Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

12 settembre 2016

Problema 1. Sia $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ e sia $x = x_1 x_2 \dots x_n$ una parola in Σ^* .

Si consideri una caccia al tesoro in cui il tesoro, rappresentato dal numero intero 0, può esistere o meno e in cui la parola *x* contiene la catena di indizi che portano a scoprire il tesoro, se esiste, o a concludere che il tesoro non esiste nel caso contrario. In particolare

- il primo carattere x_1 di x (un intero compreso fra 0 e 9 oppure un \square) è il primo indizio: se $x_1 = 0$ allora il tesoro è stato trovato, se $x_1 = \square$ allora il tesoro non esiste, altrimenti il prossimo indizio della caccia al tesoro è nella posizione $1 + x_1$ della parola x (ossia, il prossimo indizio è il carattere x_{1+x_1});
- in generale, se dopo un certo numero di passi non è ancora stato trovato il tesoro e non si è capito che esso non esiste, e, dunque, si è arrivati a leggere il carattere x_i , allora: se $x_i = 0$ allora il tesoro è stato trovato, se $x_i = \square$ allora il tesoro non esiste, altrimenti il prossimo indizio della caccia al tesoro è nella posizione $i + x_i$ della parola x (ossia, il prossimo indizio è il carattere x_{i+x_i}).

Si chiede, dunque, di progettare una macchina di Turing che, con input $x \in \Sigma^*$, decide se, in accordo alle regole appena descritte, x contiene il tesoro.

Problema 2. Si consideri il problema seguente: dati un grafo non orientato G = (V, E) ed un intero $k \in \mathbb{N}$, decidere se V può essere partizionato in k sottoinsiemi V_1, \ldots, V_k ciascuno dei quali induce un sottografo completo in G.

Dopo aver formalizzato la definizione del suddetto problema Γ mediante la tripla $\langle I_{\Gamma}, S_{\Gamma}, \pi_{\Gamma} \rangle$, e dopo aver ricordato la definizione del problema COLORABILITÀ, si consideri la seguente funzione $f: I_{\text{COL}} \to I_{\Gamma}$: per ogni $\langle G = (V, e), k \rangle \in I_{\text{COL}}$,

$$f(G,k) = \langle \overline{G} = (V, \overline{E}), k \rangle,$$

dove $\overline{E} = \{(u, v) : u \in V \land v \in V \land (u, v) \notin E\}.$

Si dimostri che f è una riduzione polinomiale da COL a Γ .

Problema 3. Si considerino i due problemi seguenti:

- a) dati un grafo non orientato G = (V, E) ed un intero $k \in \mathbb{N}$, decidere se G ha un Vertex Cover di cardinalità > k;
- b) dati un grafo non orientato G = (V, E) ed un intero $k \in \mathbb{N}$, decidere se ogni Vertex Cover in G ha cardinalità > k.

Dopo aver formalizzato la definizione dei suddetti problemi mediante la tripla $\langle I, S, \pi \rangle$, si collochi ciascuno di essi nella corretta classe di complessità.

Soluzione

Problema 1. Ad ogni passo, leggendo il carattere c nella cella scandita dalla testina, la macchina T che decide il problema deve operare come segue:

- se c = 0, allora T entra nello stato di accettazione q_A e termina;
- se $c = \square$, allora T entra nello stato di rigetto q_R e termina;
- se c è un valore compreso fra 1 e 9, allora T sposta la sua testina a destra di c posizioni.

Per eseguire quanto indicato nel terzo punto sopra, dotiamo T, oltre che dello stato iniziale q_0 , dello stato di accettazione q_A e dello stato di rigetto q_R , degli stati q_1 , q_2 , q_3 , q_4 , q_5 , q_6 , q_7 , q_8 e q_9 : quando T è nello stato q_i , con $1 \le i \le 9$, indipendentemente da quello che legge la sua testina, sposta la testina a destra di una posizione ed entra nello stato q_{i-1} .

Quindi, la macchina T è descritta dalle quintuple seguenti:

$$\langle q_0, 0, 0, q_A, ferma \rangle$$
, $\langle q_0, \Box, \Box, q_R, ferma \rangle$, $\langle q_0, i, i, q_i ferma \rangle \ \forall \ 1 \le i \le 9$, $\langle q_i, x, x, q_{i-1}, destra \rangle \ \forall \ 1 \le i \le 9$, $\forall \ x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{\Box\}$.

