COMP9020 Week 2 Sets, Relations, and Functions

• Textbook (R & W) - Ch. 1, Sec. 1.3-1.5, 1.7; Ch. 3., Sec. 3.1

Summary of topics

- Applications in Computer Science
- Introduction to Sets
- Formal Languages
- Introduction to Relations
- Introduction to Functions

Summary of topics

- Applications in Computer Science
- Introduction to Sets
- Formal Languages
- Introduction to Relations
- Introduction to Functions

Applications of Sets, Formal Languages, Relations, and Functions

- Sets are the building blocks of nearly all mathematical structures
- Databases are collections of relations
- Any ordering is a relation
- Common data structures (e.g. graphs) are relations
- Functions/procedures/programs compute relations between their input and output
- Formal languages are essential for compilers and programming language design

Summary of topics

- Applications in Computer Science
- Introduction to Sets
- Formal Languages
- Introduction to Relations
- Introduction to Functions

Sets

- A set is defined by the collection of its elements. Order and multiplicity of elements is not considered.
- We distinguish between an element and the set comprising this single element. Thus always $a \neq \{a\}$.
- Set $\emptyset = \{\}$ is empty (no elements);
- Set {{}} is nonempty it has one element.
- There is only one empty set; only one set consisting of a single a; only one set of all natural numbers.

Defining sets

Sets are typically described by:

(a) Explicit enumeration of their elements

```
S_1 = \{a, b, c\} = \{a, a, b, b, c\}
= \{b, c, a\} = \dots three elements
S_2 = \{a, \{a\}\} two elements
S_3 = \{a, b, \{a, b\}\} three elements
S_4 = \{\} zero elements
S_5 = \{\{\{\}\}\} one element
S_6 = \{\{\}, \{\{\}\}\}\} two elements
```

Defining sets

- (b) Defining a subset of an existing "universal" set \mathcal{U} . Including:
 - Specifying the properties their elements must satisfy. A typical description involves a **logical** property P(x). For example, with $\mathcal{U} = \mathbb{N}$ and P(x) = "x is even":

$${x : x \in \mathbb{N} \text{ and } x \text{ is even}} = {0, 2, 4, \ldots}$$

• Using interval notation. For example, with $\mathcal{U} = \mathbb{Z}$:

$$[1,5] = \{1,2,3,4,5\}$$

Derived sets of integers

$$2\mathbb{Z}=\{\;2x:x\in\mathbb{Z}\;\}$$
 the even numbers
$$3\mathbb{Z}+1=\{\;3x+1:x\in\mathbb{Z}\;\}$$

Sidenote: Subsets

NB

- $S \subseteq T S$ is a **subset** of T; includes the case of $T \subseteq T$
- $S \subset T$ a proper subset: $S \subseteq T$ and $S \neq T$
- $\emptyset \subseteq S$ for all sets S
- $\mathbb{N}_{>0} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
- An element of a set; and a subset of that set are two different concepts

$$a \in \{a, b\}, \quad a \not\subseteq \{a, b\}; \qquad \{a\} \subseteq \{a, b\}, \quad \{a\} \notin \{a, b\}$$

Defining sets

- (c) Constructions from other, already defined, sets
 - Union (∪), intersection (∩), complement (·c), set difference (\), symmetric difference (⊕)
 - Power set $Pow(X) = \{ A : A \subseteq X \}$
 - Cartesian product (×)

Set Operations

Definition

 $A \cup B$ – union (a or b):

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

 $A \cap B$ – intersection (a and b):

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

 A^c – **complement** (with respect to a universal set \mathcal{U}):

$$A^c = \{x : x \in \mathcal{U} \text{ and } x \notin A\}.$$

不相交的

We say that A, B are **disjoint** if $A \cap B = \emptyset$

Set Operations

Other set operations

Definition

 $A \setminus B$ – **set difference**, relative complement (a but not b):

$$A \setminus B = A \cap B^c$$

A without B

 $A \oplus B$ – **symmetric difference** (a and not b or b and not a; also known as a or b exclusively; a xor b):

$$A \oplus B = (A \setminus B) \cup (B \setminus A)$$

A union B without A and B

Set Operations

There is a correspondence between set operations and logical operators (to be discussed in Week 6).

NB

$$A \cup B = B$$
 iff $A \cap B = A$ iff $A \subseteq B$

Exercises

1.4.4 (d) All subsets of $\{a, b\}$:

Exercises

1.4.4 (d) All subsets of $\{a, b\}$:?

1.4.7 (a) $A \oplus A =$ 1.4.7 (b) $A \oplus \emptyset =$

Exercises

1.4.4 (d) All subsets of $\{a, b\}$:?

1.4.7 (a) $A \oplus A = ?$ 1.4.7 (b) $A \oplus \emptyset =$

Exercises

1.4.4 (d) All subsets of $\{a, b\}$:?

1.4.7 (a) $A \oplus A = ?$ 1.4.7 (b) $A \oplus \emptyset = ?$

Cardinality

基数

Number of elements in a set X (various notations):

$$|X| = \#(X) = \operatorname{card}(X)$$

Fact

Always
$$|Pow(X)| = 2^{|X|}$$

There are only 2 staus for each element in X when we do not consider orders of a set, which is True or False. So the number of posibilities is 2^|x|

- $\bullet |\emptyset| = 0$
- Pow(\emptyset) = 0/
- $|\mathsf{Pow}(\emptyset)| = 1$
- $Pow(Pow(\emptyset)) = 0/$
- $|Pow(Pow(\emptyset))| = 1$
- $|\{a\}| = 2$
- $Pow({a}) = {\{a\}, 0/\}}$
- $|Pow({a})| =$
- |[m, n]| = N M

- $\bullet |\emptyset| = ?$
- Pow(\emptyset) = 0/
- $|\mathsf{Pow}(\emptyset)| = 1$
- $Pow(Pow(\emptyset)) =$
- $\bullet \ |\mathsf{Pow}(\mathsf{Pow}(\emptyset))| =$
- $|\{a\}| =$
- $Pow({a}) =$
- $|Pow({a})| =$
- |[m, n]| =

- $|\emptyset| = ?$
- Pow(\emptyset) = ?
- $|\mathsf{Pow}(\emptyset)| = ?$
- $Pow(Pow(\emptyset)) =$
- $|\mathsf{Pow}(\mathsf{Pow}(\emptyset))| =$
- $|\{a\}| =$
- $Pow({a}) =$
- $|Pow({a})| =$
- |[m, n]| =

- $|\emptyset| = ?$
- Pow(\emptyset) = ?
- $|\mathsf{Pow}(\emptyset)| = ?$
- $Pow(Pow(\emptyset)) = ?$
- $|\mathsf{Pow}(\mathsf{Pow}(\emptyset))| = ?$
- $|\{a\}| =$
- $Pow({a}) =$
- $|Pow({a})| =$
- |[m, n]| =

- $|\emptyset| = ?$
- Pow(\emptyset) = ?
- $|\mathsf{Pow}(\emptyset)| = ?$
- $Pow(Pow(\emptyset)) = ?$
- $|\mathsf{Pow}(\mathsf{Pow}(\emptyset))| = ?$
- $|\{a\}| = ?$
- $Pow({a}) =$
- $|Pow({a})| =$
- |[m, n]| =

- $|\emptyset| = ?$
- Pow(\emptyset) = ?
- $|\mathsf{Pow}(\emptyset)| = ?$
- $Pow(Pow(\emptyset)) = ?$
- $|\mathsf{Pow}(\mathsf{Pow}(\emptyset))| = ?$
- $|\{a\}| = ?$
- $Pow({a}) = ?$
- $|Pow({a})| =$
- |[m, n]| =

- $|\emptyset| = ? \qquad 0$
- Pow(\emptyset) = ? 0/
- $|\mathsf{Pow}(\emptyset)| = ?$ 1
- $Pow(Pow(\emptyset)) = ?$ {{0/}, 0/}
- $|\mathsf{Pow}(\mathsf{Pow}(\emptyset))| = ?$ 2
- $|\{a\}| = ?$ 1
- $Pow({a}) = ? {0/, a}$
- $|Pow({a})| = ?$ 2
- |[m, n]| = N m + 1

- $|\emptyset| = ?$
- Pow(\emptyset) = ?
- $|\mathsf{Pow}(\emptyset)| = ?$
- $Pow(Pow(\emptyset)) = ?$
- $|\mathsf{Pow}(\mathsf{Pow}(\emptyset))| = ?$
- $|\{a\}| = ?$
- $Pow({a}) = ?$
- $|Pow({a})| = ?$
- |[m, n]| = ?

