

Philosophische Fakultä

Krippendorff's Alpha

NLP-Taskforce 28.05.2025

1. Coincidence Matrix

	sample_1	sample_2	sample_3	sample_4	sample_5	sample_6
Annotator 1	1	1	4	3	5	*
Annotator 2	2	2	1	3	5	3

 \longrightarrow

remove unpaired labels, create coincidence matrix:

	1	2	3	4	5
1					
2	2				
3			1		
4	1				
5					1

2. Difference Functions

- nominal: agreement = 0, disagreement = 1
- interval: $(v1 v2)^2$
- ordinal: $\left(\sum_{g=v1}^{g=v2} ng \left(\frac{nv1+nv2}{2}\right)\right)^2$

example: weighing of coincidence matrix according to nominal and interval function

	1	2	3	4	5	
1	0	1	1	1	1	
2	1	0	1	1	1	
3	1	1	0	1	1	
4	1	1	1	0	1	
5	1	1	1	1	0	

	1	2	3	4	5
1	0		4	9	16
2	1	0	1	4	9
3	4	1	0	1	4
4	9	4	1	0	1
5	16	9	4	1	0

3. Complete Formula

$$\alpha = 1 - \frac{D_o}{D_e}$$

Coincidence Matrix (see slide 1) with margins

	1	2	3	4	5	Σfr
1		2		1		3
2	2					2
3						2
4	1					1
5					1	2
Σ fr	3	2	2	1	2	n=10

Weight for each value pair

	1	2	3	4	5
1	0			9	16
2		0		4	9
3	4	1	0	1	4
4	9	4	1	0	1
5	16	9	4	1	0

- D_o : sum of all observed disagreements in one triangle (weighed by difference function), example: 2*1 + 1*9 = 11
- D_e: sum of all weighed expected disagreements (normalized):

$$\left(\frac{1}{n-1}\right)\sum_{v_1=1,v_2=1}^{v} n_{v_1} n_{v_2} \partial$$

example:

$$de = \frac{1}{9}((3 * 2 * 1) + (3 * 2 * 4) + (3 * 1 * 9) + (3 * 2 * 16) + (2 * 2 * 1) +$$

$$(2*1*4) + (2*2*9) + (2*1*1) +$$

$$(2*2*4) + (1*2*1)) =$$

$$\frac{1}{9}(6+24+27+96+4+8+36+2+16$$

$$+2) = \frac{221}{9} = 24.56$$

$$\alpha = 1 - \frac{11}{24.56} = 1-0.45 = 0.55$$

4. Focus: Expected Disagreement

$$D_e = \left(\frac{1}{n-1}\right) \sum_{v_1=1, v_2=1}^{V} n_{v_1} n_{v_2} \partial$$

- n: number of annotations
- nv1, nv2: total number of label 1, total number of label 2
- ∂: difference function

4. Focus: Expected Disagreement

De =
$$\left(\frac{1}{n-1}\right) \sum_{v=1,v=1}^{V} n_{v1} n_{v2} \partial$$

- 1. Iterate through all possible label pairs: 1,2 / 1, 3 / 1,4 / ... / 4,5
- 2. For e.g. 1,2: calculate number of ways the pair 1,2 can be made 3*2
- 3. Weigh this product by the difference function (e.g. $(1-2)^2 = 1^2$): 3*2*1
- 4. Sum up all of these products for all label pairs
- 5. Normalize: divide sum by number of annotation samples minus one

Takeaway: more categories – more products/higher weights – higher expected disagreement; intuition: less labels, higher chance of selecting the same label by chance

5. Summary

$$\alpha = 1 - \frac{D_o}{D_e}$$

1	perfect agreement	Do: low if few disagreements
0	agreement no better than chance	De: high, if many classes and labels are equally distributed
-1	systematic disagreement	