This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(1) Int. Cl. H 01 1

经日本分類 99(5) C 23 99(5) E 3 99(5) G 0

19日本国特許庁

①特許出顧公告 昭48-30709

公

40公告 昭和48年(1973)9月22日

発明の数 1

(全4頁)

64半導体装置の製造方法

到特

顧 昭42-40987

13日

顧 昭42(1967)6月28日

個発 明

者 松下真智子

国分寺市東恋ケ窪1の280株式

会社日立製作所中央研究所内

同

古賀康史

同所

同

西松茂

同所

同

徳山嶷

同所

切出 願 人 株式会社日立製作所

東京都千代田区丸の内1の5の1

10代 理 人 弁理士 蒋田利幸

図面の簡単な説明

図面はそれぞれ本発明の一実施態様を示したも のであつて、第1図はSi 基板上に絶縁物を2重20いない。 に形成せしめた場合の縦断面図、第2図はC-V 特性曲線図を示したものである。

発明の詳細な説明

本発明は表面安定化した半導体装置の製造方法 の改良に関するもので、さらに詳言すれば特に半 25 のごとき第1 の絶縁物被膜上に第2 の絶縁物被膜 導体基板表面の電荷密度を任意の値に制御し得る 手段を備えた半導体装置の製造方法に関するもの であり、これにより電気的特性の極めて優れた半 導体装置を提供せんとするものである。

の外部雰囲気に影響されやすく、それゆえ初期の 特性を維持するために、半導体基板表面に何らか の方法により各種の保護被膜を形成させていた。

例えばシリコン半導体を例に説明すれば、その 表面安定化の一手段として、シリコン基板表面に 35 半導体基板表面に電子を誘起することを性質を示 SiOzやSi, Na 等の絶縁被膜を保護被膜として 形成させることが知られている。

2

例えばSiO2は、シリコン基板表面を直接酸化 するか、あるいはオルガノオキシシランのごとき シリコン化合物を熱分解することにより容易に形 成させ得るが、このようなシリコンの酸化被膜や 5 窒化被膜を形成させると、通常、シリコン基板表 面の電子濃度が高くなりn形化する。

従来、このn形化のため、およびそのn形化の 程度が外部から印加される電界によつて容易に変 化するため、シリコン素子の電気的特性を長期に 10 わたつて十分に安定化することは不可能であつた。 とくに、被膜に含まれる微少なイオンが特性に影 響を及ぼす半導体素子、例えば電界効果形トラン ジスタの場合には問題が多い。

この電子濃度の分布、すなわちュ形化の程度を 15 自由に広い範囲にわたつて制御し、さらには基板 内部の特性と表面の特性が同一な、いわゆる電気 的に中性な電子又は正孔濃度の分布を有する基板 表面を形成する技術、あるいはさらに正孔分布を 増加させ、P形化する簡便な技術は従来得られて

本発明は上記従来の欠点を除去するためになさ れたもので、半導体基板表面の電荷密度を任意に 変化すべく本発明者らが種々実験した結果、あら かじめ基板表面上に形成したSiO,又はSisNa としてアルミナを被着したところ、前記基板表面 の電子濃度の分布を任意に変化し得る事実を見出

すなわち、SiO2又はSi3N4のごとき絶縁物 周知のごとく、半導体装置の電気的特性は、そ 30 は下地である半導体基板表面に電子を誘起するご とき性質を示すが、アルミナ被膜は逆にこれを打 消すよりな性質、すなわち正孔を誘起するごとき 特異な性質を示すことを見出したものである。

> 本発明は上記事実にもとすいてなされたもので、 **す絶縁物被膜と正孔を誘起するごとき性質を示す** 絶縁物被膜を交互に少なくとも各一層以上前記半

, ř

導体基板上に形成せしめ、これら絶縁物被膜の膜 厚を任意に変化させることにより、半導体基板表 面の電子濃度又は正孔濃度の分布、すなわち表面 電荷密度を所望の値に制御し得るようになしたも のである。

