Aspects Fondamentaux du Calcul : Le Problème de l'Unification

Unification

but: résoudre des équations

Unification: équations

- Le but de l'unification est de résoudre des équations.
- ② Un problème équationnel est un ensemble fini de paires (Attention il s'agit bien de paires et pas de couples!) de termes:

$$P = \{s_1 \stackrel{?}{=} t_1, ..., s_n \stackrel{?}{=} t_n\}$$

 $s_i \stackrel{?}{=} t_i$ est une équation

Convention

- Si t_i dans $s_i \stackrel{?}{=} t_i$ est une variable x_i , on écrira plutôt $x_i \stackrel{?}{=} s_i$ que $s_i \stackrel{?}{=} x_i$
- 2 La variable isolée, si elle existe est toujours à gauche.

Solution

• Une solution de P ou un unificateur de P est une substitution σ telle que

$$\sigma(s_1) = \sigma(t_1)$$

$$\vdots$$

$$\sigma(s_n) = \sigma(t_n)$$

- L'ensemble des unificateurs de P est noté $\mathcal{U}(P)$.
- Si $\mathcal{U}(P) \neq \emptyset$ on dit que P est *unifiable*.

Exemple 1

Soit le problème :

Les substitutions

$$\{x \mapsto i(u) * u, \quad y \mapsto i(i(u) * u), \quad z \mapsto i(u)\}$$

$$\{x \mapsto z * u, \quad y \mapsto i(z * u)\}$$
 son

sont chacune des solutions.

Exemple 2

Le problème :

n'a pas de solution, car il faudrait que $\sigma(x) = i(\sigma(x))$. Ce qui est impossible.

Ordre sur les substitutions et MGU

• L'ensemble $Sub(T(\Sigma, V))$ est muni d'un ordre \lesssim défini par $\sigma \lesssim \tau$ si et seulement si $(\exists \rho \in Sub(T(\Sigma, V)) \quad \tau = \rho \sigma.$ σ est dite plus générale que $\tau.$

- ② L'unificateur le plus général de P (ou mgu) est une substitution σ telle que
 - σ est un unificateur de P, c-à-d $\sigma \in \mathcal{U}(P)$.
 - Si $\theta \in \mathcal{U}(P)$ alors $\sigma \lesssim \theta$.

Forme résolue

- Soit P un problème contenant $x \stackrel{?}{=} t$. $x \stackrel{?}{=} t$ est en forme résolue dans P si x n'apparaît nulle part ailleurs dans P.
 - En particulier,
 - $x \notin Var(t)$
 - et il n'y a pas d'autre équation de la forme $x \stackrel{?}{=} s$.
- x est alors dite résolue.
- *Un problème est résolu* si toutes ses équations sont en forme résolue.

Forme résolue et MGU

Definition

Si
$$P = \{x_1 \stackrel{?}{=} t_1, ..., x_n \stackrel{?}{=} t_n\}$$
 est résolu, alors $\sigma = \{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$ est un mgu de P .

On note σ_P au lieu de $\{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$

Unification: en pratique

- unification = résolution d'équations symboliques
- principe: faire "coller" 2 termes l'un en face de l'autre, en attrapant le "dur" (terme) avec le "mou" (variable)
- technique: exploration des 2 arbres en parallèle pour engendrer une substitution fonction partielle des variables avec les termes

