- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- OMP!

. 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 191

- (43) Internationales Veröffentlichungsdatum
 4. März 2004 (04.03.2004)
- **PCT**

(10) Internationale Veröffentlichungsnummer WO 2004/018467 A2

(51) Internationale Patentklassifikation⁷: C07

C07D 473/00

(21) Internationales Aktenzeichen: P

PCT/EP2003/009096

(22) Internationales Anmeldedatum:

16. August 2003 (16.08.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 38 470.3

22. August 2002 (22.08.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG [DE/DE]; 55216 Ingelheim am Rhein (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): ECKHARDT, Matthlas [DE/DE]; Kirschenweg 7, 88400 Biberach an der Riss (DE). MARK, Michael [DE/DE]; Hugo-Haering-Strasse 50, 88400 Biberach an der Riss (DE). HIMMELSBACH, Frank [DE/DE]; Ahomweg 16, 88441 Mittelbiberach (DE). LANGKOPF, Elke [DE/DE]; Schloss 3, 88447 Warthausen (DE). LOTZ, Ralf [DE/DE]; Nelkenstrasse 21, 88433 Schemmerhofen (DE). MAIER,

Roland [DE/DE]; Bodelschwingstr. 39, 88400 Biberach an der Riss (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: XANTHINE DERIVATIVES, PRODUCTION THEREOF AND USE THEREOF AS MEDICINES
- (54) Bezeichnung: NEUE XANTHINDERIVATE, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS ARZNEI-MITTEL

- (57) Abstract: The invention concerns substituted xanthines of general formula (I), wherein: R¹ to R⁴ are such as defined in Claim 1, and tautomers, stereoisomers, mixtures, prodrugs and salts thereof. Said compounds have advantageous pharmacological properties, in particular an inhibiting effect on the activity of the dipeptidyl peptidase IV (DPP-IV) enzyme.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft substituierte Xanthine der allgemeinen Formel (I), in der R¹ bis R⁴ wie in Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische, deren Prodrugs und deren Salze, welche wertvolle pharma-

kologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die Aktivität des Enzyms Dipeptidylpeptidase-IV (DPP-IV).

Neue Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel

Gegenstand der vorliegenden Erfindung sind neue substituierte Xanthine der allgemeinen Formel

$$\begin{array}{c|c}
R^1 & & \\
N & & \\
N & & \\
N & & \\
R^2 & &
\end{array}$$
(1),

deren Tautomere, Enantiomere, Diastereomere, deren Gemische, deren Prodrugs und deren Salze, insbesonders deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die Aktivität des Enzyms Dipeptidylpeptidase-IV (DPP-IV), deren Herstellung, deren Verwendung zur Prävention oder Behandlung von Krankheiten oder Zuständen, die in Zusammenhang mit einer erhöhten DPP-IV Aktivität stehen oder die durch Reduktion der DPP-IV Aktivität verhindert oder gemildert werden können, insbesondere von Diabetes mellitus Typ I oder Typ II, die eine Verbindung der allgemeinen Formel (I) oder ein physiologisch verträgliches Salz davon enthaltenden Arzneimittel sowie Verfahren zu deren Herstellung.

In der obigen Formel I bedeuten

25

R¹ eine Phenylcarbonylmethylgruppe, in der der Phenylteil durch R¹⁰ und R¹¹ substituiert ist, wobei

R¹⁰ eine Formylaminogruppe,

10

15

20

25

30

eine C_{3-7} -Cycloalkyl-carbonylamino- oder C_{3-7} -Cycloalkyl- C_{1-3} -alkyl-carbonylamino-Gruppe,

eine C_{6-9} -Bicycloalkyl-carbonylamino- oder C_{6-9} -Bicycloalkyl- C_{1-3} -alkyl-carbonylaminogruppe,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der

eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom oder durch eine Imino-, Sulfinyl- oder Sulfonylgruppe ersetzt ist,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂- Gruppe durch eine –NH-CO- oder –NH-NH- Gruppe ersetzt ist,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂- Gruppe durch eine –NH-CO-NH-, –NH-CO-O- oder –O-CH₂-O- Gruppe ersetzt ist,

eine C₆₋₇-Cycloalkyl-carbonylaminogruppe, in der eine -CH₂-CH₂-CH₂-CH₂-CH₂-Gruppe durch eine -NH-CH₂-CH₂-NH-, -NH-CO-CH₂-NH-, -NH-CH₂-CH₂-O-, -NH-CO-CH₂-O- oder -O-CH₂-CH₂-O-Gruppe ersetzt ist,

eine Cycloheptyl-carbonylaminogruppe, in der eine --CH₂-CH

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine oder zwei Methylengruppen durch Carbonylgruppen ersetzt sind,

eine C_{4-7} -Cycloalkenyl-carbonylamino- oder C_{4-7} -Cycloalkenyl- C_{1-3} -alkyl-carbonylamino-Gruppe,

eine C_{3-7} -Cycloalkyl-sulfonylamino-, C_{3-7} -Cycloalkyl- C_{1-3} -alkyl-sulfonylamino-, Arylsulfonylamino- oder Aryl- C_{1-3} -alkyl-sulfonylamino-Gruppe oder

eine Heteroarylcarbonylaminogruppe bedeutet,

5

wobei die in den vorstehend erwähnten Gruppen enthaltenen Iminogruppen unabhängig voneinander durch eine C₁₋₃-Alkylgruppe substituiert sein können,

und R11 ein Wasserstoff-, Fluor-, Chlor-, Brom- oder lodatom oder

10

eine C_{1-3} -Alkyl-, C_{1-3} -Alkyloxy-, Difluormethyl-, Trifluormethyl-, Difluormethoxy-, Trifluormethoxy- oder Cyangruppe bedeutet,

R² ein Wasserstoffatom,

15

eine C₁₋₆-Alkylgruppe,

eine C2-4-Alkenylgruppe,

20 eine C₃₋₄-Alkinylgruppe,

eine C₃₋₆-Cycloalkylgruppe,

eine C₃₋₆-Cycloalkyl-C₁₋₃-alkylgruppe,

25

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl-, Tetrahydropyran-4-yl-, Tetrahydrofuranylmethyl- oder Tetrahydropyranylmethylgruppe,

eine Arylgruppe,

30

eine Aryl-C₁₋₄-alkylgruppe,

eine Aryl-C₂₋₃-alkenylgruppe,

4 .

eine Arylcarbonyl-C₁₋₂-alkylgruppe,

eine Heteroaryl-C₁₋₃-alkylgruppe,

5

eine Furanylcarbonylmethyl-, Thienylcarbonylmethyl-, Thiazolylcarbonylmethyl- oder Pyridylcarbonylmethylgruppe,

eine C₁₋₄-Alkyl-carbonyl-C₁₋₂-alkyl-Gruppe,

10

eine C₃₋₆-Cycloalkyl-carbonyl-C₁₋₂-alkyl-Gruppe,

eine Aryl-D-C₁₋₃-alkylgruppe, wobei D eine Sauerstoff- oder Schwefelatom, eine Imino-, C₁₋₃-Alkylimino-, Sulfinyl- oder Sulfonylgruppe bedeutet,

15

20

eine durch eine Gruppe Ra substituierte C₁₋₄-Alkylgruppe, wobei

R_a eine Cyano-, Carboxy-, C₁₋₃-Alkyloxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)-amino-carbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-ylcarbonyl-, Piperazin-1-ylcarbonyl-, 4-Methylpiperazin-1-ylcarbonyl- oder 4-Ethylpiperazin-1-ylcarbonylgruppe bedeutet,

oder eine durch eine Gruppe R_b substituierte C₂₋₄-Alkylgruppe, wobei

25

30

R_b eine Hydroxy-, C₁₋₃-Alkyloxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)- amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Morpholin-4-yl, Piperazin-1-yl-, 4- Methyl-piperazin-1-yl- oder 4-Ethyl-piperazin-1-yl-Gruppe darstellt und durch mindestens zwei Kohlenstoffatome vom Ringstickstoffatom in 3-Stellung des Xanthingerüstes isoliert ist,

R³ eine C₃₋₈-Alkylgruppe,

.

eine durch eine Gruppe Rc substituierte C₁₋₃-Alkylgruppe, wobei

 R_c eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte C_{3-7} -Cycloalkylgruppe,

5

eine gegebenenfalls durch eine oder zwei C₁₋₃-Alkylgruppen substituierte C₅₋₇-Cycloalkenylgruppe,

eine Arylgruppe oder

10

15

eine Furanyl-, Thienyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Isothiazolyl-, Pyridyl-, Pyridazinyl-, Pyrimidyl- oder Pyrazinylgruppe bedeutet, wobei die vorstehend erwähnten heterocyclischen Reste jeweils durch eine oder zwei C₁₋₃-Alkylgruppen oder durch ein Fluor-, Chlor-, Brom- oder lodatom oder durch eine Trifluormethyl-, Cyan- oder C₁₋₃-Alkyloxygruppe substituiert sein können,

eine C₃₋₈-Alkenylgruppe,

eine durch ein Fluor-, Chlor- oder Bromatom, oder eine Trifluormethylgruppe substituierte C₃₋₆-Alkenylgruppe,

eine C₃₋₈-Alkinylgruppe,

25 eine Arylgruppe oder

eine Aryl-C2-4-alkenylgruppe,

und

30

 R^4 eine Azetidin-1-yl- oder Pyrrolidin-1-ylgruppe, die in 3-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder eine Di- $(C_{1-3}$ -alkyl)amino-Gruppe substituiert ist und zusätzlich durch eine oder zwei C_{1-3} -Alkylgruppen substituiert sein kann,

eine Piperidin-1-yl- oder Hexahydroazepin-1-ylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Amino-, C₁₋₃-Alkylamino- oder eine Di-(C₁₋₃-alkyl)amino-Gruppe substituiert ist und zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann,

eine 3-Amino-piperidin-1-ylgruppe, in der der Piperidin-1-yl-Teil zusätzlich durch eine Aminocarbonyl-, C₁₋₂-Alkyl-aminocarbonyl-, Di-(C₁₋₂-alkyl)aminocarbonyl-, Pyrrolidin-1-yl-carbonyl-, (2-Cyan-pyrrolidin-1-yl-)carbonyl-, Thiazolidin-3-yl-carbonyl-, (4-Cyan-thiazolidin-3-yl)carbonyl-, Piperidin-1-ylcarbonyl- oder Morpholin-4-ylcarbonyl-Gruppe substituiert ist,

eine 3-Amino-piperidin-1-ylgruppe, in der der Piperidin-1-yl-Teil in 4-Stellung oder in 5-Stellung zusätzlich durch eine Hydroxy- oder Methoxygruppe substituiert ist,

eine 3-Amino-piperidin-1-ylgruppe, in der die Methylengruppe in 2-Stellung oder in 6-Stellung durch eine Carbonylgruppe ersetzt ist,

eine in 3-Stellung durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituierte Piperidin-1-yl- oder Hexahydroazepin-1-yl-gruppe, in denen
jeweils zwei Wasserstoffatome am Kohlenstoffgerüst der Piperidin-1-yl- oder
Hexahydroazepin-1-yl-gruppe durch eine geradkettige Alkylenbrücke ersetzt sind,
wobei diese Brücke 2 bis 5 Kohlenstoffatome enthält, wenn die zwei Wasserstoffatome sich am selben Kohlenstoffatom befinden, oder 1 bis 4 Kohlenstoffatome
enthält, wenn sich die Wasserstoffatome an benachbarten Kohlenstoffatomen befinden, oder 1 bis 4 Kohlenstoffatome enthält, wenn sich die Wasserstoffatome an
Kohlenstoffatomen befinden, die durch ein Atom getrennt sind, oder 1 bis 3 Kohlenstoffatome enthält, wenn sich die zwei Wasserstoffatome an Kohlenstoffatomen befinden, die durch zwei Atome getrennt sind,

eine Azetidin-1-yl-, Pyrrolidin-1yl-, Piperidin-1-yl- oder Hexahydroazepin-1-ylgruppe, die durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)- amino- C_{1-3} -alkylgruppe substituiert ist,

