ÁLGEBRA 1

CURSO 20-21

RELACIÓN DE EJERCICIOS 3

3.1. Dar ejemplos de relaciones binarias en un conjunto que verifiquen una sola de las siguientes propiedades: reflexiva, simétrica, antisimétrica, transitiva.

- **3.2.** Sea $X = \{1, 2, 3\}$. Calcular todas las particiones de X.
- **3.3.** Sea $X = \{0, 1, 2, 3\}$, $Y = \{a, b, c\}$ y $f : X \to Y$ la aplicación dada por: f(0) = c; f(1) = f(2) = a; f(3) = b. Considerar la aplicación $f^* : \mathcal{P}(Y) \to \mathcal{P}(X)$ que a cada subconjunto $B \subseteq Y$ le hace corresponder su imagen inversa por f.
 - i) ¿Es f^* inyectiva, sobreyectiva o biyectiva?
 - ii) Calcular la relación \sim_{f^*} en $\mathcal{P}(Y)$ asociada a f^* y el conjunto cociente $\mathcal{P}(Y)/\sim_{f^*}$.
- iii) Hallar la descomposición canónica de f^* .
- **3.4.** Sean X e Y dos conjuntos tales que $Y \subseteq X$. En el conjunto $\mathcal{P}(X)$ se define la siguiente relación binaria:

$$A \sim B \iff A \cap Y = B \cap Y$$

Demostrar que dicha relación es de equivalencia y describir el conjunto cociente.

3.5. Si X e Y son dos conjuntos y R y S son relaciones de equivalencia en X e Y respectivamente, definir en el conjunto $X \times Y$ una relación de equivalencia T tal que exista una biyección

$$(X \times Y)/T \cong (X/R) \times (Y/S)$$

3.6. Encontrar el error en la siguiente demostración:

"Una relación binaria sobre un conjunto X que es simétrica y transitiva es reflexiva porque $\forall x_1, x_2 \in X, x_1 R x_2 \Rightarrow x_2 R x_1$ (por simetría) y de aquí, por transitividad, $x_1 R x_1$ ".

- **3.7.** Encontrar todos los órdenes parciales que se pueden definir en un conjunto de 3 elementos.
- **3.8.** Sean X e Y conjuntos ordenados y definamos en $X \times Y$ la siguiente relación binaria:

$$(x, y) \le (x', y') \Leftrightarrow x \le x' \land y \le y'$$

Demostrar que " \leq " es una relación de orden en $X \times Y$ pero que este orden no es total (incluso en el caso de que X e Y fueran totalmente ordenados) salvo en en el caso de que X ó Y consistan de un solo elemento.

- **3.9.** Sea X un conjunto no vacío e $Y \in \mathcal{P}(X)$. Definimos la aplicación $f: X \to \mathcal{P}(X)$ por $f(x) = Y \cup \{x\}$, para $x \in X$, y consideramos la la relación de equivalencia \sim_f asociada a f. Describir el conjunto cociente X/\sim_f . Si X es finito y tiene n elementos e Y tiene m elementos, calcular el cardinal (o sea, el número de elementos) de X/\sim_f .
- **3.10.** Consideremos el plano vectorial real $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ y el conjunto $X = \mathbb{R}^2 \setminus \{(0,0)\}$. Definimos la relación R en X por uRv si existe $\lambda \in \mathbb{R}$ tal que $u = \lambda v$, para $u, v \in X$. Describir el conjunto cociente $\mathbb{P}^1 = X/R$.