#### 1. Graph Combinatorics

Throughout this paper A, B, C, M will denote finite graphs, and  $\mathbb{D}$  will be used to denote potentially infinite graphs. For a graph A the set of its vertices is denoted by v(A), and the set of its edges by e(A). Number of vertices of A will be denoted as |A|. Subgraph always means induced subgraph and  $A \subseteq B$  means that A is a subgraph of B. For two subgraphs A, B of a larger graph, the union  $A \cup B$  denotes the graph induced by  $v(A) \cup v(B)$ . Similarly, A - B means a subgraph of A induced by the vertices of v(A) - v(B). For  $A \subseteq B \subseteq D$  and  $A \subseteq C \subseteq D$ , graphs B, C are said to be disjoint over A if v(B) - v(A) is disjoint from v(C) - v(A) and there are no edges from v(B) - v(A) to v(C) - v(A) in D.

For the remainder of the paper fix  $\alpha \in (0,1)$ , irrational.

### Definition 1.1.

- For a graph A let  $\dim(A) = |A| \alpha |e(A)|$ .
- For A, B with  $A \subseteq B$  define  $\dim(B/A) = \dim(B) \dim(A)$ .
- We say that  $A \leq B$  if  $A \subseteq B$  and  $\dim(A'/A) > 0$  for all  $A \subsetneq A' \subseteq B$ .
- Define A to be positive if for all  $A' \subseteq A$  we have  $\dim(A') \ge 0$ .
- We work in theory  $S_{\alpha}$  in the language of graphs axiomatized by:
  - Every finite substructure is positive.
  - Given a model  $\mathbb{G}$  and graphs  $A \leq B$ , every embedding  $f: A \longrightarrow \mathbb{G}$  extends to an embedding  $g: B \longrightarrow \mathbb{G}$ .

(Here an embedding maps edges to edges and nonedges to nonedges.) This theory is complete and stable (see 5.7 and 7.1 in [2]). From now on fix an ambient model  $\mathbb{G} \models S_{\alpha}$ . This will be the only infinite graph we work with.

- For A, B positive, (A, B) is called a minimal pair if  $A \subseteq B$ ,  $\dim(B/A) < 0$  but  $\dim(A'/A) \ge 0$  for all proper  $A \subseteq A' \subsetneq B$ . We call B a minimal extension of A. The dimension of a minimal pair is defined as  $|\dim(B/A)|$ .
- A sequence  $\langle M_i \rangle_{0 \le i \le n}$  is called a <u>minimal chain</u> if  $(M_i, M_{i+1})$  is a minimal pair for all  $0 \le i < n$ .

- For a graph A with the tuple of vertices x let  $\operatorname{diag}_A(x)$  be the atomic diagram of A, i.e. the first-order formula recording whether there is an edge between every pair of vertices.
- Given  $A \subseteq B$  let

$$\phi_{A,B}(x) = \operatorname{diag}_A(x) \wedge \exists z \operatorname{diag}_B(x,z).$$

Any graph isomorphic to B is called a <u>witness</u> of  $\phi_{A,B}$ .

• A formula  $\phi_{A,B}$  is called a <u>basic formula</u> if there is a minimal chain  $\langle M_i \rangle_{0 \le i \le n}$  such that  $A = M_0$  and  $B = M_n$ .

**Theorem 1.2** (Quantifier elimination, 5.6 in [2]). In theory  $S_{\alpha}$  every formula is equivalent to a boolean combination of basic formulas.

**Definition 1.3.** A graph  $S \subseteq \mathbb{D}$  is called <u>N</u>-strong if for any  $S \subseteq T \subseteq D$  with  $|T| - |S| \leq N$  we have  $S \leq T$ .

# 2. Basic Definitions and Lemmas

**Definition 2.1.** Suppose  $\phi(x,y)$  is a basic formula. Define X to be the graph on vertices x with edges defined by  $\phi$ . Similarly define Y. Note that X,Y are positive. Additionally, let Y' be a subgraph of Y induced by vertices of Y that are connected to  $W - (X \cup Y)$ , where W is a witness of  $\phi$ .

We will require the following lemmas from [2]:

**Lemma 2.2.** [See 2.3 in [2]] Let  $A, B \subseteq \mathbb{D}$ . Then

$$\dim(A \cup B/A) \le \dim(B/A \cap B)$$
.

