Query a count of the number of cities in ${\hbox{\it CITY}}$ having a Population larger than 100,000.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Query the total population of all cities in CITY where District is California.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Query the average population of all cities in CITY where District is California.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Query the average population for all cities in CITY, rounded down to the nearest integer.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Query the sum of the populations for all Japanese cities in **CITY**. The COUNTRYCODE for Japan is **JPN**.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Query the difference between the maximum and minimum populations in CITY.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Samantha was tasked with calculating the average monthly salaries for all employees in the **EMPLOYEES** table, but did not realize her keyboard's **0** key was broken until after completing the calculation. She wants your help finding the difference between her miscalculation (using salaries with any zeros removed), and the actual average salary. Write a query calculating the amount of error (i.e.: actual - miscalculated average monthly salaries), and round it up to the next integer.

Input Format

The EMPLOYEES table is described as follows:

Column	Туре
ID	Integer
Name	String
Salary	Integer

Write a query identifying the type of each record in the **TRIANGLES** table using its three side lengths. Output one of the following statements for each record in the table:

- Equilateral: It's a triangle with 3 sides of equal length.
- Isosceles: It's a triangle with 2 sides of equal length.
- Scalene: It's a triangle with 3 sides of differing lengths.
- Not A Triangle: The given values of A, B, and C don't form a triangle.

Input Format

The TRIANGLES table is described as follows:

Column	Туре
А	Integer
В	Integer
С	Integer

We define an employee's total earnings to be their monthly $salary \times months$ worked, and the maximum total earnings to be the maximum total earnings for any employee in the **Employee** table. Write a query to find the maximum total earnings for all employees as well as the total number of employees who have maximum total earnings. Then print these values as 2 space-separated integers.

Input Format

The Employee table containing employee data for a company is described as follows:

Column	Туре
employee_id	Integer
name	String
months	Integer
salary	Integer

Query the following two values from the STATION table:

- 1. The sum of all values in LAT_N rounded to a scale of 2 decimal places.
- 2. The sum of all values in LONG_W rounded to a scale of 2 decimal places.

Input Format

The STATION table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the sum of Northern Latitudes (LAT_N) from **STATION** having values greater than 38.7880 and less than 137.2345. Truncate your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER

Query the greatest value of the Northern Latitudes (LAT_N) from **STATION** that is less than 137.2345. Truncate your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER

Query the Western Longitude (LONG_W) for the largest Northern Latitude (LAT_N) in $\bf STATION$ that is less than $\bf 137.2345$. Round your answer to $\bf 4$ decimal places.

Input Format

The **STATION** table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the smallest Northern Latitude (LAT_N) from **STATION** that is greater than 38.7780 . Round your answer to 4 decimal places.

Input Format

The STATION table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER

Query the Western Longitude (LONG_W)where the smallest Northern Latitude (LAT_N) in $\bf STATION$ is greater than $\bf 38.7780$. Round your answer to $\bf 4$ decimal places.

Input Format

The **STATION** table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER