Systèmes dynamiques

Feuille de révision

Exercice 1. Entropie topologique des applications non dilatantes

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue telle que

$$d(f(x), f(y)) \le d(x, y), \quad x, y \in X.$$

Montrer que $h_{top}(f) = 0$.

Exercice 2. Ergodicitié et mélange au sens de Césaro

Soit (X, \mathscr{A}, μ) un espace probabilisé, et $f: X \to X$ une application préservant μ . On suppose que μ est ergodique pour f. Montrer que pour tous $A, B \in \mathscr{A}$ on a

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu \left(f^{-k}(A) \cap B \right) = \mu(A)\mu(B).$$

Exercice 3. Mesures ergodiques et points extrémaux

Soit (X, d) un espace métrique compact et $f: X \to X$ une application continue. On note $\mathcal{M}(X, f)$ les mesures de probabilités boréliennes f-invariantes. Les points extrémaux de $\mathcal{M}(X, f)$ sont les mesures μ vérifiant la propriété suivante. Pour toutes mesures $\mu_1, \mu_2 \in \mathcal{M}(X, f)$ et tout $t \in]0, 1[$, on a

$$\mu = t\mu_1 + (1-t)\mu_2 \implies \mu = \mu_1 = \mu_2.$$

- 1. (a) Montrer que si μ est un point extrémal de $\mathcal{M}(X,f)$, alors μ est ergodique.
 - (b) Soient $\mu \in \mathcal{M}(X, f)$ et $\varphi \in L^1(\mu)$ positive telle que $\int \varphi d\mu = 1$. Montrer que la mesure $\nu = \varphi \mu$ est invariante par f si, et seulement si, φ est invariante par f.

 Indication. Pour le sens "si", on pourra considérer les ensembles $\{\varphi > t\}$ et montrer qu'ils sont invariants.
 - (c) En déduire que si μ est ergodique, alors c'est un point extrémal de $\mathcal{M}(X,f)$.
- 2. En déduire le fait suivant. Si μ, ν sont deux mesures ergodiques, alors on a deux possibilités: ou $\mu = \nu$, ou μ et ν sont étrangères (ce qui signifie qu'il existe un borélien A tel que $\mu(A) = 1$ et $\nu(A) = 0$).

Exercice 4. Systèmes linéaires avec second membre

Soit A une matrice carrée d'ordre n, et $z: \mathbf{R} \to \mathbf{R}^n$ une application continue.

1. Résoudre l'équation différentielle

$$\dot{x}(t) = Ax(t) + z(t). \tag{1}$$

2. On suppose que A est une contraction linéaire et que $z(t) \to z_{\infty} \in \mathbf{R}^n$ quand $t \to +\infty$. Montrer que toute solution de (1) converge en grand temps vers une limite à déterminer. Indication. On commencer par montrer l'existence d'une norme $\|\cdot\|_A$ sur \mathbf{R}^n telle que

$$\|\mathbf{e}^{tA}x\|_A \leqslant \mathbf{e}^{-at}\|x\|_A, \quad x \in \mathbf{R}^n, \quad t \geqslant 0,$$

 $où \ a \in]0,1[.$

Exercice 5. Entropie des transformations Lipschitziennes

Soit (X, d) un espace métrique compact. On définit

$$\mathrm{bdim}(X) = \limsup_{\varepsilon \to 0} \frac{\log M(X,\varepsilon)}{\log 1/\varepsilon}$$

où $M(X,\varepsilon)$ est le nombre minimal de ε -boules (pour la distance d) qu'il faut pour recouvrir X.

1. Montrer que bdim $([0,1]^n) = n$.

Soit $f:X\to X$ une application Lipschitzienne et

$$L(f) = \sup_{x \neq y} \frac{\mathrm{d}(f(x), f(y))}{\mathrm{d}(x, y)}$$

sa constante de Lipschitz.

2. Montrer que

$$h_{\text{top}}(f) \le \text{bdim}(X) \max(0, \log L(f)).$$
 (2)

3. Donner un exemple d'application f telle que (2) soit une égalité.

Exercice 6. Le théorème de Von Neumann via le théorème de Birkhoff

Soit (X, \mathscr{A}, μ) un espace probabilisé, $f: X \to X$ une application préservant $\mu, \varphi \in L^2(\mu)$ et $\bar{\varphi} \in L^1(\mu)$ sa fonction associée dans le théorème de Birkhoff. On note aussi $S_n \varphi = \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^k$. On cherche à retrouver le théorème de Von Neumann.

- 1. Montrer que $\bar{\varphi} \in L^2(\mu)$ et que $\|\bar{\varphi}\|_{L^2(\mu)} \leq \|\varphi\|_{L^2(\mu)}$.
- 2. Montrer que $S_n \varphi \to \bar{\varphi}$ dans $L^2(\mu)$. Indication. On pourra considérer le cas où $\varphi \in L^{\infty}(\mu)$ puis conclure par un argument d'approximation, en considérant les fonctions

$$\varphi_k = \varphi 1_{|\varphi| \leqslant k}.$$

Exercice 7. Moyenne temporelle des temps de retour

Soit (X, μ) un espace de probabilités et $f: X \to X$ une transformation ergodique pour μ . Soit $A \subset X$ un ensemble mesurable de mesure non nulle, $\tau: A \to \mathbb{N}_{\geqslant 1} \cup \{+\infty\}$ le temps de premier retour dans A, et

$$g: x \mapsto f^{\tau(x)}(x)$$

l'application de premier retour associée (qui est définie presque partout sur A par le théorème de Poincaré).

1. Montrer le théorème de Kac :

$$\int_{A} \tau \mathrm{d}\mu = 1.$$

2. En déduire que pour μ presque tout x de A,

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \tau\left(g^k(x)\right) = \frac{1}{\mu(A)}.$$

2