- $|\{\frac{1}{n}: n \in [1,4]\}| = 4$
- $|\{ n^2 n : n \in [0,4] \}| = |4|$
- 3 $\left|\left\{\frac{1}{n^2}: n \in \mathbb{N}_{>0} \text{ and } 2 | n \text{ and } n < 11\right\}\right| = 5$

- $|\{\frac{1}{n}: n \in [1,4]\}| = ?$
- $|\{n^2 n : n \in [0,4]\}| =$
- **3** $\left|\left\{\frac{1}{n^2}: n \in \mathbb{N}_{>0} \text{ and } 2|n \text{ and } n < 11\right\}\right| = 1$

- $|\{ \frac{1}{n} : n \in [1,4] \}| = ?$
- **3** $\left|\left\{\frac{1}{n^2}: n \in \mathbb{N}_{>0} \text{ and } 2|n \text{ and } n < 11\right\}\right| =$

- $|\{ \frac{1}{n} : n \in [1,4] \}| = ?$
- **3** $\left|\left\{\frac{1}{n^2}: n \in \mathbb{N}_{>0} \text{ and } 2|n \text{ and } n < 11\right\}\right| = ?$

- $|\{\frac{1}{n}: n \in [1,4]\}| = ?$
- **3** $\left|\left\{\frac{1}{n^2}: n \in \mathbb{N}_{>0} \text{ and } 2 | n \text{ and } n < 11\right\}\right| = ?$

Venn Diagrams

A simple graphical approach to reason about the algebraic properties of set operations.

1.4.8 Relate the cardinalities $|A \cup B|$, $|A \cap B|$, $|A \setminus B|$, $|A \oplus B|$, |A|, |B|

- $|A \cup B| = |A| + |B| |A \cap B|$ hence $|A \cup B| + |A^{Y} \cap B| = |A| + |B|$
- |A \ B| = |A| |A ∩ B|
 |A ⊕ B| = |A| + |B| 2|A ∩ B|

1.4.8 Relate the cardinalities $|A \cup B|$, $|A \cap B|$, $|A \setminus B|$, $|A \oplus B|$,

|A|, |B|

?

Cartesian Product

$$S imes T \stackrel{\mathsf{def}}{=} \{ \ (s,t) : s \in S, \ t \in T \ \}$$
 where (s,t) is an **ordered** pair AP 的数对 $\mathsf{S}^n = S \times S = \{ \ (s_1,\ldots,s_n) : s_k \in S_k, \ \mathsf{for} \ 1 \le k \le n \ \}$ $\mathsf{S}^2 = S \times S, \quad S^3 = S \times S \times S, \ldots, \quad S^n = \times_1^n S, \ldots$ $\emptyset \times S = \emptyset$, for every S

 $|S \times T| = |S| \cdot |T|, \quad |\times_{i-1}^n S_i| = \prod_{i=1}^n |S_i|$

Examples

Examples

Let
$$A = \{0,1\}$$
 and $B = \{a,b\}$

$$A \times B = \{(0, a), (0, b), (1, a), (1, b)\}$$
$$= \{(0, a), (1, a), (0, b), (1, b)\}$$

$$B \times A =$$

$$A^2 =$$

$$A^3 =$$

Examples

Let
$$A=\{0,1\}$$
 and $B=\{a,b\}$

$$A \times B = \{(0, a), (0, b), (1, a), (1, b)\}\$$
 $= \{(0, a), (1, a), (0, b), (1, b)\}\$
 $B \times A = \{(a, 0), (b, 0), (a, 1), (b, 1)\} \neq A \times B$
 $A^2 = A^3 = A^3$

