No	Solution
1 (i)	
	$S_n = \frac{5}{24} - \frac{n+5}{(n+4)!}$
	As $n \to \infty$, $\frac{n+5}{(n+4)!} \to 0$
	(n+1).
	a 5 $n+5$ 5
	$\therefore S_n = \frac{5}{24} - \frac{n+5}{(n+4)!} \to \frac{5}{24}$, which is unique and finite.
	Hence, the series converges.
	,
	Hence, $S_{\infty} = \frac{5}{24}$.
(::)	
(ii)	$\sum_{r=1}^{\infty} u_{r+2} = \sum_{r=3}^{\infty} u_r \qquad \text{(replace } r \text{ with } r-2\text{)}$
	$=S_{\infty}-S_{2}$
	5 (5 7)
	$=\frac{5}{24}-\left(\frac{5}{24}-\frac{7}{6!}\right)$
	7
	$=\frac{7}{6!}$
	$=\frac{7}{720}$
(iii)	For $n \ge 2$,
	G G
	$u_n = S_n - S_{n-1}$
	5 n+5 (5 n+4)
	$=\frac{5}{24}-\frac{n+5}{(n+4)!}-\left(\frac{5}{24}-\frac{n+4}{(n+3)!}\right)$
	$=\frac{n+4}{(n+3)!}-\frac{n+5}{(n+4)!}$
	$= \frac{1}{(n+4)!} \left[(n+4)^2 - n - 5 \right]$
	$(n+4)!^{-}$
	$= \frac{1}{(n+4)!} \left[n^2 + 8n + 16 - n - 5 \right]$
	$=\frac{n^2+7n+11}{(n+4)!}$
	(n+4)!
	$u_1 = S_1 = \frac{5}{24} - \frac{6}{5!} = \frac{19}{120}$

For
$$n = 1$$
,
$$RHS = \frac{1^2 + 7 + 11}{(1 + 4)!} = \frac{19}{120}$$

$$\therefore u_n = \frac{n^2 + 7n + 11}{(n + 4)!} \quad \text{where } n \in \mathbb{Z}^+$$

$$2 \text{ (i)} \quad x = 2\sqrt{t}, \quad y = 1 + \sqrt{1 - t}$$

$$\frac{dy}{dt} = \frac{1}{\sqrt{t}}, \quad \frac{dy}{dt} = -\frac{1}{2\sqrt{1 - t}}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{1}{2}\sqrt{\frac{t}{1 - t}}$$
As $t \to 1$, $\frac{dy}{dx} \to -\infty$. The tangent to the curve approaches a vertical line.

$$2$$

$$(\text{iii}) \quad \uparrow y$$

$$(0,2)$$

$$(0,2)$$

$$At point $T(2\sqrt{t}, 1 + \sqrt{1 - t})$, Equation of the tangent at $T$$$

$$y - (1 + \sqrt{1 - t}) = -\frac{\sqrt{t}}{2\sqrt{1 - t}}(x - 2\sqrt{t})$$

$$2\sqrt{1 - t}y - 2\sqrt{1 - t}(1 + \sqrt{1 - t}) = -\sqrt{t}x + 2t$$

$$2\sqrt{1 - t}y - 2\sqrt{1 - t} - 2(1 - t) = -\sqrt{t}x + 2t$$

$$2\sqrt{1 - t}y = -\sqrt{t}x + 2 + 2\sqrt{1 - t}$$
(iv) When $x = \sqrt{2}$,

(iv) When
$$x = \sqrt{2}$$
,

$$2\sqrt{t} = \sqrt{2}$$

$$\sqrt{t} = \frac{1}{\sqrt{2}}$$

$$t = \frac{1}{2}$$

When $t = \frac{1}{2}$, equation of tangent:

