Machine Learning

Support Vector Machines

Marcello Restelli

Support Vector Machines (SVMs)

- They have a long history, but they were invented in the present form in the **late 90's**
- One of the **best** methods for **classification**
- It is one of the most mathematical and difficult topic in machine learning
 - Learning theory
 - Kernel theory
 - Constrained optimization
- As a consequence people use SVMs as black boxes
- We will not see all the details, but give a **basic understanding** of how SVMs works and what are the **important parameters**

Marcello Restelli April 16, 2024 2/25

What Is a Support Vector Machine?

- A **subset** of training examples **x** (the support vectors)
- 2 A vector of weights for them a
- **3** A similarity function K(x, x') (the **kernel**)

Class prediction for a new example x_q ($t_i \in \{-1, 1\}$):

$$f(x_q) = \operatorname{sign}\left(\sum_{m \in \mathcal{S}} \alpha_m t_m k(x_q, x_m) + b\right),$$

where S is the set of **indices** of the **support vectors**

- It is a very smart way of doing instance based learning
- They are usually presented as a **generalization** of the **perceptron**
- What's the **relation** between perceptrons and instance-based learning?

Marcello Restelli April 16, 2024 3/25

The Perceptron Revisited

- What similarity function makes the weighted kNN work like the perceptron?
 - The dot product:

$$f(\mathbf{x}_q) = \operatorname{sign}\left[\sum_{j=1}^{M} w_j \phi_j(\mathbf{x}_q)\right]$$

but

$$w_j = \sum_{n=1}^{N} \alpha_n t_n \phi_j(\mathbf{x}_n)$$

SO

$$f(\mathbf{x}_q) = \operatorname{sign}\left[\sum_{j=1}^{M} \left(\sum_{n=1}^{N} \alpha_n t_n \phi_j(\mathbf{x}_n)\right) \phi_j(\mathbf{x}_q)\right] = \operatorname{sign}\left[\sum_{n=1}^{N} \alpha_n t_n (\phi(\mathbf{x}_q) \cdot \phi(\mathbf{x}_n))\right]$$

4/25

- The sum over the **features** has been rewritten as a sum over the **samples**
- So, the perceptron can be seen as a special case of instance-based learning

Marcello Restelli April 16, 2024

Another View of SVMs

- Take the perceptron
- Replace the **dot product** with arbitrary **similarity function**
- Now you have a much more powerful learner
- Kernel matrix: $k(\mathbf{x}, \mathbf{x}')$
- If a symmetric matrix K is positive semi-definite (i.e., has non-negative eigenvalues), then $k(\mathbf{x}, \mathbf{x}')$ is still a dot product, but in a transformed space:

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x})^T \boldsymbol{\phi}(\mathbf{x}')$$

- Also guarantees convex weight optimization problem: no local optima!!!
- Very general trick

Marcello Restelli April 16, 2024

Learning SVMs

So how do we:

- Choose the kernel?
 - Black art
- Choose the examples?
 - Side effect of choosing weights
- Choose the weights?
 - Maximize the margin

Marcello Restelli April 16, 2024

Margin Example

Marcello Restelli April 16, 2024 7/25

Maximize the Margin

• We want to maximize the margin, that is **maximize the distance** of the **closest point** to the hyperplane

Marcello Restelli April 16, 2024

The Weight Optimization Problem

- Margin = $\min_{n} t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b)$
- The maximum margin solution is found by solving:

$$\mathbf{w}^* = arg \max_{\mathbf{w}, b} \left(\frac{1}{\|\mathbf{w}\|_2} \min_n (t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b)) \right)$$

- Direct solution is complex, we need to consider an equivalent problem easier to be solved
- Fix margin, minimize weights

$$\label{eq:minimize} \begin{aligned} & \mathbf{Minimize} & & \frac{1}{2} \|\mathbf{w}\|_2^2 \\ & \mathbf{Subject to} & & t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \geq 1, \text{ for all } n \end{aligned}$$

