

Lecture 11: Density Estimation with Gaussian Mixture Models

Yi, Yung (이용)

Mathematics for Machine Learning KAIST EE

April 2, 2021

Please watch this tutorial video by Luis Serrano on Gaussian Mixture Model.

https://www.youtube.com/watch?v=q71Niz856KE

April 2, 2021 1 / 26

April 2, 2021 2 / 26

Roadmap

Roadmap

- (1) Gaussian Mixture Model
- (2) Parameter Learning: MLE
- (3) Latent-Variable Perspective for Probabilistic Modeling
- (4) EM Algorithm

- (1) Gaussian Mixture Model
- (2) Parameter Learning: MLE
- (3) Latent-Variable Perspective for Probabilistic Modeling
- (4) EM Algorithm

- Represent data compactly using a density from a parametric family, e.g., Gaussian or Beta distribution
- Parameters of those families can be found by MLE and MAPE
- However, there are many cases when simple distributions (e.g., just Gaussian) fail to approximate data.

L11(1) April 2, 2021 5 / 26

- More expressive family of distribution
- Idea: Let's mix! A convex combination of K "base" distributions

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k p_k(\mathbf{x}), \quad 0 \le \pi_k \le 1, \quad \sum_{k=1}^K \pi_k = 1$$

- Multi-modal distributions: Can be used to describe datasets with multiple clusters
- Our focus: Gaussian mixture models
- Want to finding the parameters using MLE, but cannot have the closed form solution (even with the mixture of Gaussians) → some iterative methods needed

L11(1) April 2, 2021 6 / 26

Gaussian Mixture Model

Roadmap

 $p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \quad 0 \leq \pi_k \leq 1, \quad \sum_{k=1}^K \pi_k = 1,$

where the parameters $\boldsymbol{\theta} := \{ \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k : k = 1, \dots, K \}$

• Example. $p(x|\theta) = 0.5\mathcal{N}(x|-2,1/2) + 0.2\mathcal{N}(x|1,2) + 0.3\mathcal{N}(x|4,1)$

- (1) Gaussian Mixture Model
- (2) Parameter Learning: MLE
- (3) Latent-Variable Perspective for Probabilistic Modeling
- (4) EM Algorithm

• Given a iid dataset $\mathcal{X} = \{x_1, \dots, x_n\}$, the log-likelihood is:

$$\mathcal{L}(\boldsymbol{\theta}) = \log p(\mathcal{X}|\boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}_n|\boldsymbol{\theta}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- $\theta_{\mathsf{ML}} = \operatorname{arg\,min}_{\boldsymbol{\theta}}(-\mathcal{L}(\boldsymbol{\theta}))$
- Necessary condition for θ_{ML} : $\frac{d\mathcal{L}}{d\theta}\Big|_{\theta_{ML}} = 0$
- However, the closed-form solution of $\theta_{\rm ML}$ does not exist, so we rely on an iterative algorithm (also called EM algorithm)
- We show the algorithm first, and then discuss how we get the algorithm.

• Definition. Responsibilities. Given *n*-th data point x_n and the parameters $(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \boldsymbol{\pi}_k : k = 1, \dots, K),$

$$r_{nk} = rac{\pi_k \mathcal{N}(\mathbf{x}_n | \mathbf{\mu}_k, \mathbf{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \mathbf{\mu}_j, \mathbf{\Sigma}_j)}$$

- How much is each component k responsible, if the data x_n is sampled from the current mixture model?
- $\mathbf{r}_n = (r_{nk} : k = 1, ..., K)$ is a probability distribution, so $\sum_{k=1}^K r_{nk} = 1$
- Soft assignment of x_n to the K mixture components

L11(2)

April 2, 2021 9 / 26

L11(2)

April 2, 2021 10 / 26

EM Algorithm: MLE in Gaussian Mixture Models

KAIST EE

April 2, 2021

11 / 26

Example: EM Algorithm

April 2, 2021

12 / 26

EM for MLE in Gaussian Mixture Models

- **S1.** Initialize μ_k, Σ_k, π_k
- **S2.** E-step: Evaluate responsibilities r_{nk} for every data point x_n using the current μ_k, Σ_k, π_k :

$$r_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}, \quad N_k = \sum_{n=1}^N r_{nk}$$

