2) Let P be a limite process. By induction on length of the inference for P - P' ind Hyp: Actp' C Actp

P= E ai.Pi , Adp = Ufaif U U Adp. For every Pi, Actpi < Actp => Actp' < Actp

2 CASES !

1P= ala, Q = Q' and dof [a,ā]

By in Hyp: Ada = Ada

If we remove the restricted action a , for both sets , we still have

Act à {a, ā} = Act a {a, ā},

Act p' = Act p

2) Let deline Act Mal N2 = Act Ma U Act M2 P=Pr/P2, here we have 4 cores to consider:

By IND HYP: Actp' = Actp

It's also true that:

Act pi U Act pe S Act pe U Act pe Act p' = Act p

b) P= P2 |P2, P2 => P= P2 |P2 By ind Hyp: Actp! = Actp.

It's also true that:

Act pr U Act pr S detpr U Act pr Act p' = Act p / c) $P = P_1 | P_2$, $P_2 \stackrel{a}{=} P_1$ and $P_2 \stackrel{\overline{a}}{=} P_2 | P_2 |$

By Hyp ins: (2) Actpr & Actpr

By Hyp ino: @ Act pa' & Act pa

Actp. ' U Actp. ' C Actp. U Actp. V Actp' & Actp

d) P= P1 |P2, P2 \(\overline{a} \) P1 and P2 \(\overline{a} \) P2 \(\overline{a} \) P2 \(\overline{a} \)

By HAP iND: Q Actpa & Actpa

By Hyp ino: @ Act pa' & Act pa

Act p' = Act p

$$S = \{ (P_0, q_0), (P_1, q_0), (P_2, q_1), (P_3, q_2), (P_4, q_3) \}$$

 $S' = \{ (q_0, p_0), (q_0, p_1), (q_1, p_2), (q_2, p_3), (q_3, p_4) \}$

$$S = \{ (P_0, q_0), (P_2, q_0), (P_4, q_1), (P_3, q_3), (P_4, q_1) \}$$

 $S' = \{ (q_0, P_0), (q_2, P_2), \}$

This isn't a week bisimulation, the action 90 To 92 los to be "replied" by T'.

But (Pi, 92) & 5!!

We have to show that $p \approx q$ and $q \approx r \implies p \approx r$ for all p,q,r det us consider the following redstrom: $S = \left\{ (x,2) : \exists y \text{ s.t. } (x,y) \in S_L \text{ A } (y,2) \in S_L \right\}$ Where S_L and S_L are weakly bissim.

Let $(x,2) \in S$ and $x \stackrel{a}{\Rightarrow} x'$ Since S_L is weak bissim. There exists $y \stackrel{a}{\Rightarrow} y' \text{ s.t. } (x',y) \in S_L$ Since S_L is weak bissim. there exists $y \stackrel{a}{\Rightarrow} z' \text{ s.t. } (y',2') \in S_L$ $x \stackrel{a}{\Rightarrow} x'$ we found $2 \stackrel{a}{\Rightarrow} 2' \text{ s.t. } (x',z') \in S_L$ there exists $a y' \text{ s.t. } (x',y') \in S_L$ and $(y',z') \in S_L$