ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

PN2907 / MMBT2907 PNP General-Purpose Transistor

Description

This device is designed for use with general-purpose amplifiers and switches requiring collector currents to 500 mA. Sourced from process 63.

Ordering Information

Part Number	Top Mark	Package	Packing Method
PN2907BU	PN2907	TO-92 3L	Bulk
MMBT29070-D87Z	2B	SOT-23 3L	Tape and Reel

Absolute Maximum Ratings(1),(2)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	-40	V
V_{CBO}	Collector-Base Voltage	-60	V
V_{EBO}	Emitter-Base Voltage	-5.0	V
I _C	Collector Current - Continuous	-800	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or lowduty cycle operations.

Thermal Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Ma	Unit	
Symbol	raiametei	PN2907 ⁽³⁾ MMBT2907 ⁽⁴⁾		
D	Total Device Dissipation	625	350	mW
P_{D}	Derate Above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

Notes:

- 3. PCB size: FR-4 76 x 114 x 1.57 mm³ (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.
- 4. Device mounted on FR-4 PCB 1.6. inch x 1.6 inch x 0.06 inch.

Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Max.	Unit
Off Charac	cteristics			•	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ⁽⁵⁾	I _C = -10 mA, I _B = 0	-40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = -10 μA, I _E = 0	-60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -10 \mu\text{A}, I_C = 0$	-5.0		V
I _{CEX}	Collector Cut-Off Current	V _{CE} = -30 V, V _{EB} = -0.5 V		-50	nA
I _{BL}	Base Cut-Off Current	V _{CE} = -30 V, V _{EB} = -0.5 V		-50	nA
1	Callester Out Off Comment	V _{CB} = -50 V, I _E = 0		-20	nA
I _{CBO}	Collector Cut-Off Current	V _{CB} = -50 V, I _E = 0, T _A = 150°C		-20	μΑ
On Charac	cteristics ⁽⁵⁾			•	
	DC Current Gain	$V_{CE} = -10 \text{ V}, I_{C} = -0.1 \text{ mA}$	35		
		$V_{CE} = -10 \text{ V}, I_{C} = -1.0 \text{ mA}$	50		
h_{FE}		V _{CE} = -10 V, I _C = -10 mA	70		
		V _{CE} = -10 V, I _C = -150 mA	100	300	
		V _{CE} = -10 V, I _C = -500 mA	30		
\/ (aat)	Collector-Emitter Saturation Voltage	I _C = -150 mA, I _B = -15 mA		-0.4	V
V _{CE} (sat)		I _C = -500 mA, I _B = -50 mA		-1.6	
	Deep Freitten Octoretien Veltene	I _C = -150 mA, I _B = -15 mA		-1.3	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = -500 mA, I _B = -50 mA		-2.6	· V
Small Sign	nal Characteristics			•	
C _{ob}	Output Capacitance	V _{CB} = -10 V, f = 1.0 MHz		8	pF
C _{ib}	Input Capacitance	V _{EB} = -2.0 V, f = 1.0 MHz		30	pF
h _{fe}	Small-Signal Current Gain	I _C = -50 mA, V _{CE} = -20 V, f = 100 MHz	2		
Switching	Characteristics			•	
t _{on}	Turn-On Time			45	ns
t _d	Delay Time	$V_{CC} = -30 \text{ V}, I_{C} = -150 \text{ mA},$ $I_{B1} = -15 \text{ mA}$		10	ns
t _r	Rise Time	ומין		40	ns
t _{off}	Turn-Off Time			100	ns
t _s	Storage Time	$V_{CC} = -6.0 \text{ V, } I_{C} = -150 \text{ mA,}$ $I_{B1} = I_{B2} = -15\text{mA}$		80	ns
t _f	Fall Time	181 - 182 191112		30	ns

Note:

5. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2.0%.

Physical Dimensions

TO-92 (Bulk)

Figure 1. 3-LEAD, TO92, JEDEC TO-92 COMPLIANT STRAIGHT LEAD CONFIGURATION (OLD TO92AM3)

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Physical Dimensions (Continued)

SOT-23

DETAIL A
SCALE: 2X

(0.55)

Figure 2. 3-LEAD, SOT23, JEDEC TO-236, LOW PROFILE (ACTIVE)

PLANE

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

PN2907TFR PN2907TA PN2907TF PN2907BU MMBT2907 MMBT2907-D87Z