

# **SA800U-WF**Hardware Design

## **Smart Module Series**

Version: 1.0

Date: 2021-01-13

Status: Released



Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

#### Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

## Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm.

#### For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to <a href="mailto:support@quectel.com">support@quectel.com</a>.

#### **General Notes**

Quectel offers the information as a service to its customers. The information provided is based upon customers' requirements. Quectel makes every effort to ensure the quality of the information it makes available. Quectel does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information. All information supplied herein is subject to change without prior notice.

#### Disclaimer

While Quectel has made efforts to ensure that the functions and features under development are free from errors, it is possible that these functions and features could contain errors, inaccuracies and omissions. Unless otherwise provided by valid agreement, Quectel makes no warranties of any kind, implied or express, with respect to the use of features and functions under development. To the maximum extent permitted by law, Quectel excludes all liability for any loss or damage suffered in connection with the use of the functions and features under development, regardless of whether such loss or damage may have been foreseeable.

# **Duty of Confidentiality**

The Receiving Party shall keep confidential all documentation and information provided by Quectel, except when the specific permission has been granted by Quectel. The Receiving Party shall not access or use Quectel's documentation and information for any purpose except as expressly provided herein. Furthermore, the Receiving Party shall not disclose any of the Quectel's documentation and information to any third party without the prior written consent by Quectel. For any noncompliance to the above requirements, unauthorized use, or other illegal or malicious use of the documentation and information, Quectel will reserve the right to take legal action.



# Copyright

The information contained here is proprietary technical information of Quectel. Transmitting, reproducing, disseminating and editing this document as well as using the content without permission are forbidden. Offenders will be held liable for payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design.

Copyright © Quectel Wireless Solutions Co., Ltd. 2021. All rights reserved.



## **Safety Information**

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.



Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.



Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.



Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.



Cellular terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.



The cellular terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.



In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other cellular terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.



# **About the Document**

# **Revision History**

| Version | Date       | Author                      | Description              |
|---------|------------|-----------------------------|--------------------------|
| -       | 2020-07-31 | Light WANG/<br>Finley ZHANG | Creation of the document |
| 1.0     | 2021-01-13 | Light WANG/<br>Finley ZHANG | First official release   |



# **Contents**

| Sat | afety Information                                       | 3  |
|-----|---------------------------------------------------------|----|
| Ab  | oout the Document                                       | 4  |
| Co  | ontents                                                 | 5  |
| Tak | ıble Index                                              | 7  |
| Fig | gure Index                                              | 9  |
| 1   | Introduction                                            | 10 |
| 2   | Product Concept                                         | 11 |
|     | 2.1. General Description                                | 11 |
|     | 2.2. Key Features                                       | 12 |
|     | 2.3. Functional Diagram                                 | 14 |
|     | 2.4. Evaluation Board                                   | 15 |
| 3   | Application Interfaces                                  | 16 |
|     | 3.1. General Description                                | 16 |
|     | 3.2. Pin Assignment                                     | 17 |
|     | 3.3. Pin Description                                    | 18 |
|     | 3.4. Power Supply                                       | 38 |
|     | 3.4.1. Power Supply Pins                                | 38 |
|     | 3.4.2. Decrease Voltage Drop                            | 38 |
|     | 3.4.3. Reference Design for Power Supply                | 39 |
|     | 3.5. Turn on and off Scenarios                          | 40 |
|     | 3.5.1. Turn on the Module Using PWRKEY                  | 40 |
|     | 3.5.2. Turn on the Module Automatically Using CBL_PWR_N | 42 |
|     | 3.5.3. Turn off/Restart the Module                      | 43 |
|     | 3.6. VRTC Interface                                     | 43 |
|     | 3.7. Power Output                                       | 44 |
|     | 3.8. Battery Charging and Management                    | 45 |
|     | 3.9. USB Interfaces                                     | 48 |
|     | 3.9.1. USB1 Interface                                   | 48 |
|     | 3.9.1.1. USB Type-C Mode                                | 48 |
|     | 3.9.1.2. DisplayPort Mode                               | 50 |
|     | 3.9.2. USB2 Interface                                   | 51 |
|     | 3.9.3. Design Principles                                | 52 |
|     | 3.10. UART Interface                                    | 54 |
|     | 3.11. PCIe Interfaces                                   | 55 |
|     | 3.12. SD Card Interface                                 | 57 |
|     | 3.13. GPIO Interfaces                                   | 59 |
|     | 3.14. I2C Interfaces                                    | 60 |
|     | 3.15. SPI Interfaces                                    | 61 |
|     | 3.16. ADC Interfaces                                    |    |
|     | 3.17. Vibrator Drive Interface                          | 62 |



| 3.  | .18. LCM Interfaces                                   | 63  |
|-----|-------------------------------------------------------|-----|
| 3.  | .19. Touch Panel Interface                            | 67  |
| 3.  | .20. Camera Interfaces                                | 68  |
|     | 3.20.1. Design Considerations                         | 73  |
|     | 3.20.2. Flashlight Interfaces                         | 77  |
| 3.  | .21. Sensor Interfaces                                | 78  |
| 3.  | .22. Audio Interfaces                                 | 79  |
| 3.  | .23. Emergency Download Interface                     | 80  |
| 4 W | /i-Fi and BT                                          | 81  |
| 4.  | .1. Wi-Fi Overview                                    | 81  |
|     | 4.1.1. Wi-Fi Performance                              | 82  |
| 4.  | .2. BT Overview                                       | 84  |
|     | 4.2.1. BT Performance                                 | 85  |
| 5 A | ntenna Connection                                     | 86  |
| 5.  | .1. Antenna Connectors                                | 86  |
| 5.  | .2. Antenna Installation                              | 87  |
|     | 5.2.1. Antenna Requirements                           | 87  |
|     | 5.2.2. Recommended Mating Plug for Antenna Connection | 88  |
| 6 R | eliability, Radio and Electrical Characteristics      | 90  |
| 6.  | .1. Absolute Maximum Ratings                          | 90  |
| 6.  | .2. Power Supply Ratings                              | 90  |
| 6.  | .3. Operating and Storage Temperatures                | 91  |
| 6.  | .4. Current Consumption                               | 91  |
| 6.  | .5. Electrostatic Discharge                           | 93  |
| 6.  | .6. Thermal Dissipation                               | 93  |
| 7 M | lechanical Dimensions                                 |     |
| 7.  | .1. Mechanical Dimensions of the Module               | 95  |
| 7.  | .2. Recommended Footprint                             |     |
| 7.  | .3. Top and Bottom View of the Module                 | 98  |
| 8 S | torage and Packaging                                  | 99  |
| 8.  | .1. Storage                                           | 99  |
| 8.  | .2. Packaging                                         | 100 |
| 9 Δ | nnendix References                                    | 102 |



# **Table Index**

| Table 1: SA800U-WF Frequency Bands                                 | 11 |
|--------------------------------------------------------------------|----|
| Table 2: SA800U-WF Key Features                                    |    |
| Table 3: I/O Parameters Definition                                 |    |
| Table 4: Pin Description                                           |    |
| Table 5: Power Description                                         |    |
| Table 6: Pin Definition of Charging Interface                      |    |
| Table 7: Pin Definition of USB TYPE-C Interface                    |    |
| Table 8: Pin Definition of VCONN Circuit                           | 49 |
| Table 9: Pin Definition of USB Type-C/DisplayPort Mode             | 50 |
| Table 10: Pin Definition of USB2                                   |    |
| Table 11: USB Trace Length Inside the Module                       | 52 |
| Table 12: Pin Definition of Debug UART Interface                   | 54 |
| Table 13: Pin Definition of PCIe Interfaces                        | 55 |
| Table 14: Pin Definition of SD Card Interface                      | 57 |
| Table 15: SD Card Signal Trace Length Inside the Module            | 59 |
| Table 16: Pin Definition of GPIO Interfaces                        | 59 |
| Table 17: Pin Definition of I2C Interfaces                         | 60 |
| Table 18: Pin Definition of SPI Interfaces                         | 61 |
| Table 19: Pin Definition of ADC Interfaces                         | 62 |
| Table 20: Pin Definition of Vibrator Drive Interface               | 62 |
| Table 21: Pin Definition of LCM Interfaces                         | 63 |
| Table 22: Pin Definition of Touch Panel Interface                  | 67 |
| Table 23: Pin Definition of Camera Interfaces                      | 68 |
| Table 24: CSI Data Rate and PCB Maximum Trace Length (D-PHY)       | 73 |
| Table 25: DSI Data Rate and PCB Maximum Trace Length (D-PHY)       | 74 |
| Table 26: MIPI Trace Length Inside the Module                      | 74 |
| Table 27: Pin Definition of Flashlight Interfaces                  | 77 |
| Table 28: Pin Definition of Sensor Interfaces                      | 78 |
| Table 29: Pin Definition of Audio Interfaces                       | 79 |
| Table 30: Wi-Fi Transmitting Performance                           | 82 |
| Table 31: Wi-Fi Receiving Performance                              | 83 |
| Table 32: BT Data Rate and Versions                                | 84 |
| Table 33: BT Transmitting and Receiving Performance                | 85 |
| Table 34: Definition of Antenna Connectors                         | 86 |
| Table 35: Operating Frequency                                      | 87 |
| Table 36: Antenna Requirements                                     | 87 |
| Table 37: Absolute Maximum Ratings                                 | 90 |
| Table 38: SA800U-WF Power Supply Ratings                           | 90 |
| Table 39: Operating and Storage Temperatures                       | 91 |
| Table 40: SA800U-WF Current Consumption (2 x 2 MIMO)               | 91 |
| Table 41: ESD Characteristics (Temperature: 25 °C, Humidity: 45 %) | 93 |



| Table 42: Tray Package            | 101 |
|-----------------------------------|-----|
| Table 43: Related Documents       | 102 |
| Table 44. Terms and Abbreviations | 102 |



# Figure Index

| Figure 1: Functional Diagram                                           | 15  |
|------------------------------------------------------------------------|-----|
| Figure 2: Pin Assignment (Top View)                                    | 17  |
| Figure 3: Voltage Drop Sample                                          | 38  |
| Figure 4: Star Structure of Power Supply                               | 39  |
| Figure 5: Reference Circuit of Power Supply                            | 39  |
| Figure 6: Turn on the Module Using Driving Circuit                     | 40  |
| Figure 7: Turn on the Module Using Keystroke                           | 41  |
| Figure 8: Timing of Turning on the Module                              | 41  |
| Figure 9: Turn on the Module Using CBL_PWR_N                           | 42  |
| Figure 10: Timing of Restarting the Module                             | 43  |
| Figure 11: RTC Powered by Coin Cell                                    | 43  |
| Figure 12: Reference Design for Battery Charging Circuit               | 47  |
| Figure 13: USB Type-C Interface Reference Design                       | 49  |
| Figure 14: VCONN Reference Design                                      |     |
| Figure 15: DisplayPort Reference Design                                |     |
| Figure 16: USB Type-A Interface Reference Design (USB2 for Host Mode)  | 52  |
| Figure 17: Reference Circuit with Level Translator Chip                |     |
| Figure 18: RS-232 Level Match Circuit                                  |     |
| Figure 19: PCIe Interfaces Reference Circuit                           | 56  |
| Figure 20: Reference Circuit for SD Card Interface                     |     |
| Figure 21: Reference Circuit for Vibrator Connection                   |     |
| Figure 22: Reference Circuit Design for LCM0 Interface                 |     |
| Figure 23: Reference Circuit Design for LCM1 Interface                 | 66  |
| Figure 24: Reference Design of LCM1 External Backlight Driving Circuit |     |
| Figure 25: Reference Circuit Design for Touch Panel Interface          |     |
| Figure 26: Reference Circuit Design for CSI0                           | 71  |
| Figure 27: Reference Circuit Design for Power of CSI0                  |     |
| Figure 28: Reference Circuit Design for Flashlight Interfaces          | 77  |
| Figure 29: Reference Circuit Design for Emergency Download Interface   | 80  |
| Figure 30: Antenna Connectors                                          | 86  |
| Figure 31: Dimensions of the ECT 818000500 Connector (Unit: mm)        |     |
| Figure 32: Mechanicals of the Mating Plug (Unit: mm)                   |     |
| Figure 33: Thermal Dissipation                                         |     |
| Figure 34: Module Top and Side Dimensions                              |     |
| Figure 35: Module Bottom Dimensions (Bottom View)                      |     |
| Figure 36: Recommended Footprint (Top View)                            |     |
| Figure 37: Top View of SA800U-WF Module                                |     |
| Figure 38: Bottom View of SA800U-WF Module                             | 98  |
| Figure 39: Tray Dimensions                                             |     |
| Figure 40: Package Details                                             | 101 |



# 1 Introduction

This document defines the SA800U-WF module and describes its air interfaces and hardware interfaces.

This document helps you quickly understand module interface specifications, electrical and mechanical details as well as other related information of the module. Associated with application notes and user guides, you can use the module to design and set up applications easily.



# **2** Product Concept

# 2.1. General Description

SA800U-WF is a smart module based on Qualcomm platform and Android operating system, which provides industrial grade performance. Its general features are listed below:

- Support short-range wireless communication via Wi-Fi 802.11a/b/g/n/ac and BT 5.0
- Support multiple audio and video codecs
- Built-in high performance Adreno<sup>™</sup> 630 graphics processing unit
- Dedicated low-power Snapdragon sensor core DSP to support always-on use cases
- Provide multiple audio and video input/output interfaces as well as abundant GPIO interfaces

The following table shows the supported frequency bands of the module.

Table 1: SA800U-WF Frequency Bands

| Туре              | Frequency Bands |
|-------------------|-----------------|
| 902 11 0/b/g/p/00 | 2402–2482 MHz   |
| 802.11a/b/g/n/ac  | 5180–5825 MHz   |
| BT 5.0            | 2402–2480 MHz   |
| FM*               | 76–108 MHz      |

SA800U-WF is a 396-pin module, which supports B2B connection. With a compact profile of 60.0 mm  $\times$  37.0 mm  $\times$  6.55 mm, the module can meet almost all requirements for M2M applications such as smart meeting, smart home, security, routers, AR glasses, mobile computing devices, PDA phone, tablet PC, etc.



"\*" means under development.



# 2.2. Key Features

The following table describes the detailed features of the module.

Table 2: SA800U-WF Key Features

| Features               | Details                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Applications Processor | <ul> <li>64-bit Kryo 385 applications processor</li> <li>Quad high-performance Kyro cores at 2.649 GHz with 256 KB L2 cache per core</li> <li>Quad low-power Kyro cores at 1.766 GHz with 128 KB L2 cache per core</li> </ul>                                                                                                                                                                                                 |  |  |
| GPU                    | Adreno <sup>™</sup> 630 graphics processing unit – 4K @ 60 fps or 2 × 2K @ 90 fps                                                                                                                                                                                                                                                                                                                                             |  |  |
| Memory                 | <ul> <li>64 GB UFS + 4 GB LPDDR4X (default)</li> <li>256 GB UFS + 8 GB LPDDR4X (optional)</li> </ul>                                                                                                                                                                                                                                                                                                                          |  |  |
| Operating System       | Android 9.0/10.0                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Power Supply           | <ul><li>VBAT Supply Voltage: 3.55–4.4 V</li><li>Typ. 3.8 V</li></ul>                                                                                                                                                                                                                                                                                                                                                          |  |  |
| WLAN Features          | <ul> <li>2.4/5 GHz, 802.11a/b/g/n/ac</li> <li>Support 2 x 2 MIMO, maximally up to 866 Mbps</li> <li>Support AP and STA modes</li> </ul>                                                                                                                                                                                                                                                                                       |  |  |
| Bluetooth Features     | BT 2.1+EDR/3.0/4.1 LE/4.2 BLE/BT 5.0                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| LCM Interfaces         | <ul> <li>Support two groups of 4-lane MIPI DSI</li> <li>Support dual LCDs</li> <li>Support 2560 x 1600 @ 60 fps VESA DSC 1.1 primary display with 4 lanes</li> <li>Support 4K @ 60 fps over DisplayPort</li> <li>Provide one high voltage output for powering strings of WLEDs and 29.6 V OVP</li> <li>Provide four drivers for sinking the current from WLED strings, and each sink current can reach up to 30 mA</li> </ul> |  |  |
| Camera Interfaces      | <ul> <li>Support three groups of 4-lane MIPI CSI and one 2-lane MIPI CSI <sup>1)</sup>, up to 2.5 Gbps/lane,</li> <li>Support 4 cameras (4-lane + 4-lane + 4-lane + 2-lane)</li> <li>Up to 32 MP with dual ISP</li> </ul>                                                                                                                                                                                                     |  |  |
| Video Codec            | Video encoding and decoding up to 4K @ 60 fps                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Audio Codec            | QCELP, EVS, EVRC, EVRC-B, EVRC-WB, G.7Gen, G.729 A/AB                                                                                                                                                                                                                                                                                                                                                                         |  |  |



|                          | 2 USB interfaces which comply with both USB 3.1 and USB 2.0                            |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
|                          | specifications                                                                         |  |  |  |  |
|                          | <ul> <li>Support up to 5 Gbps on USB 3.1 and 480 Mbps on USB 2.0</li> </ul>            |  |  |  |  |
| USB Interfaces           | <ul> <li>USB1 supports USB OTG and DisplayPort, and can be used for AT</li> </ul>      |  |  |  |  |
|                          | command communication, data transmission, software debugging and                       |  |  |  |  |
|                          | firmware upgrade                                                                       |  |  |  |  |
|                          | USB2 only supports USB host mode                                                       |  |  |  |  |
|                          | 2 PCIe Interfaces:                                                                     |  |  |  |  |
| PCIe Interfaces          | PCle0 is a Gen 2 1-lane interface                                                      |  |  |  |  |
|                          | PCle1 is a Gen 3 1-lane interface                                                      |  |  |  |  |
| UART Interface           | One 2-wire debug UART interface used for debugging by default                          |  |  |  |  |
| Vibrator Drive Interface | Drive ERM/LRA vibrator                                                                 |  |  |  |  |
|                          | 2 SDIO interfaces:                                                                     |  |  |  |  |
| SDIO Interfaces          | The SDIO function of SDC4 is not supported by default                                  |  |  |  |  |
|                          | <ul> <li>As the SD card interface, SDC2 complies with SD 3.0 specifications</li> </ul> |  |  |  |  |
| I2C Interfaces           | 6 I2C interfaces, used for peripherals such as TP, camera, sensor, etc.                |  |  |  |  |
| I2S Interfaces           | 3 I2S interfaces                                                                       |  |  |  |  |
|                          | 3 high-current flash LED drivers, which supports both flash and torch modes            |  |  |  |  |
| Flashlight Interfaces    | <ul> <li>Up to 1.5 A for FLASH_LED1/FLASH_LED2 in flash mode</li> </ul>                |  |  |  |  |
|                          | <ul> <li>Up to 0.75 A for FLASH_LED3 in flash mode</li> </ul>                          |  |  |  |  |
| ADC Interfaces           | 2 general-purpose ADC interfaces                                                       |  |  |  |  |
| SPI Interfaces           | 3 SPI interfaces, only support master mode                                             |  |  |  |  |
| Charging Interface       | Used for battery voltage detection, fuel gauge, battery temperature detection          |  |  |  |  |
| Real Time Clock          | Supported                                                                              |  |  |  |  |
| Antenna Connection       | 4 antenna connectors: Wi-Fi/BT, Wi-Fi MIMO, BT*, FM*                                   |  |  |  |  |
|                          | • Size: (60.0 ±0.15) mm × (37.0 ±0.15) mm × (6.55 ±0.2) mm                             |  |  |  |  |
| Physical Characteristics | Package: B2B                                                                           |  |  |  |  |
|                          | Weight: approx. 15 g                                                                   |  |  |  |  |
| Tanananatura Disease     | Operating temperature range: -35 °C to +75 °C <sup>2)</sup>                            |  |  |  |  |
| Temperature Range        | <ul> <li>Storage temperature range: -40 °C to +90 °C</li> </ul>                        |  |  |  |  |
| Firmware Upgrade         | Over USB interface or OTA                                                              |  |  |  |  |
| RoHS                     | All hardware components are fully compliant with EU RoHS directive                     |  |  |  |  |



#### **NOTES**

- 1. <sup>1)</sup> The 2-lane MIPI CSI can only get data of RAW format. It can be used for ToF/3D camera modules but cannot be used for display.
- 2. <sup>2)</sup> Within the operating temperature range, the module is IEEE compliant.
- 3. "\*" means under development.