15

20

25

5

10

30

eine gegebenenfalls am Kohlenstoffgerüst durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Piperazin-1-yl- oder [1,4]Diazepan-1-ylgruppe,

- eine gegebenenfalls am Kohlenstoffgerüst durch eine oder zwei C₁₋₃-Alkylgruppen substituierte 3-Imino-piperazin-1-yl-, 3-Imino-[1,4]diazepan-1-yl- oder 5-Imino-[1,4]diazepan-1-ylgruppe,
- eine gegebenenfalls durch eine oder zwei C₁₋₃-Alkylgruppen substituierte [1,4]Diazepan-1-ylgruppe, die in 6-Stellung durch eine Aminogruppe substituiert ist,
 - eine C_{3-7} -Cycloalkylgruppe, die durch eine Amino-, C_{1-3} -Alkylamino- oder Di- $(C_{1-3}$ -alkyl)-aminogruppe substituiert ist,
- eine C₃₋₇-Cycloalkylgruppe, die durch eine Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl- oder eine Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkylgruppe substituiert ist,
 - eine C_{3-7} -Cycloalkyl- C_{1-2} -alkylgruppe, in der der Cycloalkylteil durch eine Amino-, C_{1-3} -Alkylamino- oder Di- $(C_{1-3}$ -alkyl)-aminogruppe substituiert ist,

20

- eine C_{3-7} -Cycloalkyl- C_{1-2} -alkylgruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)amino- C_{1-3} -alkylgruppe substituiert ist,
- eine C₃₋₇-Cycloalkylaminogruppe, in der der Cycloalkylteil durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist, wobei die beiden Stickstoffatome am Cycloalkylteil durch mindestens zwei Kohlenstoffatome voneinander getrennt sind,
- eine N-(C₃₋₇-Cycloalkyl)-N-(C₁₋₃-alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist, wobei die beiden Stickstoffatome am Cycloalkylteil durch mindestens zwei Kohlenstoffatome voneinander getrennt sind,

eine C₃₋₇-Cycloalkylaminogruppe, in der der Cycloalkylteil durch eine Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl- oder eine Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkylgruppe substituiert ist,

5

eine N-(C_{3-7} -Cycloalkyl)-N-(C_{1-3} -alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)amino- C_{1-3} -alkylgruppe substituiert ist,

10 ein

eine C_{3-7} -Cycloalkyl- C_{1-2} -alkyl-aminogruppe, in der der Cycloalkylteil durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

1

eine N-(C_{3-7} -Cycloalkyl- C_{1-2} -alkyl)-N-(C_{1-2} -alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

15

eine C_{3-7} -Cycloalkyl- C_{1-2} -alkyl-aminogruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)amino- C_{1-3} -alkylgruppe substituiert ist,

20

eine N-(C_{3-7} -Cycloalkyl- C_{1-2} -alkyl)-N-(C_{1-2} -alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)-amino- C_{1-3} -alkylgruppe substituiert ist,

25

eine R¹⁹-C₂₋₄-Alkylamino-Gruppe, in der R¹⁹ durch mindestens zwei Kohlenstoffatome vom Stickstoffatom des C₂₋₄-Alkylamino-Teils getrennt ist und

R¹⁹ eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellt,

30

eine R^{19} - C_{2-4} -Alkylamino-Gruppe, in der das Stickstoffatom des C_{2-4} -Alkylamino-Teils durch eine C_{1-3} -Alkylgruppe substituiert ist und R^{19} durch mindestens zwei Kohlenstoffatome vom Stickstoffatom des C_{2-4} -Alkylamino-Teils getrennt ist, wobei R^{19} wie vorstehend erwähnt definiert ist,

20

30

eine durch den Rest R²⁰ substituierte Aminogruppe, in der

R²⁰ eine Azetidin-3-yl, Azetidin-2-ylmethyl-, Azetidin-3-ylmethyl-, Pyrrolidin-3-yl-, Pyrrolidin-2-ylmethyl-, Pyrrolidin-3-ylmethyl-, Piperidin-3-yl-, Piperidin-4-yl-, Piperidin-2-ylmethyl-, Piperidin-3-ylmethyl- oder Piperidin-4-ylmethylgruppe darstellt, wobei die für R²⁰ erwähnten Reste jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können,

- eine durch den Rest R²⁰ und eine C₁₋₃-Alkylgruppe substituierte Aminogruppe, in der R²⁰ wie vorstehend erwähnt definiert ist, wobei die für R²⁰ erwähnten Reste jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können,
- eine R¹⁹-C₃₋₄-alkyl-gruppe, in der der C₃₋₄-Alkylteil geradkettig ist und zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, wobei R¹⁹ wie vorstehend erwähnt definiert ist,
 - eine 3-Amino-2-oxo-piperidin-5-yl- oder 3-Amino-2-oxo-1-methyl-piperidin-5-yl- Gruppe,
 - eine Pyrrolidin-3-yl-, Piperidin-3-yl-, Piperidin-4-yl, Hexahydroazepin-3-yl- oder Hexahydroazepin-4-ylgruppe, die in 1-Stellung durch eine Amino-, C₁₋₃-Alkylamino-oder Di-(C₁₋₃-alkyl)aminogruppe substituiert ist,
- oder eine Azetidin-2-yl-C₁₋₂-alkyl-, Azetidin-3-yl-C₁₋₂-alkyl, Pyrrolidin-2-yl-C₁₋₂-alkyl-, Pyrrolidin-3-yl-, Pyrrolidin-3-yl-C₁₋₂-alkyl-, Piperidin-2-yl-C₁₋₂-alkyl-, Piperidin-3-yl-, Piperidin-3-yl-C₁₋₂-alkyl-, Piperidin-4-yl- oder Piperidin-4-yl-C₁₋₂-alkylgruppe, wobei die vorstehend erwähnten Gruppen jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können,
 - wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen zu verstehen sind, welche unabhängig voneinander durch R_h mono- oder disubstituiert sein können, wobei die Substituenten

10

15

20

25

gleich oder verschieden sein können und R_h ein Fluor-, Chlor-, Brom- oder Iodatom, eine Trifluormethyl-, Cyan-, Nitro-, Amino-, Aminocarbonyl-, Aminosulfonyl-, Methyl-sulfonyl, Acetylamino-, Methylsulfonylamino-, C₁₋₃-Alkyl-, Cyclopropyl-, Ethenyl-, Ethinyl-, Hydroxy-, C₁₋₃-Alkyloxy-, Difluormethoxy- oder Trifluormethoxygruppe darstellt,

unter den bei der Definition der vorstehend erwähnten Reste erwähnten Heteroarylgruppen eine Pyrrolyl-, Furanyl-, Thienyl-, Pyridyl-, Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist,

oder eine Pyrrolyl-, Furanyl-, Thienyl- oder Pyridylgruppe zu verstehen ist, in der eine oder zwei Methingruppen durch Stickstoffatome ersetzt sind,

oder eine Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, in der eine bis drei Methingruppen durch Stickstoffatome ersetzt sind,

oder eine 1,2-Dihydro-2-oxo-pyridinyl-, 1,4-Dihydro-4-oxo-pyridinyl-, 2,3-Dihydro-3-oxo-pyridazinyl-, 1,2,3,6-Tetrahydro-3,6-dioxo-pyridazinyl-, 1,2-Dihydro-2-oxo-pyrimidinyl-, 1,2,3,4-Tetrahydro-2,4-dioxo-pyrimidinyl-, 1,2-Dihydro-2-oxo-pyrazinyl-, 1,2,3,4-Tetrahydro-2,3-dioxo-pyrazinyl-, 2,3-Dihydro-2-oxo-indolyl-, 2,3-Dihydrobenzofuranyl-, 2,3-Dihydro-2-oxo-1*H*-benzimidazolyl-, 2,3-Dihydro-2-oxo-benzoxazolyl-, 1,2-Dihydro-2-oxo-chinolinyl-, 1,4-Dihydro-4-oxo-chinolinyl-, 1,2-Dihydro-1-oxo-isochinolinyl-, 1,4-Dihydro-4-oxo-cinnolinyl-, 1,2-Dihydro-2-oxo-chinazolinyl-, 3,4-Dihydro-4-oxo-chinazolinyl-, 1,2,3,4-Tetrahydro-2,3-dioxo-chinoxalinyl-, 1,2-Dihydro-1-oxo-phthalazinyl-, 1,2,3,4-Tetrahydro-1,4-dioxo-phthalazinyl-, Chromanyl-, Cumarinyl-, 2,3-Dihydro-benzo[1,4]dioxinyl- oder 3,4-Dihydro-3-oxo-2*H*-benzo[1,4]oxazinyl-Gruppe zu verstehen ist,

30

und die vorstehend erwähnten Heteroarylgruppen durch R_h mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und R_h wie vorstehend erwähnt definiert ist,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische, deren Prodrugs und deren Salze.

Verbindungen, die eine in-vivo abspaltbare Gruppe enthalten, sind Prodrugs der entsprechenden Verbindungen, bei denen diese in-vivo abspaltbare Gruppe abgespalten ist.

Die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen können durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein,

15

10

desweiteren können die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen durch einen in-vivo abspaltbaren Rest substituiert sein. Derartige Gruppen werden beispielsweise in der WO 98/46576 und von N.M. Nielsen et al. in International Journal of Pharmaceutics 39, 75-85 (1987) beschrieben.

20

25

Unter einer in-vivo in eine Carboxygruppe überführbare Gruppe ist beispielsweise eine Hydroxymethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C₁₋₆-Alkanol, ein Phenyl-C₁₋₃-alkanol, ein C₃₋₉-Cycloalkanol, wobei ein C₅₋₈-Cycloalkanol zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₅₋₈-Cycloalkanol, in dem eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, Phenyl-C₁₋₃-alkyloxycarbonyl- oder C₂₋₆-Alkanoylgruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₄₋₇-Cycloalkenol, ein C₃₋₅-Alkenol, ein Phenyl-C₃₋₅-alkenol, ein C₃₋₅-Alkinol oder Phenyl-C₃₋₅-alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein C₃₋₆-Cycloalkyl-C₁₋₃-alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlen-

stoffatomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

 R_p -CO-O-(R_q CR_r)-OH,

in dem

5

10

15

20

25

30

 R_p eine C_{1-8} -Alkyl-, C_{5-7} -Cycloalkyl-, C_{1-8} -Alkyloxy-, C_{5-7} -Cycloalkyloxy-, Phenyl- oder Phenyl- C_{1-3} -alkylgruppe,

 R_q ein Wasserstoffatom, eine C_{1-3} -Alkyl-, C_{5-7} -Cycloalkyl- oder Phenylgruppe und

