Teorija upodobitev

Urban Jezernik

21. julij 2022

Kazalo

1	Ten	nelji teorije upodobitev	5			
	1.1	Osnovni pojmi	5			
		Fundamentalne konstrukcije				
2	Upodobitev pod mikroskopom 21					
	2.1	Razstavljanje upodobitve	1			
	2.2	Matrični koeficienti	9			
3	Upodobitve končnih grup 35					
	3.1	Polenostavnost	5			
	3.2	Karakterji	9			
4	Razširjeni zgledi – končni 57					
	4.1	Simetrične grupe	7			
	4.2	Splošne linearne grupe 6	6			
5	Aplikacije 77					
	5.1	Aritmetična zaporedja	7			
	5.2	Podmnožice brez produktov				
	5.3	Prepoznavanje komutatorjev	6			
	5.4	Slučajni sprehodi	9			
6	Razširjeni zgledi – neskončni 99					
	6.1	Kompaktne grupe	0			
	6.2	Zvezne linearne grupe	3			
	6.3	Diskretne linearne grupe	3			

Kratek opis predmeta

Literatura

- E. Kowalski, An Introduction to the Representation Theory of Groups, American Mathematical Society, 2014.
- W. Fulton, J. Harris, *Representation Theory: A First Course*, Springer GTM 129, 2004.
- J. P. Serre, *Linear Representations of Finite Groups*, Springer GTM 42, 1977.
- P. Diaconis, *Group representations in probability and statistics*, Lecture notes monograph series 11, i-192, 1988.
- C. J. Bushnell, G. Henniart, *The Local Langlands Conjecture for* GL(2), Springer Grundlehren der mathematischen Wissenschaften **335**, 2006.
- W. T. Gowers, Generalizations of Fourier analysis, and how to apply them, Bulletin of the American Mathematical Society **54**, 1-44 (2017).
- S. Eberhard, *Product mixing in the alternating group*, Discrete Analysis, 2-18 (2016).

Poglavje 1

Temelji teorije upodobitev

V tem poglavju bomo vzpostavili temelje teorije upodobitev. Spoznali bomo koncept upodobitve in si ogledali mnogo primerov. Premislili bomo, kako upodobitve med sabo primerjamo in kako iz danih upodobitev sestavimo nove.

1.1 Osnovni pojmi

Upodobitve grup

Naj bo G grupa in V vektorski prostor nad poljem F. Upodobitev grupe G na prostoru V je delovanje G na množici V, ki upošteva dodatno strukturo množice V, namreč to, da je vektorski prostor. Natančneje, upodobitev (rekli bomo tudi $linearno\ delovanje$) grupe G na prostoru V je homomorfizem grup

$$\rho: G \to \operatorname{GL}(V)$$
.

Pri tem razsežnosti prostora V rečemo **stopnja upodobitve** in jo označimo z $\deg(\rho)$.

Ko v prostoru V izberemo bazo in torej izomorfizem $V \cong F^{\deg(\rho)}$, lahko upodobitev ρ enakovredno zapišemo kot homomorfizem

$$\rho: G \to \mathrm{GL}_{\mathrm{deg}(\rho)}(F)$$

iz grupe G v obrnljive matrike razsežnosti $\deg(\rho)$ nad F.

Nad poljem kompleksnih števil $F = \mathbf{C}$ upodobitvam rečemo **kompleksne**, nad polji karakteristike p > 0, na primer $F = \mathbf{F}_p$, pa upodobitvam rečemo **modularne**.

Za element $g \in G$ in vektor $v \in V$ rezultat delovanja elementa g na vektorju v, se pravi $\rho(g)(v)$, včasih pišemo krajše kot $g \cdot v$ ali kar gv.

Zgled.

• Opazujmo grupo ostankov $\mathbb{Z}/6\mathbb{Z}$ in racionalni vektorski prostor \mathbb{Q}^2 . Preslikava

$$\rho: \mathbf{Z}/6\mathbf{Z} \to \mathrm{GL}(\mathbf{Q}^2) = \mathrm{GL}_2(\mathbf{Q}), \quad x \mapsto \begin{pmatrix} 1/2 & 1/8 \\ -6 & 1/2 \end{pmatrix}^x$$

je upodobitev grupe $\mathbb{Z}/6\mathbb{Z}$. Relevantna matrika je namreč reda 6.

• Opazujmo matrično grupo $GL_2(\mathbf{C})$ in vektorski prostor \mathbf{C}^2 . Množenje matrik z vektorji podaja upodobitev

$$\rho: \operatorname{GL}_2(\mathbf{C}) \to \operatorname{GL}(\mathbf{C}^2) = \operatorname{GL}_2(\mathbf{C}), \quad A \mapsto (v \mapsto A \cdot v) = A.$$

Opazujmo grupo realnih števil R* za množenje in vektorski prostor
 C. Absolutna vrednost podaja upodobitev

$$|\cdot|: \mathbf{R}^* \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto |x|.$$

 Opazujmo grupo celih števil Z in vektorski prostor C. Eksponentna funkcija podaja upodobitev

$$\chi: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^x.$$

Splošneje imamo za vsak parameter $\alpha \in \mathbb{C}$ upodobitev

$$\chi_{\alpha}: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^{\alpha x}.$$

• Opazujmo grupo ostankov $\mathbb{Z}/q\mathbb{Z}$ za poljubno naravno število q. Za vsak parameter $m \in \mathbb{Z}/q\mathbb{Z}$ imamo upodobitev

$$\chi_m: \mathbf{Z}/q\mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^{2\pi i m x/q}.$$

• Opazujmo diedrsko grupo $D_{2n} = \langle s, r \rangle$, v kateri je $s^2 = 1$, $r^n = 1$ in $srs = r^{-1}$. Ta grupa izhaja iz simetrij kvadrata v ravnini, s čimer nam ponuja svojo naravno upodobitev $\rho: D_{2n} \to \operatorname{GL}(\mathbf{R}^2) = \operatorname{GL}_2(\mathbf{R})$, ki preslika generatorja kot

$$s \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad r \mapsto \begin{pmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{pmatrix}.$$

Splošneje imamo za vsak parameter $k \in \mathbb{Z}$ upodobitev $\rho_k: D_{2n} \to \operatorname{GL}(\mathbf{R}^2) = \operatorname{GL}_2(\mathbf{R})$, ki preslika generatorja kot

$$s\mapsto \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad r\mapsto \begin{pmatrix} \cos(2\pi k/n) & -\sin(2\pi k/n)\\ \sin(2\pi k/n) & \cos(2\pi k/n) \end{pmatrix}.$$

• Opazujmo ciklično grupo $\mathbf{Z}/p\mathbf{Z}$ za praštevilo p nad končnim poljem \mathbf{F}_p . Preslikava

$$\rho \mathbf{Z}/p\mathbf{Z} \to \mathrm{GL}(\mathbf{F}_p^2) = \mathrm{GL}_2(\mathbf{F}_p), \quad x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

podaja modularno upodobitev grupe $\mathbf{Z}/p\mathbf{Z}$. Relevantna matrika je namreč reda p.

 Naj bo G grupa in V vektorski prostor nad poljem F. Trivialna upodobitev grupe G je homomorfizem

$$\rho: G \to \mathrm{GL}(V), \quad g \mapsto \mathrm{id}_V.$$

Kadar je vektorski prostor V razsežnosti 1, trivialno upodobitev in vektorski prostor sam označimo kot 1, v primerih višje razsežnosti pa ju označimo kot $\mathbf{1}^{\dim V}$.

• Naj bo V vektorski prostor in naj bo G poljubna podgrupa grupe $\mathrm{GL}(V)$. Tedaj je naravna vložitev $G \to \mathrm{GL}(V)$ upodobitev grupe G na prostoru V.

Za konkreten zgled lahko vzamemo $V = \mathbb{C}^2$ in $G = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle \leq \operatorname{GL}(\mathbb{C}^2)$. Na ta način dobimo upodobitev grupe $G \cong \mathbb{Z}$ na prostoru \mathbb{C}^2 . Na istem prostoru lahko vzamemo tudi $G = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rangle \leq \operatorname{GL}(\mathbb{C}^2)$. Grupa G je neskončna diedrska grupa $G \cong D_{\infty}$.

• Naj bo G poljubna grupa, opremljena z delovanjem na neki množici X. Naj bo F[X] vektorski prostor z bazo $\{e_x\}_{x\in X}$. Grupa G deluje na F[X] s homomorfizmom

$$\pi: G \to GL(F[X]), \quad g \mapsto (e_x \mapsto e_{g,x}),$$

kjer je $x \in X$. To delovanje imenujemo *permutacijska upodobitev* grupe G na F[X].

Za konkreten zgled lahko vzamemo $G = S_n$, ki naravno deluje na množici $X = \{1, 2, ..., n\}$. Na ta način dobimo permutacijsko upodobitev grupe S_n na prostoru $F[\{1, 2, ..., n\}]$ razsežnosti n.

- Naj bo G grupa in F polje. Grupa G vselej deluje na sebi s Cayleyjevim delovanjem. Prirejeni permutacijski upodobitvi grupe G na $F[G]^1$ rečemo **Cayleyjeva upodobitev** grupe G nad F. To delovanje označimo z π_{Cay} .
- Naj bo G grupa in F polje. Naj bo $\operatorname{fun}(G,F)$ množica vseh funkcij iz množice G v F. Te funkcije lahko po točkah seštevamo in množimo s skalarji, na ta način je $\operatorname{fun}(G,F)$ vektorski prostor. Grupa G deluje na $\operatorname{fun}(G,F)$ s homomorfizmom

$$\rho_{\text{fun}}: G \to \text{GL}(\text{fun}(G, F)), \quad g \mapsto (f \mapsto (x \mapsto f(xg))),$$

kjer je $f \in \text{fun}(G,F)$, $x \in G$. To delovanje izhaja iz (desnega) delovanja grupe G na sebi in ga zato imenujemo (**desna**) **regularna upodobitev** grupe G nad F.

Upodobitev ρ grupe G pohvalimo s pridevnikom **zvesta**, kadar je injektivna, se pravi ker $\rho = 1$. Trivialna upodobitev netrivialne grupe ni zvesta, sta pa vselej zvesti Cayleyjeva in desna regularna upodobitev.

Kategorija upodobitev

Naj bo G grupa. Opazujmo neki njeni upodobitvi ρ_1 in ρ_2 nad vektorskima prostoroma V_1 in V_2 , obema nad poljem F. Ti dve upodobitvi lahko *primerjamo* med sabo, in sicer tako, da hkrati primerjamo vektorska prostora in delovanji grupe G na teh dveh prostorih.

Natančneje, **spletična**² med upodobitvama ρ_1 in ρ_2 je linearna preslikava $\Phi: V_1 \to V_2$, za katero za vsak $g \in G$ in $v \in V_1$ velja³

$$\Phi(\rho_1(g) \cdot v) = \rho_2(g) \cdot \Phi(v).$$

 $\mathbf{Zgled.}$ Opazujmo grupo \mathbf{Z} in dve njeni upodobitvi, ki smo jih že videli. Prva naj bo upodobitev

$$\rho \colon\! \mathbf{Z} \to \mathrm{GL}(\mathbf{C}^2), \quad x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix},$$

 $^{^1}$ Prostor F[G] je vektorski prostor nad F, generiran z množico G. Običajno mu pravimo **grupna algebra**, saj ta prostor na naraven način podeduje operacijo množenja iz grupe G

²Angleško intertwiner

 $^{^3}$ Z opustitvijo eksplicitnih oznak za delovanja lahko ta pogoj pišemo krajše kot $\Phi(gv) = g\Phi(v)$.

druga pa naj bo kar trivialna upodobitev 1 na prostoru C. Predpišimo linearno preslikavo $\Phi: \mathbb{C} \to \mathbb{C}^2$ v standardni bazi z matriko $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Tedaj za vsak vektor $v \in \mathbb{C}$ in vsako število $x \in \mathbb{Z}$ velja

$$\Phi(x \cdot v) = \begin{pmatrix} xv \\ 0 \end{pmatrix} = x \cdot \begin{pmatrix} v \\ 0 \end{pmatrix} = x \cdot \Phi(v),$$

zato je Φ spletična med **1** in ρ .

Množica vseh spletičen med ρ_1 in ρ_2 je podmnožica množice linearnih preslikav hom (V_1,V_2) , za katero uporabimo oznako hom $_G(\rho_1,\rho_2)$ ali kar hom $_G(V_1,V_2)$.

Za dano upodobitev ρ grupe G na vektorskem prostoru V je identična preslikava id $_V$ seveda spletična med ρ in ρ . Prav tako lahko vsaki dve spletični Φ_1 med ρ_1 in ρ_2 ter Φ_2 med ρ_2 in ρ_3 skomponiramo do spletične $\Phi_2 \circ \Phi_1$ med ρ_1 in ρ_3 . Množica vseh upodobitev dane grupe G nad poljem F torej tvoji kategorijo upodobitev, katere objekti so upodobitve grupe G nad F, morfizmi pa so spletične med upodobitvami. To kategorijo označimo z Rep_G .

Izomorfnost upodobitev

Naj bo G grupa in F polje. Kadar je spletična $\Phi: V_1 \to V_2$ med ρ_1 in ρ_2 obrnljiva kot linearna preslikava, je tudi njen inverz Φ^{-1} spletična med ρ_2 in ρ_1 . V tem primeru spletični Φ rečemo *izomorfizem* upodobitev ρ_1 in ρ_2 .

Zgled. Opazujmo ciklično grupo $\mathbf{Z}/n\mathbf{Z}$ za poljuben n>1. Ta grupa naravno deluje na množici $\Omega=\left\{1,2,\ldots,n\right\}$, do koder izhaja permutacijska upodobitev

$$\pi: \mathbf{Z}/n\mathbf{Z} \to \mathrm{GL}(\mathbf{C}[\Omega]).$$

Grupa $\mathbf{Z}/n\mathbf{Z}$ ima tudi Cayleyjevo upodobitev,

$$\pi_{\text{Cav}}: \mathbf{Z}/n\mathbf{Z} \to \text{GL}(\mathbf{C}[\mathbf{Z}/n\mathbf{Z}]).$$

Ti dve upodobitvi sta izomorfni. Vektorska prostora lahko namreč naravno primerjamo z bijektivno linearno preslikavo

$$\Phi: \mathbf{C}[\Omega] \to \mathbf{C}[\mathbf{Z}/n\mathbf{Z}], \quad e_i \mapsto e_{\bar{i}},$$

kjer je $i \in \Omega$. Preslikava Φ je spletična, saj za vsak $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ in $i \in \Omega$ velja

$$\Phi(\bar{x} \cdot e_i) = \Phi(e_{x+i}) = e_{x+i} = \bar{x} \cdot e_{\bar{i}} = \bar{x} \cdot \Phi(e_i).$$

V to kratko zgodbo lahko vključimo še desno regularno upodobitev

$$\rho_{\text{fun}}: \mathbf{Z}/n\mathbf{Z} \to \text{GL}(\text{fun}(\mathbf{Z}/n\mathbf{Z}, \mathbf{C})).$$

Vektorski prostor fun $({\bf Z}/n{\bf Z},{\bf C})$ lahko na naraven način opremimo z bazo iz karakterističnih funkcij

$$1_{\bar{x}} \colon \mathbf{Z} / n\mathbf{Z} \to \mathbf{C}, \quad \bar{y} \mapsto \begin{cases} 1 & \bar{y} = \bar{x}, \\ 0 & \text{sicer} \end{cases}$$

⁴Generator $\bar{1} = 1 + n\mathbf{Z} \in \mathbf{Z}/n\mathbf{Z}$ deluje kot cikel $(1 \ 2 \cdots n)$.

za $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$. Predpišimo linearno preslikavo⁵

$$\Phi'$$
: $\mathbb{C}[\mathbf{Z}/n\mathbf{Z}] \to \text{fun}(\mathbf{Z}/n\mathbf{Z}, \mathbb{C}), \quad e_{\bar{x}} \mapsto 1_{-\bar{x}}.$

Jasno je Φ' bijektivna. Preverimo še, da je res spletična. Za vsaka $\bar{x}, \bar{y} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\Phi'(\bar{x}\cdot e_{\bar{y}}) = \Phi'(e_{\overline{x+y}}) = 1_{-\overline{x+y}}.$$

Po drugi strani za vsak $\bar{z} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\left(\bar{x}\cdot\Phi'\left(e_{\bar{y}}\right)\right)\left(\bar{z}\right)=\left(\bar{x}\cdot1_{-\bar{y}}\right)\left(\bar{z}\right)=1_{-\bar{y}}\left(\bar{z}+\bar{x}\right)=\begin{cases} 1 & \bar{z}=-\overline{x+y},\\ 0 & \text{sicer.} \end{cases}$$

Torej je res $\Phi'(\bar{x} \cdot e_{\bar{y}}) = \bar{x} \cdot \Phi'(e_{\bar{y}})$. S tem je Φ' izomorfizem med Cayleyjevo upodobitvijo in desno regularno upodobitvijo.

Eden pomembnih ciljev teorije upodobitev je razumeti vse upodobitve dane grupe do izomorfizma natančno. Kasneje bomo spoznali, kako lahko to v določenih⁶ primerih *precej dobro* uresničimo.

1.2 Fundamentalne konstrukcije

Naj bo ρ upodobitev grupe G na prostoru V nad poljem F. Premislili bomo, kako lahko prostor, grupo ali polje modificiramo na različne načine in tako dobimo neko drugo, novo upodobitev, oziroma kako lahko dano upodobitev vidimo kot rezultat kakšne od teh fundamentalnih konstrukcij.

Podupodobitve

Naj bo G grupa z upodobitvijo $\rho:G \to \operatorname{GL}(V)$. Denimo, da obstaja vektorski podprostor $W \le V$, ki je invarianten za delovanje grupe G, se pravi $g \cdot w \in W$ za vsak $g \in G$, $w \in W$. V tem primeru upodobitev ρ inducira upodobitev $\tilde{\rho}:G \to \operatorname{GL}(W)$ in vložitev vektorskih prostorov $\iota:W \to V$ je spletična. Upodobitvi $\tilde{\rho}$ rečemo podupodobitev upodobitve ρ .

Zgled.

• Naj bo n naravno število. Opazujmo permutacijsko delovanje grupe $\mathbf{Z}/n\mathbf{Z}$ na množici $\Omega = \{1, 2, ..., n\}$, ki porodi permutacijsko upodobitev na prostoru $\mathbf{C}[\Omega]$ z baznimi vektorji e_i za $i \in \Omega$. Naj bo še $e_0 = e_n$.

Naj bo $\zeta \in \mathbb{C}$ primitiven n-ti koren enote. Za $j \in \Omega$ naj bo

$$f_j = \sum_{i \in \Omega} \zeta^{ij} e_i \in \mathbb{C}[\Omega].$$

Za vsak $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ velja

$$\bar{x} \cdot f_j = \sum_{i \in \Omega} \zeta^{ij} e_{\overline{x+i}} = \sum_{i \in \Omega} \zeta^{(i-\bar{x})j} e_i = \zeta^{-\bar{x}j} \cdot f_j,$$

zato je vsak podprostor $\mathbf{C} \cdot f_j \leq \mathbf{C}[\Omega]$ invarianten za delovanje grupe $\mathbf{Z}/n\mathbf{Z}$ in podupodobitev na tem podprostoru $\mathbf{C} \cdot f_j$ je očividno izomorfna upodobitvi χ_{-j} grupe $\mathbf{Z}/n\mathbf{Z}$. Na ta način smo sestavili n podupodobitev permutacijske in s tem regularne upodobitve ciklične grupe moči n.

 $^{^5}$ Pozor, karakteristična funkcija je zasidrana priinverzuelementa \bar{x} v $\mathbf{Z}/n\mathbf{Z}.$

⁶Na primer, *precej dobro* bomo opisali upodobitve poljubne končne grupe nad poljem kompleksnih števil.

• Naj bo G grupa in ρ njena upodobitev na prostoru V. Opazujmo množico vseh fiksnih vektorjev te upodobitve,

$$V^G = \{ v \in V \mid \forall g \in G \colon g \cdot v = v \}.$$

Množica V^G je vektorski podprostor prostora V, ki je invarianten za delovanje grupe G. Torej je $\tilde{\rho}\colon G \to \mathrm{GL}(V^G)$ podupodobitev upodobitve ρ . Na prostoru V^G po definiciji grupa G deluje trivialno, torej je $\tilde{\rho}$ izomorfna trivialni upodobitvi $\mathbf{1}^{\dim V^G}$.

Domača naloga. Naj bo G grupa in F polje. Določi upodobitvi $F[G]^G$ in $\text{fun}(G,F)^G$.

Prostor V^G lahko razumemo še na naslednji alternativen način, ki nam bo prišel zelo prav v nadaljevanju. Iz vsakega vektorja $v \in V^G$ izhaja injektivna spletična

$$\Phi_v: \mathbf{1} \to V, \quad x \mapsto xv$$

med 1 in ρ . S tem je določena preslikava $V^G \to \hom_G(1,V)$. Ta preslikava ima jasen inverz, ki spletični $\Phi \in \hom_G(1,V)$ priredi $\Phi(1)$. Na ta način lahko identificiramo prostor V^G z množico spletičen $\hom_G(1,V)$.

• Naj bo G grupa in ρ njena upodobitev na prostoru V. Predpostavimo, da obstaja vektor $v \in V$, ki je lastni vektor vsake linearne preslikave $\rho(g)$ za $g \in G$.

Torej za vsak $g \in G$ obstaja $\chi(g) \in F$, da je $\rho(g) \cdot v = \chi(g)v$. Na ta način dobimo funkcijo $\chi: G \to F$, se pravi element prostora fun(G,F). Ta funkcija ni čisto poljubna; ker je ρ upodobitev, je χ nujno homomorfizem iz grupe G v grupo F^* . Torej je χ pravzaprav upodobitev grupe G na prostoru F razsežnosti 1.7

Zdaj kot v zadnjem zgledu s predpisom

$$\Phi: F \to V$$
, $x \mapsto xv$

dobimo injektivno spletično med χ in ρ , torej lahko vidimo χ kot enorazsežno podupodobitev upodobitve ρ . Hkrati lahko iz te spletične obnovimo podatek o skupnem lastnem vektorju v in upodobitvi χ .⁸

Torej smo vzpostavili bijektivno korespondenco med množico enorazsežnih podupodobitev upodobitve ρ in skupnimi lastnimi vektorji vseh preslikav $\rho(g)$ za $g \in G$.

Poseben primer te korespondence je zadnji zgled. Množico enorazsežnih trivialnih podupodobitev upodobitve ρ lahko identificiramo z množico neničelnih spletičen $\hom_G(\mathbf{1},V)\backslash\{x\mapsto 0\}$, ta pa ustreza skupnim lastnim vektorjem $\rho(g)$ za $g\in G$ z lastno vrednostjo 1, kar je ravno množica $V^G\backslash\{0\}$.

• Naj bo G grupa in F polje. Opazujmo Cayleyjevo upodobitev π_{Cay} na F[G] in desno regularno upodobitev $\rho_{\operatorname{fun}}$ na $\operatorname{fun}(G,F)$. Trdimo, da je π_{Cay} podupodobitev upodobitve $\rho_{\operatorname{fun}}$.

⁷Kadar je $\chi(g) = 1$ za vsak $g \in G$, je ta upodobitev izomorfna **1**. Kadar je $\chi(g) \neq 1$ za vsaj kak $g \in G$, pa ta upodobitev ni trivialna.

⁸Namreč, $v = \Phi(1)$ in $\chi(g) = \rho(g) \cdot 1$.

V ta namen predpišimo linearno preslikavo⁹

$$\Phi: F[G] \to \operatorname{fun}(G,F), \quad e_g \mapsto 1_{g^{-1}}$$

za $g \in G.$ Jasno je Φ injektivna preslikava. Hkrati za vse $g,h,x \in G$ velja

$$\Phi(\pi_{\operatorname{Cay}}(g) \cdot e_h) = \Phi(e_{gh}) = 1_{h^{-1}g^{-1}}$$

in

$$(\rho_{\text{fun}}(g) \cdot \Phi(e_h))(x) = 1_{h^{-1}}(xg) = 1_{g^{-1}h^{-1}}(x),$$

zato je Φ tudi spletična.

Kadar je grupa G končna, sta prostora F[G] in $\mathrm{fun}(G,F)$ enake razsežnosti, zato sta v tem primeru upodobitvi π_{Cay} in ρ_{fun} izomorfni. Kadar je grupa G neskončna, pa preslikava Φ vsekakor ni bijektivna. V tem primeru upodobitvi nista izomorfni.

Domača naloga. Naj bo G grupa z upodobitvijo ρ na prostoru V. Naj bo N podgrupa edinka v G. Premisli, da množica fiksnih točk

$$V^N = \{ v \in V \mid \forall n \in \mathbb{N} \colon \rho(n) \cdot v = v \}$$

tvori podupodobitev upodobitve ρ , ki jo lahko identificiraš z množico $\hom_N(\mathbf{1},V)$.

Jedro, slika, kvocient

Naj bo G grupa z upodobitvijo ρ na prostoru V. Ogledali smo si že, kako za vsak G-invarianten podprostor $W \leq V$ dobimo podupodobitev upodobitve ρ . Sorodno lahko za vsak G-invarianten podprostor $W \leq V$ tvorimo kvocient V/W, na njem linearno deluje grupa G s predpisom

$$G \to GL(V/W), \quad g \mapsto (v + W \mapsto \rho(g) \cdot v + W)$$

za $v \in V$.

Na vse do zdaj omenjene konstrukcije lahko gledamo na skupen način, in sicer s pomočjo spletične Φ , ki vlaga prostor W v V. Ni težko preveriti, da so standardne konstrukcije, ki jih lahko uporabimo na spletičnah vektorskih prostorov, na naraven način opremljene z linearnim delovanjem grupe G.

Trditev. Naj bo Φ spletična upodobitev grupe G. Tedaj prostori $\ker \Phi$, $\operatorname{im} \Phi$, $\operatorname{coker} \Phi$ podedujejo linearno delovanje grupe G.

Zgled. Naj bo G grupa in ρ njena upodobitev na prostoru V. Podprostor prostora V, na katerem grupa G deluje trivialno, je vselej G-invarianten. Največji tak podprostor je ravno prostor vseh fiksnih vektorjev V^G . Videli smo že, da lahko ta prostor identifiricamo z množico spletičen hom $_G(\mathbf{1}, V)$.

Oglejmo si sedaj še dual zgodnje konstrukcije. Naj bo $V_1 = \langle \rho(g) \cdot v - v \mid v \in V, g \in G \rangle$. Prostor V_1 je G-invarianten podprostor prostora V, zato

 $^{^9}$ Poseben primer te preslikave smo videli za grupo $\mathbf{Z}/n\mathbf{Z},$ kjer smo premislili, da je celo bijektivna.

 $^{^{10}}$ Slika im Φ namreč sestoji iz funkcij, ki so neničelne le v končno mnogo elementih grupe G.

 $^{^{11}}$ To sledi na primer iz dejstva, da prostora $F[G]^G$ in fun $(G,F)^G$ nista izomorfna.

kvocient V/V_1 podeduje linearno delovanje grupe G. Po konstrukciji je to delovanje trivialno in prostor V/V_1 je največji kvocient prostora V, na katerem grupa G deluje trivialno. Kvocient V/V_1 označimo z V_G in mu pravimo **prostor koinvariant** upodobitve ρ .

Domača naloga. Izračunaj prostor koinvariant regularne upodobitve ciklične grupe $\mathbf{Z}/n\mathbf{Z}$.

Prostor koinvariant je po konstrukciji dualen prostoru fiksnih vektorjev, zato lahko nanj prenesemo tudi interpretacijo s spletičnami. Opazujmo množico $\hom_G(V,\mathbf{1})$. Spletične iz te množice so ravno homomorfizmi $\lambda\colon V\to F$ z lastnostjo $\lambda(\rho(g)\cdot v)=\lambda(v)$ za vsaka $v\in V,\ g\in G$, kar je ekvivalentno pogoju $\lambda(V_1)=0$. Vsako tako spletično lahko zato interpretiramo kot linearno preslikavo iz $V/V_1=V_G$ v F. Na ta način je vzpostavljena bijektivna korespondenca med množico spletičen $\hom_G(V,\mathbf{1})$ in množico linearnih preslikav $\hom_F(V_G,F)$, slednja množica pa je ravno dual V_G^* prostora koinvariant V_G .

Direktna vsota

Naj ima grupa G družino upodobitev $\{\rho_i\}_{i\in I}$ na vektorskih prostorih $\{V_i\}_{i\in I}$. Tedaj lahko tvorimo direktno vsoto vektorskih prostorov $\bigoplus_{i\in I} V_i$, ki je opremljena z linearnim delovanjem

$$\bigoplus_{i \in I} \rho_i : G \to \operatorname{GL}(\bigoplus_{i \in I} V_i), \quad g \mapsto \left(\sum_{i \in I} v_i \mapsto \sum_{i \in I} \rho_i(g) \cdot v_i \right).$$

Na ta način dobimo *direktno vsoto* upodobitev $\bigoplus_{i \in I} \rho_i$. Pri tem je vsaka od upodobitev ρ_i podupodobitev te direktne vsote.

Zgled.

• Opazujmo permutacijsko upodobitev π grupe $\mathbf{Z}/n\mathbf{Z}$ na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1, 2, ..., n\}$. Premislili smo že, da ima ta upodobitev n podupodobitev. Za vsak $j \in \Omega$ imamo upodobitev na podprostoru $\mathbf{C} \cdot f_j$, ki je izomorfna upodobitvi χ_{-j} . Ker je množica vektorjev $\{f_j \mid j \in \Omega\}$ linearno neodvisna, 12 lahko permutacijsko upodobitev torej zapišemo kot direktno vsoto $\pi = \bigoplus_{j \in \Omega} \chi_j$.

Domača naloga. Prepričaj se, da so upodobitve χ_j za $j \in \Omega$ grupe $\mathbb{Z}/n\mathbb{Z}$ med sabo paroma neizomorfne.

• Opazujmo permutacijsko upodobitev simetrične grupe S_3 na prostoru $\mathbf{R}[\{1,2,3\}] = \mathbf{R}^3$. Delovanje grupe S_3 ohranja vektor $e_1 + e_2 + e_3$, zato ima ta upodobitev trivialno enorazsežno podupodobitev, dano s podprostorom $\langle e_1 + e_2 + e_3 \rangle$. Eden od komplementov tega podprostora je $\langle e_1 - e_2, e_2 - e_3 \rangle$, ki je hkrati S_3 -invariaten podprostor. Če označimo $u_1 = e_1 - e_2$ in $u_2 = e_2 - e_3$, lahko slednjo upodobitev opišemo s homomorfizmom

$$\rho \colon \! S_3 \to \operatorname{GL}(\langle u_1, u_2 \rangle), \quad (1 \ 2) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (1 \ 2 \ 3) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

 $^{^{12}}$ Prehodna matrika iz baze e_i v bazo f_j je ravno Vandermondova matrika.

 $^{^{13}}$ Na primer, generator (1 3 2) preslika vektor $e_1 - e_2$ v $e_3 - e_1$, kar lahko zapišemo kot $-(e_1 - e_2) - (e_2 - e_3)$.

Permutacijska upodobitev S_3 je zato direktna vsota enorazsežne podupodobitve $\mathbf{1}$ in dvorazsežne podupodobitve ρ .

Premislimo, da upodobitve ρ ne moremo zapisati kot direktne vsote svojih pravih podupodobitev. V ta namen opazujmo njene morebitne enorazsežne podupodobitve. Premislili smo že, da te ustrezajo skupnim lastnim vektorjem vseh preslikav $\rho(x)$ za $x \in S_3$. Lastna vektorja $\rho((1\ 2))$ sta u_1 in $u_1 + 2u_2$. Noben od teh dveh vektorjev ni hkrati lastni vektor $\rho((1\ 2\ 3))$. Torej je upodobitev ρ stopnje 2, hkrati pa nima enorazsežnih podupodobitev in je torej ne moremo nadalje razstaviti.

Direktna vsota je najbolj preprost način, kako lahko iz danih upodobitev sestavimo novo upodobitev. V nadaljevanju bomo zato veliko časa posvetili obratnemu problemu: dano upodobitev bomo kot v zadnjem zgledu skušali razstaviti na direktno vsoto čim bolj enostavnih podupodobitev.

Tenzorski produkt

Naj ima grupa G upodobitvi ρ_1 in ρ_2 na prostorih V_1 in V_2 . Tedaj lahko tvorimo **tenzorski produkt** vektorskih prostorov $V_1 \otimes V_2$, ki je naravno opremljen z linearnim delovanjem

$$\rho_1 \otimes \rho_2 : G \to \operatorname{GL}(V_1 \otimes V_2), \quad g \mapsto (v_1 \otimes v_2 \mapsto \rho_1(g)v_1 \otimes \rho_2(g)v_2).$$

Zgled. Opazujmo simetrično grupo S_3 . Ogledali smo si že njeno permutacijsko upodobitev na prostoru \mathbb{R}^3 , ki smo jo razstavili na direktno vsoto trivialne upodobitve $\mathbf{1}$ in dvorazsežne upodobitve ρ . Poleg teh dveh ima grupa S_3 še eno zanimivo upodobitev, ki izračuna predznak dane permutacije, se pravi

$$\operatorname{sgn}: S_3 \to \operatorname{GL}(\mathbf{R}) = \mathbf{R}^*, \quad \sigma \mapsto \operatorname{sgn}(\sigma).$$

To je netrivialna enorazsežna upodobitev.

Tvorimo tenzorski produkt upodobitev ρ in sgn. Dobimo upodobitev na vektorskem prostoru $\mathbf{R} \otimes \mathbf{R}^2$, ki ga lahko naravno identificiramo s prostorom \mathbf{R}^2 . V tem smislu je upodobitev sgn $\otimes \rho$ izomorfna dvorazsežni upodobitvi

$$S_3 \to \operatorname{GL}(\mathbf{R}^2), \quad \sigma \mapsto (v \mapsto \operatorname{sgn}(\sigma) \cdot \rho(\sigma) \cdot v).$$

Domača naloga. Dokaži, da sta upodobitvi ρ in sgn $\otimes \rho$ izomorfni.

Naj ima grupa G upodobitev na prostoru V. Tedaj lahko tvorimo tenzorske potence $V^{\otimes n}$ za $n \in \mathbb{N}_0$. Vsaka od teh tvori upodobitev grupe G. Na prostoru $V^{\otimes n}$ deluje simetrična grupa S_n , in sicer na dva načina. Prvi način izhaja iz permutacijske upodobitve grupe S_n , in sicer dobimo delovanje

$$\pi: S_n \to \operatorname{GL}(V^{\otimes n}), \quad \sigma \mapsto \left(v_1 \otimes v_2 \otimes \cdots \otimes v_n \mapsto v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}\right).$$

Drugi način delovanja grupe S_n na tenzorski potenci pa je sgn $\otimes \pi$, pri katerem delovanje π še utežimo s predznakom delujoče permutacije. Prostor koinvariant upodobitve π je

$$\operatorname{Sym}^n(V) = \frac{V^{\otimes n}}{\left\langle v_1 \otimes v_2 \otimes \cdots \otimes v_n - v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid v_i \in V, \ \sigma \in S_n \right\rangle},$$

imenujemo ga **simetrična potenca** upodobitve G na V. Analogno prostor koinvariant upodobitve $\operatorname{sgn} \otimes \pi$ označimo z $\wedge^n(V)$ in imenujemo **alternirajoča potenca**. Obe potenci sta seveda upodobitvi grupe G. Vse potence hkrati zajamemo z direktnima vsotama

$$\operatorname{Sym}(V) = \bigoplus_{n \in \mathbb{N}_0} \operatorname{Sym}^n(V)$$
 in $\bigwedge V = \bigoplus_{n \in \mathbb{N}_0} \bigwedge^n(V)$.

Domača naloga. Naj bo G grupa s kompleksno upodobitvijo ρ na prostoru V razsežnosti $\deg(\rho) < \infty$. Dokaži, da je upodobitev G na alternirajoči potenci $\wedge^{\deg(\rho)}V$ izomorfna enorazsežni upodobitvi $G \to \mathbb{C}^*$, $g \mapsto \det(\rho(g))$.

Dual

Naj bo G grupa z upodobitvijo ρ na prostoru V nad poljem F. Tvorimo lahko *dualen prostor* $V^* = \hom(V, F)$, ki je naravno opremljen z linearnim delovanjem

$$\rho^*: G \to \operatorname{GL}(V^*), \quad g \mapsto (\lambda \mapsto (v \mapsto \lambda(\rho(g^{-1}) \cdot v)))$$

za $\lambda \in V^*$, $v \in V$. Na ta način dobimo **dualno upodobitev** ρ^* upodobitve ρ .

Za funkcional $\lambda \in V^*$ in vektor $v \in V$ včasih uporabimo oznako $\langle \lambda, v \rangle$ za aplikacijo $\lambda(v)$. S to oznako lahko zapišemo definicijo dualne upodobitve kot

$$\langle \rho^*(g) \cdot \lambda, v \rangle = \langle \lambda, \rho(g^{-1}) \cdot v \rangle.$$

Zgled. Opazujmo grupo **Z** in za parameter $a \in \mathbb{C}$ njeno upodobitev

$$\chi_a: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}), \quad x \mapsto e^{ax}.$$

Za dualno upodobitev χ_a^* , funkcional $\lambda \in \mathbb{C}^*$ in vektor $z \in \mathbb{C}$ velja

$$\langle \chi_{\alpha}^{*}(x) \cdot \lambda, z \rangle = \langle \lambda, \chi_{\alpha}(-x) \cdot z \rangle = \lambda(e^{-\alpha x} \cdot z).$$

Funkcionali v dualnem prostoru \mathbb{C}^* so skalarna množenja s kompleksnimi števili. Če funkcionalu λ ustreza število $l \in \mathbb{C}$, dobimo torej

$$\chi_a^*(x) \cdot l = e^{-ax} \cdot l.$$

Dualna upodobitev χ_a^* je torej enorazsežna upodobitev, ki je izomorfna upodobitvi $\chi_{-a}.$

Domača naloga.

• Naj bosta ρ_1, ρ_2 upodobitvi grupe G. Dokaži, da je

$$(\rho_1 \oplus \rho_2)^* \cong \rho_1^* \oplus \rho_2^*$$
 in $(\rho_1 \otimes \rho_2)^* \cong \rho_1^* \otimes \rho_2^*$.

• Naj bo ρ upodobitev grupe G z deg $(\rho) < \infty$. Tedaj je $(\rho^*)^* \cong \rho$.

Naj bo zdaj G grupa z dvema upodobitvama ρ in σ na prostorih V in W. **Prostor linearnih preslikav** hom(V,W) je naravno opremljen z linearnim delovanjem

$$\hom(\rho,\sigma):G\to \mathrm{GL}(\hom(V,W)),\quad g\mapsto \big(\Phi\mapsto \big(v\mapsto \sigma(g)\cdot\Phi\cdot\rho(g^{-1})\cdot v\big)\big).$$

Invariante tega delovanja sestojijo iz linearnih preslikav, ki so invariantne glede na predpisano delovanje grupe G, se pravi ravno iz spletičen med ρ in σ . S simboli je torej $\hom(V,W)^G = \hom_G(V,W)$.

Trditev. Naj bo G grupa z upodobitvama ρ in σ . Predpostavimo, da je $deg(\sigma) < \infty$. Tedaj je $hom(\rho, \sigma) \cong \rho^* \otimes \sigma$.

Dokaz. Naj bo ρ upodobitev na prostoru V in σ upodobitev na prostoru W. Izomorfizem med vektorskima prostoroma $V^*\otimes W$ in hom(V,W) podaja linearna preslikava

$$V^* \otimes W \to \text{hom}(V, W), \quad \lambda \otimes w \mapsto (v \mapsto \lambda(v) \cdot w).$$

Ni težko preveriti, da je ta preslikava spletična.

Skalarji

Naj bo G grupa z upodobitvijo ρ na prostoru V nad poljem F. Naj bo E razširitev polja F. Tedaj je prostor $E\otimes V$ naravno opremljen z linearnim delovanjem

$$E \otimes \rho : G \to GL(E \otimes V), \quad g \mapsto (e \otimes v \mapsto e \otimes \rho(g) \cdot v).$$

Ta postopek konstrukcije prostora $E \otimes V$ imenujemo raz širitev skalarjev. Dano upodobitev lahko raz širimo do ugodnejših skalarjev 14 , lahko pa tudi dano upodobitev nad velikim poljem E gledamo kot raz širitev skalarjev neke upodobitve nad preprostejšim poljem $F.^{15}$ V tem slednjem primeru rečemo, da je dana upodobitev $definirana \ nad \ poljem \ F$. Včasih nam uspe najti celo preprost podkolobar polja F, nad katerim je definirana dana upodobitev.

Zgled. Opazujmo grupo S_3 in njeno permutacijsko upodobitev na realnem prostoru $\mathbf{R}[\{1,2,3\}]$. Poznamo že njeno dvorazsežno upodobitev ρ na podprostoru $\langle e_1-e_2,e_2-e_3\rangle$, ki nima enorazsežnih podupodobitev. Ta je definirana z matrikami, ki imajo zgolj celoštevilske koeficiente. Upodobitev ρ je zato definirana nad kolobarjem \mathbf{Z} . To upodobitev lahko zato projiciramo s homomorfizmom kolobarjev $\mathbf{Z} \rightarrow \mathbf{Z}/p\mathbf{Z}$ za poljubno praštevilo p do upodobitve

$$S_3 \to \operatorname{GL}_2(\mathbf{Z}/p\mathbf{Z}), \quad (1\ 2) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (1\ 2\ 3) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},$$

ki je definirana nad *končnim* poljem $\mathbb{Z}/p\mathbb{Z}$. Pri p=3 ima ta projicirana upodobitev enorazsežen invarianten podprostor $\langle e_1 + e_2 + e_3 \rangle$. Projekcije nam lahko torej dano upodobitev dodatno razstavijo.

Kadar imamo opravka s konkretnim poljem F, lahko dano upodobitev modificiramo tudi z *avtomorfizmi polja*. Te si najlažje predstavljamo po izbiri baze vektorskega prostora. Če je $\sigma \in \operatorname{Aut}(F)$, dobimo iz dane upodobitve $\rho: G \to \operatorname{GL}_n(F)$ modificirano upodobitev

$$\rho^{\sigma}: G \to \operatorname{GL}_n(F), \quad g \mapsto \rho(g)^{\sigma},$$

pri kateri vsak člen matrike $\rho(g)$ preslikamo z avtomorfizmom σ .

Zgled. Naj bo G grupa s kompleksno upodobitvijo ρ . Kompleksno konjugiranje je avtomorfizem polja \mathbb{C} , zato lahko s konjugiranjem členov matrik tvorimo **konjugirano upodobitev** $\overline{\rho}$.

¹⁴Na primer polja kompleksnih števil.

¹⁵Na primer $E = \mathbf{C}$ in $F = \mathbf{Q}$.

Restrikcija

Naj bo G grupa z upodobitvijo $\rho:G\to \operatorname{GL}(V)$. Kadar je na voljo še ena grupa H s homomorfizmom $\phi:H\to G$, lahko upodobitev ρ sklopimo s ϕ in dobimo upodobitev $\rho\circ\phi$ grupe H na prostoru V. Temu postopku pridobivanja upodobitev grupe H iz upodobitev grupe G pravimo $\operatorname{restrikcija}$, pri tem pa novo upodobitev $\rho\circ\phi$ označimo kot $\operatorname{Res}_H^G(\rho)$. Predstavljamo si, da smo upodobitev ρ potegnili nazaj vzdolž homomorfizma ϕ . Restrikcija je funktor iz kategorije Rep_G v kategorijo Rep_H .

Zgled. Naj bo G grupa s podgrupo edinko N. Tvorimo kvocientni homomorfizem $\phi: G \to G/N$. Vsaki upodobitvi grupe G/N lahko z restrikcijo priredimo upodobitev grupe G. Vsaka taka pridobljena upodobitev grupe G vsebuje podgrupo N v svojem jedru. Na ta način dobimo bijektivno korespondenco med upodobitvami grupe G/N in upodobitvami grupe G, ki so trivialne na N.

