

BDA – Practical Sessions

Session 2

Introduction – Shingling, Min-Hashing, LSH

Jen Alchimowicz

- 1. Quick recap
- 2. Exercises from the book (From Session 3 exercises)
- 3. LSH exercise (From session 3 practice)
- 4. Word counting in PySpark (From Session 2 exercises) (Not in class, I will provide solutions)

1. Quick recap

- 2. Exercises from the book (From Session 3 exercises)
- 3. LSH exercise (From session 3 practice)
- 4. Word counting in PySpark (From Session 2 exercises)

Recap

Jaccard Similarity

Jaccard Similarity of Sets:

- Consider only unique elements
- E.g. $SIM(\{1,2,3,4\},\{2,3,5,7\}) = 2/6$

Jaccard Similarity of Bags:

- Include repeating items
- E.g. $SIM(\{1,1,1,2\}, \{1,1,2,2,3\}) = 3/9 = 1/3$
- Maximum Jaccard similarity of bags is 1/2 (when the bags are equivalent)

Shingling

By character

E.g. 'Hello! How are you?' with k=3:['hel', 'ell', 'llo', 'lo!', 'o! ', '! h', ' ho', 'how', ...]

By word

E.g. 'Hello! How are you?' with k=2:['hello! how', 'how are', 'are you', ...]

How to chose k?

- k should be picked large enough that the probability of any given shingle appearing in any given document is low
- Rule of thumb: k=5 for small documents, k=9 for large.
- You need to ensure that (n possible characters)^k >> characters in average document

Min Hashing

Few ways to do it:

•	Clustering	5
•	Ciusteiliik	′

- Use random hash function to reduce size of the characteristic matrix
- Using permutations (Min Hashing)
 - Permute rows and grab first '1' from top
 - Slow in practice, permuting rows on large datasets is computationally expensive
- Using hash functions (Fast Min Hashing)
 - Apply hash functions to imitate permutations
 - Faster than permutations
 - We will use this method in class

Locality Sensitive Hashing

- 1. Apply hash function to each band
- 2. If two columns hash to the same bucket make them a candidate pair

Two columns will hash to the same bucket if they are identical in one of the bands, therefore:

Identical in one of the bands = candidate pair

s = true similarity between 2 documents

b = number of bands

r = number of rows in each band

 $P(\text{candidate pair}) = 1 - (1 - s^r)^b$

length of signature = b*r

- 1. Quick recap
- 2. Exercises from the book (From Session 3 exercises)
- 3. LSH exercise (From session 3 practice)
- 4. Word counting in PySpark (From Session 2 exercises)

(Exercise 3.2.3 MMDS book) What is the largest number of k-shingles a document of n bytes can have? You may assume that the size of the alphabet is large enough that the number of possible strings of length k is at least as n. (In UTF-8 encoding each letter occupies 1 byte(8 bits).)

$$n = \# char$$

$$k = 3$$

$$1 - k + 1$$

3. (Exercise 3.3.3 MMDS book) In Fig. 3.5 is a matrix with six rows.

Element	S_1	S_2	S_3	S_4
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

Figure 3.5: Matrix for Exercise 3.3.3

- Compute the minhash signature for each column if we use the following three hash functions: $h_1(x) = 2x + 1 \mod 6$; $h_2(x) = 3x + 2 \mod 6$; $h_3(x) = 5x + 2 \mod 6$.
- Which of these hash functions are true permutations?
- How close are the estimated Jaccard similarities for the six pairs of columns to the true Jaccard similarities?

- 3. (Exercise 3.3.3 MMDS book) In Fig. 3.5 is a matrix with six rows.
- Compute the minhash signature for each column if we use the following three hash functions: $h_1(x) = 2x + 1 \mod 6$; $h_2(x) = 3x + 2 \mod 6$; $h_3(x) = 5x + 2 \mod 6$.

Rows	2x+1 mod 6	3x+2 mod 6	5x + 2 mod 6
0_	1	2	2
1	3	5	1
2	5	2	0
3	1	5	5
4	3	L	4
5	5	5	3

- 3. (Exercise 3.3.3 MMDS book) In Fig. 3.5 is a matrix with six rows.
- Compute the minhash signature for each column if we use the following three hash functions: $h_1(x) = 2x + 1 \mod 6$; $h_2(x) = 3x + 2 \mod 6$; $h_3(x) = 5x + 2 \mod 6$.

					(h1)	(h2)	(h3)		7						
Element	S_1	S_2	S_3	S_4	2x+1 mod 6	3x+2 mod 6	5x + 2 mod 6	_			S_1	S_2	S_3	S_4	
0	0	1	0	1	1	2	2				,	1	1	1	\
1	0	1	0	0	3	5	1			h1	5	1	/	1	
2 3	1	0	0	0	5		0				,			_	
	0	0	1			5	5		\	h2	2	1	L	1	
4 5	1	0	0	0	5	2 5	3			h3	0	1	4	0	
			V	γ_1	n (5,5	s) V	m15 (7,5)		M	11	(6)13))	

- 3. (Exercise 3.3.3 MMDS book) In Fig. 3.5 is a matrix with six rows.
 - Which of these hash functions are true permutations?

(h1)	(h2)	(h3)			
2x+1 mod 6	3x+2 mod 6	5x + 2 mod 6			
1	2	2			
3	5	1			
5	2	0			
1	5	5			
3	2	4			
5	5	3			

h1 − not a true permutation

h2 – not a true permutation

h3 – true permutation

- 3. (Exercise 3.3.3 MMDS book) In Fig. 3.5 is a matrix with six rows.
- How close are the estimated Jaccard similarities for the six pairs of columns to the true Jaccard similarities?

$$Sim(S_1, S_2) = 0/4 = 0$$
, estimated 1/3
 $Sim(S_1, S_3) = 0/4 = 0$, estimated 1/3
 $Sim(S_1, S_4) = 1/4$, estimated 2/3
 $Sim(S_2, S_3) = 0/4 = 0$, estimated 2/3
 $Sim(S_2, S_4) = 1/4$, estimated 2/3
 $Sim(S_3, S_4) = 1/4$, estimated 2/3

Characteristic matrix

Element	S_1	S_2	S_3	S_4
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

Notes:

For similarity between the shingle representations (from characteristic matrix) we use the Jaccard Similarity of sets. E.g:

$$Sim(S_1, S_4) = SIM(\{2,5\}, \{0,2,4\})$$

For estimated similarity (from signatures) we use the formula:

$$Sim(S_1, S_4) = \frac{1}{K} \sum_{k=1}^{K} I(h_k(S_1) = h_k(S_2))$$

where K=length of signature and I is identity function that is 1 if $h_k(S_1) = h_k(S_2)$ else 0. We baiscally sum up the rows where singatures have equal elements and divide by length of signature.

Signature

	S_1	S_2	S_3	S_4
h1	5	1	1	1
h2	2	2	2	2
h3	0	1	4	0

- 1. Quick recap
- 2. Exercises from the book (From Session 3 exercises)
- 3. LSH exercise (From session 3 practice)
- 4. Word counting in PySpark (From Session 2 exercises)