Applied Econometrics and Time Series BUAN 6312.004

FINAL PROJECT: DO "SHALL-ISSUE LAW" REDUCES CRIME OR NOT?

Sonal Modi (sxm180029)
Amanjit Singh (axs180034)
Siddhartha Shankar (sxs180085)
Sajal Singh (sxs171332)

Overview

The impact of guns on crime in America has triggered a lot of public debate in the recent past. The proponents strongly believe that state laws enabling citizens to carry concealed handguns have reduced crime. Proponents argue that gun control laws take away guns from law-abiding citizens, which would leave potential victims defenseless.

Following this view, The National Rifle Association (NRA) and many politicians across the country advance the cause of greater freedom to carry guns. As a result, many states in the United States have passed right-to-carry laws (also known as a shall-issue laws). A Shall-issue law is one that requires that governments issue concealed carry handgun permits to any applicant who meets the necessary criteria.

In this report, we analyze historical data on crime in the U.S to answer the question "Do shall-issues law reduce crime-or not?"

The distribution of average violent crime rate over 50 US states over a period of 23 years. District of Columbia can be visualized below with the highest crime rate followed by Florida and New York.

Map based on Longitude (generated) and Latitude (generated). Color shows details about State Name. Size shows average of Vio. Details are shown for State Name.

1. Understanding the data

We have data for 51 states for 23 periods, from 1977 to 1999. There are 12 explanatory variables in the dataset. The shall column is the variable that indicates whether the State has implemented the law or not. There are 3 variables which explain the crime rate which are as follows: Violent Crime rate(vio), Robbery rate(rob) and Murder rate(mur). The remaining variables account for Average Income, population, density and percentage of white and black in that state. The project is based on the analysis of the dependent variable violent crime rate and explanatory variable shall-carry law and other explanatory variable which might impact the crime rate in the states.

2. Correlation amongst variables

Our very first exploration was to determine the correlations amongst the variables. Below is the screenshot of the correlation matrix.

. cor rob mur shall incarc_rate density avginc pop pm1029 pw1064 pb1064
(obs=1,173)

	rob	mur	shall	incarc~e	density	avginc	pop	pm1029	pw1064	pb1064
rob	1.0000									
mur	0.7976	1.0000								
shall	-0.2125	-0.1794	1.0000							
incarc_rate	0.5668	0.7096	0.0424	1.0000						
density	0.7818	0.7486	-0.1126	0.5593	1.0000					
avginc	0.4148	0.2206	-0.0000	0.4615	0.3433	1.0000				
pop	0.3172	0.0999	-0.1244	0.0953	-0.0780	0.2152	1.0000			
pm1029	-0.0860	0.0150	-0.2772	-0.4463	-0.0637	-0.5279	-0.0975	1.0000		
pw1064	-0.5842	-0.6154	0.2123	-0.5271	-0.5551	-0.1912	-0.0654	-0.0126	1.0000	
pb1064	0.5812	0.6018	-0.1839	0.5308	0.5432	0.2627	0.0581	0.0162	-0.9820	1.0000

<u>Conclusion:</u> Variables pb1064 and pw1064 are highly correlated. Since the variables capture the same metric, that is population diversity, we can drop one variable from our analysis from here on. We chose to drop pw1064 since we were interested in exploring the effect of pb1064 on violent crime rate (not being racist here but we suspected that black population could affect the crime rate).

3. Distribution of variables

To determine the distribution of different variables we drew histograms for all the variables. If we found skewness in their distribution, we took log transform of the variable. Below are the histograms for all the variables and their corresponding histogram of log transform if histogram for that variable was found to be skewed.

Similarly, we did log transformation for rob, incarc_rate, pop, den, avginc and the transformed variable was named as Inrob, Inincarc_rate, Inpop, Inden, Inavginc

4. Exploratory Data Analysis

We found top 10 states based on average violent crime rate. District of Columbia (DC) is significantly highest in violent crime rate w.r.t other states.

District of Columbia has the highest average murder rate, robbery rate and incarceration rate along with average violent crime rate throughout years 1977-1999.

The distribution of crime rate for all the states can be seen below.

5. Hypothesis Testing

We performed one-way ANOVA hypothesis tests.

1)Check whether average violent crime rate is significantly different for shall law states and non-shall law states.

Null Hypothesis, Ho: Average violent crime rate across shall law states and non-shall law states is not significantly different.

Alternate hypothesis, Ha: Average violent crime rate is significantly different across shall law states and non-shall law states.

anova lnvio	shall					
		Number of obs = Root MSE =		-		
	Source	Partial SS	df	MS	F	Prob>F
	Model	41.992856	1	41.992856	110.94	0.0000
	shall	41.992856	1	41.992856	110.94	0.0000
	Residual	443.24385	1,171	.37851738		
	Total	485.23671	1,172	.4140245		

<u>Conclusion</u>: p-value ≈ 0 , which implies that we can reject our null hypothesis, and that we can state that average violent crime is different across shall law states and non-shall law states.

2)Check whether density of a state is an important indicator whether the state has shall law or not.

Null Hypothesis, Ho: Average density across shall law states and non-shall law states is not significantly different.

Alternate Hypothesis, Ha: Average density across shall law states and non-shall law states is significantly different.

anova 1nden	shall					
		Number of obs = Root MSE =	-	R-squared Adj R-squ		
	Source	Partial SS	df	MS	F	Prob>F
	Model	3.9709599	1	3.9709599	33.10	0.0000
	shall	3.9709599	1	3.9709599	33.10	0.0000
	Residual	140.49754	1,171	.11998082		
	Total	144.4685	1,172	.12326664		

<u>Conclusion</u>: Density of a state is an important indicator whether the state has shall law or not.

3)Check whether average income across shall law states and non-shall law states is significantly different or not.

Null Hypothesis, Ho: Average income across shall law states and non-shall law states is not significantly different.

Alternate Hypothesis, Ha: Average income across shall law states and non-shall law states is significantly different.

anova lnavgi	nc shall					
		Number of obs = Root MSE =	,	R-squared Adj R-squ		
	Source	Partial SS	df	MS	F	Prob>F
	Model	.01775409	1	.01775409	0.62	0.4302
	shall	.01775409	1	.01775409	0.62	0.4302
	Residual	33.391646	1,171	.0285155		
	Total	33.4094	1,172	.02850631		

<u>Conclusion</u>: Average income is not significantly different across shall law states and non-shall law states.

4)Check whether average percentage of blacks is different across shall law states and non-shall law states.

Null Hypothesis, Ho: Average percentage of blacks across shall law states and no-shall states is not significantly different.

Alternate Hypothesis, Ha: Average percentage of blacks across shall law states and non-shall law states is significantly different.

anova lnpb10	64 shall					
		Number of obs	-,-	_	red = squared =	0.0624 0.0616
	Source	Partial SS	df	MS	F	Prob>F
	Model	31.459642	1	31.459642	77.96	0.0000
	shall	31.459642	1	31.459642	77.96	0.0000
	Residual	472.54606	1,171	. 40354062		
	Total	504.0057	1,172	. 430039		

<u>Conclusion</u>: Average percentage of blacks across shall law states and non-shall law states is significantly different.

6. Checking relationship among variables and Error Variance form

1) Incarceration Rate (incarc_rate) and Violent Crime Rate (vio)

As Incarceration rate increases, violent crime rate increases i.e. incarceration rate and violent crime rate are positively correlated. This is evident from the residual plot that there is no error variance pattern and residual errors are evenly distributed about mean = 0.

2) Average Income (avginc) and Violent Crime Rate (vio)

There are multiple points which is not covered with the predicted line which confirms the presence of outliers for income variable; however, in general there is positive relationship between violent crime rate and average income. There is no clear error variance form and errors are mostly evenly distributed across mean = 0.

3) Robbery Rate (rob) and Violent Crime Rate (vio)

Robbery rate is directly proportional to violent crime rate. This suggests that with increase in robbery rate will result in increase in violent crime rate. There is no heteroscedasticity w.r.t. to Inrob variable and errors are evenly distributed across mean error = 0.

4) Murder Rate (mur) and Violent Crime Rate (vio)

Murder rate is directly proportional to violent crime rate. This suggests that with increase in murder rate will result in increase in violent crime rate. There is no heteroscedasticity w.r.t. to Inmur variable and errors are evenly distributed across mean error = 0.

4) Percentage of Male Population- 10-29 age (pm1029) and Violent Crime Rate (vio)

Percentage of male population aged 10-29 "pm1029" is slightly inversely proportional to violent rate. This suggests that with increase in male population aged between 10-29, there would be decline in violent crime rate. Residual errors are also distributed across mean = 0 with detection of few outliers.

7. Regression Analysis

Following are the four different models to estimate effect of "shall" and other variables on violent crime rate.

- 1) Pooled OLS
- 2) Fixed Entity Effects
- 3) Fixed Time and Entity Effects
- 4) Random Effects

Transformed Variable Definitions used in models

Variable	Definition
lnvio	Log of violent crime rate (incidents per 100,000 members of the population)
lnrob	Log of robbery rate (incidents per 100,000)
lnmur	Log of murder rate (incidents per 100,000)
shall	= 1 if the state has a shall-carry law in effect in that year = 0 otherwise
lnincarc_rate	Log of incarceration rate in the state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year)
Indensity	Log of population per square mile of land area, divided by 1000
lnavginc	Log of real per capita personal income in the state, in thousands of dollars
lnpop	Log of state population, in millions of people
pm1029	percent of state population that is male, ages 10 to 29
lnpb1064	Log of percent of state population that is black, ages 10 to 64
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)
year	Year (1977-1999)

Dependent Variable: Invio (Violent Crime Rate)

Basic Steps Followed to Find the Best Model for Pooled, Fixed Entity Effect and Fixed Time and Entity Effect:

- Regression using all the given variables without Cluster Robust Standard Errors
- Regression using all the given variables with Cluster Robust Standard Errors
- Regression using only the significant variables with Cluster Robust Standard Errors
- Regression using "shall" and significant variables with Cluster Robust Standard Errors
- Regression using "shall", significant variables and adding and removing other insignificant variables one by one and deciding best model based on the lowest BIC value with Cluster Robust Standard Errors

1. Pooled OLS Estimates

The given data is a panel, running pooled OLS model on it will not consider individual state and time effects i.e. it will violate below two assumptions:

- No correlation between errors corresponding to the same entity Entity may have observed or unobserved heterogeneity hiding in the error terms causing serial correlation.
- II. Constant variance of the error term variance may differ in different time

However, for now, we assume that the errors for different states are uncorrelated, thus not considering endogeneity problem for Pooled OLS model.

Solution: We will use Cluster Robust Standard Errors to overcome the problem of serial correlation and heteroskedasticity by correcting the standard errors. While the standard errors are correct, the estimator will still be inefficient.

But, if an unobserved variable is correlated with an explanatory variable, the estimated effect of those variables on the dependent variable violent crime rate will be upward or downward bias.

Below table shows the combination of different explanatory variables to find the best model based on significance of the variables and BIC of the model.

MODEL1_7 is the best model since it has the lowest BIC

POOLED OLS	BIC	Independent Variables Used
MODEL 1_2	-317	Inincarc_rate, shall, Inpb1064, pm1029, Inpop, Inden, Inmur, Inrob, Inavginc
MODEL 1_3	-278	Inincarc_rate, Inpb1064, Inmur Inrob
MODEL 1_4	-291	shall, Inincarc_rate, Inpb1064, Inmur, Inrob
MODEL 1_5	-306	Inincarc_rate, Inpb1064, pm1029, Inmur, Inrob
MODEL 1_6	-307	shall, Inincarc_rate, Inpb1064, pm1029, Inmur, Inrob, Inden
MODEL 1_7	-324	shall, Inincarc_rate, Inpb1064, pm1029, Inmur, Inrob, Inden, Inpop

Model1_2: Pooled OLS with cluster-Robust standard errors

Linear regressi	on			Number of	obs =	1,173	
				F(9, 50)	=		
				Prob > F	-		
				R-squared			
				Root MSE	-		
		(Std. E	rr. adju	sted for 5	1 clusters	in stateid)	
- 2		W*500 VCDC 1920					
		Robust					
lnvio	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
lnincarc_rate	.3308061	.0590076	5.61	0.000	.2122859	.4493262	
shall	0589598	.040524	-1.45	0.152	1403546	.022435	
lnpb1064	1386792	.0614845	-2.26	0.029	2621745	0151839	
pm1029	.0186458	.0180098	1.04	0.306	0175279	.0548195	
lnpop	0579515	.0555871	-1.04	0.302	1696014	.0536985	
lnden	0996981	.0901016	-1.11	0.274	2806724	.0812763	
lnmur	.1535501	.0700273	2.19	0.033	.0128961	.294204	
lnrob	.5402218	.0595007	9.08	0.000	.4207111	.6597324	
lnavginc	009638	.1983124	-0.05	0.961	4079602	.3886841	
_cons	1.533443	.7603481	2.02	0.049	.0062389	3.060647	

Effect of Shall law on violent Crime Rate: Keeping other variables constant, if the state has a shall-carry law in effect in that year the violent crime rate decreases approximately by 5.8% compared to the state with no shall-carry law in that year.

Model1_7: Best Pooled OLS model with cluster-Robust standard errors as per BIC

. reg lnvio sha	all lnincarc_	rate lnpb106	4 pm1029	lnmur ln	rob lnden lnp	op, vce (clu	ster stateid
Linear regressi	.on			Number o	f obs =	1,173	
				F(8, 50)	-	213.34	
				Prob > F	-	0.0000	
				R-square	d =	0.8983	
				Root MSE	-	.20591	
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
200-720124034034		Robust					
	8						
shall	0590532	.0403381	-1.46	0.149	1400745	.0219682	
	0590532 .3302438	.0403381	-1.46 5.49	0.149	1400745 .2094695	.0219682 .4510182	
lnincarc_rate	.3302438	.0601298	5.49	0.000	.2094695	.4510182	
lnincarc_rate lnpb1064	.3302438 1388187	.0601298 .0612444	5.49 -2.27	0.000 0.028	.2094695 2618318	.4510182 0158057	
lnincarc_rate lnpb1064 pm1029	.3302438 1388187 .0189029	.0601298 .0612444 .0162186	5.49 -2.27 1.17	0.000 0.028 0.249	.2094695 2618318 0136732	.4510182 0158057 .0514789	
lnincarc_rate lnpb1064 pm1029 lnmur	.3302438 1388187 .0189029 .1552896	.0601298 .0612444 .0162186 .0688229	5.49 -2.27 1.17 2.26	0.000 0.028 0.249 0.028	.2094695 2618318 0136732 .0170547	.4510182 0158057 .0514789 .2935245	
lnincarc_rate lnpb1064 pm1029 lnmur lnrob	.3302438 1388187 .0189029 .1552896 .5391388	.0601298 .0612444 .0162186 .0688229 .0576843	5.49 -2.27 1.17 2.26 9.35	0.000 0.028 0.249 0.028 0.000	.2094695 2618318 0136732 .0170547 .4232765	.4510182 0158057 .0514789 .2935245 .655001	

Effect of Shall law on violet Crime Rate: Keeping other variables constant, if the state has a shall-carry law in effect in that year the violent crime rate decreases approximately by 5.9% compared to the state with no shall-carry law in that year.

2. Fixed Entity Effects Estimates

The estimates/effects of explanatory variables might be different for different states and can cause endogeneity problem because of observed and unobserved heterogeneity, which accounts for the pooled OLS estimates being biased and inconsistent. Running Fixed effect model allow us to control for unobserved heterogeneity among entities (states), making estimates unbiased and consistent; however, time effects will still not be accounted. Below table shows the combination of different explanatory variables to find the best model based on significance of the variables and BIC of the model.

