Abstract

More basic category theory. The main sources for this talk are the following.

- \bullet nLab
- John Rognes's Lecture Notes on Algebraic K-Theory, Ch. 3.
- Peter Johnstone's lecture notes for "Category Theory" (Mathematical Tripos Part III, Michaelmas 2015), Ch. 1.

Definition. Let \mathscr{C} and \mathscr{D} be categories and $F, G : \mathscr{C} \to \mathscr{D}$ be functors. A natural transformation $\phi : F \Rightarrow G$ is a function $A \mapsto f_A$ from ob \mathscr{C} to mor \mathscr{D} such that $f_A : F(A) \to G(A)$ and the following diagram commutes for any morphism $f : A \to B$.

$$\begin{array}{ccc}
FA & \xrightarrow{Ff} & FB \\
f_A \downarrow & & \downarrow f_B \\
GA & \xrightarrow{Gf} & GB
\end{array}$$

In symbols, this may be written as $f_B f_* = f_* f_A$, where f_A and f_B are called the *components* of ϕ .

Remark 1. If every f_A is an isomorphism, then the $(f_A)^{-1}$ define a natural transformation between the same two functors.

Definition. Let $F, G, H : \mathscr{C} \to \mathscr{D}$ be functors. The *identity natural transformation* $\mathrm{Id}_F : F \Rightarrow F$ is given by $A \mapsto \mathrm{Id}_{F(A)}$. Moreover, given natural transformations $\phi : F \to G$ and $\psi : G \to H$, define the *composite natural transformation* $\psi \circ \phi$ by $A \mapsto (\psi \circ \phi)_A := \psi_A \circ \phi_A$.

Definition. If each f_A is an isomorphism, then we call $\phi: F \cong G$ a natural isomorphism.

Remark 2. If \mathscr{D} is a groupoid, then ϕ must be a natural isomorphism.

Lemma 1. A natural transformation $\phi: F \Rightarrow G$ is a natural isomorphism iff it has an inverse $\phi^{-1}: G \Rightarrow F$.

Proof. This follows from Remark 1 and the definition of composite natural transformation.

Example 1. Let R and S be commutative rings. Any ring homomorphism $f: R \to S$ induces a ring homomorphism $GL_n(f): GL_n(R) \to GL_n(S)$ which satisfies $f(\det(A)) = \det(GL_n(f)(A))$. Viewing GL_n and $R \mapsto R^*$ as functors from \mathbf{Rng} to \mathbf{Grp} and $\det_R : GL_n(R) \to R^*$ as a morphism in \mathbf{Grp} , we see that \det_R defines a natural transformation $\phi: GL_n \Rightarrow f^*$, where f^* denotes $f \upharpoonright_{R^*} R^* \to S^*$.

$$\begin{array}{ccc}
\operatorname{GL}_n(R) & \xrightarrow{\operatorname{GL}_n(f)} & \operatorname{GL}_n(S) \\
 & & \downarrow & & \downarrow \\
\operatorname{det}_S & & \downarrow & \downarrow \\
R^* & \xrightarrow{f^*} & S^*
\end{array}$$

Example 2. Recall the power set functor $P: \mathbf{Set} \to \mathbf{Set}$ given by $A \mapsto P(A)$ and Pg(S) = g(S) where $g: A \to B$ is a function and $S \subset A$. Then the function $f_A: A \to P(A)$ given by $a \mapsto \{a\}$ defines a natural transformation $\phi: \mathrm{Id}_{\mathbf{Set}} \Rightarrow P$.

Example 3. Set $\mathscr{C} = \mathscr{D} = \mathbf{Grp}$, $F = \mathrm{Id}_{\mathscr{C}}$, and G equal to the abelianization functor. Then given a group H, the homomorphism $f: H \to H^{\mathrm{ab}}$ defines a natural transformation $\phi: F \Rightarrow G$.

Example 4. Consider the preorders (P, \leq) and (Q, \leq) as small categories where functors $F, G : P \to Q$ are order-preserving functions. Then there is a unique natural transformation $\phi : F \Rightarrow G$ iff $F(x) \leq G(x)$ for every $x \in P$.

Example 5. The inversion isomorphism from a group G to G^{op} defines a natural transformation $\phi : \text{Id}_{\mathbf{Grp}} \Rightarrow (^{\text{op}} : \mathbf{Grp} \to \mathbf{Grp})$. In other words, G is naturally isomorphic to G^{op} .

Definition. Let \mathscr{C} and \mathscr{D} be categories with \mathscr{C} small. The functor category $\mathbf{Fun}(\mathscr{C},\mathscr{D}) := \mathscr{D}^{\mathscr{C}}$ has functors $F : \mathscr{C} \to \mathscr{D}$ as objects and natural transformations as morphisms.

