

D. Kaledin

Contents

1	Intr	oductio	on.	1
	1.1	Gener	ralities	1
	1.2	Local	ization (and its discontents)	3
	1.3		gories of models	7
	1.4	Re-an	imating the sets	10
	1.5	A trai	iler	12
	1.6	Socio	logy, or why we do it	19
	1.7	Safety	y features presentation	22
	1.8	Leitfa	iden, or how we do it	25
2	Cate	egory t	heory.	33
	2.1	Categ	gories and functors	33
		2.1.1	Categories	33
		2.1.2	Functors	37
		2.1.3	Commutative diagrams	40
		2.1.4	Categories of functors	43
	2.2	Adjur	nction and limits	45
		2.2.1	Generalities on adjunction	45
		2.2.2	Defining an adjunction	48
		2.2.3	Admissible subcategories	50
		2.2.4	Cylinders and comma-categories	52
		2.2.5	Limits and colimits	56
		2.2.6	Additive categories	62
	2.3	Fibrat	tions and cofibrations	63
		2.3.1	The Grothendieck construction	63
		2.3.2	Cartesian functors	67
		2.3.3	Examples	7 3
		2.3.4	Families of groupoids	81
	2.4	Fibrat	tions and functoriality	86

		2.4.1	Relative functor categories
		2.4.2	Induction and coinduction 90
		2.4.3	Kan extensions
_	0 1		0.7
3	Ord		97
	3.1		lly ordered sets
		3.1.1	Generalities
		3.1.2	Left-closed embeddings
		3.1.3	Reflexive maps
		3.1.4	Barycentric subdivision
		3.1.5	Dimension
		3.1.6	Size and direction
		3.1.7	Perfect colimits
		3.1.8	Cylindrical colimits
		3.1.9	Anodyne maps
		3.1.10	Left-bounded sets
	3.2	Augm	entations and biorders
		3.2.1	Augmentations
		3.2.2	Biordered sets
		3.2.3	From augmentations to biorders
		3.2.4	Bicofibrations
		3.2.5	Bianodyne maps
		3.2.6	Examples
		3.2.7	Reconstruction
		3.2.8	Left-finite sets
		3.2.9	Augmented biorders
4		plices.	171
	4.1	Simpli	ces and nerves
		4.1.1	Ordinals and simplices
		4.1.2	Nerves
		4.1.3	Segal condition
		4.1.4	Nerves of groupoids
	4.2	Segal	categories
		4.2.1	Simplicial replacements
		4.2.2	Special maps
		4.2.3	Segal categories and Segal functors
		4.2.4	Special functors
		4.2.5	Twisted 2-simplicial expansion

	4.3	Reedy	y categories	. 199
		4.3.1	Cellular Reedy categories	. 199
		4.3.2	Skeleta	. 203
		4.3.3	Anodyne resolutions	. 206
		4.3.4	Barycentric subdivision	. 211
5	Loca	alizatio	on.	213
	5.1	Abstra	act localization	. 214
		5.1.1	Relative categories	. 214
		5.1.2	Weak equivalences	
		5.1.3	Elementary examples	
	5.2	Locali	ization over Δ	
		5.2.1	Simplicial expansions	. 228
		5.2.2	Regular Segal categories	. 231
		5.2.3	Complete 2-families of groupoids	. 234
		5.2.4	Fibrant simplicial sets	. 237
	5.3	Mode	d structures	. 239
		5.3.1	Model categories	. 239
		5.3.2	Cofibrant objects	. 244
		5.3.3	Explicit homotopies	. 249
6	Sem	niexactr	ness.	253
	6.1	CW-ca	ategories	. 254
		6.1.1	Generalities	
		6.1.2	The Reedy construction	. 259
		6.1.3	Abundant C-categories	
		6.1.4	Relatively cofibrant functors	
		6.1.5	CW-augmentations	. 267
		6.1.6	Regular CW-categories	
		6.1.7	CW-replacements	
		6.1.8	Saturated CW-categories	. 278
	6.2	Semie	exact families	. 282
		6.2.1	Semiexactness and additivity	. 282
		6.2.2	Framings	. 284
		6.2.3	Mayer-Vietoris presentations	. 288
		6.2.4	Families over model categories	. 291
		6.2.5	Representability criterion	. 294
	6.3	Repre	esentability theorems	. 298
		6.3.1	Relative CW complexes	. 298

		6.3.2	Simplicial sets
		6.3.3	Liftability
		6.3.4	Finite dimension
		6.3.5	Semicanonical extensions
7	Betv	ween si	mplices and orders. 321
	7.1	Enhar	nced groupoids
		7.1.1	Excision and continuity
		7.1.2	Comparison
		7.1.3	Augmentations
	7.2	Segal	spaces
		7.2.1	Segal families
		7.2.2	Nerves and subdivisions
		7.2.3	The cylinder axiom
		7.2.4	Comparison
	7.3	Comp	elete Segal spaces
		7.3.1	Reflexive families
		7.3.2	Weak excision and weak semicontinuity
		7.3.3	Barycentric dualization
		7.3.4	Complete Segal families
	7.4	Augm	entations
		7.4.1	Augmented Segal spaces
		7.4.2	Nerves
		7.4.3	Augmented Segal families
		7.4.4	Comparison over <i>I.</i>
		7.4.5	Comparison for expansions
8	Enh	anced o	category theory. 393
	8.1	Reflex	ive families
		8.1.1	Definitions and basic properties
		8.1.2	Truncation and unfoldings
		8.1.3	Augmentations
		8.1.4	Complete families
		8.1.5	Expansion
	8.2	Enhar	nced categories and functors
		8.2.1	Categories
		8.2.2	Functors
		8.2.3	Barycentric extensions
		8.2.4	Examples and applications

8.3	Repre	esentability and its consequences
	8.3.1	Representability for enhanced categories 439
	8.3.2	Categories of enhanced categories
	8.3.3	Universal objects
	8.3.4	Immediate applications
	8.3.5	Functoriality and gluing
	8.3.6	Enhancement for Cat^h
	8.3.7	Enhancing lax functor categories
8.4	The Y	'oneda package
	8.4.1	Enhanced cylinders and comma-categories 469
	8.4.2	Enhanced fibrations and cofibrations 475
	8.4.3	Enhanced fibers
	8.4.4	Enhanced Grothendieck construction 489
	8.4.5	Enhanced relative functor categories 494
	8.4.6	Enhanced Yoneda embedding
8.5	Limits	s and colimits
	8.5.1	Complete and cocomplete enhanced categories 500
	8.5.2	Limits and colimits in Cat^h
	8.5.3	Limits and Kan extensions
	8.5.4	Kan extensions and functoriality 516
	8.5.5	Localizations and cofinality
	8.5.6	Replacements and expansions
	8.5.7	Adding colimits
8.6	Large	categories
	8.6.1	Karoubi envelopes
	8.6.2	Filtered colimits
	8.6.3	Inductive completions and compact objects 546
	8.6.4	Semicartesian products
	8.6.5	Accessible categories
	8.6.6	Tame fibrations and cofibrations

Chapter 1

Introduction.

1.1. Generalities.

One can say that algebra and geometry are related by something like the Heisenberg Uncertainty Principle: a perfect algebraic formalization of a mathematical theory often obscures its geometric features, while a clear geometric idea can be devilishly difficult to put into words and turn into a formal algebraic proof. Algebra and geometry complement each other but do not mix well. The pair has been famously compared to an angel and a devil, although which is which is perhaps debatable.

Linguistically, geometry is about earth — not too angelic, mind you, although not necessarily chthonic, either. Philosophically, the basic underlying notion of geometry is that of a "space". This has been around for millenia, since the ancient Greeks at least, and it can be made precise in different ways, none of them encompassing the whole thing. In full generality, all one can venture to say is that a space has points, and there is also some notion of "closedness" and/or "continuity" associated to this collection of points. The latter idea is again very old and ingrained – to the point that when Cantor was creating modern set theory, he really had to struggle to convince people that it makes sense to consider a set as simply a set, with no continuity in any form anywhere in the picture.

Algebra is much more recent. The word itself is medieval, but it used to mean something tautological; it is probably safe to say that algebra with actual mathematical content starts with Galois theory. This brings in another fundamental and ancient idea that, however, was never formalised before Galois — the idea of "symmetry", with the corresponding formal notions of a group and a group action.

The spirit here is decidedly modern; as befits something born in the indus-

trial era, algebra is instrumental rather than meditative. One can say that if at the end of the day, geometry is about pictures, then algebra is about operations: you do not just observe things but act on them. Geometrically, if you want to connect two points, you imagine a curve passing through them, while algebraically, you construct an operator sending one to the other.

Even for a text just shy of 600 pages, one page of philosophy is perhaps enough, so let us get to the point. The point is homotopy theory.

The origin of homotopy theory is of course geometric — it first appeared as "algebraic topology", the study of topological spaces and continuous maps between them considered "up to homotopy". Here a space is simply a topological space, maybe with some conditions making it "nice enough", and two points are "close" if they are connected by a continuous path. Topology becomes "algebraic" once you observe that up to homotopy, paths can be inverted, and based loops form a group — the fundamental group.

Algebraically, the same fundamental group emerges through the notion of a covering, in a well-known beautiful parallel with Galois theory. A choice of a base point determines a choice of a universal covering, and then the fundamental group acts transitively on the fibers of this universal covering. To preserve all the symmetries of the situation and avoid choices, it is better to consider all points at once; the relevant structure is then not a group but a groupoid, the fundamental groupoid of a topological space. In this description, we no longer consider the set of points as a "space", with some continuity properties; rather, the additional structure is isomorphisms between points. Following recent fashion, one might say that the set is "animated" by allowing points to have non-trivial isomorphisms (and in particular, non-trivial automorphisms).

If one is only interested in topology, then it is not so important whether one defines the fundamental group by looking at based loops or via the Galois-style approach with coverings; the latter streamlines the proof of the Van Kampen Theorem, but that's the extent of it. However, what the Galois description strongly suggests is that homotopy theory is something much more general and widespread than mere algebraic topology. Indeed, many mathematical objects — starting with sets themselves, actually — do not naturally form a set, nor a "space", whatever that is. The problem is not only the size of things. Even if we only consider finite sets, it is still completely unnatural, and some would say meaningless, to state that two sets are "equal". The natural notion is "isomorphic", not equal, and an isomorphism is an additional structure that one needs to preserve. We have moved beyond Cantor. It is groupoids that appear in nature, not sets, and "animation" is a crucial part of it. It would be much

better to have a formulation of homotopy theory that has this fact at its core, since it might then be applicable in many situations when there are no spaces in sight.

The problem is, it is not clear what this might be — in particular, just looking at groupoids is definitely not enough.

The most obvious deficiency is that groupoids do not describe all "homotopy types", or "spaces up to a homotopy equivalence": a simply connected space is not necessarily contractible. What one needs to describe them all is some kind of "enhanced Galois theory" that would also include all the higher homotopy groups (in particular, all the homotopy groups of spheres). However, even if one ignores topological realities and looks for a purely formal algebraic theory, it has purely formal problems that also suggest a need for some sort of enhancement.

Ideally, one would like to do something similar to what Grothendieck did with homological algebra. It started its life as the study of homology and cohomology of topological spaces, a younger cousin to homotopy theory. However, very soon it became clear that the actual story has very little to do with topology. At least since [G1], we understand that the real subject of homological algebra is abelian categories and derived functors. There is a clear problem — some functors are only exact on the left or on the right. Looking for a solution to this problem, one is almost inevitably led to looking at resolutions, characterizing derived functors by a universal property, replacing objects by chain complexes, and eventually, to the derived categories of [V].

With homotopy theory, we do not have such a clear-cut single problem whose solution would allow one to bootstrap the whole story starting from first principles. However, we do have problems we can use as an entry point. One set of problems concerns the procedure of *localization*.

1.2. Localization (and its discontents).

In a nutshell, localization is a universal procedure for creating new symmetries. Formally, one observes that many mathematical objects form not just a groupoid but a category — not all morphisms are invertible. For any category $\mathcal C$ with a class of morphisms W, say that a functor $\gamma:\mathcal C\to\mathcal E$ to some category $\mathcal E$ *inverts* W if $\gamma(w)$ is invertible for any $w\in W$. Then the *localization* — or the *category of fractions*, in the original terminology of [GZ] — of $\mathcal C$ in the class W is a category $h^W(\mathcal C)$ equipped with a functor $h:\mathcal C\to h^W(\mathcal C)$ such that (i) h inverts W, and (ii) for any functor $\gamma:\mathcal C\to\mathcal E$ that inverts W, there exists a functor $\gamma':h^W(\mathcal C)\to\mathcal E$

equipped with an isomorphism $a: \gamma \to \gamma' \circ h$, and the pair $\langle \gamma', a \rangle$ is unique up to a unique isomorphism.

Informally, localizing a category forgets some information deemed inessential. If we have a set, we can impose an equivalence relation and force some elements to become equal (e.g. forget an integer and only remember its residue mod n for some n). For a category, this is not a good idea, since objects in a category are never equal. Instead, we force some morphisms to become isomorphisms. In particular, this forces some objects to become isomorphic, but it also keeps track of the animation. In the extreme case, we can take W to be the class of all morphisms. Then the localization $h^W(\mathcal{C})$ is a groupoid whose isomorphism classes of objects are simply the connected components of the original category \mathcal{C} , but the automorphism groups can be quite complicated.

Starting from approximately [GZ], and certainly from [Q], it became an accepted wisdom that the real content of homotopy theory is exactly the localization procedure, and what it gives as its output. Unfortunately, the procedure itself is highly non-trivial. If the category \mathcal{C} is large, the localization need not exists. If \mathcal{C} is small, $h^{W}(\mathcal{C})$ always exists, but it is in general very hard to describe and control.

The motivating example for [GZ] is Verdier localization of [V], where the localization can be controlled rather effectively. However, there is an even simpler example of a well-behaved localization problem that is so fundamental as to pass almost unnoticed. Namely, let \mathcal{C} be the category Cat of small categories, and let W be the class of equivalences of categories. Then $h^W(\text{Cat})$ exists, and coincides with the category Cat^0 whose objects are again small categories, and whose morphisms are isomorphism classes of functors (this is an easy and standard exercise, but just in case, a proof can be found below in Lemma 5.1.1.6).

In real life, categories — and groupoids, for that matter — are only considered up to an equivalence; one would like to work in Cat⁰ rather than Cat. For example, a "commutative square of categories" is usually understood as a square

$$\begin{array}{ccc} \mathcal{C}_{01} & \xrightarrow{\gamma_{01}^1} & \mathcal{C}_1 \\ \gamma_{01}^0 \downarrow & & & \downarrow \gamma_1 \\ \mathcal{C}_0 & \xrightarrow{\gamma_0} & \mathcal{C} \end{array}$$

equipped with an isomorphism $\alpha: \gamma_0 \circ \gamma_{01}^0 \to \gamma_1 \circ \gamma_{01}^1$; the isomorphism is usually not written down but always implied. Even if all the categories are small, such a square is *not* a commutative square in Cat unless α happens to be

an identity map, but it always defines a commutative square in Cat⁰. A square (\star) can be *cartesian* or *cocartesian* if it has the usual universal properties with respect to squares of the same form (for a precise definition, see Subsection 2.1.3 below). Cartesian squares always exists — one can take \mathcal{C}_{01} to be the category $C_0 \times_{\mathcal{C}} C_1$ of triples $\langle c_0, c_1, \alpha \rangle$ of objects $c_0 \in C_0$, $c_1 \in C_1$ and an isomorphism $\alpha: \gamma_0(\mathcal{C}_0) \to \gamma_1(\mathcal{C}_1)$. Cocartesian squares do not always exist if the categories are large, but they are still useful — for example, a localization is an example of a cocartesian square (take $C_0 = C$, $C_1 = W$ considered as discrete category, and let $C_{01} = W \times [1]$, where [1] is the single arrow category with two nontrivial objects $0,1 \in [1]$ and a single non-identity map $0 \to 1$). However, note that cartesian resp. cocartesian squares (\star) are not cartesian resp. cocartesian as commutative squares in Cat⁰. What happens is, the corresponding universal property uses the unwritten isomorphism $\alpha: \gamma_0 \circ \gamma_{01}^0 \to \gamma_1 \circ \gamma_{01}^1$, but simply passing to Cat⁰ completely forgets it. In fact, Cat⁰ does *not* have finite limits nor colimits, and treating it as simply a category is not a good idea. While the property of a square (*) to be cartesian or cocartesian only depends on the corresponding square in Cat⁰, so it makes sense to speak of "enhancedcartesian" or "enhanced-cocartesian" squares in Cat⁰, those do not have a universal property and cannot be described purely in terms of the category Cat⁰. Given $C_0, C_1, C \in \text{Cat}^0$ and isomorphism classes of functors $\gamma_l : C_l \to C$, l = 0, 1, one can construct an enhanced-cartesian square (\star) in Cat⁰, and it will be unique up to an isomorphism, but the isomorphism is not unique.

Verdier localization follows the same general pattern. On starts with an abelian category \mathcal{A} , considers the category $C_{\bullet}(\mathcal{A})$ of chain complexes in \mathcal{A} , and localizes with respect to the class of chain-homotopy equivalences (see Subsection 2.2.6 below for a formal definition). The resulting category $\operatorname{Ho}(\mathcal{A})$ can be equivalently described as the category of chain complexes in \mathcal{A} and chain-homotopy classes of morphisms between them. Then while $C_{\bullet}(\mathcal{A})$, being an abelian category, has kernels and cokernels, these do not survive after passage to $\operatorname{Ho}(\mathcal{A})$. What survives is cones. These are unique up to a non-unique isomorphism, and cannot be recovered from the category $\operatorname{Ho}(\mathcal{A})$; they consitute an additional structure on $\operatorname{Ho}(\mathcal{A})$.

The only thing one can do is to axiomatize this additional structure, and this is exactly what Verdier did, by introducing the notion of a "triangulated category". A triangulated structure on a category is an early form of enhancement — in fact, the earliest form of enhancement in the literature — and it does allow one to prove something: once you have a triangulated category \mathcal{D} , a general Verdier Localization Theorem allows you to localize \mathcal{D} with respect to certain

classes of morphisms in a very controlled way. Moreover, the resulting category also inherits a triangulated structure, so the procedure can be repeated. This is exactly how derived categories are defined in [V] (what one inverts is the class of quasiisomorphisms in $Ho(\mathcal{A})$).

One obvious drawback of Verdier localization is that it only works in the additive context — we are dealing with homology, not homotopy. The stated goal of [GZ] is to try to understand what is going on, and maybe even try to find a non-additive generalization. In principle, such a generalization is not impossible. Instead of kernel and cokernels, one would deal with cartesian and cocartesian squares; these would need to be imposed as an extra structure on the category in question, and subjected to some axioms (hopefully, a finite number of those). However, to the best of our knowledge, this has never been. Partly, this could be just too difficult — homotopy is much harder to compute than homology, so while it might be possible that a workable set of axioms exists, this is by no means guaranteed. However, it equally might be just not worth the effort. Already in the additive context, it was realized pretty soon after [V] that the enhancement given by a triangulated structure is much too weak.

Various problem with triangulated categories are very well illuminated in the existing literature (for a partial list written from the same perspective as here, see e.g. [K1, Introduction]). Let us only mention one of them. In general, given an "enhanced" triangulated category \mathcal{D} , one expect to have a spectrum $\mathcal{D}(A,B)$ of morphisms for any two objects $A, B \in \mathcal{D}$; the "naive" set of morphisms $A \to B$ should be π_0 of this spectrum. If one is only interested in a linear situation say, if one works with derived category of an abelian category linear over a field k — one expects to at least have an object RHom $(A, B) \in \mathcal{D}(k)$ in the derived category of k-vector spaces, with naive morphisms given by degree-0 homology classes. Moreover, this should be compatible with the category structure, so that in particular, RHom(A, A) should be a DG algebra over k, well-defined up to a quasiisomorphism. The triangulated structure gives you all the homotopy groups of this hypothetical spectrum, with $\pi_n \mathcal{D}(A, B) = \pi_0 \mathcal{D}(A, B[-n])$, but not the spectrum itself. In the *k*-linear situation, a complex of *k*-vector spaces is quasiisomorphic to its cohomology, so we do recover RHom $^{\bullet}(A, B) \in \mathcal{D}(k)$, but the construction is not functorial, and certainly does not give you a DG algebra $RHom^{\bullet}(A, A).$

In 1980-ies, a great codification of homological algebra was done by Gelfand and Manin in [GM], the first textbook on derived and triangulated categories. The problem of enhancement features quite promimently there, and a search

for a good theory of enhanced triangulated categories was a very active pursuit, back then. By the end of the decade, people gave up. Even in a linear context, the problem was considered hopeless. The consensus became, roughly, that an enhanced *k*-linear triangulated category is the same thing as a *k*-linear DG category "considered up to a quasiequivalence", and that's the best one can say. At this point, the story goes full circle and comes back to homotopy. Indeed, while individual DG categories are linear objects, in some sense, the category of DG categories certainly is not, and localizing it with respect to quasiequivalences is a non-linear localization problem. Thus even when dealing with homology, one needs the full force of non-additive localization.

1.3. Categories of models.

At this point, we go back to 1960-ies and to the perhaps most important work in the history of homotopical algebra — to Quillen's [Q]. This appeared slightly later than [GZ], gave the name to the subject, and to a large extent, set the paradigm that is current even today.

It is not clear whether Quillen was particularly happy with [Q] — it seems that he never referred to it in his later work — or whether he intended it to become such a foundational text. His stated purpose is quite modest and utilitarian. Originally, when the only model for homotopy types was topological spaces, people were quite happy to work with them "up to homotopy" and leave it at that. However, already in 1950-ies, especially with the discovery of Kan fibrations, it became clear that "the same" homotopy theory can be successfully modeled by a completely different gadget — namely, by simplicial sets (or alternatively, by simplicial groups). Moreover, the situation does not only occur for homotopy types — for example, in rational homotopy theory, commutative DG algebras over a field k of characteristic 0, with some restrictions, have "the same" homotopy theory as DG Lie algebras over the same field, again with some restrictions. The problem is, in order to prove this, one first has to define the meaning of homotopy theory being "the same".

Like Verdier, Quillen starts by axiomatizing the situation. He considers various "categories of models" and finds a short and, in retrospect, very successful set of additional structures and axioms one needs to impose in order to have a "homotopy theory". Unlike Verdier's triangulated structure, this really only applies to the categories of models and not to their localizations — the very first axiom says that a model category (or rather, in Quillen's terminology, a "closed model category") has all finite limits and colimits, and as we saw,

localization usually destroys this. Nevertheless, Quillen's axioms insure that the localization problem is solvable, and in a very controlled way. In addition to a class W of "weak equivalences", a model category \mathcal{C} is supposed to have classes \mathcal{C} and \mathcal{F} of "cofibrations" and "fibrations", and the whole structure insures that the localization $h^W(\mathcal{C})$ exists and admits a rather explicit description. As an application of this, Quillen shows that under some conditions, an adjoint pair of functors between model categories \mathcal{C}_0 , \mathcal{C}_1 gives rise to an adjoint pair of functors between their localizations $h^{W_0}(\mathcal{C}_0)$, $h^{W_1}(\mathcal{C}_1)$, and moreover, under further conditions, the functors between localizations are an inverse pairs of equivalences. This is known as "Quillen adjunction" and "Quillen equivalence", and it is used by Quillen to prove that various pairs of model categories have localizations that are naturally equivalent.

However, there is more — at least in the current paradigm of homotopical algebra, there is the following fundamental principle.

• Quillen-equivalent model categories have the same homotopy theory.

This is an article of faith and not a theorem, since "homotopy theory" — or, say, "enhanced localization" — is not defined at this point. Moreover, it cannot be defined, unless one already assumes that (•) holds. The problem is exactly in the "enhanced" part.

At the very least, one expects that, just as in the additive situation, an "enhanced localization" $\mathcal{H}^W(\mathcal{C})$ of a category \mathcal{C} with respect to a class of morphisms W includes a homotopy type $\mathcal{H}^W(\mathcal{C})(c,c')$ of morphisms between any two objects $c,c'\in\mathcal{C}$ (although in the non-linear situation, it is just an unstable homotopy type and not a spectrum). The morphisms $c\to c'$ in the "naive" localization $h^W(\mathcal{C})$ form the set $\pi_0\mathcal{H}^W(\mathcal{C})(c,c')$, but $\mathcal{H}^W(\mathcal{C})(c,c')$ can have higher homotopy groups. In the basic example $\mathcal{C}=\mathrm{Cat}$, $\mathcal{H}^W(\mathrm{Cat})(I,I')$ is the homotopy type corresponding to the groupoid of functors $I\to I'$, so $\pi_n=0$ for $n\geq 2$, but π_1 can be non-trivial.

Now, homotopy groups $\pi_{\bullet}\mathcal{H}^W(\mathcal{C})(c,c')$ are just groups, so one can meaningfully ask whether one can define them when \mathcal{C} is a model category, and whether they are preserved by Quillen equivalences — one can, they are. This is actually proved in [Q], where, moreover, (\bullet) is stated and proved as a theorem — but under a very restricted understanding of "homotopy theory" that Quillen himself calls unsatisfactory. In general, however, a homotopy type is much more than a collection of homotopy groups, and it has to be modeled by something, up to some notion of equivalence. But as we saw, the whole reason for the formalism is that — unlike in the linear case, where the only practical model is

a chain complex — we have at least two different models, topological spaces and simplicial sets, and one needs to be sure that they do model the same thing. We are back to (\bullet) .

In practice, one not only needs homotopy types $\mathcal{H}^W(\mathcal{C})(-,-)$ but also composition operations on them, and these have to be "homotopy coherent" in some sense. This leads to a large variety of possible models for, for lack of better term, "enhanced categories". Let us list some of them.

- (i) The most naive thing one can consider is small categories enriched in topologial spaces, or in simplicial sets (that is, we have a topological space or a simplicial set of maps $c \to c'$ for any two objects c, c', and all the operations are compatible with this additional structure on the nose). This is not very convenient for practical work, since weak equivalences are not very explicit, and enriched categories are not always easy to construct, but it can be done a model structure exists. Moreover, the Dwyer-Kan localization procedure [DK], probably the first homotopical localization procedure in the literature, actually produces a category enriched in simplicial sets, on the nose.
- (ii) To make enriched categories slightly more flexible, one can do two things. Firstly, a small category is conveniently encoded by its nerve, and conversely, a simplicial set is the nerve of a small category iff it satisfies the so-called *Segal condition* (for formal statements, see e.g. Subsection 4.1.3 belows). For a small category enriched in simplicial sets, the nerve is naturally a bisimplicial set. Then one can put a model structure on the category of bisimplicial sets, and only impose the Segal condition on the homotopical level. Secondly, a further improvement has been suggested by Ch. Rezk [R]: he introduces the notion of a *complete Segal space*, a fibrant bisimplicial set satisfying an additional condition, and shows that bisimplicial sets admit a model structure whose fibrant objects are exactly complete Segal spaces, and weak equivalences between those are just pointwise weak equivalences in one of the two simplicial directions.
- (iii) As an alternative to Segal spaces, it was discovered by A. Joyal that one can actually squeeze the two simplicial directions of a bisimplicial set into one, by combining the Segal condition and the defining properties of a Kan complex in a clever way. The result is a new model structure on the category of simplicial sets whose fibrant objects are the so-called *quasicategories*.

(iv) In a different vein, as shown by C. Barwick and D. Kan [BaK], one can actually start with the general principle that every enhanced category is obtained by localization; one defines a *relative category* as a pair of a small category $\mathcal C$ and a collection W of morphisms in $\mathcal C$, and shows that pairs $\langle \mathcal C, W \rangle$ also form a model category. Weak equivalences are functors that induce weak equivalences of Dwyer-Kan localizations, so they are even less explicit than in (i), but the localization procedure is pleasantly simple.

All of the model categories listed above are Quillen-equivalent, so in the paradigm of [Q], either one can be used as foundations for abstract homotopy theory. Complete Segal spaces are probably closest to intuition and the most pleasing conceptually, so it is tempting to conclude that this is it (as has been argued very persuasively by B. Toën in [T]). Quasicategories allow for shorter proofs; this is probably the reason they have been chosen by J. Lurie in [Lu1] and his subsequent foundational work. Relative categories of Barwick and Kan are important as a proof-of-concept; while not much practical work has been done in this setting, the fact that it exists is very illuminating.

1.4. Re-animating the sets.

In a sense, as long as one stays in the paradigm of [Q], one can consider the enhanced localization problem completely solved. Just as expected, there indeed exists an abstract homotopy theory that can be applied in a wide variety of contexts, certainly much more general than just topology, and a choice of a particular model becomes a matter of convenience and/or personal taste. However, the situation is paradoxical. Localization is supposed to get rid of irrelevant information and create new symmetries. Enhanced localization as we have it does create new symmetries but only modulo homotopy — that is, well, after localization; in reality, it does not. There are no "animated sets", we are still dealing with spaces. We just managed to produce them in a much larger generality. Nor do we really get rid of irrelevant information, we just hide it under the rug and use the machinery of [Q] to make sure it stays there. This is especially clear in the relative categories model: here "enhanced localization" by definition does exactly nothing. We do not really solve the problem, we just find a way to say precisely which problems have "the same" solution, and leave it at that.

Of course, modern abstract homotopy theory looks somewhat more algebraic since "spaces" now mean simplicial sets rather than actual topological spaces. However, we now understand — see e.g. [Dr] or [Le] — that this is an illusion:

simplicial sets are really very close to topological spaces, and rely on identical intuition and working procedures. We still work up to homotopy, not up to an isomorphism. The parallel with Galois theory is completely lost.

Since approximately late 1990-ies, this situation is simply accepted as a fact of life, but in the 30-odd years between [Q] and modern treatments of the subject such as [Ho], there were attempts to find something better. The most famous is of course Grothendieck's "thousand pages long letter" to Quillen, [G4], that has no theorems but a lot of fantastic ideas. One such was an idea of an " ∞ -groupoid", a gadget that would successfully model all homotopy types by not only having objects and morphisms, but also morphisms between morphisms, and so on. Unfortunately, this turned out to be something of a red herring — while many rigourous definitions were proposed by many people over the years, none of them were too natural, and they all were defined up to some elaborate notion of a weak equivalence that had to be controlled by model category techniques. This in practice, it was more of the same, just more complicated. At the end of the day, in current usage, an " ∞ -groupoid" just means a Kan-fibrant simplicial set; "enhanced Galois theory" occasionally appears on the level of slogans but has no mathematical content.

However, there is another fantastic idea of [G4] that has received much less attention, and this is strange, since this idea does indeed work. If one does consistently what Grothendieck suggested, one arrives at a formulation of homotopy theory that is pretty close to the original Galois-style intuition, and completely independent of [Q] and the corresponding paradigm.

Within the context of Grothendieck's work, the idea is actually quite natural. For comparison, recall that a scheme X can be thought of in two ways. On one hand, we have the formal definition (a locally ringed space that is locally isomorphic to the Zariski spectrum of a commutative ring). On the other hand, we have a set of points of X, and moreover, a set X(A) of A-points with values in any commutative ring A. Just a set of points remembers nothing of the algebraic structure; however, taken together, these sets form a functor of points, and it remembers all there is to know about X. Formally, we have a fully faithful embedding from the category of schemes to the category of contravariant functors from rings to sets. If needed, one can characterize the essential image of this embedding, or in fact enlarge it (e.g. by considering algebraic spaces).

Analogously, no matter what one undestands by an "enhanced category" \mathcal{C} , at the very least, it has its "truncation", a usual category $\tau(\mathcal{C})$ with Hom-sets obtained by taking π_0 of the corresponding homotopy types of morphisms.

However, there is more. Any usual small category I can be thought of an enhanced category, with trivial enhancement — that is, discrete homotopy types of morphisms. Moreover, for any enhanced category \mathcal{C} , we should have an enhanced category $\operatorname{Fun}(I,\mathcal{C})$ of functors from I to \mathcal{C} . Combining the two observations, we obtain a collection of categories $\tau(\operatorname{Fun}(I,\mathcal{C}))$ indexed by all small categories I. Moreover, for any functor $\gamma:I_0\to I_1$, we have a pullback functor $\gamma^*:\tau(\operatorname{Fun}(I_1,\mathcal{C}))\to\tau(\operatorname{Fun}(I_0,\mathcal{C}))$, and there are isomorphisms between these functors for composable pairs. It is natural to ask, then, whether the family of the unenhanced categories $\tau(\operatorname{Fun}(I,\mathcal{C}))$ and functors γ^* between them can serve as a "functor of points" that allows one to recover the enhanced category \mathcal{C} .

Grothendieck's name for such a collection is a "derivator", probably because at the time of [G4] one was mostly interested in enhancements for derived categories; however, the idea is completely general. It has been pursued to some extent, see e.g. [Gr1] for a very good and relatively recent overview. However, it seems that the story has never been taken to its logical conclusion. The goal of the present text is to provide such a conclusion, of sorts — or at least, to show that with some modifications, Grothendieck's idea leads to an axiomatic formulation of abstract homotopy theory that is just as strong as those present in the literature, but free from the problems described above.

1.5. A trailer.

Let us describe very briefly what we do (there are also more detailed introductions at the beginning of each chapter, and a general overview available as a companion paper [K4]). So as not to usurp a term with a well-established meaning, we avoid using the word "derivator" and prefer to call our gadgets simply "enhanced categories". The modifications we make to the original suggestion of [G4] are the following two.

(i) It seems that it is not necessary, and in fact not desirable, to index our families on all small categories; it is better to restrict to the case when *I* is a partially ordered set. This is enough because, roughly speaking, any enhanced category can be obtained as an enhanced localization of a partially ordered set, and it works better because unlike Cat, the category PoSets of partially ordered sets has no 2-categorical structure, and does not need to be localized (a map between partially ordered sets is an equivalence iff it is an isomorphism).

(ii) One needs a convenient packaging of the notion of a "family of categories". In [G4], Grothendieck makes a simplifying assumption that the family is "strict" — for any two functors $\gamma_0:I_0\to I_1,\,\gamma_1:I_1\to I_2$, we have $(\gamma_1\circ\gamma_0)^*=\gamma_0^*\circ\gamma_1^*$. This has been adopted in the subsequent work. We prefer to get rid of this simplifying assumption — among other things, it is probably prudent to assume that functors simply cannot be equal — and package the whole thing using an earlier discovery of Grothendieck, the "Grothendieck construction" of [G2] (with a slight modification, see Subsection 2.3.1 below). The data defining an enhanced category in our sense is then a category $\mathcal C$ equipped with a Grothendieck fibration $\mathcal C\to \operatorname{PoSets}$, with fibers $\mathcal C_J,\,J\in\operatorname{PoSets}$, and transition functors $f^*:\mathcal C_{J'}\to\mathcal C_J$ for any map $f:J\to J'$ in PoSets. An enhanced functor is a functor cartesian over PoSets.

Just as in the standard approach based on [Q], our enhanced categories are considered up to an equivalence — this is unavoidable already for the 1-truncated homotopy type represented by usual unenhanced groupoids. However, the equivalence in question is simply an equivalence of categories, and just as for Cat, localization with respect to such equivalences does not require model category techniques. Just to be clear (see Subsection 2.1.2), if we have categories I, C_0 , C_1 and functors $\pi_0: C_0 \to I$, $\pi_1: C_1 \to I$, then a functor $C_0 \to C_1$ over I means a pair $\langle \gamma, \alpha \rangle$ of a functor $\gamma : \mathcal{C}_0 \to \mathcal{C}_1$ and an isomorphism $\alpha : \pi_0 \cong \pi_1 \circ \gamma$, and a morphism $\langle \gamma, \alpha \rangle \rightarrow \langle \gamma', \alpha' \rangle$ over *I* is a morphism $a : \gamma \rightarrow \gamma'$ such that $\pi_1(a) \circ \alpha = \alpha'$. Then if I is small, small categories C equipped with a Grothendieck fibration $\mathcal{C} \to I$ form a category that we denote by Cat $/\!/_b I$, with morphisms given by cartesian functors over I, and localizing Cat $//_b I$ with respect to the class of equivalences produces the category (Cat $/\!\!/_{\! b} I)^0$ with the same objects, and morphisms given by cartesian functors over I up to an isomorphism over I. In words, the effect of the localization is that objects stay the same, and morphisms become isomorphism classes of functors rather than functors themselves. If *I* is not small, there may be size problems (there may be too many functors over *I*). Nevertheless, we define "enhanced categories" as Grothendieck fibrations over PoSets satisfying several explicit axioms, and we prove that for any two such fibrations $C, C' \to PoSets$ with essentially small fibers, isomorphism classes of cartesian functors $\mathcal{C} \to \mathcal{C}'$ over PoSets form a set and not a proper class. This gives a well-defined category Cat^h of "small enhanced categories", with morphisms given by isomorphism classes of cartesian functors.

The full set of axioms defining an enhanced category is given below in

Section 8.2 (or in [K4, Section 3]), so let us just give an overview. Firstly, let pt be the one-point set, and for any element $j \in I$ in a partially ordered set I, let $\varepsilon(j)$: pt $\to J$ be the embedding onto j. Say that a Grothendieck fibration $\mathcal{C} \rightarrow \text{PoSets}$ is *non-degenerate* if for any $J \in \text{PoSets}$, the transition functor $\prod_{j\in I} \varepsilon(j)^* : \mathcal{C}_J \to \prod_{j\in I} \mathcal{C}_{\mathsf{pt}}$ is conservative. Moreover, say that \mathcal{C} is additive if for any disjoint union $J = \bigsqcup_{s \in S} J_s$ of some $J_s \in PoSets$ indexed by a set S, with embedding maps $\varepsilon(s): J_s \to J$, the transition functor $\prod_{s \in S} \varepsilon(s)^*: \mathcal{C}_I \to J$ $\prod_{s \in S} C_{I_s}$ is an equivalence. Next, consider the partially ordered set $[1] = \{0,1\}$ corresponding to the single arrow category (the order is $0 \le 1$), and for any $J \in \text{PoSets}$, let $s(J), t(J) : J \to J \times [1]$ be the embeddings onto $0 \times J$ resp. $1 \times J$, and let $e(J): J \times [1] \to J$ be the projection. Say that a Grothendieck fibration $\mathcal{C} \to \text{PoSets}$ is a *reflexive family* if for any J, the isomorphism $t(J)^* \circ e(J)^* \cong \text{id}$ defines an adjunction between the transition functors $t(I)^*$ and $e(I)^*$ (with $t(J)^*$ being right-adjoint to $e(J)^*$). Moreover, for any such reflexive family, applying $s(J)^*$ to the adjunction map $e(J)^* \circ t(J)^* \to id$ produces a functor $\nu_I: \mathcal{C}_{I\times [1]} \to \operatorname{Fun}([1], \mathcal{C}_I)$ to the category of functors $[1] \to \mathcal{C}_I$. Say that a functor is an epivalence if it is conservative, essentially surjective and full — that is, any object in its target lifts to an object in its source, uniquely up to a non-unique isomorphism — and say that a reflexive family $\mathcal{C} \to \text{PoSets}$ is separated if the corresponding functor v_I is an epivalence for any $J \in PoSets$.

To describe the remaining axioms, note that a commutative square in a category I is the same thing as a functor $\varepsilon:[1]^2\to I$, and a commutative square (\star) is the same thing as a Grothendieck fibration over $[1]^2$. Say that a square (\star) is semicartesian if the corresponding functor $\mathcal{C}_{01}\to\mathcal{C}_0\times_{\mathcal{C}}\mathcal{C}_1$ is an epivalence, and say that a fibration $\mathcal{C}\to I$ is semicartesian over a commutative square $\varepsilon:[1]^2\to I$ if so is the induced square $\varepsilon^*\mathcal{C}\to [1]^2$. Then an enhanced category in our sense is a non-degenerate additive separated reflexive family $\mathcal{C}\to \operatorname{PoSets}$ that satisfies five additional axioms ("semiexactness", "excision", "semicontinuity", the "cylinder axiom" and "bar-invariance", see Section 8.2 or [K4, Section 3]), all of them requiring that \mathcal{C} is semicartesian over commutative squares in PoSets of some prescribed form. An enhanced category \mathcal{C} is small if all the fibers \mathcal{C}_J are essentially small.

Let us remark right away that the precise shape of our definition of an enhanced category is not set in stone. For example, in this introduction, we consider fibrations over the whole PoSets, mostly because it gives the simplest definition of the opposite enhanced category — namely, for any fibration $\mathcal{C} \to I$, we also have a fibration $\mathcal{C}_{\perp}^o \to I$ whose fibers and transition functors are opposite to those of \mathcal{C} , and then the *enhanced-opposite* \mathcal{C}^ι to an enhanced category \mathcal{C} is

given by $C^{\iota} = \iota^* C^{\circ}_{\perp}$, where ι : PoSets \rightarrow PoSets sends a partially ordered set J to the same set with the opposite order, denoted J° . However, it suffices to work over the full subcategory $\operatorname{Pos}^{\pm} \subset \operatorname{PoSets}$ of *left-finite sets* — that is, sets $J \in \operatorname{PoSets}$ such that for any element $j \in J$, the subset $J/j = \{j' \in J | j' \leq j\} \subset J$ is finite. A suitable fibration over Pos^{\pm} then canonically and uniquely extends to the whole PoSets (this is Proposition 8.2.3.7). Analogously, one can vary the defining commutative squares in PoSets — at the end of the day, this amounts to choosing a set of generating relations in an algebraic structure, and it can be done in different ways without changing the structure.

In practice, one does not expect to ever have to actually check the axioms. Instead, new enhanced categories and functors are produced from existing ones by a couple of standard procedures, starting from basic examples that can be used as black box. Here are these examples (for more details, see Subsection 8.2.4 or [K4, Subsection 3.4]).

- (i) For any category I, we have an enhanced category K(I) with fibers $K(I)_J = \operatorname{Fun}(J^o, I)$. This is a "trivial" example where all the epivalences in the definition are equivalences. We call such enhanced categories 1-truncated. In fact, an enhanced category $\mathcal{C} \to \operatorname{PoSets}$ can be thought of as an enhancement for its fiber $\mathcal{C}_{\operatorname{pt}}$, and then K is right-adjoint to the truncation operation $\mathcal{C} \mapsto \mathcal{C}_{\operatorname{pt}}$ (see Proposition 8.1.2.1 for a precise statement).
- (ii) For any model category \mathcal{C} with a class W of weak equivalences, we have the "enhanced localization" $\mathcal{H}^W(\mathcal{C}) \to \text{PoSets}$ whose fibers are given by $\mathcal{H}^W(\mathcal{C})_J \cong h^W(\text{Fun}(J^o,\mathcal{C}))$.
- (iii) For any additive category \mathcal{A} , we have the "enhanced homotopy category" $\mathcal{H}o(\mathcal{A}) \to \text{PoSets}$ giving an enhancement for $\text{Ho}(\mathcal{A})$ (explicitly, the fiber $\mathcal{H}o(\mathcal{A})_J$ is the chain-homotopy category $\text{Ho}(\text{Fun}(J^o,\mathcal{A}))$ further localized with respect to maps f such that $\varepsilon(j)^*(f)$ is a chain-homotopy equivalence for any $j \in J$).
- (iv) Finally, for any complete Segal space X, we have an enhanced category $K(X) \to \text{PoSets}$ whose fiber $K(X)_J$ is the truncation of the complete Segal space of functors $J^o \to X$.

We then prove a version of Brown Representability Theorem (namely, Theorem 8.3.1.3) saying that for small enhanced categories, the last example is universal: if we let CSS be the homotopy category of complete Segal spaces, then $K : CSS \to Cat^h$ is an equivalence.

It is useful to explain how our formalism accomodates homotopy types. There appear as *enhanced groupoids* — enhanced categories $\mathcal{C} \to \operatorname{PoSets}$ whose fibers \mathcal{C}_J are groupoids. In this situation, some of the axioms hold automatically, so the definition is simpler (and we do it separately, in Section 7.1, as warm-up for the general theory). The resulting gadget is probably as close to an "enhanced Galois theory" as one can get. We do not have "higher groupoids" with "symmetries between symmetries", whatever it means. We just have groupoids in the perfectly ordinary sense of the word, but a whole bunch of them. The truncation $\mathcal{C}_{\operatorname{pt}}$ is the fundamental groupoid $\pi_{\leq 1}(X)$ of our homotopy type X; but for any partially ordered set J, we also have the groupoid \mathcal{C}_J , the fundamental groupoid of the space of maps from the nerve of J to X. If one want to look at higher homotopy groups $\pi_n(X)$, one takes any $J \in \operatorname{PoSets}$ whose nerve is an n-sphere (for example, the set of non-degenerate simplices of the standard simplicial n-sphere). The whole structure is of course richer; in particular, J need not be finite.

Remark. We do have to allow infinite *J*. The Brown Representability Theorem that we generalize is the original theorem of [Br]; unfortunately, the trick of Adams [A] that reduces everything to finite simplicial sets does not seem to generalize. It is probably simply not true that a small enhanced groupoid, let alone a general enhanced category is completely defined by its restriction to the subcategory of finite partially ordered sets.

In general, the representability theorem is important for two reasons. Conceptually, it justifies our claim that our formulation of abstract homotopy theory is at least as strong as the one based on complete Segal spaces (and *a posteriori*, as all the other approaches in the paradigm of [Q]). For example, there used to be some controversy as to whether "a derivator is enough to recover algebraic *K*-theory"; in our approach, the point it moot. Technically, while the representing object is only unique up to a weak equivalence and not explicit at all, its mere existence already has useful corollaries. One such is that the category Cat^h is cartesian-closed — and more generally, for any enhanced categories \mathcal{C} , \mathcal{E} with \mathcal{C} small, there exists an enhanced functor category $\operatorname{Fun}^h(\mathcal{C},\mathcal{E})$ with the usual universal property (Definition 8.2.4.5 and Corollary 8.2.4.6). In fact, almost all of the enhanced category theory we develop in Chapter 8 (or [K4, Section 4]) is done by standard categorical arguments, with representability used purely as a black box. In most arguments, Theorem 8.3.1.3 is not even used directly but enters through one of its corollaries, Proposition 8.3.3.4.

Some of the enhanced categorical notions do not need even that, and carry

over *verbatim* from the usual category theory. One such is the notion of a fully faithful functor, see Corollary 8.2.2.18, while another is that of an adjoint functor, Definition 8.2.2.11 — an enhanced functor γ is right or left-adjoint to an enhanced functor γ^{\dagger} iff it is right resp. left-adjoint in the unenhanced sense, and the adjunction maps are maps over PoSets. This is useful because uniqueness of adjoints, one of the most fundamental facts of category theory, also carries over without any changes at all. Another thing that comes almost for free is an enhancement $\mathcal{C}at^h$ for the category Cat^h , and an enhanced version of the equivalence $\operatorname{CSS} \cong \operatorname{Cat}^h$ (Subsection 8.3.6). It is natural to expect that the fibers Cat^h_J of such an enhancement would be the categories of small enhanced categories \mathcal{C} equipped with an enhanced functor $\gamma: \mathcal{C} \to K(J)$ that is a fibration in some enhanced sense. In reality, no enhancement is needed — γ should simply be a Grothendieck fibration.

Representability, in the form of Proposition 8.3.3.4, reappears in the construction of enhanced-cartesian squares. Just as in the case of Cat^0 , these cannot be defined purely in terms of Cat^h ; we really need not only small enhanced categories \mathcal{C} , \mathcal{C}_0 , \mathcal{C}_1 and morphisms $\mathcal{C}_l \to \mathcal{C}$, l=0,1 in Cat^h , but also enhanced functors $\gamma_l:\mathcal{C}_l\to\mathcal{C}$, l=0,1 representing the morphisms. Under special curcumstances — e.g. if γ_0 is fully faithful, or if \mathcal{C} is 1-truncated — the product $\mathcal{C}_0\times_{\mathcal{C}}\mathcal{C}_1$ is an enhanced category. In general, it is not: fibered products of semicartesian squares are not necessarily semicartesian. However, this can be corrected. Firstly — this is Lemma 8.3.3.7 — there is an enhanced category $\mathcal{C}_0\times_{\mathcal{C}}^h\mathcal{C}_1$ equipped with an epivalence $\gamma:\mathcal{C}_0\times_{\mathcal{C}}^h\mathcal{C}_1\to\mathcal{C}_0\times_{\mathcal{C}}\mathcal{C}_1$, cartesian over PoSets (in other words, we have a semicartesian square (*) of enhanced categories and enhanced functors). Secondly — this is Corollary 8.3.3.6 — for any such epivalence γ , and for any other enhanced category \mathcal{C}_{01} , any functor $\mathcal{C}_{01}\to\mathcal{C}_0\times_{\mathcal{C}}\mathcal{C}_1$ cartesian over PoSets factors through γ , uniquely up to an isomorphism.

Unlike the unenhanced universal property for $C_0 \times_{\mathcal{C}} C_1$, the isomorphism here is *not* unique, and γ is only an epivalence, not an equivalence — this is just as it should be, since it is here that all the higher homotopy groups appear. However, the universal property is still sufficient to recover the semicartesian product $C_0 \times_{\mathcal{C}}^h C_1$ up to a unique equivalence, that is, as an object in Cat^h . The comparison $\operatorname{CSS} \cong \operatorname{Cat}^h$ then identifies it with the homotopy fibered product in CSS. Moreover, it turns out to be sufficiently functorial to allow for most of the usual categorical constructions, see Subsection 8.3.5, and this is one of the main tools used to construct new enhanced categories and functors.

Once we have enhanced functor categories and semicartesian products, the

rest of the theory hardly needs representability at all. We define enhanced comma-categories in Subsection 8.4.1. This leads to the notions of an enhanced fibration $\mathcal{C} \to \mathcal{E}$, see Subsection 8.4.2 (if the base \mathcal{E} of the fibration is 1-truncated, it reduces to a Grothendieck fibration in the usual sense, see Lemma 8.4.3.1). An enhanced version of the Grothendieck construction (Subsection 8.4.4) identifies small enhanced fibrations $\mathcal{C} \to \mathcal{E}$ and enhanced functors $\mathcal{E}^\iota \to \mathcal{C}at^h$, and this leads to a fully faithful enhanced Yoneda embedding (Subsection 8.4.6). We then have enhanced limits, colimits and Kan extensions (Section 8.5), enhanced-complete and cocomplete categories, and so on and so forth. For further details, see [K4, Section 4].

One last thing that needs mentioning is what happens with large categories. Already in the unenhanced setting, these present a problem: since Hom-sets need to be small, functors between two large categories need not form a category. In the enhanced setting, the problem becomes worse: already the semicartesian products $-\times^h$ – of Lemma 8.3.3.7 need not exist.

In principle, this could be handled by introducing the Universe Axiom and enlarging the universe. In our approach, this would also require enlarging the domain of definition of our enhanced categories — these need to become fibrations defined over the category of partially ordered sets in the new universe — but theoretically, it probably could be done. However, a better way is to use the machinery of filtered colimits and accessible categories of Grothendieck [G3] and Gabriel and Ulmer [GU]. In effect, one restricts one's attention to categories and functors that are κ -accessible for some regular cardinal κ that is large enough (and can be enlarged if needed). This has one standard problem — the opposite to an accessible category is typically not accessible, so that simply taking the opposite category is not a valid operation in the accessible world — but that's life. Modulo that, most of the large categories one needs in practice are accessible, and treating them as such more-or-less solves the problem.

In our enhanced setting, we develop the machinery of filtered colimits and accessible categories in Section 8.6, and it parallels very closely the unenhanced theory (for comparison, see e.g. [K3], an overview of the classical theory written as an unenhanced counterpart to Section 8.6). The same caveats apply, but to a large extent, the technology works, and most of our enhanced categorical constructions extend to the accessible setting.

1.6. Sociology, or why we do it.

Let me now address the elephant in the room. For almost two decades now, since [Lu1], Jacob Lurie and his school have been developing a set of very comprehensive and thorough foundations for abstract homotopy theory colloquially known as the theory of "∞-categories". At the moment, the theory is infinitely more advanced than whatever was the state of the art at the time of, say, [R], and is actively and productively used by many mathematicians around the world. Hundreds if not thousands of graduate students invested uncounted hours of their valuable time into studying the texts. What's wrong with Lurie's foundations? — how could one possibly justify opening the can of worms yet again, and looking for another approach?

The short answer is, quite possibly, nothing. The feeling of deep unease experienced by some when encountering the ∞-categorical formalism might just be a personal problem, or a mental infirmity of some sort — or just old age, for that matter. And it is not that important anyway, since the vast majority of Lurie's work is actually completely model-independent, at least in spirit, and would survive a change of engine with very little pain.

Still, the feeling of unease is there, and it is hard to ignore it. In effect, at the time of writing, a simple browsing of recent papers that could have used ∞ -categories reveals a deep split. Some papers — or maybe, papers in some areas — do use them as a completely standard tool, without even discussing this. Other papers, in areas that are mathematically very close, treat the formalism of ∞ -categories as non-existent. Of course, the formal reason for this might be simply that most of the foundational papers of Lurie are not published in a conventional way, even as preprints, but there is probably more to it that just that.

The situation was already the same when I was writing [K1]. At the time, I was trying to rationalize this unease, at least to myself, and the explanation that I came up with was roughly the following. The way Lurie's foundations are set up is pretty much all-or-nothing: either you move the whole of mathematics to an ∞-categorical setting, or you cannot use it at all. This even extends to some gratuitous rebranding — why on earth would someone swap the meaning of "final" and "cofinal", for example? — but actually goes deeper than such minor quirks. By its very nature, ∞-categorical formalism does not allow for a clean separation of definitions (that should be simple) and proofs (that can be as difficult as needed but can be safely used as black box). Well, the definition of a quasicategory is simple enough, but already to understand adjunction, you

really need quite a bit of simplicial combinatorics, so that already a definition needs to be put in a black box. In practice, to write an honest paper using the formalism, one really needs to study thousands pages of text, and use precise page references to various relevant facts spread out over all these pages (one example of such an honest paper that comes to mind now is [NS]). Thus both the specific model used by Lurie, and the whole foundational paradigm of [Q] are hard-coded into the formalism as it exists. Forcing all this unto the whole of mathematics is bound to cause some resentment.

Coming back to the present, the above paragraph still stands, to some extent, and maybe even becomes stronger — as the current text purports to show, both the simplicial machinery and the model category paradigm are not only cumbersome but also not really related to the actual mathematical content of the theory. However, when looking at how the use of ∞ -categories has developed, I can now see another reason for worry: the way things are, it is simply not safe.

The thing is, what people really want is to work with enhanced categories, and more importantly, think about them as if they were unenhanced. It is well-known and accepted that this is not possible all the time, but it should be possible most of the time, with some well-defined points where one just needs to "say something" to make it all work.

By itself, this is not a bad thing. The ability to use something like Grothendieck's six-functor formalism in a general homotopical setting is deeply liberating, and in XXI century, one shouldn't have to worry about choosing a particular resolution, be it additive or non-additive. However, this creates ample space for errors. The common sloppiness actually goes back to working with usual unenhanced categories, when people write down commutative squares (*), or more complicated commutative diagrams, without mentioning the connecting isomorphism or isomorphisms. It is implicitly assumed, but rarely mentioned, that if the constructions are "natural enough", these things would take care of themselves. The situation becomes more problematic when we move to monoidal categories and functors, 2-categories and suchlike. Here it is almost impossible to actually write down all the higher constraints that need to be in the picture, for typographical reasons if nothing else, so usually there is some sort of compromise (or recourse to a strange and unnatural gadget such as Mac Lane Strictification Theorem of [M]). In the ∞-categorical setting, the problems become infinitely worse. Quite often, people still think 1-categorically, with the corresponding 1-categorical intuition (defining functors by what they do to objects and morphisms, using monads and the "Barr-Beck Theorem", and so on). It is still assumed that if push comes to shove, everything can be

"strictified", or made to "commute on the nose" by a good choice of a model, so that the whole house of cards does not collapse (and in the ∞-categorical setting, the number of those cards tends to be infinite). Unfortunately, the formalism itself does not help — occasionally, to make things rigourous, you do need to make a choice of a model. There goes your liberty.

As a baby example of this, let us consider a very common categorical procedure — defining things by pullback (for example, taking fibers).

On the level of homotopy categories such as CSS or our Cat^h , pullbacks are of course not functorial and do not have a universal property. So, if you have a morphism $\mathcal{C}_1 \to \mathcal{C}$ and some other morphism $\mathcal{C}_0 \to \mathcal{C}$, you cannot just define the homotopy fibered product $\mathcal{C}_0 \times_{\mathcal{C}}^h \mathcal{C}_1$ while staying in CSS $\cong \operatorname{Cat}^h$. What you do in CSS or in Cat^h is similar but slightly different.

(i) In CSS — or in the category of quasicategories, if you wish — you choose complete Segal spaces X, X_0 , X_1 and maps $X_l \to X$, l = 0,1 representing \mathcal{C} , \mathcal{C}_0 , \mathcal{C}_1 and the morphisms. Moreover, you arrange, by possibly changing X_0 , that the map $X_0 \to X$ is a fibration in the model category sense. Then you take the strict fiber product $X_0 \times_X X_1$, and let $\mathcal{C}_0 \times^h \mathcal{C}_1$ be the corresponding object in CSS. If you then have a commutative square (\star) in CSS, you also choose a complete Segal space X_{01} representing \mathcal{C}_{01} , and a homotopy between the two maps $X_{01} \to X$. Then you use a simple model category argument to possibly change X_{01} so that the homotopy becomes an identity, and obtain the map $X_{01} \to X_0 \times_X X_1$ by the universal property of the cartesian square. Then you descend back to CSS.

As an alternative, you could say that CSS is complete "as an ∞ -category", and then the homotopy fber product becomes functorial and acquires a universal property. However, then your input data — namely, the diagram $\mathcal{C}_0 \to \mathcal{C} \leftarrow \mathcal{C}_1$ — needs to be lifted to an ∞ -diagram, and this amounts to exactly the same thing as above.

(ii) In Cat^h , you lift \mathcal{C} , \mathcal{C}_0 , \mathcal{C}_1 to enhanced categories, and lift your morphisms to enhanced functors. However, instead of simply taking the cartesian product, you take the semicartesian product $\mathcal{C}_0 \times_{\mathcal{C}}^h \mathcal{C}_1$ provided by a machine hidden in a black box (namely, Lemma 8.3.3.7). The universal property and the comparison functor $\mathcal{C}_{01} \to \mathcal{C}_0 \times_{\mathcal{C}}^h \mathcal{C}_1$ is then provided by another machine, Corollary 8.3.3.6, once you choose an isomorphism between the two enhanced functors $\mathcal{C}_{01} \to \mathcal{C}$.

The difference is somewhat subtle, and it is this. In our approach, you do not strictify all the way, and *do not* obtain the required map $\gamma: \mathcal{C}_{01} \to \mathcal{C}_0 \times_{\mathcal{C}}^h \mathcal{C}_1$ "on

the nose". In fact, the formalism does not even allow you to do this. This is not a bug but a feature. You only get γ up to an isomorphism, and this is exactly what can be done in an invariant way. The ability to strictify completely just means that you kept too much information: you are secretly still remembering those explicit resolutions from which you wanted to be finally free.

In other words, our formalism is designed to imitate the usual category theory much closer than anything based on the model category techniques, but with a caveat: in some well-defined places, you need to explicitly invoke something from a black box. A category of models where things just commute, period, simply does not exist. This might be cumbersome, from time to time, but that is how life is; thinking otherwise would be a mistake. Our formalism is designed to make such mistakes impossible.

1.7. Safety features presentation.

Let us now list some other things that in our approach, you simply cannot do, by design.

(i) Nothing is ever defined by hand.

In ordinary category theory, you can in principle define a category by saying what are its objects, morphisms and compositions, and you can define a functor by saying what it does to objects and morphisms. In the enhanced setting, this is not possible, because it requires an infinite amount of data. In fact, this is not practically possible already in the formalisms based on models, or more generally, wherever one needs some kind of "homotopy coherence". For a classical example, while it is true that an infinite loop space is an algebra over an E_{∞} -operad, for any particular fixed choice of such an operad, all the infinite loop spaces in existence were actually constructed by the Segal machine. In our enhancement formalism, constructing things by hand is impossible even theoretically.

There is one exception to this rule. We say that *enhanced objects* in an enhanced category $\mathcal{C} \to \operatorname{PoSets}$ are objects in its truncation $\mathcal{C}_{\operatorname{pt}}$ — or equivalently, enhanced functors $\operatorname{pt}^h \to \mathcal{C}$ from the terminal enhanced category $\operatorname{pt}^h = K(\operatorname{pt}) \cong \operatorname{PoSets}$. Enhanced morphisms between enhanced objects are morphisms in $\mathcal{C}_{\operatorname{pt}}$, or equivalently, enhanced functors $K([1]) \to \mathcal{C}$. However, one can also consider "generalized objects" — namely, all objects in \mathcal{C} , in all the fibers $\mathcal{C}_J \subset \mathcal{C}$, $J \in \operatorname{PoSets}$. Then we do have a general reconstruction result, Lemma 8.2.2.9, saying that to define an enhanced functor $\mathcal{C} \to \mathcal{C}'$ between enhanced categories,

it suffices to say what it does do all generalized objects $c \in C$, functorially with respect to isomorphisms, and functorially with respect to the transition functors $f^* : \mathcal{C}_{J'} \to \mathcal{C}_J$, for all maps $f : J \to J'$. You do not have to worry about generalized morphisms (generalized morphisms in $\mathcal{C}_J \subset \mathcal{C}$ are generalized objects in $\mathcal{C}_{J \times [1]}$).

(ii) Nothing is ever equal, and nothing commutes "on the nose".

Objects in a ordinary category can only be isomorphic, but morphisms between two fixed objects can be equal and form a set. Categories can only be equivalent, functors can only be isomorphic, but again, morphisms between functors can be equal. In our enhanced formalism, the last step disappears. Enhanced morphisms between two enhanced objects form an enhanced groupoid, not a set, so just as objects, they can only be isomorphic. Enhanced functors should be treated as enhanced objects in the functor category, so morphisms between also form an enhanced groupoid and not a set. Technically, our enhanced functors are also functors in the usual sense, we do have a "naive" set of morphisms, so two morphisms can be equal, but this is an artefact of the formalism and has no invariant meaning; in particular, such equalities are not preserved by semicartesian products. Saying that a morphism is invertible is safe; saying that two morphisms are equal is not. In fact — see Remark 8.3.4.1 — if one considers enhanced functors over some enhanced category $\mathcal C$, then the "naive" equality is simply the wrong thing, already on the level of π_0 .

We note that this phenomenon causes surprisingly few problems when building the theory. In fact, the only place in the standard category theory where an actual equality of morphisms is used is in the definition of adjunction (see (2.2.1.1) in Subsection 2.2.1). Since for us, enhanced adjunction is the same thing as an unenhanced one, this could cause problems; however, this can be handled by an alternative description of adjunction in terms of enhanced comma-categories, Lemma 8.4.1.5.

(iii) All the commutative diagrams have to be enhanced.

In a sense, this is a continuation of (ii), but we cannot emphasize this point strongly enough since it is the single major source of gaps and outright mistakes (especially when constructing enhanced limits or colimits). If you need a commutative diagram in an enhanced category \mathcal{C} , you should really number its vertices and arrows, turn it into a partially ordered set J, or a category I, or even an enhanced category \mathcal{E} if you so wish, and construct an enhanced functor $\mathcal{E} \to \mathcal{C}$. If $\mathcal{C} = \mathcal{C}at^h$ — that is, if you want a commutative diagram of

enhanced categoies and enhanced functors — then you can apply the enhanced Grothendieck construction and consider a fibration $\mathcal{E}' \to \mathcal{E}^\iota$ rather than an enhanced functor $\mathcal{E} \to \mathcal{C}at^h$. If $\mathcal{E} = K(J)$, then this is the same thing as usual Grothendieck fibration $\mathcal{E}' \to K(J^o)$, but even this is much more than a fibration $\mathcal{E}' \to J^o$. If J is very simple, then enhancement can be automatic, to some extent — see Corollary 8.3.5.3 or [K4, Subsection 4.5] — and for commutative squares, it is enough to choose a connecting isomorphism (in particular, enhanced fibered products in $\mathcal{C}at^h$ are given by semicartesian squares, see Lemma 8.5.2.14). Anything more complicated has to be split into parts or described explicitly via the Grothendieck construction. As a rule of thumb, if your commutative diagram of enhanced categories and functors needs something more than the standard amscd package, you are doing something wrong.

All of the above begs the question: how *do* you define things? What are safe procedures for constructing new enhanced categories and functors from those that already exist?

For enhanced functors, the most obvious procedure that turns out to be quite powerful is taking an adjoint. As we have mentioned, uniqueness is simply inherited from the usual category theory, and for existence, there are various criteria (for example, Lemma 8.4.3.3 is rather useful). For enhanced categories, one thing you can do to take a functor category $\mathcal{F}un^h(\mathcal{C},\mathcal{E})$. For both categories and functors, there are also semicartesian products $-\times^h-$. In effect, for any small enhanced category \mathcal{E} , one can define an enhanced category $\mathcal{C}at^h$ // $_\star^h\mathcal{E}$ of small enhanced categories and functors over \mathcal{E} , see Subsection 8.3.7, and then for any enhanced functors $\gamma:\mathcal{E}\to\mathcal{E}'$ between small enhanced categories, we have an enhanced functor

$$(\star\star) \qquad \qquad \gamma^* : Cat^h /\!/_{\star}{}^h \mathcal{E}' \to Cat^h /\!/_{\star}{}^h \mathcal{E}$$

sending an enhanced object $\mathcal{C} \to \mathcal{E}'$ to $\gamma^*\mathcal{C} = \mathcal{E} \times_{\mathcal{E}'}^h \mathcal{C} \to \mathcal{E}$. The formal construction of $(\star\star)$ is in Subsection 8.4.5, where it is also observed that it has an obvious left-adjoint γ_{\triangleright} sending $\mathcal{C} \to \mathcal{E}$ to $\mathcal{C} \to \mathcal{E} \to \mathcal{E}'$. Thus semicartesian products are sufficiently functorial to define a pullback operation γ^* both on enhanced categories and on enhanced functors. On categories, γ^* sends enhanced fibrations to enhanced fibrations (Lemma 8.4.2.15) and on functors, it sends adjoint pairs to adjoint pairs (Corollary 8.4.1.6) and cartesian functors to cartesian functors (again Lemma 8.4.2.15).

Moreover, it is shown in Subsection 8.4.5 that under favourable circumstances — for example, when $\mathcal E$ and $\mathcal E'$ are small, and γ or γ^ι is an enhanced fibration — the enhanced functor $(\star\star)$ also has a right-adjoint functor γ_{\triangleleft} : $\mathcal Cat^h /\!/_{\star}^h \mathcal E \to$

Cat //_{*} $^h\mathcal{E}'$. The *relative enhanced functor category* $\mathcal{F}un^h(\mathcal{E}|\mathcal{E}',\mathcal{C})$ is defined as $\gamma_{\triangleright}\gamma^*(\mathcal{C}\times^h\mathcal{E}')$, and this construction also turns out to be very useful. If $\mathcal{E}'=\operatorname{pt}^h$, this recovers the usual enhanced functor category $\mathcal{F}un^h(\mathcal{E},\mathcal{C})$.

There are also two constructions that are specific to enhanced fibrations. Any enhanced fibration $\mathcal{C} \to \mathcal{E}$ has enhanced fibers \mathcal{C}_e over enhanced objects $e \in \mathcal{E}_{pt}$, and enhanced transition functors $f^* : \mathcal{C}_{e'} \to \mathcal{C}_e$ for enhanced morphisms $f : e \to e'$ (Subsection 8.4.3). Then firstly, just as in the unenhanced setting, there is a general procedure that produces a fibration $\mathcal{C}_{h\perp}^\iota \to \mathcal{E}$ with enhanced fibers \mathcal{C}_e^ι and transition functors $(f^*)^\iota$. Moreover, $\mathcal{C}_{h\perp}^\iota$ can be characterized by a universal property, see Corollary 8.5.6.7. Secondly, if all the transition functors f^* admit enhanced left-adjoints, then the opposite enhanced functor $\mathcal{C}^\iota \to \mathcal{E}^\iota$ is also an enhanced fibration (Corollary 8.4.3.5). Iterating the two constructions, and throwing in some pullbacks for a good measure, can actually get you quite far. For an example in an unenhanced setting, see e.g. the construction of the so-called "Fourier-Mukai 2-category" given in [K2, Subsection 4.4].

Finally, let us mention that the enhanced category Cat^h is enhanced-complete and enhanced-cocomplete, and in particular, it has enhanced colimits and enhanced-cocartesian squares. A formal corollary of this is that for small enhanced categories, we always have enhanced localization given by an explicit enhanced-cocartesian square (namely, [K4, (4.38)]). Unfortunately, just as in the unenhanced setting, the resulting enhanced category is usually very hard to describe explicitly, but at least, it definitely exists.

1.8. Leitfaden, or how we do it.

Now, having explained both what we do in the text and why we think it is worth doing, let us explain how we do it — how the text is organized, what depends on what, etc.

First of all, while the formalism we build here does not depend on model categories, nor on simplicial sets, and relegates both to the realm of technical gadgets, it does not mean that we should not use these gadgets while building the formalism. Quite the contrary in fact, both are really helpful. For model categories, we stay within the framework of [Q] amplified by the Reedy model structures of [Re], and avoid embellishments added in [Ho] and subsequent work (these are geared towards applications that are foundational rather than technical, and do not work well in our context). For simplicial sets, we do use standard things such as a description of the Segal condition in terms of the horn embeddings; one slightly less standard device we also found very useful are

simplicial replacements of [BoK] (and we develop an enhanced version of them in Subsection 8.5.6).

Next, we should say how we deal with the three main problems of category theory: atrocious notation, idiosyncratic terminology, and inherent triviality of the arguments.

For the latter, well, we prove what needs to be proved, but we also need many small things that are too trivial to split into a statement and a proof; we call these "examples". Our convention is that such "examples" are an integral part of the text, and can be referred to further on (unlike "remarks" that can be safely skipped).

For notation, the best we can do is to choose one set of atrocities over another one. Our preferred notation for left resp. right comma-categories for a functor $\mathcal{C}_0 \to \mathcal{C}_1$ is $\mathcal{C}_0/\mathcal{C}_1$ resp. $\mathcal{C}_1 \setminus \mathcal{C}_0$ (and not, say, $\mathcal{C}_0 \uparrow \mathcal{C}_1$ or $\mathcal{C}_0 \downarrow \mathcal{C}_1$). The opposite category to some \mathcal{C} is denoted \mathcal{C}^o , and same for functors. We denote by $\mathcal{C}^>$ resp. $\mathcal{C}^<$ a category \mathcal{C} with an added terminal resp. initial object. The category of functors $I \to \mathcal{C}$ is $\text{Fun}(I,\mathcal{C})$, and we shorten $\text{Fun}(I^o,\mathcal{C})$ to $I^o\mathcal{C}$, as in Δ^o Sets. This simplifies formulas quite a bit, and hopefully, does not lead to confusion. The category of elements of a functor $I^o \to \text{Sets}$ is IX. We have found it very convenient to denote by Cat // I the category of small categories \mathcal{C} equipped with a functor $\mathcal{C} \to I$, with morphisms given by lax functors over I, and we use a variation of this notation for various categories of similar kind. An "I-augmentation" is a functor to I, and "I-augmented" is "equipped with a functor to I". The rest is more-or-less standard.

For terminology, we try to use common conventions whenever possible, but sometimes one has to choose between two opposite conventions that are equally common. For us, "cofinal" means "commutes with colimits" (not limits), and a "cone" — unless we are talking about chain complexes — is something that creates colimits (again, not limits). A "fibration" is a Grothendieck fibration, and a "cofibration" is a functor opposite to a fibration — an alternative is "opfibration", but the sheer sound of it is too horrible to contemplate (Lurie uses "cartesian" resp. "cocartesian fibration" to avoid confusion with the model category usage, but we are free from that problem). We use "epivalence" in the sense explained above — conservative, full, essentially surjective; we do not know how standard it is. We also do not know how standard are "cylinders" of Subsection 2.2.4. We treat "anodyne" of [GZ] as an orphaned term, and take the liberty to borrow it for something related but different (the original meaning was "trivial Kan cofibration"). "Left" resp. "right-reflexive" means "admits a left" resp. "right-adjoint". All full subcategories are strictly full. A

full subcategory is "left" resp. "right-admissible" if the embedding functor is left resp. right-reflexive (this is standard terminology only for people who work with derived categories of coherent sheaves, but it is convenient enough to merit more general usage). From time to time, we need an adjective for something that needs to be named but does not deserve a permanent name; in these cases, we plagiarize algebraic geometry and assign words such as "ample", "proper" or "separated", more-or-less randomly.

We apologize to Graeme Segal for effectively turning his name into an adjective (and as many people before us, we do it with great admiration and respect for his work).

For better or for worse, the text is self-contained — the only things we skip are the definition of a model category, and the proof of Quillen Adjunction and the existence of Reedy model structures. Partially because of this, the first time something possibly new appears is in Section 4.3. Chapter 2 is completely and utterly standard, and serves the twin purpose of fixing notation and terminology, and giving a template for its enhanced version developed in Chapter 8. As usual, we lament that fact that there is no convenient textbook (it seems that a tradition established at least since [M] is that all category theory textbooks omit exactly the things they ought to contain). We split Chapter 2 into four parts, with Section 2.3 specifically devoted to the Grothendieck construction, and Section 2.4 containing some additional constructions that are less well-known (but certainly also known, at least to the experts). Chapter 3 collects everything that we need about partially ordered sets. This is a lot, but again, nothing is new (except for possibly some small lemmas that are not in the literature because nobody ever needed them). Our approach is to treat partially ordered sets as small categories of a special type, and this turns out to be more productive than one would expect. Almost all the partially ordered sets we need are "leftbounded", in the sense that J/j has finite chain dimension for any element $j \in J$, so from the point of view of the general theory, these are rather trivial. The sets themselves are in Section 3.1, and Section 3.2 contains firstly, an I-augmented version of them, for a category I, and then a technical gadget that we found to be very useful — "biordered sets" (partially ordered sets equipped with a factorization system). Partially ordered sets appear as examples further on, but they are only really needed starting from approximately Chapter 6; biordered sets are not needed before Section 7.2.

Chapter 4 is also standard, and contains everything we will need about simplicial things — horns and spheres, nerves, the Segal condition, simplicial replacements and so on. The chapter is rather short since we do not need that

much. However, we also include Section 4.3 that deals with Reedy categories, and here there are things that are possibly new. Namely, we introduce the notion of a "cellular Reedy category" by expanding an idea from [GZ], and prove a result — Proposition 4.3.3.10 — saying that "a cellular Reedy category has an anodyne resolution". By itself, it does not pass the bar for a new result, since it involves notions introduced in the text, but one of its corollaries does: for any finite-dimensional simplicial set X, there exists a functorial weak equivalence $Y \rightarrow X$ such that firstly, dim $Y \leq \dim X$ and secondly, Y is the nerve of a partially ordered set. This should have been known before us, but we could not find the statement in the literature, so it might be new.

On the contrary, nothing new at all happens in Chapter 5 devoted to localization; some statements here are not just old by very old (e.g. Lemma 5.2.4.1 is in [GZ]). This chapter also includes Section 5.3 devoted to model categories, and this is more-or-less the only place in the text where they appear. Technically, Proposition 5.3.2.2 might be new, but again, even if nobody proved this before, it is only because nobody cared.

Things that are new start with Chapter 6 that is essentially devoted to Brown Representability for families of groupoids. First, we prepare the ground by introducting the notion of a "CW-category", a stripped-down version of a model category that only has the classes *C* and *W* but not *F*. Apart from model categories, main examples are PoSets (with *C* being the class of "left-closed embeddings"), and the category of finite-dimensional partially ordered sets. We could not resist the temptation to develop the theory further than strictly necessary, up to a non-trivial theorem (Proposition 6.1.6.2); it is probably safe to skip most of Section 6.1 until needed. Section 6.2 discusses what we call "semiexact families of groupoids" over our CW-categories, and this is what goes into our version of Brown Representability; the parts that are really crucial for what follows are Subsection 6.2.2 and Subsection 6.2.3. Brown Representability itself, in several versions, is in Section 6.3; the simplest is Theorem 6.3.2.7. It appears to pass the bar and be genuinely new.

Chapter 7 is what can be called the "technical heart" of the text, meaning the part with the most unpleasant notation and tedious proofs. Here we interpolate between families of groupoids over simplicial and bisimplicial sets (covered by Brown Representability) and over PoSets (that we need for our applications). As a warm-up, we start with Section 7.1 that deals with simplicial sets and enhanced groupoids. As one can expect, going from PoSets to Δ^o Sets is via the nerve functor; in the other direction, one uses the functorial anodyne resolutions of Proposition 4.3.3.10. In Section 7.2, we move on to bisimplicial sets. Here

we are only interested in families that satisfy the appropriate version of the Segal condition, and these actually correspond rather precisely to families over biordered sets of Section 3.2. Then in Section 7.3, we show that the completeness condition of [R] — or again, a version of it — allows to go back to families over PoSets. The final Section 7.4 studies what happens when we also have an augmentation.

Finally, in Chapter 8, we reap the rewards: we build the enhanced category theory. The chapter is long but surprisingly straighforward, starting from Section 8.1 devoted to reflexive families, and then onward along the lines pretty parallel to the usual category theory of Chapter 2. We note that while Chapter 8 crucially depends on the results we prove before, it is practically independent of the constructions; the results work as perfect black boxes. Thus a viable strategy of reading the text is to start directly with Chapter 8 (possibly after a cursory glance at Chapter 2 to acquaint oneself with our terminology and notation).

Finally, let me mention three things that are very conspicuously *not* in the present text.

(i) Stable categories and Verdier localization.

Roughly, this corresponds to Lurie's [Lu2], and this is definitely a must for any usable theory. Moreover, as M. Groth has shown in his beautiful paper [Gr2], things work even better in the derivator formalism, up to and including what is probably the shortest definition of a stable enhanced category ("an enhanced category is stable iff it has all finite limits and colimits, and they commute"). The reason I skip this material is sheer exhaustion; I will return to this elsewhere.

(ii) Grothendieck topologies.

This is really important for applications to algebraic geometry, so it features prominently in [Lu1]. Given what we already do in the text, it should not be too difficult to write down the notion of an enhanced sheaf on a site and develop the associated machinery. However, from the general categorical point of view, it is not at all clear to me that this is all there is to it; there well might be some enhancement already for the notion of a "site", and in general, a genuinely enhanced version of the topos theory, starting with an appropriate version of Lawvere's subobject classifier, see e.g. [J]. This needs (and deserves) to be researched further.

(iii) Axiomatization.

In some sense, this is a continuation of (ii) above, and it concerns developing homotopy theory from first principles — something that we still cannot do. Can one describe the category Cat^h axiomatically, similarly to what Lawvere did for Grothendieck's toposes? At present, I do not know; a rather feeble attempt at it can be found in [K4, Subsection 5.5].

Acknowledgements.

The work presented here is the end result of a rather long project; over the years, I had a lot of help.

I was first exposed to the ideas of [G4] back in 1991, when I was a first-year graduate student, by Vladimir Voevodsky and David Kazhdan. At the time, the common emphasis was on "higher categories", not on derivators. I tried to do something in area. David was my Ph.D. advisor, and he certainly would have supported this, were I able to come up with anything meaningful; unfortunately, this was very clearly not the case.

In the following years, I was doing other things, with the problem of enhancements somewhere on the back burner, and I would only come back to it from time to time (for example, during a memorable visit to MSRI in Spring 2006). I would also give talks on the subject, from time to time, and while I still had vague ideas at most, and no actual results, it is amazing how supportive and understanding many colleagues were. This certainly includes friends and colleagues in Moscow, especially Misha Verbitsky, Sasha Kuznetsov, Dima Orlov, and later, Sasha Efimov, Anton Fonarev and Chris Brav. But in other places people were just as wonderful. I still remember a talk in Tokyo, in 2008, after which a prominent algebraic geometer came to me and said something like this: "I liked your talk; of course, the last thing the world needs are new foundations for homological algebra, but at least, there was a story". This was one of the best pieces of advice I ever had: no matter what you do, people will listen if there is a story.

It is of course impossible to write down the whole list of places where I told these stories over the years, in their evolving form, and of people who listened to them and in turn, told me back theirs. However, there are some I just have to mention. Israel in general, and Hebrew University of Jerusalem in particular is an amazing place, and I am very happy that I was able to visit it several times, at the invitation of David Kazhdan. Talking with David — about all sorts of mathematics, but enhancements in particular — has been always extremely valuable, I learned a lot from him and I continue to do so. Equally

valuable were long discussions with Vladimir Hinich; especially in thinking about enhancements and homotopical algebra, I owe him and David a huge intellectual debt.

Another really amazing place with amazing people is Chicago/Evanston, especially with Victor Ginzburg, Sasha Beilinson and Vladimir Drinfeld at the University of Chicago, and Boris Tsygan, Dmitry Tamarkin and Ezra Getzler at Northwestern. Over the years, I had an opportunity to visit both places for extended periods of time, and this in particular helped a lot to develop the ideas presented in this work.

A different group of colleagues to whom I owe a lot in my understanding of homotopical algebra are Carlos Simpson, Bertrant Toën and Gabriele Vezzosi, the founders of modern Derived Algebraic Geometry. Talking to Carlos has always been, and continues to be very inspirational and illuminating. Bertrand does not even like fibered categories, and is quite happy to work "up to homotopy", but his expertise in the area and understanding of it is nothing short of astonishing; it is hard to overestimate how much I learned from him, Gabriele and Carlos.

Somewhat similarly, almost all of actual homotopy theory that I know I learned from Lars Hesselholt, and he has been a tremendous influence on my understanding of the subject, both in its mathematical content, and ideologically, in his passionate push for proper and modern foundations for it. Lars probably will not much like this work either — he seems quite happy with the ∞ -categorical formalism as it already exists — but well, at least, there is a story. If it amuzes him, I will be glad.

The actual work on this text was started in 2017, after I finished [K1], my only attempt to do something with model categories that ended with much more of a whimper than a bang. The first few pages were written in the Hausdorff Center in Bonn where I visited at the kind invitation of Tobias Dyckerhoff. The general shape of the theory was largely clear by mid-2018, with the bulk of the work done in Moscow, in Mexico City and in Miami (I am very grateful to Jacob Mostovoy for an invitation to CINVESTAV, and to Ludmil Katzarkov for an invitation to the University of Miami). I first presented the theory at a conference in Miami in January 2018, to an audience that included Maxim Kontsevich and Mikhail Kapranov; I do appreciate the opportunity to tell stories to such an audience without anything resembling a finished text, and for the patience and toleration of that audience.

Unfortunately, finishing the text took much longer than expected, with other things getting in the way, and a lot of time wasted on what turned out to be dead-ends. In the intervening years, I kept giving talks and promising the text in the future, and I am grateful to many people for listening to all this, trusting my word, and often giving me very valuable feedback. At the very least, this includes people in two Oberwolfach meetings, in 2018 and 2024, at seminars and conferences in Bonn, Mainz, Paris, Antwerp, London, Evanston, Miami, Simons Center in Stony Brook and University of Colorado in Boulder — and lots of places in Russia, both in Moscow and outside of it. Of the many colleagues with whom I discussed this project privately, and who helped a lot, I should at least mention Tobias Dyckerhoff, Moritz Groth, Thomas Nikolaus, Wendy Lowen and Boris Shoikhet; it was an honor to also present the work to Vladimir Drinfeld and Nick Rozenblyum, and hear what they had to say. I am also very grateful for the attention and feedback from Richard Thomas and people at the Imperial College in London.

The final part of the project, Chapter 8, was written largely in Spring 2024 at MSRI — or rather, SLMath now — where I spent three months as a Chern Research Professor. The place is just as perfect as it was back in 2006, and I am very grateful for its generosity, hospitality and wonderful working atmosphere.

Finally, there are two colleagues and friends whom I would like to thank separately, both for help with this particular project and for continued help and support throughout my mathematical life. The first is Sasha Beilinson. I have already mentioned him when speaking about Chicago, but we of course go back much further than that. While he never was my teacher or advisor in any formal sense of the word, I learned an enourmous amount of mathematics from him. What's more, in some sense, I learned from him how to think about mathematics — or at least, I learned as much as I was able, and I will try to learn more. The second is Tony Pantev, a mathematician of amazing strength and knowledge, and one of the most modest and unassuming people that I know. Again, he was never my formal teacher, but informally, he taught me a lot, ever since my grad school days, and he was always interested in my work — be it this particular project, or any of the other things that I was doing. His feedback and his constant, consistent interest and encouragement was and is extremely valuable to me, and I very grateful and honored for the good fortune of having both.

Chapter 2

Category theory.

This chapter contains preliminaries. Nothing whatsoever is new. Section 2.1 mostly serves to fix notation and terminology. Non-standard terms are "dense subcategory", "closed class", "left-saturated class", and also possibly an "epivalence" and a "semicartesian square". For any category I, an "I-augmentation" for a category \mathcal{C} is a functor $\mathcal{C} \to I$. For notation, \mathcal{C}^o is the opposite category to \mathcal{C} , and $\mathcal{C}^{>}$ resp. $\mathcal{C}^{<}$ is \mathcal{C} with a new terminal resp. initial object. We use $\mathcal{C}/_{\pi}I$ resp. $I \setminus_{\pi} \mathcal{C}$ for the left resp. right comma-categories of a functor $\pi : \mathcal{C} \to I$, and we use Cat // I and variations of this notation for different categories of *I*-augmented small categories. We denote by $\operatorname{Fun}(I,\mathcal{C})$ the category of functors from I to C, and we shorten Fun(I^o , C) to I^oC . Section 2.2 is equally standard and contains various useful facts about adjunction, limits and Kan extensions. Left resp. right Kan extension along a functor γ are denoted by $\gamma_!$ resp. γ_* . "Left" resp. "right-reflexive" means "admits a left" resp. "right-adjoint". Section 2.3 deals with the Grothendieck construction and contains both general facts and lots of examples of Grothendieck fibrations and cofibrations. We then add some facts about fibrations whose fibers are groupoids (those are called "families of groupoids"). Finally, Section 2.4 contains some slightly less standard facts about functoriality for various categories of augmented categories, and a generalization of the right Kan extension to fibrations (understood as contravariant pseudofunctors to the category of categories).

2.1. Categories and functors.

2.1.1. Categories. We work in the minimal set-theoretical setup where there are sets and classes, and small and large categories, and that is the end of it. We denote by Sets the category of sets. For any subset $S' \subset S$ in a set S, we denote by $S \setminus S' \subset S$ the complement (note that this is different from $S \setminus S'$

that we will need for other things). A cardinal is an isomorphism class of sets, and for any set S, we denote the corresponding cardinal by |S|. Cardinals are ordered in the usual way ($|S| \leq |S'|$ iff there exists an injective map $S \to S'$). Categories are large unless indicated otherwise. We denote by Cat the category of small categories. For any category C, we write $c \in C$ as a shorthand for "c is an object of C'', and for any two objects $c, c' \in C$, we denote by C(c, c') the set of morphisms $f: c \to c'$. Note that by definition, even if C is large, C(c, c') is always a set. The composition of morphisms $f: c \to c'$, $f': c' \to c''$ is denoted by $f' \circ f: c \to c''$. By abuse of terminology, we use "maps", "morphisms" and "arrows" interchangeably, so that a map $f: c \to c'$ is the same thing as a morphism $f: c \to c'$ and the same thing as an arrow $f: c \to c'$. An "isomorphism" is the same thing as an "invertible map", and $c \cong c'$ is shorthand for "there exists an isomorphism $c \to c'''$, with $f: c \cong c'$ standing for " $f: c \to c'$ that is invertible".

Objects of the *arrow category* $\operatorname{ar}(\mathcal{C})$ of a category \mathcal{C} are arrows $c' \to c$ in \mathcal{C} , with morphisms from $c'_0 \to c_0$ to $c'_1 \to c_1$ given by commutative squares

$$\begin{array}{ccc}
c'_0 & \longrightarrow & c_0 \\
\downarrow & & \downarrow \\
c'_1 & \longrightarrow & c_1.
\end{array}$$

An object $x \in \mathcal{C}$ is a *retract* of an object $y \in \mathcal{C}$ if there exist maps $a: x \to y$, $b: y \to x$ such that $b \circ a = \operatorname{id}$. In this case, $p = a \circ b: y \to y$ satisfies $p^2 = p$ and is known as a *projector* or an *idempotent endomorphism* of the object y, and x is called the *image* of the projector p. If the image exists, it is unique up to a unique isomorphism — for any other x', $a': x' \to y$, $b': y \to x'$, $a' \circ b' = p$, the maps $b \circ a': x' \to x$ and $b' \circ a: x \to x'$ are inverse to each other — and automatically preserved by any functor. We say that a morphism f in f is a *retract* of a morphism f if f is a retract of f in the arrow category f is *Karoubi-closed* if all projectors in f have images, and a subcategory f is a retract of an object in f in f is a retract of an object in f in f is a retract of an object in f in f in f is a retract of an object in f in f in f is a retract of an object in f in f

For any category \mathcal{C} , we denote by \mathcal{C}^o the opposite category — that is, the category with the same objects as \mathcal{C} and morphism sets $\mathcal{C}^o(c,c')=\mathcal{C}(c',c)$. We denote by pt the point category (one object, one morphism). For any category \mathcal{C} , there exists a unique *tautological projection* $\mathcal{C} \to \mathsf{pt}$, and for any $c \in \mathcal{C}$, we denote by

a unique embedding from pt onto c. An object $o \in \mathcal{C}$ is *initial* resp. *terminal* if for any $c \in \mathcal{C}$, there exists exactly one morphism $o \to c$ resp. $c \to o$. An initial resp. a terminal object is unique up to a unique isomorphism, if it exists. For any category \mathcal{C} , we denote by $\mathcal{C}^{>}$ the category obtained by formally adding a terminal object o to \mathcal{C} , and we denote by $\mathcal{C}^{<}$ the category obtained by adding an initial object o, so that $\mathcal{C}^{<o} \cong \mathcal{C}^{o>}$. A category is *pointed* if it has an initial object o and a terminal object o, and the unique map o is an isomorphism. The point category pt is of course pointed; the smallest non-pointed category is the *single arrow category* [1] that has two objects o, o and the unique non-identity map o is o a special name is

$$(2.1.1.3) V = \{0,1\}^{<}.$$

Explicitly, V has three objects o, 0, 1 and two non-identity arrows $o \to 0$, $o \to 1$. We note that we have an isomorphism $[1]^2 = [1] \times [1] \cong V^>$ sending 1×0 resp. 0×1 to 0 resp. 1, and the initial resp. terminal object in $[1]^2$ to the initial resp. terminal object in $V^> \cong \{0,1\}^{<>}$.

A category \mathcal{C} is *connected* if it is not empty, and any two objects $c, c' \in \mathcal{C}$ can be connected by a finite zigzag of morphisms (equivalently, \mathcal{C} does not admit a decomposition $\mathcal{C} \cong \mathcal{C}_1 \sqcup \mathcal{C}_2$ with non-empty $\mathcal{C}_1, \mathcal{C}_2$). A category \mathcal{C} is Hom-bounded by an infinite cardinal κ iff $|\mathcal{C}(c,c')| < \kappa$ for any $c,c' \in \mathcal{C}$, and Hom-finite iff it is Hom-bounded by all infinite cardinals. For any $c,c' \in \mathcal{C}$, a chain of length $c,c' \in \mathcal{C}$ is a diagram

$$(2.1.1.4) c_0 \longrightarrow \ldots \longrightarrow c_n,$$

and a chain is *non-degenerate* if none of the maps $c_{l-1} \to c_l$, $1 \le l \le n$ in (2.1.1.4) is an identity map. If \mathcal{C} is small, then all non-degenerate chains in \mathcal{C} form a set $Ch(\mathcal{C})$, and we denote $|\mathcal{C}| = |Ch(\mathcal{C})|$. In particular, chains of length 0 are objects in \mathcal{C} , and chains of length 1 are morphisms. If the subset $Ch_{\le 1}(\mathcal{C}) \subset Ch(\mathcal{C})$ of chains of length ≤ 1 is infinite, then $|\mathcal{C}| = |Ch_{\le 1}(\mathcal{C})|$, but in general, this need not be true.

Example 2.1.1.1. Let P be the category with one object and one non-identity morphism p such that $p^2 = p$. Then P has exactly one non-degenerate chain of each length n, so |P| is infinite, while $|\operatorname{Ch}_{\leq 1}(P)| = 2$.

A subcategory $C' \subset C$ is *full* if for any $c, c' \in C' \subset C$, we have C'(c, c') = C(c, c') — informally, C' has the same morphisms as C (but less objects). A full subcategory is thus completely defined by the collection S of the objects $c \in C$

that lie in \mathcal{C}' (we say that \mathcal{C}' is *spanned* by objects in \mathcal{C}). By abuse of terminology, all full subcategories $\mathcal{C}' \subset \mathcal{C}$ are also assumed to be *strictly full*, in the sense that if $c \cong c'$ and $c' \in \mathcal{C}'$, then $c \in \mathcal{C}'$. It is also useful to reserve a term for a subcategory $\mathcal{C}' \subset \mathcal{C}$ that has the same objects as \mathcal{C} ; we call such subcategories *dense*. We say that a class v of morphisms in a category \mathcal{C} is *closed* if it is closed under compositions and contains all the identity maps. Then giving a dense subcategory $\mathcal{C}' \subset \mathcal{C}$ is equivalent to giving a closed class v of morphisms in \mathcal{C} , and we say that v *defines* the dense subcategory, and denote it by $\mathcal{C}_v \subset \mathcal{C}$.

The minimal closed class is the class Id of all identity maps; a category $\mathcal C$ is discrete if $\mathcal C=\mathcal C_{Id}$. The maximal class is the class \natural of all maps in $\mathcal C$, $\mathcal C_{\natural}=\mathcal C$. We also have the closed class \star of all invertible maps.

Definition 2.1.1.2. The *isomorphism groupoid* of a category C is the dense subcategory $C_{\star} \subset C$, and a category C is *rigid* if C_{\star} is discrete.

Example 2.1.1.3. A finite category — that is, a small category $\mathcal C$ such that $|\mathcal C|<\kappa$ for any infinite cardinal κ — is automatically rigid (already a single non-trivial endomorphism $f:c\to c$ of an object creates an infinite number of non-degenerate chains (2.1.1.4), with $c_{\scriptscriptstyle \bullet}=c$ and the maps $f:c_{\scriptscriptstyle \bullet}\to c_{\scriptscriptstyle \bullet+1}$))

Definition 2.1.1.4. A class of morphisms v in a category \mathcal{C} is *left-saturated* if it is closed under retracts, contains all the identity maps, and for any composable pair of maps f, g in \mathcal{C} such that $f \in v$, we have $g \in v$ if and only if $f \circ g \in v$. A class v is *saturated* if both v and the opposite class v^o are left-saturated. The *saturation* $s(\mathcal{C}, W)$ of a class W of morphisms in \mathcal{C} is the smallest saturated closed class such that $W \subset s(\mathcal{C}, W)$.

Equivalenlty, a class v is saturated if it is closed under retracts and has the "two-out-of-three" property: for any composable pair f, g, as soon as two of the three maps f, g, $f \circ g$ are in v, so is the third. The classes Id, \natural , \star in any category $\mathcal C$ are saturated. A left-saturated class is automatically closed. For any functor $\gamma: \mathcal C' \to \mathcal C$ and a class of maps v in $\mathcal C$, we denote by γ^*v the class of maps f in $\mathcal C'$ such that $\gamma(f) \in v$. If v is closed and/or saturated, then so is γ^*v , and γ induces a functor $\gamma: \mathcal C'_{\gamma^*v} \to \mathcal C_v$. We will say that γ *inverts a map* f iff $f \in \gamma^*(\star)$ (that is, $\gamma(f)$ is invertible in $\mathcal C$).

A factorization system $\langle L, R \rangle$ on a category C is given by two closed classes of morphisms L, R such that $L \cap R = \star$, any morphism $f : c \to c'$ in C decomposes as

$$(2.1.1.5) c \xrightarrow{l} \widetilde{c} \xrightarrow{r} c'.$$

 $l \in L$, $r \in R$, and the decomposition is unique up to a unique isomorphism. It is known that each of the two classes L, R in a factorization system completely determines the other one, and for any commutative square

$$\begin{array}{ccc}
c_0 & \xrightarrow{f} & c_1 \\
\downarrow & & \downarrow r \\
c'_0 & \xrightarrow{f'} & c'_1
\end{array}$$

with $l \in L$, $r \in R$, there exists a unique map $q : c'_0 \to c_1$ such that $f = q \circ l$ and $f' = r \circ q$. Moreover, factorizations (2.1.1.5) are functorial with respect to f (considered as an object in the arrow category ar(C)). For these facts and other details on factorization systems, we refer the reader to [Bo2].

2.1.2. Functors. For any categories C_0 , C_1 and functor $\gamma : C_0 \to C_1$, we denote by $\gamma^o : C_0^o \to C_1^o$ the opposite functor between the opposite categories. We let

$$(2.1.2.1) \iota: \mathsf{Cat} \to \mathsf{Cat}$$

be the involution sending \mathcal{C} to \mathcal{C}^o and γ to γ^o . For any map $a:\gamma\to\gamma'$ between two functors $\gamma,\gamma':\mathcal{C}\to\mathcal{C}'$, and for any functors $\gamma_0:\mathcal{C}_0\to\mathcal{C}$, $\gamma_0':\mathcal{C}'\to\mathcal{C}_0'$, we denote by $\gamma_0'(a):\gamma_0'\circ\gamma\to\gamma_0'\circ\gamma'$ and $(a)\gamma':\gamma\circ\gamma_0\to\gamma'\circ\gamma_0$ the natural maps induced by a.

For any category I, an I-augmented category or simply a category over I is a category \mathcal{C} equipped with a functor $\pi:\mathcal{C}\to I$. For any two such categories $\langle \mathcal{C},\pi\rangle,\langle \mathcal{C}',\pi'\rangle$, a lax functor from \mathcal{C} to \mathcal{C}' over I is a functor $\gamma:\mathcal{C}\to\mathcal{C}'$ equipped with a map $\alpha:\pi\to\pi'\circ\gamma$. For any two such functors $\gamma,\gamma':\mathcal{C}\to\mathcal{C}'$ we will say that a map from γ to γ' over I is a map $a:\gamma\to\gamma'$ such that $\alpha'\circ\pi'(a)=\alpha$. A functor from \mathcal{C} to \mathcal{C}' over I is a lax functor $\langle \gamma,\alpha\rangle$ such that α an isomorphism. A section of a functor $\pi:\mathcal{C}\to I$ is a functor $\sigma:I\to\mathcal{C}$ over I (or explicitly, a functor $\sigma:I\to\mathcal{C}$ equipped with an isomorphism $\pi\circ\sigma\cong \mathrm{id}$). A factorization of a functor $\gamma:\mathcal{C}\to\mathcal{C}'$ is a diagram

$$(2.1.2.2) \mathcal{C} \xrightarrow{\gamma'} \mathcal{C}'' \xrightarrow{\gamma''} \mathcal{C}'$$

equipped with an isomorphism $\gamma \cong \gamma'' \circ \gamma'$. For any category I, we denote by Cat #I the category of I-augmented small categories \mathcal{C} , with morphisms given by lax functors over I, and we let Cat #I be the dense subcategory whose morphisms are functors over I.

Dually, if *I* is small, then a *category under I* is a category C equipped with a functor $\varphi: I \to C$. For any two such categories $\langle C, \varphi \rangle$, $\langle C', \varphi' \rangle$, a *lax functor from*

 \mathcal{C} to \mathcal{C}' under I is a functor $\gamma:\mathcal{C}\to\mathcal{C}'$ equipped with a map $\alpha:\gamma\circ\varphi\to\varphi'$, and a functor under I is a lax functor $\langle\gamma,\alpha\rangle$ under I such that α is an isomorphism. For any lax functors $\gamma,\gamma':\mathcal{C}\to\mathcal{C}'$ under I, a map from γ to γ' under I is a map $a:\gamma\to\gamma'$ such that $\alpha'\circ(a\circ\varphi)=\alpha$. We denote by $I\setminus C$ at the category of all small categories under I and lax functors under I between them, and we let $I\setminus_{\star} C$ at $I\setminus C$ at be the dense subcategory whose morphisms are functors under I.

For any functor $\pi: \mathcal{C} \to I$, and any object $i \in I$, we will denote by $\mathcal{C}/\pi i$ resp. $i \setminus_{\pi} \mathcal{C}$ the category of objects $c \in \mathcal{C}$ equipped with a mjap $\alpha: \pi(c) \to i$ resp. $\alpha: i \to \pi(i)$, and we will drop π from notation when it is clear from the context. In particular, for any $c \in \mathcal{C}$, we write $\mathcal{C}/c = \mathcal{C}/_{\mathsf{id}} c$ and $c \setminus \mathcal{C} = c \setminus_{\mathsf{id}} \mathcal{C}$. The categories $\mathcal{C}/_{\pi}i$, $i \setminus_{\pi} \mathcal{C}$ are known as the left and right *comma-fibers* of the functor π , and we denote by

(2.1.2.3)
$$\sigma(i): \mathcal{C}/_{\pi}i \to \mathcal{C}, \qquad \tau(i): i\setminus_{\pi}\mathcal{C} \to \mathcal{C}$$

the forgetful functors sending $\langle c, \alpha \rangle$ to c. For any map $f: i \to i'$ in I, we also have functors

$$(2.1.2.4) f_!: \mathcal{C}/_{\pi}i \to \mathcal{C}/_{\pi}i', \quad f^*: i' \setminus_{\pi} \mathcal{C} \to i \setminus_{\pi} \mathcal{C}$$

sending $\langle c, \alpha \rangle$ to $\langle c, f \circ \alpha \rangle$ resp. $\langle c, \alpha \circ f \rangle$, and we have natural isomorphisms $\sigma(i) \circ f^* \cong \sigma(i')$, $\tau(i') \circ f_! \cong \tau(i)$. If we have another *I*-augmented category $\langle \mathcal{C}', \pi' \rangle$, then for any $i \in I$, a lax functor $\langle \gamma, \alpha \rangle : \mathcal{C}' \to \mathcal{C}$ over *I* induces a functor

$$(2.1.2.5) i \setminus_{\pi} C' \to i \setminus_{\pi'} C, \langle c, \alpha \rangle \mapsto \langle \gamma(c), \alpha(c) \circ \alpha \rangle.$$

The *fiber* C_c^{π} of the functor π is the full subcategory in $\mathcal{C}/_{\pi}c$ (or in $c \setminus_{\pi} \mathcal{C}$) spanned by $\langle c, \alpha \rangle$ with invertible α , and we will again shorten $C_i = C_i^{\pi}$ when π is clear from the context. The *right* resp. *left comma-categories* $I \setminus_{\pi} \mathcal{C}$ resp. $\mathcal{C}/_{\pi}I$ are the categories of triples $\langle c, i, \alpha \rangle$, $c \in \mathcal{C}$, $i \in I$, α a map from i to $\gamma(c)$ resp. from $\gamma(c)$ to i; as before, we drop π from notation if it is clear from the context. We have the forgetful functors

$$(2.1.2.6) \tau: \mathcal{C}/_{\pi}I \to I, \quad \sigma: I \setminus_{\pi} \mathcal{C} \to I, \quad \langle c, i, \alpha \rangle \mapsto i,$$

and the usual fibers of the functors (2.1.2.6) are the comma-fibers of the functor π : for any object $i \in I$, we have identifications $(\mathcal{C}/_{\pi}I)_i \cong \mathcal{C}/_{\pi}i$ and $(\mathcal{C}\setminus_{\pi}I)_i \cong i\setminus_{\pi}\mathcal{C}$. If \mathcal{C} is Cat or some other category whose objects can themsleves be treated as categories in a natural way, our notation becomes ambiguous: for any $I \in \mathcal{C}$, \mathcal{C}/I and $I \setminus \mathcal{C}$ are either the comma-categories with respect to some functor $\mathcal{C} \to I$, or the comma-fibers of \mathcal{C} over I considered as an object in \mathcal{C} . To avoid ambiguity, we denote the latter by $\mathcal{C}/[I]$, $[I] \setminus \mathcal{C}$.

Example 2.1.2.1. For any category \mathcal{C} with the arrow category $\operatorname{ar}(\mathcal{C})$ and identity functor $\operatorname{id}: \mathcal{C} \to \mathcal{C}$, we tautologically have $\mathcal{C}/_{\operatorname{id}}\mathcal{C} \cong \mathcal{C} \setminus_{\operatorname{id}} \mathcal{C} \cong \operatorname{ar}(\mathcal{C})$, the projections $\sigma, \tau : \operatorname{ar}(\mathcal{C}) \to \mathcal{C}$ of (2.1.2.6) send an arrow to its source resp. its target, and the fibers of these projections are the left resp. right comma-fibers of $\operatorname{id}: \mathcal{C} \to \mathcal{C}$: we have $\operatorname{ar}(\mathcal{C})_{\mathcal{C}}^{\sigma} \cong \mathcal{C} \setminus \mathcal{C}$ and $\operatorname{ar}(\mathcal{C})_{\mathcal{C}}^{\tau} \cong \mathcal{C}/\mathcal{C}$.

A functor $\gamma:\mathcal{C}'\to\mathcal{C}$ is *faithful* resp. *full* if for any $c,c'\in\mathcal{C}$, the map $\gamma:\mathcal{C}'(c,c')\to\mathcal{C}(\gamma(c),\gamma(c'))$ is injective resp. surjective, and γ is *fully faithful* if it is both faithful and full. In particular, the embedding functor of a full subcategory $\mathcal{C}'\subset\mathcal{C}$ is fully faithful.

A functor $\gamma: \mathcal{C}' \to \mathcal{C}$ is *essentially surjective* if it induces a surjection on isomorphism classes of objects (that is, for any $c \in \mathcal{C}$ there exists $c' \in \mathcal{C}'$ such that $\gamma(c') \cong c$). We will say that γ is *essentially bijective* if it induces a bijection on isomorphism classes of objects, or in other words, if γ is essentially surjective, and for any $c'_0, c'_1 \in \mathcal{C}'$, $\gamma(c'_0) \cong \gamma(c'_1)$ implies $c'_0 \cong c'_1$.

A functor γ is an *equivalence* if it is essentially surjective and fully faithful. A category \mathcal{C} is *essentially small* if there exists an equivalence $\mathcal{C}' \to \mathcal{C}$ with small \mathcal{C} , and the same applies to any other adjective instead of "small" (including but not limited to "finite", "discrete", "rigid"). We note that a small category \mathcal{C}' equivalent to an essentially small category \mathcal{C} can be chosen canonically – for example, one can take the unique small category \mathcal{C}_{red} that is equivalent to \mathcal{C} and has exactly one object in each isomorphism class. For any essentially small category \mathcal{C} , we denote $\|\mathcal{C}\| = |\mathcal{C}_{red}|$. A category \mathcal{C} is *locally small* if \mathcal{C}/\mathcal{C} is essentially small for any object $c \in \mathcal{C}$. A functor $\gamma : \mathcal{C}' \to \mathcal{C}$ is *small* if for any essentially small full subcategory $\mathcal{C}_0 \subset \mathcal{C}$, $\gamma^{-1}(\mathcal{C}_0) \subset \mathcal{C}'$ is essentially small (or equivalently, the fiber $\mathcal{C}'_{\mathcal{C}}$ is essentially small for any $c \in \mathcal{C}$).

We will also need a relaxation of the notion of equivalence. Namely, we recall that a functor $\gamma: \mathcal{C}' \to \mathcal{C}$ is *conservative* if it reflects isomorphisms — that is, $\gamma^*(\star) = \star$. Note that a fully faithful functor is automatically conservative.

Definition 2.1.2.2. A functor γ is an *epivalence* if it is full, essentially surjective, and conservative.

An epivalence $\gamma:\mathcal{C}\to\mathcal{C}'$ is an equivalence if and only if it is faithful. Even if it is not, it is automatically essentially bijective, and surjective in the following strong sense: if a functor $\varphi:\mathcal{C}\to\mathcal{E}$ to some category \mathcal{E} is isomorphic to the composition $\varphi'\circ\gamma$ for some $\varphi':\mathcal{C}'\to\mathcal{E}$, then φ together with the isomorphism $\varphi\cong\varphi'\circ\gamma$ define φ' uniquely up to a unique isomorphism. In such a situation, we will say that φ factors through the epivalence γ . In particular, if a composition of two epivalences is an equivalence, then both are actually equivalences.

Lemma 2.1.2.3. Assume given an epivalence $\gamma: \mathcal{C} \to \mathcal{C}'$ and a Karoubi-dense full subcategory $\mathcal{C}_0' \subset \mathcal{C}'$. Then $\mathcal{C}_0 = \gamma^{-1}(\mathcal{C}_0') \subset \mathcal{C}$ is Karoubi-dense.

Proof. For any $c \in \mathcal{C}$, choose $c' \in \mathcal{C}'$ and maps $a : \gamma(c) \to c'$, $b : c' \to \gamma(c)$ such that $b \circ a = \operatorname{id}$. Then $c' \cong \gamma(c'')$ for some $c'' \in \mathcal{C}$ since γ is essentially surjective, a and b lift to maps $a' : c \to c''$, $b : c'' \to c$ since γ is full, and $b' \circ a'$ is invertible since γ is conservative, so we can replace b' with $b'' = (b' \circ a')^{-1} \circ b'$ to insure that $b'' \circ a' = \operatorname{id}$.

Lemma 2.1.2.4. Assume given a conservative functor $p: \mathcal{C}' \to \mathcal{C}$ and a functor $q: \mathcal{C}'' \to \mathcal{C}'$ such that $p \circ q: \mathcal{C}'' \to \mathcal{C}$ is full. Then if q is essentially surjective, p is full, and an epivalence if so is $p \circ q$. Conversely, if $p \circ q$ is essentially surjective, and p is full, then p is an epivalence and q is essentially surjective.

Proof. Assume that q is essentially surjective. Then for any two objects $c'_0, c'_1 \in \mathcal{C}'$ and a map $f: p(c'_0) \to p(c'_1)$, we can choose $c''_0, c''_1 \in \mathcal{C}''$ such that $q(c''_1) \cong c'_l$, l = 0, 1, then choose a map $f'': c''_0 \to c''_1$ such that p(q(f'')) = f, and let $f' = q(f'): c'_0 \to c'_1$. Then p(f') = f, so that p is full. Conversely, if $p \circ q$ is essentially surjective, then p is trivially essentially surjective, thus an epivalence. Moreover, for any object $c' \in \mathcal{C}'$ there exists an object $c'' \in \mathcal{C}''$ and an isomorphism $p(q(c'')) \cong p(c')$, and sunce p is full, the isomorphism comes from an isomorphism $q(c'') \cong c'$, so that q is essentially surjective.

2.1.3. Commutative diagrams. By abuse of notation and terminology, we say that a square of categories and functors

(2.1.3.1)
$$\begin{array}{ccc}
\mathcal{C}_{01} & \xrightarrow{\gamma_{01}^{1}} & \mathcal{C}_{1} \\
\gamma_{01}^{0} \downarrow & & \downarrow \gamma_{1} \\
\mathcal{C}_{0} & \xrightarrow{\gamma_{0}} & \mathcal{C}
\end{array}$$

is *lax commutative* if it is equipped with a map $\alpha: \gamma_0 \circ \gamma_{01}^0 \to \gamma_1 \circ \gamma_{01}^1$, and *commutative* if the map is an isomorphism (thus commutativity of a square (2.1.3.1) is not a condition but an extra bit of structure). We will say that (2.1.3.1) is *strictly commutative* in the rare case when the categories are small and the functors commute on the nose, so that (2.1.3.1) is a commutative square in the category Cat (one case where this is automatic is when all the categories are small, and \mathcal{C} is rigid). We denote by $\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_1$ the category of triples $\langle c_0, c_1, \alpha \rangle$, $c_0 \in \mathcal{C}_0$, $c_1 \in \mathcal{C}_1$, $\alpha: \gamma_0(c_0) \to \gamma_1(c_1)$ an isomorphism. We will also denote

 $C_0 \times_{\mathcal{C}} C_1 = \gamma_0^* C_1$ when we want to emphasize the dependence on γ_0 , and γ_1 is clear from the context (for example, a fiber C'_c of a functor $C' \to C$ over an object $c \in C$ is given by $C'_c \cong \varepsilon(c)^* C'$, where $\varepsilon(c)$ is the embedding (2.1.1.2)). A commutative square (2.1.3.1) induces a functor

$$(2.1.3.2) \mathcal{C}_{01} \to \mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_1,$$

and we say that the square is *cartesian* if (2.1.3.2) is an equivalence. Moreover, a square (2.1.3.1) is *weakly semicartesian* resp. *semicartesian* if (2.1.3.2) is essentially surjective resp. an epivalence in the sense of Definition 2.1.2.2. We note that while the actual functor (2.1.3.2) depends on the choice of the isomorphism $\alpha: \gamma_0 \circ \gamma_{01}^0 \cong \gamma_1 \circ \gamma_{01}^1$ in (2.1.3.1), the property of a square to be cartesian or semicartesian or weakly semicartesian only depends on the isomorphisms classes of the functors γ_0 , γ_1 , γ_{01}^0 , γ_{01}^1 , and does not depend on the choice of α at all. Indeed, if we replace γ_0 , γ_1 , γ_{01}^0 , γ_{01}^1 , γ_{01}^1 by isomorphic functors, and modify α , then the new functor (2.1.3.2) is isomorphic to the old one.

Lemma 2.1.3.1. Assume given categories C, C' over some category I, and a functor $\gamma: C' \to C$ over I. Then γ is full, faithful, conservative, essentially surjective, an epivalence or an equivalence if and only if for any $v: [1] \to I$, the same holds for the induced functor $v^*(\gamma): v^*C' \to v^*C$.

Abusing terminology even further, we say that a commutative square (2.1.3.1) is *cocartesian* if for any commutative square

$$\begin{array}{ccc} \mathcal{C}_{01} & \xrightarrow{\gamma_{01}^1} & \mathcal{C}_1 \\ \gamma_{01}^0 \downarrow & & & \downarrow \gamma_1' \\ \mathcal{C}_0 & \xrightarrow{\gamma_0'} & \mathcal{C}', \end{array}$$

there exists a functor $h: \mathcal{C} \to \mathcal{C}'$ and isomorphisms $\alpha_l: \gamma_l' \to h \circ \gamma_l, l = 0, 1$, and the triple $\langle h, \alpha_0, \alpha_1 \rangle$ is unique up to a unique isomorphism. Again, the property of being cocartesian only depends on the isomorphism classes of the functors in (2.1.3.1). In general, cocartesian squares of categories and functors are difficult to construct, but there are special situations when it is easy. Here is an example.

Definition 2.1.3.2. A full subcategory $C_0 \subset C$ is *left-closed* if for any morphism $c \to c_0$ with $c_0 \in C_0$, we have $c \in C_0$ (that is, $C \setminus C_0 \cong C_0 \setminus C_0$). A full subcategory $C_0 \subset C$ is *right-closed* if $C_0^o \subset C^o$ is left-closed.

Example 2.1.3.3. Assume given a category \mathcal{C} and two left-closed full subcategories \mathcal{C}_0 , $\mathcal{C}_1 \subset \mathcal{C}$ such that $\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1$. Then $\mathcal{C}_{01} = \mathcal{C}_0 \cap \mathcal{C}_1$ is left-closed both in \mathcal{C}_0 and in \mathcal{C}_1 , and if we let all the functors in (2.1.3.1) be the embedding functors, then the square is both cartesian and cocartesian.

Example 2.1.3.4. A commutative square

$$(2.1.3.3) S_0 \xrightarrow{e} S'_0 \downarrow \qquad \downarrow S_1 \xrightarrow{} S'_1$$

of sets can be treated as a commutative square of the corresponding discrete categories, and if (2.1.3.3) is cocartesian in Sets and e is injective, so that $S_0' \cong S_0 \sqcup (S_0' \setminus S_0)$ and $S_1' \cong S_1 \sqcup (S_0' \setminus S_0)$, then (2.1.3.3) is cartesian and cocartesian as a square of categories. If i is not injective, (2.1.3.3) can be cocartesian as a commutative square of sets but not as a commutative square of categories (e.g. take $S_0 = \{0,1\}$ and $S_0' = S_1 = S_1' = \operatorname{pt}$).

In general, for any left-closed full subcategory $C_0 \subset C$ in a category C, the complement $C_1 = C \setminus C_0 \subset C$ is right-closed, and vice versa. Both $C_0 \subset C$ and $C_1 \subset C$ are fibers of a unique *characteristic functor*

$$(2.1.3.4) C \rightarrow [1],$$

and conversely, for any functor (2.1.3.4), the embeddings $C_0 \subset C$ resp. $C_1 \subset C$ of its fibers are fully faithful and left resp. right-closed. The simplest example is the product $C = C' \times [1]$ for some C', with the projection $C' \times [1] \to [1]$ and fibers $C_0 \cong C_1 \cong C'$. To describe how a category C is glued out of its left-closed subcategory $C_0 \subset C$ and right-closed complement $C_1 = C \setminus C_0 \subset C$, one can consider the Hom-pairing

(2.1.3.5) Hom:
$$\mathcal{C}^o \times \mathcal{C} \to \text{Sets}, \quad c \times c' \mapsto \mathcal{C}(c, c'),$$

with its restriction $F = \operatorname{Hom} \circ (\varepsilon_0^o \times \varepsilon_1) : \mathcal{C}_0^o \times \mathcal{C}_1 \to \operatorname{Sets}$, where $\varepsilon_l : \mathcal{C}_l \to \mathcal{C}$, l = 0, 1 are the embedding functors. Conversely, for any categories \mathcal{C}_0 , \mathcal{C}_1 and functor $F : \mathcal{C}_0^o \times \mathcal{C}_1 \to \operatorname{Sets}$, we can define a category $\mathcal{C} = \mathcal{C}_0 \sqcup_F \mathcal{C}_1$ as the union $\mathcal{C}_0 \sqcup \mathcal{C}_1$, with Hom-sets given by

(2.1.3.6)
$$(\mathcal{C}_0 \sqcup_F \mathcal{C}_1)(c,c') = \begin{cases} \mathcal{C}_l(c,c'), & c,c' \in \mathcal{C}_l, l = 0,1, \\ F(c,c'), & c \in \mathcal{C}_0, c' \in \mathcal{C}_1, \end{cases}$$

and no morphisms from object in C_1 to objects in C_0 . Then the two constructions are inverse to each other, so that any category C equipped with a functor $C \to [1]$ is of the form $C \cong C_0 \sqcup_F C_1$ for a unique functor $F : C_0^o \times C_1 \to \operatorname{Sets}$.

2.1.4. Categories of functors. For any category \mathcal{E} and essentially small category I, functors from I to \mathcal{E} form a category that we denote by $\operatorname{Fun}(I,\mathcal{E})$. We will shorten $\operatorname{Fun}(I^o,\mathcal{E})$ to $I^o\mathcal{E}$. A functor $\gamma:I_0\to I_1$ between essentially small categories induces a pullback functor $\gamma^*:\operatorname{Fun}(I_0,\mathcal{E})\to\operatorname{Fun}(I_0,\mathcal{E})$, $E\mapsto E\circ\gamma$, and a commutative square (2.1.3.1) of essentially small categories induces a commutative square

(2.1.4.1)
$$\operatorname{Fun}(\mathcal{C}_{01}, \mathcal{E}) \xleftarrow{\gamma_{01}^{1*}} \operatorname{Fun}(\mathcal{C}_{1}, \mathcal{E}) \\
\gamma_{01}^{0*} \uparrow \qquad \qquad \uparrow \gamma_{1}^{*} \\
\operatorname{Fun}(\mathcal{C}_{0}, \mathcal{E}) \xleftarrow{\gamma_{0}^{*}} \operatorname{Fun}(\mathcal{E}, \mathcal{C}),$$

cartesian if (2.1.3.1) is cocartesian. The functors (2.1.1.2) provide a natural identification $\mathcal{E} \cong \operatorname{Fun}(\operatorname{pt}, \mathcal{E})$, $e \mapsto \varepsilon(e)$. If I = [1], then $\operatorname{Fun}([1], \mathcal{E})$ is the arrow category $\operatorname{ar}(\mathcal{E})$; an arrow $f : e \to e'$ in \mathcal{E} defines a functor

equipped with isomorphisms $\varepsilon(f) \circ \varepsilon(0) \cong \varepsilon(e)$, $\varepsilon(f) \circ \varepsilon(1) \cong \varepsilon(e')$. For any essentially small I, we have the *evaluation functor*

(2.1.4.3)
$$\operatorname{ev} = \operatorname{ev}(I, E) : I \times \operatorname{Fun}(I, \mathcal{E}) \to \mathcal{E}, \qquad i \times E \mapsto E(i),$$

and the pair $\langle \operatorname{Fun}(I,\mathcal{E}),\operatorname{ev} \rangle$ can be characterized by a universal property: for any category \mathcal{C} , a functor $\gamma:I\times\mathcal{C}\to\mathcal{E}$ factors as

$$(2.1.4.4) I \times \mathcal{C} \xrightarrow{\mathsf{id} \times \gamma'} I \times \mathsf{Fun}(I, \mathcal{E}) \xrightarrow{\mathsf{ev}(I, \mathcal{E})} \mathcal{E}$$

for some $\gamma': \mathcal{C} \to \operatorname{Fun}(I, \mathcal{E})$, uniquely up to a unique isomorphism. Explicitly, we also have the *coevaluation functor* $\operatorname{ev}^{\dagger}(I, \mathcal{E}): \mathcal{E} \to \operatorname{Fun}(I, I \times \mathcal{E})$ sending $e \in \mathcal{E}$ to the functor $- \times e: I \to I \times \mathcal{E}$, and the compositions

are both isomorphic to identity functors; then γ' in (2.1.4.4) is given by $\gamma' = \operatorname{Fun}(I,\gamma) \circ \operatorname{ev}^{\dagger}(I,\mathcal{C})$. For any $i \in I$, the functor (2.1.4.3) restricts to a functor $\operatorname{ev}_i = \operatorname{ev} \circ (\varepsilon(i) \times \operatorname{id}) : \operatorname{Fun}(I,\mathcal{E}) \to \mathcal{E}, E \mapsto E(i)$.

Example 2.1.4.1. For any essentially small category I, the Hom-pairing (2.1.3.5) corresponds by (2.1.4.4) to the fully faithful *Yoneda embedding*

$$(2.1.4.5) Y: I \rightarrow I^{o} Sets,$$

where as per our general convention, I^o Sets = Fun(I^o , Sets).

Example 2.1.4.2. For any small \mathcal{C} equipped with a functor $\pi: \mathcal{C} \to I$ to some I, and for any object $i \in I$, the comma-fiber $i \setminus_{\pi} \mathcal{C}$ is small. Therefore we have a well-defined functor $I^o \times \operatorname{Cat} /\!\!/ I \to \operatorname{Cat}$ sending $i \times \langle \mathcal{C}, \pi \rangle$ to $i \setminus_{\pi} \mathcal{C}$ that acts on morphisms via (2.1.2.4) and (2.1.2.5). If I is essentially small, this corresponds to a functor

(2.1.4.6) Cat
$$/\!\!/ I \rightarrow I^{\circ}$$
 Cat

that we call the extended Yoneda embedding. It is also fully faithful.

Example 2.1.4.3. A functor $F: \mathcal{C}_0^o \times \mathcal{C}_1 \to \text{Sets}$ with essentially small \mathcal{C}_0 corresponds by (2.1.4.4) to a functor $\lambda: \mathcal{C}_1 \to \mathcal{C}_0^o$ Sets. By abuse of notation, we will denote by

$$(2.1.4.7) C_0 \sqcup_{\lambda} C_1 = C_0 \sqcup_F C_1$$

the corresponding category (2.1.3.6) glued out of \mathcal{C}_0 and \mathcal{C}_1 , with its characteristic functor (2.1.3.4), left-closed full embedding $\mathcal{C}_0 \to \mathcal{C}_0 \sqcup_{\lambda} \mathcal{C}_1$ and the complementary right-closed full embedding $\mathcal{C}_1 \to \mathcal{C}_0 \sqcup_{\lambda} \mathcal{C}_1$.

If categories I and \mathcal{E} are equipped with functors $v:I\to I',\,\pi:\mathcal{E}\to I'$ to some category I', we denote by $\overline{\operatorname{Fun}}_{I'}(I,\mathcal{E})$ the category of lax functors from I to \mathcal{E} over I', we let $\operatorname{Fun}_{I'}(I,\mathcal{E})\subset \overline{\operatorname{Fun}}_{I'}(I,\mathcal{E})$ be the full subcategory of functors over I', and if $I'=\operatorname{pt}$, we drop it from notation so that the notation stays consistent. For any closed class v of maps in \mathcal{E} , we denote by $\operatorname{Fun}(I,\mathcal{E})_v\subset\operatorname{Fun}(I,\mathcal{E})$ the dense subcategories defined by the class of maps that are pointwise in v. We also denote by $\operatorname{Sec}(I,\mathcal{E})=\operatorname{Fun}_I(I,\mathcal{E})$ the category of sections of a functor $\mathcal{E}\to I$, and if we have another functor $\gamma:I''\to I$, then we simplify notation by writing $\operatorname{Sec}(I'',\mathcal{E})=\operatorname{Sec}(I'',\gamma^*\mathcal{E})$ when γ is clear from the context. With this convention, we have

$$(2.1.4.8) \operatorname{Fun}_{I}(I'', \mathcal{E}) \cong \operatorname{Sec}(I'', \mathcal{E}).$$

By definition, $\operatorname{Fun}_{I'}(I,\mathcal{E})$ fits into a cartesian square

$$\begin{array}{ccc}
\operatorname{Fun}_{I'}(I,\mathcal{E}) & \longrightarrow & \operatorname{Fun}(I,\mathcal{E}) \\
\downarrow & & \downarrow^{\pi \circ -} \\
\operatorname{pt} & \xrightarrow{\varepsilon(\nu)} & \operatorname{Fun}(I,I'),
\end{array}$$

where $\varepsilon(\nu)$ is the functor (2.1.1.2), and $\pi \circ -$ is post-composition with π .

If one fixes the target category \mathcal{E} , one can combine all the functor categories Fun(I, \mathcal{E}), $I \in \text{Cat}$ together by considering the category Cat $/\!/\mathcal{E}$ of Subsection 2.1.2. Namely, we have the forgetful functor

(2.1.4.10) Cat
$$/\!\!/ \mathcal{E} \to \text{Cat}$$
, $\langle \mathcal{C}, \pi \rangle \mapsto \mathcal{C}$,

and its fibers are $(\operatorname{Cat} /\!\!/ \mathcal{E})_I \cong \operatorname{Fun}(I,\mathcal{E})$. Note that $(\operatorname{Cat} /\!\!/ \mathcal{E})_{\mathsf{pt}}$ is \mathcal{E} itself, so that we have a canonical full embedding

$$(2.1.4.11) v: \mathcal{E} \cong (\operatorname{Cat} // \mathcal{E})_{\mathsf{pt}} \to \operatorname{Cat} // \mathcal{E},$$

and if \mathcal{E} is essentially small, the extended Yoneda embedding (2.1.4.6) of Example 2.1.4.2 restricts to the usual Yoneda embedding (2.1.4.5) on the image $v(\mathcal{E}) \subset \operatorname{Cat} /\!\!/ \mathcal{E}$; this justifies our terminology. In this case, we also have the forgetful functor $\mathcal{E} \setminus \operatorname{Cat} \to \operatorname{Cat}$ with fibers $(\mathcal{E} \setminus \operatorname{Cat})_{\mathcal{C}} \cong \operatorname{Fun}(\mathcal{E}, \mathcal{C})$.

For any \mathcal{E} , a closed class of maps v in \mathcal{E} defines a closed class of maps $\operatorname{Cat}(v)$ in $\operatorname{Cat} /\!\!/ \mathcal{E}$ consisting of lax functors $\langle \gamma, \alpha \rangle$ such that α is pointwise in v, and the fibers of the induced forgetul functor $(\operatorname{Cat} /\!\!/ \mathcal{E})_{\operatorname{Cat}(v)} \to \operatorname{Cat}$ are then the functor categories $\operatorname{Fun}(I,\mathcal{E})_v$, $I \in \operatorname{Cat}$. In particular, $\operatorname{Cat}(\star)$ is the class of all functors over \mathcal{E} , so that $(\operatorname{Cat} /\!\!/ \mathcal{E})_{\operatorname{Cat}(\star)} = \operatorname{Cat} /\!\!/_{\star} \mathcal{E}$. More generally, if we have some category \mathcal{C} equipped with a functor $\varphi : \mathcal{C} \to \operatorname{Cat}$, we will denote

(2.1.4.12)
$$\mathcal{C} /\!/^{\varphi} \mathcal{E} = \varphi^*(\operatorname{Cat} /\!/ \mathcal{E}),$$

and we will drop φ from notation when it is clear from the context. A closed class v of maps in \mathcal{E} then defines a closed class $\mathcal{C}(v) = \varphi^* \operatorname{Cat}(v)$ of maps in $\mathcal{C} /\!/\!/^{\varphi} \mathcal{E}$, and if $v = \star$, we denote $\mathcal{C} /\!/\!/^{\varphi} \mathcal{E} = (\mathcal{C} /\!/\!/^{\varphi} \mathcal{E})_{\mathcal{C}(\star)}$.

Example 2.1.4.4. Let $\iota: \mathsf{Cat} \to \mathsf{Cat}$ be the involution (2.1.2.1). Then for any category \mathcal{E} , objects in $\mathsf{Cat} \not||^{\iota} \mathcal{E}$ are small categories \mathcal{C} equipped with a functor $\pi: \mathcal{C}^{o} \to \mathcal{E}$, and morphisms $\langle \mathcal{C}', \pi' \rangle \to \langle \mathcal{C}, \pi \rangle$ are given by pairs $\langle \gamma, \alpha \rangle$ of a functor $\gamma: \mathcal{C}' \to \mathcal{C}$ and a morphism $\alpha: \pi' \to \pi \circ \gamma^{o}$. The subcategory $\mathsf{Cat} \not||_{\star}^{\iota} \mathcal{E} \subset \mathsf{Cat} \not||_{\iota}^{\iota} \mathcal{E}$ has the same objects, and morphisms $\langle \gamma, \alpha \rangle$ such that α is invertible. Note that we have an equivalence $\mathsf{Cat} \not||_{\star}^{\iota} \mathcal{E} \cong \mathsf{Cat} \not||_{\star} \mathcal{E}^{o}$ sending $\langle \mathcal{C}, \pi \rangle$ to $\langle \mathcal{C}^{o}, \pi \rangle$ and $\langle \gamma, \alpha \rangle$ to $\langle \gamma^{o}, \alpha^{-1} \rangle$.

2.2. Adjunction and limits.

2.2.1. Generalities on adjunction. We recall that an *adjoint pair of functors* between categories C, C' is by definition a pair of functors $\lambda : C' \to C$, $\rho : C \to C'$

equipped with *adjunction maps* a_{+} : id $\rightarrow \rho \circ \lambda$, a^{+} : $\lambda \circ \rho \rightarrow$ id such that the compositions

(2.2.1.1)
$$\rho(a^{\dagger}) \circ (a_{\dagger}) \rho : \rho \to \rho, \qquad (a^{\dagger}) \lambda \circ \lambda(a_{\dagger}) : \lambda \to \lambda$$

are both equal to the identity. The functor λ is *left-adjoint* to ρ , and the functor ρ is *right-adjoint* to λ . The adjunction maps induce isomorphisms

$$(2.2.1.2) C(\lambda(c'),c) \cong C'(c',\rho(c)), c \in C,c' \in C',$$

functorial in c and c'. Either one of the functors λ , ρ determines the other one and the adjunction maps uniquely up to a unique isomorphism, so that having an adjoint is a condition and not a structure. For brevity, we will say that a functor $\varphi: \mathcal{C} \to \mathcal{C}'$ is *left* resp. *right-reflexive* if it admits a left-adjoint $\varphi_{\dagger}: \mathcal{C}' \to \mathcal{C}$ resp. a right-adjoint $\varphi^{\dagger}: \mathcal{C}' \to \mathcal{C}$. If we have a diagram

(2.2.1.3)
$$\begin{array}{ccc}
\mathcal{C}_0 & \xrightarrow{\varphi_0} & \mathcal{C}'_0 \\
\gamma \downarrow & & \downarrow \gamma' \\
\mathcal{C}_1 & \xrightarrow{\varphi_1} & \mathcal{C}'_1
\end{array}$$

of categories and functors with right-reflexive φ_0 , φ_1 , then any morphism $\varphi_1 \circ \gamma \to \gamma' \circ \varphi_0$ induces by adjunction a morphism

$$\gamma \circ \varphi_0^{\dagger} \to \varphi_1^{\dagger} \circ \gamma',$$

and dually for left-reflexive functors. We will call the maps (2.2.1.4) the *base-change maps*, and we say that a square (2.2.1.3) is *right-reflexive* if φ_0 , φ_1 are right-reflexive, and (2.2.1.4) is an isomorphism. Dually, (2.2.1.3) is *left-reflexive* if the corresponding square of the opposite categories and functors is right-reflexive. We note that just as for cartesian squares, the property of a square (2.2.1.3) to be left or right-reflexive only depends on the isomorphism classes of the functors φ_0 , φ_1 , γ , γ' .

In particular, if we have two categories \mathcal{C} , \mathcal{C}' equipped with functors $\pi: \mathcal{C} \to I$, $\pi': \mathcal{C}' \to I$, and a functor $\gamma: \mathcal{C} \to \mathcal{C}'$ over I that admits a right-adjoint $\gamma^{\dagger}: \mathcal{C}' \to \mathcal{C}$, then we have a base change map $\pi \circ \gamma^{\dagger} \to \pi'$. We say that γ is right-reflexive over I if this map is an isomorphism. In this case, $\gamma^{\dagger}: \mathcal{C}' \to \mathcal{C}$ is also naturally a functor over I. Dually, if γ has a left-adjoint $\gamma_{+}: \mathcal{C}' \to \mathcal{C}$, then it is left-reflexive over I if the base change map $\pi' \to \pi \circ \gamma_{+}$ is an isomorphism. In this case, $\gamma_{+}: \mathcal{C}' \to \mathcal{C}$ is again naturally a functor over I. Note that if the left or right adjoint γ_{+} is fully faithful, then $\gamma \circ \gamma_{+} \cong \mathrm{id}$, so that it is automatically adjoint over I. If we have a functor $\nu: I' \to I$ from some category I', then an adjunction between γ and γ_{+} induces an adjunction between $\nu^{*}(\gamma)$ and $\nu^{*}(\gamma_{+})$.

Example 2.2.1.1. Assume given categories \mathcal{C} , \mathcal{C}' and an adjoint pair of functors $\rho: \mathcal{C} \to \mathcal{C}'$, $\lambda: \mathcal{C}' \to \mathcal{C}$. Then for any essentially small I, postcomposition with ρ and λ defines an adjoint pair of functors $\operatorname{Fun}(I,\mathcal{C}) \to \operatorname{Fun}(I,\mathcal{C}')$, $\operatorname{Fun}(I,\mathcal{C}') \to \operatorname{Fun}(I,\mathcal{C})$, with adjunction maps induced by the adjunction maps (2.2.1.1). Dually, if \mathcal{C} and \mathcal{C}' are essentially small, then for any I, $\rho^*: \operatorname{Fun}(\mathcal{C}',I) \to \operatorname{Fun}(\mathcal{C},I)$ and $\lambda^*: \operatorname{Fun}(\mathcal{C},I) \to \operatorname{Fun}(\mathcal{C}',I)$ are adjoint.

Lemma 2.2.1.2. Assume given a right-reflexive square (2.2.1.3) such that γ' is conservative, and φ_0 , φ_1 are fully faithful. Then the square (2.2.1.3) is cartesian.

Proof. Let $C_0'' = \varphi_1^* C_0'$. Then since (2.2.1.3) is commutative, φ_0 factors through the fully faithful embedding $C_0'' \to C_0'$, so that the corresponding functor $C_0 \to C_0''$ is automatically fully faithful, and we need to check that it is essentially surjective. Indeed, an object $c \in C_0$ lies in the essential image of φ_0 if and only if the adjunction map $c \to \varphi_0(\varphi_0^{\dagger}(c))$ is an isomorphism, and since (2.2.1.4) is an isomorphism and γ' is conservative, this happens if and only if the adjunction map $\gamma'(c) \to \varphi_1(\varphi_1^{\dagger}(\gamma'(c)))$ is an isomorphism. The latter happens if and only if $\gamma'(c)$ lies in the essential image of φ_1 .

Reflexivity is a local property with respect to the target category, in the sense that a functor $\varphi: \mathcal{C}' \to \mathcal{C}$ is right-reflexive if and only if for any $c \in \mathcal{C}$, the left comma-fiber $\mathcal{C}'/_{\varphi}c$ has a terminal object $\langle c', \alpha \rangle$. If this happens, c' is functorial in c, thus gives the adjoint functor φ^{\dagger} , $\varphi^{\dagger}(c) = c'$, and the maps α give one of the adjunction maps. The same holds for left-reflexive fibers and right-comma fibers.

Example 2.2.1.3. If $\varphi: \mathcal{C}' \to \mathcal{C}$ is an equivalence — that is, essentially surjective and fully faithful — then any object $\langle c', \alpha \rangle \in \mathcal{C}'_c \subset \mathcal{C}'/_{\varphi}\mathcal{C}$ is terminal, so that φ is left-reflexive. The adjunction maps in this case are invertible, so that φ^{\dagger} is inverse to φ , and it is also an equivalence by (2.2.1.2). One says that a category \mathcal{C} is *equivalent* to a category \mathcal{C}' if there exists an equivalence $\mathcal{C}' \to \mathcal{C}$, and we see that the relation is symmetric. One can also use right comma-fibers, and the left-adjoint φ_{\dagger} is isomorphic to φ^{\dagger} . If \mathcal{C}' , \mathcal{C} are equipped with functors \mathcal{C}' , $\mathcal{C} \to I$ to some I, and an equivalence φ is a functor over I, then it is automatically left and right-reflexive over I (so that an "equivalence over I" is the same thing as a functor over I that is an equivalence).

Example 2.2.1.4. Assume given a small category I, and consider the category Cat $//_{\star} I$ of small categories $\mathcal{C} \to I$ and functors over I. Then unless I is rigid in the sense of Definition 2.1.1.2, Cat $//_{\star} I$ is *not* the comma-fiber Cat /[I] = I

Cat $//_{\star}^{id} I$ of the identity functor id : Cat \to Cat. We have an embedding Cat $/[I] \to \operatorname{Cat} //_{\star} I$, and it has a right-adjoint functor Cat $//_{\star} I \to \operatorname{Cat} /[I]$, $\mathcal{C} \mapsto \mathcal{C} \times_I I$, but neither is an equivalence.

Lemma 2.2.1.5. Assume given categories I_0 , I_1 , I_2 equipped with functors $\gamma_0: I_0 \to I_1$, $\gamma_1: I_1 \to I_2$, $\gamma_2: I_2 \to I_0$ and morphisms $a_0: \gamma_2 \circ \gamma_1 \circ \gamma_0 \to \operatorname{id}$, $a_1: \operatorname{id} \to \gamma_0 \circ \gamma_2 \circ \gamma_1$, $a_2: \gamma_1 \circ \gamma_0 \circ \gamma_2 \to \operatorname{id}$ such that $\gamma_0(a_0) \circ (a_1)\gamma_0 = \operatorname{id}$, $(a_1)(\gamma_2 \circ \gamma_1) \circ (\gamma_2 \circ \gamma_1)(a_0) = \operatorname{id}$, $(\gamma_0 \circ \gamma_1)(a_2) \circ (a_1)(\gamma_0 \circ \gamma_1) = \operatorname{id}$, and $(a_2)\gamma_1 \circ \gamma_1(a_1) = \operatorname{id}$. Moreover, assume that γ_1 is essentially surjective. Then γ_2 is fully faithful.

Proof. By (2.2.1.1), the conditions insure that γ_0 is right-adjoint to $\gamma_2 \circ \gamma_1$, with the adjunction maps a_0 , a_1 , and γ_1 is left-adjoint to $\gamma_0 \circ \gamma_2$, with the adjunction maps a_1 , a_2 . Then for any i_2 , $i_2' \in I_2$, we have

$$I_2(i_2,i_2') \cong I_1(i_1,\gamma_0(\gamma_2(i_2'))) \cong I_0(\gamma_2(\gamma_1(i_1)),\gamma_2(i_2')) \cong I_0(\gamma_2(i_2),\gamma_2(i_2')),$$

where $i_1 \in I_1$ is any object equipped with an isomorphism $i_2 \cong \gamma_1(i_1)$.

2.2.2. Defining an adjunction. If we are given two abstract functors $\rho: \mathcal{C} \to \mathcal{C}'$, $\lambda: \mathcal{C}' \to \mathcal{C}$, then to specify an adjunction between them, it suffices to provide only one of the adjunction maps. To axiomatize the situation, it is convenient to introduce the following.

Definition 2.2.2.1. Assume given two functors $\lambda: \mathcal{C}' \to \mathcal{C}$, $\rho: \mathcal{C} \to \mathcal{C}'$. A map $a: \operatorname{id} \to \rho \circ \lambda$ *defines an adjunction* between ρ and λ if for any $c \in \mathcal{C}$, $c' \in \mathcal{C}'$, any map $f: c' \to \rho(c)$ factors as

$$(2.2.2.1) c' \xrightarrow{a} \rho(\lambda(c')) \xrightarrow{\rho(f')} \rho(c)$$

for a unique map $f': \lambda(c') \to c$. Dually, a map $a: \lambda \circ \rho \to \operatorname{id}$ defines an adjunction between ρ and λ iff $a^o: \operatorname{id} \to \lambda^o \circ \rho^o$ defines an adjunction between λ^o and ρ^o .

If a defines an adjunction between ρ and λ in the sense of Definition 2.2.2.1, then by virtue of their uniqueness, the factorizations (2.2.2.1) provide isomorphisms (2.2.1.2), and then a defines the second adjunction map, so that ρ and λ indeed form an adjoint pair.

Lemma 2.2.2.2. Assume given a commutative diagram

(2.2.2.2)
$$\begin{array}{cccc}
\mathcal{C}'_0 & \xrightarrow{\lambda'} & \mathcal{C}'_1 & \xrightarrow{\rho'} & \mathcal{C}'_0 \\
\gamma \downarrow & & \downarrow & & \downarrow \gamma \\
\mathcal{C}_0 & \xrightarrow{\lambda} & \mathcal{C}_1 & \xrightarrow{\rho} & \mathcal{C}_0
\end{array}$$

with cartesian squares such that there exists an isomorphism $id \cong \rho \circ \lambda$ that defines an adjunction between λ and ρ , or between ρ and λ . Then there exists an isomorphism $id \cong \rho' \circ \lambda'$ that defines an adjunction between λ' and ρ' resp. between ρ' and λ' .

Proof. Clear. □

Lemma 2.2.2.3. Assume given a full faithful embedding $\nu: \mathcal{C}_0 \to \mathcal{C}$ and a functor $\gamma: \mathcal{C}' \to \mathcal{C}_0$ such that $\nu \circ \gamma: \mathcal{C}' \to \mathcal{C}$ is right resp. left-reflexive, with adjoint γ^{\dagger} . Then γ is right resp. left-reflexive, with adjoint $\gamma^{\dagger} \circ \nu$.

Proof. In the right-reflexive case, the adjunction map $id \to \gamma^{\dagger} \circ \nu \circ \gamma$ obviously also defines an adjunction between γ and $\gamma^{\dagger} \circ \nu$, and in the left-reflexive case, the same holds for the adjunction map $\gamma^{\dagger} \circ \nu \circ \gamma \to id$.

Lemma 2.2.2.4. Assume given two functors $\lambda: \mathcal{C}' \to \mathcal{C}$, $\rho: \mathcal{C} \to \mathcal{C}'$, and a map $a^{\dagger}: \lambda \circ \rho \to \operatorname{id}$. Moreover, assume that for any $c' \in \mathcal{C}'$, there exists a map $a(c'): c' \to \rho(\lambda(c'))$ such that $\rho(a^{\dagger} \circ \lambda(f)) \circ a(c') = f$ for any $c \in \mathcal{C}$ and any map $f: c' \to \rho(c)$ in \mathcal{C}' . Then a^{\dagger} defines an adjunction between ρ and λ , and a(c') is functorial with respect to c' and gives the second adjunction map.

Proof. Clear.

Corollary 2.2.2.5. Assume given an epivalence $\varepsilon: \mathcal{C}' \to \mathcal{C}$ and a functor $\lambda: \mathcal{C} \to \mathcal{E}$ such that $\lambda \circ \varepsilon: \mathcal{C}' \to \mathcal{E}$ admits a fully faithful right-adjoint $\rho: \mathcal{E} \to \mathcal{C}'$. Then the adjunction isomorphism $\lambda \circ \varepsilon \circ \rho \cong \operatorname{id}$ also defines an adjunction between λ and $\varepsilon \circ \rho$.

Proof. Since ε is an epivalence, any object $c \in \mathcal{C}$ is of the form $c \cong \varepsilon(c')$ for some $c' \in \mathcal{C}'$. Then the adjunction map $c' \to \rho(\lambda(c))$ induces a map $a: c \to \varepsilon(\rho(\lambda(c)))$. To check that a satisfies the universal property required in Lemma 2.2.2.4, note that since ε is an epivalence, any map $f: c \to \varepsilon(\rho(e))$, $e \in \mathcal{E}$ comes from a map $c' \to \rho(e)$ in \mathcal{C}' .

Definition 2.2.2.6. Assume given categories \mathcal{C} , \mathcal{C}' , \mathcal{C}'' equipped with functors $\lambda: \mathcal{C}' \to \mathcal{C}$, $\rho: \mathcal{C} \to \mathcal{C}''$, $\gamma: \mathcal{C}' \to \mathcal{C}''$. Then a map $a: \gamma \to \rho \circ \lambda$ defines an adjuntion between ρ and λ over γ if for any $c \in \mathcal{C}$, $c' \in \mathcal{C}'$, any map $f: \gamma(c') \to \rho(c)$ factors as

$$(2.2.2.3) \gamma(c') \xrightarrow{a} \rho(\lambda(c')) \xrightarrow{\rho(f')} \rho(c),$$

for a unique map $f': \lambda(c') \to c$.

If $\mathcal{C}' = \mathcal{C}''$ and $\gamma = \mathrm{id}$, this reduces to Definition 2.2.2.1. However, even in the general case, the uniqueness of the decompositions (2.2.2.3) still provides isomorphisms

$$(2.2.2.4) C(\lambda(c'),c) \cong C''(\gamma(c'),\rho(c)), c \in C,c' \in C',$$

functorial in c and c'.

Example 2.2.2.7. If for some $\lambda: \mathcal{C}'' \to \mathcal{C}$, $\rho: \mathcal{C} \to \mathcal{C}''$, a map $a: \operatorname{id} \to \rho \circ \lambda$ defines an adjunction between ρ and λ , then for any $\gamma: \mathcal{C}' \to \mathcal{C}''$, the induced map $\gamma \to \rho \circ \lambda \circ \gamma$ trivially defines an adjunction between ρ and $\lambda \circ \gamma$. The point of Definition 2.2.2.6 is that sometimes, while a functor $\lambda: \mathcal{C}' \to \mathcal{C}$ does not factor through γ , the isomorphisms (2.2.2.4) can still exists.

2.2.3. Admissible subcategories. Any left resp. right-reflexive functor $\varphi: \mathcal{C} \to \mathcal{C}'$ is fully faithful iff the adjunction map $a^{\dagger}: \varphi_{\dagger} \circ \varphi \to \operatorname{id}$ resp. $a_{\dagger}: \operatorname{id} \to \varphi^{\dagger} \circ \varphi$ is an isomorphism. If φ is both left and right-reflexive, then $\varphi \circ \varphi^{\dagger}$ is right-adjoint to $\varphi \circ \varphi_{\dagger}$ and $a^{\dagger}: \varphi \circ \varphi^{\dagger} \to \operatorname{id}$ is adjoint to $a_{\dagger}: \operatorname{id} \to \varphi \circ \varphi_{\dagger}$, so that φ^{\dagger} is fully faithful iff so is φ_{\dagger} . We will say that a full subcategory $\mathcal{C} \subset \mathcal{C}'$ is *left* resp. *right-admissible* iff the embedding functor $\mathcal{C} \to \mathcal{C}'$ is left resp. right-reflexive, and *admissible* if it is both left and right-admissible.

Example 2.2.3.1. For any object $c \in C$ in a category C, the embedding (2.1.1.2) is left resp. right-reflexive if and only if $c \in C$ is an initial resp. terminal object in C, and in this case, the full subcategory spanned by c is full and left resp. right-admissible. It is admissible if and only if C is pointed.

Example 2.2.3.2. For any category \mathcal{C} , the projections $\sigma, \tau : \operatorname{ar}(\mathcal{C}) \to \mathcal{C}$ of Example 2.1.2.1 have a common section $\eta : \mathcal{C} \to \operatorname{ar}(\mathcal{C})$ sending $c \in \mathcal{C}$ to the identity map $\operatorname{id} : c \to c$. The functor η is fully faithful, its essential image is an admissible subcategory, and the isomorphisms $\sigma \circ \eta \cong \operatorname{id}$, $\operatorname{id} \cong \sigma \circ \eta$ define an adjunction between σ and η , resp. η and τ .

Example 2.2.3.3. For any class of morphisms v in a category \mathcal{C} , denote by $\operatorname{ar}^v(\mathcal{C}) \subset \operatorname{ar}(\mathcal{C})$ the full subcategory spanned by arrows in v. Then if the category \mathcal{C} is equipped with a factorization system $\langle L, R \rangle$, the subcategories $\operatorname{ar}^L(\mathcal{C})$, $\operatorname{ar}^R(\mathcal{C}) \subset \operatorname{ar}(\mathcal{C})$ are right resp. left-admissible, with the adjoint functors $\operatorname{ar}(\mathcal{C}) \to \operatorname{ar}^L(\mathcal{C})$, $\operatorname{ar}(\mathcal{C}) \to \operatorname{ar}^R(\mathcal{C})$ sending an arrow $f: c \to c'$ to the arrows l resp. r in its canonical decomposition (2.1.1.5). Since the decompositions (2.1.1.5) are unique, these adjoint functors actually fit into a cartesian square

(2.2.3.1)
$$\operatorname{ar}^{R}(\mathcal{C}) \longrightarrow \operatorname{ar}^{R}(\mathcal{C})$$

$$\operatorname{ar}^{L}(\mathcal{C}) \stackrel{\tau}{\longrightarrow} \mathcal{C}.$$

Moreover, by abuse of notation, denote by L resp. R the classes of morphisms in $ar(\mathcal{C})$ that are pointwise in L resp. R; then the full subcategory $ar^R(\mathcal{C})_L = ar^R(\mathcal{C}) \cap ar(\mathcal{C})_L \subset ar(\mathcal{C})_L$ is also left-admissible, with the same adjoint functor, and dually for $ar^L(\mathcal{C})_R \subset ar(\mathcal{C})_R$.

Example 2.2.3.4. For any right-admissible subcategory $\mathcal{C}' \subset \mathcal{C}$, and any intermediate full subcategory $\mathcal{C}' \subset \mathcal{C}_0 \subset \mathcal{C}$, \mathcal{C}' is tautogically right-admissible in \mathcal{C}_0 (with the same adjoint functor). If a full subcategory $\mathcal{C}_0 \subset \mathcal{C}$ is left-closed in the sense of Definition 2.1.3.2, then $\mathcal{C}' \cap \mathcal{C}_0 \subset \mathcal{C}_0$ is again right-admissible, with the same adjoint functor. Indeed, let $\gamma : \mathcal{C} \to \mathcal{C}' \subset \mathcal{C}$ be this adjoint functor; then for any $c \in \mathcal{C}$, we have the adjunction map $\gamma(c) \to c$, so γ sends \mathcal{C}_0 into \mathcal{C}_0 .

Definition 2.2.3.5. A *left* resp. *right projector* on a category C is a pair $\langle p, \alpha \rangle$ of a functor $p : C \to C$ and a map $\alpha : id \to p$ resp. $\alpha : p \to id$ such that $p(\alpha)$ is invertible.

- **Lemma 2.2.3.6.** (i) For any category C equipped with a left resp. right projector $\langle p, \alpha \rangle$, the essential image $C' \subset C$ of the functor p is left resp. right admissible, and α defines an adjunction between the embedding $\lambda: C' \to C$ and the projection $\rho: C \to C'$. Conversely, for any left resp. right admissible full embedding $\lambda: C' \to C$, with the adjoint functor $\rho: C \to C'$, the composition $p = \lambda \circ \rho$ equipped with the adjunction map is a left resp. right projector on C.
 - (ii) Assume given categories C, C' equipped with either left or right projectors $\langle p, \alpha \rangle$, $\langle \langle p', \alpha' \rangle$, and a functor $\gamma : C \to C'$ equipped with an isomorphism $\varphi : \gamma \circ p \cong p' \circ \gamma$. Then $\alpha' \circ \gamma = \varphi \circ \gamma(\alpha)$ for left projectors, and $\alpha' \circ \gamma = \gamma(\alpha) \circ \varphi^{-1}$ for right projectors.

Proof. Clear.

Note that the adjunction of Example 2.2.3.2 has the following universal property. For any category \mathcal{C}' and admissible full subcategory $\mathcal{C} \subset \mathcal{C}'$, with the embedding functor $\varphi: \mathcal{C} \to \mathcal{C}'$ and its adjoints $\varphi_{\dagger}, \varphi^{\dagger}: \mathcal{C} \to \mathcal{C}$, the adjunction isomorphisms id $\cong \varphi \circ \varphi^{\dagger}, \varphi_{\dagger} \circ \varphi \circ \operatorname{id}$ induce a map $a: \varphi_{\dagger} \to \varphi_{\dagger} \circ \varphi \circ \varphi^{\dagger} \to \varphi^{\dagger}$. We then have a natural comparison functor

$$(2.2.3.2) v: \mathcal{C}' \to \operatorname{ar}(\mathcal{C})$$

sending $c \in \mathcal{C}'$ to the arrow $a: \varphi_{+}(c) \to \varphi^{+}(c)$. By Lemma 2.2.3.6 (i), the embedding $\mathcal{C} \subset \mathcal{C}'$ induces a left and a right projector l', r' on the category \mathcal{C}' , and similarly, the embedding $\mathcal{C} \subset \operatorname{ar}(\mathcal{C})$ induces projectors l, r on the category $\operatorname{ar}(\mathcal{C})$. The functor v of (2.2.3.2) comes equipped with isomorphisms $v \circ l' \cong l \circ v$, $v \circ r' \cong r \circ v$, and by Lemma 2.2.3.6 (ii), any functor $v' : \mathcal{C}' \to \operatorname{ar}(\mathcal{C})$ equipped with such isomorphisms is canonically isomorphic to v.

2.2.4. Cylinders and comma-categories. To reduce the study of arbitrary reflexive functors to the study of left and right-admissible full embeddings, it is very convenient to use the following version of the cylinder construction.

Definition 2.2.4.1. The *cylinder* $C(\gamma)$ of a functor $\gamma : C_0 \to C_1$ between categories C_0 , C_1 is the category

$$(2.2.4.1) C(\gamma) = \mathcal{C}_0 \sqcup_{F(\gamma)} \mathcal{C}_1$$

of (2.1.3.6) for the functor $F(\gamma) = \operatorname{Hom} \circ (\gamma^o \times \operatorname{id}) : \mathcal{C}_0^o \times \mathcal{C}_1 \to \operatorname{Sets}$. The *dual cylinder* $C^o(\gamma)$ is given by $C^o(\gamma) = C(\gamma^o)^o$.

Example 2.2.4.2. The cylinder C(id) of the identity map $id : pt \to pt$ is the single arrow category [1]. More generally, for any category C, the cylinder $C(\pi)$ of the tautological projection $\pi : C \to pt$ is the category $C^>$, and the cylinder C(id) of the identity functor $id : C \to C$ is the product $C \times [1]$.

Informally, the cylinder $C(\gamma)$ is obtained by taking the disjoint union $C_0 \sqcup C_1$, and adding a morphism $f: c_0 \to c_1$, $c_0 \in C_0 \subset C(\gamma)$, $c_1 \in C_1 \subset C(\gamma)$ for any morphism $f: \gamma(c_0) \to c_1$. Cylinders are functorial in the obvious way: a commutative square (2.1.3.1) induces a functor $C(\gamma_{01}^0) \to C(\gamma_1)$ that restricts to γ_{01}^1 resp. γ_0 on C_{01} resp. C_0 . In particular, for any $\gamma: C_0 \to C_1$, the projections to the point induce the functor $C(\gamma) \to [1]$ with fibers $C(\gamma)_l \cong C_l$, l = 0, 1. We also have full embeddings $s: C_0 \to C(\gamma)$, $t: C_1 \to C(\gamma)$, so that $C(\gamma)$ is a category

under $C_0 \sqcup C_1$, and the subcategory $C_1 \subset C(C)$ is left-admissible. Conversely, a functor $C \to [1]$ with fibers C_0 , C_1 is the cylinder of a functor $\gamma : C_0 \to C_1$ if and only if $C_1 \subset C$ is right-admissible, and γ can be recovered as the composition

$$(2.2.4.2) \mathcal{C}_0 \xrightarrow{s} \mathcal{C} \xrightarrow{t_{\dagger}} \mathcal{C}_1,$$

where $t_+: \mathcal{C} \to \mathcal{C}_1$ is left-adjoint to $t: \mathcal{C}_1 \to \mathcal{C}$. The full subcategory $\mathcal{C}_0 \subset \mathcal{C}$ is right-admissible if and only if γ is right-reflexive, and in this case, the right-adjoint functor $\gamma^+: \mathcal{C}_1 \to \mathcal{C}_0$ is given by $\gamma^+=s^+\circ t$, where $s^+: \mathcal{C} \to \mathcal{C}_0$ is right-adjoint to $s: \mathcal{C}_0 \to \mathcal{C}_1$. Passing to the opposite categories, we obtain the same statements for dual cylinders and left-reflexive functors; in particular, $C^o(\gamma)$ is a category under $\mathcal{C}_0 \sqcup \mathcal{C}_1$, and $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ factors as

$$(2.2.4.3) \mathcal{C}_0 \xrightarrow{t} \mathsf{C}^o(\gamma) \xrightarrow{s^t} \mathcal{C}_1.$$

If $\lambda: \mathcal{C}_0 \to \mathcal{C}_1$ is left-adjoint to $\rho: \mathcal{C}_1 \to \mathcal{C}_0$, then we have an equivalence $\varepsilon: \mathsf{C}(\lambda) \cong \mathsf{C}^o(\rho)$ under $\mathcal{C}_0 \sqcup \mathcal{C}_1$, and conversely, such an equivalence defines an adjunction between λ and ρ . By functoriality of cylinders, we have commutative squares

$$\begin{array}{cccc}
\mathcal{C}_{0} & \xrightarrow{t} & \mathcal{C}_{0} \times [1] & \mathcal{C}_{0} & \xrightarrow{s} & \mathcal{C}_{0} \times [1] \\
\gamma \downarrow & & \downarrow & & \downarrow \\
\mathcal{C}_{1} & \xrightarrow{t} & \mathsf{C}(\gamma) & \mathcal{C}_{1} & \xrightarrow{s} & \mathsf{C}^{o}(\gamma)
\end{array}$$

for any categories C_0 , C_1 and functor $\gamma: C_0 \to C_1$. Note that both squares are cocartesian.

Lemma 2.2.4.3. Assume given a full subcategory $\mathcal{C}' \subset \mathcal{C}$, with the embedding functor $\gamma: \mathcal{C}' \to \mathcal{C}$. Then the functor $t_{\dagger}: C(\gamma) \to \mathcal{C}$ of (2.2.4.2) is left-reflexive iff $\mathcal{C}' \subset \mathcal{C}$ is left-closed in the sense of Definition 2.1.3.2.

Proof. Assume first that \mathcal{C} has an initial object $o \in \mathcal{C}$, and note that $C(\gamma)$ then has an initial object in two cases: either \mathcal{C}' is empty, or $o \in \mathcal{C}' \subset \mathcal{C}$. Then in general, t_+ is left-admissible iff for any $c \in \mathcal{C}$, the comma-fiber $c \setminus_{t_+} C(\gamma)$ has an initial object, and we have $c \setminus_{t_+} C(\gamma) \cong C(c \setminus \gamma)$, where $c \setminus \gamma : c \setminus_{\gamma} \mathcal{C}' \to c \setminus \mathcal{C}$ is the fully faithful embedding induced by γ .

The cylinder construction is in some sense dual to the comma-category construction of Subsection 2.1.2. Recall that the right resp. left comma-categories $I \setminus_{\gamma} C$ resp. $C /_{\gamma} I$ of a functor $\gamma : C \to I$ are the categories of triples $\langle c, i, \alpha \rangle$, $c \in C$,

 $i \in c$, α a map from i to $\gamma(c)$ resp. from $\gamma(c)$ to i. We have $(\mathcal{C}/_{\gamma}I)^{o} \cong I^{o} \setminus_{\gamma^{o}} \mathcal{C}^{o}$, and we have natural cartesian squares

$$(2.2.4.5) \qquad \begin{array}{ccc} I \setminus_{\gamma} \mathcal{C} & \xrightarrow{\tau} \mathcal{C} & \mathcal{C}/_{\gamma} I & \xrightarrow{\sigma} \mathcal{C} \\ \downarrow & & \downarrow^{\gamma} & & \downarrow^{\gamma} \\ \operatorname{ar}(I) & \xrightarrow{\tau} I, & \operatorname{ar}(I) & \xrightarrow{\sigma} I, \end{array}$$

where $\operatorname{ar}(I)$ and σ and τ in the bottom line are as in Example 2.1.2.1. The projection $\tau:I\setminus_{\gamma}\mathcal{C}\to\mathcal{C}$ resp. $\sigma:\mathcal{C}/_{\gamma}I\to\mathcal{C}$ has a fully faithful right resp. left-adjoint functor $\eta:\mathcal{C}\to I\setminus_{\gamma}\mathcal{C}$ resp. $\eta:\mathcal{C}\to\mathcal{C}/_{\gamma}I$, sending $c\in\mathcal{C}$ to $\langle c,\gamma(c),\operatorname{id}\rangle$, and γ factors as

$$(2.2.4.6) \mathcal{C} \xrightarrow{\eta} \mathcal{C}/_{\gamma} I \xrightarrow{\tau} I, \mathcal{C} \xrightarrow{\eta} I \setminus_{\gamma} \mathcal{C} \xrightarrow{\sigma} I,$$

where σ resp. τ are the forgetful functors (2.1.2.6) whose fibers are the commafibers of the functor γ . On the fiber $(I \setminus_{\gamma} \mathcal{C})_i \cong i \setminus_{\gamma} \mathcal{C}$, the projection τ restricts to the functor $\tau(i)$ of (2.1.2.3), and η restricts to the full embedding $\mathcal{C}_i \subset i \setminus_{\gamma} \mathcal{C}$, and dually for the left comma-fibers. Note that by (2.2.4.6), η is a functor over I, and its left-adjoint τ is a lax functor over I.

Example 2.2.4.4. If we take C = I and $\gamma = id$, as in Example 2.1.2.1, then $C/_{id}C \cong C\setminus_{id}C \cong ar(C)$, and η of (2.2.4.6) is as in Example 2.2.3.2.

To see the duality between cylinders and comma-categories, one can use the functor categories of Subsection 2.1.4. In particular, for any functor $\gamma:I_0\to I_1$ between essentially small categories, and any category $\mathcal C$, we have natural equivalences

(2.2.4.7)
$$\operatorname{Fun}(\mathsf{C}(\gamma),\mathcal{C}) \cong \operatorname{Fun}(I_0,\mathcal{C}) \setminus_{\gamma^*} \operatorname{Fun}(I_1,\mathcal{C}), \\ \operatorname{Fun}(\mathsf{C}^o(\gamma),\mathcal{C}) \cong \operatorname{Fun}(I_1,\mathcal{C}) /_{\gamma^*} \operatorname{Fun}(I_0,\mathcal{C}),$$

and the decompositions (2.2.4.6) corresponds to the decompositions (2.2.4.2) (by (2.1.4.1), (2.2.4.7) amounts to observing that both commutative squares in (2.2.4.4) are cocartesian). Another useful observation is that for any functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$, we have natural identifications

$$(2.2.4.8) \mathcal{C}_0/_{\gamma}\mathcal{C}_1 \cong \operatorname{Sec}([1], \mathsf{C}(\gamma)), \mathcal{C}_1\setminus_{\gamma}\mathcal{C}_0 \cong \operatorname{Sec}([1], \mathsf{C}^o(\gamma)),$$

where Sec([1], -) are the categories of sections of the natural projections $C(\gamma)$, $C^{o}(\gamma) \rightarrow [1]$. If we are given two functors $\lambda : C_0 \rightarrow C_1$, $\rho : C_1 \rightarrow C_0$, then by (2.2.4.8), giving an adjunction between λ and ρ is the same thing as

giving an equivalence $\varepsilon: \mathcal{C}_0/_{\lambda}\mathcal{C}_1 \cong \mathcal{C}_0\setminus_{\rho}\mathcal{C}_1$ over $\mathcal{C}_0\times\mathcal{C}_1$. This immediately implies that a functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ is left resp. right-reflexive if and only if σ resp. τ in (2.2.4.6) is left resp. right-reflexive, with a fully faithful adjoint σ_{t} resp. τ_{\dagger} , and $\tau \circ \sigma_{\dagger}$ resp. $\sigma \circ \tau_{\dagger}$ is then the adjoint to γ .

More generally, assume that categories C_0 and C_1 are equipped with functors $\pi_l: \mathcal{C}_l \to I, l = 0, 1$ to some category I. Then for any $\pi: \mathcal{C} \to I$, we define the *relative arrow category* $\operatorname{ar}(\mathcal{C}|I)$ by the cartesian square

$$\begin{array}{ccc} \operatorname{ar}(\mathcal{C}|I) & \longrightarrow & \operatorname{ar}(\mathcal{C}) \\ & & & & & \downarrow \operatorname{ar}(\pi) \\ I & & \stackrel{\eta}{\longrightarrow} & \operatorname{ar}(I), \end{array}$$

and for any functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ over I, we define the *relative comma-categories* $C_0/_{\gamma,I}C_1$, $C_1\setminus_{\gamma,I}C_0$ by cartesian squares

or equivalently,

or equivalently,
$$\begin{array}{cccc} & \mathcal{C}_1 \setminus_{\gamma,I} \mathcal{C}_0 & \longrightarrow \mathcal{C}_1 \setminus_{\gamma} \mathcal{C}_0 & \mathcal{C}_0 /_{\gamma,I} \mathcal{C}_1 & \longrightarrow \mathcal{C}_0 /_{\gamma} \mathcal{C}_1 \\ & \downarrow & \downarrow \pi_1 / \pi_0 & \downarrow & \downarrow \pi_0 / \pi_1 \\ & I & \stackrel{\eta}{\longrightarrow} & \operatorname{ar}(I), & I & \stackrel{\eta}{\longrightarrow} & \operatorname{ar}(I). \end{array}$$

As in the absolute case, γ admits natural factorizations

$$(2.2.4.12) \mathcal{C}_0 \xrightarrow{\eta} \mathcal{C}_0/_{\gamma,I}\mathcal{C}_1 \xrightarrow{\tau} \mathcal{C}_1, \quad \mathcal{C}_0 \xrightarrow{\eta} \mathcal{C}_1\setminus_{\gamma,I}\mathcal{C}_0 \xrightarrow{\sigma} \mathcal{C}_1$$

induced by (2.2.4.6), and η is right resp. left-adjoint to the forgetful functor $\sigma: \mathcal{C}_0/_{\gamma,I}\mathcal{C}_1 \to \mathcal{C}_0$ resp. $\tau: \mathcal{C}_1\setminus_{\gamma,I}\mathcal{C}_0 \to \mathcal{C}_0$ over *I*. Then if we are given two functors $\lambda: \mathcal{C}_0 \to \mathcal{C}_1$, $\rho: \mathcal{C}_1 \to \mathcal{C}_0$ over I, giving an adjunction between λ and ρ over I is the same thing as giving an equivalence $\varepsilon: \mathcal{C}_0/_{\lambda,I}\mathcal{C}_1 \cong \mathcal{C}_0\setminus_{\rho,I}\mathcal{C}_1$ over $C_0 \times C_1$, and this immediately implies that a functor $\gamma : C_0 \to C_1$ is left resp. right-reflexive over I if and only if σ resp. τ in (2.2.4.12) is left resp. rightreflexive, with a fully faithful adjoint σ_{t} resp. τ_{t} , and $\tau \circ \sigma_{t}$ resp. $\sigma \circ \tau_{t}$ is then the adjoint to γ (recall that since σ_{+} and τ_{+} are fully faithful, both are automatically adjoint over *I*).

Example 2.2.4.5. For any category \mathcal{C} , if we consider $\operatorname{ar}(\mathcal{C})$ as a category over \mathcal{C} via the projection τ , then $\operatorname{ar}(\operatorname{ar}(\mathcal{C})|\mathcal{C})$ is the category of composable pairs $\langle f,g\rangle$ of arrows in \mathcal{C} , with $\sigma,\tau:\operatorname{ar}(\operatorname{ar}(\mathcal{C})|\mathcal{C})\to\operatorname{ar}(\mathcal{C})$ sending $\langle f,g\rangle$ to $f\circ g$ resp. f, and we have a cartesian square

$$(2.2.4.13) \qquad \qquad \operatorname{ar}(\operatorname{ar}(\mathcal{C})|\mathcal{C}) \xrightarrow{\tau} \operatorname{ar}(\mathcal{C}) \\ \beta \downarrow \qquad \qquad \downarrow \sigma \\ \operatorname{ar}(\mathcal{C}) \xrightarrow{\tau} \mathcal{C},$$

where β sends $\langle f, g \rangle$ to g,

Lemma 2.2.4.6. Assume given a functor $\lambda : \mathcal{C}_0 \to \mathcal{C}_1$ equipped with a section $\rho : \mathcal{C}_1 \to \mathcal{C}_0$. Then the isomorphism $\lambda \circ \rho \cong \operatorname{id}$ defines an adjunction between λ and ρ if and only if $\sigma : \mathcal{C}_0 \setminus_{\rho,\mathcal{C}_1} \mathcal{C}_1 \to \mathcal{C}_0$ is an equivalence.

Proof. The "if" part immediately follows from (2.2.4.12). For the "only if" part, if we do have an adjunction, then $C_0 \setminus_{\rho,C_1} C_1 \cong C_0 \setminus_{\lambda,C_1} C_1 \cong C_0$.

Corollary 2.2.4.7. Assume given a cartesian square (2.1.3.1) and left resp. right-admissible full subcategories $\mathcal{C}' \subset \mathcal{C}$, $\mathcal{C}'_l \subset \mathcal{C}_l$, l = 0, 1, with adjoint functors $\lambda : \mathcal{C} \to \mathcal{C}'$, $\lambda_l : \mathcal{C}_l \to \mathcal{C}'_l$, l = 0, 1, such that $\gamma_l(\mathcal{C}'_l) \subset \mathcal{C}'$, l = 0, 1, and (2.2.1.4) provides isomorphisms $\gamma_l \circ \lambda_l \cong \lambda \circ \gamma_l$, l = 0, 1. Then the full subcategory $\mathcal{C}'_{01} = \mathcal{C}'_0 \times_{\mathcal{C}'} \mathcal{C}'_l \subset \mathcal{C}_{01}$ is left resp. right-admissible, with some adjoint $\lambda_{01} : \mathcal{C}_{01} \to \mathcal{C}'_{01}$, and $\gamma_{01}^l \circ \lambda_{01} \cong \lambda_l \circ \gamma_{01}^l$, l = 0, 1.

Proof. It suffices to consider the left-admissible case (in the right-admissible case, take the opposite categories). Let ρ , ρ_0 , ρ_1 , ρ_{01} be the embedding functors. Then to construct λ_{01} and an isomorphism $\lambda_{01} \circ \rho_{01} \cong \operatorname{id}$, take the product of λ_0 and λ_1 over λ , and to check that the isomorphism satisfies the condition of Lemma 2.2.4.6, note that the relative comma-categories for the embedding functors also form a cartesian square.

2.2.5. Limits and colimits. Basic examples of adjoint functors are given by limits and colimits, and more generally, left and right Kan extensions. Here is a brief summary.

Definition 2.2.5.1. A *cone* of a functor $E: I \to \mathcal{E}$ is a functor $E_{>}: I^{>} \to \mathcal{C}$ equipped with an isomorphism $E_{>} \circ s \cong E$, where $s: I \to I^{>}$ is the natural embedding. The *vertex* of a cone $E_{>}$ is its value $E_{>}(o) \in \mathcal{E}$ at the terminal object

 $o \in I^>$. A cone $E_>$ is *universal* if for any other cone $E'_>$, there exists a unique map of cones $E_> \to E'_>$. The functor E has a colimit if it admits a universal cone $E_>$, and the colimit is given by its vertex, $\operatorname{colim}_I E = E_>(o)$.

Example 2.2.5.2. If $I = V = \{0,1\}^{<}$ is the category of (2.1.1.3), then we have $V^{>} \cong [1]^{2}$, and a cone of a functor $V \to \mathcal{E}$ is a commutative square in \mathcal{E} . If the cone is universal, the square is called *cocartesian*.

Example 2.2.5.3. Let $P^=$ be the category with two objects pt, o, and morphisms generated by $a: o \to \operatorname{pt}$ and $b: \operatorname{pt} \to o$ subject to the relation $b \circ a = \operatorname{id}$. Then the full subcategory spanned by pt is the category P of Example 2.1.1.1, with the embedding sending p to $a \circ b$. Removing the map a gives a dense embedding $P^> \subset P^=$ sending o to o, and this is a universal cone for the full embedding $P \to P^=$. Moreover, a cone $E_>$ of a functor $E: P \to \mathcal{E}$ to some category \mathcal{E} is universal iff and only if it extends to $P^= \supset P^>$ (and if this happens, colimE is the image of the projector E(p)).

Example 2.2.5.4. Define the *Kronecker category* \mathbb{I} as the category with two objects $0,1\in\mathbb{I}$ and two non-identity maps $s,t:0\to 1$. Then a colimit $\operatorname{colim}_{\mathbb{I}} E$ of a functor $E:\mathbb{I}\to \mathcal{E}$ is known as the *coequalizer* of the two maps $E(s),E(t):E(0)\to E(1)$; it is given by a map $f:E(1)\to\operatorname{colim}_{\mathbb{I}} E$ such that $f\circ E(s)=f\circ E(t)$, and universal with this property.

By virtue of its universal property, colimit is functorial with respect to E, in that for any $E, E': I \to \mathcal{E}$ such that $\operatorname{colim}_I E$ and $\operatorname{colim}_I E'$ exist, a map $E \to E'$ induces a map $\operatorname{colim}_I E \to \operatorname{colim}_I E'$. It is also functorial with respect to I, in that for any functor $\gamma: I' \to I$, we have a natural map

(2.2.5.1)
$$\operatorname{colim}_{I'} E \circ \gamma \to \operatorname{colim}_{I} E$$
,

again provided that both sides exist. A category \mathcal{E} has colimits or is cocomplete if $\operatorname{colim}_I E$ exists for any essentially small I and functor $E:I\to\mathcal{E}$, and \mathcal{E} is κ -cocomplete for some infinite cardinal κ if this happens for any I with $\|I\|<\kappa$. If κ is the smallest infinite cardinal, \mathcal{E} is finitely cocomplete. For any infinite cardinal κ , a category \mathcal{E} is κ -cocomplete if it is finitely cocomplete and has κ' -indexed coproducts for any $\kappa'<\kappa$. For any essentially small category I and cocomplete resp. κ -cocomplete category \mathcal{E} , the functor category \mathcal{E}^I is cocomplete resp. κ -cocomplete.

Remark 2.2.5.5. To insure that a category \mathcal{E} is finitely cocomplete, it suffices to require that \mathcal{E} has all coequalizers of Example 2.2.5.4 and all finite coproducts;

for the latter, it further suffices to require colimits over discrete categories \emptyset and $\{0,1\}$.

Example 2.2.5.6. The category Sets is cocomplete. For any infinite cardinal κ , let Sets_κ \subset Sets be the full subcategory of sets S such that $|S| < \kappa$. Then Sets_κ is finitely cocomplete, and its κ -cocomplete if and only if for any map $S' \to S$ of sets such that $|S| < \kappa$ and $|S'_s| < \kappa$ for any $s \in S$, we also have $|S'| < \kappa$. By definition, this means that the cardinal κ is *regular*. All regular cardinals are automatically infinite. Not all infinite cardinals are regular, but regular ones are cofinal, in the sense that for any infinite κ , there exists a regular $\kappa' > \kappa$ (in fact, it suffices to take the *succesor cardinal* κ^+ defined as the smallest cardinal $\kappa^+ > \kappa$).

By Example 2.2.4.2, the category $I^>$ is the cylinder of the tautological projection $\gamma:I\to \operatorname{pt}$. More generally, assume given a functor $\gamma:I\to I'$, and consider its cylinder $\operatorname{C}(\gamma)$, with the embeddings $s:I\to\operatorname{C}(\gamma)$, $t:I'\to\operatorname{C}(\gamma)$.

Definition 2.2.5.7. A *relative cone* of a functor $E:I\to\mathcal{E}$ with respect to a functor $I'\to I$ is a functor $E_>:C(\gamma)\to\mathcal{E}$ equipped with an isomorphism $E_>\circ s\cong E$. A relative cone $E_>$ is *universal* if for any other relative cone $E_>'$, there exists a unique map of relative cones $E_>\to E_>'$. The functor E has a left Kan extension with respect to γ if it admits a universal relative cone $E_>$ with respect to γ , and the left Kan extension $\gamma_!E$ is given by $\gamma_!E=E_>\circ t:I'\to\mathcal{E}$.

Explicitly, a cone $E_{>}$ of a functor $E:I\to\mathcal{E}$ is given by its vertex $e=E_{>}(o)\in\mathcal{E}$ and a morphism $E\to\varepsilon(e)\circ\gamma$, where $\varepsilon(e)\circ\gamma:I\to\operatorname{pt}\to\mathcal{E}$ is the constant functor with value e. Analogously, a relative cone with respect to some $\gamma:I\to I'$ is a pair of a functor $E':I'\to\mathcal{E}$ and a morphism $E\to E'\circ\gamma$. For any $\gamma:I\to I'$ and $E:I\to\mathcal{E}$, the left Kan extension is given by

(2.2.5.2)
$$\gamma_! E(i) = \operatorname{colim}_{I/\gamma i} E \circ \sigma(i), \qquad i \in I',$$

where $\sigma(i)$ are the forgetful functors (2.1.2.3), and $\gamma_!E$ exists if so do the colimits in the right-hand side. For any morphism $f:i\to i'$ in the category I, the correspoding map $\gamma_!E(f):\gamma_!E(i)\to\gamma_!E(i')$ is the map (2.2.5.1) for the functor $f_!:I'/\gamma i\to I'/\gamma i'$ of (2.1.2.4).

Now, for any functor $\gamma: I_0 \to I_1$ between essentially small categories, and any category \mathcal{E} , we have the pullback functor $\gamma^*: \operatorname{Fun}(I_1, \mathcal{E}) \to \operatorname{Fun}(I_0, \mathcal{E})$. Then if the left Kan extension $\gamma_! E$ exists for any $E \in \operatorname{Fun}(I_0, \mathcal{E})$, it is functorial in E, and we obtain a functor $\gamma_!: \operatorname{Fun}(I_0, \mathcal{E}) \to \operatorname{Fun}(I_1, \mathcal{E})$ left-adjoint to γ^* . Conversely, if γ^* admits a left-adjoint functor $\gamma_!$, then for any $E \in \operatorname{Fun}(I_0, \mathcal{E})$,

 $f_!E$ with the adjunction map $E \to f^*f_!E$ is the left Kan extension in the sense of Definition 2.2.5.7. If we have another functor $\gamma': I_1 \to I_2$ to an essentially small I_2 such that both $\gamma_!$ and $\gamma'_!$ exists, then $\gamma'_! \circ \gamma_! \cong (\gamma' \circ \gamma)_!$ by adjunction, and if $\gamma: I \to \operatorname{pt}$ is the taulogical projection, then $\gamma_! \cong \operatorname{colim}_I$. A commutative diagram

(2.2.5.3)
$$I'_{1} \xrightarrow{\gamma'} I'_{0}$$

$$\downarrow \nu_{0}$$

$$I_{1} \xrightarrow{\gamma} I_{0}$$

of essentially small categories induces a commutative diagram of functor categories Fun $(-, \mathcal{E})$, and if $\gamma_!$ and $\gamma_!'$ exist, we have a functorial map

$$(2.2.5.4) a(\gamma): \gamma_1' \circ \nu_1^* \to \nu_1^* \circ \gamma_1$$

given by the base change map (2.2.1.4).

Example 2.2.5.8. If a functor $\gamma: I_0 \to I_1$ between essentially small categories admits a right-adjoint $\gamma_+: I_1 \to I_0$, then by Example 2.2.1.1, for any target category \mathcal{E} , the left Kan extension functor $\gamma_!: \operatorname{Fun}(I_0, \mathcal{E}) \to \operatorname{Fun}(I_1, \mathcal{E})$ is given by $\gamma_! \cong \gamma_+^*$.

Example 2.2.5.9. By (2.2.5.2), for any cocomplete target category \mathcal{E} , the left Kan extension functor $\gamma_!$: Fun(I_0 , \mathcal{E}) \to Fun(I_1 , \mathcal{E}) exists for any functor $\gamma:I_0\to I_1$ between essentially small categories, and the same is true if \mathcal{E} is κ -cocomplete for some κ , and $||I_0||$, $||I_1|| < \kappa$.

To compute left Kan extensions, it is often convenient to replace the commafibers in (2.2.5.2) with smaller subcategories. For instance, by Example 2.2.5.8, for any left-admissible full subcategory $I' \subset I$ with the embedding functor $\gamma: I' \to I$ and its left-adjoint $\gamma^{\dagger}: I \to I'$, and any functor $E: I \to \mathcal{E}$, we have

(2.2.5.5)
$$\operatorname{colim}_{I'} \gamma^* E \cong \operatorname{colim}_{I'} \gamma_!^{\dagger} E \cong \operatorname{colim}_{I} E,$$

so that the left-hand side exists if and only if so does the right-hand side, and the map (2.2.5.1) is an isomorphism. Here is a more general example of such a situation.

Example 2.2.5.10. Note that an essentially small category I is connected if and only if for any category \mathcal{E} , the tautological embedding $\mathcal{E} \to \operatorname{Fun}(I,\mathcal{E})$ is fully faithful. Say that a functor $\gamma: I' \to I$ between essentially small categories is 0-cofinal if for any $i \in I$, the right comma-fiber $i \setminus_{\gamma} I'$ is connected. Then for any functor $E: I \to \mathcal{E}$, the source of the map (2.2.5.1) exists if and only if so does its target, and the map is an isomorphism.

Example 2.2.5.11. The protypical example of a Kan extension that gives rise to the name occurs when $\gamma: I \to I'$ is the embedding functor of a full subcategory $I \subset I'$. In this case, for any $i \in I \subset I'$, the left comma-fiber $I/\gamma i$ has the terminal object $\langle i, \operatorname{id} \rangle$, so if the left Kan extension $E' = \gamma_! E$ exists for some $E: I \to \mathcal{E}$, then the map $E \to \gamma^* E'$ is an isomorphism by (2.2.5.2) and (2.2.5.5). We then have a factorization

$$(2.2.5.6) I \xrightarrow{\gamma} I' \xrightarrow{E'} \mathcal{E}$$

of the functor E, and E' indeed extends E to a larger category I'. If $I \subset I'$ is right-admissible, then $E' = \gamma_! E \cong \gamma_!^* E$, hence also the factorization (2.2.5.6) exist for any E by Example 2.2.5.8, and one can characterize it as follows: this is the unique factorization $E \cong E' \circ \gamma$ such that E' inverts all maps in the class $\gamma_+^*(\star)$. Note that $\gamma_+^*(\star)$ is the minimal saturated class that contains all the adjunctions maps $\gamma(\gamma_+(i')) \to i'$, $i' \in I'$. More generally, if I and I' are essentially small, then for any closed class v of morphisms in I, we have an equivalence of categories

$$(2.2.5.7) \gamma_! \cong \gamma_+^* : \operatorname{Fun}^v(I, \mathcal{E}) \to \operatorname{Fun}^{\gamma_+^*v}(I', \mathcal{E}),$$

with the inverse equivalence given by γ^* . Moreover, while the Kan extension $\gamma_{!}E$ might not exist for a general functor $E:I_1\to\mathcal{E}$, it exists for any $E\in \operatorname{Fun}^{\gamma_{\!+}^*v}(I_1,\mathcal{E})$, and $\gamma_{\!+\!!}E\cong\gamma^*E$.

Example 2.2.5.12. As mentioned in Example 2.2.5.6, the category Sets is cocomplete, and so is the functor category I^o Sets for any essentially small I. Thus for any two essentially small categories I_0 , I_1 , a functor $x:I_0 \to I_1^o$ Sets has a left Kan extension $X = Y_1(x)$ with respect to the Yoneda embedding (2.1.4.5). An abstract functor $X:I_0^o$ Sets $\to I_1^o$ Sets is of this form if and only if the adjunction map $Y_1Y^*X \to X$ is an isomorphism, or equivalently, if X preserves all colimits, or equivalently, if it is right-reflexive.

Lemma 2.2.5.13. Assume given categories C_{01} , C_0 , C_1 , a left-closed full embedding γ_0 : $C_{01} \to C_0$, and a functor $\gamma_1 : C_{01} \to C_1$ such that the Kan extension $\gamma_{1!}^o X : C_1^o \to \text{Sets}$ exists for any $X : C_{01}^o \to \text{Sets}$. Then there exists a commutative square of categories

(2.2.5.8)
$$\begin{array}{ccc}
\mathcal{C}_{01} & \xrightarrow{\gamma_0} & \mathcal{C}_0 \\
\gamma_1 \downarrow & & \downarrow \\
\mathcal{C}_1 & \longrightarrow & \mathcal{C}
\end{array}$$

that is both cartesian and cocartesian in the sense of Subsection 2.1.3.

Proof. For any categories C_0 , C_1 and functor $F: C_0^o \times C_1 \to \operatorname{Sets}$, with the corresponding category $C_0 \sqcup_F C_1$ of (2.1.3.6), giving a functor $C_0 \sqcup_F C_1 \to \mathcal{E}$ to some category \mathcal{E} amounts to giving functors $E_l: C_l \to \mathcal{E}$, l=0,1, and a map $F \to \operatorname{Hom} \circ (E_0^o \times E_1)$, where $\operatorname{Hom}: \mathcal{E}^o \times \mathcal{E} \to \operatorname{Sets}$ is the Hom-pairing (2.1.3.5). Then under the assumptions of the Lemma, let $C_0' = C_0 \setminus C_{01}$, represent $C_0 \cong C_{01} \sqcup_{F_0} C_0'$ for some $F_0: C_{01}^o \times C_0' \to \operatorname{Sets}$, and note that the universal property of Kan extensions immediately implies that the Kan extension $F' = (\gamma_1^o \times \operatorname{id})_! F_0$ exists, and taking $C = C_1 \sqcup_{F'} C_0'$ does the job.

Example 2.2.5.14. Since the category Sets is cocomplete, the assumption on γ_1 in Lemma 2.2.5.13 is always satisfied when \mathcal{C}_{01} is essentially small, but this is not the only case. For example, by (2.2.5.2), it is always satisfied when $\gamma_1:\mathcal{C}_{01}\to\mathcal{C}_1$ is the left-closed embedding. In this case, we also have $\mathcal{C}_1\cong\mathcal{C}_{01}\sqcup_{F_1}\mathcal{C}_1'$ for $\mathcal{C}_1'=\mathcal{C}_1\smallsetminus\mathcal{C}_{01}$ and some $F_1:\mathcal{C}_{01}'\times\mathcal{C}_1'\to \text{Sets}$, and (2.2.5.2) then shows that \mathcal{C} in (2.2.5.8) is given by $\mathcal{C}\cong\mathcal{C}_{01}\sqcup_{F_0\sqcup F_1}(\mathcal{C}_0'\sqcup\mathcal{C}_1')$. This construction is inverse to Example 2.1.3.3.

Dually, the *limit* $\lim_I E$ of a functor E is given by $\lim_I E = (\text{colim}_{I^o} E^o)^o$, and the *right Kan extension* γ_*E is $\gamma_*E = (\gamma_!^o E^o)^o$. A category $\mathcal E$ is *complete* or *has limits* if $\mathcal E^o$ is cocomplete, and κ -complete if $\mathcal E^o$ is κ -cocomplete. Right Kan extensions are right-adjoint to pullbacks, they can be expressed by the dual version of (2.2.5.2) with limits instead of colimits and right comma-fibers instead of left ones, and the rest of the story including the base change map (2.2.5.4), Example 2.2.5.8 and Example 2.2.5.9 has an obvious dual counterpart.

Example 2.2.5.15. For any two infinite sets S, S', say that $|S| \ll |S'|$ iff $|S^S| \le |S'|$ (or equivalently, $|\{0,1\}^S| \le |S'|$, where $\{0,1\}$ is the set with two elements, so that $\{0,1\}^S$ is the set of all subsets in S). Then for any regular cardinal κ , the category Sets $_{\kappa}$ of Example 2.2.5.6 is κ' -complete iff $\kappa' \ll \kappa$, and the same hold for I^o Sets $_{\kappa}$ for any essentially small I.

Definition 2.2.5.16. A category C that has finite products is *cartesian-closed* if for any $c \in C$, the functor $c \times - : C \to C$ is right-reflexive.

Example 2.2.5.17. For any essentially small category I, the cocomplete category I^o Sets of Example 2.2.5.12 is also complete. Moreover, since $X \times -$ for any $X \in I^o$ Sets obviously preserves colimits, it is right-reflexive, so that I^o Sets is cartesian-closed. Explicitly, the functor I^o Sets $\to I^o$ Sets right-adjoint to $X \times -$ sends $Y \in I^o$ Sets to $\mathcal{H}om(X,Y) \in I^o$ Sets given by

(2.2.5.9)
$$\mathcal{H}om(X,Y)(i) = I^{o} \operatorname{Sets}(X \times Y(i),Y).$$

A useful particular case is X = Y(i), $i \in I$. In this case, the dual counterpart of (2.2.5.2) provides functorial identifications

$$(2.2.5.10) \mathcal{H}om(Y(i), Y) \cong \delta_*^o Y|_{I \times \{i\}}, i \in I, Y \in I^o \text{ Sets,}$$

where $\delta: I \to I \times I$ be the diagonal embedding.

A category \mathcal{I} is *filtered* if any functor $I \to \mathcal{I}$ from a finite I admits a cone. As in Remark 2.2.5.5, it actually suffices to require it for $I = \emptyset$, $\{0,1\}$, \mathbb{I} . A category \mathcal{E} has filtered colimits if $\operatorname{colim}_{\mathcal{I}} E$ exists for any filtered \mathcal{I} and functor $E: \mathcal{I} \to \mathcal{E}$, and an object $e \in \mathcal{E}$ of such a category is *compact* if $\mathcal{E}(e, -)$ preserves all these filtered colimits. Filtered colimits in Sets commute with finite limits; because of this, many "algebraically defined" categories such as Cat also have filtered colimits.

Remark 2.2.5.18. The fact that filtered colimits in Sets commute with finite limits is very standard and fundamental, and although it is not difficult, it does require a proof. The converse – a category I such that colim_I preserves finite limits is filtered – is also true and in fact easier. We do not go into any detail here since in Section 8.6, we will develop the whole story in the enhanced setting (for an unenhanced version of Section 8.6, see the overview paper [K3]).

Remark 2.2.5.19. "Filtered" is actually a mistranslation of the original *filtrant* of [G3]; it should be "filtering". It is very tempting to try to restore the original terminology, but it is probably too late.

2.2.6. Additive categories. For any two objects $A, B \in \mathcal{A}$ in a pointed category \mathcal{A} with the initial-terminal object $0 \in \mathcal{A}$, we have the unique map $A \to B$ that factors through 0; it is denoted by $0 \in \mathcal{A}(A, B)$. If \mathcal{A} has finite products and coproducts, then we also have the natural map

$$(2.2.6.1) \qquad (\mathsf{id}_A \times 0) \sqcup (0 \times \mathsf{id}_B) : A \sqcup B \to A \times B,$$

and \mathcal{A} is *pre-additive* if this map is an isomorphism for any $A, B \in \mathcal{A}$. Once this holds, $\mathcal{A}(A, B)$ acquires a natural structure of a commutative monoid with unity element 0, and \mathcal{A} is *additive* if for any $A, B \in \mathcal{A}$, the monoid $\mathcal{A}(A, B)$ is a group. For an additive category \mathcal{A} , one usually denotes $A \sqcup B \cong A \times B$ by $A \oplus B$, and calls it the *sum* of the objects $A, B \in \mathcal{A}$.

For any additive category A, the category $C_{\cdot}(A)$ of chain complexes in A is also additive. As usual, for any map $f: A_{\cdot} \to B_{\cdot}$ between complexes A_{\cdot} , B_{\cdot} with differentials d_A , d_B , the *cone* Cone(f) is the complex $B_{\cdot} \oplus A_{\cdot}[1]$ with

the differential $d_A + d_B + f$, and we have a natural termwise-split embedding $B_{\bullet} \to \operatorname{Cone}(f)$. A complex A_{\bullet} is *contractible* if $\operatorname{id}_A : A_{\bullet} \to A_{\bullet}$ factors through the embedding $A_{\bullet} \to \operatorname{Cone}(\operatorname{id}_A)$. A morphism $f : A_{\bullet} \to B_{\bullet}$ is a *chain-homotopy equivalence* if $\operatorname{Cone}(f)$ is contractible. Being contractible is closed under sums and retracts, and for any two maps $f : A_{\bullet} \to B_{\bullet}$, $g : B_{\bullet} \to C_{\bullet}$, we have

(2.2.6.2)
$$\operatorname{Cone}(f) \oplus \operatorname{Cone}(g) \cong \operatorname{Cone}(g \circ f) \oplus \operatorname{Cone}(\operatorname{id}_B),$$

so that the class of all chain-homotopy equivalences is closed and saturated in the sense of Definition 2.1.1.4. Two morphisms $f_0, f_1 : A_{\bullet} \to B_{\bullet}$ are *chain-homotopic* if $f_0 \oplus f_1 : A_{\bullet} \oplus A_{\bullet} \to B_{\bullet}$ factors through the embedding $A_{\bullet} \oplus A_{\bullet} \to \operatorname{Cone}(\delta_A)$, where $\delta_A : A_{\bullet} \to A_{\bullet} \oplus A_{\bullet}$ is the diagonal map. Being chain-tomotopic is an equivalence relation. The *chain-homotopy category* $\operatorname{Ho}(A)$ has the same objects as $C_{\bullet}(A)$, and chain-homotopy classes of maps between them as morphisms.

