

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

A VARIANT OF LAV VIRUSES

the specification of which is attached and/or was filed on ..13 April 1987..... as Application Serial No038.332..... and was amended on (if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

COUNTRY	APPLICATION NUMBER	DATE OF FILING	PRIOR CLAIMED SINCE 35 U.S.C. '77
European Patent Convention	86401380.0	23 June 1986	<input checked="" type="checkbox"/> YES <input type="checkbox"/> NO <input type="checkbox"/> YES <input checked="" type="checkbox"/> NO

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION NUMBER	DATE OF FILING	STATUS (Patented, Pending, Abandoned)

I hereby appoint the following attorneys to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Finnegan, Henderson, Farabow, Garrett and Dunner, Reg. No. 22,540; Douglas B. Henderson, Reg. No. 20,291; Ford, F. Farabow, Jr., Reg. No. 20,630; Arthur S. Garrett, Reg. No. 20,338; Donald R. Dunner, Reg. No. 19,073; Brian G. Brunsbold, Reg. No. 22,593; Tipton D. Jennings, IV, Reg. No. 20,645; Jerry D. Voight, Reg. No. 23,020; Laurence R. Hester, Reg. No. 20,827; Kenneth E. Payne, Reg. No. 23,098; Herbert H. Mintz, Reg. No. 26,691; C. Larry O'Rourke, Reg. No. 26,014; Albert J. Santorelli, Reg. No. 22,610; Michael C. Elmer, Reg. No. 25,857; Richard H. Smith, Reg. No. 20,609; Stephen L. Peterson, Reg. No. 26,325; John M. Romary, Reg. No. 26,331; Bruce C. Zoller, Reg. No. 27,680; Dennis P. O'Reilly, Reg. No. 27,932; Allen M. Sokal, Reg. No. 26,695; Robert D. Bajefsky, Reg. No. 25,387; Richard L. Stroup, Reg. No. 28,478; David W. Hill, Reg. No. 28,220; Thomas L. Irving, Reg. No. 28,619; Charles E. Lipsey, Reg. No. 28,165; Thomas W. Winland, Reg. No. 27,605; and

Please address all correspondence to FINNEGAN, HENDERSON, FARABOW, GARRETT AND DUNNER, 1775 K Street, N.W., Washington, D.C. 20006, Telephone No. (202) 293-6850.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Listing of Inventors Continue on Page 2 hereof. Yes No

FULL NAME OF SOLE OR FIRST JOINT INVENTOR Alizon, Marc	INVENTOR'S SIGNATURE <i>7/17/87</i>	DATE 4.3.87
RESIDENCE 71, rue de Cardinal Lemoine, Paris 75005 France		CITIZENSHIP France
POST OFFICE ADDRESS same		
FULL NAME OF SECOND JOINT INVENTOR, IF ANY Sonigo, Pierre	INVENTOR'S SIGNATURE <i>Douglas</i>	DATE 29/6/87
RESIDENCE 23, rue Gutenberg, Paris 75015 France		CITIZENSHIP France
POST OFFICE ADDRESS same		
FULL NAME OF THIRD JOINT INVENTOR, IF ANY Wain-Hobson, Simon	INVENTOR'S SIGNATURE <i>Simon Wain-Hobson</i>	DATE 8/15/87
RESIDENCE 3, rue Jean de la Fontaine, Montigny Les Bretonneux 78180		CITIZENSHIP Great Britain
POST OFFICE ADDRESS same	France	

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER • WASHINGTON, D.C.

FULL NAME OF SOLE OR FIRST INVENTOR Montagnier, Luc	INVENTOR'S SIGNATURE	DATE 27/5/87
RESIDENCE 21, rue de Malabry, Le Plessis Robinson 92350 France	CITIZENSHIP France	
POST OFFICE ADDRESS same		
FULL NAME OF SECOND JOINT INVENTOR, IF ANY	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF THIRD JOINT INVENTOR, IF ANY	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF SOLE OR FIRST INVENTOR	INVENTOR'S SIGNATURE	DATE -
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF SECOND JOINT INVENTOR, IF ANY	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF THIRD JOINT INVENTOR, IF ANY	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF FOURTH JOINT INVENTOR, IF ANY	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF FIFTH JOINT INVENTOR, IF ANY	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER - WASHINGTON, D.C.

PATENT
Attorney Docket No. 2356.0010-04

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Marc ALIZON et al.)
Application No.: Unassigned) Group Art Unit: Unassigned
(Cont. of U.S.S.N. 08/423,477 (4/19/95)))
Filed: January 23, 2001) Examiner: Unknown
For: VARIANT OF LAV VIRUSES)

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

SUBMISSION OF FORMAL DRAWINGS

Subject to the approval of the Examiner, applicants submit the attached 34 sheets of Formal Drawings (Figs. 1A, 1B, 2, 3A-1, 3A-2, 3B-1, 3B-2, 3C-1, 3C-2, 3D-1, 3D-2, 3E-1, 3E-2, 3F-1, 3F-2, 4A, 4B, 5, 6A-1, 6A-2, 6A-3, 6B-1, 6B-2, 6B-3, 6B-4, 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, and 7I). If the Formal Drawings for any reason are not in full compliance with the pertinent statutes and regulations, please so advise the undersigned.

Please grant any extensions of time required to enter this response and charge any additional required fees to our deposit account 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER, L.L.P.

By:

Salvatore J. Arrigo

Reg. No. 46,063

Tel: (202) 408-4000

Fax: (202) 408-4400

Email: arrigos@finnegan.com

LAW OFFICES
FINNEGAN, HENDERSON,
FARABOW, GARRETT,
& DUNNER, L.L.P.
1300 I STREET, N.W.
WASHINGTON, DC 20005
202-408-4000

Date: January 23, 2001

FIG. 1A

FIG. 1B

FIG. 2

BRU ARV2 LAV MAL LAV EL1

GAG	10	20	30	40	50	60	70	80
LAV BRU	MGARASVLSG	GELDRWEKIR	LRPGGKKYK	LKHIVWASRE	LERFAVNPGGL	LETSEGCRQI	LGQLOPSLQT	GSEEELRSLYN
ARV2	K	K	R	L	Y	C	Q	ME
LAV MAL	K	K	R	L	L	K	I	STAK
LAV EL1						A1	T	IK
90	100	110	120	130				
LAV BRU	TVATLYCVHQ	RIEJKDTKEA	LDKIEEEQNK	SKKKQQQAAA	-----DTGH	SSQVSONYP1	VQNIQGQMVH	QAISPRTLNA
ARV2	DV	DV	E	I	----AAG	-----	-----	
LAV MAL	DV	DV	E	M	N	AAA	A	
LAV EL1	K	G			N	KN	S	
					N			
170	180	190	200	210	220	230	240	
LAV BRU	WVKVVVEEKAF	SPEVIPMFSA	LSCGATPQDL	NTMLNTVGHH	QAAMQMLKET	INEEAAEWDK	VHPVHAGPIA	PQQMREPRGS
ARV2					M	D	D	
LAV MAL					I			
LAV EL1						L		
250	260	270	280	290	300	310	320	
LAV BRU	DIAGTTSTLQ	EQIGWMTNNP	PIPVGElYYKR	W11LGLNKKIV	RMYSPTSILD	IROGPKEPFR	DYVDRFYKTL	RAEQASQEVK
ARV2								D
LAV MAL							F	
LAV EL1	A	S	D	V	V		T	D