R_r ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellen,

unter einer unter physiologischen Bedingungen negativ geladenen Gruppe wie eine Tetrazol-5-yl-, Phenylcarbonylaminocarbonyl-, Trifluormethylcarbonylaminocarbonyl-, C_{1-6} -Alkylsulfonylamino-, Phenylsulfonylamino-, Benzylsulfonylamino-, Trifluormethylsulfonylamino-, C_{1-6} -Alkylsulfonylaminocarbonyl-, Phenylsulfonylaminocarbonyl-, Benzylsulfonylaminocarbonyl- oder Perfluor- C_{1-6} -alkylsulfonylaminocarbonylgruppe

und unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acylgruppe wie eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C₁₋₃-Alkyl- oder C₁₋₃-Alkyloxygruppen mono- oder disubstituierte Phenylcarbonylgruppe, wobei die Substituenten gleich oder verschieden sein können, eine Pyridinoylgruppe oder eine C₁₋₁₆-Alkanoylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine 3,3,3-Trichlorpropionyl- oder Allyloxycarbonylgruppe, eine C₁₋₁₆-Alkyloxy-carbonyl- oder C₁₋₁₆-Alkylcarbonyloxygruppe, in denen Wasserstoffatome ganz oder teilweise durch Fluor- oder Chloratome ersetzt sein können, wie die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert.-Butoxycarbonyl-, Pentoxycarbonyl-, Hexoxycarbonyl-, Octyloxycarbonyl-, Nonyl-

oxycarbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyl-, Hexadecyloxycarbonyl-, Methylcarbonyloxy-, Ethylcarbonyloxy-, 2,2,2-Trichlorethylcarbonyloxy-, Propylcarbonyloxy-, Isopropylcarbonyloxy-, Butylcarbonyloxy-, tert.Butylcarbonyloxy-, Pentylcarbonyloxy-, Hexylcarbonyloxy-, Octylcarbonyloxy-, Nonylcarbonyloxy-, Decylcarbonyloxy-, Undecylcarbonyloxy-, Dodecylcarbonyloxyoder Hexadecylcarbonyloxygruppe, eine Phenyl-C₁₋₆-alkyloxycarbonylgruppe wie die Benzyloxycarbonyl-, Phenylethoxycarbonyl- oder Phenylpropoxycarbonylgruppe, eine 3-Amino-propionylgruppe, in der die Aminogruppe durch C₁₋₆-Alkyl- oder C₃₋₇-Cycloalkylgruppen mono- oder disubstituiert und die Substituenten gleich oder verschieden sein können, eine C₁₋₃-Alkylsulfonyl-C₂₋₄-alkyloxycarbonyl-, 10 C_{1-3} -Alkyloxy- C_{2-4} -alkyloxy- C_{2-4} -alkyloxycarbonyl-, R_p -CO-O-(R_q CR_r)-O-CO-, C₁₋₆-Alkyl-CO-NH-(R_sCR_t)-O-CO- oder C₁₋₆-Alkyl-CO-O-(R_sCR_t)-(R_sCR_t)-O-CO-Gruppe, in denen R_p bis R_r wie vorstehend erwähnt definiert sind,

Rs und Rt, die gleich oder verschieden sein können, Wasserstoffatome oder 15 C₁₋₃-Alkylgruppen darstellen,

zu verstehen.

- 20 Desweiteren schließen die in den vor- und nachstehenden Definitionen erwähnten gesättigten Alkyl- und Alkyloxyteile, die mehr als 2 Kohlenstoffatome enthalten, soweit nichts Anderes erwähnt wurde, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tert.Butyl-, Isobutylgruppe etc. ein.
- 25 Bevorzugt sind diejenigen Verbindungen der allgemeinen Formel I, in denen R¹, R² und R³ wie oben erwähnt definiert sind und
- R⁴ eine Pyrrolidin-1-ylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert .30 ist,
 - eine Piperidin-1-ylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist.

eine Hexahydroazepin-1-yl-gruppe, die in 3-Stellung oder in 4-Stellung durch eine Aminogruppe substituiert ist,

eine (2-Aminocyclohexyl)amino-Gruppe,

eine Cyclohexylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist, oder

eine N-(2-Aminoethyl)-methylamino- oder eine N-(2-Aminoethyl)-ethylamino-Gruppe bedeutet,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische und Salze.

Besonders bevorzugt sind diejenigen Verbindungen der allgemeinen Formel I, in denen

R¹ eine Phenylcarbonylmethylgruppe, in der der Phenylteil durch R¹⁰ substituiert ist, wobei

R¹⁰ eine Formylaminogruppe,

25

20

5

eine C₃₋₇-Cycloalkyl-carbonylamino- oder C₃₋₇-Cycloalkyl-C₁₋₃-alkyl-carbonylamino-Gruppe,

eine C₆₋₉-Bicycloalkyl-carbonylaminogruppe,

30

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der

lθ

15

30

eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom oder durch eine Imino-, Sulfinyl- oder Sulfonylgruppe ersetzt ist,

eine (1,3-Dioxolanyl)-carbonylamino-, (1,4-Dioxanyl)-carbonylamino-, Morpholin-2-yl-carbonylamino-, Morpholin-3-ylcarbonylamino- oder Piperazin-2-yl-carbonylamino-Gruppe,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂- Gruppe durch eine –NH-CO- Gruppe ersetzt ist,

eine C_{5-7} -Cycloalkyl-carbonylaminogruppe, in der eine $-CH_2$ - CH_2 - CH_2 - Gruppe durch eine -NH-CO-O- Gruppe ersetzt ist,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt ist,

eine C_{5-7} -Cycloalkenyl-carbonylamino- oder C_{5-7} -Cycloalkenyl- C_{1-3} -alkyl-carbonylamino-Gruppe,

eine C₃₋₇-Cycloalkyl-sulfonylamino-, Phenylsulfonylamino- oder Phenyl-C₁₋₃-alkyl-sulfonylamino-Gruppe oder

eine Pyridinylcarbonylaminogruppe bedeutet,

25 R² ein Wasserstoffatom,

oder eine C₁₋₃-Alkylgruppe,

R³ eine C₄₋₆-Alkenylgruppe,

eine 2-Butin-1-ylgruppe oder

eine 1-Cyclopenten-1-yl-methyl-Gruppe

und

20

25

R⁴ eine Piperidin-1-ylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist,

eine Hexahydroazepin-1-yl-gruppe, die in 3-Stellung oder in 4-Stellung durch eine Aminogruppe substituiert ist,

10 eine (2-Aminocyclohexyl)amino-Gruppe,

eine Cyclohexylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist, oder

eine N-(2-Aminoethyl)-methylamino- oder eine N-(2-Aminoethyl)-ethylamino-Gruppe bedeuten.

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze.

Ganz besonders bevorzugt sind diejenigen Verbindungen der allgemeinen Formel I, in denen

R¹ eine Phenylcarbonylmethyl-Gruppe, in der der Phenylteil durch eine Formylamino-, Pyridinylcarbonylamino- oder Cyclopropylcarbonylamino-Gruppe substituiert ist,

30 R² eine Methylgruppe,

R³ eine 2-Buten-1-yl- oder 3-Methyl-2-buten-1-yl-Gruppe oder

eine 2-Butin-1-yl-Gruppe

und

- 5 R⁴ eine (3-Amino-piperidin-1-yl)-Gruppe bedeuten,
 - deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze,
- insbesondere jedoch diejenigen Verbindungen der allgemeinen Formel I, in denen R¹ eine [2-(Cyclopropylcarbonylamino)-phenyl]-carbonylmethyl- oder [2-(Pyridyl-carbonylamino)-phenyl]-carbonylmethyl-Gruppe,
- 15 R² eine Methylgruppe,

R³ eine 2-Buten-1-yl- oder 3-Methyl-2-buten-1-yl-Gruppe oder

eine 2-Butin-1-yl-Gruppe

20

und

- R⁴ eine (3-Amino-piperidin-1-yl)-Gruppe bedeuten,
- deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze.

Folgende Verbindungen der allgemeinen Formel I sind besonders bevorzugt:

- (1) 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin,
 - (2) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin,

25

- (3) 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin,
- 5 (4) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-((*R*)-3-amino-piperidin-1-yl)-xanthin,
 - (5) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-((S)-3-amino-piperidin-1-yl)-xanthin,
 - (6) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-((*R*)-3-amino-piperidin-1-yl)-xanthin,
- (7) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-((S)-3-amino-piperidin-1-yl)-xanthin und
 - (8) 1-[2-(2-{[(Pyridin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- sowie deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze.
 - Erfindungsgemäß erhält man die Verbindungen der allgemeinen Formel I nach an sich bekannten Verfahren, beispielsweise nach folgenden Verfahren:
 - a) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R⁴ einer der eingangs erwähnten, über ein Stickstoffatom mit dem Xanthingerüst verknüpften Reste ist:
- 30 Umsetzung einer Verbindung der allgemeinen Formel

WO 2004/018467 PCT/EP2003/009096

$$\begin{array}{c}
 & 19 \\
 & \downarrow \\$$

in der

15

20

25

R1 bis R3 wie eingangs erwähnt definiert sind und

Z¹ eine Austrittsgruppe wie ein Halogenatom, eine substituierte Hydroxy-, Mercapto-, Sulfinyl-, Sulfonyl- oder Sulfonyloxygruppe, wie beispielsweise ein Chlor- oder Bromatom, eine Methansulfonyl- oder Methansulfonyloxygruppe darstellt, mit einem Amin der allgemeinen Formel R⁴′-H, in der R⁴′ einen der für R⁴ eingangs erwähnten Reste darstellt, der über ein Stickstoffatom mit dem Xanthingerüst verknüpft ist.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Isopropanol, Butanol, Tetrahydrofuran, Dioxan, Dimethylformamid, Dimethylsulfoxid, Ethylenglycolmonomethylether, Ethylenglycoldiethylether oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder tertiären organischen Base, z.B. Natriumcarbonat, Kaliumcarbonat oder Kaliumhydroxid, einer tertiären organischen Base, z.B. Triethylamin, oder in Gegenwart von N-Ethyl-diisopropylamin (Hünig-Base), wobei diese organischen Basen gleichzeitig auch als Lösungsmittel dienen können, und gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie einem Alkalihalogenid oder einem Katalysator auf Palladiumbasis bei Temperaturen zwischen -20 und 180°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 120°C, durchgeführt. Die Umsetzung kann jedoch auch ohne Lösungsmittel oder in einem Überschuß des Amins der allgemeinen Formel R⁴'-H durchgeführt werden.

b) Entschützung einer Verbindung der allgemeinen Formel

WO 2004/018467 PCT/EP2003/009096

in der R¹, R² und R³ wie eingangs erwähnt definiert sind und R⁴' eine der eingangs für R⁴ erwähnten Gruppen bedeutet, die eine Imino-, Amino- oder Alkylaminogruppe enthalten, wobei die Imino-, Amino- bzw. Alkylaminogruppe durch eine Schutzgruppe substituiert ist, gegebenenfalls gefolgt von einer nachträglichen Alkylierung der Imino-, Amino- bzw. C₁₋₃-Alkylaminogruppe.

Die Freisetzung einer Aminogruppe aus einer geschützten Vorstufe ist eine Standardreaktion in der synthetischen organischen Chemie. Als Schutzgruppen kommen eine Vielzahl von Gruppen in Frage. Eine Übersicht über die Chemie der Schutzgruppen findet sich in Theodora W.Greene und Peter G.M.Wuts, Protective Groups in Organic Synthesis, Second Edition, 1991, Verlag John Wiley and Sons sowie in Philip J. Kocienski, Protecting Groups, Georg Thieme Verlag, 1994.

Als Beispiele für Schutzgruppen seien genannt:

5

10

15

20

die tert.-Butyloxycarbonylgruppe, die sich durch Behandeln mit einer Säure wie beispielsweise Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Bromtrimethylsilan oder lodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Essigester, Dioxan, Methanol, Isopropanol oder Diethylether bei Temperaturen zwischen 0 und 80°C abspalten lässt,

die 2.2.2-Trichlorethoxycarbonylgruppe, die sich abspalten lässt durch Behandeln mit
Metallen wie beispielsweise Zink oder Cadmium in einem Lösungsmittel wie Essigsäure oder einem Gemisch aus Tetrahydrofuran und einer schwachen wässrigen
Säure bei Temperaturen zwischen 0°C und der Siedetemperatur des verwendeten
Lösungsmittels und

20

30

die Carbobenzyloxycarbonylgruppe, die sich beispielsweise abspalten lässt durch Hydrogenolyse in Gegenwart eines Edelmetallkatalysators wie beispielsweise Palladium-Kohle und einem Lösungsmittel wie beispielsweise Alkohole, Essigester, Dioxan, Tetrahydrofuran oder Gemische dieser Lösungsmittel bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösungsmittels, durch Behandeln mit Bortribromid in Methylenchlorid bei Temperaturen zwischen –20°C und Raumtemperatur, oder durch Behandeln mit Aluminiumchlorid/Anisol bei Temperaturen zwischen 0°C und Raumtemperatur.

