Optimized Implementation of Quantum Binary Field Multiplication with Toffoli Depth One

Kyungbae Jang, Wonwoong Kim, Sejin Lim, Yeajun Kang, Yu-Jin Yang, and **Hwajeong Seo**

Contents

Our Contribution

Background & Related Work

Proposed Method

Performance & Evaluation

Conclusion & Future work

Our Contribution

- Quantum binary field multiplication using the Karatsuba algorithm
 - Karatsuba algorithm is one of the best choices for quantum implementations
- Efficient quantum circuit implementation techniques
 - 76% performance improvement (TD \times M) *TD: Toffoli depth, M: qubit count

Field size 2^n	Source	#CNOT	#1qCliff	#T	Toffoli depth	#Qubits	Full depth	$TD \cdot M$
	This work (Sec. 3.5)	323	54	189	1	81	32	81
n=8	[7]	405	30	448	28	24	216	672
$n-\delta$	[8]	270	54	189	8	43	88	344
	[6]	382	54	189	N/A	24	N/A	N/A

TD = Toffoli depth, M = number of qubits.

Optimized primitive for quantum cryptanalysis of ECC

Quantum Computing

Qubit (Quantum bit)

Superposition

Entanglement

Quantum Computer

n-qubit with superposition state?

We can prepare 2^n states (as probability) at once!

With proper quantum algorithm? (Shor, Grover, Simon etc...)

→ Meaningful result can be achieved

Cryptosystems in Quantum World

Shor on RSA

- Häner(2016): To apply Shor algorithm to RSA using n-bit key, 2n+2 qubits are required
- Gidney(2018): To apply Shor algorithm to RSA using n-bit key, 2n+1 qubits are required

		Häner (2016)	Gideny (2018)
	RSA-3072	6,146	6,145
Qubits	RSA-7680	15,362	15,361
	RSA-15630	30,722	30,271

< Comparison of resources (Shor on RSA factorization problem)>

Shor on ECDLP (Elliptic Curve Discrete Logarithmic Problems)

- Shor algorithm on ECDLP
 - NIST curves target
 - ASIACRYPT(2017): "Quantum resource estimates for computing elliptic curve discrete logarithms"
 - Estimate the quantum resources required to solve the DLP in the elliptic curve
 - RSA is more vulnerable to quantum attacks than ECC
 - PQCrypto(2020): "Improved quantum circuits for elliptic curve discrete logarithms"
 - They further reduced quantum resources (qubits, depth) than results of ASIACRYPT.
 - CHES (2020): "Concrete quantum cryptanalysis of binary elliptic curves"
 - Shows that the Shor algorithm for binary ECC can be attacked with fewer resources.

Shor on ECDLP (Elliptic Curve Discrete Logarithmic Problems)

- CHES 2020 paper results show the least resource-consuming quantum attack
 - They targeted Binary curves, Not Prime curves(ASIACRYPT, PQCrypto)
 - Since Binary arithmetic (Hardware-friendly) is used, it is also optimized on quantum computers
 - Binary addition \rightarrow XOR operation, Binary multiplication \rightarrow AND operation, no carry

	Curve (Prime)	Asiacrypt	PQCrypto
	P256	2,338	2,124
Qubits	P384	3,492	3,151
	P521	4,727	4,258
	P256	-	$1.38\cdot 2^{32}$
Depth	P384	-	$\boldsymbol{1.77\cdot 2^{34}}$
	P521	-	$\boldsymbol{1.09\cdot 2^{36}}$

	Curve (Binary)	CHES (2020)
	B233	1,647
Qubits	B283	1,998
	B571	4,015
	B233	$1.14\cdot 2^{21}$
Depth	B283	$1.67\cdot 2^{21}$
	B571	$1.57\cdot 2^{23}$

<Quantum resources for applying Shor algorithm to ECDLP>

Shor on ECDLP (Elliptic Curve Discrete Logarithmic Problems)

- What is the most important thig to present an optimized quantum attack?
 - Quantum Fourier Transformation (QFT)?, Quantum Phase Estimation (QFT)?
 - Essential, but default
- In our understanding,
 - Scalar multiplication...
 - → Point addition...
 - → Field arithmetic...

 \mathbb{F}_{p} , \mathbb{F}_{2^n} in Quantum!

Quantum Gates

- The CNOT gate replaces classical XOR operation
- The Toffoli gate replaces classical AND operation

Quantum Gates

Actually, the Toffoli gates are more complex than other quantum gates

This is why we should reduce the use of Toffoli gates (depth) !!

Related Work: D. Maslov et al.