MODEL2_9 is the best model since it has the lowest BIC

FIXED ENTITY EFFECT	BIC	Independent Variables Used
MODEL 2_2	-1804.703	Inincarc_rate, shall, Inpb1064, pm1029, Inpop, Inden, Inmur, Inrob, Inavginc
MODEL 2_3	-1802.934	pm1029, Inmur, Inrob
MODEL 2_4	-1795.868	shall, pm1029, Inmur, Inrob
MODEL 2_5	-1796.282	shall, pm1029, Inmur, Inrob, Inpb1064
MODEL 2_6	-1802.365	shall, pm1029, Inmur, Inrob, Inpb1064, Inden
MODEL 2_7	-1797.17	shall, pm1029, Inmur, Inrob, Inpb1064, Inden, Inavginc
MODEL 2_8	-1805.752	shall, pm1029, Inmur, Inrob, Inpb1064, Inden, Inpop
MODEL 2_9	-1811.136	shall, pm1029, Inmur, Inrob, Inpb1064, Inden, Inpop, Inincarc_rate

Model2_2: Fixed Entity Effect with Cluster-Robust standard errors

Fixed-effects (within) regre	ession		Number of	obs	=	1,173		
Group variable:	stateid			Number of	groups	-	51		
R-sq:				Obs per g	roup:				
within =	0.6179				min	-	23		
between =	0.7955				avg	=	23.0		
overall =	0.7810				max	-	23		
				F(9,50)		_	59.65		
corr(u_i, Xb)	= 0.2567			Prob > F		=	0.0000		
lnvio	Coef.	Std. Err.	t	P> t	[95% Cc	onf.	Intervall		
		Robust							
111410	COCI.	Dod. Lil.	-	12101					
				96: 0.0	100				
lnincarc_rate	.0617937		1.23		039283		.1628712		
shall	0010026	.0302662	-0.03	0.974	06179	94	.0597888		
shall lnpb1064	0010026 .1759719	.0302662 .1618315	-0.03 1.09	0.974	06179 149076	94 52	.0597888 .50102		
shall	0010026	.0302662 .1618315 .0140429	-0.03 1.09 -2.66	0.974 0.282 0.010	06179	94 52 1.6	.0597888 .50102 0091895		
shall lnpb1064 pm1029 lnpop	0010026 .1759719	.0302662 .1618315 .0140429 .1885807	-0.03 1.09 -2.66 -1.43	0.974 0.282 0.010 0.158	06179 149076 065601	94 52 16	.0597888 .50102 0091895 .1085359		
shall lnpb1064 pm1029	0010026 .1759719 0373956	.0302662 .1618315 .0140429 .1885807	-0.03 1.09 -2.66	0.974 0.282 0.010 0.158	06179 149076 065601	94 52 16	.0597888 .50102 0091895		
lnpb1064 pm1029 lnpop	0010026 .1759719 0373956 2702397	.0302662 .1618315 .0140429 .1885807 .6489013	-0.03 1.09 -2.66 -1.43	0.974 0.282 0.010 0.158 0.400 0.008	06179 149076 065601 649015 -1.85471	94 52 16 52 19	.0597888 .50102 0091895 .1085359 .751994 .136416		
shall lnpb1064 pm1029 lnpop lnden lnmur	0010026 .1759719 0373956 2702397 5513626 .0790516 .5430485	.0302662 .1618315 .0140429 .1885807 .6489013 .02856	-0.03 1.09 -2.66 -1.43 -0.85 2.77 15.96	0.974 0.282 0.010 0.158 0.400 0.008	06179 149076 065601 649015 -1.85471 .021687	94 52 16 52 19 71	.0597888 .50102 0091895 .1085359 .751994		
shall lnpb1064 pm1029 lnpop lnden lnmur lnrob	0010026 .1759719 0373956 2702397 5513626 .0790516	.0302662 .1618315 .0140429 .1885807 .6489013	-0.03 1.09 -2.66 -1.43 -0.85 2.77	0.974 0.282 0.010 0.158 0.400 0.008	06179 149076 065601 649015 -1.85471	94 52 16 52 19 71	.0597888 .50102 0091895 .1085359 .751994 .136416 .6113956 .3519027		
shall lnpb1064 pm1029 lnpop lnden lnmur	0010026 .1759719 0373956 2702397 5513626 .0790516 .5430485	.0302662 .1618315 .0140429 .1885807 .6489013 .02856	-0.03 1.09 -2.66 -1.43 -0.85 2.77 15.96	0.974 0.282 0.010 0.158 0.400 0.008	06179 149076 065601 649015 -1.85471 .021687	94 52 16 52 19 71 13	.0597888 .50102 0091895 .1085359 .751994 .136416		
shall lnpb1064 pm1029 lnpop lnden lnmur lnrob	0010026 .1759719 0373956 2702397 5513626 .0790516 .5430485	.0302662 .1618315 .0140429 .1885807 .6489013 .02856 .034028	-0.03 1.09 -2.66 -1.43 -0.85 2.77 15.96 0.34	0.974 0.282 0.010 0.158 0.400 0.008 0.000 0.735	06179149076065601649015 -1.85471 .021687	94 52 16 52 19 71 13	.0597888 .50102 0091895 .1085359 .751994 .136416 .6113956 .3519027		
shall lnpb1064 pm1029 lnpop lnden lnmur lnrob lnavginc _cons	0010026 .1759719 0373956 2702397 5513626 .0790516 .5430485 .0509784 3.675818	.0302662 .1618315 .0140429 .1885807 .6489013 .02856 .034028	-0.03 1.09 -2.66 -1.43 -0.85 2.77 15.96 0.34	0.974 0.282 0.010 0.158 0.400 0.008 0.000 0.735	06179149076065601649015 -1.85471 .021687	94 52 16 52 19 71 13	.0597888 .50102 0091895 .1085359 .751994 .136416 .6113956 .3519027		

Effect of Shall law on violent Crime Rate: Keeping other variables constant, if the state has a shall-carry law in effect in that year the violent crime rate decreases approximately by 0.1% compared to the state with no shall-carry law in that year.

Model2_9: Best Fixed Entity Effect Model with Cluster-Robust standard errors as per BIC

Fixed-effects (ession		Number of			1,173		
Group variable:	stateid			Number of	groups	-	51		
R-sq:				Obs per g	per group:				
within =	0.6177				min	-	23		
between =	0.7996				avg	-	23.0		
overall =		max	=	23					
				F(8,50)		-	66.87		
corr(u i, Xb)	= 0.2397			Prob > F		-	0.0000		
lnvio	Coef.	Robust Std. Err.	t	P> t					
120000210000000	Coel.	Stu. EII.		EVILI	[95% C	oni.	Interval		
shall	G-235-G-07	25-57-7-52-97-11-25-57-57-57-57-57-57-57-57-57-57-57-57-57	9.000	VI -0.750-400.00-	5.200000-0.0000				
shall	.0000894	.0303625	0.00	0.998	06089	54	.0610742		
shall pm1029 lnmur	.0000894	.0303625	0.00	0.998	06089	54 78	.0610742		
pm1029	.0000894	.0303625 .0140708 .028107	0.00	0.998	060899 06679	54 78 61	.0610742		
pm1029 lnmur	.0000894 0385358 .0816308	.0303625 .0140708 .028107	0.00 -2.74 2.90	0.998 0.009 0.005 0.000	060899 06679	54 78 61 59	.0610742 0102737 .1380854 .6107316		
pm1029 lnmur lnrob	.0000894 0385358 .0816308 .5429988	.0303625 .0140708 .028107 .0337221 .1569155	0.00 -2.74 2.90 16.10	0.998 0.009 0.005 0.000 0.245	060899 06679 .02517	54 78 61 59	.0610742 0102737 .1380854 .6107316		
pm1029 lnmur lnrob lnpb1064	.0000894 0385358 .0816308 .5429988 .1845555	.0303625 .0140708 .028107 .0337221 .1569155 .6329484	0.00 -2.74 2.90 16.10 1.18	0.998 0.009 0.005 0.000 0.245 0.398	060899 06679 .02517 .47526	54 78 61 59 85	.0610742 0102737 .1380854 .6107316 .4997296		
pm1029 1nmur 1nrob 1npb1064 1nden	.0000894 0385358 .0816308 .5429988 .1845555 539933	.0303625 .0140708 .028107 .0337221 .1569155 .6329484	0.00 -2.74 2.90 16.10 1.18 -0.85	0.998 0.009 0.005 0.000 0.245 0.398 0.170	06089 06679 .02517 .47526 13061	54 78 61 59 85 47	.0610742 0102737 .1380854 .6107316 .4997296 .7313813		
pm1029 lnmur lnrob lnpb1064 lnden lnpop	.0000894 0385358 .0816308 .5429988 .1845555 539933 263511	.0303625 .0140708 .028107 .0337221 .1569155 .6329484 .1892361	0.00 -2.74 2.90 16.10 1.18 -0.85 -1.39	0.998 0.009 0.005 0.000 0.245 0.398 0.170 0.168	06089 06679 .02517 .47526 13061 -1.8112	54 78 61 59 85 47 29	.0610742 0102737 .1380854 .6107316 .4997296 .7313813 .1165808		
pm1029 Inmur Inrob Inpb1064 Inden Inpop Inincarc_rate	.00008940385358 .0816308 .5429988 .1845555539933263511 .0658703	.0303625 .0140708 .028107 .0337221 .1569155 .6329484 .1892361	0.00 -2.74 2.90 16.10 1.18 -0.85 -1.39	0.998 0.009 0.005 0.000 0.245 0.398 0.170 0.168	06089 06679 .02517 .47526 13061 -1.8112 64360	54 78 61 59 85 47 29	.0610742 0102737 .1380854 .6107316 .4997296 .7313813 .1165808 .1604742		
pm1029 lnmur lnrob lnpb1064 lnden lnpop lnincarc_ratecons	.00008940385358 .0816308 .5429988 .1845555539933263511 .0658703 3.778317	.0303625 .0140708 .028107 .0337221 .1569155 .6329484 .1892361	0.00 -2.74 2.90 16.10 1.18 -0.85 -1.39	0.998 0.009 0.005 0.000 0.245 0.398 0.170 0.168	06089 06679 .02517 .47526 13061 -1.8112 64360	54 78 61 59 85 47 29	.0610742 0102737 .1380854 .6107316 .4997296 .7313813 .1165808 .1604742		

Effect of Shall law on violent Crime Rate: Keeping other variables constant, there is negligible effect of shall law on the violent crime rate compared to the state with no shall-carry law in that year.

3. Fixed Entity and Time Effect Estimates

The estimates/effects of explanatory variables might be different for different states over time. Time Fixed Effects regression are useful in dealing with omitted variables, if the omitted variables are constant across entities but vary over time. Running Fixed entity and time effect model allow us to control for unobserved heterogeneity among entities (states) as well as for those variables which vary over time, making estimates unbiased and consistent. Below table shows the combination of different explanatory variables to find the best model based on significance of the variables and BIC of the model.

MODEL3_7 is the best model since it has the lowest BIC

FIXED TIME AND	BIC	Independent Variables Used
		·
MODEL 3_2	-1842.005	Inincarc_rate, shall, Inpb1064, pm1029, Inpop, Inden, Inmur, Inrob, Inavginc, i.year
MODEL 3_3	-1834.535	pm1029, Inrob, i.year
MODEL 3_4	-1835.151	pm1029, Inrob, shall, i.year
MODEL 3_5	-1830.807	pm1029, Inrob, shall, Inpb1064, i.year
MODEL 3_6	-1848.091	pm1029, Inrob, shall, Inpb1064, Inden, i.year
MODEL 3_7	-1856.611	pm1029, Inrob, shall, Inpb1064, Inden, Inpop, i.year
MODEL 3_8	-1850.564	pm1029, Inrob, shall, Inpb1064, Inden, Inpop, Inavginc, i.year
MODEL 3_9	-1853.711	pm1029, Inrob, shall, Inpb1064, Inden, Inpop, Inmur, i.year
MODEL 3_10	-1846.688	pm1029, Inrob, shall, Inpb1064, Inden, Inpop, Inmur, Inincarc_rate, i.year

Model 3_2: Fixed Entity and Time Effects with Cluster-Robust standard errors

. xtreg lnvio l	Inincarc_rate	shall lnpb1	064 pm10	29 lnpop l	lnden lnmur l	nrob lnavgi	inc i.year, fe vce(cluster stateid)
Fixed-effects ((within) rear	ession		Number of	f obs =	1,173	
Group variable:					f groups =	51	
R-sq:				Obs per group:			
within =	0.6758			RECEIVED TO LOCAL	min =	23	
between =	0.5718				avg =	23.0	
overall =	overall = 0.5619				max =	23	
				F(31,50)	-	110.96	
corr(u i, Xb)	= n.3719			Prob > F		0.0000	
0011(4_1, 12)	0.0.13			1100 / 1		0.0000	
		(Std. E	rr. adju	sted for 5	51 clusters i	n stateid)	
803 335	[12] Ve1	Robust				320 =2550	
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
lnincarc_rate	0041201	.0592242	-0.07	0.945	1230755	.1148353	
shall	0299454	.0288532	-1.04	0.304	0878987	.028008	
lnpb1064	027411	.1836866	-0.15	0.882	3963563	.3415344	
pm1029	.0384271	.0192401	2.00	0.051	0002177	.077072	
lnpop	2997561	.1685498	-1.78	0.081	6382983	.0387861	
lnden	5725517	.4087528	-1.40	0.167	-1.393556	.2484525	
lnmur	.049223	.028407	1.73	0.089	0078342	.1062802	
lnrob	.4768532	.0372789	12.79	0.000	.4019764	.55173	
lnavginc	1177747	.2006829	-0.59	0.560	5208582	.2853087	
year							
78	.0496742	.0130306	3.81	0.000	.0235015	.0758468	
79	.1089603	.0197485	5.52	0.000	.0692942	.1486263	
80	.1149285	.0258125	4.45	0.000	.0630826	.1667744	
81	.1073847	.0306315	3.51	0.001	.0458595	.16891	
82	.1204283	.0386741	3.11	0.003	.0427492	.1981075	
83	.1204283	.0386741	3.11	0.003	.0427492	.2281772	
84	.2010825	.0539679	3.73	0.000	.0926848	.3094802	
85	.2393366	.0618038	3.87	0.000	.1152	.3634732	
86	.2840803	.0735775	3.86	0.000	.1362955	.431865	
87	.3056825	.0819664	3.73	0.000	.1410483	.4703168	
88	.3563915	.0920065	3.87	0.000	.171591	.541192	
89	.3903557	.1023984	3.81	0.000	.1846824	.596029	
90	.474207	.1102501	4.30	0.000	.2527631	.6956509	
91	.4773074	.1148394	4.16	0.000	.2466457	.7079691	
92	.5182075	.1213541	4.27	0.000	.2744606	.7619544	
93	.5359566	.126554	4.24	0.000	.2817653	.7901478	
94	.5256749	.1321586	3.98	0.000	.2602266	.7911232	
95	.525475	.1376786	3.82	0.000	.2489394	.8020107	
96	.5060943	.1433813	3.53	0.001	.2181044	.7940843	
30 1	.5060943	.1433013	3.33	0.001	.2101044	. / 540043	

Effect of Shall law on violent Crime Rate: Keeping other variables constant, if the state has a shall-carry law in effect in that year the violent crime rate decreases approximately by 3% compared to the state with no shall-carry law in that year. However, still shall variable be insignificant.

F-test to check the significance of Time Effect in Fixed model

The fixed entity and time effects model allows us to test if there are time fixed effects by conducting joint significance f-tests for the year dummy variables.

Null Hypothesis, Ho: The year dummy variables coefficients are all equal to zero. *Alternate Hypothesis, Ha*: At least one or more-year dummy coefficients are not equal to zero.

```
testparm i.year
    78.year = 0
    79.year = 0
    80.year = 0
(4)
    81.year = 0
(5) 82.year = 0
(6) 83.year = 0
(7) 84.year = 0
(8) 85.year = 0
(9) 86.year = 0
(10) 87.year = 0
(11) 88.year = 0
(12) 89.year = 0
(13) 90.year = 0
(14) 91.year = 0
(15) 92.year = 0
    93.year = 0
(16)
(17)
     94.year = 0
(18)
     95.year = 0
    96.year = 0
(19)
(20) 97.year = 0
(21) 98.year = 0
(22) 99.year = 0
     F(22, 1091) = 8.86
        Prob > F =
                      0.0000
```

Since, for the f-test, p-value <0.05. Null hypothesis can be rejected and conclude that there is at least one or more of the year intercept that is significantly different from zero.

Model 3_7: Best Fixed Entity and Time Effects with Cluster-Robust standard errors as per BIC

xtreg lnvio	pm1029 lnrob	shall lnpb1	064 Inde	n lnpop i.	year, fe vo	e (cluster statei
Fixed-effects	(within) reg	ression		Number o	f obs =	1,173
Group variable	: stateid			Number o	f groups =	51
R-sq:				Obs per	group:	
within =	0.6740				min =	23
between =	0.3874				avg =	23.0
overall =	0.4045				max =	23
				F(28,50)	=	96.60
corr(u i, Xb)	= 0.1744			Prob > F	-	0.0000
		(Std. E	rr. adjus	sted for 5	1 clusters	in stateid)
		Robust				
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
pm1029	.037292	.0191589	1.95	0.057	0011897	.0757737
lnrob	.4894918	.0371094	13.19	0.000	.4149554	.5640282
shall	0286511	.0300385	-0.95	0.345	0889851	.031683
lnpb1064	0067272	.1814566	-0.04	0.971	3711935	.357739
lnden	7967832	.4092568	-1.95	0.057	-1.6188	.0252332
lnpop	3062501	.1584566	-1.93	0.059	6245196	.0120195
vear						
78	.0450831	.0114793	3.93	0.000	.0220263	.0681399
79	.1051321	.0159612	6.59	0.000	.0730732	.1371911
80	.1134354	.0218324	5.20	0.000	.0695837	.1572872
81	.1041519	.026437	3.94	0.000	.0510517	.1572521
82	.1141891	.0302669	3.77	0.000	.0533962	.174982
83	.126602	.0334011	3.79	0.000	.0595139	.1936901
84	.1814549	.0384078	4.72	0.000	.1043104	.2585993
85	.2179403	.0443275	4.92	0.000	.1289059	.3069747
86	.2615472	.0508026	5.15	0.000	.1595072	.3635873
87	.2800558	.0564371	4.96	0.000	.1666986	.393413
88	.3279556	.061823	5.30	0.000	.2037804	.4521308
89	.3589758	.0710763	5.05	0.000	.2162148	.5017368
90	.4431598	.0780969	5.67	0.000	.2862977	.6000219
91	.4465117	.0829858	5.38	0.000	.27983	.6131935
92	.4832675	.0876577	5.51	0.000	.3072018	.6593332
93	.502804	.0909838	5.53	0.000	.3200575	.6855504
94	.4870197	.0947501	5.14	0.000	.2967085	. 6773308
95	.484326	.0947301	4.97	0.000	.2886129	.6800391
96	.4605056	.100676	4.57	0.000	.2582919	.6627192
97	.4744865	.1017139	4.66	0.000	.270188	.6787849
98	.4671973	.101/139	4.48	0.000	.2579206	.6764739

Effect of Shall law on violent Crime Rate: Keeping other variables constant, if the state has a shall-carry law in effect in that year the violent crime rate decreases by 2.8% compared to the state with no shall-carry law in that year.

Comparing "Shall" coefficients for Pooled OLS, Fixed Entity and Fixed Entity and Time Effect

The violent crime rate decreases by 5.8% for Pooled OLS, negligible for Entity Fixed Effect, and decreases by 3% for Entity-Time Fixed Effect model; however, the "shall" variable is not significant in all these models. Thus, we can state that whether a state has shall law or not has no statistically significant effect on violent crime rate.

