

目录

- 1 园区网络基本概念
- 2 典型园区网络建设流程

什么是园区网

园区网络典型架构

小型园区网络典型架构

 小型园区网络应用于接入用户数量较少的场景,一般支持 几个至几十个用户。网络覆盖范围也仅限于一个地点,网 络不分层次结构。网络建设的目的常常就是为了满足内部 资源互访。

• 小型园区网络特点:

- 。 用户数量较少
- 。 仅单个地点
- 。 网络无层次性
- 。 网络需求简单

终端用户数(个)	<200
网元数量(个)	<25

某连锁咖啡店网络拓扑

中型园区网络典型架构

某外贸公司网络拓扑

- 中型园区网络能够支撑几百至上干用户的接入。
- 中型网络引入了按功能进行分区的理念,也就是模块 化的设计思路,但功能模块相对较少。一般根据业务 需要进行灵活分区。
- 中型园区网络特点:

。 规模中等

终端用户数(个)	200~2000
网元数量(个)	25~100

- 使用场合最多
- □ 功能分区
- 。 一般采用三层网络结构:核心、汇聚、接入

大型园区网络典型架构

 大型园区网络可能是覆盖多幢建筑的网络,也可能是 通过WAN连接一个城市内的多个园区的网络。一般会 提供接入服务,允许出差员工通过VPN等技术接入公 司内部网络。

· 大型园区网络特点:

。 覆盖范围广

。 用户数量多

终端用户数(个)	>2000
网元数量(个)	>100

- 。 网络需求复杂
- 。 功能模块全
- 。 网络层次丰富

园区网络主要协议/技术

目录

- 1 园区网络基本概念
- 2 典型园区网络建设流程
 - 典型园区网络建设流程

网络需求

- 某公司(规模为200人左右)因业务发展需要,准备搭建一张全新的园区网络,对网络需求如下:
 - 。 能够满足公司当前的业务需求
 - 。 网络拓扑简单,维护方便
 - 提供有线接入供员工办公使用,提供WiFi服务供访客使用
 - 做到简单的网络流量管理
 - 。 保证一定的安全性

园区网络项目生命周期

1 规划与设计

- 设备选型
- 物理拓扑
- 逻辑拓扑
- 使用技术与协议等

3 网络运维

- 日常维护
- 软件与配置备份
- 集中式网管监控
- 软件升级等

2 部署与实施

- 设备安装
- 单机调测
- 联调测试
- 割接并网等

4 网络优化

- 提升网络的安全性
- 软件与配置备份
- 提升网络的用户体验等

小型园区网络设计

1.组网方案设计

设备选型

物理拓扑

2.网络设计

基础业务设计

WLAN设计

二层环路避免设计

网络可靠性设计

3.安全设计

出口安全设计

内网有线安全

内网无线安全

4.运维管理设计

基础网络管理

智能运维

组网方案设计

基础业务设计: VLAN设计

- VLAN编号建议连续分配,以保证VLAN资源合理利用。
- VLAN划分需要区分业务VLAN、管理VLAN和互联VLAN。
- 最常用的划分方式是基于接口的方式。

按地理区域划分VLAN 接人员结构划分VLAN 按业务类型划分VLAN

管理VLAN设计

通常,二层交换机使用VLANIF接口地址作为管理地址。建议 所有属于同一二层网络的交换机使用同一管理VLAN,管理 IP地址处于同一网段。

VLAN规划

- 预留二层设备的管理VLAN。
- 根据人员结构划分,分为访客VLAN,研发部VLAN,市场部VLAN,行政部VLAN。
- 考虑到三层交换机需要通过VLANIF与路由连通,所以需要预留互联VLAN。
- AP与AC之间建立CAPWAP隧道所需要的VLAN。

VLAN编号	VLAN描述		
1	访客VLAN/WLAN的业务VLAN		
2	研发部VLAN		
3	市场部VLAN		
4	行政部VLAN		
100	二层设备的管理VLAN		
101	WLAN的管理VLAN		
102	Agg-S1与CORE-R1之间的互联VLAN		

基础业务设计: IP地址设计

业务IP地址

业务IP地址是服务器、主机以及网关的IP地址。

- 网关IP地址推荐统一使用相同的末位数字,如.254。
- 各业务IP地址范围要清晰区分,每一类业务终端IP地址连 续、可聚合。
- 建议使用掩码为24位的IP地址段。

