Appunti Fisica I

Luca Seggiani

18 Marzo 2024

1 Resistenza fluidodinamica

Un fluido (quindi un liquido o gas) esercita una forza di resistenza \vec{R} su di un oggetto che si muove immerso in esso. La direzione di \vec{R} è opposta alla direzione \vec{v} del moto dell'oggetto relativo al fluido. Il suo modulo dipende invece dalle caratteristiche del fluido, dalla forma dell'oggetto immerso e dalla sua velocità.

Proporzionalità diretta

Generalmente, in un fluido possiamo applicare una qualche proporzionalità diretta del tipo:

$$\vec{R} = -\beta \vec{v}$$

Ad esempio, volessimo modellizzare il moto di una particella in un fluido, con resistenza proporzionale alla velocità, avremo l'equazione differenziale:

$$m\frac{dv}{dt} = -\beta v + mg \Rightarrow \frac{dv}{dt} = -\frac{\beta}{m}v + g$$

la cui omogenea associata è:

$$\frac{dv}{dt} = -\frac{\beta}{m}v$$

L'omogenea è a variabili separabili, e abbiamo quindi:

$$\frac{dv}{v} = -\frac{\beta}{m}dt \Rightarrow \int \frac{dv}{v} = \int -\frac{\beta}{m}dt \Rightarrow \log v = -\frac{\beta}{m}t + A, \quad v(t) = Ae^{-\frac{\beta}{m}t}$$

La soluzione generale si ottiene imponendo la condizione di regime (velocità costante):

$$\frac{dv}{dt} = 0 \Rightarrow 0 = -\frac{\beta}{m}v_l + g, \quad v_l = \frac{mg}{\beta}$$

da cui ricaviamo la soluzione globale:

$$v(t) = Ae^{-\frac{\beta}{m}t} + v_l = Ae^{-\frac{\beta}{m}t} + \frac{mg}{\beta}$$

A questo punto possiamo imporre le nostre condizioni iniziali. Assumiamo che la velocità del corpo all'istante t=0 sia nulla:

$$0 = A + \frac{mg}{b}, \quad A = -\frac{mg}{b}$$

da cui otteniamo:

$$v(t) = -\frac{mg}{b}e^{-\frac{\beta}{m}t} + \frac{mg}{\beta} = \frac{mg}{b}(1 - e^{-\frac{\beta}{m}t})$$

Proporzionalità quadratica

Nel caso di corpi non piccoli che si muovono a velocità elevate, la resistenza \vec{R} è circa proporzionale a v^2 invece che a v, secondo la formula:

$$\vec{R} = \frac{1}{2}C\rho Av^2$$

dove C è il coefficiente di attrito (resistenza aerodinamica), ρ la densità del fluido, e A l'area efficace (la sezione trasversale nella direzione del moto). Possiamo già da questa forza ricavare la velocità limite:

$$ma = mg - \frac{1}{2}C\rho Av^2$$

$$mg - \frac{1}{2}C\rho Av_l^2 = 0 \Rightarrow v_l = \sqrt{\frac{2mg}{CA\rho}}$$

2 Dinamica del moto circolare uniforme

Vediamo ora le forze in gioco in un moto circolare uniforme. Abbiamo che l'accelerazione centripeta è:

$$|a_r| = \frac{v^2}{r} = \omega^2 r$$

Di conseguenza, perchè si verifichi un moto circolare, significherà che esite una forza:

$$F = m \cdot \frac{v^2}{r} = m \cdot \omega^2 r$$

detta forza centripeta. N.B.: La forza centripeta non è un particolare tipo di forza, ma solamente una forza qualsiasi che si comporta come tale.

Pendolo conico

Prendiamo adesso in esempio un pendolo, formato da una corda di lunghezza L fissata ad un punto fisso, posta ad angolo θ rispetto all'asse verticale, con una massa m fissata ad un estremità. La massa si muove di moto circolare uniforme su una certa orbita di raggio r con velocità costante ω . Conviene allora stabilire un sistema di riferimento cilndrico centrato sul centro dell'orbita, con \hat{k} (z) orientato nella direzione opposta alla forza peso. Avremo allora che la tensione T della corda lungo l'interno della circonferenza e lungo l'asse verticale è:

$$\begin{cases} T\sin\theta = m\omega^2 r \\ T\cos\theta = mg \end{cases}.$$

Sostituiamo r nella prima equazione, notando che:

