Correction du TD d'application

Impédance équivalente

1) On commence par convertir le circuit avec les impédances complexes :

$$\diamond \ \underline{Z}_{C_1} = \frac{1}{jC_1\omega}; \qquad \diamond \ \underline{Z}_L = jL\omega; \qquad \diamond \ \underline{Z}_{C_2} = \frac{1}{jC_2\omega}.$$

On peut ensuite déterminer l'impédance équivalente à l'association en parallèle de L et C_2 . Avec les admittances, on a

$$\underline{Y}_{\text{eq},1} = \underline{Y}_{C_2} + \underline{Y}_L \Leftrightarrow \underline{Z}_{\text{eq},1} = \frac{1}{\frac{1}{\underline{Z}_{C_2}} + \frac{1}{\underline{Z}_L}} = \frac{1}{jC_2\omega + \frac{1}{jL\omega}} = \frac{jL\omega}{1 - \omega^2 LC_2}$$

Il suffit alors de faire l'association en série de \underline{Z}_{C_1} et de $\underline{Z}_{\operatorname{eq},1}$:

$$\underline{Z_{\text{eq}}} = \frac{1}{jC_1\omega} + \frac{jL\omega}{1 - \omega^2 LC_2}$$

Il n'est ici pas nécessaire d'aller plus loin dans le calcul.

2) Ici, on utilise que $\underline{Z}_R = R$ et comme précédemment, on effectue l'association en parallèle des R et C de droite avant de faire l'association en série de R et C de gauche avec cette impédance équivalente :

$$\underline{Z}_{\text{eq, 1}} = \frac{1}{\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_C}} = \frac{1}{\frac{1}{R} + jC\omega} = \frac{R}{1 + jRC\omega}$$

Et on a donc finalement

$$\underline{Z_{\text{eq}}} = R + \frac{1}{jC\omega} + \frac{R}{1 + jRC\omega}$$

Obtention d'une équation différentielle

1)

On nomme les tensions et intensités dans le circuit, et on utilise la loi des nœuds et la loi d'OHM généralisée :

$$\underline{I} = \underline{I_1} + \underline{I_2}$$

$$\Leftrightarrow \frac{1}{R} \underline{U_R} = \frac{1}{\underline{Z_{2C}}} \underline{U'} + \frac{1}{\underline{Z_C}} \underline{U}$$

$$\Leftrightarrow U_R = 2jRC\omega\underline{U'} + jRC\omega\underline{U} \qquad (6.1)$$

On utilise ensuite la loi des mailles à droite et à gauche, donnant respectivement :

$$\underline{U'} = \underline{U} + 2RI_2 = \underline{U} + 2jRC\omega\underline{U}$$
 et $U_R = \underline{E} - \underline{U'} = \underline{E} - \underline{U} - 2jRC\omega\underline{U}$

On regroupe les équations dans (6.1) et on introduit $\tau = RC$:

$$\underline{E} - \underline{U} - 2j\omega\tau\underline{U} = j\omega\tau(\underline{U} + 2j\omega\tau\underline{U}) + j\omega\tau\underline{U}$$

$$\Leftrightarrow E = U + 5j\omega\tau U + 4\tau^2(j\omega)^2U$$

En identifiant les puissances de j ω à l'ordre des dérivées pour retourner dans le domaine des représentations réelles, on a donc bien

$$e(t) = u(t) + 5\tau \frac{\mathrm{d}u}{\mathrm{d}t} + 4\tau^2 \frac{\mathrm{d}^2u}{\mathrm{d}t^2}$$

III Circuit RL série en RSF

1) Pour les comportements limites, on utilise la modélisation d'une bobine à haute et basse fréquence : étant donné que $\underline{Z}_L = \mathrm{j}L\omega$, pour $\omega \to 0$ on a $\underline{Z}_L = 0$, et pour $\omega \to \infty$ on a $\underline{Z}_L \to \infty$. On a donc respectivement un fil et un interrupteur ouvert. En effet, l'impédance étant homogène à une résistance, une impédance nulle est semblable à une résistance nulle (un fil), et une impédance infinie est semblable à une résistance infinie (un interrupteur ouvert).

Or, la tension d'un fil est nul, donc

Le courant ne peut traverser un interrupteur, donc en faisant la loi des mailles dans le circuit équivalent, on a $u_R = Ri = 0$, et forcément

$$u \xrightarrow[\omega \to \infty]{} E$$

2)

Pour cela, on utilise la relation du pont diviseur de tension :

$$\underline{U} = \frac{\underline{Z}_L}{\underline{Z}_L + \underline{Z}_R} E \Leftrightarrow \boxed{\underline{U} = \frac{jL\omega}{R + jL\omega} E}$$

3) La phase de e(t) est nulle par construction. On calcule donc la phase de u en prenant l'argument de son amplitude complexe :

$$\arg(\underline{U}) = \arg(jL\omega E) - \arg(\underline{R} + jL\omega) = \frac{\pi}{2} - \arctan\left(\frac{L\omega}{R}\right)$$

où on peut prendre l'arctangente parce que la partie réelle est positive. Ainsi :

1) Signaux en phase

$$\Leftrightarrow \arg(\underline{U}) = 0 \Leftrightarrow \arctan\left(\frac{L\omega}{R}\right) = \frac{\pi}{2} \Leftrightarrow \underline{\omega \longrightarrow \infty}$$

C'est donc mathématiquement possible et physiquement approchable, mais pas rigoureusement.

