1. Definiálja a predikátum fogalmát! Az alábbiak közül melyik perdikátum: **a)** P(x) **b)** $P(x) \wedge O(x)$. Mindkét részben adott x egész esetén P(x) és O(x) jelentése, hogy x prím, ill. x páratlan.

Definíció

Predikátum: olyan váltózóktól függő kijelentések, amelyhez a változóik értékétől függően valamilyen igazságérték tartozik:

igaz (I, \uparrow), **hamis** (H, \downarrow), és a kettő egyidejűleg nem teljesül.

- a) a predikátum
- 2. Írja fel az és és a vagy igazságtábláját! Mi lesz az $I \wedge (H \vee I)$ igazságértéke?
- 3. Írja fel a tagadás és az implikáció igazságtábláját! Mi lesz az $A \Rightarrow B$ tagadása?

4. Mik az egzisztenciális és univerzális kvantorok? Mutasson példát olyan H(x,y) kétváltozós predikátumra, melyre $\forall x \exists y H(x,y) \neq \exists y \forall x H(x,y)!$

Minden x személyhez van egy y személy, akit x hülyének néz, az nem ugyanaz mint, Létezik egy y személy, aki az összes x személyt hülyének nézi.

- egzisztenciális kvantor: ∃ "létezik", "van olyan"
- univerzális kvantor: ∀ "minden"
- 5. Definiálja logikai jelek segítségével halmazok metszetét és unióját! Mutasson egy-egy példát olyan A,B,C halmazokra melyekre $(A\cup B)\cap C$ megegyezik, ill. nem egyezik meg $A\cup (B\cap C)$ halmazzal!

$$A \cup B = \{x : x \in A \lor x \in B\} \ A \cap B = \{x : x \in A \land x \in B\}.$$

megegyezik A = $\{1\}$ B = $\{2\}$ C = $\{1,2\}$, nem egyezik A = $\{1\}$ B = $\{2\}$ C = $\{2\}$

6. Definiálja halmazok szimmetrikus differenciáját! Mi lesz az $A = \{a, b, c\}$ és $B = \{b, c, d\}$ halmazok szimmetrikus differenciája?

Definíció

Két A, B halmaz szimmetrikus differenciája

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

{a,d}

1. Definiálja a binér reláció fogalmát! Mutasson két példát relációra az $X = \{a, b, c\}$ és $Y = \{1, 2, 3\}$ halmazok között!

Definíció

- Legyen X, Y két tetszőleges halmaz. Ekkor az R ⊂ X × Y egy (binér) reláció az X, Y halmaz között.
- Ha X = Y, akkor $R \subset X \times X$ egy (binér) reláció X-en.

 $\{(a,1),(a,2),(a,3)\},\{(a,1),(b,2),(c,3)\}$

2. Definiálja relációk értelmezési tartományát és értékkészletét! Mi lesz az

$$R = \{(a, 1), (a, 2), (b, 1), (b, 4)\} \subset \{a, b, c, d\} \times \{1, 2, 3, 4\}$$

reláció értelmezési tartománya és értékkészlete?

Definíció

Legyen $R \subset X \times Y$ egy reláció. Ekkor

- R éretelmezési tartománya ('domain'): $dmn(R) = \{x \in X : \exists y \in Y : (x, y) \in R\}.$
- R értékkészlete ('range'): $rng(R) = \{y \in Y : \exists x \in X : (x, y) \in R\}.$

 $dmn = \{a,b\}$

 $rng = \{1, 2, 4\}$

3. Definiálja relációk kompozícióját! Legyen

$$R = \{(a,1), (a,2), (b,1), (b,4)\} \quad \text{\'es} \quad S = \{(1,\alpha), (1,\beta), (2,\alpha), (3,\gamma)\}.$$
 Mi lesz az $S \circ R$ kompozíció?

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x,y) : \exists z : (x,z) \in S, (z,y) \in R\}.$$

 $S \circ R = \{(a,\alpha),(a,\beta),(b,\alpha),(b,\beta)\}$

4. Definiálja a szimmetrikus relációkat! Szimmetrikus-e az

$$R = \{(1,2), (1,3), (2,3), (3,1)\} \subset \{1,2,3\} \times \{1,2,3\}$$

• R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$

Nem mert 1R2 nem következik hogy 2R1

5. Definiálja a reflexív relációkat! Reflexív-e az

$$R = \{(1,2), (1,3), (2,3), (3,1)\} \subset \{1,2,3\} \times \{1,2,3\}$$

• R reláció reflexív, ha $\forall x \in X : xRx$

Nem, pont hogy irreflexív

reláció?

reláció?

reláció?

6. Definiálja a tranzitív relációkat! Tranzitív-e az

$$R = \{(1,2), (1,3), (2,3), (3,1)\} \subset \{1,2,3\} \times \{1,2,3\}$$

• R reláció tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$

Nem, ellenpélda 1,3 és 3,1-ből nem következik hogy 1,1 vagy 3,1 és 1,2ből nem következik 3,2

7. Definiálja az ekvivalencia reláció fogalmát! Adjon két különböző példát ekvivalencia relációra az $X = \{1, 2, 3\}$ halmazon!

