Validation par analyse statique

Partie: Interprétation abstraite, cours 2/3

Pierre-Loïc Garoche (merci à Pierre Roux pour ses contributions à ce cours)

ENAC

ENSEEIHT 2A 2022-2023

Abstraire la sémantique concrète

Rappels sur la sémantique concrète

Abstractions relationnelles ou non

Abstractions non relationnelles

Signes

Constantes

Intervalles

Analyse arrière

Type de la sémantique concrète

La sémantique concrète d'un programme est de type

$$L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$$

Type de la sémantique concrète

La sémantique concrète d'un programme est de type

$$L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$$

- ▶ une fonction qui à chaque point du programme (dans *L*)
- associe un ensemble d'états possibles de la mémoire
 - ▶ une fonction qui à chaque variable (dans V)
 - ▶ associe sa valeur en mémoire (dans Z)

Exemple

```
0x = rand(0, 12); 1y = 42; 	 4 \xleftarrow{x = x - 2} 3
while 2(x > 0) {
3x = x - 2; 	 y = y + 4
4y = y + 4
3x = x - 2; 	 y = 42
4x = x - 2 = 3
4x = x - 2 = 3
4x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 2 = 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x = x - 3
x =
```

$$\begin{array}{l} R_0 = \mathbb{V} \to \mathbb{Z} & (\mathbb{V} = \{x, y\}) \\ R_1 = \{f \in (\mathbb{V} \to \mathbb{Z}) \mid f(x) \in [\![0, 12]\!] \} \\ R_2 = \{f \mid f(x) \in [\![-1, 12]\!], f(y) \in [\![42, 66]\!] \cap 4\mathbb{Z} + 2, 2f(x) + f(y) \in [\![42, 66]\!] \} \\ R_3 = \{f \mid f(x) \in [\![1, 12]\!], f(y) \in [\![42, 66]\!] \cap 4\mathbb{Z} + 2, 2f(x) + f(y) \in [\![42, 66]\!] \} \\ R_4 = \{f \mid f(x) \in [\![-1, 10]\!], f(y) \in [\![42, 66]\!] \cap 4\mathbb{Z} + 2, 2f(x) + f(y) \in [\![38, 62]\!] \} \\ R_5 = \{f \mid f(x) \in [\![-1, 0]\!], f(y) \in [\![42, 66]\!] \cap 4\mathbb{Z} + 2, 2f(x) + f(y) \in [\![42, 66]\!] \} \end{array}$$

Abstraire la sémantique concrète

Rappels sur la sémantique concrète Abstractions relationnelles ou non

Abstractions non relationnelles

Signes Constantes Intervalles

Analyse arrière

La sémantique concrète est incalculable, on veut la simplifier. Mais que simplifier?

L est fini et on veut savoir ce qui se passe en chaque point

La sémantique concrète est incalculable, on veut la simplifier. Mais que simplifier?

▶ L est fini et on veut savoir ce qui se passe en chaque point
 ⇒ on le garde à l'identique

- L est fini et on veut savoir ce qui se passe en chaque point
 ⇒ on le garde à l'identique
- ▶ V est fini et on s'intéresse à toutes les variables

- ▶ L est fini et on veut savoir ce qui se passe en chaque point
 ⇒ on le garde à l'identique
- ▶ V est fini et on s'intéresse à toutes les variables
 ⇒ on le garde à l'identique

- ▶ L est fini et on veut savoir ce qui se passe en chaque point
 ⇒ on le garde à l'identique
- ▶ V est fini et on s'intéresse à toutes les variables
 ⇒ on le garde à l'identique
- lacksquare \mathbb{Z} (et donc l'ensemble des fonctions $\mathbb{V} o \mathbb{Z}$) est infini

- L est fini et on veut savoir ce qui se passe en chaque point
 ⇒ on le garde à l'identique
- ▶ V est fini et on s'intéresse à toutes les variables
 ⇒ on le garde à l'identique
- \blacktriangleright $\mathbb Z$ (et donc l'ensemble des fonctions $\mathbb V\to\mathbb Z)$ est infini \Rightarrow c'est ici qu'on va abstraire

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - ightharpoonup relationnel: certaines combinaisons de x et y sont impossibles

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
- lacktriangle Abstraire $\mathcal{P}(\mathbb{V} o \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - ightharpoonup relationnel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué et plus coûteux

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
 - ce cours
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - ightharpoonup relationnel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué et plus coûteux
 - le cours suivant

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

Abstraire la sémantique concrète

Rappels sur la sémantique concrète Abstractions relationnelles ou non

Abstractions non relationnelles Signes

Constantes

Analyse arrière

Définition

Treillis des signes $(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})$

$$\begin{array}{ll} \gamma(\top) &= \mathbb{Z} \\ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \\ \gamma(\geqslant 0) &= [0, + \infty[\\ \gamma(\bot) &= \emptyset \end{array}$$

Définition

Treillis des signes $(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})$

$$\begin{array}{ll} \gamma(\top) &= \mathbb{Z} \\ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \\ \gamma(\geqslant 0) &= [0, + \infty[\\ \gamma(\bot) &= \emptyset \end{array}$$

Question

L'ordre \sqsubseteq^{\sharp} ci dessus est il correct par rapport à l'ordre \subseteq sur $\mathcal{P}(\mathbb{Z})$.

Définition

Treillis des signes $(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})$

$$\begin{array}{ll} \gamma(\top) &= \mathbb{Z} \\ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \\ \gamma(\geqslant 0) &= [0, + \infty[\\ \gamma(\bot) &= \emptyset \end{array}$$

Question

L'ordre \sqsubseteq^{\sharp} ci dessus est il correct par rapport à l'ordre \subseteq sur $\mathcal{P}(\mathbb{Z})$.

Rappel (correction de l'ordre abstrait par rapport au concret)

L'ordre \sqsubseteq^{\sharp} est correct par rapport à l'ordre \sqsubseteq si γ est monotone

$$\forall x^{\sharp}, y^{\sharp} \in \mathcal{D}^{\sharp}, \quad x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \Rightarrow \gamma(x^{\sharp}) \sqsubseteq \gamma(y^{\sharp})$$

Définition

Treillis des signes $(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})$

$$egin{array}{ll} \gamma(\top) &= \mathbb{Z} \ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \ \gamma(\geqslant 0) &= [0, +\infty[] \ \gamma(\bot) &= \emptyset \end{array}$$

Question

L'ordre \sqsubseteq^{\sharp} ci dessus est il correct par rapport à l'ordre \subseteq sur $\mathcal{P}(\mathbb{Z})$.

Réponse

$$\mathsf{Oui}\ (\emptyset\subseteq \llbracket 0,+\infty\llbracket,\,\emptyset\subseteq\rrbracket-\infty,0\rrbracket,\,\llbracket 0,+\infty\llbracket\subseteq\mathbb{Z}\ \mathsf{et}\ \rrbracket-\infty,0\rrbracket\subseteq\mathbb{Z}).$$

Domaine des signes, meilleure abstraction

$$egin{array}{ll} \gamma(\top) &= \mathbb{Z} \ \gamma(\leqslant 0) &= \mathbb{I} - \infty, 0 \mathbb{I} \ \gamma(\geqslant 0) &= [0, + \infty[\ \gamma(\bot) &= \emptyset \end{array}$$

Question

Toute partie S de \mathbb{Z} (i.e. $S \in \mathcal{P}(\mathbb{Z})$) admet elle une meilleure abstraction dans ce domaine?

Domaine des signes, meilleure abstraction

$$\begin{array}{ll} \gamma(\top) &= \mathbb{Z} \\ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \\ \gamma(\geqslant 0) &= [0, +\infty[\\ \gamma(\bot) &= \emptyset \end{array}$$

Question

Toute partie S de \mathbb{Z} (i.e. $S \in \mathcal{P}(\mathbb{Z})$) admet elle une meilleure abstraction dans ce domaine?

Rappel (meilleure abstraction)

Une partie S de \mathbb{Z} admet une meilleure abstraction si l'ensemble $\left\{S^{\sharp} \in \mathcal{D}^{\sharp} \;\middle|\; S \subseteq \gamma\left(S^{\sharp}\right)\right\}$ a un minimum.

Domaine des signes, meilleure abstraction

$$egin{array}{ll} \gamma(\top) &= \mathbb{Z} \ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \ \gamma(\geqslant 0) &= \llbracket 0, + \infty \llbracket \ \gamma(\bot) &= \emptyset \end{array}$$

Question

Toute partie S de \mathbb{Z} (i.e. $S \in \mathcal{P}(\mathbb{Z})$) admet elle une meilleure abstraction dans ce domaine?

Réponse

Toute sauf le singleton $\{0\}$ qui admet deux abstractions $(\leq 0 \text{ et } \geq 0)$ incomparables.

Domaine des signes, meilleure abstraction (suite et fin)

Définition

On corrige en ajoutant un élément

$$egin{array}{ll} \gamma(op) &= \mathbb{Z} \ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \ \gamma(\geqslant 0) &= \llbracket 0, + \infty
rbracket \ \gamma(0) &= \set{0} \ \gamma(\perp) &= \emptyset \end{array}$$

Domaine des signes, meilleure abstraction (suite et fin)

Définition

On corrige en ajoutant un élément

$$egin{array}{ll} \gamma(op) &= \mathbb{Z} \ \gamma(\leqslant 0) &= \mathbb{J} - \infty, 0 \mathbb{J} \ \gamma(\geqslant 0) &= \llbracket 0, + \infty
rbracket \ \gamma(0) &= \set{0} \ \gamma(\perp) &= \emptyset \end{array}$$

Remarques

- $ightharpoonup \gamma$ reste monotone.
- ► On a bien une correspondance de Galois avec

Abstraction non relationnelle

D'une abstraction \mathcal{D}^{\sharp} de $\mathcal{P}(\mathbb{Z})$, on déduit une abstraction $\mathcal{D}^{\sharp}_{\mathrm{nr}}$ de $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$, en procédant point à point :

- $\triangleright \mathcal{D}_{nr}^{\sharp} = \mathbb{V} \to \mathcal{D}^{\sharp}$
- $ightharpoonup x^{\sharp} \sqsubseteq_{\mathrm{nr}}^{\sharp} y^{\sharp}$ si pour tout $v \in \mathbb{V}$, $x^{\sharp}(v) \sqsubseteq y^{\sharp}(v)$

Abstraction non relationnelle

D'une abstraction \mathcal{D}^{\sharp} de $\mathcal{P}(\mathbb{Z})$, on déduit une abstraction $\mathcal{D}^{\sharp}_{\mathrm{nr}}$ de $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$, en procédant point à point :

- $\triangleright \mathcal{D}_{nn}^{\sharp} = \mathbb{V} \to \mathcal{D}^{\sharp}$
- $ightharpoonup x^{\sharp} \sqsubseteq_{\mathrm{nr}}^{\sharp} y^{\sharp}$ si pour tout $v \in \mathbb{V}$, $x^{\sharp}(v) \sqsubseteq y^{\sharp}(v)$

- ightharpoonup op op op op op
- ightharpoonup $\perp_{\rm nr} = v \mapsto \perp$

Syntaxe de notre langage (rappel)

Syntaxe stm ::= v = exr

```
stm := v = expr; | stm stm  | if (expr > 0) \{ stm \}  else \{ stm \} \} | while (expr > 0) \{ stm \} \}
expr := v | n | rand(n, n)  | expr + expr | expr - expr | expr \times expr | expr/expr
v \in \mathbb{V}, un ensemble de variables
n \in \mathbb{Z} (on ne manipule que des entiers)
```

 $rand(n_1, n_2)$ représente le choix aléatoire d'un entier entre n_1 et n_2 (sert à simuler une entrée).

