Problem Statement: Data Wrangling II Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution. Reason and document your approach properly

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

url = r"C:\Users\Rutuja Habib\Downloads\Academic_performance.csv"
df = pd.read_csv(url)
df
```

| * |    | Student_ID | Age  | Gender | Logical_Reasoning | Quantitative_Analysis | Comprehension |
|---|----|------------|------|--------|-------------------|-----------------------|---------------|
|   | 0  | 1          | 16.0 | Female | 78.0              | 82.0                  | 85.0          |
|   | 1  | 2          | 17.0 | Male   | 85.0              | 88.0                  | 80.0          |
|   | 2  | 3          | 15.0 | Female | 92.0              | 75.0                  | 90.0          |
|   | 3  | 4          | 18.0 | Male   | 60.0              | NaN                   | 78.0          |
|   | 4  | 5          | 19.0 | Female | 73.0              | 90.0                  | 88.0          |
|   | 5  | 6          | NaN  | Male   | NaN               | 85.0                  | 75.0          |
|   | 6  | 7          | 17.0 | Female | 95.0              | 40.0                  | 95.0          |
|   | 7  | 8          | 20.0 | Male   | 89.0              | 95.0                  | NaN           |
|   | 8  | 9          | 15.0 | Female | 88.0              | 87.0                  | 65.0          |
|   | 9  | 10         | 16.0 | Male   | 55.0              | 98.0                  | 99.0          |
|   | 10 | 11         | 18.0 | Female | 100.0             | 60.0                  | 55.0          |
|   | 11 | 12         | 21.0 | Male   | 65.0              | 55.0                  | 84.0          |
|   | 12 | 13         | 17.0 | Female | 88.0              | 88.0                  | 82.0          |
|   | 13 | 14         | NaN  | Male   | NaN               | NaN                   | 70.0          |
|   | 14 | 15         | 16.0 | Female | 90.0              | 92.0                  | 88.0          |
|   | 15 | 16         | 19.0 | Male   | 85.0              | 85.0                  | 90.0          |
|   | 16 | 17         | 17.0 | Female | 92.0              | 78.0                  | 85.0          |
|   | 17 | 18         | 18.0 | Male   | 94.0              | 89.0                  | 92.0          |
|   | 18 | 19         | 16.0 | Female | 88.0              | 91.0                  | 87.0          |
|   | 19 | 20         | 17.0 | Male   | 91.0              | 84.0                  | 89.0          |

## Scanning for NULL Values

₹

```
print("The Missing Values:")
print(df.isnull().sum())
```

The Missing Values:
Student\_ID 0
Age 2
Gender 0
Logical\_Reasoning 2
Quantitative\_Analysis 2
Comprehension 1
dtype: int64

```
Student_ID 0
Age 2
Gender 0
Logical_Reasoning 2
Quantitative_Analysis 2
Comprehension 1
dtype: int64
```

Creating the Boxplots for the columns and detect the outliers

```
print("\nOutlier Detection:")
for column in ['Age', 'Logical_Reasoning', 'Quantitative_Analysis', 'Comprehension']:
    sns.boxplot(df[column])
    plt.title(f"Boxplot of {column}")
    plt.show()
```

Outlier Detection:



```
60 -
```

Handling the Outliers using the IQR Method

```
def handle_outliers(column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    df[column] = np.where(df[column] < lower_bound, lower_bound, df[column])
    df[column] = np.where(df[column] > upper_bound, upper_bound, df[column])

# Apply to selected columns
for column in ['Age', 'Logical_Reasoning', 'Quantitative_Analysis', 'Comprehension']:
    handle_outliers(column)

print("\nDataset after handling outliers:")
df
```

Dataset after handling outliers:

|    | Student_ID | Age  | Gender | Logical_Reasoning | Quantitative_Analysis | Comprehension |
|----|------------|------|--------|-------------------|-----------------------|---------------|
| 0  | 1          | 16.0 | Female | 78.00             | 82.000                | 85.00         |
| 1  | 2          | 17.0 | Male   | 85.00             | 88.000                | 80.00         |
| 2  | 3          | 15.0 | Female | 92.00             | 75.000                | 90.00         |
| 3  | 4          | 18.0 | Male   | 61.75             | NaN                   | 78.00         |
| 4  | 5          | 19.0 | Female | 73.00             | 90.000                | 88.00         |
| 5  | 6          | NaN  | Male   | NaN               | 85.000                | 75.00         |
| 6  | 7          | 17.0 | Female | 95.00             | 62.875                | 95.00         |
| 7  | 8          | 20.0 | Male   | 89.00             | 95.000                | NaN           |
| 8  | 9          | 15.0 | Female | 88.00             | 87.000                | 65.00         |
| 9  | 10         | 16.0 | Male   | 61.75             | 98.000                | 99.00         |
| 10 | 11         | 18.0 | Female | 100.00            | 62.875                | 63.25         |
| 11 | 12         | 21.0 | Male   | 65.00             | 62.875                | 84.00         |
| 12 | 13         | 17.0 | Female | 88.00             | 88.000                | 82.00         |
| 13 | 14         | NaN  | Male   | NaN               | NaN                   | 70.00         |
| 14 | 15         | 16.0 | Female | 90.00             | 92.000                | 88.00         |
| 15 | 16         | 19.0 | Male   | 85.00             | 85.000                | 90.00         |
| 16 | 17         | 17.0 | Female | 92.00             | 78.000                | 85.00         |
| 17 | 18         | 18.0 | Male   | 94.00             | 89.000                | 92.00         |
| 18 | 19         | 16.0 | Female | 88.00             | 91.000                | 87.00         |
| 19 | 20         | 17.0 | Male   | 91.00             | 84.000                | 89.00         |

```
print("\nAfter handling Outliers:")
for column in ['Age', 'Logical_Reasoning', 'Quantitative_Analysis', 'Comprehension']:
    sns.boxplot(df[column])
    plt.title(f"Boxplot of {column}")
    plt.show()
```

After handling Outliers:

