Worksheet 2

Foundations of Bayesian Methodology

Group: Goliath

Spring Semester 2022

Exercise 3 (Conjugate Bayes: analytical derivation)

$$y_1, \dots, y_n \mid m \stackrel{i.i.d}{\sim} \mathcal{N}(m, \kappa^{-1})$$

$$m \sim \mathcal{N}(\mu, \lambda^{-1})$$

$$f(y_1, \dots, y_n \mid m) = \prod_{i=1}^n f(y_i \mid m)$$

$$= \prod_{i=1}^n \left(\sqrt{\frac{\kappa}{2\pi}} \exp\left(-\frac{\kappa}{2}(y_i - m)^2\right) \right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \exp\left(-\frac{\kappa}{2}\sum_{i=1}^n (y_i - m)^2\right)$$

$$f(m) = \sqrt{\frac{\lambda}{2\pi}} \exp\left(-\frac{\lambda}{2}(m - \mu)^2\right)$$

$$f(y_1, \dots, y_n \mid m) f(m)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \exp\left(-\frac{\kappa}{2} \sum_{i=1}^n (y_i - m)^2\right) \cdot \sqrt{\frac{\lambda}{2\pi}} \exp\left(-\frac{\lambda}{2} (m - \mu)^2\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\kappa}{2} \sum_{i=1}^n (y_i - m)^2 - \frac{\lambda}{2} (m - \mu)^2\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\kappa}{2} \sum_{i=1}^n (y_i^2 - 2y_i m + m^2) - \frac{\lambda}{2} (m^2 - 2m\mu + \mu^2)\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\kappa}{2} \left(\sum_{i=1}^n y_i^2 - 2n\bar{y}m + nm^2\right) - \frac{\lambda}{2} (m^2 - 2m\mu + \mu^2)\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2} \left((n\kappa + \lambda)m^2 - 2m(\kappa n\bar{y} + \lambda\mu) + \kappa \sum_{i=1}^n y_i^2 + \lambda\mu^2\right)\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{n\kappa + \lambda}{2} \left(m^2 - 2m\frac{\kappa n\bar{y} + \lambda\mu}{n\kappa + \lambda} + \frac{\kappa \sum_{i=1}^n y_i^2 + \lambda\mu^2}{n\kappa + \lambda}\right)\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{n\kappa + \lambda}{2} \left(\left(m - \frac{\kappa n\bar{y} + \lambda\mu}{n\kappa + \lambda}\right)^2 - \left(\frac{\kappa n\bar{y} + \lambda\mu}{n\kappa + \lambda}\right)^2 + \frac{\kappa \sum_{i=1}^n y_i^2 + \lambda\mu^2}{n\kappa + \lambda}\right)\right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\kappa \sum_{i=1}^n y_i^2 + \lambda\mu^2}{n\kappa + \lambda} - \left(\frac{\kappa n\bar{y} + \lambda\mu}{n\kappa + \lambda}\right)^2 + \frac{\kappa \sum_{i=1}^n y_i^2 + \lambda\mu^2}{n\kappa + \lambda}\right)^2\right)$$

constant

$$f(m \mid y_1, \dots, y_n) = \frac{f(y_1, \dots, y_n \mid m) f(m)}{f(y_1, \dots, y_n)}$$

$$= \frac{f(y_1, \dots, y_n \mid m) f(m)}{\int_{-\infty}^{\infty} f(y_1, \dots, y_n \mid m) f(m) dm}$$

$$= \frac{\exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right)}{\int_{-\infty}^{\infty} \exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right)}$$

$$= \sqrt{\frac{n\kappa + \lambda}{2\pi}} \exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right)$$

$$m \mid y_1, \dots, y_n \sim \mathcal{N}\left(\frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}, \frac{1}{n\kappa + \lambda}\right)$$

Note:

$$\int_{-\infty}^{\infty} e^{-a(x+b)^2} \mathrm{d}x = \sqrt{\frac{\pi}{\alpha}}$$