FIG. 3A-1

g: $\frac{d^2\theta}{dt^2}$ $\frac{d\theta}{dt}$ θ θ_0 ω_0 ω

FIG. 3A-2

Region 1: Q
Region 2: R
Region 3: S
Region 4: T

Central Region: Q

	10	20	30	40	50	60	70	80
LAV BRU	MENRWQVMIV	WQVDRMRIRT	WKS LVKHHMY	VSGKARGWFY	RHHYESPHPR	ISSEVH IPLG	DARLVITTYW	GLHTGERDWH
ARV ₂			I K	K	T	K	K	E
LAV MAL		H	K	NN	R	V	VR	
LAV ELI		K	K	NR	K	E	K	E
	90	100	110	120	130	140	150	160
LAV BRU	LGQGSIEWR	KKRYSTQVDP	ELADQLIHLY	YFDCCFSDSAI	RKA LLGHIVS	PRCEYQAGHN	KVGSLQYAL	AALITPKKIK
ARV ₂	A	K	H	H	K	YR	T	T
LAV MAL	H	Q	R	L	D	Q	A	TR
LAV ELI				G	M	1	D	Q
	170	180	190					
LAV BRU	PPLPSVTKL	T	EDRWNKPQKT	KGHRGSHTMN	GH			
ARV ₂		K	R	Q	R			
LAV MAL								
LAV ELI								

FIG. 3B-1

FIG. 3B-2

POL	10	20	30	40	50	60	70	80
LAV BRU	FFREDLAFLQ	GKAREFSSEQ	TRANSPTFSS	EQTTRANSPTR	RELQVWGRDN	NSLSEAAGADR	QGTVSFNFPQ	ITLWQRPLVT
ARV 2	N P	P	G L PK	-----	R GE	K T	E	
LAV MAL	N			S	- R	P	K T	
LAV ELI	N			S	- R			V A
LAV BRU	I KIGGQLKEA	LLDTGADDTV	LEEMSLPGRW	KPKMIGGIGG	F1KVRQYDQI	LIEICGHKAI	GTVLVGPTPV	NIIGRNLLTQ
ARV 2	R		N	K	PV	K		
LAV MAL	VRV		IN	K		Q		
LAV ELI	ELI		IN	K				M
LAV BRU	I GCTLNFPIS	PIETVPVKLK	PGMDGPWKQ	WPLTEEKIKA	LVEICTEMEK	EGKISKIGPE	NPYNTPVFAI	KKKDSTKWRK
ARV 2			R		T	K D	L R	
LAV MAL								
LAV ELI								I
LAV BRU	LVDFRELNKR	TQDFWEVQLG	IPHPAGLKKK	KSVTVLDVGD	AYFSVPLDED	FRKYTAFTIP	SINNETPGIR	YQYNVLPQGW
ARV 2					K			
LAV MAL								
LAV ELI								S

FIG. 3C-1

the first time in the history of the world, the people of the United States have been compelled to make a choice between two political parties.

FIG. 3C-2

BRU QKETWETWT EYWQATWIE WEFVNTPPLV KLWYYQLEKEP IVGAETFYVD GAASRETKLG KAGYVTNRGR QKVVTLDTT
ARV A M T I N D D D
LAV MAL A N K D D
LAV ELI N S Q D S

570 580 590 600 610 620 630 640
LAV BRU QKETWETWT EYWQATWIE WEFVNTPPLV KLWYYQLEKEP IVGAETFYVD GAASRETKLG KAGYVTNRGR QKVVTLDTT
ARV A M T I N D D D
LAV MAL A N K D D
LAV ELI N S Q D S

650 660 670 680 690 700 710 720
LAV BRU NQKTELQAIH LALQDSGLEV NIVTDSQYAL GI1QAQPDKS ESELVNQ1IE QIIKKEKVYL AWVPAHKIG GNEQVDKLV
ARV 2 MAL S I Q D S
LAV ELI N

730 740 750 760 770 780 790 800
LAV BRU AGIRKVLFID GIDKAQDEHE KYHSNWRAMA SDFNLPPVVA KEIVASCDKC QLKGEAMH6Q VDCSPGIWQL DCTHLEGKV1
ARV 2 MAL S E E E
LAV ELI Q N

810 820 830 840 850 860 870 880
LAV BRU LVAVHWASGY IEAEVIPAET GQETAYFLLK LAGRMPVKTI HTDNGSNFTS TVKAACWWA GIKQEFGIPY NPQSSQQGVVES
ARV 2 MAL I VV VV
LAV ELI AA AA

FIG. 3D-1

BRU ARV LAV LAV LAV LAV

890	900	910	920	930	940	950	960
MNKEKKIIG N	QVRDQAEHLK	TAVQMAVFIH	NFKRKGGIGG	YSAGERIVDI	IATDIQTKEI	QQQITKIQNF	RVYYRDSRD KK N
BRU ARV LAV LAV ELI	E		RR	I	I	1	
970	980	990	1000	1010			
LWKGPAKLLW ARV LAV LAV	KGEGVVIQD	NSDIKVVP RR	KAKIIRDYGK	QMAGDDCVAS	RQDED G G	V	
ELI	I	K					

FIG. 3D-2

ENV		SP	OMP	OMP	OMP	OMP	OMP	OMP	OMP
LAV	BRU	MRVK---EKY K GTRN ARV LAV LAV	10 20 NW NW	20 30 -M -M	30 40 T T	40 50 IA D ADN	50 60 R S E A I	60 70 AKAYDTEVHN VWATHACVPT	80
LAV	BRU	QHLWRWGWKK REIQRN ARGIERNC	2 2 2	GTMLLGILMI NW NW	GTMLLGILMI -L -M	CSATEKLWVT M M	VYYGVPWKE T	ATTTLFCASD	
LAV	BRU	DPNPQEIVVLV C E A	90 100 6 N	NVTENFNWK N N N	NDMVEQMHD Q G N	11SLWDQSLK PCVKLTPLCV T T T T	ATNTNNSNTN SLKCTDL-CN -K NVN SE-L	SSSGEMMME- ---NWKE 1 V RN RN	160
LAV	BRU	KGEIKNCFSN 2 MAL ELI	170 180 -V -M	KEYAFFYKLD D TPVGSD VT VLKD	IIPIDNDTTS N L T N QV L	YTYTN AS T DSDN SST	YTLTS R IN R IN R IN	CNTSVITQA C PKVSFEPPIPI T D A	240
LAV	BRU	LKCNKKTENG 2 MAL ELI	250 260 D K RD K	QCTHIGIRPVV 1 K	STQLLNGSL D E	AEEEVIRSA N L	NFTDNAKTI N T N	VQLNQSVEIN CTRPNNNTRK A AH ET K T A G YQ Q	320

FIG. 3E-1

BRU SIRIQRGPGR AFVTTIGK-1G NMRQAHCNIS RAKWNATLKQ IASKLREQFG NNKT-1IFKQ SSGDPEIVT HSFNCGGEFF

2 MAL G HF-- RTP -- L Q SLY TKS-RS IIG

ELI

330 340 350 360 370 380 390 400
• Y T RI DI K Y T N ETE DK V V GSLL- - K NS P
R I V R GTLL- - I K P

410 420 430 440 450 460 470 480
• YCNSTQLFNS TWFNSTWSTE CSNNTEGSDT ITLPCKQF INMWQEVGKA MYAPPISGQI RCSSNITGLL LTRDGGNN--
2 TSK TSG N Q NGARL- RTEG K N S STGS Q KT A V N L I
MAL TSG NNI TES NSTNTN I VAGR- ERN L
ELI

490 500 510 520 530↓ 540 TMP 550 560
T D Y I R Q R E E I V L A L V
NNGSEIIFRPG GGDMDRNWRS ELYKKVYKI EPLGYAPTKA KRRVVQREKRV AVGI-GALFL GFLGAAGSTM GARSMMLTVQ
2 MAL SDN TL STN T

