Tema 3. Funciones

3.0. Contenido y documentación

- 3.0. Contenido y documentación
- 3.1. Funciones
 - 3.1.1. Propiedades de las funciones
- 3.2. Límites
 - 3.2.1. Límites laterales
 - 3.2.2. Límites y acotación
- 3.3. Funciones continuas
 - 3.3.1. Discontinuidades
 - 3.3.2. Continuidad uniforme
- 3.4. Teorema de Bolzano
- 3.5. Teorema de Weierstrass
- 3.6. Teorema de valores intermedios

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/f90ab8ee-be55-470a-8050-5059c1f 28f03/U3_Funciones.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/376d8ebd-4cb8-44d9-b189-ccb185 0d64e3/H4 Funciones.pdf

3.1. Funciones

Definición. Una **función** f es una operación por la que se asigna a cada elemento x de un conjunto A un único valor $f(x) \in \mathbb{R}$.

Notación: $f:A o \mathbb{R}$.

Definición. Denominamos **dominio de** f al conjunto A, y lo denotamos Dom(f).

Definición. Denominamos **imagen de** f al conjunto $f(A) = \{f(x) : x \in A\}$, y lo denotamos $\operatorname{Im}(f)$.

3.1.1. Propiedades de las funciones

Sea f:A o B una función definida entre dos conjuntos A y B de números reales, decimos que:

- f es **inyectiva** si para todo $x,y\in A$ tenemos que $f(x)=f(y)\Leftrightarrow x=y$.
- f es sobreyectiva si $\operatorname{Im}(f) = B$.
- f es **biyectiva** si es inyectiva y sobreyectiva a la vez.

Definición. Dadas dos funciones $f:A\to B, g:B\to C$, definimos la **composición de** f g como la función $g\circ f:A\to C$, de forma que $(g\circ f)(x)=g(f(x))$.

Definición. Dada una función $f:A\to B$ biyectiva, definimos la **inversa de** f como la función $f^{-1}:B\to A$ tal que $f^{-1}\circ f(x)=x$ y $f\circ f^{-1}(y)=y$.

Definición. Decimos que una función $f:\mathbb{R} o\mathbb{R}$ es **par** si $orall x\in\mathbb{R}$ tenemos que f(x)=f(-x).

Definición. Decimos que una función $f:\mathbb{R} o\mathbb{R}$ es **impar** si $orall x\in\mathbb{R}$ tenemos que f(-x)=-f(x).

3.2. Límites

Definición. Decimos que a función $f:A\to\mathbb{R}$ tiene límite L cuando x tiende a un cierto punto a si para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $x\in A$ y $0<|x-a|<\delta$, entonces $|f(x)-L|<\varepsilon$. Notación: $\lim f(x)=L$.

Nota. El punto a no tiene por qué pertenecer a A, pero sí debe ser próximo a él.

Definición. El límite de f cuando x tiende a $+\infty$ (resp. $-\infty$) es L si para todo $\varepsilon>0$ existe un R>0 (resp. R<0) tal que si $x\in A$ y x>R, (resp. R>0), entonces $|f(x)-L|<\varepsilon$. Notación: $\lim_{x\to +\infty} f(x)=L$ (resp. $\lim_{x\to -\infty} f(x)=L$).

3.2.1. Límites laterales

Definición. Decimos que L es el **límite por la derecha de** f cuando x tiende a un punto a si los valores de f(x) se aproximan a L cuando x se aproxima a a de forma que x>a. Notación: $\lim_{x\to a^+}f(x)=L$.

Definición. Decimos que L es el **límite por la izquierda de** f cuando x tiende a un punto a si los valores de f(x) se aproximan a L cuando x se aproxima a a de forma que x < a. Notación: $\lim_{x \to a^-} f(x) = L$.

