253

- 1. The population of a city over t years is given by the formula $P = 100\ 000e^{0.71t}$. After how many years, to 1 decimal place, will the population become 1 million?
- 2. Evaluate $\int_1^3 \frac{dx}{x}$ correct to 3 decimal places.
- 3. The acceleration of a particle is given by $a = 6t \text{ ms}^{-2}$ and the particle is initially at rest at the origin. Find where it will be after 3 seconds.
- 4. Find $\log_5 \frac{1}{25}$.
- 5. Write $\log_e x$ as an equation with x in terms of y. Hence find the value of x, to 3 significant figures, when y = 1.23.
- 6. Differentiate $x^3 + e^{2x}$.
- 7. Solve $\log_x \frac{1}{16} = 4$.
- **8.** If 100 g of a substance decays to 80 g after 3 years, find, to 1 decimal place,
 - (a) its mass after 10 years
 - (b) the rate of decay after 10 years
 - (c) when it will decay to 50 g.
- A particle has displacement x in centimetres over time t in seconds according to the formula x = 2 sin 3t.
 - (a) Find its velocity after $\frac{\pi}{2}$ s.
 - (b) Show that the acceleration is given by $\ddot{x} = -9x$.
- 10. Water is flowing out of a pool at the rate given by R = 20t litres per minute. If the volume of water in the pool is initially 8000 L, find
 - (a) the volume after 5 minutes
 - (b) how long it will take to empty the pool.

- 11. Find the volume, to 1 decimal place, of the solid formed by rotating $y = e^x$ about the *x*-axis from x = 1 to x = 3.
- 12. Find the derivative of $\log_e (4x + 3)^3$.
- **13.** Find $\int \frac{2x+1}{3x^2+3x-2} dx$.
- **14.** The volume in litres of a rectangular container that is leaking over time t minutes is given by $V = -t^2 + 4t + 100$. Find
 - (a) the initial volume
 - (b) the volume after 10 minutes
 - (c) the rate of change in volume after 10 minutes
 - (d) how long it will take, to 1 decimal place, until the container is empty.
- **15.** Find $\int (6x^2 2x + 4x^{-1}) dx$.
- **16.** Find the exact value of $\int_1^7 \frac{3}{x+5} dx$.
- 17. The velocity $v \, \text{cms}^{-1}$ of a particle over time t is given by $v = \frac{2}{t+1}$. If the particle is initially 3 cm from the origin, find (a) its displacement after 10 s, to 2 significant figures (b) its acceleration after 5 s, to 1 significant figure.
- **18.** Find $\int (e^{4x} + 1) dx$.
- 19. Differentiate $\frac{x}{e^{2x}}$.
- 20. The rate at which an epidemic of measles in a certain city is spreading is proportional to the number of people with measles. That is, $\frac{dP}{dt} = kP$. If 40 people initially have measles and after 10 days, 110 have measles, find

- (a) the value of *k* to 3 significant figures
- (b) how many people will have measles after 6 weeks
- (c) after how long, to the nearest day, 300 people will have measles
- (d) the rate at which the disease will be spreading after
 - (i) 10 days
 - (ii) 6 weeks.
- 21. (a) Find the value of $log_3 7$ by changing the base to e.
 - (b) Differentiate $\log_3 x$ by changing the base to e.
- 22. Find the exact volume of the solid of revolution formed when the curve $y = e^x$ is rotated about the *x*-axis from x = 1 to x = 3.
- 23. A particle is moving such that its displacement after t seconds is given by $x = 3 \sin 2t$ metres.
 - (a) Find the initial velocity and acceleration.
 - (b) Find the maximum displacement.
 - (c) Find the times when the particle will be at rest.
 - (d) Prove that the acceleration is given by a = -4x.
- **24.** Find the area enclosed between the curve $y = \log_e x$, the *y*-axis and the lines y = 1 and y = 2, correct to 3 significant figures.
- 25. The acceleration of a particle is given by $6t 12 \text{ ms}^{-2}$. If the particle is initially at rest 2 m to the left of the origin, find its displacement after 5 seconds.
- **26.** Solve $7^{2x} = 3$.
- 27. Find the equation of the tangent to $y = e^{x+1}$ at the point where x = -1.
- **28.** Find the stationary point on the curve $y = xe^{2x}$ and determine its nature.