Remark 3. Given functors $F, G : \mathscr{C} \to \mathscr{D}$, why is the class of natural transformation $\phi : F \Rightarrow G$ necessarily a set? A G-Universe models ZFC, in particular Replacement.

Definition. Given a category \mathscr{C} , the arrow category $\operatorname{Ar}(\mathscr{C})$ of \mathscr{C} has as objects morphisms $f: X_0 \to X_1$ in \mathscr{C} and as morphisms $M: (f: X_0 \to X_1) \to (g: Y_0 \to Y_1)$ the pairs $M=(M_0, M_1)$ of morphisms $M_0: X_0 \to Y_0$ and $M_1: X_1 \to Y_1$ such that the following commutes.

$$X_0 \xrightarrow{f} X_1$$

$$M_0 \downarrow \qquad \qquad \downarrow M_1$$

$$Y_0 \xrightarrow{g} Y_1$$

Remark 4. $Ar(\mathscr{C}) \cong Fun([1], \mathscr{C}).$

Lemma 2. Fun($\mathscr{C} \times \mathscr{D}, \mathscr{E}$) \cong Fun(\mathscr{C} , Fun(\mathscr{D}, \mathscr{E})) via currying.

Definition. A functor $F: \mathscr{C} \to \mathscr{D}$ is an *equivalence* if there is a functor $G: \mathscr{D} \to \mathscr{C}$ such that $F \circ G \cong \mathrm{Id}_{\mathscr{C}}$ and $G \circ F \cong \mathrm{Id}_{\mathscr{D}}$. In this case, we say that F and G are *equivalent categories*. Moreover, we say that a property of \mathscr{C} is *categorical* if it is invariant under such equivalence.

Example 6. Let k be a field. Let the category \mathbf{Mat}_k have natural numbers as objects and morphisms $n \to p$ given by $p \times n$ matrices over k. Let \mathbf{fdMod} denote the category of finite-dimensional vector spaces with linear maps as morphisms. These two categories are equivalent. Send nat n to k^n in one direction and the space V to dim V in the other direction.

Definition. A functor $F: \mathscr{C} \to \mathscr{D}$ is essentially surjective if for each object Z of \mathscr{D} , there is some object Y of \mathscr{C} such that $F(Y) \cong Z$.

Theorem 1. A functor is an equivalence iff it is full, faithful, and essentially surjective.

Proof. See Rognes, Theorem 3.2.10.

Definition. A *skeleton* of \mathscr{C} is a full subcategory $\mathscr{C}' \subset \mathscr{C}$ such that each element of ob \mathscr{C} is isomorphic to exactly one element of ob \mathscr{C}' .

Lemma 3. With notation as before, \mathscr{C}' and \mathscr{C} are equivalent categories via the inclusion functor.

Proof. Apply Theorem 1. \Box

Lemma 4. Any two skeleta $\mathscr{C}', \mathscr{C}'' \subset \mathscr{C}$ are isomorphic.

Proof. Define $F: \mathscr{C}' \to \mathscr{C}''$ by F(X) = Y where $h_X: X \cong Y$ and $F(f) = h_Y \circ f \circ (h_X)^{-1}$ for $f \in \mathscr{C}(X, Y)$. To get F^{-1} , similarly define $G: \mathscr{C}'' \to \mathscr{C}'$ by choosing $(h_X)^{-1}$.

Remark 5. The previous two lemmas are equivalent to the axiom of choice, as is the statement that every category admits a skeleton.

Definition. Fix $X \in \text{ob}\,\mathscr{C}$. Define the functor $\mathscr{Y}^X : \mathscr{C} \to \mathbf{Set}$ by $Y \mapsto \mathscr{C}(X,Y)$ and mapping each morphism $g: Y \to Z$ to $g_* : \mathscr{C}(X,Y) \to \mathscr{C}(X,Z)$ given by $f \mapsto gf$. We call $\mathscr{C}(X,-) := \mathscr{Y}^X$ the set-valued functor *corepresented* by X in \mathscr{C} .

Definition. Fix $Z \in \text{ob } \mathscr{C}$. Define the contravariant functor $\mathscr{Y}_Z : \mathscr{C}^{\text{op}} \to \mathbf{Set}$ by $Y \mapsto \mathscr{C}(Y, Z)$ and mapping each morphism $f : X \to Y$ in \mathscr{C} to $f^* : \mathscr{C}(Y, Z) \to \mathscr{C}(X, Z)$ given by $g \mapsto gf$. We call $\mathscr{C}(-, Z) := \mathscr{Y}^Z$ the set-valued functor represented by Z in \mathscr{C} .

Definition. A functor $F: \mathscr{C} \times \mathscr{C}' \to \mathscr{D}$ is also called a *bifunctor*.

