DM 11 : Correction

Exercice 1. Pour tout réel t > 0, on note P_t le polynôme $X^5 + tX - 1 \in \mathbb{R}_5[X]$. Le but de ce problème est d'étudier les racines de P_t en fonction de t > 0.

- 1. On fixe t > 0 pour cette question. Prouver que P_t admet une unique racine notée f(t).
- 2. Montrer que $f(t) \in]0,1[$ pour tout t > 0.
- 3. Montrer que f est strictement décroissante sur $]0, +\infty[$.
- 4. En déduire que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Déterminer $\lim_{t\to 0^+} f(t)$.
- 6. Déterminer $\lim_{t\to+\infty} f(t)$.
- 7. En déduire $\lim_{t\to+\infty} tf(t) = 1$. (Comment noter ce résultat avec le signe équivalent : \sim)
- 8. Justifier que f est la bijection réciproque de $g:]0,1[\rightarrow]0,+\infty[x \mapsto \frac{1-x^5}{x}]$
- 9. (a) Justifier que f est dérivale sur $]0, +\infty[$ et exprimer f'(t) en fonction de f(t) pour tout t>0.
 - (b) En déduire la limite de f'(t) en 0. Calculer la limite de $t^2f'(t)$ en $+\infty$ (Comment noter ce résultat avec le signe équivalent : \sim)

Correction.

- 1. On considère la dérivée de la fonction polynomiale. On a $P'_t(X) = 5X^4 + t$. Ainsi pour tout $x \in \mathbb{R}$ et pour tout t > 0 $P'_t(x) \ge 0$. La fonction polynomiale $x \mapsto P_t(x)$ est donc strictement croissante sur \mathbb{R} , par ailleurs elle est continue. On peut appliquer le théorème de la bijection à P_t pour la valeur $0 \in]\lim_{x \to +\infty} P_t(x) = +\infty$, $\lim_{x \to -\infty} P_t(x) = -\infty[$. Il existe donc une unique valeur, notée f(t) par l'énoncé, telle que $P'_t(f(t)) = 0$.
- 2. Par définition de P_t on a $P_t(0) = -1 < 0$ et $P_t(1) = t > 0$. Comme $x \mapsto P_t(x)$ est strictement croissante et $P_t(f(f)) = 0$ on obtient $f(t) \in]0,1[$.
- 3. Soit $t_1 > t_2$, on a $P_{t_1}(X) P_{t_2}(X) = X^5 + t_1 X 1 (X^5 + t_2 X 1) = (t_1 t_2)X$ Donc pour x > 0 on a

$$P_{t_1}(x) - P_{t_2}(x) > 0$$

On applique ce résultat à $f(t_2)$ on obtient

$$P_{t_1}(f(t_2)) - P_{t_2}(f(t_2)) > 0$$

$$P_{t_1}(f(t_2)) > 0$$

Comme $x \mapsto P_{t_1}(x)$ est une fonction croissant et que $P_{t_1}(f(t_1)) = 0$ on obtient $f(t_2) > f(t_1)$ Finalement $t \mapsto f(t)$ est décroissante.

- 4. f est montone et bornée. Le théorème des limites monotones assure que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Notons ℓ la limite $\lim_{t\to 0^+} f(t) = \ell$. Par définition de f on a $f(t)^5 + tf(t) 1 = 0$. Cette expression admet une limite quand $t\to 0$, on a $\lim_{t\to 0^+} f(t)^5 + tf(t) 1 = \ell^5 1$. Par unicité de la limite on a donc $\ell^5 1 = 0$. Et donc $\ell = 1$ (car ℓ est réel).