Source: Gaussian Integral

Exercise 4 (Conjugate Bayesian analysis in practice)

$$y_1, \dots, y_n \mid m \stackrel{i.i.d}{\sim} \mathcal{N}(m, \kappa^{-1})$$

$$m \sim \mathcal{N}(\mu, \lambda^{-1})$$

$$\kappa = \frac{1}{900}, \quad \mu = 161, \quad \lambda = \frac{1}{70}$$

```
height <- c(166, 168, 168, 177, 160, 170, 172, 159, 175, 164, 175, 167, 164) table(height)
```

4(a)

height
159 160 164 166 167 168 170 172 175 177
1 1 2 1 1 2 1 1 2 1

hist(height, breaks=length(height), freq=FALSE)
lines(density(height), col="red")

```
## Sample size
sample.n <- length(height); sample.n</pre>
```

[1] 13

```
## Sample meam
sample.mean <- mean(height); sample.mean</pre>
```

[1] 168.0769

Figure 1: Histogram of the height measurements

```
## Sample standard deviation
sample.sd <- sd(height); sample.sd</pre>
## [1] 5.634145
## Sample standard error
sample.se <- sample.sd / sqrt(sample.n); sample.se</pre>
## [1] 1.562631
## Significance level
alpha <- 0.05
## Degrees of freedom
df \leftarrow sample.n - 1
## t-score
t.score <- qt(p=alpha/2, df=df, lower.tail=FALSE); t.score</pre>
## [1] 2.178813
## Contract the 95% confidence interval
lower.bound <- sample.mean - t.score * sample.se</pre>
upper.bound <- sample.mean + t.score * sample.se</pre>
print(c(lower.bound, upper.bound))
## [1] 164.6722 171.4816
Interpretation: there is a probability of 95% that the true mean will fall into the interval
(164.6722, 171.4816).
4(b)
                                 P[m > 200] = 1 - P[m \le 200]
## 2.5%, 50%(i.e. median), 97.5% quantiles of N(161,70)
qnorm(c(0.025, 0.5, 0.975), mean=161, sd=sqrt(70))
```

[1] 144.6018 161.0000 177.3982

```
## P[m>200]
pnorm(200, mean=161, sd=sqrt(70), lower.tail=FALSE)
## [1] 1.570393e-06
    • Plot: see Figure 2
    • Summary statistics: see Table 1
4(c)
                                    y_1, \cdots, y_n \mid m \stackrel{i.i.d}{\sim} \mathcal{N}(m, \kappa^{-1})
                                   m \sim \mathcal{N}(\mu, \lambda^{-1})

m \mid y_1, \dots, y_n \sim \mathcal{N}\left(\frac{\kappa n \bar{y} + \lambda \mu}{n\kappa + \lambda}, (n\kappa + \lambda)^{-1}\right)
## Posterior mean
((1/900)*2185+(1/70)*161) / (13*(1/900)+(1/70))
## [1] 164.558
## Posterior variance
(13*(1/900)+(1/70))^{(-1)}
## [1] 34.80663
                                              y_1, \cdots, y_n \sim \mathcal{N}(m, 900)
                                                      m \sim \mathcal{N}(161, 70)
                                         m \mid y_1, \dots, y_n \sim \mathcal{N}(164.558, 34.80663)
m <- seq(101, 221)
plot(m, dnorm(m, mean=161, sd=sqrt(70)), type="l", ylab="density", col="red",
```


Figure 2: Prior vs. Posterior

```
qnorm(c(0.025, 0.5, 0.975), mean=164.558, sd=sqrt(34.80663))
```

[1] 152.9948 164.5580 176.1212

Table 1: Summary statistics of the prior and posterior distributions

	Mean	SD	Median	Equi-tailed 95% CI/CrI
\overline{m}	161.000	8.3666	161.000	(144.6018, 177.3982)
$m \mid y_i, \cdots, y_n$	164.558	5.8997	164.558	(152.9948, 176.1212)

Interpretation: there is a posterior probability of 95% that the true mean falls into the interval between 152.9948 and 176.1212, given a $\mathcal{N}(m, 900)$ prior is assumed.

```
## P[m>200/y1,...,yn]
pnorm(200, mean=164.558, sd=sqrt(34.80663), lower.tail=FALSE)
```

4(d)

[1] 9.425552e-10

4(e)