Domaine des signes, opérations arithmétiques abstraites

Domaine des signes, opérations arithmétiques abstraites

Domaine des signes, opérations arithmétiques abstraites

Domaine des signes, opérations arithmétiques abstraites (suite et fin)

Exercice 1

Compléter la table de la soustraction abstraite

Sémantique abstraite, expressions

Sémantique des expressions : $\llbracket e \rrbracket_{\mathrm{E}}^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

$$\begin{bmatrix} v \end{bmatrix}_{\mathrm{E}}^{\sharp}(\rho) &= \rho(v) \\ \llbracket n \rrbracket_{\mathrm{E}}^{\sharp}(\rho) &= n^{\sharp} \\ \llbracket \mathsf{rand}(n_{1}, n_{2}) \rrbracket_{\mathrm{E}}^{\sharp}(\rho) &= \mathsf{rand}^{\sharp}(n_{1}, n_{2}) \\ \llbracket e_{1} + e_{2} \rrbracket_{\mathrm{E}}^{\sharp}(\rho) &= \llbracket e_{1} \rrbracket_{\mathrm{E}}^{\sharp} +^{\sharp} \llbracket e_{2} \rrbracket_{\mathrm{E}}^{\sharp} \\ \dots$$

Sémantique abstraite, expressions

Sémantique des expressions : $\llbracket e \rrbracket_{\mathrm{E}}^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

$$\begin{bmatrix} v \end{bmatrix}_{\mathrm{E}}^{\sharp}(\rho) &= \rho(v) \\ \|n\|_{\mathrm{E}}^{\sharp}(\rho) &= n^{\sharp} \\ \|\mathbf{rand}(n_{1}, n_{2})\|_{\mathrm{E}}^{\sharp}(\rho) &= \mathbf{rand}^{\sharp}(n_{1}, n_{2}) \\ \|e_{1} + e_{2}\|_{\mathrm{E}}^{\sharp}(\rho) &= \|e_{1}\|_{\mathrm{E}}^{\sharp} +^{\sharp} \|e_{2}\|_{\mathrm{E}}^{\sharp} \\ \dots$$

Remarque

Ça se calcule très bien.

Graphe de flot de contrôle (rappel)

On étudie les graphes de flot de contrôle des programmes.

Définition

Un graphe de flot de contrôle (L,A) est composé d'un ensemble de points de programme L, d'un point d'entrée $0 \in L$ et d'arêtes $A \subseteq L \times com \times L$ avec :

 $A \subseteq L \setminus com \setminus L \text{ avec}$.

 $com ::= v = expr \mid expr > 0$

Graphe de flot de contrôle (rappel)

On étudie les graphes de flot de contrôle des programmes.

Définition

Un graphe de flot de contrôle (L,A) est composé d'un ensemble de points de programme L, d'un point d'entrée $0 \in L$ et d'arêtes $A \subseteq L \times com \times L$ avec :

$$com ::= v = expr \mid expr > 0$$

Exemple

$$0x = rand(0, 12);_{1}y = 42; \qquad 4 \xleftarrow{x = x - 2} 3$$
while $_{2}(x > 0)$ {
$$3x = x - 2;$$

$$_{4}y = y + 4; \qquad y = y + 4$$
}
$$0 \xrightarrow{x = rand(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x \le 0} 5$$

Sémantique abstraite, commandes

Sémantique des commandes : $\llbracket c \rrbracket_{\mathrm{C}}^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

Sémantique abstraite, commandes

Sémantique des commandes : $\llbracket c \rrbracket_{\mathrm{C}}^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

$$[\![v = e]\!]_{\mathrm{C}}^{\sharp}(\rho) = \rho \left[v \mapsto [\![e]\!]_{\mathrm{E}}^{\sharp} \rho\right]$$

$$[\![e > 0]\!]_{\mathrm{C}}^{\sharp}(\rho) = \begin{cases} \rho \left[v \mapsto \rho(v) \; \sqcap^{\sharp} \alpha \left([\![1, +\infty[\![]\!]\right)\right] & \text{si } e = v \\ \rho & \text{sinon} \end{cases}$$

Remarque

Ça se calcule toujours aussi bien.

Sémantique abstraite, programme

Sémantique des programmes : $\llbracket (L,A)
rbracket^{\sharp} : L o (\mathbb{V} o \mathcal{D}^{\sharp})$

C'est la plus petite solution (au sens de l'ordre abstrait $\sqsubseteq_{\mathrm{nr}}^{\sharp}$) du système

$$\left\{ \begin{array}{l} R_{0}^{\sharp} = \mathbb{V} \to \top \\ R_{I'}^{\sharp} = \bigsqcup_{(I,c,I') \in A}^{\sharp} \left[\left[c \right] \right]_{\mathrm{C}}^{\sharp} \left(R_{I}^{\sharp} \right) \end{array} \right. \quad I' \neq 0$$

Sémantique abstraite, programme

Sémantique des programmes : $\llbracket (L,A)
rbracket^{\sharp} : L
ightarrow (\mathbb{V}
ightarrow \mathcal{D}^{\sharp})$

C'est la plus petite solution (au sens de l'ordre abstrait $\sqsubseteq_{\rm nr}^\sharp)$ du système

$$\begin{cases}
R_0^{\sharp} = \mathbb{V} \to \top \\
R_{I'}^{\sharp} = \bigsqcup_{\substack{l \text{nr} \\ (I,c,l') \in A}}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp} (R_I^{\sharp}) & I' \neq 0
\end{cases}$$

Remarques

▶ Une telle solution existe (c.f. théorème de Knaster-Tarski).

Sémantique abstraite, programme

Sémantique des programmes : $\llbracket (L,A)
rbracket^{\sharp} : L
ightarrow (\mathbb{V}
ightarrow \mathcal{D}^{\sharp})$

C'est la plus petite solution (au sens de l'ordre abstrait $\sqsubseteq_{\rm nr}^\sharp)$ du système

$$\begin{cases}
R_0^{\sharp} = \mathbb{V} \to \top \\
R_{I'}^{\sharp} = \bigsqcup_{\substack{l \text{nr} \\ (I,c,l') \in A}}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp} (R_I^{\sharp}) & I' \neq 0
\end{cases}$$

Remarques

- Une telle solution existe (c.f. théorème de Knaster-Tarski).
- ► Ça semble un peu moins évident à calculer.

Sémantique abstraite, calcul effectif

Théorème

Si S est un treillis complet, f une fonction monotone sur ce treillis et si la suite $(f^n(\bot))_{n\in\mathbb{N}}$ est stationnaire $(\exists N, \forall n, f^n(\bot) = f^N(\bot))$ alors sa limite est le plus petit point fixe de f

$$\operatorname{lfp} f = f^{N}(\bot)$$

Sémantique abstraite, calcul effectif

Théorème

Si S est un treillis complet, f une fonction monotone sur ce treillis et si la suite $(f^n(\bot))_{n\in\mathbb{N}}$ est stationnaire $(\exists N, \forall n, f^n(\bot) = f^N(\bot))$ alors sa limite est le plus petit point fixe de f

$$\mathrm{lfp}\,f=f^N(\bot)$$

Démonstration.

• $f^N(\bot)$ est un point fixe : $f(f^N)(\bot) = f^{N+1}(\bot) = f^N(\bot)$;

Sémantique abstraite, calcul effectif

Théorème

Si S est un treillis complet, f une fonction monotone sur ce treillis et si la suite $(f^n(\bot))_{n\in\mathbb{N}}$ est stationnaire $(\exists N, \forall n, f^n(\bot) = f^N(\bot))$ alors sa limite est le plus petit point fixe de f

$$\mathrm{lfp}\,f=f^N(\bot)$$

Démonstration.

- $f^N(\bot)$ est un point fixe : $f(f^N)(\bot) = f^{N+1}(\bot) = f^N(\bot)$;
- ▶ et c'est le plus petit : soit y un point fixe (f(y) = y), $\bot \sqsubseteq y$ donc par croissance de f, $f(\bot) \sqsubseteq f(y) = y$ et par récurrence immédiate $f^N(\bot) \sqsubseteq y$.

Sémantique abstraite, calcul effectif (suite et fin)

- \blacktriangleright $L \to (\mathbb{V} \to \mathcal{D}^{\sharp})$ est un treillis complet (car \mathcal{D}^{\sharp} en est un).
- ▶ La fonction $F^{\sharp}: (L \to (\mathbb{V} \to \mathcal{D}^{\sharp})) \to (L \to (\mathbb{V} \to \mathcal{D}^{\sharp}))$

$$F^{\sharp}(R^{\sharp}) = \left\{egin{array}{ll} 0 & \mapsto & op_{\mathrm{nr}} \ I' & \mapsto & igsqcup_{\mathrm{nr}}^{\sharp} & \llbracket c
rbracket^{\sharp}_{\mathrm{C}}\left(R^{\sharp}(I)
ight) \ & (I,c,I') \in A \end{array}
ight.$$

est monotone et calculable.

Sémantique abstraite, calcul effectif (suite et fin)

- lacksquare $L o (\mathbb{V} o \mathcal{D}^{\sharp})$ est un treillis complet (car \mathcal{D}^{\sharp} en est un).
- ▶ La fonction $F^{\sharp}: (L \to (\mathbb{V} \to \mathcal{D}^{\sharp})) \to (L \to (\mathbb{V} \to \mathcal{D}^{\sharp}))$

$$F^{\sharp}(R^{\sharp}) = \left\{ egin{array}{ll} 0 & \mapsto & \top_{\mathrm{nr}} \ I' & \mapsto & \bigsqcup_{\mathrm{nr}}^{\sharp} & \llbracket c
rbracket^{\sharp}_{\mathrm{C}}\left(R^{\sharp}(I)
ight) \ & (I,c,I') \in A \end{array}
ight.$$

est monotone et calculable.

- ▶ Donc si la suite $\left(F^{\sharp^n}(L \to \bot_{\mathrm{nr}})\right)_{n \in \mathbb{N}}$ est stationnaire, on a une méthode de calcul de la sémantique abstraite :
 - 1. On part de $R^{\sharp 0}:=L\to \perp_{\mathrm{nr}}$;
 - 2. on calcule $R^{\sharp^{k+1}} := F^{\sharp}(R^{\sharp^k})$;
 - 3. on retourne en 2 jusqu'à atteindre un point fixe.

