西北工业大学考试试题(卷)评分标准

2015 - 2016 学年第 1 学期

一、(20 分) 已知控制系统结构图如下所示,求 $\frac{E_1(s)}{R(s)}, \frac{E_2(s)}{R(s)}, E_1(s), E_2(s)$

答:

$$E_1(s) = N_1(s) + \frac{R(s)}{s} - \frac{R(s) - (1+s)E_2(s)}{s}$$

$$E_2(s) = N_2(s) + \frac{R(s)}{s^2} + \frac{N_1(s)}{s} - \frac{R(s) - (1+s)E_2(s)}{s^2}$$

化简得:

$$E_1(s) = N_1(s) + \frac{(1+s)E_2(s)}{s}$$

$$E_2(s) = N_2(s) + \frac{N_1(s)}{s} + \frac{(1+s)E_2(s)}{s^2}$$

可得:

$$\frac{E_1(s)}{R(s)} = 0$$

$$\frac{E_2(s)}{R(s)} = 0$$

$$E_2(s)(1 - \frac{1+s}{s^2}) = N_2(s) + \frac{N_1(s)}{s}$$

$$E_2(s) = \frac{N_2(s) + \frac{N_1(s)}{s}}{1 - \frac{1+s}{s^2}}$$

$$= \frac{N_2(s)s^2 + N_1(s)s}{s^2 - s - 1}$$

$$E_1(s) = N_1(s) + \frac{(1+s)E_2(s)}{s}$$

$$= \frac{N_1(s)s^2 + (1+s)sN_2(s)}{s^2 - s - 1}$$

二、(20分)已知控制系统模型如下:

$$\dot{y}(t) = v(t)$$

 $\dot{v}(t) = u(t)$
 $u(t) = e(t) - k_1 v(t) + k_2 \dot{r}(t)$
 $e(t) = r(t) - y(t)$

求传递函数 $G(s) = \frac{Y(s)}{R(s)}$,其中 $Y(s) = \mathcal{L}[y(t)], R(s) = \mathcal{L}[r(t)]$; 零初始条件下, $k_2 = 0, r(t) = 1, (t > 0)$ 时,为使系统超调量 $\sigma\% = 0$,且调节时间尽可能小, k_1 应取何值? 零初始条件下,r(t) = t, (t > 0) 时, k_1, k_2 取何值可使 $\lim_{t \to \infty} e(t) = 0$? 答:

系统结构图:

由梅森公式,得:

$$G(s) = \frac{\frac{k_2}{s} + \frac{1}{s^2}}{1 + \frac{k_1}{s} + \frac{1}{s^2}}$$
$$= \frac{1 + k_2 s}{s^2 + sk_1 + 1}$$

当系统为临界阻尼与过阻尼时, 满足 σ % = 0, 临界阻尼调节时间小于过阻尼, 因此

$$k_1 = 2\zeta\omega_n = 2\cdot 1\cdot 1 = 2$$

零初始条件下, $r(t) = t, R(s) = \frac{1}{s^2}$ 时,

$$E(s) = R(s) - G(s)R(s)$$

$$= \frac{s^2 + k_1 s - k_2 s}{s^2 + k_1 s + 1} \cdot \frac{1}{s^2}$$

当 $k_1 > 0$ 时系统稳定,且有:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$
$$= k_1 - k_2$$

因此, 当 $k_1 > 0, k_1 = k_2$ 时可使 $\lim_{t \to \infty} e(t) = 0$

三、(20分)控制系统结构图如下:

$$R(s) \xrightarrow{E(s)} \underbrace{\begin{array}{c} s+1 \\ \hline (s^2+as+b)(s+2) \end{array}} C(s)$$

已知 $a \ge 0, b \ge 0$,当 $R(s) = \frac{1}{s}$ 时系统的稳态误差是多少?是否可通过改变 a,b 的值使得 $R(s) = \frac{1}{s^2+1}$ 时稳态误差等于零?

