- **5.9 特徵基底判別定理** Let V be a vector space with dim(V) = n. If $T \in \mathcal{L}(V)$ and $\lambda_1 \dots, \lambda_k$ are the distinct eigenvalues of T, then T is diagonalizable if and only if $dim(E_T(\lambda_1)) + \dots + dim(E_T(\lambda_k)) = n$.
- **5.2 特徵值** \Leftrightarrow **特徵根** If $A \in F^{n \times n}$, then λ is an eigenvalue of A if and only if $f_A(\lambda) \equiv det(A \lambda I_n) = 0_F$.
- **5.4 特空定理** If T is linear operator on vector space V and λ is an eigenvalue of T, then $T(x) = \lambda x \Leftrightarrow x \in E_T(\lambda)$.
- 5.7 特徵值重數定理 Let V be a finite-dimensional vector space. If λ is an eigenvalue of $T \in \mathcal{L}(V)$ with multiplicity m, then $1 \leq dim(E_T(\lambda)) \leq m$.
- **5.5 跨特徽空間不冗定理** Let T be a linear operator on an n-dimensional vector space V. Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T. If $\emptyset \neq S_i \subseteq E_T(\lambda_i)$ is linearly independent for each $i = 1, \ldots, k$, then S_1, \ldots, S_k are pairwise disjoint and $S_1 \cup \cdots \cup S_k$ is linearly independent.
- **5.11 特徵空間直和定理** If $T \in \mathcal{L}(V)$ for a finite-dimensional vector space V, then V is the direct sum of the eigenspaces of T is and only if V has an eigenbasis for T.
- **5.23 Cayley-Hamilton Theorem** If $T \in \mathcal{L}(V)$ for a finite-dimensional vector space V over F, $f_T(T) = T_0$.
- **5.21 縮水觀察** Let $T \in \mathcal{L}(V)$ for vector space V with $dim(V) < \infty$. If U is a T-invariant subspace of V, then $f_{T_U}(t)|f_T(t)$.
- 5.22 循環定理 Let $T \in \mathcal{L}(V)$ with $dim(V) < \infty$. Let $U = C_T(x) \equiv span\left(\bigcup_{i \leq 0} T^i(x)\right)$ with $x \in V \setminus \{0_V\}$. Let k = dim(U). (a) The ordered set $\beta = \langle x, T(x), \dots, T^{k-1}(x) \rangle$ is a basis of U; (b) If $\sum_{i=0}^k a_i T^i(x) = 0_V$ with $a_k = 1_F$, then $f_{T_U}(t) = (-1)^k \sum_{i=0}^k a_i t^i$
- **Definition 內積函數** 1. $d(ax+y,z) = a \cdot d(x,z) + d(y,z)$; 2. $d(y,x) = d(\bar{x},y)$; 3. if $x \neq 0_V$, then $d(x,x) \in \mathbb{R}^+$
- **6.1 內積基本性質** 1. $\langle x|ay + z \rangle = \bar{a}\langle x|y \rangle + \langle x|z \rangle$; 2. $\langle x|0_V \rangle = \langle 0_V|x \rangle = 0_F$; 3. $\langle x|x \rangle = 0_F \iff x = 0_V$; 4. If $\langle x|y \rangle = \langle x|z \rangle$ holds for all x, then y = z
- **6.3 正交定理** Let x be a vector in inner-product space V. Let S be a nonempty orthogonal set of nonzero vectors in V. Let R be a finite subset of S. If $x = \sum_{y \in R} a_y y$ holds for scalars a_y , then $a_y = \frac{\langle x|y \rangle}{\langle y|y \rangle}$ holds for each $y \in R$; (note: 正交無零則不冗)
- **6.4 正交演算法** For any linearly independent subset α of inner-product space V with $|\alpha| = n$, the set β recursively defined below is orthogonal basis of $span(\alpha)$: $\beta_1 = \alpha_1$ and $\beta_j = \alpha_j \sum_{i=1}^{j-1} \frac{\langle \alpha_j | \beta_i \rangle}{\langle \beta_i | \beta_i \rangle} \dot{\beta}_i$ for each $j = 2, \ldots, n$.
- **6.2 長度的基本性質** 1. ||ax|| = |a|||x||; 2. $||x|| \in \mathcal{R}^+ \cup \{0_R\}$; 3. $||x|| = 0_R \iff x = 0_V$; 4. Cauchy-Schwarz inequality $|\langle x|y\rangle| \le ||x|| \cdot ||y||$; 5. Triangle inequality $||x+y|| \le ||x|| + ||y||$
- **Definition 正交補集** For any nonempty subset S of inner-product space W, the orthogonal complement of S is $S^{\perp} \equiv \{x \in W : \langle x|y \rangle = 0_F \text{ holds for all } y \in S\}.$
- 正補定理 If V is a subspace of an inner-product space W with $dim(W) < \infty$, then $V \bigoplus V^{\perp} = W$.

