Estimación de Pi por el método de Montecarlo

Introducción

Intento de estimar el valor de π mediante el método de Montecarlo basándonos en un círculo y su cuadrado circunscrito asociado.

Se hacen distintos lanzamientos aleatorios obteniendo puntos del cuadrado y se ve si están dentro del círculo o no. Como el área del círculo es πr^2 y el del cuadrado circunscrito es $4r^2$, tomando puntos aleatorios del cuadrado la probabilidad de caer en el círculo será de $\frac{\pi r^2}{4r^2}=\frac{\pi}{4}$. Por tanto podemos aproximar Pi de la forma:

$$\pi \simeq 4 \cdot rac{aciertos}{tiradas},$$

siendo acierto el caer dentro del círculo.

Estimación de pi

En la figura se muestra un experimento con 1000 intentos, de los que 783 han caído dentro del círculo (puntos rojos) y 217 fuera (puntos azules). Este experimento daría la siguiente estimación de pi:

$$\pi \simeq 4 \cdot rac{783}{1000} = 3.132$$

Estimación

La estimación se hace gracias a un pequeño script en python.

Para hacer una tirada, se calcula aleatoriamente un punto dentro del cuadrado de lado 2 (consideramos r=1). Centrando el cuadrado en el (0,0) sería obtener unos $x\,$ e $y\,$ aleatorios entre $-1\,$ y 1.

Tendremos éxito si (x,y) están en el círculo, es decir, si $x^2+y^2<=1$.

Código

```
# Estimación de pi mediante el método de Montecarlo
2
3
   from random import randint, uniform, random
   aciertos = 0
   INTENTOS = 1000000
7
   for i in range(1, INTENTOS):
8
      x = uniform (-1,1)
9
      y = uniform(-1,1)
10
      if x**2 + y**2 <= 1:
11
            aciertos += 1
12
13 pi = (aciertos / INTENTOS) * 4
14
15 print(pi)
```

Resultado

Se han obtenido los siguientes valores

Tiradas	Estimación de π
100	3,04
1.000	3,172
10.000	3,1376
100.000	3,14204
1.000.000	3,1429

Nota

Los gráficos los he generado haciendo un script similar al anterior en *python*, pero en este caso en *R*.

```
Intentos = 1000

x = runif(Intentos, min=-1, max=1)
y = runif(Intentos, min=-1, max=1)
z = sqrt(x^2+y^2)

aciertos = length(which(z<=1))
pi = 4 * aciertos/INTENTOS</pre>
```

```
9
10
    plot(x[which(z \le 1)], y[which(z \le 1)], pch=16, col='red',
11
12
         xlab="", ylab="", axes=FALSE)
points(x[which(z>1)],y[which(z>1)], pch=16, col='blue')
14 title(
     main = "Estimación de pi"
15
16
    )
17
18 axis(1, seq(-1,1,0.5))
    axis(2, seq(-1,1,0.5), las=2)
19
20
21 | circulo_x = c(seq(-1, 1, 0.01), seq(1, -1, -0.01))
22 circulo_y = sqrt(1-circulo_x^2)
points(circulo_x,circulo_y,type="l")
24 points(circulo_x,-circulo_y,type="l")
```