

Mathématiques

Classe: BAC MATHS

Chapitre: Isométrie du plan

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(\$\) 30 min

6 pt

Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}; \overrightarrow{v})$ (unité graphique : 4 cm) On donne les points A et B d'affixes respectives 1 et $\frac{1}{2} - i \frac{\sqrt{3}}{2}$

Pour chaque point M du plan, d'affixe \mathbf{z} , on désigne par M_1 , d'affixe $\mathbf{z_1}$, l'image de M par la rotation de centre O et d'angle $\frac{\pi}{3}$, puis par M', d'affixe $\mathbf{z'}$, l'image de M_1 par la translation de vecteur $(-\overrightarrow{u})$ On note T la transformation qui, à chaque point M, associe le point M'.

- 1°) a) Démontrer que $z' = e^{i\frac{\pi}{3}}z 1$
 - b) Déterminer l'image du point B.
 - c) Déterminer la nature de T et préciser ses éléments caractéristiques.
- 2°) On pose z = x + iy, avec x et y réels.
 - a) Pour $z \neq 0$, calculer la partie réelle du quotient $\frac{z'}{z}$ en fonction de x et de y
 - **b)** Démontrer que l'ensemble (Γ) des points du plan, tels que le triangle OMM' soit rectangle en O, est un cercle dont on précisera le centre et le rayon, privé de deux points. Tracer (Γ)
- 3°) Dans cette question, on pose z = 1 + i
 - a) Vérifier que M ∈ (Γ) et placer M et M' sur la figure.
 - b) Calculer |z| et l'aire du triangle OMM' en cm².

Exercice 2

(5) 30 min

6 pt

Le plan complexe est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

Soit f la transformation du plan qui à tout point M(x, y) associe le point M'(x', y') tel que $\begin{cases} x' = y + 2 \\ y' = -x \end{cases}$.

- 1°) Donner l'expression complexe de f et montrer que c'est une rotation que l'on caractérisera.
- **2°)** Résoudre dans \mathbb{C} l'équation $(E):(i-1)z^2-2i(m+1)z+(1+i)(m^2+1)=0$ où m est un paramètre complexe.
- **3°) a)** Soient les points M_1 et M_2 d'affixes respectives $z_1 = m i$ et $z_2 = 1 im$.

Etablir une relation indépendante de m liant z_1 et z_2 .

- **b)** Montrer que $M_2 = f(M_1)$ et en déduire la nature du triangle AM_1M_2 où A (1 i).
- **4°)** Dans cette question, on prend $m = e^{i\theta}$ où θ est un réel de $[0, \pi]$.
 - a) Déterminer et construire l'ensemble des points M_1 quand θ décrit $[0,\pi]$.
 - **b)** Déterminer, suivant les valeurs de θ , le module et un argument éventuel de z_1 .

Exercice 3

(5) 25 min

5 pt

Le plan P est muni d'un repère orthonormé direct $(o, \overrightarrow{e_1}, \overrightarrow{e_2})$.

Soit l'application $f: P \rightarrow P$, $M(z) \mapsto M'(z')/z' = i\overline{z} + 1 + i$

- 1°) Montrer que f est une isométrie du plan.
- 2°) Montrer que f o f est une translation du plan dont on déterminera le vecteur \vec{u} .
- 3°) Soit t la translation de vecteur $\frac{1}{2}\vec{u}$; On pose S = t^{-1} o f.
 - a) Trouver la forme complexe de S.
 - **b)** Prouver que S = r o S_1 où S_1 est une symétrie axiale et r une rotation que l'on déterminera.
 - c) En déduire que S est une symétrie orthogonale dont on précisera l'axe Δ .
- 4°) Montrer que $f = t \circ S = S \circ t$.

Exercice 4

© 20 min

4 pt

ABCD est un carré de centre 0 tel que : $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$. Soient I = C * B et J = A * B.

- 1°) a) Montrer qu'il existe un seul déplacement f qui transforme I en I et C en A.
 - b) Trouver f(B).
 - c) Caractériser donc f.
- **2°)** Montrer que $\varphi = S_{(AC)} \circ f$ est une symétrie glissante.
- 3°) Soit Δ la perpendiculaire à (BD) en B. Prouver que $\varphi = t_{\overline{BD}} \circ S_{(B)}$.
- 4°) En remarquant que $t_{\overrightarrow{BD}} = t_{\overrightarrow{BA}} \circ t_{\overrightarrow{AD}}$; donner la forme réduite de φ .

Exercice 5

6 pt

Dans le plan orienté, ABI est un triangle équilatéral tel que $(\overrightarrow{AB}, \overrightarrow{AI}) = \frac{\pi}{3} [2\pi]$. Soit $\Omega = S_{(AI)}(B)$

- **A-** Soit R la rotation d'angle $\frac{\pi}{3}$ qui envoie **A** sur **I**
- 1°) Montrer que Ω est le centre de R
- 2°) Soit C = R(B); montrer que I = A * C
- 3°) A tout point $M \in [AB]$ distinct de A et de B, on associe le point M' de [IC] tel que AM = IM'. Montrer que $\Omega MM'$ est équilatéral

- **B-** On désigne par $\mathbf{0} = \mathbf{A} * \mathbf{I}$, $\mathbf{K} = \mathbf{B} * \mathbf{C}$ et $\mathbf{H} = \Omega * \mathbf{C}$
- 1°) Montrer qu'il existe un unique antidéplacement φ tel que $\varphi(A) = I$ et $\varphi(B) = C$
- 2°) Montrer que φ n'a pas de point fixe et en déduire la nature de ζ
- 3°) Soit $\varphi = S_{\Lambda} \circ t_{\overline{n}}$: forme réduite de φ
 - a) Déterminer Δ et vérifier que Δ est la médiatrice de [BH]
 - b) Déterminer $t_{z}(H)$. En déduire alors la forme réduite de φ
 - c) Construire $I' = \varphi(I)$
- **4°)** Soit $g = \varphi \circ S_{(BI)}$. Donner la nature de g et caractériser g.

Exercice 6

(S) 30 min

6 pt

Le plan est orienté dans le sens direct. On considère un triangle OAB rectangle en O tel que : OB = 2OA et $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{2}[2\pi]$; On note I et J les milieux respectifs des segments [OB] et [AB].

- 1°) a) Montrer qu'il existe une seule rotation f telle que f(0) = I et f(A) = B.
 - b) Donner l'angle de f et construire son centre Ω .
- **2°)** Soit R la rotation de centre O et d'angle $\frac{\pi}{2}$. On note $g = f \circ R^{-1}$.
 - a) Déterminer g(0), puis caractériser g.
 - **b)** En déduire que $f = t_{\overline{oi}} \circ R$.
- 3°) Soient C = R(I) et D l'image de O par la rotation de centre I et d'angle $-\frac{\pi}{2}$.
 - a) Vérifier que OIDC est un carré direct.
 - **b)** Déterminer $(f \circ f)(0)$.
 - c) Caractériser $f \circ f$ et en déduire que Ω est le centre du carré OIDC.
- 4°) Caractériser $S_{(AB)} \circ S_{(I\Omega)} \circ S_A$.
- 5°) Soient $h = t_{\overrightarrow{AB}} \circ S_{(OA)}$ et $\varphi = t_{\overrightarrow{OB}} \circ S_{(OA)}$.
 - a) Caractériser φ.
 - b) En déduire que h est une symétrie glissante que l'on caractérisera.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000