

Ecuación de Euler-Lagrange

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. **Péndulo rígido ideal** [Marion (english) ex. 7.2]

Péndulo de punto de suspensión libre y péndulo doble [Landau §5 ejs. 1 y 2]

Aplique la ecuación de Euler-Lagrange para obtener las ecuaciones de la dinámica de los sistemas:

2. Plano inclinado móvil

Un bloque de masa m está originalmente inmovil sobre un plano de inclinación θ que no le presenta fricción y de masa M. Este último puede deslizar sobre la superficie horizontal que tampoco le presenta fricción alguna. Denomine con X en la dirección indicada la posición de este último y x para la del bloque superior.

- a) Obtenga la ecuación de Euler-Lagrange para X y aquella para x.
- b) Habrá notado que no podría responder a una pregunta como "De soltar el bloque más pequeño, ¿que aceleración tiene el plano?" pues obtuvo un sistema de dos ecuaciones diferenciales ligadas. En la clase siguiente aprenderá a resolver el sistema usando SymPy.

3. Soporte de péndulo sobre un plano inclinado

Un soporte de masa M desliza por un plano inclinado en un ángulo β sin que este le presente fricción. Un péndulo de longitud ℓ y masa m cuelga del soporte (asuma que este se extiende a los costados del plano para que el péndulo pueda colgar).

- a) Encuentre las ecuaciones para la dinámica.
- b) (*) Asumiendo pequeñas oscilaciones en torno a la vertical encuentre la frecuencia de oscilación del péndulo.

4. Resorte enrollado en una T

Una pieza rígida en forma de T consiste en una larga varilla soldada perpendicularmente a otra de longitud ℓ que pivotea en torno a un origen. La T gira sobre un plano horizontal con velocidad angular constante ω . Una partícula de masa m muy superior a la de la T, por la que esta última es despreciable, puede desplazarse libremente en la primer varilla y está conectada a la intersección de ambas por un resorte de constante elástica k y longitud natural nula.

- a) (*) Encuentre una ecuación para la dinámica de la distancia de la partícula a la intersección d.
- b) (**) Obtenga d(t) asumiendo las condición iniciales que desee.
- c) (***) Existe un "valor especial" para ω . ¿Cuál sería y por qué es especial?