$$2\sqrt{\frac{1}{2}}y = -\frac{1}{\sqrt{2}}x + 2 + 2\sqrt{\frac{1}{2}}$$

$$y = -\frac{1}{2}x + \sqrt{2} + 1$$

When tangent meets x-axis, $y = 0 \Rightarrow x = 2(1 + \sqrt{2})$

$$P(2(1+\sqrt{2}),0)$$

When tangent meets y-axis, $x = 0 \Rightarrow y = 1 + \sqrt{2}$

$$Q(0, 1+\sqrt{2})$$

Area of triangle OPQ = $\frac{1}{2}(2)(1+\sqrt{2})(1+\sqrt{2})$

$$=3+2\sqrt{2}$$
 units²

$$\frac{y^2}{5} - \frac{x^2}{4} = 1$$

 $\frac{y^2}{\left(\sqrt{5}\right)^2} - \frac{x^2}{2^2} = 1$ [Vertical Hyperbola with centre at origin (0,0)]

Asymptotes

Page **6** of **22**

- 1. Translation of 2a units in the negative x-direction.
- 2. Reflection about the *x*-axis.

Alternative Method:

$$y = \frac{1}{4ax - x^{2}} = \frac{1}{x(4a - x)}$$

$$\xrightarrow{x \to x + 2a} y = \frac{1}{(x + 2a)(2a - x)} \xrightarrow{y \to -y} y = \frac{1}{x^{2} - 4a^{2}}$$

Sequence of transformations: (order is not important)

- 1. Translation of 2a units in the negative x-direction.
- 2. Reflection about the *x*-axis.

5(a) For sum to infinity to exist,

$$|2\sin\theta| < 1 - - - (*)$$

$$-1 < 2\sin\theta < 1$$

$$-\frac{1}{2} < \sin\theta < \frac{1}{2}$$

$$-\frac{\pi}{6} < \theta < \frac{\pi}{6} - - - (1)$$

$$\frac{1}{1 - 2\sin\theta} > 2 - - - (\#)$$

$$0 < 1 - 2\sin\theta < \frac{1}{2} \quad \text{since } |2\sin\theta| < 1$$

$$\sin\theta > \frac{1}{4} \Rightarrow \theta > 0.253 - - - (2)$$
Since $-\frac{\pi}{6} < \theta < \frac{\pi}{6}$, therefore $0.253 < \theta < 0.526$ (final answer)

Alternatively, students can graph $y = \frac{1}{1 - 2\sin\theta}$

From the graph, $\frac{1}{1-2\sin\theta} > 2$ \Rightarrow 0.253 < θ < 0.526 (final answer)

(b) Let a denote the first term and r be the common ratio of the geometric progression respectively.

Likewise, let b and d denote the first term and common difference of the arithmetic progression.

$$ar^{4} = b + 6d \qquad ...(1)$$

$$ar^{8} = b + 24d \qquad ...(2)$$

$$ar^{10} = b + 49d \qquad ...(3)$$

$$ar^{10} = b + 49d$$
 ...(3)

(2) – (1):
$$ar^8 – ar^4 = 18d$$
 ...(4)
(3) – (2): $ar^{10} – ar^8 = 25d$...(5)

(3) – (2):
$$ar^{10} – ar^8 = 25d$$
 ...(5)

Eq(5)/Eq(4):

$$\frac{ar^{8}(r^{2}-1)}{ar^{4}(r^{4}-1)} = \frac{25d}{18d}$$

$$\frac{r^4(r^2-1)}{(r^2+1)(r^2-1)} = \frac{25}{18}$$

$$\frac{r^4}{\left(r^2+1\right)} = \frac{25}{18}$$

$$18r^4 = 25r^2 + 25$$

$$18r^4 - 25r^2 - 25 = 0 - - - (@)$$

$$r^{2} = \frac{25 \pm \sqrt{(-25)^{2} - 4(18)(-25)}}{2(18)} = \frac{25 \pm \sqrt{2425}}{36}$$

 $r = \pm \sqrt{\frac{25 + \sqrt{2425}}{36}}$

=1.436 or -1.436

Since for both values of r, |r|=1.436 > 1, the geometric progression is not convergent.

Alternatively, students can use GC to solve

$$18r^4 - 25r^2 - 25 = 0$$

The 4 roots are 1.436, -1.436, 0.821i, -0.821i

However we only need to consider real roots.

Hence r = 1.436 or -1.436.

6(i)

Since the line y = 1 cuts the graph y = f(x) at two points, f is not a one-to-one function. Therefore f does not have an inverse.

(ii) Maximum $k = \frac{5}{2}$.

Let
$$y = f(x)$$
.

For
$$D_f = \left(-\infty, \frac{5}{2}\right)$$
,

$$y = -\frac{1}{2x - 5}$$

$$2x - 5 = -\frac{1}{y}$$

$$2x = 5 - \frac{1}{y}$$

$$x = \frac{5}{2} - \frac{1}{2y}$$

$$f^{-1}(y) = \frac{5}{2} - \frac{1}{2x}$$

$$Replacing y by x,$$

$$f^{-1}(x) = \frac{5}{2} - \frac{1}{2x}$$

$$D_{r^{-1}} = R_{r} = (0, \infty)$$

$$f^{-1}: x \mapsto \frac{5}{2} - \frac{1}{2x}, \text{ where } x \in \mathbb{R}, x > 0.$$
(iii)
$$R_{r} = (0, \infty)$$

$$D_{g} = [-2, \infty)$$
Since
$$R_{r} \subseteq D_{g}, \text{ gf exists.}$$
(iv)
$$gf(x) = g\left(-\frac{1}{2x - 5}\right)$$

$$= \left(-\frac{1}{2x - 5} - 3\right)^{2} + 1$$

$$= \left(\frac{1}{5 - 2x} - 3\right)^{2} + 1$$

$$= \left(\frac{1 - 3(5 - 2x)}{5 - 2x}\right)^{2} + 1$$

$$= \left(\frac{6x - 14}{5 - 2x}\right)^{2} + 1,$$
where $a = 6, b = 5$.

By sketching the graph of g and letting the new domain of g be $R_f = (0, \infty)$,

$$D_f = \left(-\infty, \frac{5}{2}\right) \rightarrow R_f = \text{new } D_g = \left(0, \infty\right) \rightarrow \text{new } R_g = [1, \infty)$$

$$\therefore \mathbf{R}_{\mathrm{gf}} = [1, \infty)$$

7(i)
$$L: \mathbf{r} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R}$$

$$C \text{ lies on } L$$

$$\Rightarrow \overrightarrow{OC} = \begin{pmatrix} -2 + \lambda \\ -2\lambda \\ 1 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}$$

$$\therefore \overrightarrow{BC} = \begin{pmatrix} -3 + \lambda \\ -1 - 2\lambda \end{pmatrix}$$

$$\Rightarrow BC \perp L$$

$$\Rightarrow \begin{pmatrix} -3+\lambda \\ -1-2\lambda \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = 0$$

$$-3+\lambda+2+4\lambda=0$$

$$\lambda = \frac{1}{5}$$

$$\therefore C\left(-\frac{9}{5}, -\frac{2}{5}, 1\right)$$

(ii)
$$\overrightarrow{AD} = \begin{pmatrix} 1\\4\\2 \end{pmatrix}$$

A normal vector is

$$\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$$

Eqn of Π :

$$\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
$$\therefore 2x + y - 3z = -7$$

(iii) Method 1: Use of projection formula:

$$\overrightarrow{DB} = \begin{pmatrix} -2\\3\\1 \end{pmatrix}$$

shortest distance between B and Π

$$= \frac{\begin{pmatrix} -2\\3\\1 \end{pmatrix} \cdot \begin{pmatrix} 2\\1\\-3 \end{pmatrix}}{\sqrt{4+1+9}}$$
$$= \frac{4}{\sqrt{14}} \text{ units}$$

