Vysoké učení technické v Brně

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Technická zpráva k projektu do předmětu IVH

Ledcube

5. června 2013

Autoři: Mario Wanka, xwanka00@stud.fit.vutbr.cz

Kateřina Zaklová, xzaklo00@stud.fit.vutbr.cz

Fakulta Informačních Technologií

Vysoké Učení Technické v Brně

Obsah

1	$\acute{\mathbf{U}}\mathbf{vod}$	1
2	Ledcube	1
	2.1 Hardware	. 1
	2.2 Software	. 2
3	Závěr	3

1 Úvod

Tato zpráva vznikla jako dokumentace k projektu do předmětu Seminář VHDL. Dokument se ve zkratce zabývá úvodem do problematiky, a dále popisuje sestrojení samotné krychle a implementaci programu pro ovládání.

2 Ledcube

V rámci projektu jsme si vybrali vlastní zadání s tématem Ledcube. Jedná se o krychli složenou z diod, které se rozsvěcují a zhasínají v závislosti na aplikaci nahrané v MCU.

2.1 Hardware

Nejprve bylo nutné sestrojit krychli. Ke konstrukci jsme využili součástky sepsané v následující tabulce (1).

Jméno	Тур
R1-R16	100-120R
D1-D64	červené LED
D65-D80	1n4148
Q1-Q4	bc556
Q5, Q6	bc29bs170
IC1, IC2	uln2803apg

Tabulka 1: Seznam součástek

Jelikož FPGA zapojeným diodám neposkytne dostatečný proud, musí být výstupy posíleny tranzistory. V jeden okamžik může svítit pouze 8 diod. Diody sdílí katodu v rámci vrstvy a anodu v rámci sloupce. Katody jsou zároveň sdíleny oběma polovinami vrstvy, přepínání polovin řídí tranzistory Q5 a Q6, přepínání vrstev pak tranzistory Q1-Q4. Takovéto rozdělení bylo zvoleno z důvodu snížení možného počtu vývodů. Propojení s FITkitem je realizováno konektorem připájeným rovnou k pájivému poli. Zapojení je znázorněno ve schématu (1).

Obrázek 1: Zapojení (převzato z http://marnice.cz/media/users/mirek/ledcube/cube7.png)

2.2 Software

Mapování signálů použitých komponent a konektoru ovládajícího ledcube je obsaženo v souboru top.vhd. Komponenta pro přenos dat SPI_adc byla převzata z svn/apps/demo/bram. U této komponenty nás zajímají především údaje DATA_OUT, který obsahuje 64-bitový vektor, kde každý bit symbolizuje stav jedné led diody a WRITE_EN, který indikuje, zda došlo k zápisu nových dat. Mapování vývodů pro jednotlivé vrstvy a poloviny krychle bylo provedeno s ohledem na nejjednodušší možnou manipulaci s vektorem pro stav led diod.

Ukládání dat z SPI se provádí v entitě led_control ze souboru led_control.vhd. K uložení dat dojde při náběžné hraně hodinového signálu, a zároveň, pokud je signál WRITE_EN získaný z SPI na hodnotě 1. Dále entita obsahuje přepínání vrstev a polovin krychle s vhodně zvolenou frekvencí. Rovněž je zde řešeno určování správné osmice diod pro aktuálně aktivní vrstvu a polovinu.

Implementace jednotlivých světelných efektů se nachází v souboru main. c. Soubor obsahuje proměnnou field64bit, do které se ukládá stav všech diod. K manipulaci s touto proměnnou jsou používány bitové operace AND, OR, XOR spolu s bitovým posuvem v rámci vektoru. Tyto operace jsou realizovány prostřednictvím funkcí $led_on()$, $led_off()$, $led_flip()$. Argumenty funkcí tvoří hodnoty určující pozici led diody v osách x, y, z. Mapování jednotlivých bitů na led diody bylo provedeno s ohledem na snadný výpočet posuvu ve vektoru při zadání souřadnic (z*16+x*4+y). Všechny změny jsou prováděny pouze nad výše zmíněnou proměnnou a nemají vliv na aktuálně svítící diody až do té doby, než dochází k volání funkce write_spi(), která odešle nové údaje do FPGA. Komunikaci mezi MCU a FPGA obstarává funkce FPGA_SPI_RW_A8_DN() z knihovny libfitkit.

3 Závěr

Sestrojili jsme funkční krychli z diod, která přehrává světelné sekvence. V tuto chvíli má implementovanou pevnou sekvenci světelných efektů, je však možné přidávat další, popř. odebírat stávající. Je zde rovněž možnost vylepšit ovládání zobrazování, např. pomocí klávesnice FIT-kitu nebo z terminálu QDevKitu. Krychlí ve větších rozměrech by bylo možné zobrazovat různé 3D animace.

Obrázek 2: Ledcube