

Areas of Parallelograms and Triangles Ex 15.2 Q4 Answer:

Given: Here in the question it is given that

(1) ABCD is a Parallelogram

To Prove:

(1) Area of $\triangle ADC = \frac{1}{2} \left(area \ of \ \|^{gm} \ ABCD \right)$

(2) Area of $\triangle BCD = \frac{1}{2} \left(area \ of \ ||^{gm} \ ABCD \right)$

(3) Area of $\triangle ABC = \frac{1}{2} \left(area \ of \ ||^{gm} \ ABCD \right)$

(4) Area of $\triangle ABD = \frac{1}{2} \left(area \ of \ \|^{gm} \ ABCD \right)$

Construction: Draw $AE \perp CD$

Calculation: We know that formula for calculating the

Area of Parallelogram = base × height

Area of paralleogram ABCD = $BC \times AE$ (Taking base as BC and Height as AE(1) We know that formula for calculating the

Area of $\Delta = \frac{1}{2} \text{base} \times \text{height}$

Area of $\triangle ADC = \frac{1}{2}$ Base \times Height

= $\frac{1}{2}$ AD× AE (AD is the base of \triangle ADC and AE is the height of \triangle ADC)

 $=\frac{1}{2}$ Area of Parallelogram ABCD (from equation1)

Area of
$$\triangle ADC = \frac{1}{2} (\text{area of } ||^{\text{gm}} ABCD)$$

Hence we get the result $Area ext{ of } \Delta ADC = \frac{1}{2} (area ext{ of } || ^{gm}ABCD)$

Similarly we can show that

(2) Area of $\triangle BCD = \frac{1}{2} (\text{area of } ||^{\text{gm}} ABCD)$

(3) Area of $\triangle ABC = \frac{1}{2} (\text{area of } ||^{gm} ABCD)$

(4) Area of $\triangle ABD = \frac{1}{2} (\text{area of } ||^{gm} ABCD)$

********* END *******