Die gegebenenfalls nachträgliche Einführung eines C₁₋₃-Alkylrests kann mittels Alkylierung oder reduktiver Alkylierung erfolgen.

Die nachträgliche Alkylierung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan mit einem Alkylierungsmittel wie einem entsprechenden Halogenid oder Sulfonsäureester, z.B. mit Methyliodid, Ethylbromid, Dimethylsulfat, gegebenenfalls in Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Die nachträgliche reduktive Alkylierung wird mit einer entsprechenden Carbonylverbindung wie Formaldehyd, Acetaldehyd, Propionaldehyd, Aceton in Gegenwart eines komplexen Metallhydrids wie Natriumborhydrid, Lithiumborhydrid, Natriumtriacetoxyborhydrid oder Natriumcyanoborhydrid zweckmäßigerweise bei einem pH-Wert von 6-7 und bei Raumtemperatur oder in Gegenwart eines Hydrierungskatalysators, z.B. mit Wasserstoff in Gegenwart von Palladium/Kohle, bei einem Wasserstoffdruck von 1 bis 5 bar durchgeführt. Die Methylierung kann auch in Gegenwart von Ameisensäure als Reduktionsmittel bei erhöhten Temperaturen, z.B. bei Temperaturen zwischen 60 und 120°C, durchgeführt werden.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Carboxy-, Amino-, Alkylamino- oder Iminogruppen

während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommen als Schutzreste für eine Carboxygruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.-Butyl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.-Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

- Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.
- Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran bei Temperaturen zwischen 0 und 50°C.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei 10 Temperaturen zwischen 20 und 50°C.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-lsomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allge-20 meinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen 30 Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-O-p-toluoyl-weinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Menthyloxycarbonyl in Betracht.

10

15

20

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Arginin, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II und III sind entweder literaturbekannt oder man erhält diese nach an sich literaturbekannten Verfahren (siehe Beispiele I bis VII).

Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf das Enzym DPP-IV.

Die biologischen Eigenschaften der neuen Verbindungen wurden wie folgt geprüft:

Die Fähigkeit der Substanzen und ihrer entsprechenden Salze, die DPP-IV Aktivität zu hemmen, kann in einem Versuchsaufbau gezeigt werden, in dem ein Extrakt der humanen Koloncarcinomzelllinie Caco-2 als DPP IV Quelle benutzt wird. Die Differenzierung der Zellen, um die DPP-IV Expression zu induzieren, wurde nach der Beschreibung von Reiher et al. in einem Artikel mit dem Titel "Increased expression of intestinal cell line Caco-2", erschienen in Proc. Natl. Acad. Sci. Vol. 90, Seiten 5757-5761 (1993), durchgeführt. Der Zellextrakt wurde von in einem Puffer (10mM Tris HCl, 0.15 M NaCl, 0.04 t.i.u. Aprotinin, 0.5% Nonidet-P40, pH 8.0) solubilisierten Zellen durch Zentrifugation bei 35,000 g für 30 Minuten bei 4°C (zur Entfernung von Zelltrümmern) gewonnen.

Der DPP-IV Assay wurde wie folgt durchgeführt:

15

20

25

30

10

50 µl Substratlösung (AFC; AFC ist Amido-4-trifluormethylcoumarin), Endkonzentration 100 µM, wurden in schwarze Mikrotiterplatten vorgelegt. 20 µl Assay Puffer (Endkonzentrationen 50 mM Tris HCl pH 7.8, 50 mM NaCl, 1 % DMSO) wurde zupipettiert. Die Reaktion wurde durch Zugabe von 30 µl solubilisiertem Caco-2 Protein (Endkonzentration 0.14 µg Protein pro Well) gestartet. Die zu überprüfenden Testsubstanzen wurden typischerweise in 20 µl vorverdünnt zugefügt, wobei das Assaypuffervolumen dann entsprechend reduziert wurde. Die Reaktion wurde bei Raumtemperatur durchgeführt, die Inkubationsdauer betrug 60 Minuten. Danach wurde die Fluoreszenz in einem Victor 1420 Multilabel Counter gemessen, wobei die Anregungswellenlänge bei 405 nm und die Emissionswellenlänge bei 535 nm lag. Leerwerte (entsprechend 0 % Aktivität) wurden in Ansätzen ohne Caco-2 Protein (Volumen ersetzt durch Assay Puffer), Kontrollwerte (entsprechend 100 % Aktivität) wurden in Ansätzen ohne Substanzzusatz erhalten. Die Wirkstärke der jeweiligen Testsubstanzen, ausgedrückt als IC50 Werte, wurden aus Dosis-Wirkungs Kurven berechnet, die aus jeweils 11 Meßpunkten bestanden. Hierbei wurden folgende Ergebnisse erhalten:

Verbindung	DPP IV-Hemmung
(Beispiel Nr.)	IC ₅₀ [nM]
1	5
1(1)	11 .
1(2)	3
1(3)	4
1(4)	3
1(5)	3
1(6)	5
1(7)	8

Die erfindungsgemäß hergestellten Verbindungen sind gut verträglich, da beispielsweise nach oraler Gabe von 10 mg/kg der Verbindung des Beispiels 1(5) an Ratten keine Änderungen im Verhalten der Tiere beobachtet werden konnten.

5

10

15

20

Im Hinblick auf die Fähigkeit, die DPP-IV Aktivität zu hemmen, sind die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre entsprechenden pharmazeutisch akzeptablen Salze geeignet, alle diejenigen Zustände oder Krankheiten zu beeinflussen, die durch eine Hemmung der DPP-IV Aktivität beeinflusst werden können. Es ist daher zu erwarten, daß die erfindungsgemäßen Verbindungen zur Prävention oder Behandlung von Krankheiten oder Zuständen wie Diabetes mellitus Typ 1 und Typ 2, diabetische Komplikationen (wie z.B. Retinopathie, Nephropathie oder Neuropathien), metabolische Azidose oder Ketose, reaktiver Hypoglykämie, Insulinresistenz, Metabolischem Syndrom, Dyslipidämien unterschiedlichster Genese, Arthritis, Atherosklerose und verwandte Erkrankungen, Adipositas, Allograft Transplantation und durch Calcitonin verursachte Osteoporose geeignet sind. Darüberhinaus sind diese Substanzen geeignet, die B-Zelldegeneration wie z.B. Apoptose oder Nekrose von pankreatischen B-Zellen zu verhindern. Die Substanzen sind weiter geeignet, die Funktionalität von pankreatischen Zellen zu verbessern oder wiederherzustellen, daneben die Anzahl und Größe von pankreatischen B-Zellen zu erhöhen. Zusätzlich und begründet durch die Rolle der Glucagon-Like Peptide, wie z.B. GLP-1 und GLP-2 und deren Verknüpfung mit DPP-IV Inhibition, wird erwartet, daß die erfindungsgemäßen Verbindungen geeignet sind, um unter anderem einen

sedierenden oder angstlösenden Effekt zu erzielen, darüberhinaus katabole Zustände nach Operationen oder hormonelle Stressantworten günstig zu beeinflussen oder die Mortalität und Morbidität nach Myokardinfarkt reduzieren zu können. Darüberhinaus sind sie geeignet zur Behandlung von allen Zuständen, die im Zusammenhang mit oben genannten Effekten stehen und durch GLP-1 oder GLP-2 vermittelt sind. Die erfindungsgemäßen Verbindungen sind ebenfalls als Diuretika oder Antihypertensiva einsetzbar und zur Prävention und Behandlung des akuten Nierenversagens geeignet. Weiterhin sind die erfindungsgemäßen Verbindungen zur Behandlung entzündlicher Erkrankungen der Atemwege einsetzbar. Ebenso sind sie zur Prävention und Therapie von chronischen entzündlichen Darmerkrankungen wie 10 z.B. Reizdarmsyndrom (IBS), Morbus Crohn oder Colitis ulcerosa ebenso wie bei Pankreatitis geeignet. Des weiteren wird erwartet, daß sie bei jeglicher Art von Verletzung oder Beeinträchtigung im Gastrointestinaltrakt eingesetzt werden können wie auch z.B. bei Kolitiden und Enteriden. Darüberhinaus wird erwartet, daß DPP-IV Inhibitoren und somit auch die erfindungsgemäßen Verbindungen zur Behandlung 15 der Unfruchtbarkeit oder zur Verbesserung der Fruchtbarkeit beim Menschen oder im Säugetierorganismus verwendet werden können, insbesondere dann, wenn die Unfruchtbarkeit im Zusammenhang mit einer Insulinresistenz oder mit dem polyzystischen Ovarialsyndrom steht. Auf der anderen Seite sind diese Substanzen geeignet, die Motilität der Spermien zu beeinflussen und sind damit als Kontrazeptiva 20 zur Verwendung beim Mann einsetzbar. Des weiteren sind die Substanzen geeignet, Mangelzustände von Wachstumshormon, die mit Minderwuchs einhergehen, zu beeinflussen, sowie bei allen Indikationen sinnvoll eingesetzt werden können, bei denen Wachstumshormon verwendet werden kann. Die erfindungsgemäßen Verbindungen sind auf Grund ihrer Hemmwirkung gegen DPP IV auch geeignet zur Be-25 handlung von verschiedenen Autoimmunerkrankungen wie z.B. rheumatoide Arthritis, Multiple Sklerose, Thyreoditiden und Basedow'scher Krankheit etc.. Darüberhinaus können sie eingesetzt werden bei viralen Erkrankungen wie auch z.B. bei HIV Infektionen, zur Stimulation der Blutbildung, bei benigner Prostatahyperplasie, bei Gingivitiden, sowie zur Behandlung von neuronalen Defekten und neur-30 degenerativen Erkrankungen wie z.B. Morbus Alzheimer. Beschriebene Verbindungen sind ebenso zu verwenden zur Therapie von Tumoren, insbesondere zur Veränderung der Tumorinvasion wie auch Metastatisierung, Beispiele hier sind die An-

15

20

25

30

wendung bei T-Zell Lymphomen, akuter lymphoblastischer Leukämie, zellbasierende Schilddrüsenkarzinome, Basalzellkarzinome oder Brustkarzinome. Weitere Indikationen sind Schlaganfall, Ischämien verschiedenster Genese, Morbus Parkinson und Migräne. Darüberhinaus sind weitere Indikationsgebiete follikuläre und epidermale Hyperkeratosen, erhöhte Keratinozytenproliferation, Psoriasis, Enzephalomyelitiden, Glomerulonephritiden, Lipodystrophien, sowie psychosomatische, depressive und neuropsychiatrische Erkrankungen verschiedenster Genese.

Die erfindungsgemäßen Verbindungen können auch in Kombination mit anderen Wirkstoffen verwendet werden. Zu den zu einer solchen Kombination geeigneten Therapeutika gehören z.B. Antidiabetika, wie etwa Metformin, Sulfonylharnstoffe (z.B. Glibenclamid, Tolbutamid, Glimepiride), Nateglinide, Repaglinide, Thiazolidindione (z.B. Rosiglitazone, Pioglitazone), PPAR-gamma-Agonisten (z.B. GI 262570) und -Antagonisten, PPAR-gamma/alpha Modulatoren (z.B. KRP 297), alpha-Glucosidasehemmer (z.B. Acarbose, Voglibose), andere DPPIV Inhibitoren, alpha2-Antagonisten, Insulin und Insulinanaloga, GLP-1 und GLP-1 Analoga (z.B. Exendin-4) oder Amylin. Daneben SGLT2-Inhibitoren wie T-1095, Inhibitoren der Proteintyrosinphosphatase 1, Substanzen, die eine deregulierte Glucoseproduktion in der Leber beeinflussen, wie z.B. Inhibitoren der Glucose-6-phosphatase, oder der Fructose-1,6bisphosphatase, der Glycogenphosphorylase, Glucagonrezeptor Antagonisten und Inhibitoren der Phosphoenolpyruvatcarboxykinase, der Glykogensynthasekinase oder der Pyruvatdehydrokinase, Lipidsenker, wie etwa HMG-CoA-Reduktasehemmer (z.B. Simvastatin, Atorvastatin), Fibrate (z.B. Bezafibrat, Fenofibrat), Nikotinsäure und deren Derivate, PPAR-alpha agonisten, PPAR-delta agonisten, ACAT Inhibitoren (z.B. Avasimibe) oder Cholesterolresorptionsinhibitoren wie zum Beispiel Ezetimibe, gallensäurebindende Substanzen wie zum Beispiel Colestyramin, Hemmstoffe des ilealen Gallensäuretransportes, HDL-erhöhende Verbindungen wie zum Beispiel Inhibitoren von CETP oder Regulatoren von ABC1 oder Wirkstoffe zur Behandlung von Obesitas, wie etwa Sibutramin oder Tetrahydrolipstatin, Dexfenfluramin, Axokine, Antagonisten des Cannbinoid1 Rezeptors, MCH-1 Rezeptorantagonisten, MC4 Rezeptor Agonisten, NPY5 oder NPY2 Antagonisten oder β₃-Agonisten wie SB-418790 oder AD-9677 ebenso wie Agonisten des 5HT2c Rezeptors.