Običajno ni res, da je vsaka upodobitev grupe G trivialna na N, se pa to lahko zgodi v kakšnih posebnih primerih. Na primer, enorazsežne upodobitve grupe G nad poljem F so homomorfizmi iz G v F^* , kar ravno ustreza homomorfizmom iz abelove grupe G/[G,G] v F^* . Vsaka enorazsežna upodobitev grupe G je torej trivialna na [G,G].

Za konkreten primer si oglejmo simetrično grupo S_n . Njene kompleksne enorazsežne upodobitve ustrezajo homomorfizmom $S_n \to \mathbb{C}^*$. Ker je $[S_n, S_n] = A_n$, opazujemo torej homomorfizme $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z} \to \mathbb{C}^*$. Na voljo sta le dva taka homomorfizma: trivialen in netrivialen (ki preslika generator grupe $\mathbb{Z}/2\mathbb{Z}$ v $-1 \in \mathbb{C}^*$). Prvi ustreza trivialni upodobitvi 1, drugi pa ustreza predznačni upodobitvi sgn.

Kadar imamo na voljo tri grupe, povezane s homomorfizmoma $\phi_2: H_2 \to H_1$ in $\phi_1: H_1 \to G$, lahko restrikcijo izvedemo dvakrat zaporedoma. Upodobitvi ρ v Rep_G tako priredimo upodobitev $\operatorname{Res}_{H_2}^{H_1}(\operatorname{Res}_{H_1}^G(\rho))$ v Rep_{H_2} . Od grupe H_2 do G imamo neposredno povezavo prek homomorfizma $\phi_1 \circ \phi_2$, s čimer dobimo upodobitev $\operatorname{Res}_{H_2}^G(\rho)$. Ni težko preveriti, da sta dobljeni upodobitvi izomorfni. Tej lastnosti restrikcije pravimo tranzitivnost.

Indukcija

Naj bo kot zgoraj G grupa in H še ena grupa s homomorfizmom $\phi: H \to G$. *Indukcija* je postopek, ki s pomočjo homomorfizma ϕ upodobitvi ρ grupe H priredi upodobitev grupe G. Indukcija torej deluje ravno v obratno smer kot restrikcija in nam omogoča, da upodobitev ρ potisnemo naprej vzdolž homomorfizma ϕ . Ta postopek je nekoliko bolj zapleten kot restrikcija.

Začnimo z upodobitvijo $\rho: H \to \operatorname{GL}(V)$. Konstruirali bomo prostor, na katerem deluje grupa G. Odskočna deska za to bo regularna upodobitev grupe G, katere vektorski prostor je prostor funkcij $\operatorname{fun}(G,F)$. Ta prostor razširimo s prostorom V do prostora funkcij

$$fun(G,V) = \{f \mid f:G \to V\},\$$

na katerem linearno deluje grupa G z analogom regularne upodobitve, in sicer kot

$$g \cdot f = (x \mapsto f(xg))$$

za $g \in G$, $f \in \text{fun}(G, V)$. Po drugi strani na tej množici deluje tudi grupa H, in sicer na dva načina: prvič prek homomorfizma ϕ in pravkar opisanega

delovanja grupe G, drugič pa prek svojega delovanja ρ na prostoru V. Ko ti dve delovanji združimo, dobimo delovanje grupe H na prostoru funkcij fun(G,V) s predpisom

$$h \cdot f = (x \mapsto \rho(h) \cdot f(\phi(h^{-1}) \cdot x))$$

za $h \in H, f \in \text{fun}(G, V).$ Opazujmo invariantni podprostor

$$\operatorname{fun}(G,V)^H = \left\{ f \in \operatorname{fun}(G,V) \mid \forall h \in H, x \in G. \ \rho(h) \cdot f(x) = f(\phi(h) \cdot x) \right\}.$$

Ker grupa G deluje na $\operatorname{fun}(G,V)$ prek množenja z desne , pogoj pripadnosti invariantam $\operatorname{fun}(G,V)^H$ pa je izražen prek množenja z leve , je podprostor $\operatorname{fun}(G,V)^H$ avtomatično G-invarianten. S tem smo dobili upodobitev grupe G na prostoru $\operatorname{fun}(G,V)^H$. To je želena $\operatorname{inducirana\ upodobitev}$. Zanjo uporabimo oznako $\operatorname{Ind}_H^G(\rho)$.

Zgled. Naj bo G grupa z vložitvijo $\phi: 1 \to G$ trivialne podgrupe. Vsaka upodobitev trivialne grupe nad poljem F je trivialna. Iz enorazsežne trivialne upodobitve $\mathbf 1$ dobimo prostor funkcij fun(G,F), na katerem grupa G deluje z regularno upodobitvijo. Inducirana upodobitvi je v tem primeru torej kar regularna, se pravi $\mathrm{Ind}_1^G(\mathbf 1) = \rho_{\mathrm{fun}}$.

Inducirano upodobitev $\operatorname{Ind}_H^G(\rho)=\operatorname{fun}(G,V)^H$ smo konstruirali z invariantami grupe H. To pomeni, da vektorji v tem prostoru niso poljubne funkcije v $\operatorname{fun}(G,V)$, temveč zadoščajo določenim restriktivnim pogojem. Te funkcije so določene z vrednostmi, ki jih zavzamejo na predstavnikih desnih odsekov im $\phi\backslash G$, 17 in te vrednosti pripadajo podprostoru $V^{\ker\phi}$. 18

Zgled. Naj bo G grupa z upodobitvijo ρ in naj bo $\phi = \mathrm{id}_G$. Tedaj je vsaka funkcija $f \in \mathrm{fun}(G,V)^G$ določena že z vrednostjo f(1). Dodatnih restrikcij za to vrednost ni, zato dobimo izomorfizem vektorskih prostorov

$$fun(G,V)^G \to V, \quad f \mapsto f(1),$$

ki je spletična glede na regularno delovanje G na fun(G,V). S tem imamo torej izomorfizem upodobitev $\operatorname{Ind}_G^G(\rho) \cong \rho$.

Domača naloga. Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo $\phi\colon G\to G/N$ kvocientna projekcija za neko podgrupo edinko N v G. Dokaži, da je $\operatorname{Ind}_G^{G/N}(\rho)$ izomorfna upodobitvi G/N na prostoru V^N , ki izhaja iz upodobitve ρ .

Najpomembnejši primer indukcije, čeravno ne tudi najbolj preprost, je **indukcija iz podgrupe končnega indeksa**. Naj bo G grupa s podgrupo H in naj bo ϕ vložitev H v G. Predpostavimo, da je $|G:H| < \infty$. Naj bo ρ upodobitev grupe G na prostoru V. Premislimo, kako izgleda upodobitev $\operatorname{Ind}_H^G(\rho)$.

Naj bo R neka izbrana množica predstavnikov desnih odsekov H v G. Vsaka funkcija $f \in \text{fun}(G, V)^H$ je določena z vrednostmi f(r) za $r \in R$ in

 $^{^{-16}}$ Delovanje H na fun(G,V) je konstruirano analogno delovanju grupe na prostoru linearnih preslikav.

 $^{^{17}}$ Če je R množica predstavnikov desnih odsekov im ϕ v G in če že poznamo vrednosti $f \in \text{fun}(G,V)$ na množici R, potem lahko vsako drugo vrednost f izračunamo kot $f(x \cdot r) = \rho(y) \cdot f(r)$ za $x = \phi(y) \in \text{im} \phi$.

¹⁸Če je $f \in \text{fun}(G, V)^H$, potem pogoj H-invariantnosti uporabimo z elementi $h \in \text{ker } \phi$ in dobimo $\rho(h) \cdot f(x) = f(x)$, torej je $f \in V^h$.

dodatnih restrikcij za te vrednosti ni, zato dobimo izomorfizem vektorskih prostorov 19

$$\Phi: \operatorname{fun}(G, V)^H \to \operatorname{fun}(R, V), \quad f \mapsto (r \mapsto f(r)).$$

Da dobimo spletično, moramo posplošitev regularnega delovanja G na fun(G,V) prenesti prek linearnega izomorfizma Φ na desno stran. V ta namen naj bo $v \in V$ in $f \in \operatorname{fun}(G,V)^H$ z lastnostjo $f(r_0) = v$ in f(r) = 0 za $r \in R \setminus \{r_0\}$. Za vsak $g \in G$ mora tako veljati

$$g \cdot \left(r \mapsto \begin{cases} v & r = r_0, \\ 0 & r \neq r_0 \end{cases} \right) = \Phi \left(g \cdot f \right) = \Phi \left(x \mapsto f(xg) \right).$$

Za $x \in R$ z lastnostjo $xg \in Hr_0$, se pravi $x = hr_0g^{-1}$ za nek $h \in H$, velja $f(xg) = f(hr_0) = \rho(h) \cdot v$. Seveda je $|R \cap Hrg^{-1}| = 1$, torej obstaja natanko en tak x. Za $x \in R$ z lastnostjo $xg \notin Hr_0$ pa velja f(xg) = 0. S tem je

$$g \cdot \left(r \mapsto \begin{cases} v & r = r_0, \\ 0 & r \neq r_0 \end{cases}\right) = \left(r \mapsto \begin{cases} \rho(h) \cdot v & r = hr_0g^{-1} \text{ za nek } h \in H, \\ 0 & r \notin Hr_0g^{-1} \end{cases}\right).$$

Da bo preslikava Φ spletična, moramo na $\operatorname{fun}(R,V)$ torej uvesti tako delovanje grupe G, ki dan vektor v pri vnosu $r_0 \in R$ preslika tako, da najprej izračuna odsek elementa r_0g^{-1} po H, ta element zapiše kot $r_0g^{-1} = h^{-1}r$ za $h \in H$, $r \in R$, nato pa na vektor v deluje z $\rho(h)$ in ga hkrati prestavi k vnosu r.

Opisan postopek si lahko nekoliko lažje predstavljamo tako, da množico fun(R,V) identificiramo z direktno vsoto $\bigoplus_{r\in R} Vr$, kjer je Vr kopija vektorskega prostora V pri komponenti r. Element $g\in G$ deluje na vektorju $vr_0\in Vr_0$ kot g^{-1} z desne. V teh domačih oznakah izračunamo

$$g \cdot vr_0 = vr_0g^{-1} = vh^{-1}r = (h \cdot v)r = (\rho(h) \cdot v)r$$
,

kar ravno ustreza bolj zakompliciranemu zapisu zgoraj.

Poseben primer opisane indukcije dobimo z enorazsežnimi upodobitvami grupe H. Vsak homomorfizem $\rho: H \to F^*$ porodi prostor $\mathrm{fun}(G,F)^H$ razsežnosti |G:H|, ki je podprostor prostora funkcij $\mathrm{fun}(G,F)$ in na katerem torej grupa G deluje z regularno upodobitvjo. Inducirana upodobitev je v tem primeru podupodobitev regularne upodobitve ρ_{fun} . Na ta način lahko dobimo mnogo različnih upodobitev grupe G.

Zgled. Opazujmo grupo S_n in njeno podgrupo A_n indeksa 2. Za $n \ge 5$ je grupa A_n enostavna, zato je $A_n = [A_n, A_n]$ in ni netrivialnih enorazsežnih upodobitev. Oglejmo si inducirano upodobitev $\operatorname{Ind}_{A_n}^{S_n}(1)$. A priori vemo, da je to dvorazsežna upodobitev. Za množico predstavnikov odsekov vzamemo $R = \{(), (1\ 2)\}$. V domačih oznakah je vektorski prostor upodobitve enak $F() \oplus F(1\ 2)$, na katerem deluje grupa S_n s predpisom

$$g \cdot x\sigma = x\sigma g^{-1} = \begin{cases} x\sigma & g \in A_n, \\ x((1\ 2)\sigma) & g \notin A_n \end{cases}$$

za $g \in S_n$, $x \in F$, $\sigma \in R$. To delovanje lahko zapišemo še enostavneje. Vektorski prostor identificiramo z dvorazsežnim prostorom F^2 , delovanje

 $^{^{19}{\}rm Množico}$ funkcij fun(R,V) lahko vidimo kot direktno vsoto prostorov V, indeksirano z množico R.

pa opišemo kot

$$g \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \begin{pmatrix} x \\ y \end{pmatrix} & g \in A_n, \\ \begin{pmatrix} y \\ x \end{pmatrix} & g \notin A_n \end{cases}$$

za $x,y\in F,\ g\in S_n$. Alternirajoča grupa A_n je v jedru te upodobitve, ki zato izhaja iz kvocienta $S_n/A_n\cong {\bf Z}/2{\bf Z}$. Opisana upodobitev je natanko permutacijska upodobitev grupe ${\bf Z}/2{\bf Z}$ na prostoru $F[\{1,2\}]$, inducirana upodobitev pa je ravno restrikcija te upodobitve vzdolž kvocientne projekcije $S_n\to S_n/A_n$. Inducirano upodobitev lahko zapišemo kot vsoto dveh enorazsežnih podupodobitev. Prva je podupodobitev z diagonalnim prostorom $\{(x,x)\mid x\in F\}\le F^2$, ta je izomorfna trivialni upodobitvi 1. Druga pa je podupodobitev z antidiagonalnim prostorom $\{(x,-x)\mid x\in F\}\le F^2$. Ta ni trivialna, saj element $(1\ 2)$ deluje na (1,-1) kot množenje z $-1\in F$. Ta podupodobitev je zato izomorfna predznačni upodobitvi sgn. Nazadnje je torej $\mathrm{Ind}_{A_n}^{S_n}(1)\cong 1\oplus \mathrm{sgn}$.

Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Ni težko preveriti, da indukcija naravno presene spletično med dvema upodobitvama grupe H v spletično med induciranima upodobitvama. Indukcija je torej funktor iz kategorije Rep_H v kategorijo Rep_G .

Kadar imamo na voljo tri grupe, povezane s homomorfizmoma $\phi_2\colon H_2 \to H_1$ in $\phi_1\colon H_1 \to G$, lahko indukcijo izvedemo dvakrat zaporedoma. Upodobitvi ρ v Rep_{H_2} tako priredimo upodobitev $\operatorname{Ind}_{H_1}^G(\operatorname{Ind}_{H_2}^{H_1}(\rho))$ v Rep_G . Od grupe H_2 do G imamo neposredno povezavo prek homomorfizma $\phi_1 \circ \phi_2$, s čimer dobimo upodobitev $\operatorname{Ind}_{H_2}^G(\rho)$. Ni težko preveriti, da sta dobljeni upodobitvi izomorfni. Tej lastnosti indukcije pravimo $\operatorname{tranzitivnost}$.

Domača naloga. Dokaži tranzitivnost indukcije.

S tranzitivnostjo indukcije lahko vsako indukcijo vzdolž homomorfizma $\phi\colon H\to G$ razdelimo na tri korake: najprej induciramo vzdolž kvocientne projekcije $H\to H/\ker\phi$, nato vzdolž izomorfizma $H/\ker\phi\to\operatorname{im}\phi$ in nazadnje vzdolž vložitve $\operatorname{im}\phi\to G$. Vsako od teh posameznih indukcij razumemo precej dobro in zato lahko to znanje uporabimo pri razumevanju indukcije vzdolž ϕ . Na primer, iz povedanega in razmiselekov o preprostejših indukcijah, ki smo jih že naredili, sledi, da je razsežnost inducirane upodobitve ρ grupe H na prostoru V enaka

$$\deg(\operatorname{Ind}_H^G(\rho)) = |G: \operatorname{im} \phi| \cdot \dim(V^{\ker \phi}).$$

Adjunkcija restrikcije in indukcije

Indukcija in restrikcija vsekakor nista inverzna funktorja. Na primer, če je $H \leq G$ in ϕ vložitev, potem za upodobitev ρ v Rep_G velja $\operatorname{deg}(\operatorname{Res}_H^G(\rho)) = \operatorname{deg}(\rho)$ in zato $\operatorname{deg}(\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho))) = |G:H| \cdot \operatorname{deg}(\rho)$, kar je lahko mnogo večje od $\operatorname{deg}(\rho)$. Sta pa funktorja restrikcije in indukcije vendarle tesno povezana. Tvorita namreč *adjungiran par* funktorjev. 20

Trditev. Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Za vsako upodobitev ρ v Rep_G in upodobitev σ v Rep_H velja

$$\hom_H(\operatorname{Res}_H^G(\rho), \sigma) \cong \hom_G(\rho, \operatorname{Ind}_H^G(\sigma)).$$

 $^{^{20}\}mathrm{V}$ nadaljevanju bomo spoznali presenetljivo uporabnost tega navidez naključnega dejstva.

Dokaz. Naj bo ρ upodobitev na prostoru V in σ upodobitev na prostoru W. Naj bo

$$\Phi \in \text{hom}_H(\text{Res}_H^G(\rho), \sigma) = \text{hom}_H(V, W).$$

Sestavimo pripadajočo spletično

$$\Psi \in \text{hom}_G(\rho, \text{Ind}_H^G(\sigma)) = \text{hom}_G(V, \text{fun}(G, W)^H).$$

Za vektor $v \in V$ definirajmo

$$\Psi(v) = (x \mapsto \Phi(\rho(x) \cdot v)) \in \text{fun}(G, W).$$

Ni težko (je pa sitno) preveriti, da opisano prirejanje vzpostavi izomorfizem med prostoroma spletičen $\hom_H(V,W)$ in $\hom_G(V, \operatorname{fun}(G,W)^H)$.

Zgled. Naj boGgrupa s podgrupo Hkončnega indeksa. Grupa G deluje na množici desnih odsekov $H\backslash G$ s homomorfizmom

$$G \to \operatorname{Sym}(H \backslash G), \quad g \mapsto (Hx \mapsto Hxg^{-1}).$$

Iz tega delovanja izhaja permutacijska upodobitev π grupe G na prostoru $F[H\backslash G]$. Po konstrukciji je $\pi \cong \operatorname{Ind}_H^G(\mathbf{1})$. Iz adjunkcije med restrikcijo in indukcijo za trivialni upodobitvi grup G in H od tod izpeljemo izomorfizem

$$hom_H(\mathbf{1},\mathbf{1}) \cong hom_G(\mathbf{1},\pi) \cong F[H\backslash G]^G$$
.

Prostor $\hom_H(\mathbf{1},\mathbf{1}) = \hom(F,F)$ sestoji zgolj iz skalarnih množenj in je torej enorazsežen. Zato je enorazsežen tudi prostor invariant $F[H\backslash G]^G$. Vektor, ki ga razpenja, lahko dobimo kot sliko $\mathrm{id}_F \in \hom_H(\mathbf{1},\mathbf{1})$. Tej spletični po adjunkciji ustreza spletična

$$\Psi \mathpunct{:} F \to F\big[H \backslash G\big], \quad 1 \mapsto \sum_{Hx \in H \backslash G} e_{Hx},$$

od koder sledi

$$F[H \backslash G]^G = \left(\sum_{Hx \in H \backslash G} e_{Hx} \right).$$

Domača naloga. Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Za vsako upodobitev ρ v Rep_G in upodobitev σ v Rep_H velja

$$\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho)\otimes\sigma)\cong\rho\otimes\operatorname{Ind}_H^G(\sigma).$$

Domača naloga. Premisli, kako se restrikcija in indukcija ujameta z dualom, direktno vsoto in tenzorskim produktom.

Poglavje 2

Upodobitev pod mikroskopom

V tem poglavju bomo pribili upodobitev dane grupe in se ji tesno približali, kot da bi jo pogledali pod mikroskopom. Pri tem bomo najprej uzrli osnovne kose, iz katerih je sestavljena upodobitev. Ti osnovni kosi ustrezajo celicam, ki jih vidimo pod mikroskopom. Za tem se bomo približali še sestavi teh osnovnih kosov: vsak je dan s homomorfizmom v matrike, zato bomo raziskali koeficiente te matrike. Ti ustrezajo organelom, ki jih v celici vidimo pod mikroskopom. Nazadnje bomo premislili, da so te upodobitvene celice dovolj diferencirane med sabo, da za njihovo identifikacijo zadošča poznavanje le nekaterih njihovih organelov.

2.1 Razstavljanje upodobitve

Pogosto nas zanima, ali lahko dano upodobitev ρ grupe G na prostoru V zapišemo kot direktno vsoto nekih podupodobitev in na ta način upodobitev ρ razstavimo na preprostejše upodobitve, podobno kot razstavimo števila na manjše faktorje.

Nerazcepnost

Naj bo G grupa z upodobitvijo ρ na prostoru $V \neq 0$. Kadar ne obstaja noben G-invarianten podprostor prostora V (razen prostorov 0 in V), tedaj rečemo, da je upodobitev ρ nerazcepna. V tem primeru upodobitve seveda ne moremo razstaviti na enostavnejše v smislu direktne vsote.

Zgled.

- Opazujmo permutacijsko upodobitev simetrične grupe S_3 na prostoru $\mathbf{R}[\{1,2,3\}] = \mathbf{R}^3$. Premislili smo že, da je ta upodobitev direktna vsota enorazsežne podupodobitve $\mathbf{1}$ in dvorazsežne podupodobitve ρ , pri čemer slednja nima nobene enorazsežne podupodobitve. S tem je permutacijska upodobitev razstavljena kot direktna vsota dveh nerazcepnih upodobitev.
- Opazujmo diedrsko grupo D_{2n} z dvorazsežno upodobitvijo ρ_k za $k \in \mathbf{Z}$, ki jo obravnavajmo kot kompleksno upodobitev. Matrika $\rho_k(r)$ ima lastni vrednosti $e^{\pm 2\pi i k/n}$. Ti dve vrednosti sta različni, če in

¹Rečemo tudi, da je *V enostavna* upodobitev. Te terminologija izhaja iz alternativne obravnave upodobitev kot *modulov nad grupnimi algebrami*.

samo če k ni deljiv z n/2. Za vsak 0 < k < n/2 ima $\rho_k(r)$ torej različni lastni vrednosti z lastnima vektorjema $\binom{1}{\mp i}$. Matrika $\rho_k(s)$ zamenja ta dva lastna podprostora med sabo. Upodobitev ρ_k za 0 < k < n/2 torej nima nobene enorazsežne kompleksne podupodobitve in je zato nerazcepna.

Preverimo, da so nerazcepne upodobitve dane grupe med sabo *neprimerljive*, tudi če so enake razsežnosti. Zatorej si jih lahko predstavljamo kot neodvisne osnovne kose kategorije upodobitev dane grupe.²

Lema (Schurova lema). Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π . Tedaj je vsaka spletična v hom $_G(\pi,\rho)$ bodisi injektivna bodisi ničelna in vsaka spletična v hom $_G(\rho,\pi)$ je bodisi surjektivna bodisi ničelna. V posebnem je vsaka spletična med dvema nerazcepnima upodobitvama grupe G bodisi izomorfizem bodisi ničelna.

Dokaz. Naj bo Φ ∈ hom_G(π, ρ). Tedaj je ker Φ podupodobitev π, zato je po nerazcepnosti bodisi ker Φ = 0 bodisi Φ = 0. Prvi primer ustreza možnosti, da je Φ injektivna, v drugem primeru pa je Φ ničelna. Sorođen razmislek dokaže trditev o spletičnah v hom_G(ρ, π).

Nad algebraično zaprtimi polji lahko to neprimerljivost raztegnemo do ene same upodobitve: osnovni kosi nimajo netrivialnih simetrij.

Posledica. Naj bo G grupa z nerazcepno upodobitvijo π končne razsežnosti nad algebraično zaprtim poljem. Tedaj je $\dim \hom_G(\pi,\pi) = 1$. Povedano še drugače: $množica \hom_G(\pi,\pi)$ sestoji le iz skalarnih večkratnikov identitete.

Dokaz. Naj bo $0 ≠ Φ ∈ hom_G(π,π)$. Ker je polje algebraično zaprto, ima linearna preslikava Φ vsaj kakšno lastno vrednost, recimo λ. Preslikava Φ – $λ · id ∈ hom_G(π,π)$ zato ni injektivna, s čimer mora biti po Schurovi lemi ničelna, se pravi Φ = λ · id.

Množico vseh izomorfnostnih razredov nerazcepnih upodobitev dane grupe G označimo z Irr(G).

Zgled. Naj bo G grupa z nerazcepno upodobitvijo π končne razsežnosti nad poljem kompleksnih števil. Spletične $\hom_G(\pi,\pi) = \hom(\pi,\pi)^G$ so endomorfizmi vektorskega prostora, ki so G-invariatni, se pravi komutirajo z delovanjem grupe G. Zglede takih endomorfizmov lahko dobimo iz delovanj centralnih elementov grupe G; za vsak $z \in Z(G)$ je $\pi(z) \in \hom_G(\pi,\pi)$. Po Schurovi lemi je zato $\pi(z) = \omega(z)$ id za nek skalar $\omega(z)$. Ker je π homomorfizem, je $\omega: Z(G) \to \mathbb{C}^*$ enorazsežna upodobitve centra grupe G. Tej upodobitvi rečemo **centralni karakter** upodobitve π .

Še posebej zanimiv je primer, ko je G abelova grupa. Takrat za vsako nerazcepno upodobitev π končne razsežnosti nad poljem \mathbf{C} velja $\pi(g) = \omega(g)$ id za vsak $g \in G$. Vsak enorazsežen podprostor je zato avtomatično podupodobitev. Ker je π nerazcepna, od tod sklepamo $\deg(\pi) = 1$ in s tem $\pi = \omega$. Upodobitev π je tako enorazsežna. Na primer, vsaka končnorazsežna nerazcepna upodobitev grupe \mathbf{R} je nujno enorazsežna.

Domača naloga. Poišči kakšno nerazcepno upodobitev ciklične grupe **Z**/3**Z** nad poljem **Q**, ki *ni* enorazsežna.

 $^{^2\}mathrm{Po}$ analogiji s faktorizacijo števil si nerazcepne upodobitve lahko predstavljamo kot praštevila.

Komplementarna podupodobitev

Predpostavimo zdaj, da ima dana upodobitev ρ grupe G na prostoru V neko podupodobitev $\tilde{\rho}$ na podprostoru $W \leq V$. Seveda lahko vselej najdemo vektorski prostor $U \leq V$, za katerega je $V = U \oplus W$, vsekakor pa ni jasno, če lahko najdemo tak podprostor U, ki je celo G-invarianten. Kadar je temu tako, rečemo, da smo našli *komplementarno podupodobitev* podupodobitve $\tilde{\rho}$. Ni vsaka podupodobitev komplementirana.

Zgled. Naj grupa \mathbf{R} deluje na realnem prostoru \mathbf{R}^2 s homomorfizmom

$$\rho: \mathbf{R} \to \mathrm{GL}_2(\mathbf{R}), \quad x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Oglejmo si enorazsežne podupodobitve. Premislili smo že, da te ustrezajo skupnim lastnim vektorjem vseh preslikav $\rho(x)$ za $x \in \mathbf{R}$. Pri x = 1 imamo linearno preslikavo $\rho(1)$ z enim samim lastnim vektorjem, in sicer $e_1 \in \mathbf{R}^2$. Hkrati je e_1 lastni vektor vseh preslikav $\rho(x)$ za $x \in \mathbf{R}$. Torej ima ρ eno samo enorazsežno podupodobitev, in sicer je to $\mathbf{R} \cdot e_1 \leq \mathbf{R}^2$. Ta vektorski podprostor ima mnogo komplementov v \mathbf{R}^2 , noben od teh pa ni hkrati enorazsežna podupodobitev ρ .

Ni težko preveriti, da obstoj komplementirane podupodobitve vselej izhaja iz *projekcijskih spletičen*.⁴

Trditev. Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo $\tilde{\rho}$ njena podupodobitev na prostoru $W \leq V$. Tedaj ima $\tilde{\rho}$ komplementirano podupodobitev, če in samo če obstaja spletična $\Phi \in \hom_G(V,V)$, ki je projekcija na W. V tem primeru je $\ker \Phi$ komplementirana upodobitev.

Polenostavnost

Vrnimo se k začetni ideji o razstavljanju dane upodobitve. Kadar lahko dano upodobitev ρ zapišemo kot direktno vsoto nerazcepnih upodobitev $\bigoplus_{i\in I} \rho_i$, tedaj rečemo, da je ρ polenostavna upodobitev. Če so pri tem vse podupodobitve ρ_i izomorfne med sabo, upodobitev ρ imenujemo izoti-pična upodobitev.

Zgled.

- Permutacijska upodobitev grupe S_3 na \mathbb{R}^3 je polenostavna.
- Regularna upodobitev ciklične grupe $\mathbb{Z}/n\mathbb{Z}$ nad \mathbb{C} je polenostavna.

Vseh upodobitev žal ne moremo razstaviti na direktno vsoto nerazcepnih.⁵ Polenostavnost dane upodobitve je namreč tesno povezana z obstojem komplementiranih podupodobitev.

Trditev. Upodobitev grupe G je polenostavna, če in samo če ima vsaka njena podupodobitev komplementirano podupodobitev.

 $^{^3}$ Če komplementarna podupodobitev obstaja, potem je enolično določena (do izomorfizma upodobitev), saj je izomorfna kvocientu $\rho/\tilde{\rho}$.

⁴Linearna preslikava $A: X \to X$ je projekcija na podprostor $Y \le X$, če je $A^2 = A$ in im A = Y. Projekcijska spletična je torej spletična, ki je hkrati projekcija na nek podprostor.

⁵V nadaljevanju bomo pokazali, da so upodobitve *končnih* grup nad poljem karakteristike 0 vselej poenostavne.

Dokaz. (\Rightarrow): Naj bo najprej $\rho:G \to \operatorname{GL}(V)$ polenostavna upodobitev, pri kateri je $V = \bigoplus_{i \in I} V_i$ in upodobitve G na podprostorih V_i so nerazcepne. Naj bo $W \le V$ poljuben G-invarianten podprostor. Po Zornovi lemi obstaja maksimalen G-invarianten podprostor $U \le V$ z lastnostjo $U \cap W = 0$. Izberimo poljuben $i \in I$. Presek $(U \oplus W) \cap V_i$ je G-invarianten podprostor prostora V_i , zato je po nerazcepnosti bodisi trivialen bodisi enak V_i . Če bi bil trivialen, bi lahko U povečali do prostora $U \oplus V_i$, kar je v nasprotju z maksimalnostjo izbire U. Zatorej je $(U \oplus W) \cap V_i = V_i$ in tako $(U \oplus W) \ge V_i$. Ker je bil i poljuben, od tod sledi $U \oplus W = V$. Podupodobitev W ima torej komplementirano podupodobitev U. \checkmark

 (\Leftarrow) : Naj bo $\rho:G\to \operatorname{GL}(V)$ upodobitev, v kateri je vsaka podupodobitev komplementirana. Dokazati želimo, da je ρ polenostavna. Uporabili bomo naslednjo pomožno trditev, ki je ni težko preveriti.

Domača naloga. Naj bo ρ upodobitev, v kateri je vsaka podupodobitev komplementirana. Tedaj ima ρ nerazcepno podupodobitev.

Naj bo W vsota vseh G-invariantnih podprostorov v V, ki so nerazcepne upodobitve, se pravi $W = \sum_{i \in I} V_i$, a ta vsota ni nujno direktna. Po pomožni trditvi je $W \neq 0$. Po predpostavki je W komplementirana z G-invariantnim podprostorom U. Po pomožni trditvi ima tudi U nerazcepno podupodobitev, zato je ta vsebovana v W, kar implicira W = V. Dokažimo zdaj še, da je W direktna vsota podprostorov V_i . V ta namen naj bo J maksimalna podmnožica indeksne množice I, za katero je $\sum_{j \in J} V_j$ direktna vsota. Taka podmnožica obstaj po Zornovi lemi. Označimo $\tilde{V} = \bigoplus_{j \in J} V_j$. Če velja $\tilde{V} \neq V$, potem mora za nek $i \in I \setminus J$ po nerazcepnosti veljati $V_i \cap \tilde{V}$, kar pa je v nasprotju z maksimalnostjo množice J. Tako je res $\tilde{V} = V$ in upodobitev V je polenostavna. \checkmark

Zgled. Eničnozgornjetrikotna upodobitev grupe \mathbf{R} na \mathbf{R}^2 ni nerazcepna, hkrati pa njena podupodobitev $\mathbf{R} \cdot e_1 \cong \mathbf{1}$ ni komplementirana. Ta upodobitev zatorej ni polenostavna.

Z uporabo zadnjega kriterija lahko dokažemo, da je polenostavnost zaprta za osnovne konstrukcije z upodobitvami.

Posledica. Podupodobitve, kvocienti in direktne vsote polenostavnih upodobitev dane grupe so polenostavne.

Dokaz. Preverimo le zaprtost za podupodobitve. Naj bo ρ polenostavna upodobitev grupe G na prostoru V in naj bo $W \leq V$ podupodobitev. Naj bo $U \leq W$ poljubna podupodobitev upodobitve na W. Po polenostavnosti obstaja komplementirana podupodobitev $\tilde{U} \leq V$ upodobitve $U \leq V$. Tedaj je $\tilde{U} \cap W$ podupodobitev, ki je komplementirana podupodobitvi $U \vee W$. \square

Nazadnje lahko s pomočjo projekcijskih spletičen naredimo še en korak naprej pri razumevanju simetrij upodobitev. Premislili smo že, da so osnovni kosi brez netrivialnih simetrij. V primeru polenostavnih upodobitev drži tudi obratno.

Posledica. Naj bo G grupa s polenostavno upodobitvijo ρ končne razsežnosti nad algebraično zaprtim poljem. Če je dim $\hom_G(\rho,\rho)=1$, potem je ρ nerazcepna.

Dokaz. Naj ρ upodablja grupo G na prostoru V. Naj bo $W \le V$ nerazcepna podupodobitev in naj bo U njena komplementirana podupodobitev. Naj bo $\Phi: V \to V$ pripadajoča projekcija na podprostor W z jedrom U. Ker je $\Phi \in \text{hom}_G(\rho, \rho)$, iz predpostavke sledi, da je Φ skalarni večkratnik identitete. To je mogoče le v primeru, ko je V = W in U = 0, torej je ρ nerazcepna. □

Kompozicijska vrsta

Vsake upodobitve ne moremo razstaviti kot direktno vsoto nerazcepnih upodobitev. Kljub temu pa je res, da lahko vsako upodobitev (na končno razsežnem prostoru) razstavimo na nerazcepne upodobitve, le da moramo pri tem poseči po nekoliko zahtevnejšem načinu razstavljanja.

Naj bo G grupa z upodobitvijo na prostoru V. Predpostavimo, da obstaja zaporedje G-invariantnih podprostorov

$$0 = V_0 \le V_1 \le V_2 \le \cdots \le V_n = V$$
,

pri čemer so vsi zaporedni kvocienti V_i/V_{i-1} za $1 \le i \le n$, gledani kot upodobitve grupe G, nerazcepni. Tako zaporedje imenujemo kompozicijska vrsta upodobitve na prostoru V. Kvocienti V_i/V_{i-1} se pri tem imenujejo kompozicijski faktorji.

Zgled. Naj bo ρ eničnozgornjetrikotna upodobitev grupe \mathbf{R} na $V = \mathbf{R}^2$. Ta upodobitev ima podupodobitev $V_1 = \mathbf{R} \cdot e_1$. Kvocient V/V_1 je enorazsežen in na njem grupa \mathbf{R} deluje trivialno. Dobimo torej kompozicijsko vrsto

$$0 = V_0 \le V_1 \le V$$
,

katere kompozicijska faktorja sta kot upodobitvi izomorfna 1. Sama upodobitev grupe \mathbf{R} na V pa seveda ni trivialna.

Izrek (Jordan-Hölder-Noether). Vsaka upodobitev na končno razsežnem prostoru ima kompozicijsko vrsto. Vsaki dve kompozicijski vrsti imata enako število členov in do permutacije natančno enake kompozicijske faktorje.

Dokaz. Naj grupa deluje linearno na končno razsežnem prostoru V. Da kompozicijska vrsta res obstaja, ni težko preveriti. Najprej izberemo neko nerazcepno podupodobitev V_1 . Če je $V_1 < V$, potem izberemo podupodobitev V_2 , ki vsebuje V_1 in je med vsemi takimi minimalne razsežnosti. S tem je V_2/V_1 nerazcepna. Induktivno nadaljujemo z grajenjem kompozicijske vrste. Ker je V končno razsežen, se ta postopek ustavi.

Premislimo še, kako lahko vsaki dve kompozicijski vrsti povežemo med sabo. Opazujmo dve taki vrsti,

$$0 = V_0 \le V_1 \le \cdots \le V_n = V$$
 in $0 = W_0 \le W_1 \le \cdots \le W_m = V$.

S pomočjo druge vrste bomo skušali pofiniti prvo vrsto in obratno. Za $0 \le i < n$ in $0 \le j \le m$ naj bo

$$V_{i,j} = V_i + (V_{i+1} \cap W_j),$$

⁶Ta argument je sorođen premisleku o obstoju Hirschove dolžine v policikličnih grupah iz (Teorija grup).

S tem dobimo verigo

$$V_i = V_{i,0} \le V_{i,1} \le \cdots V_{i,m} = V_{i+1}$$

med V_i in V_{i+1} . Ker je kvocient V_{i+1}/V_i nerazcepen in je vsak $V_{i,j}$ podupodobitev, mora za natanko en indeks j veljati $V_i = V_{i,j}$ in $V_{i+1} = V_{i,j+1}$. Kompozicijski faktor V_{i+1}/V_i je tedaj izomorfen kvocientu

$$\frac{V_i + (V_{i+1} \cap W_{j+1})}{V_i + (V_{i+1} \cap W_i)}.$$

Zgodbo zdaj ponovimo še za drugo verigo. Pofinimo jo s pomočjo prve, definiramo $W_{j,i} = W_j + (W_{j+1} \cap V_i)$. Kvocient W_{j+1}/W_j je enak

$$\frac{W_j+\left(W_{j+1}\cap V_{i+1}\right)}{W_j+\left(W_{j+1}\cap V_i\right)}.$$

Domača naloga. Prepričaj se, da velja

$$\frac{V_i + (V_{i+1} \cap W_{j+1})}{V_i + (V_{i+1} \cap W_j)} \cong \frac{W_j + (W_{j+1} \cap V_{i+1})}{W_j + (W_{j+1} \cap V_i)}.$$

S tem smo za vsak $0 \le i < n$ našli natanko določen j, da je $V_{i+1}/V_i \cong W_{j+1}/W_j$. Premislimo še, da je to prirejanje injektivno. Indeks j je enolično določen s pogojem, da je $V_{i,j+1}/V_{i,j} \ne 0$, kar je po gornjem izomorfizmu enakovredno pogoju $W_{j,i+1}/W_{j,i} \ne 0$. Ker je W_{j+1}/W_j nerazcepen, je slednji pogoj lahko izpolnjen le za en indeks i.

Iz izreka sledi, da lahko za vsako upodobitev ρ grupe G na končno razsežnem prostoru najdemo bazo prostora, v kateri imajo vse matrike $\rho(g)$ za $g \in G$ bločnozgornjetrikotno obliko. Po drugi strani lahko za polenostavno upodobitev najdemo bazo prostora, v kateri imajo vse matrike bločnodiagonalno obliko.

Izotipične komponente

Po zadnjem izreku je za dano upodobitev ρ in nerazcepno upodobitev π število kompozicijskih faktorjev, ki so izomorfni π , neodvisno od kompozicijske vrste. Temu številu pravimo **večkratnost** π v ρ in ga označimo z $\mathrm{mult}_{\varrho}(\pi)$.

Kadar je dana upodobitev *polenostavna*, je do izomorfizma natančno enolično določena s svojimi večkratnostmi. Če je $\rho = \bigoplus_{i \in I} \rho_i$, potem je

$$hom_G(\pi, \rho) = \bigoplus_{i \in I} hom_G(\pi, \rho_i).$$

Po Schurovi lemi je (nad algebraično zaprtim poljem) vsak od zadnjih prostorov spletičen bodisi trivialen bodisi enorazsežen. Večkratnost π v ρ lahko zatorej izračunamo kot

$$\operatorname{mult}_{\rho}(\pi) = \dim \operatorname{hom}_{G}(\pi, \rho).$$

Zgled.

Za eničnozgornjetrikotno upodobitev ρ grupe R na R² je mult_ρ(1) =
 2. Ker ta upodobitev ni trivialna, ne more biti polenostavna, saj bi sicer bila izomorfna 1².

Opazujmo permutacijsko upodobitev π grupe S₃ na R³. To upodobitev smo že razstavili na direktno vsoto 1 ⊕ ρ, kjer je ρ dvorazsežna nerazcepna upodobitev na podprostoru ⟨u₁ = e₁ - e₂, u₂ = e₂ - e₃⟩. Premislili smo, kako lahko to upodobitev projiciramo do upodobitve ρ̃ grupe S₃ na prostoru (Z/3Z)² nad končnim poljem Z/3Z.

Upodobitev $\tilde{\rho}$ ni nerazcepna, saj ima invarianten podprostor $\langle u_1 - u_2 = e_1 + e_2 + e_3 \rangle$. Na tem podprostoru grupa S_3 deluje trivialno. V kvocientu $(\mathbf{Z}/3\mathbf{Z})^2/\langle u_1 - u_2 \rangle \cong \mathbf{Z}/3\mathbf{Z}$ generatorja $(1\ 2)$ in $(1\ 2\ 3)$ grupe S_3 preslikata odsek vektorja u_1 v odsek $-u_1$ oziroma u_1 . V tem prepoznamo predznačno upodobitev, interpretirano kot homomorfizem sgn: $S_3 \to \operatorname{GL}_1(\mathbf{Z}/3\mathbf{Z}) \cong \{1,-1\}$. Nad poljem $\mathbf{Z}/3\mathbf{Z}$ za permutacijsko upodobitev π tako velja mult $\pi(1) = 2$ in mult $\pi(\operatorname{sgn}) = 1$.

Premislimo, da upodobitev π nad $\mathbf{Z}/3\mathbf{Z}$ ni polenostavna. Če bi namreč bila, bi po zgornjem morala biti izmorfna direktni vsoti $\mathbf{1} \oplus \mathbf{1} \oplus \operatorname{sgn}$. Prostor $(\mathbf{Z}/3\mathbf{Z})^3$ bi zatorej imel bazo, v kateri bi matriki za $\pi((1\ 2))$ in $\pi((1\ 2\ 3))$ bili hkrati diagonalni. Ti dve matriki bi zato komutirali, kar pomeni, da bi morali komutirati tudi linearni preslikavi $\pi((1\ 2))$ in $\pi((1\ 2\ 3))$. Temu pa ni tako, saj na primer velja $\pi((1\ 2\ 3)(1\ 2))e_1 = e_3$ in $\pi((1\ 2\ 3)(1\ 2))e_1 = e_1$.

Čeravno so kompozicijski faktorji upodobitve enolično določeni do permutacije natančno, pa ni res, da so enolično določeni tudi členi kompozicijske vrste, niti kadar je dana upodobitev polenostavna. Lahko se namreč zgodi, da neka nerazcepna podupodobitev nastopa z večkratnostjo vsaj 2.7

Oglejmo si tako situacijo še podrobneje. Naj bo G grupa z upodobitvijo ρ na prostoru V. Naj bo π neka nerazcepna upodobitve grupe G. Opazujmo vse G-invariantne podprostore v V, ki so kot upodobitve izomorfni π . Vsota (ne nujno direktna) vseh teh podprostorov

Izotip_{$$\rho$$} $(\pi) = \sum_{W \leq V, W \cong \pi} W$

je π -izotipična komponenta upodobitve ρ . Ta je sicer definirana za vsako upodobitev, a jo je za polenostavne upodobitve še posebej lahko določiti.

Trditev. Naj bo G grupa s polenostavno upodobitvijo $\rho = \bigoplus_{i \in I} \rho_i$ na prostoru $V = \bigoplus_{i \in I} V_i$, kjer je vsak ρ_i nerazcepna podupodobitev. Za vsako nerazcepno upodobitev π grupe G je

Izotip_o
$$(\pi) = \bigoplus_{i \in I: \rho_i \cong \pi} V_i$$
.