Definíció

Egy R reláció ekvivalencia reláció, ha reflexív, tranzitív és szimmetrikus.

 $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ itt egy ekvivalencia osztály van $\{1,2,3\}$ $\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$ itt kettő az $\{1,2\}$ és a $\{3\}$

8. Definiálja az osztályozás fogalmát! Adjon két különböző példát osztályozásra az $X = \{1, 2, 3\}$ halmazon!

Definíció

Egy X halmaz részhalmazainak \mathcal{O} rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

ugyanaz mint az ekvivalenciaosztály csak halmazba pakolva

{{1,2,3}} és {{1,2},{3}}

1. Definiálja komplex számok trigonometrikus alakját! Mi lesz a $z=1+i\in\mathbb{C}$ szám trigonometrikus alakja?

Definíció

Az $z = a + bi \in \mathbb{C} \setminus \{0\}$ komplex szám trigonometrikus alakja:

$$z = r(\cos \varphi + i \sin \varphi)$$
, ahol $a = \text{Re}(z) = r \cos \varphi$ és $b = \text{Im}(z) = r \sin \varphi$

gyök2 * (cos45 + i sin45)

- 2. Mondja ki a szorzásra vonatkozó Moivre azonosságot! Mi lesz a $z = 3(\cos(\pi/3) + i \cdot \sin(\pi/3))$ és $w = 7(\cos(5\pi/6) + i \cdot \sin(5\pi/6))$ számok szorzatának trigonometrikus alakja?
- 3. Mondja ki az osztásra vonatkozó Moivre azonosságot! Mi lesz a $z=3(\cos(\pi/3)+i\cdot\sin(\pi/3))$ és $w=7(\cos(5\pi/6)+i\cdot\sin(5\pi/6))$ számok hányadosának trigonometrikus alakja?
- 4. Mondja ki a hatványozásra vonatkozó Moivre azonosságot! Mi lesz a $z = 3(\cos(\pi/3) + i \cdot \sin(\pi/3))$ szám tizenkettedik hatványának trigonometrikus alakja?

Tétel (Biz: HF)

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), w = |w|(\cos \psi + i \sin \psi),$$

és legyen $n \in \mathbb{N}$. Ekkor

- $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi \psi) + i\sin(\varphi \psi))$
- $z^n = |z|^n (\cos n\varphi + i \sin n\varphi)$

5. Adott $w \neq 0$ komplex szám és $n \geq 1$ egész esetén mik lesznek a $z^n = w$ komplex megoldásai? Mondja ki a megfelelő tételt! Hány megoldása van a $z^3 = -1$ egyenletnek komplex számok körében?

Tétel (Biz.: Id. fönt)

Legyen $w \in \mathbb{C} \setminus \{0\}$ komplex szám $w = |w|(\cos \psi + i \sin \psi)$ trigonometrikus alakkal. Ekkor a $z^n = w$, $z \in \mathbb{C}$ egyenlet megoldásai

$$z_k = |w|^{1/n} (\cos \varphi_k + i \sin \varphi_k): \quad \varphi_k = \frac{\psi}{n} + \frac{2k\pi}{n}, \quad k = 0, 1, \dots, n-1$$

$$-1$$
, $3\sqrt{2}$, $-3\sqrt{4}$

1. Hányféleképpen lehet n különböző elemet sorba állítani? Mondja ki a megfelelő összefüggést! Hányféleképpen lehet 5 különböző könyvet a polcra felrakni?

n!

Szorzat-szabály 2

- Adott egy A = {a₁,...,a_k} véges halmaz, és minden a_i elemhez egy B_i véges halmaz.
- A B_i halmazok elemszáma megegyezik: $|B_1| = |B_2| = \cdots = |B_k| = \ell$
- Választunk egy $a_i \in A$ elemet és választunk egy $b \in B_i$ elemet.
- Ezek száma: $k \times \ell$

????

5!

2. Hányféleképpen lehet n, nem feltételen különböző elemet sorba állítani? Mondja ki a megfelelő összefüggést! Hányféleképpen lehet 8 hosszú szót képezni három darab 'a', két darab 'b' és három darab 'c' segítségével?

n!/k1!*k2!*k3!*km!

Osztás-szabály

- Adott lehetőségeket szeretnénk megszámolni.
- Ehelyett más eseteket számolunk meg.
- Egy lehetőséget L-szer számolunk.
- Összesen N esetet számoltunk le.
- Összesen N/L lehetőség van.

????

8!/3!*2!*3!

3. Hányféleképpen lehet k elemet választani egy n elemű halmazból, ha a kiválasztás sorrendje számít és egy elemet többször is felhasználhatunk? Hány 7 hosszú szót képezhetünk az 'a', 'b' és 'c' karakterek felhasználásával?

n^k, 3^7

4. Hányféleképpen lehet k elemet kiválasztani egy n elemű halmazból, ha a kiválasztás sorrendje számít és egy elemet csak egyszer választhatunk? Hány 5 hosszú szót képezhetünk az 'a', 'b', 'c', 'd', 'e', 'f' és 'g' karakterek felhasználásával, ha egy karaktert csak egyszer használhatunk?

n!/(n-k)!, 7!/(7-5)!