Daneben ist eine Kombination mit Medikamenten zur Beeinflussung des Bluthochdrucks wie z.B. All Antagonisten oder ACE Inhibitoren, Diuretika, ß-Blocker, Ca-Antagonisten und anderen oder Kombinationen daraus geeignet.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser Gabe 1 bis 100 mg, vorzugsweise 1 bis 30 mg, und bei oraler Gabe 1 bis 1000 mg, vorzugsweise 1 bis 100 mg, jeweils 1 bis 4 x täglich. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

Herstellung der Ausgangsverbindungen:

Beispiel I

1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]- 3-methyl-7-(3-methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
 Ein Gemisch aus 1.2 ml Ameisensäure und 2 ml Essigsäureanhydrid wird für 10 Minuten auf 60°C erhitzt. Dann wird 1 ml dieser Mischung zu 226 mg 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonyl-amino)-piperidin-1-yl]-xanthin gegeben und das Reaktionsgemisch wird 15 Minuten bei 80°C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit Methylenchlorid versetzt und langsam mit gesättigter Kaliumcarbonat-Lösung alkalisch gestellt. Die

wässrige Phase wird mit Methylenchlorid extrahiert und die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird

ohne weitere Reinigung weiter umgesetzt.

Ausbeute: 186 mg (78 % der Theorie)

R_FWert: 0.40 (Kieselgel, Cyclohexan/Essigester = 3:7)

Massenspektrum (ESI⁺): m/z = 594 [M+H]⁺

- 20 Analog Beispiel I werden folgende Verbindungen erhalten:
 - (1) 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin

R_FWert: 0.23 (Kieselgel, Cyclohexan/Essigester = 3:7)

25 Massenspektrum (ESI⁺): m/z = 578 [M+H]⁺

Beispiel II

1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
hergestellt durch Behandeln von 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin mit

Eisenpulver in einem Gemisch aus Ethanol, Wasser und Eisessig (150:50:14) bei 90°C.

Massenspektrum (ESI $^+$): m/z = 566 [M+H] $^+$

- 5 Analog Beispiel II werden folgende Verbindungen erhalten:
 - (1) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-brom-xanthin Massenspektrum (ESI $^+$): m/z = 430, 432 [M+H] $^+$
- 10 (2) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin Massenspektrum (ESI $^+$): m/z = 552 [M+H] $^+$
- (3) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-brom-xanthin

 R_F-Wert: 0.62 (Kieselgel, Cyclohexan/Essigester = 4:6)

 Massenspektrum (ESI⁺): m/z = 432, 434 [M+H]⁺

Beispiel III

20

25

30

1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin

Zu 4.40 g 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-chlor-xanthin und 1.30 g Natriumcarbonat in 50 ml Dimethylsulfoxid werden bei 65°C 2.20 g 3-tert.-Butyloxycarbonylamino-piperidin gegeben. Das Reaktionsgemisch wird ca. 16 h bei 65°C gerührt. Nach Abkühlung auf Raumtemperatur wird es auf ein Gemisch aus 600 ml Wasser und 100 g Eis gegossen. Der entstandene Niederschlag wird abgesaugt und mit Wasser nachgewaschen. Der Filterkuchen wird in Diethylether gelöst, die Lösung getrocknet und eingeengt. Der braune, harzige Kolbenrückstand wird mit Diisopropylether zur Kristallisation gebracht.

Ausbeute: 3.30 g (54 % der Theorie)

R-Wert: 0.52 (Kieselgel, Cyclohexan/Essigester = 3:7)

Massenspektrum (ESI⁺): m/z = 596 [M+H]⁺

Analog Beispiel III werden folgende Verbindungen erhalten:

- (1) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[3-(tert.-butyloxy-
- carbonylamino)-piperidin-1-yl]-xanthin

R-Wert: 0.50 (Kieselgel, Methylenchlorid/Methanol = 95:5)

Massenspektrum (ESI $^{+}$): m/z = 550 [M+H] $^{+}$

- (2) 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-[(R)-3-(tert.-
- 10 butyloxycarbonylamino)-piperidin-1-yl]-xanthin

RrWert: 0.50 (Kieselgel, Cyclohexan/Essigester = 1:2)

- (3) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- 15 R_f-Wert: 0.40 (Kieselgel, Cyclohexan/Essigester = 4:6)
 Massenspektrum (ESI⁺): m/z = 552 [M+H]⁺
 - (4) 3-Methyl-7-(2-butin-1-yl)-8-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- 20 Schmelzpunkt: 197-200°C

 Massenspektrum (ESI⁺): m/z = 417 [M+H]⁺
 - (5) 3-Methyl-7-(2-butin-1-yl)-8-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- 25 R_F-Wert: 0.52 (Kieselgel, Essigester)
 Massenspektrum (ESI⁺): m/z = 417 [M+H]⁺
 - (6) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- R_FWert: 0.20 (Kieselgel, Cyclohexan/Essigester = 1:1)

 Massenspektrum (ESI⁺): m/z = 552 [M+H]⁺

Beispiel IV

- 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-chlor-xanthin Ein Gemisch aus 6.02 g 3-Methyl-7-(3-methyl-2-buten-1-yl)-8-chlor-xanthin, 5.86 g 2-
- Brom-1-(2-nitro-phenyl)-ethanon und 5.00 g Kaliumcarbonat in 150 ml N,N-Dimethylformamid wird ca. 26 h bei 60°C gerührt. Zur Aufarbeitung wird das abgekühlte
 Reaktionsgemisch auf ein Gemisch aus 500 ml 1 N Natronlauge und 200 g Eis
 gegossen. Der entstandene Niederschlag wird abgesaugt und getrocknet.

Ausbeute: 6.32 g (65 % der Theorie)

R_f-Wert: 0.50 (Kieselgel, Cyclohexan/Essigester = 4:6)
Massenspektrum (ESI⁺): m/z = 432, 434 [M+H]⁺

Analog Beispiel IV werden folgende Verbindungen erhalten:

- (1) 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-brom-xanthin R_f-Wert: 0.77 (Kieselgel, Methylenchlorid/Methanol = 95:5)
 Massenspektrum (ESI⁺): m/z = 460, 462 [M+H]⁺
- (2) 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-brom-xanthin

 R_FWert: 0.50 (Kieselgel, Cyclohexan/Essigester = 1:1)

 Massenspektrum (ESI⁺): m/z = 462, 464 [M+H]⁺
 - (3) 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- 25 RrWert: 0.60 (Kieselgel, Methylenchlorid/Methanol = 95:5)
 - (4) 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin

 R-Wert: 0.60 (Kieselgel, Methylenchlorid/Methanol = 95:5)
- Massenspektrum (ESI⁺): $m/z = 580 [M+H]^+$

Beispiel V

3-Methyl-7-(3-methyl-2-buten-1-yl)-8-chlor-xanthin

Zu 10.56 g 3-Methyl-8-chlor-xanthin und 17 ml Hünigbase in 100 ml N,N-Dimethylformamid werden 5.87 ml 1-Brom-3-methyl-2-buten gegeben. Das Reaktionsgemisch wird ca. 10 Minuten bei Raumtemperatur nachgerührt und anschließend mit
800 ml Wasser versetzt. Der entstandene helle Niederschlag wird abgesaugt, mit
Ethanol und Diethylether nachgewaschen und getrocknet.

Ausbeute: 10.56 g (81 % der Theorie)

10 Massenspektrum (ESI $^+$): m/z = 269, 271 [M+H] $^+$

Analog Beispiel V werden folgende Verbindungen erhalten:

- (1) 3-Methyl-7-(2-butin-1-yl)-8-brom-xanthin
- 15 R_FWert: 0.72 (Kieselgel, Essigester)

 Massenspektrum (ESI⁺): m/z = 297, 299 [M+H]⁺
 - (2) 3-Methyl-7-((E)-2-buten-1-yl)-8-brom-xanthin Massenspektrum (ESI $^+$): m/z = 299, 301 [M+H] $^+$

Beispiel VI

20

1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(3-methyl-2-buten-1-yl)-8-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
 Ein Gemisch aus 242 mg 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin und 44 μl Pyridin in N,N-Dimethylformamid wird mit 39 μl Cyclopropancarbonsäurechlorid versetzt und 2 h bei 80°C gerührt. Dann werden nochmals 20 μl Pyridin und 30 μl Cyclopropancarbonsäurechlorid zugegeben. Nach weiteren 10 h bei 80°C wird das abgekühlte Reaktionsgemisch mit Methylenchlorid verdünnt und mit Wasser versetzt. Die wässrige Phase wird mit Methylenchlorid extrahiert und die vereinigten organischen

Phasen werden eingeengt. Das Rohprodukt wir über eine Kieselgel-Säule mit Cyclohexan/Essigester (7:3 auf 4:6) als Laufmittel gereinigt.

Ausbeute: 90 mg (33 % der Theorie)

5

RrWert: 0.60 (Kieselgel, Cyclohexan/Essigester = 3:7)

Analog Beispiel VI werden folgende Verbindungen erhalten:

- (1) 1-(2- $\{2-[(Cyclopropylcarbonyl)amino]-phenyl\}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin$
- RrWert: 0.30 (Kieselgel, Cyclohexan/Essigester/Isopropanol = 8:1:1)

 Massenspektrum (ESI⁺): m/z = 620 [M+H]⁺
 - (2) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin

 ReWert: 0.53 (Kieselgel, Cyclobexan/Essignster/Isopropagal = 14:3:3)
- R_f-Wert: 0.53 (Kieselgel, Cyclohexan/Essigester/Isopropanol = 14:3:3)

 Massenspektrum (ESI⁺): m/z = 620 [M+H]⁺
 - (3) $1-(2-\{2-[(Cyclopropylcarbonyl)amino]-phenyl\}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin$
- 20 R_f-Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol = 95:5)
 Massenspektrum (ESI⁺): m/z = 618 [M+H]⁺
 - (4) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- R_f-Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol = 95:5)

 Massenspektrum (ESI⁺): m/z = 618 [M+H]⁺
 - (5) 1-[2-(2-{[(Pyridin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin
- R<sub>r-Wert: 0.55 (Kieselgel, Cyclohexan/Essigester/Isopropanol = 14:3:3)

 Massenspektrum (ESI⁺): m/z = 657 [M+H]⁺</sub>

Beispiel VII

- 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[(R)-3-(tert.-butyloxy-carbonylamino)-piperidin-1-yl]-xanthin
- hergestellt durch Reduktion von 1-[2-(2-Nitro-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin mit Natrium-dithionit in einem Gemisch aus Methylglykol und Wasser (3:2) bei 100°C.

