Абстракт

Определение: X— множество свободное от произведения, если $\forall x, y \in X$ верно, что $xy \notin X$.

<u>Основная проблема статьи</u>: Доказать, что не существует константы c>0 такой, что у каждой конечной группы G есть подмножество свободное от произведения порядка хотя бы c|G|.

То, чем мы на самом деле занимались

<u>Определение</u>: Группа называется квазирандомной, если у нее отсутствуют представления низкой размерности, помимо тривиального.

<u>Пример</u>: $PSL_2(q)$, у которой каждое нетривиальное представление имеет размер хотя бы (q-1)/2.

Основная теорема: Пусть Γ — конечная группа, без нетривиального представления размерности меньше, чем k. Пусть $|\Gamma| = n$ и A, B, C — три подмножества Γ таких, что $|A| \cdot |B| \cdot |C| > n^3 / k$. Тогда существует тройка $(a,b,c) \in A \times B \times C$ такая, что ab = c.

Следствие: $\Gamma = PSL_2(q)$ и $|\Gamma| = n$. Тогда Γ не имеет свободного от произведения подмножества мощности хотя бы $2n^{8/9}$.

//из чего следует основная проблема статьи