4. Random Effect Estimates

Random Effects model works best for the data sample that is randomly selected from a population. Here, we have a balanced panel of data on 50 US states, plus the District of Columbia (for a total of 51 "states"), by year for 1977 – 1999. Clearly, the data consists of only the population of US States and it is not a random draw from a large population. Hence, using Random Effects model for such data is insensible and fixed effects model should be used theoretically.

However, the Random Effects model are obtained to conduct Hausman test. The Hausman test will check whether the random component, u_i is correlated with the explanatory variables in the model i.e. whether random effect estimates are significantly different from fixed effect estimates.

Model 4_1: Random Effect estimates with all variables

Random-effects	GLS regression	מר		Number of	obs	-	1,173
Group variable:				Number of			51
R-sq:				Obs per qu	roup:		
within =	0.6144			9900 200 - 100 -	mir	=	23
between =	0.8929				avo	=	23.0
overall = 0.8717					max	=	23
				Wald chi2	(9)	-	2261.92
corr(u_i, X)	= 0 (assumed)	N.		Prob > chi	12	=	0.0000
lnvio	Coef.	Std. Err.	z	P> z	[95% (onf.	Interval]
lnincarc rate	.0945506	.0189998	4.98	0.000	.05731	.16	.1317895
shall	0081662	.0122065	-0.67	0.503	03209	05	.0157581
lnpb1064	.0777505	.0397477	1.96	0.050	00015	36	.1556546
pm1029	0318047	.0052591	-6.05	0.000	04211	24	0214969
lnpop	10333	.0347689	-2.97	0.003	17147	58	0351841
lnden	1490923	.0790706	-1.89	0.059	30406	78	.0058833
lnmur	.1103124	.0203142	5.43	0.000	.07049	74	.1501275
lnrob	.5381089	.0171298	31.41	0.000	.5045	35	.5716827
lnavginc	.0112977	.0616676	0.18	0.855	10956	85	.132164
_cons	3.326692	.2402333	13.85	0.000	2.8558	44	3.797541
sigma_u	.18118924						
sigma_e	.1120213						
rho	.72346321	(fraction	of varia	nce due to	u i)		

5. The Hausman Test

Ho: There is no significant difference between Random Effect and Fixed Effect estimates.

Ha: There is significant difference between Random Effect and Fixed Effect estimates.

<u>Hausman Test 1</u>: Fixed Entity Effect with Random Effect Estimates

-		cients		
	(b)	(B)		sqrt(diag(V_b-V_B))
	fixed2_1	random4_1	Difference	S.E.
lnincarc_r~e	.0617937	.0945506	0327568	.0056335
shall	0010026	0081662	.0071636	.002555
lnpb1064	.1759719	.0777505	.0982214	.0554076
pm1029	0373956	0318047	0055909	.0020155
lnpop	2702397	10333	1669097	.0767184
lnden	5513626	1490923	4022703	.3309051
lnmur	.0790516	.1103124	0312609	.0085224
lnrob	.5430485	.5381089	.0049396	.0055163
lnavginc	.0509784	.0112977	.0396807	.0227193
	b	= consistent	under Ho and Ha	a; obtained from xtre
В	= inconsistent	under Ha, eff	icient under Ho	; obtained from xtre
Test: Ho:	difference i	n coefficients	not systematic	
	chi2(9) =	(b-B) ' [(V_b-V_	B) ^ (-1)] (b-B)	
	=	32.99		
	Prob>chi2 =	0.0001		
		not positive d		

p-value = 0.001. Hence, Null hypothesis can be rejected, and we should use Fixed Effects model.

Hausman Test 2: Fixed Entity and Time Effect with Random Effect Estimates

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fixed3_1	random4_1	Difference	S.E.
lnincarc_r~e	0041201	.0945506	0986706	.0097671
shall	0299454	0081662	0217792	.0042315
lnpb1064	027411	.0777505	1051615	.0580199
pm1029	.0384271	0318047	.0702318	.0066706
lnpop	2997561	10333	1964261	.0729734
lnden	5725517	1490923	4234594	.3139368
lnmur	.049223	.1103124	0610894	.0076739
lnrob	.4768532	.5381089	0612556	.0070749
lnavginc	1177747	.0112977	1290725	.0494496
				a; obtained from xtreg
В	= inconsistent	under Ha, eII	icient under Ho	o; obtained from xtreg
Test: Ho:	difference i	n coefficients	not systematic	37
	chi2(9) =	(b-B) ' [(V_b-V_	B) ^ (-1)] (b-B)	
	=	240.65		
	Prob>chi2 =	0.0000		
		not positive d		

p-value ≈ 0.0000. Hence, Null hypothesis can be rejected, and we should use Time Fixed Effects.

As per the Hausman Test, at 5 % significance level, Null hypothesis can be rejected, and it can be concluded that Fixed Effects model should be used as it allow us to control for unobserved heterogeneity among entities (states), making estimates unbiased and consistent.

8. Inference – Estimating the Effect of "shall" on crime rates

As per our analysis of historical balanced panel data on 50 US states, plus the District of Columbia (for a total of 51 "states"), by year for 1977 – 1999. We conclude that, despite being efficient, Random Effect model for such sample of data is insensible as it is not randomly selected. This is evident from the Hausman test as well. Therefore, we selected Fixed Effect model over Random Effect model.

Among Fixed Entity and Entity Time Effect model, we selected Time Fixed Effect model as the best model for our analysis. This is evident from the joint hypothesis f-test of time dummy variables, which concludes that time has significant effect.

Estimating the effect of "shall" on violent crime rate (Invio)

Based on lowest BIC, Best Fixed Entity and Time effect model as per our analysis is

lnvio = $\beta_0 + \beta_1 pm1029 + \beta_2 lnrob + \beta_3 shall + \beta_4 lnpb1064 + \beta_5 lnden + \beta_6 lnpop + \beta_7 t_{78} + \beta_8 t_{79} + \dots + \beta_9 t_{99}$

. xtreg lnvio	pm1029 lnrob	shall lnpb1	064 Inder	n lnpop i.	year, fe vce	cluster statei
Fixed-effects	(within) reg	ression		Number o	of obs =	1,173
Group variable	: stateid			Number o	of groups =	51
R-sq:				Obs per	group:	
within =	0.6740				min =	23
between =					avg =	23.0
overall =					max =	23
Overall	0.4045				max.	25
				F(28,50)	=	96.60
corr(u_i, Xb)	= 0.1744			Prob > F	=	0.0000
		(Std. E	rr. adjus	sted for 5	1 clusters i	n stateid)
		Robust				
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pm1029	.037292	.0191589	1.95	0.057	0011897	.0757737
lnrob	.4894918	.0371094	13.19	0.000	.4149554	.5640282
shall	0286511	.0300385	-0.95	0.345	0889851	.031683
lnpb1064	0067272	.1814566	-0.04	0.971	3711935	.357739
lnden	7967832	.4092568	-1.95	0.057	-1.6188	.0252332
lnpop	3062501	.1584566	-1.93	0.059	6245196	.0120195
year						
78	.0450831	.0114793	3.93	0.000	.0220263	.0681399
79	.1051321	.0159612	6.59	0.000	.0730732	.1371911
80	.1134354	.0218324	5.20	0.000	.0695837	.1572872
81	.1041519	.026437	3.94	0.000	.0510517	.1572521
82	.1141891	.0302669	3.77	0.000	.0533962	.174982
83	.126602	.0334011	3.79	0.000	.0595139	.1936901
84	.1814549	.0384078	4.72	0.000	.1043104	.2585993
85	.2179403	.0443275	4.92	0.000	.1289059	.3069747
86	.2615472	.0508026	5.15	0.000	.1595072	.3635873
87	.2800558	.0564371	4.96	0.000	.1666986	.393413
88	.3279556	.061823	5.30	0.000	.2037804	.4521308
89	.3589758	.0710763	5.05	0.000	.2162148	.5017368
90	.4431598	.0780969	5.67	0.000	.2862977	.6000219
91	.4465117	.0829858	5.38	0.000	.27983	.6131935
92	.4832675	.0876577	5.51	0.000	.3072018	.6593332
93	.502804	.0909838	5.53	0.000	.3200575	.6855504
94	.4870197	.0947501	5.14	0.000	.2967085	.6773308
95	.484326	.0974396	4.97	0.000	.2886129	.6800391
96	.4605056	.100676	4.57	0.000	.2582919	.6627192
97	.4744865	.1017139	4.66	0.000	.270188	.6787849
98	.4671973	.1041924	4.48	0.000	.2579206	.6764739
99	.4489365	.1108072	4.05	0.000	.2263737	.6714992

Interpretations:

- Keeping other variables constant, if the state has a shall-carry law in effect in that year the violent crime rate decreases by 2.8% compared to the state with no shall-carry law in that year; however, the "shall" variable is not significant.
- Keeping other variables constant, with 1% increase in Percentage of male population aged 10-29 "pm1029", the violent crime rate increases by approximately 3.73% at 10% significance level.
- Keeping other variables constant, with 1% increase in robbery rate, the violent crime rate increases by approximately 0.49% at 1% significance level.
- Keeping other variables constant, with 1% increase in density (population per square mile of land area, divided by 1000), the violent crime rate decreases by approximately 0.79% at 10% significance level.
- Keeping other variables constant, with 1% increase in state population (in millions of people), the violent crime rate decreases by approximately 0.30% at 10% significance level.

Estimating the effect of "shall" on robbery rate (lnrob)

 $lnrob = \beta_0 + \beta_1 pm1029 + \beta_2 shall + \beta_3 lnpb1064 + \beta_4 lnden + \beta_5 lnpop + \beta_6 lnincarc_rate + \beta_7 lnmur + \beta_8 lnavginc + \beta_9 t_{78} + \beta_{10} t_{79} + \dots + \beta_{11} t_{99}$

Fixed-effects ((within) rear	ession		Number of	obs =	1,173
roup variable:				Number of		51
-sq:				Obs per g		
within =					min =	23
between =					avg =	23.0
overall =	0.1298				max =	23
				F(30,1092)) =	22.91
corr(u_i, Xb)	= -0.6628			Prob > F	=	0.0000
lnrob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Inincarc rate	1566441	.0345584	-4.53	0.000	2244525	0888357
shall	0138187	.0210903	-0.66	0.512	0552007	.0275633
lnpb1064	9202159	.1114062	-8.26		-1.13881	7016214
pm1029	.0800614	.0136566	5.86	0.000	.0532653	.1068574
lnpop	.2167857	.1318216	1.64	0.100	0418666	.475438
lnmur	.4026039	.0332979	12.09	0.000	.3372688	.467939
lnden	3.340829	.5188487	6.44	0.000	2.322776	4.358882
lnavginc	.2110164	.1289074	1.64	0.102	0419178	.4639505
year						
78	.0373609	.0342387	1.09	0.275	0298201	.104542
79	.1421364	.0347821	4.09	0.000	.073889	.2103837
80	.2645959	.0353066	7.49	0.000	.1953194	.3338725
81	.3073517	.0363432	8.46	0.000	.2360414	.3786621
82	.3054505	.0384877	7.94	0.000	.2299323	.3809687
83	.2582604	.0417212	6.19	0.000	.1763976	.3401231
84	.2552461	.0461669	5.53	0.000	.1646602	.3458319
85	.2875538	.0501289	5.74	0.000	.189194	.3859137
86	.3542113	.054888	6.45	0.000	.2465135	.4619091
87	.3465208	.0596008	5.81	0.000	.2295757	.4634659
88	.3938068	.0645394	6.10	0.000	.2671716	.520442
89	.4612815	.0693138	6.65	0.000	.3252783	.5972848
90	.545515	.0739789	7.37	0.000	.4003581	.6906718
91	.6663156	.0775127	8.60	0.000	.5142248	.8184064
92	.6901816	.0820067	8.42	0.000	.5292731	.8510902
93	.6963886	.0850527	8.19	0.000	.5295034	.8632737
94	.7464904	.0886739	8.42	0.000	.5724999	.9204808
95	.7710419	.092464	8.34	0.000	.5896147	.9524692
96	.7554019	.0963279	7.84	0.000	.5663933	.9444105
97		.0999595	7.35	0.000	.5384229	.9306918
98	.6694237	.1039236	6.44	0.000	.4655111	.8733362
99	. 6278357	.106942	5.87	0.000	.4180007	.8376708

Interpretations:

- Keeping other variables constant, if the state has a shall-carry law in effect in that year the robbery rate decreases by 1.38 % compared to the state with no shall-carry law in that year; however, the "shall" variable is not significant.
- Keeping other variables constant, with 1% increase in incarceration rate, the robbery rate decreases by approximately 0.15% at 1% significance level.
- Keeping other variables constant, with 1% increase in percentage of black population (aged 10-64), the robbery rate decreases by approximately 0.92% at 1% significance level.
- Keeping other variables constant, with 1% increase in Percentage of male population aged 10-29 "pm1029", the robbery rate increases by approximately 8% at 1% significance level.
- Keeping other variables constant, with 1% increase in density (population per square mile
 of land area, divided by 1000), the robbery rate increases by approximately 3.34 % at 1%
 significance level.
- Keeping other variables constant, with 1% increase in murder rate, the robbery rate increases by approximately 0.40% at 1% significance level.

Estimating the effect of "shall" on murder rate (lnmur)

 $lnmur = \beta_0 + \beta_1 pm1029 + \beta_2 shall + \beta_3 lnpb1064 + \beta_4 lnden + \beta_5 lnpop + \beta_6 lnincarc_rate + \beta_7 lnrob + \beta_8 lnavginc + \beta_9 t_{78} + \beta_{10} t_{79} + \dots + \beta_{11} t_{99}$

. xtreg lnmur l	nincarc_rate	shall lnpb1	064 pm10	29 1npop 1	Inden Inrob	lnavginc i.ye	ar, fe
Fixed-effects (within) regre	ession		Number of	f obs =	1,173	
Group variable:	stateid			Number of	groups =	51	
R-sq:				Obs per o	group:		
within =	0.4259				min =	23	
between =	0.0433				avg =	23.0	
overall =					max =	23	
				F(30,1092	2) =	27.00	
corr(u_i, Xb)	= -0.9321			Prob > F	=	0.0000	
lnmur	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval	
	V		0.000		500300000000000000000000000000000000000		
lnincarc_rate	0226387	.0297629	-0.76	0.447	0810377	.0357602	
shall	0132913	.017999	-0.74	0.460	0486078	.0220252	
lnpb1064	.4438217	.0970828	4.57	0.000	.2533319	.6343116	
pm1029	.0011957	.0118374	0.10	0.920	022031	.0244224	
lnpop	1919847	.1124953	-1.71	0.088	4127161	.0287467	
lnden	-4.452737	.4305582	-10.34	0.000	-5.297552	-3.607922	
lnrob	.2932622	.0242547	12.09	0.000	.2456712	.3408532	
lnavginc	.8705185	.1069573	8.14	0.000	.6606533	1.080384	
year							
78	0280543	.0292253	-0.96	0.337	0853985	.0292898	
79	0100755	.0299101	-0.34	0.736	0687632	.0486123	
80	0059463	.0308979	-0.19	0.847	0665722	.0546796	
81	0240646	.0320092	-0.75	0.452	0868711	.038742	
82	0718874	.0337121	-2.13	0.033	1380352	0057396	
83	114926	.0360599	-3.19	0.001	1856805	0441715	
84	2073431	.039454	-5.26	0.000	2847573	1299288	
85	1973026	.043011	-4.59	0.000	2816961	1129091	
86	171989	.0474456	-3.62	0.000	2650839	0788942	
87	1938961	.0513145	-3.78	0.000	2945824	0932099	
88	2074015	.0556609	-3.73	0.000	3166159	098187	
89	2257178	.0599572	-3.76	0.000	3433622	1080734	
90	1970216	.0644164	-3.06	0.002	3234156	0706276	
91	1952502	.0681008	-2.87	0.004	3288734	061627	
92	235559	.071872	-3.28	0.001	3765819	0945361	
93	184635	.074576	-2.48	0.013	3309635	0383064	
94	2630483	.0776911	-3.39	0.001	4154889	1106076	
95	2836493	.0809353	-3.50	0.000	4424556	1248429	
96	3360811	.083882	-4.01	0.000	5006693	1714929	
97	4057441	.0865298	-4.69	0.000	5755275	2359607	
98	4440551	.0893605	-4.97	0.000	6193928	2687173	
50	. 4440331	. 5555555	-4.31	0.000	. 0193920	.2007173	

Interpretations:

- Keeping other variables constant, if the state has a shall-carry law in effect in that year the robbery rate decreases by 1.33 % compared to the state with no shall-carry law in that year; however, the "shall" variable is not significant.
- Keeping other variables constant, with 1% increase in percentage of black population (aged 10-64), the murder rate increases by approximately 0.44% at 1% significance level.
- Keeping other variables constant, with 1% increase in density (population per square mile of land area, divided by 1000), the murder rate decreases by approximately 4.45 % at 1% significance level.
- Keeping other variables constant, with 1% increase in robbery rate, the murder rate increases by approximately 0.30% at 1% significance level.
- Keeping other variables constant, with 1% increase in average income, the murder rate increases by approximately 0.87% at 1% significance level.

9. Conclusion

As per our analysis there is deterrent effect of "shall-carry law" on crime rates; however, the estimates are not significant. All the crime rates, Violent Crime rate (vio), Robbery rate (rob) and Murder rate(mur) decreases by approximately 2.8%, 1.38% and 1.33%, respectively if the state has a "shall-carry law" in effect in that year compared to the state with no "shall-carry law".

10. Recommendation

We can explain the effect on crime rates more precisely if information regarding variables such as National/State law policies, number of police units in the state, percentage of intoxicated people, education status, social or cultural attitudes, rich-to-poor ratio etc. were known besides what is provided.

As per our analysis on the given data, we suggest the government to come up with following policies to curb the crime rate: -

- ✓ More stringent National or State policies as shall-law has no significant impact on crime rates.
- ✓ Deployment of police forces in more population dense areas may deter crime rates.
- ✓ Increase in employment opportunities.
- ✓ Technological advancements for better surveillance.

