Classification of microorganisms

Jing Lee

Metis Module 4

Machine Learning Classification

June 15, 2022

Introduction

Motivation

- Microscope image analysis: laborious and tedious
- Prone to human error and bias
 - morphological features

Objective

- Classifying species of microscope images using machine learning models
- Binary class identification

Goal

- Multi-class classification of each species s
- Add-on to microscope software
- Improve accuracy of image analysis

Fungi plate image

Fungi under microscope

Microscope images (10 types)

Target: Ulothrix vs Others

Methodology

- Dataset Kaggle
- Microscope images (30,527)
 - Dropped many duplicates
- Target
 - 1 = Ulothrix, 0 = Other
- Slightly imbalanced → oversampling
 - 30% (1s, Ulothrix)
 - 70% (0s, Other)

Microscope image: Ulothrix

Processed with MATLAB for features extraction

Features

- Total: 24 features
 - Used: 16 features
- Some important features:
 - 1. Raddi
 - 2. Perimeter
 - 3. Solidity (area/convex area)
 - 1. shape of cell
 - 4. Eccentricity (major axis/minor axis)
 - 5. Extent (ration pixel area/ bounding box)

Model training

- 80% train, 20 % test
- Cross-validation
- Models trained:
 - 1. K-nearest neighbor (knn)
 - 2. Logistic regression
 - 3. Random Forests
 - 4. Gradient boosting
- Metrics: optimize f1 score

Model – training scores

Model	Accuracy	Precision	Recall	f1	auc
1. k-nearest neighbor	0.788	0.758	0.849	0.801	0.862
2. Logistic Regression	0.678	0.683	0.668	0.675	0.738
3. Random Forests	0.897	0.879	0.923	0.900	0.964
4. Gradient boosting	0.807	0.788	0.841	0.814	0.893

Best model: Random forests (best overall score)

Model comparisons

- Best model (roc curve)
 - Random forests

Features importance – Random forests

Top 5 important features

- 1. Raddi
- 2. Perimeter
- 3. Solidity
- 4. Eccentricity
- 5. MinorAxisLength

Random forests: test set

- Random forests (test scores)
 - o accuracy 0.800
 - precision: 0.724
 - recall: 0.650
 - f1: 0.685
- Model is better at predicting Other class
- Model is overfitting!

Microscope images (10 types)

Conclusion

- Best model selection: Random forests
- Model overfitting
- Test data set f1: 0.685
- Model is good at predicting other (58%) while Ulothrix (20%)
- Overall model correctly classified classes 78%

Future

- Tune hyperparameters random forests to reduce overfitting
- Optimize F1 score
- Lower FP and FN
- Multi-class classification to identify each microorganism type

Thank you

Questions?

Appendix