- Generic Schoolbook Multiplication
 - For $h = f \cdot g$ (size = n), 3n qubits are required \rightarrow Probably, this the minimum qubits
- They consider modular reduction in advance
 - Upper part multiplication operations are performed earlier
- n^2 Toffoli gates are used \rightarrow Not optimized with Toffoli gate count \rightarrow Maximum number

^{*} D. Maslov et al. "On the design and optimization of a quantum polynomial time attack on elliptic curve cryptography"

Related Work: S. Kepley et al.

- They applied Karatsuba algorithm to quantum binary field multiplication
- For $h = f \cdot g$ (size = n), Karatsuba applied recursively
- Additional CNOT gates are required, but Toffoli gates can be reduced
 - $n^2 \cdot \frac{3^{\log_2 n}}{4}$ Toffoli gates are required
- More qubits are required : 2n + Number of Toffoli gates

< Recursive division in Karatsuba >

* S. Kepley et al, "Quantum circuits for F2n -multiplication with subquadratic gate count"

Related Work: I. van Hoof

- They apply Karatsuba recursively → Toffoli gates are reduced
 - Same approach with S. Kepley et al.'s work
- Different is qubit count
 - By utilizing LUP decomposition, only 3n qubits are required
 - They use more CNOT gates → However, this is not a loss (reducing qubit is more important!)
- In CHES 2020 paper (Shor on binary ECC), They adopted this quantum multiplication
- But we should note this!
 - Reducing qubits → Circuit Space is reduced
 - Quantum gate operations in limited space causes high circuit depth
 - Toffoli Depth and Full depth are higher than S. Kepley's quantum multiplication

We should consider carefully the tradeoff between depth and qubit count.

- Previous works do not consider circuit depth
- Our quantum multiplication optimizes the Toffoli depth (i.e., one)
 - Full depth is also reduced (Full depth depends on Toffoli depth)
- We also apply Karatsuba recursively
 - Multiplication is divided → This alone is also effective
 - However, we remove the dependencies in the divided multiplications
- We provide rooms for removing dependencies.
 - When there is a dependency when dividing by Karatsuba?
 - We provide a room (ancilla qubits)

For any Field size 2^n , we can implement quantum multiplication with Toffoli depth one

- Karatsuba algorithm
 - One of the efficient algorithms for multiplication
 - For multiplication $h = f \cdot g \mod N$
 - Split polynomials f and g into the size of s = n/2

$$f = f_1 x^s + f_0$$
$$g = g_1 x^s + g_0$$

- Then, Karatsuba multiplication is done,
 - Additions are required, but multiplication complexity $O(n^2)$ is reduced to $O(n^{\log_2 3})$

$$f_0 \cdot g_0 + \{(f_0 + f_1) \cdot (g_0 + g_1) + f_0 \cdot g_0 + f_1 \cdot g_1\}x^s + f_1 \cdot g_1x^{2s}$$

- We apply Karatsuba recursively (in quantum), Level-1, Level-2, Level-3 ...
- We provide rooms to remove dependencies between split multiplications (Rectangles)

- In the room (ancilla qubits), we prepare $(f_0 + f_1)$ and $(g_0 + g_1)$
 - We copy (f_0+f_1) and (g_0+g_1) to ancilla qubits (clean state)with CNOT gates
 - Then, three multiplications become independent
 - Three multiplications can be preformed at once!

Ancilla qubits and CNOT gates are required

- If we apply Karatsuba recursively and provide rooms for removing dependencies
 - Finally, at last Karatsuba level, all products (1×1) are generated at once!
 - → Toffoli depth is one, and full depth is also reduced

- Quantum resources are reduced according to the Karatsuba level (in our work)
 - Toffoli gates (depth) and Full depth are reduced
 - The number of qubits increases (because of rooms → ancilla qubits)

Table 1: Quantum resources required for each Karatsuba level of multiplication.

Field size 2^n	#CNOT	#Toffoli	Toffoli depth	#Qubits	Full depth
Schoolbook	•	n^2	3n-2	4n-1	$8 \cdot (3n-2)$
Karatsuba Level-1	5n-4	$3\cdot (n/2)^2$	3n/2 - 2	$3 \cdot (2n-1)$	$8 \cdot (3n/2 - 2) + 5$
Karatsuba Level-2	$ (5n-4)+ \\ 3\cdot (5n/2-4) $	$3^2 \cdot (n/2^2)^2$	$3n/2^2 - 2$	$3^2 \cdot (n-1)$	$8 \cdot (3n/2^2 - 2) + 10$
Karatsuba Level-3	$ (5n-4) + 3 \cdot (5n/2 - 4) + 9 \cdot (5n/4 - 4) $	$3^3 \cdot (n/2^3)^2$	$3n/2^3 2$	$3^3 \cdot (n/2 - 1)$	$8 \cdot (3n/2^3 - 2) + 15$

- High qubit count..
 - However, we overcome! (Let's talk about later)
- Optimized with Toffoli depth one, minimum Toffoli gates
- Low full depth

Table 2: Quantum resources required for multiplication of Toffoli depth one.