 R-Wert: 0.50 (Kieselgel, Cyclohexan/Essigester = 4:6)
- 10 Analog Beispiel VII werden folgende Verbindungen erhalten:
 - (1) 1-[2-(2-Amino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin

 R-Wert: 0.34 (Kieselgel, Methylenchlorid/Methanol = 95:5)

15

Herstellung der Endverbindungen:

Beispiel 1

20

25

1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin

Eine Lösung aus 180 mg 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]- 3-methyl-7-(3-

methyl-2-buten-1-yl)-8-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-xanthin in 4 ml Methylenchlorid wird mit 1 ml Trifluoressigsäure versetzt und eine halbe Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 1 N Natronlauge leicht alkalisch gestellt und die wässrige Phase wird mit Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden eingeengt und über eine Kieselgel-Säule gereinigt.

Ausbeute: 130 mg (87 % der Theorie)

Rr-Wert: 0.38 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

Trifluoressigsäure = 100:100:0.1)

Massenspektrum (ESI⁺): m/z = 494 [M+H]⁺

20

Analog Beispiel 1 werden folgende Verbindungen erhalten:

- (1) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin

 R_f-Wert: 0.35 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

 Trifluoressigsäure = 100:100:0.1)

 Massenspektrum (ESI⁺): m/z = 534 [M+H]⁺
- (2) 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 R_f-Wert: 0.20 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)
 Massenspektrum (ESI*): m/z = 478 [M+H]*

(3) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthin
R_rWert: 0.50 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/
Trifluoressigsäure = 50:50:0.1)

- (4) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-((S)-3-amino-piperidin-1-yl)-xanthin

 R_rWert: 0.50 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

 Trifluoressigsäure = 50:50:0.1)

 Massenspektrum (ESI⁺): m/z = 520 [M+H]⁺
- (5) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-((*R*)-3-amino-piperidin-1-yl)-xanthin
- 30 Massenspektrum (ESI †): m/z = 518 [M+H] †

Massenspektrum (ESI $^{+}$): m/z = 520 [M+H] $^{+}$

(6) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-((S)-3-amino-piperidin-1-yl)-xanthin

30

R-Wert: 0.14 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 518 [M+H] $^+$

- (7) 1-[2-(2-{[(Pyridin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 Massenspektrum (ESI⁺): m/z = 557 [M+H]⁺
- Analog den vorstehenden Beispielen und anderen literaturbekannten Verfahren können auch die folgenden Verbindungen erhalten werden:
 - (1) 1-(2-{2-[(Cyclobutylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (2) 1-(2-{2-[(Cyclopentylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- (3) 1-(2-{2-[(Cyclohexylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-20 1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (4) 1-(2-{2-[(Cycloheptylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- 25 (5) 1-[2-(2-{[(Bicyclo[2.2.1]heptan-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (6) 1-[2-(2-{[(Bicyclo[2.2.2]octan-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (7) 1-[2-(2-{[(1-Cyclobuten-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin

30

- (8) 1-[2-(2-{[(1-Cyclopenten-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-[(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
- (9) 1-[2-(2-{[(1-Cyclohexen-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-5 2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (10) 1-[2-(2-{[(2-Oxo-cyclohexan-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-[(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
- 10 (11) 1-[2-(2-{[(2,6-Dioxo-cyclohexan-1-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-[(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
 - (12) 1-[2-(2-{[(Tetrahydro-furan-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (13) 1-[2-(2-{[(Tetrahydro-furan-3-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- (14) 1-[2-(2-{[(Tetrahydro-thiophen-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-[(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
 - (15) 1-[2-(2-{[(Tetrahydro-thiophen-3-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- 25 (16) 1-[2-(2-{[(1-Oxo-tetrahydro-thiophen-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-[(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
 - (17) 1-[2-(2-{[(1,1-Dioxo-tetrahydro-thiophen-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-[(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
 - (18) 1-[2-(2-{[(Pyrrolidin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin

30

- (19) 1-[2-(2-{[(Pyrrolidin-3-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- (20) 1-[2-(2-{[(Tetrahydro-pyran-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (21) 1-[2-(2-{[([1,3]Dioxolan-4-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-1-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- 10 (22) 1-[2-(2-{[([1,4]Dioxan-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (23) 1-[2-(2-{[(Morpholin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (24) 1-[2-(2-{[(Piperazin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- (25) 1-[2-(2-{[(5-Oxo-pyrrolidin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-20 [(1-cyclopenten-1-yl)methyl]-8-(3-amino-piperidin-1-yl)-xanthin
 - (26) 1-[2-(2-{[(6-Oxo-piperidin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- (27) 1-[2-(2-{[(2-Oxo-oxazolidin-4-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-1-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (28) 1-[2-(2-{[(Cyclopropylmethyl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
 - (29) 1-[2-(2-{[(Pyridin-3-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin

- (30) 1-(2-{2-[(Cyclopropylsulfonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- (31) 1-(2-{2-[(Phenylsulfonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8- (3-amino-piperidin-1-yl)-xanthin
 - (32) 1-(2-{2-[(Benzylsulfonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin

10

Beispiel 2

Dragées mit 75 mg Wirksubstanz

15 1 Dragéekern enthält:

	Wirksubstanz	75,0 mg
	Calciumphosphat	93,0 mg
	Maisstärke	35,5 mg
	Polyvinylpyrrolidon	10,0 mg
20	Hydroxypropylmethylcellulose	15,0 mg
	Magnesiumstearat	<u>1,5 mg</u>
		230,0 mg

Herstellung:

Die Wirksubstanz wird mit Calciumphosphat, Maisstärke, Polyvinylpyrrolidon,
 Hydroxypropylmethylcellulose und der Hälfte der angegebenen Menge Magnesiumstearat gemischt. Auf einer Tablettiermaschine werden Preßlinge mit einem Durchmesser von ca. 13 mm hergestellt, diese werden auf einer geeigneten Maschine durch ein Sieb mit 1,5 mm-Maschenweite gerieben und mit der restlichen Menge
 Magnesiumstearat vermischt. Dieses Granulat wird auf einer Tablettiermaschine zu

Magnesiumstearat vermischt. Dieses Granulat wird auf einer Tablettiermaschine zu Tabletten mit der gewünschten Form gepreßt.

Kerngewicht:

230 mg

Stempel:

9 mm, gewölbt

Die so hergestellten Dragéekerne werden mit einem Film überzogen, der im wesentlichen aus Hydroxypropylmethylcellulose besteht. Die fertigen Filmdragées werden mit Bienenwachs geglänzt.

Dragéegewicht: 245 mg.

5

Beispiel 3

Tabletten mit 100 mg Wirksubstanz

lΟ

Zusammensetzung:

1 Tablette enthält:

Wirksubstanz 100,0 mg
Milchzucker 80,0 mg

Maisstärke 34,0 mg
Polyvinylpyrrolidon 4,0 mg
Magnesiumstearat 2,0 mg
220,0 mg

20 Herstellungverfahren:

Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wäßrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2,0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird erneut gesiebt (1,5 mm-Maschenweite) und das Schmiermittel zugemischt. Die preßfertige Mischung wird zu Tabletten verarbeitet.

Tablettengewicht: 220 mg

Durchmesser: 10 mm, biplan mit beidseitiger Facette

und einseitiger Teilkerbe.

25

Tabletten mit 150 mg Wirksubstanz

5 Zusammensetzung:

1 Tablette enthält:

	Wirksubstanz	150,0 mg
•	Milchzucker pulv.	89,0 mg
	Maisstärke	40,0 mg
10	Kolloide Kieselgelsäure	10,0 mg
	Polyvinylpyrrolidon	10,0 mg
	Magnesiumstearat	<u>1,0 mg</u>
		300,0 mg

15 <u>Herstellung:</u>

Die mit Milchzucker, Maisstärke und Kieselsäure gemischte Wirksubstanz wird mit einer 20%igen wäßrigen Polyvinylpyrrolidonlösung befeuchtet und durch ein Sieb mit 1,5 mm-Maschenweite geschlagen.

Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden Tabletten gepreßt.

Tablettengewicht:

300 mg

Stempel:

10 mm, flach

WO 2004/018467

Hartgelatine-Kapseln mit 150 mg Wirksubstanz

5 1 Kapsel enthält:

Wirkstoff

150,0 mg

Maisstärke getr.

ca. 180,0 mg

Milchzucker pulv.

ca. 87,0 mg

Magnesiumstearat

3,0 mg

10

ca. 420,0 mg

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein Sieb von

0,75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.

15 Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.

Kapselfüllung: ca. 320 mg

Kapselhülle: Hartgelatine-Kapsel Größe 1.

20 Beispiel 6

Suppositorien mit 150 mg Wirksubstanz

1 Zäpfchen enthält:

25 Wirkstoff

150,0 mg

Polyethylenglykol 1500

550,0 mg

Polyethylenglykol 6000

460,0 mg

Polyoxyethylensorbitanmonostearat

840,0 mg

2000,0 mg

30

Herstellung:

Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.

Suspension mit 50 mg Wirksubstanz

5

100 ml Suspension enthalten:

•	Wirkstoff	1,00 g
	Carboxymethylcellulose-Na-Salz	0,10 g
	p-Hydroxybenzoesäuremethylester	0,05 g
10	p-Hydroxybenzoesäurepropylester	0,01 g
	Rohrzucker	10,00 g
	Glycerin	5,00 g
	Sorbitlösung 70%ig	20,00 g
	Aroma	0,30 g
15	Wasser dest.	ad 100 ml

Herstellung:

Dest. Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren p-Hydroxybenzoesäuremethylester und -propylester sowie Glycerin und CarboxymethylcelluloseNatriumsalz gelöst. Es wird auf Raumtemperatur abgekühlt und unter Rühren der
Wirkstoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des Zuckers,
der Sorbitlösung und des Aromas wird die Suspension zur Entlüftung unter Rühren
evakuiert.

5 ml Suspension enthalten 50 mg Wirkstoff.

Ampullen mit 10 mg Wirksubstanz

5 Zusammensetzung:

Wirkstoff

10,0 mg

0,01 n Salzsäure s.q.

Aqua bidest

ad 2,0 ml

10 Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0,01 n HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt.

15 Beispiel 9

Ampullen mit 50 mg Wirksubstanz

Zusammensetzung:

20 Wirkstoff

50,0 mg

0,01 n Salzsäure s.q.

Aqua bidest

ad 10,0 ml

Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0,01 n HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

Patentansprüche.