2.3. Fibrations and cofibrations.

2.3.1. The Grothendieck construction. Recall that the right resp. left commacategories $I \setminus_{\gamma} \mathcal{C}$ resp. $\mathcal{C}/_{\gamma} I$ of a functor $\gamma : \mathcal{C} \to I$ are defined by the cartesian squares (2.2.4.5), and γ then has natural decompositions (2.2.4.6).

Definition 2.3.1.1. A functor $\gamma: \mathcal{C} \to I$ is a (Grothendieck) *fibration* if the functor $\eta: \mathcal{C} \to I \setminus_{\gamma} \mathcal{C}$ of (2.2.4.6) is right-reflexive over I. A functor γ is a *cofibration* iff γ^o is a fibration, and it is a *bifibration* if it is both a fibration and a cofibration. A fibration or a cofibration $\mathcal{C} \to I$ is *small* if it is small as a functor (or equivalently, has essentially small fibers \mathcal{C}_{i} , $i \in I$).

Remark 2.3.1.2. One can also describe cofibrations in terms of the left commacategory $C/_{\gamma}I$ and the second decomposition (2.2.4.6).

Example 2.3.1.3. The functor σ resp. τ in (2.2.4.6) is a fibration resp. cofibration.

Lemma 2.3.1.4. A functor $\pi: \mathcal{C} \to I$ is a fibration if and only if the functor

$$\operatorname{ar}(\mathcal{C}) \cong \mathcal{C} \setminus_{\operatorname{id}} \mathcal{C} \xrightarrow{\pi \setminus \operatorname{id}} I \setminus_{\pi} \mathcal{C}$$

admits a fully faithful right-adjoint $(\pi \setminus id)_{\dagger}$. If π is a fibration, then the relative arrow category $\operatorname{ar}(\mathcal{C}|I) \subset \operatorname{ar}(\mathcal{C})$ is right-admissible, and we have a diagram

$$(2.3.1.2) \qquad \operatorname{ar}(\mathcal{C}|I) \xrightarrow{\nu} \operatorname{ar}(\mathcal{C}) \xrightarrow{\nu_{\dagger}} \operatorname{ar}(\mathcal{C}|I)$$

$$\tau \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \tau$$

$$\mathcal{C} \xrightarrow{\eta} I \setminus_{\pi} \mathcal{C} \xrightarrow{\eta_{\dagger}} \mathcal{C}$$

with cartesian squares, where v, v_{+} are the embedding and its right-adjoint.

Proof. If the required right-adjoint $\nu: I \setminus_{\pi} \mathcal{C} \to \operatorname{ar}(\mathcal{C})$ exists, then to obtain the adjoint η_+ of Definition 2.3.1.1, it suffices to take $\eta_+ = \sigma \circ (\pi \setminus \operatorname{id})_+$. Conversely, if π is a fibration, then the required right-adjoint $(\pi \setminus \operatorname{id})_+$ is the functor (2.2.3.2) for the admissible full embedding $\eta: \mathcal{C} \to I \setminus_{\pi} \mathcal{C}$. Now to simplify notation, let $\mathcal{C}_0 = I \setminus_{\pi} \mathcal{C}$; then Lemma 2.2.4.6 for the left-reflexive full embedding $\rho = (\pi \setminus \operatorname{id})_+ : \mathcal{C}_0 \to \operatorname{ar}(\mathcal{C})$ provides an equivalence

$$\operatorname{ar}(\mathcal{C}) \cong \operatorname{ar}(\mathcal{C}) \setminus_{\rho,\mathcal{C}_0} \mathcal{C}_0$$
,

and if we consider its target as a full subcategory in $ar(ar(\mathcal{C})|\mathcal{C})$, the cartesian square (2.2.4.13) induces the cartesian square on the right in (2.3.1.2). By Lemma 2.2.2.2, the adjunction between η and η_{\dagger} then induces an adjunction between ν and ν_{\dagger} .

The notion of a fibration goes back to [G2], but Definition 2.3.1.1 is more modern; let us recall the classical setup and explain the relation between the two. For any functor $\pi:\mathcal{C}\to I$, a map $f:c'\to c$ in \mathcal{C} defines a map $f':\langle c',\operatorname{id}\rangle\to\langle c,\pi(f)\rangle$ in the right comma-fiber $\pi(c')\setminus_{\pi}\mathcal{C}$. The map f is cartesian over I if for any $c''\in\mathcal{C}_{c'}\subset c'\setminus_{\pi}\mathcal{C}$, any map $g:c''\to\langle c',\pi(f)\rangle$ factors uniquely through f'. The functor π is a classical prefibration if for any $c\in\mathcal{C}$ and $g:i\to\pi(c)$, there exists a cartesian map $f:c'\to c$ such that $\pi(f)=g$ (this is called a cartesian lifting of the map g). Equivalently, one can define the strict fiber \mathcal{C}_i^{st} for any $i\in I$ as the subcategory $\mathcal{C}_i^{st}\subset\mathcal{C}$ spanned by objects c with $\pi(c)=i$ and morphisms f with $\pi(f)=\operatorname{id}_i$; then $\mathcal{C}_i^{st}\subset\mathcal{C}_i$ is the full subcategory spanned by pairs $\langle c,\alpha\rangle$ with $\alpha=\operatorname{id}_i$, and π is a classical prefibration if and only if for any $i\in I$, the embedding $v_i:\mathcal{C}_i^{st}\subset\mathcal{C}_i\to i\setminus_{\pi}\mathcal{C}$ has a right-adjoint v_i^{\dagger} . In this case, a map $f:i\to i'$ defines a functor

$$(2.3.1.3) f^* = \nu_i^{\dagger} \circ f^* \circ \nu_{i'} : \mathcal{C}_{i'}^{st} \to \mathcal{C}_i^{st},$$

called the *transition functor* of the prefibration π , where f^* in the right-hand side stands for the functor (2.1.2.4). For any composable pair of maps f, g, we have a functorial map

$$(2.3.1.4) g^* \circ f^* \to (f \circ g)^*.$$

A classical prefibration is a classical *fibration* if a composition of cartesian maps is cartesian, and this is equivalent to saying that the maps (2.3.1.4) are isomorphisms. Grothendieck in [G2] axiomatizes the situation: he says that

a *pseudofunctor* from I^o to the category of categories consists of categories C_i , functors (2.3.1.3) and isomorphisms (2.3.1.4), subject to certain higher constraints, and proves that a pseudofunctor comes from a fibration, uniquely in a suitable sense.

Now, a functor $\pi:\mathcal{C}\to I$ is a fibration in the sense of Definition 2.3.1.1 if and only if the natural projection $\pi':I\times_I\mathcal{C}\to I$ is a classical fibration. Indeed, we have $\mathcal{C}_i\cong (I\times_I\mathcal{C})_i^{st}, i\in I$, the adjoint functors $v_i^\dagger:i\setminus_\pi\mathcal{C}\to\mathcal{C}_i$ are induced by the functor $v^\dagger:I\setminus_\pi\mathcal{C}\to\mathcal{C}$ right-adjoint to v, so that π' is a classical prefibration, and it is easy to check that the maps (2.3.1.4) are then isomorphisms. In the other direction, say that a functor $\pi:\mathcal{C}\to I$ is an *isofibration* if for any $i\in I$, the embedding $\mathcal{C}_i^{st}\subset\mathcal{C}_i$ is an equivalence (or equivalently, if all invertible maps in I admit cartesian liftings). Then π is a classical fibration if and only if it is an isofibration and a fibration in the sense of Definition 2.3.1.1.

The main reason we replace the classical notion of a fibration with Definition 2.3.1.1 is that the classical notion is not invariant under equivalences. In a similar vein, we say that $\pi: \mathcal{C} \to I$ is a *prefibration* if $\pi': I \times_I \mathcal{C} \to I$ is a classical prefibration (or equivalently, if $\mathcal{C}_i \subset i \setminus \mathcal{C}$ is right-admissible for any $i \in I$). The notion of a cartesian map is the same in both approaches; for fibrations, a map $f: c \to c'$ is cartesian over I iff the corresponding object in $\operatorname{ar}(\mathcal{C})$ lies in the essential image of the fully faithful right-adjoint of Lemma 2.3.1.4.

Example 2.3.1.5. For any category C, the tautological projection $C \to \mathsf{pt}$ is a fibration, and a map f in C is cartesian if and only if it is invertible.

The adjoint functors v_i^{\dagger} in (2.3.1.3) are unique up to a unique isomorphism but not strictly unique, so that to obtain a pseudofunctor, one needs to make a choice. Grothendieck call this a *cleavage* of a fibration. In terms of Definition 2.3.1.1, this is codified as follows.

Definition 2.3.1.6. A *cleavage* of a fibration $\pi: \mathcal{C} \to I$ is a pair of a functor $\nu^{\dagger}: I \setminus_{\pi} \mathcal{C} \to \mathcal{C}$ over I and a map id $\to \nu^{\dagger} \circ \nu$ that defines an adjunction in the sense of Definition 2.2.2.1.

A choice of a cleavage is canonical, and unless otherwise specified, we will tacitly assume that it has been made for any fibration in sight, so we can speak about *the* transition functors defined by (2.3.1.3). In particular, we will say that a fibration is *constant* resp. *semiconstant* resp. *fully faithful* over a morphism f if the transition functor f^* is an equivalence resp. an epivalence resp. fully faithful.

Lemma 2.3.1.7. For any fibration $C \to I$, the class W'(C) resp. W(C) of maps f in I such that C is fully faithful resp. constant along f is closed and left-saturated resp. saturated.

Proof. Both classes $W(\mathcal{C})$, $W'(\mathcal{C})$ are obviously closed. Since equivalences are invertible up to an isomorphism, $W(\mathcal{C})$ has the two-out-of-three property. If we have functors $\gamma: \mathcal{C}_i \to \mathcal{C}_{i'}$, $\gamma': \mathcal{C}_{i'} \to \mathcal{C}_{i''}$ such that γ' is fully faithful, then for any $c, c' \in \mathcal{C}_i$, $\gamma': \mathcal{C}_{i'}(\gamma(c), \gamma(c')) \to \mathcal{C}_{i''}(\gamma'(\gamma(c)), \gamma'(\gamma(c')))$ is an isomorphism, so that γ is fully faithful iff so is the composition $\gamma' \circ \gamma$. To finish the proof, it remains to check that $W(\mathcal{C})$ and $W'(\mathcal{C})$ are closed under retracts. Indeed, assume given a commutative diagram

(2.3.1.5)
$$i_{0} \xrightarrow{a} i \xrightarrow{b} i_{0}$$

$$f_{0} \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow f_{0}$$

$$i'_{0} \xrightarrow{a'} i' \xrightarrow{b'} i'_{0}$$

in I such that $b \circ a = \operatorname{id}$ and $b' \circ a' = \operatorname{id}$. Then b'^* is faithful, thus if f^* is fully faithful, so is $f^* \circ b'^* \cong b^* \circ f_0^*$, hence also f_0^* . Moreover, a^* is essentially surjective, thus if f^* is essentially surjective, so is f_0^* . Moreover, for any $c, c' \in \mathcal{C}_{i'_0}$, $g \in \mathcal{C}_{i_0}(f_0^*(c), f_0^*(c'))$, we have $g = a^*(b^*(g))$, and if f^* is full, we have $b^*(g) = f^*(g')$ for some $g' \in \mathcal{C}_{i'}(b'^*(c), b'^*(c'))$, so that $g = f_0^*(a^*(g'))$. Therefore f_0^* is also full.

Remark 2.3.1.8. In the setting of [G2], a cleavage of a (classical) fibration $\mathcal{C} \to I$ is a choice of the adjoint functors v_i^{\dagger} that appear in (2.3.1.3). This defines the transition functors (2.3.1.3) on the nose, and then provides the functorial isomorphisms (2.3.1.4). A cleavage is *strict* if all the isomorphisms (2.3.1.4) are identity maps (this corresponds to a pseudofunctor that is actually a strict functor). While it is not true that any classical fibration $\mathcal{C} \to I$ admits a strict cleavage, it becomes true if I is locally small, and one is allowed to replace \mathcal{C} with an equivalent category \mathcal{C}' (see below Example 2.3.3.9).

The story for cofibrations is dual, and if one wishes, one can also retell it in terms of left comma-categories and comma-fibers, as in Remark 2.3.1.2. In particular, a functor $\pi: \mathcal{C} \to I$ is a *precofibration* — that is, opposite to a prefibration — if and only if $\mathcal{C}_i \subset \mathcal{C}/_\pi i$ is left-admissible for any i. In such a case, we have a transition functor $f_!: \mathcal{C}_i \to \mathcal{C}_{i'}$ for any map $f: i \to i'$ in I, and a natural map

$$(2.3.1.6) (f \circ g)_! \rightarrow f_! \circ g_!$$

for any pair f, g of composable maps. A precofibration is a cofibration if and only if all the maps (2.3.1.6) are isomorphisms.

Lemma 2.3.1.9. Assume given a fibration resp. cofibration $C \to I$ and a right resp. left-admissible full subcategory $I' \subset I$. Then $C' = C \times_I I' \subset C$ is right resp. left-admissible.

Proof. By duality, it suffice to consider the cofibration case. Since the full subcategory $I' \subset I$ is left-admissible, the embedding functor $\gamma : I' \to I$ has a left-adjoint $\gamma_+ : I \to I'$, and we have the adjunction map $a : \operatorname{id} \to \gamma \circ \gamma_+$. Then the left-adjoint $\mathcal{C}' \to \mathcal{C}$ to the full embedding $\mathcal{C}' \to \mathcal{C}$ sends an object $c \in \mathcal{C}_i$, $i \in I$ to $a(i)_!(c) \in \mathcal{C}_{\gamma_+(i)}$.

A useful observation is that if we have a fibration $\pi:\mathcal{C}\to I$, a map $v:c_0\to c_1$ in $\pi^*(\star)$, and a cartesian map $f:c_1'\to c_1$, then the fibered product $c_0'=c_1'\times_{c_1}c_0$ exists in \mathcal{C} and is given by $c_0'=\pi(f)^*c_0$. Then one can define the transpose cofibration $\pi_\perp:\mathcal{C}_\perp\to I^o$ by letting \mathcal{C}_\perp have the same objects as \mathcal{C} , with morphisms from c to c' given by diagrams

$$(2.3.1.7) c \stackrel{f}{\longleftarrow} \widetilde{c} \stackrel{v}{\longrightarrow} c'$$

with cartesian f and $\pi(v)=\operatorname{id}$, and with compositions given by appropriate fibered products. The functor π_{\perp} sends a diagram (2.3.1.7) to $\pi(f)$. The cofibration \mathcal{C}_{\perp}/I^o has the same fibers as \mathcal{C} and the same transition functors $f_{!}^o=f^*:\mathcal{C}_i\to\mathcal{C}_{i'}$, while the maps (2.3.1.6) are inverse to the maps (2.3.1.4). One can then also consider the fibration $\mathcal{C}_{\perp}^o=(\mathcal{C}_{\perp})^o\to I$ opposite to the cofibration $\mathcal{C}_{\perp}\to I^o$; it has fibers $\mathcal{C}_i^o\cong(\mathcal{C}_i)^o$ and transition functors opposite to the transition fibers of the original fibration $\mathcal{C}\to I$. Dually, for a cofibration $\mathcal{C}\to I$, we have the transpose fibration $\mathcal{C}^\perp=(\mathcal{C}_{\perp}^o)^o\to I^o$, and the transpose opposite cofibration $\mathcal{C}_{\perp}^o=(\mathcal{C}_{\perp}^o)_{\perp}\to I$ with fibers \mathcal{C}_i^o .

2.3.2. Cartesian functors. Now assume given a commutative square

(2.3.2.1)
$$C' \xrightarrow{\gamma} C$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi$$

$$I' \xrightarrow{\varphi} I$$

of categories and functors.

Definition 2.3.2.1. If π , π' in (2.3.2.1) are fibrations, with adjoint functors η_{\dagger} , η'_{\dagger} , then γ is *cartesian over* φ if the base change map $\gamma \circ \eta'_{\dagger} \to \eta_{\dagger} \circ (\varphi \setminus \gamma)$ is an

isomorphism. If π and π' are cofibrations, then γ is *cocartesian over* φ if γ^o is cartesian over φ^o .

Equivalently, if we let $(\pi \setminus id)_+$, $(\pi' \setminus id)_+$ be the fully faithful adjoint functors of Lemma 2.3.1.4, then γ in (2.3.2.1) is cartesian over φ iff the base change map $ar(\gamma) \circ (\pi' \setminus id)_+ \to (\pi \setminus id)_+ \circ (id \setminus \gamma)$ is an isomorphism, and the latter happens iff $ar(\gamma)$ sends the essential image of $(\pi' \setminus id)_+$ into the essential image of $(\pi \setminus id)_+$. In other words, γ is cartesian over φ if it sends maps cartesian over I' to maps cartesian resp. cocartesian over I. Dually, γ is cocartesian if it sends cocartesian maps to cocartesian maps. If I' = I and $\varphi = id$, so that γ is a functor over I, then we say that γ is *cartesian resp. cocartesian over* I if it is cartesian resp. cocartesian over I' if it is cartesian resp. cocartesian over I' if it is cartesian resp. I' if I' i

$$(2.3.2.2) \gamma_f : \gamma_i \circ f^* \to f^* \circ \gamma_{i'},$$

one for any morphism $f: i \to i'$ in I, satisfying certain compatibility conditions. We say that γ is *cartesian over* f if (2.3.2.2) is an isomorphism. In this case, (2.3.2.2) defines a commutative square

(2.3.2.3)
$$\begin{array}{ccc}
\mathcal{C}'_{i'} & \xrightarrow{\gamma_i} & \mathcal{C}_{i'} \\
f^* \downarrow & & \downarrow f^* \\
\mathcal{C}'_i & \xrightarrow{\gamma_i} & \mathcal{C}_i
\end{array}$$

and we further say that γ is *strongly cartesian* over f if the square (2.3.2.3) is cartesian. Then γ is cartesian over I if and only if it is cartesian over all maps in I. Dually, a functor $\gamma: \mathcal{C}' \to \mathcal{C}$ over I between two cofibrations $\mathcal{C}, \mathcal{C}' \to I$ is *cocartesian over a map* f if γ^o is cartesian over f^o , and γ is simply *cocartesian* if it is cocartesian over all maps. A cartesian functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between fibrations $\mathcal{C}, \mathcal{C}' \to I$ induces a cocartesian functor $\gamma_{\perp}: \mathcal{C}'_{\perp} \to \mathcal{C}_{\perp}$ between transpose cofibrations, and then an opposite cartesian functor γ^o_{\perp} . If the base category I is small, we denote by

(2.3.2.4) Cat
$$/\!/_{\flat} I$$
, Cat $/\!/_{\sharp} I \subset Cat /\!/_{\star} I$

the subcategories spanned by small categories fibered resp. cofibered over *I*, and cartesian and resp. cocartesian functors between them.

Example 2.3.2.2. The composition $\varphi \circ \gamma : \mathcal{C}' \to I$ of fibrations $\gamma : \mathcal{C}' \to \mathcal{C}$, $\pi : \mathcal{C} \to I$ is trivially a fibration, and γ is cartesian over I.

Example 2.3.2.3. For any fibration $\pi: \mathcal{C} \to I$ and essentially small category I', the functor $\operatorname{Fun}(I',\mathcal{C}) \to \operatorname{Fun}(I',I)$ given by postcomposition with π is a fibration, and for any functor $\gamma: I'' \to I'$ from an essentially small I'', $\gamma^*: \operatorname{Fun}(I',\mathcal{C}) \to \operatorname{Fun}(I'',\mathcal{C})$ is cartesian over $f^*: \operatorname{Fun}(I',I) \to \operatorname{Fun}(I'',I)$ (both claims immediately follow from Example 2.2.1.1).

Example 2.3.2.4. If a commutative square (2.3.2.1) is cartesian, and π is a fibration, then π' is also a fibration, and γ is cartesian over φ . For a general square (2.3.2.1) with fibrations π' , π , γ is cartesian over φ iff the induced functor $\mathcal{C}' \to \varphi^* \mathcal{C}$ is cartesian over I'.

Lemma 2.3.2.5. Assume given a cartesian square (2.1.3.1), and a fibration $\pi: \mathcal{C} \to I$ such that $\pi_l = \pi \circ \gamma_l$ is a fibration and γ_l is cartesian for l = 0, 1. Then $\mathcal{C}_{01} \to I$ is also a fibration, and γ_{01}^0 , γ_{01}^1 are cartesian over I.

Proof. Apply Corollary 2.2.4.7 to the cartesian square

$$\begin{array}{ccc}
I \setminus \mathcal{C}_{01} & \longrightarrow & I \setminus \mathcal{C}_{1} \\
\downarrow & & \downarrow \\
I \setminus \mathcal{C}_{0} & \longrightarrow & I \setminus \mathcal{C}
\end{array}$$

induced by (2.1.3.1), and the right-admissible full embeddings η .

Lemma 2.3.2.6. Assume given a fibration $C \to I$ and a right-admissible full subcategory $C' \subset C$ such that the functor $\gamma : C \to C'$ right-adjoint to the embedding is right-adjoint over I. Then $C' \to I$ is a fibration, and γ is cartesian over I.

Proof. The restriction of $\eta: \mathcal{C} \to I \setminus \mathcal{C}$ to $\mathcal{C}' \subset \mathcal{C}$ is right-reflexive over I, with right-adjoint $\gamma \circ \eta_+$, and then by Lemma 2.2.2.3, this restricts to an adjoint $\eta'_+: I \setminus \mathcal{C}' \to \mathcal{C}'$. Thus \mathcal{C}' is a fibration, and λ is cartesian by construction. \square

Lemma 2.3.2.7. Assume given fibrations $\pi_l: \mathcal{C}_l \to I$, l=0,1, and a functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ cartesian over I. Then σ in (2.2.4.12) is a fibration, and γ is a fibration if and only if $\gamma \setminus_I \operatorname{id}: \operatorname{ar}(\mathcal{C}_0|I) \to \mathcal{C}_1 \setminus_{\gamma,I} \mathcal{C}_0$ admits a fully faithful right-adjoint $(\gamma \setminus_I \operatorname{id})_+$. Moreover, for any two fibrations $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$, $\gamma': \mathcal{C}_0' \to \mathcal{C}_1$, a functor $\varphi: \mathcal{C}_0 \to \mathcal{C}_0'$ over \mathcal{C}_1 is cartesian over \mathcal{C}_1 if and only if (i) it is cartesian over I, and (ii) the base change map $(\varphi \setminus_I \varphi) \circ (\gamma \setminus_I \operatorname{id})_+ \to (\gamma' \setminus_I \operatorname{id})_+ \circ (\operatorname{id} \setminus_I \varphi)$ is an isomorphism.

Proof. Since γ is cartesian, we have a commutative square

(2.3.2.5)
$$\begin{array}{ccc}
\mathcal{C}_{0} & \xrightarrow{\eta} & I \setminus_{\pi_{0}} \mathcal{C}_{0} & \xrightarrow{\eta_{\dagger}} & \mathcal{C}_{0} \\
\gamma \downarrow & & \downarrow \operatorname{id} \setminus \gamma & & \downarrow \gamma \\
\mathcal{C}_{1} & \xrightarrow{\eta} & I \setminus_{\pi_{1}} \mathcal{C}_{1} & \xrightarrow{\eta_{\dagger}} & \mathcal{C}_{1},
\end{array}$$

where η_{\dagger} are as in (2.3.1.2). The diagrams (2.3.1.2) for the given fibrations $\pi_0: \mathcal{C}_0 \to I$ and $\pi_1: \mathcal{C}_1 \to I$ induce a diagram

with cartesian squares, where the middle row is obtained by pulling back $\tau: \operatorname{ar}(\mathcal{C}_1|I) \to \mathcal{C}_1$ to the top row in (2.3.2.5). Then firstly, by Lemma 2.2.2.2, an adjunction between η and η_+ induces an adjunction between v' and v'_+ , so that $\mathcal{C}_1 \setminus_{\gamma}^I \mathcal{C}_{\subset} \mathcal{C}_1 \setminus_{\gamma} \mathcal{C}$ is right-admissible, and σ of (2.2.4.12) is a fibration by Lemma 2.3.2.6. And secondly, the fact that $(\gamma \setminus \operatorname{id})$ in (2.3.2.6) admits a fully faithful right-adjoint iff so does $(\gamma \setminus^I \operatorname{id})$ also follows from Lemma 2.2.2.2. Finally, say that a map v in \mathcal{C}_0 is *cartesian over* $(\mathcal{C}_1|I)$ if $\pi_0(v)$ in invertible, so that v is a map in some fiber \mathcal{C}_{0i} , $i \in I$, and it is then cartesian over \mathcal{C}_{1i} . Then any map f in \mathcal{C}_0 cartesian over \mathcal{C}_1 canonically factors as $f = c \circ v$, with c resp. v cartesian over v resp. v re

Lemma 2.3.2.8. Assume given fibrations $C, C' \to I$, and assume given a functor $\gamma: C' \to C$ cartesian over I.

- (i) If $\gamma_i : \mathcal{C}'_i \to \mathcal{C}_i$ is left-reflexive for any $i \in I$, then γ is left-reflexive over I, and if the square (2.3.2.3) is left-reflexive for any $f : i \to i'$, then the adjoint functor $\gamma^{\dagger} : \mathcal{C} \to \mathcal{C}'$ is cartesian over I.
- (ii) If the square (2.3.2.3) is right-reflexive for any $f: i \to i'$, then γ is right-reflexive over I, and the adjoint functor γ^{\dagger} is cartesian over I.

Proof. In (i), for reflexivity, Lemma 2.3.2.7 and the factorization (2.2.4.12) reduced us to the case $\mathcal{C} = I$, and then to construct an adjoint, it suffices to observe that a comma-fiber $i \setminus \mathcal{C}'$ has an initial element iff so does its right-admissible subcategory $\mathcal{C}'_i \subset i \setminus \mathcal{C}'$. Then the maps (2.3.2.2) for the adjoint functor γ^\dagger are exactly the base change maps (2.2.1.4) for the squares (2.3.2.3), so γ^\dagger is cartesian iff all these squares are left-reflexive. For (ii), consider the transpose-opposite functor γ^o_{\perp} .

Lemma 2.3.2.9. Assume given a commutative diagram

(2.3.2.7)
$$I'_{1} \xrightarrow{\gamma'} I'_{0} \xrightarrow{\pi'} I'$$

$$\downarrow \nu_{0} \qquad \qquad \downarrow \nu$$

$$I_{1} \xrightarrow{\gamma} I_{0} \xrightarrow{\pi} I$$

of essentially small categories with cartesian squares, and assume that π and $\pi \circ \gamma$ are cofibrations, and γ is cocartesian over I. Then for any target category \mathcal{E} and functor $E: I_1 \to \mathcal{E}$ such that $\operatorname{colim}_{I_1/\gamma i} \sigma(i)^* E$ exists for any $i \in I_0$, both $\gamma_! E$ and $\gamma_!' v_1^* E$ exist, and the base change map (2.2.5.4) is an isomorphism.

Proof. The factorization (2.2.4.12) for the functor γ provides an isomorphism $\gamma_! \cong \tau_! \circ \sigma^*$, and similarly for γ' , so that (the dual version of) Lemma 2.3.2.7 reduces us to the case when $I_0 = I$ and $\pi = \mathrm{id}$. Moreover, a map of functors is invertible iff it is invertible at any $i \in I'$, so it further suffices to consider the case $I' = \mathrm{pt}$, $\nu = \varepsilon(i)$ for some $i \in I$. Then the Kan extension $\gamma_!$ is given by (2.2.5.2), and the claim reduces to (2.2.5.5) for the left-admissible full embedding $I_{1i} \subset I_1/\gamma_i$.

If the target category \mathcal{E} in Lemma 2.3.2.9 is complete and cocomplete, then the base change isomorphism (2.2.5.4) induces other useful base change maps. Firstly, we have the adjoint isomorphism

$$(2.3.2.8) \gamma^* \circ \nu_{0*} \cong \nu_{1*} \circ {\gamma'}^*.$$

Secondly, we can apply (2.2.1.4) to (2.2.5.4) and obtain a functorial map

$$(2.3.2.9) \gamma_! \circ \nu_{1*} \rightarrow \nu_{0*} \circ \gamma'_!.$$

In general, it is not an isomorphism, but in some situations, it is (one such appears below in Lemma 2.3.3.21).

Lemma 2.3.2.10. Assume given fibrations C, \overline{C} , C' over a category I, and functors $\rho: C \to \overline{C}$, $F: C \to C'$ cartesian over I. Then ρ is essentially surjective or an epivalence if and only if so is $\rho(i)$ for any $i \in I$, and if ρ is an epivalence, then F factors through ρ if and only if F(i) factors through $\rho(i)$ for any $i \in I$.

Proof. Immediately follows from the description of functors in terms of the maps (2.3.2.2).

Corollary 2.3.2.11. Assume given a commutative diagram of categories and functors

(2.3.2.10)
$$\widetilde{C}'' \xrightarrow{\widetilde{q}} \widetilde{C}' \xrightarrow{\widetilde{p}} \widetilde{C}$$

$$s \downarrow \qquad \qquad \qquad \downarrow s$$

$$C'' \xrightarrow{q} C' \xrightarrow{p} C$$

such that the square on the left is semicartesian, the vertical functors are fibrations, \tilde{p} is conservative, and q is essentially surjective. Then if the outer rectangle is cartesian, both squares are cartesian.

Proof. For any object $c \in C''$, the functors \widetilde{q} and \widetilde{p} induce functors

$$\widetilde{\mathcal{C}}_c^{\prime\prime} \xrightarrow{\widetilde{q}_c} \widetilde{\mathcal{C}}_{q(c)}^{\prime} \xrightarrow{\widetilde{p}_c} \widetilde{\mathcal{C}}_c$$

between the corresponding fibers of the fibrations s, s', the functor \widetilde{q}_c is essentially surjective by Lemma 2.3.2.10, and the functor \widetilde{p}_c is conservative. By Lemma 2.3.2.10, the square on the left is cartesian resp. semicartesian iff \widetilde{q}_c is an equivalence resp. an epivalence for any $c \in \mathcal{C}''$, and since q is essentially surjective, the same holds for the square on the right and \widetilde{p}_c . It remains to apply Lemma 2.1.2.4.

If we have fibrations $\mathcal{C},\mathcal{C}'\to I$ and \mathcal{C} is essentially small, then for any class v of maps in I, we denote by $\operatorname{Fun}_I^v(\mathcal{C},\mathcal{C}')\subset\operatorname{Fun}_I(\mathcal{C},\mathcal{C}')$ the full subcategory spanned by functors cartesian over all maps $f\in v$, and analogouly for $\operatorname{Sec}^v(I,\mathcal{C})$. In particular, $\operatorname{Fun}_I^{\natural}(\mathcal{C},\mathcal{C}')$ consists of all cartesian functors, and $\operatorname{Sec}^{\natural}(I,\mathcal{C})$ consists of all cartesian sections. If I is essentially small, we have a natural equivalence

(2.3.2.11)
$$\operatorname{Sec}^{\natural}(I, \mathcal{C})^{\circ} \cong \operatorname{Sec}^{\natural}(I, \mathcal{C}_{\perp}^{\circ}), \qquad \gamma \mapsto \gamma_{\perp}^{\circ},$$

for any fibration $\mathcal{C} \to I$ with transpose-opposite fibration $\mathcal{C}^o_\perp \to I$.

Example 2.3.2.12. For any essentially small category I and any category C, we have $\operatorname{Fun}(I,C) \cong \operatorname{Sec}(I,C \times I) = \operatorname{Fun}_I(I,C \times I)$, where $C \times I$ is fibered over I via the projection $C \times I$. For any class v of maps in I, we denote

$$\operatorname{Fun}^v(I,\mathcal{C}) = \operatorname{Fun}^v_I(I,\mathcal{C} \times I) \subset \operatorname{Fun}_I(I,\mathcal{C} \times I) \cong \operatorname{Fun}(I,\mathcal{C}).$$

Then explicitly $\operatorname{Fun}^v(I,\mathcal{C}) \subset \operatorname{Fun}(I,\mathcal{C})$ is the full subcategory spanned by functors that invert all maps $f \in v$.

More generally, if the class v is closed, and $C, C' \to I$ are fibrations only over the dense subcategory $I_v \subset I$, then one still has the maps (2.3.2.2) for any $f \in v$, and it makes sense to speak about functors and sections cartesian over v. We will use the same notation.

Lemma 2.3.2.13. Assume given fibrations $C, C' \to I$ over an essentially small category I, and a cartesian functor $\gamma: C \to C'$ left or right-reflexive over I such that the adjoint $\gamma^{\dagger}: C' \to C$ is also cartesian. Then the induced functor $\operatorname{Sec}(\gamma): \operatorname{Sec}^{\natural}(I,C) \to \operatorname{Sec}^{\natural}(I,C')$ is left resp. right-reflexive, with adjoint functor $\operatorname{Sec}(\gamma^{\dagger})$.

Proof. Clear. □

Lemma 2.3.2.14. Assume given a fibration $\pi : \mathcal{C} \to [1]$, two cartesian sections $\gamma, \gamma' : [1] \to \mathcal{C}$, and two maps $f, f' : \gamma \to \gamma'$, Then f(1) = f'(1) implies f(0) = f'(0), and if π is constant, f(0) = f'(0) implies f(1) = f'(1).

Proof. The first claim immediately follows from the universal property of a cartesian map. For the second, note that if π is a constant fibration, then so is $\pi^o: \mathcal{C}^o \to [1]^o \cong [1]$.

2.3.3. Examples. Let us give some examples of fibrations and cofibrations less trivial than Example 2.3.1.5. We start with the following prototypical example.

Example 2.3.3.1. A functor $\mathcal{C} \to [1]$ with fibers \mathcal{C}_0 , \mathcal{C}_1 is a fibration if and only if $\mathcal{C} \cong \mathsf{C}^o(\gamma)$ is the dual cylinder of a functor $\gamma: \mathcal{C}_1 \to \mathcal{C}_0$ in the sense of Definition 2.2.4.1, with γ being the transition functor. Dually, a cofibration $\mathcal{C} \to [1]$ with transition functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ is canonically equivalent to the cylinder $\mathsf{C}(\gamma)$.

Example 2.3.3.2. For any fibration $C \to I$, the induced functor $C^{<} \to I^{<}$ is a fibration (if $I = \mathsf{pt}$, then $C^{<}$ is the dual cylinder of the tautological projection $C \to \mathsf{pt}$, so this is Example 2.3.3.1).

Example 2.3.3.3. For any functor $\gamma: I_0 \to I_1$, giving a fibration $\mathcal{C} \to \mathsf{C}(\gamma)$ is equivalent to giving fibrations $\mathcal{C}_0 \to I_0$, $\mathcal{C}_1 \to I_1$, and a functor $\gamma^*\mathcal{C}_1 \to \mathcal{C}_0$ cartesian over I_0 . In particular, to extend a fibration $\mathcal{C} \to I$ to the category $I^>$, it suffices to specify the fiber \mathcal{C}_o over the added terminal object $o \in I^>$, and a functor $r: \mathcal{C}_o \times I \to \mathcal{C}$ cartesian over I. Dually, extending a cofibration $\mathcal{C} \to I$ to a cofibration over $I^<$ amounts to specifying the fiber \mathcal{C}_o and a cocartesian functor $I: \mathcal{C}_0 \times I \to \mathcal{C}$.

Example 2.3.3.4. A fibration $\mathcal{C}' \to [1]^2$ is the same thing as a commutative diagram (2.1.3.1), with $\mathcal{C} \cong \mathcal{C}'_{0\times 0}$, $\mathcal{C}_0 \cong \mathcal{C}'_{0\times 1}$, $\mathcal{C}_1 \cong \mathcal{C}'_{1\times 0}$, and $\mathcal{C}_{01} \cong \mathcal{C}'_{1\times 1}$. If we identify $[1]^2 \cong \mathsf{V}^>$, we have

$$(2.3.3.1) Sec \natural (V, C') $\cong C_0 \times_C C_1$,$$

and the functor $r: \mathcal{C}_{01} \times V \to \mathcal{C}|_{V}$ of Example 2.3.3.3 induces (2.1.3.2) after taking $Sec^{\natural}(V, -)$.

Definition 2.3.3.5. Assume given a fibration $\mathcal{C} \to I$ and a commutative square in I represented by a functor $\gamma:[1]^2 \to I$. Then \mathcal{C} is *cartesian* resp. *semicartesian* resp. *weakly semicartesian* along γ iff so is the commutative diagram (2.1.3.1) corresponding to $\gamma^*\mathcal{C} \to [1]^2$.

Lemma 2.3.3.6. Assume given two commutative diagrams (2.1.3.1) that are cartesian and represented by fibrations C, $C'/[1]^2$, and a functor $\varphi: C' \to C$ cartesian over $[1]^2$ that is an epivalence over 0×0 and essentially surjective over 1×0 and 0×1 . Then φ is essentially surjective. Moreover, if φ is an equivalence over 0×0 and and epivalence over 1×0 and 0×1 , then it is an epivalence.

Lemma 2.3.3.7. Assume given commutative squares (2.1.3.1) represented by squares $C, C' \to [1]^2$, and a functor $\varphi : C' \to C$ cartesian over $[1]^2$. Then if C is cartesian in the sense of Definition 2.3.3.5, the following conditions are equivalent:

- (i) C' is cartesian resp. semicartesian,
- (ii) $\varepsilon^* \mathcal{C}' \to [1]^2$ is cartesian resp. semicartesian for any cartesian section $\varepsilon : [1]^2 \to \mathcal{C}$ of the fibration $\mathcal{C} \to [1]^2$.

Moreover, if C is only semicartesian, then the semicartesian part of (ii) still implies the semicartesian part of (i).

Example 2.3.3.8. For any category \mathcal{E} , the projection (2.1.4.10) with its fibers Fun(I,\mathcal{E}), $I\in \mathsf{Cat}$ is a fibration whose transition functors are given by pullbacks γ^* with respect to functors $\gamma:I\to I'$. For any closed class of maps v in \mathcal{E} , the induced projection $(\mathsf{Cat}\,/\!/\,\mathcal{E})_{\mathsf{Cat}(v)}\to \mathsf{Cat}$ with its fibers $\mathsf{Fun}(I,\mathcal{E})_v$ is also a fibration, with the same transition functors. If $v=\star$, then the class $\mathsf{Cat}(\star)$ that defines the dense subcategory $\mathsf{Cat}\,/\!/_\star\,\mathcal{E}\subset \mathsf{Cat}\,/\!/\,\mathcal{E}$ consists of all maps cartesian over Cat .

Example 2.3.3.9. Dually, for any small category I, the forgetful functor $I \setminus Cat \to Cat$ with its fibers $(I \setminus Cat)_{\mathcal{C}} \cong Fun(I,\mathcal{C})$ is a cofibration whose transition functor $\gamma_! : Fun(I,\mathcal{C}) \to Fun(I,\mathcal{C}')$ for some $\gamma: \mathcal{C} \to \mathcal{C}'$ is given by postcomposition with γ . In particular, if $I = \operatorname{pt}$, then $Cat_{\cdot} = \operatorname{pt} \setminus Cat$ is the category of pairs $\langle I,i \rangle$ of a small category I and an object $i \in I$, with morphisms $\langle I,i \rangle \to \langle I',i' \rangle$ given by pairs $\langle \gamma,f \rangle$ of a functor $\gamma:I \to I'$ and a morphism $f:\gamma(i) \to i'$. The forgetful functor $\nu_{\cdot}:Cat_{\cdot} \to Cat_{\cdot}$ $\langle I,i \rangle \mapsto I$ is a small cofibration whose fiber over some I is I itself, and whose transition functor associated to a functor $\gamma:I \to I'$ is γ . This cofibration is obtained by applying the Grothendieck construction to the tautological pseudofunctor id: $Cat_{\cdot} \to Cat_{\cdot}$. It is universal in the following sense: if the opposite $Cat_{\cdot} \to Cat_{\cdot}$ is canonically equivalent to $Cat_{\cdot} \to Cat_{\cdot}$, where $Cat_{\cdot} \to Cat_{\cdot}$ are $Cat_{\cdot} \to Cat_{\cdot}$ are $Cat_{\cdot} \to Cat_{\cdot}$. The forgetful functor $Cat_{\cdot} \to Cat_{\cdot}$ is canonically equivalent to $Cat_{\cdot} \to Cat_{\cdot}$ are $Cat_{\cdot} \to Cat_{\cdot}$ are $Cat_{\cdot} \to Cat_{\cdot}$ are $Cat_{\cdot} \to Cat_{\cdot}$.

Example 2.3.3.10. A fibration $\mathcal{C} \to I$ is *discrete* if all its fibers \mathcal{C}_i are essentially discrete. A discrete fibration is automatically faithful. Small discrete fibrations correspond by the Grothendieck construction to functors $X:I^o\to \mathrm{Sets}$ — for any such X, the category IX of pairs $\langle i,x\rangle, i\in I,x\in X$ with the forgetful functor $IX\to I$ is a discrete fibration, and any discrete fibration $\mathcal{C}\to I$ with essentially small fibers is canonically equivalent to $IX\to I$ for a unique X. The category IX is known as the *category of elements* of the functor X. If we extend X to a functor $I^{<olymptox}\to \mathrm{Sets}$ by sending the terminal object $o\in I^{<olymptox}$ to pt, then the fibration $I^{<X}\cong (IX)^{<}\to I^{<}$ is that of Example 2.3.3.2. If X=Y(i) is represented by an object $i\in I$, then $IX\cong I/i$ and $I^{<}X\cong I^{<}/i$. For any $X:I^o\to \mathrm{Sets}$, we have $\lim_{I^o}X\cong \mathrm{Sec}(I,IX)$, where we note that the category $\mathrm{Sec}(I,IX)$ is small and discrete, thus a set, and $\mathrm{colim}_{I^o}X\cong \pi_0(IX)$ is the set of connected components of the small category IX. Dually, a cofibration $\mathcal{C}\to I$ is discrete if so is the opposite fibration $\mathcal{C}^o\to I^o$, and small discrete cofibrations correspond

to functors $I \to \text{Sets}$. We denote the discrete cofibration corresponding to some $X: I \to \text{Sets}$ by $I^{\perp}X \to I$.

Example 2.3.3.11. For any category \mathcal{C} , the projection σ resp. τ of Example 2.1.2.1 is a fibration resp. cofibration, and if \mathcal{C} has pullbacks with respect to maps in a closed class v, then τ is a fibration over \mathcal{C}_v . More generally, for any functor $\gamma: \mathcal{C} \to I$, the projection $\sigma: I \setminus_{\gamma} \mathcal{C} \to I$ of (2.2.4.6) is a fibration, while the projection $\tau: I \setminus_{\gamma} \mathcal{C} \to \mathcal{C}$ is a cofibration, and all the functors $\tau(i)$ of (2.1.2.3) are discrete cofibrations. The functors f^* of (2.1.2.4) are transition functors of the fibration σ (so our notation is consistent). The fibration $I \setminus_{\gamma} \mathcal{C} \to I$ corresponds by the Grothendieck construction to the functor $I^o \to C$ at obtained by applying the extended Yoneda embedding (2.1.4.6) to $\mathcal{C} \in C$ at #I. The situation for left comma-category $\mathcal{C}/_{\gamma}I$ is dual.

Example 2.3.3.12. For any category \mathcal{C} and essentially small category I, the projection $\operatorname{ev}_o:\operatorname{Fun}(I^>,\mathcal{C})\to\mathcal{C}$ given by evaluation at $o\in I^>$ is a cofibration, with fibers $\operatorname{Fun}(I^>,\mathcal{C})_c\cong\operatorname{Fun}(I,\mathcal{C}/c),\,c\in\mathcal{C}$. If we identify $I^>\cong\operatorname{C}(\gamma)$ with the cylinder of the tautological projection $\gamma:I\to\operatorname{pt}$, then in terms of (2.2.4.7), ev_o is the cofibration $\tau:\operatorname{Fun}(I,\mathcal{C})\setminus_{\gamma*}\mathcal{C}\to\mathcal{C}$ of Example 2.3.3.11. Dually, $\operatorname{ev}_o:\operatorname{Fun}(I^<,\mathcal{C})\to\mathcal{C}$ is a fibration with fibers $\operatorname{Fun}(I^<,\mathcal{C})_c\cong\operatorname{Fun}(I,c\setminus\mathcal{C})$.

Example 2.3.3.13. For any category I, the fibration $\operatorname{ar}(I)^{\perp} \to I^o$ transpose to $\tau : \operatorname{ar}(I) \to I$ of Example 2.1.2.1 is the *twisted arrow category* $\operatorname{tw}(I)$ — its objects are arrows $i \to i'$ in I, and morphisms from $i_0 \to i'_0$ to $i_1 \to i'_1$ are given by commutative diagrams

$$\begin{array}{ccc}
i_0 & \longrightarrow & i'_0 \\
\downarrow & & \uparrow \\
i_1 & \longrightarrow & i'_1.
\end{array}$$

As in Example 2.1.2.1, we denote by $\sigma: \mathsf{tw}(I) \to I$ resp. $\tau: \mathsf{tw}(I) \to I^o$ the projections sending $i \to i'$ to i resp. i'; both are fibrations, and so is the product $\sigma \times \tau: \mathsf{tw}(I) \to I^o \times I$. Moreover, the fibration $\sigma \times \tau$ is small and discrete, and if I is essentially small, it corresponds to the functor $(I^o \times I)^o \cong I \times I^o \to \mathsf{Sets}$ sending $i \times i'$ to I(i',i). Alternatively, we can also consider the fibration $\sigma: \mathsf{ar}(I) \to I$, and then $\mathsf{tw}(I) \cong \mathsf{ar}(I)^o_+$ is transpose-opposite to this fibration.

Example 2.3.3.14. For any categories I, I', and a functor $\varphi: I' \to I^o$, define the

twisted comma-category $I \setminus_{\varphi}^{o} I'$ by the cartesian square

(2.3.3.2)
$$I \setminus_{\varphi}^{o} I' \longrightarrow \mathsf{tw}(I)$$

$$\downarrow \qquad \qquad \downarrow \tau$$

$$I' \xrightarrow{\varphi} I^{o},$$

where $\mathsf{tw}(I)$ and τ are as in Example 2.3.3.13. Then the left vertical arrow $I \setminus_{\varphi}^{o} I' \to I'$ in (2.3.3.2) is a fibration that is transpose to the cofibration $\tau: I \setminus_{\varphi} I' \to I'$, and the discrete fibration $\mathsf{tw}(I) \to I^o \times I$ induces a discrete fibration $I \setminus_{\varphi}^{o} I' \to I' \times I$.

Example 2.3.3.15. A discrete fibration $\pi: I' \to I$ is equivalent to the fibration $\sigma(i): I/i \to I$ for some $i \in I$ iff I' has a terminal object σ (and in this case, we have $i = \pi(\sigma)$).

Example 2.3.3.16. A fully faithful embedding $\gamma: \mathcal{C}' \to \mathcal{C}$ is a fibration if and only if the full subcategory $\mathcal{C}' \subset \mathcal{C}$ is left-closed in the sense of Definition 2.1.3.2. In this case, every fiber \mathcal{C}'_c , $c \in \mathcal{C}$ of the fibration γ is essentially small, and in fact, it is either empty, or equivalent to the point category pt. The full subcategory in Cat spanned by \varnothing and pt is equivalent to [1], the characteristic functor (2.1.3.4) for γ is provided by the Grothendieck construction, and $\mathcal{C}' \cong \mathcal{C}_0$ is its fiber over $0 \in [1]$. We note that the projection $t_+: C(\gamma) \to \mathcal{C}$ is both right and left-admissible by Lemma 2.2.4.3, and since the right-adjoint functor $t: \mathcal{C} \to C(\gamma)$ is fully faithful, so is the left-adjoint $t_{++}: \mathcal{C} \to C(\gamma)$. The characteristic functor χ is obtained by composing t_{++} with the projection $C(\gamma) \to [1]$.

Example 2.3.3.17. As a trivial but useful special case of Example 2.3.3.16, consider the full embedding pt $\cong \{\emptyset\} \subset \text{Sets}$. Then it is left-closed, and the characteristic functor $\chi : \text{Sets} \to [1]$ is left-adjoint to the embedding $[1] \to \text{Sets}$ onto $\{\emptyset, \text{pt}\} \subset \text{Sets}$ — it sends \emptyset to 0 and the rest to 1.

Example 2.3.3.18. In the situation of Example 2.1.3.3, since $C = C_0 \cup C_1$, the product $\chi_1 \times \chi_2 : C \to [1]^2$ of the characteristic functors χ_0 , χ_1 for the left-closed subcategories C_0 , $C_1 \subset C$ factors through a joint characteristic functor $\chi : C \to V = [1]^2 \setminus \{1 \times 1\} \subset [1]^2$, where V is as in (2.1.1.3). We then have $C_0 \cong C/\chi_0$, $C_1 \cong C/\chi_1$, and $C_{01} \cong C/\chi_0$. Conversely, for any category C equipped with a functor $\chi : C \to V$, $C_0 \subset C/0$, $C_1 \subset C$ are left-closed full embeddings, and $C_0 = (C/0) \cap (C/1)$, so we are in the situation of Example 2.1.3.3.

Example 2.3.3.19. Assume given a category C_{01} and two left-closed full embeddings $\gamma_0: C_{01} \to C_0$, $\gamma_1: C_{01} \to C_1$ to some categories C_0 , C_1 . Then the cartesian cocartesian square (2.2.5.8) of Example 2.2.5.14 can be also recovered by the Grothendieck construction. Indeed, we have a cofibration $C' \to V$ with fibers $C'_0 = C_{01}$, $C'_0 = C_0$, $C'_1 = C_1$ and transition functors γ_0 , γ_1 . Then as in Example 2.3.3.18, we have $C' = (C'/0) \cup (C'_1)$, and $(C'/l) \cong C(\gamma_l)$, l = 0, 1, so to construct C, it suffices to take the union $C \subset C'$ of the essential images of the left-adjoint functors $C_l \to C(\gamma_l)$ provided by Lemma 2.2.4.3

Example 2.3.3.20. Consider a category I and a functor $X:I^o \to \operatorname{Sets}$, with the corresponding discrete fibration $\pi:IX \to I$. A functor $\gamma:C \to IX$ is a fibration if and only if so is the composition $\pi \circ \gamma:C \to I$, and in this case, γ is cartesian over π . In particular, a map $f:X \to X'$ to another functor $X':I^o \to \operatorname{Sets}$ induces a cartesian functor $I(f):IX \to IX'$, and this functor is automatically a fibration. If f is injective, then I(f) is a left-closed full embedding of Example 2.3.3.16. In general, we have a canonical equivalence between I^o Sets and the full subcategory in Cat I/I_b I spanned by small discrete fibrations. This also provides an equivalence

$$(2.3.3.3) (IX)^{o} Sets \cong I^{o} Sets / X$$

for any $X:I^o\to \operatorname{Sets}$. In terms of the equivalence (2.3.3.3), the forgetful functor $\sigma(X):I^o\operatorname{Sets}/X\to I^o\operatorname{Sets}$ of (2.1.2.3) is identified with the left Kan extension $\pi^o_!$. In particular, the constant functor $\operatorname{pt}:(IX)^o\to\operatorname{Sets}$ with value pt is the terminal object in $(IX)^o\operatorname{Sets}$, thus identified with the terminal object $\operatorname{id}:X\to X$ in $(I^o\operatorname{Sets})/X$, so that $\pi^o_!\operatorname{pt}\cong X$, and we have

(2.3.3.4)
$$\operatorname{Hom}(X,Y) \cong \operatorname{Hom}(\operatorname{pt},\pi^{o*}Y) \cong \operatorname{lim}_{\langle i,x\rangle \in (IX)^o} Y(i)$$

for any $Y: I^o \to \text{Sets}$. More generally, for any complete target category $\mathcal C$ and functor $Y: I^o \to \mathcal C$, we can define $\text{Hom}(X,Y) \in \mathcal C$ by (2.3.3.4), and even if $\mathcal C$ is not complete, we can still use (2.3.3.4) as long as the limit in the right-hand side exists (for example, if X = Y(i) is represented by an object $i \in I$, then Hom(X,Y) = Y(i) is well-defined for any $\mathcal C$). For any functor $X' \in (IX)^o \operatorname{Sets} \cong I^o \operatorname{Sets} / X$, the tautological map $X' \to \operatorname{pt}$ induces a map

$$(2.3.3.5) \qquad \qquad \lim_{I^o} \pi_1^o X' \to \lim_{I^o} \pi_1^o \mathsf{pt} \cong \lim_{I^o} X,$$

elements in its target correspond bijectively to sections $\sigma: I \to IX$ of the discrete

fibration π , and for any such section σ , (2.3.3.5) fits into a cartesian square

(2.3.3.6)
$$\lim_{I^o} \sigma^{o*} X' \longrightarrow \text{pt}$$

$$\downarrow \sigma$$

$$\lim_{I^o} \pi_1^o X' \longrightarrow \lim_{I^o} X,$$

so that (2.3.3.5) represents $\lim_{I^0} \pi_!^0 X'$ as a disjoint union of sets $\lim_{I^0} \sigma^{0*} X'$.

Lemma 2.3.3.21. In the situation of Lemma 2.3.2.9, assume that $\mathcal{E} = \text{Sets}$, $I_0 = I$, $\gamma: I_1 \to I$ is a discrete cofibration corresponding to some functor $X: I \to \text{Sets}$, ν is fully faithful, and the adjunction map $X \to \nu^* \nu_* X$ is an isomorphism. Then the base change map (2.3.2.9) is an isomorphism.

Proof. Since by assumption, the cofibration γ is discrete, it induces an equivalence $\langle i, x \rangle \setminus I_1' \cong i \setminus I'$ for any $\langle i, x \rangle \in I_1 = (I^o X)^o$. Now to check that the map (2.3.2.9) becomes invertible after evaluation at any $X': I_1' \to \text{Sets}$, compute $\nu_* \gamma_!' X'$ by (the dual version of) (2.2.5.2), and use decompositions (2.3.3.5) into components (2.3.3.6) for all the comma-fibers $i \setminus I'$.

Lemma 2.3.3.22. Assume given a category I equipped with three functors $X, X', Y : I^o \to \text{Sets}$ and two morphisms $e: X \to X'$, $f: X \to Y$, and let $Y' = Y \sqcup_X X'$. Then if e is injective, the commutative square

(2.3.3.7)
$$IX \xrightarrow{e} IX'$$

$$f \downarrow \qquad \qquad \downarrow$$

$$IY \longrightarrow IY'$$

of the corresponding discrete fibrations is a cartesian cocartesian square of categories.

Proof. As in Example 2.3.2.12, we can treat functors $IX \to \mathcal{C}$ to some category \mathcal{C} as functors $\gamma: IX \to I \times \mathcal{C}$ over I and then describe them in terms of components $\gamma_i, i \in I$ and maps (2.3.2.2). The same holds for IX', IY and IY', and this reduced the claim to the case $I = \operatorname{pt}$, where it amounts to Example 2.1.3.4.

Remark 2.3.3.23. If f in Lemma 2.3.3.22 is also injective, then (2.3.3.7) is a square of the type described in Example 2.1.3.3.

Definition 2.3.3.24. For any fibration resp. cofibration $\pi: \mathcal{C} \to I$, and any closed class v of maps in I, the class $\pi^{\flat}(v)$ resp. $\pi^{\sharp}(v)$ of maps in \mathcal{C} consists of all cartesian resp. cocartesian liftings of maps $f \in v$.

Remark 2.3.3.25. In the notation of Definition 2.3.3.24, for any fibration $\mathcal{E} \to I$, and any fibration $\pi: I' \to I$ of essentially small categories, (2.1.4.8) restricts to an equivalence

(2.3.3.8)
$$\operatorname{Fun}_{I}^{v}(I',\mathcal{E}) \cong \operatorname{Sec}^{\pi^{\flat}v}(I',\mathcal{E})$$

for any closed class v of morphisms in I.

- **Lemma 2.3.3.26.** (i) Assume given a category I equipped with a factorization system $\langle L, R \rangle$, and a functor $\gamma : I' \to I$. If γ is a fibration, then $\langle \gamma^*(L), \gamma^{\flat}(R) \rangle$ is a factorization system on I'. Dually, if γ is a cofibration, then $\langle \gamma^{\sharp}(L), \gamma^*(R) \rangle$ is a factorization system on I'.
 - (ii) Assume given a category I and a dense subcategory I_R defined by a class of morphisms R. Let $\operatorname{ar}^R(I)$ and σ , τ , η be as in Example 2.2.3.3. Then R fits into a factorization system $\langle L, R \rangle$ on I if and only if τ is a cofibration, and in this case, $L = \eta^*(\tau^\sharp(\star))$ and $\tau^\sharp(\star) = \sigma^*L$. Dually, L fits into a factorization system $\langle L, R \rangle$ if and only if $\sigma : \operatorname{ar}^L(I) \to I$ is a fibration, and then $R = \eta^*(\sigma^\flat(\star))$ and $\sigma^\flat(\star) = \tau^*(R)$.

Proof. Direct inspection.

Example 2.3.3.27. In the situation of Lemma 2.3.3.26 (ii), not only the functor $\tau: \operatorname{ar}^R(I) \to I$ is a cofibration, but so is the functor $\operatorname{ar}(I) \to \operatorname{ar}^R(I)$ left-adjoint to the embedding $\operatorname{ar}^R(I) \subset \operatorname{ar}(I)$. If for any $i \in I$, we let I/Li resp. I/Ri be the subcategories spanned by arrows $i' \to i$ in L resp. in R, then $\tau: \operatorname{ar}^R(I) \to I$ has fibers $\operatorname{ar}^R(I)_i \cong I/Ri$, $i \in I$, while the fiber of $\operatorname{ar}(I) \to \operatorname{ar}^R(I)$ over some arrow $i' \to i$ is I/Li'. The functor $\tau: \operatorname{ar}^R(I)_L \to I_L$ is also a cofibration, and the full embedding $\operatorname{ar}^R(I)_L \to \operatorname{ar}^R(I) \times_I I_L$ is cocartesian over I_L . The situation for $\operatorname{ar}^L(I)$ is dual.

Remark 2.3.3.28. The simplest particular case of Lemma 2.3.3.26 (i) is the factorization system $\langle \star, \natural \rangle$ on I; in this case, the claim is that we have a factorization system $\langle \pi^*(\star), \pi^{\flat}(\natural) \rangle$ on \mathcal{C} , where $\pi^{\flat}(\natural)$ consists of all maps cartesian over I. The adjoint functor (2.3.1.1) is then the left-admissible full embedding of Example 2.2.3.3, and the square (2.2.3.1) is (2.3.1.2).

Example 2.3.3.29. For any essentially small category \mathcal{E} , Fun(\mathcal{E} , -) sends adjoint functors to adjoint functors by Example 2.2.1.1, and it commutes with taking comma-categories. Therefore for any fibration $\pi: \mathcal{C} \to I$, Fun(\mathcal{E} , \mathcal{C}) \to Fun(\mathcal{E} , I)

is a fibration, and we can define the *relative functor category* $\operatorname{Fun}(\mathcal{E},\mathcal{C}|I)$ by the cartesian square

where γ' is as in (2.1.4.4) for the projection $\gamma: I \times \mathcal{E} \to I$ (that is, $\gamma'(i)$, $i \in I$ is the constant functor with value i). Then the vertical arrow on the left in (2.3.3.9) is also a fibration, with fibers Fun($\mathcal{E}, \mathcal{C}_i$, $i \in I$. If $\mathcal{E} = [1]$, then Fun($[1], \mathcal{C}|I$) \cong ar($\mathcal{C}|I$) is the relative arrow category of (2.2.4.9).

Lemma 2.3.3.30. For any category C equipped with a factorization system $\langle L, R \rangle$, and any small I, the full subcategory $\operatorname{Fun}_R(I^>, C) \subset \operatorname{Fun}(I^>, C)$ spanned by functors that factor through $C_R \subset C$ is left-admissible, with some adjoint functor $\gamma : \operatorname{Fun}(I^>, C) \to \operatorname{Fun}_R(I^>, C)$, and the adjunction map $\operatorname{Id} \to \gamma$ is pointwise in L.

Proof. If $I = \operatorname{pt}$, then $I^{>} = [1]$, $\operatorname{Fun}([1], \mathcal{C}) \cong \operatorname{ar}(\mathcal{C})$, $\operatorname{Fun}_{R}([1], \mathcal{C}) \cong \operatorname{ar}^{R}(\mathcal{C})$, and the claim is Example 2.2.3.3. In the general case, consider the cofibration ev_{o} of Example 2.3.3.12, use it to identify

$$(2.3.3.10) \quad \operatorname{Fun}(I^{>}, \mathcal{C}) \cong \operatorname{Fun}(I, \operatorname{ar}(\mathcal{C})|\mathcal{C}), \quad \operatorname{Fun}_{R}(I^{>}, \mathcal{C}) \cong \operatorname{Fun}(I, \operatorname{ar}^{R}(\mathcal{C})|\mathcal{C}),$$

where the relative functor categories of (2.3.3.9) are taken with respect to the projections τ , and use the adjoint functor $\operatorname{ar}(\mathcal{C}) \to \operatorname{ar}^R(\mathcal{C})$ of Example 2.2.3.3 to construct the adjoint functor γ .

2.3.4. Families of groupoids. As usual, a category is a *groupoid* if all its morphisms are invertible (in other words, \mathcal{C} coincides with its isomorphism groupoid \mathcal{C}_{\star} of Definition 2.1.1.2). A groupoid \mathcal{C} is automatically equivalent to its opposite \mathcal{C}^o — the equivalence $\mathcal{C} \cong \mathcal{C}^o$ is identical on objects and inverts all morphisms. For any group G, we denote by pt_G the groupoid with one object with automorphism group G. More generally, if G acts on a set S, the *quotient groupoid* $[S /\!/ G]$ has elements $s \in S$ as objects, with morphisms $s \to s'$ given by elements $g \in G$ such that gs = s'. A groupoid \mathcal{C} is *connected* if it is connected as a category (in particular, non-empty). A connected groupoid is essentially small. For any essentially small groupoid \mathcal{C} , we denote by $\pi_0(\mathcal{C})$ the set of isomorphism classes of objects in \mathcal{C} , and we observe that \mathcal{C} is connected if and only if $\pi_0(\mathcal{C})$ has exactly one element. For any object $c \in \mathcal{C}$, we denote by

 $\pi_1(\mathcal{C},c)$ the automorphism group $\operatorname{Aut}(c)$. For any groupoid \mathcal{C} and two objects $c,c'\in\mathcal{C}$, the group $\pi_1(\mathcal{C},c)$ acts on the set $\mathcal{C}(c,c')$, and if \mathcal{C} is connected, this defines an equivalence $\mathcal{C}\cong\pi_1(\mathcal{C},c)$ -Tors between \mathcal{C} and the category of torsors over the group $\pi_1(\mathcal{C},c)$. We also have an obvious equivalence $\operatorname{pt}_{\pi_1(\mathcal{C},c)}\cong\mathcal{C}$.

Remark 2.3.4.1. Note that even if a group G is finite, pt_G is finite as a category only if G is trivial; otherwise $|pt_G|$ is countable (see Example 2.1.1.3). This is not a bug but a feature.

A functor $\gamma:\mathcal{C}'\to\mathcal{C}$ between groupoids is an equivalence if and only if it admits an adjoint (indeed, both adjunction maps are automatically invertible). Even if γ is not an equivalence, it is tautologically conservative, so it is an epivalence if and only if it is essentially surjective and full. Even if \mathcal{C}' is not a groupoid, γ is automatically a fibration (although not a classical fibration). It is essentially surjective if and only if all its fibers \mathcal{C}'_c , $c\in\mathcal{C}$ are non-empty, and an epivalence if and only if all the fibers \mathcal{C}'_c are connected groupoids.

Example 2.3.4.2. For any group G, a functor $\gamma: \mathcal{C} \to \operatorname{pt}_G$ from some category \mathcal{C} is automatically a fibration, and it is a good formalization of the intuitive notion of a "category with an action of the group G". For example, if G acts on a set S, then for any category C, it acts on the product C of copies of C numbered by elements $s \in S$, and this defines a fibration $C \wr \operatorname{pt}_G \to \operatorname{pt}_G$ with fiber C called the *wreath product* of G and G. If $G \cong \operatorname{pt}_H$ is also a connected groupoid, then $\operatorname{pt}_H \wr \operatorname{pt}_G \cong \operatorname{pt}_{H \wr G}$, where $H \wr G$ is the wreath product of the groups in the usual sense.

For any groupoid $\mathcal C$ and essentially small category I, the functor category $\mathcal C^I$ is a groupoid. The *inertia groupoid* $\mathcal I(\mathcal C)$ is $\mathcal I(\mathcal C) = \mathcal C^{\mathsf{pt}_\mathbb Z}$. The tautological projection $\tau : \mathsf{pt}_\mathbb Z \to \mathsf{pt}$ defines a fully faithful embedding $\tau^* : \mathcal C \to \mathcal I(\mathcal C)$.

Lemma 2.3.4.3. Assume given a functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between groupoids such that the induced functor $\mathcal{I}(\gamma): \mathcal{I}(\mathcal{C}') \to \mathcal{I}(\mathcal{C})$ between inertia groupoids is an epivalence resp. full over $\mathcal{C} \subset \mathcal{I}(\mathcal{C})$. Then γ is an equivalence resp. fully faithful.

Proof. It suffices to prove that $\mathcal{C}'_c \cong \operatorname{pt}$ for any object c in \mathcal{C} resp. in the essential image of γ , and then since for any $c \in \mathcal{C} \subset \mathcal{I}(\mathcal{C})$, we obviously have $\mathcal{I}(\mathcal{C}')_c \cong \mathcal{I}(\mathcal{C}'_c)$, we may assume right away that $\mathcal{C} \cong \operatorname{pt}$. Then by assumption, $\mathcal{I}(\mathcal{C}')$ hence also $\mathcal{C}' = \mathcal{C}'_c$ is connected, so that $\mathcal{C}'_c \cong \operatorname{pt}_G$ for some group G. But objects in $\mathcal{I}(\operatorname{pt}_G)$ are group maps $\mathbb{Z} \to G$, or equivalently, elements $g \in G$, and two objects are isomorphic iff the group elements are conjugate. Therefore any $g \in G$ is conjugate to the unity, so that G is trivial.

Lemma 2.3.4.4. An essentially surjective functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between groupoids is an epivalence if and only if the diagonal functor $\delta: \mathcal{C}' \to \mathcal{C}' \times_{\mathcal{C}} \mathcal{C}'$ is essentially surjective.

Proof. An object in $\mathcal{C}' \times_{\mathcal{C}} \mathcal{C}'$ is a triple $\langle c, c', a \rangle$, $c, c' \in \mathcal{C}'$, $a : \gamma(c) \to \gamma(c')$ a map, and such a triple is isomorphic to some $\langle c'', c'', \mathsf{id} \rangle$, $c'' \in \mathcal{C}'$ if and only if $a = \gamma(a')$ for some $a' : c \to c'$.

Definition 2.3.4.5. A *family of groupoids* over a category I is a fibration $C \to I$ whose fiber C_i is a groupoid for any $i \in I$.

A "family of groupoids" is the best approximation to the original "catégorie fibrée en groupoïdes" that we could find. A fibration $\pi:\mathcal{C}\to I$ is a family of groupoids if and only if all maps in \mathcal{C} are cartesian over I, or equivalently, if $\pi^*(\star)=\star$ (if I= pt, this is Example 2.3.1.5). There is also the following criterion that does not require one to know *a priori* that π is a fibration.

Lemma 2.3.4.6. A functor $\pi: \mathcal{C} \to I$ is a family of groupoids if and only if the corresponding functor (2.3.1.1) is an equivalence.

Proof. If π is a family of groupoids, then (2.3.1.1) has a fully faithful right-adjoint by Lemma 2.3.1.4, and the adjunction map is in $(\pi \setminus id)^*(\star) = \star$. Conversely, if (2.3.1.1) is an equivalence, then π is a fibration by Lemma 2.3.1.4, and moreover, for any functor $\gamma: I' \to I$, with the functor $\gamma': \mathcal{C} = \gamma^*\mathcal{C} \to \mathcal{C}$ and the pullback fibration $\pi': \mathcal{C}' \to I'$, the diagram

$$\begin{array}{ccc} \mathcal{C}' \setminus_{\operatorname{id}} \mathcal{C}' & \xrightarrow{\gamma' \setminus \gamma'} & \mathcal{C} \setminus_{\operatorname{id}} \mathcal{C} \\ \pi' \setminus_{\operatorname{id}} & & & \downarrow \pi \setminus_{\operatorname{id}} \end{array}$$

$$I' \setminus_{\pi'} \mathcal{C}' & \xrightarrow{\gamma \setminus \gamma'} & I \setminus_{\pi} \mathcal{C}$$

is cartesian. Taking as γ the embeddings $\varepsilon(i): \operatorname{pt} \to I$, $i \in I$ of (2.1.1.2), we reduce to the case $I = \operatorname{pt}$. In this case, (2.3.1.1) is just the projection $\tau: \operatorname{ar}(\mathcal{C}) \to \mathcal{C}$, and the fact that it is an equivalence means that its fibers are equivalent to pt , or explicitly, that that for any maps $f: c \to c_0$, $f': c' \to c_0$ in \mathcal{C} , there exists a unique map $g: c \to c'$ such that $f = f' \circ g$. This in turn amounts to saying that every map in \mathcal{C} is invertible.

Example 2.3.4.7. The fibration σ : $\operatorname{ar}^L(I)_R \to I_R$ of Example 2.3.3.27 is a family of groupoids; the corresponding equivalence (2.3.1.1) is provided by the unique factorization property of a factorization system.

For any family of groupoids $\mathcal{C} \to I$, the transpose cofibration $\mathcal{C}_{\perp} \to I^o$ is equivalent to the opposite cofibration $\mathcal{C}^o \to I^o$ over I^o . For any two families of groupoids $\mathcal{C}, \mathcal{C}' \to I$, a functor $\gamma : \mathcal{C} \to \mathcal{C}'$ over I is automatically conservative and cartesian over I, and moreover, it is itself a family of groupoids. A discrete fibration is trivially a family of groupoids. A family of groupoids $\gamma : \mathcal{C} \to I$ is *connected* if it has connected fibers \mathcal{C}_i ; by Lemma 2.3.2.10, this is equivalent to saying that γ is an epivalence (just treat γ as a functor over I). For a small family of groupoids $\gamma : \mathcal{C} \to I$, we denote by $\pi_0(\gamma) : \pi_0(\mathcal{C}|^{\gamma}I) \to I$ the fibration with discrete fibers corresponding the sets $\pi_0(\mathcal{C}_i)$, $i \in I$, we shorten $\mathcal{C}|^{\gamma}I$ to $\mathcal{C}|I$ when γ is clear from the context, and we note that γ canonically factors as

(2.3.4.1)
$$\mathcal{C} \xrightarrow{a} \pi_0(\mathcal{C}|I) \xrightarrow{\pi_0(\gamma)} I,$$

where a is an epivalence (thus a connected family of groupoids). For any section $\sigma: I \to \mathcal{C}$, we denote by $\pi_1(\mathcal{C}, \sigma)$ the functor from I^o to groups that sends $i \in I$ to $\pi_1(\mathcal{C}_i, \sigma(i))$. If $\mathcal{C} \to I$ is connected, then we have a natural equivalence

(2.3.4.2)
$$\mathcal{C} \cong \pi_1(\mathcal{C}, \sigma)$$
-Tors

over I, where for any functor G from I^o to groups, G-Tors is the category of pairs $\langle i, X \rangle$ of an object $i \in I$ and a G(i)-torsor X.

Lemma 2.3.4.8. Assume given a cartesian square (2.1.3.1) such that γ_0 is a connected family of groupoids, and γ_1 is essentially surjective. Then γ_{01}^0 is a connected family of groupoids, and the square is cocartesian.

Proof. The first claim is obvious: γ_{01}^0 is a pullback of a fibration, thus a fibration, and it has the same fibers as γ_0 . The second claim then immediately follows from the factorization property of Lemma 2.3.2.10 and the identifications Fun(I, \mathcal{E}) \cong Fun $_I(I, \mathcal{E} \times I)$ of Example 2.3.2.12.

Lemma 2.3.4.9. Assume given two families of groupoids C', $C/[1]^2$ and a functor $\gamma: C' \to C$ over $[1]^2$, and assume that C and C' are cartesian over $[1]^2$. Then the middle term $\pi_0(C'|C)$ of the factorization (2.3.4.1) is cartesian over $[1]^2$. Moreover, the same is true is C' is only semicartesian but γ is an equivalence over $0 \times 0 \in [1]^2$.

Definition 2.3.4.10. A *presentation* of a functor $\mathcal{C} \to I$ is a pair $\langle \mathcal{C}', \alpha \rangle$ of a category \mathcal{C}' and an epivalence $\alpha : \mathcal{C}' \to \mathcal{C} \times_I \mathcal{C}$. For any two categories \mathcal{C}_0 ,

 C_1 equipped with functors $C_0, C_1 \to I$ and presentations $\langle C_0', \alpha_0 \rangle$, $\langle C_1', \alpha_1 \rangle$, a presentation of a functor $\gamma : C_0 \to C_1$ over I is a functor $\gamma' : C_0' \to C_1'$ equipped with an isomorphism $\alpha_1 \circ \gamma' \cong (\gamma \times \gamma) \circ \alpha_0$.

Example 2.3.4.11. For any categories C, I, I' and functors $C \to I' \to I$, we have a cartesian square

$$(2.3.4.3) \qquad \begin{array}{c} \mathcal{C} \times_{I'} \mathcal{C} & \longrightarrow & \mathcal{C} \times_{I} \mathcal{C} \\ \downarrow & & \downarrow \\ I' & \stackrel{\delta}{\longrightarrow} & I' \times_{I} I, \end{array}$$

where δ is the diagonal embedding. Then a presentation \mathcal{C}' of the functor $\mathcal{C} \to I$ induces a presentation $\delta^*\mathcal{C}'$ of the functor $\mathcal{C} \to I'$.

Lemma 2.3.4.12. Assume given families of groupoids C, $I \to [1]^2$ equipped with an epivalence $\gamma: C \to I$ cartesian over $[1]^2$, and assume that γ admits a presentation $C' \to C \times_I C$, also cartesian over $[1]^2$. Then if C and C' are semicartesian, so is I.

Proof. Identify $[1]^2 \cong V^>$ as in Example 2.3.3.4, with $o \in V^>$ corresponding to $1 \times 1 \in [1]^2$. Then we have epivalences $C_o \to \operatorname{Sec}^{\natural}(V, C)$, $C'_o \to \operatorname{Sec}^{\natural}(V, C')$, and we need to show that $I_o \to \operatorname{Sec}^{\natural}(V, I)$ is also an epivalence. Let $\operatorname{Sec}^{\natural}(V, C)' = \operatorname{Sec}^{\natural}(V, C) \times_{\operatorname{Sec}^{\natural}(V, I)} \operatorname{Sec}^{\natural}(V, C)$. Then $\operatorname{Sec}^{\natural}(V, C') \to \operatorname{Sec}^{\natural}(V, C)'$ is essentially surjective by Lemma 2.3.3.6, so that $C_o \times_{I_o} C_o \to \operatorname{Sec}^{\natural}(V, C)'$ is also essentially surjective. Since $C_o \to I_o$ is an epivalence, $\delta : C_o \to C_o \times_{I_o} C_o$ is essentially surjective by Lemma 2.3.4.4, and then $\delta : \operatorname{Sec}^{\natural}(V, C) \to \operatorname{Sec}^{\natural}(V, C)'$ is also essentially surjective. Since $\operatorname{Sec}^{\natural}(V, C) \to \operatorname{Sec}^{\natural}(V, I)$ is essentially surjective by Lemma 2.3.3.6, it is then an epivalence by Lemma 2.3.4.4, and then $I_o \to \operatorname{Sec}(V, I)$ is an epivalence by Lemma 2.1.2.4. □

In the situation of Definition 2.3.4.10, a presentation γ' of a functor γ defines a commutative square

(2.3.4.4)
$$\begin{array}{ccc} \mathcal{C}'_0 & \xrightarrow{\gamma'} & \mathcal{C}'_1 \\ \pi_0 \circ \alpha_0 \downarrow & & \downarrow \pi_1 \circ \alpha_1 \\ \mathcal{C}_0 & \xrightarrow{\gamma} & \mathcal{C}_1, \end{array}$$

where $\pi_l : \mathcal{C}_l \times_I \mathcal{C}_l \to \mathcal{C}_l$, l = 0, 1 is the projection onto the first factor. Say that the presentation γ' is *strict* if the square (2.3.4.4) is cartesian.

Lemma 2.3.4.13. Assume given connected families of groupoids $C_0, C_1 \to I$ equipped with presentations C'_0, C'_1 , and a functor $\gamma : C_0 \to C_1$ over I that admits a strict presentation $\gamma' : C'_0 \to C'_1$. Then γ is an epivalence.

Proof. It suffices to check that γ is an epivalence over any object $i \in I$, and then since (2.3.4.4) is compatible with pullbacks with respect to functors $I' \to I$, we may assume right away that $I = \operatorname{pt}$. Then $\mathcal{C}_l = \operatorname{pt}_{G_l}$, l = 0,1 are connected groupoids associated to some groups G_0 , G_1 . For any group G, a presentation \mathcal{C}' of the projection $\mathcal{C} = \operatorname{pt}_G \to \operatorname{pt}$ is of the form $\mathcal{C}' = \operatorname{pt}_{G'}$, for some group G' equipped with a surjective map $G' \to G \times G$, and then the kernel $H \subset G$ of the projection $\pi: G' \to G$ onto the first factor maps surjectively onto the second one. In our situation, we have groups G'_0 , G'_1 with subgroups $H_l \subset G'_l$, l = 0, 1, and since (2.3.4.4) is cartesian, the map $H_0 \to H_1$ induced by G' is an isomorphism. Therefore the map $G' \to G_1$ is surjective.

2.4. Fibrations and functoriality.

2.4.1. Relative functor categories. For any functor $\gamma:I\to I'$, and any category $\mathcal C$ equipped with a functor $\pi:\mathcal C\to I$, denote by $\gamma_{\triangleright}\mathcal C$ the same $\mathcal C$ but considered as a category over I' via the functor $\gamma\circ\pi:\mathcal C\to I'$. For any $\mathcal C,\mathcal C'\to I$, a lax functor $\varphi:\mathcal C\to\mathcal C'$ over I induces a lax functor $\gamma_{\triangleright}(\varphi):\gamma_{\triangleright}\mathcal C\to\gamma_{\triangleright}\mathcal C'$, so that γ_{\triangleright} defines a functor

$$(2.4.1.1) \gamma_{\triangleright} : \operatorname{Cat} /\!\!/ I \to \operatorname{Cat} /\!\!/ I'.$$

If we restrict our attention to Cat $/\!/_* I$, and more generally, to all, possibly large categories and functors over I, then γ_{\triangleright} provides a sort of a 2-categorical left-adjoint to the pullback operation γ^* . Namely, for any $\mathcal{C}' \to I'$, we have the projection $\alpha: \gamma_{\triangleright} \gamma^* \mathcal{C}' \cong I \times_{I'} \mathcal{C}' \to \mathcal{C}'$, and for any $\mathcal{C} \to I$, any functor $\varphi: \gamma_{\triangleright} \mathcal{C} \to \mathcal{C}'$ over I' factors as

$$(2.4.1.2) \gamma_{\triangleright} C \xrightarrow{\gamma_{\triangleright}(\phi')} \gamma^* \gamma_{\triangleright} C' \xrightarrow{\alpha} C',$$

where $\varphi': \mathcal{C} \to \gamma^*\mathcal{C}'$ is a functor over I; moreover, the pair of φ' and the factorization (2.4.1.2) is unique up to a unique isomorphism, as in Definition 2.2.2.1. This is just a fancy way of restating the obvious: φ defines a commutative square of categories and functors, and φ' is the corresponding functor (2.1.3.2). As a slightly less obvious application of the Grothendieck construction, let us show that sometimes, γ^* also admits a 2-categorical right-adjoint.

Definition 2.4.1.1. A functor $\gamma: I \to I'$ is *proper* if for any category $\mathcal{C} \to I$ over I, there exists a category $\gamma \triangleleft \mathcal{C} \to I'$ over I' equipped with a functor $\mathsf{ev}: \gamma^* \gamma \triangleleft \mathcal{C} \to \mathcal{C}'$ over I with the following universal property:

• for any category $\mathcal{C}' \to I'$, any functor $\varphi : \gamma^* \mathcal{C}' \to \mathcal{C}$ over I factors as

$$(2.4.1.3) \gamma^* \mathcal{C}' \xrightarrow{\gamma^*(\varphi')} \gamma^* \gamma_{\triangleright} \mathcal{C} \xrightarrow{\text{ev}} \mathcal{C},$$

where $\varphi': \mathcal{C}' \to \gamma_{\triangleleft} \mathcal{C}$ is a functor over I', and the pair of φ' and a factorization (2.4.1.3) is unique up to a unique isomorphism.

For any proper functor $\gamma: I \to I'$, and any category C, the *relative functor category* Fun(I|I',C) is defined by

(2.4.1.4)
$$\operatorname{Fun}(I|I',\mathcal{C}) = \gamma_{\triangleleft}(I \times \mathcal{C}).$$

where $I \times C$ is considered as a category over I via the projection $I \times C \rightarrow I$.

Just as in the usual adjunction situation, if $\mathcal{C}' \to I'$ and $\mathcal{C} \to \mathcal{C}$ are essentially small, the universal factorizations (2.4.1.2), (2.4.1.3) provide equivalences

$$(2.4.1.5) \quad \operatorname{Fun}_{I}(\gamma_{\triangleright}\mathcal{C}',\mathcal{C}) \cong \operatorname{Fun}_{I'}(\mathcal{C}',\gamma^{*}\mathcal{C}), \quad \operatorname{Fun}_{I'}(\gamma^{*}\mathcal{C},\mathcal{C}') \cong \operatorname{Fun}_{I}(\mathcal{C},\gamma_{\triangleleft}\mathcal{C}'),$$

where the second equivalence only exists if γ is proper.

Lemma 2.4.1.2. A small cofibration $\gamma: I \to I'$ is proper in the sense of Definition 2.4.1.1. Moreover, let $I_{\sharp} \subset I$ be the dense subcategory of maps cocartesian over I', with the embedding functor $e: I_{\sharp} \to I$. Then if $e^*\mathcal{C} \to I_{\sharp}$ is a fibration, so is $\gamma_{\lhd}\mathcal{C} \to I$, and in this case, for any functor $\varphi: \gamma^*\mathcal{C} \to \mathcal{C}'$ over I, the correspoding functor φ' in (2.4.1.3) is cartesian over I' iff φ is cartesian over $I_{\sharp} \subset I$.

Proof. We first construct the relative functor categories (2.4.1.4). To do this, for any category \mathcal{C} , we define $\operatorname{Fun}(I|I',\mathcal{C}) \to I'$ as the fibration with fibers $\operatorname{Fun}(I|I',\mathcal{C})_i \cong \operatorname{Fun}(I_i,\mathcal{C}), i \in I'$, and transition functor $(f_!)^*$ for any map $f: i \to i'$, where $f_!: I_i \to I_{i'}$ is the transition functor of the cofibration $\gamma: I \to I'$. Note that a functor $\varphi: \mathcal{C} \to \mathcal{C}'$ induces a functor $\widetilde{\varphi}: \operatorname{Fun}(I|I',\mathcal{C}) \to \operatorname{Fun}(I|I',\mathcal{C}')$, cartesian over I', and if φ is a fibration, then by Lemma 2.3.2.7 and Example 2.3.3.29, so is $\widetilde{\varphi}$. Moreover, for any $i \in I'$, we have the evaluation functor $\operatorname{ev}_i: I_i \times \operatorname{Fun}(I_i,\mathcal{C}) \to \mathcal{C}$, and taken together, these define a functor

$$(2.4.1.6) ev: I \times_{I'} \operatorname{Fun}(I|I', \mathcal{C}) \to \mathcal{C}.$$

We claim that for any category \mathcal{C}' equipped with a functor $\pi: \mathcal{C}' \to I'$, a functor $\varphi: \gamma^* \mathcal{C}' \to \mathcal{C}$ factors uniquely as

$$(2.4.1.7) \gamma^* \mathcal{C}' = I \times_{I'} \mathcal{C}' \xrightarrow{\mathsf{id} \times \varphi'} I \times_{I'} \mathsf{Fun}(I|I',\mathcal{C}) \xrightarrow{\mathsf{ev}} \mathcal{C},$$

for a unique functor $\varphi': \mathcal{C}' \to \operatorname{Fun}(I|I',\mathcal{C})$ over I'. Indeed, for $\mathcal{C}' = I'$, we can take the tautological section $s: I' \to \operatorname{Fun}(I|I',I)$ of the fibration $\operatorname{Fun}(I|I',I) \to I'$ sending $i \in I'$ to the embedding functor $I_i \to I$, and then (2.4.1.7) holds iff $\varphi' \cong \varphi \circ s$; for a general $\pi: \mathcal{C}' \to I'$, it then suffices to observe that $\pi^*\operatorname{Fun}(I|I',\mathcal{C}) \cong \operatorname{Fun}(\gamma^*\mathcal{C}'|\mathcal{C}',\mathcal{C})$. Now $\gamma_{\lhd}(I \times \mathcal{C}) = \operatorname{Fun}(I|I',\mathcal{C})$, with the functor ev given by (2.4.1.6), satisfies the universal property of Definition 2.4.1.1. But this universal property then implies that we have more functoriality: for any two categories \mathcal{C}_0 , \mathcal{C}_1 , a functor $\varphi: I \times \mathcal{C}_0 \to I \times \mathcal{C}_1$ over I induces a functor $\gamma_{\lhd}(\varphi): \gamma_{\lhd}(I \times \mathcal{C}_0) \to \gamma_{\lhd}(I \times \mathcal{C}_1)$. Then for a general $\pi: \mathcal{C} \to I$, we can construct $\gamma_{\lhd}(\mathcal{C})$ by the cartesian square

where $\delta: I \to I \times I$ is the diagonal embedding, and we note that we have $\gamma_{\triangleleft}(I) = \operatorname{Fun}(I|I',\operatorname{pt}) \cong I', \gamma_{\triangleleft}(\delta) \cong s$. Since γ^* preserves cartesian squares, the functor ev for $\mathcal C$ can be induced by the functors ev for the other three terms in (2.4.1.8), and it satisfies the universal property since all three satisfy it. Finally, if $\pi: \mathcal C \to I$ is a fibration over $I_{\sharp} \subset I$, then $\gamma_{\triangleleft}(\operatorname{id} \times \pi) = \widetilde{\pi}$ is a fibration over $\operatorname{Fun}(I|I',I_{\sharp})$, and the functor $\gamma_{\triangleleft}(\delta) \cong s$ in (2.4.1.8) factors through the dense subcategory $\operatorname{Fun}(I|I',I_{\sharp}) \subset \operatorname{Fun}(I|I',I)$.

Example 2.4.1.3. The relative functor category construction allows one to rewrite Example 2.3.3.8 in terms of Example 2.3.3.9: we have

(2.4.1.9)
$$\operatorname{Fun}(\operatorname{Cat}_{\cdot} | \operatorname{Cat}_{\cdot} \mathcal{E}) \cong \operatorname{Cat} /\!\!/ \mathcal{E}$$

for any category \mathcal{E} , and this is an equivalence over Cat. If we denote by Cat. $/\!\!/ \mathcal{E} = \text{Cat.} \times_{\text{Cat}} \text{Cat.} /\!\!/ \mathcal{E}$ the category of triples $\langle I, \alpha, i \rangle$ such that $\langle I, \alpha \rangle \in \text{Cat.} /\!\!/ \mathcal{E}$ and $i \in I$, and let $\nu_{\cdot} : \text{Cat.} /\!\!/ \mathcal{E} \to \text{Cat.} /\!\!/ \mathcal{E}$ be the cofibration induced by Cat. \to Cat, then the functor ev : Cat. $/\!\!/ \mathcal{E} \to \mathcal{E}$ of (2.4.1.6) sends $\langle I, \alpha, i \rangle$ to $\alpha(i)$.

Example 2.4.1.4. Let a group G act on a set S. Take $I = \operatorname{pt}_G$, $I' = \operatorname{pt}$, and let $I^{\bullet} = S_G$ be the quotient groupoid $[S /\!\!/ G]$. Then for any category C, $\operatorname{Fun}(S_G | \operatorname{pt}_G, C) \cong C \wr \operatorname{pt}_G$ is the wreath product of Example 2.3.4.2.

Remark 2.4.1.5. The term "proper" in Definition 2.4.1.1 is somewhat arbitrary and chosen by analogy with algebraic geometry (alternatively, one could say that I is dualizable over I', but it is awkward to apply "dualizable" to a functor). Note that the converse to Lemma 2.4.1.2 is not true. At the very least, the opposite to a proper functor is also obviously proper, so that small fibrations are proper as well. But properness is not an empty condition. What happens is, for any proper $I \to I'$, (2.4.1.5) dictates a canonical description of objects and morphisms of the category $\operatorname{Fun}(I|I',\mathcal{C})$. For objects, take $\mathcal{C}'=\operatorname{pt}$; then objects in $\operatorname{Fun}(I|I',\mathcal{C})$ are pairs of an object $i \in I'$ and a functor $I_i \to \mathcal{C}$. For morphisms, take $\mathcal{C}'=[1]$; then a morphism in $\operatorname{Fun}(I|I',\mathcal{C})$ is the pair of a morphism $f:i\to i'$ in I' and a functor $\varepsilon(f)^*I\to \mathcal{C}$, where $\varepsilon(f):[1]\to I$ is the functor (2.1.4.2). However, while this description makes sense for any small functor $\gamma:I\to I'$, in general, one cannot construct compositions. One possible characterization of proper functors is given below in Remark 5.2.3.5.

For any proper functor $\gamma:I\to I'$, the relative functor categories $\operatorname{Fun}(I|I',\mathcal{C})$ are uniquely defined by the universal property. If $I'=\operatorname{pt}$, so that $\gamma:I\to\operatorname{pt}$ is the tautological projection, then it is proper as soon as I is essentially small, and $\operatorname{Fun}(I|\operatorname{pt},\mathcal{C})\cong\operatorname{Fun}(I,\mathcal{C})$. More generally, assume given a proper functor $I\to I'$, a category \mathcal{C} , and another category I'' and functors $\nu:I\to I''$, $\pi:\mathcal{C}\to I''$. Then we can modify (2.4.1.4) by writing

$$(2.4.1.10) \operatorname{Fun}_{I''}(I|I',\mathcal{C}) = \gamma_{\triangleleft} \nu^* \mathcal{C},$$

and as in (2.1.4.9), this category fits into a cartesian square

$$\operatorname{Fun}_{I''}(I|I',\mathcal{C}) \longrightarrow \operatorname{Fun}(I|I',\mathcal{C}) \\
\downarrow \qquad \qquad \downarrow \pi \circ - \\
I' \xrightarrow{\nu'} \operatorname{Fun}(I|I',I''),$$

where ν' corresponds to ν under (2.4.1.5). Then (2.4.1.6) induces a relative evalution functor

$$(2.4.1.11) ev: I \times_{I'} \operatorname{Fun}_{I''}(I|I', \mathcal{C}) \to \mathcal{C}$$

over I'', and for any $\pi: \mathcal{C}' \to I'$, a functor $\varphi: \gamma^*\mathcal{C}' \to \mathcal{C}$ over I'' admits a version of the unique factorization (2.4.1.7): φ uniquely decomposes as

$$(2.4.1.12) \gamma^* \mathcal{C}' = I \times_{I'} \mathcal{C}' \xrightarrow{\mathsf{id} \times \varphi'} I \times_{I'} \mathsf{Fun}_{I''}(I|I',\mathcal{C}) \xrightarrow{\mathsf{ev}} \mathcal{C},$$

where ev is the functor (2.4.1.11) and φ' is a functor over I. As a further generalization, we may assume given a closed class v of maps in I'' such that

the functors $I, \mathcal{C} \to I''$ are fibration over I''_v , and consider the full subcategory $\operatorname{Fun}^v_{I''}(I|I',\mathcal{C}) \subset \operatorname{Fun}_{I''}(I|I',\mathcal{C})$ spanned by

$$(2.4.1.13) \qquad \operatorname{Fun}_{I''}^{v}(I|I',\mathcal{C})_{i} = \operatorname{Fun}_{I''}^{v}(I_{i},\mathcal{C}) \subset \operatorname{Fun}_{I''}(I_{i},\mathcal{C}) = \operatorname{Fun}_{I''}(I|I',\mathcal{C})_{i}$$

for all $i \in I'$. Then φ' in (2.4.1.12) takes values in $\operatorname{Fun}_{I''}^v(I|I',\mathcal{C})$ if and only if φ is cartesian over all maps in I''.

Example 2.4.1.6. If I' = I'', $C \to I'$ is a fibration over all maps in I', and $I = I' \times I_0$ is a constant cofibration with some essentially small fiber I_0 , then $\operatorname{Fun}_{I'}^{\natural}(I|I',C) \cong \operatorname{Fun}(I_0,C|I')$ is the relative functor category of (2.3.3.9).

2.4.2. Induction and coinduction. For any functor $\pi: \mathcal{C} \to I$, the projection $\sigma: I \setminus_{\pi} \mathcal{C} \to I$ of (2.2.4.6) is a fibration by Example 2.3.3.11, and this fibration has two universal properties. Firstly, for any fibration $\pi': \mathcal{C}' \to I$, a functor $\gamma: \mathcal{C} \to \mathcal{C}'$ over I factors as

$$(2.4.2.1) C \xrightarrow{\eta} I \setminus_{\pi} C \xrightarrow{\widetilde{\gamma}} C',$$

with $\widetilde{\gamma}$ cartesian over I, and the factorization is unique up to a unique isomorphism. Secondly, for any functor $\pi': \mathcal{C}' \to I$, a lax functor $\gamma: \mathcal{C}' \to \mathcal{C}$ over I factors as

$$(2.4.2.2) C' \xrightarrow{\widetilde{\gamma}} I \setminus_{\pi} C \xrightarrow{\tau} C,$$

with $\widetilde{\gamma}$ a functor over I, and the factorization is again unique up to a unique isomorphism. Effectively, if I is small, we have functors

$$(2.4.2.3) Cat //_{\flat} I \xrightarrow{a} Cat //_{\star} I \xrightarrow{b} Cat // I \xrightarrow{Y} Cat //_{\flat} I,$$

with a and b being the embedding functors, and Y sending $\pi: \mathcal{C} \to I$ to $\sigma: I \setminus_{\pi} \mathcal{C} \to I$. Then informally, a is 2-right-adjoint to Y \circ b, and b is 2-left-adjoint to $a \circ Y$, in the appropriate 2-categorical sense. The 2-adjunction maps are functors

$$(2.4.2.4) \eta^{\dagger}: I \setminus_{\pi} \mathcal{C} \to \mathcal{C}, \quad \eta: \mathcal{C} \to I \setminus_{\pi} \mathcal{C}, \quad \tau: I \setminus_{\pi} \mathcal{C} \to \mathcal{C},$$

where η^{\dagger} is right-adjoint to η , and as in Lemma 2.2.1.5, η serves as the adjunction map for both 2-adjunctions. Explicitly, in (2.4.2.1), we have $\widetilde{\gamma} \cong {\eta'}^{\dagger} \circ (\operatorname{id} \setminus \gamma)$, and in (2.4.2.2), $\widetilde{\gamma} \cong (\operatorname{id} \setminus \gamma) \circ \eta$, where $\operatorname{id} \setminus \gamma : I \setminus_{\pi} \mathcal{C}' \to I \setminus_{\pi} \mathcal{C}$ is given by the collection of functors (2.1.2.5), for all $i \in I$. By the same argument as

in Lemma 2.2.1.5, it is a formal consequence of the existence of the two 2-adjunctions that Y is 2-fully faithful, in the sense that for any small I and $C, C' \in \text{Cat} /\!\!/ I$, the functor

$$(2.4.2.5) Y: \overrightarrow{\operatorname{Fun}}_{I}(\mathcal{C}, \mathcal{C}') \to \operatorname{Fun}_{I}^{\natural}(I \setminus \mathcal{C}, I \setminus \mathcal{C}')$$

is an equivalence. This is not surprising, since Y corresponds to the extended Yoneda embedding (2.1.4.6) by the Grothendieck construction.

If one treats the embedding a of (2.4.2.3) as a forgetful 2-functor that forgets the fact that \mathcal{C} is a fibration, then its 2-left-adjoint $Y \circ b$, $\mathcal{C} \mapsto I \setminus \mathcal{C}$ is a sort of a coinduction 2-functor from categories over I to categories fibered over I. If I is essentially small, one can also construct a 2-right-adjoint to a, a sort of an induction 2-functor. This is a corollary of Lemma 2.4.1.2 and the canonical decomposition (2.4.1.12).

Corollary 2.4.2.1. Assume given an essentially small category I and a functor $C \to I$ from some category C. Then there exist a fibration $Ind(C) \to I$ and a functor $\alpha : Ind(C) \to C$ over I such that for any fibration $C' \to I$, any functor $\gamma : C' \to C$ over I factors as

$$(2.4.2.6) \mathcal{C}' \xrightarrow{\gamma'} \operatorname{Ind}(\mathcal{C}) \xrightarrow{\alpha} \mathcal{C},$$

where γ' is cartesian, and the factorization is unique up to a unique isomorphism.

Proof. Consider the arrow category $\operatorname{ar}(I)$, with the functors $\sigma, \tau : \operatorname{ar}(I) \to I$ of Example 2.1.2.1, and their common section $\eta : I \to \operatorname{ar}(I)$ of Example 2.2.3.2. Let $\operatorname{Ind}(\mathcal{C}) = \tau_{\triangleleft} \sigma^* \mathcal{C}$, where τ_{\triangleleft} exists by Lemma 2.4.1.2 since τ is a cofibration, and define α as the composition

$$\operatorname{Ind}(\mathcal{C}) \xrightarrow{\eta \times \operatorname{id}} \operatorname{ar}(I) \times_I \operatorname{Ind}(\mathcal{C}) = \tau^* \tau_{\triangleleft} \sigma^* \mathcal{C} \xrightarrow{\operatorname{ev}} \sigma^* \mathcal{C} \longrightarrow \mathcal{C},$$

where ev is as in Definition 2.4.1.1. By Lemma 2.3.3.26 (ii), morphisms in $\operatorname{ar}(I)$ cocartesian with respect to $\tau:\operatorname{ar}(I)\to I$ are exactly the morphisms inverted by $\sigma:\operatorname{ar}(I)\to I$ (that is, $\tau^\sharp(\natural)=\sigma^*(\star)$). This implies that $\operatorname{Ind}(\mathcal{C})\to I$ is a fibration, also by Lemma 2.4.1.2. Moreover, to obtain the factorizations (2.4.2.6), note that for any fibration $\pi:\mathcal{C}'\to I$, we then have $\tau^\sharp(\pi^\flat(\natural))=\eta_\dagger^*(\star)$, where $\eta_+:\pi^*\operatorname{ar}(I)=I\setminus_\pi\mathcal{C}'\to\mathcal{C}'$ is right-adjoint to $\eta:\mathcal{C}'\to I\setminus_\pi\mathcal{C}'$ (or in words, cocartesian lifting of maps in \mathcal{C}' cartesian over I are exactly maps in $\pi^*\mathcal{C}'$ inverted by η_+). Then by Example 2.2.5.11, any functor $\gamma:\mathcal{C}'\to\mathcal{C}$ over I uniquely factors as $\gamma=\varphi\circ\eta$, where $\varphi=\eta_!(\gamma)\cong\eta_+^*(\gamma):\pi^*\mathcal{C}'\to\mathcal{C}$ is a functor over $\operatorname{ar}(I)$ that inverts all maps in $\tau_+\pi^\dagger\natural$. By by Lemma 2.4.1.2, the functor φ

then admits a unique factorization (2.4.1.12), with the functor φ' cartesian over I. Altogether, we have canonical isomorphisms

$$\alpha \circ \varphi' \cong \operatorname{ev} \circ (\eta \times \operatorname{id}) \circ \varphi' \cong \operatorname{ev} \circ (\eta \times \varphi') \cong \operatorname{ev} \circ (\operatorname{id} \times \varphi') \circ \eta \cong \varphi \circ \eta \cong \gamma$$

 \Box

and to obtain (2.4.2.6), it suffices to take $\gamma' = \varphi'$.

Note that just as the functor categories, $Ind(\mathcal{C})$ in Corollary 2.4.2.1 is uniquely defined by its universal property. Explicitly, we have

$$(2.4.2.7) \operatorname{Ind}(\mathcal{C})_i \cong \operatorname{Fun}_I(I/i,\mathcal{C}) \cong \operatorname{Sec}(I/i,\sigma(i)^*\mathcal{C}), i \in I,$$

and the transition functors are the pullbacks $(f_!)^*$ with respect to the functors (2.1.2.4). For any fibration $\mathcal{C}' \to I$ with essentially small \mathcal{C}' , (2.4.1.5) provides a canonical equivalence

(2.4.2.8)
$$\operatorname{Fun}_{I}(\mathcal{C}',\mathcal{C}) \cong \operatorname{Fun}_{I}^{\natural}(\mathcal{C}',\operatorname{Ind}(\mathcal{C})),$$

the induction property mentioned above. Moreover, assume given a closed class v of maps in I, and assume that C is a fibration over I_v . Then since $\sigma : \operatorname{ar}(I) \to I$ is a fibration, we can consider the full subcategory

$$(2.4.2.9) \qquad \operatorname{Ind}^{v}(\mathcal{C}) = \operatorname{Fun}^{v}_{I}(\operatorname{ar}(I)|I,\mathcal{C}) \subset \operatorname{Fun}_{I}(\operatorname{ar}(I)|I,\mathcal{C}) = \operatorname{Ind}(\mathcal{C})$$

given by (2.4.1.13). The induced projection $\operatorname{Ind}^v(\mathcal{C}) \to I$ is then also a fibration, and for any fibration $\mathcal{C}' \to I$ and functor $\gamma : \mathcal{C}' \to \mathcal{C}$ over I, the corresponding functor $\widetilde{\gamma}$ of (2.4.2.6) factors through $\operatorname{Ind}^v(\mathcal{C}) \subset \operatorname{Ind}(\mathcal{C})$ if and only if γ is cartesian over maps in v. In particular, (2.4.2.8) induces an equivalence

for any fibration $C' \to I$ with C' essentially small.

Remark 2.4.2.2. One can also construct the coinduction operation $Y \circ b$ of (2.4.2.3) in the same way as in Corollary 2.4.2.1: for any $\pi : \mathcal{C} \to I$, we have $Y(b(\mathcal{C})) = I \setminus_{\pi} \mathcal{C} = \sigma_{\triangleright} \tau^* \mathcal{C}$, where σ_{\triangleright} is as in (2.4.1.1).

2.4.3. Kan extensions. Another application of Lemma 2.4.1.2 is a 2-categorical version of the right Kan extension for fibrations. Assume given a functor $\gamma: I' \to I$ such that I' is essentially small, and a fibration $\mathcal{C} \to I'$.

Corollary 2.4.3.1. There exist a fibration $\gamma_*C \to I$ equipped with a functor $\alpha: \gamma^*\gamma_*C \to C$, cartesian over I', such that for any fibration $C' \to I$, any cartesian functor $F: \gamma^*C' \to C$ factors as

$$(2.4.3.1) \gamma^* \mathcal{C}' \xrightarrow{\gamma^* F'} \gamma^* \gamma_* \mathcal{C} \xrightarrow{\text{ev}} \mathcal{C}$$

with $F': \mathcal{C}' \to \gamma_*\mathcal{C}$ cartesian over I, and such a factorization is unique up to a unique isomorphism.

Proof. Take $\gamma_*\mathcal{C} = \operatorname{Fun}_{I'}^{\natural}(I'/\gamma I, \mathcal{C}')$ and $\alpha = \operatorname{ev} \circ (\eta \times \operatorname{id})$. To construct the decomposition (2.4.3.1), use the same argument as in Corollary 2.4.2.1.

Again, for any small fibrations $C' \to I$, $C \to I'$, the canonical factorization (2.4.3.1) provides an equivalence

$$(2.4.3.2) \operatorname{Fun}_{I'}^{\natural}(\gamma^*\mathcal{C}',\mathcal{C}) \cong \operatorname{Fun}_{I}^{\natural}(\mathcal{C}',\gamma_*\mathcal{C}), F \mapsto F',$$

an adjunction between γ^* and γ_* . We have cartesian functors

(2.4.3.3)
$$\alpha: \mathcal{C}' \to \gamma_* \gamma^* \mathcal{C}', \qquad \alpha_+: \gamma^* \gamma_* \mathcal{C}' \to \mathcal{C}'$$

that serve as 2-categorical version of the adjunction maps. For any fibration $\mathcal{C} \to I'$, both $\gamma_* \mathcal{C} \to I'$ and α are uniquely defined by the universal property, and explicitly, we have

(2.4.3.4)
$$\gamma_* \mathcal{C}_i \cong \operatorname{Sec}^{\natural}(I'/\gamma i, \sigma(i)^* \mathcal{C}), \qquad i \in I,$$

a right Kan extension counterpart of (2.2.5.2), where categories of cartesian sections serve as 2-categorical versions of limits. For practical applications, there is also a counterpart of (2.2.5.5) provided by the following result.

Lemma 2.4.3.2. Assume given a fibration $C \to I$ over an essentially small category I, and a left-admissible full subcategory $I' \subset I$, with the embedding functor $\gamma : I' \to I$ and its left-adjoint $\gamma_+ : I \to I'$. Then the pullback functor

$$(2.4.3.5) \gamma^* : \operatorname{Sec}(I, \mathcal{C}) \to \operatorname{Sec}(I', \mathcal{C})$$

is right-admissible, its right-adjoint γ_* is fully faithful, and the adjunction map $s \to \gamma_*(\gamma^*(s))$ is an isomorphism for any section $s \in Sec(I, C)$ cartesian over all of the adjunction maps $i \to \gamma(\gamma_{\dagger}(i))$, $i \in I$.

Proof. The adjoint γ_* is given by

(2.4.3.6)
$$\gamma_*(s)(i) = a^* s(\gamma^{\dagger}(i)), \quad s \in \text{Sec}(I', C),$$

where $a: i \to \gamma(\gamma^{\dagger}(i))$ is the adjunction map. Since $\gamma^{\dagger} \circ \gamma \cong id$, we have $\gamma^{*} \circ \gamma_{*} \cong id$, so that γ_{*} is fully faithful.

In particular, Lemma 2.4.3.2 implies that (2.4.3.5) induces an equivalence

(2.4.3.7)
$$\gamma^* : \operatorname{Sec}^{\natural}(I, \mathcal{C}) \cong \operatorname{Sec}^{\natural}(I', \mathcal{C}),$$

between the categories of cartesian sections, with the inverse equivalence given by (2.4.3.6). This can be used in (2.4.3.4). For example, if $\gamma: I' \to I$ is a cofibration, one can replace the comma-fibers $I'/\gamma i$ in (2.4.3.4) with the usual fibers I'_i , and in the situation of Lemma 2.3.2.9, we have a natural equivalence

$$(2.4.3.8) v_0^* \gamma_* \mathcal{C} \cong \gamma_*' v_1^* \mathcal{C}$$

for any fibration $C \to I_1$. As the following example shows, Lemma 2.4.3.2 is also useful in the context of Corollary 2.4.2.1.

Example 2.4.3.3. Assume given a fibration $\mathcal{C} \to I$ over an essentially small category I. Then by Corollary 2.4.2.1, $\operatorname{id}: \mathcal{C} \to \mathcal{C}$ uniquely factors as $\operatorname{id} \cong \alpha \circ \beta$, for a unique cartesian functor $\beta: \mathcal{C} \to \operatorname{Ind}(\mathcal{C})$. It is easy to see that in this case, the isomorphism $\operatorname{id} \cong \alpha \circ \beta$ defines an adjunction between α and β in the sense of Definition 2.2.2.1 (so that in particular, β is fully faithful). Both are functors over I, and so is the adjunction. Explicitly, in terms of (2.4.2.7), the functor $\alpha(i):\operatorname{Ind}(\mathcal{C})_i \to \mathcal{C}_i$ is given by evaluation at the terminal object $\operatorname{id}:i\to i$ in I/i, and its adjoint $\beta(i)$ is provided by Lemma 2.4.3.2 and identifies \mathcal{C}_i with the subcategory in (2.4.2.7) spanned by cartesian sections.

Example 2.4.3.4. Assume given a factorization system $\langle L, R \rangle$ on an essentially small category I. Then for any category C, one has

$$\operatorname{Ind}^{L}(\mathcal{C} \times I) \cong \operatorname{Fun}(\operatorname{ar}^{R}(I)|I,\mathcal{C}),$$

where the cofibration $\operatorname{ar}^R(I) \to I$ is τ of Lemma 2.3.3.26 (ii). To see this, combine Lemma 2.4.3.2 and Example 2.2.3.3.

For another trivial but useful application of the adjunction (2.4.3.2), consider the cylinder $I = \mathsf{C}(\gamma)$ of a functor $\gamma: I_0 \to I_1$ between essentially small categories, and assume given a functor $\chi: I \to I'$ to some I' with restrictions $\chi_0 = s^*\chi: I_0 \to I'$, $\chi_1 = t^*\chi: I_1 \to I'$, and a fibration $\mathcal{C} \to I'$. Then $t: I_1 \to I$ has the left-adjoint t_+ of (2.2.4.2), we have $\chi_1^*\mathcal{C} \cong t^*\chi^*\mathcal{C} \cong t_{+*}\chi^*\mathcal{C}$, and then (2.4.3.3) for $s: I_0 \to I$ gives a functor

$$\chi_1^* \mathcal{C} \cong t_{1*} \chi^* \mathcal{C} \to t_{1*} s_* s^* \chi^* \mathcal{C} \cong \gamma_* \chi_0^* \mathcal{C}$$

cartesian over I_1 . In particular, if we have a functor $\gamma: I^{\bullet} \to I$ between essentially small categories, and a functor $\chi: I^{\bullet} \to I$ that admits a left Kan extension $\gamma_! \chi: I \to I'$, then the universal relative cone $\chi_{>}: \mathsf{C}(\gamma) \to I'$ and (2.4.3.9) provide a functor

$$(2.4.3.10) \qquad (\gamma_! \chi)^* \mathcal{C} \to \gamma_* \chi^* \mathcal{C}$$

cartesian over *I*.

Example 2.4.3.5. For any category I, Example 2.4.1.3 provides a cofibration ν . : Cat. $/\!\!/ I \rightarrow$ Cat $/\!\!/ I$ and an evaluation functor ev : Cat. $/\!\!/ I \rightarrow I$. Then for any family of groupoids $\mathcal C$ over I, the target of the functor (2.4.3.10) for $\gamma = \nu$., $\chi =$ ev is easy to describe: we have a natural identification

$$(2.4.3.11) v_{\bullet *} \operatorname{ev}^* \mathcal{C} \cong \operatorname{Cat} // \mathcal{C},$$

with the projection to Cat $/\!\!/ I$ induced by the fibration $\pi:\mathcal{C}\to I$. If I is cocomplete, then the fibration Cat $/\!\!/ I\to C$ at is a bifibration, and ev admits a left Kan extension $\nu_{\bullet!}$ ev : Cat $/\!\!/ I\to I$ left-adjoint to the embedding (2.1.4.11). Then (2.4.3.10) is an equivalence if and only if $\mathcal C$ is cocomplete and π preserves colimits.

Example 2.4.3.6. If $\gamma = \varepsilon(i)$: pt $\to I$ is the embedding (2.1.1.2) for an object $i \in I$ in a category I, then for any category C considered as a category fibered over pt, the fibration $\varepsilon(i)_*C \to I$ has fibers $(\varepsilon(i)_*C)_{i'} \cong C^{I(i,i')}$, that is, the product of copies of C numbered by morphisms $i \to i'$. Using this rather trivial observation, one cat extend Example 2.4.1.3 to the situation when we have a closed class v of maps in E: by definition we have a cartesian square

$$(\operatorname{Cat} /\!\!/ \mathcal{E})_{\operatorname{Cat}(v)} \longrightarrow \operatorname{Cat} /\!\!/ \mathcal{E}$$

$$\downarrow \qquad \qquad \downarrow a$$

$$\varepsilon(\operatorname{pt})_* \mathcal{E}_v \longrightarrow \varepsilon(\operatorname{pt})_* \mathcal{E},$$

where a is adjoint to the equivalence $\varepsilon(\mathsf{pt})^*(\mathsf{Cat}\,/\!/\,\mathcal{E}) \cong \mathsf{Fun}(\mathsf{pt},\mathcal{E}) \cong \mathcal{E}$. This gives another description of the dense subcategory $(\mathsf{Cat}\,/\!/\,\mathcal{E})_{\mathsf{Cat}(v)} \subset \mathsf{Cat}\,/\!/\,\mathcal{E}$.

Finally, we note that even if the base I of a fibration $\pi: \mathcal{C} \to I$ is not small, cartesian sections might still form a well-defined category $\operatorname{Sec}^{\natural}(I,\mathcal{C})$. This happens if for any two cartesian sections $\sigma, \sigma': I \to \mathcal{C}$ of π , maps from σ to σ' form a set and not a proper class. In this case, we say that \mathcal{C} is *bounded* over I. For example, by (2.4.3.7), this happens if I admits an essentially small

left-admissible subcategory $I' \subset I$. More generally, this happens if I' is not small but we do know that $\gamma^*\mathcal{C} \to I'$ is bounded. Analogously, if we have a functor $\gamma: I' \to I$ and a fibration \mathcal{C} over I', we will say that \mathcal{C} is bounded with respect to γ if $\sigma(i)^*\mathcal{C}$ is bounded over I'/i for any $i \in I$. In this case, we have a well-defined fibration $\gamma_*\mathcal{C}'$ over I. Note that if γ is a cofibration, then by (2.4.3.7), \mathcal{C}' is bounded with respect to γ if and only if it is bounded over all the fibers I'_i , $i \in I$, and if this happens, we have a natural identification

$$(2.4.3.13) (\gamma_* \mathcal{C})_i \cong \operatorname{Sec}^{\natural}(I_i', \mathcal{C})$$

for any object $i \in I$. If any fibration $\mathcal{C} \to I'$ is bounded with respect to γ , we say that γ itself is bounded; this happens, for example, if all the comma-fibers $I'/_{\gamma}I$ are essentially small, or if γ is a cofibration with essentially small fibers.

Example 2.4.3.7. For any category I with a terminal object $o \in I$, the embedding $\varepsilon(o)$: pt $\to I$ of (2.1.1.2) is left-admissible, so that any fibration $\mathcal{C} \to I$ is bounded with respect to the tautological projection $\pi: I \to \mathsf{pt}$. In fact, we have $\pi_*\mathcal{C} \cong \varepsilon(o)^*\mathcal{C} \cong \mathcal{C}_o$, and α of Corollary 2.4.3.1 is then a functor

$$(2.4.3.14) \pi^* \mathcal{C}_o \cong I \times \mathcal{C}_o \to \mathcal{C}$$

cartesian over I. This coincides with the functor r of Example 2.3.3.3.

Chapter 3

Orders.

This chapter is devoted to partially ordered sets and their generalizations. The chapter is longish since we do need a lot of small facts, but the facts themselves are easy (and not new). The sets themselves are in Section 3.1. Our general attitude is that a partially ordered set is a special type of a small category, and this turns out to be quite productive. The two classes of maps between partially ordered sets that are important for our applications are both defined categorically — these are "left-closed embeddings" and "reflexive maps", finite compositions of left and right-reflexive maps.

Throughout most of the text, we actually do not need arbitrary partially ordered sets, and we restrict our attention to those distinguished by some finiteness condition — we formalise this by introducing the notion of an "ample subcategory" $\mathcal{I} \subset \text{PoSets}$ in the category PoSets of all partially ordered sets. Typical conditions we need are formulated in terms of "chain dimension" and discussed in Subsection 3.1.5; the precise notion of chain dimension that we use is in Definition 3.1.5.3. From the point of view of general theory of partially ordered sets, the sets we need are rather trivial and small. In fact, the only sets we need that are not "left-bounded" in the sense of Definition 3.1.5.4 are κ -directed partially ordered sets for various regular cardinals κ — these are used for the theory of accessible enhanced categories constructed in Subsection 8.6, and discussed in Subsection 3.1.6.

"Barycentric subdivision" of Subsection 3.1.4 is a useful general construction that in particular turns any partially ordered set into a left-finite one. We also need a bunch of specific cocartesian squares and colimits in the category PoSets, and some generalities on such squares; this is the subject of Subsection 3.1.7 and Subsection 3.1.8.

In Subsection 3.1.9, we introduce another class of maps between partially ordered sets that we will need, that of "anodyne maps"; roughly speaking,

these are obtained from reflexive ones by closing with respect to Quillen's Theorem A (see Definition 3.1.9.1 for a precise formulation). All anodyne maps between partially ordered sets induce weak equivalences between their nerves. The converse is probably not true, but no matter; these are the only weak equivalences that we will need. In particular, while it is not true that the barycentric subdivision sends reflexive maps to reflexive ones, it does send anodyne maps to anodyne maps.

Section 3.2 starts with a generalization of some of the material of Section 3.1.1 to *I*-augmented partially ordered sets, for some category *I*. Then we introduce another generalization that will be very useful for us — the notion of a "biordered set" (roughly speaking, a partially ordered set equipped with a factorization system). The theory of biordered sets is the bulk of Section 3.2; in particular, it includes biordered versions of reflexive maps and lef-closed embedding, and also a counterpart of the notion of an anodyne map that we call "bianodyne". In the last Subsection 3.2.9, we combine the two stories and consider *I*-augmented biordered sets. We note that the theory of biordered sets is not needed until approximately Subsection 7.2, so it is safe to skip Section 3.2 until then.

3.1. Partially ordered sets.

3.1.1. Generalities. A *preorder* on a set S is a binary relation \leq that is reflexive $(s \leq s \text{ for any } s \in S)$ and transitive $(s_0 \leq s_1 \text{ and } s_1 \leq s_2 \text{ implies } s_0 \leq s_2)$, but not necessarily antisymmetric. A *preordered set* is a set equipped with a preorder. Equivalently, a preordered set is a small category with at most one morphism between any two objects $(s_0 \leq s_1 \text{ iff there is a morphism } s_0 \rightarrow s_1)$. As usual, a *partial order* on a set S is an antisymmetric preorder $(s_0 \leq s_1 \text{ and } s_1 \leq s_0 \text{ imply } s_0 = s_1)$. A partially ordered set is a set equipped with a partial order. A preordered set is partially ordered if and only if the corresponding small category has exactly one object in each isomorphism class, and as a category, any preordered set is equivalent to a partially ordered one, unique up to a unique isomorphism.

A map between preordered sets S_0 , S_1 — and in particular, a map between partially ordered sets — is a map $f:S_0\to S_1$ that preserves the preorder relation, or equivalently, a functor between the corresponding small categories. We note that such a functor is automatically faithful. A map is *dense* if it is dense as a functor, or equivalently, a bijection of sets. For a given set S, preorders on S and dense maps between them themselves form a preorder that in fact is a

partial order. The minimal preorder on S is the discrete partial order ($s_0 \le s_1$ iff $s_0 = s_1$), and whenever an abstract set S is treated as a preordered one, it is equipped with this discrete partial order. The maximal preorder is the one with $s_0 \le s_1$ for any $s_0, s_1 \in S$; we denote S with this preorder by e(S) (if S is not empty, e(S) is equivalent to pt).

For any preordered set J, the opposite category J^o is also a preordered set, and so are the functor category Fun(I, J) for any small I, and the categories J< resp. $I^{>}$ (explicitly, they are obtained by adding a new smallest resp. largest element o to J). If J is a partially ordered set, then so are J^o , Fun(I, J), $J^{<}$ and $J^{>}$. Functors between partially ordered sets are order-preserving maps $f: I' \to I$, and for any such map, the cylinder C(f) and the dual cylinder $C^{o}(f)$ of Definition 2.2.4.1, as well as the comma-categories $J'/_f J$, $J \setminus_f J'$ of (2.2.4.5) are partially ordered sets. A preordered set is discrete as a category iff the preorder is discrete. Any partially ordered set is rigid in the sense of Definition 2.1.1.2. A full embedding of partially ordered sets is a map $f: J \to J'$ that is full as a functor. Equivalently, f is injective and identifies J with its image $f(J) \subset J'$ with the induced order (that is, $j \leq j'$ iff $f(j) \leq f(j')$). A subset $J \subset J'$ in a partially ordered set J' is always equipped with the induced order unless indicated otherwise. For any map $f: J' \to J$ and element $j \in J$, the fiber J'_i is the preimage $f^{-1}(j) \subset J'$ (with the induced order). A map is *conservative* if it is conservative as a functor, or equivalently, if all its fibers are discrete. Partially ordered sets are equivalent as categories iff they are isomorphic, and functors between partially ordered sets are isomorphic if and only if they are equal. We denote the category of partially ordered sets by PoSets, and as in (2.1.2.1), we let $\iota : \text{PoSets} \to \text{PoSets}$ be the involution $J \mapsto J^{o}$. We have the embedding φ : PoSets \rightarrow Cat and the tautological cofibration

(3.1.1.1)
$$\nu_{\bullet} : PoSets_{\bullet} = \varphi^* Cat_{\bullet} \rightarrow PoSets$$

whose fiber over some J is J itself. Explicitly, PoSets, is the category of pairs $\langle J, j \rangle$, $J \in \text{PoSets}$, $j \in J$, with maps $\langle J, j \rangle \to \langle J', j' \rangle$ given by maps $f : J \to J'$ such that $f(j) \leq j'$. We denote by

$$\nu$$
 : PoSets $=$ PoSets $_{\cdot\perp}^{o} \rightarrow$ PoSets

the transpose opposite cofibration to (3.1.1.1). Then PoSets' $\cong \iota^*$ PoSets. Explicitly, PoSets' is the category of pairs $\langle J,j\rangle$, with maps $\langle J,j\rangle \to \langle J',j'\rangle$ given by maps $f:J\to J'$ such that $f(j)\leq j'$. We also have functors $\nu^>$: PoSets. \to PoSets and $\nu_<$: PoSets' \to PoSets given by

(3.1.1.2)
$$\nu_{>}(\langle J,j\rangle) = J/j, \qquad \nu_{<}(\langle J,j\rangle) = j \setminus J.$$

Explicitly, for any $j \in J$, the comma-set $J/j \subset J$ consists of elements $j' \in J$ such that $j' \leq j$. In particular, $j \in J/j$ is the largest element, and if we denote

$$(3.1.1.3) J/'j = (J/j) \setminus \{j\},$$

then
$$J/j \cong (J/'j)^{>}$$
. Dually, $j \setminus J \cong (j \setminus J)^{<}$, where $j \setminus J = (j \setminus J) \setminus \{j\}$.

A commutative square (2.1.3.1) of partially ordered sets is an honest commutative square in PoSets, and it is cartesian as a commutative square of categories iff it is a cartesian square in PoSets. In particular, PoSets has finite limits. It is also cartesian-closed in the sense of Definition 2.2.5.16, in that for any $J, J' \in \text{PoSets}$, the partially ordered set PoSets(J, J') of maps $f: J \to J'$ with pointwise order satisfies the correponding universal property. For any $J \in \text{PoSets}$, the comma-category PoSets J has finite limits, and we have a pair of adjoint functors

(3.1.1.4)
$$f_!: \text{PoSets }/J \to \text{PoSets }/J', \qquad f^*: \text{PoSets }/J' \to \text{PoSets }/J$$

for any map $f: J \to J'$ in PoSets. For any $J \in$ PoSets and objects $J_0, J_1 \in$ PoSets / J represented by maps $\chi_l: J_l \to J$, l = 0, 1, a lax functor from J_0 to J_1 in the sense of Subsection 2.1.2 is the same thing as an order-preserving map $f: J_0 \to J_1$ such that $\chi_1 \circ f \geq \chi_0$ (since J is a partially ordered set, the map $\alpha: \chi_0 \to f \circ \chi_1$ is unique if it exists, so that being lax is a condition and not a structure). Dually, we will say that f is co-lax over J if $\chi_1 \circ f \leq \chi_0$. Note that a lax map $f: J_0 \to J_1$ resp. a co-lax map $f': J_0 \to J_1$ induces natural maps

$$(3.1.1.5) j \setminus f: j \setminus J_0 \to j \setminus J_1, f'/j: J_0/j \to J_1/j$$

for any element $j \in J$.

For any integer $n \ge 0$, we denote by [n] the totally ordered set of integers $\{0,\ldots,n\}$ with the standard order (equivalently, we can say that $[0]=\operatorname{pt}$ is the point, and $[n+1]=[n]^>$ for any $n\ge 0$). In particular, [1] is the single arrow category, so our notation is consistent. We denote by $\mathbb N$ the partially ordered set of all integers $n\ge 0$, with the standard order. The category $\mathbb V$ of (2.1.1.3) is also a partially ordered set, and we will treat it as such.

For any preordered set J, the Hom-pairing (2.1.3.5) factors through the full subcategory $[1] \subset \text{Sets}$ spanned by $\{\emptyset\}$ and pt, as in Example 2.3.3.16. Conversely, for any small category I, we can define a preordered set $\mathcal{R}ed(I)$ by keeping the same objects, and composing (2.1.3.5) with the adjoint functor $\text{Sets} \to [1]$ of Example 2.3.3.17. Explicitly, $\mathcal{R}ed(I)$ has exactly one map $i \to i'$ for any objects $i, i' \in I$ with non-empty I(i, i'). Then $\mathcal{R}ed(I)$ is equivalent to

a unique partially ordered set Red(I) that we call the *reduction* of I, and the tautological functor $I \to \mathcal{R}ed(I)$ descends to the *reduction functor*

$$(3.1.1.6) R: I \to \text{Red}(I).$$

Any functor $I \to J$ to a partially ordered set J factors uniquely through the reduction functor R, so that Red : Cat \to PoSets is left-adjoint to the full embedding PoSets \to Cat.

Example 3.1.1.1. Let \mathbb{I} be the Kronecker category of Example 2.2.5.4. Then $\operatorname{Red}(\mathbb{I}) \cong [1]$, with the reduction functor sending 0 to 0, 1 to 1 and s, t to the unique map $0 \to 1$ in [1]. This example is universal: a small category \mathcal{C} is a preordered set iff any functor $\mathbb{I} \to \mathcal{C}$ factors through $R : \mathbb{I} \to [1]$.

3.1.2. Left-closed embeddings. A partially ordered set J is *directed* if for any $j_0, j_1 \in I$, there exists $j \in J$ such that $j_0, j_1 \leq j$, or equivalently, if J is filtered as a category.

Example 3.1.2.1. For any set S, the set P(S) of all subsets $S' \subset S$ ordered by inclusion is directed. A map $f: S_0 \to S_1$ between sets S_0 , S_1 induces a map $f^*: P(S_1) \to P(S_0)$, $S' \mapsto f^{-1}(S')$.

Definition 3.1.2.2. A full embedding $f: J \to J'$ in PoSets is *left-closed* iff for any $j \le j' \in J$, $j' \in J$ implies $j \in J$, *right-closed* iff $f^o: J^o \to J'^o$ is left-closed, and *locally closed* if $f(J) \subset J'$ is the intersection of a right-closed and a left-closed subset (or explicitly, if for any $j_0 \le j \le j_1$, j_0 , $j_1 \in f(J)$ we have $j \in f(J)$).

Example 3.1.2.3. For any integers $n \ge m \ge 0$, the only left-closed embedding $[m] \to [n]$ is the embedding $s : [m] \to [n]$ onto the initial segment $\{0,\ldots,m\} \subset \{0,\ldots,n\} = [n]$ of the totally ordered set [n], and the only right-closed embedding is the embedding $t = s^o : [m] \to [n]$ onto the terminal segment $\{n-m,\ldots,n\} \subset [n]$.

Example 3.1.2.4. For any $m \geq 0$, the only left-closed embedding $[m] \to \mathbb{N}$ is the embedding $s : [m] \to \mathbb{N}$ onto the initial segment $\{0, \ldots, m\} \subset \mathbb{N}$ that identifies [m] with the comma-set \mathbb{N}/m . The right comma-fiber $m \setminus \mathbb{N}$ is identified with \mathbb{N} itself, by means of the right-closed embedding $q^m : \mathbb{N} \to \mathbb{N}$, where $q : \mathbb{N} \to \mathbb{N}$ is the shift map $l \mapsto l + 1$.

Example 3.1.2.5. More-or-less by definition, a partially ordered set J is well-ordered iff any non-empty right-closed subset $J' \subset J$ is of the form $J' = j \setminus J$ for

some $j \in J$ (namely, j is the minimal element in J'). In this case, any left-closed subset $J' \subset J$ not equal to J is of the form J' = J/'j, where J/'j is as in (3.1.1.3).

In the categorical language, a full embedding $f: J \to J'$ is left-closed iff it is left-closed in the sense of Definition 2.1.3.2, and by Example 2.3.3.16, this happens iff f is a fibration. Dually, f is right-closed iff it is a cofibration. In the set-theorical language, for any subset $S \subset S'$ in a set S', we have a unique characteristic function $\chi_S: S' \to [1]$ such that $S = \chi_S^{-1}(0)$, and $J \subset J'$ is left-closed iff its characteristic function $\chi_J: J' \to [1]$ is order-preserving. In this case, χ_J coincides with the characteristic functor (2.1.3.4). If we have left-closed subsets $J_0 \subset J'_0$, $J_1 \subset J'_1$ with some characteristic functions $\chi_0: J'_0 \to [1]$, $\chi_1: J'_1 \to [1]$, then an order-preserving map $f: J'_0 \to J'_1$ sends J_0 into J_1 iff it is co-lax over [1] (that is, $\chi_1 \circ f \leq \chi_0$). For any left-closed $J \subset J'$, the complement $J' \setminus J \subset J'$ is right-closed, and vice versa. For any map $f: J' \to J$ and element $j \in J$, the left comma-fiber J'/j is left-closed in J' (explicitly, $J'/j \subset J'$ consists of all $J' \in J'$ such that $f(J') \leq J$. An element $J \in J$ is maximal iff $J \in J'$ such that $J \in J'$ such that $J \in J'$ such that $J \in J'$ is right-closed, and a left-closed embedding $J_0 \subset J'$ is elementary if $J \setminus J_0$ consists of a single maximal element $J \in J$. More generally, giving a filtration

$$(3.1.2.1) J_0 \subset \cdots \subset J_n = J$$

of a partially ordered set J by left-closed subsets $J_i \in J$ is equivalent to giving a map $\chi: J \to [n]$, with $J_i = J/\chi i$. We say that a filtration (3.1.2.1) is *dense* if so is the map χ , or equivalently, if all the left-closed embeddings $J_i \subset J_{i+1}$ are elementary. A partially ordered set J admits a dense filtration iff it is finite. Such a filtration is in general not unique, and any filtration (3.1.2.1) on a finite partially ordered set can be refined to a dense one.

For any partially ordered set J, the full embedding $J \to J^>$ is left-closed and elementary, and it is universal in the following sense: for any left-closed full embedding $J' \to J''$, a map $f: J' \to J$ gives rise to a unique map $p: J'' \to J^>$ that fits into a cartesian square

$$\begin{array}{ccc}
J' & \xrightarrow{f} & J \\
\downarrow & & \downarrow \\
J'' & \xrightarrow{p} & J^{>}.
\end{array}$$

If $J = \operatorname{pt}$ and $J' \to \operatorname{pt}$ is the tautological map, then $J^> = \operatorname{pt}^> = [1]$, and p in (3.1.2.2) is the characteristic map $\chi : J'' \to [1]$ of the subset $J' \subset J''$. Dually, the embedding $J \to J^<$ is right-closed, and enjoys a similar universal property with respect to right-closed embeddings.

Example 3.1.2.6. Let S be a discrete partially ordered set, and consider the set $S^{<}$ and the arrow set $\operatorname{ar}(S^{<})$, with the projection $\tau:\operatorname{ar}(S^{<})\to S^{<}$. Then we can identify $\operatorname{ar}(S^{<})\cong (S\times[1])^{<}$, and under this identification, τ is universal extension of the right-closed embedding $S\to(S\times[1])^{<}$ onto $S\times\{1\}\subset S\times[1]\subset(S\times[1])^{<}$.

The intersection $J_{01} = J_0 \cap J_1 \subset J$ of two left-closed subsets $J_0, J_1 \subset J$ is a left-closed subset, and if $J = J_0 \cup J_1$, then the square (2.2.5.8) of Example 2.1.3.3 gives a cartesian cocartesian square

$$\begin{array}{ccc}
J_{01} & \longrightarrow & J_0 \\
\downarrow & & \downarrow \\
I_1 & \longrightarrow & I
\end{array}$$

in PoSets. We call such squares *standard pushout squares*. By Example 2.3.3.18, they correspond to maps $J \to V$, and by Example 2.3.3.19, for any partially ordered set J_{01} equipped with left-closed full embeddings $J_{01} \to J_0$, $J_{01} \to J_1$, there exists a coproduct $J = J_0 \sqcup_{J_{01}} J_1$ in PoSets that gives a standard square (3.1.2.3). Morphisms between two standard pushout squares correspond to morphisms co-lax over V. Alternatively, for any standard pushout square (3.1.2.3), one can consider the commutative square

$$(3.1.2.4) J_{01} \longrightarrow J_0 \sqcup J_1$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_{01} \longrightarrow J_1$$

and this square is also cartesian and cocartesian.

Example 3.1.2.7. If $J_0 = J \setminus \{j\} \subset J$ is an elementary left-closed full embeding, then we have a standard pushout square (3.1.2.3) with $J_1 = J/j$, and $J_{01} = J_0 \cap J/j = J_0/j = J/j$.

As a generalization of standard pushout squares (3.1.2.3), assume given partially ordered sets J, J', and an order-preserving map $\varphi: J' \to J$. Then we have a functor $J \to \text{PoSets}$, $j \mapsto J'/_{\varphi} j$, and we have an isomorphism

$$(3.1.2.5) J' \cong \operatorname{colim}_{i \in I} J' /_{\varphi} j.$$

We call colimits of this form *standard colimits*. Dually, we can also consider the functor $J^o \to \text{PoSets}$, $j \mapsto j \setminus_{\varphi} J'$, and then we have

$$(3.1.2.6) J' \cong \operatorname{colim}_{i \in I^0} j \setminus_{\emptyset} J'.$$

These colimits are called *co-standard*.

Lemma 3.1.2.8. For any partially ordered set I that has a largest element $o \in I$, PoSets(I, -) preserves the standard colimits (3.1.2.5).

Proof. If we let $\varphi(I) = \varphi \circ \text{ev}_o : \text{PoSets}(I, J') \to J$, where ev_o is evaluation at $o \in I$, then $\text{PoSets}(I, J')/_{\varphi(I)}j \cong \text{PoSets}(I, J'/_{\varphi}j)$ for any $j \in J$.

For any partially ordered set J, we denote by $L(J) \subset P(J)$ the subset of left-closed subsets $J' \subset J$. Sending a subset $J' \in L(J)$ to its characteristic function $\chi_{J'}: J \to [1]$ provides an isomorphism $L(J)^o \cong \operatorname{Fun}(J,[1])$, where we need to take the opposite order on L(J) since $J'_0 \subset J'_1$ iff $\chi_{J'_0} \geq \chi_{J'_1}$. Alternatively, $L(J) \cong J^o[1]$, with the isomorphism sending $J' \subset J$ to the characteristic function $\chi: J^o \to [1]$ of the complement $(J \setminus J')^o \subset J^o$. For any map $f: J_0 \to J_1$, the corresponding map $f^*: P(J_1) \to P(J_0)$ of Example 3.1.2.1 sends $L(J_1) \subset P(J_1)$ into $L(J_0) \subset P(J_0)$; in terms of the identifications $L(J_1) \cong J_1^o[1]$, l = 0, 1, the induced map $L(J_1) \to L(J_0)$ is the pullback map f^{o*} . The Hom-pairing (2.1.3.5) for any $J \in \operatorname{PoSets}$ factors through $[1] \subset \operatorname{Sets}$, and the Yoneda embedding (2.1.4.5) reduces to a map

$$(3.1.2.7) Y: J \to L(J) \cong J^{o}[1], j \mapsto J/j.$$

The gluing construction of Example 2.1.4.3 applies to partially ordered sets, and in this case, (2.1.4.7) reduces to an isomorphism

$$(3.1.2.8) J \cong J_0 \sqcup_{\lambda} J_1,$$

where J is a partially ordered set equipped with a map $J \to [1]$, with left-closed fiber $J_0 \subset J$ and right-closed fiber $J_1 \subset J$, glued along a map $\lambda : J_1 \to L(J_0)$. Explicitly, $J \cong J_0 \sqcup J_1$, with an extra order relation $j_0 \leq j_1$ for any $j_1 \in J_1$ and $j_0 \in \lambda(j_1) \subset J_0$.

For any $J \in \text{PoSets}$, we denote by $L_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J) \subset J \times L(J)$ the "incidence subset" of elements $j \times J'$ such that $j \in J'$. Equivalently, we have a tautological functor $\varphi : L(J) \to \text{PoSets}$, and $L_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J) = \varphi^* \text{PoSets}$, where PoSets. $\to \text{PoSets}$ is the cofibration (3.1.1.1). In terms of the identification $L(J) \cong J^o[1]$, we have the left-closed subset $L^{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J) \subset J^o \times J^o[1]$ corresponding to the evaluation pairing $J^o \times J^o[1] \to [1]$; then $L_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J)$ is the same subset but considered as a subset in $J \times L(J)$. More generally, for any $\mathcal{J} \in \text{PoSets}$ equipped with a map $e : \mathcal{J} \to L(J)$, we let $\mathcal{J}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} = (e \times \text{id})^* L_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J) \subset J \times \mathcal{J}$; explicitly, $\mathcal{J}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ is the set of pairs $\langle j,j' \rangle$ such that $j \in e(j')$. We denote by

(3.1.2.9)
$$\sigma(J): \mathcal{J}_{\bullet} \to J, \qquad \tau(J): \mathcal{J}_{\bullet} \to \mathcal{J}$$

the two projections, and we note that $\tau(J)$ is the cofibration induced from that of Example 2.3.3.9.

Example 3.1.2.9. Take $\mathcal{J} = J$, and let e = Y be the Yoneda embedding (3.1.2.7). Then $\mathcal{J}^{\bullet} = \operatorname{ar}(J)$, with the projections $\sigma(J) = \sigma$, $\tau(J) = \tau$ of Example 2.1.2.1.

3.1.3. Reflexive maps. Another general categorical notion that can be usefully applied to partially ordered sets is that of left and right-reflexive functors of Subsection 2.2.1. Here is the corresponding definition.

Definition 3.1.3.1. An order-preserving map $f: J \to J'$ is *left* resp. *right-reflexive* if there exists a map $f_+: J' \to J$ such that $f_+ \circ f \le \operatorname{id}$, $f \circ f_+ \ge \operatorname{id}$ resp. $f_+ \circ f \ge \operatorname{id}$, $f \circ f_+ \le \operatorname{id}$. A full embedding is *reflexive* if it is a finite composition of left and right-reflexive full embeddings.

Categorically, g is left resp. right-adjoint to f; in particular, it is unique, so that reflexivity is a condition and not a structure, and Definition 3.1.3.1 is consistent with our general categorical usage. If f is a left or right-reflexive full embedding, then $g \circ f = \operatorname{id}$. For any left or right-reflexive full embedding $J \to J'$, the embedding $J \subset J''$ into any $J'' \subset J'$ containing J is tautologically left resp. right-reflexive, with the same adjoint map g, and for any partially ordered set J_0 , the embedding id $\times f: J_0 \times J \to J_0 \times J'$ is left resp right-reflexive, with the adjoint map id $\times g$.

Example 3.1.3.2. For any map $f: S_0 \to S_1$, the map $f^*: P(S_1) \to P(S_0)$ of Example 3.1.2.1 is left-reflexive, with the adjoint $f_!: P(S_0) \to P(S_1)$ sending a subset $S' \subset S_0$ to its image $f(S') \subset S_1$. In fact, f^* is also right-reflexive, but the corresponding adjoint f_* does not seem to have an accepted name.

Lemma 3.1.3.3. An order-preserving map $f: J' \to J$ is right-reflexive if and only if $(f^*)^{-1}(Y(J')) \supset Y(J)$, where Y is the Yoneda embedding (3.1.2.7), and $f^*: L(J) \to L(J')$ is induced by $f^*: P(J) \to P(J')$ of Example 3.1.2.1.

Proof. For any $j \in J$, we have $f^*(J/j) = J'/_f j$ and f has a right-adjoint g iff all these sets have largest elements (namely, $J'/_f j \cong J'/g(j)$).

Example 3.1.3.4. For any $J \in \text{PoSets}$, the embedding $L(J) \to P(J)$ is left-reflexive, with the adjoint

(3.1.3.1)
$$\Lambda: P(J) \to L(J), \qquad J' \mapsto \bigcup_{j \in J'} J/j = J \setminus J'.$$

Example 3.1.3.5. For any map $g: J' \to J$ in PoSets, we have the factorization

$$(3.1.3.2) J' \xrightarrow{\eta} J'/_g J \xrightarrow{\tau} J$$

opposite to (2.2.4.6). Then τ is a cofibration, and η is right-reflexive, with the right-adjoint map $\sigma: J'/_g J \to J'$.

Example 3.1.3.6. For any $n, m \ge 0$, a map $f : [n] \to [m]$ is right-reflexive if and only if f(0) = 0, with the adjoint map f_+ sending an element $l \in [m]$ to $\max\{l' \in [n] | f(l') \le l\}$. In particular, if $n \ge m$, then the left-closed embedding $s : [m] \to [n]$ of Example 3.1.2.3 is right-reflexive, with the adjoint $s_+ : [n] \to [m]$ given by $s_+(l) = l$ if $0 \le l \le m$, and m if $m \le l \le n$. Dually, $f : [n] \to [m]$ is left-reflexive if and only if f(n) = m, with the adjoint f_+ sending $f_+ \in [m]$ to $\min\{l' \in [n] | f(l') \ge l\}$, and in particular, if $f_+ \in [m]$, the right-closed embedding $f_+ \in [m]$ is left-reflexive, with the adjoint map $f_+ \in [m]$ given by $f_+(l) = n - m$, $f_+(l) = l$ otherwise. Note that $f_+(l) = l$ otherwise is a fibration and a cofibration, and so it $f_+(l) = l$ otherwise.

Example 3.1.3.7. More generally, any surjective map $f : [n] \to [m]$ is both right and left-reflexive, and it is both a fibration and a cofibration.

Example 3.1.3.8. For any $m \ge 0$, the left-closed embedding $s : [m] \to \mathbb{N}$ of Example 3.1.2.4 is right-reflexive, with the adjoint map $s_+ : \mathbb{N} \to [m]$ sending $l \in \mathbb{N}$, l < m to itself, and the rest to m. The adjoint map s_+ is again a cofibration. The embedding $\mathbb{N} \cong m \setminus \mathbb{N} \to \mathbb{N}$ is left-reflexive, with the adjoint map sending n to $\max\{0, n - m\}$.

Example 3.1.3.9. Let \mathbb{Z} be the set of integers with the usual order. Then the embedding $\varepsilon(0)$: pt $\to \mathbb{Z}$ onto $0 \in \mathbb{Z}$ is reflexive — indeed, it factors as pt $\to \mathbb{N} \to \mathbb{Z}$, the first embedding is right-reflexive, and the second one is left-reflexive.

Example 3.1.3.10. For any $J \in \text{PoSets}$ equipped with a map $\chi : J \to \mathbb{N}$, the map $\chi \times \text{id} : J \to \mathbb{N}$ is reflexive. Indeed, by (3.1.3.2), $\chi \times \text{id}$ factors as

$$J \xrightarrow{\eta} J/_{\chi} \mathbb{N} \xrightarrow{\sigma \times \tau} J \times \mathbb{N},$$

where η is right-reflexive, $\sigma: J/_{\chi}\mathbb{N} \to J$ is a fibration, and the embedding $\sigma \times \tau$ is cartesian over \mathbb{N} , with fibers given by embeddings $\mathbb{N} \cong \chi(j) \setminus \mathbb{N} \to \mathbb{N}$, $j \in J$, thus left-reflexive by Lemma 2.3.2.8 (ii) and Example 3.1.3.8.

A left-closed embedding $J \to J'$ is right-reflexive iff its characteristic functor $\chi_J : J' \to [1]$ is a fibration. For any map $f : J \to J'$, the cylinder C(f) and the dual cylinder $C^o(f)$ of Definition 2.2.4.1 are functorial with respect to $f \in \operatorname{ar}(\operatorname{PoSets})$, the projection $C(f) \to [1]$ is a cofibration, the projection $C^o(f) \to [1]$ is a

fibration, and (2.2.4.2) is a diagram of partially ordered sets, again functorial with respect to f. If $f: J \to J'$ is a right-reflexive full embedding, with the adjoint map g, then we have maps

(3.1.3.3)
$$C(f) \xrightarrow{\widetilde{f}} J' \times [1] \xrightarrow{\widetilde{g}} C^{o}(g) \cong C(f)$$

over [1] given by f and g over $0 \in [1]$ and id over 1, and \widetilde{f} is a right-reflexive full embedding with the adjoint map \widetilde{g} . In particular, C(f) is a retract of $J' \times [1]$, and the embeddings $s: J \to C(f)$ and $t: J' \to C(f)$ are then retracts of the embeddings id $\times s$, id $\times t: J' \to J' \times [1]$. For a left-reflexive f, the picture is the same, but one has to use $C^o(f) \cong C(g)$ and swap s and t.

Lemma 3.1.3.11. The smallest saturated class of maps in PoSets that contains the projections $J \times [1] \to J$ for all $J \in \text{PoSets}$ also contains all reflexive full embeddings.

Proof. Since saturated classes are closed with respect to compositions, it suffices to consider separately left and right-reflexive full embeddings. For any right-reflexive full embedding $f: J \to J'$, we have the retraction (3.1.3.3), and since $id \times s$, $id \times t: J' \to J' \times [1]$ are both one-sided inverses to the projection $J' \times [1] \to J'$, they lie in our saturated class, and then so do their retracts $s: J \to C(f)$, $t: J' \to C(f)$. Then moreover, so does the one-sided inverse $t_{+}: C(f) \to J'$, and by (2.2.4.2), so does f. For a left-reflexive f with adjoint g, replace C(f) with C(g) and swap g and g.

Example 3.1.3.12. The cylinder C(s) of the universal left-closed embedding $s:[0] \to [1]$ is naturally identified with the ordinal [2], and s and t_{+} in the corresponding decomposition (2.2.4.2) are as in Example 3.1.3.6. The left-adjoint functor $t_{++}:[1] \to [2] \cong C(s)$ provided by Lemma 2.2.4.3 is then given by the embedding $m:[1] \to [2]$ onto $\{0,2\} \subset [2]$. For any left-closed full embedding of categories $\gamma: \mathcal{C}' \to \mathcal{C}$ with the characteristic functor $\chi: \mathcal{C} \to [1]$, (2.2.4.2) fits into a commutative diagram

with cartesian squares, and the functor $t_{++}: \mathcal{C} \to \mathsf{C}(\gamma) \cong [2] \times_{[1]} \mathcal{C}$ of Lemma 2.2.4.3 is given by $t_{++} = (m \circ \chi) \times \mathsf{id}$.

Lemma 3.1.3.13. Assume given a map $q: J_0 \to J_1$ in PoSets, and a left-closed embedding $p: J'_0 \to J_0$. Then the natural map $f: C(q \circ p) \to C(q)$ is a left-reflexive full embedding.

Proof. The adjoint map $g: C(q) \to C(q \circ p)$ is equal to id on the image of f, and sends $\sigma(j)$ for some $j \in J_0 \setminus p(J_0')$ to $\tau(q(j))$.

Example 3.1.3.14. For any J with the tautological map $q: J \to \mathsf{pt}$, we have $\mathsf{C}(q) \cong J^>$. Then for any left-closed embedding $J_0 \to J_1$, the corresponding map $J_0^> \to J_1^>$ is a left-reflexive full embedding by Lemma 3.1.3.13, with the adjoint map $J_1^> \to J_0^>$ sending the whole $J_1^> \to J_0^>$ to $o \in J_0^>$.

Example 3.1.3.15. Let $q:\{0,1\}=\mathsf{pt}\sqcup\mathsf{pt}\to\mathsf{pt}$ be the codiagonal map. Then we have $\mathsf{C}(q)\cong\mathsf{V}^o$, where V is the partially ordered set (2.1.1.3). Lemma 3.1.3.13 shows that the embeddings $\{0\}\subset\mathsf{V}^o,\{1\}\subset\mathsf{V}^o$ are reflexive. Indeed, the embeddings $[1]\cong\mathsf{pt}^>\to\mathsf{V}^o\cong\{0,1\}^>$ induced by the two embeddings $\mathsf{pt}\to\{0,1\}$ are left-reflexive by Lemma 3.1.3.13, and the embedding $s:\mathsf{pt}=[0]\to\mathsf{pt}^>=[1]$ is right-reflexive by Example 3.1.3.8.

In general, a full embedding $J \rightarrow J'$ is reflexive iff there exists a finite sequences of subsets

$$(3.1.3.5) J = J_0' \subset J_1' \subset \cdots \subset J_m' = J'$$

for some $m \ge 0$ equipped with maps $g_l : J'_l \to J'_{l-1} \subset J'_l$, $1 \le l \le m$ such that $g_l = \operatorname{id}$ on $J'_{l-1} \subset J'_l$, and either $g_l \le \operatorname{id}$ or $g_l \ge \operatorname{id}$. Here is a typical example of such a situation.

Example 3.1.3.16. Let Z_{∞} be the partially ordered set of all integers $l \geq 0$, with order relations $2l \leq 2l+1 \geq 2(l+1)$, and no other non-trivial order relations. For any $m \geq 0$, let $Z_m \subset Z_{\infty}$ be the subset $\{0,\ldots,m\} \subset Z_{\infty} \cong \mathbb{N}$. Then the embedding pt $= Z_0 \subset Z_m$ is reflexive, with the sequence (3.1.3.5) consisting of subsets $Z_l \subset Z_m$, $0 \leq l \leq m$, and with the map $g_l : Z_l \to Z_{l-1}$ sending l to l-1. For m=2, we have $Z_2 \cong V^o \cong \{0,1\}^>$, where V is as in (2.1.1.3), while the embedding is onto $\{0\} \subset V^o$, thus coincides with the reflexive embedding of Example 3.1.3.15. We also note that we have a natural map

$$(3.1.3.6) \zeta: \mathsf{Z}_{\infty} \to \mathbb{N}$$

sending 2l, 2l - 1 to l, and for any $m \ge 1$, l = 0, 1, (3.1.3.6) restricts to a map

(3.1.3.7)
$$\zeta_{2m-l}: \mathsf{Z}_{2m-l} \to [m] = \mathbb{N}/m$$

that provides an isomorphism $Z_{2m} \cong Z/_{\zeta}m$ if l=0. The right comma-fiber $m\setminus_{\zeta} Z_{\infty}$ is naturally identified with Z_{∞} , and we have a standard pushout square

$$\begin{array}{ccc}
& \text{pt} & \xrightarrow{\varepsilon(2m)} & \mathsf{Z}_{2m} \\
& & & & \downarrow \\
& \mathsf{Z}_{\infty} & \xrightarrow{p^n} & \mathsf{Z}_{\infty},
\end{array}$$

where $p: Z_{\infty} \to Z_{\infty}$ is the shift map $l \mapsto l+2$. If $q: \mathbb{N} \to \mathbb{N}$ is the shift map $l \mapsto l+1$ of Example 3.1.2.4, then $\zeta \circ p = q \circ \zeta$. One can use (3.1.3.8) to obtain Z_{∞} by gluing copies of $Z_2 \cong V^o$, and in fact, one can do the whole construction at once: if one considers the map

$$(3.1.3.9) \quad x: \mathsf{Z}_{\infty} \to \mathsf{V} = \{0,1\}^{<}, \quad 2n \mapsto o, \ 4n+1 \mapsto 0, \ 4n+3 \mapsto 1, \ n \in \mathbb{N},$$

then the alternative form (3.1.2.4) of the corresponding standard pushout square is a cartesian cocartesian square

$$(3.1.3.10) \qquad \overline{\mathbb{N}} \times \{0,1\} \xrightarrow{a} \overline{\mathbb{N}} \times \mathsf{V}^{a}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\overline{\mathbb{N}} \xrightarrow{a'} \mathsf{Z}_{\infty},$$

where $\overline{\mathbb{N}}$ is \mathbb{N} with discrete order, and the maps are $a(n \times l) = (n + l) \times l$, $n \ge 0$, l = 0, 1, and a'(n) = 2(n + 1).

Remark 3.1.3.17. The set Z_{∞} can be visualized as an infinite zigzag; then $Z_m \subset Z_{\infty}$ is the zigzag of length m.

Lemma 3.1.3.18. *If the left-closed full embedding* $J_{01} \rightarrow J_0$ *in a standard pushout square* (3.1.2.3) *is reflexive, then so is the map* $J_1 \rightarrow J$.

Proof. Consider the filtration (3.1.3.5) for $J_{01} \subset J_0$, with the corresponding maps g_l , $1 \le l \le m$, and define the filtration and the maps for $J_1 \subset J$ by taking pushouts with respect to the left-closed embedding $J_{01} \subset J$.

Lemma 3.1.3.19. For any $n \ge 0$ and cofibration $J \to [n]$, with the induced cofibration $\zeta_{2n}^* J \to \mathsf{Z}_{2n}$, the embedding $J_n \cong (\zeta_{2n}^* J)_{2n} \to \zeta_{2n}^* J$ onto the fiber over $2n \in \mathsf{Z}_{2n}$ is reflexive.

Proof. Note that (3.1.3.8) for m=1 induces a standard pushout square $Z_{2n} \cong Z_2 \sqcup_{pt} Z_{2(n-1)}$ that gives a corresponding standard pushout square decomposition

(3.1.3.11)
$$\zeta_{2n}^* J \cong \zeta_2^* s^* J \sqcup_{J_1} \zeta_{2(n-1)}^* q^* J,$$

where $s:[1] \to [n]$ is the left-closed embedding, so by induction on n and Lemma 3.1.3.18, it suffices to consider the case n=1. Then we have $\mathsf{Z}_2=\mathsf{V}^o=\{0,1\}^>$, the map $\zeta_2:\mathsf{V}^o\to[1]$ sends 0 to 0 and 1,o to 1, and $\mathsf{pt}=\{1\}\subset\{1,o\}\cong[1]\subset\mathsf{V}^o$ gives a filtration (3.1.3.5) for the reflexive embedding $\mathsf{pt}\to\mathsf{V}^o$ onto $1\in\mathsf{V}^o$. This induces a filtration $J_1\subset J_1\times[1]\subset\zeta_2^*J$ on ζ_2^*J , the embedding $J_1\times[1]\subset\zeta_2^*J$ is left-reflexive by Lemma 2.3.1.9, and the embedding $J_1\subset J_1\times[1]$ is id $\times s$, where $s:\mathsf{pt}=[0]\to[1]$ is right-reflexive by Example 3.1.3.6.

Lemma 3.1.3.20. For any reflexive full embedding $f: J \to J'$, the full embedding $s: J \to C(f)$ is reflexive, and for any map $\chi: J \to \mathbb{N}$, so is the full embedding $s: J \to C(\chi \times f)$.

Proof. For the first claim, since the embedding $s: J \to J \times [1] \cong C(id)$ is right-reflexive, it suffices to show that the embedding $C(id) \to C(f)$ is reflexive. To see this, take the filtration (3.1.3.5) for f, let $f_l: J \to J_l$ be the embeddings, and filter C(f) by $C(f_l) \subset C(f)$, $1 \le l \le m$, with $g_l: C(f_l) \to C(f_{l-1})$ the same as for J_l over $1 \in [1]$, and $g_l = id$ over $0 \in [1]$. For the second claim, note that $id \times f: \mathbb{N} \times J \to \mathbb{N} \times J'$ is also a reflexive full embedding, and then $\chi \times id: J \to \mathbb{N} \times J$ is a reflexive full embedding by Example 3.1.3.10.

3.1.4. Barycentric subdivision. For any set S, with the partially ordered set P(S) of Example 3.1.2.1, we let $V(S) \subset P(S)$ be the subset spanned by finite subsets, and we let $W(S) \subset V(S)$ be the subset spanned by finite non-empty subsets. Like P(S), both V(S) and W(S) are directed, but unlike P(S), they are not contravariantly functorial with respect to S (the preimage of a finite set is not necessarily finite). However, the image of a finite and/or non-empty set is finite and/or non-empty, so that all the sets $W(S) \subset V(S) \subset P(S)$ are covariantly functorial, with the functoriality given by the adjoint maps $f_!$ of Example 3.1.3.2.

Definition 3.1.4.1. The *barycentric subdivision BJ* of a partially ordered set *J* is the subset $BJ \subset W(J)$ spanned by finite non-empty subsets $S \subset J$ such that the induced order on *S* is total.

Since a surjective image of a finite totally ordered set is totally ordered, B(J) is functorial with respect to J, and since the opposite to a total order is total, we have $B(J) \cong B(J^o)$. For any injective map $J_0 \to J_1$, the corresponding map $BJ_0 \to BJ_1$ is a left-closed full embedding. We also have functorial maps

$$(3.1.4.1) \xi: BJ \to J, \xi_{\perp}: (BJ)^o \to J$$

sending a totally ordered subset $S \subset I$ to its maximal element $\max(S)$ resp. minimal element $\min(S)$. More generally, denote by $B_{\bullet}(J)$ the partially ordered set of pairs $\langle S, s \rangle$, $S \in B(J)$, $s \in S$, with the order $\langle S, s \rangle \leq \langle S', s' \rangle$ iff $S \subset S'$ and $s \leq s'$. Then the forgetful map $v_{\bullet}: B_{\bullet}(J) \to B(J)$, $\langle S, s \rangle \mapsto S$ is a cofibration corresponding to the tautological functor $\varphi: B(J) \to PoS$ ets sending $S \in B(J)$ to S considered as an object in PoSets. The cofibration v_{\bullet} has a left resp. right-adjoint $v_{+}, v^{+}: B(J) \to B_{\bullet}(J)$ sending an element $S \in B(J)$ to $\langle S, \min(S) \rangle$ resp. $\langle S, \max(S) \rangle$, and v_{+} resp. v^{+} has a left resp. right-adjoint $v_{>}, v_{<}: B_{\bullet}(J) \to B(J)$ sending $\langle S, s \rangle$ to S/s resp. $s \setminus S$, as in (3.1.1.2). We then also have the forgetufl map

$$(3.1.4.2) \xi_{\bullet}: B_{\bullet}(J) \to J, \langle S, s \rangle \mapsto s,$$

and it is related to (3.1.4.1) by $\xi_{\cdot} \cong \xi \circ \nu_{<}$ and $\xi = \xi_{\cdot} \circ \nu^{\dagger}$.

Example 3.1.4.2. For any $n \ge 0$, $B([n]) = W([n]) \cong [1]^n \setminus \{0^n\}$ consists of all non-empty subsets in [n]. The map $\xi : B([n]) \to [n]$ is right-reflexive, with the adjoint $\xi_+ : [n] \to B([n])$ sending $l \in [n]$ to $[n]/l = s([l]) \subset [n]$. For n = 1, we have $B([1]) \cong \mathsf{V}^o$, where V is the set of Example 3.1.3.15, and the map $\xi : \mathsf{V}^o \cong B([1]) \to [1]$ of (3.1.4.1) is the map $\zeta_2 : \mathsf{V}^o \cong \mathsf{Z}_2 \to [1]$ of (3.1.3.7). For any $n \ge 0$, the map $\zeta_{2n} : \mathsf{Z}_{2n} \to [n]$ factors as

$$(3.1.4.3) Z_{2n} \xrightarrow{\beta_n} B([n]) \xrightarrow{\xi} [n],$$

where $\beta_n : \mathsf{Z}_{2n} \to B([n])$ is a left-closed embedding that identifies Z_{2n} with the subset in B([n]0 formed by subsets $\{l\} \subset [n]$, $0 \le l \le n$ and $\{l, l+1\} \subset [n]$, $0 \le l < n$. The map ζ of (3.1.3.6) factors as

$$(3.1.4.4) Z_{\infty} \xrightarrow{\beta} B(\mathbb{N}) \xrightarrow{\xi} \mathbb{N},$$

where again, β identifies Z_{∞} with the left-closed subset in $B(\mathbb{N})$ formed by subsets $\{l\}$ and $\{l, l+1\}$, $l \geq 0$.

Example 3.1.4.3. The barycentric subdivision B(V) of the partially ordered set V of (2.1.1.3) is identified with the opposite W^o of the partially ordered set

(3.1.4.5)
$$W = ([1] \times \{0,1\}) \sqcup_{\{0\} \times \{0,1\}} V^{o},$$

and under this identification, the map ξ_{\perp} of (3.1.4.1) sends $1 \times l \in [1] \times \{0,1\}$ to $l \in V$, l = 0, 1, and the whole V^o to $o \in V$.

Example 3.1.4.4. More generally, for any set S with discrete order, let S^{\natural} be the partially ordered set

$$(3.1.4.6) S^{\sharp} = (S \times [1]) \sqcup_{\{0\} \times S} S^{>}.$$

Then we have $S^{\natural} \cong B(S^{<})^{o}$, and the projection

$$(3.1.4.7) \xi_{\perp}: S^{\natural} \cong B(S^{<})^{o} \to S^{<}$$

of (3.1.4.1) sends $S \times 1 \subset S \times [1]$ to $S \subset S^{<}$, and the rest to $o \in S^{<}$. The projection $\xi^{o}: S^{\natural} \to S^{< o} \cong S^{>}$ is equal to the identity on $S^{>}$ in (3.1.4.6), and sends $S \times [1]$ in (3.1.4.6) to $S \subset S^{>}$ via the projection $S \times [1] \to S$ onto the first factor. The product

$$(3.1.4.8) \xi^o \times \xi_{\perp} : S^{\natural} \to S^{>} \times S^{<}$$

is a left-closed embedding identifying S^{\natural} with $\delta(S) \cup (S^{>} \times \{o\}) \subset S^{>} \times S^{<}$, where $\delta: S \to S \times S \subset S^{>} \times S^{<}$ is the diagonal map. Alternatively, $S^{\natural} \subset S^{>} \times S^{<} \cong S^{>} \times S^{>o}$ is the twisted arrow set $\mathsf{tw}(S^{>})$.

Lemma 3.1.4.5. For any map $f: J' \to J$ in PoSets, the induced map $B(f): B(J') \to B(J)$ is a fibration.

Proof. By definition, for any element in B(J) represented by a totally ordered subset $S \subset J$, the fiber $B(J')_S$ consists of non-empty totally ordered subsets $S' \subset J'$ such that f(S') = S. Then for any order relation $S_0 \subset S_1$ in B(J), the transition functor $B(J')_{S_1} \to B(J')_{S_0}$ sends $S' \in B(J')_{S_1}$ to $S' \cap f^{-1}(S_0) \subset S'$. \square

Example 3.1.4.6. For any $J \in \text{PoSets}$ equipped with a map $f: J \to [1]$ with fibers J_0 , J_1 , we have $B([1]) = V^o = \{0,1\}^>$, and then the fibration B(f) of Lemma 3.1.4.5 has fibers $B(J)_0 \cong B(J_0)$, $B(J)_1 \cong B(J_1)$, while the fiber $B(J)_o$ consist of totally ordered subsets $S \subset J$ such that the induced map $f: S \to [1]$ is surjective. The transition functor $B(J)_o \to B(J)_l$, l = 0, 1 sends such a subset S to the intersection $S \cap J_I$.

Example 3.1.4.7. Since the map (3.1.4.1) is functorial, we have a commutative square

(3.1.4.9)
$$BJ' \xrightarrow{\xi} J'$$

$$B(f) \downarrow \qquad \qquad \downarrow f$$

$$BJ \xrightarrow{\xi} J$$

for any map $f: J' \to J$ in PoSets. If f itself is a discrete fibration, then the square (3.1.4.9) is cartesian, and the fibration B(f) of Lemma 3.1.4.5 is discrete.

Lemma 3.1.4.8. *The barycentric subdivision functor sends standard pushout squares* (3.1.2.3) *to standard pushout squares.*

Proof. By Example 2.3.3.16, any left-closed embedding $J' \rightarrow J$ is a discrete fibration, so the square (3.1.4.9) of Example 3.1.4.7 is cartesian – that is, we have a natural identification

$$(3.1.4.10) J' \times_I B(J) \cong B(J'),$$

where $B(J) \to J$ is the map ξ of (3.1.4.1). Now for any square (3.1.2.3), compose ξ with the joint characteristic function $\chi : J \to V$ to obtain a projection $B(J) \to V$, and compute its left comma-fibers by (3.1.4.10).

Lemma 3.1.4.9. Assume given $J \in \text{PoSets}$, and let $\varepsilon = \varepsilon(o) : \text{pt} \to J^>$ be the embedding (2.1.1.2) onto the new maximal element $o \in J^>$. Then $B(\varepsilon) : \text{pt} \cong B(\text{pt}) \to B(J^>)$ is reflexive.

Proof. Let $\chi: J^> \to [1]$ be the characteristic functor of the left-closed embedding $J \subset J^>$, with the fibration $B(\chi): B(J^>) \to V^0 \cong B([1])$ of Example 3.1.4.6, and note that the composition

$$(3.1.4.11) B(J^{>}) \xrightarrow{B(\chi)} B([1]) \xrightarrow{\xi} [1]$$

is a cofibration, with fibers $B(J^>)_0 \cong B(J)$, $B(J^>)_1 \cong B(J)^<$ and the transition functor $f: B(J) \to B(J)^<$ given by the standard right-closed embedding. Therefore $B(J^>) \cong C(f)$, and $B(\varepsilon)$ is the composition of the left-reflexive embedding $t: B(J)^< \to C(f)$ and the right-reflexive embedding $\varepsilon(o): \operatorname{pt} \to B(J)^<$.

Corollary 3.1.4.10. For any partially ordered set J and functor $E: J \to \mathcal{E}$ to some category \mathcal{E} , the Kan extension $\xi_! \xi^* E$ exists and is isomorphic to E.

Proof. By (2.2.5.2), we need to check that $\operatorname{colim}_{BJ/j} \xi^* E \cong E(j)$ for any element $j \in J$. Since $BJ/j \cong B(J/j)$, we may replace J with J/j and assume that j is the largest element. In other words, we are in the situation of Lemma 3.1.4.9: we have a partially ordered set J equipped with a functor $E: J^< \to \mathcal{E}$, and we need to check that $\operatorname{colim}_{B(J^<)} \xi^* E \cong E(o)$. But then as in the proof of Lemma 3.1.4.9, we have the left-reflexive embedding $B(J^<)^1 \subset B(J^<)$, so that $\operatorname{colim}_{B(J^<)^1} \xi^* E$ by (2.2.5.5), and then ξ sends $B(J^<)^1$ into $\{o\} \subset J^<$, so that $\xi^* E|_{B(J^<)^1}$ is constant with value E(o). The right-reflexive embedding pt $\cong B(J^<)_1 \subset B(J^<)^1$ creates the initial element in $B(J^<)^1$, so that $B(J^<)^1 \subset B(J^<)^1$ creates the initial element in $B(J^<)^1$, so that $B(J^<)^1 \subset B(J^<)^1$ creates the initial element in $B(J^<)^1$.

3.1.5. Dimension. For most of our intended applications, the category PoSets is too big; we will need to restrict our attention to some full subcategory $\mathcal{I} \subset \text{PoSets}$ that is still large enough for our purposes. The precise meaning of "large enough" is as follows.

Definition 3.1.5.1. A full subcategory $\mathcal{I} \subset \text{PoSets}$ is *ample* if it is closed under finite limits and standard pushouts (3.1.2.3), contains all finite partially ordered sets, and contains any subset $J' \subset J$ of some $J \in \mathcal{I}$. An ample full subcategory $\mathcal{I} \subset \text{PoSets}$ is *very ample* if it contains C(f) and $C^{o}(f)$ for any morphism $f: J' \to J$ in \mathcal{I} . The *extension* \mathcal{I}^+ of a full subcategory $\mathcal{I} \subset \text{PoSets}$ is the full subcategory spanned by $J \in \text{PoSets}$ that admit a map $\chi: J \to \mathbb{N}$ with $J/n \in \mathcal{I}$, $n \in \mathbb{N}$.

Lemma 3.1.5.2. An ample full subcategory $\mathcal{I} \subset \text{PoSets}$ contains $J/_f J'$ and $J'\setminus_f J$ for any map $f: J \to J'$ in \mathcal{I} , and PoSets(J', J) for any $J \in \mathcal{I}$ and finite $J' \in \text{PoSets}$. The minimal saturated class of maps in \mathcal{I} that contains the projections $[1] \times J \to J$ for any $J \in \mathcal{I}$ also contains all reflexive full embeddings $J' \to J$ in \mathcal{I} . The extension \mathcal{I}^+ of an ample full subcategory $\mathcal{I} \subset \text{PoSets}$ is ample. The extension \mathcal{I}^+ of a very ample full subcategory $\mathcal{I} \subset \text{PoSets}$ contains the sets Z_∞ and \mathbb{N} of (3.1.3.6).

Proof. For the first claim, we have $\operatorname{PoSets}(J',J) \subset J^n$ for n = |J'|, so $\operatorname{PoSets}(J',J) \in \mathcal{I}$, and then $\operatorname{ar}(J) \in J$, and since \mathcal{I} is closed under fibered products, so are the comma-sets $J/_f J'$ and $J'\setminus_f J$. For the second claim, the argument is exactly as in Lemma 3.1.3.11 (where $\operatorname{C}(f),\operatorname{C}^o(f) \subset J \times [1]$ must be in \mathcal{I} for any full embedding $f:J'\to J$). For the third claim, giving a map $J\to \mathbb{N}$ for some $J\in\operatorname{PoSets}$ is equivalent to representing J as the colimit (3.1.8.1) of an exhaustive filtration by left-closed subsets $J(n)=J/n\subset J$; say that such a filtration is good if $J(n)\in\mathcal{I}$, $n\in\mathbb{N}$. Then for any standard pushout $J=J_0\cup J_1$,

with good filtrations $J_l(-)$, l=0,1, $J(n)=J_0(n)\cup J_1(n)\subset J$, $n\in\mathbb{N}$ is a good filtration on J, so that \mathcal{I}^+ is closed under standard pushouts, and conversely, for any $J_0,J_1,J\in\mathcal{I}^+$ with good filtrations, and maps $f_l:J_l\to J$, l=0,1, the filtrations by $J_l(n)'=J_l(n)\cap f_l^{-1}(J(n))\subset J_l$, l=0,1, $n\in\mathbb{N}$ are also good, and then $J_0(n)'\times_{J(n)}J_1(n)'\subset J_0\times_J J_1$ is a good filtration, so that $J_0\times_J J_1\in\mathcal{I}^+$. For the last claim, note that \mathbb{N}/n and $\mathbb{Z}_\infty/_{\mathcal{I}}n$ are finite for any $n\in\mathbb{N}$.

The category pos ⊂ PoSets of all finite partially ordered sets is very ample in the sense of Definition 3.1.5.1, and by Definition 3.1.5.1, it is the smallest possible very ample subcategory in PoSets. Other useful very ample categories are defined in terms of the following notion of "dimension".

Definition 3.1.5.3. A partially ordered set J has *chain dimension* $\leq n$ for some integer $n \geq 0$ if for any injective map $f : [m] \to I$, $m \geq 0$, we have $m \leq n$. A partially ordered set J has *finite chain dimension* if it has chain dimension $\leq n$ for some $n \geq 0$. In this case, dim J is the smallest such integer n.

In keeping with our general categorical usage, a non-degenerate chain (2.1.1.4) in J is the same things as an injective map $[n] \to J$, and then dim $J \le n$ iff all chains of length > n are degenerate. Equivalently, we have dim $J \le n$ if there exists a conservative map $J \to [n]$, and the converse is also true — for example, one can take the height map ht defined by $\operatorname{ht}(j) = \dim J/j$. In fact, for any partially ordered set J, we can define the n-th skeleton $\operatorname{sk}_n J \subset J$ as the left-closed subset of elements $j \in J$ such that $\dim J/j \le n$. Then $\dim \operatorname{sk}_n J = n$, and $\dim J = n$ iff $J = \operatorname{sk}_n J$. In this case, we have the exhaustive skeleton filtration

$$(3.1.5.1) sk0 J \subset sk1 J \subset \cdots \subset skn J = J,$$

and this is the filtration (3.1.2.1) corresponding to the height map ht. Since we will be working mostly with partially ordered sets of finite chain dimension, we denote the category they form simply by $Pos \subset PoSets$.

Definition 3.1.5.4. A map $f: J' \to J$ between partially ordered sets is *left-finite* resp. *left-bounded* if its left comma-fibers J'/j, $j \in J$ are finite resp. have finite chain dimension. A partially ordered set J is left-finite or left-bounded if so is the identity map $id: J \to J$.

Example 3.1.5.5. The barycentric subdivision *BJ* of any partially ordered set *J* is left-finite, and finite-dimensional iff so is *J*.

Example 3.1.5.6. For any cofibration $J \to J'$ with left-finite J' and left-bounded fibers J_j , $j \in J'$, the set J is left-bounded. Note that just asking for J' to be left-bounded is not enough.

We denote the full subcategory of left-bounded partially ordered sets by $\operatorname{Pos}^+ \subset \operatorname{PoSets}$; this the the extensions of Pos in the sense of Definition 3.1.5.1, thus ample by Lemma 3.1.5.2. We let $\operatorname{Pos}^- = \iota(\operatorname{Pos}^+) \subset \operatorname{PoSets}$, and we call sets $J \in \operatorname{Pos}^- right$ -bounded. We denote by $\operatorname{Pos}^\pm \subset \operatorname{Pos}^+$ the full subcategory of left-finite sets; it is also ample. For any left-bounded $J \in \operatorname{Pos}^+$, the height function is still a well-defined conservative function $\operatorname{ht}: J \to \mathbb{N}$, with $\operatorname{sk}_n J = J/\operatorname{ht} n$ of dimension n, and we have the exhaustive filtration (3.1.5.1) but it is now infinite. A left-closed embedding $J \to J'$ in Pos^- preserves the heights. Dually, for a right-bounded $J \in \operatorname{Pos}^-$, we have the co-height function $\operatorname{ht}^\iota: J \to \mathbb{N}^o$ opposite to ht for J^o , and again, $\dim(n \setminus_{\operatorname{ht}^\iota} J = n)$ for any $n \in \mathbb{N}^o$, and right-closed embeddings preserve the co-heights.

Example 3.1.5.7. While the extension \mathcal{I}^+ of a very ample full subcategory $\mathcal{I} \subset \operatorname{PoSets}$ is ample by Lemma 3.1.5.2, it need not be very ample – indeed, the cylinder $\mathsf{C}(f)$ of a map $f: J \to J'$ in \mathcal{I}^+ is in \mathcal{I}^+ if f is an embedding and/or $J \in \mathcal{I}$, but in general, this need not be the case (for example, we have $\mathbb{N}^> \in \mathcal{I}^+$ only if $\mathbb{N} \in \mathcal{I}$, and the latter is not true for $\mathcal{I} = \operatorname{pos}$, $\operatorname{Pos}_{\kappa}$, Pos). Thus (2.2.4.2) is not a decomposition in \mathcal{I}^+ . As an alternative, one can choose a map $\chi: J \to \mathbb{N}$ with $J/n \in \mathcal{I}$, $n \in \mathbb{N}$, and consider the map $\chi \times f: J \to \mathbb{N} \times J'$. Then $\mathsf{C}(\chi \times f) \in \mathcal{I}^+$, and f decomposes as

$$(3.1.5.2) J \xrightarrow{s} C(\chi \times f) \longrightarrow J',$$

where the second map is the composition of $t_{\dagger}: C(\chi \times f) \to \mathbb{N} \times J'$ and the projection $\mathbb{N} \times J' \to J'$.

For any $J \in \text{Pos}$, we have $\dim J = \dim J^o = \dim BJ$, so that the subcategory $\text{Pos} \subset \text{PoSets}$ is closed both under the barycentric subdivision functor B and under the involution $\iota : \text{PoSets} \to \text{PoSets}$, $J \mapsto J^o$. For any standard pushout square (3.1.2.3), we have $\dim J_{01} \leq \dim J_0$, $\dim J_1$, and $\dim J = \max(\dim J_0, \dim J_1)$.

If $\dim J = 0$ then J is discrete. There are various results for partially ordered sets of small chain dimension; for example, we have the following generalizations of Example 3.1.4.4 and Lemma 2.3.3.6.

Lemma 3.1.5.8. For any $J \in \text{PoSets}$ of dimension dim J = 1, the product $\xi^o \times \xi_{\perp} : (BJ)^o \to J^o \times J$ of the maps ξ^o and ξ_{\perp} identifies $(BJ)^o$ with the twisted arrow set $\mathsf{tw}(J^o) \subset J^o \times J$.

Proof. Since dim J=1, a totally ordered subset $S\subset J$ consists of its maximal and minimal element (that can coincide). Therefore $\xi^o\times\xi_\perp$ is an embedding. Its image consists of pairs $j\times j'\in J^o\times J$ such that $j\geq j'$, and this is $\mathsf{tw}(J^o)$ on the nose.

Lemma 3.1.5.9. Assume given a partially ordered set J equipped with fibrations $C, C' \to J$, and a functor $\gamma : C \to C'$ over J such that $\gamma(j) : C_j \to C'_j$ is an equivalence resp. epivalence resp. essentially surjective when $\operatorname{ht} j = 0$ resp. 1 resp. 2. Then $\gamma : \operatorname{Sec}^{\natural}(\operatorname{sk}_n J, C) \to \operatorname{Sec}^{\natural}(\operatorname{sk}_n J, C')$ is an equivalence resp. epivalence resp. essentially surjective for n = 0 resp. 1 resp. 2.

Proof. The statement for n=0 is obvious. Lemma 2.3.3.6 is essentially the statement for n=1,2 and $J=V=\{0,1\}^<$, $J=V^<=(\{0,1\}^<)^<$, and the statement is just as obvious for any set S and $S^<$, $(S^<)^<$. In the general case, for n=1, replace J with sk₁ J, let $S\subset J$ be the discrete right-closed subset of its maximal elements, and extend the identity map id : $S\to S$ to the universal map $p:J\to S^<$ of (3.1.2.2). Then by (2.4.3.4), $p_*(\gamma):p_*C\to p_*C'$ also satisfies the conditions of the lemma, so we are reduced to the obvious case $J=S^<$. For n=2, again replace J with sk₂ J, with the subset $S\subset J$ of maximal elements, and let $g:J\to (S^<)^<$ be the composition of the universal map $p:J\to S^<$ and the embedding $S^<\to (S^<)^<$. Then the claim for n=0,1 and (2.4.3.4) shows that $q_*(\gamma)$ satisfies the conditions of the lemma, and we are again reduced to the obvious case $J=(S^<)^<$. □

A partially ordered set J is *Noetherian* — or equivalently, satisfies the *descending chain condition* — iff there are no conservative maps $\mathbb{N}^o \to J$. Any $J \in \operatorname{Pos}^+$ is Noetherian, and so is any well-ordered partially ordered set Q; consequently, any $J \in \operatorname{PoSets}$ that admits a conservative map $J \to Q$ to a well-ordered Q is Noetherian as well. Any full subset $J' \subset J$ in a Noetherian J is Noetherian. Any Noetherian set J contains a minimal element $j \in J$.

3.1.6. Size and direction. For any partially ordered set J, we denote by |J| the cardinality of the underlying set, and we note that if J is infinite, it coincides with the cardinality of the corresponding small category. For any regular cardinal κ , we say that $J \in \text{PoSets}$ is κ -bounded if $|J| < \kappa$, and we denote by $\text{PoSets}_{\kappa} \subset \text{PoSets}$ the full subcategory spanned by all κ -bounded sets. We say that $J \in \text{PoSets}$ is left- κ -bounded if $|J/j| < \kappa$ for any $j \in J$. We let $\text{Pos}_{\kappa} = \text{Pos} \cap \text{PoSets}_{\kappa} \subset \text{Pos}$, and we note that this category is very ample in the sense of Definition 3.1.5.1, with ample extension $\text{Pos}_{\kappa}^+ = \text{Pos}^+ \cap \text{PoSets}_{\kappa}$.

Definition 3.1.6.1. For any regular cardinal κ , a partially ordered set J is κ -directed iff for any κ -bounded subset $S \subset J$, $|S| < \kappa$, there exists $j \in J$ such that $S \subset J/j$.

Definition 3.1.6.2. For any set S, the subset $P_{\kappa}(S) \subset P(S)$ of κ -bounded subsets $S' \subset S$, $|S'| < \kappa$ is κ -directed.

Example 3.1.6.3. For any infinite cardinal κ , there exists a left- κ -bounded well-ordered partially ordered set Q_{κ} of cardinality $|Q_{\kappa}| = \kappa$ – take any well-ordered S with $|S| = \kappa$, and if it is not left- κ -bounded, replace it with S/'s, where $s \in S$ is the minimal element such that $|S/s| = \kappa$. If κ is regular, then any such Q_{κ} is κ -directed. Indeed, for any κ -bounded $S \subset Q_{\kappa}$, the left-closed subset $\Lambda(S) \subset Q_{\kappa}$ of (3.1.3.1) is then also κ -bounded, so that $Q_{\kappa} \setminus \Lambda(S)$ is not empty. If κ is the countable cardinal, then $Q_{\kappa} = \mathbb{N}$.

If κ is the countable cardinal, then $\operatorname{Pos}_{\kappa} = \operatorname{pos}$, and an easy induction on |S| shows that $J \in \operatorname{PoSets}$ is κ -directed iff it is directed. If $\kappa' \geq \kappa$, then a κ' -directed $J \in \operatorname{PoSets}$ is trivially κ -directed, so that any κ -directed J is directed. A directed partially ordered set is connected. A full subset $J' \subset J$ in a partially ordered set J is cofinal if the embedding $J' \to J$ is 0-cofinal in the sense of Example 2.2.5.10 — that is, if $J \setminus J'$ is connected for any $J \in J$ — and if J is directed, it suffices to require that $J \setminus J'$ is not empty.

Definition 3.1.6.4. For any regular cardinals $\kappa < \mu$, μ is *sharply greater that* κ if for any μ -bounded set S, the partially ordered set $P_{\kappa}(S)$ contains a cofinal μ -bounded subset U. We write $\kappa \triangleleft \mu$ if either $\kappa = \mu$, or $\mu > \kappa$ is sharply greater than κ ,

Example 3.1.6.5. For any regular cardinal κ with successor cardinal κ^+ , we have $\kappa \triangleleft \kappa^+$. Indeed, for any S with $|S| = \kappa$, we can equip S with a minimal order Q_{κ} of Example 3.1.6.3, and then the embedding $Q_{\kappa} \rightarrow P_{\kappa}(S)$, $q \mapsto Q_{\kappa}/q$ induced by (3.1.2.7) is cofinal.

Example 3.1.6.6. For any regular cardinal κ , we have $\kappa \triangleleft P(\kappa)^+$. Indeed, for any set S with $|S| = \kappa$ and any set S', a map $S' \rightarrow P(S)$ is the same thing as a subset in $S' \times S$, and $|S' \times S| = |S|$ are soon as S' is non-empty and κ -bounded, so that $|P_{\kappa}(P(S))| = |P(S)|$. More generally, for any $\kappa' \leq \kappa$, we have $|P_{\kappa'}(P(S))| \leq |P_{\kappa}(P(S))| < P(\kappa)^+$, so that $\kappa' \triangleleft P(\kappa)^+$.

Example 3.1.6.7. For any infinite cardinal $\kappa = \kappa_0$, define by induction $\kappa_n = \kappa_{n-1}^+$, and let $\kappa_\infty = \cup_n \kappa_n$. Then κ_∞ is not regular. Its successor κ_∞^+ is regular; however, if κ is regular but uncountable, it is not true that $\kappa \triangleleft \kappa_\infty^+$.

Lemma 3.1.6.8. Assume given regular cardinals $\kappa < \mu$. Then $\kappa \triangleleft \mu$ if and only if for any μ -bounded set S, there exists a left-closed embedding $S \subset J$ into a μ -bounded left- κ -bounded κ -directed partially ordered set J. Moreover, one can choose J to be Noetherian.

Proof. The "if" part is clear: for any left-closed embedding $\varepsilon: S \to J$ with κ-directed left-κ-bounded J, the map $\varepsilon^* \circ Y: J \to P_\kappa(S)$ has cofinal image.

For the "only if" part, assume that $\kappa \triangleleft \mu$. Say that a map $f: J' \rightarrow J$ of partially ordered sets is *weakly* κ -directed if for any commutative diagram

$$\begin{array}{ccc}
S & \xrightarrow{e} & S^{>} \\
\downarrow a & & \downarrow g \\
I & \xrightarrow{f} & I'
\end{array}$$

with discrete κ -bounded S and conservative g, there exists a map $b: S^> \to J$ such that $b \circ e = a$ and $f \circ b = g$. Note that if $J = \operatorname{pt}$, then any map is trivially weakly κ -directed (there are no conservative maps $S^> \to \operatorname{pt}$ with non-empty J). Conversely, if J is has no maximal elements, then for any $S \subset J/j$, we can choose j' > j and construct a conservative cone $S^> \to J$ of the embedding $S \subset J$, with vertex j'. Therefore if such a J is κ -directed and $f: J' \to J$ is weakly κ -directed, then J' is κ -directed.

Now fix a set S_{μ} of cardinality $|S_{\mu}| = \mu$, let Q_{κ} be a well-ordered set of Example 3.1.6.3 of cardinality $|Q_{\kappa}| = \kappa$, and let P be the set of pairs $\langle Q, J \rangle$ of a left-closed subset $Q \subset Q_{\kappa}$, and a μ -bounded subset $J \subset S_{\mu} \times Q$ equipped with a partial order such that J is left- κ -bounded, and the projection $J \to Q$ is a conservative order-preserving weakly κ -directed map. In particular, for any μ -bounded subset $S \subset S_{\mu}$, P contains the pair $\langle \{o\}, S \rangle$, where $o \in Q$ is the initial element, and S carries the discrete order. Moreover, order P by setting $\langle Q', J' \rangle \leq \langle Q'', J'' \rangle$ iff $Q' \subset Q''$, and $J' = (S \times Q') \cap J'' \subset S \times Q''$, with the order induced from J''. Then since μ is regular, P with this order has upper bounds of all ascending chains given by the union of the chain, so by the Zorn Lemma, it has a maximal element $\langle J, Q \rangle \geq \langle \{o\}, S \rangle$. If Q is not the whole Q_{κ} , then $Q = Q_{\kappa}/'q$ for some $q \in Q_{\kappa}$. Then consider J with discrete order, take the cofinal μ -bounded subset $U \subset P_{\kappa}(J)$ provided by Definition 3.1.6.4, forget the order on U, choose an embedding $U \subset S_{\mu}$, and let $\lambda : U \to L(J)$ be the map sending

some κ -bounded $X \subset J$ lying in $U \subset P_{\kappa}(J)$ to the union $\lambda(X) = \bigcup_{x \in X} J/x \subset J$. Then $Q' = Q_{\kappa}/q \cong Q^{>}$, and the union $J' = J \sqcup U \subset (S \times Q) \sqcup S \cong S \times Q'$ with the glued order $J' = J \sqcup_{\lambda} U$ of (3.1.2.8) gives an element $\langle Q', J' \rangle$ in P strictly bigger than $\langle J, Q \rangle$. This contradicts maximality.

Corollary 3.1.6.9. Assume given regular cardinals $\kappa \triangleleft \mu$. Then any left- κ -bounded μ -bounded Noetherian partially ordered set $J \in \operatorname{PoSets}_{\mu}$ admits a left-closed embedding $J \subset J'$ into a left- κ -bounded μ -bounded κ -directed Noetherian $J' \in \operatorname{PoSets}_{\mu}$.

Proof. Take a μ -bounded cofinal subset $U \subset P_{\kappa}(J)$, let S be U with discrete order, and take an embedding $\varepsilon: S \to J_{\mu}$ provided by Lemma 3.1.6.8. Let $\lambda = \Lambda \circ v \circ \varepsilon^* \circ Y: J_{\mu} \to L_{\kappa}(J)$, where $v: P_{\kappa}(S) \to P_{\kappa}(J)$ sends a subset $S' \subset S \subset P_{\kappa}(J)$ to the union of its elements, κ -bounded if so was S', and Λ is the map (3.1.3.1) that sends $P_{\kappa}(J)$ into $L_{\kappa}(J)$ since J is left- κ -bounded. Then $J' = J \sqcup_{\lambda} J_{\mu}$ does the job.

3.1.7. Perfect colimits. In principle, the category PoSets has all colimits (see e.g. Remark 5.1.1.5 below) but they often behave badly. Here is a minimal sanity check, and an additional requirement that turns out to be very useful.

Definition 3.1.7.1. A colimit $J' \cong \operatorname{colim}_J \varphi(j)$ of a functor $\varphi: J \to \operatorname{PoSets}$ for some $J \in \operatorname{PoSets}$ is *perfect* if it is preserved by the forgetful functor $\operatorname{PoSets} \to \operatorname{Sets}$ and the embedding $\operatorname{PoSets} \subset \operatorname{Cat}$. A perfect colimit J' is *universal with respect to a map* $J' \to J''$ to some $J'' \in \operatorname{PoSets}$ if for any map $J'_0 \to J''$, we have a perfect colimit

(3.1.7.1)
$$J'_0 \times_{I''} J' \cong \text{colim}_i(\varphi(j) \times_{I''} J'_0),$$

and *universal* if it is universal with respect to the identity map id : $J' \rightarrow J'$.

Lemma 3.1.7.2. A perfect colimit $J' \cong \operatorname{colim}_J \varphi(j)$ is universal iff it satisfies the condition of Definition 3.1.7.1 for $J_0 \cong [1]$, and it is always universal with respect to any map $J' \to J''$ with dim $J'' \leq 1$. Moreover, for any perfect colimit, (3.1.7.1) holds if $J_0 \to J''$ is a fibration or a cofibration.

Proof. It is easy to see that all colimits of discrete sets are universal, so we always have an isomorphism (3.1.7.1) of the underlying discrete sets, and to check that (3.1.7.1) is a colimit in PoSets, we just need to check that

• for any cone of the functor $\varphi(j) \times_{J''} J'_0$, with some vertex J_1 , the corresponding map $a: J'_0 \times_{J''} J'_0 \to J_1$ is order-preserving.

This can be checked after restricting to all subsets $[1] \subset J'_0$, thus the first claim. Next, assume that $J'' \cong J'$ and $J' \to J''$ is the identity map. Then if $J_0 \cong \operatorname{pt}$, there is nothing to check, and if $J' \cong \operatorname{pt}$, then at least one of the sets J'(j) is non-empty, so that $J'(j) \times J_0$ contains a copy of J_0 , and (\bullet) is clear. By the combination of these two observations, we see that (\bullet) holds when $J_0 \to J' = J''$ factors through a one-element subset. In particular, it always holds for the fibers of the map $J_0 \to J'$. But if this map is a cofibration or a fibration, it is proper in the sense of Definition 2.4.1.1 by Lemma 2.4.1.2 or its dual, and the relative functor category $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is then a partially ordered set. The set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is a set-theoretic map $J'_1 = \operatorname{Fun}(J_0|J',J_1)$ is a fibration or a cofibration, the same holds for $J'_1 \times J''_1 = \operatorname{Fun}(J_0|J',J_1)$ and any map $J''_1 = \operatorname{Fun}(J_1) \to J''_1 = \operatorname{Fu$

Corollary 3.1.7.3. For any perfect colimit $J' = \operatorname{colim}_J \varphi(j)$ in PoSets, $\operatorname{ar}(J') = J' \setminus J' \cong \operatorname{colim}_J(J' \setminus \varphi(j)/J')$ is a perfect colimit universal with respect to the projection $\sigma : \operatorname{ar}(J') \to J'$.

Proof. For any
$$J_0 \to J'$$
, $\tau : \operatorname{ar}(J') \times_{J'} J_0 \cong J_0/J' \to J'$ is a cofibration.

Example 3.1.7.4. Since the embedding PoSets \subset Cat is fully faithful, a cone $\varphi_>$: $J^> \to \text{PoSets}$ of some functor $\varphi: J \to \text{PoSets}$, $J \in \text{PoSets}$ that becomes universal in Cat is also universal in PoSets. Moreover, since the functor Cat \to Sets sending a small category to its set of objects has a right-adjoint $S \mapsto e(S)$, such a cone also stays universal after applying the forgetful functor PoSets \to Sets, so it gives a perfect colimit in the sense of Definition 3.1.7.1. Conversely, if a functor $\varphi: J \to \text{PoSets}$ has a universal cone $\varphi_>: J^> \to \text{Cat}$, then its composition $\text{Red} \circ \varphi_>: \varphi_> \to \text{PoSets}$ with the reduction functor (3.1.1.6) is universal by adjunction; however, if $\varphi_>(o)$ is not in PoSets, the corresponding colimit is not perfect. For example, consider the Kronecker category \mathbb{I} of Example 2.2.5.4. Then we have two embeddings $\varepsilon(s), \varepsilon(t): [1] \to \mathbb{I}$ of (2.1.4.2), and the square

$$\begin{cases}
0,1 \} & \longrightarrow [1] \\
\downarrow & \downarrow \varepsilon(t) \\
1 & \xrightarrow{\varepsilon(s)} \mathbb{I}
\end{cases}$$

is a cocartesian square in Cat. However, since $Red(\mathbb{I}) = [1]$, the corresponding cocartesian square in PoSets is not perfect (it is not preserved by the embedding PoSets \subset Cat).