Dokaz. Naj bo W direktna vsota podprostorov V_i , ki so kot upodobitev izomorfni π . Seveda je $W \leq \operatorname{Izotip}_{\rho}(\pi)$. Dokažimo, da velja tudi obratna neenakost. Naj bo U direktna vsota tistih prostorov V_i , ki kot upodobitev niso izomorfni π . Velja $V = W \oplus U$. Opazujmo projekcijo $p: V \to U$ z jedrom W. Naj bo $Z \leq \operatorname{Izotip}_{\rho}(\pi)$ podprostor, ki je kot upodobitev izomorfen π . Zožitev $p|_Z$ je spletična v hom $_G(Z,U)$, ki je po Schurovi lemi ničeln prostor. Torej je p(Z) = 0 in s tem $Z \leq W$. Ker je bil Z poljuben, smo s tem dokazali $\operatorname{Izotip}_{\rho}(\pi) \leq W$.

⁷Na primer, kadar je upodobitev trivialna, se pravi $V = \mathbf{1}^k$ za nek k > 1, lahko izberemo poljubno bazo prostora V in prek nje dobimo nek drug izomorfizem $V \cong \mathbf{1}^k$.

Naj bo G grupa z upodobitvijo ρ na prostoru V in nerazcepno upodobitvijo π na prostoru W. Vsak G-invarianten podprostor v V, ki je kot upodobitev izomorfen π , lahko dobimo kot sliko prostora W z neko spletično v $\hom_G(\pi,\rho)$. Vsoto vseh takih G-invariatnih podprostorov lahko torej zajamemo kot sliko linearne preslikave

$$\Sigma_{\pi,\rho}$$
: $hom_G(\pi,\rho) \otimes W \to V$, $\Phi \otimes w \mapsto \Phi(w)$.

S tem je im $\Sigma_{\pi,\rho}$ = Izotip $_{\rho}$ π . Grupa G deluje na hom $_{G}(\pi,\sigma)$ = hom $(W,V)^{G}$ trivialno, na W pa prek π . Na ta način je $\Sigma_{\pi,\rho}$ celo spletična upodobitev.

Trditev. Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π nad algebraično zaprtim poljem. Predpostavimo, da je $\dim \hom_G(\pi, \rho) < \infty$. Tedaj je $\Sigma_{\pi, \rho}$ injektivna.

Dokaz. Naj bo $\{\Phi_i\}_{i\in I}$ baza prostora $\hom_G(\pi,\rho)$. Premislimo, da prostori $\operatorname{im}\Phi_i$ tvorijo notranjo direktno vsoto v V. Injektivnost $\Sigma_{\pi,\rho}$ od tod neposredno sledi.

Dokazujemo s protislovjem. Naj bo $J\subseteq I$ množica najmanjše moči, za katero prostori im Φ_j za $j\in J$ ne tvorijo direktne vsote. Obstaja torej $k\in J$, da je

$$\operatorname{im} \Phi_k \cap \sum_{j \in J \setminus \{k\}} \operatorname{im} \Phi_j \neq 0.$$

Po nerazcepnosti π je spletična Φ_k injektivna, zato je im Φ_k nujno vsebovana v vsoti $\sum_{j\in J\setminus\{k\}} \operatorname{im}\Phi_j$. Po minimalnosti J je zadnja vsota direktna, zato je

$$\Phi_k \in \hom_G(W, \bigoplus_{j \in J \setminus \{k\}} \operatorname{im} \Phi_j).$$

Slednji prostor je direktna vsota prostorov $\hom_G(W, \operatorname{im} \Phi_j)$. Po Schurovi lemi je vsak od teh bodisi ničeln bodisi enorazsežen. V neničelnem primeru je seveda $\hom_G(W, \operatorname{im} \Phi_j)$ generiran s spletično Φ_j . Od tod sledi, da je Φ_k linearna kombinacija spletičen Φ_j za $j \in J \setminus \{k\}$. To je protislovno z dejstvom, da je $\{\Phi_i\}_{i \in I}$ baza prostora $\hom_G(\pi, \rho)$.

Posledica. Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π nad algebraično zaprtim poljem. Predpostavimo, da je $\hom_G(\pi,\rho) < \infty$. Izotipična komponenta Izotip $_{\rho}(\pi)$ je polenostavna, π -izotipična in vsebuje π z večkratnostjo $\dim \hom_G(\pi,\rho)$.

Dokaz. Iz injektivnosti $\Sigma_{\pi,\rho}$ sledi Izotip $_{\rho}(\pi) \cong \hom_{G}(\pi,\sigma) \otimes W$. Ker grupa G deluje trivialno na $\hom_{G}(\pi,\sigma)$, je prostor $\hom_{G}(\pi,\sigma) \otimes W$ kot upodobitev izomorfen direktni vsoti $\dim \hom_{G}(\pi,\sigma)$ kopij prostora W, na katerem G deluje s π .

Domača naloga. Naj bo G grupa s končnorazsežno upodobitvijo ρ na prostoru V. Premisli, da se izotipične komponente, ki pripadajo paroma neizomorfnim nerazcepnim upodobitvam, sekajo trivialno.

Zgled.

 $^{^8\}mathrm{Vsaka}$ neničelna spletična v $\mathrm{hom}_G(\pi,\rho)$ je namreč injektivna.

Naj bo G grupa s polenostavno upodobitvijo ρ = ⊕_{i∈I} ρ_i na prostoru V = ⊕_{i∈I} V_i, v kateri vsaka nerazcepna podupodobitev nastopa z večkratnostjo 1. Upodobitve ρ_i so torej paroma neizomorfne. Izotipične komponente so torej kar enake podprostorom V_i. Ker so te komponente neodvisne od izbire dekompozicije, so torej podprostori V_i polenostavne dekompozicije enolično določeni.

Naj bo $W \leq V$ nek G-invarianten podprostor. Upodobitev G na tem podprostoru je tudi polenostavna. Vsaka njena nerazcepna podupodobitev je hkrati podupodobitev ρ , zato po enoličnosti podprostorov V_i sestoji iz nekaterih teh podprostorov. Prostor W je zato enak $\bigoplus_{i \in J} V_i$ za neko podmnožico $J \subseteq I$.

Za konkreten zgled lahko vzamemo ciklično grupo $\mathbf{Z}/n\mathbf{Z}$ in njeno regularno upodobitev, ki smo jo razcepili na direktno vsoto upodobitev $\bigoplus_{j\in\{1,2,\dots,n\}}\chi_j$. Po zadnjem komentarju je vsaka podupodobitev regularne upodobitve torej enaka direktni vsoti nekaterih od upodobitev χ_j .

• Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo π neka njena enorazsežna upodobitev. Taka upodobitev je seveda nerazcepna. Vektor $v \in V$ pripada izotipični komponenti Izotip $_{\rho}(\pi)$, če in samo če grupa G na prostoru $\langle v \rangle$ deluje kot s π , se pravi

$$\operatorname{Izotip}_{\rho}(\pi) = \{ v \in V \mid \forall g \in G \colon \rho(g) \cdot v = \pi(g)v \}.$$

Kadar je grupa G abelova, je vsaka njena nerazcepna upodobitev nad algebraično zaprtim poljem enorazsežna. Vsaka polenostavna upodobitev take grupe je zato direktna vsota podprostorov, na katerih grupa deluje s skalarnimi množenji prek svojih enorazsežnih upodobitev.

2.2 Matrični koeficienti

Vsaka upodobitev dane grupe je homomorfizem v grupo obrnljivih matrik $\operatorname{GL}(V)$. Do sedaj smo na upodobitve gledali z bolj konceptualnega stališča: govorili smo o strukturi prostora V in o njegovi morebitni dekompoziciji na nerazcepne upodobitve. Zdaj si bomo z vsako od teh umazali roke in jo pogledali še podrobneje.

Predpostavimo, da je prostor V končnorazsežen. Izberimo bazo prostora V in s tem izomorfizem $V \cong F^n$ za nek n, tako da je upodobitev dana s homomorfizmom $\rho: G \to \mathrm{GL}_n(F)$. Vsak tak homomorfizem je po komponentah podan s svojimi matričnimi koeficienti; to so funkcije

$$f_{i,j}:G\to F$$
, $g\mapsto \langle e_i^*,\rho(g)\cdot e_j\rangle = \rho(g)_{i,j}$

$$za i, j \in \{1, 2, ..., n\}.$$

O matričnih koeficientih upodobitve ρ lahko abstraktneje govorimo tudi brez izbire baze prostora. Za vsak vektor $v \in V$ in kovektor $\lambda \in V^*$ definiramo $f_{v,\lambda}:G \to F$, $g \mapsto \langle \lambda, \rho(g) \cdot v \rangle$. To so **posplošeni matrični koeficienti**. Kadar je prostor V končnorazsežen, lahko vsak vektor razvijemo po izbrani bazi in vsak kovektor po dualni bazi, s čimer posplošeni matrični koeficient razvijemo po običajnih matričnih koeficientih.

Matrični koeficienti in regularna upodobitev

Matrične koeficiente lahko vidimo kot elemente vektorskega prostora funkcij fun(G,F) iz G v F. Na tem prostoru deluje grupa G z regularno upodobitvijo ρ_{fun} . Naj bo $\text{MK}(\pi) \leq \text{fun}(G,F)$ podprostor, ki ga razpenjajo matrični koeficienti neke končnorazsežne nerazcepne upodobitve π .

Trditev. $MK(\pi)$ *je G-invarianten podprostor.*

Dokaz. Naj bo $g \in G$ in $f_{v,\lambda}$ posplošen matrični koeficient. Velja

$$g \cdot f_{v,\lambda} : x \mapsto f_{v,\lambda}(xg) = \langle \lambda, \pi(xg) \cdot v \rangle = f_{\pi(g) \cdot v,\lambda}(x),$$

zato je
$$g \cdot f_{v,\lambda} = f_{\pi(g),v,\lambda} \in MK(\pi)$$
.

Matrični koeficienti upodobitve π nam torej dajejo podupodobitve na prostoru $MK(\pi)$ znotraj regularne upodobitve ρ_{fun} na fun(G,F). Ni presenetljivo, da je ta podupodobitev v resnici tesno povezana s π .

Izrek. Naj bo G grupa s končnorazsežno nerazcepno upodobitvijo π . Tedaj je

$$MK(\pi) = Izotip_{\rho_{fun}}(\pi)$$

Nad algebraično zaprtim poljem je večkratnost π v slednji upodobitvi enaka $\deg(\pi)$.

Dokaz. Naj bo π upodobitev na prostoru W. Spomnimo se, da je π -izotipična komponenta v ρ_{fun} napeta na vektorje oblike $\Phi(w)$ za $\Phi \in \mathrm{hom}_G(\pi, \rho_{\mathrm{fun}})$ in $w \in W$. Regularno upodobitev predstavimo kot inducirano upodobitev $\rho_{\mathrm{fun}} = \mathrm{Ind}_1^G(\mathbf{1})$. Po adjunkciji med restrikcijo in indukcijo je

$$\hom_G(\pi,\rho_{\mathrm{fun}})\cong \hom_1(\mathrm{Res}_1^G(\pi),\mathbf{1})\cong \hom(\mathbf{1}^{\deg(\pi)},\mathbf{1}).$$

Standardna dualna baza $\{e_i^* \mid 1 \le i \le \deg(\pi)\}$ v zadnjem vektorskem prostoru nam po tej adjunkciji porodi bazo

$$\Phi_i: W \to \operatorname{fun}(G, F), \quad w \mapsto (g \mapsto \langle e_i^*, \pi(g) \cdot w \rangle) = f_{e_i^*, w}$$

za $1 \le i \le \deg(\pi)$ prostora spletičen $\hom_G(\pi, \rho_{\mathrm{fun}})$. Ko te bazne spletične evalviramo na neki izbrani bazi $\{f_j \mid 1 \le j \le \deg(\pi)\}$ prostora W, dobimo torej ravno prostor $\mathrm{MK}(\pi)$. Nad algebraično zaprtim poljem te evalvacije tvorijo celo bazo 10

$$\Phi_i(f_i) = f_{i,i}$$

prostora Izotip $_{\rho_{\text{fun}}}(\pi)$. V izbranih bazah torej matrični koeficienti tvorijo bazo za π -izotipično komponento regularne upodobitve. Večkratnost π v njej je enaka dim hom $_G(\pi, \rho_{\text{fun}}) = \deg(\pi)$.

Izpostavimo pomembno posledico, ki nam pove, da lahko vse nerazcepne upodobitve najdemo v regularni.

Posledica. Vsaka končnorazsežna nerazcepna upodobitev dane grupe je uresničljiva kot podupodobitev regularne.

 $^{^9}$ Prostor MK(π) je enak prostoru, ki ga razpenjajo posplošeni matrični koeficienti upodobitve π , zato je neodvisen od izbire baze.

 $^{^{10}}$ Preslikava $\Sigma_{\pi, \rho_{\text{fun}}}$ je injektivna, ker je dim $\text{hom}_G(\pi, \rho_{\text{fun}}) = \text{deg}(\pi) < \infty$.

V posebnem smo tekom zadnjega dokaza izpeljali, da so po izbiri baze matrični koeficienti končnorazsežne nerazcepne upodobitve nad algebraično zaprtim poljem π vselej linearno neodvisni. Vseh je ravno $\deg(\pi)^2$ in znotraj regularne upodbitve tvorijo podupodobitev $\mathrm{MK}(\pi)$, ki sestoji iz $\deg(\pi)$ mnogo kopij upodobitve π .

Vse podobno velja, kadar imamo namesto ene same nerazcepne upodobitve $končno\ mnogo$ paroma neizomorfnih nerazcepnih upodobitev $\{\pi_i\}_{i\in I}$ dane grupe G. Vsaka od njih nam po izbiri baze podari svoje matrične koeficiente. Ti razpenjajo prostore, ki so enakim izotipičnim komponentam v regularni upodobitvi in te komponente tvorijo notranjo direktno vsoto. Matrični koeficienti vseh teh upodobitev so torej linearno neodvisni med sabo. Vseh skupaj je $\sum_{i\in I} \deg(\pi_i)^2$.

Matrični koeficienti so elementi prostora funkcij fun(G,F). V primeru, ko je grupa končna, lahko po primerjanju dimenzij zato izpeljemo neenakost

$$\sum_{i\in I} \deg(\pi_i)^2 \leq \dim \operatorname{fun}(G,F) = |G|.$$

Posledica. Končna grupa ima le končno mnogo končnorazsežnih nerazcepnih upodobitev. Nad algebraično zaprtim poljem je vsaka od njih stopnje kvečjemu $\sqrt{|G|}$.

Dokaz. Vsaka končnorazsežna nerazcepna upodobitev je vsebovana v regularni in se zatorej pojavi kot njen kompozicijski faktor. Vseh možnih kompozicijskih faktorjev je končno mnogo, ker je prostor fun(G,F) končnorazsežen. Drugi del posledice sledi neposredno iz neenakosti pred njo. \square

Zgled. Opazujmo grupo S_3 nad poljem \mathbf{C} . Njeno regularno upodobitev smo že razstavili na direktno vsoto $\mathbf{1} \oplus \rho$, kjer je ρ dvorazsežna nerazcepna upodobitev. Poleg tega poznamo še enorazsežno predznačno upodobitev sgn. Vsota kvadratov stopenj teh treh upodobitev je $\mathbf{1}^2 + \mathbf{1}^2 + \mathbf{2}^2 = \mathbf{6}$, kar je ravno enako moči grupe S_3 . Od tod sledi, da so te tri vse končnorazsežne nerazcepne upodobitve grupe S_3 .

Več o upodobitvah končnih grup si bomo pogledali nekoliko kasneje.

Karakterji

Naj bo G grupa in ρ njena končnorazsežna upodobitev. Po izbiri baze dobimo matrične koeficiente $f_{i,j}$. Te lahko kombiniramo na različne načine, da dobimo funkcije v fun(G,F), ki so nazadnje neodvisne od izbire baze. Najosnovnejša¹² taka funkcija je sled linearnega operatorja, se pravi

$$\chi_{\rho} \colon G \to F$$
, $g \mapsto \operatorname{tr}(\rho(g)) = \sum_{i=1}^{\deg(\rho)} f_{i,i}(g)$.

To funkcijo imenujemo *karakter* upodobitve ρ . Kadar je upodobitev ρ nerazcepna, tudi njenemu karakterju dodamo pridevnik *nerazcepen*.

Karakter je neodvisen od izbire baze, zato za vsaka $x,g \in G$ velja $\chi_{\rho}(xgx^{-1}) = \chi_{\rho}(g)$. Karakterji so torej funkcije na G, ki so konstantne

¹¹Temu dejstvu včasih pravimo *Burnsideov izrek o neracepnosti*.

 $^{^{12}\}mathrm{V}$ resnici je sled do skalarja natančno edina taka funkcija.

	()	$(1\ 2)$	(123)
χ1	1	1	1
$\chi_{ m sgn}$	1	-1	1
$\chi_{ ho}$	2	0	-1

Tabela 2.1: Tabela karakterjev S_3

na konjugiranostnih razredih. ¹³ Takim funkcijam pravimo *razredne funkcije* in jih označimo s

$$\operatorname{fun}_{\operatorname{cl}}(G,F) = \{ f \in \operatorname{fun}(G,F) \mid \forall x,g \in G : f(xgx^{-1}) = f(g) \}.$$

Za dan konjugiranostni razred C v grupi G bomo pisali $\chi_{\rho}(C)$ za vrednost karakterja v poljubnem predstavniku tega razreda.

Zgled. Opazujmo grupo S_3 nad poljem ${\bf C}$. Poznamo že vse tri njene končnorazsežne nerazcepne upodobitve. Določimo karakterje teh nerazcepnih upodobitev. Karakterji enorazsežnih upodobitev so kot funkcije kar enaki upodobitvam. Za karakter χ_{ρ} velja

$$() \mapsto tr \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2, \quad (1\ 2) \mapsto tr \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = 0, \quad (1\ 2\ 3) \mapsto tr \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = -1.$$

V grupi S_3 je vsak element konjugiran enemu od (), (1 2) ali (1 2 3). S tem so torej vse vrednosti karakterja χ_o določene.

Vse podatke o vrednostih karakterjev dane grupe ponavadi zložimo v *tabelo karakterjev*. Stolpce indeksiramo s predstavniki konjugiranostnih razredov, vrstice pa z nerazcepnimi karakterji. Vrednosti v tabeli so vrednosti karakterjev v konjugiranostnih razredih.

Že samo imenovanje karakterjev odzvanja, da to niso poljubne funkcije v fun(G,F), temveč da v nekem smislu zajemajo srž upodobitve.

Trditev. Naj bo G grupa s končnorazsežnima nerazcepnima upodobitvama nad algebraično zaprtim poljem. Ti dve upodobitvi sta izomorfni, če in samo če imata enaka karakterja.

Dokaz. Ker so matrični koeficienti različnih nerazcepnih upodobitev linearno neodvisni med sabo, so tudi njihovi karakterji linearno neodvisni kot elementi prostora fun(G,F).

Karakterjev fundamentalnih konstrukcij različnih upodobitev ni težko izračunati.

Trditev. Naj bo G grupa s končnorazsežnimi upodobitvami ρ , ρ_1 , ρ_2 . Tedaj za vse $g \in G$ velja

$$\chi_{\rho}(1) = \deg(\rho), \quad \chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}, \quad \chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \cdot \chi_{\rho_2}, \quad \chi_{\rho^*}(g) = \chi_{\rho}(g^{-1}).$$

Za podgrupo $H \leq G$ in poljuben $h \in H$ velja

$$\chi_{\mathrm{Res}_H^G(
ho)}(h)$$
 = $\chi_
ho(h)$.

Kadar je $H \leq G$ končnega indeksa in ρ upodobitev grupe H, za poljubno izbiro predstavnikov desnih odsekov R grupe H v G velja

$$\chi_{\operatorname{Ind}_H^G(
ho)}(g) = \sum_{r \in R: rgr^{-1} \in H} \chi_{
ho}(rgr^{-1}).$$

 $^{^{13}}Konjugiranostni \ razred$ elementa $g\in G$ je množica $\{xgx^{-1}\mid x\in G\}.$ Grupa Gje disjunktna unija konjugiranostnih razredov svojih elementov. Včasih uporabljamo oznako $g^{x}=x^{-1}gx$ in s tem oznako g^{G} za konjugiranostni razred elementa gv G.

Dokaz. Netrivialna je le zadnja enakost o indukciji. Naj H deluje na prostoru V prek ρ . Spomnimo se, da lahko induciran prostor identificiramo z direktno vsoto $\bigoplus_{r\in R} Vr$, kjer je Vr kopija prostora V pri komponenti r. Element $g\in G$ deluje na $vr_0\in Vr_0$ kot

$$g \cdot v r_0 = (\rho(h) \cdot v) r$$
,

kjer je $r = hr_0g^{-1}$ za enolično določena $r \in R$, $h \in H$. Prostori Vr se torej pri delovanju med sabo permutirajo, poleg tega pa grupa deluje netrivialno še na vsaki komponenti posebej. Za izračun sledi so zato relevantne samo komponente, ki so fiksne pri tej permutaciji. To so komponente Vr_0 , za katere je $r = r_0$, se pravi komponente z lastnostjo $Hr_0g^{-1} = Hr_0$, kar je nazadnje enakovredno pogoju $r_0gr_0^{-1} \in H$. Za tako komponento Vr_0 element g deluje na vektorju vr_0 kot

$$g \cdot v r_0 = \left(\rho \left(r_0 g r_0^{-1} \right) \cdot v \right) r_0,$$

zato je sled induciranega delovanja g na Vr_0 enaka $\chi_\rho(r_0gr_0^{-1})$. Ko seštejemo prispevke po vseh relevantnih predstavnikih $r_0 \in R$, dobimo želeno formulo za induciran karakter.

Zgled. Naj bo G končna grupa. V tem primeru je regularna upodobitev ho_{fun} končnorazsežna. Določimo njen karakter najprej na roke. V regularni upodobitvi imamo naravno bazo iz karakterističnih funkcij

$$1_x: G \to F$$
, $y \mapsto \begin{cases} 1 & y = x, \\ 0 & \text{sicer.} \end{cases}$

Na vsaki od teh element grupe $g \in G$ deluje kot $\rho_{\mathrm{fun}}(g) \cdot 1_x = 1_{xg^{-1}}$. Grupa G torej permutira karakteristične funkcije. Sled preslikave $\rho_{\mathrm{fun}}(g)$ je zato enaka številu karakterističnih funkcij, ki jih ta preslikava fiksira. To je mogoče le, če je $x = xg^{-1}$, kar pa se zgodi zgolj pri g = 1, ko je $\rho_{\mathrm{fun}}(1) = \mathrm{id}$ s sledjo dim fun(G,F) = |G|. Torej je karakter regularne upodobitve končne grupe enak

$$\chi_{
ho_{\mathrm{fun}}} : G \to F, \quad g \mapsto egin{cases} |G| & g = 1, \\ 0 & \mathrm{sicer.} \end{cases}$$

Ta karakter bi lahko hitreje izračunali s pomočjo znane identifikacije $ho_{\mathrm{fun}}\cong\mathrm{Ind}_1^G(\mathbf{1})$. V tem primeru je R=G in za $g\neq 1$ je vsota v formuli za induciran karakter prazna, torej se evalvira v 0, za g=1 pa dobimo $\sum_{r\in G}\chi_1(1)=|G|$.

Lastnost karakterjev kot srža upodobitve se prenese na končnorazsežne polenostavne upodobitve, če je le polje ničelne karakeristike. Karakter dane polenostavne upodobitve ρ namreč lahko razvijemo kot

$$\chi_{\rho} = \sum_{\pi \in Irr(G)} \operatorname{mult}_{\rho}(\pi) \cdot \chi_{\pi}.$$

Polenostavna upodobitev je enolično določena s svojimi nerazcepnimi komponentami in njihovimi večkratnostmi. Če je torej $\chi_{\rho_1} = \chi_{\rho_2}$ za polenostavni upodobitvi ρ_1 , ρ_2 , potem od tod iz neodvisnosti nerazcepnih karakterjev sledi enakost $\operatorname{mult}_{\rho_1}(\pi) = \operatorname{mult}_{\rho_2}(\pi)$ za vsako nerazcepno upodobitev π . To je enakost v polju F, od koder po predpostavki o ničelni karakteristiki sledi, da ta enakost velja tudi v kolobarju celih števil. S tem je $\rho_1 \cong \rho_2$.

Posledica. Nad algebraično zaprtim poljem ničelne karakteristike je polenostavna upodobitev do izomorfizma natančno določena s svojim karakterjem.

Karakterji so torej funkcije na grupi, s katerimi so v mnogih primerih upodobitve, ki so sicer mnogo bolj kompleksni objekti kot le funkcije na grupi, natančno določene. V nadaljevanju bomo videli, da lahko včasih eksplicitno izračunamo vse nerazcepne karakterje, brez da bi sploh poznali same nerazcepne upodobitve. Na ta način lahko dodobra razumemo kategorijo upodobitev dane grupe zgolj z uporabo karakterjev.

Poglavje 3

Upodobitve končnih grup

V tem poglavju bomo raziskali kategorijo upodobitev končne grupe s posebnim poudarkom na situaciji, ko je karakteristika polja tuja moči grupe. V tem primeru je, kot bomo videli, vsaka upodobitev polenostavna, zato lahko vprežemo karakterje za razumevanje kategorije upodobitev.

3.1 Polenostavnost

Nerazcepne upodobitve

Prepričajmo se najprej, da končne grupe nimajo *prevelikih* nerazcepnih upodobitev.

Trditev. Vsaka nerazcepna upodobitev končne grupe je končnorazsežna.

Dokaz. Naj bo G končna grupa z upodobitvijo ρ na prostoru V. Izberimo poljuben neničeln vektor $v \in V$. Opazujmo podprostor

$$W = \langle \rho(g) \cdot v \mid g \in G \rangle$$

prostora V. Ker je G končna, je W končnorazsežen. Hkrati je po konstrukciji ta podprostor G-invarianten. Vsaka upodobitev končne grupe ima torej končnorazsežno podupodobitev. V posebnem to pomeni, da ni neskončnorazsežne nerazcepne upodobitve.

Iz trditve in razmislekov v prejšnjem poglavju sledi, da je vsaka nerazcepna upodobitev končne grupe vsebovana v regularni upodobitvi. Nad algebraično zaprtim poljem dodatno velja, da je razsežnosti kvečjemu $\sqrt{|G|}$.

Maschkejev izrek

Spoznali smo že, da niso vse upodobitve polenostavne, niti kadar je grupa končna. Videli smo primer grupe S_3 z dvorazsežno upodobitvijo ρ , ki je bila definirana nad kolobarjem ${\bf Z}$ in katere projekcija po modulu 3 ni bila polenostavna. Naslednji izrek razkrije, da je to mogoče le v primeru, ko karakteristika polja deli moč grupe.

Izrek (Maschke). Naj bo G končna grupa in F polje. Tedaj je vsaka upodobitev G nad poljem F polenostavna, če in samo če $\operatorname{char}(F) + |G|$.

Preden dokažemo izrek, pojasnimo, kako in zakaj nam prideta prav končnost grupe G in ustrezna karakteristika polja F. Ti dve predpostavki namreč odpirata vrata orodju **povprečenja po grupi**. Za dano funkcijo $f \in \text{fun}(G,F)$ lahko v tej ugodni situaciji izračunamo njeno povprečno vrednost¹

$$\mathbf{E}(f) = \frac{1}{|G|} \sum_{g \in G} f(g) \in F.$$

Te račune povprečij lahko razširimo na izračun povprečne linearne preslikave upodobitve. Za dano upodobitev ρ grupe G na prostoru V lahko v tej ugodni situaciji izračunamo njeno povprečno vrednost

$$\mathbf{E}(\rho) = \frac{1}{|G|} \sum_{g \in G} \rho(g) \in \mathrm{hom}(V, V).$$

Domača naloga. Preveri, da je $\mathbf{E}(\rho) \in \text{hom}_G(V, V)$ projekcijska spletična na podprostor fiksnih vektorjev V^G .

Dokaz Maschkejevega izreka. (\Leftarrow) : Predpostavimo $\operatorname{char}(F) + |G|$. Naj bo ρ upodobitev grupe G na prostoru V in naj bo W poljuben G-invarianten podprostor. Naj bo $P \in \operatorname{hom}(V,V)$ projektor na W. Grupa G deluje na prostoru linearnih preslikav $\operatorname{hom}(V,V)$. Povprečna vrednost tega delovanja je projekcijska spletična na podprostor spletičen $\operatorname{hom}(V,V)^G = \operatorname{hom}_G(V,V)$. Ko to povprečno vrednost uporabimo na projektorju P, dobimo torej linearno preslikavo

$$Q = \frac{1}{|G|} \sum_{g \in G} g \cdot P \in \text{hom}_G(V, V),$$

za katero velja $Q|_W=\mathrm{id}_W$ in imQ=W. Torej je Q projekcijska spletična na W. Njeno jedro je zato G-invarianten komplement prostora W v V. \checkmark

 (\Rightarrow) : Predpostavimo, da char(F) | |G|. Opazujmo regularno upodobitev ρ_{fun} na prostoru fun(G,F). Ta prostor ima vselej G-invarianten podprostor

$$\hom_0(G,F) = \left\{ f \in \text{fun}(G,F) \mid \sum_{g \in G} f(g) = 0 \right\}$$

korazsežnosti 1 v fun(G,F). Dokažimo, da upodobitev na tem podprostoru ni komplementirana in da torej vsaka upodobitev ni polenostavna.

Zavoljo protislovja predpostavimo, da komplement obstaja. Imamo torej funkcijo $0 \neq \phi \in \text{fun}(G,F)$, za katero velja $\sum_{g \in G} \phi(g) \neq 0$ in prostor $F \cdot \phi$ je G-invarianten. Torej obstaja enorazsežna upodobitev $\chi \colon G \to F^*$, da pri vsakem $g \in G$ velja $g \cdot \phi = \chi(g) \cdot \phi$, se pravi $\phi(g) = \chi(g) \cdot \phi(1)$. Od tod sledi

$$\sum_{g \in G} \phi(g) = \phi(1) \cdot \sum_{g \in G} \chi(g).$$

Trdimo, da je zadnja vsota vselej ničelna, kar nas privede v protislovje s predpostavko $\sum_{g \in G} \phi(g) \neq 0$. Če je namreč χ trivialna upodobitev, potem iz predpostavke o karakteristiki izpeljemo

$$\sum_{g \in G} \chi(g) = |G| = 0.$$

 $^{^1}$ Tukaj uporabljamo verjetnostno oznako za povprečno vrednost. Mislimo si, da enakomerno naključno izberemo element X iz grupe G in v njem izračunamo vrednost f. Število $\mathbf{E}(f)$ je pričakovana vrednost slučajne spremenljivke f(X).

²V tem primeru sicer nimamo dostopa do povprečenja v celoti, lahko pa uporabimo *delno* povprečenje, ki izračuna le vsoto po grupi.

Če pa χ ni trivialna, potem za nek $x \in G$ velja $\chi(x) \neq 1$ in v tem primeru izračunamo

$$(\chi(x)-1)\cdot\sum_{g\in G}\chi(g)=\sum_{g\in G}\chi(xg)-\sum_{g\in G}\chi(g)=0,$$

kar zopet implicira $\sum_{g \in G} \chi(g) = 0$. \checkmark

Zgled. V ekstremni situaciji, ko je char(F) = p > 0 in $|G| = p^n$ za nek $n \in \mathbb{N}$, kategorija upodobitev izgleda precej nenavadno. V takih neugodnih razmerah *netrivialnih nerazcepnih upodobitev ni*. Poglejmo si, zakaj je temu tako v primeru $F = \mathbb{F}_p$ za neko praštevilo p.

Imejmo netrivialno nerazcepno upodobitev p-grupe G na prostoru V nad poljem \mathbf{F}_p . Vemo že, da je V nujno končnorazsežen, zato je $|V| = p^k$ za nek $k \in \mathbf{N}$. Grupa G permutacijsko deluje na množici neničelnih vektorjev $V\setminus\{0\}$. Po lemi o orbiti in stabilizatorju je velikost orbite vsakega neničelnega vektorja enaka indeksu stabilizatorja, ki je po predpostavki o moči grupe nujno potenca praštevila p. Ker pa moč $|V\setminus\{0\}|$ ni deljiva s p, mora obstajati vektor $0 \neq v \in V$ z orbito moči 1. Ta vektor je torej fiksen za delovanje grupe G in zato razpenja enorazsežen podprostor $\mathbf{F}_p \cdot v$, ki je kot upodobitev izomorfen 1. To je seveda sprto s predpostavko o nerazcepnosti upodobitve G na V.

Dekompozicija regularne upodobitve

Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Vsaka nerazcepna upodobitev π grupe G nad F je uresničljiva kot podupodobitev regularne ρ_{fun} . Slednja je po Maschkejevem izreku polenostavna, zato jo lahko zapišemo kot direktno vsoto izotipičnih komponent nerazcepnih upodobitev. Vsaka π -komponenta pri tem sestoji iz $\deg(\pi)$ mnogo kopij upodobitve π . Izpostavimo in povzemimo.

Izrek. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Velja

$$\rho_{\text{fun}} \cong \bigoplus_{\pi \in \text{Irr}(G)} \underbrace{\pi \oplus \pi \oplus \cdots \oplus \pi}_{\text{deg}(\pi)}.$$

V posebnem iz izreka po primerjavi razsežnosti izpeljemo

$$\sum_{\pi \in \mathrm{Irr}(G)} \deg(\pi)^2 = |G|.$$

Zgled.

• Opazujmo permutacijsko upodobitev π grupe $\mathbf{Z}/n\mathbf{Z}$ na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1,2,\ldots,n\}$. Premislili smo že, da je π izomorfna regularni upodobitvi in da jo lahko razstavimo kot direktno vsoto $\pi = \bigoplus_{j \in \Omega} \chi_j$, kjer je $\chi_j : \mathbf{Z}/n\mathbf{Z} \to \mathbf{C}^*$, $x \mapsto e^{2\pi i j x/n}$, enorazsežna upodobitev. V posebnem od tod sledi, da so $\{\chi_j \mid j \in \Omega\}$ vse neizomorfne nerazcepne upodobitve ciklične grupe $\mathbf{Z}/n\mathbf{Z}$.

³Splošen primer hitro sledi iz tega posebnega. Če je namreč F karakteristike p, ima prapolje \mathbf{F}_p . Upodobitev v tem primeru obravnavamo nad tem prapoljem.

• Naj bo A poljubna končna abelova grupa. Strukturni izrek o abelovih grupah nam pove, da A lahko zapišemo kot direktni produkt določenih cikličnih grup, se pravi $A = C_1 \times C_2 \times \cdots \times C_k$. Kategorijo upodobitev vsake od cikličnih kosov nad ${\bf C}$ že poznamo. Naj bodo $\{\chi^i_j \mid j \in \Omega_i\}$ nerazcepne upodobitve grupe C_i . Tvorimo lahko **produkt upodobitev**

$$\chi^1_{j_1} \times \chi^2_{j_2} \times \cdots \times \chi^k_{j_k} : \prod_{i=1}^k C_i = A \to \mathbf{C}^*, \quad (c_1, c_2, \dots, c_k) \mapsto \prod_{i=1}^k \chi^i_{j_i}(c_i).$$

Na ta način dobimo $\prod_{i=1}^k |\Omega_i| = \prod_{i=1}^k |C_i| = |A|$ enorazsežnih upodobitev. Vsaki dve od teh sta različni med sabo. Na ta način smo torej našli vse nerazcepne upodobitve abelove grupe A.

Ortogonalnost matričnih koeficientov

Na prostor funkcij fun(G,F) uvedimo **skalarni produkt** s predpisom

$$[f_1, f_2] = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1})$$

za $f_1, f_2 \in \text{fun}(G, F)$. Ker je polje F v splošnem abstraktno, to sicer ni običajen skalarni produkt, je pa to vendarle nedegenerirana simetrična bilinearna forma na fun(G, F), zato zanjo uporabljamo vso standardno terminologijo iz običajnih skalarnih produktov.

Z uporabo povprečenja na prostoru linearnih preslikav (podobno kot pri dokazu Maschkejevega izreka) bomo nadgradili dekompozicijo regularne upodobitve na *ortogonalno* direktno vsoto.

Trditev. Naj bo G končna grupa z neizomorfnima nerazcepnima upodobitvima π_1 , π_2 nad algebraično zaprtim poljem karakteristike tuje |G|. Tedaj sta prostora $MK(\pi_1)$ in $MK(\pi_2)$ ortogonalna.

Dokaz. Naj upodobitvi π_1 , π_2 delujeta na prostorih V_1 , V_2 . Grupa G deluje na prostoru linearnih preslikav hom (V_1,V_2) . Povprečje tega delovanja je projekcijska spletična na podprostor hom $(V_1,V_2)^G = \hom_G(V_1,V_2)$, ki je po Schurovi lemi trivialen. Za poljubno linearno preslikavo $A \in \hom(V_1,V_2)$ je torej

$$\frac{1}{|G|} \sum_{g \in G} g \cdot A = 0.$$

Konkretizirajmo preslikavo A. Naj bo $\{e_i\}_i$ baza prostora V_1 in $\{f_j\}_j$ baza prostora V_2 . Vzemimo

$$A_{i,l}:V_1 \to V_2, \quad v \mapsto [e_i^*, v]f_l.$$

S to izbiro dosežemo enakost

$$0 = \frac{1}{|G|} \sum_{g \in G} g \cdot A_{i,l}(g^{-1} \cdot e_j) = \frac{1}{|G|} \sum_{g \in G} \left[e_i^*, g^{-1} \cdot e_j \right] g \cdot f_l = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) g \cdot f_l.$$

Na zadnjem uporabimo še f_k^* , pa dobimo

$$0 = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) [f_k^*, g \cdot f_l] = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) f_{k,l}^{\pi_2}(g),$$

kar je enakovredno $[f_{i,j}^{\pi_1},f_{k,l}^{\pi_2}]$ = 0, se pravi ortogonalnosti matričnih koeficientov.

Na soroden način lahko analiziramo skalarne produkte znotraj matričnih koeficientov ene same nerazcepne upodobitve.

Trditev. Naj bo G končna grupa z nerazcepno upodobitvijo π nad algebraično zaprtim poljem karakteristike tuje |G|. Po izbiri poljubne baze za matrične koeficiente velja

$$[f_{i,j}, f_{k,l}] = \begin{cases} 1/\deg(\pi) & (i,j) = (l,k) \\ 0 & sicer. \end{cases}$$

Dokaz. Pristopimo kot pri zadnjem dokazu, pri čemer prostor spletičen $\hom_G(V,V)$ po Schurovi lemi zdaj sestoji le iz skalarnih večkratnikov identitete. Za linearno preslikavo $A \in \hom(V,V)$ je zato

$$\frac{1}{|G|} \sum_{g \in G} g \cdot A = \lambda_A \cdot \mathrm{id}_V$$

za nek $\lambda_A \in F^*$. Velja $g \cdot A = \pi(g)A\pi(g)^{-1}$, zato je $\operatorname{tr}(g \cdot A) = \operatorname{tr}(A)$, od koder izpeljemo

$$\lambda_A = \frac{\operatorname{tr}(A)}{\operatorname{deg}(\pi)}.$$

Kot v zadnjem dokazu dobljeno uporabimo s preslikavo $A_{i,l}(v) = [e_i^*, v]e_l$ za neko izbrano bazo $\{e_i\}_i$ prostora V. Velja $\operatorname{tr}(A_{i,l}) = [e_i^*, e_l] = 1_{i=l}$, od koder kot v zadnjem dokazu izpeljemo

$$[f_{i,j}, f_{k,l}] = [e_k^*, e_j] \frac{1_{i=l}}{\deg(\pi)} = \frac{1_{i=l,j=k}}{\deg(\pi)},$$

kar je natanko želeno.

3.2 Karakterji

Iz rezultatov zadnjega razdelka sledi, da je nad algebraično zaprtim poljem ničelne karakteristike (na primer zelo ugodnim poljem **C**) kategorija upodobitev dane končne grupe popolnoma določena z nerazcepnimi upodobitvami, ki jih lahko razumemo s pomočjo karakterjev. V tem razdelku bomo podrobneje razvili to teorijo.

Ortonormiranost karakterjev

Iz ortogonalnosti matričnih koeficientov z lahkoto izpeljemo ortonormiranost karakterjev.

Posledica. Naj bo G končna grupa z nerazcepnima upodobitvama π_1 , π_2 nad algebraično zaprtim poljem karakteristike tuje |G|. Velja

$$\begin{bmatrix} \chi_{\pi_1}, \chi_{\pi_2} \end{bmatrix} = \begin{cases} 1 & \pi_1 \cong \pi_2, \\ 0 & sicer. \end{cases}$$

Dokaz. Izberemo bazo, izrazimo $\chi_{\pi} = \sum_{i} f_{i,i}^{\pi}$ in uporabimo zadnji dve trditvi o skalarnih produktih matričnih koeficientov.

V skladu z običajno terminologijo za funkcijo $f \in \text{fun}(G,F)$ označimo $||f|| = \sqrt{[f,f]}$, to je **norma** funkcije f. Nerazcepni karakterji tvorijo ortonormiran sistem vektorjev v fun(G,F).

Razredne funkcije

Karakterji niso poljubne funkcije v $\operatorname{fun}(G,F)$, temveč vselej pripadajo prostoru $\operatorname{fun}_{\operatorname{cl}}(G,F)$ razrednih funkcij. Vemo že tudi, da so karakterji nerazcepnih upodobitev tudi linearno nedovisni. S pomočjo ortonormiranosti karakterjev bomo sedaj dokazali, da tvorijo celo $\operatorname{\textit{bazo}}$ prostora razrednih funkcij.

Izrek (o bazi razrednih funkcij). Naj bo G grupa in F algebraično zaprto polje karakteristike tuje |G|. Tedaj karakteriji nerazcepnih upodobitev tvorijo ortonormirano bazo prostora $\operatorname{fun}_{\operatorname{cl}}(G,F)$.

Zopet bomo za dokaz uporabili metodo povprečenja po grupi, a bomo to povprečenje še utežili. Za dano funkcijo $f \in \text{fun}(G,F)$ definiramo njeno nekomutativno Fourierovo transformacijo \hat{f} kot funkcijo, ki poljubni upodobitvi ρ grupe G na prostoru V priredi

$$\hat{f}(\rho) = \sum_{g \in G} f(g) \rho(g^{-1}) \in \text{hom}(V, V).$$

Fourierova transformacija funkciji f torej priredi njeno uteženo povprečje poljubne upodobitve vzdolž f, pri čemer se zgleduje po skalarnem produktu na prostoru funkcij $\mathrm{fun}(G,F)$. V primeru, ko je f konstantna funkcija 1/|G|, z njeno Fourierovo transformacijo najdemo običajno povprečno vrednost upodobitve $\mathbf{E}(\rho)$.

Zgled.

• Naj bo f poljubna periodična funkcija na množici ${\bf Z}$ s periodo n>1 in vrednostmi v ${\bf C}$. Funkcijo f lahko torej obravnavamo kot funkcijo na ciklični grupi ${\bf Z}/n{\bf Z}$. Nerazcepne kompleksne upodobitve slednje grupe so ravno enorazsežne upodobitve $\chi_j(x)=e^{2\pi i jx/n}$ za $j\in\Omega=\{1,2,\ldots,n\}$. Nekomutativna Fourierova transformacija funkcije f v teh upodobitvah je

$$\hat{f}(\chi_j) = \sum_{x \in \mathbf{Z}/n\mathbf{Z}} f(x) e^{-2\pi i j x/n}.$$

Vektorju števil $(f(1), f(2), ..., f(n)) \in \mathbb{C}^n$ na ta način priredimo vektor števil $(\hat{f}(\chi_1), \hat{f}(\chi_2), ..., \hat{f}(\chi_n)) \in \mathbb{C}^n$. To prirejanje je v numerični matematiki znano pod imenom **diskretna Fourierova transformacija** in je fundamentalno v digitalnem procesiranju signalov.

