CLAIMS

1. A process for the preparation of a macrocyclic compound of formula I

wherein

5

15

20

25

R² is a hydroxy group, a leaving group or a group of formula II

W is CH or N,

 R^{21} is H, halo, C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{3-6} cycloalkoxy, hydroxy, or $N(R^{23})_2$,

wherein each R²³ is independently H, C₁₋₆ alkyl or C₃₋₆ cycloalkyl;

R²² is H, halo, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, C₁₋₆ haloalkyl, C₁₋₆ thioalkyl, C₁₋₆ alkoxy, C₃₋₆ cycloalkoxy, C₂₋₇ alkoxyalkyl, C₃₋₆ cycloalkyl, C_{6 or 10} aryl or Het, wherein Het is a five-, six-, or seven-membered saturated or unsaturated heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur;

said cycloalkyl, aryl or Het being substituted with R²⁴, wherein

 R^{24} is H, halo, C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{1-6} alkoxy, C_{3-6} cycloalkoxy, NO_2 , $N(R^{25})_2$, NH-C(O)- R^{25} ; or NH-C(O)-NH- R^{25} , wherein each R^{25} is independently: H, C_{1-6} alkyl or C_{3-6} cycloalkyl; or

 R^{24} is NH-C(O)-OR²⁶ wherein R^{26} is C_{1-6} alkyl or C_{3-6} cycloalkyl;

 R^{28} is H, halo or C_{1-6} alkyl,

R³ is hydroxy, NH₂, or a group of formula - NH-R³¹, wherein R³¹ is $C_{6 \text{ or } 10}$ aryl, heteroaryl, -C(O)-R³², -C(O)-NHR³² or -C(O)-OR³², wherein R³² is C_{1-6} alkyl or C_{3-6} cycloalkyl;

5

10

15

20

- D is a 3 to 7-atom saturated alkylene chain; and
- A is an amide of formula -C(O)-NH-R⁵, wherein R⁵ is selected from the group consisting of: C_{1-8} alkyl, C_{3-6} cycloalkyl, $C_{6 \text{ or } 10}$ aryl, C_{7-16} aralkyl; and SO_2R^{5A} wherein R^{5A} is C_{1-8} alkyl, C_{3-7} cycloalkyl or $\{C_{1-6}$ alkyl- C_{3-7} cycloalkyl $\}$, or
- A is a carboxylic acid or a pharmaceutically acceptable salt or ester thereof; which process comprises subjecting a diene compound of formula III

wherein R², R³ and A are as defined hereinbefore; and D' represents a 3 to 7-atom saturated alkylene chain;

to a metathesis cyclization reaction in the presence of a ruthenium catalyst of formula IV:

$$\begin{array}{c|c}
X^{1} & L \\
X^{2} & Ru \\
R^{4} & O
\end{array}$$

$$\begin{array}{c|c}
NO_{2} & (IV)
\end{array}$$

wherein

X¹ and X² each independently represent an anionic ligand;

L represents a neutral electron donor ligand; and

 R^4 represents a C_{1-6} alkyl, C_{2-6} alkenyl or C_{6-12} aryl- C_{1-6} alkyl group.

2. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein L of formula IV is a trihydrocarbylphosphine group or a group of formula

$$R^5$$
 R^6
 R^7-N
 $N-R^8$

wherein

5

10

15

20

25

R⁵ and R⁶ each independently represent a hydrogen atom or a C₁₋₆ alkyl, C₂₋₆ alkenyl, C_{6-12} aryl or C_{6-12} aryl- C_{1-6} alkyl group; or

R⁵ and R⁶ together form a double bond; and

R⁷ and R⁸ each independently represent a hydrogen atom or a C₁₋₆ alkyl, C₂₋₆ alkenyl, C₆₋₁₂ aryl or C₆₋₁₂ aryl-C₁₋₆ alkyl group, each optionally substituted by one, two or three groups independently selected from halogen, C₁₋₆alkyl and C₁₋₆alkoxy;

X¹ and X² each independently represent a halogen atom; and represents a C₁₋₆ alkyl group.

3. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein the ruthenium catalyst is a compound of formula IVA

wherein R⁷ and R⁸ represent a mesityl group.

4. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein R₁ moiety is a group of formula (i)

 R^2 is a group of formula II,; and 5

10

15

W is N;

R²¹ is H, C₁₋₆ alkyl, C₁₋₆ alkoxy, hydroxy, chloro;

 R^{22} is H, C_{1-6} thioalkyl, C_{1-6} alkoxy, phenyl or Het selected from the group consisting of:

wherein R^{24} is H, C_{1-6} alkyl, NH-R²⁵, NH-C(O)-R²⁵; NH-C(O)-NH-R²⁵, wherein each R^{25} is independently: H, C_{1-6} alkyl, or C_{3-6} cycloalkyl; or NH-C(O)-OR²⁶, wherein R^{26} is C_{1-6} alkyl;

R²⁸ is H, bromine or methyl; or

R² is a leaving group of formula -OSO₂-R²⁷, wherein R²⁷ is selected from p-toluyl, p-bromophenyl, p-nitrophenyl, methyl, trifluoromethyl, perfluorobutyl and 2,2,2-trifluoroethyl.

- 5. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein metathesis reaction is carried out in the presence of a diluent in a temperature range from 40 to 120 °C.
- 6. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein metathesis reaction is carried out in the presence of a diluent selected from alkanes, aromatic hydrocarbons, and chlorinated hydrocarbons.
- 7. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein the molar ratio of the diene compound of formula III to catalyst of formula IV ranges from 1000: 1 to 100: 1.

5

10

15

20

- 8. A process according to claim 1 for the preparation of a macrocyclic compound of formula I, wherein the ratio of the diene compound of formula III to diluent ranges from 1:400 by weight to 1:25 by weight.
- 9. A process for the preparation of a macrocyclic compound of formula I

- wherein R³, R²¹, R²², R²⁸, W, A and D are as defined in claim 1, which comprises the following steps:
 - (i) cyclizing a diene compound of formula III

$$O \longrightarrow N \longrightarrow M$$

$$R^3 \longrightarrow O$$

$$R^3 \longrightarrow O$$

$$O \longrightarrow M$$

$$O \longrightarrow$$

- wherein R³ and A are as defined in claim 1, and R²⁷ is selected from p-toluyl, p-bromophenyl, p-nitrophenyl, methyl, trifluoromethyl, perfluorobutyl and 2,2,2-trifluoroethyl; and
- D' represents a 3 to 7-atom saturated alkylene chain; in the presence of the ruthenium catalyst of formula IV:

$$X^1$$
 X^2
 R^4
 NO_2
 (IV)

wherein

X¹ and X² each independently represent an anionic ligand;

L represents a neutral electron donor ligand; and

 R^4 represents a C_{1-6} alkyl, C_{2-6} alkenyl or C_{6-12} aryl- C_{1-6} alkyl group; and

(ii) reacting the resulting macrocyclic compound of formula I,

$$O \longrightarrow SO_2 - R^{27}$$

$$O \longrightarrow N$$

10

5

wherein A, R^3 and D are as defined in claim 1, and R^{27} is as defined above in step (i), with a compound of formula V,

$$R^{21}$$
 W
 R^{22}
 OH
 (V)

15

wherein R²¹, R²², R²⁸ and W are as defined in claim 1.