$$r = L \sin \theta$$

ottenendo:

$$T\sin\theta = m\omega^2 L\sin\theta \Rightarrow T = m\omega^2 L$$

Dalla seconda equazione otteniamo invece:

$$T = \frac{mg}{\cos \theta}$$

eguagliando T nelle due equazioni ottieniamo:

$$m\omega^2 L = \frac{mg}{\cos\theta} \Rightarrow = \omega^2 = \frac{mg}{mL\cos\theta}, \quad \omega = \sqrt{\frac{g}{L\cos\theta}}$$

da cui notiamo tra l'altro che la velocità del pendolo non dipende dalla massa del corpo.

Conca sferica

Impostiamo un problema sostanzialmente analogo: quello di un corpo che ruota su una conca sferica di raggio r. Notiamo che la reazione vincolare della conca è esattamente identica a quella della tensione della corda nel caso precedente, solo nella direzione opposta. Possiamo allora dire che come prima:

$$\omega = \sqrt{\frac{g}{L\cos\theta}}$$

Veicoli in curva

Esaminiamo adesso un'automobile che percorre una curva di raggio r a velocità tangenziale v costante, sfruttando la componente radiale (scelto un sistema di riferimento cilindrico) della forza d'attrito statico degli pneumatici (sia il coefficiente di attrito statico μ_s). La forza centripeta necessaria per percorrere la curva sarà:

$$f_s = ma_r = m\frac{v^2}{r}$$

e la forza di attrito statico sarà invece:

$$f_a = \mu_s N = \mu_s mq$$

Ponendo la diseguaglianza:

$$m\frac{v^2}{r} \le \mu_s mg \Rightarrow v \le \sqrt{\mu_s gr} = v_{crit}$$

otteniamo la velocità critica v_{crit} , al di sopra della quale l'attrito degli pneumatici non è più in grado di mantenere l'automobile sulla sua traiettoria circolare, e di conseguenza si verifica uno sbandamento.

Veicoli in curva sopraelevata

Un caso migliore sarà quello della percorrenza di una curva sopraelevata, ovvero a sezione longitudinale approssimativamente parabolica. Curve del genere si possono trovare negli autodromi, per permettere alle automobili di raggiungere, a parità di aderenza, velocità più elevate. Impostiamo l'accelerazione dell'automobile, con N reazione vincolare della superficie della curva:

$$\begin{cases} ma_z = 0 = N\cos\theta - mg\\ ma_r = -m\frac{v^2}{r} = -N\sin\theta \end{cases}.$$

da cui:

$$\frac{N\sin\theta}{N\cos\theta} = \frac{mv^2}{rmg} = \frac{v^2}{rg} \Rightarrow \tan\theta = \frac{v^2}{rg}, \quad \theta = \tan^{-1}\frac{v^2}{rg}$$

Trovo θ , l'angolo necessario a percorrere una curva di raggio r a velocità v. A θ troppo grandi, la componente orizzontale ma_r è troppo grande, con conseguente scivolamento verso l'interno della curva a causa della gravità. In caso contrario, ma_r è troppo piccola, e si verifica uno sbandamento.

Veicoli in curva sopraelevata con attrito

Vediamo adesso il caso in cui una vettura percorre una curva sopraelevata di angolo θ e raggio r, a velocità v, con coefficiente di attrito statico degli pneumatici sulla strada di μ_s . Chiamando f_s la forza di attrito:

$$f_s = -\mu_s mg \sin \theta$$

$$\begin{cases}
ma_z = 0 = N \cos \theta - mg - f_s \sin \theta \\
ma_r = -m\frac{v^2}{r} = -f_s \cos \theta - N \sin \theta
\end{cases}$$

visto che $N = -mg\sin\theta$, avremo:

$$m\frac{v^2}{r} = N(\sin\theta + \mu_s\cos\theta), \quad mg = N(\cos\theta - \mu_s\sin\theta)$$

da cui:

$$m\frac{v^2}{r} = mg\frac{\sin\theta + \mu_s\cos\theta}{\cos\theta - \mu_s\sin\theta}, \Rightarrow v = \sqrt{gr\frac{\sin\theta + \mu_s\cos\theta}{\cos\theta - \mu_s\sin\theta}}$$

dove v rappresenta la velocità massima di percorrenza del tratto di curva.