6. Notons ℓ' la limite $\lim_{t\to+\infty} f(t) = \ell'$. Supposons par l'absurde que cette limite soit non nulle. On a alors $\lim_{t\to+\infty} tf(t) = +\infty$. En passant à la limite dans l'égalité $f(t)^5 + tf(t) - 1 = 0$ on obtient $+\infty = 0$ ce qui est absurde. Donc

$$\lim_{t \to +\infty} f(t) = 0.$$

7. En repartant de l'égalité $f(t)^5 + tf(t) - 1 = 0$ on obtient

$$tf(t) = 1 - f(t)^5$$

Comme $\lim_{t\to+\infty} f(t) = 0$ on a

$$\lim_{t \to +\infty} t f(t) = 1$$

En d'autres termes $f(t) \sim_{+\infty} \frac{1}{t}$

8. f est strictement montone sur $]0, +\infty[$ donc f est une bijection $]0, +\infty[$ sur son image. $\lim_{t\to 0} f(t) = 1$ et $\lim_{t\to +\infty} f(t) = 0$. Donc $f(]0, +\infty[) =]0, 1[$ et f est une bijection de $]0, +\infty[$ sur]0, 1[. Par définition de f on a $f(t)^5 + tf(t) - 1 = 0$ Donc $tf(t) = -f(t)^5 + 1$. Comme f(t) > 0, on a :

$$t = \frac{1 - f(t)^5}{f(t)}$$

Soit $g(x) = \frac{1-x^5}{x}$ on a bien g(f(t)) = t Donc $g \circ f = \text{Id}$. Ainsi la réciproque de f est bien la fonction $g:]0, 1[\rightarrow]0, \infty[$.

9. (a) g est dérivable et pour tout $x \in]0,1[$

$$g'(x) = \frac{-1 - 4x^5}{x^2}.$$

g'(x) est différent de 0 car $-1-4x^5$ est différent de 0 sur]0,1[, donc f est dérivable et

$$f'(t) = \frac{1}{g'(f(t))} = \frac{f(t)^2}{-1 - 4f(t)^5}.$$

(b) $\lim_{t\to 0} f(t) = 1$ donc

$$\lim_{t \to 0} f'(t) = \frac{1^2}{-1 - 4 \times 1} = \frac{-1}{5}$$

On a aussi $t^2f'(t)=\frac{(tf(t)^2}{-1-4f(t)^5}$ Comme $\lim_{t\to\infty}tf(t)=1$ et $\lim_{t\to\infty}f(t)=0$ en passant à la limite dans l'égalité précédente on obtient :

$$\lim_{t \to \infty} t^2 f'(t) = \frac{1}{-1} = -1$$

En d'autres termes :

$$f'(t) \sim_{+\infty} \frac{-1}{t^2}$$

Exercice 2. On considère la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ définie par

$$T_0 = 1$$
 et $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$

- 1. (a) Calculer T_2 , T_3 et T_4 .
 - (b) Calculer le degré et le coefficient de T_n pour tout $n \in \mathbb{N}$.
 - (c) Calculer le coefficient constant de T_n .
- 2. (a) Soit $\theta \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$ on a $T_n(\cos(\theta)) = \cos(n\theta)$.
 - (b) En déduire que $\forall x \in [-1, 1]$, on a $T_n(x) = \cos(n \arccos(x))$.
- 3. (a) En utilisant la question 2a), déterminer les racines de T_n sur [-1,1].
 - (b) Combien de racines distinctes a-t-on ainsi obtenues? Que peut on en déduire?
 - (c) Donner la factorisaiton de T_n pour tout $n \in \mathbb{N}^*$.

Correction.

- 1. (a) $T_2 = 2X^2 1$, $T_3 = 4X^3 3X$, $T_4 = 8X^4 8X^2 + 1$
 - (b) Montrons par récurrence que $deg(T_n) = n$. Comme la suite est une suite récurrente d'ordre 2, on va poser comme proposition de récurrence

$$P(n)$$
: 'deg $(T_n) = n$ ET deg $(T_{n+1}) = n + 1$ '

C'est vrai pour n = 0, 1, 2 et 3. On suppose qu'il existe un entier $n_0 \in \mathbb{N}$ tel que $P(n_0)$ soit vrai et montrons $P(n_0+1)$. On cherche donc à vérifier $\deg(T_{n_0+1}) = n_0+1$ ET $\deg(T_{n_0+2}) = n_0+2'$. La première égalité est vraie par hypothèse de récurrence. La seconde vient de la relation $T_{n_0+2} = 2XT_{n_0+1} - T_{n_0}$ En effet, par hypothèse de récurrence T_{n_0+1} est de degré n_0+1 donc $2XT_{n_0+1}$ est de degrés n_0+2 . Comme $\deg(T_{n_0}) = n_0 < n_0+2$, on a

$$\deg(T_{n_0+2}) = \max(\deg(2XT_{n_0+1}), \deg(T_{n_0})) = n_0 + 2$$

Ainsi par récurrence pour tout $n \in \mathbb{N}$, $\deg(T_n) = n$.