# 2.3. Functional Diagram

The following figure shows a block diagram of SA800U-WF and illustrates the major functional parts.

- Power management
- Baseband
- LPDDR4X + UFS flash
- Peripheral interfaces
  - -- USB interfaces
  - -- PCIe interfaces
  - -- UART interface
  - -- I2C interfaces
  - -- SPI interfaces
  - -- SD card interface
  - -- GPIO interfaces
  - -- SLIMbus interface
  - -- I2S interfaces
  - -- ADC interfaces
  - -- Vibrator drive interface
  - -- LCM (MIPI) interfaces
  - -- TP (touch panel) interface
  - -- Camera (MIPI) interfaces
  - -- Flashlight interfaces
  - -- Sensor interfaces
  - -- Emergency download interface





Figure 1: Functional Diagram

## 2.4. Evaluation Board

To help you develop applications with SA800U-WF conveniently, Quectel supplies the evaluation board, USB to RS-232 converter cable, USB Type-C data cable, power adapter, earphone, antenna and other peripherals to control or test the module. For more details, see *document* [1].



# **3** Application Interfaces

# 3.1. General Description

SA800U-WF is equipped with 396 pins that can be embedded into cellular application platform. The following chapters provide the detailed description of interfaces listed below.

- Power supply
- VRTC interface
- Charging interface
- USB interfaces
- UART interface
- PCIe interfaces
- SD card interface
- GPIO interfaces
- I2C interfaces
- SPI interfaces
- ADC interfaces
- Vibrator drive interface
- LCM interfaces
- TP interface
- Camera interfaces
- Flashlight interfaces
- Sensor interfaces
- Audio interfaces
- Emergency download interface



# 3.2. Pin Assignment

The following figure shows the pin assignment of SA800U-WF module.



**Figure 2: Pin Assignment (Top View)** 



# 3.3. Pin Description

**Table 3: I/O Parameters Definition** 

| Туре | Description          |  |  |
|------|----------------------|--|--|
| Al   | Analog Input         |  |  |
| AO   | Analog Output        |  |  |
| AIO  | Analog Input/Output  |  |  |
| DI   | Digital Input        |  |  |
| DO   | Digital Output       |  |  |
| DIO  | Digital Input/Output |  |  |
| OD   | Open Drain           |  |  |
| PI   | Power Input          |  |  |
| PO   | Power Output         |  |  |

The following tables show the SA800U-WF's pin definitions and electrical characteristics.

**Table 4: Pin Description** 

| Power Supply |                                                                                                           |           |                             |                                               |                                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------|-----------|-----------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Pin Name     | Pin No.                                                                                                   | I/O       | Description                 | DC Characteristics                            | Comment                                                                                                                             |
| VBAT         | J1-159,<br>J1-160,<br>J1-161,<br>J1-162,<br>J1-163,<br>J1-164,<br>J1-165,<br>J1-166,<br>J1-167,<br>J1-168 | PI/<br>PO | Power supply for the module | Vmax = 4.4 V<br>Vmin = 3.55 V<br>Vnom = 3.8 V | Must be provided with sufficient current of up to 3 A. It is suggested to use a TVS to increase voltage surge withstand capability. |
| VREG_BOB     | J2-140,<br>J2-142                                                                                         | РО        | BOB output                  | $Vnom = 3.7 V$ $I_0max = 2000 mA$             | Power supply for external LDOs.                                                                                                     |



|              | J2-124,           |    |              | Vnom = 1.8 V                                | Power supply for external GPIO's                                                                                                         |
|--------------|-------------------|----|--------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| VREG_S4A_1V8 | J2-126,<br>J2-128 | PO | 1.8 V output | $I_0$ max = 2000 mA                         | pull-up circuit and level shift circuit.                                                                                                 |
| LVS1A_1V8    | J1-149            | PO | 1.8 V output | Vnom = 1.8 V<br>I <sub>o</sub> max = 300 mA | Power supply for IOVDD of cameras. Add a 1.0–4.7 µF bypass capacitor if used. If unused, keep this pin open.                             |
| LVS2A_1V8    | J2-148            | PO | 1.8 V output | Vnom = 1.8 V<br>I <sub>O</sub> max = 100 mA | Power supply for IOVDD or VDD of sensors. Add a 1.0–2.2 µF bypass capacitor if used. If unused, keep this pin open.                      |
| LDO12A_1V8   | J3-12             | PO | 1.8 V output | Vnom = 1.8 V<br>I <sub>O</sub> max = 300 mA | Connect this pin to SHDN of SMB1355 parallel charger to make the charger enter low power mode. If SMB1355 is unused, keep this pin open. |
| LDO14A_1V88  | J4-9              | PO | 1.8 V output | Vnom = 1.8 V<br>I <sub>O</sub> max = 50 mA  | Power supply for IOVDD of TP and LCDs. Add a 1.0–4.7 µF bypass capacitor if used. If unused, keep this pin open.                         |
| LDO19A_3V0   | J2-150            | PO | 3.0 V output | Vnom = 3.0 V<br>I <sub>O</sub> max = 600 mA | Power supply for sensors Add a 1.0–2.2 µF bypass capacitor if used. If unused, keep this pin open.                                       |



| LDO24A_3V075           | J4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO                                                     | 3.075 V output                                                                                                     | Vnom = 3.075 V<br>I <sub>O</sub> max = 150 mA                                                                                                                                                    | Power supply for DP's pull-up circuits. Add a 1.0–4.7 µF bypass capacitor if used. If unused, keep this pin open. |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| LDO28A_3V0             | J4-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO                                                     | 3.0 V output                                                                                                       | Vnom = 3.0 V<br>I <sub>O</sub> max = 150 mA                                                                                                                                                      | Power supply for VDD of TP. Add a 1.0–4.7 µF bypass capacitor if used. If unused, keep this pin open.             |
| GND                    | J1-38, J1<br>J1-77, J1<br>J1-125, J2-24, J2<br>J2-104, J2-158, | I-41, J1<br>I-80, J1<br>J1-131,<br>2-29, J2<br>J2-109, | -44, J1-50, J1-56, J<br>-83, J1-89, J1-93, J<br>J1-156, J1-157, J1-<br>-30, J2-35, J2-36, J<br>J2-110, J2-115, J2- | 0, J1-20, J1-25, J1-26, J<br>1-59, J1-62, J1-65, J1-6<br>1-94, J1-97, J1-101, J1-<br>158, J2-11, J2-12, J2-1<br>2-41, J2-42, J2-45, J2-5<br>116, J2-121, J2-122, J2-<br>J3-13, J3-21, J3-28, J4- | 68, J1-71, J1-74,<br>105, J1-113, J1-119,<br>7, J2-18, J2-23,<br>63, J2-98, J2-103,<br>-127, J2-155,              |
|                        | J4-22, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-25, J4                                               | -28                                                                                                                |                                                                                                                                                                                                  | , , ,                                                                                                             |
| USB Interface          | J4-22, J4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-25, J4                                               | -28                                                                                                                |                                                                                                                                                                                                  |                                                                                                                   |
| USB Interface Pin Name | J4-22, J4 Pin No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-25, J4<br>I/O                                        | -28  Description                                                                                                   | DC Characteristics                                                                                                                                                                               | Comment                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                    | Vmax = 14 V<br>Vmin = 4.0 V<br>Vnom = 5.0 V                                                                                                                                                      |                                                                                                                   |
| Pin Name               | Pin No.  J2-160, J2-162, J2-164, J2-166, J2-168, J4-13, J4-14, J4-15, J4-16, J4-17,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I/O                                                    | Charging power input. Power output for OTG device. USB/adaptor                                                     | Vmax = 14 V<br>Vmin = 4.0 V                                                                                                                                                                      |                                                                                                                   |

(+)



| USB1_SS1_TX_M | J2-123 | AO  | USB1 3.1<br>channel 1<br>super-speed<br>transmit (-) |                                                  |
|---------------|--------|-----|------------------------------------------------------|--------------------------------------------------|
| USB1_SS1_TX_P | J2-125 | AO  | USB1 3.1 channel 1 super-speed transmit (+)          |                                                  |
| USB1_SS1_RX_M | J2-118 | Al  | USB1 3.1 channel 1 super-speed receive (-)           |                                                  |
| USB1_SS1_RX_P | J2-120 | Al  | USB1 3.1<br>channel 1<br>super-speed<br>receive (+)  | 90 Ω differential impedance.                     |
| USB1_SS2_TX_M | J2-111 | АО  | USB1 3.1<br>channel 2<br>super-speed<br>transmit (-) | USB 3.1 standard compliant.                      |
| USB1_SS2_TX_P | J2-113 | АО  | USB1 3.1<br>channel 2<br>super-speed<br>transmit (+) |                                                  |
| USB1_SS2_RX_M | J2-114 | Al  | USB1 3.1<br>channel 2<br>super-speed<br>receive (-)  |                                                  |
| USB1_SS2_RX_P | J2-112 | Al  | USB1 3.1<br>channel 2<br>super-speed<br>receive (+)  |                                                  |
| USB_CC1       | J2-141 | Al  | USB Type-C<br>configuration<br>channel 1             |                                                  |
| USB_CC2       | J2-139 | Al  | USB Type-C<br>configuration<br>channel 2             |                                                  |
| USB2_DP       | J2-105 | AIO | USB2 2.0<br>differential data<br>(+)                 | 90 Ω differential impedance.<br>USB 2.0 standard |
|               |        |     |                                                      |                                                  |



| USB2_DM                                                                                          | J2-107                                 | AIO               | USB2 2.0<br>differential data<br>(-)                                                                                                                 |                                                                                                  | compliant. Only support host mode.            |
|--------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|
| USB2_SS_TX_M                                                                                     | J2-108                                 | АО                | USB2 3.1<br>channel 1<br>super-speed<br>transmit (-)                                                                                                 |                                                                                                  |                                               |
| USB2_SS_TX_P                                                                                     | J2-106                                 | AO                | USB2 3.1<br>channel 1<br>super-speed<br>transmit (+)                                                                                                 |                                                                                                  | 90 Ω differential impedance. USB 3.1 standard |
| USB2_SS_RX_M                                                                                     | J2-100                                 | Al                | USB2 3.1<br>channel 1<br>super-speed<br>receive (-)                                                                                                  |                                                                                                  | compliant. Only support host mode.            |
| USB2_SS_RX_P                                                                                     | J2-102                                 | Al                | USB2 3.1<br>channel 1<br>super-speed<br>receive (+)                                                                                                  |                                                                                                  |                                               |
| PCIe Interfaces                                                                                  |                                        |                   |                                                                                                                                                      |                                                                                                  |                                               |
| Pin Name                                                                                         | Pin No.                                | I/O               | Description                                                                                                                                          | DC Characteristics                                                                               | Comment                                       |
|                                                                                                  |                                        |                   |                                                                                                                                                      |                                                                                                  |                                               |
| PCIE0_RST_N                                                                                      | J1-1                                   | DO                | PCIe0 reset                                                                                                                                          | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                   |                                               |
| PCIE0_RST_N PCIE0_WAKE_N                                                                         | J1-1<br>J1-3                           | DO<br>DI          | PCIe0 reset PCIe0 wake up host                                                                                                                       |                                                                                                  |                                               |
|                                                                                                  |                                        |                   | PCle0 wake up                                                                                                                                        | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V                                                   |                                               |
| PCIE0_WAKE_N                                                                                     | J1-3                                   | DI                | PCle0 wake up host PCle0 clock                                                                                                                       | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V |                                               |
| PCIE0_WAKE_N PCIE0_CLKREQ_N                                                                      | J1-3<br>J1-5                           | DI<br>DI          | PCIe0 wake up host PCIe0 clock request PCIe0 reference                                                                                               | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V | -                                             |
| PCIE0_WAKE_N  PCIE0_CLKREQ_N  PCIE0_REFCLK_P                                                     | J1-3<br>J1-5<br>J1-15                  | DI<br>DI<br>AO    | PCIe0 wake up host PCIe0 clock request PCIe0 reference clock (+) PCIe0 reference                                                                     | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V | Control the characteristic                    |
| PCIE0_WAKE_N  PCIE0_CLKREQ_N  PCIE0_REFCLK_P  PCIE0_REFCLK_M                                     | J1-3<br>J1-5<br>J1-15<br>J1-17         | DI<br>DI<br>AO    | PCle0 wake up host PCle0 clock request PCle0 reference clock (+) PCle0 reference clock (-) PCle0 transmit                                            | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V |                                               |
| PCIE0_WAKE_N  PCIE0_CLKREQ_N  PCIE0_REFCLK_P  PCIE0_REFCLK_M  PCIE0_TX_P                         | J1-3 J1-5 J1-15 J1-17 J1-11            | DI DI AO AO       | PCIe0 wake up host PCIe0 clock request PCIe0 reference clock (+) PCIe0 reference clock (-) PCIe0 transmit (+) PCIe0 transmit                         | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V | characteristic impedance as                   |
| PCIE0_WAKE_N  PCIE0_CLKREQ_N  PCIE0_REFCLK_P  PCIE0_REFCLK_M  PCIE0_TX_P  PCIE0_TX_M             | J1-3 J1-5 J1-15 J1-17 J1-11 J1-9       | DI DI AO AO AO    | PCle0 wake up host  PCle0 clock request  PCle0 reference clock (+)  PCle0 reference clock (-)  PCle0 transmit (+)  PCle0 transmit (-)  PCle0 receive | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V | characteristic impedance as                   |
| PCIE0_WAKE_N  PCIE0_CLKREQ_N  PCIE0_REFCLK_P  PCIE0_REFCLK_M  PCIE0_TX_P  PCIE0_TX_M  PCIE0_RX_P | J1-3 J1-5 J1-15 J1-17 J1-11 J1-9 J1-21 | DI DI AO AO AO AO | PCle0 wake up host PCle0 clock request PCle0 reference clock (+) PCle0 reference clock (-) PCle0 transmit (+) PCle0 transmit (-) PCle0 receive (+)   | $V_{OH}$ min = 1.35 V<br>$V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{IL}$ max = 0.63 V | characteristic impedance as                   |



| PCIE1_WAKE_N      | J1-111  | DI  | PCle1 wake up host        | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V                                                   |                                                                                |
|-------------------|---------|-----|---------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| PCIE1_CLKREQ_N    | J1-109  | DI  | PCle1 clock request       | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V                                                   |                                                                                |
| PCIE1_REFCLK_P    | J1-121  | АО  | PCle1 reference clock (+) |                                                                                                  |                                                                                |
| PCIE1_REFCLK_M    | J1-123  | АО  | PCle1 reference clock (-) |                                                                                                  | _                                                                              |
| PCIE1_TX_P        | J1-129  | AO  | PCle1 transmit (+)        |                                                                                                  | Control the characteristic                                                     |
| PCIE1_TX_M        | J1-127  | АО  | PCle1 transmit (-)        |                                                                                                  | impedance as 85 Ω.                                                             |
| PCIE1_RX_P        | J1-115  | AI  | PCle1 receive (+)         |                                                                                                  | -                                                                              |
| PCIE1_RX_M        | J1-117  | Al  | PCIe1 receive (-)         |                                                                                                  |                                                                                |
| SDIO Interface    |         |     |                           |                                                                                                  |                                                                                |
| Pin Name          | Pin No. | I/O | Description               | DC Characteristics                                                                               | Comment                                                                        |
| SDC4_CLK          | J1-86   | DO  | SDIO clock                | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                   |                                                                                |
| SDC4_CMD          | J1-92   | DO  | SDIO command              | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                   | SDIO function is<br>not supported by<br>default.<br>Can be<br>multiplexed into |
| SDC4_DATA0        | J1-82   | DIO | SDIO data bit 0           |                                                                                                  |                                                                                |
| SDC4_DATA1        | J1-84   | DIO | SDIO data bit 1           | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V                                                   |                                                                                |
| SDC4_DATA2        | J1-88   | DIO | SDIO data bit 2           | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                   | GPIOs.                                                                         |
| SDC4_DATA3        | J1-90   | DIO | SDIO data bit 3           | O[[] — 1.00 V                                                                                    |                                                                                |
| SD Card Interface |         |     |                           |                                                                                                  |                                                                                |
| Pin Name          | Pin No. | I/O | Description               | DC Characteristics                                                                               | Comment                                                                        |
| SD_CLK            | J1-45   | DO  | SD card clock             | <b>1.8 V SD card:</b> V <sub>OL</sub> max = 0.45 V                                               |                                                                                |
| SD_CMD            | J1-47   | DO  | SD card command           | $V_{OH}$ min = 0.45 V<br>$V_{OH}$ min = 1.4 V<br><b>2.95 V SD card:</b><br>$V_{OL}$ max = 0.36 V | Control characteristic impedance as 45 Ω.                                      |
|                   |         |     |                           | $V_{OH}min = 2.22 V$                                                                             | 45 12.                                                                         |



| SD_DATA1            | J1-53                        | DIO | SDIO data bit 1                                               | $V_{IL}$ max = 0.58 V<br>$V_{IH}$ min = 1.27 V                                                                                                  |             |
|---------------------|------------------------------|-----|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| SD_DATA2            | J1-57                        | DIO | SDIO data bit 2                                               | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.4 V                                                                                                   |             |
| SD_DATA3            | J1-55                        | DIO | SDIO data bit 3                                               | 2.95 V SD card:<br>V <sub>IL</sub> max = 0.73 V<br>V <sub>IH</sub> min = 1.85 V<br>V <sub>OL</sub> max = 0.36 V<br>V <sub>OH</sub> min = 2.22 V |             |
| SD_DET              | J1-49                        | DI  | SD card hot-plug detect                                       | $V_{IL}max = 0.63 V$<br>$V_{IH}min = 1.17 V$                                                                                                    | Active low. |
| SD_LDO21A           | J1-151,<br>J1-153,<br>J1-155 | РО  | SD card power supply                                          | Vnom = 2.95 V<br>I <sub>O</sub> max = 800 mA                                                                                                    |             |
| SD_LDO13A           | J4-11                        | РО  | 1.8/2.95 V output<br>power for SD<br>card pull-up<br>circuits | Vnom = 1.8/2.95 V<br>I <sub>O</sub> max = 50 mA                                                                                                 |             |
| TP (Touch Panel) In | terface                      |     |                                                               |                                                                                                                                                 |             |
| Pin Name            | Pin No.                      | I/O | Description                                                   | DC Characteristics                                                                                                                              | Comment     |
| TP_INT              | J2-48                        | DI  | TP interrupt                                                  | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V                                                                                                  |             |
| TP_RST              | J2-50                        | DO  | TP reset                                                      | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                                                                  | 1.8 V power |
| TP_I2C_SCL          | J2-44                        | OD  | TP I2C clock                                                  |                                                                                                                                                 | domain.     |
| TP_I2C_SDA          | J2-46                        | OD  | TP I2C data                                                   |                                                                                                                                                 |             |
| LCM Interfaces      |                              |     |                                                               |                                                                                                                                                 |             |
| Pin Name            | Pin No.                      | I/O | Description                                                   | DC Characteristics                                                                                                                              | Comment     |
| LCD_BL_A            | J4-4                         | РО  | Power output for LCD backlight                                |                                                                                                                                                 |             |
| LCD_BL_K1           | J4-3                         | AI  | Current sink 1 for LCD backlight                              |                                                                                                                                                 |             |
| LCD_BL_K2           | J4-2                         | AI  | Current sink 2 for LCD backlight                              |                                                                                                                                                 |             |
| LCD_BL_K3           | J4-27                        | AI  | Current sink 3 for LCD backlight                              |                                                                                                                                                 |             |
| LCD_BL_K4           | J4-26                        | Al  | Current sink 4 for                                            |                                                                                                                                                 |             |
|                     | 04 20                        | ,   | LCD backlight                                                 |                                                                                                                                                 |             |



