

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №4

Название:	Параллельное программирование		
Дисциплина	: Анализ алгоритм	10B	
Студент _	ИУ7-54Б		Л.Е.Тартыков
_	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		(Подпись, дата)	Л.Л. Волкова (И.О. Фамилия)

Содержание

Введение 3

Введение

При выполнении множества задач необходимо обеспечить такую скорость вычислений, чтобы пользователь не подумал, что программа зависает. Для этого необходимо увеличивать скорость выполнения программ. В настоящее время по определенным техническим причинам стало невозможным увеличивать тактовую частоту процессора. Однако есть другой способ увеличения производительности – размещение нескольких ядер в процессоре, но это требует другого подхода в программировании.

Параллельное программирование - новый подход в технологии разработки программного обеспечения, которое основывается на понятии "поток". Поток - часть кода программы, которая может выполняться параллельно с другими частями кода программы. Многопоточность - способность центрального процессора или одного ядра в многоядерном процессоре одновременно выполнять несколько потоков.

Целью лаборатоной работы является изучение и реализация параллельного программирования для решения поиска минимального элемента в матрице. Для её достижения необходимо выполнить следующие задачи:

- исследовать подходы паралелльного программирования;
- привести схемы алгоритмов последовательного и паралелльного поиска минимального элемента матрицы;
- описать используемые структуры данных;
- выполнить тестирование реализации алгоритмов методом черного ящика;
- провести сравнительный анализ этих алгоритмов по процессорному выполнению времени на основе экспериментальных данных.