Example 3.1.7.5. Let μ_l : $[1] \rightarrow [3]$, l = 0,1 be the map $\mu_l(n) = 2n + l$, and let e: [1], $[3] \rightarrow [0] = \text{pt}$ be the tautological projections. Then the commutative square

$$\begin{array}{ccc} [1] \sqcup [1] & \xrightarrow{\mu_0 \sqcup \mu_1} & [3] \\ \\ e \sqcup e \downarrow & & \downarrow e \\ [0] \sqcup [0] & \longrightarrow & [0] \end{array}$$

is cocartesian in PoSets but not perfect. In fact, (3.1.7.3) is a cocartesian square of categories in the sense of Subsection 2.1.3 but not a cocartesian square in Cat — to turn it into one, one has to replace [0] in the bottom right corner with the equivalent category $e(\{0,1\})$.

Example 3.1.7.6. Colimits of arbitrary functors $\varphi: J \to \text{PoSets}$ actually reduce to cocartesian squares. Namely, let $J_{\bullet} \to J$ be the cofibration corresponding to φ . Then a cone $\varphi_{>}$ for φ with some vertex J' is the same thing as a map $J_{\bullet} \to J \times J'$ cocartesian over J. Thus if we let $J_{\bullet}^{\sharp} \subset J_{\bullet}$ be the dense subset corresponding to maps cocartesian over J, then by Example 2.3.3.10, the cone is universal if and only if the square

$$\begin{array}{ccc}
J_{\bullet}^{\sharp} & \longrightarrow & \pi_0(J_{\bullet}^{\sharp}) \\
\downarrow & & \downarrow \\
I_{\bullet} & \longrightarrow & I'
\end{array}$$

is cocartesian. Moreover, the colimit $J' = \operatorname{colim}_J \varphi$ is perfect iff so is the cocartesian square (3.1.7.4).

A standard colimit (3.1.2.5) is always perfect, and it is also universal (for any map $J'_0 \to J'$, the corresponding colimit is the standard colimit for the projection $J'_0 \to J' \to J$). Alternative forms (3.1.2.4) of standard pushout squares (3.1.2.3) are also perfect and universal. Let us list some other examples of perfect colimits, some universal, some not.

Example 3.1.7.7. We start with two trivial examples. Firstly, PoSets obviously has all filtered colimits, so any colimit over a directed *J* exists and is perfect. Moreover, since [1] is a compact object in PoSets, such a colimit is universal by

Lemma 3.1.7.2. We also observe that filtered colimits in PoSets send pointwise left or right-closed embeddings to left resp. right-closed embeddings. Secondly, say that a map $g: J \to J'$ is *split* if it is a full embedding, and $J' = J \sqcup (J' \setminus J)$. Then for any split map $g: J \to J'$ and any map $f: J \to J_0$, the coproduct $J'_0 = J_0 \sqcup_J J' \cong J_0 \sqcup (J' \setminus J)$ exists, and this provides a perfect universal cocartesian square in PoSets.

Example 3.1.7.8. For any set S, the partially ordered set (3.1.4.6) of Example 3.1.4.4 fits into a cartesian square

$$(3.1.7.5) \qquad S^{>} \longrightarrow \text{pt}$$

$$\downarrow \qquad \qquad \downarrow^{\varepsilon(o)}$$

$$S^{\natural} \xrightarrow{\xi_{\perp}} S^{<},$$

where $\varepsilon(o)$: pt $\to S^<$ is the embedding onto the smallest element $o \in S^<$. The square (3.1.7.5) is cocartesian, perfect, and since dim $S^< \le 1$, it is universal by Lemma 3.1.7.2. Moreover, by virtue of (3.1.4.6), the barycentric subdivision functor B sends (3.1.7.5) to a cocartesian square.

Example 3.1.7.9. If I in Lemma 2.3.3.22 is a partially ordered set, then the square (2.3.3.7) is a cartesian cocartesian square in PoSets, and by Example 3.1.4.7, the barycentric subdivision functor B sends it to a cartesian cocartesian square (of the same form). Since $BJ \cong BJ^o$, the same holds for the square formed by opposite partially ordered sets. In particular, for any $n \ge 0$ and discrete cofibration $J \to [n]$, we have a cartesian cocartesian square

(3.1.7.6)
$$J_0 \times [n-1] \xrightarrow{\operatorname{id} \times t} J_0 \times [n]$$

$$l \circ (f_0 \times \operatorname{id}) \downarrow \qquad \qquad \downarrow l$$

$$t^* J \xrightarrow{t} J,$$

where $t:[n-1] \to [n]$ is the standard right-closed embedding of Example 3.1.2.3, l are the functors of Example 2.3.3.3, and $f_0: J_0 \to J_1$ is the transition map of the discrete cofibration $J \to [n]$. The square (3.1.7.6) is perfect, and barycentric subdivision functor B sends it to a cartesian cocartesian square.

Example 3.1.7.10. For any standard pushout square (3.1.2.3), the square

$$\begin{array}{ccc}
J_{01}^{>} & \xrightarrow{m_{0}} & J_{0}^{>} \\
m_{1} \downarrow & & \downarrow \\
J_{1}^{>} & \longrightarrow & J^{>}
\end{array}$$
(3.1.7.7)

is also a cartesian cocartesian square in PoSets, it is perfect, and the barycentric subdivision functor B sends it to a standard pushout square. We note that the embeddings m_0 , m_1 in (3.1.7.7) are left-reflexive by Example 3.1.3.14. The characteristic map $\chi: J \to V$ extends to a map $\chi^>: J^> \to V^> \cong [1]^2$. In the universal case J = V, (3.1.7.7) becomes the square

where the map $m:[1] \to [2]$ is as in Example 3.1.3.12, and the map a resp. b sends 0 to 0×0 , 2 to 1×1 , and 1 to 0×1 resp. 1×0 . A general square (3.1.7.7) is induced from (3.1.7.8) by pullback with respect to $\chi^{>}: J^{>} \to [1]^{2}$.

Example 3.1.7.11. For any integers $n \ge l \ge 0$, let $s : [0] \to [n-l]$ resp. $t : [0] \to [l]$ be the embeddings onto the initial resp. terminal element, as in Example 3.1.3.6. Then the square

in PoSets is cocartesian and perfect. It is *not* universal as soon as n > l > 0 (for a counterexample, take the map $[1] \rightarrow [n]$ sending 0 to 0 and 1 to n).

Example 3.1.7.12. For any map $f: J' \to J$ in PoSets, the cylinder C(f) and the dual cylinder $C^o(f)$ fit into cocartesian squares (2.2.4.4), and these are perfect cocartesian squares in PoSets by Example 3.1.7.4.

Example 3.1.7.13. Let $\overline{\mathbb{N}}$ be \mathbb{N} with discrete order. Then the map ζ of (3.1.3.6) fits into a cartesian square

(3.1.7.10)
$$Z_{\infty} \xrightarrow{\zeta} \mathbb{N}$$
$$q' \uparrow \qquad \uparrow q$$
$$\overline{\mathbb{N}} \times [1] \longrightarrow \overline{\mathbb{N}},$$

where $q: \overline{\mathbb{N}} \to \mathbb{N}$ is the embedding $l \mapsto l+1$, and the square (3.1.7.10) is also cocartesian and perfect. For any $m \geq 1$, we can also consider the map (3.1.3.7)

and its restriction to \mathbb{Z}_{2m-1} , and they also fit into cartesian cocartesian perfect squares induced by (3.1.7.10). The simplest non-trivial one is

$$\begin{array}{ccc}
\mathsf{Z}_3 & \longrightarrow & [2] \\
\uparrow & & \uparrow a \\
\hline
[1] & \longrightarrow & \mathsf{pt},
\end{array}$$

where $a : pt \rightarrow [2]$ is the embedding onto $1 \in [2]$.

Example 3.1.7.14. The map q' in (3.1.7.10) actually fits into a cartesian square

where p and p' are given by $p(2n+1-l)=n\times l$, $p'(2n+l-1)=n\times l$, $n\in\mathbb{N}$, l=0,1 (note that in particular, p is dense). The square (3.1.7.12) is cocartesian and perfect, and B sends it to a standard pushout square.

Example 3.1.7.15. For any $J \in \text{PoSets}$, let $\overline{J} \subset J$ be J with discrete order, and let $\overline{B}_{\bullet}(J) = B_{\bullet}(J)^{\sharp} \subset B(J)$ be the dense subset corresponding to maps cocartesian with respect to the forgetful cofibration $\nu_{\bullet} : B_{\bullet}(J) \to B(J)$. Then (3.1.4.2) induces a cartesian square

$$(3.1.7.13) \qquad \overline{B}_{\bullet}(J) \xrightarrow{\xi_{\bullet}} \overline{J}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{\bullet}(J) \xrightarrow{\xi_{\bullet}} \overline{J}_{\bullet}$$

and this square is cocartesian and perfect. Therefore by Example 3.1.7.6, we have

$$(3.1.7.14) J \cong \operatorname{colim}_{BJ} \varphi,$$

where $\varphi: B(J) \to \text{PoSets}$, $S \mapsto S$ is the tautological functor corresponding to the cofibration ν_{\bullet} , and the colimit (3.1.7.14) is also perfect. We note that it is also preserved by the barycentric subdivision functor B — indeed, the cofibration corresponding to $B \circ \varphi: BJ \to \text{PoSets}$ is $\tau: \text{ar}(BJ) \to BJ$, so that B sends (3.1.7.14) to the standard colimit (3.1.2.5) for id: $BJ \to BJ$.

3.1.8. Cylindrical colimits. Example 3.1.7.10, Example 3.1.7.11, and Example 3.1.7.12 for an injective f follow the same general pattern. We have a partially ordered set J and two full subsets $J_0, J_1 \subset J$ such that $J = J_0 \cup J_1$, with the intersection $J_{01} = J_0 \cap J_1$. Example 3.1.7.14 is similar, but the subsets are not full. If the subsets are full, the setup can conveniently encoded by considering the characteristic map $\varphi: J \to V$ such that $J_l = \varphi^{-1}(V/l), l = 0, 1$, and we then have a functor $V \to PoS$ ets equipped with an cone $V^> \cong [1]^2 \to PoS$ ets that sends the terminal element to J. If φ is order-preserving, then $J_0, J_1 \subset J$ are left-closed, the cone is universal, and we obtain a standard pushout square in PoSets. However, even if φ is not order-preserving, it might still happen that the cone is universal. This is exactly what happens in Examples 3.1.7.10-3.1.7.12.

More generally, one can replace V with some partially ordered set J', consider a map $\varphi: J \to J'$, and define a functor $F(\varphi): J' \to \text{PoSets}$ sending $j \in J'$ to $\varphi^{-1}(J'/j) \subset J$ with the induced order. We again have a cone $F(\varphi)_>$ with vertex J, and we can ask whether it is universal. By (3.1.2.5), this is automatic if φ is order-preserving. However, even if φ is not order-preserving, we still might have an isomorphism (3.1.2.5). Here is a trivial but useful example.

Example 3.1.8.1. Take $J' = \mathbb{N}$ — that is, assume given a partially ordered set J equipped with an exhaustive filtration by full subsets $J(n) \subset J$, $n \ge 0$. Then we have

$$(3.1.8.1) J \cong \operatorname{colim}_n J(n).$$

Indeed, to check the universal property, assume given $J' \in \text{PoSets}$ and a compatible collection of order-preserving maps $J(n) \to J$, $n \ge 0$. Then as in Lemma 3.1.7.2, since the filtration is exhaustive, these define a unique map $J \to J'$, and we just need to check that it preserves order. But as in Example 3.1.7.7, $[1] \in \text{PoSets}$ is compact, so a map $[1] \to J$ factors through J(n) for a sufficiently large integer n.

For a less trivial example, consider Example 3.1.7.12 under the additional assumption that $f: J' \to J$ is a left-closed embedding corresponding to some map $\chi: J \to [1]$, so that $C(f) \cong J/[1]$, and note that one can identify V with the twisted arrow category $\mathrm{tw}([1])$. Now take an arbitrary map $\chi: J \to J'$ in PoSets, with the comma-set $J/J' = J/\chi J'$, identify $\mathrm{ar}(J') \cong \mathrm{tw}(J')$ as sets (without preserving the order), and define a map $\varphi: J/J' \to \mathrm{tw}(J')$ as the composition

$$J/J' \xrightarrow{\chi/\operatorname{id}} J'/J' \cong \operatorname{ar}(J') \xrightarrow{\sim} \operatorname{tw}(J').$$

Consider the corresponding functor $F(\varphi)$: $\mathsf{tw}(J') \to \mathsf{PoSets}$ with its cone $F(\varphi)_>$. Explicitly, for any $f \in \mathsf{tw}(J')$ represented by a pair $j \leq j' \in J'$, $F(\varphi)$ sends f to the subset

$$(3.1.8.2) (J/J')_f = \{j_0 \le j_0' \in J/J' \mid \chi(j_0) \le j, j_0' \ge j'\} \subset J/J',$$

with the induced order, and one can identify $(J/J')_f \cong (J/j) \times (j' \setminus J')$.

Lemma 3.1.8.2. The cone $F(\varphi)_{>}$: $\mathsf{tw}(J')^{>} \to \mathsf{PoSets}$ is universal, so that $J/J' \cong \mathsf{colim}_{\mathsf{tw}(J')}(J/J')_f$ in PoSets.

Proof. If we equip J/J' with the discrete order, then φ becomes order-preserving, so that the cone $F(\varphi)_>$ is universal by (3.1.2.5). Then as in Lemma 3.1.7.2, for any cone $F(\varphi)'_>$: $\operatorname{tw}(J')^> \to \operatorname{PoSets}$ of $F(\varphi)$, we have a unique map $a: F(\varphi)_> \to F(\varphi)'_>$, and it suffices to check that a preserves the order. In other words, for any $\langle j_0, j_0' \rangle$, $\langle j_1, j_1' \rangle \in J/J'$ such that $j_0 \leq j_1$ and $j_0' \leq j_1'$, we have to check that $a(\langle j_0, j_0' \rangle) \leq a(\langle j_1, j_1' \rangle)$. But we have $\langle j_0, j_0' \rangle \leq \langle j_0, j_1' \rangle \leq \langle j_1, j_1' \rangle$, so we may further assume that either $j_0 = j_1$ or $j_0' = j_1'$. In either case, both elements lie in a single subset (3.1.8.2).

Remark 3.1.8.3. While the colimits in Example 3.1.7.8, Example 3.1.7.9, Example 3.1.7.10, Example 3.1.7.14 and Example 3.1.8.1 are preserved by the barycentric subdivision functor B, this is not the case in the other examples. In Lemma 3.1.8.2, since B sends full embeddings to left-closed full embeddings, the colimit $\operatorname{colim}_{\mathsf{tw}(J')} B(J/J')_f$ exists, and the comparison map $\operatorname{colim}_{\mathsf{tw}(J')} B(J/J')_f \to B(J/J')$ is injective, but it need not be surjective: its image consists of subsets $[n] \subset J/J'$ that lie entirely in a single subset (3.1.8.2). Explicitly, for any injective map $i: [n] \to J/J'$, define a left-closed subset $P(i) \subset [n]$ by

(3.1.8.3)
$$P(i) = \{l \in [n] \mid \tau(i(l)) < \chi(\sigma(i(n)))\},$$

where $\sigma: J/J' \to J$, $\tau: J/J' \to J'$ are the projections; then the complement $B(J/J') \setminus \operatorname{colim}_{\mathsf{tw}(J')} B(J/J')_f$ consists of i with non-empty P(i).

Remark 3.1.8.4. In the situation of Example 3.1.7.12, we can consider the map

(3.1.8.4)
$$B(J' \times [1]) \sqcup_{B(J')} B(J) \to B(C(f))$$

induced by the square (2.2.4.4). If f is injective, then so is (3.1.8.4) — if f is left-closed, this is in fact covered by Lemma 3.1.8.2 — but in the general case,

(3.1.8.4) is usually not injective. One exception to this is the case when J' = S is discrete. In this case, $f: S \to J$ splits into a coproduct of maps $f_s: \operatorname{pt} \to J$, and then C(f) can be expressed as a co-standard colimit (3.1.2.6): we have

$$(3.1.8.5) C(f) \cong \operatorname{colim}_{S^{<}} C(f_{\bullet}),$$

where f_0 is the embedding $\varnothing \to J$. Since B sends co-standard colimits to standard ones, (3.1.8.4) is then a standard colimit over $S^<$ of the corresponding maps for f_s . Since f_s : pt $\to J$ is injective, (3.1.8.4) for f_s is also injective, and then (3.1.8.4) for f is injective as well. Moreover, the complement $\overline{B}(C(f))$ to its image admits exactly the same description as in Remark 3.1.8.3: we have

$$(3.1.8.6) \overline{B}(C(f)) \cong \coprod_{s \in S} \overline{B}(C(f_s)) \cong \coprod_{s \in S} \overline{B}(C(\overline{f}_s)),$$

where $\overline{f}_{s'}$, $s \in S$ is the left-closed embedding $\mathsf{pt} \to f_s(\mathsf{pt}) \setminus J$.

3.1.9. Anodyne maps. By Lemma 3.1.3.18, the class of reflexive full embeddings in Pos is closed under pushouts with respect to standard pushout squares (3.1.2.3) but it is not saturated, and its saturation is no longer stable under standard pushouts. It will be useful to distinguish a larger class of maps that is closed under both operations. Here is the definition.

Definition 3.1.9.1. The class of *anodyne maps* is the minimal saturated class of maps in Pos such that

- (i) for any $J \in Pos$, the projection $J \times [1] \rightarrow J$ is anodyne, and
- (ii) for J, J_0 , $J_1 \in$ Pos equipped with maps $\chi_l : J_l \to J$, l = 0, 1, and any map $f : J_0 \to J_1$ such that f is co-lax over J and the induced map $f/j : J_0/j \to J_1/j$ of (3.1.1.5) is anodyne for any $j \in J$, the map f is itself anodyne.

A partially ordered set $J \in Pos$ is anodyne if so is the map $J \to pt$.

The class of anodyne maps is manifestly closed with respect to standard pushouts — that is, for any map $J \to V$ with anodyne embedding $J_0 \subset J/1$, the embedding $J/0 \subset J$ is anodyne (apply Definition 3.1.9.1 (ii) to the maps $J/0 \to J \to V$). On the other hand, by Lemma 3.1.5.2, Definition 3.1.9.1 (i) insures that all reflexive full embedding are anodyne. This has the following corollaries.

Corollary 3.1.9.2. *The class of anodyne maps is the minimal saturated class of maps in Pos that satisfies Definition 3.1.9.1* (i) *and*

(ii') for any cofibrations $J_0, J_1 \to J$ in Pos, a map $f: J_0 \to J_1$ cocartesian over J is anodyne if so are all the fibers $f_i: J_{0,j} \to J_{1,j}$, $j \in J$.

Proof. For any map $g: J' \to J$ in Pos, we have the factorization (3.1.3.2), and since Pos is ample, $J'/gJ \in Pos$ by Lemma 3.1.5.2. Moreover, (3.1.3.2) is functorial with respect to co-lax maps over J, and Definition 3.1.9.1 (ii) for a map $f: J_0 \to J_1$ is identically the same as (ii') for f/ id : $J_0/J \to J_1/J$. But η in (3.1.3.2) is full and right-reflexive, so that by Lemma 3.1.5.2, as soon as Definition 3.1.9.1 (i) is satisfied, (ii') implies (ii). Conversely, if $J_0, J_1 \to J$ are cofibrations, and $f: J_0 \to J_1$ is cocartesian over J, then $J_{0,j} \subset J_0/j$ is full and right-admissible for any $j \in J$, and similarly for J_1 , so that (ii) implies (ii').

Corollary 3.1.9.3. Assume given two cofibrations $J, J' \to V$ in Pos, and a map $f: J \to J'$ cocartesian over V. Assume that f is an isomorphism over $o, 1 \in V$, and the embedding $J_0 \subset J$ is anodyne. Then the same holds for the embedding $J_0' \subset J'$.

Proof. Since $J \to V$ is a cofibration, the embedding $J_0 \subset J/0$ is left-reflexive, so that $J_0 \subset J$ is anodyne iff so is $J/0 \subset J$, and similarly for J'.

Let $\widetilde{\mathsf{V}} = \mathsf{C}^o(\varepsilon(0))$ be the dual cylinder of the embedding $\varepsilon(0): \mathsf{pt} \to \mathsf{V}$ onto $0 \in \mathsf{V}$ (explicitly, $\widetilde{\mathsf{V}}$ is obtained by adding one element 0' to $\mathsf{V} = \{o,0,1\}$, with order relation $0 \le 0'$). We have the embeddings $s: \mathsf{V} \to \widetilde{\mathsf{V}}$ and $e: \widetilde{\mathsf{V}} \to \mathsf{V} \times [1] \cong \mathsf{C}^o(\mathsf{id})$ such that $e \circ s: \mathsf{V} \to \mathsf{V} \times [1]$ is the embedding onto $\mathsf{V} \times \{0\}$. Composing e with the projection $\mathsf{V} \times [1] \to \mathsf{V}$ gives a projection $p: \widetilde{\mathsf{V}} \to \mathsf{V}$ right-adjoint to s, p has a right-adjoint embedding $t: \mathsf{V} \to \widetilde{\mathsf{V}}$ onto $\{0',1,o\} \subset \widetilde{\mathsf{V}}$, and t has a right-adjoint $q: \widetilde{\mathsf{V}} \to \mathsf{V}$ sending 0' to 0, 1 to 1, and o, 0 to o. Now consider the cylinder $\mathsf{C}(f)$ of the map f, with its cofibration $\mathsf{C}(f) \to \mathsf{V} \times [1]$, and let $\widetilde{f} = e^*\mathsf{C}(f)$. Then we have a cofibration $\widetilde{f} \to \widetilde{\mathsf{V}}$ such that $s^*\widetilde{f} \cong f$, $t^*\widetilde{f} \cong f$, and the embedding $t^f: f \to \widetilde{f}$ is left-reflexive. Moreover, compose the cofibration $\widetilde{f} \to \widetilde{\mathsf{V}}$ with the map $f \to \mathsf{V}$ to obtain a map $f \to \mathsf{V}$. Then the embedding $f'/0 \to f/0$ is also left-reflexive, so it suffices to show that $f/0 \subset \widetilde{f}$ is anodyne. But $f/0 \cong f/0$, $f/1 \cong f/0$, and anodyne map are stable with respect to standard pushout squares.

Corollary 3.1.9.4. For any $J \in \text{Pos}$, the map $\xi : BJ \to J$ of (3.1.4.1) is anodyne, and a map $f : J_0 \to J_1$ in Pos is anodyne iff so is $f^o : J_0^o \to J_1^o$ iff so is $B(f) : BJ_0 \to BJ_1$.

Proof. By Definition 3.1.9.1 (ii), to prove the first claim, it suffices to check that the induced map $BJ/j \to J/j$ is anodyne for any $j \in J$. But we obviously have $BJ/j \cong B(J/j)$, the embedding $B(\varepsilon(o))$: pt $\to B(J/j)$ onto the maximal element

 $o \in J/j$ is reflexive by Lemma 3.1.4.9, hence anodyne by Lemma 3.1.5.2, and so is its composition $\varepsilon(o) = \xi \circ B(\varepsilon(o))$: pt $\to J/j$ with the map ξ . The second claim now immediately follows from the functoriality B and the maps (3.1.4.1), and the identifications $B(J) \cong B(J^o)$.

Lemma 3.1.9.5. A saturated closed class W of maps in Pos that satisfies Definition 3.1.9.1 (i) and is stable under standard pushouts satisfies Definition 3.1.9.1 (ii) for I = V.

Proof. By Lemma 3.1.5.2, W contains all reflexive full embeddings. Any map $f: J_0 \to J_1$ has the factorization (2.2.4.2), where $s: J_0 \to C(f)$ is left-closed, and $t_t: C(f) \to J_1$ is inverse to a reflexive left-closed embedding, thus in W. Therefore $f \in W$ if and only if $s \in W$. In the setting of Definition 3.1.9.1 (ii), for any J, we also have $C(f)/j \cong C(f/j)$, $j \in J$, so in checking the claim, we may assume that f is a left-closed full embedding. Then if J = V, the full embedding $J_0 \to J_1$ factors as

$$J_0 \longrightarrow J_0 \sqcup_{J_0/0} J_1/0 \longrightarrow J_1,$$

the first map is a standard pushout of a map in *W*, and the second map fits into a standard pushout square

$$J_0/1 \sqcup_{J_0/o} J_1/o \longrightarrow J_1/1$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_0 \sqcup_{J_0/0} J_1/0 \longrightarrow J_1,$$

so it suffices to check that the top arrow is in W. But the embedding $J_0/1 \rightarrow J_0/1 \sqcup_{J_0/o} J_1/o$ is the standard pushout of a map in W, so we are done by the two-out-of-three property.

Example 3.1.9.6. For any set *S* and any $J \in Pos$ equipped with a map $J \to S^{<}$, the map

$$(3.1.9.1) J^{\sharp} = S^{\sharp} \times_{S^{<}} J \to J$$

induced by (3.1.4.7) is anodyne. Indeed, by (3.1.4.6), we have a decomposition

$$(3.1.9.2) J^{\natural} = S^{\natural} \times_{S^{<}} J \cong (J_o \times S^{>}) \sqcup_{J_o \times S} \coprod_{s \in S} J/s$$

that induced a decomposition

$$(3.1.9.3) J^{\sharp}/s \cong (J_o \times S^{>}) \sqcup_{J_o} J/s$$

for any $s \in S \subset S^{<}$, the projection $J^{\natural}/s \to J/s$ has a section induced by the embedding $J_o \to J_o \times S^{>}$ onto $J_o \times \{s\}$, and this section is a reflexive full embedding, hence anodyne by Lemma 3.1.5.2, so that its one-sided inverse (3.1.9.3) is also anodyne. Moreover, we have $J^{\natural}/o \cong J_o^{\natural} \cong S^{>} \times J_o \cong S^{>} \times J/o$, so that the projection $J^{\natural}/o \to J/o$ also has a reflexive one-sided inverse, and then (3.1.9.1) is anodyne by Definition 3.1.9.1 (ii).

Proposition 3.1.9.7. The class of anodyne maps is the minimal saturated class of maps in Pos that satisfies Definition 3.1.9.1 (i) and (ii) for $J = S^{<}$, $S \in Sets$. Moreover, it is also the minimal saturated class of maps in Pos that contains the maps (3.1.9.1) for any $S \in Sets$ and $J \to S^{<}$, and satisfies Definition 3.1.9.1 (ii) for J = V and for discrete J. Furthermore, instead of Definition 3.1.9.1 (ii) for J = V, it suffices to require that the class of anodyne maps is closed with respect to standard pushouts (3.1.2.3).

Proof. For the first claim, assume Definition 3.1.9.1 (ii) for $S^<$, and let us prove it for an arbirary J. Note that the claim for J trivially implies the claim for any full subset $J' \subset J$, so in particular, we know it for a discrete J. By induction on $n = \dim(J)$, we may assume it proven for the (n-1)-st skeleton $\mathrm{sk}_{n-1}J$ of (3.1.5.1). Take $S = J \setminus \mathrm{sk}_{n-1}J$, and as in (3.1.2.2), extend the right-closed embedding $S \to J$ to a map $p: J \to S^<$ sending any $j \in J \setminus \mathrm{sk}_{n-1}J$ to itself and the rest to $o \in S^<$. Then it suffices to check that the map $f: J_0 \to J_1$ satisfies the assumption of Definition 3.1.9.1 (ii) with respect to the map $p \circ g: J_1 \to S^<$ — that is, we need to show that the induced map $J_0/s \to J_1/s$ is anodyne for any $s \in S^<$. If s = o, this is the inductive assumption, and for any $s \in S$ $\subset S^<$, $J_0/o \subset J_0/s$ is an elementary extension that defines the standard coproduct

(3.1.9.4)
$$J_0/s \cong \operatorname{sk}_{n-1} J \sqcup_{\operatorname{sk}_{n-1} J/j} J/j$$

of Example 3.1.2.7, where $j \in J \setminus \operatorname{sk}_{n-1} J = S$ corresponds to s. The same holds for J_1 , so it suffices to consider the characteristic maps J_0/s , $J_1/s \to V$ and invoke Definition 3.1.9.1 (ii) for J = V.

For the second claim, note that if $S = \operatorname{pt}$, so that $S^{<} \cong [1]$, and a map $J \to [1]$ factors through $0 \subset [1]$, then $J^{\natural} = J \times [1]$, and the map (3.1.9.1) is the projection $J \times [1] \to J$. Thus the minimal class in question satisfies Definition 3.1.9.1 (i). Moreover, for any discrete S and $J \to S^{<}$, the decompositions (3.1.9.3) together yield a decomposition

$$(3.1.9.5) J^{\natural} = (J_o \times S^{\gt}) \sqcup_{J_o \times S} \coprod_{s \in S} J/s,$$

and the coproduct is again a standard pushout of (3.1.2.3). Thus to check that for any map $f: J_0 \to J_1$ over $S^<$ with anodyne $J_0/s \to J_1/s$, $s \in S^<$, the map

 $f^{\natural}: J_0^{\natural} \to J_1^{\natural}$ is anodyne, it suffices to use Definition 3.1.9.1 (ii) for J = S and J = V. Now the first claim of the Proposition shows that all anodyne maps are in our minimal class, and the converse immediately follows from Example 3.1.9.6. Finally, the third claim is Lemma 3.1.9.5.

3.1.10. Left-bounded sets. Let us now consider the category Pos⁺ of partially ordered sets that are only left-bounded, not necessarily finite-dimensional.

Definition 3.1.10.1. The class of +-anodyne maps is the minimal saturated class of maps in Pos⁺ that satisfies the conditions (i), (ii) of Definition 3.1.9.1, with Pos replaced by Pos⁺.

Since Pos^+ is ample by Lemma 3.1.5.2, all reflexive maps are +-anodyne, and all anodyne maps in $Pos \subset Pos^+$ are also trivially +-anodyne. Corollary 3.1.9.2 and Lemma 3.1.9.5 also hold for Pos^+ with the same proof.

Example 3.1.10.2. Assume given a partially ordered set $J \in \operatorname{Pos}^+$ equipped with an exhaustive filtration $J(n) \subset J$ as in Example 3.1.8.1, and let $J^{\bullet} \subset J \times \mathbb{N}$ be the incidence subset – namely, the subset of pairs $j \times n$ such that $j \in J(n)$. Then the projection $\tau: J^{\bullet} \to \mathbb{N}$ is a cofibration with fibers J(n) and transition functors given by inclusions. On the other hand, for any $j \in J$, the fiber J_j^{\bullet} of the projection $\sigma: J^{\bullet} \to J$ is a right-closed subset in \mathbb{N} , so it has the smallest element n(j) and is isomorphic to $n(j) \setminus \mathbb{N}$. Moreover, σ is a cofibration whose transition functor $J_j^{\bullet} \to J_{j'}^{\bullet}$ for any $j \leq j'$ sends $n \in n(j) \setminus \mathbb{N}$ to $\max\{n, n(j')\}$. Since as abstract partially ordered sets, $n \setminus \mathbb{N} \cong \mathbb{N}$ for any n, and the embedding $\varepsilon(0): \operatorname{pt} \to \mathbb{N}$ is right-reflexive, $\sigma: J^{\bullet} \to J$ is +-anodyne, and κ^+ -anodyne if $|J| < \kappa$.

Lemma 3.1.10.3. Assume given J_0 , $J_1 \in Pos^+$ equipped with exhaustive filtrations as in Example 3.1.8.1, and a map $f: J_0 \to J_1$ that preserves the filtrations and induces a +-anodyne map $f(n): J_0(n) \to J_1(n)$ for any $n \ge 0$. Then f itself is +-anodyne.

Proof. By Example 3.1.10.2, it suffices to show that the map $f^{\bullet}: J_0^{\bullet} \to J_1^{\bullet}$ between the corresponding incidence sets is +-anodyne. But this map is cocartesian over \mathbb{N} with fibers f(n), so it is +-anodyne by Definition 3.1.9.1 (ii) in the equivalent form (ii') of Corollary 3.1.9.2.

Remark 3.1.10.4. Note that both J_0 and J_1 in Lemma 3.1.10.3 may lie in Pos – e.g. one can take Z_{∞} of Example 3.1.3.16 with filtration $Z_m \subset Z_{\infty}$ – but we do not claim that the map f is then anodyne.

Example 3.1.10.5. The map (3.1.3.6) of Example 3.1.3.16 is +-anodyne (apply Definition 3.1.9.1 (ii) over $J = \mathbb{N}$). Moreover, for any cofibration $J \to \mathbb{N}$, the map $\zeta^*J \to J$ is +-anodyne (again apply Definition 3.1.9.1 (ii) over \mathbb{N} , and use Lemma 3.1.3.19). Note that as in (3.1.3.11), (3.1.3.8) induces a standard coproduct decomposition

$$\zeta^* J \cong (\zeta_2^* J) \sqcup_{I_1} \zeta^* q^* J,$$

where $q: \mathbb{N} \to \mathbb{N}$ is the shift map, and $\zeta_2^*J \cong \mathsf{Z}_2 \times_{[1]} J/1 \cong B([1]) \times_{[1]} J/1$ is isomorphic to the cylinder of the embedding $J_1 \to J/1$. In particular, for any $J \in \mathsf{Pos}^+$ equipped with a map $\chi: J \to \mathbb{N}$, we have a map

$$(3.1.10.2) J^{+} = \zeta^{*}(J/_{\chi}\mathbb{N}) \cong J \times_{\mathbb{N}} (\mathbb{N} \setminus \mathsf{Z}_{\infty}) \to J,$$

and since $\sigma: J/\mathbb{N} \to J$ is reflexive, the map (3.1.10.2) is +-anodyne. The term $\zeta^*q^*(J/\chi\mathbb{N})$ in the decomposition (3.1.10.1) for J^+ is of the same form: we have $q^*(J/\chi\mathbb{N}) \cong J/_{q_{\dagger}\circ\chi}\mathbb{N}$, where $q_{\dagger}: \mathbb{N} \to \mathbb{N}$ sends $l \in \mathbb{N}$ to $\max\{0, l-1\}$.

Proposition 3.1.10.6. The class of +-anodyne maps is the minimal saturated class of maps in PoSets⁺ that is closed under coproducts and standard pushouts, and contains all anodyne maps, the projection $J \times [1] \to J$ for any $J \in \text{Pos}^+$, and the map (3.1.10.2) for any left-bounded map $J \to \mathbb{N}$.

Proof. Let W be the minimal class given in the Proposition. Then it satisfies Definition 3.1.10.1 (i), and we need to show that it also satisfies (ii). For J = V, this is Lemma 3.1.9.5. Next, take $J = \mathbb{N}$ and assume that the maps $\chi_l : J_l \to \mathbb{N}$, l = 0,1 are left-bounded, and the comma-fibers f/n, $n \in \mathbb{N}$ of the map $f : J_0 \to J_1$ are anodyne. Then by (3.1.10.2), to show that $f \in W$, we may instead consider the map $f^+ : J_0^+ \to J_1^+$ over \mathbb{Z}_{∞} . Moreover, we can compose the maps $\chi_l^+ : J_l^+ \to \mathbb{Z}_{\infty}$, l = 0,1 with the map x of (3.1.3.9). Its comma-fibers are countable coproducts of finite partially ordered sets isomorphic to \mathbb{V}^0 or pt, and then comma-fibers of the map f^+ with respect to $x \circ \chi_l^+ : J_l^+ \to \mathbb{V}$, l = 0,1 are countable coproducts of anodyne maps. Therefore f^+ , hence also f are indeed in W.

Now, for any $J \in \operatorname{Pos}^+$ equipped with any map $\chi: J \to \mathbb{N}$, the height function $\operatorname{ht}: J \to \mathbb{N}$ is left-bounded, and for any $n \in \mathbb{N}$, the induced map $J/_{\operatorname{ht}}n \to \mathbb{N}$ is left-bounded, so that the map $(J/_{\operatorname{ht}}n)^+ \to J/_{\operatorname{ht}}n$ of (3.1.10.2) is in W. Moreover, ht induces a map $J^+ \to J \to \mathbb{N}$, and we have $J^+/n \cong (J/_{\operatorname{ht}}n)^+$. Therefore the map (3.1.10.2) for J and χ is also in W. Analogously, for any $J \in \operatorname{Pos}^+$, $S \in \operatorname{Sets}$, and a map $J \to S^<$, the height function $\operatorname{ht}: J \to \mathbb{N}$ is

left-bounded, and we have $(J/_{\rm ht}n)^{\natural} \cong J^{\natural}/n$ for any $n \in \mathbb{N}$, so that the map (3.1.9.1) is in W. Then exactly the same inductive argument as in the proof of Proposition 3.1.9.7 shows that W satisfies Definition 3.1.10.1 (ii) for any $J_0, J_1 \in \operatorname{Pos}^+$ and $J \in \operatorname{Pos}$. Finally, for an arbitrary $J \in \operatorname{Pos}^+$, composing the maps χ_l , l = 0, 1 with the height function $\operatorname{ht}: J \to \mathbb{N}$ reduces us to the case $J = \mathbb{N}$, then (3.1.10.2) futher reduces us to $J = \mathbb{Z}_{\infty}$, and $\dim \mathbb{Z}_{\infty} = 1$ is finite. \square

Remark 3.1.10.7. Definition 3.1.9.1 (ii) for discrete J is equivalent to saying that the class of anodyne maps is closed under those coproducts that exist in Pos. Not all do, since the dimension of the coproduct of an infinite number of finite-dimensional sets may not be finite anymore. However, any coproduct of left-bounded sets is left-bounded, so Pos⁺ has arbitrary coproducts, and we can use simpler language in Proposition 3.1.10.6.

Definition 3.1.10.8. For any regular cardinal κ , the class of κ -anodyne maps is the minimal saturated class of maps in $\operatorname{Pos}_{\kappa}$ that satisfies the conditions (i), (ii) of Definition 3.1.9.1, with Pos replaced by $\operatorname{Pos}_{\kappa}$, the class of κ^+ -anodyne maps is the minimal saturated class of maps in $\operatorname{Pos}_{\kappa}^+$ satisfying (i), (ii) with Pos replaced by $\operatorname{Pos}_{\kappa}^+$. A partially ordered set $J \in \operatorname{Pos}_{\kappa}$ is κ^+ -anodyne if so is the map $J \to \operatorname{pt}$.

We note that all the results of the last two subsections about anodyne and +-anodyne maps hold for κ -anodyne maps with the same proofs, provided one replaces Pos, Pos⁺ with Pos_{κ}, Pos⁺ and requires that $|S| < \kappa$ in (3.1.9.1).

3.2. Augmentations and biorders.

3.2.1. Augmentations. The category PoSets comes equipped with a full embedding φ : PoSets \to Cat, so that the cofibration Cat. \to Cat of Example 2.3.3.9 the cofibration (3.1.1.1), and for any category I, (2.1.4.12) defines the category PoSets $/\!\!/ I$ of I-augmented partially ordered sets. Explicitly, objects in PoSets $/\!\!/ I$ are pairs $\langle J, \alpha_J \rangle$, $J \in$ PoSets, $\alpha_J : J \to I$ a functor, with morphisms from $\langle J, \alpha_J \rangle$ to $\langle J', \alpha_{J'} \rangle$ given by pairs $\langle f, \alpha_f \rangle$ of an order-preserving map $f : J \to J'$ and a map $\alpha_f : \alpha_J \to \alpha_{J'} \circ f$. We will drop α_J or α_f from notation when it is clear from the context. For any closed class v of maps in I, a morphism is v-strict if α_f is pointwise in v. A morphism is s-strict if it is s-strict, or equivalently, if s an isomorphism (or in terms of Subsection 2.1.2, if s is a functor over s 1). Augmented partially ordered set and strict maps form a dense subcategory PoSets s 1, and we denote by

(3.2.1.1)
$$\lambda : PoSets //_{\star} I \rightarrow PoSets // I$$

the embedding functor. We also have the forgetful functors

(3.2.1.2)
$$\pi: \text{PoSets} // I \to \text{PoSets}, \ \overline{\pi} = \pi \circ \lambda: \text{PoSets} //_{\star} I \to \text{PoSets}$$

induced by (2.1.4.10), both are fibrations by Example 2.3.3.8, and if I is rigid, then the fibration $\overline{\pi}$ is discrete. Since for any I-augmented partially ordered set $\langle J, \alpha_J \rangle \in \text{PoSets} // I$ and any object $i \in I$, the comma-fiber $i \setminus_{\alpha} J$ is a partially ordered set, the extended Yoneda embedding (2.1.4.6) of Example 2.1.4.2 induces a functor

(3.2.1.3)
$$E_I : PoSets // I \rightarrow I^o PoSets$$

and this functor is also a fully faithful embedding.

Remark 3.2.1.1. Since partially ordered sets are rigid, a pseudofunctor $I^o \to PoSets \subset Cat$ is the same thing as an honest functor, so that if I is essentially small, the Grothendieck construction defines a full embedding I^o PoSets $\subset Cat /\!\!/_{\flat} I$ into the category (2.3.2.4). Its essential image consists of fibrations whose strict fibers are partially ordered sets. For any functor $X: I^o \to PoSets$, we denote by

$$(3.2.1.4) \qquad \overrightarrow{I} X \to I$$

the corresponding fibration with fibers X(i) (if X(i) is discrete for any $i \in I$, then (3.2.1.4) is the discrete fibration $IX \to I$ of Example 2.3.3.10). If I itself is a partially ordered set, then (3.2.1.4) is a partially ordered set for any X, we have I^o PoSets \cong PoSets $//_b I$, and the functors

$$(3.2.1.5) \qquad \text{PoSets } /\!\!/_{b} I \xrightarrow{a} \text{PoSets } /\!\!/ I \xrightarrow{b} \text{PoSets } /\!\!/_{b} I,$$

induced by (2.4.2.3), together with the maps (2.4.2.4), fall within the scope of Lemma 2.2.1.5, so that a is an honest right-adjoint to $Y \circ b$, and b is an honest left-adjoint to $a \circ Y$, while Y is the Yoneda embedding (3.2.1.3). As another consequence of rigidity, one can describe the category PoSets // PoSets in terms of the Grothendieck construction: it is equivalent to the subcategory $\operatorname{ar}_c(\operatorname{PoSets}) \subset \operatorname{ar}(\operatorname{PoSets})$ spanned by cofibrations $f: J' \to J$, with such maps from $J'_0 \to J_0$ to $J'_1 \to J$ that the induced map $J'_0 \to J'_1 \times_{J_1} J_0$ is a cocartesian functor over J_0 . The equivalence sends $\langle J, \alpha_J \rangle \in \operatorname{PoSets}$ // PoSets to the cofibration $\alpha_I^* \operatorname{PoSets} \to J$.

For any category I and regular cardinal κ , we have the full subcategories

(3.2.1.6)
$$\operatorname{pos} /\!\!/ I \subset \operatorname{Pos}_{\kappa} /\!\!/ I \subset \operatorname{Pos} /\!\!/ I, \operatorname{Pos}_{\kappa}^+ \subset \operatorname{Pos}^+ /\!\!/ I \subset \operatorname{PoSets} /\!\!/ I$$

spanned by pairs $\langle J, \alpha_J \rangle$ with J in pos $\subset \operatorname{Pos}_{\kappa} \subset \operatorname{Pos}, \operatorname{Pos}_{\kappa}^+ \subset \operatorname{Pos}^+$. We note that if a partially ordered set J is finite-dimensional, then the same is true for the comma-fiber $i \setminus J$ for any $i \in I$, so that the functor (3.2.1.3) sends $\operatorname{Pos}_{\mathscr{K}} / I$ into $I^o \operatorname{Pos}_{\kappa}$.

Definition 3.2.1.2. A *good filtration* on a category I is a collection of full subcategories $I_{\leq n} \subset I$, $n \geq 0$ such that $I_{\leq n} \subset I_{\leq n+1}$ and $I = \bigcup I_{\leq n}$.

For any category I equipped with a good filtration in the sense of Definition 3.2.1.2, we define a full subcategory Pos $/\!/^b I \subset \text{Pos} /\!/ I$ by

(3.2.1.7)
$$\operatorname{Pos} /\!\!/^{\mathsf{b}} I = \bigcup_{n \geq 0} \operatorname{Pos} /\!\!/ I_{\leq n} \subset \operatorname{Pos} /\!\!/ I,$$

and for any regular cardinal κ , we let $\operatorname{Pos}_{\kappa}$ // $^bI = \operatorname{Pos}_{\kappa}$ // $I \cap \operatorname{Pos}$ // bI . Explicitly, these subcategories consist of augmented partially ordered sets $\langle J, \alpha \rangle$ such that $\alpha: J \to I$ factors through $I_{\leq n}$ for a large enough n; we will call such sets restricted. If $I = I_{\leq n}$ for some n, this condition is of course empty. We also say that $\langle J, \alpha \rangle \in \operatorname{Pos}^+$ // I is locally restricted if J/j is restricted for any $j \in J$, and we let

(3.2.1.8)
$$\operatorname{Pos}^{+} /\!\!/^{\mathsf{b}} I \subset \operatorname{Pos}^{+} /\!\!/ I$$

be the full subcategory spanned by locally restricted augmented partially ordered sets, with $\operatorname{Pos}_{\kappa}^+ /\!\!/^{\mathsf{b}} I = \operatorname{Pos}^+ /\!\!/^{\mathsf{b}} I \cap \operatorname{Pos}_{\kappa}^+ /\!\!/ I$.

Definition 3.2.1.3. A map $f = \langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle J', \alpha_{J'} \rangle$ in PoSets // I is a *full embedding* if it is strict and f is a full embedding. A full embedding f is *left* or *right* or *locally closed* if f is left or right or locally closed, *left-reflexive* if f is left-reflexive, *right-reflexive* if f is right-reflexive over f (that is, the base change map f of f

For any morphism $\langle f, \alpha_f \rangle : \langle J_0, \alpha_0 \rangle \to \langle J_1, \alpha_1 \rangle$ in PoSets $/\!\!/ I$, the cylinder C(f) has a natural augmentation given by α_l on $J_l \subset C(f)$, l=0,1, and if $\langle J_l, \alpha_l \rangle$ are restricted or locally restricted, then so is C(f). The embeddings $s: J_0 \to C(f)$, $t: J_1 \to C(f)$ are augmented full embeddings in the sense of Definition 3.2.1.3, and the adjoint map $t_+: C(f) \to J_1$ is augmented by adjunction, so that (2.2.4.2) is a decomposition in the category PoSets $/\!\!/ I$. If f is strict, then the dual cylinder $C^o(f)$ also carries a natural augmentation, we

have augmented full embeddings $s: J_1 \to C^o(f)$, $t: J_0 \to C^o(f)$, and (2.2.4.3) is a decomposition in the category PoSets $/\!/_{\star} I \subset \text{PoSets} /\!/_{L}$. The cylinder and dual cylinder construction preserve each of the full subcategories (3.2.1.6). For any I-augmented right-reflexive full embedding $f: J \to J'$, we also have the augmented version of the retraction (3.1.3.3), where we augment the product $J' \times [1]$ via the projection $J' \times [1] \to J'$, and similarly for left-reflexive full embeddings and dual cylinders. Therefore Lemma 3.1.3.11 also holds for the categories Pos $/\!/_{L} I$, Pos $^+_{\kappa} /\!/_{L} I$, Pos $^+_{\kappa} /\!/_{L} I$ and their restricted versions (3.2.1.7), (3.2.1.8), with the same proof. So does Lemma 3.1.3.13.

More generally, if we are given an *I*-augmented partially ordered set $\langle I, \alpha_I \rangle \in$ PoSets // I, a map $f: J'_0 \to J_0$ in PoSets, and a map $\chi: J \to J_0$, then the fibered product $J' = J \times_{I_0} J'_0$ comes equipped with a natural map $f' : J' \to J'_0$, and we will treat J' as an object in PoSets // I with the structure map $\alpha_{I'} = \alpha_I \circ f'$, restricted or locally restricted if so were $\langle J, \alpha_I \rangle$. In particular, for any $j \in J_0$, we have the fiber $J_i = J \times_{J_0} j$ of the map $\chi : J \to J_0$ and its left and right comma-fibers $J/j = J \times_{J_0} J_0/j$, $j \setminus J = J \times_{J_0} j \setminus J_0$. With these conventions, just as in the absolute case $I = \mathsf{pt}$, any left-closed full embedding $\langle J', \alpha_{I'} \rangle \subset \langle J, \alpha_I \rangle$ in PoSets // *I* is of the form $\langle J_0, \alpha_I |_{J_0} \rangle \to \langle J, \alpha_I \rangle$ for a unique order-preserving characteristic map $\chi: J \to [1]$. Moreover, for any standard pushout square (3.1.2.3) with *I*-augmented J_{01} , J_0 , J_0 and *I*-augmented left-closed embeddings $J_{01} \subset J_0$, $J_{01} \subset J_1$, the coproduct J inherits the augmentation, so that standard coproducts also exist in Pos // I and other categories (3.2.1.6), and correspond bijectively to characteristic maps $\chi: J \to V$. Lemma 3.1.3.18 then holds for augmented partially ordered sets with the same proof. Moreover, if *I* is equipped with a good filtration, then all these statements also hold for restricted and locally restricted I-augmented partially ordered sets.

Definition 3.2.1.4. For any *I*-augmented partially ordered set $\langle J, \alpha \rangle$, its *bary-centric subdivision B*₁*J* and *dual barycentric subdivision B*₀^o*J* are given by

$$(3.2.1.9) B_I(J) = \langle BJ, \alpha_I \circ \xi \rangle, B_I^o(J) = \langle (BJ)^o, \alpha_I \circ \xi_{\perp} \rangle,$$

where ξ and ξ_{\perp} are the maps (3.1.4.1).

As in the non-augmented case, barycentric subdivision preserves chain dimension, sends restricted sets to restricted sets, and due to the way Definition 3.2.1.4 is formulated, the maps (3.1.4.1) define strict augmented maps $\xi: B_I J \to J$, $\xi_{\perp}: B_I^o J \to J$. We cannot say that $B_I J \cong B_I J^o$ since in fact, J^o is not well-defined (the opposite to an *I*-augmented set has no natural augmentation). However, we still have a version of Lemma 3.1.4.9.

Lemma 3.2.1.5. Assume given a partially ordered set J with an augmentation functor $\alpha: J^< \to I$, let $\varepsilon(o): \operatorname{pt} \to J^>$ be the embedding (2.1.1.2) onto the new maximal element $o \in J^>$, and let $\operatorname{pt}_{\alpha} = \langle \operatorname{pt}, \alpha \circ \varepsilon(o) \rangle \in \operatorname{Pos} /\!\!/ I$. Then $\varepsilon(o): \operatorname{pt}_{\alpha} \to J^>$ is a left-reflexive full embedding, and $B(\varepsilon(o)), B(\varepsilon(o))^o$ are augmented reflexive full embeddings $\operatorname{pt}_{\alpha} \to B_I(J^>)$, $\operatorname{pt}_{\alpha} \to B_I(J^>)$.

Proof. For $B_I(J^>)$, use the same decomposition pt $\subset B(J)^< \subset B(J^>)$ as in the proof of Lemma 3.1.4.9, and note that the first embedding is right-reflexive over I with respect to the augmentation $\alpha \circ \xi : B(J^>) \to I$. For $B_I^o(J^>)$, use the opposite decomposition, and observe that the second embedding is right-reflexive over I with respect to $\alpha \circ \xi_\perp$.

Definition 3.2.1.6. Assume that a category I is equipped with a good filtration in the sense of Definition 3.2.1.2. The class of *anodyne* maps is the minimal saturated class of maps in Pos // bI containing all the projections $\langle J, \alpha_J \rangle \times [1] \to \langle J, \alpha_J \rangle$ and such that

(ii) for any map $\langle f, \alpha \rangle : \langle J_0, \alpha_0 \rangle \to \langle J_1, \alpha_1 \rangle$ in Pos //^b I, any $J \in$ Pos, and any maps $\chi_l : J_l \to J$, l = 0, 1 such that f is co-lax over J and $f/j : J_0/j \to J_1/j$ is anodyne for any $j \in J$, the same holds for f.

The class of +-anodyne maps is the minimal saturated class of maps in Pos⁺ //^b I satisfying the above conditions with Pos replaced by Pos⁺, and for any regular cardinal κ , the classes of κ -anodyne resp. κ ⁺-anodyne maps are the minimal saturated classes of maps in Pos $_{\kappa}$ //^b I resp. Pos $_{\kappa}$ ⁺ //^b I satisfying the above conditions with Pos replaced by Pos $_{\kappa}$ resp. Pos $_{\kappa}$ ⁺.

With this definition, most the results of Subsection 3.1.9 extend to the augmented setting. In particular, since (3.1.3.2) has a obvious augmented version, Definition 3.2.1.6 (ii) can be replaced with the appropriate version of (ii') of Corollary 3.1.9.2, and Lemma 3.1.9.5 also holds with the same proof. Analogously, Lemma 3.2.1.5 implies that the map $\chi: B_I(J) \to J$ is anodyne, and κ -anodyne if $|J| < \kappa$, so that a map f is anodyne resp. κ -anodyne iff so is $B_I(f)$. The analogous statement for $B_I^o(J)$ is also true but requires a proof.

Lemma 3.2.1.7. For any $J \in \text{Pos} /\!/^b I$, the map $\xi_{\perp} : B_I^o(J) \to J$ is anodyne, and κ -anodyne if $|J| < \kappa$.

Proof. Consider the barycentric subdivision $B_I(B_I^o(J))$, and note that we have

two natural maps $B_I(B_I^o(J)) \to J$, namely, the compositions

$$(3.2.1.10) \qquad B_I(B_I^o(J)) \xrightarrow{\tilde{\xi}} B_I^o(J) \xrightarrow{\tilde{\xi}_{\perp}} J, B_I(B_I^o(J)) \xrightarrow{\tilde{\xi}_{\perp}} B_I^o(J)^o \xrightarrow{\tilde{\xi}} J$$

Explicitly, an element in $B_I(B_I^o(J))$ is a collection $S_0 \subset \cdots \subset S_n \subset J$ of totally ordered subsets; the maps (3.2.1.10) send such a collection to the smallest element in S_0 resp. the largest element in S_n . The map $\xi_{\perp} \circ \xi$ is naturally I-augmented. The map $\xi \circ \xi_{\perp}$ is not; however, $\xi \circ \xi_{\perp} \geq \xi_{\perp} \circ \xi$, so that $\xi_{\perp} \circ \xi$ is co-lax over J with respect to $\xi \circ \xi_{\perp} : B_I(B_I^o(J)) \to J$. Moreover, for any $j \in J$, we have $B_I(B_I^o(J))/\xi_{\circ \xi_{\perp}}j \cong B_I(B_I^o(J/j))$, so by Definition 3.2.1.6, Lemma 3.2.1.5 immediately implies that $\xi \circ \xi_{\perp}$ is anodyne. Since so is ξ , we are done by the two-out-of-three property.

Another useful result concerns a generalization of Corollary 3.1.9.2 to fibrations. In the absolute case, it would have been trivial by passing to the opposite partially ordered sets, but in the augmented case, we need a separate proof.

Lemma 3.2.1.8. Assume given a map $f: J' \to J$ in Pos //^b I, and a map $\chi: J \to J_0$ for some $J_0 \in \text{Pos such that}$

- (i) $f: j \setminus J' \rightarrow j \setminus J$ is anodyne for any $j \in J_0$, or
- (ii) χ and $f \circ \chi$ are fibrations whose transition functors are strict I-augmented maps, f is cartesian over J_0 , and $f: J'_i \to J_j$ is anodyne for any $j \in J_0$.

Then f is anodyne, and κ -anodyne if $|J|, |J'| < \kappa$.

Proof. In the case (i), it suffices to note that for any $j \in J_0$, we have $B_I(j \setminus_{\chi} J) \cong B_I(J)/_{\chi^0 \circ \xi_{\perp}} j$, and similarly for J', so that $B_I(f)$, hence f is anodyne. In the case (ii), the conditions on the fibration $\chi : J \to J_0$ insure that the embedding $J_j \to j \setminus J$ is right-reflexive over I for any $j \in J_0$, and similarly for $\chi \circ f$.

Finally, for any I-augmented $\langle J, \alpha_J \rangle$ and map $J \to S^<$, $S \in$ Sets, (3.1.9.1) defines a I-augmented partially ordered set J^{\natural} , and for any map $J \to \mathbb{N}$, so does (3.1.10.2). We then have the following version of Proposition 3.1.9.7 and Proposition 3.1.10.6.

Proposition 3.2.1.9. The class of anodyne maps is the minimal saturated class of maps in Pos // b I that contains the maps (3.1.9.1) for any $S \in \text{Sets}$ and $J \to S^<$, $\langle J, \alpha_J \rangle \in \text{Pos}$ // I, satisfies Definition 3.1.9.1 (ii) for discrete J, and is closed with respect to standard pushouts (3.1.2.3). The class of +-anodyne maps is the minimal saturated

class of maps in Pos^+ //^b I that is closed under coproducts and standard pushouts, and contains all anodyne maps, the projection $J \times [1] \to J$ for any $\langle J, \alpha_J \rangle \in Pos^+$ //^b I, and the map (3.1.10.2) for any left-bounded map $J \to \mathbb{N}$. The class of κ -anodyne resp. κ^+ -anodyne maps for some regular cardinal κ is the minimal saturated class of maps in Pos_{κ}^+ //^b I resp. Pos_{κ}^+ //^b I with the same properties.

Proof. Same as Proposition 3.1.9.7 and Proposition 3.1.10.6. \Box

3.2.2. Biordered sets. By Remark 3.2.1.1, PoSets-augmented partially ordered sets can be described by cofibrations $J' \to J$, and in such a situation, the trivial factorization system $\langle \natural, \mathsf{Id} \rangle$ on J induces a factorization system of Lemma 2.3.3.26 (i) on J'. It is useful to axiomatize the situation.

Definition 3.2.2.1. A *biordered set* is a partially ordered set J equipped with two additional orders \leq^l , \leq^r such that $j \leq j'$ iff there exists $j'' \in J$ such that $j \leq^l j'' \leq^r j'$, and such a j'' is unique whenever it exists.

Definition 3.2.2.1 precisely means that $\langle \leq^l, \leq^r \rangle$ is a factorization system on J. In particular, each of the orders \leq^l, \leq^r completely defines the other one. We will denote by $J^l, J^r \subset J$ the dense subsets defined by \leq^l, \leq^r , and we will sometimes define a structure of a biordered set on some $J \in \text{PoSets}$ by specifying J^l or J^r .

Example 3.2.2.2. The set $[2] = \{0,1,2\}$ equipped with the orders $0 \le l$ 1, $1 \le r$ 2 is a biordered set in the sense of Definition 3.2.2.1, denoted by $[2]^{\diamond}$.

Definition 3.2.2.3. A *morphism* between two biordered sets J_0 , J_1 is a map f: $J_0 o J_1$ that preserves the orders \leq and \leq ^l. A morphism is *strict* if it also preserves the order \leq ^r.

A biordered set $\langle J, \leq^l, \leq^r \rangle$ is finite or has finite chain dimension or is left or right-bounded if so is $J \in \text{PoSets}$ (and then also J^l and J^r). We denote the category of biordered sets by BiPoSets, and we let $\overline{\text{BiPoSets}} \subset \text{BiPoSets}$ the dense subcategory defined by the closed class of strict maps, with the dense embedding

(3.2.2.1)
$$\rho : \overline{\text{BiPoSets}} \to \text{BiPoSets}$$
.

Every map $f: J_0 \to J_1$ of biordered sets defines a map $f^l: J_0^l \to J_1^l$, and also $f^r: J_0^r \to J_1^r$ if it is strict. The forgetful functor $U: BiPoSets \to PoSets$ has a left and right-adjoint

$$(3.2.2.2) L, R : PoSets \rightarrow BiPoSets$$

defined by $L(J) = R(J) = L(J)^r = R(J)^l = J$, with discrete $L(J)^l$, $R(J)^r$, and R itself has a right-adjoint $U^l : \text{BiPoSets} \to \text{PoSets}$ sending J to J^l . The functors (3.2.2.2) factor through $\overline{\text{BiPoSets}} \subset \text{BiPoSets}$, and when the functor L is considered as a functor to $\overline{\text{BiPoSets}}$, it has a right-adjoint functor $U^r : \overline{\text{BiPoSets}} \to \text{PoSets}$ sending J to J^r .

For any biordered set J, the opposite set J^o is naturally biordered, with $(J^o)^l = (J^r)^o$ and $(J^o)^r = (J^l)^o$, and this is functorial with respect to strict maps. Since by definition, the unique factorizations of Definition 3.2.2.1 are preserved by strict maps, the category $\overline{\text{BiPoSets}}$ has all finite limits. Here is one application of this.

Example 3.2.2.4. Let $J' = \operatorname{colim}_J \varphi(j)$ be a perfect colimit in PoSets in the sense of Definition 3.1.7.1, and assume that it is universal with respect to some map $J' \to J''$. Then any map $J_0 \to L(J'')$ in BiPoSets is tautologically strict, and then we have $L(J') \times_{L(J'')} J_0 \cong \operatorname{colim}_J(L(\varphi(j)) \times_{L(J'')} J_0)$, both in BiPoSets and in BiPoSets. Indeed, to check the universal property, apply Definition 3.1.7.1 to the maps $U(J_0), J_0^l, J_0^r \to J''$.

We define the *unfolding* $\mathcal{I}^{\diamond} \subset \text{BiPoSets}$ of a full subcategory $\mathcal{I} \subset \text{PoSets}$ as its preimage $\mathcal{I}^{\diamond} = U^{-1}(\mathcal{I})$ under the forgetful functor U, and we denote $\overline{\mathcal{I}}^{\diamond} = \mathcal{I}^{\diamond} \cap \overline{\text{BiPoSets}}$, with the dense embedding $\rho : \overline{\mathcal{I}}^{\diamond} \to \mathcal{I}^{\diamond}$ of (3.2.2.1). In particular, we have the ample subcategories Pos, Pos⁺, Pos⁻ \subset PoSets of Subsection 3.1.5, we let $\text{BiPos} = \text{Pos}^{\diamond}$, $\text{BiPos}^{+} = \text{Pos}^{+\diamond}$, $\text{BiPos}^{-} = \text{Pos}^{-\diamond}$, and for any regular cardinal κ , we let $\text{BiPos}_{\kappa} = \text{Pos}_{\kappa}^{\diamond}$, $\text{BiPos}_{\kappa}^{+} = \text{Pos}_{\kappa}^{+\diamond}$, with the dense subcategories $\overline{\text{BiPos}}$, $\overline{\text{BiPos}}_{\kappa}^{+}$, $\overline{\text{BiPos}}_{\kappa}^{+}$, $\overline{\text{BiPos}}_{\kappa}^{+}$.

Example 3.2.2.5. Let Z_{∞} be as in Example 3.1.3.16. Then setting $2n \leq^r 2n + 1 \geq^l 2n + 2$, $n \geq 0$ turns Z_{∞} into a biordered set Z_{∞}^{\diamond} . For any $m \geq 0$, $Z_m \subset Z_{\infty}$ acquires an induced biorder Z_m^{\diamond} , and we have strict biordered maps

$$(3.2.2.3) \zeta^{\diamond}: \mathsf{Z}_{\infty}^{\diamond} \to L(\mathbb{N}), \zeta_{2m-k}^{\diamond}: \mathsf{Z}_{2m-k}^{\diamond} \to L([m]), m \geq 1, k = 0, 1$$

induced by the maps (3.1.3.6) and (3.1.3.7).

Example 3.2.2.6. For any partially ordered set J, the barycentric subdivision BJ carries a biorder defined by $j \leq^l j'$ iff $j \leq j'$ and $\xi(j) = \xi(j')$, where $\xi: BJ \to J$ is the map (3.1.4.1). If we interpret elements in BJ as subsets $S \subset J$, then $S \leq^r S'$ iff $S \subset S'$ is left-closed, and for any $S \subset S' \subset J$, the middle term $S'' \subset S'$ of the decomposition $S \subset S'' \subset S'$ of Definition 3.2.2.1 is the subset $S'' \subset S'$ of all elements $S \in S'$ with non-empty $S \setminus S$. If we let $S \in S'$ be $S \cap S \cap S$ with this biorder,

then ξ becomes a strict biordered map $\xi: B^{\diamond}(J) \to L(J)$, and any map $J \to J'$ of partially ordered sets induces a strict biordered map $B^{\diamond}(J) \to B^{\diamond}(J')$, so that ξ is a map of functors $\xi: B^{\diamond} \to L$. Alternatively, one can also consider the biordered set $B_{\diamond}(J) = B^{\diamond}(J^{o})$; this gives a different biorder on the same partially ordered set $B(J) \cong B(J^{o})$, and we have a functorial map $\xi_{\perp}: B_{\diamond} \to L \circ \iota$.

Example 3.2.2.7. Assume given a cofibration $\pi: J' \to J$ in PoSets, and define an order \leq^r on J' by setting $j \leq^r j'$ iff $j \leq j'$ and $\pi(j) = \pi(j')$. Then J' is a biordered set, with the order \leq^l corresponding to maps cocartesian over J. The map π becomes a strict biordered map $\pi: J' \to R(J)$, and sending $\pi: J' \to J$ to this maps provides a fully faithful embedding

(3.2.2.4) PoSets
$$//_{t} I \rightarrow \text{BiPoSets} / R(I)$$
,

where $R: PoSets \rightarrow BiPoSets$ is the functor (3.2.2.2), and $//_{\sharp}$ has the same meaning as in (2.3.2.4).

Definition 3.2.2.8. A map $f: J_0 \to J_1$ in BiPoSets is *dense* if U(f) is an isomorphism while f^l is dense, and a *full embedding* if both f and f^l are full embeddings in PoSets. A full embedding f is *left* or *right* or *locally closed* if it is strict, and f (hence also f^l , f^r) is left or right or locally-closed, and *left* resp. *right-reflexive* if both f and f^l are left resp. right-reflexive, with the same adjoint map $f_t = f_t^l$ resp. $f^t = f^{l\dagger}$. A full embedding is *reflexive* if it is a composition of left-reflexive and right-reflexive full embeddings.

Example 3.2.2.9. Let $[2]^{\diamond}$ be as in Example 3.2.2.2, and consider the embedding $m:[1] \to [2]$ onto $\{0,2\} \subset [2]$ of Example 3.1.3.12 as a biordered map $L([1]) \to [2]$. Then m is a full embedding that is not strict.

Lemma 3.2.2.10. Assume given a biordered set J with a largest element j, and let $J^R \subset J$ be the set of elements $j' \in J$ such that $j' \leq r$ j. Then $J^R \subset J$ is right-closed and left-reflexive, and the induced order \leq^l on J^R is discrete.

Proof. The adjoint map is provided by Example 2.2.3.3. □

Lemma 3.2.2.11. Assume given a biordered set J, and a left-admissible full subset $J' \subset U(J)$, with the embedding map $\gamma : J' \to J$ and the adjoint map $\gamma_+ : J \to J' \subset J$. Moreover, assume that $j \leq^l \gamma_+(j)$ for any $j \in J$. Then J' with the induced orders \leq^l , \leq^r is a biordered set, γ is a strict full embedding, and γ_+ is a biordered map, so that γ is left-reflexive in the sense of Definition 3.2.2.8.

Proof. Assume given $j \leq j' \in J' \subset J$, and consider the unique factorization $j \leq^l j'' \leq^r j'$ in J. Then by assumption, $j \leq^l \leq j'' \leq^l \gamma_+(j'') \leq \gamma_+(j') = j'$, and then by uniqueness, $\gamma_+(j'') \leq^l j''$. Therefore $\gamma_+(j'') = j''$, so that $j'' \in J'$, and J' is indeed a biordered set, and γ is a strict full embedding. Now for any $j \leq^l j'$ in J, consider the unique factorization $\gamma_+(j) \leq^l j'' \leq^r \gamma_+(j')$. Then $j \leq^l j' \leq^l \gamma_+(j')$ by assumption, and $j \leq^l \gamma_+(j) \leq^l j''$, so that $j'' = \gamma_+(j')$ by uniqueness. \square

For any biordered set J, a locally closed full subset $J' \subset U(J)$ with the orders \leq^l , \leq^r induced from J is also a biordered set, and the embedding $J' \to J$ is a strict locally closed full embedding. In particular, for any $n \geq 0$ and biordered set J, the n-th skeleton $\operatorname{sk}_n J \subset J$ carries a natural biorder, and for any map $f: J \to J'$ of biordered sets, and any element $j \in J'$, the comma-sets J/j, $j \setminus J$ and the fiber $J_j = (J/j) \cap (j \setminus J)$ are biordered in a natural way. Then as in PoSets, for any left-closed embedding $J_0 \to J$ in BiPoSets, $J_0 = \chi^{-1}(0)$ for a unique characteristic map $\chi: U(J) \to [1]$ – or equivalently, a unique map $\chi: J \to R([1])$ – and dually for right-closed embeddings. Moreover, BiPoSets has standard pushouts (3.1.2.3) of left-closed embeddings, these correspond bijectively to maps $U(J) \to V$, Lemma 3.1.3.18 holds with the same proof, and morphisms between standard pushout squares correspond to maps $f: J' \to J$ such that U(f) is co-lax over V. Since right-closed embeddings are strict, BiPoSets also has co-standard pushout squares corresponding to maps $\chi: U(J) \to V^o$.

For any map $f: J_0 \to J_1$ in BiPoSets, the cylinder C(f) becomes a biordered set by setting $C(f)^l = C(f^l) \subset C(f)$. With this definition, (2.2.4.2) induces a decomposition

$$(3.2.2.5) J_0 \xrightarrow{s} C(f) \xrightarrow{t_+} J_1$$

of f, where $s: J_0 \to C(f)$ is a left-closed full embedding, and t_{\dagger} is left-adjoint to the right-closed left-reflexive full embedding $t: J_1 \to C(f)$. We also have retractions (3.1.3.3), where we ignore dual cylinders and interpret [1] as R([1]), so that $J \times R([1])$ is the cylinder of the identity map id : $J \to J$. With these conventions, Lemma 3.1.3.11 and Lemma 3.1.3.13 hold for biordered sets with the same proofs.

3.2.3. From augmentations to biorders. A natural source of biordered sets is provided by augmented partially ordered sets of Subsection 3.2.1 via Example 3.2.2.7 and Remark 3.2.1.1. Namely, the biorder of Example 3.2.2.7 is obviously functorial with respect to cocartesian maps, so we obtain a functor \overline{T} : PoSets // PoSets $\rightarrow \overline{\text{BiPoSets}}$ and its composition $T = \rho \circ \overline{T}$ with the dense embedding (3.2.2.1). Then for any category I equipped with a functor

 $F: I \rightarrow PoSets$, we can define functors

(3.2.3.1)
$$\overline{\mathsf{T}}_F : \operatorname{PoSets} /\!\!/ I \to \overline{\operatorname{BiPoSets}}, \\ \overline{\mathsf{T}}_F \cong \rho \circ \overline{\mathsf{T}}_F : \operatorname{PoSets} /\!\!/ I \to \operatorname{BiPoSets}$$

by composing $\overline{\mathsf{T}}$ and T with the functor PoSets $\#I \to \mathsf{PoSets} \#I$ PoSets induced by F. Explicitly, for any $\langle J, \alpha \rangle \in \mathsf{PoSets} \#I$, the biordered set $\overline{\mathsf{T}}_F(\langle J, \alpha \rangle)$ is $J^{\bullet} = (F \circ \alpha)^* \mathsf{PoSets}^{\bullet}$, with the biorder of Example 3.2.2.7 corresponding to the cofibration $J^{\bullet} \to J$. If F takes values in $\mathsf{Pos} \subset \mathsf{PoSets}$, then I acquires a good filtration in the sense of Definition 3.2.1.2 given by $I_{\leq n} = \{i \in I | \dim F(i) \leq n\}$, and we have the categories (3.2.1.7), (3.2.1.8) of restricted and locally restricted I-augmented partially ordered sets.

Lemma 3.2.3.1. The functor T_F of (3.2.3.1) sends left resp. right-closed embeddings to left resp. right-closed embeddings, reflexive full embeddings to reflexive embeddings, cylinder to cylinders, and standard resp. co-standard pushout square to standard resp. co-standard pushout squares. Moreover, if F takes values in $Pos_{\kappa} \subset PoSets$ for some regular κ , then T_F sends $Pos_{\kappa} / ^b I$, $Pos_{\kappa} / ^b I$, $Pos_{\kappa} / ^b I$, $Pos_{\kappa} / ^b I$ into $Pos_{\kappa} / ^b I$ into $Pos_{\kappa} / ^b I$, $Pos_{\kappa} / ^b I$

Proof. Clear. □

Example 3.2.3.2. For any $J \in \text{PoSets}$, let $B^{\triangle}(J) \in \text{PoSets}$ // PoSets be the barycentric subdivision BJ augmented by the functor $\varphi: BJ \to \text{PoSets}$, $S \mapsto S$ corresponding to the cofibration (3.1.4.2). Then $B^{\diamond}(J) = \mathsf{T}(B^{\triangle}(J))$ is the biordered set of pairs $\langle S, s \rangle$, $S \in BJ$, $S \in S$, with the order given by setting $\langle S, s \rangle \leq \langle S', s' \rangle$ iff $S \subset S'$ and $S \leq S'$, and $S \in S'$ and $S \in S'$ corresponding to the cases when S = S' resp. S = S'. The required factorization is given by $\langle S, S \rangle \leq^l \langle S', S \rangle \leq^r \langle S', S' \rangle$, and the underlying partially ordered set is $S \in S$. Note that the biordered set $S \in S$ is the largest element, and the embedding $S \in S$ is full and right-reflexive, with the strict adjoint map sending $S \in S$ to $S \in S$.

Under an additional assumption, the correspondence between I-augmented and biordered sets given by (3.2.3.1) can be reversed. Namely, note that while the category BiPoSets does not have all finite limits, it has finite products, and these are also products in $\overline{\text{BiPoSets}}$.

Lemma 3.2.3.3. For any biordered sets J, J', the set BiPoSets(J, J') of biordered maps $J \to J'$ and the subset $\overline{BiPoSets}(J, J') \subset BiPoSets(J, J')$ of strict maps are biordered

in the sense of Definition 3.2.2.1 with respect to pointwise orders \leq^l , \leq^r , so that the categories BiPoSets and $\overline{\text{BiPoSets}}$ are cartesian-closed in the sense of Definition 2.2.5.16.

Proof. Let $f, f': J \to J'$ be two biordered maps such that $f \le f'$ pointwise. Since factorizations (2.1.1.5) in a factorization system are functorial, we have a unique factorization $f \le f'' \le f'$ for some map $f'': J \to J'$ preserving the order \le , and we need to check that it preserves \le^l and \le^r if f, f' are strict. To do this, assume given some $j \le j'$ in J, and consider the canonical commutative diagram

$$f(j) \xrightarrow{l} f''(j) \xrightarrow{r} f'(j)$$

$$\downarrow l \qquad \qquad \downarrow l$$

$$f(j)'' \xrightarrow{l} f''(j)'' \xrightarrow{r} f'(j)''$$

$$\downarrow r \qquad \qquad \downarrow r$$

$$f(j') \xrightarrow{l} f''(j') \xrightarrow{r} f'(j')$$

provided by the biorder in J', where l resp. r in (3.2.3.2) indicate the orders \leq^l resp. \leq^r . Then $f(j) \leq^l f''(j)'' \leq^r f'(j')$ is the canonical factorization of $f(j) \leq f'(j')$. If $j \leq^l j'$, so that $f(j) \leq^l f(j')$, $f'(j) \leq^l f'(j')$, then f(j)'' = f(j'), f'(j)'' = f'(j'), and we conclude that f''(j)'' = f''(j'), so that $f''(j) \leq^l f''(j')$. If $j \leq^r j'$ and f, f' are strict, then the same argument shows that f''(j) = f''(j)'' and $f''(j) \leq^r f''(j')$.

Lemma 3.2.3.4. Assume that the functor $F: I \to PoSets$ is fully faithful, and F(i) is connected for any $i \in I$. Then the functor $\overline{\mathsf{T}}_F$ of (3.2.3.1) is also fully faithful. Moreover, the functor E_I of (3.2.1.3) extends to the category $\overline{\mathsf{BiPoSets}} \supset \mathsf{PoSets}$ // I, in that there exists a functor

$$\overline{\mathcal{E}}_F: \overline{\text{BiPoSets}} \to I^o \text{ PoSets}$$

such that $\overline{\mathcal{E}}_F \circ \overline{\mathsf{T}}_F \cong \mathsf{E}_I$.

Proof. Denote by $\overline{\text{BiPoSets}}_F \subset \overline{\text{BiPoSets}}$ the essential image of the functor $\overline{\mathsf{T}}_F$. Then by definition, for any $U \cong \overline{\mathsf{T}}_F(\langle J, \alpha \rangle) \in \overline{\text{BiPoSets}}_F$, we have

$$(3.2.3.4) Ur = \coprod_{j \in J} F(\alpha(j)).$$

By virtue of our assumptions on F, this means that $J \cong \pi_0(U^r)$ as a set, with the natural reduction map $\pi : U \to J$, and the order on J is given by $j \leq j'$

iff there exists $u \le u' \in U$ such that $\pi(u) = j$, $\pi(u') = j'$ (recall that by our convention, a connected category is non-empty, so that $\pi_0(F(i)) \cong \operatorname{pt}$ for any $i \in I$). Since $U \in \overline{\operatorname{BiPoSets}}_F$, π with this order becomes a cofibration, so that the Grothendieck construction provides a functor $\alpha: J \to \operatorname{PoSets}$ into the essential image of $F: I \to \operatorname{PoSets}$. Sending U to $\langle J, \alpha \rangle$ then gives a functor from $\overline{\operatorname{BiPoSets}}_F$ to PoSets // I inverse to $\overline{\mathsf{T}}_F$. To define (3.2.3.3), it suffices to set

$$\overline{\mathcal{E}}_{F}(J)(i) = \overline{\text{BiPoSets}}(L(F(i)), J)^{l}, \quad i \in I,$$

and observe that as a set, $\overline{\text{BiPoSets}}(L(F(i)), J) \cong \text{PoSets}(F(i), J^r)$ by adjunction, and since F(i) is connected, PoSets(F(i), -) commutes with coproducts. Then since F is fully faithful, (3.2.3.4) immediately provides an isomorphism $\overline{\mathcal{E}}_F \circ \overline{\mathsf{T}}_F \cong \mathsf{E}_I$.

3.2.4. Bicofibrations. As in the usual case, the cylinder is a simplest example of a cofibration of biordered sets; here is the appropriate general notion.

Definition 3.2.4.1. A map $f: J' \to J$ in BiPoSets is a *bicofibration* resp. a *biordered fibration* if U(f) is a cofibration resp. a fibration, and f is strict.

Example 3.2.4.2. For any biordered map $f: J_0 \to J_1$, the projection $C(f) \to R([1])$ is a bicofibration.

Example 3.2.4.3. In the situation of Example 3.2.2.7, the map $J' \to R(J)$ is a bicofibration.

Example 3.2.4.4. More generally, assume given $J \in \text{PoSets}$ equipped a functor $F: J \to \text{BiPoSets}$, and let $J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} = (U \circ F)^* \, \text{PoSets}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \to J \, \text{be}$ the cofibration with fibers $J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} = U(F(j)), j \in J \, \text{corresponding to} \, U \circ F: J \to \text{PoSets} \, \text{by} \, \text{the Grothendieck}$ construction. Then setting $(J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})^l = (U^l \circ F)^* \, \text{PoSets}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \, \text{turns} \, J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \, \text{into a biordered}$ set, and the projection $J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \to J \, \text{becomes a bicofibration} \, J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \to R(J), \, \text{with fibers} \, J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} = F(j). \, \text{If} \, J = [1], \, \text{this reduces to Example 3.2.4.2, and if } F \, \text{factors through} \, L: \text{PoSets} \to \text{BiPoSets}, \, \text{this is Example 3.2.4.3.} \, \text{Dually, we also have the fibration} \, J. = (\iota \circ U \circ F)^* \, \text{PoSets}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \to J^0, \, \text{and setting} \, (J_{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})^r = (\iota \circ U^r \circ F)^* \, \text{PoSets}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \, \text{turns} \, J. \, \text{into a biordered set; the projection} \, J_{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \to L(J^0) \, \, \text{then becomes a biordered} \, \text{fibration}.$

Example 3.2.4.5. Assume given a biordered set J equipped with a cofibration $f: J' \to U(J)$. Then the factorization system $\langle f^{\sharp}(l), f^{*}(r) \rangle$ of Lemma 2.3.3.26 (i) turns J' into a biordered set, and f becomes a bicofibration in the sense of

Definition 3.2.4.1. Its fibers J'_j have discrete order \leq^l (that is, $J'_j \cong L(U(J'_j))$, $j \in J$).

Example 3.2.4.6. Dualizing Example 3.2.4.5, for any biordered set J and fibration $f: J' \to U(J)$, J' carries a natural biordered structure such that the fibers J'_j have discrete order \leq^r . In particular, for any partially ordered J and any map $g: J' \to R(J)$ in BiPoSets, the comma-set $U(J')/_gJ$ comes equipped with a fibration $\sigma: U(J')/_gJ \to U(J')$, thus acquires a biorder such that $(J'/_gR(J))^l \cong J'^l/_g^lJ$. Denote $J'/_gR(J)$ with this biorder by $J'/_g^kR(J)$. Then (3.1.3.2) becomes a decomposition

$$(3.2.4.1) J' \xrightarrow{\eta} J'/{}_{g}^{\diamond}R(J) \xrightarrow{\tau} R(J)$$

in BiPoSets, where η is a right-reflexive full embedding, with adjoint map σ , and τ is a bicofibration with fibers $(J'/{}_g^{\diamond}R(J))_j \cong J'/{}_g j, j \in J$.

Example 3.2.4.7. As another application of the dual version of Example 3.2.4.5, assume given a map $f: J' \to J$ of partially ordered sets, and consider the fibration $B(f): B(J') \to B(J)$ of Lemma 3.1.4.5. Then if we equip B(J) with the biorder $B^{\diamond}(J)$ of Example 3.2.2.6, B(J') acquires a biorder such that $j \leq l'$ iff $j \leq j'$ and $\xi(f(j)) = \xi(f(j'))$. We denote B(J') with this biorder by $B^{\diamond}(J'|J)$, and we note that we have the tautlogical dense map $B^{\diamond}(J') \to B^{\diamond}(J'|J)$ (in the two extreme cases, $B^{\diamond}(J|J) \cong B^{\diamond}(J)$ and $B^{\diamond}(J|pt) \cong R(B(J))$). If f itself is a fibration, then J' acquires a biorder J'_{\diamond} such that $j \leq l'$ iff $j \leq j'$ and f(j) = f(j'), and we have a strict biordered map

$$(3.2.4.2) \xi: B^{\diamond}(J'|J) \to J'_{\diamond}$$

induced by (3.1.4.1).

Since $\overline{\text{BiPoSets}}$ has finite limits, for any bicofibration $J' \to J$ and strict map $f: J_0 \to J$, we have the induced bicofibration $f^*J' = J' \times_J J_0 \to J_0$.

Lemma 3.2.4.8. For any bicofibration $J' \to J$ and strict left-reflexive full embedding $f: J_0 \to J$, the map $f^*J' \to J'$ is a strict left-reflexive full embedding.

Proof. Immediately follows from Lemma 2.3.1.9.

Lemma 3.2.4.9. For any map $f: J' \to J$ of biordered sets such that U(f) is a cofibration, the transition functors $J'_j \to J'_{j'}$ for all $j \le j'$ in J are biordered maps. If we let J'' be U(J') with the biorder of Example 3.2.2.7, then f is a bicofibration if and only

if the identify map $id: J'' \to J'$ is a biordered map. In this case, f^l is also a cofibration, and for any $j \leq^l j'$, its transition functor ${J'}^l_j \to {J'}^l_{j'}$ is induced by the transition functor for f.

Proof. For the first claim, take some $j \leq j'$ in J and some $j_0 \leq^l j_1$ in J_j , let $j_0 \leq j'_0$, $j_1 \leq j'_1$ be the cocartesian lifting, and let $j'_0 \leq^l j'' \leq^r j'_1$ be the unique factorization of $j'_0 \leq j'_1$. Then $j_0 \leq j_1, j'' \leq j'_1$ is a commutative square in J', and since $j_0 \leq^l j_1, j'' \leq^r j'_1$, this is a commutative square (2.1.1.6), so that we have $j_1 \leq j''$. But since $j_1 \leq j'_1$ is cocartesian, this means that $j'_1 \leq j''$, so that $j'_1 = j''$ and $j'_0 \leq^l j'_1$.

For the second claim, note that f is strict if and only if for any $j \leq l$ j' in J, and any $j_0 \in J'_j$ with the cocartesian lifting $j_0 \leq j'_0$, we actually have $j_0 \leq l$ j_0 , and this exactly means that $J'' \to J'$ is a biordered map. The third claim is then clear. \square

Lemma 3.2.4.9 easily implies that all bicofibrations $J' \to R(J)$ are of the form given in Example 3.2.4.4 (and dually, by passing to opposite set, so are biordered fibrations $J' \to L(J^o)$). The situation is more complicated when the base J of a bicofibration $J' \to J$ has non-discrete order J^r . The simplest example is J = L([1]), where L is the functor (3.2.2.2). In this case, for any bicofibration $J \to L([1])$, the transition functor $g: J_0 \to J_1$ is a biordered map by Lemma 3.2.4.9, but not all biordered maps arise in this way.

Definition 3.2.4.10. A biordered map $f: J_0 \to J_1$ is *cylindrical* if C(U(f)) with $C(U(f))^l = J_0^l \sqcup J_1^l$ is a biordered set.

For any cylindrical map f, we denote C(U(f)) with the biorder of Definition 3.2.4.10 by $C^{\flat}(f)$. We have the cartesian square

$$(3.2.4.3) \qquad C^{\flat}(f) \longrightarrow C(f)$$

$$\downarrow \qquad \qquad \downarrow$$

$$L([1]) \stackrel{\mathsf{id}}{\longrightarrow} R([1]),$$

both vertical arrows are bicofibrations, and every bicofibration $J \to L([1])$ arises in this way. Both horizontal arrows in (3.2.4.3) are dense, but the map $C^{\flat}(f) \to C(f)$ is not an isomorphism unless J_0 is empty. Note that the tautological dense map id : $L([1]) \to R([1])$ is not strict, so that (3.2.4.3) is a cartesian square in BiPoSets and not in $\overline{\text{BiPoSets}}$ — if f is not cylindrical, the corresponding fibered product does not exist.

Example 3.2.4.11. For any biordered J, the projection $J \rightarrow pt$ is cylindrical.

Example 3.2.4.12. A right-closed full embedding $f: J_0 \to J_1$ is cylindrical, with $C^{\flat}(f)$ given by the co-standard pushout square

$$\begin{array}{ccc}
J_0 & \xrightarrow{f} & J_1 \\
\downarrow^t & & \downarrow \\
J_0 \times L([1]) & \longrightarrow & C^{\flat}(f).
\end{array}$$

Example 3.2.4.13. For any cylindrical map $g: J_0 \to J_1$ with $J = C^{\flat}(g)$, and any connected $I \in \text{PoSets}$, the induced map

$$g_I$$
: BiPoSets($R(I)$, J_0) \rightarrow BiPoSets($R(I)$, J_1)

is cylindrical, with $C^{\flat}(g_I) \cong BiPoSets(R(I), J)$ (indeed, since I is connected, a map $I \to J^l \cong J^l_0 \sqcup J^l_1$ must factor through J^l_0 or J^l_1).

Example 3.2.4.14. Consider the map ζ^{\diamond} of (3.2.2.3), and compose it with the bicofibration $L(s_{\dagger}):L(\mathbb{N})\to L([1])$, where $s_{\dagger}:\mathbb{N}\to [1]$ is the cofibration of Example 3.1.2.4 adjoint to the left-closed embedding $s:[1]\to\mathbb{N}$. Then the composition $L(s_{\dagger})\circ\zeta:\mathsf{Z}_{\infty}^{\diamond}\to L([1])$ is a bicofibration, with fibers $\mathsf{pt}=\mathsf{Z}_{0}^{\diamond}$ and $1\setminus\mathsf{Z}_{\infty}^{\diamond}$, and ζ^{\diamond} is cocartesian over L([1]). The corresponding cylindrical map $\mathsf{pt}\to 1\setminus\mathsf{Z}_{\infty}^{\diamond}$ is the right-closed embedding onto $1\in 1\setminus\mathsf{Z}_{\infty}^{\diamond}$. For any $m\geq 1$, the composition $L(s_{\dagger})\circ\zeta_{m}^{\diamond}:\mathsf{Z}_{m}^{\diamond}\to L([1])$ is also a cofibration, and ζ_{m}^{\diamond} is cocartesian over L([1]).

More generally, assume given a bicofibration $\chi: J \to L(\mathbb{N})$, with the induced bicofibration $\zeta^{\diamond *}J \to \mathsf{Z}_{\infty}^{\diamond}$. Then the composition

$$(3.2.4.5) \zeta^{\diamond*}J \xrightarrow{\zeta^{\diamond}} J \xrightarrow{\chi} L(\mathbb{N}) \xrightarrow{L(s_{+})} L([1])$$

is again a bicofibration, and $\zeta^{\diamond}: \zeta^{\diamond*}J \to J$ is cocartesian over L([1]). For any integers $m \geq 1$, k = 0,1, and bicofibration $\chi: J \to L([m])$, the map $L(s_+) \circ \chi \circ \zeta^{\diamond}_{2m-k}: \zeta^{\diamond*}_{2m-k}J \to L([1])$ is also a bicofibration, and the map $\zeta^{\diamond}_{2m-k}: \zeta^{\diamond*}_{2m-k}J \to J$ is cocartesian over L([1]).

Example 3.2.4.15. Any right-reflexive map $f: J_0 \to J_1$ with the adjoint map f_{\dagger} is cylindrical, with $C^{\flat}(f) \cong C(f_{\dagger}^o)^o$, where f_{\dagger} is automatically strict by adjunction, so that f_{\dagger}^o is well-defined.

Example 3.2.4.16. In particular, in the situation of Example 3.2.4.15, take $J_0 = \operatorname{pt}$ and $J_1 = R([1])$, with the embedding $f = s : \operatorname{pt} \to R([1])$ onto $0 \in [1]$. This is right-reflexive, thus cylindrical, and $C^{\flat}(s)$ is [2] with the biorder $0 \leq^l 1, 2$,

 $1 \le l$ 2, so that $[2]^l \cong \operatorname{pt} \sqcup [1]$ and $[2]^r \cong V$. Note that this is different from the biorder of Example 3.2.2.2, so we denote [2] with this biorder by [2]'. The three embeddings $s,t,m:[1]\to [2]$ of Example 3.1.3.6 and Example 3.1.3.12 define strict biordered full embeddings $t:R([1])\to [2]'$ and $s,m:L([1])\to [2]'$, and m is left-reflexive, with the adjoint strict biordered map $[2]'\to L([1])$ given by s_+ of Example 3.1.3.6.

Lemma 3.2.4.17. For any cylindrical map $f: J_0 \to J_1$, the corresponding map $s: J_0 \to C(f)$ is cylindrical.

Proof. If $J_0 = J_1 = \operatorname{pt}$, then $C(f) \cong R([1])$, and this is Example 3.2.4.16. In the general case, the complementary order $C^{\flat}(s)^r$ is given by the standard pushout square

and the projection $C(f) \to R([1])$ induces a projection $p : C^{\flat}(s) \to [2]'$ that is compatible with both \leq^l and \leq^r (this is the same projection that appears as the middle vertical map in (3.1.3.4)). Moreover, for all three strict full embeddings $s, m : L([1]) \to [2]', t : R([1]) \to [2]'$ of Example 3.2.4.16, $s^*C^{\flat}(s) \cong J_0 \times L([1]), m^*C^{\flat}(s) \cong C^{\flat}(f)$ and $t^*C^{\flat}(s) \cong C(f)$ are biordered, and the embeddings

$$(3.2.4.6) s^*\mathsf{C}^\flat(f), m^*\mathsf{C}^\flat(f), t^*\mathsf{C}^\flat(f) \to \mathsf{C}^\flat(f)$$

are full embeddings with respects to both orders \leq^l , \leq^r . Then to construct the unique factorizations of Definition 3.2.2.1 for $\mathsf{C}^{\flat}(s)$, it suffices to observe that any pair $j \leq j'$ of elements in $\mathsf{C}^{\flat}(s)$ lies inside one of the subsets (3.2.4.6), and since all factorizations in [2]' are trivial $-p(j) \leq p(j')$ means that either $p(j) \leq^l p(j')$ or $p(j) \leq^r p(j')$ – all possible factorizations must also lie inside the same subset. Since all three subsets are biordered, such a factorization exists and is unique.

Example 3.2.4.18. For any bicofibration J oup L([1]), with biordered fibers $J_0, J_1 \subset J$ and cylindrical transition map $f: J_0 oup J_1$, let $J^{\flat} = \mathsf{C}(s)$ be the biordered set of Lemma 3.2.4.17. Then the projection $p: J^{\flat} oup [2]' = L([1])^{\flat}$ induced by $\mathsf{C}(f) oup R([1])$ is a bicofibration, with fibers $J_0^{\flat} = J_1^{\flat} = J_0, J_2^{\flat} = J_1$ and transition functors id : $J_0 oup J_0, f: J_0 oup J_1$. The strict full embedding m: L([1]) oup [2]' induces a strict full embedding $J \cong m^*J^{\flat} oup J^{\flat}$, and this embedding is left-reflexive by Lemma 3.2.4.8.

3.2.5. Bianodyne maps. For partially ordered sets, we have two ways to define anodyne maps: Definition 3.1.9.1 and its equivalent form given in Corollary 3.1.9.2. For biordered sets, the two approaches are not equivalent any more, and we use the second one.

Definition 3.2.5.1. The class of *bianodyne maps* is the smallest saturated class of maps in BiPos such that

- (i) the projection $R([1]) \times J \to J$ is bianodyne for any $J \in BiPos$, and
- (ii) for any bicofibrations $J', J'' \to J$ in BiPos, a map $f: J' \to J''$ cocartesian over J and such that the fibers $f: J'_j \to J''_j$ are bianodyne for any $j \in J$ is itself bianodyne.

The class of +-bianodyne maps is the smallest saturated class of maps in BiPos⁺ satisfying (i), (ii) with BiPos replaced by BiPos⁺, and for any regular cardinal κ , the classes of κ -bianodyne resp. κ ⁺-bianodyne maps are the smallest saturated classes of maps in BiPos $_{\kappa}$ resp. BiPos $_{\kappa}$ satisfying (i), (ii) with BiPos replaced by BiPos $_{\kappa}$ resp. BiPos $_{\kappa}$.

Example 3.2.5.2. Lemma 3.1.3.11 holds for BiPos and BiPos_κ with the same proof, so that all reflexive maps are bianodyne, and all reflexive maps in BiPos_κ are κ -bianodyne. All bianodyne resp. κ -bianodyne maps are tautologically +-bianodyne resp. κ ⁺-bianodyne.

Lemma 3.2.5.3. Assume given a map $f: J_0 \to J_1$ in BiPos⁺, some partially ordered set $J \in \text{Pos}^+$, and maps $\chi_l: U(J_l) \to J$, l = 0,1 such that U(f) is co-lax over J and $f/j: J_0/j \to J_1/j$ is +-bianodyne for any $j \in J$. Then f is +-bianodyne, κ^+ -bianodyne if $|J_0|, |J_1|, |J| < \kappa$ and f/j, $j \in J$ is κ^+ -bianodyne, bianodyne if dim J_0 , dim J_1 , dim $J < \infty$ and f/j are bianodyne, and κ -bianodyne if all of these conditions hold.

Proof. Immediately follows from Example 3.2.5.2 and the decomposition (3.2.4.1) of Example 3.2.4.6. \Box

Corollary 3.2.5.4. For any category I and functor $F: I \to \operatorname{Pos}_{\kappa}$, with some regular cardinal κ , the functor T_F of (3.2.3.1) sends anodyne resp. +-anodyne resp. κ -anodyne maps to bianodyne resp. +-bianodyne resp. κ -bianodyne resp. κ -bianodyne maps.

Proof. For any J' ∈ PoSets $/\!\!/ I$ equipped with a map J' \to J to some J ∈ PoSets, $J'' = T_F(J')$ comes equipped with a map J'' \to R(J') \to R(J), and $J''/j \cong T_F(J'/j)$ for any $j \in J$.

Corollary 3.2.5.5. *For any* $J \in Pos_{\kappa}$ *, the biordered map* $\xi : B^{\diamond}(J) \to L(J)$ *of Example 3.2.2.6 is* κ *-bianodyne.*

Proof. Lemma 3.2.5.3 applied to the maps $\chi_0 = \xi : B(J) = U(B^{\diamond}(J)) \to J$, $\chi_1 = \operatorname{id} : J \to J$ immediately reduces us to the case when J has a largest element j, and by induction on dim J, we may assume that the claim is already proved for $J_0 = J \setminus \{j\}$. Changing notation, we assume the claim known for J, and we need to prove it for $J^{>}$. To do this, consider the characteristic map $\chi : J^{>} \to [1]$ of $J \subset J^{>}$, and note that (3.1.4.11) provides a bicofibration

$$B^{\diamond}(J^{>}) \xrightarrow{B^{\diamond}(\chi)} B^{\diamond}([1]) \cong V^{\diamond} \xrightarrow{\xi} L([1])$$

with fibers $B^{\diamond}(J^{>})_0 \cong B(J)$ and $B^{\diamond}(J^{>})_1 \cong R(B(J)^{<})$. Then the map $\xi: B^{\diamond}(J^{>}) \to L(J^{>})$ is cocartesian over L([1]), its fiber ξ_0 is the map $\xi: B(J) \to J$, and its fiber ξ_1 is the projection $R(B(J)^{<}) \to \operatorname{pt}$ that has a left-reflexive one-sided inverse $B(\varepsilon(o)): \operatorname{pt} \to R(B(J)^{<})$, so we done by Example 3.2.5.2 and Definition 3.2.5.1 (ii) over L([1]).

Corollary 3.2.5.5 is necessarily limited compared to Corollary 3.1.9.4 since Example 3.2.2.6 only works for biordered sets of the form L(J). We also have a more general statement for the relative barycentric subdivisions of Example 3.2.4.7.

Lemma 3.2.5.6. For any fibration $J' \to J$ in $\operatorname{Pos}_{\kappa}$, the strict biordered map (3.2.4.2) is κ -bianodyne.

Proof. The same induction as in Corollary 3.2.5.5 reduced us to the case when J' and J have largest elements $o' \in J'$, $o \in J$, and f(o') = o. Then the embedding $\varepsilon(o) : \mathsf{pt} \to J'_o$ extends to a cartesian section $f_+: J \to J'$ of the fibration f that is right-closed and right-adjoint to f, and if we let $J'_0 = (J' \setminus f_+(J))^>$, $J'_1 = f^{-1}(J \setminus \{o\})^>$, and $J'_{01} = J'_0 \cap J'_1$, then we have a cartesian cocartesian square

$$\begin{array}{ccc}
J'_{01} & \longrightarrow & J'_{1} \\
\downarrow & & \downarrow \\
J'_{0} & \longrightarrow & J'
\end{array}$$

in Pos_{κ} that is obtained from (3.1.7.8) by pullback with respect to the product $\chi_0 \times \chi_1 : J' \to [1]^2$ of the characteristic maps $\chi_0, \chi_1 : J' \to [1]$ of the embeddings $J' \setminus f_{\dagger}(J) \subset J'$ and $f^{-1}(J \setminus \{o\}) \subset J'$. We let $J'_{l\diamond} \subset J'_{\diamond}$, l = 0, 1, 01 be J'_{l} with the induced biorder, and we note that since $f: J'_{\diamond} \to L(J)$ is right-reflexive, it suffices to shows that $f \circ \xi : B^{\diamond}(J'|J) \to L(J)$ is κ -bianodyne. Indeed, recall that the barycentric subdivision functor B sends (3.2.5.1) to a standard pushout square, and let $B^{\diamond}(J'|J)_l$, l=0,1,01 be $B(J'_l)\subset B(J')$ with the biorder induced from $B^{\diamond}(J'|J)$. Then all the partially ordered sets in (3.2.5.1) have largest elements, we have bicofibrations $\xi \circ B(\chi_1) : B^{\diamond}(J'|J)_{01}, B^{\diamond}(J'|J)_1 \to L([1]),$ $\xi \circ B(\chi_0) : B^{\diamond}(J'|J)_0 \to R([1])$, and by the same argument as in Corollary 3.2.5.5, induction on dimension shows that (3.2.4.2) induces κ -bianodyne maps $\xi: B^{\diamond}(J'|J)_l \to J'_{l\diamond}$, l = 0, 1, 01. Since $f: J'_{1\diamond} \to L(J)$ is also right-reflexive, with the same adjoint, $f \circ \xi : B^{\diamond}(J'|J)_1 \to L(J)$ is then κ -bianodyne, and the since the embedding $J'_{01\diamond} \rightarrow J'_{0\diamond}$ in (3.2.5.1) is left-reflexive by Example 3.1.3.14, the embedding $B^{\diamond}(J'|J)_{01\diamond} \to B^{\diamond}(J'|J)_0$ is also κ -bianodyne. The embedding $B^{\diamond}(J'|J)_1 \to B^{\diamond}(J'|J)_{\diamond}$ is then a standard pushout of a κ -bianodyne map, thus κ -bianodyne, and $f \circ \xi : B^{\diamond}(J'|J) \to L(J)$ is κ -bianodyne by the two-out-of-three property.

Corollary 3.2.5.7. For any map $f: J' \to J$ in PoSets with $|J'|, |J| < \kappa$ for some regular cardinal κ , the map $B(e): B^{\diamond}([1] \times J'|J) \to B^{\diamond}(J'|J)$ induced by the projection $e: [1] \times J' \to J'$ is κ -bianodyne. If f is right-reflexive, with a fully faithful right-adjoint map $g: J \to J'$, then the map $B^{\diamond}(J'|J) \to B^{\diamond}(J|J) \cong B^{\diamond}(J)$ is also κ -bianodyne.

Proof. For the first claim, by Lemma 3.2.5.3, it suffices to check that the left comma-fiber $B(e): B^{\diamond}([1] \times J'|J)/S \to B^{\diamond}(J'|J)/S$ is κ-bianodyne for any $S \in B(J')$, $S \cong [n] \subset J'$. However, this comma-fiber is the same map for J' = S and $J = f(S) \subset J$. Therefore we may assume right away that f is a surjective map $f: [n] \to [m]$ for some $n \ge m \ge 0$. But then f is a fibration by Example 3.1.3.7, and so it $f \circ p: [1] \times [n] \to [m]$, so by Lemma 3.2.5.6, it suffices to show that $p: ([1] \times [n])_{\diamond} \to [n]_{\diamond}$ is κ-bianodyne. This is obvious since $([1] \times [n])_{\diamond} \cong R([1]) \times [n]_{\diamond}$. For the second claim, note that the retraction (3.1.3.3) for the adjoint map $g: J \to J'$ is actually a retraction in Pos_κ / J, and that $B^{\diamond}(-|J)$, just as any other functor, preserves retractions, and then conclude by exactly the same argument as in Lemma 3.1.3.11.

While there is no barycentric subdivision for general biordered sets, there are other useful subdivision functors. We will construct one such much later in Section 7.2; for now, we limit ourselves to the following simple general criterion.

Lemma 3.2.5.8. Assume given a regular cardinal κ , an endofunctor A of the category $\overline{\text{BiPos}}_{\kappa}$ that preserves coproducts, and morphisms $\alpha: A \to \text{id}$, $\chi: U \circ A \to U$ such that $\chi \geq U(\alpha)$. Moreover, assume the following.

- (i) For any left-closed embedding $J_0 \to J$ in BiPos_{κ}, the corresponding map $A(J_0) \to \chi^{-1}(J_0) \subset A(J)$ is κ -bianodyne.
- (ii) For any projection $e: J \times R([1]) \to J$ in $BiPos_{\kappa}$, A(e) is κ -bianodyne.
- (iii) For any $J \in Pos_{\kappa}$, the map $\alpha : A(L(J)) \to L(J)$ is κ -bianodyne.

Then for any $J \in BiPos_{\kappa}$, the map $\alpha : A(J) \to J$ is κ -bianodyne.

Proof. As in Corollary 3.2.5.5, Lemma 3.2.5.3 over U(J) together with (i) reduce us to the case when J has a largest element. Now by (ii) and the biordered version of Lemma 3.1.3.11, A(f) is κ -bianodyne for any reflexive f, and Lemma 3.2.2.10 reduces us to the case $J = L(J_0^>)$. This is (iii).

3.2.6. Examples. By the same argument as in Proposition 3.1.9.7, Definition 3.2.5.1 (ii) for J = R(V) together with Lemma 3.2.5.3 immediately implies that the classes of bianodyne, +-bianodyne, κ -bianodyne and κ ⁺-bianodyne maps are closed with respect to standard pushouts. Conversely, Lemma 3.1.9.5 holds for biordered sets with the same proof, and shows that any saturated class W of maps in BiPos, BiPos⁺ or BiPos $_{\kappa}$, BiPos $_{\kappa}$ ⁺ that is closed under standard pushouts, and satisfies Definition 3.2.5.1 (i), also satisfies Lemma 3.2.5.3 for J = V. We can also generalize Example 3.1.9.6 and Example 3.1.10.5.

Example 3.2.6.1. Assume given a biordered set $J \in \text{BiPos}^+$, a set S, and a map $U(J) \to S^<$. Equip the set $U(J)^{\natural}$ of (3.1.9.1) with a biorder by upgrading (3.1.9.2) to

(3.2.6.1)
$$J^{\natural} = (J_o \times R(S^{>})) \sqcup_{J_o \times R(S)} \coprod_{s \in S} J/s,$$

where J_o and $J/s \subset J$, $s \in S$ are equipped with the induced biorders (equivalently, $J_o \times R(S^>)$ is the cylinder of the projection $J_o \times S \to J_o$. Then we have $J^{l \ddagger} \cong J^{\ddagger l}$, (3.1.9.1) becomes a strict biordered map

$$(3.2.6.2) J^{\natural} \to J,$$

and by the same argument as in Example 3.1.9.6, it is +-bianodyne, and bianodyne if dim $J < \infty$. If $|J|, |S| < \kappa$ for some regular cardinal κ , then (3.2.6.2) is κ^+ -bianodyne, and κ -bianodyne if dim $J < \infty$.

Example 3.2.6.2. For any biordered set $J \in \text{BiPos}^+$ and map $U(J) \to \mathbb{N}$, with the corresponding map $J \to R(\mathbb{N})$, we have the bicofibration $J/{}^{\diamond}R(\mathbb{N})$ of Example 3.2.4.6, and (3.1.10.2) becomes a strict biordered map

$$(3.2.6.3) J^{+} = R(\zeta)^{*}(J/^{\diamond}R(\mathbb{N})) \cong J \times_{R(\mathbb{N})} R(\mathbb{N} \setminus^{\zeta} Z_{\infty}) \to J.$$

Then $J^{+l} \cong J^{l+}$, Lemma 3.1.3.19 works for biordered sets with the same proof, and shows that (3.2.6.3) is +-bianodyne, and κ^+ -bianodyne if $|J| < \kappa$. Note for any bicofibration $J \to R(\mathbb{N})$, (3.1.10.1) induces a standard coproduct decomposition

(3.2.6.4)
$$R(\zeta)^* J \cong (R(\zeta)^* J) \sqcup_{J_1} R(\zeta)^* R(q)^* J,$$

where $R(\zeta_2)^*J \cong R(V^o) \times_{R([1])} J/1$ can again be identified with the cylinder of the embedding $J_1 \to J/1$, and for any $\chi : J \to R(\mathbb{N})$, we have $R(q)^*(J/{}_{\chi}^{\diamond}R(\mathbb{N})) \cong J/{}_{R(g_+)\circ\chi}^{\diamond}R(\mathbb{N})$.

Lemma 3.2.6.3. Assume given a partially ordered set I that has a largest element $o \in I$. Then $\overline{\text{BiPoSets}}(L(I), -)$ sends standard pushout squares to standard pushout squares, and maps (3.2.6.2) resp. (3.2.6.3) to maps (3.2.6.2) resp. (3.2.6.3).

Proof. We have $\overline{\text{BiPoSets}}(L(I),J)\cong \text{PoSets}(I,J^r)$, so the first claim immediately follows from Lemma 3.1.2.8. Moreover, $\overline{\text{BiPoSets}}(L(I),-)$ tautologically sends products to products, and since any strict map $f:L(I)\to R(J)$ for any $J\in \text{PoSets}$ must be constant, it commutes with cylinders. Then (3.2.6.1) provides an identification

$$\overline{\text{BiPoSets}}(L(I), J^{\natural}) \cong \overline{\text{BiPoSets}}(L(I), J)^{\natural}$$

for any $\varphi: J \to R(S^<)$, where the right-hand side is taken with respect to the map $\varphi \circ \text{ev}_o : \overline{\text{BiPoSets}}(L(I), J) \to R(S^<)$. For (3.2.6.3), note that any map $f: L(I) \to J$ factors through J/n for some n – for example, one can take the image of f(o) under the projection $J \to \mathbb{N}$ – and then use the same argument for the decomposition (3.2.6.4), and induction on n.

Lemma 3.2.6.4. For any integers $m \ge 1$, k = 0, 1, and a bicofibration $\chi : J \to L([m])$ in BiPos resp. BiPos⁺, the map $\zeta_{2m-k}^{\circ *}J \to J$ of Example 3.2.4.14 is bianodyne resp. +-bianodyne, and if k = 1, then it in fact suffices to require that $L(s_+) \circ \chi : J \to L([m-1])$ is a bicofibration. For any bicofibration $J \to L(\mathbb{N})$, the map $\zeta^*J \to J$ is +-bianodyne.

Proof. For the first claim, note that it trivially also holds for m=k=0 – indeed, ζ_0^{\diamond} is an isomorphism – and the case m=k=1 is also trivial, since ζ_1^{\diamond} is an isomorphism as well. Assume that $2m-k\geq 2$. Then we have the bicofibration $L(s_+)\circ \chi: J\to L([1])$ and the bicofibration $\zeta_{2m-k}^{\diamond*}J\to L([1])$ of Example 3.2.4.14, and $f=\zeta_{2m-k}^{\diamond}:\zeta_{2m-k}^{\diamond*}J\to J$ is cocartesian over L([1]), so by definition, it suffices to check that its fibers f_0 and f_1 are bianodyne resp. +-bianodyne. Since $f_0=\zeta_0^{\diamond}$ is an isomorphism, the issue is f_1 . We have a standard pushout square decomposition $Z_{2m-k}^{\diamond}\cong Z_2^{\diamond}\sqcup_{\operatorname{pt}}Z_{2(m-1)-k}^{\diamond}$ induced by (3.1.3.8), and then the fiber $(\zeta_{2m-1}^{\diamond*}J)_1$ decomposes as

$$(3.2.6.5) (\zeta_{2m-k}^{\diamond *} J)_1 \cong (R([1]) \times J_1) \sqcup_{J_1} \zeta_{2(m-1)-k}^{\diamond *} L(t)^* J,$$

where $t:[m-1]\to [m]$ is the standard embedding of Example 3.1.2.3. In terms of (3.2.6.5), the map $f_1:(\zeta_{2m-k}^{\diamond*}J)_1\to L(t)^*J$ then factors as

$$(\zeta_{2m-k}^{\diamond *}J)_1 \longrightarrow \zeta_{2(m-1)-k}^{\diamond *}L(t)^*J \longrightarrow L(t)^*J,$$

where the second map is bianodyne resp. +-bianodyne by induction, and the first map has a one-sided inverse that is a standard pushout of a reflexive left-closed full embedding $(s \times id) : J_1 \to R([1]) \times J_1$. This proves the first claim; for a bicofibration $J \to L(\mathbb{N})$, apply Lemma 3.2.5.3 over $J = \mathbb{N}$.

Example 3.2.6.5. In the trivial case J = L([m]) and $\chi : L([m]) \to L([m])$ equal to id, Lemma 3.2.6.4 shows that the map ζ_{2m}^{\diamond} of (3.2.2.3) is bianodyne. As an immediate corollary, note that for any $n \ge 0$, β_n of (3.1.4.3) induces a strict biordered map

$$\beta_n^{\diamond}: \mathsf{Z}_{2n}^{\diamond} \to \mathsf{B}^{\diamond}([n]),$$

where $B^{\diamond}([n])$ is equipped with the biorder of Example 3.2.2.6, and then Lemma 3.2.6.4, Corollary 3.2.5.5 and the two-out-of-three property show that (3.2.6.6) is bianodyne. As a further corollary, for any $n \geq l \geq 0$, the cocartesian square (3.1.7.9) induces a strict biordered map

$$(3.2.6.7) b_n^{l\diamond}: B^{\diamond}([l]) \sqcup_{\mathsf{pt}} B^{\diamond}([n-l]) \to B^{\diamond}([n]),$$

and this map is also bianodyne: the maps (3.2.6.6) for n, l and n-l are bianodyne, and $\mathsf{Z}_{2n}^{\diamond} \cong \mathsf{Z}_{2l}^{\diamond} \sqcup_{\mathsf{pt}} \mathsf{Z}_{2(n-l)}^{\diamond}$ by (3.1.3.8).

Another useful example of bianodyne map is obtained as follows. By Example 3.2.4.4, any functor $F: J \to \text{BiPos}$ from some partially ordered set

 $J \in \text{Pos defines a bicofibration } \pi^{\bullet}: J^{\bullet} \to R(J) \text{ and a biordered fibration } \pi_{\bullet}: J_{\bullet} \to L(J^{o}) \text{ in BiPos. We then have the bicofibration } J^{\bullet}/{}^{\diamond}R(J) \to R(J) \text{ of Example 3.2.4.6, with the embedding } \eta: J^{\bullet} \to J^{\bullet}/{}^{\diamond}R(J) \text{ over } R(J), \text{ and since } J_{\bullet} \to R(J) \text{ itself is a bicofibration, } \eta \text{ admits a left-adjoint biordered map } \eta_{+}: J^{\bullet}/{}^{\diamond}R(J) \to J^{\bullet} \text{ cocartesian over } R(J). \text{ Being a cofibration, } J^{\bullet}/{}^{\diamond}R(J) \to R(J) \text{ also corresponds to some functor } F^{\bullet}: J \to \text{BiPos, and } \eta_{+} \text{ defines a map of functors } F^{\bullet} \to F. \text{ This in turns provides a map}$

$$(3.2.6.8) L(J^{o}) \setminus^{\iota} J_{\bullet} \to J_{\bullet},$$

cartesian over L(J), where $L(J^o) \setminus^{\iota} J_{\bullet} \to L(J^o)$ denotes the biordered fibration corresponding to F^{\bullet} . We note that the construction is functorial: if we have another functor $F': J \to \text{BiPos}$, then maps $f: F \to F'$ correspond bijectively to maps $L(J^o) \setminus^{\iota} f: L(J^o) \setminus^{\iota} J_{\bullet} \to L(J^o) \setminus^{\iota} J_{\bullet}'$ cartesian over $L(J^o)$, and for two maps $f, f': F \to F'$, we have

$$(3.2.6.9) L(J^o) \setminus^{\iota} f \leq^{l} L(J^o) \setminus^{\iota} f'$$

as soon as $f \leq^l f'$.

Lemma 3.2.6.6. Let C be a closed class of maps in BiPos consisting of strict full embeddings. Then for any $J \in Pos$ and functor $F: J \to BiPos_C$, the corresponding map (3.2.6.8) is bianodyne.

Proof. By Lemma 3.2.5.3, it suffices to check that $(L(J^0) \setminus I)/J \rightarrow I/J$ is bianodyne for any $j \in J_{\bullet}$. The induced map $J_{\bullet}/j \to L(J^{o})$ is a biordered fibration that factors through $L(J^o/\pi_{\bullet}(j))$, and since the transition functors of π_{\bullet} are full embeddings, we have $(L(J^o) \setminus^i J_{\bullet})/j \cong L(J^o/\pi_{\bullet}(j)) \setminus^i (J_{\bullet}/j)$. Therefore we may replace I, with I, I and assume right away that I, has the largest element $o \in I_{\bullet}$, and $\pi_{\bullet}(o)$ is the largest element in I^{o} . We then have the right-closed left-reflexive full subset $J_{\bullet}^{R} \subset J_{\bullet}$ of Lemma 3.2.2.10, and since the transition functors of the biordered fibration π_{\bullet} are strict, the induced map $J^R_{\bullet} \to L(J^o)$ is also a biordered fibration, the embedding $J_{\cdot}^{R} \to J_{\cdot}$ is cartesian over $L(J^{o})$, and so is the adjoint map $J_{\bullet} \to J_{\bullet}^R$ of Lemma 3.2.2.10. Then by (3.2.6.9), the embedding $L(J^o) \setminus^{\iota} J^R \to L(J^o) \setminus^{\iota} J$ is also left-reflexive, and we are further reduced to the case when $J_{\bullet} = J_{\bullet}^{R}$ — that is, the biorder \leq^{l} on J_{\bullet} is discrete. Moreover, $o \in J$, defines a cartesian section $o : L(J^o) \to J$, of the biordered fibration π_{\bullet} , and this is a right-closed embedding, so we can consider the complement $\overline{J}_{\bullet} = J_{\bullet} \setminus o(L(J^{o}))$ and its characteristic map $\chi: J_{\bullet} \to L([1])$. Then again, since the transition functors of π , are full embeddings, the map χ inverts cartesian

maps, and since it is a bicofibration over each $j \in J$, it is a bicofibration, with fibers $\overline{J}_{\centerdot}$, $L(J^o)$ and transition map $\overline{\pi}_{\centerdot}:\overline{J}_{\centerdot}\to L(J^o)$ obtained by restricting π_{\centerdot} to $\overline{J}_{\centerdot}\subset J_{\centerdot}$ (note that $\overline{\pi}_{\centerdot}$ is trivially cylindrical since the biorder \leq^l on J_{\centerdot} is discrete). Moreover, the composition map $L(J^o)\setminus^l J_{\centerdot}\to J_{\centerdot}\to L([1])$ is also a bicofibration, with fibers $L(J^o)\setminus^l \overline{J}_{\centerdot}$, $L(J^o)\setminus^l L(J^o)$ and transition map $L(J^o)\setminus^l \overline{\pi}_{\centerdot}$, and since dim $\overline{J}_{\centerdot}<\dim J_{\centerdot}$, induction on dimension and Definition 3.2.5.1 (ii) over L([1]) further reduce us to the case $J_{\centerdot}=L(J^o)$, $\pi_{\centerdot}=\mathrm{id}$. In this case, we have $(L(J^o)\setminus^l L(J^o))_j\cong R((j\setminus J/o)^o)$ for any $j\in J$, and since all these sets have the smallest element, the map (3.2.6.8) admits a fully faithful right-reflexive left-adjoint.

Example 3.2.6.7. The simplest example for Lemma 3.2.6.6 is J = [1], with F constant with value pt. In this case, $J_{\bullet} = L([1])$, and $L(J^o) \setminus^t J_{\bullet}$ is $V \cong B([1])^o$ with the biorder opposite to $B^{\diamond}([1])$ (that is, $0 \ge^r o \le^l 1$).

3.2.7. Reconstruction. We now want to prove a reconstruction result saying that the classes of bianodyne and +-bianodyne maps are generated by certain standard elementary maps, just as in Proposition 3.1.9.7 and Proposition 3.1.10.6. However, we need one more class of elementary bianodyne maps.

Example 3.2.7.1. Consider the embedding $\varepsilon(0)$: $\operatorname{pt} \to V = \{0,1\}^{<}$ onto $0 \in V$, and treat it as a right-closed biordered full embedding ε : $\operatorname{pt} \to R(V)$. Then it is cylindrical by Example 3.2.4.12. As a partially ordered set, $C(\varepsilon(0))$ is the zigzag partially ordered set Z_3 of Example 3.1.3.16 – that is, it is the set with elements 0, 1, 2, 3 and order $0 \le 1 \ge 2 \le 3$ – but the biorder is different from that of Example 3.2.2.5, so we denote $C^{\flat}(\varepsilon) \in \operatorname{BiPoSets}$ by Z_3' (explicitly, the two orders are $0 \le r$ 1 and $1 \ge l$ 2 $\le l$ 3). We have the characteristic map $\chi : V \to [1]$ of the left-closed subset $\{o,0\} \subset V$ – that is, $\chi(o) = \chi(0) = 0$, $\chi(1) = 1$ – and the composition $R(\chi) \circ \varepsilon$: $\operatorname{pt} \to R([1])$ is the embedding s: $\operatorname{pt} \to R([1])$, so that $R(\chi)$ induces a strict biordered map

$$(3.2.7.1) Z_3' \cong C^{\flat}(\varepsilon) \to [2]' \cong C^{\flat}(s), 0 \mapsto 0, 1, 2 \mapsto 1, 3 \mapsto 2$$

cocartesian over L([1]) (on the level of underlying partially ordered sets, this is the map $Z_3 \to [2]$ induced by (3.1.3.6)). Moreover, the map χ is left-reflexive, with the adjoint $[1] \to V$ given by the embedding onto $\{o,1\} \subset V$, so that by Example 3.2.5.2 and Definition 3.2.5.1 (ii) for J = L([1]), the map (3.2.7.1) is bianodyne, and κ -bianodyne for any regular κ . Note that it is not reflexive (in fact, it does not even have a section). We also note that while Z_3' can be obtained

as the co-standard pushout square (3.2.4.4) of Example 3.2.4.12, it can also be represented as a standard pushout square (3.1.3.8), by considering left-closed subsets $\{0,1,2\},\{2,3\}\subset Z_3'$. This gives an identification

$$(3.2.7.2) Z_3' \cong V^{\diamond} \sqcup_{\mathsf{pt}} R([1]),$$

where V^{\diamond} is $V^{o} = \{0,1\}^{>}$ with the biorder $0 \leq^{r} o \geq^{l} 1$ – or equivalently, $V^{\diamond} = B^{\diamond}([1])$ with the biorder of Example 3.2.2.6, as in Example 3.2.6.7 – and the embeddings pt $\to V^{\diamond}$, R([1]) are onto $1 \in V^{\diamond}$ resp. $0 \in R([1])$.

Example 3.2.7.2. For any bicofibration $J \to L([1])$ in BiPos⁺ with transition functor $g: J_0 \to J_1$, let $J^{\flat} \to [2]'$ be the bicofibration of Example 3.2.4.18, and let $J^{\sharp} = \mathsf{Z}_3' \times_{[2]'} J^{\flat}$, where the product is taken with respect to the strict map (3.2.7.1). Then we have a natural strict map

$$(3.2.7.3) J^{\sharp} \rightarrow J^{\flat}$$

cocartesian over L([1]), and as in Example 3.2.7.1, it is +-bianodyne by Definition 3.2.5.1 (ii) and Lemma 3.2.4.8, and bianodyne if dim $J < \infty$. If $|J| < \kappa$ for some regular κ , then (3.2.7.3) is κ^+ -bianodyne, and κ -bianodyne if dim $J < \infty$. In any case, (3.2.7.2) induces an identification

$$(3.2.7.4) J^{\sharp} \cong (J_0 \times \mathsf{V}^{\diamond}) \sqcup_{J_0} \mathsf{C}(g),$$

where the standard pushout in the right-hand side is taken with respect to the left-closed embedding onto $J_0 \times \{1\} \subset J_0 \times V^{\diamond}$ and the left-closed embedding $s: J_0 \to C(g)$.

Proposition 3.2.7.3. The class of bianodyne maps in BiPos is the minimal saturated class that is closed under coproducts and standard pushouts, and contains the map (3.2.6.2) for any $J \to R(S^<)$ of Example 3.2.6.1, with the biorder (3.2.6.1), and the map (3.2.7.3) for any bicofibration $J \to L([1])$ of Example 3.2.7.2. The class of +-bianodyne maps is the minimal saturated class of maps in BiPos⁺ that is closed under coproducts and standard pushouts, and contains bianodyne maps, the projection $R([1]) \times J \to J$ for any biordered set $J \in BiPos^+$, and the map (3.2.6.3) for any left-bounded map $J \to R(\mathbb{N})$. For any regular cardinal κ , the classes of κ -bianodyne maps are the minimal saturated closed classes of maps in $BiPos_{\kappa}$ resp. $BiPos_{\kappa}^+$ with the same properties.

Proof. Let *W* be the minimal saturated closed class of maps in BiPos described in the Proposition. We observe right away that for any finite biordered set *J*,

the functor $- \times J$: BiPos \to BiPos preserve coproducts, standard pushouts, maps (3.2.6.2) and maps (3.2.7.3), so that it also preserves the class W. All maps in W are bianodyne by Example 3.2.6.1 and Example 3.2.7.2, and we need to prove that conversely, all anodyne maps are in W. As in Proposition 3.1.9.7, the projection $R([1]) \times J \to J$ is of the form (3.2.6.2) for any $J \in$ BiPos, with S = pt, so by Example 3.2.5.2, W contains all reflexive maps, and it suffices to check that W satisfies Definition 3.2.5.1 (ii).

To do this, use the same induction on dim I as in the proof of Proposition 3.1.9.7. If dim I = 0, the claim just means that W is closed under coproducts. For I = R(V), the claim follows from the fact that W is closed under standard pushouts, and (3.2.6.2) coupled with (3.2.6.1) then proves it for $I = R(S^{<})$ for any discrete set S. For a general J of some dimension $n = \dim J$, assume the claim proved for all biordered sets of dimension $\leq n-1$, take $S=J \setminus \operatorname{sk}_{n-1} J$, and consider the map $p: J \to R(S^{<})$ sending any $s \in S \subset J$ to itself and $sk_{n-1}J$ to $o \in R(S^{<})$. Then the claim for $R(S^{<})$ reduces us to considering the commasets J/s, $s \in S$, and the standard pushout square (3.1.9.4) further reduces us to the case when *J* has a largest element $j \in J$. In this case, Lemma 3.2.2.10 and Lemma 3.2.4.8 further reduces us to the case when $J = L(J_0^>)$ for some $J_0 \in Pos$ of dimension dim $J_0 \le n-1$, and then the characteristic map $\chi: J_0^> \to [1]$ of $J_0 \subset J_0^>$ is a cofibration with fibers of dimension $\leq n-1$, so we can compose the bicofibrations $J', J'' \to J$ with the bicofibration $L(\chi): J \to L([1])$ and reduce to the case J = L([1]). Thus we assume given bicofibrations $J', J'' \to L([1])$ with fibers $J'_1, J''_1, l = 0, 1$ and transition functors $g': J'_0 \to J'_1, g'': J''_0 \to J''_1$, and a map $f: J' \to J''$ cocartesian over L([1]) such that $f_l: J'_l \to J''_l$, l = 0, 1 is in W, and we need to show that *f* is in *W*.

Indeed, the maps $J'^{\flat} \to J'$, $J''^{\flat} \to J''$ are reflexive by Example 3.2.4.18, so it suffices to prove that $f^{\flat}: J'^{\flat} \to J''^{\flat}$ is in W. Since the maps (3.2.7.3) are in W by assumption, it further suffices to check that $f^{\sharp}: J'^{\sharp} \to J''^{\sharp}$ is in W. Then by (3.2.7.4), it suffices to check that $f_0 \times \operatorname{id}: J'_0 \times V^{\diamond} \to J'_1 \times V^{\diamond}$ and the map $\widetilde{f}: \mathsf{C}(g') \to \mathsf{C}(g'')$ induced by f are in W. But on one hand, V^{\diamond} is finite, so that W is closed under $- \times V^{\diamond}$, and f_0 is in W, and on the other hand, the embeddings $f: J'_1 \to \mathsf{C}(g')$, $f: J''_1 \to \mathsf{C}(g'')$ are reflexive, thus in F_1 is also in F_2 .

This finishes the proof in the bianodyne case. For the +-bianodyne case, add the same additional argument as in Proposition 3.1.10.6, and the proofs in the κ -anodyne and κ^+ -bianodynes cases are then exactly the same (where we note that $- \times J$ for a finite J sends BiPos_{κ} resp. BiPos_{κ}^+ into itself for any regular cardinal κ).

3.2.8. Left-finite sets. Let us now consider the ample full subcategory $Pos^{\pm} \subset PoSets$ of left-finite partially ordered sets, and denote by $BiPos^{\pm}$ its unfolding – that is, the category of left-finite biordered sets. We then have the following version of Definition 3.2.5.1.

Definition 3.2.8.1. The class of \pm -bianodyne maps is the smallest saturated closed class of maps in BiPos^{\pm} that satisfies Definition 3.2.5.1 (i) and (ii) for a left-finite map f. A map in BiPos^{\pm} \cap BiPos is *strongly* \pm -bianodyne if it is bianodyne and \pm -bianodyne.

Just as in the situation of Definition 3.2.5.1, all reflexive maps in BiPos $^\pm$ are \pm -bianodyne by Lemma 3.1.3.11, and Lemma 3.2.5.3 holds for \pm -bianodyne maps with the same proof, provided that J and f are left-finite. All \pm -bianodyne maps are automatically +-bianodyne, and the converse is sometimes also true: for example, in the situation of Lemma 3.2.6.4, the maps $\zeta_m^{\diamond*}J \to J$, $\zeta^{\diamond*}J \to J$ are left-finite as soon as so is J, and then both are \pm -bianodyne by the same argument. The same goes for all the bianodyne maps of Example 3.2.6.5, the maps (3.2.6.3) of Example 3.2.6.2, and the maps (3.2.7.3) of Example 3.2.7.2. However, in the situation of Example 3.2.6.1, even if J is left-finite, J^{\natural} is left-finite only if S is finite, and for infinite S, (3.2.6.2) is not even a map in BiPos $^\pm$. This can be corrected as follows. For any set S, define a partially ordered set $S^{\natural\natural}$ by the standard coproduct

(3.2.8.1)
$$S^{\dagger \dagger} = (S \times [1]) \sqcup_S B(S^{>}),$$

with the left-closed embedding $S \cong B(S) \to B(S^>)$ induced by the embedding $S \to S^>$, and note that $\xi : B(S^>) \to S^>$ induces a map

$$(3.2.8.2) S^{\sharp \natural} \xrightarrow{\mathsf{id} \sqcup \xi} S^{\natural} \cong (S \times [1]) \sqcup_{S} S^{>} \longrightarrow S^{<}$$

sending the second component in (3.2.8.1) to $o \in S^{<}$. Then for any biordered set J equipped with a map $J \to R(S^{<})$, modify (3.2.6.1) by setting

(3.2.8.3)
$$J^{\sharp \sharp} = (J_o \times R(B(S^>))) \sqcup_{J_o \times R(S)} \coprod_{s \in S} J/s,$$

so that $U(J^{\natural\natural})\cong S^{\natural\natural}\times_{S^<} U(J)$, and (3.2.8.1) induces a strict biordered map

$$(3.2.8.4) J^{\dagger \dagger} \to J.$$

Note that for any S, $B(S^>)$, hence also $S^{\dagger\dagger}$ are left-finite by Example 3.1.5.5, and if so is J, then $J^{\dagger\dagger}$ is also left-finite and (3.2.8.4) is a map in BiPos $^{\pm}$.

Lemma 3.2.8.2. For any set S and any $J \in BiPos^{\pm}$ equipped with a map $J \to R(S^{<})$, the map (3.2.8.4) is \pm -bianodyne in the sense of Definition 3.2.8.1.

Proof. Consider the arrow set $\operatorname{ar}(S^{<})\cong (S\times[1])^{<}$ of Example 3.1.2.6, let $\varepsilon:S^{<}\to (S\times[1])^{<}$ be the left-closed embedding induced by the embedding $S\to S\times[1]$ onto $S\times\{0\}\subset S\times[1]$, and note that the map (3.2.8.1) factors as

$$(3.2.8.5) S^{\dagger\dagger} \longrightarrow (S \times [1])^{<} \cong \operatorname{ar}(S^{<}) \xrightarrow{\tau} S^{<},$$

where the first map is the embedding $S \times [1] \to (S \times [1])^<$ resp. the composition map $\varepsilon \circ \xi^{\perp} : B(S^>) \to S^< \to (S \times [1])^<$ on the first resp. second component of (3.2.8.1). Then for any $J \in \text{BiPos}^{\pm}$ equipped with a map $J \to R(S^<)$, (3.2.8.5) induces a decomposition

$$(3.2.8.6) J^{\dagger \dagger} \longrightarrow J/^{\diamond} R(S^{<}) \stackrel{\tau}{\longrightarrow} J$$

of the map (3.2.8.4), where the map τ is reflexive, thus \pm -bianodyne by Lemma 3.1.3.11, and the map $J^{\natural\natural} \to J/{}^{\diamond}R(S^{<})$ is left-finite and has reflexive left comma-fibers.

Proposition 3.2.8.3. The class of \pm -bianodyne maps in BiPos $^{\pm}$ is the minimal saturated class that is closed under coproducts and standard pushouts, and contains the projection $R([1]) \times J \to J$ for any $J \in \text{BiPos}^{\pm}$, the map (3.2.8.4) for any $J \in \text{BiPos}^{\pm}$ equipped with a map $J \to R(S^{<})$, $S \in \text{Sets}$, the map (3.2.7.3) for any bicofibration $J \to L([1])$ in BiPos^{\pm} , and the map (3.2.6.3) for any left-bounded map $J \to R(\mathbb{N})$, $J \in \text{BiPos}^{\pm}$. For any regular cardinal κ , the class of κ^{\pm} -bianodyne maps is the minimal saturated closed class of maps in BiPos^{\pm} with the same properties.

More generally, by Example 3.1.5.5, the barycentric subdivision functor B sends the whole PoSets into $Pos^{\pm} \subset PoSets$, so that the two functors B^{\diamond} , B_{\diamond} : PoSets \to BiPoSets of Example 3.2.2.6 take values in BiPos $^{\pm}$. It is easy to adapt Corollary 3.2.5.5 to the setting of Definition 3.2.8.1 but we will need a more general statement. Assume given a cartesian square

$$\begin{array}{ccc}
J' & \longrightarrow & J'_0 \\
\downarrow & & \downarrow \gamma \\
J & \xrightarrow{\varphi} & J_0
\end{array}$$

in PoSets, and consider the induced map

(3.2.8.8)
$$B^{\diamond}(J') \to B^{\diamond}(J) \times_{L(J_0)} L(J'_0),$$

where the product is taken with respect to $\varphi \circ \xi : B^{\diamond}(J) \to L(J) \to L(J_0)$.

Lemma 3.2.8.4. For any cartesian square (3.2.8.7) with $J_0, J_0' \in \text{Pos}^+$, the corresponding map (3.2.8.8) is +-bianodyne. If $J_0, J_0' \in \text{Pos}^\pm$, then it is a left-finite \pm -bianodyne map in BiPos $^\pm$, and it is strongly \pm -bianodyne if $J, J', J_0, J_0' \in \text{Pos}$.

Proof. By definition, an element in the target of the map (3.2.8.8) is given by a pair $\langle S, j \rangle$, $S \subset J_0$, $j \in J'_0$ such that S is finite totally ordered, with some largest element $s \in S$, and $\gamma(j) = \varphi(s)$. Then we have

$$(3.2.8.9) (B(J) \times_{I_0} J_0') / \langle S, j \rangle \cong B(S) \times_S S', \quad B(J') / \langle S, j \rangle \cong B(S'),$$

where we denote $S' = S \times_{J_0} (J_0'/j)$, and since S' is then finite, the target of the map (3.2.8.8) and the map itself are left-finite. Then by Lemma 3.2.5.3, it suffices to check that the map (3.2.8.8) has \pm -bianodyne left comma-fibers. By (3.2.8.9), this amounts to proving the claim after replacing J, J_0 , J_0' with S, $J_0/\gamma(j)$, J_0'/j . We can therefore assume right away that (3.2.8.7) is a square in pos. But then $\xi: B^{\diamond}(J') \to L(J')$ factors as

$$B^{\diamond}(J') \longrightarrow B(J) \times_{L(J_0)} L(J'_0) \xrightarrow{\xi \times id} L(J) \times_{L(J_0)} L(J'_0) \cong L(J'),$$

where the first map is exactly the map (3.2.8.8), so it suffices to check that $\xi: B^{\diamond}(J) \to L(J)$ is \pm -bianodyne for any finite $J \in \text{pos}$. The argument for this is the same as in Corollary 3.2.5.5.

Example 3.2.8.5. Take $J_0 = \text{pt}$ and $J_0' = [1]$. Then Lemma 3.2.8.4 shows that for any $J \in \text{PoSets}$, the natural map $B^{\diamond}(J \times [1]) \to B^{\diamond}(J) \times L([1])$ is left-finite, \pm -bianodyne, and strongly \pm -bianodyne if $J \in \text{Pos}$. If we identify $[1] \cong [1]^o$, then the same argument applied to J^o provides a left-finite \pm -bianodyne map $B_{\diamond}([1] \times J) \to B_{\diamond}(J) \times L([1])$ that is also strongly \pm -bianodyne as soon as $J \in \text{Pos}$.

In the situation of Example 3.2.8.5, we also have the relative barycentric subdivision $B^{\diamond}(J \times [1]|J)$ of Example 3.2.4.7, and we have a commutative square

$$(3.2.8.10) \qquad B^{\diamond}(J \times [1]) \longrightarrow B^{\diamond}(J) \times L([1])$$

$$\downarrow \qquad \qquad \downarrow$$

$$B^{\diamond}(J \times [1]|J) \longrightarrow B^{\diamond}(J) \times R([1]),$$

where the vertical maps are dense, and the top map is \pm -bianodyne, and strongly \pm -bianodyne if $J \in \text{Pos}$. The projection $B^{\diamond}(J) \times R([1]) \to B^{\diamond}(J)$ is trivially \pm -bianodyne and bianodyne for $J \in \text{Pos}$, so the bottom map in (3.2.8.10) is

bianodyne for $J \in \text{Pos}$ by Corollary 3.2.5.7 and the two-out-of-three property, and the same argument shows that it is always \pm -bianodyne. As another application of Corollary 3.2.5.7, note that for any $J \in \text{PoSets}$, we have a commutative square

$$(3.2.8.11) B^{\diamond}(B(J)|J) \xrightarrow{\xi} B^{\diamond}(J)$$

$$B(\xi) \downarrow \qquad \qquad \downarrow \xi$$

$$B^{\diamond}(J) \xrightarrow{\xi} L(J)$$

in BiPoSets, where $B^{\diamond}(B(J)|J)$ is taken with respect to $\xi: B(J) \to J$, and everything in (3.2.8.11) except J is actually in BiPos[±].

Lemma 3.2.8.6. The maps ξ , $B(\xi)$: $B^{\diamond}(B(J)|J) \rightarrow B^{\diamond}(J)$ in (3.2.8.11) are \pm -bianodyne for any $J \in \text{PoSets}$.

Proof. Since $B(\xi) \leq \xi$, both maps are co-lax over B(J) with respect to ξ : $B^{\diamond}(B(J)|J) \to B^{\diamond}(J)$ and id: $B^{\diamond}(J) \to B^{\diamond}(J)$, so by Lemma 3.2.5.3, it suffices to prove that they have ±-bianodyne left comma-fibers over any $S \in B(J)$. As in the proof of Lemma 3.2.8.4, these comma-fibers over some $S \cong [n] \subset J$ are the same maps for J = S, so we may assume right away that J = [n], for some $n \geq 0$. Then the whole square (3.2.8.11) is in BiPos[±], and since $\xi : B^{\diamond}([n]) \to L([n])$ is strongly ±-bianodyne, it suffices to prove that so is $\xi : B^{\diamond}(B([n])|[n]) \to B^{\diamond}([n])$. But since $\xi : B([n]) \to [n]$ is right-reflexive by Example 3.1.4.2, we are done by Corollary 3.2.5.7.

We will also need a corollary of Lemma 3.2.8.4 describing what the barycentric subdivision functors B^{\diamond} , B_{\diamond} do to a map (3.1.9.1). Namely, modify (3.2.8.3) by setting

(3.2.8.12)
$$J^{\flat\natural} = (J_o \times B^{\diamond}(S^{>})) \sqcup_{J_o \times R(S)} \coprod_{s \in S} J/s,$$
$$J^{\natural\flat} = (J_o \times B_{\diamond}(S^{>})) \sqcup_{J_o \times R(S)} \coprod_{s \in S} J/s$$

for any biordered set J equipped with a map $J \to R(S^<)$, $S \in Sets$. Note that for any $J \in PoSets$ and $S \in Sets$, we have natural biordered maps

$$(3.2.8.13) B^{\diamond}(J \times S^{>}) \to B^{\diamond}(J) \times B^{\diamond}(S^{>}), \ B_{\diamond}(J \times S^{>}) \to B_{\diamond}(J) \times B_{\diamond}(S^{>}),$$

and since B^{\diamond} , B_{\diamond} send coproducts to coproducts and standard pushout squares to

standard pushout squares, (3.1.9.2) induces standard coproduct decompositions

$$(3.2.8.14) B^{\diamond}(J^{\natural}) \cong B^{\diamond}(J_o \times S^{\gt}) \sqcup_{B^{\diamond}(J_o) \times R(S)} \coprod_{s \in S} B^{\diamond}(J/s), B_{\diamond}(J^{\natural}) \cong B_{\diamond}(J_o \times S^{\gt}) \sqcup_{B_{\diamond}(J_o) \times R(S)} \coprod_{s \in S} B_{\diamond}(J/s).$$

Then the results of applying B^{\diamond} and B_{\diamond} to (3.1.9.1) factor as

$$(3.2.8.15) B^{\diamond}(J^{\natural}) \xrightarrow{a} B^{\diamond}(J)^{\flat\natural} \xrightarrow{b} B^{\diamond}(J), \\ B_{\diamond}(J^{\natural}) \xrightarrow{a^{\dagger}} B_{\diamond}(J)^{\natural\flat} \xrightarrow{b^{\dagger}} B_{\diamond}(J),$$

where b and b^{\dagger} are (3.2.8.4) with a different biorder, and a, a^{\dagger} are standard pushouts of (3.2.8.13) for J_0 and S.

Corollary 3.2.8.7. For any $J \in \text{PoSets resp. Pos}$, the maps (3.2.8.13) are \pm -bianodyne resp. strongly \pm -bianodyne, and the same holds for the maps a, a^{\dagger} in (3.2.8.15).

Proof. By Lemma 3.2.5.3, the classes of \pm -bianodyne and strongly \pm -bianodyne maps are stable under standard pushouts, so the second claim follows from the first one. For the first claim, consider (3.2.8.13) as maps over $R(S^{<})$ via the projection

$$(3.2.8.16) B^{\diamond}(J) \times B^{\diamond}(S^{>}) \longrightarrow B^{\diamond}(S^{>}) \xrightarrow{\xi^{\perp}} R(S^{<}), \\ B_{\diamond}(J) \times B_{\diamond}(S^{>}) \longrightarrow B_{\diamond}(S^{>}) \xrightarrow{\xi^{\perp}} R(S^{<}),$$

and apply again Lemma 3.2.5.3. Then it suffices to check that all left commafibers of (3.2.8.13) are \pm -bianodyne resp. strongly \pm -bianodyne. Over the largest element $o \in S^<$, both maps are isomorphisms, and over some element $s \in S \subset S^<$, the comma-fibers in question are the maps (3.2.8.13) for $S = \operatorname{pt}$. Thus we may assume right away that $S = \operatorname{pt}$. Then $S^> \cong [1]$, and the compositions

$$(3.2.8.17) \qquad \begin{array}{c} B^{\diamond}(J\times[1]) & \longrightarrow & B^{\diamond}(J)\times B^{\diamond}([1]) & \xrightarrow{\mathsf{id}\times\xi} & B^{\diamond}(J)\times L([1]) \\ B_{\diamond}(J\times[1]) & \longrightarrow & B_{\diamond}(J)\times B_{\diamond}([1]) & \xrightarrow{\mathsf{id}\times\xi_{\perp}} & B_{\diamond}(J)\times L([1]) \end{array}$$

are the \pm -bianodyne resp. strongly \pm -bianodyne maps of Example 3.2.8.5, while id $\times \xi$ and id $\times \xi_{\perp}$ are reflexive.

$$(3.2.9.1) \qquad \overline{\text{BiPoSets}}/I \xrightarrow{\rho} \text{BiPoSets}/I$$

$$\downarrow \lambda \qquad \qquad \downarrow \lambda$$

$$\overline{\text{BiPoSets}} /\!\!/ I \xrightarrow{\rho} \text{BiPoSets} /\!\!/ I,$$

where ρ and λ are dense embeddings. As in (3.2.1.2), we have the forgetful functors

(3.2.9.2)
$$\pi: BiPoSets // I \rightarrow BiPoSets, \overline{\pi} = \pi \circ \lambda: BiPoSets / I \rightarrow BiPoSets$$

induced by (2.1.4.10), both are fibrations by Example 2.3.3.8, and if I is rigid, then the fibration $\overline{\pi}$ is discrete. For any I-augmented biordered set $\langle J, \alpha \rangle$ and biordered set J', the product $J \times J'$ is naturally augmented via the projection $J \times J' \to J$. The forgetful functor U: BiPoSets \to PoSets tautologically extends to a functor U: BiPoSets $//I \to$ PoSets //I, so do its adjoints L, R of (3.2.2.2) and the right-adjoint U^I to R. As in (3.2.1.6), for any regular cardinal κ , we have subcategories

(3.2.9.3) BiPos_{$$\kappa$$} // $I \subset BiPos$ // I , BiPos _{κ} $^+ \subset BiPos$ $^+$ // $I \subset BiPoSets$ // I

spanned by pairs $\langle J, \alpha \rangle$ with J in $BiPos_{\kappa} \subset BiPos$, $BiPos_{\kappa}^+ \subset BiPos^+$. If I is equipped with a good filtration in the sense of Definition 3.2.1.2, we also have the subcategories $BiPos /\!\!/^b I \subset BiPos /\!\!/^b I$, $BiPos^+ /\!\!/^b I \subset BiPos^+ /\!\!/^b I$ of restricted resp. locally restricted I-augmented biordered sets, and their κ -bounded versions.

Definition 3.2.9.1. A map $f = \langle f, \alpha_f \rangle : \langle J, \alpha \rangle \to \langle J', \alpha' \rangle$ in BiPoSets $/\!/ I$ is a *full embedding* if it is *I*-strict and f is a full embedding in the sense of Definition 3.2.2.8. A full embedding f is *left* or *right* or *locally closed* if f is left or right

or locally closed in the sense of Definition 3.2.2.8, *left* resp. *right-reflexive* if both U(f) and $U^l(f)$ are left resp. right-reflexive in the sense of Definition 3.2.1.3, with the same adjoint, and *reflexive* if it is a finite composition of right-reflexive and left-reflexive maps.

As in Definition 3.2.1.3, for any morphism $\langle f, \alpha_f \rangle : \langle J, \alpha \rangle \to \langle J', \alpha' \rangle$ in BiPoSets $/\!\!/ I$, the biordered cylinder C(f) has a natural augmentation, and we have the augmented versions of the decomposition (3.2.2.5) and retractions (3.1.3.3). Then the biordered versions of Lemma 3.1.3.11 and Lemma 3.1.3.13 hold in the augmented case with the same proofs, as do Lemma 3.2.2.10 and Lemma 3.2.4.8. We can also combine Definition 3.2.1.6 and Definition 3.2.5.1 in the following way.

Definition 3.2.9.2. Assume that the category I is equipped with a good filtration. The class of *bianodyne maps* is the smallest saturated class of maps in BiPos $/\!/^b I$ such that

- (i) for any $\langle J, \alpha \rangle \in \text{BiPos} /\!/^b I$, the projection $R([1]) \times \langle J, \alpha \rangle \to \langle J, \alpha \rangle$ is bianodyne, and
- (ii) for any $\langle J', \alpha' \rangle$, $\langle J'', \alpha'' \rangle \in \text{BiPos} //^b I$ and bicofibrations $J', J'' \to J$ in BiPos, a map $\langle f, \alpha_f \rangle : \langle J', \alpha' \rangle \to \langle J'', \alpha'' \rangle$ such that f is cocartesian over J and the fibers $\langle f, \alpha_f \rangle : \langle J'_j, \alpha' \rangle \to \langle J''_j, \alpha'' \rangle$ are bianodyne for any $j \in J$ is itself bianodyne.

The class of +-bianodyne maps is the smallest saturated class of maps in BiPos⁺ //^b I satisfying (i), (ii) with BiPos replaced by BiPos⁺, and for any regular cardinal κ , the classes of κ -bianodyne resp. κ ⁺-bianodyne maps are the smallest saturated classes of maps in BiPos $_{\kappa}$ //^b I resp. BiPos $_{\kappa}$ // I satisfying (i), (ii) with BiPos replaced by BiPos $_{\kappa}$ resp. BiPos $_{\kappa}$.

If J' in (3.2.4.1) if I-augmented, then the comma-set $J'/{}^{\diamond}R(J)$ is also augmented via the projection $\sigma: J'/{}^{\diamond}R(J) \to J'$, and then Lemma 3.2.5.3 holds in the augmented case with the same proof. In paritucular, it again implies that the classed of bianodyne maps of Definition 3.2.9.2 are stable under standard pushouts. Moreover, the standard bianodyne and +-bianodyne maps (3.2.6.2) and (3.2.6.3) of Proposition 3.2.7.3 are naturally I-augmented as soon as so is J, and then they are bianodyne resp. +-bianodyne in the sense of Definition 3.2.9.2. In the situation of Example 3.2.7.2, if J is augmented, we can augment J^{\flat} via the projection $t_{+}: J^{\flat} = C(s) \to J$, and then (3.2.7.3) with the induced augmentation on J^{\sharp} is also a bianodyne I-augmented map, while the embedding $J \to J^{\flat}$ of Example 3.2.7.2 is a left-reflexive I-augmented biordered map.

Proposition 3.2.9.3. For any category I equipped with a good filtration, the class of bianodyne maps in BiPos // b I is the minimal saturated class that is closed under coproducts and standard pushouts, and contains the map (3.2.6.2) for any $J \to R(S^<)$ of Example 3.2.6.1, with the biorder (3.2.6.1), and the map (3.2.7.3) for any bicofibration $J \to L([1])$ of Example 3.2.7.2. The class of +-bianodyne maps is the minimal saturated class of maps in BiPos $^+$ // b I that is closed under coproducts and standard pushouts, and contains bianodyne maps, the projection $R([1]) \times J \to J$ for any $J \in BiPos^+$ // b I, and the map (3.2.6.3) for any left-bounded map $J \to R(\mathbb{N})$. For any regular cardinal κ , the classes of κ -bianodyne maps resp. κ^+ -bianodyne maps are the minimal saturated closed classes of maps in BiPos $_\kappa$ // b I resp. BiPos $_\kappa^+$ // b I with the same properties.

Proof. Same as Proposition 3.2.7.3. \Box

Corollary 3.2.9.4. For any object $i \in I$ in a category I equipped with a good filtration, the functor $\varepsilon(i)_{\triangleright}: \text{BiPos} \to \text{BiPos} //^b I$ induced by (2.4.1.1) sends bianodyne maps to bianodyne maps. For any regular cardinal $\kappa > |I|$, $\varepsilon(i)_{\triangleright}: \text{BiPos}_{\kappa} \to \text{BiPos}_{\kappa} //^b I$ sends κ -bianodyne maps to κ -bianodyne maps.

Proof. Clear. □

Example 3.2.9.5. For any *I*-augmented partially ordered set $\langle J, \alpha \rangle$, the barycentric subdivision $B^{\diamond}(J)$ of Example 3.2.2.6 is naturally augmented via $\alpha \circ \xi : B(J) \to I$, and if we let $B_I^{\diamond}(J) = \langle B^{\diamond}(J), \alpha \circ \xi \rangle$, then $\xi : B_I^{\diamond}(J) \to L(J)$ is a map in BiPoSets // *I*. If *I* has a good filtration and $J \in \text{BiPos}$ // *b I*, then ξ is bianodyne, by exactly the same argument as in Corollary 3.2.5.5. The other biorder $B_{\diamond}(J)$ on B(J) considered in Example 3.2.2.6 defines another functorial *I*-augmented biordered set $B_{I\diamond}(J)$; augmentation is still the same.

Lemma 3.2.9.6. Assume that the category I is equipped with a good filtration, and assume given a regular cardinal κ , an endofunctor A of the category $\overline{\text{BiPos}}_{\kappa}$ // b I that preserves coproducts, and morphisms $\alpha: A \to \operatorname{id}$, $\chi: \overline{\pi} \circ U \circ A \to \overline{\pi} \circ U$ such that $\chi \geq \overline{\pi}(U(\alpha))$. Moreover, assume the following.

- (i) For any left-closed embedding $J_0 \to J$ in BiPos_{κ} //^b I, the corresponding map $A(J_0) \to \chi^{-1}(J_0) \subset A(J)$ is κ -bianodyne.
- (ii) For any projection $e: J \times R([1]) \to J$ in $BiPos_{\kappa} //^{b} I$, A(e) is κ -bianodyne.
- (iii) For any $J \in \operatorname{Pos}_{\kappa} /\!/^{\mathsf{b}} I$, the map $\alpha : A(L(J)) \to L(J)$ is κ -bianodyne.

Then for any $J \in BiPos_{\kappa} //^{b} I$, the map $\alpha : A(J) \to J$ is κ -bianodyne.

Proof. Same as Lemma 3.2.5.8.

Finally, assume given two categories I, I', and a functor $F: I' \to PoSets$. Then (3.2.3.1) extends to functors

Moreover, assume that I is equipped with a good filtration, and note that if F takes values in Pos \subset PoSets, then I' also acquires a good filtration.

Lemma 3.2.9.7. The functor $\overline{\mathsf{T}}_{I,F}$ of (3.2.9.4) sends left resp. right-closed embeddings to left resp. right-closed embeddings, reflexive full embeddings to reflexive embeddings, cylinder to cylinders, and standard resp. co-standard pushout square to standard resp. co-standard pushout squares. Moreover, if I has a good filtration, and F takes values in $\mathsf{Pos}_{\kappa} \subset \mathsf{PoSets}$ for some regular κ , then $\mathsf{T}_{I,F}$ sends $\mathsf{Pos} \ /\!\!/^{\mathsf{b}}(I \times I')$, $\mathsf{Pos}_{\kappa} \ /\!\!/^{\mathsf{b}}(I \times I')$, $\mathsf{Pos}_{\kappa}^+ \ /\!\!/^{\mathsf{b}}(I \times I')$ into $\mathsf{BiPos} \ /\!\!/^{\mathsf{b}}I$, $\mathsf{BiPos}_{\kappa} \ /\!\!/^{\mathsf{b}}I$, $\mathsf{BiPos}_{\kappa}^+ \ /\!\!/^{\mathsf{b}}I$, and it sends anodyne, κ -anodyne, κ -anodyne, κ -anodyne, κ -anodyne, κ -bianodyne, κ -bianodyne, κ -bianodyne, κ -bianodyne maps.

Proof. Clear (for the last claim, use Lemma 3.2.5.3 in the same way as in Corollary 3.2.5.4).

Example 3.2.9.8. As in Example 3.2.3.2, for any $\langle J, \alpha \rangle \in \text{PoSets} \ /\!\!/ I$, let $B_I^\triangle(J) \in \text{PoSets} \ /\!\!/ (I \times \text{PoSets})$ be the barycentric subdivision $B_I(J)$ augmented by the functor $B_I(J) \to I \times \text{PoSets}$ sending a totally ordered subset $S \subset J$ with maximal element $s \in S$ to $\alpha(s) \times S$. Then if we let $\mathsf{T}_I = \mathsf{T}_{I,\mathsf{Id}}$, $B_{I_\bullet}^\diamond(J) = \mathsf{T}(B_I^\triangle(J))$ is the biordered set $B_\bullet^\diamond(J)$ of Example 3.2.3.2 with the augmentation induced by the projection $B_\bullet(J) \to B(J)$. The augmented biordered set $B_I^\diamond(J)$ of Example 3.2.9.5 is $B^\diamond(J) \subset B_\bullet^\diamond(J)$ with the induced augmentation, and the embedding $B_I^\diamond(J) \to B_{I_\bullet}^\diamond(J)$ is right-reflexive over I.

Chapter 4

Simplices.

This chapter is devoted to various simplicial notions that we will need, and it is rather short since we will not need that much. We start with standard material about the category Δ , simplicial sets and nerves of small categories. Then we discuss the Segal condition and its interpretation in terms of horn embeddings. We actually need several equivalent refomulations of the condition given in Lemma 4.1.3.1, and also some facts about nerves of small groupoids. All this is in Section 4.1, and nothing is new.

Section 4.2 discusses Grothendieck fibrations over Δ and Segal condition for those. Examples include simplicial replacements of [BoK] and various generalizations. We also introduce the class of "special maps" in Δ — namely, maps between ordinals that send the last element to the last element — and prove a version of the standard result relating Grothendieck fibrations over a category and over its simplicial replacement, Proposition 4.2.2.3. Again, nothing is new. In particular, morally, if not technically, Proposition 4.2.2.3 goes back at least to [DHKS].

Another very useful observation that we borrow from [DHKS] is that simplicial replacements of small categories are Reedy categories. We discuss those in Section 4.3, and here there is one result that might be new. Namely, following an idea from [GZ], we distinguish a special class of Reedy categories that we call "cellular". These include categories of simplices of simplicial sets, and share many combinatorial properties of simplicial sets including a well-defined skeleton filtration.

We then prove a general result, Proposition 4.3.3.10, saying that a cellular Reedy category admits an "anodyne resolution" — roughly speaking, a functor from a left-bounded partially ordered set that has anodyne comma-fibers. Eventually, for homotopical applications, this allows one to replace arbitrary small categories with partially ordered sets.

4.1. Simplices and nerves.

4.1.1. Ordinals and simplices. As usual, we denote by $\Delta \subset \text{PoSets}$ the full subcategory spanned by finite ordinals $[n] = \{0, ..., n\}$, $n \geq 0$, with the usual order, and for any integers $n \geq l \geq 0$, we denote by $s, t : [l] \rightarrow [n]$ the embeddings onto the initial resp. the terminal segment of the ordinal [n], as in Example 3.1.3.6. For any $n \geq l \geq 0$, we have the cocartesian square (3.1.7.9) in PoSets that is also a cocartesian square in $\Delta \subset \text{PoSets}$. For any ordinal $[n] \in \Delta$, we have a unique isomorphism $[n] \cong [n]^o$, so that the involution $\iota : \text{PoSets} \to \text{PoSets}$ sends Δ into itself and induces an involution

$$(4.1.1.1) \iota: \Delta \to \Delta, [n] \mapsto [n]^{o}.$$

We also have a factorization system $\langle d, f \rangle$ on Δ consisting of surjective resp. injective maps (traditionally, f is the class of "face maps", and d is the class of "degeneracies"). For any $n \geq 0$, we denote by

$$(4.1.1.2) D_n \subset \Delta$$

the full subcategory spanned by $[l] \in \Delta$, $0 \le l \le n$.

For some purposes, it is useful to consider also the empty ordinal; the corresponding full subcategory in PoSets is naturally identified with $\Delta^<$, with the empty ordinal corresponding to the initial object $o \in \Delta^<$. Since a subset of an ordinal is a (possibly empty) ordinal, the category $\Delta^<$ has pullbacks with respect to injective maps, so that as in Example 2.3.3.11, the cofibration $\tau: ar(\Delta^<) \to \Delta^<$ is a bifibration over $\Delta_f^< \subset \Delta^<$. Moreover, if we let $\varepsilon = \varepsilon([0]): pt \to \Delta_f \subset \Delta_f^<$ be the embedding (2.1.1.2) onto [0], then the functor

$$(4.1.1.3) \operatorname{ar}(\Delta^{<})_{\tau^{*}(i)} \to \varepsilon_{*} \varepsilon^{*} \operatorname{ar}(\Delta^{<})_{\tau^{*}(f)} \cong \varepsilon_{*} \Delta^{<}$$

of (2.4.3.3) is an equivalence over $\Delta_f^<$. Thus for for any $[n] \in \Delta \subset \Delta^<$, we have a natural equivalence

$$(4.1.1.4) \qquad (\Delta/[n])^{<} \cong \Delta^{<}/[n] \cong (\varepsilon_* \Delta^{<})_{[n]} \cong \Delta^{<(n+1)},$$

with the copies of $\Delta^{<}$ in the right-hand side numbered by $l \in [n]$. Explicitly, the projection onto the l-th component in (4.1.1.4) is the transition functor $\varepsilon(l)^*$ for the embedding $\varepsilon(l):[0] \to [n]$ onto $l \in [n]$, and it sends an object $f:[m] \to [n]$ in $\Delta^{<}/[n]$ to the ordinal $f^{-1}(l) \subset [m]$.

Furthermore, (2.4.3.3) for the constant fibration $\Delta_f^< \times \Delta^< \to \Delta^<$ provides a functor $\Delta_f^< \times \Delta^< \to \epsilon_* \Delta^<$, and we can consider the composition

$$(4.1.1.5) \Delta_{\mathsf{f}}^{<} \times \Delta^{<} \longrightarrow \varepsilon_{*}\Delta^{<} \cong \mathsf{ar}(\Delta^{<})_{\tau^{*}\mathsf{f}} \stackrel{\sigma}{\longrightarrow} \Delta^{<},$$

where the equivalence in the middle is inverse to (4.1.1.3), and σ is as in Example 2.1.2.1. This sends $\Delta_f \times \Delta$ into Δ , thus induces a functor

$$(4.1.1.6) e: \Delta_f \times \Delta \to \Delta$$

known as the *total edgewise subdivision functor*. Explicitly, e sends $[m] \times [n]$ to the product [m] * [n] equipped with the lexicographic order $(i \times j \le i' \times j')$ if i < i' or i = i' and $j \le j'$). For any fixed $[m] \in \Delta$, we have the *m-th edgewise subdivision functor*

$$(4.1.1.7) e_m : \Delta \to \Delta, [n] \mapsto [m] * [n]$$

obtained by restricting (4.1.1.6) to $[m] \times \Delta \subset \Delta_f \times \Delta$.

In keeping with both our convention and general usage, we denote by Δ^o Sets = Fun(Δ^o , Sets) the category of simplicial sets. For any non-negative integer n, the *elementary simplex* $\Delta_n = Y([n]) \in \Delta^o$ Sets is the simplicial set represented by $[n] \in \Delta$. By Example 2.2.5.17, the category Δ^o Sets is cartesian-closed, so that for any simplicial sets X, Y, we have the mapping set X^Y given by (2.2.5.9). All the sets X^{Δ_n} , $n \geq 0$ together form the functor $\delta_*^o X : \Delta^o \times \Delta^o \to \text{Sets}$ of (2.2.5.10). Alternatively, one can consider the full embedding $\varphi : \Delta \to \text{PoSets}$, and take the right Kan extension $\varphi_*^o X$; then the diagonal embedding $\delta : \text{PoSets} \to \text{PoSets} \times \text{PoSets}$ has a right-adjoint cartesian product functor $\mu = \delta_+ : \text{PoSets} \times \text{PoSets} \to \text{PoSets}$, and we have

$$(4.1.1.8) \qquad \delta_*^o X \cong (\varphi^o \times \varphi^o)^* (\varphi^o \times \varphi^o)_* \delta_*^o X \cong (\varphi^o \times \varphi^o)^* \delta_*^o \varphi_*^o X \cong \theta^* \varphi_*^o X,$$

where we denote $\theta = \mu^o \circ (\varphi^o \times \varphi^o) : \Delta^o \times \Delta^o \to \mathsf{PoSets}^o$. Explicitly, θ sends an object $[n] \times [m] \in \Delta^o \times \Delta^o$ to the product $[n] \times [m] \in \mathsf{PoSets}^o$. For any $n, m \geq 0$, the tautogical map $[n] \times [m] \to [n] * [m]$ is order-preserving $(i \times j \leq i' \times j')$ lexicographically implies that $i \leq i'$ and $j \leq j'$), so that if we restrict θ to a functor $\Delta^o_f \times \Delta^o \to \mathsf{PoSets}^o$, then the total edgewise subdivision functor (4.1.1.6) fits into a map $\phi^o \circ e^o \to \mu$, and by (4.1.1.8), this induces a functorial map

$$(4.1.1.9) \delta^o_* X|_{\Delta^o_{\mathbf{f}} \times \Delta^o} \to \mathsf{e}^{o*} X.$$

For any simplicial set $X \in \Delta^o$ Sets, its *category of simplices* ΔX is its category of elements of Example 2.3.3.10 — that is, the category of pairs $\langle [n], x \rangle$, $[n] \in \Delta$, $x \in X([n])$. The forgetful functor $\Delta X \to \Delta$ is a discrete fibration of Example 2.3.3.10, with fibers $(\Delta X)_{[n]} \cong X([n])$. If $X = \Delta_n$ for some $n \geq 0$, then the category of simplices $\Delta \Delta_n$ is naturally identified with the comma-fiber $\Delta/[n]$ of the identity functor id : $\Delta \to \Delta$; in particular, it has the terminal object corresponding to

id : $[n] \to [n]$. The augmented category of simplices is given by $\Delta^{<}X = (\Delta X)^{<}$; for any $n \ge 0$, we have $\Delta^{<}\Delta_n \cong \Delta^{<}/[n]$, $[n] \in \Delta$.

A map $f: X' \to X$ between simplicial sets gives rise to a functor $\Delta(f): \Delta X' \to \Delta X$ over Δ , automatically cartesian, and if f is injective, $\Delta(f)$ is left-closed by Example 2.3.3.20. If we have another simplicial set Y and a map $X \to Y$, with $Y' = Y' \sqcup_X X'$, then we have a cartesian cocartesian square of categories provided by Lemma 2.3.3.22. The functor $\Delta^< X' \to \Delta^< X$ is also left-closed. Moreover, if f is an injective map $\Delta_m \to \Delta_n$ corresponding to an injective map $[m] \to [n]$, then the corresponding left-closed full embedding $\Delta^< \Delta_m \cong \Delta^< / [m] \to \Delta^< \Delta_n \cong \Delta^< / [n]$ is right-admissible, and then so is the embedding $\Delta^< (X \times \Delta_m) \to \Delta^< (X \times \Delta_n)$ for any simplicial set X. In particular, we have right-admissible left-closed full embeddings

$$(4.1.1.10) s,t: \Delta^{<}X \to \Delta^{<}(X \times \Delta_1)$$

induced by the maps $s, t : [0] \rightarrow [1]$.

A simplex $x \in X([n])$ of a simplicial set $X \in \Delta^o$ Sets is *non-degenerate* iff it is not in the image of the map $X([m]) \to X([n])$ for some non-identical surjective map $[n] \to [m]$. We denote by $\overline{\Delta}X \subset \Delta X$ the full subcategory spanned by non-degenerate simplices. A simplicial set $X \in \Delta^o$ Sets is *finite* if $\overline{\Delta}X$ is finite.

For any map $\langle [n'], x' \rangle \to \langle [n], x \rangle$ between non-degenerate simplices, the underlying map $f: [n'] \to [n]$ is automatically injective, so that the forgetful functor $\overline{\Delta}X \to \Delta$ factors through the dense subcategory $\Delta_f \subset \Delta$. For any simplex $x \in X([n])$, there exists a unique pair of a non-degenerate simplex $x' \in X([n'])$ and a surjective map $f: [n] \to [n']$ such that x = X(f)(x'); the simplex x' is the *normalization* of the simplex x.

In general, normalization is not functorial. However, consider the reduction $Red(\Delta X)$ of the category ΔX in the sense of (3.1.1.6). Then the functor

$$(4.1.1.11) \overline{\Delta}X \to \operatorname{Red}(\Delta X)$$

induced by (3.1.1.6) is essentially bijective and full. This identifies $\operatorname{Red}(\Delta X)$ with the set of non-degenerate simplices in X ordered by inclusion. Subsets $X' \subset X$ are then in one-to-one correspondence with left-closed subsets in the partially ordered set $\operatorname{Red}(\Delta X)$: if we let P(X) be the partially ordered set of subsets $X' \subset X$ ordered by inclusion, then we have an isomorphism

$$(4.1.1.12) P(X) \cong L(\operatorname{Red}(\Delta X)), X' \mapsto \operatorname{Red}(\Delta X'),$$

with the inverse isomorphism sending $J \subset \text{Red}(\Delta X)$ to the subset X' corresponding to the left-closed subcategory $\Delta X' = R^{-1}(J) \subset \Delta X$.

A simplicial set X is *weakly regular* if for any non-degenerate simplex $x \in X([n])$ and injective map $f:[n'] \to [n], X(f)(x) \in X([n'])$ is non-degenerate, and *regular* if the Yoneda map $\Delta_n \to X$ corresponding to x is injective (in words, X is weakly regular if any face of a non-degenerate simplex is non-degenerate, and regular if all these faces are distinct). For a weakly regular X, the projection $\overline{\Delta}X \to \Delta_f$ is a discrete fibration corresponding to some $\overline{X}: \Delta_f^0 \to \operatorname{Sets}$, we have

$$(4.1.1.13) X \cong e_1^o \overline{X},$$

where $e: \Delta_f \to \Delta$ is the embedding, and the full embedding $\overline{\Delta}X \subset \Delta X$ is left-reflexive. If X is regular, then $\overline{\Delta}X$ is a partially ordered set, the functor (4.1.1.11) is an isomorphism, and the reduction functor

$$(4.1.1.14) R: \Delta X \to \overline{\Delta} X \cong \operatorname{Red}(\Delta X)$$

induced by (3.1.1.6) is a fibration left-adjoint to the embedding $\overline{\Delta}X \subset \Delta X$.

Example 4.1.1.1. For any $n \ge 0$, the elementary simplex Δ_n is regular. We have $\overline{\Delta}\Delta_n \cong \Delta_f/[n]$, and sending $i:[m] \to [n]$ to $i([m]) \subset [n]$ identifies $\Delta_f/[n]$ with the barycentric subdivision B([n]) of Definition 3.1.4.1. The adjoint functor (4.1.1.14) is induced by the adjoint functor $\operatorname{ar}(\Delta) \to \operatorname{ar}^i(\Delta)$ of Example 2.2.3.3.

We say that a subset $X' \subset X$ in a simplicial set X is *elementary* if so is the corresponding left-closed subset $\operatorname{Red}(\Delta X') \subset \operatorname{Red}(\Delta X)$ of (4.1.1.12) (that is, $\operatorname{Red}(\Delta X) \setminus \operatorname{Red}(\Delta X')$ consists of a single non-degenerate simplex $\langle [n], x \rangle$). If X is finite, then any increasing filtration $X_0 \subset \cdots \subset X_n = X$ can be refined to a filtration where all the subsets $X_i \subset X_{i+1}$ are elementary. If $X = \Delta_n$, then $\operatorname{Red}(\Delta X) \cong B([n])$ has the largest element $o \in B([n])$, and the elementary subset $B([n]) \setminus o \subset B([n])$ corresponds to the *simplicial sphere*

$$(4.1.1.15) \sigma_n : \mathsf{S}_{n-1} \subset \Delta_n.$$

Explicitly, it is the subset spanned by maps $f : [m] \to [n]$ that are not surjective (that is, we remove the interior of the simplex, and for n = 0, we take S_{-1} to be the empty set). In general, an elementary extension $X' \subset X$ gives rise to a cocartesian square

$$\begin{array}{ccc}
\mathsf{S}_{n-1} & \longrightarrow & \Delta_n \\
\downarrow & & \downarrow \\
X' & \longrightarrow & X,
\end{array}$$

where $\Delta_n \to X$ is the Yoneda map corresponding to the unique non-degenerate simplex $\langle [n], x \rangle \in \text{Red}(\Delta X) \setminus \text{Red}(\Delta X')$. Horizontal maps in (4.1.1.16) are injective, and if X is regular, so are the vertical maps.

4.1.2. Nerves. The *nerve* NI of a small category I is the simplicial set NI: $\Delta^o \to \text{Sets}$ sending $[n] \in \Delta$ to the set of functors $i_{\bullet}: [n] \to I$ (or equivalently, chains (2.1.1.4) of length n in I). In particular, NI([0]) is the set of objects in I, and for any $i, i' \in I$, the fiber of the map

$$(4.1.2.1) NI(s) \times NI(t) : NI([1]) \to NI([0]) \times NI([0])$$

over $i \times i'$ is the set of maps I(i,i'). The set NI([2]) is the set of composable pairs of maps in I, with the embeddings $s, t : [1] \to [2]$ inducing an isomorphism

(4.1.2.2)
$$NI(s) \times NI(t) : NI([2]) \rightarrow NI([1]) \times_{NI([0])} NI([1]),$$

where the fibered product in the right-hand side is taken with respect to the projections $NI(t), NI(s): NI([1]) \rightarrow NI([0])$. The map $m: [1] \rightarrow [2]$ of Example 3.1.3.12 then induces the composition map

$$(4.1.2.3) NI(m): NI([2]) \to NI([1]),$$

while the unique projection $e:[1] \rightarrow [0]$ induces the map

$$(4.1.2.4) NI(e): NI([0]) \to NI([1])$$

sending an object $i \in I$ to the identity arrow id : $i \to i$.

For any small category I, the nerve NI^o of the opposite category I^o is given by $NI^o \cong \iota^*NI$, where $\iota: \Delta \to \Delta$ is the involution (4.1.1.1). The nerve of the category [n], $[n] \in \Delta$ is the elementary simplex Δ_n . The nerve is functorial, and $N: \operatorname{Cat} \to \Delta^o$ Sets is fully faithful and commutes with arbitrary limits (in particular, with products and fibered products). Moreover, for any small categories I_0 , I_1 , we have $N(\operatorname{Fun}(I_0,I_1)) \cong NI_1^{NI_0}$. For any small category I, we can promote the nerve functor N to a fully faithful *relative nerve* functor

$$(4.1.2.5) N_I : \operatorname{Cat} /\!/ I \to I^o \Delta^o \operatorname{Sets}, N_I(I')(i \times [n]) = N(i \setminus I')([n])$$

by applying the extended Yoneda embedding (2.1.4.6) and then taking the usual nerve pointwise.

Remark 4.1.2.1. Since the nerve functor N is fully faithful, a small category I can be recovered from its nerve NI. However, one does not even need the full simplicial set $NI \in \Delta^o$ Sets: if we consider the full subcategory $D_2 \subset \Delta$ of (4.1.1.2), and let $\varepsilon : D_2 \to \Delta$ be the embedding, then $\varepsilon^* \circ N : \operatorname{Cat} \to D_2^o$ Sets is also fully faithful.

Example 4.1.2.2. For any group G, the nerve $N(\operatorname{pt}_G)$ of the groupoid pt_G is the stadard classifying simplicial set $BG : \Delta^o \to \operatorname{Sets}$ of G, with terms $BG([n]) = G^n$ and the universal G-torsor $EG \to BG$. The simplicial set EG is the nerve of the category e(G) (where G is considered as a set).

The nerve NI of a small category I is weakly regular iff for any two maps $f:i\to i',\,f':i'\to i$ in I such that $f'\circ f=\operatorname{id}$, we have i=i' and $f=f'=\operatorname{id}$. For example, this is satisfied if I=P is the category of Example 2.1.1.1. As this example shows, NI can be weakly regular but not regular. To insure that NI is regular, it suffices to require that for any two maps $f:i\to i',\,f':i'\to i$, we have i=i' and f=f'. We will call such a category I ordered. Ordered categories do exists; in particular, a partially ordered set I is always ordered. In this case, we have a natural identification

$$(4.1.2.6) \overline{\Delta}NJ \cong \operatorname{Red}(\Delta NJ) \cong BJ, \langle [n], i_{\bullet} \rangle \mapsto i_{\bullet}([n]) \subset J,$$

where BJ is the barycentric subdivision of Definition 3.1.4.1. For J = [n], this is Example 4.1.1.1.

Remark 4.1.2.3. One consequence of (4.1.2.6) is that BJ comes equipped with a discrete fibration $BJ \to \Delta_f$ (if we compose it with the embedding $\Delta_f \to \text{PoSets}$, we obtain the PoSets-augmentation $B^{\triangle}(J)$ that appeared in Example 3.2.3.2). Therefore the standard pushout squares in PoSets, as well as those perfects colimits of Subsection 3.1.7 and Subsection 3.1.8 that are preserved by B — namely, those of Example 3.1.7.8, Example 3.1.7.9, Example 3.1.7.10, Example 3.1.7.14, Example 3.1.8.1 and Example 3.1.7.15 — produce colimits in Δ_f^o Sets, and then by (4.1.2.6) and (4.1.1.13), they are also preserved by the nerve functor N: PoSets $\to \Delta^o$ Sets.

Lemma 4.1.2.4. If a small ordered category I has an initial object $i \in I$, then the embedding $\operatorname{pt} \to \overline{\Delta} NI$ induced by $\varepsilon(i) : \operatorname{pt} \to I$ is a reflexive map of partially ordered sets.

Proof. Since I is ordered and $i \in I$ is initial, $\varepsilon(i)$: pt $\to I$ is a left-closed full embedding, so that we have the characteristic functor $\chi: I \to [1]$ sending i to $0 \in [1]$ and everything else to $1 \in [1]$. Then if we denote $BI = \overline{\Delta}NI$, Example 3.1.4.6 and Lemma 3.1.4.9 apply to I with the same proofs.

For any functor $\gamma: I \to I'$ between small categories, with the corresponding map $N(\gamma): NI \to NI'$ between their nerves, the maps (4.1.2.1) fit into a

commutative square

$$(4.1.2.7) \qquad NI([1]) \qquad \xrightarrow{N(\gamma)([1])} \qquad NI'([1])$$

$$\downarrow NI'(s) \times NI'(t) \qquad \qquad \downarrow NI'(s) \times NI'(t)$$

$$NI([0]) \times NI([0]) \xrightarrow{N(\gamma)([0]) \times N(\gamma)([0])} \qquad NI'([0]) \times NI'([0]),$$

and γ is fully faithful iff the square (4.1.2.7) is cartesian. If $N(\gamma)$ is essentially surjective, then γ is essentially surjective; if γ is fully faithful, then $N(\gamma)$ is surjective iff so is $N(\gamma)([0])$, and in this case, γ is an equivalence. If γ is an isofibration in the sense of Subsection 2.3.1, then the converse it true: γ is essentially surjective iff it it surjective on the nose, and this means that $N(\gamma)([0])$ is surjective. Moreover, say that a map $f: X \to X'$ between simplicial sets is dense if $f([0]): X([0]) \to X'([0])$ is an isomorphism; then $\gamma: I \to I'$ is dense iff so is its nerve $N(\gamma)$.

For any map $F: X \to Y$ between simplicial sets, we can define the cylinder C(F) and the dual cylinder $C^o(F)$ by cocartesian squares

$$(4.1.2.8) \qquad \begin{array}{ccc} X & \xrightarrow{\mathsf{id} \times t} & X \times \Delta_1 & & X & \xrightarrow{\mathsf{id} \times s} & X \times \Delta_1 \\ & & \downarrow & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow & & \downarrow \\ & & Y & \longrightarrow & \mathsf{C}^o(F), & & Y & \longrightarrow & \mathsf{C}^o(F), \end{array}$$

and we can define the left and right comma-sets $X/_FY$, $X\setminus_FY$ by cartesian squares

where $s, t : \mathsf{pt} \to \Delta_1$ are induced by $s, t : [0] \to [1]$. For any simplicial set X, we also define

(4.1.2.9)
$$X^{>} = C(\pi), \qquad X^{<} = C^{o}(\pi),$$

where $\pi: X \to \operatorname{pt}$ is the tautological projection, and for any two sets X_0 , X_1 equipped with maps to X, we define

$$(4.1.2.10) X_0 \times_X^2 X_1 = X_0 \times_X X^{\Delta_1} \times_X X_1.$$

Then for any small category I, we have $(NI)^{>} \cong NI^{>}$, $(NI)^{<} \cong NI^{<}$, and we have $N(I/_{\gamma}I') \cong NI/_{N(\gamma)}NI'$, $N(I\setminus_{\gamma}I') \cong NI\setminus_{N(\gamma)}NI'$ for any functor

 $\gamma: I \to I'$ between small I, I'. If we have two functors $I_0 \to I$, $I_1 \to I$ and I is a groupoid, we also have $N(I_0 \times_I I_1) \cong NI_0 \times_{NI}^2 NI_1$. For any pair of functors $\lambda: I \to I'$, $\rho: I' \to I$, an adjunction between ρ and λ is given by an isomorphism

$$NI/_{N(\lambda)}NI' \cong NI' \setminus_{N(\rho)} NI$$

of simplicial sets that commutes with projections to $NI \times NI'$.

4.1.3. Segal condition. It would be useful to characterize the image of the full embedding Cat $\subset \Delta^o$ Sets given by the nerve functor, and it is indeed possible to do so. An abstract simplicial set $X : \Delta^o \to \text{Sets}$ is the nerve of a small category if and only if it satisfies the *Segal condition*: for any $n \ge l \ge 0$, the diagram of sets

(4.1.3.1)
$$X([n]) \xrightarrow{X(s)} X([l])$$

$$X(t) \downarrow \qquad \qquad \downarrow X(t)$$

$$X([n-l]) \xrightarrow{X(s)} X([0])$$

obtained by applying X to the square (3.1.7.9) is cartesian. Equivalently, a square (3.1.7.9) induces a commutative square of elementary simplices, and this gives rise to an injective map

$$(4.1.3.2) b_n^l: \Delta_l \sqcup_{\Delta_0} \Delta_{n-l} \to \Delta_n,$$

where the coproduct is taken with respect to the embeddings $s: \Delta_0 \to \Delta_{n-l}$, $t: \Delta_0 \to \Delta_l$. Then X satisfies the Segal condition if and only if the functor $\text{Hom}(-,X): \Delta^o \operatorname{Sets} \to \operatorname{Sets}$ inverts the maps (4.1.3.2) for all $n \ge l \ge 0$. In fact, it suffices to consider n > l > 0, since (4.1.3.2) is invertible for l = 0, n.

It is also useful to have some additional equivalent reformulations of the Segal condition. Firstly, by (4.1.1.12) and Example 4.1.1.1, subsets in Δ_n correspond bijectively to left-closed subsets in the barycentric subdivision B([n]). For any l, $0 \le l \le n$, the subset $B([n])_l = \{S|S \cup \{l\} \ne [n]\} \subset B([n])$ is left-closed, and the corresponding subset $V_n^l \subset \Delta_n$ is known as the l-th horn, with the embedding map

$$(4.1.3.3) v_n^l: \mathsf{V}_n^l \to \Delta_n.$$

Note that the complement $\overline{B}([n])_l \subset B([n])$ to $B([n])_l$ is right-closed and consists of the two subsets $[n], [n] \setminus \{l\} \subset [n]$; it is therefore abstractly isomorphic to [1]. If l = 0 or l = n, we have

$$(4.1.3.4) V_n^0 \cong S_{n-1}^<, V_n^n \cong S_{n-1}^>, v_n^0 = \sigma_n^<, v_n^n = \sigma_n^>,$$

where σ_n is the sphere embedding (4.1.1.15), and $S_{n-1}^>$, $S_{n-1}^<$ are as in (4.1.2.9).

Secondly, for any map $\chi: J \to J'$ between partially ordered sets, the commaset J/J' is represented as the colimit of Lemma 3.1.8.2, and this induces a map

$$(4.1.3.5) a_{\chi} : \operatorname{colim}_{\mathsf{tw}(J')} N((J/J')_f) \to N(J/J')$$

of the corresponding nerves. The map is injective but not necessarily surjective. In particular, if J' = [1], J = [n] and $\chi : [n] \to [1]$ is the characteristic function of a left-closed embedding $s : [l] \to [n]$, (4.1.3.5) becomes the embedding

$$(4.1.3.6) a_n^l : \mathsf{C}(N(s)) \to N(\mathsf{C}(s))$$

whose source is the simplicial cylinder (4.1.2.8). With this notation, we have the following observation.

Lemma 4.1.3.1. Assume given a simplicial set X, and let W(X) be the class of maps in Δ^o Sets that are inverted by $\operatorname{Hom}(-,X)$. Then the following are equivalent: for any n>l>0, (i) $b_n^l\in W(X)$, (ii) $v_n^l\in W(X)$, (iii) $a_n^l\in W(X)$. Moreover, these conditions are equivalent to

(iv) for any map $\chi: J \to J'$ between partially ordered sets of finite chain dimension, the map a_{χ} of (4.1.3.5) is in W(X).

Proof. Note that by definition, the class W(X) is saturated and stable under pushouts and coproducts. To see that (ii) implies (i), take some integers n > l > 0. Then the source of the map (4.1.3.2) corresponds to the left-closed subset $B([n])^l \subset B([n])$ consising of subsets $S \subset B([n])$ that lie entirely in $s([l]) = \{0, \ldots, l\} \subset [n]$ or in $t([n-l]) = \{l, \ldots, n\} \subset [n]$. For any $d \geq k \geq 0$, let $A([n])^k_d \subset B([n])$ be the subset of $S \subset [n]$ such that $|S \cap \{0, \ldots, l-1\}| \leq k$ and $|S \cap ([n] \setminus \{l\})| \leq d$. Moreover, order pairs $\langle d, k \rangle$ lexicographically — that is, $\langle d, k \rangle \geq \langle d', k' \rangle$ iff d > d' or d = d' and $k \geq k'$ — and let

(4.1.3.7)
$$B([n])_{d}^{k} = B([n])^{l} \cup \bigcup_{\langle d', k' \rangle \le \langle d, k \rangle} A([n])_{d'}^{k'}$$

for any $d \ge k \ge 0$. Then $A([n])_0^0$ is empty, so that $B([n])_0^0 = B([n])^l$, and $A([n])_n^l = B([n])$, so that we obtain an increasing filtration

(4.1.3.8)
$$B([n])^{l} = B([n])^{0}_{0} \subset \cdots \subset B([n])^{l}_{n} = B([n])$$

where all the embeddings are moreover left-closed. For any $d \ge k \ge 0$, the complement $\overline{B}([n])_d^k \subset B([n])$ to the previous term in the filtration (4.1.3.8) is

right-closed and consists of subsets $S \subset [n]$ whose intersection with $\{0, \ldots, l-1\}$ resp. $\{l+1, \ldots, n\}$ contains exactly k resp. d-k elements. Therefore we have an isomorphism

$$(4.1.3.9) \overline{B}([n])_d^k \cong S(d,k) \times [1],$$

where S(d,k) is a discrete set whose elements are pairs of a subset in $\{0,\ldots,l-1\}$ of cardinality k and a subset in $\{l+1,\ldots,n\}$ of cardinality d-k, and $S\in \overline{B}([n])_d^k$ lies in $S(d,k)\times\{1\}$ or $S(d,k)\times\{0\}$ depending on whether it contains l or not. Moreover, any $S\in \overline{B}([n])_d^k$ that does contain l corresponds to a map $f_S:[d]\to[n]$ such that $B(f_S)$ sends the horn subset $B([d])_k\subset B([d])$ into the previous terms of the filtration (4.1.3.8), so that if we consider the corresponding filtration on Δ_n , each embedding is a pushout of a finite coproduct of maps v_d^k of (4.1.3.3). Therefore they are all in W(X), and so is their composition (4.1.3.2).

Moreover, one observes that the last embedding in (4.1.3.8) is actually the horn embedding $B([n])_l \subset B([n])$ on the nose, and all the previous ones are pushouts of horn embedding v_d^k with $\langle d, k \rangle < \langle n, l \rangle$. Since W(X) is saturated, this means that (i) implies (ii) by induction on $\langle n, l \rangle$.

Since $a_n^i = b_{n+1}^1$, (iii) implies (i) for l = 1, and then for any $n \ge l > 1$, we have a commutative square

$$\begin{array}{cccc} \Delta_1 \sqcup_{\Delta_0} \Delta_l \sqcup_{\Delta_0} \Delta_{n-l} & \xrightarrow{\operatorname{id} \sqcup v_n^l} & \Delta_1 \sqcup_{\Delta_0} \Delta_n \\ & v_l^1 \sqcup \operatorname{id} \Big\downarrow & & & \Big\downarrow v_{n+1}^1 \\ & & \Delta_{1+l} \sqcup_{\Delta_0} \Delta_{n-l} & \xrightarrow{v_{n+1}^l} & \Delta_{n+1}, \end{array}$$

so that (i) for l = 1 implies (i) for any l by induction. Moreover, (iv) trivially implies (iii), so to finish the proof, it remains to prove that (ii) implies (iv).

To do this, take a map $\chi: J \to J'$ in Pos, consider the barycentric subdivision B(J/J'), and let $B(J/J')' = \operatorname{colim}_{\operatorname{tw}(J')} B(F(\varphi)) \subset B(J/J')$. For any element in the complement $B(J/J') \setminus B(J/J')'$ represented by an injective map $i: [n] \to J/J'$, the left-closed subset $P(i) \subset [n]$ of (3.1.8.3) is non-empty by Remark 3.1.8.3, so that $P(i) = s([p_i])$ for some $p_i \geq 0$. The composition $\sigma \circ i: [n] \to J$ of the map i with $\sigma: J/J' \to J$ need not be injective, so the left-closed subset $K(i) = s([k_i]) \subset [n]$ given by $K(i) = \{l \in [n] | \sigma(i(l)) \leq \sigma(i(p_i))\}$ is possibly larger. However, by (3.1.8.3), we still have $\chi(\sigma(i(p_i))) \leq \tau(i(p_i)) < \chi(\sigma(i(n)))$, thus $\sigma(i(p_i)) < \sigma(i(n))$, and since $\sigma(i(p_i)) = \sigma(i(k_i))$, the largest element $n \in [n]$ is not in K(i), and $p_i \leq k_i < n$. Let $l_i = 1$ if $\tau(i(k_i)) < \tau(i(k_i + 1))$ and 0 otherwise, and note that since $\tau(i(k_i + 1)) \geq \tau(i(p_i + 1)) \geq \chi(i(n)) > \tau(i(p_i))$,

the latter is only possible when $k_i > p_i$, so that in any case, $k_i + l_i > 0$. Now for any $d \ge k \ge 0$, let $B(J/J')_d^k \subset B(J/J')$ be the left-closed subset obtained by taking B(J/J')' and adding all elements i such that $k_i + l_i \le k$ and $n + l_i \le d$. Then again, if we order the pairs $\langle d, k \rangle$ lexicographically, we obtain a filtration (4.1.3.8) on B(J/J'), finite since $J/J' \in Pos$, and the right-closed complement $\overline{B}(J/J')_d^k \subset B(J/J')_d^k$ consists of maps i such that $k_i + l_i = k$ and $n + l_i = d$. Such maps can only exist if d > k > 0, and the only possible order relation $i' \leq i$ between two of them occurs when $l_{i'} = 1$, $l_i = 0$, and $i'([d-1]) \subset B(I/I')$ is obtained by removing the element $i(k) \in i([d])$. This can be done for any i with $l_i = 0$, and conversely, the removed element $i(k) \in J/J'$ is represented by the arrow $\sigma(i(k-1)) \leq \tau(i(k+1))$, so it only depends on i', and i can be uniquely reconstructed from i'. We conclude that again, $\overline{B}(J/J')_d^k$ is of the form (4.1.3.9) for some discrete sets S(d,k), and when we consider the filtration on N(J/J')induced by (4.1.3.8), each successive map is again a pushout of a coproduct of horn embeddings (4.1.3.3) (specifically, $N(J/J')_d^k$ is obtained as a pushout of several copies of v_d^k , d > k > 0).

4.1.4. Nerves of groupoids. One can complement Lemma 4.1.3.1 by a similar characterization of nerves of small groupoids. Denote by Γ the category of finite non-empty sets $\{0,\ldots,n\}$, and denote by $\gamma:\Delta\to\Gamma$ the tautological functor sending [n] to itself without any order.

Lemma 4.1.4.1. Assume given a small category I with the nerve NI, and let W(I) be the class of injective maps $f: X_0 \to X_1$ of simplicial sets such that $\operatorname{Hom}(-, NI)$ inverts the corresponding map $f^>: X_0^> \to X_1^>$ of the simplicial sets (4.1.2.9). Then the following conditions are equivalent.

- (i) I is a groupoid.
- (ii) W(I) contains the sphere embedding $\sigma_1 : S_0 \to \Delta_1$.
- (iii) W(I) contains all dense injective maps $X' \to X$ between finite simplicial sets.
- (iv) There exists a functor $X : \Gamma^o \to \text{Sets}$ such that $\gamma^*(X) \cong NI$.

Proof. By (4.1.3.4), (ii) amounts to saying that Hom(-, NI) inverts v_2^2 , or explicitly, that for any maps $f_0: i_0 \to i$, $f_1: i_1 \to i$ in I, there exists a unique map $f: i_0 \to i_1$ such that $f_0 = f_1 \circ f$. This is equivalent to (i).

To see that (ii) implies (iii), note the functor $X \mapsto X^>$ preserves colimits, so that W(I) is saturated and closed with respect to pushouts. Then by induction

on the cardinality $|\operatorname{Red}(\Delta X)|$, to check (iii), it suffices to consider elemenary dense embeddings $X' \to X$, and by (4.1.1.16), it further suffices to consider sphere embeddings (4.1.1.15). Then again by induction, it suffices to consider the embeddings $\Delta_n([0]) \to \Delta_n$, and by the Segal condition for $N(I \setminus I_{\mathsf{Id}})$, this reduces to the case n = 1, that is, (ii).

To see that (iii) implies (iv), note that by the version of (2.2.5.2) for right Kan extensions, we have

$$\gamma^* \gamma_* NI([n]) \cong \operatorname{Hom}(Ne(\gamma([n]), NI), [n] \in \Delta,$$

and the adjunction map $NI \to \gamma^* \gamma_* NI$ evaluated at [n] is induced by the map $[n] = [n]^> \to e(\gamma([n])) \cong e(\gamma([n-1]))^>$.