Examples

Let
$$A = \{0,1\}$$
 and $B = \{a,b\}$

$$A \times B = \{(0, a), (0, b), (1, a), (1, b)\}$$

$$= \{(0, a), (1, a), (0, b), (1, b)\}$$

$$B \times A = \{(a, 0), (b, 0), (a, 1), (b, 1)\} \neq A \times B$$

$$A^{2} = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

$$A^{3} =$$

Examples

Let
$$A = \{0,1\}$$
 and $B = \{a,b\}$

$$A \times B = \{(0, a), (0, b), (1, a), (1, b)\}$$

$$= \{(0, a), (1, a), (0, b), (1, b)\}$$

$$B \times A = \{(a, 0), (b, 0), (a, 1), (b, 1)\} \neq A \times B$$

$$A^{2} = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

$$A^{3} = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 0, 1)\}.$$

Summary of topics

- Applications in Computer Science
- Introduction to Sets
- Formal Languages
- Introduction to Relations
- Introduction to Functions

Formal Languages: Symbols

 Σ — alphabet, a finite, nonempty set

Examples (of various alphabets and their intended uses)

 $\Sigma = \{a, b, \dots, z\}$ for single words (in lower case)

 $\Sigma = \{ \sqcup, -, a, b, \ldots, z \}$ for composite terms

 $\Sigma = \{0,1\}$ for binary integers

 $\Sigma = \{0, 1, \dots, 9\}$ for decimal integers

The above cases all have a natural ordering; this is not required in general, thus the set of all Chinese characters forms a (formal) alphabet.

Formal Languages: Words

Definition

word — any finite string of symbols from Σ empty word — λ

Example

w = aba, w = 01101...1, etc.

length(w) — # of symbols in w length(aaa) = 3, $length(\lambda) = 0$

The only operation on words (discussed here) is **concatenation**, written as juxtaposition vw, wvw, abw, wbv, . . .

NB

 $\lambda w = w = w\lambda$ length(vw) = length(v) + length(w)

Examples

Let w = abb, v = ab, u = ba

- vw = ababb
- ww = abbabb = vubb
- $w\lambda v = abbab$
- length(vw) = length(ababb) = 5

Formal Languages: Languages

Notation: Σ^k — set of all words of length k

We often identify $\Sigma^0 = \{\lambda\}$, $\Sigma^1 = \Sigma$

 Σ^* — set of all words (of all lengths)

 Σ^+ — set of all nonempty words (of any positive length)

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots; \quad \Sigma^{\leq n} = \bigcup_{i=0}^n \Sigma^i$$
 $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \Sigma^* \setminus \{\lambda\}$

Definition

A **language** is a subset of Σ^* .

Typically, only the subsets that can be formed (or described) according to certain rules are of interest. Such a collection of 'descriptive/formative' rules is called a **grammar**.

Example (Decimal numbers)

The "language" of all numbers written in decimal to at most two decimal places can be described as follows:

- Consider all words $w \in \Sigma^*$ which satisfy the following:
 - w contains at most one instance of —, and if it contains an instance then it is the first symbol.
 - w contains at most one instance of ., and if it contains an instance then it is preceded by a symbol in $\{0,1,2,3,4,5,6,7,8,9\}$, and followed by either one or two symbols in that set.
 - w contains at least one symbol from $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

NB

According to these rules 123, 123.0 and 123.00 are all (distinct) words in this language.

Example (HTML documents)

```
Take \Sigma = \{ "<html>", "</html>", "<head>", "</head>", "</head>", "<br/>body>", ...}.
```

The (language of) **valid HTML documents** is loosely described as follows:

- Starts with "<html>"
- Next symbol is "<head>"
- Followed by zero or more symbols from the set of HeadItems (defined elsewhere)
- Followed by "</head>"
- Followed by "<body>"
- Followed by zero or more symbols from the set of Bodyltems (defined elsewhere)
- Followed by "</body>"
- Followed by "</html>"

1.3.10 Number of elements in the sets (cont'd)

(e)
$$\Sigma^*$$
 where $\Sigma = \{a, b, c\}$ —

(f) {
$$w \in \Sigma^*$$
 : length(w) ≤ 4 } where $\Sigma = \{a, b, c\}$

$$|\Sigma^{\leq 4}| = |\Sigma^{\leq 4}| = 3^0 + 3^1 + \dots + 3^4 = \frac{3^5 - 1}{3 \cdot 1} = \frac{243 - 1}{2} = 121$$

1.3.10 Number of elements in the sets (cont'd)

(e) Σ^* where $\Sigma = \{a, b, c\}$ - ?

