Reference guided genome assembly in metagenomic samples

Cervin Guyomar^{1,2}, Wesley Delage², Fabrice Legeai^{1,2}, Christophe Mougel¹, Jean-Christophe Simon^{1,} Claire Lemaitre²

1 : INRA, UMR 1349 IGEPP, le Rheu, France 2 : INRIA/IRISA GenScale, Campus de Beaulieu, Rennes, France

Motivations

Metagenomics = A mixture of reads :

- from different genomes
- with polymorphism
- (SNPs and large structural polymorphism)
 with no close reference genome (most of the time)

Objectives:

Assemble an genome of interest

- from metagenomic reads,
- using a remote reference genome
- detecting stuctural polymorphism

Existing methods:

	Assembly first De novo metagenomic assembly + contig taxonomic assignation Ex: MegaHit[1] + Blast	Mapping first Assembly of reads Mapped on reference Ex: BWA+Minia[2]	Hybrid stategy Reference guided assembly Local assembly of the regions diverging from the reference Ex: MitoBim[3]
+	Assembly is reference-free	Assembly time reduced by read selection	 Conserved regions easily assembled using reference Able to reconstruct diverging regions
_	- Time consuming and challenging assembly - Incomplete assembly if remote reference - Tricky contig filtering	- Requires a close reference genome - Incomplete assembly if remote reference	No tool suited for metagenomic data : - fail to detect structural polymorphism - No scale-up with metagenomic datasets

→ Need for a tool dedicated to guided assembly in metagenomic context

MindTheGap assembly workflow

Step 1: Reference based read recruiting and backbone contig assembly

Assembly (Minia)

Backbone contigs

Reference genome

Metagenomic readset

Scaffolding contigs without

An hybrid approach:
- Mapping reads and assembly of conserved regions
- Gapfilling of diverging regions with all reads

Able to return several alternative solutions (large structural polymorphism)

any assumption on their order or orientation

Step 2 : Reference free gapfilling between

contigs using MindTheGap [4]

Output:

super-contigs (fasta) + gfa format

MindTheGap algorithm

- De Bruijn graph assembly starting from
- a contig end kmer - Search target kmers in the contig graph

2 solutions between contig 1 and contig 2 1 solution between contig 1 and contig 3

Results in the pea aphid holobiont

Successful assembly of a bacterial genome in one circular contig

Assembly of *Buchnera aphidicola* from 42 pea aphid metagenomic samples [5] using *Buchnera* genome from another species

MindTheGap results

- One-contig assembly for 30 samples
- Genome length close to the real reference
- On average 7 times faster than Megahit

Discovery of unknown phage structural variants

Assembly of the phage APSE from 42 pea aphid metagenomic samples

- 7 known variants known, differing by a ~5kb virulence cassette

Results:

- 3 new phage variants discovered in 5 samples
- Coabundant phage successfully assembled
- in 3 samples

developpment on GitHub

https://github.com/GATB/MindTheGap/tree/contig dev

References:

[1]: Li et al (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via

succinct de Bruijn graph. *Bioinformatics*[2]: Chikhi et al (2013) Space-efficient and exact de Bruijn graph representation based on a Bloom filter. *Algorithms for molecular biology: AMB*[3]: Hahn et al (2013) Reconstructing mitochondrial genomes directly from genomic nextgeneration sequencing reads - A baiting and iterative mapping approach. *Nucleic Acids Research*[4]: Rizk, G. et al., (2014) MindTheGap: integrated detection and assembly of short and long insertions. *Bioinformatics*,

[5]: Guyomar et al (2018) Multi-scale characterization of symbiont diversity in the pea aphid complex through

metagenomic appròaches (*in revision – Microbiome*) [6] : Degnan and Moran (2008) Diverse Phage-Encoded Toxins in a Protective Insect Endosymbiont, *Applied and* Environmental Microbiology