答: 系统特征方程:

$$s^{3} + (a+2)s^{2} + (b+2a+1)s + 2b + 1 = 0$$

劳斯表:

$$s^3$$
 1 $b+2a+1$
 s^2 $(a+2)$ $2b+1$
 s^1 $b+2a+1-\frac{(2b+1)}{a+2}$
 s^0 $2b+1$

当 $a \ge 0, b \ge 0$ 时,

$$b+2a+1 - \frac{(2b+1)}{a+2} = \frac{(a+2)*(b+2a+1) - (2b+1)}{a+2}$$
$$= \frac{ab+2a^2+5a+1}{a+2}$$
$$> 0$$

系统稳定,可得:

$$E(s) = \frac{(s^2 + as + b)(s + 2)}{(s^2 + as + b)(s + 2) + s + 1} \cdot R(s)$$
$$\lim_{s \to 0} sE(s) = \frac{2b}{2b + 1}$$

当 $R(s) = \frac{1}{s^2+1}$ 时

$$E(s) = \frac{(s^2 + as + b)(s + 2)}{(s^2 + as + b)(s + 2) + s + 1} \cdot \frac{1}{s^2 + 1}$$
$$= \frac{s + 2}{(s^2 + as + b)(s + 2) + s + 1} \cdot \frac{s^2 + as + b}{s^2 + 1}$$

当 a=0,b=1 时,

$$E(s) = \frac{s+2}{(s^2+as+b)(s+2)+s+1}$$

$$\lim_{t\to\infty} e(t) = \lim_{s\to 0} sE(s)$$

$$= 0$$

四、(20分)单位负反馈系统开环传递函数

$$G(s) = \frac{k}{s(s+1)^3}$$

绘制 $k \in (-\infty,0) \cup (0,\infty)$ 的系统根轨迹,并分析系统稳定时 k 的取值范围。 答: 系统开环极点: (-1+0j),0, 渐近线中心: $\frac{-1-1-1}{4} = \frac{-3}{4} + 0j$, 分离点:

$$\frac{d}{ds}(s(s+1)^3 + k) = 0$$
$$(s+1)^3 + 3s(s+1)^2 = 0$$
$$(s+1)^2(s+1+3s) = 0$$

因此分离点为 $-1, (\frac{-1}{4} + 0j)$ 。利用劳斯判据求根轨迹与虚轴交点:

 $k=rac{8}{9}$ 时可得辅助方程: $rac{8}{3}s^2+k=0$, 解得: $s=\pmrac{\sqrt{3}}{3}j$ 。

 $k \in (0,\infty)$ 时,实轴上的根轨迹为 [-1,0), $(-1+0\mathrm{j})$ 处起始角: $\theta = \frac{(2k+1)\pi-\pi}{3} = \frac{2k\pi}{3} = \{0,\pm\frac{2\pi}{3}\}$ 渐近线方向: $\phi = \frac{(2k+1)\pi}{4} = \{\pm\frac{\pi}{4},\pm\frac{3\pi}{4}\}$ $k \in (-\infty,0)$ 时,实轴上的根轨迹为 $(-\infty,-1) \cup (0,\infty)$, $(-1+0\mathrm{j})$ 处起始角: $\theta = \frac{2k\pi-\pi}{3} = \frac{2k\pi}{3}$

 $k \in (-\infty,0)$ 时,实轴上的根轨迹为 $(-\infty,-1) \cup (0,\infty)$, (-1+0j) 处起始角: $\theta = \frac{2k\pi - \pi}{3} = \frac{(2k-1)\pi}{3} = \{\pi, \pm \frac{\pi}{3}\}$ 渐近线方向: $\phi = \frac{2k\pi}{4} = \{0,\pi,\pm \frac{\pi}{2}\}$ 根轨迹为:

由根轨迹可知, $k \in (0, \frac{8}{9})$ 时, 系统稳定.

五、(20分)单位负反馈系统开环传递函数:

$$G(s) = \frac{k}{s+1} \cdot e^{\frac{-3\pi}{4}s}$$

当 k = 1 时系统的稳定性如何?相角裕度是多少?若要使系统稳定,实数 k 的范围是什么?答:

 $|G(j\omega)|$ 是 ω 的单调减函数,当 $k=1, \omega=0$ 时, $|G(j\omega)|=1$,Nyquist 曲线不包围 (-1+0j),闭环系统稳定。此时 $\angle G(j\omega)=0$,因此相角裕度 $\gamma=180^\circ$ 。

当 $k>0, \omega=1$ 时, $\angle G(j\omega)=-\pi$, $|G(s)|=\frac{k}{\sqrt{2}}$,因此,当 $0< k<\sqrt{2}$ 时,系统稳定。 当 -1< k<0 时,Nyquist 曲线不包围 $(-1+0\mathrm{j})$,系统稳定。当 k<-1 时,Nyquist 曲线包围 $(-1+0\mathrm{j})$,系统不稳定。因此,当 $-1< k<\sqrt{2}$ 时,闭环系统稳定。