| VDISP_P    | J4-29 | РО | Display bias output (+)      |                                                              |                                       |
|------------|-------|----|------------------------------|--------------------------------------------------------------|---------------------------------------|
| VDISP_M    | J4-30 | РО | Display bias output (-)      |                                                              |                                       |
| LCD_RST    | J2-62 | DO | LCD reset                    | $V_{OL}max = 0.45 \text{ V}$<br>$V_{OH}min = 1.35 \text{ V}$ | Active low.<br>1.8 V power<br>domain. |
| LCD_TE     | J2-60 | DI | LCD tearing effect           | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V               | 1.8 V power domain.                   |
| DSI0_CLK_N | J2-26 | AO | LCD0 MIPI clock<br>(-)       |                                                              |                                       |
| DSI0_CLK_P | J2-28 | AO | LCD0 MIPI clock<br>(+)       |                                                              |                                       |
| DSI0_LN0_N | J2-38 | АО | LCD0 MIPI lane<br>0 data (-) |                                                              |                                       |
| DSI0_LN0_P | J2-40 | АО | LCD0 MIPI lane<br>0 data (+) |                                                              |                                       |
| DSI0_LN1_N | J2-32 | АО | LCD0 MIPI lane<br>1 data (-) |                                                              |                                       |
| DSI0_LN1_P | J2-34 | АО | LCD0 MIPI lane<br>1 data (+) |                                                              |                                       |
| DSI0_LN2_N | J2-20 | АО | LCD0 MIPI lane<br>2 data (-) |                                                              |                                       |
| DSI0_LN2_P | J2-22 | AO | LCD0 MIPI lane<br>2 data (+) |                                                              |                                       |
| DSI0_LN3_N | J2-14 | АО | LCD0 MIPI lane<br>3 data (-) |                                                              | impedance.                            |
| DSI0_LN3_P | J2-16 | AO | LCD0 MIPI lane<br>3 data (+) |                                                              | _                                     |
| DSI1_CLK_N | J2-21 | AO | LCD1 MIPI clock<br>(-)       |                                                              |                                       |
| DSI1_CLK_P | J2-19 | AO | LCD1 MIPI clock<br>(+)       |                                                              |                                       |
| DSI1_LN0_N | J2-13 | АО | LCD1 MIPI lane<br>0 data (-) |                                                              |                                       |
| DSI1_LN0_P | J2-15 | AO | LCD1 MIPI lane<br>0 data (+) |                                                              |                                       |
| DSI1_LN1_N | J2-37 | AO | LCD1 MIPI lane<br>1 data (-) |                                                              |                                       |
| DSI1_LN1_P | J2-39 | AO | LCD1 MIPI lane 1 data (+)    |                                                              |                                       |
|            |       |    | ( - /                        |                                                              |                                       |



| DSI1_LN2_N        | J2-27   | AO  | LCD1 MIPI lane<br>2 data (-)     |                    |                                      |
|-------------------|---------|-----|----------------------------------|--------------------|--------------------------------------|
| DSI1_LN2_P        | J2-25   | АО  | LCD1 MIPI lane<br>2 data (+)     |                    | _                                    |
| DSI1_LN3_N        | J2-31   | AO  | LCD1 MIPI lane<br>3 data (-)     |                    | -                                    |
| DSI1_LN3_P        | J2-33   | AO  | LCD1 MIPI lane<br>3 data (+)     |                    | -                                    |
| Camera Interfaces |         |     |                                  |                    |                                      |
| Pin Name          | Pin No. | I/O | Description                      | DC Characteristics | Comment                              |
| CSI0_CLK_N        | J1-30   | Al  | MIPI clock of camera 0 (-)       |                    |                                      |
| CSI0_CLK_P        | J1-28   | AI  | MIPI clock of camera 0 (+)       |                    | -                                    |
| CSI0_LN0_N        | J1-22   | AI  | MIPI lane 0 data of camera 0 (-) |                    | -                                    |
| CSI0_LN0_P        | J1-24   | AI  | MIPI lane 0 data of camera 0 (+) |                    | _                                    |
| CSI0_LN1_N        | J1-16   | AI  | MIPI lane 1 data of camera 0 (-) |                    | _                                    |
| CSI0_LN1_P        | J1-18   | AI  | MIPI lane 1 data of camera 0 (+) |                    |                                      |
| CSI0_LN2_N        | J1-10   | AI  | MIPI lane 2 data of camera 0 (-) |                    | -                                    |
| CSI0_LN2_P        | J1-12   | AI  | MIPI lane 2 data of camera 0 (+) |                    | 100 $\Omega$ differential impedance. |
| CSI0_LN3_N        | J1-6    | AI  | MIPI lane 3 data of camera 0 (-) |                    | _                                    |
| CSI0_LN3_P        | J1-4    | AI  | MIPI lane 3 data of camera 0 (+) |                    | _                                    |
| CSI1_CLK_N        | J1-58   | AI  | MIPI clock of camera 1 (-)       |                    | _                                    |
| CSI1_CLK_P        | J1-60   | AI  | MIPI clock of camera 1 (+)       |                    | _                                    |
| CSI1_LN0_N        | J1-52   | AI  | MIPI lane 0 data of camera 1 (-) |                    | _                                    |
| CSI1_LN0_P        | J1-54   | AI  | MIPI lane 0 data of camera 1 (+) |                    | _                                    |
| CSI1_LN1_N        | J1-46   | Al  | MIPI lane 1 data of camera 1 (-) |                    |                                      |
|                   |         |     |                                  |                    |                                      |



| CSI1_LN1_P | J1-48 | Al | MIPI lane 1 data of camera 1 (+)    |                                             |
|------------|-------|----|-------------------------------------|---------------------------------------------|
| CSI1_LN2_N | J1-42 | Al | MIPI lane 2 data of camera 1 (-)    |                                             |
| CSI1_LN2_P | J1-40 | Al | MIPI lane 2 data of camera 1 (+)    |                                             |
| CSI1_LN3_N | J1-34 | Al | MIPI lane 3 data of camera 1 (-)    |                                             |
| CSI1_LN3_P | J1-36 | Al | MIPI lane 3 data of camera 1 (+)    |                                             |
| CSI2_CLK_N | J1-63 | Al | MIPI clock of camera 2 (-)          |                                             |
| CSI2_CLK_P | J1-61 | Al | MIPI clock of camera 2 (+)          |                                             |
| CSI2_LN0_N | J1-67 | Al | MIPI lane 0 data of camera 2 (-)    |                                             |
| CSI2_LN0_P | J1-69 | Al | MIPI lane 0 data<br>of camera 2 (+) |                                             |
| CSI2_LN1_N | J1-66 | Al | MIPI lane 1 data of camera 2 (-)    |                                             |
| CSI2_LN1_P | J1-64 | Al | MIPI lane 1 data of camera 2 (+)    |                                             |
| CSI2_LN2_N | J1-72 | Al | MIPI lane 2 data of camera 2 (-)    |                                             |
| CSI2_LN2_P | J1-70 | Al | MIPI lane 2 data of camera 2 (+)    |                                             |
| CSI2_LN3_N | J1-78 | Al | MIPI lane 3 data of camera 2 (-)    |                                             |
| CSI2_LN3_P | J1-76 | Al | MIPI lane 3 data of camera 2 (+)    |                                             |
| CSI3_CLK_N | J1-85 | Al | MIPI clock of camera 3 (-)          | 100 O differential                          |
| CSI3_CLK_P | J1-87 | Al | MIPI clock of camera 3 (+)          | 100 Ω differential impedance. CSI3 can only |
| CSI3_LN0_N | J1-81 | Al | MIPI lane 0 data of camera 3 (-)    | receive data of  RAW format. It             |
| CSI3_LN0_P | J1-79 | Al | MIPI lane 0 data of camera 3 (+)    | can be used for ToF/3D camera               |
| CSI3_LN1_N | J1-73 | Al | MIPI lane 1 data of camera 3 (-)    | modules but cannot be used for              |
| CSI3_LN1_P | J1-75 | Al | MIPI lane 1 data of camera 3 (+)    | display.                                    |



| CAM0_MCLK    | J1-91  | DO | Master clock of camera 0 |                                                |                        |
|--------------|--------|----|--------------------------|------------------------------------------------|------------------------|
| CAM1_MCLK    | J1-95  | DO | Master clock of camera 1 | _                                              |                        |
| CAM2_MCLK    | J1-99  | DO | Master clock of camera 2 | -                                              |                        |
| CAM3_MCLK    | J1-103 | DO | Master clock of camera 3 | -                                              |                        |
| CAM0_STROBE  | J1-122 | DO | Strobe of camera 0       | -                                              |                        |
| CAM1_STROBE  | J1-116 | DO | Strobe of camera 1       |                                                |                        |
| CAM2_STROBE  | J1-118 | DO | Strobe of camera 2       | -                                              |                        |
| CAM0_RST     | J1-100 | DO | Reset of camera 0        |                                                |                        |
| CAM1_RST     | J1-96  | DO | Reset of camera 1        | _                                              |                        |
| CAM2_RST     | J1-124 | DO | Reset of camera 2        | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V | 1.8 V power<br>domain. |
| CAM3_RST     | J1-126 | DO | Reset of camera 3        |                                                |                        |
| CAM0_PWDN    | J1-114 | DO | Power down of camera 0   |                                                |                        |
| CAM1_PWDN    | J1-120 | DO | Power down of camera 1   | -                                              |                        |
| CAM2_PWDN    | J1-106 | DO | Power down of camera 2   | _                                              |                        |
| CAM3_PWDN    | J1-112 | DO | Power down of camera 3   | -                                              |                        |
| CAM0_AVDD_EN | J1-102 | DO | AVDD enable of camera 0  | _                                              |                        |
| CAM1_AVDD_EN | J1-98  | DO | AVDD enable of camera 1  | _                                              |                        |
| CAM2_AVDD_EN | J1-104 | DO | AVDD enable of camera 2  | _                                              |                        |
| CAM3_AVDD_EN | J1-108 | DO | AVDD enable of camera 3  | _                                              |                        |
| CAM0_DVDD_EN | J1-132 | DO | DVDD enable of camera 0  | _                                              |                        |
| CAM1_DVDD_EN | J1-130 | DO | DVDD enable of camera 1  | -                                              |                        |



| CAM2_DVDD_EN                             | J1-110                  | DO             | DVDD enable of camera 2                                                                                  |                                                |                                            |
|------------------------------------------|-------------------------|----------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| CAM3_DVDD_EN                             | J1-128                  | DO             | DVDD enable of camera 3                                                                                  | -                                              |                                            |
| CCI0_I2C_SCL                             | J1-142                  | OD             | CCI0 I2C clock                                                                                           |                                                |                                            |
| CCI0_I2C_SDA                             | J1-144                  | OD             | CCI0 I2C data                                                                                            |                                                | 1.8 V power                                |
| CCI1_I2C_SDA                             | J1-146                  | OD             | CCI1 I2C data                                                                                            |                                                | domain.                                    |
| CCI1_I2C_SCL                             | J1-148                  | OD             | CC1 I2C clock                                                                                            |                                                |                                            |
| Keypad Interfaces                        |                         |                |                                                                                                          |                                                |                                            |
| Pin Name                                 | Pin No.                 | I/O            | Description                                                                                              | DC Characteristics                             | Comment                                    |
| PWRKEY                                   | J2-5                    | DI             | Turns on/off the module                                                                                  |                                                | Pulled up to 1.8 \ internally. Active low. |
| VOL_UP                                   | J2-9                    | DI             | Volume up                                                                                                | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V | If unused, keep this pin open.             |
| VOL_DOWN                                 | J2-7                    | DI             | Volume down                                                                                              |                                                | If unused, keep this pin open.             |
| HOME_KEY                                 | J2-145                  | DI             | Home key                                                                                                 |                                                | If unused, keep this pin open.             |
| Sensor Interfaces                        |                         |                |                                                                                                          |                                                |                                            |
|                                          |                         |                |                                                                                                          |                                                |                                            |
| Pin Name                                 | Pin No.                 | I/O            | Description                                                                                              | DC Characteristics                             | Comment                                    |
| Pin Name SSC_I2C1_SDA                    | Pin No.                 | I/O<br>OD      | Description Sensor core I2C1 data                                                                        | DC Characteristics                             | Comment                                    |
|                                          |                         |                | Sensor core I2C1                                                                                         | DC Characteristics                             | Comment                                    |
| SSC_I2C1_SDA                             | J2-8                    | OD             | Sensor core I2C1<br>data<br>Sensor core I2C1                                                             | DC Characteristics                             | -                                          |
| SSC_I2C1_SDA SSC_I2C1_SCL                | J2-8<br>J2-10           | OD<br>OD       | Sensor core I2C1 data Sensor core I2C1 clock Sensor core SPI1 chip select                                | $V_{OL}$ max = 0.45 V                          | 1.8 V power domain.                        |
| SSC_I2C1_SDA  SSC_I2C1_SCL  SSC_SPI1_CS0 | J2-8<br>J2-10<br>J1-136 | OD<br>OD<br>DO | Sensor core I2C1 data Sensor core I2C1 clock Sensor core SPI1 chip select 0 Sensor core SPI1 chip select | _                                              | 1.8 V power                                |



| Pin Name           | Pin No. | I/O | Description                                | DC Characteristics                             | Comment                       |
|--------------------|---------|-----|--------------------------------------------|------------------------------------------------|-------------------------------|
| Charging Interface |         |     |                                            |                                                |                               |
| ADC_PMU_GPIO21     | J2-151  | Al  | General-purpose<br>ADC interface           |                                                | Maximum input voltage: 4.5 V. |
| ADC_PMU_GPIO8      | J2-153  | Al  | General-purpose<br>ADC interface           |                                                | Maximum input voltage: 1.8 V. |
| Pin Name           | Pin No. | I/O | Description                                | DC Characteristics                             | Comment                       |
| ADC Interfaces     |         |     |                                            |                                                |                               |
| ACCEL_INT          | J1-139  | DI  | Acceleration sensor interrupt              |                                                |                               |
| GYRO_INT           | J1-137  | DI  | Gyroscopic sensor interrupt                |                                                |                               |
| MAG_DRDY_INT       | J1-135  | DI  | Magnetic sensor<br>DRDY interrupt          | $V_{IH}min = 1.17 V$                           |                               |
| MAG_INT            | J1-133  | DI  | Magnetic sensor interrupt                  | V <sub>IL</sub> max = 0.63 V                   |                               |
| SSC_SPI2_MISO      | J1-147  | DI  | Sensor core<br>SPI2 master-in<br>salve-out |                                                |                               |
| SSC_SPI2_MOSI      | J1-143  | DO  | Sensor core<br>SPI2 master-out<br>slave-in | VOMIIIII — 1.30 V                              | _                             |
| SSC_SPI2_CLK       | J1-145  | DO  | Sensor core<br>SPI2 clock                  | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V |                               |
| SSC_SPI2_CS        | J1-141  | DO  | Sensor core<br>SPI2 chip select            |                                                | -                             |
| SSC_SPI1_MISO      | J1-150  | DI  | Sensor core<br>SPI1 master-in<br>salve-out | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V | -                             |
| SSC_SPI1_MOSI      | J1-152  | DO  | Sensor core SPI1 master-out slave-in       |                                                |                               |



|                                                   |                                                                 |                                                                                               | 1.4 0 0 1                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J2-143                                            | AI                                                              | Battery<br>temperature<br>detect                                                              | Internally pulled up. Supports $47 \text{ k}\Omega$ NTC by default - externally connect BAT_THERM to $47 \text{ k}\Omega$ NTC to GND. If you need to connect $10 \text{ k}\Omega$ NTC, pull up BAT_THERM to BAT_RBIAS with a $12 \text{ k}\Omega$ resistor. If unused, pull BAT_THERM down to GND with a $47 \text{ k}\Omega$ resistor. |
| J2-163                                            | AI                                                              | Battery voltage detect (+)                                                                    |                                                                                                                                                                                                                                                                                                                                         |
| J2-165                                            | Al                                                              | Battery voltage<br>detect (-)                                                                 | Must be                                                                                                                                                                                                                                                                                                                                 |
| J2-157                                            | AI                                                              | Current sense<br>(+)                                                                          | connected.                                                                                                                                                                                                                                                                                                                              |
| J2-159                                            | AI                                                              | Current sense<br>(-)                                                                          |                                                                                                                                                                                                                                                                                                                                         |
| J3-11                                             | PO                                                              | Power supply for<br>NTC pull-up<br>circuit                                                    | If NTC = $10 \text{ k}\Omega$ , pull BAT_THERM up to BAT_RBIAS with a $12 \text{ k}\Omega$ resistor.  If NTC = $47 \text{ k}\Omega$ , keep BAT_RBIAS open.                                                                                                                                                                              |
| J3-16                                             | Al                                                              | Battery type detect                                                                           |                                                                                                                                                                                                                                                                                                                                         |
| J3-2,<br>J3-3,<br>J3-4,<br>J3-5,<br>J3-6,<br>J3-7 | PO                                                              | Power output for<br>SMB1355<br>parallel charging                                              | Parallel charging is not supported by default and if it is needed please contact Quectel Technical Support.                                                                                                                                                                                                                             |
|                                                   | J2-163 J2-165 J2-157 J2-159 J3-16 J3-2, J3-3, J3-4, J3-5, J3-6, | J2-163 AI  J2-165 AI  J2-157 AI  J2-159 AI  J3-11 PO  J3-16 AI  J3-2, J3-3, J3-4, J3-5, J3-6, | J2-143 AI temperature detect  J2-163 AI Battery voltage detect (+)  J2-165 AI Battery voltage detect (-)  J2-157 AI Current sense (+)  J2-159 AI Current sense (-)  J3-11 PO NTC pull-up circuit  J3-16 AI Battery type detect  J3-2,  J3-3,  J3-4,  J3-5,  J3-6,  Power output for SMB1355  parallel charging                          |



| SMB_EN_CHG       | J3-9    | DO  | SMB1355 parallel charging enable                  |                                                                                                                     | If unused, keep these pins open. |
|------------------|---------|-----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|
| SMB_STAT         | J3-10   | DI  | SMB1355<br>parallel charging<br>status indicator  |                                                                                                                     |                                  |
| SMB_THERM        | J3-17   | AI  | SMB1355 parallel charging temperature detect      |                                                                                                                     |                                  |
| SMB_CS_P         | J3-15   | AI  | SMB1355<br>parallel charging<br>current sense (+) |                                                                                                                     |                                  |
| SMB_CS_M         | J3-14   | AI  | SMB1355<br>parallel charging<br>current sense (-) |                                                                                                                     | -                                |
| Audio Interfaces |         |     |                                                   |                                                                                                                     |                                  |
| Pin Name         | Pin No. | I/O | Description                                       | DC Characteristics                                                                                                  | Comment                          |
| CODEC_RST        | J2-90   | DO  | Codec reset                                       | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                                      | 1.8 V power domain.              |
| CODEC_INT1       | J2-91   | DI  | Codec<br>interrupt 1                              | V <sub>IL</sub> max = 0.63 V<br>V <sub>IH</sub> min = 1.17 V                                                        |                                  |
| CODEC_INT2       | J2-93   | DI  | Codec<br>interrupt 2                              |                                                                                                                     |                                  |
| CODEC_SPI_CS     | J2-96   | DO  | SPI chip select for codec                         | V <sub>OL</sub> max = 0.45 V<br>V <sub>OH</sub> min = 1.35 V                                                        |                                  |
| CODEC_SPI_CLK    | J2-92   | DO  | SPI clock for codec                               |                                                                                                                     |                                  |
| CODEC_SPI_MOSI   | J2-94   | DO  | SPI master-out<br>slave-in for<br>codec           |                                                                                                                     |                                  |
| CODEC_SPI_MISO   | J2-89   | DI  | SPI master-in salve-out for codec                 | $V_{IL}max = 0.63 V$<br>$V_{IH}min = 1.17 V$                                                                        |                                  |
| WCD_CLK          | J2-43   | DO  | WCD clock                                         | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                                      |                                  |
| SLIMBUS_CLK      | J2-51   | DO  | SLIMbus clock                                     |                                                                                                                     |                                  |
| SLIMBUS_DATA0    | J2-47   | DIO | SLIMbus data bit 0                                | $V_{IL}max = 0.63 \text{ V}$ $V_{IH}min = 1.17 \text{ V}$ $V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$ |                                  |
| SLIMBUS_DATA1    | J2-49   | DIO | SLIMbus data bit 1                                |                                                                                                                     |                                  |
|                  |         |     |                                                   |                                                                                                                     |                                  |