Marcello Restelli April 16, 2024

Constrained Optimization Basics

•

Minimize
$$f(\mathbf{w})$$

Subject to $h_i(\mathbf{w}) = 0$, for $i = 1, 2, ...$

- If f and h_i are linear we have **linear programming**, but here we are interested in **quadratic programming**
- At solution \mathbf{w}^* , $\nabla f(\mathbf{w}^*)$ must lie in subspace spanned by $\{\nabla h_i(\mathbf{w}^*): i=1,2,\dots\}$
- Lagrangian function:

$$L(\mathbf{w}, \boldsymbol{\lambda}) = f(\mathbf{w}) + \sum_{i} \lambda_{i} h_{i}(\mathbf{w})$$

10/25

- The λ_i s are the **Lagrange multipliers**
- Solve $\nabla L(\mathbf{w}^*, \boldsymbol{\lambda}^*) = 0$

Marcello Restelli April 16, 2024

$$L = \frac{1}{2}(w_1^2 + w_2^2) + \lambda(w_1 + w_2 - 1)$$

$$\nabla L = 0 \to \begin{cases} w_1 + \lambda = 0 \\ w_2 + \lambda = 0 \\ w_1 + w_2 - 1 = 0 \end{cases}$$

Marcello Restelli April 16, 2024 11/25

Minimize
$$\frac{1}{2}(w_1^2 + w_2^2)$$

Subject to
$$w_1 + w_2 = 1$$

$$L = \frac{1}{2}(w_1^2 + w_2^2) + \lambda(w_1 + w_2 - 1)$$

$$\nabla L = 0 \to \begin{cases} w_1 + \lambda = 0 \\ w_2 + \lambda = 0 \\ w_1 + w_2 - 1 = 0 \end{cases}$$

Solution:
$$\begin{cases} w_1 = w_2 = \frac{1}{2} \\ \lambda = -\frac{1}{2} \end{cases}$$

11/25

Marcello Restelli April 16, 2024

Minimize
$$\frac{1}{2}(w_1^2 + w_2^2)$$

Subject to
$$w_1 + w_2 = 1$$

$$L = \frac{1}{2}(w_1^2 + w_2^2) + \lambda(w_1 + w_2 - 1)$$

$$\nabla L = 0 \to \begin{cases} w_1 + \lambda = 0 \\ w_2 + \lambda = 0 \\ w_1 + w_2 - 1 = 0 \end{cases}$$

Dual:
$$\begin{cases} w_1 = -\lambda \\ w_2 = -\lambda \\ L = -\lambda^2 - \lambda \end{cases} \rightarrow \lambda = -\frac{1}{2}$$

11/25

Marcello Restelli April 16, 2024

Inequality Constraints

$$\label{eq:minimize} \begin{array}{ll} \textbf{Minimize} & f(\mathbf{w}) \\ \textbf{Subject to} & g_i(\mathbf{w}) \leq 0, & \text{for } i=1,2,\dots \\ & h_i(\mathbf{w}) = 0, & \text{for } i=1,2,\dots \end{array}$$

- Lagrange multipliers for inequalities: α_i
- KKT Conditions (necessary conditions):

$$\nabla L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\lambda}^*) = 0$$

$$h_i(\mathbf{w}^*) = 0$$

$$g_i(\mathbf{w}^*) \le 0$$

$$\alpha_i^* \ge 0$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0$$

- Complementarity: Either a constraint is active $(g_i(\mathbf{w}^*) = 0)$ or its multiplier is zero $(\alpha_i^* = 0)$
- In SVMs: Active constraint ⇒ Support vector

Marcello Restelli April 16, 2024

Primal and Dual Problems

- Problem over w (weights over the features) is the **primal**
- Solve equations for w and substitute
- Resulting problem over α is the **dual**
- If it's easier, solve the dual instead of primal
- In SVMs
 - Primal problem is over feature weights
 - Dual problem is over instance weights
- The solution over the dual problem will have a lot of zero weights

Marcello Restelli April 16, 2024

Dual Representation

• Let's consider the Lagrangian function

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - \sum_{n=1}^{N} \alpha_{n} (t_{n}(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b) - 1)$$

