Heart Attack Analysis: Comparison with Bayesian and Frequentist Methods

Ishaan Bhandari, Kehuan Wang, April Wu, Max Zhang, Wendy Zheng

Objective

- Comparison with Frequentist and Bayesian methods
- Frequentist: cumulative link model logistic regression with binomial family
- **Bayesian**: brms package and rjags with different priors
- Evaluate each method and comparing the interpretation of the results

Data Description

- Heart Attack Classification from Kaggle
- Target Variable: **output** (Binary: 0 less chance of heart attack, 1 more chance of heart attack)

Multi-level Categorical variables [used deviation coding]: cp(4), restecg(3), slp(3), thall(4), caa(5)

Numerical variables: age, trtbps, thalachh, oldpeak, chol

Binary variables [used dummy coding]: sex, fbs, exng

- 303 rows and 14 columns
- Randomly split the data into train(70%: 212 observations) and test(30%: 91 observations) sets.
- Use train dataset for Frequentist and Bayesian Models
- Test dataset for evaluation

Cumulative Link Model

- Represents a polytomous variable y using a continuous (latent) variable z
- Value of *y* is determined by the placement of thresholds and which thresholds z falls between

Identifiability

Unique mapping between parameter space and likelihood function

Given 2 different parameter values ω and ω' , the model is identifiable if $\pi \square (\omega) = \pi \square (\omega')$, if and only if $\omega = \omega'$

Overcome this issue by fixing the value of one of the parameters

Frequentist Model

- Logistic Regression model in R: model_freq
- Glm in R: Fitting Generalized Linear Models
- Binary outcome fits the target variable: Logistic Regression is suitable for handling response variables
 of binary types.
- The relationship between variables: Through this model, we can explore how different predictive variables affect the outcomes of heart health.

```
"``{r}
# Logistic Regression model
model_freq = glm(output~., data = train, family = binomial)
summary(model_frq)
"``
```

Bayesian Model

- Bayesian Model in R: model_bayes_normalprior, model_bayes_hourseshoe, jags_model
- Packages use: brms, rjags
- Type: Bernoulli
- Usage: Train and Prediction

Why bayesian model:

- Handling small data set
- Solving overfitting with prior
- Suitable for predicting model by using probability

Summary: Frequentist vs Bayesian Approach

- Approach
- Flexibility
- Application

Logistic Regression

Overall Use Cases

- Linear vs Logistic
- Sigmoid Function

Frequentist Result/Interpretation

```
alm(formula = output ~ .. family = binomial, data = train)
Deviance Residuals:
             1Q Median
-2.6350 -0.3063 0.1073
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.749233 3.324481 0.526 0.598772
            0.033946 0.030708
                                 1.105 0.268964
sex
           -2.653409
                      0.743197 -3.570 0.000357 ***
cp1
cp2
                      0.550258
                                 0.069 0.944878
ср3
            0.476417 0.406844
                                1.171 0.241596
trtbps
           -0.033793 0.014228
                                -2.375 0.017547 *
chol
           -0.004975
                      0.005073
                                -0.981 0.326752
fbs1
                      0.675763
                                 0.636 0.524868
            0.343526 0.745762 0.461 0.645058
restecg1
restecg2
            0.623701
                      0.752458
                                 0.829 0.407169
thalachh
                     0.014704
                                 1.884 0.059509
exna1
           -0.429041
                      0.550965
                                -0.779 0.436152
oldpeak
           -0.130789
                      0.262801
                                -0.498 0.618714
slp1
            0.033685
                      0.645872
                                0.052 0.958406
slp2
           -0.835280
                      0.415437 -2.011 0.044367 *
caa1
            1.138963
                     0.522056
                                 2.182 0.029133 *
caa2
           -0.620371 0.608495 -1.020 0.307957
caa3
                                -2.778 0.005477 **
caa4
           -0.642793
                     0.813689 -0.790 0.429543
thall1
           -1.532560
                      2.114545 -0.725 0.468593
thall2
            1.959894 1.025398
                                1.911 0.055960
thall3
            0.354996
                     0.784534 0.452 0.650914
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

- Sex, cp1(angina), caa3(# of vessels) were
 amongst the most significant
- Accuracy of 0.8571429

```
prediction 0 1
0 33 6
1 7 45
[1] 0.8571429
```

Gibbs Sampling

- How it works?
- Applications
- Advantages
 - Flexibility
 - Efficiency
 - Simplicity

Rjags(2008)

- Using BUGS(Bayesian inference Using Gibbs Sampling) language to define complex Bayesian models
- Sampling from these full conditional distributions
- Allow convergence to the target distribution after burn-in
- Collects the samples from the posterior distribution

Modelling(Gibbs Sampling)

```
⊕ = ▶
# Modify the data preparation for JAGS
data_jags <- list(
 y = as.numeric(levels(train$output))[train$output],
 X = as.matrix(sapply(train[, -which(names(train) == "output")], as.numeric)),
 K = ncol(train) - 1 # number of predictors
# Define initial values function
init values <- function() {
 list(alpha = 0, beta = rep(0, data_iaas$K))
# Specify the path to your model file
model_file <- "logistic_regression_model.bug"
# Compile the JAGS model
jags_model <- jags.model(file = model_file, data = data_jags, inits = init_values, n.chains = 4)</pre>
# Burn-in period
update(jags_model, n.iter = 500)
# Run the MCMC sampler
samples <- coda.samples(jags_model, variable.names = c("alpha", "beta"), n.iter = 2000</pre>
# Print and summarize the samples
summary(samples)
```

BUGS File

