Equivalence of PDA, CFG

Conversion of CFG to PDA Conversion of PDA to CFG

Overview

- CFG's and PDA's are both useful to deal with properties of the CFL's like RE and DFA for regular languages.
- CFL's can be described by CFG and CLF's are processed by PDA's, so CFG and PDA are equivalent.
- Any CFG can be converted into equivalent PDA representation and viceversa

Converting a CFG to a PDA

- \bullet Let L = L(G).
- Construct PDA P such that L(P) = L.
- P has:
 - One state q.
 - Input symbols = terminals of G.
 - Stack symbols = all symbols of G.
 - Start symbol = start symbol of G.
- Here P will accept L by empty stack.

Intuition About P

- Given input w, P will step through a leftmost derivation of w from the start symbol S.
- Since P can't know what this derivation is, or even what the end of w is, it uses nondeterminism to "guess" the production to use at each step.

Intuition -(2)

- At each step, P represents some leftsentential form (step of a leftmost derivation).
- If the stack of P is α , and P has so far consumed x from its input, then P represents left-sentential form $x\alpha$.
- At empty stack, the input consumed is a string in L(G).

Transition Function of P

- 1. $\delta(q, a, a) = (q, \epsilon)$ for all $a \in T$ (*Type 1* rules)
 - This step does not change the Left Sentencial Form represented, but "moves" responsibility for a from the stack to the consumed input.
- 2. If A -> α is a production of G, then $\delta(q, \epsilon, A)$ contains (q, α) . (*Type 2* rules)
 - Guess a production for A, and represent the next LSF in the derivation.

Example: CFG to PDA

- ◆ G=({E,T,F}, {(,),a,+,*}, P, E) where P is:
 - E→ T|E+T
 - T→ T*F | F
 - F→ a | (E)
- We define $P(G) = \{ \{q_0\}, \{(,),a,+,*\}, \{ E,T,F,(,),a,+,*\}, \delta, q, E \}$ that accepts L(G) by empty stack.

by rule 1

 \bullet δ is defined as

8. $\delta(q_0, *, *) = \{ (q_0, \epsilon) \}$

```
1. \delta(q_0, \varepsilon, E) = \{ (q_0, T), (q_0, E+T) \} by rule 2

2. \delta(q_0, \varepsilon, T) = \{ (q_0, T*F), (q_0, F) \} by rule 2

3. \delta(q_0, \varepsilon, F) = \{ (q_0, a), (q_0, (E)) \} by rule 2

4. \delta(q_0, (, () = \{ (q_0, \varepsilon) \} by rule 1

5. \delta(q_0, (), () = \{ (q_0, \varepsilon) \} by rule 1

6. \delta(q_0, a, a) = \{ (q_0, \varepsilon) \} by rule 1

7. \delta(q_0, +, +) = \{ (q_0, \varepsilon) \} by rule 1
```

Acceptance of string by P

- ◆ Let string input w= (a*a)
- \bullet The initial ID for P is: $(q_0,(a*a),E)$
- So processing of string by P is given by

```
(q_0,(a*a),E) + (q_0,(a*a),T)
                     + (q<sub>0</sub>, (a*a), F)
                     + (q_0, (a*a), (E))
                  + (q_0, a*a), E))
                  + (q_0, a*a), T))
                  + (q_0, a*a), T*F))
                   + (q_0, a*a), a*F))
                   + (q_0, *a), *F))
                   + (q_0, a), F))
                   + (q_0, a), a)
                   + (q_0, ), )
                   \vdash (q<sub>0</sub>, \in, \in) Accept.
```

Exercise

- Convert following Grammar in to PDA
 - $S \rightarrow aAA$
 - \bullet A \rightarrow aS | bS | a

From a PDA to a CFG

- \bullet Now, assume L = L(P).
- \bullet We'll construct a CFG G such that L = L(G).
- ◆Intuition: G will have variables generating exactly the inputs that cause P to have the net effect of popping a stack symbol X while going from state p to state q.
 - P never gets below this X while doing so.

PDA to CFG

- Given a PDA P= $(Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ accepting language by empty stack, we can define equivalent CFG as
- \bullet G =(V,T,P,S_ where
 - $V = \{S\} \cup \{[pXq] \mid X \in \Gamma \text{ and } p,q \in Q \}$
 - \bullet T = Σ
 - S = Start symbol of G.
 - P contains the following (next slide)

PDA to CFG

- 1. For every $q \in Q$, the production $S \rightarrow [qZ_0q]$ is in P
- 2. For every q, $q_1 \in Q$, $a \in \Sigma \cup \{\epsilon\}$ and $X \in \Gamma$ is $\delta(q,a,X)$ contains (q_1, ϵ) the $[qXq_1] \rightarrow a$ is in P
- 3. For every q, $q_1 \in Q$, $a \in \Sigma \cup \{\epsilon\}$ and $X \in \Gamma$ and m>=1
- 4. $\delta(q,a,X) = (q_1,Y_1Y_2Y_3....Y_m)$ for some $Y_1,Y_2,Y_3,....$ Y_m) ϵ Γ, then for every choice of q_2 , q_3 , ... q_{m+1} in Q the production

 $[qXq_{m+1}] \rightarrow [q_1Y_1q_2][q_2Y_2q_3][q_3Y_3q_4] \dots [q_mY_mq_{m+1}] \text{ is in P}$

Variables of G

- G's variables are of the form [pXq].
- This variable generates all and only the strings w such that $(p, w, X) + *(q, \epsilon, \epsilon)$.
- Also a start symbol S we'll talk about later.

Productions of G

- Each production for [pXq] comes from a move of P in state p with stack symbol X.
- lacktriangle Simplest case: $\delta(\mathbf{p}, \mathbf{a}, \mathbf{X})$ contains (\mathbf{q}, ϵ) .
- Then the production is [pXq] -> a.
 - Note a can be an input symbol or ϵ .
- Here, [pXq] generates a, because reading a is one way to pop X and go from p to q.

Productions of G - (2)

- Next simplest case: $\delta(p, a, X)$ contains (r, Y) for some state r and symbol Y.
- G has production [pXq] -> a[rYq].
 - We can erase X and go from p to q by reading a (entering state r and replacing the X by Y) and then reading some w that gets P from r to q while erasing the Y.
- Note: [pXq] =>* aw whenever
 [rYq] =>* w.

Productions of G - (3)

- Third simplest case: $\delta(p, a, X)$ contains (r, YZ) for some state r and symbols Y and Z.
- Now, P has replaced X by YZ.
- ◆To have the net effect of erasing X, P must erase Y, going from state r to some state s, and then erase Z, going from s to q.

Picture of Action of P

Third-Simplest Case — Concluded

Since we do not know state s, we must generate a family of productions:

$$[pXq] -> a[rYs][sZq]$$

for all states s.

(pXq] =>* awx whenever [rYs] =>* w and [sZq] =>* x.

Productions of G: General Case

- •Suppose $\delta(p, a, X)$ contains $(r, Y_1, ..., Y_k)$ for some state r and $k \ge 3$.
- Generate family of productions

```
[pXq] ->

a[rY_1s_1][s_1Y_2s_2]...[s_{k-2}Y_{k-1}s_{k-1}][s_{k-1}Y_kq]
```

Completion of the Construction

- We can prove that $(q_0, w, Z_0) \vdash *(p, \epsilon, \epsilon)$ if and only if $[q_0Z_0p] = > *w$.
 - Proof is in text; it is two easy inductions.
- But state p can be anything.
- ♦ Thus, add to G another variable S, the start symbol, and add productions $S \rightarrow [q_0Z_0p]$ for each state p.