管理IP地址

- 二层设备使用VLANIF地址作为管理IP地址,建议网关下的所有
- 二层交换机使用同一网段。

网络设备互联IP地址

互联IP地址推荐使用30位掩码的IP地址,核心设备使用主机地址较小的IP地址。

IP地址规划

- 综合考虑接入客户端个数并预留足够的IP地址,为每类业务规划网段及网关地址。
- 为管理IP划分网段。
- 为互联IP划分网段。

IP网段/掩码	网关地址	网段描述
192.168.1.0/24	192.168.1.254	无线接入访客所属网段,网关位于Agg-S1
192.168.2.0/24	192.168.2.254	研发部所属网段,网关位于Agg-S1
192.168.3.0/24	192.168.3.254	市场部所属网段,网关位于Agg-S1
192.168.4.0/24	192.168.4.254	行政部所属网段,网关位于Agg-S1
192.168.100.0/24	192.168.100.254	二层设备的管理网段,网关位于Agg-S1
192.168.101.0/24	N/A	WLAN的管理网段
192.168.102.0/30	N/A	Agg-S1与CORE-R1之间互联网段
1.1.1/32	N/A	CORE-R1上的Loopback接口地址,作为管理IP使用

基础业务设计: IP地址分配方式设计

WAN侧接口的IP地址由运营商进行分配,可通过静态IP地址、 DHCP、 或者PPPoE方式分配,需与运营商沟通获取。

服务器、打印机等设备

服务器、特殊终端设备(打卡机、打印服务器、 IP视频监控设备等)建议采用静态IP地址。

终端用户

终端用户的IP地址分配, 建议采用DHCP方式,由 网关设备提供DHCP服务。

IP地址分配方式规划

- 出口网关采用PPPoE方式获取IP地址。
- 所有终端采用DHCP方式获取IP地址,服务器及打印机分配固定的IP地址。
- 所有网络设备上的IP地址采用手工静态方式配置(AP除外)。

IP网段/接口	分配方式	分配方式描述
192.168.1.0/24 192.168.2.0/24 192.168.3.0/24 192.168.4.0/24	DHCP	由网关Agg-S1分配,还应分配给服务器及 打印机等固定设备分配固定IP地址。
192.168.100.0/24	静态	设备管理IP,静态配置
192.168.101.0/24	DHCP	AC地址静态配置,AP地址由Agg-S1分配
192.168.102.0/30	静态	互联IP,静态配置
CORE-R1的GE0/0/0	PPPoE	运营商分配的IP地址

基础业务设计: 路由设计

WLAN设计

WLAN组网设计

- 根据AC和AP的IP地址情况,以及数据流量是否流经AC,可将组网划分为:直连二层组网、旁挂二层组网、直连三层组网、旁挂三层组网。
- 本案例采用旁挂二层组网方式

WLAN数据转发方式设计

- WLAN中的数据包括控制报文和数据报文
 - 。 控制报文通过CAPWAP隧道转发
 - 用户数据报文分为隧道转发、直接转发
- 本案例采用直接转发方式

WLAN数据规划

配置项	配置内容		
AP管理VLAN	VLAN101		
STA业务VLAN	VLAN1		
DHCP服务器	Agg-S1作为DHCP服务器为AP和STA分配地址,STA的默认网关为192.168.1.254		
AP的IP地址池	192.168.101.2~192.168.101.253/24		
STA的IP地址池	192.168.1.1~192.168.1.253/24		
AC的源接口IP地址	VLANIF101: 192.168.101.1/24		
AP组	名称:ap-group1 引用模板:VAP模板WLAN-Guest、域管理模板default		
域管理模板	名称: default 国家码: CN		
SSID模板	名称: WLAN-Guest SSID名称: WLAN-Guest		
安全模板	名称: WLAN-Guest 安全策略: WPA-WPA2+PSK+AES 密码: WLAN@Guest123		
VAP模板	名称:WLAN-Guest 转发模式:直接转发 业务VLAN:VLAN1 引用模板:SSID模板WLAN-Guest、安全模板WLAN-Guest		

可靠性设计

二层环路避免

出口NAT设计

静态NAT

动态NAT

NAPT与Easy IP

NAT Server

NAT映射表

私网地址:端口	公有地址: 端口
192.168.1.1:10321	1.2.3.4:1025
192.168.1.2:17087	1.2.3.4:1026

NAT Server适合内网有服务器需要向外部提供服务的场景。

安全设计

DHCP安全

网络管理安全

- 当使用Telnet或WEB等方式对设备进行网络管理时,可以 通过ACL技术,仅允许固定的用户(IP)登录管理。
- 对于集中式网管,SNMPv3增加了身份验证和加密处理,可以大大提高网管的安全性。

运维管理设计

传统设备管理

- 保证网络管理员与设备IP可达的情况下,可以通过 Telnet、WEB以及SSH等方式对设备进行管理。
- 当网络中设备较多时,可部署基于SNMP协议的统一网管软件进行网络的运维与管理。