Finally, (iii) trivially implies (ii), and to see that (iv) implies (iii), it suffices to check that $f^>$ for any dense embedding $f: X' \to X$ of finite simplicial sets is inverted by $\gamma_!$. By (2.2.5.2), this amounts to checking that it is inverted by $\operatorname{Hom}(-, \operatorname{Ne}(S))$ for any $S \in \Gamma$, and e(S) is a groupoid.

Corollary 4.1.4.2. For any small groupoid I with the nerve X = NI, the edgewise subdivision map (4.1.1.9) is an isomorphism.

Proof. For any [m], $[n] \in \Delta$, the morphism $[m] \times [n] \to [m] * [n]$ is a dense map of finite partially ordered sets that sends the largest element to the largest element; therefore by Lemma 4.1.4.1 (iii), $\operatorname{Hom}(-,X)$ inverts the corresponding map $N([m] \times [n]) \to N([m] * [n])$.

Lemma 4.1.4.3. Assume given a small category I with the nerve NI, and assume that NI admits a structure of a simplicial group. Then I is a groupoid.

Proof. This is a version of the standard Eckmann-Hilton argument claiming that a group object in the category of groups is an abelian group, and both group structures coincide. The assumption means that I is a group object in the category of small categories. In particular, its set of objects is a group, with some unit element $e \in I$, and I(e,e) is a monoid object in the category of groups, with the group unit $e' \in I(e,e)$. Then

$$e' = e' \cdot e' = (e' \circ id) \cdot (id \circ e') = (e' \cdot id) \circ (id \cdot e') = id \circ id = id$$

and $f \cdot g = (f \circ id) \cdot (id \circ g) = (f \circ e') \cdot (e' \circ g) = (f \cdot e') \circ (e' \cdot g) = f \circ g$ for any $f, g \in I(e, e)$, so that the monoid I(e, e) is a group. For any $i \in I$, group multiplication with $id_i : i \to i$ identifies the monoids I(e, e) and I(i, i), and then for any map $f : i \to i'$, we have a map $f' = id_{i'} \cdot f^{-1} \cdot id_i : i' \to i$ with invertible compositions $f' \circ f \in I(i, i)$, $f' \circ f \in I(i', i')$.

4.2. Segal categories.

4.2.1. Simplicial replacements. To make sense of nerves of categories that are not necessarily small, it is convenient to use the augmented categories of Subsection 2.1.2.

Definition 4.2.1.1. Assume given a category I and a closed class v of morphisms in I. The *simplicial expansion* $\Delta^v I$ of the category I with respect to the class v is given by

$$\Delta^{v}I = (\Delta //^{\varphi} I)_{\varphi^{*}\operatorname{Cat}(v)},$$

where $\varphi: \Delta \to \text{Cat}$ is the tautological embedding, and $//^{\varphi}$ is as in (2.1.4.12). The *simplicial replacement* $\Delta I = \Delta^{\text{Id}} I$ of a category I is its simplicial enhancement with respect to the class Id of all identity maps.

The notion of a simplicial replacement goes back to [BoK]. Explicitly, for any category I, an object $\langle [n], i_{\bullet} \rangle$ in ΔI is given by a chain (2.1.1.4) of length n in I — that is, a diagram

$$(4.2.1.1) i_0 \longrightarrow \ldots \longrightarrow i_n.$$

Objects in a simplicial expansion $\Delta^v I$ with respect to some class v are the same, but there are more morphisms between them. The forgetful functor $\pi:\Delta^v I\to\Delta$, $\langle [n],i_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}\rangle\mapsto [n]$ is a fibration; if $v=\operatorname{Id}$, its fibers are discrete. The transpose cofibration

$$(4.2.1.2) \Delta^{v}_{\perp} I = (\Delta^{v} I)_{\perp} \to \Delta^{o}$$

is called the *cosimplicial expansion* of the category I with respect to the class v. Note that we have a tautological equivalence

$$(4.2.1.3) \iota^*(\Delta^v_{\perp} I)^o \cong \Delta^{v^o} I^o,$$

where ι is the involution (4.1.1.1), and v^o is opposite to v. If $v=\operatorname{id}$, this reads as $\Delta_{\perp}I\cong(\Delta I)^o\cong\iota^*\Delta I^o$. If I is small, then $\Delta I=\Delta NI$ and π corresponds to $NI\in\Delta^o$ Sets by the Grothendieck construction — so that in particular, $\Delta[n]\cong\Delta/[n]$ for any $[n]\in\Delta$ — but ΔI is perfectly well defined for an arbitrary I. If $v=\natural$ is the class of all maps in I, then by (2.4.1.9), we have

$$\Delta^{\natural} I \cong \operatorname{Fun}(\Delta_{\bullet} | \Delta, I),$$

where as in Example 2.3.3.9 and (3.1.1.1),

$$(4.2.1.5) v_{\bullet}: \Delta_{\bullet} = \varphi^* \operatorname{Cat}_{\bullet} \to \Delta$$

is the tautological cofibration whose fiber over some $[n] \in \Delta$ is [n] itself (alternatively, Δ , is the category of pairs $\langle [n], l \rangle$, $[n] \in \Delta$, $l \in [n]$, with maps $\langle [n], l \rangle \to \langle [n'], l' \rangle$ given by maps $f : [n] \to [n']$ such that $f(l) \leq l'$). By (2.4.3.12), the expansion $\Delta^v I$ for some other closed class v fits into a cartesian square

$$\begin{array}{ccc}
\Delta^{v}I & \longrightarrow & \Delta^{\natural}I \\
\downarrow & & \downarrow \\
\varepsilon_{*}I_{v} & \longrightarrow & \varepsilon_{*}I,
\end{array}$$

where $\varepsilon = \varepsilon([0])$: pt $\to \Delta$ is the embedding (2.1.1.2) onto $[0] \in \Delta$.

The projection (4.2.1.5) has a fully faithful right-adjoint $\nu^{\dagger}: \Delta \to \Delta^{\bullet}$ sending [n] to $\langle [n], n \rangle$, and this in turn has a right-adjoint $\nu_{<}: \Delta^{\bullet} \to \Delta$ sending $\langle [n], l \rangle$ to [l] (this is the restriction of (3.1.1.2) to $\Delta \subset \text{PoSets}$). Then the relative evaluation functor (2.4.1.11) for (4.2.1.4) induces a functor

$$(4.2.1.7) \xi = \operatorname{ev} \circ (\nu^{\dagger} \times \operatorname{id}) : \Delta^{v} I \to I,$$

and conversely, we have $ev \cong \xi \circ (\nu_< \times id)$, so that the functor ev can be recovered from the functor ξ . Explicitly, ξ sends a diagram (4.2.1.1) to $i_n \in I$. The comma-fibers of the functor (4.2.1.7) are given by

$$(4.2.1.8) (\Delta I)/_{\tilde{c}}i \cong \Delta(I/i), i \in I,$$

so that if I is locally small, (4.2.1.7) is bounded. We also have its transpose version

$$(4.2.1.9) \xi_{\perp}: \Delta^{v}_{\perp} I \to I$$

sending (4.2.1.1) to i_0 . If $v = \natural$ is the class of all maps in I, then $I \cong (\Delta^{\natural}I)_{[0]}$, and the functor (2.4.3.14) of Example 2.4.3.7 provides a section

$$(4.2.1.10) r: \Delta \times I \to \Delta^{\natural} I$$

of the projection $\pi \times \xi : \Delta^{\natural}I \to \Delta \times I$. If I = J is a partially ordered set and $v = \mathsf{Id}$, then we have the identification (4.1.2.6), and the maps (3.1.4.1) are then identified with the reductions of the functors (4.2.1.7) and (4.2.1.9).

It is also useful to consider the case $I = \Delta$. Then by (4.2.1.4), $\nu_{<}$ induces a functor

$$(4.2.1.11) \delta: \Delta \to \operatorname{Fun}(\Delta^{\bullet}|\Delta, \Delta) \cong \Delta^{\natural}\Delta,$$

and since v^{\dagger} is fully faithful, we have the isomorphisms $v_{\bullet} \circ v^{\dagger} \cong v_{<} \circ v^{\dagger} \cong id$ that induce isomorphisms $\pi \circ \delta \cong \xi \circ \delta \cong id$, so that δ is a common section of the structural fibration $\pi : \Delta^{\natural} \Delta \to \Delta$ and the functor (4.2.1.7).

Example 4.2.1.2. For an application of simplicial expansions with respect to a non-trivial closed class of maps, assume given a functor $\gamma:I_1\to I_0$, with the dual cylinder $I=\mathsf{C}^o(\gamma)$ and the fibration $\chi:I\to[1]$. Then we have a canonical cleavage of the fibration χ , that is, a choice of a cartesian lifting $\gamma(i)\to i$ of the unique map $0\to 1$ in [1] for any $i\in I_0\subset I$. Adding the identity maps to these unique cartesian liftings defines a closed class c of maps in I, and we have the projection

$$(4.2.1.12) \Delta(\chi): \Delta^c I \to \Delta^{\natural}[1],$$

In general, it is not so easy to characterize fibrations over arbitrary bases I in terms of simplicial replacements, but there is an easy way to do it for families of groupoids. Say that a family of groupoids $\pi: \mathcal{C} \to I$ is *classical* if it is a classical fibration in the sense of Subsection 2.3.1 (recall that it suffices to assume that π is an isofibration to insure this property, and that for any family of groupoids $\mathcal{C} \to I$, the equivalent family $I \times_I \mathcal{C} \to I$ is already classical).

Lemma 4.2.1.3. A functor $\gamma: \mathcal{C} \to I$ between two categories \mathcal{C} , I is a classical family of groupoids if and only if the corresponding functor (2.3.1.1) is fully faithful, and its simplicial replacement $\Delta(\pi \setminus id)$ is essentially surjective.

Proof. The "if" part is clear: if $\Delta(\pi \setminus id)$ is essentially surjective, $\pi \setminus id$ itself is essentially surjective, and then we are done by Lemma 2.3.4.6. Conversely, if π is a family of groupoids, then $\pi \setminus id$ is fully faithful by Lemma 2.3.4.6, and by the very definition of a classical fibration, $\Delta(\pi \setminus id)$ is essentially surjective over $[0] \in \Delta$. Then by the Segal property of simplicial replacements, it is essentially surjective over the whole Δ .

We note that in the situation of Lemma 4.2.1.3, the simplicial replacements $\Delta(\mathcal{C} \setminus_{\mathsf{id}} \mathcal{C})$, $\Delta(I \setminus_{\pi} \mathcal{C})$, $\Delta(\pi \setminus \mathsf{id})$ are easily constructed directly from the simplicial replacements $\Delta\mathcal{C}$, ΔI , $\Delta(\pi):\Delta\mathcal{C}\to\Delta I$, by the same procedures as in Subsection 4.1.1. Moreover, the condition that (2.3.1.1) is fully faithful can again be checked purely in terms of its simplicial replacement. Thus Lemma 4.2.1.3

indeed gives an explicit description of classical families of groupoids in terms of their simplicial replacements. An analogous simplification occurs for essentially surjective functors. In general, a functor $\gamma: \mathcal{C} \to \mathcal{C}'$ can be essentially surjective even if its simplicial replacement $\Delta(\gamma)$ is not; however if \mathcal{C} and \mathcal{C}' are groupoids, then γ is essentially surjective if and only if so so is the projection $\Delta(\sigma): \Delta(\mathcal{C}'\setminus_{\gamma}\mathcal{C}) \to \Delta\mathcal{C}'$. The same holds if \mathcal{C} , \mathcal{C}' are families of groupoids over some I, and γ is a functor over I. In the latter case, one can also replace $\mathcal{C}'\setminus_{\gamma}\mathcal{C}$ with its relative version $\mathcal{C}'\setminus_{\gamma}^{I}\mathcal{C}$ of (2.2.4.11).

Alternatively, one can also characterize simplicial replacements of classical families of groupoids in terms of horn embeddings (4.1.3.3). Namely, say that a map $f: X \to X'$ of simplicial sets is *liftable* with respect to a functor $\pi: \mathcal{C} \to I$ if for any commutative diagram

(4.2.1.13)
$$\Delta X \xrightarrow{g} \Delta C$$

$$\Delta(f) \downarrow \qquad \qquad \downarrow \Delta(\pi)$$

$$\Delta X' \xrightarrow{g'} \Delta I$$

of categories and functors over Δ , there exists a functor $q: \Delta X' \to \Delta C$ over Δ such that $g \cong q \circ \Delta(f)$ and $\Delta(\pi) \circ q \cong g'$, and say that a liftable f is *uniquely liftable* if such a functor g is unique.

Lemma 4.2.1.4. A functor $\pi: \mathcal{C} \to I$ is a classical family of groupoids if and only if the horn embedding v_n^n is liftable with respect to π for n=1,2 and uniquely liftable for n=2. Moreover, in this case, for any dense embedding $f: X_0 \to X_1$ of simplicial sets, the maps $f_{\dagger} = (\operatorname{id} \times f) \sqcup \operatorname{id} : \mathsf{C}(f) \to \Delta_1 \times X_1$ and $f^{>}: X_0^{>} \to X_1^{>}$ are uniquely liftable with respect to π .

Proof. For the first claim, note that liftability for v_1^1 means that $\pi \setminus \text{id}$ is essentially surjective, so that for any $c \in \mathcal{C}$ and $f: i \to \pi(c)$, there exists a lifting $f': c' \to c$, $\pi(f') = f$, and then unique liftability for v_2^2 means that every map in \mathcal{C} is cartesian with respect to π . For the second claim, note that the class of maps $f: X \to X'$ such that $f^>$ and f^+ are uniquely liftable with respect to π is saturated and closed under pushouts, and use the same induction as in Lemma 4.1.4.1 to reduce everything to the case $X_0 = S_0$, $X_1 = \Delta_1$, f the sphere embedding (4.1.1.15). Then $f^> = v_2^2$, and f_+ is a composition of pushouts of v_2^2 and v_2^1 . \square

4.2.2. Special maps. Another way to produce the cofibration (4.2.1.5) is to use a factorization system on Δ , as in Lemma 2.3.3.26 (ii). Namely, say that a map f

in Δ is *special* if it is left-reflexive in the sense of Definition 3.1.3.1, and denote the class of special maps by +, with the corresponding dense subcategory $\Delta_+ \subset \Delta$. Note that if f is left-reflexive, then the adjoint map f_+ is tautologically right-reflexive, so that we have a natural equivalence

$$(4.2.2.1) \Delta_{+} \cong \Delta_{+}^{o}, [n] \mapsto [n]^{o}, f \mapsto f_{+}^{o}$$

(this is a part of the so-called *Joyal duality*). Explicitly, by Example 3.1.3.6, $f:[n] \to [n']$ is special if and only if f(n) = n'. Then the class + fits into a factorization system $\langle +, s \rangle$ on Δ , with s consisting of the left-closed embeddings $s:[n] \to [n']$, $n \le n'$ of Example 3.1.2.3. The corresponding full subcategory $\operatorname{ar}^s(\Delta) \subset \operatorname{ar}(\Delta)$ is then naturally identified with Δ , and the functor $v^{\dagger} \cong \eta: \Delta \to \operatorname{ar}^s(\Delta) \cong \Delta$, and its adjoints $v_{<} \cong \sigma, v_{*} \cong \tau: \operatorname{ar}^s(\Delta) \to \Delta$ correspond to the functors σ, τ, η of Example 2.2.3.2.

Among other things, this interpretation of the cofibration ν , shows that the functor δ of (4.2.1.11) is actually a functor

$$\delta: \Delta \to \Delta^+ \Delta \subset \Delta^{\natural} \Delta$$

from Δ to its simplicial expansion $\Delta^+\Delta$ with respect to the class of special maps. Another observation is that for any category *I*, Example 2.4.3.4 provides an identification

$$(4.2.2.3) \Delta^{\natural} I \cong \mathsf{Ind}^+(\Delta \times I),$$

where Ind⁺ is the induction of Subsection 2.4.2 with respect to the class of special maps, while the functor α of Corollary 2.4.2.1 is given by

$$(4.2.2.4) \alpha = \pi \times \xi : \mathsf{Ind}^+(\Delta \times I) \cong \Delta^{\natural}I \to \Delta \times I,$$

where $\pi: \Delta^{\natural}I \to \Delta$ is the structural fibration, and ξ is the functor (4.2.1.7). Since $\Delta \times I \to \Delta$ is already a fibration, α admits a fully faithful right-adjoint functor

$$(4.2.2.5) \beta: \Delta \times I \to \Delta^{\natural} I$$

of Example 2.4.3.3 that coincides with r of (4.2.1.10). Explicitly, β sends some $[n] \times i \in \Delta \times I$ to the diagram (4.2.1.1) with $i_0 = \cdots = i_n = i$, and all the maps equal to id_i . Using the functor (4.2.2.5), one can construct the following relative version of simplicial expansions.

Definition 4.2.2.1. The *relative simplicial expansion* $\Delta^v(C|I)$ of a fibration $\pi: C \to I$ with respect to a closed class v of maps in C is given by the cartesian square

(4.2.2.6)
$$\Delta^{v}(C|I) \longrightarrow \Delta^{v}C$$

$$\downarrow \qquad \qquad \downarrow^{\Delta(\pi)}$$

$$\Delta \times I \stackrel{\beta}{\longrightarrow} \Delta^{\natural}I,$$

where β is the functor (4.2.2.5).

Explicitly, $\Delta^v(\mathcal{C}|I) \subset \Delta^v(\mathcal{C})$ is the full subcategory spanned by functors $c_{\cdot}: [n] \to \mathcal{C}$ that factor through $\mathcal{C}_{\pi^* \operatorname{Id}}$ (or in other words, functors such that $\pi \circ c_{\cdot}$ factors through the projection $[n] \to [0]$). As soon as v contains all maps in \mathcal{C} cartesian over I, the restriction $\mathcal{C}_v \to I$ of the fibration π is also a fibration, with the same transition functors f^* , and $\Delta^v(\mathcal{C}|I) \to I$ is then a fibration with fibers $\Delta^v(\mathcal{C}_i)$, $i \in I$, and transition functors $\Delta(f^*)$.

Now assume given a category I with a dense subcategory $I_v \subset I$ defined by some class v. Say that a map f in the simplicial expansion $\Delta^v I$ is *special* if it is cartesian with respect to the projection $\pi: \Delta^v I \to \Delta$, and $\pi(f)$ is special in Δ . Note that by Lemma 2.3.3.26 (i), the class $\pi^\flat(+)$ of special maps fit into a factorization system $\langle \pi^\flat(+), \pi^*(s) \rangle$ on $\Delta^v I$ induced by the factorization system $\langle +, s \rangle$ on Δ , and by definition, the functor (4.2.1.7) inverts all special maps in $\Delta^v I$. Say that a fibration $\mathcal{C} \to \Delta^v I$ is *special* if it is constant along all special maps.

Remark 4.2.2.2. If J is a partially ordered set, then the factorization system $\langle \pi^{\flat}(+), \pi^*(s) \rangle$ on ΔJ restricts to the biorder of Example 3.2.2.6 on $BJ = \overline{\Delta}J \subset \Delta J$.

Proposition 4.2.2.3. Any special fibration C over $\Delta^v I$ is bounded with respect to the functor ξ of (4.2.1.7), and the functor $\xi^* \xi_* C \to C$ of (2.4.3.3) is an equivalence. Conversely, for any fibration C over I, the pullback $\xi^* C$ is special, thus bounded with respect to ξ , and $C \to \xi_* \xi^* C$ is an equivalence.

In order to prove this, we need some combinatorial preliminaries. Denote by $\rho: \Delta_+ \to \Delta$ the embedding, and consider the fibration $\rho^* \Delta^v I \to \Delta_+$. Since $[0] \in \Delta_+$ is initial, the embedding $I_v \cong (\Delta^v I)_{[0]} \to [0] \setminus \rho^* \Delta^v I \cong \rho^* \Delta^v I$ admits right-adjoint functor $\rho^* \Delta^v I \to I_v$. Let $\Delta^v_+ I = \rho^* \Delta^v I \times_{I_v} I_{\text{ld}}$, with the embedding $\rho_I: \Delta^v_+ I \to \rho^* \Delta^v I \to \Delta^v I$. Then we also have the projection $\Delta^v_+ I \to I_{\text{ld}}$, or equivalently, a decomposition

$$(4.2.2.7) \Delta^v_+ I \cong \coprod_{i \in I} (\Delta^v_+ I)_i,$$

where $(\Delta_+^v I)_i$ is the category of objects $\langle [n], i_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \rangle \in \Delta^v I$ equipped with a special map $\langle [0], i \rangle \to \langle [n], i_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \rangle$ (up to an equivalence, $(\Delta_+^v I)_i$ is the subcategory in $\Delta_+^v I$ spanned by diagrams (4.2.1.1) with $i_n = i$ and maps between them whose i_n -component is the identity map). The embedding ρ_I restricts to an embedding $\rho_i : (\Delta_+^v I)_i \to \Delta^v I$. Moreover, the functor $\rho : \Delta_+ \to \Delta$ has a left-adjoint $\lambda : \Delta \to \Delta_+$, $[n] \mapsto [n]^>$, and for any $i \in I$, we can consider the category $(\Delta_+^v I)_i = \lambda^* (\Delta_+^v I)_i$ with the embedding $\lambda_i : (\Delta_+^v I)_i \to (\Delta_+^v I)_i$. The adjunction map $a : \mathrm{id} \to \rho \circ \lambda$ then induces a functor $v_i = a^* : (\Delta_+^v I)_i \to \Delta^v I$; explicitly, v is the forgetful functor that takes a diagram (4.2.1.1) and removes the last term i_n . The functor λ_i has a right-adjoint $\overline{\rho}_i : (\Delta_+^v I)_i \to (\Delta_+^v I)_i$, and we have $v_i \circ \overline{\rho}_i \cong \rho_i$. On the other hand, the adjunction map $a : \mathrm{id} \to \lambda \circ \rho$ lifts to a natural map $\alpha_i : v_i \to \rho_i \circ \lambda_i$.

Lemma 4.2.2.4. For any $i \in I$ and any special fibration C over ΔI , the fibrations v_i^*C resp. ρ_i^*C are bounded over $(\Delta_+^v I)_i$ resp. $(\Delta_+^v I)_i$, and the functors

$$\alpha_{i}^{*} \circ \lambda_{i}^{*} : \operatorname{Sec}^{\natural}((\Delta_{+}^{v}I)_{i}, \rho_{i}^{*}\mathcal{C}) \to \operatorname{Sec}^{\natural}((\Delta_{+}^{v}I)_{i}, \nu_{i}^{*}\mathcal{C}),$$

$$\overline{\rho}_{i}^{*} : \operatorname{Sec}^{\natural}((\Delta_{+}^{v}I)_{i}, \nu_{i}^{*}\mathcal{C}) \to \operatorname{Sec}^{\natural}((\Delta_{+}^{v}I)_{i}, \overline{\rho}_{i}^{*}\nu_{i}^{*}\mathcal{C}) \cong \operatorname{Sec}^{\natural}((\Delta_{+}^{v}I)_{i}, \rho_{i}^{*}\mathcal{C})$$

are mutually inverse equivalences of categories.

Proof. The functor ρ_i sends all maps to special maps, so that for any special fibration $\mathcal{C} \to \Delta^v I$, the fibration $\rho_i^* \mathcal{C} \to (\Delta_+^v I)_i$ is constant, and the functor (2.4.3.14) provides an equivalence $\rho_i^* \mathcal{C} \cong (\Delta_+^v I)_i \times \mathcal{C}_{\langle [0],i \rangle}$. Therefore $\rho_i^* \mathcal{C}$ is bounded, and we have

(4.2.2.8)
$$\operatorname{Sec}^{\natural}((\Delta_{+}^{v}I)_{i}, \rho_{i}^{*}\mathcal{C}) \cong \mathcal{C}_{\langle [0], i \rangle},$$

while $\overline{\rho}_i^*\alpha_i^*\lambda_i^*\cong \operatorname{id}$ on $\operatorname{Sec}^{\natural}((\Delta_+^vI)_i,\rho_i^*\mathcal{C})$. Conversely, for any given section $\sigma:(\Delta_+^vI)_i\to\nu_i^*\mathcal{C}$, the map α_i induces a natural map $\sigma\to\alpha_i^*\lambda_i^*\overline{\rho}_i^*\sigma$, and if σ is cartesian, this map is an isomorphism. Therefore $\nu_i^*\mathcal{C}$ is bounded, and we have $\alpha_i^*\lambda_i^*\overline{\rho}_i^*\cong \operatorname{id}$ on $\operatorname{Sec}^{\natural}((\Delta_+^vI)_i,\nu_i^*\mathcal{C})$.

Proof of Proposition 4.2.2.3. For any $i \in I$, the left comma-fiber $\Delta^v I/i$ of the functor (4.2.1.7) is identified with the category $(\Delta_{\dagger}^v I)_i$ of Lemma 4.2.2.4, and ν_i corresponds to the forgetful functor $\sigma(i)$ of (2.1.2.3). Therefore any special fibration \mathcal{C} over $\Delta^v I$ is bounded with respect to ξ . Then the functor $\mathcal{C} \to \xi^* \xi_* \mathcal{C}$ of (2.4.3.3) is an equivalence by Lemma 4.2.2.4 and (4.2.2.8). Conversely, the functor ξ sends inverts special maps, so that for any fibration \mathcal{C} over I, $\xi^* \mathcal{C}$ is special. We then have the functor $\mathcal{C} \to \xi_* \xi^* \mathcal{C}$ of (2.4.3.3), and this is again an equivalence by Lemma 4.2.2.4 and (4.2.2.8).

4.2.3. Segal categories and Segal functors. We now observe that the Segal condition of Subsection 4.1.3 can be applied to fibrations over Δ as well as to simplicial sets. The formal definition is as follows.

Definition 4.2.3.1. A *Segal category* is a fibration $\mathcal{C} \to \Delta$ that is cartesian along the square (3.1.7.9) for any n > l > 0. A *Segal functor* $\gamma : \mathcal{C}' \to \mathcal{C}$ between two fibrations $\mathcal{C}', \mathcal{C} \to \Delta$ is a functor cartesian over Δ . A *Segal fibration* \mathcal{C}' over a Segal category \mathcal{C} is a fibration $\mathcal{C}' \to \mathcal{C}$ such that the composition $\mathcal{C}' \to \mathcal{C} \to \Delta$ turns \mathcal{C}' into a Segal category.

Example 4.2.3.2. For any category I and class of morphisms v in I, the simplicial expansion $\Delta^v I \to \Delta$ is a Segal category. The product $I \times \Delta \to \Delta$ is a Segal category as well.

Example 4.2.3.3. For any Segal functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ and Segal fibration $\mathcal{C}_1' \to \mathcal{C}_1$, the pullback $\mathcal{C}_0' = \gamma^* \mathcal{C}_1 \to \mathcal{C}_0$ is obviously a Segal fibration.

Example 4.2.3.4. Since the involution $\iota: \Delta \to \Delta$, $[n] \mapsto [n]^o$ sends a square (3.1.7.9) to a square of the same form, $\iota^*\mathcal{C}$ is a Segal category for any Segal category \mathcal{C} . We call it the 1-opposite Segal category to \mathcal{C} and denote by \mathcal{C}^ι . The fibration $\mathcal{C}^o_{\perp} \to \Delta$ is also a Segal category; we call it the 2-opposite Segal category to \mathcal{C} and denote by \mathcal{C}^τ . The (1,2)-opposite Segal category \mathcal{C}^σ is $\mathcal{C}^\sigma = (\mathcal{C}^\tau)^\iota = \iota^*\mathcal{C}^o_{\perp}$. In the situation of Example 4.2.3.2, we have $(\Delta I)^\iota \cong (\Delta I)^\sigma \cong \Delta I^o$, $(\Delta I)^\tau \cong \Delta I$ and $(I \times \Delta)^\iota \cong I \times \Delta$, $(I \times \Delta)^\tau \cong (I \times \Delta)^\sigma \cong I^o \times \Delta$.

Example 4.2.3.5. A Segal category with discrete $\mathcal{C}_{[0]}$ gives a convenient packaging of the usual notion of a 2-category (a.k.a. "weak 2-category", a.k.a. "bicategory"). Explicitly, $\mathcal{C}_{[0]}$ consists of all the objects of the 2-category, $\mathcal{C}_{[1]}$ is the disjoint union of all of its categories of 1-morphisms, s^* , t^* : $\mathcal{C}_{[1]} \to \mathcal{C}_{[0]}$ send a 1-morphism to its source resp. target, the identity morphisms are provided by the functor

(4.2.3.1)
$$e^*: \mathcal{C}_{[0]} \to \mathcal{C}_{[1]},$$

where as in (4.1.2.4), $e:[1] \to [0]$ is the unique projection, and the composition is given by

$$(4.2.3.2) m^*: \mathcal{C}_{[1]} \times_{\mathcal{C}_{[0]}} \mathcal{C}_{[1]} \cong \mathcal{C}_{[2]} \to \mathcal{C}_{[1]},$$

where as in (4.1.2.3), $m:[1] \to [2]$ sends 0 to 0 and 1 to 2. All the higher associativity constraints are encoded in the maps (2.3.2.2) for the fibration $\mathcal{C} \to \Delta$; for more details on this, see e.g. [K2].

In practice, requiring that $\mathcal{C}_{[0]}$ is discrete is on one hand, rather incovenient, and on the other hand, not really needed for anything: one can treat a general Segal category as a basic 2-categorical object, and introduce appropriate versions of the basic categorical constructions and notions. For example, every cartesian functor $\gamma:\mathcal{C}\to\mathcal{C}'$ between fibrations $\mathcal{C},\mathcal{C}'\to\Delta$ induces a commutative square of categories

$$\begin{array}{ccc} \mathcal{C}_{[1]} & \xrightarrow{\gamma_{[1]}} & \mathcal{C}'_{[1]} \\ \\ s^* \times t^* \Big\downarrow & & \Big\downarrow s^* \times t^* \\ \mathcal{C}_{[0]} \times \mathcal{C}_{[0]} & \xrightarrow{\gamma_{[0]} \times \gamma_{[0]}} & \mathcal{C}'_{[0]} \times \mathcal{C}'_{[0]}, \end{array}$$

a 2-categorical version of the square (4.1.2.7). If γ is a Segal functor between Segal categories, then informally, the fibers of the vertical projections are the categories of morphisms in \mathcal{C} , resp. \mathcal{C}' .

Definition 4.2.3.6. A cartesian functor $\gamma:\mathcal{C}\to\mathcal{C}'$ between two fibrations $\mathcal{C},\mathcal{C}'\to\Delta$ is 2-fully faithful resp. 2-full resp. 1-full if the square (4.2.3.3) is cartesian resp. semicartesian resp. weakly semicartesian. A full subcategory $\mathcal{C}\subset\mathcal{C}'$ in a Segal category \mathcal{C} is 2-full if the embedding functor $\mathcal{C}\to\mathcal{C}'$ is 2-fully faithful.

Lemma 4.2.3.7. Let $\varepsilon = \varepsilon([0])$: pt $\to \Delta$ be the embedding (2.1.1.2) onto $[0] \in \Delta$. Then a Segal functor $\gamma : \mathcal{C} \to \mathcal{C}'$ is 2-fully faithful if and only if the square

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\gamma} & \mathcal{C}' \\
\downarrow a \downarrow & & \downarrow a' \\
\varepsilon_* \varepsilon^* \mathcal{C} & \xrightarrow{\varepsilon_* \varepsilon^* (\gamma)} & \varepsilon_* \varepsilon^* \mathcal{C}'
\end{array}$$

is cartesian.

Proof. By the Segal condition, it suffices to check that (4.2.3.4) is cartesian over [0] and [1]. Over [0], the adjuniction functors a, a' are equivalences, so (4.2.3.4) is tautologically cartesian, and over [1], (4.2.3.4) is exactly the square (4.2.3.3). \square

Example 4.2.3.8. For any Segal category \mathcal{C} and closed classes of maps $v_0 \subset v_1$ in $\mathcal{C}_{[0]}$, the embedding $\varepsilon_*\mathcal{C}_{[0],v_0} \to \varepsilon_*\mathcal{C}_{[0],v_1}$ is trivially 2-fully faithful in the sense of Definition 4.2.3.6, and then so is the Segal functor (4.2.4.9). Both are also tautologically essentially surjective.

The classes of 1-full, 2-full and 2-fully faithful Segal functors are obviously closed under compositions and preserved by pullbacks with respect to Segal functors. By the Segal condition, a 2-fully faithful Segal functor $\gamma: \mathcal{C} \to \mathcal{C}'$ is an equivalence iff it is an equivalence over $[0] \in \Delta$, and if γ is only 2-full, then it is essentially surjective resp. an epivalence iff it is essentially surjective resp. an epivalence over [0]. We also have the following corollary of Lemma 2.3.3.6.

Lemma 4.2.3.9. Assume given fibrations $C, C' \to [1]^2 \times \Delta$ that are cartesian over $[1]^2$, and a functor $\varphi : C' \to C$ cartesian over $[1]^2 \times \Delta$ that is 1-full over 0×1 , 1×0 and 2-full over 0×0 . Then φ is 1-full. Moreover, if φ is 2-full over 0×1 , 1×0 and 2-fully faithful over 0×0 , then φ is 2-full.

Proof. Define a category $C'(\varphi)$ by the cartesian product

$$\begin{array}{ccc} \mathcal{C}'(\varphi) & \longrightarrow & \mathcal{C}_{[1]} \\ \downarrow & & \downarrow s^* \times t^* \\ \mathcal{C}'_{[0]} \times \mathcal{C}'_{[0]} & \xrightarrow{\varphi_{[0]} \times \varphi_{[0]}} & \mathcal{C}_{[0]} \times \mathcal{C}_{[0]}. \end{array}$$

Then $\mathcal{C}'(\varphi)$ is cartesian over $[1]^2$, $\varphi_{[1]}:\mathcal{C}'_{[1]}\to\mathcal{C}_{[1]}$ factors through a functor $\varphi':\mathcal{C}'_{[1]}\to\mathcal{C}'(\varphi)$, and to prove the claim, it suffices to apply Lemma 2.3.3.6 to the functor φ' .

Definition 4.2.3.10. A 2-family of groupoids over a category I is a Segal fibration $C \to \Delta \times I$ whose fibers are groupoids.

For any 2-family of groupoids C over I, let $\varepsilon = \varepsilon_{[0]} \times id : I \to \Delta \times I$ be the embedding onto $\{[0]\} \times I \subset \Delta \times I$. Then (2.4.3.3) provides a functor

$$(4.2.3.5) C \to \varepsilon_* \varepsilon^* C.$$

We say that C is *reduced* if (4.2.3.5) is a discrete fibration, and define the *reduction*

(4.2.3.6)
$$\mathcal{C}^{red} = \pi_0(\mathcal{C}|\varepsilon_*\varepsilon^*\mathcal{C})$$

of C as the middle term of the factorization (2.3.4.1) of the functor (4.2.3.5). By Lemma 2.3.4.9, C^{red} is also a 2-family of groupoids over I, and it is tautologically reduced.

Definition 4.2.3.11. A 2-family of groupoids C over a category I is *bounded* if the fibration (4.2.3.5) has essentially small fibers.

Example 4.2.3.12. For any category \mathcal{C} , its simplicial expansion $\Delta^*\mathcal{C}$ with respect to the class \star of all isomorphisms, equipped with the forgetful functor $\Delta^*\mathcal{C} \to \Delta$, is a reduced bounded 2-family of groupoids over the point. We have $\Delta^*\mathcal{C} \cong \mathcal{C} \times \Delta$ if and only if \mathcal{C} is a groupoid. More generally, for any fibration $\pi: \mathcal{C} \to I$, let $\flat = \pi^{\flat}(\natural)$ be the class of maps in \mathcal{C} cartesian over I. Then the relative simplicial expansion $\Delta^{\flat}(\mathcal{C}|I)$ is a reduced 2-family of groupoids over I, and it is equivalent to $\mathcal{C} \times \Delta$ if and only if $\mathcal{C} \to I$ is a family of groupoids.

Example 4.2.3.13. A 2-category \mathcal{C} in the sense of Example 4.2.3.5 is a 2-family of groupoids over a point if and only if all its 2-morphisms are invertible (nowadays, this is sometimes called a (1,2)-category). For any 2-category \mathcal{C} , we can consider the dense subcategory $\mathcal{C}_c \subset \mathcal{C}$ defined by the class c of maps cartesian over Δ ; this is the (1,2)-category obtained by forgetting all non-invertible 2-morphisms. The reduction $\mathcal{C}^{red} \to \Delta$ of a (1,2)-category \mathcal{C} is a discrete fibration. If \mathcal{C} is bounded, then its groupoids of morphisms are essentially small, and $\mathcal{C}^{red} \cong \Delta \overline{\mathcal{C}}$ is the simplicial replacement of the *truncation* $\overline{\mathcal{C}}$ of the 2-category \mathcal{C} — namely, the category with the same objects, and with maps given by isomorphism classes of 1-morphisms in \mathcal{C} .

4.2.4. Special functors. By Example 4.2.3.2, every category I produces two Segal categories: the product $I \times \Delta$, and the simplicial expansion ΔI . We also have a natural functor

$$(4.2.4.1) \alpha = \xi \times \pi : \Delta I \to I \times \Delta$$

induced by (4.2.2.4). However, (4.2.4.1) is not a Segal functor: it is a functor over Δ that is only cartesian over $\Delta_+ \subset \Delta$ (that is, over special maps in Δ in the sense of Subsection 4.2.2). It will prove useful to axiomatize the situation.

Definition 4.2.4.1. A map in a fibration $\mathcal{C} \to \Delta$ is *special* if it is a cartesian lifting of a special map in Δ A *special functor* between fibrations $\mathcal{C}, \mathcal{C}' \to \Delta$ is a functor $\gamma : \mathcal{C} \to \mathcal{C}'$ over Δ that is cartesian over $\Delta_+ \subset \Delta$ (that is, sends special maps to special maps).

Definition 4.2.4.2. The 2-simplicial expansion $\Delta^{\natural}(\mathcal{C}\|\Delta)$ of an arbitrary fibration $\mathcal{C} \to \Delta$ is given by

$$\Delta^{\natural}(\mathcal{C}\|\Delta) = \mathsf{Ind}^+(\mathcal{C}),$$

where Ind⁺ is the induction of Subsection 2.4.2 with respect to the class of special maps. The *universal special functor* is the functor

$$(4.2.4.2) \alpha: \Delta^{\natural}(\mathcal{C}||\Delta) \to \mathcal{C}$$

induced by (2.4.2.6).

Example 4.2.4.3. By (4.2.2.3), for any category I, we have a natural identification $\Delta^{\natural}(I \times \Delta \| \Delta) = \Delta^{\natural}I$. The universal special functor (4.2.4.2) is $\alpha = \pi \times \xi$, where $\pi : \Delta^{\natural}I \to \Delta$ is the structural fibration, and ξ is the functor (4.2.1.7).

One can also describe 2-simplicial expansion in a way similar to Definition 4.2.2.1 but with (4.2.2.5) replaced with (4.2.1.11). Namely, for any fibration $\mathcal{C} \to \Delta$, we have a cartesian square

$$\begin{array}{ccc}
\Delta^{\natural}(\mathcal{C}\|\Delta) & \longrightarrow & \Delta^{\natural}\mathcal{C} \\
\downarrow & & \downarrow \Delta(\pi) \\
\Delta & \stackrel{\delta}{\longrightarrow} & \Delta^{\natural}\Delta,
\end{array}$$

where δ is the functor (4.2.1.11). One can then combine the two constructions: if we have a category I and a fibration $\pi: \mathcal{C} \to \Delta \times I$, we define the *relative* 2-simplicial expansion $\Delta^{\natural}(\mathcal{C}\|\Delta|I)$ by the cartesian square

$$\begin{array}{cccc} \Delta^{\natural}(\mathcal{C}\|\Delta|I) & \longrightarrow & \Delta^{\natural}(\mathcal{C}\|\Delta) \\ & & & \downarrow \Delta(\pi) \\ & & & \Delta \times I & \stackrel{\beta}{\longrightarrow} \Delta^{\natural}I = \Delta^{\natural}(I \times \Delta\|\Delta), \end{array}$$

or equivalently, by the cartesian square (4.2.4.3) with the category $\Delta^{\natural}\Delta$ replaced by $\Delta^{\natural}(\Delta \times I) \cong \Delta^{\natural}\Delta \times_{\Delta} \Delta^{\natural}I$ and δ replaced with $(\delta \circ \tau) \times \beta$, where $\tau : \Delta \times I \to \Delta$ is the projection. Then $\Delta^{\natural}(\mathcal{C}\|\Delta|I) \to \Delta \times I \to I$ is a fibration with fibers $\Delta^{\natural}(\mathcal{C}_i\|\Delta)$, $i \in I$.

The 2-simplicial expansion is functorial, in that a functor $\pi:\mathcal{C}'\to\mathcal{C}$ cartesian over Δ_+ induces a functor $\Delta^{\natural}(\pi):\Delta^{\natural}(\mathcal{C}'\|\Delta)\to\Delta^{\natural}(\mathcal{C}\|\Delta)$ cartesian over Δ . For any two fibrations $\mathcal{C},\mathcal{C}'\to\Delta$ with \mathcal{C} essentially small, (2.4.2.8) provides an equivalence of categories

$$(4.2.4.5) \operatorname{Fun}_{\Delta}^{+}(\mathcal{C}, \mathcal{C}') \cong \operatorname{Fun}_{\Delta}^{\natural}(\mathcal{C}, \Delta^{\natural}(\mathcal{C}' \| \Delta)).$$

Even if $\mathcal C$ is not essentially small, special functors from $\mathcal C$ to $\mathcal C'$ are still naturally identified with functors from $\mathcal C$ to $\Delta^{\natural}(\mathcal C'\|\Delta)$ cartesian over Δ . In particular, this applies to Segal categories $\mathcal C$, $\mathcal C'$, and it is useful to know when $\Delta^{\natural}(\mathcal C'\|\Delta)$ is also a Segal category. Here is a criterion for this.

Definition 4.2.4.4. A Segal category $\mathcal{C} \to \Delta$ is *coregular* resp. *regular* if for any $[n] \in \Delta$, with the map $t : [0] \to [n]$, the pullback functor $t^* : \mathcal{C}_{[n]} \to \mathcal{C}_{[0]}$ resp. the opposite functor $t^{*o} : \mathcal{C}_{[n]}^o \to \mathcal{C}_{[0]}^o$ is a family of groupoids.

Lemma 4.2.4.5. The 2-simplicial expansion $\Delta^{\natural}(\mathcal{C}\|\Delta)$ of a regular Segal category \mathcal{C} is a Segal category.

Proof. By induction, it suffices to check that $\Delta^{\natural}(\mathcal{C}\|\Delta)$ is cartesian along the squares (3.1.7.9) with l=n-1. By Example 2.4.3.4, for any $[n] \in \Delta$, we have $\Delta^{\natural}(\mathcal{C}\|\Delta)_{[n]} \cong \operatorname{Sec}([n], \varphi^*\mathcal{C})$, where $\varphi:[n] \cong \Delta_{[n]}^{\bullet} \to \Delta$ sends $l \in [n]$ to [l] and a map $l \leq l'$ to $s:[l] \to [l']$. In particular, we have $\Delta^{\natural}(\mathcal{C}\|\Delta)_{[0]} \cong \mathcal{C}_{[0]}$, we have an equivalence

$$(4.2.4.6) \Delta^{\natural}(\mathcal{C}\|\Delta)_{[1]} \cong \mathcal{C}_{[0]} \setminus_{s^*} \mathcal{C}_{[1]},$$

and for any $n \ge 2$, we have a cartesian square

$$(4.2.4.7) \qquad \begin{array}{ccc} \Delta^{\natural}(\mathcal{C}\|\Delta)_{[n]} & \xrightarrow{s^*} & \Delta^{\natural}(\mathcal{C}\|\Delta)_{[n-1]} \\ & & & \downarrow \\ \mathcal{C}_{[n-1]} \setminus_{s^*} \mathcal{C}_{[n]} & \xrightarrow{\tau} & \mathcal{C}_{[n-1]}. \end{array}$$

Therefore it suffices to prove that the square

$$\begin{array}{ccc} \mathcal{C}_{[n-1]} \setminus_{s*} \mathcal{C}_{[n]} & \xrightarrow{t^*} & \mathcal{C}_{[0]} \setminus_{s^*} \mathcal{C}_{[1]} \\ & \tau \downarrow & & \downarrow \tau \\ & \mathcal{C}_{[n-1]} & \xrightarrow{t^*} & \mathcal{C}_{[0]} \end{array}$$

is cartesian. By the Segal property of \mathcal{C} , checking this amounts to checking that the functor $\mathcal{C}_{[n-1]}/_{\operatorname{id}}\mathcal{C}_{[n-1]} \to \mathcal{C}_{[n-1]}/_{t^*}\mathcal{C}_{[0]}$ is an equivalence, and since \mathcal{C} is regular, this follows from Lemma 2.3.4.6.

Example 4.2.4.6. A constant Segal category $\mathcal{C} \times \Delta \to \Delta$ is both regular and coregular, and so is a Segal category $\mathcal{C} \to \Delta$ that is itself a family of groupoids.

Example 4.2.4.7. For any fibration $C \to I$, with the corresponding special fibration $\xi^*C \to \Delta I$, the category ξ^*C is both regular and coregular.

Example 4.2.4.8. If a Segal category \mathcal{C} is regular, then the 2-opposite Segal category \mathcal{C}^{τ} is coregular, and vice versa. In particular, for any category I and 2-family of groupoids $\mathcal{C} \to I \times \Delta$ in the sense of Definition 4.2.3.10, \mathcal{C} is obviously coregular $-t^*$ is a functor between families of groupoids over I, thus itself a family of groupoids - and then \mathcal{C}^{τ} is regular. Since \mathcal{C}^{ι} is also a 2-family of groupoids over I, the (1,2)-opposite Segal category \mathcal{C}^{σ} is regular as well.

Just as in the absolute case of Definition 4.2.1.1, one can refine Definition 4.2.4.2 by considering a closed class v of maps in $\mathcal{C}_{[0]}$, and defining the 2-simplicial expansion $\Delta^v(\mathcal{C}\|\Delta)$ by the cartesian square

(4.2.4.8)
$$\begin{array}{ccc} \Delta^{v}(\mathcal{C}\|\Delta) & \longrightarrow & \Delta^{\natural}(\mathcal{C}\|\Delta) \\ & & \downarrow & & \downarrow \\ & \varepsilon_{*}\mathcal{C}_{[0],v} & \longrightarrow & \varepsilon_{*}\mathcal{C}_{[0]}, \end{array}$$

where as in (4.2.1.6), $\varepsilon = \varepsilon([0])$: pt $\to \Delta$ is the embedding onto $[0] \in \Delta$. Then in particular, have $\Delta^v(I \times \Delta \| \Delta) \cong \Delta^v I$ for any category I. If we have two closed classes $v_0 \subset v_1$, then the embedding $\mathcal{C}_{[0],v_0} \to \mathcal{C}_{[0],v_1}$ induces a Segal functor

$$(4.2.4.9) \Delta^{v_0}(\mathcal{C}\|\Delta) \to \Delta^{v_1}(\mathcal{C}\|\Delta).$$

As in Definition 4.2.1.1, we write $\Delta(\mathcal{C}\|\Delta) = \Delta^{\operatorname{Id}}(\mathcal{C}\|\Delta)$ to simplify notation. If we have a fibration $\pi: \mathcal{C} \to \Delta \times I$ and a closed class of maps in $\mathcal{C}_{[0]}$ that contains all maps cartesian over I, we define the relative 2-simplicial expansion $\Delta^v(\mathcal{C}\|\Delta|I)$ by replacing $\Delta^{\natural}(\mathcal{C}\|\Delta)$ in (4.2.4.8) with $\Delta^{\natural}(\mathcal{C}\|\Delta|I)$.

4.2.5. Twisted 2-simplicial expansion. To illustrate Definition 4.2.4.2, let us write down explicitly the Grothendieck construction in terms of nerves and 2-simplicial expansions. To do this, for any fibration $\mathcal{C} \to \Delta$, define the *twisted* 2-simplicial expansion $\Delta^v_{\sigma}(\mathcal{C}\|\Delta)$ with respect to a closed class v of maps in $\mathcal{C}_{[0]}$ by

(4.2.5.1)
$$\Delta_{\sigma}^{v}(\mathcal{C}\|\Delta) = \Delta^{v^{o}}(\mathcal{C}^{\sigma}\|\Delta)^{\sigma},$$

where v^o is the class of maps in $\mathcal{C}^\sigma_{[0]} \cong \mathcal{C}^o_{[0]}$ opposite to v. If \mathcal{C}^σ is a regular Segal category, then (4.2.5.1) is a Segal category by Lemma 4.2.4.5. Now assume given a category I and a discrete Segal fibration $\mathcal{C} \to I \times \Delta$. Then for any $i \in I$, the restriction $\mathcal{C}_i = \mathcal{C}|_{\{i\} \times \Delta}$ is a discrete Segal category, so that $\mathcal{C}_i \cong \Delta I'_i$ for some category I'_i . Moreover, for any map $f: i \to i'$ in I, the transition functors of the fibration \mathcal{C} induce a functor $f^*: I'_{i'} \to I'_i$, and this turns the collection I'_i into a fibration $I' \to I$ (in fact, $I' \to I$ is a classical fibration equipped with a strict cleavage, as in Remark 2.3.1.8). Then \mathcal{C}^σ is regular by Example 4.2.4.8, and we have a natural identification

$$(4.2.5.2) \Delta I' \cong \Delta_{\sigma}(\mathcal{C}||\Delta),$$

where the right-hand side is the twisted 2-simplicial expansion (4.2.5.1) with respect to v = Id. For example, if $C = I \times \Delta$, so that I' = I, then indeed, $\Delta_{\sigma}(I \times \Delta \| \Delta) = \Delta(I^{o} \times \Delta \| \Delta)^{\sigma} \cong (\Delta I^{o})^{\sigma} \cong \Delta I$.

More generally, for any category I and Segal fibration $\pi:\mathcal{C}\to I\times\Delta$, we can let $\flat=\pi^*$ Id be the class of maps f in $\mathcal{C}_{[0]}$ such that $\pi(f)$ is an identity map in I. Then we have the twisted 2-simplicial expansion $\Delta^{\flat}_{\sigma}(\mathcal{C}\|\Delta)$ and a fibration $\Delta(\pi):\Delta^{\flat}_{\sigma}(\mathcal{C}\|\Delta)\to\Delta I$. If we consider the class \natural of all maps, then we also have the fibration $\Delta^{\natural}(\pi):\Delta^{\natural}_{\sigma}(\mathcal{C}\|\Delta)\to\Delta^{\natural}I$. If \mathcal{C}^{σ} is regular, then $\Delta(\pi)$ and $\Delta^{\natural}(\pi)$ are Segal fibrations.

When π is a family of groupoids, one can describe the twisted simplicial expansion (4.2.5.1) without passing to the (1,2)-opposite Segal categories. To do this, consider the full embedding β of (4.2.2.5), and note that since any section of a family of groupoids is automatically cartesian, we have a natural identification

$$\beta^* \Delta_{\sigma}^{\natural}(\mathcal{C} \| \Delta) \cong \mathcal{C}$$

for any family of groupoids $\mathcal{C} \to I \times \Delta$.

Lemma 4.2.5.1. For any family of groupoids $C \to I \times \Delta$, the functor

adjoint to (4.2.5.3) is an equivalence of categories.

Proof. For any $[n] \in \Delta$ and fibration $\mathcal{C} \to \Delta$, (4.2.4.7) induces a cartesian square

$$(4.2.5.5) \qquad \begin{array}{ccc} \Delta_{\tau}^{\natural}(\mathcal{C}\|\Delta)_{[n]} & \xrightarrow{t^{*}} & \Delta_{\tau}^{\natural}(\mathcal{C}\|\Delta)_{[n-1]} \\ & & \downarrow & & \downarrow \\ \mathcal{C}_{[n-1]}^{\tau} \setminus_{t^{*}} \mathcal{C}_{[n]} & \xrightarrow{\tau} & \mathcal{C}_{[n-1]}^{\tau}. \end{array}$$

For the fibration $I \times \Delta \to \Delta$, we have $\Delta_{\sigma}^{\natural}(I \times \Delta \| \Delta) \cong \Delta^{\natural}I$, and cartesian sections of a corresponding square (4.2.5.5) are commutative squares

$$\langle [n-1], i_0 \rangle \xrightarrow{l \circ f_0} \langle [n-1], t^* i_{\bullet} \rangle$$

$$\downarrow t$$

$$\langle [n], i_0 \rangle \longrightarrow \langle [n], i_{\bullet} \rangle$$

in $\Delta^{\natural}I$, where $\langle [n], i_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \rangle \in \Delta^{\natural}I$ is an arbitrary object represented by a diagram (4.2.1.1), $f_0: i_0 \to i_1$ is the map in the diagram, and $l: \langle [n], i_0 \rangle \to \langle [n], i_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \rangle$, $l: \langle [n-1], i_1 \rangle \to \langle [n-1], t^*i_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \rangle$ are the tautological maps. For our given fibration $C \to I \times \Delta$, we also have the cartesian squares (4.2.5.5), and then by Lemma 2.3.3.7, the fibration $\Delta^{\natural}_{\sigma}(C \| \Delta) \to \Delta^{\natural}I$ is cartesian along each square

(4.2.5.6). Since (4.2.5.4) is an equivalence over the essential image of the full embedding β , thus over both the source and the target of the left vertical arrow in (4.2.5.6), it suffices to check that $\beta_*\mathcal{C}$ is also cartesian over (4.2.5.6) and apply induction on n. By (2.4.3.4), this amounts to checking that the square

$$(I \times \Delta)/_{\beta}\langle [n-1], i_{0} \rangle \longrightarrow (I \times \Delta)/_{\beta}\langle [n-1], t^{*}i_{\bullet} \rangle$$

$$\downarrow \qquad \qquad \downarrow$$

$$(I \times \Delta)/_{\beta}\langle [n], i_{0} \rangle \longrightarrow (I \times \Delta)/_{\beta}\langle [n], i_{\bullet} \rangle$$

induced by (4.2.5.6) is a cocartesian square of categories. However, for any $\langle [n], i_{\bullet} \rangle$, the discrete fibration $(I \times \Delta)/_{\beta}\langle [n], i_{\bullet} \rangle \to I \times \Delta$ corresponds to the relative nerve $N_I(\langle [n], i_{\bullet} \rangle) : I^o \times \Delta^o \to \text{Sets of (4.1.2.5)}$, so by Lemma 2.3.3.22, it suffices to check that N_I sends a square (4.2.5.6) to a cocartesian square. This is Example 3.1.7.6 and Remark 4.1.2.3.

4.3. Reedy categories.

4.3.1. Cellular Reedy categories. Recall that by Definition 3.2.1.2, a *good* filtration on a category I is a collection of full subcategories $I_{\leq n} \subset I$, $n \geq 0$ such that $I_{\leq n} \subset I_{\leq n+1}$ and $I = \bigcup I_{\leq n}$. For any small category I equipped with a good filtration $I_{\leq n}$, denote by $I_n = I_{\leq n} \setminus I_{\leq n-1}$ the full subcategory spanned by objects in $I_{\leq n}$ but not in $I_{\leq n-1}$, and let $\deg(i)$, $i \in I$ be the unique integer such that $i \in I_{\deg(i)}$. Note that the degree function defines the filtration: $I_{\leq n} \subset I$ is the full subcategory spanned by $i \in I$, $\deg(i) \leq n$.

Definition 4.3.1.1. A *directed category* is a small category I equipped with a good filtration $I_{\leq n}$ such that for any map $f: i \to i'$, $\deg(i') \geq \deg(i)$, and the inequality is strict unless i = i' and $f = \operatorname{id}$. A directed category I is *locally finite* resp. *locally κ-bounded* for an infinite cardinal κ iff for any $i \in I$, I/i is finite resp. $|I/i| < \kappa$.

Remark 4.3.1.2. A directed category *I* is obviously ordered in the sense of Lemma 4.1.2.4.

Definition 4.3.1.3. A *Reedy category* is a small category I equipped with a good filtration $I_{\leq n}$ and a factorization system (L, M) such that both I_L and I_M^o with the induced good filtrations are directed. A Reedy category I is *Reedy-finite* if so are the directed categories I_L , I_M^o , and *Reedy-κ-bounded* for some infinite cardinal κ if I_L is locally κ -bounded and I_M^o is locally κ' -bounded for some $\kappa' \ll \kappa$ (where

 \ll is as in Example 2.2.5.15). A *Reedy functor* between two Reedy categories $\langle I, L, M \rangle$, $\langle I', L', M' \rangle$ is a functor $\gamma : I' \to I$ sending maps in L' resp. M' to maps in L resp. M.

Example 4.3.1.4. The category Δ is a locally finite Reedy category, with deg([n]) = n, and L = f resp. M = d consisting of injective resp. surjective maps.

Example 4.3.1.5. The product $I \times I'$ of two Reedy categories is a Reedy category, with degree function $\deg(i \times i') = \deg(i) + \deg(i')$ and factorization system $(L \times L', M \times M')$, locally finite if so are I, I'. The opposite I^o of a Reedy category is a Reedy category, with the same degree function and factorization system (M^o, L^o) , locally finite if so is I. A partially ordered set I left-bounded in the sense of Definition 3.1.5.4 is a Reedy category, with $\deg(i) = \dim(I/i)$, $I_L = I$, and discrete I_M ; $\langle I, L, M \rangle$ is locally finite iff I is left-finite.

Definition 4.3.1.1 implies that the subcategories $I_n \subset I$, $n \geq 0$ in a directed category I are discrete, so that for any category C, the functor category $\operatorname{Fun}(I_n,\mathcal{C})$ is a product of copies of C. A Reedy category I is rigid in the sense of Definition 2.1.1.2 but the subcategories I_n are no longer discrete — they can have non-trivial non-invertible maps. However, for any $n \geq 0$, we have a discrete dense subcategory $\overline{I}_n = I_{L,n} = (I_{M,n}^0)^0 \subset I_n$. It turns out that the functor category C^I can be described inductively in terms of the categories $\operatorname{Fun}(\overline{I}_n,\mathcal{C})$, $n \geq 0$. Namely, assume that the target category C is complete and cocomplete. Then for any $n \geq 0$, the restriction functor $R: \operatorname{Fun}(I_{\leq n+1}, C) \to \operatorname{Fun}(I_{\leq n}, C)$ admits fully faithful left and right-adjoint functors R_1 , $R_1^+: \operatorname{Fun}(I_{\leq n}, C) \to \operatorname{Fun}(I_{n+1}, C)$. Explicitly, for any $i \in I$, one defines the latching category $L(i) \subset I_L/i \subset I/i$ as the full subcategory spanned by non-identical maps $i' \to i$ (that is, $L(i) \subset I_L(i)$ contains all objects except for the terminal object id: $i \to i$). Analogously, one defines the latching la

$$(4.3.1.1) R_{\dagger}(X)(i) = \operatorname{colim}_{L(i)} X|_{L(i)}, \ R^{\dagger}(X)(i) = \lim_{M(i)} X|_{M(i)}, \quad i \in I_n$$

for any functor $X: I_{\leq n} \to \mathcal{C}$. One then denotes $L(X,i) = R_{\dagger}(X)(i)$, $M(X,i) = R^{\dagger}(X)(i)$, and calls them the *latching* and *matching object* of the functor X with respect to i. By adjunction, we have a functorial map $R_{\dagger} \to R^{\dagger}$, thus a collection of maps $L(X,i) \to M(X,i)$, $i \in I_{n+1}$, and one shows that extending X to $I_{\leq n+1} \supset I_{\leq n}$ is equivalent to providing objects X(i), $i \in I_{n+1}$, and factorizations

$$(4.3.1.2) L(X,i) \xrightarrow{l} X(i) \xrightarrow{m} M(X,i)$$

of the adjunction maps $L(X,i) \to M(X,i)$. The maps l, m are known as the *latching* and *matching* map. If I is Reedy-finite in the sense of Definition 4.3.1.3, then it suffices to require that \mathcal{C} is finitely complete and finitely cocomplete, and if I is Reedy- κ -bounded, then it suffices for \mathcal{C} to be κ -cocomplete and κ' -complete for all ordinals $\kappa' \ll \kappa$.

Example 4.3.1.6. For any discrete fibration $\pi: I' \to I$ over a Reedy category I, the category I' with the classes $L' = \pi^*L$, $M' = \pi^*M$ and degree function π^* deg is a Reedy category, π is a Reedy functor, and the induced functor $\pi: L(i) \to L(\pi(i))$ is an equivalence for any $i \in I'$.

For $I = \Delta$ and $I = \Delta^o$, this inductive description was obtained by Reedy in [Re]. Definition 4.3.1.3 and its various versions that appear in the literature is an abstraction of the relevant properties of the categories Δ and Δ^o . We will also need to axiomatize some propeties such as those listed in Subsection 4.1.1 that are shared by Δ and the categories of simplices ΔX , but not Δ^o . To this end, we introduce the following definition that is essentially borrowed from [GZ, II.3.1].

Definition 4.3.1.7. A Reedy category $I = \langle I, \deg, M, L \rangle$ is *cellular* if

- (i) all maps in *M* resp. *L* are surjective resp. injective, and
- (ii) for any map $m: i \to i'$ in M, there exists a map $l: i' \to i$ in L such that $m \circ l = \operatorname{id}$, and $m \in I_M(i,i')$ is uniquely determined by the subset $\operatorname{Sec}(m) = \{l | m \circ l = \operatorname{id}\} \subset I_L(i',i)$.

The category Δ with the standard Reedy structure is obviously a cellular Reedy category. The same is true for the category of simplices ΔX of a simplicial set $X \in \Delta^o$ Sets, by virtue of the following result.

Lemma 4.3.1.8. Every left-bounded partially ordered set J is a cellular Reedy category. The product $I \times I'$ of two cellular Reedy categories is a cellular Reedy category. For any cellular Reedy category I and small discrete fibration $\pi: I' \to I$, I' is a cellular Reedy category.

Proof. The first two claims are obvious (the Reedy structures in both cases are those of Example 4.3.1.5). For the last claim, define the classes L', M' by $f \in L'$, M' iff $\pi(f) \in L$, M, and let $\deg(i') = \deg(\pi(i'))$, $i' \in I'$, as in Lemma 2.3.3.26 (i). This turns I' into a Ready category, and we need to check that it is cellular. As noted in Example 2.3.3.10, a discrete fibration is always faithful, so that Definition 4.3.1.7 (i) for I immediately implies the corresponding

statement for I'. Since π is a discrete fibraton, we have $Sec(m) \cong Sec(\pi(m))$ for any map $m: i \to i'$ in $I'_{M'}$, and since π is faithful, Definition 4.3.1.7 (ii) for I implies the corresponding statement for I'.

Note that by Definition 4.3.1.7 (i), for any object $i \in I$ in a cellular Reedy category I, the comma-category $i \setminus I_M$ is a partially ordered set. Here is the main property of cellular Reedy categories that motivates the definition.

Lemma 4.3.1.9. For any object $i \in I$ in a cellular Reedy category I, the partially ordered set $i \setminus I_M$ has the largest element.

Proof. We use the argument of [GZ, II.3.1] (the "Eilenberg-Zilber Lemma"). The degree function deg : $i \setminus I_M \to [n]$ is obviously conservative as a functor, so dim $(i \setminus I_M) \le n$, the finite-dimensional partially ordered set $i \setminus I_M$ has maximal elements, and it suffices to show that they all coincide. If we have two such elements $m_0: i \to i_0, m_1: i \to i_1$, then by Definition 4.3.1.7 (ii) we can choose $l_0: i_0 \to i$ such that $m_0 \circ l_0 = \operatorname{id}$, and then by maximality, $m_1 \circ l_0: i_0 \to i_1$ is in L. Dually, for any $l_1 \in \operatorname{Sec}(m_1)$, the map $m_0 \circ l_1: i_1 \to i_0$ is also in L. But I_L is ordered by the Reedy property, so that $i_0 = i_1$ and $m_1 \circ l_0 = \operatorname{id}$, $m_0 \circ l_1 = \operatorname{id}$, for any choices of l_0 and l_1 . Therefore $\operatorname{Sec}(m_0) = \operatorname{Sec}(m_1)$, so that $m_0 = m_1$ by Definition 4.3.1.7 (ii). □

Remark 4.3.1.10. For any cellular Reedy category I and discrete fibration $\pi: I' \to I$, the induced projection $\pi: I'_{M'} \to I_M$ is a discrete fibration, and for any object $i \in I'$, the same holds for the projection $\pi_i: i \setminus I'_{M'} \to \pi(i) \setminus I_M$. Then Lemma 4.3.1.8 and Lemma 4.3.1.9 imply that $i \setminus I'_{M'}$ has a largest element m, and by Example 2.3.3.15, this means that π_i identifies $i \setminus I'_{M'}$ with the left-closed subset $(\pi(i) \setminus I_M)/m \subset \pi(i) \setminus I_M$. This shows that if $\pi \setminus I_M$ satisfies some additional properties, such as being finite and/or having finite coproducts, these are inherited by $i \setminus I'_{M'}$. We note that both properties hold when $I = \Delta$ (the easiest way to see it is to use the Joyal duality (4.2.2.1) to identify $([n] \setminus \Delta_M)^o$ with the partially ordered set of subsets $S \subset [n]$ that contain $n \in [n]$).

Lemma 4.3.1.11. Assume given a cellular Reedy category I, a Reedy functor $\chi: I \to J$ to a left-bounded partially ordered set J with the Reedy structure of Example 4.3.1.5, and a subset $J' \subset J$. Then the preimage $I' = \chi^{-1}(J') = I \times_J J'$ inherits a cellular Reedy structure such that the embedding $\varepsilon: I' \to I$ is a Reedy functor.

Proof. Restrict the degree function on I to $I' \subset I$, and say that a map f in I' is in L resp. M iff $\varepsilon(f)$ is in L resp. M. Since χ is a Reedy functor, $\chi(m) = \operatorname{id}$ for

any $m \in M$, so that for any map f in I', the canonical factorization $\varepsilon(f) = l \circ m$ lies entirely in I'. Thus (L, M) is a factorization system on I'. Moreover, for any $i \in I'$, we have $M(i) = M(\varepsilon(i))$ and $L(i) = L(\varepsilon(i)) \cap I'$. Therefore I' is a Reedy category satisfying Definition 4.3.1.7 (i). For (ii), observe that $\chi(l) = \operatorname{id}$ for any $l \in \operatorname{Sec}(m)$, so that for any $m: i \to i'$ in $I'_M \subset I_M$, the set $\operatorname{Sec}(m)$ computed in I' and in the ambient category I is the same.

4.3.2. Skeleta. Assume given a cellular Reedy category I. Say that an object $i \in I$ is *non-degenerate* if the matching category M(i) is empty, and denote by $M(I) \subset I$ the full subcategory spanned by all non-degenerate objects. Since (M, L) is a factorization system on I, any map $f: i \to i'$ in I with non-degenerate i is automatically in the class L, so that in particular, we have $M(I) \subset I_L$, and M(I) inherits a Reedy category structure, with discrete $M(I)_M \subset M(I)$.

Lemma 4.3.2.1. The embedding functor $M(I)_M \subset I_M$ has a left-adjoint $\lambda : I_M \to M(I)_M$.

Proof. By Lemma 4.3.1.9, for any $i \in I$, the category $i \setminus I_M$ has the terminal object; $\lambda(i)$ is this object, with the structure map $i \to \lambda(i)$ providing the adjunction map.

Definition 4.3.2.2. A cellular Reedy category I is *regular* if for any map $l: i \to i'$ in L with non-degenerate i', i is also non-degenerate.

Example 4.3.2.3. A cellular Reedy category I that is directed – that is, $I = I_L$ – is trivially regular in the sense of Definition 4.3.2.2.

Example 4.3.2.4. The simplex category ΔX of a simplicial set X is regular in the sense of Definition 4.3.2.2 iff X is weakly regular in the sense of Subsection 4.1.1.

Lemma 4.3.2.5. Let $\langle I', L', M' \rangle$ and $\langle I, M, L \rangle$ be cellular Reedy categories, and assume given a functor $\varphi: I' \to I^o$. Then the twisted comma-category $I \setminus_{\varphi}^o I'$ of Example 2.3.3.14 is a cellular Reedy category. Moreover, assume that I' is regular, and $L' \subset \varphi^*(L^o)$, $M' \subset \varphi^*(\star)$. Then $I \setminus_{\varphi}^o I'$ is regular, and we have

$$(4.3.2.1) \qquad \qquad \mathsf{M}(I \setminus_{\varphi}^{o} I') \cong \mathsf{M}(I') \setminus_{\varphi}^{o} I_{L},$$

where since $L' \subset \varphi^*(L^o)$, the functor $\varphi : \mathsf{M}(I') \to I^o$ factors through I_L^o .

Proof. For the first claim, note that by Example 2.3.3.14, we have a small discrete fibration $I \setminus_{\varphi}^{o} I' \to I \times I'$, and apply Lemma 4.3.1.8. For the second claim, note that explicitly, objects in $I \setminus_{\varphi}^{o} I'$ are triples $\langle i, i', \alpha \rangle$, $i \in I$, $i' \in I'$, $\alpha : i \to \varphi(i')$, and morphisms from $\langle i_1, i'_1, \alpha_1 \rangle$ to $\langle i_0, i'_0, \alpha_0 \rangle$ are pairs $\langle f, f' \rangle$ of morphisms $f : i_1 \to i_0$, $f' : i'_1 \to i'_0$ such that the diagram

$$\begin{array}{ccc}
i_0 & \xrightarrow{\alpha_0} & \varphi(i'_0) \\
f \uparrow & & \downarrow \varphi(f')^o \\
i_1 & \xrightarrow{\alpha_1} & \varphi(i'_1)
\end{array}$$

is commutative. Then since $M \subset \varphi^*(\star)$, the fibration $I \setminus_{\varphi}^{\circ} I' \to I \times I'$ is constant along maps of the form id $\times m$, $m \in M'$, so that if $\langle i_0, i'_0, \alpha_0 \rangle$ is non-degenerate, then i'_0 is non-degenerate in I'. Conversely, by the unique factorization property, $\langle i_0, i'_0, \alpha_0 \rangle$ with non-degenerate i'_0 is non-degenerate if and only if $\alpha_0 \in L$. Then we have some map $\langle f, f' \rangle : \langle i_1, i'_1, \alpha_1 \rangle \to \langle i_0, i'_0, \alpha_0 \rangle$ in the class L, then $f \in L$ and $f' \in L'$, and since $L' \in \varphi^*(L^o)$, we also have $\varphi(f')^o \in L$, so that α_1 in (4.3.2.2) is also in L, and $\langle i_1, i'_1, \alpha_1 \rangle$ is non-degenerate.

Corollary 4.3.2.6. For any cellular Reedy category I and object $i \in I$, the category I/i is regular.

Proof. Take
$$I' = \mathsf{pt}$$
, and let $\varphi = \varepsilon(i) : \mathsf{pt} \to I^o$, as in (2.1.1.2).

Now consider a functor $X \in I^o$ Sets, with the category of elements IX of Example 2.3.3.10. For any $n \ge 0$, denote by $\varepsilon_n : I_{\le n} \to I$ the embedding functors and define the n-th skeleton $\operatorname{sk}_n X$ by

$$(4.3.2.3) sk_n X = \varepsilon_{n!} \varepsilon_n^* X.$$

By adjunction, we have a natural map $sk_n X \rightarrow X$.

Lemma 4.3.2.7. For any $n \ge 0$ and $X : I^o \to Sets$, the map $sk_n X \to X$ is injective.

Proof. Let $\pi: IX \to I$ be the discrete fibration corresponding to X, and let $x: IX^o \to S$ ets be the constant functor with value pt. Then by (2.2.5.2) and (2.3.3.3), we have $X \cong \pi_!^o x$, $\varepsilon_n^* X \cong \pi_!^o \varepsilon_n^* x$, and $\pi_!^o$ sends injective maps to injective maps. Therefore we may assume right away that IX = I and X = x is the constant functor with value pt. Then for any $i \in I$, we have

(4.3.2.4)
$$sk_n X(i) = colim_{M(i)^o \cap I^o_{\leq n}} X$$

by (4.3.1.1), and $M(i) \cap I_{\leq n}$ is a finite partially ordered set that is either empty, or has a largest element.

Lemma 4.3.2.7 allows one to describe functors $X \in I^o$ Sets inductively in terms of their skeleta. Namely, extend (4.3.2.3) to n = -1 by setting $\mathrm{sk}_{-1} X = \emptyset$ (that is, the constant functor with value $\emptyset \in \mathrm{Sets}$); note that Lemma 4.3.2.7 tautologically also holds for n = -1. Then for any object $i \in I$, denote by $\Delta_i = \mathsf{Y}(i) \in I^o$ Sets the functor it represents – that is, $\Delta_i(i') = I(i',i)$ – and define the i-sphere as $\mathsf{S}_i = \mathrm{sk}_{\deg(i)-1} \Delta_i$ (if $I = \Delta$ and i = [n] for some $n \geq 0$, then the [n]-sphere is just the usual simplicial sphere S_{n-1} , or \emptyset if n = 0). We then have a natural map

$$(4.3.2.5) \sigma_i: \mathsf{S}_i \to \Delta_i$$

that is injective by Lemma 4.3.2.7, a generalization of the sphere embedding (4.1.1.15). Explicitly, by (4.3.2.4), we have

$$\mathsf{S}_i = \mathsf{colim}_{i' \in M(i)^o} \, \Delta_{i'},$$

and (4.3.2.5) is induced by the embedding $M(i) \subset I_M \setminus i$. Moreover, for any $X \in I^o$ Sets and $n \geq 0$, (4.3.1.1) immediately shows that we have a cocartesian square

$$(4.3.2.7) \qquad \begin{array}{c} \operatorname{sk}_{n-1} X & \longrightarrow & \operatorname{sk}_{n} X \\ & \uparrow & & \uparrow \\ & \coprod_{i \in \mathsf{M}(IX)_{n}} \mathsf{S}_{\pi(i)} & \xrightarrow{\sqcup \sigma_{i}} & \coprod_{i \in \mathsf{M}(IX)_{n}} \Delta_{\pi(i)}, \end{array}$$

where $M(IX)_n \subset M(IX)$ is the subset of objects of degree n.

For a categorical interpretation of skeleta, denote by $\mathrm{sk}_n I \subset I$, $n \geq -1$ the full subcategory spanned by objects $i \in I$ with $\deg(\lambda(i)) \leq n$ (if I = J is a left-bounded partially ordered set with the cellular Reedy structure of Lemma 4.3.1.8, then $\mathrm{sk}_n J$ is the same as in (3.1.5.1)). Then for any $X \in I^o$ Sets, we have $I \, \mathrm{sk}_n X \cong \mathrm{sk}_n I X$. In particular, the embedding $\mathrm{sk}_n I \to I$ is a discrete fibration, so that $\mathrm{sk}_n I \subset I$ is left-closed in the sense of Definition 2.1.3.2. Therefore we have the characteristic functor

$$(4.3.2.8) \chi_n: I \to [1]$$

sending $\operatorname{sk}_n I \subset I$ to $0 \in [1]$ and everything else to $1 \in [1]$. Moreover, $\chi_n(m) = \operatorname{id}$ for any map $m : i \to i'$ in M, so that if we equip [1] with the Reedy structure of Example 4.3.1.5, then χ_n is a Reedy functor. Just as the squares (4.3.2.7), the

functors (4.3.2.8) can be used to set up an induction on skeleta and study I by this induction. This works especially well when I is finite-dimensional in the following sense.

Definition 4.3.2.8. A cellular Reedy category I is *finite-dimensional* if we have $I = \operatorname{sk}_n I$ for some $n \geq 0$, and the *dimension* dim I is the smallest such integer n. For any cellular Reedy category I, a functor $X \in I^o$ Sets is *finite-dimensional* if so is IX, and dim $X = \dim IX$.

Example 4.3.2.9. A left-bounded partially ordered set I with the cellular Reedy structure of Example 4.3.1.5 is finite-dimensional iff it has finite chain dimension in the sense of Definition 3.1.5.3, and dim I of Definition 3.1.5.3 coincides with dim I of Definition 4.3.2.8

For any cellular Reedy category I, we denote by I_f^o Sets $\subset I^o$ Sets the full subcategory spanned by finite-dimensional functors X. If all functors are finite-dimensional then so is I, but the converse is not necessarily true. For example, Δ is finite-dimensional with dim $\Delta = 0$, but $X \in \Delta^o$ Sets is finite-dimensional iff it is finite-dimensional in the usual sense (that is, the dimensions of non-degenerate simplices are bounded by some $n \geq 0$). Even for $X \in I_f^o$ Sets, dim X is often strictly greater than dim I.

4.3.3. Anodyne resolutions. As an application of the induction on skeleta, let us show that cellular Reedy categories admit good "resolutions" in the following sense.

Definition 4.3.3.1. For any regular cardinal κ , a functor $J \to I$ is a κ -anodyne resolution of a small category I if J is a partially ordered set, and for any $i \in I$, the right comma-fiber $i \setminus J$ is κ -anodyne in the sense of Definition 3.1.10.8.

Example 4.3.3.2. For any regular cardinal κ and $J \in \operatorname{Pos}_{\kappa}$, the functor ξ_{\perp} : $B(J)^o \to J$ of (3.1.4.1) is a κ -anodyne resolution in the sense of Definition 4.3.3.1. Indeed, $j \setminus B(J)^o \cong B(j \setminus J)^o$ for any $j \in J$, we have the embedding $\operatorname{pt} \to j \setminus J$ onto the smallest element j, and the induced embedding $\operatorname{pt} = B(\operatorname{pt})^o \to B(j \setminus J)^o$ is reflexive by Lemma 3.1.4.9.

Fix a Reedy category $\langle I, M, L, \deg \rangle$ that is cellular in the sense of Definition 4.3.1.7, and let $\Psi I = \Delta_{\perp}^M I$ be the cosimplicial expansion of (4.2.1.2). Recall that objects in ΨI are diagrams (4.2.1.1), and let $\Phi I \subset \Psi I$ be the full subcategory spanned by diagrams such that $i_n \in I$ is non-degenerate, and the maps

 $f_{d,d'}: i_l \to i_{l'}, 0 \le d \le d' \le n$ are in *L*. Then (4.2.1.2) induces a projection

$$\Phi I \to \Delta^o,$$

and on the other hand, composing (4.2.1.9) with the embedding $\rho: \Phi I \to \Psi I$ gives a functor

$$\xi^{\Phi}_{\perp}: \Phi I \to I.$$

Any Reedy functor $\gamma: I' \to I$ between cellular Reedy categories induces a functor $\Psi(\gamma): \Psi(I') \to \Psi(I)$ cocartesian over Δ^o that commutes with the projections (4.2.1.9).

Lemma 4.3.3.3. For any cellular Reedy category I, with the corresponding categories $\Phi I \subset \Psi I$, the embedding $\rho : \Phi I \subset \Psi I$ is left-reflexive over Δ^o , with some adjoint functor $\lambda : \Psi I \to \Phi I$, and the functor (4.3.3.1) is a discrete cofibration. For any Reedy functor $\gamma : I' \to I$ between cellular Reedy categories, there exists a unique functor $\Phi(\gamma) : \Phi(I') \to \Phi(I)$ cocartesian over Δ^o such that $\Phi(\gamma) \circ \lambda \cong \Psi(\gamma) \circ \lambda$, and the isomorphism $\xi_{\perp} \circ \Psi(\gamma) \cong \gamma \circ \xi_{\perp}$ induces a natural map

$$(4.3.3.3) \gamma \circ \xi_{\perp}^{\Phi} \to \xi_{\perp}^{\Phi} \circ \Phi(\gamma)$$

that is pointwise in the class M.

Proof. For any $[n] \in \Delta$, the fiber $\Psi_{[n]}$ of the cofibration $\pi: \Psi I \to \Delta^o$ is the category of diagrams (4.2.1.1) and maps between them that are pointwise in M. If [n] = 0, then $\Psi I_{[0]} = I_M$, and $\Phi I_{[0]} = \mathsf{M}(I)_M \subset \Psi I_{[0]}$ is a discrete full left-reflexive subcategory by Lemma 4.3.2.1, with the functor $\lambda_{[0]}: \Psi I_{[0]} \to \Phi I_{[0]}$ left-adjoint to the $\rho_{[0]}$, and the adjunction map $a: \mathsf{id} \to \lambda$. For $n \geq 1$, note that the maps $a \circ f_{d,n}: i_d \to \lambda(i_d)$, $0 \leq d \leq n$ admit unique factorizations

$$(4.3.3.4) i_d \xrightarrow{m} i'_d \xrightarrow{l} \lambda(i_n)$$

with $m \in M$, $l \in L$, and the middle terms i'_d of these factorizations form a diagram i'_* that lies in $\Phi I_{[n]} \subset \Psi I_{[n]}$. Thus the full subcategory $\Phi I_{[n]} \subset \Psi I_{[n]}$ is also left-reflexive, with the adjoint $\lambda_{[n]} : \Psi I_{[n]} \to \Phi I_{[n]}$ sending i_* to i'_* . Moreover, by the uniqueness of the factorizations (4.3.3.4), the category $\Phi I_{[n]}$ is discrete. The existence of the adjoint functors $\lambda_{[n]}$ then tautologically implies that $\pi: \Phi I \to \Delta^o$ is a precofibration, with the transition functor $f_!^\Phi$ for a map $f:[n'] \to [n]$ given by $\lambda_{[n]} \circ f_!^\Psi$, where $f_!^\Psi$ is the transition functor for the cofibration $\pi: \Psi I \to \Delta^o$. Since the fibers of this precofibration are

discrete, it is a cofibration, and the functors $\lambda_{[n]}$ together define a functor $\lambda: \Psi I \to \Phi I$ adjoint to the embedding $\Phi I \to \Psi I$. Finally, if we have another cellular Reedy category I' and a Reedy functor $\gamma: I' \to I$, then for any $i \in \Psi I'$, the functor $\lambda \circ \Psi(\gamma)$ inverts the adjunction map $i \to \lambda(i)$. Thus it indeed factors as $\lambda \circ \Psi(\gamma) = \Phi(\gamma) \circ \lambda$ for a unique $\Phi(\gamma): \Phi I' \to \Phi I$ cocartesian over Δ^o , and by adjunction, we have the base change map $\Psi(\gamma) \circ \rho \to \rho \circ \Phi(\gamma)$. To obtain (4.3.3.3), apply ξ^Φ_\perp to this map.

Lemma 4.3.3.4. For a cellular Reedy category I, ξ_{\perp}^{Φ} of (4.3.3.2) factors as

$$\Phi I \xrightarrow{R} \operatorname{Red}(\Phi I) \xrightarrow{q_I} I$$
,

where R is the reduction functor (3.1.1.6).

Proof. By definition, a map $\langle [n'], i'_{\cdot} \rangle \to \langle [n], i_{\cdot} \rangle$ in the category ΦI is given by a map $g:[n] \to [n']$ and a collection of maps $g_d:i'_{g(d)} \to i_d$ in $M, 0 \le d \le n$, such that for any $0 \le d \le d' \le n$, we have $g_{d'} \circ f'_{g(d),g(d')} = f_{d,d'} \circ g_d$. The functor ξ_{\perp}^{Φ} of (4.3.3.2) sends $\langle g,g_{\cdot} \rangle$ to $g_0 \circ f'_{0,g(0)}:i'_0 \to i_0$. By definition, i_n is non-degenerate, so by Lemma 4.3.2.1, for any $i \in I$, there exists at most one map $m:i \to i_n$ in M, and if it exists, then $i_n = \lambda(i)$, m is the adjunction map; moreover, in this case, for any other map $f=l'\circ m':i \to i_n=\lambda(i)$, there must exist $m''\in M$ such that $m''\circ m'=m$, and then $m''=l'=\mathrm{id}$ for degree reasons, so that f=m. So, for any map $\langle g',g'_{\cdot} \rangle:\langle [n'],i'_{\cdot} \rangle \to \langle [n],i_{\cdot} \rangle$, say with $g'(n) \le g(n)$, we must have $g'_n = g_n \circ f'_{g'(n),g(n)}$, so that

$$f_{0,n} \circ \xi_{\perp}^{\Phi}(g) = g_n \circ f'_{0,g(n)} = g'_n \circ f'_{0,g'(n)} = f_{0,n} \circ \xi_{\perp}^{\Phi}(g').$$

Since $f_{0,n} \in L$ is injective, this implies that $\xi_{\perp}^{\Phi}(g) = \xi_{\perp}^{\Phi}(g')$.

If we denote by $Q(I) = \text{Red}(\Phi I)$ the reduction of the category ΦI , then Lemma 4.3.3.4 provides a functor

(4.3.3.5)
$$q_I: Q(I) \to I.$$

By the universal property of reductions, for any Reedy functor $\gamma: I' \to I$, the functor $\Phi(\gamma)$ of Lemma 4.3.3.3 induces a functor $Q(\gamma): Q(I') \to Q(I)$, and the map (4.3.3.3) then reduces to a map

$$(4.3.3.6) \gamma \circ q_I \to q_{I'} \circ Q(\gamma)$$

that is pointwise in the class M. By Lemma 4.3.3.3, $\Phi I \cong (\Delta X(I))^o$ is opposite to the category of simplices of a simplicial set $X(I) \in \Delta^o$ Sets, and Q(I) is then opposite to the set of non-degenerate simplices of X(I) ordered by inclusion.

Example 4.3.3.5. If $I \in \operatorname{Pos}_{\kappa}$ is a partially ordered set, then Q(I) is the opposite $B(I)^o$ to the barycentric subdivion B(I) of Definition 3.1.4.1, and q_I is the κ -anodyne resolution ξ_{\perp} of Example 4.3.3.2.

Example 4.3.3.6. More generally, if a cellular Reedy category I, $|I| < \kappa$ is regular in the sense of Definition 4.3.2.2, then $\Phi I \cong (\Delta M(I))^o$, and since M(I) is directed, it is ordered by Remark 4.3.1.2. Therefore the simplicial set X(I) is regular, we have

$$(4.3.3.7) Q(I) \cong (\overline{\Delta} M(I))^{o},$$

and for any $i \in I$, we have $i \setminus Q(I) \cong \overline{\Delta}(i \setminus M(I))^o$. If dim $I < \infty$, then dim $\overline{\Delta}(i \setminus M(I))^o < \infty$ for any i, and since the category $i \setminus M(I)$ has an initial object $i \to \lambda(i)$, $\overline{\Delta}(i \setminus M(I))^o$ is κ -anodyne by Lemma 4.1.2.4. Therefore q_I is again a κ -anodyne resolution.

For a general cellular Reedy category I, the partially ordered set Q(I) still shares some of the properties of barycentric subdivision.

Lemma 4.3.3.7. For any Reedy functor $\chi: I \to [1]$, the induced functor $Q(\chi): Q(I) \to Q([1]) \cong B([1])^o \cong V$ is a cofibration, and the functors $Q(I_0) \to Q(I)$ and $Q(I_1) \to Q(I)$ induced by the embeddings $I_0, I_1 \to I$ of Lemma 4.3.1.11 are right-closed embeddings that induce isomorphisms $Q(I_0) \cong Q(I)_0$, $Q(I_1) \cong Q(I)_1$ with the fibers of the cofibration $Q(\chi)$. Moreover, for any Reedy functor $\chi: I \to V$, we have $Q(I) \cong Q(I/0) \sqcup_{Q(I_0)} Q(I/1)$.

Proof. For the first claim, let $p:\Delta[1]\to B([1])\cong V^o$ be the fibration (4.1.1.14). Then $\Phi(\chi)$ is a cocartesian functor between categories discretely cofibered over Δ^o , thus a cofibration, and $Q(\chi):Q(I)\to V$ is the reduction of the composition $p\circ\Phi(\chi)$. Therefore it is also a cofibration. The rest of the argument is exactly the same as in Example 3.1.4.6. Moreover, if we compose the cofibration $Q(\chi)$ with the projection $\xi_\perp:V\cong B([1])^o\to [1]$, then the fiber $Q(I)_0$ of the resulting map $Q(I)\to [1]$ is still identified with $Q(I_0)$. Then for the second claim, as in the proof of Lemma 3.1.4.8, compose the functor $Q(\chi):Q(I)\to Q(V)\cong B(V)^o$ with the projection $\xi_\perp:B(V)^o\to V$, and use this identification to see that $o\setminus Q(I)\cong Q(I_0), 0\setminus Q(I)\cong Q(I/0)$ and $1\setminus Q(I)\cong Q(I/1)$.

Lemma 4.3.3.8. Assume given a Reedy functor $\chi: I \to [1]$ and a discrete fibration $\pi: I' \to I$ that is an isomorphism over $1 \in [1]$. Then the induced map $Q(\pi): Q(I') \to Q(I)$ is an isomorphism over $0, 1 \in V \cong Q([1])$.

Proof. Since $I' \to I$ is a discrete fibration, any diagram (4.2.1.1) in I_L that has non-empty intersection with $I_1 \subset I$ lifts uniquely to I'_L .

Lemma 4.3.3.9. Assume given a Reedy category I equipped with a Reedy functor $I \to \mathbb{N}$. Then $Q(I) \cong \operatorname{colim}_n Q(I/n)$.

Proof. For any $n \ge 0$, the map $Q(I/n) \to Q(I)$ is a fully faithful embedding by Lemma 4.3.3.7, so by Example 3.1.8.1, it suffices to check that the filtration $Q(I/n) \subset Q(I)$, $n \ge 0$ is exhaustive. But any element in Q(I) is represented by a functor $[m] \to I$, and any such functor factors through $I/n \subset I$ for a sufficiently large n.

Proposition 4.3.3.10. Assume that the cellular Reedy category I is finite-dimensional in the sense of Definition 4.3.2.8, and $|I| < \kappa$ for a regular cardinal κ . Then Q(I) has finite chain dimension $\dim Q(I) \le \dim I$, and the functor (4.3.3.5) is a κ -anodyne resolution in the sense of Definition 4.3.3.1.

Proof. The fact that $\dim Q(I) \leq \dim I$ is obvious from the definition. To show that (4.3.3.5) is a κ -anodyne resolution, note that if I is regular, this is Example 4.3.3.6. In the general case, let $n = \dim I$, and assume by induction that the claim is proved for categories of dimension $\leq n-1$. Take an object $i \in I$. If $\deg(\lambda(i)) = n$, then $i \setminus Q(I)$ consists of a single object $i \to \lambda(i)$, so it is anodyne. Otherwise we have $i \in \operatorname{sk}_{n-1} I$. Consider the Reedy functor χ_{n-1} of (4.3.2.8) and the corresponding cofibration $Q(\chi_{n-1})$. Compose it with the cofibration $i \setminus Q(I) \to Q(I)$ of Example 2.3.3.11 to obtain a cofibration $i \setminus Q(I) \to V$. Moreover, let

$$I' = \coprod_{i \in \mathsf{M}(I)_n} I/i,$$

with the natural discrete fibration $\pi: I' \to I$, and consider the induced functor

$$\pi^{Q}: i \setminus Q(I') = \coprod_{i' \in I'_{i}} i' \setminus Q(I') \to i \setminus Q(I).$$

Then π is a functor over [1] with respect to the projection $\chi_{n-1}:I\to [1]$ and an isomorphism over 1, so by Lemma 4.3.3.8, π^Q is an isomorphism over $o,1\in V$. Moreover, since I' is regular by Corollary 4.3.2.6, the embedding $i'\setminus Q(I'_{\leq n-1})\to i'\setminus Q(I')$ is a map between κ -anodyne partially ordered sets for any $i'\in I'_i$, thus κ -anodyne. Therefore the coproduct of these embeddings is also κ -anodyne, and then by Corollary 3.1.9.3, the embedding $i\setminus Q(I_{\leq n-1})\to i\setminus Q(I)$ is κ -anodyne, so we are done by induction.

4.3.4. Barycentric subdivision. Let ΔX be the category of simplices of a simplicial set $X:\Delta^o\to \mathrm{Sets}$. By Lemma 4.3.1.8, it is a cellular Reedy category in the sense of Definition 4.3.1.7. The set $\mathsf{M}(\Delta X)_M$ is the set of non-degenerate simplices $\langle [n], x \rangle \in \Delta X$, with $\mathsf{M}(\Delta I)_n$ consisting of simplices of degree n. The functor λ of Lemma 4.3.2.1 sends a simplex $\langle [n], x \rangle$ to its normalization. The category ΔX is regular in the sense of Lemma 4.3.2.5 iff the simplicial set X is regular in the sense of Subsection 4.1.1. The n-th skeleton $\mathsf{sk}_n X$ of (4.3.2.3) is the usual skeleton of a simplicial set, $\mathsf{S}_{[n]}$ of (4.3.2.5) is the (n-1)-dimensional simplicial sphere S_{n-1} of (4.1.1.15), and the gluing squares (4.3.2.7) are obtained by iterating the squares (4.1.1.16). The cellular Reedy category ΔX has finite dimension iff so does the set X, and the dimensions are the same. Moreover, it turns out that similarly to Example 4.3.3.5, the canonical anodyne resolution (4.3.3.5) of Proposition 4.3.3.10 can be expressed in terms of a barycentric subdivision.

Definition 4.3.4.1. The *barycentric subdivision functor* B from Δ^o Sets to itself is the left Kan extension of the functor $\Delta \to \Delta^o$ Sets, $[n] \mapsto N(B([n]))$ with respect to the Yoneda embedding $Y : \Delta \to \Delta^o$ Sets.

Definition 4.3.4.1 is the standard definition of the barycentric subdivision operation on simplicial sets. If X = N(J) is the nerve of a partially ordered set J, then $B(N(J)) \cong N(B(J))$, so that Definition 3.1.4.1 is consistent with Definition 4.3.4.1.

Lemma 4.3.4.2. For any simplicial set $X \in \Delta^o$ Sets, we have an equivalence $\Phi \Delta X \cong \Delta B(X)^o$, and this equivalence is functorial in X.

Proof. By Lemma 4.3.3.3, for any $X \in \Delta^o$ Sets, we have $\Phi \Delta X \cong \Delta B'(X)^o$ for some simplicial set B'(X), and this correspondence is functorial in X, so that we have a functor $B': \Delta^o$ Sets $\to \Delta^o$ Sets. If X is regular, we have $\Phi \Delta X \cong (\Delta \overline{\Delta} X)^o$ and $B'(X) \cong N(\overline{\Delta} X)$. In particular, $\Delta_n \subset \Delta^o$ Sets is regular for any n, and $\overline{\Delta} \Delta_n = \overline{\Delta} N([n]) = N(B([n]))$, so that we have an isomorphism $B \cong B'$ on the image of $Y: \Delta \to \Delta^o$ Sets. By the universal property of the Kan extension, it extends to a map of functors $B \to B'$, and as in Example 2.2.5.12, to prove that it is an isomorphism, it suffices to prove that B' commutes with colimits. Moreover, B' obviously commutes with filtered colimits, so by induction on skeleta, it suffices to prove that it sends a square (4.3.2.7) to a cocartesian square.

Indeed, by definition, for any $[m] \in \Delta$, we have

$$(4.3.4.1) B'X([m]) = \coprod_{[n_{\bullet}]} \overline{X}(\xi([n_{\bullet}])),$$

where the coproduct is over all functors $[n]_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} : [m] \to \Delta_i = \Delta_L \subset \Delta, \, \xi : \Delta^L \Delta \to \Delta$ is the projection (4.2.1.7), so that $\xi([n]) = [n_m]$, and $\overline{X}([n]) \subset X([n]), \, [n] \in \Delta$ is the subset of non-degenerate simplices. While the correspondence $X \mapsto \overline{X}([n])$ is not functorial in X, it is functorial with respect to injective maps $X \to X'$. Moreover, for any injective map $X \to X'$ and any map $f: X \to Y$, we have an injective map $Y \to Y' = X' \sqcup_X Y$, and for any [n], f induces an isomorphism

$$\overline{X}'([n]) \setminus \overline{X}([n]) \cong \overline{Y}'([n]) \setminus \overline{Y}([n]).$$

Then (4.3.4.1) shows that the natural map $B'X' \sqcup_{B'X} BY \to B'Y$ is an isomorphism, and this finishes the proof.

As a corollary of Lemma 4.3.4.2, we see that the partially ordered set $Q(\Delta X)$ is naturally opposite to the set of non-degenerate simplices in the barycentric subdivision B(X) of X, with the order given by inclusion. If X is regular, then B(X) is also regular, and we then have

$$(4.3.4.2) Q(\Delta X) \cong (\overline{\Delta}BX)^{o} \cong B(\overline{\Delta}X)^{o},$$

functorially with respect to maps of regular simplicial sets.

Chapter 5

Localization.

The subject of this chapter is localization, in the original naive sense of [GZ]. We start with a bunch of standard and easy observations, and some equally standard examples. Our notation for the localization of a category I in a class W of morphisms is $h^W(I)$. One application of the general localization machinery is a left Kan extension operation $\gamma_!$ for families of groupoids, a counterpart of the right Kan extension γ_* constructed in Section 2.4. All this material is in Section 5.1, and Section 5.2 is devoted to categories fibered over Δ . Here the main result is Lemma 5.2.1.1 saying that, roughly speaking, a small category is the localization of its simplicial explansion in the class of special maps (just as Proposition 4.2.2.3, this is again a variation on the theme of [DHKS]).

Another result that we will really need is Proposition 5.2.3.3 that characterizes families of groupoids over Δ that appear as simplicial replacements; this uses a toy version of a beautiful idea of [R]. We complement this material with the standard results on the localizations of the categories of simplices of fibrant simplicial sets (this actually goes back all the way to [GZ]).

Section 5.3 introduces Quillen's model categories and collects all we need from that theory (as in Chapter 4, this is not that much). We omit the actual definition of a model category and the proofs of the two main results, Quillen Adjunction and the existence of the Reedy model structures. The main result that we do prove is Proposition 5.3.2.2 saying that, roughly speaking, a family of groupoids over a model category that is constant along weak equivalences is completely determined by its restriction to the subcategory of cofibrant objects and cofibrations.

An application of this is the definition of a representable family of groupoids over a model category, and a construction of such families; this is Definition 5.3.2.4 and Proposition 5.3.2.5. It is exactly these representable families that go into our version of Brown Representability proved in Chapter 6.

5.1. Abstract localization.

5.1.1. Relative categories. It is convenient to start the discussion of localization with the following notion introduced in [BaK].

Definition 5.1.1.1. A *relative category* is a pair $\langle I, W \rangle$ of a category I and a class W of morphisms in I that contains all isomorphisms.

Letter W here is traditional and stands for "weak equivalence", but as far as the definition is concerned, it can be any class of maps whatsoever, provided it contains all isomorphisms. The biggest possible class is the class \natural of all morphisms in I, and the smallest possible class is the class \star of all isomorphisms. As in the case of dense subcategories, for any functor $\gamma:I'\to I$ to a relative category $\langle I,W\rangle$, we denote by γ^*W the class of morphisms f in I' such that $\gamma(f)\in W$. If $I'\subset I$ is a subcategory and γ is the embedding functor, we will shorten γ^*W to W. A *morphism* from a relative category $\langle I,W\rangle$ to a relative category $\langle I',W'\rangle$ is a functor $\gamma:I\to I'$ such that $W\subset \gamma^*W'$.

Example 5.1.1.2. A morphism $\langle I, W \rangle \to \langle I', \star \rangle$ is the same thing as a functor $\gamma: I \to I'$ that inverts all maps $f \in W$ (recall that if I is essentially small, these form the category Fun^W(I, I') of Example 2.3.2.12).

Definition 5.1.1.3. The *localization* of a relative category $\langle I, W \rangle$ is a category $h^W(I)$ equipped with a morphism $h: \langle I, W \rangle \to \langle h^W(I), \star \rangle$ such that for any other category I' and a morphism $\gamma: \langle I, W \rangle \to \langle I', \star \rangle$, there exists a functor $\gamma': h^W(I) \to I'$ and an isomorphism $\alpha: \gamma' \circ h \cong \gamma$, and the pair $\langle \gamma', \alpha \rangle$ is unique up to a unique isomorphism.

Alternatively, localization can be described by means of cocartesian squares of categories of Subsection 2.1.3: for any relative category $\langle I, W \rangle$, the functors (2.1.4.2) for all $w \in W$ define a functor $W \times [1] \to I$, and the localization, if it exists, fits into a cocartesian square

where W in the bottom left corner is understood as a discrete category. In particular, the localization $h^W(I)$ is unique, if it exists. If it does, we will say that the relative category $\langle I, W \rangle$ is *localizable*, or that I is *localizable with respect to* W. For any category I, we will say that I is localizable if so is the relative category

 $\langle I, \natural \rangle$, and we will say that I is 1-connected if it is localizable and $h^{\natural}(I) \cong \mathsf{pt}$. Being localizable is a set-theoretic condition: one can always define $h^W(I)$ as the category with the same objects as I and morphisms given by formal expressions

$$(5.1.1.2) w_0^{-1} \circ f_1 \circ w_1^{-1} \circ \cdots \circ w_{n-1}^{-1} \circ f_n \circ w_n^{-1},$$

 $w_{\bullet} \in W$, f_{\bullet} morphisms in I, modulo obvious cancellation rules, and the only thing to check is that these expressions form a set and not a proper class. This is automatically the case if I is small or at least essentially small. Moreover, if $||I|| \leq \kappa$ for a regular cardinal κ , then $||h^{W}(I)|| \leq \kappa$ for any W.

Remark 5.1.1.4. While localization is only a particular example of a cocartesian square of categories, arbitrary such squares can in fact be constructed by localization. Namely, it is immediate from the definition that a cofibration $\pi: \mathcal{C} \to V$ extends to a cofibration $\mathcal{C}' \to [1]^2 = V^>$ corresponding to a cocartesian square if and only if \mathcal{C} is localizable with respect to the class $c = \pi^\sharp \natural$ of maps cocartesian over V, and in this case, the fiber \mathcal{C}'_o over the maximal element $o \in V^>$ is the localization $h^c(\mathcal{C})$.

Remark 5.1.1.5. In particular, Remark 5.1.1.4 shows that the category PoSets has all cocartesian squares (hence all colimits, since it has all coproducts). Indeed, all partially ordered sets are by definition small, thus localizable, so any functor $V \rightarrow PoSets$ extends to a cocartesian square of small categories, and its reduction is then a cocartesian square in PoSets, as in Example 3.1.7.4.

The most fundamental example of a localizable large category is the category Cat of all small categories and functors between them, with W being the class of all equivalences.

Lemma 5.1.1.6. The relative category $\langle Cat, W \rangle$ is localizable, and its localization $h^W(Cat)$ is naturally equivalent to the category Cat^0 of small categories, with morphisms given by isomorphism classes of functors.

Remark 5.1.1.7. If one promotes Cat to a 2-category Cat, then $Cat^0 = \overline{Cat}$ is its truncation in the sense of Example 4.2.3.13.

Proof. We have the obvious functor $h: \operatorname{Cat} \to \operatorname{Cat}^0$, and by definition, it inverts equivalences, so that we have a morphism $h: \langle \operatorname{Cat}, W \rangle \to \langle \operatorname{Cat}^0, \star \rangle$. If we have two functors $\gamma_0, \gamma_1: I \to I'$ between small categories and an isomorphism $\gamma_0 \cong \gamma_1$, then these data define a functor $\gamma: e(\{0,1\}) \times I \to I'$, where as in Subsection 3.1.1, $e(\{0,1\})$ is the category with two objects 0, 1 and exactly one

map between any two objects. The two embeddings $\varepsilon(0)$, $\varepsilon(1)$: pt $\to e(\{0,1\})$ have a common one-sided inverse given by the projection $e(\{0,1\}) \to \text{pt}$, and then $\varepsilon(0) \times \text{id}$, $\varepsilon(1) \times \text{id}$: $I \to e(\{0,1\}) \times I$ are both inverse to the projection $e(\{0,1\}) \times I \to I$. Therefore for any morphism $f: \langle \text{Cat}, W \rangle \to \langle \mathcal{C}, \star \rangle$ to some \mathcal{C} , we have $f(\varepsilon(0) \times \text{id}) = f(\varepsilon(1) \times \text{id})$, and since $\gamma_l = \gamma \circ (\varepsilon(0) \times \text{id})$, l = 0, 1, this implies $f(\gamma_0) = f(\gamma_1)$, so that f uniquely factors through h.

For any regular cardinal κ , we have the similar statement for the full subcategory $\operatorname{Cat}_{\kappa} \subset \operatorname{Cat}$ spanned by κ -bounded small categories I – namely, $\langle \operatorname{Cat}_{\kappa}, W \rangle$ is localizable, and $h^W(\operatorname{Cat}_{\kappa}) \cong \operatorname{Cat}_{\kappa}^0 \subset \operatorname{Cat}^0$ is the full subcategory spanned by $I \in \operatorname{Cat}_{\kappa}$. More generally, for any category I, we have the categories $\operatorname{Cat} /\!\!/_{\kappa} I \subset \operatorname{Cat} /\!\!/_{I} I$ of small categories and functors resp. lax functor over I, as in Subsection 2.1.2. If we again let W be the class of equivalences, then both $\langle \operatorname{Cat} /\!\!/_{\kappa} I, W \rangle$ and $\langle \operatorname{Cat} /\!\!/_{I} I, W \rangle$ are localizable, and the localizations are $h^W(\operatorname{Cat} /\!\!/_{\kappa} I) \cong (\operatorname{Cat} /\!\!/_{\kappa} I)^0$, $h^W(\operatorname{Cat} /\!\!/_{I} I) \cong (\operatorname{Cat} /\!\!/_{I} I)^0$ where $(\operatorname{Cat} /\!\!/_{\kappa} I)^0$ resp. $(\operatorname{Cat} /\!\!/_{I} I)^0$ is the category of small categories $I' \in \operatorname{Cat}$ equipped with a functor $\pi: I' \to I$, and with morphisms from $\pi_0: I'_0 \to I$ to $\pi_1: I'_1 \to I$ given by functors resp. lax functors $\gamma: I'_0 \to I'_1$ over I modulo isomorphisms over I. If I is small, thus corresponds to an object $I \in \operatorname{Cat}^0$, then we have the comma-fiber $\operatorname{Cat}^0/[I]$, and the tautological functor

(5.1.1.3)
$$(\text{Cat } /\!/_{\star} I)^{0} \to \text{Cat}^{0} / [I]$$

is an epivalence.

Example 5.1.1.8. The epivalence (5.1.1.3) is usually *not* an equivalence; the reason for this is, maps in $\operatorname{Cat}^0/[I]$ are functors over I modulo all isomorphisms, while maps in $(\operatorname{Cat}//_{\star} I)^0$ are functors over I modulo isomorphisms over I. For example, assume given a group extension

$$(5.1.1.4) 1 \longrightarrow H \longrightarrow \widetilde{G} \stackrel{p}{\longrightarrow} G \longrightarrow 1$$

with abelian H, let $I = \operatorname{pt}_G$, and let $\mathcal{C} = \operatorname{pt}_H$, $\mathcal{C}' = \operatorname{pt}_{\widetilde{G}}$. Then p in (5.1.1.4) induces a functor $\mathcal{C}' \to I$ making \mathcal{C}' a category over I, and if we treat \mathcal{C} as a category over I via the tautological functor $\mathcal{C} \to \operatorname{pt} \to I$, then $(\operatorname{Cat} \#_{\star} I)^0(\mathcal{C}, \mathcal{C}') = \operatorname{Hom}(H, H)$ is the set of group maps $H \to H$, while $(\operatorname{Cat}^0 / [I])(\mathcal{C}, \mathcal{C}')$ is the same set but modulo conjugation by elements $g \in G$. If the adjoint G-action on H is non-trivial, the latter set is strictly smaller.

For any regular cardinal κ , the full subcategories $(\operatorname{Cat} /\!/_{\kappa} I)_{\kappa} \subset \operatorname{Cat} /\!/_{\kappa} I$, $(\operatorname{Cat} /\!/ I)_{\kappa} \subset \operatorname{Cat} /\!/ I$ spanned by $I' \in \operatorname{Cat}_{\kappa}$ are also localizable, and the localizations are the full subcategories $h^W(\operatorname{Cat}_{\kappa} /\!/_{\kappa} I) \cong (\operatorname{Cat}_{\kappa} /\!/_{\kappa} I)^0 \subset (\operatorname{Cat} / I)^0$,

 $h^{\mathrm{W}}(\operatorname{Cat}_{\kappa} /\!\!/ I) \cong (\operatorname{Cat}_{\kappa} /\!\!/ I)^0 \subset (\operatorname{Cat} /\!\!/ I)^0$ spanned by $I' \in \operatorname{Cat}_{\kappa}$. Moreover, if I is small, then the subcategory $\operatorname{Cat} /\!\!/_{\flat} I \subset \operatorname{Cat} /\!\!/_{\star} I$ of (2.3.2.4) is also localizable with respect to the class W of equivalences over I, the localization $h^{\mathrm{W}}(\operatorname{Cat} /\!\!/_{\flat} I) \cong (\operatorname{Cat} /\!\!/_{\flat} I)^0 \subset (\operatorname{Cat} /\!\!/_{\star} I)^0$ is the subcategory of fibrations and isomorphism classes of cartesian functors, and for any regular cardinal κ with $|I| < \kappa$, the same holds for $(\operatorname{Cat} /\!\!/_{\flat} I)_{\kappa} = (\operatorname{Cat} /\!\!/_{\flat} I) \cap (\operatorname{Cat} /\!\!/_{\star} I)_{\kappa}$. The embeddings $(\operatorname{Cat} /\!\!/_{\flat} I)^0 \subset (\operatorname{Cat} /\!\!/_{\star} I)^0$, $(\operatorname{Cat} /\!\!/_{\star} I)^0 \subset (\operatorname{Cat} /\!\!/_{\flat} I)^0$ are left resp. right-reflexive, with the adjoint functors in both cases sending $\pi: \mathcal{C} \to I$ to the comma-category $\sigma: I \setminus_{\pi} \mathcal{C} \to I$. The extended Yoneda embedding (2.1.4.6) descends to a functor $(\mathcal{C} /\!\!/ I)^0 \to I^0 \operatorname{Cat}^0$ that factors through a functor

(5.1.1.5)
$$(\text{Cat } /\!\!/_{\flat} I)^0 \to I^0 \text{ Cat}^0$$

provided by the Grothendieck construction (explicitly, (5.1.1.5) corresponds to the functor $I^o \times (\text{Cat } /\!/_b I)^0 \to \text{Cat}^0$, $\langle i, \mathcal{C} \rangle \mapsto \mathcal{C}_i$). The functor (5.1.1.5) is obviously conservative, but usually not an equivalence.

Lemma 5.1.1.9. If I = J is a partially ordered set with dim $J \le 1$, then (5.1.1.5) is an epivalence.

Proof. Since (5.1.1.5) is conservative, we just have to check that it is essentially surjective and full. To lift a functor $\mathcal{C}: J^o \to \operatorname{Cat}^0$ to an object in $(\operatorname{Cat}//_{\flat} I)^o$, just fix a small category $\mathcal{C}(j) \in \operatorname{Cat}$ for any $j \in J$, and a functor $\mathcal{C}(j) \to \mathcal{C}(j')$ representing the given map $\mathcal{C}(j) \to \mathcal{C}(j')$ in Cat^0 , for any j' < j. Since $\dim J \leq 1$, this already defines a functor $J^o \to \operatorname{Cat}$ that descends to an object in $(\operatorname{Cat}//_{\flat} I)^o$. Finally, if we have two functors $\mathcal{C}, \mathcal{C}': J^o \to \operatorname{Cat}$ and a morphism $g: \mathcal{C} \to \mathcal{C}'$ in $J^o \operatorname{Cat}^o$, then choosing a representing functor $g(j): \mathcal{C}(j) \to \mathcal{C}'(j)$ for each $j \in J$, we obtain a diagram

(5.1.1.6)
$$\mathcal{C}(j) \longrightarrow \mathcal{C}(j')$$

$$g(j) \downarrow \qquad \qquad \downarrow g(j')$$

$$\mathcal{C}'(j) \longrightarrow \mathcal{C}'(j')$$

for any j' < j in J that commutes up to an isomorphism. To lift g to a map in $(\operatorname{Cat} /\!\!/_{\flat} I)^0$, choose these isomorphisms.

Example 5.1.1.10. If J = [1], then what (5.1.1.5) provides is a functor $(\operatorname{Cat} /\!\!/_{\flat}[1])^o \to \operatorname{ar}(\operatorname{Cat}^0)$. It is a functor over Cat^0 with respect to projections $s^* : (\operatorname{Cat} /\!\!/_{\flat}[1])^0 \to \operatorname{Cat}^0$, $\tau : \operatorname{ar}(\operatorname{Cat}^0) \to \operatorname{Cat}^0$, and its fiber over some $I \in \operatorname{Cat}^0$ is the epivalence (5.1.1.3).

Lemma 5.1.111. Assume given relative categories $\langle I_0, W_0 \rangle$ and $\langle I_1, W_1 \rangle$, morphisms $\gamma_0 : \langle I_0, W_0 \rangle \to \langle I_1, W_1 \rangle$ and $\gamma_1 : \langle I_1, W_1 \rangle \to \langle I_0, W_0 \rangle$, and maps $a_0 : \mathrm{id} \to \gamma_1 \circ \gamma_0$, $a_1 : \gamma_0 \circ \gamma_1 \to \mathrm{id}$ such that $a_0(i) \in W_0$ for any $i \in I_0$ and $a_1(i) \in W_1$ for any $i \in I_1$. Then $\langle I_0, W_0 \rangle$ is localizable if and only if so is $\langle I_1, W_1 \rangle$, and in this case, γ_0 and γ_1 induce mutually inverse equivalences between $h^{W_0}(I_0)$ and $h^{W_1}(I_1)$.

Lemma 5.1.1.12. Assume given a relative category $\langle I', W \rangle$ equipped with a fibration $\pi: I' \to I$ such that $W \subset \pi^*(\star)$, the fiber $\langle I'_i, W \rangle$ is localizable for any $i \in I$, and the transition functor $f^*: \langle I'_{i'}, W \rangle \to \langle I'_i, W \rangle$ is a morphism for any map $f: i \to i'$ in I. Then $\langle I', W \rangle$ is localizable, and the functor $h(\pi): h^W(I') \to I = h^*(I)$ is a fibration with fibers $h^W(I')_i \cong h^W(I'_i)$. Moreover, if we have a functor $\gamma: I_0 \to I$ from some category I, with the induced fibration $I'_0 = \gamma^* I' \to I_0$, then $\langle I'_0, \gamma^* W \rangle$ is localizable, and $h^{\gamma^*W}(I'_0) \cong \gamma^* h^W(I')$.

As an application of Lemma 5.1.1.12, assume given a functor $\gamma:I'\to I$ between two categories I,I', and consider the right comma-category $I\setminus I'$ with its projections $\sigma:I\setminus I'\to I$, $\tau:I\setminus I'\to I'$ and right comma-fibers $i\setminus I'$. Say that a family of groupoids \mathcal{C}' over I' is *localizable with respect to* γ if for any $i\in I$, the pullback $\tau(i)^*\mathcal{C}'$ with respect to the functor (2.1.2.3) is a localizable category. Then by Lemma 5.1.1.12, the relative category $\langle \tau^*\mathcal{C}', \sigma^*(\star) \rangle$ is localizable, and the natural projection $\gamma_!\mathcal{C}'=h^{\sigma^*(\star)}(\tau^*\mathcal{C}')\to I$ is a family of groupoids. Moreover, by the universal property of localization, the operation $\gamma_!$ on families of groupoids is left-adjoint to the pullback operation γ^* in the same sense as the pushforward operation γ_* of Subsection 2.4.3 is right-adjoint to γ^* . In particular, for any families of groupoids $\mathcal{C}\to I$, $\mathcal{C}'\to I$ such that \mathcal{C}' and $\gamma^*\mathcal{C}$ are localizable with respect to γ , we have natural functors

(5.1.1.7)
$$\gamma_! \gamma^* \mathcal{C} \to \mathcal{C}, \qquad \mathcal{C}' \to \gamma^* \gamma_! \mathcal{C}',$$

an analog of (2.4.3.3), and functors $\mathcal{C}' \to \gamma^*\mathcal{C}$ over I' are in a natural bijection with functors $\gamma_!\mathcal{C}' \to \mathcal{C}$ over I (recall that since we are dealing with families of groupoids, all functors are automatically cartesian). Note that if $\gamma: I' \to I$ is a fibration, then by Lemma 5.1.1.11, a family of groupoids \mathcal{C}' over I' is localizable with respect to γ if and only if so is its restriction \mathcal{C}'_i to any fiber $I'_i \subset I$ of the fibration γ . In particular, if the fibration γ is itself a family of groupoids, then any family of groupoids $\pi': \mathcal{C}' \to I'$ is trivially localizable with respect to γ ,

and we have

$$(5.1.1.8) \gamma_! \mathcal{C}' \cong \mathcal{C}'$$

considered as a family of groupoids over I via the fibration $\pi = \gamma \circ \pi' : \mathcal{C}' \to I$. For a general fibration γ , if we have a functor $\varphi : I_0 \to I$ from some category I_0 , with the induced fibration $\gamma_0 : I_0' = \varphi^* I' \to I_0$, then Lemma 5.1.1.12 provides a natural equivalence

$$\gamma_{0!} \varphi^* \mathcal{C}' \cong \varphi^* \gamma_! \mathcal{C}'$$

for any family of groupoids $\mathcal{C}' \to I'$ localizable with respect to γ . If $I_0 = \mathsf{pt}$, this reduces to equivalences

$$(5.1.1.10) \qquad (\gamma_! \mathcal{C}')_i \cong h^{\natural}(C'_i), \qquad i \in I$$

analogous to (2.4.3.13)

Lemma 5.1.1.13. Assume given a functor $\gamma: I' \to I$ with 1-connected comma-fibers $i \setminus^{\gamma} I'$, $i \in I$. Then I' is localizable if and only if I is localizable, and in this case, $h(\gamma): h^{\natural}(I') \to h^{\natural}(I)$ is an equivalence.

Proof. By Lemma 5.1.1.11, we may replace I' with the comma-category $I' \setminus I$ and γ with the fibration $\sigma: I \setminus I' \to I$; in other words, we may assume that γ is a fibration with 1-connected fibers. Then by Lemma 5.1.1.12, $\langle I', \gamma^*(\star) \rangle$ is localizable, and $h^{\gamma^*(\star)}(I') \cong I$. If I is localizable, this proves the claim. If I' is localizable, then we have a natural functor $h': I \cong h^{\gamma^*(\star)}(I') \to h^{\natural}(I')$, and $h' \circ \gamma$ is isomorphic to the localization functor $h: I' \to h^{\natural}(I')$. Then the universal property for h implies the same property for h', and this finishes the proof. \square

5.1.2. Weak equivalences. Extending Lemma **5.1.1.6**, one can turn the category of small relative categories into a relative category by designating a class of morphisms as weak equivalences. There are several natural ways to do it. The strongest one is the notion of a weak equivalence considered in [BaK] (a morphism is a weak equivalence iff it induces a weak equivalence of Dwyer-Kan localizations of [DK]). We will need the following weaker notions.

Definition 5.1.2.1. A morphism $\gamma: \langle I',W'\rangle \to \langle I,W\rangle$ is a 0-equivalence if for any two morphisms $F,F': \langle I,W\rangle \to \langle \mathcal{C},\star\rangle$ to some category \mathcal{C} , any map $\alpha': \gamma^*F \to \gamma^*F'$ is of the form $\gamma^*\alpha$ for a unique map $\alpha: F \to F'$. A morphism γ is a 1-equivalence if it is a 0-equivalence, and moreover, any morphism $F': \langle I',W'\rangle \to \langle \mathcal{C},\star\rangle$ to some category \mathcal{C} is isomorphic to γ^*F for some morphism $F: \langle I,W\rangle \to \langle \mathcal{C},\star\rangle$.

Definition 5.1.2.2. A *family of groupoids* over a relative category $\langle I, W \rangle$ is a family of groupoids $C \to I$ constant along any map $w \in W$.

Definition 5.1.2.3. A morphism $\gamma:\langle I',W'\rangle\to\langle I,W\rangle$ between relative categories is a 2-equivalence if

- (i) for any family of groupoids \mathcal{C}' over $\langle I', W' \rangle$, there exists a family of groupoids \mathcal{C} over $\langle I, W \rangle$ and an equivalence $\gamma^* \mathcal{C} \cong \mathcal{C}'$ over I',
- (ii) for any two families of groupoids C, C' over $\langle I, W \rangle$ and a functor F': $\gamma^* C \to \gamma^* C'$ over I', there exists a functor $F: C \to C'$ and an isomorphism $F' \cong \gamma^* F$, and
- (iii) for any families of groupoids C, C' over $\langle I, W \rangle$, functors $F, F' : C \to C'$ over I, and a morphism $\alpha' : \gamma^* F \to \gamma^* F'$ over I', there exists a unique morphism $\alpha : F \to F'$ over I such that $\alpha' = \gamma^* \alpha$.

If I and I' are essentially small, so that functor categories are well-defined, then for any C, a morphism $\gamma : \langle I', W' \rangle \to \langle I, W \rangle$ induces a restriction functor

$$(5.1.2.1) \gamma^* : \operatorname{Fun}^{W}(I, \mathcal{C}) \to \operatorname{Fun}^{W'}(I', \mathcal{C}),$$

where as Example 2.3.2.12, $\operatorname{Fun}^W(-,-)$ stands for the category of functors that invert maps in W, and similarly for W'. Then γ is a 0-equivalence resp. a 1-equivalence iff for any \mathcal{C} , (5.1.2.1) is fully faithful resp. an equivalence. Informally, the same holds for 2-equivalences: γ is a 2-equivalences iff it induces an equivalence between 2-categories of families of groupoids over $\langle I, W \rangle$ and $\langle I', W' \rangle$.

Lemma 5.1.2.4. *In the assumptions of Lemma 5.1.1.11, the functors* γ_0 *and* γ_1 *are 2-equivalences.*

Proof. For any family of groupoids C_0 over $\langle I_0, W_0 \rangle$, a_0^* is an equivalence between $\gamma_0^* \gamma_1^* C_0$ and C_0 , and for any family of groupoids C_1 over $\langle I_1, W_1 \rangle$, a_1^* is an equivalence between C_1 and $\gamma_1^* \gamma_0^* C$.

Lemma 5.1.2.5. A 2-equivalence $\gamma: \langle I, W \rangle \to \langle I', W' \rangle$ with essentially surjective γ is a 1-equivalence.

Proof. Assume given a morphism $F:\langle I,W,\rangle \to \langle \mathcal{C},\star\rangle$ for some category \mathcal{C} , and consider the Yoneda pairing

(5.1.2.2)
$$Y(F): \mathcal{C}^o \times I \to Sets, \qquad c \times i \mapsto \mathcal{C}(c, F(i))$$

and the associated discrete fibration $\widetilde{\mathcal{C}} \to \mathcal{C}^o \times I$. For any $c \in c$, its restriction $\widetilde{\mathcal{C}}_c \to I$ to $\{c\} \times I \subset \mathcal{C}^o \times I$ is a family of discrete groupoids over $\langle I, W \rangle$, and since γ is a 2-equivalence, it comes from a unique family $\widetilde{\mathcal{C}}_c'$ over $\langle I', W' \rangle$. Since the functor $\widetilde{\mathcal{C}}_c' \to \pi_0(\widetilde{\mathcal{C}}_c')$ becomes an equivalence after restricting to I, it was an equivalence to beging with, so that $\widetilde{\mathcal{C}}_c'$ is discrete, and by virtue of uniqueness, the families $\widetilde{\mathcal{C}}_c'$ together define a discrete family of groupoids $\widetilde{\mathcal{C}}' \to \mathcal{C}^o \times I'$, thus a functor $Y(F)' : \mathcal{C}^o \times I' \to S$ ets equipped with an isomorphism $Y(F) \cong (\operatorname{id} \times \gamma)^* Y(F)'$, unique up to a unique isomorphism. Then for any $i \in I$, Y(F)' restricts to a representable functor $\mathcal{C}^o \to S$ ets on $\mathcal{C}^o \times \{\gamma(i)\}$, and since γ is essentially surjective, any $i' \in I'$ is of this form. By Yoneda Lemma, this means that $Y(F)' \cong Y(F')$ for a functor $F' : I' \to \mathcal{C}$ equipped with an isomorphism $F \cong \gamma^* F'$, unique up to a unique isomorphism. By construction, F' is a morphism $\langle I', W' \rangle \to \langle \mathcal{C}, \star \rangle$.

Remark 5.1.2.6. Essential surjectivity in Lemma 5.1.2.5 is needed because the target category \mathcal{E} in Definition 5.1.2.1 need not be Karoubi-closed. For instance, consider the category $P^=$ of Example 2.2.5.3 with its subcategory $P \subset P^=$; then the embedding $\langle P, \star \rangle \to \langle P^=, \star \rangle$ is a 2-equivalence but not a 1-equivalence.

Lemma 5.1.2.7. Let $\langle I, W \rangle$ be a relative category, and let W' = s(I, W) be the saturation of the class W in the sense of Definition 2.1.1.4. Then the natural morphism $id : \langle I, W \rangle \rightarrow \langle I, W \rangle$ is a 2-equivalence.

Proof. For any family of groupoids $C \to I$ over $\langle I, W \rangle$, the class W(C) of Lemma 2.3.1.7 is saturated, thus contains W'.

Lemma 5.1.2.8. Assume given a 2-equivalence $\gamma: \langle I', W' \rangle \to \langle I, W \rangle$ and a family of groupoids $\pi: \mathcal{C} \to I$ over $\langle I, W \rangle$, and let $\mathcal{C}' = \gamma^* \mathcal{C}$, with its fibration $\pi': \mathcal{C}' \to I'$. Then $\gamma: \langle \mathcal{C}', \pi'^* W' \rangle \to \langle \mathcal{C}, \pi^* W \rangle$ is a 2-equivalence.

Proof. A family of groupoids $C'' \to C$ over C is the same thing as a family $C'' \to I$ equipped with a functor $C'' \to C$ over I, and it is constant along W iff it is constant along π^*W . The same applies to C', I' and W'.

More-or-less by definition, a morphism $\gamma:\langle I',W'\rangle\to\langle I,W\rangle$ between localizable categories is a 1-equivalence if and only if $h^{W'}(\gamma):h(I')\to h^W(I)$ is an equivalence. For any category I, the tautological morphism $\langle I, \natural \rangle \to \operatorname{pt}$ is a 0-equivalence if and only if I is connected, and it is a 1-equivalence if and only if I is 1-connected.

Definition 5.1.2.9. A category I is 2-connected if the tautological morphism $\langle I, \natural \rangle \to \mathsf{pt}$ is a 2-equivalence. A functor $\gamma : I' \to I$ is l-connected, l = 0, 1, 2, if the morphism $\gamma : \langle I', \gamma^* \star \rangle \to \langle I, \star \rangle$ is an l-equivalence.

Lemma 5.1.2.5 immediately implies that a 2-connected category is 1-connected, and an essentially surjective 2-connected functor is 1-connected.

Lemma 5.1.2.10. Assume given a functor $\gamma: I \to I'$.

- (i) If a morphism $\gamma : \langle I, W \rangle \to \langle I, \star \rangle$ for some class $W \subset \gamma^*(\star)$ is an l-equivalence, l = 0, 1, 2, then γ is l-connected.
- (ii) If γ is fully faithful and left or right-reflexive, then the adjoint functor $\gamma_+:I'\to I$ is l-connected, l=0,1,2.

Proof. (i) is obvious. In (ii), since γ is fully faithful, $\gamma_{+} \circ \gamma \cong \operatorname{id}$, and as in Example 2.2.5.11, the adjunction map between id and $\gamma \circ \gamma_{+}$ is pointwise in $\gamma_{+}^{*}(\star)$, so we are done by Lemma 5.1.2.4 and Lemma 5.1.1.11.

Corollary 5.1.2.11. Assume given a reflexive full embedding $f: J \to J'$ between partially ordered sets. Then if J is l-connected, l = 0, 1, 2, so is J'.

Proof. By induction and (3.1.3.5), it suffices to consider the case when f is left or right-reflexive; in this case, the adjoint map $g: J' \to J$ is l-connected by Lemma 5.1.2.10 (ii).

Lemma 5.1.2.12. A category I is 2-connected if and only if either of the following holds.

- (i) Any family of groupoids C over $\langle I, \natural \rangle$ is bounded, and for any $i \in I$, the evaluation functor $\operatorname{Sec}^{\natural}(I, C) \to C_i$ is an equivalence.
- (ii) Any family of groupoids C over $\langle I, \natural \rangle$ is localizable, and for any $i \in I$, the functor $h_i : C_i \to h^{\natural}(C)$ is an equivalence.

Proof. For (i), note that for any groupoid \mathcal{C} , a cartesian section σ of the trivial fibration $\mathcal{C} \times I$ is of the form $\sigma = \varphi \times \operatorname{id}$ for some functor $\varphi : I \to \mathcal{C}$. If I is 2-connected, thus 1-connected by Lemma 5.1.2.5, then such a functor is constant, so that $\mathcal{C} \times I \to I$ is bounded and $\operatorname{Sec}^{\natural}(I, I \times \mathcal{C}) \cong \mathcal{C}$. Conversely, (i) implies that for any family of groupoids \mathcal{C} over $\langle I, \natural \rangle$ the total evaluation functor $\operatorname{Sec}^{\natural}(I,\mathcal{C}) \times I \to \mathcal{C}$ is an equivalence, so that $\mathcal{C} \to I$ is trivial.

For (ii), again take any groupoid \mathcal{C} , and note that if I is 2-connected, thus 2-connected, then the projection $\mathcal{C} \times I \to \mathcal{C}$ satisfies the assumptions of Lemma 5.1.1.12. Since \mathcal{C} is a groupoid, this means that $\mathcal{C} \times I$ is localizable and $h^{\natural}(\mathcal{C} \times I) \cong \mathcal{C}$. Conversely, for any family of groupoids \mathcal{C} over $\langle I, \natural \rangle$, (ii) implies that the natural functor $\mathcal{C} \to h^{\natural}(\mathcal{C}) \times I$ is an equivalence, so that $\mathcal{C} \to I$ is trivial.

- **Lemma 5.1.2.13.** (i) For l=0,1,2, a composition of l-connected functors is l-connected, and for any l-connected functor $\gamma:I'\to I$ and relative category $\langle I,W\rangle$, the morphism $\langle I',\gamma^*W\rangle\to\langle I,W\rangle$ is an l-equivalence.
 - (ii) Assume given two functors $\pi': I' \to I$, $\pi'': I'' \to I$, and a functor $\gamma: I' \to I''$ over I. Moreover, assume that both π' and π'' are either fibrations or cofibrations, and γ is cartesian resp. cocartesian over I. Then if all the fibers $\gamma_i: I'_i \to I''_i$, $i \in I$ of the functor γ are l-connected, $l = 0, 1, 2, \gamma$ itself is l-connected.

Remark 5.1.2.14. Lemma 5.1.2.13 (ii) implies that any fibration or cofibration $\gamma: I' \to I$ whose fibers are *l*-connected is *l*-connected (take I'' = I).

Proof. The first claim is clear. For the second, note that if π' , π'' are cofibrations and γ is cocartesian, the embedding $I'_i/i'' \to I'/i$ is left-reflexive for any $i \in I$ and $i'' \in I''_i$. Therefore if l = 2, a family of groupoids $\mathcal C$ over I' is bounded with respect to γ iff $\mathcal C|_{I'_i}$ is bounded with respect to γ_i for any $i \in I$, and in this case, we have $\gamma_* \mathcal C|_{I''_i} \cong \gamma_{i*} \mathcal C|_{I'_i}$, $i \in I$. Then if all the functors γ_i are 2-connected, a family $\mathcal C'$ over $\langle I', \gamma^*(\star) \rangle$ is bounded with respect to γ , and the functors (2.4.3.3) are equivalences over all the fibers I''_i , hence everywhere. This means that γ is 2-connected. For l = 1, the same argument shows that for any morphism $E: \langle I', \gamma^*(\star) \rangle \to \langle \mathcal E, \star \rangle$ to some category $\mathcal E$, the left Kan extension $\gamma_! E$ exists by virtue of (2.2.5.2), and the adjunction map $E \to \gamma^* \gamma_! E$ is an isomorphism, so that E factors uniquely through E, and E is an isomorphism of the form E is an isomorphism, so that E for some E is an isomorphism, so that E is an isomorphism, interchange E is an isomorphism, so that E is an isomorphism, interchange E is an isomorphism, so that E is an isomorphism, interchange E is an isomorphism, so that E is an isomorphism, interchange E is an isomorphism, so that E is an isomorphism, and E is an isomorphism.

5.1.3. Elementary examples. Lemma 5.1.2.13 allows one to construct a bunch of simple but non-trivial examples of 2-equivalences and 2-connected functors. Here is the first one.

Lemma 5.1.3.1. The functor $Z_{\infty} \to \mathbb{N}$ of (3.1.3.6) is 2-connected.

Proof. The left comma-fibers $Z_{\infty}/m = Z_{2m}$ of the functor (3.1.3.6) are finite for any $m \in \mathbb{N}$, so for any family \mathcal{C}' over Z_{∞} , $\zeta_*\mathcal{C}'$ is well-defined, and we have the functors (2.4.3.3). It suffices to prove that they are equivalences for any \mathcal{C} over \mathbb{N} and \mathcal{C}' over $\langle Z_{\infty}, \zeta^* \star \rangle$. This amounts to proving that $\zeta_{2m} : Z_{2m} \to [m] \subset \mathbb{N}$ is 2-connected for any $m \geq 0$. We have the left-reflexive embedding $\langle Z_{2m-1}, \zeta^*(\star) \rangle \to \langle Z_{2m}, \zeta^* \star \rangle$, and by Lemma 5.1.2.4, this is a 2-equivalence, so it suffices to prove that $\zeta_{2m-1} : Z_{2m-1} \to [m]$ is 2-connected. If m = 0, $Z_0 \cong [0]$ is the point and ζ_0 is an isomorphism. If $m \geq 1$, let $\chi = t_{\dagger} : [m] \to [1]$ be the characteristic function of the initial segment $[m-1] \subset [m]$ of the ordinal [m], and note that both χ and $\chi \circ \zeta_{2m-1}$ are fibrations, and ζ_{2m-1} is cartesian over [1] with fibers $\zeta_{2(m-1)}$, id. It remains to apply induction on m and Lemma 5.1.2.13 (ii). \square

Corollary 5.1.3.2. *The category* Z_{∞} *is* 2-connected.

Proof. By Lemma 5.1.3.1 and Lemma 5.1.2.13 (i), it suffices to prove that \mathbb{N} is 2-connected; since \mathbb{N} has the smallest element $0 \in \mathbb{N}$, this follows from Corollary 5.1.2.11.

Remark 5.1.3.3. By Lemma 5.1.2.5, Lemma 5.1.3.1 implies that the map $\zeta: Z_{\infty} \to \mathbb{N}$ is a 1-equivalence, so that $\mathbb{N} \cong h^{\zeta^*(\star)}(Z_{\infty})$. The corresponding cocartesian square (5.1.1.1) is then the cocartesian square (3.1.7.10).

For the second example, consider the connected groupoid $\operatorname{pt}_{\mathbb{Z}}$, with it unique object o and maps $o \to o$ given by integers $n \in \mathbb{Z}$, and let $\operatorname{pt}_{\mathbb{Z}}^+ \subset \operatorname{pt}_{\mathbb{Z}}$ be the dense subcategory spanned by non-negative integers.

Lemma 5.1.3.4. The embedding $\gamma: \mathsf{pt}_{\mathbb{Z}}^+ \to \mathsf{pt}_{\mathbb{Z}}$ is 2-connected.

Proof. The fiber of γ over the unique object $o \in \mathsf{pt}_{\mathbb{Z}}$ is \mathbb{Z} considered as a partially ordered set with the standard order; it is 2-connected by Corollary 5.1.2.11 and Example 3.1.3.9, so we are done by Remark 5.1.2.14.

To combine Corollary 5.1.3.2 and Lemma 5.1.3.4, let \mathbb{I} be the Kronecker category \mathbb{I} of Example 2.2.5.4, and consider the functor $\mathbb{I} \to \mathsf{pt}_{\mathbb{Z}}$ sending s to 0 and t to 1.

Lemma 5.1.3.5. *The functor* $\mathbb{I} \to \mathsf{pt}_{\mathbb{Z}}$ *is* 2-connected.

Proof. By its very definition, the functor factors through the embedding γ : $\operatorname{pt}_{\mathbb{Z}}^+ \to \operatorname{pt}_{\mathbb{Z}}$ of Lemma 5.1.3.4, so it suffices to prove that the corresponding functor $\mathbb{I} \to \operatorname{pt}_{\mathbb{Z}}^+$ is 2-connected. But its fiber \mathbb{I}_o over the unique object $o \in \operatorname{pt}_{\mathbb{Z}}$ is Z_{∞} , so we are done by Corollary 5.1.3.2 and Remark 5.1.2.14.

Explicitly, the equivalence $\mathbb{I}_o \cong \mathsf{Z}_\infty$ in the proof of Lemma 5.1.3.5 sends $\langle l, m \rangle \in \mathbb{I}_o$, $l = 0, 1 \in \mathbb{I}$, $m : o \to o$ a non-negative integer, to $2m + l \in \mathsf{Z}_\infty$. The functor

$$\mathsf{Z}_{\infty} \cong \mathbb{I}_{o} \to \mathbb{I}$$

is actually a discrete fibration; both its fibers are identified with the set \mathbb{Z}_+ of non-negative integers $n \ge 0$, and the transition functors are given by $s^*(n) = n + 1$, $t^*(n) = n$.

Remark 5.1.3.6. The name "Kronecker category" comes from the more standard "Kronecker quiver". In fact, a general quiver is by definition a functor $X : \mathbb{I}^o \to Sets$; it has vertices $x \in X(0)$ and edges $x \in X(1)$, and the maps $s, t : X(1) \to X(0)$ send an edge to its source resp. target.

The Kronecker category \mathbb{I} is the smallest finite category with infinite total localization $\operatorname{pt}_{\mathbb{Z}} \cong h^{\natural}(\mathbb{I})$. For our applications, what is inconvenient about \mathbb{I} is that it is not a partially ordered set. To achieve the same result with a finite partially ordered set, compose the functor $\mathbb{I} \to \operatorname{pt}_{\mathbb{Z}}$ with the projection $\operatorname{pt}_{\mathbb{Z}} \to \operatorname{pt}_{\mathbb{Z}/2\mathbb{Z}}$ induced by the quotient map $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$, and let \mathbb{V} be its fiber over $o \in \operatorname{pt}_{\mathbb{Z}/2\mathbb{Z}}$. We then have a commutative diagram

where the rightmost vertical arrow is induced by the map $\mathbb{Z} \to \mathbb{Z}$, $n \mapsto 2n$, and both squares in (5.1.3.2) are cartesian. The horizontal arrows at the top thus have the same fibers as the arrows at the bottom, so they are again 2-connected. The projection $v : \mathbb{V} \to \mathbb{I}$ is a discrete fibration with fibers $\mathbb{Z}/2\mathbb{Z} = \{0,1\}$ and transition functors $s^*(n) = n+1 \mod 2$, $t^*(n) = n \mod 2$, and altogether, (5.1.3.1) factors into the composition

$$(5.1.3.3) Z_{\infty} \cong \mathbb{V}_{o} \cong \mathbb{I}_{o} \xrightarrow{z} \mathbb{V} \xrightarrow{v} \mathbb{I}$$

of discrete fibrations with fibers \mathbb{Z}_+ resp. $\mathbb{Z}/2\mathbb{Z}$. However, unlike \mathbb{I} , the category \mathbb{V} is a partially ordered set. It has four elements, and can be alternatively

described as a standard coproduct (3.1.2.3): we have

$$(5.1.3.4) \qquad \qquad \mathbb{V} \cong \mathsf{V}^o \sqcup_{\{0,1\}} \mathsf{V}^o,$$

where V is the partially ordered set (2.1.1.3), and the coproduct is taken with respect to the left-closed embedding $\{0,1\} \to V^o \cong \{0,1\}^>$. On the first component $V^o \subset V$ of this decomposition, v sends the map $0 \to o$ to s and $1 \to o$ to t, and on the second component, it is the other way around.

Remark 5.1.3.7. The characteristic map $\mathbb{V} \to V$ of the standard pushout square (5.1.3.4) is a cofibration, with fibers $\mathbb{V}_o \cong \{0,1\}$, $\mathbb{V}_0 \cong \mathbb{V}_1 \cong \mathsf{pt}$, and by Remark 5.1.1.4, the localization $h^{\natural}(\mathbb{V}) \cong \mathsf{pt}_{\mathbb{Z}}$ of (5.1.3.2) produces a cocartesian square of categories. In fact, we have a diagram

where $\{0,1\} \to [1]$ is the standard embedding, and both squares as well as the outer rectangle are cocartesian. If one wants to include \mathbb{I} in the picture, one has to replace pt in the bottom left corner of (5.1.3.5) with [1]; we then have $\mathbb{I} \cong [1] \sqcup_{\{0,1\}} [1]$, as in (3.1.7.2).

Remark 5.1.3.8. Lemma 5.1.3.5 immediately implies that for any groupoid \mathcal{C} , with the inertia groupoid $\mathcal{I}(\mathcal{C}) = \operatorname{pt}_{\mathbb{Z}}^{o}\mathcal{C}$ of Lemma 2.3.4.3, we have a natural equivalence $\mathcal{I}(\mathcal{C}) \cong \mathbb{I}^{o}\mathcal{C}$ (and this partially explains our notation for the Kronecker category \mathbb{I}). Alternatively, one can use the 2-connected functors in the top row of (5.1.3.2) and obtain an equivalence $\mathcal{I}(\mathcal{C}) \cong \mathbb{V}^{o}\mathcal{C}$. The cocartesian square of Remark 5.1.3.7 then provides a cartesian square

$$\begin{array}{cccc}
\mathcal{I}(\mathcal{C}) & \longrightarrow & \mathcal{C} \\
\downarrow & & \downarrow \\
\mathcal{C} & \longrightarrow & \mathcal{C} \times \mathcal{C}
\end{array}$$

where both functors $\mathcal{C} \to \mathcal{C} \times \mathcal{C}$ are diagonal embeddings.

Let us now introduce a whole series of examples of 2-connected categories. Namely, recall from Subsection 2.2.5 that a category I is *filtered* if any functor $J \to I$ from a finite category J admits a cone, and it in fact suffices to require this for $J = \emptyset$, $\{0,1\}$, \mathbb{I} . Alternatively, it suffices to require that cones exist when J is a

finite partially ordered set (to find a cone for a functor $\mathbb{I} \to I$ from the Kronecker category, compose it with the barycentric subdivision functor $\xi : \mathbb{V} \cong B(\mathbb{I}) \to \mathbb{I}$). It is not diffucult to show that a filtered category is 2-connected but we will need slightly more.

Definition 5.1.3.9. A category I is *homotopy filtered* if for any finite artially ordered set J and functor $\gamma: J \to I$, there exists a functor $\gamma': J^> \to I$ and a morphism $\gamma'|_{I} \to \gamma$.

Proposition 5.1.3.10. Any homotopy filtered category I is 2-connected.

Proof. For any finite partially ordered set J, denote $J' = J^> \times [1] \setminus \{1\}$, where 1 stands for the terminal element. We have a natural projection $J' \to J^>$, and this is a fibration whose fiber J'_j is [0] for j = 1 and [1] otherwise. Since $J^>$ has a terminal element, it is 2-connected by Lemma 5.1.2.10 (ii), and then J' is also 2-connected by Lemma 5.1.2.13 (i).

Now assume given a homotopy filtered category I and a family of groupoids \mathcal{C} over $\langle I, \natural \rangle$. Take two objects $i, i' \in I$ and objects $c \in \mathcal{C}_i$, $c' \in \mathcal{C}_{i'}$. Any zigzag diagram f of the form (5.1.1.2) representing a map from c to c' in the localization of $\langle \mathcal{C}, \natural \rangle$ is finite, and so is its image in I. Thus if we have two such zigzag diagrams f_0 , f_1 , there exists a finite partially ordered set J with two elements $j, j' \in J$, a functor $\gamma : J \to I$ such that $\gamma(j) = i$ and $\gamma(j') = i'$, and two diagrams g_0 , g_1 representing maps from $c \in (\gamma^*\mathcal{C})_j$ to $c' \in (\gamma^*\mathcal{C})_{j'}$ in $h^{\natural}(\gamma^*\mathcal{C})$ such that $\gamma(g_0) = f_0$ and $\gamma(g_1) = f_1$. Since I is homotopy filtered, γ factors as $\gamma = \gamma' \circ \varepsilon$, where $\varepsilon : J \to J'$ is the embedding onto $J \times 1 \subset J'$, and γ' is a functor from J' to I. However, J' is 2-connected, so that $\gamma'^*\mathcal{C} \cong \mathcal{C}_i \times J'$ a constant family. Thus $\varepsilon(g_0) = \varepsilon(g_1) \cdot g$ for some $g : c \to c$ in \mathcal{C}_i , and then $f_0 = f_1 \cdot g$. Therefore $\langle \mathcal{C}, \natural \rangle$ is localizable, and the natural functor $h_i : \mathcal{C}_i \to h^{\natural}(\mathcal{C})$ is full.

Moreover, if we have two maps $g, g': c \to c$ in C_i such that $h_i(g) = h_i(g')$, then they are related by a finite chain of cancellation rules involving a finite number of diagrams (5.1.1.2) in C. Then again, we can choose a finite partially ordered set J with an element $j \in J$ and a functor $\gamma: J \to I$ such that $\gamma(j) = i$, and g becomes equal to g' after projecting to $h^{\natural}(\gamma^*C)$. Extending γ to $\gamma': J' \to I$, we see that g and g' are all the more equal after projection to $h^{\natural}(\gamma'^*C) \cong C_i$, so that g = g'. Therefore the functor h_i is also faithful.

Finally, for any $i' \in I$ and $c' \in \mathcal{C}_{i'}$, we can take $J = \{j, j'\}$ with trivial order, and let $\gamma(j) = i$, $\gamma(j') = i'$. Then extending γ to J', we obtain a diagram f in I representing a map from i to i' in $h(I, \natural)$, and since \mathcal{C} is a family over $\langle I, \natural \rangle$, it is actually a bifibration, so that f admits a lifting to a map $\widetilde{f}: c \to c'$ in

 $h^{\natural}(\mathcal{C})$ for some $c \in \mathcal{C}_i$. Therefore h_i is essentially surjective, and we are done by Lemma 5.1.2.12 (ii).

In particular, a filtered category is trivially homotopy filtered, so Proposition 5.1.3.10 applies. Note that *I* is *not* required to be small. As an application of this, and motivated by Remark 5.1.1.4, let us introduce the following version of filtered colimits for large categories and fully faithful functors.

Lemma 5.1.3.11. Assume given a cofibration $C \to I$ such that I is filtered, and all transition functors $f_!: C_i \to C_{i'}$ are fully faithful. Then C is localizable with respect to the class \sharp of maps cocartesina over I, and for any $i \in I$, the localization functor $h: C_i \to h^{\sharp}(C)$ is fully faithful.

Proof. For any $i,i' \in I$, the comma-fiber $i \times i' \setminus I = i \times i' \setminus_{\delta} I$ of the diagonal embedding $\delta: I \to I \times I$ is the category of objects $i'' \in I$ equipped with maps $f: i \to I''$, $f': i' \to i''$, and it is obviously filtered, For any objects $c \in \mathcal{C}_i$, $c' \in \mathcal{C}_{i'}$, we have a functor $\mathcal{C}(f_!(c), f'_!(c')) : i \times i' \setminus I \to \text{Sets}$, thus a discrete cofibration over $i \times i' \setminus I$, and since all the transition functors are fully faithful, the cofibration is constant along all maps. Then by Proposition 5.1.3.10, it is trivial. Therefore setting

$$(5.1.3.7) h^{\sharp}(\mathcal{C})(c,c') = \operatorname{colim}_{(i \times i') \setminus I} \mathcal{C}(f_!(c), f_!(c'))$$

gives a well-defined set, and the map $C(f_!(c), f'_!(c)) \to h^{\sharp}(C)(c, c')$ is an isomorphism for any $\langle i'', f, f' \rangle \in i \times i' \setminus I$. It is then an easy exercise to define compositions for the sets (5.1.3.7) turning $h^{\sharp}(C)$ into a category, and to show that the obvious functor $h: C \to h^{\sharp}(C)$ is indeed a localization.

Definition 5.1.3.12. Under the assumptions of Lemma 5.1.3.11, the 2-colimit $\operatorname{colim}_{I}^{2} \mathcal{C}$ of the cofibration \mathcal{C} is $\operatorname{colim}_{I}^{2} \mathcal{C} = h^{\sharp}(\mathcal{C})$.

Example 5.1.3.13. For any category \mathcal{C} , full small subcategories $\mathcal{C}' \subset \mathcal{C}$ and inclusions between them form a category $I(\mathcal{C})$ (were it small, it would be a partially ordered set). Then if we let $\widetilde{\mathcal{C}} \subset \mathcal{C} \times I(\mathcal{C})$ be the full subcategory spanned by pairs $\langle c, \mathcal{C}' \rangle$ such that $c \in \mathcal{C}'$, the projection $\widetilde{\mathcal{C}} \to I(\mathcal{C})$ is a cofibration, and $\mathcal{C} \cong \operatorname{colim}_{I(\mathcal{C})} \widetilde{\mathcal{C}}$. Alternatively, one can replace $I(\mathcal{C})$ with any subcategory I' that is 0-cofinal in the sense of Example 2.2.5.10.

5.2. Localization over Δ .

5.2.1. Simplicial expansions. Another series of examples of 2-connected categories and functors is provided by the simplicial enhancements and simplicial

replacements of Definition 4.2.1.1. Recall that for any category I and closed class v of maps in I, we denote by + the class of special maps in $\Delta^v I$.

Lemma 5.2.1.1. For any category I and class of morphisms v in I, the functor (4.2.1.7) induces a 2-equivalence $\xi: \langle \Delta^v I, + \rangle \to \langle I, \star \rangle$, and in particular, ξ is 2-connected. Moreover, the functor

$$\gamma = \xi^o : (\Delta I^o)^o \to I$$

is also 2-connected.

Proof. The first claim immediately follows from Proposition 4.2.2.3. For the second claim, it suffices to show that for any family of groupoids $\mathcal{C}'/(\Delta I^o)^o$ constant along $\gamma^*(\star)$, the functors (5.1.1.7) are equivalences. This amounts to checking that for any $i \in I$, the comma-fiber $i \setminus I'$ is 2-connected. But as in the proof of Proposition 4.2.2.3, we have a diagram

pt
$$\longrightarrow (\Delta_+ I^o)_i^o \longleftarrow i \setminus I'$$
,

and both functors in the diagram are right-reflexive. Since pt is 2-connected, the other two categories are then 2-connected by Lemma 5.1.2.4.

It turns out that Lemma 5.2.1.1 has quite a lot of applications and generalizations. For a first generalization, as in Subsection 4.1.1, consider the factorization system $\langle \mathsf{d},\mathsf{f} \rangle$ on Δ consisting of surjective resp. injective maps. For any category I with a closed class of maps v, define the *restricted simplicial expansion* $\Delta_\mathsf{f}^v I$ by $\Delta_\mathsf{f}^v I = \Delta_\mathsf{f} \times_\Delta \Delta^v I$, and by abuse of notation, let + be the class of maps in $\Delta_\mathsf{f}^v I$ that are special as maps in $\Delta^v I$.

Corollary 5.2.1.2. For any category I with a closed class of maps v, the morphism $\xi: \langle \Delta_f^v I, + \rangle \to \langle I, \star \rangle$ induced by (4.2.1.7) is a 2-equivalence.

Proof. Let I^p be the category with the same objects as I, and whose morphisms are those of I plus an extra morphism $p_i: i \to i$ for any $i \in I$, subject to relations $p_{i'} \circ f = f \circ p_i = f$ for any $f: i \to i'$ (in particular, $p_i^2 = p_i$). Informally, I^p is obtained by formally adding a new identity map to any object in I. Let $v: I^p \to I$ be the forgetful functor sending p_i to id_i , obviously 2-connected, and note that v also defines a closed class of maps in I^p (not containing any of the p_i). Moreover, the simplicial expansion $\Delta^v I^p$ can be described as follows. Consider the fibration $\sigma: \mathrm{ar}^d(\Delta) \to \Delta$ of (the dual version of) Lemma 2.3.3.26 (ii), and let $\Delta^d = \mathrm{ar}^d(\Delta)_{\sigma^\dagger \natural}$ be the underlying discrete fibration. Since $\sigma^\flat \natural = \tau^* f$, Δ^d is the category of surjective arrows $p: [n] \to [m]$ in Δ , with morphisms given by diagrams (2.1.1.1) with injective arrow on the right. Then we have

 $\Delta^v I^p \cong \Delta^d \times_{\Delta_f} \Delta_f^v I$, with the fibration $\sigma : \Delta^v I^p \to \Delta$ being the structural fibration.

Now, as in Example 2.2.3.2, the projection $\tau:\Delta^{\mathsf{d}}\to\Delta_{\mathsf{f}}$ has the fully faithful right-adjoint functor $\eta:\Delta_{\mathsf{f}}\to\Delta^{\mathsf{d}}$, and this induces a fully faithful right-adjoint $\eta:\Delta_{\mathsf{f}}^vI\to\Delta^vI^p$ to the projection $\tau:\Delta^vI^p\to\Delta_{\mathsf{f}}^vI$. Then $\xi:\langle\Delta_{\mathsf{f}}^vI,+\rangle\to\langle I,\star\rangle$ factors as

$$(5.2.1.1) \qquad \langle \Delta_{\mathbf{f}}^{v} I, + \rangle \xrightarrow{\eta} \langle \Delta^{v} I^{p}, \tau^{*}(+) \rangle \xrightarrow{\xi} \langle I^{p}, \nu^{*}(\star) \rangle \xrightarrow{\nu} \langle I, \star \rangle.$$

Since ν is 2-connected, the last morphisms in (5.2.1.1) is a 2-equivalence, and the first morphism is a 2-equivalence by Lemma 5.1.2.4, so it suffices to prove that the middle morphism is also a 2-equivalence. But since a surjective map in Δ is special, we have $+ \subset \tau^*(+)$, so that by Lemma 5.2.1.1, it suffices to check that a fibration $\mathcal{C} \to I^p$ is constant along the maps p_i if $\xi^*\mathcal{C}$ is constant along all the maps in $\tau^*(+)$. This is clear: the arrow $p_i: i \to i$ defines an object $p_i' \in (\Delta I^p)_{[1]}$, and if we consider the cartesian lifting $s_i: i \to p_i'$ of the initial embedding $s: [0] \to [1]$, then $\tau(s_i) = \operatorname{id}$ is special, and $\xi(s_i) = p_i$.

For a first application, note that the notion of a 2-connected functor is not stable under base change: the pullback $\varphi^*I' \to I''$ of a 2-connected functor $\gamma:I' \to I$ with respect to a functor $\varphi:I'' \to I$ need not be 2-connected. To insure that a functor γ is 2-connected together with all its pullbacks, one needs to impose further conditions. For example, by Remark 5.1.2.14, it suffices to require that γ is a fibration or a cofibration with 2-connected fibers. We will need the following slight weakening of the latter.

Definition 5.2.1.3. A functor $\gamma: I' \to I$ is a locally 2-connected if

- (i) for any object $i \in I$, the fiber I'_i is 2-connected, and
- (ii) for any morphism $f: i \to i'$ in I and object $\widetilde{i} \in I'_i$, the category $I'(f, \widetilde{i})$ of morphisms $\widetilde{f}: \widetilde{i} \to \widetilde{i}'$ such that $\gamma(\widetilde{f}) = f$ is 2-connected.

We note that if $\gamma:I'\to I$ is a cofibration, then the category $I'(f,\widetilde{i})$ has an initial object given by a cocartesian lifting of the map f, so that Definition 5.2.1.3 (ii) is trivially satisfied by Lemma 5.1.2.10 (ii), and γ is locally 2-connected iff it has 2-connected fibers. We also note that Definition 5.2.1.3 is trivially stable under pullbacks.

Proposition 5.2.1.4. A functor $\gamma: I' \to I$ locally 2-connected in the sense of Definition 5.2.1.3 is 2-connected.

Proof. Let $v = \gamma^*$ Id be the class of maps f in I' such that $\gamma(v)$ is an identity map in I, and consider the simplicial enhancement $\Delta^v I'$ and the simplicial replacement ΔI . Then γ induces a functor $\Delta(\gamma): \Delta^v I' \to \Delta I$, and by Lemma 5.2.1.1, it suffices to prove that this functor is 2-connected. It is obviously a fibration, so that by Lemma 5.1.2.13 (ii), it suffices to check that the fiber $(\Delta^v I')_{\langle [n], i_{\bullet} \rangle}$ is 2-connected for any $\langle [n], i_{\bullet} \rangle \in \Delta I$.

If n=0, so that $i_{\bullet}=i$ is a single object in I, then $(\Delta^v I')_{\langle [0],i_{\bullet}\rangle}$ is equivalent to I'_i , so we are done by Definition 5.2.1.3 (i). If n is strictly positive, then we have the natural map $s:[n-1]\to[n]$ and the corresponding transition functor

$$(5.2.1.2) s^*: (\Delta^v I')_{\langle [n], i_{\bullet} \rangle} \to (\Delta^v I')_{\langle [n-1], s^* i_{\bullet} \rangle},$$

and we may assume by induction that the right-hand side is 2-connected. Then to finish the proof, it suffices to observe that (5.2.1.2) is a fibration, and its fiber over an object $\langle [n'], i'_{\bullet} \rangle \in (\Delta^v I')_{\langle [n-1], s^* i_{\bullet} \rangle}$ is equivalent to $I'(f, i'_{n'})$, where $f: i_{n-1} \to i_n$ is the map in the diagram (4.2.1.1). Thus we are done by Definition 5.2.1.3 (ii) and Remark 5.1.2.14.

5.2.2. Regular Segal categories. One can also generalize Lemma 5.2.1.1 to Segal categories in the sense of Section 4.2 that are not simplicial expansions. To do this, assume given a Segal category $\mathcal C$ that is regular in the sense of Definition 4.2.4.4, and let $\pi: \mathcal C \to \Delta$ be the structural fibration.

Definition 5.2.2.1. The *skeleton* $sk(\mathcal{C})$ of a regular Segal category \mathcal{C} is its 2-simplicial expansion $sk(\mathcal{C}) = \Delta(\mathcal{C}\|\Delta)$ of Definition 4.2.4.2 with respect to the class of identity maps in $\mathcal{C}_{[0]}$.

By Lemma 4.2.4.5, $\operatorname{sk}(\mathcal{C})$ is a 2-category in the sense of Example 4.2.3.5. To see it explicitly, note that by regularity of \mathcal{C} , for any objects $c_0 \in \mathcal{C}_{[0]}$, $c_1, c_1' \in \mathcal{C}_{[1]}$ and morphisms $s: c_0 \to c_1$, $t: c_0 \to c_1'$ such that $\pi(s) = s$, $\pi(t) = t$, and t is cartesian over Δ we have a cocartesian square in \mathcal{C} of the form

$$\begin{array}{ccc}
c_0 & \xrightarrow{s} & c_1' \\
t \downarrow & & \downarrow \\
c_1 & \longrightarrow & c_2
\end{array}$$

with some $c_2 \in \mathcal{C}_{[2]}$. Then the objects of $\mathrm{sk}(\mathcal{C})$ are the objects of $\mathcal{C}_{[0]}$, and for any $c,c' \in \mathcal{C}_{[0]}$, the category of morphisms $\mathrm{sk}(\mathcal{C})(c,c')$ is the category of diagrams

$$(5.2.2.1) c \xrightarrow{s} c_1 \xleftarrow{t} c'$$

in C with $c_1 \in C_{[1]}$, $\pi(s) = s$, $\pi(t) = t$, and t cartesian over Δ . The identity map $c_0 \to c_0$ corresponds to the diagram (5.2.2.1) with $c_1 = e^*c$, where $e : [1] \to [0]$ is the projection, and the composition of morphisms $c_0 \to c_0'$, $c_0' \to c_0''$ represented by diagrams (5.2.2.1) with middle terms c_1 , c_1' is the diagram

$$c_0 \longrightarrow m^*(c_1 \sqcup_{c'_0} c'_1) \longleftarrow c''_0,$$

where as in (4.2.3.2), $m : [1] \to [2]$ sends 0 to 0 and 1 to 2. Moreover, regularity of \mathcal{C} immediately implies that all maps between diagrams (5.2.2.1) are invertible, so that $sk(\mathcal{C})$ is in fact a (1,2)-category (or equivalently, a 2-family of groupoids over a point).

Lemma 5.2.2.2. Assume given a Segal category \mathcal{C} that is regular in the sense of Definition 4.2.4.4, and assume that its skeleton $\operatorname{sk}(\mathcal{C})$ is bounded in the sense of Definition 4.2.3.11. Denote by + the class of maps in \mathcal{C} special in the sense of Definition 4.2.4.1. Then $\langle \mathcal{C}, + \rangle$ is localizable, and $h^+(\mathcal{C})$ is naturally equivalent to the truncation $\overline{\operatorname{sk}(\mathcal{C})}$ of the (1,2)-category $\operatorname{sk}(\mathcal{C})$ in the sense of Example 4.2.3.13. Moreover, assume given a Segal category \mathcal{C}' and a Segal functor $\pi:\mathcal{C}'\to\mathcal{C}$ that is an epivalence, and an equivalence over $[0] \in \Delta$. Then $\langle \mathcal{C}', + \rangle$ is also localizable, and $h^+(\pi):h^+(\mathcal{C}')\to h^+(\mathcal{C})$ is an equivalence.

Proof. For any $[n] \in \Delta$, we have a unique special map $t:[0] \to [n]$, so that for any $c \in \mathcal{C}'$, we have a canonical special map $t:c_0=t^*c\to c$, and then for any map $f:c\to c'$ in \mathcal{C}' , we have, up to an isomorphism, a unique diagram (5.2.2.1) in \mathcal{C}' equipped with a map $g:c_1\to c'$ such that $f\circ t=g\circ s$ and $g\circ t=t$. Moreover, since π is an equivalence over [0] and an epivalence over [1], isomorphism classes of diagrams (5.2.2.1) in \mathcal{C} and \mathcal{C}' are the same. Then sending $c\in \mathcal{C}'$ to $c_0=t^*c$ and $f:c\to c'$ to the class of this unique diagram defines a functor $h:\mathcal{C}'\to \overline{\operatorname{sk}(\mathcal{C})}$ that inverts special maps. Moreover, any functor $\gamma:\mathcal{C}'\to \mathcal{E}$ to some \mathcal{E} that inverts special maps factors uniquely through h, with a map represented by a diagram (5.2.2.1) going to $\gamma(t)^{-1}\circ\gamma(s)$. Thus $\overline{\operatorname{sk}(\mathcal{C})}$ indeed gives the localization $h^+(\mathcal{C}')\cong h^+(\mathcal{C})$.

Example 5.2.2.3. For any category \underline{I} , the product $I \times \Delta$ is a regular Segal category, we have $\operatorname{sk}(I \times \Delta) \cong \Delta I$ and $\overline{\operatorname{sk}(I \times \Delta)} \cong I$, and the localization functor $\Delta I \to h^+(\Delta I) \cong I$ is the functor (4.2.1.7).

In particular, consider a bounded Segal category $\mathcal{C} \to \Delta$ that is a family of groupoids (or equivalently, a 2-family of groupoids over a point in the sense of Definition 4.2.3.10). Then it is regular by Example 4.2.4.6, thus lies within

the scope of Lemma 5.2.2.2. Thus \mathcal{C} is localizable with respect to the class of special maps, with the localization $h^+(\mathcal{C})$ described in Lemma 5.2.2.2. Note that in particular, the 1-opposite Segal category is also bounded, and we have

$$(5.2.2.2) h^+(\mathcal{C}^{\iota}) \cong h^+(\mathcal{C})^{o}.$$

Moreover, since \mathcal{C} is a family of groupoids, every map in \mathcal{C} is cartesian over Δ , so that the universal special functor (4.2.4.2) is a Segal functor and an equivalence. Since $\mathcal{C}_{[0]}$ is a groupoid, the localization functor $h: \mathcal{C} \to h^+(\mathcal{C})$ sends $\mathcal{C}_{[0]} \subset \mathcal{C}$ into the isomorphism groupoid $h^+(\mathcal{C})_\star \subset h^+(\mathcal{C})$, and we have a commutative diagram

$$(5.2.2.3) \qquad \begin{array}{c} \operatorname{sk}(\mathcal{C}) & \longrightarrow & \pi_0(\operatorname{sk}(\mathcal{C})) = \Delta h^+(\mathcal{C}) \\ \downarrow & & \downarrow \\ \mathcal{C} \cong \Delta^{\natural}(\mathcal{C}\|\Delta) & \xrightarrow{\operatorname{Ind}(h \times \operatorname{id})} & \Delta^{\star}(h^+(\mathcal{C}) \times \Delta\|\Delta) = \Delta^{\star}h^+(\mathcal{C}). \end{array}$$

Lemma 5.2.2.4. If a Segal functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between bounded 2-families of groupoids \mathcal{C} , \mathcal{C}' over a point is 1-full resp. 2-full in the sense of Definition 4.2.3.6, then the localization $h^+(\gamma): h^+(\mathcal{C}) \to h^+(\mathcal{C}')$ is full resp. fully faithful, and if γ is essentially surjective, then so is $h^+(\gamma)$.

Proof. By (5.2.2.3), the special functor $sk(\mathcal{C}) \to \mathcal{C}$ is a Segal functor of the form (4.2.4.9), thus 2-fully faithful and essentially surjective by Example 4.2.3.8. The same applies to \mathcal{C}' , so that γ is 1-full or 2-full if and only if so is $sk(\gamma)$. Then the essential surjectivity claim immediately follows from (5.2.2.3), and to deduce the rest, it suffices to observe that if a functor $\mathcal{G} \to \mathcal{G}'$ between two essentially small groupoids is essentially surjective resp. an epivalence, then the induced map $\pi_0(\mathcal{G}) \to \pi_0(\mathcal{G}')$ is surjective resp. an isomorphism.

Now let \mathcal{C} be a bounded 2-family of groupoids over some category I. Then by Example 4.2.4.8, \mathcal{C} is co-regular but not necessarily regular, so it lies outside of scope of Lemma 5.2.2.2. However, the (1,2)-opposite Segal category \mathcal{C}^{σ} is regular, so that for any closed class v of maps in $\mathcal{C}_{[0]}$, the twisted 2-simplicial expansion $\Delta_{\sigma}^{v}(\mathcal{C}\|\Delta)$ of (4.2.5.1) is a Segal category. We have a diagram of Segal functors

$$(5.2.2.4) \qquad \qquad \mathcal{C} \xrightarrow{\beta} \Delta_{\sigma}^{\natural}(\mathcal{C}\|\Delta) \xleftarrow{\lambda} \Delta_{\sigma}^{v}(\mathcal{C}\|\Delta),$$

where β corresponds to (4.2.5.3), and λ is the dense embedding (4.2.4.9). If $v \subset \star$ consists of isomorphisms, $\Delta_{\sigma}^{v}(C||\Delta)$ is a bounded 2-family of groupoids over the point, thus regular by Example 4.2.4.6.

Lemma 5.2.2.5. Any bounded 2-family of groupoids C over a category I is localizable with respect to the class of special maps, and the projection $h^+(C) \to I$ is a fibration. Moreover, the localization functor $h: C \to h^+(C)$ factors as $h \cong h' \circ \beta$, where β is as in (5.2.2.4) and $h': \Delta_{\sigma}^{\natural}(C\|\Delta) \to h^+(C)$ is a special functor, and if $v \subset *$ is a closed class $v \subset *$ of isomorphisms in $C_{[0]}$, then the special functor $h' \circ \lambda : \Delta_{\sigma}^{v}(C\|\Delta) \to h^+(C)$ induces an equivalence $h^+(\Delta_{\sigma}^{v}(C\|\Delta)) \cong h^+(C)$.

Proof. Since for any $i \in I$, $C|_{i \times \Delta}$ is regular by Example 4.2.4.6, the first claim directly follows from Lemma 5.1.1.12. Moreover, the (1,2)-opposite Segal category C^{σ} is localizable with respect to special maps by Lemma 5.2.2.2, and the equivalence (5.2.2.2) extends to an equivalence $h^+(C^{\sigma}) \cong h^+(C)^{\sigma}$. Then the localization functor $h: C^{\sigma} \to h^+(C)^{\sigma}$ is special, and we can define h' as the composition

$$\Delta^{\natural}_{\sigma}(\mathcal{C}\|\Delta) \xrightarrow{\Delta(h)} \Delta^{\natural}_{\sigma}(h^{+}(\mathcal{C}) \times \Delta\|\Delta) \cong \Delta^{\natural}(h^{+}(\mathcal{C})) \xrightarrow{\quad \xi \quad} \mathcal{C},$$

where ξ is the special functor (4.2.1.7). Then $h' \circ \lambda$ is special, thus factors through the localization $h^+(\Delta_\sigma^v(\mathcal{C}\|\Delta))$, and Lemma 5.2.2.2 together with (4.2.4.6) immediately show that the induced functor $h^+(\Delta_\sigma^v(\mathcal{C}\|\Delta)) \to h^+(\mathcal{C})$ is essentially bijective and fully faithful.

5.2.3. Complete 2-families of groupoids. A particular example of a 2-family of groupoids \mathcal{C} over some category I is given by 2-families $\Delta^{\flat}(\mathcal{C}|I)$ of Example 4.2.3.12. It turns out that one can use localization to characterize precisely the 2-families that arise in this way.

Definition 5.2.3.1. A family of groupoids $C \to I \times \Delta$ is *reflexive* if it is fully faithful along the map $e : [n] \to [0]$ for any $[n] \in \Delta$.

Definition 5.2.3.2. A family of groupoids $C \to I \times \Delta$ is *complete* if the commutative square

(5.2.3.1)
$$\begin{array}{ccc} \mathcal{C}_{[3]} & \xrightarrow{\mu_0 \times \mu_1} & \mathcal{C}_{[1]} \times \mathcal{C}_{[1]} \\ e^* & & \uparrow e^* \times e^* \\ \mathcal{C}_{[0]} & \longrightarrow & \mathcal{C}_{[0]} \times \mathcal{C}_{[0]} \end{array}$$

induced by (3.1.7.3) is cartesian.

Proposition 5.2.3.3. (i) For any fibration $\pi: \mathcal{C} \to I$, the 2-family of groupoids $\Delta^{\flat}(\mathcal{C}|I)$ of Example 4.2.3.12 is reflexive in the sense of Definition 5.2.3.1, bounded in the sense of Definition 4.2.3.11, and complete in the sense of Definition 5.2.3.2.

(ii) Conversely, assume given a complete 2-family of groupoids \mathcal{C} over a category I. Then \mathcal{C} is reflexive. Moreover, if \mathcal{C} is bounded, with the localization $\overline{\mathcal{C}} = h^+(\mathcal{C})$ of Lemma 5.2.2.5 and the fibration $\overline{\mathcal{C}} \to I$, then we have $\mathcal{C}^{red} \cong \Delta^{\flat}(\overline{\mathcal{C}}|I)$, where \mathcal{C}^{red} is the reduction (4.2.3.6).

Proof. For (i), reflexivity is obvious, and so is boundedness: by the Segal condition, it suffices to check it over $[1] \in \Delta$, and then for any $i \in I$, the fiber of (4.2.3.5) over $c \times c' \in \mathcal{C}_{[0] \times i} \times \mathcal{C}_{[0] \times i} \cong \varepsilon_* \varepsilon^* \mathcal{C}_{[1] \times i}$ is the Hom-set $\mathcal{C}_i(c,c')$. To see that $\Delta^{\flat}(\mathcal{C}|I)$ is complete, note that the fibered product in (5.2.3.1) is the groupoid of functors $c_{\:\raisebox{.2ex}{\text{\circ}}}: [3] \to \mathcal{C}$ such that $\pi \circ c_{\:\raisebox{.2ex}{\text{\circ}}}: [3] \to I$ is isomorphic to the constant functor with value i, and the maps $c_0 \to c_2$, $c_1 \to c_3$ are invertible. This implies that $c_1 \to c_2$ is invertible, with right and left-inverses given by $c_0 \to c_1$, $c_2 \to c_3$, and then the whole $c_{\:\raisebox{.2ex}{\text{\circ}}}$ is isomorphic to a constant functor. Since $\Delta^{\flat}(\mathcal{C}/I)$ is reflexive, $e^* \times e^*$ in (5.2.3.1) is fully faithful, so this finishes the proof.

For (ii), assume first that $I=\operatorname{pt}$, so that $\mathcal{C}\to\Delta$ is a 2-family over the point. Let $\mathcal{C}^e\subset\mathcal{C}$ be the full subcategory spanned by essential images of the functors $e^*:\mathcal{C}_{[0]}\to\mathcal{C}_{[n]},\ [n]\in\Delta$. Then \mathcal{C}^e is also a complete 2-family, and we have $\pi_0(\mathcal{C}^e|\Delta)\cong\Delta\times\pi_0(\mathcal{C}_{[0]})$. Thus any object $c\in\mathcal{C}_{[0]}$ defines a section $c:\Delta\to\mathcal{C}^e$, and to show that \mathcal{C} is reflexive, it suffices to prove that $\pi_1(\mathcal{C}^e,c)$ is a constant simplicial group. But by the Segal condition, it is actually the nerve of the small category, this category must be a groupoid by Lemma 4.1.4.3, and then since \mathcal{C}^e is complete, the groupoid must be discrete. Since it is connected, it is trivial.

Now assume further that \mathcal{C} is bounded. Then (5.2.2.3) provides a functor $\varphi: \mathcal{C} \to \Delta^{\star}(\overline{\mathcal{C}})$ whose target is a reduced 2-family of groupoids over $I = \operatorname{pt}$. To prove that φ induces an equivalence $\mathcal{C}^{red} \cong \Delta^{\star} \overline{\mathcal{C}}$, it suffices to check that it is an equivalence over [0] and an epivalence over [1]. Over [0], note that since \mathcal{C} is complete, a diagram (5.2.2.1) represents an invertible map in $\overline{\mathcal{C}}$ only if $c_1 \cong e^*c_0$. Therefore to compute $(\Delta^{\star} \overline{\mathcal{C}})_{[0]} \cong \overline{\mathcal{C}}_{\star}$, we may replace \mathcal{C} with its full subcategory $\mathcal{C}^e \subset \mathcal{C}$, and then since \mathcal{C} is reflexive, $\mathcal{C}^e \cong \Delta \times \mathcal{C}_{[0]}$ and the claim is obvious. Then over [1], the fiber $\mathcal{C}_{c_0 \times c_0'}$ of the projection (4.2.3.5) over $c_0 \times c_0' \in \mathcal{C}_{[0]} \times \mathcal{C}_{[0]}$ is the groupoid of diagrams (5.2.2.1), and the corresponding fiber for $\Delta^{\star} \overline{\mathcal{C}}$ is the set of isomorphism classes of its objects.

Finally, in the case of an arbitrary I, reflexivity is in any case defined separately over each $i \in I$, and the localization functor $h : \mathcal{C} \to \overline{\mathcal{C}}$ of Lemma 5.2.2.5 is cartesian over I, so that we still have a functor

(5.2.3.2)
$$\varphi: \mathcal{C} \cong \Delta^{\flat}(\mathcal{C}||\Delta|I) \to \Delta^{\flat}(\overline{\mathcal{C}}|I)$$

between 2-families with reduced target. Moreover, it factors through a functor

 $\mathcal{C}^{red} \to \Delta^{\flat}(\overline{\mathcal{C}}|I)$ that is an equivalence over any $i \in I$, so it is itself an equivalence.

Remark 5.2.3.4. To see the functor (5.2.3.2) more explicitly, one can use the interpretation of 2-simplicial expansions in terms of cartesian squares (4.2.4.3). Namely, the localization functor h is a morphism of relative categories $\langle \mathcal{C}, + \rangle \rightarrow \langle \overline{\mathcal{C}}, \flat \rangle$, thus induces a functor

$$\Delta(h): \Delta^+(\mathcal{C}|I) \to \Delta^{\flat}(\overline{\mathcal{C}}|I).$$

Then $\delta: \Delta \to \Delta^+\Delta$ of (4.2.2.2) lifts to a functor $\delta: \mathcal{C} \to \Delta^+(\mathcal{C}|I)$, and the composition

$$\mathcal{C} \xrightarrow{\delta} \Delta^+(\mathcal{C}|I) \xrightarrow{\Delta(h)} \Delta^{\flat}(\overline{\mathcal{C}}|I),$$

is exactly the functor (5.2.3.2).

Remark 5.2.3.5. As an application of Proposition 5.2.3.3, one can characterize functors $\gamma:I'\to I$ that are proper in the sense of Definition 2.4.1.1: an essentially small functor γ is proper iff for any n>l>0 and functor $[n]\to I$, the commutative square of categories

$$(5.2.3.3) \qquad [0] \times_I I' \longrightarrow [n-l] \times_I I'$$

$$\downarrow \qquad \qquad \downarrow$$

$$[l] \times_I I' \longrightarrow [n] \times_I I'$$

induced by (3.1.7.9) is cocartesian. To construct the relative functor category $\operatorname{Fun}(I'|I,\mathcal{C})$ for some target category \mathcal{C} , one first constructs the fibration $\Delta^{\natural}\operatorname{Fun}(I'|I,\mathcal{C}) \to \Delta^{\natural}I$ with fibers $\operatorname{Fun}([n] \times_I I',\mathcal{C})$, and then the fact that (5.2.3.3) is cocartesian insures that this is a Segal fibration; to recover $\operatorname{Fun}(I'|I,\mathcal{C})$, one then takes the localization with respect to special maps. We do not give any details since we will not need this.

We will need a slight generalization of Proposition 5.2.3.3. Namely, note that (4.2.3.5) and (4.2.3.6) actually make sense for an arbitrary family of groupoids $C \rightarrow I \times \Delta$.

Definition 5.2.3.6. A *weak* 2-*family of groupoids* over a category I is a family of groupoids $C \to I \times \Delta$, with reduction (4.2.3.6), such that for any $n \ge 1$, the functor

$$\mathcal{C}_{[n]} \to \mathcal{C}^{red}_{[1]} \times_{\mathcal{C}_{[0]}} \mathcal{C}_{[n-1]}$$

induced by (3.1.7.9) with l=1 is an epivalence. A weak 2-family of groupoids \mathcal{C} over I is bounded if $s^* \times t^* : \mathcal{C}_{[1]} \to \mathcal{C}_{[0]} \times \mathcal{C}_{[0]}$ is small.

Lemma 5.2.3.7. For any weak 2-family of groupoids C over a category I, the reduction C^{red} is a reduced 2-family of groupoids, bounded resp. reflexive if so is C, and if C is reflexive, then C^{red} is complete if and only if so is C. If this happens, then C is localizable with respect to the class of special maps, and $h^+(C) \to h^+(C^{red})$ is an equivalence. Moreover, $h^+(-)$ sends semicartesian squares of bounded reflexive complete weak 2-families over $[1]^2$ to semicartesian squares.

Proof. By definition, we have an epivalence $C_{[n]} \to C_{[n]}^{red}$ for any $[n] \in \Delta$, it is an equivalence for n=1, and then the epivalence (5.2.3.4) gives an epivalence $C_{[n]} \to C_{[1]}^{red} \times_{C_{[0]}} C_{[n-1]}^{red}$ that must factor through an equivalence $C_{[n]}^{red} \to C_{[1]}^{red} \times_{C_{[0]}} C_{[n]}^{red}$ is a Segal category by induction on n. Since $C_{[1]} \to C_{[1]}^{red}$ is an epivalence, C is bounded if and only if so is C^{red} . If C is reflexive, then $e^*: C_{[0]}^{red} \cong C_{[0]} \to C_{[1]} \to C_{[1]}^{red}$ is full, and since it has a section, it is also faithful, so that C^{red} is reflexive over [1], and then over any [n] by the Segal condition. If C, hence also C^{red} is reflexive, then $e^* \times e^*$ in (5.2.3.1) is fully faithful, so the square is cartesian if and only if it is weakly semicartesian, and by Lemma 2.3.3.6, this holds for C if and only if it holds for C^{red} . If it does hold, then $h^+(C^{red})$ exists by Proposition 5.2.3.3, and $h^+(C) \cong h^+(C^{red})$ by Lemma 5.2.2.2.

Finally, for the last claim, assume given a semicartesian square of weak 2-families over $[1]^2$, and as in (2.1.3.1), denote by $\mathcal{C}, \mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_{01} \to \Delta$ its fibers over 0×0 , 1×0 , 0×1 , 1×1 . Then we have a commutative diagram

$$\begin{array}{cccc} \mathcal{C}_{01} & \longrightarrow & \mathcal{C}^{\textit{red}}_{01} \\ \downarrow & & \downarrow \\ \mathcal{C}_{0} \times_{\mathcal{C}} \mathcal{C}_{1} & \longrightarrow & \mathcal{C}^{\textit{red}}_{0} \times_{\mathcal{C}^{\textit{red}}} \mathcal{C}^{\textit{red}}_{1} \end{array}$$

of families of groupoids over Δ , the top and the left arrows are 2-full, and the bottom arrow is 1-full by Lemma 4.2.3.9, so that the right arrow is also 1-full. But since the simplicial expansion $\Delta^{\flat}(-)$ commutes with cartesian products, we have $\mathcal{C}_0^{red} \times_{\mathcal{C}^{red}} \mathcal{C}_1^{red} \cong \Delta^{\flat}(h^+(\mathcal{C}_0) \times_{h^+(\mathcal{C})} h^+(\mathcal{C}_1))$, so that $h^+(\mathcal{C}_0) \times_{h^+(\mathcal{C})} h^+(\mathcal{C}_1) \cong h^+(\mathcal{C}_0^{red} \times_{\mathcal{C}^{red}} \mathcal{C}_1^{red})$ by Proposition 5.2.3.3, and the claim immediately follows from Lemma 5.2.2.4.

5.2.4. Fibrant simplicial sets. Finally, let us drop the Segal condition altogether and consider arbitrary fibrations $\mathcal{C} \to \Delta$. We will need some results for the case when the fibration is discrete. In fact, we restrict our attention to small discrete fibrations, or equivalently, to categories of simplices ΔX of simplicial sets $X \in \Delta^o$ Sets. Recall that for any integers $n \geq l \geq 0$, we have the l-th horn

 $V_n^l \in \Delta^o$ Sets, with the horn embedding (4.1.3.3), and we also have the simplicial sphere S_{n-1} , with the sphere embedding (4.1.1.15). In terms of (4.3.2.5), we have $S_{n-1} = S_{[n]}$ and $\sigma_n = \sigma_{[n]}$, $[n] \in \Delta$. A map $f: X' \to X$ of simplicial sets is a *Kan fibration* if it has the right lifting property with respect to the horn embeddings (4.1.3.3) for all $n \ge 1$ — that is, for any $0 \le l \le n$ and commutative diagram

$$\begin{array}{ccc}
V_n^l & \xrightarrow{a'} & X' \\
v_n^l \downarrow & & \downarrow f \\
\Delta_n & \xrightarrow{a} & X_\ell
\end{array}$$

there exists a map $b: \Delta_n \to X'$ such that $a = f \circ b$ and $a' = b \circ v_n^l$. A map f is a *trivial Kan fibration* if it has the same lifting property with respect to the sphere embeddings (4.1.1.15) for all $n \geq 0$. A simplicial set X is *fibrant* resp. *trivially fibrant* if the tautological map $X \to \operatorname{pt}$ is a Kan fibration resp. a trivial Kan fibration.

Lemma 5.2.4.1. For any fibrant simplicial set X with the category of simplices ΔX , the groupoid $h^{\natural}(\Delta X)$ is equivalent to the following groupoid:

- (i) objects are elements $x \in X([0])$,
- (ii) morphisms from x to x' are equivalence classes of elements $y \in X([1])$ such that $s^*y = x$ and $t^*y = x'$, where
- (iii) two elements $y, y' \in X([1])$ lie in the same equivalence class iff there exists $z \in X([2])$ that restricts to y resp. y' on $\{0,1\} \subset \{0,1,2\}$ resp. $\{0,2\} \subset \{0,1,2\}$, and to a degenerate simplex on $\{1,2\} \subset \{0,1,2\}$.

For any trivial Kan fibration $f: X' \to X$ between fibrant simplicial sets, the functor $h(f): h^{\natural}(\Delta X') \to h^{\natural}(\Delta X)$ is an equivalence.

Proof. Since for any $[n] \in \Delta$, there exists a non-trivial map $[0] \to [n]$, all objects in $h^{\natural}(\Delta X)$ can indeed be represented by objects $\langle [0], x \rangle \in (\Delta X)_{[0]}, x \in X([0])$, and moreover, any map between two such objects can be represented by a diagram (5.1.1.2) such that the sources of f_i and w_i are in $(\Delta X)_{[0]}$. Since for any two maps $a,b:[0] \to [n]$ there exists a map $c:[1] \to [n]$ such that $a=c\circ s$ and $b=c\circ t$, one can further assume that the targets of f_i and w_i are in $(\Delta X)_{[1]}$. Then the lifting property for the horn V_2^1 shows that any zigzag of length 4 reduces to one of length 2, so that by induction, every map is of the form $t_y^{-1} \circ s_y$ for some liftings $t_y: \langle [0], x' \rangle \to \langle [1], y \rangle$, $s_y: \langle [0], x \rangle \to \langle [1], y \rangle$ of the

maps $s,t:[0]\to[1]$. Moreover, sending $\langle [n],x\rangle$ to s^*x provides a full essentially surjective functor from $h^{\natural}(\Delta X)$ to the groupoid defined by (i), (ii), (iii), and (iii) is indeed an equivalence relation, while sending x to $\langle [0],x\rangle$ and y to $t_y^{-1}\circ s_y$ gives a full essentially surjective inverse. Finally, if $f:X'\to X$ is a trivial Kan fibration, then (i), (iii), (ii) immediately imply that h(f) is essentially surjective, faithful and full.

Corollary 5.2.4.2. Assume given two maps $f_0: X_0 \to X$, $f_1: X_1 \to X$ of fibrant simplicial sets, and assume that f_0 is a Kan fibration. Then the natural functor

$$(5.2.4.1) h^{\natural}(\Delta(X_0 \times_X X_1)) \to h^{\natural}(\Delta X_0) \times_{h^{\natural}(\Delta X)} h^{\natural}(\Delta X_1)$$

is an epivalence.

Proof. To see that the functor (5.2.4.1) is essentially surjective, note that by Lemma 5.2.4.1 (i),(ii), an object in its target can be represented by a triple $\langle x_0, x_1, y \rangle$ of elements $x_0 \in X_0([0])$, $x_1 \in X_1([0])$, $y \in X([1])$ such that $f_0(x_0) = X(s)(y)$ and $f_1(x_1) = X(t)(y)$. However, the embedding $s : [0] \to [1]$ is a horn embedding, and since f_0 is a Kan fibration, we can modify x_0 so that $f_0(x_0) = X(t)(y)$, and we obtain an isomorphic object. But then $f_0(x_1) = f_1(x_1)$, so that $x_0 \times x_1 \in (X_0 \times_X X_1)([0])$ defines an object in the source of (5.2.4.1).

Analogously, to see that (5.2.4.1) is full, note that by Lemma 5.2.4.1 (ii) and (iii), morphisms in the target are represented triples $\langle y_0, y_1, z \rangle$, $y_l \in X_l([1])$, $l = 0, 1, z \in X([2])$ restricts to $f_0(y_0)$ resp. $f_1(y_1)$ on $\{0, 1\}$ resp. $\{0, 2\}$, and use the liting property for the horn embedding $v_2^0: V_2^0 \to \Delta_2$ to choose an equivalent triple with $f_0(y_0) = f_1(y_1)$.

5.3. Model structures.

5.3.1. Model categories. In this paper, a *model category* is what was called a closed model category in [Q], with no extra assumptions. By definition, it is given by a relative category $\langle \mathcal{C}, W \rangle$ equipped with two extra classes of maps \mathcal{C} , F satisfying the usual axioms. We assume known standard terminology of [Q] such as the notions of fibrant and cofibrant objects (we will avoid using "fibrations" and "cofibrations" so as not to create a clash of terminology with [G2]).

We will also assume known standard results about model categories. In particular, the opposite C^o of a model category C is a model category, with $C = F^o$, $F = C^o$, $W = W^o$. For any object $c \in C$ in a model category C, the left

comma-fiber C/c is also a model category, with the classes C, W, F induced from C via the forgetful functor $\sigma(c): C \to C/c$. By duality, the same is true for the right comma-fiber $c \setminus C$.

It is a well-known property of the formalism of model categories — in fact, it is the main reason for its existence — that for any model category $\langle \mathcal{C}, \mathcal{C}, W, F \rangle$, the underlying relative category $\langle \mathcal{C}, W \rangle$ is localizable, and in a very controlled way. Any map from $c' \in \mathcal{C}$ to $c \in \mathcal{C}$ in $h^W(\mathcal{C})$ can be represented by diagram (5.1.1.2) of length at most 3, and one can take as $w_0 : \tilde{c}' \to c'$, $w_1 : c \to \tilde{c}$ fixed cofibrant resp. fibrant replacements of c' resp. c. If c' itself is cofibrant, one can take $w_0 = \mathrm{id}$, and if c is fibrant, one can take $w_1 = \mathrm{id}$. If c' is cofibrant and c is fibrant, then any map $c' \to c$ in $h^W(\mathcal{C})$ can be represented by a single map $f: c' \to c$. If one chooses a factorization

$$(5.3.1.1) c' \sqcup c' \xrightarrow{i} \widetilde{c} \xrightarrow{w} c'$$

of the co-diagonal map $c' \sqcup c' \to c'$ such that $w \in F \cap W$ and $i \in C$, then two maps $f, f' : c' \to c$ represent the same map in $h^W(\mathcal{C})$ iff $f \sqcup f' : c' \sqcup c' \to c$ factors as $f \sqcup f' = \widetilde{f} \circ i$ for some $\widetilde{f} : \widetilde{c} \to c$ (the maps f, f' are then called *homotopic*, and \widetilde{f} is the "homotopy" between them). The localization functor $f : \mathcal{C} \to h^W(\mathcal{C})$ satisfies

$$(5.3.1.2) h^*(\star) = W,$$

that is, h(f) is invertible iff $f \in W$. If we let $Cof(\mathcal{C})$, $Fib(\mathcal{C}) \subset \mathcal{C}$ be the full subcategories spanned by cofibrant resp. fibrant objects, then both $\langle Cof(\mathcal{C}), W \rangle$ and $\langle Fib(\mathcal{C}), W \rangle$ are also localizable, and the natural embeddings induce equivalences

(5.3.1.3)
$$h^{W}(\operatorname{Cof}(\mathcal{C})) \cong h^{W}(\mathcal{C}) \cong h^{W}(\operatorname{Fib}(\mathcal{C}))$$

between the localizations. The main application of (5.3.1.3) is Quillen's Adjunction Theorem; we recall one of its forms.

Theorem 5.3.1.1. Assume given model categories C, C', and a pair of a functor γ : $C \to C'$ and its left-adjoint $\gamma_+: C' \to C$. Moreover, assume that γ sends maps in F resp. $F \cap W$ to maps in F resp. $F \cap W$, or equivalently, that γ^+ sends maps in C resp. $C \cap W$ to maps in C resp. $C \cap W$. Then $\gamma|_{Fib(C)}$ and $\gamma^+|_{Cof(C')}$ send maps in C to maps in C and the induced pair of functors

$$R^{\bullet}\gamma: h^{W}(\mathcal{C}) \cong h^{W}(Cof(\mathcal{C})) \to h^{W}(\mathcal{C}'),$$

 $L^{\bullet}\gamma^{\dagger}: h^{W}(\mathcal{C}') \cong h^{W}(Fib(\mathcal{C}')) \to h^{W}(\mathcal{C})$

is adjoint. Moreover, if γ resp. γ_{\dagger} is fully faithful, then so is the corresponding functor $R^{\bullet}\gamma$ resp. $L^{\bullet}\gamma_{\dagger}$.

Proposition 5.3.1.2. In the situation of Theorem 5.3.1.1, consider the category $\mathcal{C}' \setminus_{\gamma} \mathcal{C}$, and say that a map $\langle f, f' \rangle : \langle c_0, c'_0, \alpha_0 \rangle \to \langle c_1, c'_1, \alpha_1 \rangle$ is in F if so are f and $f' \times \alpha_0 : c'_0 \to c'_1 \times_{\gamma(c_1)} \gamma(c_0)$, and in C resp. W iff so are f' and f. Then this is a model structure on $\mathcal{C}' \setminus_{\gamma} \mathcal{C}$, and the functor

$$(5.3.1.4) h: h^{W}(\mathcal{C}' \setminus_{\gamma} \mathcal{C}) \cong h^{W}(\operatorname{Fib}(\mathcal{C}' \setminus_{\gamma} \mathcal{C})) \to h^{W}(\mathcal{C}') \setminus_{R^{\bullet_{\gamma}}} h^{W}(\mathcal{C})$$

induced by $h \setminus h$: $Fib(\mathcal{C}' \setminus_{\gamma} \mathcal{C}) \subset Fib(\mathcal{C}') \setminus_{\gamma} Fib(\mathcal{C}) \to h^W(\mathcal{C}') \setminus_{R^{\bullet_{\gamma}}} h^W(\mathcal{C})$ is an epivalence.

