Recursion and Backtracking

Using recursion and backtracking, recursion vs Iteration

SoftUni Team Technical Trainers

http://softuni.bg

Table of Contents

- 1. Algorithmic Complexity
- 2. Recursion
- 3. Backtracking
 - The 8 Queens Problem
 - Finding All Paths in a Labyrinth Recursively
- 4. Recursion or Iteration?
 - Harmful Recursion and Optimizing Bad Recursion

Algorithmic Complexity

Asymptotic Notation

Algorithm Analysis

- Why should we analyze algorithms?
 - Predict the resources the algorithm will need
 - Computational time (CPU consumption)
 - Memory space (RAM consumption)
 - Communication bandwidth consumption
 - Hard disk operations

Problem: Get Number of Steps

Calculate maximum steps to find the result

```
def get_operations_count(n):
    counter = 0
    for i in range(n):
        for j in range(n):
            counter += 1
    return counter
```

```
Solution:
T(n) = 3(n ^ 2) + 3n + 3
```

The input(n) of the function is the main source of steps growth

Simplifying Step Count

- Some parts of the equation grow much faster than others
 - $T(n) = 3(n^2) + 3n + 3$
 - We can ignore some part of this equation
 - Higher terms dominate lower terms -n > 2, $n^2 > n$, $n^3 > n^2$
 - Multiplicative constants can be omitted $12n \rightarrow n$, $2n^2 \rightarrow n^2$
- The previous solution becomes ≈ n²

Time Complexity

- Worst-case
 - An upper bound on the running time
- Average-case
 - Average running time
- Best-case
 - The lower bound on the running time (the optimal case)

Time Complexity

Therefore, we need to measure all the possibilities:

Time Complexity

- From the previous chart we can deduce:
 - For smaller size of the input (n) we don't care much for the runtime
 - So we measure the time as n approaches infinity
 - If an algorithm must scale, it should compute the result within a finite and practical time
 - We're concerned about the order of an algorithm's complexity, not the actual time in terms of milliseconds

Asymptotic Notations

- Big O O(f(n))
- Big Theta Θ(f(n))
- Big Omega $\Omega(f(n))$

Asymptotic Functions

Below are some examples of common algorithmic grow:

Typical Complexities

	Complexity	Notation	Description
	constant	O(1)	n = 1 000 → 1-2 operations
	logarithmic	O(log n)	$n = 1000 \rightarrow 10$ operations
	linear	O(n)	n = 1 000 → 1 000 operations
	linearithmic	O(n*log n)	n = 1 000 → 10 000 operations
	quadratic	O(n2)	n = 1 000 → 1 000 000 operations
	cubic	O(n3)	n = 1 000 → 1 000 000 000 operations
	exponential	O(n^n)	$n = 10 \rightarrow 10 000 000 000 operations$

What is Recursion?

- Method of solving a problem where the solution depends on solutions to smaller instances of the same problem
- A common computer programing tactic is to divide a problem into sub-problems of the same type as the original, solve those sub-problems, and combine the results

What is Recursion?

 A function or a method that calls itself one or more times until a specified condition is met

 After the recursive call the rest code is processed from the last one called to the first

Call Stack

 "The stack" is a small fixed-size chunk of memory (e.g. 1MB)

 Keeps track of the point to which each active subroutine should return control when it finishes executing

Other Definition

- Problem solving technique (In CS)
 - Involves a function calling itself
 - The function should have a base case
 - Each step of the recursion should move towards the base case

Array Sum – Example

Problem: Array Sum

- Create a recursive method that
 - Finds the sum of all numbers stored in an array
 - Read numbers from the console

Solution: Array Sum


```
def calc_sum(numbers, idx):
    if idx == len(numbers) - 1:
        Base case
    return numbers[idx]
    return numbers[idx] + calc_sum(numbers, idx + 1)
```

Recursive call

Problem: Recursive Factorial

- Create a recursive method that calculates n!
 - Read n from the console

Recursive Factorial – Example

Recursive definition of n! (n factorial):

```
n! = n * (n-1)! for n > 0
0! = 1
```


Solution: Recursive Factorial


```
def get_factorial(num):
    if num == 0:
        return 1
    return num * get_factorial(num - 1)
```

Recursive call

Direct and Indirect Recursion

- Direct recursion
 - A method directly calls itself
- Indirect recursion
 - Method A calls B, method B calls A
 - Or even $A \rightarrow B \rightarrow C \rightarrow A$

Recursion Pre-Actions and Post-Actions

- Recursive methods have three parts:
 - Pre-actions (before calling the recursion)
 - Recursive calls (step-in)
 - Post-actions (after returning from recursion)

```
def recursion()
  # Pre-actions
  recursion()
  # Post-actions
```

Problem: Recursive Drawing

Create a recursive method that draws the following figure

Pre-Actions and Post-Actions – Example


```
def print_figure(n):
    if n == 0:
        return
    # TODO: Pre-action: print n asterisks
    print_figure(n - 1)
    # TODO: Post-action: print n hashtags
```


Generating Simple Combinations

Recursive Algorithm

Generating 0/1 Vectors

How to generate all 8-bit vectors recursively?

```
0000000
00000001
1000000
```

Generating 0/1 Vectors

Start with a blank vector.