```
model {
    # Priors
    for (i in 1:K) {
        beta[i] ~ dnorm(0, 1/2.5^2) # Normal prior for coefficients
    }
    alpha ~ dt(0, 1/2.5^2, 1)

# Likelihood
    for (i in 1:N) {
        logit(p[i]) <- alpha + inprod(beta[], X[i,])
        y[i] ~ dbern(p[i])
    }
}</pre>
```

Brms(2015)

- Flexibility in model types
- Stan compiled to C++
- Hamiltonian Monte Carlo (HMC)
- No-U-Turn Sampler (NUTS)

Modelling

```
```{r}
Define priors
priors <- c(
 prior(normal(0, 2.5), class = "b"), # Normal prior for coefficients
 prior(cauchy(0, 2.5), class = "Intercept") # Cauchy prior for the intercept
Build the Bayesian model
model_bayes_normal <- brm(</pre>
 formula = output \sim .,
 data = train,
 family = bernoulli(),
 prior = priors,
 chains = 4,
 iter = 2000.
 warmup = 500
Summary
summary(model_bayes_normal)
```

### Rjags vs Brms

Their output have similar accuracy and RSS! Which one should we choose?

#### **Brms**

#### Advantages:

- User-friendly interface
- Uses Hamiltonian Monte Carlo (HMC) via Stan, which can handle more complex models and priors.

#### Disadvantages:

 Models can take longer to run due to the complexity of HMC compared to Gibbs sampling.

#### Rjags

#### Advantages:

- Uses Gibbs sampling, which can be efficient for models where full-conditionals are known.
- Flexibility with the BUGS language for model specification.

#### Disadvantages:

 Less efficient for models with complex or non-conjugate priors.

#### Horseshoe Prior

Goal: Auto variable selection

Mechanism:

$$(\beta_i | \lambda_i, \tau) \sim \text{N}(0, \lambda_i^2 \tau^2)$$
  
 $\lambda_i \sim \text{C}^+(0, 1),$ 

- Identify sparsity in High-Dimensional Data
- Shrinkage and Selection
- Automatic Selection
- Balancing Overfitting and Underfitting







Referred: Handling Sparsity via the Horseshoe (2009)

### Bayesian Result

#### Population-Level Effects:

Population-Level Effects:							
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.48	2.98	-4.33	7.26	1.00	3107	3704
age	0.01	0.03	-0.03	0.07	1.00	3141	5727
sex	-1.80	0.67	-3.07	-0.40	1.00	1850	2917
cp1	-1.55	0.38	-2.30	-0.82	1.00	3350	4614
cp2	0.11	0.31	-0.42	0.94	1.01	1253	637
ср3	0.22	0.30	-0.19	0.93	1.00	2228	3202
trtbps	-0.02	0.01	-0.05	0.00	1.00	2833	2543
chol	-0.00	0.00	-0.01	0.00	1.00	3210	5027
fbs1	0.05	0.32	-0.58	0.82	1.00	2113	2575
restecg1	-0.03	0.26	-0.61	0.54	1.00	2712	4111
restecg2	0.17	0.32	-0.31	0.97	1.00	2391	2411
thalachh	0.03	0.01	0.00	0.05	1.00	2121	1667
exng1	-0.23	0.37	-1.19	0.29	1.00	1924	2368
oldpeak	-0.18	0.19	-0.63	0.11	1.00	2492	4373
slp1	-0.14	0.33	-0.95	0.42	1.00	1595	3457
slp2	-0.40	0.31	-1.05	0.07	1.00	2698	3506
caa1	0.84	0.49	-0.02	1.79	1.00	1938	1757
caa2	-0.29	0.41	-1.31	0.26	1.00	2831	3548
caa3	-1.37	0.92	-3.19	0.08	1.01	873	611
caa4	-0.22	0.46	-1.46	0.40	1.00	3986	4617
thall1	0.18	0.53	-0.75	1.50	1.00	1783	2314
thall2	0.61	0.56	-0.18	1.80	1.00	2104	2099
thall3	0.21	0.32	-0.30	0.94	1.00	2028	1704

- RSS of Rjags model: 11.7666030453929
- RSS of bayesian model with normal prior: 12
- RSS of bayesian model with horseshoe prior: 8
- RSS of Frequentist model: 13
- Estimates are the posterior mean of each parameter
- Estimates converged well

#### Conclusion



Bayesian model with horseshoe prior performs the best

 1 (male) is associated with the log odds decrease in the outcome by
 1.64 - Female is more likely to get heart attack. Typical chest pain would have a higher impact on the outcome variable compared to other type of chest pains.

### Further exploring

- Larger dataset with outcome variables that are ordinal with more than 2 levels

- Explore Gibbs Sampling Algorithm

- Further exploration in brms() and the algorithm it implements

#### References

- Dataset: <a href="https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-datasets/">https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-datasets/</a>
- Cumulative link model: <a href="https://uofi.app.box.com/s/40e8wow49vi3qtbh7ot31z1b8gz81v70">https://uofi.app.box.com/s/40e8wow49vi3qtbh7ot31z1b8gz81v70</a>
- Horseshoe Prior: <a href="https://proceedings.mlr.press/v5/carvalho09a">https://proceedings.mlr.press/v5/carvalho09a</a>
- Brms: <a href="https://www.jstatsoft.org/article/view/v080i01">https://www.jstatsoft.org/article/view/v080i01</a>

# THANK YOU!