- (c) La récurrence précédente montre que le coefficient dominant, notons le c_n vérifie $c_{n+2} = 2c_{n+1}$. Ainsi $c_n = 2^n c_0 = 2^n$.
- 2. (a) Montrons le résultat par récurrence. On pose

$$Q(n)$$
: " $\forall \theta \in \mathbb{R}, T_n(\cos(\theta)) = \cos(n\theta) \text{ ET } T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$ "

Q(0) est vraie par définition de T_0 et T_1

Supposons qu'il existe $n \in \mathbb{N}$ tel que Q(n) soit vrai et montrons Q(n+1). Il suffit de montrer que $\forall \theta \in \mathbb{R}$

$$T_{n+2}(\cos(\theta)) = \cos((n+2)\theta)$$

On a par définition de T_{n+2}

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)T_{n+1}(\cos(\theta)) - T_n(\cos(\theta))$$

Par hypothèse de récurrence on a $T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$ et $T_n(\cos(\theta)) = \cos(n\theta)$ donc

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)\cos((n+1)\theta) - \cos(n\theta)$$

Les formules trigonométriques donnent :

$$2\cos(\theta)\cos((n+1)\theta) = \cos(\theta + (n+1)\theta) + \cos(\theta - (n+1)\theta)$$
$$= \cos((n+2)\theta) + \cos(-n\theta)$$
$$= \cos((n+2)\theta) + \cos(n\theta)$$

Donc

$$T_{n+2}(\cos(\theta)) = \cos((n+2)\theta) + \cos(n\theta) - \cos(n\theta) = \cos((n+2)\theta)$$

Par récurrence, pour tout $\theta \in \mathbb{R}$ et tout $n \in \mathbb{N}$:

$$T_n(\cos(\theta)) = \cos(n\theta)$$

On peut répondre maintenant facilement à la question 2c) (avec la faute de frappe coefficient constant au lieu de coefficient dominant). Le coefficient constant vaut $T_n(0) = T_n(\cos(\pi/2)) = \cos(n\pi/2)$

Donc $T_n(0) = 0$ pour n = 2k, $k \in \mathbb{Z}$. Pour n = 2k + 1, $k \in \mathbb{Z}$, on a alors $T_{2k+1}(0) = \cos((2k+1)\pi/2) = \frac{(-1)^k}{2}$

(b) Soit $x \in [-1, 1]$ on note $x = \cos(\theta)$, avec $\theta \in [0, \pi]$ on a alors $\theta = \arccos(x)$. D'après la question précédente on a donc pour tout $x \in [-1, 1]$:

$$T_n(x) = \cos(n\arccos(x))$$

3. (a) Pour tout θ tel que $n\theta \equiv \frac{\pi}{2}[\pi]$, on a $\cos(n\theta) = 0$ Ainsi pour tout θ tel que $\theta \equiv \frac{\pi}{2n}[\frac{\pi}{n}]$,

$$T_n(\cos(\theta)) = 0$$

On obtient ainsi n racines entre [-1,1] données par

$$\left\{\cos\left(\frac{\pi+2k\pi}{2n}\right)\mid k\in[0,n-1]\right\}$$

(b) On a obtenu n racines. Comme T_n est de degrés n, on a obtenu toutes les racines, ainsi T_n se factorise de la manière suivante 1 :

(c)

$$T_n(X) = 2^n \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{\pi + 2k\pi}{2n}\right) \right)$$

^{1.} sans oublier le coéfficient dominant, merci Marie.