 $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

$$\begin{array}{c} _{0}x = \text{rand}(0,\,12)\,;_{1}y = 42\,; \\ \text{while } _{2}(x > 0)\,\,\{\\ _{3}x = x - 2\,;\\ _{4}y = y + 4\,; \end{array} \qquad y = y + 4 \\ \end{array} \}_{5} \\ \begin{array}{c} 0\\ \\ \\ x = \text{rand}(0,\,12) \end{array} \qquad y = 42 \end{array} \qquad x < 0 \\ \\ R_{0}^{\sharp^{i+1}} = \top_{\text{nr}}\\ R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} [x \mapsto \geqslant 0]\\ R_{2}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp}\\ R_{4}^{\sharp^{i}} [y \mapsto R_{4}^{\sharp^{i}}(y) + \sharp^{i} (\geqslant 0)]\\ R_{3}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} [x \mapsto R_{2}^{\sharp^{i+1}}(x) \sqcap^{\sharp} \geqslant 0]\\ R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} [x \mapsto R_{3}^{\sharp^{i+1}}(x) - \sharp^{i} (\geqslant 0)] \end{array}$$

$$\begin{array}{c} _{0}x = \mathsf{rand}(0,\,12)\,;_{1}y = 42\,; \\ \mathsf{while}\,\,_{2}(x > 0)\,\,\{ \\ 3x = x - 2\,; \\ 4y = y + 4\,; \end{array} \qquad y = y + 4 \\ \end{array} \}_{5} \\ \begin{array}{c} 0 \\ x = \mathsf{rand}(0,\,12)\, 1 \end{array} \qquad y = 42 \qquad 2 \qquad x < 0 \end{array}$$

$$\begin{array}{c}
\text{ox} = \text{rand}(0, 12);_{1}y = 42; \\
\text{while }_{2}(x > 0) \{\\
3x = x - 2; \\
4y = y + 4;
\end{array}$$

$$\begin{array}{c}
\text{ox} = \text{rand}(0, 12);_{1}y = 42; \\
\text{ox} = x - 2; \\
4y = y + 4;
\end{array}$$

$$\begin{array}{c}
\text{ox} = x - 2; \\
\text{ox} = x - 2; \\
\text{ox} = x - 2;
\end{array}$$

$$\begin{array}{c}
\text{ox} = x - 2; \\
\text{ox} = x - 2;
\end{array}$$

$$\begin{array}{c}
\text{ox} = x - 2; \\
\text{ox} = x - 2;
\end{array}$$

$$\begin{array}{c}
\text{ox} = x - 2;
\end{aligned}$$

$$\begin{array}{c}
\text$$

$$\begin{array}{c} \text{ox} = \text{rand}(0,\ 12)\ ;_{1}y = 42\ ; \\ \text{while}\ 2(x>0)\ \{\\ 3x = x-2\ ;\\ 4y = y+4\ ; \\ \end{array} \}_{5} \\ \\ \begin{array}{c} 0 \\ \overline{x} = \text{rand}(0,\ 12) \end{array} 1 \xrightarrow{y=42} \underbrace{y=y+4} \\ \\ \begin{array}{c} y = y+4 \\ \end{array} \\ \\ \begin{array}{c} y = 42 \\ \end{array} \\ \\ \begin{array}{c} x = x-2 \\ \hline \\ x>0 \\ \end{array} \\ \\ \begin{array}{c} X = x = x-2 \\ \hline \\ x = x-$$

$$\begin{array}{l} R_{0}^{\sharp i+1} = \top_{\mathrm{nr}} \\ R_{1}^{\sharp i+1} = R_{0}^{\sharp i+1} \left[x \mapsto \geqslant 0 \right] \\ R_{2}^{\sharp i+1} = R_{1}^{\sharp i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\mathrm{nr}}^{\sharp} \\ R_{4}^{\sharp i} \left[y \mapsto R_{4}^{\sharp i} (y) +^{\sharp} (\geqslant 0) \right] \\ R_{3}^{\sharp i+1} = R_{2}^{\sharp i+1} \left[x \mapsto R_{2}^{\sharp i+1} (x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_{4}^{\sharp i+1} = R_{3}^{\sharp i+1} \left[x \mapsto R_{3}^{\sharp i+1} (x) -^{\sharp} (\geqslant 0) \right] \\ R_{5}^{\sharp i+1} = R_{2}^{\sharp i+1} \left[x \mapsto R_{2}^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right] \end{array}$$

 $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

$$\begin{array}{c} _{0}x = \text{rand}(0,\ 12)\,;_{1}y = 42\,; \\ \text{while } _{2}(x > 0)\,\,\{ \\ 3x = x - 2\,; \\ 4y = y + 4\,; \end{array} \qquad y = y + 4\,; \\ \}_{5} \\ \\ R_{0}^{\sharp\,i+1} = \top_{\mathrm{nr}} \\ R_{1}^{\sharp\,i+1} = R_{0}^{\sharp\,i+1}\,[x \mapsto \geqslant 0] \\ R_{2}^{\sharp\,i+1} = R_{1}^{\sharp\,i+1}\,[y \mapsto \geqslant 0] \sqcup_{\mathrm{nr}}^{\sharp} \qquad 2 \qquad x \leqslant 0 \end{array}$$

$$\begin{array}{l} R_{0}^{\sharp^{i+1}} = \top_{\text{nr}} \\ R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} [x \mapsto \geqslant 0] \\ R_{2}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp} \\ R_{4}^{\sharp^{i}} [y \mapsto R_{4}^{\sharp^{i}} (y) +^{\sharp} (\geqslant 0)] \\ R_{3}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} [x \mapsto R_{2}^{\sharp^{i+1}} (x) \sqcap^{\sharp} \geqslant 0] \\ R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} [x \mapsto R_{3}^{\sharp^{i+1}} (x) -^{\sharp} (\geqslant 0)] \\ R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} [x \mapsto R_{2}^{\sharp^{i+1}} \sqcap^{\sharp} \leqslant 0] \end{array}$$

 $x \leq 0$

 $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

$$\begin{array}{c} \text{ox} = \text{rand}(0,\ 12)\,;_1 y = 42\,; \\ \text{while}\ _2(x > 0)\ \{ \\ 3x = x - 2\,; \\ 4y = y + 4\,; \end{array} \qquad y = y + 4 \\ \}_5 \\ \\ R_0^{\sharp i+1} = \top_{\text{nr}} \\ R_1^{\sharp i+1} = R_0^{\sharp i+1} \begin{bmatrix} x \mapsto \geqslant 0 \end{bmatrix} \qquad \begin{array}{c} I & R_1^{\sharp 0} & R_1^{\sharp 1} & R_1^{\sharp 2} & R_1^{\sharp 3} \\ \hline 0 & (\bot,\bot) & (\top,\top) & (\top,\top) \\ 1 & (\bot,\bot) & (\geqslant 0,\top) \\ R_2^{\sharp i+1} = R_1^{\sharp i+1} \begin{bmatrix} y \mapsto \geqslant 0 \end{bmatrix} \sqcup_{\text{nr}}^{\sharp} & 2 \\ R_1^{\sharp i+1} & (\downarrow,\bot) & (\geqslant 0,\top) \\ R_2^{\sharp i+1} = R_1^{\sharp i+1} \begin{bmatrix} y \mapsto \geqslant 0 \end{bmatrix} \sqcup_{\text{nr}}^{\sharp} & 2 \\ R_1^{\sharp i+1} & (\downarrow,\bot) & (\geqslant 0,\top) \\ R_3^{\sharp i+1} = R_2^{\sharp i+1} \begin{bmatrix} x \mapsto R_2^{\sharp i+1} (x) \sqcap^{\sharp} \geqslant 0 \end{bmatrix} & 3 & (\bot,\bot) & (\geqslant 0,\geqslant 0) \\ R_3^{\sharp i+1} = R_3^{\sharp i+1} \begin{bmatrix} x \mapsto R_2^{\sharp i+1} (x) \sqcap^{\sharp} \geqslant 0 \end{bmatrix} & 4 & (\bot,\bot) & (\top,\geqslant 0) \\ R_4^{\sharp i+1} = R_3^{\sharp i+1} \begin{bmatrix} x \mapsto R_3^{\sharp i+1} (x) - \sharp (\geqslant 0) \end{bmatrix} \end{array}$$

$$\begin{array}{c} _{0}x = \text{rand}(0,\,12)\,;_{1}y = 42\,; \\ \text{while }_{2}(x > 0)\,\,\{ \\ 3x = x - 2\,; \\ 4y = y + 4\,; \end{array} \qquad y = y + 4 \\ \end{array}\}_{5} \\ \begin{matrix} 0 \\ \overline{x} = \text{rand}(0,\,12) \end{matrix}^{1} \qquad y = 42 \end{matrix} \qquad x < 0 \end{matrix} \\ \begin{matrix} R_{0}^{\sharp^{i+1}} = \top_{\text{nr}} \\ R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} [x \mapsto \geqslant 0] \\ R_{2}^{\sharp^{i}} = R_{1}^{\sharp^{i+1}} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp^{i}} = R_{2}^{\sharp^{i+1}} [x \mapsto R_{2}^{\sharp^{i+1}}(x) \sqcap^{\sharp} \geqslant 0] \\ R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} [x \mapsto R_{3}^{\sharp^{i+1}}(x) \cap^{\sharp} \geqslant 0] \\ R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} [x \mapsto R_{3}^{\sharp^{i+1}}(x) \cap^{\sharp} \geqslant 0] \\ R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} [x \mapsto R_{3}^{\sharp^{i+1}}(x) \cap^{\sharp} \geqslant 0] \\ R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} [x \mapsto R_{3}^{\sharp^{i+1}}(x) \cap^{\sharp} \geqslant 0] \\ \end{matrix} \qquad (\geqslant 0, \geqslant 0) \sqcup_{\text{nr}}^{\sharp} (\top, \geqslant 0) \\ \end{matrix}$$

$$0x = rand(0, 12);_{1}y = 42;$$
while $_{2}(x > 0)$ {
$$_{3}x = x - 2;$$

$$_{4}y = y + 4;$$

$$y = y + 4$$

$$x = x$$

$$y = y + 4$$

$$y = y + 4$$

$$\begin{split} R_{1}^{\sharp^{i+1}} &= \top_{\text{nr}} \\ R_{1}^{\sharp^{i+1}} &= R_{0}^{\sharp^{i+1}} \left[x \mapsto \geqslant 0 \right] \\ R_{2}^{\sharp^{i+1}} &= R_{1}^{\sharp^{i+1}} \left[y \mapsto \geqslant 0 \right] \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp^{i}} \left[y \mapsto R_{4}^{\sharp^{i}} (y) +^{\sharp} (\geqslant 0) \right] \\ R_{3}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}} (x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_{4}^{\sharp^{i+1}} &= R_{3}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}} (x) -^{\sharp} (\geqslant 0) \right] \\ R_{5}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}} \sqcap^{\sharp} \leqslant 0 \right] \end{split}$$

$$0x = \text{rand}(0, 12); 1y = 42;$$

$$\text{while } 2(x > 0) \{$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x > 0$$

$$x = \text{rand}(0, 12)$$

$$y = 42$$

$$x < 0$$

$$x = x + 2$$

$$x > 0$$

$$x = x + 2$$

$$x > 0$$

$$x = x + 2$$

$$x$$

$$\begin{split} R_{0}^{\sharp\,i+1} &= \top_{\text{nr}} \\ R_{1}^{\sharp\,i+1} &= R_{0}^{\sharp\,i+1} \left[x \mapsto \geqslant 0 \right] \\ R_{2}^{\sharp\,i+1} &= R_{1}^{\sharp\,i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\text{nr}}^{\sharp} \\ R_{4}^{\sharp\,i} \left[y \mapsto R_{4}^{\sharp\,i}(y) + ^{\sharp} \left(\geqslant 0 \right) \right] \\ R_{3}^{\sharp\,i+1} &= R_{2}^{\sharp\,i+1} \left[x \mapsto R_{2}^{\sharp\,i+1}(x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_{4}^{\sharp\,i+1} &= R_{3}^{\sharp\,i+1} \left[x \mapsto R_{3}^{\sharp\,i+1}(x) - ^{\sharp} \left(\geqslant 0 \right) \right] \\ R_{5}^{\sharp\,i+1} &= R_{2}^{\sharp\,i+1} \left[x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0 \right] \end{split}$$

