CHAPTER 8- Circles

EE24BTECH11021 - Eshan Ray

Section-A [JEEADVANCED/IIT - JEE]

A:FILL IN THE BLANKS

1) If A and B are points in the plane such that $\frac{PA}{PB} = K(constant)$ for all P on a given circle, then the value of K cannot be equal to

(1982 - 2Marks)

2) The points of intersection of the line 4x - 3y - 10 = 0 and the circle $x^2 + y^2 - 2x + 4y - 20 = 0$ are

(1983 - 2Marks)

3) The lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0 are tangents to the same circle. The radius of the circle is

(1984 - 2Marks)

4) Let $x^2 + y^2 - 4x - 2y - 11 = 0$ be a circle. A pair of tangents from the point (4, 5) with a pair of radii form a quadrilateral of area

(1985 - 2Marks)

5) From the origin chords are drawn to the circle $(x-1)^2 + y^2 = 1$. The equation of the locus of the mid-points of these chords is

(1985 - 2Marks)

6) The equation of the line passing through the points of intersection of the circles $3x^2 + 3y^2 - 2x + 12y - 9 = 0$ and $x^2 + y^2 + 6x + 2y - 15 = 0$ is

(1986 - 2Marks)

7) From the point A(0,3) on the circle $x^2+4x+(y-3)^2=0$, a chord AB is drawn and extended to a point M such that AM=2AB. The equation of the locus of M is

(1986 - 2Marks)

- 8) The area of the triangle formed by the tangents from the point (4,3) to the circle $x^2 + y^2 = 9$ and the line joining their point of contact is (1987 2Marks)
- 9) If the circle $C_1: x^2 + y^2 = 16$ intersects another circle C_2 of radius 5 in such a manner that common chord is of maximum length and has a slope equal to $\frac{3}{4}$, then the coordinates of the centre of C_2 are

(1988 - 2Marks)

10) The area formed by the positive x-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is

(1989 - 2Marks)

1

11) If a circle passes through the points of intersection of the coordinate axes with the lines $\lambda x - y + 1 = 0$ and x - 2y + 3 = 0, then the value of $\lambda =$

(1991 - 2Marks)

12) The equation of the locus of the mid-points of the circle $4x^2 + 4y^2 - 12x + 4y + 1 = 0$ that subtend an angle of $\frac{2\pi}{3}$ at its centre is

(1993 - 2Marks)

13) The intercept of the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle with AB as a diameter is

(1996 - 1Mark)

14) For each natural number k, let C_k denote the circle with radius k centimetres and centre at the origin. On the circle C_k , α – particle moves k centimetres in the counter-clockwise direction. After completing its motion on C_k , the particle moves to C_{k+1} in the radial direction. The motion of the particle continues in this manner. The particle starts at (1,0). If the particle crosses the positive direction of the x-axis for the first time on the circle C_n then n=

(1997 - 2Marks)

15) The chords of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to $x^2 + y^2 = 1$ pass through the point

(1997 - 2Marks)