Concurrency Control

Based on notes by Hector Garcia-Molina

Concurrency Control

Example:

T1: Read(A)

 $A \leftarrow A+100$

Write(A)

Read(B)

 $B \leftarrow B+100$

Write(B)

Constraint: A=B

T2: Read(A)

 $A \leftarrow A \times 2$

Write(A)

Read(B)

 $B \leftarrow B \times 2$

Write(B)

Schedule A

```
T1
                                  T2
Read(A); A \leftarrow A+100
Write(A);
Read(B); B \leftarrow B+100;
Write(B);
                                  Read(A);A \leftarrow A\times2;
                                  Write(A);
                                  Read(B);B \leftarrow B\times2;
                                  Write(B);
```

Schedule A

		Α	В
T1	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
Read(B); B \leftarrow B+100;			
Write(B);			125
	Read(A);A \leftarrow A \times 2;		
	Write(A);	250	
	Read(B);B \leftarrow B \times 2;		
	Write(B);		250
		250	250

Schedule B

T1	T2
	Read(A);A \leftarrow A \times 2;
	Write(A);
	Read(B);B \leftarrow B×2;
	Write(B);
Read(A); $A \leftarrow A+100$	
Write(A);	
Read(B); B \leftarrow B+100;	
Write(B);	

Schedule B

		Α	В
T1	T2	25	25
Read(A); A \leftarrow A+100 Write(A); Read(B); B \leftarrow B+100;	Read(A); $A \leftarrow A \times 2$; Write(A); Read(B); $B \leftarrow B \times 2$; Write(B);	50 150	50
Write(B);			150
		150	150
			ı

Schedule C

T1	T2
Read(A); $A \leftarrow A+100$	
Write(A);	
	Read(A);A \leftarrow A \times 2;
	Write(A);
Read(B); B \leftarrow B+100;	
Write(B);	
	Read(B);B \leftarrow B \times 2;
	Write(B);

Schedule C

		Α	В
_T1	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A \times 2;		
	Write(A);	250	
Read(B); B \leftarrow B+100;			
Write(B);			125
	Read(B);B \leftarrow B×2;		
	Write(B);		250
		250	250

Schedule D

```
T1
                                  T2
Read(A); A \leftarrow A+100
Write(A);
                                  Read(A);A \leftarrow A\times2;
                                  Write(A);
                                  Read(B);B \leftarrow B\times2;
                                  Write(B);
Read(B); B \leftarrow B+100;
Write(B);
```

Schedule D

		А	В
_T1	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A×2;		
	Write(A);	250	
	Read(B);B \leftarrow B×2;		
	Write(B);		50
Read(B); B \leftarrow B+100;			
Write(B);			150
		250	150

Schedule E

Same as Schedule D but with new T2'

```
T2'
T1
Read(A); A \leftarrow A+100
Write(A);
                                   Read(A); A \leftarrow A \times 1;
                                   Write(A);
                                   Read(B);B \leftarrow B\times1;
                                   Write(B);
Read(B); B \leftarrow B+100;
Write(B);
```

Schedule E

Same as Schedule D but with new T2'

		А	В
T1	T2'	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A \times 1;		
	Write(A);	125	
	Read(B);B \leftarrow B \times 1;		
	Write(B);		25
Read(B); B \leftarrow B+100;			
Write(B);			125
		125	125

- Want schedules that are "good", regardless of
 - initial state and
 - transaction semantics
- Only look at order of read and writes

Example:

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

Example:

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

However, for Sd:

 $Sd=r_1(A)w_1(A)r_2(A)w_2(A) r_2(B)w_2(B)r_1(B)w_1(B)$

Concepts

Transaction: sequence of ri(x), wi(x) actions *Conflicting actions:* ri(A) wi(A) wi(A)

Schedule: represents chronological order in which actions are executed

Serial schedule: no interleaving of actions or transactions

Definition

S₁, S₂ are <u>conflict equivalent</u> schedules if S₁ can be transformed into S₂ by a series of swaps on non-conflicting actions.