これにより、従来の絶縁物被膜を形成させた場 合に生ずる半導体基板表面の n 形化の程度を押え ること、すなわち基板表面に誘起された電子濃度 の分布を低下させること、さらには基板内部と同 一の電子又は正孔の磯度分布をもたらす状態にす 10 被膜 2 を形成せしめ、さらにその上に 1 2 0 3 被 ること、さらに進んで正孔を誘起しP形化するこ とが可能となつた。

半導体基板表面の電子又は正孔の濃度分布の程 度は、周知のごとくMIS(金属ー絶録物一半導 体)構造の素子を作成し、表面電荷密度N FRを求 15 めることにより容易に知ることができる。例えば 従来の技術によつてシリコン半導体111表面に SiOz膜を被着したときには、その表面は通常n 形化され(電子が誘起される)、NFBは101~2 /cdを示す。また、正孔が誘起され、P形化され 20 た状態においては、N rm は負の値を示し、さら にまた電子も正孔も何ら銹起されず、基板内部と 同一の電子又は正孔の濃度分布をもたらす状態に おいてはNFR = Oである。

たごとく、半導体基板表面にSiO2を形成させる と基板表面は n 形化され、その N FB は 1 0 1 1~12 /cmを示すが、SiO2の代りにAl2O3を形成せ しめると、1 例として-2×1012/cdを示した。 すなわちAℓ2O3 は負イオンを含有し、基板表面※

※ に正孔を誘起するごとき性質を示した。 したがつ て、Aℓ2O3 のように基板表面に正孔を誘起する ごとき性質を有する絶縁物被膜とSi O₂のように 電子を誘起するごとき性質を有する絶縁物被膜を 5 基板表面に組合せて用いるならば、基板表面の電 荷密度を任意の値例えば±2×10¹¹/cmlの範囲 に設定することができる。

第1図にその一実施例をあげ本発明を具体的に 説明する。 同図は S i 基板 1 の 1 1 1 面上に S i O₂ 膜3を形成せしめた構造のもので、かかる構造と なすことによりSi 基板表面の n 形化を防止する ことができる。すなわち、これは微量ながらSiO₂ 中に含まれるナトリウムイオンのごとき正イオン がA&2 03 中の負イオンによつてあたかも電気的 効果が打消されるどとき現象を示すからである。 したがつて、SiО₂ 膜とA&₂О₃ 膜の膜厚を相互 に変化させることにより、換言すれば上記各被膜 中にそれぞれ含まれる正又は負イオンの相対量を 変えることによりNFB の符号および絶対値を任 意の値に制御することができる。

上記第1図の構造において、SiO₂ , Aℓ₂O₃ の厚さを変化させ、これら絶縁物被膜上に金属膜 を設けいわゆるMIS構造の素子を作成し、シリ 本発明の原理をさらに詳述すれば、先に説明し 25 コン基板を(+)として直流電圧を加え、とれに 交流100Kc/sの微少電圧を重畳しC(容量) - V (電圧)特性を求めたところ、第2図に示す ごとき結果が得られた。同図において、各特性曲 線とそれに対応する測定試料の関係は下記の第1 表の通りである。

表

曲線番号	Si基板	比抵抗			緑	物
1	n 形	1 Ω—an		A & 2 O 3	約5	1 0 0 Å
2	p形	100 Ω—cπ		A & 2 O 3		000Å
3	p形	6Ω—ст	SiO2			O ₃ 約4000A
4	p形	6 Ωcan	S i O2	3806Å	+ A l 2	O ₃ 約4000Å

かかる特性曲線図から、アルミナ被膜は基板表 面に正孔を誘起するごとき性質を有していること がわかる。すなわち、曲線3および4を参照すれ40 ば明らかなごとく、絶縁物被膜の膜厚を変化させ るととにより基板表面の電子又は正孔の濃度分布 すなわち表面電荷密度を任意に変化させることが できる。

なお、上記実施例において、Si Oz はSi基板表 面の高温酸化により、またAℓ2〇。はトリエトキ シアルミニウムの加熱分解により形成せしめたも のであるが、かかる被膜の形成はその他周知の手 段により形成せしめるととができ、いずれの方法 でもよい。

また、上記実施例には2種の異なる絶縁物被膜

されているため基板表面には従来のようにPN接 合が形成されない。したがつて、従来のようにn 型拡散層の外周部基板表面領域にP型不純物を拡 散する必要がなく素子を小型化し得るすぐれた特