OR

$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$

shortest distance between B and Π

$$= \frac{\begin{vmatrix} 3\\1\\1 \end{vmatrix} \cdot \begin{vmatrix} 2\\1\\-3 \end{vmatrix}}{\sqrt{4+1+9}}$$

$$= \frac{4}{\sqrt{14}} \text{ units}$$

$$= \frac{2\sqrt{14}}{7} \text{ units}$$

Method 2: Find Foot of perpendicular first

Let F be the foot of perpendicular of B on Π .

$$l_{BF}: \quad \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \ \mu \in \mathbb{R}$$

F lies on l_{BF}

$$\Rightarrow \overrightarrow{OF} = \begin{pmatrix} 1+2\mu \\ 1+\mu \\ 2-3\mu \end{pmatrix} \text{ for some } \mu \in \mathbb{R}$$

F lies on Π

$$\Rightarrow \begin{pmatrix} 1+2\mu\\1+\mu\\2-3\mu \end{pmatrix} \cdot \begin{pmatrix} 2\\1\\-3 \end{pmatrix} = -7$$

$$2+4\mu+1+\mu-6+9\mu=-7$$

$$14\mu = -4$$

$$\mu = -\frac{2}{7}$$

$$\therefore \overrightarrow{BF} = -\frac{2}{7} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$

	shortest distance between B and \prod
	$ \left = \left \overrightarrow{BF} \right = \frac{2}{7} \sqrt{4 + 1 + 9} = \frac{2\sqrt{14}}{7} $ units
(iv)	Method 1: Hence $ \frac{1}{BC} = \frac{1}{5} \begin{pmatrix} -14 \\ -7 \\ -5 \end{pmatrix} $ Required angle $ \frac{4}{\sqrt{14}} \qquad C \qquad P $
	$= \sin^{-1} \frac{\frac{4}{\sqrt{14}}}{\frac{1}{5}\sqrt{14^2 + 7^2 + 5^2}}$ $= 19.0^{\circ} \text{ (ldp)}$
	Method 2: Otherwise
	Required angle $ \begin{vmatrix} $
	$= \sin^{-1} \frac{20}{\sqrt{270}\sqrt{14}}$ = 19.0° (ldp)
8 (i)	From $y = e^{\tan^{-1}(x)}$,
	Differentiate with respect to x , $\frac{dy}{dx} = e^{\tan^{-1}(x)} \cdot \frac{d}{dx} \left[\tan^{-1}(x) \right]$ $\frac{dy}{dx} = e^{\tan^{-1}(x)} \cdot \left(\frac{1}{1+x^2} \right)$

Upon multiplying both sides by $(1+x^2)$:

$$(1+x^2)\frac{dy}{dx} = e^{\tan^{-1}(x)}$$
, recall $y = e^{\tan^{-1}(x)}$

$$\left(1+x^2\right)\frac{\mathrm{d}y}{\mathrm{d}x} = y \tag{1}$$

Differentiate (1) with respect to x,

$$2x\frac{\mathrm{d}y}{\mathrm{d}x} + (1+x^2)\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

Upon rearrangement:

$$(1+x^2)\frac{d^2y}{dx^2} = (1-2x)\frac{dy}{dx}$$
 (2)

Alternative Solution

From
$$y = e^{\tan^{-1}(x)}$$
,

$$\ln y = \tan^{-1}(x)$$

Differentiate with respect to x,

$$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$$

$$\left(1+x^2\right)\frac{\mathrm{d}y}{\mathrm{d}x} = y \tag{1}$$

Differentiate (1) with respect to x,

$$2x\frac{\mathrm{d}y}{\mathrm{d}x} + (1+x^2)\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

Upon rearrangement:

$$(1+x^2)\frac{d^2y}{dx^2} = (1-2x)\frac{dy}{dx}$$
 (2)

(ii) Differentiate (2) with respect to x,

$$(1+x^2)\frac{d^3y}{dx^3} + 2x\frac{d^2y}{dx^2} = (1-2x)\frac{d^2y}{dx^2} - 2\frac{dy}{dx}$$
 (3)

