Teoria dei Polinomi

Argomenti trattati: polinomi in una o più variabili, polinomi simmetrici, polinomi omogenei, teoria del risultante.

NOTAZIONE E CONVENZIONI

All'interno della presente trattazione adottiamo le seguenti convenzioni:

- Quando non diversamente specificato assumiamo che R sia un anello commutativo unitario ed anche dominio d'integrità. In particolare il fatto che R sia ID, ci permette di dire che, se $f,g \in R[x]$ allora deg $(fg) = \deg(f) + \deg(g)$, cosa che useremo abbastanza spesso.
- Tutte le sommatorie che compaiono si intendono finite
- Con $a \mid_S b$ intendiamo che $\exists s \in S$ t.c. b = as

Ed useremo la seguente notazione:

- ullet Indichiamo con Q_R il campo delle frazioni su R
- f'(x) indica la derivata formale di f(x), ovvero se $f(x) = \sum_i a_i x^i$ definiamo $f'(x) = \sum_i (i \star a_i) x^{i-1}$, dove $\star : \mathbb{N} \times R \to R$ è tale che $\star (n,r) = \underbrace{r+r+\ldots+r}_n n$ volte.
- Con \mathbb{P}_R indichiamo l'insieme dei primi in R

POLINOMI IN UNA VARIABILE

TEOREMA DI RUFFINI

Enunciato

Sia $f(x) \in R[x]$. Allora $f(\alpha) = 0 \Leftrightarrow (x - \alpha) \mid_R f(x)$

Dimostrazione

Notiamo che possiamo effettuare la solita divisione euclidea tra f(x) e $(x-\alpha)$ restando ad ogni passaggio in R[x] in quanto $x-\alpha$ è monico. Allora si ha $\exists q(x), r(x) \in R[x]$ t.c. $f(x) = q(x)(x-\alpha) + r(x)$, con deg r < 1 oppure r = 0. Valutando in α si ha $0 = f(\alpha) = r(\alpha) \implies r = 0$ perché r ha al più grado r. Scriviamo r si ha la tesi.

LEMMA DELLA DERIVATA E MOLTEPLICITÀ DELLE RADICI

Enunciato

 $f(x) \in R[x]$. Allora $(x - \alpha)^2 \mid_R f(x) \Leftrightarrow f(\alpha) = 0$ e $f'(\alpha) = 0$.

Dimostrazione

MASSIMO NUMERO DI RADICI DEL POLINOMIO

Enunciato

 $f(x) \neq 0 \in R[x]$, deg f = n. Allora f(x) ha al più n radici in R.

Dimostrazione

Ogni volta che troviamo una radice α di f, possiamo dire f(x)=(x-a)g(x) e abbiamo che deg $g=\deg f-1$, da cui la tesi.

Teorema delle Radici in Q_R

Enunciato

Sia R GCD, $f(x) \in R[x]$, $\deg f = n$, $f(x) = \sum_i a_i x^i$, $\alpha \in Q_R$ una sua radice. Allora, $\det p, q \in R$ t.c. $\alpha = \frac{p}{q}$, si ha che $p \mid a_0$ e $q \mid a_n$.

Dimostrazione

Sappiamo che $0 = f(\frac{p}{q}) = a_n(\frac{p}{q})^n + \ldots + a_1\frac{p}{q} + a_0$ e possiamo supporre $\frac{p}{q}$ ridotta ai minimi termini, ovvero con (p,q) = 1. Moltiplicando da ambo i lati per q^n si ottiene $0 = a_np^n + a_{n-1}p^{n-1}q + \ldots + a_1pq^{n-1} + a_0q^n$ e notiamo che q divide tutti i termini tranne a_np^n e p divide tutti i termini tranne a_0q^n , quindi si ha, poiché q e p sono coprimi, $p \mid a_0 \in q \mid a_n$.

Principio di identità dei Polinomi

Enunciato

 $f(x) \in R[x]$, deg f = n, $f(x) = \sum_i a_i x^i$. Supponiamo $\exists \alpha_1, \dots, \alpha_{n+1} \ n+1$ radici con molteplicità di f(x). Allora $f(x) \equiv 0$.

