Application of Falsification Methods on the UxAS System

Cumhur E. Tuncali, Georgios Fainekos

Bardh Hoxha

Guohui Ding, Sriram Sankaranarayanan

Arizona State

Southern Illinois University

University of Colorado

University

bhoxha@cs.siu.edu

Boulder

www.bhoxha.com

NASA Formal Methods 2018 Newport News, Virginia, USA, April 18

The authors authorize the public release of this presentation

Summer Of Innovation 2017

Participants from the industry, academia, and the government Apply formal methods to the AFRLs UAV mission planning software UxAS

Requirement formalization • Formal architecture description • Methods for proving correct and safe behavior • Cyber-security considerations • Real-time scheduling/enforcement • Automated test generation • Argumentation and assurance cases • Run-time assurance • Hybrid systems analysis • Improvements in mission and task planning

1. UxAS and AMASE

From Mission Scenarios to Simulation

Tasks

[Slide adopted/modified from D. Fisher, S5 2017]

Assignment

[Slide adopted/modified from D. Fisher, S5 2017]

Synchronized Firefight

[ASU - SIU - VU] [ADHS2018]

Testing UxAS: Keep Out Zone Violations

2. Robustness-Guided Testing

Methods and Tools

Falsification By Optimization

[Fainekos and Pappas, TCS]

Metric Temporal Logic

- Propositional logic + Temporal Operators with timing intervals
 - Interpreted over traces/trajectories
 - Ex. $G_{[0,5]}p \wedge F_{[2,4]}b$: "always from 0 to 5, p is true and eventually from 2 to 4, b is true"

Model

Simulink/Stateflow User-defined functions

S-Taliro

Stochastic Optimization Engine

Simulated Annealing
Cross Entropy
Ant-colony
Gradient Descent
Flexible initial condition and input signal generation

Features

Falsification
Parameter Mining
Requirement Engineering with ViSpec
Runtime Verification
Conformance Testing

••

3. Testing UxAS

Keep Out Zones

Autonomy Monitors

Testing UxAS with S-TaLiRo

Keep Out Zones:

$$\phi_Z = \bigwedge_{i=1}^n G(r_i \to F_{[0,10]} \neg r_i)$$

Autonomy Monitors:

$$\phi_M = \bigwedge_{i=1}^k M_k$$

Specification ϕ :

$$\phi = \phi_Z \wedge \phi_M$$

Stochastic Optimization

Result: Falsification

Future Work

1. Parameter Mining of MTL Specs [Hoxha et al. STTT]

$$\phi_Z = \bigwedge_{i=1}^n G(r_i \to F_{[0,\theta]} \neg r_i)$$

2. More complex vehicle dynamicsEx: F16 Aircraft Model[Bak and Heidlauf]

What is the value of θ ?

Acknowledgments

Cumhur E. Tuncali

Georgios Fainekos

Guohui Ding

Sriram Sankaranarayanan

Sponsors:

AFRL:

- Derek Kingston
- Laura Humphrey

VU:

- Taylor Johnson
- Luan Viet Nguyen

UT Austin:

- Ufuk Topcu
- Mohammed Alshiekh

ASU:

- Adel Dokhanchi
- Shakiba Yaghoubi

Thank You Questions?

MTL Survey

Test hypothesis that formal methods experts can write correct MTL specifications from NL

www.bit.ly/2HKsMQK