FIG. 3E-2

BRU ARV LAV MAL ELI

570	580	590	600	610	620	630	640
ARQLLSGIVQ	QQNNNLLRAIE	AQQHILLQLTV	WGIKQLQARI	LAVERYLKDQ	QLLGWGCSE	KLICCTAVPW	NASWSNSLE
2			W	R	Q	S	
ARV	MAL			R	H	R	D
LAV	ELI	M		Q	H	R	N
650	660	670	680	690	700	710	720
QIWNNTWME	WDREINNYTS	LINSLIEESQ	NQQEKNEQEL	LELDKWAASLW	NWFNITNWLW	YIKIFIMIVG	GLVGLRIVFA
D	Q	D	T	S	S	S	
ARV	MAL	EK	YT	G	SK	IV	
LAV	ELI	E	I	G	Q	I	
730	740	750	760	770	780	790	800
VLSIVNRVRQ	GYSPLSFQTH	LPTPRGP-DR	PEGIEEGGE	RDRDRSIRLV	NGSLALIWDD	LRSLCLFSYH	RLRDLLLIVT
2		R	D	V	E	R	
ARV	L	L	P	G	F	N	
LAV	ELI	A	-	T	S	AV	
810	820	830	840	850	860	870	
RIVELLGRRG	WEALKYWWNL	LOYWQSQELKN	SAVSLLNATA	IAVAEGTDRV	IEVYQGAQRA	IRHIPRRIRQ	GLERILL
T	K	S	W	T	A	L	
ARV	MAL	D	G	R	R	H	
LAV	ELI	L	T	S	FD	F	
				Q	I	G	S
				II	R	VLN	

FIG. 3F-1

	F	10	20	30	40	50	60	70	80
LAV	BRU	MGGKWSKSSV	VGWPTYRERM	R-----RAEPA	ADGVGAASR-----	DLEKUG AITSSNTAAT	NAACAWLEAQ	EE-EEVGFPV	
ARV	2	R M	G SAI	I RAEPI	V QD	D C	A A	S P	
LAV	MAL	I	KI	TP T ET	V	SP	N	S	
LAV	ELI	I	AI	--- TM	V	---	S	D	
		90	100	110	120	130	140	150	160
LAV	BRU	TPQVPLRRHT	YKAAYDLSHF	LKEKGGLLEG	IHSQRQRQDIL	DLWIYUTQGY	FPDWQNYTPC	PGYRYPLTFG	WCYKLVPVEP
ARV	2	R	I	G F	D	VW PK	V	I	F
LAV	MAL	R	E L			E	V	F	F
LAV	ELI	R					N	E	H S
							I		D
		170	180	190	200	210			
LAV	BRU	DKVEEANKGE	NTSLLHPVSL	HGMDDPEREV	LEWRFDSRLA	FHHVARELHP	EYFKNC		
ARV	2	E	N	E A K	V K	M	Y D		
LAV	MAL	E	NC	E A	K K	R	Y D		
LAV	ELI	QE	DTE	ICQ	Q K N	E K	M	F Y	-

FIG. 3F-2

FIG. 4A

A LAVbru vs.	GAG	POL	ENV			TMP			
			TOTAL	OMP					
HTLV-3 USA	5/2 0/0	0.8 0/0	10/5 5/0	1.3 5/0	856 5/0	1.4 5/0	507 1.6	349 0/0	1.1 0/0
ARV-2 USA	502 12/2	3.4 2/0	100/3 17/11	3.1 17/11	855 13.0	505 17/10	14.3 17/10	350 0/1	1.2 1.2
LAVeli ZAIRE	500 13/1	9.8 13/0	100/2 22/14	5.5 22/14	853 20.7	504 22/14	25.3 22/14	349 0/0	3.8 0/0
LAVmal ZAIRE	505 14/7	12.0 13/0	100/2 13/11	7.7 13/11	859 21.7	509 13/10	26.4 13/10	350 0/1	4.9 0/1
B LAVeli vs.									
LAVmal	505 1/6	10.8 0/0	100/2 13/11	8.4 13/11	859 8/13	9.8 8/13	509 23.6	23.6 350	4.3 0/1

FIG. 4B

A LAVbru
vs.

orf F	central region			
	orf Q	orf R	orf S	orf T
HTLV-3 USA	206 1.5 0/0	192 0 0/0	nd	80 2.5 0/0
ARV-2 USA	210 2.6 0/4	192 0.0 0/0	9.4 0/1 0/1	81 15.0 0/1
LAVeli ZAIRE	206 9.4 1/1	192 0.4 0/0	96 1.5 0/0	80 27.5 0/0
LAVmal ZAIRE	209 27.0 2/5	192 2.6 0/0	96 0.4 0/0	80 23.8 0/0

B LAVeli
vs.

LAVmal	209 22.5 3/6	192 2.0 0/0	96 6.3 0/0	80 1.3 0/0

FIG. 5

GAG		120											
		D T											
LAV.BRU	K	A	Q	A	A	GCT	-	-	-	-	-	D	T
	AAA	GCA	CAG	CAA	GCA	GCA	GCT	-	-	-	-	GAC	ACA
ARV 2	K	A	Q	A	A	A	A	-	-	-	-	G	T
	AAG	GCA	CAG	CAA	GCA	GCA	GCT	GCA	GCT	-	-	GGC	ACA
LAV.MAL	K	T	Q	Q	A	A	A	A	A	Q	Q	A	A
	AAG	ACA	CAG	CAG	GCA	GCA	GCT	GCA	GCT	CAG	CAG	GCA	GCA
LAV.EL1	X	A	Q	Q	A	A	A	A	A	-	-	-	-
	AAG	GCA	CAG	CAA	GCA	GCA	GCT	-	-	-	-	D	T

FIG. 6A-1

Fig. 1. The effect of the addition of 10% of the various organic acids on the viscosity of polyacrylate gel.

C	LAV.BRU	R M R AGA ATG AGA - - - -	R A E P CGA GCT GAG CCA - - - -	R A E P CGA GCT GAG CCA GCA
	ARV 2	R M R AGA ATG AGA - - - -	R A E P CGA GCT GAG CCA CGA GCT GAG CCA A R T P CGA ACT CCC CCA ACA	R T P CGA ACT CCC CCA ACA
	LAV.MAL	R I R AGA ATA AGA - - - -	R T P AGA ACT AAT CCA GCA	R T P AGA ACT AAT CCA GCA
	LAV.ELI	R I R AGA ATA AGA - - - -	R T P AGA ACT AAT CCA GCA	R T P AGA ACT AAT CCA GCA
d	LAV.BRU	V G A S R GTG GGA GCA GTA TCT CGA - - - - -	V G A S R GTG GGA GCA GTA TCT CGA - - - - -	V G A S R GTG GGA GCA GTA TCT CGA - - - - -
	ARV 2	V G A V S R GTG GGA GCA GTA TCT CAA - - - - -	V G A V S R GTG GGA GCA GTA TCT CAA - - - - -	V G A V S R GTG GGA GCA GTA TCT CAA - - - - -
	LAV.MAL	V G A V S R GTA GGA GCA GTA TCT CAA D A V S Q D GAT GCA GTA TCT CAA GAT GCA GTA TCT CAA GAT	V G A V S R GTA GGA GCA GTA TCT CAA - - - - -	V G A V S R GTA GGA GCA GTA TCT CAA - - - - -
	LAV.ELI	V G A V S R GTA GGA GCA GTA TCT CAA - - - - -	V G A V S R GTA GGA GCA GTA TCT CAA - - - - -	V G A V S R GTA GGA GCA GTA TCT CAA - - - - -

FIG. 6A-3

ENV

e

20

LAV.BRU	CAG	Q	H	R	W	R	W	G	
	CAC	TTC	TTC	TGG	TGG	ACA	TGG	GGC	

ARV 2	CAG	Q	H	R	W	R	W	G	
	CAC	TTC	TTC	TGG	TGG	AGA	TGG	GGC	

LAV.MAL	CAA	Q	N	W	W	R	W	G	
	AAC	TGG	TGG	TGG	TGG	AGA	TGG	GGC	

LAV.ELI	CAA	Q	N	W	W	K	W	G	
	AAC	TGG	TGG	TGG	AAA	TCC	TCC	GGC	

f

LAV.BRU

150

ARV 2	ATG	K	C	T	D	T	G	N	A	T	
	ATG	AAG	TGC	ACT	GAT	TTC	-	GGG	AAT	GCT	ACT

M	M	M	E				K	G	E	1	
ATG	ATG	ATG	GAG	-	AAA	GCA	GAG	ATN			

ARV 2

ARV 2	TGG	K	N	C	T	D	T	G	K	A	T	N	T	S	S	G	E	
	AAA	E	E	E	1			AAG	GCT	ACT	AAT	ACC	AAT	AGT	AGT	AGC	GGG	GA

FIG. 6B-1

He was a man of great energy and determination, and he left a lasting legacy in the field of education.

