Polynômes

Exercice 1 Effectuer les divisions euclidiennes de

$$3X^5 + 4X^2 + 1$$
 par $X^2 + 2X + 3$,
 $3X^5 + 2X^4 - X^2 + 1$ par $X^3 + X + 2$,
 $X^4 - X^3 + X - 2$ par $X^2 - 2X + 4$.

Exercice 2 Effectuer la division selon les puissances croissantes de :

$$X^4 + X^3 - 2X + 1$$
 par $X^2 + X + 1$ à l'ordre 2.

Exercice 3 Trouver les polynômes P tels que P+1 soit divisible par $(X-1)^4$ et P-1 par $(X+1)^4$:

- 1. en utilisant la relation de Bézout,
- 2. en considérant le polynôme dérivé P'.

Combien y a-t-il de solutions de degré ≤ 7?

Exercice 4 Effectuer la division de $A = X^6 - 2X^4 + X^3 + 1$ par $B = X^3 + X^2 + 1$:

- 1. Suivant les puissances décroissantes.
- À l'ordre 4 (c'est-à-dire tel que le reste soit divisible par X⁵) suivant les puissances croissantes.

Exercice 5 Effectuer la division euclidienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X + 4$.

Exercice 6 Quels sont les polynômes $P \in \mathbb{C}[X]$ tels que P' divise P?

Exercice 7 Calculer pgcd(P,Q) lorsque :

1.
$$P = X^3 - X^2 - X - 2$$
 et $Q = X^5 - 2X^4 + X^2 - X - 2$,

2.
$$P = X^4 + X^3 - 2X + 1$$
 et $Q = X^3 + X + 1$.

Exercice 8 Déterminer le pgcd des polynômes suivants :

$$X^5 + 3X^4 + X^3 + X^2 + 3X + 1$$
 et $X^4 + 2X^3 + X + 2$,
 $X^4 + X^3 - 3X^2 - 4X - 1$ et $X^3 + X^2 - X - 1$,
 $X^5 + 5X^4 + 9X^3 + 7X^2 + 5X + 3$ et $X^4 + 2X^3 + 2X^2 + X + 1$.

Exercice 9 Calculer le pgcd D des polynômes A et B définis ci-dessous. Trouver des polynômes U et V tels que D = AU + BV.

1.
$$A = X^5 + 3X^4 + 2X^3 - X^2 - 3X - 2$$
 et $B = X^4 + 2X^3 + 2X^2 + 7X + 6$.

2.
$$A = X^6 - 2X^5 + 2X^4 - 3X^3 + 3X^2 - 2X$$
 et $B = X^4 - 2X^3 + X^2 - X + 1$.

Exercice 10 Décomposer dans $\mathbb{R}[X]$, sans déterminer ses racines, le polynôme $P = X^4 + 1$, en produit de facteurs irréductibles.