基于iMaster NCE平台管理

除了基于SNMP的传统网管之外,也可采用华为 iMaster NCE平台进行网络的管理和运维,实现网络"自动驾驶"。

小型园区网络部署与实施

- 项目的部署与实施需要按照一定流程进行,内容包括:
 - 。 方案制定
 - 。 设备安装
 - 。 网络调试
 - 割接并网
 - 。 转维培训
 - 。 项目验收
- 具体流程按照项目实际情况进行确定。

配置方案 (1)

1. 网络设备之间物理线路连接,配置链路聚合,同时添加接口描述,详细内容如下:

设备	接口	配置内容	
Acc-S1	Eth-trunk 1	mode:LACP-static Trunkport :GE0/0/1、GE0/0/2、GE0/0/3 description:to Agg-S1's eth-trunk 1	
7100 51	E0/0/10	Description:to AP1	
	E0/0/11	Description:to AP2	
Acc-S2	Eth-trunk 1	mode:LACP-static Trunkport:GE0/0/1、GE0/0/2、GE0/0/3 description:to Agg-S1's eth-trunk 2	
Acc-S3	Eth-trunk 1	mode:LACP-static Trunkport :GE0/0/1、GE0/0/2、GE0/0/3 description:to Agg-S1's eth-trunk 3	
Acc-S4	Eth-trunk 1	mode:LACP-static Trunkport :GE0/0/1、GE0/0/2、GE0/0/3 description:to Agg-S1's eth-trunk 4	
AC1	GE0/0/1	Description:to Agg-S1's GE0/0/2	
CORE-R1	GE0/0/1	Description:to Agg-S1's GE0/0/1	

设备	接口	配置内容
	Eth-trunk 1	mode:LACP-static Trunkport :GE0/0/3、GE0/0/7、GE0/0/8 description:to Acc-S1's eth-trunk 1
	Eth-trunk 2	mode:LACP-static Trunkport :GE0/0/4、GE0/0/9、GE0/0/10 description:to Acc-S2's eth-trunk 1
Agg-S1	Agg-S1 Eth-trunk 3	mode:LACP-static Trunkport :GE0/0/5、GE0/0/11、 GE0/0/12 description:to Acc-S3's eth-trunk 1
	Eth-trunk 4	mode:LACP-static Trunkport :GE0/0/6、GE0/0/13、 GE0/0/14 description:to Acc-S4's eth-trunk 1
	GE0/0/1	Description:to CORE-R1's GE0/0/1
	GE0/0/2	Description:to AC1's GE0/0/1

配置方案 (2)

2. 基础业务-VLAN配置,采用基于端口的划分方式,详细内容如下:

设备	接口	类型	配置内容
	Eth-trunk 1		PVID:100 Allow-pass VLAN 1、100、101
Acc-S1	E0/0/10	Trunk	PVID:101
	E0/0/11		Allow-pass VLAN 1、101
Acc-S2	Eth-trunk 1	Trunk	PVID:100 Allow pass VLAN 2、100
	其他接口	Access	Default VLAN 2
Acc-S3	Eth-trunk 1	Trunk	PVID:100 Allow pass VLAN 3、100
ACC-53	其他接口	Access	Default VLAN 3
Acc 54	Eth-trunk 1	Trunk	PVID:100 Allow pass VLAN 4 、100
Acc-S4	其他接口	Access	Default VLAN 4

设备	接口	类型	配置内容
	Eth-trunk 1	Trunk	PVID:100 Allow-pass VLAN 1、100、101
	Eth-trunk 2	Trunk	PVID:100 Allow pass VLAN 2、100
A = 2 C1	Eth-trunk 3	Trunk	PVID:100 Allow pass VLAN 3、100
Agg-S1 —	Eth-trunk 4	Trunk	PVID:100 Allow pass VLAN 4 、100
	GE0/0/2	Access	Default VLAN 101
	GE0/0/1	Access	Default VLAN 102
AC1	GE0/0/1	Access	Default VLAN 101

配置方案 (3)

3. 基础业务-IP地址配置,终端与AP采用DHCP方式,设备采用静态配置,详细内容如下:

设备	接口	地址/掩码	
Agg-S1	VLANif1	192.168.1.254/24	
	VLANif2	192.168.2.254/24	
	VLANif3	192.168.3.254/24	
	VLANif4	192.168.4.254/24	
	VLANif100	192.168.100.254/24	
	VLANif101	192.168.101.254/24	
	VLANif102	192.168.102.2/30	
CORE-R1	GE0/0/1	192.168.102.1/30	
	GE0/0/0	PPPoE自动获取	
	Loopback0	1.1.1.1/32	

