
df = pd.read_csv('Student_Marks.csv')
print("Our dataset")
print(df)
```

OUTPUT:-

```
====== RESTART: D:\Notes\sem-6\data science\prac2
Our dataset
                      time study
    number courses
                                    Marks
0
                   3
                            4.508
                                   19.202
                          0.096 | 7.734
3.133 | 13.811
1
2
3
                            7.909
                                   53.018
                   6
4
                   8
                            7.811
                                   55.299
95
                            3.561
                                   19.128
                   6
                   3
96
                           0.301
                                   5.609
97
                   4
                           7.163 41.444
98
                   7
                           0.309 12.027
99
                   3
                                   32.357
                           6.335
[100 rows x 3 columns]
```

>>>

```
SOURCE CODE:-
     #Reading data from a JSON Import
     pandas as pd
     data=pd.read json('dataset.json')
     print(data)
     OUTPUT:-
>>>
                  ==== RESTART: D:/Notes/sem-6/data science/pr
        fruit
                  size
                          color
                            Red
        Apple
                 Large
      Banana Medium Yellow
       Orange
                 Small
                        Orange
>>>
```

- B. Perform basic data pre-processing tasks such as handling missing values and outliers code:
 - #Replacing NA values using fillna()
 Import pandas as pd
 df = pd.read_csv('titanic.csv')
 Print(df)
 df.head(10)
 print("Dataset after filling NA values with 0:") df2 =
 df.fillna(value = 0)
 print(df2)

 OUTPUT:-

```
======= RESTART: D:/Notes/sem-6/data science/prac2c.py ======
    PassengerId Pclass ... Cabin Embarked
                   3.0 ...
            892
                                         S
            893
                    3.0 ...
1
            894
                   2.0 ...
2
                              NaN
                    3.0 ...
3
            895
                              NaN
            896
                    NaN
                              NaN
                        . . .
                        . . .
413
                        ...
           1305
                    3.0
                              NaN
                   1.0 ...
414
          1306
                            C105
415
                   3.0 ...
          1307
                              NaN
                    3.0 ...
416
           1308
                              NaN
           1309
                    3.0 ...
417
                              NaN
[418 rows x 11 columns]
Dataset after filling NA values with 0 :
    PassengerId Pclass ... Cabin Embarked
0
                    3.0 ...
            892
                               0
            893
                   3.0 ...
                               0
                                         ŝ
1
                   2.0 ...
                               0
2
            894
            895
                    3.0
                                0
                        . . .
                               0
4
           896
                   0.0
                        . . .
413
           1305
                   3.0 ...
414
          1306
                   1.0 ... C105
          1307
415
                   3.0 ... 0
                    3.0 ...
416
           1308
417
           1309
                    3.0
                        . . .
[418 rows x 11 columns]
```

2. #Dropping NA values using dropna()

```
Import pandas as pd

df= pd.read_csv('titanic.csv')

print(df)

df.head(10)

print("Dataset after dropping NA values:") df.dropna(inplace

= True)

print(df)
```

```
PassengerId Pclass ... Cabin Embarked
0 892 3.0 ... NaN Q
1 893 3.0 ... NaN S
2 894 2.0 ... NaN S
4 896 NaN ... NaN S
4 896 NaN ... NaN S
4 11 1305 3.0 ... NaN S
414 1306 1.0 ... C105 C
415 1307 3.0 ... NaN S
416 1308 3.0 ... NaN S
417 1309 3.0 ... NaN S
417 1309 3.0 ... NaN S
418 rows x 11 columns]
Dataset after dropping NA values:
PassengerId Pclass ... Cabin Embarked
12 904 1.0 ... B45 S
14 916 1.0 ... B57 B59 B63 B66 C
26 918 1.0 ... B57 B59 B63 B66 C
28 920 1.0 ... B57 B59 B63 B66 C
28 920 1.0 ... A21 S
404 1296 1.0 ... B57 B59 B63 B66 C
405 1297 2.0 ... D40 C
405 1297 2.0 ... D38 C
407 1299 1.0 ... C80 C
411 1303 1.0 ... C78 Q
414 1306 1.0 ... C105 C
```

C. Manipulate and transform data using functions like

```
filtering, sorting, and grouping Code:
```

```
SOURCE CODE:-
```

import pandas as pd #

Load iris dataset

```
iris = pd.read_csv('Iris.csv')
```

```
# Filtering data based on a
```

```
condition setosa = iris[iris['Species'] ==
```

'setosa'] print("Setosa samples:")

print(setosa.head())

Sorting data

sorted_iris =

iris.sort_values(by='SepalLengthCm',ascendin

```
g=False)
print("\nSorted iris dataset:")
print(sorted_iris.head())

# Grouping data grouped_species =
iris.groupby('Species').mean() print("\nMean
measurements for each species:")
print(grouped_species)
```

