

Parallel Circuits

PSI Physics

Name	Date:	Period:
------	-------	---------

Objectives:

- Measure and calculate voltage drops across any part of a parallel circuit
- Measure and calculate the current through any part of a parallel circuit
- Find the equivalent resistance for a parallel circuit

Materials:

- Battery (Power Source)
- Connecting wires
- Two resistors
- Knife switch
- Ammeter
- Voltmeter

Parallel Circuits

Parallel circuits are circuits where all the resistors are along different paths or branches; no two resistors are on the same branch. (right)

Procedure: For each of circuits 1, 2 and 3 below:

- 1. Construct the circuit. Make sure that the ammeter is in line with the resistors, and that the voltmeter is connected as shown.
- 2. Record the current and voltage drops.

Data Collection:

Ci	rcuit 1	Circuit 2		Circuit 3	
I	V	I ₁	V_1	I_2	V_2

Parallel Circuits

PSI Physics

Analysis:

Use Ohm's Law to calculate the resistance for each circuit.

Resistances					
Circuit 1	Circuit 2	Circuit 3			
$R_{\text{equivalent}} = \frac{V}{I}$	$R_1 = \frac{V_1}{I_1}$	$R_2 = \frac{V_2}{I_2}$			

Use the information in the Data Collection and Analysis Tables to answer the following questions:

- 1. How is the voltage, V, related to the other two voltage drops, V_1 and V_2 ? Write an equation that describes the relationship.
- 2. How is the current, I, related to the other two currents, I_1 and I_2 ? Write an equation that describes the relationship.
- 3. Which of the resistances R₁, R₂, and R_{equivalent} is smallest?
- 4. The equivalent resistance, R_{equivalent}, for resistances in parallel is:

$$\frac{1}{R_{equivalent}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots up \text{ to the total number of resistors in parallel}$$

- a. Using the values of R₁ and R₂ in your analysis table, calculate R_{equivalent}. How does this compare with the value you got from dividing V by I in the Analysis Table?
- b. Is there a way to make R_{equivalent} bigger than R₁ or R₂? If not, why not? Or if so, how?

Parallel Circuits

PSI Physics

- 5. A 9V battery is connected to two resistors in parallel ($R_1 = 10 \Omega$ and $R_2 = 15 \Omega$).
 - a. What is the equivalent resistance, R_{equivalent}, for the circuit? (use the boxed equation on the previous page)
 - b. What is the current, I, through the circuit? (use V = IR)
 - c. What is the voltage drop, V_1 , across resistor R_1 ? (use V = IR)
- 6. If you add a third resistor in parallel with the other two...
 - a. Will R_{equivalent}, increase, decrease or stay the same? Why?
 - b. Does the current, I, increase, decrease or stay the same? Why?
 - c. Does the voltage drop, V₁, across R₁ increase, decrease or stay the same? Why?