Math 344 Sec. 2.6

Rex McArthur

September 25, 2015

Exercise 1. *2.33

(i)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{N}(A) = span \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Thus,

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

2.33 (ii)

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{N}(A) = span \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -1\\1\\1 \end{bmatrix} + span \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

2.33 (iii)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{N}(A) = span \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -1\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

2.33 (iv)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{N}(A) = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

Solution: None, because $0x_1 + 0x_2 + 0x_3 = 1$ is not possible.

2.33 (v)

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Null space empty and solution is

$$x = \begin{bmatrix} -.7625 \\ .025 \\ .57083 \end{bmatrix}$$

2.34(i)

Given these two elements $e_j = e_{j,1}, e_{j,2}, \dots, e_{j,n}$ $e_i = e_{i,1}, e_{i,2}, \dots, e_{i,n}$ of the standard basis for \mathbb{R}^n , which are both $n \times 1$, we have that this operation $e_i e_j^T$ will yield an $n \times n$ matrix E, where $E_{1,1} = e_{j,1}e_{i,1}, E_{1,2} = e_{j,2}e_{i,1}, \dots, E_{m,k} = e_{j,k}e_{i,m}$. Now, since the only nonzero entry of e_j is 1 at entry j and the only nonzero entry of e_i is 1 at entry i, it follows that every entry will be either the product of zero and zero or zero and 1, which are both zero, except for one, in which both $e_{j,j} = 1$ $e_{i,i} = 1 \implies E_{i,j} = 1$.

2.35

Suppose that A doesn't fulfill the conditions of RREF. This entails that anywhere from one to all of the following conditions do not apply

- i. The leading coefficient of each row is always strictly to the right of the leading coefficient of the row above it.
- ii. All nonzero rows are above any zero rows.
- iii. The leading coefficient of every row is equal to one.
- iv. The leading coefficient of every row is the only nonzero entry in its column. Now, i and ii can be corrected by left-multiplying A by a Type I elementary matrix. iii can be corrected by multiplying a leading coefficient not equal to one by an α , namely its inverse, by left-multiplying A by a Type II elementary matrix. And iv can be corrected by left-multiplying A by a Type III elementary matrix in order to turn every other entry of a column to a zero excepting the column's leading coefficient. At this point, we have left-multiplied A by an arbitrary number of elementary matrices to attain a new RREF matrix

$$B = E_k E_{k-1} \cdots E_1 A$$

which according to the definition of row equivalence, is row equivalent to A.

2.36

We know by Proposition 2.6.2 that all elementary matrices are invertible. Note that for a matrix A that is row equivalent to a matrix B, by the definition of row equivalence we have the following:

$$A = E_1 E_2 \dots E_k B \implies B = E_k^{-1} E_{k-1}^{-1} \dots E_1^{-1} A$$

where E_i i = 0, 1, ..., k is a sequence of elementary matrices.

It follows that the inverse of each elementary matrix simply undoes the operation performed on A in order to yield B and vice-versa. Therefore, if E is an elementary matrix, then E^{-1} is an elementary matrix as well. Now we need to show, for row equivalence:

Reflexivity:

$$A = IA$$

where I is the identity matrix (an elementary matrix) and therefore row equivalent to itself, implying reflexivity.

Symmetry:

Suppose a matrix A is row equivalent to a matrix B, then since elementary matrices are invertible, we have that

$$A = E_1 E_2 \dots E_k B$$

$$\implies B = E_k^{-1} E_{k-1}^{-1} \dots E_1^{-1} A$$

where E_i i = 0, 1, ..., k is a sequence of elementary matrices, implying that B is row equivalent to A, implying symmetry.

Transitivity:

Suppose a matrix A is row-equivalent to a matrix B, and B is row equivalent to a matrix C

$$A = E_1 E_2 \dots E_n B$$

$$B = E_1' E_2' \dots E_m' C$$

where E_i $i=0,1,\ldots,n$ E'_j $j=0,1,\ldots,m$ are two sequences of elementary matrices. Then we have

$$A = E_1 E_2 \dots E_n E_1' E_2' \dots E_m' C$$

Which implies that A is row equivalent to C, implying transitivity.