Review 1 Avinash Iyer

Problem (Problem 1): Let $T: V \to W$ be a linear transformation between \mathbb{F} -vector spaces. Show that T is injective if and only if T maps \mathbb{F} -linearly independent subsets of V to \mathbb{F} -linearly independent subsets of W.

Solution: Let T be injective. We claim that if $\{v_1, \dots, v_n\}$ is linearly independent in V, then $\{Tv_1, \dots, Tv_n\}$ is linearly independent in W. We see that if

$$\sum_{j=1}^{n} a_j \mathsf{T} v_j = 0_W,$$

then

$$T\left(\sum_{j=1}^{n} a_{j} v_{j}\right) = 0_{W},$$

meaning that

$$\sum_{j=1}^{n} a_{j} \nu_{j} \in \ker(T).$$

Now, since T is injective, $\ker(T) = \{0_V\}$, meaning that $\sum_{j=1}^n a_j v_j = 0_V$. Yet, since $\{v_1, \dots, v_n\}$ is linearly independent, this means $a_j = 0$ for each j, so $\{Tv_1, \dots, Tv_n\}$ is linearly independent in W.

Now, let T map linearly independent subsets of V to linearly independent subsets of W. If $\mathcal{B}_V = \{v_i\}_{i \in I}$ is a basis for V, then since \mathcal{B}_V is linearly independent, $C = \{Tv_i\}_{i \in I}$ is a linearly independent subset of W, which can be extended to a basis \mathcal{B}_W . Since $C \subseteq \mathcal{B}_W$, we see that any linear combination in \mathcal{B}_W yields 0 if and only if every coefficient is zero, meaning that $\ker(T) = \{0_V\}$, so T is injective.

Problem (Problem 2): Let $P_{n+1}(\mathbb{R})$ be the space of polynomials with real coefficients of degree $\leq n+1$. Prove that for any n points $a_1, \ldots, a_n \in \mathbb{R}$, there exists a nonzero polynomial $f \in P_{n+1}(\mathbb{R})$ such that $f(a_j) = 0$ for each j, and $\sum_{j=1}^n f'(a_j) = 0$.

Solution: Based on the first condition, we see that the product $\prod_{j=1}^{n} (x - a_j)$ must divide the polynomial f, and since f has degree at most n+1, we must have $f(x) = (Ax + B) \prod_{j=1}^{n} (x - a_j)$ for some $a, b \in \mathbb{R}$. Writing f'(x), we see that

$$f'(x) = A \prod_{j=1}^{n} (x - a_j) + (Ax + B) \sum_{i=1}^{n} \prod_{j \neq i} (x - a_j),$$

Problem: Let T: V \rightarrow W be a linear map of finite-dimensional vector spaces, and let $W_0 \subseteq W$ be a subspace.

- (a) Show that $T^{-1}(W_0) = \{ v \in V \mid Tv \in W_0 \}$ is a subspace of V.
- (b) Assuming T is surjective, express $\dim(T^{-1}(W_0))$ in terms of $\dim(W_0)$ and $\dim(\ker(T))$.

Solution:

- (a) We see that if $v_1, v_2 \in T^{-1}(W_0)$ and $\alpha \in \mathbb{R}$, then since $Tv_1, \alpha Tv_2 \in W_0$, we have $Tv_1 + \alpha Tv_2 \in W_0$, so by linearity, $T(v_1 + \alpha v_2) \in W_0$, meaning $v_1 + \alpha v_2 \in T^{-1}(W_0)$, so $T^{-1}(W_0)$ is a subspace of V.
- (b) First, since T is surjective, $T(T^{-1}(W_0)) = W_0$. Therefore, by restricting the map T, we get the surjective map T': $T^{-1}(W_0) \to W_0$, and since $\ker(T) \subseteq T^{-1}(W_0)$, the First Isomorphism Theorem gives $T^{-1}(W_0)/\ker(T) \cong W_0$, so by rank-nullity (as each of W_0 and $T^{-1}(W_0)$ are finite-dimensional), $\dim(T^{-1}(W_0)) = \dim(\ker(T)) + \dim(W_0)$.

Review 1 Avinash Iyer

Problem (Problem 7):

- (a) Let $A \in Mat_n(\mathbb{C})$ be a matrix such that $A^2 = I_n$. Show that A is diagonalizable.
- (b) Give an example of of $A \in Mat_2(\mathbb{C})$ satisfying $A^2 = \mathbf{0}_2$ (the zero matrix) which is not diagonalizable.

Solution:

- (a) Since $A^2 I_n = \mathbf{0}_n$, we see that the minimal polynomial of A is $m_A(t) = t^2 1$, which splits over \mathbb{C} to yield $m_A(t) = (t-1)(t+1)$. In particular, since the minimal polynomial splits into a product of distinct linear factors, A is diagonalizable.
- (b) The matrix

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

satisfies $A^2 = \mathbf{0}_2$, but since $A \neq \mathbf{0}_2$, we see that $m_A(t) = t^2$. Since $m_A(t)$ does not split into distinct linear factors over \mathbb{C} , we see that A is necessarily not diagonalizable.

Problem (Problem 8): Let $A \in \operatorname{Mat}_n(\mathbb{C})$ be a matrix such that A^2 has n distinct eigenvalues. Show that A is diagonalizable.