Prob and Stat Inference

Lydia Gibson

11/13/2021

Chapter 4

4.1 Bivariate Distributions of the Discrete Type

Definition 4.1-1

Let X and Y be two random variables defined on a discrete sample space. Let S denote the corresponding two-dimensional space of X and Y, the two random variables of the discrete type. The probability that X=x and Y=y is denoted by f(x,y) = P(X=x,Y=y). The function f(x,y) is called the *joint probability mass function* (joint pmf) of X and Y and has the following properties: (a) $0 \le f(x,y \ge 1)$ (b) $\sum \sum_{(x,y \in S)} f(x,y) = 1$ (c) $P[(X,Y) \in A] = \sum \sum_{(x,y \in A)} f(x,y)$

Definition 4.1-2

Let X and Y have the joint probability mass function f(x,y), with Space S. The probability mass function of X alone, which is called the *marginal probability mass function of X*, is defined by

$$f_x(x) = \sum_y f(x, y) = P(X = x)$$

where the summation is taken over all prossible y values for each given x in the x space S_x . That is, the summation is over all (x,y) in S with a given x value. Similarly, the marginal probability mass function of Y is defined by

$$f_y(y) = \sum_x f(x, y) = P(Y = y), y \in S_Y,$$

where the summation is taken over all possible x values for each given y in the y space S_Y . The random variables X and Y are independent if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

or, equivalently,

$$f(x,y) = f_x(x) f_y(y), x \in S_X, y \in S_Y;$$

otherwise, X and Y are said to be dependent.

mean

variance

trinomial pmf

4.2 The correlation coefficient

covariance

correlation coefficient.... ρ

least squares regression line

4.3 Conditional Distributions

Definition 4.3-1

The conditional probability mass function of X, given that Y=y, is defined by

$$g(x|y) = \frac{f(x,y)}{f_Y(y)}$$
, provided that $f_Y(y) > 0$.

Similarly, the conditional probability mass function of Y, given that X=x, is defined by

$$h(y|x) = \frac{f(x,y)}{f_X(x)}$$
, provided that $f_X(x) > 0$.

Law of Total Probability for Expectation

Theorem 4.3-1

Let X and Y be random variables of discrete type such that E(Y) exists. Then E[E(Y|X)] = E(Y).

Proof

$$E[E(Y|X)] = \sum_{S_X} [\sum_{S_Y} y \cdot h(y|x)] f_X(x)$$

$$= \sum_{S_X} \sum_{S_Y} \left[y \frac{f(x,y)}{f_X(x)} \right] \cdot f_X(x)$$

$$= \sum_{S_X} \sum_{S_Y} y \cdot f(x, y) = \sum_{S_Y} y \sum_{S_X} f(x, y)$$

$$= \sum_{S_X} y \cdot f_Y(y) = E(Y)$$

Law of Total Probaility of Variance

If X and Y are random variable of discrete type, then

$$E[Var(Y|X)] + Var[E(Y|X)] = Var(Y)$$

provided that all of the expectations and variances exist.

Proof Using the linearity of mathematical expectation and the Law of Total Probability for Expectation, we have

$$E[Var(Y|X)] = E\{E(Y^2|X) - [E(Y|X)]^2\}$$

$$= E[E(Y^2|X)] - E\{[E(Y|X)]^2\}$$

$$= E(Y^2) - E\{ [E(Y|X)]^2 \}.$$

By the same token, we have

$$Var[E(Y|X)] = E\{[E(Y|X)]^2\} - \{E[E(Y|X)]\}^2$$

$$= E\{[E(Y|X)]^2\} - [E(Y)]^2$$

Adding the equations, we find that

$$E[Var(Y|X)] + Var[E(Y|X)] = E(Y^2) - [E(Y)]^2 = Var(Y)$$

4.4 Bivariate Distributions of the Continuous Type

joint probability density function

(a) $f(x,y) \ge 0$ where f(x,y)=0 when (x,y) is not in the support (space) S of X and Y.

(b)

marginal pdfs