<u>Q1.</u>

Given

L1: strings over {0,1} such that they contain even number of 1's

L2: the set of all bit strings (i.e. strings over alphabet {0,1}) that are divisible by 4

(1) Regular expression corresponding to L1 $\,$

(2) Regular expression corresponding to ${\tt L2}$

<u>Q.2</u>

Automaton that accepts the regular expression b?a(c+ b)*

Lexical scope – point 1

Lexical scope – output

3

1

Dynamic scope – point 2

Output :

Q.4.
Box circle diagram after line 11 ->

Box circle diagram after line 15 ->

Program Prints ->

1

1

3

<u>Q 5.</u>

From following two parse trees it's proved that G is ambiguous.

Parse Tree 1 ->

<u>Q 6.</u>

Output:

Call by value:

1210

210

Call by reference:

1210

200

Call by name:

0212

012