• Naj bo $f \in \text{fun}(G,F)$ funkcija na G in ρ_{fun} regularna upodobitev grupe G. Vrednost $\hat{f}(\rho_{\text{fun}})$ je linearni endomorfizem prostora funkcij fun(G,F). Pri tem se karakteristična funkcija 1_x za $x \in G$ preslika v

$$\hat{f}(\rho_{\text{fun}}) \cdot 1_x = \sum_{g \in G} f(g) \rho_{\text{fun}}(g^{-1}) \cdot 1_x = \sum_{g \in G} f(g) 1_{xg} = \sum_{g \in G} f(x^{-1}g) 1_g.$$

V posebnem pri x=1 dobimo $\hat{f}(\rho_{\text{fun}}) \cdot 1_1 = f$. Funkcijo f lahko torej rekonstruiramo iz vrednosti njene Fourierove transformacije v regularni upodobitvi.

Regularna upodobitev končne grupe nad ugodnim poljem je direktna vsota nerazcepnih upodobitev grupe, zato je tudi Fourierova transformacija v regularni upodobitvi direktna vsota Fourierovih transformacij v nerazcepnih upodobitvah. Iz zgornjega premisleka sledi, da je vsaka funkcija zatorej enolično določena z vrednostmi svoje Fourierove transformacije v vseh nerazcepnih upodobitvah.

Lema (o Fourierovi transformaciji razredne funkcije). Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Za vsako razredno funkcijo f in nerazcepno upodobitev π na prostoru V je

$$\hat{f}(\pi) = \frac{|G|}{\deg(\pi)} \cdot [f, \chi_{\pi}] \cdot \mathrm{id}_{V}.$$

Dokaz. Za vsak $h \in G$ velja

$$\hat{f}(\pi) \cdot \pi(h) = \sum_{g \in G} f(g) \pi(g^{-1}h) = \sum_{g \in G} f(g) \pi(h) \pi(h^{-1}g^{-1}h).$$

Izpostavimo $\pi(h)$ in na grupi G uporabimo avtomorfizem $g\mapsto hgh^{-1}$, pa lahko zadnjo vsoto zapišemo kot

$$\pi(h) \sum_{g \in G} f(hgh^{-1})\pi(g^{-1}).$$

Ker je f razredna funkcija, je dobljeno ravno enako $\pi(h) \cdot \hat{f}(\pi)$. Vrednost Fourierove transformacije v π je torej spletična v $hom_G(\pi,\pi)$. Po Schurovi lemi sklepamo, da je $\hat{f}(\pi)$ skalarni večkratnik identitete. Njegova sled je enaka

$$\operatorname{tr}(\hat{f}(\pi)) = \sum_{g \in G} f(g) \chi_{\pi}(g^{-1}) = |G| \cdot [f, \chi_{\pi}].$$

Od tod izračunamo relevantni skalar kot $|G| \cdot [f, \chi_{\pi}] / \deg(\pi)$.

Opremljeni lahko z lahkoto izpeljemo izrek.

Dokaz izreka o bazi razrednih funkcij. Predpostavimo, da nerazcepni karakterji ne razpenjajo prostora razrednih funkcij. Torej obstaja funkcija $f \in \operatorname{fun}_{\operatorname{cl}}(G,F)$, ki je vsebovana v ortogonalnem komplementu vseh nerazcepnih karakterjev. Za vsak $\pi \in \operatorname{Irr}(G)$ velja torej $[f,\chi_{\pi}]=0$. Preslikava $\hat{f}(\pi)$ je po lemi zato ničelna. Ker to velja za vsako nerazcepno upodobitev, mora veljati tudi za regularno upodobitev, se pravi $\hat{f}(\rho_{\operatorname{fun}})=0$. Po zadnjem zgledu to implicira f=0.

Vsaka razredna funkcija je enolično določena s svojimi vrednostmi v predstavnikih konjugiranostnih razredov. Če **število konjugiranostnih razredov** označimo s k(G), velja torej dim $\operatorname{fun}_{\operatorname{cl}}(G,F)=k(G)$. Ker karakterji tvorijo bazo prostora razrednih funkcij, lahko *število* nerazcepnih upodobitev torej izračunamo neposredno iz algebraične strukture grupe.

Posledica. Za končno grupo G nad algebraično zaprtim poljem karakteristike tuje |G| velja $|\operatorname{Irr}(G)| = k(G)$.

V splošnem *ne* poznamo eksplicitne korespondence⁴ med konjugiranostnimi razredi in nerazcepnimi upodobitvami. Vemo le, da njuno število sovpada.

Zgled.

⁴In najverjetneje taka korespondenca v splošnem *ne* obstaja. Je pa na voljo za kakšne posebne družine grup, kot bomo spoznali kasneje.

$$egin{array}{|c|c|c|c|c|} \hline & 1 & r^i & s \ \hline \chi_{\epsilon} & 1 & 1 & \epsilon \ \chi_{
ho_k} & 2 & 2\cos(2\pi i k/n) & 0 \ \hline \end{array}$$

Tabela 3.1: Tabela karakterjev D_{2n} za lih n

• Opazujmo diedrsko grupo D_{2n} nad poljem C. Vsak element te grupe lahko zapišemo v obliki r^i ali sr^i za nek $0 \le i < n$. Izračunajmo konjugiranostne razrede. Velja

$$(r^i)^{r^j} = r^i, \quad (r^i)^{sr^j} = r^{-i},$$

zato je konjugiranostni razred r^i enak $\{r^i, r^{-i}\}$. Za $i \neq 0, n/2$ ima vsak razred 2 elementa. Vseh teh konjugiranostnih razredov je torej $\lfloor (n+2)/2 \rfloor$. Velja tudi

$$(sr^i)^{r^j} = sr^{2j+i}, \quad (sr^i)^{sr^j} = r^{sr^{2j-i}},$$

zato je konjugiranostni razred s enak $\{sr^{2j} \mid j \in \mathbf{Z}\}$ in konjugiranostni razred sr je enak $\{sr^{2j+1} \mid j \in \mathbf{Z}\}$. Če je n sod, sta ta dva razreda disjunktna, če je n lih, pa sovpadata. Skupaj torej dobimo

$$k(D_{2n}) = \begin{cases} n/2 + 3 & n \equiv 0 \pmod{2}, \\ (n+3)/2 & n \equiv 1 \pmod{2}. \end{cases}$$

Določimo zdaj še nerazcepne upodobitve. Poznamo že dvorazsežne nerazcepne upodobitve ρ_k za 0 < k < n/2, vseh teh je $\lceil n/2 \rceil - 1$. Za karakter take upodobitve velja $\chi_{\rho_k}(r) = 2\cos(2\pi k/n)$, zato so vsi ti karakterji različni med sabo in s tem so upodobitve ρ_k neizomorfne. Poleg teh dvorazsežnih upodobitev imamo še linearne upodobitve. Število teh je enako velikosti abelacije $D_{2n}/[D_{2n},D_{2n}]$. Velja

$$[r^{i}, sr^{j}] = r^{-i} (r^{i})^{sr^{j}} = r^{-2i}, \quad [sr^{i}, sr^{j}] = r^{-i} s (sr^{i})^{sr^{j}} = sr^{2j-2i},$$

zato je $[D_{2n}, D_{2n}] = \langle r^2 \rangle$. S tem je

$$D_{2n}/[D_{2n},D_{2n}]\cong egin{cases} (\mathbf{Z}/2\mathbf{Z})^2 & n\equiv 0\pmod{2},\ \mathbf{Z}/2\mathbf{Z} & n\equiv 1\pmod{2}. \end{cases}$$

Linearne upodobitve so torej oblike

$$\chi_{\epsilon,\delta}:D_{2n}\to\mathbf{C}^*,\quad s\mapsto\epsilon,\quad r\mapsto\delta$$

za $\epsilon, \delta \in \{1, -1\}$. Ko je n lih, je nujno $\delta = 1$.

Skupaj smo torej našli ravno $k(D_{2n})$ nerazcepnih upodobitev, zato so to *vse* nerazcepne upodobitve grupe D_{2n} .

• Opazujmo simetrično grupo S_n nad poljem ${\bf C}$. Vsako njeno permutacijo $\sigma \in S_n$ lahko zapišemo kot produkt disjunktnih ciklov. Recimo, da so dolžine teh ciklov enake $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. Seveda velja $\sum_{i=1}^k \lambda_i = n$. Zaporedju $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ pravimo **ciklični tip** permutacije σ . Kadar so kateri od členov cikličnega tipa enaki, ciklični tip pišemo tudi kot $1^{i_1}2^{i_2}\cdots n^{i_n}$, kjer je i_m število ciklov dolžine m v σ .

 $^{{}^5\}mathrm{Pri}$ tem fiksne točke permutacije obravnavamo kot cikle dolžine 1.

Domača naloga. Konjugiranostni razredi v S_n so določeni s cikličnim tipom. Natančneje, če je $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ ciklični tip permutacije σ , potem konjugiranostni razred σ^{S_n} sestoji natanko iz vseh permutacij s tem cikličnim tipom. Ta konjugiranostni razred ponavadi označimo kot $\mathcal{C}_{(\lambda_1, \lambda_2, \ldots, \lambda_k)}$.

V teoriji števil in kombinatoriki cikličnim tipom rečemo tudi **razčle nitve** števila n. Število vseh razčlenitev označimo s p(n). Velja torej $p(n) = k(S_n) = |\operatorname{Irr}(S_n)|$. Splošna eksplicitna formula za to število **ne** obstaja, poznamo pa njeno asimptotsko oceno⁶

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$$

 $za n \to \infty$.

V konkretnem primeru n=3 velja p(3)=3, namreč 3=3=2+1=1+1+1. Res smo našli natanko 3 nerazcepne upodobitve grupe S_3 . V primeru n=4 pa velja p(4)=5. Temu ustrezajo konjugiranostni razredi identične permutacije () (4=1+1+1+1), transpozicije (1 2) (4=2+1+1), tricikla (1 2 3) (4=3+1), štiricikla (1 2 3 4) (4=4) in produkta dveh tranzpozicij (1 2) (3 4) (4=2+2). Ti konjugiranostni razredi so zaporedoma velikosti 1, 6, 8, 6, 3. Kmalu bomo s tem podatkom določili tabelo karakterjev grupe S_4 .

Ker nerazcepni karakterji tvorijo ortonormirano bazo prostora razrednih funkcij, lahko vsako razredno funkcijo $f \in \operatorname{fun}_{\operatorname{cl}}(G,F)$ razvijemo po tej bazi kot

$$f = \sum_{\pi \in \mathrm{Irr}(G)} [f, \chi_{\pi}] \chi_{\pi}.$$

Alternativna baza prostora razrednih funkcij sestoji iz karakterističnih funkcij konjugiranostnih razredov v G. Razvoj te baze po karakterjih nam podaja še eno relacijo med karakterji, ki je ortogonalna⁷ ortonormiranosti.

Posledica. Naj bo G končna grupa nad algebraično zaprtim poljem karakteristike tuje |G|. Za vsaka elementa $g,h \in G$ velja

$$\sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(g) \chi_{\pi}(h^{-1}) = \begin{cases} |G|/|g^G| & g^G = h^G, \\ 0 & sicer. \end{cases}$$

 $Dokaz.\,$ Karakteristično funkcijo 1_{h^G} razvijemo po nerazcepnih karakterijih kot

$$1_{h^G} = \sum_{\pi \in {\rm Irr}(G)} \left[1_{h^G}, \chi_{\pi} \right] \chi_{\pi} = \sum_{\pi \in {\rm Irr}(G)} \frac{|h^G|}{|G|} \chi_{\pi} (h^{-1}) \chi_{\pi}$$

in dobljeno evalviramo v elementu g.

 $^{^{6}}$ G. H. Hardy in S. Ramanujan, *Asymptotic formulae in combinatory analysis*, Proceedings of the London Mathematical Society, Second Series, **17** (1918) 75–115.

⁷Relaciji sta ortogonalni v smislu tabele karakterjev. Ortonormiranost karakterjev preberemo tako, da fiksiramo vrstice. To drugo relacijo pa preberemo tako, da fiksiramo stolpce. Tej relaciji včasih rečemo *druga ortogonalnostna relacija*.

Razstavljanje upodobitve

S pomočjo ortonormirane baze karakterjev lahko z lahkoto razumemo vsako končnorazsežno upodobitev končne grupe nad ugodnim poljem.

Posledica. Naj bo G končna grupa s končnorazsežno upodobitvijo ρ nad algebraično zaprtim poljem karakteristike 0.

- 1. Za vsako nerazcepno upodobitev π velja $\operatorname{mult}_{\varrho}(\pi) = [\chi_{\varrho}, \chi_{\pi}].$
- 2. $||\chi_{\rho}||^2 = \sum_{\pi \in Irr(G)} mult_{\rho}(\pi)^2$.
- 3. Upodobitev ρ je nerazcepna, če in samo če $||\chi_{\rho}|| = 1$.

Dokaz.~ Upodobitev ρ je polenostavna, zato lahko njen karakter zapišemo kot

$$\chi_{\rho} = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi) \cdot \chi_{\pi}.$$

Skalarno pomnožimo s χ_{π} in uporabimo ortonormiranost, pa dobimo mult $_{\rho}(\pi) = [\chi_{\rho}, \chi_{\pi}]$. Od tod izračunamo

$$||\chi_{\rho}||^2 = [\chi_{\rho}, \chi_{\rho}] = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi) \cdot [\chi_{\rho}, \chi_{\pi}] = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi)^2.$$

Nazadnje je $||\chi_{\rho}|| = 1$, če in samo če je za natanko eno nerazcepno upodobitev π njena večkratnost v ρ enaka 1, se pravi če je ρ nerazcepna.

Zgled. Opazujmo grupo S_4 nad poljem \mathbb{C} . Vemo že, da za predstavnike konjugiranostnih razredov lahko izberemo elemente $1 = (), (1 \ 2), (1 \ 2 \ 3), (1 \ 2 \ 3 \ 4)$ in $(1 \ 2)(3 \ 4)$. S tem je število nerazcepnih upodobitev enako 5. Določimo jih.

Vemo že, da imamo natanko dve enorazsežni upodobitvi, in sicer 1 in sgn. Naj bo π permutacijska upodobitev na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1,2,3,4\}$. V standardni bazi je vsaka matrika te upodobitve permutacijska, zato je vrednost karakterja χ_{π} v permutaciji σ ravno število fiksnih točk σ . V izbranih predstavnikih konjugiranostnih razredov ima torej χ_{π} vrednosti 4,2,1,0,0. Od tod izračunamo normo

$$||\chi_{\pi}||^2 = \frac{1}{4!} (1 \cdot 4^2 + 6 \cdot 2^2 + 8 \cdot 1^2) = 2.$$

Upodobitev χ_π torejninerazcepna. Velja

$$[\chi_{\pi}, \chi_{1}] = \frac{1}{4!} (1 \cdot 4 + 6 \cdot 2 + 8 \cdot 1) = 1,$$

torej π vsebuje 1 z večkratnostjo 1, kar je povsem analogno temu, kar smo videli pri grupi S_3 . Zapišemo lahko torej $\pi = \mathbf{1} \oplus \rho$ za neko upodobitev ρ . Njen karakter ima vrednosti 3,1,0,-1,-1 in s tem normo

$$||\chi_{\rho}||^2 = \frac{1}{4!} (1 \cdot 3^2 + 6 \cdot 1^2 + 6 \cdot (-1)^2 + 3 \cdot (-1)^2) = 1,$$

zato je upodobitev ρ nerazcepna.

Zaenkrat imamo tri nerazcepne upodobitve stopenj 1,1,3. Iščemo torej še dve nerazcepni upodobitvi, katerih vsote kvadratov stopenj so enake $24 - (1^2 + 1^2 + 3^2) = 13$. Stopnji teh dveh neznanih upodobitev sta zato nujno enaki 2 in 3. Ker že imamo eno nerazcepno upodobitev stopnje

	()	$(1\ 2)$	(123)	(1234)	$(1\ 2)(3\ 4)$
χ1	1	1	1	1	1
$\chi_{ m sgn}$	1	-1	1	-1	1
$\chi_{ au}$	2	0	-1	0	2
$\chi_{ ho}$	3	1	0	-1	-1
$\chi_{\operatorname{sgn}\otimes \rho}$	3	-1	0	1	-1

Tabela 3.2: Tabela karakterjev S_4

3, lahko iz nje pridelamo novo s tenzoriranjem z upodobitvijo stopnje 1. Dobimo upodobitev $\operatorname{sgn}\otimes\rho$. Njen karakter ima vrednosti 3, -1,0,1,-1 in s tem normo 1, zato je upodobitev $\operatorname{sgn}\otimes\rho$ res nerazcepna. Nazadnje nam torej manjka le še ena upodobitev stopnje 2. Imenujmo jo τ . Čeprav je ne poznamo, lahko iz ortonormiranosti karakterjev določimo njen karakter χ_{τ} kot natanko tisto razredno funkcijo, ki je ortogonalna na vse poznane neracepne karakterje in je norme 1. Na ta način dobimo vrednosti 2,0,-1,0,2. S tem smo nazadnje določili celotno tabelo karakterjev grupe S_4 nad $\mathbb{C}.^8$

Upodobitve τ ni težko eksplicitno določiti. Vemo, da je stopnje 2. Njena vrednost $\tau((1\ 2)(3\ 4))$ je matrika v $\operatorname{GL}_2(\mathbf{C})$ reda 2 s sledjo 2. Taka matrika je lahko le identiteta. Torej je τ trivialna v konjugiranostnem razredu elementa $(1\ 2)(3\ 4)$ in je zato pravzaprav restrikcija upodobitve kvocientne grupe S_4w po edinki, generirani s tem konjugiranostnim razredom. Slednjo kvocientno grupo identificiramo kot S_3 prek epimorfizma

$$\psi: S_4 \to S_3$$
, $(12) \mapsto (12)$, $(1234) \mapsto (13)$

z jedrom $\{(),(1\ 2)(3\ 4),(1\ 3)(2\ 4),(1\ 4)(2\ 3)\}$. Upodobitev τ torej prepoznamo kot restrikcijo dvorazsežne nerazcepne upodobitve grupe S_3 vzdolž homomorfizma ψ .

Projekcije na izotipične komponente

Dekompozicijo regularne upodobitve smo dobili iz matričnih koeficientov nerazcepnih upodobitev, torej gre za nekakšno *notranjo* dekompozicijo. Obstaja pa tudi *zunanja* dekompozicija, pri kateri iz upodobitve same s pomočjo ustreznih projekcijskih spletičen najdemo izotipične komponente upodobitve.

Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Naj bo ρ podupodobitev regularne upodobitve ρ_{fun} na prostoru $V \leq \mathrm{fun}(G,F)$. Ta prostor lahko predstavimo kot sliko neke projekcijske spletične $\Phi \in \mathrm{hom}_G(\rho_{\mathrm{fun}},\rho)$. Res je tudi obratno, vsaka spletična $\Phi \in \mathrm{hom}_G(\rho_{\mathrm{fun}},\rho_{\mathrm{fun}})$, ki zadošča $\Phi^2 = \Phi$, podaja prek svoje slike podupodobitev regularne upodobitve. Podupodobitve so torej parametrizirane s spletičnami. Izkaže se, da te vselej izhajajo iz Fourierovih transformacij.

 ${f Trditev.}\ Naj\ bo\ G\ končna\ grupa\ in\ F\ algebraično\ zaprto\ polje\ karakteristike\ tuje\ |G|.\ Preslikava$

$$\mathcal{F}: \operatorname{fun}(G, F) \to \operatorname{hom}_G(\rho_{\operatorname{fun}}, \rho_{\operatorname{fun}}), \quad f \mapsto (h \mapsto \hat{h}(\rho_{\operatorname{fun}}) \cdot f)$$

je izomorfizem vektorskih prostorov.

⁸Zanimivo je, da smo uspeli določiti tabelo karakterjev, brez da bi eksplicitno poznali vse upodobitve.

Dokaz. Ni težko preveriti, da je \mathcal{F} dobro definirana preslikava. Očitno je linearna. Za $f \in \text{fun}(G,F)$ je $\mathcal{F}(f) \cdot 1_1 = \widehat{1_1}(\rho_{\text{fun}}) \cdot f = f$, zato je \mathcal{F} injektivna. Oba prostora sta enake razsežnosti, namreč |*G*|, zato je \mathcal{F} izomorfizem. □

V posebnem je vsaka endospletična regularne upodobitve enaka evalvaciji Fourierovi transformacije v neki fiksni funkciji. Nekoliko natančneje si poglejmo, kaj je ta evalvacija. Za funkciji $f,g \in \text{fun}(G,F)$ je

$$\hat{h}(\rho_{\text{fun}}) \cdot f = \sum_{g \in G} h(g) \rho_{\text{fun}}(g^{-1}) \cdot f = \left(x \mapsto \sum_{g \in G} h(g) f(xg^{-1}) \right).$$

Zadnjo vsoto prepoznamo kot **konvolucijo** funkcij f in h, se pravi

$$(f*h)(x) = \sum_{g \in G} f(xg^{-1})h(g).$$

Velja torej $\hat{h}(\rho_{\text{fun}}) \cdot f = f * h$. Če dodatno predpostavimo, da je f razredna funkcija, potem se ni težko prepričati, da velja f * h = h * f, torej je v tem primeru

$$\mathcal{F}(f) \cdot h = \hat{h}(\rho_{\text{fun}}) \cdot f = \hat{f}(\rho_{\text{fun}}) \cdot h$$

in zato preslikava \mathcal{F} ni nič drugega kot običajna Fourierova transformacija razredne funkcije. V posebnem so torej Fourierove transformacije karakterjev endospletične regularne upodobitve. Izkaže se, da so te vselej tesno povezane s projekcijami na izotipične komponente.

Trditev. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Za vsako končnorazsežno upodobitev ρ in nerazcepno upodobitev π je

$$rac{\deg(\pi)}{|G|}\cdot\widehat{\chi_{\pi}}(
ho)$$

projektor na π -izotipično komponento $v \rho$.

Dokaz. Iz leme o Fourierovi transformaciji razredne funkcije izpeljemo, da za vsaki nerazcepni upodobitvi $\pi_1,\,\pi_2$ na prostorih $V_1,\,V_2$ velja

$$\frac{\deg(\pi_1)}{|G|} \cdot \widehat{\chi_{\pi_1}}(\pi_2) = \begin{cases} \mathrm{id}_{V_2} & \pi_1 \cong \pi_2, \\ 0 & \mathrm{sicer.} \end{cases}$$

Ko upodobitev ρ razstavimo na direktno vsoto nerazcepnih podupodobitev, je linearni endomorfizem $\deg(\pi)/|G|\cdot\widehat{\chi_{\pi}}(\rho)$ torej ničeln na podupodobitvah, ki niso izomorfne π , in identiteta na podupodobitvah, ki so izomorfne π . Ta endomorfizem je torej projektor na direktno vsoto podupodobitev, ki so izomorfne π , torej ravno na π -izotipično komponento.

Zgled. Naj bo ho_{fun} regularna upodobitev grupe G. Vemo že, da za vsako funkcijo $f \in \mathrm{fun}(G,F)$ velja $\hat{f}(\rho_{\mathrm{fun}}) \cdot 1_1 = f$. Torej je projekcija funkcije 1_1 na π -izotipično komponento enaka

$$\frac{\deg(\pi)}{|G|} \cdot \widehat{\chi_{\pi}}(\rho_{\mathrm{fun}}) \cdot 1_1 = \frac{\deg(\pi)}{|G|} \cdot \chi_{\pi}.$$

⁹V asociativni algebri to izrečemo ponavadi takole: vsak levi ideal v polenostavni algebri je glavni.

S tem dobimo razvoj

$$1_1 = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \cdot \chi_{\pi},$$

ki je le poseben primer druge ortogonalnostne relacije.

Oglejmo si še karakteristično funkcijo 1_x za $x \in G$. Njena projekcija na π -izotipično komponento je

$$\frac{\deg(\pi)}{|G|} \cdot \widehat{\chi_{\pi}}(\rho_{\text{fun}}) \cdot 1_x = \frac{\deg(\pi)}{|G|} \cdot (g \mapsto \chi_{\pi}(x^{-1}g)),$$

s čimer dobimo razvoj

$$1_x(g) = \frac{1}{|G|} \sum_{\pi \in Irr(G)} \chi_{\pi}(1) \chi_{\pi}(x^{-1}g).$$

Vsako funkcijo $f \in \text{fun}(G,F)$ lahko razvijemo po karakterističnih funkcijah kot $f = \sum_{x \in G} f(x) 1_x$. Ker že poznamo razvoj vsake od karaterističnih funkcij po π -izotipičnih komponentah, od tod izpeljemo

$$f(g) = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \sum_{x \in G} f(x) \chi_{\pi}(1) \operatorname{tr}(\pi(x^{-1}) \cdot \pi(g)),$$

kar lahko po upoštevanju linearnosti sledi izrazimo kot

$$f(g) = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \operatorname{tr}(\hat{f}(\pi) \cdot \pi(g)).$$

Temu razvoju funkcije f po π -izotipičnih komponentah rečemo **Fourierova inverzija**, saj nam ekplicitno pove, kako lahko f izračunamo iz njenih Fourierovih transformacij v nerazcepnih upodobitvah.

Zgled. Naj bo A končna abelova grupa. Vemo že, da so vse njene kompleksne upodobitve enorazsežne. V tem primeru so upodobitve kar enake svojim karakterjem. Za dano funkcijo $f \in \text{fun}(A, \mathbb{C})$ lahko Fourierovo inverzijo zapišemo kot

$$f = \frac{1}{|A|} \sum_{\chi \in Irr(A)} \hat{f}(\chi) \cdot \chi,$$

kar je le posledica dejstva $\hat{f}(\chi) = |A| \cdot [f, \chi]$.

Izračunljivost tabele karakterjev

Naj bo G končna grupa in F algebraično zaprto polje karakteristike 0. Kategorijo $\operatorname{Rep}(G)$ v tem primeru razumemo zelo dobro, če le poznamo tabelo karakterjev. Za zdaj smo si pogledali nekaj zgledov, kako to tabelo izračunati za posebne primere grupe. Pri tem smo si sicer res pomagali z razvito teorijo, a je bil večji del izračuna tabele opravljen z metodo ostrega pogleda. V splošnem se temu lahko izognemo; obstaja namreč več algoritmov, ki le z uporabo linearne algebre izračunajo tabelo karakterjev.

Pogledali si bomo enega takih algoritmov, ki uporablja projekcije na izotipične komponente iz zadnjega razdelka. Algoritem temelji na Fourierovi transformaciji karakteristične funkcije $1_{\mathcal{C}}$ konjugiranostnega razreda \mathcal{C} grupe G v regularni upodobitvi ρ_{fun} . Po lemi o Fourierovi transformaciji

razredne funkcije je namreč zožitev $\widehat{1_C}(\rho_{\rm fun})$ na π -izotipično komponento skalarno množenje s številom

$$\frac{|G|}{\deg(\pi)} \cdot [1_{\mathcal{C}}, \chi_{\pi}] = |\mathcal{C}| \cdot \frac{\chi_{\pi}(\mathcal{C}^{-1})}{\chi_{\pi}(1)}.$$

Vektorji v π -izotipični komponenti so zato hkratni lastni vektorji preslikav $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$, ko \mathcal{C} preteče vse konjugiranostne razrede grupe G. Pokažimo, da je ta opis v resnici karakterizacija π -izotipičnih komponent.

Lema. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Izotipične komponente regularne upodobitve so natanko netrivialni preseki lastnih podprostorov $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$, ko \mathcal{C} preteče vse konjugiranostne razrede grupe G.

Dokaz. Naj bo

$$W = \bigcap_{\mathcal{C}} \mathcal{E}_{\lambda_{\mathcal{C}}} \left(\widehat{\mathcal{I}_{\mathcal{C}}} (\rho_{\text{fun}}) \right) \leq \text{fun}(G, F)$$

presek lastnih podprostorov za neke skalarje $\lambda_{\mathcal{C}}$, kjer presek teče po vseh konjugiranostnih razredih grupe G. Predpostavimo, da je $W \neq 0$. Naj bo $w \in W$. Za $\pi \in \mathrm{Irr}(G)$ naj bo P_{π} projekcija na π -izotipično komponento. Velja

$$P_{\pi} \cdot w = \frac{\chi_{\pi}(1)}{|G|} \widehat{\chi_{\pi}}(\rho_{\text{fun}}) \cdot w = \frac{\chi_{\pi}(1)}{|G|} \sum_{g \in G} \chi_{\pi}(g) \rho_{\text{fun}}(g^{-1}) \cdot w.$$

Vsoto lahko razvijemo po vsakem konjugiranostnem razredu posebej in dobimo

$$\frac{\chi_{\pi}(1)}{|G|} \sum_{\mathcal{C}} \chi_{\pi}(\mathcal{C}) \sum_{g \in \mathcal{C}} \rho_{\text{fun}}(g^{-1}) \cdot w = \left(\frac{\chi_{\pi}(1)}{|G|} \sum_{\mathcal{C}} \chi_{\pi}(\mathcal{C}) \lambda_{\mathcal{C}}\right) w$$

kjer smo v enakosti upoštevali, da je $w \in W$. Od tod sledi

$$W \leq \mathbb{E}_{\frac{\chi_{\pi}(1)}{|G|} \sum_{\mathcal{C}} \chi_{\pi}(\mathcal{C}) \lambda_{\mathcal{C}}}(P_{\pi}).$$

Projektor P_{π} ima seveda le dve možni lastni vrednosti: 0 in 1. Ker je po predpostavki $W \neq 0$, ne mora biti za vse $\pi \in Irr(G)$ projekcija na π izotipično komponento ničelna na W. Torej je za nek π nujno

$$W \leq \mathrm{E}_1(P_\pi) = \mathrm{Izotip}_{\rho_{\mathrm{fun}}}(\pi).$$

Vemo že, kako deluje $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$ na π -izotipični komponenti, od koder določimo skalarje kot $\lambda_{\mathcal{C}} = |\mathcal{C}| \cdot \chi_{\pi}(\mathcal{C}^{-1})/\chi_{\pi}(1)$. Iz definicije W zdaj sledi, da je π -izotipična komponenta vsebovana v W, s čimer smo nazadnje izpeljali $W = \mathrm{Izotip}_{\rho_{\mathrm{fin}}}(\pi)$.

S to karakterizacijo izotipičnih komponent lahko opišemo algoritem za izračun tabele karakterjev. Najprej oštevilčimo elemente grupe G kot $g_1,g_2,\ldots,g_|G|$ in pripravimo vektorski prostor $F^{|G|}\cong \mathrm{hom}(G,F)$ s standardno bazo e_i , ki ustreza karakteristični funkciji 1_{g_i} . Izračunamo še konjugiranostne razrede grupe G in iz vsakega izberemo predstavnika. Pripravimo funkcijo, ki izračuna matriko regularne upodobitve ρ_{fun} v poljubnem elementu $x\in G$, in za tem še funkcijo, ki izračuna matriko Fourierove transformacije $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{hom}})$ za konjugiranostni razred \mathcal{C} . Izračunamo

	()	(12)(34)	(123)	(12345)	(12354)
χ_1	1	1	1	1	1
χ_2	5	1	-1	0	0
χз		0	1	-1	-1
χ_4	l	-1	0	$-\zeta^2-\zeta^3$	$-\zeta-\zeta^4$
χ_5	l	-1	0	$-\zeta-\zeta^4$	$-\zeta^2-\zeta^3$

Tabela 3.3: Tabela karakterjev A_5 , kjer je $\zeta = e^{2\pi i/5}$

lastne podprostore vseh teh matrik in za tem vse njihove netrivialne preseke. Te so ravno izotipične komponente. V vsaki komponenti W izberemo bazo, v kateri izračunamo sled zožitve matrike $\rho_{\text{fun}}(x)$ na W. Ker je W kot upodobitev izomorfen direktni vsoti $\deg(\pi)$ kopij neke nerazcepne upodobitve π , velja $\dim(W) = \deg(\pi)^2$ in zato

$$\operatorname{tr}(
ho_{\operatorname{fun}}(x)|_W) = \sqrt{\dim(W)} \cdot \chi_{\pi}(x).$$

Iz izračunane sledi torej lahko določimo vrednost pripadajočega karakterja v predstavnikih konjugiranostnih razredov. Implementacija predstavljenega algoritma za izračun tabele karakterjev nad **C** v programskem jeziku GAP¹⁰ je dostopna tukaj.

Zgled. Opazujmo alternirajočo grupo A_5 nad poljem \mathbb{C} . Z opisanim algoritmom hitro izračunamo njeno tabelo karakterjev.

Iz tabele lahko razberemo kar nekaj lastnosti grupe. Poglejmo si, kako hitro premislimo, da je A_5 enostavna grupa. Če bi namreč A_5 imela kakšno pravo netrivialno edinko N, potem bi kvocient A_5/N imel kakšno netrivialno nerazcepno upodobitev ρ . Restrikcija $\mathrm{Res}_{G/N}^G(\rho)$ je zato netrivialna nerazcepna upodobitev grupe A_5 z netrivialnim jedrom N. Vrednost karakterja χ_ρ v poljubnem elementu N je torej enaka $\chi_\rho(1)$. Iz tabele karakterjev grupe A_5 pa je jasno, da takega karakterja ni. 11

Predstavljeni algoritem ima mnogo pomanjkljivosti. V programskem jeziku GAP je za izračun tabele karakterjev implementiran algoritem (Dixon 1967, Schneider 1990), ki izboljša predstavljenega na naslednja dva načina.

- 1. S predstavljenim algoritmom bomo težko izračunali tabelo karakterjev kakšne zelo velike grupe, saj moramo v postopku diagonalizirati matrike velikosti $|G| \times |G|$. Algoritem v GAP sicer temelji na enaki ideji iskanja skupnih lastnih podprostorov, a pri tem ne opazuje regularne upodobitve, temveč upošteva abstraktne formule med karakterji in iz njih izpelje matrike velikosti $k(G) \times k(G)$, katerih skupni lastni vektorji so (bolj ali manj) karakterji. Ker je k(G) bistveno manjše od |G|, je ta izračun mnogo lažji in hitrejši.
- 2. Za izračun natančnih vrednosti karakterjev moramo vse račune izvajati eksaktno in brez približkov. Numerične metode, ki jih sicer lahko uporabimo za hitro računanje lastnih vrednosti velikih matrik, torej odpadejo. Programski jezik GAP zna računati simbolično, a je

¹⁰GAP je programski jezik, ki pride zelo prav pri delu z grupami, saj ima implementiranih veliko standardnih konstrukcij grup in funkcij za delo z njimi. Dostopen je prosto na naslovu https://www.gap-system.org.

 $^{^{11}}$ Iz argumenta vidimo, da velja celo naslednje. Končna grupa G je enostavna, če in samo če je vsaka njena netrivialna nerazcepna upodobitev zvesta.

to lahko precej zamudno. Algoritem v GAP se temu izogne tako, da večino računov opravi nad poljem \mathbf{F}_p za ustrezno izbrano dovolj veliko praštevilo p, potem pa te rezultate prenese nazaj nad \mathbf{C} . Vsi računi so zato hitri in eksaktni.

Kolobar virtualnih karakterjev

Pogosto nas ne zanima le računski aspekt upodobitev, temveč konceptualno razumevanje, od kod prihajajo nerazcepne upodobitve dane grupe. Kot bomo videli, tukaj igra glavno vlogo indukcija.

Naj boG grupa in F algebraično zaprto polje karakteristike 0. Karakterji upodobitev grupe G so celoštevilske kombinacije nerazcepnih karakterjev. Tvorimo množico vseh takih kombinacij, se pravi

$$R(G) = \bigoplus_{\pi \in Irr(G)} \mathbf{Z} \cdot \chi_{\pi} \subseteq \operatorname{fun}_{\operatorname{cl}}(G,F).$$

Množica R(G) je najprej očitno abelova podgrupa razrednih funkcij. Za tem je opremljena z množenjem, ki izhaja iz tenzorskega produkta upodobitev. Množica R(G) na ta način postane komutativen podkolobar v fun_{cl}(G,F), ki ga imenujemo *kolobar virtualnih karakterjev*. ¹²

Naj bo H podgrupa v G. Restrikcija vzdolž vložitve H v G porodi homomorfizem kolobarjev

Res:
$$R(G) \to R(H)$$
, $\chi_{\pi} \mapsto \operatorname{Res}_{H}^{G}(\chi_{\pi})$.

Sorodno dobimo z indukcijo preslikavo

$$\operatorname{Ind}: R(H) \to R(G), \quad \chi_{\pi} \mapsto \operatorname{Ind}_{H}^{G}(\chi_{\pi}),$$

ki pa je le homomorfizem abelovih grup. Ob koncu razdelka o indukciji smo za upodobitvi ρ v ${\rm Rep}_G$ in σ v ${\rm Rep}_H$ zapisali izomorfizem

$$\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho)\otimes\sigma)\cong\rho\otimes\operatorname{Ind}_H^G(\sigma),$$

ki ga zdaj lahko interpretiramo s karakterji teh upodobitev in skelenemo, da je slika Ind(R(H)) *ideal* v R(G).

 $\mathbf{Zgled.}$ Naj boHciklična grupa. Definirajmo indikatorsko funkcijo generatorjev grupe Hkot

$$c_H \mathpunct{:} H \to F, \quad h \mapsto \begin{cases} |H| & \langle h \rangle = H, \\ 0 & \text{sicer.} \end{cases}$$

Ker je H abelova grupa, je seveda $c_H \in \text{fun}_{cl}(H, F)$.

Premislimo, da je celo $c_H \in R(H)$. Dokazujmo z indukcijo na |H|. Vsaka prava podgrupa $K \leq H$ je tudi ciklična, zato zanjo po indukcijski predpostavki velja $c_K \in R(K)$. Naj bo R množica predstavnikov odsekov K v H. S formulo za indukcijo karakterja za $h \in H$ izračunamo

$$\operatorname{Ind}_K^H(c_K)(h) = \sum_{r \in R: h \in K} c_K(h) = \begin{cases} |H:K|c_K(h) & h \in K, \\ 0 & \operatorname{sicer} \end{cases} = \begin{cases} |H| & \langle h \rangle = K, \\ 0 & \operatorname{sicer}. \end{cases}$$

 $^{^{12} \}rm{Virtualnih},$ ker vsebuje tudi negativne kombinacije nerazcepnih kolobarjev, ki ne ustrezajo karakterjem upodobitev.

Vsak element $h \in H$ generira neko podgrupo H, bodisi pravo bodisi kar H. Torej lahko zapišemo

$$c_H = |H| - \sum_{K \in H} \operatorname{Ind}_K^H(c_K).$$

Konstanta |H| je karakter trivialne upodobitve $\mathbf{1}^{|H|}$ grupe H, torej iz zadnje enakosti sledi želeno $c_H \in R(H)$.

Naj bo C množica vseh cikličnih pogrup grupe G in izberimo $H \in C$. Naj bo R množica predstavnikov desnih odsekov H v G. Zadnji zgled nam pove $c_H \in R(H)$. Ta virtualni karakter lahko induciramo na grupo G in za $g \in G$ dobimo

$$\operatorname{Ind}_H^G(c_H)(g) = \sum_{r \in R: rgr^{-1} \in H} c_H(rgr^{-1}) = \sum_{r \in R: \langle rgr^{-1} \rangle = H} |H| = \sum_{x \in G: \langle xgx^{-1} \rangle = H} 1.$$

Ko torej seštejemo prispevke po vseh cikličnih podgrupah, dobimo

$$\sum_{H \in C} \operatorname{Ind}_H^G(c_H)(g) = \sum_{x \in G} \sum_{H \in C} 1_{\langle xgx^{-1} \rangle = C} = \sum_{x \in G} 1 = |G|.$$

Konstantna funkcija |G| je torej element ideala $\sum_{H \in C} \operatorname{Ind}(R(H))$ v R(G). Od tod seveda sledi enakost

$$|G| \cdot R(G) = \sum_{H \in C} \operatorname{Ind}(R(H)).$$

Vsak virtualni karakter vR(G) je zato linearna kombinacija induciranih virtualnih karakterjev cikličnih podgrup, pri čemer so koeficienti racionalna števila z imenovalcem kvečjemu |G|. Povzemimo to presenetljivo ugotovitev.

Izrek (Artinov izrek). Naj bo G grupa in ρ njena končnorazsežna upodobitev nad algebraično zaprtim poljem karakteristike 0. Tedaj je χ_{ρ} racionalna linearna kombinacija indukcij nerazcepnih karakterjev cikličnih podgrup grupe G.

Racionalnim kombinacijam se lahko izognemo, če razširimo razred podgrup s cikličnih na p-elementarne podgrupe grupe G. To so podgrupe, ki so izomorfne direktnemu produktu ciklične grupe in p-grupe.

Izrek (Brauerjev izrek). Naj bo G grupa in ρ njena končnorazsežna upodobitev nad algebraično zaprtim poljem karakteristike 0. Tedaj je χ_{ρ} celoštevilska linearna kombinacija indukcij nerazcepnih karakterjev pelementarnih podgrup grupe G, ko p preteče vse praštevilske delitelje moči G.

Dokaz Brauerjevega izreka je nekoliko bolj zapleten kot preprost argument, ki nas je pripeljal do Artinovega izreka. Bralec ga lahko najde v (Serre 1977).

Ne spreglejmo ključne lekcije tega razdelka: nerazcepne upodobitve dane končne grupe iščemo s pomočjo indukcije iz preprostih podgrup.

Kompleksne upodobitve

Splošno teorijo upodobitev končnih grup zaključimo z upodobitvami nad najugodnejšim poljem \mathbf{C} . To polje je daleč od abstraktnega in je opremljeno z mnogo dodatne strukture, ki jo lahko pri upodobitvah izkoristimo.

Vrednosti karakterjev

Najprej si oglejmo nekaj dodatnih lastnosti, ki jih imajo karakterji kompleksnih upodobitev. Njihove vrednosti namreč niso čisto poljubna kompleksna števila, temveč so algebraična cela števila¹³ omejene absolutne vrednosti.

Trditev. Naj bo G končna grupa. Za vsako končnorazsežno kompleksno upodobitev ρ in vsak $g \in G$ je

$$|\chi_{\rho}(g)| \leq \deg(\rho), \quad \chi_{\rho}(g) \in \bar{\mathbf{Z}}, \quad \chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}.$$

Dokaz. Velja $\rho(g^{|G|}) = \rho(1) = \mathrm{id}$, zato je $\rho(g)$ linearna preslikava končnega reda. Take preslikave so diagonalizabilne. V posebnem je zato vsaka lastna vrednost $\lambda \in \mathrm{Spec}(\rho(g))$ končnega reda v \mathbb{C}^* . S tem je seveda

$$\chi_{\rho}(g) = \sum_{\lambda \in \operatorname{Spec}(\rho(g))} \lambda \in \overline{\mathbf{Z}}, \quad |\chi_{\rho}(g)| \leq \sum_{\lambda \in \operatorname{Spec}(\rho(g))} |\lambda| = \operatorname{deg}(\rho)$$

in hkrati

$$\chi_{\rho}(g^{-1}) = \sum_{\lambda \in \operatorname{Spec}(\rho(g))} \lambda^{-1} = \sum_{\lambda \in \operatorname{Spec}(\rho(g))} \overline{\lambda} = \overline{\chi_{\rho}(g)}.$$

S pomočjo te restriktivne lastnosti vrednosti karakterjev lahko izpeljemo pomembno lastnost stopenj nerazcepnih kompleksnih upodobitev.

Izrek (o stopnjah upodobitev). *Stopnja vsake nerazcepne kompleksne upodobitve končne grupe deli moč grupe.*

Dokaz bomo navezali na edino mesto, kjer smo že videli ulomek $|G|/\deg(\pi)$, in sicer je to lema o Fourierovi transformaciji razredne funkcije. Ko funkcija, vzdolž katere izvedemo transformacijo, slika v kolobar algebraičnih celih števil, lahko lemo o Fourierovi transformaciji razredne funkcije zaostrimo na naslednji način.