Teorema. Sea
$$f:A o\mathbb{R}$$
 una función, $L\in\mathbb{R}$ y $a\in A$ un punto. Existe $\lim_{x o a}f(x)\Leftrightarrow \lim_{x o a^+}f(x)=\lim_{x o a^+}f(x)=L.$

Teorema. Sea $f:A o\mathbb{R}$ una función y $a\in\mathbb{R}$. Entonces, $\lim_{x o a}f(x)=L$ si y solo si para toda sucesión $\{x_n\}_{n\in\mathbb{N}}\in A$, con $x_n
eq a$ y $\lim_{n o\infty}x_n=a$ se tiene que $\lim_{n o\infty}f(x_n)=L$.

3.2.2. Límites y acotación

Teorema. Sean $f,g:A o\mathbb{R}$ dos funciones y $a\in A$. Si $\lim_{x o a}f(x)=0$ y g es una función acotada en un entorno de a, entonces $\lim_{x o a}f(x)g(x)=0$.

3.3. Funciones continuas

Definición. Decimos que una función $f:A o\mathbb{R}$ es **continua** en un punto $a\in A$ si $\lim_{x o a}f(x)=L=f(a)$.

Nota. La suma o producto de dos o más funciones continuas también lo es.

Teorema. Sean $f:A\to B$ y $g:B\to C$ dos funciones continuas en a y f(a) respectivamente. Entonces la función compuesta $g\circ f$ es continua en a.

3.3.1. Discontinuidades

Definición. Sea $f:A \to \mathbb{R}$ una función y $a \in A$. Decimos que a es una **discontinuidad evitable** de f si $\lim_{x \to a} f(x) \neq f(a)$ y $\lim_{x \to a} f(x) \neq \pm \infty$.

Definición. Sea $f:A o \mathbb{R}$ una función y $a\in A$. Decimos que a es una **discontinuidad inevitable** de f si $\lim_{x o a}f(x)=\pm\infty$.

Definición. Sea $f:A o \mathbb{R}$ una función $a\in A$. Decimos que a es una **discontinuidad de tipos salto** si $\lim_{x o a^-}f(x)
eq \lim_{x o a^+}f(x)$.

Proposición. Sea $f:A\to\mathbb{R}$ una función creciente, $x_1\geq x_2\Leftrightarrow f(x_1)\geq f(x_2)$. Entonces, f solo puede tener discontinuidades de tipo salto no evitables.

Definición. Sea $f:A o\mathbb{R}$ una función. Decimos que f es **continua** si lo es en todo punto $a\in A$.

3.3.2. Continuidad uniforme

Definición. Sea $f:A\to\mathbb{R}$ una función. Decimos que es uniformemente continua si $\forall \varepsilon>0, \exists \delta>0: \forall x,y\in A$ si $|x-y|<\delta$, entonces $|f(x)-f(y)|<\varepsilon$.

Lema. Sea $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una función continua sobre un intervalo cerrado. Entonces, f es uniformemente continua.

3.4. Teorema de Bolzano

Teorema de Bolzano. Sea $f:[a,b]\subset\mathbb{R} o\mathbb{R}$ una función continua en [a,b] con f(a)f(b)<0. Entonces, $\exists c\in[a,b]:f(c)=0$.

Demostración.

Suponemos que f(a)<0 y f(b)>0, y definimos por inducción intervalos $[a_n,b_n]\subset [a,b]$, de forma que $[a_0,b_0]\subset [a_1,b_1]\subset$

Definimos $d_n=rac{a_n+b_n}{2}$. Si $\exists n$ tal que $f(d_n)=0$, ya hemos encontrado una raíz de f .

Si $f(d_n)
eq 0$, $\forall n$, entonces, $c = \lim_{n \to \infty} a_n \in [a_n, b_n]$ y $b_n = \lim_{n \to \infty} a_n + \frac{b-a}{2^n} = c$. De esta forma, $f(a_n) < 0$, $\forall n \Rightarrow f(c) \leq 0$ y $f(b_n) > 0$, $\forall n \Rightarrow f(c) = \lim_{n \to \infty} f(b_n) \geq 0$. Así, tenemos que $f(c) \leq 0$ y $f(c) \geq 0$. Luego, f(c) = 0. \square

3.5. Teorema de Weierstrass

Teorema de Weierstrass. Sea $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una función continua en [a,b] . Entonces, se puede afirmar que f está acotada y alcanza un máximo y un mínimo en [a,b].

