Probability and Random Processes

Gude Pravarsh EE22BTECH11023*

$$\mathbf{A} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}; \mathbf{B} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}; \mathbf{C} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

I. Vertices

Parameters	Values	Description
\mathbf{m}_1	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	$\mathbf{B} - \mathbf{A}$
\mathbf{m}_2	$\binom{3}{2}$	C - B
m ₃	$\begin{pmatrix} -6 \\ 0 \end{pmatrix}$	A – C
$ \mathbf{B} - \mathbf{A} $	$\sqrt{13}$	length of AB
$\ \mathbf{C} - \mathbf{B}\ $	$\sqrt{13}$	length of BC
$ \mathbf{A} - \mathbf{C} $	6	length of CA
$rank\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3	Non-collinear
n ₁	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_1}$
\mathbf{n}_2	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_2}$
n ₃	$\begin{pmatrix} 0 \\ 6 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_3}$
$\frac{1}{2} \ \mathbf{m_1} \times \mathbf{m_2}\ $	6	Area
∠A	33.690°	Angle A
∠B	112.620°	Angle B
∠C	33.690°	Angle C

1

II. CENTROID

D	CENTROID	Description
Parameters	Values	Description
D	$\begin{pmatrix} \frac{3}{2} \\ -2 \end{pmatrix}$	$\frac{\mathbf{A} + \mathbf{B}}{2}$
E	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	<u>C+A</u> 2
F	$\begin{pmatrix} -\frac{3}{2} \\ -2 \end{pmatrix}$	<u>B+C</u> 2
m ₄	$\begin{pmatrix} \frac{9}{2} \\ -1 \end{pmatrix}$	D – A
m ₅	$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$	$\mathbf{E} - \mathbf{B}$
m ₆	$\begin{pmatrix} -\frac{9}{2} \\ -1 \end{pmatrix}$	F – C
n ₄	$\begin{pmatrix} -1 \\ -\frac{9}{2} \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_4}$
n ₅	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_5}$
n ₆	$\begin{pmatrix} -1\\ \frac{9}{2} \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_6}$
G	$\begin{pmatrix} 0 \\ -\frac{4}{3} \end{pmatrix}$	$\frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3}$
$ \mathbf{A} - \mathbf{G} $	3.073	
$ \mathbf{D} - \mathbf{G} $	1.536	
$ \mathbf{B} - \mathbf{G} $	1.333	AG RG CG
$ \mathbf{E} - \mathbf{G} $	0.667	$\therefore \frac{AG}{GD} = \frac{BG}{GE} = \frac{CG}{GF} = 2$
$\ \mathbf{C} - \mathbf{G}\ $	3.073	
$ \mathbf{F} - \mathbf{G} $	1.536	
$rank\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}$	2	The points are collinear
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix}$		Pomis are common
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$		
AF ED	$\begin{pmatrix} -\frac{3}{2} \\ 1 \end{pmatrix}$	AFDE is a quadrilateral

III. ORTHOCENTRE

Parameters	Values	Description
n ₇	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	alt AD_1
n ₈	$\begin{pmatrix} -6 \\ 0 \end{pmatrix}$	alt BE_1
n ₉	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	alt CF_1
Н	$\begin{pmatrix} 0 \\ -\frac{11}{2} \end{pmatrix}$	orthocentre

IV. CIRCUMCENTRE

Parameters	Values	Description
О	$\left(0,\frac{1}{4}\right)$	circumcentre
$ \mathbf{O} - \mathbf{A} $		
$ \mathbf{O} - \mathbf{B} $	3.250	circumradius
$\ \mathbf{O} - \mathbf{C}\ $		

V. INCENTRE

Parameters	Values	Description	
r ai ailicici S	+ ,	Description	
I - A	$\begin{pmatrix} -1.832 \\ 0.555 \end{pmatrix}$	angle bisector of A	
I - B	$\begin{pmatrix} 0 \\ 1.109 \end{pmatrix}$	angle bisector of B	
I – C	$\begin{pmatrix} 1.832 \\ 0.555 \end{pmatrix}$	angle bisector of C	
I	$\begin{pmatrix} 0 \\ -1.908 \end{pmatrix}$	incentre	
r	0.908	incentre radius	
$\angle BAI$			
∠CAI	16.845°	bisector of A	
∠ABI ∠CBI	123.690°	bisector of B	
∠BCI ∠ACI	163.155°	bisector of C	
\mathbf{D}_3	$\begin{pmatrix} 0.504 \\ -2.664 \end{pmatrix}$	mainte of interception	
E ₃	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	points of intersection	
\mathbf{F}_3	$\begin{pmatrix} -0.504 \\ -2.664 \end{pmatrix}$		

 cd