1. Verbindungen der allgemeinen Formel

in der

5

20

25

10 R¹ eine Phenylcarbonylmethylgruppe, in der der Phenylteil durch R¹⁰ und R¹¹ substituiert ist, wobei

R¹⁰ eine Formylaminogruppe,

- eine C₃₋₇-Cycloalkyl-carbonylamino- oder C₃₋₇-Cycloalkyl-C₁₋₃-alkyl-carbonylamino-Gruppe,
 - eine C_{6-9} -Bicycloalkyl-carbonylamino- oder C_{6-9} -Bicycloalkyl- C_{1-3} -alkyl-carbonylaminogruppe,

eine C_{5-7} -Cycloalkyl-carbonylaminogruppe, in der

eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom oder durch eine Imino-, Sulfinyl- oder Sulfonylgruppe ersetzt ist,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂- Gruppe durch eine –NH-CO- oder –NH-NH- Gruppe ersetzt ist,

10

15

20

25

30

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂-Gruppe durch eine –NH-CO-NH-, –NH-CO-O- oder –O-CH₂-O- Gruppe ersetzt ist,

eine C₆₋₇-Cycloalkyl-carbonylaminogruppe, in der eine -CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-NH-, -NH-CO-CH₂-NH-, -NH-CH₂-CH₂-O-, -NH-CO-CH₂-O- oder -O-CH₂-CH₂-O-Gruppe ersetzt ist,

eine Cycloheptyl-carbonylaminogruppe, in der eine –CH₂-CH

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine oder zwei Methylengruppen durch Carbonylgruppen ersetzt sind,

eine C_{4-7} -Cycloalkenyl-carbonylamino- oder C_{4-7} -Cycloalkenyl- C_{1-3} -alkyl-carbonylamino-Gruppe,

eine C_{3-7} -Cycloalkyl-sulfonylamino-, C_{3-7} -Cycloalkyl- C_{1-3} -alkyl-sulfonylamino-, Arylsulfonylamino- oder Aryl- C_{1-3} -alkyl-sulfonylamino-Gruppe oder

eine Heteroarylcarbonylaminogruppe bedeutet,

wobei die in den vorstehend erwähnten Gruppen enthaltenen Iminogruppen unabhängig voneinander durch eine C₁₋₃-Alkylgruppe substituiert sein können,

und R¹¹ ein Wasserstoff-, Fluor-, Chlor-, Brom- oder lodatom oder

eine C₁₋₃-Alkyl-, C₁₋₃-Alkyloxy-, Difluormethyl-, Trifluormethyl-, Difluormethoxy-, Trifluormethoxy- oder Cyangruppe bedeutet,

R² ein Wasserstoffatom,

eine C₁₋₆-Alkylgruppe,

eine C2-4-Alkenylgruppe,

5 eine C₃₋₄-Alkinylgruppe,

eine C₃₋₆-Cycloalkylgruppe,

eine C₃₋₆-Cycloalkyl-C₁₋₃-alkylgruppe,

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl-, Tetrahydropyran-4-yl-, Tetrahydrofuranylmethyl- oder Tetrahydropyranylmethylgruppe,

eine Arylgruppe,

15

25

30

10

eine Aryl-C₁₋₄-alkylgruppe,

eine Aryl-C₂₋₃-alkenylgruppe,

- 20 eine Arylcarbonyl-C₁₋₂-alkylgruppe,
 - -eine Heteroaryl-C₁₋₃-alkylgruppe,

eine Furanylcarbonylmethyl-, Thienylcarbonylmethyl-, Thiazolylcarbonylmethyl- oder Pyridylcarbonylmethylgruppe,

eine C₁₋₄-Alkyl-carbonyl-C₁₋₂-alkyl-Gruppe,

eine C₃₋₆-Cycloalkyl-carbonyl-C₁₋₂-alkyl-Gruppe,

eine Aryl-D-C₁₋₃-alkylgruppe, wobei D eine Sauerstoff- oder Schwefelatom, eine Imino-, C₁₋₃-Alkylimino-, Sulfinyl- oder Sulfonylgruppe bedeutet,

eine durch eine Gruppe Ra substituierte C₁₋₄-Alkylgruppe, wobei

R_a eine Cyano-, Carboxy-, C₁₋₃-Alkyloxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)-amino-carbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-ylcarbonyl-, Piperazin-1-ylcarbonyl-, 4-Methylpiperazin-1-ylcarbonyl- oder 4-Ethylpiperazin-1-ylcarbonylgruppe bedeutet,

oder eine durch eine Gruppe R_b substituierte C₂₋₄-Alkylgruppe, wobei

10

15

5

R_b eine Hydroxy-, C₁₋₃-Alkyloxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Morpholin-4-yl, Piperazin-1-yl-, 4-Methyl-piperazin-1-yl- oder 4-Ethyl-piperazin-1-yl-Gruppe darstellt und durch mindestens zwei Kohlenstoffatome vom Ringstickstoffatom in 3-Stellung des Xanthingerüstes isoliert ist,

R³ eine C₃₋₈-Alkylgruppe,

eine durch eine Gruppe Rc substituierte C₁₋₃-Alkylgruppe, wobei

20

25

 R_c eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte C_{3-7} -Cycloalkylgruppe,

eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte C_{5-7} -Cycloalkenylgruppe,

eine Arylgruppe oder

eine Furanyl-, Thienyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Isothiazolyl-,

Pyridyl-, Pyridazinyl-, Pyrimidyl- oder Pyrazinylgruppe bedeutet, wobei die

vorstehend erwähnten heterocyclischen Reste jeweils durch eine oder zwei

C₁₋₃-Alkylgruppen oder durch ein Fluor-, Chlor-, Brom- oder lodatom oder

durch eine Trifluormethyl-, Cyan- oder C₁₋₃-Alkyloxygruppe substituiert sein können,

eine C₃₋₈-Alkenylgruppe,

5

eine durch ein Fluor-, Chlor- oder Bromatom, oder eine Trifluormethylgruppe substituierte C₃₋₆-Alkenylgruppe,

eine C₃₋₈-Alkinylgruppe,

10

eine Arylgruppe oder

eine Aryl-C2-4-alkenylgruppe,

15 und

 R^4 eine Azetidin-1-yl- oder Pyrrolidin-1-ylgruppe, die in 3-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder eine Di- $(C_{1-3}$ -alkyl)amino-Gruppe substituiert ist und zusätzlich durch eine oder zwei C_{1-3} -Alkylgruppen substituiert sein kann,

20

eine Piperidin-1-yl- oder Hexahydroazepin-1-ylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder eine Di-(C_{1-3} -alkyl)amino-Gruppe substituiert ist und zusätzlich durch eine oder zwei C_{1-3} -Alkylgruppen substituiert sein kann,

25

30

eine 3-Amino-piperidin-1-ylgruppe, in der der Piperidin-1-yl-Teil zusätzlich durch eine Aminocarbonyl-, C₁₋₂-Alkyl-aminocarbonyl-, Di-(C₁₋₂-alkyl)aminocarbonyl-, Pyrrolidin-1-yl-carbonyl-, (2-Cyan-pyrrolidin-1-yl-)carbonyl-, Thiazolidin-3-yl-carbonyl-, (4-Cyan-thiazolidin-3-yl)carbonyl-, Piperidin-1-ylcarbonyl- oder Morpholin-4-ylcarbonyl-Gruppe substituiert ist,

eine 3-Amino-piperidin-1-ylgruppe, in der der Piperidin-1-yl-Teil in 4-Stellung oder in 5-Stellung zusätzlich durch eine Hydroxy- oder Methoxygruppe substituiert ist,

25

30

eine 3-Amino-piperidin-1-ylgruppe, in der die Methylengruppe in 2-Stellung oder in 6-Stellung durch eine Carbonylgruppe ersetzt ist,

eine in 3-Stellung durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituierte Piperidin-1-yl- oder Hexahydroazepin-1-yl-gruppe, in denen
jeweils zwei Wasserstoffatome am Kohlenstoffgerüst der Piperidin-1-yl- oder
Hexahydroazepin-1-yl-gruppe durch eine geradkettige Alkylenbrücke ersetzt sind,
wobei diese Brücke 2 bis 5 Kohlenstoffatome enthält, wenn die zwei Wasserstoffatome sich am selben Kohlenstoffatom befinden, oder 1 bis 4 Kohlenstoffatome
enthält, wenn sich die Wasserstoffatome an benachbarten Kohlenstoffatomen befinden, oder 1 bis 4 Kohlenstoffatome enthält, wenn sich die Wasserstoffatome an
Kohlenstoffatomen befinden, die durch ein Atom getrennt sind, oder 1 bis 3 Kohlenstoffatome enthält, wenn sich die zwei Wasserstoffatome an Kohlenstoffatomen befinden, die durch zwei Atome getrennt sind,

eine Azetidin-1-yl-, Pyrrolidin-1yl-, Piperidin-1-yl- oder Hexahydroazepin-1-ylgruppe, die durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)- amino- C_{1-3} -alkylgruppe substituiert ist,

eine gegebenenfalls am Kohlenstoffgerüst durch eine oder zwei C_{1-3} -Alkylgruppen-substituierte Piperazin-1-yl- oder [1,4]Diazepan-1-ylgruppe,

eine gegebenenfalls am Kohlenstoffgerüst durch eine oder zwei C₁₋₃-Alkylgruppen substituierte 3-Imino-piperazin-1-yl-, 3-Imino-[1,4]diazepan-1-yl- oder 5-Imino-[1,4]diazepan-1-ylgruppe,

eine gegebenenfalls durch eine oder zwei C₁₋₃-Alkylgruppen substituierte [1,4]Diazepan-1-ylgruppe, die in 6-Stellung durch eine Aminogruppe substituiert ist,

eine C₃₋₇-Cycloalkylgruppe, die durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

WO 2004/018467

eine C_{3-7} -Cycloalkylgruppe, die durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di- $(C_{1-3}$ -alkyl)amino- C_{1-3} -alkylgruppe substituiert ist,

eine C₃₋₇-Cycloalkyl-C₁₋₂-alkylgruppe, in der der Cycloalkylteil durch eine Amino-, 5 C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine C_{3-7} -Cycloalkyl- C_{1-2} -alkylgruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)amino- C_{1-3} -alkylgruppe substituiert ist,

10

eine C₃₋₇-Cycloalkylaminogruppe, in der der Cycloalkylteil durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist, wobei die beiden Stickstoffatome am Cycloalkylteil durch mindestens zwei Kohlenstoffatome voneinander getrennt sind,

15

eine N-(C₃₋₇-Cycloalkyl)-N-(C₁₋₃-alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist, wobei die beiden Stickstoffatome am Cycloalkylteil durch mindestens zwei Kohlenstoffatome voneinander getrennt sind,

20

eine C_{3-7} -Cycloalkylaminogruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)amino- C_{1-3} -alkylgruppe substituiert ist,

25 ei ei

30

eine N-(C₃₋₇-Cycloalkyl)-N-(C₁₋₃-alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl- oder eine Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkylgruppe substituiert ist,

eine C₃₋₇-Cycloalkyl-C₁₋₂-alkyl-aminogruppe, in der der Cycloalkylteil durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

20

30

eine N-(C_{3-7} -Cycloalkyl- C_{1-2} -alkyl)-N-(C_{1-2} -alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

eine C₃₋₇-Cycloalkyl-C₁₋₂-alkyl-aminogruppe, in der der Cycloalkylteil durch eine Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl- oder eine Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkylgruppe substituiert ist,

eine N-(C_{3-7} -Cycloalkyl- C_{1-2} -alkyl)-N-(C_{1-2} -alkyl)-aminogruppe, in der der Cycloalkylteil durch eine Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl- oder eine Di-(C_{1-3} -alkyl)-amino- C_{1-3} -alkylgruppe substituiert ist,

eine R¹⁹-C₂₋₄-Alkylamino-Gruppe, in der R¹⁹ durch mindestens zwei Kohlenstoffatome vom Stickstoffatom des C₂₋₄-Alkylamino-Teils getrennt ist und

R¹⁹ eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellt,

eine R^{19} - C_{2-4} -Alkylamino-Gruppe, in der das Stickstoffatom des C_{2-4} -Alkylamino-Teils durch eine C_{1-3} -Alkylgruppe substituiert ist und R^{19} durch mindestens zwei Kohlenstoffatome vom Stickstoffatom des C_{2-4} -Alkylamino-Teils getrennt ist, wobei R^{19} wie vorstehend erwähnt definiert ist,

eine durch den Rest R²⁰ substituierte Aminogruppe, in der

25 R²⁰ eine Azetidin-3-yl, Azetidin-2-ylmethyl-, Azetidin-3-ylmethyl-, Pyrrolidin-3-yl-, Pyrrolidin-2-ylmethyl-, Pyrrolidin-3-ylmethyl-, Piperidin-3-yl-, Piperidin-4-yl-, Piperidin-2-ylmethyl-, Piperidin-3-ylmethyl- oder Piperidin-4-ylmethylgruppe darstellt, wobei die für R²⁰ erwähnten Reste jeweils durch eine oder zwei C₁₋₃- Alkylgruppen substituiert sein können,

eine durch den Rest R²⁰ und eine C₁₋₃-Alkylgruppe substituierte Aminogruppe, in der R²⁰ wie vorstehend erwähnt definiert ist, wobei die für R²⁰ erwähnten Reste jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können,

eine R¹⁹-C₃₋₄-alkyl-gruppe, in der der C₃₋₄-Alkylteil geradkettig ist und zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, wobei R¹⁹ wie vorstehend erwähnt definiert ist,

