МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРКАСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Богдана ХМЕЛЬНИЦЬКОГО КАФЕДРА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

3BIT

з лабораторної роботи №3 «Дослідження випрямляючого діода і стабілітрона»

Виконано з навчальної дисципліни

«Комп'ютерна електроніка»

студент 2 курсу групи КС-231

зі спеціальності 121 —

«Інженерія програмного забеспечення»

Попова Антона Андрійовича

варіант №5

Перевірив викладач:

к.т.н. Ярослав Тарасенко

Черкаси, 2024

Тема: Дослідження випрямляючого діода і стабілітрона.

Мета роботи: Вивчення властивостей електронно-діркового переходу, вивчення властивостей випрямляючого діода і стабілітрона шляхом зняття їх вольт-амперних характеристик.

1)

1. Принципова схема електрична:

2. Таблиця експериментів:

	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,99
пр, В											
	0	0,014	0,028	0,056	0,056	2,537	0,119	5,675	0,271	12,948	420,17
пр, А											
		u	u	u	u	u	m	m			

Максимальний струм при якому руйнується діод це 420,17 А, Напруга

батарейки при цьому 0,99 В.

зв, В	0	20	40	60	80	100	120	140	160	180	200
за. А	0	-3,553	-7,105	-7,105	-0,014	-0,014	-0,014	-0,028	-0,028	-0,028	-0,028
		u	u	u	m	m	m	m	m	m	m

220 -0,028 m

Максимальну зворотну напругу неможливо визначити за допомогою цієї версії програми, діод не руйнується.

Пряма та зворотна вітки ВАХ діода:

2) Дослідження реальних діодів з бібліотеки.

1. 1N4149:

пр, В	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
пр, А	0	0,01u	0,02u	0,041	0,561	0,025	0,9m	6,84m	0,016	0,027	0,039
				u	u	m					

Максимальна сила струму при якій руйнується діод - 9,231k A.

зв, В	0	20	40	60	80	100	120	140	160	180	200
38. A	0	-2u	-4u	-6u	-8,001 m	-0,01 m	-2,4	-4,898	-7,397	-9,896	-12,395

220
-14,895

Максимальну зворотну напругу знову неможливо визначити в цьому діоді.

Пряма та зворотна вітки ВАХ діода 1N4149:

2. 1N4001:

пр, В	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
пр, А	0	0,199	1,516		·	0,504	3,476	0,024	0,147	0,664	1,796
		u	u	m	m	m	m				

Максимальна сила струму при якій руйнується діод - 2,193М А.

зв, В	0	20	40	60
зв, А	0	-2,032	-4,032	руйну
		u	u	ється діод

<u>Цей діод руйнується при зворотній напрузі 60 В.</u>

Побудуємо пряму та зворотну вітки ВАХ цього діода:

3) Проведемо дослідження зі стабілітроном:

Побудуємо таблицю зворотних струму та напруги:

_		טווכ		· .			1 7				
		2	3	4	5	5,5	6	6,5	7	7,5	8
3	вв, В										
		0	0,444	0,888	1,032	186,8	збій	1,14k	збій	2,124k	2,619k
3	ы, А		u	u	m	69					

При $_{3B}$ = 5 В струм різко зростає (напруга стабілізації).

Побудуємо графік:

4) Проведемо дослідження ще двох стабілітронів із бази програми:

1. BZX100A:

Таблиця:

зв, В	2	3	4	5	5,5	6	6,5	7	7,5	8
3B, D	0,493	0,74u	0,987	1,234	1,357	1,48u	1,603	1,727	1,85u	1,973u
зв, А	u		u	u	u		u	u		

При зв= 98 В, струм різко зростає.

2. 1N5248B:

	2	3	4	5	5,5	6	6,5	7	7,5	8
_{3B} , B										
	0,2u	0,3u	0,4u	0,5u	0,55u	0,6u	0,65u	0,7u	0,75u	0,8u
зв, А										

При значенні зв = 14 В струм різко зростає. Графік:

5) Осцилографічний спосіб зняття ВАХ діода. Побудована схема:

Покази осцилографа, по ньому видно і зворотну гілку і пряму:

Замальоване зображення:

- 6) Розподіл струмів та напруг при послідовному та паралельному вмиканні діодів.
 - 1. Послідовне вмикання:

Схема:

BAX:

пр, В	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
пр, А	0	0,028	0,056	0,056	0	0,056	0,111u	0	0,222	0,111u	0,333
		u	u	u		u			u		u

Коли діоди з'єднані послідовно, струм через них однаковий, адже в послідовному з'єднанні електричний струм проходить через усі компоненти ланцюга послідовно, без розгалужень. А напруга розподіляється рівномірно по всіх діодах.

2. Паралельне

вмикання: Схема:

BAX:

	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
пр, В											
,	0	0,014	0,028	0,167	1,554	0,074	2,699	0,021	0,049	0,082	0,116
пр, А		u	u	u	u	m	m				

Загальний струм розподілений рівномірно на окремих діодах. Напруга всюди однакова, так як діоди з'єднані паралельно.

Якщо з'єднати 3 різнотипні діоди паралельно, то струми будуть розподілені по-різному. При послідовному з'єднанні напруга буде різною.

7) Дослідження послідовного вмикання стабілітронів.

Схема:

BAX:

	2	4	6	8	10	12	14	16	18	20
зв, В		0.111	0.000	0.000		1 ==0	1 ==0	= 0.00	G= 1 1=	4 2021
зв, А	0	0,444	0,888	0,888	0	1,776	1,776	52,86	654,45	1,303k
		u	u	u		u	u	2	1	

Струм однаковий, напруга розподілена рівномірно.

При трьох різнотипних діодах, напруга на кожному з них відрізняється.

Висновок: при виконанні лабораторної роботи ми вивчили властивості електронно-діркового переходу, а також властивості випрямляючого діода і стабілітрона шляхом зняття їх вольт-амперних характеристик.