Lema. Naj bo G končna grupa. Za vsako funkcijo $f \in \operatorname{fun}_{\operatorname{cl}}(G, \overline{\mathbf{Z}})$ in nerazcepno kompleksno upodobitev π je $\hat{f}(\pi)$ skalarno množenje z algebraičnim celim številom.

Dokaz. Vemo že, da je $\hat{f}(\pi)$ skalarno množenje s številom

$$\frac{|G|}{\deg(\pi)} \cdot [f, \chi_{\pi}].$$

Preveriti moramo torej, da je to algebraično celo število. Funkcijo f lahko razvijemo kot vsoto karakterističnih funkcij konjugiranostnih razredov s koeficienti v $\bar{\mathbf{Z}}$. Ker $\bar{\mathbf{Z}}$ tvori kolobar, bo torej trditev dovolj preveriti za primer, ko je $f = 1_{\mathcal{C}}$ za nek konjugiranostni razred \mathcal{C} v G.

Vse narazcepne upodobitve lahko obravnavamo v enem zamahu, in sicer tako, da opazujemo regularno upodobitev in s tem linearno preslikavo

 $^{^{13}}$ Algebraično celo število je kompleksno število, ki je ničla moničnega polinoma s celoštevilskimi koeficienti. Množico algebraičnih celih števil označimo z $\bar{\mathbf{Z}}$. Ni se težko prepričati, da $\bar{\mathbf{Z}}$ tvori kolobar in da velja $\mathbf{Q} \cap \bar{\mathbf{Z}} = \mathbf{Z}$.

 $^{^{14}}$ Diagonalizabilnost sledi iz obravnave Jordanove normalne forme preslikave ho(g).

 $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$. Na vsaki od podupodobitev, ki je izomorfna π , ta preslikava deluje kot $\widehat{1_{\mathcal{C}}}(\pi)$, torej kot skalarno množenje z gornjim številom. To število je zato lastna vrednost preslikave $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$.

Vemo že, da $\widehat{1_C}(\rho_{\mathrm{fun}})$ deluje na naravni bazi iz karakterističnih funkcij 1_x za $x \in G$ kot

$$\widehat{1_{\mathcal{C}}}(\rho_{\text{fun}}) \cdot 1_x = \sum_{g \in G} 1_{\mathcal{C}}(x^{-1}g) 1_g \in \text{fun}(G, \{0, 1\}).$$

V tej bazi ima torej $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$ matriko s koeficienti v množici $\{0,1\}$. Karakteristični polinom te matrike ima zato celoštevilske koeficiente, torej so lastne vrednosti preslikave $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$ algebraična cela števila.

 $Dokaz\ izreka\ o\ stopnjah\ upodobitev.\$ Naj bo $\pi\in {\rm Irr}(G).\$ Uporabimo lemo s funkcijo $f=\chi_\pi,$ ki nam pove, da je

$$\frac{|G|}{\deg(\pi)} \cdot [\chi_{\pi}, \chi_{\pi}] = \frac{|G|}{\deg(\pi)} \in \bar{\mathbf{Z}}.$$

Ker je zadnje število hkrati v \mathbf{Q} , je torej v $\mathbf{Q} \cap \bar{\mathbf{Z}} = \mathbf{Z}$.

Skalarni produkti in unitarnost

Polje ${\bf C}$ je opremljeno s standardnim skalarnim produktom $\langle z,w\rangle=z\cdot\overline{w}$. Ta produkt lahko razširimo na vsak končnorazsežen kompleksen vektorski prostor. Obravnavali bomo dve taki razširitvi, in sicer na prostor funkcij fun $(G,{\bf C})$ ter na vektorski prostor, na katerem upodabljamo grupo G.

Opazujmo najprej prostor funkcij fun (G, \mathbb{C}) . Vemo že, da ga lahko opremimo s skalarnim produktom $[\cdot, \cdot]$. Ker pa je ta prostor kompleksen, lahko nanj vpeljemo še **standarden kompleksni skalarni produkt**,

$$\langle f, h \rangle = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{h(g)}$$

za $f,h\in \mathrm{fun}(G,\mathbf{C})$. Za vsako končnorazsežno kompleksno upodobitev ρ po zadnji trditvi velja

$$[f,\chi_{\rho}] = \langle f,\chi_{\rho} \rangle$$
,

zato se večina rezultatov, ki smo jih izpeljali za skalarni produkt $[\cdot,\cdot]$, prenese na skalarni produkt $\langle\cdot,\cdot\rangle$. V posebnem karakterji še vedno tvorijo ortonormiran sistem vektorjev v fun (G,\mathbf{C}) in koeficienti razvoja razrednih funkcij po karakterjih se ne spremenijo.

Osredotočimo se sedaj še na upodobitveni prostor. Naj bo ρ kompleksna upodobitev grupe G na končnorazsežnem prostoru V. Izberimo bazo prostora $\{v_i\}_i$ in z njo kompleksen skalarni produkt

$$\left\langle \sum_{i} \alpha_{i} v_{i}, \sum_{i} \beta_{i} v_{j} \right\rangle = \sum_{i} \alpha_{i} \overline{\beta_{i}}.$$

Prostor V je opremljen z linearnim delovanjem grupe G. Zdaj smo na ta prostor dodali strukturo skalarnega produkta in ni jasno, ali je grupa G kompatibilna s to dodatno strukturo. Kadar je temu tako, se pravi

$$\forall g \in G. \ \forall v, w \in V. \ \langle \rho(g) \cdot v, \rho(g) \cdot w \rangle = \langle v, w \rangle,$$

tedaj rečemo, da je ρ *unitarna upodobitev*. V tem primeru ρ slika iz G v grupo unitarnih transformacij U(V) prostora V s skalarnim produktom $\langle \cdot, \cdot \rangle$. Seveda ni vsaka upodobitev končne grupe unitarna, ¹⁵ je pa vsaka upodobitev *unitarizabilna*.

Trditev. Naj bo G končna grupa in ρ njena končnorazsežna kompleksna upodobitev na prostoru V. Tedaj na V obstaja skalarni produkt, glede na katerega je ρ unitarna.

Dokaz. Izberimo poljuben skalarni produkt $\langle \cdot, \cdot \rangle$ na V in ga povprečimo do

$$\langle \cdot, \cdot \rangle_0 : V \times V \to \mathbb{C}, \quad \langle v, w \rangle_0 = \frac{1}{|G|} \sum_{g \in G} \langle \rho(g) \cdot v, \rho(g) \cdot w \rangle.$$

Ni težko preveriti, da je $\langle \cdot, \cdot \rangle_0$ skalarni produkt na V, glede na katerega je ρ unitarna upodobitev.

V kontekstu kompleksnih upodobitev končnih grup lahko torej brez škode predpostavimo, da je prostor opremljen s skalarnim produktom, glede na katerega je dana upodobitev unitarna.

Zgled. Končna grupa deluje z regularno upodobitvijo ρ_{fun} na prostoru funkcij fun (G, \mathbf{C}) . Ta prostor je opremljen s standardnim kompleksnim skalarnim produktom. Glede na ta skalarni produkt je ρ_{fun} unitarna upodobitev, saj za vsaka $f,h \in \text{fun}(G,\mathbf{C})$ in $x \in G$ velja

$$\langle \rho_{\text{fun}}(G, \mathbf{C})(x) \cdot f, \rho_{\text{fun}}(G, \mathbf{C})(x) \cdot h \rangle = \frac{1}{|G|} \sum_{g \in G} f(gx) \overline{h(gx)} = \langle f, h \rangle.$$

Unitarnost upodobitev končne grupe G lahko izkoristimo pri Fourierovi transformaciji. Za unitarno upodobitev ρ je namreč $\rho(g^{-1}) = \rho(g)^*$ za vsak $g \in G$ in s tem

$$\hat{f}(\rho) = \sum_{g \in G} f(g) \rho(g)^*.$$

Opremljeni s tem komentarjem se obrnimo k Fourierovi inverziji. Formula za razvoj funkcije $f \in \text{fun}(G, \mathbb{C})$ po π -izotipičnih komponentah je nekoliko asimetrična. To lahko popravimo tako, da jo uteženo povprečimo z neko drugo funkcijo $h \in \text{fun}(G, \mathbb{C})$. Dobimo

$$\sum_{g \in G} f(g) \overline{h(g)} = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \sum_{g \in G} \overline{h(g)} \chi_{\pi}(1) \operatorname{tr}(\hat{f}(\pi) \cdot \pi(g)),$$

kar lahko po upoštevanju linearnosti sledi in gornjega komentarja glede unitarnosti upodobitve π zapišemo kot

$$\langle f, h \rangle = \frac{1}{|G|^2} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \operatorname{tr}(\hat{f}(\pi) \cdot \hat{h}(\pi)^*).$$

Tej enakosti rečemo **Parsevalov izrek**. Nekoliko pregledneje ga lahko zapišemo z uporabo še enega skalarnega produkta, tokrat na prostoru endomorfizmov danega vektorskega prostora V. Za linearni preslikavi $A,B \in \text{hom}(V,V)$ definiramo

$$\langle A,B\rangle_{\mathrm{HS}} = \mathrm{tr}(A\cdot B^*),$$

 $^{^{15}\}mathrm{Skalarni}$ produkt na danem prostoru lahko izberemo na mnogo različnih načinov.

to je *Hilbert-Schmidtov skalarni produkt*. Parsevalov izrek nam torej povezuje standarden kompleksni skalarni produkt funkcij s Hilbert-Schmidtovim skalarnim produktom Fourierovih transformacij v nerazcepnih upodobitvah,

$$\langle f,h \rangle = \frac{1}{|G|^2} \sum_{\pi \in \mathrm{Irr}(G)} \chi_\pi(1) \left\langle \hat{f}(\pi), \hat{h}(\pi) \right\rangle_{\mathrm{HS}}.$$

Poglavje 4

Razširjeni zgledi - končni

Kategorijo upodobitev dane končne grupe nad ugodnim poljem razumemo, če imamo na voljo tabelo karakterjev, izračun te pa je končen problem. S tem smo za konkretne končne grupe dosegli ultimativen cilj teorije upodobitev. Biti pa moramo previdni, da zaradi vseh teh čudovitih dreves ne spregledamo gozda. Grupe namreč praviloma ne nastopajo posamično, temveč kot del večjih družin. V tem poglavju si bomo podrobneje pogledali dve temeljni družini grup, in sicer simetrične grupe ter splošne linearne grupe nad končnim poljem. Njuno teorijo upodobitev bomo obravnavali celostno.

4.1 Simetrične grupe

Opazujmo simetrično grupo S_n za $n \in \mathbb{N}$ nad poljem \mathbb{C} . Ogledali smo si že tabele karakterjev za $n \leq 4$ in razložili, da je število nerazcepnih upodobitev enako številu konjugiranostnih razredov, to pa je enako številu razčlenitev p(n). Družina simetričnih grup je posebna, saj zanjo presenetljivo obstaja eksplicitna korespondenca med konjugiranostnimi razredi in nerazcepnimi upodobitvami. Iz dane razčlenitve $(\lambda_1, \lambda_2, \dots, \lambda_k)$ števila n lahko torej konstruiramo nerazcepno upodobitev grupe S_n in za tem z nekoliko več truda določimo vrednosti karakterjev.

Nerazcepne upodobitve

Naj bo $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ razčlenitev n. Nerazcepno upodobitev grupe S_n , prirejeno λ , kot ponavadi iščemo z indukcijo iz podgrup. Razčlenitev λ lahko interpretiramo kot ciklični tip permutacij, zato se naravno ponuja **Youngova** grupa

$$P = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_k}$$
.

Razčlenitev λ si lahko predstavljamo kot zaporedje vrstic diagrama, v katerem je λ_1 škatlic v 1. vrstici, λ_2 škatlic v 2. vrstici, ..., λ_k škatlic v k. vrstici. Pri tem so vrstice poravnane na levo. Takemu shematičnemu prikazu razčlenitve pravimo **Youngov diagram**. Diagram ima n škatlic,

¹Na primer abelove grupe, simetrične grupe, diedrske grupe, splošne linearne grupe, končne enostavne grupe, . . .

 $^{^2}$ Vsaka končna grupa je zgrajena iz končnih enostavnih grup, te pa sestojijo iz, grobo rečeno, treh neskončnih družin, in sicer cikličnih grup praštevilske moči $\mathbf{Z}/p\mathbf{Z}$, alternirajočih grup A_n in različnih matričnih grup nad končnimi polji, na primer $\mathrm{SL}_n(\mathbf{F}_p)/Z(\mathrm{SL}_n(\mathbf{F}_p))$. Zgleda družin, ki si jih bomo ogledali, sta torej do neke mere reprezentativna za razumevanje upodobitev nekomutativnih končnih enostavnih grup.

v katere poljubno vpišemo števila od 1 do n. Tako izpolnjenemu diagramu pravimo *Youngov tablo*. Vsak Youngov tablo nam pravzaprav ponuja vložitev grupe P v S_n . Fiksirajmo standardno vložitev, ki ustreza temu, da v škatlice vpišemo po vrsti števila od 1 do n, začenši zgoraj levo in hodeč po 1. vrstici, nato po 2. vrstici in tako naprej. Grupa P, standardno vložena v S_n , predstavlja ravno vse permutacije, ki ohranjajo vrstice tabloja.

Inducirajmo trivialno upodobitev iz P na S_n . V razdelku o indukciji smo spoznali, da lahko $\operatorname{Ind}_P^{S_n}(\mathbf{1})$ interpretiramo kot permutacijsko upodobitev S_n na desnih odsekih podgrupe P. To interpretacijo lahko vložimo v prostor funkcij $\operatorname{fun}(S_n,\mathbf{C})$. Namesto množice P lahko namreč opazujemo indikatorsko funkcijo 1_P . Element $g \in S_n$ na njej deluje kot $\rho_{\operatorname{fun}}(g) \cdot 1_P = 1_{Pg^{-1}}$, se pravi kot permutacija desnih odsekov. Na ta način upodobitveni prostor upodobitve $\operatorname{Ind}_P^{S_n}(\mathbf{1})$ vidimo kot

$$\langle \rho_{\mathrm{fun}}(g) \cdot 1_P \mid g \in G \rangle$$
.

Ta prostor lahko izrazimo s pomočjo Fourierove transformacije kot

$$\langle \hat{f}(\rho_{\text{fun}}) \cdot 1_P \mid f \in \text{fun}(S_n, \mathbf{C}) \rangle = \text{im} \mathcal{F}(1_P) = \langle 1_P * f \mid f \in \text{fun}(S_n, \mathbf{C}) \rangle.$$

Upodobitev S_n na tem prostoru gotovo ni nerazcepna, saj na primer vsebuje trivialno z večkratnostjo $\langle \chi_1, \operatorname{Ind}_P^{S_n}(\chi_1) \rangle = \langle \chi_1, \chi_1 \rangle = 1$. Ta prostor bomo zato še dodatno projicirali na nek podprostor.

Do zdaj smo upoštevali le grupo P permutacij, ki ohranjajo vrstice izbranega Youngovega tabloja. Iz tega gledišča je naravno, da obravnavamo tudi grupo permutacij, ki ohranjajo stolpce tabloja. Označimo jo sQ. Ravno ta podgrupa je dodatek, ki nam bo dodatno reduciral upodobitev zgoraj opisano inducirano upodobitev. Pri tem bomo upoštevali, da je Q sestavljena dualno P, zato jo bomo utežili s predznačno upodobitvijo sgn.

Definirajmo funkcijo

$$\sigma_{\lambda} = (\operatorname{sgn} \cdot 1_{Q}) * 1_{P} \in \operatorname{fun}(S_{n}, \mathbf{C}),$$

ki ji pravimo Youngov simetrizator. Njene vrednosti so

$$\sigma_{\lambda}(x) = \sum_{p \in P, q \in Q: q \mid p = x} \operatorname{sgn}(q).$$

Ker velja $P \cap Q = 1$, ima vsak element $x \in S_n$ kvečjemu en zapis v obliki x = qp za $p \in P, q \in Q$, torej ima zadnja vsota kvečjemu en neničeln člen in je torej enaka karakteristični funkciji množice $QP = \{qp \mid q \in Q, p \in P\}$, uteženi s predznakom člena v Q.

Vzdolž Youngovega simetrizatorja dobimo endospletično $\mathcal{F}(\sigma_{\lambda})$ regularne upodobitve, katere slika je vektorski prostor

$$V_{\lambda} = \operatorname{im} \mathcal{F}(\sigma_{\lambda}) = \langle \sigma_{\lambda} * f \mid f \in \operatorname{fun}(S_n, \mathbf{C}) \rangle,$$

ki ga imenujemo **Spechtov modul**. Na tem prostoru naravno deluje grupa S_n^4 , dobljeno upodobitev označimo z ρ_{λ} .

Izrek (o nerazcepnih upodobitvah simetrične grupe).

Res, če je $x = q_1p_1 = q_2p_2$, potem je $q_2^{-1}q_1 = p_2p_1^{-1} \in P \cap Q = 1$, zato je $q_1 = q_2$ in $p_1 = p_2$.

⁴Ker je $\mathcal{F}(\sigma_{\lambda})$ spletična, je to res invarianten podprostor. Ni pa težko videti, kako elementi grupe zares delujejo; za $g \in S_n$ element $\rho_{\text{fun}}(g)$ preslika $\sigma_{\lambda} * f \text{ v } \sigma_{\lambda} * (\rho_{\text{fun}}(g) \cdot f)$.

- 1. Za vsako razčlenitev λ je ρ_{λ} nerazcepna.
- 2. Za različni razčlenitvi λ, μ je $\rho_{\lambda} \not\equiv \rho_{\mu}$.
- 3. Vsaka nerazcepna upodobitev simetrične grupe je izomorfna ρ_{λ} za neko razčlenitev λ .

Zadnja točka seveda sledi iz prvih dveh, saj je število nerazcepnih upodobitev ravno enako številu razčlenitev n. Pred dokazom izreka si oglejmo nekaj zgledov.

Zgled.

• Naj bo $\lambda = (n)$. Tedaj je $P = S_n$ in Q = 1, zato je $\sigma_{\lambda} = 1$. Za funkcijo $f \in \text{fun}(S_n, \mathbb{C})$ je $\mathcal{F}(1) \cdot f = 1 * f = |G| \cdot \mathbf{E}(f)$ in grupa S_n deluje trivialno na tej funkciji. S tem je

$$V_{\lambda} = \operatorname{im} \mathcal{F}(1) = \mathbf{C}$$

in dobimo trivialno upodobitev.

• Naj bo $\lambda = (1, 1, ..., 1)$. Tedaj je P = 1 in $Q = S_n$, zato je $\sigma_{\lambda} = \operatorname{sgn}$. Za funkcijo $f \in \operatorname{fun}(S_n, \mathbb{C})$ je

$$\mathcal{F}(\operatorname{sgn}) \cdot f = \operatorname{sgn} * f = \left(x \mapsto \sum_{g \in G} \operatorname{sgn}(xg^{-1}) f(g) \right) = (\operatorname{sgn} * f)(1) \cdot \operatorname{sgn},$$

zato je

$$V_{\lambda} = \operatorname{im} \mathcal{F}(\operatorname{sgn}) = \langle \operatorname{sgn} \rangle.$$

Na funkciji sgn grupa S_n deluje kot $\rho_{\text{fun}}(g) \cdot \text{sgn} = \text{sgn}(g) \cdot \text{sgn}$, torej je ρ_{λ} predznačna upodobitev.

• Naj bo $\lambda = (n-1,1)$. Tedaj je $P = S_{n-1}$ in $Q = \{(), (1 n)\}$. Za funkcijo $f \in \text{fun}(S_n, \mathbb{C})$ velja najprej

$$(1_P * f)(x) = \sum_{p \in P} f(p^{-1}x) = \sum_{g \in Px} f(g),$$

torej $1_P * f$ izračuna vsoto funkcije f po odseku Px. Prostor im $\mathcal{F}(1_P)$ lahko zato identificiramo s podprostorom funkcij fun $_{S \setminus S_n}(S_n, \mathbf{C})$, ki so konstantne na desnih odsekih $S \setminus S_n$. Delovanje S_n na tem prostoru ni nič drugega kot $\mathrm{Ind}_P^{S_n}(\mathbf{1})$, kar prepoznamo kot standardno permutacijska upodobitev grupe S_n njenega delovanja na $\{1,2,\ldots,n\}$. Uporabimo zdaj še konvolucijo s funkcijo $\mathrm{sgn} \cdot 1_Q$. Dobimo linearno preslikavo

$$\operatorname{fun}_{S \setminus S_n}(S_n, \mathbb{C}) \to \operatorname{fun}_{S \setminus S_n}(S_n, \mathbb{C}), \quad \psi \mapsto (x \mapsto \psi(x) - \psi((1 \ n) \cdot x)).$$

Njeno jedro sestoji iz funkcij ψ , ki so konstantne na odsekih S in povrhu zadoščajo še enakosti $\psi(x) = \psi((1 \ n) \cdot x)$ za vsak $x \in S_n$. Ko ta pogoj uporabimo s transpozicijami $(i \ n)$ za $1 \le i < n$, sklenemo, da je vsaka taka funkcija ψ nujno konstantna. Nazadnje je torej

$$V_{\lambda} = \operatorname{im} \mathcal{F}(\sigma_{\lambda}) \cong rac{\operatorname{fun}_{S \setminus S_n}(S_n, \mathbf{C})}{\mathbf{C}}.$$

Ta prostor je razsežnosti n-1. Prirejeno upodobitev imenujemo **standardna upodobitev** simetrične grupe S_n . Kot smo videli, jo lahko dobimo tako, da iz standardne permutacijske upodobitve odstanimo trivialno upodobitev.

Domača naloga. Naj bo λ razčlenitev n in λ' razčlenitev, ki jo iz λ dobimo tako, da transponiramo Youngov diagram. Preveri, da velja $\operatorname{sgn} \otimes \rho_{\lambda} \cong \rho_{\lambda'}$.

Dokaz izreka bomo izpeljali s pomočjo naslednje leme, v kateri igra ključno vlogo delovanje Youngovega simetrizatorja $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}})$ na prostoru V_{λ} . V lemi uporabljamo leksikografsko delno urejenost < na množici vseh razčlenitev.

Lema.

- 1. Za vsako razčlenitev λ je $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot V_{\lambda} \subseteq \mathbf{C} \cdot \sigma_{\lambda}$.
- 2. Za razčlenitvi $\lambda > \mu$ je $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot V_{\mu} = 0$.

Dokaz izreka o nerazcepnih upodobitvah simetrične grupe.

1. Naj bo $W \leq V_{\lambda}$ podupodobitev. Po lemi je $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot W$ bodisi $\mathbf{C} \cdot \sigma_{\lambda}$ bodisi 0.

V prvem primeru sledi, da je $\sigma_{\lambda} \in W$, od koder iz nerazcepnosti W sklenemo $W = \operatorname{im} \mathcal{F}(\sigma_{\lambda}) = V_{\lambda}$. \checkmark

Privzemimo zdaj, da je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot W = 0$, kar lahko zapišemo kot $W * \sigma_{\lambda} = 0$. Od tod sledi $W * V_{\lambda} = 0$ in zato W * W = 0. Naj bo $W = \mathrm{im} P$ za neko projektorsko endospletično P regularne upodobitve. Vemo že, da so vse take preslikave oblike $P = \mathcal{F}(w)$ za neko funkcijo $w \in \mathrm{fun}(S_n, \mathbb{C})$. Ker je $P \cdot 1_1 = \widehat{1}_1(\rho_{\mathrm{fun}}) \cdot w = w$, sledi $w \in W$. Še več, ker je $P^2 = P$, izračunamo $w = P \cdot w = \widehat{w}(\rho_{\mathrm{fun}}) \cdot w = w * w$. Ker je W * W = 0, sledi w = 0 in s tem W = 0. \checkmark

2. Za različni razčlenitvi λ , μ lahko brez škode predpostavimo $\lambda > \mu$, saj je < linearna urejenost. Po lemi je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot V_{\mu} = 0$. Hkrati je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot V_{\lambda}$ bodisi $\mathbf{C} \cdot \sigma_{\lambda}$ bodisi 0. V slednjem primeru pristopimo kot zgoraj: velja $V_{\lambda} * V_{\lambda} = 0$ in projektorska endospletična regularne upodobitve na V_{λ} je oblike $\mathcal{F}(v)$ za nek $v \in V_{\lambda}$ z lastnostjo v = v * v, kar implicira v = 0 in s tem $V_{\lambda} = 0$, protislovje. Torej je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot V_{\lambda} \neq 0$ in zato $V_{\lambda} \not\cong V_{\mu}$.

Preostane nam še dokaz leme.

Dokaz leme.

1. Za vsaka $p \in P$, $q \in Q$ je sgn $\cdot 1_q * \sigma_{\lambda} * 1_p = \sigma_{\lambda}$. Dokažimo najprej, da je Youngov simetrizator do skalarja natančno edina funkcija s to lastnostjo.

Res, naj funkcija $f \in \text{hom}(S_n, \mathbb{C})$ zadošča $\text{sgn} \cdot 1_q * f * 1_p = f$. To pomeni, da za vsak $g \in G$ velja

$$f(g) = \sum_{x \in S_n: qxp = g} sgn(q) \cdot f(g) = sgn(q) \cdot f(q^{-1}gp^{-1}),$$

kar lahko prepišemo v $f(qgp) = \operatorname{sgn}(q) \cdot f(g)$. Od tod sledi $f(qp) = \operatorname{sgn}(q) \cdot f(1)$. Na množici QP se torej do skalarja f(1) natančno funkcija f ujema z Youngovim simetrizatorjem σ_{λ} .

Preverimo še, da je izven množice QP funkcija f ničelna. V ta namen se spomnimo, da P in Q izhajata iz Youngovega tabloja T. Elementi S_n naravno delujejo s permutacijami na množici tablojev. Za $g \in S_n$ naj bo $g \cdot T$ rezultat tega delovanja z elementom g.

Domača naloga. Za vsak $g \in S_n \backslash QP$ obstajata števili, ki sta zapisani v istem stolpcu T in isti vrstici $g \cdot T$.

Naj bo t transpozicija, ki zamenja ti dve števili. Zanjo torej velja $t \in Q$ in $g^{-1}tg \in P$. S tem je

$$f(g) = f(t \cdot g \cdot g^{-1}tg) = \operatorname{sgn}(t) \cdot f(g) = -f(g),$$

zato je f(g) = 0. \checkmark

Dokazano uporabimo z elementom $\sigma_{\lambda} * f * \sigma_{\lambda}$, kjer je f poljubna funkcija. Vrednost sgn $\cdot 1_q * (\sigma_{\lambda} * f * \sigma_{\lambda}) * 1_p$ izračunamo kot

$$(\operatorname{sgn} \cdot 1_Q * \operatorname{sgn} \cdot 1_Q * 1_P) * f * (\operatorname{sgn} * 1_Q * 1_P * 1_p) = \sigma_{\lambda} * f * \sigma_{\lambda},$$

od koder sledi želeno

$$\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot (\sigma_{\lambda} * f) = \sigma_{\lambda} * f * \sigma_{\lambda} \in \mathbb{C} \cdot \sigma_{\lambda}.$$

2. Trdimo, da za vsako funkcijo $f \in \text{fun}(S_n, \mathbb{C})$ velja enakost

$$1_{P_u} * f * (\operatorname{sgn} \cdot 1_{Q_\lambda}) = 0.$$

Zaradi linearnosti te trditve lahko predpostavimo, da je $f = 1_g$ za nek $g \in G$.

Naj bosta T_{λ} , T_{μ} Youngova tabloja razčlenitev λ , μ , s katerima smo dobili grupe P in Q. Tablo T_{λ} zamenjajmo s tablojem $g \cdot T_{\lambda}$; ob tem se Q_{λ} zamenja s $g^{-1}Q_{\lambda}g$. Z novimi tabloji je

$$1_{P_\mu} * \left(\operatorname{sgn} \cdot 1_{g^{-1}Q_\lambda g}\right) = 1_{P_\mu} * 1_{g^{-1}} * \left(\operatorname{sgn} \cdot 1_{Q_\lambda}\right) * 1_g.$$

Če uspemo dokazati, da je leva stran ničelna, bo taka tudi desna, od koder po dodatni konvoluciji z $1_{g^{-1}}$ z desne sledi želena enakost.

Predpostavimo torej lahko, da je g=1. Kot v dokazu prejšnje točke najdemo transpozicijo $t\in Q_\lambda\cap P_\mu$. Z njo velja

$$1_{P_{\mu}} * (\operatorname{sgn} \cdot 1_{Q_{\lambda}}) = (1_{P_{\mu}} * 1_{t}) * (1_{t^{-1}} * (\operatorname{sgn} \cdot 1_{Q_{\lambda}})).$$

Ker je $1_{P_{\mu}} * 1_t = 1_{P_{\mu}}$ in $1_{t^{-1}} * (\operatorname{sgn} \cdot 1_{Q_{\lambda}}) = -(\operatorname{sgn} \cdot 1_{Q_{\lambda}})$, je zadnja konvolucija enaka svoji negativni vrednosti, torej je ničelna.

Tekom dokaza izreka smo premislili, da je $\sigma_{\lambda} * \sigma_{\lambda} = n_{\lambda} \cdot \sigma_{\lambda}$ za nek $n_{\lambda} \neq 0$. Od tod sledi, da je V_{λ} slika *projektorske* spletične $\mathcal{F}(\sigma_{\lambda}/n_{\lambda})$. Youngov simetrizator nam torej prek Fourierove transformacije izdaja nerazcepno upodobitev V_{λ} . Projektor $\mathcal{F}(\sigma_{\lambda}/n_{\lambda})$ lahko zapišemo z matriko z racionalnimi koeficienti, zato v prostoru V_{λ} lahko izberemo bazo, glede na katero ima delovanje vsakega elementa $g \in G$ racionalne matrične koeficiente. Vsaka nerazcepna upodobitev ρ_{λ} je zato definirana nad poljem \mathbf{Q} .

Domača naloga. Naj boG končna grupa z upodobitvijo nad \mathbf{Q} . Dokaži, da obstaja baza vektorskega prostora, v kateri je dana upodobitev definirana nad \mathbf{Z} .

Posledica. Vsaka nerazcepna upodobitev simetrične grupe je definirana nad **Z**.

Vsak Spechtov modul V_{λ} lahko z redukcijo po modulu p za poljubno praštevilo p reduciramo do vektorskega prostora nad končnim poljem \mathbf{F}_{p} . Na ta način dobimo mnogo modularnih upodobitev simetrične grupe. Kot smo videli že v primeru p=3, te upodobitve niso nujno nerazcepne. V takih primerih obstaja enoličen $kvocient\ D_{\lambda}$ reducirane upodobitve, ki je nerazcepen nad \mathbf{F}_{p} . Izkaže se, da na ta način dobimo vse nerazcepne modularne upodobitve simetrične grupe. Modularni je mnogo bolj mističen od kompleksnega. Sodobna teorija upodobitev se povečini ukvarja s tem, kako regularna je kategorija upodobitev v odvisnosti od praštevila p. V zvezi s tem obstaja mnogo odprtih problemov.

Odprt problem. Obravnavajmo modularne upodobitve nad \mathbf{F}_p , kjer je $p \le n$. Naj bo λ razčlenitev n. Izračunaj večkratnosti nerazcepnih podupodobitev v redukciji V_{λ} po modulu p.

Ta problem je razrešen le za razčlenitve λ z največ dvema deloma, torej s $k \le 2$. Za k = 3 sodobna bilijardna domneva (Lusztig-Williamson 2018) predvideva, da se te večkratnosti obnašajo po zakonu nekega zakompliciranega dinamičnega sistema.

Vrednosti karakterjev

Premislili smo že, da so vsi Spechtovi moduli definirani nad \mathbf{Z} , zato so vrednosti karakterjev simetrične grupe vselej cela števila. Poznamo pa celo dokaj preprost način, kako lahko eksplicitno določimo vse vrednosti karakterjev nerazcepnih upodobitev. Izrekli ga bomo v jeziku polinomskega kolobarja $\mathbf{C}[\mathbf{x}] = \mathbf{C}[x_1, x_2, \dots, x_k]$. Potrebovali bomo nekaj posebnih polinomov iz tega kolobarja, in sicer *diskriminanto*

$$\Delta(\mathbf{x}) = \prod_{1 \le i < j \le k} (x_i - x_j)$$

ter potenčne vsote

$$P_j(\mathbf{x}) = x_1^j + x_2^j + \dots + x_k^j$$

za $j \in \mathbb{N}$. Za dan polinom $P(\mathbf{x}) \in \mathbb{C}[\mathbf{x}]$ označimo s

$$[P(\mathbf{x})]_{(\ell_1,\ell_2,\ldots,\ell_k)}$$

njegov koeficient pred monomom $x_1^{\ell_1}x_2^{\ell_2}\cdots x_k^{\ell_k}$.

Izrek (Frobeniusova formula). Naj bo $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ razčlenitev n in χ_{λ} pripadajoči karakter. Naj bo $C_{1^{i_1}2^{i_2}...n^{i_n}}$ konjugiranostni razred. Tedaj je

$$\chi_{\lambda}\left(\mathcal{C}_{1^{i_1}2^{i_2}\cdots n^{i_n}}\right) = \left[\Delta(\mathbf{x})\cdot P_1(\mathbf{x})^{i_1}P_2(\mathbf{x})^{i_2}\cdots P_n(\mathbf{x})^{i_n}\right]_{(\ell_1,\ell_2,\dots,\ell_k)},$$

kjer je

$$\ell_1 = \lambda_1 + k - 1$$
, $\ell_2 = \lambda_2 + k - 2$, ..., $\ell_k = \lambda_k$.

Dokaz temelji na poznavanju osnov teorije simetričnih funkcij, ki jih študent-ka ponavadi spozna pri kombinatoričnih predmetih, zato ga brez prehude žalosti izpustimo. Poglejmo pa si nekaj primerov uporabe izreka.

 $^{^5}$ Pozor, za nekatere razčlenitve λ je D_{λ} = 0. Izkaže se, da je število modularnih upodobitev enako številu konjugiranostnih razredov elementov, katerih red je tuj p.

⁶Na primer, mnogo dela je osredotočenega na Lusztigovo in Jamesovo domnevo.

Zgled.

• Naj bo n=7 in $\lambda=(4,3)$. Izračunajmo vrednost karakterja v permutaciji $(1\ 2)(3\ 4)$. Velja $i_1=3,\ i_2=2,\ \ell_1=5,\ \ell_2=3$ in s tem

$$\chi_{(4,5)}(\mathcal{C}_{1^32^2}) = [(x_1 - x_2) \cdot (x_1 + x_2)^3 (x_1^2 + x_2^2)^2]_{(5,3)} = 2.$$

• Izračunajmo vrednost poljubnega karakterja χ_{λ} v dolgem ciklu $(1\ 2\ \cdots\ n)\in S_n$. Konjugiranostni razred je torej \mathcal{C}_{n^1} in izračunati moramo koeficient

$$\left[\Delta(\mathbf{x})\cdot(x_1^n+x_2^n+\cdots+x_k^n)\right]_{(\ell_1,\ell_2,\ldots,\ell_k)}.$$

Diskriminanta $\Delta(\mathbf{x})$ je enaka Vandermondovi determinanti

$$\Delta(\mathbf{x}) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \cdot x_1^{\sigma(k)-1} x_2^{\sigma(k-1)-1} \cdots x_k^{\sigma(1)-1}.$$

Opazujmo potence spremenljivke x_1 . Opazimo, da velja $\ell_1 = \lambda_1 + k - 1 \ge k$, zato iščemo monome, katerih potenca pri x_1 je vsaj k. Edina možnost je, da ta monom izhaja iz produkta diskriminante in člena x_1^n . Iščemo torej člen

$$\left[\sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \cdot x_1^{\sigma(k)-1+n} x_2^{\sigma(k-1)-1} \cdots x_k^{\sigma(1)-1}\right]_{(\ell_1,\ell_2,\dots,\ell_k)}.$$

Oglejmo si zdaj spremenljivko x_2 . Da bo obstajal kak relevanten monom, mora veljati $\ell_2 = \sigma(k-1) - 1$. Ker je $\sigma(k-1) \le k$, sledi $\ell_2 \le k-1$ in od tod $\lambda_2 \le 1$. Edina možnost, da je $\chi_{\lambda}(\mathcal{C}_{n^1}) \ne 0$, je torej, da ima razčlenitev λ vse člene od drugega dalje enake 1 in je zato oblike

$$\lambda = (n - s, 1, 1, \dots, 1)$$

za nek $0 \le s \le n-1$. Taki razčlenitvi pravimo **kljuka**. Zanjo je k = s+1 in $(\ell_1, \ell_2, \dots, \ell_k) = (n, k-1, k-2, \dots, 1)$, od koder ni težko izračunati, da edini relevanten monom izhaja iz permutacije $\sigma = (1 \ 2 \cdots k)$, zato je nazadnje

$$\chi_{\lambda}(C_{n^1}) = \operatorname{sgn}(\sigma) = (-1)^s$$
.

Vrednost karakterja v dolgem ciklu je torej neničelna le za kljuke, v katerih pa ima vrednost ±1.

S Frobeniusovo formulo lahko določimo stopnje nerazcepnih upodobitev simetrične grupe. Za to bomo potrebovali koncept kljuke, ki je malo splošnejši od tiste, ki smo jo videli v zadnjem zgledu. Opazujmo Youngov diagram razčlenitve λ . Za vsako celico (i,j) diagrama, kjer i predstavlja vrstico in j stopec, je **kljuka** $H_{\lambda}(i,j)$ množica tistih celic, ki so desno ali pod celico (i,j), vključivši celico (i,j). **Dolžina kljuke** $H_{\lambda}(i,j)$ je enaka številu celic v kljuki, se pravi $|H_{\lambda}(i,j)|$.

Posledica (formula o dolžinah kljuk). Naj bo λ razčlenitev n. Tedaj je

$$\dim V_{\lambda} = \frac{n!}{\prod_{i,j} |H_{\lambda}(i,j)|}.$$

 $^{^{7}}H_{\lambda}(i,j)$ torej sestoji iz tistih celic (a,b), za katere je a=i in $b\geq j$ ali b=j in $a\geq i$.

Dokaz. Velja

$$\dim V_{\lambda} = \chi_{\lambda}(\mathcal{C}_{1^n}) = \left[\Delta(\mathbf{x}) \cdot (x_1 + x_2 + \dots + x_k)^n\right]_{(\ell_1, \ell_2, \dots, \ell_k)}.$$

Diskriminanto razvijemo kot v zadnjem zgledu, drugi člen pa po binomski formuli kot

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{j_1 + j_2 + \dots + j_k = n} \frac{n!}{j_1! j_2! \dots j_k!} x_1^{j_1} x_2^{j_2} \dots x_k^{j_k}.$$

Ko razviti vsoti zmnožimo, dobimo člen $x_1^{\ell_1}x_2^{\ell_2}\cdots x_k^{\ell_k}$, če in samo če za neko permutacijo $\sigma\in S_n$ in nabor j_1,j_2,\ldots,j_k velja $\sigma(k-i+1)-1+j_i=\ell_i$. Iskani koeficient je torej enak

$$\sum_{\sigma} \operatorname{sgn}(\sigma) \cdot \frac{n!}{(\ell_1 - \sigma(k) + 1)!(\ell_2 - \sigma(k - 1) + 1)! \cdots (\ell_k - \sigma(1) + 1)!},$$

kjer seštevamo po tistih $\sigma \in S_k$, za katere velja $\ell_i - \sigma(k-i+1) + 1 \ge 0$ za vsak i. To vsoto lahko prepišemo v

$$\frac{n!}{\ell_1!\ell_2!\cdots\ell_k!}\cdot\sum_{\sigma}\operatorname{sgn}(\sigma)\cdot\prod_{j=1}^k\ell_j(\ell_j-1)\cdots(\ell_j-\sigma(k-j+1)+2).$$

Zadnjo vsoto lahko seštevamo po vseh $\sigma \in S_k$, saj so členi, v katerih je $\ell_i - \sigma(k-i+1) + 1 < 0$, ničelni. To vsoto zato prepoznamo kot determinanto matrike razsežnosti $k \times k$ z j-tim stolpcem

1,
$$\ell_j$$
, $\ell_j(\ell_j-1)$, ..., $\ell_j(\ell_j-1)\cdots(\ell_j-k+2)$.

Ta determinanta je enaka Vandermondovi determinanti, zato je iskani koeficient enak

$$\frac{n!}{\ell_1!\ell_2!\cdots\ell_k!}\cdot\prod_{1\leq i< j\leq n}(\ell_i-\ell_j).$$

Če ima λ en sam stolpec in je torej $\lambda=(1,1,\ldots,1)$, potem je k=n in $\ell_i=n-i+1$, zato je zadnje število enako

$$\frac{n!}{n!(n-1)!\cdots 1!}\cdot \prod_{1\leq i< j\leq n} (j-i) = \frac{n!}{n!(n-1)!\cdots 1!}\cdot \prod_{1< j\leq n} (j-1)! = 1,$$

kot mora biti, saj že vemo, da je v tem primeru $V_{\lambda} \cong \mathbf{1}$. Dolžine kljuk so $|H_{\lambda}(i,1)| = n - i + 1$, zato formula o kljukah za ta trivialen primer drži. Splošnega primera ni težko izpeljati z indukcijo.

Domača naloga. Z indukcijo na število stolpcev Youngovega diagrama λ dokaži, da je

$$\frac{n!}{\ell_1!\ell_2!\cdots\ell_k!}\cdot\prod_{i< j}(\ell_i-\ell_j)=\frac{n!}{\prod_{i,j}|H_\lambda(i,j)|}.$$

S tem je formula o kljukah dokazana.

Zgled. Iz formule o dolžinah kljuk takoj izračunamo stopnjo standardne upodobitve. Usteza ji razčlenitev (n-1,1), torej je njena stopnja enaka

$$\frac{n!}{1 \cdot 2 \cdot \dots \cdot (n-2) \cdot n \cdot 1} = n-1.$$

Domača naloga. Izračunaj vrednost poljubnega karakterja χ_{λ} v konjugiranostnem razredu transpozicij.

V zvezi s tabelo karakterjev simetrične grupe omenimo še sodobnejši presenetljiv rezultat (Miller 2014), v katerem avtor dokaže, da so vrednosti skoraj vseh karakterjev v skoraj vseh grupnih elementih ničelne. Natančneje, če enakomerno naključno izberemo $g \in S_n$ in $\pi \in \operatorname{Irr}(S_n)$, potem je

$$\lim_{n\to\infty}\mathbf{P}_{g,\pi}\left(\chi_{\pi}(g)=0\right)=1.$$

Avtor omeni analogno vprašanje glede same tabele karakterjev.

Odprt problem. Enakomerno naključno izberimo konjugiranostni razred C v S_n in $\pi \in Irr(S_n)$. Kaj lahko povemo o obnašanju zaporedja $\mathbf{P}_{C,\pi}(\chi_{\pi}(C) = 0)$, ko gre n čez vse meje?

Alternirajoče grupe

Oglejmo si, kako lahko iz tabele karakterjev simetrične grupe skoraj popolnoma določimo tabelo karakterjev alternirajoče grupe A_n .

Določimo najprej konjugiranostne razrede. Naj bo $\mathcal{C}=\sigma^{A_n}\subseteq A_n$ konjugiranostni razred. Ta množica je torej zaprta za konjugiranje z vsemi sodimi permutacijami. Če velja tudi $\sigma^{(1\;2)}\in\mathcal{C}$, potem je \mathcal{C} celo konjugiranostni razred v S_n in torej ustreza neki razčlenitvi števila n. Prav lahko pa se zgodi, da \mathcal{C} ni zaprt za konjugiranje z $(1\;2)$. V tem primeru je množica $\mathcal{C}\cup\mathcal{C}^{(1\;2)}$ konjugiranostni razred permutacije σ v S_n in zato ustreza neki razčlenitvi števila n. Konjugiranostne razrede grupe A_n dobimo torej iz konjugiranostnih razredov sodih permutacij v S_n , in sicer določeni razredi v S_n ostanejo konjugiranostni razredi v A_n , drugi pa se razcepijo na dva konjugiranostna razreda v A_n enake velikosti. Ni težko prepoznati, kateri razredi se razcepijo.