WO 2004/018467

10

15

25

30

eine 3-Amino-2-oxo-piperidin-5-yl- oder 3-Amino-2-oxo-1-methyl-piperidin-5-yl- Gruppe,

eine Pyrrolidin-3-yl-, Piperidin-3-yl-, Piperidin-4-yl, Hexahydroazepin-3-yl- oder Hexahydroazepin-4-ylgruppe, die in 1-Stellung durch eine Amino-, C₁₋₃-Alkylamino-oder Di-(C₁₋₃-alkyl)aminogruppe substituiert ist,

oder eine Azetidin-2-yl-C₁₋₂-alkyl-, Azetidin-3-yl-C₁₋₂-alkyl, Pyrrolidin-2-yl-C₁₋₂-alkyl-, Pyrrolidin-3-yl-, Pyrrolidin-3-yl-C₁₋₂-alkyl-, Piperidin-2-yl-C₁₋₂-alkyl-, Piperidin-3-yl-, Piperidin-3-yl-C₁₋₂-alkyl-, Piperidin-4-yl- oder Piperidin-4-yl-C₁₋₂-alkylgruppe, wobei die vorstehend erwähnten Gruppen jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können, bedeuten,

wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen zu verstehen sind, welche unabhängig voneinander durch R_h mono- oder disubstituiert sein können, wobei die Substituenten
gleich oder verschieden sein können und R_h ein Fluor-, Chlor-, Brom- oder lodatom,
eine Trifluormethyl-, Cyan-, Nitro-, Amino-, Aminocarbonyl-, Aminosulfonyl-, Methylsulfonyl, Acetylamino-, Methylsulfonylamino-, C₁₋₃-Alkyl-, Cyclopropyl-, Ethenyl-,
Ethinyl-, Hydroxy-, C₁₋₃-Alkyloxy-, Difluormethoxy- oder Trifluormethoxygruppe
darstellt,

unter den bei der Definition der vorstehend erwähnten Reste erwähnten Heteroarylgruppen eine Pyrrolyl-, Furanyl-, Thienyl-, Pyridyl-, Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist,

oder eine Pyrrolyl-, Furanyl-, Thienyl- oder Pyridylgruppe zu verstehen ist, in der eine oder zwei Methingruppen durch Stickstoffatome ersetzt sind,

30

oder eine Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, in der eine bis drei Methingruppen durch Stickstoffatome ersetzt sind,

oder eine 1,2-Dihydro-2-oxo-pyridinyl-, 1,4-Dihydro-4-oxo-pyridinyl-, 2,3-Dihydro-3-oxo-pyridazinyl-, 1,2,3,6-Tetrahydro-3,6-dioxo-pyridazinyl-, 1,2-Dihydro-2-oxo-pyrimidinyl-, 1,2,3,4-Tetrahydro-2,4-dioxo-pyrimidinyl-, 1,2-Dihydro-2-oxo-pyrazinyl-, 1,2,3,4-Tetrahydro-2,3-dioxo-pyrazinyl-, 2,3-Dihydro-2-oxo-indolyl-, 2,3-Dihydrobenzofuranyl-, 2,3-Dihydro-2-oxo-1*H*-benzimidazolyl-, 2,3-Dihydro-2-oxo-benzoxazolyl-, 1,2-Dihydro-2-oxo-chinolinyl-, 1,4-Dihydro-4-oxo-chinolinyl-, 1,2-Dihydro-1-oxo-isochinolinyl-, 1,4-Dihydro-4-oxo-cinnolinyl-, 1,2-Dihydro-2-oxo-chinazolinyl-, 3,4-Dihydro-4-oxo-chinazolinyl-, 1,2,3,4-Tetrahydro-2,4-dioxo-chinoxalinyl-, 1,2-Dihydro-2-oxochinoxalinyl-, 1,2-Dihydro-1-oxo-phthalazinyl-, 1,2,3,4-Tetrahydro-1,4-dioxo-phthalazinyl-, Chromanyl-, Cumarinyl-, 2,3-Dihydro-benzo[1,4]dioxinyl- oder 3,4-Dihydro-3-oxo-2*H*-benzo[1,4]oxazinyl-Gruppe zu verstehen ist,

und die vorstehend erwähnten Heteroarylgruppen durch R_h mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und R_h wie vorstehend erwähnt definiert ist,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein können,

- deren Tautomere, Enantiomere, Diastereomere, deren Gemische, deren Prodrugs und deren Salze.
 - 2. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in denen
 - R¹, R² und R³ wie in Anspruch 1 erwähnt definiert sind und
 - R⁴ eine Pyrrolidin-1-ylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist,

eine Piperidin-1-ylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist, eine Hexahydroazepin-1-yl-gruppe, die in 3-Stellung oder in 4-Stellung durch eine

eine (2-Aminocyclohexyl)amino-Gruppe,

Aminogruppe substituiert ist,

eine Cyclohexylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist,

oder

eine N-(2-Aminoethyl)-methylamino- oder eine N-(2-Aminoethyl)-ethylamino-Gruppe bedeutet,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische und Salze.

3. Verbindungen der allgemeinen Formel I gemäß Anspruch 2, in denen

R¹ eine Phenylcarbonylmethylgruppe, in der der Phenylteil durch R¹⁰ substituiert ist, wobei

R¹⁰ eine Formylaminogruppe,

20

25

eine C_{3-7} -Cycloalkyl-carbonylamino- oder C_{3-7} -Cycloalkyl- C_{1-3} -alkyl-carbonylamino-Gruppe,

eine C₈₋₉-Bicycloalkyl-carbonylaminogruppe,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der

15

30

eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom oder durch eine Imino-, Sulfinyl- oder Sulfonylgruppe ersetzt ist,

eine (1,3-Dioxolanyl)-carbonylamino-, (1,4-Dioxanyl)-carbonylamino-,

Morpholin-2-yl-carbonylamino-, Morpholin-3-ylcarbonylamino- oder Piperazin2-yl-carbonylamino-Gruppe,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂- Gruppe durch eine –NH-CO- Gruppe ersetzt ist,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine –CH₂-CH₂-CH₂- Gruppe durch eine –NH-CO-O- Gruppe ersetzt ist,

eine C₅₋₇-Cycloalkyl-carbonylaminogruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt ist,

eine C_{5-7} -Cycloalkenyl-carbonylamino- oder C_{5-7} -Cycloalkenyl- C_{1-3} -alkyl-carbonylamino-Gruppe,

eine C₃₋₇-Cycloalkyl-sulfonylamino-, Phenylsulfonylamino- oder Phenyl-C₁₋₃-alkyl-sulfonylamino-Gruppe oder

eine Pyridinylcarbonylaminogruppe bedeutet,

25 R² ein Wasserstoffatom,

oder eine C₁₋₃-Alkylgruppe,

R³ eine C₄₋₆-Alkenylgruppe,

eine 2-Butin-1-ylgruppe oder

eine 1-Cyclopenten-1-yl-methyl-Gruppe

und

20

25

30

R⁴ eine Piperidin-1-ylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist,

eine Hexahydroazepin-1-yl-gruppe, die in 3-Stellung oder in 4-Stellung durch eine Aminogruppe substituiert ist,

eine (2-Aminocyclohexyl)amino-Gruppe,

eine Cyclohexylgruppe, die in 3-Stellung durch eine Aminogruppe substituiert ist, oder

eine N-(2-Aminoethyl)-methylamino- oder eine N-(2-Aminoethyl)-ethylamino-Gruppe bedeuten,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze.

4. Verbindungen der allgemeinen Formel I gemäß Anspruch 3, in denen

R¹ eine Phenylcarbonylmethyl-Gruppe, in der der Phenylteil durch eine Formylamino-, Pyridinylcarbonylamino- oder Cyclopropylcarbonylamino-Gruppe substituiert ist,

R² eine Methylgruppe,

R³ eine 2-Buten-1-yl- oder 3-Methyl-2-buten-1-yl-Gruppe oder eine 2-Butin-1-yl-Gruppe

und

5

10

15

R⁴ eine (3-Amino-piperidin-1-yl)-Gruppe bedeuten,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze.

5. Verbindungen der allgemeinen Formel I gemäß Anspruch 4, in denen

R¹ eine [2-(Cyclopropylcarbonylamino)-phenyl]-carbonylmethyl-oder [2-(Pyridylcarbonylamino)-phenyl]-carbonylmethyl-Gruppe,

R² eine Methylgruppe,

R³ eine 2-Buten-1-yl- oder 3-Methyl-2-buten-1-yl-Gruppe oder

eine 2-Butin-1-yl-Gruppe

20 und

25

R⁴ eine (3-Amino-piperidin-1-yl)-Gruppe bedeuten,

deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren Salze.

- 6. Folgenden Verbindungen der allgemeinen Formel I gemäß Anspruch 1:
- (1) 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin,
 - (2) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(3-methyl-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin,

- (3) 1-[2-(2-Formylamino-phenyl)-2-oxo-ethyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin,
- (4) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-((*R*)-3-amino-piperidin-1-yl)-xanthin,
 - (5) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-((E)-2-buten-1-yl)-8-((S)-3-amino-piperidin-1-yl)-xanthin,
- (6) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthin,
 - (7) 1-(2-{2-[(Cyclopropylcarbonyl)amino]-phenyl}-2-oxo-ethyl)-3-methyl-7-(2-butin-1-yl)-8-((S)-3-amino-piperidin-1-yl)-xanthin und
 - (8) 1-[2-(2-{[(Pyridin-2-yl)carbonyl]amino}-phenyl)-2-oxo-ethyl]-3-methyl-7-((E)-2-buten-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin
- sowie deren Tautomere, Enantiomere, Diastereomere, deren Gemische und deren 20 Salze.
 - 7. Physiologisch verträgliche Salze der Verbindungen nach mindestens einem der Ansprüche 1 bis 6 mit anorganischen oder organischen Säuren oder Basen.
- 8. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein physiologisch verträgliches Salz gemäß Anspruch 7 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 7 zur
 Herstellung eines Arzneimittels, das zur Behandlung von Diabetes mellitus Typ I und
 Typ II, Arthritis, Adipositas, Allograft Transplantation und durch Calcitonin verursachte Osteoporose geeignet ist.

- 10. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 8, dadurch gekennzeichnet, daß auf nichtchemischen Weg eine Verbindung nach mindestens einem der Ansprüche 1 bis 7 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 11. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß
- a) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R⁴ einer der in
 Anspruch 1 erwähnten, über ein Stickstoffatom mit dem Xanthingerüst verknüpften Reste ist

eine Verbindung der allgemeinen Formel

15

20

5

in der

R¹ bis R³ wie in Anspruch 1 erwähnt definiert sind und

Z¹ eine Austrittsgruppe wie ein Halogenatom, eine substituierte Hydroxy-, Mercapto-,

- Sulfinyl-, Sulfonyl- oder Sulfonyloxygruppe darstellt,
 - mit einem Amin der allgemeinen Formel R⁴'-H, in der R⁴' einen der für R⁴ in Anspruch 1 erwähnten Reste darstellt, der über ein Stickstoffatom mit dem Xanthingerüst verknüpft ist, umgesetzt wird, oder
- b) eine Verbindung der allgemeinen Formel

in der R¹, R² und R³ wie in Anspruch 1 erwähnt definiert sind und R⁴, eine der eingangs für R⁴ erwähnten Gruppen bedeutet, die eine Imino-, Amino- oder Alkylaminogruppe enthalten, wobei die Imino-, Amino- bzw. Alkylaminogruppe durch eine Schutzgruppe substituiert ist, entschützt und anschließend an der Imino-, Amino- bzw. C₁₋₃-Alkylaminogruppe gegebenenfalls alkyliert wird, und/oder

anschließend gegegebenenfalls während der Umsetzung verwendete Schutzgruppen abgespalten werden und/oder

die so erhaltenen Verbindungen der allgemeinen Formel I in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden und/oder

die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren oder Basen, übergeführt werden.