Statistical Inference and Multivariate Analysis (MA324)

Lecture 04

Relation among different Convergences

Indian Institute of Technology Guwahati

Jan-May 2023

Relation between Modes of Convergence

Counter Examples

Example 1: Let $\mathcal{S}=[0,1], \mathcal{F}=\mathcal{B}([0,1])$ and P be the uniform measure. Define $X_n=n1_{[0,\frac{1}{n}]}.$ X_n converges to 0 in probability and almost surely but not in rth mean for any $r\geq 1$.

Example 2: Let X be a N(0,1) RV defined on some probability space $(\mathcal{S},\mathcal{F},P)$. Define $X_n=X$ for all n. Then X_n converges in distribution to -X but not in probability.

Example 3: Let $X_{1,1}=1_{[0,1/2]}, X_{2,1}=1_{[1/2,1]}$ $X_{1,2}=1_{[0,1/4]}, X_{2,2}=1_{[1/4,1/2]}, X_{3,2}=1_{[1/2,3/4]}, X_{4,2}=1_{[3/4,1]}\dots$ Then $X_{m,n}$ converges (as $n\to\infty$) in rth mean and in probability but not almost surely.

Jan-May 2023

MA324