Section 4.3 Number Theory (continued)

Comp 232
Instructor: Robert Mearns

1. Preliminary; Where are we headed in Sections 4.3?

Number Theory (study of Integers)

Another way of looking at Congruence $a \equiv b \mod m$ (and b < m):

$$m \mid a-b$$

 $\rightarrow a-b = mq$, where $q \in \mathbf{Z}$
 $\rightarrow a = mq + b$

Panda2ici

panda2ici@gmail.com

Hence: if $a \equiv b \mod m$ (and b < m):

 \rightarrow b is remainder, when calculating a/m

2. Terms and Definitions

Term	Definition	Example
Prime Integer	If $p \in \mathbb{Z}+$, $p>1$ and only factors of p are p and 1 then p is a <u>prime</u> integer Note: 1 is not a prime by definition	$2 = 2 \times 1 \rightarrow 2$ is prime $3 = 3 \times 1 \rightarrow 3$ is prime $4 = 4X1$ but $4 = 2X2 \rightarrow 4$ not prime
Composite Integer	If $p \in \mathbb{Z}+$, $p>1$ and p is not prime it is called a <u>composite</u> integer	4 is a composite integer
Fundamental Theorem Arithmetic	If $a \in \mathbb{Z}+$, $a > 1$ then a can be written as a product of prime integers: $a = p_1 \ p_1 \ p_3 \dots p_n (p_i \text{ are primes})$	$100 = 50 \times 2$ = 25 × 2 × 2 = 5 × 5 × 2 × 2
Least Common Multiple	If $a, b \in \mathbb{Z}+$, and m is the smallest integer such that $a \mid m$ and $b \mid m$ then m is the <u>Least Common Multiple</u> of a, b. It is denoted lcm(a,b)	lcm (18, 12) = 36. Reason: 36 is the smallest integer such that 18 36 and 12 36
Greatest Common Divisor	If $a, b \in \mathbb{Z}$, not both = 0 and d is the largest integer such that $d \mid a$ and $d \mid b$ then d is the Greatest Common Divisor of a, b. It is denoted $gcd(a,b)$	Consider a = 24, b = 36 The gcd (24,36) = 12. Reason: 12 is the largest integer that divides both 24 and 36
Relatively Prime integers	If the gcd (a,b) = 1 then a, b are called relatively prime	gcd $(9,11) = 1 \rightarrow 9,11$ are relatively prime. Note 9 is not a prime itself. Even integers cannot be relatively prime [ex. gcd $(6,8) = 2 \neq 1$]

- 3. An Algorithm (step by step process) to test an integer to see if it is prime.
 - a) There is a Theorem that will reduce the numbers that we have to test to see if they are prime Theorem: If n is a composite integer then n has a prime divisor $d \le \sqrt{n}$ Proof (by contradiction)
 - 1. Consider $n = a b \rightarrow a \mid n$ and $b \mid n$
 - 2. Either a≤sqrt(n) or b≤sqrt(n)
 or ¬((a≤sqrt(n) or b≤sqrt(n))
 - 3. Assume $\neg (a \le sqrt(n) \text{ or } b \le sqrt(n))$
 - 4. \rightarrow a>sqrt(n) and b>sqrt(n))
 - 5. n = ab > sqrt(n)*sqrt(n) = n
 - 6. \rightarrow n > n
 - 7. \rightarrow Contradiction
 - 8. Conclusion: $a \leq sqrt(n)$ or $b \leq sqrt(n)$

Given n composite \rightarrow it has 2 factors $\neq 1$ All possible conclusions

Assume the one you do not want DeMorgan, def \neg (\leq) Substitute in line 1 then multiply Transitive line 5 Line 6 Remaining conclusion possibility

b) We will use the contrapositive form of the Theorem when testing an integer to see if it is prime.

If n does not have a prime divisor d≤sqrt(n) then n is not composite (it is prime)

The Contrapositive form will reduce the numbers we have to test

- c) Algorithm: Test a number n to see if it is prime
 - Step 1: Take the square root of n
 - Step 2: List all primer ≤ sqrt(n)
 - Step 3: Test each answer to Step 2 to see if it divides n

```
Ex: Is 101 prime?

Step 1 sqrt(101) = 10.04

Step 2 primes \leq 10.04 are 2, 3, 5, 7

Step 3 2 \nmid 101, 3 \nmid 101, 5 \nmid 101, 7 \nmid 101

\rightarrow 101 is prime
```

- 4. Theorem. There exists is no greatest prime
 - a) Proof (by contradiction)

```
Either \exists no greatest prime or \exists a greatest prime Assume \exists a greatest prime (call it pn)
```

Let list of all primes be: where is the greatest

Consider $Q = p_1 p_2 p_3 p_4 \dots p_n + 1$

$$(q_1 \ q_2 \ q_3 \ q_4 \dots q_m) - (p_1 \ p_2 \ p_3 \ p_4 \dots p_n) = 1$$

 \exists At least one of the q_j = one of the p_i
Call the common prime c $(c \neq 1 \text{ since } 1 \text{ is not prime})$
 c $(q_1 \ q_2 \ q_3 \ q_4 \dots p_1 \ p_2 \ p_3 \ p_4 \dots p_1) = 1$

- $\rightarrow \exists$ a prime divisor c of the LHS
- $\rightarrow \exists$ a prime divisor c of the RHS
- $\rightarrow \exists$ a prime divisor c of 1
- → Contradiction

Conclusion: ∃ no greatest prime

b) Use of the Theorem: If you think you have the greatest prime p

List all pos. concl.
Assume poss. not wanted

Mult <u>all</u> primes and add 1 FTA: Q = prod.of primes Isolate the 1 pi list represents all primes