2) Signaux en opposition de phase

$$\Leftrightarrow \arg(\underline{U}) = \pi \Leftrightarrow \arctan\left(\frac{L\omega}{R}\right) = -\frac{\pi}{2} \Leftrightarrow \omega \longrightarrow -\infty$$

C'est donc mathématiquement possible, mais **physiquement impossible** : la pulsation est proportionnelle à la fréquence, et une fréquence ne saurait être négative.

3) Signaux en quadrature de phase

$$\Leftrightarrow \arg(\underline{U}) = \frac{\pi}{2} \Leftrightarrow \arctan\left(\frac{L\omega}{R}\right) = 0 \Leftrightarrow \omega = 0$$

C'est donc possible à la fois mathématiquement et physiquement, mais cela correspond à un signal d'entrée qui ne varie pas, c'est-à-dire un régime permanent : la sortie n'oscille donc pas non plus, et est simplement nulle. La quadrature de phase n'a donc pas vraiment de sens ici, la sortie est constamment nulle quand l'entrée est à son maximum.

Exploitation d'un oscillogramme en RSF

1) On lit l'amplitude de e(t) à son maximum pour avoir $E_m = 10 \,\mathrm{V}$. On lit l'amplitude de u(t) à son maximum pour avoir $U_m = 6 \,\mathrm{V}$. Pour la phase **à l'origine des temps**, on regarde le signal à t = 0: on lit $u(0) = U_m \cos(\varphi) = -3 \,\mathrm{V}$, soit

$$\begin{bmatrix} \cos(\varphi) = \frac{u(0)}{U_m} \end{bmatrix} \quad \text{avec} \quad \begin{cases} u(0) = -3 \text{ V} \\ U_m = 6 \text{ V} \end{cases}$$

$$\text{A.N.} : \quad \boxed{\varphi = \frac{2\pi}{3} \text{rad}}$$

2) On utilise un pont diviseur de tension pour avoir l'amplitude complexe :

On peut en vérifier l'homogénéité en se souvenant des résultats des chapitres précédents :

$${\omega_0}^2 = \frac{1}{LC} \quad \text{donc} \quad \omega^2 L C \text{ adimensionn\'e} \quad \text{et} \quad \frac{R}{L} = \tau^{-1} \quad \text{donc} \quad \frac{R}{L\omega} \text{ adimensionn\'e}$$

D'une manière générale, on exprimera les résultats de la sorte, avec une fraction dont le numérateur est homogène à la quantité exprimée alors que le dénominateur est adimensionné.

On trouve l'amplitude réelle en prenant le module de cette expression :

$$U_m = |\underline{U}| \Leftrightarrow U_m = \frac{E}{\sqrt{\left(1 - \frac{1}{LC\omega^2}\right)^2 + \frac{R^2}{L^2\omega^2}}}$$

On trouve la phase en en prenant l'argument :

$$\varphi = \arg(\underline{U}) = \arg(\underline{E}) - \arg\left(1 - \frac{1}{LC\omega^2} - \mathrm{j}\frac{R}{L\omega}\right) = -\psi$$

Ici, il n'est pas évident de prendre l'arctangente de la tangente : la partie réelle de l'argument calculé n'est pas forcément positif (il l'est si $\omega^2 > \frac{1}{LC}$). Pour faciliter l'étude de l'argument, notons $\psi = \arg \left(1 - \frac{1}{LC\omega^2} - \mathrm{j}\frac{R}{L\omega}\right)$. On alors :

$$\begin{bmatrix} \omega \to 0 \\ \operatorname{Re}(\psi) \to -\infty < 0 \\ \operatorname{Im}(\psi) \to -\infty < 0 \\ \end{bmatrix} \Rightarrow \psi \in \begin{bmatrix} -\pi ; -\frac{\pi}{2} \end{bmatrix}$$

$$\begin{bmatrix} \operatorname{Re}(\psi) \to 1 > 0 \\ \operatorname{Im}(\psi) \to 0 \\ \end{bmatrix} \Rightarrow \psi \in \begin{bmatrix} -\frac{\pi}{2} ; \frac{\pi}{2} \end{bmatrix}$$

On détermine les valeurs limites en étudiant $tan(\psi)$:

$$\tan(\psi) = -\frac{R}{L\omega} \times \frac{1}{1 - \frac{1}{LC\omega^2}} = \frac{RC\omega}{1 - LC\omega^2}$$

Lycée Pothier 4/5 MPSI3 – 2024/2025

$$\begin{array}{c}
\omega \to 0 \\
\tan(\psi) \xrightarrow[\omega \to 0]{} & \tan(\psi) \xrightarrow[\omega \to \infty]{} \\
\tan(\psi) \xrightarrow[\omega \to \infty]{} & \tan(\psi) \xrightarrow[\omega \to \infty]{} & 0
\end{array}$$

Ainsi, on a les résultats opposés pour $\varphi = -\psi$:

3) Il paraît évidemment plus simple de calculer L à partir de la phase, sachant qu'on a déterminé φ à la première question :

$$LC\omega^2 - 1 = \frac{RC\omega}{\tan(\varphi)} \Leftrightarrow LC\omega^2 = 1 + \frac{RC\omega}{\tan(\varphi)}$$

$$\Leftrightarrow L = \frac{1}{C\omega^2} + \frac{R}{\omega\tan(\varphi)}$$
 avec
$$\begin{cases} C = 0.10 \,\mu\text{F} \\ \omega = 2\pi f \\ f = 1.2 \times 10^3 \,\text{Hz} \\ R = 1 \,\text{k}\Omega \\ \varphi = \frac{2\pi}{3} \text{rad} \end{cases}$$
 A.N. :
$$L = 9.9 \times 10^{-2} \,\text{H}$$