• Putting the gradient w.r.t. w and b to zero we get

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \boldsymbol{\phi}(\mathbf{x}_n), \qquad 0 = \sum_{n=1}^{N} \alpha_n t_n$$

• We can rewrite the Lagrangian as follows

$$\begin{array}{ll} \textbf{Maximize} & \tilde{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \\ \textbf{Subject to} & \alpha_n \geq 0, \quad \text{for } n=1,\dots,N \\ & \sum_{n=1}^{N} \alpha_n t_n = 0 \end{array}$$

14/25

Marcello Restelli April 16, 2024

SVM prediction

• The classification of **new points** with the train model is:

$$y(\mathbf{x}) = \operatorname{sign}\left(\sum_{n=1}^{N} \alpha_n t_n k(\mathbf{x}, \mathbf{x}_n) + b\right)$$

- where $b = \frac{1}{N_S} \sum_{n \in S} \left(t_n \sum_{m \in S} \alpha_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$
- \bullet Notice that $N_{\mathcal{S}}$ (the number of support vectors) is usually **much smaller** than N

Marcello Restelli April 16, 2024

Maximize the Margin

Marcello Restelli April 16, 2024

Maximize the Margin

SVM using Gaussian kernel function

Marcello Restelli April 16, 2024

Curse of Dimensionality and SVMs

- What happens when the number of dimensions increases?
 - The number of support vectors increases too
- In high dimensional problems the percentage of support vectors can become significant
- Scalability becomes an issue
- This affects the generalization guarantees

Marcello Restelli April 16, 2024

Bounds

Margin bound

- Bound on VC dimension decreases with margin
- The larger the margin, less capacity to overfit, less VC dimension
- Margin bound is quite loose

• Leave-one-out bound:

- $L_h \leq \frac{\mathbb{E}[\text{Number of support vectors}]}{}$
- It can be easily computed
- We do **not** need to run SVM multiple times

Marcello Restelli April 16, 2024

Solution Techniques

- Use **generic** quadratic programming solver
- Millions of samples means millions of constraints!
- Use specialized optimization algorithm
- E.g., SMO (Sequential Minimal Optimization)
 - **Simplest** method: update one α_i at a time
 - But this violates constraints
 - Iterate until convergence:
 - Find example x_i that violates KKT conditions
 - 2 Select second example x_i heuristically
 - **3** Jointly optimize α_i and α_j

Marcello Restelli April 16, 2024

Handling Noisy Data

Marcello Restelli April 16, 2024

Handling Noisy Data

- Introduce slack variables ξ_i
- We allow to **violate** the margin constraint, but we add a **penalty**

$$\begin{aligned} & \textbf{Minimize} & & \|\mathbf{w}\|_2^2 + C \sum_i \xi_i \\ & \textbf{Subject to} & & t_i(\mathbf{w}^T x_i + b) \geq 1 - \xi_i, & \text{for all } i \\ & & \xi_i \geq 0, & \text{for all } i \end{aligned}$$

- C is a coefficient that allows to **tradeoff bias-variance**
- C is chosen by **cross validation**

Marcello Restelli

Dual Representation

$$\begin{array}{ll} \textbf{Maximize} & \tilde{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \\ \textbf{Subject to} & 0 \leq \alpha_n \leq C, \quad \text{ for } n=1,\dots,N \\ & \sum_{n=1}^{N} \alpha_n t_n = 0 \end{array}$$

- Support vectors are points associated to $\alpha_n > 0$
- If $\alpha_n < C$ the point lies on the margin
- If $\alpha_n = C$ the point lies **inside the margin**, and it can be either **correctly classified** $(\xi_i \leq 1)$ or **misclassified** $(\xi > 1)$

Marcello Restelli April 16, 2024

Marcello Restelli April 16, 2024

Other SVM Uses

- SVMs are **not** used only for classification
- SVMs can be used for
 - Regression
 - Ranking
 - Feature selection
 - Clustering
 - Semi-supervised learning

Marcello Restelli April 16, 2024