| I2S1_WS         | J2-79   | DO  | I2S1 word select             | _                                                                                                                                                |                     |
|-----------------|---------|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| I2S1_MCLK       | J2-81   | DO  | I2S1 master<br>clock         | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                                                                   |                     |
| I2S1_SCK        | J2-83   | DO  | I2S1 bit clock               |                                                                                                                                                  |                     |
| I2S1_DATA0      | J2-87   | DIO | I2S1 data<br>channel 0       | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V                                                                                                   | -                   |
| I2S1_DATA1      | J2-85   | DIO | I2S1 data<br>channel 1       | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                                                                   | _                   |
| 12S2_WS         | J2-55   | DO  | I2S2 word select             | V <sub>OL</sub> max = 0.45 V                                                                                                                     |                     |
| I2S2_SCK        | J2-57   | DO  | I2S2 bit clock               | $V_{OH}min = 1.35 \text{ V}$ $V_{IL}max = 0.63 \text{ V}$ $V_{IH}min = 1.17 \text{ V}$ $V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$ |                     |
| I2S2_DATA0      | J2-59   | DIO | I2S2 data<br>channel 0       |                                                                                                                                                  | -                   |
| I2S2_DATA1      | J2-61   | DIO | I2S2 data<br>channel 1       |                                                                                                                                                  | _                   |
| 12S3_WS         | J2-63   | DO  | I2S3 word select             | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                                                                   |                     |
| I2S3_SCK        | J2-73   | DO  | I2S3 bit clock               |                                                                                                                                                  |                     |
| I2S3_DATA0      | J2-69   | DIO | I2S3 data<br>channel 0       | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V<br>$V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V                                                 | -                   |
| I2S3_DATA1      | J2-65   | DIO | I2S3 data<br>channel 1       |                                                                                                                                                  |                     |
| I2S3_DATA2      | J2-67   | DIO | I2S3 data<br>channel 2       |                                                                                                                                                  |                     |
| I2S3_DATA3      | J2-71   | DIO | I2S3 data<br>channel 3       |                                                                                                                                                  |                     |
| GPIO Interfaces |         |     |                              |                                                                                                                                                  |                     |
| Pin Name        | Pin No. | I/O | Description                  | DC Characteristics                                                                                                                               | Comment             |
| GPIO_25         | J2-2    | DIO | General-purpose input/output | _                                                                                                                                                |                     |
| GPIO_42         | J2-64   | DIO | General-purpose input/output | V <sub>IL</sub> max = 0.63 V                                                                                                                     |                     |
| GPIO_44         | J2-66   | DIO | General-purpose input/output | $V_{IH}min = 1.17 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$                                                                                   | 1.8 V power domain. |
| GPIO_49         | J2-78   | DIO | General-purpose input/output |                                                                                                                                                  |                     |
| GPIO_50         | J2-70   | DIO | General-purpose input/output | -                                                                                                                                                |                     |
|                 |         |     |                              |                                                                                                                                                  |                     |



| GPIO_52        | J2-68   | DIO | General-purpose input/output    |                                                |                     |
|----------------|---------|-----|---------------------------------|------------------------------------------------|---------------------|
| GPIO_122       | J2-74   | DIO | General-purpose input/output    | -                                              |                     |
| GPIO_124       | J2-76   | DIO | General-purpose input/output    | _                                              |                     |
| GPIO_128       | J2-132  | DIO | General-purpose input/output    | _                                              |                     |
| GPIO_129       | J2-136  | DIO | General-purpose input/output    | -                                              |                     |
| GPIO_134       | J2-72   | DIO | General-purpose input/output    | -                                              |                     |
| GPIO_135       | J2-134  | DIO | General-purpose input/output    |                                                |                     |
| SPI Interfaces |         |     |                                 |                                                |                     |
| Pin Name       | Pin No. | I/O | Description                     | DC Characteristics                             | Comment             |
| SPI2_CLK       | J2-52   | DO  | SPI2 clock                      |                                                |                     |
| SPI2_CS        | J2-54   | DO  | SPI2 chip select                | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V | _                   |
| SPI2_MOSI      | J2-58   | DO  | SPI2 master-out slave-in        |                                                |                     |
| SPI2_MISO      | J2-56   | DI  | SPI2 master-in salve-out        | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V | _                   |
| SPI0_CLK       | J2-86   | DO  | SPI0 clock                      | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V | 1.8 V power domain. |
| SPI0_CS        | J2-80   | DO  | SPI0 chip select                |                                                |                     |
| SPI0_MOSI      | J2-82   | DO  | SPI0 master-out slave-in        |                                                |                     |
| SPI0_MISO      | J2-84   | DI  | SPI0 master-in salve-out        | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V |                     |
| SPI11_CLK      | J2-99   | DO  | SPI11 clock                     | $V_{OL}$ max = 0.45 V                          |                     |
| SPI11_CS       | J2-101  | DO  | SPI11 chip select               | $V_{OH}$ min = 1.35 V                          |                     |
| SPI11_MISO     | J2-97   | DI  | SPI11 master-in salve-out       | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V |                     |
| SPI11_MOSI     | J2-95   | DO  | SPI11<br>master-out<br>slave-in | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V |                     |
| RGB interfaces |         |     |                                 |                                                |                     |
|                |         |     |                                 |                                                |                     |



| R_LED                  | J2-152  | АО  | Current source for red LED                         |                                                                |                       |  |  |
|------------------------|---------|-----|----------------------------------------------------|----------------------------------------------------------------|-----------------------|--|--|
| G_LED                  | J2-156  | АО  | Current source for green LED                       |                                                                |                       |  |  |
| B_LED                  | J2-154  | АО  | Current source for blue LED                        |                                                                |                       |  |  |
| DisplayPort Interface  |         |     |                                                    |                                                                |                       |  |  |
| Pin Name               | Pin No. | I/O | Description                                        | DC Characteristics                                             | Comment               |  |  |
| EDP_AUX_P              | J2-129  | AIO | DisplayPort<br>auxiliary channel<br>(+)            |                                                                |                       |  |  |
| EDP_AUX_N              | J2-131  | AIO | DisplayPort<br>auxiliary channel<br>(-)            |                                                                |                       |  |  |
| SBU_SW_OE              | J2-1    | DO  | DisplayPort auxiliary channel switch output enable | V <sub>OL</sub> max = 0.45 V<br>- V <sub>OH</sub> min = 1.35 V | 1.8 V power domain.   |  |  |
| SBU_SW_SEL             | J2-3    | DO  | DisplayPort<br>auxiliary channel<br>switch select  |                                                                | domain.               |  |  |
| Vibrator Drive Interfa | ce      |     |                                                    |                                                                |                       |  |  |
| Pin Name               | Pin No. | I/O | Description                                        | DC Characteristics                                             | Comment               |  |  |
| HAP_PWM_IN             | J3-18   | DI  | Haptic PWM input                                   |                                                                |                       |  |  |
| HAP_P                  | J3-20   | АО  | Haptic driver output (+)                           |                                                                |                       |  |  |
| HAP_M                  | J3-19   | AO  | Haptic driver output (-)                           |                                                                |                       |  |  |
| UFS Interface          |         |     |                                                    |                                                                |                       |  |  |
| Pin Name               | Pin No. | I/O | Description                                        | DC Characteristics                                             | Comment               |  |  |
| UFS_DET                | J1-43   | DI  | UFS card<br>hot-plug detect                        |                                                                |                       |  |  |
| UFS_CLK                | J1-39   | DO  | UFS card clock                                     |                                                                | UFS is not            |  |  |
| UFS_TX_P               | J1-33   | АО  | UFS card<br>transmit (+)                           |                                                                | supported by default. |  |  |
| UFS_TX_M               | J1-35   | AO  | UFS card<br>transmit (-)                           |                                                                |                       |  |  |
|                        |         |     |                                                    |                                                                |                       |  |  |



| UFS_RX_P              | J1-29           | Al        | UFS card receive (+)                           |                                   |                                                                                                       |
|-----------------------|-----------------|-----------|------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|
| UFS_RX_M              | J1-27           | Al        | UFS card receive (-)                           |                                   |                                                                                                       |
| PWM Interfaces        |                 |           |                                                |                                   |                                                                                                       |
| Pin Name              | Pin No.         | I/O       | Description                                    | DC Characteristics                | Comment                                                                                               |
| PWM_PMI_GPIO5         | J2-146          | DO        | PWM output                                     |                                   | 1.8 V power                                                                                           |
| PWM_PMI_GPIO8         | J2-144          | DO        | PWM output                                     |                                   | domain.                                                                                               |
| Flashlight Interfaces |                 |           |                                                |                                   |                                                                                                       |
| Pin Name              | Pin No.         | I/O       | Description                                    | DC Characteristics                | Comment                                                                                               |
| FLASH_LED1            | J4-23,<br>J4-24 | AO        | Flash/torch driver output 1                    | ILED1 = 1.5 A                     | _                                                                                                     |
| FLASH_LED2            | J4-20,<br>J4-21 | АО        | Flash/torch driver output 2                    | ILED2 = 1.5 A                     | Support flash and torch modes.                                                                        |
| FLASH_LED3            | J4-5,<br>J4-6   | АО        | Flash/torch driver output 3                    | ILED3 = 0.75 A                    |                                                                                                       |
| VRTC Interface        |                 |           |                                                |                                   |                                                                                                       |
| Pin Name              | Pin No.         | I/O       | Description                                    | DC Characteristics                | Comment                                                                                               |
| VRTC                  | J2-133          | PI/P<br>O | Power supply for RTC                           | Vnom = 3.2 V<br>$V_1 = 2.5-3.2 V$ |                                                                                                       |
| Emergency Downloa     | d Interface     | 9         |                                                |                                   |                                                                                                       |
| Pin Name              | Pin No.         | I/O       | Description                                    | DC Characteristics                | Comment                                                                                               |
| USB_BOOT              | J2-130          | DI        | Forces the module into emergency download mode |                                   | Pulling it up to VREG_S4A_1V8 during power-up will force the module to enter emergency download mode. |
| I2C Interfaces        |                 |           |                                                |                                   |                                                                                                       |
| Pin Name              | Pin No.         | I/O       | Description                                    | DC Characteristics                | Comment                                                                                               |
| I2C4_SDA              | J2-4            | OD        | I2C4 data                                      |                                   | 1.8 V power                                                                                           |
| I2C4_SCL              | J2-6            | OD        | I2C4 clock                                     |                                   | domain.                                                                                               |
|                       |                 |           |                                                |                                   |                                                                                                       |



| I2C10_SCL        | J2-75             | OD       | I2C10 clock                       |                                                |                       |
|------------------|-------------------|----------|-----------------------------------|------------------------------------------------|-----------------------|
| I2C10_SDA        | J2-77             | OD       | I2C10 data                        |                                                |                       |
| Other Interfaces |                   |          |                                   |                                                |                       |
| Pin Name         | Pin No.           | I/O      | Description                       | DC Characteristics                             | Comment               |
| VCONN_EN         | J3-30             | DO       | VCONN enable                      |                                                |                       |
| VCONN            | J3-29             | PI       | Power supply for active cables    |                                                |                       |
| CBL_PWR_N        | J1-134            | DI       | Initiates power-on when grounded. |                                                |                       |
| DBG_TXD          | J2-137            | DO       | Debug UART transmit               | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V |                       |
| DBG_RXD          | J2-135            | DI       | Debug UART receive                | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V | 1.8 V power           |
| PMU_GPIO10       | J2-147            | DIO      | General-purpose input/output      | $V_{IL}$ max = 0.63 V<br>$V_{IH}$ min = 1.17 V | domain.               |
| PMU_GPIO13       | J2-149            | DIO      | General-purpose input/output      | $V_{OL}$ max = 0.45 V<br>$V_{OH}$ min = 1.35 V |                       |
| Reserved Pins    |                   |          |                                   |                                                |                       |
| Pin Name         | Pin No.           |          |                                   |                                                | Comment               |
| RESERVED         | J2-88, J2<br>J4-1 | 2-138, J | 3-22, J3-23, J3-24, C             | J3-25, J3-26, J3-27,                           | Keep these pins open. |
|                  |                   |          |                                   |                                                |                       |



# 3.4. Power Supply

#### 3.4.1. Power Supply Pins

SA800U-WF provides 10 VBAT pins, which are dedicated for connection with external power supply.

# 3.4.2. Decrease Voltage Drop

The power supply range of the module is from 3.55 V to 4.4 V, and the recommended value is 3.8 V. The power supply performance, such as load capacity, voltage ripple, etc. directly influences the module's performance and stability. Under ultimate conditions, the module may have a transient peak current up to 3 A. If the power supply capability is not sufficient, there will be voltage drops, and if the voltage drops below 3.1 V, the module will be powered off automatically. Therefore, make sure the input voltage will never drop below 3.1 V.



Figure 3: Voltage Drop Sample

To decrease voltage drop, a bypass capacitor of about 100  $\mu$ F with low ESR (ESR = 0.7  $\Omega$ ) should be used for the VBAT inputs, and a multi-layer ceramic chip capacitor (MLCC) array should also be used due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) to form the MLCC array, and place these capacitors close to the VBAT pins. The width of VBAT traces should be no less than 3 mm. In principle, the longer the VBAT trace is, the wider it should be.

In addition, in order to get a stable power source, it is suggested to use a 2000 W TVS and place it as close to the VBAT pins as possible to increase voltage surge withstand capability.



The following figure shows the structure of the power supply.



Figure 4: Star Structure of Power Supply

#### 3.4.3. Reference Design for Power Supply

The power design for the module is important, as the performance of module largely depends on the power source. The power supply of SA800U-WF should be able to provide sufficient current of at least 3 A. By default, it is recommended to use a battery to supply power for the module. If battery is not used, it is recommended to use a regulator for the module. If the voltage difference between the input and output is not too high, it is suggested to use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +12 V input power source which adopts a buck converter (TPS54428DDAR) from TI. The typical output voltage is 3.8 V and the maximum rated current is 5.3 A.



Figure 5: Reference Circuit of Power Supply



# NOTES

- 1. It is recommended to switch off the power supply for the module in abnormal condition, and then switch on the power to restart the module.
- 2. The module supports battery charging function by default. If battery is not used and the above power supply design is adopted, make sure the charging function is disabled by software, or connect a Schottky diode with higher than 5 A average current capacity between the output of the inductor L1 and the VBAT pins of the module.
- 3. When the battery voltage is below 3.1 V, the system will trigger automatic shutdown, so the design of power supply should be consistent with the configuration of fuel gauge driver.

#### 3.5. Turn on and off Scenarios

## 3.5.1. Turn on the Module Using PWRKEY

The module can be turned on by driving PWRKEY low for at least 1.6 s. PWRKEY is pulled up to 1.8 V internally. It is recommended to use an open drain/collector driver to control PWRKEY. A simple reference circuit is illustrated in the following figure.



Figure 6: Turn on the Module Using Driving Circuit



Another way to control PWRKEY is using a button directly. A TVS component should be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.



Figure 7: Turn on the Module Using Keystroke

The timing of turning on is illustrated in the following figure.



Figure 8: Timing of Turning on the Module



# **NOTES**

- 1. The turn-on timing might be different from the above figure when the module powers on for the first time.
- 2. Make sure that VBAT is stable before pulling down PWRKEY. It is recommended to wait until VBAT to be stable for at least 30 ms before pulling down PWRKEY. Additionally, PWRKEY cannot be pulled down all the time.

# 3.5.2. Turn on the Module Automatically Using CBL\_PWR\_N

The module can be turned on automatically by driving the CBL\_PWR\_N pin to GND through a 1  $k\Omega$  resistor. CBL\_PWR\_N pin is pulled up internally. A simple reference circuit is illustrated in the following figure.



Figure 9: Turn on the Module Using CBL\_PWR\_N

# **NOTE**

The module can be turned on automatically by driving CBL\_PWR\_N pin to GND, and cannot be turned off manually unless you shut down the VBAT.



#### 3.5.3. Turn off/Restart the Module

Pull down PWRKEY for at least 1 s, and then choose to turn off the module when a prompt window comes up.

Another way to restart the module is to drive PWRKEY low for at least 8 s. The module will execute forced restart. The forced restart timing is illustrated in the following figure.



Figure 10: Timing of Restarting the Module

## 3.6. VRTC Interface

The RTC (Real Time Clock) can be powered by an external power source through VRTC when the module is powered down and there is no power supply for the VBAT. The external power source can be a rechargeable battery (such as coin cell) according to application demands. The following reference circuit design shows a design where an external battery is utilized to power RTC.



Figure 11: RTC Powered by Coin Cell



If RTC is ineffective, it can be synchronized through network after the module is powered on.

- 2.5–3.2 V input voltage range and 3.2 V typical value for VRTC, when VBAT is disconnected.
- When powered by VBAT, the RTC error is 50 ppm. When powered by VRTC, the RTC error is about 200 ppm.
- If rechargeable battery is used, the ESR of battery should be less than 2 k $\Omega$ , and it is recommended to use the MS621FE-FL11E of SEIKO.

# 3.7. Power Output

SA800U-WF supports output of regulated voltages for peripheral circuits. During application, it is recommended to use parallel capacitors (33 pF and 10 pF) in the circuit to suppress high-frequency noise.

**Table 5: Power Description** 

| Pin Name     | Default Voltage (V) | Drive Current (mA) | Comment |
|--------------|---------------------|--------------------|---------|
| VREG_S4A_1V8 | 1.8                 | 2000               | Keep    |
| LVS1A_1V8    | 1.8                 | 300                | -       |
| LVS2A_1V8    | 1.8                 | 100                | Keep    |
| LDO12A_1V8   | 1.8                 | 300                | -       |
| SD_LDO13A    | 1.8/2.95            | 50                 | -       |
| LDO14A_1V88  | 1.8                 | 50                 | -       |
| LDO19A_3V0   | 3.0                 | 600                | -       |
| SD_LDO21A    | 2.95                | 800                | -       |
| LDO24A_3V075 | 3.075               | 150                | -       |
| LDO28A_3V0   | 3.0                 | 150                | -       |
| VREG_BOB     | 3.7                 | 2000               | Keep    |



# 3.8. Battery Charging and Management

SA800U-WF supports a fully programmable switch-mode Li-ion battery charging function. It can charge single-cell Li-ion and Li-polymer batteries. It supports QC 3.0 and QC 4.0 and the maximum charging current is up to 4.5 A. The battery charger of SA800U-WF supports trickle charging, pre-charge, constant current charging and constant voltage charging modes, which optimize the charging procedure for Li-ion and Li-polymer batteries.

- **Trickle charging:** When the battery voltage is below 2.1 V, a 45 mA trickle charging current is applied to the battery.
- **Pre-charge:** When the battery voltage is charged up and is between 2.1 V and 3.0 V (the maximum pre-charge voltage is 2.1–3.0 V programmable, 3.0 V by default), the system will enter the pre-charge mode. The charging current is 500 mA (0–1575 mA programmable).
- Constant current mode (CC mode): When the battery voltage is between the maximum pre-charge voltage and 4.35 V (3.0–4.35 V programmable, 4.35 V by default), the system will switch to CC mode. The charging current is programmable from 300–4500 mA. The default charging current is 500 mA for USB charging and 4000 mA for adapter.
- Constant voltage mode (CV mode): When the battery voltage reaches the final value 4.35 V, the system will switch to CV mode and the charging current will decrease gradually. When the charging current reduces to about 100 mA, the charging is completed.

