CS 228 : Logic in Computer Science

Krishna, S

Monadic Second Order Logic (MSO)

Formulae of MSO, over signature τ , are sequences of symbols, where each symbol is one of the following:

Formulae of MSO, over signature τ , are sequences of symbols, where each symbol is one of the following:

► The symbol ⊥ called false

Formulae of MSO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables, where each variable has arity 1

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables, where each variable has arity 1
- ightharpoonup Constants and relations from au

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables, where each variable has arity 1
- Constants and relations from τ
- ► The symbol → called implication

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables, where each variable has arity 1
- ightharpoonup Constants and relations from au
- ► The symbol → called implication
- ► The symbol ∀ called the universal quantifier

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables, where each variable has arity 1
- ightharpoonup Constants and relations from au
- ► The symbol → called implication
- ► The symbol ∀ called the universal quantifier
- ► The symbols (and) called paranthesis

A well-formed formula (wff) over a signature τ is inductively defined as follows:

▶ ⊥ is a wff

- ⊥ is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff

- ⊥ is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a first order variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff

- ⊥ is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a first order variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If *t* is either a first order variable or a constant, *X* is a second order variable, then *X*(*t*) is a wff

- ⊥ is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a first order variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- If t is either a first order variable or a constant, X is a second order variable, then X(t) is a wff
- If φ and ψ are wff, then $\varphi \to \psi$ is a wff

- ⊥ is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a first order variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ► If t is either a first order variable or a constant, X is a second order variable, then X(t) is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi$ is a wff
- ▶ If φ is a wff and x is a first order variable, then $(\forall x)\varphi$ is a wff

- ⊥ is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a first order variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ► If t is either a first order variable or a constant, X is a second order variable, then X(t) is a wff
- If φ and ψ are wff, then $\varphi \to \psi$ is a wff
- ▶ If φ is a wff and x is a first order variable, then $(\forall x)\varphi$ is a wff
- ▶ If φ is a wff and X is a second order variable, then $(\forall X)\varphi$ is a wff

Free and Bound Variables

▶ Free, Bound Variables and Scope same as in FO

Free and Bound Variables

- ▶ Free, Bound Variables and Scope same as in FO
- ▶ In a wff $\varphi = \forall X\psi$, every occurrence of X in ψ is bound

Free and Bound Variables

- ▶ Free, Bound Variables and Scope same as in FO
- ▶ In a wff $\varphi = \forall X\psi$, every occurrence of X in ψ is bound
- A sentence is a formula with no free first order and second order variables

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a pair of functions (α_1, α_2) , where

▶ $\alpha_1 : \mathcal{V}_1 \to u(\mathcal{A})$ assigns every first order variable $x \in \mathcal{V}_1$ a value $\alpha_1(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha_1(t)$ is $c^{\mathcal{A}}$.

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a pair of functions (α_1, α_2) , where

- ▶ $\alpha_1 : \mathcal{V}_1 \to u(\mathcal{A})$ assigns every first order variable $x \in \mathcal{V}_1$ a value $\alpha_1(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha_1(t)$ is $c^{\mathcal{A}}$.
- ▶ $\alpha_2 : \mathcal{V}_2 \to 2^{u(\mathcal{A})}$ assigns to every second order variable $X \in \mathcal{V}_2$, $\alpha_2(X) \subseteq u(\mathcal{A})$.

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a pair of functions (α_1, α_2) , where

- ▶ $\alpha_1 : \mathcal{V}_1 \to u(\mathcal{A})$ assigns every first order variable $x \in \mathcal{V}_1$ a value $\alpha_1(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha_1(t)$ is $c^{\mathcal{A}}$.
- $\alpha_2: \mathcal{V}_2 \to 2^{u(\mathcal{A})}$ assigns to every second order variable $X \in \mathcal{V}_2$, $\alpha_2(X) \subseteq u(\mathcal{A})$.