Definition

 S_1 is <u>serializable</u> if there is a serial schedule S_s such that for every initial database state, the effects of S_1 and S_s are the same

Definition

A schedule is <u>conflict serializable</u> if it is conflict equivalent to some serial schedule.

Example: Sc is conflict serializable

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

Sd is not conflict serializable:

 $Sd=r_1(A)w_1(A)r_2(A)w_2(A) r_2(B)w_2(B)r_1(B)w_1(B)$

Precedence graph P(S) (S is schedule)

Nodes: transactions in S

Arcs: $Ti \rightarrow Tj$ whenever

- p_i(A), q_j(A) are actions in S
- $p_i(A) <_S q_j(A)$
- at least one of p_i, q_j is a write

Exercise:

What is P(S) for
 S = w₃(A) w₂(C) r₁(A) w₁(B) r₁(C) w₂(A) r₄(A) w₄(D)

• Is S serializable?

Another Exercise:

What is P(S) for
 S = w₁(A) r₂(A) r₃(A) w₄(A) ?

Lemma

 S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$

<u>Lemma</u>

 S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$

Proof:

Assume $P(S_1) \neq P(S_2)$

 $\Rightarrow \exists T_i: T_i \rightarrow T_j \text{ in } S_1 \text{ and not in } S_2$

$$\Rightarrow S_1 = ...p_i(A)... q_j(A)...$$
 p_i, q_j
$$S_2 = ...q_j(A)...p_i(A)...$$
 conflict

 \Rightarrow S₁, S₂ not conflict equivalent

Note: $P(S_1)=P(S_2) \not\Rightarrow S_1, S_2$ conflict equivalent

Note: $P(S_1)=P(S_2) \not\Rightarrow S_1$, S_2 conflict equivalent

Counter example:

$$T1 := w1(A) r1(B)$$
 $T2 := r2(A) w2(B)$

$$S_1=w_1(A) r_2(A) w_2(B) r_1(B)$$

 $S_2=r_2(A) w_1(A) r_1(B) w_2(B)$

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 $P(S_1)$ acyclic \iff S_1 conflict serializable

- (\Leftarrow) Assume S₁ is conflict serializable
- $\Rightarrow \exists S_s$: S_s , S_1 conflict equivalent
- $\Rightarrow P(S_s) = P(S_1)$
- \Rightarrow P(S₁) acyclic since P(S_s) is acyclic

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 (\Rightarrow) Assume P(S₁) is acyclic Transform S₁ as follows:

- (1) Take T1 to be transaction with no incident arcs
- (2) Move all T₁ actions to the front

$$S1 = \dots p_1(A) \dots p_1(A) \dots$$

- (3) we now have $S_1 = \langle T_1 \text{ actions } \rangle \langle ... \text{ rest } ... \rangle$
- (4) repeat above steps to serialize rest!

P(S) acyclic \Leftrightarrow S conflict serializable

How to enforce serializable schedules?

Option 1: run system, recording P(S);
after some time,
check for P(S) cycles and declare
if execution was good

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from occurring

A locking protocol

```
Two new actions:
```

lock (exclusive): li (A)

unlock: ui (A)

Rule #1: Well-formed transactions

Ti: ... li(A) ... pi(A) ... ui(A) ...

A transaction can only read or write if it first as been granted a lock.

If a transaction locks an element, it must later unlock it.

Rule #2 Legal scheduler

$$S = \dots \quad li(A) \quad \dots \quad ui(A) \quad \dots \quad \dots$$

$$no \ lj(A)$$

Locks must have their intended semantics: no 2 transactions may have locked the same element without one having first released the lock.