Domača naloga. Naj bo $\mathcal C$ konjugiranostni razred sode permutacije v S_n , ki ustreza razčlenitvi $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$. Dokaži, da se $\mathcal C$ razcepi v dva konjugiranostna razreda v A_n , če in samo če so vsi λ_i lihi in različni med sabo.

Poskusimo zdaj na podoben način razumeti še nerazcepne upodobitve grupe A_n . Naj bo λ razčlenitev n, ki ji pritiče nerazcepna upodobitev ρ_λ na prostoru V_λ s karakterjem χ_λ . Opazujmo zožitev karakterja $\chi_\lambda|_{A_n}$ na A_n . Po ortonormiranosti karakterjev v S_n velja

$$\langle \chi_{\lambda}|_{A_n}, \chi_{\lambda}|_{A_n} \rangle + \frac{1}{|A_n|} \sum_{\sigma \in S_n \setminus A_n} |\chi_{\lambda}(\sigma)|^2 = \frac{1}{|A_n|} \cdot |S_n| \langle \chi_{\lambda}, \chi_{\lambda} \rangle = 2.$$

Torej je $\langle \chi_{\lambda}|_{A_n}, \chi_{\lambda}|_{A_n} \rangle \in \{1,2\}$, zato je $\rho_{\lambda}|_{A_n}$ bodisi nerazcepna upodobitev bodisi vsota dveh neizomorfnih nerazcepnih upodobitev. Drugi primer nastopi, če in samo če je $\chi_{\lambda}|_{S_n\setminus A_n}=0$, kar je ekvivalentno izomorfizmu $\rho_{\lambda}\cong \operatorname{sgn}\otimes \rho_{\lambda}$. Zadnja upodobitev je izomorfna $\rho_{\lambda'}$, zato se upodobitev ρ_{λ} razcepi na A_n , če in samo če je $\lambda=\lambda'$, se pravi da je λ simetrična razčlenitev. V tem primeru lahko zapišemo $\chi_{\lambda}|_{A_n}=\alpha+\beta$, kjer sta α,β nerazcepna karakterja A_n . Ni se težko prepričati, da zanju velja $\beta(\sigma)=\alpha(\sigma^{(1\ 2)})$ za vsak $\sigma\in A_n$, torej sta v posebnem upodobitvi, na katere razpade ρ_{λ} , enake razsežnosti. Konkretne vrednosti karakterjev α in β lahko izračunamo s pomočjo ortogonalnosti karakterjev.

S štetjem konjugiranostnih razredov v A_n se ni težko prepričati, da na opisan način dobimo vse nerazcepne upodobitve alternirajoče grupe.

4.2 Splošne linearne grupe

Opazujmo splošno linearno grupo

$$G_p = \operatorname{GL}_2(\mathbf{F}_p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | \ a,b,c,d \in \mathbf{F}_p, \ ad - bc \neq 0
ight\}$$

obrnljivih matrik razsežnosti 2×2 nad končnim poljem \mathbf{F}_p , kjer je p praštevilo. Njeno kategorijo upodobitev bomo obravnavali nad \mathbf{C} . Še pred tem pa moramo bolje spoznati to grupo.

Osnovne poteze

Grupo G_p lahko razumemo s pomočjo njenih podgrup

$$B_{p} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} | a, d \in \mathbf{F}_{p}^{*}, b \in \mathbf{F}_{p} \right\},$$

$$D_{p} = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} | a, d \in \mathbf{F}_{p}^{*} \right\},$$

$$U_{p} = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} | b \in \mathbf{F}_{p} \right\}.$$

Grupa B_p je **Borelova podgrupa**, grupa U_p pa **unipotentna podgrupa**. Seveda je $B_p/U_p = D_p$. Grupa G_p ima torej vrsto podgrup

$$G_p \ge B_p \ge U_p \ge 1$$
.

Borelova podgrupa ni edinka v G_p , ima pa kvocientna množica G_p/B_p odsekov vsekakor pomembno vlogo. Grupa G_p namreč deluje na ravnini \mathbf{F}_p^2 z matričnim množenjem in za tem na množici premic v tej ravnini, se pravi

$$\mathbf{P}^1(\mathbf{F}_p) = \{ \ell \le \mathbf{F}_p^2 \mid \dim \ell = 1 \},$$

čemur pravimo **projektiva premica** nad \mathbf{F}_p . Grupa G_p deluje na tej premici tranzitivno in stabilizator premice e_1 je ravno Borelova podgrupa B_p . Projektivno premico lahko zato enačimo z množico G_p/B_p . V posebnem tako dobimo homomorfizem

$$\Pi: G_p \to \operatorname{Sym}(\mathbf{P}^1(\mathbf{F}_p)) = S_{p+1},$$

o katerem bomo več povedali nekoliko kasneje. Za zdaj ne spreglejmo, da od tod takoj izračunamo $|G_n/B_n|=p+1$ in s tem

$$|G_p| = |G_p/B_p| \cdot |B_p/U_p| \cdot |U_p| = (p+1) \cdot (p-1)^2 \cdot p.$$

Grupa G_p je opremljena tudi z determinantnim homomorfizmom

$$\det: G_p \to \mathbf{F}_p^*$$
.

Jedro tega homomorfizma je **specialna linearna grupa**

$$\mathrm{SL}_2(\mathbf{F}_p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | \ a,b,c,d \in \mathbf{F}_p, \ ad-bc = 1 \right\}.$$

Velja $|\operatorname{SL}_2(\mathbf{F}_p)| = |G_p|/(p-1) = (p+1)p(p-1)$. Izpostavimo dva posebna elementa te grupe,

$$S_+ = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad S_- = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Levo množenje s tema dvema elementoma ustreza izvajanju vrstičnih operacij na dani matriki,

$$S_+ \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix}, \quad S_- \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c+a & d+b \end{pmatrix}$$

Ker lahko vsako matriko v $SL_2(\mathbf{F}_p)$ z vrstičnimi operacijami pripeljemo do identitete, sklenemo, da elementa S_+ , S_- generirata grupo $SL_2(\mathbf{F}_p)$.

Zgled. Naj bo p=2. Grupa G_2 v tem primeru enaka $\operatorname{SL}_2(\mathbf{F}_2)$ in je moči 6. Naravno deluje z matričnim množenjem na množici treh neničelnih vektorjev $\mathbf{F}_2^2 \setminus \{0\} = \{e_1, e_2, e_1 + e_2\}$. Na ta način dobimo homomorfizem

$$G_2 \to S_3$$
, $S_+ \mapsto (2\ 3)$, $S_- \mapsto (1\ 3)$.

ki je surjektiven, ker zapisani transpoziciji generirata grupo S_3 . Ker imata obe grupi enako moč, je celo izomorfizem, torej je $G_2 \cong S_3$.

Trditev. $Za p > 2 je [G_p, G_p] = SL_2(\mathbf{F}_p).$

Dokaz. Ker je $G_p/\mathrm{SL}_2(\mathbf{F}_p)$ komutativna, je $[G_p,G_p] \leq \mathrm{SL}_2(\mathbf{F}_p)$. Za obratno neenakost upoštevamo račun

$$\begin{bmatrix} S_{+}^{-2^{-1}}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix} = S_{+}^{2^{-1}} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot S_{+}^{-2^{-1}} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = S_{+}$$

in sklenemo $S_+ \in [G_p, G_p]$. Sorodno dobimo $S_- \in [G_p, G_p]$. Ker S_+, S_- generirata $\mathrm{SL}_2(\mathbb{F}_p)$, dobimo še drugo vsebovanost.

Nazadnje upoštevajmo oba posebna homomorfizma, Π in det. Presek njunih jeder sestoji iz skalarnih matrik z determinanto 1, torej je enak $\{I, -I\}$. Ta podgrupa je edinka v $\mathrm{SL}_2(\mathbf{F}_p)$, zato lahko tvorimo kvocient

$$\mathrm{PSL}_2(\mathbf{F}_p) = \frac{\mathrm{SL}_2(\mathbf{F}_p)}{\{I, -I\}}.$$

Zgled. Za p=2 je $\mathrm{PSL}_2(\mathbf{F}_2)=\mathrm{SL}_2(\mathbf{F}_2)\cong S_3$. Za p=3 se grupa $\mathrm{PSL}_2(\mathbf{F}_3)$ prek delovanja Π vloži v simetrično grupo S_4 . Ker je $|\mathrm{PSL}_2(\mathbf{F}_3)|=12$, je slika te vložitve podgrupa indeksa 2 v S_4 , kar pomeni, da gre za alternirajočo podgrupo. Sledi $\mathrm{PSL}_2(\mathbf{F}_3)\cong A_4$.

Domača naloga. Naj bo p=5. Grupa $\mathrm{PSL}_2(\mathbf{F}_5)$ je moči 60. Poišči njene 2-podgrupe Sylowa. Na množici teh podgrup grupa $\mathrm{PSL}_2(\mathbf{F}_5)$ deluje tranzitivno. Iz tega delovanja izpelji, da je $\mathrm{PSL}_2(\mathbf{F}_5) \cong A_5$.

Izrek (Galois 1831). Za p > 3 je grupa $PSL_2(\mathbf{F}_p)$ enostavna.

Družina grup G_p za praštevila p je torej dobra prijateljica ene od fundamentalnih družin končnih enostavnih grup.

Konjugiranostni razredi

Predpostavimo, da je p>2. Konjugiranostni razredi v G_p so enaki podobnostnim razredom matrik. Te najlažje sistematično obravnavamo prek lastnosti njihovih karakterističnih polinomov, ki so stopnje 2. Bodisi je ta polinom razcepen (z eno dvojno ničlo ali dvema različnima v \mathbf{F}_p) bodisi je nerazcepen. V primeru dvojnih ničel obravnavamo še možnost, da matrika morda ni diagonalizabilna. Na ta način dobimo naslednje konjugiranostne razrede.

1. **Skalarji**. Naj ima element $g \in G_p$ karakteristični polinom z dvojno ničlo $a \in \mathbf{F}_p^*$ in je hkrati diagonalizabilen. Tedaj je g skalarna matrika

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
.

Vsak tak element je centralen v G_p , zato je njegov konjugiranostni razred velikosti 1. Vseh takih razredov je p-1.

2. Nediagonalizabilni elementi. Naj ima element $g \in G_p$ karakteristični polinom z dvojno ničlo $a \in \mathbf{F}_p^*$ in hkrati ni diagonalizabilen. Tedaj je po Jordanovi formi g podoben matriki

$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$$
.

Centralizator vsakega takega elementa je enak

$$C_p = \left\{ \begin{pmatrix} x & t \\ 0 & x \end{pmatrix} | x \in \mathbf{F}_p^*, t \in \mathbf{F}_p \right\} = S_p \times U_p,$$

kjer je S_p množica skalarnih matrik. Velja $|C_p| = (p-1)p$. Konjugiranostni razred je torej velikosti $p^2 - 1$. Vseh takih razredov je p-1.

3. *Razcepni polenostavni elementi*. Naj ima element $g \in G_p$ karakteristični polinom z dvema različnima ničlama $a,b \in \mathbf{F}_p^*$. Tak element je diagonalizabilen in zato podoben

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
.

Centralizator vsakega takega elementa je enak

$$T_r = D_p = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbf{F}_p^* \right\}.$$

in je zato moči $(p-1)^2$. Konjugiranostni razred je torej velikosti p(p+1). Vseh takih razredov je $\binom{p-1}{2} = (p-1)(p-2)/2$.

4. *Nerazcepni polenostavni elementi*. Naj ima element $g \in G_p$ nerazcepen karakteristični polinom. Ta polinom torej nima ničel v \mathbf{F}_p , ima pa ničle v razširitvi F tega polja z ničlama karakterističnega polinoma. Ker je p > 2, sta ti dve ničli različni. Razširitev F/\mathbf{F}_p je stopnje 2, zato jo lahko predstavimo kot

$$F \cong rac{\mathbf{F}_p[X]}{(X^2 - \epsilon)} = \mathbf{F}_p(\sqrt{\epsilon}),$$

 $^{^8}$ Ponovljena ničla bi bila ničla odvoda karakterističnega polinoma, ki pa je linearen in ima vse ničle v \mathbf{F}_p .

kjer $\epsilon \in \mathbf{F}_p^*$ ni kvadrat v \mathbf{F}_p . To polje je opremljeno z Galoisjevim avtomorfizmom $\sigma \colon \sqrt{\epsilon} \mapsto -\sqrt{\epsilon}$ reda 2. Če je λ lastna vrednost g, je torej tudi λ^{σ} lastna vrednost in pripadajoča lastna vektorja sta v in v^{σ} . Zamenjajmo bazo v $w_2 = v + v^{\sigma}$ in $w_1 = (v - v^{\sigma})/\sqrt{\epsilon}$. Ta dva vektorja sta invariantna za avtomorfizem σ , zato imata obe komponenti v \mathbf{F}_p . V tej bazi ima element g matriko

$$\begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix}$$
,

kjer je $a = (\lambda + \lambda^{\sigma})/2 \in \mathbf{F}_p$ in $b = \sqrt{\epsilon}(\lambda - \lambda^{\sigma})/2 \in \mathbf{F}_p^*$. Centralizator vsakega takega elementa je enak

$$T_{nr} = \left\{ \begin{pmatrix} x & \epsilon y \\ y & x \end{pmatrix} \middle| x, y \in \mathbf{F}_p, (x, y) \neq (0, 0) \right\}.$$

Konjugiranostni razred je torej velikosti p(p-1). Vseh takih razredov je p(p-1)/2.

$$\begin{array}{c|cccc} & \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} & \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} & \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} & \begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix} \\ \hline \text{število razredov} & p-1 & p-1 & (p-1)(p-2)/2 & p(p-1)/2 \\ \text{velikost razreda} & 1 & p^2-1 & p(p+1) & p(p-1) \end{array}$$

Tabela 4.1: Konjugiranostni razredi v G_p : njihov tip, število razredov določenega tipa in velikost razreda

Za velika praštevila p velja $|G_p| \sim p^4$. Hkrati iz izračunov števila razredov in njihovih velikosti vidimo, da je število polenostavnih elementov asimptotsko primerljivo s p^4 , razdeljeno približno na polovico med razcepnimi in nerazcepnimi elementi. Generični elementi v G_p so za velika praštevila torej polenostavni.

Seštejemo število vseh konjugiranostnih razredov in dobimo

$$k(G_p) = p^2 - 1.$$

Grupa G_p ima torej $p^2 - 1$ nerazcepnih kompleksnih upodobitev.

Preden nadaljujemo z natančnim določanjem teh upodobitev, se še enkrat ozrimo na klasifikacijo konjugiranostnih razredov. Tekom določanja velikosti razredov smo naleteli na dva posebna centralizatorja polenostavnih elementov, in sicer T_r in T_{nr} . Ta dva centralizatorja bosta igrala pomembno vlogo v teoriji upodobitev grupe G_p . Prvemu pravimo *razcepni torus*, drugemu pa *nerazcepni torus*. Za razcepni torus velja

$$T_r \cong \mathbf{F}_p^* \times \mathbf{F}_p^*$$

nerazcepni torus pa identificiramo kot¹⁰

$$T_{nr} \cong \mathbf{F}_p(\sqrt{\epsilon})^*, \quad \begin{pmatrix} x & \epsilon y \\ y & x \end{pmatrix} \mapsto x + \sqrt{\epsilon}y.$$

 $^{^9}$ Če zamenjamo v zgornji matriki b z -b, dobimo podobno matriko. To ravno ustreza delovanju σ

 $^{^{10}}$ Element $x+\sqrt{\epsilon}y$ deluje na $\mathbf{F}_p(\sqrt{\epsilon})$ z množenjem z leve. Če to grupo obravnavamo kot vektorski prostor nad \mathbf{F}_p , potem je matrika tega delovanja v bazi $\{1,\sqrt{\epsilon}\}$ ravno ta, ki je prikazana.

Tabela karakterjev, 1. del

Predpostavimo, da je p>2. Določimo najprej enorazsežne upodobitve grupe G_p . Ker je $[G_p,G_p]=\mathrm{SL}_2(\mathbf{F}_p)=\ker(\det)$, vse enorazsežne upodobitve dobimo tako, da najprej uporabimo determinanto $\det:G_p\to \mathbf{F}_p^*$, za tem pa poljubno upodobitev abelove grupe \mathbf{F}_p^* . Za vsak homomorfizem $\chi\colon \mathbf{F}_p^*\to \mathbf{C}^*$ dobimo torej enorazsežno upodobitev $\chi\circ\det$ grupe G_p in vse enorazsežne upodobitve so take oblike. Vseh teh upodobitev je $|\mathbf{F}_p^*|=p-1$.

$$\frac{\left|\begin{array}{ccc} a & 0 \\ 0 & a \end{array}\right| \quad \left(\begin{array}{ccc} a & 1 \\ 0 & a \end{array}\right) \quad \left(\begin{array}{ccc} a & 0 \\ 0 & b \end{array}\right) \quad \left(\begin{array}{ccc} a & \epsilon b \\ b & a \end{array}\right)}{\chi \circ \det \left|\begin{array}{ccc} \chi(a)^2 & \chi(a)^2 & \chi(a)\chi(b) & \chi(a^2 - \epsilon b^2) \end{array}\right|}$$

Tabela 4.2: Enorazsežni karakterji G_p

Nadaljujmo s pomočjo homomorfizma $\Pi: G_p \to S_{p+1}$, ki opisuje permutacijsko delovanje G_p na projektivni premici. Od tod dobimo permutacijsko upodobitev G_p na $\mathbf{C}[\mathbf{P}^1(\mathbf{F}_p)]$. Kot smo videli že v primeru simetrične grupe, ta upodobitev ni nerazcepna, saj vedno vsebuje 1. Naj bo St komplement 1 v tej permutacijski upodobitvi. Ta komplement je do izomorfizma natako enolično določen in mu pravimo $Steinbergova\ upodobitev$. 11 Vrednosti karakterjev St ni težko izračunati. Račun pokaže $\langle St, St \rangle = 1$, zato je St nerazcepna upodobitev.

Tabela 4.3: Steinbergov karakter G_p

Steinbergovo upodobitev lahko tenzoriramo s poljubno enorazsežno in dobimo $\operatorname{St} \otimes (\chi \circ \operatorname{det})$, kar označimo krajše kot $\operatorname{St}(\chi)$. Za $\chi = 1$ dobimo običajno Steibergovo upodobitev. Vse te upodobitve so tudi nerazcepne.

Tabela 4.4: Posplošeni Steinbergov karakter G_p

Do zdaj smo našteli 2(p-1) nerazcepnih upodobitev, iščemo pa jih p^2-1 . Še veliko jih manjka! Sledeč filozofiji Artina in Brauerja nadaljne nerazcepne upodobitve iščemo z indukcijo iz podgrup G_p . Opazujmo Borelovo podgrupo B_p . Ta grupa je opremljena s projekcijo na razcepni torus

$$B_p \rightarrow B_p/U_p = D_p = T_r = \mathbf{F}_p^* \times \mathbf{F}_p^*$$

Nerazcepne upodobitve razcepnega torusa so ravno produkti $\chi_1 \times \chi_2$, kjer sta χ_1 , χ_2 nerazcepni upodobitvi prvega oziroma drugega faktorja torusa. Na ta način dobimo nerazcepne upodobitve Borelove podgrupe,

$$\rho(\chi_1,\chi_2):B_p\to \mathbf{C}^*, \quad \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \chi_1(a)\chi_2(d).$$

 $^{^{11}}$ Steinbergovo upodobitev dobimo torej tako, da Π podaljšamo s standardno upodobitvijo simetrične grupe $S_{p+1}.$

Vsako od teh upodobitev induciramo na grupo G_p in dobimo upodobitev

$$\pi(\chi_1,\chi_2) = \operatorname{Ind}_{B_n}^{G_p}(\rho(\chi_1,\chi_2))$$

razsežnosti $|G_p/B_p| = p + 1$. Karakter take upodobitve lahko izračunamo s formulo za vrednosti karakterjev inducirane upodobitve.

Domača naloga. Izračunaj vrednosti karakterjev upodobitve $\pi(\chi_1, \chi_2)$.

Tabela 4.5: Karakter upodobitve $\pi(\chi_1,\chi_2)$ grupe G_p

Od tod po preprostem računu določimo normo karakterja kot

$$||\chi_{\pi(\chi_1,\chi_2)}||^2 = \begin{cases} 2 & \chi_1 = \chi_2, \\ 1 & \chi_1 \neq \chi_2. \end{cases}$$

Za $\chi_1 \neq \chi_2$ je upodobitev $\pi(\chi_1,\chi_2)$ torej nerazcepna. Iz karakterja opazimo, da je ρ simetrična v svojih argumentih, se pravi $\pi(\chi_1,\chi_2) \cong \pi(\chi_2,\chi_1)$. Na ta način torej dobimo $\binom{p-1}{2} = (p-1)(p-2)/2$ nerazcepnih upodobitev grupe G_p . Tem upodobitvam pravimo **upodobitve glavne vrste**. ¹² V primeru, ko je $\chi_1 = \chi_2$, iz vrednosti karakterjev opazimo izomorfizem $\pi(\chi,\chi) \cong \operatorname{St}(\chi) \oplus (\chi \circ \operatorname{det})$, torej tukaj ne najdemo nobenih novih nerazcepnih upodobitev.

Tabela karakterjev, 2. del

Opazujmo zdaj še upodobitve, ki jih dobimo z indukcijo iz nerazcepnega torusa. Te so nekoliko bolj zapletene, zato bomo pristopili bolj previdno. Naj bo

$$\theta:T_{nr}\cong \mathbf{F}_p(\sqrt{\epsilon})^*\to \mathbf{C}^*$$

poljubna enorazsežna upodobitev. Izračunajmo karakter indukcije upodobitve θ nerazcepnega torusa. Uporabimo formulo za karakter inducirane upodobitve. Naj bo R množica predstavnikov desnih odsekov T_{nr} v G_p . Za $g \in G_p$ je $rgr^{-1} \in T_{nr}$ za nek $r \in R$, če in samo če je rgr^{-1} bodisi skalar bodisi nerazcepen polenostaven element, kar je enakovredno temu, da je g bodisi skalar bodisi nerazcepen polenostaven element. Za skalarje, ki jih interpretiramo kot elemente $g = a \in \mathbf{F}_p^* \subseteq \mathbf{F}_p(\sqrt{\epsilon})^*$, velja

$$\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)(a) = |G_p:T_{nr}| \cdot \theta(a) = p(p-1)\theta(a).$$

Za nerazcepne polenostavne elemente, ki jih interpretiramo kot elemente $g = a + \sqrt{\epsilon}b \in \mathbf{F}_p(\sqrt{\epsilon})^*$, pa velja $g^{G_p} \cap T_{nr} = \{g, g^{\sigma}\}$, zato sta v formuli za izračun induciranega karakterja relevantna le dva člena in dobimo

$$\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)(a+\sqrt{\epsilon}b)=\theta(a+\sqrt{\epsilon}b)+\theta(a-\sqrt{\epsilon}b).$$

Z avtomorfizmom $\sigma \in \operatorname{Gal}(\mathbf{F}_p(\sqrt{\varepsilon})/\mathbf{F}_p)$ lahko delujemo na upodobitvi s predpisom $\theta^{\sigma}(x) = \theta(x^{\sigma}) = \theta(x^p)$. Torej je zadnja vrednost karakterja enaka $\theta(g) + \theta^{\sigma}(g)$.

¹²Angleško principal series representations.

Tabela 4.6: Karakter upodobitve $\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)$ grupe G_p

Iz vrednosti karakterjev lahko izračunamo normo induciranega karakterja. Vrednost $||\mathrm{Ind}_{T_{nr}}^{G_p}(\theta)||^2$ je enaka

$$\frac{1}{|G_p|}\Biggl(\sum_{g\in \mathbf{F}_p^*}(p(p-1)|\theta(g)|)^2 + \sum_{g\in \mathbf{F}_p(\sqrt{\epsilon})^*\setminus \mathbf{F}_p^*}\frac{p(p-1)}{2}\cdot |\theta(g)+\theta^{\sigma}(g)|^2\Biggr).$$

Zadnjo vsoto lahko po razvoju kvadrata zapišemo kot

$$\frac{p(p-1)}{2} \cdot \left(2(p^2 - p) + 2\operatorname{Re}\left(\sum_{g \in \mathbf{F}_p(\sqrt{\varepsilon})^*} \theta(g) \overline{\theta^{\sigma}(g)} - \sum_{g \in \mathbf{F}_p^*} |\theta(g)|^2 \right) \right).$$

Prvo notranjo vsoto prepoznamo kot skalarni produkt upodobitev θ in θ^{σ} v grupi $\mathbf{F}_p(\sqrt{\epsilon})$, ki je enak bodisi 0 bodisi 1 po ortogonalnosti nerazcepnih karakterjev. S tem je norma $\|\operatorname{Ind}_{T_{-r}}^{G_p}(\theta)\|^2$ enaka

$$\frac{1}{|G_p|} \big(p^2 (p-1)^3 + p^2 (p-1)^2 + p(p-1) \cdot \big((p^2-1) \langle \theta, \theta^\sigma \rangle - (p-1) \big) \big),$$

kar se poenostavi do

$$||\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)||^2 = p - 1 + \langle \theta, \theta^{\sigma} \rangle = \begin{cases} p & \theta = \theta^{\sigma}, \\ p - 1 & \theta \neq \theta^{\sigma}. \end{cases}$$

Upodobitev $\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)$ je torej daleč od nerazcepne.

Pred nadaljevanjem postojmo pri pogoju $\theta=\theta^{\sigma}$, ki razdeli inducirane upodobitve na dva naravna razreda. Ta pogoj lahko enakovredno zapišemo kot $\theta(x)=\theta(x^p)$ za vsak $x\in \mathbf{F}_p(\sqrt{\epsilon})^*$, kar je enakovredno $\theta(x^{p-1})=1$. Vrednost θ je torej trivialna na množici $\{x^{p-1}\,|\,x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante ker(det) = $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante ker(det) = $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante ker(det) = $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, vi jo prepoznamo ravno kot jedro determinante ker(det) = $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, vi jo prepoznamo ravno kot jedro determinante ker(det) = $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante ker(det) = $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo ravno kot jedro determinante, ker $\{x\in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ker $\{$

Glede na to, da inducirana upodobitev iz nerazcepnega torusa ni nerazcepna, lahko poskusimo inducirati še iz kakšne druge podgrupe. Naravni kandidat, ki nam še preostane, je centralizator nediagonalizabilnega elementa, se pravi grupa $C_p = S_p \times U_p$. Ta sestoji iz vseh elementov v G_p , katerih karakteristični polinom ima dvojno ničlo v \mathbf{F}_p . Izberimo upodobitvi

$$\chi: S_p \cong \mathbf{F}_p^* \to \mathbf{C}^*, \quad \psi: U_p \cong \mathbf{F}_p \to \mathbf{C}^*$$

in tvorimo produktno upodobitev $\chi \times \psi$ grupe C_p . To upodobitev induciramo na grupo G_p . S formulo za izračun karakterjev inducirane upodobitve ni težko določiti njenega karakterja. Naj bo R množica predstavnikov desnih

odsekov C_p v G_p . Za $g \in G_p$ je $rgr^{-1} \in C_p$ za nek $r \in R$, če in samo če je g bodisi skalar bodisi nediagonalizabilen element. Za skalarje velja

$$\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi) egin{pmatrix} a & 0 \ 0 & a \end{pmatrix} = |G_p:C_p| \cdot \chi(a) = (p^2-1)\chi(a).$$

Za nediagonalizabilen element g pa velja $g^{G_p} \cap C_p = gU_p \backslash S_p$, zato je v formuli za induciran karakter relevantnih le p-1 členov in dobimo

$$\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi) \left(\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \right) = \sum_{t \in \mathbf{F}_p^*} (\chi \times \psi) \left(\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right) = \sum_{t \in \mathbf{F}_p^*} \chi(a) \psi(t).$$

Zadnjo vsoto lahko prepišemo kot

$$\chi(a) \cdot \left(\sum_{t \in \mathbf{F}_p} \psi(t) - 1\right) = \chi(a) \cdot (p \cdot \langle \psi, \mathbf{1} \rangle - 1) = \begin{cases} (p-1)\chi(a) & \psi = \mathbf{1}, \\ -\chi(a) & \psi \neq \mathbf{1}. \end{cases}$$

Inducirani karakter je torej odvisen od ψ le preko veljavnosti enakosti $\psi = 1$.

$$\frac{\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \qquad \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \qquad \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \qquad \begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix}}{\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi) \quad (p^2-1)\chi(a) \qquad (p \cdot 1_{\psi=1}-1)\chi(a) \qquad 0}$$

Tabela 4.7: Karakter upodobitve $\operatorname{Ind}_{C_n}^{G_p}(\chi \times \psi)$ grupe G_p

Iz vrednosti karakterjev izračunamo normo

$$\left|\left|\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi)\right|\right|^2 = egin{cases} 2(p-1) & \psi = \mathbf{1}, \ p & \psi \neq \mathbf{1}. \end{cases}$$

Upodobitev $\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi)$ je torej spet daleč od nerazcepne.

Primerjajmo obe inducirani upodobitvi. Skalarni produkt njunih karakterjev lahko izračunamo tako, da seštejemo le prispevke po skalarnih elementih, saj so vsi ostali členi ničelni. Dobimo

$$\langle \operatorname{Ind}_{T_{nr}}^{G_p}(\theta), \operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi) \rangle = \frac{1}{|G_p|} \sum_{a \in \mathbf{F}_p^*} p(p-1)\theta(a) \cdot (p^2-1)\overline{\chi(a)},$$

kar prepoznamo kot

$$(p-1)\cdot\langle\theta|_{S_p},\chi\rangle=egin{cases} 0 & \chi\neq\theta|_{S_p},\ p-1 & \chi=\theta|_{S_n}. \end{cases}$$

Če torej izberemo $\chi=\theta|_{S_p}$, je skalarni produkt med obema upodobitvama enak p-1. Izračunali smo tudi že normi obeh upodobitev, obe sta blizu \sqrt{p} . V luči Cauchy-Schwartzove neenakosti sta karakterja obeh induciranih upodobitev kot vektorja torej zelo blizu temu, da bi bila vzporedna in s tem enaka. Najtesnejšo zvezo med njima dobimo, če minimiziramo normi obeh, torej če vzamemo za θ regularen karakter in za ψ poljuben netrivialen karakter. S to izbiro opazujmo virtualen karakter

$$\zeta_{\theta} = \operatorname{Ind}_{C_p}^{G_p}(\theta|_{S_p} \times \psi) - \operatorname{Ind}_{T_{p_p}}^{G_p}(\theta) \in R(G_p).$$

Tabela 4.8: Karakter ζ_{θ} grupe G_p

Po že opravljenih računih je norma tega virtualnega karakterja res minimalna,

$$\langle \zeta_{\theta},\zeta_{\theta}\rangle = ||\operatorname{Ind}_{C_p}^{G_p}(\theta|_{S_p}\times\psi)||^2 + ||\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)||^2 - 2\langle\operatorname{Ind}_{T_{nr}}^{G_p}(\theta),\operatorname{Ind}_{C_p}^{G_p}(\chi\times\psi)\rangle = 1.$$

Torej je bodisi ζ_{θ} bodisi $-\zeta_{\theta}$ nerazcepen karakter. Ker velja $\zeta_{\theta}(1) = p - 1$, je ζ_{θ} nerazcepen karakter.

Na ta način za vsak regularen karakter θ nerazcepnega torusa dobimo nerazcepno upodobitev s karakterjem ζ_{θ} . Taki upodobitvi pravimo **ostna upodobitev**. ¹³ Z izračunom skalarnih produktov se ni težko prepričati, da sta dve taki upodobitvi izomorfni, če in samo če sta regularna karakterja v isti Galoisjevi orbiti. Število ostnih upodobitev je zato enako p(p-1)/2. Poudarimo, da smo ostne upodobitve konstruirali le implicitno prek indukcij. Z nekaj truda bi lahko izpeljali eksplicitno konstrukcijo teh upodobitev. Izkaže se, da ostnih upodobitev ni mogoče opisati kot neposredno induciranih iz podgrup G_p . Najpreprostejši znan opis je preko Weilove upodobitve (Bushnell-Henniart 2006).

Povzemimo. Skupaj smo našli naslednje upodobitve:

- linearne: p-1 upodobitev stopnje 1,
- Steinbergove: p-1 upodobitev stopnje p,
- glavne vrste: (p-1)(p-2)/2 upodobitev stopnje p+1,
- ostne: p(p-1)/2 upodobitev stopnje p-1.

S tem smo našteli p^2-1 nerazcepnih upodobitev in zatorej vse nerazcepne upodobitve grupe G_p .

	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	$\begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix}$
$\chi \circ \det$	$\chi(a)^2$	$\chi(a)^2$	$\chi(a)\chi(b)$	$\chi(a^2-\epsilon b^2)$
$\operatorname{St}(\chi)$	$p\chi(a)^2$	0	$\chi(a)\chi(b)$	$-\chi(a^2-\epsilon b^2)$
$\pi(\chi_1,\chi_2)$	(p +	$\chi_1(a)\chi_2(a)$	$\chi_1(a)\chi_2(b)$ +	0
	$1)\chi_1(a)\chi_2(a)$		$\chi_2(a)\chi_1(b)$	
$\zeta_{ heta}$	$(p-1)\theta(a)$	$-\theta(a)$	0	$- heta(a+\sqrt{\epsilon}b)-$
				$\theta(a-\sqrt{\epsilon}b)$

Tabela 4.9: Tabela karakterjev G_p

Izračunano tabelo karakterjev grupe G_p lahko uporabimo, da z njo določimo še tabelo karakterjev grupe $\mathrm{PSL}_2(\mathbf{F}_p)$.

Domača naloga. Izračunaj tabelo karakterjev grupe $SL(\mathbf{F}_p)$ in grupe $PSL_2(\mathbf{F}_p)$. S tabelo se prepričaj, da je grupa $PSL_2(\mathbf{F}_p)$ enostavna za p > 3.

 $^{^{13}}$ Angleško $cuspidal\ representation$.

Matrike višjih razsežnosti

Argumente, ki smo jih videli v tem razdelku, bi lahko posplošili na matrike večjih razsežnosti in tako (s precej več truda) izračunali generično tabelo karakterjev grupe $\mathrm{GL}_n(\mathbf{F}_q)$, kot je storil (Green 1955). Zopet dobimo glavno vrsto upodobitev, tokrat inducirano induktivno iz podgrup $\mathrm{GL}_m(\mathbf{F}_q)$ za m < n. Pri tem je relevantno, da to lahko naredimo na več načinov, na primer za vsako razčlenitev števila $n = m_1 + m_2 + \cdots + m_k$ lahko v $\mathrm{GL}_n(\mathbf{F}_q)$ vidimo bločnodiagonalni direktni produkt grup

$$\operatorname{GL}_{m_1}(\mathbf{F}_q) \times \operatorname{GL}_{m_2}(\mathbf{F}_q) \times \cdots \times \operatorname{GL}_{m_k}(\mathbf{F}_q).$$

Teorija upodobitev $\operatorname{GL}_n(\mathbf{F}_q)$ zato vključuje nekaj kompleksnosti teorije upodobitev simetrične grupe S_n . Tudi v splošnem primeru dobimo ostne upodobitve, in sicer s pomočjo indukcije iz Galoisjevih razredov regularnih upodobitev nerazcepnega torusa, ki ga lahko predstavimo kot končno polje \mathbf{F}_{q^n} .

Ni pa tako enostavno pridobiti tudi tabele karakterjev družine enostavnih grup $\mathrm{PSL}_n(\mathbf{F}_q)$ ali njene prijateljice $E_8(\mathbf{F}_q)$. Seveda lahko posamezne tabele za specifične vrednosti n in q izračunamo, 14 ampak končni cilj je imeti generične tabele karakterjev, kot smo to dosegli za $G_p = \mathrm{GL}_2(\mathbf{F}_p)$. Za razumevanje teorije upodobitev teh grup imamo na voljo matematično zahtevno Deligne-Lusztigovo teorijo, ki upodobitve končnih grup sestavlja s pomočjo upodobitev prirejenih algebraičnih grup nad algebraično zaprtim poljem, na primer $\mathrm{SL}_n(\overline{\mathbf{F}_p})$, in sicer te upodobitve izhajajo iz delovanja na ℓ -adičnih kohomoloških grupah prirejenih raznoterosti. Iz te teorije lahko razumemo del generične tabele karakterjev, na primer poznamo vse stopnje nerazcepnih upodobitev, ne poznamo pa vseh vrednosti vseh karakterjev.

¹⁴Računanje teh tabel specifičnih končnih enostavnih grup je zbrano v ATLAS. Ti izračuni so močno pripomogli k dokazu izreka o klasifikaciji končnih enostavnih grup.

Poglavje 5

Aplikacije

Avstralski matematik Geordie Williamson je na svojem plenarnem predavanju na Mednarodnem matematičnem kongresu leta 2018 opisal teorijo upodobitev na naslednji način.

The idea is that groups in mathematics are everywhere, but groups are nonlinear objects and are rather complicated. We attempt to linearize in some way by taking, for example, actions on a space of functions. We understand what can happen in the linear world by representation theory. Then we hope to go back to our original problem.

V tem poglavju si bomo pogledali nekaj konkretnih aplikacij teorije upodobitev, ki na prvi pogled nimajo nobene povezave z upodobitvami, nazadnje pa je za njihovo razumevanje ključna. Pričeli bomo z abelovimi grupami. V tem primeru aplikacijam teorije upodobitev ponavadi rečemo *harmonična analiza*. To zgodbo bomo potem razširili še v nekomutativen svet.

5.1 Aritmetična zaporedja

Aritmetična zaporedja v gostih množicah

Za poljuben $n \in \mathbb{N}$ opazujmo množico celih števil $\{1,2,\ldots,n\}$. Vsaki njeni podmnožici A lahko priredimo gostoto $\delta = |A|/n$. Kadar je A visoke gostote, pričakujemo, da bomo v njej lahko našli veliko vzorcev različnih vrst, ki upoštevajo strukturo seštevanja ali množenja v množici celih števil. Eden od temeljnih takih vzorcev v množici celih števil so *aritmetična zaporedja*, se pravi zaporedja oblike

$$x, x + y, x + 2y, \dots, x + (k-1)y$$

za $x, y \in \mathbb{Z}$, $k \in \mathbb{N}$. Število k je dolžina tega zaporedja in opazujemo seveda le zaporedja dolžine vsaj 3. Izkaže se, da je ta struktura vselej prisotna, neodvisno od izbire konkretne množice A, če je le n dovolj velik in gostota δ pozitivna.

Izrek (Szemerédi 1974). Naj bosta $k \ge 3$ in $\delta > 0$. Tedaj za vse dovolj velike $n \in \mathbb{N}$ velja, da vsaka podmnožica $A \subseteq \{1, 2, ..., n\}$ gostote vsaj δ vsebuje aritmetično zaporedje dolžine k.

Dokaz tega izreka je kombinatoričen in tehnično precej zahteven. Mi si bomo ogledali poseben primer za k=3, torej za obstoj 3-členih aritmetičnih zaporedij. Za ta primer bomo izpeljali celo nekoliko močnejšo izjavo, katere dokaz bo slonel na teoriji upodobitev.

Izrek (Roth 1953). Za neko konstanto C in za vse dovolj velike $n \in \mathbb{N}$ velja, da vsaka podmnožica $A \subseteq \{1, 2, ..., n\}$ gostote vsaj $C/\log\log n$ vsebuje aritmetično zaporedje dolžine 3.

Harmonična analiza

Projekcija v F_p

Rothov izrek se sicer tiče podmnožice celih števil, ampak ker to množico filtriramo s podmnožicami $\{1,2,\ldots,n\}$, lahko izberemo neko praštevilo $p \geq n$ in dogajanje opazujemo v projekciji na kvocient $\mathbf{Z}/p\mathbf{Z} = \mathbf{F}_p$. Pri tem moramo biti nekoliko previdni, saj so aritmetična zaporedja v \mathbf{F}_p lahko nekoliko nenavadna.

Zgled. V \mathbf{F}_p tvori množica $\{0,1,(p+1)/2\}$ aritmetično zaporedje. Res, če vzamemo x=0, y=(p+1)/2, potem dobimo zaporedje z razliko y kot

$$x = 0$$
, $x + y = \frac{p+1}{2}$, $x + 2y = p + 1 = 1$.

Če torej rešimo Rothov problem za podmnožice \mathbf{F}_p namesto za podmnožice $\{1,2,\ldots,n\}$, moramo biti previdni, saj dobljenega aritmetičnega zaporedja morda ne bomo mogli dvigniti iz \mathbf{F}_p v \mathbf{Z} . Tej težavi se lahko izognemo tako, da izberemo praštevilo p z lastnostjo p > 2n. Ni se težko prepričati, da v tem primeru vsako aritmetično zaporedje s 3 členi v $\{1,2,\ldots,n\}\subseteq \mathbf{F}_p$ lahko dvignemo do aritmetičnega zaporedja v $\{1,2,\ldots,n\}$. Poleg tega želimo, da se gostota množice A pri projekciji iz $\{1,2,\ldots,n\}$ v \mathbf{F}_p ne spremeni preveč, zato praštevilo p ne sme biti preveliko. Optimalna izbira bo torej praštevilo p z lastnostjo 2n , taka izbira pa tudi vselej obstaja po Bertrandovem postulatu.

Dogajanje smo na ta način prestavili v končno abelovo grupo \mathbf{F}_p . V njej opazujemo množico $A \subseteq \mathbf{F}_p$, ki je gostote δ . Dokazati želimo, da za dovolj velik p obstajajo v A aritmetična zaporedja dolžine 3, če je le $\delta > C/\log\log p$ za neko konstanto C.

Izražanje problema v jeziku upodobitev

Rothov izrek v \mathbf{F}_p napadimo z močnimi orodji teorije upodobitev grupe \mathbf{F}_p . Problem bomo najprej izrazili v prostoru funkcij fun $(\mathbf{F}_p, \mathbf{C})$. Naj bo $\mathbf{1}_A$ karakteristična funkcija množice A. Vsako aritmetično zaporedje dolžine 3 je oblike x, z, y, pri čemer je z - x = y - z, kar je enakovredno x + y = 2z. Števila x, y in (x + y)/2 morajo torej pripadati množici A. Število aritmetičnih zaporedij dolžine 3 v A lahko zato izrazimo kot

$$\sum_{x,y,z\in\mathbf{F}_p:x+y=2z}1_A(x)1_A(y)1_A(z)=\sum_{z\in\mathbf{F}_p}\left(1_A*1_A\right)(z)1_A(z/2)$$

Naj bo $1_{2A}(z) = 1_A(z/2)$. Zadnjo vsoto prepoznamo kot skalarni produkt

$$p \cdot \langle 1_A * 1_A, 1_{2A} \rangle$$
,

kar lahko s Parsevalovim izrekom razvijemo kot

$$\frac{1}{p} \sum_{\chi \in \operatorname{Irr}(\mathbf{F}_p)} \widehat{\mathbf{1}_{A} * \mathbf{1}_{A}}(\chi) \overline{\widehat{\mathbf{1}_{2A}}(\chi)}.$$

Trikrat globoko vdihnimo in premislimo vsako zadevo posebej.

1. Nerazcepne upodobitve oziroma karakterje grupe \mathbf{F}_p eksplicitno poznamo, enaki so

$$\chi_j: \mathbf{F}_p \to \mathbf{C}^*, \quad x \mapsto \zeta^{jx}$$

za
$$j \in \mathbf{F}_{p}$$
, kjer je $\zeta = e^{2\pi i/p}$.