(f) { $w \in \Sigma^*$: length $(w) \le 4$ } where $\Sigma = \{a, b, c\}$

 $|\Sigma^{\leq 4}| =$

1.3.10 Number of elements in the sets (cont'd)

(e) Σ^* where $\Sigma = \{a, b, c\}$ - ?

(f) { $w \in \Sigma^*$: length(w) ≤ 4 } where $\Sigma = \{a, b, c\}$ $|\Sigma^{\leq 4}| = ?$

イロト (部) (注) (注) (注) りく()

Languages are sets, so the standard set operations (\cap , \cup , \setminus , \oplus , etc) can be used to build new languages.

Two set operations that apply to languages uniquely:

- Concatenation (written as juxtaposition): $XY = \{xy : x \in X \text{ and } y \in Y\}$
- Kleene star: X* is the set of words that are made up by concatenating 0 or more words in X

Example

- $A \cup B = \{\lambda, c, aa, bb\}$
- $AB = \{aa, bb, aac, bbc\}$
- $\bullet \ AA = \{aaaa, aabb, bbaa, bbbb\}$

Example

- $A \cup B = \{\lambda, c, aa, bb\}$
- $AB = \{aa, bb, aac, bbc\}$
- AA = {aaaa, aabb, bbaa, bbbb}
- ullet $A^* = \{\lambda, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . . \}$
- $B^* = \{\lambda, c, cc, ccc, cccc, \ldots\}$

Example

- $A \cup B = \{\lambda, c, aa, bb\}$
- $AB = \{aa, bb, aac, bbc\}$
- AA = {aaaa, aabb, bbaa, bbbb}
- $\bullet \ A^* = \{\lambda, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, \ldots\}$
- $B^* = \{\lambda, c, cc, ccc, cccc, \ldots\}$
- $\{\lambda\}^* =$

Example

- $A \cup B = \{\lambda, c, aa, bb\}$
- $AB = \{aa, bb, aac, bbc\}$
- AA = {aaaa, aabb, bbaa, bbbb}
- $A^* = \{\lambda, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, \ldots\}$
- $B^* = \{\lambda, c, cc, ccc, cccc, \ldots\}$
- $\bullet \ \{\lambda\}^* = \{\lambda\}$

Example

- $A \cup B = \{\lambda, c, aa, bb\}$
- $AB = \{aa, bb, aac, bbc\}$
- AA = {aaaa, aabb, bbaa, bbbb}
- $A^* = \{\lambda, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, \ldots\}$
- $B^* = \{\lambda, c, cc, ccc, cccc, \ldots\}$
- $\bullet \ \{\lambda\}^* = \{\lambda\}$
- ∅* =

Example

- $A \cup B = \{\lambda, c, aa, bb\}$
- $AB = \{aa, bb, aac, bbc\}$
- AA = {aaaa, aabb, bbaa, bbbb}
- $\bullet \ A^* = \{\lambda, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, \ldots\}$
- $B^* = \{\lambda, c, cc, ccc, cccc, \ldots\}$
- $\bullet \ \{\lambda\}^* = \{\lambda\}$
- $\bullet \ \emptyset^* = \{\lambda\}$

Summary of topics

- Applications in Computer Science
- Introduction to Sets
- Formal Languages
- Introduction to Relations
- Introduction to Functions

Relations and Functions

Relations are an abstraction used to capture the idea that the objects from certain domains (often the same domain for several objects) are *related*. These objects may

- influence one another (each other for binary relations; self(?) for unary)
- share some common properties
- correspond to each other precisely when some constraints are satisfied

Function is more concrete

Functions capture the idea of transforming inputs into outputs.

In general, functions and relations formalise the concept of interaction among objects from various domains; however, there must be a specified domain for each type of objects.

