1	WE CLAIM:
2	
3	1. A gas centrifuge means operating to
4	separate gases of differing chemical composition and
5	molecular weight by a centrifugal force field.
6	
7	
8	2. A gas centrifuge means operating to
9	separate carbon dioxide from methane by a centrifugal
10	force field.
11	
12	
13	3. A multiplicity of centrifuge means as
14	defined in claim 1, arranged such that the separated
15	gases are further concentrated by introducing them into
16	successive of said gas centrifuge means.
17	
18	
19	4. A multiplicity of centrifuge means as
20	defined in claim 2 configured such that the separated
21	streams of carbon dioxide and methane are further
22	concentrated by introducing them into successive of

said gas centrifuge means.

1	5. A gas centrifuge comprising, in
2	combination:
3	a) a hollow shaft to pass and introduce a
4	gas mixture into a rotating cylinder,
5	b) said cylinder having axial vanes to
6	cause the gas mixture to rotate with the same angular
7	speed of the cylinder,
8	c) a radial passage connected to the
9	periphery of the cylinder to receive and pressurize a
10	produced and concentrated heavier gas stream,
11	d) a nozzle connected to the passage to
12	convert the pressure of the heavier gas stream to
13	velocity adding a torque to the cylinder, and
14	e) an opening in the hollow shaft to
15	receive and remove a produced and concentrated lighter
16	gas stream from the cylinder.
17	
18	
19	6. A gas centrifuge comprising, in
20	combination:
21	a) a first nozzle accelerating a gas
22	mixture and introducing it into a rotating cylinder,
23	adding torque to the cylinder,
24	b) said cylinder having associated vanes to
25	receive torque from the flowing gas and causing the gas
26	to rotate with the same angular speed as the cylinder,

1	c) a radial passage connected to the
2	periphery of the cylinder operating to pressurize a
3	produced and concentrated heavier gas stream,
4	d) a second nozzle connected to the passage
5	and operating to convert the pressure of the heavier
6	gas stream to velocity, adding torque to the cylinder,
7	e) an open scoop oriented perpendicular to
8	the direction of rotation operating to remove a
9	produced and concentrated lighter gas from the
10	cylinder, and
11	f) a passage contoured and operating to
12	recover the velocity head of the concentrated lighter
13	gas as pressure.
14	
15	
16	7. A gas centrifuge comprising, in
17	combination:
18	a) a first nozzle accelerating a gas
19	mixture and introducing it into a rotating cylinder,
20	adding torque to the cylinder,
21	b) said cylinder having associated vanes to
22	receive torque from the flowing gas and causing the gas
23	to rotate with the same angular speed as the cylinder,
24	c) a first radial passage connected to the
25	periphery of the cylinder operating to pressurize a
26	produced and concentrated heavier gas stream,

1	d) a second nozzle connected to the first
2	passage and operating to convert the pressure of the
3	heavier gas stream to velocity, adding torque to the
4	cylinder,
5	e) a second radial passage connected to the
6	periphery of the cylinder operating to pressurize a
7	produced and concentrated lighter gas stream,
8	f) a third nozzle connected to the second
9	passage and operating to convert the pressure of the
10	lighter gas stream to velocity adding torque to the
11	cylinder.
12	
13	
14	8. The combination of claim 5 where the
15	heavier gas stream consists of carbon dioxide and the
16	lighter gas stream consists of methane.
17	
18	
19	9. The combination of claim 6 where the
20	heavier gas stream consists of carbon dioxide and the
21	lighter stream consists of methane.
22	
23	
24	

1	10. The combination of claim 7 where the
2	heavier gas stream consists of carbon dioxide and the
3	lighter stream consists of methane.
4	
5	
6	11. The combination of claim 5 wherein seals
7	are provided to isolate cylinder inlet and exit gas
8	streams from each other and from gas surrounding the
9	cylinder.
LO	
L1	
L2	12. The combination of claim 6 wherein seals
13	are provided to isolate cylinder inlet and exit gas
14	streams from each other and from the gas surrounding
15	the cylinder.
16	
17	
18	13. The combination of claim 7 wherein seals
19	are provided to isolate cylinder inlet and exit gas
20	streams from each other and from the gas surrounding
21	the cylinder.
22	
23	
24	14. The combination of claim 5 wherein
25	bearings are provided to support the shaft.