 $(\geqslant 0, \top) \qquad (\geqslant 0, \top) \ (\geqslant 0, \geqslant 0) \qquad (\top, \geqslant 0)$

 (\perp, \perp) $(\geqslant 0, \geqslant 0)$ $(\geqslant 0, \geqslant 0)$

 $\begin{array}{ccc} (\bot,\bot) & (\top,\geqslant 0) & (\top,\geqslant 0) \\ (\bot,\bot) & (0,\geqslant 0) & \end{array}$

 $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

ox = rand(0, 12);₁y = 42;
while
$$_{2}(x > 0)$$
 {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
}₅

$$0 \xrightarrow[x = rand(0, 12)]{} 1$$

$$4 \xleftarrow{x = x - 2} 3$$

$$y = y + 4 \qquad x > 0$$

$$y = 42 \qquad x \leq 0$$

$$\begin{split} R_{0}^{\sharp \, i+1} &= \top_{\text{nr}} \\ R_{1}^{\sharp \, i+1} &= R_{0}^{\sharp \, i+1} \left[x \mapsto \geqslant 0 \right] \\ R_{2}^{\sharp \, i+1} &= R_{1}^{\sharp \, i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\text{nr}}^{\sharp} \\ R_{4}^{\sharp \, i} \left[y \mapsto R_{4}^{\sharp \, i} (y) +^{\sharp} \left(\geqslant 0 \right) \right] \\ R_{3}^{\sharp \, i+1} &= R_{2}^{\sharp \, i+1} \left[x \mapsto R_{2}^{\sharp \, i+1} (x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_{4}^{\sharp \, i+1} &= R_{3}^{\sharp \, i+1} \left[x \mapsto R_{3}^{\sharp \, i+1} (x) -^{\sharp} \left(\geqslant 0 \right) \right] \\ R_{5}^{\sharp \, i+1} &= R_{2}^{\sharp \, i+1} \left[x \mapsto R_{2}^{\sharp \, i+1} \sqcap^{\sharp} \leqslant 0 \right] \end{split}$$

 $R_4^{\sharp i+1} = R_3^{\sharp i+1} \left[x \mapsto R_3^{\sharp i+1}(x) - (\geqslant 0) \right]$ $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

$$\begin{array}{c}
\text{ox} = \text{rand}(0, 12);_{1}y = 42; \\
\text{while }_{2}(x > 0) \{\\
3x = x - 2; \\
4y = y + 4;
\end{array} \qquad y = y + 4;$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12) \\
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12) \\
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12) \\
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad y = y + 4$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{o} = \text{rand}(0, 12)$$

$$\begin{array}{c}
\text{o} = \text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{rand}(0, 12)$$

$$\begin{array}{c}
\text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{rand}(0, 12)$$

$$\begin{array}{c}
\text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{rand}(0, 12)
\end{array} \qquad \begin{array}{c}
\text{rand}(0, 12)$$

$$\begin{array}{c}
\text$$

 $(0,\geqslant 0)$ $(\leqslant 0,\geqslant 0)$

$$_{0}x = rand(0, 12);_{1}y = 42;$$
while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
}
$$_{5}$$

$$_{0} \xrightarrow{}_{x = rand(0, 12)} 1$$

$$y = y + 4$$

$$y = 42$$

$$x = x - 2$$

$$x > 0$$

$$x > 0$$

$$\begin{split} R_{0}^{\sharp^{i+1}} &= \top_{\text{nr}} \\ R_{1}^{\sharp^{i+1}} &= R_{0}^{\sharp^{i+1}} \left[x \mapsto \geqslant 0 \right] \\ R_{2}^{\sharp^{i+1}} &= R_{1}^{\sharp^{i+1}} \left[y \mapsto \geqslant 0 \right] \sqcup_{\text{nr}}^{\sharp} \\ R_{4}^{\sharp^{i}} \left[y \mapsto R_{4}^{\sharp^{i}} (y) + ^{\sharp} (\geqslant 0) \right] \\ R_{3}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}} (x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_{4}^{\sharp^{i+1}} &= R_{3}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}} (x) - ^{\sharp} (\geqslant 0) \right] \\ R_{5}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}} \sqcap^{\sharp} \leqslant 0 \right] \end{split}$$

$$_{0}x = rand(0, 12);_{1}y = 42;$$
while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
}
$$_{5}$$

$$_{0} \xrightarrow{}_{x = rand(0, 12)} 1 \xrightarrow{}_{x = rand(0, 12)} 1$$

$$y = y + 4$$

$$y = 42$$

$$x = x - 2$$

$$x > 0$$

$$x < 0$$

$$\begin{split} R_{0}^{\sharp\,i+1} &= \top_{\text{nr}} \\ R_{1}^{\sharp\,i+1} &= R_{0}^{\sharp\,i+1} \left[x \mapsto \geqslant 0 \right] \\ R_{2}^{\sharp\,i+1} &= R_{1}^{\sharp\,i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\text{nr}}^{\sharp} \\ R_{4}^{\sharp\,i} \left[y \mapsto R_{4}^{\sharp\,i}(y) + ^{\sharp} \left(\geqslant 0 \right) \right] \\ R_{3}^{\sharp\,i+1} &= R_{2}^{\sharp\,i+1} \left[x \mapsto R_{2}^{\sharp\,i+1}(x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_{4}^{\sharp\,i+1} &= R_{3}^{\sharp\,i+1} \left[x \mapsto R_{3}^{\sharp\,i+1}(x) - ^{\sharp} \left(\geqslant 0 \right) \right] \\ R_{5}^{\sharp\,i+1} &= R_{2}^{\sharp\,i+1} \left[x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0 \right] \end{split}$$

 $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

$$\begin{array}{c} _{0}x = \text{rand}(0,\,12)\,;_{1}y = 42\,; \\ \text{while }_{2}(x > 0)\, \{ \\ 3x = x - 2\,; \\ 4y = y + 4\,; \end{array} \qquad y = y + 4 \\ \end{array} \}_{5} \\ \begin{array}{c} 0 \\ \overline{x} = \text{rand}(0,\,12)^{1} \end{array} \xrightarrow{y = 42} \xrightarrow{y = 42} \xrightarrow{x < 0} \end{array} \\ \\ \begin{array}{c} 0 \\ \overline{x} = \text{rand}(0,\,12)^{1} \end{array} \xrightarrow{y = 42} \xrightarrow{y = 42} \xrightarrow{x < 0} \end{array} \\ \\ \begin{array}{c} 0 \\ \overline{x} = \text{rand}(0,\,12)^{1} \end{array} \xrightarrow{y = 42} \xrightarrow{y = 42} \xrightarrow{x < 0} \xrightarrow{y = 42} \xrightarrow{x < 0} \end{array}$$

 $R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$

On a atteint le point fixe!

Théorème (correction)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $I \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Théorème (correction)

La sémantique abstraite est une sur-approximation correcte de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Propriété (terminaison)

Le calcul du point fixe par itérations termine.

Théorème (correction)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Propriété (terminaison)

Le calcul du point fixe par itérations termine.

Démonstration.

 \mathcal{D}^{\sharp} est fini donc $L o \left(\mathbb{V} o \mathcal{D}^{\sharp}\right)$ également donc la suite croissante $\left(R^{\sharp^n}\right)_{n \in \mathbb{N}}$ est stationnaire.

Abstraire la sémantique concrète

Rappels sur la sémantique concrète Abstractions relationnelles ou non

Abstractions non relationnelles

Signes

Constantes

Intervalles

Analyse arrière

Domaine des constantes

Définition

Treillis des constantes $(\mathcal{D}^{\sharp},\sqsubseteq^{\sharp})$

$$\gamma(\top) = \mathbb{Z}$$
 $\gamma(n) = \{n\}$
 $\gamma(\bot) = \emptyset$

Domaine des constantes

Définition

Treillis des constantes $(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})$

Remarque

L'ordre \sqsubseteq^{\sharp} ci dessus est correct par rapport à l'ordre \subseteq sur $\mathcal{P}(\mathbb{Z})$.

Domaine des constantes, meilleure abstraction

Remarque

On a bien une correspondance de Galois avec

$$\alpha(S) = \begin{cases} \top & \operatorname{si } \operatorname{card}(S) \geqslant 2 \\ n & \operatorname{si } S = \{ n \} \\ \bot & \operatorname{si } S = \emptyset \end{cases}$$

Domaine des constantes, opérations arithmétiques abstraites

$$ightharpoonup n^{\sharp} = \alpha(\{n\}) = n$$

Domaine des constantes, opérations arithmétiques abstraites

$$ightharpoonup n^{\sharp} = \alpha(\{n\}) = n$$

Domaine des constantes, opérations arithmétiques abstraites

$$\begin{array}{lll} & \text{ox} = \text{rand}(0,\,12)\,;_{1}y = 15\,; & & & & & \\ & \text{while}\,\,_{2}(x > 0)\,\,\{ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\begin{array}{ll}
R_{1}^{\beta i+1} &= R_{0}^{\beta i+1} \left[x \mapsto \top \right] \\
R_{2}^{\beta i+1} &= R_{1}^{\beta i+1} \left[y \mapsto 15 \right] \sqcup_{nr}^{\beta} \\
R_{2}^{\beta i'} \left[y \mapsto R_{5}^{\beta i'}(y) +^{\sharp} 8 \right] \\
R_{3}^{\beta i'} &= R_{2}^{\beta i+1} \\
R_{4}^{\beta i+1} &= R_{3}^{\beta i+1} \left[y \mapsto R_{3}^{\beta i+1}(y) /^{\sharp} 2 \right] \\
R_{5}^{\beta i+1} &= R_{4}^{\beta i+1} \left[x \mapsto R_{4}^{\beta i+1}(x) -^{\sharp} R_{4}^{\beta i+1}(y) \right] \\
R_{6}^{\beta i'} &= R_{2}^{\beta i'+1}
\end{array}$$

$$\begin{split} R_{1}^{\sharp i+1} &= R_{0}^{\sharp i+1} \left[x \mapsto \top \right] \\ R_{2}^{\sharp i+1} &= R_{1}^{\sharp i+1} \left[y \mapsto 15 \right] \sqcup_{\mathrm{nr}}^{\sharp} \\ R_{5}^{\sharp i} \left[y \mapsto R_{5}^{\sharp i} (y) +^{\sharp} 8 \right] \\ R_{3}^{\sharp i+1} &= R_{2}^{\sharp i+1} \\ R_{4}^{\sharp i+1} &= R_{3}^{\sharp i+1} \left[y \mapsto R_{3}^{\sharp i+1} (y) /^{\sharp} 2 \right] \\ R_{5}^{\sharp i+1} &= R_{4}^{\sharp i+1} \left[x \mapsto R_{4}^{\sharp i+1} (x) -^{\sharp} R_{4}^{\sharp i+1} (y) \right] \\ R_{6}^{\sharp i+1} &= R_{2}^{\sharp i+1} \end{split}$$


```
_{0}x = rand(0, 12);_{1}y = 15;
while _{2}(x > 0) {
     _{3}y = y / 2;
     _{4}x = x - y;
     5y = y + 8;
}<sub>6</sub>
           x = rand(0, 12)
                                                             x > 0
```


ox = rand(0, 12);
$$_{1}y = 15$$
;
while $_{2}(x > 0)$ {
 3y = y / 2;
 4x = x - y;
 5y = y + 8;
}