Moreover,

$$\dim(A \cup B/A) = \dim(B/A \cap B) - \alpha E$$
,

where E is the number of edges connecting the vertices of  $A \cup B - A$  to the vertices of  $A - A \cap B$ .

**Lemma 2.3.** [See 4.1 in [2]] Suppose A is a positive graph, with at least  $1/\alpha + 2$  vertices. Then for any  $\epsilon > 0$  there exists a graph B such that (A, B) is a minimal pair with dimension  $\leq \epsilon$ . Moreover, every vertex in A is connected to a vertex in B - A.

**Lemma 2.4.** [See 4.4 in [2]] Suppose A is a positive graph, and  $\mathcal{G}$  a model of  $S_{\alpha}$ . Then for any integer S there exists an embedding  $f: A \longrightarrow \mathcal{G}$  such that f(A) is S-strong in  $\mathcal{G}$ .

We conclude this section by stating a couple of technical lemmas that will be useful in our proofs later.

**Lemma 2.5.** Work in an ambient graph  $\mathbb{D}$ . Suppose we have a set B and a minimal pair (A, M) with  $A \subseteq B$  and  $\dim(M/A) = -\epsilon$ . Then either  $M \subseteq B$  or  $\dim(M \cup B/B) < -\epsilon$ .

Proof. By Lemma 2.2

$$\dim(M \cup B/B) \le \dim(M/M \cap B),$$

and as  $A \subseteq M \cap B \subseteq M$ 

$$\dim(M/A) = \dim(M/M \cap B) + \dim(M \cap B/A).$$

In addition we are given  $\dim(M/A) = -\epsilon$ . If  $M \nsubseteq B$  then  $A \subseteq M \cap B \subsetneq M$  and by minimality  $\dim(M \cap B/A) > 0$ . Combining the inequalities above we obtain the desired result:

$$\dim(M \cup B/B) \le \dim(M/M \cap B) = \dim(M/A) - \dim(M \cap B/A) < -\epsilon.$$

**Lemma 2.6.** Work in an ambient graph  $\mathbb{D}$ . Suppose we have a set B and a minimal chain  $\langle M_i \rangle_{0 \leq i \leq n}$  with dimensions

$$\dim(M_{i+1}/M_i) = -\epsilon_i.$$

Let  $\epsilon = \min_{0 \le i \le n} \epsilon_i$ . Then either  $M_n \subseteq B$  or  $\dim((M_n \cup B)/B) < -\epsilon$ .

*Proof.* Let  $\bar{M}_i = M_i \cup B$ . Then:

$$\dim(\bar{M}_n/B) = \dim(\bar{M}_n/\bar{M}_{n-1}) + \ldots + \dim(\bar{M}_2/\bar{M}_1) + \dim(\bar{M}_1/B).$$

Either  $M_n \subseteq B$  or at least one of the summands above is nonzero. Apply previous lemma.

**Lemma 2.7.** Suppose we have a minimal pair (A, M) with dimension  $\epsilon$ . Suppose we have some  $B \subseteq M$ . Then  $\dim B/(A \cap B) \ge -\epsilon$ . Moreover if  $B \cup A \ne M$  then  $\dim B/(A \cap B) \ge 0$ .

*Proof.* We have  $\dim(B \cup A/A) \leq \dim B/(A \cap B)$  by Lemma 2.2. As  $A \subseteq B \cup A \subseteq M$  we have  $\dim(B \cup A/A) \geq -\epsilon$  by minimality. Moreover, minimality implies that it is positive if  $B \cup A \neq M$ .

**Lemma 2.8.** Suppose we have a minimal chain  $\langle M_i \rangle_{0 \leq i \leq n}$  with dimensions

$$\dim(M_{i+1}/M_i) = -\epsilon_i.$$

Let  $\epsilon$  be the sum of all  $\epsilon_i$ . Suppose we have a graph B with  $B \subseteq M_n$ . Then  $\dim B/(M_0 \cap B) \ge -\epsilon$ .

*Proof.* Let  $B_i = B \cap M_i$ . We have dim  $B_{i+1}/B_i \ge \dim M_{i+1}/M_i$  by the previous lemma. Thus

$$\dim B/(M_0 \cap B) = \dim B_n/B_0 = \sum \dim B_{i+1}/B_i \ge -\epsilon.$$

#### 3. Lower bound

In this section we restrict our attention to the following family of basic formulas  $\phi(x,y)$ :

- All formulas have Y' = Y (see Definition 2.1).
- $\bullet$  All formulas define no edges between X and Y.
- Minimal chain of  $\phi(x,y)$  consists of one step, that is we only have one minimal extension as opposed to a chain of minimal extensions.
- The dimension of that minimal extension is smaller than  $\alpha$ .