Proof. The fact that we have a model structure on $\mathcal{C}'\setminus_{\gamma}\mathcal{C}$ is very standard (see e.g. [K1, Proposition 3.8] for a more general statement). To see that (5.3.1.4) is essentially surjective, note that by assumption, γ sends fibrant objects to fibrant objects, so that any object in its target can be represented by a triple $\langle c, c', \alpha \rangle$ with fibrant c and cofibrant c' (and some $\alpha: c' \to \gamma(c)$). Since (5.3.1.4) is obviously conservative by virtue of (5.3.1.2), it remains to check that it is full. To do this, assume given a map $\langle f_h, f'_h \rangle : c_0^h \to c_1^h$ in $h^W(\mathcal{C}') \setminus_{R^{\bullet}\gamma} h^W(\mathcal{C})$. We need to check that for some objects $\langle c_0, c'_0, \alpha_0 \rangle$ and $\langle c_1, c'_1, \alpha_1 \rangle$ in $\mathcal{C}' \setminus_{\gamma} \mathcal{C}$ with $h(\langle c_l, c'_l, \alpha_l \rangle) \cong c_l^h$, l = 0, 1, the map $\langle f_h, f'_h \rangle$ lifts to a map $\langle f, f' \rangle : \langle c_0, c'_0, \alpha_0 \rangle \to \langle c_1, c'_1, \alpha_1 \rangle$. To do this, first choose some representatives $\langle c_l, c'_l, \alpha_l \rangle$ for c_l^h , l = 0, 1, and then take replacements so that both are fibrant and cofibrant. Then c_0, c'_0 are cofibrant, c_1 is fibrant, and α_1 is in F, so that c'_1 is also fibrant. Therefore we can represent maps f_h , f'_h by maps $f: c_0 \to c_1$, $f': c_0 \to c'_1$ such that the diagram

$$\begin{array}{ccc}
c'_0 & \xrightarrow{f'} & c'_1 \\
\alpha_0 \downarrow & & \downarrow \alpha_1 \\
\gamma(c_0) & \xrightarrow{\gamma(f)} & \gamma(c_1)
\end{array}$$

becomes commutative after applying the localization functor h for \mathcal{C}' — that is, we have $h(\gamma(f) \circ \alpha_0) = h(\alpha_1 \circ f')$. Then if we fix a decomposition (5.3.1.1) for c'_0 , with some middle term \widetilde{c} , the two composition maps in (5.3.1.5) are related by a homotopy $\widetilde{g}: \widetilde{c} \to \gamma(c_1)$. We can now replace c'_1 with $\widetilde{c} \sqcup_{c'_0} c'_0$, with coproduct taken with respect to one of the two maps $c'_0 \to \widetilde{c}$, replace f' with the other map $c'_0 \to \widetilde{c}$, and replace α_1 with $\widetilde{g} \sqcup \alpha_1$. Then (5.3.1.4) becomes commutative in $\mathcal{C}' \setminus_{\gamma} \mathcal{C}$ and gives the desired lifting.

Remark 5.3.1.3. The generality in [K1] is as follows: $\gamma : \mathcal{C} \to \mathcal{C}'$ sends maps in F resp. $F \cap W$ to maps in F resp. $F \cap W$, but is not required to have an adjoint, nor even to preserve finite limits. In this setting, it is not even immediately obvious — but true — that $\mathcal{C}' \setminus_{\gamma} \mathcal{C}$ is finitely cocomplete.

It is well-known that any two of the classes C, W, F in a model structure uniquely define the third one, so for example, to describe the model structure of Proposition 5.3.1.2, it suffices to only describe C and W. Here is another well-known example of such a decription.

Definition 5.3.1.4. For any model category C and essentially small category I, the *projective model structure* on Fun(I, C) is the one where a map f lies in W resp. F iff f(i) is in W resp. F for any $i \in I$.

The projective model structure is unique, if it exists. Existence requires imposing conditions either on \mathcal{C} or on I. In particular, it always exists if I is a finite partially ordered set: this is an easy example of the following general existence theorem for Reedy categories.

Theorem 5.3.1.5. Assume given a Reedy category I in the sense of Definition 4.3.1.3, and a model category $\langle C, C, W, F \rangle$. Assume that either C is complete and cocomplete, or I is locally finite, or I is Reedy- κ -bounded for some regular cardinal κ , and C is κ -cocomplete and κ' -complete for any $\kappa' \ll \kappa$. Say that a morphism $f: X \to X'$ between two functors $X, X': I \to C$ is in W iff $f(i): X(i) \to X'(i)$ is in W for any $i \in I$, say that f is in C iff for any $i \in I$ with the decompositions (4.3.1.2), the map $L(X',i) \sqcup_{L(X,i)} X(i) \to X'(i)$ is in C, and say that f is in F if for any f is a model category.

For a proof of this, see e.g. [Ho] (keeping in mind that although the author allows himself to redefine the notion of a model category, the proof works *verbatim* in the original setting of [Q]). The main idea is an iterated application of the gluing construction given in Proposition 5.3.1.2.

Example 5.3.1.6. If the Reedy category I in Theorem 5.3.1.5 is directed — that is, $I = I_L$ and $M = \operatorname{Id}$ — then the Reedy model structure is the projective model structure of Definition 5.3.1.4 (and in particular, the latter exists). For example, this always happens when I = J is a left-bounded partially ordered set, with the Reedy structure of Example 4.3.1.5.

Example 5.3.1.7. Assume given a finite partially ordered set J of dimension $\dim J = 1$. Let $J_l \subset J$ be the subset of elements of height l, l = 0, 1, and let $J' \subset J_0 \times J_1$ be the set of non-trivial order relations j < j', with the projections $\pi_l : J' \to J_l$, l = 0, 1. Then we have a Quillen-adjoint pair of functors $\gamma = \pi_{1*} \circ \pi_0^* : J_0^o \mathcal{C} \to J_1^o \mathcal{C}$, $\gamma_1^o \mathcal{C} \to J_1^o \mathcal{C}$, $\gamma_1^o \mathcal{C} \to J_1^o \mathcal{C}$, $\gamma_1^o \mathcal{C} \to J_1^o \mathcal{C}$, and $J^o \mathcal{C} \cong J_1^o \mathcal{C} \setminus_{\gamma} J_0^o \mathcal{C} \cong J_1^o \mathcal{C} /_{\gamma^{\dagger}} J_0^o \mathcal{C}$. The model structure of Proposition 5.3.1.2 is the Reedy model structure on $J^o \mathcal{C}$ corresponding to the Reedy structure on J^o with $(J^o)_M = J^o$.

Lemma 5.3.1.8. In the situation of Theorem 5.3.1.5, for any $i \in I$ and cofibrant $X: I \to C$, $X(i) \in C$ is cofibrant, and for any map $f: X \to X'$ in C, the map $f(i): X(i) \to X(i')$ is in C. Moreover, if I = J is a finite partially ordered set, with the Reedy structure such that $J_L = J$, then for any cofibrant $X: J \to C$ and $j' \leq j$ in J, the map $X(j') \to X(j)$ is in C.

Proof. For the first claim, note that the definition of the class C given in Theorem 5.3.1.5 only depends on I_L , so we may assume that $I = I_L$ is directed, as in Example 5.3.1.6. Then the evaluation $ev_i : Fun(I, C) \to C$ has a right-adjoint given by the Kan extension $\varepsilon(i)_*$, and by (2.2.5.2), it sends maps in F resp. $F \cap W$ to maps in F resp. $F \cap W$, since both classes are closed under products. Thus X(i) is cofibrant resp. f(i) is in C by adjunction.

For the second claim, let ε : [1] \to J be the embedding sending 0 to j' and 1 to j, and note that again by (2.2.5.2), the right Kan extension ε_* : $\operatorname{ar}(\mathcal{C}) \to \operatorname{Fun}(J,\mathcal{C})$ is given by

$$\varepsilon_* Y(j'') = \begin{cases} Y(0), & j'' \in J/j', \\ Y(1), & j'' \in (J/j) \setminus (J/j'), \\ 1, & j'' \in J \setminus (J/j), \end{cases}$$

for any $Y : [1] \to \mathcal{C}$. This functor again sends maps in F resp. W to maps in F resp. W, so by adjunction, $\varepsilon^*(X)$ is cofibrant in $\operatorname{ar}(\mathcal{C})$, and the claim reduces to the case J = [1]. This is the situation of Proposition 5.3.1.2.

Corollary 5.3.1.9. For any model category C and object c, let $C^W/c \subset C/c$ be the subcategory of cofibrant objects c' equipped with maps $f:c' \to c$ in the class W, and with maps between them that are in the class C. Then C^W/c is homotopy filtered in the sense of Definition 5.1.3.9.

Proof. Assume given a functor $\gamma: J \to \mathcal{C}^W/c$ from a finite partially ordered set J. Let $\gamma': J \to \mathcal{C}/c$ be a cofibrant replacement of γ in $(\mathcal{C}/c)^J$ with the projective model structure, so that γ' is cofibrant in $(\mathcal{C}/c)^J$ and equipped with

a map $f: \gamma' \to \gamma$ such that $f(j) \in W$ for any $j \in J$. Since W is closed under compositions, Lemma 5.3.1.8 implies that $\gamma'(j)$ lies in $\mathcal{C}^W/c \subset \mathcal{C}/c$ for any $j \in J$, and moreover, maps $\gamma'(j) \to \gamma(j')$, $j \leq j'$ are in the class C. Therefore γ' factors through \mathcal{C}^W/c . Since \mathcal{C}/c has finite coproducts, γ' extends to a functor $\gamma'': J^> \to \mathcal{C}/c$ with $\gamma''(1) = \operatorname{colim}_J \gamma'$, and since γ' is cofibrant in $(\mathcal{C}/c)^J$, the extension γ'' is cofibrant in $(\mathcal{C}/c)^{J^>}$ by adjunction. In particular, $\gamma''(1)$ is cofibrant. Now factorize the map $g: \gamma''(1) \to c$ as $f = c \circ w$, $c: \gamma''(1) \to c'$ in C, $w: c' \to c$ in W, and let $\widetilde{\gamma}: J^> \to \mathcal{C}/c$ be given by $\widetilde{\gamma}|_J = \gamma'$, $\widetilde{\gamma}(1) = c'$. The functor $\widetilde{\gamma}$ then factors through $\mathcal{C}^W/c \subset \mathcal{C}/c$ and provides the desired extension of γ' .

Dually, for any essentially small category I and model category C, the *injective* model structure on $I^oC = \operatorname{Fun}(I^o,C) \cong \operatorname{Fun}(I,C^o)^o$ is dual to the projective model structure on $\operatorname{Fun}(I,C^o)$; explicitly, a map is in W resp. C with respect to the injective model structure iff it is pointwise in W resp. C. By Theorem 5.3.1.5, the injective model structure always exists if I = J is a left-finite partially ordered set (where we treat I^o as a Reedy category with $(I^o)_M = I^o$ and discrete $(I^o)_L$). A functor $X:I^o\to C$ is fibrant with respect to the injective model structure iff the map $X(j)\to M(X,j)$ is in F for any $J\in J$. By the universal property of localizations, the evaluation functor (2.1.4.3) for I^oC fits into a commutative square

$$\begin{array}{cccc}
J^{o} \times J^{o}\mathcal{C} & \xrightarrow{\operatorname{ev}} & \mathcal{C} \\
\downarrow & & \downarrow \\
J^{o} \times h^{W}(J^{o}\mathcal{C}) & \longrightarrow & h^{W}(\mathcal{C}),
\end{array}$$

and the bottom arrow gives rise to a comparison functor

$$(5.3.1.7) h^{\mathsf{W}}(J^{\mathsf{o}}\mathcal{C}) \to J^{\mathsf{o}}h^{\mathsf{W}}(\mathcal{C}).$$

The functor (5.3.1.7) is conservative by virtue of (5.3.1.2) but usually not an equivalence. If J is finite and dim J = 1, it is an epivalence by Example 5.3.1.7 and Proposition 5.3.1.2.

5.3.2. Cofibrant objects. Assume given a model category $\langle I, C, W, F \rangle$, and use (5.3.1.3) to idenfity $h^W(I) \cong h^W(\operatorname{Cof}(I))$, so that any object in $h^W(I)$ can be represented by a cofibrant $i \in \operatorname{Cof}(I)$, and any morphism from $i' \in \operatorname{Cof}(I)$ to $i \in \operatorname{Cof}(I)$ in $h^W(I)$ can be represented by a diagram

$$(5.3.2.1) i' \xrightarrow{f} \widetilde{i} \xleftarrow{w} i$$

with $w \in C \cap W$. Since i is cofibrant, \widetilde{i} is also cofibrant. What is slightly less well-known is that one can also arrange for f to be in C. Namely, let $Cof(I)_C = Cof(I) \cap I_C \subset Cof(I)$ be the dense subcategory defined by the closed class C, and by abuse of notation, let $C \cap W$ be the class of maps in $Cof(I)_C$ that are also in W. Denote by

$$(5.3.2.2) \qquad \qquad \varepsilon : \langle \operatorname{Cof}(I)_C, C \cap W \rangle \to \langle I, W \rangle$$

the natural embedding (it is tautologically a morphism of relative categories).

Lemma 5.3.2.1. *The relative category* $\langle Cof(I)_C, C \cap W \rangle$ *is localizable, and the morphism* (5.3.2.2) *is a* 1-equivalence in the sense of Definition 5.1.2.1.

Proof. For any two cofibrant objects $i,i' \in I$, denote by QI(i',i) the category of diagrams (5.3.2.1), and let $QI_C(i',i) \subset QI(i',i)$ be the subcategory spanned by diagrams such that $f \in C$, and morphisms between them that are pointwise in C. It is well-known that two diagrams $d_0, d_1 \in QI(i',i)$ represent the same morphism in $h^W(I)$ if and only if they lie in the same connected component of QI(i',i), and even stronger, if and only if there exists a third diagram $d_{01} \in QI(i_0,i_1)$ and maps $d_0 \to d_{01}, d_1 \to d_{01}$. On the other hand, for the relative category $\langle \operatorname{Cof}(I)_C, C \cap W \rangle$, we note that $\operatorname{Cof}(I) \subset I$ is closed under pushouts with respect to maps in C, so that every zigzag diagram (5.1.1.2) in $\langle \operatorname{Cof}(I)_C, C \cap W \rangle$ is equivalent to a diagram $d \in QI_C(i',i)$ by the cancellation rules. Moreover, every map in the category $QI_C(i',i)$ is automatically pointwise in $C \cap W$, so that by the same cancellation rules, $d_0, d_1 \in qI_C(i',i)$ are equivalent if they are connected by a chain of maps. Thus to prove that $\langle \operatorname{Cof}(I)_C, C \cap W \rangle$ is localizable and $h(\varepsilon)$ is fully faithful, it suffices to prove that for any $i,i' \in \operatorname{Cof}(I)$, the functor

(5.3.2.3)
$$\varepsilon_{i',i}: QI_C(i',i) \to QI(i',i)$$

induced by (5.3.2.2) gives a bijection between connected components of the two categories.

To prove that (5.3.2.3) gives a surjection, note that every diagram d in QI(i',i) also defines an object \widetilde{d} in the model category $(i' \sqcup i) \setminus I$, and for any cofibrant replacement $\widetilde{d}' \to \widetilde{d}$ of the object \widetilde{d} , the object \widetilde{d}' corresponds to a diagram $d \in QI_C(i',i)$.

To prove that (5.3.2.3) gives an injection, assume given two diagrams $d_0, d_1 \in QI_C(i',i)$, and assume that $\varepsilon(d_0)$ and $\varepsilon(d_1)$ represent the same map in $h^W(I)$. Then there exists a diagram $d \in QI(i',i)$ and morphisms $w_0 : \varepsilon(d_0) \to d$,

 $w_1: \varepsilon(d_1) \to d$, and if we let $\widetilde{d} \in (i' \sqcup i) \backslash I$ be the object corresponding to d, then the maps w_0 and w_1 define two objects in the category $((i' \sqcup i) \backslash I)^W / \widetilde{d}$ of Corollary 5.3.1.9. But by Proposition 5.1.3.10, this category is 2-connected, thus connected by Lemma 5.1.2.5.

To finish the proof, it remains to observe that every object in I has a cofibrant replacement, so that $h(\varepsilon)$ is essentially surjective.

Using Corollary 5.3.1.9 in the proof of Lemma 5.3.2.1 looks like a huge overkill (and it provides much more than needed for the argument). What we really need it for is the following refinement of Lemma 5.3.2.1.

Proposition 5.3.2.2. *For any model category* $\langle I, C, W, F \rangle$ *, the morphism* ε *of* (5.3.2.2) *is a* 2-equivalence in the sense of Definition 5.1.2.3.

Proof. Consider the comma-category $\operatorname{Cof}(I)_C/_{\varepsilon}I$, and let $\overline{I} \subset \operatorname{Cof}(I)_C/_{\varepsilon}I$ be the full subcategory spanned by triples $\langle i_0, i_1, \alpha \rangle$ such that $\alpha : \varepsilon(i_0) \to i_1$ is in the class W. We have the projections $\tau : \overline{I} \to I$, $\sigma : \overline{I} \to \operatorname{Cof}(I)_C$, and the embedding $\eta : \operatorname{Cof}(I)_C \to \operatorname{Cof}(I)_C/_{\varepsilon}I$ factors through $\overline{I} \subset \operatorname{Cof}(I)_C/_{\varepsilon}I$, thus gives a fully faithful embedding $\overline{\eta} : \operatorname{Cof}(I)_C \to \overline{I}$ left-adjoint to the projection σ .

For any map f in \overline{I} , we have $\tau(f) \in W$ if and only if $\sigma(f) \in C \cap W$; denote by $\overline{W} = \tau^*W = \sigma^*(C \cap W)$ the class of maps satisfying either of these two equivalent conditions. Then $\overline{\eta}$ and σ are morphisms between $\langle \operatorname{Cof}(I)_C, C \cap W \rangle$ and $\langle \overline{I}, \overline{W} \rangle$, and τ is a morphism from $\langle \overline{I}, \overline{W} \rangle$ to $\langle I, W \rangle$. Moreover, $\sigma \circ \overline{\eta} \cong \operatorname{id}$, and the adjunction map $\overline{\eta} \circ \sigma \to \operatorname{id}$ is in \overline{W} by the definition of the category \overline{I} . Therefore η is a 2-equivalence by Lemma 5.1.2.4, and it suffices to prove that τ is also a 2-equivalence.

But by Lemma 5.1.2.13 (i), it then suffices to prove that $\tau: \overline{I} \to I$ is 2-connected, and by Proposition 5.2.1.4, it suffices to observe that it is locally 2-connected in the sense of Definition 5.2.1.3. Indeed, for any object $i \in I$, the category \overline{I}_i of Definition 5.2.1.3 (i) is precisely the category I^W/i of Corollary 5.3.1.9, and it is 2-connected by Proposition 5.1.3.10. On the other hand, for any morphism $f: i \to i'$ in I and any object $\widetilde{i} \in \overline{I}_i$ represented by a morphism $w: c \to i$ in I with cofibrant I with I and any object I of I of Definition 5.2.1.3 (ii) is the category of factorizations I in the class I with I in I and I with I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the model category I in the class I in the class I in the model category I in the class I in the model category I in the class I in the class I in the class I in

Proposition 5.3.2.2 shows that for any model category $\langle I, C, W, F \rangle$, one loses no information when restricting a family of groupoids over $\langle I, W \rangle$ to $\langle \text{Cof}(I)_C, C \cap W \rangle$. We will now use this to construct a version of the Yoneda embedding for such families. Take two objects $i, i' \in \text{Cof}(I)$, and consider the category $QI_C(i',i)$ of diagrams (5.3.2.1) in I_C of Lemma 5.3.2.1.

Lemma 5.3.2.3. *The category* $QI_C(i',i)$ *is localizable.*

Proof. If for any model category $\langle I, C, W, F \rangle$ we consider the dense subcategory $Cof(I)_{C \cap W} \subset Cof(I)_C$, then the same argument as in Lemma 5.3.2.1 shows that $Cof(I)_{C \cap W}$ is localizable. To prove the claim, it remains to observe that $QI_C(i',i)$ is a union of connected components of the category $Cof((i' \sqcup i) \setminus I))_{C \cap W}$.

Now fix one object $i \in I$, and let $QI_C(i)$ be the category of diagrams (5.3.2.1) in $Cof(I)_C$ with fixed i and arbitrary i'. Sending a diagram to i' then provides a forgetful functor $\varphi: QI_C(i) \to Cof(I)_C$, and this functor is obviously a fibration with fibers $QI_C(i)_{i'} \cong QI_C(i',i)$. By Lemma 5.3.2.3 and (5.1.1.10), the trivial family $QI_C(i) \to QI_C(i)$ is localizable with respect to φ . For any morphism $w: i' \to i$ in $C \cap W$, composition with w provides a functor $w^*: QI_C(i) \to QI_C(i')$ cartesian over I_C .

Definition 5.3.2.4. The representable family of groupoids $\mathcal{H}(i)$ is the family $\mathcal{H}(i) = \varphi_! QI_C(i)$. The universal object $o \in \mathcal{H}(i)_i$ is the object $o \in QI_C(i)$ represented by the diagram (5.3.2.1) with $i' = i = \tilde{i}$ and $f = w = \mathrm{id}$.

Proposition 5.3.2.5. Assume given a cofibrant object $i \in \text{Cof}(I) \subset I$ in a model category $\langle I, C, W, F \rangle$, and consider the corresponding representable family $\mathcal{H}(i) \to \text{Cof}(I)_C$ of Definition 5.3.2.4.

- (i) $\mathcal{H}(i)$ is a family of groupoids over $\langle \operatorname{Cof}(I)_{\mathbb{C}}, \mathbb{C} \cap W \rangle$.
- (ii) For any map $w: i' \to i$ in $C \cap W$, the functor $w^*: QI_C(i) \to QI_C(i')$ induces an equivalence $\mathcal{H}(i) \cong \mathcal{H}(i')$ over I_C .
- (iii) For any family of groupoids C over $\langle Cof(I)_C, C \cap W \rangle$ and object $c \in C_i$, there exists a pair of a functor $\mathcal{H}(c) : \mathcal{H}(i) \to C$ over I_C and an isomorphism $\mathcal{H}(c)(o) \cong c$, and such a pair is unique up to a unique isomorphism.

Proof. For (i), note that for any map $w: i_0 \to i_1$ in I_C in the class $C \cap W$, the corresponding transition functor $w^*: QI_C(i_1,i) \to QI_C(i_0,i)$ of the fibration $QI_C(i) \to Cof(I)_C$ has a left-adjoint functor $w_!$ sending a diagram

$$i_0 \xrightarrow{f_0} \widetilde{i}_0 \xleftarrow{w_0} i$$

to the diagram

$$i_1 \xrightarrow{f_1} \widetilde{i_0} \sqcup_{i_0} i_1 \xleftarrow{w' \circ w_0} i$$
,

where $f_1: i_1 \to i'_0 \sqcup_{i_0} i_1$, $w': i'_0 \to i'_0 \sqcup_{i_0} i_1$ are the natural maps. Therefore the transition functor $h(w)^*: h^{\natural}(QI_C(i_1,i)) \to h^{\natural}(QI_C(i_1,i))$ of the fibration $\mathcal{H}(i) \to I_C$ is an equivalence by Lemma 5.1.2.4.

For (ii), exactly the same argument shows that $w^* : QI_C(i) \to QI_C(i')$ has an adjoint functor $w_!$, and then w^* and $w_!$ descend to a pair of mutually inverse equivalences.

For (iii), note that by the definition of localization, a functor $QI_C(i) \to \mathcal{C}$ over $Cof(I)_C$ uniquely factors through $\mathcal{H}(i)$, so that to construct a functor $\mathcal{H}(c)$ from $\mathcal{H}(i)$ to \mathcal{C} , it suffices to construct it on on $QI_C(i)$. This is equivalent to constructing a section σ of the family $\varphi^*\mathcal{C} \to QI_C(i)$. Let $\overline{Q}I_C(i) \subset QI_C(i)$ be the full subcategory spanned by diagrams (5.3.2.1) with invertible f, and let $\overline{\varphi}: \overline{Q}I_C(i) \to I_C$ be the restriction of the forgetful functor φ . Then $\overline{\varphi}$ is actually a morphism from $\langle \overline{Q}I_C(i), \xi \rangle$ to $\langle Cof(I)_C, C \cap W \rangle$, so that $\overline{\varphi}^*\mathcal{C}$ is a family over $\langle \overline{Q}I_C(i), \xi \rangle$. In particular, $\overline{\varphi}^*\mathcal{C} \to \overline{Q}I_C(i)$ is a bifibration, so that $(\overline{\varphi}^*\mathcal{C})^o \to \overline{Q}I_C(i)$ is a fibration. Since $o \in \overline{Q}I_C(i)$ is obviously the initial object, (2.4.3.7) shows that $(\overline{\varphi}^*\mathcal{C})^o$ is bounded over $\overline{Q}I_C(i)^o$ and provides an equivalence

$$\operatorname{Sec}^{\natural}(\overline{Q}I_{C}(i)^{o},(\overline{\varphi}^{*}C)^{o})\cong C_{i}^{o}.$$

Passing to the opposite categories and recalling that every section of a family of groupoids is automatically cartesian, we deduce that any object $c \in C_i$ uniquely extends to a section $\overline{\sigma} : \overline{Q}I_C(i) \to \overline{\phi}^*C$. To extend it further to a section $\sigma : QI_C(i) \to \phi^*C$, it remains to observe that the embedding $\overline{Q}I_C(i) \subset QI_C(i)$ has a left-adjoint functor, and again apply (2.4.3.7).

For any cobirant object $i \in \text{Cof}(I) \subset I$ of the model category I, denote by $H(i) : \text{Cof}(I)_C^o \to \text{Sets}$ the functor given by

(5.3.2.4)
$$H(i)(i') = h^{C \cap W}(Cof(I)_C)(h(i'), h(i)),$$

that is, the pullback of the functor represented by $h(i) \in h^{C \cap W}(I_C)$. Then as we saw in Lemma 5.3.2.1, elements of the set in the right-hand side of (5.3.2.4) correspond bijectively to connected components of the category $QI_C(i',i)$, so that the fibers of the family of groupoids $\mathcal{H}(i)$ are essentially small, and we have a natural isomorphism

$$(5.3.2.5) H(i) \cong \pi_0(\mathcal{H}(i)).$$

Proposition 5.3.2.5 is then a refinement of the usual Yoneda property of representable functors.

5.3.3. Explicit homotopies. In practice, to study the representable functor $H(i): I_C^o \to \text{Sets}$, one chooses a fibrant replacement of the object i. This does not change the functor H(i) but reduces a diagram (5.3.2.1) to a single map. Namely, having assumed that i is fibrant, choose a factorization

$$(5.3.3.1) i \xrightarrow{w} \widetilde{i} \xrightarrow{f} i \times i$$

of the diagonal map $i \to i \times i$, with $f \in F$ and $w \in C \cap W$, and denote by $f_0, f_1 : \widetilde{i} \to i$ the composition of the map f with the projections onto the two factors of $i \times i$. Then just as for a decomposition (5.3.1.1), any map in H(i)(i') can be represented by a morphism $g : i' \to i$, and two maps $g_0, g_1 : i' \to i$ represent the same map if and only if there exists a morphism $h : i' \to \widetilde{i}$ such that $g_l = f_l \circ h$, l = 0, 1. We finish the section by giving a similar effective description of the representable family $\mathcal{H}(i)$ of Definition 5.3.2.4.

First, we need to recall one general categorical notion. Assume given a cellular Reedy category I in the sense of Definition 4.3.1.7, and assume that I is Reedy- κ -bounded for some infinite cardinal κ in the sense of Definition 4.3.1.3. Moreover, assume given a κ' -complete category $\mathcal C$ for some $\kappa' \ll \kappa$, and assume that $\mathcal C$ is equipped with a class of maps stable under pullbacks, called *coverings*. For any $i \in I$, we have the i-sphere embedding (4.3.2.5). For any functor $X \in I^{o}\mathcal C$, (2.3.3.4) provides a well-defined object $\operatorname{Hom}(\Delta_{i}, X) = X(i)$, and by (4.3.2.6), $\operatorname{Hom}(S_{i}, X) \cong M(X, i)$ is also well-defined.

Definition 5.3.3.1. A map $f: Y' \to Y$ in $I^o\mathcal{C}$ is a *hypercovering* if for any $i \in I$, the map

$$(5.3.3.2) Y'(i) \rightarrow Y(i) \times_{\operatorname{Hom}(S_{i},Y)} \operatorname{Hom}(S_{i},Y')$$

induced by f and the sphere embedding (4.3.2.5) is a covering.

If $I=\Delta$ and $\mathcal C$ is the category Sets and coverings are surjective maps, then f is a hypercovering iff it is a trivial Kan fibration, and the surjectivity of (5.3.3.2) simply encodes the lifting propety with respect to (4.1.1.15). On the other hand, for any Reedy- κ -bounded I, if $\mathcal C$ is a κ -cocomplete κ' -complete model category and coverings are maps in F or in $F\cap W$, then f is a hypercovering iff it is in F resp. $F\cap W$ with respect to the Reedy model structure on $I^o\mathcal C$. If $I=\Delta$, then it suffices to require that $\mathcal C$ is finitely complete which it must be anyway simply by definition. Moreover, in this case, $\mathcal C$ is also finitely cocomplete, so that for any $c\in \mathcal C$ and finite simplicial set c0, we have a well-defined object c1.

$$(5.3.3.3) \quad \operatorname{Hom}(c \times X, Y) \cong \operatorname{Hom}(c, \operatorname{Hom}(X, Y)) \cong \operatorname{Hom}(X, \operatorname{Hom}^{\Delta}(c, Y)),$$

where $\operatorname{Hom}(X,Y) \in \mathcal{C}$ is given by (2.3.3.4), and $\operatorname{Hom}^{\Delta}(c,Y) \in \Delta^{o}$ Sets is given by $\operatorname{Hom}^{\Delta}(c,Y)([n]) = \operatorname{Hom}(c,Y([n]))$, $[n] \in \Delta$. Then for any map $w : c \to c'$ in the class $C \cap W$ and any $n \ge 1$, the induced map $c \times \Delta_n \sqcup_{c \times S_{n-1}} c' \times S_{n-1} \to c' \times \Delta_n$ is in $C \cap W$ with respect to the Reedy structure, so that for any Reedy fibrant $Y \in \Delta^{o}\mathcal{C}$, the map

$$w^*: \operatorname{Hom}^{\Delta}(c', Y) \to \operatorname{Hom}^{\Delta}(c, Y)$$

is a trivial Kan fibration of simplicial sets.

Now return to our original setting — I a model category, $i \in I$ a fibrant object — and choose a Reedy fibrant replacement $i^{\Delta} \in \Delta^o I$ of the constant simplicial object $i \in I \subset \Delta^o I$, with the corresponding map $e: i \to i^{\Delta}$ in $C \cap W$. Replace i with $i^{\Delta}([0])$, so that $i \to i^{\Delta}$ is an isomorphism at $[0] \in \Delta$ (note that this does not change the family $\mathcal{H}(i)$). Consider the product $\mathrm{Cof}(I)_C \times \Delta$, with the projection $\theta: \mathrm{Cof}(I)_C \times \Delta \to \mathrm{Cof}(I)_C$, and let $\mathcal{H}(i^{\Delta}) \to \mathrm{Cof}(I)_C \times \Delta$ be the family of discrete groupoids corresponding to the functor $(\mathrm{Cof}(I)_C \times \Delta)^o \to \mathrm{Sets}, i' \times [n] \mapsto \mathrm{Hom}(i', i^{\Delta}([n]))$. Explicitly, objects in $\mathcal{H}(i^{\Delta})$ are triples $\langle i', [n], f \rangle$, $i' \in \mathrm{Cof}(I)$, $[n] \in \Delta$, f a map from i' to $i^{\Delta}([n])$. The composition $\mathcal{H}(i^{\Delta}) \to \mathrm{Cof}(I)_C \times \Delta \to \mathrm{Cof}(I)_C$ is a fibration, with fibers $\mathcal{H}(i^{\Delta})_i \cong \Delta \mathrm{Hom}^{\Delta}(i', i^{\Delta})$, $i' \in \mathrm{Cof}(I)$.

Proposition 5.3.3.2. There exists a natural equivalence $\theta_! \mathcal{H}(i^{\Delta}) \cong \mathcal{H}(i)$ of families of groupoids over $Cof(I)_C$.

Proof. Consider the category $QI_C(i)$ of Subsection 5.3.2 with its forgetful functor $\varphi: QI_C(i) \to \operatorname{Cof}(I)_C$, let QI(i) be the analogous category formed by diagrams (5.3.2.1) in the whole $I \supset \operatorname{Cof}(I)_C$, with the forgetful functor $QI(i) \to I$, and consider the fibered product

$$QI'_C(i) = QI(i) \times_I Cof(I)_C$$

again with the natural forgetful functor $\varphi': QI'_C \to \operatorname{Cof}(I)_C$. Then φ' is a fibration with fibers QI(i',i), $i' \in \operatorname{Cof}(I)$, and we have a natural embedding $\varepsilon_i: QI_C(i) \to QI'_C(i)$, cartesian over $\operatorname{Cof}(I)_C$, whose fiber over some object $i' \in \operatorname{Cof}(I)$ is the functor $\varepsilon_{i',i}$ of (5.3.2.3). For any $d \in QI(i',i)$ represented by a diagram (5.3.2.1), the comma-fiber $d \setminus QI_C(i',i)$ of the functor $\varepsilon_{i',i}$ at d is the category C^W/c of Corollary 5.3.1.9, for the model category $C = (i' \sqcup i) \setminus I$ and the object $c \in C$ corresponding to d. Therefore by Proposition 5.1.3.10, Lemma 5.1.2.5, Lemma 5.1.1.13 and Lemma 5.3.2.3, QI(i',i) is localizable, and $h(\varepsilon_{i',i})$ is an equivalence. Thus $QI'_C(i)$ is localizable with respect to φ' , and the functor

$$\varepsilon_i: \mathcal{H}(i) = \varphi_! QI_C(i) \to \varphi'_! QI'_C(i)$$

is an equivalence. On the other hand, sending $\langle i', [n], f \rangle \in \mathcal{H}(i^{\Delta})$ to the diagram

$$i' \stackrel{f}{\longrightarrow} i^{\Delta}([n]) \stackrel{w}{\longleftarrow} i$$

provides a functor $\alpha: \mathcal{H}(i^{\Delta}) \to QI'_{C}(i)$ cartesian over $Cof(I)_{C}$, and it induces a functor

$$\theta_! \mathcal{H}(i^{\Delta}) \to \varphi'_! Q I'_C \cong \mathcal{H}(i).$$

To prove that this is an equivalence, it suffices to check that for any object $i' \in Cof(I)$, the functor

$$\alpha_{i'}: \Delta \operatorname{Hom}^{\Delta}(i', i^{\Delta}) \cong \mathcal{H}(i^{\Delta})_{i'} \to QI(i', i) \cong QI'_{c}(i)_{i'}$$

induces an equivalence of total localizations. By Lemma 5.1.1.13, it then suffices to check that for any $d \in QI(i',i)$ represented by a diagram (5.3.2.1), the commafiber $\Delta \operatorname{Hom}^{\Delta}(i',i^{\Delta}) \setminus_{\alpha_{i'}} d$ is 1-connected. But explicitly, this comma-fiber is the category of pairs $\langle [n],g \rangle$ of an object $[n] \in \Delta$ and a map $g:\widetilde{i} \to i^{\Delta}([n])$ such that $g \circ w = e: i \to i^{\Delta}([n])$, and this is nothing but the category of simplices ΔX of the simplicial set given by the fibered product

$$X' \longrightarrow \operatorname{Hom}^{\Delta}(\widetilde{i}, i^{\Delta})$$

$$\downarrow \qquad \qquad \downarrow w^{*}$$

$$\operatorname{pt} \stackrel{e}{\longrightarrow} \operatorname{Hom}^{\Delta}(i, i^{\Delta}).$$

But w^* is a trivial Kan fibration, so that X' is trivially fibrant, and we are done by Lemma 5.2.4.1.

As a corollary of Proposition 5.3.3.2, for any $i' \in I_C$ and any choice of a Reedy fibrant replacement i^{Δ} , we have a natural identification

(5.3.3.4)
$$\mathcal{H}(i)_{i'} \cong h^{\dagger}(\Delta \operatorname{Hom}^{\Delta}(i', i^{\Delta})).$$

This helps in computations by virtue of the following.

Lemma 5.3.3.3. For any morphism $f: i_0 \to i_1$ in $Cof(I)_C \subset I$, fibrant i and Reedy fibrant replacement $i^{\Delta} \in \Delta^o I$ of the constant simplicial object i, the induced map $f^*: Hom^{\Delta}(i_1, i^{\Delta}) \to Hom^{\Delta}(i_0, i^{\Delta})$ is a Kan fibration of simplicial sets. In particular, $Hom^{\Delta}(i', i^{\Delta})$ is fibrant for any $i' \in Cof(I)$.

Proof. Since i^{Δ} is Reedy fibrant, the natural map $i^{\Delta}([n]) \to \operatorname{Hom}(S_{n-1}, i^{\Delta})$ is in F for any $n \geq 0$, and then by induction, the map

$$(5.3.3.5) e^* : \operatorname{Hom}(X', i^{\Delta}) \to \operatorname{Hom}(X, i^{\Delta})$$

is in F for any injective map $e: X \to X'$ of finite simplicial sets. Let E be the class of such maps e for which (5.3.3.5) is also in W. Then E inherits the two-out-of-three property of the class W, and since the class $F \cap W$ is stable under pullbacks, E is stable under pushouts. Moreover, since i^{Δ} is a fibrant replacement of a constant simplicial object, E contains all the embeddings $t: \Delta_0 \subset \Delta_n$ corresponding to right-closed embeddings $t: [0] \to [n]$. But as in Lemma 4.1.3.1, for any $n \geq l \geq 0$, s factors through the source V_n^l of the horn embedding (4.1.3.3) via some injective map $t': \Delta_0 \to V_n^l$, and the map t' is a composition of pushouts of horn embeddings $v_{n'}^{l'}$ with n' < n. Then by induction on dimension, E contains all the horn embeddings (4.1.3.3), and f^* is a Kan fibration by (5.3.3.3).

Remark 5.3.3.4. The isomorphism (5.3.2.5) can be immediately observed in terms of (5.3.3.4) — in effect, a factorization (5.3.3.1) is a first step of a Reedy fibrant replacement i^{Δ} , with $i = i^{\Delta}([0])$ and $\tilde{i} = i^{\Delta}([2])$, so we recover the usual description of the functor H(i). By Lemma 5.2.4.1, to compute $\mathcal{H}(i)$, it actually suffices to consider $i^{\Delta}([0])$, $i^{\Delta}([1])$ and $i^{\Delta}([2])$.

Chapter 6

Semiexactness.

This chapter contains the first of our main results, a version of Brown Representability for semiexact additive families of groupoids over simplicial sets (or equivalently, over topological spaces). This does seem to be new.

We start by preparing the ground. In Section 6.1, we introduce the notion of a "CW-category" — roughly speaking, this is a model category that has classes C and W, but not F. It also has pushouts of maps in the class C (but is not required to have all finite colimits). The notion is somewhat technical, even more so than that of a model category, but it turns out that one can prove something even in such a generality. The main examples are, firstly, model categories, and secondly, various categories of partially ordered sets — in the latter case, C and W are left-closed embeddings and reflexive maps of Chapter 3. Additional examples are finite-dimensional simplicial sets, and chain complexes in an additive category.

One thing that survives in the setting of CW-categories is the Reedy construction (this is Subsection 6.1.2). Another is a version of the small object argument, in Subsection 6.1.3. We actually develop the theory of CW-categories further than strictly necessary, up to a non-trivial result (Proposition 6.1.6.2, a generalization of Proposition 5.3.2.2). This can be probably skipped, and the same holds for an earlier Proposition 6.1.5.3.

In Section 6.2, we turn to the study of families of groupoids on a CW-category. We introduce our two main conditions on such families, additivity and semiexactness (the latter is a version of the Mayer-Vietoris property for homology). The main surprise in Section 6.2 is Subsection 6.2.2, with Lemma 6.2.2.7 and Corollary 6.2.2.8. It turns out that under an additional assumption that happens to be satisfied in examples of interest, if a semiexact additive family of groupoids over a CW-category is constant along maps in the class W, it is automatically constant along a much larger class of "W-anodyne maps" (for PoSets, this corresponds

to passing from reflexive maps to anodyne maps of Subsection 3.1.9). It is this phenomenon that later allows us to reduce a homotopy invariance condition to a much milder conditions such as e.g. excision of Subsection 7.1.1.

Then in the last part of Section 6.2, we turn to semiexact families over model categories, and we prove some further results specific to this case. In particular, Proposition 6.2.5.3 provides a simple criterion that allows to recognize representable families of Subsection 5.3.2.

Actual proof of representability is in Section 6.3. First, in Subsection 6.3.1, we give a proof that follows very closely the standard proof found e.g. in [S]. This uses topological spaces; the formal statement is Theorem 6.3.1.2. Then we move to simplicial sets, and provide another proof, in Theorem 6.3.2.7, that actually gives slightly more — namely, we can control the size of the representing object. Technically, both proofs depend on the representability criterion of Proposition 6.2.5.3; for Theorem 6.3.2.7, the corresponding technical statement is given separately in Subsection 6.3.3. As a free bonus, we also obtain a representability theorem for families over the category $I^{o}\Delta^{o}$ Sets, for any cellular Reedy category I.

In the last part of Section 6.3, we restrict our attention to finite-dimensional simplicial sets. This is no longer a model category, so this needs the technilogy of CW-categories of Section 6.1. However, we can still prove a version of representability. As a corollary, we obtain Proposition 6.3.5.9 saying that a family over finite-dimensional simplicial sets extends to a family over all simplicial sets, uniquely up to an equivalence unique up to a non-unique isomorphism (we call this "semicanonical extension"). The same results hold for families over $I^0\Delta^0$ Sets, for a cellular Reedy category I.

6.1. CW-categories.

6.1.1. Generalities. By virtue of Proposition 5.3.2.2, when studying families of groupoids over a relative category $\langle I, W \rangle$ equipped with a model structure, it suffices to consider cofibrant objects and maps in the classes C and W. We will also need to consider more general situations when the ambient model category does not exist, and we only have C, W, and not F. It is convenient to axiomatize the situation. We start with following skeleton definition, and we will add embellishments as we go along.

Definition 6.1.1.1. A *C-category* is a category *I* equipped with a closed class of maps *C* such that *I* has an initial object 0, and for any maps $f_0: i \to i_0$,

 $f_1: i \to i_1$ in C, there exists a cocartesian square

$$\begin{array}{ccc}
i & \xrightarrow{f_0} & i_0 \\
f_1 \downarrow & & \downarrow \\
i_1 & \xrightarrow{} & i_{01}
\end{array}$$

in I, with both maps $i_0, i_1 \rightarrow i_{01}$ lying in C. A *weak CW-category* is a C-category I equipped with an additional closed class of maps W such that

- (i) for any square (6.1.1.1), if $i \rightarrow i_0$ is in W, then so is $i_1 \rightarrow i_{01}$, and
- (ii) for any $i_0 \in I$ such that $0 \to i_0$ is in C, any map $f: i_0 \to i_1$ in I admits a decomposition

$$(6.1.1.2) i_0 \xrightarrow{c} i_2 \xrightarrow{w} i_1$$

such that $c \in C$, and for any map $p : i_1 \to i_0$ in C with $f \circ p = id$, we have $c \circ p \in W$.

A *CW-category I* is a weak CW-category such that (6.1.1.2) in (ii) can be chosen in such a way that $c \circ p \in W$ for any $p : i'_0 \to i_0$ in *C* with $f \circ p \in W$.

Example 6.1.1.2. For any C-category $\langle I,C\rangle$ and any discrete cofibration $\pi:I'\to I$, $\langle I',\pi^*(C)\rangle$ is a C-category, and the same holds if π is a discrete fibration cartesian along each square (6.1.1.1). In both cases, if I is a CW-category with respect to some class W, then $\langle I',\pi^*(C),\pi^*(W)\rangle$ is a CW-category, with the decomposition (6.1.1.2) induced from those in I. In particular, for any object $i\in I$ in a CW-category I, the comma-fibers I/i, $i\setminus I$ carry a natural CW-structure, and the same holds for any two objects i', $i''\in I$ and the category $i'\setminus I/i$ of objects $i\in I$ equipped with maps $i'\to i\to i''$. Note that $i'\setminus I/i$ decomposes into a disjoint union according to the composition map $f:i'\to i''$, and each of the components $(i'\setminus I/i)_f$ of this decomposition is also a CW-category.

Example 6.1.1.3. The category Sets is trivially a *C*-category with respect to the class *C* of injective maps. This does not extend to a meaningful CW-structure (not even to a weak one).

Example 6.1.1.4. A model category $\langle I, C, W, F \rangle$ is automatically a CW-category in the sense of Definition 6.1.1.1, with the same classes C, W, and (6.1.1.2) provided by the model structure factorization.

Example 6.1.1.5. An additive category \mathcal{A} is a C-category with respect to the class C of split injections. The category of complexes $C_{\bullet}(\mathcal{A})$ is a C-category with respect to the class C of termwise-split injections, and it is a CW-category with respect to the class W of chain-homotopy equivalences; a decomposition (6.1.1.2) for a map $f: A_{\bullet} \to B_{\bullet}$ is given by

$$(6.1.1.3) A_{\bullet} \xrightarrow{a \oplus f} Cone(id_A) \oplus B_{\bullet} \xrightarrow{b} B_{\bullet},$$

where $a: A_{\bullet} \to \text{Cone}(\text{id}_A)$ is the natural embedding, and b is the projection.

Example 6.1.1.6. Let I = PoSets be the category of partially ordered sets, with C consisting of left-closed full embeddings, and W consisting of reflexive full embeddings of Definition 3.1.3.1. Then $\langle \text{PoSets}, C, W \rangle$ is a CW-category in the sense of Definition 6.1.1.1: (i) follows from Lemma 3.1.3.18, and by Lemma 3.1.3.13 and Lemma 3.1.3.20, (2.2.4.2) gives a decomposition (6.1.1.2). We call this the *standard* CW-structure on PoSets. Dually, the *co-standard* CW-structure has the same class W, and C consists of right-closed embeddings. Any very ample full subcategory $\mathcal{I} \subset \text{PoSets}$ in the sense of Definition 3.1.5.1 such as Pos, Pos_K, pos inherits both the standard and the co-standard CW-structures. Its extension \mathcal{I}^+ also inherits both CW-structures, but for the standard structure, we have to use (3.1.5.2) instead of (2.2.4.2).

Example 6.1.1.7. More generally, assume given a category I, and consider the category PoSets #I of I-augmented partially ordered sets, as in Subsection 3.2.1. Then PoSets #I with the classes C of left-closed embeddings and W of reflexive full embeddings of Definition 3.2.1.3 is a CW-category, and $\mathcal{I} \#I$ resp. $\mathcal{I}^+ \#I$ for a very ample $\mathcal{I} \subset PoS$ ets resp. its extension $\mathcal{I}^+ \#I$ inherits the CW-structure that we again call standard. The co-standard CW-structure has the same W, and C consisting of right-closed embeddings. The decomposition (6.1.1.2) is given by (2.2.4.3), and since the latter is only well-defined for strict maps, the co-standard CW-structure exists only on PoSets #I $\cong PoS$ ets #I.

For any C-category I, we will call pushout squares (6.1.1.1) standard pushout squares in I (in the situation of Example 6.1.1.6, these are standard pushout squares (3.1.2.3) of partially ordered sets). In the situation of Example 6.1.1.7, costandard pushout squares are standard pushout squares in PoSets $//_*I$ with respect to the co-standard CW-structure. We will say that a functor $\gamma:I\to I'$ between C-categories $\langle I,C\rangle$, $\langle I',C'\rangle$ is a *C-functor* if $C\subset \gamma^*C'$, and γ sends standard pushout squares to standard pushout squares. If I, I' are weak CW-categories with classes W, W', then a C-functor γ is a weak CW-functor if $W\subset \gamma^*W'$. A

weak CW-functor is a CW-functor if it sends the initial object $0 \in I$ to the initial object $0 \in I'$.

Example 6.1.1.8. For any functor $\gamma: I' \to I$ between some categories I, I', the induced functor PoSets // $I' \to \text{PoSets}$ // I is a CW-functor with respect to the standard CW-structures of Example 6.1.1.7.

Example 6.1.1.9. The involution ι : PoSets \to PoSets, $J \mapsto J^o$ is a CW-functor with respect to standard and co-standard CW-structures.

Example 6.1.1.10. Consider the category BiPoSets of biordered sets of Definition 3.2.2.1, with the classes C resp. W of left-closed resp. reflexive full embeddings of Definition 3.2.2.8. Then BiPoSets is a CW-category, and the forgetful functor U: BiPoSets \to PoSets is a CW-functor. As in Example 6.1.1.6 and Example 6.1.1.7, we call this CW-structure on BiPoSets standard; we note that the standard CW-structure is inherited by the unfolding $\mathcal{I}^{\diamond} = U^{-1}(\mathcal{I}) \subset \text{BiPoSets}$ of any very ample full subcategory $\mathcal{I} \subset \text{PoSets}$. The unfolding $\mathcal{I}^{+\diamond}$ of the extension \mathcal{I}^+ then also inherits the standard CW-structure, with the same modifications as in Example 6.1.1.6.

As in the model category case, we will say that an object $i \in I$ in a C-category I is *cofibrant* if $0 \to i$ is in C, and we will denote by $Cof(I) \subset I$ the full subcategory spanned by cofibrant objects. It inherits a C-structure, and a CW-structure if I had one. In practice, this is the only part of I that we will need, but it is convenient to allow a more general definition.

Example 6.1.1.11. Consider the arrow catgory $\operatorname{ar}(I)$ of a C-category I. Say that an arrow $i:[1] \to I$ is *cofibrant* if it factors through $\operatorname{Cof}(I)_C$, and say that a map $f:i \to i'$ in $\operatorname{ar}(I)$ between cofibrant i,i' is in the class C if

- (i) $f(0): i(0) \rightarrow i'(0)$ is in C, so that $i(1) \sqcup_{i(0)} i'(0)$ exists by Definition 6.1.1.1 (i), and
- (ii) the induced map $f': i(1) \sqcup_{i(0)} i'(0) \rightarrow i'(1)$ is also in C.

Then $\operatorname{ar}(I)$ with this class C is a C-category. Moreover, if I is a weak CW-category or a CW-category, say that f is in W if both f(0) and f' are in $C \cap W$. Then $\operatorname{ar}(I)$ with these classes C, W is a weak CW-category resp. CW-category, the subcategory $\operatorname{Cof}(\operatorname{ar}(I)) \subset \operatorname{ar}(I)$ of cofibrant arrows is a CW-subcategory, and the evaluation functors ev_0 , $\operatorname{ev}_1 : \operatorname{Cof}(\operatorname{ar}(I)) \to I$ are CW-functors. Alternatively, one can define a smaller class of maps $C_0 \subset C$ by requiring that $f(0) \in C$ and

f' is an isomorphism; then $\operatorname{ar}(I)$ with the classes C_0 , W is also a CW-category, and $\operatorname{id}: \langle I, C_0, W \rangle \to \langle I, C, W \rangle$ is a CW-functor.

Example 6.1.1.12. Assume given a CW-functor $\gamma:I\to I'$ between CW-categories I,I', consider the comma-category $I/_{\gamma}I'$ with its projections $\sigma:I/_{\gamma}I'\to I$, $\tau:I/_{\gamma}I'\to I$, and say that a map f in $I/_{\gamma}I'$ is in C resp. W if both $\sigma(f)$ and $\tau(f)$ are in C resp. W. Then this assignment does *not* turn $I/_{\gamma}I'$ into a CW-category, nor even a weak one: while Definition 6.1.1.1 (i) is satisfied, (ii) can fail. Already if I'=I and $\gamma=\mathrm{id}$, so that $I/_{\gamma}I'\cong \mathrm{ar}(I)$, the classes C and W defined above are different from the classes C and W of Example 6.1.1.11.

Lemma 6.1.1.13. For any CW-category $\langle I, C, W \rangle$, the tautological embedding $\langle \operatorname{Cof}(I), C \cap W \rangle \to \langle \operatorname{Cof}(I), W \rangle$ is a 2-equivalence.

Proof. By Lemma 5.1.2.7, it suffices to show that W lies inside the saturation $W' = s(\operatorname{Cof}(I), C \cap W)$. To do this, one can adapt a version of the cylinder construction quite standard in the theory of model categories (where it is also known as "Ken Brown's Lemma", [DS, Lemma 9.9]). Assume given a map $f: i \to i'$ in $\operatorname{Cof}(I)$. Since both i and i' are cofibrant, the coproduct $i \sqcup i'$ exists in I by Definition 6.1.1.1, and we can take a decomposition

$$(6.1.1.4) i \sqcup i' \xrightarrow{c \sqcup c'} \widetilde{i} \xrightarrow{w} i'$$

of the map $f \sqcup id : i \sqcup i' \to i'$ provided by Definition 6.1.1.1 (ii). Since $w \circ c' = id$, $c' \in C \cap W$, and then $w \in W'$. But if f is in W, then c is also in $C \cap W$, and then $f = w \circ c$ is in W'.

Definition 6.1.1.14. A morphism $c: i \to i'$ in a C-category I is absolutely cofibrant if any map $f: i \to i_1$ in I fits into a cocartesian square

$$\begin{array}{ccc}
i & \xrightarrow{c} & i' \\
f \downarrow & & \downarrow \\
i_0 & \xrightarrow{c_0} & i'_0
\end{array}$$

in I, and $c_0 \in C$.

Example 6.1.1.15. Take I = PoSets, with the co-standard C-structure. Then any split map $s: J \to J'$ in I is absolutely cofibrant by Example 3.1.7.7, and for any map $g: J_0 \to J_1$, the right-closed embedding $t: J_1 \to C(f)$ is also absolutely cofibrant, with (6.1.1.5) given by (2.2.4.4) for the map $f \circ g$.

6.1.2. The Reedy construction. Example 6.1.1.11 is the simplest case of the Reedy construction of Theorem 5.3.1.5, and somewhat surprisingly, the whole construction survives to some extent in the generality of Definition 6.1.1.1. Namely, recall that any left-bounded partially ordered set J is a Reedy category by Example 4.3.1.5, with latching categories L(j) = J/'j also being partially ordered sets.

Definition 6.1.2.1. A functor $X: J \to I$ from a Reedy category J to a C-category I is *cofibrant* if for any given object $j \in J$, the latching object $L(X,j) = \operatorname{colim}_{L(j)} X$ exists in the category I, and the natural map $L(X,j) \to X(j)$ is in the class C. A map $X \to X'$ between two functors is in the class C if both X and X' are cofibrant, and for any $j \in J$, the map $L(X,j) \to L(X',j)$ is in C, and the natural map

(6.1.2.1)
$$L(X',j) \sqcup_{L(X,j)} X(j) \to X'(j)$$

is in *C*. If *I* is a weak CW-category, then $f: X \to X'$ is in *W* if both *X* and X' are cofibrant, and all the maps (6.1.2.1) are in $C \cap W$.

Remark 6.1.2.2. If *I* is a model category, then $X : J \to I$ is cofibrant in the sense of Definition 6.1.2.1 iff it is cofibrant with respect to the Reedy model structure of Theorem 5.3.1.5.

Remark 6.1.2.3. For any discrete fibration $\pi: J' \to J$, J' inherits the Reedy structure of Example 4.3.1.6, and since $\pi: L(j) \to L(\pi(j))$ is an equivalence for any $j \in J'$, $\pi^*X: J' \to I$ is tautologically cofibrant for any cofibrant $X: J \to I$. In particular, this applies when J is directed and J' = L(j) is the latching category of an object $j \in J$, or when J is a left-bounded partially ordered set, and $J' \subset J$ is a left-closed subset.

Lemma 6.1.2.4. Assume given a functor $X : J \to I$ from a partially ordered set J to a C-category I that is cofibrant in the sense of Definition 6.1.2.1.

- (i) If J is finite, $\operatorname{colim}_J X$ exists and is cofibrant, and for any left-closed subset $J' \subset J$, the map $\operatorname{colim}_{J'} X \to \operatorname{colim}_J X$ is in the class C.
- (ii) For any order-preserving left-finite map $\varphi: J \to J_1$, the left Kan extension $\varphi_! X: J_1 \to I$ exists and is cofibrant, and for any morphism $f: X \to X'$ in C, the morphism $\varphi_!(f): \varphi_! X \to \varphi_! X'$ is in C.
- (iii) The functor X factors through through $Cof(I)_C \subset I$, and if a map $f: X \to X'$ is in C, then $f(j): X(j) \to X'(j)$ is in C for any $j \in J$.

(iv) For any left-closed subset $J_0 \subset J$ with the embedding map $\lambda: J_0 \to J$, the adjunction map $\lambda_1 \lambda^* X \to X$ is in the class C.

Moreover, if I is a weak CW-category, then $\varphi_!$ in (ii) sends maps in $C \cap W$ to maps in $C \cap W$, and if f in (iii) is in W, then so is f(j) for any $j \in J$.

Proof. For (i), note that for any left-closed $J' \subset J$, the restriction $X|_{J'}$ is cofibrant by Remark 6.1.2.3. Then by induction on the cardinality |J|, it suffices to consider $J' = J \setminus \{j\}$, $j \in J$ a maximal element, and we may assume that $\operatorname{colim}_{J'} X$ exists and is cofibrant. Then we have the standard pushout square of Example 3.1.2.7, and $\operatorname{colim}_{J} X$, if it exists, is given by the cocartesian square

$$\begin{array}{cccc} \operatorname{colim}_{L(j)} X & \stackrel{a}{\longrightarrow} & \operatorname{colim}_{J/j} X \\ & & & \downarrow & & \downarrow b' \\ & & & \operatorname{colim}_{J'} X & \longrightarrow & \operatorname{colim}_{J} X, \end{array}$$

where a is in C by Definition 6.1.2.1, and b is in C by induction. By Definition 6.1.1.1 (i), the square indeed exists, and b' is in C.

For (ii), the left Kan extension $\varphi_! X$ is given by (2.2.5.2) that reads as

$$(6.1.2.3) \varphi_! X(j) = \operatorname{colim}_{I/j} X, j \in J',$$

and if φ is left-finite, all the comma-sets J/j are finite, so we may assume that J is finite and $J_1 = \operatorname{pt}$, and then $\varphi_! X = \operatorname{colim}_J X$ exists by (i). The condition of Definition 6.1.2.1 for $\varphi_! X$ amounts to checking that for any $j \in J'$, the map $\operatorname{colim}_{\varphi^{-1}(L(j))} X \to \operatorname{colim}_{J/j} X$ is in C, so that we may again assume that J is finite, and $\varphi: J \to [1]$ is the characteristic function of a left-closed subset. Then $\varphi_! X$ is cofibrant by (i). Moreover, to check that $\varphi_!(f)$ is in C or in $C \cap W$, we may again assume that J is finite and $J_1 = [1]$, and then by the same induction as in (i), the statement immediately follows from Definition 6.1.1.1 (i) and the cocartesian square (6.1.2.2).

For (iii), the argument is essentially the same as Lemma 5.3.1.8. Namely, if J = [0] or J = [1], the claim immediately follows from Definition 6.1.1.1 (i), so it suffices to check that for any map $i : [1] \to J$, the restriction functor i^* sends cofibrant functors to cofibrant functors and maps in C resp. $C \cap W$ to maps in C resp. $C \cap W$. But i corresponds to a pair $j', j \in J$, $j' \leq j$, we can replace J by J/j, thus assume that j is the largest element, and then the characteristic function $\chi = \chi_{J/j'} : J \to [1]$ of $J/j' \subset j$ is adjoint to i, so that $i^* \cong \chi_!$.

Finally, for (iv), induction on $|J \setminus J_0|$ reduces us to the case when $J \setminus J_0$ is discrete, and in this case, the claim holds tautologically.

Definition 6.1.2.5. A Reedy category J is *thin* if it is directed (that is, $J = J_L$) and J/j is a finite partially ordered set for any $j \in J$.

Example 6.1.2.6. A left-bounded partially ordered set *J* with the Reedy structure of Example 4.3.1.5 is thin if and only if it is left-finite.

Proposition 6.1.2.7. Assume given a thin Reedy category J and a C-category resp. a CW-category I. Then the functor category Fun(J,I) with the classes C, resp. C and W of Definition 6.1.2.1 is a C-category resp. a CW-category in the sense of Definition 6.1.1.1. Moreover, for any morphism $\varphi: J_0 \to J_1$ between left-finite partially ordered sets, the left Kan extension $\varphi_!: Cof(Fun(J_0,I)) \to Cof(Fun(J_1,I))$ is a C-functor resp. a CW-functor.

Proof. By definition, for any $j \in J$, the comma-category J/j is a finite artially ordered set, with the discrete fibration $\sigma(j): J/j \to J$ of (2.1.2.3). Thus by Remark 6.1.2.3, a functor $X: J \to I$ is cofibrant iff so is $\sigma(j)^*X$ for any $j \in J$, and a map f between cofibrant objects is in C iff so is $\sigma(j)^*(f)$. In particular, maps in C are pointwise in C by Lemma 6.1.2.4 (iii), and the existence of the coproducts in Definition 6.1.1.1 (i) immediately follows from the corresponding statement for I. Moreover, for any $j \in J$, let $\chi(j): J/j \to [1]$ be the characteristic function of the latching subset $L(j) \subset J/j$. Then by definition, a map $f: X \to X'$ is in C resp. W iff so is $\chi(j)_!\sigma(j)^*(f)$ for any $j \in J$, and $\sigma(j)^*$ obviously preserves pushouts and maps in C resp. W, while $\chi(j)_!$ does so by Lemma 6.1.2.4 (ii). Thus checking that the pushouts of maps in C resp. $C \cap W$ are still in C resp. $C \cap W$ reduces to the case J = [1], where it again follows from Definition 6.1.1.1 (i) for I. The functor $\varphi_!$ preserves pushouts by adjunction, and $C \cap W$ by Lemma 6.1.2.4 (ii). Finally, to construct a decomposition

$$X \xrightarrow{c} X' \xrightarrow{a} Y$$

of a map $g: X \to Y$ in Fun(J, I), $X \in \text{Cof}(\text{Fun}(J, I))$ with the properties required in Definition 6.1.1.1 (ii), note that by induction on skeleta, we may assume this done on $\text{sk}_{n-1} J \subset J$, and we need to extend the decomposition to $\text{sk}_n J$. This can be done separately at each object j in the complement $\text{sk}_n J \setminus \text{sk}_{n-1} J$. Fix j, with the projection $\overline{\sigma}(j): L(j) \to J/j \to J$, note that $L(X',j) = \text{colim}_{L(j)} \overline{\sigma}(j)^* X'$ exists by Lemma 6.1.2.4 (i) and induction, and moreover, since the functor $\overline{\sigma}(j)^* Y: L(j) \to I$ has an augmentation $\sigma(j)^* Y: J/j = L(j)^> \to I$, the map $\overline{\sigma}(j)^* (a)$ gives rise to a natural map $a(j): L(X',j) \to Y(j)$. Then one can define X'(j) and $a: X'(j) \to Y(j)$ by taking the decomposition

$$L(X',j) \sqcup_{L(X,j)} X(j) \stackrel{c}{\longrightarrow} X'(j) \stackrel{a}{\longrightarrow} Y(j)$$

of the natural map $L(X',j) \sqcup_{L(X,j)} X(j) \to Y(j)$, where the coproduct again exists by Lemma 6.1.2.4 (i).

6.1.3. Abundant *C*-categories. For any *C*-category *I*, finite set *S* and functor $J: S^{<} \to I$ that factors through I_{C} , colimit $\operatorname{colim}_{S^{<}} J$ exists, and for any subset $S_{0} \subset S$, the map $\operatorname{colim}_{S_{0}^{<}} J \to \operatorname{colim}_{S^{<}} J$ is in *C* (for $S = \{0,1\}$ and $S_{0} = \{0\}$, this is Definition 6.1.1.1, and the general case immediately follows by induction on |S|). It is useful to also consider *C*-categories where this holds for an arbitrary set *S*.

Definition 6.1.3.1. A *C*-category *I* is *abundant* if for any set *S* and functor *X* : $S^{<} \rightarrow I$ that factors through I_{C} , colimit $\operatorname{colim}_{S^{<}} X$ exists, and for any subset $S_{0} \subset S$, the map $\operatorname{colim}_{S_{0}^{<}} X \rightarrow \operatorname{colim}_{S^{<}} X$ is in *C*.

Example 6.1.3.2. If a *C*-category *I* admits filtered colimits, and filtered colimits preserve *C*, then *I* is obviously abundant (and conversely, if *I* is abundant, then $\operatorname{colim}_{S^<} X$ is the filtered colimit of $\operatorname{colim}_{S_0^<} X$ over all finite subsets $S_0 \subset S$). In particular, this holds for the category PoSets with either the standard or co-standard *C*-structure of Example 6.1.1.6. For the standard structure, colimits $\operatorname{colim}_{S^<} J$ of Definition 6.1.3.1 are standard colimits (3.1.2.5). The subcategory $\operatorname{Pos}^+ \subset \operatorname{PoSets}$ is also abundant with respect to the standard structure, and dually, $\operatorname{Pos}^- \subset \operatorname{PoSets}$ is abundant with respect to the co-standard one.

Lemma 6.1.3.3. For any abundant C-category I, Lemma 6.1.2.4 holds for any $J \in Pos$ and any map $\varphi : J \to J_0$ in Pos, while Proposition 6.1.2.7 holds for any directed cellular Reedy category J.

Proof. For Lemma 6.1.2.4 (i), the claim immediately follows from Definition 6.1.3.1 if $J = S^{<}$ for some set S. In the case general, assume by induction that everything is already proved for any J with dim J < l for some $l \ge 0$ (where dim J = -1 when J is empty). Then for any J with dim J = l, let $S = J \setminus \operatorname{sk}_{l-1} J$, and let $p: J \to S^{<}$ be the standard extension (3.1.2.2) of the right-closed embedding $S \to J$. Then $p_! X$ exists by (6.1.2.3) and induction, and it is cofibrant by the same argument as in Lemma 6.1.2.4, so the induction step reduces to the case $J = S^{<}$. The rest of the proof is exactly the same as in Lemma 6.1.2.4. For Proposition 6.1.2.7, again, the same proof works. □

Lemma 6.1.3.4. For any $J \in \text{Pos}$, a functor $X : J \to \text{Pos}^+$ is cofibrant with respect to the standard C-structure of Example 6.1.1.6 iff $X \cong \mathsf{E}_{J^o}(J'^o)$ for some $J' \in \text{Pos}^+ /\!/ J$, where E_{J^o} is the functor (3.2.1.3). Moreover, in this case, we have $J' \cong \mathsf{colim}_J X$.

Proof. Consider the cofibration $\pi:J_{\bullet}\to J$ corresponding to X by the Grothendieck construction, and let $J'\subset J^{\bullet}$ be the full subset of all $j\in J^{\bullet}$ that are not in the image of the map $X(j')\to X(\pi(j))$ for any $j'\leq \pi(j)$ in J. Since π is a cofibration, the embedding $J'\subset J_{\bullet}$ uniquely extends to a map $p:J'/J\to J^{\bullet}$ cocartesian over J, and it suffices to check that it is an isomorphism — the identification $J'\cong \operatorname{colim}_J X$ is then simply the standard colimit (3.1.2.5). Assume by induction that everything is already proved when $\dim J< l$ for some $l\geq 0$, take some J of dimension $\dim J=l$, and let $J_0=\operatorname{sk}_{l-1} J$, with the corresponding subset $J'_0=\pi^{-1}(J_0)\cap J'\subset J'$. Then by induction, p is an isomorphism over J_0 , so it suffices to check that it is an isomorphism over any $j\in J\setminus J_0$. But then $L(X,j)=\operatorname{colim}_{L(j)}X\cong J'_0/j$, so that since X is cofibrant, $p:J'/j\to X(j)$ is a left-closed embedding, and then by definition, $(J'\setminus J'_0)/j=X(j)\setminus L(X,j)$. \square

Lemma 6.1.3.5. Say that a C-category I is excisive if all the maps c in C are monomorphisms, and all the standard pushout squares (6.1.1.1) are cartesian. Then for any compact object $i \in I$ in an abundant excisive C-category I, and any cofibrant functor $X: J \to I$ from some $J \in Pos$, the functor $I(i, X): J \to Sets$ is cofibrant with respect to the trivial C-structure of Example 6.1.1.3.

Proof. Since all maps in *C* are monomorphisms, $I(i, -): I \to Sets$ sends them to injective maps, and then by Definition 6.1.2.1, it suffices to show that for any $J \in Pos$ and cofibrant functor $X: J \to I$, the natural map $colim_J I(i, X) \to I(i, colim_J X)$ is injective. The same induction on dimension as in Lemma 6.1.3.3 reduces this to the case $J = S^<$, and then since i is compact, I(i, -) commutes with filtered colimits, so by Example 6.1.3.2, we may assume that S is finite. But induction on |S| further reduces us to the case $S = \{0,1\}$, and this immediately follows from the definition. □

Example 6.1.3.6. The category PoSets with the standard or co-standard *C*-structure of Example 6.1.1.6 is excisive in the sense of Lemma 6.1.3.5, and so are the subcategories Pos, Pos^+ , $Pos^- \subset PoSets$.

One immediate consequence of Definition 6.1.3.1 is that an abundant C-category I has arbitrary coproducts (this is Lemma 6.1.3.3 for J = S). In particular, for any $i \in I$ and set S, we can define the product $S \times i$ as the colimit of the constant functor $S \to I$ with value i. Moreover, for any $i' \in I$, we can let S = I(i,i'), and we then have the tautological evaluation map $S \times i \to i'$. This has the following application. Assume given a set S and a collection $\{f_S\}$, $S \in S$ of maps $S \in S$ in $S \in S$ in $S \in S$ that are absolutely cofibrant in the sense of

Definition 6.1.1.14, and define the *extension functor* $\text{Ex}(\{f_s\}): I \to I$ by the cocartesian square

$$(6.1.3.1) \qquad \qquad \coprod_{s \in S} I(i_s, i) \times i_s \xrightarrow{\sqcup f_s} \coprod_{s \in S} I(i_s, i) \times i_s'$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$i \qquad \longrightarrow \qquad \operatorname{Ex}(\{f_s\})(i)$$

for any $i \in I$, where the vertical arrow on the left is the coproduct of the evaluation maps. Note that the pushout (6.1.3.1) indeed exists in I, since alternatively, it can be expressed as

(6.1.3.2)
$$\operatorname{Ex}(\{f_s\})(i) = \operatorname{colim}_{T} i_{\bullet},$$

where $T = \sqcup_s I(i_s, i)$, and $i_*: T^{<} \to I$ sends o to i and $t \in T$ corresponding to some map $i_s \to i$ to $i \sqcup_{i_s} i_s'$. Since $\operatorname{Ex}(\{f_s\})$ is a functor, it can also be applied pointwise to I-valued functors $X: J \to I$ from some $J \in \operatorname{Pos}$, and the expression (6.1.3.2) is also functorial.

Lemma 6.1.3.7. Assume that an abundant C-category I is excisive in the sense of Lemma 6.1.3.5. Then for any $J \in Pos$, cofibrant functor $X : J \to I$ and collection $\{f_s\}$ of absolutely cofibrant maps $f_s : i_s \to i'_s$ in I such that $i_s, s \in S$ are compact, the map $X \to X_1 = Ex(\{f_s\})(X)$ is in C.

Proof. By (6.1.3.2), for any $j \in J$, the latching object $L(X_1, j)$ is given by

$$L(X_1,j) \cong \operatorname{colim}_{L(T,j)^{<}} L(X,j)$$
.

where L(T, j) is the latching set for the functor $T: J \to \text{Sets}$ corresponding to X. But T is cofibrant by Lemma 6.1.3.5, so the map $L(T, j) \to T$ is injective, and then since X is cofibrant, the latching map for X_1 is in C by Definition 6.1.3.1. \square

6.1.4. Relatively cofibrant functors. We note that the implication in Lemma 6.1.2.4 (iii) only goes in one direction: a functor $X: J \to I$ may factor through $Cof(I)_C$ without being cofibrant. To measure the difference, it is convenient to generalize Definition 6.1.2.1 as follows. Assume given a finite partially ordered set J and a subset $\mathcal{J} \subset L(J)$, with the incidence subset $\mathcal{J}_{\bullet} \subset J \times L(J)$ and its natural projections $\sigma(J)$, $\tau(J)$ of (3.1.2.9).

Definition 6.1.4.1. A functor $X: J \to I$ to a C-category I is \mathcal{J} -cofibrant if $\tau(J)_!\sigma(J)^*X: \mathcal{J} \to I$ exists and factors through $Cof(I)_C$.

If $\mathcal{J} = L(J)$, then by Lemma 6.1.2.4, X is \mathcal{J} -cofibrant if and only if it is cofibrant in the sense of Definition 6.1.2.1. On the other hand, if $\mathcal{J} = \mathsf{Y}(J) \subset L(J)$ is the image of the Yoneda embedding (3.1.2.7), then $X \cong \tau_! \sigma^* X$ is \mathcal{J} -cofibrant iff it factors through $\mathsf{Cof}(I)_C$.

Lemma 6.1.4.2. Assume given a map $\varphi: J \to J'$ of finite partially ordered sets, and a subset $\mathcal{J} \subset L(J)$ such that $\mathcal{J}' = (\varphi^*)^{-1}(\mathcal{J}) \subset L(J')$ contains the Yoneda image $Y(J') \subset L(J')$.

- (i) For any \mathcal{J} -cofibrant $X: J \to I$, $\varphi_! X$ exists and is \mathcal{J}' -cofibrant.
- (ii) If φ is a left-closed full embedding, then $X: J' \to I$ is \mathcal{J}' -cofibrant iff $\varphi^*X: J \to I$ is \mathcal{J} -cofibrant and for any $j \in J' \setminus J$, the latching object L(X,j) exists and the map $L(X,j) \to X(j)$ is in C.

Proof. For (i), by assumption, the map $\varphi^* \circ Y : J' \to L(J)$ factors through a map $Y' : J' \to \mathcal{J}$, and we have a commutative diagram

$$\begin{array}{cccc}
J & \stackrel{\sigma}{\longleftarrow} & J/_{\varphi}J' & \stackrel{\tau}{\longrightarrow} & J' \\
\parallel & & \downarrow & & \downarrow e' \\
J & \stackrel{\sigma(J)}{\longleftarrow} & \mathcal{J}. & \stackrel{\tau(J)}{\longrightarrow} & \mathcal{J}
\end{array}$$

with cartesian square on the right, so that $\varphi_! X \cong \tau_! \sigma^* X \cong {\sf Y'}^* \tau(J)_! \sigma(J)^* X$ exists by Lemma 2.3.2.9. Similarly, $\tau(J')_! \sigma(J')^* \varphi_! X \cong \tau(J)_! \sigma(J)^* X \circ \varphi^*$, so it factors through ${\sf Cof}(I)_C$.

For (ii), the "only if" part is obvious: by assumtion we have $J/j \in \mathcal{J}'$, and $\varphi^*(L(j)) = \varphi^*(J/j)$. For the "if" part, as in Lemma 6.1.2.4 (i), we need to check that $\operatorname{colim}_{J'} X$ exists and is cofibrant for any $J'_1 \in \mathcal{J}'$, and for any $J'_0 \subset J'_1$, $J'_0 \in \mathcal{J}'$, the map $\operatorname{colim}_{J'_0} X \to \operatorname{colim}_{J'_1} X$ is in C. We may restrict to J'_1 , so that $J'_1 = J'$, and then for any maximal element $j \in J' \setminus J$, $\varphi^*(J' \setminus \{j\}) = \varphi^*(J') \in \mathcal{J}$. By induction on |J'|, it suffices to consider the case $J'_0 = J' \setminus \{j\}$, and assume that $\operatorname{colim}_{J'_0} X$ exists and is cofibrant. The claim then follows from the cocartesian square (6.1.2.2).

By Lemma 3.1.3.3, an example of the situation of Lemma 6.1.4.2 occurs when a left-closed embedding $\varphi: J \to J'$ is right-reflexive, and $\mathcal{J} = \mathsf{Y}(J)$. In this case, we will say that a functor $X: J' \to I$ is *cofibrant relatively to J* if it is \mathcal{J}' -cofibrant. More generally, a left-closed full Reedy subcategory $J_0 \subset J$ in a thin Reedy category J is automatically thin, and if $J_0 \subset J$ is right-admissible, with the adjoint functor $\gamma: J \to J_0$, then for any $j \in J$, $J_0/\gamma(j) \subset J/j$ is a left-closed

right-admissible subset in the finite partially ordered set J/j. Say that a functor $X: J \to X$ is *cofibrant relatively to* $J_0 \subset J$ if for any $j \in J$, $\sigma(j)^*X$ is cofibrant relatively to $J'/\gamma(j) \subset J/j$.

Lemma 6.1.4.3. Assume given a thin Reedy category J, a left-closed full Reedy subcategory $J_0 \subset J$, and a functor $X: J \to I$ to a CW-category I whose restriction to J_0 is cofibrant. Then there exists a cofibrant functor $X': J \to I$ and a map $a: X' \to X$ such that a is an isomorphism over J_0 , and for any map $f: j_0 \to j$ in J, $j_0 \in J_0$ such that $X(f) \in W$, X'(f) is in $C \cap W$. Moreover, if we have a left-closed Reedy subcategory $J_{00} \subset J_0$ that is right-admissible in J, hence also in J_0 by Example 2.2.3.4, then the same holds for functors cofibrant relatively to J_{00} .

Proof. Since $J_0 \subset J$ is left-closed, we can build X' by induction on skeleta, starting with $X'|_{J_0}$. Then as in Proposition 6.1.2.7, we may assume by induction that X' and a has been already constructed on a left-closed subcategory $J' \subset J$, $J \supset J_0$ such that $J \setminus J'$ consists of a single object $j \in J$, consider the map $a(j): L(X',j) \to X(j)$ that exists by Lemma 6.1.2.4 (i), and construct X'(j) and $a: X'(j) \to X(j)$ by taking its decomposition

$$L(X',j) \xrightarrow{c} X'(j) \longrightarrow X(j)$$

of Definition 6.1.1.1 (ii). Then for any $f: j_0 \to j$, $j_0 \in J_0$, the natural map $c: X(j_0) \cong X'(j_0) \to L(X',j)$ is in C by Lemma 6.1.2.4 (iv), and $a(j) \circ c = X(f)$, so that if X(f) is in W, then X'(f) must be in $C \cap W$ by Definition 6.1.1.1 (ii). This finishes the proof in the absolute case; in the relative case, replace Lemma 6.1.2.4 (i) with Lemma 6.1.4.2 (ii).

Example 6.1.4.4. Take I = PoSets, with the standard CW-structure of Example 6.1.1.6, and assume that $J_0 = \text{sk}_0 J$ is discrete, and there is no J_{00} . Then a functor $X: J \to \text{PoSets}$ defines a cofibration $J' \to J$ with fibers $J'_j = X(j)$, $j \in J$, and if we use the decompositions (6.1.1.2) given by (2.2.4.2), the functor $X': J \to \text{PoSets}$ provided by Lemma 6.1.4.3 is X'(j) = J'/j. Note that since J/j is a partially ordered set for any $j \in J$ by Definition 6.1.2.5, so is J'/j, and the functor X' is cofibrant by Lemma 6.1.3.4.

Example 6.1.4.5. Let $J = \mathbb{I}$ be the Kronecker category of Subsection 5.1.3, let $J_0 = \operatorname{pt} \subset \mathbb{I}$ be the full subcategory spanned by $0 \in \mathbb{I}$, and let $X : \mathbb{I} \to I$ be a constant functor with some value $i \in I$. Then \mathbb{I} is a thin Reedy category with respect to the degree function $\operatorname{deg}(l) = l, l = 0, 1$, and as soon as $i \in I$ is cofibrant, we are within the scope of Lemma 6.1.4.3. Then the latching object

 $L(X,1) \in I$ is $i \sqcup i$, and to construct the cofibrant $X' : \mathbb{I} \to I$, one need to apply Definition 6.1.1.1 (ii) to the codiagonal map $i \sqcup i \to i$. Explicitly, (6.1.1.2) in this case reads as

$$(6.1.4.1) i \sqcup i \xrightarrow{c} i' \xrightarrow{w} i.$$

and X' sends 0 to i, 1 to \widetilde{i} , and s resp. t to the composition of c with the embedding $i \to i \sqcup i$ onto the first resp. second summand, while $a: X \to X'$ is id at 0 and w at 1. We note that diagrams (6.1.4.1) are in one-to-one correspondence with functors $\widetilde{i}: \mathsf{D}_1 \to I$, where D_1 is as in (4.1.1.2); the correspondence is given by $i = \widetilde{i}([0])$, $i' = \widetilde{i}([1])$, $c = \widetilde{i}(s) \sqcup \widetilde{i}(t)$, and $w = \widetilde{i}(e)$, where $e: [1] \to [0]$ is the unique projection. If we equip $\mathsf{D}_1 \subset \Delta$ with the induced Reedy structure, its latching category is exactly \mathbb{I} , and the functor $X': \mathbb{I} \to I$ is $l^*\widetilde{i}$, where $\widetilde{i}: \mathsf{D}_1 \to I$ corresponds to (6.1.4.1), and $l: \mathbb{I} \to \mathsf{D}_1$ is the embedding functor.

Example 6.1.4.6. In the setting of Example 6.1.4.5, one can also consider the restriction $v: V^o \subset \mathbb{V} \to \mathbb{I}$ of the discrete fibration v of (5.1.3.2) to the first component of (5.1.3.4). Then $v: V^o \to \mathbb{I}$ is still a discrete fibration (in fact, one has $V^o \cong \mathbb{I}/1$, and v is the fibration $\sigma(1): \mathbb{I}/1 \to \mathbb{I}$ of (2.1.2.3)), V^o is a thin Reedy category with respect to the induced Reedy structure, and $v^*X': V^o \to I$ is also cofibrant and obtained by applying Lemma 6.1.4.3 to the constant functor $v^*X: V^o \to I$ with value i. More generally, one take a map $f: i \to i'$ in Cof(I), and define a functor $X: V^o \to I$ by X(0) = i, X(1) = X(o) = i', with the maps $f: X(0) \to X(o)$, id: $X(1) \to X(o)$. Then $L(X, o) \cong i \sqcup i'$, and if one applies Lemma 6.1.4.3, then instead of (6.1.4.1) one has to consider a decomposition (6.1.1.4) used in Lemma 6.1.1.13.

6.1.5. CW-augmentations. Since a finite partially ordered set J is trivially left-finite, Proposition 6.1.2.7 immediately provides a CW-structure on the category Cof(Fun(J,I)) for any CW-category I. It turns out that one can collect all these structures together into a single CW-structure on the category pos //I. To do this, we modify Example 6.1.1.7 in the following way. Say that an I-augmented finite partially ordered set $\langle J, \alpha_J \rangle$ is *cofibrant* if $\alpha_J : J \to I$ is cofibrant in the sense of Definition 6.1.2.1, and let $Cof(pos //I) \subset pos //I$ be the full subcategory spanned by cofibrant objects.

Example 6.1.5.1. If I = pos with the CW-structure of Example 6.1.1.6, then by Lemma 6.1.3.4, Cof(pos // pos) is the category Ar(pos) whose objects are maps

 $f: I \to I'$ in pos, and whose maps are given by lax commutative squares

(6.1.5.1)
$$J_{0} \xrightarrow{f_{0}} J'_{0}$$

$$g \downarrow \qquad \qquad \downarrow g'$$

$$J_{1} \xrightarrow{f_{1}} J'_{1},$$

or explicitly, squares (6.1.5.1) such that $f_1 \circ g \leq g' \circ f_0$. In particular, we have a dense embedding $ar(pos) \subset Ar(pos) \cong Cof(pos \# pos)$.

Definition 6.1.5.2. A map $\langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle \langle J', \alpha_{J'} \rangle$ between cofibrant *I*-augmented finite partially ordered sets $\langle J, \alpha_J \rangle$, $\langle J', \alpha_{J'} \rangle$ is *CW-left-closed* resp. *CW-left-reflexive* if $f: J \to J'$ is a left-closed resp. left-reflexive full embedding, and $\alpha_f: \alpha_J \to f^*\alpha_{J'}$ is in the class *C* resp. *W* with respect to the CW-structure of Proposition 6.1.2.7. A map is *CW-right-reflexive* if it is a right-reflexive full embedding in the sense of Definition 3.2.1.3, and *CW-reflexive* if it is a finite composition of CW-right-reflexive and CW-left-reflexive full embeddings.

By definition, a CW-right-reflexive full embedding of augmented partially ordered sets is strict, and by Lemma 6.1.2.4 (iii), a CW-left closed resp. CW-left-reflexive full embedding is C-strict resp. W-strict. Note that since the pullback f^*X of a cofibrant functor $X: J' \to I$ with respect to a map $f: J \to J'$ of finite partially ordered sets is not necessarily cofibrant, the projection

(6.1.5.2)
$$\operatorname{Cof}(\operatorname{pos} /\!/ I) \subset \operatorname{pos} /\!/ I \to \operatorname{pos}$$

induced by the fibration of Example 2.3.3.8 is not a fibration. However, by virtue of Lemma 6.1.2.4 (ii), it is a cofibration. The embedding (2.1.4.11) restricts to an embedding $v: \operatorname{Cof}(I) \cong \operatorname{Cof}(\operatorname{pos} /\!\!/ I)_{\operatorname{pt}} \to \operatorname{Cof}(\operatorname{pos} /\!\!/ I)$, and it has a left-adjoint functor $\chi: \operatorname{Cof}(\operatorname{pos} /\!\!/ I) \to \operatorname{Cof}(I)$. By Lemma 2.3.2.9 and Lemma 6.1.2.4 (i), χ can also be described as

$$(6.1.5.3) \chi = \nu_{\bullet!} \text{ ev} : \text{Cof}(\text{pos} \# I) \to I,$$

where ev and ν are obtained by restricting the functors of Example 2.4.1.3 to $Cof(pos \ /\!\!/ I) = pos \ \times_{pos} Cof(pos \ /\!\!/ I) \subset pos \ /\!\!/ I$.

Proposition 6.1.5.3. For any weak CW-category I, the corresponding category Cof(pos // I) with the classes C resp. W of CW-left-closed resp. CW-reflexive full embeddings is a weak CW-category. The functor (6.1.5.3) is a CW-functor, and for any family of groupoids C over $\langle I, W \rangle$, $v_{**} ev^* C$ is a family of groupoids over $\langle Cof(pos // I), W \rangle$.

Proof. For any morphism $\langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle J', \alpha_{J'} \rangle$ in Cof(pos $/\!\!/ I$), the left Kan extension $f_!\alpha_J : J' \to I$ exists and is cofibrant by Lemma 6.1.2.4 (i), and if $\langle f, \alpha_f \rangle$ is CW-left-closed, then the map $\alpha_f^{\dagger} : f_!\alpha_J \to \alpha_{J'}$ adjoint to α_f is in the class C by Lemma 6.1.2.4 (ii),(iv). To construct the coproduct of $\langle f, \alpha_f \rangle$ with another CW-left-closed map $\langle g, \alpha_g \rangle : \langle J, \alpha_J \rangle \to \langle J'', \alpha_{J''} \rangle$, take the finite partially ordered set $J' \sqcup_J J''$, and augment it by

(6.1.5.4)
$$\alpha_{J' \sqcup_I J''} = \varepsilon'_! \alpha_{J'} \sqcup_{\varepsilon_! \alpha_I} \varepsilon''_! \alpha_{J''},$$

where ε , ε' , ε'' are the embeddings of J, J', J'' into $J' \sqcup_J J''$. Moreover, if $\langle f, \alpha_f \rangle$ is CW-reflexive, then J' admits a filtration (3.1.3.5), with all the maps $\langle f_l, \alpha_l \rangle$: $J'_{l-1} \to J'_l$ CW-left or right-reflexive, and to prove that the pushout $\langle f', \alpha'_f \rangle$: $J'' \to J' \sqcup_J J''$ of the map $\langle f, \alpha_f \rangle$ is CW-reflexive, it suffices to prove the same for the pushouts $\langle f'_l, \alpha'_l \rangle$: $J'_{l-1} \sqcup_J J'' \to J'_l \sqcup_J J''$ of the maps $\langle f_l, \alpha_l \rangle$. But if $\langle f_l, \alpha_l \rangle$ is CW-right-reflexive, the situation is the same as in Example 6.1.1.7, and in the CW-left-reflexive case, the map α'_l is a pushout (6.1.5.4) of the map α_l with respect to a map in C, thus lies in W (where we recall that by Definition 6.1.2.1, $\alpha_l \in W$ means that $\alpha_l \in C \cap W$). Therefore Cof(pos //l 1) satisfies Definition 6.1.1.1 (i).

For Definition 6.1.1.1 (ii), consider a map $\langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle J', \alpha_{J'} \rangle$ in Cof(pos $/\!\!/ I$), let J'' = C(f), with the decomposition (2.2.4.2), choose a decomposition

$$(6.1.5.5) f_! \alpha_I \xrightarrow{c} \alpha'_{I'} \xrightarrow{w} \alpha_{I'}$$

of the adjoint map $\alpha_f^{\dagger}: f_!\alpha_J \to \alpha_{J'}$ provided by Definition 6.1.1.1 (ii), and let $\alpha_{J''} = t_+^*\alpha_J': J'' \to I$. Then (2.2.4.2) lifts to a decomposition

$$(6.1.5.6) \langle J, \alpha_J \rangle \xrightarrow{\langle a, \alpha_a \rangle} \langle J'', \alpha_{J''} \rangle \xrightarrow{\langle b, \alpha_b \rangle} \langle J', \alpha_{J'} \rangle$$

of the map $\langle f, \alpha_f \rangle$, where $a = s : J \to J''$, $b = t_{\dagger} : J'' \to J'$, the map $\alpha_a : \alpha_J \to a^*\alpha_{J''} \cong f^*\alpha_J'$ is adjoint to the map c in (6.1.5.5), and the map $\alpha_b = t_{\dagger}^*w$ is the pullback of the map w. Then for any CW-left-closed morphism $\langle p, \alpha_p \rangle : \langle J', \alpha_{J'} \rangle \to \langle J, \alpha_J \rangle$ such that $\langle f, \alpha_f \rangle \circ \langle p, \alpha_p \rangle = \operatorname{id}$, the map $\operatorname{id} : \alpha_{J'} \cong (f \circ p)_!\alpha_{J'} \to \alpha_{J'}$ factors as

$$(f \circ p)_! \alpha_{J'} \xrightarrow{f_!(\alpha_p^{\dagger})} f_! \alpha_J \xrightarrow{\alpha_f^{\dagger}} \alpha_{J'}.$$

The cylinder C(id) of the identity map id : $\langle J', \alpha_{J'} \rangle \rightarrow \langle J', \alpha_{J'} \rangle$ is the product $J' \times [1]$ equipped with the augmentation $\alpha_{J' \times [1]} = t_+^* \alpha_{J'}$, Lemma 3.1.3.13 provides a left-reflexive full embedding $q : J' \times [1] \rightarrow J''$, and if we let

$$\alpha_q = t_+^*(c \circ f_!(\alpha_p^\dagger)) : \alpha_{J' \times [1]} \to q^* \alpha_{J''} \cong t_+^* \alpha_{J'}',$$

then the map $\langle q, \alpha_q \rangle$ is CW-left-reflexive by virtue of Definition 6.1.1.1 (ii), while the map $\langle \sigma, \operatorname{id} \rangle : \langle J', \alpha_{J'} \rangle \to \langle J' \times [1], \alpha_{J' \times [1]} \rangle$ is tautologically CW-right-reflexive. Therefore $\langle a, \alpha_a \rangle \circ \langle p, \alpha_p \rangle \cong \langle q, \alpha_q \rangle \circ \langle \sigma, \operatorname{id} \rangle$ is CW-reflexive, and (6.1.5.6) satisfies the condition of Definition 6.1.1.1 (ii).

By Lemma 6.1.2.4 (ii),(iv), the left Kan extension (6.1.5.3) sends maps in C to maps in C, it trivially sends 0 to 0, and (6.1.5.4) immediately shows that it sends pushout squares of Definition 6.1.1.1 (i) to pushout squares. Thus to check that it is a CW-functor, it suffices to show that for any CW-left-reflexive or CW-right-reflexive map $\langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle J', \alpha_{J'} \rangle$, the composition map

$$(6.1.5.7) \qquad \operatorname{colim}_{I} \alpha_{I} \xrightarrow{\operatorname{colim}_{I} \alpha_{f}} \operatorname{colim}_{I} f^{*} \alpha_{I'} \longrightarrow \operatorname{colim}_{I'} \alpha_{I'}$$

is in W. In the left-reflexive case, the first map in (6.1.5.7) is in W by Lemma 6.1.2.4 (i), and the second map is an isomorphism by (2.2.5.5). In the right-reflexive case, the whole map is also $\operatorname{colim}_{J'} \alpha_f^{\dagger}$, and α_f^{\dagger} is an isomorphism by Definition 3.2.1.3. Finally, to see that $\nu_{\bullet\bullet}$ ev* $\mathcal C$ is constant over W, use the same argument with Lemma 2.3.2.9 and (2.2.5.5) replaced by (2.4.3.4) and Lemma 2.4.3.2.

Remark 6.1.5.4. The category $\nu_{\bullet*} \text{ ev}^* \mathcal{C}$ of Proposition 6.1.5.3 can be also described by (2.4.3.11): it is the full subcategory $\text{Cof}(\text{pos} \ /\!\!/ \mathcal{C}) \subset \text{pos} \ /\!\!/ \mathcal{C}$ spanned by \mathcal{C} -augmented partially ordered sets whose projection to pos $\ /\!\!/ I$ is cofibrant.

Remark 6.1.5.5. Definition 6.1.5.2 immediately implies that the cofibration (6.1.5.2) is a CW functor, with fibers $Cof(pos //I)_J \cong Cof(Fun(J,I))$, and for any $J \in pos$, the embedding $v_J : Cof(Fun(J,I)) \to Cof(pos //I)$ of the fiber over J is a weak CW-functor (this includes the embedding $v = v_{pt} : Cof(I) \to Cof(Pos //I)$ of (2.1.4.11)). However, these are only weak CW-functors, since $0 \in Fun(J,I)$ goes to $\langle J,0 \rangle$ and not to $\langle \varnothing,0 \rangle$.

Remark 6.1.5.6. Alternatively, one can construct decompositions (6.1.1.2) for the CW-category Cof(pos $/\!\!/ I$) by using Lemma 6.1.4.3. Namely, the augmented cylinder $\langle J'', \alpha_{J''} \rangle$ of a map $\langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle J', \alpha_{J'} \rangle$ between cofibrant I-augmented finite partially ordered sets is not in general cofibrant, but $s: J \to J''$ is a left-closed embedding, and $s^*\alpha_{J''} \cong \alpha_J: J \to I$ is cofibrant. If we treat J'' as a Reedy category, by Example 4.3.1.5, then Lemma 6.1.4.3 provides a cofibrant functor $\alpha'_{J''}: J'' \to I$ and a map $\alpha'_{J''} \to \alpha_{J''}$ that is an isomorphism over J. Replacing $\alpha_{J''}$ with $\alpha'_{J''}$ gives (6.1.5.6). The construction used in the proof of Proposition 6.1.5.3 is essentially the same but shorter: since we know that

 $t^*\alpha_{J''}: J' \to I$ is also cofibrant, it suffices to take the decomposition (6.1.5.5) once instead of doing the induction over $j \in J' = J'' \setminus J$ as in Lemma 6.1.4.3.

Example 6.1.5.7. To illustrate how (6.1.1.2) and (6.1.4.1) work in the CW-category Cof(pos $/\!/I$), take a cofibrant object $i \in I$, and consider its image $v(i) = \langle \mathsf{pt}, i \rangle$ with respect to the embedding (2.1.4.11). Note that $v(i) \sqcup v(i)$ is $\{0,1\} \cong \mathsf{pt} \sqcup \mathsf{pt}$ augmented by the constant functor $i : \{0,1\} \to I$ with value i, and not $\varepsilon(i \sqcup i) \cong \langle \mathsf{pt}, i \sqcup i \rangle$. To construct (6.1.4.1) for v(i), one first takes the cylinder V^o of the codiagonal map $\{0,1\} \cong \mathsf{pt} \sqcup \mathsf{pt} \to \mathsf{pt}$, and then chooses a decomposition (6.1.4.1) for i in I, with the corresponding functor $\widetilde{i} : \mathbb{I} \to I$. The resulting decomposition is

$$(6.1.5.8) v(i) \sqcup v(i) \cong \langle \{0,1\}, i \rangle \xrightarrow{c} \langle \mathsf{V}^o, v^* \widetilde{i} \rangle \xrightarrow{w} v(i) = \langle \mathsf{pt}, i \rangle,$$

where $v: V^o \to \mathbb{I}$ is as in Example 6.1.4.6.

6.1.6. Regular CW-categories. One other result of Section 5.3 that survives, with some modifications, in the generality of Definition 6.1.1.1 is Proposition 5.3.2.2. Namely, assume given a CW-category I, with the corresponding full subcategory $Cof(I) \subset I$ of cofibrant objects and classes C and W.

Definition 6.1.6.1. A CW-category I is *regular* if the natural embedding ν : $\langle \operatorname{Cof}(I)_C, C \cap W \rangle \to \langle I, W \rangle$ is a 2-equivalence.

If I is a model category I with the CW-structure of Example 6.1.1.4, then I is regular in the sense of Definition 6.1.6.1 by Proposition 5.3.2.2. One cannot expect a general CW-category I to be regular: at the very least, nothing in Definition 6.1.6.1 forbids adding a new non-cofibrant object i to a CW-category I without changing the classes C and W (nor in fact having a CW-category whose only cofibrant object is $0 \in I$). But as it happens, excluding trivial possibilities of this sort does the job.

Proposition 6.1.6.2. Assume given a CW-category $\langle I, C, W \rangle$ such that Cof(I) = I. Then I is regular in the sense of Definition 6.1.6.1.

Proof. For any category I, let $e:[1]\times I\to I$ be the projection, with its sections $s,t:I\to [1]\times I$ given by embeddings onto $\{0\}\times I$ resp. $\{1\}\times I$. By Lemma 5.1.2.10 (ii), $e:\langle [1]\times I,e^*\star\rangle\to\langle I,\star\rangle$ is a 2-equivalence, with inverse 2-equivalence given by either s or t. The restricted simplicial expanion $\Delta_f I$ of

Corollary 5.2.1.2 is a thin Reedy category in the sense of Definition 6.1.2.5, and we have a commutative diagram

$$\langle \Delta_{\mathsf{f}} I, + \rangle \xrightarrow{\Delta_{\mathsf{f}}(s)} \langle \Delta_{\mathsf{f}}([1] \times I), \Delta_{\mathsf{f}}(e)^* + \rangle \xleftarrow{\Delta_{\mathsf{f}}(t)} \langle \Delta_{\mathsf{f}} I, + \rangle$$

$$\parallel \qquad \qquad \downarrow \xi' \qquad \qquad \parallel$$

$$\langle \Delta_{\mathsf{f}} I, + \rangle \xrightarrow{s} \qquad \langle [1] \times \Delta_{\mathsf{f}} I, e^* (+) \rangle \qquad \xleftarrow{t} \langle \Delta_{\mathsf{f}} I, + \rangle$$

$$\downarrow \xi \qquad \qquad \downarrow \xi \qquad \qquad \downarrow \xi$$

$$\langle I, \star \rangle \xrightarrow{s} \qquad \langle [1] \times I, e^* \star \rangle \qquad \xleftarrow{t} \langle I, \star \rangle,$$

where all the morphisms ξ are 2-equivalences by Corollary 5.2.1.2, and so is the composition $\xi \circ \xi'$, so that all the morphisms in (6.1.6.1) are 2-equivalences.

Now let I be our CW-category, consider the thin Reedy category $\Delta_f I$, and note that since $I = \operatorname{Cof}(I)$, the functor $\xi : \Delta_f I \to I$ is cofibrant on the skeleton $\operatorname{sk}_0 \Delta_f I = (\Delta I)_{[0]} = I_{\operatorname{Id}} \subset \Delta_f I$. Thus if we take $J = \Delta_f I$, $J_0 = \operatorname{sk}_0 \Delta_i I$, $X = \xi$, we can apply Lemma 6.1.4.3 and obtain a cofibrant functor $X' : \Delta_f I \to I$ and a morphism $a : X' \to X$. Since X' is cofibrant, it factors through I_C . Moreover, $X = \xi$ inverts all special maps, so that for any $\langle [n], i_{\bullet} \rangle \in \Delta_f I$, X' sends the special map $t : \langle [0], i_n \rangle \to \langle [n], i_{\bullet} \rangle$ to a map in $C \cap W$. Let W' = s(I, W), $(C \cap W)' = s(I_C, C \cap W)$ be the saturations of the classes W and $C \cap W$ (note that $(C \cap W)' \subset C \cap W'$, so that v extends to a morphism $v' : \langle I_C, (C \cap W)' \rangle \to \langle I, W' \rangle$, but the inclusion might be strict). Then since $a \circ X'(t) = X(t) \circ a$ is an isomorphism, $a : X' \to X$ is pointwise in W' and defines a morphism

(6.1.6.2)
$$X'': \langle [1] \times \Delta_i \mathsf{f} I, e^* \xi^* W \rangle \to \langle I, W' \rangle$$

such that $X'' \circ s \cong X'$ and $X'' \circ t \cong X$. On the other hand, for any map $f: \langle [n], i_{\bullet} \rangle \to \langle [n'], i'_{\bullet} \rangle$ such that $X(f) \in W$, we have $X'(f) \circ X'(t) \in C \cap W$ by Lemma 6.1.4.3, so that $X(f) \in (C \cap W)'$. Therefore X' factors as

$$(6.1.6.3) \qquad \langle \Delta_{\mathsf{f}} I, \xi^* W \rangle \xrightarrow{Y} \langle I_{\mathsf{C}}, (\mathsf{C} \cap W)' \rangle \xrightarrow{\nu'} \langle I, W' \rangle$$

for some *Y*. Since *s*, *t* and ξ in (6.1.6.1) are 2-equivalences, the morphisms

$$s,t:\langle \Delta_{\mathsf{f}}I,\xi^*W\rangle \to \langle [1]\times \Delta_{\mathsf{f}}I,e^*\xi^*W\rangle,\ \xi:\langle \Delta_{\mathsf{f}}I,\xi^*W\rangle \to \langle I,W\rangle \to \langle I,W'\rangle$$

are 2-equivalence by Lemma 5.1.2.13 (i) and Lemma 5.1.2.7, and since we have $\xi \cong X'' \circ t$, so is X'' and therefore also $X' \cong X'' \circ t$. Thus Y in (6.1.6.3) is a one-sided inverse to ν' .

To construct the inverse on the other side, consider the diagram (6.1.6.1) for the category I_C , and note that $\Delta_i(s)$ and $\Delta_i(t)$ define left-closed embeddings

$$\Delta_{\mathsf{f}}I_{\mathsf{C}} \xrightarrow{b} \Delta_{\mathsf{f}}I_{\mathsf{C}} \sqcup \Delta_{\mathsf{f}}I_{\mathsf{C}} \xrightarrow{\Delta_{\mathsf{f}}(s)\sqcup\Delta_{\mathsf{f}}(t)} \Delta_{\mathsf{f}}([1]\times I_{\mathsf{C}}),$$

where *b* is the embedding onto the second component. Moreover, if we augment all the categories by adding initial objects, then the embeddings

$$(6.1.6.4) \Delta_{\mathsf{f}}^{<} I_{C} \xrightarrow{b^{<}} (\Delta_{\mathsf{f}} I_{C} \sqcup \Delta_{\mathsf{f}} I_{C})^{<} \xrightarrow{\Delta_{\mathsf{f}}^{<}(s) \sqcup \Delta_{\mathsf{f}}^{<}(t)} \Delta_{\mathsf{f}}^{<}([1] \times I_{C})$$

are still left-closed embeddings of thin Reedy categories, and their composition $\Delta^{<}(t)$ is the right-admissible embedding (4.1.1.10), with some right-adjoint $\Delta^{<}(t)^{\dagger}$. On the other hand, the morphism (6.1.6.2) fits into a commutative diagram

$$\langle [1] \times \Delta_{f} f I_{C}, e^{*} \xi^{*} (C \cap W) \rangle \xrightarrow{Y'} \langle I_{C}, (C \cap W)' \rangle$$

$$\downarrow^{\iota \nu'}$$

$$\langle [1] \times \Delta_{f} I, e^{*} \xi^{*} W \rangle \xrightarrow{X''} \langle I, W' \rangle$$

for some morphism Y', and $s^*Y'\cong Y\circ\Delta\nu$ is a cofibrant functor $\Delta_fI_C\to I$, while $t^*Y'\cong\nu\circ\xi$, while not cofibrant, still factors through $I_C\subset I$. We can then consider the restriction $Y''\circ\xi'$, where ξ' is as in (6.1.6.1), and extends it to a functor $Z:\Delta_f^<([1]\times I_C)\to I_C$ by sending o to $0\in I$. If we now take $J=\Delta_f^<([1]\times I_C)$, $J_0=(\Delta_fI_C\sqcup\Delta_fI_C)^<$, and $J_{00}=\Delta_f^< I_C$, with the embeddings (6.1.6.4), then we can apply Lemma 6.1.4.3 to the functor Z and obtain a functor $Z':\Delta_f^<([1]\times I_C)\to I$ cofibrant over $\Delta_f^< I_C$, and a map $a:Z'\to Z$. Since Z' is relatively cofibrant, it factors through I_C . Moreover, $Z\cong\xi'^*Y'$ defines a morphism

$$(6.1.6.5) Z: \langle \Delta_{\mathsf{f}}([1] \times I_{\mathsf{C}}), \xi^* e^*(C \cap W) \rangle \to \langle I_{\mathsf{C}}, (C \cap W)' \rangle,$$

and for any $j \in J \setminus J_0$, the adjunction map $a(j): \Delta^<(t)\Delta^<(t)^\dagger(j) \to j$ is inverted by $e \circ \xi$. Then $a \circ Z'(f) \circ Z'(a(j)) = Z(f)$ for any map $f: j \to j'$, so that by the same argument as before, if $e(\xi(f)) \in C \cap W$, then Z'(f) is in $(C \cap W)'$. Thus Z' also defines a morphism of the form (6.1.6.5). Then $Z' \circ \Delta(t) \cong \xi$ is a 2-equivalence by Lemma 5.1.2.7 and (6.1.6.1), and since both $\Delta(t)$ and $\Delta(s)$ are also 2-equivalences of (6.1.6.1), $Z' \circ \Delta(s) \cong Y \circ \Delta(v)$ is then also a 2-equivalence. We thus have a sequence of morphisms

$$\langle \Delta_{\mathsf{f}} I_{\mathsf{C}}, \xi^*(\mathsf{C} \cap \mathsf{W}) \rangle \xrightarrow{\Delta(\nu)} \langle \Delta_{\mathsf{f}} I, \xi^* \mathsf{W} \rangle \xrightarrow{\mathsf{Y}} \langle I_{\mathsf{C}}, \mathsf{C} \cap \mathsf{W}' \rangle \xrightarrow{\nu'} \langle I, \mathsf{W}' \rangle$$

where both compositions are 2-equivalences. Therefore all the morphisms in the diagram are 2-equivalences, and this includes ν' . To finish the proof, it remains to again invoke Lemma 5.1.2.7.

Remark 6.1.6.3. The heuristic idea behind the proof of Proposition 6.1.6.2 is very simple, and it is perhaps useful to summarize it. We have a commutative diagram

$$\langle \Delta_{f} I_{C}, \xi^{*}(C \cap W) \rangle \xrightarrow{\xi} \langle I, C \cap W \rangle$$

$$\Delta(\nu) \downarrow \qquad \qquad \downarrow \nu$$

$$\langle \Delta_{f} I, \xi^{*}W \rangle \xrightarrow{\xi} \langle I, W \rangle$$

where the horizontal arrows are 2-equivalences. To prove the claim, it would suffice to construct a diagonal arrow $Y:\langle \Delta_f I, \xi^*W\rangle \to \langle I, C\cap W\rangle$ such that $\nu\circ Y\cong \xi$ and $Y\circ \Delta(\nu)\cong \xi$. This is not possible — ξ in the bottom arrow in (6.1.6.6) does not factor through I_C . However, we can use Lemma 6.1.4.3 to construct a "cofibrant replacement" X' of $X=\xi$, and a map $a:X'\to X$. Being cofibrant, X' does factor through I_C , and since the map a is pointwise in W', the 2-functors induced by ξ and by $X'=\nu\circ Y$ on relevant 2-categories are the same. The simplest way to make this rigourous is to note that both ξ and $\nu\circ Y$ factor through the product $[1]\times \Delta_f I$ via the 2-equivalences given by s and t. Unfortunately, s is not pointwise in s0, so one cannot apply the same argument to identify the 2-functors induced by s0, s1 and s2 — there is no map between them. To correct this, we take the simplicial replacement s2 instead of the product s3 instead of the product s4. And apply Lemma 6.1.4.3 once more to obtain a cofibrant replacement for the non-existent map.

Remark 6.1.6.4. Proposition 6.1.6.2 can be thought of as a strengthening of Lemma 6.1.1.13 (and combining the two, we deduce that the embedding $\langle \text{Cof}(I)_C, C \cap W \rangle \rightarrow \langle \text{Cof}(I), C \cap W \rangle$ is also a 2-equivalence for any CW-category I). Our proof also elaborates on the same general idea. In fact, the construction of the cofibrant replacement X' provided by Lemma 6.1.4.3 works by induction on degree, and the first step of this inductive construction is exactly the same as in Example 6.1.4.6.

Example 6.1.6.5. Take I = PoSets, with the standard CW-structure of Example 6.1.1.6. Then objects in ΔI correspond to cofibrations $J \to [n]$, $[n] \in \Delta$, $J \in \text{PoSets}$. The functor $X = \xi : \Delta I \to I$ sends such a cofibration to the fiber $J_n \in \text{PoSets}$, while its "cofibrant replacement" $X' : \Delta_f I \to I$ sends it to the product $J \times_{[n]} B([n])$, where B([n]) is as in Definition 3.1.4.1.

6.1.7. CW-replacements. Unfortunately, Proposition 6.1.6.2 does not apply to weak CW-categories (and in particular, to weak CW-categories of Proposition 6.1.5.3). One way to cure weakness is to enlarge the class *W* so that it becomes saturated; the prototype here is passing from reflexive maps of Subsection 3.1.3 to anodyne maps of Subsection 3.1.9. Here is the formal definition.

Definition 6.1.7.1. The class a(W) of W-anodyne maps in a CW-category I is the smallest class of maps in I that contains W, is saturated in the sense of Definition 2.1.1.4, and such that for any two maps $f_0: i \to i_0$, $f_1: i \to i_1$ in C such that $f_0 \in a(W)$, the pushout map $i_1 \to i_0 \sqcup_i i_1$ is in a(W).

Example 6.1.7.2. Assume given an arrow $c: i_0 \to i_1$ in $Cof(I)_C$ considered as a cofibrant object $i \in ar(I)$, with the CW-structure of Example 6.1.1.11, and take a decomposition (6.1.4.1) of the map $i \sqcup i \to i$. Then i' corresponds to an arrow $i'_0 \to i'_1$ in C, and either of the two maps $i_1 \to i'_1$ factors as

$$(6.1.7.1) i_1 \xrightarrow{l} i'_0 \sqcup_{i_0} i_1 \xrightarrow{r} i'_1.$$

Both maps $i_0 \to i'_0$, $i_1 \to i'_1$ are in $C \cap W$ by assumption, and then by Definition 6.1.1.1 (i), so is the map l in (6.1.7.1). However, the best one can say about the map r is that it is W-anodyne: it need not lie in W (e.g. if I is the category PoSets with the CW-structure of Example 6.1.1.6, it usually does not).

Lemma 6.1.7.3. For any weak CW-category $\langle I, C, W \rangle$, $\langle Cof(I), C, a(W) \rangle$ is a CW-category.

Proof. Definition 6.1.1.1 (i) is immediate. For Definition 6.1.1.1 (ii), note that since a(W) is saturated, a factorization (6.1.1.2) satisfies the condition as soon as $w \in a(W)$. To obtain such a factorization for any map $f: i \to i'$, it suffices to use the cylinder construction of Lemma 6.1.1.13 and consider the factorization (6.1.1.4).

In most examples, the class of W-anodyne maps is too large to allow for an effective description but has better properties. In particular, we have the following strengthening of Lemma 6.1.2.4 (iii).

Lemma 6.1.7.4. Assume given a left-finite map $\varphi: J \to J'$ between partially ordered sets, two functors $X_0, X_1: J \to I$ cofibrant in the sense of Definition 6.1.2.1, and a map $f: X_0 \to X_1$ that is pointwise in a(W). Then so is $\varphi_!(f): \varphi_!X_0 \to \varphi_!X_1$.

Proof. As in the proof of Lemma 6.1.2.4 (i), (6.1.2.3) immediately shows that it is enough to consider the case J' = pt, so that J is left-finite. Then it is a thin Reedy

category in the sense of Definition 6.1.2.5, and Proposition 6.1.2.7 provides a CW-structure on the functor category Fun(J, I). Consider the decomposition

$$X_0 \sqcup X_1 \xrightarrow{c_0 \sqcup c_1} X \xrightarrow{w} X_1$$

of the map $f \sqcup \operatorname{id}: X_0 \sqcup X_1 \to X_1$ provided by Definition 6.1.1.1 (ii). Then $c_1 \in W$, so that $w \in a(W)$ since $w \circ c_1 = \operatorname{id}$, and then $c_0 \in a(W)$ since $f = w \circ c_0 \in a(W)$. Therefore it suffices to prove the claim for the maps c_0 and c_1 , or in other words, we may assume that f is in the class C of Definition 6.1.2.1. Finally, let $S \subset J$ be the right-closed subset of maximal elements, with discrete order, and as in the proof of Lemma 3.1.5.9, extend the identity map $\mathrm{id}: S \to S$ to the universal map $p: J \to S^<$ of (3.1.2.2). Then by induction on $\mathrm{dim}\, J$, we may assume the claim proved for $\varphi = p$, so that we are reduced to the case $J = S^<$, $J' = \mathrm{pt}$, $f \in C$. But then f factors as

$$X_0 \xrightarrow{f_0} X'_0 \xrightarrow{f_1} X_1$$

where $X_0'(o) = X_1(o)$ and $X_0'(s) = X_0(s) \sqcup_{X_0(o)} X_1(o)$, $s \in S$, and it suffices to prove that $\operatorname{colim}_{S^<} f_0$ and $\operatorname{colim}_{S^<} f_1$ are W-anodyne. But $\operatorname{colim}_{S^<} f_0$ is a standard pushout of the map $f(o): X_0(o) \to X_1(o)$, and $\operatorname{colim}_{S^<} f_1$ is a composition of standard pushouts of maps $f_1(s)$, $s \in S$.

Example 6.1.7.5. Assume given a standard pushout square (6.1.1.1) of cofibrant objects in I, treat it as a cofibrant object in Fun(V, I), and again take the decomposition (6.1.4.1). Then the map $w: i' \to i$ induces a map

$$(6.1.7.2) i'_{01} = i_0 \sqcup_i i' \sqcup_i i_1 \to i_{01} = i_0 \sqcup_i i_1,$$

and this map is again W-anodyne: it factors as

$$i'_{01} \longrightarrow i'_0 \sqcup_i i_1 \longrightarrow i'_0 \sqcup_{i'} i'_1 \longrightarrow i_0 \sqcup_i i_1 = i_{01},$$

the first two maps are standard pushouts of the anodyne maps of Example 6.1.7.2, and the last map is *W*-anodyne by Lemma 6.1.7.4.

As a corollary of Lemma 6.1.7.4, one can also prove a version of Corollary 3.1.9.4. The setup generalizes Example 6.1.4.6 that can reinterpreted in terms of barycentric subdivision: if we identify $V^o \cong B([1])$, with the functor $\xi: V^o \cong B([1]) \to [1]$ of (3.1.4.1), then we have $X = \xi^* \varepsilon(f)$, where $\varepsilon(f): [1] \to \operatorname{Cof}(I)$ is the embedding (2.1.4.2) corresponding to the morphism f. More generally, assume given a left-finite partially ordered set J and a functor $X: J \to \operatorname{Cof}(I)$. Then BJ is left-finite, thus a thin Reedy category, the

0-skeleton $BJ_0 = \operatorname{sk}_0 BJ \subset BJ$ is a left-closed subcategory, and since J_0 is discrete, $\xi^*X|_{BJ_0}: BJ_0 \to \operatorname{Cof}(I)$ is cofibrant, so that Lemma 6.1.4.3 provides a cofibrant functor $X': BJ \to I$ and a map $a: X' \to \xi^*X$ that restricts to an isomorphism over BJ_0 . By adjunction, a induces a map

where the Kan extension on the left exists by Lemma 6.1.2.4 (i).

Corollary 6.1.7.6. *In the assumptions above, the map* (6.1.7.3) *is pointwise* W*anodyne.*

Proof. As in the proof of Corollary 3.1.4.10, since $BJ/j \cong B(J/j)$ for any $j \in J$, (2.2.5.2) shows that to prove the claim at some $j \in J$, we may replace J with I/i and place ourselves in the situation of Lemma 3.1.4.9. Namely, we have a finite partially ordered set J, a functor $X: J^{<} \to Cof(I)$, and its replacement $X': B(J^{<}) \to I$ provided by Lemma 6.1.4.3 that is equipped with the map $a: X' \to \xi^*X$, and we need to check that the map $\operatorname{colim}(a): \operatorname{colim}_{B(I^{<})} X' \to \emptyset$ $\operatorname{colim}_{B(I^{<})} \xi^* X \cong X(o)$ is W-anodyne, where the isomorphism $\operatorname{colim}_{B(I^{<})} \xi^* X \cong$ X(o) is Corollary 3.1.4.10. Then as in the proof of Corollary 3.1.4.10, we have a left-admissible full embedding $i: B(I^{<})^1 \to B(I^{<})$, with the adjoint map $i^{\dagger}: B(J^{<}) \to B(J^{<})^{1}$, and a right-admissible left-closed full embedding $p: pt \cong$ $B(J^{<})_1 \to B(J^{<})^1$, and it suffices to take the colimits over $B(J^{<})^1 \subset B(J^{<})$. Over this subset, $i^*X'\cong i_!^\dagger X'$ is cofibrant by Lemma 6.1.2.4 (i), and since $\xi\circ i$ factors through $\{o\} \subset J^<$, $i^*\xi^*X$ is constant. Thus $i^*\xi^*X \cong p_!p^*i^*\xi^*X \cong p_!X(o)$ is cofibrant by Lemma 6.1.2.4 (iv), and i^*X' factors through $I_{C \cap W}$ by the conditions of Lemma 6.1.4.3. But the map a is an isomorphism over $p(pt) \subset B(J^{<})^{1}$, and since $i^*\xi^*X$ is constant and i^*X' factors through $I_{C\cap W}$, a is pointwise W-anodyne. Therefore $\operatorname{colim}_{B(I^{<})^{1}} a$ is *W*-anodyne by Lemma 6.1.7.4.

Now assume given an arbitrary CW-category I, and consider the CW-category Cof(pos //I) with the weak CW-structure of Proposition 6.1.5.3. To turn it into a CW-structure, automatically regular, one can simply pass to the anodyne completion of Lemma 6.1.7.3, but we can go for an even larger class — namely, the class $\chi^*a(W)$, where $\chi: Cof(pos //I) \to Cof(I)$ is the functor (6.1.5.3) left-adjoint to the embedding $v: Cof(I) \to Cof(pos //I)$. To make for a stronger result, we can also replace C with a smaller class — namely, we take the class of left-closed embeddings that are ld-strict in the sense of Subsection 3.2.1. The formal definition is as follows.

Definition 6.1.7.7. The *class* s(C) is the closed class spanned by morphisms $\langle f, \alpha_f \rangle : \langle J, \alpha_J \rangle \to \langle J', \alpha_{J'} \rangle$ in Cof(pos // I) such that f is a left-closed full embedding, and α_f is pointwise an identity map.

One can also rephrase Definition 6.1.7.7 in a way similar to Definition 4.2.1.1. Namely, observe that since the pullback f^* with respect to a left-closed embedding $f: J \to J'$ sends cofibrant functors to cofibrant functors, the cofibration (6.1.5.2) restricts to a bifibration $\operatorname{Cof}(\operatorname{pos} /\!\!/ I)_C \to \operatorname{pos}_C$ with fibers $\operatorname{Cof}(J^I)_C$, $J \in \operatorname{pos}$. In particular, the fiber over $\operatorname{pt} \in \operatorname{pos}$ is $\operatorname{Cof}(I)$, and then the dense subcategory $\operatorname{Cof}(\operatorname{pos} /\!\!/ I)_{s(C)} \subset \operatorname{Cof}(\operatorname{pos} /\!\!/ I)_C$ fits into a cartesian square

(6.1.7.4)
$$\begin{array}{c} \operatorname{Cof}(\operatorname{pos} \# I)_{s(C)} & \longrightarrow & \operatorname{Cof}(\operatorname{pos} \# I)_{C} \\ \downarrow & & \downarrow \\ \varepsilon(\operatorname{pt})_{*} \operatorname{Cof}(I)_{\operatorname{Id}} & \longrightarrow & \varepsilon(\operatorname{pt})_{*} \operatorname{Cof}(I), \end{array}$$

where $\varepsilon(\mathsf{pt})$: $\mathsf{pt} \to \mathsf{pos}$ is the embedding (2.1.1.2) onto $\mathsf{pt} \in \mathsf{pos}$. Because of this interpretation, we call $\mathsf{Cof}(\mathsf{pos} \slash\hspace{-0.4em}/ I)_{s(C)}$ the $\mathit{CW-replacement}$ of the CW-category I. It is fibered over pos , and the fiber over some $J \in \mathsf{pos}$ is the discrete category $\mathsf{Cof}(\mathsf{Fun}(J,I))_{\mathsf{Id}}$.

Lemma 6.1.7.8. For any CW-category I, the category Cof(pos // I) with the classes of maps s(C), $\chi^*a(W)$ is a CW-category, and the CW-functor χ : $\langle Cof(pos // I), \chi^*a(W) \rangle \rightarrow \langle I, a(W) \rangle$ is a 2-equivalence.

Proof. As in Lemma 6.1.7.3, Definition 6.1.1.1 (i) is immediate. For Definition 6.1.1.1 (ii), use the same construction as in Proposition 6.1.5.3, but as in Lemma 6.1.7.3, choose a decomposition (6.1.5.5) induced from a decomposition (6.1.1.4). Then w is W-anodyne and pointwise W-anodyne, so that it is in $\chi^*a(W)$ by Lemma 6.1.7.4, and then as in Lemma 6.1.7.3, since the class $\chi^*a(W)$ is saturated, the decomposition satisfies the condition of Definition 6.1.1.1 (ii). Finally, to see that χ is a 2-equivalence, note that the adjunction map $\chi \circ v \to \operatorname{id}$ is an isomorphism, and the adjunction map $\operatorname{id} \to v \circ \chi$ is sent to an isomorphism by χ , thus lies in $\chi^*a(W)$. Thus we are done by Lemma 5.1.2.4.

Lemma 6.1.7.8 is somewhat analogous to Proposition 4.2.2.3, in that it reduces the study of families of groupoids over $\langle I, W \rangle$ to families over the CW-replacement Cof(pos $/\!\!/ I$) $_{s(C)}$ of the category I.

6.1.8. Saturated CW-categories. Finally, let us introduce a class of CW-categories that is so close to model categories that Proposition 5.3.2.2 works with the same proof.

Definition 6.1.8.1. A CW-category $\langle I, C, W \rangle$ is *saturated* if the class W is saturated, and for any map $i_0 \rightarrow i_1$ in I, there exists a decomposition (6.1.1.2) with $c \in C$, $w \in W$.

Example 6.1.8.2. In Example 6.1.1.2, I' is saturated in the sense of Definition 6.1.8.1 if so is I. In Example 6.1.1.4, I is saturated by definition. In Example 6.1.1.5, $C_{\bullet}(A)$ is saturated by virtue of (2.2.6.2).

Example 6.1.8.3. For any saturated CW-category I and thin Reedy category J, the functor category Fun(J, I) with the C-structure of Proposition 6.1.2.7 and W consisting of maps that are pointwise in W is saturated (the same inductive procedure as in the proof of Proposition 6.1.2.7 provides decompositions (6.1.1.2) with $w \in W$).

Example 6.1.8.4. For any weak CW-category $\langle I, C, W \rangle$, the CW-category $\langle \text{Cof}(I), C, a(W) \rangle$ of Lemma 6.1.7.3 is saturated.

Proposition 6.1.8.5. A CW-category I saturated in the sense of Definition 6.1.8.1 is regular in the sense of Definition 6.1.6.1.

Proof. As in the proof of Proposition 5.3.2.2, consider the subcategory $\overline{I} \subset \operatorname{Cof}(I)_C/I$ consisting of triples $\langle i_0, i_1, \alpha \rangle$ such that $\alpha \in W$. Then it again suffices to prove that $\tau : \overline{I} \to I$ is 2-connected, and to do this, it suffices to prove a version of Corollary 5.3.1.9: for any saturated CW-category I and object $i \in I$, $I^W/i = \overline{I}_i$ is homotopy filtered (and then apply this result first to I, then to the appropriate comma-fibers $i' \setminus I$). To prove this, assume given a finite partially ordered set I and a functor $\gamma : I \to I^W/i$, use (6.1.1.2) in $\operatorname{Fun}(I,I)$ to construct a cofibrant replacement $\widetilde{\gamma} \to \gamma$, take the universal cone $\widetilde{\gamma}^> : I^> \to I$, and then take a decomposition (6.1.1.2) of $\operatorname{colim}_I \widetilde{\gamma} = \widetilde{\gamma}(o) \to i$ to construct a cone $I^> \to I^W/i$ of the same $\widetilde{\gamma}$ with values in I^W/i .

A useful example of a saturated CW-category is the category $C_{\bullet}(\mathcal{A})$ of chain complexes in an additive category \mathcal{A} , with the CW-structure of Example 6.1.1.5. This category is usually not a model category (it need not even be finitely complete and cocomplete). However, one can easily show that $\langle C_{\bullet}(\mathcal{A}), W \rangle$ is localizable, with the localization given by the chain-homotopy category $Ho(\mathcal{A})$.

Lemma 6.1.8.6. The relative category $\langle C_{\cdot}(A), W \rangle$ for any additive category A is localizable, the natural functor $h: C_{\cdot}(A) \to \operatorname{Ho}(A)$ factors through an equivalence $h^W(C_{\cdot}(A)) \cong \operatorname{Ho}(A)$, and we have $W = h^*(\star)$.

Sketch of a proof. This is very standard, so we only sketch a proof for the convenience of the reader. If a map $f:A_{\bullet}\to B_{\bullet}$ is in W, then the contracting homotopy for $\operatorname{Cone}(f)$ provides, among other things, a map $g:B_{\bullet}\to A_{\bullet}$ and chain homotopies between id_A and $g\circ f$, and id_B and $f\circ g$. Therefore h inverts maps in W, and then as in Lemma 5.1.1.6, it suffices to prove that any functor $C_{\bullet}(A)\to \mathcal{E}$ that inverts maps in W factors through h. Again as in Lemma 5.1.1.6, this immediately follows from the facts that either of the two embeddings $A_{\bullet}\to\operatorname{Cone}(\delta_A)$ is in W.

Lemma 6.1.8.6 is of course completely analogous to Lemma 5.1.1.6, and we also have an analog of Lemma 5.1.1.9 — and more generally, of Proposition 5.3.1.2.

Lemma 6.1.8.7. For any additive functor $\gamma: A \to A'$ between additive categories A, A', the comma-category $A' \setminus_{\gamma} A$ is additive, and the functor

(6.1.8.1)
$$\operatorname{Ho}(A' \setminus_{\gamma} A) \to \operatorname{Ho}(A') \setminus_{\operatorname{Ho}(\gamma)} \operatorname{Ho}(A)$$

is an epivalence.

Proof. The first claim is obvious, and it is also obvious that (6.1.8.1) is conservative and essentially surjective, so it suffices to check that it is full. Then as in the proof of Proposition 5.3.1.2, if we have two objects in the target of (6.1.8.1) represented by $\langle A_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}, \alpha \rangle$ and $\langle B_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}, \beta \rangle$ in $C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(\mathcal{A}' \setminus_{\gamma} \mathcal{A})$, a map in $\operatorname{Ho}(\mathcal{A})/_{\operatorname{Ho}(\gamma)}\operatorname{Ho}(\mathcal{A}')$ between them gives rise to a diagram

(6.1.8.2)
$$A'_{\bullet} \xrightarrow{f'} B'_{\bullet})$$

$$\alpha \downarrow \qquad \qquad \downarrow \beta$$

$$\gamma(A_{\bullet}) \xrightarrow{f'} \gamma(B_{\bullet})$$

that commutes up to a chain homotopy $\operatorname{Cone}(\delta_{A'}) \to \gamma(B_{\bullet})$. We can now replace B'_{\bullet} with the quotient $(\operatorname{Cone}(\delta_{A'}) \oplus B'_{\bullet})/A'_{\bullet}$ to make (6.1.8.2) commute on the nose; the quotient exists since the embedding $A'_{\bullet} \to \operatorname{Cone}(\delta_{A'})$ is termwise-split. \square

More generally, assume given a thin Reedy category J, and consider the functor category $\operatorname{Fun}(J, C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J))$, with the saturated CW-structure of Example 6.1.8.3. Then we have $C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(\operatorname{Fun}(J, \mathcal{A})) \cong \operatorname{Fun}(J, C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(J))$, and $\operatorname{Fun}(J, \mathcal{A})$ is also additive, but the two CW-structures are different: a complex $A_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ of functors $J \to \mathcal{A}$ can be contractible pointwise but not contractible. Nevertheless, we have the following.

Lemma 6.1.8.8. For any cofibrant functor $A_{\cdot}: J \to C_{\cdot}(A)$, the representable functor $Ho(\operatorname{Fun}(J,A))(A_{\cdot},-)$ inverts maps in the class W.

Proof. For any two complexes A, B, $\in \mathcal{A}$ in an additive category \mathcal{A} , we have the complex of abelian groups $\operatorname{Hom}^{\bullet}(A_{\bullet}, B_{\bullet})$, maps of complexes $A_{\bullet} \to B_{\bullet}$ correspond to cocycles in $\operatorname{Hom}^{0}(A_{\bullet}, B_{\bullet})$, and two maps are chain-homotopic iff their difference is a coboundary. Thus it suffices to show that for any $A_{\bullet}, B_{\bullet} \in C_{\bullet}(\mathcal{A}^{J})$ such that A_{\bullet} is cofibrant and $B_{\bullet}(j)$ is contractible for any $j \in J$, the complex $\operatorname{Hom}^{\bullet}(A_{\bullet}, B_{\bullet})$ is acyclic. But an easy induction shows that $A: J \to \mathcal{A}$ is cofibrant iff it is a sum of objects of the form $\varepsilon(j)_! A^j, A \in \mathcal{A}, j \in J$. Then any cofibrant $A_{\bullet} \in C_{\bullet}(\mathcal{A}^{J})$ has a termwise-split skeleton filtration $\operatorname{sk}_n A_{\bullet}$ that induces a convergent decreasing filtration on $\operatorname{Hom}^{\bullet}(A_{\bullet}, B_{\bullet})$, and its n-th associated graded quotient is a products of complexes of the form

$$\operatorname{Hom}^{\bullet}(\varepsilon(j)_{!}A^{j}_{\bullet},B_{\bullet}) \cong \operatorname{Hom}^{\bullet}(A^{j}_{\bullet},B_{\bullet}(j)), \quad \deg j = n$$

that are acyclic since $B_{\bullet}(j)$ is contractible.

Corollary 6.1.8.9. For any thin Reedy category J and additive category A, the relative category $\langle C.(\operatorname{Fun}(J,A)), W \rangle$ is localizable, and if we denote by $\operatorname{Ho}(A,J) = h^W(C.(\operatorname{Fun}(J,A)))$ the localization, then the embedding $\operatorname{Cof}(C.(\operatorname{Fun}(J,A))) \subset C.(\operatorname{Fun}(J,A))$ induces an equivalence

(6.1.8.3)
$$\operatorname{Ho}(\operatorname{Cof}(\operatorname{Fun}(J,\mathcal{A}))) \cong \operatorname{Ho}(\mathcal{A},J).$$

Moreover, for any left-finite map $f: J' \to J$ between left-finite partially ordered sets, the pullback functor $f^*: \operatorname{Ho}(\mathcal{A}, J) \to \operatorname{Ho}(\mathcal{A}, J')$ admits a left-adjoint $f_!: \operatorname{Ho}(\mathcal{A}, J') \to \operatorname{Ho}(\mathcal{A}, J)$.

Proof. Lemma 6.1.8.8 immediately implies that a cofibrant complex A. in Fun(J, A) is contractible iff A.(j) is contractible for any i (to construct a contracting homotopy, note that Cone(id $_A$) is still cofibrant, and apply Lemma 6.1.8.8 to Cone(id $_A$) and the map A. \to 0). Thus a map f:A. \to A' between two cofibrant complexes in Fun(J, A) is in W iff it is a chain-homotopy equivalence. Then Ho(Fun(J, A)) \cong h^W (Cof(C.(Fun(J, A)))) by Lemma 6.1.8.6, and to deduce (6.1.8.3), it suffices to apply Proposition 6.1.8.5. Moreover, Lemma 6.1.8.8 then shows that as soon as A. is cofibrant, we have Ho(A, J)(A., B.) \cong Ho(Fun(J, A))(A., B.). Now to construct f!, it suffices to restrict our attention to cofibrant complexes and maps in C, and apply Lemma 6.1.2.4.

Remark 6.1.8.10. We use Proposition 6.1.8.5 in Corollary 6.1.8.9 because we have it anyway; however, just as in Lemma 5.3.2.1, this is probably an overkill, and one can deduce Corollary 6.1.8.9 directly from Lemma 6.1.8.8.

6.2. Semiexact families.

6.2.1. Semiexactness and additivity. We now turn to studying familes of groupoids over CW-categories. Assume given a C-category $\langle I, C \rangle$ in the sense of Definition 6.1.1.1, and a family of groupoids C over I.

Definition 6.2.1.1. The family C is *semiexact* resp. *exact* if for any two maps $f_0: i \to i_0$, $f_1: i \to i_1$ in I that lie in the class C, the family C is semicartesian resp. cartesian along the standard pushout square (6.1.1.1), and cartesian if if i = 0 is the initial object.

We recall that explicitly, Definition 6.2.1.1 means that for any $f_0: i \to i_0$, $f_1: i \to i_1$ in C, the functor

(6.2.1.1)
$$f_0^* \times f_1^* : \mathcal{C}_{i_0 \sqcup_i 1_1} \to \mathcal{C}_{i_0} \times_{\mathcal{C}_i} \mathcal{C}_{i_1}$$

is an epivalence, and an equivalence if i = 0.

Definition 6.2.1.2. The family C is *additive* if for any set S and a family of object $i_s \in I$ indexed by elements $s \in S$ that admits a coproduct $\sqcup_s i_s \in I$, the natural functor

$$(6.2.1.2) C_{\sqcup_s i_s} \to \prod_s C_{i_s}$$

is an equivalence.

Remark 6.2.1.3. If *I* has all small coproducts, then Definition 6.2.1.2 is equivalent to saying that \mathcal{C} also has all small coproducts (and the projection $\mathcal{C} \to I$ then automatically preserves them). For finite coproducts, the claim is already included in Definition 6.2.1.1.

Example 6.2.1.4. For any family of groupoids $C \to I$ over any category I, the CW-functor PoSets $/\!/ C \to \text{PoSets} /\!/ I$ of Example 6.1.1.8 is a family of groupoids, and it is exact and additive with respect to the CW-structure of Example 6.1.1.7 on PoSets $/\!/ I$. The same holds for Pos and pos.

Lemma 6.2.1.5. Assume that $\pi: \mathcal{C} \to I$ is an exact family of groupoids over a CW-category $\langle I, C, W \rangle$ in the sense of Definition 6.2.1.1, and as in Definition 2.3.3.24, let $\pi^{\flat}(C)$ resp. $\pi^{\flat}(W)$ be the classes of cartesian lifting of maps in C resp. W. Then $\langle C, \pi^{\flat}(C), \pi^{\flat}(W) \rangle$ is a CW-category, π is a CW-functor, and a family of groupoids $\gamma: \mathcal{C}' \to \mathcal{C}$ is exact resp. semiexact if and only if so is $\pi \circ \gamma: \mathcal{C}' \to I$.

Proof. Clear.

Definition 6.2.1.1 has one useful corollary that can be proved right away. Fix a CW-category I and a semiexact family of groupoids \mathcal{C} over $\langle I, W \rangle$. If we have a CW-category I' and a CW-functor $\gamma: I' \to I$, then $\gamma^*\mathcal{C}$ is a semiexact family over I'. Consider the CW-category Cof(pos $/\!\!/I$) of Proposition 6.1.5.3. As in (6.1.5.3), denote

$$\operatorname{Cof}(\operatorname{pos}^{\bullet} /\!/ I) = \operatorname{pos}^{\bullet} \times_{\operatorname{pos}} \operatorname{Cof}(\operatorname{pos}^{\bullet} /\!/ I) \subset \operatorname{pos}^{\bullet} /\!/ I,$$

with the cofibration ν_{\bullet} and the evaluation functor ev induced by those of Example 2.4.1.3. By (6.1.5.3), the left Kan extension $\chi = \nu_{\bullet!}$ ev exists, and then \mathcal{C} induces two families of groupoids over Cof(pos // I), namely, $\chi^*\mathcal{C}$ and $\nu_{\bullet*}$ ev* \mathcal{C} , and a functor

$$\chi^* \mathcal{C} \to \nu_{\bullet *} \operatorname{ev}^* \mathcal{C}$$

over Cof(pos $/\!\!/ I$) provided by (2.4.3.10). Since χ is a CW-functor by Proposition 6.1.5.3, the source $\chi^*\mathcal{C}$ of the functor (6.2.1.3) is a semiexact family over $\langle I,W\rangle$. Its target $\nu_{\bullet\bullet}$ ev* \mathcal{C} need not be semiexact, but by Proposition 6.1.5.3, it is still a family over $\langle I,W\rangle$. Explicitly, for any finite partially ordered set J equipped with a cofibrant functor $i_{\bullet}:J\to I$, the fiber of the functor (6.2.1.3) over $\langle J,i_{\bullet}\rangle\in \mathrm{Cof}(\mathrm{pos}\,/\!\!/\,I)$ is a functor

(6.2.1.4)
$$\mathcal{C}_{\operatorname{colim}_{I}i_{\bullet}} \to \operatorname{Sec}(J, i_{\bullet}^{*}\mathcal{C}),$$

and the functor (6.2.1.4) exists even if J is not finite (but $\operatorname{colim}_J i$ exists in I). If J has a largest element, this functor is tautologically an equivalence, and Definition 6.2.1.1 says that this is an epivalence for J = V of (2.1.1.3) and any cofibrant $i_{\bullet}: V \to I$. For J of small dimension $\dim J$, we have the following general result.

Lemma 6.2.1.6. Assume given a finite partially ordered set J and a cofibrant functor i.: $J \rightarrow I$. Moreover, assume that dim $J \leq l$ for some l. Then and for any semiexact family C over I, the functor (6.2.1.4) is an equivalence resp. an epivalence resp. essentially surjective if l = 0 resp. 1 resp. 2.

Proof. If J = S or $J = S^{<}$ for a finite discrete set S, then the statement follows from Definition 6.2.1.1 by induction on the cardinality |S|. If we have a left-reflexive subset $J' \subset J$, then the embedding $J' \to J$ induces an equivalence between both the sources and the targets of the functor (6.2.1.4), and dim $J' \leq$ dim J, so the claim for J' implies the claim for J. In particular, the claim

holds if J has a largest element. In general, by induction on |J|, we may assume that we have a finite set S and a map $\varphi: J \to J' = S^>$ such that the claim holds for all the comma-sets J/j, $j \in J'$ (with any l and i.). But then $\varphi_! i : J' \to I$ is cofibrant by Lemma 6.1.2.4 (i), and we have $\operatorname{colim}_{J'} i : \operatorname{colim}_{J'} \varphi_! i : \operatorname{Sec}(J, i^*_* \mathcal{C}) \cong \operatorname{Sec}(J', \varphi_* i^*_* \mathcal{C})$, so that (6.2.1.4) factors as

$$C_{\operatorname{colim}_{I'} \varphi_! i_{\bullet}} \xrightarrow{a} \operatorname{Sec}(J', \varphi_! i_{\bullet}^* \mathcal{C}) \xrightarrow{b} \operatorname{Sec}(J', \varphi_* i_{\bullet}^* \mathcal{C})$$

where we already known the claim for a, so it suffices to check it for b. By inductive assumption and (2.2.5.2), (2.4.3.4), the claim for b follows from Lemma 3.1.5.9.

Corollary 6.2.1.7. Assume given a CW-category I regular in the sense of Definition 6.1.6.1, and a functor $\gamma: \mathcal{C}' \to \mathcal{C}$ over I between two semiexact families of groupoids over $\langle I, W \rangle$. Then if γ is an epivalence, it is an equivalence.

Proof. We have to prove that for any $i \in I$, the epivalence $\gamma_i : \mathcal{C}'_i \to \mathcal{C}_i$ is an equivalence, and since I is regular, it suffices to consider cofibrant i. Fix such an $i \in \operatorname{Cof}(I)$, construct a decomposition (6.1.4.1) with the corresponding cofibrant functor $X' : \mathbb{I} \to I$, as in Example 6.1.4.5 and let $Y = v^*X' : \mathbb{V} \to I$, where \mathbb{V} is as in (5.1.3.4) and v is as in (5.1.3.2). Then Y is cofibrant, so that $\langle \mathbb{V}, Y \rangle$ is an object in $\operatorname{Cof}(\operatorname{pos} /\!\!/ I)$, and since $\dim \mathbb{V} = 1$, Lemma 6.2.1.6 provides an epivalence

(6.2.1.5)
$$C_{i'} \to \operatorname{Sec}(\mathbb{V}, Y^*C) \cong C_i^{\mathbb{V}} \cong \mathcal{I}(C_i),$$

where the last equivalence is as in Remark 5.1.3.8, we denote $i' = \operatorname{colim}_{\mathbb{V}} Y$, and we observe that since Y is equipped with a map $v^*a: Y = v^*X' \to v^*X$ in W to the constant functor $v^*X: \mathbb{V} \to I$ with value $i, Y^*\mathcal{C} \to \mathbb{V}$ is a constant family with fiber \mathcal{C}_i . We also have the counterpart of the epivalence (6.2.1.5) for \mathcal{C}' , and since by assumption, $\gamma_{i'}: \mathcal{C}'_{i'} \to \mathcal{C}_{i'}$ is an epivalence, so is $\mathcal{I}(\gamma_i): \mathcal{I}(\mathcal{C}'_i) \to \mathcal{I}(\mathcal{C}_i)$. We are then done by Lemma 2.3.4.3.

6.2.2. Framings. Somewhat surprisingly, one can show that if a regular CW-category $\langle I, C, W \rangle$ is good enough, an additive semiexact family of groupoids C over $\langle I, W \rangle$ is automatically constant along the class a(W) of W-anodyne maps in I in the sense of Definition 6.1.7.1. This uses the same general idea as in the proof of Corollary 6.2.1.7, and requires putting an additional structure on I. Roughly speaking, we need to choose a decomposition (6.1.4.1) for any object $i \in I$ in a functorial way, or failing that, at least a contractible family of such decompositions.

As in Example 6.1.4.5, encode decompositions (6.1.4.1) for objects $i \in I$ by functors $\tilde{i}: D_1 \to I$ such that $l^*\tilde{i}: \mathbb{I} \to I$ is cofibrant and factors through $I_{C\cap W} \subset I$. Denote by $\operatorname{Dec}(I) \subset I^{D_1}$ the full subcategory spanned by all such \tilde{i} , and let C be the class of maps f in $\operatorname{Dec}(I)$ such that $l^*(f)$ is in C with respect to the CW-structure of Lemma 6.1.4.3. Denote by $\varphi = \operatorname{ev}_{[0]} : \operatorname{Dec}(I)_C \to \operatorname{Cof}(I)_C$ the evaluation functor sending a diagram (6.1.4.1) to i, and let $\psi : \operatorname{Dec}(I)_C \to \operatorname{Cof}(I)_C$ be the functor sending such a diagram \tilde{i} to

(6.2.2.1)
$$\operatorname{colim}_{\mathbb{V}} v^* l^* \widetilde{t} \cong i' \sqcup_{i \sqcup i} i',$$

where $v: \mathbb{V} \to \mathbb{I}$ is as in (5.1.3.2), and the colimit exists since $v^*l^*\widetilde{i}$ is cofibrant.

Definition 6.2.2.1. A *framing* on a regular CW-category I is a subcategory $\widetilde{I} \subset \operatorname{Dec}(I)_C$ such that the induced functor $\varphi : \widetilde{I} \to \operatorname{Cof}(I)_C$ is locally 2-connected in the sense of Definition 5.2.1.3.

If we are given a CW-category I equipped with a framing \widetilde{I} in the sense of Definition 6.2.2.1, then Definition 5.2.1.3 implies that any object $i \in \operatorname{Cof}(I)$ admits a lifting $\widetilde{i} \in \widetilde{I}_i$ to \widetilde{I} . Moreover, if we have a map $f: i_0 \to i_1$ in $\operatorname{Cof}(I)_C$ and a lifting $\widetilde{i}_0 \in \widetilde{I}_{i_0}$ of its source i_0 , then we can find a map $\widetilde{f}: \widetilde{i}_0 \to \widetilde{i}_1$ such that $\varphi(\widetilde{f}) = f$. If the class W is saturated, then it is easy to check that once f is in $C \cap W$, the induced maps $f': i'_0 \to i'_1$, $\psi(f): \psi(\widetilde{i}_0) \to \psi(\widetilde{i}_1)$ are also in $C \cap W$, but in general, this need not be the case. Moreover, if we have a standard pushout square

(6.2.2.2)
$$\begin{array}{ccc}
i & \xrightarrow{f_0} & i_0 \\
f_1 \downarrow & & \downarrow \\
1_1 & \longrightarrow i_{01} = i_0 \sqcup_i i_1
\end{array}$$

in I, and choose a lifting $\widetilde{i} \in \widetilde{I}_i$ and then $\widetilde{f}_l : \widetilde{i} \to \widetilde{i}_l$, l = 0, 1, then the coproduct $\widetilde{i}_{01} = \widetilde{i}_0 \sqcup_{\widetilde{i}} \widetilde{i}_1$ exists in I^{D_1} since $I^{\mathbb{I}}$ is a CW-category, but nothing insures that it lies in \widetilde{I} (nor in fact in $\mathsf{Dec}(I) \subset I^{\mathsf{D}_1}$). For our purposes, we only need framings that are free from these two problems.

Definition 6.2.2.2. A framing \widetilde{I} on a regular CW-category I is *perfect* if

- (i) $\psi^*(C \cap W) \supset \varphi^*(C \cap W)$, and
- (ii) for any standard pushout square (6.2.2.2) in I, we can choose liftings $\widetilde{i} \in \widetilde{I}_i$, $\widetilde{f}_l : \widetilde{i} \to \widetilde{i}_l$, l = 0, 1 in such a way that $\widetilde{i}_{01} = \widetilde{i}_0 \sqcup_{\widetilde{i}} \widetilde{i}_1$ is in $\widetilde{I} \subset I^{\mathsf{D}_1}$.

A regular CW-category *I* is *strong* if it admits a perfect framing.

Example 6.2.2.3. If I is a model category with the CW-structure of Example 6.1.1.4, consider Fun(D₁, I) with the Reedy model structure, and note that $Dec(I)_C \subset Cof(Fun(D_1, I))_C$ is then the full subcategory spanned by decompositions (6.1.4.1) with $w \in W$. Then $\widetilde{I} = Dec(I)$ is a framing for I (the fact that $\varphi : Dec(I) \to Cof(I)_C$ is locally 2-connected easily follows from Corollary 5.3.1.9).

Example 6.2.2.4. More generally, one can show that for an arbitrary regular CW-category I, the projection $\varphi : Dec(I)_C \to Cof(I)_C$ is locally 2-connected, so that $\widetilde{I} = Dec(I)$ is a framing for I. If W is saturated, then the framing is perfect, but in general, thus need not be the case.

Example 6.2.2.5. Say that a CW-category I is *distributive* if it has finite products, the terminal object $1 \in I$ is cofibrant, $i \times - : I \to I$ is a CW-functor for any cofibrant $i \in I$, and for any two cofibrant $f, f' \in \text{Cof}(\text{ar}(I))$, the product square $f \times f' : [1]^2 \to I$ is cocartesian in I. Then for any distributive CW-category I, a choice of a decomposition (6.1.4.1) for the object 1 defines a framing for I. Namely, denote the decomposition by

$$(6.2.2.3) 1 \sqcup 1 \xrightarrow{c} 1' \longrightarrow 1,$$

with the corresponding functor $\widetilde{1}: D_1 \to I$, and then let $\widetilde{I} = \operatorname{Cof}(I)_C$, with the functor $-\times \widetilde{1}: \operatorname{Cof}(I)_C \to \operatorname{Fun}(D_1, I)$. Note that the evaluation functor $\varphi: \widetilde{I} \to \operatorname{Cof}(I)_C$ in this framing is simply the identity functor, while ψ sends i to $i \times (1' \sqcup_{1 \sqcup 1} 1')$, so that the framing is perfect. Here are two specific examples of such a situation:

- (i) Take I = PoSets with the standard CW-structure of Example 6.1.1.6. Then it is distributive, and the standard decomposition (6.2.2.3) is given by the cylinder construction (in particular, $1' = V^o$). This is also inherited by very ample full subcategories $\mathcal{I} \subset \text{PoSets}$ and their extensions \mathcal{I}^+ ; all these CW-categories are distributive. The category I = BiPoSets with the standard CW-structure of Example 6.1.1.10 is distributive, with $1' = R(V^o)$, and so is the unfolding $\mathcal{I}^{\diamond} \subset \text{BiPoSets}$ of a very ample subcategory $\mathcal{I} \subset \text{PoSets}$, and its extension $\mathcal{I}^{+\diamond}$.
- (ii) Let $I = \Delta^0$ Sets be the model category of simplicial sets, with the CW-structure of Example 6.1.1.4. Then it is also distributive, so to construct a framing for I smaller that than of Example 6.2.2.3, it suffices to choose a

decomposition (6.2.2.3). For example, one can take $1' = \Delta_1$, the elementary 1-simplex. Analogously, if I = Top is the model category of compactly generated topological spaces, then it is also distributive, and the unit interval 1' = [0,1] gives a decomposition (6.2.2.3) for 1 = pt.

Example 6.2.2.6. For any category I and very ample full subcategory $\mathcal{I} \subset PoSets$, the category \mathcal{I} / I with its standard CW-structure of Example 6.1.1.7 is not distributive. However, we still have the product functor $\mathcal{I} \times (\mathcal{I} / \!\! I) \to \mathcal{I} / \!\! I$ that is distributive in the same sense as in Example 6.2.2.5, and choosing a decomposition (6.2.2.3) for \mathcal{I} provides a perfect framing for $\mathcal{I} / \!\! I$. The same goes for the extension \mathcal{I}^+ .

Assume given a regular CW-category I with a framing $\widetilde{I} \subset \operatorname{Dec}(I)$, and note that by (6.2.2.1), the functor $\psi : \operatorname{Dec}(I)_C \to \operatorname{Cof}(I)_C$ factors as $\psi \cong \chi \circ \widetilde{\psi}$, where $\chi : \operatorname{Cof}(\operatorname{pos} /\!\!/ I)_C \to \operatorname{Cof}(I)_C$ is the functor (6.1.5.3), and $\widetilde{\psi}$ sends $\widetilde{i} \in \operatorname{Dec}(I)$ to $\langle \mathbb{V}, v^* l^* \widetilde{i} \rangle \in \operatorname{Cof}(\operatorname{pos} /\!\!/ I)$. Then for any family of groupoids $\mathcal C$ over I, (6.2.1.3) induces a functor

$$(6.2.2.4) \widetilde{\psi}^* \chi^* \mathcal{C} \to \widetilde{\psi}^* \nu_* \operatorname{ev}^* \mathcal{C},$$

and if \mathcal{C} is a family over $\langle I, W \rangle$, then as in the proof of Corollary 6.2.1.7, the fiber $(\widetilde{\psi}^* \nu_* \operatorname{ev}^* \mathcal{C})_{\widetilde{i}}$ of its target over some $\widetilde{i} \in \operatorname{Dec}(I)$ can be canonically identified with the inertia groupoid $\mathcal{I}(\mathcal{C}_i)$, $i = \varphi(\widetilde{i})$. Indeed, by definition, $\widetilde{i} : \mathsf{D}_1 \to I$ sends all maps in D_1 to maps in the saturation s(I,W) of the class W, and since D_1 has a terminal object, we have a canonical trivialization $\widetilde{i}^*\mathcal{C} \cong \mathcal{C}_i \times \mathsf{D}_1$ that provides an identification

$$(\widetilde{\psi}^*\nu_*\operatorname{ev}^*\mathcal{C})_{\widetilde{i}}\cong\operatorname{Sec}(\mathbb{V},v^*l^*\widetilde{i}^*\mathcal{C})\cong\mathcal{C}_i^\mathbb{V}\cong\mathcal{I}(\mathcal{C}_i),$$

where the last identification is Remark 5.1.3.8. Then (6.2.2.4) restricts to a functor

(6.2.2.5)
$$\mathcal{C}_{\psi(\widetilde{i})} \to \mathcal{I}(\mathcal{C}_i),$$

and if $\mathcal C$ is semiexact, this is an epivalence by Lemma 6.2.1.6.

Lemma 6.2.2.7. Assume given a regular CW-category I equipped with a perfect framing \widetilde{I} , a semiexact family of groupoids C over $\langle I, W \rangle$, and a standard pushout square (6.2.2.2) in I. Moreover, assume that both C and $\varphi_*\psi^*C$ are constant resp. fully faithful along f_0 . Then C is also constant resp. fully faithful along the pushout $i_1 \to i_{01}$ of the map f_0 .

Proof. Lift the square to a pushout square in \widetilde{I} by Definition 6.2.2.2 (ii), and note that ψ then sends it to a standard pushout square in I. Since φ is 2-connected, $\psi^*\mathcal{C} \cong \varphi^*\varphi_*\psi^*\mathcal{C}$ is constant resp. fully faithful along \widetilde{f}_0 , so that \mathcal{C} is constant resp. fully faithful along $\psi(\widetilde{f}_0)$, and then Definition 6.2.1.1 implies that $\mathcal{C}_{\psi(\widetilde{i}_{01})} \to \mathcal{C}_{\psi(\widetilde{i}_{1})}$ is an epivalence resp. full. Together with the epivalences (6.2.2.5), we have a commutative square

$$egin{array}{ccc} \mathcal{C}_{\psi(\widetilde{i}_{01})} & \longrightarrow & \mathcal{C}_{\psi(\widetilde{i}_{1})} \\ & & & \downarrow & & \downarrow \\ \mathcal{I}(\mathcal{C}_{i_{01}}) & \longrightarrow & \mathcal{I}(\mathcal{C}_{i_{1}}) \end{array}$$

where both vertical arrows are epivalences, and the top horizontal arrow is an epivalence resp. full. Then the bottom horizontal arrow is an epivalence resp. full by Lemma 2.1.2.4, and we are done by Lemma 2.3.4.3.

Corollary 6.2.2.8. Assume given a strong regular CW-category $\langle I, C, W \rangle$, and a semiexact family of groupoids C over $\langle I, W \rangle$. Then C is constant along the class $a(W) \supset W$ of W-anodyne maps of Definition 6.1.7.1.

Proof. Choose a perfect framing \widetilde{I} for I in the sense of Definition 6.2.2.2. Let $W_0(\mathcal{C})$ be the class of maps f in I such that \mathcal{C} is constant along f, and then by induction, define $W_n(\mathcal{C})$, $n \geq 1$ as the class of maps f in $W_{n-1}(\mathcal{C})$ such that $\psi(\widetilde{f}) \in W_{n-1}(\mathcal{C})$ for any \widetilde{f} in \widetilde{I} with $\varphi(\widetilde{f}) = f$. Denote by $W(\mathcal{C}) = \bigcap_n W_n(\mathcal{C}) \subset W_0(\mathcal{C})$ the intersection of all these classes. Then by Definition 6.2.2.2 (i), we have $C \cap W \subset W(\mathcal{C})$, and by Lemma 6.2.2.7, standard pushouts of maps in $W_n(\mathcal{C})$ lie in $W_{n-1}(\mathcal{C})$, so that $W(\mathcal{C})$ is closed under standard pushouts. Since all the classes $W_n(\mathcal{C})$, hence also $W(\mathcal{C})$ are saturated by Lemma 2.3.1.7, we are done. \square

6.2.3. Mayer-Vietoris presentations. It turns out that as an application of Corollary 6.2.2.8, one can measure, to some extent, the failure of an additive semiexact family of groupoids over a strong CW-category to be exact. Namely, one can construct a natural presentation for an epivalence (6.2.1.1) in the sense of Definition 2.3.4.10.

Assume given an arbitrary weak CW-category I, and an additive semiexact family of groupoids \mathcal{C} over $\langle I, W \rangle$. For any map $q: i \to i'$ in I, denote by $\mathcal{C}_q \subset \mathcal{C}_i$ the essential image of the transition functor q^* (that is, the full subcategory spanned by objects isomorphic to q^*c , $c \in \mathcal{C}_{i'}$).

Lemma 6.2.3.1. Assume given two maps $s: i_0 \to i'_0$, $p: i_0 \to i_1$ in C, and a map $q: i_1 \to i_0$ such that $q \circ p = \text{id}$. Let $i'_1 = i'_0 \sqcup_{i_0} i_1$, with the natural maps $p' = \text{id} \times p: i'_0 \to i'_1$, $s_1 = s \times \text{id}: i_1 \to i'_1$, $q' = \text{id} \times q: i'_1 \to i'_0$. Then for any semiexact family C over $\langle I, W \rangle$, the functor (6.2.1.1) induces a functor

$$(6.2.3.1) v: \mathcal{C}_{q'} \to \mathcal{C}_{i'_0} \times_{\mathcal{C}_{i_0}} \mathcal{C}_{q},$$

and this functor is an equivalence of categories.

Proof. Since $q' \circ s_1 = s \circ q$, s_1^* sends the essential image of q' into the essential image of q^* , so that (6.2.1.1) indeed induces a functor v of (6.2.3.1). Since (6.2.1.1) is an epivalence, the functor v is full. Moreover, since $q \circ p = \operatorname{id}$, any object in its target is isomorphic to $c \times q^*s^*c$ for some $c \in \mathcal{C}_{i'}$, and since we have $c \times q^*s^*c \cong v(q'^*c)$, v is essentially surjective. Therefore it is an epivalence. Now choose a decomposition (6.1.1.2) of the map q, with $c : i_1 \to i_2$ in C and $c \circ p : i \to i_2$ in C and note that $i_2' = i_2 \sqcup_{i_1} i_1' = i_2 \sqcup_{i_0} i_0'$ with the natural maps $c' : i_1' \to i_2'$, $v' : i_2' \to i_0'$ gives a decomposition (6.1.1.2) of the map $q' : i_1' \to i_0'$. Then Definition 6.2.1.1 applies to the coproduct $i_2' = i_1' \sqcup_{i_1} i_2$, so that altogether, we obtain a commutative diagram

$$C_{i'_{0}} \cong C_{i'_{2}} \xrightarrow{c'^{*}} C_{q'} \xrightarrow{p'^{*}} C_{i'_{0}}$$

$$\downarrow s^{*} \qquad \qquad \downarrow s^{*}_{1} \qquad \qquad \downarrow s^{*}$$

$$C_{i_{0}} \cong C_{i_{2}} \xrightarrow{c^{*}} C_{q} \xrightarrow{p^{*}} C_{i_{0}}$$

with semicartesian squares. Since $c^*: \mathcal{C}_{i_0} \to \mathcal{C}_q$ is essentially surjective by definition, we are done by Corollary 2.3.2.11.

Now assume that I is a CW-category that is strong in the sense of Definition 6.2.2.2, and fix a perfect framing \widetilde{I} on I. For any additive semiexact family of groupoids \mathcal{C} over $\langle I, W \rangle$, and any object $i \in I$, define the *loop groupoid* $\Omega(\mathcal{C}_i)$ by the cartesian square

(6.2.3.2)
$$\Omega(C_i) \longrightarrow (\varphi_* \psi^* C)_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_i \longrightarrow \mathcal{I}(C_i),$$

where the vertical arrow on the right is the epivalence (6.2.2.5), and the bottom arrow is the tautological fully faithful embedding. Therefore the top arrow is also fully faithful. Moreover, for any decomposition (6.1.4.1) for i corresponding to an object $\tilde{i} \in \tilde{I}$, we have $(\varphi_*\psi^*\mathcal{C})_i \cong \mathcal{C}_{\psi(\tilde{i})}$, and then $\Omega(\mathcal{C}_i) \cong \mathcal{C}_q \subset \mathcal{C}_{\psi(\tilde{i})}$, where $q: i'' = i' \sqcup_{i \sqcup i} i' \to i'$ is the codiagonal map.

Lemma 6.2.3.2. For any standard pushout square (6.1.1.1), the epivalence (6.2.1.1) admits a presentation C'_{i01} in the sense of Definition 2.3.4.10 such that

(6.2.3.3)
$$\mathcal{C}'_{i_{01}} \cong \mathcal{C}_{i_{01}} \times_{\mathcal{C}_{i}} \Omega(\mathcal{C}_{i}),$$

where the projection $C_{i_{01}} \to C_i$ is induced by the embedding $i \to i_{01}$.

Proof. To simplify notation, let $C_o = C_i$ and $C_l = C_{i_l}$, l = 0, 1, 01, so that (6.2.1.1) becomes an epivalence

$$(6.2.3.4) \mathcal{C}_{01} \to \mathcal{C}_0 \times_{\mathcal{C}_0} \mathcal{C}_1.$$

Choose a decomposition (6.1.4.1) for i corresponding to some $\widetilde{i} \in \widetilde{I}$, and consider the associated anodyne map $i'_{01} \to i_{01}$ of Example 6.1.7.5. Then by Corollary 6.2.2.8, we also have $\mathcal{C}_{01} \cong \mathcal{C}_{i'_{01}}$. The natural map $i_0 \sqcup i_1 \to i_{01}$ is in the class C, so we can form the standard pushout $i''_{01} = i_{01} \sqcup_{i_0 \sqcup i_1} i'_{01}$, and then (6.2.1.1) for this standard pushout provides a presentation $\mathcal{C}'_{01} = \mathcal{C}_{i''_{01}}$ for the projection $\mathcal{C}_{01} \to \mathcal{C}_0 \times \mathcal{C}_1$. This projection factors through (6.2.3.4) as

$$C_{01} \longrightarrow C_0 \times_{C_0} C_1 \longrightarrow C_0 \times C_1$$
,

so by Example 2.3.4.11, C'_{01} induces a presentation $\delta^*C'_{01}$ for (6.2.3.4). Now observe that by (5.1.3.6), we have

$$(\mathcal{C}_0 \times_{\mathcal{C}_0} \mathcal{C}_1) \times_{\mathcal{C}_0 \times \mathcal{C}_1} (\mathcal{C}_0 \times_{\mathcal{C}_0} \mathcal{C}_1) \cong (\mathcal{C}_0 \times_{\mathcal{C}_0} \mathcal{C}_1) \times_{\mathcal{C}_0} \mathcal{I}(\mathcal{C}_0),$$

and the diagonal embedding δ in our application of Example 2.3.4.11 is induced by the tautological embedding $\mathcal{C}_o \to \mathcal{I}(\mathcal{C}_o)$. Therefore it is fully faithful, and we have $\delta^*\mathcal{C}'_{01} \cong \mathcal{C}_{q'} \subset \mathcal{C}'_{01}$, where $q':i''_{01} \to i'_{01}$ is the codiagonal map. But we also have $i''_{01} \cong i'_{01} \sqcup_{i'} i''$, and q' is the pushout of the codiagonal map $q:\psi(\widetilde{i})=i'\sqcup_{i\sqcup i} i'\to i'$. Then (6.2.3.3) follows from Lemma 6.2.3.1.

Corollary 6.2.3.3. Let C, C' be additive semiexact families of groupoids over a strong CW-category I, and assume given a functor $\gamma: C \to C'$ over I, and a standard pushout square (6.1.1.1) in I such that γ is an equivalence over i, i_0 , i_1 , and $\phi_*\psi^*(\gamma)$ is an equivalence over i. Then γ is an epivalence over i_{01} .

Proof. Since γ is an equivalence over i, i_0 and i_1 , $\gamma:\mathcal{C}_{i_{01}}\to\mathcal{C}'_{i_{01}}$ can be treated as a functor over $\mathcal{C}_{i_0}\times_{\mathcal{C}_i}\mathcal{C}_{i_1}\cong\mathcal{C}'_{i_0}\times_{\mathcal{C}'_i}\mathcal{C}'_{i_1}$. The presentation of Lemma 6.2.3.2 is functorial with respect to \mathcal{C} , so that we actually obtain presentations for the epivalences (6.2.1.1) for both \mathcal{C} and \mathcal{C}' , and also a presentation γ' for γ . Moreover, since $\varphi_*\psi^*(\gamma)$ is also an equivalence over i, the functor $\Omega(\gamma):\Omega(\mathcal{C}_i)\to\Omega(\mathcal{C}'_i)$ is an equivalence, and then (6.2.3.3) shows that the presentation γ' is strict. We are then done by Lemma 2.3.4.13.

6.2.4. Families over model categories. Let us now step back to the situation of Section 5.3: $I = \langle I, C, W, F \rangle$ is a model category, with the CW-structure of Example 6.1.1.4. Here we have an ample source of examples provided by the following.

Lemma 6.2.4.1. For any object $i \in I$, the representable family $\mathcal{H}(i)$ of Definition 5.3.2.4 is additive and semiexact.

Proof. By Proposition 5.3.3.2, we may assume that i is fibrant and cofibrant, and $\mathcal{H}(i)$ is given by (5.3.3.4) for some Reedy fibrant i^{Δ} . Then to prove that $\mathcal{H}(i)$ is additive, it suffices to check that for any collection X_s , $s \in X$ of fibrant simplicial sets with product $X = \prod_s X_s$, the functor

$$h^{
atural}(\Delta X) \to \prod_{s} h^{
atural}(\Delta X_s)$$

is an equivalence. This immediately follows from Lemma 5.2.4.1. To prove that $\mathcal{H}(i)$ is semiexact, again use (5.3.3.4), combined with Lemma 5.3.3.3 and Corollary 5.2.4.2.

There are also two further properties of semiexact families that are automatically satisfied in the model category settings. We start with the following standard remark.

Lemma 6.2.4.2. Assume given a regular cardinal κ , a κ -cocomplete model category C, and a Reedy category J such that $|J| < \kappa$ and the matching categories M(j), $j \in J$ are finite ordinals. Then $\operatorname{colim}_J : \operatorname{Fun}(J,I) \to I$ sends weak equivalences between Reedy-cofibrant objects to weak equivalences.

Proof. The assumption of the Lemma insures that the tautological functor $I \to \operatorname{Fun}(J,I)$ sending $i \in I$ to the constant functor with value i sends maps in F resp. $F \cap W$ to maps in F resp. $F \cap W$ with respect to the Reedy model structure on $\operatorname{Fun}(J,I)$. Then the colimit functor colim_J sends maps in C resp. $C \cap W$ to maps in C resp. $C \cap W$ — that is, we have a Quillen adjunction — and by Ken Brown's Lemma 6.1.1.13, colim_J indeed sends maps in $\operatorname{Cof}(\operatorname{Fun}(J,I))$ that are in W to maps in W. □

The first additional property of semiexact additive families over a model category is the following one.

Definition 6.2.4.3. A family of groupoids C over a C-category I is strongly semiexact if (6.2.1.1) is an epivalence for any cocartesian square (6.1.1.1) in Cof(I) with $f_1 \in C$, and an equivalence if i = 0.

Lemma 6.2.4.4. Assume given a family of groupoids $C \to I$ over a $\langle I, W \rangle$ that is semiexact and additive in the sense of Definition 6.2.1.1 and Definition 6.2.1.2. Then C is strongly semiexact in the sense of Definition 6.2.4.3.

Proof. By virtue of the factorization property of model categories, it suffices to prove the claim for $f_0 \in C$ and for $f_0 \in F \cap W$. In the first case, this is Definition 6.2.1.1, so it suffices to show that if $f_0 \in W$, then its pushout $f_0': i_1 \to i_0 \sqcup_i i_1$ with respect to f_1 is also in W. This is a well-known fact from the theory of model categories; let us reproduce the proof for the convenience of the reader. Consider the partially ordered set $V = \{0,1\}^<$ as a Reedy category by taking $\deg 0 = 0$, $\deg o = 1$, $\deg 1 = 2$, with the map $o \to 0$ resp. $o \to 1$ as the only non-trivial matching resp. latching map. Then a functor $i_*: V \to I$ is cofibrant iff $i = i_*(o)$, $i_0 = i_*(0)$ are cofibrant and the map $i \to i_1 = i_*(1)$ is in C, and moreover, V satisfies the assumptions of Lemma 6.2.4.2. It remains to let $i' = i'_0 = i$, $i'_1 = i_1$, with the maps $i : i' \to i'_0$, $i'_1 : i'_0 \to i_1$, consider the map $i : i'_1 \to i_2$ given by id at $i'_1 \to i'_2$ and note that $i'_1 = i'_2 \to i'_2$ given by id at $i'_1 \to i'_2$ and note that $i'_2 = i'_1 \to i'_2$ given by id at $i'_1 \to i'_2$ and note that $i'_2 = i'_1 \to i'_2$ given by id at $i'_1 \to i'_2$ and note that $i'_2 = i'_1 \to i'_2$ and $i'_2 \to i'_1 \to i'_2$ and note that $i'_2 = i'_1 \to i'_2$ and $i'_1 \to i'_2 \to i'_3$ given by id at $i'_1 \to i'_2 \to i'_3$ and note that $i'_2 = i'_1 \to i'_2 \to i'_3$ and $i'_1 \to i'_2 \to i'_3 \to i'_3$

The second result concerns a version of the telescope construction. Assume given a functor $i_{\bullet}: \mathbb{N} \to I$ to some category I, or explicitly, a collection of objects $i_n \in I$ and maps $b_n: i_n \to i_{n+1}$, $n \ge 0$.

Definition 6.2.4.5. If $\operatorname{colim}_n i_n$ exists, then the map $b: i_0 \to \operatorname{colim}_n i_n$ is the *countable composition* of the maps b. A family \mathcal{C} of groupoids over I is *continuous* resp. *semicontinuous* along the countable composition b if the functor (6.2.1.4) for $I = \mathbb{N}$ is an equivalence resp. an epivalence.

To analyse continuity along countable compositions in CW-categories, it is convenient to use the partially ordered set Z_{∞} of Example 3.1.3.16, with the map (3.1.3.6). Note that $\dim Z_{\infty}=1$, and Z_{∞} is left-finite, thus a thin Reedy category in the sense of Definition 6.1.2.5. The 0-th skeleton $\mathrm{sk}_0 \, Z_{\infty}$ is the subset $\{2l|l\geq 0\}\subset Z_{\infty}=\{l\geq 0\}$ of even integers, and it is abstractly isomorphic to the set $\mathbb N$ with discrete order. For any CW-category I and functor $Y:\mathbb N\to \mathrm{Cof}(I)_C$, let $X=\zeta^*Y:Z_{\infty}\to \mathrm{Cof}(I)_C$, and let $X':Z_{\infty}\to \mathrm{Cof}(I)_C$ and $a:X'\to X$ be its cofibrant replacement provided by Lemma 6.1.4.3, with $J=Z_{\infty}$ and $J_0=\mathrm{sk}_0\,Z_{\infty}$. Then a is pointwise in the saturation s(W) of the class W, and for any family of groupoids $\mathcal C$ over $\langle I,W\rangle$, we have functors

(6.2.4.1) Sec(
$$\mathbb{N}$$
, $Y^*\mathcal{C}$) $\xrightarrow{\zeta^*}$ Sec(\mathbb{Z}_{∞} , $X^*\mathcal{C}$) $\xrightarrow{a^*}$ Sec(\mathbb{Z}_{∞} , $X'^*\mathcal{C}$), where a^* is an equivalence. Moreover, by Lemma 5.1.3.1, ζ^* in (6.2.4.1) is an equivalence as well. Now define a *telescope* Tel(Y) of the functor Y by

(6.2.4.2)
$$\operatorname{Tel}(Y) = \operatorname{colim}_{Z_{\infty}} X' \in I.$$

The telescope need not exist (Z_{∞} is not finite, so Lemma 6.1.2.4 does not apply), and it need not be unique (because X' and $a: X' \to X$ are not unique). However, we have the following general result.

Lemma 6.2.4.6. Assume that a CW-category I has countable coproducts, and the class C is stable under countable coproducts. Then for any functor $Y: \mathbb{N} \to \operatorname{Cof}(I)_{\mathbb{C}}$ and cofibrant replacement X', $a: X' \to X = \zeta^* Y$ of Lemma 6.1.4.3, the telescope (6.2.4.2) exists, and for any additive semiexact family of groupoids C over $\langle I, W \rangle$, the functor

$$C_{\text{Tel}(Y)} \to \text{Sec}(Z_{\infty}, X'^*C) \cong \text{Sec}(\mathbb{N}, Y^*C)$$

of (6.2.1.4) is an epivalence.

Proof. Consider the discrete fibration $z: Z_{\infty} \to \mathbb{V}$ of (5.1.3.3). Each of its left comma-fibers Z_{∞}/zv , $v \in \mathbb{V}$ is a countable coproduct of partially ordered sets isomorphic to pt or V^o , and both pt and V^o have a largest element, thus are of effective dimension 0. Since I has countable products, (2.2.5.2) then shows that $z_!X': \mathbb{V} \to I$ exists, and since the family C is additive, we have an equivalence

$$(z_!X')^*\mathcal{C}\cong z_*(X'^*\mathcal{C}),$$

so it remains to prove that (6.2.1.4) is an epivalence for $J = \mathbb{V}$ and the functor $z_!X' : \mathbb{V} \to I$. But by (2.2.5.2) and Lemma 6.1.2.4, this functor is cofibrant and dim $\mathbb{V} = 1$, so we are done by Lemma 6.2.1.6.

Remark 6.2.4.7. Alternatively, instead of the map z, we could have proved Lemma 6.2.4.6 by using the map $x : Z_{\infty} \to V$ of (3.1.3.9) (that happens to be the composition of z and the cofibration $\mathbb{V} \to V$ of Remark 5.1.3.7).

Now assume that I is a model category, and assume that it has countable coproducts. Then is also has all countable colimits, thus countable compositions, and C is stable under countable coproducts, so Lemma 6.2.4.6 applies.

Lemma 6.2.4.8. Assume that a model category I has countable coproducts. Then any additive semiexact family of groupoids C over $\langle I, W \rangle$ is semicontinuous along any countable compositions of maps in $Cof(I)_C$.

Proof. Take a functor $Y : \mathbb{N} \to \operatorname{Cof}(I)_C$ and its telescope $\operatorname{Tel}(Y)$ of (6.2.4.2). Then $a : X' \to X = \zeta^* Y$ induces by adjunction a map $a_+ : \zeta_! X' \to Y$, and by Lemma 6.2.4.6, it suffices to check that the corresponding morphism $\operatorname{Tel}(Y) \to \operatorname{colim}_{\mathbb{N}} Y$ is in W. But Y is Reedy-cofibrant, and by adjunction, so is $\zeta_! X'$.

Therefore by Lemma 6.2.4.2, it suffices to check that $a_{+}: \zeta_{!}X' \to Y$ is pointwise in W. By (2.2.5.2), this adunts to checking that the morphism $a_{+}: \operatorname{Tel}_{m}(Y) = \operatorname{colim}_{Z_{2m}} X' \to X(2m) \cong Y(m)$ is in W for any integer $m \geq 0$. But then the square (3.1.3.8) provides an isomorphism

(6.2.4.3)
$$\operatorname{Tel}_{m}(Y) \cong X'(1) \sqcup_{Y(1)} \operatorname{Tel}_{m-1}(q^{*}Y),$$

and by the same induction as in Lemma 3.1.3.19, we are reduced to m = 1, where $\text{Tel}_1(Y) = X'(1)$, and $a_{\dagger} : \text{Tel}_1(Y) = X'(1) \to Y(1) = X(2) = X(1)$ is the map a on the nose.

6.2.5. Representability criterion. To complement Lemma 6.2.4.1, it will be useful to have a way to check whether an object $i \in I$ in a category I represents a given family $C \to I$.

Definition 6.2.5.1. Let \mathcal{C} be a family of groupoids over a C-category I, and assume given an object $c \in \mathcal{C}$ and a map $f: i \to i'$ in the class C. Then c is *liftable* with respect to f if for any $c' \in \mathcal{C}_{i'}$, any map $a: f^*c' \to c$ factors through the natural map $\widetilde{f}: f^*c' \to c'$ by a map $b: c' \to c$.

For any $c \in C$, we denote by $C(c) \subset C$ the class of all maps f in $Cof(I)_C$ such that c is liftable with respect to f. The class C(c) is obviously closed under compositions and contains all identity maps.

Lemma 6.2.5.2. Assume given a family of groupoids C over a C-category I, and an object $c \in C$.

- (i) If the family $C \to I$ is strongly semiexact in the sense of Definition 6.2.4.3, then the class C(c) is closed under pushouts.
- (ii) If the family $C \to I$ is additive in the sense of Definition 6.2.1.2, then the class C(c) is closed under coproducts.
- (iii) If the family $C \to I$ is semicontinuous in the sense of Definition 6.2.4.5 over a countable composition b of maps $b_n \in C(c)$, then $b \in C(c)$.

Proof. Denote by $\pi: \mathcal{C} \to I$ the projection. Note that since π is a fibration, giving a map $b: c' \to c$ in Definition 6.2.5.1 is equivalent to giving the map $\pi(b): i' \to \pi(c)$ in I such that $\pi(a) = \pi(b) \circ f$, and moreover, an isomorphism $\alpha: c' \cong \pi(b)^*c$. In all the cases (i), (ii), (iii), the map $\pi(b)$ is immediately provided by the universal properties of colimits, and the issue is the isomorphism α .

In (i) resp. (ii), its existence follows from (6.2.1.1) resp. (6.2.1.2). For (iii), use Definition 6.2.4.5 directly.

Proposition 6.2.5.3. Assume given a model category I, a cofibrant object $i \in I$, an additive semiexact family of groupoids C over $\langle I, W \rangle$, and an object $c \in C_i \subset C$. Then (i) C(c) = C if and only if (ii) the object $i \in I$ is fibrant, and the comparison functor $\mathcal{H}(c) : \mathcal{H}(i) \to C$ of Proposition 5.3.2.5 (iii) is an equivalence over $Cof(I)_C$.

In order to prove this, we need to modify slightly the description of the family $\mathcal{H}(i)$ given in Proposition 5.3.3.2. Assume given two objects $i', i \in I$, i fibrant and i' cofibrant. As in Subsection 5.3.3, choose a Reedy fibrant replacement $i^{\Delta}: \Delta^o \to I$ of the constant simplicial object in I with value i, and assume that $i \cong i^{\Delta}([0])$. Moreover, the category of cosimplicial objects in I also has a Reedy model structure, so that we can choose a cofibrant replacement $i'_{\Delta}: \Delta \to I$ of the constant cosimplicial object i', with $i'_{\Delta}([0]) \cong i'$. We then have a simplicial set $\mathrm{Hom}^{\Delta}(i'_{\Delta},i): \Delta^o \to \mathrm{Sets}$ given by $[n] \mapsto \mathrm{Hom}(i'_{\Delta}([n]),i)$, and its category of simplices $\Delta \, \mathrm{Hom}^{\Delta}(i'_{\Delta},i)$.

Lemma 6.2.5.4. In the assumptions above, there is a natural equivalence of groupoids $h^{\natural}(\Delta \operatorname{Hom}^{\Delta}(i', i^{\Delta})) \cong h^{\natural}(\Delta \operatorname{Hom}^{\Delta}(i'_{\Lambda}, i)).$

Proof. Consider the bisimplicial set $\operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta}) : \Delta^{o} \times \Delta^{o} \to \operatorname{Sets}$ given by $[n'] \times [n] \mapsto \operatorname{Hom}(i'_{\Delta}([n']), i^{\Delta}([n]),$ and denote by $\Delta^{2} \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta}) \to \Delta \times \Delta$ its category of elements, with objects $\langle [n'] \times [n], f \rangle$, f a map from $i'_{\Delta}([n'])$ to $i^{\Delta}([n])$. Denote by $\tau', \tau : \Delta^{2} \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta}) \to \Delta$ the fibrations sending $\langle [n'], [n], f \rangle$ to [n'] resp. [n]. Then by Proposition 5.3.3.2, the family of groupoids

$$\tau'_1 \Delta^2 \operatorname{Hom}^{\Delta}(i'_{\Lambda}, i^{\Delta}) \to \Delta$$

has fibers $\mathcal{H}(i)_{i'_{\Delta}([n])}$, $[n] \in \Delta$. Since i'_{Δ} is a replacement of a constant functor, all the transition functors of this family are therefore equivalences of groupoids, and since Δ has the terminal object [0], the embedding

$$(6.2.5.1) \Delta \operatorname{Hom}^{\Delta}(i', i^{\Delta}) \cong \Delta^{2} \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta})_{[0]} \subset \Delta^{2} \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta})$$

induces an equivalence of total localizations. To finish the proof, apply the same argument to the opposite model category I^o and the projection τ , and deduce that the embedding

(6.2.5.2)
$$\Delta \operatorname{Hom}^{\Delta}(i'_{\Lambda}, i) \subset \Delta^{2} \operatorname{Hom}^{\Delta}(i'_{\Lambda}, i^{\Delta})$$

also induces an equivalence of total localizations.

Combining Lemma 6.2.5.4 and (5.3.3.4), we see that for any i, i^{Δ} , i', i'_{Δ} as above, we have a canonical equivalence

(6.2.5.3)
$$\mathcal{H}(i)_{i'} \cong h^{\natural}(\Delta \operatorname{Hom}^{\Delta}(i'_{\Delta}, i)).$$

By Lemma 5.3.3.3 applied to the opposite model category I^o , the simplicial set $\mathrm{Hom}^\Delta(i'_\Delta,i)$ is fibrant, so that the right-hand side of (6.2.5.3) can be described by Lemma 5.2.4.1. Explicitly, let $\widetilde{i}=i'_\Delta([1])$, and consider the corresponding factorization

$$i' \sqcup i' \xrightarrow{p} \widetilde{i} \xrightarrow{q} i$$

of the codiagonal map $i \sqcup i \to i$, with $p = p_0 \sqcup p_1$ in C and q in W (p_0 and p_1 are induced by the maps $s, t : [0] \to [1]$, and q is induced by the projection $[1] \to [0]$). Then objects of the groupoid $\mathcal{H}(i)_{i'}$ are represented by maps $f: i' \to i$, and morphisms from f_0 to f_1 are represented by maps $g: \widetilde{i} \to i$ such that $f_l = f \circ p_l$, l = 0, 1.

Lemma 6.2.5.5. Assume given a family of groupoids C over $\langle I, W \rangle$ and an object $c \in C_i$. Then in terms of the identification (6.2.5.3), the functor $\mathcal{H}(c)_{i'} : \mathcal{H}(i)_{i'} \to C_{i'}$ of Proposition 5.3.2.5 sends an object represented by a map $f : i' \to i$ to $f^*c \in C_{i'}$, and a morphism represented by a map $g : \widetilde{i} \to i$ to the composition

$$(g \circ p_0)^*c \xrightarrow{p_0^*(\alpha^{-1})} p_0^*q^*q_!g^*c \cong q_!g^*c \cong p_1^*q^*q_!g^*c \xrightarrow{p_1^*(\alpha)} (g \circ p_1)^*c,$$

where $\alpha: g^*c \to q^*q_!g^*c$ is the adjunction map, and the isomorphisms are induced by the identities $q \circ p_0 = q \circ p_1 = \text{id}$.

Proof. For any $[n] \in \Delta$, denote the maps corresponding to the projection $[n] \to [0]$ by $e: i = i^{\Delta}([0]) \to i^{\Delta}([n])$ and $e': i'_{\Delta}([n]) \to i'_{\Delta}([0]) = i'$. Then for any $[n], [n'] \in \Delta$ and $f: i'_{\Delta}([n']) \to i^{\Delta}([n])$, we have a functor

$$C_i \xrightarrow{e_!} C_{i^{\Delta}([n])} \xrightarrow{f^*} C_{i'_{\Delta}([n'])} \xrightarrow{e'^*} C_{i'}.$$

These functors are compatible with maps in $\Delta^2 \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta})$, thus glue together to a functor $C_i \times \Delta^2 \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta}) \to C_{i'}$. Restricting this to $c \in C_i$, we obtain a functor

$$\mathcal{H}'(c): \Delta^2 \operatorname{Hom}^{\Delta}(i'_{\Delta}, i^{\Delta}) \to \mathcal{C}_{i'}.$$

When we compose $\mathcal{H}(c)'$ with the embedding (6.2.5.1), we obtain the functor $\mathcal{H}(c)_{i'}$ of Proposition 5.3.3.2, and since (6.2.5.1) induces an equivalence of total localizations, we have $\mathcal{H}'(c) \cong \mathcal{H}(c)_{i'}$. To finish the proof, it remains to compose $\mathcal{H}'(c)$ with the embedding (6.2.5.2) and use Lemma 5.2.4.1.

Proof of Proposition 6.2.5.3. The fact that (ii) implies (i) is obvious. Conversely, assume that C = C(c). Then for any morphism $w : i_0 \to i_1$ in $C \cap W$, the transition functor $w^* : \mathcal{C}_{i_1} \to \mathcal{C}_{i_0}$ is an equivalence, so that for any map $f : i_0 \to i$, we have $f^*c \cong w^*c'$ for some $c' \in \mathcal{C}_{i_1}$. Then Definition 6.2.5.1 immediately implies that f factors through w, so that i is fibrant.

It remains to prove that $\mathcal{H}(c)_{i'}:\mathcal{H}(i)_{i'}\to\mathcal{C}_{i'}$ is an equivalence for any $i'\in I$, and to do this, we use Lemma 6.2.5.5. To prove that $\mathcal{H}(c)_{i'}$ is essentially surjective, we need to check that any object $c'\in\mathcal{C}_{i'}$ is of the form f^*c for some $f:i'\to i$; this follows from Definition 6.2.5.1 applied the map $0\to i'$ (note that (6.2.1.2) for $S=\varnothing$ means that $\mathcal{C}_0\cong$ pt). To prove that $\mathcal{H}(c)_{i'}$ is full, assume given two maps $f_0, f_1:i'\to i$ and a morphism $\varphi:f_0^*c\to f_1^*c$, let $c'=q^*f_0^*c\in\mathcal{C}_{\widetilde{i'}}$ identify $p^*c'\cong p_0^*c'\sqcup p_1^*c'\cong f_0^*c\sqcup f_0^*c$, and and apply Definition 6.2.5.1 to the composition of the canonical map $f_0^*c\sqcup f_1^*c\to c$ and the map $\mathrm{id}\sqcup\varphi$. This gives a map $g:\widetilde{i}\to i$, and by Lemma 6.2.5.5, the functor $\mathcal{H}(c)_{i'}$ sends the morphism it represents to φ .

Finally, to prove that $\mathcal{H}(c)_{i'}$ is faithful, let J=L([2]) be the latching category of the object $[2] \in \Delta$. Explicitly, J is the partially ordered set of non-empty proper subsets in $[2]=\{0,1,2\}$, so it has chain dimension 1. We denote the objects in J by 0, 1, 2, 01, 02, 12, and we let $i_{\cdot}: J \to I$ be the composition of the functor i'_{Δ} with the forgetful functor $J \to \Delta$ that sends $[n] \to [2]$ to [n]. Then since since i'_{Δ} is Reedy cofibrant, $i_{\cdot} \in \operatorname{Fun}(J,I)$ is cofibrant with respect to the projective model structure, and moreover, the natural map $l: \operatorname{colim} i_{\cdot} \to i'_{\Delta}([2])$ is in C (it is in fact one of the latching maps (4.3.1.2)). Composing it with the map $e': i'_{\Delta}([2]) \to i'$ induced by the projection $[2] \to [0]$, we obtain a map $a: \operatorname{colim} i_{\cdot} \to i'$.

Now assume given two maps $f_0, f_1: i' \to i$, and two maps $g_0, g_1: \widetilde{i} \to i$ such that $g_0 \circ p_0 = g_1 \circ p_0$, $g_0 \circ p_1 = g_1 \circ p_1$, and $\mathcal{H}(c)_{i'}(g_0) = \mathcal{H}(c)_{i'}(g_1)$. Then we have a map $i_* \to i$ from i_* to the constant functor with value i that is equal to $f_0, f_0, f_1, f_0 \circ q$, g_0, g_1 on $i_0, i_1, i_2, i_{01}, i_{02}, i_{12}$, and by adjunction, it induces a map $b: \operatorname{colim} i_* \to i$. Moreover, by Lemma 6.2.5.5, the objects b^*c and $a^*f_0^*c$ become isomorphic after applying the comparison functor (6.2.1.4), and then by Lemma 6.2.1.6, they were isomorphic to begin with. Thus $b^*c \cong l^*c'$ for $c' = (f_0 \circ e')^*c \in \mathcal{C}_{i'_\Delta([2])}$. Applying Definition 6.2.5.1 to the map l, we conclude that b factors through l, and then by Lemma 5.2.4.1, g_0 and g_1 represent the same map already in $\mathcal{H}(i)_{i'}$.

6.3. Representability theorems.

6.3.1. Relative CW complexes. Consider the category Top of compactly generated topological spaces, and equip it with Quillen's model structure of [Q]: a map $f: X \to Y$ is in W iff $f: \pi_n(X,x) \to \pi_n(Y,f(x))$ is an isomorphism for any $x \in X$, $n \geq 0$, and a map $f: X \to Y$ is in F iff it has the right lifting property with respect to maps $D^{n-1} \times \{0\} \subset D^n$, $n \geq 1$, where $D^n = [0,1]^n$ is the n-th self-product of the unit interval [0,1]. The model category Top is cofibrantly generated in the sense of [Ho], with generating cofibrations given by the embeddings $S^{n-1} \to D^n$, $n \geq 0$, where S^{n-1} is the (n-1)-dimensional sphere, embedded as the boundary of the n-dimensional disc D^n , and S^{-1} is taken to be the empty set. As a corollary of this, for any essentially small category I, the category Fun(I, Top) admits the projective model structure. Cofibrant objects in Top are exactly CW complexes, so it is natural to introduce the following.

Definition 6.3.1.1. For any essentially small category I, an I-CW complex is a cofibrant object $X \in \text{Fun}(I, \text{Top})$.

We will denote by $ICW = Cof(Fun(I, Top))_C$ the category of I-CW complexes and maps between them that are in the class C. For any $i \in I$, the evaluation functor $ev_i : Fun(I, Top) \to Top$ admits an obvious left-adjoint functor $i_! : Top \to Fun(I, Top)$, $i_!(X)(i') = X \times I(i', i)$, and by adjunction, $i_!$ sends cofibrant objects to cofibrant objects. For any $n \geq 0$, we will denote $D^n_i = i_! D^n \in ICW$ and $S^n_i = i_! S^n \in ICW$. By adjunction, discs D^n_i and spheres S^n_i are compact objects in Fun(I, Top). Every object in Top, hence also in Fun(I, Top) is fibrant, and for any $X \in Fun(I, Top)$, a convenient fibrant replacement of the diagonal $X \to X \times X$ is given by

$$(6.3.1.1) X \longrightarrow \operatorname{Maps}(D^1, X) \longrightarrow X \times X,$$

where for any $i \in I$, Maps $(D^1,X)(i) = \operatorname{Maps}(D^1,X(i))$ is the space of maps from the unit interval D^1 to X(i) with the compact-open topology, and the projection to $X \times X$ is given by evaluation at $0,1 \in D^1$. Therefore $h^W(\operatorname{Fun}(I,\operatorname{Top}))$ coincides with the naive homotopy category: morphisms from Y to X are represented by maps $f: Y \to X$ in $\operatorname{Fun}(I,\operatorname{Top})$, and two maps f_0, f_1 represent the same morphism if and only if there exists a map $g: Y \times D^1 \to X$ that restricts to f_0 on $Y \times \{0\} \subset Y \times D^1$ and to f_1 on $Y \times \{1\} \subset Y \times D^1$. For any $X \in I\operatorname{CW}$, we have the representable family of groupoids $\mathcal{H}(X)$ over $I\operatorname{CW}$ of Definition 5.3.2.4, and again, it can be explicitly described by Proposition 5.3.3.2 using (6.3.1.1): objects of the fiber $\mathcal{H}(X)_Y$ for some $I\operatorname{-CW}$ complex Y are represented by maps

 $f: Y \to X$, and morphisms between objects represented by $f_0, f_1: Y \to X$ are homotopy classes of maps $g: Y \times D^1 \to X$ that restrict to f_0 resp. f_1 on $Y \times \{0\}$ resp. $Y \times \{1\}$. If $I = \operatorname{pt}$ is the point, then $\mathcal{H}(X)_Y$ is the fundamental groupoid of the space $\operatorname{Maps}(Y, X)$.

Theorem 6.3.1.2. Assume given an essentially small category I and a small family C of groupoids over $\langle ICW, W \rangle$ such that C is semiexact in the sense of Definition 6.2.1.1 and additive in the sense of Definition 6.2.1.2. Then there exists an object $X \in ICW$ and an equivalence $H(X) \cong C$, and X is unique up to a weak equivalence.

This result is an analog of the "cohomological" version of the Brown Theorem [Br], and to prove it, we follow the same plan, see e.g. [S].

Definition 6.3.1.3. For any family \mathcal{C} as in Theorem 6.3.1.2, any I-CW complex $X \in I$ CW, and any integer $n \geq 0$, an object $x \in \mathcal{C}_X$ is n-universal if it is liftable in the sense of Definition 6.2.5.1 with respect to the natural embedding $S_i^{m-1} \to D_i^m$ for any $i \in I$ and integer $m \leq n$. An object x is universal if it is n-universal for any $n \geq 0$.