Using
$$y = e^{\tan^{-1} x}$$
 and $x = 0$,

$$y = e^{\tan^{-1}(0)} = 1$$

Therefore,
$$e^{\frac{\pi}{6}} = e^{\tan^{-1}(\frac{1}{\sqrt{3}})} \approx 1 + \left(\frac{1}{\sqrt{3}}\right) + \frac{1}{2}\left(\frac{1}{\sqrt{3}}\right)^2 - \frac{1}{6}\left(\frac{1}{\sqrt{3}}\right)^3$$

$$= 1 + \frac{1}{6} + \frac{1}{\sqrt{3}} - \frac{1}{18}\left(\frac{1}{\sqrt{3}}\right)$$

$$= \frac{7}{6} + \left(1 - \frac{1}{18}\right)\left(\frac{1}{\sqrt{3}}\right)$$

$$= \frac{7}{6} + \frac{17}{18}\left(\frac{\sqrt{3}}{3}\right)$$

$$= \frac{7}{6} + \frac{17}{54}\sqrt{3}$$

$$p = 7, \ q = 6, \ r = 17 \ \text{ and } s = 54$$

$$p = 7, \ q = 6, \ r = 17 \ \text{ and } s = 54$$

$$(2a + b) \cdot (2a + b) = 4(a \cdot a) + 2(b \cdot a) + 2(a \cdot b) + (b \cdot b)$$

$$= 4|a|^2 + 4(a \cdot b) + |b|^2$$

$$(2a + b)^2 = 4|a|^2 + 4(a \cdot b) + |b|^2$$

$$(2\sqrt{74})^2 = 4(9^2) + 4(a \cdot b) + (1^2)$$

$$296 = 4(9^2) + 4(a \cdot b) + (1^2)$$

$$4(a \cdot b) = 296 - 4(9^2) - (1^2)$$

$$a \cdot b = -\frac{29}{4}$$
(ii)
$$|a \cdot b| \text{ is the length of projection of } \overline{OA} \text{ onto } \overline{OB}$$

$$|a \cdot b| = -\frac{29}{4}$$

$$k[(6a + 5b) - (7a - 5b)] = [(9a + \lambda b) - (7a - 5b)]$$

$$k[-a + 10b] = [2a + (\lambda + 5)b]$$
since a and b are non-parallel, non-zero vectors, $k = -2$

$$(\lambda + 5) = 10k \implies (\lambda + 5) = -20$$

$$\therefore \lambda = -25$$

Alternative

If
$$P$$
, Q and R are collinear, then $k\overrightarrow{PQ} = \overrightarrow{QR}$

$$k[(6a + 5b) - (7a - 5b)] = [(9a + \lambda b) - (6a + 5b)]$$

$$k[-a + 10b] = [3a + (\lambda - 5)b]$$

since \underline{a} and \underline{b} are non-parallel, non-zero vectors,

$$k = -3$$

$$(\lambda - 5) = 10k \implies (\lambda - 5) = -30$$

$$\lambda = -25$$

(b)

$$\overrightarrow{UX} = \overrightarrow{OX} - \overrightarrow{OU} = \frac{1}{16}\mathbf{u} + \frac{3}{4}\mathbf{v} - \mathbf{u} = \frac{3}{4}\mathbf{v} - \frac{15}{16}\mathbf{u}$$

$$\overrightarrow{UW} = \overrightarrow{OW} - \overrightarrow{OU} = \frac{1}{2}\mathbf{u} - \mathbf{u} = -\frac{1}{2}\mathbf{u}$$