LAV.MAL	$\frac{L}{T} \frac{T}{A} \frac{A}{C} \frac{A}{G}$	$\frac{N}{V} \frac{N}{T} \frac{G}{A} \frac{T}{C}$	$\frac{A}{GCT} \frac{V}{GTC} \frac{N}{AAT} \frac{G}{GGG}$	$\frac{T}{ACT} \frac{G}{GGG} \frac{A}{ACT} \frac{G}{GCT}$	$\frac{A}{GCT} \frac{G}{GGG} \frac{A}{ACT} \frac{G}{GCT}$	$\frac{S}{AGT} \frac{N}{AAT} \frac{R}{AGG} \frac{T}{ACT}$	$\frac{N}{AAT} \frac{A}{AGG} \frac{R}{ACT} \frac{N}{AAT}$	$\frac{A}{GCA} \frac{E}{GAA}$
	$\frac{L}{T} \frac{K}{T} \frac{A}{A} \frac{A}{A}$	$\frac{M}{A} \frac{E}{T} \frac{G}{G}$	$\frac{I}{ATT} -$	$\frac{G}{GGA} \frac{E}{GAA} \frac{V}{GTG}$				

FIG. 6B-2

9 LAV.BRU D N D GAT AAT T ACT ACC AGC - - - - - Y T ACG TTG

200
D N S T T N Y T N Y R L
GAT AAT GCT AGT ACT ACT ACC AAC TAT ACC AAC TAT AGG TTG

D D S D N S AGT - - - - Y R L
GAT GAT AGT GAT AAT AGT ACT ACC - AAT AGT ACC AAT TAT AGG TTG

D N D S T AGT ACC - N S T N Y R L
GAC AAT GAT GAT AGT AGT AAT AGT ACT ACC AAT TAT AGG TTG

FIG. 6B-3

h

LAV.BRU F N S T W F N S T W S T E G
TGT AAT TCA ACA CAA CTG TTT AAT AGT ACT TGG AGT ACT GAA GGG TCA AAT AAC ACT T GAA GGA
430 S D 1
AGT GAC ACA ATC

ARV 2

C N T Q L F N N T W H T K G T
TGT AAT ACA ACA CAA CTG TTT AAT ACA TGG - - - - R L N H T K G
N D T 1
AAT GAC ACA ATC

Figure 6B-4: Amino acid sequence alignment of LAV.MAL and LAV.EL1.

	LAV.MAL												LAV.EL1																	
	C	N	T	S	K	L	F	N	S	T	W	Q	N	N	G	A	R	A	R	G	AGA	CTA	-	-	S	N	S	T	E	S
TGT	AAT	ACA	TCA	AAA	CTG	TTT	AAT	AGT	ACA	TGG	CAG	AAT	GGT	ACA	GCA	AGA	CTA	-	-	AGT	AAT	AGC	ACA	GAG	TCA					
ACT	G	G	T	S	1																									
AAC	AAC	ACA	AAC	ATC																										

FIG. 6B-4

LAV.ELI

→ R
GGTCTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAGCTAGGGAACCCAC
R ← US
TGCTTAAGCCTCAATAAAGCTTGCTTGA GTGCTTCAGTAGTGTGTGCCCGTCTGTG
100
GTGACTCTGGTAACTAGAGATCCCTCAGA CCCCCTTAGTCAGAGTGGAAATCTCTAGCA
U56
GTGGCGCCGAAACAGGGACCTGAAAGCGAAAGTAGAACCAAGAGGAGCTCTCGACGCAG
200
GACTCGGCTTGCTGAAGCGCGCACGGCAAAGAGGCGAGGGCAGCGACTGGTGAGTACGCT
→ GAG 300
MetGlyAlaArgAlaSerValLeuSer
AAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAA
GlyGlyLysLeuAspLysTrpGluLysIleArgLeuArgProGlyGlyLysLysLysTyr
GCGGGGGAAAATTAGATAAAATGGGAAAAAATCGGTTACGGCCAGGAGGAAAGAAAAAAT
400
ArgLeuLysHisIleValTrpAlaSerArgGluLeuGluArgTyrAlaLeuAsnProGly
ATAGACTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATATGCACTTAATCCTG
LeuLeuGluThrSerGluGlyCysLysGlnIleIleGlyGlnLeuGlnProAlaIleGln
GCCTTTAGAAACATCAGAAGGCTGTAAACAAATAATAGGGCAGCTACAACCAGCTATT
500
ThrGlyThrGluGluLeuArgSerLeuTyrAsnThrValAlaThrLeuTyrCysValHis
AGACAGGAACAGAAGAACTTAGATCATTATAACAGTAGCAACCCCTATTGTGTAC
600
LysGlyIleAspValLysAspThrLysGluAlaIleLeuGluLysMetGluGluGlnAsn
ATAAAGGAATAGATGTAAAAGACACCAAGGAAGCTTAGAAAAGATGGAGGAAGAGCAAA
LysSerLysLysAlaGlnGlnAlaAlaAlaAspThrGlyAsnAsnSerGlnValSer
ACAAAAGTAAGAAAAGGCACAGCAAGCAGCAGCTGACACAGGAAACACAGCCAGGTCA
700
GlnAsnTyrProIleValGlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerPro
GCCAAATTATCCTATAGTCAGAACCTACAGGGGCAAATGGTACATCAGGCATATCAC
ArgThrLeuAsnAlaTrpValLysValIleGluGluLysAlaPheSerProGluValile
CTAGAACTTGAACGCATGGGTAAAGTAATAGAAGAAAAGGCTTCAGGCCAGAACTAA
800
ProMetPheSerAlaLeuSerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsn
TACCCATGTTTCAGCATTATCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAA
900
ThrValGlyGlyHisGlnAlaAlaMetGlnMetLeuLysGluThrIleAsnGluGlnAla
ACACAGTGGGGGACATCAAGCAGCCATGCAAATGCTAAAAGAGACCACATCAATGAAGAAG
AlaGluTrpAspArgLeuHisProValHisAlaGlyProIleAlaProGlyGlnMetArg
CTGCAGAATGGGATAGGTTACATCCAGTGCATGCAGGGCCTATTGCACCCAGGCCAGATGA
1000
GluProArgGlySerAspIleAlaGlyThrThrSerThrLeuGlnGluGlnIleAlaTrp
GAGAACCAAGGGGAAGTGATATAGCAGGAACACTAGTACCCCTTCAGGAACAAATAGCAT
MetThrSerAsnProProIleProValGlyGluIleTyrLysArgTrpIleIleValGly
GGATGACAAGTAACCCACCTATCCCAGTAGGGAGAAATCTATAAAAGATGGATAATTGTGG
1100
LeuAsnLysIleValArgMetTyrSerProValSerIleLeuAspIleArgGlnGlyPro
GATTAATAAAATAGTAAGAATGTATAGCCCTGTCAGCATTGGACATAAGACAGGGAC
1200