Exercise:

What schedules are legal? What transactions are well-formed? $S1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)u_1(A)u_1(B)$ $r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)$ $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)$ $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$ $I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

Exercise:

 What schedules are legal? What transactions are well-formed? $S1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)u_1(A)u_1(B)$ $r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)$ $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)(u_2(B)?)$ $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$ $I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

Do rules 1 and 2 guarantee serializability?

Schedule F

T1	T2
I ₁ (A);Read(A)	
A←A+100;Write(A);u ₁ (A)	
	I ₂ (A);Read(A)
	A←Ax2;Write(A);u ₂ (A)
	I ₂ (B);Read(B)
	B←Bx2;Write(B);u ₂ (B)
I ₁ (B);Read(B)	
B←B+100;Write(B);u ₁ (B)	

Schedule F

		A	<u>B</u>
T1	T2	25	25
l ₁ (A);Read(A)			
A←A+100;Write(A);u ₁ (A)		125	
	I ₂ (A);Read(A)		
	A←Ax2;Write(A);u ₂ (A)	250	
	l ₂ (B);Read(B)		
	B←Bx2;Write(B);u ₂ (B)		50
l1(B);Read(B)			
B←B+100;Write(B);u ₁ (B)			150
		250	150

Rule #3 Two phase locking (2PL)

for transactions

Schedule G

<u>T1</u>	T2
I ₁ (A);Read(A)	
A←A+100;Write(A)	
I ₁ (B); u ₁ (A)	l₂(A);Read(A) A←Ax2;Write(A);[2(B)

Schedule G

<u>T1</u>	T2
l ₁ (A);Read(A)	
A←A+100;Write(A)	
l1(B); u1(A)	ما مامام
	I ₂ (A);Read(A) delayed
	A ←Ax2;Write(A);(□(B))
Read(B);B ← B+100	
Write(B); u1(B)	

Schedule G

<u>T1</u>	T2
I ₁ (A);Read(A)	
A←A+100;Write(A)	
I1(B); u1(A)	
	l ₂ (A);Read(A)
	A←Ax2;Write(A);(2(B))
Read(B);B ← B+100	
Write(B); u ₁ (B)	
	l2(B); u2(A);Read(B)
	$B \leftarrow Bx2;Write(B);u_2(B);$

Schedule H (T2 reversed)

Schedule is deadlocked since neither T1 nor T2 can proceed!

2PL guarantees serializability

```
Show that rules #1,2,3 \Rightarrow conflict-
serializable
schedules
```

Conflict rules for li(A), ui(A):

- l_i(A), l_j(A) conflict
- l_i(A), u_j(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

Theorem Rules #1,2,3
$$\Rightarrow$$
 conflict (2PL) serializable schedule

```
Theorem Rules #1,2,3 \Rightarrow conflict (2PL) serializable schedule
```

To help in proof:

<u>Definition</u> Shrink(Ti) = SH(Ti) =

first unlock action of Ti

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Proof of lemma:

 $Ti \rightarrow Tj$ means that

$$S = ... p_i(A) ... q_j(A) ...; p,q conflict$$

By rules 1,2:

$$S = ... p_i(A) ... u_i(A) ... l_j(A) ... q_j(A) ...$$

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Proof of lemma:

 $Ti \rightarrow Tj$ means that

$$S = ... p_i(A) ... q_j(A) ...; p,q conflict$$

By rules 1,2:

$$S = \dots p_i(A) \dots u_i(A) \dots |_{j}(A) \dots q_j(A) \dots$$

By rule 3: SH(Ti) SH(Tj)

So, $SH(Ti) <_S SH(Tj)$

Theorem Rules #1,2,3
$$\Rightarrow$$
 conflict (2PL) serializable schedule

Proof:

(1) Assume P(S) has cycle

$$T_1 \rightarrow T_2 \rightarrow \dots T_n \rightarrow T_1$$

- (2) By lemma: $SH(T_1) < SH(T_2) < ... < SH(T_1)$
- (3) Impossible, so P(S) acyclic
- $(4) \Rightarrow S$ is conflict serializable