Example 7. Let \mathscr{C} be a category. Define $\mathscr{C}(-,-):\mathscr{C}^{\mathrm{op}}\times\mathscr{C}\to\mathbf{Set}$ by $(X,X')\to\mathscr{C}(X,X')$ and mapping each morphism $(f,f'):(X,X')\to(Y,Y')$ to $\mathscr{C}(f,f'):\mathscr{C}(X,X')\to\mathscr{C}(Y,Y')$ given by $g\mapsto f'gf$.

Definition. This is due to Dan Kan. Let \mathscr{C} and \mathscr{D} be categories and $F:\mathscr{C}\to\mathscr{D}$ and $G:\mathscr{D}\to\mathscr{C}$ be functors. Consider the set-valued bifunctors $\mathscr{D}(F(-),-),\mathscr{C}(-,G(-)):\mathscr{C}^{\mathrm{op}}\times\mathscr{D}\to\mathbf{Set}$. An adjunction between F and G is a natural isomorphism $\phi:\mathscr{D}(F(-),-)\Rightarrow\mathscr{C}(-,G(-))$. If such ϕ exists, then we say that (F,G) is an adjoint pair or functors. We also call F the left adjoint to G and G the right adjoint to F.

Remark 6. For each $c: X' \to X$ and $d: Y \to Y'$, the following commutes.

$$\begin{array}{ccc} \mathscr{D}(F(X),Y) & \stackrel{\phi_{X,Y}}{\longrightarrow} \mathscr{C}(X,G(Y)) \\ & & \downarrow c^* d_* \\ & & \downarrow \mathscr{D}(F(X'),Y') & \stackrel{\phi_{X',Y'}}{\longrightarrow} \mathscr{C}(X',G(Y')) \end{array}$$

Example 8. The forgetful functor $U : \mathbf{Grp} \to \mathbf{Set}$ admits a left adjoint $F : \mathbf{Set} \to \mathbf{Grp}$ which maps a set to the free group generated by A. The adjunction is the natural bijection $\mathbf{Set}(A, U(G)) \cong \mathbf{Grp}(F(A), G)$.

Example 9. Let R be a ring. The forgetful functor $U: R - \mathbf{Mod} \to \mathbf{Set}$ admits a left adjoint R(-) sending a set S to $\bigoplus_{s \in S} R$, the free R-module generated by S. The adjunction is the natural bijection $\mathbf{Set}(S, U(M)) \cong R - \mathbf{Mod}(R(S), M)$.

Remark 7. Rognes says that U does not admit a right adjoint in either of the previous two examples.

Example 10. The forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$ has left adjoint that sends a set to the same set equipped with the discrete topology. It also has a right adjoint via the functor sending a set to the same set equipped with the indiscrete topology.

Example 11. Let **CMon** be the category of commutative monoids. Given $M \in \text{ob } \mathbf{CMon}$, we can construct the completion, or Grothendieck group, G(M) on $M \times M$ as follows. Define addition on $M \times M$ component-wise and say that $(m_1, m_2) \sim (n_1, n_2)$ if $m_1 + m_2 + k = m_2 + n_1 + k$ for some $k \in M$. Set G(M) as $(M \times M/_{\sim}, +)$.

Then $G: \mathbf{CMon} \to \mathbf{Ab}$ is a functor. This is left adjoint to the forgetful functor $U: \mathbf{Ab} \to \mathbf{CMon}$.

Remark 8. Read Rognes, Definition 3.4.8, where he constructs the group completion K(M) of non-commutative monoids M. It turns out that K(M) is realized as the fundamental group of an important classifying space.

Definition. A subcategory $\mathscr{C} \subset \mathscr{D}$ is *reflective* if the inclusion functor is a right adjoint and is *coreflective* if the inclusion functor is a left adjoint.

Example 12. $Ab \subset CMond$ is reflective by Example 11.

Example 13. $Ab \subset Grp$ is reflective.

Example 14. Let $\mathbf{Ab}_T \subset \mathbf{Ab}$ denote the category of torsion groups. This is coreflective via the functor sending an abelian group to its torsion subgroup because any homomorphism $f: A \to B$ where A is torsion has $f(A) \subset B_T$.

Definition. Given an adjunction $\phi: \mathscr{D}(F(-), -) \Rightarrow \mathscr{C}(-, G(-))$, define the unit morphism

$$\eta_X = \phi_{X,F(X)}(\mathrm{Id}_{F(X)})$$

and the counit morphism

$$\epsilon_Y = \phi_{G(Y),Y}^{-1}(\mathrm{Id}_{G(Y)}).$$

Lemma 5. Given an adjunction ϕ , the unit morphisms η_X define a natural transformation $\eta: \mathrm{Id}_\mathscr{C} \Rightarrow GF$ and the counit morphisms η_Y define a natural transformation $\epsilon: FG \Rightarrow \mathrm{Id}_\mathscr{D}$.