Dimostrazione

Ovvia, segue dal "Massimo numero di radici del polinomio".

STRANA DIVISIBILITÀ

Enunciato

 $f(x) \in R[x], a, b \in R$. Allora $(b - a) \mid_{R} (f(b) - f(a))$.

Dimostrazione

Effettuiamo la divisione di f(x) per (x-a). Si ha $\exists q(x), r(x) \in R[x]$ tali che f(x) = (x-a)q(x) + r(x). Ora valutando in a si ottiene f(a) = r(a) = r(x) (perché deg $r \le 0$) e, valutando in b si ha f(b) = (b-a)q(b) + r(b) = (b-a)q(b) + f(a), e sottraendo f(b) - f(a) = (b-a)q(b), quindi $(b-a)|_R (f(b) - f(a))$.

CRITERIO DI IRRIDUCIBILITÀ DI EISENSTEIN

Enunciato

 $f(x) = \sum_i a_i x^i \in R[x]$, deg f = n. Se $\exists p \in \mathbb{P}_R$ t.c. $p \nmid a_n, p \mid a_0, a_1, \dots, a_{n-1}, p^2 \nmid a_0$ allora f(x) si può ridurre solo come $\beta \cdot h(x)$ con $\beta \in R$.

Dimostrazione

Supponiamo $\exists g(x), h(x) \in R[x]$ t.c. $f(x) = g(x) \cdot h(x)$. Sia A = R/(p) il dominio d'integrità quoziente (perché (p) è un ideale primo). Allora abbiamo $\overline{f}(x) = \overline{a_n}x^n$. Quindi la fattorizzazione di $\overline{f} = \overline{g} \cdot \overline{h}$ implica $\overline{g}, \overline{h}$ sono monomi (perché altrimenti il prodotto ha più termini di uno siccome A è ID). Allora abbiamo $\overline{g} = \overline{g_s}x^s$, $\overline{h} = \overline{h_r}x^r$, con $\overline{g_s}, \overline{h_r} \neq_A 0$. Quindi s+r=n e se s oppure $r \geq 1$ si ha $p^2 \mid a_0$. Assurdo. Allora WLOG deg g=0. Ovvero $f(x)=g_0 \cdot h(x)$.

Irriducibilità per Traslazioni

Enunciato

Se f(x) si fattorizza come g(x)h(x), allora anche f(x + a) si fattorizza

Dimostrazione

Ovvia: g(x+a)h(x+a) = f(x+a) e notiamo che deg $g(x+a) = \deg g(x)$ e deg $h(x+a) = \deg h(x)$. Può essere usato con profitto per poi usare Eisenstein sul polinomio traslato.

HENSEL LIFTING LEMMA

Qui i primi **non** indicano la derivata, ma altri polinomi.

Enunciato

 $I\subseteq R$ ideale. Dati $f,g,h,s,t\in R$ tali che $f\equiv gh\mod I$ e $sg+th\equiv 1\mod I$ allora $\exists g',h'\in R$ tali che $f\equiv g'h'\mod I^2,g'\equiv g\mod I$ e $h'\equiv h\mod I$. Inoltre se g' e h' soddisfano le condizioni precedenti allora si ha anche $s'g'+t'h'\equiv 1\mod I^2$ per qualche $s'\equiv s\mod I$ e $t'\equiv t\mod I$. g',h' sono unici nel senso

che ogni altra soluzione g^* e h^* che soddisfa le condizioni sopra soddisfa anche $g^* \equiv (1+u)g' \mod I^2$ e $h^* \equiv (1-u)h' \mod I^2$ per qualche $u \in I$.

