Image Processing and Visual Communications

Scalable Visual Communications

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

Motivation

Challenges of Network Visual Communications

- Heterogeneous structure
- Time-varying network conditions
- Multi-user
- Interactive

Direct Solutions

- Repeated encoding
- Transcoding

Limitations

- Poor flexibility
- Poor robustness

Types of Scalability

- Spatial Scalability
 - Adapt spatial resolution
- Temporal Scalability

- Adapt frame rate

video

sequence

original

scale spatially

scale temporally

- Quality/Rate Scalability (SNR Scalability)
 - Layered coding
 - Continuously rate-scalable coding

by tradition but inappropriate terminology

Spatial Scalability

Temporal Scalability

Quality/Rate Scalability

Layered Video Coding

[Wang & Zhu, Proceedings of the IEEE, '98]

Key Observation

- Bits in compressed video streams have highly variable importance

Deployment

- Send through separate channels of different reliability
- Send through the same channel but with unequal error protection
- Included in many video coding standards (MPEG & H.26X)

Continuously Rate-Scalable Image Coding

Bitplane Coding

Bitplane representation of wavelet coefficients

Existing Algorithms

- Embedded Zerotree Wavelet (EZW)
- Set Partitioning In Hierarchical Trees (SPIHT)
- JPEG2000

coefficient tree structure

Continuously Rate-Scalable Video Coding

Ideal Implementation

• Frame Prediction Problem

Continuously Rate-Scalable Video Coding

Solution 1

prediction from original previous frame

Solution 2

prediction from baserate decoded previous frame

[Shen & Delp '99]

Solution 3

prediction from both original and base-rate decoded previous frame