

Project Title: Predicting CO₂ Emissions Using Machine

Learning

Team ID: SWTID1749709340

Date: 4 July 2025

1. Project Overview

The goal of this project was to develop a machine learning model capable of predicting CO₂ emissions (in kilotons) based on country and year inputs. The project involved data preprocessing, exploratory data analysis (EDA), model training and evaluation, deployment via a web interface, and visualization of key trends in global CO₂ emissions.

2. Dataset Description

The dataset was obtained from the World Bank Indicators dataset, containing over 5 million rows covering multiple countries, years, and development indicators. We filtered it to focus exclusively on the CO₂ emissions (kt) indicator.

Key features used:

- CountryName
- CountryCode
- IndicatorName
- IndicatorCode
- Year
- Value (Target variable)

3. Exploratory Data Analysis (EDA)

EDA was performed using **Matplotlib** and **Seaborn** to understand trends, patterns, and distributions in CO₂ emissions. The following visualizations were created:

- Bar charts showing top countries by average CO₂ emissions
- Time-series plots for specific countries like India
- Histograms, KDE plots, and violin plots to show distribution
- Correlation heatmaps and pair plots for numeric analysis
- Pie charts to categorize countries based on emission levels

These visuals revealed clear upward trends in emissions for industrial nations and wide variability across countries.

Top 10 Countries in Dataset

Country Distribution (Top 10)

Indicator Distribution (Top 10)

4. Data Preprocessing

The preprocessing steps included:

- Dropping missing or irrelevant entries
- Encoding categorical variables (CountryName, IndicatorCode, etc.) using **One-Hot Encoding**
- Scaling numerical features like Year using StandardScaler
- Using **ColumnTransformer** to combine preprocessing steps in a clean pipeline

5. Model Deployment

We used **Pickle** to save the trained Random Forest model and the label encoder. The deployment was implemented as a **Flask web app** with:

- HTML frontend (user inputs country and year)
- Prediction endpoint
- **Ngrok** tunneling to serve the site publicly via temporary HTTPS URL (for demonstration)

This app allowed real-time prediction of CO₂ emissions for any country-year pair.

6. Tools & Technologies Used

- Python (Pandas, scikit-learn, XGBoost)
- Matplotlib, Seaborn for visualization
- Flask + HTML for deployment
- **Ngrok** for hosting the web app
- Jupyter Notebook / Google Colab for development
- Pickle for model persistence

7. Conclusion & Learnings

This project demonstrated how data science and machine learning can be used to model and visualize environmental trends like CO₂ emissions. By building a deployable prediction tool, we showcased the end-to-end ML pipeline from data ingestion to real-world application. Key takeaways included:

- Importance of EDA and preprocessing
- Trade-offs between model performance and interpretability
- Real-world deployment using minimal tools (Flask + Ngrok)