S3. M-step: Reestimate parameters μ_k , Σ_k , π_k using the current responsibilities r_{nk} :

$$\mu_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} \mathbf{x}_{n}, \ \Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} (\mathbf{x}_{n} - \mu_{k}) (\mathbf{x}_{n} - \mu_{k})^{\mathsf{T}}, \ \pi_{k} = \frac{N_{k}}{N},$$

and go to \$2.

- The update equation in M-step is still mysterious, which will be covered later.

(f) EM after 62 iterations

• Given $\mathcal X$ and r_{nk} from E-step, the new updates of μ_k , Σ_k , π_k should be made, such that the followings are satisfied:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = 0^{\mathsf{T}} \Longleftrightarrow \sum_{n=1}^{N} \frac{\partial \log p(\boldsymbol{x}_n | \boldsymbol{\theta})}{\partial \boldsymbol{\mu}_k} = 0^{\mathsf{T}}$$

$$\frac{\partial \mathcal{L}}{\partial \Sigma_k} = 0 \Longleftrightarrow \sum_{n=1}^N \frac{\partial \log p(\mathbf{x}_n | \boldsymbol{\theta})}{\partial \Sigma_k} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \pi_k} = 0 \Longleftrightarrow \sum_{n=1}^{N} \frac{\partial \log p(\mathbf{x}_n | \boldsymbol{\theta})}{\partial \pi_k} = 0$$

- Nice thing: the new updates of μ_k , Σ_k , π_k are all expressed by the responsibilities $[r_{nk}]$
- Let's take a look at them one by one!

 $oldsymbol{\mu}_k^{\mathsf{new}} = rac{\sum_{n=1}^N r_{nk} oldsymbol{x}_n}{\sum_{n=1}^N r_{nk}}, k = 1, \dots, K$

•

L11(2) April 2, 2021 13 / 26 L11(2) April 2, 2021 14 / 26

M-Step: Update of Σ_k

M-Step: Update of π_k

$$oldsymbol{\Sigma}_k^{\mathsf{new}} = rac{1}{N_k} \sum_{n=1}^N r_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^\mathsf{T}, k = 1, \dots, K$$

•

$$\pi_k^{\mathsf{new}} = \frac{\sum_{n=1}^{N} r_{nk}}{N}, k = 1, \dots, K$$

- (1) Gaussian Mixture Model
- (2) Parameter Learning: MLE
- (3) Latent-Variable Perspective for Probabilistic Modeling
- (4) EM Algorithm

• Justify some ad hoc decisions made earlier

- Allow for a concrete interpretation of the responsibilities as posterior distributions
- Iterative algorithm for updating the model parameters can be derived in a principled manner

L11(3)

April 2, 2021 17 / 26

L11(3)

April 2, 2021 18 / 26

Generative Process

April 2, 2021

19 / 26

Joint Distribution, Likelihood, and Posterior (1)

- Latent variable z: One-hot encoding random vector $z = [z_1, \dots, z_K]^T$ consisting of K-1 many 0s and exactly one 1.
- An indicator rv $z_k = 1$ represents whether k-th component is used to generate the data sample x or not.
- $p(\mathbf{x}|z_k=1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- Prior for z with $\pi_k = p(z_k = 1)$

$$p(\mathbf{z}) = \mathbf{\pi} = [\pi_1, \dots, \pi_K]^\mathsf{T}, \quad \sum_{k=1}^K \pi_k = 1$$

- Sampling procedure
 - 1. Sample which component to use $z^{(i)} \sim p(z)$
 - 2. Sample data according to *i*-th Gaussian $\mathbf{x}^{(i)} \sim p(\mathbf{x}|z^{(i)})$