Binding on a Variable

For an assignment $\alpha = (\alpha_1, \alpha_2)$ over \mathcal{A} , and $x \in \mathcal{V}_i$, i = 1, 2, $\alpha_i[x \mapsto a]$ is the assignment $\alpha_i[x \mapsto a](y) = \begin{cases} \alpha_i(y), y \neq x, \\ a, y = x \end{cases}$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

We define the relation $\mathcal{A}\models_{\alpha}\varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

 $\triangleright A \nvDash_{\alpha} \bot$

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $A \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- $ightharpoonup \mathcal{A} \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha_1(t_1),\ldots,\alpha_1(t_k)) \in R^{\mathcal{A}}$

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $A \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha_1(t_1),\ldots,\alpha_1(t_k)) \in R^A$
- $ightharpoonup \mathcal{A} \models_{\alpha} X(t) \text{ iff } \alpha_1(t) \in \alpha_2(X)$

- $\triangleright A \nvDash_{\alpha} \bot$
- $\blacktriangleright \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- \blacktriangleright $\mathcal{A} \models_{\alpha} R(t_1, \ldots, t_k)$ iff $(\alpha_1(t_1), \ldots, \alpha_1(t_k)) \in R^{\mathcal{A}}$
- $ightharpoonup \mathcal{A} \models_{\alpha} X(t) \text{ iff } \alpha_1(t) \in \alpha_2(X)$
- $\blacktriangleright \mathcal{A} \models_{\alpha} (\varphi \rightarrow \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$

- $\triangleright A \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha_1(t_1),\ldots,\alpha_1(t_k)) \in R^A$
- $ightharpoonup \mathcal{A} \models_{\alpha} X(t) \text{ iff } \alpha_1(t) \in \alpha_2(X)$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright A \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(A)$, $A \models_{\alpha[x \mapsto a]} \varphi$

- $\triangleright A \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha_1(t_1),\ldots,\alpha_1(t_k)) \in R^A$
- $ightharpoonup \mathcal{A} \models_{\alpha} X(t) \text{ iff } \alpha_1(t) \in \alpha_2(X)$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright A \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(A)$, $A \models_{\alpha[x \mapsto a]} \varphi$
- ▶ $\mathcal{A} \models_{\alpha} (\forall X)\varphi$ iff for every $S \subseteq u(\mathcal{A})$, $\mathcal{A} \models_{\alpha[X \mapsto S]} \varphi$

Recall the signature for the graph structure, $\tau = \{E\}$

► The graph is 3-colorable

Recall the signature for the graph structure, $\tau = \{E\}$

► The graph is 3-colorable

$$\exists X \exists Y \exists Z (\forall x [X(x) \lor Y(x) \lor Z(x)] \land$$

$$\forall x \forall y [E(x,y) \rightarrow \{\neg (X(x) \land X(y)) \land \neg (Y(x) \land Y(y)) \land \neg (Z(x) \land Z(y))\}])$$

Recall the signature for the graph structure, $\tau = \{E\}$

▶ The graph has an independent set of size $\ge k$

Recall the signature for the graph structure, $\tau = \{E\}$

▶ The graph has an independent set of size $\ge k$

$$\exists I \{ \forall x \forall y [(\neg(x = y) \land I(x) \land I(y)) \rightarrow \neg E(x, y)] \land \\ \exists x_1 \dots x_k [\bigwedge_{i \neq j} \neg(x_i = x_j) \land \bigwedge_i I(x_i)] \}$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O \{ \forall x [(first(x) \rightarrow E(x)) \land (last(x) \rightarrow O(x))] \}$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O\{\forall x [(first(x) \to E(x)) \land (last(x) \to O(x))]$$
$$\land \forall x [(E(x) \lor O(x)) \land \neg (E(x) \land O(x))]$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O\{\forall x [(first(x) \to E(x)) \land (last(x) \to O(x))]$$

$$\land \forall x [(E(x) \lor O(x)) \land \neg (E(x) \land O(x))]$$

$$\land \forall x \forall y [S(x,y) \land O(x) \to E(y)]$$

$$\land \forall x \forall y [S(x,y) \land E(x) \to O(y)]\}$$