Práctica 13

Pablo Gutiérrez Aguirre pgutierrez2018@udec.cl

4 de julio 2022

Tabla de contenidos

- Ejercicio 3
- 2 Ejercicio 5
- 3 Ejercicio 7
- 4 Ejercicio 8

El entrenador de un equipo de natación debe asignar competidores para la prueba de 200 metros de relevo combinado que irá a las Olimpiadas Juveniles. Como muchos de sus mejores nadadores son rápidos en más de un estilo, no es fácil decidir cuál de ellos asignar a cada uno de los cuatro estilos. Los cinco mejores nadadores y sus mejores tiempos (en segundos) en cada estilo son los siguientes:

Nadador					
Carl	Chris	David	Tony	Ken	
37.7	32.9	33.8	37.0	35.4	
43.4	33.1	42.2	34.7	41.8	
33.3	28.5	38.9	30.4	33.6	
29.2	26.4	29.6	28.5	31.1	
	37.7 43.4 33.3	37.7 32.9 43.4 33.1 33.3 28.5	Carl Chris David 37.7 32.9 33.8 43.4 33.1 42.2 33.3 28.5 38.9	Carl Chris David Tony 37.7 32.9 33.8 37.0 43.4 33.1 42.2 34.7 33.3 28.5 38.9 30.4	

El entrenador quiere determinar cómo asignar cuatro nadadores a los cuatro estilos de nado para minimizar la suma de los mejores tiempos correspondientes.

- Formule este problema como uno de asignación.
- **(b)** Obtenga una solución óptima.

Parámetros

- *I*: Nadador, *I* = {1 : *Carl*, 2 : *Chris*, 3 : *David*, 4 : *Tony*, 5 : *Ken*}
- J: Tipo de nado, $J = \{1 : Dorso, 2 : Pecho, 3 : Mariposa, 4 : Libre\}$
- t_{ij}: Tiempo de nado del nadador i en el tipo j

Variables

$$X_{ij} = \begin{cases} 1 & \text{Si el nadador } i \text{ participa en el tipo } j \\ 0 & e.o.c \end{cases}$$
 (1)

Modelo matemático

$$min \quad \sum_{i \in I} \sum_{i \in J} t_{ij} X_{ij} \tag{2}$$

$$s.a: \sum_{i \in I} X_{ij} = 1 \qquad \forall j \in J$$
 (3)

$$\sum_{j\in J} X_{ij} \le 1 \qquad \forall i \in I \tag{4}$$

$$X_{ij} \in \{0,1\} \qquad \forall i \in I; j \in J \tag{5}$$

Ejercicio 3

000000000

Ya que la matriz de coeficientes no es cuadrada se tiene que agregar una nueva fila/columna, en este caso se agrega la fila "otro" con valores igual a 0

	Carlo	Chris	David	Tony	Ken
Dorso	37,7	32,9	33,9	37	35,4
Pecho	43,4	33,1	42,2	34,7	41,8
Mariposa	33,3	28,5	38,9	30,4	33,6
libre	29,2	26,4	29,6	28,5	31,1
Otro	0	0	0	0	0

Ejercicio 3

000000000

Primer paso, buscar el valor mínimo de cada fila

	Carlo	Chris	David	Tony	Ken	
Dorso	37,7	32,9	33,9	37	35,4	32,9
Pecho	43,4	33,1	42,2	34,7	41,8	33,1
Mariposa	33,3	28,5	38,9	30,4	33,6	28,5
libre	29,2	26,4	29,6	28,5	31,1	26,4
Otro	0	0	0	0	0	0

Luego a cada valor se le resta el mínimo, quedando lo siguiente:

	Carlo	Chris	David	Tony	Ken
Dorso	4,8	0	1	4,1	2,5
Pecho	10,3	0	9,1	1,6	8,7
Mariposa	4,8	0	10,4	1,9	5,1
libre	2,8	0	3,2	2,1	4,7
Otro	0	0	0	0	0

Ahora se busca el valor mínimo de las columnas y luego se le resta a cada valor de la matriz, en este caso como la matriz no es cuadrada originalmente se tiene una fila extra solo con 0, por lo tanto el procedimiento es distinto. En cada iteración debemos tachar todos los 0 de la matriz en la menor cantidad de lineas, cuando la cantidad de lineas sea mayor o igual al tamaño de la matriz (5) nos detenemos. La matriz nos queda de la siguiente manera

	Carlo	Chris	David	Tony	Ken
Dorso	4,8	0	1	4,1	2,5
Pecho	10,3	0	9,1	1,6	8,7
Mariposa	4,8	0	10,4	1,9	5,1
libre	2,8	0	3,2	2,1	4,7
Otro	0	0	0	0	0

(Ver matriz anterior) Debemos buscar el valor más pequeño de la matriz que no esté tachado, en este caso corresponde a 1 (David/Dorso), con este numero ahora tenemos que restarlo a cada valor de la matriz que no esté tachado y sumarlo a las celdas que estén tachados horizontal y verticalmente al mismo tiempo. El resultado nos queda así.