output

out

$$x = \text{rand}(0, 12)^{1}$$

$$R_{0}^{\sharp i+1} = T_{\text{nr}}$$

$$R_{1}^{\sharp i+1} = R_{0}^{\sharp i+1} [x \mapsto T]$$

$$R_{2}^{\sharp i} = R_{1}^{\sharp i+1} [y \mapsto 15] \sqcup_{\text{nr}}^{\sharp}$$

$$R_{3}^{\sharp i} [y \mapsto R_{5}^{\sharp i}(y) + {}^{\sharp} 8]$$

$$R_{4}^{\sharp i+1} = R_{3}^{\sharp i+1}$$

$$R_{4}^{\sharp i+1} = R_{3}^{\sharp i+1} [y \mapsto R_{3}^{\sharp i+1}(y)/{}^{\sharp} 2]$$

$$R_{5}^{\sharp i+1} = R_{4}^{\sharp i+1} [x \mapsto R_{4}^{\sharp i+1}(x) - {}^{\sharp} R_{4}^{\sharp i+1}(y)]$$

$$R_{6}^{\sharp i+1} = R_{2}^{\sharp i+1}$$

$$R_{0}^{\sharp,i} = T_{nr}$$

$$R_{1}^{\sharp,i+1} = R_{0}^{\sharp,i+1} [x \mapsto T]$$

$$R_{2}^{\sharp,i+1} = R_{1}^{\sharp,i+1} [y \mapsto 15] \sqcup_{nr}^{\sharp}$$

$$R_{5}^{\sharp,i} [y \mapsto R_{5}^{\sharp,i}(y) + {\sharp} 8]$$

$$R_{3}^{\sharp,i+1} = R_{2}^{\sharp,i+1}$$

$$R_{4}^{\sharp,i+1} = R_{3}^{\sharp,i+1} [y \mapsto R_{3}^{\sharp,i+1}(y)/{\sharp} 2]$$

$$R_{5}^{\sharp,i+1} = R_{4}^{\sharp,i+1} [x \mapsto R_{4}^{\sharp,i+1}(x) - {\sharp} R_{4}^{\sharp,i+1}(y)]$$

$$R_{6}^{\sharp,i+1} = R_{2}^{\sharp,i+1}$$

$$\begin{split} R_{1}^{\sharp i+1} &= R_{0}^{\sharp i+1} \left[x \mapsto \top \right] \\ R_{2}^{\sharp i+1} &= R_{1}^{\sharp i+1} \left[y \mapsto 15 \right] \sqcup_{\mathrm{nr}}^{\sharp} \\ R_{5}^{\sharp i} \left[y \mapsto R_{5}^{\sharp i} (y) +^{\sharp} 8 \right] \\ R_{3}^{\sharp i+1} &= R_{2}^{\sharp i+1} \\ R_{4}^{\sharp i+1} &= R_{3}^{\sharp i+1} \left[y \mapsto R_{3}^{\sharp i+1} (y) /^{\sharp} 2 \right] \\ R_{5}^{\sharp i+1} &= R_{4}^{\sharp i+1} \left[x \mapsto R_{4}^{\sharp i+1} (x) -^{\sharp} R_{4}^{\sharp i+1} (y) \right] \\ R_{6}^{\sharp i+1} &= R_{2}^{\sharp i+1} \end{split}$$

 $(\top, 15)$

 $(\top, 15)$

$$\begin{array}{c}
0x = \mathsf{rand}(0, 12); 1y = 15; \\
\mathsf{while} \ 2(x > 0) \ \{ \\
3y = y \ / \ 2; \\
4x = x - y; \\
5y = y + 8; \\
\end{cases}$$

$$\begin{array}{c}
0 \\
x = \mathsf{rand}(0, 12) \\
\end{cases}$$

$$\begin{array}{c}
0 \\
x = \mathsf{rand}(0, 12) \\
\end{cases}$$

$$\begin{array}{c}
0 \\
y = 15 \\
\end{cases}$$

$$\begin{array}{c}
x = x - y \\
y = y + 8 \\
\end{cases}$$

$$\begin{split} R_{0}^{\sharp^{i+1}} &= \top_{\text{nr}} \\ R_{1}^{\sharp^{i+1}} &= R_{0}^{\sharp^{i+1}} [x \mapsto \top] \\ R_{2}^{\sharp^{i+1}} &= R_{1}^{\sharp^{i+1}} [y \mapsto 15] \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp^{i}} &= R_{2}^{\sharp^{i+1}} \\ R_{4}^{\sharp^{i+1}} &= R_{3}^{\sharp^{i+1}} \left[y \mapsto R_{3}^{\sharp^{i}}(y) + {}^{\sharp} 8 \right] \\ R_{5}^{\sharp^{i+1}} &= R_{3}^{\sharp^{i+1}} \left[y \mapsto R_{3}^{\sharp^{i+1}}(y) / {}^{\sharp} 2 \right] \\ R_{5}^{\sharp^{i+1}} &= R_{4}^{\sharp^{i+1}} \left[x \mapsto R_{4}^{\sharp^{i+1}}(x) - {}^{\sharp} R_{4}^{\sharp^{i+1}}(y) \right] \\ R_{6}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \end{split}$$

 $(\top, 15)$

 $(\top, 15)$

$$\begin{array}{c}
0x = \mathsf{rand}(0, 12); _{1}y = 15; \\
\mathsf{while} \ _{2}(x > 0) \ \{ \\
3y = y \ / \ 2; \\
4x = x - y; \\
5y = y + 8; \\
\}_{6} \\
0 \\
x = \mathsf{rand}(0, 12) \\
1 \\
y = 15
\end{array}$$

$$\begin{array}{c}
x = x - y \\
y = y + 8 \\
y = y \ / \ 2 \\
x < 0$$

$$y = y \ / \ 2$$

$$x < 0$$

$$y = y \ / \ 2$$

$$x < 0$$

$$y = y \ / \ 2$$

$$x < 0$$

$$y = y \ / \ 2$$

$$x < 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x < 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x < 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x < 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x < 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x < 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x > 0$$

$$x = x - y$$

$$y = y \ / \ 2$$

$$x > 0$$

$$R_{1}^{\mu'} = R_{0}^{\mu'} [x \mapsto T]$$

$$R_{2}^{\mu'+1} = R_{1}^{\mu'+1} [y \mapsto 15] \sqcup_{nr}^{\mu}$$

$$R_{5}^{\mu'} [y \mapsto R_{5}^{\mu'} (y) + {}^{\mu} 8]$$

$$R_{3}^{\mu'+1} = R_{2}^{\mu'+1}$$

$$R_{4}^{\mu'+1} = R_{3}^{\mu'+1} [y \mapsto R_{3}^{\mu'+1} (y)/{}^{\mu} 2]$$

$$R_{5}^{\mu'+1} = R_{4}^{\mu'+1} [x \mapsto R_{4}^{\mu'+1} (x) - {}^{\mu} R_{4}^{\mu'+1} (y)]$$

$$R_{6}^{\mu'+1} = R_{2}^{\mu'+1}$$


```
_{0}x = rand(0, 12);_{1}y = 15;
while _{2}(x > 0) {
      _{3}y = y / 2;
      _{4}x = x - y;
      _{5}y = y + 8:
}<sub>6</sub>
            x = rand(0, 12)
                                                                  x > 0
                                                                    (\top, 15)
                                                                               (\top, 15)
```


$$\begin{split} R_0^{\sharp\,i+1} &= \top_{\mathrm{nr}} \\ R_1^{\sharp\,i+1} &= R_0^{\sharp\,i+1} \left[x \mapsto \top \right] \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[y \mapsto 15 \right] \sqcup_{\mathrm{nr}}^{\sharp} \\ R_2^{\sharp\,i} &= R_1^{\sharp\,i+1} \left[y \mapsto R_5^{\sharp\,i} \left(y \right) +^{\sharp} 8 \right] \\ R_3^{\sharp\,i+1} &= R_2^{\sharp\,i+1} \\ R_4^{\sharp\,i+1} &= R_3^{\sharp\,i+1} \left[y \mapsto R_3^{\sharp\,i+1} \left(y \right) /^{\sharp} 2 \right] \\ R_5^{\sharp\,i+1} &= R_4^{\sharp\,i+1} \left[x \mapsto R_4^{\sharp\,i+1} \left(x \right) -^{\sharp} R_4^{\sharp\,i+1} \left(y \right) \right] \\ R_6^{\sharp\,i+1} &= R_2^{\sharp\,i+1} \end{split}$$

$$6 \mid (\bot,\bot) \quad (\top,15) \quad (\top,15)$$
On a atteint le point fixe!

 $(\top, 15)$

Théorème (correction, pareil que pour les signes)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Théorème (correction, pareil que pour les signes)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Propriété (terminaison)

Le calcul du point fixe par itérations termine.

Théorème (correction, pareil que pour les signes)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Propriété (terminaison)

Le calcul du point fixe par itérations termine.

Démonstration.

 \mathcal{D}^{\sharp} est infini mais n'a pas de chaîne strictement croissante infinie donc $L \to \left(\mathbb{V} \to \mathcal{D}^{\sharp} \right)$ non plus donc la suite croissante $\left(R^{\sharp^n} \right)_{n \in \mathbb{N}}$ est stationnaire.

Le treillis des constantes n'a pas de chaîne croissante infinie

Remarques

- Le domaine des constantes est souvent appelé Killdall.
- ▶ Il est utilisé en compilation pour faire du constant folding.

Remarques

- Le domaine des constantes est souvent appelé Killdall.
- ▶ Il est utilisé en compilation pour faire du constant folding.
- ▶ Démo GCC.

Remarques

- Le domaine des constantes est souvent appelé Killdall.
- ▶ Il est utilisé en compilation pour faire du constant folding.
- Démo GCC.
- Le domaine des constantes est en fait le domaine des singletons de $\mathcal{P}(\mathbb{Z})$.
- Sur le même principe, on peut construire pour un $n \in \mathbb{N}$ quelconque un domaine « ensembles d'au plus n éléments ».