```
Setosa samples:
Empty DataFrame
Columns: [Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, Species]
Index: []
Sorted iris dataset:
     Id SepalLengthCm ... PetalWidthCm
                                                  Species
                 7.9 ... 2.0 Iris-virginica
7.7 ... 2.3 Iris-virginica
7.7 ... 2.0 Iris-virginica
135 136
122 123
117 118
                   7.7 ...ega Te<sup>2.2</sup> Iris-virginica
7.7 ...ega Te<sup>2.2</sup> Iris-virginica
118 119
[5 rows x 6 columns]
Mean measurements for each species:
                  Id SepalLengthCm ... PetalLengthCm PetalWidthCm
Species
Iris-setosa 25.5
Iris-versicolor 75.5
                              5.006 ...
                                                  1.464
                                                                0.244
                              5.936 ...
                                                                1.326
                                                 4.260
Iris-virginica 125.5
                              6.588 ...
                                                  5.552
                                                                2.026
[3 rows x 5 columns]
```

PRACTICAL NO. 3

AIM:- Feature Scaling and Dummification

A. Apply feature-scaling techniques like standardization and normalization to numerical features.

```
SOURCE CODE:-
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler,
StandardScaler #
Load dataset
df = pd.read_csv('wine.csv', header=None, usecols=[0, 1,
2], skiprows=1)
df.columns = ['classlabel', 'Alcohol', 'Malic Acid'] #
Display original DataFrame
print("Original DataFrame:")
print(df)
# Apply Min-Max Scaling min_max_scaler
= MinMaxScaler() df[['Alcohol', 'Malic
Acid']] =
min_max_scaler.fit_transform(df[['Alcohol', 'Malic Acid']])
print("\nDataFrame after Min-Max Scaling:") print(df)
# Apply Standard Scaling standard_scaler =
StandardScaler() df[['Alcohol', 'Malic Acid']]
=
standard_scaler.fit_transform(df[['Alcohol', 'Malic Acid']])
print("\nDataFrame after Standard Scaling:") print(df)
```

```
= RESTART: D:/Notes/sem-6/data science/prac3b.py
   Original DataFrame:
        classlabel Alcohol Malic Acid
                     14.23
                                 1.71
   0
                     13.20
                                 1.78
   1
                1
   2
                     13.16
                                 2.36
   3
                                 1.95
                     14.37
                1
   4
                1
                     13.24
                                 2.59
                                 5.65
   173
                3
                     13.71
                3
                     13.40
                                 3.91
   174
   175
                3
                     13.27
                                 4.28
   176
                3
                     13.17
                                 2.59
   177
                3
                     14.13
                                 4.10
   [178 rows x 3 columns]
    Dataframe after MinMax Scaling
        classlabel
                   Alcohol Malic Acid
   0
                1
                   0.842105
                              0.191700
   1
                1
                   0.571053
                              0.205534
   2
                   0.560526
                              0.320158
                1
   3
                   0.878947
                              0.239130
                              0.365613
   4
                1 0.581579
                   0.705263
                              0.970356
   173
                3
   174
                   0.623684
                              0.626482
                              0.699605
   175
                3
                   0.589474
   176
                3
                   0.563158
                              0.365613
   177
                   0.815789
                              0.664032
   [178 rows x 3 columns]
    Dataframe after Standard Scaling
    110
                         0.000100
                                         0.000010
    177
                      3
                          0.815789
                                         0.664032
     [178 rows x 3 columns]
      Dataframe after Standard Scaling
           classlabel
                          Alcohol
                                     Malic Acid
    0
                          1.518613
                                        -0.562250
                      1
    1
                      1
                          0.246290
                                        -0.499413
    2
                      1
                          0.196879
                                         0.021231
    3
                      1
                          1.691550
                                       -0.346811
     4
                      1
                          0.295700
                                        0.227694
    173
                      3
                          0.876275
                                         2.974543
     174
                      3
                          0.493343
                                         1.412609
    175
                      3
                          0.332758
                                         1.744744
    176
                      3
                          0.209232
                                         0.227694
                      3
                          1.395086
                                         1.583165
    177
     [178 rows x 3 columns]
>>>
```

B. Perform feature Dummification to convert categorical variables into numerical representations.

```
SOURCE CODE:-
```

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder # Load
the dataset
iris = pd.read_csv("Iris.csv") print(iris)
# Apply Label Encoding le =
LabelEncoder()
iris['code'] = le.fit_transform(iris['Species'])
print(iris)
```

```
------ RESTART: D:/Notes/sem-6/data science/prac3a.py                           
         Id SepalLengthCm ... PetalWidthCm
                                                                                   Species
                                5.1
                                                                0.2
                                                                             Iris-setosa
                                                                0.2 Iris-setosa
0.2 Iris-setosa
1
                                        ...Vega 0.2 Iris-setosa Iris-setosa
2
                                4.7
                                               0.2 Iris-setosa
0.2 Iris-setosa
0.2 Iris-setosa
0.2 Iris-virginica
1.9 Iris-virginica
2.0 Iris-virginica
2.3 Iris-virginica
1.8 Iris-virginica
4
                                5.0
145
       146
                                6.7
                                        ...
       147
146
                                6.3
147
                                        ...
       148
                                6.5
       149
148
149
[150 rows x 6 columns]
                                                                                     O.2 Iris-setosa
O.2 Iris-setosa
O.2 Iris-setosa
O.2 Iris-setosa
O.2 Iris-setosa
O.2 Iris-setosa
         Id SepalLengthCm SepalWidthCm ... PetalWidthCm
                                                                                                           Species code
                                        3.5
                                 5.1
                                                                ...
                                                     3.0 ... 0.2
3.2 ... 0.2 Iris-setosa
3.1 ... 0.2 Iris-setosa
3.6 ... 0.2 Iris-setosa
... ...
3.0 ... 2.3 Iris-virginica
2.5 ... 1.9 Iris-virginica
3.0 ... 2.0 Iris-virginica
3.4 ... 2.3 Iris-virginica
3.5 ... 1.9 Iris-virginica
3.6 ... 1.8 Iris-virginica
                                                       3.0
                                 4.9
1
2
                                4.7
                                4.6
4
          5
                                5.0
145 146
                                6.7
146
       147
                                6.3
147
       148
                                6.5
148 149
                                6.2
149 150
[150 rows x 7 columns]
```

PRACTICAL NO. - 4

AIM:- Hypothesis Testing

```
SOURCE CODE:-
```

```
import numpy as np from
scipy import stats
import matplotlib.pyplot as plt
```

Set the significance level alpha

= 0.05

value: {p_value}')

```
# Generate two samples for demonstration purposes np.random.seed(42)
sample1 = np.random.normal(loc=10, scale=2, size=30) sample2 =
np.random.normal(loc=12, scale=2, size=30)

# Perform a two-sample t-test
t_statistic, p_value = stats.ttest_ind(sample1, sample2)
```

```
print("Results of Two-Sample t-test:")
print(f'T-statistic: {t_statistic}') print(f'P-
```

print(f"Degrees of Freedom: {len(sample1) + len(sample2) - 2}")

```
# Plot the distributions
plt.figure(figsize=(10, 6))
plt.hist(sample1, alpha=0.5, label='Sample 1', color='blue')
plt.hist(sample2, alpha=0.5, label='Sample 2', color='orange')
plt.axvline(np.mean(sample1), color='blue', linestyle='dashed',
linewidth=2)
plt.axvline(np.mean(sample2), color='orange', linestyle='dashed', linewidth=2)
plt.title('Distributions of Sample 1 and Sample 2') plt.xlabel('Values')
plt.ylabel('Frequency')
plt.legend()
# Highlight the critical region if null hypothesis is rejected if
p_value < alpha:</pre>
  critical_region = np.linspace(min(sample1.min(), sample2.min()),
max(sample1.max(), sample2.max()), 1000)
  plt.fill_between(critical_region, 0, 5, color='red', alpha=0.3,
label='Critical Region')
  plt.text(11, 5, f'T-statistic: {t_statistic:.2f}', ha='center', va='center', color='black',
backgroundcolor='white')
# Show the plot
plt.show()
```

```
# Draw Conclusions if

p_value < alpha:

if np.mean(sample1) > np.mean(sample2):

print("Conclusion: There is significant evidence to reject the null hypothesis.")

print("Interpretation: The mean of Sample 1 is significantly higher than that of Sample 2.")

else:

print("Conclusion: There is significant evidence to reject the null hypothesis.")

print("Interpretation: The mean of Sample 2 is significantly higher than that of Sample 1.")

else:

print("Conclusion: Fail to reject the null hypothesis.") print("Interpretation:

There is not enough evidence to claim a significant difference between the means.")
```

```
Results of Two-Sample t-test:
T-statistic: -4.512913234547555
P-value: 3.176506547470154e-05
Degrees of Freedom: 58
```


SOURCE CODE:-

import numpy as

np import pandas

as pd

import matplotlib.pyplot as plt

import seaborn as sb

import warnings

from scipy import stats

Suppress warnings

warnings.filterwarnings('ignore')

Load dataset

 $df = sb.load_dataset('mpg')$

```
T.Y.B.Sc.CS
print(df)
# Describe horsepower and model year columns
print(df['horsepower'].describe())
print(df['model_year'].describe())
#Categorize horsepower into bins
bins = [0, 75, 150, 240]
df['horsepower_new'] = pd.cut(df['horsepower'], bins=bins, labels=['l', 'm',
'h']) c = df['horsepower_new']
print(c)
#Categorize model year into bins
ybins = [69, 72, 74, 84]
labels = ['t1', 't2', 't3']
df['modelyear_new'] = pd.cut(df['model_year'], bins=ybins, labels=labels)
newyear = df['modelyear_new']
print(newyear)
# Create a contingency table
df_chi = pd.crosstab(df['horsepower_new'], df['modelyear_new'])
print(df_chi)
```