	Carlo	Chris	David	Tony	Ken
Dorso	3,8	0	0	3,1	1,5
Pecho	9,3	0	8,1	0,6	7,7
Mariposa	3,8	0	9,4	0,9	4,1
libre	1,8	0	2,2	1,1	3,7
Otro	0	1	0	0	0

Ahora tenemos que volver a tachar todos los 0.

	Carlo	Chris	David	Tony	Ken
Dorso	3,8	0	0	3,1	1,5
Pecho	9,3	0	8,1	0,6	7,7
Mariposa	3,8	0	9,4	0,9	4,1
libre	1,8	0	2,2	1,1	3,7
Otro	0	1	0	0	0

(Ver matriz anterior) Como la cantidad de filas y columnas tachadas aun no son mayor o igual al tamaño de la matriz seguimos iterando, por lo tanto elegimos el valor menor que no esté tachado que corresponde a 0.6 (Tony/Pecho), con este numero y al igual que la iteración anterior debemos restarlo a todos aquellos valores que no estén tachados y sumarlo a los que están tachados horizontal y verticalmente al mismo tiempo. Luego de lo anterior, la matriz queda así.

	Carlo	Chris	David	Tony	Ken
Dorso	3,8	0,6	0	3,1	1,5
Pecho	8,7	0	7,5	0	7,1
Mariposa	3,2	0	8,8	0,3	3,5
libre	1,2	0	1,6	0,5	3,1
Otro	0	1,6	0	0	0

Ahora debemos volver a tachar todos los 0, dando como resultado lo siguiente.

	Carlo	Chris	David	Tony	Ken
Dorso	3,8	0,6	0	3,1	1,5
Pecho	8,7	0	7,5	0	7,1
Mariposa	3,2	0	8,8	0,3	3,5
libre	1,2	0	1,6	0,5	3,1
Otro	0	1,6	0	0	0

Eiercicio 3

Ejercicio 3 000000000

> (Ver matriz anterior) Como la cantidad de filas y columnas tachadas aun no son mayor o igual al tamaño de la matriz seguimos iterando, por lo tanto elegimos el valor menor que no esté tachado que corresponde a 0.3 (Tony/mariposa), con este numero y al igual que la iteración anterior debemos restarlo a todos aquellos valores que no estén tachados y sumarlo a los que están tachados horizontal y verticalmente al mismo tiempo. Luego de lo anterior, la matriz queda así.

	Carlo	Chris	David	Tony	Ken
Dorso	3,8	0,9	0	3,1	1,5
Pecho	8,7	0,3	7,5	0	7,1
Mariposa	2,9	0	8,5	0	3,2
libre	0,9	0	1,3	0,2	2,8
Otro	0	1,9	0	0	0

Ahora debemos tachar todos los 0 con la menor cantidad de filas/columnas, esto puede ir cambiando y en este caso las nuevas filas y columnas tachadas son las siguientes:

	Carlo	Chris	David	Tony	Ken
Dorso	3,8	0,9	0	3,1	1,5
Pecho	8,7	0,3	7,5	0	7,1
Mariposa	2,9	0	8,5	0	3,2
libre	0,9	0	1,3	0,2	2,8
Otro	0	1,9	0	0	0

(Ver matriz anterior) Como la cantidad de filas y columnas tachadas aun no son mayor o igual al tamaño de la matriz seguimos iterando, por lo tanto elegimos el valor menor que no esté tachado que corresponde a 0.9 (Carlo/libre), con este numero y al igual que la iteración anterior debemos restarlo a todos aquellos valores que no estén tachados y sumarlo a los que están tachados horizontal y verticalmente al mismo tiempo. Luego de lo anterior, la matriz queda así.

	Carlo	Chris	David	Tony	Ken
Dorso	2,9	0,9	0	3,1	0,6
Pecho	7,8	0,3	7,5	0	6,2
Mariposa	2	0	8,5	0	2,3
libre	0	0	1,3	0,2	1,9
Otro	0	2,8	0,9	0,9	0

Ahora debemos tachar todos los 0 con la menor cantidad de filas/columnas.

