# Házi feladatok megoldása 10.

Modell-alapú klaszteranalízis (MKA) R-ben

Smahajcsik-Szabó Tamás, M9IJYM

# 1. Végezz MKA-t a PTELJ, Pboldog, Pmagány input változókkal, outlier kiszűréssel! Melyik megoldás tűnik a legjobbnak a BIC-grafikon alapján?

Az mclust programcsomag Mclust() függvényét használva, különböző  ${\bf G}$  érték-konfigurációkat teszteltem a BIC legnagyobb értékét, de ugyanakkor a képződő struktúra értelmezhetőségét is szem előtt tartva. 3 és 30 között vizsgálódva elmondható, hogy alapvetően három olyan keverékeloszlás típus mutatkozott meg, melynél a Bayes-féle Információs Kritérium a legjobb értéket érte el. Ebben a nagy tartományban a G=28 esetben az EEV típus mutatta a lejobb BIC értéket, utána visszafelé haladva, a VEV áll G=24-nél, majd pedig a VEI típus illeszkedésénél legjobb BIC G=15-nél.



## 1. ábra MKA BIC eredmények G=3 és G=30 között

Az alábbi ábrán az egyes keverék-komponensek sűrűségét, illetve box-whiskers eloszlásait látjuk.



#### 2. ábra MKA sűrűség és eloszlási eredmények G=28 között

Mindezeken túl azonban, az értelmezhetőség végett az elemzést a G=3 és G=10 tartományra is megismételtem.



#### 3. ábra MKA BIC eredmények G=3 és G=10 között

Ezen elemzés nyomán azt látjuk, a VEV eloszlástípus bizonyul a legjobbnak, mely a fenti, kiterjesztett elemzésnél is a legjobbak között volt, így az képződött struktúra értelmezhetőségének reményében a G=10, VEV struktúrát fogadom el.





## 4. ábra MKA sűrűség és eloszlási eredmények G=10 között

A keverékkomponensek sűrűsödés vizsgálata három jobban elkülönölő struktúrát jelez, így mindez felveti hipotézisként, vajon mennyire értelmezhetőbb egy G=3 struktúra az információveszteség ellenére a G=10-zel szemben.





**5.ábra** A G=3 és a G=10 struktúrák összevetése az adatok első két főkomponense mentén képzett két dimenziós síkban; a klaszterhatárok bizonytalanságát a háttér árnyalata (z-paraméter) jelzi.

Noha értelmezhetőbb struktúrát kapunk G=3 értékkel, ez jelentősen rosszabb BIC struktúra mint a G=10.

## 2. Készítsd el az 1. feladat BIC-grafikonját k=3és 10 között!



## 6. ábra MKA sűrűség és eloszlási eredmények G=10 között

BIC ábráimon a szövegdobozok az adott keveréktípus maximuális értékénél állnak. Ennek értelmében G=10nél a legjobbnak tűnő eloszlástípus a VEV, melynek BIC értéke -3183.38.

## 3. Készítsd el az 1. feladat legjobb BIC megoldásának classification ábráját!



7. ábra A G=10 megoldás klasszifikációs ábrája

Jól látható három nagyobb klaszter elkülönülése, és több kisebb, részben átfedő struktúra is. Ez ismét felveti a kérdést, mennyiben értelmezhetőbb egy G=3 struktúra. Különösen a Boldogság és Magányosság szeleteiben láthatóak néhány személyt magukban foglaló apró klaszterek.



A BIC-értékben való csökkenés ellenére egy jobban értelmezhető, kevésbé átfedő, kevésbé redundáns megoldást kapunk.

# 4. Készítsd el az 1. feladat legjobb BIC megoldásának uncertainty és density ábráját!



G=10 esetében a klaszterek átfednek, több esetben is a klaszterbe tartozás bizonytalansága emelkedett.



10. ábra A G=3 megoldás "uncertainty" és sűrűsödés ábrája

# 5. Készítsd el az 1. feladat ICL-grafikonját k = 1 és 9 között! Ugyanaz a modell tűnik a legjobbnak, mint a BIC-grafikon alapján?



11. ábra A G=1 és G=10 közti megoldások ICL ábrái ( a felső a prior opció nélkül, az alsó pedig ezzel kiegészített lefutás )

A priorControl() hangolási opció nélkül, a felső ábra szerint hasonlóképpen a VEV keveréktípus a legjobb az ICL információs kritérium szeriunt is, akár G=9, akár G=10 opciót tekintjük is.

A finomhangolással együtt azonban (alsó ábra) a VVI eloszlástípus mutat kedvezőbb illeszkedést. Ezt úgy értelmezem, hogy méretükben, tengelyeik hosszában eltérő, de a főtengelyekkel és egymás tengelyirányultságában egyező eloszlásokat modellez a legjobb ICL-lel leírható modell.

A VVI típus G=8 struktúra esetén tetőzik, így ezt fogadom el a legjobb megoldásnak, mely az alacsonyabb komponensszám miatt az értelmezhetőségben is kedvezőbb.

# 6. Mentsd el a legjobb BIC-megoldást, tedd át ROPstatba és számítsd ki a Validálás modullal a főbb QC mutatókat! Hasonlítsd össze a kapott értékeket a 8. óra 1. feladatában kapott QC-értékekkel!

Az alábbi táblázatban mutatom be a validálás eredményét.

Α

| EESS%  | Pontbisz    | XBmod     | Sil.eh.    | HCátlag  | CLdelta | GDI24 | HCmin-HCmax | G/K | Type |
|--------|-------------|-----------|------------|----------|---------|-------|-------------|-----|------|
| 51.52  | 0.362       | 0.513     | 0.631      | 0.974    | 0.754   | 0.447 | 0.33-2.22   | 3   | MKA  |
| 54.99  | 0.189       | -0.795    | 0.181      | 0.915    | 0.555   | 0.039 | 0.09 - 2.37 | 9   | MKA  |
| 58.49  | 0.176       | -0.776    | 0.216      | 0.842    | 0.544   | 0.041 | 0.02  2.25  | 10  | MKA  |
| 78.72  | 0.355       | 0.456     | 0.598      | 0.434    | 0.893   | 0.381 | 0.24 - 1.03 | 8   | KKA  |
| 76.83  | 0.370       | 0.534     | 0.610      | 0.471    | 0.895   | 0.484 | 0.24 - 1.03 | 7   | KKA  |
| 74.70  | 0.369       | 0.491     | 0.614      | 0.513    | 0.888   | 0.345 | 0.24 - 1.44 | 6   | KKA  |
| 80.26  | 0.351       | 0.496     | 0.590      | 0.404    | 0.898   | 0.381 | 0.24 - 1.03 | 9   | KKA  |
| 81.48  | 0.342       | 0.473     | 0.592      | 0.379    | 0.896   | 0.342 | 0.18 - 1.03 | 10  | KKA  |
| 79.50  | 0.233       | -0.877    | 0.136      | 0.438    | 0.789   | 0.011 | 0.00 - 2.21 | 28  | MKA  |
| 1. táb | lázat** Ade | kvációs m | utatók öss | zevetése |         |       |             |     |      |