	Name of the material property	Value	Paper Title
1	Atomic volume of U atom in \mathbf{UO}_2 crystal	$0.0409 \ nm^3$	Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO ₂ nuclear fuel, Larry et al. (2019), JNM V-161, 35-45
2	$C_{g,bubble,equilibrium}$	0.454	"
3	$C_{v,bubble,equilibrium}$	0.546	u .
4	Fission Yield of Xe	$Y_{Xe} = 0.2156$	IAEA Handbook of Nuclear Data for Safeguards, International Atomic Energy Agency. Chain fission yields. https://www-nds.iaea.org/sgnucdat/c1.htm; accessed 13-Apr-2017.
5	Fission Rate Density	$\dot{F} = 1.09 * 10^{13} \frac{fission}{cm^3 - sec}$	Fundamental Aspects of Nuclear Reactor Fuel Elements, D.R. Olander (1976)
6	GB Energy	$1.56 - 5.87 * 10^{-4}T \pm 0.3 \frac{J}{m^2}$	Mechanistic grain growth model for fresh and irradiated UO ₂ nuclear fuel, Tonks et al., JNM V-543, 152576 [2021]
7	Surface Energy	2* GB Energy	Surface, grain boundary and interfacial energies in UO ₂ and UO ₂ -Ni, Nikolopuolos [1977] Surface energy measurements on UO2 – a critical review, Hall et al., JNM, 148 (1987), pp. 237-256
8	Vacancy and Interstitials Migration Energy	$\Delta H_{Vo}^{m} = 0.5 \ to \ 0.6 \ ev$ $\Delta H_{Oi}^{m} = 0.8 \ to \ 1 \ ev$ $\Delta H_{Vu}^{m} = 2.4 \ ev$ $\Delta H_{Ui}^{m} = 2.0 \ ev$	Atomic Transport Properties in U02 and Mixed Oxides (U,Pu) O2, Matzke: J. Chem. SOC., Faraday Trans. 2, 1987,83, 1121-1142
9	Vacancy and Interstitials Diffusivity	$D_{U_{vac}} = 2 * 10^{-3} \left(\frac{cm^2}{s}\right)$ $\exp\left(-\frac{2.4}{KT}\right)$ $D_{U_{Int}} = 1 * 10^{-1} \left(\frac{cm^2}{s}\right)$ $\exp\left(-\frac{2.0}{KT}\right)$	Atomic Transport Properties in U02 and Mixed Oxides (U,Pu) O2, Matzke: J. Chem. SOC., Faraday Trans. 2, 1987,83, 1121-1142
10	Vacancy Formation Energy	3 eV	The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, Turnbull et. al., JNM, 107 (168-184), [1982]
11	Gas Formation Energy	3 eV	Phase-field simulations of intragranular fission gas bubble evolution in UO ₂ under post-irradiation thermal annealing, Yulan Li [2013] Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO ₂ nuclear fuel, Larry Aagesen [2019]

12	Gas bulk diffusivity	$0.0212 \frac{nm^2}{s} \ (T = 1200k)$	The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, Turnbull et. al., JNM, 107 (168-184), [1982]
13	$K_v^{matrix} = K_g^{matrix}$ (Curvatures of the parabolas)	$7.07 * 10^{9} \frac{J}{m^{3}}$ $(Actual: 4.81 * 10^{11} \frac{J}{m^{3}})$ $9 * 10^{10} \frac{J}{m^{3}}$	Phase-field simulations of intragranular fission gas bubble evolution in UO ₂ under post-irradiation thermal annealing, Yulan Li [2013]
14	$K_v^{bubble} = K_g^{bubble}$ (Curvatures of the parabolas)		Phase-field simulations of intragranular fission gas bubble evolution in UO ₂ under post-irradiation thermal annealing, Yulan Li [2013]
15	GB Mobility	$M_o \exp\left(-\frac{Q}{RT}\right)$	Mechanistic grain growth model for fresh and irradiated UO ₂ nuclear fuel, Tonks et al., JNM V-543, 152576 [2021]
16	Mobility Prefactor	$M_o = 2.14 \pm 0.15 * 10^{-7}$	Mechanistic grain growth model for fresh and irradiated UO ₂ nuclear fuel, Tonks et al., JNM V-543, 152576 [2021]
17	Activation Energy	$290 \pm 22 \frac{Kj}{mol}$	Mechanistic grain growth model for fresh and irradiated UO ₂ nuclear fuel, Tonks et al., JNM V-543, 152576 [2021]
18	Карра, к	$\frac{3}{4} * GB_{energy} * GB_{width}$	Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Moelans, Physical Review B 78, 024113 [2008]
19	m (Mu)	$6*\frac{GB_{energy}}{GB_{Width}}$	Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Moelans, Physical Review B 78, 024113 [2008]
20	L	$\frac{4}{3} * \frac{GB_{mobility}}{GB_{width}}$	Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Moelans, Physical Review B 78, 024113 [2008]
21	GB Diffusivity	$D_{GB,Upper} = 9 * 10^{-12}$ $* \exp\left(-\frac{92}{RT}\right)$ $D_{GB,Lower} = 1.3 * 10^{-7}$ $* \exp\left(-\frac{272}{RT}\right)$ $\frac{10^{4}}{10^{14}}$ $\frac{-\text{DGB} = 9e\cdot12^{\circ}\exp(\cdot 92/RT)}{-\text{DGB} = 3.5e\cdot19e^{\circ}\exp(\cdot 193/RT)}}$ $\frac{-\text{DGB} = 3.5e\cdot19e^{\circ}\exp(\cdot 193/RT)}{-\text{DGB} = 3.5e\cdot19e^{\circ}\exp(\cdot 193/RT)}$ $\frac{10^{14}}{1000}$ $\frac{1000}{1800} = \frac{3.5e\cdot19e^{\circ}\exp(\cdot 193.58/RT)}{1800}$	On the role of grain boundary diffusion in fission gas release, D. Olander (2001), JNM, V-288, P: 137-147
22	GB Thickness	0.5 nm	Grain growth and pore coarsening in dense nano-crystalline UO2+x fuel pellets, T. Yao, 2017

Name of the	Calculation
property	
Corresponding chemical potential value for the gas concentration = 0 on the left boundary	$\mu_{gas} = V_a * \frac{\partial f_{chem_{matrix}}}{\partial c_{gas}} = V_a * k_{gas}^{matrix} * (C_{gas} - C_{gas,equilibrium})$ $= 0.0409 \ nm^3 * 3.00625e3 \left(\frac{ev}{nm^3}\right) * (0 - 2.512 * 10^{-13}) = -3.1 * 10^{-11} \ eV$
GB Diffusivity	$D_{GB,Upper} = 9 * 10^{-12} * \exp\left(-\frac{92}{RT}\right)$ $D_{GB,Lower} = 1.3 * 10^{-7} * \exp\left(-\frac{272}{RT}\right)$ $D_{GB,mean.} = 3.5 \pm 1.5 * 10^{-9} * \exp\left(-\frac{193 \pm 35}{RT}\right)$
GB Diffusivity Modeling	$\begin{split} D_{GB,modeling} &= \frac{GB_{thickness,actual} * D_{GB,actual} (= D_{GB,mean})}{GB_{thickness,modeling} * Fractionofareaunderthecurve} \\ &= \frac{0.5nm * D_{GB,actual}}{30nm * 0.2} \\ &= \frac{1}{12} * D_{GB,actual}forGB_{width} = 30nm \end{split}$
Fraction of area under the curve	$\eta_1 = \frac{1}{2} * (1 - \tanh(\frac{x}{0.3}))$ $\eta_2 = 1 - \eta_1 = \frac{1}{2} * (1 + \tanh(\frac{x}{0.3}))$ Area under the curve: $\int_0^1 16 * \eta_1^2 * (1 - \eta_1)^2 d\eta_1$ $= \int_0^1 16 * \left[\frac{1}{2} * \left(1 - \tanh(\frac{x}{0.3})\right)\right]^2 * \left[\frac{1}{2} * \left(1 + \tanh(\frac{x}{0.3})\right)\right]^2 * dx = 0.2$
Vacancy Diffusivity = 20 * Gas Diffusivity	3.5 Wall Time vs Simulation Time RMS error vs Ratio of Dv/Dg 4000 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3000 3000 500 1000
Bulk Diffusivity of Gas (in $\frac{m^2}{s}$)	$D = D_1 + D_2 + D_3 = $ $7.6 * 10^8 * \exp\left(-\frac{35250}{T}\right) + 1.7835 * 10^7 * \sqrt{\frac{\dot{F}}{Y_{Xe}}} * \exp\left(-\frac{13800}{T}\right) + 2 * 10^5$ $* \frac{\dot{F}}{Y_{Xe}}$

Diffusivity heterogeneity of gas	$\begin{split} D_{gas} &= D_g^{bulk} (1 - h_b - 8 \sum_{i=1}^n \sum_{j=1, j!=i}^n \eta_i^2 \eta_j^2) + D_g^{GB} (8 \sum_{i=1}^n \sum_{j=1, j!=i}^n \eta_i^2 \eta_j^2) \\ &+ D_g^{bubble} \pmb{h_b} \end{split}$	
Diffusivity heterogeneity of vacancies	$\begin{split} D_{vacancy} &= 20 * [D_v^{bulk}(1 - h_b - 8 \sum_{i=1}^n \sum_{j=1, j! = i}^n \eta_i^2 \eta_j^2) \\ &+ D_v^{GB} \left(8 \sum_{i=1}^n \sum_{j=1, j! = i}^n \eta_i^2 \eta_j^2 \right) + D_v^{surf} \left(16 \eta_b^2 (1 - \boldsymbol{\eta}_b)^2 \right)] \end{split}$	
Gas Concentration	$c_g = h_b * V_a * \rho_g^{bub} + h_m * v_a * \rho_g^{matrix}$	
Vacancy concentration	$c_v = h_b * V_a * \rho_v^{bub} + h_m * v_a * \rho_v^{matrix}$	
Density of gas in bubble phase	$\rho_g^{bub} = \frac{\mu_g}{v_a^2 * k_g^{bub}} + \frac{c_{g,bub}^{eq}}{v_a}$	
Density of gas in matrix phase	$\rho_g^{matrix} = \frac{\mu_g}{v_a^2 * k_g^{matrix}} + \frac{c_{g,matrix}^{eq}}{v_a}$	
Density of vacancy in bubble phase	$ ho_{v}^{bub} = rac{\mu_{v}}{v_{a}^{2} * k_{v}^{bub}} + rac{c_{v,bub}^{eq}}{v_{a}}$	
Density of vacancy in matrix phase	$\rho_v^{matrix} = \frac{\mu_v}{v_a^2 * k_v^{matrix}} + \frac{c_{v,matrix}^{eq}}{v_a}$	
Gas Mobility	$D_g * \chi_g$	
Vacancy Mobility	$D_v * \chi_v$	
Gas Susceptibility	$\chi_g = \frac{1}{v_a^2} * \left(\frac{h_m}{k_g^{matrix}} + \frac{h_b}{k_g^{bub}} \right)$	
Vacancy Susceptibility	$\chi_v = \frac{1}{v_a^2} * \left(\frac{h_m}{k_v^{matrix}} + \frac{h_b}{k_v^{bub}} \right)$	

Md Ali Muntaha, Michael Tonks University of Florida