Artificial Intelligence

Week 7: Backtracking

COMP30024

April 22, 2021

Backtracking

Build sequence of decisions to solve a problem incrementally.

$$A=(a_1,a_2,\ldots a_k)$$

- To choose next solution component, a_{k+1} :
 - ► Recursively evaluate every possibility consistent with past decisions.
 - ▶ Choose the 'best' one, $A \leftarrow A \bigcup a_{k+1}$.
- Depth-first/recursive traversal with additional logic at each call that helps narrow the search space.

Backtracking implemented as DFS, using problem constraints to prune subtrees as early as possible.

n-queens

- Place n queens on an $n \times n$ chessboard with no possible captures.
- Recursive strategy:
 - ▶ Place queens on board one at a time, start with row r = 0.
 - ➤ To place r-th queen, try all possible squares in row r. If attacked by an earlier queen, pass, otherwise place.
 - Continue recursively, backtrack at dead-ends.
- Represent solution via recursion tree.
 - ► Each node represents a recursive subproblem.
 - Edges correspond to recursion calls.
 - Leaves correspond to dead-end partial solutions if r < n and full solutions if r = n.

Backtracking

Solution finding via backtracking corresponds to DFS traversal of recursion tree.

Figure 1: Backtracking execution for 4-queens problem. From Jeff Erickson's Algorithms, Ch. 2

Backtracking Pseudo-Code

- Compute all successor states to deepest partial solution, A.
- Extend partial solution A with potential successor states.
- Test if result is a solution. If not, recurse.
- Backtracking search is DFS + pruning.

```
def backtrack_dfs(A, k):
    if A = (a_1, a_2, ..., a_k) is a solution:
        return A
    else:
        k += 1
        # Enumerate all possible candidates at k+1
        # Impose some ordering criterion on trial candidates
        candidate_queue = construct_candidates(A, k)

    while candidate_queue is not None:
        A[k] = candidate_queue.pop()
        backtrack_dfs(A, k)
```

Constraint Satisfaction Problems

- Represent problem as a set of variables $X = \{X_1, \dots X_n\}$
- Each variable can assume values in its respective domain, $D = \{D_1, \dots, D_n\}$
- Constraints *C* express allowable relationships between variables.
- States in CSP defined by assignment of values variables X. CSP solved when values assigned to all X without violating constraints.
- Idea: Eliminate large regions of search space by identifying combinations of variables/values that violate constraints backtracking!

- Variables: Position of queen in row r.
- Represent positions of queens through array $Q[1, \ldots, n]$. Element r of the array, Q[r] indicates the position of the queen in row r.
- Domain: $Q[r] \in \{1, \dots, n\}$.
- Constraints:
 - ▶ Let $i \neq j$ be row indexes.
 - ▶ $Q[i] \neq Q[j]$ (Same column placement forbidden).
 - ▶ $|Q[j] Q[i]| \neq |j i|$ (Diagonal placement forbidden).
- Constraint graph?
 - ► Nodes: Variables
 - ► Edges: Represent constraints between variables.

State Size?

• Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).

- Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).
- Very Very Bad: $\binom{n^2}{n} = \frac{n^2!}{(n^2-n)!n!}$ (Permutations of n queens on $n \times n$ board).

- Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).
- Very Very Bad: $\binom{n^2}{n} = \frac{n^2!}{(n^2-n)!n!}$ (Permutations of n queens on $n \times n$ board).
- Very Bad: n^n (1 queen per row)

- Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).
- Very Very Bad: $\binom{n^2}{n} = \frac{n^2!}{(n^2-n)!n!}$ (Permutations of n queens on $n \times n$ board).
- Very Bad: n^n (1 queen per row)
- Bad: n! (1 queen per row and column)

- Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).
- Very Very Bad: $\binom{n^2}{n} = \frac{n^2!}{(n^2-n)!n!}$ (Permutations of n queens on $n \times n$ board).
- Very Bad: n^n (1 queen per row)
- Bad: n! (1 queen per row and column)
- Ok: $n(n-2)(n-4)... = \prod_{i=0}^{\lceil n/2 \rceil 1} (n-2i)$. (Each queen eliminates at least two squares in next row).

- Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).
- Very Very Bad: $\binom{n^2}{n} = \frac{n^2!}{(n^2-n)!n!}$ (Permutations of n queens on $n \times n$ board).
- Very Bad: n^n (1 queen per row)
- Bad: n! (1 queen per row and column)
- Ok: $n(n-2)(n-4)... = \prod_{i=0}^{\lceil n/2 \rceil 1} (n-2i)$. (Each queen eliminates at least two squares in next row).
- Good: ??? No known formula for the exact number of solutions.

- Stupid: 2^{n^2} (n^2 squares, 2 possible states for each).
- Very Very Bad: $\binom{n^2}{n} = \frac{n^2!}{(n^2-n)!n!}$ (Permutations of n queens on $n \times n$ board).
- Very Bad: n^n (1 queen per row)
- Bad: n! (1 queen per row and column)
- Ok: $n(n-2)(n-4)... = \prod_{i=0}^{\lceil n/2 \rceil 1} (n-2i)$. (Each queen eliminates at least two squares in next row).
- Good: ??? No known formula for the exact number of solutions.
 - ▶ (Restricting diagonals is hard)

```
if r == n:
solutions = 0
   # Check if placement is legal, given previous placements
            # STOP!!! - Prune!
       0[r] = i
        solutions += NQueens(0,r+1)
```

- Basic idea:
 - ▶ Given partial solution $A = (a_1, ... a_k)$:
 - ▶ Compute all successor states a_{k+1} , append to A.
 - ► Test if result is solution. If not, check whether extensible to a complete solution (via recursion). If not possible, backtrack to deepest node with unexpanded children and recurse.
- Improve performance by considering:
 - Successor to generate next. In CSP: which variable to assign next.)
 - Order for values for each candidate be tried.

Basic idea: Detect inevitable failure as soon as possible while exploring the most promising branches/edges.

• Minimum Remaining Values Heuristic

 Choose successor with the fewest legal values. Selects successor states that are more likely to result in failure (end as dead leaves of recursion tree).

Degree Heuristic

 Choose successor involved in the largest number of constraints on other successor states. More constraints, lower branching factor of recursion subtree.

• Least Constraining Value

- Given a variable, assign the value that makes the fewest choices of variables for neighbouring candidates illegal.
- Permit maximum remaining flexibility for remaining variables. More likely to find a complete solution in future.

• This heuristic seems to encourage more legal assignments, contradicting the MRV heuristic?

Q6.2: Explain why it is a good heuristic to choose the variable that is most constrained but the value that is least constraining in a CSP search.

 Search tree for solutions grows exponentially, most branches are invalid combinations of assignments.

Q6.2: Explain why it is a good heuristic to choose the variable that is most constrained but the value that is least constraining in a CSP search.

- Search tree for solutions grows exponentially, most branches are invalid combinations of assignments.
- MRV heuristic chooses variable most likely to cause a failure if search fails early, backtrack and prune the search space. If current partial solution cannot be expanded into a complete solution, want to know earlier instead of wasting time on dead-ends.

Q6.2: Explain why it is a good heuristic to choose the variable that is most constrained but the value that is least constraining in a CSP search.

- Search tree for solutions grows exponentially, most branches are invalid combinations of assignments.
- MRV heuristic chooses variable most likely to cause a failure if search fails early, backtrack and prune the search space. If current partial solution cannot be expanded into a complete solution, want to know earlier instead of wasting time on dead-ends.
- Because we need to find a single solution, we want to be generous and select the value that allows the most future assignments to avoid conflict. This makes it more likely the search will find a complete solution.

Q6.2: Explain why it is a good heuristic to choose the variable that is most constrained but the value that is least constraining in a CSP search.

- Search tree for solutions grows exponentially, most branches are invalid combinations of assignments.
- MRV heuristic chooses variable most likely to cause a failure if search fails early, backtrack and prune the search space. If current partial solution cannot be expanded into a complete solution, want to know earlier instead of wasting time on dead-ends.
- Because we need to find a single solution, we want to be generous and select the value that allows the most future assignments to avoid conflict. This makes it more likely the search will find a complete solution.
- This asymmetry makes it better to use MRV prune exponentially growing search space by choosing least-promising successors first, but increase the probability of success for all successors via LCV.