Appendix

Please refer the STATA codes and outputs for more details.

```
___ (R)
                                                    /___/
                                                     _/ / _/__/ /
                                                     Statistics/Data
Analysis
      LLC
       Statistics/Data Analysis
                                          StataCorp
                                          4905 Lakeway Drive
          Special Edition
                                          College Station, Texas 77845
USA
                                          800-STATA-PC
http://www.stata.com
                                          979-696-4600
stata@stata.com
                                          979-696-4601 (fax)
     55-user Stata network license expires 4 Oct 2019:
            Serial number: 401509214975
              Licensed to: University of Texas at Dallas
                           Jindal School of Management
           1. Unicode is supported; see help unicode advice.
           2. Maximum number of variables is set to 5000; see help
set maxvar.
           3. New update available; type -update all-
    1 . doedit "C:\Users\sxm180029\Desktop\Project\Stata codev1.do"
    2 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD237c 000000.tmp"
    3 . use "C:\Users\sxm180029\Desktop\guns.dta",clear
    4 . *giving panel state and year id
     5 . xtset stateid year
            panel variable: stateid (strongly balanced)
time variable: year, 77 to 99
delta: 1 unit
     6 . xtdescribe
      stateid: 1, 2, ..., 56
                                                                n =
51
         year: 77, 78, ..., 99
                                                                T =
23
                Delta(year) = 1 unit
                Span(year) = 23 periods
                (stateid*year uniquely identifies each observation)
     Distribution of T i: min 5%
                                                     50%
                                           25%
                                                              75%
95%
       max
```

23 23 23 23 23

23 23

vio rob mur shall incarc~e density avginc pop pm1029 pw1064 pb1064 ______ 1.0000 vio I rob | 0.9071 1.0000 0.8265 0.7976 mur | 1.0000 shall | -0.2069 -0.2125 -0.1794 1.0000 incarc rate | 0.7027 0.5668 0.7096 0.0424 1.0000 density | 0.6647 0.7818 0.7486 -0.1126 0.5593 1.0000 avginc | 0.4080 0.4148 0.2206 -0.0000 0.4615 0.3433 1.0000 pop | 0.3190 0.3172 0.0999 -0.1244 0.0953 -0.0780 0.2152 1.0000 pm1029 | -0.1696 -0.0860 0.0150 -0.2772 -0.4463 -0.0637 -0.5279 -0.0975 1.0000 pw1064 | -0.5730 -0.5842 -0.6154 0.2123 -0.5271 --0.1912 -0.0654 -0.0126 1.0000 0.5551 pb1064 | 0.5698 0.5812 0.6018 -0.1839 0.5308 0.5432 0.2627 0.0581 0.0162 -0.9820 1.0000

8 . *since the overall maximum population will consists of black and white, highly corelated keeping only 1 percentage of black $\hat{\ }$

10 . *corelation after generating rate for population percentage

11 . cor rob mur shall incarc_rate density avginc pop pm1029 pb1064 (obs=1,173)

```
12.
   13 . *Analyzing different variables
   14 . *******************************
   15 . *Crime Rate
   16 . *1.checking the distribution of crime rate
   17 . histogram vio
    (bin=30, start=47, width=95.826668)
   18 . *Left Skewed
   19 . *Taking log to make it normal distribution
   20 . gen lnvio=ln(vio+1)
   21 . histogram lnvio
    (bin=30, start=3.871201, width=.13696988)
   22 . ******************************
   24 . *Sentenced Prisoner
   25 . *1.checking the distribution of sentenced prisoners in previous
year
   26 . histogram incarc rate
    (bin=30, start=19, width=63.133333)
   27 . *left skewed data
   28 . *Taking log to make it normal distribution
   29 . gen lnincarc rate=ln(incarc rate+1)
   30 . histogram lnincarc rate
    (bin=30, start=2.9957323, width=.15204061)
   31 . *2. Linear prediction Plot
   32 . graph twoway (scatter lnvio lnincarc rate) (lfit lnvio
lnincarc rate)
   33 . reg lnvio lnincarc rate
        Source | SS
                             df MS Number of obs
    1,173
    ----- F(1, 1171)
         0.0000
       0.4191
         -----+---- Adj R-squared
   0.4186
         Total | 485.236708 1,172 .414024495 Root MSE
   .49064
          lnvio | Coef. Std. Err. t P>|t|
Conf. Interval]
    ______
    lnincarc_rate | .6333718 .0217928 29.06 0.000 .5906144
.6761291
```

=

_cons | 2.730736 .1144313 23.86 0.000 2.506222

2.955249

34 . *3. Residual Plot

35 . rvfplot, yline(0)

36 . ****************************

37 .

38 . *Per Capita Income

39 . *1.checking the distribution of per capita income

40 . histogram avginc (bin=30, start=8.554884, width=.50306098)

41 . gen lnavginc=ln(avginc+1)

42 . histogram lnavginc (bin=30, start=2.2570524, width=.03158637)

43 . \star approx normally distributed

44 . *2. Linear prediction Plot

45 . graph twoway (lfit lnvio lnavginc) (scatter lnvio lnavginc)

46 . reg lnvio lnavginc

	1 100	Source	SS	df	MS	Number of obs
=	1,173	+-				F(1, 1171)
=	174.06					
_	0.0000	Model	62.7928171	1	62.7928171	Prob > F
_		esidual	422.443891	1,171	.360754817	R-squared
_		+-				Adj R-squared
=	0.1287					3 1
=	.60063	Total	485.236708	1 , 172	.414024495	Root MSE

47 . *3. Residual Plot 48 . rvfplot, yline(0)

49 . **************

50 .

51 . *Robbery Rate

52 . *1.checking the distribution of per capita income

53 . histogram rob

(bin=30, start=6.4000001, width=54.289999)

- 54 . *left skewed data
- 55 . *Taking log to make it normal distribution
- 56 . gen lnrob=ln(rob+1)
- 57 . histogram lnrob (bin=30, start=2.0014801, width=.17995302)
- 58 . *2. Linear prediction Plot
- 59 . graph twoway (lfit lnvio lnrob) (scatter lnvio lnrob)
- 60 . reg lnvio lnrob

	Source		SS	df	MS	Numb	per of obs	
=	1,173					– ೯(1	, 1171)	
=	5358.04	'				Τ (Τ ,	, 11/1/	
		Model	398.208244	1	398.20824	4 Prol	o > F	
=		sidual	87.0284644	1,171	.07431978	2 R-s	R-squared	
=	0.8206					- Adi	R-squared	
=	0.8205					710.5	it bquarea	
=	.27262	Total	485.236708	1,172	.41402449	5 Root	t MSE	
	. 2 / 2 0 2							
		lnvio	Coef.	Std. Err.	t	P> t	[95%	
Con	f. Interv	-	<u> </u>					
		lnrob	.6217551	.0084941	73.20	0.000	.6050898	
.63	84205	cons l	3.107806	0407115	76 34	0 000	3 02793	
3.1	87681		3.107000	.010/110	, 0 . 0 1	3 . 000	3.02733	

- 61 . *3. Residual Plot
- 62 . rvfplot, yline(0)
- 63 . *****************
- 64 . *Mur Rate
- 65 . *1.checking the distribution of per capita income
- 66 . histogram mur (bin=30, start=.2, width=2.6799999)
- 67 . *left skewed data
- 68 . *Taking log to make it normal distribution
- 69 . gen lnmur=ln(mur+1)
- 70 . histogram lnmur (bin=30, start=.18232156, width=.14065026)
- 71 . *2. Linear prediction Plot
- 72 . graph twoway (lfit lnvio lnmur) (scatter lnvio lnmur)
- 73 . reg lnvio lnmur

=	1,173	Source								Number	of obs	
=	2055.63		-+						-	F(1, 11	.71)	
=	0.0000	Model	309	.135662		1	309.1	35662	2	Prob > F		
=	Re 0.6371	esidual	176	.101046	1,1	71	.150385181		-	R-squared		
=			-+						-	Adj R-s	quared	
=	.3878	Total	485	.236708	1,1	72	.4140	24495	5	Root MSE		
 Conf	. Interv	val]		Coef.								
	2220	lnmur	.88	821594	.0194	57	45.	34	0.0	000	.843985	
	03338	_cons	4.2	292458	.03996	78	107.	40	0.0	000	4.214041	
	4.370874											
1000	77 . 78 . *De 79 . *1. 80 . his (bin=3 81 . *le 82 . *Ta 83 . ger 84 . his (bin=3	checking to checking togram and a linden stogram and a linear aph twown a linear aph two a li	yline (0) ****** (popular ng the o density t=.000 wed data og to ma eln (density lnden t=.000 r predict vay (lf: lnden	tion per distribu y 70708, w a ake it n sity+1)	square ation of ridth=.3 cormal d	mill per 7004 istr	Le of capi 1695) cibuti 3912)	land ta in	are	ea, divi	ded by	
=	1,173	Source			,					Number		
=	263.01											
=	0.0000	Model	88.	9966353		1	88.99	66353	3	Prob >	F	
=	R∈ 0.1834	esidual	396	.240073						_		
			-+						-	Adi R-s	guared	

----- Adj R-squared

0.1827

Total | 485.236708 1,172 .414024495 Root MSE .5817 _____ lnvio | Coef. Std. Err. t P>|t| Conf. Interval] ______ lnden | .7848745 .0483965 16.22 0.000 .6899209 .8798281 _cons | 5.888921 .0190916 308.46 0.000 5.851463 5.926379 ______ 88 . *3. Residual Plot 89 . rvfplot, yline(0) 90 . ************* 92 . *population (millions of people) 93 . *1.checking the distribution of per capita income 94 . histogram pop (bin=30, start=.402753, width=1.0914123) 95 . *left skewed data 96 . *Taking log to make it normal distribution 97 . gen lnpop=ln(pop+1) 98 . histogram lnpop (bin=30, start=.33843672, width=.1064061) 99 . *2. Linear prediction Plot 100 . graph twoway (lfit lnvio lnpop) (scatter lnvio lnpop) 101 . reg lnvio lnpop Source | SS df MS Number of obs 1,173 ----- F(1, 1171) 0.0000 Residual | 378.233565 1,171 .323000482 R-squared 0.2205 ----- Adj R-squared 0.2199 Total | 485.236708 1,172 .414024495 Root MSE .56833 ______ lnvio | Coef. Std. Err. t P>|t| Conf. Interval] _____ lnpop | .4099296 .0225223 18.20 0.000 .365741

.4541182

_cons | 5.4287 .0369856 146.78 0.000 5.501266 5.356135 102 . *3. Residual Plot 103 . rvfplot, yline(0) 104 . ****************************** 105 . 106 . *pm1029 (millions of people) 107 . *1.checking the distribution of per capita income 108 . histogram pm1029 (bin=30, start=12.21368, width=.33796686) 109 . *approx. normal skewed data 110 . *2. Linear prediction Plot 111 . graph twoway (lfit lnvio pm1029) (scatter lnvio pm1029) 112 . reg lnvio pm1029 Source | SS df MS Number of obs 1,173 ----- F(1, 1171) 24.75 0.0000 0.0207 ----- Adj R-squared 0.0199 Total | 485.236708 1,172 .414024495 Root MSE .63702 lnvio | Coef. Std. Err. t P>|t| Conf. Interval] pm1029 | -.0534462 .0107426 -4.98 0.000 _cons | 6.889795 .1737512 39.65 0.000 6.548896 7.230693 113 . *3. Residual Plot 114 . rvfplot, yline(0) 115 . ******************************** 116 . 117 . *percentage of black 118 . *1.checking the distribution of per capita income 119 . histogram pb1064 (bin=30, start=.24820656, width=.89104546) 120 . *left skewed data 121 . *Taking log to make it normal distribution

122 . gen lnpb1064=ln(pb1064+1)

```
(bin=30, start=.22170776, width=.10365889)
  124 . *2. Linear prediction Plot
  125 . graph twoway (lfit lnvio lnpb1064) (scatter lnvio lnpb1064)
 126 . reg lnvio lnpb1064
       Source | SS df MS Number of obs
   1,173
    ----- F(1, 1171)
   909.81
       0.0000
     0.4372
   ----- Adj R-squared
  0.4368
        Total | 485.236708 1,172 .414024495 Root MSE
   .4829
       lnvio | Coef. Std. Err. t P>|t| [95%
Conf. Interval]
   ______
      lnpb1064 | .6488114 .0215101 30.16 0.000 .6066088
.6910141
       _cons | 4.977803 .0376352 132.26 0.000 4.903963
5.051643
   _____
 127 . *3. Residual Plot
 128 . rvfplot, yline(0)
 129 . *4. Panel line plot
 130 . xtline lnpb1064, t(year) i(stateid) overlay
 131 .
 132 . ******HYPOTHESIS TESTING*******
 133 . anova lnvio shall
                   Number of obs = 1,173 R-squared
= 0.0865
                   Root MSE = .615238 Adj R-
squared = 0.0858
              Source | Partial SS df
                                       MS
  Prob>F
            _____
               Model | 41.992856 1 41.992856
110.94 0.0000
                shall | 41.992856 1 41.992856
110.94 0.0000
```

123 . histogram lnpb1064

		443.24385	1,171 .37851738
			1,172 .4140245
134 . anova lnder	shall		
= 0.0275		Number of obs =	1,173 R-squared
squared = 0.0267		Root MSE =	.346382 Adj R-
F Prob>F		Partial SS	df MS
33.10 0.0000	Model	3.9709599	1 3.9709599
33.10 0.0000	shall	3.9709599	1 3.9709599
			1,171 .11998082
		•	1,172 .12326664
135 . anova lnavç	ginc shall		
= 0.0005		Number of obs =	1,173 R-squared
squared = -0.0003		Root MSE =	.168865 Adj R-
F Prob>F		Partial SS	df MS
0.62 0.4302		.01775409	1 .01775409
0.62 0.4302	shall	.01775409	1 .01775409
	Residual	 33.391646 -+	1,171 .0285155
	Total	33.4094	1,172 .02850631
136 . *Not signif 137 . anova lnpb1			
= 0.0624		Number of obs =	1,173 R-squared
squared = 0.0616		Root MSE =	.635248 Adj R-

77.96	0.0000	Model	31.459642	1	31.459642	
77.96	0.0000	shall	31.459642	1	31.459642	
		·	472.54606	•		
			504.0057			

138 . end of do-file

- 139 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD237c_000000.tmp"
- 140 . translate @Results stata_res1.txt

```
___ (R)
                                                    /___/
                                                     / / / / /
                                                     Statistics/Data
Analysis
      LLC
       Statistics/Data Analysis
                                          StataCorp
                                          4905 Lakeway Drive
          Special Edition
                                          College Station, Texas 77845
USA
                                          800-STATA-PC
http://www.stata.com
                                          979-696-4600
stata@stata.com
                                          979-696-4601 (fax)
     55-user Stata network license expires 4 Oct 2019:
            Serial number: 401509214975
              Licensed to: University of Texas at Dallas
                            Jindal School of Management
           1. Unicode is supported; see help unicode advice.
           2. Maximum number of variables is set to 5000; see help
set maxvar.
           3. New update available; type -update all-
    1 . doedit "C:\Users\sxm180029\Desktop\Project\Stata codev1.do"
    2 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
    3 . use "C:\Users\sxm180029\Desktop\guns.dta",clear
    4 . *giving panel state and year id
     5 . xtset stateid year
            panel variable: stateid (strongly balanced)
time variable: year, 77 to 99
delta: 1 unit
     end of do-file
    7 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
    8 . gen lnvio=ln(vio+1)
     end of do-file
   10 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   11 . gen lnincarc rate=ln(incarc rate+1)
```

```
12 .
     end of do-file
   13 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   14 . gen lnavginc=ln(avginc+1)
   15.
     end of do-file
   16 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   17 . gen lnrob=ln(rob+1)
   18 .
     end of do-file
   19 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   20 . gen lnmur=ln(mur+1)
   21 .
     end of do-file
   22 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   23 . gen lnden=ln(density+1)
     end of do-file
   25 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   26 . gen lnpop=ln(pop+1)
   27 .
     end of do-file
   28 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   29 . gen lnpb1064=ln(pb1064+1)
   30.
     end of do-file
   31 . do "C:\Users\SXM180~1\AppData\Local\Temp\15\STD2750 000000.tmp"
   32 . ********REGRESSION ANALYSIS(PANEL DATA)***********
   33 . *MODEL1.1: with all the variables
   34 . reg lnvio lnincarc rate shall lnpb1064 pm1029 lnpop lnden lnmur
lnrob lnavginc
          Source | SS
                                     df
                                            MS
                                                    Number of obs
     1,173
     _____
                                                    F(9, 1163)
           Model | 435.887293 9 48.4319215 Prob > F
   0.0000
```

=	0.8983		49.3494149	1,163	.042432859	R-sq	uared
		+-				Adj	R-squared
=	0.8975		485.236708	1,172	.414024495	Root	MSE
=				1,11	• 11 10 2 1 1 3 0		
			0 5	QL-1 Fig.		D> 1 1 1	. O. F. o
Conf.	. Inter	rval]	Coef.				
		+					
		carc_rate	.3308061	.0182369	18.14	0.000	.2950252
.3665	5869	shall	0589598	.0159681	-3.69	0.000	0902894
027	76302	·					
108	35818	lnpb1064	1386792	.0153401	-9.04	0.000	1687766
		pm1029	.0186458	.0057596	3.24	0.001	.0073454
.0299	9462	lnpop	0579515	.0116839	-4.96	0.000	0808754
035	50275	lnden	0996981	.0232494	-4.29	0.000	1453134
054	40827	Inden	0996981	.0232494	-4.29	0.000	1455154
.1986	6126	lnmur	.1535501	.0229828	6.68	0.000	.1084576
.1900	0420	lnrob	.5402218	.0153783	35.13	0.000	.5100494
.5703	3941	lnavginc	009638	.0535771	-0.18	0.857	1147566
.0954	4805	_					
1.942	2099	_cons	1.533443	.208285	7.36	0.000	1.124787
_ , , , , ,							

35 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC	Model	Obs ll(null)	, ,	AIC
-317.0231	·	1,173 -1146.721		367.6963

Note: N=Obs used in calculating BIC; see [R] BIC note.

