Assignment 2

RAG and Neural Network

Introduction to RAG & Project Objectives

Basic RAG Pipeline consists of 2 parts: Data Indexing and Data Retrieval & Generation

What is RAG?

• Retrieval-Augmented Generation: combines a vector-based retriever (FAISS) with an LLM generator (FLAN-T5)

Why use RAG?

- Improves factual accuracy by forcing the model to cite evidence
- Scales easily: swap in larger corpora, different embedding models, or more powerful LLMs

RAG Architecture & Core Components

Data Chunking

- Split raw text file into discrete "paragraph" units
- Ensures retrieval returns coherent snippets, not partial sentences

Embedding with SentenceTransformers

- Model: all-MiniLM-L6-v2
- Maps each paragraph → 384-dim dense vector

Indexing in FAISS

- Normalize vectors with L2; use IndexFlatIP for inner-product (cosine) similarity
- Fast nearest-neighbor search for K most relevant chunks

Prompt Engineering

- Vanilla prompt: "You are a helpful assistant..."
 - → free-form answers
- RAG prompt: inject retrieved passages as numbered sources; instruct model to cite "[1]" etc.

Generation with FLAN-T5

 Constrained decoding (beam search, no_repeat_ngram) for concise, citation-driven output

Hallucination Prevention & Demo Insights

What is a hallucination?

• Confident but incorrect or invented "facts" (e.g. "St. John's River" as the longest)

How RAG stops it

- Only gives the model vetted text snippets to work from
- Forbids invention: citations tie each fact back to a source

Demo comparison (5 queries)

- 1. **Vanilla** often answers off-topic or makes up numbers
- 2. **RAG** always names "The Nile River," gives exact length (6,650 km), and cites "[1]"

Benefits

- Transparent: you can audit each citation
- Reproducible: swap in new data, rerun retriever, same methodology

High-Level Implementation

Environment Setup

- pip install faiss-cpu sentence-transformers transformers
- Upload random_data.txt via Colab file picker

Data Preparation

- load_chunks() → list of (id, text) tuples
- Embedding and index.add() builds the vector store

Query Processing Loop

- For each question:
 - 1. Generate vanilla FLAN-T5 response
 - 2. Retrieve top 3 passages via FAISS
 - Generate RAG response with explicit "[n]" citations

Results & Metrics

- Qualitative improvement in answer correctness
- Citation rate → 100% source-grounded facts

Q.2) Implementation of Neural Networks

Overview

Objective: Build a binary classifier to predict loan application decisions ("accept" vs. "reject") using a feed-forward neural network.

Data: Tabular loan dataset (~37 KB; ~hundreds of rows, mix of numerical & categorical features).

Preprocessing:

- Mapped target "Decision" → {1, 0}.
- One-hot encoded categorical variables; standardized numerical variables.
- Split into train (80%) / validation (20%) sets with stratification and fixed seed.

Model Architectures & Training Setup

Architectures tested:

- 3×ReLU: three hidden layers × 64 units, ReLU activations
- 2. **5×Tanh:** five hidden layers × 64 units, Tanh activations
- 3. **3×Tanh:** three hidden layers × 64 units, Tanh activations
- 4. **5×ReLU:** five hidden layers × 64 units, ReLU activations

Common settings:

Output layer: 1 neuron, sigmoid

Results & Key Insights

Best performer: 3×ReLU (highest validation accuracy 74.4%).

Depth vs. activation:

- **Deeper nets (5 layers)** without regularization overfit (↑ train acc but ↓ val acc).
- **ReLU** outperforms Tanh on this dataset.

	Model	Train Loss	Train Acc	Val Loss	Val Acc
0	3×ReLU	0.4543	0.7930	0.5250	0.7442
1	5×Tanh	0.4294	0.8163	0.5436	0.6977
2	3×Tanh	0.4812	0.7901	0.5289	0.7209
3	5×ReLU	0.4150	0.8455	0.5445	0.7093