Dimostrazione

Sia $f-gh\equiv e\mod I^2$, verifichiamo che $g':=g+te\mod I^2$ e $h':=h+se\mod I^2$ soddisfano le condizioni $f\equiv g'h'\mod I^2$, $g'\equiv g\mod I$ e $h'\equiv h\mod I$. Ci riferiamo a queste tre condizioni assieme con C. Per tutti i g',h' che soddisfano C, sia $d:=sg'+th'-1\mod I^2$, verifichiamo che $s':=(1-d)s\mod I^2$ e che $t':=(1-d)t\mod I^2$ soddisfano le condizioni $s'g'+t'h'\equiv 1\mod I^2$, $s\equiv s'\mod I$ e $t'\equiv t\mod I$. Supponiamo che g^*,h^* siano altre soluzioni che soddisfano C. Sia $v:=g^*-g',w:=h^*-h'$. La relazione $g^*h^*\equiv g'h'\mod I^2$ implica $g'w+h'v\equiv 0\mod I^2$, siccome $v,w\in I$. Allora visto che $s'g'+t'h'\equiv 1\mod I^2$, moltiplicando entrambi i membri per v otteniamo $(s'v-t'w)g'\equiv v\mod I^2$. Prendendo $u=s'v-t'w\in I$, $g^*\equiv (1+u)g'\mod I^2$, in maniera simile $h^*=(1-u)h'\mod I^2$.

Polinomi in più variabili

PRINCIPIO DI IDENTITÀ DEI POLINOMI

Enunciato

R di cardinalità infinita. Se $f \in R[x_1, \dots, x_n]$ è tale che $\forall a = (a_1, \dots, a_n) \in R^n$ f(a) = 0 allora si ha $f \equiv 0$, ovvero f è il polinomio identicamente nullo.

Dimostrazione

Mostriamo per induzione sul numero di incognite n che se $f \neq 0$ allora esiste un punto dove f non ha valore nullo. Per n=1 l'abbiamo già fatto con l'analogo teorema in una variabile. Mostriamo ora il passo induttivo: supponiamo che $f \in R[x_1,\ldots,x_n][x_{n+1}]$ e chiamiamo $y=x_{n+1}$ per comodità. Allora, ordinando i termini per il loro grado in y si ha $f=y^s(a_0+a_1y+\ldots+a_ry^r)$. Prendiamo il punto $\overline{x}\in R^n$ t.c. $a_0(\overline{x})\neq 0$ e valutiamo tutti i polinomi a_k in \overline{x} , ottenendo $f(\overline{x},y)=y^s(u_0+u_1y+\ldots+u_ry^r)$ dove $u_j=a_j(\overline{x})\in R$. Sapendo che ora $g(y):=f(\overline{x},y)\in R[y]$ è non nullo e che R ha cardinalità infinita so che $\exists q\in R$ t.c. $g(q)\neq 0$ allora so che il punto (\overline{x},q) è tale che $f(\overline{x},q)\neq 0$. Abbiamo così dimostrato ciò che volevamo.

NULLSTELLENSATZ

Lemma delle K-algebre

Enunciato

Dato K un campo, sia L una K-algebra finitamente generata su K. Se L è anche un campo, allora L è algebrico su K

Dimostrazione

Sia $L=K[\alpha_1,\ldots,\alpha_n]$. Supponiamo per assurdo che L **non** sia algebrico su K. Allora $\exists i$ t.c. α_i non è algebrico su K (se lo fossero tutti avrei L/K algebrico per torri). Consideriamo quindi $K(\alpha_i)\hookrightarrow L$ poichè L è un campo. Inoltre abbiamo $K(x)\cong K(\alpha_i)$ perché usando il morfismo che manda $x\mapsto\alpha_i$ otteniamo che ha Ker banale (altrimenti troviamo $p\in K[x]$ t.c. $p(\alpha_i)=0$ assurdo). Adesso mostriamo che K(x) **non** è finitamente generata come K-algebra: supponiamo che lo sia. Allora esistono $\{e_i\}_{i=1}^r\subset K(x)$ t.c. $\forall f(x)\in K(x)$ $f(x)=\sum_i^{\text{finite}}s_i\prod_j^{\text{finite}}e_j$ dove $s_i\in K$. Ma, scrivendo $e_i=\frac{a_i(x)}{b_i(x)}$ notiamo che necessariamente si avrebbe che ogni elemento di K(x) può avere al denominatore solo elementi irriducibili che compaiono nella fattorizzazione di almeno uno dei $b_i(x)$, denominatori della base in numero finito. Mostrando ora che esistono infiniti polinomi irriducibili in K[x] terminiamo la dimostrazione, ottenendo un assurdo e dovendo quindi avere che L/K è algebrico.