We obtain a lower bound for the formulas that are boolean combinations of basic formulas written in the disjunctive-conjunctive form. First, define  $\epsilon_L(\phi)$ .

**Definition 3.1.** For a basic formula  $\phi = \phi_{\langle M_i \rangle_{0 \le i \le n}}(x, y)$  let

- $\epsilon_i(\phi) = -\dim\left(M_i/M_{i-1}\right)$ .
- $\epsilon_L(\phi) = \sum_{1}^{n} \epsilon_i(\phi)$ .

**Definition 3.2** (Negation). If  $\phi$  is a basic formula, then define

$$\epsilon_L(\neg \phi) = \epsilon_L(\phi).$$

**Definition 3.3** (Conjunction). Take a collection of formulas  $\phi_i(x,y)$  where each  $\phi_i$  is a positive or a negative basic formula. If both positive and negative formulas are present then  $\epsilon_L(\phi) = \infty$ . We don't have a lower bound for that case. If different formulas define X or Y differently then  $\epsilon_L(\phi) = \infty$ . In the case of conflicting definitions the formula would have no realizations. Otherwise let

$$\epsilon_L \left( \bigwedge \phi_i \right) = \sum \epsilon_L(\phi_i).$$

**Definition 3.4** (Disjunction). Take a collection of formulas  $\psi_i$  where each instance is a conjunction as above all agreing on X and Y. Then

$$\epsilon_L\left(\bigvee \psi_i\right) = \min \epsilon_L(\psi_i).$$

**Theorem 3.5.** For a formula  $\psi$  as above we have

$$\operatorname{vc} \psi \ge \left| \frac{Y(\psi)}{\epsilon_L(\psi)} \right|,$$

where  $Y(\psi)$  is  $\dim(Y)$  (as all basic components agree on Y).

*Proof.* First, work with a formula that is a conjunction of positive basic formulas  $\psi = \bigwedge_{i \in I} \phi_i$ . Then as we have defined above

$$\epsilon_L(\psi) = \sum_{i \in I} \epsilon_L(\phi_i).$$

If  $W_i$  is a witness of  $\phi_i$ , let  $S_i = |W_i|$ . Let  $n_1$  be the largest natural number such that

$$n_1 \epsilon_L(\psi) < Y(\psi).$$

Let  $\epsilon'$  be the smallest value among  $\epsilon_L(\phi_i)$ . Suppose it corresponds to the formula  $\phi'$ . Let  $n_2$  be the largest natural number such that

$$n_1 \epsilon_L(\psi) + n_2 \epsilon' < Y(\psi).$$

Fix some  $N > n_1 + n_2$ . Let

$$J = \{0 \le j < N\} \subseteq \mathbb{N}.$$

Let  $a_j$  be a graph isomorphic to X for each  $j \in J$ , pairwise disjoint. Let  $A = \bigcup_{1 \le j \le N} a_j$ . Let

$$S = |Y| + (n_1 + n_2 + 1) \sum_{i \in I} S_i.$$

By Lemma 2.4 the graph A can be embedded into  $\mathbb{G}$  as an S-strong graph. Abusing notation, we identify A with this embedding. Thus we have  $A\subseteq \mathbb{G}$ , S-strong.

Let  $J_1, J_2$  be disjoint subsets of J, of sizes  $n_1, n_2$  respectively. Let b be a graph isomorphic to Y. For each  $i \in I, j \in J_1$  let  $W_{ij}$  be a witness of  $\phi_i(a_j, b)$ . (Note that

then  $(a_j \cup b, W_{ij})$  is a minimal pair.) For each  $j \in J_1$  let  $W_j$  be a union of  $\{W_{ij}\}_{i \in I}$  disjoint over  $a_j \cup b$ . For each  $j \in J_2$  let  $W_j$  be a witness of  $\phi'(a_j, b)$ . Let W' be a union of  $\{W_j\}_{j \in J_1 \cup J_2}$  disjoint over b. Let W be a union of W' and A disjoint over  $\{a_j\}_{j \in J_1 \cup J_2}$ .

Claim 3.6. We have  $A \leq W$ .