Perform chi-square test chi2_stat, p_value, dof, expected =

```
stats.chi2_contingency(df_chi) print(f'Chi-Square Statistic:
{chi2_stat}')
print(f'P-value: {p_value}')
print(f'Degrees of Freedom: {dof}')
print(f'Expected Frequencies:\n{expected}')
```

```
----- vesivvi. e./aii noces/ns/hiac_4.i.hå --
     mpg cylinders ... origin
0
    18.0
             8 ... usa chevrolet chevelle malibu
1
    15.0
                8 ...
                                     buick skylark 320
2
    18.0
                8 ...
                         usa
                                     plymouth satellite
3
                8 ...
    16.0
                         usa
                                          amc rebel sst
                8 ...
4
    17.0
                                           ford torino
                          usa
               . . .
393 27.0
                4 ...
                                      ford mustang gl
                          usa
394
   44.0
                4 ... europe
                                            vw pickup
395
    32.0
                4 ... usa
                                         dodge rampage
                4 ...
396 28.0
                          usa
                                           ford ranger
                4 ...
397
   31.0
                                            chevy s-10
                          usa
[398 rows x 9 columns]
count 392.000000
        104.469388
mean
       38.491160
std
min
        46.000000
        75.000000
25%
50%
        93.500000
75%
        126.000000
max
        230.000000
```

```
Name: horsepower, dtype: float64
count
         398.000000
mean
          76.010050
std
           3.697627
min
          70.000000
25%
          73.000000
50%
          76.000000
75%
          79.000000
          82.000000
max
Name: model year, dtype: float64
       m
1
       h
2
       m
3
       m
       m
      . .
393
       m
394
       1
395
       m
396
       m
                   OMega TechEd
397
       m
```

```
Name: horsepower_new, Length: 398, dtype: category Categories (3, object): ['l' < 'm' < 'h']
0
          t1
1
          t1
2
          t1
          t1
4
          t1
393
          t3
394
          t3
395
          t3
396
          t3
397
          t3
Name: modelyear_new, Length: 398, dtype: category Categories (3, object): ['t1' < 't2' < 't3'] modelyear_new t1 t2 t3
horsepower new
                        9 14
1
                       49 41 158
26 11 8
(54.95485392447537, 3.320518009555984e-11, 4, array([[ 21.21428571, 16.66836735, 61.11734694]
           [ 53.14285714, 41.75510204, 153.10204082], 
[ 9.64285714, 7.57653061, 27.78061224]]))
```

PRACTICAL NO. – 5

AIM:- ANOVA (Analysis of Variance)

SOURCE CODE:-

import numpy as np import

pandas as pd

import matplotlib.pyplot as plt

import seaborn as sb

import warnings

from scipy import stats

from statsmodels.stats.multicomp import pairwise_tukeyhsd

Suppress warnings

warnings.filterwarnings('ignore')

Load dataset

df = sb.load_dataset('mpg')

print(df)

Describe horsepower and model year columns

print(df['horsepower'].describe()) print(df['model_year'].describe())

Categorize horsepower into bins bins =

[0, 75, 150, 240]

```
df['horsepower_new'] = pd.cut(df['horsepower'], bins=bins, labels=['l', 'm', 'h'])
c = df['horsepower_new'] print(c)
# Categorize model year into bins ybins =
[69, 72, 74, 84]
labels = ['t1', 't2', 't3']
df['modelyear_new'] = pd.cut(df['model_year'], bins=ybins,
labels=labels)
newyear = df['modelyear_new']
print(newyear)
# Create a contingency table
df_chi = pd.crosstab(df['horsepower_new'], df['modelyear_new']) print(df_chi)
# Perform chi-square test
chi2_stat, p_value, dof, expected = stats.chi2_contingency(df_chi)
print(f'Chi-Square Statistic: {chi2_stat}')
print(f'P-value: {p_value}') print(f'Degrees of
Freedom: {dof}')
print(f'Expected Frequencies:\n{expected}')
```

```
# Define groups for ANOVA
group1 = [23, 25, 29, 34, 30]
group2 = [19, 20, 22, 24, 25]
group3 = [15, 18, 20, 21, 17]
group4 = [28, 24, 26, 30, 29]
# Combine data into a DataFrame
data = pd.DataFrame({'value': group1 + group2 + group3 + group4, 'group':
               ['Group1'] * len(group1) + ['Group2'] *
len(group2) +
                      ['Group3'] * len(group3) + ['Group4'] *
len(group4)})
# Perform one-way ANOVA
f_statistics, p_value_anova = stats.f_oneway(group1, group2, group3, group4)
print("\nOne-way ANOVA:")
print("F-statistics:", f_statistics)
print("P-value:", p_value_anova)
# Perform Tukey-Kramer post-hoc test
tukey_results = pairwise_tukeyhsd(data['value'], data['group'])
print("\nTukey-Kramer post-hoc test:")
print(tukey_results)
```

```
one-way ANOVA:
F-statistics: 12.139872842870115
p-value 0.00021465200901629603

Tukey-Kramer post-hoc test:
Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff p-adj lower upper reject

Group1 Group2 -6.2 0.024 -11.6809 -0.7191 True
Group1 Group3 -10.0 0.0004 -15.4809 -4.5191 True
Group1 Group4 -0.8 0.9747 -6.2809 4.6809 False
Group2 Group3 -3.8 0.2348 -9.2809 1.6809 False
Group2 Group4 5.4 0.0542 -0.0809 10.8809 False
Group3 Group4 9.2 0.001 3.7191 14.6809 True
```

PRACTICAL NO. - 6

AIM:- Regression and its Types SOURCE

CODE:-

import numpy as np import
pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

import warnings

from scipy import stats

from statsmodels.stats.multicomp import pairwise_tukeyhsd from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score