Algorithme

soit $\mathcal P$ un problème, et σ une solution courante

- \bullet $\sigma = \varnothing$
- ullet tant que ${\mathcal P}$ n'est pas vide
 - ullet on prend une équation dans ${\mathcal P}$, plusieurs cas:
 - **décomposition**: $c(s_1, ..., s_n) = c(t_1, ..., t_n)$ on ajoute les équations $s_i = t_i$ dans \mathcal{P}
 - conflit: $c(s_1,\ldots,s_n)=d(t_1,\ldots,t_l)$ Echec
 - **trivial**: t = t, rien à faire
 - élimination de variable: x = t et x ∉ var(t)
 σ' = {x ↦ t}

$$\sigma' = \{x \mapsto t\}$$

 $\mathcal{P} = \sigma' \mathcal{P}, \ \sigma = \sigma' \sigma \cup \sigma'$

- cyclicité: x = t et $x \in var(t)$ et $x \neq t$ Echec
- orientation: x = t et $t \notin var(\mathcal{P})$ $\mathcal{P} \cup \{x = t\}$
- fin tant que
- renvoyer σ (succès)

Algorithme: remarques

- quand on applique une substitution $x \mapsto t$, la variable x disparaît
- algorithme non déterministe ("prendre").
 comment choisir l'équation pour être plus efficace?
- l'algorithme termine (test de cyclicité)
- élimination d'une variable: on préserve l'ensemble des solutions

Algorithme: propriétés

- une execution qui réussit, est de la forme: $[\mathcal{P},\varnothing] \Rightarrow \ldots \Rightarrow [\varnothing,\sigma]$ (séquence de couples [problème, substitution])
 - **correction:** si $[\mathcal{P},\varnothing] \Rightarrow [\varnothing,\sigma]$ alors σ unifie les équations de \mathcal{P} i.e., $\forall t=t'\in\mathcal{P}, \ \sigma t=\sigma t'$
 - **complétude:** si σ' unifie les équations de \mathcal{P} , alors tout calcul $[\mathcal{P}, \varnothing] \Rightarrow \ldots$ se termine sur un σ qui généralise σ' (i.e., $\exists \rho \ \sigma' = \rho \sigma$)
 - **idempotence** la substitution σ obtenue est idempotente si $x \mapsto t \in \sigma$, alors x n'a pas d'autre occurence dans σ
- donc $[\mathcal{P},\varnothing]\Rightarrow\ldots\Rightarrow$ echec ssi \mathcal{P} n'a pas de solution
- conclusion: le procédure d'unification calcule un unificateur le plus général lorsqu'il existe ou σ décrit toutes les solutions au problème de départ

Algorithme: complexité

- cet algorithme peut être exponentiel en espace et en temps
- (pour une équation (et peut être plus), i.e., cas de l'unification en Prolog) représenter les données qu'on manipule (termes, substitutions) de manière efficace permet d'obtenir des algorithmes plus efficaces (temps $\mathcal{O}(n^2)$, espace en $\mathcal{O}(n)$ en utilisant des DAG par exemple)
 - il y aurait même des algo linéaires en temps (pas vérifié)
- le filtrage en Caml est de la "demi-unification"
 - filtrage: le motif "mange" la valeur (toutes les variables à gauche)
 - unification: les 2 côtés de l'égalité sont acteurs et ont le même rôle

Des exemples

Variables: $\{x, y, z, t\}$

- $\{c(x,y)=c(f(a),g(a,b))\}$, solution $\{x\mapsto f(a),y\mapsto g(a,b)\}$
- $\{c(f(a),g(a,b))=c(x,y)\}$, solution $\{x\mapsto f(a),y\mapsto g(a,b)\}$
- $\{f(t,c(e),d)=f(a,x,d)\}$, solution $\{t\mapsto a,x\mapsto c(e)\}$
- $\{f(a,b,x)=f(y,c,d)\}$, solution echec
- $\{c(x,y)=c(z,t)\}$, solution $\{z\mapsto x,t\mapsto y\}$ ou $\{y\mapsto t,x\mapsto z\}$ ou
- $\{c(x, a, b) = c(c, x, b)\}$, problème: terme incorrect
- $\{f(a) = f(a)\}$, solution $\{\}$
- $\{p(x,c,x)=p(a,y,a)\}$, solution $\{x\mapsto a,y\mapsto c\}$
- $\{f(x,g(x)) = f(z,z)\}$, solution echec