2. Povezavo med konvolucijo in Fourierovo transformacijo smo videli že pri spletičnah. Dokazali smo, da vse endospletične regularne upodobitve izhajajo iz uporabe Fourierove transformacije. Te lastnosti smo kasneje uporabili tudi pri simetrični grupi. Naj bo zdaj G poljubna grupa in F polje. Naj bosta $f_1, f_2 \in \text{fun}(G, F)$ funkciji in ρ upodobitev grupe G. Kompozicija Fourierovih transformacij $\widehat{f}_1(\rho) \cdot \widehat{f}_2(\rho)$ je enaka

$$\sum_{g_1,g_2\in G} f_1(g_1)f_2(g_2)\rho(g_1^{-1}g_2^{-1}) = \sum_{g\in G} (f_2*f_1)(g)\rho(g^{-1}).$$

Torej velja

$$\widehat{f_1}(\rho) \cdot \widehat{f_2}(\rho) = \widehat{f_2 * f_1}(\rho)$$

in Fourierova transformacija pretvarja konvolucijo funkcij v produkt linearnih preslikav, pri čemer moramo biti pozorni na vrstni red operacij zaradi morebitne nekomutativnosti grupe.

3. Velja

$$\widehat{\mathbf{1}_{2A}}(\chi) = \sum_{g \in \mathbf{F}_p} \mathbf{1}_{2A}(g) \chi(-g) = \sum_{x \in \mathbf{F}_p} \mathbf{1}_A(x) \chi(-2x) = \widehat{\mathbf{1}_A}(\chi^2).$$

Število iskanih aritmetičnih zaporedij je zato enako

$$\frac{1}{p} \sum_{j \in \mathbf{F}_p} \widehat{1_A}(\chi_j)^2 \widehat{\overline{1_A}(\chi_j^2)} = \frac{1}{p} \sum_{j \in \mathbf{F}_p} \widehat{1_A}(\chi_j)^2 \widehat{1_A}(\chi_{-2j})$$

Glavni del in prispevki netrivialnih karakterjev

Izolirajmo prispevek trivialne upodobitve. Velja $\widehat{1_A}(\chi_0) = \widehat{1_A}(1) = |A|$, zato je število aritmetičnih zaporedij dolžine 3 v A enako

$$\frac{|A|^3}{p} + \frac{1}{p} \sum_{j \in \mathbf{F}_p^*} \widehat{1_A}(\chi_j)^2 \widehat{1_A}(\chi_{-2j}).$$

Glavni del rezultata je nekoliko nehomogen. To lahko popravimo z dodatno normalizacijo s p^2 , ki ima pravzaprav zelo smiselno interpretacijo. Če namreč izberemo $x,y,z\in \mathbf{F}_p$ enakomerno naključno, a pogojno na veljavnost x+y=2z, potem je verjetnost, da so x,y,z vsi v A, enaka

$$\mathbf{P}_{x,y,z\in\mathbf{F}_{p}}(x,y,z\in A \mid x+y=2z) = \delta^{3} + \frac{1}{p^{3}} \sum_{j\in\mathbf{F}_{p}^{*}} \widehat{\mathbf{1}_{A}(\chi_{j})}^{2} \widehat{\mathbf{1}_{A}}(\chi_{-2j}).$$

Brez pogojne omejitve bi bila zgornja verjetnost seveda enaka δ^3 . Srčika pogoja aritmetičnega zaporedja dolžine 3 se torej skriva v prispevkih netrivialnih karakterjev. Splošna strategija harmonične analize je, da ti prispevki nikdar ne uspejo izničiti glavnega delta δ^3 in da v A torej res obstaja aritmetično zaporedje dolžine 3.

 $^{^1}$ Na ta način torej izbiramo aritmetična zaporedja v \mathbf{F}_p dolžine 3.

Za omejitev netrivialnih prispevkov najprej uporabimo trikotniško neenakost,

$$\left| \sum_{j \in \mathbf{F}_p^*} \widehat{\mathbf{1}_A(\chi_j)}^2 \widehat{\mathbf{1}_A}(\chi_{-2j}) \right| \leq \max_{j \in \mathbf{F}_p^*} |\widehat{\mathbf{1}_A(\chi_j)}| \cdot \sum_{j \in \mathbf{F}_p^*} |\widehat{\mathbf{1}_A}(\chi_j)| |\widehat{\mathbf{1}_A}(\chi_{-2j})|.$$

Zadnjo vsoto ocenimo s Cauchy-Schwartzovo neenakostjo, tako da dobimo zgornjo mejo

$$\max_{j \in \mathbf{F}_p^*} |\widehat{\mathbf{1}_A(\chi_j)}| \cdot \sqrt{\sum_{j \in \mathbf{F}_p} |\widehat{\mathbf{1}_A}(\chi_j)|^2} \cdot \sqrt{\sum_{j \in \mathbf{F}_p} |\widehat{\mathbf{1}_A}(\chi_{-2j})|^2}.$$

Vsota pod korenoma je v obeh primerih enaka, in sicer jo po Parsevalu lahko izrazimo kot

$$\sum_{j\in \mathbf{F}_p} |\widehat{1_A}(\chi_j)|^2 = \sum_{j\in \mathbf{F}_p} \langle \widehat{1_A}(\chi_j), \widehat{1_A}(\chi_j) \rangle_{\mathrm{HS}} = p^2 \langle 1_A, 1_A \rangle = p|A|.$$

Od tod torej sklenemo

$$\mathbf{P}_{x,y,z\in\mathbf{F}_p}(x,y,z\in A\mid x+y=2z)\geq \delta^3-\delta\cdot\frac{1}{p}\max_{j\in\mathbf{F}_p^*}|\widehat{\mathbf{1}_A}(\chi_j)|.$$

Kadar je Fourierova transformacija 1_A v vseh netrivialnih karakterjih strogo manjša od $p\delta^2$, je verjetnost na levi strani strogo pozitivna, zato res najdemo aritmetično zaporedje dolžine 3 v A. Ko pa ima po drugi strani $\widehat{1_A}$ kakšen velik netrivialen Fourierov koeficient, se pravi ko za nek $j \in \mathbf{F}_p^*$ velja

$$|\widehat{1_A}(\chi_j)| \ge p\delta^2$$

pa harmonična analiza odpove. V tem primeru moramo podrobneje raziskati pomen velikega Fourierovega koeficienta.

Večanje gostote

Predpostavimo, da je $|\widehat{\mathbf{1}_A}(\chi_j)| \ge p\delta^2$ za nek $j \in \mathbf{F}_p^*$. Preden nadaljujemo, bomo funkcijo $\mathbf{1}_A$ projicirali na podprostor funkcij z ničelnim povprečjem. Naj bo $f = \mathbf{1}_A - \delta \in \text{fun}(\mathbf{F}_p, \mathbf{C})$. Velja

$$\widehat{f}(\chi_j) = \widehat{1_A}(\chi_j) - \delta \widehat{1}(\chi_j) = \widehat{1_A}(\chi_j) - \delta p \langle \mathbf{1}, \chi_j \rangle = \widehat{1_A}(\chi_j),$$

zato je

$$\left| \sum_{x \in \mathbf{F}_p} f(x) \zeta^{-jx} \right| = |\widehat{f}(\chi_j)| \ge p \delta^2.$$

Funkcija $x \mapsto \zeta^{-jx}$ precej oscilira, ko x preteče ves \mathbf{F}_p . Če bi bila ta funkcija približno konstanta, bi lahko sklepali, da je vsota vrednosti f precej velika. Približno konstantnost te funkcije lahko dosežemo tako, da preidemo na neko podmnožico \mathbf{F}_p .

Domača naloga. Obstaja konstanta $c \in (0, \frac{1}{2})$, za katero velja naslednje. Množico \mathbf{F}_p lahko razčlenimo kot disjunktno unijo množice podmnožic P_1, P_2, \ldots, P_m , tako da je vsaka množica P_i aritmetično zaporedje dolžine med $c\sqrt{p}$ in $(1-c)\sqrt{p}$, hkrati pa je $|\zeta^{-jx}-\zeta^{-jy}| < c\delta^2$ za vsaka $x,y \in P_i$.

²Argument za to je konceptualno preprost, a poln tehničnih podrobnosti.

S pomočjo razčlenitve množice \mathbf{F}_p torej sklepamo

$$\left| \sum_{x \in \mathbf{F}_p} f(x) \zeta^{-jx} \right| \leq \sum_{i=1}^m \left| \sum_{x \in P_i} f(x) \zeta^{-jx} \right| = \sum_{i=1}^m \left| \sum_{x \in P_i} f(x) \left(\zeta^{-jx_0} + \left(\zeta^{-jx} - \zeta^{-jx_0} \right) \right) \right|,$$

kjer smo v vsakem P_i izbrali nek element x_0 . Po trikotniški neenakosti in upoštevanju približne konstantnosti funkcije $x \mapsto \zeta^{-jx}$ na P_i lahko zadnjo vsoto omejimo navzgor kot

$$\sum_{i=1}^{m} \left| \sum_{x \in P_i} f(x) \right| + \sum_{i=1}^{m} \left| \sum_{x \in P_i} f(x) \right| c\delta^2 \le \sum_{i=1}^{m} \left| \sum_{x \in P_i} f(x) \right| + cp\delta^2.$$

S tem nazadnje dobimo neenakost

$$\sum_{i=1}^{m} \left| \sum_{x \in P_i} f(x) \right| \ge (1-c)p\delta^2.$$

Po konstrukciji je povprečje funkcije f po \mathbf{F}_p enako 0. Vsote po zaporedjih P_i se torej seštejejo v 0, po absolutni vrednosti pa se seštejejo v vsaj $(1-c)p\delta^2$. Torej obstaja nek i, za katerega velja

$$\sum_{x \in P_i} f(x) + \left| \sum_{x \in P_i} f(x) \right| \ge \frac{1}{m} (1 - c) p \delta^2.$$

Ker je $|\mathbf{F}_p| = \sum_{i=1}^m |P_i|$, dobimo neenakost $p \ge mc\sqrt{p}$. Hkrati za vsako realno število r velja $r + |r| = 2\max(r, 0)$, zato je

$$\max\left(\sum_{x\in P_i} f(x), 0\right) \ge \frac{c(1-c)}{2} \sqrt{p} \delta^2 \ge \frac{c}{2} |P_i| \delta^2.$$

Leva stran je zato strogo pozitivna in enaka vsoti f po P_i . Upoštevamo še $f=1_A-\delta$ in sklenemo

$$|A \cap P_i| \ge \frac{c}{2} |P_i| \delta^2 + |P_i| \delta$$

oziroma ekvivalentno

$$\frac{|A\cap P_i|}{|P_i|} \ge \delta + \frac{c}{2}\delta^2.$$

Množica A ima torej v aritmetičnem zaporedju P_i gostoto za $\frac{c}{2}\delta^2$ večjo kot v \mathbf{F}_p .

Iteracija

Povzemimo. Če množica A gostote δ nima aritmetičnih zaporedij dolžine 3, potem smo našli aritmetično zaporedje P_i , v katerem ima A gostoto vsaj $\delta + \frac{c}{2}\delta^2$. Ta postopek zdaj iteriramo. Če množica $A \cap P_i$ nima aritmetičnih zaporedij dolžine 3, potem najdemo aritmetično zaporedje dolžine med $c\sqrt{|P_i|}$ in $(1-c)\sqrt{|P_i|}$, v katerem ima A gostoto vsaj $\delta + 2\frac{c}{2}\delta^2$, in tako dalje. Ker gostota na nobeni točki ne more preseči vrednosti 1, se ta postopek gotovo ustavi po končno mnogo korakih. Na tej točki najdemo aritmetično zaporedje dolžine 3 v A, če je le velikost množice P_i do te točke dovolj velika. Iz podrobne analize večanja gostote in spreminjaja velikosti množic P_i se da izpeljati, da ta argument res deluje, če je le $\delta \geq C/\log\log p$ za neko konstanto C. S tem je Rothov izrek dokazan.

 $^{^3}$ Ne bomo preveč nantančni glede iteracije. V grobem lahko iz aritmetičnega zaporedja P_i preidemo na ciklično grupo enake moči (morda ne več praštevilske) in potem ponovimo argument v tej ciklični grupi.

⁴Glej (Peluse 2022).

Onkraj Rothovega izreka

Mnogo dela po Rothovem izreku je bilo posvečenega izboljšanju meje o gostoti, ki še zagotovi obstoj aritmetičnih zaporedij dolžine 3. Večina izboljšav spodnje meje je s sabo prinesla nove ideje, uporabne tudi za reševanje kakšnih drugih problemov. Najsodobnejši rezultat v zvezi s tem je prebojen članek (Bloom-Sisask 2020), kjer avtorja dokažeta, da obstajata konstanti C, c, tako da ima vsaka množica $A \subseteq \{1, 2, \ldots, n\}$ gostote vsaj $C/(\log n)^{1+c}$ aritmetično zaporedje dolžine 3. Te meja se torej znebi dvojnega logaritma in uvede minimalen eksponent k logaritmu, zato je bistveno manjša restrikcija na gostoto.

Ta rezultat lahko uporabimo, na primer, z množico praštevil. Po izreku Čebiševa je število praštevil do n vsaj $Cn/\log n$, zato imajo praštevila v $\{1,2,\ldots,n\}$ gostoto vsaj $C/\log n$ in na njih lahko apliciramo posplošeni Rothov izrek. Ker lahko vselej tudi izpustimo prvih nekaj praštevil, torej sklepamo, da množica praštevil vsebuje neskončno mnogo aritmetičnih zaporedij dolžine 3. Poudarimo konceptualno pomembno dejstvo, da smo ta rezultat izpeljali zgolj zaradi same gostote praštevil in ne zaradi kakršne koli druge njihove lastnosti. Nenazadnje je slogan izvirnega Rothovega izreka ta, da lahko najdemo v vsaki dovolj gosti množici strukturo.

Odprt problem. Ali je mogoče z ustrezno posplošitvijo Rothovega izreka dokazati, da praštevila vsebujejo aritmetična zaporedja dolžine k za vsak $k \geq 3$? Obstoj takih zaporedij je sicer znan iz (Green-Tao 2004), ki temelji na razširitvi Szemerédijevega izreka, a ne v smeri nižanja meje gostote, temveč v uporabi izreka na specifičnih redkih podmnožicah.

5.2 Podmnožice brez produktov

Antipodgrupe

Naj bo G končna grupa in $A \subseteq G$ njena podmnožica. Množica A je podgrupa, če in samo če je zaprta za množenje, se pravi $A \cdot A \subseteq A$. Skrajno diametralno tej strukturi se znajdemo, če predpostavimo, da produkt nobenih dveh elementov iz množice A ne pripada A, se pravi $A \cdot A \cap A = \emptyset$. Z drugimi besedami, enačba xy = z v množici A nima rešitev. V tem primeru rečemo, da je množica A brez produktov. Če smo v teoriji grup malodane obsedeni s strukturiranimi množicami, nas mora vsaj malo tudi zanimati tudi druga skrajnost.

Kadar množica A vsebuje kakšno podgrupo, seveda ni brez produktov, zato se morajo take množice čim bolj izogniti podgrupam. Osnovno vprašanje v zvezi z množicami brez produktov je, kako velike podmnožice brez produktov dana grupa vsebuje. Za začetek si oglejmo nekaj preprostih zgledov.

Zgled.

• Naj bo $G = \mathbb{Z}/n\mathbb{Z}$ in A neka njena podmnožica. Množica A je brez produktov, če in samo če enačba x + y = z nima rešitve v A. To vprašanje je ravno obratno sorodni lastnosti, ki smo jo opazovali v prejšnjem razdelku. Tam smo reševali le malo drugačno enačbo x + y = 2z in dokazali, da ima vselej rešitve v podmnožicah pozitivne gostote. Zanimovo je, da je situacija precej drugačna za enačbo

x + y = z. Za množico A lahko vzamemo na primer vsa števila v $\mathbf{Z}/n\mathbf{Z}$, ki so strogo med $\frac{1}{3}n$ in $\frac{2}{3}n$. Ta množica je jasno brez produktov in je gostote približno $\frac{1}{3}$ v $\mathbf{Z}/n\mathbf{Z}$ za velike vrednosti n.

To konstrukcijo lahko posplošimo na poljubno končno abelovo grupo. Ob tem se ni težko prepričati, da vselej obstaja podmnožica brez produktov gostote vsaj $\frac{2}{7}$.

- Simetrična grupa S_n vsebuje ogromno množico brez produktov, in sicer množico vseh lihih permutacij $S_n \setminus A_n$. Produkt dveh lihi permutacij je soda permutacija, zato je ta množica res brez produktov. Njena gostota je $\frac{1}{2}$.
- Naj bo G končna grupa s podgrupo $H \leq G$. Naj bo A = Hg za nek $g \in G \backslash H$. Tedaj za $x = h_1 g$ in $y = h_2 g$ velja $Hxy = Hh_1gh_2g = Hgh_2g$. Pri tem velja $xy \in A$, če in samo če je $Hgh_2g = Hg$, kar se poenostavi do $gh_2 \in H$, se pravi $g \in H$, kar je sprto s predpostavko. Množica A je zato brez produktov. Njena gostota v G je 1/|G:H|. Ta primer posploši zadnjega, kjer smo obravnavali $A_n \leq S_n$.

Mnogo težje je najti podmnožice brez produktov pozitivne gostote v alternirajoči grupi A_n ali linearni grupi $\mathrm{PSL}_2(\mathbf{F}_p)$. Dokazali bomo, da to težavo lahko pojasnimo s teorijo updobitev.

Izrek (Gowers 2008). Naj bo G končna grupa in naj bo m najmanjša stopnja netrivialne nerazcepne kompleksne upodobitve G. Tedaj je vsaka podmnožica brez produktov v G gostote kvečjemu $m^{-1/3}$.

Zgled.

- Iz rezultatov o upodobitvah simetričnih grup (natančneje, formule o kljukah) sledi, do ima S_n dve nerazcepni upodobitvi stopnje 1 (to sta 1 in sgn) in dve nerazcepni upodobitvi stopnje n − 1 (to sta ρ in ρ⊗ sgn), vse ostale nerazcepne upodobitve pa so višje stopnje (za n ≥ 7). Oba para upodobitve se zožita v izomorfni nerazcepni upodobitvi na A_n. Velja torej m ~ n. Po izreku v A_n zatorej ni podmnožic brez produktov pozitivne gostote, ko gre n čez vse meje. Še več, največja možna gostota je velikostnega reda m^{-1/3} ~ n^{-1/3}.
- Opazujmo grupo $\mathrm{PSL}_2(\mathbf{F}_p)$. Iz njene tabele karakterjev razberemo, da zanjo velja m=(p-1)/2. Po izreku tudi ta grupa nima podmnožic brez produktov pozitivne gostote, ko gre p čez vse meje. Še več, največja možna gostota, ki jo dopušča izrek, je velikostnega reda $m^{-1/3} \sim p^{-1/3} \sim |\mathrm{PSL}_2(\mathbf{F}_p)|^{-1/9}$, kar je celo mnogo manjše (relativno glede na velikost grupe) od zgornje meje, ki smo jo videli v primeru alternirajoče grupe.

Harmonična analiza

Gowersov izrek bomo dokazali s pomočjo nekoliko močnejše trditve.

 $^{^5}$ Lahko bi naredili sicer enak razmislek kot v dokazu Rothovega izreka, a nam od tiste točke, ko harmonična analiza odpove, ne bi obstoj aritmetičnih zaporedij P_i koristil za reševanje enačbe x+y=z.

Trditev. Naj bo G končna grupa in naj bo m najmanjša stopnja netrivialne nerazcepne kompleksne upodobitve G. Naj bosta $A,B \subseteq G$ podmnožici gostote α,β . Tedaj velja

$$|\mathbf{P}_{x,y,z\in G}(x,y\in A, z\in B \mid xy=z) - \alpha^2\beta| \le m^{-1/2}\alpha\beta^{1/2}.$$

Iz trditve hitro izpeljemo Gowersov izrek. Uporabimo jo z A=B. Če je A brez produktov in gostote α , potem velja $\alpha^3 \leq m^{-1/2}\alpha^{3/2}$, kar je enakovredno $\alpha \leq m^{-1/3}$.

Dokaz trditve. Verjetnost v trditvi je enaka

$$\frac{\left|\left\{\left(x,y,z\right)\in A\times A\times B\mid xy=z\right\}\right|}{|G|^{2}}.$$

Število rešitev enačbe xy = z za $x, y \in A, z \in B$ lahko izrazimo kot

$$\sum_{x,y,z \in G: xy=z} 1_A(x) 1_A(y) 1_B(z) = \sum_{z \in G} (1_A * 1_A)(z) 1_B(z) = |G| \cdot \langle 1_A * 1_A, 1_B \rangle.$$

Skalarni produkt razvijemo s Parsevalovo formulo in dobimo

$$\frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \cdot \langle \widehat{1_A}(\pi)^2, \widehat{1_B}(\pi) \rangle_{\operatorname{HS}}.$$

Prispevek trivialne upodobitve je enak

$$\langle \widehat{1}_{A}(\mathbf{1})^{2}, \widehat{1}_{B}(\mathbf{1}) \rangle_{HS} / |G| = |A|^{2} |B| / |G| = \alpha^{2} \beta |G|^{2}.$$

Prispevke netrivialnih upodobitev lahko s trikotniško neenakostjo po absolutni vrednosti omejimo navzgor kot

$$\frac{1}{|G|} \sum_{1 \neq \pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \left| \langle \widehat{1_A}(\pi)^2, \widehat{1_B}(\pi) \rangle_{\operatorname{HS}} \right|,$$

kar je po Cauchy-Schwartzovi neenakosti kvečjemu

$$\frac{1}{|G|} \sum_{\substack{1 \neq \pi \in \operatorname{Irr}(G)}} \chi_{\pi}(1) \|\widehat{1_A}(\pi)\|_{\operatorname{HS}}^2 \|\widehat{1_B}(\pi)\|_{\operatorname{HS}}.$$

V zadnji vsoti zadnjo normo omejimo z maksimumom, da dobimo zgornjo mejo

$$\max_{1\neq \pi \in \operatorname{Irr}(G)} \|\widehat{1_B}(\pi)\|_{\operatorname{HS}} \cdot \frac{1}{|G|} \sum_{1\neq \pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \|\widehat{1_A}(\pi)\|_{\operatorname{HS}}^2,$$

Prvi člen lahko omejimo z neenakostjo

$$m \cdot \max_{1 \neq \pi \in Irr(G)} \|\widehat{1_B}(\pi)\|_{HS}^2 \leq \sum_{1 \neq \pi \in Irr(G)} \chi_{\pi}(1) \|\widehat{1_B}(\pi)\|_{HS}^2 \leq |G|^2 \|1_B\|^2 = |B||G|$$

in zadnjo neenakost lahko uporabimo tudi za omejitev drugega člena. S tem dobimo zgornjo mejo

$$\sqrt{\frac{|B||G|}{m}} \cdot |A| = m^{-1/2} \alpha \beta^{1/2} |G|^2$$

za prispevke netrivialnih upodobitev. Trditev je s tem dokazana.

Iz Gowersovega izreka sledi nekoliko presenetljiva lastnost dovolj velikih podmnožic.

Posledica (Nikolov-Pyber 2011). Naj bo G končna grupa in naj bo m najmanjša stopnja netrivialne neracepne kompleksne upodobitve G. Če je A podmnožica G gostote strogo večje od $m^{-1/3}$, potem je $A \cdot A \cdot A = G$.

Dokaz. Naj bo g ∈ G in naj bo $B = gA^{-1} ⊆ G$. Množici A in B sta obe enake gostote, recimo α . Velja $\alpha^3 > m^{-1}$, kar je enakovredno $m^{-1/2}\alpha^{3/2} < \alpha^3$. Iz trditve od tod sledi $A \cdot A \cap B ≠ \emptyset$, zato je $g ∈ A \cdot A \cdot A$. Ker je bil g poljuben, je $A \cdot A \cdot A = G$.

Ta lastnost velikih množic ima mnogo zelo relevantnih uporab v teoriji grup, na primer pri dokazovanju Babaijeve domeneve o premerih končnih enostavnih grup prek teorije približnih podgrup in pri raziskovajnu slučajnih sprehodov,⁶ kot je razloženo v (Breuillard 2013).

Največja možna gostota

Z Gowersovo zgornjo mejo za dovoljeno gostoto množice brez produktov se seveda lahko vprašamo, kako optimalna je ta meja. Z drugimi besedami, konstruirati želimo čim večje podmnožice brez produktov. V grupah A_n in $\operatorname{PSL}_2(\mathbf{F}_p)$ te gotovo ne bodo pozitivne gostote, ko gredo moči grup čez vse meje.

Zgled (Kedlaya 1997). Opazujmo alternirajočo grupo A_n , ki deluje na množici točk $\{1,2,\ldots,n\}$. Naj bo $T\subseteq\{2,3,\ldots,n\}$ poljubna podmnožica velikosti t. Definirajmo množico permutacij

$$S = \{ \sigma \in A_n \mid \sigma(1) \in T, \ \sigma(T) \cap T = \emptyset \}.$$

Vsaka permutacija v $S \cdot S$ preslika 1 v T^c , zato je $S \cap S \cdot S = \emptyset$ in množica S je brez produktov. Njena gostota v A_n je enaka

$$\frac{1}{n!/2} \cdot t \cdot \binom{n-t}{t} t! \cdot (n-t-1)! \cdot \frac{1}{2} = \frac{t(n-t)!(n-t-1)!}{n!(n-2t)!} = \frac{t}{n} \cdot \frac{\binom{n-t}{t}}{\binom{n-1}{t}}.$$

Z aproksimacijo $\binom{n}{t} \sim (\frac{ne}{t})^t e^{O(-t^2/2n)}$ za t=o(n) lahko zadnji izraz poenostavimo do

$$\frac{t}{n}e^{O(t^2/n)}$$
.

Optimalno vrednost dosežemo z izbiro $t \sim n^{1/2}$, takrat je gostota množice S v A_n enaka $\sim n^{-1/2}$.

Gowersov izrek zagotavlja, da gostota množice brez produktov v A_n ne more biti večja od $n^{-1/3}$. Po drugi strani pa imamo zgled podmnožice brez produktov gostote $n^{-1/2}$. Katera od teh mej je bližje resnični največji možni gostoti podmnožice brez produktov v A_n ? To vprašanje je bilo razrešeno nedavno v (Keevash-Lifschitz-Minzer 2022), kjer avtorji dokažejo, da je konstrukcija v zadnjem zgledu v resnici optimalna: če je $A \subseteq A_n$ brez produktov največje možne moči, potem je A ali A^{-1} enaka eni od množic iz zadnjega zgleda. Njihov dokaz temelji na ideji, ki smo jo videli v dokazu Rothovega izreka, in sicer bodisi s harmonično analizo dokažemo želeno bodisi ima indikatorska funkcija visoko korelacijo z določenimi nelinearnimi karakterji in je zaradi tega prisotna neka struktura.

⁶Del tega si bomo ogledali nekoliko kasneje.

Konstrukcija Kedlaya, ki smo jo prikazali, je z nekoliko dodatnega truda⁷ posplošljiva na vse podgrupe $G \leq S_n$, ki delujejo tranzitivno na množici $\{1,2,\ldots,n\}$. Vsaka grupa, ki tranzitivno deluje na množici n točk, ima torej podmnožico brez produktov gostote $\sim n^{-1/2}$. V posebnem to velja za grupo $\mathrm{PSL}_2(\mathbf{F}_p)$, ki deluje tranzitivno na projektivni premici $\mathbf{P}^1(\mathbf{F}_p)$ s p+1 točkami. Na ta način dobimo podmnožico v $\mathrm{PSL}_2(\mathbf{F}_p)$ brez produktov gostote $\sim p^{-1/2}$. Gowersov izrek nam tukaj daje zgornjo mejo $\sim p^{-1/3}$ za gostoto množice brez produktov. V tem primeru optimalna ocena za gostoto ni znana.

Odprt problem. Kolikšna je gostota največje množice brez produktov v $PSL_2(\mathbf{F}_p)$, ko gre p čez vse meje?

5.3 Prepoznavanje komutatorjev

Oglejmo si še en čisto nekomutativen problem, ki na prvi pogled nima veliko skupnega s teorijo upodobitev, nazadnje pa se izkaže, da ga lahko popolnoma razrešimo, če le poznamo tabelo karakterjev grupe.

Množica komutatorjev

Naj bo G končna grupa in K(G) njena podmnožica, ki sestoji iz elementov, ki so komutatorji 8 v G, se pravi

$$K(G) = \{[x,y] | x, y \in G\}.$$

Ta množica v splošnem *ni* podgrupa.

Zgled. V programskem okolju GAP se ni težko prepričati, da je najmanjša⁹ grupa G, v kateri K(G) ne sovpada z izvedeno podgrupo $[G,G] = \langle K(G) \rangle$, moči 96. V GAP je ta grupa dostopna pod imenom SmallGroup(96, 3). Podamo jo lahko v njeni permutacijski obliki kot podgrupo S_{12} , generirano s permutacijama

$$x = (1\ 3\ 5)(2\ 4\ 6)(7\ 11\ 9)(8\ 12\ 10), \quad y = (3\ 9\ 4\ 10)(5\ 7)(6\ 8)(11\ 12).$$

Hitro izračunamo, da je |K(G)| = 29, torej K(G) vsekakor ni podgrupa G. Izvedena podgrupa je le nekoliko večja, |[G,G]| = 32. Primer elementa v [G,G], ki ni hkrati v K(G), je permutacija $(5\ 6)(7\ 8)$.

V luči zgleda je teoriji grup vsekakor v interesu, da bi razumela, kdaj dan element $g \in G$ pripada množici K(G). Lahko smo celo bolj natančni in se vprašamo, na koliko načinov lahko g zapišemo kot komutator. V ta namen predpišimo funkcijo

$$N: G \to \mathbf{N}_0$$
, $g \mapsto |\{(x,y) \in G \times G \mid g = [x,y]\}|$.

Dokazali bomo naslednjo formulo za izračun funkcije N s pomočjo teorije upodobitev.

Izrek (Frobenius). Naj bo G končna grupa. Za vsak $g \in G$ velja

$$N(g) = |G| \cdot \sum_{\pi \in Irr(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)}.$$

 $^{^{7}}$ Definicija množice S je enaka kot za primer A_n , dodaten trud je potreben le za oceno njene gostote.

⁸**Komutator** elementov $x, y \in G$ je element $[x, y] = x^{-1}y^{-1}xy$.

⁹Natančneje, obstajata dve taki neizomorfni grupi.

Harmonična analiza

Funkcijo N obravnavajmo kot element prostora fun (G, \mathbf{C}) . Ni se težko prepričati, da je N razredna funkcija. Za vsak $z \in G$ namreč velja

$$[zxz^{-1}, zyz^{-1}] = z[x, y]z^{-1},$$

torej vsak par (x,y) z lastnostjo [x,y]=g porodi par (zxz^{-1},zyz^{-1}) z lastnostjo $[zxz^{-1},zyz^{-1}]=zgz^{-1}$. S tem je $N(g)=N(zgz^{-1})$.

Funkcijo N bomo prepisali v malo bolj nenavadno obliko, ki pa nam bo dobro služila v nadaljevanju. Recimo, da za elementa $x,y\in G$ velja [x,y]=g. To enakost interpretiramo kot $x^{-1}\cdot y^{-1}xy=g$, torej je g zapisan kot produkt elementa x^{-1} in elementa, ki je konjugiran x. Vsakemu takemu paru (x,y) lahko zato priredimo konjugiranostni razred $\mathcal{C}=x^G$ in elementa $a=x^{-1}\in\mathcal{C}^{-1}$ ter $b=y^{-1}xy\in\mathcal{C}$, za katera velja $a\cdot b=g$. S tem smo opisali prirejanje

$$\psi: \{(x,y) \in G \times G \mid g = [x,y]\} \to \{(C,a,b) \mid C = (a^{-1})^G, b \in C, a \cdot b = g\}.$$

To prirejanje ni injektivno, saj s trojico (\mathcal{C},a,b) element y ni enolično določen, pač pa le do odseka po centralizatorju $C_G(a^{-1}) = C_G(a)$ natančno. Torej je $|\psi^{-1}(\mathcal{C},a,b)| = |C_G(a)| = |G|/|\mathcal{C}|$. S tem lahko izrazimo

$$N(g) = \sum_{\mathcal{C}} \frac{|G|}{|\mathcal{C}|} \cdot |\{(a,b) \in G \times G \mid a \in \mathcal{C}^{-1}, \ b \in \mathcal{C}, \ a \cdot b = g\}|,$$

kjer vsota teče po vseh konjugiranostnih razredih grupe G.

Dobljeni zapis funkcije N je priročen, ker je izražen le s konjugiranostnimi razredi in je neodvisen od izbire njihovih konkretnih predstavnikov. S tem je amenabilen za gnetenje s Fourierovo transformacijo. Najprej opazimo, da lahko drugi faktor zadnje vsote zapišemo kot

$$\sum_{a,b\in G,\ a\cdot b=g} 1_{\mathcal{C}^{-1}}(a)\cdot 1_{\mathcal{C}}(b) = (1_{\mathcal{C}^{-1}}*1_{\mathcal{C}})(g),$$

zato je

$$N(g) = \sum_{\mathcal{C}} \frac{|G|}{|\mathcal{C}|} \cdot (1_{\mathcal{C}^{-1}} * 1_{\mathcal{C}})(g).$$

Konvolucijo lahko po Fourierovi inverziji razvijemo po karakterjih. Ker gre za karakteristične funkcije konjugiranostnih razredov, je ta razvoj še posebej preprost.

Trditev. Naj bo G končna grupa in C_1 , C_2 konjugiranostna razreda v G. Velja

$$1_{\mathcal{C}_1} * 1_{\mathcal{C}_2} = \frac{|\mathcal{C}_1| \cdot |\mathcal{C}_2|}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \frac{\overline{\chi_{\pi}(\mathcal{C}_1)} \cdot \overline{\chi_{\pi}(\mathcal{C}_2)}}{\chi_{\pi}(1)} \chi_{\pi}.$$

Dokaz.~ Uporabimo Fourierovo inverzijo za funkcijo $1_{\mathcal{C}_1}*1_{\mathcal{C}_2}.~$ Za vsak $g\in G$ dobimo

$$\left(1_{\mathcal{C}_1} * 1_{\mathcal{C}_2}\right)(g) = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \operatorname{tr}\left(\widehat{1_{\mathcal{C}_1} * 1_{\mathcal{C}_2}}(\pi) \cdot \pi(g)\right).$$

Fourierova transformacija konvolucije je produkt Fourierovih transformacij, ki jih za dani karakteristični funkciji ni težko izračunati po lemi o

 $^{^{10}}$ Velja namreč zveza $b = y^{-1}a^{1}y$.

	()	(5,6)(7,8)	y	[x,y]	\boldsymbol{x}
χ1	1	1	1	1	1
χ_2	1	1	1	1	ζ
X 3	1	1	1	1	ζ^2
χ_4	3	3	-1	-1	0
χ_5	6	2	0	0	0
χ_6	3	-1	1	-1 + 2i	0
<i>X</i> 7	3	-1	1	-1-2i	0
<i>χ</i> 8	3	-1	-1 + 2i	1	0
χ9	3	-1	-1-2i	1	0
<i>χ</i> 10	2	-2	0	0	-1
χ_{11}	2	-2	0	0	$-\zeta^2$
χ_{12}	2	-2	0	0	$-\zeta$

Tabela 5.1: Del tabele karakterjev SmallGroup(96, 3), kjer je $\zeta = e^{2\pi i/3}$

Fourierovi transformaciji razredne funkcije. Za vsako nerazcepno kompleksno upodobitev π na prostoru Vvelja

$$\widehat{1_{\mathcal{C}_1} * 1_{\mathcal{C}_2}}(\pi) = |\mathcal{C}_1| \cdot |\mathcal{C}_2| \cdot \frac{\overline{\chi_{\pi}(\mathcal{C}_1)} \cdot \overline{\chi_{\pi}(\mathcal{C}_2)}}{\chi_{\pi}(1)^2} \cdot \mathrm{id}_V.$$

Trditev je s tem dokazana.

Trditev uporabimo za razvoj funkcije N kot

$$N(g) = \sum_{\mathcal{C}} \frac{|G|}{|\mathcal{C}|} \cdot \frac{|\mathcal{C}|^2}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \frac{|\chi_{\pi}(\mathcal{C})|^2}{\chi_{\pi}(1)} \chi_{\pi}(g) = \sum_{\pi \in \operatorname{Irr}(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)} \sum_{\mathcal{C}} |\mathcal{C}| \cdot |\chi_{\pi}(\mathcal{C})|^2.$$

Zadnja vsota je ravno enaka $|G| \cdot \langle \chi_{\pi}, \chi_{\pi} \rangle = |G|$, zato nazadnje sklenemo

$$N(g) = |G| \cdot \sum_{\pi \in \operatorname{Irr}(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)}.$$

S tem smo izpeljali Frobeniusov izrek.

Prepoznavanje komutatorjev

S Frobeniusovim izrekom lahko komutatorje v grupi prepoznavamo neposredno iz tabele karakterjev grupe.

Posledica. Naj bo G končna grupa. Za vsak $g \in G$ velja

$$g \in K(G) \iff \sum_{\pi \in Irr(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)} \neq 0.$$

Zgled. Naj bo $G = \langle x, y \rangle$ grupa moči 96 iz zadnjega zgleda. S predstavljenim algoritmom lahko hitro izračunamo njeno tabelo karakterjev. Grupa ima sicer 12 razredov za konjugiranje, zato je njena tabela karakterjev kar velika.

Iz tabele lahko razberemo, da je element [x, y] res komutator, saj je

$$\sum_{i=1}^{12} \frac{\chi_i([x,y])}{\chi_i(1)} = 3 - \frac{1}{3} - 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = \frac{8}{3} \neq 0.$$

Po drugi strani je element $(5\ 6)(7\ 8)$ v jedru vseh linearnih upodobitev, zato pripada izvedeni podgrupi [G,G]. Hkrati pa ta element ne pripada K(G), saj je

$$\sum_{i=1}^{12} \frac{\chi_i((5\ 6)(7\ 8))}{\chi_i(1)} = 3 + 1 + \frac{1}{3} - 4 \cdot \frac{1}{3} - 3 = 0.$$

Njegov konjugiranostni razred v G sestoji iz treh elementov. Ko te elemente dodamo množici K(G), dobimo ravno [G,G].

Domača naloga. Iz tabele karakterjev grupe $\mathrm{GL}_2(\mathbf{F}_p)$ razberi, da za p>2 velja

$$K(\operatorname{GL}_2(\mathbf{F}_n)) = \operatorname{SL}_2(\mathbf{F}_n).$$

Iz tabele karakterjev grupe $\operatorname{SL}_2(\mathbf{F}_p)$ razberi, da za p>3 množica komutatorjev v $\operatorname{SL}_2(\mathbf{F}_p)$ vsebuje vse neskalarne elemente. Sklepaj, da je za p>3 vsak element grupe $\operatorname{PSL}_2(\mathbf{F}_p)$ komutator.

Nedavno razrešena Orejeva domneva iz leta 1951 je predvidevala, da je vsak element nekomutativne končne enostavne grupe komutator. Ta domneva je bila potrjena v (Liebeck-O'Brien-Shalev-Tiep 2010). Dokaz sloni na Frobeniusovi formuli za prepoznavanje komutatorjev. Avtorji z uporabo generičnih tabel karakterjev, Deligne-Lusztigove teorije in kar nekaj surove računske moči dokažejo, da prispevki nelinearnih karakterjev v Frobeniusovi formuli nikdar ne uspejo izničiti prispevka trivialnega karakterja.

Velika sestra Orejeve domneve je Thompsonova domneva.

Odprt problem (Thompsonova domneva). V vsaki nekomutativni končni enostavni grupi G obstaja konjugiranostni razred C, da je $G = C \cdot C$.

Thompsonova domneva implicira Orejevo domnevo. Če namreč najdemo tak konjugiranostni razred \mathcal{C} , potem je v posebnem $1 \in \mathcal{C} \cdot \mathcal{C}$, zato je $\mathcal{C} = \mathcal{C}^{-1}$. Torej lahko vsak element $g \in G$ zapišemo kot $g = x^{-1}x^{g_2}$ za nek $x \in \mathcal{C}$, s čimer je $g = [x, g_2]$. Ker je bil g poljuben, je torej vsak element v G komutator, kar je ravno trditev Orejeve domneve.

Ta močnejša domneva je še vedno nerazrešena, je pa v zadnjih letih bilo kar nekaj aktivnosti v zvezi z njeno asimptotsko veljavnostjo. Ti rezultati večinoma temeljijo na teoriji karakterjev na naslednji način. Element $g \in G$ pripada $\mathcal{C} \cdot \mathcal{C}$, če in samo če velja $(1_{\mathcal{C}} * 1_{\mathcal{C}})(g) \neq 0$, kar lahko s pomočjo Fourierove inverzije, kot smo videli v zadnji trditvi, zapišemo kot

$$\sum_{\pi \in \operatorname{Irr}(G)} \frac{\overline{\chi_{\pi}(\mathcal{C})}^2}{\chi_{\pi}(1)} \chi_{\pi}(g) \neq 0.$$

S pomočjo poznavanja karakterjev končnih enostavnih grup je domneva znana za mnogo primerov, odprtih pa je še nekaj neskončnih družin matričnih grup nad majhnimi polji, kot je zelo prijazno razloženo v Larsenovem predavanju tukaj.

5.4 Slučajni sprehodi

Naj bo G končna grupa in S neka njena podmnožica, ki generira G. Vsak element v G lahko torej zapišemo kot produkt elementov iz množice S. V tem razdelku bomo raziskali, kaj se zgodi, če elementov iz množice S ne množimo s ciljem, da bi zapisali nek konkreten element, ampak jih namesto tega množimo kar naključno.

Slučajni sprehod

Naj bo G grupa z generirajočo množico S. Enakomerno naključno izberimo element $X_1 = s_1 \in S$. Za tem še enkrat neodvisno izberimo $s_2 \in S$ in izračunajmo $X_2 = s_1s_2 \in G$. Ta postopek ponavljamo. Ko že imamo $X_i \in G$, enakomerno naključno izberemo element $s_{i+1} \in S$ in izračunamo $X_{i+1} = X_i s_{i+1}$. Če smo torej po nekaj korakih že prišli do elementa $g \in G$, potem je verjetnost, da bomo po naslednjem koraku v elementu $h \in G$, enaka

$$p_S(g,h) = \begin{cases} 1/|S| & \exists s \in S : h = gs, \\ 0 & \text{sicer} \end{cases}$$

Po n korakih tega postopka dobimo element $X_n \in G$, ki je seveda odvisen od izbire vmesnih elementov $s_i \in S$ na vsakem koraku. Temu procesu pravimo **slučajni sprehod** na grupi G z generirajočo množico S.

Zgled. Naj bo $G=S_n$ in S množica transpozicij v S_n . Predstavljajmo si, da imamo pred sabo urejen kup kart. Enakomerno naključno izberemo dve različni karti v tem kupu, eno z levo roko in eno z desno, in ju zamenjamo. Ta postopek ponovimo n-krat. Menjava na vsakem koraku ustreza izbiri naključne transpozicije $\sigma \in S$, s katero pomnožimo trenutno permutacijo, ki opisuje stanje, v katerem je kup kart. Slučajni sprehod v tem primeru torej opisuje slučajno mešanje kupa kart.

Nekoliko bolj abstraktno bi lahko na slučajni sprehod gledali kot na zaporedje slučajnih spremenljivk X_1, X_2, \ldots z vrednostmi v G, ki pa niso porazdeljene neodvisno, temveč zanje velja *lastnost Markova*, to je

$$\mathbf{P}(X_{i+1} = y \mid X_1 = x_1, ..., X_i = x_i) = p_S(x_i, y)$$

za vsak $i \geq 0$ in za vse $x_1, x_2, \ldots, x_i \in G$. Ta lastnost je jasno izpolnjena za slučajni sprehod, kot smo ga opisali zgoraj. Po drugi strani je vsako zaporedje slučajnih spremenljivk z vrednostmi vG, ki zadošča lastnosti Markova, uresničljivo kot slučajni sprehod. Definiciji sta torej ekvivalentni.