FIG. 7A

LysGluProPheArgAspTyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAla
 CAAAGGAACCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAGCAAG
 SerGlnAspValLysAsnTrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAsp
 CTTCACAGGATGTAAAAATTGGATGACAGAACCTTGTGGTCCAAAATGCAAACCCAG
 1300
 CysLysThrIleLeuLysAlaLeuGlyProGlnAlaThrLeuGluGluMetMetThrAla
 ATTGCAAGACTATCTTAAAGCATTGGGACCACAGGCTACACTAGAAGAAATGATGACAG
 CysGlnGlyValGlyGlyProSerHisLysAlaArgValLeuAlaGluAlaMetSerGln
 CATGTCAGGGAGTGGGGGGGCCAGCCATAAAGCAAGAGTTCTGGCTGAGGCAATGAGCC
 1400
 AlaThrAsnSerValThrThrAlaMetMetGlnArgGlyAsnPheLysGlyProArgLys
 AAGCAACAAATTCACTACAGCAATGATGCAGAGAGGCAATTAAAGGCCAAGAA
 1500
 IleIleLysCysPheAsnCysGlyLysGluGlyHisIleAlaLysAsnCysArgAlaPro
 AAATTATTAAGTGTTCATTGGCAAAGAAGGGCACATAGCAAAAAATTGCAGGCC
 ArgLysLysGlyCysTrpArgCysGlyLysGluGlyHisGlnLeuLysAspCysThrGlu
 CTAGGAAAAAGGGCTGTTGGAGATGTGGAAAGGAAGGACACCAACTAAAAGATTGCACTG
 →POL 1600
 PhePheArgGluAsnLeuAlaPheProGlnGlyLysAlaGlyGluLeu
 ArgGlnAlaAsnPheLeuGlyArgIleTrpProSerHisLysGlyArgProGlyAsnPhe
 AGAGACAGGCTAATTTTAGGGAGAATTGGCTTCCCACAAGGGAAAGGCCGGGAACT
 SerProLysGlnThrArgAlaAsnSerProThrSerArgGluLeuArgValTrpGlyArg
 LeuGlnSerArgProGluProThrAlaProProAlaGluSerPheGlyPheGlyGluGlu
 TTCTCCAAGCAGACCAGAGCCAACAGCCCCACCAGCAGAGAGCTTCGGTTGGGAAG
 1700
 AspAsnProLeuSerLysThrGlyAlaGiuArgGlnGlyThrValSerPheAsnPhePro
 IleThrProSerGlnLysGlnGluGlnLysAspLysGluLeuTyrProLeuThrSerLeu
 AGATAACCCCTCTCAAAACAGGAGCAGAAAGACAAGGAACTGTATCCTTAACTTCCC
 .GAG← 1800
 GlnIleThrLeuTrpGlnArgProLeuValAlaIleLysIleGlyGlyGlnLeuLysGlu
 LysSerLeuPheGlyAsnAspProLeuSerGln
 TCAAATCACTTTGGCAACGACCCCTGTCGAAATAAAATAGGGGACAGCTAAAGGA
 AlaLeuLeuAspThrGlyAlaAspAspThrValLeuGluGluMetAsnLeuProGlyLys
 AGCTCTATTAGATAAGGAGCAGATGATACAGTATTAGAAGAAATGAATTGCCAGGAAA
 1900
 TrpLysProLysMetIleGlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGin
 ATGGAAACCAAAATGATAGGGGAATTGGAGGTTTATCAAAGTAAGACAGTATGATCA
 IleProIleGluIleCysGlyGlnLysAlaIleGlyThrValLeuValGlyProThrPro
 ATAACCCATAGAAATCTGTGGACAGAAAGCTATAGGTACAGTATTAGTAGGACCTACGCC
 2000
 ValAsnIleIleGlyArgAsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIle
 TGTCAACATAATCGGAAGAAATTGTTGACCCAGATTGGCTGCACTTAAATTTCAT
 2100
 SerProIleGluThrValProValLysLeuLysProGlyMetAspGlyProLysValLys
 TAGTCCTATTGAAACTGTACCAAGTAAAGCCAGGAATGGATGGCCAAAAGTTAA
 GlnTrpProLeuThrGluGluLysIleLysAlaLeuThrGluIleCysThrAspMetGlu
 ACAATGGCCATTGACAGAAGAAAAATAAAAGCATTAAACAGAAATTGTCAGAGATATGGA
 2200

FIG. 7B

LysGluGlyLysIleSerArgIleGlyProGluAsnProTyrAsnThrProIlePheAla
 AAAGGAAGGAAAAATTCAAGAATTGGCCTGAAAATCCATAACAATACTCCAATATTGC
 IleLysLysLysAspSerThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLys
 CATAAAGAAAAAGACAGTACCAAGTGGAGAAAATTAGTAGATTTCAGAGAACTTAATAA
 2300
 ArgThrGlnAspPheTrpGluValGlnLeuGlyIleProHisProAlaGlyLeuLysLys
 GAGAACTCAAGATTTCTGGAGTTCAATTAGGAATACCGCATCCTGCAGGGCTGAAAAA
 2400
 LysLysSerValThrValLeuAspValGlyAspAlaTyrPheSerValProLeuAspGlu
 GAAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCATATTTTCAGTTCCCTAGATGA
 AspPheArgLysTyrThrAlaPheThrIleSerSerIleAsnAsnGluThrProGlyIle
 AGATTTAGGAAATATACGCCTTACCATATCTAGTATAAACATGAGACACCAGGGAT
 2500
 ArgTyrGlnTyrAsnValLeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSer
 TAGATATCAGTACAATGTGCTCCACAGGGATGGAAAGGATCACCGGCAATTCCCAAAG
 SerMetThrLysIleLeuGluProPheArgLysGlnAsnProGluMetValIleTyrGin
 TAGCATGACAAAAATCTTAGAGGCCCTTAGAAAACAAAATCCAGAAATGGTTATCTATCA
 2600
 TyrMetAspAspLeuTyrValGlySerAspLeuGluIleGlyGlnHisArgThrLysIle
 ATACATGGATGATTGTATGTAGGATCTGACTTAGAAATAGGGCAGCAGTAGGACAAAAAT
 2700
 GluLysLeuArgGluHisLeuLeuArgTrpGlyPheThrArgProAspLysLysHisGln
 AGAGAAATTAAAGAGAACATCTATTGAGGTGGGGATTACAGACAGATAAAAAACATCA
 LysGluProProPheLeuTrpMetGlyTyrGluLeuHisProAspLysTrpThrValGin
 GAAAGAACCCCCATTCTTGGATGGTTATGAACCTCCATCCTGATAAAATGGACAGTACA
 2800
 SerIleLysLeuProGluLysGluSerTrpThrValAsnAspIleGlnAsnLeuValGlu
 GTCTATAAAACTGCCAGAAAGGAGAGCTGGACTGTCAATGATATACTAGAACTTAGTGG
 ArgLeuAsnTrpAlaSerGlnIleTyrProGlyIleLysValArgGlnLeuCysLysLeu
 GAGATTAAACTGGGCAAGCCAGATTATCCAGGAATTAAAGTAAGACAATTATGTAAACT
 2900
 LeuArgGlyThrLysAlaLeuThrGluValIleProLeuThrGluGluAlaGluLeuGlu
 CCTTAGGGGAAACCAAGCACTAACAGAAGTAATACCAACTAACAGAAGCAGAATTAGA
 3000
 LeuAlaGluAsnArgGluIleLeuLysGluProValHisGlyValTyrTyrAspProSer
 ACTGGCAGAAACAGGGAAATTAAAGAACCGAGTACATGGAGTGTATTATGACCCATC
 LysAspLeuIleAlaGluIleGlnGlyHisGlyGlnTrpThrTyrGlnIleTyr
 AAAAGACTTAATAGCAGAAATACAGAAACAAGGGCACGGCCAATGGACATACCAAATT
 3100
 GlnGluProPheLysAsnLeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThr
 TCAAGAACCATTTAAACACTGAAAACAGGAAAGTATGCAAGAATGAGGGGTGCCACAC
 AsnAspValLysGlnLeuAlaGluAlaValGlnArgIleSerThrGluSerIleValIle
 TAATGATGTAAAGCAATTAGCAGAGGCAGTGCAAAGAATATCCACAGAAAGCATAGTGAT
 3200
 TrpGlyArgThrProLysPheArgLeuProIleGlnLysGluThrTrpGluThrTrpTrp
 ATGGGAAAGGACTCCTAAATTAGACTACCCATAAAAAGGAAACATGGGAAACATGGTG
 3300