Suppress warnings warnings.filterwarnings('ignore')

Load dataset
df = sb.load_dataset('mpg')
print(df)

Describe horsepower and model year columns

```
print(df['horsepower'].describe()) print(df['model_year'].describe())
# Categorize horsepower into bins bins =
[0, 75, 150, 240]
df['horsepower_new'] = pd.cut(df['horsepower'], bins=bins, labels=['l', 'm', 'h'])
c = df['horsepower_new'] print(c)
# Categorize model year into bins ybins =
[69, 72, 74, 84]
labels = ['t1', 't2', 't3']
df['modelyear_new'] = pd.cut(df['model_year'], bins=ybins,
labels=labels)
newyear = df['modelyear_new']
print(newyear)
# Create a contingency table
df_chi = pd.crosstab(df['horsepower_new'], df['modelyear_new']) print(df_chi)
# Perform chi-square test
chi2_stat, p_value, dof, expected = stats.chi2_contingency(df_chi)
```

```
print(f'Chi-Square Statistic: {chi2_stat}')
print(f'P-value: {p_value}') print(f'Degrees of
Freedom: {dof}')
print(f'Expected Frequencies:\n{expected}')
# Define groups for ANOVA
group1 = [23, 25, 29, 34, 30]
group2 = [19, 20, 22, 24, 25]
group3 = [15, 18, 20, 21, 17]
group4 = [28, 24, 26, 30, 29]
# Combine data into a DataFrame
data = pd.DataFrame({'value': group1 + group2 + group3 + group4, 'group':
               ['Group1'] * len(group1) + ['Group2'] *
len(group2) +
                      ['Group3'] * len(group3) + ['Group4'] *
len(group4)})
# Perform one-way ANOVA
f_statistics, p_value_anova = stats.f_oneway(group1, group2, group3, group4)
print("\nOne-way ANOVA:")
print("F-statistics:", f_statistics)
print("P-value:", p_value_anova)
```

```
# Perform Tukey-Kramer post-hoc test
tukey_results = pairwise_tukeyhsd(data['value'], data['group'])
print("\nTukey-Kramer post-hoc test:")
print(tukey_results)
# Load California housing dataset
housing = fetch_california_housing()
housing_df = pd.DataFrame(housing.data,
columns=housing.feature_names)
print(housing_df)
# Add target variable housing_df['PRICE'] =
housing.target
# Select feature and target
X = housing_df[['AveRooms']] y =
housing_df['PRICE']
# Split dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train linear regression model model =
LinearRegression()
```

```
model.fit(X_train, y_train)
```

```
# Evaluate model
mse = mean_squared_error(y_test, model.predict(X_test)) r2 =
r2_score(y_test, model.predict(X_test))
print("Mean Squared Error:", mse)
print("R-squared:", r2) print("Intercept:",
model.intercept_) print("Coefficient:",
model.coef_) OUTPUT:-
```

```
MedInc HouseAge AveRooms ... AveOccup Latitude Longitude
0
             41.0 6.984127 ... 2.555556
                                          37.88 -122.23
    8.3252
             21.0 6.238137 ... 2.109842
    8.3014
                                          37.86
                                                -122.22
    7.2574
             52.0 8.288136 ... 2.802260
                                          37.85
                                                -122.24
3
    5.6431
             52.0 5.817352 ... 2.547945
                                          37.85 -122.25
    3.8462
             52.0 6.281853 ... 2.181467
                                          37.85 -122.25
                25.0 5.045455 ... 2.560606
20635 1.5603
                                            39.48
                                                   -121.09
20636 2.5568
               18.0 6.114035 ... 3.122807
                                            39.49
                                                   -121.21
               17.0 5.205543 ... 2.325635
                                            39.43
20637 1.7000
                                                   -121.22
                                            39.43
20638 1.8672
                18.0 5.329513 ... 2.123209
                                                   -121.32
20639 2.3886
                16.0 5.254717 ... 2.616981
                                            39.37
                                                   -121.24
[20640 rows x 8 columns]
Mean Squared Error: 1.2923314440807299
R-squared: 0.013795337532284901
Intercept: 1.654762268596842
Coefficient: [0.07675559]
```