Abstraire la sémantique concrète

Rappels sur la sémantique concrète Abstractions relationnelles ou non

Abstractions non relationnelles

Signes

Intervalles

Analyse arrière

Domaine des intervalles

Définition

```
Treillis des intervalles (\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})
                                                          ]\!]-\infty,+\infty[\![
                                                \cdots \llbracket -1,1 
rbracket \cdots
                                     \cdots \qquad \llbracket -1, 0 \rrbracket \qquad \llbracket 0, 1 \rrbracket \qquad \cdots
                            \cdots \quad \llbracket -1, -1 \rrbracket \quad \llbracket 0, 0 \rrbracket \quad \llbracket 1, 1 \rrbracket \quad \cdots
\gamma([-\infty,+\infty[)=]-\infty,+\infty[
\gamma(1-\infty,n) = 1-\infty,n
\gamma(\llbracket n, +\infty \rrbracket) = \llbracket n, +\infty \rrbracket
\gamma(\llbracket n_1, n_2 \rrbracket) = \llbracket n_1, n_2 \rrbracket
             =\emptyset
\gamma(\perp)
```

Domaine des intervalles

 $=\emptyset$

 $\gamma(\perp)$

Définition

Domaine des intervalles, meilleure abstraction

Remarque

On a bien une correspondance de Galois avec

$$\alpha(S) = \begin{cases} [n_1, n_2] & \text{avec } n_1 = \min S \text{ et } n_2 = \max S \\ \bot & \text{si } S = \emptyset \end{cases}$$

Domaine des intervalles, opérations arithmétiques abstraites

Domaine des intervalles, opérations arithmétiques abstraites

- ► rand[#] $(n_1, n_2) = \alpha(\llbracket n_1, n_2 \rrbracket) = \begin{cases} \llbracket n_1, n_2 \rrbracket & \text{si } n_1 \leqslant n_2 \\ \bot & \text{si } n_1 > n_2 \end{cases}$

Domaine des intervalles, opérations arithmétiques abstraites

Domaine des intervalles, opérations arithmétiques abstraites (suite et fin)

Exercice 2

- ▶ Donner la soustraction d'intervalles.
- ► Donner la multiplication d'intervalles.

$$0x = \text{rand}(0, 12); 1y = 42; \qquad 4 \xleftarrow{x = x - 2} 3$$
while $_{2}(x > 0)$ {
$$3x = x - 2; \\
4y = y + 4; \qquad y = y + 4;$$

$$x = \text{rand}(0, 12)$$

$$0 \xrightarrow{x = \text{rand}(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x \le 0} 5$$

$$R_{0}^{\sharp i+1} = T$$

$$R_{1}^{\sharp i+1} = R_{0}^{\sharp i+1} [x \mapsto [0, 12]]$$

$$R_{2}^{\sharp i+1} = R_{1}^{\sharp i+1} [y \mapsto [42, 42]] \sqcup_{nr}^{\sharp}$$

$$R_{1}^{\sharp i} = R_{1}^{\sharp i+1} [y \mapsto [42, 42]] \sqcup_{nr}^{\sharp}$$

$$1 \xrightarrow{0} (\bot, \bot)$$

$$1 \xrightarrow{(\bot, \bot)}$$

$$R_{2}^{i} = R_{1}^{i} \quad [y \mapsto [42, 42]] \sqcup_{\text{nr}}^{i}$$

$$R_{4}^{i} \left[y \mapsto R_{4}^{i}(y) + \mathbb{I} \left[4, 4 \right] \right]$$

$$R_{3}^{i+1} = R_{2}^{i+1} \left[x \mapsto R_{2}^{i+1}(x) \right]$$

$$\sqcap^{i} \left[1, + \infty \right[\right]$$

$$R_{4}^{i+1} = R_{3}^{i+1} \left[x \mapsto R_{3}^{i+1}(x) - \mathbb{I} \left[2, 2 \right] \right]$$

$$R_{5}^{i+1} = R_{2}^{i+1} \left[x \mapsto R_{2}^{i+1}(x) \right]$$

 $\sqcap^{\sharp} \,]\!] - \infty, 0]\!]$

$$\Box^{\sharp} \begin{bmatrix} 1, +\infty \end{bmatrix} \qquad 5 \quad \widehat{} \qquad C_{4}^{\sharp i+1} = R_{3}^{\sharp i+1} \begin{bmatrix} x \mapsto R_{3}^{\sharp i+1}(x) - {\sharp} \begin{bmatrix} 2, 2 \end{bmatrix} \end{bmatrix} \\
R_{5}^{\sharp i+1} = R_{2}^{\sharp i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp i+1}(x) \\ x \mapsto R_{2}^{\sharp i+1}(x) \end{bmatrix}$$

 $R_3^{\sharp i+1} = R_2^{\bar{\sharp} i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \right]$

 $R_3^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \right]$

 $\sqcap^{\sharp} \llbracket 1, +\infty \llbracket
brace$

$$R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}}(x) - {}^{\sharp} \left[[2, 2] \right] \right]$$

$$R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) - {}^{\sharp} \left[[2, 2] \right] \right]$$

$$\sqcap^{\sharp} \left[-\infty, 0 \right] \right]$$

 $(\llbracket -1, 10 \rrbracket, \{ 42 \})$

Exemple de Calcul du point lixe abstrait
$$0x = \text{rand}(0, 12); 1y = 42; \qquad 4 \xleftarrow{x = x - 2} 3$$
 while $2(x > 0)$ {
$$3x = x - 2; \\ 4y = y + 4; \qquad y = 42$$
 $x > 0$ } }
$$0 \xrightarrow{x = \text{rand}(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x < 0} 5$$

$$R_{1}^{y^{i+1}} = T$$

$$R_{1}^{y^{i+1}} = R_{0}^{y^{i+1}} [x \mapsto [0, 12]] \qquad I \xrightarrow{y = 42} 2 \xrightarrow{x < 0} 5$$

$$R_{2}^{y^{i+1}} = R_{1}^{y^{i+1}} [y \mapsto [42, 42]] \sqcup_{nr}^{p} \qquad I \xrightarrow{y = 42} (1, 1) \qquad I \xrightarrow{y = 42} (1, 1)$$

$$R_{2}^{y^{i}} [y \mapsto R_{4}^{y^{i}} (y) + [42, 42]] \sqcup_{nr}^{p} \qquad I \xrightarrow{y = 42} (1, 1) \qquad I \xrightarrow{y = 42} (1, 1)$$

$$R_{3}^{y^{i}} = R_{2}^{y^{i+1}} [x \mapsto R_{2}^{y^{i+1}} (x) \qquad 3 \qquad I \xrightarrow{y = 42} (1, 1) \qquad I \xrightarrow{y = 42} (1$$

 $\sqcap^{\sharp} \,]\!] - \infty, 0]\!]$

$$\begin{array}{c} \text{ox} = \text{rand}(0,\ 12)\,;_{1}y = 42\,; \\ \text{while}\ _{2}(x>0)\ \{ \\ 3x = x - 2\,; \\ 4y = y + 4\,; \end{array} \\ \begin{array}{c} 0 \\ \text{x} = \text{rand}(0,\ 12) \end{array} \\ \begin{array}{c} 1 \\ \text{y} = 42 \end{array} \\ \end{array} \begin{array}{c} \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} = y + 4 \end{array} \\ \text{y} = y + 4 \end{array} \\ \begin{array}{c} \text{y} =$$

 $\begin{array}{l} R_{4}^{\sharp\,i+1} = R_{3}^{\sharp\,i+1} \left[x \mapsto R_{3}^{\sharp\,i+1}(x) - \overset{\sharp}{\sharp} \left[2, 2 \right] \right] \\ R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} \left[x \mapsto R_{2}^{\sharp\,i+1}(x) \right] \end{array}$ $\sqcap^{\sharp} \,]\!] - \infty, 0]\!]$

$$0x = \text{rand}(0, 12);_{1}y = 42; \qquad 4 \xrightarrow{x = x - 2} 3$$
while $_{2}(x > 0)$ {
$$3x = x - 2;$$

$$_{4}y = y + 4; \qquad y = 42$$

$$\begin{cases} 0 & \text{while } 2(x > 0) \text{ and } 2(x >$$

 $([0, 12], \top)$

 $([0, 12], \{42\})$

 (\perp, \perp) $([-1, 10], \{42\})$

({0},{42})

 (\perp, \perp) ([1, 12], {42}) ([1, 12], [42, 46])

 $([0, 12], \top)$

([-1, 12], [42, 46])

([-1, 10], [42, 46])

$$\begin{array}{c} \text{ox} = \text{rand}(0,\,12)\,;_{1}y = 42\,; \\ \text{while}\,\,_{2}(x>0)\,\,\{ \\ 3x = x-2\,; \\ 4y = y+4\,; \end{array} \qquad y = y+4\,; \\ \}_{5} \\ \\ \begin{array}{c} 0 \\ \overline{} = \text{rand}(0,\,12) \end{array} \qquad y = 42 \qquad x < 0 \end{array}$$

$$_{0}x = rand(0, 12);_{1}y = 42;$$
while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
}₅

$$x = 2,$$

$$y + 4;$$

$$x = rand(0, 12)$$

 $\sqcap^{\sharp} \,]\!] - \infty, 0]\!]$

$$\perp, \perp$$
) $(\{0\}, \{42\})$ $(\llbracket-1,0\rrbracket, \llbracket42, 46\rrbracket)$
Le point fixe est encore loin!

 (\bot,\bot) $([-1,10], \{42\})$

Le point fixe est encore loin!

 $([0, 12], \top)$

 (\perp, \perp) ($[1, 12], \{42\}$) ([1, 12], [42, 46])

 $([0, 12], \{42\})$

 $([0, 12], \top)$

([-1, 12], [42, 46])

([-1, 10], [42, 46])

Correction et terminaison

Théorème (correction, encore le même)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Correction et terminaison

Théorème (correction, encore le même)

La sémantique abstraite est une sur-approximation correcte de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^{\sharp}\right)$$

Remarques

▶ De manière générale, ca ne termine pas! Car le treillis a des chaînes croissantes infinies (ex. $(\llbracket 0, n \rrbracket)_{n \in \mathbb{N}}$).

Correction et terminaison

Théorème (correction, encore le même)

La sémantique abstraite est une *sur-approximation correcte* de la sémantique concrète : pour tout $l \in L$, on a

$$R_I \subseteq \gamma_{\mathrm{nr}}\left(R_I^\sharp\right)$$

Remarques

- ▶ De manière générale, ca ne termine pas! Car le treillis a des chaînes croissantes infinies (ex. $(\llbracket 0, n \rrbracket)_{n \in \mathbb{N}}$).
- ► Et quand bien même ça termine, ça peut être long...

Accélération de convergence

On va donc intercaler entre chaque itération un *élargissement* (widening en anglais) qui va empêcher de suivre des chaînes croissantes infinies en « sautant » plus haut.

Accélération de convergence

On va donc intercaler entre chaque itération un *élargissement* (widening en anglais) qui va empêcher de suivre des chaînes croissantes infinies en « sautant » plus haut.

Définition (élargissement)

Un élargissement ∇ est une opération binaire $(\nabla : \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp})$ vérifiant

Accélération de convergence

On va donc intercaler entre chaque itération un *élargissement* (widening en anglais) qui va empêcher de suivre des chaînes croissantes infinies en « sautant » plus haut.

Définition (élargissement)

Un élargissement ∇ est une opération binaire $(\nabla: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp})$ vérifiant

- **pour toute suite** $\left(x_n^{\sharp}\right)_{n\in\mathbb{N}}$, la suite croissante

$$\begin{cases} y_0^{\sharp} &= x_0^{\sharp} \\ y_{i+1}^{\sharp} &= y_i^{\sharp} \nabla x_{i+1}^{\sharp} \end{cases}$$

est stationnaire.