FIG. 7C

AlaGluTyrTrpGlnAlaThrTrpIleProGluTrpGluPheValAsnThrProProLeu
 GGCAGAGTATTGGCAAGCCACTTGGATTCTGAGTGGAAATTGTCAATACCCCTCCTT
 ValLysLeuTrpTyrGlnLeuGluLysGluProIleIleGlyAlaGluThrPheTyrVal
 AGTAAAATTATGGTACCACTAGAGAAGGAACCCATAATAGGAGCAGAAACTTCTATGT
 3400
 AspGlyAlaAlaAsnArgGluThrLysLeuGlyLysAlaGlyTyrValThrAspArgGly
 AGATGGGGCAGCTAACAGAGACTAAATTAGGAAAAGCAGGATATGTTACTGACAGAGG
 ArgGlnLysValValProLeuThrAspThrThrAsnGlnLysThrGluLeuGlnAlaIle
 AAGACAGAAAGTTGTCCTTGTACTGACACGACAAATCAGAAGACTGAGTTACAAGCAAT
 3500
 AsnLeuAlaLeuGlnAspSerGlyLeuGluValAsnIleValThrAspSerGlnTyrAla
 TAATCTAGCCTTGAGGATTGGGATTAGAACATAGTAACAGATTCAAATATGC
 3600
 LeuGlyIleIleGlnAlaGlnProAspLysSerGluSerGluLeuValAsnGlnIleIle
 ATTAGGAATCATTCAAGCACAAACCAGATAAGAGTGAATCAGAGTTAGTCAATCAAATAAT
 GluGlnLeuIleLysLysGluLysValTyrLeuAlaTrpValProAlaHisLysGlyIle
 AGAGCAGTTAATAAAAAAGGAAAAGGTTACCTGGCATGGTACCGACACAAAGGAAT
 3700
 GlyGlyAsnGluGlnValAspLysLeuValSerGlnGlyIleArgLysValLeuPheLeu
 TGGAGGAAATGAACAAGTAGATAAAATTAGTCAGTCAGGAATCAGGAAAGTACTATTTT
 AspGlyIleAspLysAlaGlnGluGluHisGluLysTyrHisAsnAsnTrpArgAlaMet
 GGATGGAATAGATAAGGCTCAAGAACATGAGAAATATCACACAATTGGAGAGCAAT
 3800
 AlaSerAspPheAsnLeuProProValValAlaLysGluIleValAlaSerCysAspLys
 GGCTAGTGATTTAACCTACCACCCGTGGTAGCAAAAGAAATAGTAGCTAGCTGTGATAA
 3900
 CysGlnLeuLysGlyGluAlaMetHisGlyGlnValAspCysSerProGlyIleTrpGln
 ATGTCAGCTAAAGGAGAACGCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCA
 LeuAspCysThrHisLeuGluGlyLysValIleLeuValAlaValHisValAlaSerGly
 ATTAGATTGTACACACTTAGAAGGAAAAGTTATCCTGGTAGCAGTTCATGTAGCCAGTGG
 4000
 TyrIleGluAlaGluValIleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeu
 CTATATAGAACAGAACAGTTATTCCAGCAGAACAGGGCAGGAAACAGCATATTTCTTT
 LysLeuAlaGlyArgTrpProValLysValValHisThrAspAsnGlySerAsnPheThr
 AAAATTAGCAGGAAGATGCCAGTAAAGTAGTACATACAGACAATGGCAGCAATTTCAC
 4100
 SerAlaAlaValLysAlaAlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIlePro
 CAGTGCTGCAGTTAAGGCCGCCTGTTGGGGCAGGTATCAAACAGGAATTGGAAATTCC
 4200
 TyrAsnProGlnSerGlnGlyValValGluSerMetAsnLysGluLeuLysLysIleIle
 CTACAATCCCCAAAGTCAAGGAGTAGTAGAATCTATGAATAAGAATTAAAGAAAATTAT
 GlyGlnValArgAspGlnAlaGluHisLeuLysThrAlaValGlnMetAlaValPheIle
 AGGACAGGTAAGAGATCAAGCTAACATCTTAAGACAGCAGTACAAATGGCAGTATTCA
 4300
 HisAsnPheLysArgArgArgGlyIleGlyTyrSerAlaGlyGluArgIleIleAsp
 CCACAATTAAAGAAGAAGGGGGATTGGGGGATACAGTGCAGGGGAAAGAATAATAGA

FIG. 7D

IleIleAlaThrAspIleGlnThrLysGluLeuGlnLysGlnIleIleLysIleGlnAsn
 CATAATAGCAACAGACATAAACTAAAGAATTACAACAAATTATAAAAATTCAAAA
 400
 PheArgValTyrTyrArgAspSerArgAspProIleTrpLysGlyProAlaLysLeuLeu
 TTTTCGGGTTTATTACAGAGACAGCAGAGATCCAATTGGAAAGGACCAGCAAAGCTCCT
 4500
 TrpLysGlyGluGlyAlaValValIleGinAspLysSerAspIleLysValValProArg
 CTGGAAAGGTGAAGGGGCAGTAGTAATACAAGACAAGAGTGACATAAGGTAGTACCAAG
 4600
 ArgLysValIlysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAla
 MetGluAsnArgTrpGlnValMetIleValTrpGln
 AAGAAAAGTAAAGATTATTAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGC
 4700
 SerArgGlnAspGluAsp
 ValAspArgMetArgIleLysThrTrpLysSerLeuValLysHisHisMetTyrValSer
 AAGTAGACAGGGATGAGGATTAAAACATGGAAAAGTTAGTAAAACACCATATGTATGTTT
 4800
 LysLysAlaAsnArgTrpPheTyrArgHisHisTyrGluSerProHisProLysIleSer
 CAAAGAAAGCTAACAGATGGTTTATAGACATCACTATGAAAGCCCCACCCAAAAATAA
 4900
 SerGluValHisIleProLeuGlyGluAlaArgLeuValIleLysThrTyrTrpGlyLeu
 GTTCAGAAGTACACATCCCCTAGGAGAAGCTAGACTGGTAATAAAACATATTGGGGTC
 5000
 HisThrGlyGluArgGluTrpHisLeuGlyGlnGlyValSerIleGluTrpArgLysArg
 TGCATACAGGAGAAAGAGAATGGCATCTGGGTCAAGGGAGTCTCCATAGAAATGGAGGAAA
 5100
 ArgTyrSerThrGlnValAspProGlyLeuAlaAspGlnLeuIleHisMetTyrTyrPhe
 GGAGATATAGCACACAAGTAGACCCCTGGCTGGCAGACCAACTAATTCAATATGTATTATT
 5200
 AspCysPheSerGluSerAlaIleArgLysAlaIleLeuGlyAspIleValSerProArg
 TTGATTGTTTTCAGAATCTGCTATAAGAAAAGCCATATTAGGAGATATAGTTAGTCCTA
 5300
 CysGluTyrGlnAlaGlyHisAsnLysValGlySerLeuGlnTyrLeuAlaLeuThrAla
 GGTGTGAGTATCAAGCAGGACATAACAGGTAGGATCCCTACAGTATTGGCACTAACAG
 5400
 LeuIleAlaProLysGlnIleLysProProLeuProSerValArgLysLeuThrGluAsp
 CATTAATAGCACCAAAACAGATAAGCCACCTTGCTAGTGTAGGAAGCTAACAGAAC
 5500
 MetGluGlnAlaProAlaAspGlnGlyProGlnArgGluProTyrAsnGluTrpAla
 ArgTrpAsnLysProGlnGlnThrArgGlyHisArgGlySerHisThrMetAsnGlyHis
 ATAGATGGAACAAGCCCCAGCAGACCAGGGGCCACAGAGGGAGCCATACAATGAATGGGC
 5600
 Q←
 LeuGluLeuLeuGluGluLeuLysSerGluAlaValArgHisPheProArgIleTrpLeu
 ATTAGAGCTTTAGAGGAGCTTAAGAGTGAAGCTGTTAGACATTTCTAGGATATGGCT
 5700
 HisSerLeuGlyGlnHisIleTyrGluThrTyrGlyAspThrTrpValGlyValGluAla
 CCATAGCTTAGGACAACATATTATGAAACTATGGGATACCTGGTAGGAGTTGAAGC
 5800
 IleIleArgIleLeuGlnGlnLeuLeuPheIleHisPheArgIleGlyCysGlnHisSer
 TATAATAAGAATACTGCAACAACTTACTGTTATTCAATTGGGTGTCAACATAG
 5900
 ArgIleGlyIleIleArgGlnArgArgAlaArgAsnGlySerSerArgSer
 6000
 MetAspProValAspProAsnLeuGlu
 CAGAATAGGCATTATTCGACAGAGAAGAGCAAGAAATGGATCCAGTAGATCCTAACCTAG
 6100