设备	接口	地址/掩码
Acc-S1	VLANif100	192.168.100.1/24
Acc-S2	VLANif100	192.168.100.2/24
Acc-S3	VLANif100	192.168.100.3/24
Acc-S4	VLANif100	192.168.100.4/24
AC1	VLANif101	192.168.1.101/24

配置方案 (4)

4. 基础业务-IP地址分配方式配置,关于DHCP的详细内容如下:

网段	其他参数	备注
192.168.1.0/24	Gateway:192.168.1.254 DNS:192.168.1.254	Agg-S1为DHCP Server
192.168.2.0/24	Gateway:192.168.2.254 DNS:192.168.2.254	Agg-S1为DHCP Server 给打印机(1)以及FTP分配固定IP地址
192.168.3.0/24	Gateway:192.168.3.254 DNS:192.168.3.254	Agg-S1为DHCP Server 给打印机(2)分配固定IP地址
192.168.3.0/24	Gateway:192.168.4.254 DNS:192.168.4.254	Agg-S1为DHCP Server 给打印机(3)及网络管理员分配固定IP地址
192.168.101.0/24	N/A	Agg-S1为DHCP Server 不分配AC所占用的地址(192.168.101.1)

配置方案 (5)

5. 基础业务-路由配置,由于网络规模较小且网元数量较少,采用静态路由方式,详细内容如下:

设备	路由配置	备注	
Acc-S1			
Acc-S2	0.0.0.0 0 192.168.100.254	为了让网络管理员可以跨网段访问二层交换机。	
Acc-S3	0.0.0.0 0 192.100.100.254		
Acc-S4			
AC1	0.0.0.0 0 192.168.101.254	为了让管理员可以跨网段访问AC1。	
Agg-S1	0.0.0.0 0 192.168.102.1	访问Internet的流量所匹配的路由。	
CORE-R1	192.168.0.0 20 192.168.102.2	核心路由器访问内网,该路由为聚合后的路由。	
	默认路由	指向外网接口。	

配置方案 (6)

6. 网络管理配置,采用Telnet远程管理,认证方式为AAA,详细内容如下:

设备	管理方式	认证方式	备注
Acc-S1			
Acc-S2			
Acc-S3		本地AAA	用户名和密码应该足够复杂且不一致, 同时需要做好记录工作。
Acc-S4	Telnet		
Agg-S1			
CORE-R1			
AC1			
AP1&AP2	AC集中控制和管理	N/A	N/A

7. 网络出口配置

设备	接口	接入方式	NAT方式	备注
CORE-R1	GE0/0/0	PPPoE	Easy IP	用户名:PPPoEUser123 密码:Huawei@123

配置方案 (7)

- 8. WLAN配置,按照WLAN规划内容进行配置即可。
- 9. 安全相关配置,详细内容如下:

模块	相关技术	配置内容
流量监控	Traffic-Policy 、NAT、ACL	1.配置高级ACL,阻止源为192.168.1.0/24,目的为内网业务网段的流量, 放通其他流量。配置Traffic-filter引用此ACL,并在接口上应用。 2.配置基本ACL,仅放通源为192.168.1.0/24的流量,并引用到网络出接口 的NAT功能上。
网络管理安全	AAA、ACL	配置基本ACL,仅放通源为管理员的IP地址,反掩码为0,并引用到所有被 管理设备的VTY接口下。
DHCP安全	DHCP Snooping	在所有接入交换机上开启DHCP Snooping功能,同时配置上行接口为 Trusted接口。

小型园区网络调试

1.联通性测试

基础链路对接测试

二层互通测试

三层互通测试

2.高可靠性能力调试

防环功能测试

路径切换测试

双机热备测试

3.业务性能测试

业务流量测试

访问控制测试

小型园区网络运维

- 项目上线运行之后,就进入到了运维阶段,常见的运维手段包括:
 - 。 设备环境检查
 - 。 设备基本信息检查
 - 。 设备运行状态检查
 - □ 业务检查
 - 。 告警处理
- 当网络达到一定规模,可以采用网络管理软件进行管理和运维,提升效率。

小型园区网络优化

- 通过网络优化,能够整体提升网络的可靠性、健壮性,更好的支撑企业业务的发展。常见的优化方案包括但不限于:
 - 设备性能优化,如升级硬件设备、更新设备软件版本等。
 - 网络基础优化,如网络架构优化、路由协议调整等。
 - 业务质量优化,如针对语音、视频业务的优先转发等。
- 应从网络需求出发,结合实际情况制定适合的优化方案。

本章总结

- 本章介绍了园区网络的概念、类型以及常见技术等。
- 了解园区网络生命周期:
 - 。 规划与设计
 - 。 部署与实施
 - 网络运维
 - 。 网络优化
- 结合之前课程内容,着重介绍了园区网络的规划设计与部署实施,完成一张小型园区网络的搭建。

