CS143-HW4

Part 1:

1. A decomposition is said to be lossless if for 2 relations R1 and R2 if,

$$R1 \cap R2 \rightarrow R1 \ or \ R2$$

In the given case,

$$R1 \cap R2 = A$$

Given the dependencies we know, $A \rightarrow BC$, $B \rightarrow D$ and $CD \rightarrow E$.

Thus, A is a candidate key for R2. Thus, $R1 \cap R2 = A \rightarrow R2$. Hence, this is a lossless decomposition.

2. The given table is:

A	В	С
al	bl	c2
al	bl	c2
a2	bl	c1
a2	b1	c3

From the table, it is clear that the non-trivial functional dependencies are:

A->B and C->B

Thus, we can conclude that the set

$$F = \{AC -> B\}$$

3. For R(A, B, C, D, E) given

$$F = \{ A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A \}$$

a) For E in R, We know that $E \to A$ and $A \to BC$. Thus $E \to BC$.

Now, $B \to D$ and $E \to BC$. Thus, $E \to BCD$. Finally, We know that $E \to A$ and obviously $E \to E$.

Thus, $E \rightarrow ABCDE$. So, Yes E is a candidate key.

b) For BC in R,

We know that $B \to D$ and $CD \to E$. Thus $BC \to DE$.

Now we see that $E \to A$ and we know that $BC \to BC$.

Thus, $BC \rightarrow ABCDE$. So, Yes BC is also a candidate key.

4. From the given dependencies, R is not in BCNF because A is not a candidate key of R. The set of relations of BCNF possible would be

$$R1(A, B, C) = \{A->BC\} \text{ and } R2(A, D, E, F).$$

These now constitute a set of relations in BCNF.

5. For R(A, B, C, D) and $A \rightarrow BC$, given tuples (a,b1,c1,d1), (a,b2,c2,d2), and (a,b3,c3,d3) exist in R.

The other tuples that should also exist in R given the above are,

$$(a,b1,c1,d2), (a,b1,c1,d3), (a,b2,c2,d1), (a,b2,c2,d3), (a,b3,c3,d1)$$
 and $(a,b3,c3,d2).$

6. For R(A, B, C, D, E, F) given

$$AB \rightarrow E, AB \rightarrow C, A \rightarrow B$$

We see that R is not in 4NF because given functional dependency $AB \to E$, we conclude that ABCD is the candidate key. Thus, the MVDs $AB \to C$, $A \to B$ don't hold for the 4NF. Thus R is not in 4NF.

We decompose this relation into 3 different relations:

The set of Relations R1(AB), R2(AC) and R3(ADE) are a set of relations that are in 4NF now.

Part 2.

1.

2. assembly(cost, <u>number</u>) parts(<u>number</u>) composed_of(<u>number</u>, <u>part_number</u>, quantity)

Part 3.

1.