^{36 . *}bic:-317.02 *insignificant variables -lnavginc

^{37 .}

³⁸ . *MODEL1.2: without robust standard error since running pooled in panel data is heteroescdacity

^{39 .} reg lnvio lnincarc_rate shall lnpb1064 pm1029 lnpop lnden lnmur lnrob lnavginc, vce(cluster stateid)

Line 1,173	ar regressio	n			Number of	obs =
					F(9, 50)	=
190.38					Prob > F	=
0.0000						
0.8983					R-squared	
.20599					Root MSE	=
in stateid)		(Std. E:	rr. adju	sted for 5	51 clusters
			Dobust			
Conf. Inte	rval]		Robust Std. Err.			
	+- 					
lnin .4493262	carc_rate	.3308061	.0590076	5.61	0.000	.2122859
	shall	0589598	.040524	-1.45	0.152	1403546
.022435	lnpb1064	1386792	.0614845	-2.26	0.029	2621745
0151839	nm1029	.0186458	.0180098	1.04	0.306	0175279
.0548195	_					
.0536985	Inpop	0579515			0.302	1696014
.0812763	lnden	0996981	.0901016	-1.11	0.274	2806724
.294204	lnmur	.1535501	.0700273	2.19	0.033	.0128961
	lnrob	.5402218	.0595007	9.08	0.000	.4207111
.6597324	lnavginc	009638	.1983124	-0.05	0.961	4079602
.3886841	cons		.7603481			.0062389
3.060647		1.000110	./005401	2.02	0.010	.0002309
				_ 		

Akaike's information criterion and Bayesian information criterion

BIC	·	Obs ll(null)	,	AIC
-317.0231	·	1,173 -1146.721		
				 1 570

Note: N=Obs used in calculating BIC; see [R] BIC

note.

- 41 . *BIC: -317.0231
- 42 . *We see that coefficients are same but for most of the variables the satndard errors and p values changed thus proceeding with robust standard error method $\,$
 - 43 .
 - 44 . *MODEL1.3 : AFTER REMOVING INSIGNIFICANT VARIABLES
- 45 . reg lnvio lnincarc_rate lnpb1064 lnmur lnrob , vce (cluster stateid)

	ar regression	Number of obs	=
1,173		F(4, 50)	=
221.88		Prob > F	=
0.0000		R-squared	=
0.8917		Root MSE	=
.21216		NOOC MSE	

(Std. Err. adjusted for 51 clusters

in stateid)

Conf. Int	 lnvio erval	Coef.	Robust Std. Err.	t 	P> t	[95%
lni	ncarc_rate	.2667581	.033209	8.03	0.000	.2000558
.3334604						
	lnpb1064	1142494	.0572693	-1.99	0.052	2292782
.0007794	-	0000004	0.01.0.000	0 0 1	0 005	0.666088
2520101	lnmur	.2097734	.0712679	2.94	0.005	.0666277
.3529191	lnrob	.4853906	.0447206	10.85	0.000	.3955666
.5752146	THEOD	.4033900	.044/200	10.03	0.000	. 3933000
.3/32140	cons	2.131169	.1590711	13.40	0.000	1.811665
2.450672						

46 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC	Model	Obs ll(null)	
-278.1508	·	1,173 -1146.721	5 -303.4874

Note: N=Obs used in calculating BIC; see [R] BIC

47 . *BIC: -278

note.

48 .

- 49 . *MODEL1.4 : AFTER REMOVING INSIGNIFICANT VARIABLES BUT WITH SHALL SINCE WE HAVE TO ANALYZE ITS EFFECT
- 50 . reg lnvio shall lnincarc_rate lnpb1064 lnmur lnrob , vce (cluster stateid)

Linear regression	Number of obs	=
1,173	F(5, 50)	_
200.14	r (5, 50)	_
	Prob > F	=
0.0000	R-squared	=
0.8935	1111	
.2104	Root MSE	=
. 2101		

(Std. Err. adjusted for 51 clusters

in stateid)

	· 					
Conf. Inte	 	Coef.	Robust Std. Err.	t	P> t	[95%
	·					
0.1.1.6.1.0.1	shall	0730479	.0421675	-1.73	0.089	1577439
.0116481	ncarc rate	.2849197	.0358874	7.94	0.000	.2128377
.3570017		• = 0 13 = 3 7	• 0000071	, • 3 -	0.000	•=====
010222	lnpb1064	1235419	.0563633	-2.19	0.033	2367509
010333	lnmur	.2039502	.0699567	2.92	0.005	.0634381
.3444624						
.564861	lnrob	.4747866	.0448453	10.59	0.000	.3847121
.504001	cons	2.130693	.1592686	13.38	0.000	1.810793
2.450593	<u> </u>					

51 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC		Obs ll(null)		AIC
-291.6319	·	1,173 -1146.721	6 -:	322.0359

Note: N=Obs used in calculating BIC; see [R] BIC note.

52 . *BIC: -291

53 .

54 . *MODEL1.5 : AFTER REMOVING INSIGNIFICANT VARIABLES BUT WITH SHALL and pm1029

55 . reg lnvio shall lnincarc_rate lnpb1064 pm1029 lnmur lnrob , vce (cluster stateid)

Linear regression	Number of obs	=
1,173	F(6, 50)	=
191.47		
0.0000	Prob > F	=
0.8956	R-squared	=
	Root MSE	=
.20847		

(Std. Err. adjusted for 51 clusters

in stateid)

_____ Robust lnvio | Coef. Std. Err. t P>|t| [95% Conf. Interval] shall | -.0612149 .0418397 -1.46 0.150 -.1452524 .0228226 lnincarc_rate | .3457508 .058657 5.89 0.000 .2279346 .4635669 lnpb1064 | -.1409729 .0519474 -2.71 0.009 -.2453123 -.0366335 pm1029 | .026163 .0162799 1.61 0.114 -.0065362 .0588622 lnmur | .1545301 .0706948 2.19 0.034 .0125354 .2965248 lnrob | .491212 .0409129 12.01 0.000 .4090361 .5733879 _cons | 1.438613 .4729632 3.04 0.004 .4886388 2.388588

56 . estat ic

Akaike's information criterion and Bayesian information criterion

	BIC	Model	Obs ll(null)	,	AIC
-307.2067					-342.678

Note: N=Obs used in calculating BIC; see [R] BIC note.

58 .

59 . *MODEL1.6: AFTER REMOVING INSIGNIFICANT VARIABLES BUT WITH SHALL and pm1029 and lndren

60 . reg lnvio shall lnincarc_rate lnpb1064 pm1029 lnmur lnrob lnden, vce (cluster stateid)

Linear regression	Number of obs	=
1,173	F(7, 50)	=
292.41	Prob > F	=
0.0000	FLOD > F	_
0.8961	R-squared	=
	Root MSE	=
.20798		

(Std. Err. adjusted for 51 clusters

in stateid)

Robust lnvio | Coef. Std. Err. t P>|t| [95% Conf. Interval] ______ shall | -.0624175 .0412774 -1.51 0.137 -.1453256 .0204906 lnincarc rate | .3426591 .0590682 5.80 0.000 .2240171 .461301 lnpb1064 | -.1374528 .0537825 -2.56 0.014 -.2454781 -.0294275 pm1029 | .0242604 .0159325 1.52 0.134 -.0077409 .0562617 lnmur | .1585339 .0708759 2.24 0.030 .0161755 .3008922 lnrob | .4974592 .040418 12.31 0.000 .4162772 .5786411 lnden | -.050778 .0511238 -0.99 0.325 -.1534632 .0519072 _cons | 1.451794 .4706618 3.08 0.003 .5064417 2.397146

61 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC	Model	0bs	ll(null)	df	AIC
-306.5674	·	1,173			-347.106

Note: N=Obs used in calculating BIC; see [R] BIC note.

- 62 . *BIC:-306 *BIC increased
- 63.
- 64 . *MODEL1.7: AFTER REMOVING INSIGNIFICANT VARIABLES BUT WITH SHALL and pm1029
- 65 . reg lnvio shall lnincarc_rate lnpb1064 pm1029 lnmur lnrob lnden lnpop, vce (cluster stateid)

Linear regression 1,173	Number of obs	=
	F(8, 50)	=
213.34	Prob > F	=
0.0000	R-squared	=
0.8983	Root MSE	=
.20591	1.000 1101	

(Std. Err. adjusted for 51 clusters

in stateid)

Conf. Inte	lnvio rval]	Coef.	Robust Std. Err.	t	P> t	[95%
0.01.0.00	shall	0590532	.0403381	-1.46	0.149	1400745
.0219682 lnin .4510182	carc_rate	.3302438	.0601298	5.49	0.000	.2094695
• 1010102	lnpb1064	1388187	.0612444	-2.27	0.028	2618318
0158057 .0514789	pm1029	.0189029	.0162186	1.17	0.249	0136732
.0314789	lnmur	.1552896	.0688229	2.26	0.028	.0170547
.2935245	lnrob	.5391388	.0576843	9.35	0.000	.4232765
.655001	lnden	1008833	.0875875	-1.15	0.255	2768081
.0750414	lnpop	0577938	.0557736	-1.04	0.305	1698183
.0542307	111505	• 00 / / 300	• 000 / 100	1.01	0.000	•1000100
2.448225	_cons	1.50835	.4679348	3.22	0.002	.5684755

66 . estat ic

Akaike's information criterion and Bayesian information criterion

Model | Obs ll(null) ll(model) df AIC

```
. | 1,173 -1146.721 193.8318 9 -369.6637
-324.0578
               Note: N=Obs used in calculating BIC; see [R] BIC
note.
   67 . *BIC:-324 *BIC lower than model 5 *BEST MODEL FOR POOLED
   68 .
   EFFECT***************
   70 . *MODEL2.1: FIXED AFFECT MODEL ON ALL THE VRIABLES (TO CAPTURE THE
EFECTS OF DIFFERENT STATES)
   71 . xtreg lnvio lnincarc_rate shall lnpb1064 pm1029 lnpop lnden
lnmur lnrob lnavginc, fe
    Fixed-effects (within) regression
                                         Number of obs
1,173
    Group variable: stateid
                                         Number of groups =
51
    R-sq:
                                         Obs per group:
       within = 0.6179
                                                    min =
23
       between = 0.7955
                                                    avg =
23.0
       overall = 0.7810
                                                    max =
23
                                         F(9,1113)
    corr(u_i, Xb) = 0.2567
                                         Prob > F
0.0000
          lnvio | Coef. Std. Err. t P>|t| [95%
Conf. Interval]
    ______
    lnincarc rate | .0617937 .0198174 3.12 0.002
                                                  .0229101
.1006773
         .0234668
        lnpb1064 | .1759719 .0681901 2.58 0.010 .0421763
.3097675
         pm1029 | -.0373956 .0056321 -6.64 0.000 -.0484464
-.0263448
          lnpop | -.2702397
                          .0842294 -3.21 0.001
                                                 -.435506
-.1049734
          lnden | -.5513626
                          .3402211 -1.62 0.105
                                                 -1.21891
.1161843
          lnmur | .0790516 .0220294
                                   3.59 0.000
                                                 .0358277
.1222754
         lnrob | .5430485 .0179961 30.18 0.000
                                                 .5077383
.5783586
        lnavginc | .0509784 .0657195 0.78 0.438 -.0779697
```

.1799265

```
_cons | 3.675818 .2790747 13.17 0.000
                                                 3.128246
4.22339
         sigma u | .29314285
         sigma e | .1120213
          rho | .87257737 (fraction of variance due to u_i)
   F test that all u i=0: F(50, 1113) = 56.39
                                                  Prob >
F = 0.0000
   72 . estat ic
    Akaike's information criterion and Bayesian information criterion
    ______
                    Obs ll(null) ll(model)
         Model |
                                           df
BIC
    ______
            . | 1,173 369.8453 934.1542 10 -1848.308
-1797.635
    ______
               Note: N=Obs used in calculating BIC; see [R] BIC
note.
   73 . * bic : -1797.635
   74 . estimates store fixed2 1
   75 . *INSIGNIFICANT VARIABLES: shall Inden Inavginc
   77 . *MODEL 2.2 : with robust standard error
   78 . xtreg lnvio lnincarc rate shall lnpb1064 pm1029 lnpop lnden
lnmur lnrob lnavginc, fe vce (cluster stateid)
    Fixed-effects (within) regression
                                         Number of obs
    Group variable: stateid
                                         Number of groups =
51
                                         Obs per group:
    R-sq:
        within = 0.6179
                                                    min =
23
       between = 0.7955
                                                    avg =
23.0
       overall = 0.7810
                                                    max =
23
                                         F(9,50)
    corr(u i, Xb) = 0.2567
                                         Prob > F
0.0000
                             (Std. Err. adjusted for 51 clusters
in stateid)
    ______
```

Conf. Inte		Coef.	Robust Std. Err.			[95%
lnir .1628712	carc_rate	.0617937	.0503234	1.23	0.225	0392838
	shall	0010026	.0302662	-0.03	0.974	061794
.0597888	lnpb1064	.1759719	.1618315	1.09	0.282	1490762
.50102	pm1029	0373956	.0140429	-2.66	0.010	0656016
0091895	lnpop	2702397	.1885807	-1.43	0.158	6490152
.1085359	lnden	5513626	.6489013	-0.85	0.400	-1.854719
	lnmur	.0790516	.02856	2.77	0.008	.0216871
.136416	lnrob	.5430485	.034028	15.96	0.000	.4747013
.6113956	lnavginc	0500704	.149821	0.34	0.735	2499458
.3519027	Inavgine	.0309784	.149021	0.34	0.733	2499430
4.974729	_cons	3.675818	.6466882			2.376906
	·+· ·					
		.29314285				
	sigma_e rho 	.1120213 .87257737	(fraction	of variar	ice due	to u_i)

Akaike's information criterion and Bayesian information criterion

BIC	Model	, ,	ll(model)	AIC
-1804.703	·		934.1542	-1850.308

Note: N=Obs used in calculating BIC; see [R] BIC note.

- 80 . *bic: -1804.703
- 81 . estimates store fixed2 2
- 82 . *insignificant variables: shall lnpb1064 lnincarc_rate lnpop lnden lnavginc
 - 83 .
 - 84 . *MODEL 2.3 : REMOVING ALL INSIGNIFICANT VARIABLES
 - 85 . xtreg lnvio pm1029 lnmur lnrob , fe vce (cluster stateid)

1 170	Fixed-effects	(within) reg	ression		Number o	f obs =	
1,173 51	Group variable	e: stateid			Number o	f groups =	
23 23.0 23	R-sq: within between soverall s	= 0.8619			Obs per F(3,50)	min = avg = max =	
122.6	corr(u_i, Xb)	= 0.1920			Prob > F		
in st	ateid)			Err. adjus			
Conf.	Intervall	 Coef.				_	
042		0559896	.006579	-8.51	0.000	0692039	
.1569	lnmur	.1049331	.0259134	4.05	0.000	.0528846	
.5922	lnrob	.515525	.0381998	13.50	0.000	.4387983	
4.714	_cons 826	4.300789				3.886752	
	sigma_u .23679004 sigma_e .11384407 rho .81224869 (fraction of variance due to u_i)						
	Akaike's info	rmation crite:		_			
BIC		Obs					
-1802	. 934	1,173	369.8453	912.0681	3	-1818.136	
		Note: N=Obs	used in c	alculating	BIC; see	[R] BIC	

note.

```
87 . *BIC: -1802.934
```

88 . estimates store $fixed2_3$

 $corr(u_i, Xb) = 0.1923$

89

90 . *MODEL 2.4: Using shall and REMOVING ALL other INSIGNIFICANT VARIABLES

91 . xtreg lnvio shall pm1029 lnmur lnrob , fe vce (cluster stateid)

1,173	Fixed-effects (within) regression	Number of obs	=
51	Group variable: stateid	Number of groups	=
23	R-sq: within = 0.6033	Obs per group: min	=
23.0	between = 0.8620	avg	=
23	overall = 0.8421	max	=
		F(4,50)	=

(Std. Err. adjusted for 51 clusters

Prob > F

in stateid)

	- lnvio	Coef.	Robust Std. Err.	t	P> t	[95%
Conf. Inte	rval]					
0501100	- shall	.0003409	.0287628	0.01	0.991	0574309
.0581128	pm1029	0559623	.0067207	-8.33	0.000	0694613
.1574604	lnmur	.1050031	.0261169	4.02	0.000	.0525458
.593918	lnrob	.5154802	.0390518	13.20	0.000	.4370423
4.703841	_cons	4.30034		21.41		3.89684
	+- -					
		.23679539 .11389493 .81211932	(fraction	of variar	nce due t	co u_i)

