sine basis 09

Statistics:

p-values adjusted for search volume

Ctation of Pranada adjusted for Coaron Volume									
set-level	cluster-leve	peak-level					mm mm mm		
р с	p g k FWE-corrFDR-corr E	$p_{ m uncorr}$	p_{FWE-co}	<i>g</i> orrFDR-co	T orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$		
<u></u>	1.000 0.790 3 1.000 0.790 2 1.000 0.790 2 1.000 0.790 1 1.000 0.790 2 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1	0.613 0.688 0.688 0.790 0.688 0.790 0.688 0.790 0.790	1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995	2.45 2.45 2.44 2.43 2.43 2.42 2.42 2.42	2.44 2.44 2.43 2.43 2.42 2.42 2.41 2.41	0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008	-36 50 24 58 40 -24 40 -28 -24	0 10 24 -12 -26 50 -2 32 30 38 0 36 38 -14 -12 22 28 -2
	1.000 0.790 2 1.000 0.790 4 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1 1.000 0.790 1	0.688 0.553 0.790 0.790 0.790 0.790 0.790 0.790 0.688 0.790 0.790	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996	2.41 2.40 2.40 2.39 2.39 2.39 2.39 2.39 2.38 2.37 2.37	2.41 2.40 2.39 2.39 2.39 2.38 2.38 2.38 2.38 2.37 2.37	0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009	44 -64 38 12 8 -28 30 14 30 -8 -46 -8 -54	40 4 -12 10 -14 -16 50 44 42 28 -94 -6 24 4 -10 50 -2 58 -12 20 48 -8 34 36 12 44