Problema 2. Il problema decisionale considerato, che chiameremo PARTIZIONE IN CLIQUE (in breve *PIC*), può essere formalizzato come di seguito descritto:

- $I_{PIC} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \in \mathbb{N} \};$
- $S_{PIC}(G,k) = \{\{V_1,\ldots,V_k\} : \forall i=1,\ldots,k \ [V_i \subseteq V] \land \cup_{i=1}^k V_i = V \land \forall i,j=1,\ldots,k : i \neq j \ [V_i \cap V_j = \emptyset]\};$
- $\pi_{PIC}(G, k, S_{PIC}(G, k)) = \exists \{V_1, \dots, V_k\} \in S_{PIC}(G, k) : \forall i = 1, \dots, k \ \forall u, v \in V_i \ [\ (u, v) \in E \].$

Ricordiamo, ora, che il problema COLORABILITÀ consiste nel chiedersi, dati un grafo non orientato G = (V, E) ed un intero positivo k, se è possibile colorare ciascun nodo di G con uno di (al più) k colori possibili in modo tale che i nodi di ciascuna coppia di nodi adiacenti abbiano ricevuto colori diversi. Una delle possibili formalizzazioni del problema COLORABILITÀ è la seguente:

- $I_{COL} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \in \mathbb{N} \};$
- $S_{COL}(G,k) = \{\{V_1,\ldots,V_k\} : \forall i=1,\ldots,k \ [V_i \subseteq V] \land \cup_{i=1}^k V_i = V \land \forall i,j=1,\ldots,k : i \neq j \ [V_i \cap V_j = \emptyset]\};$
- $\pi_{COL}(G, k, S_{COL}(G, k)) = \exists \{V_1, \dots, V_k\} \in S_{COL}(G, k) : \forall i = 1, \dots, k \ \forall u, v \in V_i \ [\ (u, v) \notin E \].$

Osserviamo, ora, che istanze $\langle G=(V,E),k\rangle$ di COL in cui $k\geq |V|$ sono sempre, banalmente, istanze sì: infatti, in tal caso, è sufficiente colorare ciascun nodo del grafo con un colore diverso. Pertanto, il problema è **NP**-completo nel caso in cui k<|V|. Sia, dunque, $\langle G=(V,E),k\rangle$ una istanza di COLORABILITÀ tale che k<|V| e sia $f(G,k)=\langle \overline{G}=(V,\overline{E}),k\rangle$ l'istanza corrispondente di PIC.

Se $\langle G = (V, E), k \rangle$ è una istanza sì di COLORABILITÀ, allora esiste una partizione di V in k insiemi V_1, \ldots, V_k tale che, per ogni $i = 1, \ldots, k$ e per ogni coppia di nodi u e v contenuti entrambi in V_i , si ha che $(u, v) \notin E$.

Ma, per definizione di \overline{E} , questo significa che, per ogni $i=1,\ldots,k$ e per ogni coppia di nodi u e v contenuti entrambi in V_i , si ha che $(u,v)\in \overline{E}$: quindi per ogni $i=1,\ldots,k$, V_i è un sottografo completo di \overline{G} . In conclusione, $\{V_1,\ldots,V_k\}$ è una partizione di \overline{G} in k sottografi completi e questo significa che $\langle \overline{G}=(V,\overline{E}),k\rangle$ è una istanza sì di PIC.

Viceversa, se $\langle \overline{G} = (V, \overline{E}), k \rangle$ è una istanza sì di PIC, allora esiste una partizione di V in k insiemi V_1, \ldots, V_k tale che, per ogni $i = 1, \ldots, k$ e per ogni coppia di nodi u e v contenuti entrambi in V_i , si ha che $(u, v) \in \overline{E}$. Ma, per definizione di \overline{E} , questo significa che, per ogni $i = 1, \ldots, k$ e per ogni coppia di nodi u e v contenuti entrambi in V_i , si ha che $(u, v) \notin E$: quindi per ogni $i = 1, \ldots, k$, V_i è un insieme indipendente in G ed i suoi nodi possono essere colorati con lo stesso colore. Quindi, G può essere colorato con k colori e, dunque, $\langle G = (V, E), k \rangle$ è una istanza sì di COLORABILITÀ. Questo dimostra che f è una riduzione da COLORABILITÀ a PIC.