SOURCE CODE:-

import numpy as np import pandas as pd import matplotlib.pyplot as plt

```
import seaborn as sb import
warnings
from scipy import stats
from statsmodels.stats.multicomp import pairwise_tukeyhsd from
sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split from
sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Suppress warnings
warnings.filterwarnings('ignore')
# Load dataset
df = sb.load_dataset('mpg')
print(df)
# Describe horsepower and model year columns
print(df['horsepower'].describe()) print(df['model_year'].describe())
# Categorize horsepower into bins bins = [0,
75, 150, 240]
```

```
df['horsepower_new'] = pd.cut(df['horsepower'], bins=bins, labels=['l', 'm', 'h'])
c = df['horsepower_new'] print(c)
# Categorize model year into bins ybins =
[69, 72, 74, 84]
labels = ['t1', 't2', 't3']
df['modelyear_new'] = pd.cut(df['model_year'], bins=ybins, labels=labels)
newyear = df['modelyear_new']
print(newyear)
# Create a contingency table
df_chi = pd.crosstab(df['horsepower_new'], df['modelyear_new'])
print(df_chi)
# Perform chi-square test
chi2_stat, p_value, dof, expected = stats.chi2_contingency(df_chi)
print(f'Chi-Square Statistic: {chi2_stat}') print(f'P-
value: {p_value}')
```

```
print(f'Degrees of Freedom: {dof}') print(f'Expected
Frequencies:\n{expected}')
# Define groups for ANOVA group 1 = [23,
25, 29, 34, 30]
group2 = [19, 20, 22, 24, 25]
group3 = [15, 18, 20, 21, 17]
group4 = [28, 24, 26, 30, 29]
# Combine data into a DataFrame
data = pd.DataFrame({'value': group1 + group2 + group3 + group4,
                 'group': ['Group1'] * len(group1) + ['Group2'] * len(group2) +
                         ['Group3'] * len(group3) + ['Group4'] *
len(group4)})
# Perform one-way ANOVA
f_statistics, p_value_anova = stats.f_oneway(group1, group2, group3, group4)
print("\nOne-way ANOVA:") print("F-
statistics:", f_statistics) print("P-value:",
p_value_anova)
```

```
# Perform Tukey-Kramer post-hoc test
tukey_results = pairwise_tukeyhsd(data['value'], data['group']) print("\nTukey-
Kramer post-hoc test:")
print(tukey_results)
# Load California housing dataset housing =
fetch_california_housing()
housing_df = pd.DataFrame(housing.data, columns=housing.feature_names)
print(housing_df)
# Add target variable housing_df['PRICE'] =
housing.target
# Multiple Linear Regression
X = housing_df.drop('PRICE', axis=1) y =
housing_df['PRICE']
# Split dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
```

```
# Train linear regression model model =
LinearRegression() model.fit(X_train,
y_train)

# Make predictions

y_pred = model.predict(X_test)

# Evaluate model

mse = mean_squared_error(y_test, y_pred) r2 =
r2_score(y_test, y_pred)

print("Mean Squared Error:", mse) print("R-squared:", r2) print("Intercept:",
model.intercept_) print("Coefficient:",
model.coef_)
```

OUTPUT:-

```
- vrsivvi. r./air noces/ns/brac_o_sindie.bi
       MedIncHouseAgeAveRooms...AveOccupLatitudeLongitude8.325241.06.984127...2.55555637.88-122.23
                                      ... 2.555556
... 2.109842
                     41.0 6.984127
21.0 6.238137
0
1
        8.3014
                                                          37.86
                                                                    -122.22
2
                     52.0 8.288136 ... 2.802260
        7.2574
                                                          37.85
                                                                    -122.24
                                      ... 2.547945
3
        5.6431
                     52.05.81735252.06.281853
                                                          37.85
                                                                    -122.25
4
        3.8462
                                      . . .
                                            2.181467
                                                          37.85
                                                                    -122.25
20635 1.5603 25.0 5.045455
20636 2.5568 18.0 6.114035
1 7000 17.0 5.205543
                                      . . .
                                      ... 2.560606
                                                          39.48
                                                                    -121.09
                                      ... 3.122807
                                                          39.49
                                                                    -121.21
                                            2.325635
                                                          39.43
                                                                    -121.22
                                      . . .
                   18.0 5.329513 ... 2.123209
                                                        39.43
                                                                    -121.32
20639 2.3886
                    16.0 5.254717 ... 2.616981
                                                          39.37
                                                                    -121.24
[20640 rows x 8 columns]
Mean Squared Error: 1.2923314440807299
R-squared: 0.013795337532284901
Intercept: 1.654762268596842
Coefficient: [0.07675559]
Mean Squared Error: 0.5558915986952441
R-squared: 0.575787706032451
Intercept: -37.02327770606414
Coefficient: [ 4.48674910e-01 9.72425752e-03 -1.23323343e-01 7.83144907e-01
```

-2.02962058e-06 -3.52631849e-03 -4.19792487e-01 -4.33708065e-01]

PRACTICAL NO. – 7

AIM:- Logistic Regression and Decision Tree SOURCE CODE:-

import numpy as np import

pandas as pd

import matplotlib.pyplot as plt

import seaborn as sb

import warnings

from scipy import stats

from statsmodels.stats.multicomp import pairwise_tukeyhsd from

sklearn.datasets import fetch_california_housing, load_iris from

sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression,

LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, precision_score, recall_score, classification_report

Suppress warnings

warnings.filterwarnings('ignore')

