(1.7) (T(t)f)(x) :=
$$\begin{cases} f(x+t) & \text{if } x+t < 1 \\ 0 & \text{if } x+t \ge 1 \end{cases}$$

Then $(T(t))_{t\geq 0}$ is nilpotent (we have T(t)=0 for $t\geq 1$). It follows that $\sigma(T(t))=\{0\}$ for all t>0 and by A-III, Thm.6.2 we have $\sigma(A)=\emptyset$.

(b) The operator A on E := $C_0[0,\infty)$ given by

(1.8)
$$(Af)(x) = f'(x) - xf(x)$$
, $D(A) = \{f \in E : f \in C^1, Af \in E\}$

has empty spectrum. It is the generator of a positive non-nilpotent semigroup which is given by

(1.9)
$$(T(t)f)(x) = \exp(-(t^2/2) - xt) \cdot f(x+t)$$
.

(c) Taking into account that $C_O([0,1])$ as well as $C_O([0,\infty))$ both are topologically (but not isometrically) isomorphic to C([0,1]) (see Semadeni (1971), Sec.21.5), one obtains from (a) and (b) (non-positive) semigroups on C([0,1]) whose generators have empty spectrum.

The proof of Thm.1.1 given above is based on the fact that the spectral radius of a bounded positive operator is an element of the spectrum. A direct proof not using this fact is given in C-III, Cor.1.4.

Corollary 1.3. Suppose $\lambda_O \in \rho(A)$. Then $R(\lambda_O, A)$ is a positive operator if and only if $\lambda_O > s(A)$. For $\lambda > s(A)$ we have $r(R(\lambda, A)) = (\lambda - s(A))^{-1}$.

 $\underline{\text{Proof.}}$ The second statement is an immediate consequence of Thm.1.1 and A-III, Prop.2.5 .

Given $\lambda_0 > s(A)$ we choose $\lambda_1 > max\{\lambda_0, \omega(A)\}$. Since $|\lambda_1 - \lambda_0| < |\lambda_1 - s(A)| = r(R(\lambda_1, A))^{-1}$ we have

$$(1.10) \quad R(\lambda_0, A) = \sum_{n=0}^{\infty} (\lambda_1 - \lambda_0)^n \cdot R(\lambda_1, A)^{n+1}.$$

Since $R(\lambda_1, A)$ is positive, it follows that $R(\lambda_0, A)$ is positive as well.

On the other hand, assuming that $R(\lambda_O,A)$ is a positive operator, then λ_O has to be a real number (note that for $g \ge 0$ we have $f := R(\lambda_O,A)g \ge 0$ hence $\lambda_O f - Af = g = \overline{g} = \overline{(\lambda_O - A)f} = \overline{\lambda}_O f - Af$). As we have shown above $R(\lambda,A)$ is positive for $\lambda > \max\{\lambda_O,s(A)\}$ hence an application of the resolvent equation yields:

$$(1.11) \quad R(\lambda_{O}, A) = R(\lambda, A) + (\lambda - \lambda_{O}) R(\lambda, A) R(\lambda_{O}, A) \ge R(\lambda, A) \ge 0.$$