HAlg Note

1 Basic Knowledge

Useful Complex Number Properties: $|Re(z)|, |Im(z)| \le |z|$ $Re(z) = \frac{z+\overline{z}}{2}, Im(z) = \frac{z-\overline{z}}{2i}, |z|^2 = z\overline{z}$ Triangle (Reverse) Inequality: $|z_1 + z_2| \le |z_1| + |z_2|$ $|z_1| - |z_2| \le |z_1 - z_2|$ Argument: $arg(z) := \{\theta : z = |z|e^{i\theta}\} = \{Arg(z) + 2\pi k : k \in \mathbb{Z}\}$ Principle Value of Argument: $Arg(z) \in (-\pi, \pi]$ Open/Closed/Punctured ε -disc: $D_{\varepsilon}(z_0) := \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}$ $\overline{D}_{\varepsilon}(z_0) := \{z \in \mathbb{C} : |z - z_0| \le \varepsilon\}$ $D'_{\varepsilon}(z_0) := \{z \in \mathbb{C} : 0 < |z - z_0| < \varepsilon\}$ Open/Closed Set in \mathbb{C} : $U \subset \mathbb{C}$ is open if $\forall z_0 \in U, \exists \varepsilon > 0, D_{\varepsilon}(z_0) \subseteq U$ U is closed if $\mathbb{C} \setminus U$ is open Lemma: $D_{\varepsilon}, D'_{\varepsilon}$ open, $\overline{D}_{\varepsilon}$ closed.

2 Holomorphic Functions

3 Basic Knowledge