*Proof.* Consider some  $A \subsetneq B \subseteq W$ . We need to show  $\dim(B/A) > 0$ . Let  $\bar{A} = A \cup b$ . We have

$$\dim(B/A) = \dim(B/B \cap \bar{A}) + \dim(B \cap \bar{A}/A).$$

Let  $B_{ij} = B \cap W_{ij}$ . Let  $B_j = B \cap W_j$ . To unify indices, relabel all the graphs above as  $\{B_k\}_{k \in K}$  for some index set K. By the construction of W we have

$$\dim(B/B \cap \bar{A}) = \sum_{k \in K} \dim(B_k/B_k \cap \bar{A}).$$

Fix k. We have  $B_k \subseteq W_k$ , where  $W_k$  is a minimal extension of  $M_0^k = a \cup b$  for some  $a \in A$ . Let  $\epsilon_k$  be the dimension of this minimal extension. We have  $\dim(B_k/B_k \cap \bar{A}) = \dim(B_k/a \cup (B \cap b))$ .

Case 1:  $B \cap b = b$ . Then  $M_0^k \subseteq B_k \subseteq W_k$  and

$$\dim(B_k/a \cup (B \cap b)) = \dim(B_k/M_0^k).$$

By minimality of  $(M_0^k, B_k)$  we have  $\dim(B_k/M_0^k) \ge -\epsilon_k$ . Thus

$$\dim(B/B \cap \bar{A}) \ge -\sum_{k \in K} \epsilon_k = -\left(n_1 \epsilon_L(\psi) + n_2 \epsilon'\right).$$

In addition

$$\dim(B \cap \bar{A}/A) = \dim(b) = Y(\psi).$$

Combining the two, we get

$$\dim(B/A) \ge Y(\psi) - (n_1 \epsilon_L(\psi) + n_2 \epsilon'),$$

which is positive by the construction of  $n_1, n_2$  as needed.

Case 2:  $B \cap b \subsetneq b$ .

Claim 3.7. We have  $\dim(B_k/B_k \cap \bar{A}) > 0$ .

*Proof.* Recall that  $\dim(B_k/B_k \cap \bar{A}) = \dim(B_k/a \cup (B \cap b))$ . First, suppose that  $B_k \cup M_0^k \neq W_k$ . Then by Lemma 2.7 we get the required inequality. Thus we may assume that  $B_k \cup M_0^k = W_k$ . By Lemma 2.2 we have

$$\dim(B_k \cup M_0^k/M_0^k) = \dim(B_k/B_k \cap M_0^k) - \alpha E,$$

where E is the number of edges connecting the vertices of  $B_k \cup M_0^k - M_0^k$  to the vertices of  $M_0^k - B_k \cap M_0^k$ . Noting that  $B_k \cup M_0^k = W_k$ ,  $\dim W_k / M_0^k = -\epsilon_k$ , and  $B_k \cap M_0^k = a \cup (B \cap b)$  we may rewrite the equality above as

$$\dim(B_k/a \cup (B \cap b)) = \alpha E - \epsilon,$$

and E is the number of edges connecting the vertices of  $W_k - M_0^k$  to the vertices of  $M_0^k - a \cup (B \cap b)$ . As Y = Y' and  $B \cap b \subseteq b$  we must have  $E \ge 1$ . But then as  $\alpha > \epsilon$  we have  $\dim(B_k/a \cup (B \cap b)) > 0$  as needed.

Now, recall that

$$\dim(B/A) = \dim(B \cap \bar{A}/A) + \sum_{k \in K} \dim(B_k/B_k \cap \bar{A}).$$

By the claim above each of  $\dim(B_k/B_k \cap \bar{A}) > 0$ , thus

$$\dim(B/A) > \dim(B \cap \bar{A}/A).$$

In addition

$$\dim(B \cap \bar{A}/A) = \dim(B \cap b) > 0,$$

as b is postive. Thus  $\dim(B/A) > 0$  as needed.