Field size 2^n	Karatsuba Level	#CNOT	#1qCliff	#T	T-depth*	#Qubits	Full depth
n=4	2	88	18	63	4	27	17
n=8	3	300	54	189	4	81	23
n = 16	4	976	162	567	4	243	28

*****: Toffoli depth one has a *T*-depth of four.

- In our method, ancilla qubits that allocated each time the Karatsuba algorithm is applied, which is obviously an overhead.
- Recycling rooms (ancilla qubits)
 - After all products are generated at once in the last Karatsuba level, we initialize (cleaning) the rooms
 - Operations performed on rooms are reversed
 - From the lower layer to the upper layer

As a result, the ancilla qubits allocated for the rooms are initialized to zero!

- The cleaned ancilla qubits can be reused in the next operation
 - → Strong advantage
 - i.e., not stand-alone multiplication
 - e.g., Itoh-Tsujii based inversion, scalar multiplication, point addition on ECC...

Field size 2^n	Karatsuba Level	#CNOT	#1qCliff	$\left \ \#T \right $	T-depth*	#Qubits	Full depth
n=4	2	88	18	63	4	27	17
n=8	3	300	54	189	4	81	23
n = 16	4	976	162	567	4	243	28

Can be reduced

17 43 113

Fig. 3: Quantum AND gate of T-depth one.

Table 4: Coefficients after performing modular reduction of $\mathbb{F}_{2^8}/(x^8+x^4+x^3+x+1)$.

x^n	Coefficient
n = 0	$c_0 + c_8 + c_{12} + c_{13}$
n=1	$c_1 + c_8 + c_9 + c_{12} + c_{14}$
n=2	$c_2 + c_9 + c_{10} + c_{13}$
n=3	$c_3 + c_8 + c_{10} + c_{11} + c_{12} + c_{12} + c_{13} + c_{14}$
n=4	$c_4 + c_8 + c_9 + c_{11} + c_{14}$
n=5	$c_5 + c_9 + c_{10} + c_{12}$
n=6	$c_6 + c_{10} + c_{11} + c_{13}$
n=7	$c_7 + c_{11} + c_{12} + c_{14}$

Table 3: Quantum resources required for multiplication of T-depth one using AND gate.

Field size 2^n	Karatsuba Level	#CNOT	#1qCliff	#T	T-depth	#Qubits	Full depth
n=4	2	106	27	36	1	36	16
n = 8	3	354	81	108	1	108	22
n = 16	4	1138	243	324	1	324	27

Omitted from this presentation! (detailed in the paper)

Performance

- Our quantum multiplication is optimized with Toffoli depth one (depth is also low)
 - Our work achieves the best trade-off of TD · M
 - TD is Toffoli depth, M is the number of qubits.
 - This metric represents the quantum circuit performance and is adopted in [1]

Table 6: Comparison of quantum resources required for multiplication of $\mathbb{F}_{2^8}/(x^8+x^4+x^3+x+1)$.

Field size 2^n	Source	#CNOT	#1qCliff	#T	Toffoli depth	#Qubits	Full depth	$TD \cdot M$
	This work (Sec. 3.5)	323	54	189	1	81	32	81
-n = 8	Schoolbook [7]	405	30	448	28	24	216	672
	Karatsuba1 [8]	270	54	189	8	43	88	344
	Karatusba2 [6]	382	54	189	N/A	24	N/A	N/A

TD = Toffoli depth, M = number of qubits.

^[1] J. Zou, Z. Wei, S. Sun, X. Liu, and W. Wu, "Quantum circuit implementations of AES with fewer qubits," in International Conference on the Theory and Application of Cryptology and Information Security,

Conclusion & Future work

- In this paper, we present an optimized quantum binary field multiplication
- Main contribution is optimized with Toffoli depth one for any field size.
 - Further...
 - Recycling technique that offsets the overhead of qubits
 - Optimization with T-depth one
 - Efficient implementation of modular reduction.
- Future work
 - Efficient quantum cryptanalysis (i.e., Shor) for ECC (binary)
 - In our understanding, quantum binary multiplication is paramount here
 - In CHES 2020 paper, Van hoof's work was used

Thank you!