Colton Acosta

404.430.1346 • cacost12@asu.edu • US Citizen • linkedin.com/in/colton-acosta/

EDUCATION

B.S.E, Electrical Engineering

Arizona State University, Tempe, AZ

Graduating May 2023 4.00 GPA

TECHNICAL SKILLS

Software: C, C++, Python, GCC Assembler, Linux, Git, Make, ARM Cortex-M, Vulkan

Hardware: Verilog, Microcontrollers, FPGA, Soldering (SMD), Multimeters, Oscilloscopes, Function Generators

Design/Modeling: LTspice, KiCAD, DipTrace, MATLAB/Simulink, Cadence

PROFESSIONAL EXPERIENCE

Garmin Aviation: Embedded Graphics Software Engineering Intern

May 2022–August 2022

- Developed certification software for a new Vulkan graphics driver to be used in safety-critical avionics systems
- ullet Wrote unit tests with randomized test vectors in C to test the GPU driver source code with maximal coverage
- Debugged compiler errors of ARM and Windows builds using Visual Studio and MSBuild XML schemas
- Resolved runtime errors caused by randomized test vectors by analyzing the source code functions and manually setting up complex data structures and dereferenced pointers

Sun Devil Rocketry: President and Avionics Team Founder

August 2021-May 2022

- Oversaw all activities of a technical student organization with three rocket propulsion teams, two amateur rocketry teams, a K-12 outreach program, and over 50 members
- Facilitated all project development by holding meetings and design reviews, writing budget proposals, organizing launch logistics, mentoring, and maintaining industry/university relations
- Founded a new avionics team to design the club's first flight computer and promote the development of electrical and software engineering skills among students interested in the aerospace industry

Pyramid Technologies, Inc., Mesa, AZ: Electrical Engineering Intern

May 2021-August 2021

- Evaluated bill validation errors of a bill acceptor's firmware using an in-circuit debugger and assembly source code
- Qualified new optocouplers by measuring logic levels and slew rate for ambient temperatures ranging from 0 to 60°C
- Wrote Python scripts to calculate external component design values from input specifications and datasheet guidelines

PROJECTS

Sun Devil Rocketry: Flight Computer

January 2021-Present

- Developing a flight computer for high-powered rockets to implement recovery, control, and telemetry functionality
- Equipped the embedded computer with an ARM Cortex-M7 microcontroller, a 9-axis IMU, GPS, a LoRa wireless module, a micro SD card, external flash, and a USB interface
- Programmed the computer with C and assembly for low level control of the microcontroller's peripherals

Sun Devil Rocketry: Engine Controller

August 2019-Present

- Developing a controller for a liquid rocket engine to manage engine hardware and automate ignition sequencing
- Designed the PCB using an ARM Cortex-M7 microcontroller, a switching power supply, external flash, an SD card, ignition terminals, sensor peripherals, a USB interface, and a wireless command and control interface
- Developed ignition and data-logging APIs in C to abstract low-level hardware control functionality
- Programmed a Python interface for real-time visualization of temperature, pressure, thrust, and flow measurements

Sun Devil Rocketry: Valve Controller

Spring 2022

- Designed, built, and tested a controller to actuate rocket engine valves using an ARM Cortex-M7 microcontroller, solid state relays, a pulse interface, and motor sensors.
- Developed a solenoid control API in C to implement basic solenoid actuation functions to simplify the application code
- Calibrated valve shaft initial positions using an optoelectronic photogate sensor with customized form factor
- Designed an optically-isolated voltage monitoring circuit to alert the controller when solenoid power is lost
- Programmed the controller in C to process valve actuation commands from the main engine controller