Constraint Propagation

- Want to find consistent variable assignment for all variables in CSP.
- Constraint Propagation: Use constraints to eliminate illegal assignments for a variable locally.
- Enforcing local consistency in each part of the graph eventually causes inconsistent values to be eliminated throughout the graph.
- Basic idea: Reduce size of search tree when backtracking by eliminating values of the domain for each variable that violate binary constraints (arcs).

- A CSP variable is arc-consistent if every value in its domain satisfies all relevant binary constraints.
- X → Y consistent if for every value x for X ∃ some legal assignment y for Y (i.e. surjection).
- Arcs = variable pair (X_i, X_j) . The AC-3 algorithm enumerates all possible arcs in a queue Q and makes X_i arc-consistent w.r.t X_j by reducing the domains of variables accordingly.
- If D_i unchanged, move onto next arc. Otherwise append all arcs (X_k, X_i) where X_k is adjacent to X_i .
- If any domain D_i is reduced to 0, terminate: CSP has no consistent solution.
- AC-3 returns an arc-consistent CSP that is faster to search because its variables have smaller domains.

Use the AC-3 algorithm to show that arc consistency can detect the inconsistency of the partial assignment $\{WA=green, V=red\}$ for the problem of colouring the map of Australia as shown in the lectures.

- Recall we wish to assign a color to each state such that no neighbouring states share the same color.
- To detect inconsistency, want to reduce the domain of some variable in graph to zero - i.e. no possible color assignments to any state.

- Initial domains:
 - $WA = \{G\}$
 - ▶ $NT = \{R, G, B\}$
 - \triangleright $SA = \{R, G, B\}$
 - $Q = \{R, G, B\}$
 - \triangleright NSW = {R, G, B}
 - ▶ $V = \{R\}$
- Pop WA-SA arc from queue (degree heuristic).
 - \triangleright $SA = \{R, B\}$
- Pop SA-V arc from queue.
 - \triangleright $SA = \{B\}$
- Pop NT − WA.
 - $ightharpoonup NT = \{R, B\}$
- Pop *NT* − *SA*.
 - $NT = \{R\}$

- Initial domains:
 - $WA = \{G\}$
 - $\triangleright NT = \{R\}$
 - \triangleright $SA = \{B\}$
 - ▶ $Q = \{R, G, B\}$
 - ► $NSW = \{R, G, B\}$
 - ▶ $V = \{R\}$
- Pop *NT-Q*:

▶
$$Q = \{G, B\}$$

- Pop *SA-Q*:
 - ▶ $Q = \{G\}$
- No legal assignment for NSW, CSP is inconsistent, terminate.

- Time complexity for running AC-3?
 - \triangleright *n* variables X_i .
 - E binary constraints, represented as edges.
 - D maximum domain size of each variable.
- Each variable X_i has at most D values to delete, hence each arc (X_i, X_k) can only be inserted in the queue at most D times.
- Checking consistency requires $O(D^2)$ operations (pairwise comparison).
- Hence worst case runtime for generic graph structure is $O(ED^3)$.

Arc Consistency on Trees

- A constraint graph is a tree when any two variables are connected by only one path.
- Obtain linear ordering of variables (topological sort) by:
 - Select one variable to be the root of the tree.
 - Choose ordering of variables such that each variable appears after its parent in the tree.

Figure 6.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the variables consistent with the tree with A as the root. This is known as a **topological sort** of the variables

Arc Consistency on Trees

- Time complexity for running AC-3 on tree-structured CSP?
 - \triangleright *n* variables X_i .
 - E binary constraints, represented as edges.
 - D maximum domain size of each variable.
- For *n* variables, E = n 1 = O(n) edges/arcs in AC-3 queue.
- Checking consistency requires $O(D^2)$ operations (pairwise comparison).
- Hence worst case runtime $O(ED^2) = O(nD^2)$.
 - ▶ Note E can be up to n^2 for generic graphs!