Relations

Definition

An **n-ary relation** is a subset of the cartesian product of *n* sets.

$$R \subseteq S_1 \times S_2 \times \ldots \times S_n$$

To show tuples related by R we write:

$$(x_1, x_2, \dots, x_n) \in R$$
 or $R(x_1, x_2, \dots, x_n)$

If n = 2 we have a **binary** relation $R \subseteq S \times T$ and to show pairs related by R we write:

$$(x,y) \in R$$
 or $R(x,y)$ or xRy

Examples

- Equality: =
- Inequality: \leq , \geq , <, >, \neq
- Divides relation:
- Element of: ∈
- Subset, superset: \subseteq , \subset , \supseteq , \supset
- Congruence modulo n: $m = p \pmod{n}$

同余式

Database Examples

```
Example (Course enrolments)
```

```
S= set of CSE students

(S can be a subset of the set of all students)

C= set of CSE courses

(likewise)

E= enrolments =\{\ (s,c): s \text{ takes } c\ \}

E is a relation here E\subset S\times C
```

In practice, almost always there are various 'onto' (nonemptiness) and 1–1 (uniqueness) constraints on database relations.

Example (Class schedule)

C = CSE courses

T = starting time (hour & day)

R = lecture rooms

S =schedule =

 $\{(c,t,r): c \text{ is at } t \text{ in } r\} \subseteq C \times T \times R$

Example (sport stats)

 $R \subseteq \mathsf{competitions} \times \mathsf{results} \times \mathsf{years} \times \mathsf{athletes}$

Defining Relations

Just as with sets R can be defined by

- explicit enumeration of interrelated k-tuples (ordered pairs in case of binary relations);
- properties that identify relevant tuples within the entire $S_1 \times S_2 \times \ldots \times S_k$;
- construction from other relations.

Relation R as Correspondence From S to T

Given $R \subseteq S \times T$, $A \subseteq S$, and $B \subseteq T$.

• Relational image of A, R(A):

$$R(A) \stackrel{\text{def}}{=} \{t \in T : (s, t) \in R \text{ for some } s \in A\}$$

• Converse relation $R^{\leftarrow} \subseteq T \times S$:

$$R^{\leftarrow} \stackrel{\text{def}}{=} \{(t,s) \in T \times S : (s,t) \in R\}$$

For symmertric relation, the converse relation is the same as itself

• Relational pre-image of B, $R^{\leftarrow}(B)$:

$$R^{\leftarrow}(B) \stackrel{\text{def}}{=} \{ s \in S : (s, t) \in R \text{ for some } t \in B \}$$

Observe that $(R^{\leftarrow})^{\leftarrow} = R$.

Exercises

- | on X: devide relation on X x X
- $\bullet \in \text{on } X \times \{A, B, C\}$:
- $\bullet \subseteq \leftarrow$ on $\{A, B, C, X\}$:
- < (2) (on X):

Exercises

- | on X: ?
- $\bullet \in \text{on } X \times \{A, B, C\}$:
- $\bullet \subseteq \leftarrow$ on $\{A, B, C, X\}$:
- < (2) (on X):

Exercises

- | on X: ?
- $\bullet \in \text{on } X \times \{A, B, C\}$: ?
- $\bullet \subseteq \leftarrow$ on $\{A, B, C, X\}$:
- < (2) (on X):

Exercises

- | on X: ?
- $\bullet \in \text{on } X \times \{A, B, C\}$: ?
- \subseteq on $\{A, B, C, X\}$: ?
- < (2) (on X):

the set of tuples represent a relation

Exercises

Let
$$A = \{1, 2\}$$
, $B = \{2, 3\}$, $C = \{3, 4\}$, $X = [1, 4]$

- | on X: {(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4))}
- $\bullet \in \text{on } X \times \{A, B, C\}: \\ \{(1, A), (2, A), (2, B), (3, B), (3, C), (4, D)\}$
- \subseteq on $\{A, B, C, X\}$: $\{(A, A), (X, A), (B, B), (X, B), (C, C), (X, C), (X, X)\}$

Summary of topics

- Applications in Computer Science
- Introduction to Sets
- Formal Languages
- Introduction to Relations
- Introduction to Functions

Functions

Definition

A **function**, $f: S \to T$, is a binary relation $f \subseteq S \times T$ such that for all $s \in S$ there is *exactly one* $t \in T$ such that $(s, t) \in f$.

We write f(s) for the unique element related to s.