Supponiamo che esistano solo un numero finito di polinomi irriducibili in K[x]. Siano essi p_1,\ldots,p_m . Consideriamo allora $S^*=(\prod_{i=1}^m p_i)+1$. Siccome K[x] è PID (e quindi UFD) abbiamo che gli elementi irriducibili sono anche primi, quindi i (p_i) sono ideali primi, ovvero sono anche massimali. O S^* è irriducibile, assurdo, oppure $S^*=\prod_{j=1}^m p_j^{\beta_j}$. Sia \overline{k} t.c. $\beta_k\geq 1$ e consideriamo $S^*\mod(p_k)$. Otteniamo $0\equiv\prod_{j=1}^m p_j^{\beta_j}\equiv S^*\equiv 1+(\prod_{i=1}^m p_i)\equiv 1\mod(p_k)$ quindi $(p_k)=(1)$ e p_k è invertibile, contro l'ipotesi che fosse irriducibile. Abbiamo quindi l'assurdo voluto.

Nullstellensatz, forma debole

Enunciato

Sia K un campo algebricamente chiuso. Allora ogni ideale massimale nell'anello di polinomi $R=K[x_1,\ldots,x_n]$ ha la forma (x_1-a_1,\ldots,x_n-a_n) per qualche $a_1,\ldots,a_n\in K$. Come conseguenza, una famiglia di funzioni polinomiali su K^n con nessuno zero in comune genera l'ideale unitario di R.

Dimostrazione

Se M è un ideale massimale di R, allora R/M è un campo che è finitamente generato come K-algebra. Per il lemma precedente, e poiché K è algebricamente chiuso si ha $R/M \cong K$. Quindi ogni x_i viene mappato in qualche $a_i \in K$ dalla mappa naturale $R \to R/M \cong K$, quindi M contiene l'ideale $(x_1 - a_1, \ldots, x_n - a_n)$. Questo è un ideale massimale, quindi è uguale a M. Per quanto riguarda la seconda affermazione, si consideri l'ideale generato da qualche funzione polinomiale data senza zeri in comune. Se stesse in qualche ideale massimale, ovvero $(x_1 - a_1, \ldots, x_n - a_n)$, allora tutte le funzioni dovrebbero avere uno zero in $(a_1, \ldots, a_n) \in K^n$, contrariamente alle ipotesi. Siccome non sta in nessun ideale massimale, deve essere tutto R.

Nullstellensatz, forma forte

Enunciato

Sia K un campo algebricamente chiuso e g e f_1, \ldots, f_m siano membri di $R = K[x_1, \ldots, x_n]$, visti come funzioni polinomiali su K^n . Se g si azzera sul luogo degli zeri comuni degli f_i , allora qualche potenza di g appartiene all'ideale che generano.

Dimostrazione

(*Rabinowitsch trick*: aggiungiamo un'incognita) I polinomi f_1, \ldots, f_m e $x_{n+1}g-1$ non hanno zeri comuni in K^{n+1} , quindi per il Nullstellensatz debole si ha

$$1 = p_1 f_1 + \ldots + p_m f_m + p_{m+1} (x_{n+1} g - 1)$$

dove i p_i sono polinomi in x_1,\ldots,x_{n+1} . Prendendo l'immagine di questa equazione attraverso l'omomorfismo $K[x_1,\ldots,x_{n+1}]\to K(x_1,\ldots,x_n)$ dato da $x_{n+1}\mapsto \frac{1}{q}$ troviamo che

$$1 = p_1(x_1, \dots, x_n, \frac{1}{g})f_1 + \dots + p_m(x_1, \dots, x_n, \frac{1}{g})f_m$$

Moltiplicando ora per la giusta potenza di g per cancellare i denominatori si ha la tesi.

Polinomi simmetrici

POLINOMI OMOGENEI

I FATTORI DI POLINOMI OMOGENEI SONO OMOGENEI

IL RISULTANTE