Projective transformations: pedestrian's point of view

§0. Projective transformations

The group of projective transformations of n-dimensional projective space $\mathbf{R}P^n$ is $PGL(n,\mathbf{R})$. It is a factor of GL(n+1,R) by matrices which do not move any line, i.e. it is the factor of SL(n+1,R) by the centre of this group. This is immediate consequence of definition of projective space as set of lines in \mathbf{R}^{n+1} passing through the origin—the linear transformations in $GL(n+1,\mathbf{R})$ induces projective transformations. If $[x^0:x^1:\ldots:x^n]$ —homogeneous coordinates in $\mathbf{R}P^n$ and u^1,u^2,\ldots,u^n not-homogeneous coordinates in $\mathbf{R}P^n$ such that

$$u^{i} = \frac{x^{n}}{x^{0}}, \quad i = 1, \dots, n, \ x^{0} \neq 0$$

(in a chart of $\mathbb{R}P^n$) then projective transformation in homogeneous coordinates is

$$x^{\mu} \mapsto A^{\mu}_{\nu} x^{\nu} \quad (\mu, \nu = 0, 1, 2, \dots, n)$$
 (0.2)

and in nothomogeneous coordinates it will be

$$u^i \mapsto \frac{A_k^i u^k + t^i}{1 + \omega_r u^r} \tag{0.3}$$

The definitions of projective group follows from (1).

Let us stand on naive point of view,. Projective transformations has to be understood in the following way:

Projective transformations are transformations which transform lines to lines

The transformation (3) transforms an arbitrary line to the line*. This is because line in $\mathbb{R}P^n$ it is a plane in \mathbb{R}^{n+1} , and the transformation (0.2) transforms planes to planes.

Hence it is projective transformation in the naive sense.

Question: Is the converse true? Is it true that any transformations transforming lines to lines are all described by (3)?

Yes, it is

This statement and its proof sure was known centuries ago, but not so easy to find it in modern textbooks. I show that this is true, on infinitesimal level. All calculations are elementary.

§1. Infinitesimal transformations of lines to lines

Let F be a transformation of $\mathbf{R}P^n$ which transforms straight lines to straight lines. (In other words a vector field $\mathbf{F} = F^m(u) \frac{\partial}{\partial u^m}$ is considered).

Take an arbitrary line: $s_r u^r = 1$. Write down the condition that this line transforms to a line:

$$s'_m u^m - 1 = 0$$
 if and only if $s_m u'^m - 1 = 0$ (1.1)

^{*} I do not want to make this statement exact, involving "infinities"

where $s'_m = s'_m(s_1, \ldots, s_n)$ are coefficients of the transformed line, u'^m are coordinates of transformed points:

$$s'_m(s) = s_m + \varepsilon L_m(s), \quad u'^m = u^m + \varepsilon F^m(u), \quad (\varepsilon^2 = 0)$$
(1.2)

(The condition $\varepsilon^2 = 0$ encodes the fact that we consider infinitesimal small magnitudes of the first order only) Taking care about proportionality coefficient in (1.2) we come to the equation:

$$(s_m + \varepsilon L_m(s))u^m - 1 = (1 + \varepsilon \Lambda(u, s))(s_m(u^m + \varepsilon F^m(u) - 1)), \qquad (\varepsilon^2 = 0)$$

Due to $\varepsilon^2 = 0$ this equation is equivalent to the equation:

$$L_m(s)u^m - s_m F^m(u) = \Lambda(s, u)(s_m u^m - 1)$$
(1.3)

Solve this equation in polynomials (Why in polynomials?).

§2. Description of vector fields transforming lines to lines

The equation (1.3) means that $(s_m u^m - 1)$ divides $L_m(s)u^m - s_m F^m(u)$.

We have to find polynomials $F^m(u)$ which obey this equation, tio.e. F such that there exist polynomials (Why polynomials?) L_m , Λ such that the equation (2.1) is obeyed.

It is linear equation. Solve it in steps

I case. 0-degree polynomials: $F^m(u) = F^m$:

$$L_m(s)u^m - s_m F^m = \Lambda(s, u)(s_m u^m - 1)$$

We see that arbitrary F^m obeys the equation. (We can put $L_m(s) = s_m s_r F^r$, $\Lambda = s_r F^r$)

II case. First degree polynomials: $F^m(u) = F_p^m u^p$. Then

$$L_m(s)u^m - s_m F_p^m u^p = \Lambda(s, u)(s_m u^m - 1)$$

We see that arbitrary F_p^m obeys the equation. (We can put $L_m(s) = F_m^p s_p$, $\Lambda = s_r F^r$)

III case. Second degree polynomials: $F^m(u) = F_{pq}^m u^p u^q$. Then

$$L_m(s)u^m - s_m F_{pq}^m u^p u^q = \Lambda(s, u)(s_m u^m - 1)$$

Solve this equation. Let $\Lambda(s, u) = L(s) + L_k(s)s^k + \ldots$ Comparing zeroth order terms with respect to u we come to condition $\Lambda(s) = 0$. Comparing terms of the first order we come to the equation:

$$L_m(s)u^m = -\Lambda_k(s)s_k$$
, i.e. $\Lambda_m(s) = -L_m(s)$

Now looking on second order terms we come to

$$-s_m F_{pq}^m u^p u^q = \mathcal{L}_k(s) s^k s_m u^m = -L_k(s) u^k s_m u^m, i.e.$$

$$2F_{pq}^m = L_p \delta_q^m + L_q \delta_p^m$$

We come to solution:

$$F_{pq}^{m} = \frac{1}{2} \left(t_{p} \delta_{q}^{m} + t_{q} \delta_{p}^{m} \right)$$
, where t_{i} are constants

where we can put $L_r(s) = t_r$, $L(s,r) = -t_r$:

IV and the last case. Show that in the higher degrees there are not solutions. Indeed let F is of the order k over u with $k \geq 3$. Then left hand side posseses terms of first degree and third degree over u. Hence Λ cannot be a polynomial. If degree of E is less or equal to n then the right hand side possesses the terms of the order E and E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the terms of the order E and E are the possesses of the order E and E are the possesses of the order E and E are the possesses of the order E and E are the possesses of the order E are the order E and E are the order E and E are the order E are the order E and E are the order E are the order E and E are the order E and E are the order E and E are the order E are the

Collecting all the cases we come to the answer

The algebra of transformations (vector fields) which transform line to the line is the following:

$$F^{m}(u) = r^{m} + a_{p}^{m} u^{p} + \frac{1}{2} (t_{p} \delta_{q}^{m} + t_{q} \delta_{p}^{m}) u^{p} u^{q}.$$

One can easy see that this algebra coincides with algebra of infinitesimal transformations from (0.3)