偏函数

A partial function $f: S \rightarrow T$ is a binary relation $f \subseteq S \times T$ such that for all $s \in S$ there is at most one $t \in T$ such that $(s, t) \in f$. That is, it is a function $f: S' \longrightarrow T$ for $S' \subseteq S$

Functions

 $f:S\longrightarrow T$ describes pairing of the sets: it means that f assigns to every element $s\in S$ a unique element $t\in T$. To emphasise where a specific element is sent, we can write $f:x\mapsto y$, which means the same as f(x)=y

Important!

The domain and co-domain are critical aspects of a function's definition.

$$f: \mathbb{N} \to \mathbb{Z}$$
 given by $f(x) \mapsto x^2$

and

$$g: \mathbb{N} \to \mathbb{N}$$
 given by $g(x) \mapsto x^2$

are different functions even though they have the same behaviour!

Composition of Functions

Composition of functions is described as

$$g \circ f : x \mapsto g(f(x)), \text{ requiring } Im(f) \subseteq Dom(g)$$

Composition is associative

$$h \circ (g \circ f) = (h \circ g) \circ f$$
, can write $h \circ g \circ f$

Composition of Functions

If a function maps a set into itself, i.e. when Dom(f) = Codom(f) (and thus $Im(f) \subseteq Dom(f)$), the function can be composed with itself — **iterated**

$$f \circ f, f \circ f \circ f, \ldots,$$
 also written f^2, f^3, \ldots

Identity function on *S*

$$\mathsf{Id}_S(x) = x, x \in S; \mathsf{Dom}(\mathsf{Id}_S) = \mathsf{Codom}(\mathsf{Id}_S) = \mathsf{Im}(\mathsf{Id}_S) = S$$

For
$$g: S \longrightarrow T$$
 $g \circ Id_S = g$, $Id_T \circ g = g$

Extension: Composition of Binary Relations

If $R_1 \subseteq S \times T$ and $R_2 \subseteq T \times U$ then the composition of R_1 and R_2 is the relation:

$$R_1; R_2 := \{(a,c): \text{ there is a } b \in T \text{ such that}$$
 $(a,b) \in R_1 \text{ and } (b,c) \in R_2\}.$

Note that if $f: S \to T$ and $g: T \to S$ are functions then $f; g = g \circ f$.

Exercises

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be given by $f(n) = n^2 + 3$ and g(n) = 5n - 11. What is:

- $f \circ g(n) =$
- $g \circ f(n) =$
- $g^2(n) =$

Exercises

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be given by $f(n) = n^2 + 3$ and g(n) = 5n - 11. What is:

- $f \circ g(n) = ?$
- $g \circ f(n) =$
- $g^2(n) =$

Exercises

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be given by $f(n) = n^2 + 3$ and g(n) = 5n - 11. What is:

- $f \circ g(n) = ?$
- $g \circ f(n) = ?$
- $g^2(n) =$

Exercises

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be given by $f(n) = n^2 + 3$ and g(n) = 5n - 11. What is:

- $f \circ g(n) = ?$
- $g \circ f(n) = ?$
- $g^2(n) = ?$

Composition of linear function is still linear

Properties of Functions

满射的

Function is called **surjective** or **onto** if every element of the codomain is mapped to by at least one x in the domain, i.e.

$$\mathsf{Im}(f) = \mathsf{Codom}(f)$$

Examples (of functions that are surjective)

- $f: \mathbb{N} \longrightarrow \mathbb{N}$ with $f(x) \mapsto x$
- Floor, ceiling

Examples (of functions that are not surjective)

- $f: \mathbb{N} \longrightarrow \mathbb{N}$ with $f(x) \mapsto x^2$
- $f: \{a, \ldots, e\}^* \longrightarrow \{a, \ldots, e\}^*$ with $f(w) \mapsto awe$

Injective Functions

Function is called **injective** or $\mathbf{1}-\mathbf{1}$ (**one-to-one**) if different x implies different f(x), i.e. $\mathbf{\underline{u}}$

If
$$f(x) = f(y)$$
 then $x = y$

Examples (of functions that are injective)

- $f: \mathbb{N} \longrightarrow \mathbb{N}$ with $f(x) \mapsto x$
- set complement (for a fixed universe)

Examples (of functions that are not injective)

- absolute value, floor, ceiling
- length of a word

Function is **bijective** if it is both surjective and injective.

Converse of a function

Question

 f^{\leftarrow} is a relation; when is it a function?