**Table 6: Pin Definition of Charging Interface** 

| Pin Name  | Pin No.                                                                                         | I/O   | Description                                                                      | Comment                                                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB_VBUS  | J2-160, J2-162,<br>J2-164, J2-166,<br>J2-168, J4-13,<br>J4-14, J4-15,<br>J4-16, J4-17,<br>J4-18 | PI/PO | Charging power input. Power output for OTG device. USB/adaptor insertion detect. | Vmax = 14 V<br>Vmin = 4.0 V<br>Vnom = 5.0 V                                                                                                                               |
| VBAT      | J1-159, J1-160,<br>J1-161, J1-162,<br>J1-163, J1-164,<br>J1-165, J1-166,<br>J1-167, J1-168      | PI/PO | Power supply for the module                                                      | Vmax = 4.4 V<br>Vmin = 3.55 V<br>Vnom = 3.8 V                                                                                                                             |
| BAT_THERM | J2-143                                                                                          | AI    | Battery temperature detect                                                       | Internally pulled up. Supports 47 k $\Omega$ NTC by default - externally connect BAT_THERM to 47 k $\Omega$ NTC to GND. If you need to connect 10 k $\Omega$ NTC, pull up |



|            |                                          |    |                                              | BAT_THERM to BAT_RBIAS with a 12 k $\Omega$ resistor. If unused, pull BAT_THERM down to GND with a 47 k $\Omega$ resistor.                                |
|------------|------------------------------------------|----|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAT_P      | J2-163                                   | Al | Battery voltage detect (+)                   |                                                                                                                                                           |
| BAT_M      | J2-165                                   | AI | Battery voltage detect (-)                   | Must be seen seted                                                                                                                                        |
| CS_P       | J2-157                                   | Al | Current sense (+)                            | <ul> <li>Must be connected.</li> </ul>                                                                                                                    |
| CS_M       | J2-159                                   | Al | Current sense (-)                            | _                                                                                                                                                         |
| BAT_RBIAS  | J3-11                                    | PO | Power supply for NTC pull-up circuit         | If NTC = $10 \text{ k}\Omega$ , pull BAT_THERM up to BAT_RBIAS with a $12 \text{ k}\Omega$ resistor. If NTC = $47 \text{ k}\Omega$ , keep BAT_RBIAS open. |
| BAT_ID     | J3-16                                    | Al | Battery type detect                          |                                                                                                                                                           |
| SMB_USB_IN | J3-2, J3-3,<br>J3-4, J3-5,<br>J3-6, J3-7 | РО | Power output for SMB1355 parallel charging   |                                                                                                                                                           |
| SMB_CS_P   | J3-15                                    | AI | SMB1355 parallel charging current sense (+)  | Parallel charging is not supported by default and                                                                                                         |
| SMB_CS_M   | J3-14                                    | AI | SMB1355 parallel charging current sense (-)  | if it is needed please contact Quectel Technical Support.  If unused, keep these pins                                                                     |
| SMB_THERM  | J3-17                                    | Al | SMB1355 parallel charging temperature detect |                                                                                                                                                           |
| SMB_EN_CHG | J3-9                                     | DO | SMB1355 parallel charging enable             | open.                                                                                                                                                     |
| SMB_STAT   | J3-10                                    | DI | SMB1355 parallel charging status indicator   | _                                                                                                                                                         |

SA800U-WF supports battery temperature detection in the condition that the battery integrates a thermistor (47 k $\Omega$  1 % NTC thermistor with B-constant of 4050 K by default; SDNT1608X473F4050FTF of SUNLORD is recommended) and the thermistor is connected to the BAT\_THERM pin. If BAT\_THERM is not connected, there will be malfunctions such as boot error, battery charging failure, battery level display error, etc.



A reference design for battery charging circuit is shown below.



Figure 12: Reference Design for Battery Charging Circuit

SA800U-WF offers a fuel gauge algorithm which is able to accurately estimate the battery's health state by current and voltage monitoring techniques. Using precise measurements of battery voltage, current, and temperature, the fuel gauge provides a dependable state of charge estimate throughout the entire life of the battery and across a broad range of operating conditions. It effectively protects the battery from over-discharging, and also allows you to estimate the battery life based on the battery level to timely save important data before complete power-down.

Mobile devices such as mobile phone and game machine systems are powered by batteries. When different batteries are used, the charging and discharging curve has to be modified according to the battery type to achieve the best performance.

If thermistor is not available in the battery, or an adapter rather than a battery is used to power the module, BAT\_THERM should be connected to GND with a 47 k $\Omega$  resistor. Otherwise the system may be unable to detect the battery, which will cause power-on failure. BAT\_P and BAT\_M must be connected, and also CS\_P and CS\_M must be connected, otherwise there may be abnormalities in using the module. BAT\_P and BAT\_M are used for battery level detection, and they should be routed as a differential pair to ensure accuracy. CS\_P and CS\_M are used for charging current sensing, and they should be routed as a differential pair to ensure accuracy.



#### 3.9. USB Interfaces

SA800U-WF provides two USB interfaces which comply with both USB 3.1 and USB 2.0 specifications and support super speed (5 Gbps) on USB 3.1, high speed (480 Mbps) and full speed (12 Mbps) modes on USB 2.0. USB1 can be used for AT command transmission, data transmission, software debugging and firmware upgrade. USB2 only supports host mode.

#### 3.9.1. USB1 Interface

#### 3.9.1.1. USB Type-C Mode

The USB1 interface has one USB 2.0 compliant high-speed differential channel (USB1\_DP, USB1\_DM) and two USB 3.1 compliant super-speed differential channels (USB1\_SS1\_RX\_P/M, USB1\_SS1\_TX\_P/M and USB1\_SS2\_RX\_P/M, USB1\_SS2\_TX\_P/M).

When Type-C is plugged in with one side up, USB\_CC1 will detect the external device, and the data will be transmitted through USB\_SS1; when it is plugged in with the other side up, USB\_CC2 will detect the external device, and the data will be transmitted through USB\_SS2. The following table shows the pin definition of USB Type-C interface.

The following table shows the pin definition of USB1 interface.

Table 7: Pin Definition of USB TYPE-C Interface

| Pin Name      | Pin No.                                                                                         | I/O   | Description                                                                      | Comment                                     |
|---------------|-------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|---------------------------------------------|
| USB_VBUS      | J2-160, J2-162,<br>J2-164, J2-166,<br>J2-168, J4-13,<br>J4-14, J4-15,<br>J4-16, J4-17,<br>J4-18 | PI/PO | Charging power input. Power output for OTG device. USB/adaptor insertion detect. | Vmax = 14 V<br>Vmin = 4.0 V<br>Vnom = 5.0 V |
| USB1_DM       | J2-117                                                                                          | AIO   | USB1 2.0 differential data (-)                                                   | 90 Ω differential impedance.                |
| USB1_DP       | J2-119                                                                                          | AIO   | USB1 2.0 differential data (+)                                                   | USB 2.0 standard compliant.                 |
| USB1_SS1_TX_M | J2-123                                                                                          | AO    | USB1 3.1 channel 1 super-speed transmit (-)                                      |                                             |
| USB1_SS1_TX_P | J2-125                                                                                          | AO    | USB1 3.1 channel 1 super-speed transmit (+)                                      | 90 Ω differential impedance.                |
| USB1_SS1_RX_M | J2-118                                                                                          | Al    | USB1 3.1 channel 1 super-speed receive (-)                                       | USB 3.1 standard compliant.                 |
| USB1_SS1_RX_P | J2-120                                                                                          | Al    | USB1 3.1 channel 1 super-speed receive (+)                                       | -                                           |



| USB1_SS2_TX_M | J2-111 | AO | USB1 3.1 channel 2 super-speed transmit (-) |
|---------------|--------|----|---------------------------------------------|
| USB1_SS2_TX_P | J2-113 | AO | USB1 3.1 channel 2 super-speed transmit (+) |
| USB1_SS2_RX_M | J2-114 | Al | USB1 3.1 channel 2 super-speed receive (-)  |
| USB1_SS2_RX_P | J2-112 | Al | USB1 3.1 channel 2 super-speed receive (+)  |
| USB_CC1       | J2-141 | Al | USB Type-C configuration channel 1          |
| USB_CC2       | J2-139 | Al | USB Type-C configuration channel 2          |

The following is a reference design for USB Type-C interface:



Figure 13: USB Type-C Interface Reference Design

SA800U-WF can support E-mark cable and active cable.

**Table 8: Pin Definition of VCONN Circuit** 

| Pin Name   | Pin No.                               | I/O | Description                                |
|------------|---------------------------------------|-----|--------------------------------------------|
| VCONN      | J3-29                                 | PI  | Power supply for active cables             |
| VCONN_EN   | J3-30                                 | DO  | VCONN enable                               |
| SMB_USB_IN | J3-2, J3-3, J3-4, J3-5,<br>J3-6, J3-7 | РО  | Power output for SMB1355 parallel charging |



If you need to support E-mark cables or active cables, you need to add the following reference circuit:



Figure 14: VCONN Reference Design

## 3.9.1.2. DisplayPort Mode

SA800U-WF supports DisplayPort mode with 4 lanes up to 4K @ 60 fps over USB Type-C. The pin definition of USB Type-C/DisplayPort mode is listed below:

Table 9: Pin Definition of USB Type-C/DisplayPort Mode

| Pin Name        | USB Type-C Mode | DisplayPort Mode  |
|-----------------|-----------------|-------------------|
| USB1_SS2_RX_P/M | USB1_SS2_RX_P/M | DP_LANE0_P/M      |
| USB1_SS2_TX_P/M | USB1_SS2_TX_P/M | DP_LANE1_P/M      |
| USB1_SS1_RX_P/M | USB1_SS1_RX_P/M | DP_LANE3_P/M      |
| USB1_SS1_TX_P/M | USB1_SS1_TX_P/M | DP_LANE2_P/M      |
| EDP_AUX_P/N     | SBU1/2          | DP_AUX_P/N        |
| USB1_DP/M       | USB1_DP/M       | USB1_DP/M         |
| USB_CC1/CC2     | USB_CC1/CC2     | HOTPLUG_DET/VCONN |
| USB_VBUS        | USB_VBUS        | USB_VBUS          |
| GND             | GND             | GND               |



The reference design of DisplayPort is shown below:





Figure 15: DisplayPort Reference Design

#### 3.9.2. USB2 Interface

USB2 only supports host mode. The following table shows the pin definition of USB2 interface.

**Table 10: Pin Definition of USB2** 

| Pin Name     | Pin No. | I/O | Description                                 | Comment                                                   |
|--------------|---------|-----|---------------------------------------------|-----------------------------------------------------------|
| USB2_DP      | J2-105  | AIO | USB2 2.0 differential data (+)              | 90 Ω differential impedance.  USB 2.0 standard compliant. |
| USB2_DM      | J2-107  | AIO | USB2 2.0 differential data (-)              | Only support host mode.                                   |
| USB2_SS_TX_M | J2-108  | АО  | USB2 3.1 channel 1 super-speed transmit (-) | 90 Ω differential impedance.  USB 3.1 standard compliant. |
| USB2_SS_TX_P | J2-106  | АО  | USB2 3.1 channel 1 super-speed transmit (+) | Only support host mode.                                   |



| LICDO CC DV M | 12 100 | ٨١ | USB2 3.1 channel 1      |
|---------------|--------|----|-------------------------|
| USB2_SS_RX_M  | J2-100 | Al | super-speed receive (-) |
| USB2 SS RX P  | J2-102 | ΑI | USB2 3.1 channel 1      |
| U3B2_33_KA_F  | JZ-10Z | AI | super-speed receive (+) |



Figure 16: USB Type-A Interface Reference Design (USB2 for Host Mode)

# 3.9.3. Design Principles

**Table 11: USB Trace Length Inside the Module** 

| Pin No. | Signal        | Length (mm) | Length Difference (P - M) |  |
|---------|---------------|-------------|---------------------------|--|
| J2-117  | USB1_DM       | 39.59       | 0.15                      |  |
| J2-119  | USB1_DP       | 39.44       | -0.15                     |  |
| J2-123  | USB1_SS1_TX_M | 22.37       | 0.00                      |  |
| J2-125  | USB1_SS1_TX_P | 23.27       | - 0.90                    |  |
| J2-118  | USB1_SS1_RX_M | 19.53       | - 0.64                    |  |
| J2-120  | USB1_SS1_RX_P | 20.17       | 0.04                      |  |
| J2-111  | USB1_SS2_TX_M | 19.65       | 0.24                      |  |
| J2-113  | USB1_SS2_TX_P | 19.96       | - 0.31                    |  |
| J2-114  | USB1_SS2_RX_M | 15.36       | 0.50                      |  |
| J2-112  | USB1_SS2_RX_P | 14.86       | 0.50                      |  |
|         |               |             |                           |  |



| J2-131 | EDP_AUX_N    | 26.00 | -0.27 |  |
|--------|--------------|-------|-------|--|
| J2-129 | EDP_AUX_P    | 25.73 | -0.27 |  |
| J2-107 | USB2_DM      | 19.93 | -0.03 |  |
| J2-105 | USB2_DP      | 19.90 | -0.03 |  |
| J2-108 | USB2_SS_TX_M | 15.93 | -0.33 |  |
| J2-106 | USB2_SS_TX_P | 15.60 | -0.33 |  |
| J2-100 | USB2_SS_RX_M | 11.58 | 0.41  |  |
| J2-102 | USB2_SS_RX_P | 11.99 | 0.41  |  |
|        |              |       |       |  |

To ensure USB performance, follow the following principles while designing USB interface.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance
  of USB differential traces is 90 Ω.
- Pay attention to the influence of junction capacitance of ESD protection devices on USB data lines.
   Typically, the capacitance value should be less than 2 pF for USB 2.0 and less than 0.5 pF for USB 3.1.
- Do not route signal traces under crystal oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides.
- Do not route USB 3.1 signal lines under RF signal lines. Crossing or parallel with RF signal lines is forbidden. Isolation between USB 3.1 signals and RF signals should be more than 90 dB. Otherwise, the RF signals will be seriously affected.
- Keep the ESD protection devices as close as possible to the USB connector.
- Make sure the intra-pair length difference within USB 2.0 differential pair and that within USB 3.1 RX or TX differential pair does not exceed 0.7 mm.
- The spacing between USB signals and all other signals should be at least 4 times the trace width while that between RX and TX should be at least 3 times the trace width.
- For DisplayPort, the routing length difference between EDP\_AUX\_N and EDP\_AUX\_P should be less than 7 mm.



#### 3.10. UART Interface

The module provides one debug UART used for debugging by default. The following table shows the pin definition of debug UART interface.

**Table 12: Pin Definition of Debug UART Interface** 

| Pin Name | Pin No. | I/O | Description         | Comment               |
|----------|---------|-----|---------------------|-----------------------|
| DBG_TXD  | J2-137  | DO  | Debug UART transmit | 1.9. V nower demain   |
| DBG_RXD  | J2-135  | DI  | Debug UART receive  | — 1.8 V power domain. |

Debug UART is a 2-wire UART interface of 1.8 V power domain. A level translator chip should be used if your application is equipped with a 3.3 V UART interface. The level translator chip TXS0102DCUR provided by Texas Instruments is recommended. The following figure shows a reference design.



Figure 17: Reference Circuit with Level Translator Chip

The following figure is an example of connection between SA800U-WF and PC. A level translator and an RS-232 level translator chip is recommended to be added between the module and PC, as shown below.



Figure 18: RS-232 Level Match Circuit



# 3.11. PCle Interfaces

SA800U-WF provides two PCIe interfaces. PCIe0 is a Gen 2 1-lane interface that transmits up to 5 Gbps/lane. PCIe1 is a Gen 3 1-lane interface that transmits up to 8 Gbps/lane.

**Table 13: Pin Definition of PCIe Interfaces** 

| Pin Name       | Pin No. | I/O | Description               | Comment                    |  |
|----------------|---------|-----|---------------------------|----------------------------|--|
| PCIE0_RST_N    | J1-1    | DO  | PCIe0 reset               |                            |  |
| PCIE0_WAKE_N   | J1-3    | DI  | PCIe0 wakes up host       |                            |  |
| PCIE0_CLKREQ_N | J1-5    | DI  | PCIe0 clock request       |                            |  |
| PCIE0_REFCLK_P | J1-15   | АО  | PCIe0 reference clock (+) |                            |  |
| PCIE0_REFCLK_M | J1-17   | АО  | PCIe0 reference clock (-) | _                          |  |
| PCIE0_TX_P     | J1-11   | АО  | PCIe0 transmit (+)        | Control the characteristic |  |
| PCIE0_TX_M     | J1-9    | АО  | PCIe0 transmit (-)        | impedance as 85 $\Omega$ . |  |
| PCIE0_RX_P     | J1-21   | Al  | PCIe0 receive (+)         | _                          |  |
| PCIE0_RX_M     | J1-23   | Al  | PCIe0 receive (-)         | _                          |  |
| PCIE1_RST_N    | J1-107  | DO  | PCle1 reset               |                            |  |
| PCIE1_WAKE_N   | J1-111  | DI  | PCIe1 wakes up host       |                            |  |
| PCIE1_CLKREQ_N | J1-109  | DI  | PCIe1 clock request       |                            |  |
| PCIE1_REFCLK_P | J1-121  | АО  | PCIe1 reference clock (+) |                            |  |
| PCIE1_REFCLK_M | J1-123  | АО  | PCIe1 reference clock (-) | _                          |  |
| PCIE1_TX_P     | J1-129  | АО  | PCIe1 transmit (+)        | Control the characteristic |  |
| PCIE1_TX_M     | J1-127  | АО  | PCIe1 transmit (-)        | impedance as 85 $\Omega$ . |  |
| PCIE1_RX_P     | J1-115  | Al  | PCIe1 receive (+)         | _                          |  |
| PCIE1_RX_M     | J1-117  | Al  | PCIe1 receive (-)         | _                          |  |





Figure 19: PCle Interfaces Reference Circuit

To enhance the reliability and availability in applications, follow the criteria below in the circuit design of PCIe interfaces:

- Keep the PCIe signals away from noisy signals, such as clock signals, SMPS, and so forth.
- It is recommended to place the AC coupling capacitors (C1/C2/C3/C4) close to the TX side to ensure signal integrity of trace routing on PCB.
- Keep the intra-pair length difference within each differential data pair less than 0.7 mm during PCIe trace routing. Trace length matching between the reference clock, TX, and RX pairs is not required.
- Keep the impedance of PCIe differential traces as 85  $\Omega$  ±10 %.
- You must not route PCIe data traces under components or cross them with other traces.
- The spacing between PCIe signals and all other signals and that between RX and TX should be at least 4 times the trace width.



## 3.12. SD Card Interface

SA800U-WF supports two SDIO interfaces (SDC2 and SDC4). The SDIO function of SDC4 is not supported by default. As the SD card interface, SDC2 complies with SD 3.0 specifications. The pin definition is shown below.

Table 14: Pin Definition of SD Card Interface

| Pin Name   | Pin No.                      | I/O | Description                                          | Comment                                      |
|------------|------------------------------|-----|------------------------------------------------------|----------------------------------------------|
| SD_LDO21A  | J1-151,<br>J1-153,<br>J1-155 | РО  | SD card power supply                                 | Vnom = 2.95 V<br>I <sub>O</sub> max = 800 mA |
| SD_LDO13A  | J4-11                        | РО  | 1.8/2.95 V output power for SD card pull-up circuits | $V_{10}m = 1.8/2.95 V$<br>$I_{0}max = 50 mA$ |
| SD_CLK     | J1-45                        | DO  | SD card clock                                        |                                              |
| SD_CMD     | J1-47                        | DO  | SD card command                                      |                                              |
| SD_DATA0   | J1-51                        | DIO | SDIO data bit 0                                      | Control characteristic                       |
| SD_DATA1   | J1-53                        | DIO | SDIO data bit 1                                      | impedance as 45 $\Omega$ .                   |
| SD_DATA2   | J1-57                        | DIO | SDIO data bit 2                                      |                                              |
| SD_DATA3   | J1-55                        | DIO | SDIO data bit 3                                      |                                              |
| SD_DET     | J1-49                        | DI  | SD card hot-plug detect                              | Active low.                                  |
| SDC4_CLK   | J1-86                        | DO  | SDIO clock                                           |                                              |
| SDC4_CMD   | J1-92                        | DO  | SDIO command                                         |                                              |
| SDC4_DATA0 | J1-82                        | DIO | SDIO data bit 0                                      | SDIO function is not supported by default.   |
| SDC4_DATA1 | J1-84                        | DIO | SDIO data bit 1                                      | Can be multiplexed into GPIOs.               |
| SDC4_DATA2 | J1-88                        | DIO | SDIO data bit 2                                      |                                              |
| SDC4_DATA3 | J1-90                        | DIO | SDIO data bit 3                                      |                                              |



A reference circuit for SD card interface is shown as below.