Demostración.

Sea $L=\sup_{[a,b]}f\in(-\infty,+\infty]$ y $\{x_n\}_{n\in\mathbb{N}}$ una sucesión con $x_n\in[a,b], \forall n$. Entonces, \exists una sucesión $\{y_n\}_{n\in\mathbb{N}}$ tal que $y_n=f(x_n)$ y $\lim_{n\to\infty}y_n=L$. Sea $\{x_{n_k}\}_{n_k\in\mathbb{N}}$ una sucesión convergente tal que $x_n\in[a,b], \forall n$ y $\lim_{k\to\infty}x_{n_k}=c\in[a,b]$. Entonces, $\lim_{k\to\infty}y_{n_k}=\lim_{k\to\infty}f(x_{n_k})=L$. Por otro lado, como $\lim_{k\to\infty}x_{n_k}=c$ y f es continua en c. Entonces, $\lim_{k\to\infty}f(x_{n_k})=f(c)$. Luego, f(c)=L, por lo que, como $L=\sup_{[a,b]}f=f(c)$, f alcanza un máximo en el punto f0. f1.

3.6. Teorema de valores intermedios

Teorema de Bolzano de valores intermedios. Sea $f:[a,b] o \mathbb{R}$ una función continua y $t\in \mathbb{R}$ un valor contenido entre f(a) y f(b). Entonces, $\exists c\in [a,b]: f(c)=t.$

Demostración.

Definimos la función $g:[a,b]\to\mathbb{R}$ como g(x)=f(x)-t, continua por ser la suma de una función continua y una constante, de forma que g(a)g(b)=(f(a)-t)(f(b)-t)<0. Aplicando el Teorema de Bolzano, $\exists c\in[a,b]:g(c)=0$, lo que implica que $g(c)=f(c)-t=0\Rightarrow f(c)=t$. \square

Corolario. Sea $f:[a,b] o \mathbb{R}$ una función continua. Entonces, la imagen f([a,b]) es un intervalor cerrado y finito.

Demostración.

Sabemos que la imagen $f([a,b]) \subset [\min f, \max f]$. Por el Teorema del valor intermedio, f toma en [a,b] cualquier valor entre $\min f$ y $\max f$.

Teorema. Sea $f:[a,b] \to \mathbb{R}$ una función continua y estrictamente monótona. Entonces, la función inversa f^{-1} es continua en f([a,b]).

Demostración.

Suponemos que f es estrictamente creciente, de forma que f([a,b])=[f(a),f(b)]. Por el Teorema del valor intermedio, tenemos que para todo $L\in (f(a),f(b))$, existe un único valor $c\in (a,b):f(c)=L\Rightarrow c=f^{-1}(L)$.

Dado un $\varepsilon>0$, tenemos que encontrar un $\delta>0$ tal que si $y\in (L-\delta,L+\delta)\subset [f(a),f(b)]$, entonces $f^{-1}(y)\subset (c-\varepsilon,c+\varepsilon)$, para demostrar que $f^{-1}(L)$ es continua en L. Sabemos que $c\in (a,b)$, de forma que $(c-\varepsilon,c+\varepsilon)\subset (a,b)$. Sea $\delta=\min\{|L-f(c-a)|,|L-f(c+a)\}$. Entonces, para cualquier $y\in (L-\delta,L+\delta)$ tenemos que $y\in (f^{-1}(c-\varepsilon),f^{-1}(c+\varepsilon))$, por lo que f^{-1} es estrictamente creciente y $f^{-1}(y)\in (c-\varepsilon,c+\varepsilon)$. Luego, efectivamente, f^{-1} es continua en L. \square