Choose the first position and loop through all possibilities

■ For each possibility, generate all (n - 1)-bit vectors

Generating 3-bit Vectors Recursion Tree

Solution: Generate n-bit Vectors


```
def gen01(idx, vector):
    if idx >= len(vector):
        print("".join([str(x) for x in vector]))
        return
    for number in range(0, 2):
        vector[idx] = number
        gen01(idx + 1, vector)
```


Backtracking

- What is backtracking?
 - Class of algorithms for finding all solutions
 - E.g., find all paths from Source to Destination
- How does backtracking work?
 - At each step tries all perspective possibilities recursively
 - Drop all non-perspective possibilities as early as possible

Backtracking Algorithm (Pseudocode)


```
static void recurrence(Node node) {
  if (node is solution) {
    printSolution(node);
  } else {
    for each child c of node
      if (c is perspective candidate) {
     markPositionVisited(c);
     recurrence(c);
     unmarkPositionVisited(c);
```

Finding All Paths in a Labyrinth

- We are given a labyrinth
 - Represented as matrix of cells of size M x N
 - Empty cells '-' are passable, the others '*' are not
- We start from the top left corner and can move in all
 4 directions (up, down, left, right)
- We want to find all paths to the exit, marked 'e'

Finding All Paths in a Labyrinth

There are 3 different paths from the top left corner to the bottom right corner:

0	1	2	*	-	-	-
*	*	3	*	-	*	-
6	5	4	-	-	-	-
7	*	*	*	*	*	-
8	9	10	11	12	13	14

0	1	2	*	8	9	10
*	*	3	*	7	*	11
-	-	4	5	6	-	12
-	*	*	*	*	*	13
-	-	-	-	-	-	14

0	1	2	*	-	-	-
*	*	3	*	-	*	-
-	-	4	5	6	7	8
-	*	*	*	*	*	9
-	-	-	-	-	-	10

RRDDLLDDRRRRRR

RRDDRRUURRDDDD

RRDDRRRRDD

Find all Paths in a Labyrinth

- Create a list that will store the path
- Pass a direction at each recursive call (L, R, U or D)
- Add the direction at the start of each recursive call
- If you find an exit of the lab, then print the path
- Otherwise, mark the current cell as visited and try visit all possible directions
- Unmark the current cell and remove the last direction at the end of each recursive call

The "8 Queens" Puzzle

- Write a program to find all possible placements of
 - 8 queens on a chessboard
 - So that no two queenscan attack each other
 - http://en.wikipedia.org/wiki/Eight queens puzzle

Solving The "8 Queens" Puzzle

- Find all solutions to "8 Queens Puzzle"
- At each step:
 - Put a queen at free position
 - Recursive call
 - Remove the queen

```
def put_queens(row):
    if row == 8:
        print solution()
        return
    for col in range(0, 8):
        if can_place_queen(row, col):
            set_queen(row, col)
            put_queens(row + 1)
            remove_queen(row, col)
```


Recursion or Iteration?

When to Use and When to Avoid Recursion?

Performance: Recursion vs. Iteration

- Recursive calls are slower
- Parameters and return values travel through the stack
- Good for branching problems

```
def fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)
```

- No function call cost
- Creates local variables
- Good for linear problems (no branching)

```
def fact(n):
    result = 1
    for i in range(1, n + 1):
        result *= i
    return result
```


Infinite Recursion

- Infinite recursion == a method calls itself infinitely
 - Typically, infinite recursion == bug in the program
 - The bottom of the recursion is missing or wrong
 - In Python / C# / Java / C++ causes "stack overflow" error

```
Traceback (most recent call last):
    File "C:\Users\aatanasov\PycharmProjects\demo\main.py", line 5, in <module>
        infinite_recursion()
    File "C:\Users\aatanasov\PycharmProjects\demo\main.py", line 2, in infinite_recursion
        infinite_recursion()
    File "C:\Users\aatanasov\PycharmProjects\demo\main.py", line 2, in infinite_recursion
        infinite_recursion()
    File "C:\Users\aatanasov\PycharmProjects\demo\main.py", line 2, in infinite_recursion
        infinite_recursion()
    [Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded

Process finished with exit code 1
```

Recursion Can be Harmful!

 When used incorrectly recursion could take too much memory and computing power

```
def calc_fib(number):
    if number <= 1:
        return 1
    return calc_fib(number - 1) + calc_fib(number - 2)

print(calc_fib(10)) # 89
print(calc_fib(50)) # This will hang!</pre>
```

How the Recursive Fibonacci Calculation Works? (Software University

- fib(n) makes about fib(n) recursive calls
- The same value is calculated many, many times!

When to Use Recursion?

- Examples: factorial, fibonacci numbers
- Use recursion for combinatorial algorithms where:
 - At each step you need to recursively explore more than one possible continuation
 - Branched recursive algorithms

Summary

- Algorithmic Complexity
- Recursion
- Backtracking
- When to use recursion
- When to use iteration

Questions?

SoftUni Diamond Partners

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