Factor out common prime

Since LHS = RHS
RHS = 1
Only 1 | 1, and 1 ≠ prime

5 a) An Algorithm (step by step process) to find the prime factors of an integer nStep 1 Evaluate \sqrt{n} (Step 1 is optional. It tells you the maximum prime that you might have to test for being a factor

Step 2 Divide n by the smallest prime = 2, then 3, 4, ..., p (p < sqrt(n))

If none of the primes divide n then

If you get a prime p_i that divides n

n is prime → it has no prime factors get the quotient q QED repeat Step 2 with

repeat Step 2 with primes < p, using q instead of n

b) This Algorithm shows how to get answer to the <u>Fundamental Theorem of Arithmetic</u> (F.T.A.) which states: All integers greater than one can be expressed as a product of prime integers Ex: Find the prime factors of 7007

Step $1\sqrt{7007} = 83.7 \rightarrow \text{We need test only primes} \le 83.7 \text{ to see if they are factors of } 7007.$

Step 2 (i) primes 2, 3, 5 ∤ 7007

- (ii) $7 \mid 7007$ quotient is $1001 \rightarrow 7007 = 7X1001$
- (iii) 7 | 1001 quotient is $143 \rightarrow 7007 = 7X7X143$

(iv)

(v) $11 \mid 143 \text{ quotient is } 13 \rightarrow 7007 = 7X7X11X13$

(vi)

- (vii) 13 | 13 quotient is $1 \rightarrow 7007 = 7X7X11X13X1$
- \rightarrow prime factors of 7007 are 7, 11, 13

6. An Algorithm to find the lcm (a,b)

a) This algorithm has been seen many times previously when working with fractions and are asked to find the lowest common denominator.

Ex: Find the lowest common denominator for $\frac{1}{6} + \frac{1}{12} + \frac{1}{9} + \frac{1}{27}$

Step 1 Find prime factors 1/(2*3) + 1/(2*2*3) + 1/(3*3) + 1/(3*3*3)

Step 2 Find lcm of denominators 1/(2*3*2*3*3)

b) Algorithm to find the lcm (a,b)

Step 1 Express each of a, b as a product of primes (find the prime factors for a, b)

Step 2 Form the product of the least number of prime factors needed to factor both a, b Ex: Find the lcm(18,12)

Step 1 Express both a, b as a product of primes:

18	12
Does 2 18? yes, quotient = 9	Does 2 12? yes, quotient = 6
Does 3 9? yes, quotient = 3	Does 2 6? yes, quotient = 3
Does 3 3? yes, quotient = 1	Does 3 3? yes, quotient = 1
We are done when quotient = 1 Prime factors: 18 = 2X3X3	Prime factors: 12 = 2X2X3

Step 2 The lcm(18,12) = 2X3X3X2 = 36Do not take all 6 factors. (we want the smallest number that both 18 and 12 divide)

- 7. Algorithm to find the gcd (a, b)
 - a) Method 1: Step 1 Find the prime factors of each number a,b

 Step 2 Pick out the greatest common factor (divisor) in step 1 answer.

 This method is inefficient because it requires finding prime factors which can be a long process if a, b are large numbers. Euclid described a more efficient method.
 - b) The Euclidean method for determining the gcd(a,d) is based on the following Theorem:

If a = bq + r, where a, b, q, $r \in Z$ then gcd(a,b) = gcd(b,r)

Proof:

Step 1 Consider gcd(a,b) = d

(Direct)

 $d \mid a \text{ and } d \mid bq \rightarrow d \mid a-bq$

 \rightarrow d | r

→ common divisor d of a, b is also common divisor of b, r Similarly any common divisor of b, r is common divisor of a, b

Step 2 Either gcd(b, r) = d

(Contradiction)

or
$$gcd(b, r) \neq d$$

Assume $gcd(b, r) \neq d$

Consider gcd(b, r) = , where >d

- → is a common divisor of a, b and >d
- \rightarrow gcd(a, b) \neq d
- → Contradiction

QED gcd(a,b) = gcd(b,r)

Allows work with smaller numbers b,r: b<a and r<b

Def common Divisor

$$r = a - bq$$

List all possibilities

Not wanted poss.

Step 1 last line

$$d_1 > d$$

Method 2: Euclidean method for determining the gcd(a,b)

The previous Theorem justifies the Euclidean method to determine the gcd(a,b)

Step 1 Divide the larger number a by the smaller b to give
$$a = bq + r_1$$

Step 2 Repeat Step 1 with b and
$$r_1$$
 to get $b = r_1 q_1 + r_2$

Step 3 Repeat Step 2 with
$$r_1$$
 and r_2 to get $r_1 = r_2 q_2 + r_3$
Continue the Step 3 process until the remainder $r_i = 0$

Hence
$$gcd(a,b) = gcd(b, r_1) = gcd(r_1, r_2) = \dots = gcd(r_{i-2}, r_{i-1}) = gcd(r_{i-1}, 0)$$

Summary: The last non zero remainder

Ex: Find the gcd(287,91)

Step 1 To calculate
$$gcd(287,91)$$
: $\frac{287}{91} = 3 + rem 14 \rightarrow 287 = 91X3 + remainder 14$

Step 2 To calculate gcd (91,14):
$$\frac{91}{14} = 6 + \text{rem } 7 \rightarrow 91 = 14\text{X}6 + \text{remainder } 7$$

Step 3 To calculate gcd (14,7) :
$$\frac{14}{7} = 2 + \text{rem } 0 \rightarrow 14 = 7X2 + \text{remainder } 0$$

Note: $7 \mid 0 \rightarrow \text{gcd}(7,0) = 7$ (last non zero remainder)

Why? Listing results above

$$7 = \gcd(7, 0) = \gcd(14, 7) = \gcd(91, 14) = \gcd(287, 91)$$