1.

2.

Because an NFA M = $(Q, \Sigma, q_0, \delta, F)$ that accepts L = $\{vwv : v, w \in \{a,b\}^*, |v| = 2\}$

3

If L is regular , NFA M = { Q_A , Σ_A , q_A , F_A , δ_A } accept L(M). Then NFA R = { Q_R , Σ_R , q_R , F_R , δ_R } where $\delta_R = \delta_A^R$, $q_R = F_A$, $F_R = Q_A - F_A$.

Find the $\mathbf{w} \in \Sigma_{\mathbf{A}} \mathbf{q}, \mathbf{p} \in \mathbf{Q}_{\mathbf{A}}$, there $\delta_{\mathbf{R}}(q, w) \Leftrightarrow \delta_{\mathbf{A}}(p, w)$

So if L is regular language then L^R is a regular

4.

a)
$$L1 = \{ w : na(w) \mod 3 = 1 \}.$$

Answer: $b^*a(b^*ab^*ab^*ab^*)^*b^*$

b) $L2 = \{ w : w \text{ ends in } aa \}.$

$$(a+b)^*aa$$

c) L3 = all strings containing no more than three a's.

$$b*(a + \lambda)b*(a + \lambda)b*(a + \lambda)b*$$

5.

Answer:

("+" + "-" +
$$\lambda$$
) (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)(0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)* (e ("+" + "-")(0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) + λ)

6.

Answer:

a)

The regular grammar is G = V, T, S, P where:

$$V = S, A, B$$

$$T = a, b$$

$$P = \{S \rightarrow bS | aA, A \rightarrow bB, B \rightarrow bB | \lambda\}$$

b)

The regular grammar is G = V, T, S, P where:

$$V = \{S, A, B, C\}$$

$$T = a, b$$

$$P = \{S \rightarrow bS \ aA, A \rightarrow bA \ aB \ \lambda, B \rightarrow bB \ aC, C \rightarrow bC|aA\}$$