Mini HW #10

課題の提出

期限 金曜日 17.20 まで 点数 1

提出しています テキスト入力ボックスまたはファイルのアップロード **ファイルタイプ** pdf **使用可能** 2019年12月27日 日 17.20~1月3日 日 17.20_{7日}

Consider another approximate algorithm for TSP with triangle inequality:

NEAREST-ADDITION (G)

1. Select the shortest edge e on the graph. let $S = \{u, v\}$, where u, v are the 2 end points of e. The initial tour T is uv.

2. While |S| < N:

(a.) Find a node $v_i \in V \setminus S$, that is closest to S via v_i . let $S = S \cup \{v_i\}$

(b.) update T: replace $v_i v_k$ with $v_i v_j v_k$

3. return T

Hear's an example: (https://imgur.com/yYFCUqD ๗)

Please prove that **NEAREST-ADDITION** is a 2-approximation algorithm.

1.

Using MST

- 1. Select the starting point randomly
- 2. Get MST from the starting point
- 3. Add each costs of edges by the order of development of vertices
- 4. Return the cost

The cost is not more than double of MST. If and only if all vertices u, v, w in V, w have $c(u, w) \le c(u, v) + c(v, w)$, the cost is not also more than double of TSP. The reason why the max cost is double of MST is that every edge in MST is passed through 2 times.

2.

As well as using MST algorithm, all vertices u, v, w in V, w have $c(u, w) \le c(u, v) + c(v, w)$,

So $c(u, w) - c(v, w) + c(u, v) \le 2c(u, v)$. Then total cost is not more than the sum of 2c(u, v) on every edges. Therefore, it is a 2- approximation algorithm.