б

絶縁物被膜を例えば上記実施例のごとく2重層 構造となした場合を例に、本発明の応用例を要約 して下記に列挙すれば、

- 半導体上の第1層がSiO₂、第2層がAℓ₂O₃ である場合。
- (2) 半導体上の第1層がAl2O3、第2層がSiO2 である場合。
- (3) 上記(1),(2)において、半導体内に接合構造を 有し、2層の絶縁物被膜を通してあけられた孔 によつて基板の目的領域に金属配線を作り、と れが2層の被膜上で相互に連結して素子または 回路を形成する場合。
- (4) 上記(3)において、配線金属が第1層目と第2 層目の中間に存在する場合。
- 例えばP₂O₅のごとき不純物を少量添加して、 安定化処理を加えたもので、第2層がAl2Os である場合。
- (6) 上記(1)において、SiO2の代りにSis Neを 用いた場合。

等があげられる。しかしながら本発明はこれらに 限定されるものでないことは上述の通りである。 **釣特許請求の範囲**

1 半導体基板表面にアルミナ膜を被着した後、 領域に形成された正孔層を打消さない程度に上記 アルミナ膜上に酸化硅素層を被着することを特徴 とする半導体装置の製法。

をそれぞれ1層づつ1組形成させたが、本発明は かかる構造に限定されるものでなく、要は電気的 に相異なる性質を有する2種の絶縁物被膜をそれ ぞれ少なくとも1層形成させればよいのであつて、 所望により2層以上の多重絶縁物層構造となし得 5 長を有している。 ることはもちろんのこと、絶縁物被膜の形成も第 1図のごとく第1層を必ずしもSiO2構造となす 必要はなく、A & 2 O3 の上に S i O2 を形成させて も同等の結果が得られることは云うまでもない。 さらにまた、上記実施例には絶縁物被膜の組合せ 10 としてSiO2とAl2O3の例を示したが、Si3N4 とAℓ203の組合せにおいても同等の作用効果が 認められた。

以上の説明は、便宜上Si半導体に対してなさ れたが、その他Ge , GaAs 等の半導体について 15 もSiの場合と同等の作用効果が認められ、広く 半導体一般に応用し得るものである。その代表的 応用例として特に電界効果形トランジスタに適用 すれば画期的な特性を有する装置を得ることがで きる。たとえば、n ーチャンネル電界効果型トラ 20 (5) 上記 2層で、第1層は SiO₂であり、これに ンジスタについて述べるなら、従来の技術では主 としてSiOz膜を絶縁層としているため、下地半 導体基板表面領域には n ーチヤンネルが形成され デプレツション (depletion) 型構造のもの が得られるにすぎなかつた。しかしながら、本発 25 明によれば、上記基板表面にはpーチャンネルが 形成されるためエンハンスメント(enhancement) 型構造のものが得られ、画期的な電界効果型トラ ンジスタを実現することができる。デプレッショ ン型に比ペェンハンスメント型がすぐれていると 30 上記アルミナ膜被着によつて上記半導体基板表面 とは周知の通りであり、電力損失のきわめて少な いトランジスタが得られる。また、PNP型トラ ンジスタについて述べるなら、従来のものは半導 体基板表面にSiO₂を形成させた のち基板側面 にPN接合が露出しないようにn型拡散層の外周 35 部基板表面領域にP型不純物を拡散せしめ上記 n 型拡散層から SiO2 膜の形成により基板表面に形 成されたnーチャンネルに通ずる導電層を分断し、 電流が基板周辺に漏れないようにしていた。した がつて、素子自体の大きさを小型化するりえに支 40 障をきたすことはもちろんのこと、電流漏れを防 止するために拡散工程を増設しなければならない といつた欠点を有していた。しかしながら、本発 明によれば基板表面領域にPーチャンネルが形成

69引用文献

特 公 昭40-1381

公 昭44-17937

特 公 昭44-18980

IBM Journal of Reseach & Development 8 (4) 1964.9 P376~384

電子材料 5 (7) 1966.7 P11~12

C. B. S.

7

昭和41年電気四学会連合大会予稿集版1254 MOS 造のMetal-Oxide によるPassivation