Figure 20: Reference Circuit for SD Card Interface

SD\_LDO21A is a peripheral power supply driver for SD card. The maximum drive current is about 800 mA. Because of the high drive current, it is recommended that the trace width should be 0.8 mm or above. To ensure the stability of drive power, a 4.7  $\mu$ F and a 33 pF capacitor should be added in parallel near the SD card connector.

SD\_CMD, SD\_CLK, SD\_DATA0, SD\_DATA1, SD\_DATA2 and SD\_DATA3 are all high speed signal lines. In PCB design, control the characteristic impedance of them to 45  $\Omega$ , and do not cross them with other traces. It is recommended to route these traces on the inner layer of PCB, and keep them of the same trace length. Additionally, SD\_CLK needs separate ground shielding.

#### Layout guidelines:

- Control characteristic impedance to 45 Ω ±10 %, and add ground shielding.
- The length difference between SD\_CLK and SD\_DATA should be less than 2 mm.
- The spacing between SDIO signals and all other signals and that between different SDIO signals should be at least 1.5 times the trace width.
- For SDR104 mode, the total routing length recommended is less than 50 mm, and the total capacitance should be less than 5 pF
- For SDR50 and DDR50 modes, the total routing length recommended is less than 150 mm, and the total capacitance should be less than 10 pF



**Table 15: SD Card Signal Trace Length Inside the Module** 

| Pin No. | Signal   | Length (mm) |
|---------|----------|-------------|
| J1-45   | SD_CLK   | 16.07       |
| J1-47   | SD_CMD   | 14.78       |
| J1-51   | SD_DATA0 | 15.32       |
| J1-53   | SD_DATA1 | 14.61       |
| J1-57   | SD_DATA2 | 14.43       |
| J1-55   | SD_DATA3 | 14.10       |

# 3.13. GPIO Interfaces

SA800U-WF has abundant GPIO pins with power domain of 1.8 V. The pin definition is listed below.

**Table 16: Pin Definition of GPIO Interfaces** 

| Pin Name | Pin No. | I/O | Description                  | Comment   |
|----------|---------|-----|------------------------------|-----------|
| GPIO_25  | J2-2    | DIO | General-purpose input/output |           |
| GPIO_42  | J2-64   | DIO | General-purpose input/output |           |
| GPIO_44  | J2-66   | DIO | General-purpose input/output | Wakeup 1) |
| GPIO_49  | J2-78   | DIO | General-purpose input/output | Wakeup    |
| GPIO_50  | J2-70   | DIO | General-purpose input/output |           |
| GPIO_52  | J2-68   | DIO | General-purpose input/output | Wakeup    |
| GPIO_122 | J2-74   | DIO | General-purpose input/output | Wakeup    |
| GPIO_124 | J2-76   | DIO | General-purpose input/output | Wakeup    |
| GPIO_128 | J2-132  | DIO | General-purpose input/output | Wakeup    |
| GPIO_129 | J2-136  | DIO | General-purpose input/output | Wakeup    |
| GPIO_134 | J2-72   | DIO | General-purpose input/output |           |
|          |         |     |                              |           |



| e input/output | DIO | J2-134 | GPIO_135 |
|----------------|-----|--------|----------|
|----------------|-----|--------|----------|

# **NOTES**

- 1. 1) Wakeup: Interrupt pins that can wake up the system.
- 2. For more details about GPIO configuration, see document [2].

## 3.14. I2C Interfaces

SA800U-WF provides six groups of I2C interfaces. As an open drain output, each I2C interface should be pulled up to 1.8 V. CCI\_I2C bus is controlled by Linux Kernel code and supports connection to video output related devices. SSC\_I2C only supports connection to sensor which is dedicated to support low-power and always-on use cases.

Table 17: Pin Definition of I2C Interfaces

| Pin Name     | Pin No. | I/O | Description            | Comment                                            |  |
|--------------|---------|-----|------------------------|----------------------------------------------------|--|
| TP_I2C_SCL   | J2-44   | OD  | TP I2C clock           | Head for touch and                                 |  |
| TP_I2C_SDA   | J2-46   | OD  | TP I2C data            | Used for touch panel.                              |  |
| I2C4_SDA     | J2-4    | OD  | I2C4 data              |                                                    |  |
| I2C4_SCL     | J2-6    | OD  | I2C4 clock             |                                                    |  |
| 12C10_SCL    | J2-75   | OD  | I2C10 clock            |                                                    |  |
| I2C10_SDA    | J2-77   | OD  | I2C10 data             |                                                    |  |
| CCI0_I2C_SCL | J1-142  | OD  | CCI0 I2C clock         |                                                    |  |
| CCI0_I2C_SDA | J1-144  | OD  | CCI0 I2C data          | - Used for video output devices                    |  |
| CCI1_I2C_SDA | J1-146  | OD  | CCI1 I2C data          | <ul> <li>Used for video output devices.</li> </ul> |  |
| CCI1_I2C_SCL | J1-148  | OD  | CC1 I2C clock          | _                                                  |  |
| SSC_I2C1_SDA | J2-8    | OD  | Sensor core I2C1 data  | Used for external sensors.                         |  |
| SSC_I2C1_SCL | J2-10   | OD  | Sensor core I2C1 clock | Osed for external sensors.                         |  |



# 3.15. SPI Interfaces

SA800U-WF provides three SPI interfaces which only support master mode.

**Table 18: Pin Definition of SPI Interfaces** 

| Pin Name   | Pin No | I/O | Description               | Comment               |
|------------|--------|-----|---------------------------|-----------------------|
| SPI2_CLK   | J2-52  | DO  | SPI2 clock                |                       |
| SPI2_CS    | J2-54  | DO  | SPI2 chip select          |                       |
| SPI2_MISO  | J2-56  | DI  | SPI2 master-in salve-out  | -                     |
| SPI2_MOSI  | J2-58  | DO  | SPI2 master-out slave-in  |                       |
| SPI0_CLK   | J2-86  | DO  | SPI0 clock                |                       |
| SPI0_CS    | J2-80  | DO  | SPI0 chip select          | - 1.8 V power domain. |
| SPI0_MISO  | J2-84  | DI  | SPI0 master-in salve-out  | 1.6 v power domain.   |
| SPI0_MOSI  | J2-82  | DO  | SPI0 master-out slave-in  |                       |
| SPI11_CLK  | J2-99  | DO  | SPI11 clock               |                       |
| SPI11_CS   | J2-101 | DO  | SPI11 chip select         | _                     |
| SPI11_MISO | J2-97  | DI  | SPI11 master-in salve-out | _                     |
| SPI11_MOSI | J2-95  | DO  | SPI11 master-out slave-in | -                     |



## 3.16. ADC Interfaces

SA800U-WF provides two analog-to-digital converter (ADC) interfaces, and the pin definition is shown below.

**Table 19: Pin Definition of ADC Interfaces** 

| Pin Name       | Pin No. | I/O | Description                   | Comment                       |
|----------------|---------|-----|-------------------------------|-------------------------------|
| ADC_PMU_GPIO8  | J2-153  | AI  | General-purpose ADC interface | Maximum input voltage: 1.8 V. |
| ADC_PMU_GPIO21 | J2-151  | AI  | General-purpose ADC interface | Maximum input voltage: 4.5 V. |

The accuracy for ADC\_PMU\_GPIO8 is 6 mV typically, while that for ADC\_PMU\_GPIO21 is 10 mV typically.

# 3.17. Vibrator Drive Interface

SA800U-WF supports eccentric rotating mass (ERM) motor and linear resonant actuator (LRA). The pin definition of vibrator drive interface is listed below.

Table 20: Pin Definition of Vibrator Drive Interface

| Pin Name   | Pin No. | I/O | Description              |
|------------|---------|-----|--------------------------|
| HAP_PWM_IN | J3-18   | DI  | Haptic PWM input         |
| HAP_P      | J3-20   | AO  | Haptic driver output (+) |
| HAP_M      | J3-19   | AO  | Haptic driver output (-) |



The vibrator is driven by an exclusive circuit, and a reference circuit design is shown below.



Figure 21: Reference Circuit for Vibrator Connection

## 3.18. LCM Interfaces

Based on MIPI DSI standard, the video output interfaces (LCM interfaces) of SA800U-WF support  $2560 \times 1600 \ @ \ 60$  fps VESA DSC 1.1 primary display with 4 lanes. Additionally, with a MIPI to HDMI converter (LT9611 is recommended), its 8 lanes can support QUXGA display (resolution:  $3840 \times 2160$ ). The module supports dual-LCD independent display: default - DSI + DP (over USB Type-C), optional - DSI0 + DSI1. Please note that DSI1 does not support screens with command mode.

Table 21: Pin Definition of LCM Interfaces

| Pin No. | I/O                                      | Description                                                         | Comment                                                                                                                                                                                                                     |
|---------|------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J4-9    | РО                                       | 1.8 V output for IOVDD of LCDs                                      | Vnom = 1.8 V<br>Iomax = 50 mA                                                                                                                                                                                               |
| J2-62   | DO                                       | LCD reset                                                           | Active low.<br>1.8 V power domain.                                                                                                                                                                                          |
| J2-60   | DI                                       | LCD tearing effect                                                  | 1.8 V power domain.                                                                                                                                                                                                         |
| J2-26   | АО                                       | LCD0 MIPI clock (-)                                                 |                                                                                                                                                                                                                             |
| J2-28   | АО                                       | LCD0 MIPI clock (+)                                                 |                                                                                                                                                                                                                             |
| J2-38   | АО                                       | LCD0 MIPI lane 0 data (-)                                           | 100 $\Omega$ differential impedance.                                                                                                                                                                                        |
| J2-40   | АО                                       | LCD0 MIPI lane 0 data (+)                                           |                                                                                                                                                                                                                             |
| J2-32   | АО                                       | LCD0 MIPI lane 1 data (-)                                           |                                                                                                                                                                                                                             |
|         | J4-9 J2-62 J2-60 J2-26 J2-28 J2-38 J2-40 | J4-9 PO  J2-62 DO  J2-60 DI  J2-26 AO  J2-28 AO  J2-38 AO  J2-40 AO | J4-9 PO 1.8 V output for IOVDD of LCDs  J2-62 DO LCD reset  J2-60 DI LCD tearing effect  J2-26 AO LCD0 MIPI clock (-)  J2-28 AO LCD0 MIPI clock (+)  J2-38 AO LCD0 MIPI lane 0 data (-)  J2-40 AO LCD0 MIPI lane 0 data (+) |



| r domain. |
|-----------|
|           |



The following are the reference designs for LCM interfaces.



Figure 22: Reference Circuit Design for LCM0 Interface





Figure 23: Reference Circuit Design for LCM1 Interface

MIPI are high-speed signals. It is recommended that common-mode filters should be added in series near the LCM connector, so as to improve protection against electromagnetic radiation interference. ICMEF112P900MFR is recommended.

When compatible design with other displays is required, connect the LCD\_ID pin of LCM to the module's ADC pin, and please note that the output voltage of LCD\_ID cannot exceed the voltage range of the ADC pin.

SA800U-WF provides a backlight driving output which can be used to drive LCM backlight WLEDs directly. The features are listed below:

- Use the high voltage output (LCD\_BL\_A) for powering WLED strings, and the OVP voltage output is 29.6 V.
- Support 4 current sink drivers (LCD\_BL\_K1, LCD\_BL\_K2, LCD\_BL\_K3, LCD\_BL\_K4), with maximum sink current of up to 30 mA for each. 2 of them can be connected in parallel for powering 16 WLEDs and 4 of them for 32 WLEDs.



 To adjust the backlight brightness, you can configure the sink current of the four current sink drivers via software.

For LCM0, use the internal backlight driving circuit provided by SA800U-WF by default. For LCM1, you can use the internal circuit or an external backlight driving circuit according to your demand. The following is a reference design for LCM1 external backlight driving circuit where PWM\_PMI\_GPIO5 is used to adjust the backlight brightness.



Figure 24: Reference Design of LCM1 External Backlight Driving Circuit

### 3.19. Touch Panel Interface

SA800U-WF provides one I2C interface to connect with touch panel, and also provides the corresponding power supply and interrupt pins. The pin definition of touch panel interfaces is illustrated below.

**Table 22: Pin Definition of Touch Panel Interface** 

| Pin Name    | Pin No | I/O | Description                             | Comment                            |
|-------------|--------|-----|-----------------------------------------|------------------------------------|
| LDO28A_3V0  | J4-10  | РО  | 3.0 V output for VDD of TP              | $Vnom = 3.0 V$ $I_{O}max = 150 mA$ |
| LDO14A_1V88 | J4-9   | РО  | 1.8 V output for TP I2C pull-up circuit | Vnom = 1.8 $VI_0max = 50 mA$       |
| TP_INT      | J2-48  | DI  | TP interrupt                            |                                    |
| TP_RST      | J2-50  | DO  | TP reset                                | 1.8 V power domain.                |
| TP_I2C_SCL  | J2-44  | OD  | TP I2C clock                            |                                    |
| TP_I2C_SDA  | J2-46  | OD  | TP I2C data                             | _                                  |



A reference design for touch panel interface is shown below.



Figure 25: Reference Circuit Design for Touch Panel Interface

## 3.20. Camera Interfaces

Based on standard MIPI CSI input interface, SA800U-WF supports 4 cameras (4-lane + 4-lane + 4-lane + 2-lane), with maximum pixels up to 32 MP. The 2-lane MIPI CSI can only receive data of RAW format. It can be used for ToF/3D camera modules and cannot be used for display. The video and photo quality are determined by various factors such as camera sensor, camera lens quality, etc.

**Table 23: Pin Definition of Camera Interfaces** 

| Pin No. | I/O                                  | Description                                            | Comment                                                                                                                                                                                                                                                |
|---------|--------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J1-149  | РО                                   | 1.8 V output for IOVDD of cameras                      | $Vnom = 1.8 V$ $I_{O}max = 300 mA$                                                                                                                                                                                                                     |
| J1-30   | Al                                   | MIPI clock of camera 0 (-)                             |                                                                                                                                                                                                                                                        |
| J1-28   | Al                                   | MIPI clock of camera 0 (+)                             |                                                                                                                                                                                                                                                        |
| J1-22   | Al                                   | MIPI lane 0 data of camera 0 (-)                       | 100 Ω differential                                                                                                                                                                                                                                     |
| J1-24   | Al                                   | MIPI lane 0 data of camera 0 (+)                       | impedance.                                                                                                                                                                                                                                             |
| J1-16   | Al                                   | MIPI lane 1 data of camera 0 (-)                       | -                                                                                                                                                                                                                                                      |
| J1-18   | Al                                   | MIPI lane 1 data of camera 0 (+)                       | -                                                                                                                                                                                                                                                      |
|         | J1-149 J1-30 J1-28 J1-22 J1-24 J1-16 | J1-149 PO J1-30 AI J1-28 AI J1-22 AI J1-24 AI J1-16 AI | J1-149 PO 1.8 V output for IOVDD of cameras  J1-30 AI MIPI clock of camera 0 (-)  J1-28 AI MIPI clock of camera 0 (+)  J1-22 AI MIPI lane 0 data of camera 0 (-)  J1-24 AI MIPI lane 0 data of camera 0 (+)  J1-16 AI MIPI lane 1 data of camera 0 (-) |



| CSI0_LN2_N | J1-10 | Al | MIPI lane 2 data of camera 0 (-) |                    |
|------------|-------|----|----------------------------------|--------------------|
| CSI0_LN2_P | J1-12 | Al | MIPI lane 2 data of camera 0 (+) |                    |
| CSI0_LN3_N | J1-6  | Al | MIPI lane 3 data of camera 0 (-) |                    |
| CSI0_LN3_P | J1-4  | Al | MIPI lane 3 data of camera 0 (+) |                    |
| CSI1_CLK_N | J1-58 | Al | MIPI clock of camera 1 (-)       |                    |
| CSI1_CLK_P | J1-60 | Al | MIPI clock of camera 1 (+)       |                    |
| CSI1_LN0_N | J1-52 | Al | MIPI lane 0 data of camera 1 (-) | _                  |
| CSI1_LN0_P | J1-54 | Al | MIPI lane 0 data of camera 1 (+) | _                  |
| CSI1_LN1_N | J1-46 | Al | MIPI lane 1 data of camera 1 (-) | _                  |
| CSI1_LN1_P | J1-48 | Al | MIPI lane 1 data of camera 1 (+) |                    |
| CSI1_LN2_N | J1-42 | Al | MIPI lane 2 data of camera 1 (-) | _                  |
| CSI1_LN2_P | J1-40 | Al | MIPI lane 2 data of camera 1 (+) |                    |
| CSI1_LN3_N | J1-34 | Al | MIPI lane 3 data of camera 1 (-) |                    |
| CSI1_LN3_P | J1-36 | Al | MIPI lane 3 data of camera 1 (+) | _                  |
| CSI2_CLK_N | J1-63 | Al | MIPI clock of camera 2 (-)       | _                  |
| CSI2_CLK_P | J1-61 | Al | MIPI clock of camera 2 (+)       | _                  |
| CSI2_LN0_N | J1-67 | Al | MIPI lane 0 data of camera 2 (-) |                    |
| CSI2_LN0_P | J1-69 | Al | MIPI lane 0 data of camera 2 (+) | _                  |
| CSI2_LN1_N | J1-66 | Al | MIPI lane 1 data of camera 2 (-) | _                  |
| CSI2_LN1_P | J1-64 | AI | MIPI lane 1 data of camera 2 (+) | _                  |
| CSI2_LN2_N | J1-72 | Al | MIPI lane 2 data of camera 2 (-) | _                  |
| CSI2_LN2_P | J1-70 | Al | MIPI lane 2 data of camera 2 (+) | _                  |
| CSI2_LN3_N | J1-78 | Al | MIPI lane 3 data of camera 2 (-) | _                  |
| CSI2_LN3_P | J1-76 | Al | MIPI lane 3 data of camera 2 (+) | _                  |
| CSI3_CLK_N | J1-85 | Al | MIPI clock of camera 3 (-)       | 100 Ω differential |
|            |       |    |                                  |                    |



| CSI3_CLK_P   | J1-87  | Al | MIPI clock of camera 3 (+)       | impedance.  — CSI3 can only receive     |
|--------------|--------|----|----------------------------------|-----------------------------------------|
| CSI3_LN0_N   | J1-81  | Al | MIPI lane 0 data of camera 3 (-) | data of RAW format. It                  |
| CSI3_LN0_P   | J1-79  | Al | MIPI lane 0 data of camera 3 (+) | can be used for ToF/3D camera           |
| CSI3_LN1_N   | J1-73  | Al | MIPI lane 1 data of camera 3 (-) | modules but cannot be used for display. |
| CSI3_LN1_P   | J1-75  | Al | MIPI lane 1 data of camera 3 (+) |                                         |
| CAM0_STROBE  | J1-122 | DO | Strobe of camera 0               |                                         |
| CAM1_STROBE  | J1-116 | DO | Strobe of camera 1               |                                         |
| CAM2_STROBE  | J1-118 | DO | Strobe of camera 2               |                                         |
| CAM0_MCLK    | J1-91  | DO | Master clock of camera 0         |                                         |
| CAM1_MCLK    | J1-95  | DO | Master clock of camera 1         | _                                       |
| CAM2_MCLK    | J1-99  | DO | Master clock of camera 2         |                                         |
| CAM3_MCLK    | J1-103 | DO | Master clock of camera 3         |                                         |
| CAM0_RST     | J1-100 | DO | Reset of camera 0                |                                         |
| CAM1_RST     | J1-96  | DO | Reset of camera 1                |                                         |
| CAM2_RST     | J1-124 | DO | Reset of camera 2                |                                         |
| CAM3_RST     | J1-126 | DO | Reset of camera 3                | — 1.8 V power domain.                   |
| CAM0_PWDN    | J1-114 | DO | Power down of camera 0           |                                         |
| CAM1_PWDN    | J1-120 | DO | Power down of camera 1           |                                         |
| CAM2_PWDN    | J1-106 | DO | Power down of camera 2           |                                         |
| CAM3_PWDN    | J1-112 | DO | Power down of camera 3           | _                                       |
| CAM0_AVDD_EN | J1-102 | DO | AVDD enable of camera 0          | _                                       |
| CAM1_AVDD_EN | J1-98  | DO | AVDD enable of camera 1          | _                                       |
| CAM2_AVDD_EN | J1-104 | DO | AVDD enable of camera 2          |                                         |
| CAM3_AVDD_EN | J1-108 | DO | AVDD enable of camera 3          | _                                       |
| CAM0_DVDD_EN | J1-132 | DO | DVDD enable of camera 0          | _                                       |



| CAM1_DVDD_EN | J1-130 | DO | DVDD enable of camera 1 |
|--------------|--------|----|-------------------------|
| CAM2_DVDD_EN | J1-110 | DO | DVDD enable of camera 2 |
| CAM3_DVDD_EN | J1-128 | DO | DVDD enable of camera 3 |
| CCI0_I2C_SCL | J1-142 | OD | CCI0 I2C clock          |
| CCI0_I2C_SDA | J1-144 | OD | CCI0 I2C data           |
| CCI1_I2C_SDA | J1-146 | OD | CCI1 I2C data           |
| CCI1_I2C_SCL | J1-148 | OD | CC1 I2C clock           |
|              |        |    |                         |

The following is a reference circuit design for camera applications.