- **Lemma 6.3.1.4.** (i) Assume given an integer $n \ge 0$, some $X \in I$ CW, and an object $x \in C_X$, and assume that either n = 0, or the object x is (n 1)-universal. Then there there exists a map $e: X \to X'$ in ICW and an n-universal object $x' \in C_{X'}$ such that $e^*(x') \cong x$.
 - (ii) Assume given $X \in ICW$ and an object $x \in C_X$. Then there exists a map $e: X \to X'$ in ICW and a universal $x' \in C_{X'}$ such that $e^*x' \cong x$.

Proof. For (i), assume given X, $x \in \mathcal{C}_X$ and n, and for any $i \in I$, let A_i be the set of triples $\langle f, u, \varphi \rangle$ of a map $f : S_i^{n-1} \to X$, an object $u \in \mathcal{C}_{D_i^n}$, and an isomorphism $f^*x \cong u|_{S_i^{n-1}}$. Since \mathcal{C} has small fibers, A_i is indeed a set, and we can form the disjoint unions

$$Z = \coprod_{i \in I} S_i^{n-1} \times A_i \subset Y = \coprod_{i \in I} D_i^n \times A_i.$$

We then have a natural map $f: Z \to X$, and moreover, since \mathcal{C} is additive, we have an object $u \in \mathcal{C}_Y$ and an isomorphism $f^*x \cong u|_Z$. Since \mathcal{C} is also semiexact, we can then set $X' = Y \sqcup_Z X$, and choose an object $x' \in \mathcal{C}_{X'}$ that restricts to u resp. x on Y resp. X.

To check that x' is n-universal, we need to prove that for any $i \in I$, integer $m \le n$ and object $u \in \mathcal{C}_{\mathsf{D}_i^m}$, any map $f_{m-1} : S_i^{m-1} \to X'$ such that $f_{m-1}^* x' \cong u|_{S_i^{m-1}}$

extends to a map $f_m: D_i^m \to X'$ such that $u \cong f_m^* x'$. But this claim only depends on the homotopy class of f_{m-1} , and by adjunction and standard cellular approximation theorem, we may therefore assume that f_{m-1} factors through $X \subset X'$. Then the claim follows by assumption if m < n and by construction if m = n.

For (ii), let $X_{-1} = X$, $x_{-1} = x$, use (i) and induction to construct a collection of I-complexes X_n , objects $x_n \in \mathcal{C}_{X_n}$, maps $X_{n-1} \to X_n$ in I CW, and isomorphisms $x_n|_{X_{n-1}} \cong x_{n-1}$ such that x_n is n-universal for any $n \geq 0$, let $X' = \operatorname{colim} X_n$, and use Lemma 6.2.4.8 to obtain $x \in \mathcal{C}_{X'}$ that restricts to x_n on each X_n . Then since the spheres are compact, for any $i \in I$ and $m \geq 0$, any map $f: S_i^{m-1} \to X'$ factors through X_n for some n, and increasing n if necessary, we may assume that $x_n \cong x'|_{X_n}$ is m-universal. Therefore x' is liftable with respect to the embedding $S_i^{m-1} \to D_i^m$, thus universal.

Lemma 6.3.1.5. Assume given two I-CW complexes $X, X' \in I$ CW, universal objects $x \in C_X$, $x' \in C_{X'}$, and a map $e : X \to X'$ such that $e^*(x') \cong x$. Then e is a weak equivalence.

Proof. By the definition of the model structure on Fun(I, Top), it suffices to prove that *e* becomes a weak equivalence after evaluation at any object $i \in I$, so that we may assume that I = pt and X, X' are usual CW complexes. For any $n \ge 0$, the liftability of x with respect to the embedding $S^{n-1} \subset D^n$ shows that any map $f: S^{n-1} \to X$ such that $e \circ f$ extends to D^n itself extends to D^n ; this shows that $\pi_n(X, o) \to \pi_n(X', e(o))$ is injective for any choice of a distinguished point $o \in X$. To prove that $\pi_0(X) \to \pi_0(X')$ is surjective, take a map $f : \mathsf{pt} \to X'$, and note that by the universality of x, $f^*x' \cong g^*x$ for some map $g: pt \to X$. Then by the universality of x', the map $f \sqcup (e \circ g) : S^0 = \mathsf{pt} \sqcup \mathsf{pt} \to X'$ extends to D^1 , so that f is homotopic to $e \circ g$. Finally, to prove that $\pi_n(X, o) \to \pi_n(X', e(o))$ is surjective for some $n \ge 1$ and $o \in X$, note that by Lemma 6.2.5.2 (i), x and x' are also liftable with respect to the embedding $S^n \sqcup S^n \to S^n \times D^1$ and the embedding pt $\rightarrow S^n$ onto a distinguished point $o \in S^n$. Then for any pointed map $f: \langle S^n, o \rangle \to \langle X', e(o) \rangle$, there exists a pointed map $g: \langle S^n, o \rangle \to \langle X, o \rangle$ such that $f^*x' \cong g^*x$, and then the map $f \sqcup e \circ g : S^n \sqcup S^n \to X'$ extends to $S^n \times D^1$, so that f is homotopic to $e \circ g$.

Proof of Theorem 6.3.1.2. Since C is additive, C_{\emptyset} consists of a single object, and using Lemma 6.3.1.4, we can start from this object and construct a universal object $x \in C_X$ over some $X \in I$ CW. Therefore universal objects exist. They are unique by Lemma 6.3.1.5, so by Proposition 6.2.5.3, it suffices to prove that for

any $X \in ICW$, a universal object $x \in C_X$ is liftable with respect to any map $e: Y \to Y'$ in ICW.

Indeed, assume given such a map, an object $y \in \mathcal{C}_{Y'}$, a map $f: Y \to X'$ and an isomorphism $f^*x' \cong e^*y$. Then by (6.2.1.1), we can construct an object $y' \in \mathcal{C}_{Y' \sqcup_Y X}$ that restricts to y resp. x on Y' resp. X, and then again by Lemma 6.3.1.4, we can construct a map $g: Y' \sqcup_Y X \to X'$ in I CW, a universal object $x' \in \mathcal{C}_{X'}$, and an isomorphism $g^*x' \cong y'$. Then the map $h: X \to X'$ is in C, and since $h^*x' \cong x$, it is also in W by Lemma 6.3.1.5. Since X is fibrant, we have a map $p: X' \to X$ such that $p \circ h = \operatorname{id}$, and then p^* is an equivalence, so that $x \cong h^*x'$ implies $x' \cong p^*x$. This exactly means that x is liftable with respect to e.

6.3.2. Simplicial sets. Consider now the category Δ^o Sets of simplicial sets, also equipped with the standard model structure of [Q]: C is the class of all injective maps, F is the class of all Kan fibrations. This completely defines the model structure; however, it is also known that $F \cap W$ consists of trivial Kan fibrations. It immediately follows from the definitions that $C \cap W$ contains all the horn embeddings (4.1.3.3), and is stable under coproducts, pushouts and countable compositions.

Apart from its mere existence — that is rather non-trivial, but can be used a black box — we will need two general results on the model structure on Δ^o Sets concerning the size of things. As in Example 2.2.5.6, for any regular cardinal κ , let Sets $_\kappa$ \subset Sets be the category of sets S such that $|S| < \kappa$, and let Δ^o Sets $_\kappa$ \subset Δ^o Sets be the full subcategory spanned by simplicial sets $X:\Delta^o \to S$ ets that take values in Sets $_\kappa$ \subset Sets. Recall that as in Example 2.2.5.15, Sets $_\kappa$ and Δ^o Sets $_\kappa$ are κ -cocomplete and κ' -complete for any infinite cardinal $\kappa' \ll \kappa$.

Lemma 6.3.2.1. For any uncountable regular cardinal κ , the full subcategory $\Delta^o \operatorname{Sets}_{\kappa} \subset \Delta^o \operatorname{Sets}$ is a model subcategory.

Proof. Say that a map f in Δ^o Sets_{κ} lies in C, W, F iff it does so as a map in Δ^o Sets. To check that this defines a model structure, we have to check that the factorizations of maps in Δ^o Sets_{κ} can be chosen so that they also lie in Δ^o Sets_{κ}. To see that this is the case, let us recall the standard construction of these factorizations. Assume given such a map $f: X \to Y$, treat it as an object in the arrow category $\operatorname{ar}(\Delta^o\operatorname{Sets}_{\kappa})$, and note that for any $n \ge k \ge 0$, with the corresponding horn embedding $v_n^k \in \operatorname{ar}(\Delta^o\operatorname{Sets}_{\kappa})$ of (4.1.3.3), the set $S(f)_n^k$ of maps $v_n^k \to f$ in the arrow category satisfies $|S(f)_n^k| < \kappa$. Since κ is uncountable, the same holds for the disjoint union $\sqcup_{n,k} S(f)_n^k$. Define $X_1 \in \Delta^o\operatorname{Sets}_{\kappa}$ by the

pushout square

$$(6.3.2.1) \qquad \qquad \coprod_{n \geq k \geq 0} S(f)_n^k \times \mathsf{V}_n^k \xrightarrow{\sqcup \operatorname{id} \times v_n^k} \coprod_{n \geq k \geq 0} S(f)(n,k) \times \Delta_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{a_0} X_1,$$

with the natural map $f_1: X_1 \to Y$ such that $f = f_1 \circ a_0$, and iterate the construction using $f_n: X_n \to Y$ at step n to obtain a system of simplicial sets $X_n \in \Delta^o \operatorname{Sets}_{\kappa}$, $n \geq 1$ and maps $a_n: X_n \to X_{n+1}$, $f_{n+1}: X_n \to Y$ such that $f_n = f_{n+1} \circ a_n$, and a_n is a pushout of a coproduct of horn embeddings. Then $X_{\infty} = \operatorname{colim}_n X_n$ also lies in $\Delta^o \operatorname{Sets}_{\kappa}$, and we have a factorization

$$(6.3.2.2) X \xrightarrow{a_{\infty}} X_{\infty} \xrightarrow{f_{\infty}} Y$$

of the map f, where a_{∞} is the countable composition of the maps a_n . By Quillen's small object argument, since V_n^k is a compact object in Δ^o Sets_{κ} for any $n \geq k \geq 0$, f_{∞} has a lifting property with respect to all horn embeddings, thus lies in F, and a_{∞} lies in $C \cap W$. This provides one of the factorizations for f, and the other one is obtained in the same way with horns replaced by spheres. \square

Remark 6.3.2.2. The square (6.3.2.1) is the motivating example for the extension construction of Subsection 6.1.3, where it appears as (6.1.3.1).

For our second general result, recall that a simplicial set X is *contractible* if the projection $X \to \operatorname{pt}$ is a trivial Kan fibration, and say that a map $f: X \to Y$ between simplicial sets is *homotopy trivial* if the induced map $h(f): h(X) \to h(Y)$ in the localization $h^W(\Delta^o\operatorname{Sets})$ factors through pt . For any simplicial set Y and regular cardinal κ , let $I_{\kappa}(Y)$ be the set of simplicial subsets $X \subset Y$ such that $X \in \Delta^o\operatorname{Sets}_{\kappa}$, and is finite if κ is the countable cardinal.

Lemma 6.3.2.3. Assume given a contractible simplicial set Y and a subset $X \in I_{\kappa}(Y)$. Then there exists $X' \in I_{\kappa}(Y)$ containing X such that the embedding map $X \to X'$ is homotopy trivial. Moreover, if X = N(J) and Y = N(I) are nerves of partially ordered sets, one can also choose X' = N(J'), for a subset $J' \subset I$.

Proof. It is convenient to fix a point $x \in X([0]) \subset Y([0])$. We have the geometric realization functor $R: \Delta^o$ Sets \to Top, and to insure that the embedding map $f: X \to X'$ is homotopy trivial, it suffices to find a homotopy h between R(f) and the map $R(X) \to \operatorname{pt} \cong \{x\} \subset R(X')$. Explicitly, let D^1 be the unit interval, and for any topological space Z, let $C(Z) = (Z \times D^1) \sqcup_{Z \times \{1\}} \operatorname{pt}$ be the cone

over Z, with the vertex $o \in C(Z)$ given by the image of $Z \times \{1\}$; then we need a map $h : C(R(X)) \to R(X')$ sending o to x. The category Δ is a cellular Reedy category in the sense of Definition 4.3.1.7, so for any $n \geq 0$, we have the n-th skeleton $\operatorname{sk}_n X \subset X$ of (4.3.2.3), and the tautological map $\operatorname{sk}_{-1} X = \emptyset \to X$ is the countable composition

$$(6.3.2.3) X \cong \operatorname{colim}_n \operatorname{sk}_n X$$

of the embeddings $\mathrm{sk}_n X \to \mathrm{sk}_{n+1} X$ of (4.3.2.7). Assume by induction on n that we already have $X'_{n-1} \in I_\kappa(Y)$ containing X and a homotopy $h_{n-1}: C(R(\mathrm{sk}_{n-1}(X))) \to R(X'_{n-1})$. Then R commutes with colimits, and by (4.3.2.7), $R(\mathrm{sk}_n X) \sqcup_{R(\mathrm{sk}_{n-1}(X))} C(R(\mathrm{sk}_{n-1}(X)))$ is homotopy equivalent to a bouquet of spheres S^n indexed by the set $X_n \subset X([n])$ of non-degenerate n-simplices in X. Thus effectively, we have a bunch of elements $\alpha_s \in \pi_n(R(X'), x)$, $s \in X_n$ in the n-th homotopy group of R(X'). Now let $I_n \in I_\kappa(Y)$ be the subset of $X' \subset Y$ containing X'_{n-1} , and order it by inclusion. Then I_n is filtered, $Y \cong \mathrm{colim}_{X' \in I_n} X'$, R preserves colimits, and since spheres are compact, $\pi_n(-,x)$ commutes with filtered colimits. Therefore for each $s \in X_n$, α_s becomes trivial in $\pi_n(X',x)$ for some $X'_s \in I_n$, and since κ is regular, the union $X'_n = \bigcup_s X'_s \subset Y$ is still in I_n . The map $R(\mathrm{sk}_n X) \sqcup_{R(\mathrm{sk}_{n-1}(X))} C(R(\mathrm{sk}_{n-1}(X))) \to R(X'_n)$ is then homotopy trivial, so we can extend h_{n-1} to a continuous map $h_n : C(R(\mathrm{sk}_n X)) \to R(X'_n)$.

If X is finite, $X = \operatorname{sk}_n X$ for some n, and we can take $X' = X'_n$ and finish the proof. If κ is uncountable, take $X' = \bigcup_n X'$. Finally, if X = N(J), Y = N(I), that at each step in the construction, we can restrict our attention to subsets $X' \subset Y$ of the form N(J'); then the subset $I'_n \subset I_n$ these form is still filtered, and $Y = \operatorname{colim}_{X' \in I'_n} X'$, so the the same argument works.

Example 6.3.2.4. Take a partially ordered set I with contractible nerve N(I). Then Lemma 6.3.2.3 for the two-element discrete set $J = \{0,1\}$ says that any two elements $i_0, i_1 \in I$ can be connected by a finite zigzag of maps in I — that is, I is connected as a category.

Remark 6.3.2.5. Instead of using geometric realizations in the proof of Lemma 6.3.2.3, one can notice that X_{∞} of (6.3.2.2) is actually functorial in X, thus gives a functorial fibrant replacement in Δ^o Sets that commutes with filtered colimits, and use homotopies between maps to these fibrant replacements. In any case, as Example 6.3.2.4 shows, any proof would involve some sort of inexplicit and non-constructive procedure: the size of a zigzag in Example 6.3.2.4 is impossible to control.

The geometric realization functor $R:\Delta^o\operatorname{Sets}\to\operatorname{Top}$ that we have used in Lemma 6.3.2.3 is left-adjoint to functor $S:\operatorname{Top}\to\Delta^o\operatorname{Sets}$ sending a topological space to its singular simplicial set, both functors send weak equivalences to weak equivalences, and the adjunction maps id $\to S\circ R$, $S\circ R\to\operatorname{id}$ are pointwise weak equivalences. Therefore by Lemma 5.1.2.4, families of groupoids over $\langle \Delta^o\operatorname{Sets},W\rangle$ and $\langle\operatorname{Top},W\rangle$ are naturally identified, and Theorem 6.3.1.2 for $I=\operatorname{pt}$ immediately implies a corresponding statement for families over $\Delta^o\operatorname{Sets}$. However, one can also give an alternative proof that gives the following slightly more precise result.

Definition 6.3.2.6. For any uncountable regular cardinal κ , a family of groupoids \mathcal{C} over Δ^o Sets or Δ^o Sets_{κ} is κ -bounded iff $\|\mathcal{C}_X\| < \kappa$ for any finite $X \in \Delta^o$ Sets_{κ} $\subset \Delta^o$ Sets_{κ}.

Theorem 6.3.2.7. Assume given an uncountable regular cardinal κ and a κ -bounded family \mathcal{C} of groupoids over $\langle \Delta^o \operatorname{Sets}_{\kappa}, W \rangle$ such that \mathcal{C} is semiexact in the sense of Definition 6.2.1.1 and additive in the sense of Definition 6.2.1.2. Then there exists a simplicial set $X \in \Delta^o \operatorname{Sets}_{\kappa}$ and an equivalence $e : \mathcal{H}(X) \cong \mathcal{C}$, so that \mathcal{C} extends to a κ -bounded additive semiexact family of groupoids over $\langle \Delta^o \operatorname{Sets}, W \rangle$. The simplicial set X is unique up to a unique isomorphism in $h^W(\Delta^o \operatorname{Sets})$. Moreover, for any two κ -bounded additive semiexact families of groupoids \mathcal{C}_0 , \mathcal{C}_1 over $\langle \Delta^o \operatorname{Sets}, W \rangle$, a functor between their restrictions to $\Delta^o \operatorname{Sets}_{\kappa}$ extends to a functor $\gamma : \mathcal{C}_0 \to \mathcal{C}_1$ over the whole $\Delta^o \operatorname{Sets}_{\kappa}$ and for any two such functors γ_0 , $\gamma_1 : \mathcal{C}_0 \to \mathcal{C}_1$, an isomorphism between their restrictions to $\Delta^o \operatorname{Sets}_{\kappa}$ uniquely extends to an isomorphism $\gamma_0 \cong \gamma_1$.

Remark 6.3.2.8. Any small family of groupoids $C \to \Delta^o$ Sets is obviously κ -bounded for a large enough κ , thus falls within the scope of Theorem 6.3.2.7.

Just as for Theorem 6.3.1.2, our proof of Theorem 6.3.2.7 depends on the representability criterion of Proposition 6.2.5.3, and it will be useful to do the main construction in larger generality. Namely, assume given a general cellular Reedy category I in the sense of Definition 4.3.1.7, and consider the category I^o Sets. It has all colimits, and we can turn it into a C-category in the sense of Definition 6.1.1.1 by letting C be the class of injective maps. For any $X \in I^o$ Sets, we still have the skeleton filtration, and the tautological map $\mathrm{sk}_{-1} X = \varnothing \to X$ decomposes into the countable composition (6.3.2.3). Let I_f^o Sets $\subset I^o$ Sets be the full subcategory spanned by objects that are finite-dimensional in the sense of Definition 4.3.2.8 (that is, $X \cong \mathrm{sk}_n X$ for some n), and note that I_f^o Sets inherits a C-category structure. Generalizing Definition 6.3.2.6, say that $X \in I^o$ Sets is finite if $X \in I_f^o$ Sets and X(i) is finite for any $i \in I$, and say that a family of

groupoids C over I^o Sets is κ -bounded if $\|C_X\| < \kappa$ for any finite $X \in I^o$ Sets. With this terminology, here is our main liftability result.

Proposition 6.3.2.9. Assume given a cellular Reedy category I and a small family of groupoids C over the C-category I^o Sets such that

- (i) over I_f^0 Sets $\subset I^0$ Sets, C is additive in the sense of Definition 6.2.1.2 and strongly semiexact in the sense of Definition 6.2.4.3, and
- (ii) for any $X \in I^0$ Sets, C is semicontinuous over the countable composition (6.3.2.3) in the sense of Definition 6.2.4.5.

Then there exists $X \in I^o$ Sets and an object $c \in C_X$ that is liftable in the sense of of Definition 6.2.5.1 with respect to all the i-sphere embeddings (4.3.2.5). Moreover, if C is κ -bounded for some regular cardinal κ , and I is Hom-finite, then one can choose X in I^o Sets $_\kappa$, and it only depends on the restriction of C to I^o Sets $_\kappa$.

We postpone the proof of Proposition 6.3.2.9 until Subsection 6.3.3. For now, we just note that while it implies Theorem 6.3.2.7 almost immediately, in fact it gives more. Indeed, by Lemma 4.3.1.8, for any cellular Reedy category I, the product $I \times \Delta$ is a cellular Reedy category, thus lies within scope of Proposition 6.3.2.9. Let us define I-simplicial sets as functors $I^o \to \Delta^o$ Sets. Then the category $I^o\Delta^o$ Sets \cong Fun(I^o, Δ^o Sets) they form carries a Reedy model structure induced by the Kan-Quilled model structure on Δ^o Sets. Moreover, if I is Reedy- κ -bounded in the sense of Definition 4.3.1.3 for some uncountable regular cardinal κ , then category $I^o\Delta^o$ Sets $_\kappa$ also carries a Reedy model structure by Lemma 6.3.2.1. In fact, these Reedy model structures have a description very similar to the Kan-Quillen model structure. Namely, for any functor $X:I^o\to S$ ets and simplicial set $Y:\Delta^o\to S$ ets, denote by $X\boxtimes Y:I^o\times\Delta^o\to S$ ets the I-simplicial set given by $X\boxtimes Y(i\times [n])=X(i)\times Y([n])$. For any object $i\in I$ and integer $n\geq 0$, let $\Delta_{i,n}\in I^o\Delta^o$ Sets be the functor represented by $i\times [n]\in I\times \Delta$, and for any $i\in I$, $n\geq k\geq 0$, let

(6.3.2.4)
$$S_{i,n} = (\Delta_i \boxtimes S_{n-1}) \sqcup_{S_i \boxtimes S_{n-1}} (S_i \boxtimes \Delta_n) \subset \Delta_{i,n} = \Delta_i \boxtimes \Delta_n, \\ V_{i,n}^k = (\Delta_i \boxtimes V_n^k) \sqcup_{S_i \boxtimes V_n^k} (S_i \boxtimes \Delta_n) \subset \Delta_{i,n} = \Delta_i \boxtimes \Delta_n,$$

where S_i and Δ_i are as in (4.3.2.5), and V_n^k , S_{n-1} are as in (4.1.3.3), (4.1.1.15). We then have the natural injective maps

$$(6.3.2.5) \sigma_{i,n}: \mathsf{S}_{i,n} \hookrightarrow \Delta_{i,n}$$

and

$$(6.3.2.6) v_{i,n}^k: \mathsf{V}_{i,n}^k \hookrightarrow \Delta_{i,n}.$$

Note that in terms of the cellular Reedy structure on $I \times \Delta$ and the sphere embeddings (4.3.2.5), we have $\Delta_{i,n} = \Delta_{i \times [n]}$, $S_{i,n} = S_{i \times [n]}$, $\sigma_{i,n} = \sigma_{i \times [n]}$, and (6.3.2.5) is exactly (4.3.2.5), while (6.3.2.6) is new.

Lemma 6.3.2.10. A map f in the category $I^{\circ}\Delta^{\circ}$ Sets is the class in F resp. $F \cap W$ iff it it has the right lifting property with respect to the horn embeddings (6.3.2.6) resp. sphere embeddings (6.3.2.5), and it is in C iff it is injective. The same is true for the full subcategory $I^{\circ}\Delta^{\circ}$ Sets_{κ} $\subset I^{\circ}\Delta^{\circ}$ Sets for any uncountable regular cardinal κ such that I is Reedy- κ -bounded.

Proof. For any cocomplete model category \mathcal{C} , cellular Reedy category I, object $i \in I$ and functor $X : I^o \to \mathcal{C}$, we have $\operatorname{Hom}(\Delta_i, X) \cong X(i)$ and, as we mentioned already in Subsection 5.3.3, (4.3.2.6) immediately implies that $\operatorname{Hom}(S_i, X) \cong M(X, i)$, so that a map $f : X \to Y$ in $I^o\mathcal{C}$ is in F resp. $F \cap W$ with respect to the Reedy structure if and only if the natural map

$$X(i) \to Y(i) \times_{\operatorname{Hom}(S_i,Y)} \operatorname{Hom}(S_i,X)$$

is in F resp. $F \cap W$ for any $i \in I$. Taking $C = \Delta^o$ Sets and plugging in (6.3.2.4), we obtain the claim about $F \cap W$ and F. For the last claim, note that exactly the same argument as in Lemma 6.3.2.1 provides a factorization (6.3.2.2) of a map f such that b is in $F \cap W$, and a is a countable composition of pushouts of coproducts of the embeddings (6.3.2.5). Then a is in C, and if f is in C, it is a retract of the map a. By (6.3.2.3) and (4.3.2.7), the latter holds iff f is injective. \Box

Corollary 6.3.2.11. For any non-negative integer $n \geq 0$, the n-th skeleton functor $sk_n^I: I^o\Delta^o \operatorname{Sets} \to I^o\Delta^o \operatorname{Sets}$ taken with respect to I sends maps in W to maps in W, and the same holds for $I^o\Delta^o \operatorname{Sets}_\kappa \subset I^o\Delta^o \operatorname{Sets}$ for any uncountable regular cardinal κ such that I is Reedy- κ -bounded.

Proof. Since all objects in $I^o\Delta^o$ Sets or $I^o\Delta^o$ Sets_{κ} are cofibrant, the same argument as in Lemma 6.2.4.2 shows that it suffices to check that sk_n^I sends maps in $C\cap W$ to maps in $C\cap W$. By (4.3.2.3) and adjunction, this amounts to checking that ε_n^* preserves $C\cap W$ and F, and this is immediately obvious from the definition of the Reedy model structure.

Example 6.3.2.12. One immediately corollary of Lemma 6.3.2.10 is that for any functor $\gamma: I_0 \to I_1$ between cellular Reedy categories, the pullback functor $\gamma^*: I_1^o \Delta^o \operatorname{Sets} \to I_0^* \Delta^o \operatorname{Sets}$ sends maps in C resp. W to maps in C resp. W. Thus it descends to a functor $h^W(I_1^o \Delta^o \operatorname{Sets}) \to h^W(I_0^o \Delta^o \operatorname{Sets})$, and this functor has a right-adjoint provided by the Quillen Adjunction Theorem 5.3.1.1. For any Reedy cellular $I_0 = I$ and $I_1 = \operatorname{pt}$, this is the homotopy limit functor

(6.3.2.7)
$$\operatorname{holim}_{I^o}: h^W(I^o \Delta^o \operatorname{Sets}) \to h^W(\Delta^o \operatorname{Sets})$$

right-adjoint to the tautological functor $h^W(\Delta^o \operatorname{Sets}) \to h^W(I^o \Delta^o \operatorname{Sets})$.

Theorem 6.3.2.13. Assume given an uncountable regular cardinal κ and a Homfinite Reedy- κ -bounded cellular Reedy category I. Then for any κ -bounded family C of groupoids over $\langle I^o \Delta^o \operatorname{Sets}_{\kappa}, W \rangle$ that is semiexact in the sense of Definition 6.2.1.1 and additive in the sense of Definition 6.2.1.2, there exists an I-simplicial set $X \in I^o \Delta^o \operatorname{Sets}_{\kappa}$ equipped with an equivalence $\mathcal{H}(X) \cong C$, so that C extends to a κ -bounded additive semiexact family of groupoids over $\langle I^o \Delta^o \operatorname{Sets}, W \rangle$. The set X is unique up to a unique isomorphism in $h^W(I^o \Delta^o \operatorname{Sets})$. Moreover, for any two κ -bounded additive semiexact families of groupoids C_0 , C_1 over $\langle I^o \Delta^o \operatorname{Sets}, W \rangle$, a functor between their restrictions to $I^o \Delta^o \operatorname{Sets}_{\kappa}$ extends to a functor $\gamma : C_0 \to C_1$ over $I^o \Delta^o \operatorname{Sets}$, and for any two such functors $\gamma_0, \gamma_1 : C_0 \to C_1$, an isomorphism between their restrictions to $\Delta^o \operatorname{Sets}_{\kappa}$ uniquely extends to an isomorphism $\gamma_0 \cong \gamma_1$.

Remark 6.3.2.14. As in Remark 6.3.2.8, for any cellular Reedy category I, any additive semiexact small family of groupoids over $\langle I^o \Delta^o \text{ Sets}, W \rangle$ falls within the scope of Theorem 6.3.2.13 for a large enough κ .

Proof of Theorem 6.3.2.7 and Theorem 6.3.2.13. Note that by (6.3.2.3) and (4.3.2.7), every injective map in I^o Sets for any cellular Reedy category I is a countable composition of pushouts of i-sphere embeddings (4.3.2.5). Then take $I = \Delta$ for Theorem 6.3.2.7, or $I = I \times \Delta$ for Theorem 6.3.2.13, and combine Proposition 6.3.2.9, Proposition 6.2.5.3, Lemma 6.2.5.2, Lemma 6.2.4.8 and Lemma 6.2.4.4.

6.3.3. Liftability. Our proof of Proposition 6.3.2.9 works by induction on skeleta of (6.3.2.3), and we start by a general liftablity result needed for the induction step. Assume given two families of groupoids $\pi: \mathcal{C} \to I$, $\pi': \mathcal{C}' \to I$ over a category I, and a functor $\gamma: \mathcal{C} \to \mathcal{C}'$ over I. For any object $c' \in \mathcal{C}'$, we then have a family of groupoids $\mathcal{C}/\gamma c' \to I/i$, where $i = \pi'(c') \in I$, and it fits

into a cartesian square

(6.3.3.1)
$$\begin{array}{ccc}
\mathcal{C}/_{\gamma}c' & \longrightarrow & \sigma(i)^{*}\mathcal{C} \\
\downarrow & & \downarrow \sigma(i)^{*}(\gamma) \\
I/i & \xrightarrow{s(c')} & \sigma(i)^{*}\mathcal{C}',
\end{array}$$

where $\sigma(i): I/i \to I$ is the discrete fibration (2.1.2.3), and s(c') is the tautological section sending $f: i' \to i$ to $f^*c' \to c'$.

Lemma 6.3.3.1. In the assumptions above, assume given an object $c \in C$ such that $\gamma(c) \in C'$ is liftable with respect to a map f in I, and the tautological object $\langle c, id \rangle \in C/_{\gamma}\gamma(c)$ is liftable with respect to any map g in $I/\pi(c)$ such that $\sigma(g) = f$. Then c is liftable with respect to f.

Proof. Straightforward diagram chasing.

Now as in Proposition 6.3.2.9, assume given a cellular Reedy category I, and for any $n \ge 0$, let $C_n = C \cap \operatorname{sk}_n^*(\star)$ be the class of injective maps f in I^o Sets such that $\operatorname{sk}_n(f)$ is invertible. Then $\langle I^o \operatorname{Sets}, C_n \rangle$ is a C-category in the sense of Definition 6.1.1.1.

Lemma 6.3.3.2. Assume given a small family of groupoids C over the C-category $\langle I^o \operatorname{Sets}, C_n \rangle$ that is additive and strongly semiexact with respect to the C-category structure given by C_{n-1} , and assume that $\operatorname{sk}_{n-1}^* C$ is constant. Then there exists a functor $X \in I^o \operatorname{Sets}$ such that $X(i) = \operatorname{pt}$ whenever $\operatorname{deg} i < n$, and an object $c \in C_X$ liftable with respect to all sphere embeddings (4.3.2.5). Moreover, if I is Hom -finite, and C is κ -bounded for some regular cardinal κ , then X can be chosen in $I^o \operatorname{Sets}_{\kappa} \subset I^o \operatorname{Sets}_{\kappa}$, and it only depends on the restriction of C to $I^o \operatorname{Sets}_{\kappa}$.

Proof. Let Y : $I o I^o$ Sets be the Yoneda embedding, and take the decomposition (2.3.4.1) for the family of groupoids Y*C o I. Then $\pi_0(Y^*C|I) \cong IX$ for some $X \in I^o$ Sets. If I is Hom-finite, then Δ_i , hence also $S_i \subset \Delta_i$ is finite for any $i \in I$, and if C is κ -bounded, then $|X(i)| < \kappa$. Since C is additive, $C_{\varnothing} = \operatorname{pt}$, and since $\operatorname{sk}_{n-1}^* C$ is constant, $C_Y \cong \operatorname{pt}$ for any Y of dimension $\dim Y < n$. In particular, $X(i) = \operatorname{pt}$ for any i with $\deg i < n$. Moreover, the embedding $\operatorname{sk}_n X \to X$ is in C_n , so $C_{\operatorname{sk}_n X} \cong C_X$, and all the horizontal maps in (4.3.2.7) are in C_{n-1} , so C is by assumption semiexact along this square. Then (4.3.2.7) and (2.3.4.1) give epivalences

(6.3.3.2)
$$\mathcal{C}_X \cong \mathcal{C}_{\operatorname{sk}_n X} \to \prod_{i \in \mathsf{M}(IX)_n} \mathsf{Y}^* \mathcal{C}_{\pi(i)} \to \prod_{i \in \mathsf{M}(IX)_n} X(\pi(i)),$$

where $\pi: IX \to I$ is the projection. By definition, an object $i \in IX$ is of the form $\langle \pi(i), x(i) \rangle$, $\pi(i) \in I$, $x(i) \in X(\pi(i))$, so the discrete groupoid in the right-hand side of (6.3.3.2) has a tautological object $\prod x(i)$, and we can choose an object $c \in \mathcal{C}_X$ that is sent to $\prod x(i)$ by the epivalence (6.3.3.2). We claim that c is liftable with respect to all embeddings (4.3.2.5).

Indeed, assume given an embedding (4.3.2.5), an object $c' \in \mathcal{C}_{\Delta_i} \cong \mathsf{Y}^*\mathcal{C}_i$, and a map $a:\sigma_i^*c' \to c$. Let $\pi_{\mathcal{C}}:\mathcal{C} \to I^o$ Sets be the projection. Then by the construction of X, there exists a unique map $f:\Delta_i \to X$ such that $f^*c \cong c'$, we have $f \circ \sigma_i = \pi_{\mathcal{C}}(a)$ by virtue of this uniqueness, so that $a:\sigma_i^*c' \to c$ factors as

(6.3.3.3)
$$\sigma_i^* c' \xrightarrow{\alpha} \sigma_i^* f^* c \cong \pi_{\mathcal{C}}(a)^* c \to c$$

for some isomorphism α in C_{S_i} , and we need to show that $\alpha = \sigma_i^*(\beta)$ for some isomorphism $\beta : c' \cong f^*c$ in C_{Δ_i} . But $\deg i \leq n$, then $C_{S_i} \cong \operatorname{pt}$ is discrete, so any β will do, and if $\deg i > n$, then σ_i is in C_n , so σ_i^* is an equivalence. \square

Remark 6.3.3.3. While there is no uniqueness claim in Lemma 6.3.3.2, the construction is pretty canonical: X is uniquely defined by C, and $c \in C_X$ is unique up to a non-unique isomorphism.

Now for any family of groupoids $\mathcal C$ over I^o Sets and integer $n \geq -1$, let $\mathcal C^{\leq n} = \operatorname{sk}_n^* \mathcal C$. The functorial maps $\operatorname{sk}_{n-1} \to \operatorname{sk}_n$ of (4.3.2.7) induce functors $q: \mathcal C^{\leq n} \to \mathcal C^{n-1}$, so that effectively, we have a family of groupoids $\mathcal C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \to \mathbb N^o \times I^o$ Sets whose restriction to $n \times I^o$ Sets is $\mathcal C^{\leq n}$, and we have $\mathcal C \cong p_*\mathcal C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$, where $p: \mathbb N^o \times I^o$ Sets $\to I^o$ Sets is the projection. If $\mathcal C$ is additive, then $\mathcal C_\varnothing = \operatorname{pt}$, so that $\mathcal C^{\leq -1}$ is the trivial family I^o Sets $\to I^o$ Sets.

Lemma 6.3.3.4. Assume given a small family of groupoids $C \to I^o$ Sets that satisfies the assumption (i) of Proposition 6.3.2.9. For some $n \ge 0$, assume given a functor $X: I^o \to \text{Sets}$ and an object $c \in C_X^{\le n-1}$ liftable with respect to all the embeddings (4.3.2.5). Then there exists $X' \in I^o$ Sets, a map $r: X' \to X$, and an object $c' \in C_{X'}^{\le n}$ equipped with an isomorphism $a: q(c') \cong r^*c$ such that c' is liftable with respect to all the embeddings (4.3.2.5), and $\text{sk}_{n-1}(r): \text{sk}_{n-1} X' \to \text{sk}_{n-1} X$ is an isomorphism. Moreover, if C is κ -bounded for some regular cardinal κ , then $|r^{-1}(x)| < \kappa$ for any $i \in I$ and element $x \in X(i)$.

Proof. Identify $(IX)^o$ Sets $\cong I^o$ Sets /X as (2.3.3.3), and consider the family of groupoids $\mathcal{C}' = \mathcal{C}^{\leq n}/_q c \to (IX)^o$ Sets. By Lemma 6.3.3.1, to lift c to a liftable object in $\mathcal{C}^{\leq n}$, it suffices to construct a liftable object in \mathcal{C}' , and by Lemma 4.3.1.8, IX is a cellular Reedy category, so it suffices to check that \mathcal{C}' satisfies the

assumption of Lemma 6.3.3.2. Indeed, by definition, $C^{\leq n}$ and $C^{\leq n-1}$ are both constant along C_n , and $\mathrm{sk}_{n-1}^*(q)$ is an equivalence, so by (6.3.3.3) C' is constant along C_n and sk_{n-1}^*C' is constant. Moreover, again by definition, $C^{\leq n-1}$ is constant along C_{n-1} , so it is not only strongly semiexact but actually strongly exact with respect to the C-category structure defined by C_{n-1} . Therefore (6.3.3.3) also implies that C' is additive and strongly semiexact.

Proof of Proposition 6.3.2.9. By induction on n, Lemma 6.3.3.4 provides a collection of functors $X_n: I^o \to \operatorname{Sets}$, maps $r: X_n \to X_{n-1}$ and liftable objects $c_n \in \mathcal{C}_{X_n}^{\leq n} \cong \mathcal{C}_{\operatorname{sk}_n X_n}$. Moreover, if we take $X = \lim_n X$, then the natural map $\operatorname{sk}_n X \to \operatorname{sk}_n X_n$ is an isomorphism, so c_n is an object in $\mathcal{C}_{\operatorname{sk}_n X}$. Isomorphisms a of Lemma 6.3.3.4 then turn the collection of objects $c_n, n \geq 0$, into an object in the target of the functor (6.2.1.4) for the countable composition (6.3.2.3). Since \mathcal{C} is semicontinuous over this countable composition by Proposition 6.3.2.9 (ii), there exists an object $c \in \mathcal{C}_X$ equipped with isomorphisms $c|_{\operatorname{sk}_n X} \cong c_n$. To check that c is liftable with respect to an embedding (4.3.2.5) for some $i \in I$ of degree $n = \deg i$, note that a map from Δ_i or S_i to X automatically factors through $\operatorname{sk}_n X$, and the liftability then follows from the liftability of c_n . Finally, if \mathcal{C} is κ -bounded, then again by Lemma 6.3.3.4 and induction, $|\operatorname{sk}_n X(i)| = |\operatorname{sk}_n X_n(i)| < \kappa$ for any $i \in I$ of degree $n = \deg i$, and then $|X(i)| < \kappa$ for any $i \in I$ of degree $n = \deg i$, and then $|X(i)| < \kappa$ for any $i \in I$.

Remark 6.3.3.5. For any cellular Reedy category I and small family of groupoids $\mathcal{C} \to I$, the family $Y_*\mathcal{C} \to I^o$ Sets trivially satisfies the assumptions of Proposition 6.3.2.9 – in effect, we have $Y_*\mathcal{C}_X \cong \operatorname{Sec}(IX, \pi^*\mathcal{C})$ by (2.4.3.4), so by Lemma 2.3.3.22, $Y_*\mathcal{C}$ is not only strongly semiexact but also strongly exact. However, even in this simple case the construction is somewhat non-trivial. In particular, if $I = \Delta$ and $\mathcal{C} = \operatorname{pt}_G \times \Delta$ is the constant family with fiber pt_G for some group G, then what our proof of Proposition 6.3.2.9 produces is X = BG, with the liftable object c given by the functor $\xi \times \pi : \Delta X = \Delta \operatorname{pt}_G \to \operatorname{pt}_G \times \Delta$, where ξ is as in (4.2.1.7). Another illuminating example is to take a functor $M: \Delta^o \to \operatorname{Ab}$ to abelian groups, and to consider the corresponding family $\mathcal{C} \to \Delta$ with fibers $\mathcal{C}_{[n]} = \operatorname{pt}_{M([n])}$. Then X is the underlying simplicial set of $BM: \Delta^o \to \operatorname{Ab}$, where, if M corresponds to a complex M, by the Dold-Kan equivalence, BM corresponds to its homological shift M.[1].

Remark 6.3.3.6. The proof of Theorem 6.3.1.2 given in Subsection 6.3.1 and the proof of Theorem 6.3.2.7 based on Proposition 6.3.2.9 are related by a sort of Eckman-Hilton duality: in Thereom 6.3.1.2, we construct the representing object X as the colimit of elementary cofibrations obtained by attaching cells, while

in Theorem 6.3.2.7, X appears as the limit of a tower of Kan fibrations. The second construction is more canonical, in that by Remark 6.3.3.3, it produces X uniquely up to a (non-unique) isomorphism, and any equivalence $C \cong C'$ between families is induced by a (non-canonical) isomorphism $X \cong X'$ between the representing objects. In fact, it is not difficult to see that while the maps $r: X_n \to X_{n-1}$ in the tower are not surjective, it can be corrected by replacing X_n with $Y_n = r(X_{n+1}) \subset X_n$, and Y_n is then the minimal Postnikov tower of the simplicial set X. Namely, $Y_0 = X_0$ is $\pi_0(X)$, the map $\pi_0(Y_n) \to Y_0$ is an isomorphism for any n, and if for some fixed $o \in \pi_0(X) \cong \pi_0(Y_n)$, we let $Y_n^o \subset Y_n$ be the corresponding connected component, then $Y_1^o \cong B\pi_1(Y,o)$, and $Y_n^o \to Y_{n-1}^o$, $n \ge 2$ is a torsor with respect to $B^n\pi_n(Y,o)$.

For an arbitrary small category I, one cannot expect a similar nice minimal Postnikov tower construction for objects in $I^o\Delta^o$ Sets – among other things, this would provide a canonical minimal projective resolution for any functor M from I^o to abelian groups, and this is clearly not possible without additional assumptions. The assumption we impose in Theorem 6.3.2.13 is that I is a cellular Reedy category.

6.3.4. Finite dimension. Now again, assume given a cellular Reedy category I, and consider the category $I_f^o \Delta_f^o$ Sets $= (I \times \Delta)_f^o$ Sets of I-simplicial sets that are finite-dimensional in the sense of Definition 4.3.2.8. For any regular cardinal κ , let $I_f^o \Delta_f^o$ Sets $_{\kappa} = I_f^o \Delta_f^o$ Sets $_{\kappa} \cap I^o \Delta^o$ Sets $_{\kappa} \subset I^o \Delta^o$ Sets, and denote by

$$(6.3.4.1) i: I_f^o \Delta_f^o \operatorname{Sets} \to I^o \Delta^o \operatorname{Sets}, i_{\kappa}: I_f^o \Delta_f^o \operatorname{Sets}_{\kappa} \to I^o \Delta^o \operatorname{Sets}_{\kappa}$$

the embedding functors.

Note that even if I=pt is the point, the category $I_f^o\Delta_f^o$ Sets is *not* a model category: when a finite-dimensional simplicial set X has an infinite number of nontrivial homotopy groups, its fibrant replacement cannot be finite-dimensional. Nevertheless, $I_f^o\Delta_f^o$ Sets has a CW-structure in the sense of Definition 6.1.1.1. In fact, it has several; the one that we will need is defined as follows.

Definition 6.3.4.1. The *class* C of maps in $I_f^o \Delta_f^o$ Sets or $I_f^o \Delta_f^o$ Sets_κ consists of all injective maps. The class W of *anodyne maps* is the smallest saturated class of maps in $I_f^o \Delta_f^o$ Sets that is closed under coproducts, contains the projections $\Delta_{i,n} \to \Delta_{i,0}$ for any $i \in I$, $[n] \in \Delta$, and is such that $C \cap W$ is closed under pushouts – that is, for any $f: X \to X'$ in $C \cap W$ and any map $X \to Y$, the map $f': Y \to Y' = Y \sqcup_X X'$ is in $C \cap W$. The class of κ-anodyne maps is the smallest class of maps in $I_f^o \Delta_f^o$ Sets_κ with the same properties.

Example 6.3.4.2. The class of all weak equivalences of *I*-simplicial sets obviously satisfies the conditions of Definition 6.3.4.1, so that all anodyne maps are weak equivalences, and the embedding functors (6.3.4.1) are CW-functors. The same hold for κ -anodyne maps for a large enough κ (namely, κ has to be uncountable, and *I* has to be Reedy- κ -bounded).

By abuse of notation, for any *I*-simplicial set *X* and simplicial set *Z*, denote by $X \times Z = X \times (\operatorname{pt} \boxtimes Z)$ the *I*-simplicial set given by

$$(X \times Z)(i \times [n]) = X(i \times [n]) \times Z([n]), \qquad i \in I, [n] \in \Delta.$$

Lemma 6.3.4.3. For any $i \in I$ and $n \ge l \ge 0$, the horn embedding $v_{i,n}^l$ of (6.3.2.6) is anodyne in the sense of Definition 6.3.4.1, and κ -anodyne for any regular cardinal κ such that $|L(I,i)| < \kappa$. Moreover, for any $m, n \ge 0$, the same is true for the embedding

$$(6.3.4.2) t_{i,n}^m : \mathsf{S}_{i,m,n} = (\mathsf{S}_{i,m} \times \Delta_n) \sqcup_{\mathsf{S}_{i,m}} \Delta_{i,m} \to \Delta_{i,m} \times \Delta_n,$$

where the embedding $S_{i,m} \to S_{i,m} \times \Delta_n$ is induced by $t : pt = \Delta_0 \to \Delta_m$.

Proof. For any $[n] \in \Delta$, the projection $[n] \to [0]$ has a section $t: [0] \to [n]$, and for any $i \in I$, this gives a section $t_i: \Delta_{i,0} \to \Delta_{i,n}$ of the projection $\Delta_{i,n} \to \Delta_{i,0}$. Since the class of W of anodyne maps is saturated, $t_{i,n}$ is in W, and it is injective. Moreover, it factors through the source $S_{i,0,n}$ of the embedding $t_{i,n}^0$ of (6.3.4.2), and the induced map $\Delta_{i,0} \to S_{i,0,n}$ is a composition of pushouts of coproducts of maps $t_{i',n}^0$ with $i' \in L(I,i)$. Since W is anodyne, $t_{i,n}^0 \in W$ by induction on deg i. Now assume for a moment that $I = \operatorname{pt}$, and drop i from notation. Then as in Lemma 5.3.3.3, $t_n^0 = t_n: \Delta_0 \to \Delta_n$ factors through the source V_n^l of the horn embedding (4.1.3.3), and the induced map $\Delta_0 \to V_n^l$ is a composition of pushouts of horn embeddings $v_{n'}^l$ with n' < n, so by induction on n, $v_n^l \in W$. Moreover, for any $m \ge 0$, the map t_n^m of (6.3.4.2) is a composition of pushouts of horn embeddings, so it is also anodyne.

Returning to the general case, note that for any $Z \in \Delta_f^o$ Sets, subsets $X' \subset \Delta_i \boxtimes Z$ that contain $S_i \boxtimes Z$ are in one-to-one correspondence with subsets $Z' \subset Z$, the embedding $t_{i,n}^m$ corresponds to the embedding t_n^m , and if $Z' \subset Z'' \subset Z$ is a pushout of coproducts of horn embeddings v_n^l of (4.1.3.3), then the corresponding embedding $X' \subset X''$ is a pushout of coproducts of horn embeddings $v_{i,n}^l$ of (6.3.2.6). Then exactly the same induction as for $I = \operatorname{pt}$ proves that $v_{i,n}^l$ and $t_{i,n}^m$ are anodyne as required. In the κ -anodyne case, repeat the same proof, and observe that since $|L(I,i)| < \kappa$, all the coproducts that occur exist in Sets $_\kappa$.

Corollary 6.3.4.4. For any $Y \in I_f^o \Delta_f^o$ Sets and any map $f : [n] \to [m]$ in Δ , the map $\operatorname{id}_Y \times f : Y \times \Delta_n \to Y \times \Delta_m$ is anodyne, and κ -anodyne if $Y \in I_f^o \Delta_f^o$ Sets $_\kappa$ and I is Reedy- κ -bounded.

Proof. Since W is saturated, it suffices to consider the maps $t : [0] \to [n]$, and then by (4.3.2.7), $id_Y \times t$ is a composition of pushouts of coproducts of the embeddings (6.3.4.2).

Corollary 6.3.4.5. The category $I_f^0 \Delta_f^o$ Sets with the classes C resp. W of injective resp. anodyne maps of Definition 6.3.4.1 is a CW-category in the sense of Definition 6.1.1.1, and for any regular cardinal κ such that I is Reedy- κ -bounded, so is $I_f^0 \Delta_f^0$ Sets $_{\kappa}$, with the classes C resp. W of injective resp. κ -anodyne maps.

Proof. Definition 6.1.1.1 (i) is a part of Definition 6.3.4.1. For (ii), note that as in (2.2.4.2), any map $f: X \to Y$ in $I_f^0 \Delta_f^0$ Sets admits a decomposition

$$(6.3.4.3) X \xrightarrow{c} C(f) \xrightarrow{w} Y,$$

where C(f) is defined by the cocartesian square (4.1.2.8). Then w has an injective one-sided inverse $t: Y \to C(f)$ that is a pushout of the embedding $t: X \to X \times \Delta_1$, thus anodyne by Corollary 6.3.4.4. Since W is saturated, $w \in W$, and then (6.3.4.3) works as (6.1.1.2) for the same reason as in Lemma 6.1.7.3.

We will call the CW-structure of Corollary 6.3.4.5 the *standard CW-structure* on $I_f^o \Delta_f^o$ Sets or $I_f^o \Delta_f^o$ Sets_{κ}. We note that it is distributive in the sense of Example 6.2.2.5, thus strong in the sense of Definition 6.2.2.2. To fix a perfect framing, it suffices to fix a decomposition (6.2.2.3), and if I = pt, the simplest one is that of Example 6.2.2.5 (ii), that is,

$$(6.3.4.4) pt \sqcup pt \xrightarrow{s \sqcup t} \Delta_1 \longrightarrow pt,$$

where Δ_1 is the standard 1-simplex. We denote $\overline{S}_1 = \Delta_1 \sqcup_{\mathsf{pt} \sqcup \mathsf{pt}} \Delta_1$ (equivalently, \overline{S}_1 is the 1-sphere S_1 with contracted edge $s(\Delta_1) \subset S_1 \subset \Delta_2$). If I is non-trivial, one has to pull back (6.3.4.4) and \overline{S}_1 to $I_f^o \Delta_f^o$ Sets via the projection $I^o \times \Delta^o \to \Delta^o$.

Lemma 6.3.4.6. Let \mathcal{I} be $I_f^o \Delta_f^o$ Sets or $I_f^o \Delta_f^o$ Sets_{κ}, with the standard CW-structure, and let \mathcal{C} be a semiexact additive family of groupoids over $\langle I, W \rangle$. Then \mathcal{C} is strongly semiexact in the sense of Definition 6.2.4.3 – that is, it is semicartesian over any cocartesian square

$$(6.3.4.5) X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X' \xrightarrow{f'} Y'$$

in \mathcal{I} with injective f, and cartesian if X is empty. Moreover, if \mathcal{C} is constant along f and $f \times \operatorname{id}_{\overline{S}_1}$, then it is constant along f'. Finally, if f admits a one-sided inverse $e: Y \to X$, $e \circ f = \operatorname{id}$, with the induced inverse $e': Y' \to X'$, then (6.3.4.5) yields an equivalence

$$\mathcal{C}_{Y'}^e \cong \mathcal{C}_{X'} \times_{\mathcal{C}_X} \mathcal{C}_{Y'}^e$$

where $C_Y^e \subset C_Y$ resp. $C_{Y'}^e \subset C_{Y'}$ are the essentialy images of the functors e^* resp. e'^* .

Proof. For any square (6.3.4.5), the embeddings $Y \to C(f)$, $Y' \to C(f')$ are in W, and Corollary 6.3.4.4 shows that the embedding $X' \sqcup_X C(f) \to C(f')$ is also in W. Then $\mathcal{C}_{Y'} \cong \mathcal{C}_{X' \sqcup_X C(f)}$, $\mathcal{C}_{C(f)} \cong \mathcal{C}_Y$, and it remains to apply Definition 6.2.1.1, Lemma 6.2.2.7 and Lemma 6.2.3.1 to $X' \sqcup_X C(f)$.

Remark 6.3.4.7. As an alternative, one can equip $I_f^o \Delta_f^o$ Sets with a smaller class W' formed by compositions of pushouts of coproducts of horn extensions (6.3.2.6). With slightly more care, one can show that (6.3.4.3) would still works as (6.1.1.2), so we would still obtain a CW-structure. However, Lemma 6.3.4.6 would also work and easily imply that a semiexact additive family of groupoids $\mathcal{C} \to I_f^o \Delta_f^o$ Sets constant along W' is also constant along anodyne maps of Definition 6.3.4.1. Thus the end result would be the same.

6.3.5. Semicanonical extensions. Let us now turn back to the model categories $I^{o}\Delta^{o}$ Sets, $I^{o}\Delta^{o}$ Sets_{κ}. It turns out that both also carry a CW-category structure with a smaller class W that is still large enough to allow one to prove Theorem 6.3.2.13. Namely, let us introduce the following generalization of Definition 6.3.4.1.

Definition 6.3.5.1. The class W^+ of +-anodyne maps is the smallest saturated class of maps in $I^o\Delta$ Sets that is closed under coproducts, contains the projections $\Delta_{i,n} \to \Delta_{i,0}$ for any $i \in I$, $[n] \in \Delta$, and is such that $C \cap W^+$ is closed under pushouts in the same sense as in Definition 6.3.4.1, and for any functors $X_{\bullet}, Y_{\bullet}: \mathbb{N} \to I^o\Delta^o$ Sets that factor through $(I^o\Delta^o \operatorname{Sets})_C$, and any map $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ such that f_n is +-anodyne for any n, the map $f: X = \operatorname{colim}_n X_n \to Y = \operatorname{colim}_n Y_n$ is +-anodyne. The class W^+ of κ^+ -anodyne maps is the smallest class of maps in $I_f^o\Delta_f^o$ Sets $_\kappa$ with the same properties.

Example 6.3.5.2. All anodyne resp. κ -anodyne maps are obviously +-anodyne resp. κ^+ -anodyne, so that the embeddings (6.3.4.1) send W into W^+ . On the other hand, weak equivalences satisfy the extra condition of Definition 6.3.5.1

by Lemma 6.2.4.2, so $W^+ \subset W$. The inclusion is probably strict (we haven't checked).

Example 6.3.5.3. Recall that for any functor $X_{\bullet}: \mathbb{N} \to I_f^o \Delta_f^o$ Sets that factors through $(I_f^o \Delta_f^o \operatorname{Sets})_C$, with $X = \operatorname{colim}_n X_n \in I^o \Delta^o$ Sets, a choice of a cofibrant replacement of the functor $\zeta^* X_{\bullet}: \mathsf{Z}_{\infty} \to I_f^o \Delta_f^o$ Sets provides a telescope $\operatorname{Tel}(X_{\bullet}) \in I^o \Delta^o$ Sets of (6.2.4.2) equipped with a map

$$(6.3.5.1) a: Tel(X_{\bullet}) \to X = \operatorname{colim}_{\mathbb{N}} X_{\bullet}.$$

Then exactly the same argument as in Lemma 6.2.4.8 shows that the map (6.3.5.1) is +-anodyne in the sense of Definition 6.3.5.1, and it is κ^+ -anodyne if X, takes values in $I_f^0 \Delta_f^0$ Sets $_{\kappa}$.

Lemma 6.3.5.4. The category $I^{\circ}\Delta^{\circ}$ Sets with the classes of injective and +-anodyne maps is a strong CW-category, and for any regular cardinal κ , so is the category $I^{\circ}\Delta^{\circ}$ Sets_{κ}, with the classes of injective and κ^{+} -anodyne maps.

Proof. Exactly the same argument as in Corollary 6.3.4.5 works; the only thing to check is that the embedding $t: X \to \Delta^1 \times X$ is +-anodyne for any X, and κ^+ -anodyne for $X \in I^o \Delta^o$ Sets $_\kappa$. This immediately follows by presenting $X = \operatorname{colim}_n \operatorname{sk}_n X$ as the countable composition (6.3.2.3). A perfect framing in both cases is provided by (6.3.4.4).

Definition 6.3.5.5. A semicanonical extension of an additive semiexact family of groupoids \mathcal{C} over $\langle I_f^o \Delta_f^o \operatorname{Sets}_f, W \rangle$ is an additive semiexact family \mathcal{C}^+ over $\langle I^o \Delta^o \operatorname{Sets}, W^+ \rangle$ equipped with an equivalence $i^* \mathcal{C}^+ \cong \mathcal{C}$. For any regular cardinal κ , a semicanonical extension of an additive semiexact family of groupoids \mathcal{C} over $\langle I_f^o \Delta_f^o \operatorname{Sets}_\kappa, W \rangle$ is an additive semiexact family \mathcal{C}^+ over $\langle I^o \Delta^o \operatorname{Sets}_\kappa, W^+ \rangle$ equipped with an equivalence $i_\kappa^* \mathcal{C}^+ \to \mathcal{C}$. A semicanonical extension \mathcal{C}^+ is strong if it is constant along all maps that are weak equivalences in $I^o \Delta^o \operatorname{Sets}$.

Lemma 6.3.5.6. For any additive semiexact family of groupoids C over $\langle I_f^o \Delta^o \operatorname{Sets}_f, W \rangle$, and any semicanonical extension C^+ in the sense of Definition 6.3.5.5, the functor $C^+ \to i_* C$ adjoint to the equivalence $i^* C^+ \to C$ is an epivalence, and the same holds for semicanonical extensions of families over $\langle I_f^o \Delta_f^o \operatorname{Sets}_\kappa, W \rangle$, for any uncountable regular κ .

Proof. For any $X \in I^o \Delta^o$ Sets, the family C^+ is semicontinous along the countable composition (6.3.2.3) by Lemma 6.2.4.6, and $X_{\bullet} : \mathbb{N} \to I_f^o \Delta_f^o$ Sets gives an

embedding $\mathbb{N} \to I_f^o \Delta_f^o$ Sets / X that is left-admissible, with the adjoint functor sending $f: Y \to X$ to dim $f(Y) \subset X$. It remains to apply (2.4.3.4) and (2.4.3.5). The argument for $I^o \Delta^o$ Sets_{κ} is exactly the same.

Corollary 6.3.5.7. Assume given two additive semiexact small families of groupoids C, C' over $\langle I_f^o \Delta_f^o \operatorname{Sets}, W \rangle$ equipped with semicanonical extensions C^+ , C'^+ in the sense of Definition 6.3.5.5. Moreover, assume that C'^+ is strong. Then any functor $\gamma: C' \to C$ over $I_f^o \Delta_f^o \operatorname{Sets}$ extends to a functor $\gamma^+: C'^+ \to C^+$ over $I^o \Delta^o \operatorname{Sets}$, and a morphism $\gamma_0 \to \gamma_1$ between two such functors with some extensions γ_0^+ , γ_1^+ extends to a morphism $\gamma_0^+ \to \gamma_1^+$. Moreover, if γ is an equivalence, then so is γ^+ . For any uncountable regular cardinal κ such that I satisfies the assumptions of Theorem 6.3.2.13, the same is true for κ -bounded additive semiexact families of groupoids over $\langle I_f^o \Delta_f^o \operatorname{Sets}_{\kappa}, W \rangle$.

Proof. By Theorem 6.3.2.13, we have $\mathcal{C}'^+\cong\mathcal{H}(X)$ for some I-simplicial set X. The projection $\mathcal{C}'^+\cong\mathcal{H}(X)\to i_*\mathcal{C}'$ corresponds to an object $c'\in (i_*\mathcal{C}')_X$ that gives an object $c=i_*(\gamma)(c')\in (i_*\mathcal{C})_X\subset i_*\mathcal{C}$, and different functors $\gamma^+:\mathcal{C}'^+\to\mathcal{C}^+$ that extend γ correspond to objects $c^+\in\mathcal{C}_c^+$, where the fiber is taken with respect to the projection $\mathcal{C}^+\to i_*\mathcal{C}$. Since $\mathcal{C}^+\to i_*\mathcal{C}$ is an epivalence by Lemma 6.3.5.6, its fibers are connected groupoids, so this proves the first claim for $I_f^0\Delta_f^o$ Sets.

For the second claim, for any $X \in I^o \Delta^o$ Sets, we have the +-anodyne map (6.3.5.1) for some cofibrant replacement $X': \mathsf{Z}_\infty \to I^o_f \Delta^o_f$ Sets of ζ^*X_* , and both \mathcal{C}^+ and \mathcal{C}'^+ are constant over (6.3.5.1). As in Lemma 6.2.4.6, consider the fibration $z: \mathsf{Z}_\infty \to \mathbb{V}$ of (5.1.3.3), and compose it with the cofibration $\mathbb{V} \to \mathsf{V}$ of Remark 5.1.3.7 corresponding to (5.1.3.4) to obtain a functor $z': \mathsf{Z}_\infty \to \mathsf{V}$. Then $\mathsf{Tel}(X_*) \cong \mathsf{colim}_\mathsf{V} \, z'_! X'$, and as in Lemma 6.2.4.6, this presents $\mathsf{Tel}(X_*)$ as a standard pushout square of coproducts of finite-dimensional I-simplicial sets. Moreover, $z'_! (X')(o) \times \overline{\mathsf{S}}_1$ has the same form. Since both \mathcal{C}^+ and \mathcal{C}'^+ are additive, and γ^+ is an equivalence over $I^o_f \Delta^o_f \mathsf{Sets}$, we can apply Corollary 6.2.3.3 and conclude that γ^+ is an epivalence over $\mathsf{Tel}(X_*)$, hence also over X. Since X was arbitrary, γ^+ is an epivalence everythere, and then it is an equivalence by Corollary 6.2.1.7.

This finishes the proof for $I^o \Delta^o$ Sets; for $I^o \Delta^o$ Sets_{κ}, note that the object X representing ${\mathcal{C}'}^+$ lies in $I^o \Delta^o$ Sets_{κ}, and use the same argument.

Remark 6.3.5.8. The map $\gamma_0^+ \to \gamma_1^+$ in Corollary 6.3.5.7 is *not* unique – that is why the extension is semicanonical and not canonical.

Proposition 6.3.5.9. For any small additive semiexact family of groupoids C over $\langle I_f^o \Delta_f^o \operatorname{Sets}, W \rangle$, a strong semicanonical extension C^+ in the sense of Definition 6.3.5.5 exists. The same is true for any uncountable regular cardinal κ such that I satisfies the assumptions of Theorem 6.3.2.13, and κ -bounded additive semiexact family C over $\langle I_f^o \Delta_f^o \operatorname{Sets}_{\kappa}, W \rangle$.

In order to prove Proposition 6.3.5.9, we use the description of the representable family $\mathcal{H}(X)$, $X \in I^o \Delta^o$ Sets in terms of Reedy cofibrant replacements i_Δ given in Subsection 6.2.5. However, while Subsection 6.2.5 dealt with arbitrary model categories, we are now only interested in $I^o \Delta^o$ Sets, and here we can do better: we can choose cofibrant replacements Y_Δ for all $Y \in I^o \Delta^o$ Sets in a functorial way. Namely, for any cellular Reedy category I, one can consider the Yoneda embedding $Y:I\to I^o$ Sets as an object in $\text{Fun}(I,I^o\text{ Sets})$, and then by (4.3.2.6), for any $i\in I$, the latching object L(Y,i) is exactly the i-sphere S_i , and the latching map $L(Y,i)\to Y(i)$ is the sphere embedding (4.3.2.5). In particular, it is injective. For $I=\Delta$, this means that $Y\in \text{Fun}(\Delta,\Delta^o\text{ Sets})$ is cofibrant with respect to the Reedy model structure. Moreover, since for any I, the class C in $I^o\Delta^o$ Sets consists of injective maps by Lemma 6.3.2.10, the same is true for $Y\times Y\in \text{Fun}(\Delta,I^o\Delta^o\text{ Sets})$, for any $Y\in I^o\Delta^o$ Sets. Now consider the product $I^o\Delta^o$ Sets $\times\Delta$, denote by $\theta:I^o\Delta^o$ Sets $\times\Delta\to I^o\Delta^o$ Sets the projection, and let

(6.3.5.2)
$$v: I^o \Delta^o \operatorname{Sets} \times \Delta \to I^o \Delta^o \operatorname{Sets}$$

be the functor given by $v(X \times [n]) = X \times Y([n])$. Then for any $Y \in I^o \Delta^o$ Sets, $Y_\Delta = v|_{Y \times \Delta} : \Delta \to I^o \Delta^o$ Sets is Reedy cofibrant, and we have the following.

Lemma 6.3.5.10. For any fibrant I-simplicial set $X \in I^o \Delta^o$ Sets, we have $\mathcal{H}(X) \cong \theta_! v^* h(X)$, where v is the functor (6.3.5.2), and $h(X) \to I^o \Delta^o$ Sets is the category of elements of $Y(X) : (I^o \Delta^o \operatorname{Sets})^o \to \operatorname{Sets}$.

Proof. Choose a Reedy fibrant replacement $X^{\Delta} \in \Delta^o I^o \Delta^o$ Sets of the constant simplicial *I*-simplicial set X, starting with $X^{\Delta}([0]) = X$, use the description of $\mathcal{H}(X)$ in terms of X^{Δ} given in Proposition 5.3.3.2, and then apply the same argument as in Lemma 6.2.5.4.

Remark 6.3.5.11. By (2.4.3.4), the discrete fibration $h(X) \to I^o \Delta^o$ Sets in Lemma 6.3.5.10 can be identified with $Y_*I\Delta X$, where $I\Delta X \to I \times \Delta$ is the category of elements of X, and $Y: I \times \Delta \to I^o \Delta^o$ Sets is the Yoneda embedding. Analogously, $v^*h(X) \cong (Y \times \pi)_*I\Delta X$, where $\pi: I \times \Delta \to \Delta$ is the projection.

Proof of Proposition 6.3.5.9. We only do the absolute case; the proof in the κ -bounded case is exactly the same. Let $\mathcal{C}' = i_*\mathcal{C}$, and note that it satisfies Proposition 6.3.2.9 (i) by Lemma 6.3.4.6. Moreover, by the same argument as in Lemma 6.3.5.6, it is continuous along the skeleton filtration (6.3.2.3) for any X. In particular, C' also satisfies Proposition 6.3.2.9 (ii), and we can choose $X \in I^o \Delta^o$ Sets and a liftable object $c \in \mathcal{C}_X'$. Since horn embeddings (6.3.2.6) are anodyne by Lemma 6.3.4.3, and c is liftable, X is fibrant by Lemma 6.3.2.10, and we have $\mathcal{H}(X) \cong \theta_! v^* h(X)$ by Lemma 6.3.5.10, while c induces a functor $\lambda: h(X) \to \mathcal{C}'$ over $I^o \Delta^o$ Sets. But for any $Y \in I_f^o \Delta_f^o$ Sets, $Y_\Delta^* \mathcal{C}' \cong Y_\Delta^* \mathcal{C}$ is constant along all maps in Δ by Corollary 6.3.4.4. Since \mathcal{C}' is continuous along the skeleton filtrations, Y_{Λ}^*C' is then constant for any $Y \in I^0\Delta^0$ Sets. We conclude that $v^*\mathcal{C}' \cong \theta^*\mathcal{C}'$, so that λ induces a functor $v^*(\lambda) : v^*h(X) \to \theta^*\mathcal{C}'$ that provides a functor $\lambda_{+}: \mathcal{H}(X) \cong \theta_{!} \varepsilon^{*} h(X) \to \mathcal{C}'$ over $I^{o} \Delta^{o}$ Sets by adjunction. By the same argument as in the proof of Proposition 6.2.5.3, λ_{+} is an equivalence over $I_f^o \Delta_f^o$ Sets. Moreover, since for any $Y \in I^o \Delta^o$ Sets, $\mathcal{H}(X)$ is semicontinuous along the skeleton filtration $sk_n Y$ by Lemma 6.2.4.1 and Lemma 6.2.4.8, and \mathcal{C}' is continuous along the same filtration, λ_{\dagger} is an epivalence over the whole $I^{o}\Delta^{o}$ Sets. Then $\mathcal{C}^{+}=\mathcal{H}(X)$ with the functor λ_{\dagger} is our semicanonical extension.

Corollary 6.3.5.12. Any small additive semiexact family of groupoids C over $\langle I_f^o \Delta_f^o \operatorname{Sets}, W \rangle$ is constant along maps $w: X \to X'$ that are weak equivalences of I-simplicial sets. For any uncountable regular cardinal κ such that I satisfies the assumptions of Theorem 6.3.2.13, the same holds for any κ -bounded additive semiexact family of groupoids C over $\langle I_f^o \Delta_f^o \operatorname{Sets}_{\kappa}, W \rangle$. All semicanonical extensions are strong and unique up to a unique equivalence.

Proof. A strong semicanonical extension exist by Proposition 6.3.5.9, and then it is unique up to a unique equivalence by Corollary 6.3.5.7. \Box

Definition 6.3.5.13. Let \mathcal{I} be the category $I^o \Delta^o$ Sets, $I_f^o \Delta_f^o$ Sets, or either of the categories $I^o \Delta^o$ Sets_{κ}, $I_f^o \Delta_f^o$ Sets_{κ} for a regular cardinal κ . Then a family of groupouds \mathcal{C} over \mathcal{I} is *stably constant* along a map f in \mathcal{I} if it is constant along $f \times \operatorname{id}_Z$ for any finite simplicial set Z.

Corollary 6.3.5.14. Let C be an additive semiexact small family of groupoids over $\langle I_f^o \Delta_f^o \operatorname{Sets}, W \rangle$, with semicanonical extension C^+ , and let W(C) be the class of maps f in $I^o \Delta^o \operatorname{Sets}$ such that C^+ is stably constant along f. Then for any object $J \in \operatorname{Pos}^+$, functors $X, X' : J \to I^o \Delta^o \operatorname{Sets}$ cofibrant with respect to the projective model structure,

and a map $f: X \to X'$ such that $f(j) \in W(\mathcal{C})$ for any $j \in J$, the map $\operatorname{colim}_J(f): \operatorname{colim}_J(X) \to \operatorname{colim}_J(X')$ is also in $W(\mathcal{C})$. Moreover, if $\mathcal{C}^+ \cong \mathcal{H}(X)$ for some fibrant $X \in I^o \Delta^o$ Sets, then for any injective map $f: Y \to Y'$ in $I^o \Delta^o$ Sets, (i) $f \in W(\mathcal{C})$ iff (ii) for any injective map $Z \to Z'$ of finite simplicial sets, $\operatorname{Hom}(-, X)$ sends the induced map $f(Z, Z'): (Z \times Y') \sqcup_{Z \times Y} (Z' \times Y) \to Z' \times Y'$ to a surjection, and (ii) holds for all $Z \to Z'$ iff it holds all the sphere embeddings (4.1.1.15).

Proof. For the first claim, note that we may assume that f is in the class C with respect to the projective model structure – indeed, we can factor it as

$$X \xrightarrow{c} X'' \xrightarrow{f'} X',$$

with $c \in C$ and $f' \in F \cap W$, and then $\operatorname{colim}_J(f) \in W$ by Lemma 6.2.4.2. If $J = S^<$ and $X(o) = X'(o) = \varnothing$, then the claim simply means that $W(\mathcal{C})$ is closed under coproducts, and this is immediate from additivity. If X and X' are arbitrary but $S = \{0,1\}$ so that J = V, the claim follows from Lemma 6.3.4.6. If $J = \mathbb{N}$, then by Example 6.3.5.3, it suffices to prove that $\operatorname{Tel}(f) \in W(\mathcal{C})$; by the same argument as in Lemma 6.2.4.6 and Remark 6.2.4.7, this reduces to additivity and the case J = V. Finally, for a general J, we can first consider the height function $\operatorname{ht}: J \to \mathbb{N}$, and apply the claim for $\operatorname{ht}_!(f): \operatorname{ht}_!X \to \operatorname{ht}_!X'$ to reduce to the case when $J \in \operatorname{Pos}$, and then as in Lemma 6.1.3.3, apply induction on dimension to reduce to the case $J = S^<$. Then in this case, by (6.3.2.3), it suffices to consider the case when both X and X' factor through $I_f^o \Delta_f^o$ Sets, and the colimits $\operatorname{colim}_J X$, $\operatorname{colim}_J X'$ also lie in $I_f^o \Delta^o$ Sets. But then we have the cocartesian square

$$\begin{array}{cccc} X(o) \times S & \longrightarrow & X(o) \\ & & \downarrow & & \downarrow \\ \coprod_{s \in S} X(s) & \longrightarrow & \operatorname{colim}_I X \end{array}$$

in $I_f^o \Delta_f^o$ Sets, and similarly for X', so we are done by Lemma 6.3.4.6.

For the second claim, if (ii) holds for all sphere embeddings, it holds for all injective maps by induction on the elementary extensions (4.1.1.16). By Lemma 6.3.5.10, we have $\mathcal{H}(X)_Y \cong h^{\natural}(\Delta \operatorname{Hom}^{\Delta}(Y,X))$, where the simplicial set $\operatorname{Hom}^{\Delta}(Y,X): \Delta^o \to \operatorname{Sets} \text{ sends } [n] \in \Delta \text{ to } \operatorname{Hom}(Y \times \Delta_n,X)$, and similarly for Y'. Then (ii) for sphere embeddings is equivalent to saying that the pullback map f^* : $\operatorname{Hom}^{\Delta}(Y',X) \to \operatorname{Hom}^{\Delta}(Y,X)$ is a trivial Kan fibration, and by Lemma 5.2.4.1, this means that $\mathcal{H}(X)$ is constant along f. Moreover, (ii) for f contains (ii) for $f \times \operatorname{id}_Z$, for any finite $Z \in \Delta^o$ Sets, so the same then holds for any such $f \times \operatorname{id}_Z$, so that (ii) implies (i). In addition to this, since X is fibrant, f^* is in any case a

Kan fibration of fibrant simplicial sets, and then if $\mathcal{H}(X)$ is constant along f, so that f^* induces an isomorphism on π_0 , Lemma 2.2.5.2 immediately implies that its component $f^*: \operatorname{Hom}(Y',X) \to \operatorname{Hom}(Y,X)$ over $[0] \in \Delta$ is surjective. But then, since $W(\mathcal{C})$ is saturated and closed under coproducts and pushouts by Lemma 6.3.4.6, the same induction on elementary extensions shows that it contains f(Z,Z') as soon as it contains f, so (i) implies (ii).

Remark 6.3.5.15. In particular, Corollary 6.3.5.14 (ii) applies to the embedding $\emptyset \to \mathsf{pt} = \Delta_0$, and says that $\mathsf{Hom}(Y',X) \to \mathsf{Hom}(Y,X)$ is surjective as soon as $f \in W(\mathcal{C})$.

Chapter 7

Between simplices and orders.

As we have mentioned in the Introduction, this chapter is the "technical heart" of the text, something that has no conceptual meaning but needs to be done. What happens is, to move from Representability Theorems of Chapter 6 to the enhanced category theory of Chapter 8, we need to do two things. Firstly, we need to replace families over simplicial sets with families over partially ordered sets. Secondly, we need to replace the homotopy invariance condition of Theorem 6.3.2.7 with something more manageable and concrete.

We start with enhanced groupoids whose the theory is easier and can serve as a warm-up. This is Section 7.1. Homotopy types represent families over Δ^o Sets. On the other side, we have the category Pos^+ of left-bounded partially ordered sets. Moreover, we can also restrict our attention to the subcategory Δ^o_f Sets of finite-dimensional simplicial sets; these correspond to partially ordered sets of finite chain dimension. To move from the category Pos of such sets to Δ^o_f Sets, we use the nerve functor $\operatorname{N}:\operatorname{Pos}\to\Delta^o_f$ Sets. In the other direction, we adapt the functorial anodyne resolution construction of Proposition 4.3.3.10. This gives a functor $\operatorname{Q}:\operatorname{Pos}\to\Delta^o_f$ Sets.

We then show that N and Q establish a bijection between homotopy invariant semiexact additive families of groupoids over Δ_f^o Sets — that is, the families representing homotopy types — and "enhanced groupoids", defined as additive semiexact families of groupoids over Pos satisfying one simple additional property ("excision" of Definition 7.1.1.1). This works as a replacement for homotopy invariance, and the reason it is so simple is the general results of Subsection 6.2.2.

Then we also consider semicanonical extensions of our families in the sense of Proposition 6.3.5.9, and we define the corresponding notion on the enhanced groupoid side — roughly speaking, it corresponds to families over Pos⁺ satisfying an additional axiom ("semicontinuity" of Definition 7.1.1.2). This finishes

the story for groupoids; the end result is Proposition 7.1.2.3. In the last part of Section 7.1, we give an I-augmented version of the theory. Unfortunately, this needs a rather strong assumption on I — effectively, it has to be a partially ordered set.

What we really want for general enhanced categories is to consider bisimplicial sets, that is, to take $I = \Delta$. This is done in Section 7.2, and the result here is more restrictive than in Section 7.1. We cannot handle general families over $\Delta^o \Delta^o$ Sets, and we only consider those that satisfy an additional condition — namely, a version of the Segal condition (meaning that the family is represented by a Segal space). On the other side, we use the categories BiPos, BiPos⁺ of biordered sets of Section 3.2; we introduce versions of excision and semicontinuity for families over these categories, and one additional axiom called "the cylinder axiom". The end result is Proposition 7.2.4.1.

Having done all that, we finish with two more things. Firstly — this is Section 7.3 — we show that under an additional assmption, a "Segal family" of groupoids over BiPos⁺ is completely determined by its restriction to Pos⁺ \subset BiPos⁺, and we characterize families over Pos⁺ that appear in this way. This takes up back to partially ordered sets that we started with, and it requires the representing Segal space to be complete in the sense of [R]. Secondly, in Section 7.4, we study the *I*-augmented situation, with *I* again a partially ordered set. The main result here is the rather non-trivial Proposition 7.4.5.1.

7.1. Enhanced groupoids.

7.1.1. Excision and continuity. If one wants to find a model category representing all homotopy types, then there are two standard options: one can use either topological spaces, or simplicial sets. However, if one is satisfied with a CW-category in the sense of Subsection 6.1.1, then there are other possibilities. For example, one can use the category PoSets of partially ordered sets, with the CW-structure of Example 6.1.1.6.

Recall that as in Subsection 3.1.5, we have the notion of an ample full subcategory $\mathcal{I} \subset \text{PoSets}$ given in Definition 3.1.5.1, and the main example is the subcategory $\text{Pos} \subset \text{PoSets}$ of partially ordered sets of finite chain dimension. For any infinite cardinal κ , $\text{Pos}_{\kappa} \subset \text{Pos}$ is the ample full subcategory spanned by $J \in \text{Pos}$ with $|J| < \kappa$. Moreover, for any full subcategory $\mathcal{I} \subset \text{PoSets}$, we have the extension $\mathcal{I}^+ \subset \text{PoSets}$, ample if so were \mathcal{I} , and in particular, $\text{Pos}^+ \subset \text{PoSets}$ is the category of left-bounded partially ordered sets, and $\text{Pos}_{\kappa}^+ \subset \text{Pos}^+$ is the full subcategory of $J \in \text{Pos}^+$ with $|J| < \kappa$. We have the tautological full

embedding $i: \operatorname{Pos} \to \operatorname{Pos}^+$ that induces a full embedding $i: \operatorname{Pos}_{\kappa} \to \operatorname{Pos}_{\kappa}^+$ for any κ . Any set $S \in \operatorname{Sets}$ with discrete order is an object in PoSets, we have the map (3.1.9.1) for any $J \in \operatorname{PoSets}$ equipped with a map $J \to S^<$, and if $J, S^<, S^{\natural} \in \mathcal{I}$ for some ample $\mathcal{I} \subset \operatorname{PoSets}$, then J^{\natural} and (3.1.9.1) are also in \mathcal{I} (if $\mathcal{I} = \operatorname{Pos}_{\kappa}$, then $S^<, S^{\natural} \in \mathcal{I}$ iff $|S| < \kappa$). For any $J \in \operatorname{PoSets}$ equipped with a map $J \to \mathbb{N}$, we have the map (3.1.10.2), and if $J \in \mathcal{I}^+$ for an ample \mathcal{I} , then $J^+, J/\mathbb{N}$ and (3.1.10.2) are all in \mathcal{I}^+ .

Definition 7.1.1.1. Let $\mathcal{I} \subset \text{PoSets}$ be an ample full subcategory in the sense of Definition 3.1.5.1, and let \mathcal{C} be a family of groupoids over \mathcal{I} .

- (i) The family C is [1]-*invariant* if for any $J \in \mathcal{I}$, C is constant along the projection $J \times [1] \to J$.
- (ii) The family C is *semiexact* if for any map $\chi: J \to V = \{0,1\}^{<}$ in \mathcal{I} , the functor

$$C_J \rightarrow C_{J/0} \times_{C_{J_0}} C_{J/1}$$

is an epivalence.

(iii) The family $\mathcal C$ is *additive* if for any $J \in \mathcal I$ and a map $\chi: J \to S$ to a set $S \in \operatorname{Sets} \cap \mathcal I \subset \operatorname{PoSets}$, the functor

$$\mathcal{C}_J \to \prod_{s \in S} \mathcal{C}_{J_s}$$

is an equivalence.

(iv) The family C satisfies excision if for any $J \in \mathcal{I}$, $S \in \text{Sets}$ such that $S^{<}$, $S^{\natural} \in \mathcal{I}$, and a map $J \to S^{<}$, C is constant along the map $J^{\natural} \to J$ of (3.1.9.1).

Definition 7.1.1.2. A family of groupoids \mathcal{C} over the extension \mathcal{I}^+ of an ample subcategory $\mathcal{I} \subset \text{PoSets}$ is *semicontinuous* if for any $J \in \mathcal{I}^+$ equipped with a map $J \to \mathbb{N}$, \mathcal{C} is constant along the map $J^+ \to J$ of (3.1.10.2).

Definition 7.1.1.3. A small enhanced groupoid is a small family of groupoids \mathcal{C} over Pos that is additive, semiexact, and satisfies excision. For any regular cardinal κ , a κ -bounded enhanced groupoid is an additive semiexact family $\mathcal{C}/\operatorname{Pos}_{\kappa}$ satisfying excision such that $\|\mathcal{C}_J\| < \kappa$ for any finite partially ordered set J. For any small resp. κ -bounded enhanced groupoid \mathcal{C} , its semicanonical extension is family of groupoids \mathcal{C}^+ over Pos^+ resp. $\operatorname{Pos}^+_{\kappa}$ that is [1]-invariant, additive and semiexact in the sense of Definition 7.1.1.1, semicontinuous in the sense of Definition 7.1.1.2, and is equipped with an equivalence $\mathcal{C} \cong i^*\mathcal{C}^+$.

Recall that for any small category I, we have the category $(\operatorname{Cat}/I)^0$ whose objects are small categories over I, and whose morphisms are functors over I modulo isomorphisms over I. For any regular cardinal κ , $\operatorname{Pos}_{\kappa}$ is essentially small, and we denote by

(7.1.1.1)
$$\operatorname{Sets}_{\kappa}^{h} \subset (\operatorname{Cat} / \operatorname{Pos}_{\kappa})^{0}$$

the full subcategory spanned by κ -bounded enhanced groupoids. Any small enhanced groupoid gives a κ -bounded enhanced groupoid after restriction to $\operatorname{Pos}_{\kappa} \subset \operatorname{Pos}$ for a sufficiently large κ . However, since Pos is not small, it is not *a priori* clear that small enhanced groupoids also form a category.

Lemma 7.1.1.4. If κ is the smallest infinite cardinal, then any κ -bounded enhanced groupoid $\mathcal{C} \to \operatorname{Pos}_{\kappa} = \operatorname{pos}$ is a discrete fibration $\operatorname{pos}/S \to \operatorname{pos}$ corresponding to some finite set $S \in \operatorname{Sets}_{\kappa}$, so that $\operatorname{Sets}_{\kappa}^h \cong \operatorname{Sets}_{\kappa}$.

Proof. By assumption, $\|\mathcal{C}_J\|$ is finite for any $J \in \text{pos}$, so that the groupoid \mathcal{C}_J is rigid, thus discrete by Example 2.1.1.3. Since epivalences between rigid categories are equivalences, it is then cartesian along all standard pushout squares in pos, and then if we let $S = \mathcal{C}_{pt}$, $\mathcal{C} \to \varepsilon(pt)_*S \cong \text{pos}/S$ is an equivalence over any $J \in \text{pos}$, by [1]-invariance and induction on |J|.

Remark 7.1.1.5. We use notation Sets^h in (7.1.1.1) to emphasize the fact that in the enhanced context, it is enhanced groupoids that play the role of enhanced sets (or "spaces", whatever that means). By Lemma 7.1.1.4, for finite sets, there is no enhancement.

Lemma 7.1.1.6. A small enhanced groupoid C o Pos is constant along maps anodyne in the sense of Definition 3.1.9.1, and a semicanonical extension C^+ of C is constant along maps +-anodyne in the sense of Definition 3.1.10.1. For any uncountable regular cardinal κ , a κ -bounded enhanced groupoid $C o Pos_{\kappa}$ is constant along maps κ -anodyne in the sense of Definition 3.1.10.8, and any of its semicanonical extensions C^+ is constant along κ^+ -anodyne maps. Moreover, for any $J \in PoSets_{\kappa}^+$ equipped with a map $J o \mathbb{N}$, the semicanonical extension C^+ is semicontinuous in the sense of Definition 6.2.4.5 along the countable compositions of embeddings J/n o J/(n+1).

Proof. Assume given a small enhanced groupoid \mathcal{C} , and let $W(\mathcal{C})$ be the class of maps $f: J' \to J$ in Pos such that \mathcal{C} is constant along the map $f \times \operatorname{id}: J' \times J_0 \to J \times J_0$ for any finite $J_0 \in \operatorname{pos} \subset \operatorname{Pos}$. It suffices to prove that $W(\mathcal{C})$ contains all the anodyne maps. Note that for any $J \to S^{<}$ of Definition 7.1.1.1 (iv) and any $J_0 \in \operatorname{pos}$, we have $(J \times J_0)^{\natural} \cong J^{\natural} \times J_0$, so that $W(\mathcal{C})$

contains the map $J^{\natural} \to J$. Then by the last claim of Proposition 3.1.9.7, it suffices to check that W(C) is stable under standard pushouts (3.1.2.3). Indeed, equip Pos with the standard CW-structure of Example 6.1.1.6. Then by Definition 7.1.1.1 (ii), C is semiexact with respect to this CW-structure, and by the same argument as in the proof of Proposition 3.1.9.7, Definition 7.1.1.1 (iv) implies Definition 7.1.1.1 (i), so that $W(\mathcal{C})$ contains all the projections $J \times [1] \to J$, $J \in \text{Pos.}$ Thus by Lemma 3.1.5.2, $W(\mathcal{C})$ also contains all reflexive full embeddings. However, by Example 6.2.2.5 (i), the CW-structure on Pos is distributive, thus strong in the sense of Definition 6.2.2.2, and 1' in the corresponding decomposition (6.2.2.3) is the finite partially ordered set $V^0 \cong \{0,1\}^>$, so that $1' \sqcup_{1 \sqcup 1} 1' \cong \mathbb{V}$ is also finite. Then the functor $\psi : Pos \cong Pos_C \to Pos$ for the corresponding perfect framing on Pos is given by $J \mapsto J \times \mathbb{V}$, and for any standard pushout square (3.1.2.3) with $f_0: J \to J_0$ in $W(\mathcal{C})$, $\psi(f)$ is also in $W(\mathcal{C})$. Then to show that the pushout $J_1 \to J_{01}$ of the map f_0 is in $W(\mathcal{C})$, it suffices to invoke Lemma 6.2.2.7. This finishes the proof for small enhanced groupoids, and the proof for κ -bounded enhanced groupoids is exactly the same. For +-anodyne and κ^+ -anodyne maps, replace Proposition 3.1.9.7 with Proposition 3.1.10.6. Finally, for semicontinuity, note that by Example 6.1.4.4 and (3.1.2.5), the set J^+ is a telescope for the countable composition of embeddings $I/n \rightarrow I/(n+1)$ in the sense of Lemma 6.2.4.6.

Corollary 7.1.1.7. Any semicanonical extension C^+ of a small or κ -bounded enhanced groupoid C satisfies excision.

Proof. The map (3.1.9.1) is +-anodyne, and κ^+ -anodyne if $|J| < \kappa$.

Corollary 7.1.1.8. Let $\iota: \operatorname{Pos} \to \operatorname{Pos}$ be the involution sending $J \in \operatorname{Pos}$ to J^o . Then for any small enhanced groupoid $\mathcal{C} \to \operatorname{Pos}_{\kappa}$, $\iota^*\mathcal{C}$ is a small enhanced groupoid, and for any κ -bounded enhanced groupoid $\mathcal{C} \to \operatorname{Pos}_{\kappa}$, so is $\iota^*\mathcal{C}$. Moreover, any semicanonical extension \mathcal{C}^+ of the enhanced groupoid \mathcal{C} is semiexact with respect to co-standard pushout squares.

Proof. Definition 7.1.1.1 (iii) is manifestly invariant under ι^* . By virtue of Lemma 7.1.1.6, one can replace Definition 7.1.1.1 (iv) with requiring \mathcal{C} to be constant along all anodyne maps, and this is also invariant under ι^* by Corollary 3.1.9.4. Finally, Definition 7.1.1.1 (ii) literally means that \mathcal{C} is semiexact over standard pushout squares (3.1.2.3), and to check this for $\iota^*\mathcal{C}$, it suffices to invoke again Lemma 7.1.1.6 together with Corollary 3.1.9.4, and note that by Lemma 3.1.4.8, $B \circ \iota \cong B$ sends a standard pushout square to a standard

pushout square. For C^+ , while we do not have the involution ι anymore, the barycentric subdivision functor $B: \operatorname{Pos}^+ \to \operatorname{Pos}^+$ still sends both standard and co-standard pushout squares to standard pushout squares, and the map $\xi: BJ \to J$ is +-anodyne for any $J \in \operatorname{Pos}^+$, and κ^+ -anodyne if $|J| < \kappa$.

To obtain examples of small enhanced groupoids in the sense of Definition 7.1.1.3, consider the nerve functor

(7.1.1.2)
$$N : PoSets \rightarrow \Delta^{o} Sets, \quad J \mapsto N(J).$$

If we restrict it to Pos⁺ \subset PoSets, then for any regular cardinal κ , it sends $\operatorname{Pos}_{\kappa}^+ \subset \operatorname{Pos}^+$ into $\Delta^o \operatorname{Sets}_{\kappa} \subset \Delta^o \operatorname{Sets}$. Moreover, for any partially ordered set J of finite chain dimension, its nerve N(I) is a finite-dimensional simplicial set, so that (7.1.1.2) also sends Pos into $\Delta^o_f \operatorname{Sets}_{\kappa}$ and $\operatorname{Pos}_{\kappa}$ into $\Delta^o_f \operatorname{Sets}_{\kappa}$.

Lemma 7.1.1.9. *The functor* (7.1.1.2) *sends full embeddings to injective maps, and for any map* $\varphi: J' \to J$ *in* PoSets, *the map*

$$(7.1.1.3) \qquad \operatorname{colim}_{j \in J} \mathsf{N}(J'/j) \to \mathsf{N}(J')$$

induced by (3.1.2.5) is an isomorphism.

Proof. By definition, we have N(J)([n]) = PoSets([n], J) for any $[n] \in \Delta$ and $J \in PoSets$. Then the first claim is clear, and the second one immediately follows from Lemma 3.1.2.8. □

Lemma 7.1.1.10. The functor (7.1.1.2) commutes with coproducts, sends left-closed embeddings to injective maps, and sends standard pushout squares (3.1.2.3) to pushout squares. Moreover, for any +-anodyne map in the sense of Definition 3.1.10.1, N(f) is a weak equivalence, and the same holds for anodyne, κ -anodyne and κ^+ -anodyne maps.

Proof. The first claim immediately follows from Lemma 7.1.1.9. For the second, note that $N(J \times [1]) \cong N(J) \times N([1]) \cong N(J) \times \Delta_1$, so the class N*W of maps f such that N(f) is a weak equivalence trivially satisfies Definition 3.1.9.1 (i). Moreover, since by Lemma 7.1.1.9, N preserves colimits (3.1.2.5), it sends functors $J \to PoSets$, $J \in Pos^+$ cofibrant in the sense of Definition 6.1.2.1 for the standard CW-structure of Example 6.1.1.6 to Reedy-cofibrant functors $J \to \Delta^o$ Sets, and then by Lemma 6.1.3.4, the functor in the left-hand side of (7.1.1.3) is Reedy-cofibrant. Then Definition 3.1.9.1 (ii) for N*W reduces to Lemma 6.2.4.2. □

For any uncountable regular cardinal κ and simplicial set $X \in \Delta^o \operatorname{Sets}_{\kappa}$, the representable family of groupoids $\mathcal{H}_X \to \Delta^o \operatorname{Sets}_{\kappa}$ is additive and semiexact by

Lemma 6.2.4.1, and it is constant along weak equivalences, so that $N(f)^*\mathcal{H}_X$ is a κ -bounded enhanced groupoid by Lemma 7.1.1.10. This gives an ample supply of κ -bounded enhanced groupoids. It is also functorial with respect to X, so we obtain a functor

$$(7.1.1.4) h^{W}(\Delta^{o}\operatorname{Sets}_{\kappa}) \to \operatorname{Sets}_{\kappa}^{h}, X \mapsto \mathsf{N}^{*}\mathcal{H}_{X},$$

where Sets $_{\kappa}^{h}$ is as in (7.1.1.1).

7.1.2. Comparison. We now want to show that the functor (7.1.1.4) is an equivalence for any uncountable regular κ , and moreover, all these equivalences together provide an equivalence between $h^W(\Delta^o \operatorname{Sets})$ and the category of small enhanced groupoids and isomorphism classes of functors between them (so that *a posteriori*, the latter category is well-defined). By virtue of Theorem 6.3.2.7, homotopy classes of simplicial sets correspond bijectively to additive semiexact families of groupoids over $\Delta^o \operatorname{Sets}$, so what we need to do is to find a way to pass from families over Pos to families over $\Delta^o \operatorname{Sets}$ that is inverse to N*. To do this, we use Reedy categories and anodyne resolutions of Section 4.3.

Consider the category Δ with the Reedy structure of Example 4.3.1.4, so that in particular, M is the class of surjective maps, and let $\Delta^M \Delta$ be its simplicial expansion in the sense of Definition 4.2.1.1. We then have the fibration π : $\Delta^M \Delta \to \Delta$, and the functor $\xi: \Delta^M \Delta \to \Delta$ of (4.2.1.7). Explicitly, objects in $\Delta^M \Delta$ are pairs $\langle [m], [n_{\bullet}] \rangle$ of an object $[m] \in \Delta$ and a functor $[n_{\bullet}] : [m] \to \Delta$ represented by a diagram

$$(7.1.2.1) [n_0] \xrightarrow{f_1} \ldots \xrightarrow{f_m} [n_m]$$

in Δ . The functors π , ξ send such a pair to [m] resp. $[n_m]$. We also have a morphism

$$(7.1.2.2) b: \pi \to \xi$$

sending $l \in [m] = \pi([n_{\bullet}])$ to $\overline{f}_l(n_l) \in [n_m] = \xi([n_{\bullet}])$, where $\overline{f}_l : [n_l] \to [n_m]$ is the map in (7.1.2.1). Since every surjective map is special in the sense of Subsection 4.2.2, (7.1.2.2) is indeed well-defined on the whole $\Delta^M \Delta$.

For any simplicial set X, the category of simplices ΔX inherits the Reedy structure, and we have $\Delta^M \Delta X \cong \Delta^M \Delta \times_{\Delta} \Delta X$, so that objects in $\Delta^M \Delta X$ are triples $\langle [m], [n_{\centerdot}], x \rangle \rangle$, $\langle [m], [n_{\centerdot}] \rangle \in \Delta^M \Delta$, $x \in X([n_m])$. Sending such a triple to $\langle [m], b^*x \rangle$ then gives a functor

$$\beta: \Delta^M \Delta X \to \Delta X,$$

cartesian over Δ . If X = NJ is the nerve of a partially ordered set J, then $\Delta NJ = \Delta J$ is its simplicial replacement, and we have

$$\beta \cong \Delta(\xi) : \Delta^M \Delta J \to \Delta J,$$

where $\Delta(\xi)$ is well-defined on $\Delta^M \Delta J$ since the functor $\xi : \Delta J \to J$ of (4.2.1.7) inverts all maps in M.

We now recall that the Reedy category ΔX is cellular in the sense of Definition 4.3.1.7. If X is finite-dimensional, then ΔX is also finite-dimensional, and it has the anodyne resolution $Q(\Delta X)$ of Proposition 4.3.3.10. This is functorial in X and has finite chain dimension, so that we obtain a functor

(7.1.2.5)
$$Q: \Delta_f^o \operatorname{Sets} \to \operatorname{Pos}, \qquad X \mapsto Q(\Delta X).$$

For any uncountable regular cardinal κ , Q sends Δ_f^o Sets $_{\kappa}$ into Pos $_{\kappa}$, and it sends finite simplicial sets to finite partially ordered sets.

If a simplicial set X is regular, Q(X) can be described by the functorial isomorphism (4.3.4.2). In particular, this applies to nerves of partially ordered sets, and provides a functorial isomorphism

$$(7.1.2.6) Q(N(J)) \cong B(B(J))^{o},$$

where $B : \text{Pos} \to \text{Pos}$ is the barycentric subdivision functor of Definition 3.1.4.1. Composing the maps ξ and ξ_{\perp} of (3.1.4.1) gives a functorial map

$$(7.1.2.7) a(J): Q(N(J)) \cong B(B(J))^o \to J$$

for any $J \in \text{Pos.}$ Equivalently, (7.1.2.7) is the composition

(7.1.2.8)
$$Q(N(J)) \xrightarrow{q_{\Delta J}} \Delta N(J) = \Delta J \xrightarrow{\xi} J$$

of the functors (4.3.3.5) and (4.2.1.7). Conversely, for any $X \in \Delta_f^o$ Sets, the partially ordered set Q(X) comes equipped with the functor $q_X = q_{\Delta X}$ of (4.3.3.5), and composing its simplicial replacement $\Delta(q_X)$ with the functor (7.1.2.3), we obtain a functor $\beta \circ \Delta(q_X) : \Delta Q(X) \to \Delta X$ cartesian over Δ , or equivalently, a map

(7.1.2.9)
$$a(X) : N(Q(X)) \to X.$$

If X = NJ for some $J \in Pos$, then (7.1.2.4) immediately shows that we have

(7.1.2.10)
$$a(N(J)) = N(a(J)).$$

For any map $f: X \to X'$ between simplicial sets, the map (4.3.3.6) induces a possibly non-trivial map $\Delta(q_{X'}) \circ \Delta Q(f) \to \Delta^M(\Delta(f)) \circ \Delta(q_X)$. However, β inverts it, so that the map (7.1.2.9) is functorial with respect to X.

Lemma 7.1.2.1. (i) The functor Q of (7.1.2.5) commutes with coproducts, sends injective maps to right-closed embeddings, and for any cocartesian square

$$(7.1.2.11) X \xrightarrow{f} X'$$

$$g \downarrow \qquad \qquad \downarrow g'$$

$$Y \xrightarrow{f'} Y'$$

with injective f, g, we have $Q(Y') \cong Q(Y) \sqcup_{Q(X)} Q(X')$.

- (ii) The map (7.1.2.7) is anodyne for any $J \in Pos$, and κ -anodyne for any uncountable regular cardinal κ such that $J \in Pos_{\kappa}$.
- (iii) For any uncountable regular cardinal κ , Q sends anodyne resp. κ -anodyne maps in Δ_f^0 Sets $_\kappa$ in the sense of Definition 6.3.4.1 to anodyne resp. κ -anodyne maps in $\operatorname{Pos}_\kappa$.
- (iv) For any cocartesian square (7.1.2.11) with injective f, the map

$$(7.1.2.12) \hspace{1cm} \mathsf{N}(\mathsf{Q}(Y)) \sqcup_{\mathsf{N}(\mathsf{Q}(X))} \mathsf{N}(\mathsf{Q}(X')) \to \mathsf{N}(\mathsf{Q}(Y'))$$

is a weak equivalence.

Proof. For (i), note that an injective map $X \to X'$ gives rise to a fully faithful fibration $\Delta X \to \Delta X'$, thus a characteristic Reedy functor $\chi : \Delta X' \to [1]$, and if we have a square (7.1.2.11) with injective f and g, we have the joint characteristic Reedy functor $\chi : \Delta(Y') \to V$. The claims then follow from Lemma 4.3.3.7. For (ii), use Corollary 3.1.9.4.

For (iii), let W be the class of maps f in Δ_f^o Sets $_\kappa$ such that Q(f) is κ -anodyne. Then W is saturated and closed under coproducts. Moreover, since the projection $[n] \to [0]$ is reflexive, thus κ -anodyne, W contains all the projections $\Delta_n = N([n]) \to \Delta_0 = N([0])$ by (ii). It remains to show that $W \cap C$ is closed under pushouts. Indeed, assume given a cocartesian square (7.1.2.11) in Δ_f^o Sets $_\kappa$ with injective κ -anodyne f and arbitrary g. Then we still have the characteristic Reedy functor $\chi: \Delta Y' \to [1]$ of the embedding $\Delta(f'): \Delta Y \to \Delta Y'$, the discrete fibration $\Delta(g'): \Delta X' \to \Delta Y'$ satisfies the assumptions of Lemma 4.3.3.8, and Corollary 3.1.9.3 then proves that $f' \in W$. The proof in the anodyne case is the same.

Finally, for (iv), apply again Lemma 4.3.3.8: if we let J = Q(Y') and J' = Q(X'), then we have cofibrations $J, J' \to V$, and Q(g') is a map $J' \to J$ cocartesian over V that is an isomorphism over $o, 1 \in V$. Then as in Corollary 3.1.9.3, take

the partially ordered set \widetilde{J} , and note that we have anodyne embeddings $J \subset \widetilde{J}$, $J_0 \subset \widetilde{J}/0$, $J_0' \subset \widetilde{J}_0$, and an isomorphism $\widetilde{J}/1 \cong J'$. By Lemma 7.1.1.10, the horizontal arrows in the commutative square

are weak equivalences, and the vertical arrow on the left is (7.1.2.12).

Corollary 7.1.2.2. For any $X \in \Delta_f^o$ Sets, (7.1.2.9) is a weak equivalence.

Proof. Say that X is good if (7.1.2.9) is a weak equivalence. Then by Lemma 7.1.2.1 (ii) and (7.1.2.10), N(J) is good for any $J \in Pos$, so that elementary simplices Δ_n are good. Moreover, by Lemma 7.1.2.1 (iv) and Lemma 6.2.4.2 applied as in Lemma 6.2.4.4, for any cocartesian square (7.1.2.11) with good X, Y, X' and injective f, Y' is also good. But coproducts of good simplicial sets are obviously good, so by induction on dim X and (4.3.2.7), any $X \in \Delta_f^o$ Sets is good.

Extending the functor (7.1.2.5) to arbitrary simplicial sets is slightly non-trivial: while by Lemma 4.3.3.9, Q commutes with countable compositions of injective maps, so that we have $Q(X) = Q(\Delta X) \cong \operatorname{colim}_n Q(\operatorname{sk}_n X)$ for any $X \in \Delta^o$ Sets, the maps $Q(\operatorname{sk}_n X) \to Q(\operatorname{sk}_{n+1} X)$ are not left closed — by Lemma 7.1.2.1 (i), they are right-closed — and Q(X) is typically not left-bounded (in fact, it is right-bounded). To circumvent this, we use the incidence subset construction of Example 3.1.10.2. We define a functor

(7.1.2.13)
$$Q_{+}: \Delta^{o} \operatorname{Sets} \to \operatorname{Pos}^{+},$$

$$Q_{+}(X) = \{j \times n | j \in \operatorname{Q}(\operatorname{sk}_{n} X)\} \subset \operatorname{Q}(X) \times \mathbb{N}$$

that sends $\Delta^o \operatorname{Sets}_{\kappa}$ into $\operatorname{Pos}_{\kappa}^+$ for any uncountable regular κ , and comes equipped with a functorial map

$$(7.1.2.14) Q_+(X) \to Q(X) = \operatorname{colim}_n Q(\operatorname{sk}_n X).$$

By Example 3.1.10.2, (7.1.2.14) is +-anodyne for $X \in \Delta_f^o$ Sets, and κ^+ -anodyne for $X \in \Delta_f^o$ Sets $_\kappa$. Moreover, combining (7.1.2.14) with (7.1.2.7) and (7.1.2.9) provides functorial maps

(7.1.2.15)
$$a_{+}(J): \mathsf{Q}_{+}(\mathsf{N}(J)) \to J, \quad J \in \mathsf{Pos}^{+}, \\ a_{+}(X): \mathsf{N}(\mathsf{Q}_{+}(X)) \to X, \quad X \in \Delta^{o} \, \mathsf{Sets},$$

where $a_+(X)$ is a weak equivalence by Corollary 7.1.2.2 and Lemma 6.2.4.2, and $a_+(J)$ is +-anodyne by Lemma 7.1.2.1 (ii) and Lemma 3.1.10.3, and κ^+ -anodyne if $J \in \operatorname{Pos}_{\kappa}^+$.

- **Proposition 7.1.2.3.** (i) Assume given a small enhanced groupoid C in the sense of Definition 7.1.1.3. Then Q^*C is an additive semiexact family over Δ_f^o Sets constant along anodyne maps of Definition 6.3.4.1, and the functor $C \to N^*Q^*C$ induced by the map (7.1.2.7) is an equivalence. Moreover, for any semicanonical extension C^+ of C, $Q_+^*C^+$ is a semicanonical extension of Q^*C in the sense of Definition 6.3.5.5, and the functor $C^+ \to N^*Q_+^*C^+$ induced by (7.1.2.15) is an equivalence.
 - (ii) Assume given a small family of groupoids C over Δ_f^o Sets that is additive, semiexact, and constant along anodyne maps. Then N^*C is a small enhanced groupoid, and the functor $C \to Q^*N^*C$ induced by the map (7.1.2.9) is an equivalence. Moreover, for any semicanonical extension C^+ of C, N^*C^+ is a semicanonical extension of N^*C , and the functor $C \to Q_+^*N^*C$ induced by (7.1.2.15) is an equivalence.

Moreover, for any uncountable regular cardinal κ , the same claims hold for κ -bounded enhanced groupoids and κ -bounded families over Δ_f^o Sets $_\kappa$ constant along κ -anodyne maps.

Proof. For (i), Q^*C is additive by Lemma 7.1.2.1, it is constant along anodyne maps by Lemma 7.1.2.1 and Lemma 7.1.1.6, and semiexact by Lemma 7.1.2.1 and Corollary 7.1.1.8 (where the latter implies that C is semiexact with respect to co-standard pushout squares in Pos). To see that $C \cong N^*Q^*C$, combine Lemma 7.1.2.1 (ii) and Lemma 7.1.1.10, and to see that Q_+^*C is a semicanonical extension, note that Q_+ sends standard pushout squares to co-standard pushout squares by Lemma 7.1.2.1 (i) and (7.1.2.13), and by Lemma 6.2.1.4, it also sends all +-anodyne maps of Definition 6.3.5.1 to +-anodyne maps.

For (ii), note that by Corollary 6.3.5.12, the family \mathcal{C} is constant along all weak equivalences in Δ_f^o Sets. Then N* \mathcal{C} is a small enhanced groupoid with semicanonical extension N* \mathcal{C}^+ by Lemma 7.1.1.10, and (7.1.2.9), (7.1.2.15) induce equivalences by Corollary 7.1.2.2 and Lemma 6.2.4.2.

For any uncountable regular cardinal κ , the proofs in the κ -bounded case are exactly the same.

Corollary 7.1.2.4. Any small resp. κ -bounded enhanced groupoid C admits a semicanonical extension C^+ , a functor $\gamma: C_0 \to C_1$ between small resp. κ -bounded

enhanced groupoids C_0 , C_1 with semicanonical extensions C_0^+ , C_1^+ extends to a functor $\gamma^+:C_0^+\to C_1^+$, and a morphism $\gamma_0\to\gamma_1$ between two such functors with some extensions γ_0^+ , γ_1^+ extends to a (non-unique) morphism $\gamma_0^+\to\gamma_1^+$.

Proof. Proposition 7.1.2.3, Proposition 6.3.5.9 and Lemma 6.3.5.6. \Box

Corollary 7.1.2.5. For any uncountable regular cardinal κ , the functor (7.1.1.4) is an equivalence, and any κ -bounded enhanced groupoid $C \in \operatorname{Sets}^h_{\kappa}$ extends to a small enhanced groupoid C' / Pos, uniquely up to an equivalence unique up to an isomorphism. Moreover, any functor $\gamma: C_0 \to C_1$ over $\operatorname{Pos}_{\kappa}$ between κ -bounded enhanced groupoids extends to a functor over Pos, uniquely up to an isomorphism, so that small enhanced groupoids and isomorphism classes of functors over Pos between them form a well-defined category

 $\operatorname{Sets}^h = \bigcup_{\kappa} \operatorname{Sets}^h_{\kappa}.$

We have $\operatorname{Sets}^h \cong h^W(\Delta^o \operatorname{Sets})$, and for any regular cardinal κ , this equivalence reduces to the equivalence (7.1.1.4).

Proof. Immediately follows from Proposition 7.1.2.3, Theorem 6.3.2.7 and Proposition 6.3.5.9.

7.1.3. Augmentations. Recall that for any category *I*, we have the categories Pos $//I \subset Pos^+ //I$ of I-augmented finite-dimensional left-bounded partially ordered sets described in Subsection 3.2.1, with the full subcategories $\operatorname{Pos}_{\kappa} /\!\!/ I \subset \operatorname{Pos}_{\kappa}^+ /\!\!/ I$ for any regular cardinal κ . Moreover, assume that I is equipped with a good filtration in the sense of Definition 3.2.1.2. Then we also have the categories Pos $//^{b} I$, Pos $^{+} //^{b} I$ of (3.2.1.7), (3.2.1.8) formed by restricted and locally restricted I-augmented partially ordered sets, and their versions $\operatorname{Pos}_{\kappa} /\!\!/^{\mathsf{b}} I$, $\operatorname{Pos}_{\kappa}^+ /\!\!/^{\mathsf{b}} I$. We have the full embedding $i : \operatorname{Pos} /\!\!/^{\mathsf{b}} I \to \operatorname{Pos}^+ /\!\!/^{\mathsf{b}} I$ that sends $\operatorname{Pos}_{\kappa}^{+} /\!\!/^{\mathsf{b}} I$ into $\operatorname{Pos}_{\kappa}^{+} /\!\!/^{\mathsf{b}} I$ for any κ . By our convention, for any map $J'_0 \rightarrow J_0$ of partially ordered sets, an *I*-augmented partially ordered set $\langle J, \alpha_I \rangle$, and a map $J \to J_0$, we augment the fibered product $J' = J \times_{J_0} J_0'$ via the projection $J' \to J$. With this convention, we have the augmented comma-sets J/j, $j \in J_0$. Also, for any set S and map $J \to S^{<}$, the set $J^+ = S^+ \times_{S^>} J$ is augmented, and the map (3.1.9.1) is a strict *I*-augmented map, while for any map $J \to \mathbb{N}$, so are the set I^+ and the map $I^+ \to I$ of (3.1.10.2). With this convention, Definition 7.1.1.1 and Definition 7.1.1.2 make sense for families of groupoids $\mathcal C$ over Pos // I, Pos⁺ // I and Pos_{κ} // I, Pos⁺ // I, so we can introduce the following version of Definition 7.1.1.3.

Definition 7.1.3.1. A small *I-augmented enhanced groupoid* is a small family of groupoids \mathcal{C} over Pos // bI that is additive, semiexact, and satisfies excision in the sense of Definition 7.1.1.1. For a regular cardinal κ , a κ -bounded *I-augmented enhanced groupoid* is an additive semiexact family \mathcal{C} over Pos_{κ} // bI satisfying excision such that $\|\mathcal{C}_I\| < \kappa$ for any finite *I*-augmented partially ordered set $\langle J, \alpha_J \rangle$. A semicanonical extension \mathcal{C}^+ of a small *I*-augmented enhanced groupoid resp. a κ -bounded *I*-augmented enhanced groupoid \mathcal{C} is a family of groupoids \mathcal{C}^+ over Pos⁺ // bI resp. Pos⁺ // bI that is [1]-invariant, additive, semiexact and semicontinous in the sense of Definition 7.1.1.2, and is equipped with an equivalence $i^*\mathcal{C}^+ \cong \mathcal{C}$.

Lemma 7.1.3.2. Any small I-augmented enhanced groupoid C is constant along maps anodyne in the sense of Definition 3.2.1.6, and its restriction to Pos $//_{\star}^{b}I = \text{Pos }//_{\star}I \cap \text{Pos }//_{\star}^{b}I \subset \text{Pos }//_{\star}^{b}I$ is semiexact with respect to the co-standard CW-structure of Example 6.1.1.7. Any semicanonical extension C^{+} of C is constant along +-anodyne maps, and its restriction to $\text{Pos}^{+}//_{\star}^{b}I$ is semiexact with respect to the co-standard CW-structure. For any uncountable regular cardinal κ , the same holds for κ -bounded augmented enhanced groupoids and κ -anodyne resp. κ^{+} -anodyne maps.

Proof. For the first claim, use the same argument as in Lemma 7.1.1.6, with Proposition 3.1.9.7 replaced by Proposition 3.2.1.9, and with the perfect framing on Pos // b I resp. Pos $_\kappa$ // b I provided by Example 6.2.2.6. For the second claim, as in Corollary 7.1.1.8, note that the barycentric subdivision functor B_I of Definition 3.2.1.4 sends co-standard pushout squares to standard pushout squares, and the map $\xi: B_I(J) \to J$ is anodyne resp. +-anodyne for any $J \in \text{Pos}$ // I resp. Pos $^+$ // I, and κ -anodyne resp. κ^+ -anodyne if $|J| < \kappa$.

Corollary 7.1.3.3. A semicanonical extension C^+ of a small or κ -bounded I-augmented enhanced groupoid C satisfies excision.

Proof. Same as Corollary 7.1.1.7.

Now assume that I is a cellular Reedy category in the sense of Definition 4.3.1.7, with the good filtration given by the degree filtration. Then for any I-simplicial set $X \in I^o \Delta^o$ Sets, we have the corresponding discrete fibration $I\Delta X \to I \times \Delta$, and $I\Delta X$ is a cellular Reedy category by Lemma 4.3.1.8, finite-dimensional if so is X. In this case, we have the anodyne resolution $Q(I\Delta X)$ equipped with the projection $q_{I\Delta X}$ of (4.3.3.5). Composing $q_{I\Delta X}$ with the projection $I\Delta X \to I$ turns $Q(I\Delta X)$ into a restricted finite-dimensional I^o -augmented partially ordered set. For any map $f: X \to X'$ in $I^o_f \Delta^o_f$ Sets, we

have the corresponding map $Q(f): Q(I\Delta X) \to Q(I\Delta X')$, and together with the maps (4.3.3.6), this defines a map in Pos // b I, so that we have a functor

(7.1.3.1)
$$Q_I: I_f^o \Delta_f^o \operatorname{Sets} \to \operatorname{Pos} /\!\!/^{\mathsf{b}} I, \qquad X \mapsto Q(I \Delta X).$$

As in (7.1.2.13), we extend it to $I^{o}\Delta^{o}$ Sets by defining a functor

(7.1.3.2)
$$Q_{I+}: I^o \Delta^o \operatorname{Sets} \to \operatorname{Pos}^+ /\!/^b I,$$

$$Q_{I+}(X) = \{j \times n | j \in Q_I(\operatorname{sk}_n X)\} \subset Q_I(X) \times \mathbb{N},$$

where sk. X is the skeleton filtration for the cellular Reedy category $I \times \Delta$, and we have a map

$$(7.1.3.3) Q_{I+}(X) \rightarrow Q_{I}(X) = \operatorname{colim}_{n} Q_{I}(\operatorname{sk}_{n} X)$$

that is +-anodyne for $X \in I_f^o \Delta_f^o$ Sets. Conversely, applying the functor (7.1.1.2) pointwise, as in (4.1.2.5), we obtain a functor

(7.1.3.4)
$$N_I : \operatorname{Pos}^+ /\!/^{\mathsf{b}} I \to I^o \Delta^o \operatorname{Sets},$$

$$N_I(J)(i \times [n]) = N(\mathsf{E}_I(J)(i))([n]) = N(i \setminus J)([n])$$

for any $i \in I$ and $[n] \in \Delta$, where E_I is the functor (3.2.1.3). If $|I| < \kappa$ for some uncountable regular cardinal κ , then (7.1.3.1), (7.1.3.2) and (7.1.3.4) restrict to functors between $I_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$, $I^o \Delta^o \operatorname{Sets}_{\kappa}$ and $\operatorname{Pos}_{\kappa} /\!\!/^b I$, $\operatorname{Pos}_{\kappa}^+ /\!\!/^b I$. Moreover, for any $X \in I_f^o \Delta_f^o \operatorname{Sets}$, the projection $I \Delta X \to I$ is a fibration, so that for any $i \in I$, the projection $q_{I \Delta X}$ induces a functor

$$(7.1.3.5) q_i: i \setminus Q_I(X) \to \Delta X(i),$$

where $X(i) \in \Delta_f^o$ Sets is given by $X(i)([n]) = X(i \times [n])$. As in the absolute case, q_i gives rise to a map $N(i \setminus Q_I(X)) \to X(i)$, and these maps are functorial in i, thus glue together to a map

$$(7.1.3.6) a(X): \mathsf{N}_I(\mathsf{Q}_I(X)) \to X.$$

For the same reasons as in the absolute case, this map is functorial with respect to X. Conversely, for any I-augmented partially ordered set $\langle J, \alpha \rangle$, we have the identification

(7.1.3.7)
$$I\Delta N_I(J) \cong I \setminus_{\alpha^o \circ \mathcal{E}_+}^o \Delta J,$$

where the twisted comma-category of Example 2.3.3.14 is taken with respect to the composition

$$(\Delta J)^o \cong \Delta_{\perp} J \xrightarrow{\xi_{\perp}} J^o \xrightarrow{\alpha^o} I^o$$

of the functor (4.2.1.9) and the functor $\alpha^o: J^o \to I^o$. Then the composition

$$\mathsf{Q}_I(\mathsf{N}_I(J)) \xrightarrow{q_{I\Delta\mathsf{N}_I(J)}} I\Delta\mathsf{N}_I(J) \cong I \setminus_{\alpha^o \circ \xi_+}^o \Delta J \xrightarrow{\tau} \Delta J \xrightarrow{\tau} J$$

gives an I-augmented map

(7.1.3.8)
$$a(J): Q_I(N_I(J)) \to J$$

functorial with respect to $\langle J, \alpha \rangle \in \text{Pos } /\!\!/ I$, and we have

(7.1.3.9)
$$a(N_I(J)) = N_I(a(J)),$$

an augmented version of (7.1.2.10). We also obtain functorial maps

(7.1.3.10)
$$a_{+}(X): \mathsf{N}_{I}(\mathsf{Q}_{I+}(X)) \to X, \qquad X \in I^{o}\Delta^{o} \operatorname{Sets}$$
$$a_{+}(J): \mathsf{Q}_{I+}(\mathsf{N}_{I}(J)) \to J, \qquad J \in \operatorname{Pos}^{+} /\!\!/ I$$

by composing (7.1.3.6) and (7.1.3.8) with (7.1.3.3).

- **Lemma 7.1.3.4.** (i) The functor (7.1.3.4) sends restricted I-augmented partially ordered sets to finite-dimensional I-simplicial sets. Moreover, it commutes with coproducts, sends left-closed embeddings to injective maps, and standard pushout squares in Pos // I to pushout squares in $I_f^0 \Delta_f^0$ Sets. For any uncountable regular cardinal $\kappa > |I|$ and any map f in Pos $_{\kappa}$ // b I that is κ -anodyne in the sense of Definition 3.2.1.6, $N_I(f)$ is a weak equivalence, and the same holds for any map f in Pos $_{\kappa}^+$ // b I that is κ^+ -anodyne.
 - (ii) For any uncountable regular $\kappa > |I|$ and any $\langle J, \alpha \rangle \in \operatorname{Pos}_{\kappa} /\!/^b I$ such that $\alpha : J \to I$ factors through $I_L \subset I$, the map (7.1.3.8) is κ -anodyne, and for any $\langle J, \alpha \rangle \in \operatorname{Pos}_{\kappa}^+ /\!/^b I$ satisfying the same assumption, the map $a_+(J)$ of (7.1.3.10) is κ^+ -anodyne.
- (iii) The functor (7.1.3.1) commutes with coproducts, sends injective maps to right-closed embeddings, and standard pushout squares in $I_f^0 \Delta_f^0$ Sets to co-standard pushout squares in Pos // b I. Moreover, for any uncountable regular $\kappa > |I|$, it sends κ -anodyne maps of Definition 6.3.4.1 to κ -anodyne maps. The functor (7.1.3.2) commutes with coproducts, sends injective maps to right-closed embeddings, κ^+ -anodyne maps of Definition 6.3.5.1 to κ^+ -anodyne maps, and standard pushout squares in $I^0 \Delta^0$ Sets to co-standard pushout squares in $I^0 \Delta^0$ Sets to co-standard pushout squares in $I^0 \Delta^0$
- (iv) For any $X \in I_f^o \Delta_f^o$ Sets, the map (7.1.3.6) is a weak equivalence, and for any $X \in I^o \Delta^o$ Sets, so is the map $a_+(X)$ of (7.1.3.10).

Proof. For (i), note that for any $\langle J, \alpha \rangle \in \text{Pos } /\!/^{\flat} I$, a simplex in $N_I(J)(i)$ is explicitly given by a map $f:[n] \to J$ and a map $g:i \to \alpha(f(0))$, and if the simplex is non-degenerate, then f is injective, so that $n \leq \dim J$, and g is in L, so that $\deg(i) \leq \deg(\alpha(f(0)))$, and the latter is bounded by a constant since $\langle J, \alpha \rangle$ is restricted. This proves the first claim, and the rest of the argument is exactly the same as in Lemma 7.1.1.10 (combined with Lemma 6.2.4.2 in the +-anodyne case).

For (ii), note that under our assumptions, the twisted comma-category of (7.1.3.7) is regular by Lemma 4.3.2.5, and then $Q_I(N_I(J))$ is given by (4.3.2.1). Explicitly, this reads as

$$(7.1.3.11) Q_I(\mathsf{N}_I(J)) \cong B_I^o(I \setminus_{\mathcal{E}_+}^o B_I(J)),$$

where the twisted comma-category $I \setminus_{\tilde{\xi}_{\perp}}^{o} B_{I}(J)$ is fibered over $B_{I}(J)$ with fibers I_{L}/j , $j \in J$ that are partially ordered sets by Definition 4.3.1.7 (i), so that $I \setminus_{\tilde{\xi}_{\perp}}^{o} B_{I}(J)$ is a partially ordered set. Then the map (7.1.3.8) factors as

$$B_I^o(I \setminus_{\mathcal{E}_+}^o B_I(J)) \xrightarrow{\xi_\perp} I \setminus_{\mathcal{E}_+}^o B_I(J) \xrightarrow{\tau} B_I(J) \xrightarrow{\xi} J,$$

the map ξ is κ -anodyne, the map ξ_{\perp} is κ -anodyne by Lemma 3.2.1.7, and the fibration τ is κ -anodyne by Lemma 3.2.1.8 (ii). This finishes the proof for (7.1.3.8); to deduce the statement for (7.1.3.10), use Lemma 3.1.10.3.

For (iii), for (7.1.3.1), use the same argument as in Lemma 7.1.2.1 to prove all the claims but the last, and reduce the last one to the case when f is an elementary simplex projection $\Delta_{i,n} \to \Delta_{i,0}$ for some $i \in I$ and $n \geq 0$. Then for any integer $m \geq 0$, we have $\Delta_{i,m} = \mathsf{N}_I([m]_i)$, where $[m]_i \in \mathsf{Pos} /\!\!/^b I$ is [m] augmented via the constant functor $[m] \to I$ with value i, and $[m]_i$ trivially satisfies the assumptions of (ii). Since the projection $[n]_i \to [0]_i$ is obviously κ -anodyne for any κ , we are done by (ii). To deduce the claim for (7.1.3.2), use Lemma 4.3.3.9.

Finally, for (iv), the same argument as in the proof of Corollary 7.1.2.2 reduces us to the case $X = \Delta_{i,n} = N_I([n]_i)$, $i \in I$, $n \geq 0$, and then since $[n]_i$ satisfies the assumptions of (ii), we are done by (7.1.3.9), (ii), (i), and Lemma 6.2.4.2 for $a_+(X)$.

Lemma 7.1.3.5. For any $J \in \text{Pos} // I$ and left-closed $J_0 \subset J$, the embedding $Q_I(N_I(J_0)) \to a(J)^{-1}(J_0) \subset Q_I(N_I(J))$ is left-reflexive in Pos // I.

Proof. Let $\chi: I\Delta N_I(J) \to [1]$ be characteristic Reedy functor of the left-closed embedding $I\Delta N_I(J_0) \to I\Delta N_I(J)$, and let $Q(\chi): Q_I(N_I(J)) \to V$ be the induced

cofibration of Lemma 4.3.3.7. Then
$$Q_I(N_I(J_0)) \cong Q_I(N_I(J))_0$$
, and $a(J)^{-1}(J_0) \cong Q_I(N_I(J))/0$.

Lemma 7.1.3.4 (i) is an I-augmented version of Lemma 7.1.1.10, and just as in the absolute case, it immediately shows that for any cellular I with $|I| < \kappa$ and I-simplicial set $X \in I^o \Delta^o$ Sets $_\kappa$, $N_I^* \mathcal{H}_X$ is a κ -bounded I-augmented enhanced groupoid, so that as in (7.1.1.4), we have a functor

$$(7.1.3.12) h^{W}(I^{o}\Delta^{o}\operatorname{Sets}_{\kappa}) \to \operatorname{Sets}_{\kappa}^{h}(I), X \mapsto \mathsf{N}_{I}^{*}\mathcal{H}_{X},$$

where $\operatorname{Sets}_{\kappa}^h(I)$ stands for the category of κ -bounded I-augmented enhanced groupoids and isomorphism classes of functors over $\operatorname{Pos}_{\kappa}/\!\!/^b I$. Ideally, we would like to show that (7.1.3.12) is an equivalence, just like in the absolute case, but this is not possible because of the additional assumption we have to impose in Lemma 7.1.3.4 (ii). This needs to be taken care of by imposing an assumption on the cellular Reedy category I.

Proposition 7.1.3.6. Assume that a cellular Reedy category I is directed (that is, $I = I_L$) and Hom-finite. Then for any uncountable regular cardinal κ such that $|I| < \kappa$, the functor (7.1.3.12) is an equivalence of categories. Moreover, in this case, for any regular cardinal $\kappa' \ge \kappa$, any κ' -bounded I-augmented enhanced groupoid C_{κ} extends to a small I-augmented enhanced groupoid C_{κ} any functor $\gamma_{\kappa'}: C_{\kappa'} \to C'_{\kappa'}$ over $\operatorname{Pos}_{\kappa'}$ // b I extends to a functor $\gamma: C \to C'$ over Pos // b I, and a morphism $\gamma_{\kappa'} \to \gamma'_{\kappa'}$ extends to a (non-unique) morphism $\gamma \to \gamma$. In particular, C is unique up to an equivalence unique up to an isomorphism, so that small I-augmented enhanced groupoids and isomorphisms classes of functors over Pos // b I form a well-defined category

$$\operatorname{Sets}^h(I) \cong \bigcup_{\kappa' > \kappa} \operatorname{Sets}^h_{\kappa'}(I),$$

and the functors (7.1.3.12) give an equivalence $h^W(I^o\Delta^o\operatorname{Sets})\cong\operatorname{Sets}^h(I)$. Finally, any small I-augmented enhanced groupoid $\mathcal C$ admits a semicanonical extension $\mathcal C^+$, any functor $\gamma:\mathcal C_0\to\mathcal C_1$ between small I-augmented enhanced groupoids extends to a functor $\gamma^+:\mathcal C_0^+\to\mathcal C_1^+$, and any morphism $\gamma_0\to\gamma_1$ between such functors extends to a (non-unique) morphism $\gamma_0^+\to\gamma_1^+$.

Proof. The assumptions on I contain the assumptions of Theorem 6.3.2.13, and since $I = I_L$, every $J \in \operatorname{Pos}_{\kappa} /\!\!/ I$ trivially satisfies the assumptions of Lemma 7.1.3.4 (iv) since $I = I_L$. As in Proposition 7.1.2.3, Corollary 7.1.2.4 and Corollary 7.1.2.5, everything then directly follows from Lemma 7.1.3.2, Lemma 7.1.3.4, Theorem 6.3.2.13 and Proposition 6.3.5.9.

Remark 7.1.3.7. Under the assumptions of Proposition 7.1.3.6, all *I*-augmented left-bounded partially ordered sets are automatically locally restricted, so that Pos^+ // $^bI = \operatorname{Pos}^+$ // I . If I is finite-dimensional in the sense of Definition 4.3.2.8, then we also have Pos // $^bI = \operatorname{Pos}$ // I .

7.2. Segal spaces.

7.2.1. Segal families. While it might be possible to generalize Proposition 7.1.3.6 to arbitrary cellular Reedy categories, it is not easy. Therefore we now concentrate on one specific category, and only consider families of groupoids satisfying a certain condition. The category is Δ itself, and Δ -simplicial sets $X \in \Delta^o \Delta^o$ Sets are usually called *bisimplicial sets*. We keep this usage but we need to distinguish between the two factors in the product $\Delta \times \Delta$. We will call the first one the *Reedy factor*, since Δ here plays the role of a cellular Reedy category I, and we will call the second one the *simplicial factor*. The Reedy factor will always come first. For any $n, m \geq 0$, we will denote by $\Delta_{n,m} = \Delta_{[n],m} = \Delta_n \boxtimes \Delta_m$ the corresponding elementary bisimplex, where per our convention, the first integer n corresponds to the Reedy factor, and the second integer m corresponds to the simplicial one. We also have two functors

(7.2.1.1)
$$L = l^*, R = r^* : \Delta^o \operatorname{Sets} \to \Delta^o \Delta^o \operatorname{Sets},$$

where $l, r: \Delta^o \times \Delta^o \to \Delta^o$ are the projections onto the Reedy resp. simplicial factor, and for any $X, Y \in \Delta^o$ Sets, we denote $X \boxtimes Y = L(X) \times R(Y)$. As in Example 6.3.2.12, the functor R sends maps in the class C resp. W to maps in C resp. W, but specifically in the case $I = \Delta$, it also sends maps in F to maps in F, so the induced functor $R^h: h^W(\Delta^o \operatorname{Sets}) \to h^W(\Delta^o \Delta^o \operatorname{Sets})$ has both a left and a right-adjoint

$$(7.2.1.2) R_!^h = \mathsf{hocolim}_{\Delta^o}, R_*^h = \mathsf{holim}_{\Delta^o} : h^W(\Delta^o \Delta^o \operatorname{Sets}) \to h^W(\Delta^o \operatorname{Sets})$$

provided by the Quillen Adjunction Theorem 5.3.1.1 (where both $holim_{\Delta^0}$ and $hocolim_{\Delta^0}$ in (7.2.1.2) are taken in the Reedy direction). Since $\Delta \times \Delta$ is a cellular Reedy category, any bisimplicial set X carries the skeleton filtration sk, X of (6.3.2.3), and we can also take skeletons only along the Reedy resp. simplicial factor; we denote those by sk. X resp. sk. X. For any bisimplicial set X, we let $X^{\iota} = (\iota \times id)^* X$, where the involution $\iota : \Delta \to \Delta$, $[n] \mapsto [n]^0$ acts via the Reedy factor.

Our condition on families is a version of the Segal condition of Subsection 4.1.3. Recall that for any $n \ge l \ge 0$, the cocartesian square (3.1.7.9) induces

a map (4.1.3.2) of simplicial sets. If l = 0 or l = n, this map is an isomorphism, but if n > l > 0, it is not.

Definition 7.2.1.1. A family of groupoids \mathcal{C} over the category $\Delta_f^o \Delta_f^o$ Sets or its full subcategory $\Delta_f^o \Delta_f^o$ Sets $_{\kappa} \subset \Delta_f^o \Delta_f^o$ Sets for some regular cardinal κ is a *Segal family* iff for any integer n > l > 0, with the corresponding map b_n^l of (4.1.3.2), the family \mathcal{C} is stably constant along the map $L(b_n^l)$ in the sense of Definition 6.3.5.13.

We recall that explicitly, "stably constant" in Definition 7.2.1.1 means that C is constant along $b_n^l \times \operatorname{id}_{R(Y)}$ for any finite simplicial set $Y \in \Delta^o$ Sets.

Example 7.2.1.2. For any model category C, Reedy-fibrant simplicial object $X \in \Delta^o C$, and integers n > l > 0, the map

(7.2.1.3)
$$X([n]) \to X([l]) \times_{X([0])} X([n-l])$$

induced by (3.1.7.9) is in F, and X is a homotopy Segal object if all the maps (7.2.1.3) are also in W. Say that a bisimplicial set X is a Segal space if all the maps (7.2.1.3) are trivial Kan fibrations. Then a fibrant X is a Segal space iff the corresponding represented family \mathcal{H}_X is a Segal family in the sense of Definition 7.2.1.1. We note that since the involution $\iota: \Delta \to \Delta$ sends squares (3.1.7.9) to squares of the same form, a bisimplicial set X is a Segal space if and only if so is X^{ι} .

Remark 7.2.1.3. While we do allow Segal spaces $X \in \Delta^o \Delta^o$ Sets not to be fibrant, this notion in such a generality should be taken with a grain of salt. Among other things, it is not invariant under weak equivalences — in fact, as we shall see, *any* bisimiplicial set is weakly equivalent to a Segal space.

Example 7.2.1.4. If $\mathcal{C} \to \Delta_f^o \Delta_f^o$ Sets is exact, so that as in Remark 6.3.3.5, $\mathcal{C} \cong Y_*Y^*\mathcal{C}$ is completely defined by its restriction $Y^*\mathcal{C} \to \Delta \times \Delta$, and constant along weak equivalences, so that $Y^*\mathcal{C}$ is constant along the simplicial factor, then \mathcal{C} is a Segal family if and only if $Y^*\mathcal{C}$ is a Segal category in the sense of Definition 4.2.3.1.

We will need an equivalent reformulation of Definition 7.2.1.1 in the spirit of Lemma 4.1.3.1. Firstly, for any $m \ge 0$ and $n \ge l \ge 0$, we have the natural embedding

$$(7.2.1.4) v_{n,m}^l: \mathsf{V}_{n,m}^l \hookrightarrow \Delta_{n,m},$$

where as in (6.3.2.4), we denote

$$(7.2.1.5) V_{n,m}^l = (V_n^l \boxtimes \Delta_m) \sqcup_{V_n^l \boxtimes S_m} (\Delta_n \boxtimes S_m) \subset \Delta_{n,m} = \Delta_n \boxtimes \Delta_m.$$

The map (7.2.1.4) is essentially the horn embedding (6.3.2.6) for $I = \Delta$, but along the Reedy factor rather than the simplicial one. Secondly, for any map $\chi: J \to J'$ of partially ordered sets, we have the map (4.1.3.5). Moreover, if $J \in \Delta^o$ PoSets is a simplicial partially ordered set, then we can take its nerve pointwise and obtain functors

(7.2.1.6)
$$N^L, N^R : \Delta^o \text{ PoSets} \to \Delta^o \Delta^o \text{ Sets},$$

where the nerve is taken along the Reedy resp. simplicial factor. For any $J: \Delta^o \to \text{PoSets}$, we denote $J^\iota = \iota \circ J$, so that $J^\iota([n]) = J([n])^o$, $[n] \in \Delta$, and then we tautologically have $N^L(J)^\iota \cong N^L(J^\iota)$. For any $J \in \Delta^o$ PoSets, the functor (4.2.1.7) induces a functor

(7.2.1.7)
$$\Delta \Delta N^{R}(J) \to \overrightarrow{\Delta} J$$

whose target is the category (3.2.1.4) corresponding to $J: \Delta^o \to \text{PoSets}$, and similarly for N^L . Now, if J is equipped with a map $\chi: J \to J'$ to a partially ordered set J' understood as a constant simplicial partially ordered set, the map (4.1.3.5) induces a map

$$(7.2.1.8) a_{\chi}^{\diamond} : \operatorname{colim}_{\mathsf{tw}(J')} N^{L}((J/J')_{f}) \to N^{L}(J/J')$$

of bisimplicial sets. For any regular cardinal κ , the functors (7.2.1.6) sends Δ^o PoSets $_\kappa$ into $\Delta^o\Delta^o$ Sets $_\kappa$ but controlling the dimension needs more care.

Definition 7.2.1.5. A simplicial partially ordered set J is *globally finite-dimensional* if its underlying simplicial set is finite-dimensional, and we have $\dim J([m]) \leq d$ for all $[m] \in \Delta$ and some fixed constant $d \geq 0$ independent of [m]. Moreover, $J \in \Delta^o$ PoSets is *globally left-bounded* if it admits a height function $\operatorname{ht}: J \to \mathbb{N}$ with globally finite-dimensional comma-fibers $J/_{\operatorname{ht}} n$, $n \in \mathbb{N}$, where \mathbb{N} is considered as a constant simplicial partially ordered set, and J is *globally right-bounded* if J^i is globally left-bounded, so that J admits a co-height function $\operatorname{ht}^i: J \to \mathbb{N}^o$ with globally finite-dimensional comma-fibers $n \setminus_{\operatorname{ht}^i} J$, $n \in \mathbb{N}^o$.

In particular, if $J \in \Delta^o$ PoSets is globally finite-dimensional, J factors through Pos, and we denote by Δ^o_{fd} Pos $\subset \Delta^o_f$ Pos the full subcategory spanned by such J. If J is globally left-bounded, it factors through Δ^o Pos⁺, and we let Δ^o_{d+} Pos⁺ $\subset \Delta^o$ Pos⁺ be the full subcategory spanned by such J, and dually, globally right-bounded J factors through Pos⁻, and we let Δ^o_{d-} Pos⁻ $\subset \Delta^o$ Pos⁻ be the full subcategory spanned by such J. Note that all inclusions is strict.

Example 7.2.1.6. For any partially ordered set J, the simplicial expansion $\Delta^{\natural}J$ with respect to the class of all maps corresponds to a simplicial partially ordered set $N^{\natural}(J)$ by the Grothendieck construction, and the underlying simplicial set of $N^{\natural}(J)$ is the nerve N(J). If dim $J < \infty$, then N(J) is also finite-dimensional, and $N^{\natural}(J)([m]) = \operatorname{Pos}([m], J)$ is finite-dimensional for any [m], so that $N^{\natural}(J) \in \Delta^o_f$ Pos. However, $N^{\natural}(J) \in \Delta^o_{fd}$ Pos only if dim J = 0. Already for J = [1], we have $N^{\natural}(J)([m]) \cong [m+1]$, and $N^{\natural}([1])$ is not even left or right-bounded: as soon as a subset $J \subset N^{\natural}([1])$ contains $N^{\natural}([1])([1]) \cong [2]$, it contains the whole $N^{\natural}([1])$.

Lemma 7.2.1.7. For any $J \in \Delta_f^o$ PoSets and integer $d \geq 0$, both $\operatorname{sk}_d^L N^L(J)$ and $\operatorname{sk}_d^R N^R(J)$ are in $\Delta_f^o \Delta_f^o$ Sets, and if J is globally finite dimensional, then $N^L(J) = \operatorname{sk}_d^L N^L(J)$, $N^R(J) = \operatorname{sk}_d^R N^R(J)$ for some $d \geq 0$, so that the nerve functors (7.2.1.6) send Δ_{fd}^o Pos into $\Delta_f^o \Delta_f^o$ Sets.

Proof. The proofs for N^L and N^R are identical, so let us only consider N^L . For any $d \geq 0$, let $i_d : \Delta \to \Delta \times \Delta$ be the embedding onto $[d] \times \Delta$. Then $i_d^*N^L(J) \cong J^{[d]}$ is a subset of J^d , with the embedding $J^{[d]} \to J^d$ given by restriction to the discrete set $\{0,\ldots,d\} \subset [d]$. Therefore

$$\dim \operatorname{sk}_d^L N^L(J) = \max\{p \le d | \dim i_p^* N^L(J)\} \le d \dim U(J),$$

where $U(J) \in \Delta_f^o$ Sets is the underlying simplicial set of J. This proves the first claim. For the second, note that if dim $J([m]) \le d$ for all $[m] \in \Delta$ and some fixed $d \ge 0$, then $N^L(J) \cong \operatorname{sk}_d^L N^L(J)$.

Proposition 7.2.1.8. Assume given an additive semiexact family of groupoids C over $\Delta_f^o \Delta_f^o$ Sets or $\Delta_f^o \Delta_f^o$ Sets_{κ} $\subset \Delta_f^o \Delta_f^o$ Sets constant along anodyne resp. κ -anodyne maps of Definition 6.3.4.1. Then the following conditions are equivalent.

- (i) The family C is a Segal family in the sense of Definition 7.2.1.1.
- (ii) For any n > l > 0, $m \ge 0$, C is stably constant along the map (7.2.1.4).
- (iii) For any $J' \in \text{Pos } resp. \ \text{Pos}_{\kappa} \ and \ J \in \Delta_{fd}^o \ \text{Pos } resp. \ \Delta_{fd}^o \ \text{Pos}_{\kappa} \ equipped \ with a map \ \chi : J \to J', C \ is \ constant \ along \ the map \ a_{\chi}^{\diamond} \ of \ (7.2.1.8).$
- (iv) For any $J \in \text{Pos } resp. \ \text{Pos}_{\kappa}$ and a map $\chi : J \to [1]$, \mathcal{C} is stably constant along the map $L(a_{\chi})$, where a_{χ} is the map (4.1.3.5).

Proof. Let $W(\mathcal{C})$ be the class of injective maps w in $\Delta_f^o \Delta^o$ Sets f resp. $\Delta_f^o \Delta^o$ Sets $^f_\kappa$ such that \mathcal{C} is stably constant along w. Then $W(\mathcal{C})$ is saturated, and closed under coproducts and pushouts by Lemma 6.3.4.6. The same induction as in Lemma 4.1.3.1 then shows that if \mathcal{C} is a Segal family, it is stably constant along the horn extensions $L(v_n^l)$, n>l>0 in the Reedy direction, and an additional induction on the skeleta of an elementary simplex Δ_m shows that it is also stably constant along $v_{n,m}^l$, so that (i) implies (ii). Next, note that any $Y \in \Delta_f^o$ Sets with discrete order is a globally finite-dimensional simplicial partially ordered set, and if for some map $\chi: J \to J'$ in Pos, we let $p: Y \times J \to J'$ be the projection, then $L(a(\chi)) \times \mathrm{id}_{R(Y)} = a^{\diamond}(\chi \circ p)$, so that (iii) implies (iv). Since (iv) implies (i) by the same argument as in Lemma 4.1.3.1, it remains to show that (ii) implies (iii).

To do this, it suffices to show that the map a_χ^\diamond of (7.2.1.8) is a composition of pushouts of coproducts of horn embeddings (7.2.1.4). By induction on m, we may assume that this is already proved for $\operatorname{sk}_{m-1}^R(a_\chi^\diamond)$, and we need to prove it for $\operatorname{sk}_m^R(a_\chi^\diamond)$. Subsets in $\operatorname{sk}_m^R N^L(J/J')$ that contain $\operatorname{sk}_{m-1}^R N^L(J/J')$ correspond bijectively to left-closed subsets in B(J([m])/J') that contain the left-closed subset $B(J([m])/J')^\dagger \subset B(J([m])/J')$ of degenerate bisimplices. Explicitly, any bisimplex in B(J([m])/J') is represented by an injective map $i:[n]\to J([m])/J'$, and it is degenerate iff for some m'< m, the map i factors through the map $J([m'])/J'\to J([m])/J'$ corresponding to a surjective map $[m]\to [m']$. Since J' is constant in the simplicial direction, one can equivalently require that the factorization exists for $\sigma\circ i:[n]\to J([m])$.

Now, as in Lemma 4.1.3.1, the barycentric subdivision B(J([m])/J') has a filtration $B(J([m])/J')_d^k$, and we need to show that if we enlarge its terms by replacing $B(J([m])/J')_d^k$ with the union $B(J([m])/J')_d^k \cup B(J([m])/J')^\dagger$, then the complements $\overline{B}(J([m])/J')_d^k$ still have the form (4.1.3.9). In other words, we have to show that for any term [1] in the right-hand side of the decomposition (4.1.3.9) for $\overline{B}(J([m])/J')_d^k$, bisimplices corresponding to both $0,1 \in [1]$ are degenerate or non-degenerate at the same time. But these bisimplices are represented by injective maps $i_0: [d] \to J([m])/J'$ and $i_1: [d+1] \to J([m])/J'$ described in detail in the proof of Lemma 4.1.3.1, and in particular, the composition $\sigma \circ i_1: [d+1] \to J([m])$ is equal to $\sigma \circ i_0 \circ p$ for some map $p: [d+1] \to [d]$. Therefore the factorization condition for $\sigma \circ i_0$ is indeed equivalent to the same condition for $\sigma \circ i_1$.

Corollary 7.2.1.9. Let $X \in \Delta_f^o \operatorname{Sets}_{\kappa}$ be a simplicial set, and let C be an additive semiexact Segal family of groupoids over $\Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$ constant along κ -anodyne maps of

Definition 6.3.4.1. Let $x: \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa} \to \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$ be the functor $Y \mapsto L(X) \times Y$. Then $x^*\mathcal{C}$ is also an additive semiexact Segal family constant along κ -anodyne maps.

Proof. We need to check that $x^*\mathcal{C}$ is a Segal family, the rest is automatic. As in the proof of Proposition 7.2.1.8, let $W(\mathcal{C})$ be the class of injective maps f in $\Delta^o\Delta_f^o$ Sets $_\kappa$ such that \mathcal{C} is stably constant along f. Then again, $W(\mathcal{C})$ is saturated and closed under coproducts and pushouts by Lemma 6.3.4.6, and by Proposition 7.2.1.8 (iv), it suffices to check that for any $J \in \operatorname{Pos}_\kappa$ and $\chi: J \to [1]$, $W(\mathcal{C})$ contains $L(\operatorname{id}_X \times a_\chi)$. To simplify notation, denote the source and target of the map a_χ by Y and Y', and more generally, let W be the class of injective maps $f: Z \to Z'$ in Δ_f^o Sets $_\kappa$ such that the induced map $(Z' \times Y) \sqcup_{Z \times Y} (Z \times Y') \to Z' \times Y'$ is in $L^*W(\mathcal{C})$. Then W is also saturated and closed under coproducts and pushouts, and we need to check that the tautological embedding $\varnothing \to X$ is in W. By (4.3.2.3), it then suffices to show that W contains all the sphere embeddings (4.1.1.15), and by induction on dimension, it further suffics to show that it contains the embeddings $\varnothing \to \Delta_n$, $n \ge 0$. In other words, we may assume that $X = \Delta_n$. But then X = N([n]), and $\operatorname{id}_X \times a_\chi = a_{\chi'}$, where χ' is the projection $[n] \times J \to J \to [1]$.

7.2.2. Nerves and subdivisions. Our version of Proposition 7.1.2.3 for Segal families uses biordered sets of Section 3.2, and we start by constructing versions of the functors (7.1.1.2), (7.1.2.5) relating bisimplicial sets and biordered sets. By definition, the category Δ comes equipped with the tautological embedding $F: \Delta \to \operatorname{Pos} \subset \operatorname{PoSets}$, F([n]) = [n] that satisfies all the assumptions of Lemma 3.2.3.4. Moreover, the good filtration on Δ induced by F coincides with the good filtration that is the part of the Reedy structure: $\Delta \leq_n$ consists exactly of $[m] \in \Delta$ with $\dim F([m]) = m \leq n$. Using this embedding F and the functors (3.2.2.2), we can define the nerve functors

(7.2.2.1)
$$N_{\diamond} : BiPoSets \rightarrow \Delta^{o}\Delta^{o} Sets, \overline{N}_{\diamond} : \overline{BiPoSets} \rightarrow \Delta^{o}\Delta^{o} Sets$$

by setting

$$N_{\diamond}(J)([n] \times [m]) = BiPoSets(L([n]) \times R([m]), J),$$

 $\overline{N}_{\diamond}(J)([n] \times [m]) = \overline{BiPoSets}(L([n]) \times R([m]), J),$

and the embedding ρ : $\overline{\text{BiPoSets}} \rightarrow \text{BiPoSets}$ induces a morphism

$$(7.2.2.2) \overline{\mathsf{N}}_{\diamond} \to \mathsf{N}_{\diamond} \circ \rho.$$

One can also construct the nerve functors (7.2.2.1) in two steps, and there are two ways to do it: one can start with either the Reedy or the simplicial direction

in bisimplicial sets. Thus on one hand, we have natural isomorphisms

$$(7.2.2.3) N_{\diamond} \cong N^R \circ \mathcal{E}_F, \overline{N}_{\diamond} \cong N^R \circ \overline{\mathcal{E}}_F,$$

where N^R is one of the nerve functors (7.2.1.6), $\overline{\mathcal{E}}_F$ is the functor (3.2.3.3) associated to the embedding $F: \Delta \to \operatorname{Pos}$, and $\mathcal{E}_F: \operatorname{BiPoSets} \to \Delta^o\operatorname{PoSets}$ is its version given by

(7.2.2.4)
$$\mathcal{E}_F(J)([n]) = \text{BiPoSets}(L([n]), J)^l, \quad J \in \text{BiPoSets}, [n] \in \Delta.$$

In this approach, the map (7.2.2.2) is induced by a natural map

$$(7.2.2.5) \overline{\mathcal{E}}_F \to \mathcal{E}_F \circ \rho$$

corresponding to the embedding $\rho : \overline{\text{BiPoSets}} \to \text{BiPoSets}$. On the other hand, we also have

$$(7.2.2.6) N_{\diamond} \cong N^{L} \circ \mathsf{E}_{F},$$

where $E_F : BiPoSets \rightarrow \Delta^o PoSets$ and $\overline{E}_F : \overline{BiPoSets} \rightarrow \Delta^o PoSets$ are given by

(7.2.2.7)
$$E_F(J)([m]) = BiPoSets(R([m]), J),$$

$$\overline{E}_F(J)([m]) = BiPoSets(R([m]), J)^r$$

for any $J \in \text{BiPoSets}$, $[m] \in \Delta$, and N^L is the other nerve functor of (7.2.1.6). We note that for any $J \in \text{BiPoSets}$, we have a natural identification

$$(7.2.2.8) \overline{\mathsf{E}}_F(J^o) \cong \overline{\mathcal{E}}_F(J)^{\iota},$$

where $\overline{\mathcal{E}}_F(J)^{\iota}([n]) = \overline{\mathcal{E}}_F(J)([n])^{o}$, $[n] \in \Delta$, and J^{o} is J with the opposite biorder.

Lemma 7.2.2.1. The functors \overline{N}_{\diamond} and N_{\diamond} send coproducts to coproducts, left-closed and right-closed full embeddings to injective maps, and standard and co-standard pushout squares to standard pushout squares.

Proof. For any connected partially ordered ser I, and in particular for I = [n], $n \ge 0$, $\overline{\text{BiPoSets}}(L(I), -)$ and $\overline{\text{BiPoSets}}(L(I), -)$ obviously preserve coproducts, and send left resp. right-closed embeddings to left resp. right-closed embeddings. If I has a largest element, then both functors also send standard pushout squares to standard pushout squares (for $\overline{\text{BiPoSets}}$, this is Lemma 3.2.6.3, and for $\overline{\text{BiPoSets}}(L(I), -) \cong \overline{\text{PoSets}}(I, -)$, the claim similarly immediately follows from Lemma 3.1.2.8). If I has a smallest element o, then both functors also preserve co-standard pushout squares, by applying Lemma 3.1.2.8 to opposite partially ordered sets. Finally, the correspondence $I \mapsto J^I$ also preserves standard and co-standard pushout squares. To finish the proof, use (7.2.2.3), and apply Lemma 7.1.1.9 pointwise to N^R . □

Lemma 7.2.2.2. For any biordered set J, the morphism $\overline{N}_{\diamond}(J) \to N_{\diamond}(J)$ of (7.2.2.2) is a weak equivalence in $\Delta^o \Delta^o$ Sets.

Proof. For any $[n] \in \Delta$, we have $[n] \cong I^{>}$, with I = [n-1] if $n \geq 1$ and $I = \emptyset$ if n = 0. Then by Lemma 2.3.3.30 and Lemma 3.2.2.11, the embedding $\overline{\mathcal{E}}_F(J)([n]) \to \mathcal{E}_F(J)([n])$ of (7.2.2.5) is left-reflexive for any [n]. Since by the same argument as in Lemma 7.1.1.10, the nerve of a left-reflexive embedding is a weak equivalence, we are done by (7.2.2.3).

Lemma 7.2.2.3. For any biordered ser $J \in BiPoSets$, with the adjunction map $a : J \to R(U(J))$, the functor $R_!^h = hocolim_{\Delta^0}$ of (7.2.1.2) sends the map $N_{\diamond}(a) : N_{\diamond}(J) \to N_{\diamond}(R(U(J)))$ to a weak equivalence.

Proof. For any map $f: X \to X'$ of bisimplicial sets, $R_!^h(f)$ is a weak equivalence if for any $[m] \in \Delta$, so is the restriction $i_m^*(f)$ with respect to the embedding $i_m: \Delta^o \to \Delta^o \times \Delta^o$ onto $\Delta^o \times [m]$. For our map $s, i_0(a)$ is not only a weak equivalence but an isomorphism, so it suffices to check that for any m and $J \in \text{BiPoSets}$, the map $e^*: i_0^* \mathbb{N}_{\diamond}(J) \to i_m^* \mathbb{N}_{\diamond}(J)$ induced by $e: [m] \to [0]$ is a weak equivalence. But by (7.2.2.6), $i_m^* \mathbb{N}_{\diamond}(J)$ is the nerve of the partially ordered set BiPoSets(R([m]), J), and $R(e): R([m]) \to R([0])$ is both left and right-reflexive, so we are done by Example 2.2.1.1 and the same argument as in Lemma 7.2.2.2.

Going in the other direction, we have functors

(7.2.2.9)
$$\overline{\mathbb{Q}}_{\diamond} = \overline{\mathsf{T}}_{F} \circ \mathbb{Q}_{\Delta} : \Delta^{o} \Delta^{o} \operatorname{Sets} \to \overline{\operatorname{BiPoSets}},$$

$$\mathbb{Q}_{\diamond} = \rho \circ \overline{\mathbb{Q}}_{\diamond} \cong \mathsf{T}_{F} \circ \mathbb{Q}_{\Delta} : \Delta^{o} \Delta^{o} \operatorname{Sets} \to \operatorname{BiPoSets},$$

where $\overline{\mathsf{T}}_F$ and T_F are the functors (3.2.3.1), and Q_Δ is the functor (7.1.3.1) for $I = \Delta$. Spelling out the definitions, we see that for any $X \in \Delta^o \Delta^o$ Sets, we have a cartesian diagram

(7.2.2.10)
$$\begin{array}{ccc} \mathsf{Q}_{\diamond}(X) & \xrightarrow{q_{\bullet}} & \Delta_{\bullet} \Delta X \\ & & \downarrow & & \downarrow \\ & \mathsf{Q}_{\Delta}(X) & \xrightarrow{q} & \Delta \Delta X, \end{array}$$

where q is the augmentation functor, and $\Delta_{\bullet}\Delta X = \Delta_{\bullet} \times_{\Delta} \Delta \Delta X$ is the cofibration over the bisimplex category $\Delta \Delta X$ induced by the cofibration ν_{\bullet} of (4.2.1.5). For any $J \in \text{BiPoSets}$ and $[n] \in \Delta$, we have the evaluation map

$$(7.2.2.11) [n] \times \mathcal{E}_F(J)([n]) \to U(J), i \times f \mapsto f(i),$$

where $i \times f \in [n] \times \mathcal{E}_F(J)([n])$ is a pair of an element $i \in [n]$ and a map $f: L([n]) \to J$. This is functorial with respect to [n], thus defines a functor

$$(7.2.2.12) \qquad \overrightarrow{\Delta} \cdot \mathcal{E}_F(J) = \Delta \cdot \times_{\Delta} \overrightarrow{\Delta} \mathcal{E}_F(J) \to U(J)$$

that inverts all maps cocartesian over $\overrightarrow{\Delta} \mathcal{E}_F(J)$. Then combining (7.2.2.12) and (7.2.1.7), we obtain an evaluation functor

$$\operatorname{ev}: \Delta_{\bullet}\Delta \mathsf{N}_{\diamond}(J) \cong \Delta_{\bullet}\Delta N^{R}(\mathcal{E}_{F}(J)) \to \overrightarrow{\Delta}^{\bullet}\mathcal{E}_{F}(J) \to U(J)$$

that inverts all maps cocartesian over $\Delta\Delta N_{\diamond}(J)$. Composing it with the functor q_{\bullet} of (7.2.2.10) gives a functor $\operatorname{ev} \circ q_{\bullet} : Q_{\diamond}(N_{\diamond}(J)) \to U(J)$ that inverts all maps cocartesian over $Q_{\Delta}(N_{\diamond}(J))$, and by Example 3.2.2.7, this means that $\operatorname{ev} \circ q_{\bullet}$ is actually a biordered map. It is functorial in J, so we obtain a functorial map

$$(7.2.2.13) a_{\diamond}: Q_{\diamond} \circ N_{\diamond} \to id.$$

On the other hand, we have natural identifications

$$\overline{\mathsf{N}}_{\diamond} \circ \overline{\mathsf{Q}}_{\diamond} \cong \overline{\mathsf{N}}_{\diamond} \circ \overline{\mathsf{T}}_{F} \circ \mathsf{Q}_{\Delta} \cong N^{R} \circ \overline{\mathcal{E}}_{F} \circ \overline{\mathsf{T}}_{F} \circ \mathsf{Q}_{\Delta} \cong N^{R} \circ \mathsf{E}_{\Delta} \circ \mathsf{Q}_{\Delta} \cong \mathsf{N}_{\Delta} \circ \mathsf{Q}_{\Delta},$$

where N_{Δ} is (7.1.3.4) for $I = \Delta$, and the maps (7.1.3.6) and (7.2.2.2) induce a diagram

$$(7.2.2.14) \hspace{1cm} \mathsf{N}_{\diamond} \circ \mathsf{Q}_{\diamond} \; \longleftarrow \; \overline{\mathsf{N}}_{\diamond} \circ \overline{\mathsf{Q}}_{\diamond} \cong \mathsf{N}_{\Delta} \circ \mathsf{Q}_{\Delta} \; \longrightarrow \; \mathsf{id} \, .$$

For any uncountable regular cardinal κ , the functors (7.2.2.1) and (7.2.2.9) restrict to functors between BiPoSets $_{\kappa}$ resp. $\overline{\text{BiPoSets}}_{\kappa}$ and $\Delta^o \Delta^o \text{Sets}_{\kappa}$. Moreover, the functor Q_{Δ} sends $\Delta^o_f \Delta^o_f$ Sets into the category Pos $/\!/^b \Delta$ of restricted finite-dimensional Δ -augmented partially ordered sets, and then (7.2.2.9) and Lemma 3.2.3.1 immediately imply that \overline{Q}_{\diamond} resp. Q_{\diamond} sends $\Delta^o_f \Delta^o_f$ Sets into $\overline{\text{BiPos}}$ resp. BiPos. We can also modify the two functors to send $\Delta^o \Delta^o$ Sets into BiPos⁺ by setting

$$(7.2.2.15) \overline{\mathsf{Q}}_{\diamond+} = \overline{\mathsf{T}}_F \circ \mathsf{Q}_{\Delta+}, \mathsf{Q}_{\diamond+} = \rho \circ \overline{\mathsf{Q}}_{\diamond+} \cong \mathsf{T}_F \circ \mathsf{Q}_{\Delta+},$$

where $Q_{\Delta+}$ is the functor (7.1.3.2) for $I=\Delta$, and then (7.1.3.3) induces functorial maps

$$(7.2.2.16) Q_{\diamond+}(X) \to Q_{\diamond}(X), X \in \Delta^o \Delta^o X$$

that are κ^+ -bianodyne as soon as $X \in \Delta^o_f \Delta^o_f$ Sets $_\kappa$ by Corollary 3.2.5.4.

Lemma 7.2.2.4. For any $J \in \text{BiPos}$, the nerve $\overline{\mathsf{N}}_{\diamond}(J)$ lies in $\Delta_f^o \Delta_f^o \text{Sets}$, and so does the Reedy skeleton $\operatorname{sk}_d^L \mathsf{N}_{\diamond}(J)$ for any $d \geq 0$.

Proof. For the first claim, take $[n] \in \Delta$, write $[n] = I^>$ as in Lemma 7.2.2.2, and note that (2.3.3.10) provides a cofibration $\overline{\mathcal{E}}_F(J)([n]) \to J$ whose fibers are discrete by Lemma 3.2.2.10. Therefore dim $\overline{\mathcal{E}}_F(J)([n]) \le \dim J$, for any [n], so that $\overline{\mathcal{E}}_F(J)$ lies in Δ_{fd}^o Pos, and we are done by Lemma 7.2.1.7 and (7.2.2.3). For the second claim, use (7.2.2.6): again by Lemma 7.2.1.7, it suffices to check that $E_F(J)$ lies in Δ_f^o Pos, and this is clear since its underlying simplicial set is the nerve $N(J^l)$. □

By Lemma 7.2.2.2, the first map in (7.2.2.14) is a pointwise weak equivalence, and if we restrict our attention to finite-dimensional bisimplicial sets, then the second map is a pointwise weak equivalence by Lemma 7.1.3.4 (iv). Analysing the map (7.2.2.13) is more diffucult: the nerve $N_{\diamond}(J)$ of a biordered set $J \in \text{BiPos}$ is usually not a regular bisimplicial set, so there is no analog of the isomorhism (7.1.2.6). However, assume given $J \in \text{Pos}$, and consider its image $L(J) \in \text{BiPos}$. Then $\mathsf{E}_F(L(J))$ is a constant simplicial partially ordered set, so that $N_{\diamond}(L(J))$ is constant in the simplicial direction, we have $\Delta \Delta N_{\diamond}(J) \cong \Delta J \times \Delta$, and (7.2.2.10) reduces to a cartesian square

$$(7.2.2.17) \qquad Q_{\diamond}(\mathsf{N}_{\diamond}(L(J))) \xrightarrow{q^{\bullet}} B^{\diamond}_{\bullet}(J)$$

$$\downarrow \qquad \qquad \downarrow$$

$$B(B(J))^{o} \xrightarrow{q} B(J),$$

where $B^{\diamond}_{\bullet}(J)$ is as in Example 3.2.3.2, and we identify $Q(N(J)) \cong B(B(J))^o$, $B(J) \cong \overline{\Delta}N(J)$. If we interpret $B^{\triangle}(J)$ of Example 3.2.3.2 as a Δ -augmented partially ordered set, then we have $Q_{\diamond}(N_{\diamond}(L(J))) \cong T_F(B^o_{\Delta}(B^{\triangle}(J)))$, while $B^{\diamond}_{\bullet}(J) \cong T_F(B^{\triangle}(J))$ and $q = \xi_{\perp}$, $q^{\bullet} = T_F(\xi_{\perp})$.

Lemma 7.2.2.5. For any uncountable regular cardinal κ and $J \in BiPos_{\kappa}$, the composition $\overline{\mathbb{Q}}_{\diamond}(\overline{\mathbb{N}}_{\diamond}(J)) \to J$ of the maps (7.2.2.13) and (7.2.2.2) is κ -bianodyne, and for any $J \in BiPos_{\kappa}^+$, the composition $\overline{\mathbb{Q}}_{\diamond+}(\overline{\mathbb{N}}_{\diamond}(J)) \to J$ of the maps (7.2.2.13), (7.2.2.2) and (7.2.2.16) is κ^+ -bianodyne.

Proof. Let $A = \overline{\mathbb{Q}}_{\diamond} \circ \overline{\mathbb{N}}_{\diamond}$: BiPos_{κ} \to BiPos_{κ}, and let $\alpha : A \to \mathsf{Id}$ be the composition of the maps (7.2.2.13) and (7.2.2.2). Moreover, let $\chi = a \circ p$, where p is as in (7.2.2.10), and a is the map (7.1.3.8) for $I = \Delta$. Then we have $\chi \geq U(\alpha)$, and A preserves coproducts by Lemma 7.2.2.1, Lemma 7.1.3.4 (i) and Lemma 3.2.3.1,

so for the first claim, it suffices to check that the triple $\langle A,\alpha,\chi\rangle$ satisfies the conditions (i)-(iii) of Lemma 3.2.5.8. For (i), note that $\chi^{-1}(J_0)\cong \mathsf{T}_F(a^{-1}(J_0))$, and apply Lemma 3.2.3.1 and Lemma 7.1.3.5 for $I=\Delta$. For (ii), note that $\overline{\mathsf{N}}_\diamond(J\times R([1]))\cong \overline{\mathsf{N}}_\diamond(J)\times \overline{\mathsf{N}}_\diamond(R([1]))\cong \overline{\mathsf{N}}_\diamond\times R(\Delta_1)$, and for any $X\in\Delta_f^o\Delta_f^o\mathsf{Sets}_\kappa$, the projection $X\times R(\Delta_1)\to X$ is κ -anodyne in the sense of Definition 6.3.4.1, so we are done by Lemma 7.1.3.4 (iii) and Corollary 3.2.5.4. Finally, for (iii), note that by (7.2.2.17), the map $\alpha:\overline{\mathsf{Q}}_\diamond(\overline{\mathsf{N}}_\diamond(L(J)))\cong \mathsf{T}_F(B_\Delta^o(B^\triangle(J)))\to L(J)$ factors as

$$\mathsf{T}_F(B^o_{\Lambda}(B^{\triangle}(J))) \xrightarrow{\mathsf{T}_F(\xi_{\perp})} B^{\diamond}_{\bullet}(J) \longrightarrow B^{\diamond}(J) \xrightarrow{\xi} L(J),$$

and $T_F(\xi_\perp)$ is κ -bianodyne by Corollary 3.2.5.4 and Lemma 3.2.1.7, ξ is κ -bianodyne by Corollary 3.2.5.5, and the map in the middle is the strict adjoint map to the right-reflexive embedding $B^{\diamond}(J) \to B^{\diamond}(J)$ of Example 3.2.3.2. For the second claim, since (7.2.2.16) is +-anodyne for a finite-dimensional X, everything is already proved if $J \in \text{BiPos}$, and then for any $J \in \text{BiPos}^+$, use Lemma 3.2.5.3 for the height map $\text{ht}: J \to R(\mathbb{N})$.

7.2.3. The cylinder axiom. We now turn to the study of families of groupoids over categories of biordered sets. Assume given a full subcategory $\mathcal{I} \subset \text{PoSets}$ ample in the sense of Definition 3.1.5.1, and as in Subsection 3.2.2, let $\mathcal{I}^{\diamond} = U^{-1}(\mathcal{I}) \subset \text{BiPoSets}$ be its unfolding. In particular, \mathcal{I}^{\diamond} can be BiPos, BiPos⁺ or one of the categories BiPos_{κ} , BiPos_{κ}^+ for a regular cardinal κ . As in Section 7.1, we denote by $i: \text{BiPos} \to \text{BiPos}_{\kappa}^+$ the tautological embedding, together with the induced embeddings $i: \text{BiPos}_{\kappa} \to \text{BiPos}_{\kappa}^+$. We now consider a families of groupoids over \mathcal{I}^{\diamond} . We note that Definition 7.1.1.1 (ii),(iii) extend to such families literally, and so does (i) if we replace [1] with R([1]). For (iv), we need to find a biordered version of the map (3.1.9.1), and we use the map (3.2.6.2) of Example 3.2.6.1. Definition 7.1.1.2 also makes sense if we use (3.2.6.3) instead of (3.1.10.2).

Definition 7.2.3.1. Let $\mathcal{I}^{\diamond} \subset \text{BiPoSets}$ be the unfolding of an ample full subcategory $\mathcal{I} \subset \text{PoSets}$, with extension $\mathcal{I}^{+\diamond}$. A family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} is [1]-invariant, additive, semiexact, or satisfies excision if it is additive, semiexact, or satisfies excision in the sense of Definition 7.1.1.1, where for [1]-invariance, we replace [1] with R([1]), and for excision, we assume that $S^{<}$, $S^{\natural} \in \mathcal{I}$, we take a map $J \to R(S^{<})$ in \mathcal{I}^{\diamond} , and we biorder J^{\natural} in (3.1.9.1) as in (3.2.6.1). A family \mathcal{C} over $\mathcal{I}^{+\diamond}$ is *semicontinuous* if for any $J \in \mathcal{I}^{+\diamond}$ equipped with a map $J \to R(\mathbb{N})$, \mathcal{C} is constant along the map (3.2.6.3).

Next, we want to have a version of Lemma 7.1.1.6 for families over BiPos and bianodyne maps, and as we saw in Proposition 3.2.7.3, one thing is missing: the bianodyne maps (3.2.7.3) of Example 3.2.7.2. This has to required separately.

Definition 7.2.3.2. A family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} *satisfies the cylinder axiom* if for any $J \in \mathcal{I}$ equipped with a bicofibration $J \to L([1])$, \mathcal{C} is constant along the corresponding map (3.2.7.3).

Definition 7.2.3.3. For any uncountable regular cardinal κ , a κ -bounded Segal family of groupoids over BiPos_{κ} is a family of groupoids $\mathcal{C} \to \text{BiPos}_{\kappa}$ that is additive, semiexact and satisfies excision in the sense of Definition 7.2.3.1, satisfies the cylinder axiom of Definition 7.2.3.2, and such that $\|\mathcal{C}_J\| < \kappa$ for any finite $J \in \text{BiPos}$. A Segal family of groupoids over BiPos is a family of groupoids $\mathcal{C} \to \text{BiPos}$ that is additive, semiexact, satisfies excision in the sense of Definition 7.2.3.1, and satisfies the cylinder axiom of Definition 7.2.3.2. A semicanonical extension of a Segal family resp. κ -bounded Segal family \mathcal{C} is a family of groupoids \mathcal{C}^+ over BiPos⁺ resp. BiPos⁺ equipped with an equivalence $i^*\mathcal{C}^+ \cong \mathcal{C}$ that is [1]-invariant, additive, semiexact, and semicontinuous in the sense of Definition 7.2.3.1.

As in the situation of Definition 7.1.1.3, for any uncountable regular cardinal κ , κ -bounded Segal families over BiPos_{κ} form a full subcategory in (Cat / BiPos_{κ})⁰ that we denote by Seg_{κ}. Any small Segal family \mathcal{C} / BiPos restricts to a κ -bounded family over BiPos_{κ} \subset BiPos for a large enough κ .

Lemma 7.2.3.4. Let C be a Segal family of groupoids over BiPos, or a κ -bounded Segal family of groupoids over BiPos $_{\kappa}$ in the sense of Definition 7.2.3.3. Then C is constant along bianodyne resp. κ -bianodyne maps, and if $C \to BiPos$ is small, then T_F^*C is a Δ -augmented enhanced groupoid in the sense of Definition 7.1.3.1. Moreover, any semicanonical extension C^+ of such a family C is constant along +-bianodyne resp. κ^+ -bianodyne maps, and $T_F^*C^+$ is a semicanonical extension of T_F^*C .

Proof. For Segal families, the first claim immediately follows from Proposition 3.2.7.3 by exactly the same argument as in Lemma 7.1.1.6. For the second claim, use Lemma 3.2.3.1 and Corollary 3.2.5.4. For semicanonical extensions, the proof is the same. \Box

Corollary 7.2.3.5. A semicanonical extension C^+ of a small or κ -bounded Segal family in the sense of Definition 7.2.3.3 satisfies excision and the cylinder axiom.

Proof. As in Corollary 7.1.1.7 and Corollary 7.1.3.3, the maps (3.2.6.2) and (3.2.7.3) are +-bianodyne, and κ^+ -bianodyne if $|J| < \kappa$.

Corollary 7.2.3.6. Assume given a bicofibration $\chi: J \to L([2])$ in BiPos, and consider the commutative square

$$\begin{array}{ccc}
J_1 & \longrightarrow & s^*J \\
\downarrow & & \downarrow \\
t^*J & \longrightarrow & J
\end{array}$$

induced by (3.1.7.9) with n = 2 and l = 1. Then any Segal family of groupoids over BiPos is semicartesian along (7.2.3.1).

Proof. Consider the map $\zeta_3^{\diamond}: \mathsf{Z}_3^{\diamond} \to L([2])$ of (3.2.2.3) and its restriction $\zeta_2^{\diamond}: \mathsf{Z}_2^{\diamond} \to L([1])$ to $\mathsf{Z}_2^{\diamond} \subset \mathsf{Z}_3^{\diamond}$. Then (3.1.3.8) induces a standard coproduct decomposition

(7.2.3.2)
$$\zeta_3^{\diamond *} J \cong \zeta_2^{\diamond *} s^* J \sqcup_{J_1} t^* J,$$

and \mathcal{C} is constant along the maps $\zeta_3^{\diamond *}J \to J$, $\zeta_2^{\diamond *}s^*J \to s^*J$ by Lemma 3.2.6.4 and Lemma 7.2.3.4.

We note that since all left-closed embeddings in BiPoSets are strict, and so are the maps of Example 3.2.6.1, Example 3.2.6.2 and Example 3.2.7.2, the property of being a Segal family for some $\mathcal C$ only depends on its restriction $\rho^*\mathcal C$ with respect to the embedding (3.2.2.1), and it makes sense to speak about Segal families over $\overline{\text{BiPos}}_{\kappa}$ and their semicanonical extensions to $\overline{\text{BiPos}}^+$, $\overline{\text{BiPos}}_{\kappa}^+$. We then have the following result.

Lemma 7.2.3.7. Assume given an additive semiexact family of groupoids C over $\Delta_f^o \Delta_f^o$ Sets_{κ} for some uncountable regular cardinal κ , and assume that C is κ -bounded, constant along the class W of κ -anodyne maps of Definition 6.3.4.1, and is a Segal family in the sense of Definition 7.2.3.3. Then $\overline{\mathbb{N}}_{\diamond}^*C$ is a Segal family over $\overline{\text{BiPos}}_{\kappa}$ in the sense of Definition 7.2.3.3. Moreover, for any semicanonical extension C^+ of the family C in the sense of Definition 6.3.5.5, $\overline{\mathbb{N}}_{\diamond}^*C^+$ is a semicanonical extension of $\overline{\mathbb{N}}_{\diamond}^*C$.

Proof. By Lemma 7.2.2.1, $\overline{\mathbb{N}}^*_{\diamond}\mathcal{C}$ and $\overline{\mathbb{N}}^*_{\diamond}\mathcal{C}^+$ are additive and semiexact. Moreover, by Corollary 6.3.5.12, \mathcal{C} and \mathcal{C}^+ are constant along weak equivalences, and since $\overline{\mathbb{N}}_{\diamond}(R([1])) \cong \Delta_1$, both $\overline{\mathbb{N}}^*_{\diamond}\mathcal{C}$ and $\overline{\mathbb{N}}^*_{\diamond}\mathcal{C}^+$ are [1]-invariant. To see that $\overline{\mathbb{N}}^*_{\diamond}\mathcal{C}$ satisfies excision, note that for any $J \to R(S^<)$ in BiPos_κ, and any $[n] \in \Delta$, we have $\overline{\mathcal{E}}_F(J^{\natural})([n]) \cong \overline{\mathcal{E}}_F(J)([n])^{\natural}$ by Lemma 3.2.6.3, so by (7.2.2.3) and Lemma 7.1.1.10, $\overline{\mathbb{N}}_{\diamond}$ sends excision maps (3.2.6.2) to weak equivalences in $\Delta^o \Delta^o$ Sets_κ. Exactly the

same argument shows that $\overline{N}^*_{\diamond}\mathcal{C}^+$ is semicontinous, so it remains to check the cylinder axiom for $\overline{N}^*_{\diamond}\mathcal{C}$. However, the nerve of a map (3.2.7.3) factors as

where the first isomorphism is induced by (3.2.7.4). Then b in (7.2.3.3) is a pushout of the nerve of a reflexive map $J_0 \times V^{\diamond} \to J_0 \times [1]$, thus a weak equivalence, and by Example 3.2.4.13 and (7.2.2.6), a in (7.2.3.3) is the map $a^{\diamond}(\chi)$ of (7.2.1.8) for the characteristic map $\chi : \mathsf{E}_F(\mathsf{C}(g_J)) \to [1]$ of the left-closed embedding $\mathsf{E}_F(s) : \mathsf{E}_F(J_0) \to \mathsf{E}_F(\mathsf{C}(g_J))$. Therefore $\mathcal C$ is constant along a by Proposition 7.2.1.8 (iii).

7.2.4. Comparison. We can now prove a version of Proposition 7.1.2.3 comparing Segal families of Definition 7.2.3.3 with those of Definition 7.2.1.1. One difficulty here is that the nerve functor \mathbb{N}_{\diamond} of (7.2.2.1) does not send BiPos into $\Delta_f^o \Delta_f^o$ Sets. To circumvent this, look at the product $\mathbb{N} \times \text{BiPoSets}$. For any category \mathcal{I} , the projection $\pi: \mathbb{N} \times \mathcal{I} \to \mathcal{I}$ has a left-adjoint section $\mathcal{I} \to \mathbb{N} \times \mathcal{I}$ onto $\{0\} \times \mathcal{I}$, so that $\mathcal{C} \cong \pi_* \pi^* \mathcal{C}$ for any family of groupoids \mathcal{C} over \mathcal{I} , and for any functor $\gamma: \mathcal{I}_0 \to \mathcal{I}_1$, we have $\pi_*(\operatorname{id} \times \gamma)^* \mathcal{C} \cong \gamma^* \pi_* \mathcal{C}$ for any family of groupoids \mathcal{C} over $\mathbb{N} \times \mathcal{I}_1$. Moreover, for any $d \geq 0$, the shift functor $q^d: \mathbb{N} \to \mathbb{N}$, $l \mapsto l + d$ is cofinal, and we have

for any family of groupoids C over $\mathbb{N} \times \mathcal{I}$. We then consider the functors

(7.2.4.2)
$$\overline{\mathbb{N}}_{\bullet} : \mathbb{N} \times \text{BiPoSets} \to \Delta^{o} \Delta^{o} \text{Sets}, \qquad d \times J \mapsto \text{sk}_{d}^{L} \overline{\mathbb{N}}_{\diamond}(J),$$

$$\mathbb{N}_{\bullet} : \mathbb{N} \times \text{BiPoSets} \to \Delta^{o} \Delta^{o} \text{Sets}, \qquad d \times J \mapsto \text{sk}_{d}^{L} \mathbb{N}_{\diamond}(J).$$

We have tautological maps

$$(7.2.4.3) \overline{\mathsf{N}}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \to \overline{\mathsf{N}}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \circ \pi, \mathsf{N}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \to \mathsf{N}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \circ \pi$$

defined by the skeleton inclusons, and by Lemma 7.2.2.4, both functors in (7.2.4.2) send $\mathbb{N} \times \text{BiPos}$ into $\Delta_f^o \Delta_f^o \text{Sets}$, while the map (7.2.4.3) for $\overline{\mathbb{N}}_{\bullet}(d \times J)$ is an isomorphism for any fixed $J \in \text{BiPos}$ and sufficiently large d.

Proposition 7.2.4.1. (i) For any additive semiexact family of groupoids \mathcal{C} over $\Delta_f^o \Delta_f^o$ Sets that is small, constant along anodyne maps of Definition 6.3.4.1 and is a Segal family in the sense of Definition 7.2.1.1, the family of groupoids $\pi_* N_*^* \mathcal{C}$ is a small Segal family over BiPos in the sense of Definition 7.2.3.3, and the functors

$$\mathcal{C} \cong \pi_* \pi^* \mathcal{C} \longrightarrow \pi_* (\mathsf{id} \times \overline{\mathsf{Q}}_{\diamond})^* \overline{\mathsf{N}}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}^* \mathcal{C} \cong \overline{\mathsf{Q}}_{\diamond}^* \pi_* \overline{\mathsf{N}}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}^* \longleftarrow \mathsf{Q}_{\diamond}^* \pi_* \mathsf{N}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}^* \mathcal{C}$$

induced by the maps (7.2.2.14) and (7.2.4.3) are equivalences. Moreover, for any semicanonical extension \mathcal{C}^+ of the family \mathcal{C} in the sense of Definition 6.3.5.5, $\mathsf{N}^*_\diamond\mathcal{C}^+$ with the functor $i^*\mathsf{N}^*_\diamond\mathcal{C}^+\cong i^*\pi_*\pi^*\mathsf{N}^*_\diamond\mathcal{C}^+\to\pi_*\mathsf{N}^*_\diamond\mathcal{C}$ induced by (7.2.4.3) is a semicanonical extension of the family $\pi_*\mathsf{N}^*_\diamond\mathcal{C}$, and the functors \mathcal{C}^+ , $\mathsf{Q}^*_{\diamond+}\mathsf{N}^*_\diamond\mathcal{C}^+\to\overline{\mathsf{Q}}^*_{\diamond+}\overline{\mathsf{N}}^*_\diamond\mathcal{C}^+$ induced by the maps (7.2.2.16) and (7.2.2.14) are equivalences.

(ii) For any small Segal family C over BiPos, the pullback Q_{\diamond}^*C with respect to the functor (7.2.2.9) is an additive semiexact family over the category $\Delta^o \Delta^o$ Sets constant along anodyne maps of Definition 6.3.4.1. Moreover, Q_{\diamond}^*C is a Segal family in the sense of Definition 7.2.1.1, and the functor $C \cong \pi_*\pi^*C \to \pi_*N_{\bullet}^*Q_{\diamond}^*C$ induced by the composition of the maps (7.2.4.3) and (7.2.2.13) is an equivalence. For any semicanonical extension C^+ of the Segal family C, $Q_{\diamond+}^*C^+$ with the functor $i^*Q_{\diamond+}^*C^+ \to Q_{\diamond}^*C$ induced by the map (7.2.2.16) is a semicanonical extension of the Segal family Q_{\diamond}^*C , and the functor $C^+ \to N_{\diamond}^*Q_{\diamond+}^*C^+$ induced by the maps (7.2.2.16), (7.2.2.13) and (7.2.2.2) is an equivalence.

Moreover, for the any uncountable regular cardinal κ , the same statements hold for κ -bounded Segal families over $\Delta_f^o \Delta_f^o$ Sets $_\kappa$ and BiPos $_\kappa$.

Proof. It suffices to prove the κ -bounded version of both statements; once everything is proved for an arbitrary κ , the absolute statements follow. For (i), the maps (7.2.2.2) and (7.2.4.3) induce functors

$$(7.2.4.4) \rho^* \mathsf{N}_{\bullet}^* \mathcal{C} \longrightarrow \overline{\mathsf{N}}_{\bullet}^* \mathcal{C} \longleftarrow \pi^* \overline{\mathsf{N}}_{\diamond}^* \mathcal{C},$$

and since C is constant along weak equivalences by Corollary 6.3.5.12, the first functor is an equivalence by Lemma 7.2.2.2 and Corollary 6.3.2.11. For any fixed $J \in \text{BiPos}_{\kappa}$, the second functor becomes an equivalence over $\mathbb{N} \times \{J\}$ once we restrict with respect to q^d for a sufficiently large d, so by (7.2.4.1), (7.2.4.4) induces equivalences

(7.2.4.5)
$$\rho^* \pi_* \mathsf{N}_{\cdot}^* \mathcal{C} \cong \pi_* \overline{\mathsf{N}}_{\cdot}^* \mathcal{C} \cong \overline{\mathsf{N}}_{\diamond}^* \mathcal{C}.$$

Then $\pi_* N_{\cdot}^* \mathcal{C}$ is a Segal family by Lemma 7.2.3.7, and $\pi_* N_{\cdot}^* \mathcal{C}^+$ is its semicanonical extension. To finish the proof, it remains to observe that the map $\overline{N}_{\diamond} \circ \overline{\mathbb{Q}}_{\diamond} \cong \mathbb{N}_{\Delta} \circ \mathbb{Q}_{\Delta} \to \mathrm{id}$ and its +-version are weak equivalences by Lemma 7.1.3.4 (iv).

For (ii), $Q_{\diamond}^*\mathcal{C}$ is semiexact, additive and constant along κ -anodyne maps of Definition 6.3.4.1 by Lemma 7.1.3.4 (iii) and Lemma 7.2.3.4, and $Q_{\diamond+}^*\mathcal{C}^+$ is its semicanonical extension for the same reason, while $\mathcal{C} \cong \pi_* \mathsf{N}_{\diamond}^* \mathsf{Q}_{\diamond}^* \mathcal{C}$ and $\mathcal{C}^+ \cong \mathsf{N}_{\diamond}^* \mathsf{Q}_{\diamond+}^* \mathcal{C}^+$ by Lemma 7.2.2.5 and (7.2.4.5). To finish the proof, it remains to check that $\mathsf{Q}_{\diamond}^*\mathcal{C}$ is a Segal family in the sense of Definition 7.2.1.1. By Proposition 7.2.1.8 (iv), we may assume given some $J_l \in \mathsf{Pos}_{\kappa}$, a map $\chi: J_l \to [1]$, and a simplicial set $Y \in \Delta_f^o \mathsf{Sets}_{\kappa}$, and we need to check that \mathcal{C} is constant along the corresponding map $L(a_\chi) \times \mathsf{id}_{R(Y)}$. Moreover, by Corollary 7.1.2.2, we may replace Y with $\mathsf{N}(\mathsf{Q}(Y))$, so that $Y = \mathsf{N}(J_r)$ for some $J_r \in \mathsf{Pos}_{\kappa}$. Then $L(\mathsf{N}(I)) \times R(Y) \cong \overline{\mathsf{N}}_{\diamond}(L(I) \times R(J_r))$ for any $I \in \mathsf{Pos}$, and by (4.1.3.5), we need to check that $\mathsf{Q}_{\diamond}^*\mathcal{C}$ is constant along the map

$$(7.2.4.6) \overline{\mathsf{N}}_{\diamond}(J_0 \times L([1])) \sqcup_{\overline{\mathsf{N}}_{\diamond}(J_0)} \overline{\mathsf{N}}_{\diamond}(J_1) \to \overline{\mathsf{N}}_{\diamond}(J),$$

where $J = L(J_l/[1]) \times R(J_r)$, with the bicofibration $J \to L(J_l/[1]) \to L([1])$ induced by $\tau: J_l/[1] \to [1]$. Moreover, since $J^{\flat} \to J$ is reflexive, we may replace J resp. J_1 in (7.2.4.6) with J^{\flat} resp. $J_1^{\flat} = C(g_J)$, where $g_J: J_0 \to J_1$ is the cylindrical map corresponding to the bicofibration $J \to L([1])$. Then the claim immediately follows from the cylinder axiom for J, Lemma 7.2.2.5, and the decomposition (7.2.3.3).

Corollary 7.2.4.2. For any uncountable regular cardinal κ , any κ -bounded Segal family $\mathcal{C}_{\kappa} \in \operatorname{Seg}_{\kappa}$ over $\operatorname{BiPos}_{\kappa}$ extends to a small Segal family \mathcal{C} over BiPos . Moreover, for any two κ -bounded Segal families \mathcal{C}_{κ} , $\mathcal{C}'_{\kappa} \in \operatorname{Seg}_{\kappa}$ with extensions \mathcal{C} , \mathcal{C}' , any functor $\gamma_{\kappa} : \mathcal{C}_{\kappa} \to \mathcal{C}_{\kappa}$ over $\operatorname{BiPos}_{\kappa}$ extends to a functor $\gamma : \mathcal{C} \to \mathcal{C}'$ over $\operatorname{BiPos}_{\kappa}$ and any morphism $\gamma_{\kappa} \to \gamma'_{\kappa}$ between two such functors γ_{κ} , γ'_{κ} with extensions γ , γ' extends to a (non-unique) morphism $\gamma \to \gamma'$. In particular, small Segal families and isomorphism classes of functors over BiPos between them form a well-defined category

(7.2.4.7)
$$\operatorname{Seg} = \bigcup_{\kappa} \operatorname{Seg}_{\kappa}.$$

We have an equivalence between the category Seg and the full subcategory in $h^W(\Delta^o\Delta^o \operatorname{Sets})$ spanned by Segal spaces, and for any uncountable regular cardinal κ , this equivalence induces an equivalence between $\operatorname{Seg}_{\kappa}$ and the full subcategory of Segal spaces in $h^W(\Delta^o\Delta^o \operatorname{Sets}_{\kappa})$. Moreover, any small or κ -bounded Segal family $\mathcal C$ admits a semicanonical extension $\mathcal C^+$, for two families $\mathcal C_0$, $\mathcal C_1$ with semicanonical extensions $\mathcal C_0^+$, $\mathcal C_1^+$, a functor $\gamma:\mathcal C_0\to \mathcal C_1$ extends to a functor $\gamma^+:\mathcal C_0^+\to \mathcal C_1^+$, and for two functors $\gamma_0,\gamma_1:\mathcal C_0\to \mathcal C_1$ with extensions γ_0^+ , γ_1^+ , a morphism $\gamma_0\to\gamma_1$ extends to a (non-unique) morphism $\gamma_0^+\to\gamma_1^+$, so that in particular, the semicanonical extension is unique up to a unique equivalence.

Proof. Clear.

7.3. Complete Segal spaces.

7.3.1. Reflexive families. As it happens, one can show that under an additional assumption, a Segal family of groupoids \mathcal{C} over BiPos in the sense of Definition 7.2.3.3 and its semicanonical extension \mathcal{C}^+ can be completely reconstructed from their restriction $L^*\mathcal{C}$, $L^*\mathcal{C}^+$ to Pos, Pos⁺ with respect to the functor L of (3.2.2.2). Here is the assumption.

Definition 7.3.1.1. Let $\mathcal{I}^{\diamond} \subset \text{BiPoSets}$ be the unfolding of an ample full subcategory $\mathcal{I} \subset \text{PoSets}$. A family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} is *reflexive* if it is fully faithful along the projection $e: J \times L([1]) \to J$ for any $J \in \mathcal{I}^{\diamond}$.

To state and prove the reconstruction result, we need some notation. For any reflexive family of groupoids $\mathcal{C} \to \mathcal{I}^{\diamond}$, biordered set $J \in \mathcal{I}^{\diamond}$, and a set $W \subset \mathcal{I}^{\diamond}(L([1]),J)$ of maps $w:L([1]) \to J$, let $\mathcal{C}_J(W) \subset \mathcal{C}_J$ be the full subcategory spanned by objects $c \in \mathcal{C}_J$ such that w^*c lies in $e^*(\mathcal{C}_{\mathsf{pt}}) \subset \mathcal{C}_{L([1])}$ for any $w \in W$. Moreover, for any map $f:J' \to J$ in \mathcal{I}^{\diamond} , let $W(f) \in \mathcal{I}^{\diamond}(L([1]),J)$ be the set of maps $w:L([1]) \to J'$ such that $f \circ w:L([1]) \to J$ factors through $L([1]) \to R([1])$. Finally, note that for any map $f:J \to J'$ in \mathcal{I}^{\diamond} , the transition functor $f^*:\mathcal{C}_{J'} \to \mathcal{C}_J$ factors through a functor

$$(7.3.1.1) \mathcal{C}_{I'} \to \mathcal{C}_{I}(W(f)).$$

Say that \mathcal{C} is *adapted to* the map f iff (7.3.1.1) is an equivalence of categories, and denote by $E(\mathcal{C})$ the class of dense maps $f: J \to J'$ in \mathcal{I}^{\diamond} such that \mathcal{C} is adapted to id $\times f: J_0 \times J \to J_0 \times J'$ for any $J_0 \in \mathcal{I}^{\diamond}$.

Lemma 7.3.1.2. Assume given a reflexive family of groupoids C over \mathcal{I}^{\diamond} constant along a morphism $f: J \to J'$, and subsets $W \subset \mathcal{I}^{\diamond}(L([1]), J)$, $W' \subset \mathcal{I}^{\diamond}(L([1]), J')$ such that f induces a surjective map $W \to W'$. Then the equivalence $f^*: \mathcal{C}_{J'} \to \mathcal{C}_J$ induces an equivalence $\mathcal{C}_{J'}(W') \cong \mathcal{C}_J(W)$.

Proof. Since $f(W') \subset W$, the equivalence f^* indeed sends $\mathcal{C}_{J'}(W')$ into $\mathcal{C}_J(W)$, and it suffices to prove that the induced fully faithful functor is essentially surjective. But since $W \to W'$ is surjective, any $w' \in W'$ lifts to $w \in W$, and then for any $c \in \mathcal{C}_{J'}$, we have $w'^*c \cong w^*f^*c$.

Lemma 7.3.1.3. For any reflexive Segal family C over $\mathcal{I}^{\diamond} = \text{BiPos}$, the tautological map $p: L([1]) \to R([1])$ is in E(C).