Load dataset

df = sb.load_dataset('mpg')

print(df)

```
# Describe horsepower and model year columns
print(df['horsepower'].describe()) print(df['model_year'].describe())
# Categorize horsepower into bins bins =
[0, 75, 150, 240]
df['horsepower_new'] = pd.cut(df['horsepower'], bins=bins, labels=['l', 'm', 'h'])
c = df['horsepower_new'] print(c)
# Categorize model year into bins ybins =
[69, 72, 74, 84]
labels = ['t1', 't2', 't3']
df['modelyear_new'] = pd.cut(df['model_year'], bins=ybins,
labels=labels)
newyear = df['modelyear_new']
print(newyear)
# Create a contingency table
df_chi = pd.crosstab(df['horsepower_new'], df['modelyear_new']) print(df_chi)
```

```
# Perform chi-square test
chi2_stat, p_value, dof, expected = stats.chi2_contingency(df_chi)
print(f'Chi-Square Statistic: {chi2_stat}')
print(f'P-value: {p_value}') print(f'Degrees of
Freedom: {dof}')
print(f'Expected Frequencies:\n{expected}')
# Define groups for ANOVA
group1 = [23, 25, 29, 34, 30]
group2 = [19, 20, 22, 24, 25]
group3 = [15, 18, 20, 21, 17]
group4 = [28, 24, 26, 30, 29]
# Combine data into a DataFrame
data = pd.DataFrame({'value': group1 + group2 + group3 + group4, 'group':
               ['Group1'] * len(group1) + ['Group2'] *
len(group2) +
                      ['Group3'] * len(group3) + ['Group4'] *
len(group4)})
# Perform one-way ANOVA
f_statistics, p_value_anova = stats.f_oneway(group1, group2, group3, group4)
print("\nOne-way ANOVA:")
print("F-statistics:", f_statistics)
```

```
print("P-value:", p_value_anova)
# Perform Tukey-Kramer post-hoc test
tukey_results = pairwise_tukeyhsd(data['value'], data['group'])
print("\nTukey-Kramer post-hoc test:")
print(tukey_results)
# Load California housing dataset housing =
fetch_california_housing()
housing_df = pd.DataFrame(housing.data,
columns=housing.feature_names)
print(housing_df)
# Add target variable housing_df['PRICE'] =
housing.target
# Multiple Linear Regression
X = housing_df.drop('PRICE', axis=1) y =
housing_df['PRICE']
# Split dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# Train linear regression model model =
LinearRegression() model.fit(X_train,
y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate model
mse = mean_squared_error(y_test, y_pred) r2 =
r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R-squared:", r2) print("Intercept:",
model.intercept_) print("Coefficient:",
model.coef_)
# Load the Iris dataset and classification problem iris =
load_iris()
iris_df = pd.DataFrame(data=np.c_[iris['data'], iris['target']],
columns=iris['feature_names'] + ['target'])
binary_df = iris_df[iris_df['target'] != 2] X =
binary_df.drop('target', axis=1)
y = binary_df['target']
# Split the data into training and testing sets
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a logistic regression model and evaluate its performance
logistic_model = LogisticRegression() logistic_model.fit(X_train,
y_train)
y_pred_logistic = logistic_model.predict(X_test)
print("\nLogistic Regression Metrics")
print("Accuracy:", accuracy_score(y_test, y_pred_logistic))
print("Precision:", precision_score(y_test, y_pred_logistic))
print("Recall:", recall_score(y_test, y_pred_logistic))
print("\nClassification Report") print(classification_report(y_test,
y_pred_logistic))
# Train a decision tree model and evaluate its performance decision tree model =
DecisionTreeClassifier() decision tree model.fit(X train, y train)
y_pred_tree = decision_tree_model.predict(X_test)
print("\nDecision Tree Metrics")
print("Accuracy:",
                       accuracy_score(y_test,
                                                   y_pred_tree))
print("Precision:",
                      precision_score(y_test,
                                                   y_pred_tree))
print("Recall:", recall_score(y_test, y_pred_tree))
```

print("\nClassification Report")

print(classification_report(y_test, y_pred_tree))

OUTPUT:-

Logistic Regression Metrics

Accuracy: 1.0 Precision: 1.0 Recall: 1.0

Classification Report

precision	recall	f1-score	support	
1.00	1.00	1.00	12	
1.00	1.00	1.00	8	
		1.00	20	
1.00	1.00	1.00	20	
1.00	1.00	1.00	20	
	1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 12 1.00 1.00 1.00 8 1.00 1.00 20 1.00 1.00 20

Decision Tree Metrics

Accuracy: 1.0 Precision: 1.0 Recall: 1.0

PRACTICAL NO. -8

AIM:- K-MEANS CLUSTERING SOURCE

pd.concat([data, dummies], axis=1)

CODE:-

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler from
sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# Load dataset data
=
pd.read_csv("C:\\Users\\Reape\\Downloads\\wholesale\\wholesale.csv")
data.head()
# Define categorical and continuous features categorical_features =
['Channel', 'Region']
continuous_features = ['Fresh', 'Milk', 'Grocery', 'Frozen',
'Detergents_Paper', 'Delicassen']
data[continuous_features].describe()
# Convert categorical variables into dummy variables for col in
categorical_features:
  dummies = pd.get_dummies(data[col], prefix=col) data =
```

```
data.drop(col, axis=1, inplace=True)
data.head()
# Scale the data
mms = MinMaxScaler()
mms.fit(data)
data_transformed = mms.transform(data)
# Elbow Method to find optimal k
sum_of_squared_distances = []
K = range(1, 15)
for k in K:
  km = KMeans(n_clusters=k) km =
  km.fit(data_transformed)
  sum_of_squared_distances.append(km.inertia_)
# Plot the Elbow Method
             sum_of_squared_distances,
plt.plot(K,
                                           'bx-')
plt.xlabel('k')
plt.ylabel('Sum of
                     Squared Distances')
plt.title('Elbow Method for Optimal k')
plt.show()
```

OUTPUT:-

PRACTICAL NO. 9

AIM:- Principal Component Analysis (PCA) SOURCE CODE:-