,

• Joint distribution $p(\mathbf{x}, \mathbf{z}) = \begin{pmatrix} p(\mathbf{x}, z_1 = 1) \\ \vdots \\ p(\mathbf{x}, z_K = 1) \end{pmatrix} = \begin{pmatrix} p(\mathbf{x}|z_1 = 1)p(z_1 = 1) \\ \vdots \\ p(\mathbf{x}|z_K = 1)p(z_K = 1) \end{pmatrix} = \begin{pmatrix} \pi_1 \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ \vdots \\ \pi_K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K) \end{pmatrix}$

• Likelihood for an arbitrary single data x: By summing out all latent variables¹,

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{z}} p(\mathbf{x}|\boldsymbol{\theta}, \mathbf{z}) p(\mathbf{z}|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x}|\boldsymbol{\theta}, z_k = 1) p(z_k = 1|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• For all the data samples \mathcal{X} , the log-likelihood is:

$$\log p(\mathcal{X}|\boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(\mathbf{x}_n|\boldsymbol{\theta}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Compare: Page 7

L11(3) April 2, 2021 20 / 26

 $^{^{1}}$ In probabilistic PCA, z was continuous, so we integrated them out.

• Posterior for the k-th z_k , given an arbitrary single data x:

$$p(z_k = 1 | \boldsymbol{x}) = \frac{p(z_k = 1)p(\boldsymbol{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\boldsymbol{x}|z_j = 1)} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• Now, for all data samples $\mathcal{X},$ each data \mathbf{z}_n has $\mathbf{z}_n = [z_{n1}, \dots, z_{nK}]^\mathsf{T},$ but with the same prior π .

$$p(z_{nk} = 1 | \mathbf{x}_n) = \frac{p(z_{nk} = 1)p(\mathbf{x}_n | z_{nk} = 1)}{\sum_{j=1}^{K} p(z_{nj} = 1)p(\mathbf{x}_n | z_{nj} = 1)} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = r_{nk}$$

Responsibilities are mathematically interpreted as posterior distributions.

- (1) Gaussian Mixture Model
- (2) Parameter Learning: MLE
- (3) Latent-Variable Perspective for Probabilistic Modeling
- (4) EM Algorithm

L11(3) L11(4) April 2, 2021 21 / 26

Revisiting EM Algorithm for MLE

KAIST EE

Other Issues

April 2, 2021

22 / 26

24 / 26

- **S1.** Initialize μ_k, Σ_k, π_k
- S2. E-step:

$$r_{nk} = rac{\pi_k \mathcal{N}(\mathbf{x}_n | \mathbf{\mu}_k, \mathbf{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \mathbf{\mu}_j, \mathbf{\Sigma}_j)}$$

- **S3.** M-step: Update μ_k, Σ_k, π_k using r_{nk} and go to S2.
- E-step. Expectation over $z|x, \theta^{(t)}$: Given the current $\theta^{(t)} = (\mu_k, \Sigma_k, \pi_k)$, calculates the expected log-likelihood

$$Q(\theta|\theta^{(t)}) = \mathbb{E}_{z|x,\theta^{(t)}}[\log p(x,z|\theta)]$$
$$= \int \log p(x,z|\theta)p(z|x,\theta^{(t)})dz$$

- M-step. Maximization of the computation results in E-step for the new model parameters.
- Only guarantee of just local-optimum because the original optimization is not necessarily a convex optimization. L7(4)

- Model selection for finding a good K, e.g., using nested cross-validation
- Application: Clustering
 - K-means: Treat the means in GMM as cluster centers and ignore the covariances.
 - K-means: hard assignment, GMM: soft assignment
- EM algorithm: Highly generic in the sense that it can be used for parameter learning in general latent-variable models
- Standard criticism for MLE exists such as overfitting. Also, fully-Bayesian approach assuming some priors on the parameters is possible, but not covered in this notes.
- Other density estimation methods
 - Histogram-based method: non-parametric method
 - Kernel-density estimation: non-parametric method

1)

Questions?

L11(4) April 2, 2021 25 / 26 L11(4) April 2, 2021 26 / 26