Proof. By Lemma 7.2.3.4, \mathcal{C} is constant along the projection $J \times R([1]) \rightarrow J$ for any $I \in BiPos$. Since C is reflexive, the functor (7.3.1.1) for the morphism $f = f(J) = \mathrm{id}_I \times p : J \times L([1]) \to J \times R([1])$ is always fully faithful. Say that $J \in \text{BiPos}$ is *good* if this functor is essentially surjective. Then we need to prove that any *J* is good. For any left-reflexive full embedding $g: J' \to J$, with the adjoint map $g_{\dagger}: J \to J$, $g_1 = g \times \mathrm{id}_{L([1])}$ is also left-reflexive, with the adjoint map $g_{1+} = g_+ \times id_{L([1])}$, C is constant along g_+ and g_{1+} by Lemma 7.2.3.4, and the subsets W(f(J')), W(f(J)) satisfy the assumptions of Lemma 7.3.1.2 with respect to g_{1+} , so that J is good iff so is J'. If J admits a map $\chi: J \to V$ with good comma-fibers J/0, J/1, J_0 , then J is good by semiexactness of C, and if J admits a map $J \to R(S^{<})$ for some set S, then the map $(J \times L([1]))^{\natural} \cong J^{\natural} \times L([1]) \to$ $I \times L([1])$ of (3.2.6.2) also satisfies the assumptions of Lemma 7.3.1.2 with respect to $W(f(J^{\sharp}))$ and W(f(J)), so that J is good iff so is J^{\sharp} . By additivity of \mathcal{C} , a coproduct of good biordered sets is good, and then by excision and (3.2.6.1), any *I* that admits a map $I \to R(S^{<})$, $S \in \text{Sets}$ with good comma-fibers is itself good. Now the same induction on dimension as in Lemma 3.2.5.8 reduces us to the situation when we have a cofibration $\chi: J \to [1]$ in Pos, the fibers $L(J_0)$, $L(J_1)$ are good, and we need to check that L(I) is good. In this case, we have the cofibration $\chi \times \text{id} : J \times [1] \to [1]^2$, the diagonal embedding $\delta : [1] \to [1]^2$ lifts to a section $\delta: I \to I \times [1]$ of the projection $e: I \times [1] \to I$, and it suffices to show that for any $c \in \mathcal{C}_{L(J \times [1])}(W(f(J)))$, there exists an isomorphism $f : c \to e^* \delta^* c$ such that $\delta^*(f) = id$.

To do this, recall that we have the two embeddings $a, b : [2] \to [1]^2$ that fit into the cocartesian square (3.1.7.8) of Example 3.1.7.10, and $\delta = a \circ m = b \circ m$, where $m : [1] \to [2]$ sends 0 to 0 and 1 to 2. Then if we denote $J^a = a^*(J \times [1])$, $J^b = b^*(J \times [1])$, (3.1.7.8) induces a commutative diagram

(7.3.1.2)
$$J^{a} \xrightarrow{a} J \times [1]$$

$$m_{a} \uparrow \qquad \uparrow_{b}$$

$$J \xrightarrow{m_{b}} J^{b}$$

in Pos that becomes a standard pushout diagram in BiPos after we apply the barycentric subdivision functor B^{\diamond} of Example 3.2.2.6. Therefore by Corollary 3.2.5.5, Lemma 7.2.3.4 and semiexactness of \mathcal{C} , the family $L^*\mathcal{C}$ is semicartesian along (7.3.1.2), so it suffices to prove that there exist isomorphisms $a^*c \cong m_a^*\delta^*c$ in $\mathcal{C}_{L(J^a)}$ and $b^*\cong m_b^*\delta^*c$ in $\mathcal{C}_{L(J^b)}$ that restrict to id on $J\subset J^a, J^b$.

This immediately follow from Corollary 7.2.3.6 applied to $L(J^a), L(J^b) \to L([2])$, and the assumption that $L(J_0), L(J_1)$ are good.

Lemma 7.3.1.4. Assume given a left-reflexive full embedding $g: J' \to J$ in \mathcal{I}^{\diamond} , and a [1]-invariant reflexive family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} such that the map $p: L([1]) \to R([1])$ is in $E(\mathcal{C})$. Then the natural map $f: L(U(J)) \to J$ is in $E(\mathcal{C})$ if and only if so is the map $f': L(U(J')) \to J'$.

Proof. Since the family \mathcal{C} is [1]-invariant, it is constant along reflexive maps by Lemma 3.1.5.2. Moreover, $g \times \operatorname{id} : J' \times J_0 \to J \times J_0$ is left-reflexive for any $J_0 \in \operatorname{BiPos}$, so it suffices to prove that $g^* : \mathcal{C}_{L(U(J))} \to \mathcal{C}_{L(U(J'))}$ induces an equivalence $\mathcal{C}_{L(U(J))}(W(f)) \cong \mathcal{C}_{L(U(J'))}(W(f'))$. Let $g_+ : J \to J'$ be the adjoint map, and let $h : J \times [1] \to J$ be the map equal to id on $J \times \{0\}$ and $g \circ g_+$ on $J \times [1]$. Then for any $c \in \mathcal{C}_{L(U(J))}(W(f))$, h^*c lies inside $\mathcal{C}_{L(U(J)\times[1])}(W(\operatorname{id} \times p))$. Since \mathcal{C} is reflexive and $p \in E(\mathcal{C})$, we have the equivalence

$$(7.3.1.3) \qquad (\operatorname{id} \times p)^* : \mathcal{C}_{L(U(J))} \cong \mathcal{C}_{L(U(J)) \times R([1])} \to \mathcal{C}_{L(U(J) \times [1])}(W(\operatorname{id} \times p)),$$

and the functors $s^*, t^*: \mathcal{C}_{L(U(J)\times[1])}(W(\operatorname{id}\times p)) \to \mathcal{C}_{L(U(J))}$ induced by the embeddings $s,t:[0]\to [1]$ onto $0,1\in [1]$ are both one-sided inverses to (7.3.1.3). Therefore they are both equivalences, and they are isomorphic. Thus $\operatorname{id}\cong g_+^*\circ g^*: \mathcal{C}_{L(U(J))}(W(f))\to \mathcal{C}_{L(U(J))}(W(f))$, and g^*, g_+^* indeed induce mutually inverse equivalences of categories between $\mathcal{C}_{L(U(J))}(W(f))$ and $\mathcal{C}_{L(U(J))}(W(f'))$.

Lemma 7.3.1.5. Assume that \mathcal{I} is either a very ample full subcategory, or an extension of such, and assume given a reflexive [1]-invariant additive semiexact family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} , a dense map $f: J' \to J$, and a map $\chi: J \to R(\mathsf{V})$ such that the comma-fibers $f/j: J'/j \to J/j, j \in \mathsf{V}$ are in $E(\mathcal{C})$. Then $f \in E(\mathcal{C})$.

Proof. For any $J_0 \in \mathcal{I}^{\diamond}$, $f \times \operatorname{id} : J' \times J_0 \to J \times J_0$ also satisfies the assumptions of the Lemma, so it suffices to prove that the functor (7.3.1.1) for f is an equivalence. It is an epivalence by the semiexactness of \mathcal{C} , so it further suffices to check that it is fully faithful. More generally, let $E'(\mathcal{C}) \supset E(\mathcal{C})$ be the class of all maps g in \mathcal{I}^{\diamond} such that \mathcal{C} is fully faithful along $g \times \operatorname{id}_{J_0}$ for any $J_0 \in \mathcal{I}^{\diamond}$. Then $E'(\mathcal{C})$ is left-saturated by Lemma 2.3.1.7, so it has "one-half" of the two-out-of-three property: if $g_0 \circ g_1, g_0 \in E'(\mathcal{C})$, then $g_1 \in E'(\mathcal{C})$. Then since \mathcal{C} is [1]-invariant, it is constant along all reflexive maps by the biordered version of Lemma 3.1.3.11, and by the same argument as in Lemma 7.1.1.6, Lemma 6.2.2.7 implies that $E'(\mathcal{C})$ is closed under standard pushouts. Now exactly the same decomposition

as in Lemma 3.1.9.5 shows that $f \in E'(\mathcal{C})$ as soon as $f/j \in E'(\mathcal{C})$ for all $j \in V$.

Lemma 7.3.1.6. Assume given a reflexive Segal family C over BiPos. Then any dense map $f: J_0 \to J$ in BiPos lies in the class E(C). Moreover, any semicanonical extension C^+ of the family C is also reflexive, and $E(C^+)$ also contains all dense maps.

Proof. For the first claim, note that as in the proof of Lemma 7.3.1.3, for any set S and map $J \to R(S^<)$, Lemma 7.3.1.2 shows that $f: J_0 \to J$ is in $E(\mathcal{C})$ iff so is $f^{\natural}: J_0^{\natural} \to J^{\natural}$, and then Lemma 7.3.1.5 and induction on dimension reduce the proof to the case when J has a largest element j. Then it suffices to prove that the maps $L(U(J_0)) = L(U(J) \to J_0, J$ are in $E(\mathcal{C})$, so that we may assume right away that $J_0 = L(U(J))$. In this case, as in the proof of Lemma 3.2.5.8, take the reflexive subset $J^R \subset J$ of Lemma 3.2.2.10, and apply Lemma 7.3.1.3 and Lemma 7.3.1.4. For the second claim, it suffices to prove that any dense map $f: J' \to J$ in BiPos⁺ is in $E(\mathcal{C}^+)$. To do this, consider the height map ht: $J \to \mathbb{N}$, and note that again, Lemma 7.3.1.2 together with the semicontinuity of \mathcal{C}^+ show that f lies in $E(\mathcal{C}^+)$ iff so does $f^+: J_0^+ \to J^+$. But by additivity, $E(\mathcal{C}^+)$ is closed under coproducts, and then the same additional argument as in Proposition 3.1.10.6 reduces us to Lemma 7.3.1.5.

7.3.2. Weak excision and weak semicontinuity. To describe reflexive Segal families over BiPos and their semicanonical extensions to BiPos⁺ purely in terms of their restrictions to Pos, resp. Pos⁺, we start by repeating Definition **7.3.1.1** literally.

Definition 7.3.2.1. Let $\mathcal{I} \subset \text{PoSets}$ be an ample full subcategory. A family of groupoids \mathcal{C} over \mathcal{I} is *reflexive* if for any $J \in \mathcal{I}$, \mathcal{C} is fully faithful along the projection $e : J \times [1] \to J$.

As in the biordered case, for any reflexive family of groupoids $\mathcal C$ over $\mathcal I$ and any $J\in\mathcal I$ equipped with a subset $W\subset\mathcal I([1],J)$, we denote by $\mathcal C_J(W)\subset\mathcal C_J$ the full subcategory spanned by objects c such that $w^*c\in\mathcal C_{[1]}$ lies in the image of the embedding $\mathcal C_{\mathsf{pt}}\to\mathcal C_{[1]}$ for any $w\in W$. In particular, if we let $\mathcal I^\diamond$ be the unfolding of $\mathcal I$, then for any set $J\in\mathcal I^\diamond$, we can let $W(J)=\mathcal I([1],J^l)\subset\mathcal I([1],U(J))$ and $\mathcal C_J^\diamond=\mathcal C_{U(J)}(W(J))\subset\mathcal C_{U(J)}$, and this defines a family of groupoids $\mathcal C^\diamond$ over $\mathcal I^\diamond$. We call $\mathcal C^\diamond$ the *unfolding* of the family $\mathcal C$. We have $L^*\mathcal C^\diamond\cong\mathcal C$, where $L:\mathcal I\to\mathcal I^\diamond$ is the functor (3.2.2.2).

Definition 7.3.2.2. A reflexive family of groupoids \mathcal{C} over an ample \mathcal{I} with unfolding \mathcal{C}^{\diamond} is *non-degenerate* if for any $J \in \mathcal{I}$, \mathcal{C}^{\diamond} is constant along the projection $L(J) \times R([1]) \to L(J)$

Lemma 7.3.2.3. The unfolding C^{\diamond} of a non-degenerate reflexive family of groupoids C is [1]-invariant and constant along all reflexive full embeddings.

Proof. By the very definition of the unfolding C^{\diamond} , Definition 7.3.2.2 implies that is is [1]-invariant, and then it is constant along reflexive full embeddings by the biordered version of Lemma 3.1.3.11.

We also need appropriate versions of excision, semicontinuity and the cylinder axiom. To state them, recall that the maps (3.1.4.7) resp. (3.1.3.6) fit into perfect cartesian cocartesian squares (3.1.7.5) resp. (3.1.7.10) in PoSets. We can treat (3.1.7.5) as a square in $\mathcal{I}/S^<$, and (3.1.7.10) is a square in \mathcal{I}/\mathbb{N} . Thus for any partially ordered set J equipped with a map $J \to S^<$, the map (3.1.9.1) fits into a cartesian square

$$(7.3.2.1) S^{>} \times J_{o} \longrightarrow J_{o}$$

$$\downarrow \qquad \qquad \downarrow$$

$$J^{\natural} \longrightarrow J_{o}$$

where we identify $S^> \times J_o \cong S^> \times_{S^<} J^{\natural}$, $J_o \cong \operatorname{pt} \times_{S^<} J$, while for any J equipped with a map $J \to \mathbb{N}$, the map (3.1.10.2) fits into a diagram

(7.3.2.2)
$$\begin{bmatrix}
1 \\ \times \coprod_{n \geq 1} J/n & \longrightarrow \coprod_{n \geq 1} J/n \\
\downarrow & \downarrow \\
J^{+} & \longrightarrow J/\mathbb{N} & \xrightarrow{\sigma} J,$$

where σ is reflexive, and the square is a cartesian square induced by the cartesian square (3.1.7.10). Since the cocartesian square (3.1.7.5) is universal, the square (7.3.2.1) is also cocartesian, and the square (7.3.2.2) is cocartesian by Corollary 3.1.7.3. If $J \in \mathcal{I}$ and $S^<$, $S^{\natural} \in \mathcal{I}$, then (3.1.9.1) is also in \mathcal{I} , while if Z_{∞} , $\mathbb{N} \in \mathcal{I}$, then (7.3.2.2) is in \mathcal{I} as well. Moreover, the map $\zeta : Z_3 \to [2]$ induced by (3.1.3.6) fits into the cartesian square (3.1.7.11) that can be understood as a square in Pos / [2], and we can treat (3.1.7.11) as a square in Pos / [1] by composing the structure maps with the projection $t_+ : [2] \to [1]$ of Example 3.1.3.6 (explicitly, $t_+(0) = t_+(1) = 0$, $t_+(2) = 1$). Then for any partially ordered set J

equipped with a map $J \rightarrow [1]$, (3.1.7.11) induces a cartesian square

(7.3.2.3)
$$J_0 \times [1] \longrightarrow J_0$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z_3 \times_{[1]} J \longrightarrow J/[1] \cong t_{\dagger}^* J.$$

Since by Lemma 3.1.7.2, (3.1.7.11) is universal with respect to t_+ : [2] \to [1], the square (7.3.2.3) is also cocartesian, and lies in \mathcal{I} if so does J and Z_3 , [2]. If the map $J \to$ [1] is a bicofibration $J^{\diamond} \to L([1])$ for some biorder J^{\diamond} on J, then the bottom arrow in (7.3.2.3) is the map underlying (3.2.7.3).

- **Definition 7.3.2.4.** (i) A family of groupoids \mathcal{C} over an ample subcategory $\mathcal{I} \subset \text{PoSets }$ *satisfies weak excision* if it is semicartesian along the square (7.3.2.1) for any set S such that $S^{<}, S^{\natural} \in \mathcal{I}$, and any $J \in \mathcal{I}$ equipped with a map $J \to S^{<}$.
 - (ii) A family of groupoids C over \mathcal{I} satisfies the cylinder axiom if it is semi-cartesian along the square (7.3.2.3) for any $J \in \mathcal{I}$ equipped with a map $J \to [1]$.
- (iii) A family of groupoids C over I with I_{∞} , $\mathbb{N} \in I$ is *weakly semicontinuous* if it is semicartesian along the square (7.3.2.2) for any $I \in I$ equipped with a map $I \to \mathbb{N}$.

Definition 7.3.2.5. A restricted Segal family is a family of groupoids \mathcal{C} over Pos that is reflexive in the sense of Definition 7.3.2.1, non-degenerate in the sense of Definition 7.3.2.2, additive and semiexact in the sense of Definition 7.1.1.1 (ii),(iii), and satisfies weak excision and the cylinder axiom in the sense of Definition 7.3.2.4. A semicanonical extension of a restricted Segal family \mathcal{C} is a family of groupoids \mathcal{C}^+ over Pos⁺ that is additive and semiexact in the sense of Definition 7.1.1.1 (ii),(iii), reflexive in the sense of Definition 7.3.2.1, non-degenerate in the sense of Definition 7.3.2.2, weakly semicontinuous in the sense of Definition 7.3.2.4, and equipped with an equivalence $i^*\mathcal{C}^+ \cong \mathcal{C}$.

Example 7.3.2.6. Since all the squares (7.3.2.1), (7.3.2.3), (7.3.2.2) are cocartesian squares of categories, and so are standard pushout squares, the fibration $\overline{\pi}$: Pos $//_{\star}I \to \text{Pos}$ of (3.2.1.2) for any category I is a restricted Segal family, and $\overline{\pi}: \text{Pos}^+//_{\star}I \to \text{Pos}^+$ is its semicanonical extension. Explicitly, for any $J \in \text{Pos}^+$, the fiber $(\text{Pos}^+//_{\star}I)_J$ is the isomorphism groupoid $\text{Fun}(J,I)_{\star}$, and for any biorder J^{\diamond} on J, the fiber $(\text{Pos}^+//_{\star}I)_{J^{\diamond}}$ of the unfolding is spanned by functors

 $J \to I$ that send each order relation $j \le l j'$ to an invertible map in I. If I is rigid, then Pos^+ //_{*} $I \to Pos^+$ is discrete.

Proposition 7.3.2.7. The unfolding C^{\diamond} of a restricted Segal family C over Pos in the sense of Definition 7.3.2.5 is a Segal family in the sense of Definition 7.2.3.3 and reflexive in the sense of Definition 7.3.1.1. Conversely, the restriction L^*C of a reflexive Segal family C over BiPos in the sense of Definition 7.2.3.3 and Definition 7.3.1.1 is a restricted Segal family in the sense of Definition 7.3.2.5, and we have a natural equivalence $C \cong (L^*C)^{\diamond}$. Moreover, for any semicanonical extension C^+ of the family C, the unfolding C^+ is a semicanonical extension of the unfolding C^{\diamond} , and conversely, for any semicanonical extension C^+ of the unfolding C^{\diamond} , $C^+ = L^*C^{\diamond}$ is a semicanonical extension of C, it is reflexive, safisfies weak excision and the cylinder axiom of Definition 7.3.2.4, and we have $C^{\diamond} \cong C^{+\diamond}$.

Proof. For the first claim, note that C^{\diamond} is tautologically additive and semiexact, and it is constant along reflexive maps by Lemma 7.3.2.3. In particular, it is constant along the map $J \times R(S^>) \to J$ for any $J \in BiPos$, and then the weak excision property for \mathcal{C} implies that \mathcal{C}^{\diamond} is semiconstant along a map $I^{\natural} \to I$ with J^{\natural} as in (3.2.6.1). Moreover, for any $J' \in \text{BiPos}$, we have $(J' \times J)^{\natural} \cong J' \times J^{\natural}$, so if we let $j, j_{\natural} : \text{BiPos} \to \text{BiPos}$ be the functors $J' \mapsto J' \times J, J' \times J^{\natural}$, then the transition functor $j^*\mathcal{C}^\diamond \to j_{\natural}^*\mathcal{C}^\diamond$ is an epivalence. Therefore it is an equivalence by Corollary 6.2.1.7, so that \mathcal{C}^{\diamond} satisfies excision. For the same reason, the cylinder axiom for \mathcal{C}^{\diamond} for a bicofibration $I \to L([1])$ immediately follows from the cylinder axiom for \mathcal{C} , for the underlying map $U(J) \to [1]$. Conversely, for a reflexive Segal family C over BiPos, the restriction L^*C is tautologically additive, semiexact and reflexive, and it is non-degenerate by Lemma 7.3.1.3. Weak excision for L^*C then immediately follows from excision for C. Moreover, we have $\mathcal{C} \cong (L^*\mathcal{C})^{\diamond}$ by Lemma 7.3.1.6. As for the cylinder axiom, note that for any map $\chi: J \to [1]$ in Pos, the map $L(J/[1]) \cong t_+^*L(J) \to L([2])$ satisfies the assumption of Lemma 3.2.6.4, so that the map $\zeta_3^{\diamond*}L(J/[1]) \to L(J/[1])$ is bianodyne, and \mathcal{C}^{\diamond} is constant along this map by Lemma 7.2.3.4. Again by Lemma 7.3.2.3, this is equivalent to the cylinder axiom for C.

For \mathcal{C}^+ , the family $\mathcal{C}^{+\diamond}$ is [1]-invariant since \mathcal{C}^+ is non-degenerate, and then again, by Lemma 7.3.2.3 and Corollary 6.2.1.7, weak semicontinuity for \mathcal{C}^+ immediately implies semicontinuity for $\mathcal{C}^{+\diamond}$. Conversely, $\mathcal{C}^{\diamond+}$ satisfies excision and the cylinder axiom by Corollary 7.2.3.5, and then \mathcal{C}^+ is reflexive by Lemma 7.3.1.6 and non-degenerate since $\mathcal{C}^{\diamond+}$ is [1]-invariant. Then again, Lemma 7.3.2.3 applies, so that weak excision for \mathcal{C}^+ follows from excision for $\mathcal{C}^{\diamond+}$, weak semicontinuity resp. the cylinder axiom follow from Lemma 7.2.3.4

Corollary 7.3.2.8. A restricted Segal family $C \to Pos$ is cartesian along all squares (7.3.2.1), (7.3.2.3), and its canonical extension C^+ is cartesian along all squares (7.3.2.2).

Proof. Clear. □

Corollary 7.3.2.9. Assume given a small restricted Segal family $C \to Pos$, and let $\iota : Pos \to Pos$ be the involution $J \mapsto J^o$. Then ι^*C is also a restricted Segal family.

Proof. By virtue of Proposition 7.3.2.7 and Proposition 7.2.4.1 (ii), we have $\mathcal{C} \cong L^*(\mathcal{C}^\diamond) \cong L^*\pi_* \mathbb{N}^*_{\bullet} \mathcal{C}^\Delta$ for some small additive semiexact family of groupoids \mathcal{C}^Δ over $\langle \Delta_f^o \Delta_f^o \operatorname{Sets}, W \rangle$ that is a Segal family in the sense of Definition 7.2.1.1. Equivalently, $\mathcal{C} \cong \mathbb{N}^*L^*\mathcal{C}^\Delta$, where L is the functor (7.2.1.1). But if we let ι_L : $\Delta \times \Delta \to \Delta \times \Delta$ be the involution ι acting on the Reedy factor, and denote $\iota_\Delta = \iota_L^* : \Delta_f^o \Delta_f^o \operatorname{Sets} \to \Delta_f^o \Delta_f^o \operatorname{Sets}$, then $L \circ \mathbb{N} \circ \iota \cong \iota_\Delta \circ \mathbb{N} \circ \iota$, so that $\iota^*\mathcal{C} \cong L^*\pi_*\mathbb{N}^*_{\bullet}\iota_\Delta^*\mathcal{C}^\Delta$. It remains to observe that Definition 7.2.1.1 is manifestly invariant under ι_Δ , so that $\iota_\Delta^*\mathcal{C}^\Delta$ is also a small Segal family over $\langle \Delta_f^o \Delta_f^o \operatorname{Sets}, W \rangle$, and we are done by Proposition 7.2.4.1 (i) and Proposition 7.3.2.7.

7.3.3. Barycentric dualization. While our proof of Corollary **7.3.2.9** is short, it is somewhat unsatisfactory. Using the full force of Proposition **7.2.4.1** looks like an overkill, and comes with a penalty: we have to assume that \mathcal{C} has essentially small fibers. Let us now extract the relevant parts of Proposition **7.2.4.1** to give a self-contained proof of a version of Corollary **7.3.2.9**; as a bonus, it works for families with large fibers, and includes a statement about semicanonical extensions.

The main technology used are the barycentric subdivision functors B^{\diamond} , B_{\diamond} of Example 3.2.2.6. We recall that B^{\diamond} and B_{\diamond} send Pos into BiPos and the whole PoSets into the subcategory BiPos $^{\pm}$ \subset BiPoSets of left-finite biordered sets, and for any J in Pos $^{\pm}$, the biordered map $\xi: B^{\diamond}(J) \to L(J)$ is \pm -bianodyne in the sense of Definition 3.2.8.1, and strongly \pm -bianodyne if $J \in$ Pos. For any partially ordered set J equipped with a map $\chi: J \to [1]$, the comma-set J/[1] fits into the cocartesian square (2.2.4.4). We denote by

$$(7.3.3.1) B(J,\chi) = B(J_0 \times [1]) \sqcup_{B(J_0)} B(J) \subset B(J/[1])$$

the corresponding left-closed subset in its barycentric subdivision, and let

$$(7.3.3.2) B^{\diamond}(J,\chi) \subset B^{\diamond}(J/[1]), B_{\diamond}(J,\chi) \subset B_{\diamond}(J/[1])$$

be the subset $B(J,\chi)$ with the biorders induced by B^{\diamond} and B_{\diamond} .

Lemma 7.3.3.1. For any J in Pos equipped with a map $\chi: J \to [1]$, the embeddings (7.3.3.2) are strongly \pm -bianodyne.

Proof. For any n > l > 0, denote by $B([n])_l \subset B([n])$ the left-closed subset corresponding to the horn embedding (4.1.3.3), let $B^{\diamond}([n])_l$ resp. $B_{\diamond}([n])_l$ be $B([n])_l$ with the biorder induced by $B^{\diamond}([n])$ resp. $B_{\diamond}([n])$, and let $v_n^{l \diamond}: B^{\diamond}([n])_l \to I$ $B^{\diamond}([n]), v_{n\diamond}^l: B_{\diamond}([n])_l \to B_{\diamond}([n])$ be the embeddings. Then we have the strongly ±-bianodyne map (3.2.6.7) of Example 3.2.6.5, and the same induction as in Lemma 4.1.3.1 shows that $v_n^{l\diamond}$ is also strongly \pm -bianodyne. Moreover, we can identify $B_{\diamond}([n]) = B^{\diamond}([n]^{o}) \cong B^{\diamond}([n])$, and then (3.2.6.7) for the opposite ordinals is also strongly \pm -bianodyne, so that $v_{n\diamond}^l$ is strongly \pm -bianodyne as well. Now, the same argument as in the proof of Lemma 4.1.3.1 (iv) provides a finite filtration $B(J/[1])_k^d$ by left-closed subsets on the target of the embedding (7.3.3.1) that starts with its source and ends with the whole target, and this provides filtrations on the biordered embeddings (7.3.3.2). The successive right-closed complements in the filtration are of the form (4.1.3.9), and the corresponding projections $\overline{B}^{\diamond}(J/[1])_k^d \to S$ resp. $\overline{B}_{\diamond}(J/[1])_k^d \to S$ extend to the characteristic maps $p: B^{\diamond}(J/[1])_k^d \to R(S^{<})$ resp. $p: B_{\diamond}(J/[1])_k^d \to R(S^{<})$ of (3.1.2.2). Then with respect to these maps, the left comma-fibers of the embedding of the previous term in the filtration are id over $o \in S^{<}$ and a standard pushout of the horn embedding $v_k^{d\diamond}$ resp. $v_{k\diamond}^d$ over each $s \in S \subset S^{<}$, so we are done by Lemma 3.2.5.3.

Corollary 7.3.3.2. For any map $\chi: J \to \mathbb{N}$ in Pos^+ , define a left-closed subset $B(J/\mathbb{N},\chi) \subset B(J/\mathbb{N})$ by the cartesian square

(7.3.3.3)
$$B(J/\mathbb{N}, \chi) \longrightarrow B(J/\mathbb{N})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z_{\infty} \stackrel{\beta}{\longrightarrow} B(\mathbb{N}),$$

where β is embedding (3.1.4.4), and let $B_{\diamond}(J/\mathbb{N}, \chi) \subset B_{\diamond}(J/\mathbb{N})$ be $B(J/\mathbb{N}, \chi)$ with the induced biorder. Then the embedding $B_{\diamond}(J/\mathbb{N}, \chi) \to B_{\diamond}(J/\mathbb{N})$ is \pm -bianodyne.

Proof. The height map $\operatorname{ht}: J \to \mathbb{N}$ is left-bounded, it induces a left-finite map $\operatorname{ht} \circ \sigma \circ \xi : B(J/\mathbb{N}) \to J/\mathbb{N} \to J \to \mathbb{N}$, and for any $n \in \mathbb{N}$, we have $B_{\diamond}(J/\mathbb{N})/n \cong B_{\diamond}((J/\mathbb{N})/\mathbb{N})$, so by Lemma 3.2.5.3, we may assume right away that $J \in \operatorname{Pos}$. Then $\tau : J/\mathbb{N} \to \mathbb{N}$ is left-bounded and induces a left-finite map $\tau \circ \xi : B(J/\mathbb{N}) \to J/\mathbb{N} \to \mathbb{N}$, and with respect to this map, we

have $B(J/\mathbb{N})/n \cong B((J/n)/[n])$ for any $n \in \mathbb{N}$. Therefore it suffices to show that for any $J \in \text{Pos}$ equipped with a map $\chi : J \to [n]$ for some [n], if we define $B(J/[n],\chi) \subset B(J/[n])$ by (7.3.3.3) with β replaced by β_n of (3.1.4.3), then the embedding $B_{\diamond}(J/[n],\chi) \to B_{\diamond}(J/[n])$ is \pm -anodyne. For n=1, this is Lemma 7.3.3.1, and the general case immediately follows by induction, using the decomposition (3.1.10.1).

Remark 7.3.3.3. To visualize better the biordered set $B_{\diamond}(J/\mathbb{N}, \chi)$ of Corollary 7.3.3.2, we note that the left comma-fibers of the projection p of (7.3.3.3) over the elements $2n, 2n+1 \in Z_{\infty}$, $n \ge 0$ are given by

$$(7.3.3.4) \quad B_{\diamond}(J/\mathbb{N},\chi)/2n \cong B_{\diamond}(J/n), \ B_{\diamond}(J/\mathbb{N},\chi)/(2n+1) \cong B_{\diamond}(J/e_n([1])),$$

where $e_n : [1] \to \mathbb{N}$ is the embedding onto $\{n, n+1\} \subset \mathbb{N}$.

Proposition 7.3.3.4. For any restricted Segal family C over Pos, with unfolding C^{\diamond} , B_{\diamond}^*C is a restricted Segal family over Pos, and the bianodyne map ξ of Corollary 3.2.5.5 induces an equivalence $B_{\diamond}^*C^{\diamond} \cong \iota^*C$. Moreover, for any semicanonical extension C^+ of a restricted Segal family C, $B_{\diamond}^*C^{+\diamond}$ is a semicanonical extension of $\iota^*C \cong B_{\diamond}^*C^{\diamond}$.

Proof. The fact that \mathcal{C}^{\diamond} is constant along the map ξ immediately follows from Proposition 7.3.2.7 and Lemma 7.2.3.4, so we indeed have $\iota^*\mathcal{C} \cong B_{\diamond}^*\mathcal{C}^{\diamond}$. Since B_{\diamond} preserves coproducts and standard pushout square, the family $B_{\diamond}^*\mathcal{C}$ is additive and semiexact. To see that it is reflexive and non-degenerate, recall that for any $J \in \text{Pos}$, we have the functorial strongly \pm -bianodyne map $B_{\diamond}(J \times [1]) \to B_{\diamond}(J) \times L([1])$ of Example 3.2.8.5. To see that $B_{\diamond}^*\mathcal{C}^{\diamond}$ satisfies the cylinder axiom, consider a square (7.3.2.3) in Pos, and use Lemma 7.3.3.1 and Lemma 3.2.8.4 to reduce the question to showing that \mathcal{C}^{\diamond} is cartesian along the square

Then since \mathcal{C} is reflexive and non-degenerate, \mathcal{C}^{\diamond} is fully faithful along the top arrow, so as in Proposition 7.3.2.7, it suffices to observe that \mathcal{C}^{\diamond} is constant along the map

$$(B_{\diamond}(J_0) \times \mathsf{V}^{\diamond o}) \sqcup_{B_{\diamond}(J_0)} B_{\diamond}(J) \to (B_{\diamond}(J_0) \times L([1])) \sqcup_{B_{\diamond}(J_0)} B_{\diamond}(J)$$

that happens to be a standard pushout of a reflexive map. Analogously, to check that $B^*_{\diamond}C^{\diamond}$ satisfies weak excision, assume given a square (7.3.2.1) in Pos, and

note that by Corollary 3.2.8.7, it suffices to check that \mathcal{C}^{\diamond} is cartesian along the square

$$B_{\diamond}(J_{o}) \times B_{\diamond}(S^{>}) \longrightarrow B_{\diamond}(J_{o})$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{\diamond}(J)^{\natural \flat} \longrightarrow B_{\diamond}(J),$$

where $B^{\diamond}(J^o)^{\natural \flat}$ is as in (3.2.6.1). As in Proposition 7.3.2.7, this immediately follows from Lemma 3.2.8.2. This proves that $B^*_{\diamond}\mathcal{C}^{\diamond} \cong \iota^*\mathcal{C}$ is indeed a restricted Segal family. Finally, if \mathcal{C}^+ is a semicanonical extension of the family \mathcal{C} , then $B^*_{\diamond}\mathcal{C}^{+\diamond}$ is again reflexive and non-degenerate by Example 3.2.8.5, so it suffices to prove that it is weakly semicontinuous. We thus need to show that for any $J \in \operatorname{Pos}^+$ equipped with a map $\chi: J \to \mathbb{N}$, the unfolding $\mathcal{C}^{+\diamond}$ is cartesian along the square

obtained by applying B_{\diamond} to the square (7.3.2.2). The left vertical arrow in (7.3.3.5) fits into a standard pushout square

$$\coprod_{n} B_{\diamond}(J/n) \longrightarrow \coprod_{n \geq 1} B_{\diamond}([1] \times J/n)
\downarrow \qquad \qquad \downarrow
\coprod_{n} B_{\diamond}(J/e_{n}([1])) \longrightarrow B_{\diamond}(J^{+})$$

induced by (3.1.7.12), where e_n is as in (7.3.3.4), while in the top arrow in (7.3.3.5), each term in the coproduct factors as

$$B_{\diamond}([1] \times J/n) \xrightarrow{a} B_{\diamond}([1] \times J/n|J/n) \xrightarrow{b} B_{\diamond}(J/n),$$

where a is the natural dense map, and b is the \pm -bianodyne map of (the \pm -bianodyne version of) Corollary 3.2.5.7. Thus if we simply notation by writing $B_{\diamond}(J/n)' = B_{\diamond}([1] \times J/n|J/n)$, and define a biordered set $B_{\diamond}(J^+)'$ by a standard pushout square

$$\coprod_{n} B_{\diamond}(J/n) \longrightarrow \coprod_{n \geq 1} B_{\diamond}(J/n)'$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{n} B_{\diamond}(J/e_{n}([1])) \longrightarrow B_{\diamond}(J^{+})',$$

then (7.3.3.5) fits into a commutative diagram

$$\begin{array}{cccc}
& \coprod_{n\geq 1} B_{\diamond}([1]\times J/n) & \longrightarrow & B_{\diamond}(J^{+}) \\
& \downarrow a' & & \downarrow a' \\
& \coprod_{n\geq 1} B_{\diamond}(J/n)' & \longrightarrow & B_{\diamond}(J^{+})' \\
& \downarrow b & & \downarrow b' \\
& \coprod_{n\geq 1} B_{\diamond}(J/n) & \longrightarrow & B_{\diamond}(J/\mathbb{N}),
\end{array}$$

where a and a' are dense, the unfolding $\mathcal{C}^{+\diamond}$ is cartesian along the top square by the same argument as in Lemma 7.3.1.2, and b is a coproduct of \pm -bianodyne maps, thus \pm -bianodyne. Thus to finish the proof, it suffices to check that b' is also \pm -bianodyne. But it factors as

$$B_{\diamond}(J^+)' \xrightarrow{c} B_{\diamond}(J/\mathbb{N},\chi) \xrightarrow{d} B_{\diamond}(J/\mathbb{N}),$$

the map d is \pm -bianodyne by Corollary 7.3.3.2, so it further suffices to check that so is c. Now, if we treat it as a map over Z_{∞} via the projection p of (7.3.3.3), then in terms of (7.3.3.4), its left comma fiber c/2n is the \pm -bianodyne projection $B_{\diamond}(J/n)' \to B_{\diamond}(J/n)$, while its left comma-fiber c/(2n+1) is the projection

$$\begin{array}{c} B_{\diamond}(J/n)' \sqcup_{B_{\diamond}(J/n)} B_{\diamond}(J/e_n([1])) \sqcup_{B_{\diamond}(J/(n+1))} B_{\diamond}(J/(n+1))' \\ \downarrow \\ B_{\diamond}(J/e_n([1])), \end{array}$$

so that it is inverse to a composition of two standard pushouts of bianodyne maps. Thus we are done by Lemma 3.2.5.3.

7.3.4. Complete Segal families. We now introduce one more condition on families of groupoids over an ample full subcategory $\mathcal{I} \subset \text{PoSets}$. By Definition 3.1.5.1, \mathcal{I} contains $\Delta \subset \text{pos} \subset \text{PoSets}$. As in (3.1.7.3), denote by $\mu: \{0,1\} \times [1] \to [3]$ the map given by $\mu(l \times l') = l + 2l'$, l,l' = 0,1, and for any $[n] \in \Delta$, let $e:[n] \to [0]$ be the tautological projection. We then have the following version of Definition 5.2.3.2.

Definition 7.3.4.1. A family of groupoids C over an ample $T \subset PoSets$ is *complete* if it is cartesian over the square

for any partially ordered set $J \in \mathcal{I}$.

Example 7.3.4.2. For any category I, the family $\overline{\pi} : \text{Pos}^+ / I \to \text{Pos}^+$ of Example 7.3.2.6 is complete.

We also need a version of Definition 7.3.4.1 for bisimplicial sets. Recall that for any $[n] \in \Delta$, $N([n]) \cong \Delta_n$ is an elementary n-simplex, and then the square (7.3.4.1) with $J = \operatorname{pt}$ induces a cocartesian square

(7.3.4.2)
$$\begin{cases} \{0,1\} \times \Delta_1 & \longrightarrow \Delta_3 \\ \downarrow & \downarrow \\ \{0,1\} & \longrightarrow \mathsf{V}_3 \end{cases}$$

for some $V_3 \in \Delta_f^o$ Sets. Geometrically, the simplicial set V_3 is a tetrahedron with two edges contracted to points.

Definition 7.3.4.3. A family of groupoids C over $\Delta_f^o \Delta_f^o$ Sets is *complete* if for any $n \geq 0$, C is stably constant along the projection $L(V_3 \times \Delta_n) \to L(\Delta_n)$ in the sense of Definition 6.3.5.13. A fibrant Segal space $X \in \Delta^o \Delta^o$ Sets in the sense of Example 7.2.1.2 is *complete* if so is the family $\mathcal{H}(X)$.

Example 7.3.4.4. If we let $\mathcal{H}om(-,-)$ be the internal Hom in the cartesian-closed category $\Delta^o\Delta^o$ Sets, then a fibrant Segal space $Y \in \Delta^o\Delta^o$ Sets is complete if and only if $\mathcal{H}om(-,Y)$ sends the projection $L(\mathsf{V}_3) \to \mathsf{pt} = L(\Delta_0)$ to a weak equivalence. Indeed, choose a section $v: \mathsf{pt} \to \mathsf{V}_3$ of the projection $\mathsf{V}_3 \to \mathsf{pt}$; then since v is injective and Y is fibrant, $\mathcal{H}om(-,Y)$ always sends v to a pointwise Kan fibration, and by Corollary 6.3.5.14, this fibration is pointwise-trivial iff $\mathcal{H}(Y)$ is constant along $L(v \times \mathsf{id}) : L(\Delta_n) \to L(\Delta_n \times \mathsf{V}_3)$ for any $n \ge 0$.

Example 7.3.4.5. For another interpretation of complete Segal spaces, note that the square (7.3.4.2) is also homotopy cocartesian in $\Delta^o \Delta^o$ Sets. Let $\delta: \Delta \to \Delta \times \Delta$ be the diagonal embedding, and for any $X: \Delta^o \to \Delta^o$ Sets and $[n], [m] \in \Delta$, denote $X_{[n],[m]} = \delta^o_* X([n] \times [m]) \in \Delta^o$ Sets. Then a fibrant Segal space X is complete if and only if for any $[n] \in \Delta$, the square

(7.3.4.3)
$$X_{[n],[0]} \longrightarrow X_{[n],[0]} \times X_{[n],[0]}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{[n],[3]} \longrightarrow X_{[n],[1]} \times X_{[n],[1]}$$

induced by (7.3.4.3) is homotopy cartesian in Δ^o Sets.

Example 7.3.4.6. Let NI be the nerve of a small category I, constant in the simplicial direction. Then a map $V_3 \to I$ is a diagram (4.2.1.1) of length 4 such that the maps $i_0 \to i_2$, $i_1 \to i_3$ are invertible, and then all maps in the diagram must be invertible. If I is rigid, any map $V_3 \to I$ must be therefore constant. In this case, the fibrant Segal space L(NI) is complete: indeed, since the product of (7.3.4.2) with any Δ_n , $n \ge 0$ is still cocartesian, a map $V_3 \times \Delta_n \to NI$ is then the same thing as a functor $[3] \times [n] \to I$ whose restriction to any $[3] \times \{l\}$, $l \in [n]$ is constant, and such a functor factors through the projection $[3] \times [n] \to [n]$.

Lemma 7.3.4.7. Assume given a small additive semiexact Segal family of groupoids $C \to \Delta_f^o \Delta_f^o$ Sets constant along anodyne maps of Definition 6.3.4.1 that is complete in the sense of Definition 7.3.4.3. Then C is stably constant along the projection $L(V_3 \times X) \to L(X)$ for any simplicial set $X \in \Delta_f^o$ Sets

Proof. Same as Corollary 7.2.1.9.

Proposition 7.3.4.8. Assume given a small semiexact additive family of groupoids $C \to \Delta_f^o \Delta_f^o$ Sets that is constant along weak equivalences and satisfies the Segal condition of Definition 7.2.1.1. Then C is complete in the sense of Definition 7.3.4.3 if and only if N^*L^*C is a restricted Segal family in the sense of Definition 7.3.2.5 and complete in the sense of Definition 7.3.4.3. Moreover, if this happens, then π_*N^*C is reflexive in the sense of Definition 7.3.1.1.

Proof. Note that $L \circ \mathbb{N} \cong \mathbb{N}_{\diamond} \circ L \cong \overline{\mathbb{N}}_{\diamond} \circ L$, and $\overline{\mathbb{N}}_{\diamond}^* \mathcal{C}$ is a Segal family over BiPos by Lemma 7.2.3.7. Assume first that $N^*L^*C \cong L^*\overline{N}^*_{\diamond}C$ is a complete restricted Segal family. Then $N^*L^*C \cong L^*\pi_*N^*C$ by Proposition 7.2.4.1, and $\pi_*N^*C \cong (N^*L^*C)^{\diamond}$ by Proposition 7.3.2.7, so that in particular, $\pi_* N_{\cdot}^* \mathcal{C}$ is cartesian along the square (7.3.4.1) for any $J \in BiPos$ (where we replace [0], $\{0,1\}$, $\{0,1\} \times [1]$ and [3] with their images under the functor *L*). Moreover, let $v: \Delta_f^o \Delta_f^o \operatorname{Sets} \to \Delta_f^o \Delta_f^o \operatorname{Sets}$ be the functor sending X to $X \times L(V_3)$. Then by Corollary 7.2.1.9, $v^*\mathcal{C}$ is also an additive semiexact Segal family constant along weak equvalences, so that $\pi_* \mathbb{N}^* v^* \mathcal{C}$ is also a Segal family over BiPos. Now note that by Lemma 6.3.4.6, \mathcal{C} is strongly semiexact over $\Delta_f^o \Delta_f^o$ Sets, and in particular, it is semiexact over the square (7.3.4.2) and its cartesian product with any $Y \in \Delta_f^o \Delta_f^o$ Sets. Since $\pi_* N_{\diamond}^* \mathcal{C}$ is cartesian along (7.3.4.1), this implies that the functor $\pi_* N_{\diamond}^* \mathcal{C} \to \pi_* N_{\diamond}^* v^* \mathcal{C}$ induced by the tautological projection $v \to \operatorname{id}$ has a one-sided inverse $\pi_* \mathsf{N}_{\diamond}^* v^* \mathcal{C} \to$ $\pi_* N_*^* \mathcal{C}$ that is an epivalence. Since the source and target of this epivalence are semiexact families over BiPos with respect to the standard CW-structure, it is an equivalence by Corollary 6.2.1.7, and its inverse $\pi_* N_{\diamond}^* \mathcal{C} \to \pi_* N_{\diamond}^* v^* \mathcal{C}$ is then also

an equivalence. Therefore $C \to v^*C$ is an equivalence by Proposition 7.2.4.1 (i), and C is complete.

Conversely, assume that \mathcal{C} is complete. Then again, by strong semiexactness, and Lemma 7.3.4.7, $N^*L^*\mathcal{C}$ is semicartesian along (7.3.4.1) for any $J \in Pos$. However, since $e:[3] \to [0]$ admits a one-sided inverse, $(id \times e)^*$ in (7.3.4.1) is faithful, so that $N_L^*\mathcal{C}$ is in fact cartesian along (7.3.4.1). By Proposition 7.3.2.7, to finish the proof, it suffices to show that the Segal family $\pi_*N_*^*\mathcal{C}$ is reflexive in the sense of Definition 7.3.1.1.

To do this, take any $J \in \text{BiPos}$, consider the functor $j: \Delta \to \text{BiPos}$, $[n] \mapsto J \times L([n])$, and let $\mathcal{C}(J) = j^*\pi_*\mathsf{N}^*\mathcal{C}$ be the induced family of groupoids over Δ . Since $\pi_*\mathsf{N}^*\mathcal{C}$ is a Segal family, $\mathcal{C}(J)$ is semicartesian along the square (3.1.7.9) for any $n \geq 0$ and l = 1 (let $s_t : [n] \to [2]$ be the cofibration of Example 3.1.3.6, and apply Corollary 7.2.3.6 to the corresponding bicofibration $J \times L([n]) \to L([n]) \to L([2])$). Moreover, as in the proof of Proposition 5.2.3.3, let $\mathcal{C}(J)^e \subset \mathcal{C}(J)$ be the full subcategory spanned by essential images of the functors $e^* : \mathcal{C}(J)_{[0]} \to \mathcal{C}(J)_{[n]}$. Then by Lemma 6.2.3.1 applied to the standard pushout square (7.2.3.2), $\mathcal{C}(J)^e$ is actually cartesian along (3.1.7.9) for l = 1 and any $n \geq 0$. By induction on n, $\mathcal{C}(J)^e$ is then cartesian along (3.1.7.9) for any $n \geq l \geq 0$, so that it is a Segal category in the sense of Definition 4.2.3.1. Now the same argument as for $N^*L^*\mathcal{C}$ shows that $\mathcal{C}(J)$ is complete, and $\mathcal{C}(J)^e \subset \mathcal{C}(J)$ is then also complete. Therefore by Proposition 5.2.3.3 (ii), it is reflexive, and since J was arbitrary, $\pi_*N_*^*\mathcal{C}$ is also reflexive.

As a corollary of Proposition 7.3.2.7 and Proposition 7.3.4.8, we note that if we consider the category Seg of (7.2.4.7), and let CSS \subset Seg be the full subcategory spanned by unfoldings of small complete restricted Segal families, then the equivalence of Corollary 7.2.4.2 identifies CSS with the full subcategory in $h^W(\Delta^o\Delta^o$ Sets) formed by complete Segal spaces. In fact, one can do much better: by a beautiful discovery of Ch. Rezk, there is another model structure on $\Delta^o\Delta^o$ Sets whose homotopy category is CSS on the nose. We will not really need this construction, but we will need one of its corollaries: the subcategory CSS $\subset h^W(\Delta^o\Delta^o$ Sets) is left-admissible. For completeness, let us reprove this. We will actually prove slightly more (namely, a weak version of the so-called "Bousfield localization", [Bo1]).

Assume given a cellular Reedy category I, and a set T of arrows $Y \to Y'$ in I^o Sets whose sources Y are compact. Say that a semicanonical extension \mathcal{C}^+ of a small additive semiexact family of groupoids $\mathcal{C} \to I_f^o \Delta_f^o$ Sets is a T-family if it is stably constant along any $f \in T$ in the sense of Definition 6.3.5.13, say that a fibrant object $X \in I^o \Delta^o$ Sets is a T-space if $\mathcal{H}(X)$ is a T-family, and say that a map

g in $I^o\Delta^o$ Sets is a T-equivalence if for any T-space X, $\mathcal{H}(X)$ is stably constant along g. By definition, the class W(T) of injective T-equivalences contains T, but it is much larger; in particular, by Lemma 6.3.4.6 and Corollary 6.3.5.14, it is saturated and closed under coproducts, pushouts and countable compositions, and we also have the following easy observation.

Lemma 7.3.4.9. For any cellular Reedy category I' and Reedy-fibrant functor $X: I'^o \to I^o \Delta^o$ Sets such that X(i) is a T-space for any $i \in I'$, $\lim_{I'^o} X$ is a T-space.

Proof. By Corollary 6.3.5.14 (ii), a fibrant $X \in I^o \Delta^o$ Sets is a T-space iff for any $f: Y \to Y'$ in T, the Kan fibration $f^*: \operatorname{Hom}^\Delta(Y', X) \to \operatorname{Hom}^\Delta(Y, X)$ is trivial, and then as in Example 6.3.2.12, by Quillen Adjunction Theorem 5.3.1.1, the functor $\lim_{I'^o}$ sends weak equivalences between Reedy-fibrant objects to weak equivalences.

Example 7.3.4.10. Let $I = \Delta$, and let T be the class of horn extensions v_n^l of (4.1.3.3), with n > l > 0. Then a T-family is a Segal family in the sense of Definition 7.2.1.1, and a T-space is a fibrant Segal space of Example 7.2.1.2. A *Segal equivalence* is a T-equivalence for this particular set T.

Example 7.3.4.11. Let $I = \Delta$, consider the set V_3 of (7.3.4.2), choose a map $v : \mathsf{pt} \to \mathsf{V}_3$, and let T' be the set T of Example 7.3.4.10 enlarged by adding the embeddings id $\times v : \Delta_n \to \Delta_n \times \mathsf{V}_3$ for all $n \ge 0$. Then T'-spaces are complete Segal spaces of Definition 7.3.4.3.

Lemma 7.3.4.12. Assume given a cellular Reedy category I, and a set T of arrows $f: Y \to Y'$ in I^o Sets whose source Z is compact.

- (i) Any T-equivalence $f: X \to X'$ between T-spaces is a weak equivalence.
- (ii) The full subcategory $h_T^W(I^o\Delta^o\operatorname{Sets})\subset h^W(I^o\Delta^o\operatorname{Sets})$ spanned by T-spaces is left-admissible.

Proof. For (i), since f is a T-equivalence, the family $\mathcal{H}(X)$ is constant along f, and so is the represented functor $h(X) = \pi_0(\mathcal{H}(X))$. This provides a map $g: X' \to X$ such that $g \circ f = \operatorname{id}$ in $h^W(\Delta^o \Delta^o \operatorname{Sets})$. The same argument applied to g then provides a map $f': X \to Y'$ such that $f' \circ g = \operatorname{id}$, and then $f = f' \circ g \circ f = f'$.

For (ii), by Lemma 2.2.3.6, we have to construct a functor

$$(7.3.4.4) p: h^{W}(I^{o}\Delta^{o} \operatorname{Sets}) \to h^{W}_{T}(I^{o}\Delta^{o} \operatorname{Sets}) \subset h^{W}(I^{o}\Delta^{o} \operatorname{Sets})$$

and a functorial map $\alpha: X \to p(X)$ invertible when $X \in h_T^W(I^o \Delta^o \operatorname{Sets})$. Let T, be the set of maps $f(S_{n-1}, \Delta_n)$ of Corollary 6.3.5.14 (ii), for all $f \in T$ and $n \geq 0$, and enlarge T further to a set T' by adding all the horn embeddings $V_{i,n}^k$ of (6.3.2.4). Then since all injective maps in $I^o\Delta^o$ Sets are trivially absolutely cofibrant in the sense of Definition 6.1.1.14 for the standard C-category structure, we have the extension functor Ex(T') of (6.1.3.1), and as in Lemma 6.3.2.1, for any $X \in I^{o}\Delta^{o}$ Sets, we can consider $X_{1} = \operatorname{Ex}(T'_{\bullet})(X)$ equipped with a map $a_0: X = X_0 \rightarrow X_1$, and then iterate the construction to obtain functorial maps $a_n: X_n \to X_{n+1}$. Then we take $X_\infty = \operatorname{colim}_n X_n$, with the functorial map $a_{\infty}: X \to X_{\infty}$, and we note that by Corollary 6.3.5.14 and (6.1.3.2), all the maps a_n are T-equivalences, and then again by Corollary 6.3.5.14, so is the map a_{∞} . Moreover, the sources of all maps $f \in T'$ are compact in $I^o \Delta^o$ Sets, so the small object argument applies and shows that X_{∞} has the lifting property with respect to all such maps f. Then by Lemma 6.3.2.10 and Corollary 6.3.5.14 (ii), X_{∞} is a *T*-space. If *X* is also a *T*-space, then a_{∞} is a weak equivalence by (i), so to finish the proof, it suffices to show that the functor $X \mapsto X_{\infty}$ sends weak equivalences to weak equivalences, thus descends to a functor (7.3.4.4) (with α then given by a_{∞}). But since the class of *T*-equivalences is saturated, for any weak equivalence $w: X \to X'$, the corresponding map $w_{\infty}: X_{\infty} \to X'_{\infty}$ is a *T*-equivalence, and then it must be a weak equivalence by (i).

7.4. Augmentations.

7.4.1. Augmented Segal spaces. For any category I, define an I-bisimplicial set as a functor $I^o \times \Delta^o \times \Delta^o \to Sets$, or equivalently, a functor $I^o \to \Delta^o \Delta^o Sets$. Assume that I is a directed Hom-finite cellular Reedy category I, as in Proposition 7.1.3.6. Then the category $I^o \Delta^o \Delta^o Sets$ carries a Reedy model structure. As in Subsection 7.2.1, we distinguish the Reedy and the simplicial factor Δ in $I \times \Delta \times \Delta$, and we let $r: I^o \times \Delta^o \times \Delta^o \to \Delta^o$ be the projection onto the simplicial factor, with the corresponding functor $R = r^* : \Delta^o Sets \to I^o \Delta^o \Delta^o Sets$. Each I-bisimplicial set X has three skeleton filtrations sk_*^I , sk_*^I , sk_*^R along I and the Reedy resp. simplicial copy of Δ , and we let $sk_*^{I,L}$ resp. $sk_*^{I,R}$ be the skeleton filtration along the product $I \times \Delta$ of I and the Reedy resp. simplicial copy of Δ . For any I-bisimplicial set X and any object $i \in I$, evaluation at i gives a bisimplicial set $X(i) = \varepsilon(i)^{o*}X$, and since we also have the left Kan extension functor $\varepsilon(i)^o_!: \Delta^o \Delta^o$ Sets $\to I^o \Delta^o \Delta^o$ Sets, a family of groupoids $C \to I^o \Delta^o \Delta^o$ Sets restricts to a family $C(i) = (\varepsilon(i)^o_!)^*C \to \Delta^o \Delta^o$ Sets. We note that explicitly, by

(2.2.5.2), we have

where $\Delta_i = \mathsf{Y}(i): I^o \to \mathsf{Sets}$ is represented by i, as in (4.3.2.5). Since $I \times \Delta$ is also a cellular Reedy category, the category of I-bisimplicial sets carries the Reedy model structure, and then Proposition 5.3.3.2 immediately implies that for any fibrant I-bisimplicial set X and object $i \in I$, we have $\mathcal{H}(X)(i) \cong \mathcal{H}(X(i))$, where X(i), being an evaluation of a Reedy-fibrant object, is automatically fibrant. Moreover, since I is directed, $\varepsilon(i)^o_!$ sends $\Delta^o_f \Delta^o_f \Delta^o_f$ Sets into $I^o_f \Delta^o_f \Delta^o_f \Delta^o_f$ Sets, and for any uncountable regular $\kappa > |I|$, it also sends $\Delta^o \Delta^o \mathsf{Sets}_\kappa$ into $I^o \Delta^o \Delta^o \mathsf{Sets}_\kappa$. Therefore for any family of groupoids \mathcal{C} over $I^o_f \Delta^o_f \Delta^o_f \Delta^o_f \mathsf{Sets}_\kappa$ resp. $I^o_f \Delta^o_f \Delta^o_f \mathsf{Sets}_\kappa$, we have a well-defined family of groupoids $\mathcal{C}(i)$ over $\Delta^o_f \Delta^o_f \mathsf{Sets}_\kappa$ resp. $\Delta^o_f \Delta^o_f \mathsf{Sets}_\kappa$.

Definition 7.4.1.1. An *I-Segal space* is an *I*-bisimplicial set X such that for any $i \in I$, X(i) is a Segal space in the sense of Example 7.2.1.2. A family of groupoids \mathcal{C} over $I_f^o \Delta_f^o \Delta_f^o$ Sets, or $I_f^o \Delta_f^o \Delta_f^o$ Sets_{κ} for some uncountable regular cardinal $\kappa > |I|$, is a *Segal family* if for any $i \in I$, $\mathcal{C}(i)$ is a Segal family in the sense of Definition 7.2.1.1. A fibrant *I-*Segal space X is *complete* if so is X(i) for any $I \in I$, and a Segal family \mathcal{C} is *complete* if for any $i \in I$, the Segal family $\mathcal{C}(i)$ is complete in the sense of Definition 7.3.4.3.

Remark 7.4.1.2. As in Example 7.3.4.10, let T be set of maps in $I^o \Delta^o$ Sets of the form id $\times v_n^l: \Delta_i \times \mathsf{V}_n^l \to \Delta_i \times \Delta_n$, for any $i \in I$ and n > l > 0. Then a fibrant I-Segal space is the same thing as a T-space. As in Example 7.3.4.11, to describe complete I-Segal spaces, choose a map $v: \mathsf{pt} \to \mathsf{V}_3$, and enlarge T by adding all the maps id $\times v: \Delta_{i,n} \to \Delta_{i,n} \times \mathsf{V}_3$.

Example 7.4.1.3. Let $C = (I \times \Delta)X \to I \times \Delta$ be a discrete Segal fibration corresponding to an *I*-simplicial set $X : I^o \times \Delta^o \to \text{Sets}$. Then if we treat X as an *I*-bisimplicial set X' constant in the simplicial direction, it is a fibrant *I*-Segal space in the sense of Definition 7.4.1.1.

Lemma 7.4.1.4. Assume given an additive semiexact family of groupoids C over $I_f^o \Delta_f^o \Delta_f^o$ Sets_{κ}, for some uncountable regular cardinal $\kappa > |I|$, and assume that C is constant along κ -anodyne maps of Definition 6.3.4.1. Moreover, assume given a map $f: X \to Y$ in $I_f^o \Delta_f^o \Delta_f^o Sets_{\kappa}$ such that for any morphism $i \to i'$ in I, C(i) is stably constant along $f(i'): X(i') \to Y(i')$ in the sense of Definition 6.3.5.13. Then C is constant along f.

Proof. Replacing Y with the cylinder C(f), we may assume right away that f is injective. Let $W(\mathcal{C})$ be the class of injective maps g in $I_f^o \Delta_f^o \Delta_f^o$ Sets_{κ} such that \mathcal{C} stably constant along g (that is, constant along $g \times \operatorname{id}_{R(Z)}$ for any $Z \in \Delta^o \operatorname{Sets}_{\kappa}$). Then as in Proposition 7.2.1.8, $W(\mathcal{C})$ is closed under coproducts and pushouts by Lemma 6.3.4.6, and by (7.4.1.1), it contains the map $\operatorname{id} \times f(i') : \Delta_i \boxtimes X(i') \to \Delta_i \boxtimes Y(i')$ for any map $i \to i'$ in I. But any such map factors through a map

$$(7.4.1.2) \qquad (\Delta_i \boxtimes X(i')) \sqcup_{\mathsf{S}_i \times X(i')} (\mathsf{S}_i \boxtimes Y(i')) \to \Delta_i \boxtimes Y(i'),$$

where $S_i \subset \Delta_i$ is the sphere embedding (4.3.2.5), and then by induction on $\deg i$, $W(\mathcal{C})$ also contains all the maps (7.4.1.2). It remains to observe that by induction on skeleta, the map f is a finite composition of pushouts of coproducts of maps (7.4.1.2).

Corollary 7.4.1.5. Assume given an I-bisimplicial set $Y \in I_f^o \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$, with $\kappa > |I|$, and consider the functor

$$(7.4.1.3) F_Y: \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa} \to I_f^o \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}, \quad Z \mapsto Y \times Z.$$

Then for any additive semiexact family of groupoids C over $I_f^o \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$ that is constant along κ -anodyne maps and Segal in the sense of Definition 7.4.1.1, F_Y^*C is an additive semiexact Segal family that is constant along κ -anodyne maps, and it is complete if so is C.

Proof. The functor (7.4.1.3) commutes with products and standard pushout squares, it sends κ -anodyne maps to κ -anodyne maps, and for any simplicial set $Z \in \Delta_f^o$ Sets_{κ} and integers n > l > 0, with the corresponding map b_n^l of (4.1.3.2), \mathcal{C} is constant along $F_Y(L(b_n^l) \times \mathrm{id}_{R(Z)})$ by Lemma 7.4.1.4. If \mathcal{C} is complete, then for any simplicial set $X \in \Delta_f^o$ Sets_{κ}, with the projection $p_X : L(V_3 \times X) \to L(X)$ of Definition 7.3.4.3, Lemma 7.4.1.4 also shows that \mathcal{C} is constant along $F_Y(p_X \times \mathrm{id}_{R(Z)})$.

In the situation of Example 7.4.1.3, we also have the twisted 2-simplicial expansion $\Delta_{\sigma}(\mathcal{C}||\Delta)$ of (4.2.5.1), and it corresponds to a (non-augmented) Segal space by (4.2.5.2). To generalize this to arbitrary *I*-Segal spaces, one can use the alternative description of twisted 2-simplicial expansions given in Subsection 4.2.5. Namely, consider the total simplicial expansion $\Delta^{\natural}I$, with the fully faithful embedding $\beta: I \times \Delta \to \Delta^{\natural}I$ of (4.2.2.5). Denote by $\lambda: \Delta I \to \Delta^{\natural}I$ the natural dense embedding, and let $\overline{\pi}: \Delta I \to \Delta$ be the structural cofibration. Then

for any *I*-bisimplicial set $X \in I^o \Delta^o \Delta^o$ Sets, we can define its *twisted simplicial expansion* by

$$(7.4.1.4) N_{\sigma}(X|I) = (\overline{\pi}^{o} \times id)_{!}(\lambda^{o} \times id)^{*}(\beta^{o} \times id)_{*}X,$$

and this actually makes sense for any small I. In the situation of Example 7.4.1.3, Lemma 4.2.5.1 and (4.2.5.2) provide an isomorphism

$$(7.4.1.5) N_{\sigma}(X'|I) \cong NI',$$

where we interpret $X: I^o \times \Delta^o \to \text{Sets}$ as a functor $I^o \to \text{Cat} \subset \Delta^o \text{Sets}$, and $I' \to I$ is the fibration corresponding to this functor by the Grothendieck construction.

Definition 7.4.1.6. An *I*-bisimiplicial set $X: I^o \times \Delta^o \to \Delta^o$ Sets is *t*-fibrant if for any $i \in I$, $X(i \times [0])$ is a fibrant simplicial set, and for any integer $n \ge 1$, the map $X(\operatorname{id} \times t): X(i \times [n]) \to X(i \times [n-1])$ is a Kan fibration.

Lemma 7.4.1.7. For any t-fibrant I-Segal space X, the twisted simlicial expansion $Y = N_{\sigma}(X|I)$ is a t-fibrant Segal space, fibrant and complete if so is X, and for any weak equivalence $w: X \to X'$ of t-fibrant I-Segal spaces, the induced map $Y \to Y' = N_{\tau}(X'|I)$ is a weak equivalence.

Proof. If we treat the bisimplicial set Y as a functor $\Delta^o \to \Delta^o$ Sets, then (2.3.3.4) provides a functor $\text{Hom}(-,Y): \Delta^o$ Sets $\to \Delta^o$ Sets, and as in Lemma 6.3.2.10, to show that Y is a Segal space, we need to check that Hom(-,Y) sends the injective maps (4.1.3.2) to maps $F \cap W$, and to check that Y is fibrant, we need to check that is sends embeddings (4.1.1.15) to maps in F. Moreover, by the same argument as in Lemma 4.1.3.1, it suffices to check the former for b_n^l with l=1. Altogether, for any $n \ge 0$, b_n^1 factors through (4.1.1.15), we have maps

$$(7.4.1.6) \qquad \operatorname{Hom}(\Delta_n, Y) \longrightarrow \operatorname{Hom}(S_{n-1}, Y) \longrightarrow \operatorname{Hom}(\Delta_1 \sqcup_{\Delta_0} \Delta_{n-1}, Y),$$

and we need to show that the composition is in $F \cap W$, and the first map is in F if X is fibrant. Since $\pi^o : (\Delta I)^o \to \Delta^o$ is a discrete cofibration, $Y([n]) = \text{Hom}(\Delta_n, Y)$ splits into a disjoint union

(7.4.1.7)
$$Y([n]) = \coprod_{i_{\bullet}} Y([n])(i_{\bullet})$$

indexed by all the functors i_{\cdot} : $[n] \rightarrow I$ given by diagrams (4.2.1.1), and (7.4.1.7) induces the corresponding splittings for all the other simplicial sets in (7.4.1.6).

Then spelling out the definitions, we observe that as in Lemma 4.2.5.1, we have functorial maps $a(i_{\bullet}): Y([n])(i_{\bullet}) \to X(i_0 \times [n])$ that are isomorphisms for n=0, and for any $n \geq 1$, we have a cartesian square

(7.4.1.8)
$$Y([n])(i_{\bullet}) \xrightarrow{a(i_{\bullet})} X(i_{0} \times [n]) \\ \downarrow \qquad \qquad \downarrow X(i_{0})(t^{o}) \\ Y([n-1])(t^{*}i_{\bullet}) \xrightarrow{X((f_{0} \times \mathsf{id})^{o}) \circ a(t^{*}i_{\bullet})} X(i_{0} \times [n-1]),$$

where $t:[n-1] \to [n]$ is the standard embedding, and $f_0:i_0 \to i_1$ is the map in (4.2.1.1). Since $X:I^o \times \Delta^o \to \Delta^o$ Sets is assumed to be t-fibrant, both simplicial sets on the right are fibrant, and the vertical arrow on the right is in F. Moreover, by induction on n, $Y([n-1])(t^*i_{\bullet})$ is also fibrant, and then so is $Y([n])(i_{\bullet})$ and the vertical arrow on the left. Therefore Y is t-fibrant. Moreover, by the same argument as in Lemma 6.2.4.4 and induction on n, the map $Y([n])(i_{\bullet}) \to Y'([n])(i_{\bullet})$ induced by a weak equivalence $w: X \to X'$ is itself a weak equivalence. Finally, the embedding $t: \Delta_{n-1} \to \Delta_n$ factors through the map b_n^1 , so that the maps (7.4.1.6) then fit into a commutative diagram

with cartesian squares. Since $X(i_0)$ is assumed to be a Segal space, the map $X(i_0 \times [n]) \to \operatorname{Hom}(\Delta_1 \sqcup_{\Delta_0} \Delta_{n-1}, X(i_0))$ is in $F \cap W$, and the same then holds for the corresponding map on the left. This proves that Y is a Segal space. Moreover, if X is fibrant, then the same argument as in in Lemma 5.3.1.8 shows that $X((f_0 \times \operatorname{id})^o)$ in (7.4.1.8) is in F, and then by induction on n, so is $a(i_{\bullet})$. In addition to this, the vertical arrows on the right in (7.4.1.9) are in F, and then so are the arrows on the left. This proves that Y is fibrant. Finally, for any bisimplicial set X, let $X^v = \operatorname{\mathcal{H}om}(L(V_3), X)$, as in Example 7.3.4.4. Then this is functorial in X, thus can be applied pointwise to I-bisimplicial sets. Moreover, for any fibrant I-Segal space X, X^v is a fibrant I-Segal space, and by Example 7.3.4.4, X is complete iff the map $X \to X^v$ induced by the projection

 $V_3 \to \operatorname{pt}$ is a weak equivalence. But since I is rigid, Example 7.3.4.6 immediately implies that for any I-bisimplicial set X, we have $N_\sigma(X|I)^v \cong N_\sigma(X^v|I)$. Thus if a fibrant I-Segal space is complete, the weak equivalence $X \to X^v$ induces a weak equivalence $N_\sigma(X|I) \to N_\sigma(X^v|I) \cong N_\tau(X|I)^v$, and $N_\sigma(X|I)$ is complete. \square

7.4.2. Nerves. Our version of Proposition 7.2.4.1 for *I*-Segal spaces uses the categories BiPos // bI , BiPos + // bI of restricted *I*-augmented biordered sets of Subsection 3.2.9, where the good filtration of Definition 3.2.1.2 on *I* is given by the Reedy category structure. We note right away that since $I = I_L$ is assumed to be directed, any $J \in \text{BiPos}^+$ // I is automatically locally restricted with respect to this filtration, so that BiPos^+ // $I = \text{BiPos}^+$ // I. As in Subsection 7.2.2, we start by constructing nerve functors relating augmented biordered sets and I-bisimplicial set. First, consider the category $I^o\Delta^o$ PoSets, and as in (7.2.1.6), define functors

(7.4.2.1)
$$N^L, N^R : I^o \Delta^o \text{ PoSets} \to I^o \Delta^o \Delta^o \text{ Sets}$$

by taking the nerve pointwise along the Reedy resp. simplicial factor. Say that $J \in I^o \Delta^o$ PoSets is *globally finite-dimensional* if its underlying *I*-simplicial set is finite-dimensional, and dim $J(i \times [m]) \leq d$ for some d independent of $i \times [m] \in I \times \Delta$.

Lemma 7.4.2.1. For any $J \in \Delta_f^o$ PoSets and $d \geq 0$, both $\operatorname{sk}_d^{I,L} N^L(J)$ and $\operatorname{sk}_d^{I,R} N^R(J)$ are in $I_f^o \Delta_f^o \Delta_f^o$ Sets, and if J is globally finite dimensional, then $N^L(J) = \operatorname{sk}_d^{I,L} N^L(J)$, $N^R(J) = \operatorname{sk}_d^{I,R} N^R(J)$ for some $d \geq 0$.

Proof. Since the Reedy category I is assumed to be directed, all its objects $i \in I$ are non-degenerate. Therefore for any $X \in I_f^o \Delta_f^o$ Sets, we have $\dim X = \max_i \{\deg i + \dim X(i)\}$, where max is taken over all $i \in I$ with non-empty X(i). Thus for any $d \geq 1$, we have $\dim X^d \leq d \dim X$, and we can then use exactly the same argument as in Lemma 7.2.1.7.

Now as in (7.2.2.1), we can define nerve functors

(7.4.2.2)
$$\frac{\mathsf{N}_{\diamond}(I) : \text{BiPoSets} \# I \to I^{o} \Delta^{o} \Delta^{o} \text{ Sets,}}{\overline{\mathsf{N}}_{\diamond}(I) : \overline{\mathsf{BiPoSets}} \# I \to I^{o} \Delta^{o} \Delta^{o} \text{ Sets}}$$

by setting

(7.4.2.3)
$$N_{\diamond}(I)(J)(i \times [n] \times [m]) = \text{BiPoSets}(L([n]) \times R([m]), i \setminus J), \\ \overline{N}_{\diamond}(I)(J)(i \times [n] \times [m]) = \overline{\text{BiPoSets}}(L([n]) \times R([m]), i \setminus J),$$

where $i \setminus J$ is biordered via the discrete cofibration $i \setminus J \to J$, and as in (7.2.2.2), the embedding $\rho : \overline{\text{BiPoSets}} \to \overline{\text{BiPoSets}}$ induces a map

$$(7.4.2.4) \overline{\mathsf{N}}_{\diamond}(I) \to \mathsf{N}_{\diamond}(I) \circ \rho.$$

Moreover, as in (7.2.4.2), we can extend the functors (7.4.2.2) to functors

(7.4.2.5)
$$\overline{\mathbb{N}}_{\bullet}(I) : \mathbb{N} \times \text{BiPoSets} // I \to I^{o} \Delta^{o} \Delta^{o} \text{ Sets,} \\ \mathbb{N}_{\bullet}(I) : \mathbb{N} \times \text{BiPoSets} // I \to I^{o} \Delta^{o} \Delta^{o} \text{ Sets,}$$

by taking the skeleton $sk_d^{I,L}$, the skeleton inclusion define tautological maps

$$(7.4.2.6) \qquad \overline{\mathsf{N}}_{\bullet}(I) \to \overline{\mathsf{N}}_{\diamond}(I) \circ \pi, \qquad \mathsf{N}_{\bullet}(I) \to \mathsf{N}_{\diamond}(I) \circ \pi,$$

and by Lemma 7.2.2.4 combined with Lemma 7.4.2.1, both functors (7.4.2.5) send $\mathbb{N} \times \text{BiPos} /\!\!/^b I$ into $I_f^o \Delta_f^o \Delta_f^o \text{Sets}$, while the map (7.4.2.6) for $\overline{\mathbb{N}}_{\bullet}(d \times J)$ is an isomorphism for any fixed $J \in \text{BiPos} /\!\!/^b I$ and sufficiently large d.

Going in the other direction, we can upgrade (7.2.2.9) to define functors

(7.4.2.7)
$$\overline{\mathsf{Q}}_{\diamond}(I) = \overline{\mathsf{T}}_{I,F} \circ \mathsf{Q}_{I \times \Delta} : I^{o} \Delta^{o} \Delta^{o} \operatorname{Sets} \to \overline{\operatorname{BiPoSets}} /\!\!/ I,$$

$$\mathsf{Q}_{\diamond}(I) = \mathsf{T}_{I,F} \circ \mathsf{Q}_{I \times \Delta} : I^{o} \Delta^{o} \Delta^{o} \operatorname{Sets} \to \operatorname{BiPoSets} /\!\!/ I,$$

where $\overline{\mathsf{T}}_{I,F}$ and $\overline{\mathsf{T}}_{I,F}$ are the functors (3.2.9.4). Then functors (7.4.2.7) send $I_f^o \Delta_f^o \Delta_f^o S$ ets into $\overline{\mathsf{BiPos}} /\!\!/^{\mathsf{b}} I$ resp. $\mathsf{BiPos} /\!\!/^{\mathsf{b}} I$, and we can modify them to send $I^o \Delta^o \Delta^o S$ ets into $\mathsf{BiPos}^+ /\!\!/^{\mathsf{b}} I$ by setting

$$\overline{\mathsf{Q}}_{\diamond+}(I) = \overline{\mathsf{T}}_{I,F} \circ \mathsf{Q}_{(I \times \Delta)+}, \quad \mathsf{Q}_{\diamond+}(I) = \mathsf{T}_{I,F} \circ \mathsf{Q}_{(I \times \Delta)+}.$$

Then (7.1.3.3) induces functorial maps

$$(7.4.2.9) Q_{\diamond+}(I)(X) \to Q_{\diamond}(I)(X), X \in I^{o}\Delta^{o}\Delta^{o}X$$

that are +-bianodyne as soon as $X \in I^o \Delta_f^o \Delta_f^o$ Sets by Lemma 3.2.9.7. The same construction as in Subsection 7.2.2 then provides a functorial map

$$(7.4.2.10) a_{\diamond}(I) : \mathsf{Q}_{\diamond}(I) \circ \mathsf{N}_{\diamond}(I) \to \mathsf{id},$$

an I-augmented version of (7.2.2.13), and the maps (7.1.3.6) and (7.4.2.4) induce a diagram

$$(7.4.2.11) \qquad \mathsf{N}_{\diamond}(I) \circ \mathsf{Q}_{\diamond}(I) \longleftarrow \overline{\mathsf{N}}_{\diamond}(I) \circ \overline{\mathsf{Q}}_{\diamond}(I) \cong \mathsf{N}_{I \times \Lambda} \circ \mathsf{Q}_{I \times \Lambda} \longrightarrow \mathsf{id} \,.$$

For any uncountable regular cardinal κ , the functors (7.4.2.2), (7.4.2.5), (7.4.2.7), (7.4.2.8) sends κ -bounded I-bisimplicial sets to κ -bounded augmented biordered sets and vice versa, and the map (7.4.2.9) is κ^+ -bianodyne for $X \in I_f^o \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$.

Lemma 7.4.2.2. Let κ be an uncountable regular cardinal. Then for any $J \in \operatorname{BiPos}_{\kappa} /\!\!/^b I$, the composition $\overline{\mathbb{Q}}_{\diamond}(I)(\overline{\mathbb{N}}_{\diamond}(I)(J)) \to J$ of the morphisms (7.4.2.10) and (7.4.2.4) is κ -bianodyne, and for any $J \in \operatorname{BiPos}_{\kappa}^+ /\!\!/^b I$, the composition $\overline{\mathbb{Q}}_{\diamond+}(I)(\overline{\mathbb{N}}_{\diamond}(I)(J)) \to J$ of the morphisms (7.4.2.10), (7.4.2.4) and (7.4.2.9) is κ^+ -bianodyne.

Proof. As in Lemma 7.2.2.5, consider the endofunctor $A = \overline{\mathbb{Q}}_{\diamond}(I) \circ \overline{\mathbb{N}}_{\diamond}(I)$ of the category BiPos_{κ} // b I, and let $\alpha: A \to \text{Id}$ be the composition of the maps (7.4.2.10) and (7.4.2.4). Moreover, let $\chi = a \circ \rho$, where $p: \mathbb{Q}_{\diamond} \to Q_{I \times \Delta}$ is the projection, and a is the map (7.1.3.8) for $I \times \Delta$. Then we have $\chi \geq U(\alpha)$, and A preserves coproducts, so for the first claim, it suffices to check that the triple $\langle A, \alpha, \chi \rangle$ satisfies the conditions (i)-(iii) of Lemma 3.2.5.8. For (i) and (ii), the argument is the same as in Lemma 7.2.2.5. For (iii), note that as in (7.2.2.17), for any $I \in \text{Pos } /\!/^{\flat} I$, we have a cartesian square

(7.4.2.12)
$$Q_{\diamond}(I)(\mathsf{N}_{\diamond}(I)(L(J))) \xrightarrow{q^{\bullet}} B_{I_{\bullet}}^{\diamond}(J)$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{I}^{o}(I \setminus_{\xi_{\perp}}^{o} B(J))^{o} \xrightarrow{q} B_{I}(J),$$

where $B_{I_{\bullet}}^{\diamond}(J)$ is as in Example 3.2.9.8, and the bottom line is (7.1.3.11). Then q in (7.4.2.12) is κ -anodyne by the same argument as in Lemma 7.1.3.4, so q^{\bullet} is κ -bianodyne by Lemma 3.2.9.7, and then the rest of the proof is exactly as in Lemma 7.2.2.5. The same goes for the second claim.

Now assume given an object $i \in I$ in the category I, and consider the embedding $\varepsilon(i)_{\dagger}$: BiPos \to BiPos $/\!/^b I$ induced by (2.4.1.1). Then (7.4.2.3) together with (7.4.1.1) immediately provides isomorphisms

and on the other hand, for any bisimplicial set X, the embedding $\varepsilon(i)$ extends to an embedding $\varepsilon(i): \Delta\Delta X \to I\Delta\Delta\varepsilon(i)^o_!X$, and this is a Reedy functor, so we obtain a map

$$(7.4.2.14) Q(\varepsilon(i)) : \varepsilon(i)_{+}(Q_{\diamond}(X)) \to Q_{\diamond}(I)(\varepsilon(i)_{+}^{o}X)$$

functorial with respect to *X*.

Lemma 7.4.2.3. For any uncountable regular cardinal κ and $J \in BiPos_{\kappa}$, the map (7.4.2.14) for $X = \overline{\mathsf{N}}_{\diamond}(J)$ is κ -bianodyne.

7.4.3. Augmented Segal families. For the moment, drop the assumption that I is a directed Reedy category, and let it be any category equipped with a good filtration, as in Subsection 3.2.9. Note that just as in Subsection 7.1.3, the maps (3.2.6.2), (3.2.6.3) and (3.2.7.3) are naturally I-augmented as soon as so is I, and the same goes for standard pushout squares $I \rightarrow R(V)$, so that Definition 7.2.3.1 and Definition 7.2.3.2 make sense for I-augmented biordered sets. We can then repeat verbatim Definition 7.2.3.3.

Definition 7.4.3.1. For any uncountable regular cardinal $\kappa > |I|$, a κ -bounded Segal family of groupoids over BiPos_{κ} //^b I is a family of groupoids $\mathcal{C} \to$ BiPos_{κ} //^b I that is additive, semiexact and satisfies excision in the sense of Definition 7.2.3.1, satisfies the cylinder axiom of Definition 7.2.3.2, and such that $\|\mathcal{C}_{J}\| < \kappa$ for any finite $J \in$ BiPos. A Segal family of groupoids over BiPos //^b I is a family of groupoids $\mathcal{C} \to$ BiPos //^b I that is additive, semiexact, satisfies excision in the sense of Definition 7.2.3.1, and satisfies the cylinder axiom of Definition 7.2.3.2. A semicanonical extension of a Segal family resp. κ -bounded Segal family \mathcal{C} is a family of groupoids \mathcal{C}^+ over BiPos⁺ //^b I resp. BiPos⁺ //^b I equipped with an equivalence $i^*\mathcal{C}^+ \cong \mathcal{C}$ that is [1]-invariant, additive, semiexact, and semicontinuous in the sense of Definition 7.2.3.1.

Lemma 7.4.3.2. Any Segal family of groupoids C over BiPos // b I is constant along bianodyne maps, and for any $\kappa > |I|$, a κ -bounded Segal family C is constant along κ -bianodyne maps. A semicanonical extension C^+ of such a family C is constant along +-bianodyne resp. κ^+ -bianodyne maps.

Proof. As in Lemma 7.2.3.4, everything immediately follows from Proposition 3.2.9.3, by the same argument as in Lemma 7.1.1.6. \Box

Corollary 7.4.3.3. For any I-augmented $\langle J, \alpha \rangle \in \text{BiPos } /\!/^b I$ equipped with a bicofibration $J \to L([2])$, any Segal family \mathcal{C} over BiPos $/\!/^b I$ is semicartesian along the square (7.2.3.1).

Proof. Same as Corollary 7.2.3.6.

Next, we need an augmented version of the material of Section 7.3. Again, we start with repeating Definition 7.3.1.1 and Definition 7.3.2.1.

Definition 7.4.3.4. For any ample subcategory $\mathcal{I} \subset \text{PoSets}$, with unfolding $\mathcal{I}^{\diamond} \subset \text{BiPoSets}$, a family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} // b I resp. \mathcal{I} // b I is *reflexive* if it is fully faithful along the projection $L([1]) \times J \to J$ resp. $[1] \times J \to J$ for any $J \in \mathcal{I}^{\diamond}$ // b I resp. $J \in \mathcal{I}$ // b I.

However, in the augmented case this is not enough: we also need to consider more general augmentations on the product $J \times [1]$. Explicitly, for any $J \in \text{PoSets}$, an I-augmentation $\alpha: J \times [1] \to I$ is given by two augmentations $\alpha_0, \alpha_1 \to I$ and a morphism $f: \alpha_0 \to \alpha_1$. If we denote $J_l = \langle J, \alpha_l \rangle$, l = 0, 1, and let $g = \langle \text{id}, f \rangle: J_0 \to J_1$ be the corresponding augmented map, then $\langle J \times [1], \alpha \rangle \cong \mathsf{C}(g)$, and we have the embedding $t: J_1 \to \mathsf{C}(g)$. We also have an augmented map $\widetilde{g}: J_0 \times [1] \to \mathsf{C}(g)$ given by id resp. g over 0 resp. 1, and a commutative square

(7.4.3.1)
$$\begin{array}{c} \mathsf{C}(g) & \xleftarrow{t} & J_1 \\ \widehat{g} \uparrow & & \uparrow g \\ J_0 \times [1] & \xleftarrow{\mathsf{id} \times t} & J_0. \end{array}$$

Moreover, we have the projection $e_0: J_0 \times [1] \to J_0$ and the adjoint map $e = t_+: C(g) \to J_1$. Then for any ample subcategory $\mathcal{I} \subset PoSets$ such that $C(g) \in \mathcal{I} /\!\!/^b I$, and for any family of groupoids \mathcal{C} over $\mathcal{I} /\!\!/^b I$, we can denote by $\mathcal{C}^e_{C(g)} \subset \mathcal{C}_{C(g)}$ resp. $\mathcal{C}^e_{J_0 \times [1]} \subset \mathcal{C}_{J_0 \times [1]}$ the essential image of the functor e^* resp. e_0^* , and (7.4.3.1) induces a functor

$$(7.4.3.2) \mathcal{C}^e_{\mathsf{C}(g)} \to \mathcal{C}^e_{J_0 \times [1]} \times_{\mathcal{C}_{J_0}} \mathcal{C}_{J_1}.$$

Moreover, consider the projection $s^* \times t^* : \mathcal{C}_{J_0 \times [1]} \to \mathcal{C}_{J_0}^2 = \mathcal{C}_{J_0} \times \mathcal{C}_{J_0}$ and its decomposition

$$\mathcal{C}_{J_0\times[1]} \stackrel{a}{\longrightarrow} \pi_0(\mathcal{C}_{J_0\times[1]}|\mathcal{C}_{J_0}^2) \, \longrightarrow \, \mathcal{C}_{J_0}^2$$

of (2.3.4.1); then (7.4.3.2) also induces a commutative square

(7.4.3.3)
$$\begin{array}{ccc}
\mathcal{C}_{\mathsf{C}(g)} & \longrightarrow & \mathcal{C}_{J_1} \\
 & & \downarrow g^* \\
 & & \downarrow g^* \\
 & & \pi_0(\mathcal{C}_{J_0 \times [1]} | \mathcal{C}_{J_0}^2) & \stackrel{t^*}{\longrightarrow} & \mathcal{C}_{J_0}.
\end{array}$$

If J is equipped with a biorder, then (7.4.3.2) with [1] replaced by L([1]) becomes a commutative square of augmented biordered sets, and induces a functor (7.4.3.2) and a commutative square (7.4.3.3) for any family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} //^b I.

Definition 7.4.3.5. A family of groupoids over $\mathcal{I} /\!\!/^b I$ resp. $\mathcal{I}^{\diamond} /\!\!/^b I$ is *coherent* if for any $\langle J \times [1], \alpha \rangle = C(g) \in \mathcal{I} /\!\!/^b I$ resp. $\langle J \times L([1]), \alpha \rangle \in \mathcal{I}^{\diamond} /\!\!/^b I$, the corresponding functor (7.4.3.2) is an equivalence, and the square (7.4.3.3) is semicartesian.

Comparing Definition 7.4.3.4 and Definition 7.4.3.5, we see that if a family of groupoids \mathcal{C} over \mathcal{I} // bI is both coherent and reflexive, then it is also fully faithful along the projection $e:\langle J\times[1],\alpha\rangle\to\langle J,\alpha_1\rangle$ for any $\langle J\times[1],\alpha\rangle$ in \mathcal{I} // bI , and similarly in the biordered case. In particular, take J= pt; then for any $\alpha:[1]\to I$, a coherent reflexive family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} // bI is fully faithful along the projection $e:\langle[1],\alpha\rangle\to\langle\mathrm{pt},\alpha_1\rangle$. Now for any $J\in\mathcal{I}^{\diamond}$ // bI and a collection W of maps $w:L([1])\to J$, we have the full subcategory $\mathcal{C}_J(W)\subset\mathcal{C}_J$ of $c\in\mathcal{C}_J$ such that $w^*c\in e^*\mathcal{C}_{\mathrm{pt}}\subset\mathcal{C}_{L[1]}$ for all $w\in W$. With this convention, and with Lemma 7.2.3.4 and Corollary 7.2.3.6 replaced by Lemma 7.4.3.2 and Corollary 7.4.3.3, all the material in Subsection 7.3.1 carries over to the I-augmented setting; in particular, if we use Definition 7.4.3.4 instead of Definition 7.3.1.1, then Lemmas 7.3.1.2–7.3.1.6 hold for families over BiPos // bI , BiPos // bI and their κ -bounded versions with the same proof.

Then for any family of groupoids \mathcal{C} over $\mathcal{I}/\!\!/^b I$, we define the *relative* unfolding $(\mathcal{C}|I)^{\diamond} \subset U^*\mathcal{C}$ as the full subcategory spanned by $\mathcal{C}_J(W(J))$ for all $J \in \mathcal{I}^{\diamond}/\!\!/^b I$, and as in Definition 7.3.2.2, we say that the family \mathcal{C} is non-degenerate if $(\mathcal{C}|I)^{\diamond}$ is constant along the map $J \times L([1]) \to J \times R([1])$ for any $J \in \mathcal{I}/\!\!/^b I$. Moreover, we observe that an augmentation on some $J \in PoSets$ induces augmentations on all the squares (7.3.2.1), (7.3.2.3), (7.3.2.2), so that Definition 7.3.2.4 also makes sense in the augmented setting.

Definition 7.4.3.6. An *I-augmented restricted Segal family* is a family of groupoids \mathcal{C} over Pos // $^b I$ that is additive and semiexact in the sense of Definition 7.1.1.1 (ii),(iii), non-degenerate, reflexive in the sense of Definition 7.4.3.4, coherent in the sense of Definition 7.4.3.5, and satisfies weak excision and the cylinder axiom in the sense of Definition 7.3.2.4. A *semicanonical extension* of a restricted Segal family \mathcal{C} is a family of groupoids \mathcal{C}^+ over Pos $^+$ // $^b I$ that is additive and semiexact in the sense of Definition 7.1.1.1 (ii),(iii), reflexive in the sense of Definition 7.4.3.4, non-degenerate, coherent in the sense of Definition 7.4.3.5, weakly semicontinuous in the sense of Definition 7.3.2.4, and equipped with an equivalence $i^*\mathcal{C}^+ \cong \mathcal{C}$.

Proposition 7.4.3.7. The unfolding $(C|I)^{\diamond}$ of a I-augmented restricted Segal family $C \to \text{Pos} /\!/^b I$ in the sense of Definition 7.4.3.6 is a Segal family in the sense of Definition 7.4.3.1, reflexive in the sense of Definition 7.4.3.4 and coherent in the

sense of Definition 7.4.3.5. Conversely, the restriction L*C of a coherent reflexive Segal family $C \to \text{BiPos} //^{\flat} I$ in the sense of Definition 7.4.3.1, Definition 7.4.3.4 and Definition 7.4.3.5 is a restricted Segal family in the sense of Definition 7.4.3.6, and we have a natural equivalence $C \cong (L^*C|I)^{\diamond}$. Moreover, for any semicanonical extension C^+ of the family C, the unfolding $(C^+|I)^{\diamond}$ is a semicanonical extension of the unfolding $(C|I)^{\diamond}$, and conversely, for any semicanonical extension $(C|I)^{\diamond+}$ of the unfolding $(C|I)^{\diamond}$, $C^+ = L^*(C|I)^{\diamond+}$ is a semicanonical extension of C, it is reflexive, coherent, safisfies weak excision and the cylinder axiom of Definition 7.3.2.4, and we have $(C|I)^{\diamond+} \cong (C^+|I)^{\diamond}$.

Proof. Same as Proposition 7.3.2.7.

Lemma 7.4.3.8. Let $B_{I\diamond}$: PoSets // $I \to \text{BiPos}^{\pm}$ // I be the I-augmented barycentric subdivision functor of Example 3.2.9.5. Then for any I-augmented retricted Segal family of groupoids $C \to \text{Pos}$ // $^b I$, with semicanonical extension C^+ , the family $C^{\iota} = B_{I\diamond}^*(C|I)^{\diamond o}_{\perp}$ is an I-augmented restricted Segal family, and $C^{\iota+} = B_{I\diamond}^*(C^+|I)^{\diamond o}_{\perp}$ is its semicanonical extension.

Proof. Everything except for the fact that C^{ι} is coherent follows by exactly the same argument as in Proposition 7.3.3.4. To see that C^{ι} is coherent, note that as in the proof of Proposition 7.3.3.4, by Lemma 3.2.8.4 and Lemma 7.3.3.1, if we apply $B_{I\diamond}$ to a square (7.4.3.1), then the resulting square in BiPos[±] // I maps to the square (7.4.3.2) for $B_{I\diamond}(g)$ by an I-augmented ±-bianodyne map.

Definition 7.4.3.9. A family of groupoids \mathcal{C} over \mathcal{I} //^b I for an ample subcategory $\mathcal{I} \subset \text{PoSets}$ is *complete* if it is cartesian over (7.3.4.1) for any $J \in \mathcal{I}$ //^b I. A family of groupoids \mathcal{C} over \mathcal{I}^{\diamond} //^b I is *complete* if so is $L^*\mathcal{C}$.

Now recall that we have the embedding λ : PoSets $/\!/_{\star} I \to \text{PoSets} /\!/_{I} I$ of (3.2.1.1) and the fibration $\overline{\pi}$: PoSets $/\!/_{\star} I \to \text{PoSets}$ of (3.2.1.2), and if I is rigid, the fibration $\overline{\pi}$ is discrete. Then λ and $\overline{\pi}$ induce functors between Pos⁺ $/\!/_{\star} I$, Pos⁺ $/\!/_{I} I$ and Pos⁺, and any family of groupoids \mathcal{C} over Pos⁺ $/\!/_{I} I$ induces a family of groupoids $\overline{\pi}_! \lambda^* \mathcal{C}$ over Pos⁺.

Lemma 7.4.3.10. A coherent family of groupoids C^+ over Pos^+ // I is a semicanonical extension of a restricted Segal family if and only if so is $\overline{\pi}_!\lambda^*C^+$, and then C^+ is complete if and only if so is $\overline{\pi}_!\lambda^*C^+$.

Proof. Note that $\overline{\pi}: \operatorname{Pos}^+ /\!/_{\star} I \to \operatorname{Pos}^+$ is a semicanonical extension of a restricted Segal family by Example 7.3.2.6. In particular, it is fully faithful

along the projection $[1] \times J \to J$ for any $J \in \text{Pos}^+$. Then \mathcal{C}^+ is obviously reflexive and/or non-degenerate and/or additive iff so is $\overline{\pi}_! \lambda^* \mathcal{C}^+$, and the rest immediately follows from Lemma 2.3.3.7.

Lemma 7.4.3.11. Assume that the category I is small and rigid. Then for any I-bisimplicial set X, with twisted simplicial expansion $Y = N_{\sigma}(X|I)$ of (7.4.1.4), we have $\overline{\pi}_! \lambda^* L^* N_{\diamond}(I)^* \mathcal{H}(X) \cong L^* N_{\diamond}^* \mathcal{H}(Y)$, functorially with respect to X.

Proof. By Proposition 5.3.3.2, it suffices to consider I-bisimplicial sets X that are constant in the simplicial direction; in other words, for any I-simplicial set X, we have to construct a functorial isomorphism

$$(7.4.3.4) \qquad \overline{\pi}_{I}^{o} \lambda^{o*} \mathsf{N}_{I}^{o*} \mathsf{Y}(I)_{*}^{o}(X) \cong \mathsf{N}^{o*} \mathsf{Y}_{*}^{o}(\overline{\pi}_{I}^{o} \lambda^{o*} \beta_{*}^{o} X),$$

where $Y(I): I \times \Delta \to I^o \Delta^o$ Sets, $Y: \Delta \to \Delta^o$ Sets are the Yoneda embeddings (2.1.4.5), and β is the embedding (4.2.2.5), as in (7.4.1.4). Denote by $F: \Delta \to \operatorname{Pos}^+$ and $F(I): \Delta^{\natural}I = F^*(\operatorname{Pos}^+ /\!\!/ I) \to \operatorname{Pos}^+ /\!\!/ I$ the standard full embeddings. Then we have the full embedding $F(I) \circ \beta: I \times \Delta \to \operatorname{Pos}^+ /\!\!/ I$, and $Y(I) \cong \operatorname{N}_I \circ F(I) \circ \beta$. Since the nerve functor $\operatorname{N}_I: \operatorname{Pos}^+ /\!\!/ I \to I^o \Delta^o$ Sets is fully faithful, we have $\operatorname{N}_I^{o*} \circ Y(I)_*^o \cong (F(I) \circ \beta)_*^o = F(I)_*^o \circ \beta_*^o$, and analogously, $\operatorname{N}^{o*} \circ Y_*^o \cong F_*^o$. We then have the composition

$$(7.4.3.5) \qquad \overline{\pi}_!^o \lambda^{o*} F(I)_*^o \beta_*^o \longrightarrow \overline{\pi}_!^o F(I)_*^o \lambda^{o*} \beta_*^o \longrightarrow F_*^o \overline{\pi}_!^o \lambda^{o*} \beta_*^o$$

of the base change isomorphism (2.3.2.8) and the base change map (2.3.2.9). But the discrete fibration $\overline{\pi}:\Delta I\to \Delta$ corresponds to $N(I):\Delta^o\to \mathrm{Sets}$, and since the nerve functor $N:\mathrm{Cat}\to\Delta^o\mathrm{Sets}$ is fully faithful, the discrete fibration $\mathrm{Pos}^+/\!/_* I\to \mathrm{Pos}^+$ corresponds to $F_*^oN(I):\mathrm{Pos}^+\to \mathrm{Sets}$. Then by Lemma 2.3.3.21, the second map in (7.4.3.5) is also an isomorphism, and the composition provides a functorial isomorphism (7.4.3.4).

7.4.4. Comparison over *I***.** We can now prove an *I*-augmented version of Proposition 7.2.4.1, combined with Proposition 7.3.4.8.

Lemma 7.4.4.1. For any Hom-finite directed cellular Reedy category I and I-Segal space X, the family of groupoids $N_{\diamond}(I)^*\mathcal{H}(X)$ is coherent in the sense of Definition 7.4.3.5.

Proof. Observe that the nerve functor $N_{\diamond}(I)$ sends a commutative square (7.4.3.1) into a cocartesian square of the form (6.3.4.5) in $I^{o}\Delta^{o}\Delta^{o}$ Sets, and apply Lemma 6.3.4.6.

Proposition 7.4.4.2. Assume given a Hom-finite directed celullar Reedy category I.

(i) For any small additive semiexact family of groupoids C over the category $I_f^o \Delta_f^o \Delta_f^o$ Sets that is constant along anodyne maps of Definition 6.3.4.1 and is a complete Segal family in the sense of Definition 7.4.1.1, the family of groupoids $\pi_* N_*(I)^* C$ is a small Segal family over BiPos // b I in the sense of Definition 7.4.3.1, reflexive in the sense of Definition 7.4.3.4 and complete in the sense of Definition 7.4.3.9, while the functors

$$(7.4.4.1) \qquad \qquad \mathcal{C} \longrightarrow \overline{\mathsf{Q}}_{\diamond}(I)^* \pi_* \overline{\mathsf{N}}_{\bullet}(I)^* \longleftarrow \mathsf{Q}_{\diamond}(I)^* \pi_* \mathsf{N}_{\bullet}(I)^* \mathcal{C}$$

induced by the maps (7.4.2.11) and (7.4.2.6) are equivalences. For any semicanonical extension C^+ of the family C in the sense of Definition 6.3.5.5, $N_{\diamond}(I)^*C^+$ with the functor $i^*N_{\diamond}(I)^*C^+ \to \pi_*N_{\bullet}(I)^*C$ induced by (7.4.2.6) is a semicanonical extension of the family $\pi_*N_{\bullet}(I)^*C$, and the functors C^+ , $Q_{\diamond+}(I)^*N_{\diamond}(I)^*C^+ \to \overline{Q}_{\diamond+}(I)^*\overline{N}_{\diamond}(I)^*C^+$ induced by the maps (7.4.2.9) and (7.4.2.11) are equivalences.

(ii) For any small Segal family \mathcal{C} over BiPos // $^{\mathsf{b}}$ I, reflexive in the sense of Definition 7.4.3.4, coherent in the sense of Definition 7.4.3.5 and complete in the sense of Definition 7.4.3.9, the pullback $\mathsf{Q}_{\diamond}(I)^*\mathcal{C}$ with respect to the functor (7.4.2.7) is an additive semiexact family over the category $I_f^{\mathsf{o}}\Delta^{\mathsf{o}}\Delta^{\mathsf{o}}$ Sets that is constant along anodyne maps of Definition 6.3.4.1. Moreover, $\mathsf{Q}_{\diamond}(I)^*\mathcal{C}$ is a complete Segal family in the sense of Definition 7.4.1.1, and the functor $\mathcal{C} \cong \pi_*\pi^*\mathcal{C} \to \pi_*\mathsf{N}_{\bullet}(I)^*\mathsf{Q}_{\diamond}(I)^*\mathcal{C}$ induced by the composition of the maps (7.4.2.6) and (7.4.2.10) is an equivalence. For any semicanonical extension \mathcal{C}^+ of the Segal family \mathcal{C} , $\mathsf{Q}_{\diamond+}(I)^*\mathcal{C}^+$ with the functor $i^*\mathsf{Q}_{\diamond+}(I)^*\mathcal{C}^+ \to \mathsf{Q}_{\diamond}(I)^*\mathcal{C}$ induced by the map (7.4.2.9) is a semicanonical extension of the Segal family $\mathsf{Q}_{\diamond}^*\mathcal{C}$, and the functor $\mathcal{C}^+ \to \mathsf{N}_{\diamond}(I)^*\mathsf{Q}_{\diamond+}(I)^*\mathcal{C}^+$ induced by the maps (7.4.2.9), (7.4.2.10) and (7.4.2.4) is an equivalence.

Moreover, for the any uncountable regular cardinal $\kappa > |I|$, the same statements hold for κ -bounded Segal families over $I_f^o \Delta_f^o \Delta_f^o \operatorname{Sets}_{\kappa}$ and $\operatorname{BiPos}_{\kappa} /\!/^b I$.

Proof. For (i), by Proposition 6.3.5.9 and Theorem 6.3.2.13, we may assume that \mathcal{C} comes equipped with a semicanonical extension $\mathcal{C}^+ \cong \mathcal{H}(X)$ for some complete I-Segal space X. In particular, it is constant along weak equivalences in $I^o\Delta^o\Delta^o$ Sets, so that the functors (7.4.4.1) are equivalences by exactly the same argument as in Proposition 7.2.4.1 (i), and moreover, $\rho^*\pi_*\mathsf{N}_{\bullet}(I)^*\mathcal{C} \cong \overline{\mathsf{N}}_{\diamond}(I)^*\mathcal{C}$. Since $\overline{\mathsf{N}}_{\diamond}(I)$ commutes with coproducts and sends standard pushout squares to standard pushout squares, $\overline{\mathsf{N}}_{\diamond}(I)^*\mathcal{C}$ is additive and semiexact. Moreover, for any $J \in \mathsf{BiPos} /\!/^b I$ and $i \in I$, taking the comma-fiber $i \setminus J$ commutes with constructing either of the maps (3.2.6.2), (3.2.7.3), and then by (7.4.2.3),

 $\overline{\mathbb{N}}_{\diamond}(I)^*\mathcal{C}$ satisfies excision and the cylinder axiom by Proposition 7.2.4.1 (i) and Lemma 7.4.1.4. It is coherent by Lemma 7.4.4.1 and reflexive and complete by Corollary 7.4.1.5 and Proposition 7.3.4.8. Moreover, forming a map (3.2.6.3) also commutes with taking the comma-fiber $i \setminus J$, so that $\overline{\mathbb{N}}_{\diamond}(I)_{\diamond}$ sends such a map to a weak equivalence, and therefore $\mathbb{N}_{\diamond}(I)^*\mathcal{C}^+$ is semicontinuous, and $\mathcal{C}^+ \cong \mathbb{Q}_{\diamond+}(I)^*\mathbb{N}_{\diamond}(I)^*\mathcal{C}^+$.

For (ii), by Lemma 7.1.3.4 (iii), Lemma 3.2.9.7 and Lemma 7.4.3.2, the family $Q_{\diamond}(I)^*\mathcal{C}$ is semiexact, additive and constant along κ -anodyne maps, and then it is constant along weak equivalences by Corollary 6.3.5.12. Since for any $i \in I$, $\varepsilon(i)^o_!$ sends weak equivalences to weak equivalences by (7.4.1.1), while by Lemma 7.1.3.4 (iv), every bisimplicial set $X \in \Delta^o_f \Delta^o_f$ Sets is weakly equivalent to the nerve $\overline{\mathbb{N}}_{\diamond}(J)$ of a biordered set $J \in \text{BiPos}$, Lemma 7.4.2.3 and Lemma 7.4.3.2 immediately imply that \mathcal{C} is constant along the map (7.4.2.14) for any $X \in \Delta^o_f \Delta^o_f$ Sets and $i \in I$. Therefore $Q_{\diamond}(I)^*\mathcal{C}(i) \cong Q^*_{\diamond}\varepsilon(i)^*_{\dagger}\mathcal{C}$ is a complete Segal family by Proposition 7.2.4.1 and Proposition 7.3.4.8, and then as in Proposition 7.2.4.1 (ii), the remaining claims immediately follow from Lemma 7.4.2.2.

Remark 7.4.4.3. Proposition 7.4.4.2 (i) together with Proposition 7.4.3.7 imply that $L^*\mathbb{N}_\diamond(I)^*\mathcal{C}^+$ is a complete restricted Segal family over Pos^+ // I. Alternatively, this can be seen directly: the twisted simplicial expansion $Y = N_\sigma(X|I)$ is a complete Segal space by Lemma 7.4.1.7, and then it suffices to apply Lemma 7.4.3.10 and Lemma 7.4.3.11. Unfortunately, this is not enough to conclude anything about $\mathbb{N}_\diamond(I)^*\mathcal{C}^+$ — in order to apply Proposition 7.4.3.7 in the other direction, we need to know already that $\mathbb{N}_\diamond(I)^*\mathcal{C}^+$ is a Segal family. An obvious counterpat of Lemma 7.4.3.11 for biordered sets is wrong, already for the trivial family with fiber pt. Indeed, the unfolding $(\operatorname{Pos}^+$ // $_\star I)^\diamond$ of the reflexive family Pos^+ // $_\star I \to \operatorname{Pos}^+$ is not the whole BiPos^+ // $_\star I \to \operatorname{Indeed}$ is an isomorphism for any $j \leq l$ j' in J. Since it is a Segal family by Proposition 7.3.2.7, the whole BiPos^+ // $_\star I \to \operatorname{BiPos}^+$ cannot be Segal.

We also have an I-augmented version of Corollary 7.2.4.2. For any uncountable regular $\kappa > |I|$, denote by $CSS_{\kappa}(I) \subset (Cat //_{\star}(BiPos_{\kappa} //^{b}I))^{0}$ the full subcategory spanned by reflexive complete κ -bounded Segal families.

Corollary 7.4.4.4. In the assumptions of Proposition 7.4.4.2, for any uncountable regular cardinal $\kappa > |I|$, any Segal family $\mathcal{C}_{\kappa} \in \text{CSS}_{\kappa}(I)$ extends to a small Segal family $\mathcal{C} \to \text{BiPos}$ // $^{\flat}$ I. Moreover, for any two such \mathcal{C}_{κ} , $\mathcal{C}'_{\kappa} \in \text{CSS}_{\kappa}(I)$ with extensions

 \mathcal{C} , \mathcal{C}' , any functor $\gamma_{\kappa}: \mathcal{C}_{\kappa} \to \mathcal{C}'_{\kappa}$ over $\operatorname{BiPos}_{\kappa}$ // $^{\flat}$ I extends to a functor $\gamma: \mathcal{C} \to \mathcal{C}'$ over BiPos // $^{\flat}$ I, and any morphism $\gamma_{\kappa} \to \gamma'_{\kappa}$ between two such functors γ_{κ} , γ'_{κ} with extensions γ , γ' extends to a (non-unique) morphism $\gamma \to \gamma'$. In particular, small complete reflexive Segal families and isomorphism classes of functors over BiPos // $^{\flat}$ I between them form a well-defined category

$$\mathrm{CSS}(I) = \bigcup_{\kappa} \mathrm{CSS}_{\kappa}(I).$$

We have an equivalence between the category CSS(I) and the full subcategory in $h^W(I^o\Delta^o\Delta^o\operatorname{Sets})$ spanned by complete Segal spaces, and for any uncountable regular cardinal $\kappa>|I|$, this equivalence induces an equivalence between $CSS_{\kappa}(I)$ and the full subcategory of complete Segal spaces in $h^W(I^o\Delta^o\Delta^o\operatorname{Sets}_{\kappa})$. Moreover, any small or κ -bounded reflexive Segal family C with complete L^*C admits a semicanonical extension C^+ , for two families C_0 , C_1 with semicanonical extensions C_0^+ , C_1^+ , any functor $\gamma:C_0\to C_1$ extends to a functor $\gamma^+:C_0^+\to C_1^+$, and for two functors $\gamma_0,\gamma_1:C_0\to C_1$ with extensions γ_0^+ , γ_1^+ , a morphism $\gamma_0\to\gamma_1$ extends to a (non-unique) morphism $\gamma_0^+\to\gamma_1^+$, so that in particular, the semicanonical extension is unique up to a unique equivalence.

Remark 7.4.4.5. By Remark 7.4.1.2, Lemma 7.3.4.12 (ii) immediately implies that $CSS(I) \subset h^W(I^o \Delta^o Sets)$ is left-admissible for any Hom-finite directed cellular Reedy category I.

7.4.5. Comparison for expansions. For any Hom-finite directed cellular Reedy category I and I-bisimplicial set X, Proposition **7.4.4.2** provides an I-augmented biordered set $J \in BiPoSets // I$ equipped with a weak equivalence $w: N_{\diamond}(I)(J) \to X$, and w induces a map

$$(7.4.5.1) N_{\sigma}(w): N_{\sigma}(\mathsf{N}_{\diamond}(I)(J)|I) \to N_{\sigma}(X|I).$$

Moreover, (7.4.1.5) induces an isomorphism

$$(7.4.5.2) N_{\sigma}(\mathsf{N}_{\diamond}(I)(J)|I) \cong \mathsf{N}_{\diamond}(I \setminus J),$$

where since I is cellular, the comma-category $I \setminus J$ is a partially ordered set, and we biorder it as in Example 3.2.4.4. It would be nice to know that under appropriate assumptions — for example, if X is a fibrant I-Segal space — (7.4.5.1) is a weak equivalence. Unfortunately, this is not at all obvious: while

 $N_{\diamond}(J)$ is an *I*-Segal space, it is not fibrant, nor even *t*-fibrant unless the biorder on J is trivial, so Lemma 7.4.1.7 does not apply. If I itself is a partially ordered set, then more generally, for any functor $J:I^{o}\to BiPoSets$, the composition $N_{\diamond}\circ J:I^{o}\to\Delta^{o}\Delta^{o}$ Sets is an I-bisimplicial set. If we have another I-bisimplicial set X, a map $w:N_{\diamond}\circ J\to X$ induces a map

$$(7.4.5.3) N_{\sigma}(w): \mathsf{N}_{\diamond}(J_{\bullet}) \to N_{\sigma}(X|I),$$

where $J_{\cdot} \to L(I)$ is the biordered fibration corresponding to J, and as in (7.4.5.2), we use (7.4.1.5) to identify the source of the map. If $J = \mathsf{E}_I(J')$, $i \mapsto i \setminus J'$ corresponds to an I-augmented biordered set $J' \in \mathsf{BiPoSets} \ /\!\!/ I$, then we have $J_{\cdot} \cong I \setminus J'$, and (7.4.5.3) reduces to (7.4.5.1) combined with (7.4.5.2). We then have the following general result.

Proposition 7.4.5.1. Assume given a left-bounded partially ordered set I, a functor $J:I^{\circ}\to BiPos_{\mathbb{C}}^{-}$, where $BiPos_{\mathbb{C}}^{-}$ is the category of right-bounded biordered sets equiped with the co-standard C-category structure, a fibrant I-Segal space X and a weak equivalence $w:\mathbb{N}_{\diamond}\circ J\to X$. Then the corresponding map (7.4.5.3) is a Segal equivalence in the sense of Example 7.3.4.10.

Our main technical tool in proving Proposition 7.4.5.1 are the isomorphisms (7.2.2.3) that express the biordered nerve N_{\diamond} as the nerve of a simplicial partially ordered set, so we need some preliminaries on Δ^o PoSets. Firstly, recall that for any partially ordered set $J' \in \text{PoSets}$ and simplicial partially ordered set $J \in \Delta^o$ PoSets equipped with a map $\chi : J \to J'$, we have the corresponding map a_{χ}^{\diamond} of (7.2.1.8). Moreover, if we identify $(J/J')^{\iota} \cong (J'^{\circ} \setminus J^{\iota})$, then we also have a dual map

(7.4.5.4)
$$\operatorname{colim}_{\mathsf{tw}(J')} N^L((J' \setminus J)_f) \to N^L(J' \setminus J),$$

where $(J' \setminus J)_f \cong (j' \setminus J) \times (J'/j)$ for any $f \in \mathsf{tw}(J')$ given by a pair $j \leq j'$.

Lemma 7.4.5.2. Assume that $J' \in \text{Pos}$, and $J \in \Delta_{d+}^o \text{Pos}^+$ is globally left-bounded in the sense of Definition 7.2.1.5. Then the corresponding map (7.2.1.8) is a Segal equivalence. Moreover, if $J \in \Delta_{d-}^o \text{Pos}^-$ is globally right-bounded, then so is the dual map (7.4.5.4).

Proof. For the first claim, note that by Corollary 6.3.5.14, the class of injective Segal equivalences is closed under colimits over \mathbb{N} , so it suffices to prove the claim for the comma-fibers J/n, $n \geq 0$ of some map $J \to \mathbb{N}$. If we take the height function ht : $J \to \mathbb{N}$, then all these comma-fibers are globally finite-dimensional, and we are done by Proposition 7.2.1.8 (iii). For the second claim,

recall that $N^L(J^i) \cong N^L(J)^i$ for any $J \in \Delta^o$ PoSets, and by Example 7.2.1.2, $(\iota \times \mathsf{id})^* : \Delta^o \Delta^o$ Sets $\to \Delta^o \Delta^o$ Sets sends Segal equivalences to Segal equivalences. \square

Next, we consider the category Δ^o Pos $^-$ of simplicial partially ordered sets that are pointwise right-bounded. The co-standard C-structure on Pos $^-$ of Example 6.1.1.6 induces a C-category structure on Δ^o Pos $^-$, with the class C defined pointwise, and as a C-category, Δ^o Pos $^-$ is abundant in the sense of Definition 6.1.3.1 and excisive in the sense of Lemma 6.1.3.5. Say that a map f in Δ^o PoSets is a *Segal equivalence* if so is the induced map $N^L(f)$, and say that a commutative square

$$\begin{array}{ccc}
J & \longrightarrow & J_0 \\
\downarrow & & \downarrow \\
I_1 & \longrightarrow & J_{01}
\end{array}$$

in Δ^o PoSets is *Segal-cocartesian* if the induced map

(7.4.5.5)
$$N^{L}(J_0) \sqcup_{N^{L}(J)} N^{L}(J_1) \to N^{L}(J_{01})$$

is an injective Segal equivalence.

Lemma 7.4.5.3. For any finite simplicial set X and subset $Y \subset X$, the embedding $f: Y \to X$ is absolutely cofibrant in $\Delta^o \operatorname{Pos}^- \supset \Delta^o \operatorname{Sets}$, and so is the embedding $\widetilde{f}: \mathsf{C}(f) \to X \times [1]$ equal to id resp. f over 1 resp. 0. Moreover, in both cases, all the corresponding squares (6.1.1.5) are Segal-cocartesian.

Proof. The claim for f is obvious — since X and Y are equipped with a discrete order, f is pointwise-split in the sense of Example 3.1.7.7, thus absolutely cofibrant by Example 6.1.1.15, and then N^L sends any square (6.1.1.5) for f to a cocartesian square in $\Delta^o \Delta^o$ Sets, so that the map (7.4.5.5) is an isomorphism. To check that \widehat{f} is absolutely cofibrant, it suffices to check it pointwise. But for any $[n] \in \Delta$, we can let $X([n])' = X([n]) \setminus Y([n])$, and then we have $C(f)([n]) \cong (Y([n]) \times [1]) \sqcup X([n])'$, and $\widehat{f}([n])$ is the disjoint union of an identity map and the embedding id $\times t : X([n])' \to X([n])' \times [1]$; this is also absolutely cofibrant by Example 6.1.1.15. Moreover, for each $[n] \in \Delta$, the square (6.1.1.5) corresponding to some map $f: C(f) \to J$ evaluates to the square (2.2.4.4) for the induced map $f \circ t : X([n])' \to J([n])$. Therefore (7.4.5.5) is indeed injective by Remark 3.1.8.4, and moreover, by (3.1.8.6), exactly the same argument as in Lemma 4.1.3.1 and Proposition 7.2.1.8 shows that (7.4.5.5) is a countable composition of pushouts of coproducts of horn embeddings (7.2.1.4). Since by Lemma 6.3.4.6 and Corollary 6.3.5.14, the class of injective Segal

equivalences is stable under coproducts, pushouts and countable compositions, (7.4.5.5) is indeed an injective Segal equivalence.

Now for any horn embedding v_n^k of (4.1.3.3), let $W_n^k = C(v_n^k) \in \Delta^o$ Pos be its pointwise cylinder, where as in Lemma 7.4.5.3, we equip V_n^k and Δ_n with discrete order, and let

$$(7.4.5.6) w_n^k : \mathsf{W}_n^k \to \Delta_n \times [1]$$

be the embedding given by id resp. v_n^k over $1 \in [1]$ resp. $0 \in [1]$.

Lemma 7.4.5.4. Say that $J \in \Delta^0$ PoSets is t-fibrant if the nerve $N^L(J)$ is t-fibrant in the sense of Definition 7.4.1.6. Then J is t-fibrant if and only if it has the lifting property with respect to all horn embddings (4.1.3.3) and their cylinders (7.4.5.6).

Proof. Being a nerve, the bisimplicial set $X = N^L(J)$ is in any case a Segal space, so by induction on n, it is t-fibrant if and only if X([0]) is fibrant, and $X(t): X([1]) \to X([0])$ is a Kan fibration. The former means the lifting property w.r.t. (4.1.3.3), and since $N([1]) \cong \Delta_1$, the latter means the lifting property w.r.t. (7.4.5.6).

We can now construct t-fibrant replacement for simplicial partially ordered sets. The procedure is the same as in Lemma 6.3.2.1 but we use both the horn embeddings (4.1.3.3) and their cylinders (7.4.5.6). We apply the extension construction of Subsection 6.1.3. By Lemma 7.4.5.3, the maps v_n^k and w_n^k of Lemma 7.4.5.4 are absolutely cofibrant in the abundant C-category Δ^o Pos $^-$. For any $J = J_0 \in \Delta^o$ Pos $^-$, we can then define

$$J_1 = \operatorname{Ex}(\{v_n^k, w_n^k\})(J),$$

where Ex is the extension (6.1.3.1) with respect to the collection $\{v_n^k, w_n^k\}$ of maps v_n^k , w_n^k for all integers $n \ge k \ge 0$. This comes equipped with a map $a_0 : J_0 \to J_1$, and we can then iterate the construction to obtain maps $a_n : J_n \to J_{n+1}$, $n \ge 0$, and let $J_\infty = \operatorname{colim}_n J_n$, together with the map

$$(7.4.5.7) a_{\infty}: J \to J_{\infty}$$

obtained as the countable composition of the maps a_n . Note that since the maps a_n are right-closed, we have $J_{\infty} \in \Delta^o \operatorname{Pos}^-$. Moreover, J_{∞} is functorial in J, so that for any category I and functor $J: I \to \Delta^o \operatorname{Pos}^-$, we can apply it pointwise and obtain a functor $J_{\infty}: I \to \Delta^o \operatorname{Pos}^-$ and a map $a_{\infty}: J \to J_{\infty}$.

Lemma 7.4.5.5. For any $J \in \Delta^o \operatorname{Pos}^-$, $J_\infty \in \Delta^o \operatorname{Pos}^-$ is t-fibrant, globally right-bounded if so is J, and a_∞ is a Segal equivalence. Moreover, for any $I \in \operatorname{Pos}$ and $J: I \to \Delta^o \operatorname{Pos}^-$ cofibrant with respect to the co-standard C-structure, $a_\infty: J \to J_\infty$ is in C.

Proof. Since both V_n^k and W_n^k are compact as objects in Δ^o Pos⁻, the fact that J_∞ is t-fibrant immediately follows from the small object argument and Lemma 7.4.5.4. Moreover, the map a_1 is right-closed, and if dim $J([n]) \leq m$ for any $[n] \in \Delta$ and some $m \ge 0$, then dim $J_1([n]) \le m + 1$, again for any $[n] \in \Delta$. Then if J is equipped with a co-height function $ht^i: J \to \mathbb{N}^o$ with globally finite-dimensional comma-fibers $n \setminus_{ht'} J$, then J_{∞} is filtered by globally finite-dimensional rightclosed subsets $(n \setminus_{\operatorname{ht}^t} J)_n \subset J_{\infty}$, $n \in \mathbb{N}^o$, and this defines a co-height function $ht^{\iota}: J_{\infty} \to \mathbb{N}^{o}$. For the second claim, since injective Segal equivalences are closed under countable compositions by Corollary 6.3.5.14, it suffices to prove that $a_1: J \to J_1$ is a Segal equivalence. By (6.1.3.2), J_1 can be expressed as a co-standard colimit of some functor $J_{\bullet}: T^{<} \to \Delta^{o} \operatorname{Pos}^{-}$ sending o to J and $t \in T$ to some right-closed embedding $a_t : J \to J_t$ obtained as a pushout of a horn embedding v_n^k or its cylinder w_n^k . Since N^L sends co-standard colimits to standard colimits, Corollary 6.3.5.14 again shows that it suffices to prove that each a_t is a Segal equivalence. Then by Lemma 7.4.5.3, it actually suffices to check this for the pushout of the corresponding nerves, and this is obvious, since both $N^L(v_n^k)$ and $N^L(w_n^k)$ are not only Segal equivalences but weak equivalences in $\Delta^o \Delta^o$ Sets. Finally, since Δ^o Pos⁻ is excisive, the last claim immediately follows from Lemma 6.1.3.7.

Proof of Proposition 7.4.5.1. First of all, since right-closed embeddings are strict, I factors through $\overline{\text{BiPos}}^-$, and then by Lemma 7.2.2.2, we may replace the nerves N_{\diamond} , $N_{\diamond}(I)$ with their strict versions \overline{N}_{\diamond} , $\overline{N}_{\diamond}(I)$. Moreover, since by Corollary 6.3.5.14, the class of injective Segal equivalences is closed under countable compositions, it suffices to prove the claim after restricting to the skeleta $\mathrm{sk}_n I$, $n \geq 0$; thus we may assume right away that I is finite-dimensional. We have the map

$$(7.4.5.8) p: L(I) \setminus^{\iota} J_{\bullet} \to J_{\bullet}$$

of (3.2.6.8). Since J factors through BiPos $_C^-$ and right-closed embeddings preserve the co-heights, the co-height functions $\operatorname{ht}^i:J(i)\to R(\mathbb{N}^o)$, $i\in I$ taken together define a co-height function $\operatorname{ht}^i:J_{\bullet}\to R(\mathbb{N}^o)$, with finite-dimensional comma-fibers $n\setminus J_{\bullet}$. Then if we replace J_{\bullet} in (7.4.5.8) with $n\setminus J_{\bullet}$, the map (7.4.5.8) is fiberwise-reflexive by construction and bianodyne by Lemma 3.2.6.6.

Thus $\overline{\mathbb{N}}_{\diamond}(I)(p)$ is a weak equivalence, and $\overline{\mathbb{N}}_{\diamond}(p)$ is a Segal equivalence by Lemma 7.2.3.4 and Lemma 7.2.3.7. Since the functors $\mathbb{N} \to \operatorname{BiPos}^-$ given by $n \mapsto n \setminus J$, and $n \mapsto L(I) \setminus^{\iota} (n \setminus J)$ are cofibrant, and by Lemma 6.2.4.2 and Corollary 6.3.5.14, both weak equivalences and Segal equivalences between cofibrant functors from \mathbb{N} are closed under colimits, the same holds for the map (7.4.5.8) itself. Therefore we may replace J, with $L(I) \setminus^{\iota} J$, and assume right away that $J: I^o \to \operatorname{BiPos}^-$ is cofibrant with respect to the co-standard C-category structure.

Moreover, by Lemma 3.2.6.3, the functor $\overline{\mathbb{E}}_F$ of (7.2.2.7) is a *C*-functor with respect to the co-standard *C*-category structures, so that the functor $\overline{\mathbb{E}}_F(J)$: $I^o \to \Delta^o \operatorname{Pos}^-$ is then also cofibrant, and Lemma 7.4.5.5 provides a cofibrant functor $\overline{\mathbb{E}}_F(J)_{\infty}: I^o \to \Delta^o \operatorname{Pos}^-$ such that $\overline{\mathbb{E}}_F(J)_{\infty}(i)$ is *t*-fibrant for any $i \in I$, and a map $a_{\infty}: \overline{\mathbb{E}}_F(J) \to \overline{\mathbb{E}}_F(J)_{\infty}$ in the class *C* such that $a_{\infty}(i)$ is a Segal equivalence for any $i \in I$. By (7.2.2.8) and Lemma 7.2.2.4, $\overline{\mathbb{E}}_F(J)(i) \in \Delta^o \operatorname{Pos}^-$ is globally right-bounded for any $i \in I$, and then by Lemma 7.4.5.5, so is $\overline{\mathbb{E}}_F(J)_{\infty}(i)$.

Now, the map $N^L(a_\infty)$ is pointwise an injective Segal equivalence, and then by Lemma 7.4.1.4, the family $\mathcal{H}(X)$ is constant along $N^L(a_\infty)$, so by Remark 6.3.5.15 and Corollary 6.3.5.14, we have $w=w'\circ N^L(a_\infty)$ for some map $w':N^L(\overline{\mathbb{E}}_F(J)_\infty)\to X$. Then w' is a pointwise Segal equivalence. Moreover, factor it as

$$(7.4.5.9) N^{L}(\overline{\mathsf{E}}_{F}(J)_{\infty}) \xrightarrow{c} X' \xrightarrow{f} X,$$

with $c \in C \cap W$ and $f \in F$. Then f is a Segal equivalence, and since X is fibrant, so is X'. However, for any t-fibrant bisimplicial set Y and integers n > l > 0, the vertical maps in the corresponding square (4.1.3.1) are in F, so that if we have a weak equivalence $Y \to Y'$, with t-fibrant Y and fibrant Y', then Y' is a Segal space as soon as so is Y. We conclude that X' in (7.4.5.9) is pointwise a fibrant Segal space, and then the Segal equivalence f is a weak equivalence by Lemma 7.3.4.12 (i). Therefore the whole map w' is a weak equivalence between t-fibrant I-Segal spaces, and then by Lemma 7.4.1.7, it becomes a Segal equivalence after taking the twisted simplicial expansion. Thus to finish the proof, it remains to show the same for the pointwise Segal equivalence $N^L(a_\infty)$.

But recall that $\overline{\mathsf{E}}_F(J)$ and $\overline{\mathsf{E}}_F(J)_\infty$ are cofibrant. Then for any cofibrant functor $X:I^o\to\Delta^o\operatorname{Pos}^-$, Lemma 6.1.3.4 applied to X^ι pointwise over Δ provides an isomorphism $X\cong\mathsf{E}_I(X')$, where $X'=\operatorname{colim}_IX$ is equipped with a natural augmentation $\chi:X'\to I$. Thus if we denote $J'=\operatorname{colim}_{I^o}\mathsf{E}_F(J)$,

 $J'_{\infty} = \operatorname{colim}_{I^0} \mathsf{E}_F(J)_{\infty}$, $a'_{\infty} = \operatorname{colim}_{I^0} a_{\infty}$, we have a commutative diagram

$$(7.4.5.10) \begin{array}{c} \operatorname{colim}_{\mathsf{tw}(I)} N^L((I \setminus J')_f) & \xrightarrow{\operatorname{colim} N^L(a'_\infty)_f} & \operatorname{colim}_{\mathsf{tw}(I)} N^L((I \setminus J'_\infty)_f) \\ \downarrow & \downarrow \\ N^L(I \setminus J') & \xrightarrow{N^L(a'_\infty)} & N^L(I \setminus J'_\infty), \end{array}$$

where the vertical arrows on the left and on the right are the Segal equivalences (7.4.5.4) of Lemma 7.4.5.2, and the bottom map is the twisted simplicial expansion of the map $N^L(a_\infty)$. Then to finish the proof, it remains to show that the top arrow in (7.4.5.10) is a Segal equivalence. Moreover, by Corollary 6.3.5.14, it suffices to check it for $N^L(a'_\infty)_f$ for each $f \in \operatorname{tw}(I)$ represented by a pair $i \leq i'$. Since $N^L(a'_\infty)_f = N^L(a_\infty(i')) \times \operatorname{id}_{L(N(I/i))}$, we are done by Corollary 7.2.1.9. \square

Chapter 8

Enhanced category theory.

In this chapter, we are finally able to get to our main task — we build enhanced category theory.

We start with the notion of a *reflexive family* (Section 8.1). This is a very simple technical gadget — roughly speaking, a reflexive family of categories over a big enough full subcategory $\mathcal{I} \subset \text{PoSets}$ is a Grothendieck fibration $\mathcal{C} \to \mathcal{I}$ such that for any left-reflexive full embedding $f: J \to J'$ in \mathcal{I} , with adjoint map $f_+: J' \to J$, the isomorphism $f^* \circ f_+^* \cong \text{id}$ induces an adjunction between the transition functors $f^*: \mathcal{C}_{J'} \to \mathcal{C}_J$ and $f_+^*: \mathcal{C}_{J'} \to \mathcal{C}_J$. A trivial example of such a family is the family $K(\mathcal{E},\mathcal{I})$ with fibers $K(\mathcal{E},\mathcal{I})_J \cong J^o\mathcal{E}$, for some category \mathcal{E} . Suprisingly, even with such a naive definition, one can already prove something — for example, Proposition 8.1.2.1 shows that $K(-,\mathcal{I})$ is right-adjoint to the truncation operation $\mathcal{C} \mapsto \mathcal{C}_{\text{pt}}$. We also define reflexive families augmented by a partially ordered set I, and we prove that in good cases, the Kan extension operation f_* associated to a map $f: I \to I'$ sends reflexive families to reflexive families (the precise statement is Corollary 8.1.3.5).

Section 8.1 ends with Subsection 8.1.5 that contains one reconstruction result, Proposition 8.1.5.2, saying that — again in good cases — a reflexive family is completely determined by the underlying family of groupoids; this establishes a link between enhanced categories and families of groupoids studied in Chapter 7.

Enhanced categories themselves are defined in Section 8.2, as reflexive families semicartesian over certain standard commutative squares, and the remainder of Section 8.2 collects definitions and results that do not need representability theorems. Again somewhat suprisingly, this is more than one would expect. In particular, two notions that are simply borrowed *verbatim* from the usual category theory are fully faithful embeddings (Corollary 8.2.2.18) and adjoint pairs (Definition 8.2.2.11). We also construct basic examples of enhanced cate-

gories such as enhanced localizations of a model category (Lemma 8.2.4.1, and enhanced localization of the chain-homotopy category of an additive category (Lemma 8.2.4.2).

In Section 8.3 we introduce our representability result, Theorem 8.3.1.3, and see what it gives us. The theorem itself is an easy combination of Proposition 8.1.5.2 and representability theorems of Chapter 7 (that in turn depend on Brown Representability of Chapter 6). The main corollary of Theorem 8.3.1.3 is Proposition 8.3.3.4 saying that, roughly speaking, any small enhanced category is a localization of a partially ordered set I, and in a rather controlled way (in particular, the class W of maps in I that we use for localization fits into a biorder on *I* in the sense of Section 3.2). This fact itself has two main corollaries firstly, Corollary 8.3.3.5 that constructs enhanced functor categories, and secondly, Corollary 8.3.3.6 and Lemma 8.3.3.7 showing that enhanced categories admits semicartesian products, and those products have a universal property. This is our main tool for working with enhanced categories, and it is heavily used throughout the remainder of this chapter. As a less immediate corollary of Proposition 8.3.3.4, we also construct an enhancement for the category of enhanced small categories (Subsection 8.3.6) and enhanced versions of the lax functor categories Cat // I, $I \setminus Cat$ of Subsection 2.1.2 (this is Subsection 8.3.7).

Starting from Section 8.4, we develop enhanced category theory in proper sense, following the template set in Chapter 2. The slogan is, replace cartesian products with semicartesian products of Subsection 8.3.3, and then everything works. Section 8.4 starts with enhanced versions of cylinders and commacategories; an important technical result is Lemma 8.4.1.5 that gives a characterization of adjunction stable under semicartesian products. We then build a theory of enhanced fibrations and cofibrations, in parallel to Section 2.3, prove an enhanced version of the Grothendieck construction (Proposition 8.4.4.2), and use it to derive the enhanced version of the Yoneda Lemma (Proposition 8.4.6.1). We also construct enhanced relative functor categories, in parallel to Section 2.4; this is Subsection 8.4.5.

Section 8.5 deals with enhanced limits, colimits and Kan extensions, and here again, the story is largely parallel to its unenhanced version of Subsection 2.2.5. Representability and representing objects only enter through semicartesian squares, with one important exception — the fact that the category of small enhanced categories is enhanced-cocomplete (Proposition 8.5.2.1). The two things that have no direct parallel in Subsection 2.2.5 are an enhanced version of nerves and simplicial replacements given in Subsection 8.5.6, and an envelope construction of Subsection 8.5.7 that allows one to formally add enhanced

colimits of a specified kind via a universal construction (Lemma 8.5.7.14).

Finally, in Section 8.6, we discuss what to do with large enhanced categories. This is even more problematic than the situation in the usual category theory, since in the enhanced setting, even semicartesian products only exist for small enhanced categories, and this is an undispensable tool for building a workable theory. As a solution, we adapt the machinery of filtered colimits and accessible categories of [G3] and [GU]. A standard reference for this material is a wondeful book [AR], and the enhanced theory that we build is again very similar to its unenhanced prototype (for comparison, there is a short overview of the unenhanced story in [K3] written in parallel to Section 8.6). We construct enhanced Karoubi completions in Subsection 8.6.1, then develop the basic machinery of filtered colimits and inductive completions, and then define accessible enhanced categories and show how to adapt our main technical tools such as semicartesian products to the accessbile world. We end the text with a brief discussion of accessible enhanced fibrations, and an accessible version of relative enhanced functor categories of Subsection 8.4.5.

8.1. Reflexive families.

8.1.1. Definitions and basic properties. We now turn to families of categories that are not necessarily families of groupoids. Assume given a full subcategory $\mathcal{I} \subset \text{PoSets}$ that is ample in the sense of Definition 3.1.5.1. From now on, a family of categories over \mathcal{I} means a fibration $\mathcal{C} \to \mathcal{I}$, and it is small if it is small as a functor (equivalently, has essentially small fibers \mathcal{C}_i). Since \mathcal{I} is ample, it contains $\mathsf{pt} \in \text{PoSets}$, and for any family of categories $\mathcal{C} \to \mathcal{I}$, (2.4.3.3) provides a functor

$$(8.1.1.1) C \to \varepsilon_* \varepsilon^* C,$$

cartesian over \mathcal{I} , where $\varepsilon = \varepsilon(\mathsf{pt}) : \mathsf{pt} \to \mathcal{I}$ is the embedding onto $\mathsf{pt} \in \mathcal{I}$. Explicitly, for any $J \in \mathcal{I}$, and an element $j \in J$, we denote by

(8.1.1.2)
$$\operatorname{ev}_j = \varepsilon(j)^* : \mathcal{C}_J \to \mathcal{C}_{\mathsf{pt}}$$

the transition functor for the embedding $\varepsilon(j)$: pt $\to J$ onto $j \in J$. Then (8.1.1.1) over some $J \in \mathcal{I}$ is the product of the functors ev_j for all $j \in J$.

Definition 8.1.1.1. A family of categories $C \to \mathcal{I}$ is *non-degenerate* if the corresponding functor (8.1.1.1) is conservative.

Another consequence of Definition 3.1.5.1 is that $[1] \in \mathcal{I}$, and $[1] \times J \in \mathcal{I}$ for any $J \in \mathcal{I}$. Denote by $s, t : J \to J \times [1]$ the embeddings onto $J \times \{0\}$ resp. $J \times \{1\}$, and let $e : J \times [1] \to J$ be the projection.

Definition 8.1.1.2. A family of categories $\mathcal{C} \to \mathcal{I}$ is *reflexive* resp. *co-reflexive* if for any $J \in \mathcal{I}$, with the transition functors $s^*, t^* : \mathcal{C}_{J \times [1]} \to \mathcal{C}_J$ and $e^* : \mathcal{C}_J \to \mathcal{C}_{J \times [1]}$, the isomorphism $s^* \circ e^* \cong \operatorname{id} \operatorname{resp.} t^* \circ e^* \cong \operatorname{id} \operatorname{induced}$ by the isomorphism $e \circ s \cong \operatorname{id} \operatorname{resp.} e \circ t \cong \operatorname{id} \operatorname{defines}$ an adjunction between e^* and $e^* : \mathcal{C}_J \to \mathcal{C}_{J \times [1]}$,

Example 8.1.1.3. For any ample $\mathcal{I} \subset \text{PoSets}$, $\iota(\mathcal{I}) \subset \text{PoSets}$ is also ample, and for any reflexive resp. co-reflexive family \mathcal{C} over \mathcal{I} , $\iota^*\mathcal{C}$ is tautologically co-reflexive resp. reflexive over $\iota(\mathcal{I})$.

Example 8.1.1.4. Assume given a reflexive resp. coreflexive family $\mathcal{C} \to \mathcal{I}$, and a full subcategory $\mathcal{C}' \subset \mathcal{C}$ such that the induced functor $\mathcal{C}' \to \mathcal{I}$ is a fibration, and the embedding $\mathcal{C}' \to \mathcal{C}$ is cartesian over \mathcal{I} . Then \mathcal{C}' is reflexive resp. co-reflexive.

If C is a reflexive family of categories over \mathcal{I} , then for any $J \in \mathcal{I}$ and $c \in \mathcal{C}_{J \times [1]}$, the adjunction map $a(c) : c \to e^*s^*c$ is functorial with respect to c, and sending c to $t^*a(c)$ provides a functor

$$(8.1.1.3) v_J: \mathcal{C}_{J \times [1]} \to \mathsf{ar}(\mathcal{C}_J) = \mathsf{Fun}([1], \mathcal{C}_J)$$

isomorphic to t^* resp. s^* after evaluation at $0 \in [1]$ resp. $1 \in [1]$. For any two maps $f_0, f_1: J \to J'$ in \mathcal{I} such that $f_0 \leq f_1$, (8.1.1.3) induces a natural map $\nu(f_0, f_1): f_1^* \to f_0^*$ (factor $f_0 \sqcup f_1: J \sqcup J \to J'$ through $J \times [1]$), we have $f^*(\nu(f_0, f_1)) = \nu(f_0 \circ f, f_1 \circ f)$ for any map $f: J'' \to J$, and we have $\nu(f_0, f_1) = \mathrm{id}$ if $f_0 = f_1$. For any map $f: J \to J'$ in \mathcal{I} such that $\mathsf{C}(f), \mathsf{C}^o(f) \in \mathcal{I}$ — in particular, for any full embedding f — we then have functors

$$(8.1.1.4) v_f: \mathcal{C}_{\mathsf{C}(f)} \to \mathcal{C}_{J'}/_{f^*}\mathcal{C}_{J}, v_f^{\perp}: \mathcal{C}_{\mathsf{C}^{o}(f)} \to \mathcal{C}_{J} \setminus_{f^*} \mathcal{C}_{J'}$$

given by $t^* \times s^*$ with the maps $\nu(s,t\circ f)$, resp. $\nu(s\circ f,t)$. If f is right-reflexive with some adjoint f^{\dagger} , so that $C(f)\cong C^{0}(f^{\dagger})$, then $\nu_{f}\cong \nu_{f^{\dagger}}^{\perp}$. For $f=\operatorname{id}:J\to J$, both functors (8.1.1.4) reduce to (8.1.1.3).

Example 8.1.1.5. For any category \mathcal{E} , the category $\mathcal{I} /\!\!/ \mathcal{E}$ with the fibration $\mathcal{I} /\!\!/ \mathcal{E} \to \mathcal{I}$ of (2.1.4.10) is a co-reflexive family over \mathcal{I} in the sense of Definition 8.1.1.2. Dually, the category

(8.1.1.5)
$$K(\mathcal{E}, \mathcal{I}) = \mathcal{I} /\!/^{\iota} \mathcal{E} \cong \iota^{*}(\mathcal{I} /\!/ \mathcal{E})$$

equipped with the composition \mathcal{I}^o // $\mathcal{E} \to \iota(\mathcal{I}) \to \mathcal{I}$ of the fibration (2.1.4.10) and the equivalence $\iota:\iota(\mathcal{I}) \to \mathcal{I}$ is a reflexive family, with fibers given by $K(\mathcal{E},\mathcal{I})_J = J^o\mathcal{E} = \operatorname{Fun}(J^o,\mathcal{E})$. The families \mathcal{I} // \mathcal{E} and $K(\mathcal{E},\mathcal{I})$ are non-degenerate in the sense of Definition 8.1.1.1. The functor (8.1.1.2) for $K(\mathcal{E},\mathcal{I})$ is the evaluation functor, (8.1.1.3) is the equivalence $\operatorname{Fun}(J^o \times [1]^o,\mathcal{E}) \to \operatorname{Fun}([1],J^o\mathcal{E})$, where we identify $[1] \cong [1]^o$, and (8.1.1.4) are the equivalences (2.2.4.7). We have

$$(8.1.1.6) K(\mathcal{E}^{o}, \mathcal{I})^{o}_{\perp} \cong \mathcal{I} // \mathcal{E}^{o},$$

where $K(\mathcal{E}^o, \mathcal{I})^o_{\perp} \to \mathcal{I}$ is the transpose-opposite fibration. In terms of relative functor categories of Definition 2.4.1.1, we have

(8.1.1.7)
$$K(\mathcal{E},\mathcal{I}) \cong \operatorname{Fun}(\mathcal{I}^{\bullet}|\mathcal{I},\mathcal{E}), \qquad \mathcal{I} // \mathcal{E} \cong \operatorname{Fun}(\mathcal{I}_{\bullet}|\mathcal{I},\mathcal{E}),$$

where $\nu_{\bullet}: \mathcal{I}_{\bullet} \to \mathcal{I}$, $\nu^{\bullet}: \mathcal{I}^{\bullet} \cong \mathcal{I}_{\bullet}^{o\perp} \to \mathcal{I}$ are the cofibrations with fibers J, J^{o} induced by PoSets., PoSets.

Lemma 8.1.1.6. Assume given a reflexive family of categories C over an ample full subcategory $\mathcal{I} \subset \text{PoSets}$. Then for any left resp. right-reflexive full embedding $f: J' \to J$ in \mathcal{I} , with the adjoint map $f_{\dagger}: J \to J'$, the isomorphism $f^* \circ f_{\dagger}^* \cong \text{id resp}$. id $\cong f^* \circ f_{\dagger}^*$ defines an adjunction between f_{\dagger}^* and f^* resp. f^* and f_{\dagger}^* .

Proof. The other adjunction map is
$$\nu(f \circ f_{\dagger}, id)$$
 resp. $\nu(id, f \circ f_{\dagger})$.

Corollary 8.1.1.7. A family of categories $C \to \mathcal{I}$ is reflexive if and only if for any right-reflexive full embedding $f: J \to J'$, with adjoint $f_+: J' \to J$, the isomorphism $f^* \circ f_+^* \cong \operatorname{id}$ defines an adjunction between f^* and f_+^* .

Proof. For any
$$J \in \mathcal{I}$$
, $s : J \to J \times [1]$ is right-reflexive, and $e = s_{\dagger}$.

Example 8.1.1.8. For any $J \in \mathcal{I}$, the embedding $t: J \to J \times [1]$ is left-reflexive, and Lemma 8.1.1.6 shows that for any reflexive family of categories \mathcal{C} , the isomorphism id $\cong e \circ t$ defines an adjunction between t^* and e^* . In other words, e^* actually has both a left-adjoint s^* and a right-adjoint t^* , and (8.1.1.3) is the corresponding map (2.2.3.2). This shows that for any reflexive family $\mathcal{C} \to \mathcal{I}$, the transpose-opposite fibration $\mathcal{C}^o_\perp \to \mathcal{I}$ is a co-reflexive family. The converse also holds (apply the same argument to $\iota^*\mathcal{C}$).

Definition 8.1.1.9. A reflexive family of categories \mathcal{C} over \mathcal{I} is *separated* if the functor (8.1.1.3) is an epivalence for any $J \in \mathcal{I}$, and *proper* if so is v_f^{\perp} of (8.1.1.4) for any right-closed full embedding f in \mathcal{I} . A co-reflexive family $\mathcal{C} \to \mathcal{I}$ is *separated* or *proper* if so the reflexive family $\mathcal{C}_{\parallel}^{o} \to \mathcal{I}$.

Example 8.1.1.10. For any category \mathcal{E} , the reflexive family $K(\mathcal{E}, \mathcal{I})$ of Example 8.1.1.5 is proper in the sense of Definition 8.1.1.9.

Lemma 8.1.11. A reflexive family of categories C over \mathcal{I} is separated if and only if for any left-reflexive full embedding $f: J \to J'$ in \mathcal{I} , with adjoint map $g: J' \to J$, the functor $v_f^{\perp} \cong v_g$ of (8.1.1.4) is an epivalence. A reflexive family of categories C over \mathcal{I} is proper if and only if v_f^{\perp} is an epivalence for any map $f: J \to J'$ in \mathcal{I} such that $C^o(f) \in \mathcal{I}$.

Proof. In the first claim, the "if" part is clear: ν_J is ν_f^\perp for $f=\operatorname{id}: J\to J$. For the "only if" part, assume that $\mathcal C$ is separated. By Lemma 8.1.1.6, $g^*:\mathcal C_J\to\mathcal C_{J'}$ is fully faithful and left-adjoint to f^* . Consider the left-reflexive full embedding $\widetilde g:\mathsf C^o(f)\cong\mathsf C(g)\to J'\times[1]$ dual to (3.1.3.3), with the adjoint map $\widetilde g$. Again by Lemma 8.1.1.6, $\widetilde g^*$ is fully faithful and left-adjoint to $\widetilde f^*$, and we have a commutative square

(8.1.1.8)
$$\begin{array}{ccc}
\mathcal{C}_{\mathsf{C}^{o}(f)} & \xrightarrow{\widetilde{g}^{*}} & \mathcal{C}_{J' \times [1]} \\
\nu_{f}^{\perp} \downarrow & & \downarrow^{\nu_{J'}} \\
\mathcal{C}_{J'} \setminus_{f^{*}} \mathcal{C}_{J} & \xrightarrow{\mathsf{id} \setminus g^{*}} & \mathcal{C}_{J'} \setminus \mathcal{C}_{J'}
\end{array}$$

with fully faithful right-reflexive horizontal arrows. Then the square is cartesian by Lemma 2.2.1.2, and ν_f^\perp is a pullback of an epivalence. For the second claim, the "if" part is tautological; for the "only if" part, consider the right-closed full embedding $t: J' \to \mathsf{C}^o(f)$, and note that the left-reflexive projection $s_{\dagger}: \mathsf{C}^o(f) \to J$ adjoint to the right-reflexive full embedding $s: J \to \mathsf{C}^o(f)$ induces a left-reflexive projection $g: \mathsf{C}^o(f) \to \mathsf{C}^o(f)$, with fully faithful adjoint map $\mathsf{C}^o(f) \to \mathsf{C}^o(f)$. Then g^* is a fully faithful embedding by Lemma 8.1.1.6, and ν_f^\perp is obtained by retricting the epivalence ν_t^\perp to the essential image of g^* . \square

Explicitly, for any category I, objects in the category \mathcal{I} // I of Example 8.1.1.5 are I-augmented partially ordered sets $\langle J, \alpha \rangle$, $J \in \mathcal{I}$, $\alpha : J \to I$, and objects in $K(I,\mathcal{I})$ are I^o -augmented partially ordered sets $\langle J, \alpha \rangle$, $J \in \mathcal{I}$, $\alpha : J \to I^o$. Say that a map f in \mathcal{I} // I or $K(I,\mathcal{I})$ is I-strict if it is cartesian over \mathcal{I} . Then for any left-reflexive I-strict map f in \mathcal{I} // I, the adjoint f_{\dagger} is canonically also a map in \mathcal{I} // I, and similarly for right-reflexive I-strict maps in $K(\mathcal{I}, I)$.

Lemma 8.1.1.12. For any fibration $C \to \mathcal{I} /\!\!/ I$, the composition $C \to \mathcal{I} /\!\!/ I$ is a co-reflexive family over I iff for any I-strict left-reflexive full embedding f in $\mathcal{I} /\!\!/ I$,

with the adjoint map f_+ , the isomorphism $id \cong f^* \circ f_+^*$ defines an adjunction between f_+^* and f^* . Dually, for any fibration $C \to K(I, \mathcal{I})$, the composition $C \to K(I, \mathcal{I}) \to \mathcal{I}$ is a reflexive family iff for any I-strict reflexive full embedding f in $K(I, \mathcal{I})$, with the adjoint map f_+ , the isomorphism $f^* \circ f_+^* \cong id$ defines an adjunction between f^* and f_+^* .

Proof. The arguments for the two claims are dual, so we only do the second one. The composition $\mathcal{C} \to K(I, \mathcal{I}) \to \mathcal{I}$ is a fibration, and for any $J \in \mathcal{I}$, we have the fibration $\mathcal{C}_J \to J^o I \cong \operatorname{Fun}(J, I^o)^o$ whose fiber over some map $\alpha : J \to I^o$ is $\mathcal{C}_{\langle J, \alpha \rangle}$. Now use Corollary 8.1.1.7 and Lemma 2.3.2.8 (ii).

Lemma 8.1.1.13. Assume given a functor $\gamma: I' \to I$ between categories I, I', and a cartesian square

$$egin{array}{ccc} \mathcal{E}' & \longrightarrow & \mathcal{E} \\ \pi' & & & \downarrow \pi \\ K(I',\mathcal{I}) & \xrightarrow{K(\gamma)} & K(I,\mathcal{I}) \end{array}$$

such that \mathcal{E} is a reflexive family over I, and π is cartesian over I. Then \mathcal{E}' with the composition functor $\pi': \mathcal{C}' \to K(I', \mathcal{I}) \to \mathcal{I}$ is a reflexive family over \mathcal{I} , proper and/or separated if so is \mathcal{E} .

Proof. If we have two cartesian squares of categories interpreted as fibrations $\mathcal{C}, \mathcal{C}' \to [1]^2$, as in Example 2.3.3.4, and a functor $\gamma: \mathcal{C} \to \mathcal{C}'$ cartesian over $[1]^2$ that is left-reflexive over $0 \times 0, 0 \times 1, 1 \times 0 \in [1]^2$, then by Lemma 2.3.2.8 (ii), (2.3.3.1) and Lemma 2.3.2.13, it is also left-reflexive over 1×1 . This proves the first claim. For the second, note that ν_f^\perp for the families $K(I', \mathcal{I})$ and $K(I, \mathcal{I})$ is an equivalence, and then ν_f^\perp for \mathcal{E}' is a pullback of ν_f^\perp for \mathcal{E} .

8.1.2. Truncation and unfoldings. If we take $J = \operatorname{pt}$, then for any reflexive family $\mathcal{C} \to \mathcal{I}$, (8.1.1.3) provides a functor $\mathcal{C}_{[1]} \to \operatorname{Fun}([1], \mathcal{C}_{\operatorname{pt}})$. It turns out that one can do the same not only for $[1] \in \mathcal{I}$ for for all $J \in \mathcal{I}$, and in a compatible way.

Proposition 8.1.2.1. Assume given a reflexive family of categories $C \to \mathcal{I}$, and a category C'. Then any functor $\gamma : C_{pt} \to C'$ extends to a functor $\gamma' : C \to K(C', \mathcal{I})$, cartesian over \mathcal{I} , and the extension is unique up to a unique isomorphism.

Proof. Let $\nu^{\bullet}: \mathcal{I}^{\bullet} \to \mathcal{I}$ be as in (8.1.1.7). By Definition 3.1.5.1, \mathcal{I} contains all subsets $J' \subset J$ of any $J \in \mathcal{I}$. Therefore (3.1.1.2) induces a functor $\nu_{<}: \mathcal{I}^{\bullet} \to \mathcal{I}$, and the tautological embeddings $j \setminus J \to J$ together provide a functorial map

 $a: \nu_{<} \to \nu^{\bullet}$, while we also have the tautological map $b: \nu_{<} \to \operatorname{pt}$ to the constant functor with value $\operatorname{pt} \in \mathcal{I}$. The corresponding transition functors then fit into a diagram

$$(8.1.2.1) v^{*}\mathcal{C} \xrightarrow{a^{*}} v_{<}^{*}\mathcal{C} \xleftarrow{b^{*}} \mathcal{C}_{pt}.$$

Moreover, for any $\langle J, j \rangle \in \mathcal{I}_{\bullet}$, the projection $j \setminus J \to \operatorname{pt}$ is left-reflexive, with the adjoint right-reflexive embedding $\operatorname{pt} \to j \setminus J$ onto j, so by Lemma 8.1.1.6, b^* is left-reflexive over $\langle J, j \rangle$, with the left-adjoint functor (8.1.1.2). Then b^* itself is left-reflexive by Lemma 2.3.2.8 (ii), with some left-adjoint $b_!$, and by Definition 2.4.1.1 and Lemma 2.4.1.2, the composition $b_! \circ a^* : \nu^{\bullet *} \mathcal{C} \to \mathcal{C}_{\operatorname{pt}}$ defines a functor

(8.1.2.2)
$$k(\mathcal{C}): \mathcal{C} \to K(\mathcal{C}_{\mathsf{pt}}, \mathcal{I})$$

cartesian over \mathcal{I} and identified with Id over pt. This proves existence: take $\gamma' = K(\gamma) \circ k(\mathcal{C})$. For uniqueness, note that if we apply this construction to $K(\mathcal{C}',\mathcal{I})$, then $b_! \circ a^* : \nu_*^*K(\mathcal{C}',\mathcal{I}) \to \mathcal{C}' \cong K(\mathcal{C}',\mathcal{I})_{pt}$ is the evaluation functor (2.4.1.6), so that $k(K(\mathcal{C}',\mathcal{I})) \cong \operatorname{Id}$. Then for any $\gamma'' : \mathcal{C} \to K(\mathcal{C}',\mathcal{I})$ cartesian over \mathcal{I} , we have $\gamma'' \cong k(K(\mathcal{C}',\mathcal{I})) \circ \gamma'' \cong K(\gamma) \circ k(\mathcal{C}) = \gamma'$.

Definition 8.1.2.2. The *truncation* of a reflexive family of categories C over \mathcal{I} is the reflexive family $K(C_{pt}, \mathcal{I})$, and the *truncation functor* for the family C is the functor (8.1.2.2).

For any co-reflexive family of categories C over I, the functor (8.1.2.2) for ι^*C induces a functor

(8.1.2.3)
$$k^{\dagger}(\mathcal{C}): \mathcal{C} \to \iota^*K(\mathcal{C}_{\mathsf{pt}}, \iota(\mathcal{I})) \cong \mathcal{I} /\!\!/ \mathcal{C}_{\mathsf{pt}},$$

cartesian over \mathcal{I} . Alternatively, $k^{\dagger}(\mathcal{C}) \cong k(\mathcal{C}_{\perp}^{o})_{\perp}^{o}$ is transpose-opposite to the cartesian functor $k(\mathcal{C}_{\perp}^{o})$ for the transpose-opposite reflexive family \mathcal{C}_{\perp}^{o} , where we use (8.1.1.6) to identify the target.

As an application of Proposition 8.1.2.1, one can define a version of the unfolding construction of Subsection 7.3.2 for reflexive families of categories. Namely, for any category \mathcal{E} and a closed class of maps v in \mathcal{E} , let $K_v(\mathcal{E},\mathcal{I}) \subset K(\mathcal{E},\mathcal{I})$ be the full subcategory spanned by functors $J^o \to \mathcal{E}$ that factor through $\mathcal{E}_v \subset \mathcal{E}$. Consider the category BiPoSets of biordered set of Definition 3.2.2.1, let $\mathcal{I}^\diamond = U^{-1}(\mathcal{I}) \subset \text{BiPoSets}$ be the unfolding of \mathcal{I} , and note that since \mathcal{I} is closed under taking subsets, the forgetful functor $U^l: \text{BiPoSets} \to \text{PoSets}$, $J \mapsto J^l$ induces a functor $U^l: \mathcal{I}^\diamond \to \mathcal{I}$. Then we define the *unfolding* \mathcal{C}^\diamond of a reflexive

family of categories C over I by the cartesian square

(8.1.2.4)
$$C^{\diamond} \longrightarrow U^{*}C$$

$$\downarrow \qquad \qquad r^{*} \circ k(C) \downarrow$$

$$U^{l*}K_{\star}(C_{\mathsf{pt}}, \mathcal{I}) \longrightarrow U^{l*}K(C_{\mathsf{pt}}, \mathcal{I}),$$

where $r: U^l \to U$ is the tautological map. Explicitly, for any biordered $J \in \mathcal{I}^{\diamond}$, $\mathcal{C}_J^{\diamond} \subset \mathcal{C}_{U(J)}$ is the full subcategory spanned by objects $c \in \mathcal{C}_{U(J)}$ whose truncation $k(\mathcal{C})(c): J^o \to \mathcal{C}_{\mathsf{pt}}$ inverts all maps $j \leq^l j'$ in $J^l \subset J$.

Lemma 8.1.2.3. The unfolding C^{\diamond} of a non-degenerate reflexive family of categories C over \mathcal{I} is constant along all reflexive maps in \mathcal{I}^{\diamond} .

Proof. By the biordered version of Lemma 3.1.3.11, it suffices to prove that \mathcal{C}^{\diamond} is constant along the projection $R([1]) \times J \to J$ for any $J \in \mathcal{I}^{\diamond}$. Since \mathcal{C} is reflexive, $e^*: \mathcal{C}_{U(J)} \to \mathcal{C}_{U(J) \times [1]}$ is fully faithful, and $c \in \mathcal{C}_{U(J) \times [1]}$ lies in its essential image iff the adjunction map $e^*t^*c \to c$ is an isomorphism. But since \mathcal{C} is non-degenerate, the truncation functor (8.1.2.2) is conservative, so the latter can be checked after restricting to $\{j\} \times [1] \in U(J) \times [1]$ for all $j \in J$. We are then done by the definition of \mathcal{C}^{\diamond} .

Lemma 8.1.2.4. Assume given a cocartesian square $J_{01} \cong J_0 \sqcup_J J_1$ in \mathcal{I} , and assume that it is perfect and universal with respect to a map $J_{01} \to J'$, $J' \in \mathcal{I}$ in the sense of Definition 3.1.7.1. Moreover, assume given a reflexive family \mathcal{C} over \mathcal{I} that is cartesian resp. semicartesian over the square

(8.1.2.5)
$$J \times_{J'} \widetilde{J} \longrightarrow J_0 \times_{J'} \widetilde{J}$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_1 \times_{J'} \widetilde{J} \longrightarrow J_{01} \times_{J'} \widetilde{J}$$

for some map $f: \widetilde{J} \to J'$ in \mathcal{I} . Then for any biorder \widetilde{J}^{\diamond} on \widetilde{J} such that f is a biordered map $\widetilde{J}^{\diamond} \to L(J')$, the unfolding C^{\diamond} is cartesian resp. semicartesian over the square (8.1.2.5) with the biorder induced from \widetilde{J} , as in Example 3.2.2.4. Moreover, the same holds for any perfect square $J_{01} = J' \cong J_0 \sqcup_J J_1$ and bifibration $\widetilde{J}^{\diamond} \to L(J')$ in \mathcal{I}^{\diamond} .

Proof. By Lemma 2.3.3.7 and (8.1.2.4), it suffices to check that both families $U^{l*}K_{\star}(\mathcal{C}_{pt},\mathcal{I})$ and $U^{l*}K(\mathcal{C}_{pt},\mathcal{I})$ are cartesian along the square (8.1.2.5). But Lemma 3.1.7.2, (8.1.2.5) with \widetilde{J} replaced by \widetilde{J}^l is cocartesian in Cat, so we are done by (8.1.1.7).

Lemma 8.1.2.5. Assume given a semicartesian square

(8.1.2.6)
$$\begin{array}{ccc}
\mathcal{C}_{01} & \xrightarrow{\gamma_0} & \mathcal{C}_0 \\
\gamma_1 \downarrow & \downarrow \\
\mathcal{C}_1 & \longrightarrow & \mathcal{C}
\end{array}$$

of reflexive families over I and functors cartesian over I. Then the induced square of unfoldings C^{\diamond} , C_0^{\diamond} , C_1^{\diamond} , C_{01}^{\diamond} is also semicartesian.

Proof. Since for any reflexive family \mathcal{C} , the top arrow in (8.1.2.4) is a fully faithful embedding, the functor $\mathcal{C}_{01}^{\diamond} \to \mathcal{C}_{0}^{\diamond} \times_{\mathcal{C}^{\diamond}} \mathcal{C}_{1}^{\diamond}$ is trivially full and conservative, and we just need to show that it is essentially surjective. In other words, we need to check that for any $J^{\diamond} \in \mathcal{I}^{\diamond}$, an object $c \in \mathcal{C}_{01U(J)}$ with $\gamma_{l}(c) \in \mathcal{C}_{lJ}^{\diamond} \subset \mathcal{C}_{lU(J)}$, l=0,1 lies in $\mathcal{C}_{01J}^{\diamond}$. But by definition, this can be checked after restricting via each map $R([1]) \to J^{\diamond}$, so we may assume right away that $J^{\diamond} = R([1])$. Since all unfoldings are constant along the map $R([1]) \to \mathsf{pt}$, the claim is then obvious. \square

Explicitly, for any reflexive family $C \to \mathcal{I}$, the truncation functor (8.1.2.2) provides a compatible system of functors

$$(8.1.2.7) C_J \rightarrow J^o C_{\mathsf{pt}}$$

for any $J \in \mathcal{I}$, and we also have the functors (8.1.1.3) and the functors v_f of (8.1.1.4). One can actually define an even more general collection of functors that includes all of these. It is convenient to start with a co-reflexive family \mathcal{C} over \mathcal{I} . For any such family $\mathcal{C} \to \mathcal{I}$, the induced functor $\mathcal{I} /\!\!/ \mathcal{C} \to \mathcal{I} /\!\!/ \mathcal{I}$ is a fibration; its fiber over an object in $\mathcal{I} /\!\!/ \mathcal{I}$ represented by an \mathcal{I} -augmented set $\langle J, \alpha_I \rangle = \langle J, \alpha_I \rangle$ is given by

$$(8.1.2.8) (\mathcal{I} // \mathcal{C})_{\langle I,\alpha \rangle} \cong \operatorname{Sec}(J,\alpha^* \mathcal{C}).$$

Moreover, consider the tautological cofibration $\mathcal{I}_{\bullet} \to \mathcal{I}$ of (8.1.1.7), and let $\mathcal{I} /\!\!/^b \mathcal{I} \subset \mathcal{I} /\!\!/ \mathcal{I}$ be the full subcategory spanned by $\langle J, \alpha \rangle$ such that $\alpha^* \mathcal{I}_{\bullet} \in \mathcal{I}$. Then as in Remark 3.2.1.1, by the Grothendieck construction, sending $\langle J, \alpha \rangle$ to $J_{\bullet} = \alpha^* \mathcal{I}_{\bullet} \to J$ identifies $\mathcal{I} /\!\!/^b \mathcal{I}$ with the subcategory $\operatorname{ar}_c(\mathcal{I}) \subset \operatorname{ar}(\mathcal{I})$ of cofibrations $f: J^{\bullet} \to J$, with such maps from $J_0^{\bullet} \to J_0$ to $J_1^{\bullet} \to J$ that the induced map $J_0^{\bullet} \to J_1^{\bullet} \times_{J_1} J_0$ is a cocartesian functor over J_0 . Under this identification, the fibration $\mathcal{I} /\!\!/^b \mathcal{I} \to \mathcal{I}$ of (2.1.4.10) becomes the projection $\tau : \operatorname{ar}_c(\mathcal{I}) \to \mathcal{I}$ that happens to be a fibration by Example 2.3.3.11. However, we also have the projection $\sigma : \operatorname{ar}_c(\mathcal{I}) \to \mathcal{I}$.

Lemma 8.1.2.6. For any co-reflexive family $C \to \mathcal{I}$, σ^*C equipped with the fibration

$$(8.1.2.9) \sigma^* \mathcal{C} \longrightarrow \operatorname{ar}_c(\mathcal{I}) \stackrel{\tau}{\longrightarrow} \mathcal{I}$$

is a co-reflexive family over \mathcal{I} , proper if so is \mathcal{C} .

Proof. For any cofibration $J_{\bullet} \to J$ in \mathcal{I} , and any left-reflexive full embedding $f: J' \to J$, with an adjoint f^{\dagger} , the full embedding $f_{\bullet}: J'_{\bullet} = f^*J_{\bullet} \to J_{\bullet}$ is left-reflexive by Corollary 2.3.1.9, with some adjoint f_{\bullet}^{\dagger} . Then $\tau: \operatorname{ar}_c(I) \subset \mathcal{I} /\!\!/ \mathcal{I}$ is a co-reflexive family by Example 8.1.1.4, and $\sigma^*\mathcal{C}$ is co-reflexive by the same argument as in Lemma 8.1.1.12. To see that it is proper as soon as so is \mathcal{C} , note that for any right-closed embedding $f: J' \to J$, $f_{\bullet}: J'_{\bullet} \to J_{\bullet}$ is right-closed, and ν_f^{\perp} for $\sigma^*\mathcal{C}$ is then given by all the ν_f^{\perp} for the family \mathcal{C} .

Now, the truncation functor (8.1.2.3) for the family $\sigma^*\mathcal{C}$ of Lemma 8.1.2.6 is a functor $\sigma^*\mathcal{C} \to \mathcal{I} /\!\!/ \mathcal{C}$ over $\mathcal{I} /\!\!/ \mathcal{I}$, and if let $\mathcal{I} /\!\!/ ^b \mathcal{C} \subset \mathcal{I} /\!\!/ \mathcal{C}$ be the restriction of the fibration $\mathcal{I} /\!\!/ \mathcal{C} \to \mathcal{I} /\!\!/ \mathcal{I}$ to $\mathcal{I} /\!\!/ ^b \mathcal{I} \subset \mathcal{I} /\!\!/ \mathcal{I}$, then we obtain a functor

(8.1.2.10)
$$\sigma^* \mathcal{C} \to \mathcal{I} /\!\!/^{\mathsf{b}} \mathcal{C}$$

cartesian over $\operatorname{ar}_{\mathcal{C}}(\mathcal{I}) \cong \mathcal{I} /\!\!/^b \mathcal{I}$. If $\mathcal{C} \to \mathcal{I}$ is a reflexive family, then we can construct the cartesian functor (8.1.2.10) for the co-reflexive family $\mathcal{C}^o_{\perp} \to \mathcal{I}$, and take the transpose-opposite functor over $\mathcal{I} /\!\!/^b \mathcal{I}$ to obtain a functor

(8.1.2.11)
$$\sigma^* \mathcal{C} \to (\mathcal{I} /\!\!/^b \mathcal{C}^o_\perp)^o_\perp.$$

Explicitly, over any $\langle J, \alpha \rangle \in \mathcal{I} // \mathcal{I}$ with $J^{\bullet} = \alpha^* \mathcal{I}^{\bullet}$, (8.1.2.11) is a functor

$$(8.1.2.12) \mathcal{C}_{I^{\bullet}} \to \operatorname{Sec}(I^{o}, \alpha^{o*} \mathcal{C}_{\perp}),$$

where $\mathcal{C}_{\perp} \to \mathcal{I}^{o}$ is the transpose cofibration, and we use the identification (8.1.2.8). If $J = \operatorname{pt}$, then (8.1.2.12) is (8.1.2.7) for J^{\bullet} , and if J = [1] and $\alpha : [1] \to \mathcal{I}$ is the constant functor with some value $J' \in \mathcal{I}$, then (8.1.2.12) is (8.1.1.3) for this J'. More generally, if $J' = \mathsf{C}(f)$ for some map f in \mathcal{I} , then (8.1.2.12) is ν_f of (8.1.1.4).

For any $\langle J,\alpha\rangle$, the target of the functor (8.1.2.12) contains the full subcategory spanned by cocartesian sections. To describe its preimage, one can use the unfolding $\mathcal{C}^{\diamond} \to \mathcal{I}^{\diamond}$ of the reflexive family \mathcal{C} . Namely, promote $\sigma: \operatorname{ar}_c(\mathcal{I}) \to \mathcal{I}$ to a functor $\sigma_{\diamond}: \operatorname{ar}_c(\mathcal{I}) \to \mathcal{I}^{\diamond}$ by equipping J^{\bullet} with the biorder of Example 3.2.2.7, and denote the corresponding biordered set by J^{\diamond} . Then we have the fully faithful embedding $\sigma_{\diamond}^*: \mathcal{C}^{\diamond} \to \sigma^*\mathcal{C}$, with fibers $\mathcal{C}_{J^{\diamond}}^{\diamond} \to \mathcal{C}_{J^{\bullet}}$, and (8.1.2.12) fits into

a cartesian square

$$(8.1.2.13) \qquad \begin{array}{ccc} \mathcal{C}_{J^{\diamond}}^{\diamond} & \longrightarrow & \mathcal{C}_{J^{\bullet}} \\ & \downarrow & & \downarrow \\ \operatorname{Sec}_{\natural}(J^{o}, \alpha^{o*} \mathcal{C}_{\perp}) & \longrightarrow & \operatorname{Sec}(J^{o}, \alpha^{o*} \mathcal{C}_{\perp}) \end{array}$$

with fully faithful horizontal functors.

By definition, the co-reflexive family $\sigma^*\mathcal{C}$ of Lemma 8.1.2.6 comes equipped with a fibration $\sigma^*\mathcal{C} \to \operatorname{ar}_c(\mathcal{I})$, and restricting it to sections $\mathcal{I} \to \operatorname{ar}_c(\mathcal{I})$ of the fibration $\operatorname{ar}_c(\mathcal{I}) \to \mathcal{I}$ produces other co-reflexive families over \mathcal{I} . Here is one useful application of this construction.

Corollary 8.1.2.7. For any co-reflexive family $\mathcal{C} \to I$ and $J \in \mathcal{I}$, there exists a coreflexive family $\mathcal{C}^{hJ} \to \mathcal{I}$ and a functor $\operatorname{ev}: \mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C}^{hJ} \to \mathcal{C}$, cartesian over \mathcal{I} , such that for any co-reflexive family $\mathcal{C}' \to \mathcal{I}$, any functor $\gamma: \mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C}' \to \mathcal{C}$ cartesian over \mathcal{I} factors as

$$(8.1.2.14) \mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C}' \xrightarrow{\mathsf{id} \times \gamma'} \mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C}^{hJ} \xrightarrow{\mathsf{ev}} \mathcal{C}$$

for some $\gamma': \mathcal{C}' \to \mathcal{C}^{hJ}$ cartesian over \mathcal{I} , and γ' is unique up to a unique isomorphism.

Proof. To construct the evaluation functor ev, we first consider the whole family $\sigma^*C \to \operatorname{ar}_c(\mathcal{I})$. We have a functor $\operatorname{ar}_c(\mathcal{I}) \to \operatorname{PoSets}$ sending a cofibration $f: J^{\bullet} \to J$ to the set of sections $\operatorname{Sec}(J,J^{\bullet}) \in \operatorname{PoSets}$; let $\nu_{\ell}: \operatorname{ar}_c(\mathcal{I})^{\bullet} \to \operatorname{ar}_c(\mathcal{I})$ be the corresponding cofibration. Moreover, for any section $s: J \to J^{\bullet}$ of a cofibration $f: J^{\bullet} \to J$, let $J(s) \subset J^{\bullet}$ be the subset of all elements $j \in J^{\bullet}$ such that $j \leq s(f(j))$ (alternatively, $J(s) = J/\frac{J}{s}J^{\bullet}$ is the relative left comma-set of the map s). Then sending s to J(s) defines a functor $\nu_{\ell} : \operatorname{ar}_c(\mathcal{I})^{\bullet}$ to PoSets, and as in (8.1.2.1), we have a map $a: \nu_{\ell} \to \sigma \circ \nu_{\ell}$, and another map $b: \nu_{\ell} \to \tau \circ \nu_{\ell}$ induced by the embeddings $J(s) \subset J^{\bullet}$ and the projections $J(s) \to J$. These projections are right-reflexive, so again as in (8.1.2.1), we have a diagram

$$(8.1.2.15) v_1^* \sigma^* \mathcal{C} \xrightarrow{a^*} v_1^* \mathcal{C} \xleftarrow{b^*} \tau^* \mathcal{C},$$

and b^* in (8.1.2.15) has a left-adjoint functor $b_!$. Now consider the functor $\varepsilon_J: \mathcal{I} \to \operatorname{ar}_c(\mathcal{I})$ sending $J' \in \mathcal{I}$ to the projection $J \times J' \to J'$, and let $\mathcal{C}^{hJ} = \varepsilon_J^* \sigma^* \mathcal{C}$. Then since $\varepsilon_J(J' \times [1]) \cong \varepsilon_J(J') \times [1]$ for any $J' \in \mathcal{I}$, the family \mathcal{C}^{hJ} is co-reflexive by virtue of Lemma 8.1.2.6. Moreover, $\varepsilon_J^* \nu_l^* \sigma^* \mathcal{C} \cong \mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C}^{hJ}$ and $\varepsilon_J^* \tau^* \mathcal{C} \cong \mathcal{C}$, so that $\operatorname{ev} = b_! \circ a^*$ induces the required evaluation functor $\operatorname{ev} : \mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C}^{hJ} \to \mathcal{C}$. To check the universal property, note that the map $\sigma \circ \varepsilon_J \to \tau \circ \varepsilon_J \cong \operatorname{id}$ induces

a functor $\mathcal{C} \to \mathcal{C}^{hJ}$ cartesian over \mathcal{I} , and we have $\mathcal{I} /\!\!/ J)^{hJ} \cong \mathcal{I} /\!\!/ \operatorname{Fun}(J,J)$, so the embedding $\varepsilon(\operatorname{id}): \operatorname{pt} \to \operatorname{Fun}(J,J)$ induces a functor $\mathcal{I} \to (\mathcal{I} /\!\!/ J)^{hJ}$, again cartesian over \mathcal{I} . The product of these two functors provides a co-evaluation functor

$$\operatorname{ev}^{\dagger}: \mathcal{C} \to (I /\!\!/ J \times_{\mathcal{I}} \mathcal{C})^{hJ},$$

again cartesian over \mathcal{I} , and as in Subsection 2.1.4, both compositions

$$\mathcal{I} /\!\!/ J \times_{\mathcal{I}} \mathcal{C} \xrightarrow{\operatorname{id} \times \operatorname{ev}^{\dagger}} \mathcal{I} /\!\!/ J \times_{\mathcal{I}} (I /\!\!/ J \times_{\mathcal{I}} \mathcal{C})^{hJ} \xrightarrow{\operatorname{ev}} I /\!\!/ J \times_{\mathcal{I}} \mathcal{C},$$

$$\mathcal{C}^{hJ} \xrightarrow{\operatorname{ev}^{\dagger}} (I /\!\!/ J \times_{\mathcal{I}} \mathcal{C}^{hJ})^{hJ} \xrightarrow{\operatorname{ev}^{hJ}} \mathcal{C}^{hJ}$$

are canonically isomorphic to the corresponding identity functors.

In particular, in the situation of Corollary 8.1.2.7, we have an identification $\operatorname{Fun}_{\mathcal{I}}^{\natural}(\mathcal{I} /\!\!/ J, \mathcal{C}) \cong \mathcal{C}_{\operatorname{pt}}^{hJ} \cong \mathcal{C}_{J}$. Explicitly, we have the tautological object $j \in (\mathcal{I} /\!\!/ J)_{J}$ represented by $\langle J, \operatorname{id} \rangle$, and evaluation at j provides a functor

(8.1.2.16)
$$\operatorname{Fun}_{\mathcal{I}}^{\natural}(\mathcal{I} /\!\!/ J, \mathcal{C}) \to \mathcal{C}_{J}.$$

By Corollary 8.1.2.7, this functor is an equivalence (and in particular, the category $\operatorname{Fun}_{\mathcal{T}}^{\natural}(\mathcal{I}/\!\!/J,\mathcal{C})$ is well-defined even if \mathcal{I} is not small)

8.1.3. Augmentations. Let us now define a version of reflexive families $C \to \mathcal{I}$ augmented by a partially ordered set I, in the following sense.

Definition 8.1.3.1. For any ample $\mathcal{I} \subset \text{PoSets}$ and partially ordered set I, an I-augmented reflexive family of categories \mathcal{C} over \mathcal{I} is a reflexive family of categories \mathcal{C} over \mathcal{I} equipped with functor $\pi: \mathcal{C} \to K(I, \mathcal{I})$ over \mathcal{I} that is a fibration.

Example 8.1.3.2. For any fibration $\pi: \mathcal{E} \to I$, $K(\pi): K(\mathcal{E}, \mathcal{I}) \to K(I, \mathcal{I})$ is a fibration, so that $K(\mathcal{E}, \mathcal{I})$ of Example 8.1.1.5 is an *I*-augmented reflexive family in the sense of Definition 8.1.3.1, with fibers

(8.1.3.1)
$$K(\mathcal{E}, \mathcal{I})_{\langle I, \alpha \rangle} \cong \operatorname{Sec}(J^{o}, \alpha^{o*} \mathcal{E})$$

for any $\langle J, \alpha \rangle \in K(I, \mathcal{I})$.

In particular, for any *I*-augmented reflexive family C, we have a fibration $\pi_{pt}: C_{pt} \to I$, and then (8.1.2.2) is a cartesian functor over $K(I, \mathcal{I})$. Let \flat be the class of maps in C_{pt} cartesian over I, and define the *relative unfolding* $(C|I)^{\diamond}$ by

upgrading (8.1.2.4) to a cartesian square

(8.1.3.2)
$$\begin{array}{ccc} (\mathcal{C}|I)_{\Diamond} & \longrightarrow & U^{*}\mathcal{C} \\ \downarrow & & & \\ r^{*}\circ k(\mathcal{C}) \downarrow \\ U^{l*}K_{\flat}(\mathcal{C}_{\mathsf{pt}},\mathcal{I}) & \longrightarrow & U^{l*}K(\mathcal{C}_{\mathsf{pt}},\mathcal{I}), \end{array}$$

where K_{\flat} has the same meaning as in (8.1.2.4). Then (8.1.3.2) is a cartesian square of fibrations and cartesian functors over $K^{\diamond}(I,\mathcal{I}) = U^*K(I,\mathcal{I})$. The embedding $L: \mathcal{I} \to \mathcal{I}^{\diamond}$ of (3.2.2.2) tautologically extends to an embedding

$$(8.1.3.3) L: K(I,\mathcal{I}) \to K^{\diamond}(I,\mathcal{I}),$$

and we trivally have $L^*(\mathcal{C}|I)^{\diamond} \cong \mathcal{C}$. Explicitly, just as for $K(I,\mathcal{I})$, objects in $K^{\diamond}(I,\mathcal{I})$ are pairs $\langle J,\alpha \rangle$ of a biordered set $J \in \mathcal{I}^{\diamond}$ and an augmentation map $\alpha: J \to I^o$, while morphisms from $\langle J,\alpha \rangle$ to $\langle J',\alpha' \rangle$ are biordered maps $f: J \to J'$ such that that $\alpha' \circ f \leq \alpha$. Say that such a map f is I-strict if $\alpha' \circ f = \alpha$; then I-strict maps form a closed class, and the dense embedding b of (3.2.1.5) induces an embedding

$$(8.1.3.4) b: \mathcal{I}^{\diamond}/R(I^{o}) \to K^{\diamond}(I,\mathcal{I})$$

identifying $I^{\diamond}/R(I^{o})$ with the corresponding dense subcategory in $K^{\diamond}(I,\mathcal{I})$. As in Lemma 8.1.1.12, if an I-strict map f is right-reflexive in the sense of Definition 3.2.2.8, then the adjoint map $f_{\dagger}: J' \to J$ is also a morphism in $K^{\diamond}(I,\mathcal{I})$ (although in general not I-strict). We then have the following augmented version of Lemma 8.1.2.3.

Lemma 8.1.3.3. For any non-degenerate I-augmented reflexive family C over \mathcal{I} and pair of maps f, f_{\dagger} in $K^{\diamond}(I,\mathcal{I})$ such that f is I-strict, $f_{\dagger} \circ f = \operatorname{id}$ and $f \circ f_{\dagger} \leq \operatorname{id}$, the isomorphism $f_{\dagger}^* \circ f_* \cong \operatorname{id}$ defines an adjunction between the corresponding transition functors f_* and f_{\dagger}^* of the relative unfolding $(C|I)^{\diamond}$ of (8.1.3.2). Moreover, if $f \circ f_{\dagger} \leq^l$ id, so that f is right-reflexive in the sense of Definition 3.2.2.8, then f^* and f_{\dagger}^* are adjoint equivalences.

Proof. The first claim immediately follows from Lemma 8.1.1.12 and (8.1.3.2). For the second, since $f_{\dagger} \circ f = \operatorname{id}$, it suffices to check that for any object c in the full subcategory $(C|I)^{\diamond}_{\langle J,\alpha\rangle} \subset C_{\langle U(J),\alpha\rangle}$, the adjunction map $f_{\dagger}^*(f^*(c)) \to c$ provided by Lemma 8.1.1.6 is an isomorphism. Since C is non-degenerate, this can be checked after applying the truncation functor k(C). Thus we may assume right away that $C = K(\mathcal{E}, \mathcal{I})$ for some fibration $\pi : \mathcal{E} \to I$, as in Example 8.1.3.2. But

then in terms of (8.1.3.1), objects in $(C|I)^{\diamond}$ correspond to sections cartesian over $I^{lo} \subset I^o$, so we are done by Lemma 2.4.3.2.

Now assume that $I \in \iota(\mathcal{I})$. Then since \mathcal{I} , hence also $\iota(\mathcal{I})$ is ample, $I \setminus_f I' \in \iota(\mathcal{I})$ for any $I' \in \iota(\mathcal{I})$ equipped with a map $f : I' \to I$, so that the extended Yoneda embedding of (2.1.4.6) induces a fully faithful embedding $Y : K(I,\mathcal{I}) = \mathcal{I} /\!/^{\iota} I \to I^{o}\mathcal{I}$. Moreover, if we interpret $I^{o}\mathcal{I}$ as the fiber $(\mathcal{I} /\!/ \mathcal{I})_{I^{o}}$ of the fibration $\mathcal{I} /\!/ \mathcal{I} \to \mathcal{I}$ over I^{o} , then Y takes values in the full subcategory $(\mathcal{I} /\!/ ^{\flat} \mathcal{I})_{I^{o}} \subset (\mathcal{I} /\!/ \mathcal{I})_{I^{o}}$, so that altogether, we obtain a fully faithful embedding

$$(8.1.3.5) Y: K(I,\mathcal{I}) \to (\mathcal{I} //^{\flat} \mathcal{I})_{I^o} \cong \operatorname{ar}_c(\mathcal{I})_{I^o} = \mathcal{I} //_{\sharp} I^o.$$

Equivalently, (8.1.3.5) is the embedding Y of (3.2.1.5) composed with the equivalence $\iota:\iota(\mathcal{I}) /\!/_{\flat} I \cong \mathcal{I} /\!/_{\sharp} I^{o}$; explicitly, it sends $\langle J,\alpha \rangle \in K(I,\mathcal{I})$ to $\tau:J/_{\alpha}I^{o} \to I^{o}$. The projection $\sigma_{\diamond}: \mathsf{ar}_{c}(\mathcal{I}) \to \mathcal{I}^{\diamond}$ then restricts to a functor

(8.1.3.6)
$$\sigma_{\diamond} : \operatorname{ar}_{c}(\mathcal{I})_{I^{o}} = \mathcal{I} /\!/_{\sharp} I^{o} \to \mathcal{I}^{\diamond} / R(I^{o}),$$

and this is exactly the fully faithful embedding (3.2.2.4) of Example 3.2.2.7. Moreover, $\eta: J \to J/_{\alpha}I^{0}$ defines a functorial map $\eta: L \to b \circ \sigma_{\diamond} \circ Y$, where L resp. b are as in (8.1.3.3) resp. (8.1.3.4), and this provides a functor

$$(8.1.3.7) \eta^* : \mathsf{Y}^* \sigma_{\diamond}^* b^* (\mathcal{C}|I)^{\diamond} \to L^* (\mathcal{C}|I)^{\diamond} \cong \mathcal{C}$$

over $K(I,\mathcal{I})$. The map η is pointwise an I-strict right-reflexive full embedding, so by Lemma 8.1.3.3, for a non-degenerate \mathcal{C} , (8.1.3.7) is an equivalence.

Proposition 8.1.3.4. For any $I \in \iota(\mathcal{I})$ and non-degenerate I-augmented reflexive family C over \mathcal{I} , the functor

$$(8.1.3.8) \sigma_{\diamond}^* b^* (\mathcal{C}|I)^{\diamond} \to \mathsf{Y}_* \mathcal{C}$$

adjoint to the equivalence (8.1.3.7) is itself an equivalence.

Proof. Note that the functors L, Y and σ_{\diamond} fit into a commutative diagram

(8.1.3.9)
$$K(I,\mathcal{I}) \xrightarrow{Y} \mathcal{I} /\!/_{\sharp} I^{o}$$

$$\downarrow \downarrow \qquad \qquad \downarrow \sigma_{\circ}$$

$$K^{\diamond}(I,\mathcal{I}) \xrightarrow{Y^{\diamond}} \mathcal{I}^{\diamond} / R(I^{o}),$$

where Y $^{\diamond}$ sends $\langle J, \alpha \rangle$ to $J/_{\alpha}^{\diamond}R(I^{o})$ of Example 3.2.4.6. Moreover, by adjunction between b and $a \circ Y$ of (3.2.1.5), Y $^{\diamond}$ is actually left-adjoint to the embedding

(8.1.3.4), so that $Y_*^{\diamond} \cong b^*$, and (8.1.3.8) is the base change functor induced by the commutative square (8.1.3.9). We need to check that this is an equivalence. Were we to replace $(\mathcal{C}|I)^{\diamond}$ with $U^*\mathcal{C} \cong L_*\mathcal{C}$, the statement would hold tautologically — we have $\sigma_{\diamond}^* \circ Y_{\diamond}^{\diamond} \circ L_* \cong \sigma_{\diamond}^* \circ \sigma_{\diamond *} \circ Y_*$, and $\sigma_{\diamond}^* \circ \sigma_{\diamond *} \cong \operatorname{id}$, $L^* \circ L_* \cong \operatorname{id}$ since σ_{\diamond} and L are fully faithful. As it happens, we have the fully faithful embedding $(\mathcal{C}|I)^{\diamond} \to U^*\mathcal{C}$ of (8.1.3.2), and we need to check that it becomes an equivalence once we apply $\sigma_{\diamond}^* \circ Y_*^{\diamond}$. It stays fully faithful, so we only need to check that it becomes essentially surjective. By (2.4.3.4), this amounts to checking that for any cofibration $\pi: J \to I^o$ representing an object $\langle J, \pi \rangle \in \mathcal{I} /\!/\!/\!/\!/_\sharp I^o$, any global section

$$(8.1.3.10) c \in \operatorname{Sec}^{\natural}(K^{\diamond}(I,\mathcal{I})/_{\mathsf{Y}^{\diamond}}\sigma_{\diamond}(\langle J,\pi\rangle), U^{*}\mathcal{C})$$

actually lies in $(C|I)^{\diamond} \subset U^*C$ after evaluation at each object in the left commafiber $K^{\diamond}(I,\mathcal{I})/_{Y^{\diamond}}\sigma_{\diamond}(\langle J,\pi\rangle)$. Explicitly, such an object is given by a triple $\langle J',\alpha',f\rangle$ of a biordered set $J'\in\mathcal{I}^{\diamond}$, a map $\alpha':J'\to I^{o}$, and a map $f:J'\to J$ such that $\pi\circ f=\alpha'$ and the order relation $f(j)\leq f(j')$ is cocartesian over I^{o} for any $j\leq^{l}j'$ in J'. Since $\alpha'=\pi\circ f$, we might as well forget it and only remember J' and f. The conditions on the evaluation $c_{J',f}\in\mathcal{C}_{U(J')}$ of the section (8.1.3.10) that we need to check are separate for each order relation $j\leq^{l}j'$ in J', and to check each of them, we may restrict to the image of the corresponding map $R([1])\to J'$. In other words, we may assume right away that J'=R([1]). But then we can consider the right-reflexive embedding $s:\mathsf{pt}\to R([1])$ onto $0\in[1]$, $\langle\mathsf{pt},f\circ s\rangle$ is another object in the comma-fiber, and the adjoint map $s_{+}=e:R([1])\to\mathsf{pt}$ defines a map in the comma-fiber. Since the section c in (8.1.3.10) is cartesian along all such maps, $c_{R([1]),f}$ must lie in the essential image of the embedding e^* , and then we are done by Lemma 8.1.3.3.

While Proposition 8.1.3.4 is quite technical, it has a very useful corollary. Namely, any map $g: I' \to I$ between partially ordered set induces a tautological functor $K(g): K(I',\mathcal{I}) \to K(I,\mathcal{I})$, and by Lemma 8.1.1.13, for any I-augmented reflexive family C, $C' = K(g)^*C$ is an I'-augmented reflexive family, proper and/or non-degenerate if so is C. As it happens, for maps in $\iota(\mathcal{I})$, we can also go the other way.

Corollary 8.1.3.5. For any map $g: I' \to I$ in $\iota(\mathcal{I})$, and any I'-augmented reflexive family \mathcal{C} , $\mathcal{C}' = K(f)_*\mathcal{C}$ is an I-augmented reflexive family, proper and/or non-degenerate if so were \mathcal{C} . Moreover, if g is a cofibration, then for any map $f: I_0 \to I$, with the induced cofibration $g_0: I'_0 = g^*I' \to I_0$ and map $f': I'_0 \to I$, the base change functor $a: K(f)^*K(g)_*\mathcal{C} \to K(g_0)_*K(f')^*\mathcal{C}$ is an equivalence.

Proof. While K(g) itself does not admit a right-adjoint, it acquires a "relative adjoint" in the sense of Definition 2.2.2.6 once we compose it with the full embedding (8.1.3.5). Namely, let $K(g)_{\dagger}: \mathcal{I} /\!/_{\sharp} I^{o} \to \mathcal{I} /\!/_{\sharp} I'^{o}$ be a functor sending some $\pi: J \to I^{o}$ to $g^{o*}J \to I'^{o}$, and note that for any $\langle J', \alpha' \rangle \in K(I', \mathcal{I})$ and $\langle J, \pi \rangle \in \mathcal{I} /\!/_{\sharp} I^{o}$, we have a functorial identification

$$\operatorname{Hom}(\mathsf{Y} \circ K(g)(\langle J', \alpha' \rangle), \langle J, \pi \rangle) \cong \operatorname{Hom}(\mathsf{Y}(\langle J', \alpha' \rangle), K(g)_{\dagger}(\langle J, \pi \rangle)).$$

Being functorial, this identification provides a cartesian square

(8.1.3.11)
$$K(I', \mathcal{I})/_{Y \circ K(g)} (\mathcal{I} /\!/_{\sharp} I^{o}) \xrightarrow{\tau} \mathcal{I} /\!/_{\sharp} I^{o}$$

$$\downarrow^{K(g)_{\dagger}} \qquad \qquad \downarrow^{K(g)_{\dagger}}$$

$$K(I', \mathcal{I})/_{Y} (\mathcal{I} /\!/_{\sharp} I'^{o}) \xrightarrow{\tau} \mathcal{I} /\!/_{\sharp} I'^{o}.$$

Since τ is a cofibration, (8.1.3.11) provides a base change equivalence, and then if we compute $Y_*\mathcal{C}'$ and $Y_*\mathcal{C} = (Y \circ K(g))_*\mathcal{C}'$ by the left-comma-categories version of (2.2.4.6), and note that $\sigma \circ (\operatorname{id}/K(g)_{\dagger}) \cong \sigma$, we obtain an equivalence

$$\mathsf{Y}_*\mathcal{C} \cong \tau_*\sigma^*\mathcal{C}' \cong \tau_*(\mathsf{id} \times K(g)_+)^*\sigma^*\mathcal{C}' \cong K(g)_+^*\tau_*\sigma^*\mathcal{C}' \cong K(g)_+^*\mathsf{Y}_*\mathcal{C}'$$

that restricts to an equivalence

(8.1.3.12)
$$\mathcal{C} \cong \mathsf{Y}^*\mathsf{Y}_*\mathcal{C} \cong \mathsf{Y}^*K(g)_+^*\mathsf{Y}_*\mathcal{C}'$$

Then for any *I*-strict right-reflexive full embedding f in $K(I,\mathcal{I})$, with the adjoint f_+ , $f \circ f_+ \leq$ id implies that $K(g)_+(Y(f)) \circ K(g)_+(Y(f_+)) \leq$ id, so \mathcal{C} is a reflexive family by Lemma 8.1.1.12, Proposition 8.1.3.4 and Lemma 8.1.3.3. It is obviously non-degenerate if so is \mathcal{C}' , and since both Y and $K(g)_+$ commute with taking dual cylinders, and $K(g)_+ \circ Y$ sends right-closed full embeddings to right-closed full embeddings, \mathcal{C} is proper as soon as so is \mathcal{C}' .

