

Calcolo Differenziale

Eugenio Montefusco

16. Proprietà delle funzioni derivabili

Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile e x_0 punto di minimo locale, cioè esiste $\delta > 0$ tale che $f(x_0) \le f(x)$ per ogni $x \in (x_0 - \delta, x_0 + \delta)$.

Il fatto che x_0 sia un minimo locale implica che

Il fatto che x_0 sia un minimo locale implica che

$$\frac{\Delta f}{\Delta x} = \begin{cases} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0 \text{ se } h > 0 \end{cases}$$

Il fatto che x_0 sia un minimo locale implica che

$$\frac{\Delta f}{\Delta x} = \begin{cases} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0 \text{ se } h > 0\\ \frac{f(x_0 + h) - f(x_0)}{h} \le 0 \text{ se } h < 0 \end{cases}$$

$$f'(x_0) = \begin{cases} \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0 \end{cases}$$

$$f'(x_0) = \begin{cases} \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0\\ \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \le 0 \end{cases}$$

$$f'(x_0) = \begin{cases} \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0 \\ \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \le 0 \end{cases} = 0$$

Teorema di Fermat. Sia $f:(a,b) \to \mathbb{R}$ una funzione continua,

Teorema di Fermat. Sia $f:(a,b)\to \mathbb{R}$ una funzione continua, e derivabile e supponiamo che $x_0\in(a,b)$ sia un punto di minimo o massimo locale.

Teorema di Fermat. Sia $f:(a,b)\to \mathbb{R}$ una funzione continua, e derivabile e supponiamo che $x_0\in(a,b)$ sia un punto di minimo o massimo locale. Allora $f'(x_0)=0$.

Teorema di Fermat. Sia $f:(a,b) \to \mathbb{R}$ una funzione continua, e derivabile e supponiamo che $x_0 \in (a,b)$ sia un punto di minimo o massimo locale. Allora $f'(x_0) = 0$.

Tutti i punti a tangente orizzontale verranno detti punti stazionari o critici.

Teorema di Fermat. Sia $f:(a,b) \to \mathbb{R}$ una funzione continua, e derivabile e supponiamo che $x_0 \in (a,b)$ sia un punto di minimo o massimo locale. Allora $f'(x_0) = 0$.

Tutti i punti a tangente orizzontale verranno detti punti stazionari o critici.

Non tutti i punti critici sono massimi o minimi locali!

$$f(x) = x^3$$

Il teorema di Rolle

Teorema di Rolle. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un **intervallo chiuso** e **limitato**, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

II teorema di Rolle

Teorema di Rolle. Sia $f : [a,b] \rightarrow \mathbb{R}$ una funzione continua su un **intervallo chiuso** e **limitato**, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

II teorema di Rolle

Teorema di Rolle. Sia $f : [a,b] \rightarrow \mathbb{R}$ una funzione continua su un **intervallo chiuso** e **limitato**, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

allora esiste $x_0 \in (a, b)$ tale che $f'(x_0) = 0$.

• se f(a) = f(x) = f(b), $\forall x \in (a, b)$, la tesi è provata

Il teorema di Rolle

Teorema di Rolle. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un **intervallo chiuso** e **limitato**, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

- se f(a) = f(x) = f(b), $\forall x \in (a, b)$, la tesi è provata
- altrimenti almeno uno tra massimo e minimo di f,

II teorema di Rolle

Teorema di Rolle. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un **intervallo chiuso** e **limitato**, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

- se f(a) = f(x) = f(b), $\forall x \in (a, b)$, la tesi è provata
- altrimenti almeno uno tra massimo e minimo di f,
 (i quali esistono per il teorema di Weierstrass!)

II teorema di Rolle

Teorema di Rolle. Sia $f : [a,b] \to \mathbb{R}$ una funzione continua su un **intervallo chiuso** e **limitato**, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

- se f(a) = f(x) = f(b), ∀x ∈ (a, b), la tesi è
 provata
- altrimenti almeno uno tra massimo e minimo di f, (i quali esistono per il teorema di Weierstrass!) è assunto dentro l'intervallo.
 Il teorema di Fermat conclude la dimostrazione.

Il teorema di Lagrange

Teorema di Lagrange. Sia $f : [a,b] \to IR$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b).

Il teorema di Lagrange

Teorema di Lagrange. Sia $f : [a,b] \to IR$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b). Allora esiste $x_0 \in (a,b)$ tale che

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Il teorema di Lagrange

Teorema di Lagrange. Sia $f : [a,b] \rightarrow IR$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b). Allora esiste $x_0 \in (a,b)$ tale che

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

La tesi segue dal teorema di Rolle, ricorrendo alla funzione ausiliaria

$$H(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Corollario.

Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b) tale che

$$f'(x) = 0$$
 $\forall x \in (a, b)$

Corollario.

Sia $f : [a,b] \rightarrow \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b) tale che

$$f'(x) = 0$$
 $\forall x \in (a, b)$

allora f(x) = c per ogni $x \in [a, b]$.

Corollario.

Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b) e tale che f'(x) > 0 per ogni $x \in (a,b)$.

Corollario.

Sia $f : [a, b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a, b) e tale che f'(x) > 0 per ogni $x \in (a, b)$. Allora se $x_1 < x_2$ segue

$$f(x_1) < f(x_2)$$

Protagonisti

1736 - 1813