- 正交投影 A projection T of inner-product space W is orthogonal if $T(W)^{\perp} = N(T)$; $N(T)^{\perp} = T(W)$.
- **6.8 泛函定理** For any functional f on an inner-product space V with $dim(V) < \infty$, there is a unique vector $y \in V$ such that $f(x) = \langle x|y \rangle$ holds for all $x \in V$.
- **6.9 翻牆定理** For any linear operator T on any inner-product space V with $dim(V) < \infty$, there is a unique operator T^* on V such that $\langle T(x)|y\rangle = \langle x|T^*(y)\rangle$ holds for all vectors $x,y\in V$. Moreover, this unique T^* is linear.
- **6.10 翻牆推論** Let V be a finite-dimensional inner-product space. The following statements hold for any linear operator T on V. 1. For any $x, y \in V$, $\langle x|T(y)\rangle = \langle T^*(x)|y\rangle$; 2. For any orthonormal basis β of V, $[T^*]^{\beta}_{\beta} = ([T]^{\beta}_{\beta})^*$
- **6.11 伴隨線運基本性質** Let V be an inner-product space over F with $dim(V) < \infty$. The following equations hold for any $T_1, T_2, T \in \mathcal{L}(V)$ and any $a \in F$: 1. $(aT_1 + T_2)^* = \bar{a}T_1^* + T_2^*$; 2. $(T_1T_2)^* = T_2^*T_1^*$; 3. $(T^*)^* = T$; 4. $I_V^* = I_V$

Observation 伴隨線運的特徵值 If λ is an eigenvalue of T, then $\bar{\lambda}$ is an eigenvalue of T^*

Definition 常態線運、常態方陣 $TT^* = T^*T$; $AA^* = A^*A$

常態小觀察 T is normal if and only if $[T]^{\beta}_{\beta}$ is normal

- **6.16 值譜證明起手式** If V has an orthonormal eigenbasis for T, then T is normal
- **6.15 常態線運基本性質** 1. For each $x \in V$, $||T(x)|| = ||T^*(x)||$; 2. For each $a \in F$, $T + aI_V$ is normal; 3. If (λ, x) is an eigenpair of T, then $(\bar{\lambda}, x)$ is an eigenpair of T^* ; 4. If x and y are in distinct eigenspaces of T, then $\langle x|y \rangle = 0_F$
- **6.25 特徴值譜定理** Let $T \in \mathcal{L}(V)$ for inner-product space V with $dim(V) < \infty$ that has an orthonormal eigenbasis for T. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T.
 - 1. For $i \in \{1, \dots, k\}$, $E_T(\lambda_i)^{\perp} = E_T(\lambda_1) \bigoplus \cdots \bigoplus E_T(\lambda_{i-1}) \bigoplus E_T(\lambda_{i+1}) \bigoplus \cdots \bigoplus E_T(\lambda_k)$
 - 2. If each T_i with $1 \leq i \leq k$ is the orthogonal projection of V on $E_T(\lambda_i)$, then
 - (a) For indices $1 \le i, j \le k$, if i = j, then $T_i T_j = T_i$; if $i \ne j, T_i T_j = T_0$
 - (b) (Resolution of I_V) $T_1 + T_2 + \cdots + T_k = I_V$
 - (c) (Spectral decomposition of T) $\lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k = T$
- **Corollary 4 特徵值譜推論** If V has an orthonormal eigenbasis for T, then the othogonal projection T_i of V on $E_T(\lambda_i)$ is a polynomial in T, where λ_i is the i-th distinct eigenvalue of T.
- **6.14 舒爾定理** If $f_T(t)$ splits, then there is an orthonormal basis β of V such that $[T]^{\beta}_{\beta}$ is upper triangular
- **2.14 魔法定理 & 2.11 魔杖定理** $[T(y)]_{\gamma} = [T]_{\beta}^{\gamma} \times [y]_{\beta}; [TT']_{\alpha}^{\gamma} = [T]_{\beta}^{\gamma} \times [T']_{\alpha}^{\beta}, \text{ which } [T]_{\alpha}^{\beta} = [T(\alpha_{j})]_{\beta}$