5. Hányféleképpen lehet k elemet kiválasztani egy n elemű halmazból, ha a kiválasztás sorrendje nem számít és egy elemet csak egyszer választhatunk? Hányféleképpen tudunk kiválasztani 2 könyvet az 5-ből, amit nyaralásra viszünk magunkkal?

n alatt k vagy n!/ k! * (n-k)!, 5 alatt 2 vagy 5!/2! * (5-2)!

6. Hányféleképpen lehet k elemet kiválasztani egy n elemű halmazból, ha a kiválasztás sorrendje nem számít és egy elemet többször is választhatunk? Hányféleképpen tudunk kiválasztani 3 gombócot az 5-féle fagylaltból, ha a választás sorrendje nem számít?

n + k -1 alatt k, 3 + 5 -1 alatt 5

1. Mondja ki a gráf csúcsainak fokszáma és a gráf élszáma közötti összefüggést! Van-e olyan egyszerű gráf, mely csúcsainak fokszámai 1,2,2,2,2,4? Válaszát indokolja!

Tétel

Minden
$$G = (V, E)$$
 gráfra $\sum_{v \in V} d(v) = 2|E|$.

csúcsók fokszámának összege páratlan -> Nincs

2. Definiálja gráfok *izomorfiáját*! Mutasson példát két gráfra melyek izomorfak, és adja meg a közöttük lévő izomorfiát is!

Definíció

Két G=(V,E) és H=(U,F) gráf izomorfak, ha léteznek olyan $f:V\to U$ és $g:E\to F$ bijekciók (egyértelmű hozzárendelések), hogy

$$\forall v \in V \land e \in E : v \in e \iff f(v) \in g(e)$$

3. Definiálja a $r\acute{e}szgr\acute{a}f$ és $fesz\acute{t}ett$ $r\acute{e}szgr\acute{a}f$ fogalmát! Mutasson $k\acute{e}t$ példát G ill. H gráfokra, melyekre H részgráfja, de nem feszített részgráfja G-nek!

Definíció

Egy G = (V, E) gráfnak a H = (U, F) gráf részgráfja, ha $U \subset V \wedge F \subset E$

Definíció

Egy H = (U, F) egy feszített részgráfja G = (V, E)-nek, ha

- részgráfja: $U \subset V$, $F \subset E$
- feszített: $u_1, u_2 \in U \land \{u_1, u_2\} \in E \implies \{u_1, u_2\} \in F$.

Feszített részgráf: éleket csak csúcs eltörlésével hagyhatunk el

4. Definiálja a séta fogalmát gráfokra! Adjon példát két különböző sétára v_1 és v_8 között az alábbi gráfban:

Definíció

Legyen G = (V, E) egy gráf. Egy $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ sorozatot k-hosszú sétának nevezünk, ha

- $v_i \in V$ $(0 \le i \le k)$, $e_i \in E$ $(1 \le i \le k)$
- $e_i = \{v_{i-1}, v_i\} \ (1 \le i \le k)$

v1,v2,v3,v8 vagy v1,v2,v1,v2,v1,v2,v3,v8

5. Definiálja az út fogalmát gráfokra! Adjon példát két különböző útra v_1 és v_8 között az alábbi gráfban:

Definíció

Legyen G=(V,E) egy gráf. Egy $v_0,e_1,v_1,\ldots,v_{k-1},e_k,v_k$ sorozatot k-hosszú útnak nevezünk, ha

- ez egy séta
- $v_i \neq v_j \ (i \neq j)$

v1,v2,v3,v8 vagy v1,v5,v7,v8

6. Definiálja az összefüggő gráfok fogalmát! Mutasson egy-egy példát összefüggő és nem összefüggő gráfra!

Definíció

Egy G = (V, E) gráf összefüggő, ha $\forall u, v \in V$, $u \neq v$ van u és v között séta.

7. Definiálja a fa fogalmát gráfok körében! Mutasson egy-egy példát fa és nem fa gráfra!

Definíció

Egy G = (V, E) gráfot fának hívunk, ha

- összefüggő;
- körmentes.

8. Definiálja az Euler-séta fogalmát! Mutasson példát Euler-sétára az alábbi gráfban:

Definíció

Egy G gráfban a $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ séta egy Euler-séta, ha

- $e_i \neq e_j$ $(i \neq j)$.
- a séta G minden élét tartalmazza.
- zárt Euler-séta: $v_0 = v_k$

Azaz az Euler-séta a gráf minden élét pontosan egyszer tartalmazza.

v2,v5,v4,v2,v1,v5,v6,v3,v2

9. Definiálja a Hamilton-út fogalmát! Mutasson példát Hamilton-útra az alábbi gráfban:

Definíció

Legyen *G* egy véges egyszerű gráf.

 A G gráfban egy út Hamilton-út, ha minden csúcsot pontosan egyszer tartalmaz.

v1,v2,v4,v5,v6,v3