Figure 26: Reference Circuit Design for CSI0





Figure 27: Reference Circuit Design for Power of CSI0

#### **NOTE**

CSI3 can only receive data of RAW format. It can be used for ToF/3D camera modules but cannot be used for display.



### 3.20.1. Design Considerations

- Special attention should be paid to the pin definition of LCM/camera connectors. Ensure the SA800U-WF module and the connectors are correctly connected.
- MIPI are high-speed signals, supporting maximum data rate of up to 2.5 Gbps. The differential impedance should be controlled as 100 Ω. Additionally, it is recommended to route the trace on the inner layer of PCB, and do not cross it with other traces. Any cut or hole on GND reference plane under MIPI signals should be avoided. For the same group of DSI or CSI signals, keep all the MIPI traces of the same length.
- Route the CAM\_MCLK signals in the inner layer of the PCB and surround them with ground.
- Spacing for the lanes should comply with the following rules:
  - a) Intra-lane P to N: 1 x trace width
  - b) Lane to lane: 1.5 x trace width
  - c) Lanes to all other signals: 2.5 x trace width
- Route MIPI traces according to the following rules:
  - a) Control the differential impedance to 100  $\Omega$  ±10 %;
  - b) Control intra-lane length difference within 0.7 mm;
  - c) Control inter-lane length difference within 1.4 mm.

Table 24: CSI Data Rate and PCB Maximum Trace Length (D-PHY)

| Data Rate                   | Flex Cable Length (inch) | Cable Insertion Loss (dB) | Maximum PCB Trace<br>Length (mm) |
|-----------------------------|--------------------------|---------------------------|----------------------------------|
| 500 Mbps/lane               | 3                        | -0.5                      | < 260                            |
| 300 Mbps/laile              | 6                        | -1                        | < 190                            |
| 750 Mbna/lana               | 3                        | -0.7                      | < 210                            |
| 750 Mbps/lane               | 6                        | -1.15                     | < 155                            |
| 4.0 Chan / Jan a            | 3                        | -0.75                     | < 200                            |
| 1.0 Gbps/lane               | 6                        | -1.4                      | < 125                            |
| 1.F.Chno/long               | 3                        | -0.9                      | < 145                            |
| r.5 Gbps/lane               | 6                        | -1.8                      | < 60                             |
| 0.4.01                      | 3                        | -1.3                      | < 170                            |
| 2.1 Gbps/lane               | 6                        | -2.3                      | < 90                             |
| 1.5 Gbps/lane 2.1 Gbps/lane | 6<br>3                   | -1.8<br>-1.3              | < 60<br>< 170                    |



Table 25: DSI Data Rate and PCB Maximum Trace Length (D-PHY)

| Data Rate     | Flex Cable Length (inch) | Cable Insertion Loss (dB) | Maximum PCB Trace<br>Length (mm) |
|---------------|--------------------------|---------------------------|----------------------------------|
| FOO Mhna/lana | 3                        | -0.8                      | < 280                            |
| 500 Mbps/lane | 6                        | -1.4                      | < 210                            |
| 750 Mhna/lana | 3                        | -1                        | < 210                            |
| 750 Mbps/lane | 6                        | -1.5                      | < 150                            |
| 1.0 Chno/long | 3                        | -1.1                      | < 200                            |
| 1.0 Gbps/lane | 6                        | -1.7                      | < 100                            |
| 1.5.Chng/long | 3                        | -1.2                      | < 135                            |
| 1.5 Gbps/lane | 6                        | -2.2                      | < 40                             |
| 2.1 Chas/lane | 3                        | -1.6                      | < 110                            |
| 2.1 Gbps/lane | 6                        | -2.8                      | 0                                |

# NOTES

- 1. The flex cable length used in this table is an example with specified insertion loss.
- 2. The flex cable insertion loss can be measured using a vector signal analyzer or obtained from the flex cable datasheet. Cable insertion loss on the design should be no worse than what is listed above.
- 3. The maximum PCB trace length listed above includes the length routed inside the module.

**Table 26: MIPI Trace Length Inside the Module** 

| Pin No. | Pin Name   | Length (mm) | Length Difference (P - N) |
|---------|------------|-------------|---------------------------|
| J2-26   | DSI0_CLK_N | 13.12       | - 0.15                    |
| J2-28   | DSI0_CLK_P | 13.27       | - 0.13                    |
| J2-38   | DSI0_LN0_N | 13.41       | 0.52                      |
| J2-40   | DSI0_LN0_P | 12.89       | 0.52                      |
| J2-32   | DSI0_LN1_N | 13.21       | 0.42                      |
| J2-34   | DSI0_LN1_P | 12.78       | 0.43                      |



| J2-20 | DSI0_LN2_N | 13.35 | — <b>-</b> 0.54 |
|-------|------------|-------|-----------------|
| J2-22 | DSI0_LN2_P | 12.81 | — <b>-</b> 0.54 |
| J2-14 | DSI0_LN3_N | 13.67 | 0.57            |
| J2-16 | DSI0_LN3_P | 13.10 | — <b>-</b> 0.57 |
| J2-21 | DSI1_CLK_N | 24.35 | — <b>-</b> 0.40 |
| J2-19 | DSI1_CLK_P | 23.95 | — <b>-</b> 0.40 |
| J2-13 | DSI1_LN0_N | 22.42 | — 0.29          |
| J2-15 | DSI1_LN0_P | 22.71 | — 0.29          |
| J2-37 | DSI1_LN1_N | 23.35 | 0.67            |
| J2-39 | DSI1_LN1_P | 24.02 | — 0.67          |
| J2-27 | DSI1_LN2_N | 22.45 | — 0.54          |
| J2-25 | DSI1_LN2_P | 22.99 | — U.34          |
| J2-31 | DSI1_LN3_N | 23.73 | 0.46            |
| J2-33 | DSI1_LN3_P | 23.27 | — -0.46         |
| J1-30 | CSI0_CLK_N | 23.90 | 0.36            |
| J1-28 | CSI0_CLK_P | 23.54 | — <b>-</b> 0.36 |
| J1-22 | CSI0_LN0_N | 24.31 | — <b>-</b> 0.12 |
| J1-24 | CSI0_LN0_P | 24.19 | — <b>-</b> 0.12 |
| J1-16 | CSI0_LN1_N | 23.33 | — <b>-</b> 0.34 |
| J1-18 | CSI0_LN1_P | 22.99 | -0.34           |
| J1-10 | CSI0_LN2_N | 24.53 | — 0.42          |
| J1-12 | CSI0_LN2_P | 24.95 | U.42            |
| J1-6  | CSI0_LN3_N | 23.61 | — <b>-</b> 0.26 |
| J1-4  | CSI0_LN3_P | 23.35 | -0.20           |
| J1-58 | CSI1_CLK_N | 15.49 | 0.16            |
|       |            |       |                 |



| J1-60 | CSI1_CLK_P | 15.65 |                |
|-------|------------|-------|----------------|
| J1-52 | CSI1_LN0_N | 14.99 | - <b>-0.28</b> |
| J1-54 | CSI1_LN0_P | 14.71 | -0.20          |
| J1-46 | CSI1_LN1_N | 14.93 | 0.42           |
| J1-48 | CSI1_LN1_P | 14.81 | 0.12           |
| J1-42 | CSI1_LN2_N | 14.74 | 0.54           |
| J1-40 | CSI1_LN2_P | 15.28 | - 0.54         |
| J1-34 | CSI1_LN3_N | 15.61 | 0.30           |
| J1-36 | CSI1_LN3_P | 15.31 | 0.30           |
| J1-63 | CSI2_CLK_N | 16.36 | 0.26           |
| J1-61 | CSI2_CLK_P | 16.72 | - 0.36         |
| J1-67 | CSI2_LN0_N | 15.84 | 0.25           |
| J1-69 | CSI2_LN0_P | 16.09 | - 0.25         |
| J1-66 | CSI2_LN1_N | 15.71 | 0.40           |
| J1-64 | CSI2_LN1_P | 16.11 | - 0.40         |
| J1-72 | CSI2_LN2_N | 14.90 | 0.40           |
| J1-70 | CSI2_LN2_P | 15.39 | - 0.49         |
| J1-78 | CSI2_LN3_N | 15.98 | - 0.49         |
| J1-76 | CSI2_LN3_P | 16.47 | 0.49           |
| J1-85 | CSI3_CLK_N | 10.27 | 0.09           |
| J1-87 | CSI3_CLK_P | 10.35 | - 0.08         |
| J1-81 | CSI3_LN0_N | 9.57  | - 0.11         |
| J1-79 | CSI3_LN0_P | 9.68  | 0.11           |
| J1-73 | CSI3_LN1_N | 11.20 | 0.65           |
| J1-75 | CSI3_LN1_P | 10.55 | 0.65           |
|       |            |       |                |



### 3.20.2. Flashlight Interfaces

SA800U-WF supports 3 flash LED drivers with  $2 \times 1.5 \text{ A} + 1 \times 0.75 \text{ A}$ , and supports both flash and torch modes. As for FLASH\_LED1 and FLASH\_LED2, in flash mode, the maximum output current is 0.75 A for each when the two LEDs work together and 1.5 A for each when they work separately. In torch mode, the maximum output current is 500 mA for each whether the two LEDs work together or separately. As for FLASH\_LED3, in flash mode, the maximum output current is 0.75 A and in torch mode, the maximum output current is 500 mA.

**Table 27: Pin Definition of Flashlight Interfaces** 

| Pin Name   | Pin No.      | I/O | Description                 | Comment        |
|------------|--------------|-----|-----------------------------|----------------|
| FLASH_LED1 | J4-23, J4-24 | AO  | Flash/torch driver output 1 | ILED1 = 1.5 A  |
| FLASH_LED2 | J4-20, J4-21 | AO  | Flash/torch driver output 2 | ILED2 = 1.5 A  |
| FLASH_LED3 | J4-5, J4-6   | AO  | Flash/torch driver output 3 | ILED3 = 0.75 A |

A reference circuit design is shown below.



Figure 28: Reference Circuit Design for Flashlight Interfaces



#### 3.21. Sensor Interfaces

SA800U-WF has an integrated sensor subsystem called the Snapdragon sensor core, which is dedicated to support low-power, always-on use cases. Snapdragon sensor core supports communication with sensors via I2C interface and SPI interface, and it supports various sensors such as acceleration sensor, gyroscopic sensor, compass, optical sensor, temperature sensor. Snapdragon sensor core pins cannot be used for non-Snapdragon sensor core cases. They are dedicated for Snapdragon sensor core DSP.

**Table 28: Pin Definition of Sensor Interfaces** 

| Pin Name      | Pin No. | I/O | Description                          | Comment               |
|---------------|---------|-----|--------------------------------------|-----------------------|
| SSC_SPI1_CS0  | J1-136  | DO  | Sensor core SPI1 chip select 0       | _                     |
| SSC_SPI1_CS1  | J1-138  | DO  | Sensor core SPI1 chip select 1       |                       |
| SSC_SPI1_CS2  | J1-140  | DO  | Sensor core SPI1 chip select 2       |                       |
| SSC_SPI1_CLK  | J1-154  | DO  | Sensor core SPI1 clock               | -                     |
| SSC_SPI1_MOSI | J1-152  | DO  | Sensor core SPI1 master-out slave-in | -                     |
| SSC_SPI1_MISO | J1-150  | DI  | Sensor core SPI1 master-in salve-out | -                     |
| SSC_SPI2_CS   | J1-141  | DO  | Sensor core SPI2 chip select         |                       |
| SSC_SPI2_CLK  | J1-145  | DO  | Sensor core SPI2 clock               | 4.0.V navor damain    |
| SSC_SPI2_MOSI | J1-143  | DO  | Sensor core SPI2 master-out slave-in | - 1.8 V power domain. |
| SSC_SPI2_MISO | J1-147  | DI  | Sensor core SPI2 master-in salve-out | -                     |
| SSC_I2C1_SDA  | J2-8    | OD  | Sensor core I2C1 data                |                       |
| SSC_I2C1_SCL  | J2-10   | OD  | Sensor core I2C1 clock               |                       |
| MAG_INT       | J1-133  | DI  | Magnetic sensor interrupt            | -                     |
| MAG_DRDY_INT  | J1-135  | DI  | Magnetic sensor DRDY interrupt       | -                     |
| GYRO_INT      | J1-137  | DI  | Gyroscopic sensor interrupt          | _                     |
| ACCEL_INT     | J1-139  | DI  | Acceleration sensor interrupt        |                       |



#### 3.22. Audio Interfaces

SA800U-WF provides one SPI interface which is dedicated for the control of WCD934x audio codec, one 2-lane SLIMbus interface dedicated for data transmission between SA800U-WF and WCD934x, three I2S interfaces which can support TDM function. The following table shows the pin definition.

**Table 29: Pin Definition of Audio Interfaces** 

| Pin Name       | Pin No. | I/O | Description                       | Comment             |
|----------------|---------|-----|-----------------------------------|---------------------|
| CODEC_RST      | J2-90   | DO  | Codec reset                       | _                   |
| CODEC_SPI_CLK  | J2-92   | DO  | SPI clock for codec               | _                   |
| CODEC_SPI_MOSI | J2-94   | DO  | SPI master-out slave-in for codec | _                   |
| CODEC_SPI_CS   | J2-96   | DO  | SPI chip select for codec         | _                   |
| CODEC_SPI_MISO | J2-89   | DI  | SPI master-in salve-out for codec | _                   |
| CODEC_INT1     | J2-91   | DI  | Codec interrupt 1                 | _                   |
| CODEC_INT2     | J2-93   | DI  | Codec interrupt 2                 | _                   |
| WCD_CLK        | J2-43   | DO  | WCD clock                         | _                   |
| SLIMBUS_CLK    | J2-51   | DO  | SLIMbus clock                     | _                   |
| SLIMBUS_DATA0  | J2-47   | DIO | SLIMbus data bit 0                | 1.8 V power domain. |
| SLIMBUS_DATA1  | J2-49   | DIO | SLIMbus data bit 1                | _                   |
| I2S1_WS        | J2-79   | DO  | I2S1 word select                  | _                   |
| I2S1_MCLK      | J2-81   | DO  | I2S1 master clock                 | _                   |
| I2S1_SCK       | J2-83   | DO  | I2S1 bit clock                    | _                   |
| I2S1_DATA1     | J2-85   | DIO | I2S1 data channel 1               | _                   |
| I2S1_DATA0     | J2-87   | DIO | I2S1 data channel 0               | _                   |
| I2S2_WS        | J2-55   | DO  | I2S2 word select                  | _                   |
| I2S2_SCK       | J2-57   | DO  | I2S2 bit clock                    | _                   |
| I2S2_DATA0     | J2-59   | DIO | I2S2 data channel 0               |                     |



| I2S2_DATA1 | J2-61 | DIO | I2S2 data channel 1 |  |
|------------|-------|-----|---------------------|--|
| 12S3_WS    | J2-63 | DO  | I2S3 word select    |  |
| I2S3_DATA1 | J2-65 | DIO | I2S3 data channel 1 |  |
| I2S3_DATA2 | J2-67 | DIO | I2S3 data channel 2 |  |
| I2S3_DATA0 | J2-69 | DIO | I2S3 data channel 0 |  |
| I2S3_DATA3 | J2-71 | DIO | I2S3 data channel 3 |  |
| 12S3_SCK   | J2-73 | DO  | I2S3 bit clock      |  |
|            |       |     |                     |  |

# 3.23. Emergency Download Interface

USB\_BOOT is an emergency download interface. Pulling it up to VREG\_S4A\_1V8 during power-up will force the module into emergency download mode. This is an emergency option when there are failures such as abnormal startup or operation. For convenient firmware upgrade and debugging in the future, please reserve the reference circuit design shown as below.



Figure 29: Reference Circuit Design for Emergency Download Interface



# 4 Wi-Fi and BT

SA800U-WF provides a shared antenna connector ANT-CH0 for Wi-Fi and Bluetooth functions, a Wi-Fi MIMO antenna connector ANT-CH1 for better Wi-Fi performance and a Bluetooth antenna connector BT\*. The interface impedance is 50  $\Omega$ . External antennas such as PCB antenna, sucker antenna and ceramic antenna can be connected to the module via these connectors, so as to achieve Wi-Fi and BT functions.



"\*" means under development.

#### 4.1. Wi-Fi Overview

SA800U-WF supports 2.4 GHz and 5 GHz dual-band WLAN wireless communication based on IEEE 802.11a/b/g/n/ac standard protocols. The maximum data rate is up to 866 Mbps.

The features are as below:

- Support 2 x 2 MIMO
- Support Wake-on-WLAN (WoWLAN)
- Support ad hoc mode
- Support WAPI SMS4 hardware encryption
- Support AP mode
- Support Wi-Fi Direct
- Support MCS 0–7 for HT20 and HT40
- Support MCS 0–8 for VHT20
- Support MCS 0–9 for VHT40 and VHT80



#### 4.1.1. Wi-Fi Performance

The following table lists the Wi-Fi transmitting and receiving performance of SA800U-WF module.