Area of triangle $UWX = \frac{1}{2} \left| \overrightarrow{UW} \times \overrightarrow{UX} \right| = \frac{1}{2} \left| -\frac{1}{2} \mathbf{u} \times \left(\frac{3}{4} \mathbf{v} - \frac{15}{16} \mathbf{u} \right) \right|$ $= \frac{3}{16} \left| \mathbf{u} \times \mathbf{v} \right| \qquad \because \mathbf{u} \times \mathbf{u} = \mathbf{0}$

$$m = \frac{3}{16}$$

ALTERNATIVE [Not recommended]

$$\overline{UX} = \overline{OX} - \overline{OU} = \frac{1}{16}\mathbf{u} + \frac{3}{4}\mathbf{v} - \mathbf{u} = \frac{3}{4}\mathbf{v} - \frac{15}{16}\mathbf{u}$$

$$\overline{XW} = \overline{OW} - \overline{OX} = \frac{1}{2}\mathbf{u} - \left(\frac{1}{16}\mathbf{u} + \frac{3}{4}\mathbf{v}\right) = \frac{7}{16}\mathbf{u} - \frac{3}{4}\mathbf{v}$$
Area of triangle UWX

$$= \frac{1}{2} |\overline{UX} \times \overline{XW}|$$

$$= \frac{1}{2} \left| \frac{3}{4}\mathbf{v} - \frac{15}{16}\mathbf{u} \right| \times \left(\frac{7}{16}\mathbf{u} - \frac{3}{4}\mathbf{v} \right) \right|$$

$$= \frac{1}{2} \left| \frac{21}{64}\mathbf{v} \times \mathbf{u} + \frac{45}{64}\mathbf{u} \times \mathbf{v} \right|$$

$$= \frac{1}{2} \left| -\frac{21}{64}\mathbf{u} \times \mathbf{v} + \frac{45}{64}\mathbf{u} \times \mathbf{v} \right|$$

$$= \frac{1}{2} \left| \frac{24}{64}\mathbf{u} \times \mathbf{v} \right|$$

$$= \frac{1}{2} \left| \frac{24}{64}\mathbf{u} \times \mathbf{v} \right|$$

$$= \frac{3}{16} |\mathbf{u} \times \mathbf{v}|$$

$$\therefore m = \frac{3}{16}$$
10
(i) $\frac{d\mathbf{x}}{dt} = v \cos \theta$

$$\frac{dy}{dt} = v \sin \theta - 10t$$

$$\Rightarrow \frac{dy}{dt} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{v \sin \theta - 10t}{v \cos \theta}$$
(ii) For maximum height, $\frac{dy}{dx} = \frac{v \sin \theta - 10t}{v \cos \theta} = 0$

$$\Rightarrow t = \frac{v \sin \theta}{t}.$$

When
$$t = \frac{v \sin \theta}{10}$$
$$y = (v \sin \theta) \left(\frac{v \sin \theta}{10}\right) - 5 \left(\frac{v \sin \theta}{10}\right)^2 = \frac{v^2 \sin^2 \theta}{20}$$

Hence, maximum height =
$$\frac{v^2 \sin^2 \theta}{20} + 1.5$$
$$= \frac{v^2 \sin^2 \theta + 30}{20} \text{ metres.}$$

$$A = 30$$

(iii) Let
$$v = 20$$
,
 $0 < \frac{400 \sin^2 \theta + 30}{20} < 10$
 $0 < \sin^2 \theta < 0.425$
Using GC

Hence, $0 < \theta < 0.710$

(iv) At a height of 1.5, y = 0:

$$0 = (20\sin\theta)t - 5t^2$$

$$0 = t \left[20\sin\theta - 5t \right]$$

$$\therefore t = 0 \text{ or } 20\sin\theta - 5t = 0$$

(rejected since it is the position of the ball initially)

$$\therefore t = 4\sin\theta$$

When $t = 4 \sin \theta$,

 $x = (20\cos\theta)t$

 $=(20\cos\theta)4\sin\theta$

 $=80\sin\theta\cos\theta$

 $=40\sin 2\theta$

(v) x coordinate of Isabelle at $t = 4\sin\theta = 5 \times (4\sin\theta - 2)$

For Isabelle to intercept the ball,

$$40\sin 2\theta = 5 \times (4\sin \theta - 2)$$

Using GC

$$\theta = 1.45$$

For the ball not to hit the ceiling, $0 < \theta < 0.710$.

But $\theta = 1.45 > 0.710$, it is not possible for Isabelle to intercept the ball thrown by Nicholas