Prior
$$\to$$
 Posterior $\mathcal{N}(161, 70) \to \mathcal{N}(164.558, 34.80663)$ $P[m > 200] \to P[m > 200 \mid y_1, \dots, y_n]$ $1.570393 \times 10^{-6} \to 9.425552 \times 10^{-10}$

Table 2: Comparision between prior and posterior

	1	
	Prior	Posterior
Mean	161	164.558
Variance	70	34.80663
$\mathcal{N}(\mu,\sigma^2)$	$\mathcal{N}(161, 70)$	$\mathcal{N}(164.558, 34.80663)$
P[m > 200]	1.570393×10^{-6}	9.425552×10^{-10}

Exercise 5 (Bayesian learning)

Prior distribution:

$$p \sim \text{Beta}(\alpha, \beta)$$

Posterior distribution:

$$p \mid y_1, \dots, y_n \sim \text{Beta}(\alpha + n\bar{y}, \beta + n - n\bar{y})$$

5(a)
$$\alpha = \beta = 0.5$$
, Beta(0.5, 0.5)

Table 3: Response rate for each stage under B(0.5, 0.5) prior

		1	0	\ / / 1
	n	Responders	Prior	Posterior
Stage		x (%)	$\mathrm{B}(\alpha,\beta)$	$B(\alpha + x, \beta + n - x)$
Interim	12	3 (25%)	B(0.5, 0.5)	B(3.5, 9.5)
Final	64	14 (21.875%)	B(0.5, 0.5)	B(14.5, 50.5)

Intermediate study

Final study

 $P[\text{response rate} > 0.4] = P[p > 0.4] = 1 - P[p \le 0.4]$

```
# Intermediate study
pbeta(0.4, 3.5, 9.5, lower.tail=FALSE)
```

[1] 0.1437649

```
# Final study
pbeta(0.4, 14.5, 50.5, lower.tail=FALSE)
```

[1] 0.001075757

```
# Intermediate study
## 2.5%, 50%, 97.5% quantiles of Beta(3.5, 9.5)
qbeta(c(0.025, 0.5, 0.975), 3.5, 9.5)
```

[1] 0.07594233 0.25711895 0.52919108

```
# Final study
## 2.5%, 50%, 97.5% quantiles of Beta(14.5, 50.5)
qbeta(c(0.025, 0.5, 0.975), 14.5, 50.5)
```

[1] 0.1312669 0.2202242 0.3310055

Table 4: Summary statistics of posterior distribution (B(0.5, 0.5) prior)

		Mean	Median	95% CrI
Stage	$B(\alpha, \beta)$			
Interim	B(3.5, 9.5)	0.2692	0.2571	(0.0759, 0.5292)
Final	B(22,74)	0.2292	0.2202	(0.1313, 0.3310)

5(b) $\alpha = 8, \beta = 24, \text{ Beta}(8, 24)$

Table 5: Response rate for each stage under B(8,24) prior

(-,) F				
	n	Responders	Prior	Posterior
Stage		x (%)	$B(\alpha, \beta)$	$B(\alpha + x, \beta + n - x)$
Interim	12	3(25%)	B(8, 24)	B(11, 33)
Final	64	14 (21.875%)	B(8, 24)	B(22,74)

 $P[\text{response rate} > 0.4] = P[p > 0.4] = 1 - P[p \le 0.4]$

```
# Intermediate study
pbeta(0.4, 11, 33, lower.tail=FALSE)

## [1] 0.01621346

# Final study
pbeta(0.4, 22, 74, lower.tail=FALSE)

## [1] 0.0001727695

# Intermediate study
## 2.5%, 50%, 97.5% quantiles of Beta(11, 33)
qbeta(c(0.025, 0.5, 0.975), 11, 33)

## [1] 0.1351860 0.2461854 0.3863082

# Final study
## 2.5%, 50%, 97.5% quantiles of Beta(22, 74)
qbeta(c(0.025, 0.5, 0.975), 22, 74)
```

[1] 0.1511774 0.2272801 0.3178360

Table 6: Summary statistics of posterior distribution (B(8,24) prior)

		Mean	Median	95% CrI
Stage	Posterior			
Interim	B(11, 33)	0.2500	0.2461	(0.1352, 0.3863)
Final	B(22,74)	0.2292	0.2273	(0.1512, 0.3178)