Per calcolare f è sufficiente calcolare l'insieme \overline{E} e, quindi, considerare tutte le coppie di nodi e, per ciascuna di esse, inserire l'arco corrispondente in \overline{E} se e soltanto se esso non è in E. L'algoritmo che calcola f è pertanto descritto nel seguente frammento di codice:

L'algoritmo appena descritto richiede $O(|V|^2|E|)$ passi e, quindi, calcolare f richiede tempo polinomiale in |G|. Questo termina la prova che f è una riduzione polinomiale da COLORABILITÀ a PIC.

Problema 3. Indicheremo i due problemi in esame, rispettivamente, con l'acronimo Γ_a e Γ_b . Entrambi i problemi sono definiti sull'insieme di istanze I_{Γ} e sull'insieme di soluzioni possibili Γ di seguito descritti:

```
• I_{\Gamma} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \in \mathbb{N}^+ \};
```

•
$$S_{\Gamma}(G,k) = \{V' : V' \subseteq V\} \}.$$

I predicati dei due problemi sono, invece, distinti.

Il predicato π_{Γ_a} del problema Γ_a è molto simile al predicato che definisce il problema VERTEX COVER, e differisce da quest'ultimo soltanto per la cardinalità del vertex cover richiesto:

$$\pi_{\Gamma_a}(G,k,S_{\Gamma}(G,k)) = \exists \ V' \in S_{\Gamma}(G,k) : \ |V'| > k \ \land \ \forall \ (u,v) \in E \ [\ u \in V' \ \lor \ v \in V' \].$$

Poiché ogni grafo G=(V,E) ha, banalmente, un vertex cover di |V| nodi (e, altrettanto banalmente, non ha un vertex cover con più di |V| nodi), per decidere se una istanza $\langle G=(V,E),k\rangle$ di Γ_a è una istanza sì è sufficiente verificare se k<|V|: in caso affermativo $\langle G=(V,E),k\rangle$ è una istanza sì, in caso negativo $\langle G=(V,E),k\rangle$ è una istanza no. Questo prova che il problema Γ_a è in **P**.

Il predicato π_{Γ_b} del problema Γ_b , pur essendo collegato al predicato di VERTEX COVER, è sostanzialmente diverso da esso in quanto richiede che *ogni* soluzione possibile soddisfi una certa proprietà. In particolare, π_{Γ_b} richiede che, se una soluzione possibile è un vertex cover, allora la sua cardinalità deve essere maggiore di k:

$$\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \forall V' \in S_{\Gamma}(G, k) : \left[\forall (u, v) \in E \left[u \in V' \lor v \in V' \right] \rightarrow |V'| > k \right],$$

che può essere anche scritto

$$\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \forall V' \in S_{\Gamma}(G, k) : \left[\neg (\forall (u, v) \in E \left[u \in V' \lor v \in V' \right]) \lor |V'| > k \right].$$

Consideriamo ora la negazione del predicato π_{Γ_h} :

$$\neg \left[\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \exists \ V' \in S_{\Gamma}(G, k) : \ \forall \ (u, v) \in E \ \left[\ u \in V' \ \lor \ v \in V' \ \right] \ \land \ |V'| \le k. \right]$$

Osserviamo, ora, che detti I_{VC} , S_{VC} e π_{VC} , rispettivamente, l'insieme delle istanze, l'insieme delle soluzioni possibili e il predicato del problema VERTEX COVER, si ha che $I_{VC} = I_{\Gamma}$ e, per ogni $\langle G = (V,E),k \rangle \in I_{\Gamma}$, $S_{VC}(G,k) = S_{\Gamma}(G,k)$ e $\neg [\pi_{\Gamma_b}(G,k,S_{\Gamma}(G,k)) = \pi_{VC}(G,k,S_{VC}(G,k))$. Questo significa che il problema Γ_b^c , complemento di Γ_b , coincide con il problema VERTEX COVER. Quindi, Γ_b^c è **NP**-completo e Γ_b è co**NP**-completo.