Basic methodology in cHawk

Fangyu Ding

July 19, 2019

Contents

1	Inti	roduction
	1.1	Hawkes Process
	1.2	Multi-dimensional Hawkes Process
	1.3	lem:context-sensitive Multi-dimensional Hawkes Process(cHawk)
2	Expectation-Maximization algorithm	
	2.1	Expectation
	2.2	Maximization
3	Loss function	
	3.1	Log-likelihood
	3.2	
4	Derivatives of loss function	
	4.1	log-likelihood
		regularization

1 Introduction

1.1 Hawkes Process

1.2 Multi-dimensional Hawkes Process

$$\lambda_d(t) = \mu_d + \sum_{t_i < t} \alpha_{d,d_i} g(t - t_i)$$
(1)

1.3 Context-sensitive Multi-dimensional Hawkes Process(cHawk)

$$\lambda_d^i(t) = \boldsymbol{\mu}_d^{\top} \boldsymbol{f}_j^i + \sum_{t_j^i < t} \alpha_{d, d_j^i} g\left(t - t_j^i\right)$$
 (2)

2 Expectation-Maximization algorithm

In statistics, an expectation maximization (EM) algorithm is an iterative method to find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables.

2.1 Expectation

An E-step creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters.

2.2 Maximization

An M-step computes parameters maximizing the expected log-likelihood found on the E-step.

3 Loss function

3.1 Log-likelihood

For a patient i, the corresponding log-likelihood is:

$$\ell\left(\mathcal{T}^{i}\right) = \sum_{d=1}^{D} \left\{ \sum_{\left(t_{j}^{i}, d_{j}^{i} = d, f_{j}^{i}\right) \in \mathcal{T}^{i}} \left(\log \lambda_{d}^{i}\left(t_{j}^{i}\right) - \int_{t_{j-1}^{i}}^{t_{j}^{i}} \lambda_{d}^{i}(\tau)d\tau\right) - \int_{t_{n,d}^{i}}^{T} \lambda_{d}^{i}(\tau)d\tau \right\}$$

$$(3)$$

To sum up, the total log-likelihood is:

$$\ell\left(\mathcal{C}|\boldsymbol{A}; \{\boldsymbol{\mu}_d\}_{d=1}^D\right) = \sum_{\mathcal{T}^i \in \mathcal{C}} \ell\left(\mathcal{T}^i\right)$$
(4)

3.2 Regularization

Applying L1 and L2 regularization on it, the optimization problem of the loss function comes out to be:

$$\min \left\{ -\ell \left(\mathcal{C} | \boldsymbol{A}; \{ \boldsymbol{\mu}_d \}_{d=1}^D \right) + \lambda_1 \| \boldsymbol{A} \|_1 + \frac{\lambda_2}{2} \sum_{d=1}^D \| \boldsymbol{\mu}_d \|_2^2 \right\}$$

subject to $\boldsymbol{A} \geqslant 0, \{ \boldsymbol{\mu}_d \}_{d=1}^D \geqslant 0$ (5)

where $\|A\|_1$ refers to the summation of the absolute value of matrix A's elements rather than its 1-norm.

4 Derivatives of loss function

4.1 log-likelihood

some text

4.2 regularization

some text