



Earth, Environmental and Planetary Sciences  $$\operatorname{MS-126}$$  3100 Main Street Houston, TX 77005 USA

### Subject

Title Here

Author: Your Name

April 18, 2022

Author: Your Name

Email: your-email@rice.edu
Webpage: http://your-webpage.info/

Adviser: Professor XXX,

Rice University





School of Earth and Space Sciences 96 Jinzhai Road, Hefei, Anhui, 230026 P.R.China

### Subject

Title Here

Author: Your Name

April 18, 2022

Author: Your Name

 $\begin{array}{lll} Email: & your-email@mail.ustc.edu.cn \\ Webpage: & http://your-webpage.info/ \end{array}$ 

Adviser: Professor XXX,

University of Science and Technology of China

### The Template for Assignment

Copyright 2022

by

Fu Yin

## Abstract

Write abstract here.

**Key Words:** Template; Rice; USTC

# Acknowledgement

Write acknowledgments here.

## Contents

| A            | bstra | ct                                                                               | i            |  |  |  |
|--------------|-------|----------------------------------------------------------------------------------|--------------|--|--|--|
| A            | cknov | owledgement ii of Figures iv of Tables v troduction 1 1 Background 1 2 Problem 1 |              |  |  |  |
| Li           | st of | Figures                                                                          | iv           |  |  |  |
| Li           | st of | Tables                                                                           | $\mathbf{v}$ |  |  |  |
| 1            | Intr  | roduction                                                                        | 1            |  |  |  |
|              | 1.1   | Background                                                                       | 1            |  |  |  |
|              | 1.2   | Problem                                                                          | 1            |  |  |  |
|              | 1.3   | Cite                                                                             | 1            |  |  |  |
| 2            | Disc  | cussion                                                                          | 2            |  |  |  |
|              | 2.1   | Figure                                                                           | 2            |  |  |  |
|              | 2.2   | Table                                                                            | 3            |  |  |  |
|              | 2.3   | Algorithm                                                                        | 3            |  |  |  |
|              | 2.4   | Code                                                                             | 3            |  |  |  |
| В            | iblio | graphy                                                                           | 5            |  |  |  |
| A            | ppen  | ndices                                                                           | 6            |  |  |  |
| $\mathbf{A}$ | ppen  | dix-1                                                                            | 6            |  |  |  |

# List of Figures

| 2.1 | Public-Key vs. Symmetric-Key: Architecture | <br>2 |
|-----|--------------------------------------------|-------|
| 2.2 | Julia benchmarks from Julia website        | <br>2 |

## List of Tables

| 2.1 | Ambient nois | e package |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Ş |
|-----|--------------|-----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
|-----|--------------|-----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|

### Chapter 1

### Introduction

### 1.1 Background

Please feel free to use this template for your reports. Footnote example 1

#### 1.2 Problem

Problem here.

#### Problem 1

Question begins here.

Solution Solution begins here

#### Problem 2

Question begins here.

Solution Solution begins here

#### 1.3 Cite

There are two ways to cite the references, and the first way (Nakano, 1923; Honda, 1957) is showing here. The second way can be done in Honda (1957).

<sup>&</sup>lt;sup>1</sup>Please feel free to use this template for your reports.

### Chapter 2

## Discussion

### 2.1 Figure

You can use tikz package to plot like figure 2.1.



Figure. 2.1: Public-Key vs. Symmetric-Key: Architecture

You can also insert a figure like figure 2.2.



Figure. 2.2: Julia benchmarks from Julia website

#### 2.2 Table

Here are a table example.

Table 2.1: Ambient noise package

| Package      | Language        | Multiprocessing | Multithreading | GPU          |
|--------------|-----------------|-----------------|----------------|--------------|
| SeisNoise.jl | Julia           | $\checkmark$    | ✓              | $\checkmark$ |
| NoisePy      | Python          | $\checkmark$    |                | $\checkmark$ |
| Mirmex       | C++             |                 | $\checkmark$   | $\checkmark$ |
| CC-FJ        | Python with C++ |                 | $\checkmark$   |              |
| NoiseCorr    | MATLAB          | $\checkmark$    |                |              |

### 2.3 Algorithm

Here are an algorithm example.

```
Algorithm 1: MCMTpy algorithm to sample proposal distribution \pi_{post}(m|d_{obs})
```

```
1 Choose initial m_0, S(m_0);
 2 Compute \pi_{post}(m|d_{obs});
 3 for k = 0, ..., N - 1 do
        if k < N_k then
 4
            Define S(m) = S_{time}(m);
 \mathbf{5}
 6
        else
            if k < N_k + M_{mag} then
 7
               Estimate M_0 with formula XX;
 8
            \mathbf{end}
 9
            Define S(m) = S_{time}(m);
10
11
        Draw sample y with random walk with formula 17;
12
        Compute \pi_{post}(y|d_{obs});
13
        Compute \beta(m_k, m_{k+1}) = min \left\{ \frac{\pi_{post}(m_{k+1}|d_{obs})}{\pi_{post}(m_k|d_{obs})}, 1 \right\};
14
        Draw random number u \sim u([0,1]);
15
        if u < \beta(m_k, m_{k+1}) then
16
            Accept: set m_{k+1} = y;
17
18
            Reject: set m_{k+1} = m_k;
19
        end
21 end
```

#### 2.4 Code

Insert Python code showing below.

```
import numpy as np
import numpy as np
annotation here.

# Annotation here.
def main():
    for i in range(0,10,1):
        if i == 1:
            print("Hello world")

# Annotation here.
if __name__ == "__main__":
        main()
```

Insert Python code from files.

```
#!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
4 Created on Sun Apr 18 17:24:43 2021
6 @author: Fu Yin (yinfu@mail.ustc.edu.cn) at USTC
  import os
  def readme(project_root):
       0.000
12
      read 'README.rst'
13
14
      README_file = os.path.join(project_root, 'README.rst')
15
      with open(README_file) as f:
           return f.read()
17
19 if __name__ == "__main__":
      pass
20
```

# **Bibliography**

Hirokichi Honda. The mechanism of the earthquakes. Sci. Rep., Tohoku Univ., (9):1–46, 1957.

H Nakano. Notes on the nature of the forces which give to the earthquake motions. seismol. *Bull.*, *CentralMeteorologicalObs.*, *Japan*, 1(92):120, 1923.

# Appendix-1

Here are the Appendix-1.