1	15. The combination of claim 6 wherein
2,	bearings are provided to support the shaft.
3	
4	
5	16. The combination of claim 7 wherein
6	bearings are provided to support the shaft.
7	
8	
9	17. The combination of claim 5 wherein a
10	prime mover is connected to the shaft to rotate the
11	cylinder.
12	
13	
14	18. The combination of claim 6 wherein a
15	prime mover is connected to the shaft to rotate the
16	cylinder.
17	
18	
19	19. The combination of claim 7 wherein a
20	prime mover is provided and is connected to the shaft
21	to rotate the cylinder.
22	
23	
24	20. The combination of claim 6 including a
25	shaft supporting the cylinder for rotation, and a
26	housing enclosing and supporting the shaft.

1	21. The combination of claim 20 wherein said
2	first nozzle is carried by the housing, at one end of
3	the cylinder.
4	
5	
6	22. The combination of claim 21 wherein said
7	second nozzle is located near the opposite end of the
8	cylinder, said vanes located between said first and
9	second nozzles.
10	
11	
12	23. A cascade of centrifuges as defined in
13	claim 8.
14	
15	
16	24. A cascade of centrifuges as defined in
17	claim 9, for successively increasing concentrations of
18	carbon dioxide and methane in said streams.
19	
20	
21	25. A cascade of centrifuges as defined in
22	claim 10.
23	
24	
25	
26	

1	26. The method that includes
2	a) providing a rotary centrifuge to receive
3	a mixture of gases having carbon dioxide and/or other
4	heavy gases and methane components,
5	b) operating the rotary centrifuge to
6	separate said components into separate streams,
7	c) using the separated stream of carbon
8	dioxide and methane to produce torque acting to aid
9	rotation of the centrifuge.
10	
11	
12	27. The method of claim 26 including using
13	said mixture received by the centrifuge as a flowing
14	stream to produce torque acting to aid rotation of the
15	centrifuge.
16	
17	
18	28. The method of claim 27 including
19	providing vanes in the centrifuge to receive and pass
20	the flowing stream, with turbine effect.
21	
22	
23	
24	
25	
26	

1	29. A centrifugal gas processing system
2	comprising:
3	a) a centrifugal means to separate free
4	liquids from gas, light liquids from heavy liquids, and
5	solids from liquids,
6	b) a centrifugal means to extract liquids
7	from said a) gas by lowering the pressure and
8	temperature and separating the formed liquids from the
9	gas,
10	c) a centrifugal means to process said a)
11	gas thereby to separate heavy gases from light gases.
12	
13	
14	30. The combination of the claim 29 system
15	together with a means to inject a treatment liquid into
16	said system for purposes of gas treatment.
17	
18	
19	31. A centrifugal gas processing system
20	comprising:
21	a) a centrifugal means to separate free
22	liquids from gas, light liquids from heavy liquids, and
23	solids from liquids,
24	b) a centrifugal means to extract liquids
25	from said a) gas by lowering the pressure and

1	temperature and separating the formed liquids from the
2	gas.
3	
4	
5	32. A centrifugal gas processing system,
6	comprising in combination:
7	b) a centrifugal means to extract liquids
8	from gas by lowering the pressure and temperature and
9	separating the formed liquids from the gas,
10	c) a centrifugal means to process said gas
11	thereby to separate heavy gases from light gases.
12	
13	
14	33. A centrifugal gas processing system,
15	comprising:
16	a) a centrifugal means to separate free
17	liquids from gas, light liquids from heavy liquids, and
18	solids from liquids,
19	b) a centrifugal means to process said a)
20	gas thereby to separate heavy gases from light gases.
21	
22	
23	34. The combination of claim 32 together
24	with means to inject a treatment liquid into said
25	system for purposes of gas treatment.
26	

1	35. A gas processing system comprising
2	a) a centrifugal means to extract liquids
3	from gas by lowering the pressure and temperature and
4	separating the formed liquids from the gas,
5	b) means to inject a treatment liquid into
6	said system for purposes of gas treatment.
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	