DAY 11

1. In an equilateral $\triangle ABC$, D is a point on BC such that BD = $\frac{1}{3}$ BC. Prove that $9AD^2 = 7AB^2.$ [Ex 6.5, Q15]

Sol:- Let side of equilateral $\triangle ABC$ is a. $\therefore BD = DC = \frac{1}{3}BC = \frac{1}{3}a$

Draw AL
$$\perp$$
 BC \Rightarrow BL = LC = $\frac{a}{2}$

Now DL = BL - BD =
$$\frac{a}{2} - \frac{a}{3} = \frac{3a - 2a}{6} = \frac{a}{6}$$

and In \triangle ACL, we have

$$AC^{2} = AL^{2} + CL^{2}$$

$$\Rightarrow a^{2} = AL^{2} + \left(\frac{a}{2}\right)^{2}$$

$$\Rightarrow a^{2} = AL^{2} + \frac{a^{2}}{4}$$

$$\Rightarrow AL^{2} = a^{2} - \frac{a^{2}}{4} = \frac{4a^{2} - a^{2}}{4} = \frac{3a^{2}}{4}$$

In \triangle ADL, we have

2. O is any point in the interior of rectangle ABCD. Prove that $OB^2 + OD^2 = OC^2 + OA^2$ [Example 14]

Sol: Given: 0 is any point in the interior of rectangle ABCD.

To Prove: $OB^2 + OD^2 = OC^2 + OA^2$

Construction Through O, Draw a segment EF | BC | AD.

Proof: Since EF | BC | AD and ADFE and BCFE are rectangles

{In this sum, take right triangles according to what to prove e. g. for OB^2 take $\triangle OBE$, for OD^2 take ΔODF , for OA^2 take ΔOAE , for OC^2 take ΔOCF }

In right ΔOBE, we've

$$OB^2 = OE^2 + EB^2$$
 (Pythagoras Theorem)i

and In ∆ODF, we've

$$OD^2 = OF^2 + FD^2$$
ii)

Adding i) & ii), we get

$$OB^2 + OD^2 = OE^2 + EB^2 + OF^2 + FD^2$$

(ADFE and BCFE are rectangles)

So EB = FC and AE = FD
$$\int$$

= 0E² + FC² + 0F² + AE²
= (0E² + AE²) + (0F² + FC²) = 0A² + 0C²
Hence the result

— a/2

3. The perpendicular from A on the side BC of \triangle ABC intersect BC at D such that DB = 3CD. Prove that $2AB^2 = 2AC^2 + BC^2$ [Ex 6.5, Q14]

Sol:

Prove
$$:2AB^2 = 2AC^2 + BC^2$$
 or $2AB^2 - 2AC^2 = BC^2$ or $2(AB^2 - AC^2) = BC^2$

Proof:- In right \triangle ABD, we've

$$AB^2 = AD^2 + BD^2$$
 (Pythagoras Theorem)i)

and In ΔACD, we've

$$AC^2 = AD^2 + CD^2$$
ii)

Subtracting ii) from ii), we get

$$AB^{2} - AC^{2} = (AD^{2} + BD^{2}) - (AD^{2} + CD^{2})$$

$$= AD^{2} + BD^{2} - AD^{2} - CD^{2}$$

$$= BD^{2} - CD^{2} = (3CD)^{2} - CD^{2}$$

$$= 9CD^{2} - CD^{2} = 8CD^{2}$$
{Since BC = BD + CD = 3CD + CD = 4CD}

$$= 8 \left(\frac{BC}{4}\right)^2 = 8 \times \frac{BC^2}{16} = \frac{BC^2}{2}$$

 $\Rightarrow 2(AB^2 - AC^2) = BC^2$

Hence the result

come-become-educated