```
import pandas as pd import
numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler from
sklearn.decomposition import PCA
# Load the Iris dataset iris
= load_iris()
iris_df = pd.DataFrame(data=np.c_[iris['data'], iris['target']],
columns=iris['feature_names'] + ['target'])
# Separate features and target
X = iris_df.drop('target', axis=1) y =
iris_df['target']
```

= StandardScaler()

 $X_scaled = scaler.fit_transform(X)$

Apply PCA

```
pca = PCA()
X_pca = pca.fit_transform(X_scaled) explained_variance_ratio =
pca.explained_variance_ratio_
# Plot cumulative explained variance
plt.figure(figsize=(8, 6))
plt.plot(np.cumsum(explained_variance_ratio), marker='o',
linestyle='--')
plt.title('Explained Variance Ratio') plt.xlabel('Number of
Principal Components') plt.ylabel('Cumulative Explained
Variance Ratio') plt.grid(True)
plt.show()
# Determine the number of components to explain 95% variance
cumulative_variance_ratio = np.cumsum(explained_variance_ratio) n_components =
np.argmax(cumulative_variance_ratio \geq 0.95) + 1
print(f"Number of principal components to explain 95% variance:
{n_components}")
# Reduce dimensions using selected number of components pca =
PCA(n_components=n_components)
X_reduced = pca.fit_transform(X_scaled)
```

Scatter plot of the reduced data

plt.figure(figsize=(8, 6))

plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, cmap='viridis', s=50, alpha=0.5)

plt.title('Data in Reduced-dimensional Space') plt.xlabel('Principal

Component 1')

plt.ylabel('Principal Component 2')

plt.colorbar(label='Target') plt.show()

OUTPUT:-

Number of principal components to explain 95% variance: 2

PRACTICAL NO. – 10

AIM:-Data Visualization and Storytelling SOURCE CODE:-

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# Generate random data
np.random.seed(42) # Set a seed for reproducibility
# Create a DataFrame with random data data
= pd.DataFrame({
  'variable1': np.random.normal(0, 1, 1000),
  'variable2': np.random.normal(2, 2, 1000) + 0.5 *
np.random.normal(0, 1, 1000),
  'variable3': np.random.normal(-1, 1.5, 1000),
  'category': pd.Series(np.random.choice(['A', 'B', 'C', 'D'], size=1000, p=[0.4,
0.3, 0.2, 0.1),
                  dtype='category')
})
```

Create a scatter plot to visualize the relationship between two variables

```
plt.figure(figsize=(10, 6))
plt.scatter(data['variable1'], data['variable2'], alpha=0.5) plt.title('Relationship
between Variable 1 and Variable 2', fontsize=16) plt.xlabel('Variable 1',
fontsize=14)
plt.ylabel('Variable 2', fontsize=14) plt.show()
# Create a bar chart to visualize the distribution of a categorical variable
plt.figure(figsize=(10, 6)) sns.countplot(x='category',
data=data) plt.title('Distribution of Categories',
fontsize=16) plt.xlabel('Category', fontsize=14)
plt.ylabel('Count', fontsize=14) plt.xticks(rotation=45)
plt.show()
# Create a heatmap to visualize the correlation between numerical variables
plt.figure(figsize=(10, 8))
numerical_cols = ['variable1', 'variable2', 'variable3']
sns.heatmap(data[numerical_cols].corr(), annot=True,
cmap='coolwarm')
plt.title('Correlation Heatmap', fontsize=16)
plt.show()
```

```
# Data Storytelling
print("Title: Exploring the Relationship between Variable 1 and Variable 2")
print("\nThe scatter plot (Figure 1) shows the relationship between Variable 1
and Variable 2.")
print("\nScatter Plot")
print("Figure 1: Scatter Plot of Variable 1 and Variable 2")
print("\nTo better understand the distribution of the categorical variable
'category', we created a ")
print("\nBar Chart")
print("Figure 2: Distribution of Categories")
print("\nAdditionally, we explored the correlation between numerical variables using a
heatmap")
print("\nHeatmap")
print("Figure 3: Correlation Heatmap")
print("\nIn summary, the visualizations and analysis provide insights into the
relationships")
```

OUTPUT:-

= RESTART: D:/pract 10.py

Title: Exploring the Relationship between Variable 1 and Variable 2

The scatter plot (Figure 1) shows the relationship between Variable 1 and Variable 2.

Scatter Plot

Figure 1: Scatter Plot of Variable 1 and Variable 2

To better understand the distribution of the categorical variable 'category', we created a

Bar Chart

Figure 2: Distribution of Categories

Additionally, we explored the correlation between numerical variables using a heatmap

Heatmap

Figure 3: Correlation Heatmap

In summary, the visualizations and analysis provide insights into the relationships