92 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC		Obs				
-1795.868	.	1,173	369.8453	912.0685	4	-1816.137
note.		Note: N=Obs				
94 · 95 · ⁹		.868 Using shall shall pm102				
	ed-effects	(within) reg	ression		Number o	f obs =
1,173 Grou	ıp variable	: stateid			Number o	f groups =
R-sc	q: within =	0.6058			Obs per	group: min =
	between =	0.8618				avg =
23.0	overall =	0.8423				max =
79.70 corr	c(u_i, Xb)	= -0.1421			F(5,50) Prob > F	=
in stateio	d)		(Std.	Err. adjus	ted for 5	1 clusters
Conf. Inte	erval]	Coef.				
	 shall	0018249	.0289038	-0.06	0.950	0598799
.0562301		0488951				
0346174	_	.1063104				.0503273
.1622934						
.59304		.5189347			0.000	
.4228958	_	.1609463			0.223	
4.48018	_cons	3.907315		13.70		
		.23474761				

```
rho | .8102988 (fraction of variance due to u_i)
  97 . estat ic
   Akaike's information criterion and Bayesian information criterion
    ______
        Model | Obs ll(null) ll(model) df
BIC
    ______
                 1,173 369.8453 915.8095 5 -1821.619
           . |
-1796.282
   ______
             Note: N=Obs used in calculating BIC; see [R] BIC
note.
  98 . *BIC: -1796.282
  100 . *MODEL 2.6: Using shall, lnpb1064, lnden as INSIGNIFICANT
  101 . xtreg lnvio shall pm1029 lnmur lnrob lnpb1064 lnden , fe vce
(cluster stateid)
   Fixed-effects (within) regression
                                     Number of obs =
1,173
   Group variable: stateid
                                     Number of groups =
51
   R-sq:
                                     Obs per group:
       within = 0.6102
                                              min =
23
      between = 0.5795
                                               avg =
23.0
      overall = 0.5806
                                               max =
23
                                     F(6,50)
78.55
   corr(u i, Xb) = -0.2255
                                     Prob > F =
0.0000
                        (Std. Err. adjusted for 51 clusters
in stateid)
   _____
                       Robust
        lnvio | Coef. Std. Err. t P>|t| [95%
Conf. Interval]
    ______
        shall | -.0023498 .0288505 -0.08 0.935 -.0602978
       pm1029 | -.0473553 .007159 -6.61 0.000 -.0617346
-.0329759
```

1000000	lnmur	.0816994	.0287213	2.84	0.006	.024011
.1393879	lnrob	.5352131	.0356357	15.02	0.000	.4636367
.6067895	lnpb1064	.2463781	.150595	1.64	0.108	0561008
.5488571	lnden	-1.110782	.6933656	-1.60	0.115	-2.503448
.2818838	_cons	3.916171	.3064399	12.78	0.000	3.300668
4.531673	+-					
	sigma_e rho	.41640973 .1129988 .93141206				o u_i)
	estat ic	nation crite	rion and Ba	ayesian inf	Formation	criterion
BIC	 Model 	Obs				
-1802.365		1,173				
note.		Note: N=Obs	used in c	alculating	BIC; see	[R] BIC
	*BIC: -1802. estimates st		6			
INSIGNIFI 107 .	*MODEL 2.7: CANT VARIABI xtreg lnvio cluster state	ES shall pm102	_	-		lnavginc ,
	ed-effects ((within) reg	ression		Number o	of obs =
1,173 Gro	oup variable:	stateid			Number o	of groups =
R-s	sq: within =	0.6108			Obs per	<pre>group: min =</pre>
23	between =	0.5686				avg =
23.0	overall =	0.5706				max =
66.47					F(7,50)	=

0.0000

(Std. Err. adjusted for 51 clusters

in statei	(Std. Err. adjusted for 51 clusters in stateid)					
Conf. Int		Coef.	Robust Std. Err.	t	P> t	[95%
052220	shall	0050984	.0290937	-0.18	0.862	0635349
.053338	_	0439012	.0085254	-5.15	0.000	0610249
0267775	lnmur	.0783701	.0288227	2.72	0.009	.020478
.1362622	lnrob	.5352203	.0360567	14.84	0.000	.4627982
.6076423	lnpb1064	.2243957	.1652018	1.36	0.180	1074218
.5562133	lnden	-1.130886	.7198929	-1.57	0.123	-2.576834
.3150612	lnavginc	.0848814	.1460449	0.58	0.564	2084584
.3782211		3.680035			0 - 000	2.696454
4.663616						2.030101
	sigma_e	.42075342 .11295925				
	rho	.93211003	(fraction	or Aarlai	ice due l	

108 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC	Model	, ,	,	AIC
-1797.17	·		923.3207	-1832.641

Note: N=Obs used in calculating BIC; see [R] BIC note.

109 . *BIC: -1797.17

110 . estimates store fixed2_7

111 .

112 . *MODEL 2.8: Using shall, lnpb1064, lnpop,lnden as INSIGNIFICANT VARIABLES

113 . xtreg lnvio shall pm1029 lnmur lnrob lnpb1064 lnden lnpop , fe vce (cluster stateid) $\,$

						of obs	=	
1,173 51	Group variabl	Number	of groups	=				
23	R-sq: within	= 0.6136			Obs per	group:	=	
	between	= 0.7339				avg	=	
23.0	overall	= 0.7243				max	=	
70.33	F(7,50) 70.33 corr(u_i, Xb) = 0.1638 Prob > F 0.0000							
in sta	ateid) 			_		51 clusters	_	
Conf.	<pre>Interval]</pre>	 Coef.						
		.0058435						
.06472	278	0518392						
0352	2578	.0749588						
.13400	063	.5412995						
.61150	96	.255527						
.55752	149	69551						
.53552	157							
.12514	184	2659327						
5.0696	- 506	4.271589 +					_	
	 sigma u	.32697845 .1125468 .89407423						

Akaike's information criterion and Bayesian information criterion

BIC		Obs				
-1805.752		1,173				
note.		Note: N=Obs	used in ca	ılculating	BIC; see	[R] BIC
	BIC: -1805 estimates s	.752 tore fixed2_8	8			
INSIGNIFIC	CANT VARIABE	Using shall, LES shall pm1029 e (cluster st	9 lnmur lnr			_
Fixe	ed-effects	(within) reg	ression		Number o	of obs =
Grou 51	p variable	: stateid			Number o	of groups =
R-sq	: within =	0.6177			Obs per	group: min =
23	between =	0.7996				avg =
23.0	overall =	0.7850				max =
66.87					F(8,50)	=
	(u_i, Xb)	= 0.2397			Prob > F	=
in stateid				_		51 clusters
Conf. Inte	lnvio		Robust Std. Err	:. t	P> t	
	shall	.0000894				0608954
.0610742	pm1029	0385358	.0140708	-2.74	0.009	0667978
0102737	lnmur	.0816308	.028107	2.90	0.005	.0251761
.1380854	lnrob	.5429988	.0337221	16.10	0.000	.4752659
.6107316		.1845555			0.245	
.4997296	_	539933		-0.85		

.7313813

```
.1892361 -1.39 0.170 -.6436029
         lnpop | -.263511
.1165808
                                1.40 0.168
   lnincarc rate | .0658703
                        .0471004
                                             -.0287335
.1604742
         _cons | 3.778317 .5884176 6.42 0.000
                                             2.596445
4.960188
   ______
        sigma_u | .28873478
        sigma e | .11200128
          rho | .86921054 (fraction of variance due to u i)
  120 . estat ic
    Akaike's information criterion and Bayesian information criterion
    _____
        Model | Obs ll(null) ll(model)
                                        df
BTC
    _____
           . | 1,173 369.8453 933.8372 8 -1851.674
-1811.136
   _____
             Note: N=Obs used in calculating BIC; see [R] BIC
note.
  121 . *BIC: -1811.136. This is the best model as per BIC.
  122 . estimates store fixed2 9
  123 .
  125 .
  126 . *MODEL 3.1: MODEL WITH ENTITY AND TIME FIXED EFFECT
  127 . xtreg lnvio lnincarc rate shall lnpb1064 pm1029 lnpop lnden
lnmur lnrob lnavginc i.year, fe
    Fixed-effects (within) regression
                                      Number of obs =
1,173
   Group variable: stateid
                                      Number of groups =
51
    R-sq:
                                      Obs per group:
       within = 0.6758
                                               min =
23
       between = 0.5718
                                                avg =
23.0
      overall = 0.5619
                                                max =
23
                                      F(31,1091)
   corr(u i, Xb) = 0.3719
                                     Prob > F
0.0000
```

		1	Coef.	Std. Err.	t	P> t	[95%
Conf. Inte	rval] 	-+-					
	 carc_rate	1	0041201	.0213632	-0.19	0.847	0460378
.0377976	shall	1	0299454	.0129191	-2.32	0.021	0552945
0045962	lnpb1064	1	027411	.0703291	-0.39	0.697	1654067
.1105847	pm1029	1	.0384271	.0084945	4.52	0.000	.0217598
.0550944	lnpop	1	2997561	.0808331	-3.71	0.000	4583621
1411501	lnden	ı	5725517	.3237413	-1.77	0.077	-1.207778
.0626744	lnmur		.049223			0.024	.0066146
.0918315	lnrob		.4768532	.0185334		0.000	.4404881
.5132183			1177747			0.137	
.0373231	Inavgine		• 11 / / / 4 /	.0790432	1.49	0.137	.2720720
	year		0.40.67.40	000007	0 27	0 010	0005070
.0908412	78	1	.0496742				
.1510763	79		.1089603	.0214643	5.08	0.000	.0668442
.1584339	80		.1149285	.0221724	5.18	0.000	.0714231
.1524658	81		.1073847	.0229755	4.67	0.000	.0623037
.1679941	82	-	.1204283	.0242418	4.97	0.000	.0728626
.1883863	83		.1373779	.0259963	5.28	0.000	.0863695
.2573323	84	1	.2010825	.0286676	7.01	0.000	.1448326
.3004774	85		.2393366	.0311602	7.68	0.000	.1781959
	86	1	.2840803	.0342508	8.29	0.000	.2168755
.3512851	87	1	.3056825	.0370628	8.25	0.000	.2329602
.3784049	88		.3563915	.0401949	8.87	0.000	.2775235
.4352594	89	1	.3903557	.043303	9.01	0.000	.305389
.4753223	90	1	.474207	.0464222	10.22	0.000	.3831201
.5652939	91	ı	.4773074	.0490521	9.73	0.000	.3810603
.5735544	92	I	.5182075		10.00	0.000	.4165142
.6199008	93	· 			9.99	0.000	.4306582
.6412549	94	' 	.5256749			0.000	.4157121
.6356376	94	1	. 5250149	.0000722	J.JU	0.000	• 410 / 121

6400700	95		.525475	.0584041	9.00	0.000	.4108779
.6400722	96	1	.5060943	.0606338	8.35	0.000	.3871224
.6250663	97	I	.5256931	.0627149	8.38	0.000	.4026375
.6487486	98		.5234356	.0648452	8.07	0.000	.3962001
	99		.5092141	.0665215	7.65	0.000	.3786896
4.242314	_cons		3.677631	.2877893	12.78		3.112948
	sigma_u sigma_e rho			(fraction	of varian	.ce due t	to u_i)
F test that all $u_i=0$: $F(50, 1091) = 64.81$ Prob > $F = 0.0000$							

Akaike's information criterion and Bayesian information criterion

Note: N=Obs used in calculating BIC; see [R] BIC note.

- 129 . *BIC: -1834.937
- 130 . estimates store fixed3_1
- 131 . *insignificant variables: lnincarc rate lnpb1064 lnavginc
- 132 .
- 133 . *FTEST TO CHECK THE SIGNIFICANCE OF YEAR
- 134 . testparm i.year
 - (1) 78.year = 0
 - (2) 79.year = 0
 - (3) 80.year = 0
 - (4) 81. year = 0
 - (5) 82.year = 0
 - (6) 83.year = 0
 - (7) 84. year = 0
 - (8) 85.year = 0
 - (9) 86. year = 0
 - (10) 87.year = 0
 - (11) 88.year = 0
 - (12) 89.year = 0

```
(13)
          90.year = 0
      (14) 91.year = 0
      (15)
           92.year = 0
           93.year = 0
      (16)
      (17)
          94.year = 0
          95.year = 0
      (18)
      (19) 96.year = 0
      (20) 97.year = 0
      (21) 98.year = 0
      (22) 99.year = 0
           F(22, 1091) = 8.86

Prob > F = 0.0000
  135 . *yes significant
  137 . *MODEL 3.2: MODEL WITH ENTITY AND TIME FIXED EFFECT with robust
standard error
  138 . xtreg lnvio lnincarc rate shall lnpb1064 pm1029 lnpop lnden
lnmur lnrob lnavginc i.year, fe vce(cluster stateid)
                                               Number of obs
     Fixed-effects (within) regression
1,173
    Group variable: stateid
                                               Number of groups =
     R-sq:
                                               Obs per group:
         within = 0.6758
                                                           min =
        between = 0.5718
                                                           avg =
        overall = 0.5619
                                                           max =
                                               F(31,50)
110.96
    corr(u i, Xb) = 0.3719
                                               Prob > F
0.0000
                                 (Std. Err. adjusted for 51 clusters
in stateid)
    ______
                              Robust
                 lnvio | Coef. Std. Err. t P>|t| [95%
Conf. Interval]
     lnincarc rate | -.0041201 .0592242 -0.07 0.945 -.1230755
.1148353
           shall | -.0299454
                              .0288532 -1.04 0.304
                                                       -.0878987
.028008
                              .1836866 -0.15 0.882
        lnpb1064 | -.027411
                                                       -.3963563
.3415344
          pm1029 | .0384271
                              .0192401 2.00 0.051
                                                       -.0002177
.077072
                              .1685498 -1.78 0.081
           lnpop | -.2997561
                                                       -.6382983
.0387861
           lnden | -.5725517 .4087528 -1.40 0.167 -1.393556
```

51

23

23

23.0

.2484525

	lnmur	1	.049223	.028407	1.73	0.089	0078342
.1062802	lnrob		.4768532	.0372789	12.79	0.000	.4019764
.55173	lnavginc	I	1177747	.2006829	-0.59	0.560	5208582
.2853087	-	ı					
0750460	year 78	 	.0496742	.0130306	3.81	0.000	.0235015
.0758468	79		.1089603	.0197485	5.52	0.000	.0692942
.1486263	80		.1149285	.0258125	4.45	0.000	.0630826
.1667744	81		.1073847	.0306315	3.51	0.001	.0458595
.16891	82		.1204283	.0386741	3.11	0.003	.0427492
.1981075	83		.1373779	.0452062	3.04	0.004	.0465786
.2281772	84	ı	.2010825	.0539679	3.73	0.000	.0926848
.3094802	85	İ	.2393366	.0618038	3.87	0.000	.1152
.3634732	86	i	.2840803	.0735775	3.86	0.000	.1362955
.431865	87	' 	.3056825	.0819664	3.73	0.000	.1410483
.4703168		1				0.000	
.541192	88		.3563915	.0920065	3.87		.171591
.596029	89		.3903557	.1023984	3.81	0.000	.1846824
.6956509	90		.474207	.1102501	4.30	0.000	.2527631
.7079691	91		.4773074	.1148394	4.16	0.000	.2466457
.7619544	92		.5182075	.1213541	4.27	0.000	.2744606
.7901478	93		.5359566	.126554	4.24	0.000	.2817653
.7911232	94		.5256749	.1321586	3.98	0.000	.2602266
.8020107	95		.525475	.1376786	3.82	0.000	.2489394
.7940843	96		.5060943	.1433813	3.53	0.001	.2181044
.8218715	97		.5256931	.1474582	3.57	0.001	.2295147
	98		.5234356	.1528947	3.42	0.001	.2163375
.8305337	99		.5092141	.1566451	3.25	0.002	.1945832
.823845						0.555	
4.977097	_cons						2.378166
	·	+-					

sigma_u | .4500464
sigma_e | .10421916
 rho | .9491028 (fraction of variance due to u_i)

1 0 0		
139	estat	7 ~
エンシ	Colat	\perp

139 . estat ic Akaike's information criterion and Bayesian in:	
Model Obs ll(null) ll(model) BIC	
. 1,173 369.8453 1030.546 -1842.005	
Note: N=Obs used in calculating note.	BIC; see [R] BIC
140 . *BIC: -1842.005 141 . estimates store fixed3_2	
142 . *insignificant variables: lnincarc_rate shall lnden lnmur lnavginc 143 . 144 . *MODEL 3.3: MODEL WITH ENTITY AND TIME FIXED insignificant variables 145 . xtreg lnvio pm1029 lnrob i.year, fe vce (clu	D EFFECT and removing
Fixed-effects (within) regression	Number of obs =
1,173 Group variable: stateid 51	Number of groups =
R-sq: within = 0.6597	Obs per group: min =
between = 0.8659 23.0	avg =
overall = 0.8454 23	max =
	F(24,50) =
83.96 $corr(u_i, Xb) = 0.5091$ 0.0000	Prob > F =
(Std. Err. adjustin stateid)	sted for 51 clusters
Robust lnvio Coef. Std. Err. t	P> t [95%

.5596856	lnrob		.4774416	.0409467	11.66	0.000	.3951977
	year	 					
.0626714	78		.0415357	.0105228	3.95	0.000	.0204
.1273523	79	l	.0988504	.0141902	6.97	0.000	.0703484
	80		.1047676	.0189809	5.52	0.000	.0666433
.1428919	81	l	.0921284	.0223929	4.11	0.000	.0471509
.1371058	82	l	.0968253	.0245419	3.95	0.000	.0475315
.1461191	83	l	.1038185	.0249332	4.16	0.000	.0537386
.1538983	84	l	.1537424	.0294401	5.22	0.000	.0946102
.2128746	85	l	.1863018	.0334566	5.57	0.000	.1191023
.2535013	86	l	.2252699	.0413	5.45	0.000	.1423165
.3082234	87	l	.2384964	.0451573	5.28	0.000	.1477953
.3291974	88	l	.2820228	.0491108	5.74	0.000	.1833808
.3806648	89	I	.3097034	.0570113	5.43	0.000	.1951928
.4242141	90	ı	.3886641	.0621383	6.25	0.000	.2638556
.5134727	91	l I	.3873254	.0660386	5.87	0.000	.2546829
.5199679	92	· I	.4186766	.0689349	6.07	0.000	.2802167
.5571365	93	ı	.4341813	.0719453	6.03	0.000	.2896749
.5786878							
.5631319	94		.4146717	.0739138	5.61	0.000	.2662115
.5588236				.0758718		0.000	.2540375
.5300333	96			.076572		0.000	.2224347
.5383539	97		.3850107			0.000	.2316674
.5286636	98		.3740918		4.86	0.000	.21952
.5142081	99		.3522206	.0806486	4.37	0.000	.1902331
3.729854	_cons	 	3.018026	.3543974	8.52	0.000	2.306198
	sigma_u sigma_e rho		.27102156 .10643873 .86637237	(fraction o	of varian	ice due 1	co u_i)