Élargissement, illustration

$$R^{\sharp} = F^{\sharp N}(\bot) = \operatorname{lfp} F^{\sharp}$$

$$\vdots$$

$$R^{\sharp^{2}} = F^{\sharp}(R^{\sharp^{1}}) = F^{\sharp^{2}}(\bot)$$

$$R^{\sharp^{1}} = F^{\sharp}(R^{\sharp^{0}}) = F^{\sharp}(\bot)$$

$$R^{\sharp^{0}} = \bot$$

Élargissement, illustration

$$R^{\sharp} = F^{\sharp N}(\bot) = \operatorname{lfp} F^{\sharp}$$

$$\vdots$$

$$R^{\sharp^{2}} = F^{\sharp}(R^{\sharp^{1}}) = F^{\sharp^{2}}(\bot)$$

$$R^{\sharp^{1}} = F^{\sharp}(R^{\sharp^{0}}) = F^{\sharp}(\bot)$$

$$R^{\sharp^{0}} = \bot$$

$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp}(R^{\sharp})$$

$$\left(\operatorname{lfp} F^{\sharp}\right)$$

$$\vdots$$

$$R^{\sharp^{2}} = R^{\sharp^{1}} \nabla F^{\sharp}(R^{\sharp^{1}})$$

$$R^{\sharp^{1}} = R^{\sharp^{0}} \nabla F^{\sharp}(R^{\sharp^{0}})$$

$$R^{\sharp^{0}} = \bot$$

 F^{\sharp} non stationnaire, élargissement

Élargissement, illustration

$$R^{\sharp} = F^{\sharp^{N}}(\bot) = \operatorname{lfp} F^{\sharp} \qquad \left(\operatorname{lfp} F^{\sharp}\right)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$R^{\sharp^{2}} = F^{\sharp}(R^{\sharp^{1}}) = F^{\sharp^{2}}(\bot) \qquad R^{\sharp^{2}} = R^{\sharp^{1}} \nabla F^{\sharp}(R^{\sharp^{1}})$$

$$R^{\sharp^{1}} = F^{\sharp}(R^{\sharp^{0}}) = F^{\sharp}(\bot) \qquad R^{\sharp^{1}} = R^{\sharp^{0}} \nabla F^{\sharp}(R^{\sharp^{0}})$$

$$F^{\sharp}$$
 stationnaire Remarque : Ifp $F^{\sharp} \sqsubseteq^{\sharp} R^{\sharp}$

 $\sqsubseteq^{\sharp} R^{\sharp}$

 $R^{\sharp} = R^{\sharp} \nabla F^{\sharp} (R^{\sharp})$

 F^{\sharp} non stationnaire, élargissement

On s'arrête avec
$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp}(R^{\sharp})$$
 donc $F^{\sharp}(R^{\sharp}) \sqsubseteq^{\sharp} R^{\sharp}$ donc

 $\operatorname{lfp} F^{\sharp} = \prod^{\sharp} \left\{ x \mid F^{\sharp}(x) \sqsubseteq^{\sharp} x \right\} \sqsubseteq^{\sharp} R^{\sharp}.$

Si les bornes de l'intervalle sont stables, on les conserve, sinon on les remplace par ∞ .

Si les bornes de l'intervalle sont stables, on les conserve, sinon on les remplace par ∞ .

Définition

$$x^{\sharp} \nabla y^{\sharp} = \begin{cases} \begin{bmatrix} \llbracket a,b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket \,, y^{\sharp} = \llbracket c,d \rrbracket \,, c \geqslant a, d \leqslant b \\ \llbracket a,+\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket \,, y^{\sharp} = \llbracket c,d \rrbracket \,, c \geqslant a, d > b \\ \rrbracket -\infty,b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket \,, y^{\sharp} = \llbracket c,d \rrbracket \,, c < a, d \leqslant b \\ \rrbracket -\infty,+\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket \,, y^{\sharp} = \llbracket c,d \rrbracket \,, c < a, d > b \\ y^{\sharp} & \text{si } x^{\sharp} = \bot \\ x^{\sharp} & \text{si } y^{\sharp} = \bot \end{cases}$$

Si les bornes de l'intervalle sont stables, on les conserve, sinon on les remplace par ∞ .

Définition

$$x^{\sharp} \triangledown y^{\sharp} = \begin{cases} \begin{bmatrix} \llbracket a,b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d \leqslant b \\ \llbracket a,+\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d > b \\ \rrbracket -\infty, b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d \leqslant b \\ \rrbracket -\infty, +\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d > b \\ y^{\sharp} & \text{si } x^{\sharp} = \bot \\ x^{\sharp} & \text{si } y^{\sharp} = \bot \end{cases}$$

Exemple

$$\blacktriangleright \ [\![0,2]\!] \triangledown [\![0,1]\!] = [\![0,2]\!]$$

Si les bornes de l'intervalle sont stables, on les conserve, sinon on les remplace par ∞ .

Définition

$$x^{\sharp} \triangledown y^{\sharp} = \begin{cases} \begin{bmatrix} \llbracket a,b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d \leqslant b \\ \llbracket a,+\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d > b \\ \rrbracket -\infty, b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d \leqslant b \\ \rrbracket -\infty, +\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d > b \\ y^{\sharp} & \text{si } x^{\sharp} = \bot \\ x^{\sharp} & \text{si } y^{\sharp} = \bot \end{cases}$$

Exemple

- ightharpoonup [0, 2] riangledown [0, 1] = [0, 2]
- $ightharpoonup [0,1] riangledown[0,2] = [0,+\infty[$

Si les bornes de l'intervalle sont stables, on les conserve, sinon on les remplace par ∞ .

Définition

$$x^{\sharp} \triangledown y^{\sharp} = \begin{cases} \begin{bmatrix} \llbracket a,b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d \leqslant b \\ \llbracket a,+\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d > b \\ \rrbracket -\infty, b \rrbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d \leqslant b \\ \rrbracket -\infty, +\infty \llbracket & \text{si } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d > b \\ y^{\sharp} & \text{si } x^{\sharp} = \bot \\ x^{\sharp} & \text{si } y^{\sharp} = \bot \end{cases}$$

Exemple

- ightharpoonup [0, 2] riangledown [0, 1] = [0, 2]
- $ightharpoonup [0,1] riangledown[0,2] = [0,+\infty[$

(∇ n'est pas symétrique)

Exemple d'élargissement (suite et fin)

Exercice 3

Reprendre le calcul précédent en remplaçant l'equation de R_2^\sharp par

$$R_{2}^{\sharp i+1} = R_{2}^{\sharp i} \nabla_{\mathrm{nr}} \left(R_{1}^{\sharp i+1} \left[y \mapsto \{42\} \right] \sqcup_{\mathrm{nr}}^{\sharp} R_{4}^{\sharp i} \left[y \mapsto R_{4}^{\sharp i} (y) + {}^{\sharp} \{4\} \right] \right)$$

(ça devrait s'arrêter après trois étapes).

```
0x = 12;
while 1(x > 0) {
2x = x - 1;
}
0 \xrightarrow{x = 12} 1 \xrightarrow{x \le 0} 3
```


$$_{0}x = 12;$$
while $_{1}(x > 0) \{$
 $_{2}x = x - 1;$
}

$$\begin{array}{c} R_{0}^{\sharp^{i+1}} = \top & \frac{I \quad R_{I}^{\sharp^{0}} \quad R_{I}^{\sharp^{1}} \quad R_{I}^{\sharp^{2}}}{0 \quad \bot} \\ R_{1}^{\sharp^{i+1}} = R_{1}^{\sharp^{i}} \bigvee_{\mathbf{nr}} \left(R_{0}^{\sharp^{i+1}} \left[\mathbf{x} \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \quad 1 \quad \bot \\ R_{2}^{\sharp^{i}} \left[\mathbf{y} \mapsto R_{2}^{\sharp^{i}} (\mathbf{x}) - \sharp \ \llbracket 1, 1 \rrbracket \right] \right) & \begin{array}{c} 2 \quad \bot \\ 3 \quad \bot \end{array} \\ R_{3}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} \left[\mathbf{x} \mapsto R_{1}^{\sharp^{i+1}} (\mathbf{x}) \\ & \Pi^{\sharp} \left[-\infty, 0 \right] \end{array} \right]$$

$$_{0}x = 12;$$
while $_{1}(x > 0)$ {
 $_{2}x = x - 1;$
}

 $\sqcap^{\sharp} \,]\!] - \infty, 0]\!]$

$$0x = 12;$$
while $_{1}(x > 0)$ {
 $_{2} x = x - 1;$
}
$$0 \xrightarrow{x = 12} 1 \xrightarrow{x \le 0} 3$$

$$0x = 12;$$
while $1(x > 0)$ {
 $2x = x - 1;$
}
 $0 \longrightarrow 10 \longrightarrow 1$

$$\begin{split} R_0^{\sharp^{i+1}} &= \top & \frac{l}{0} \frac{R_l^{\sharp^0}}{R_l^{l}} \frac{R_l^{\sharp^0}}{R_l^{l}} \frac{R_l^{\sharp^2}}{R_l^{\sharp^3}} \frac{R_l^{\sharp^3}}{R_l^{l}} \\ R_1^{\sharp^{i+1}} &= R_1^{\sharp^i} \nabla_{\mathbf{nr}} \left(R_0^{\sharp^{i+1}} \left[\mathbf{x} \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} & 1 & \bot & \llbracket 12, 12 \rrbracket & \rrbracket - \infty, 12 \rrbracket & \rrbracket - \infty, 12 \rrbracket \\ R_2^{\sharp^i} \left[\mathbf{y} \mapsto R_2^{\sharp^i} (\mathbf{x}) - ^{\sharp} \llbracket 1, 1 \rrbracket \right] \right) & 2 & \bot & \llbracket 12, 12 \rrbracket & \llbracket 1, 12 \rrbracket & \llbracket 1, 12 \rrbracket \\ R_3^{\sharp^{i+1}} &= R_1^{\sharp^{i+1}} \left[\mathbf{x} \mapsto R_1^{\sharp^{i+1}} (\mathbf{x}) \\ & & \square^{\sharp} \left[-\infty, 0 \right] \right] \end{split}$$

$$0x = 12;$$
while $_{1}(x > 0)$ {
 $_{2} x = x - 1;$
}
$$0 \xrightarrow{x = 12} 1 \xrightarrow{x \le 0}$$

$$R_{0}^{\sharp^{i+1}} = \top \qquad \qquad \frac{I \quad R_{l}^{\sharp^{0}} \quad R_{l}^{\sharp^{1}} \quad R_{l}^{\sharp^{2}} \quad R_{l}^{\sharp^{3}}}{0 \quad \bot \quad \top \quad \top \quad \top}$$

$$R_{1}^{\sharp^{i+1}} = R_{1}^{\sharp^{i}} \bigvee_{\mathbf{nr}} \left(R_{0}^{\sharp^{i+1}} \left[\mathbf{x} \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \quad 1 \quad \bot \quad \llbracket 12, 12 \rrbracket \quad \rrbracket - \infty, 12 \rrbracket \quad \rrbracket - \infty, 12 \rrbracket \quad \llbracket - \infty, 12 \rrbracket \quad R_{2}^{\sharp^{i}} \left[\mathbf{y} \mapsto R_{2}^{\sharp^{i}} (\mathbf{x}) - \sharp \left[\mathbb{1}, 1 \right] \right] \right) \qquad 2 \quad \bot \quad \llbracket 12, 12 \rrbracket \quad \llbracket 1, 12 \rrbracket \quad \llbracket 1,$$

Regagner de la précision

- L'élargissement permet au calcul de terminer.
- ► Mais entraîne une perte de précision.
- On peut en regagner un peu par des itérations descendantes.

Regagner de la précision

- L'élargissement permet au calcul de terminer.
- ► Mais entraı̂ne une perte de précision.
- On peut en regagner un peu par des itérations descendantes.

Définition (rétrécissement)

Un rétrécissement (narrowing en anglais) \triangle est une opération binaire ($\triangle: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$) vérifiant

Regagner de la précision

- L'élargissement permet au calcul de terminer.
- Mais entraîne une perte de précision.
- On peut en regagner un peu par des itérations descendantes.

Définition (rétrécissement)

Un rétrécissement (narrowing en anglais) \triangle est une opération binaire ($\triangle: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$) vérifiant

- **pour toute suite** $\left(x^{\sharp}\right)_{n\in\mathbb{N}}$, la suite décroissante

$$\begin{cases} y_0^{\sharp} &= x_0^{\sharp} \\ y_{i+1}^{\sharp} &= y_i^{\sharp} \triangle x_{i+1}^{\sharp} \end{cases}$$

est stationnaire.