As  $A \leq W$  and  $A \subseteq \mathbb{G}$ , we can embed W into  $\mathbb{G}$  over A. Abusing notation again, we identify W with its embedding  $A \leq W \subseteq \mathbb{G}$ . In particular, now we have  $b \in \mathbb{G}$ . Also note that

$$\dim(W/A) = Y(\psi) - (n_1 \epsilon_L(\psi) + n_2 \epsilon'),$$
$$|W| - |A| \le |b| + (n_1 + n_2) \sum_{i \in I} S_i.$$

Lemma 3.8. We have

$$\{a_j\}_{j\in J_1}\subseteq \psi(A,b)\subseteq \{a_j\}_{j\in J_1\cup J_2}$$

Proof. First inclusion  $\{a_j\}_{j\in J_1}\subseteq \psi(A,b)$  is immediate from the construction of W, as  $W_{ij}$  witnesses that  $\phi_i(a_j,b)$  holds. For the second inclusion, suppose that there is  $a\in A-\{a_j\}_{j\in J_1\cup J_2}$  such that  $\psi(a,b)$  holds. Let  $W'\subseteq \mathbb{G}$  be a witness of  $\phi_1(a,b)$ . First, note that the case  $W'\subseteq W$  is impossible as there are no edges between a and W-a, but there are edges between a and W'-a. Thus assume  $W'\not\subseteq W$ . As  $(a\cup b,W')$  is minimal, by Lemma 2.5 we have  $\dim(W'\cup W/W)<-\epsilon_1$ . Therefore

$$\dim(W' \cup W/A) = \dim(W' \cup W/W) + \dim(W/A) < Y(\psi) - (n_1 \epsilon_L(\psi) + n_2 \epsilon') - \epsilon_1,$$

which is negative by the construction of  $n_1, n_2$ . Thus  $A \not\leq W \cup W'$ , as then it would have a positive dimension. Additionally,

$$|W' \cup W| - |A| \le |W' - W| + |W| - |A| \le S_1 + |b| + (n_1 + n_2) \sum_{i \in I} S_i \le S_i$$

but then this contradicts that A is S-strong, as then we would have  $A \leq W \cup W'$ .  $\square$ 

In the construction of W we have chosen indices  $J_1, J_2$  arbitrarily. In particular, suppose we let  $J_2$  to be the last  $n_2$  indices of J and  $J_1$  an arbitrary  $n_1$ -element subset of the first  $N-n_2$  elements of J. Each of those choices would then yield a different trace  $\psi(A,b)$  by the lemma above. Thus  $\psi(A,M^{|y|}) \geq \binom{N-n_2}{n_1}$  and therefore  $\operatorname{vc}(\psi) \geq n_1$ . By the definition of  $n_1$  we have  $n_1 = \left\lfloor \frac{Y(\psi)}{\epsilon_L(\psi)} \right\rfloor$ , so this proves the theorem for  $\psi$ .

Now consider a formula which is a conjunction consisting of negative basic formulas  $\psi = \bigwedge_{i \in I} \neg \phi_i$ . Let  $\bar{\psi} = \bigwedge_{i \in I} \phi_i$ . Do the construction above for  $\bar{\psi}$  and suppose its trace is  $X \subseteq A$  for some b. Then over b the same construction gives trace (A - X) for  $\psi$ . Thus we get as many traces as above, and the same bound.

Finally consider a formula which is a disjunction of formulas considered above  $\theta = \bigvee_{k \in K} \psi_k$ . Choose the one with the smallest  $\epsilon_L$ , say  $\psi_k$ , and repeat the construction above for  $\psi_k$ . Any trace we obtain is automatically a trace for  $\theta$ , and thus we get as many traces as above, and the same bound.

Corollary 3.9. VC-function is infinite in Shelah-Spencer random graphs:

$$vc(n) = \infty$$
.

Proof. Let A be a graph consisting of  $1/\alpha + 2 + n$  disconnected vertices. Fix  $\epsilon > 0$ . By Lemma 2.3, there exists B such that (A,B) is minimal with dimension  $\leq \epsilon$ . Consider a basic formula  $\psi_{A,B}(x,y)$  where  $|x| = 1/\alpha + 2$  and |y| = n. Then by the theorem above  $\operatorname{vc}(n) \geq \operatorname{vc}(\psi_{A,B}) \geq \frac{n}{\epsilon}$ . As  $\epsilon$  was arbitrary, this number can be made arbitrarily large, giving  $\operatorname{vc}(n) = \infty$  as needed.

## References

- M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949
- [2] Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157186. MR MR2350161
- [3] P. Assouad, Densite et dimension, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 233-282.
- [4] P. Assouad, Observations sur les classes de Vapnik-Cervonenkis et la dimension combinatoire de Blei, in: Seminaire d'Analyse Harmonique, 1983-1984, pp. 92-112, Publications Mathematiques d'Orsay, vol. 85-2, Universite de Paris-Sud, Departement de Mathematiques, Orsay, 1985.
- [5] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
- [6] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.

E-mail address: bobkov@math.ucla.edu