

Introduction à la RECHERCHE OPERATIONNELLE

Partie 3 Programmation linéaire

Karine DESCHINKEL

1.Programme linéaire

- ▶ Définition: formulation d'un problème sous forme de
 - Variables de décision continues non négatives
 - **Contraintes** exprimées en fonction de ces variables
 - Fonctions linéaires (égalités, inégalités)
 - •Un objectif à optimiser (max/min)
 - Fonction linéaire des variables de décision
 - Fonction objectif/économique

Un problème de production

- ► Une entreprise a la faculté de fabriquer sur une machine donnée,travaillant 45h par semaine, 3 produits P1,P2,P3
- ► Grâce à une étude de marché, on sait que les possibilités de vente ne dépasse pas 1000, 500,1500 articles par semaine
- ► Les rendements de la machine sont respectivement pour les 3 produits 50,25,75 articles par heure.
- ► Le profit marginal net dégagé par article produit est respectivement 4,12,3 Keuros
- Trouver le programme de production maximisant les bénéfices

Programme de production

maximiser
$$z = 4x_1 + 12x_2 + 3x_3$$

sous $x_1 \leq 1000$ (1)
 $x_2 \leq 500$ (2)
 $x_3 \leq 1500$ (3)
 $3x_1 + 6x_2 + 2x_3 \leq 6750$ (4)
 $x_1, x_2, x_3, \geq 0$ (0)

(4)
$$1/50x_1 + 1/25 X_2 + 1/75 X_3 \le 45$$

PLs: Résolution graphique en 2-D

Exemple 1:

Maximiser z = x + y

sous:

$$x + 2y \ge 2$$

$$x \ge 0$$
 $y \ge 0$

Résolution graphique en 2-D

Exemple 2:

Minimiser z = x - y

sous: $1/3 x + y \le 4$

 $-2 x + 2 y \le 4$

 $x \leq 3$

 $x \ge 0$ $y \ge 0$

Résolution graphique en 2-D

Exemple 3:

Maximiser x + 1/3 y

sous: $x + y \ge 20$

 $-2 x + 5 y \le 150$

x ≥ 5

 $x \ge 0$ $y \ge 0$

Ce qu'on peut retenir des 3 exemples?

Une solution optimale

Une infinité de solutions optimales

Pas de solution optimale À distance finie

Et si ...

Pas de solution (domaine réalisable vide)

Résolution graphique en 2-D

Généralisation aux dimensions supérieures

Comment s'en servir pour résoudre un PL?

- Les contraintes du PL définissent une forme géométrique appelée polyèdre des solutions réalisables (intersection d'hyperplans ou demi espaces fermés correspondant aux contraintes d'inégalité).
- ☐ Si on pouvait énumérer tous les sommets du polyèdre, il suffirait de calculer la valeur de la fonction objectif en chaque sommet et de choisir la plus élevée
- □ La Méthode du Simplexe chemine intelligemment de sommet en sommet du polyèdre jusqu'à prouver qu'elle a obtenu une solution optimale.

Mais en Nombre Entiers, c'est très différent!

- Le domaine réalisable est un ensemble de points entiers
- Il n'y a pas d'algorithme très "efficace" pour résoudre un PLNE
- Le résoudre comme un PL est une relaxation et permet d'obtenir une borne de la solution optimale

Problème du sac à dos (knapsack)

▶ Problème :

Le problème est de remplir un sac-à-dos supportant un poids maximal P avec des objets ayant un poids p_i et un indice de satisfaction s_i de telle sorte que la satisfaction totale S soit maximale.

Quels objets doit on mettre dans le sac?

Problème du sac à dos

► Modèle :

N objets de poids p_i et de valeur s_i

N variables x_i (=1 si l'objet i est choisi, 0 sinon)

Maximiser
$$\sum_{(i=1, i=N)} s_i x_i$$

sous $\sum_{(i=1, i=N)} p_i x_i \le P$
 $x_i \in \{0,1\}$

Problème du sac à dos

- ► Algorithmes de résolution :
 - Choix aléatoire des objets
 - Algorithme glouton : Choix en fonction du rapport p_i / s_i
 - Trier par ordre croissant des p_i / s_i
 - J:=0
 - Prendre un objet j (dans la liste triée) tant que $\sum_{(i=1, i=i)} p_i \le P$
 - Programmation dynamique
 - Algorithme Séparation/Evaluation (Branch&Bound)

Problème du sac à dos

Exemple:

P=50

Objet	Valeur	Poids	Rapport
1	60	10	1/6
2	100	20	1/5
3	120	30	1/4

Solution obtenue avec la méthode gloutonne : Objets 1 et 2, valeur totale = 160

Solution optimale:

Objets 2 et 3, valeur totale = 220

Problème de sac à dos

► Applications :

- problème de recouvrement
- problème de découpe
- cryptographie

- ...