	Carlo	Chris	David	Tony	Ken
Dorso	2,9	0,9	0	3,1	0,6
Pecho	7,8	0,3	7,5	0	6,2
Mariposa	2	0	8,5	0	2,3
libre	0	0	1,3	0,2	1,9
Otro	0	2,8	0,9	0,9	0

Como en la matriz anterior ya tenemos 5 filas y columnas tachadas se termina el algoritmo. Ahora tenemos que hacer la asignación y para eso resaltaremos aquellos valores con 0

	Carlo	Chris	David	Tony	Ken
Dorso	2,9	0,9	0	3,1	0,6
Pecho	7,8	0,3	7,5	0	6,2
Mariposa	2	0	8,5	0	2,3
libre	0	0	1,3	0,2	1,9
Otro	0	2,8	0,9	0,9	0

La asignación se da en el siguiente orden:

- David-Torso
- Tony-Pecho
- Chris-Mariposa
- Carlo-Libre

Este orden es por que Mariposa por ejemplo puede ser realizado por Chris y Tony, entonces se debe empezar por aquellos que se puedan realizar por un nadador para poder descartar el resto.

Finalmente el valor de la función objetivo por el orden anterior es 126.3.

Aplique en forma manual el algoritmo húngaro para resolver el problema de asignación que tiene la siguiente tabla de costos:

	Tarea			
Asignado	1	2	3	4
1	4	6	5	5
2	7	4	5	6
3	4	7	6	4
4	5	3	4	7

En este caso la matriz de costos si es cuadrada, por lo tanto se realiza el procedimiento típico que veremos a continuación. Partimos seleccionando el valor más pequeño de cada fila, que son los siguientes:

	1	2	3	4	
1	4	6	5	5	4
2	7	4	5	6	4
3	4	7	6	4	4
4	5	3	4	7	3

Ahora a los valores de cada fila restamos su mínimo, dando lo siguiente:

	1	2	3	4
1	0	2	1	1
2	3	0	1	2
3	0	3	2	0
4	2	0	1	4

Ahora buscamos el valor más pequeño de cada columna y luego se lo restamos a la columna correspondiente, con esto nos queda lo siguiente:

	1	2	3	4
1	0	2	0	1
2	3	0	0	2
3	0	3	1	0
4	2	0	0	4

Ahora tachamos las menor cantidad de filas y columnas que contengan un 0.

	1	2	3	4
1	0	2	0	1
2	3	0	0	2
3	0	3	1	0
4	2	0	0	4

Como la cantidad de filas/columnas tachadas son 4 que es igual al tamaño de la matriz se termina el algoritmo, para dar la solución destacamos los valores igual a 0.

	1	2	3	4
1	0	2	0	1
2	3	0	0	2
3	0	3	1	0
4	2	0	0	4

De esto se tiene que la solución es:

Asignado 1 - Tarea 1

Asignado 2 - Tarea 3

Asignado 3 - Tarea 4

Asignado 4 - Tarea 2

Con costo 16.

Eiercicio 3

Un carpintero, un plomero y un ingeniero están disponibles para realizar ciertas tareas. Cada persona puede desarrollar sólo una tarea en el tiempo asignado. Hay 4 tareas disponibles, pero se desea desarrollar sólo tres. La matriz de ineficiencia para una persona i que desarrolla una tarea j es la siguiente:

	Soldadura	Enmarcado	Calado	Alambrado
Carpintero	4	6	4	4
Plomero	3	4	2	3
Ingeniero	7	5	6	5

Si se quiere minimizar la ineficiencia total:

- ¿Qué trabajo desarrolla cada persona?
- ¿Qué trabajo queda sin desarrollar?

De la matriz anterior se tiene que no es cuadrada, por lo tanto agregamos otra fila solo de 0.

	Soldadura	Enmarcado	Calado	Alambrado
Carpintero	4	6	4	4
Plomero	3	4	2	3
Ingeniero	7	5	6	5
Otro	0	0	0	0

De esto se elige el menor valor de cada fila y se le resta a esa fila, obteniendo lo siguiente:

	Soldadura	Enmarcado	Calado	Alambrado
Carpintero	0	2	0	0
Plomero	1	2	0	1
Ingeniero	2	0	1	0
Otro	0	0	0	0

Ahora tenemos que cubrir las filas/columnas que contengan 0 con la menor cantidad.

	Soldadura	Enmarcado	Calado	Alambrado
Carpintero	0	2	0	0
Plomero	1	2	0	1
Ingeniero	2	0	1	0
Otro	0	0	0	0

Como la menor cantidad para cubrir los 0 es 4 que es igual al tamaño de la matriz, pasamos a ver la solución.

De lo anterior la asignación será la siguiente:

Carpintero - Soldadura

Plomero - Calado

Ingeniero - Enmarcado

Con un coste total de 11 y dejando el trabajo de alambrado sin desarrollar.