Rétrécissement, illustration

$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp}(R^{\sharp})$$

$$R^{\sharp'} = R^{\sharp} \triangle F^{\sharp}(R^{\sharp})$$

$$\vdots$$

$$R^{\sharp'} = R^{\sharp'} \triangle F^{\sharp}(R^{\sharp'})$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

Rétrécissement, illustration

$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp}(R^{\sharp})$$

$$R^{\sharp'} = R^{\sharp} \triangle F^{\sharp}(R^{\sharp})$$

$$\vdots$$

$$R^{\sharp'} = R^{\sharp'} \triangle F^{\sharp}(R^{\sharp'})$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

Rétrécissement, illustration

Remarque : Ifp $F^{\sharp} \sqsubseteq^{\sharp} R^{\sharp'}$

On part de $R^{\sharp} \supseteq^{\sharp} \operatorname{lfp} F^{\sharp}$ donc par croissance de F^{\sharp} ,

$$F^{\sharp}(R^{\sharp}) \supseteq^{\sharp} F^{\sharp} \left(\operatorname{lfp} F^{\sharp}\right) = \operatorname{lfp} F^{\sharp}$$

donc par propriété du rétrécissement \triangle ,

$$R^{\sharp'^1} = R^{\sharp} \triangle F^{\sharp}(R^{\sharp}) \supseteq^{\sharp} \operatorname{lfp} F^{\sharp}.$$

Finalement, par récurrence immédiate,

$$R^{\sharp'} \supseteq \operatorname{lfp} F^{\sharp}.$$

Pour garantir la convergence, on ne raffine que les bornes infinies.

Pour garantir la convergence, on ne raffine que les bornes infinies.

Définition

$$x^{\sharp} \triangle y^{\sharp} = \begin{cases} \begin{bmatrix} \llbracket a, d \rrbracket & \text{si } x^{\sharp} = \llbracket a, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, b \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, b \rrbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, d \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ x^{\sharp} & \text{sinon} \end{cases}$$

Pour garantir la convergence, on ne raffine que les bornes infinies.

Définition

$$x^{\sharp} \vartriangle y^{\sharp} = \left\{ \begin{array}{ll} \llbracket a, d \rrbracket & \operatorname{si} x^{\sharp} = \llbracket a, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, b \rrbracket & \operatorname{si} x^{\sharp} = \rrbracket -\infty, b \rrbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, d \rrbracket & \operatorname{si} x^{\sharp} = \rrbracket -\infty, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ x^{\sharp} & \operatorname{sinon} \end{array} \right.$$

Exemple

$$\blacktriangleright \ [\![0,+\infty[\![\ \triangle \ [\![0,1]\!] = [\![0,1]\!]$$

Pour garantir la convergence, on ne raffine que les bornes infinies.

Définition

$$x^{\sharp} \triangle y^{\sharp} = \begin{cases} \begin{bmatrix} \llbracket a, d \rrbracket & \text{si } x^{\sharp} = \llbracket a, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, b \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, b \rrbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, d \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ x^{\sharp} & \text{sinon} \end{cases}$$

Exemple

- $\blacktriangleright \ [\![0,+\infty[\![\ \triangle \ [\![0,1]\!] = [\![0,1]\!]$
- $ightharpoonup [0,2] \triangle [0,1] = [0,2]$

Exemple de rétrécissement (suite et fin)

Exercice 4

Raffiner le résultat du calcul précédent avec le rétrécissement (i.e. partir du point fixe $R_I^{\sharp^3}$ et itérer en remplaçant $\nabla_{\rm nr}$ par $\triangle_{\rm nr}$ dans les equations).

$$0x = 12;$$
while $_{1}(x \neq 0)$ {
$$_{2} x = x - 1;$$
}
$$0 \xrightarrow{x = 12} 1 \xrightarrow{x = 0} 3$$

▶ Même avec le narrowing, on ne peut pas trouver $x \ge 0$.

```
0x = 12;
while _{1}(x \neq 0) {
_{2} x = x - 1;
}
0 \xrightarrow{x = 12} 1 \xrightarrow{x = 0} 3
```

- ▶ Même avec le narrowing, on ne peut pas trouver $x \ge 0$.
- ► Alors que le domaine des signes y parvient.

```
0x = 12;
while _{1}(x \neq 0) {
_{2} x = x - 1;
}
0 \xrightarrow{x = 12} 1 \xrightarrow{x = 0} 3
```

- ▶ Même avec le narrowing, on ne peut pas trouver $x \ge 0$.
- ► Alors que le domaine des signes y parvient.
- ▶ On peut améliorer l'élargissement : au lieu de passer directement d'une borne positive à $-\infty$, on s'arrête d'abord à 0.
- C'est l'idée de l'élargissement à seuil : on peut ainsi utiliser n'importe quel nombre fini de constantes comme seuils.


```
0x = 12;
while 1(x \neq 0) {
2x = x - 1;
}
0 \xrightarrow{x = 12} 1 \xrightarrow{x = 0} 3
```

- ▶ Même avec le narrowing, on ne peut pas trouver $x \ge 0$.
- ► Alors que le domaine des signes y parvient.
- ▶ On peut améliorer l'élargissement : au lieu de passer directement d'une borne positive à $-\infty$, on s'arrête d'abord à 0.
- C'est l'idée de l'élargissement à seuil : on peut ainsi utiliser n'importe quel nombre fini de constantes comme seuils.
- ► Encore faut il avoir le bon seuil (si on avait utilisé -1 ici, on n'aurait pas obtenu l'intervalle [-1, 12]).

Abstraire la sémantique concrète

Rappels sur la sémantique concrète Abstractions relationnelles ou non

Abstractions non relationnelles

Signes Constantes

Analyse arrière

Analyse en arrière

On avait défini la sémantique abstraite des gardes comme

$$\llbracket e > 0 \rrbracket_{\mathrm{C}}^{\sharp} \rho = \left\{ \begin{array}{l} \rho \left[v \mapsto \rho(v) \; \sqcap^{\sharp} \alpha \left(\llbracket 1, + \infty \llbracket \right) \right] & \text{si } e = v \\ \rho & \text{sinon} \end{array} \right.$$

Comment faire pour x - 4 > 0?

Analyse en arrière

On avait défini la sémantique abstraite des gardes comme

$$\llbracket e > 0 \rrbracket_{\mathrm{C}}^{\sharp} \rho = \left\{ \begin{array}{l} \rho \left[v \mapsto \rho(v) \; \sqcap^{\sharp} \alpha \left(\llbracket 1, + \infty \llbracket \right) \right] & \text{si } e = v \\ \rho & \text{sinon} \end{array} \right.$$

Comment faire pour x - 4 > 0?

On va utiliser une analyse en arrière des expressions : partant du résultat de l'expression, on en déduit les valeurs possibles des variables.

Sémantique en arrière des expressions :

$$[\![e]\!]\downarrow^{\sharp}: (\mathbb{V} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\mathbb{V} \to \mathcal{D}^{\sharp})$$

Sémantique en arrière des expressions :

$$[\![e]\!]\downarrow^{\sharp}: (\mathbb{V} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\mathbb{V} \to \mathcal{D}^{\sharp})$$

$$\llbracket v \rrbracket \downarrow^{\sharp} (\rho, r)$$
 $= \rho \left[v \mapsto \rho(v) \sqcap r \right] (v)$

Sémantique en arrière des expressions :

$$\llbracket e \rrbracket \downarrow^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\mathbb{V} \to \mathcal{D}^{\sharp})$$

$$\llbracket v \rrbracket \downarrow^{\sharp} (\rho, r)$$

$$= \rho \left[v \mapsto \rho(v) \sqcap r \right] (v)$$

$$\llbracket n \rrbracket \downarrow^{\sharp} (\rho, r)$$
 $= \left\{ egin{array}{ll} \bot & ext{si } n^{\sharp} \sqcap^{\sharp} r = \bot \\
ho & ext{sinon} \end{array} \right.$

Sémantique en arrière des expressions : $\llbracket e \rrbracket \downarrow^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

Sémantique en arrière des expressions : $\llbracket e \rrbracket \downarrow^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

$$[e_1 + e_2] \downarrow^{\sharp}(\rho, r) \qquad = [e_1] \downarrow^{\sharp}(\rho, r_1) \sqcap_{\operatorname{nr}}^{\sharp} [e_2] \downarrow^{\sharp}(\rho, r_2)$$

$$\operatorname{avec}(r_1, r_2) = + \downarrow^{\sharp} \left([e_1]_{\operatorname{E}}^{\sharp}(\rho), [e_2]_{\operatorname{E}}^{\sharp}(\rho), r \right)$$

. . .

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$
(si $x\geqslant 0$, $y\geqslant 0$ et $x+y\leqslant 0$ alors $x=y=0$)

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$
(si $x\geqslant 0$, $y\geqslant 0$ et $x+y\leqslant 0$ alors $x=y=0$)

Exemple

Dans le domaine des intervalles :

$$+ \downarrow^{\sharp} \left(\llbracket 0,2 \rrbracket \,, \llbracket 3,8 \rrbracket \,, \llbracket 4,7 \rrbracket \right) = \left(\llbracket 0,2 \rrbracket \,, \llbracket 3,\textcolor{red}{7} \rrbracket \right)$$

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$
 (si $x\geqslant 0$, $y\geqslant 0$ et $x+y\leqslant 0$ alors $x=y=0$)

Exemple

Dans le domaine des intervalles :

$$+ \downarrow^{\sharp}(\llbracket 0,2 \rrbracket\,, \llbracket 3,8 \rrbracket\,, \llbracket 4,7 \rrbracket) = (\llbracket 0,2 \rrbracket\,, \llbracket 3,7 \rrbracket)$$

Exercices 5

Donner la table de +↓[#] pour le domaine des signes (tout au moins une partie, la table ayant 125 entrées).

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$
 (si $x\geqslant 0,\ y\geqslant 0$ et $x+y\leqslant 0$ alors $x=y=0$)

Exemple

Dans le domaine des intervalles :

$$+\downarrow^{\sharp}(\llbracket 0,2 \rrbracket, \llbracket 3,8 \rrbracket, \llbracket 4,7 \rrbracket) = (\llbracket 0,2 \rrbracket, \llbracket 3,7 \rrbracket)$$

Exercices 5

- Donner la table de +↓[‡] pour le domaine des signes (tout au moins une partie, la table ayant 125 entrées).
- ▶ Définir -↓[‡] pour le domaine des intervalles.

Analyse en arrière (suite et fin)

Exercice 6

- Avec la sémantique en arrière des expressions, définir une sémantique abstraite pour les gardes plus précise.
- Puis calculer cette sémantique dans le domaine des intervalles pour la garde $x+y\leqslant z$ avec $\rho(x)=[1,10]$, $\rho(y)=[3,10]$ et $\rho(z)=[3,5]$.

Liste des exercices

- 1. Soustraction abstraite du domaine des signes (s. 16);
- 2. Soustraction et multiplication abstraites du domaine des intervalles d'entiers (s. 37);
- Itérations avec élargissement pour l'exemple du slide 38 (s. 43);
- Itérations avec rétrécissement à partir du post-point fixe de l'exemple slide 44 (s. 48);
- 5. Addition et soustraction arrière pour le domaine des intervalles (s. 53)
- 6. Sémantique des gardes avec opérateur arrière ; évaluation de la garde $x + y \leqslant z$ (s. 54)

