Neural Network Basics

9/10 points (90%)

Quiz, 10 questions

Congratulations! You passed!

Next Item

1/1 points

1.

What does a neuron compute?

A neuron computes a linear function (z = Wx + b) followed by an activation function

Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

- A neuron computes a function g that scales the input x linearly (Wx + b)
- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes an activation function followed by a linear function (z = Wx + b)

Neural Network Bassics

9/10 points (90%)

Quiz, 10 questions

2.

Which of these is the "Logistic Loss"?

Correct

Correct, this is the logistic loss you've seen in lecture!

$$\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} - \hat{y}^{(i)}|^2$$

$$\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \max(0, y^{(i)} - \hat{y}^{(i)})$$

$$\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} - \hat{y}^{(i)}|$$

$$\mathcal{L}^{(i)}(\mathring{\boldsymbol{y}}^{(i)}, \boldsymbol{y}^{(i)}) = |\boldsymbol{y}^{(i)} - \mathring{\boldsymbol{y}}^{(i)}|$$

Quiz, 10 questions

3.

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

\bigcirc	x = img.reshape((1,32*32,*3))
\bigcirc	x = img.reshape((32*32*3,1))
Correct	
\bigcirc	x = img.reshape((32*32,3))
\bigcirc	x = img.reshape((3,32*32))

Neural Network Bassics

9/10 points (90%)

Quiz, 10 questions

4.

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(2, 3) # a.shape = (2, 3)
2 b = np.random.randn(2, 1) # b.shape = (2, 1)
3 c = a + b
```

What will be the shape of "c"?

c.shape = (2,	1)

c.shape =
$$(3, 2)$$

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

The computation cannot happen because the sizes don't
match. It's going to be "Error"!

Quiz, 10 questions

5.

Consider the two following random arrays "a" and "b":

```
1  a = np.random.randn(4, 3) # a.shape = (4, 3)
2  b = np.random.randn(3, 2) # b.shape = (3, 2)
3  c = a*b
```

What will be the shape of "c"?

\bigcirc	The computation cannot happen because the sizes don't
	match. It's going to be "Error"!

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

- c.shape = (4,2)
- c.shape = (3, 3)
- c.shape = (4, 3)

Quiz, 10 questions 6.

Suppose you have n_x input features per example. Recall that

 $X = [x^{(1)}x^{(2)}...x^{(m)}]$. What is the dimension of X?

 $\bigcirc \qquad \qquad (1,m)$

 (m, n_x)

(m,1)

 (n_x, m)

Correct

6 of 11

Neural Network Basics

9/10 points (90%)

Quiz, 10 questions

7.

Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

Consider the two following random arrays "a" and "b":

1 a = np.random.randn(12288, 150) # a.shape = (12288, 150)
2 b = np.random.randn(150, 45) # b.shape = (150, 45)
3 c = np.dot(a,b)

What is the shape of c?

\bigcirc	c.shape = (12288, 150)
0	The computation cannot happen because the sizes don't match. It's going to be "Error"!
\bigcirc	c.shape = (150,150)
\bigcirc	c.shape = (12288, 45)

Correct

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

Quiz, 10 questions

8.

Consider the following code snippet:

```
1  # a.shape = (3,4)
2  # b.shape = (4,1)
3
4  for i in range(3):
5   for j in range(4):
6    c[i][j] = a[i][j] + b[j]
```

How do you vectorize this?

c = a.T + b.T

This should not be selected

c = a + b

c = a + b.T

8 of 11

Quiz, 10 questions

9.

Consider the following code:

	1	a = np.random.randn(3, 3)
	2	b = np.random.randn(3, 1)
	3	c = a*b
١	What	will be c? (If you're not sure, feel free to run this in python to
f	ind c	out).

This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)

Correct

\bigcirc	This will invoke broadcasting, so b is copied three times to
	become (3, 3), and $*$ invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
0	This will multiply a $3x3$ matrix a with a $3x1$ vector, thus resulting in a $3x1$ vector. That is, c.shape = $(3,1)$.
0	It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

Quiz, 10 questions

10.

Consider the following computation graph.

What is the output J?

$$J = (c - 1)*(b + a)$$

$$\int J = (a - 1) * (b + c)$$

Correct

Yes.
$$J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c).$$

$$\int = a*b + b*c + a*c$$

$$\int J = (b - 1) * (c + a)$$

Neural Network Basics

9/10 points (90%)

Quiz, 10 questions