Slučajna spremenljivka X_n nam pove, v katerem elementu se nahajamo po n korakih slučajnega sprehoda. Naš cilj je analizirati porazdelitev te slučajne spremenljivke v odvisnosti od n in še posebej v limiti, ko gre n čez vse meje. Kot bomo videli, je tudi ta problem izrazljiv v jeziku teorije upodobitev.

Operator Markova

Po n korakih slučajnega sprehoda se znajdemo v nedoločenem elementu grupe G. Uvedimo funkcijo

$$\mu_n: G \to \mathbf{C}, \quad g \mapsto \mathbf{P}(X_n = g),$$

ki meri verjetnost, da smo v danem elementu. Ta funkcija torej ni nič drugega kot porazdelitvena funkcija slučajne spremenljivke X_n . Slučajni sprehod se prične v 1, zato je $\mu_0 = 1_1$.

Vrednosti funkcije μ_n lahko izračunamo induktivno na n, upoštevajoč lastnost Markova. Velja

$$\mu_n(g) = \sum_{h \in G_p} \mathbf{P}(X_n = g \mid X_{n-1} = h) \mathbf{P}(X_{n-1} = h) = \sum_{h \in G_p} p_S(h, g) \cdot \mu_{n-1}(h).$$

Vrednosti $p_S(h,g)$ so neničelne le, kadar je $g \in hS$. Dobimo torej

$$\mu_n(g) = \frac{1}{|S|} \sum_{h \in gS^{-1}} \mu_{n-1}(h) = \frac{1}{|S|} \sum_{x \in G_p} \mu_{n-1}(gx^{-1}) 1_S(x),$$

Zadnjo vsoto prepoznamo kot konvolucijo

$$\left(\mu_{n-1}*\frac{1_S}{|S|}\right)(g),$$

ki jo lahko zapišemo s pomočjo Fourierove transformacije in nazadnje dobimo

$$\mu_n = \frac{\widehat{1_S}}{|S|} (\rho_{\text{fun}}) \cdot \mu_{n-1}.$$

Rekurzivna zveza za izračun porazdelitvene funkcije μ_n iz μ_{n-1} je torej izrazljiva kot Fourierova transformacija normalizirane karakteristične funkcije generirajoče množice S v regularni upodobitvi. Tej linearni preslikavi pravimo *operator Markova* in jo označimo kot

$$M = \frac{\widehat{1_S}}{|S|}(\rho_{\text{fun}}) = \frac{1}{|S|} \sum_{x \in S} \rho_{\text{fun}}(x)^*.$$

Za poljubno funkcijo $f \in \text{fun}(G, \mathbb{C})$ je

$$(M \cdot f)(g) = \frac{1}{|S|} \sum_{x \in S} f(gx^{-1}),$$

torej Mf v točki $g \in G$ izračuna povprečje funkcije f po vseh elementih, ki v slučajnem sprehodu lahko vodijo v g.

Trditev. Za slučajni sprehod na grupi z operatorjem Markova M je

$$\mu_n = M^n \cdot 1_1$$
.

Operator Markova lahko zapišemo v naravni bazi karakterističnih funkcij in s tem dobimo matriko razsežnosti $|G| \times |G|$, ki ima v vsakem stolpcu |S| neničelnih vrednosti, vsaka od njih je enaka 1/|S|. Ob dodatnih predpostavkah na množico S dobimo dodatne lastnosti te matrike. Če je na primer množica S simetrična, kar pomeni, da je za vsak $s \in S$ tudi $s^{-1} \in S$, potem je opisana matrika za M simetrična in zato nujno diagonalizabilna v ortonormirani bazi nad realnimi števili. V tem primeru ni težko izračunati visokih potenc M in s tem μ_n .

Zgled. Opazujmo simetrično grupo S_3 z generirajočo množico transpozicij $S = \{(1\ 2), (1\ 3), (2\ 3)\}$. Ta množica je simetrična. Elemente grupe S_3 uredimo po vrsti kot

Operator Markova je v standardni bazi karakterističnih funkcij elementov grupe enak

$$M = \frac{1}{3} \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Ta matrika je simetrična. Njen karakteristični polinom je enak $\lambda^6 - \lambda^4$, zato dobimo lastne vrednosti (1,0,0,0,0,-1). Lastni vektor lastne vrednosti 1 je konstantni vektor 1, ki ustreza konstantni funkciji na S_3 . Lastni vektor lastne vrednosti -1 je vektor sgn. Funkcijo 1_1 razvijemo po lastnih vektorjih kot

$$1_1 = \langle 1_1, 1 \rangle + \langle 1_1, \operatorname{sgn} \rangle \operatorname{sgn} + k,$$

kjer je $k \in \ker M$. Velja torej

$$1_1 = \frac{1}{6} + \frac{1}{6} \operatorname{sgn} + k.$$

Za vsak n s tem dobimo

$$\mu_n = M^n \cdot 1_1 = \frac{1}{6} + \frac{(-1)^n}{6} \cdot \operatorname{sgn} = \begin{cases} \frac{1}{3} \cdot 1_{A_3} & n \equiv 0 \pmod{2}, \\ \frac{1}{3} \cdot 1_{S_3 \setminus A_3} & n \equiv 1 \pmod{2}. \end{cases}$$

Porazdelitev po sodo mnogo korakih je torej enakomerna na sodih permutacijah A_3 , po liho mnogo korakih pa enakomerna na lihih permutacijah $S_3 \setminus A_3$.

Enakomerno porazdelitev na množici $A\subseteq G$ označimo z U_A . Velja $U_A=1/|A|\cdot 1_A$. Enakomerna porazdelitev U_G je vselej lastni vektor operatorja Markova z lastno vrednostjo 1. Preostalih lastnih vrednosti pa v splošnem ni lahko določiti.

Domača naloga. Naj bo G končna grupa z generirajočo množico S in operatorjem Markova M. Dokaži, da za vsako funkcijo $f \in \text{fun}(G, \mathbb{C})$ velja $||Mf|| \le ||f||$. Sklepaj, da so vse lastne vrednosti M po absolutni vrednosti kvečjemu 1. Kaj je lastni vektor za lastno vrednost 1? Kdaj je -1 lastna vrednost in kaj je pripadajoči lastni vektor?

Slučajni sprehod s konjugiranostnim razredom

Zelo dobro razumemo primer, ko je S konjugiranostni razred v G, saj lahko Fourierovo transformacijo razredne funkcije eksplicitno izračunamo v odvisnosti od karakterjev. V tem primeru lahko eksplicitno določimo tudi vse lastne vektorje, ki jih dobimo kot generatorje izotipičnih komponent nerazcepnih upodobitev, ko smo videli v predstavljenem algoritmu za izračun tabele karakterjev.

Trditev. Za slučajni sprehod na grupi G z generirajočo množico C, kjer je C konjugiranostni razred v G, je operator Markova diagonalizabilen z lastnimi vrednostmi

$$r_{\pi}(\mathcal{C}) = \frac{\overline{\chi_{\pi}(\mathcal{C})}}{\chi_{\pi}(1)}$$

za vsako nerazcepno kompleksno upodobitev $\pi \in Irr(G)$, pri čemer je večkratnost vsake lastne vrednosti enaka $\chi_{\pi}(1)^2$.

Operator Markova M slučajnega sprehoda na G z generirajočo množico \mathcal{C} , kjer je \mathcal{C} konjugiranostni razred v G, deluje na vsaki od izotipičnih komponent regularne upodobitve kot skalarni večkratnik identitete z znamimi skalarji. Da lahko razumemo $\mu_n = M^n \cdot 1_1$, moramo najprej razviti funkcijo 1_1 po izotipičnih komponentah. To naredimo, kot smo že, s

pomočjo Fourierovih transformacij nerazcepnih karakterjev. Projekcija 1_1 na π -izotipično komponento je enaka

$$v_{\pi} = \frac{\chi_{\pi}(1)}{|G|} \cdot \chi_{\pi},$$

zato dobimo $1_1 = \sum_{\pi \in \operatorname{Irr}(G)} v_{\pi}$. Vektor v_{π} je lastni vektor za M z lastno vrednostjo $r_{\pi}(\mathcal{C})$. V tej množici lastnih vektorjev lahko torej funkcijo μ_n razvijemo kot

$$\mu_n = M^n \cdot 1_1 = \sum_{\pi \in \operatorname{Irr}(G)} r_{\pi}(C)^n \cdot v_{\pi}.$$

Za razumevanje asimptotskega obnašanja μ_n je pomembno poznati $|r_{\pi}(\mathcal{C})|$. Če je namreč $|r_{\pi}(\mathcal{C})| < 1$, potem vrednosti $r_{\pi}(\mathcal{C})^n$ konvergirajo k 0, ko gre n čez vse meje.

Lema. Za $\pi \in Irr(G)$ drži $|r_{\pi}(C)| \leq 1$, pri čemer velja enakost natanko tedaj, ko je

$$C \ker \pi / \ker \pi \subseteq Z(G/\ker \pi).$$

Dokaz. Enakost velja natanko tedaj, ko je $\pi(\mathcal{C})$ skalarna matrika. Taka matrika komutira z vsemi elementi $\pi(g)$, zato je $\pi([g,\mathcal{C}]) = 1$ za vsak $g \in G$. To pomeni, da je $[G,\mathcal{C}] \subseteq \ker \pi$, kar je enakovredno trditvi.

Zberimo prispevke z maksimalno vrednostjo $r_{\pi}(\mathcal{C})$ v množico

$$X_{\mathcal{C}} = \{ \pi \in \operatorname{Irr}(G) \mid |r_{\pi}(\mathcal{C})| = 1 \}.$$

Velja torej

$$\mu_n - \sum_{\pi \in X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^n \cdot v_{\pi} = \sum_{\pi \in \operatorname{Irr}(G) \setminus X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^n \cdot v_{\pi}.$$

Prispevki $r_{\pi}(\mathcal{C})^n$ za π izven $X_{\mathcal{C}}$ konvergirajo k0 za velike vrednosti n in zatorej dobimo

$$\lim_{n\to\infty} \left(\mu_n - \sum_{\pi\in X_C} r_{\pi}(\mathcal{C})^n \cdot v_{\pi} \right) = 0.$$

Za konkretne grupe lahko s tabelo karakterjev ali upoštevanjem kakšnih dodatnih lastnosti eksplicitno izračunamo zadnjo vsoto in s tem določimo limitno porazdelitev μ_n , če ta sploh obstaja.

Domača naloga. Naj bo G nekomutativna končna enostavna grupa. Dokaži, da vsak konjugiranostni razred \mathcal{C} generira G in da velja $X_{\mathcal{C}} = \{\mathbf{1}\}$. Sklepaj, da je $\lim_{n\to\infty} \mu_n = U_G$.

Napako pri aproksimaciji porazdelitev μ_n in vsoto prispevkov po $X_{\mathcal{C}}$ izrazimo s pomočjo norme $||f||_1 = \sum_{g \in G} |f(g)|$ za funkcijo $f \in \text{fun}(G, \mathbf{C})$. Naj bo $0 < \theta < 1$ konstanta. $\check{\mathbf{C}}$ as mešanja 12 $t_{mix}(\theta)$ je najmanjše število n, pri katerem je

$$\|\mu_n - \sum_{\pi \in X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^n \cdot v_{\pi}\|_1 \leq \theta.$$

 $^{^{11}}$ Za primerjavo porazdelitev ne uporabljamo standardne norme $||f|| = \langle f, f \rangle^{1/2}$, ampak normo $||f||_1$. Razlog za to je naslednji. Opazujmo družino simetričnih grup S_n . Naj bo p enakomerna porazdelitev na A_n . Potem je $||p-1/|S_n||| = 1/|S_n|$, kar konvergira k 0 za $n \to \infty$, čeprav sta porazdelitvi očitno različni. Norma $||\cdot||_1$ nima te pomanjkljivosti.

 $^{^{12}}$ Rečemo tudi, da se slučajni sprehod *dobro premeša* po času $t_{mix}(\theta)$. Ta koncept je seveda odvisen od izbire konstante θ , a ponavadi za θ vzamemo kar neko majhno konstanto, na primer $\theta=10^{-2}$.

Čas mešanja in s tem hitrost konvergence k limitni porazdelitvi lahko kvantitativno nadziramo, če dobro poznamo vrednosti $r_\pi(\mathcal{C})$ za π izven $X_{\mathcal{C}}$, saj velja

$$||\mu_n - \sum_{\pi \in X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^n \cdot v_{\pi}||_1 \leq \sum_{\pi \in \operatorname{Irr}(G) \setminus X_{\mathcal{C}}} |r_{\pi}(\mathcal{C})|^n \cdot ||v_{\pi}||_1.$$

Normo baznih vektorje
v v_π lahko omejimo s Cauchy-Schwartzovo neenakostjo kot

$$||v_{\pi}||_1 = \frac{\chi_{\pi}(1)}{|G|} \sum_{g \in G} |\chi_{\pi}(g)| \le \frac{\chi_{\pi}(1)}{|G|} \sqrt{|G| \cdot \sum_{g \in G} |\chi_{\pi}(g)|^2} = \chi_{\pi}(1).$$

S tem velja

$$||\mu_n - \sum_{\pi \in X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^n \cdot v_{\pi}||_1 \le \left(\max_{\pi \in \operatorname{Irr}(G) \setminus X_{\mathcal{C}}} |r_{\pi}(\mathcal{C})|\right)^n \cdot \sum_{\pi \in \operatorname{Irr}(G) \setminus X_{\mathcal{C}}} \chi_{\pi}(1).$$

Če vsoto karakterjev zelo grobo navzgor ocenimo z |G| in upoštevamo, da je

$$\max_{\pi \in \operatorname{Irr}(G) \setminus X_{\mathcal{C}}} |r_{\pi}(\mathcal{C})| \leq 1 - \epsilon < 1$$

za nek $\epsilon > 0$, potem velja

$$||\mu_n - \sum_{\pi \in X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^n \cdot v_{\pi}||_1 \le (1 - \epsilon)^n \cdot |G|.$$

Napaka med porazdelitvama pade pod konstanto θ , če je le

$$n \sim (\log |G| - \log \theta) / (-\log(1 - \epsilon)) = O_{\epsilon, \theta}(\log |G|).$$

Takrat bo za majhno konstanto θ slučajni sprehod zelo blizu svoje limitne porazdelitve, če ta sploh obstaja. Čas mešanja je torej logaritmičen v velikosti grupe.

Naključno množenje podobnih matrik

Oglejmo si konkreten primer slučajnega sprehoda. Obravnavajmo grupo $G_p = \operatorname{GL}_2(\mathbf{F}_p)$ za p > 3, ki smo jo že dodobra spoznali. V njej za generirajočo množico izberimo konjugiranostni razred $\mathcal C$ regularnih polenostavnih elementov, ki so podobni matriki

$$A = \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix},$$

kjer je δ generator ciklične grupe obrnljivih elementov končnega polja \mathbf{F}_p^* . Generirajoča množica sestoji torej iz vseh matrik, ki so v G_p podobne A.

Generiranje grupe

Preverimo najprej, da množica \mathcal{C} res generira G_p . Ker je G_p končna grupa, velja $A^{-1} \in \langle \mathcal{C} \rangle$ in zato je vsaka matrika, ki je podobna A^{-1} , tudi v $\langle \mathcal{C} \rangle$. S tem velja

$$[S_+,A] = (S_+^{-1}A^{-1}S_+)A = S_+^{\delta^{-1}+1} \in \langle \mathcal{C} \rangle.$$

Ker je p > 3, je $\delta \neq \pm 1$, zato dobimo $S_+ \in \langle \mathcal{C} \rangle$. Sorodno sklepamo za matriko S_- . S tem dobimo

$$\langle \mathcal{C} \rangle \ge \langle S_+, S_- \rangle = \mathrm{SL}_2(\mathbf{F}_p).$$

Ker je δ generator \mathbf{F}_p^* , grupa $\langle \mathcal{C} \rangle$ vsebuje matrike z vsemi možnimi determinantami. Od tod sledi, da \mathcal{C} res generira grupo G_p .

Limitna porazdelitev sprehoda

Za razumevanje limitnega obnašanja porazdelitve μ_n moramo najprej določiti vrednosti $r_{\pi}(\mathcal{C})$. Tabelo karakterjev grupe G_p v celoti poznamo.

	$\chi_{\pi}(1)$	$\overline{\chi_{\pi}(\mathcal{C})}$	$r_\pi(\mathcal{C})$	$ r_\pi(\mathcal{C}) $
$\chi \circ \det$	1	$\overline{\chi(\delta)}$	$\overline{\chi(\delta)}$	1
$\operatorname{St}(\chi)$	p	$\overline{\chi(\delta)}$	$\overline{\chi(\delta)}/p$	1/p
$\pi(\chi_1,\chi_2)$	(p+1)	$\overline{\chi_1(\delta)}$ + $\overline{\chi_2(\delta)}$	$(\overline{\chi_1(\delta)} + \overline{\chi_2(\delta)})/(p+1)$	< 2/(p+1)
$\zeta_{ heta}$	p-1	0	0	0

Tabela 5.2: Lastne vrednosti operatorja Markova grupe G_p z generirajočo množico $\mathcal C$

Množica $X_{\mathcal{C}}$ v tem primeru sestoji iz linearnih upodobitev. Vsota prispevkov porazdelitev po $X_{\mathcal{C}}$ je zato enaka

$$\sum_{\pi \in X_{\mathcal{C}}} r_{\pi}(\mathcal{C})^{n} \cdot v_{\pi} = \sum_{\chi \in \operatorname{Irr}(\mathbf{F}_{\pi}^{*})} \overline{\chi(\delta^{n})} \cdot \frac{1}{|G_{p}|} \chi \circ \det.$$

Upoštevamo drugo ortogonalnostno relacijo in dobimo

$$\frac{1}{|G_p|} \cdot \left(g \mapsto \begin{cases} |\mathbf{F}_p^*| & \det g = \delta^n \\ 0 & \text{sicer.} \end{cases}\right) = \frac{1}{|\operatorname{SL}_2(\mathbf{F}_p)|} \cdot 1_{\det^{-1}(\rho^n)} = U_{\det^{-1}(\rho^n)}.$$

V tem primeru kandidat za limitno porazdelitev v resnici ne konvergira, saj za različne vrednosti n po modulu p-1 dobimo bistveno različne porazdelitve. Ko je n deljiv s p-1, dobimo enakomerno porazdelitev na $\mathrm{SL}_2(\mathbf{F}_p)$.

Hitrost konvergence

Pogovorimo se še o oceni napake pri aproksimaciji μ_n s kandidatom za limitno porazdelitev. Za π izven $X_{\mathcal C}$ ocenimo

$$\max_{\pi \in \operatorname{Irr}(G_p) \setminus X_{\mathcal{C}}} |r_{\pi}(\mathcal{C})| < \frac{2}{p}, \quad \sum_{\pi \in \operatorname{Irr}(G_p) \setminus X_{\mathcal{C}}} \chi_{\pi}(1) < p^3.$$

Velja torej

$$||\mu_n - U_{\det^{-1}(\rho^n)}||_1 \le \frac{2^n}{n^{n-3}}.$$

Napaka zelo hitro upade, pod θ je že pri $n = (3\log p - \log \theta)/(\log p - \log 2) \sim 3.^{13}$ Težava je le ta, da μ_n v resnici ne konvergira. Da to popravimo, moramo opazovati obnašanje po aritmetičnih zaporedjih z razliko p-1. Za vse dovolj velike p tako dobimo zelo dobro aproksimacijo

$$p_{p-1} \approx U_{\mathrm{SL}_2(\mathbf{F}_p)}$$
.

Če torej v G_p naključno zmnožimo p-1 matrik v $\mathcal C$ za dovolj velik p, dobimo (skoraj) naključno matriko v $\operatorname{SL}_2(\mathbf F_p)$. Napaka sicer pade ekstremno hitro, a linearni karakterji obremenijo sprehod do te mere, da ne moremo izkoristiti majhne napake že po 3 korakih, niti ne po $\log |G_p| \sim \log p$ korakih, temveč šele po $p-1 \sim |G_p|^{1/4}$ korakih.

 $^{^{13}}$ Tako hitra konvergenca je posledica dejstva, da je konjugiranostni razred \mathcal{C} v G_p zelo velik, $\log |\mathcal{C}| \sim \log |G_p|$, in da imamo zelo dobre ocene za $r_{\pi}(\mathcal{C})$.

Domača naloga. Obravnavaj slučajni sprehod v $\operatorname{PSL}_2(\mathbf{F}_p)$ glede na nek konjugiranostni razred \mathcal{C} . V tem primeru bo $\lim_{n\to\infty}\mu_n$ enakomerna porazdelitev na $\operatorname{PSL}_2(\mathbf{F}_p)$. S pomočjo tabele karakterjev oceni hitrost konvergence in pokaži, da dosežemo približno naključno matriko v $\operatorname{PSL}_2(\mathbf{F}_p)$ mnogo hitreje kot po p-1 korakih.

Domača naloga (Diaconis-Shashahani 1981). Obravnavaj slučajni sprehod v S_n glede na generirujočo množico S, ki sestoji iz transpozicij in enote (). To ni konjugiranostni razred, je pa unija dveh razredov. Premisli, kako lahko argumente posplošiš na to situacijo. Določi limitno porazdelitev in oceni hitrost konvergence.

Konvergenca v družinah

Za vsako konkretno nekomutativno končno enostavno grupo G velja, da so vse lastne vrednosti operatorja M razen 1 po absolutni vrednosti kvečjemu $1-\epsilon$ za nek $\epsilon=\epsilon(G)>0$. V tem primeru rečemo, da je grupa G ϵ -ekspanzivna glede na generirajočo množico S. Slučajni sprehod v taki grupi se dobro premeša po $O_{\epsilon}(\log |G|)$ korakih. Težave nastopijo, ko skušamo ta argument uporabiti za celo družino grup, saj se lahko zgodi, da z večanjem parametra n vrednost ekspanzivnosti $\epsilon=\epsilon_n$ nujno konvergira k 0. Ta fenomen vidimo v primeru družine A_n in konjugiranostnega razreda 3-ciklov.

Domača naloga (Helfgott-Seress-Zuk 2015). Obravnavaj slučajni sprehod v A_n glede na konjugiranostni razred 3-ciklov \mathcal{C} . Premisli, da je $\max_{1 \neq \pi \in \operatorname{Irr}(A_n)} |r_{\pi}(\mathcal{C})| = 1 - 3/(n-1)$ in s tem oceni hitrost konvergence.

V taki situaciji se slučajni sprehodi zmešajo dobro po $O_{\epsilon}(\log |G|)$ korakih, kar je lahko bistveno večje od $O(\log |G|)$ in torej asimptotsko gledano v resnici ni logaritmično v velikosti grupe.

Družini grup $(G_i, S_i)_{i \in \mathbb{N}}$, kjer je $G_i = \langle S_i \rangle$, pravimo **ekspanzivna družina**, ¹⁴ kadar obstaja konstanta $\epsilon > 0$, za katero je vsaka grupa G_i ϵ -ekspanzivna glede na S_i . V ekspanzivnih družinah se slučajni sprehodi enakomerno zelo hitro dobro premešajo.

Vsaka družina je ekspanzivna, če za generatorsko množico vzamemo kar $S_i = G_i$ za vsak i. V tem primeru je namreč operator Markova enak povprečju $\mathbf{E}(\rho_{\mathrm{fun}})$, ki je projektor na trivialno podupodobitev regularne, zato so vse njegove netrivialne lastne vrednosti ničelne. Želimo si ekspanzivnih družin, v katerih je množica S_i čim manjša, po možnosti celo omejene velikosti v vseh članicah družine, na primer $|S_i| \leq 100$ za vsak i. V takih ekspanzivnih družinah lahko enakomerno zelo hitro z zaporednim vzorčenjem v množici omejene velikosti dobimo približno enakomerno naključne elemente ogromnih grup.

S pomočjo teorije upodobitev in poznavanja določenih lasstnosti karakterjev končnih enostavnih grup $\mathrm{PSL}_n(\mathbf{F}_p)$ ni pretežko posplošiti zgleda iz zadnjega razdelka. Zanimivo je, da isti rezultat ne deluje za družino alternirajočih grup.

Izrek. Naj bo $n \ge 2$ fiksno naravno število. Za vsak $p \in \mathbf{P}$ naj bo $C_{n,p}$ netrivialen konjugiranostni razred v $\mathrm{PSL}_n(\mathbf{F}_p)$. Tedaj je družina grup $(\mathrm{PSL}_n(\mathbf{F}_p), C_{n,p})_{p \in \mathbf{P}}$ ekspanzivna.

¹⁴Angleško *expander family*. Ime izhaja iz alternativne karakterizacije teh družin v teoriji grafov.

Bistveno bolj netrivialen pa je dokaz naslednjega izreka, po katerem lahko vse nekomutativne končne enostavne grupe napravimo za ekspanzivne z generatorskimi množicami omejene velikosti.

Izrek (Kassabov 2007, Kassabov-Lubotzky-Nikolov 2006, Breuillard-Green-Tao 2011). Obstaja konstanta C > 0, tako da je družina nekomutativnih končnih enostavnih grup ekspanzivna družina glede na generatorske množice velikosti kvečjemu C.

Izrek nam zagotavlja obstoj neke ne prevelike generirajoče množice v končnih enostavnih grupah, glede na katere se slučajni sprehodi enakomerno zelo hitro dobro premešajo. Težko pa je povedati kaj bolj konkretnega o teh generirajočih množicah. Za primer A_n so te množice konstruirane v (Kassabov 2007) s pomočjo neke naključne metode. Dokaz omejitev absolutnih vrednosti lastnih vrednosti operatorja Markova sloni na teoriji upodobitev, a je precej bolj zahteven od tega, ki smo si ga ogledali mi, saj so te generatorske množice daleč od konjugiranostnih razredov.

Dokazi ekspanzivnosti za generatorske množice, ki niso konjugiranostni razredi, ponavadi potekajo na obraten način, kot bi pričakovali. Omejenost absolutnih vrednosti netrivialnih lastnih vrednosti operatorja Markova namreč lahko dokažemo, če premislimo, da se slučajni sprehodi enakomerno zelo hitro premešajo. Primer uporabe te tehnike par excellence je naslednji rezultat, ki med drugim presenetljivo sloni na Gowersovem rezultatu o zgornji meji gostote množic brez produktov.

Izrek (Bourgain-Gamburd 2008, Breuillard-Green-Guralnick-Tao 2015). Naj bo n fiksno naravno število. Za vsak $p \in \mathbf{P}$ naj bo enakomerno naključno izberemo dva elementa $x, y \in \mathrm{PSL}_n(\mathbf{F}_p)$ in tvorimo množico $S_{n,p,x,y} = \{x, x^{-1}, y, y^{-1}\}$. Tedaj obstaja $\epsilon = \epsilon(n)$, da je

$$\lim_{p\to\infty}\mathbf{P}_{x,y}(\mathrm{PSL}_n(\mathbf{F}_p)\, je\;\epsilon\text{-}ekspanzivna\; glede\; na\; S_{n,p,x,y})=1.$$

Če sprostimo n in opazujemo matrike velikih razsežnosti, cel kup tehnik v dokazu propade. Za te matrike ni znano in med strokovnjaki niti ni jasnega konsenza, ali so asimptotsko gledano skoraj gotovo ekspanzivne. Preprost primer, ki bi verjetno odprl vrata v velike matrike, je družina alternirajočih grup.

Odprt problem. V vsaki alternirajoči grupi A_n enakomerno naključno izberemo dva elementa $x,y\in A_n$ in tvorimo množico $S_{n,x,y}=\{x,x^{-1},y,y^{-1}\}$. Ali obstaja absolutna konstanta $\epsilon>0$, da je

$$\lim_{n\to\infty} \mathbf{P}_{x,y}(A_n \text{ je } \epsilon\text{-ekspanzivna glede na } S_{n,x,y}) = 1?$$

 $^{^{15}}$ Ni težko premisliti, da sta ta dva koncepta ekvivalentna. Čas mešanja v vsaki članici družine G_i je $O(\log |G_i|)$, če in samo če je družina ekspanzivna.

Poglavje 6

Razširjeni zgledi – neskončni

V tem zaključnem poglavju si bomo pogledali nekaj zgledov iz teorije upodobitev neskončnih grup. Tukaj ni enotne teorije, s katero bi lahko obravnavali vsako grupo, obstajajo pa družine grup, znotraj katerih lahko razumemo upodobitve na enoten način. Tukaj ne bomo razvijali splošne teorije, temveč si bomo ogledali le konkretne predstavnike nekatere izmed pomembnih družin neskončnih grup.

Ozaljšane upodobitve

V svetu neskončih grup ponavadi ne obravnavamo čisto vseh abstraktnih upodobitev, ker na ta način dobimo preprosto *preveč* upodobitev, ki niti niso *smiselne*.

Zgled. Opazujmo grupo **R**. Vemo že, da je vsaka njena končnorazsežna nerazcepna kompleksna upodobitev enorazsežna, torej oblike $\chi: \mathbf{R} \to \mathbf{C}^*$ za nek homomorfizem χ . Premislimo, da je takih homomorfizmov ogromno. Grupa **R** je kot abelova grupa izomorfna neskončni direktni vsoti kopij **Z**. Za vsak nabor realnih števil x_1, x_2, \ldots, x_k , ki so **Z**-linearno neodvisna, lahko izberemo poljuben nabor kompleksnih števil z_1, z_2, \ldots, z_k in dobimo homomorfizem abelovih grup $\chi: \mathbf{R} \to \mathbf{C}^*$ z lastnostjo $\chi(x_i) = z_i$ za vsak i.

To težavo zaobidemo tako, da ne opazujemo poljubnih upodobitev, temveč jih ozaljšamo z dodatnimi restrikcijami v odvisnosti od grupe, ki jo opazujemo.

Zveznost

Grupa \mathbf{R} ni le abstraktna grupa, temveč je opremljena s topologijo. Abstraktneje je *topološka grupa* množica, ki je hkrati grupa in topološki prostor, obe strukturi pa sta uglašeni s pogojem, da sta operaciji množenja in invertiranja zvezni. Končnorazsežna¹ kompleksna upodobitev $\rho: G \to \mathrm{GL}_n(\mathbf{C})$ topološke grupe G je *zvezna*, kadar je zvezna kot preslikava, pri čemer prostor $\mathrm{GL}_n(\mathbf{C}) \subseteq \mathbf{C}^{n^2}$ opremimo z inducirano topologijo.

 $^{^1}$ Če bi želeli obravnavati tudi neskončnorazsežne upodobitve na prostoru V, bi morali to definicijo nekoliko popraviti. Najprej bi morali zahtevati, da vsak element grupe G deluje kot zvezen linearen operator na V, kar ni avtomatično v neskončnorazsežnih vektorskih prostorih. Za tem bi morali namesto zveznosti preslikave ρ zahtevati, da je le *šibko zvezna*, kar pomeni, da je preslikava $G \times V \to V$, $(g,v) \mapsto \rho(g) \cdot v$ zvezna.

Zgled. Nore upodobitve grupe \mathbf{R} , ki smo jih konstruirali v zadnjem zgledu, povečini niso zvezne. So pa za vsak parameter $\zeta \in \mathbf{C}$ zvezne upodobitve oblike

$$\chi_{\zeta}: \mathbf{R} \to \mathbf{C}^*, \quad x \mapsto e^{\zeta x}.$$

Unitarnost

Pri raziskovanju teorije upodobitev končnih grup nam je marsikje prav prišlo dejstvo, da smo vektorske prostore opremili s skalarnim produktom, ki je bil invarianten glede na upodobitev. Z drugimi besedami, opazovali smo *unitarne* upodobitve, ki slikajo v grupo $U(V) \leq GL(V)$. Z metodo povprečenja smo dokazali, da je vsaka upodobitev končne grupe unitarizabilna in torej po ustrezni zamenjavi baze lahko predpostavimo, da je oblike $\rho: G \to U_n(\mathbf{C})$. Za neskončne grupe tega sklepa ne moremo napraviti in tudi zaključek v splošnem ne drži.

Zgled. Opazujmo grupo \mathbf{R} in njene upodobitve χ_{ζ} . Ta upodobitve je unitarna, če in samo če je njena slika vsebovana v $\mathbf{U}(\mathbf{C}) = S^1 = \{z \in \mathbf{C} \mid |z| = 1\}$, kar se zgodi le za imaginarne parametre $\zeta \in \mathbf{R} \cdot i$.

Za neskončne topološke grupe najraje opazujemo zvezne unitarne upodobitve. O teh ponavadi lahko povemo največ, kot bomo videli v nadaljevanju.

6.1 Kompaktne grupe

Večino rezultatov iz končnih grup lahko prenesemo v svet kompaktnih topoloških grup in njihovih zveznih unitarnih upodobitev.

$$U_1(\mathbf{C})$$

Najenostavnejši primer neskončne kompaktne grupe je unitarna grupa $U_1(\mathbf{C}) = S^1$ kompleksnih števil absolutne vrednosti 1. To topološko grupo lahko alternativno vidimo kot \mathbf{R}/\mathbf{Z} s kvocientno topologijo iz grupe \mathbf{R} .

Nerazcepne upodobitve

Poznamo že nekaj upodobitev grupe \mathbf{R}/\mathbf{Z} , ki jih ponuja grupa \mathbf{R} , in sicer za vsak parameter $k \in \mathbf{Z}$ dobimo upodobitev

$$\chi_k: \mathbf{R}/\mathbf{Z} \to \mathbf{C}^*, \quad x \mapsto e^{2\pi i k x}.$$

Velja pa tudi obratno, iz vsake upodobitve $\chi: \mathbf{R}/\mathbf{Z} \to U_1(\mathbf{C})$ z restrikcijo vzdolž $\mathbf{R} \to \mathbf{R}/\mathbf{Z}$ dobimo upodobitve \mathbf{R} . Te upodobitve lahko popolnoma opišemo s pomočjo elementarne analize.

Trditev. Vsaka zvezna upodobitev $\mathbf{R} \to \mathbf{C}^*$ je oblike χ_{ζ} za nek $\zeta \in \mathbf{C}$.

Dokaz. Naj bo $\chi \colon \mathbf{R} \to \mathbf{C}^*$ zvezna. Če je χ celo odvedljiva, potem za vsak $x \in \mathbf{R}$ velja

$$\chi'(x) = \lim_{t \to 0} \frac{\chi(x+t) - \chi(x)}{t} = \chi(x)\chi'(0).$$

Funkcija χ torej reši diferencialno enačbo $\chi' = \zeta \chi$, kjer smo označili $\zeta = \chi'(0)$. Od tod sledi, da je $\chi(x) = A \cdot e^{\zeta x}$ za neko konstanto A. Vstavimo x = 0 in sklenemo A = 1, torej je res $\chi = \chi_{\zeta}$.

Prepričajmo se, da je χ *vselej* odvedljiva, s čimer bo trditev dokazana. V ta namen jo najprej integrirajmo do odvedljive funkcije

$$X: \mathbf{R} \to \mathbf{C}, \quad x \mapsto \int_0^x \chi(t) dt.$$

Funkcija X sicer ni nujno homomorfizem, velja pa

$$X(x+y) = X(x) + \int_{x}^{x+y} \chi(t)dt = X(x) + \int_{0}^{y} \chi(t+x)dt = X(x) + \chi(x)X(y)$$

za vsaka $x, y \in \mathbf{R}$. Ker je $X' = \chi$, seveda obstaja $y_0 \in \mathbf{R}$, za katerega je $X(y_0) \neq 0$. Od tod lahko izrazimo $\chi(x)$ kot

$$\chi(x) = \frac{X(x+y_0) - X(x)}{X(y_0)}.$$

Ker je funkcija na desni odvedljiva, velja enako tudi za funkcijo na levi. □

Iz trditve izpeljemo, da vsaka zvezna upodobitev $\mathbf{R}/\mathbf{Z} \to \mathbf{C}^*$ izhaja iz upodobitve χ_{ζ} za nek ζ . Pri tem mora biti $\mathbf{Z} \leq \ker \chi_{\zeta}$, od koder sledi $\zeta = 2\pi k$ za nek $k \in \mathbf{Z}$. Upodobitve χ_k torej izčrpajo vse končnorazsežne kompleksne upodobitve grupe \mathbf{R}/\mathbf{Z} . Te upodobitve so vse tudi unitarne, kar ni naključje, kot bomo pojasnili nekoliko kasneje.

Fourierova analiza

Klasična Fourierova analiza periodičnih funkcij se tesno prepleta s teorijo upodobitev grupe \mathbf{R}/\mathbf{Z} . Kot vemo, lahko z upodobitvami χ_k za $k \in \mathbf{Z}$ aproksimiramo poljubno zvezno funkcijo na \mathbf{R}/\mathbf{Z} . To naredimo na sledeč način. Prostor funkcij na grupi \mathbf{R}/\mathbf{Z} opremimo s skalarnim produktom

$$\langle f,h \rangle = \int_0^1 f(t) \overline{h(t)} dt.$$

Fourierovi koeficienti funkcije f so

$$\langle f, \chi_k \rangle = \int_0^1 f(t) e^{-2\pi i kt} dt$$

za $k \in \mathbb{Z}$. Z njimi definiramo delne Fourierove vsote

$$f_N = \sum_{k \in \mathbf{Z}: |k| \le N} \langle f, \chi_k \rangle \chi_k$$

za $N \in \mathbf{N}$. V splošnem delne vsote f_N ne konvergirajo po točkah, 2 je pa temu tako, če dodatno predpostavimo, da obravnavamo le kvadratno integrabilne funkcije f, se pravi

$$\int_0^1 |f(t)|^2 dt < \infty.$$

Za te funkcije po osnovnem izreku Fourierove analize velja konvergenca

$$\lim_{N\to\infty}||f-f_N||=0,$$

 $^{^{2}}$ Lahko se celo zgodi, da f_{N} ne konvergira v nobeni točki.

torej lahko f razvijemo v Fourierovo vrsto. 3 Hkrati drži varianta Parsevalove formule

$$||f||^2 = \sum_{k \in \mathbb{Z}} |\langle f, \chi_k \rangle|^2.$$

Upodobitve χ_k za $k \in \mathbb{Z}$ torej tvorijo ortonormiran sistem funkcij, ki je gost v prostoru vseh dovolj lepih funkcij funkcij na \mathbb{R}/\mathbb{Z} .

Fourierovo analizo lahko torej vidimo kot analog dekompozicije regularne upodobitve v primeru končnih grup za neskončno grupo \mathbf{R}/\mathbf{Z} .

Upodobitve kompaktnih grup

Izkaže se, da ima vse, kar smo videli za primer $U_1(\mathbf{C})$, ustrezno posplošitev za poljubno kompaktno grupo G. Za natančno obravnavo potrebujemo nekaj *teorije mere*, ki jo bomo prosto uporabili v tem podrazdelku.

V primeru grupe \mathbf{R}/\mathbf{Z} smo skalarni produkt na prostoru funkcij izrazili s pomočjo integrala. Izkaže se, da ima vsaka kompaktna grupa posebno verjetnostno mero μ , ki jo imenujemo *Haarova mera*, glede na katero lahko definiramo integral vsake merljive funkcije f po tej meri. S pomočjo tega se nam odprejo vrata orodju povprečenja po grupi, ki ga lahko izkoristimo za različne namene.

Trditev. Vsaka zvezna končnorazsežna kompleksna upodobitev kompaktne grupe je unitarizabilna.

Dokaz. Naj bo $\rho\colon\! G\to \mathrm{GL}(V)$ upodobitev. Izberemo poljuben skalarni produkt $\langle\cdot,\cdot\rangle$ na Vin ga povprečimo do

$$\langle \cdot, \cdot \rangle_0 : V \times V \to \mathbb{C}, \quad \langle v, w \rangle_0 = \int_G \langle \rho(g) \cdot v, \rho(g) \cdot w \rangle d\mu(g).$$

Ni težko preveriti, da je $\langle \cdot, \cdot \rangle_0$ skalarni produkt na V, glede na katerega je ρ unitarna upodobitev. \Box

Kot v primeru \mathbf{R}/\mathbf{Z} lahko vse upodobitve najdemo v ustreznem modelu regularne upodobitve. V splošnem opazujemo funkcije na kompaktni grupi G, pri čemer se omejimo na prostor kvadratno integrabilnih merljive funkcije in še te opazujemo le do ekvivalence $skoraj\ povsod$ natančno. Prostor ekvivalenčnih razredov takih funkcij je $L^2(G)$. Na tem prostoru deluje grupa G kot regularna upodobitev,

$$\rho(g) \cdot f = x \mapsto f(xg).$$

Ta prostor je seveda neskončnorazsežen. Znameniti Peter-Weylov izrek razkrije dekompozicijo te upodobitve, ki je popolnoma analogna tisti iz sveta končnih grup.

Izrek (Peter-Weyl). Naj bo G kompaktna grupa s Haarovo mero μ . Regularna upodobitev G na $L^2(G)$ je izomorfna ortogonalni direktni vsoti

$$L^2(G) \cong \bigoplus_{\pi} \underbrace{\pi \oplus \pi \oplus \cdots \oplus \pi}_{\deg(\pi)},$$

 $ko\ \pi$ preteče vse končnorazsežne nerazcepne zvezne unitarne upodobitve grupe G.

 $^{^{3}}$ Pri tem moramo biti nekoliko previdni, saj opisana konvergenca *ne* implicira, da vrsta f_{N} v vseh točkah konvergira k f, temveč le *skoraj povsod*.

Kot v končnih grupah se s pomočjo matričnih koeficientov prepričamo, da je vsaka nerazcepna zvenza unitarna upodobitev vsebovana v regularni, zato je v posebnem vsaka zvezna unitarna upodobitev kompaktne grupe nujno *končnorazsežna*.

6.2 Zvezne linearne grupe

 $\mathrm{SL}_2(\mathbf{C})$

 $\mathrm{SL}_2(\mathbf{R})$

- obravnavamo kot Liejevo grupo - pokažemo povezavo z sl_2 (if you have a lie group, you can also liearize the source:: lahko eksplicitno opišemo vse nerazcepne, pokažemo kako so bijektivno (!) povezane z gladkimi upodobitvami SL_2 , glej Fulton-Harris) - naštejemo upodobitve SL_2 - dokažemo, da so nerazcepne (potrebujemo izotipične komponente) - diferencial teh upodobitve nam da upodobitve sl_2 - dokažemo, da so to vse upodobitve sl_2 (Fulton-Harris) - zvezne upodobitve SL_2 : te plus konjugiranke (samo rezultat, glej Example 2.7.41 za karakter) - abstraktne upodobitve: divji avtomorfizmi ${\bf C}$ - dokažemo Clebsch-Gordan (najbrž izpustimo ..)

6.3 Diskretne linearne grupe

 $\mathrm{SL}_2(\mathbf{Z})$

 $-SL_2(Z)? \ (-> {\tt https://math.stackexchange.com/questions/786303/the-presentation-of-sl2-mathbbz}, glej zadnji odgovor, kjer poda prezentacijo, napiši na primer enačbe za raznoterost dvorazsežnih realnih upodobitev; ima ogromno končnih kvocientov — nima CSP (stran3 https://arxiv.org/pdf/2203.15701.pdf, lemma a.1 https://arxiv.org/pdf/1201.6644.pdf)) - Theorem 2.6.7 Baumslag-Solitar grupa je končno prezentirana, ni pa linearna - random groups, model Gromova https://arxiv.org/abs/1810.01529$

$\mathrm{SL}_3(\mathbf{Z})$

- končno prezentirana (https://mathoverflow.net/questions/122891/small-index-subgroups-of-sl3-z), napiši enačbe za 2dim upodobitve, jih je BISTVENO manj kot za SL2 - $SL_n(Z)$? (-> The representation theory of SLn(Z), Andrew Putman, povezano s p-adičnimi števili – Lubotzky)

p-adične grupe. Omenimo lahko na primer rezultat Jaikin (representation growth) in Aizenbud-Avni (Representation Growth and Rational Singularities of the Moduli Space of Local Systems).

- ? lastnost (T), dodaj referenco na TGP in expanderje - $\mathrm{SL}_2(\mathbf{R})$: sorodna SU (imata enako kompleksifikacijo Liejevih algeber), ampak hkrati popolnoma drugačna kar se tiče unitarnih upodobitev.