BIC	- Model	Obs				
-1834.535 	1	1,173	369.8453	1002.076	24	
note.		Note: N=Obs	used in c	alculating	BIC; see	[R] BIC
	* BIC: -1834 estimates st		3			
and remov	*MODEL 3.4: ing other in xtreg lnvio	significant	variables			
	ed-effects (within) reg	ression		Number o	of obs =
1,173 Gro	up variable:	stateid			Number o	of groups =
R-s	q: within =	0.6619			Obs per	<pre>group: min =</pre>
23.0	between =	0.8671				avg =
23	overall =	0.8471				max =
80 00					F(25,50)	=
89.09 cor	r(u_i, Xb)	= 0.4988			Prob > I	? =
in statei	d)		(Std.	Err. adjus	sted for S	51 clusters
Conf. Int		Coef.		. t		
	 pm1029	.0372361	.0188774	1.97	0.054	0006803
.0751525	lnrob	.4781172	.0409484	11.68	0.000	.39587
.0269206	shall	033981	.030321	-1.12	0.268	0948826
	year					

.0638847	78		.0423811	.010706	3.96	0.000	.0208776
	79		.1004627	.0146716	6.85	0.000	.070994
.1299314	80		.1070769	.0193244	5.54	0.000	.0682626
.1458912	81		.0952499	.0228903	4.16	0.000	.0492734
.1412265	82		.1020162	.0255809	3.99	0.000	.0506355
.1533969	83		.1106458	.0266807	4.15	0.000	.0570561
.1642355	84		.1623012	.031616	5.13	0.000	.0987985
.2258039	85		.1965425	.0364524	5.39	0.000	.1233257
.2697593	86	I	.2385356	.0433824	5.50	0.000	.1513994
.3256717	87	1	.2541522	.0477238	5.33	0.000	.1582961
.3500083	88	i I	.2999561	.0519309	5.78	0.000	.1956499
.4042624	89	I	.3290774	.0598379	5.50	0.000	.2088895
.4492653	90	1	.4112856	.0663156	6.20	0.000	.2780867
.5444845	91	1	.4131906	.070986	5.82	0.000	.2706109
.5557702		1					
.5959452	92	1	.4469033	.0742034	6.02	0.000	.2978615
.617769	93		.4633299	.0768905	6.03	0.000	.3088909
.6045998	94		.4447152	.0796016	5.59	0.000	.2848307
.604686	95		.439747	.0821181	5.36	0.000	.274808
.5830775	96		.4133412	.0845065	4.89	0.000	.2436049
.5946448	97		.4244504	.0847346	5.01	0.000	.254256
.5864387	98		.4137998	.0859516	4.81	0.000	.2411609
.5732499	99		.3922094	.0901345	4.35	0.000	.2111688
	cons	 	2.91845	.3723638	7.84	0.000	2.170536
3.666365		· +-·					
	 siama u	I	.26751764				
			.10613908	(fraction of	Varian	ice diie t	oui)
		<u>-</u>					

. . . .

152 . estat ic

Akaike's information criterion and Bayesian information criterion

BIC		Obs						
-1835.151		1,173	369.8453	1005.917	25	-1961.834		
	·-							
note.		Note: N=Obs	s used in c	alculating	BIC; see	[R] BIC		
	* BIC: -183	35.151 store fixed3_	_4					
155 . 156 . *MODEL 3.5: MODEL WITH ENTITY AND TIME FIXED EFFECT with shall, lnpb1064 as insignificant variables 157 . xtreg lnvio pm1029 lnrob shall lnpb1064 i.year, fe vce (cluster stateid)								
1,173	ed-effects		of obs = of groups =					
R-s	q: within =	Obs per	<pre>group: min =</pre>					
23.0	between =	= 0.8501			avg =			
23.0	overall =	= 0.8261				max =		
					F(26,50)) =		
90.10 cor	r(u_i, Xb)	= 0.5704			Prob > 1	₹ =		
in statei						51 clusters		
Conf. Int	erval]	 Coef.				[95%		
	 pm1029	.039862	.0196712	2.03	0.048	.0003512		
.0793728	lnrob	.4733831	.039575	11.96	0.000	.3938944		
.5528718	shall	0375786	.029877	-1.26	0.214	0975883		
.0224311	lnpb1064	1054846	.1847552	-0.57	0.571	4765764		
	year	 						

.0666927	78		.0440848	.0112558	3.92	0.000	.0214769
	79		.1041281	.0154255	6.75	0.000	.073145
.1351113	80		.1135976	.0218924	5.19	0.000	.0696254
.1575697	81		.1035377	.0268883	3.85	0.000	.0495309
.1575444	82	1	.1118319	.0307177	3.64	0.001	.0501336
.1735302	83	I	.1217269	.0342375	3.56	0.001	.0529589
.1904949	84	I	.1750141	.0397801	4.40	0.000	.0951133
.2549149	85	I	.2112904	.046027	4.59	0.000	.1188424
.3037385	86	i	.2556514	.0523369	4.88	0.000	.1505297
.3607732	87	' 	.27312	.0584218	4.67	0.000	.1557764
.3904637	88	' 	.3211822	.0641528	5.01	0.000	.1923276
.4500368		1	.3525791				
.4992099	89			.073003	4.83	0.000	.2059482
.5980911	90	1	.4373847	.0800108	5.47	0.000	.2766782
.6127011	91		.4415649	.0852035	5.18	0.000	.2704286
.657749	92		.4771112	.089934	5.31	0.000	.2964734
.6832011	93		.4951386	.0936306	5.29	0.000	.3070761
.674293	94		.4779633	.0977465	4.89	0.000	.2816336
.6757592	95		.4746156	.1001432	4.74	0.000	.273472
.6580099	96		.4496805	.1037209	4.34	0.000	.241351
	97	1	.4619751	.1044321	4.42	0.000	.252217
.6717332	98		.4521488	.1072504	4.22	0.000	.2367301
.6675675	99		.4315642	.1144067	3.77	0.000	.2017714
.6613569							
3.818932	_cons			.3831467		0.000	2.279786
	 	+-					
			.30477219 .10606426				
	rho			(fraction of	varian	ice due to	u_i)

Akaike's information criterion and Bayesian information criterion

BIC	Model	Obs		ll(model)		AIC			
-1830.807		1,173	369.8453		26				
note.	-	Note: N=Obs							
159 . * BIC: -1830.807 160 . estimates store fixed3_5									
161 . 162 . *MODEL 3.6: MODEL WITH ENTITY AND TIME FIXED EFFECT with shall, lnpb1064, lnden as insignificant variables 163 . xtreg lnvio pm1029 lnrob shall lnpb1064 lnden i.year, fe vce (cluster stateid)									
1,173	ed-effects up variable	(within) reg	ression			of obs = of groups =			
R-sc	<pre>M: within = between =</pre>				Obs per	<pre>group: min = avq =</pre>			
23.0	overall =					max =			
94.80 corr	c(u_i, Xb)	= -0.3031			F(27,50)				
in stateid	l)		(Std.	Err. adjus	ted for !	51 clusters			
Conf. Inte	erval]	Coef.							
.0778679	 pm1029	.0385901	.0195552	1.97	0.054	0006878			
.5618568	lnrob	.4857865	.0378731	12.83	0.000	.4097162			
.0258883		0341494							
.3940573		.0133737							
3679375	lnden	-1.330615	.4792874	-2.78	0.008	-2.293292			

	year						
.0659121	78		.0427925	.0115105	3.72	0.001	.0196729
.1317525	79	-	.1006459	.015487	6.50	0.000	.0695394
.1499214	80		.1066256	.0215557	4.95	0.000	.0633298
	81	1	.0956217	.0264191	3.62	0.001	.0425574
.148686	82		.1038506	.0300858	3.45	0.001	.0434214
.1642798	83		.1145085	.0336677	3.40	0.001	.0468849
.1821321	84	I	.1680339	.0391227	4.30	0.000	.0894536
.2466142	85	ı	.203602	.04536	4.49	0.000	.1124937
.2947103	86	ı	.2468218	.0515899	4.78	0.000	.1432004
.3504433	87		.2644289	.0575345	4.60	0.000	.1488675
.3799904							
.438183	88		.3114487	.0630971	4.94	0.000	.1847143
.4854943	89		.3414054	.0717375	4.76	0.000	.1973164
.5830334	90		.4248889	.0787353	5.40	0.000	.2667444
.595401	91		.4270146	.0838344	5.09	0.000	.2586282
.6393834	92		.4617259	.0884502	5.22	0.000	.2840684
.663771	93	1	.4790912	.0919464	5.21	0.000	.2944113
	94		.4611878	.096069	4.80	0.000	.2682275
.6541482	95	1	.4567965	.0983454	4.64	0.000	.2592639
.6543291	96	1	.4313121	.1017523	4.24	0.000	.2269365
.6356877	97	ı	.4434946	.1025741	4.32	0.000	.2374685
.6495208	98	ı	.4341548	.1053793	4.12	0.000	.2224943
.6458153	99	i	.4140245			0.001	
.6399067	33	'	• 11 102 10	•1121030	3.00	0.001	•1001120
3.817152	_cons			.3726819			
	ai ama	'					
	sigma_e		.58663053	/fx2c+; c=	of monico		-0 11 11
	rho 	- 	.96894798 	(fraction	or varian	ice due t	

Akaike's information criterion and Bayesian information criterion

BIC		Obs				
-1848.091		1,173	369.8453	1019.454	27	-1984.909
note.		Note: N=Obs				
	* BIC: -184 estimates s	8.091 tore fixed3_	6			
lnpb1064, 169 .	lnpop, lnd	MODEL WITH en as insign pm1029 lnro)	ificant va	riables		·
1,173	ed-effects up variable	(within) reg	ression			of obs =
R-s	q: within =	0.6740			Obs per	<pre>group: min =</pre>
23.0	between =	0.3874				avg =
23	overall =	0.4045				max =
					F(28,50)) =
96.60 cor	r(u_i, Xb)	= 0.1744			Prob > 1	<u>-</u> =
in statei	d)		(Std.	Err. adjus	ted for !	51 clusters
Conf. Int	erval]	Coef.				
		.037292				
.0757737	lnrob	.4894918	.0371094	13.19	0.000	.4149554
.5640282	shall	0286511	.0300385	-0.95	0.345	0889851
.031683	lnpb1064	0067272	.1814566	-0.04	0.971	3711935
.357739	lnden	7967832	.4092568	-1.95	0.057	-1.6188
. 0 2 3 2 3 3 2						

.0120195	lnpop	3062501	.1584566	-1.93	0.059	6245196
.0120130	 year					
.0681399	78	.0450831	.0114793	3.93	0.000	.0220263
.1371911	79	.1051321	.0159612	6.59	0.000	.0730732
.1572872	80	.1134354	.0218324	5.20	0.000	.0695837
.1572521	81	.1041519	.026437	3.94	0.000	.0510517
.174982	82	.1141891	.0302669	3.77	0.000	.0533962
	83	.126602	.0334011	3.79	0.000	.0595139
.1936901	84	.1814549	.0384078	4.72	0.000	.1043104
.2585993	85	.2179403	.0443275	4.92	0.000	.1289059
.3069747	86	.2615472	.0508026	5.15	0.000	.1595072
.3635873	87	.2800558	.0564371	4.96	0.000	.1666986
.393413	88	.3279556	.061823	5.30	0.000	.2037804
.4521308	89	.3589758	.0710763	5.05	0.000	.2162148
.5017368	90	.4431598	.0780969	5.67	0.000	.2862977
.6000219	91	.4465117	.0829858	5.38	0.000	.27983
.6131935	92	.4832675	.0876577	5.51	0.000	.3072018
.6593332	·					
.6855504	93	.502804	.0909838	5.53	0.000	.3200575
.6773308	94	.4870197	.0947501	5.14	0.000	.2967085
.6800391	95	.484326	.0974396		0.000	.2886129
.6627192	96	.4605056	.100676	4.57	0.000	.2582919
.6787849	97	.4744865	.1017139	4.66	0.000	.270188
.6764739	98	.4671973	.1041924	4.48	0.000	.2579206
.6714992	99	.4489365	.1108072	4.05	0.000	.2263737
4.237474	_cons		.3974521			2.640862
	siama u l	.49846196				
		.10436919	(fraction	of variar	nce due	to u_i)

Akaike's	information	criterion	and	Bayesian	information	criterion	
				- 1			

BIC	- Model			ll(model)		
-1856.611 		1,173	369.8453	1027.248	28	-1998.496
note.	- No	te: N=Obs	used in c	alculating	BIC; see	[R] BIC
	* BIC: -1856.6		7			
lnpb1064, 175 .	*MODEL 3.8: MODEL 3.8:	lnavginc 1029 lnro	as insign	ificant var	iables	·
Fix 1,173	ed-effects (wi	thin) reg	ression		Number o	of obs =
	up variable: s	tateid			Number o	of groups =
R-s	q: within = 0.	6743			Obs per	<pre>group: min =</pre>
23	between = 0.					avg =
23.0	overall = 0.	1035				max =
23					F(29,50)	=
92.48 cor	r(u_i, Xb) =	0.1723			Prob > E	? =
in statei				Err. adjus		
Conf. Int	 lnvio erval]			. t		
	 pm1029	.0384884	.0191643	2.01	0.050	-4.20e-06
.0769809	lnrob	.4919418	.037571	13.09	0.000	.4164782
.5674054	shall -	.0302281	.0298316	-1.01	0.316	0901466
.0296904	lnpb1064 -	.0052396	.1832161	-0.03	0.977	3732399

	lnden	1	7896372	.3951139	-2.00	0.051	-1.583247
.0039723	lnpop	1	3064545	.156771	-1.95	0.056	6213383
.0084293	lnavginc	1	0749538	.1913556	-0.39	0.697	4593028
.3093951		1					
	year 78		.0480548	.0136295	3.53	0.001	.0206792
.0754304	79	ı	.1077555	.0174649	6.17	0.000	.0726762
.1428347	80	ı	.113719	.0219463	5.18	0.000	.0696386
.1577994	81	ı	.1050519	.0268224	3.92	0.000	.0511775
.1589263	82		.1151763	.0306366	3.76	0.000	.0536409
.1767118	83	' 	.1294901	.0344793	3.76	0.000	.0602364
.1987438	84	'	.1883821	.0422516	4.46	0.000	.1035173
.273247	85	1	.2268528		4.50	0.000	
.3281188				.0504173			.1255867
.3914491	86		.27244	.059251	4.60	0.000	.1534308
.4272293	87		.2926669	.0669945	4.37	0.000	.1581045
.4936438	88		.3423878	.0753057	4.55	0.000	.1911318
.5438866	89		.3751012	.0840331	4.46	0.000	.2063158
.6407472	90		.4597487	.0901136	5.10	0.000	.2787501
.6495956	91		.4625193	.0931396	4.97	0.000	.275443
.7002424	92	-	.5011161	.0991389	5.05	0.000	.3019897
.726447	93		.5211097	.1022312	5.10	0.000	.3157724
.721835	94	1	.5067008	.1071087	4.73	0.000	.2915666
.7273356	95	1	.5050813	.1106536	4.56	0.000	.282827
	96	1	.4827873	.1151746	4.19	0.000	.2514522
.7141224	97	1	.4986949	.1187441	4.20	0.000	.2601903
.7371995	98	1	.4942794	.1253134	3.94	0.000	.2425801
.7459787	99		.477653	.1309381	3.65	0.001	.214656
.74065							
4.720871	_cons		3.593207	.5614292	6.40	0.000	2.465543
	 	-+-					

