2. Grammars & Parsing

Language & Logic

Dave Parker

University of Birmingham 2017/18

Recap

- Last lecture:
- Logic what and why
 - connections to many other areas of CS
- Basic definitions
 - propositions, arguments, validity, soundness
- Please see Canvas for:
 - lecture videos & slides
 - announcements
 - practice quiz

Overview

- Natural vs. formal languages
- Syntax vs. semantics
- Grammars
 - definition, examples, parse trees

Language

- Natural languages vs. formal languages
 - natural language: evolved naturally through human use
 - English, French, Urdu, ...
 - formal language: symbols + rules
 - Java, OCaml, propositional logic, ...
- For both kinds of languages, we may be interested in:
 - syntax: rules defining allowable sentences/strings of words/symbols
 - semantics: the meaning of a (legal) sentence/string
 - grammar: set of rules defining the syntax
 - parsing: process of analysing a sentence/string according to a grammar

Grammars

- Formally, a grammar is a tuple $G = (V_t, V_n, P, S)$ where:
 - V_t is a set of terminal symbols (or terminals)
 - V_n is a set of non-terminal symbols (or non-terminals)
 - P is a set of production rules
 - S is the start symbol (from the set V_n)
- Production rules are of the form $V_n \rightarrow (V_t \cup V_n)^*$
 - i.e., a non-terminal (on the left-hand-side) and a sequence of terminals/non-terminals (on the right-hand side)
- To generate a word in the language defined by G
 - begin with string comprising just the start symbol S
 - repeatedly rewrite the current string using a production rule
 - until no non-terminals remain

Example grammar

Grammar

- Non-terminals V_n: N, D
- Terminals V₁: 0, 1
- Start symbol S: N
- Production rules P:
 - $N \rightarrow D$
 - $N \rightarrow N D$
 - $D \rightarrow 0$
 - D → 1

Generating a string:

N N D N D D D D D D D 1 D 0 1 1 0 1

Another grammar

A grammar for a small fragment of English:

```
S \rightarrow NP \ VP V \rightarrow [played]

NP \rightarrow Det \ N V \rightarrow [saw]

NP \rightarrow Det \ Adj \ N V \rightarrow [gave]

NP \rightarrow NP \ PP N \rightarrow [dress]

VP \rightarrow V \ NP N \rightarrow [telescope]

VP \rightarrow V \ NP \ PP N \rightarrow [boy]

PP \rightarrow P \ NP N \rightarrow [girl]

P \rightarrow [with]

Det \rightarrow [the]

Adj \rightarrow [yellow]
```

Sentences

- 1. "the boy saw the girl"
- 2. "the boy played with the yellow telescope"

Parse trees

- Parse tree
 - tree representing the syntactic structure of a sentence/string

A note on notation

- We often abbreviate the presentation of a grammar
 - by merging rules for each non-terminal using a | ("pipe") symbol

```
S \rightarrow NP \ VP
NP \rightarrow Det \ N \mid Det \ Adj \ N \mid NP \ PP
VP \rightarrow V \ NP \mid V \ NP \ PP
PP \rightarrow P \ NP
V \rightarrow [played] \mid [saw] \mid [gave]
N \rightarrow [dress] \mid [telescope] \mid [boy] \mid [girl]
P \rightarrow [with]
Det \rightarrow [the]
Adj \rightarrow [yellow]
```

Another parsing example

- Draw a parse tree for this sentence
 - "the boy saw the girl with the telescope"

```
S \rightarrow NP \ VP
NP \rightarrow Det \ N \mid Det \ Adj \ N \mid NP \ PP
VP \rightarrow V \ NP \mid V \ NP \ PP
PP \rightarrow P \ NP
V \rightarrow [played] \mid [saw] \mid [gave]
N \rightarrow [dress] \mid [telescope] \mid [boy] \mid [girl]
P \rightarrow [with]
Det \rightarrow [the]
Adj \rightarrow [yellow]
```

Natural languages usually exhibit ambiguity...

The boy saw the girl with the telescope

Parse tree using production rule VP → V NP PP

The boy saw the girl with the telescope

Parse tree using production rule VP → V NP (and NP → NP PP)

Overview

- Natural vs. formal languages
- Syntax vs. semantics
- Grammars
 - terminals, non-terminals, rules + start symbol
 - generation of a string/sentence by a grammar
 - rewritings, parse trees
 - ambiguity

Next week

- Mon 4pm: lecture (propositional logic)
- Tue 11am / Thur 10am: class (exercises/discussion)
 - on Tuesday, if your surname is in the range A-J (by default)
 - on Thursday, if your surname is in the range K-Z (by default)
- Reminder
 - take a look at the practice quiz(zes)…