2006 G6

Ezra Guerrero Alvarez

July 1, 2022

2006 G6

2006 G6

Circles ω_1 and ω_2 with centers O_1 and O_2 are externally tangent at point D and internally tangent to a circle ω at points E and F respectively. Line t is the common tangent of ω_1 and ω_2 at D. Let \overline{AB} be the diameter of ω perpendicular to t, so that A, E, O_1 are on the same side of t. Prove that lines AO_1 , BO_2 , EF and t are concurrent.

Let O be the center of ω and let P be the intersection of the O-median of $\triangle OO_1O_2$ and $\overline{\rm EF}$. We will show P lies on the 4 lines, which implies they are concurrent. First, note that since $O_1D=O_1E,O_2D=O_1F,$ and OE=OF, circle (DEF) is tangent to all three sides of $\triangle OO_1O_2$. Since D lies between O_1 and O_2 and E and E lie outside of $\overline{\rm OO}_1$ and $\overline{\rm OO}_2$ respectively, it follows (DEF) is the O-excircle of $\triangle OO_1O_2$. We now proceed with barycentric coordinates. We set $\triangle OO_1O_2$ as our reference triangle, with $O=(1,0,0),O_1=(0,1,0),O_2=(0,0,1)$ and O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) and O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) and O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) are O=(0,0,0) are O=(0,0,0) are O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) and O=(0,0,0) are O=(0,0,0) are

$$sx + (s - c)y + (s - b)z = 0.$$

Since P lies on this line and on the O-median, it has coordinates (-a:s:s). Now, note that since t is tangent to both ω_1 and ω_2 , we have $t \perp \overline{O_1O_2}$. Since $t \perp \overline{AB}$ by construction, it follows $\overline{AB} \parallel \overline{O_1O_2}$. Also, since $O \in \overline{AB}$, it follows A and B have coordinates of the form (1,t,-t). Now, note that ω has radius OE = s. Hence, $OA^2 = s^2$. By the barycentric distance formula, since $\overrightarrow{OA} = (0,t,-t)$, we see $s^2 = a^2t^2$. Hence, $t = \pm \frac{s}{a}$. Indeed, B satisfies the same equation, so one solution corresponds to A and the other to B. Since A lies on the same side of t as O_1 , we have $A = \left(1, \frac{s}{a}, -\frac{s}{a}\right) = (a:s:-s)$. Similarly, B = (a:-s:s). Then, points on the cevian O_1A are given by (a:k:-s) and points on the cevian O_2B are given by (a:-s:k). It is easy to see P = (a:-s:-s) is of these forms, so P lies on both lines. Finally, we must see $P \in t$. This is equivalent to showing $\overline{PD} \perp \overline{O_1O_2}$. Since $\overline{O_2O_1} = (0,1,-1)$ and $\overline{PD} = \left(\frac{a}{b+c}, \frac{s-b}{a} - \frac{s}{b+c}, \frac{s-c}{a} - \frac{s}{b+c}\right)$, from Evan's Favorite Forgotten Trick, it suffices to show

$$a^2\left(\frac{s-c}{a} - \frac{s}{b+c} + \frac{s}{b+c} - \frac{s-b}{a}\right) + b^2\left(-\frac{a}{b+c}\right) + c^2\left(\frac{a}{b+c}\right) = 0.$$

Indeed, simplifying the left hand side we obtain

$$a(b-c) + a \cdot \frac{c^2 - b^2}{b+c} = 0$$

as desired. Thus, P lies on AO_1, BO_2, EF , and t, so these 4 lines are concurrent.