.5483883

1		
176	estat	7 (
T / O	Colat	\perp

Akaike's information criterion and Bayesian inf	
Model Obs ll(null) ll(model) BIC	df AIC
Note: N=Obs used in calculating note.	BIC; see [R] BIC
177 . * BIC: -1850.564 178 . estimates store fixed3_8	
179 . 180 . *MODEL 3.9: MODEL WITH ENTITY AND TIME FIXED lnpb1064, lnpop, lnden, lnmur as insignificant variabl 181 . xtreg lnvio pm1029 lnrob shall lnpb1064 lnde i.year, fe vce (cluster stateid)	es
Fixed-effects (within) regression	Number of obs =
1,173 Group variable: stateid 51	Number of groups =
R-sq: within = 0.6752	Obs per group: min =
between = 0.5545 23.0	avg =
overall = 0.5475 23	max =
102.01	F(29,50) =
102.81 $corr(u_i, Xb) = 0.3527$	Prob > F =
0.0000 (Std. Err. adjus in stateid)	ted for 51 clusters
Robust lnvio Coef. Std. Err. t Conf. Interval]	P> t [95%

pm1029 | .0366642 .0193594 1.89 0.064 -.0022203 .0755488

lnrob | .4759976 .0360411 13.21 0.000 .4036069

.0326134	shall	1	0274038	.0298807	-0.92	0.363	087421
.3393333	lnpb1064		0259579	.1818673	-0.14	0.887	3912492
.2605373	lnden		6154668	.4361356	-1.41	0.164	-1.491471
	lnpop	1	2986636	.1615274	-1.85	0.070	6231008
.0257737	lnmur		.0415796	.0271062	1.53	0.131	0128648
.096024		I					
	year 78		.0448576	.0109285	4.10	0.000	.0229069
.0668082	79	ı	.1044119	.0160144	6.52	0.000	.0722461
.1365777	80	1	.1137106	.0217082	5.24	0.000	.0701085
.1573127	81		.1049244	.0264332	3.97	0.000	.0518317
.1580172						0.000	
.1775451	82	ı	.1170096	.0301387	3.88		.0564742
.1972617	83		.1303873	.0332947	3.92	0.000	.0635129
.2641658	84		.1871799	.0383289	4.88	0.000	.110194
.3112619	85		.2223392	.0442719	5.02	0.000	.1334165
	86		.2640099	.050999	5.18	0.000	.1615755
.3664443	87	1	.282653	.0564238	5.01	0.000	.1693224
.3959836	88	1	.3302933	.0617071	5.35	0.000	.206351
.4542356	89	1	.3613203	.0710524	5.09	0.000	.2186074
.5040332	90	ı	.4441982	.0781508	5.68	0.000	.2872276
.6011687	91	i	.4478321	.0831759	5.38	0.000	.2807684
.6148958	92		.4854324	.0876229	5.54	0.000	.3094367
.6614281							
.6855291	93	ı	.5026779	.091036	5.52	0.000	.3198266
.6796985	94		.489538	.0946751	5.17	0.000	.2993774
.6825665	95		.4872551	.0972396	5.01	0.000	.2919437
.6669023	96		.4649376	.100552	4.62	0.000	.2629729
	97	1	.4809319	.1013999	4.74	0.000	.2772643
.6845995	98		.4738971	.1038657	4.56	0.000	.2652766
.6825175	99	1	.4567346	.1104884	4.13	0.000	.2348122
.678657		1					
4.233681	_cons		3.415187	.4075031	8.38	0.000	2.596693

```
sigma_u \mid .45414947
         sigma_e | .10423162
           rho | .94996116 (fraction of variance due to u i)
  182 . estat ic
     Akaike's information criterion and Bayesian information criterion
           Model | Obs ll(null) ll(model) df
                                                            AIC
BIC
     ______
                      1,173 369.8453 1029.331
                                                  29 -2000.663
               . |
-1853.711
                 Note: N=Obs used in calculating BIC; see [R] BIC
note.
  183 . * BIC: -1853.711
  184 . estimates store fixed3 9
  185 .
  186 . *MODEL 3.10: MODEL WITH ENTITY AND TIME FIXED EFFECT with shall,
lnpb1064, lnpop, lnden,lnmur, lnincarc rate as insignificant variables
  187 . xtreq lnvio pm1029 lnrob shall lnpb1064 lnden lnpop lnmur
lnincarc rate i.year, fe vce (cluster stateid)
                                                Number of obs
     Fixed-effects (within) regression
1,173
    Group variable: stateid
                                                Number of groups =
51
     R-sq:
                                                Obs per group:
         within = 0.6752
                                                            min =
23
        between = 0.5444
                                                            avg =
23.0
        overall = 0.5384
                                                            max =
23
                                                F(30,50)
118.35
    corr(u i, Xb) = 0.3452
                                                Prob > F
0.0000
                                 (Std. Err. adjusted for 51 clusters
in stateid)
                               Robust
            lnvio | Coef. Std. Err. t P>|t| [95%
Conf. Interval]
```

pm1029 | .0366641 .0193943 1.89 0.065 -.0022906 .0756187 .3999636 lnrob | .475487 .0376007 12.65 0.000 .5510103 shall | -.0277153.0293439 -0.94 0.349 -.0866543 .0312237 lnpb1064 | -.0261836 .181729 -0.14 0.886 -.391197 .3388297 lnden | -.6176105 -1.39 0.169 -1.506999.4427992 .271778 lnpop | -.3009635 .1709125 -1.76 0.084 -.6442513 .0423244 -.0128794 lnmur | .0414854 .0270665 1.53 0.132 .0958501 lnincarc_rate | -.0043423 .0601336 -0.07 0.943 -.1251242 .1164396 year | 78 | .0450568 .0110728 4.07 0.000 .0228164 .0672973 .1050024 .0191439 5.48 0.000 .0665507 79 .1434541 80 .1144706 .0259574 4.41 0.000 .0623336 .1666076 .0306786 0.001 81 .1058756 3.45 .0442559 .1674953 .118425 .0389273 3.04 0.004 .0402372 82 .1966129 .1322302 2.91 0.005 .0408289 83 .0455059 .2236316 .1892383 .0527025 3.59 0.001 .0833823 84 .2950943 .2246316 .0588967 3.81 0.000 .1063341 85 .3429292 86 .2666412 .0693807 3.84 0.000 .1272859 .4059965 .1320426 87 .285531 .0764171 3.74 0.000 .4390193 88 .3334406 .0843901 3.95 0.000 .1639381 .502943 0.000 89 .3647578 .0956562 3.81 .1726267 .5568888 .44815 90 .1049878 4.27 0.000 .2372759 .6590242 91 0.000 .2284498 .452129 .1113631 4.06 .6758083 92 .4899928 .1172623 4.18 0.000 .2544645 .7255211 .507461 0.000 .2605987 93 .1229052 4.13 .7543234 94 .4945375 .1276787 3.87 0.000 .2380872 .7509878 95 .4925905 .132821 3.71 0.001 .2258117 .7593692 96 .4705459 .1378395 3.41 0.001 .193687 .7474047 97 .4867537 .1403439 3.47 0.001 .2048646 .7686428

7.67000	98	.479945	.142927	3 3.36	0.002	.192867
.767023	99	.4629602	.147717	9 3.13	0.003	.1662601
.7596604						
4.550331	_	3.44139				2.33245
	sigma_e	.45758745 .10427737 .95063213	(fracti	on of varia	ance due to	u_i)
188 . •	estat ic					
Aka:	ike's inform	ation criter	ion and B	ayesian inf	formation c	riterion
BIC		Obs				
-1846.688		1,173	369.8453	1029.354	30	-1998.707
note.	<u>-</u>	Note: N=Obs	used in c	alculating	BIC; see [R] BIC
190 . 191 . ** EFFECT**** 192 . ** 193 . **	* BIC: -1846 ******** **MODEL 4.1: *treg lnvio bb lnavginc	************** ************* MODEL WITH R lnincarc_rat	**** ANDOM EFF		.029 lnpop	lnden
	dom-effects	GLS regressi	on		Number of	obs =
1,173 Grov 51	up variable:	stateid			Number of	groups =
R-so	q: within =	0.6144			Obs per g	roup: min =
23.0	between =	0.8929				avg =
23.0	overall =	0.8717				max =
					Wald chi2	(9) =
2261.92 cor:	r(u_i, X)	= 0 (assumed)		Prob > ch	i2 =

Conf. Inte		Coef.		Z		-
lnin .1317895	carc_rate	.0945506	.0189998	4.98	0.000	.0573116
.0157581	shall	0081662	.0122065	-0.67	0.503	0320905
	lnpb1064	.0777505	.0397477	1.96	0.050	0001536
.1556546	pm1029	0318047	.0052591	-6.05	0.000	0421124
0214969	lnpop	10333	.0347689	-2.97	0.003	1714758
0351841	lnden	1490923	.0790706	-1.89	0.059	3040678
.0058833	lnmur	.1103124	.0203142	5.43	0.000	.0704974
.1501275	lnrob	.5381089	.0171298	31.41	0.000	.504535
.5716827	lnavginc	.0112977	.0616676	0.18	0.855	1095685
.132164	cons	3.326692	.2402333	13.85	0.000	2.855844
3.797541	+-					
		.18118924				
	sigma_e rho	.1120213	(fraction	of variar	ice due	to u_i)

194 . estimates store $random4_1$

195 .

196 . *HAUSMAN TEST ON FIXED AND RANDOM MODEL FOR ALL THE VARIABLES 197 . hausman fixed2_1 random4_1

		Coeffi	cients		
		(b)	(B)	(b-B)	
<pre>sqrt(diag(V_b-V_B)) S.E.</pre>		_	random4_1	Difference	
lni .0056335	ncarc_r~e	.0617937	.0945506	0327568	
.002555	shall	0010026	0081662	.0071636	
.0554076	lnpb1064	.1759719	.0777505	.0982214	
.0020155	pm1029	0373956	0318047	0055909	
	lnpop	2702397	10333	1669097	
.0767184	lnden	5513626	1490923	4022703	
.3309051	lnmur	.0790516	.1103124	0312609	
.0085224					

	lnrob	.5430485	.5381089	.0049396
.0055163				
	lnavginc	.0509784	.0112977	.0396807
.0227193				

b = consistent under Ho and Ha; obtained

from xtreg

from xtreg

B = inconsistent under Ha, efficient under Ho; obtained

Test: Ho: difference in coefficients not systematic

chi2(9) = $(b-B)'[(V_b-V_B)^(-1)](b-B)$ = 32.99

Prob>chi2 = 0.0001

 $(V_b-V_B is not positive definite)$

198 . *significant (we reject the null hypothesis thus will use fixed effect only)

199

200 . *HAUSMAN TEST ON FIXED TIME AND RANDOM MODEL FOR ALL THE VARIABLES

201 .

202 . hausman fixed3_1 random4_1

Coefficients								
<pre>sqrt(diag(V_b-V_B)) S.E.</pre>		(b)	(B)	(b-B)				
		_	random4_1	Difference				
lnincarc_r~e		0041201	.0945506	0986706				
.0097671	shall	0299454	0081662	0217792				
.0042315	lnpb1064	027411	.0777505	1051615				
.0580199	nm1029 l	.0384271	- 0318047	.0702318				
.0066706	pm1025	.0001271	.0010017	• 0 7 0 2 0 1 0				
.0729734	lnpop	2997561	10333	1964261				
	lnden	5725517	1490923	4234594				
.3139368	lnmur	.049223	.1103124	0610894				
.0076739	7 1- 1	47.605.20	F 2 0 1 0 0 0	0.61.055.6				
.0070749	Inrob	.4768532	.5381089	0612556				
	lnavginc	1177747	.0112977	1290725				
.0494496								

b = consistent under Ho and Ha; obtained

from xtreg

B = inconsistent under Ha, efficient under Ho; obtained

from xtreg

Test: Ho: difference in coefficients not systematic

chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 240.65 Prob>chi2 = 0.0000

(V_b-V_B is not positive definite)

effect onl		nt	(we reject	the null hyp	oothesis	thus will	use fixed	
204 . 205 . ***********************************								
Fixed-effects (within) regression							of obs =	
1,173 Group variable: stateid 51						Number o	of groups =	
R-sq	: within =	= 0	.3862			Obs per	<pre>group: min =</pre>	
	between =	= 0	.1262				avg =	
23.0	overall =	= 0	.1298				max =	
0.0 0.1						F(30,109	92) =	
22.91 corr 0.0000	(u_i, Xb)	=	-0.6628			Prob > E	· =	
Conf. Inte	lnrob			Std. Err.				
lnin			1566441	.0345584	-4.53	0.000	2244525	
.0275633	shall		0138187	.0210903	-0.66	0.512	0552007	
7016214	lnpb1064		9202159	.1114062	-8.26	0.000	-1.13881	
.1068574	pm1029		.0800614	.0136566	5.86	0.000	.0532653	
	lnpop		.2167857	.1318216	1.64	0.100	0418666	
.475438	lnmur		.4026039	.0332979	12.09	0.000	.3372688	
.467939	lnden		3.340829	.5188487	6.44	0.000	2.322776	
4.358882	lnavginc		.2110164	.1289074	1.64	0.102	0419178	
104540	year 78	 	.0373609	.0342387	1.09	0.275	0298201	
.104542	79	I	.1421364	.0347821	4.09	0.000	.073889	
.2103837								

	sigma_e	1.1580354 .17016956 .97886307	(fraction	of varian	ice due t	co u_i)
3.903598	_cons +		.461057		0.000	2.094282
.8376708	99	.6278357	.106942	5.87	0.000	.4180007
.8733362	98	.6694237	.1039236	6.44	0.000	.4655111
.9306918	97	.7345574	.0999595	7.35	0.000	.5384229
.9324092	96	.7554019	.0963279	7.84	0.000	.5663933
.9204808	95	.7710419	.092464	8.34	0.000	.5896147
.8632737	94	.7464904	.0886739	8.42	0.000	.5724999
.8510902	93	.6963886	.0850527	8.19	0.000	.5295034
.8184064	92	.6901816	.0820067	8.42	0.000	.5292731
.6906718	91	.6663156	.0775127	8.60	0.000	.5142248
.5972848	90	.545515	.0739789	7.37	0.000	.4003581
.520442	89	.4612815	.0693138	6.65	0.000	.3252783
.4634659	88	.3938068	.0645394	6.10	0.000	.2671716
.4619091	87	.3465208	.0596008	5.81	0.000	.2295757
.3859137	86	.3542113	.054888	6.45	0.000	.2465135
.3458319	85	.2875538	.0501289	5.74	0.000	.189194
.3401231	84	.2552461	.0461669	5.53	0.000	.1646602
.3809687	83	.2582604	.0417212	6.19	0.000	.1763976
.3786621	82	.3054505	.0384877	7.94	0.000	.2299323
.3338725	81	.3073517	.0363432	8.46	0.000	.2360414
	80	.2645959	.0353066	7.49	0.000	.1953194

F test that all $u_i=0$: F(50, 1092) = 88.98 Prob >

F = 0.0000

208 . estat ic

Akaike's information criterion and Bayesian information criterion

```
Model | Obs ll(null) ll(model) df
                                                            AIC
BIC
              . | 1,173 168.6012 454.8874 31 -847.7747
-690.6878
  ______
                 Note: N=Obs used in calculating BIC; see [R] BIC
note.
  209 . testparm i.year
          78.year = 0
      (1)
      (2) 79.year = 0
      (3) 80.year = 0
      (4) 81.year = 0
      (5) 82.year = 0
      (6) 83.year = 0
      (7) 84.year = 0
      (8) 85.year = 0
      (9) 86.year = 0
      (10) 87.year = 0
      (11) 88.year = 0
      (12) 89.year = 0
      (13) 90.year = 0
      (14) 91.year = 0
      (15) 92.year = 0
      (16) 93.year = 0
      (17) 94.year = 0
      (18) 95.year = 0
      (19) 96.year = 0
      (20) 97.year = 0
      (21) 98.year = 0
      (22) 99.year = 0
           F(22, 1092) = 11.19

Prob > F = 0.0000
  210 .
  211 . ***********Effect of shall on murder rate**********
  212 . *MODEL 6.1: MODEL WITH ENTITY AND TIME FIXED EFFECT
  213 . xtreg lnmur lnincarc rate shall lnpb1064 pm1029 lnpop lnden
lnrob lnavginc i.year, fe
     Fixed-effects (within) regression
                                                Number of obs =
1,173
     Group variable: stateid
                                                Number of groups =
51
                                                Obs per group:
     R-sq:
         within = 0.4259
                                                            min =
23
         between = 0.0433
                                                            avg =
23.0
        overall = 0.0315
                                                            max =
23
                                                F(30, 1092) =
```

27.00

______ lnmur | Coef. Std. Err. t P>|t| [95% Conf. Interval] lnincarc rate | -.0226387 .0297629 -0.76 0.447 -.0810377 .0357602 .0220252 lnpb1064 | .4438217 .0970828 4.57 0.000 .2533319 .6343116 pm1029 | .0011957 .0118374 0.10 0.920 -.022031 .0244224 lnpop | -.1919847 .1124953 -1.71 0.088 -.4127161 .0287467 lnden | -4.452737 .4305582 -10.34 0.000 -5.297552 -3.607922 lnrob | .2932622 .0242547 12.09 0.000 .2456712 .3408532 lnavginc | .8705185 .1069573 8.14 0.000 .6606533 1.080384 year | 78 | -.0280543 .0292253 -0.96 0.337 -.0853985 .0292898 79 | -.0100755 .0299101 -0.34 0.736 -.0687632 .0486123 .0308979 -0.19 80 | -.0059463 0.847 -.0665722 .0546796 81 | -.0240646 .0320092 -0.75 0.452 -.0868711 .038742 82 | -.0718874 0.033 -.1380352 .0337121 -2.13 -.0057396 83 | -.114926 .0360599 -3.19 0.001 -.1856805 -.0441715 84 | -.2073431 0.000 .039454 -5.26 -.2847573 -.1299288 85 | -.1973026 .043011 -4.59 0.000 -.2816961 -.1129091 86 | -.171989 .0474456 -3.62 0.000 -.2650839 -.0788942 87 | -.1938961 -3.78 0.000 -.2945824 .0513145 -.0932099 .0556609 -3.73 88 | -.2074015 0.000 -.3166159 -.098187 89 | -.2257178 .0599572 -3.76 0.000 -.3433622 -.1080734 90 | -.1970216 -3.06 0.002 -.3234156 .0644164 -.0706276 91 | -.1952502 .0681008 -2.87 0.004 -.3288734 -.061627 92 | -.235559 .071872 -3.28 0.001 -.3765819 -.0945361 93 | -.184635 .074576 -2.48 0.013 -.3309635 -.0383064

F tes	F test that all u i=0: $F(50, 1092) = 49.75$ Prob >						
	rho	.99127357 	(fraction	of variar	nce due t	o u_i) 	
	sigma_u sigma_e	.14523488					
2916367	_cons	-1.075954	.3997255	-2.69	0.007	-1.860271	
3089489	99	4885137	.0915148	-5.34	0.000	6680785	
2687173	98	4440551	.0893605	-4.97	0.000	6193928	
1714929 2359607	97	4057441	.0865298	-4.69	0.000	5755275	
1248429	96	3360811	.083882	-4.01	0.000	5006693	
1106076	95	2836493	.0809353	-3.50	0.000	4424556	
1106076	94	2630483	.0776911	-3.39	0.001	4154889	

F = 0.0000

Akaike's information criterion and Bayesian information criterion

	Model	Obs	ll(null)	ll(model)	df	AIC
BIC	+					
-1062.395	.	1,173	315.28	640.741	31	-1219.482

Note: N=Obs used in calculating BIC; see [R] BIC note.

215 .

216 . translate @Results stata_res2.txt