FIG. 7E

ProTrpAsnHisProGlySerGlnProArgThrProCysAsnLysCysHisCysLysLys
 AGCCCTGGAACCATCCAGGAAGTCAGCCTAGGACTCCTTGTAAACAAGTGTATTGTAAA
 CysCysTyrHisCysProValCysPheLeuAsnLysGlyLeuGlyIleSerTyrGlyArg
 AGTGTGCTATCATTGCCAGTTGCTTAAACAAAGGCTTAGGCATCTCCTATGGCA
 .
 LysLysArgArgGlnArgArgGlyProProGlnGlyGlyGlnAlaHisGlnValProile
 GGAAGAAGCGGGAGACAGCGACGAGGACCTCCTCAAGGCAGTCAGGCTCATCAAGTTCCTA
 .
 ProLysGin
 TACCAAAGCAGTAAGTAGTACATGTAATGCAACCTTAGGGATAATAGCAATAGCAGCAT
 .
 5600
 TAGTAGTAGCAATAACTAGCAATAGTTGTGGACCAAGTATTCAAGAATATAGAA
 .
 5700
 GGATAAAAAAGCAAAAGGAGAATAGACTGTACTTGATAAGATAACAGAAAGAGCAGAAG
 .
 → ENV
 MetArgAlaArgGlyIleGluArgAsnCysGlnAsnTrpTrpLysTrpGly
 ACAGTGGCAATGAGAGCGAGGGGGATAGAGAGAAATTGTCAAAACTGGTGGAAATGGGC
 .
 5800
 IleMetLeuLeuGlyIleLeuMetThrCysSerAlaAlaAspAsnLeuTrpValThrVal
 ATCATGCTCCTGGGATATTGATGACCTGTAGTGCTGCAGACAATCTGTGGGTACAGTT
 .
 TyrTyrGlyValProValTrpLysGluAlaThrThrLeuPheCysAlaSerAspAla
 TATTATGGGTGCCTGTATGGAAGGAAGCAACCACACTCTATTGTGCATCAGATGCT
 .
 5900
 LysSerTyrGluThrGluAlaHisAsnIleTrpAlaThrHisAlaCysValProThrAsp
 AAATCATATGAAACAGAGGCACATAATATCTGGGCCACACATGCCTGTGTACCCACGGAC
 .
 6000
 ProAsnProGlnGluIleAlaLeuGluAsnValThrGluAsnPheAsnMetTrpLysAsn
 CCCAACCCACAAGAAATAGCACTGGAAAATGTGACAGAAAACCTTAACATGTGGAAAAAT
 .
 AsnMetValGluGlnMetHisGluAspIleIleSerLeuTrpAspGlnSerLeuLysPro
 AACATGGTGGAACAGATGCATGAGGATATAATCAGTTATGGATCAAAGCCTAAACCA
 .
 6100
 CysValLysLeuThrProLeuCysValThrLeuAsnCysSerAspGluLeuArgAsnAsn
 TGTGTAAAATTAAACCCACTCTGTGTCACTTAACTGTAGTGATGAATTGAGGAACAAT
 .
 GlyThrMetGlyAsnAsnValThrThrGluGlyLysGlyMetLysAsnCysSerPheAsn
 GGCACATGGGAACAATGTCACTACAGAGGAGAAAGGAATGAAAACGTCTTTCAAT
 .
 6200
 ValThrThrValLeuLysAspLysLysGlnGlnValTyrAlaLeuPheTyrArgLeuAsp
 GTAAACCACAGTACTAAAGATAAGAACAGCAAGTATATGCACTTTTATAGACTTGAT
 .
 6300
 IleValProileAspAsnAspSerSerThrAsnSerThrAsnTyrArgLeuIleAsnCys
 ATAGTACCAATAGACAATGATAGTAGTACCAATAGTACCAATTATAGGTTAATAAATTGT
 .
 AsnThrSerAlaIleThrGlnAlaCysProLysValSerPheGluProIleProIleHis
 AATACCTCAGCCATTACACAGGCTTGTCCAAGGTATCCTTGTAGCCAATTCCCACAT
 .
 6400
 TyrCysAlaProAlaGlyPheAlaIleLeuLysCysArgAspLysLysPheAsnGlyThr
 TATTGTGCCAGCTGGTTTGCATTCTAAAGTGTAGAGATAAGAAGTTCAATGGAACCA
 .
 GlyProCysThrAsnValSerThrValGlnCysThrHisGlyIleArgProValValSer
 GCCCATGCACAAATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAGTGGTGTCA
 .
 6500

FIG. 7F

ThrGlnLeuLeuLeuAsnGlySerLeuAlaGluGluGluValIleIleArgSerGluAsn
 ACTCAACTGCTGTTGAATGGCAGTCTAGCAGAAGAAGAGGTATAATTAGATCCGAAAAT
 6600
 LeuThrAsnAsnAlaLysAsnIleIleAlaHisLeuAsnGluSerValLysIleThrCys
 CTCACAAACAATGCTAAAAACATAATAGCACATCTTAATGAATCTGAAAAATTACCTGT
 AlaArgProTyrGlnAsnThrArgGlnArgThrProIleGlyLeuGlyGinSerLeuTyr
 GCAAGGCCCTATCAAATACAAGACAAAGAACACCTATAGGACTAGGGCAATCACTCTAT
 6700
 ThrThrArgSerArgSerIleIleGlyGlnAlaHisCysAsnIleSerArgAlaGlnTrp
 ACTACAAGATCAAGATCAATAATAGGACAAGCACATTGTAATATTAGTAGAGCACAAATGG
 SerLysThrLeuGlnGlnValAlaArgLysLeuGlyThrLeuLeuAsnLysThrIleIle
 AGTAAAACCTTACAACAAGTAGCTAGAAAATTAGGAACCCTCTAACAAAACAATAATA
 6800
 LysPheLysProSerSerGlyGlyAspProGluIleThrThrHisSerPheAsnCysGly
 AAGTTAAACCATTCTCAGGAGGGGACCCAGAAATTACAACACACAGTTTAATTGTGGA
 6900
 GlyGluPhePheTyrCysAsnThrSerGlyLeuPheAsnSerThrTrpAsnIleSerAla
 GGGGAATTCTTCTACTGTAATACATCAGGACTGTTAATAGTACATGGAATATTAGTGCA
 TrpAsnAsnIleThrGluSerAsnAsnSerThrAsnThrAsnIleThrLeuGlnCysArg
 TGGAAATAATATTACAGAGTCAAATAATAGCACAAACACAAACATCACACTCCAATGCAGA
 7000
 IleLysGlnIleIleLysMetValAlaGlyArgLysAlaIleTyrAlaProProIleGlu
 ATAAAACAAATTATAAGATGGTGGCAGGCAGGAAGCAATATATGCCCTCCTATCGAA
 ArgAsnIleLeuCysSerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyIle
 AGAAACATTCTATGTTCATCAAATATTACAGGGCTACTATTGACAAGAGATGGTGGTATA
 7100
 AsnAsnSerThrAsnGluThrPheArgProGlyGlyAspMetArgAspAsnTrpArg
 AATAATAGTACTAACGAGACCTTAGACCTGGAGGAGATATGAGGGACAATTGGAGA
 7200
 SerGluLeuTyrLysTyrLysValValGlnIleGluProLeuGlyValAlaProThrArg
 AGTGAATTATATAATATAAGGTAGTACAAATTGAACCACTAGGAGTAGCACCCACCAGG
 AlaLysArgArgValValGluArgGluLysArgAlaIleGlyLeuGlyAlaMetPheLeu
 GCAAAGAGAAGAGTGGTGGAAAGAGAAAAAGAGCAATAGGATTAGGAGCTATGTTCCCT
 7300
 GlyPheLeuGlyAlaAlaGlySerThrMetGlyAlaArgSerValThrLeuThrValGln
 GGGTTCTGGGAGCAGCAGGAAGCACGATGGGCGCACGGTCAGTGACGCTGACGGTACAG
 AlaArgGlnLeuMetSerGlyIleValGlnGlnGlnAsnAsnLeuLeuArgAlaIleGlu
 GCCAGACAATTAAATGTCAGGTATAGTGCAACAGCAAAACAATTGCTGAGGGCTATAGAG
 7400
 AlaGlnGlnHisLeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgIle
 GCGCAACAGCATCTGTTGCAACTCACGGTCTGGGCATTAAACAGCTCCAGGCAAGAAC
 7500
 LeuAlaValGluArgTyrLeuLysAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGly
 CTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGGAATTGGGGTTGCTCTGGA

FIG. 7G

LysHisIleCysThrThrAsnValProTrpAsnSerSerTrpSerAsnArgSerLeuAsn
 AAACACATTGCAACCCTAAATGTGCCCTGGAACTCTAGTTGGAGTAATAGATCTCTAAAT
 7600
 GluIleTrpGlnAsnMetThrTrpMetGluTrpGluArgGluIleAspAsnTyrThrGly
 GAGATTGGCAGAACATGACCTGGATGGAGTGGAAAGAGAAATTGACAATTACACAGGC
 LeuIleTyrSerLeuIleGluGluSerGlnThrGlnGlnGluLysAsnGluLysGluLeu
 TTAATATATAGCTTAATTGAGGAATCGCAGACCCAGCAAGAAAAGAATGAAAAAGAATTG
 7700
 LeuGluLeuAspLysTrpAlaSerLeuTrpAsnTrpPheSerIleThrGlnTrpLeuTrp
 TTGGAATTGGACAAGTGGGCAAGTTGTGGATTGGTTAGCATAACACAATGGCTGTGG
 7800
 TyrIleLysIlePheIleMetIleIleGlyGlyLeuIleGlyLeuArgIleValPheAla
 TATATAAAATATTATAATGATAATAGGAGGCTTGATAGGTTAAGAATAGTTTGCT
 ValLeuSerLeuValAsnArgValArgGlnGlyTyrSerProLeuSerPheGlnThrLeu
 GTGCTTTCTTAGTAAATAGAGTTAGGCAGGGATACTCACCTCTGTCGTTTCAGACCCCTC
 7900
 LeuProAlaProArgGlyProAspArgProGluGlyThrGluGluGluGlyGluArg
 CTCCAGCCCCGAGGGGACCCGACAGGCCGAAGGAACAGAAGAAGGTGGAGAGCGA
 GlyArgAspArgSerValArgLeuLeuAsnGlyPheSerAlaLeuIleTrpAspAspLeu
 GGCAGAGACAGATCCGTGAGATTGCTGAACGGATTCTCGGACTTATCTGGGACGACCTG
 8000
 ArgSerLeuCysLeuPheSerTyrHisArgLeuArgAspLeuIleLeuIleAlaValArg
 CGGAGCCTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTAATCTTAATTGCAGTGAGG
 8100
 IleValGluLeuLeuGlyArgArgGlyTrpAspIleLeuLysTyrLeuTrpAsnLeuLeu
 ATTGTAGAACTTCTGGGACGCAGGGGGTGGGACATCCTCAAATATCTGTGGAAATCTCCTA
 GlnTyrTrpSerGlnGluLeuArgAsnSerAlaSerSerLeuPheAspAlaIleAlaIle
 CAGTATTGGAGTCAGGAACACTGAGGAACAGTGCTAGTAGCTTGTGATGCCATAGCAATA
 8200
 AlaValAlaGluGlyThrAspArgValIleGluIleIleGlnArgAlaCysArgAlaVal
 GCAGTAGCTGAGGGACAGATAGAGTTAGAAATAATACAAAGAGCTTGAGAGCTGTT
 W ← F →
 LeuAsnIleProArgArgIleArgGlnGlyLeuGluArgSerLeuLeu MetGlyGly
 CTTAACATACCCAGAAGAATAAGACAGGGCTTAGAAAGGTCTTACTTTAAAATGGGTGG
 8300
 LysTrpSerLysSerSerIleValGlyTrpProAlaIleArgGluArgIleArgArgThr
 CAAATGGTCAAAAGTAGTATAGTGGGATGGCCTGCTATAAGGGAAAGAATAAGAAGAAC
 8400
 AsnProAlaAlaAspGlyValGlyAlaValSerArgAspLeuGluLysHisGlyAlaIle
 TAATCCAGCAGCAGATGGGGTAGGAGCAGTATCTGAGACCTGGAAAAACATGGGGCAAT
 ThrSerSerAsnThrAlaSerThrAsnAlaAspCysAlaTrpLeuGluAlaGlnGluGiu
 CACAAGTAGCAATACAGCAAGTACTAATGCTGACTGTGCCTGGCTAGAACGACAAGAAGA
 8500
 SerAspGluValGlyPheProValArgProGlnValProLeuArgProMetThrTyrLys
 GAGCGACGAGGTGGCTTCCAGTCAGACCCCAGGTACCTTAAGACCAATGACTTACAA
 →U3
 GluAlaLeuAspLeuSerHisPheLeuLysGluLysGlyGlyLeuGluGlyLeuIleTrp
 AGAAGCTCTAGATCTCAGCCACTTTAAAAGAAAAGGGGGACTGGAAAGGGCTAATTG
 8600

FIG. 7H

SerLysLysArgGlnGluIleLeuAspLeuTrpValTyrAsnThrGlnGlyIlePhePro
 GTCCAAAAAGAGACAAGAGATCCTGATCTTGGGTCTACAAACACACAAGGCATCTTCCC
 8700
 AspTrpGlnAsnTyrThrProGlyProGlyIleArgTyrProLeuThrPheGlyTrpCys
 TGATTGGCAAAACTACACACCAGGGCCAGGGATCAGATATCCACTAACCTTGGATGGTG
 TyrGluLeuValProValAspProGlnGluValGluGluAspThrGluGlyGluThrAsn
 CTACGAGCTAGTACCACTGATCCACAGGGAGGTAGAAGAACACTGAAGGAGAGACCAA
 8800
 SerLeuLeuHisProIleCysGlnHisGlyMetGluAspProGluArgGlnValLeuLys
 CAGCTTGTTCACCCCTATATGCCAGCATGGAATGGAGGACCCGGAGAGACAAGTGTAAA
 TrpArgPheAsnSerArgLeuAlaPheGluHisLysAlaArgGluMetHisProGluPhe
 ATGGAGATTTAACAGCAGACTAGCATTGAGCACAGGCCCGAGAGATGCATCCGGAGTT
 8900
 TyrLysAsn
 CTACAAAAACTGATGACACCGAGCTTCTACAAGGGACTTCCGCTGGGACTTTCCAGG
 9000
 GAGGCCTGGACTGGGCGGGACTGGGAGTGGCTAACCTCAGATGCTGCATATAAGCAGC
 TGCTTTTGCTGTACTGGTCTCTGGTAGACCAGATTGAGCCTGGAGCTCTG
 9100
 GCTAGCTAGGAAACCCACTGCTTAAGCCTAATAAGCTTGCTTGAGTGCTCAA] B←

FIG. 7I