- 29. The length of an arc in a circle of radius 2 cm is 1.6 cm. Find the area, correct to 2 decimal places, of the
 - (a) sector
 - (b) minor segment cut off by this arc.
- 30. A certain chemical treatment of blue-green algae in a river causes it to decrease at a rate proportional to the amount of blue-green algae in the river. If 250 kg of blue-green algae reduces to 150 kg after 3 months, find how long it will take, to the nearest month, to reduce the blue-green algae to 20 kg.
- **31.** An angle of 30° is subtended at the centre of a circle with radius 5 cm. Find the exact
 - (a) arc length
 - (b) area of the sector.
- 32. Sketch $y = 2 \cos \frac{x}{2}$ for $0 \le x \le 2\pi$.
- 33. Find $\int_{0}^{\frac{\pi}{2}} \sin(2x) dx$.
- **34.** Differentiate $\log_a(\sin x)$.
- **35.** Find the derivative of $\tan (e^{5x} + 1)$.
- **36.** Evaluate $\int_0^{\frac{\pi}{3}} \sec^2 x \, dx$, giving the exact value.
- 37. (a) Sketch $y = \sin 2x$ for $0 \le x \le 2\pi$.
 - (b) Find the area bounded by the curve $y = \sin 2x$, the *x*-axis and the lines x = 0 and $x = \pi$.
- **38.** Evaluate $\int_0^{\frac{\pi}{4}} \tan x \, dx$ correct to 3 decimal places by using Simpson's rule with three ordinates.
- 39. Differentiate
 - (a) $e^x \sin x$
 - (b) $tan^3 x$
 - (c) $2\cos\left(3x-\frac{\pi}{2}\right)$

255

- (a) Find its velocity after 2 s, to 3 significant figures.
- (b) Show that its acceleration is given by a = 4x.
- (c) Find the initial acceleration.
- **41.** Evaluate $\int_0^5 \frac{dx}{x+3}$, giving the exact value.
- 42. A gardener wishes to make a rectangular garden bed using a wall as one of the sides. She has 24 m of edging strip to place around the garden. What dimensions will give the maximum garden area?
- **43.** Find the volume of the solid formed when the curve $y = \sqrt{\cos x}$ is rotated about the *x*-axis from x = 0 to $x = \frac{\pi}{3}$.
- **44.** Sketch the curve $y = 3x^4 4x^3 12x^2 + 1$, showing any stationary points.
- **45.** Find the equation of the tangent to the curve $y = \tan 3x$ at the point where $x = \frac{\pi}{4}$.
- **46.** Find the exact area enclosed between the curve $y = \sin x$ and the line $y = \frac{1}{2}$ for the domain $0 \le x \le 2\pi$.
- **47.** Differentiate $\sin^3(e^x)$.
- **48.** Find the exact area bounded by the curve $y = \log_e (x + 4)$, the *y*-axis and the lines y = 0 and y = 1.
- **49.** Find the exact value of
 - (a) $\cos \frac{7\pi}{4}$
 - (b) $\sin\left(2\pi \frac{\pi}{3}\right)$.

50. The length of an arc in a circle of radius 6 cm is 7π cm. Find the area of the

- (a) sector
- (b) minor segment cut off by this arc.

51. Differentiate tan ($\log_e x + 1$).

52. Find
$$\int \frac{3x^2 - 2x + 5}{x^2} dx$$
.

- **53.** Find the volume of the solid formed, correct to 2 decimal places, when the curve $y = \log_e x$ is rotated about the x-axis from x = 1 to x = 4, by using the trapezoidal rule with 3 subintervals.
- **54.** Find $\int (e^{5x} \sin \pi x) dx$.
- 55. Solve graphically $\sin x = x 1$ for $0 \le x \le 2\pi$.
- **56.** Find the exact area enclosed between the curve $y = e^x$, the *x*-axis, the *y*-axis and the line x = 2.
- **57.** Evaluate $\int_{\frac{\pi}{3}}^{\pi} \cos\left(\frac{x}{2} + \pi\right) dx$.

The graph has the equation

- (a) $y = 4 2 \cos x$
- (b) $y = 4 + 2 \cos x$
- $(c) y = 2 2 \cos x$
- (d) $y = 2 4 \cos x$.

59. A radioactive substance decays by 60% after 200 years. This information can be shown by the equation of its mass

- (a) $0.6M = Me^{200k}$
- (b) $0.6M = Me^{-200k}$
- (c) $0.4M = Me^{200k}$
- (d) $0.4M = Me^{-200k}$

- **60.** The value of $\sin\left(-\frac{\pi}{3}\right)$ is
 (a) $-\frac{\sqrt{3}}{2}$

 - (b) $\frac{\sqrt{3}}{2}$
 - (c) $-\frac{1}{2}$
 - (d) $\frac{1}{2}$.
- 61. A particle has a displacement of $x = 4\cos 7t$. Its acceleration can be written as
 - (a) $\ddot{x} = 49x$
 - (b) $\ddot{x} = -196x$
 - (c) $\ddot{x} = 196x$
 - (d) $\ddot{x} = -49x$.

- **62.** Evaluate $\int \frac{3x}{2x^2-5} dx$
 - (a) $3 \ln (2x^2 5) + C$
 - (b) $\frac{3\ln(2x^2-5)}{4}+C$
 - (c) $\frac{\ln(2x^2-5)}{12}+C$
 - (d) $\frac{4 \ln (2x^2 5)}{3} + C$
- 63. The rate at which a waterfall is flowing over a cliff is $R = 4t + 3t^2 \text{ m}^3 \text{ s}^{-1}$. Find the amount of water flowing after a minute if the amount of water is 10 970 m³ after 20 seconds.
 - (a) 223 220 m³
 - (b) 8800 m³
 - (c) 225 370 m³
 - (d) 226 250 m³