

PHYSICS

Chapter 05

VECTORES I

1. Cantidad física Escalar

Cantidades físicas que para estar bien definidas solo necesitan de un número y una unidad física, es decir, conocer su módulo o magnitud.

Ejemplo: la masa de un ladrillo es:

Así también tenemos la densidad, el tiempo, la cantidad de trabajo, el volumen, etc.

2. Cantidad física Vectorial

Son aquellas cantidades físicas que además de tener un "módulo" necesitan de una dirección para quedar bien definidos.

Ejemplo: la velocidad del carro es:

† Dirección

20 m/s hacia la derecha

Así también tenemos la aceleración, la fuerza, la velocidad, el torque, el impulso etc.

¿QUÉ ES UN VECTOR?

Elemento matemático que utilizaremos para representar una cantidad física vectorial.

Se representa con un segmento de recta orientado Se lee: Vector V

Elementos del vector

Modulo ($|\vec{V}|$) : Es la cantidad de veces que contiene la unidad base de la cantidad física.

Dirección (θ): Expresado por la medida del ángulo θ en sentido antihorario a partir de +X.

VECTORES UNITARIOS CARTESIANOS

Son aquellos vectores cuyo **módulo es la unidad** de medida y se encuentran en los ejes coordenados cartesianos.

ADICIÓN DE VECTORES

La adición o suma de dos o más vectores es otro vector llamado Resultante (\vec{R})

Ejemplo: Sean los vectores \overrightarrow{A} , \overrightarrow{B} y \overrightarrow{C}

$$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$$

$$\vec{R} = a\hat{\imath} + b\hat{\jmath}$$

Donde su módulo de \overrightarrow{R} :

$$R = \sqrt{a^2 + b^2}$$

Determine los elementos del vector mostrado.

Resolución:

Los elementos del vector son: módulo y dirección.

Módulo: $5 \times 6N = 30N$

Dirección : $\theta = 180^{\circ} - 40^{\circ}$

 $\theta = 140^{\circ}$

HELICO | PRACTICE

Determine el módulo y dirección de los vectores \overrightarrow{A} y \overrightarrow{B} , respectivamente.

Resolución:

vector "A"

Módulo : A = 3 u

Dirección: $\theta = 90^{\circ}$

vector "B"

Módulo : B = 3u

Dirección : θ = 180 °

Determine el vector \vec{F} en términos de los vectores unitarios $\hat{i} y \hat{j}$ e indique su módulo.

RESOLUCIÓN

$$\vec{F} = (+3\hat{\imath} + 4\hat{\jmath})\mathbf{u}$$

$$F = \sqrt{3^2 + 4^2} u$$

$$F = \sqrt{9 + 16} u$$

$$F=\sqrt{25} u$$

$$F=5u$$

Determine el vector resultante de los vectores mostrados con su respectivo módulo.

RESOLUCIÓN

Determinación de los vectores

$$\vec{A} = +2\hat{i} u$$

$$\vec{B} = -3\hat{j} u$$

$$\vec{C} = +2\hat{i} u$$

La Resultante \overrightarrow{R} es:

$$\vec{R} = \vec{A} + \vec{B} + \vec{C}$$

$$\vec{R} = (+4\hat{i} - 3\hat{j}) u$$

El módulo de la resultante \overrightarrow{R} es:

$$R = \sqrt{4^2 + 3^2} u$$

$$R = \sqrt{16 + 9} u$$

$$R = \sqrt{25} u$$

$$R = 5 u$$

Determine el vector resultante de los vectores que se muestran.

RESOLUCIÓN

Determinacion de los vectores

$$\vec{A} = (+2\hat{i} - \hat{j})u$$

$$\vec{B} = (-3\hat{i} + 3\hat{j})u$$

Su Resultante \vec{R} es:

$$\vec{R} = \vec{A} + \vec{B}$$

$$\vec{R} = (-\hat{i} + 2\hat{j}) u$$

Jair y Anderson en el intento de jalar un bloque pesado ejercen fuerzas representadas por vectores mostrados, siendo ambas fuerzas no suficientes para desplazar al bloque. Determine el vector que representa a la fuerza resultante de ambas fuerzas con su respectivo módulo.

RESOLUCIÓN

$$\vec{J} = (-3\hat{\imath} + \hat{\jmath})u$$

$$\vec{A} = (-4\hat{i} - \hat{j})u$$

Su resultante \vec{R}

$$\vec{R} = \vec{J} + \vec{A}$$

$$\vec{R} = (-7\hat{i}) u$$

$$R = 7 u$$

Juan desea ir de una ciudad A otra ciudad B y para ello primero e desplaza desde A hasta C en línea recta y luego de igual forma de C a B. Hallar el desplazamiento resultante que realizó.

Resolución:

$$\overline{d} = (12\hat{\imath} + 9\hat{\jmath})km$$