Laboratorium 3 - Triangulacja wielokątów monotonicznych

Mateusz Podmokły - II rok Informatyka WI 15 listopad 2023

1 Specyfikacja użytego środowiska

Specyfikacja:

• Środowisko: Jupyter Notebook,

• Język programowania: Python,

• System operacyjny: Microsoft Windows 11,

• Architektura systemu: x64.

2 Przebieg ćwiczenia

Ćwiczenie polega na zaimplementowaniu algorytmu sprawdzania, czy podany wielokąt jest wielokątem y-monotonicznym oraz algorytmu triangulacji takich wielokątów. Dodatkowo napisane zostało narzędzie pozwalające zadawać wielokąty przy użyciu myszki.

2.1 Sprawdzanie y-monotoniczności

Y-monotoniczność została sprawdzona poprzez analizę kolejnych wierzchołków. Jeżeli więcej niż jeden raz odwrócona była monotoniczność współrzędnej y wierzchołków, znaczyło to, że wielokąt nie jest y-monotoniczny.

Rysunek 1: Wielokąt y-monotoniczny. Rysunek 2: Nie jest y-monotoniczny.

2.2 Klasyfikacja wierzchołków wielokąta

Wierzchołki wielokąta zostały podzielone na 5 kategorii:

- początkowe, gdy obaj sąsiedzi leżą poniżej i kąt wewnętrzny ma mniej niż 180 stopni
- końcowe, gdy obaj sąsiedzi leżą powyżej i kąt wewnętrzny ma mniej niż 180 stopni
- dzielący, gdy obaj sąsiedzi leżą poniżej i kąt wewnęntrzny ma więcej niż 180 stopni
- łączący, gdy obaj sąsiedzi leżą powyżej i kąt wewnęntrzny ma więcej niż 180 stopni
- prawidłowe, pozostałe przypadki, jeden sąsiad powyżej, drugi poniżej

Rysunek 3: Wielokąt z pokolorowanymi wierzchołkami.

2.3 Triangulacja wielokąta

Wielokąt został podzielony na dwa łańcuchy wierzchołków - lewy i prawy. Następnie oba łańcuchy zostały połączone w jeden, co dało ciąg wierzchołków posortowanych według współrzędnej y w czasie O(n), gdzie n to liczba wierzchołków. W celu znajdowania sąsiadów danego wierzchołka utworzona została tablica oryginalnej kolejności wierzchołków w wielokącie (w progranie nazwana order). Triangulacja jest przechowywana w postaci listy par indeksów wierzchołków między którymi występują połączenia tworzące triangulację. Wybrane struktury przechowujące wielokąt oraz triangulację pozwoliły na uzyskanie złożoności obliczeniowej całości algorytmu O(n).

Rysunek 4: Przykładowa triangulacja.

3 Analiza otrzymanych triangulacji

3.1 Wielokąty użyte do testów

3.2 Analiza wyników

Pierwszy wielokąt (rys. 5) posiada wszystkie punkty lewego łańcucha powyżej prawego, dlatego najniższy punkt lewego łańcucha jest połączony ze wszystkimi z prawego. W drugim (rys. 6) znajduje się tylko jeden odcinek podziałowy, ze względu na to, że ma tylko 4 boki. Trzeci wielokąt (rys. 7) jest trójkątem, więc nie wymaga żadnych podziałów. W następnym (rys. 8) kolejne wierzchołki pojawiają się naprzemiennie w łańcuchu prawym oraz lewym, dlatego podziały przechodzą po kolei od góry do dołu. Rysunek 9 zawiera wielokąt z wklęsłościami, który wymaga "odcięcia" wklęsłości. Ostatni (rys. 10) to połączenie naprzemiennych podziałów z wielokrotnymi podziałami do niższych wierzchołków.

4 Wnioski

Użyte wielokąty pozwoliły przetestować algorytm triangulacji na różnych rodzajach wielokątów, dając odmienne efekty podziałów na trójkąty. Warto zaznaczyć, że wszystkie

były y-monotoniczne. Zastosowany algorytm jest wydajny bez względu na rodzaj triangulowanego wielokąta, ponieważ posiada złożoność obliczeniową O(n). Jednak nadaje się on jedynie do wielokątów y-monotonicznych, co może być sporym ograniczeniem.