**Table 30: Wi-Fi Transmitting Performance** 

|          | Standard       | Rate    | Output Power     |
|----------|----------------|---------|------------------|
|          | 802.11b        | 1 Mbps  | 17 dBm ±2.5 dB   |
|          | 802.11b        | 11 Mbps | 17 dBm ±2.5 dB   |
|          | 802.11g        | 6 Mbps  | 17 dBm ±2.5 dB   |
| 2.4 GHz  | 802.11g        | 54 Mbps | 14 dBm ±2.5 dB   |
| 2.4 0112 | 802.11n HT20   | MCS0    | 16 dBm ±2.5 dB   |
|          | 802.11n HT20   | MCS7    | 13 dBm ±2.5 dB   |
|          | 802.11n HT40   | MCS0    | 16 dBm ±2.5 dB   |
|          | 802.11n HT40   | MCS7    | 13 dBm ±2.5 dB   |
|          | 802.11a        | 6 Mbps  | 17 dBm ±2.5 dB   |
|          | 802.11a        | 54 Mbps | 15 dBm ±2.5 dB   |
|          | 802.11n HT20   | MCS0    | 16 dBm ±2.5 dB   |
|          | 802.11n HT20   | MCS7    | 14 dBm ±2.5 dB   |
|          | 802.11n HT40   | MCS0    | 16 dBm ±2.5 dB   |
| 5 GHz    | 802.11n HT40   | MCS7    | 14 dBm ±2.5 dB   |
| 3 0112   | 802.11ac VHT20 | MCS0    | 16 dBm ±2.5 dB   |
|          | 802.11ac VHT20 | MCS8    | 14 dBm ±2.5 dB   |
|          | 802.11ac VHT40 | MCS0    | 16 dBm ±2.5 dB   |
|          | 802.11ac VHT40 | MCS9    | 14 dBm ±2.5 dB   |
|          | 802.11ac VHT80 | MCS0    | 16 dBm ±2.5 dB   |
|          | 802.11ac VHT80 | MCS9    | 13.5 dBm ±2.5 dB |



**Table 31: Wi-Fi Receiving Performance** 

|          | Standard       | Rate    | Sensitivity |
|----------|----------------|---------|-------------|
|          | 802.11b        | 1 Mbps  | -96 dBm     |
|          | 802.11b        | 11 Mbps | -87 dBm     |
|          | 802.11g        | 6 Mbps  | -90 dBm     |
| 2.4 GHz  | 802.11g        | 54 Mbps | -74 dBm     |
| 2.4 0112 | 802.11n HT20   | MCS0    | -90 dBm     |
|          | 802.11n HT20   | MCS7    | -72 dBm     |
|          | 802.11n HT40   | MCS0    | -87 dBm     |
|          | 802.11n HT40   | MCS7    | -70 dBm     |
|          | 802.11a        | 6 Mbps  | -91 dBm     |
|          | 802.11a        | 54 Mbps | -75 dBm     |
|          | 802.11n HT20   | MCS0    | -91 dBm     |
|          | 802.11n HT20   | MCS7    | -72 dBm     |
| 5 GHz    | 802.11n HT40   | MCS0    | -87 dBm     |
|          | 802.11n HT40   | MCS7    | -70 dBm     |
|          | 802.11ac VHT20 | MCS8    | -68 dBm     |
|          | 802.11ac VHT40 | MCS9    | -64 dBm     |
|          | 802.11ac VHT80 | MCS9    | -59 dBm     |

Reference specifications: IEEE 802.11a/b/g/n/ac.



#### 4.2. BT Overview

SA800U-WF supports BT 5.0 (BR/EDR + BLE) specifications, as well as GFSK, 8-DPSK,  $\pi$ /4-DQPSK modulation modes.

- Maximally support up to 7 wireless connections
- Maximally support up to 3.5 piconets at the same time
- Support one SCO or eSCO (Extended Synchronous Connection Oriented) connection

The BR/EDR channel bandwidth is 1 MHz, and can accommodate 79 channels. The BLE channel bandwidth is 2 MHz, and can accommodate 40 channels.

Table 32: BT Data Rate and Versions

| Version   | Data rate | Maximum Application Throughput |
|-----------|-----------|--------------------------------|
| 1.2       | 1 Mbit/s  | > 80 kbit/s                    |
| 2.0 + EDR | 3 Mbit/s  | > 80 kbit/s                    |
| 3.0 + HS  | 24 Mbit/s | Reference to 3.0 + HS          |
| 4.0       | 24 Mbit/s | Reference to 4.0 LE            |
| 5.0       | 48 Mbit/s | Reference to 5.0 LE            |

Reference specifications are listed below:

- Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0 + HS, August 6, 2009
- Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009
- Bluetooth 5.0 RF-PHY Cover Standard: RF-PHY.TS.5.0.0, December 06, 2016



### 4.2.1. BT Performance

The following table lists the BT transmitting and receiving performance of SA800U-WF module.

**Table 33: BT Transmitting and Receiving Performance** 

| Transmitter Performance |                      |                 |               |  |  |  |
|-------------------------|----------------------|-----------------|---------------|--|--|--|
| Packet Types            | DH5                  | 2-DH5           | 3-DH5         |  |  |  |
| Transmitting Power      | 7.5 dBm ±2.5 dB      | 7.5 dBm ±2.5 dB | 8 dBm ±2.5 dB |  |  |  |
| Receiver Performance    | Receiver Performance |                 |               |  |  |  |
| Packet Types            | DH5                  | 2-DH5           | 3-DH5         |  |  |  |
| Receiving Sensitivity   | -92 dBm              | -93 dBm         | -86 dBm       |  |  |  |



# **5** Antenna Connection

#### 5.1. Antenna Connectors

SA800U-WF is mounted with four antenna connectors: ANT-CH0 (Wi-Fi/BT antenna connector), ANT-CH1 (Wi-Fi MIMO antenna connector), BT\* (BT antenna connector), and FM\* (FM antenna connector) respectively. The impedance of the antenna connectors is  $50 \Omega$ .



**Figure 30: Antenna Connectors** 

**Table 34: Definition of Antenna Connectors** 

| Antenna Connector Name | I/O | Description                  | Comment        |
|------------------------|-----|------------------------------|----------------|
| ANT-CH0                | AIO | Wi-Fi/BT antenna connector   | 50 Ω impedance |
| ANT-CH1                | AIO | Wi-Fi MIMO antenna connector | 50 Ω impedance |



| BT* | AIO | BT antenna connector | 50 Ω impedance |
|-----|-----|----------------------|----------------|
| FM* | Al  | FM antenna connector | 50 Ω impedance |

### **Table 35: Operating Frequency**

| Туре             | Frequency              | Unit |
|------------------|------------------------|------|
| 802.11a/b/g/n/ac | 2402–2482<br>5180–5825 | MHz  |
| BT 5.0           | 2402–2480              | MHz  |
| FM*              | 76–108                 | MHz  |



"\*" means under development.

### 5.2. Antenna Installation

#### 5.2.1. Antenna Requirements

The following table shows the requirements for Wi-Fi/BT/FM antennas.

**Table 36: Antenna Requirements** 

| Antenna Type     | Requirements                |
|------------------|-----------------------------|
|                  | VSWR: ≤ 2                   |
|                  | Gain: 1 dBi                 |
| \\\!: \E:\\D\\\\ | Max Input Power: 50 W       |
| Wi-Fi/BT/FM      | Input Impedance: 50 Ω       |
|                  | Polarization Type: Vertical |
|                  | Cable Insertion Loss: <1 dB |



# 5.2.2. Recommended Mating Plug for Antenna Connection

SA800U-WF is mounted with RF connectors (receptacles) for convenient antenna connection. The connector being used is 818000500 from ECT and its dimensions are shown as below.



Figure 31: Dimensions of the ECT 818000500 Connector (Unit: mm)



The mating plug listed in the following figure can be used to match the receptacles.



Figure 32: Mechanicals of the Mating Plug (Unit: mm)



# 6 Reliability, Radio and Electrical Characteristics

# 6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

**Table 37: Absolute Maximum Ratings** 

| Parameter               | Min. | Max. | Unit |
|-------------------------|------|------|------|
| VBAT                    | -0.3 | 6    | V    |
| USB_VBUS                | -0.3 | 28   | V    |
| Voltage on Digital Pins | -0.5 | 2.3  | V    |

# 6.2. Power Supply Ratings

Table 38: SA800U-WF Power Supply Ratings

| Parameter         | Description                           | Conditions                                                                 | Min. | Тур. | Max. | Unit |
|-------------------|---------------------------------------|----------------------------------------------------------------------------|------|------|------|------|
| VBAT              | VBAT                                  | The actual input voltages must fall between the minimum and maximum values | 3.55 | 3.8  | 4.4  | V    |
|                   | Voltage drop during power-on          | Maximum power control level during power-on                                | -    | -    | 400  | mV   |
| I <sub>VBAT</sub> | Peak supply current (during power-on) | Maximum power control level during power-on                                | -    | 3.0  | 5.0  | A    |



| USB_VBUS | Charging power input.  Power output for OTG  device.  USB/charger insertion detection. | 4.0 | 5.0 | 14  | V |
|----------|----------------------------------------------------------------------------------------|-----|-----|-----|---|
| VRTC     | Power supply voltage of backup battery                                                 | 2.5 | 3.2 | 3.2 | V |

# 6.3. Operating and Storage Temperatures

The operating and storage temperatures are listed in the following table.

**Table 39: Operating and Storage Temperatures** 

| Parameter                      | Min. | Тур. | Max. | Unit |
|--------------------------------|------|------|------|------|
| Operating temperature range 1) | -35  | +25  | +75  | °C   |
| Storage temperature range      | -40  | -    | +90  | °C   |

NOTE

# **6.4. Current Consumption**

The current consumption of different conditions is listed in the following table.

Table 40: SA800U-WF Current Consumption (2 × 2 MIMO)

| Description      | Conditions | Тур. | Unit |
|------------------|------------|------|------|
| OFF              | Power down | 80   | μΑ   |
| Airplane Mode    | RF sleep   | 5.5  | mA   |
| Wi-Fi 802.11a Tx | @ 6 Mbps   | 210  | mA   |

<sup>1)</sup> Within the operating temperature range, the module is IEEE compliant.



|                   | @ 54 Mbps            | 190 | mA |
|-------------------|----------------------|-----|----|
| Wi-Fi 802.11b Tx  | @ 1 Mbps             | 305 | mA |
| WHI 1 002.11D 1X  | @ 11 Mbps            | 175 | mA |
| Wi-Fi 802.11g Tx  | @ 6 Mbps             | 170 | mA |
|                   | @ 54 Mbps            | 150 | mA |
|                   | @ 14.4 Mbps, 20 MHz  | 750 | mA |
| Wi-Fi 802.11n Tx  | @ 144.4 Mbps, 20 MHz | 625 | mA |
| WI-F1 002.11111X  | @ 30 Mbps, 40 MHz    | 770 | mA |
|                   | @ 300 Mbps, 40 MHz   | 615 | mA |
|                   | @ 14.4 Mbps, 20 MHz  | 760 | mA |
|                   | @ 173.2 Mbps, 20 MHz | 655 | mA |
|                   | @ 30 Mbps, 40 MHz    | 740 | mA |
| Wi-Fi 802.11ac Tx | @ 400 Mbps, 40 MHz   | 610 | mA |
|                   | @ 65 Mbps, 80 MHz    | 685 | mA |
|                   | @ 866.6 Mbps, 80 MHz | 565 | mA |
| Wi-Fi 802.11a Rx  | @ 54 Mbps            | 160 | mA |
| Wi-Fi 802.11b Rx  | @ 11 Mbps            | 175 | mA |
| Wi-Fi 802.11g Rx  | @ 54 Mbps            | 155 | mA |
| Wi-Fi 802.11n Rx  | @ 300 Mbps, 40 MHz   | 615 | mA |
| Wi-Fi 802.11ac Rx | @ 866.6 Mbps, 80 MHz | 550 | mA |
| BT Tx Channel 0   | -                    | 110 | mA |
| BT Tx Channel 38  | -                    | 112 | mA |
| BT Tx Channel 78  | -                    | 113 | mA |
| BT Rx Channel 38  | -                    | 109 | mA |
|                   |                      |     |    |



# 6.5. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it should be subject to ESD handling precautions that are typically applied to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the electrostatic discharge characteristics of SA800U-WF module.

Table 41: ESD Characteristics (Temperature: 25 °C, Humidity: 45 %)

| Test Points              | Contact Discharge | Air Discharge | Unit |
|--------------------------|-------------------|---------------|------|
| VBAT, GND                | +/-8              | +/-12         | kV   |
| FM Antenna Interface     | +/-4              | +/-8          | kV   |
| BT Antenna Interface     | +/-3              | +/-6          | kV   |
| Other Antenna Interfaces | +/-4              | +/-8          | kV   |
| Other Interfaces         | +/-0.5            | +/-1          | kV   |

# 6.6. Thermal Dissipation

To achieve a maximum performance while working under extended temperatures or extreme conditions (such as with maximum power) for a long time, it is strongly recommended to apply thermal conductive gap fillers to the gaps between the shielding cover and heat-generating components in the module for better thermal dissipation.

There are other measures to enhance thermal dissipation:

- Place the module away from other heat sources.
- Select a suitable mechanical enclosure for the terminal product integrating the SA800U-WF module, and apply special treatment to the surface of the enclosure to enhance its heat radiation capability.
- Forced convection cooling scheme is highly recommended for the module to decrease the temperature rise, such as attaching an active heat sink with adequate cooling capacity to the top of the shielding cover.



The following figure shows the thermal dissipation area:



**Figure 33: Thermal Dissipation** 

# NOTE

If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.



# **7** Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimension tolerances are ±0.05 mm unless otherwise specified.

#### 7.1. Mechanical Dimensions of the Module



Figure 34: Module Top and Side Dimensions





Figure 35: Module Bottom Dimensions (Bottom View)



# 7.2. Recommended Footprint





Figure 36: Recommended Footprint (Top View)

#### **NOTES**

- 1. For easy maintenance of the module, keep about 5 mm between the module and other components on the host PCB.
- 2. All RESERVED pins should be kept open and MUST NOT be connected to ground.
- 3. The 168-pin connector FX10A-168S-SV(21) of HIROSE should be used for connection with the module.



# 7.3. Top and Bottom View of the Module



Figure 37: Top View of SA800U-WF Module



Figure 38: Bottom View of SA800U-WF Module

#### NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.



# 8 Storage and Packaging

# 8.1. Storage

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. The storage life (in vacuum-sealed packaging) is 12 months in Recommended Storage Condition.
- 3. The floor life of the module is 168 hours <sup>1)</sup> in a plant where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be installed within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g. a drying cabinet).

NOTE

<sup>1)</sup>This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*.



# 8.2. Packaging

SA800U-WF is packaged in tray carriers. Each tray is 350 mm  $\times$  245 mm  $\times$  15.8 mm and contains 18 modules. The following figures show the package details, measured in mm.





Figure 39: Tray Dimensions



10 trays are overlaid in one vacuum-sealed package. The package details are shown below.



Figure 40: Package Details

Table 42: Tray Package

| Model Name | MOQ for MP | Minimum Package: 180 pcs |
|------------|------------|--------------------------|
| SA800U-WF  | 180 pcs    | N.W.: 4.67 kg            |
|            |            | G.W.: 5.07 kg            |



# 9 Appendix References

**Table 43: Related Documents** 

| SN  | Document Name                                                | Description                                         |
|-----|--------------------------------------------------------------|-----------------------------------------------------|
| [1] | Quectel_SA800U-WF_EVB_User_Guide                             | EVB User Guide for SA800U-WF                        |
| [2] | Quectel_SA800U-WF_Pin_Description_and_GPIO_<br>Configuration | Pin Description and GPIO Configuration of SA800U-WF |
| [3] | Quectel_SA800U-WF_Reference_Design                           | Reference Design for SA800U-WF                      |

**Table 44: Terms and Abbreviations** 

| Abbreviation | Description                 |
|--------------|-----------------------------|
| 3D           | 3-Dimensional               |
| ADC          | Analog-to-Digital Converter |
| AP           | Access Point                |
| B2B          | Board-to-Board              |
| вов          | Buck or Boost               |
| bps          | Bits per Second             |
| ВТ           | Bluetooth                   |
| CS           | Coding Scheme               |
| CSI          | Camera Serial Interface     |
| CTS          | Clear to Send               |
| DP           | DisplayPort                 |
| DRDY         | Data Ready                  |
|              |                             |



| DSC    | Display Stream Compression                                        |  |
|--------|-------------------------------------------------------------------|--|
| DSI    | Display Serial Interface                                          |  |
| DSP    | Digital Signal Processor                                          |  |
| DTE    | Data Terminal Equipment (typically computer, external controller) |  |
| DTR    | Data Terminal Ready                                               |  |
| ERM    | Eccentric Rotating Mass                                           |  |
| ESD    | Electrostatic Discharge                                           |  |
| ESR    | Equivalent Series Resistance                                      |  |
| EVRC   | Enhanced Variable Rate Codec                                      |  |
| EVS    | Enhanced Voice Services                                           |  |
| FM     | Frequency Modulation                                              |  |
| GPIO   | General Purpose Input/Output                                      |  |
| GPU    | Graphics Processing Unit                                          |  |
| HK ADC | Housekeeping ADC                                                  |  |
| HT     | High Throughput                                                   |  |
| I2C    | Inter-Integrated Circuit                                          |  |
| I2S    | Inter-IC Sound                                                    |  |
| IEEE   | Institute of Electrical and Electronics Engineers                 |  |
| Imax   | Maximum Load Current                                              |  |
| I/O    | Input/Output                                                      |  |
| ISP    | Image Signal Processor                                            |  |
| LCD    | Liquid Crystal Display                                            |  |
| LCM    | LCD Module                                                        |  |
| LE     | Low Energy                                                        |  |
| LED    | Light Emitting Diode                                              |  |
|        |                                                                   |  |



| LPDDR | Low-Power Double Data Rate                |
|-------|-------------------------------------------|
| LPG   | Light Pulse Generator                     |
| LRA   | Linear Resonant Actuator                  |
| MCS   | Modulation and Coding Scheme              |
| MIMO  | Multiple Input Multiple Output            |
| MIPI  | Mobile Industry Processor Interface       |
| MLCC  | Multi-layer Ceramic Capacitor             |
| NTC   | Negative Temperature Coefficient          |
| OTG   | On-The-Go                                 |
| OVP   | Over Voltage Protection                   |
| PCB   | Printed Circuit Board                     |
| PCle  | Peripheral Component Interconnect Express |
| PHY   | Physical Layer                            |
| PMU   | Power Management Unit                     |
| PWM   | Pulse Width Modulation                    |
| QC    | Quick Charge                              |
| QCELP | Qualcomm Code-Excited Linear Prediction   |
| QUXGA | Quad Ultra Extended Graphics Array        |
| RF    | Radio Frequency                           |
| RFFE  | RF Front End                              |
| RoHS  | Restriction of Hazardous Substances       |
| RTC   | Real Time Clock                           |
| RTS   | Request to Send                           |
| RX    | Receive                                   |
| SD    | Secure Digital                            |
|       |                                           |



| SDIO                | Secure Digital Input Output                   |  |
|---------------------|-----------------------------------------------|--|
| SLIMbus             | Serial Low-power Inter-chip Media Bus         |  |
| SMPS                | Switched-Mode Power Supply                    |  |
| SPI                 | Serial Peripheral Interface                   |  |
| SSC                 | Snapdragon Sensor Core                        |  |
| TDM                 | Time-Division Multiplexing                    |  |
| ToF                 | Time-of-Flight                                |  |
| TP                  | Touch Panel                                   |  |
| TX                  | Transmitting Direction                        |  |
| UART                | Universal Asynchronous Receiver & Transmitter |  |
| UFS                 | Universal Flash Storage                       |  |
| USB                 | Universal Serial Bus                          |  |
| VESA                | Video Electronics Standards Association       |  |
| VHT                 | Very High Throughput                          |  |
| Vmax                | Maximum Voltage Value                         |  |
| Vnom                | Nominal Voltage Value                         |  |
| Vmin                | Minimum Voltage Value                         |  |
| VI                  | Voltage Input                                 |  |
| V <sub>IH</sub> max | Maximum Input High Level Voltage Value        |  |
| V <sub>IH</sub> min | Minimum Input High Level Voltage Value        |  |
| V <sub>IL</sub> max | Maximum Input Low Level Voltage Value         |  |
| V <sub>IL</sub> min | Minimum Input Low Level Voltage Value         |  |
| V <sub>I</sub> max  | Absolute Maximum Input Voltage Value          |  |
| V <sub>I</sub> min  | Absolute Minimum Input Voltage Value          |  |
| Vo                  | Voltage Output                                |  |
|                     |                                               |  |



| V <sub>OH</sub> max | Maximum Output High Level Voltage Value        |
|---------------------|------------------------------------------------|
| V <sub>OH</sub> min | Minimum Output High Level Voltage Value        |
| V <sub>OL</sub> max | Maximum Output Low Level Voltage Value         |
| V <sub>OL</sub> min | Minimum Output Low Level Voltage Value         |
| WAPI                | WLAN Authentication and Privacy Infrastructure |
| WLAN                | Wireless Local Area Network                    |
| WLED                | White LED                                      |
| XO                  | Crystal Oscillator                             |
|                     |                                                |