Finally, for the last claim, since a is cartesian over $K(I,\mathcal{I})$, it suffices to check that it becomes an equivalence after restricting with respect to the dense embedding $\lambda: \overline{K}(I,\mathcal{I}) = \iota(\mathcal{I})/I \to K(I,\mathcal{I})$. But then the induced functor $\overline{K}(g): \overline{K}(I',\mathcal{I}) \to \overline{K}(I,\mathcal{I})$ has a genuine right-adjoint $\overline{K}(g)_+$ sending $\langle J, \alpha \rangle \in \overline{K}(I,\mathcal{I})$ to $I'^o \times_{I^o} J$. Moreover, the map η of (8.1.3.7) provides a functorial map $L \circ \overline{K}(g)_+ \to \sigma_\diamond \circ K(g)_+ \circ Y \circ \lambda$, and if g is a cofibration, this map is right-reflexive, so that (8.1.3.12) provides an equivalence

$$(8.1.3.13) \lambda^* K(g)_* \mathcal{C}' \cong \overline{K}(g)_+^* \lambda^* \mathcal{C}',$$

and similarly for g_0 . The base change map $\overline{K}(f') \circ \overline{K}(g_0)_{\dagger} \to \overline{K}(g)_{\dagger} \circ \overline{K}(f)$ is an isomorphism, so this proves the claim.

8.1.4. Complete families. One way to insure that a family of categories $C \to \mathcal{I}$ is reflexive in the sense of Definition 8.1.1.2 is to require that the transition functor f^* admits a well-behaved right-adjoint f_* for any map f in \mathcal{I} . The formal definition is as follows.

Definition 8.1.4.1. A reflexive family of categories $\mathcal{C} \to \mathcal{I}$ over an ample $\mathcal{I} \subset \text{PoSets}$ is *complete* if for any map $f: J' \to J$ in \mathcal{I} , the transition functor $f^*: \mathcal{C}_J \to \mathcal{C}_{J'}$ admits a right-adjoint $f_*: \mathcal{C}_{J'} \to \mathcal{C}_J$, and for any commutative square

$$\begin{array}{ccc}
J'_0 & \xrightarrow{f'} & J'_1 \\
g_0 \downarrow & & \downarrow g_1 \\
J_0 & \xrightarrow{f} & J_1
\end{array}$$

in \mathcal{I} such that (i) f is a cofibration and the square is cartesian, or (ii) $J_1 = J_1' = J_0' = \mathsf{pt}$, $J_0 = [1]$, and $g_0 = t : \mathsf{pt} = [0] \to [1]$, the base change map (2.2.1.4) provides an isomorphism

$$(8.1.4.2) g_1^* \circ f_* \cong f_*' \circ g_0^*$$

between the corresponding functors $\mathcal{C}_{J_0} \to \mathcal{C}_{I_1'}$.

Example 8.1.4.2. For any complete category \mathcal{E} , the family $K(\mathcal{E}, \mathcal{I})$ is complete in the sense of Definition 8.1.4.1, with f_* given by right Kan extensions, and (8.1.4.2) being an isomorphism by (the dual version of) Lemma 2.3.2.9.

Remark 8.1.4.3. There is an obvious clash of terminology between Definition 8.1.4.1 and Definition 7.3.4.1, but it is not clear what can be done about it since both usages are very well-established. As a mitigating circumstance, we note that the only family of groupoids over \mathcal{I} complete in the sense of Definition 8.1.4.1 is the trivial family $\mathcal{I} \to \mathcal{I}$.

For any complete family $\mathcal{C} \to \mathcal{I}$ that is reflexive, Definition 8.1.4.1 (ii) is automatic, and conversely, we have the following result.

Lemma 8.1.4.4. A non-degenerate complete family of categories C over I is reflexive.

Proof. By Corollary 8.1.1.7, it suffices to shows that for any $J \in \mathcal{I}$, with the projection $e: J \times [1] \to J$ and its section $t: J \to J \times [1]$, the map $t^* \to e_*$ adjoint to the isomorphism $t^* \circ e^* \cong \operatorname{id}$ is itself an isomorphism. Since \mathcal{C} is non-degenerate, this can be checked after taking evaluations at all elements

 $j \in J$, and by Definition 8.1.4.1 (i), this reduces to the case J = pt, where the claim is Definition 8.1.4.1 (ii).

For any complete reflexive family $\mathcal{C} \to \mathcal{I}$ and $J \in \mathcal{I}$, we will denote by $\lim_J^h = f_*$ the adjoint functor corresponding to the projection $f: J \to \operatorname{pt}$. By Lemma 8.1.1.6, for any right-reflexive resp. left-reflexive full embedding $f: J' \to J$ with adjoint map $f_{\dagger}: J' \to J$, we have $f_* \cong f_{\dagger}^*$ resp $f_{\dagger *} \cong f^*$. In particular, in the left-reflexive case, we have a natural isomorphism

(8.1.4.3)
$$\lim_{J}^{h} \cong \lim_{J'}^{h} \circ f_{\dagger *} \cong \lim_{J'}^{h} \circ f^{*},$$

a reflexive family counterpart of (the dual version of) (2.2.5.5), and for any map $g: J' \to J$ with decomposition (3.1.3.2), we have

$$(8.1.4.4) g_* \cong \tau_* \circ \eta_* \cong \tau_* \circ \sigma^*,$$

so that (8.1.4.2) provides an identification

(8.1.4.5)
$$\operatorname{ev}_{j} \circ g_{*} \cong \operatorname{lim}_{J/g_{j}}^{h} \circ \sigma(j)^{*}, \qquad j \in J,$$

a counterpart of (the dual version of) (2.2.5.2). We note that since \mathcal{I} is ample, decompositions (3.1.3.2) for maps in \mathcal{I} lie in \mathcal{I} .

Lemma 8.1.4.5. Assume given a complete family of categories \mathcal{C} over \mathcal{I} . Then f_* is fully faithful for any fully faithful map $f: J \to J'$ in \mathcal{I} . Moreover, in the situation of Lemma 2.3.2.9, assume that I, I_0 , I_1 , I' are partially ordered sets in \mathcal{I} . Then the base change map $v_0^* \circ \gamma_* \to \gamma'_* \circ v_1^*$ is an isomorphism.

Proof. For the first claim, note that (8.1.4.4) and (8.1.4.2) provide an isomorphism $f^* \circ f_* \cong \tau_* \circ \sigma^*$, where $\sigma, \tau : \operatorname{ar}(J) \to J$ are standard projections, and we have $\tau_* \circ \sigma^* \cong \tau_* \circ \eta_* \cong \operatorname{id}_* \cong \operatorname{id}_* \cong \operatorname{id}_*$. For the second claim, use the same argument as in Lemma 2.3.2.9 to reduce to the isomorphism (8.1.4.2).

Definition 8.1.4.6. A family of categories C over an ample \mathcal{I} is *additive* if for any $J \in \mathcal{I}$ equipped with a map $J \to S$ to a discrete set S, the functor

$$\mathcal{C}_J \to \prod_{s \in S} \mathcal{C}_{J_s}$$

is an equivalence. A family C over \mathcal{I} is *semiexact* if for any $J \in \mathcal{I}$ with a map $J \to V = \{0,1\}^{<}$, the functor

$$(8.1.4.6) \mathcal{C}_{J} \to \mathcal{C}_{J/0} \times_{\mathcal{C}_{J_0}} \mathcal{C}_{J/1}$$

is an epivalence.

Lemma 8.1.4.7. A non-degenerate additive complete proper reflexive family $C \to \mathcal{I}$ is semiexact.

Proof. Note that for any $J \in \mathcal{I}$, $J \times V \in \mathcal{I}$ is the dual cylinder of the codiagonal map $f: J \sqcup J \to J$, and since \mathcal{C} is additive, we have $\mathcal{C}_{J \sqcup J} \cong \mathcal{C}_J \times \mathcal{C}_J$ and $\mathcal{C}_{J \sqcup J} \setminus_{f^*} \mathcal{C}_J \cong \mathsf{V}^o \mathcal{C}_J$. Assume given a map $J \to \mathsf{V}$, and consider the full embedding $\varepsilon = \sigma \times \tau: J/\mathsf{V} \to J \times \mathsf{V}$. Then $J \times \mathsf{V} \to \mathsf{V}$ and $\tau: J/\mathsf{V} \to \mathsf{V}$ are cofibrations, thus correspond to some functors $X, Y: \mathsf{V} \to \mathcal{I}$ under the identification $\mathcal{I} /\!/_\sharp \mathsf{V} \cong \mathsf{Fun}(\mathsf{V}, \mathcal{I})$, and ε is cocartesian over V , thus defines a map $\varepsilon^{\bullet}: X \to Y$. Then the functors (8.1.2.12) for X and Y fit into a commutative diagram

$$(8.1.4.7) \qquad \begin{array}{c} \mathcal{C}_{J/^{\diamond}R(\mathsf{V})}^{\diamond} & \xrightarrow{\eta_{*}} & \mathcal{C}_{J/\mathsf{V}} & \xrightarrow{\varepsilon_{*}} & \mathcal{C}_{J\times\mathsf{V}} \\ \downarrow & & \downarrow & & \downarrow b \\ \operatorname{Sec}_{\natural}(\mathsf{V}^{o}, X^{o*}\mathcal{C}_{\perp}) & \longrightarrow & \operatorname{Sec}(\mathsf{V}^{o}, X^{o*}\mathcal{C}_{\perp}) & \xrightarrow{\varepsilon_{*}} & \operatorname{Sec}(\mathsf{V}^{o}, Y^{o*}\mathcal{C}_{\perp}), \end{array}$$

where the square on the left is the cartesian square (8.1.2.13). The rows in (8.1.4.7) are fully faithful by Lemma 8.1.4.5, and $\operatorname{Sec}(\mathsf{V}^o,Y^{o*}\mathcal{C}_\perp)\cong \mathsf{V}^o\mathcal{C}_J$, while b is ν_f^\perp for the codiagonal map $f:J\sqcup J\to J$. Since \mathcal{C} is proper, b is an epivalence, and then the square on the right is cartesian by Lemma 2.2.1.2. Therefore a is also an epivalence, and since $\operatorname{Sec}_{\natural}(\mathsf{V}^o,X^{o*}\mathcal{C}_\perp)\cong\operatorname{Sec}^{\natural}(\mathsf{V},X^*\mathcal{C})$ is exactly the target of the functor (8.1.4.6), it remains to show that σ^* induces an equivalence $\mathcal{C}_J\cong\mathcal{C}_{J/^\circ R(\mathsf{V})}^{\diamond}$. But the fully faithful embedding $\eta:L(J)\to J/^\diamond R(\mathsf{V})$ is right-reflexive in \mathcal{I}^{\diamond} , so $\eta_*\cong\sigma^*$ is an equivalence by Lemma 8.1.2.3.

It is useful to note that for complete families, (8.1.1.4) can be considerably generalized: we have a version of a gluing construction for left-closed embeddings. Namely, assume given a complete family \mathcal{C} over \mathcal{I} and a left-closed embedding $l: J_0 \to J$ in \mathcal{I} . Let $r: J_1 \to J$ be the right-closed embedding of the complement $J_1 = J \setminus J_0 \subset J$, and denote $\theta = r^* \circ l_* : \mathcal{C}_{J_0} \to \mathcal{C}_{J_1}$. Then for any $c \in \mathcal{C}_J$, we have a functorial map $\alpha(c): r^*c \to \theta(l^*c) = r^*l_*l^*c$ induced by the adjunction map $c \to l_*l^*c$, and this defines a functor

(8.1.4.8)
$$C_J \to C_{J_1} \setminus_{\theta} C_{J_0}, \qquad c \mapsto \langle r^*c, l^*c, \alpha(c) \rangle.$$

If $J = C^o(f)$ is the dual cylinder of a map $f: J_1 \to J_0$, and $l: J_0 \to C^o(f)$ is the embedding s of (2.2.4.3), then as soon as $\mathcal C$ is non-degenerate, it is reflexive by Lemma 8.1.4.4, and (8.1.4.8) is the functor v_f^{\perp} of (8.1.1.4).

Definition 8.1.4.8. A complete family of categories $C \to \mathcal{I}$ is *tight* if (8.1.4.8) is an epivalence for any left-closed embedding $J_0 \subset J$.

Definition 8.1.4.9. A family of categories $C \to \mathcal{I}$ is *weakly semicontinuous* if for any $J \in \mathcal{I}$ equipped with a map $J \to \mathbb{N}$, with the corresponding functor $J_{\bullet} : \mathbb{N} \to \operatorname{Pos}^+$, $n \mapsto J/n$, the functor

$$(8.1.4.9) \nu(\mathcal{C}, J_{\bullet}) : \mathcal{C}_{I} \to \operatorname{Sec}(\mathbb{N}, J_{\bullet}^{*}\mathcal{C})$$

is an epivalence.

Lemma 8.1.4.10. An additive non-degenerate complete family $\mathcal{C} \to \mathcal{I}$ is tight if and only if it is proper. If $\mathcal{I} \subset \operatorname{Pos}^+$, then an additive tight complete family $\mathcal{C} \to \mathcal{I}$ is non-degenerate over $\mathcal{I} \cap \operatorname{Pos} \subset \mathcal{I}$, and if it is weakly semicontinuous, it is non-degenerate.

Proof. The second claim is clear: $C_J \to J^o C_{pt}$ of (8.1.2.7) is conservative if dim J = 0 by additivity, then if (8.1.4.8) is an epivalence, it is conservative for any $J \in \mathcal{I} \cap \text{Pos}$ by induction on the skeleton filtration (3.1.5.1), and then for any $J \in \mathcal{I}$, we can apply (8.1.4.9) for the height function $\text{ht}: J \to \mathbb{N}$.

For the first claim, one direction is tautological — \mathcal{C} is reflexive by Lemma 8.1.4.4, and since ν_f^{\perp} is then a particular case of (8.1.4.8), being proper is part of being tight — so assume given an additive \mathcal{C} non-degenerate complete proper reflexive family $\mathcal{C} \to \mathcal{I}$, and a left-closed embedding $l: J_0 \to J$ in \mathcal{I} , with the complement $r: J_1 \to J$. Let $J \to [1]$ be its characteristic map, and let $J' = [1] \setminus J$, with the fully faithful embedding $\eta: J \to J'$. Alternatively, we have $J' = C^o(r)$, and the functor (8.1.4.8) fits into a commutative square

$$(8.1.4.10) \qquad \begin{array}{c} \mathcal{C}_{J} & \stackrel{\eta_{*}}{\longrightarrow} & \mathcal{C}_{J'} \\ \downarrow & & \downarrow \nu_{r}^{\perp} \end{array}$$

$$\mathcal{C}_{J_{1}} \setminus_{\theta} \mathcal{C}_{J_{0}} \xrightarrow{\mathsf{id} \setminus l_{*}} \mathcal{C}_{J_{1}} \setminus_{r^{*}} \mathcal{C}_{J}$$

with fully faithful rows. Since C is proper, v_r^{\perp} in (8.1.4.10) is an epivalence, and we are done by Lemma 2.2.1.2.

8.1.5. Expansion. Now for any fibration $\pi:\mathcal{C}\to\mathcal{I}$ over an ample full subcategory $\mathcal{I}\subset\operatorname{PoSets}$, let $\flat=\pi^\flat(\natural)$ be the class of maps in \mathcal{C} cartesian over \mathcal{I} . Then \mathcal{C}_\flat is a family of groupoids over \mathcal{I} . It turns out that this establishes a one-to-one correspondence between proper non-degenerate reflexive families of categories over \mathcal{I} , and families of groupoids satisfying certain conditions. To state the conditions, recall that \mathcal{I} contains $\Delta\subset\operatorname{pos}\subset\operatorname{PoSets}$ by Definition 3.1.5.1, so we have the tautological functor

$$(8.1.5.1) \mu: \mathcal{I} \times \Delta \to \mathcal{I}, J \times [n] \mapsto J \times [n].$$

Let $\varepsilon : \mathcal{I} \to \Delta \times \mathcal{I}$ be its section $J \mapsto J \times [0]$. For any family of groupoids \mathcal{C} over \mathcal{I} , $\mu^*\mathcal{C}$ is a family of groupoids over $\mathcal{I} \times \Delta$, with some reduction $(\mu^*\mathcal{C})^{red}$ of (4.2.3.6). Then for any map $f : J \to J'$ in \mathcal{I} with $C^o(f) \in \mathcal{I}$, the dual cylinder $C^o(f)$ fits into a cocartesian square (2.2.4.4), so we have a functor

$$(8.1.5.2) \mathcal{C}_{\mathsf{C}^{0}(f)} \longrightarrow \mathcal{C}_{J'} \times_{\mathcal{C}_{I}} \mu^{*} \mathcal{C}_{J \times [1]} \stackrel{a}{\longrightarrow} \mathcal{C}_{J'} \times_{\mathcal{C}_{I}} (\mu^{*} \mathcal{C})^{red}_{J \times [1]},$$

where a is the reduction epivalence of (2.3.4.1).

Definition 8.1.5.1. A family of groupoids \mathcal{C} over \mathcal{I} is *proper* if for any right-closed full embedding $f: J' \to J$ in \mathcal{I} (8.1.5.2) is an epivalence, and *separated* if this holds when f is also left-reflexive. A family of groupoids \mathcal{C} over \mathcal{I} is *bounded* if so is $\mu^*\mathcal{C}$.

Explicitly, \mathcal{C} is bounded iff for any $J \in \mathcal{I}$, $s^* \times t^* : \mathcal{C}_{J \times [1]} \to \mathcal{C}_J \times \mathcal{C}_J$ is small. Moreover, the square (3.1.7.9) for l = n-1 is the square (2.2.4.4) for the left-reflexive full embedding $f = t : [0] \to [n-1]$, and its product with J is (2.2.4.4) for id $\times t : J \to J \times [n-1]$, so if \mathcal{C} is separated, the functor

$$(8.1.5.3) s^* \times t^* : \mathcal{C}_{J \times [n]} \to \mathcal{C}_{J \times [n-1]} \times_{\mathcal{C}_J} (\mu^* \mathcal{C})^{red}_{J \times [1]}$$

is an epivalence. Thus if \mathcal{C} is separated, and we let $\iota: \Delta \to \Delta$ be the involution $[n] \mapsto [n]^o$, then $(\mathrm{id} \times \iota)^* \mu^* \mathcal{C}^* \to \mathcal{I} \times \Delta$ is a weak 2-family of groupoids over \mathcal{I} in the sense of Definition 5.2.3.6. Therefore by Lemma 5.2.3.7, the reduction $(\mathrm{id} \times \iota)^* (\mu^* \mathcal{C})^{red}$ is a 2-family of groupoids over \mathcal{I} in the sense of Definition 4.2.3.10. Moreover, it is reduced by definition, bounded in the sense of Definition 4.2.3.11 if \mathcal{C} is bounded in the sense of Definition 5.2.3.1 if \mathcal{C} is reflexive in the sense of Definition 7.3.2.1, and then also complete in the sense of Definition 5.2.3.2 if \mathcal{C} is complete in the sense of Definition 7.3.4.1. If \mathcal{C} has all these properties, then Proposition 5.2.3.3 (ii) provides an equivalence

(8.1.5.4)
$$(\operatorname{id} \times \iota)^* (\mu^* \mathcal{C})^{red} \cong \Delta^{\flat} (\operatorname{Exp}(\mathcal{C}) | \mathcal{I})$$

for a certain family of categories $\text{Exp}(\mathcal{C}) = h^+((\text{id} \times \iota)^*(\mu^*\mathcal{C})^{red})$ over \mathcal{I} that we call the *expansion* of the family \mathcal{C} . Moreover, we also have

(8.1.5.5)
$$\operatorname{Exp}(\mathcal{C}) \cong h^{+}((\operatorname{id} \times \iota)^{*}\mu^{*}\mathcal{C})$$

by virtue of Lemma 5.2.3.7.

- **Proposition 8.1.5.2.** (i) For any reflexive family of categories \mathcal{E} over \mathcal{I} that is proper resp. separated in the sense of Definition 8.1.1.9 and non-degenerate in the sense of Definition 8.1.1.1, the family of groupoids $\mathcal{C} = \mathcal{E}_{\flat}$ is reflexive in the sense of Definition 7.3.2.1, non-degenerate in the sense of Definition 7.3.2.2, complete in the sense of Definition 7.3.4.1, and bounded and proper resp. separated in the sense of Definition 8.1.5.1. Moreover, $\mathcal{E} \cong \text{Exp}(\mathcal{C})$ over \mathcal{I} .
 - (ii) Conversely, for any reflexive non-degenerate complete bounded proper resp. separated family of groupoids C over \mathcal{I} , the expansion Exp(C) is a proper resp. separated non-degenerate reflexive family of categories over \mathcal{I} , and we have a natural equivalence $C \cong \text{Exp}(C)_b$ over \mathcal{I} .

Proof. For (i), \mathcal{C} is reflexive and non-degenerate by Lemma 8.1.2.3. For any $J \in \mathcal{I}$, $\sigma \times \tau : \operatorname{ar}(\mathcal{E}_J) \to \mathcal{E}_J \times \mathcal{E}_J$ is a small discrete fibration, and since (8.1.1.3) is an epivalence, \mathcal{C} is bounded, and $(\mu^*\mathcal{C})^{red}_{J\times[1]} \cong \operatorname{ar}(\mathcal{E}_J)_*$. Therefore the source and the target of a functor (8.1.5.2) are the isomorphism groupoids

$$(8.1.5.6) \mathcal{C}_{\mathsf{C}^{o}(f)} \cong (\mathcal{E}_{\mathsf{C}^{o}(f)})_{\star}, \quad \mathcal{C}_{J'} \times_{\mathcal{C}_{J}} (\mu^{*}\mathcal{C})_{J \times [1]}^{red} \cong (\mathcal{E}_{J'} \setminus_{f^{*}} \mathcal{E}_{J})_{\star},$$

and (8.1.5.2) is induced by ν_f^{\perp} , so that \mathcal{C} is proper if so is \mathcal{E} , and separated if so is \mathcal{E} by Lemma 8.1.1.11. It remains to observe that \mathcal{C} is complete by Proposition 5.2.3.3 (i) and Lemma 5.2.3.7, and the equivalence $\mathcal{E} \cong \operatorname{Exp}(\mathcal{C})$ is also provided by Proposition 5.2.3.3.

For (ii), the equivalence $\operatorname{Exp}(\mathcal{C})_{\flat} \cong \mathcal{C}$ is again provided by Proposition 5.2.3.3, so it suffices to prove that $\operatorname{Exp}(\mathcal{C})$ is reflexive, proper and non-degenerate. For reflexivity, with the notation of Definition 8.1.1.2, we need to construct the second adjunction map $\operatorname{id} \to e^* \circ s^*$ for any $J \in \mathcal{I}$. To do it for all J at once, let $S: \mathcal{I} \to \mathcal{I}$ be the functor $J \mapsto J \times [1]$, with the maps $e: S \to \operatorname{id}$, $s: \operatorname{id} \to S$ that induce functors $s^*: S^* \operatorname{Exp}(\mathcal{C}) \to \operatorname{Exp}(\mathcal{C})$, $e^*: \operatorname{Exp}(\mathcal{C}) \to S^* \operatorname{Exp}(\mathcal{C})$. Then what we need is a functor

$$(8.1.5.7) a_s: S^* \operatorname{Exp}(\mathcal{C}) \times [1] \to S^* \operatorname{Exp}(\mathcal{C})$$

that restricts to id resp. to $e^* \circ s^*$ on $0 \in [1]$ resp. $1 \in [1]$, and we have $a_s \circ (s^* \times id) \cong s^* \circ p$, where $p : \operatorname{Exp}(\mathcal{C}) \times [1] \to \operatorname{Exp}(\mathcal{C})$ is the projection. As in the proof of Proposition 6.1.6.2, to produce the functor (8.1.5.7), we use the simplicial replacement $\Delta[1] = \Delta/[1]$ of the category [1]. If $\pi : \Delta[1] \to \Delta$ is the tautological discrete fibration, then for any complete reduced bounded 2-family of groupoids $\mathcal{C}_0 \to \Delta$ over pt, $\pi_! \pi^* \mathcal{C}_0 \cong \mathcal{C}_0 \times_{\Delta} \Delta[1]$ is also a complete reduced bounded 2-family of groupoids, and the corresponding localizations

of Proposition 5.2.3.3 (ii) are related by $h^+(\pi_!\pi^*\mathcal{C}_0)\cong h^+(\mathcal{C}_0)\times[1]$. Objects in $\Delta[1]$ are maps $f:[n]\to[1]$. For any such map, we can form a map $f_s:[n]\times[1]\to[n]\times[1]$ equal to id on $[n]\times\{1\}$ and to id $\times f$ on $[n]\times\{0\}$. Taken together, these maps define an endomorphism α_s of the functor

$$S \circ \mu \circ (\mathsf{id} \times \pi) \cong \mu \circ (S \times \pi) : \mathcal{I} \times \Delta[1] \to \mathcal{I}$$

sending $J \times \langle [n], f \rangle$ to $J \times [n] \times [1]$. The endomorphism α_s then defines a functor $\alpha_s^* : (S \times \pi)^* \mu^* \mathcal{C} \to (S \times \pi)^* \mu^* \mathcal{C}$ over $\mathcal{I} \times \Delta[1]$, and by (5.1.1.7), it induces a functor

$$(8.1.5.8) \qquad \alpha_s^{\dagger}: (\operatorname{id} \times \pi)_! (\operatorname{id} \times \pi)^* (S \times \operatorname{id})^* (\operatorname{id} \times \iota)^* \mu^* \mathcal{C} \to (S \times \operatorname{id})^* (\operatorname{id} \times \iota)^* \mu^* \mathcal{C}$$

between weak 2-families of groupoids over \mathcal{I} . Taking the localization $h^+(-)$ then gives (8.1.5.7), and all the required properties are immediate from the construction of the endomorphism α_s .

It remains to prove that $\mathcal{E} = \operatorname{Exp}(\mathcal{C})$ is non-degenerate, and proper resp. separated if so is \mathcal{C} . Non-degeneracy is immediate: by definition, a map g in \mathcal{E}_J is represented by an object c in $\mathcal{C}_{J\times[1]}$, g is invertible iff c lies in the essential image of $e^*:\mathcal{C}_J\to\mathcal{C}_{J\times[1]}$, and we are done by Definition 7.3.2.2. Moreover, by (8.1.5.6), v_f^\perp for any resp. left-reflexive right-closed full embedding f is an epivalence on the isomorphism groupoids, thus essentially surjective. It is conservative since so is (8.1.2.2), so to finish the proof, it suffices to check that it is full. By (8.1.5.6), we need to show that for any objects $\widetilde{c}_0, \widetilde{c}_1 \in \mathcal{E}_{\mathsf{C}^o(f)}$, with $v_f^\perp(\widetilde{c}_l) = \langle c_l', c_l, \alpha_l \rangle \in \mathcal{E}_{J'} \setminus_{f^*} \mathcal{E}_J, l = 0, 1$, a map $\langle g', g \rangle : \langle c_0', c_0, \alpha_0 \rangle \to \langle c_1', c_1, \alpha_1 \rangle$ comes from an object $\widetilde{c} \in \mathcal{E}_{\mathsf{C}^o(f)\times[1]}$ with $(\mathrm{id} \times s)^*\widetilde{c} \cong \widetilde{c}_0$, $(\mathrm{id} \times t)^*\widetilde{c} \cong \widetilde{c}_1$. Since \mathcal{C} is proper resp. separated, (8.1.5.2) is also an epivalence for $\mathsf{C}^o(f) \times [1] \cong \mathsf{C}^o(f \times \mathrm{id})$ and the map $f \times \mathrm{id} : J \times [1] \to J' \times [1]$, so it suffices to lift $\langle g', g \rangle$ to an object

$$(8.1.5.9) \langle c', c, \alpha \rangle \in \mathcal{E}_{I' \times [1]} \setminus_{(f \times \mathsf{id})^*} \mathcal{E}_{I \times [1]}.$$

To do this, first lift the map g' to an object $c' \in \mathcal{E}_{J' \times [1]}$, and then use (8.1.5.2) for the left-reflexive full embedding $t: J \to J \times [1]$ to lift $\langle (f \times \mathrm{id})^* c', c_1, \alpha_1 \rangle$ to an object $c'' \in \mathcal{E}_{J \times [2]}$. We then have embeddings $s, t: J \times [1] \to J \times [2]$, and s is right-reflexive, so Lemma 8.1.1.6 provides a map $\alpha'': s_+^*(f \times \mathrm{id})^* c' \to c''$ adjoint to the isomorphism $s^*c'' \cong (f \times \mathrm{id})^*c'$. Now to obtain (8.1.5.9), take $c = t^*c''$ and $\alpha = t^*(\alpha''): t^*s_+^*(f \times \mathrm{id})^*c' \cong (f \times \mathrm{id})^*c' \to c = t^*c''$.

Example 8.1.5.3. Assume that $\mathcal{E} = K(I, \mathcal{I})$ for some category I. Then we have $\mathcal{E}_{\flat} \cong \iota^*(\mathcal{I} /\!\!/_{\star} I) \subset \iota^*(\mathcal{I} /\!\!/ I) = \mathcal{E}$, where $\mathcal{I} /\!\!/_{\star} I \to \mathcal{I}$ is the family of groupoids

of (3.2.1.2). Taking the expansion $\text{Exp}(\mathcal{E}_b)$ recovers \mathcal{E} — indeed, we have

(8.1.5.10)
$$(\mathsf{id} \times \iota)^* \mu^* \mathcal{E}_{\flat} \cong \Delta^{\flat} (\mathcal{E} | \mathcal{I}),$$

and taking the localization $h^+(-)$, we get exactly \mathcal{E} by Proposition 5.2.3.3.

To complement Proposition 8.1.5.2, say that a reflexive family of categories \mathcal{C} over \mathcal{I} or the corresponding family of groupoids $\mathcal{C}_{\flat} \to \mathcal{I}$ is *stably constant* along a map f in \mathcal{I} iff it is constant along $f \times \operatorname{id}_{J}$ for any finite $J \in \operatorname{pos} \subset \mathcal{I}$, and say that \mathcal{C} or \mathcal{C}_{\flat} is *stably semicartesian* along a commutative square $\varphi: [1]^{2} \to \mathcal{I}$ in \mathcal{I} if it is semicartesian along $\varphi \times J$ for any finite J. Moreover, (8.1.2.4) defines the unfolding $\mathcal{C}^{\diamond} \to \mathcal{I}^{\diamond}$ of the family \mathcal{C} , and if we again let \flat be the class of maps cartesian over \mathcal{I}^{\diamond} , then $(\mathcal{C}^{\diamond})_{\flat} \cong (\mathcal{C}_{\flat})^{\diamond}$ is the unfolding of \mathcal{C}_{\flat} in the sense of Subsection 7.3.2. Say that \mathcal{C}^{\diamond} or $\mathcal{C}^{\diamond}_{\flat} = (\mathcal{C}^{\diamond})_{\flat} \cong (\mathcal{C}_{\flat})^{\diamond}$ is *stably constant* along a map f in \mathcal{I}^{\diamond} iff it is constant along $f \times \operatorname{id}_{L(J)}$ for any finite J.

Lemma 8.1.5.4. A separated non-degenerate reflexive family of categories C over \mathcal{I} is weakly semicontinuous in the sense of Definition 8.1.4.9 or stably semicartesian over a commutative square in \mathcal{I} if and only if so is C_b , and its unfolding C^{\diamond} is stably constant along a map in \mathcal{I}^{\diamond} if and only if so is C_b^{\diamond} .

Proof. In all claims, the "only if" part is obvious, and the "if" part for squares immediately follows from Lemma 5.2.3.7. For semicontinuity, if $\nu(\mathcal{C}_{\flat}, J_{\bullet})$ of (8.1.4.9) is an epivalence, then $\nu(\mathcal{C}, J_{\bullet})$ is essentially surjective, and if $\nu(\mathcal{C}_{\flat}, J_{\bullet} \times [1])$ is also an epivalence, then $\nu(\mathcal{C}, J_{\bullet})$ is also conservative and full. For unfoldings, promote (8.1.5.1) to a functor $\mu^{\diamond}: \mathcal{I}^{\diamond} \times \Delta \to \mathcal{I}^{\diamond}$, $J \times [n] \mapsto J \times L([n])$, and note that for any $J \in \mathcal{I}^{\diamond}$, we have the 2-fully faithful embedding $\mu^{\diamond*}\mathcal{C}_{\flat}^{\diamond} \to (U \times \mathrm{id})^*\mu^*\mathcal{C}_{\flat}$, so that by Lemma 5.2.2.4, (8.1.5.4) yields an idenfication $\mathcal{C}^{\diamond} \cong h^+(\mu^{\diamond*}\mathcal{C}_{\flat}^{\diamond})$.

Another additional result concerns augmented reflexive families of Definition 8.1.3.1. For any partially ordered set I, and any reflexive family $\mathcal E$ over $\mathcal I$ equipped with an I-augmentation $\mathcal E \to K(I,\mathcal I)$, let $\sharp \supset \flat$ be the class of maps in $\mathcal E$ cartesian over $K(I,\mathcal I)$. Then $\mathcal E_\sharp$ is a family of groupoids over $K(I,\mathcal I)$. Moreover, (3.2.1.1) induces a dense embedding $\lambda:K(I,\mathcal I)_\flat\to K(I,\mathcal I)$ and the fibrations $\pi:K(I,\mathcal I)\to \mathcal I$, $\overline\pi=\pi\circ\lambda:K(I,\mathcal I)_\flat\to \mathcal I$, where we identify $K(I,\mathcal I)_\flat\cong \iota^*(\mathcal I/\!/_\star I)$ as in Example 8.1.5.3, and then $\mathcal E_\flat\cong \overline\pi_!\lambda^*\mathcal E_\sharp$. Say that a family of groupoids $\mathcal C$ over $K(I,\mathcal I)$ is *separated* resp. *bounded* if the family $\overline\pi_!\lambda^*\mathcal C\to \mathcal I$ is separated rep. bounded in the sense of Definition 8.1.5.1.

Lemma 8.1.5.5. For any partially ordered set I and separated non-degenerate I-augmented reflexive family of categories \mathcal{E} over \mathcal{I} , the family of groupoids $\iota^*(\mathcal{E}_{\sharp}) \to$

 $\mathcal{I} /\!\!/ I \cong \iota^*K(I,\mathcal{I})$ is non-degenerate, reflexive in the sense of Definition 7.4.3.4, complete in the sense of Definition 7.4.3.9 and coherent in the sense of Definition 7.4.3.5. Conversely, for any non-degenerate complete coherent reflexive family of groupoids $\pi: \mathcal{C} \to \mathcal{I} /\!\!/ I$ such that $\mathcal{C}^\iota = \iota^*\mathcal{C}$ is separated and bounded, the functor

$$(8.1.5.11) \mathcal{E} = \operatorname{Exp}(\overline{\pi}_! \lambda^* \mathcal{C}^{\iota}) \to \operatorname{Exp}(\overline{\pi}_! \lambda^* \iota^* (\mathcal{I} /\!\!/ I)) \cong K(I, \mathcal{I})$$

is a fibration, thus an augmentation for \mathcal{E} , and we have $\mathcal{C}\cong \iota^*\mathcal{E}_{\sharp}$.

Proof. For the first claim, non-degeneracy, reflexivity and completeness only depend on $\lambda^*\iota^*(\mathcal{E}_\sharp)$, thus hold by Proposition 8.1.5.2 (i). For coherence, note that in the situation of Definition 7.4.3.5, since \mathcal{E} is a reflexive family, both e^* and e_0^* are fully faithful, so that (7.4.3.2) is tautologically an equivalence, and then (7.4.3.3) being semicartesian is equivalent to (8.1.1.3) being an epivalence which holds since \mathcal{E} is separated.

Conversely, since the family of groupoids \mathcal{C} is complete, non-degenerate, bounded, and reflexive, so is $\overline{\pi}_!\lambda^*\mathcal{C}^\iota$, so that $\mathcal{E}=\operatorname{Exp}(\overline{\pi}_!\lambda^*\mathcal{C}^\iota)$ is a well-defined separated reflexive family of categories over \mathcal{I} . Then (8.1.5.10) fits into a commutative square

$$(\operatorname{id} \times \iota)^* \mu^* K(I, \mathcal{I})_{\flat} \stackrel{\sim}{\longrightarrow} \Delta^{\flat}(K(I, \mathcal{I}) | \mathcal{I})$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda}$$

$$(\operatorname{id} \times \iota)^* \mu^* K(I, \mathcal{I}) \stackrel{\sim}{\longrightarrow} \Delta^{\natural}(K(I, \mathcal{I}) | \mathcal{I}),$$

where the horizontal arrows are equivalences. If we then denote the projection $\Delta^{\natural}(K(I,\mathcal{I})|I) \cong (\operatorname{id} \times \iota)^* \mu^* K(I,\mathcal{I}) \to K(I,\mathcal{I})$ by μ_I , we have an identification $(\operatorname{id} \times \iota)^* \mu^* \overline{\pi}_! \lambda^* \mathcal{C}^{\iota} \cong \overline{\pi}_! \lambda^* \mu_I^* \mathcal{C}^{\iota}$, so that $\mathcal{E} \cong h^+(\overline{\pi}_! \lambda^* \mu_I^* \mathcal{C}^{\iota})$. Denote by $\varepsilon : K(I,\mathcal{I}) \cong \Delta^{\natural}(K(I,\mathcal{I})|\mathcal{I})_{[0]} \to \Delta^{\natural}(K(I,\mathcal{I})|\mathcal{I})$ the embedding, and define the reduction $(\mu_I^* \mathcal{C}^{\iota})^{red}$ by taking the decomposition

$$\mu_I^* \mathcal{C}^{\iota} \longrightarrow (\mu_I^* \mathcal{C}^{\iota})^{red} \longrightarrow \varepsilon_* \varepsilon_* \mu_I \mathcal{C}^{\iota}$$

of (2.3.4.1) for the functor $\mu_I^*\mathcal{C}^\iota \to \varepsilon_* \varepsilon^* \mu_I^*\mathcal{C}^\iota$. Then we tautologically have $\overline{\pi}_! \lambda^* (\mu_I^* \mathcal{C}^\iota)^{red} \cong (\overline{\pi}_! \lambda^* \mu_I^* \mathcal{C}^\iota)^{red}$, so that $\mathcal{E} \cong h^+(\overline{\pi}_! \lambda^* (\mu_I^* \mathcal{C}^\iota)^{red})$. But then (4.2.2.5) refines ε to a fully faithful functor $\beta: \Delta \times K(I,\mathcal{I}) \to \Delta^{\natural}(K(I,\mathcal{I})|I)$, and the fact that \mathcal{C} is coherent immediately implies that the functor

$$\overline{\pi}_! \lambda^* (\mu_I^* \mathcal{C}^{\iota})^{red} \to \overline{\pi}_! \lambda^* \beta_* \beta^* (\mu_I^* \mathcal{C}^{\iota})^{red}$$

is an equivalence of 2-families of groupoids over \mathcal{I} . Therefore we have $\mathcal{E} \cong h^+(\overline{\pi}_!\lambda^*\beta_*\beta^*(\mu_I^*\mathcal{C}^\iota)^{red})$, and by (5.1.1.8), we can drop $\overline{\pi}_!$ before taking

localizations, while by Lemma 4.2.5.1 and Lemma 5.2.2.5, we can also drop $\lambda^*\beta_*$, so that $\mathcal{E} \cong h^+(\beta^*(\mu_I^*\mathcal{C}^\iota)^{red})$. However, $\beta^*(\mu_I^*\mathcal{C}^\iota)^{red}$ is the reduction of a weak 2-family of groupoids $\beta^*\mu_I^*\mathcal{C}^\iota$ over $K(I,\mathcal{I})$, so that at the end of the day, $\mathcal{E} \cong h^+(\beta^*\mu_I^*\mathcal{C}^\iota)$, and then $\mathcal{E} \to K(I,\mathcal{I})$ is a fibration by Lemma 5.1.1.12, while the equivalence $\mathcal{C}^\iota \cong \mathcal{E}_{\sharp}$ is provided by Proposition 5.2.3.3.

8.2. Enhanced categories and functors.

8.2.1. Categories. We are now ready to give our main definitions. We start with the following version of Definition 7.1.1.1 and Definition 7.3.2.4.

Definition 8.2.1.1. Assume given a reflexive family of categories C over an ample full subcategory $\mathcal{I} \subset \text{PoSets}$.

- (i) The family C satisfies excision if it is semicartesian along the square (7.3.2.1) for any set S such that $S^{<}$, $S^{\natural} \in \mathcal{I}$, and any $J \in \mathcal{I}$ equipped with a map $J \to S^{<}$.
- (ii) A family C satisfies the cylinder axiom if it is semicartesian along the square (7.3.2.3) for any $J \in \mathcal{I}$ equipped with a map $J \to [1]$.
- (iii) A family C is *semicontinuous* if Z_{∞} , $\mathbb{N} \in \mathcal{I}$, and C is semicartesian along the square (7.3.2.2) for any $J \in \mathcal{I}$ equipped with a map $J \to \mathbb{N}$.

Lemma 8.2.1.2. A non-degenerate reflexive family of categories \mathcal{C} over an ample full subcategory $\mathcal{I} \subset \text{PoSets}$ satisfies excision resp. the cylinder axiom resp. is semicontinuous iff for any $J \in \mathcal{I}$ equipped with a map $J \to S^{<}$ such that $S^{<}, S^{\natural} \in \mathcal{I}$ resp. a map $J \to [1]$ resp. a map $J \to \mathbb{N}$, the unfolding \mathcal{C}^{\diamond} is constant along the corresponding map (3.1.9.1) with biorder (3.2.6.1) resp. the map $\zeta_3^{\diamond*}L(J/[1]) \to L(J/[1])$ resp. the map $\zeta^{\diamond*}L(J/\mathbb{N}) \to L(J/\mathbb{N})$.

Proof. The argument is the same as in Proposition 7.3.2.7, but with Lemma 7.3.2.3 replaced by Lemma 8.1.2.3. \Box

Definition 8.2.1.3. A *restricted enhanced category* is a small additive semiexact separated non-degenerate reflexive family of categories $\mathcal{C} \to \text{Pos}$ that satisfies excision and the cylinder axiom in the sense of Definition 8.2.1.1.

Definition 8.2.1.4. An *enhanced category* is an additive semiexact separated non-degenerate reflexive family of categories $\pi : \mathcal{C} \to \operatorname{Pos}^+$ that is semicontinuous,

and satisfies excision and the cylinder axiom in the sense of Definition 8.2.1.1. An enhanced category is *small* if so is π , and κ -bounded, for a regular cardinal κ , if $\|\mathcal{C}_I\| < \kappa$ for any finite $J \in \text{pos} \subset \text{Pos}^+$.

For any two enhanced categories or restricted enhanced categories C, C', the coproduct $C \sqcup C'$ is obivously an enhanced category resp. restricted enhanced category, and so is the product over Pos⁺ resp. Pos denoted by

(8.2.1.1)
$$\mathcal{C} \times^h \mathcal{C}' = \mathcal{C} \times_{\mathsf{Pos}^+} \mathcal{C}'.$$

More generally, the same holds for coproducts and products of a family C_s of enhanced categories resp. restricted enhanced categories indexed by elements $s \in S$ in some set S. For any family of categories $\pi : C \to Pos$, we denote by $b = \pi^b(\star)$ the class of maps in C that are cartesian over Pos and similarly for families over Pos^+ .

Lemma 8.2.1.5. A small additive semiexact separated non-degenerate reflexive family of categories C over Pos resp. Pos⁺ is a restricted enhanced category resp. a small enhanced category if and only if the underlying family of groupoids C_b is a restricted Segal family resp. a semicanonical extension of such in the sense of Definition 7.3.2.5.

Proof. Combine Proposition 8.1.5.2, Lemma 8.1.5.4, and Lemma 8.2.1.2. \Box

Corollary 8.2.1.6. A restricted enhanced category $C \to Pos$ is cartesian along all squares (7.3.2.1), (7.3.2.3), and an enhanced category is cartesian along all squares (7.3.2.1), (7.3.2.3), (7.3.2.2).

Proof. Combine Corollary 7.3.2.8 and Lemma 8.1.5.4. □

Lemma 8.2.1.7. An additive semiexact separated non-degenerate reflexive family C over Pos^+ is an enhanced category if and only if its unfolding $C^\diamond \to \operatorname{BiPos}^+$ is constant along all +-bianodyne maps of Definition 3.2.5.1, and a small additive semiexact separated non-degenerate reflexive family C over Pos is a restricted enhanced category if and only if its unfolding C^\diamond is constant along all bianodyne maps of Definition 3.2.5.1

Proof. The "if" part immediately follows from Lemma 8.2.1.2. For the "only if" part, note that $\mathcal{C}^{\diamond}_{\flat} \to \text{BiPos}^+$ is a semicanonical extension of a Segal family by Lemma 8.2.1.2 and Proposition 7.3.2.7, and apply Lemma 7.2.3.4 and Lemma 8.1.5.4.

Definition 8.2.1.8. A family of categories $C \to Pos^+$ is *strongly semicontinuous* if for any cofibration $J \to \mathbb{N}$ in Pos^+ , it is cartesian along the square

(8.2.1.2)
$$\begin{bmatrix}
1] \times \coprod_{n \geq 1} J_n & \longrightarrow & \coprod_{n \geq 1} J_n \\
\downarrow & & \downarrow \\
\zeta^* J & \longrightarrow & J
\end{bmatrix}$$

induced by (3.1.7.10), and it *satisfies the strong cylinder axiom* if for any map $\chi: J \to [2]$ in Pos⁺ such that the composition $s_{\dagger} \circ \chi: J \to [2] \to [1]$ is a cofibration, it is cartesian along the square

$$\begin{array}{cccc}
J_1 \times [1] & \longrightarrow & J_1 \\
\downarrow & & \downarrow \\
\zeta_3^* I & \longrightarrow & I
\end{array}$$
(8.2.1.3)

induced by (3.1.7.11).

Corollary 8.2.1.9. Any enhanced category $C \to Pos^+$ is strongly semicontinuous and satisfies the strong cylinder axiom.

Proof. By Lemma 8.2.1.7, the unfolding C^{\diamond} is constant along the +-bianodyne maps $\zeta^*J \to J$, $\zeta_3^*J \to J$ of Lemma 3.2.6.4. If we now promote (8.2.1.2) and (8.2.1.3) to cartesian squares in BiPos⁺, then the top arrows are reflexive, so we can use the same argument as in Lemma 8.2.1.2.

Lemma 8.2.1.10. For any small family of categories C over Pos resp. over Pos⁺, the following conditions are equivalent.

- (i) C is a restricted enhanced category resp. an enhanced category, and C_{pt} is a groupoid.
- (ii) C is a small enhanced groupoid resp. a semicanonical extension of such in the sense of Definition 7.1.1.3.

Proof. For (i) \Rightarrow (ii), note that since \mathcal{C} is in particular non-degenerate, \mathcal{C}_J is a groupoid for any J, so that \mathcal{C} is a family of groupoids. It is then trivially additive and semiexact, and since adjoint functors between groupoids are equivalences, it is also [1]-invariant, thus constant along reflexive maps by Lemma 3.1.3.11. Then excision of Definition 8.2.1.1 immediately implies excision of Definition 7.1.1.1.

Conversely, for (ii) \Rightarrow (i), additivity and semiexactness hold by Definition 7.1.1.1, reflexivity and separatedness follows from [1]-invariance, non-degeneracy is trivial, and by virtue of [1]-invariance, excision and semicontinuity of Definition 7.1.1.1 and Definition 7.1.1.2 imply excision and semicontinuity of Definition 8.2.1.1. The cylinder axiom is then trivial, since all the maps in the corresponding square (7.3.2.3) are reflexive.

Lemma 8.2.1.11. Any restricted Segal family of groupoids $C \to Pos$ and any semicanonical extension C^+ of such a family is proper in the sense of Definition 8.1.5.1. If $C \to Pos$ is small, then it is also bounded, and so is any semicanonical extension C^+ of the family C.

Proof. For the first claim, by Lemma 7.2.3.4, \mathcal{C}^{\diamond} resp. $\mathcal{C}^{+\diamond}$ is constant along bianodyne resp. +-bianodyne maps. In particular, both are constant along the map $\xi: B^{\diamond}(J) \to J$ for any $J \in \text{Pos}$ resp. Pos^+ . Then for any right-closed full embedding $f: J \to J'$ in Pos, with the characteristic map $\chi: J'^{o} \to [1]$, we have $C^{o}(f)^{o} \cong (J'^{o}/[1])^{o}$, and Lemma 7.3.3.1 together with semiexactness of \mathcal{C}^{\diamond} show that already the first functor in (8.1.5.2) is an epivalence. For \mathcal{C}^+ , consider the height function ht : $J' \to \mathbb{N}$, and apply Definition 3.2.5.1 (ii) over \mathbb{N} and Lemma 7.3.3.1 to deduce that the embeddings (7.3.3.2) for $\chi: J'^{o} \to [1]$ are +-bianodyne. For the second claim, \mathcal{C} is bounded since it has small fibers, and then \mathcal{C}^+ is bounded by semicontinuity and Lemma 6.2.4.6.

Corollary 8.2.1.12. For any small complete restricted Segal family of groupoids C over Pos, the expansion Exp(C) of Proposition 8.1.5.2 is a restricted enhanced category, and for any semicanonical extension $C^+ o Pos^+$, the expansion $Exp(C^+)$ is an enhanced category. Any enhanced category $C^+ o Pos^+$ is proper in the sense of Definition 8.1.1.9.

Proof. Immediately follows from Lemma 8.2.1.2 and Lemma 8.1.5.4. □

Corollary 8.2.1.13. For any restricted enhanced category $\mathcal{C} \to \operatorname{Pos}$, the fibration $\mathcal{C}^{\iota} = \iota^* \mathcal{C}^{\mathfrak{o}}_{\perp} \to \operatorname{Pos}$ is a restricted enhanced category. For any enhanced category $\mathcal{C} \to \operatorname{Pos}^+$, the fibration $\mathcal{C}^{\iota} = (B_{\diamond}^* \mathcal{C}^{\diamond})^{\mathfrak{o}}_{\perp} \to \operatorname{Pos}^+$ is an enhanced category, and $\xi_{\perp} : B_{\diamond} \to \iota$ provides an equivalence $\mathcal{C}^{\iota}|_{\operatorname{Pos}} \cong \iota^* \mathcal{C}^{\mathfrak{o}}_{\perp}$.

Proof. The fibration C^{ι} is clearly a non-degenerate reflexive family; it is then a restricted enhanced category resp. enhanced category by Lemma 8.2.1.5 and Corollary 7.3.2.9 resp. Proposition 7.3.3.4.

Definition 8.2.1.14. The enhanced category resp. restricted enhanced category C^{ι} of Corollary 8.2.1.13 is the *enhanced opposite* to the enhanced category resp. restricted enhanced category C.

Corollary 8.2.1.15. For any enhanced category or restricted enhaced category C, and any map $f: J \to J'$ in Pos, the functors (8.1.1.4) are epivalences.

Proof. For v_f^{\perp} , this is Lemma 8.1.1.6 combined with Corollary 8.2.1.12. For v_f , note that v_f for \mathcal{C} is opposite to $v_{f^0}^{\perp}$ for \mathcal{C}^{ι} .

Example 8.2.1.16. For any category \mathcal{E} , let us simplify notation and denote by $K(\mathcal{E}) = K(\mathcal{E}, \operatorname{Pos}^+) \to \operatorname{Pos}^+$ the reflexive family of (8.1.1.5). Then $K(\mathcal{E})$ is trivially proper and non-degenerate, and it is an enhanced category in the sense of Definition 8.2.1.4: indeed, all the squares (7.3.2.1), (7.3.2.3), (7.3.2.2) are cocartesian squares in Cat, and moreover, so is any standard pushout square (3.1.2.3) (so that the family $K(\mathcal{E}) \to \operatorname{Pos}^+$ is not only semiexact but actually exact). We have $K(\mathcal{E})^\iota \cong K(\mathcal{E}^o)$, and if \mathcal{E} is small, then $K(\mathcal{E})$ restricted to $\operatorname{Pos} \subset \operatorname{Pos}^+$ is a restricted enhanced category in the sense of Definition 8.2.1.3.

Example 8.2.1.17. If $\mathcal{E} = \operatorname{pt}$, then $K(\operatorname{pt}) = \operatorname{Pos}^+$ is the terminal enhanced category; we denote it by pt^h .

8.2.2. Functors. Having defined enhanced categories, we now define enhanced functors.

Definition 8.2.2.1. An *enhanced functor* between restricted enhanced categories resp. enhanced categories is a functor cartesian over Pos resp. Pos⁺, and an *enhanced morphism* between two such functors is a morphism over Pos resp. Pos⁺.

Example 8.2.2.2. For any enhanced category or restricted enhanced category \mathcal{C} , the truncation functor (8.1.2.2) is an enhanced functor. For any categories \mathcal{E} , \mathcal{E}' and functor $\gamma: \mathcal{E} \to \mathcal{E}'$, the functor $K(\gamma): K(\mathcal{E}) \to K(\mathcal{E}')$ between the corresponding enhanced categories of Example 8.2.1.16 is an enhanced functor.

Definition 8.2.2.3. An *enhanced object c* in an enhanced category \mathcal{C} is an enhanced functor $\varepsilon^h(c)$: $\operatorname{pt}^h \to \mathcal{C}$, and an *enhanced morphism* betweem two enhanced objects c, c' is an enhanced morphism $\varepsilon^h(c) \to \varepsilon^h(c')$ in the sense of Definition 8.2.4.5.

Since $\operatorname{pt} \in \operatorname{Pos}^+ = \operatorname{pt}^h$ is the terminal object, enhanced functors $\operatorname{pt}^h \to \mathcal{C}$ are uniquely determined by their values at pt, so that effectively, an enhanced object in an enhanced category \mathcal{C} is the same thing as an object of $\mathcal{C}_{\operatorname{pt}}$. An enhanced morphism between two such objects $c, c' \in \mathcal{C}_{\operatorname{pt}}$ is a morphism $c \to c'$ in $\mathcal{C}_{\operatorname{pt}}$.

Lemma 8.2.2.4. Assume given a functor $\gamma: \mathcal{E} \to \mathcal{E}'$, and a cartesian square

(8.2.2.1)
$$\begin{array}{ccc} \mathcal{C} & \longrightarrow & \mathcal{C}' \\ \downarrow & & \downarrow^{\pi} \\ K(\mathcal{E}) & \xrightarrow{K(\gamma)} & K(\mathcal{E}'), \end{array}$$

where C' is an enhanced category, and π is an enhanced functor. Then C is an enhanced category.

Proof. By Lemma 8.1.1.13, $C \to Pos^+$ is a separated reflexive family. It is obviously additive, and to check the rest of the properties, apply the criterion of Lemma 2.3.3.7.

Example 8.2.2.5. Say that a *closed class of enhanced morphisms* in an enhanced category C is a closed class v of morphisms in C_{pt} . For any such class v, we can define a category C_{hv} by the cartesian square

(8.2.2.2)
$$\begin{array}{ccc}
\mathcal{C}_{hv} & \longrightarrow & \mathcal{C} \\
\downarrow & & \downarrow k(\mathcal{C}) \\
K((\mathcal{C}_{\mathsf{pt}})_v) & \longrightarrow & K(\mathcal{C}_{\mathsf{pt}}),
\end{array}$$

where the vertical arrow on the right is the truncation functor (8.1.2.2), and $(C_{pt})_v \subset C_{pt}$ is the dense subcategory defined by the class v. Then C_{hv} is an enhanced category by Lemma 8.2.2.4. In particular, if $v = \star$ is the class of all invertible maps, we obtain the *enhanced isomorphism groupoid* $C_{h\star}$ given by the cartesian square

(8.2.2.3)
$$\begin{array}{ccc}
\mathcal{C}_{h\star} & \longrightarrow & \mathcal{C} \\
\downarrow & & \downarrow k(\mathcal{C}) \\
K((\mathcal{C}_{pt})_{\star}) & \longrightarrow & K(\mathcal{C}_{pt}).
\end{array}$$

It is an enhanced groupoid by Lemma 8.2.1.10, and is universal: any enhanced functor $\mathcal{C}' \to \mathcal{C}$ from an enhanced groupoid \mathcal{C}' factors through $\mathcal{C}_{h\star} \to \mathcal{C}$, uniquely up to a unique isomorphism.

An enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ between restricted enhanced categories resp. enhanced categories trivially extends to a functor $\gamma^{\diamond}: \mathcal{C}_0^{\diamond} \to \mathcal{C}_1^{\diamond}$ between their unfoldings, cartesian over BiPos resp. BiPos⁺, and then in particular, we have a well-defined *opposite enhanced functor* $\gamma^{\iota}: \mathcal{C}_0^{\iota} \to \mathcal{C}_1^{\iota}$.

Definition 8.2.2.6. For any category I, an I-augmentation of an enhanced category \mathcal{C} is an enhanced functor $\pi: \mathcal{C} \to K(I)$ that is a fibration, and an I-coaugmentation of \mathcal{C} is an enhanced functor $\pi: \mathcal{C} \to K(I)$ such that π^i is an I-augmentation. An enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between I-augmented enhanced categories \mathcal{C} , \mathcal{C}' is I-augmented if it is cartesian over K(I), and if \mathcal{C} , \mathcal{C}' are I-coaugmented, then γ is I-coaugmented if γ^i is I-augmented.

By definition, for any I-augmented enhanced category C, C^{ι} is I^{o} -coaugmented, and vice versa. If I is a partially ordered set, then we also have an enhanced version of the transpose-opposite fibration construction: for any I-augmented enhanced category C, we can consider the category

(8.2.2.4)
$$C_{h\perp}^{\iota} = B_{I\diamond}^{*}(C|I)^{\diamond o}_{\perp},$$

where $B_{I\diamond}$ is the barycentric subdivision of Example 3.2.9.5, and by Lemma 7.4.3.8, Lemma 7.4.3.10, Lemma 8.1.5.5 and Lemma 8.2.1.5, $\mathcal{C}_{h\perp}^{\iota}$ is also an I-augmented enhanced category (while $\mathcal{C}_{h\perp} = (\mathcal{C}_{h\perp}^{\iota})^{\iota}$ is then I^{o} -coaugmented). For any category \mathcal{C} equipped with an enhanced functor $\pi: \mathcal{C} \to K(I)$, and any $i \in I$, we define the *enhanced fiber* \mathcal{C}_{i} by

(8.2.2.5)
$$C_i = K(\varepsilon(i))^* C,$$

where $\varepsilon(i)$: pt $\to I$ is as in (2.1.1.2). By Lemma 8.2.2.4, \mathcal{C}_i is an enhanced category; if π is an I-augmentation, then $(\mathcal{C}_{h\perp})_i \cong \mathcal{C}_i$ and $(\mathcal{C}_{h\perp}^i)_i \cong \mathcal{C}_i^i$.

Remark 8.2.2.7. Note that for any partially ordered set I, the fibers of the fibration $K(I) \to \operatorname{Pos}^+$ are rigid. Therefore if we have enhanced categories \mathcal{C}_0 , \mathcal{C}_1 equipped with enhanced functors $\pi_l : \mathcal{C}_l \to K(I)$, l = 0, 1, then for any enhanced functor $\gamma : \mathcal{C}_0 \to \mathcal{C}_1$, being a functor over K(I) is a condition and not a structure. If π_0 and π_1 are augmentations resp. coaugmentations, then the same of course holds for being augmented resp. coaugmented.

If I is a partially ordered set, then I-augmentations of Definition 8.2.2.6 are the same thing as I-augmentations of Definition 8.1.3.1 over $\mathcal{I} = \operatorname{Pos}^+$. If $\mathcal{C} = K(I')$ for some I', then any enhanced functor $\pi : \mathcal{C} \to K(I)$ is of the form $\pi \cong K(\gamma)$ for some functor $\gamma : I' \to I$, and π is an I-augmentation resp.

an *I*-coaugmentation iff γ is a fibration resp. a cofibration. For any functor $\gamma:I'\to I$ and an *I*-augmented resp. *I*-coaugmented enhanced category \mathcal{C} , the pullback enhanced category $\mathcal{C}'=K(\gamma)^*\mathcal{C}$ of Lemma 8.2.2.4 is I'-augmented resp. I'-coaugmented. From now on, by abuse of notation, we will denote

$$(8.2.2.6) f^{h*}\mathcal{C} = K(f)^*\mathcal{C}.$$

One can also construct a pushforward operation f^h_* for augmented categories, but in general, this requires some preparations (see Lemma 8.2.4.3 below). One case when it is easy is when we consider a right-closed embedding $f:I'\to I$ of finite-dimensional partially ordered sets. In this case, $K(f):K(I',\mathcal{I})\to K(I,\mathcal{I})$ admits a right-adjoint $K(f)_+$, $\langle J,\alpha\rangle\mapsto J\times_I I'$, and while $K(f)_+$ is not an enhanced functor — it is not even a functor over Pos^+ — we still have the following.

Lemma 8.2.2.8. For any right-closed embedding $f: I' \to I$ in Pos, and any I'-augmented enhanced category C', $C = K(f)_*C'$ is an I-augmented enhanced category.

Proof. By Corollary 8.1.3.5, C is a proper reflexive family, and $C \cong K(f)_{+}^{*}C'$. But $K(f)_{+}$ preserves coproducts and sends cocartesian squares (3.1.2.3), (7.3.2.1), (7.3.2.2), (7.3.2.3) to squares of the same form.

Combining Lemma 8.2.1.5, Corollary 8.2.1.12 and Proposition 8.1.5.2, we see that an enhanced category $\mathcal{C} \to \operatorname{Pos}^+$ is completely determined by the underlying family of groupoids $\mathcal{C}_{\flat} \to \operatorname{Pos}^+$. It is useful to observe that this also works for enhanced functors, in the following form.

Lemma 8.2.2.9. Assume given enhanced categories C, C', with underlying families of groupoids C_{\flat} , $C'_{\flat} \to \operatorname{Pos}^+$. Then any functor $\gamma_{\flat}: C'_{\flat} \to C'_{\flat}$ extends to an enhanced functor $\gamma: C' \to C$, and for any two enhanced functors $\gamma, \gamma': C' \to C$, a morphism between their restrictions to C'_{\flat} uniquely extends to a enhanced morphism $\gamma \to \gamma'$.

Proof. Immediately follows from Proposition 8.1.5.2.

Lemma 8.2.2.10. An enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ that is an epivalence is an equivalence.

Proof. Combine Proposition 8.1.5.2 and Corollary 6.2.1.7. □

Definition 8.2.2.11. An enhanced functor $\gamma:\mathcal{C}\to\mathcal{C}'$ between restricted enhanced categories resp. enhanced categories is *left* resp. *right-reflexive* if it is left resp. right-reflexive over Pos resp. Pos⁺, and the adjoint functor γ^{\dagger} is also an enhanced functor.

Example 8.2.2.12. For any functor $\gamma: \mathcal{E} \to \mathcal{E}'$ between categories \mathcal{E} , \mathcal{E}' , the enhanced functor $K(\gamma): K(\mathcal{E}) \to K(\mathcal{E}')$ is left resp. right-reflexive if and only if so is γ , and if γ_{+} is left resp. right-adjoint to γ , then $K(\gamma_{+})$ is left resp. right-adjoint to $K(\gamma_{+})$. In one direction, this is obvious from the identification $K(\mathcal{E})_{pt} \cong \mathcal{E}$, and in the other direction, the claim immediately follows from Example 2.2.1.1.

Lemma 8.2.2.13. An enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ is right resp. left-reflexive if and only if $\gamma^\iota: \mathcal{C}_0^\iota \to \mathcal{C}_1^\iota$ is left resp. right-reflexive. An enhanced functor γ between enhanced categories is left or right-reflexive if and only if so is its restriction to Pos. A left or right-reflexive enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ is an equivalence iff this holds for the fiber $\gamma(\mathsf{pt}): \mathcal{C}_\mathsf{pt} \to \mathcal{C}_\mathsf{pt}'$.

Proof. The first claim directly follows from Lemma 2.3.2.8. For the second one, use semicontinuity and the same argument as in Lemma 8.1.1.13. For the last claim, let γ^{\dagger} be the adjoint, and let a, a^{\dagger} be the adjunction maps; then γ is an equivalence iff a and a^{\dagger} are invertible, and since \mathcal{C} and \mathcal{C}' are non-degenerate, this holds iff it holds over $\operatorname{pt} \in \operatorname{Pos}^+$.

Definition 8.2.2.14. An enhanced object c in an enhanced category \mathcal{C} is *initial* resp. *terminal* if the corresponding enhanced functor $\varepsilon^h(c)$ is right resp. left-reflexive. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between enhanced categories with initial resp. terminal objects o, o' preserves the initial resp. terminal object if the base change map $\varepsilon(o') \to \gamma \circ \varepsilon(o)$ resp. $\gamma \circ \varepsilon(o) \to \varepsilon(o')$ is invertible.

Example 8.2.2.15. An initial or terminal enhanced object o in an enhanced category C is also the initial resp. terminal object in C_{pt} , but the converse certainly need not be true. For instance, an enhanced groupoid has an initial or terminal enhanced object only if it is trivial, but there are plenty of non-trivial enhanced groupods C with $C_{pt} = pt$ – take any simply connected but non-trivial homotopy type.

Example 8.2.2.16. If $C = K(\mathcal{E})$ for some category \mathcal{E} , then $e \in C_{\mathsf{pt}} = \mathcal{E}$ defines an initial resp. terminal enhanced object in C iff e is initial resp. terminal in \mathcal{E} . For example, if $\mathcal{E} = [1]$, then K([1]) has an initial and a terminal enhanced object $\varepsilon^h(0)$, $\varepsilon^h(1) : \mathsf{Pos}^+ \to K([1])$, and no other enhanced objects. For a general enhanced category C, we can define families $C^{h>}$, $C^{h<} \to \mathsf{Pos}^+$ by

(8.2.2.7)
$$\mathcal{C}^{h<} = \varepsilon^h(1)_*\mathcal{C}, \qquad \mathcal{C}^{h>} = (\mathcal{C}^{\iota h<})^{\iota}.$$

Then $\mathcal{C}^{h<}$ is a [1]-augmented enhanced category by Lemma 8.2.2.8, and dually, $\mathcal{C}^{h<}$ is a [1]-coaugmented enhanced category. We have $\mathcal{C}^{h<}_{\mathsf{pt}} \cong \mathcal{C}^{<}_{\mathsf{pt}}$, $\mathcal{C}^{h>}_{\mathsf{pt}} \cong \mathcal{C}^{>}_{\mathsf{pt}}$, and the enhanced object defined by $o \in \mathcal{C}^{<}_{\mathsf{pt}}$ resp. $o \in \mathcal{C}^{>}_{\mathsf{pt}}$ is initial resp. terminal. If $\mathcal{C} = K(\mathcal{E})$, then $\mathcal{C}^{h<} \cong K(\mathcal{E}^{<})$ and $\mathcal{C}^{h>} \cong K(\mathcal{E}^{>})$.

An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ is *fully faithful* if it is fully faithful in the usual sense, and for such functors, there is the following useful result.

Lemma 8.2.2.17. A fully faithful enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between enhanced categories or restricted enhanced categories is an equivalence if and only if it is an equivalence over pt.

Proof. The "only if" part is tautological. For the "if" part, since γ is fully faithful, we just have to check that it is essentially surjective over any $J \in \operatorname{Pos}^+$ resp. Pos. Say that J is *good* if this happens. Then by Definition 8.2.1.1 (i), being good is stable under standard pushouts, and by (ii), it is stable under taking coproducts. Then as in the proof of Lemma 7.3.1.3, excision shows that if J admits a map $J \to S^<$ with good comma-fibers, then J itself is good, and, for enhanced categories, semicontinuity shows that if J admits a map $J \to \mathbb{N}$ with good comma-fibers, it is again good. Thus it suffices to show that all $J \in \operatorname{Pos}$ are good, and induction on dimension reduces this to showing that $J^>$ is good for a good $J \in \operatorname{Pos}$. This follows from Corollary 8.2.1.15 applied to the map $f: J \to \operatorname{pt}$.

Corollary 8.2.2.18. For any enhanced category C equipped with a full subcategory $C'_{pt} \subset C_{pt}$, the category C' defined by the cartesian square

(8.2.2.8)
$$\begin{array}{ccc} \mathcal{C}' & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow \\ K(\mathcal{C}'_{\mathsf{pt}}) & \longrightarrow & K(\mathcal{C}_{\mathsf{pt}}) \end{array}$$

is an enhanced category, the enhanced functor $C' \to C$ is fully faithful, and all fully faithful enhanced functors arise in this way.

Proof. The fact that C' is an enhanced category is Lemma 8.2.2.4. Then $C' \to C$ is the pullback of a fully faithful functor, thus fully faithful, and every fully faithful functor is of this form by Lemma 8.2.2.17.

In terms of Definition 8.2.2.3, Corollary 8.2.2.18 says that a collection of enhanced objects in an enhanced category C uniquely defines a full enhanced

subcategory $\mathcal{C}' \subset \mathcal{C}$, and every full enhanced subcategory appears in this way (we will say that \mathcal{C}' is *spanned* by the collection of enhanced objects $c \in \mathcal{C}'_{pt} \subset \mathcal{C}_{pt}$). If we understand \mathcal{C} as an "enhancement" for \mathcal{C}_{pt} , then the claim is that a full subcategory $\mathcal{C}'_{pt} \subset \mathcal{C}_{pt}$ inherits a unique enhancement. For any enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$, we define the *enhanced essential image* of γ as the full enhanced subcategory in \mathcal{C} spanned by the essential image of $\gamma_{pt}: \mathcal{C}'_{pt} \to \mathcal{C}_{pt}$; any $\gamma: \mathcal{C}' \to \mathcal{C}$ uniquely factors through its enhanced essential image. As in the unenhanced setting, we will say that an enhanced full subcategory $\mathcal{C}' \subset \mathcal{C}$ is *left* resp. *right-admissible* if the embedding enhanced functor $\mathcal{C}' \to \mathcal{C}$ is left resp. right-reflexive in the sense of Definition 8.2.2.11.

Lemma 8.2.2.19. Let I be a filtered category, and assume given a fibration $C \to \operatorname{Pos}^+ \times I^o$ such that $C_i \to \operatorname{Pos}^+$ is an enhanced category for any $i \in I$, and $f^{o*} : C_i \to C_{i'}$ is fully faithful for any map $f : i \to i'$ in I. Let $C_{\perp} \to I$ be the cofibration transpose to $C \to \operatorname{Pos}^+ \times I^o \to I^o$. Then the 2-colimit $\operatorname{colim}_I C_{\perp}$ of Definition 5.1.3.12 is an enhanced category, and for any $i \in I$, the enhanced functor $C_i \to \operatorname{colim}_I C_{\perp}$ is fully faithful.

Proof. All the claims that we need to check to insure that a family of categories $\mathcal{E} \to \operatorname{Pos}^+$ is an enhanced category involve only a finite number of objects and morphisms in \mathcal{E} (for reflexivity, this is Lemma 2.2.2.4). Since by Lemma 5.1.3.11, $\operatorname{colim}_I \mathcal{C}_\perp$ is the union of its full subcategories \mathcal{C}_i , and I is filtered, everything can checked at each individual \mathcal{C}_i where it holds by assumption.

8.2.3. Barycentric extensions. So far, our only examples of enhanced categories are the trivial ones of Example 8.2.1.16. To obtain more interesting examples, one can use complete families of Definition 8.1.4.1.

Lemma 8.2.3.1. Assume given an additive complete family of categories \mathcal{C} over Pos⁺ that is tight in the sense of Definition 8.1.4.8, and assume in addition that \mathcal{C} is either non-degenerate, or weakly semicontinuous in the sense of Definition 8.1.4.9. Then \mathcal{C} is reflexive, proper, weakly semicontinuous and non-degenerate, and it is an enhanced category in the sense of Definition 8.2.1.4.

Proof. If \mathcal{C} is weakly semicontinuous, then it is non-degenerate and proper by Lemma 8.1.4.10. If \mathcal{C} is non-degenerate, then it is proper by Lemma 8.1.4.10. In either case, \mathcal{C} is then reflexive by Lemma 8.1.4.4 and then also semiexact by Lemma 8.1.4.7. Since by Lemma 8.1.5.4 and Lemma 6.2.4.6, any separated reflexive family $\mathcal{C} \to \operatorname{Pos}^+$ that is semicontinuous in the sense of Definition 8.2.1.1 is

weakly semicontinuous, it remains to prove that \mathcal{C} is en enhanced category, and by Lemma 8.2.1.7, it suffices to prove that the unfolding \mathcal{C}^{\diamond} is constant along all +-bianodyne maps. Indeed, let W be the class of maps $f: J \to J'$ in BiPos⁺ such that the adjoint pair of functors $U(f)^*$, $U(f)_*$ restricts to a pair of mutually inverse equivalences between $\mathcal{C}_J^{\diamond} \subset \mathcal{C}_{U(J)}$ and $\mathcal{C}_{J'}^{\diamond} \subset \mathcal{C}_{U(J')}$ — that it, for any $c \in \mathcal{C}_J^{\diamond}$, $c' \in \mathcal{C}_{J'}^{\diamond}$, the adjunction maps $U(f)^*U(f)_*c \to c$, $c' \to U(f)_*U(f)^*c'$ are isomorphisms. Then since \mathcal{C} is reflexive, W satisfies the condition (i) of Definition 3.2.5.1, and by Lemma 8.1.4.5 it also satisfies (ii), thus contains all +-bianodyne maps.

One problem with Lemma 8.2.3.1 is that \mathcal{C} is required to be complete (in particular, $\mathcal{C} \to \operatorname{Pos}^+$ cannot have small fibers). To circumvent this, one can use the barycentric subdivision functor B^{\diamond} : PoSets \to BiPos $^{\pm}$, as in Subsection 7.3.3. Say thay an ample full subcategory $\mathcal{I} \subset \operatorname{PoSets}$ is *bar-invariant* if the barycentric subdivision functor B sends \mathcal{I} into itself.

Definition 8.2.3.2. A reflexive family of categories \mathcal{C} over a bar-invariant ample subcategory $\mathcal{I} \subset \text{PoSets}$ is *bar-invariant* if for any $J \in \mathcal{I}$, the unfolding \mathcal{C}^{\diamond} is constant along the map $\xi : B^{\diamond}(J) \to J$.

Example 8.2.3.3. The category Pos⁺ is bar-invariant, and any enhanced category $\mathcal{C} \to \text{Pos}^+$ is bar-invariant by Corollary 3.2.5.5 and Lemma 8.2.1.7.

Definition 8.2.3.4. A reflexive family of categories C over Pos^{\pm} is *good* if its unfolding C^{\diamond} is constant along all the \pm -bianodyne maps of Definition 3.2.8.1.

Definition 8.2.3.5. A family of categories $C \to Pos^{\pm}$ *satisfies modified excision* if for any set S and $J \in Pos^{\pm}$ equipped with a map $J \to S^{>}$, C is semicartesian along the square

(8.2.3.1)
$$J_o \times B(S^>) \longrightarrow J_o$$

$$\downarrow \qquad \qquad \downarrow$$

$$J^{\natural \natural} \longrightarrow J,$$

where $J^{\dagger\dagger}$ is as in (3.2.8.3), and the top horizontal arrow is the map (3.2.8.4).

Lemma 8.2.3.6. An additive semiexact reflexive family of categories C over Pos^{\pm} is good in the sense of Definition 8.2.3.4 iff it satisfies modified excision in the sense of Definition 8.2.3.5, and is semicontinuous and satisfies the clynder axiom in the sense of Definition 8.2.1.1.

Proof. As in Lemma 8.2.1.7, the "only if" part holds by the same argument as in Lemma 8.2.1.2, and for the "if" part, one needs to also invoke Proposition 3.2.8.3. \Box

Proposition 8.2.3.7. For any bar-invariant ample subcategory $\mathcal{I} \subset \mathsf{PoSets}$ containing Pos^\pm , a reflexive family $\mathcal{C} \to \mathsf{Pos}^\pm$ good in the sense of Definition 8.2.3.4 extends to a proper bar-invariant reflexive family of categories \mathcal{C}^\natural over \mathcal{I} . Moreover, a functor $\gamma:\mathcal{C}_0 \to \mathcal{C}_1$ between two good families with bar-invariant extensions $\mathcal{C}_0^\natural, \mathcal{C}_1^\natural$ extends to a functor $\gamma^+:\mathcal{C}_0^\flat \to \mathcal{C}_1^\flat$, and a morphism $f_0 \to f_1$ between two such functors extends to a unique morphism $f_0^\flat \to f_1^\flat$, so that the bar-invariant extension \mathcal{C}^\flat of a good family \mathcal{C} is defined uniquely up to an equivalence unique up to a unique isomorphism. In addition to this, the bar-invariant extension \mathcal{C}^\flat of a good family $\mathcal{C} \to \mathsf{Pos}^\pm$ is semicontinuous and satisfies excision and the cylinder axiom in the sense of Definition 8.2.1.1, and it is additive, semiexact, non-degenerate, separated or proper if so is \mathcal{C} , so that if \mathcal{C} has all these properties, and $\mathcal{I} = \mathsf{Pos}^+$, then \mathcal{C}^\flat is an enhanced category. If $I \supset \mathsf{Pos}^+$, then \mathcal{C}^\flat is also strongly semicontinuous and satisfies the strong cylinder axiom in the sense of Definition 8.2.1.8.

Proof. To construct the extension C^{\natural} , consider the barycentric subdivision functor $B^{\diamond}: \mathcal{I} \to \text{BiPos}^{\pm} \subset \mathcal{I}^{\diamond}$, and let $\mathcal{C}^{\natural} = B^{\diamond *} \mathcal{C}^{\diamond}$. For any $J \in \text{Pos}^{+}$, we have a \pm -bianodyne map $B^{\diamond}(I \times [1]) \rightarrow B^{\diamond}(I) \times L([1])$ of Example 3.2.8.5, so that \mathcal{C}^{\natural} is a reflexive family of categories, non-degenerate and/or separated if so is \mathcal{C} . More generally, for any right-closed embedding $f: J' \to J$ with characteristic map $\chi: J \to [1]$, we have $C^o(f) \cong J \times_{[1]} [2]$, so that Lemma 3.2.8.4 provides a \pm -bianodyne map $B^{\diamond}(C^{o}(f)) \to C^{o}(B^{\diamond}(f))$, and therefore C^{\natural} is proper if so is C. Moreover, C^{\dagger} is bar-invariant by Lemma 3.2.8.6, and for any left-finite $J \in \text{Pos}^{\pm} \subset \mathcal{I}$, the functorial map $\xi : B^{\diamond}(J) \to L(J)$ is \pm -bianodyne and provides an equivalence $\mathcal{C}^{\natural}|_{\operatorname{Pos}^{\pm}} \cong \mathcal{C}$. For any other bar-invariant extension \mathcal{C}' , the same map provides a canonical equivalence $\mathcal{C}' \cong \mathcal{C}^{\natural}$, and the extensions for functors and morphisms are then also obtained by applying B^{\diamond} . Since B^{\diamond} preserves coproducts and standard pushout squares, C^{\natural} is additive and semiexact if so is C. Moreover, being good, C is semicontinuous and satisfies the cylinder axiom by the same argument as in Lemma 8.2.1.2. Then for any $J \in Pos^+$ equipped with a map $I \to \mathbb{N}$, Lemma 3.2.8.4 provides a \pm -bianodyne map $B^{\diamond}(J/\mathbb{N}) \to B^{\diamond}(J)/L(\mathbb{N})$, and similarly for all the other terms in the cartesian square (7.3.2.2), so that semicontinuity for \mathcal{C} and the map $B(I) \to \mathbb{N}$ implies semicontinuity for \mathcal{C}^{\natural} and $I \to \mathbb{N}$. Analogously, the cylinder axiom for \mathcal{C} implies the cylinder axiom for C^{\dagger} . For excision, assume given $J \in \mathcal{I}$ equipped with a map $I \to S^{<}$. Let $B(I)^{\natural\natural}$ be the underlying partially ordered set of the biordered

set $B^{\diamond}(J)^{\natural\natural}$ of (3.2.8.3) (and $B^{\diamond}(J)^{\flat\natural}$ of (3.2.8.12)). Then the map (3.2.8.4) for B(J) fits into a cartesian cocartesian square

$$(8.2.3.2) \qquad \begin{array}{ccc} B(J)^{\natural\natural} & \longrightarrow & B(J) \\ & & \uparrow & & \uparrow \\ B(J_o) \times B(S^>) & \longrightarrow & B(J_o). \end{array}$$

By the same argument as in Lemma 8.2.1.2, Lemma 3.2.8.2 implies that \mathcal{C} is cartesian along the square (8.2.3.2), and then the unfolding \mathcal{C}^{\diamond} is cartesian along the corresponding square

$$B^{\diamond}(J)^{\flat\natural} \longrightarrow B^{\diamond}(J)$$

$$\uparrow \qquad \qquad \uparrow$$

$$B^{\diamond}(J_{o}) \times B^{\diamond}(S^{>}) \longrightarrow B^{\diamond}(J_{o}).$$

in Pos^{\pm} . By Corollary 3.2.8.7, this implies excision for \mathcal{C}^{\natural} . Finally, assume that $\mathcal{I} \supset \operatorname{Pos}^{+}$, and define the class of \mathcal{I} -bianodyne maps in \mathcal{I}^{\diamond} as the smallest saturated closed class that is closed under standard pushouts, contains all reflexive maps, and satisfies the following version of Definition 3.2.5.1 (ii):

• for any bicofibrations $J', J'' \to J$ in \mathcal{I}^{\diamond} such that $J \in \text{Pos}^+$, a map $f : J' \to J''$ cocartesian over J and such that the fibers $f : J'_j \to J''_j$ are \mathcal{I} -bianodyne for any $j \in J$ is itself \mathcal{I} -bianodyne.

Then exactly the same induction as in Proposition 3.2.7.3 shows that the unfolding $\mathcal{C}^{\natural \diamond}$ of the family \mathcal{C}^{\natural} is constant along all the \mathcal{I} -bianodyne maps, and then Lemma 3.2.6.4 also holds for \mathcal{I} -bianodyne maps with the same proof, so that \mathcal{C}^{\natural} is strongly semicontinuous and satisfies the strong cylinder axiom by the same argument as in Corollary 8.2.1.9.

Definition 8.2.3.8. A family of categories \mathcal{C} over Pos^{\pm} is *finitely complete* if for any left-finite $f: J' \to J$ in Pos^{\pm} , the transition functor $f^*: \mathcal{C}_J \to \mathcal{C}_{J'}$ admits a right-adjoint $f_*: \mathcal{C}_{J'} \to \mathcal{C}_J$, and for any square (8.1.4.1) in Pos^{\pm} satisfying (i) or (ii) of Definition 8.1.4.1, the base change map (2.2.1.4) is an isomorphism (8.1.4.2) between the corresponding functors $\mathcal{C}_{J_0} \to \mathcal{C}_{J'_1}$.

Remark 8.2.3.9. Since any full embedding in Pos^{\pm} is left-finite, Definition 8.1.4.8 makes sense for finitely complete families of categories over Pos^{\pm} .

Lemma 8.2.3.10. An additive non-degenerate tight finitely complete family of categories C over Pos^{\pm} is good in the sense of Definition 8.2.3.4, so that it extends to an enhanced category $C^{\natural} \to Pos^{+}$, with the same functoriality properties as in Proposition 8.2.3.7.

Proof. Same as Lemma 8.2.3.1.

We note that even if we start with an enhanced category $\mathcal{C} \to \operatorname{Pos}^+$ that is already defined over Pos^+ , Proposition 8.2.3.7 is still useful. For example, one can take $\mathcal{I} = \operatorname{PoSets}$, and extend \mathcal{C} to a family of categories $\mathcal{C}^{\natural} \to \operatorname{PoSets}$ over all partially ordered sets. We will call \mathcal{C}^{\natural} the *canonical extension* of the enhanced category \mathcal{C} ; here are some of its properties.

Lemma 8.2.3.11. Let $C^{\natural} = B^{\diamond *}C^{\diamond} \rightarrow \text{PoSets}$ be the bar-invariant extension of an enhanced category $C \rightarrow \text{Pos}^+$ provided by Proposition 8.2.3.7.

- (i) The fibration $\iota^*(\mathcal{C}^{\natural})^o_{\perp} \to \text{PoSets}$ is the bar-invariant extension of the opposite enhanced category \mathcal{C}^{ι} .
- (ii) For any left-closed embedding $l: J' \to J$ in PoSets, C^{\natural} is semicartesian along the corresponding cylinder square (2.2.4.4).
- (iii) C^{\natural} is weakly semicontinuous in the sense of Definition 8.1.4.9.

Proof. For (i), $\iota^*(\mathcal{C}^{\natural})^o_{\perp}$ is obviously bar-invariant, and then its restriction to Pos⁺ is identified with $\mathcal{C}^{\iota} = B_{\diamond}^*\mathcal{C}^{\diamond}$ simply by definition: the constructions of Proposition 8.2.3.7 and Proposition 7.3.3.4 are literally the same. For (ii), apply extended cylinder axiom and semiexactness, as in Corollary 7.2.3.6. Finally, for (iii), for any map $J \to \mathbb{N}$ in PoSets, semicontinuity for \mathcal{C}^{\natural} immediately implies that the unfolding $\mathcal{C}^{\natural \diamond}$ is constant along the corresponding map $L(J)^+ \to L(J)$ of (3.2.6.3). Then if we compose the projection $U(L(J)^+) \to Z_{\infty}$ with the map (3.1.3.9), and rewrite the corresponding standard pushout square in the alternative form (3.1.2.4), as in (3.1.3.10), then $\mathcal{C}^{\natural \diamond}$ is still semicartesian along this square by semiexactness. If we now denote $\mathcal{C}_{\infty} = \mathcal{C}^{\natural}_{J}$, $\mathcal{C}_{n} = \mathcal{C}^{\natural}_{J/n}$, $n \geq 0$, this means that the square

(8.2.3.3)
$$\mathcal{C}_{L(J)^{+}}^{\diamond} \cong \mathcal{C}_{\infty} \longrightarrow \prod_{n \geq 0} \mathcal{C}_{(2n+1)} \\
\downarrow \qquad \qquad \downarrow \\
\prod_{n \geq 0} \mathcal{C}_{2(n+1)} \longrightarrow \prod_{n \geq 0} \mathcal{C}_{n}$$

is semicartesian. But $\operatorname{Sec}^{\natural}(\mathbb{N},\mathcal{C}_{\scriptscriptstyle{\bullet}})\cong\operatorname{Sec}^{\natural}(Z_{\infty},\zeta^*\mathcal{C}_{\scriptscriptstyle{\bullet}})$ by Lemma 5.1.3.1. Moreover, if we evaluate this category by (3.1.3.10), we obtain (8.2.3.3) with \mathcal{C}_{∞} replaced

by $\operatorname{Sec}^{\natural}(\mathbb{N}, \mathcal{C}_{\bullet})$, but the square becomes cartesian. Thus the functor $\mathcal{C}_{\infty} \to \operatorname{Sec}^{\natural}(\mathbb{N}, \mathcal{C}_{\bullet})$ is an epivalence, and this is what we had to prove.

8.2.4. Examples and applications. We can now use Proposition 8.2.3.7 and Lemma 8.2.3.10 to construct two series of examples of enhanced categories in the sense of Definition 8.2.1.4. First, assume given a model category $\mathcal{C} = \langle \mathcal{C}, \mathcal{C}, \mathcal{F}, \mathcal{W} \rangle$, as in Section 5.3. Consider the enhanced category $K(\mathcal{C}) = K(\mathcal{C}, \operatorname{Pos}^+)$ of Example 8.2.1.16 and its restriction $K(\mathcal{C}, \operatorname{Pos}^\pm)$ to $\operatorname{Pos}^\pm \subset \operatorname{Pos}^+$. Since \mathcal{C} is by definition finitely complete, $K(\mathcal{C}, \operatorname{Pos}^\pm)$ is a finitely complete family over Pos^\pm in the sense of Definition 8.2.3.8, and if \mathcal{C} is in fact complete, then $\pi: K(\mathcal{C}) \to \operatorname{Pos}^+$ is a complete family in the sense of Definition 8.1.4.1. For any $J \in \operatorname{Pos}^\pm$, the fiber $K(\mathcal{C}, \operatorname{Pos}^\pm)_J \cong J^o\mathcal{C}$ carries a Reedy model structure, and if \mathcal{C} is complete, the same holds for $J \in \operatorname{Pos}^+$ and $K(\mathcal{C})_J$. In particular, extend W to a closed class of maps in $K(\mathcal{C})$ by defining a dense subcategory $K(\mathcal{C})_W$ by the cartesian square

(8.2.4.1)
$$K(\mathcal{C})_{W} \longrightarrow K(\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\varepsilon_{*}\mathcal{C}_{W} \longrightarrow \varepsilon_{*}\mathcal{C},$$

where $\varepsilon = \varepsilon(\mathsf{pt}) : \mathsf{pt} \to \mathsf{Pos}^{\bullet}$ is the embedding onto $\mathsf{pt} \in \mathsf{Pos}^{+}$. Then the relative category $\langle K(\mathcal{C},\mathsf{Pos}^{\pm}), W \rangle$ is localizable by Lemma 5.1.1.12, and we have the fibration $h^W(K(\mathcal{C},\mathsf{Pos}^{\pm})) \to \mathsf{Pos}^{\pm}$. If \mathcal{C} is complete, then the same holds for $\langle K(\mathcal{C}), W \rangle$.

Lemma 8.2.4.1. For any model category $\langle C, C, F, W \rangle$, the family of categories $h^W(K(C, \operatorname{Pos}^{\pm}))$ over Pos^{\pm} is additive, tight, non-degenerate and finitely complete, so that its extension $\mathcal{H}^W(C) = h^W(K(C, \operatorname{Pos}^{\pm}))^+$ provided by Lemma 8.2.3.10 is an enhanced category. Moreover, $\mathcal{H}^W(C) \cong h^W(K(C))$ if C is complete. A Quillenadjoint pairs of functors $\lambda: C \to C'$, $\rho: C' \to C$ between model categories C, C' induces an adjoint pair of enhanced functors $\mathcal{H}(\lambda): \mathcal{H}^W(C) \to \mathcal{H}^W(C')$, $\mathcal{H}(\rho): \mathcal{H}^W(C') \to \mathcal{H}^W(C)$.

Proof. The family $h^W(K(\mathcal{C}, \operatorname{Pos}^+))$ is additive since localization of model categories commutes with products, and non-degenerate since the functors (5.3.1.7) are conservative. For any left-finite map $f: J_0 \to J_1$, the adjoint $f_*: h^W(J_0^o\mathcal{C}) \to h^W(J_1^o\mathcal{C})$ exists by the Quilled Adjunction Theorem 5.3.1.1, and to check that a map (8.1.4.2) is an isomorphism, it suffices to take fibrant replacements and apply (8.1.4.2) for the finitely complete family $K(\mathcal{C}, \operatorname{Pos}^\pm)$.

Therefore $h^W(K(\mathcal{C}, \operatorname{Pos}^\pm))$ is finitely complete, and it is tight by Proposition 5.3.1.2. If \mathcal{C} is complete, then $h^W(K(\mathcal{C}))$ is additive, complete, tight and non-degenerate by the same argument, thus bar-invariant by Example 8.2.3.3, and then $h^W(K(\mathcal{C})) \cong \mathcal{H}^W(\mathcal{C})$ by the uniqueness part of Proposition 8.2.3.7. Finally, for any $J \in \operatorname{Pos}^+$, a Quillen-adjoint pairs of functors between some \mathcal{C} and \mathcal{C}' induces a Quillen-adjoint pair of functors between $J^o\mathcal{C}$ and $J^o\mathcal{C}'$, so the last claim also immediately follows from Theorem 5.3.1.1.

Secondly, assume given an additive category \mathcal{A} , and consider the category $C_{\cdot}(\mathcal{A})$ of chain complexes in \mathcal{A} , with the saturated CW-structure of Example 6.1.1.5. Again, consider the enhanced category $K(C_{\cdot}(\mathcal{A}), \operatorname{Pos}^{\pm})$ of Example 8.2.1.16, and extend W to a closed class of maps in $K(C_{\cdot}(\mathcal{A}), \operatorname{Pos}^{\pm})$ by

(8.2.4.2)
$$K(\mathcal{C})_{W} \longrightarrow K(\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\varepsilon_{*}\mathcal{C}_{W} \longrightarrow \varepsilon_{*}\mathcal{C},$$

where ε is as in (8.2.4.1).

Lemma 8.2.4.2. The relative category $\langle K(C_{\cdot}(A), \operatorname{Pos}^{\pm}, W \rangle$ is localizable for any additive category A, and the localization $h^W(K(C_{\cdot}(A)))$ is an additive tight non-degenerate and finitely complete family of categories over Pos^{\pm} , so that its extension $\operatorname{Ho}(A) = h^W(K(C_{\cdot}(A)))^+$ of Lemma 8.2.3.10 is an enhanced category.

Proof. Note that the opposite category \mathcal{A}^o is also additive. Then the relative category $\langle K(C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(\mathcal{A}), \operatorname{Pos}^\pm), W \rangle$ is localizable by Lemma 5.1.1.12 and Corollary 6.1.8.9 applied to \mathcal{A}^o , and $h^W(K(C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(\mathcal{A}), \operatorname{Pos}^\pm)$ is finitely complete by Corollary 6.1.8.9 and (6.1.2.3). Moreover, $h^W(K(C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(\mathcal{A}), \operatorname{Pos}^\pm)$ is obviously additive, it is non-degenerate by Lemma 6.1.8.6, and tight by (6.1.8.3) and Lemma 6.1.8.7 applied to $\operatorname{Cof}(C_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(\mathcal{A}^o)^J)^o$.

As another application of Proposition 8.2.3.7, we can construct a pushforward operation for augmented enhanced categories of Definition 8.2.2.6. Namely, assume given a map $f: I' \to I$ between partially ordered sets $I, I' \in \text{Pos}^+$. Then for any I-augmented enhanced category C, we have the I'-augmented category $f^{h*}C$ of (8.2.2.6).

Lemma 8.2.4.3. For any map $f: I \to I'$ in Pos⁺ and I-augmented enhanced category C, there exists an I-augmented enhanced category $f_*^h C$ and an I-augmented enhanced functor $\alpha: f^{h*} f_*^h C \to C$ such that for any I'-augmented enhanced category C', any

I-augmented enhanced functor $f^{h*}C' \rightarrow C$ *factors as*

$$(8.2.4.3) f^{h*}\mathcal{C}' \xrightarrow{f^{h*}\beta} f^{h*}f_*^h\mathcal{C} \xrightarrow{\alpha} \mathcal{C},$$

for a certain I'-augmented enhanced functor $\beta: \mathcal{C}' \to f_*^h\mathcal{C}$, unique up to a unique isomorphism. Moreover, for any commutative square (8.1.4.1) in Pos⁺ satisfying (i) or (ii) of Definition 8.1.4.1, and any J_0 -augmented enhanced category \mathcal{C} , the base change functor

(8.2.4.4)
$$g_1^{h*} f_*^h \mathcal{C} \to f_*^{h} g_0^{h*} \mathcal{C}$$

induced by (8.2.4.3) is an equivalence.

Proof. Let $\mathcal{I} = \text{PoSets}$, and denote $K^{\natural}(I) = K(I, \mathcal{I})$, $K^{\natural}(I') = K(I', \mathcal{I})$. By Proposition 8.2.3.7, any enhanced category C admits a unique bar-invariant extension $\mathcal{C}^{\natural} \to \mathcal{I}$, and an augmentation $\pi : \mathcal{C} \to K(I')$ extends to an augmentation $\pi^{\natural}: \mathcal{C}^{\natural} \to K^{\natural}(I')$ in the sense of Definition 8.1.3.1. By Lemma 3.2.8.4, $K^{\natural}(f)^*\mathcal{C}^{\natural}$ is then bar-invariant, thus canonically identified with the extension $(f^{h*}\mathcal{C})^{\natural}$. Now, for any I-augmented enhanced category C with the canonical bar-invariant extension $\mathcal{C}^{\natural} \to \mathcal{I}$, we can let $f_*^h \mathcal{C} = K^{\natural}(f)_* \mathcal{C}^{\natural}|_{K(I')}$, and then the decompositions (8.2.4.3) are provided by Corollary 2.4.3.1, so to prove the first claim, it suffices to check that $f_*^h \mathcal{C}$ is an I'-augmented enhanced category. Since \mathcal{C}^{\natural} is a proper non-degenerate I-augmented reflexive family by Proposition 8.2.3.7, $f_*^h C$ is a proper non-degenerate I'-augmented reflexive family by Corollary 8.1.3.5 that is moreover given by (8.1.3.12). Then both Y and $K(f)_{\dagger}$ preserve coproducts and standard pushout squares, so that $f_*^h \mathcal{C}$ is additive and semiexact. Moreover, $K(f)_{\dagger} \circ Y$ sends cocartesian squares of the form (7.3.2.1), (7.3.2.3), (7.3.2.2) to the corresponding squares of Lemma 8.1.2.4 in BiPos⁺, so that $f_*^h \mathcal{C}$ is semicontinuous and satisfies excision and the cylinder axiom. The second claim now follows from (2.4.3.4), by the same argument as in Corollary 8.1.3.5.

Yet another simple but useful corollary of Proposition 8.2.3.7 is the following observation: if we think of an enhanced category \mathcal{C} as providing an enhancement for \mathcal{C}_{pt} , then \mathcal{C} considered simply as a category also inherits a canonical enhancement. Namely, we have the following.

Lemma 8.2.4.4. For any enhanced category \mathcal{C} , with the bar-invariant extension $\mathcal{C}^{\natural} \to \operatorname{PoSets}$ and the co-reflexive family $\sigma^*\mathcal{C}^{\natural o}_{\perp} \to \operatorname{PoSets}$ provided by Lemma 8.1.2.6, the restriction $\mathcal{C}_{\wr} \to \operatorname{Pos}^+$ of the transpose-opposite fibration $(\sigma^*\mathcal{C}^{\natural o}_{\perp})^o_{\perp}$ to $\operatorname{Pos}^+ \subset \operatorname{PoSets}$ is an enhanced category, and $(\mathcal{C}_{\wr})_{\mathsf{pt}} \cong \mathcal{C}^{\natural}$.

Proof. The family $C_1 \to \text{Pos}^+$ is reflexive and proper by Lemma 8.1.2.6 and Corollary 8.2.1.12. It is obviously additive, so we need to check that it is semiexact, semicontinuous and satisfies excision and the cylinder axiom. Each of these checks amount to showing that C_i is cartesian or semicartesian along a certain cocartesian square (8.1.2.5) in Pos⁺. Moreover, (8.1.2.9) induces a fibration $C_1 \to K(Pos^+)$, and $K(Pos^+)$ is cartesian along all these squares, so we can apply the criterion of Lemma 2.3.3.7. For semiexactness or excision, we start with $I \in \text{Pos}^+$ equipped with a map $I \to V$ resp. $I \to S^<$, and then choosing a cartesian section $[1]^2 \to K(Pos^+)$ of the fibration $K(Pos^+) \to Pos^+$ over the corresponding square in Pos⁺ amounts to choosing a Pos⁺-augmentation α for J. Then if we let $J_{\bullet} = \alpha^* \text{ PoSets}_{\bullet} \to J$ be the corresponding cofibration, we are done by semiexactness resp. excision for C^{\natural} along the square corresponding to $J_{\bullet} \to V$ resp. $I_{\bullet} \to S^{<}$. For semicontinuity, what we choose is a Pos⁺-augmentation for J/\mathbb{N} , not J; however, then the composition $J_{\bullet} \to J/\mathbb{N} \to \mathbb{N}$ is a cofibration, and by Proposition 8.2.3.7, C^{\natural} is strongly semicontinuous. Analogously, for the cylinder axiom, $J_{\bullet} \to J/[1]$ is a cofibration, so the composition map $J_{\bullet} \to J/[1] \to [1]$ is a cofibration as well, and \mathcal{C}^{\natural} satisfies the strong cylinder axiom, so again, we are done.

Definition 8.2.4.5. For any enhanced categories \mathcal{E} , \mathcal{E}' , the *enhanced functor category* $\mathcal{F}un^h(\mathcal{E},\mathcal{E}')$ is an enhanced category equipped with an enhanced functor

(8.2.4.5)
$$\operatorname{ev}: \mathcal{E} \times^h \mathcal{F}un^h(\mathcal{E}, \mathcal{E}') \to \mathcal{E}'$$

such that for any enhanced category \mathcal{C} , an enhanced functor $\gamma: \mathcal{E} \times^h \mathcal{C} \to \mathcal{E}'$ factors as

$$(8.2.4.6) \mathcal{E} \times^{h} \mathcal{C} \xrightarrow{\operatorname{id} \times \gamma'} \mathcal{E} \times^{h} \mathcal{F}un^{h}(\mathcal{E}, \mathcal{E}') \xrightarrow{\operatorname{ev}} \mathcal{E}'$$

for some $\gamma': \mathcal{C} \to \mathcal{F}un^h(\mathcal{E}, \mathcal{E}')$, uniquely up to a unique isomorphism.

Corollary 8.2.4.6. For any enhanced category C and $J \in PoSets$, there exists an enhanced functor category $J_h^o C = \mathcal{F}un^h(K(J^o), C)$.

Proof. Let $\varepsilon_J: \operatorname{Pos}^+ \to K(\operatorname{PoSets})$ be the unique cartesian section of the fibration $K(\operatorname{PoSets}) \to \operatorname{Pos}^+$ sending pt to $J \in K(\operatorname{PoSets})_{\operatorname{pt}} \cong \operatorname{PoSets}$ — explicitly, ε_J sends $J' \in \operatorname{Pos}^+$ to $J' \times J$ — and let $J_h^o \mathcal{C} \cong \varepsilon_J^* \mathcal{C}_{\ell}$. Then $J_h^o \mathcal{C}$ is an enhanced category by Lemma 8.2.4.4 and Lemma 8.2.2.4, and the transpose-opposite co-reflexive family $(J_h^o \mathcal{C})_{\perp}^o$ is $(\mathcal{C}_{\perp}^o)^{hJ}$, so it has the required universal property by Corollary 8.1.2.7.

If J = [1], we denote $\operatorname{ar}_h(\mathcal{C}) = [1]_h^o \mathcal{C} \cong \mathcal{F}un(K([1]), \mathcal{C})$ and call it the *enhanced* arrow category of the enhanced category \mathcal{C} ; we denote by

(8.2.4.7)
$$\sigma, \tau : \operatorname{ar}_h(\mathcal{C}) \to \mathcal{C}, \qquad \eta : \mathcal{C} \to \operatorname{ar}_h(\mathcal{C})$$

the enhanced functors induced by $s,t: pt \to [1]$ and $e:[1] \to pt$. Reflexivity of $\mathcal C$ immediately implies that just as in the unenhanced situation, σ resp. τ is right resp. left-adjoint to η . The functors (8.1.1.3) taken together define an epivalence

$$(8.2.4.8) v: \operatorname{ar}^{h}(\mathcal{C}) \to \operatorname{ar}(\mathcal{C}|\operatorname{Pos}^{+})$$

whose target is the relative arrow category of (2.2.4.9), and this is an equivalence if $C = K(\mathcal{E})$ for some category \mathcal{E} . If the set J is arbitrary but C is equipped with an enhanced functor $\pi : C \to K(J^o)$ – for example, if it is J^o -augmented or J^o -coaugmented in the sense of Definition 8.2.2.6 – then we can also define the enhanced section category $Sec^h(J^o, C)$ by the cartesian square

where id in the bottom arrow is id $\in \operatorname{Fun}^h(K(J^o),K(J^o))_{\operatorname{pt}} \cong \operatorname{Fun}(J^o,J^o)$. We let $\operatorname{Sec}^h(J^o,\mathcal{C}) = \mathcal{S}ec(J^o,\mathcal{C})_{\operatorname{pt}}$, and if we are given some other $J' \in \operatorname{PoSets}$ equipped with a map $\alpha: J' \to J$, we will simplify notation by writing $\operatorname{Sec}^h(J'^o,\mathcal{C}) = \operatorname{Sec}^h(J'^o,K(\alpha^o)^*\mathcal{C})$ and $\operatorname{Sec}^h(J'^o,\mathcal{C}) = \operatorname{Sec}^h(J'^o,K(\alpha^o)^*\mathcal{C})$. Equivalently, we can define $\operatorname{Sec}^h(J'^o,\mathcal{C})$ by the cartesian square

Explicitly, we have an equivalence

(8.2.4.11)
$$\operatorname{Sec}^{h}(J'^{o}, \mathcal{C}) \cong \mathcal{C}_{\langle J', \alpha^{o} \rangle}$$

between $\operatorname{Sec}^h(J'^o,\mathcal{C})$ and the fiber of $\pi:\mathcal{C}\to K(J^o)$ over the J^o -augmented set $\langle J',\alpha^o\rangle$, and if we have two such sets J'_0,J'_1 , a map $f:J'_0\to J'_1$ over J induces an enhanced functor $f^{o*}:\operatorname{Sec}^h(J'^o_1,\mathcal{C})\to\operatorname{Sec}^h(J'^o_0,\mathcal{C})$. In particular, for any $j\in J$, we have the evaluation enhanced functor $\operatorname{Sec}^h(J^o,\mathcal{C})\to\mathcal{C}_i$ to the enhanced fiber (8.2.2.5). If π is a J^o -augmentation resp. coaugmentation, there is more functoriality: f^{o*} is defined when f is only lax resp. co-lax over J. We also have the following enhanced version of Lemma 2.4.3.2.

Lemma 8.2.4.7. Assume given a partially ordered set J, a right-reflexive full embedding $f: J' \to J$, with adjoint map $f_{\dagger}: J \to J'$, and a J° -augmented enhanced category C. Then the restriction functors

$$f^{o*}: \operatorname{Sec}^h(J^o, \mathcal{C}) \to \operatorname{Sec}^h(J'^o, \mathcal{C}), \qquad f^*: \operatorname{Sec}^h(J, \mathcal{C}_{h\perp}) \to \operatorname{Sec}^h(J', \mathcal{C}_{h\perp})$$

are right resp. left-reflexive, with fully faithful adjoints given by f_+^{o*} resp. f_+^* .

Proof. For C, apply Lemma 8.1.3.3 to $L(f): \langle L(J'), f^o \rangle \to \langle L(J), \mathsf{id} \rangle$. For $C_{h\perp}$, apply the same argument to $C_{h\perp}^t$.

Lemma 8.2.4.8. For any $J \in Pos^+$ and J-augmented enhanced category C, the evaluation functor

(8.2.4.12)
$$\operatorname{Sec}^h(J,\mathcal{C}) \to \prod_{j \in J} \mathcal{C}_j$$

is conservative. Moreover, assume given a commutative square

$$(8.2.4.13) \qquad \qquad \int_{01} \longrightarrow J_0$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_1 \longrightarrow J$$

in Pos^+ that is either (i) a standard pushout square, or (ii) one of the squares (7.3.2.1), (7.3.2.2), (7.3.2.3), (8.2.1.2), (8.2.1.3). Then for any *J*-augmented enhanced category C, the induced square

(8.2.4.14)
$$\mathcal{S}ec^{h}(J,\mathcal{C}) \longrightarrow \mathcal{S}ec^{h}(J_{0},\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{S}ec^{h}(J_{1},\mathcal{C}) \longrightarrow \mathcal{S}ec^{h}(J_{01},\mathcal{C})$$

of enhanced categories and functors is (i) semicartesian resp. (ii) cartesian.

Proof. Immediately follows from (8.2.4.11) and the corresponding properties of the enhanced category C.

8.3. Representability and its consequences.

8.3.1. Representability for enhanced categories. Let us now prove a version of representability theorems of Section 6.3 for small enhanced categories.

Assume given a complete fibrant Segal space $X \in \Delta^o \Delta^o$ Sets in the sense of Definition 7.3.4.3, and consider the corresponding discrete fibration $\Delta \Delta X \to \Delta \times \Delta$. As in Section 7.2, we refer to the two factors in the product $\Delta \times \Delta$ as to the *Reedy* and *simplicial* factor. Let

(8.3.1.1)
$$\varphi = ((F \circ \iota) \times \mathsf{id}) \circ \delta : \Delta \to \mathsf{Pos}^+ \times \Delta,$$

where $\delta: \Delta \to \Delta \times \Delta$ is the diagonal embedding, $F: \Delta \to \operatorname{Pos}^+$ is the standard full embedding, and $\iota: \Delta \to \Delta$ is the involution $[n] \mapsto [n]^o$. Then we have the discrete fibration

(8.3.1.2)
$$\pi: \mathcal{E}(X) = (\varphi \times id)_* \Delta \Delta X \to Pos^+ \times \Delta \times \Delta,$$

where $\varphi \times \text{id} : \Delta \times \Delta \to \text{Pos}^+ \times \Delta \times \Delta$ is induced by (8.3.1.1), and the category $\mathcal{E}(X)$ in (8.3.1.2) comes equipped with the closed class of maps

$$(8.3.1.3) E = \pi^*(\star \times + \times \natural).$$

Explicitly, $f \in E$ iff $\pi(f) = f_0 \times f_1 \times f_2$, where f is a invertible map in Pos⁺, f_1 is a special map in the Reedy factor Δ , and f_2 is any map in the simplicial factor Δ . If $X = \operatorname{pt}$ is the constant Segal space with value pt, so that (8.3.1.2) is an equivalence, then $\mathcal{E}(X) \cong \operatorname{Pos}^+ \times \Delta \times \Delta$ is localizable with respect to the class E of (8.3.1.3), and $h^E(\operatorname{Pos}^+ \times \Delta \times \Delta) \cong \operatorname{Pos}^+$.

Lemma 8.3.1.1. For any complete fibrant Segal space $X \in \Delta^o \Delta^o$ Sets, the category $\mathcal{E}(X)$ of (8.3.1.2) is localizable with respect to the class E of (8.3.1.3), and the localization

(8.3.1.4)
$$K(X) = h^{E}(\mathcal{E}(X))$$

together with the projection $K(X) \to \operatorname{Pos}^+$ induced by (8.3.1.2) is an enhanced category in the sense of Definition 8.2.1.4.

Proof. The projection $\mathcal{E}(X) \to \operatorname{Pos}^+ \times \Delta \times \Delta \to \operatorname{Pos}^+$ is a fibration with small fibers, so by Lemma 5.1.1.12, the relative category $\langle \mathcal{E}(X), E \rangle$ is localizable, and $K(X) \to \operatorname{Pos}^+$ is a fibration. Moreover, we can first localize with respect to a smaller class $\pi^*(\star \times \star \times \natural)$, and this amounts to taking $\theta_!$ with respect to the projection $\theta: \operatorname{Pos}^+ \times \Delta \times \Delta \to \operatorname{Pos}^+ \times \Delta$ onto the Reedy factor, so that we have

(8.3.1.5)
$$K(X) \cong h^+(\theta_! \mathcal{E}(X)),$$

where + is the class of special maps with respect to the Segal fibration $\theta_!\mathcal{E}(X) \to \operatorname{Pos}^+ \times \Delta \to \Delta$. Since $F \circ \iota : \Delta \to \operatorname{Pos}^+$ is fully faithful, for any fibration $\mathcal{E} \to \Delta$, we have

$$(8.3.1.6) \varphi_* \mathcal{E} \cong (\operatorname{id} \times (F \circ \iota))^* \delta_* (F \circ \iota)_* \mathcal{E} \cong (\operatorname{id} \times \iota)^* \mu^* (F \circ \iota)_* \mathcal{E},$$

where $\delta: \operatorname{Pos}^+ \to \operatorname{Pos}^+ \times \operatorname{Pos}^+$ is the diagonal embedding, and μ is the product functor (8.1.5.1). The same identification then holds for any fibration $\mathcal{E} \to \Delta \times \Delta$ and $(\varphi \times \operatorname{id})_* \mathcal{E}$, and $(\operatorname{id} \times \iota)^* \mu^*$ commutes with $\theta_!$ by (5.1.1.9), so that if we let

(8.3.1.7)
$$\mathcal{C} = \theta_!((F \circ \iota) \times \mathrm{id})_* \Delta \Delta X,$$

then (8.3.1.5) and (8.3.1.6) provide an equivalence $K(X) \cong h^+((\operatorname{id} \times \iota)^* \mu^* \mathcal{C})$, and this is in turn identified with the expansion $\operatorname{Exp}(\mathcal{C})$ by (8.1.5.5). Then by Corollary 8.2.1.12, it suffices to check that $\mathcal{C} \to \operatorname{Pos}^+$ is a complete restricted Segal family of groupoids. However, we have the fully faithful nerve functor $N: \operatorname{Pos}^+ \to \Delta^o$ Sets, and the composition $N \circ F: \Delta \to \Delta^o$ Sets is the Yoneda embedding Y, so that we have

$$(8.3.1.8) C \cong \theta_!(\mathsf{N} \times \mathsf{id})^*(\mathsf{Y} \times \mathsf{id})_*(\iota \times \mathsf{id})_*\Delta\Delta X \cong \mathsf{N}^*\theta_!(\mathsf{Y} \times \mathsf{id})_*\Delta\Delta X^{\iota},$$

where we denote $X^{\iota} = (\iota \times \operatorname{id})^{o*}X \cong (\iota \times \operatorname{id})^{\varrho}X$. But X^{ι} is also a complete fibrant Segal space, it represents a family of groupoids $\mathcal{H}(X^{\iota}) \to \Delta^{o}\Delta^{o}$ Sets described in Lemma 6.3.5.10, and as in Remark 6.3.5.11, (2.4.3.4) together with this description provide an equivalence $\theta_{!}(Y \times \operatorname{id})_{*}\Delta\Delta X^{\iota} \cong L^{*}\mathcal{H}(X^{\iota})$. We are then done by Proposition 7.3.4.8.

Example 8.3.1.2. Assume given a small category I, and let X = L(N(I)) be its nerve considered as a bisimplicial set constant in the simplicial direction. Then X is a fibrant Segal space, complete if I is rigid, and in this case, $K(X) \cong K(I)$ is the enhanced category corresponding to I, as in Example 8.2.1.16.

Theorem 8.3.1.3. Let $i: \operatorname{Pos} \to \operatorname{Pos}^+$ be the natural full embedding. Then for any restricted enhanced category $\mathcal{E} \to \operatorname{Pos}$ in the sense of Definition 8.2.1.3, there exists a complete fibrant Segal space X and an equivalence $\mathcal{E} \cong i^*K(X)$ over Pos , and for any such X and any enhanced category $\mathcal{E}^+ \to \operatorname{Pos}^+$ in the sense of Definition 8.2.1.4, an equivalence $i^*\mathcal{E}^+ \cong \mathcal{E}$ over Pos comes from an equivalence $\mathcal{E}^+ \cong K(X)$ over Pos^+ . If \mathcal{E} is κ -bounded by an uncountable regular cardinal κ , then one choose $X \in \Delta^0 \Delta^0 \operatorname{Sets}_{\kappa}$. Moreover, for any two complete fibrant Segal spaces X, X' and enhanced functor $\gamma: i^*K(X) \to i^*K(X')$, there exists a map $f: X \to X'$ such that $i^*K(f) \cong \gamma$, and for any enhanced functor $\gamma^+: K(X) \to K(X')$, there exists a map $f: X \to X'$ such that $K(f) \cong \gamma^+$. Finally, two maps $f, f': X \to X'$ are homotopic if and only if $K(f) \cong K(f')$, and this happens if and only if $i^*K(f) \cong i^*K(f')$.

Proof. By Proposition 8.1.5.2, for any restricted enhanced category $\mathcal{E} \to \text{Pos}$, we have $\mathcal{E} \cong \text{Exp}(\mathcal{C})$ for a complete restricted Segal family of groupoids $\mathcal{C} \to \text{Pos}^+$,

and any enhanced $\mathcal{E}^+ \to \operatorname{Pos}^+$ equipped with an equivalence $i^*\mathcal{E}^+ \cong \mathcal{E}$ is of the form $\operatorname{Exp}(\mathcal{C}^+)$ for a semicanonical extension $\mathcal{C}^+ \to \operatorname{Pos}^+$ of the family \mathcal{C} . Moreover, for any two complete restricted Segal families $\mathcal{C}_0, \mathcal{C}_1 \to \operatorname{Pos}$, an enhanced functor $\gamma: \operatorname{Exp}(\mathcal{C}_0) \to \operatorname{Exp}(\mathcal{C}_1)$ is of the form $\operatorname{Exp}(\gamma)$ for a functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ over Pos , the same holds for their semicanonical extensions, and $\operatorname{Exp}(\gamma) \cong \operatorname{Exp}(\gamma')$ if and only if $\gamma \cong \gamma'$. Now for first two claims, it remains to observe that Lemma 8.3.1.1 actually provides an equivalence $K(X) \cong \operatorname{Exp}(\mathbb{N}^*L^*\mathcal{H}(X))$, and apply Proposition 7.3.4.8, Proposition 7.2.4.1 and Theorem 6.3.2.13. For the last claim, note that $f, f': X \to X'$ are homotopic iff $\mathcal{H}(f) \cong \mathcal{H}(f')$, and again apply Proposition 7.2.4.1.

Corollary 8.3.1.4. For any restricted enhanced categories \mathcal{E} , \mathcal{E}' , isomorphism classes of enhanced functors $\mathcal{E} \to \mathcal{E}'$ form a set.

Proof. Clear. □

Corollary 8.3.1.5. For any restricted enhanced category \mathcal{E} , there exists an enhanced category \mathcal{E}^+ equipped with an equivalence $i^*\mathcal{E}^+\cong\mathcal{E}$. Moreover, any such extension $\mathcal{E}^+\to \operatorname{Pos}^+$ of the restricted enhanced category $\mathcal{E}\to \operatorname{Pos}$ is small, and for any two restricted enhanced categories \mathcal{E}_0 , \mathcal{E}_1 with extensions \mathcal{E}_0^+ , \mathcal{E}_1^+ , an enhanced functor $\gamma:\mathcal{E}_0\to\mathcal{E}_1$ extends to an enhanced functor $\gamma^+:\mathcal{E}_0^+\to\mathcal{E}_1^+$, unique up to an isomorphism.

Proof. Clear. □

Corollary 8.3.1.6. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories is an equivalence resp. fully faithful if its is an epivalence resp. fully faithful over $pos \subset Pos^+$.

Proof. For the first claim, by Corollary 6.2.1.7, the unfolding γ^{\diamond} is an equivalence over the category of finite biordered sets. Thus if we represent γ by a map $f: X \to X'$ of fibrant complete Segal spaces, and let $f_n: X_n \to X'_n$ be its restriction to $[n] \times \Delta \subset \Delta \times \Delta$, for any n, then f_n is an isomorphism on all the homotopy groups, thus a weak equivalence, and then so is f. For the second claim, replace \mathcal{C}' with the essential image of γ .

Corollary 8.3.1.7. An enhanced category C is κ -bounded by the countable cardinal κ if and only if $\|C_{\mathsf{pt}}\| < \kappa$ and $C \cong K(C_{\mathsf{pt}})$.

Proof. The "if" part is clear. For the "only if", $\|\mathcal{C}_{pt}\| < \kappa$ by definition, and also $\|\mathcal{C}_J\| < \kappa$ for any $J \in \text{pos}$. Therefore all these categories \mathcal{C}_J are rigid, and then as in Lemma 7.1.1.4, (8.1.1.3) is an equivalence for any $J \in \text{pos}$, and \mathcal{C} is cartesian over standard pushout squares in pos, so that (8.1.2.2) is an equivalence over pos. Then it is an equivalence by Corollary 8.3.1.6.

Corollary 8.3.1.8. Assume given a map $f: J' \to J$ in PoSets, with Noetherian J, and a small enhanced category C such that for any element $j \in J$, any enhanced functor $K(f^{-1}(J/j)) \to C$ extends to an enhanced functor $K(f^{-1}(J/j)) \to C$. Then for any left-closed subset $J_0 \subset J$, any enhanced functor $\gamma_0: K(f^{-1}(J_0)) \to C$ extends to an enhanced functor $\gamma: K(J') \to C$.

Proof. Choose a fibrant complete Segal space X such that $K(X) \cong \mathcal{C}$ provided by Theorem 8.3.1.3. Represent the enhanced functor γ_0 by a map $g_0: \mathbb{N}_{\diamond}(f^{-1}(J_0)) \to X$, and let U be the set of pairs $\langle J_1, g_1 \rangle$ of a left-closed subset $J_1 \subset J$ containing J_0 , and a map $g_1: \mathbb{N}_{\diamond}(f^{-1}(J_1)) \to X$ extending g_0 . Order U by saying that $\langle J_1, g_1 \rangle \leq \langle J'_1, g'_1 \rangle$ iff $J_1 \subset J'_1$ and $g_1 = g'_1|_{\mathbb{N}_{\diamond}(f^{-1}(J_1))}$. Then by the Zorn Lemma, U contains a maximal element $\langle J_1, g_1 \rangle$. If $J_1 \subset J$ is not the whole J, then since J is Noetherian, so is $J \setminus J_1$, and we can find a minimal element $j \in J \setminus J_1$. Then $J'_1 = J_1 \cup \{j\} \subset J$ fits into a standard pushout square $J'_1 = J_1 \sqcup_{J/'j} (J/j)$ of Example 3.1.2.7 that induces a corresponding decomposition of its preimage $f^{-1}(J'_1)$, and then by semiexactness, our assumption implies that the enhanced functor $\gamma_1: K(f^{-1}(J_1)) \to \mathcal{C}$ represented by g_1 extends to an enhanced functor $\gamma'_1: K(f^{-1}(J'_1)) \to \mathcal{C}$. By Lemma 6.2.5.2 and Proposition 6.2.5.3, g_1 then extends to a map $g'_1: \mathbb{N}_{\diamond}(f^{-1}(J'_1)) \to X$; this contradicts maximality. □

8.3.2. Categories of enhanced categories. By Corollary 8.3.1.4, restricted enhanced categories and isomorphism classes of enhanced functors between them form a well-defined category that we denote by Cat^h . By Corollary 8.3.1.5, the same category can be defined as the category of small enhanced categories $\mathcal{E} \to \operatorname{Pos}^+$ and again, isomorphism classes of enhanced functors between them. Theorem 8.3.1.3 then provides an equivalence

$$(8.3.2.1) h_{css}^{W}(\Delta^{o}\Delta^{o}\operatorname{Sets}) \cong \operatorname{Cat}^{h}, X \mapsto K(X),$$

where $h_{css}^W(\Delta^o \Delta^o \operatorname{Sets}) \subset h^W(\Delta^o \Delta^o \operatorname{Sets})$ is the full subcategory spanned by complete fibrant Segal spaces. For any small enhanced category \mathcal{E} , we have a

well-defined category $\mathcal{E} \setminus^h \operatorname{Cat}^h$ of small categories \mathcal{C} equipped with an enhanced functor $\alpha: \mathcal{E} \to \mathcal{C}$, with morphisms given by isomorphism classes of lax functors $\langle \varphi, a \rangle : \langle \mathcal{C}, \alpha \rangle \to \langle \mathcal{C}', \alpha' \rangle$ under \mathcal{E} such that $\varphi : \mathcal{C} \to \mathcal{C}'$ is an enhanced functor, and $a: \varphi \circ \alpha \to \alpha'$ is a morphism over Pos⁺. We also have a category $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$ of small enhanced categories \mathcal{C} equipped with an enhanced functor $\alpha: \mathcal{C} \to \mathcal{E}$, with morphisms given by isomorphism classes of lax functors $\langle \varphi, a \rangle : \langle \mathcal{C}, \alpha \rangle \to \langle \mathcal{C}', \alpha' \rangle$ over \mathcal{E} such that $\varphi : \mathcal{C} \to \mathcal{C}'$ is an enhanced functor, and $a: \alpha \to \alpha' \circ \varphi$ is a morphism over Pos⁺. Inside Cat^h // $^h \mathcal{E}$, we have a dense subcategory $\operatorname{Cat}^h /\!\!/_{\star}^h \mathcal{E}$ defined by the closed class of functors over \mathcal{E} — that is, lax functors $\langle \varphi, a \rangle$ such that a is an isomorphism. We have the involution $\iota: \mathsf{Cat}^h \to \mathsf{Cat}^h$ sending \mathcal{C} to the enhanced-opposite category \mathcal{C}^{ι} , we can consider the twisted version $\operatorname{Cat}^h /\!/_{\iota}^h \mathcal{E} = \iota^*(\operatorname{Cat}^h /\!/_{\iota}^h \mathcal{E})$ of the category $\operatorname{Cat}^h /\!/_{\iota}^h \mathcal{E}$, and as in Example 2.1.4.4, we have $\operatorname{Cat}^h /\!/_{\star_l}^h \mathcal{E} \cong \operatorname{Cat}^h /\!/_{\star}^h \mathcal{E}^l$. Enhanced groupoids of Definition 7.1.1.3 form a full subcategory $\operatorname{Sets}^h \subset \operatorname{Cat}^h$, and (8.3.2.1) identifies it with the full subcategory $h^W(\Delta^o \operatorname{Sets}) \subset h^W(\Delta^o \Delta^o \operatorname{Sets})$ spanned by objects constant in the Reedy direction; this is the equivalence $h^{W}(\Delta^{o} \operatorname{Sets}) \cong \operatorname{Sets}^{h}$ of Corollary 7.1.2.5. Sending a small category $I \in \text{Cat to } K(I)$ defines a functor

$$(8.3.2.2) Cat0 \rightarrow Cath,$$

and by Proposition 8.1.2.1, the functor (8.3.2.2) is right-adjoint to the forgetful functor $\operatorname{Cat}^h \to \operatorname{Cat}^0$, $\mathcal{C} \mapsto \mathcal{C}_{pt}$, with the adjuntion map provided by the truncation functor (8.1.2.2). In particular, (8.3.2.2) is a fully faithful embedding. Note that its source is Cat^0 and not Cat – from the point of view of enhanced category theory, Cat is simply a wrong category to consider. For any regular cardinal κ , we have a full subcategory $\operatorname{Cat}^h_\kappa \subset \operatorname{Cat}^h$ spanned by κ -bounded enhanced categories, and if κ is uncountable, (8.3.2.1) restricts to an equivalence

$$(8.3.2.3) h_{css}^{W}(\Delta^{o}\Delta^{o}\operatorname{Sets}_{\kappa}) \cong \operatorname{Cat}_{\kappa}^{h},$$

while for the countable κ , we have $\operatorname{Cat}_{\kappa}^{h} \cong \operatorname{Cat}_{\kappa}^{0} \cong \operatorname{Cat}_{\kappa}^{0}$ by Corollary 8.3.1.7.

We also have an augmented version of Theorem 8.3.1.3. As in Section 7.4, let I be a Hom-finite directed cellular Reedy category (for example, I can be a left-bounded partially ordered set). Then for any complete fibrant I-Segal space X in the sense of Definition 7.4.1.1, its twisted simplicial expansion $N_{\sigma}(X|I)$ of (7.4.1.4) is a complete fibrant Segal space by Lemma 7.4.1.7, and if we let $K(X|I) = K(N_{\sigma}(X^{I}|I)^{I})$, then we have an enhanced functor

$$(8.3.2.4) K(X|I) \to K(I) \cong K(\mathsf{pt}|I)$$

induced by the map $X\to \operatorname{pt}$ to the constant functor $\operatorname{pt}:I^o\times\Delta^o\times\Delta^o\to\operatorname{Sets}$ with value $\operatorname{pt}.$

Theorem 8.3.2.1. Assume given a directed Hom-finite cellular Reedy category I, and let $i: K(I, Pos) \to K(I) = K(I, Pos^+)$ be the natural full embedding. Then for any complete fibrant I-Segal space X, the functor (8.3.2.4) is an I-augmentation for the enhanced category K(X|I). For any I-augmented restricted enhanced category \mathcal{E} , there exists a complete fibrant I-Segal space X and an equivalence $\mathcal{E} \cong i^*K(X|I)$ over K(I, Pos), and for any such X and any I-augmented enhanced category \mathcal{E}^+ , an equivalence $i^*\mathcal{E}^+ \cong \mathcal{E}$ over K(I, Pos) comes from an equivalence $\mathcal{E}^+ \cong K(X|I)$ over K(I). If \mathcal{E} is κ -bounded by an uncountable regular cardinal $\kappa > |I|$, then one choose $X \in I^0 \Delta^0 \Delta^0$ Sets $_\kappa$. Moreover, for any two complete fibrant I-Segal spaces X, X' and I-augmented enhanced functor $\gamma: i^*K(X|I) \to i^*K(X'|I)$, there exists a map $f: X \to X'$ such that $i^*K(f) \cong \gamma$, and for any I-augmented enhanced functor $\gamma^+: K(X|I) \to K(X'|I)$, there exists a map $f: X \to X'$ such that $K(f) \cong \gamma^+$. Finally, two maps $f, f': X \to X'$ are homotopic if and only if $K(f) \cong K(f')$, and this happens if and only if $i^*K(f) \cong i^*K(f')$.

Proof. The first claim is Proposition 7.4.4.2 (i) together with Lemma 7.4.3.11 and Lemma 8.1.5.5. For the second claim, use Proposition 7.4.4.2 (ii), again combined with Lemma 7.4.3.11 and Lemma 8.1.5.5. The other claims then follow from Lemma 8.1.5.5 and Proposition 7.4.4.2.

Just as Theorem 8.3.1.3, Theorem 8.3.2.1 has corollaries, namely, the obvious I-augmented counterparts of Corollary 8.3.1.4 and Corollary 8.3.1.5. As a consequence, I-augmented restricted enhanced categories and isomorphism classes of I-augmented functors between them form a well-defined category $\operatorname{Cat}^h(I)$, the same category can be described as the category of small I-augmented enhanced categories $\mathcal{E} \to K(I)$ and isomorphism classes of I-augmented enhanced functors, and we have an equivalence

$$(8.3.2.5) h_{css}^{W}(I^{o}\Delta^{o}\Delta^{o}\operatorname{Sets}) \cong \operatorname{Cat}^{h}(I), X \mapsto K(X|I),$$

where as in (8.3.2.1), the left-hand side stands for the full subcategory in $h^W(I^o\Delta^o\Delta^o\operatorname{Sets})$ formed by complete fibrant I-Segal spaces. Inside $\operatorname{Cat}^h(I)$, we have the full subcategory $\operatorname{Sets}^h(I)$ spanned by I-augmented enhanced categories $\mathcal{C} \to K(I)$ that are families of groupoids, and (8.3.2.5) identifies it with $h^W(I^o\Delta^o\operatorname{Sets})$. For any map $f:I'\to I$ in Pos^+ , we have an adjoint pair of functors

$$(8.3.2.6) f^{h*}: \operatorname{Cat}^h(I) \to \operatorname{Cat}^h(I'), \quad f^h_*: \operatorname{Cat}^h(I') \to \operatorname{Cat}^h(I),$$

where f^{h*} sends an I-augmented small enhanced category $\mathcal{C} \to K(I)$ to the I'-augmented small enhanced category $K(f)^*\mathcal{C} \to K(I')$, and its right-adjoint f^h_*

is provided by Lemma 8.2.4.3. For any *I*-augmented small enhanced category C, the augmentation $\pi: C \to K(I)$ is in particular a morphism in Cat^h , and treating it as such gives a functor

(8.3.2.7)
$$\operatorname{Cat}^{h}(I) \to \operatorname{Cat}^{h}/[K(I)],$$

where as per our general convention, [K(I)] in the right-hand side stands for the object in Cat^h given by K(I). By Remark 8.2.2.7, (8.3.2.7) is a faithful functor.

Corollary 8.3.2.2. Assume given a partially ordered set J' equipped with a fibration $J' \to I$ to some $I \in Pos$, and a map $f: J' \to J$ to a Noetherian partially ordered set J that inverts maps cartesian over I. Moreover, assume given a small I-augmented enhanced category C such that for any $j \in J$, any I-augmented enhanced functor $K(f^{-1}(J/j)) \to C$ extends to an I-augmented enhanced functor $K(f^{-1}(J/j)) \to C$. Then for any left-closed subset $J_0 \subset J$, any I-augmented enhanced functor $\gamma_0 : K(f^{-1}(J_0)) \to C$ extends to an I-augmented enhanced functor $\gamma : K(J') \to C$.

Proof. Same as Corollary 8.3.1.8, with Theorem 8.3.1.3 replaced by Theorem 8.3.2.1.

8.3.3. Universal objects. While to define small enhanced categories, it suffices to consider families of categories over Pos, it is quite helpful to consider their semicanonical extensions to Pos⁺ provided by Corollary 8.3.1.5. The reason for this is that, roughly speaking, it is these extensions that have the correct 2-categorical structure. This is formalized as follows.

Definition 8.3.3.1. For any enhanced category $\pi: \mathcal{E} \to \operatorname{Pos}^+$ with unfolding $\pi: \mathcal{E}^{\diamond} \to \operatorname{BiPos}^+$, a *universal object* for \mathcal{E} is an object $e \in \mathcal{E}^{\diamond}$ such that for any enhanced category \mathcal{E}' and an object $e' \in \mathcal{E}'^{\diamond}_{\pi^{\diamond}(e)}$, there exists an enhanced functor $\gamma: \mathcal{E} \to \mathcal{E}'$ equipped with an isomorphism $\alpha: e' \cong \gamma^{\diamond}(e)$, and for any two enhanced functors $\gamma_0, \gamma_1: \mathcal{E} \to \mathcal{E}'$, a map $\gamma_0^{\diamond}(e) \to \gamma_1^{\diamond}(e)$ uniquely extends to a map $\gamma_0 \to \gamma_1$.

By definition, for any complete fibrant Segal space X, with the corresponding small enhanced category $\pi: \mathcal{E} = K(X) \to \operatorname{Pos}^+$, an object $e \in \mathcal{E}^{\diamond}$ is given by a pair $\langle J, a \rangle$ of a biordered set $I = \pi^{\diamond}(e) \in \operatorname{BiPos}^+$ and a map $a: \mathbb{N}_{\diamond}(I) \to X$. We then have the following criterion for universality.

Lemma 8.3.3.2. For any complete fibrant Segal space X, with the corresponding small enhanced category $\mathcal{E} = K(X)$, an object $e \in \mathcal{E}^{\diamond}$ is universal in the sense of Definition 8.3.3.1 if and only if the corresponding map $a : N_{\diamond}(I) \to X$ is a Segal equivalence in the sense of Example 7.3.4.10.

Proof. The "only if" part is clear: since the pair $\langle \gamma, a \rangle$ in Definition 8.3.3.1 is unique up to a unique isomorphism, universality for small enhanced categories $\mathcal{E}' = K(X')$ together with Theorem 8.3.1.3 immediately implies that a is a Segal equivalence. Conversely, assume that a is a Segal equivalence. Note that since \mathcal{E} in Definition 8.3.3.1 is small, it suffices to check the condition for small \mathcal{E}' indeed, for any object $e' \in \mathcal{E'}_{\pi(e)}^{\diamond}$, we may replace $\mathcal{E'}$ with the full subcategory spanned by $j^*e' \in \mathcal{E}'_{\mathsf{pt}}$ for all maps $j : \mathsf{pt} \to \pi(e)$. Then a pair $\langle \gamma, \alpha \rangle$ for any $\mathcal{E}' = K(X')$ is provided by Theorem 8.3.1.3. Moreover, a map $f: \gamma_0^{\diamond}(e) \to \gamma_1^{\diamond}(e)$ defines an object $\tilde{f} \in ar_h(\mathcal{E}')^{\diamond}_I$, where $ar_h(\mathcal{E}')$ is the enhanced arrow category provided by Corollary 8.2.4.6, and the same argument applied to $ar_h(\mathcal{E}')$ instead of \mathcal{E}' then shows that f extends to a map of functors $f:\gamma_0^{\diamond}\to\gamma_1^{\diamond}$. To finish the proof, it remains to show uniqueness: we assume given enhanced functors $\gamma_0, \gamma_1 : \mathcal{E} \to \mathcal{E}'$ and two maps $f, f' : \gamma_0^{\diamond} \to \gamma_1^{\diamond}$ such that f(e) = f'(e), and we need to show that f(e') = f'(e') for any object $e' \in \mathcal{E}^{\diamond}$. However, any such e'is represented by a map $\langle I', a' \rangle$, $I' \in BiPos^+$, $a' : N_{\diamond}(I') \to X$, so that we have a diagram

$$(8.3.3.1) I' \longleftarrow \mathsf{Q}_{\diamond}(\mathsf{N}_{\diamond}(I')) \xrightarrow{\mathsf{Q}_{\diamond}(a')} \mathsf{Q}_{\diamond}(X) \xleftarrow{\mathsf{Q}_{\diamond}(a)} \mathsf{Q}_{\diamond}(\mathsf{N}_{\diamond}(I)) \longrightarrow I,$$

in BiPos⁺, and a cartesian section of the fibration $\mathcal{E}^{\diamond} \to \text{BiPos}^+$ over (8.3.3.1) that evaluates to e' resp. e at I' resp. I. Since both γ_0^{\diamond} and γ_1^{\diamond} send this section to a cartesian section of the fibration $\mathcal{E}'^{\diamond} \to \text{BiPos}^+$, and this fibration is constant along all maps in (8.3.3.1) except for possibly $Q_{\diamond}(a')$, we are done by Lemma 2.3.2.14.

Example 8.3.3.3. For any partially ordered set I, an object $e \in K(I)^{\diamond}$ is the same thing as a biordered set $J \in \text{BiPos}^+$ equipped with an augmentation $\alpha: J \to L(I^o)$. Then in particular, the functor $\xi_{\perp}^o: B_{\diamond}(I)^o \to I$ defines an object $e \in K(I)_{B_{\diamond}(I)}^{\diamond}$, and by Proposition 8.2.3.7 and (8.1.2.16), this object is universal in the sense of Definition 8.3.3.1. If $I \in \text{Pos}^-$, then $J = L(I^o)$ with the tautological map id : $L(I^o) \to L(I^o)$ is also universal.

Proposition 8.3.3.4. Assume given a partially ordered set $I \in Pos^+$ and a small I-augmented enhanced category $\pi: \mathcal{C} \to K(I)$, with the opposite enhanced category \mathcal{C}^ι . Then there exists a biordered set $J \in BiPos^+$ and an object $c \in \mathcal{C}_J^{\iota \diamond} \subset \mathcal{C}^{\iota \diamond}$ in the unfolding $\mathcal{C}^{\iota \diamond}$ such that (i) the map $J \to L(I)$ corresponding to $\pi^\iota(c) \in K(I^o)_J$ is a biordered fibration, (ii) the functor $K(U(J)) \to \mathcal{C}$ corresponding to $c \in \mathcal{C}_J^{\iota \diamond} \subset \mathcal{C}_{U(J)}^\iota$ by (8.1.2.16) is I-augmented, and (iii) for any map $f: I' \to I$ in Pos^+ , the object $K(f^o)^*c \in K(f^o)^*\mathcal{C}^\iota$ is universal in the sense of Definition 8.3.3.1. Moreover, if \mathcal{C}

is κ -bounded by a regular cardinal $\kappa > |I|$, then one can choose $J \in BiPos_{\kappa}^+$, and if I = [1] and the fiber C_1 is κ -bounded, then one can choose J such that $|J_1| < \kappa$.

Proof. By Lemma 8.3.3.2, for any $I^{\diamond} \in \text{BiPos}^+$ and complete fibrant Segal space X, a map $a: \mathbb{N}_{\diamond}(I^{\diamond}) \to X$ defines an object in $K(X)^{\iota \diamond} \cong K(X^{\iota})^{\diamond}$, and this object is universal if and only if a is a Segal equivalence. Take a fibrant *I*-Segal space X and an equivalence $\mathcal{C} \cong K(X|I) = K(N_{\sigma}(X^{\iota}|I)^{\iota})$ provided by Theorem 8.3.2.1. Consider the *I*-augmented biordered set $J = Q_{\diamond}(I)(X^{\iota})$ of (7.4.2.7), and let $J_{\bullet} = I \setminus J$ with the biorder of Example 3.2.4.4, so that $J_{\bullet} \to L(I)$ is a biordered fibration. Then Proposition 7.4.4.2 provides a weak equivalence $w: N_{\diamond}(I)(J) \rightarrow X^{\iota}$ of *I*-Segal spaces, and w induces a map $a = N_{\sigma}(w)$: $N_{\diamond}(J_{\bullet}) \to N_{\sigma}(X^{\iota}|I)$ of (7.4.5.3) that is a Segal equivalence by Proposition 7.4.5.1. Moreover, by the same Proposition, $f^*(a)$ is also a Segal equivalence for any map $f: I' \to I$ in Pos⁺. To finish the proof, it remains to convert J, to a leftbounded biordered set. To do this, use the same procedure as in (7.1.2.13): filter X^{i} by the skeleton filtration $sk_{n} X$, with the induced exhaustive filtration on J_{\bullet} , and let $J_{+}^{+} \in BiPos^{+}$ be the corresponding incidence subset of Example 3.1.10.2. Then the map $N_{\diamond}(J_{\bullet}^+) \to N_{\diamond}(J_{\bullet})$ is a weak equivalence, so that its composition $a^+: N_{\diamond}(J_{\bullet}^+) \to N_{\sigma}(X^{\iota}|I)$ with a is a Segal equivalence, and the same goes for $f^*(a^+)$ for any $f: I' \to I$.

In the κ -bounded case, if κ is uncountable, then one can choose X to lie in $I^o \Delta^o \Delta^o$ Sets $_\kappa$ by Theorem 8.3.2.1, and then $Q_\diamond(I)(X^\iota)$ is in BiPos_κ^+ , and so is J_\bullet^+ . If κ is the smallest infinite cardinal, then I is finite, and $\mathcal{C} \cong K(\mathcal{C}_{\mathsf{pt}})$, while $\mathcal{C}_{\mathsf{pt}}$ is finite by Corollary 8.3.1.7. We can then just take $X = L(N(\mathcal{C}_{\mathsf{pt}}))$ constant in the simplicial direction; it is a finite I-bisimplicial set, $Q_\diamond(I)(X^\iota)$ is finite, and there it no need to pass to J_\bullet^+ .

Finally, if I=[1] and only \mathcal{C}_1 is κ -bounded, we can still choose a fibrant [1]-Segal space X with an equivalence $\mathcal{C}\cong K(X|[1])$, and then choose a fibrant Segal space $X_1'\in\Delta^o\Delta^o$ Sets $_\kappa$ with an equivalence $\mathcal{C}_1\cong K(X_1')$, or take $X_1'=L(N(\mathcal{C}_{1,\mathrm{pt}}))$ if κ is the smallest infinite cardinal. Then since $t:[0]\to [1]$ is left-reflexive, $X_1=t^*X$ is also a fibrant Segal space, and since $K(X_1)\cong K(X_1')\cong \mathcal{C}_1$, there exists a weak equivalence $w:X_1'\to X_1$. We can then replace $X:[1]^o\to\Delta^o\Delta^o$ Sets with $X':[1]^o\to\Delta^o\Delta^o$ Sets corresponding to the map $f:X_1'\to X_1\to X_0$, and w extends to a weak equivalence $X'\to X$. Now take $J=Q_\diamond([1])(X'^\iota)$, and let $J_*=[1]\setminus J$ with the biorder of Example 3.2.4.4, Then we still have a weak equivalence $N_\diamond([1])(J)\to X'\to X$ of [1]-Segal spaces, so Proposition 7.4.5.1 produces a Segal equivalence $N_\diamond(J_*)\to N_\sigma(X^\iota|[1])$. On the other hand, Lemma 4.3.3.7 applies to the projection $[1]\times\Delta\times\Delta\to[1]$ shows that $1\setminus J_*\cong J_1=Q_\diamond(X'_1')$, so if κ is uncountable, it remains to convert J_* to

 $J_{\bullet}^{+} \in \text{BiPos}^{+}$ by taking the incidence set for the skeleton filtration $\text{sk}_{n} X'$. If κ is countable, so that X'_{1} is finite, it is enough to do this for the fiber over $0 \in [1]$, by filtering X_{0} by subsets $\text{sk}_{n}(X_{0}) \cup f(X'_{1}) \subset X_{0}$.

Corollary 8.3.3.5. For any enhanced categories \mathcal{E} , \mathcal{E}' such that \mathcal{E} is small, morphisms between any two enhanced functors $\mathcal{E} \to \mathcal{E}'$ form a set, so that these enhanced functors form a well-defined category $\operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$. Moreover, there exist an enhanced functor category $\operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$ in the sense of Definition 8.2.4.5, and $\operatorname{Fun}^h(\mathcal{E},\mathcal{E}')_{\operatorname{pt}} \cong \operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$, so that $\operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$ is an enhancement for $\operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$.

Proof. For the first claim, choose a universal object $e \in \mathcal{E}_J^{\diamond} \subset \mathcal{E}^{\diamond}$, $J \in \text{BiPos}^+$ provided by Proposition 8.3.3.4, so that an enhanced functor $\gamma : \mathcal{E} \to \mathcal{E}'$ is uniquely determined by the object $\gamma^{\diamond}(e) \in \mathcal{E}_J'$ and morphisms $\gamma \to \gamma'$ correspond bijectively to morphisms $\gamma^{\diamond}(e) \to \gamma'^{\diamond}(e)$, and note that these of course form a set. Thus we indeed have a well-defined category $\text{Fun}^h(\mathcal{E}, \mathcal{E}')$, and moreover, evaluation at e provides an equivalence

(8.3.3.2)
$$\operatorname{ev}_{e} : \operatorname{Fun}^{h}(\mathcal{E}, \mathcal{E}') \cong \mathcal{E}'_{I}^{\diamond}.$$

Now we can just let $\mathcal{F}un^h(\mathcal{E},\mathcal{E}')\subset U(J)^o_h\mathcal{E}'$ be the full enhanced subcategory corresponding to $\mathcal{E}'^{\diamond}_J\subset \mathcal{E}'_{U(J)}\cong (U(J)^o_h\mathcal{E}')_{pt}$; the evaluation functor and its universal property are provided by Corollary 8.2.4.6, and (8.3.3.2) identifies $\mathcal{F}un^h(\mathcal{E},\mathcal{E}')_{pt}\cong \operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$.

As in the unenhanced case, we will sometimes simplify notation and write $\mathcal{E}^{\iota}\mathcal{E}' = \mathcal{F}un^h(\mathcal{E}^{\iota},\mathcal{E}')$, and $I_h^o\mathcal{E} = K(I)^{\iota}\mathcal{E}$ for an essentially small category I (if I = J is a partially ordered set, this is consistent with Corollary 8.2.4.6). If \mathcal{E} and \mathcal{E}' are equipped with enhanced functors $\mathcal{E}, \mathcal{E}' \to K(I)$ for some $I \in \operatorname{Pos}^+$ —for example, if both are I-augmented or I-coaugmented — we will denote by $\operatorname{Fun}_I^h(\mathcal{E},\mathcal{E}') \subset \operatorname{Fun}^h(\mathcal{E},\mathcal{E}')$ the full subcategory spanned by functors over K(I) (we recall that since I is rigid, being a functor over K(I) is a condition and not a structure). As a useful application of Corollary 8.3.3.5, we note that if we have two enhanced functors $\gamma, \gamma' : \mathcal{E} \to \mathcal{E}'$ with \mathcal{E} small, then a morphism $f : \gamma \to \gamma'$ gives rise to an enhanced functor

$$(8.3.3.3) f^h: \mathcal{E} \times^h K([1]) \to \mathcal{E}'$$

equipped with isomorphisms $f^h \circ s \cong \gamma$, $f^h \circ t \cong \gamma'$. Indeed, γ and γ' define enhanced objects in $\mathcal{F}un^h(\mathcal{E},\mathcal{E}')$, and to obtain (8.3.3.3), it suffices to lift f to an enhanced morphism between these two enhanced objects.

Corollary 8.3.3.6. Assume given a semicartesian square (8.1.2.6) of enhanced categories and enhanced functors, and another commutative square

(8.3.3.4)
$$\begin{array}{ccc}
\mathcal{C}'_{01} & \xrightarrow{\gamma'_{0}} & \mathcal{C}_{0} \\
\gamma'_{1} \downarrow & & \downarrow \\
\mathcal{C}_{1} & \longrightarrow & \mathcal{C}
\end{array}$$

of enhanced categories and enhanced functors such that C'_{01} is small. Then there exists an enhanced functor $\alpha: C'_{01} \to C_{01}$ equipped with isomorphisms $a_l: \gamma_l \circ \alpha \cong \gamma'_l$, l=0,1, and the triple $\langle \alpha, a_0, a_1 \rangle$ is unique up to a (non-unique) isomorphism.

Proof. By Lemma 8.1.2.5, the unfolding of the square (8.1.2.6) is also semicartesian. Evaluate this unfolding at $\pi(c)$ for a universal $c \in \mathcal{C}'_{01}^{\diamond}$.

In particular, Corollary 8.3.3.6 implies that any semicartesian square (8.3.3.4) with small \mathcal{C}_{01} is unique up to a unique equivalence, if it exists; if it does, we will call \mathcal{C}_{01} the *semicartesian product* of \mathcal{C}_0 and \mathcal{C}_1 over \mathcal{C} , and denote it by $\mathcal{C}_{01} = \mathcal{C}_0 \times_{\mathcal{C}}^h \mathcal{C}_1$. If \mathcal{C}_0 , \mathcal{C}_1 and \mathcal{C} are themselves small — or at least, if so are \mathcal{C}_0 and the functor $\mathcal{C}_1 \to \mathcal{C}$ — existence immediately follows from Theorem 8.3.1.3.

Lemma 8.3.3.7. For any enhanced categories C, C_0 , C_1 and enhanced functors C_0 , $C_1 \to C$ such that C_0 and $C_1 \to C$ are small, there exists a small semicartesian product $C_0 \times_C^h C_1$, and if C, C_0 , C_1 are I-augmented for some $I \in Pos^+$, then so is $C_0 \times_C^h C_1$.

Proof. If the functor $C_0 \to C$ is fully faithful, then already the cartesian product $C_0 \times_{\mathcal{C}} C_1$ is an enhanced category by Corollary 8.2.2.18 and Lemma 8.2.2.4. In the general case, we may replace C with a small full enhanced subcategory that contains the essential image of the functor $C_0 \to C$, so it suffice to consider the case when C, hence also C_1 is small. Choose complete Segal spaces X, X_0 and X_1 equipped with equivalences $C \cong K(X)$, $C_0 \cong K(X_1)$, $C_1 \cong K(X_1)$ provided by Theorem 8.3.1.3, represent functors $C_0, C_1 \to C$ by maps $X_0, X_1 \to X$, take replacements if necessary to insure that both maps are in F, and let $C_{01} = K(X_0 \times_X X_1)$. By Corollary 5.2.4.2 and Lemma 5.2.3.7, this gives a semicartesian square. In the augmented case, use Theorem 8.3.2.1 instead of Theorem 8.3.1.3.

8.3.4. Immediate applications. As the first application of semicartesian products provided by Lemma 8.3.3.7, we can define enhanced categories of sections

generalizing the enhanced categories $\mathcal{S}ec^h(I^o,\mathcal{C})$ of (8.2.4.9). Namely, by the universal property of the enhanced functor categories of Corollary 8.3.3.5, for any enhanced categories \mathcal{C} , \mathcal{E} with small \mathcal{C} , an enhanced functor $\gamma:\mathcal{C}'\to\mathcal{C}$ from a small \mathcal{C}' induces a pullback enhanced functor

$$(8.3.4.1) \gamma^* : \mathcal{F}un^h(\mathcal{C}, \mathcal{E}) \to \mathcal{F}un(\mathcal{C}', \mathcal{E}),$$

and an enhanced functor $\mathcal{E} \to \mathcal{E}'$ to some \mathcal{E}' induces a postcomposition enhanced functor $\mathcal{F}un^h(\mathcal{C},\mathcal{E}) \to \mathcal{F}un^h(\mathcal{C},\mathcal{E}')$. Then for any enhanced functor $\mathcal{E} \to \mathcal{C}$ between small enhanced categories, we can define an enhanced category $\mathcal{S}ec^h(\mathcal{C},\mathcal{E})$ by the semicartesian square

(8.3.4.2)
$$\begin{array}{ccc}
\operatorname{Sec}^{h}(\mathcal{C},\mathcal{E}) & \longrightarrow & \operatorname{\mathcal{F}un}^{h}(\mathcal{C},\mathcal{E}) \\
\downarrow & & \downarrow \\
\operatorname{pt}^{h} & \longrightarrow & \operatorname{\mathcal{F}un}^{h}(\mathcal{C},\mathcal{C}),
\end{array}$$

where as in (8.2.4.9), the bottom arrow corresponds to id : $\mathcal{C} \to \mathcal{C}$. More generally, if we have another small enhanced category \mathcal{E}' equipped with an enhanced functor $\mathcal{E}' \to \mathcal{C}$, we can define the enhanced category $\mathcal{F}un_{\mathcal{C}}^h(\mathcal{E}',\mathcal{E})$ by the semicartesian square

(8.3.4.3)
$$\mathcal{F}un_{\mathcal{C}}^{h}(\mathcal{E}',\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{E}',\mathcal{E})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$pt^{h} \longrightarrow \mathcal{F}un^{h}(\mathcal{E}',\mathcal{C}),$$

where the bottom arrow corresponds to the given enhanced functor $\mathcal{E}' \to \mathcal{C}$. Note that we actually have $\mathcal{F}un^h_{\mathcal{C}}(\mathcal{E}',\mathcal{E}) \cong \mathcal{S}ec^h(\mathcal{E}',\mathcal{E}' \times^h_{\mathcal{C}}\mathcal{E})$, and by abuse of notation, we will sometimes write $\mathcal{S}ec^h(\mathcal{E}',\mathcal{E}) = \mathcal{S}ec^h(\mathcal{E}',\mathcal{E}' \times^h_{\mathcal{C}}\mathcal{E})$. Just as $\mathcal{F}un^h(-,-)$, the enhanced category $\mathcal{F}un^h_{\mathcal{C}}(-,-)$ can be characterized by a universal property: for any small enhanced category \mathcal{C}' , we have a natural isomorphism

(8.3.4.4)
$$\operatorname{Cat}^{h}(\mathcal{C}', \operatorname{\mathcal{F}un}_{\mathcal{C}}^{h}(\mathcal{E}', \mathcal{E})) \cong (\operatorname{Cat}^{h}/\!/_{\star}^{h}\mathcal{C})(\mathcal{C}' \times^{h} \mathcal{E}', \mathcal{E}),$$

sending \mathcal{E} to $\mathcal{C}' \times_{\mathcal{C}}^{h} \mathcal{E}$. Then by the universal property (8.3.4.4), this lifts to an enhanced functor

$$(8.3.4.5) \gamma^* : \mathcal{F}un^h_{\mathcal{C}}(\mathcal{E}', \mathcal{E}) \to \mathcal{F}un^h_{\mathcal{C}'}(\gamma^*\mathcal{E}', \gamma^*\mathcal{E}),$$

where \mathcal{E} , \mathcal{E}' are arbitrary small enhanced categories equipped with enhanced functors to \mathcal{C} .

Remark 8.3.4.1. While up to an isomorphism, enhanced objects of the enhanced category $\mathcal{F}un^h_{\mathcal{C}}(\mathcal{E}',\mathcal{E})$ are enhanced functors $\mathcal{E}' \to \mathcal{E}$ over \mathcal{C} , already for morphisms this is usually not true. Namely, define $\operatorname{Fun}^h_{\mathcal{C}}(\mathcal{E}',\mathcal{E})$ as $\operatorname{\mathcal{F}un}^h_{\mathcal{C}}(\mathcal{E}',\mathcal{E})_{\operatorname{pt}}$; then there is a natural functor $\operatorname{Fun}^h_{\mathcal{C}}(\mathcal{E}',\mathcal{E}) \to \operatorname{Fun}_{\mathcal{C}}(\mathcal{E}',\mathcal{E})$, but it is usually *not* faithful. What happens is, a morphism in $\operatorname{Fun}_{\mathcal{C}}(\mathcal{E}',\mathcal{E})$ is a morphism between functors that satisfies a certain commutativity condition, and this condition becomes a structure in the enhanced setting.

We can also use semicartesian products to define enhanced fibers of small enhanced functors. Namely, for any small enhanced functor $\pi: \mathcal{C} \to \mathcal{E}$, and any enhanced object $e \in \mathcal{E}_{pt}$, the *enhanced fiber* \mathcal{C}_e is given by $\mathcal{C}_e = \operatorname{pt}^h \times_{\mathcal{E}}^h \mathcal{C}$, where $\operatorname{pt}^h \to \mathcal{E}$ is the enhanced functor $\varepsilon^h(e)$ (if $\mathcal{E} = K(I)$ for some $I \in \operatorname{Pos}^+$, then this is consistent with our earlier notation (8.2.2.5)). More generally, for any $e \in \mathcal{E}_J \subset \mathcal{E}$, $J \in \operatorname{Pos}^+$, we define the *generalized enhanced fiber* \mathcal{C}_e by the semicartesian square

(8.3.4.6)
$$\begin{array}{ccc} \mathcal{C}_e & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow \\ K(J^o) & \longrightarrow & \mathcal{E}, \end{array}$$

where the bottom arrow corresponds to e. By Corollary 8.3.3.6, an enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ over \mathcal{E} then defines an enhanced functor $\gamma_e: \mathcal{C}'_e \to \mathcal{C}_e$.

Lemma 8.3.4.2. For enhanced categories C, C' equipped with small enhanced functors to an enhanced category \mathcal{E} , an enhanced functor $\gamma: C' \to C$ over \mathcal{E} is fully faithful resp. an equivalence if and only if for any $e \in \mathcal{E}$, this holds for the enhanced functor $\gamma_e: C'_e \to C_e$.

Proof. The "only if" part immediately follows from Corollary 8.3.3.6. For the "if" part, we need to check that γ induces an equivalence between \mathcal{C}' and the enhanced essential image $\mathcal{C}'' \subset \mathcal{C}$ of γ . Since for any $e \in \mathcal{E}$, the generalized fiber

 C_e'' is the essential image of γ_e , we may replace C with C'' and assume that γ_e is an equivalence for any e. Then by (8.3.4.6), we have a commutative diagram

(8.3.4.7)
$$\begin{array}{ccc} \mathcal{C}'_e & \xrightarrow{\gamma_e} & \mathcal{C}_e \\ \downarrow & & \downarrow \\ K(J^o) \times_{\mathcal{E}} \mathcal{C}' & \xrightarrow{\mathsf{id} \times \gamma} & K(J^o) \times_{\mathcal{E}} \mathcal{C}, \end{array}$$

and the top arrow is an equivalence, while both vertical arrows are epivalences. Therefore the bottm arrow is an epivalence. Since e was arbitrary, Lemma 2.1.3.1 then implies that γ is an epivalence, and being an enhanced functor, it is an equivalence by Lemma 8.2.2.10.

Another observation is that Corollary 8.3.3.6 actually shows that in the enhanced setting, semicartesian squares of enhanced categories and enhanced functors can be characterized by a universal property analogous to the universal property of cartesian squares in the usual category theory. If one calls squares satisfying this property "enhanced-semicartesian", then the claim is that semicartesian squares are enhanced-semicartesian. It is useful to also introduce the following dual version of this universal property.

Definition 8.3.4.3. A commutative square

(8.3.4.8)
$$\begin{array}{ccc} \mathcal{C} & \longrightarrow & \mathcal{C}_0 \\ \downarrow & & \downarrow \gamma_0 \\ \mathcal{C}_1 & \xrightarrow{\gamma_1} & \mathcal{C}_{01} \end{array}$$

of enhanced categories and enhanced functors is *enhanced-semicocartesian* resp. *enhanced-cocartesian* if for any other such square

$$\begin{array}{ccc}
\mathcal{C} & \longrightarrow & \mathcal{C}_0 \\
\downarrow & & & \downarrow \gamma_0' \\
\mathcal{C}_1 & \xrightarrow{\gamma_1'} & \mathcal{C}_{01}',
\end{array}$$

there exists an enhanced functor $\gamma: \mathcal{C}_{01} \to \mathcal{C}'_{01}$ equipped with isomorphisms $\alpha_l: \gamma \circ \gamma_l \cong \gamma'_l, l=0,1$, and the triple $\langle \gamma, \alpha_0, \alpha_1 \rangle$ is unique up to an isomorphism resp. up to a unique isomorphism.

Lemma 8.3.4.4. A commutative square (8.3.4.8) of small enhanced categories and enhanced functors is enhanced-semicocartesian resp. enhanced-cocartesian if and only if

for any enhanced category \mathcal{E} , the corresponding commutative square

(8.3.4.9)
$$\mathcal{F}un^{h}(\mathcal{C}_{01},\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{C}_{0},\mathcal{E})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}un^{h}(\mathcal{C}_{1},\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{C},\mathcal{E})$$

is semicartesian resp. cartesian. Moreover, it suffices to consider small enhanced categories \mathcal{E} , and if (8.3.4.9) is semicartesian, then the square

(8.3.4.10)
$$\mathcal{S}ec^{h}(\mathcal{C}_{01}, \mathcal{E}) \longrightarrow \mathcal{S}ec^{h}(\mathcal{C}_{0}, \mathcal{E})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{S}ec^{h}(\mathcal{C}_{1}, \mathcal{E}) \longrightarrow \mathcal{S}ec^{h}(\mathcal{C}, \mathcal{E})$$

is semicartesian for any small enhanced category \mathcal{E} equipped with an enhanced functor $\mathcal{E} \to \mathcal{C}_{01}$.

Proof. Immediately follows from Corollary 8.3.3.5.

Example 8.3.4.5. Assume given a small enhanced category \mathcal{E} , and a universal object $e \in \mathcal{E}^{\diamond}$ represented by a pair $\langle I^{\diamond}, a \rangle$. Then Definition 6.3.1.3 immediately implies that \mathcal{E} fits into a enhanced-cocartesian square

$$(8.3.4.11) \qquad W \times K([1]) \longrightarrow K(I^{o})$$

$$\downarrow \qquad \qquad \downarrow a$$

$$W \times \mathsf{pt}^{h} \longrightarrow \mathcal{E},$$

where $I = U(I^{\diamond})$ is the underlying partially ordered set of the biordered set I^{\diamond} , and W is the set of maps $R([1]) \to I^{\diamond}$.

Example 8.3.4.6. For any map $f: J_0 \to J_1$ between partially ordered sets, the cylinder C(f) and the dual cylinder $C^o(f)$ fit into cocartesian squares (2.2.4.4), and then K(-) sends both into enhanced-semicocartesian squares of small enhanced categories: indeed, for any enhanced category \mathcal{E} , the corresponding square (8.3.4.9) is semicartesian by Lemma 8.2.3.11 (ii).

8.3.5. Functoriality and gluing. Another fact that follows immediately from Corollary 8.3.3.6 is that small semicartesian products provided by Lemma 8.3.3.7

are functorial. We will need a slightly more general statement. For any cofibration $f: I \to I'$ in Pos⁺, define a full subcategory $K(I|I') \subset K(I)$ by the cartesian square

(8.3.5.1)
$$\begin{array}{ccc} K(I|I') & \longrightarrow & K(I) \\ & & \downarrow & & \downarrow K(f) \\ I' \times \operatorname{Pos}^+ & \longrightarrow & K(I'), \end{array}$$

where the bottom arrow is the functor of Example 2.3.3.3 for the terminal object $\operatorname{pt} \in \operatorname{Pos}^+$ and the fiber $K(I')_{\operatorname{pt}} \cong I'$. Note that the left vertical arrow in (8.3.5.1) is a cofibration with fibers $K(I|I')_i \cong K(I_i)$, $i \in I'$. If we have a commutative diagram

$$\begin{array}{ccc}
I_0 & \xrightarrow{f} & I_1 \\
\downarrow & & \downarrow \\
I'_0 & \xrightarrow{f'} & I'_1
\end{array}$$
(8.3.5.2)

in Pos⁺ such that the vertical arrows are cofibrations, then K(f) and K(f') give rise to a functor $K(f|f'): K(I_0|I_0') \to K(I_1|I_1')$, cartesian over Pos⁺.

Now denote by $\operatorname{Cat}^h(I|I')$ the category of small fibrations $\mathcal{E} \to K(I|I')$ whose restrictions $\mathcal{E}_i \to K(I_i)$, $i \in I'$ are enhanced categories, with morphisms given by isomorphism classes of functors over K(I|I'). If $I' = \operatorname{pt}$, then $\operatorname{Cat}^h(I|\operatorname{pt}) \cong \operatorname{Cat}^h(I)$; if I = I', with id : $I \to I$, then $\operatorname{Cat}^h(I|I)$ is the category of families of small enhanced categories and enhanced functors parametrized by I. A commutative square (8.3.5.2) induces a functor $(f|f')^{h*}: \operatorname{Cat}^h(I_1|I_1') \to \operatorname{Cat}^h(I_0|I_0')$ sending $\mathcal C$ to $K(f|f')^*\mathcal C$, and if f' is an isomorphism, the same argument as in Lemma 8.2.4.3 shows that $(f|f')^{h*}$ has a right-adjoint functor $(f|f')^h_*$.

Lemma 8.3.5.1. For any $I, I' \in \text{Pos}^+$ such that $\dim I' \leq 1$, with the projection $p: I' \to \text{pt}$, the functor $(\text{id} \times p|p)^{h*} : \text{Cat}^h(I|\text{pt}) \to \text{Cat}^h(I \times I'|I')$ admits a right-adjoint $(\text{id} \times p|p)^h_*$.

Proof. Assume first that $I = \operatorname{pt.}$ Consider the dual barycentric subdivision $B(I')^o$, with the map $\xi_{\perp}^o : B(I')^o \to I'$. Then by (2.4.3.4), for any fibration $\mathcal{C} \to I'$, the functor $\mathcal{C} \to \xi_{\perp}^o \xi_{\perp}^o \mathcal{E}$ is an equivalence. Therefore $\xi_{\perp}^{o*} : \operatorname{Cat}^h(I'|I') \to \operatorname{Cat}^h(B(I')^o|B(I')^o)$ is fully faithful, and by Example 2.2.3.4, it suffices to prove the statement for $B^o(I')$ instead of I'. Now consider the characteristic map $\chi : I' \to [1]$ of the 0-skeleton sk₀ I', and let

 $q = B(\chi)^o : B^o(I') \to B([1])^o \cong V$ be the corresponding cofibration. Then again by (2.4.3.4), for any $\mathcal{E} \in \operatorname{Cat}^h(B(I')^o|B(I')^o)$, the fibers of the fibration $q_*\mathcal{C}$ are products of enhanced categories, thus enhanced categories themselves. Therefore $(q|q)^{h*} : \operatorname{Cat}^h(V|V) \to \operatorname{Cat}^h(B(I')^o|B(I')^o)$ admits a right-adjoint $(q|q)^h_*$ induced by q_* , and we are reduced to the case I' = V. This is Corollary 8.3.3.6.

For a general I, we have the faithful embedding (8.3.2.7), so it suffices to check that $(p|p)_*^h$ sends augmentationg to augmentations and augmented maps to augmented map; this immediately follows from the augmented part of Lemma 8.3.3.7.

One situation where semicartesian products come in handy is when one wants to assemble an I-augmented small enhanced category \mathcal{C} out of smaller pieces. Namely, assume given a right-closed embedding $r:I_1\to I$ in Pos⁺, with the characteristic map $I\to [1]$, and let $I'=[1]\setminus I\cong C^o(r)$, with the corresponding cocartesian square (2.2.4.4) interpreted as a cofibration $I^{\bullet}\to [1]^2\cong V^>$ with fibers $I_0^{\bullet}=I_1$, $I_0^{\bullet}=I$, $I_1^{\bullet}=I_1\times [1]$ over $o,0,1\in V\subset [1]$. Let $\varepsilon:I^{\bullet}\to I'\times [1]^2$ be the full embedding cocartesian over $[1]^2$.

Lemma 8.3.5.2. For any I'-augmented enhanced category C, the square

(8.3.5.3)
$$\begin{array}{ccc}
\mathcal{C} & \longrightarrow & \varepsilon_{0h*}\varepsilon_0^{h*}\mathcal{C} \\
\downarrow & & \downarrow \\
\varepsilon_{1h*}\varepsilon_1^{h*}\mathcal{C} & \longrightarrow & \varepsilon_{oh*}\varepsilon_o^{h*}\mathcal{C}
\end{array}$$

of I'-augmented enhanced categories is semicartesian.

Proof. For any map $\varepsilon: I' \to I$ in Pos⁺, I-augmented enhanced category \mathcal{C} , and an object $\langle J, \alpha \rangle \in K(I)$, with the bicofibration $J_{\bullet} = J/{}^{\diamond}R(I^{o}) \to R(I^{o})$, (8.1.3.12) provides an equivalence

$$(8.3.5.4) \qquad (\varepsilon_*^h \varepsilon^{h*} \mathcal{C})_{\langle I,\alpha\rangle} \cong (\mathcal{C}^{\natural} | I)_{\langle R(\varepsilon^o)^* I_{\bullet},\alpha \circ \varepsilon^o\rangle}^{\diamond},$$

where $\mathcal{C}^{\natural} \to \text{PoSets}$ is the canonical bar-invariant extension of Proposition 8.2.3.7. Therefore in our situation, we need to check that for any $\langle J, \alpha \rangle \in K(I')$, with the corresponding bicofibration $J_{\bullet} \to R(I'^{o})$, the relative unfolding $(\mathcal{C}^{\natural}|I)^{\diamond}$ is semicartesian along the square

(8.3.5.5)
$$\begin{array}{ccc}
\varepsilon_0^{o*} J_{\bullet} & \longrightarrow & \varepsilon_0^{o*} J_{\bullet} \\
\downarrow & & \downarrow \\
\varepsilon_1^{o*} J_{\bullet} & \longrightarrow & J_{\bullet}
\end{array}$$

in BiPoSets. But the square in PoSets underlying (8.3.5.5) is the cylinder square (2.2.4.4) for the embedding $\varepsilon_o^{o*}U(J_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}) \to \varepsilon_o^{o*}U(J_{\:\raisebox{1pt}{\text{\circle*{1.5}}}})$, so \mathcal{C}^{\natural} is semicartesian along this square by Lemma 8.2.3.11 (ii), and then $(\mathcal{C}^+|I)^{\diamond}$ is semicartesian along (8.3.5.5) by the same argument as in Lemma 8.1.2.4.

Corollary 8.3.5.3. Assume given a cofibration $\pi: I \to I'$ in Pos^+ such that $\dim I' \le 1$, and as in Lemma 8.3.5.1, let $p: I' \to pt$ be the projection. Then the functor $(\operatorname{id}|p)^{h*}: \operatorname{Cat}^h(I) = \operatorname{Cat}^h(I|pt) \to \operatorname{Cat}^h(I|I')$ is an equivalence.

Proof. Since dim $I' \leq 1$, $B^{0}(I') = \operatorname{tw}(I')$ is its twisted arrow category, and $I/I' \in Pos^+$ can be expressed as the cylindrical colimit of Lemma 3.1.8.2. Let $\pi': J \to B^o(I')$ be the corresponding cofibration, with the universal cone map $g: J \to I/I'$, and let $g': B^{o}(I') \to pt$ be the tautological projection. Then $(g|g')^{h*}: \operatorname{Cat}^h(I/I') \to \operatorname{Cat}^h(J|B^o(I'))$ admits a right-adjoint $(g|g')^h_*\cong$ $(id \times g'|g')_*^h \circ (g \times \pi'|id)_*^h$, where since dim $B^o(I') \leq I'$, the adjoint $(id \times g'|g')_*^h$: $\operatorname{Cat}^h((I/I') \times B^o(I')|B^o(I')) \to \operatorname{Cat}^h(I/I')$ is provided by Lemma 8.3.5.1. Recall that explicitly, $(id \times g'|g')_*^h$ is computed by considering the characteristic map $\chi: I' \to [1]$ of the 0-skeleton sk₀ I', taking the puhsforward (id $\times q|q)_*^h$ with respect to the corresponding cofibration $q: B^o(I') \to B^o([1]) = V$, and then taking the semicartesian product provided by Lemma 8.3.3.7. The product in question is then exactly (8.3.5.3) for $\chi \circ \pi : I \to [1]$, so by Lemma 8.3.5.2, the adjunction map id $\to (g|g')_*^h \circ (g|g')^{h*}$ is an isomorphism. We have the full embedding $\eta: I \to I/I'$ with its left and right-adjoint maps $\sigma, \eta^{\dagger}: I/I' \to I$, and $\pi \circ \sigma \circ g = \xi_{\perp} \circ \pi'$, where $\xi_{\perp} : B^{o}(I') \to I'$ is the map (3.1.4.1). Therefore we have a well-defined functor $(id \mid p)_*^h = \eta_*^{\dagger h} \circ (g \mid g')_*^h \circ (\sigma \circ g \mid \xi_\perp)^{h*} : Cat^h(I \mid I') \to$ $Cat^h(I)$, and it comes equipped with an isomorphism

$$\begin{split} (\operatorname{id}|p)_*^h \circ (\operatorname{id}|p)^{h*} &\cong \eta_*^{\dagger h} \circ (g|g')_*^h \circ (\sigma \circ g|\xi_\perp)^{h*} \circ (\operatorname{id}|p)^{h*} \cong \\ &\cong \eta_*^{\dagger h} \circ (g|g')_*^h \circ (g|g')^{h*} \circ \sigma^{h*} \cong \eta_*^{\dagger h} \circ \sigma^{h*} \cong \operatorname{id}, \end{split}$$

while the adjunction map $(g|g')^{h*} \circ (g|g')^h_* \to \mathrm{id}$ induces a map

$$(8.3.5.6) \qquad (\sigma \circ g|\xi_{\perp})^{h*} \circ (\operatorname{id}|p)^{h*} \circ (\operatorname{id}|p)^{h}_{*} \to (\sigma \circ g|\xi_{\perp})^{h*}.$$

Moreover, if we let $B^o(I|I') = \xi_\perp^* I$, with the induced map $\xi_\perp' : B^o(I|I') \to I$, then $\sigma \circ g = \xi_\perp' \circ \sigma'$ for some map $\sigma' : J \to B^o(I|I')$ over $B^o(I')$, and then σ' is right-reflexive, with a fully faithful right-adjoint, so that $(\sigma|\operatorname{id})^{h*}$ is fully faithful, while $(\xi_\perp'|\xi_\perp)^{h*}$ is fully faithful for the same reason as in the proof of Lemma 8.3.5.1. Therefore $(\sigma \circ g|\xi_\perp)^{h*}$ is also fully faithful, and (8.3.5.6) comes from a map $(\operatorname{id}|p)^{h*} \circ (\operatorname{id}|p)^{h} \to \operatorname{id}$. To finish the proof, it suffices to check

that this map is an isomorphism; this can be checked after restricting to each fiber of the cofibration $J \to B^o(J)$, and then it immediately follows from the construction of $(\operatorname{id}|p)^h_*$ via the semicartesian square (8.3.5.3).

Corollary 8.3.5.4. For any right-closed embedding $r: I_1 \to I$ in Pos^+ , with the complementary left-closed embedding $l: I \setminus I_1 \to I$, and any I-augmented enhanced category C, the square

(8.3.5.7)
$$\begin{array}{ccc} \mathcal{C} & \longrightarrow & r_*^h r^{h*} \mathcal{C} \\ \downarrow & & \downarrow \\ l_*^h l^{h*} \mathcal{C} & \longrightarrow & r_*^h r^{h*} l_*^h l^{h*} \mathcal{C} \end{array}$$

is semicartesian.

Proof. As in Lemma 8.3.5.2, let $I' = C^o(r) \cong [1] \setminus I$, consider the full embedding $\eta: I \to I'$, construct the semicartesian square (8.3.5.3) for the I'-augmented enhanced category $C' = \eta^h_* C$, restrict it back to I via η^{h*} , and use (8.2.4.4) to identify the restriction with (8.3.5.7).

8.3.6. Enhancement for Cat^h . As a more advanced application of Proposition 8.3.3.4 and Lemma 8.3.3.7, let us now construct a natural enhancement for the category Cat^h of small enhanced categories. Namely, for any $I \in \operatorname{Pos}^+$, we have the category $\operatorname{Cat}^h(I)$ of (8.3.2.5), and for any map $f: I' \to I$ in Pos^+ , we have the functor $f^{h*}: \operatorname{Cat}^h(I) \to \operatorname{Cat}^h(I')$, so that the categories $\operatorname{Cat}^h(I)$ form a family of categories $\operatorname{Cat}^h \to \operatorname{Pos}^+$ with fibers $\operatorname{Cat}^h_I = \operatorname{Cat}^h(I)$. Explicitly, objects in Cat^h are pairs of an object $I \in \operatorname{Pos}^+$ and an I-augmented small enhanced category $\pi: \mathcal{C} \to K(I)$, with maps from $\langle I', \mathcal{C}' \rangle$ to $\langle I, \mathcal{C} \rangle$ given by pairs of a map $f: I' \to I$ and a commutative square

(8.3.6.1)
$$C' \xrightarrow{\varphi} C$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi$$

$$K(I') \xrightarrow{K(f)} K(I),$$

with φ cartesian over K(f), as in (2.3.2.1), considered up to an isomorphism over Pos⁺. Inside Cat^h , we have a full subcategory $Sets^h \subset Cat^h$ spanned by pairs $\langle I, \mathcal{C} \rangle$ such that $\pi : \mathcal{C} \to K(I)$ is a family of groupoids.

Proposition 8.3.6.1. The family $Cat^h \to Pos^+$ is an enhanced category, and $Sets^h \subset Cat^h$ is a full enhanced subcategory.

In principle, Proposition 8.3.6.1 follows from the results we have already proved. Namely, the equivalences (8.3.2.5) commute with pullbacks with respect to maps $f: I' \to I$, so that taken together, they define an equivalence

(8.3.6.2)
$$\operatorname{Cat}^h \cong \mathcal{H}^{W}_{css}(\Delta^o \Delta^o \operatorname{Sets}),$$

where $\mathcal{H}^W(\Delta^o\Delta^o\operatorname{Sets})$ is the enhanced localization of $\Delta^o\Delta^o\operatorname{Sets}$ provided by Lemma 8.2.4.1, and $\mathcal{H}^W_{css}(\Delta^o\Delta^o\operatorname{Sets})\subset \mathcal{H}^W(\Delta^o\Delta^o\operatorname{Sets})$ is the enhanced full subcategory of Corollary 8.2.2.18 corresponding to the full subcategory $h^W_{css}(\Delta^o\Delta^o\operatorname{Sets})\subset h^W(\Delta^o\Delta^o\operatorname{Sets})=\mathcal{H}^W(\Delta^o\Delta^o\operatorname{Sets})_{pt}$. The equivalence (8.3.6.2) then induces an equivalence

(8.3.6.3)
$$\operatorname{Sets}^h \cong \mathcal{H}^W(\Delta^o \operatorname{Sets}),$$

where Δ^o Sets $\subset \Delta^o \Delta^o$ Sets is embedded as the full subcategory spanned by bisimplicial sets constant in the Reedy direction. However, we can also give a direct proof using Lemma 8.3.5.2 and its corollaries of Subsection 8.3.5.

Proof of Proposition 8.3.6.1. The family $\mathcal{C}at^h \to \operatorname{Pos}^+$ is obviously additive, it is complete by Lemma 8.2.4.3, and the subfamily $\operatorname{Sets}^h \subset \operatorname{Cat}^h$ is then also additive and preserved by the pushforward operations f^h_* of Lemma 8.2.4.3, thus complete. By Lemma 8.2.3.1, it then suffices to prove that $\operatorname{Cat}^h \to \operatorname{Pos}^+$ is tight and weakly semicontinuous. To see that it is tight, assume that as in Corollary 8.3.5.4, we are given a right-closed embedding $r:I_1 \to I$ in Pos^+ , with the complement $l:I_0=I \setminus I_1 \to I$ and the corresponding gluing functor $\theta=r^{h*}\circ l^h_*:\operatorname{Cat}^h(I_0)\to\operatorname{Cat}^h(I_1)$, and define a category $\operatorname{Cat}^h(I)'$ by the cartesian square

where b is the functor (5.1.1.5), and a is a full embedding sending a triple $\langle C_0, C_1, \alpha \rangle$ of categories $C_l \in \operatorname{Cat}^h(I_l)$, l = 0, 1 and a functor $\alpha : C_1 \to \theta(C_0)$ to a functor $V^o \to \operatorname{Cat}^h(I)$ given by

$$r_*^h \mathcal{C}_1 \xrightarrow{r_*^h(\alpha)} r_*^h r^{h*} l_*^h \mathcal{C}_0 \longleftarrow l_*^h \mathcal{C}_0,$$

where the map on the right is the tautological map. Then the adjoint functor $Cat^h(I \times V|V) \rightarrow Cat^h(I)$ of Lemma 8.3.5.1 restricts to a functor $q : Cat^h(I)' \rightarrow Cat^h(I)$, and since dim V = 1, by the same argument as in Corollary 8.3.5.3,

Corollary 8.3.5.4 implies that q is an equivalence. But then, again since dim V = 1, b in (8.3.6.4) is an epivalence by Lemma 5.1.1.9, so the vertical arrow on the left is an epivalence as well.

Analogously, to show that Cat^h is weakly semicontinuous, assume given $I \in \operatorname{Pos}^+$ equipped with a map $I \to \mathbb{N}$, and let $l_n : I/n \to I$, $n \in \mathbb{N}$ be the embeddings of its comma-fibers. Then for any small I-augmented enhanced category C, we have family of small I-augmented enhanced categories $C_n = l_{n*}^h l_n^{h*} C$ over \mathbb{N} that define a category $C_{\bullet} \in \operatorname{Cat}^h(I \times \mathbb{N}|\mathbb{N})$, hence also a category $(\operatorname{id} \times \zeta | \zeta)^{h*} C_{\bullet} \in \operatorname{Cat}^h(I \times Z_{\infty} | Z_{\infty})$. On the other hand, the categories $\operatorname{Cat}^h(I)_n = \operatorname{Cat}^h(I/n)$ themselves form a family $\operatorname{Cat}^h(I)_{\bullet} \to \mathbb{N}$, and for any $n \geq 0$, $l_{n*}^h : \operatorname{Cat}^h(I)_n \to \operatorname{Cat}^h(I)$ is a fully faithful embedding, so we have a fully faithful embedding $\operatorname{Sec}^{\natural}(\mathbb{N},\operatorname{Cat}^h(I)_{\bullet}) \to \mathbb{N}^o \operatorname{Cat}^h(I)$ and a fully faithful embedding $a:\operatorname{Sec}^{\natural}(Z_{\infty},\zeta^*\operatorname{Cat}^h(I)_{\bullet}) \to Z_{\infty}^o \operatorname{Cat}^h(I)$. We can now define a category $\operatorname{Cat}^h(I)'$ by the cartesian square

where again, b is the functor (5.1.1.5), thus an epivalence since $\dim Z_{\infty} = 1$. Again, the adjoint functor $\operatorname{Cat}^h(I \times Z_{\infty}|Z_{\infty}) \to \operatorname{Cat}^h(I)$ of Lemma 8.3.5.1 restricts to a functor $q: \operatorname{Cat}^h(I)' \to \operatorname{Cat}^h(I)$, and since by Lemma 5.1.3.1, we have $\operatorname{Sec}^{\natural}(Z_{\infty}, \zeta^* \operatorname{Cat}^h(I)_{\cdot}) \cong \operatorname{Sec}^{\natural}(\mathbb{N}, \operatorname{Cat}^h(I)_{\cdot})$, it suffices to show that q is an equivalence. We again have a functor $q': \operatorname{Cat}^h(I) \to \operatorname{Cat}^h(I)'$ sending $\mathcal{C} \in \operatorname{Cat}^h(I)$ to the family $(\operatorname{id} \times \zeta|\zeta)^{h*}\mathcal{C}_{\cdot}$, and $q' \circ q \cong \operatorname{id}$ by (8.2.4.4), so it further suffices to shows that the adjunction map $\operatorname{id} \to q \circ q'$ is an isomorphism. But the adjoint functor of Lemma 8.3.5.1 is constructed by first taking the pushforward c_* with respect to a cofibration $c: Z_{\infty} \to V$, and then the semicartesian product, and if we take the cartesian product instead, we obtain $\operatorname{Sec}^{\natural}(Z_{\infty}, (\operatorname{id} \times \zeta|\zeta)^{h*}\mathcal{C}_{\cdot}) \cong \operatorname{Sec}^{\natural}(\mathbb{N}, \mathcal{C}_{\cdot})$. Thus at the end of the day, we need to check that for any $\mathcal{C} \in \operatorname{Cat}^h(I)$, the functor $\mathcal{C} \to \operatorname{Sec}^{\natural}(\mathbb{N}, \mathcal{C}_{\cdot})$ is an epivalence. As in Lemma 8.3.5.2, this can be checked pointwise over K(I), and then reduces to Lemma 8.2.3.11 (iii) by (8.3.5.4).

We note that the involution $\iota: \operatorname{Cat}^h \to \operatorname{Cat}^h$ sending a small enhanced category \mathcal{C} to the opposite small enhanced category \mathcal{C}^ι has an obvious enhancement

(8.3.6.6)
$$\iota: \mathcal{C}at^h \to \mathcal{C}at^h, \qquad \langle I, \mathcal{C} \rangle \mapsto \langle I, \mathcal{C}_{h\perp}^{\iota} \rangle$$

in term of the enhancement Cat^h provided by Proposition 8.3.6.1. Another useful application of the enhancement Cat^h is its truncation functor (8.1.2.2). Namely,

for any $i \in I$ and I-augmented small enhanced category C, the enhanced fiber C_i is given by (8.2.2.5) — that is, by the cartesian square

(8.3.6.7)
$$\begin{array}{ccc} \mathcal{C}_i & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow \\ \operatorname{pt}^h & \xrightarrow{K(\varepsilon(i))} & K(I), \end{array}$$

where the bottom arrow is the enhanced object in K(I) corresponding to i — and then for any map f in I corresponding to an order relation $i \le i'$, (8.1.2.2) provides an enhanced functor

$$(8.3.6.8) f^*: \mathcal{C}_{i'} \to \mathcal{C}_{i}.$$

If g represents another order relation $i' \leq i''$, we have $f^* \circ g^* \cong (g \circ f)^*$. If we have another I-augmented small enhanced category \mathcal{C}' and an I-augmented enhanced functor $\gamma : \mathcal{C} \to \mathcal{C}'$, then for any $i \in I$, we have an enhanced fiber $\gamma_i : \mathcal{C}_i \to \mathcal{C}'_i$, and for any f, we have an isomorphism

$$(8.3.6.9) \gamma_f : \gamma_i \circ f^* \to f^* \circ \gamma_{i'},$$

an enhanced version of the isomorphisms (2.3.2.2). Note that the isomorphisms (8.3.6.9) are not unique — in fact, already γ_i is only defined up to a non-unique isomorphism – and it is certainly *not* true that an *I*-augmented enhanced functor γ is defined by "the" enhanced functors γ_i and "the" isomorphisms (8.3.6.9). What we have, at the end of the day, is a well-defined commutative square

(8.3.6.10)
$$\begin{array}{ccc}
\mathcal{C}_{i'} & \xrightarrow{\gamma_i} & \mathcal{C}'_{i'} \\
f^* \downarrow & & \downarrow f^* \\
\mathcal{C}_i & \xrightarrow{\gamma_i} & \mathcal{C}_{i'}
\end{array}$$

in the category Cat^h that does *not* come equipped with a preferred lifting to a commutative square (2.1.3.1).

To complement Proposition 8.3.6.1, we note that the definition of the categories $\operatorname{Cat}^h(I)$ actually makes sense for any $I \in \operatorname{PoSets}$. Therefore the family of categories $\operatorname{Cat}^h \to \operatorname{Pos}^+$ extends to a family $\operatorname{Cat}^{h\natural} \to \operatorname{PoSets}$, with the same definition. Let us show that this is actually the canonical bar-invariant extension of the enhanced category Cat^h provided by Proposition 8.2.3.7.

Lemma 8.3.6.2. *The family* $Cat^{h\natural} \to PoSets$ *is bar-invariant.*

Proof. It suffices to show that for any $I \in \text{PoSets}$, with the barycentric subdivison BI and the map $\xi: BI \to I$ of (3.1.4.1), and for any $\mathcal{C} \in \text{Cat}^h(I)$ with canonical extension $\mathcal{C}^{\sharp} \to K(I)^{\sharp}$, the functor $\mathcal{C}^{\sharp} \to K(\xi)_*K(\xi)^*\mathcal{C}^{\sharp}$ of (2.4.3.3) is an equivalence, while for any $\mathcal{C} \in Cat_{B_{\Diamond}(I)}^{h\Diamond}$, the same holds for the functor $K(\xi)^*K(\xi)_*\mathcal{C}^{\sharp} \to \mathcal{C}^{\sharp}$. By (8.3.5.4), the first claim reduces to observing that for any $\langle J, \alpha \rangle \in K(I)^{\sharp}$, with $J_{\bullet} = J/_{\alpha}^{\Diamond}R(I^o)$, the family $\mathcal{C}^{\sharp \Diamond}$ is constant along the map $R(\xi^o)^*J_{\bullet} \to J_{\bullet}$, and this follows from Lemma 3.2.8.4 and the bar-invariance of \mathcal{C}^{\sharp} . Since we already know that $\mathcal{C}at^h$ is non-degenerate, the second claim can be checked pointwise over BI, and since we are working with categories in $\mathcal{C}at_{B_{\Diamond}(I)}^{h\Diamond}$, it further suffices to consider one-element subsets $S = \{i\} \in BI$. Then by (8.2.4.4), we can replace I with I/i, so that $I = I_0^{\flat}$, $I_0 = I \setminus \{j\}$, and then as in Lemma 3.1.4.9, the embedding $\varepsilon(o)$: pt $\to B(I^{\flat})$ is the composition of the right-reflexive embedding pt $\to B(I_0)^{<}$ and the left-reflexive embedding $B(I_0)^{<} \to B(I_0^{\diamond})$. Since by Example 8.2.2.12, the correspondence $I \to K(I)$ sends adjoint pairs of functors to adjoint pairs, this immediately yields the claim. □

As one immediate application of Proposition 8.3.6.1, we obtain a natural enhancement $\mathcal{C}at$ for the category Cat^0 : this is simply the full enhanced subcategory $\mathcal{C}at \subset \mathcal{C}at^h$ of Corollary 8.2.2.18 corresponding to the full embedding (8.3.2.2). Explicitly, objects in $\mathcal{C}at$ are pairs $\langle I,\mathcal{C}\rangle$ of $I \in \operatorname{Pos}^+$ and a small category \mathcal{C} equipped with a fibration $\mathcal{C} \to I$, and morphisms from $\langle I,\mathcal{C}\rangle$ to $\langle I',\mathcal{C}'\rangle$ are pairs of a map $f:I \to I'$ and a commutative square

(8.3.6.11)
$$\begin{array}{c} \mathcal{C} & \xrightarrow{\varphi} & \mathcal{C}' \\ \downarrow & & \downarrow \\ I & \xrightarrow{f} & I' \end{array}$$

such that φ is cartesian over f, considered up to an isomorphism. By Lemma 8.3.6.2, the same description gives the canonical extension $\mathcal{C}at^{\natural}$. We can further compose (8.3.2.2) with the full embedding PoSets \to Cat⁰, and this gives an enhancement $\mathcal{P}oSets$ for PoSets and enhanced full embeddings

$$(8.3.6.12) PoSets \rightarrow Cat \rightarrow Cat^h,$$

while the involution ι : PoSets \to PoSets extends to an equivalence between $\mathcal{P}oSets$ and the reflexive family $\operatorname{ar}_c(\operatorname{PoSets}) \to \operatorname{PoSets}$ of (8.1.2.9).

8.3.7. Enhancing lax functor categories. Let us now upgrade Proposition 8.3.6.1 by constructing enhancements for the categories $\mathcal{E} \setminus ^h \operatorname{Cat}^h$ and

Cat^h //^h \mathcal{E} of Subsection 8.3.1. This uses the full force of Proposition 8.3.3.4. We start with constructing an enhancement $\mathcal{E} \ ^h \mathcal{C}at^h$ for $\mathcal{E} \ ^h \mathcal{C}at^h$. By definition, its objects are triples $\langle I, \mathcal{C}, \alpha \rangle$, $\langle I, \mathcal{C} \rangle \in \mathcal{C}at^h$, $\alpha : \mathcal{E} \times^h K(I^o) \to \mathcal{C}_{h\perp}$ an enhanced functor over $K(I^o)$, where $\mathcal{C}_{h\perp} \to K(I^o)$ is the transpose I^o -coaugmented enhanced category of (8.2.2.4). Maps from $\langle I', \mathcal{C}', \alpha' \rangle$ to $\langle I, \mathcal{C}, \alpha \rangle$ are represented by triples $\langle f, \varphi, a \rangle$ of a map $f : I' \to I$, an enhanced functor $\varphi : \mathcal{C}' \to \mathcal{C}$ that fits into a commutative square (8.3.6.1) and is cartesian over K(f), and a map $a : \varphi_{h\perp} \circ \alpha' \to \alpha \circ (\operatorname{id} \times K(f^o))$. Two triples $\langle f, \varphi, a \rangle$, $\langle f', \varphi', a' \rangle$ define the same map iff f = f', and there exists an isomorphism $b : \varphi' \cong \varphi$ over K(I) such that $a' = a \circ (b_{h\perp} \circ \alpha')$. The forgetful functor $\mathcal{E} \ ^h \mathcal{C}at^h \to \operatorname{Pos}^+$ sending a triple $\langle \mathcal{C}, I, \varphi \rangle$ to I is a fibration, and we have $(\mathcal{E} \ ^h \mathcal{C}at^h)_{\operatorname{pt}} \cong \mathcal{E} \ ^h \operatorname{Cat}^h$. We also have the forgetful functor

(8.3.7.1)
$$\mathcal{E} \setminus \Lambda^h \operatorname{Cat}^h \to \operatorname{Cat}^h, \qquad \langle I, C, \alpha \rangle \mapsto \langle I, C \rangle,$$

cartesian over Pos⁺, but even describing its fibers is somewhat delicate. Namely, for any object $\langle I, \mathcal{C} \rangle \in \mathcal{C}at^h$, let $\mathcal{F}(I, \mathcal{C}, \mathcal{E}) = \operatorname{Fun}_{I^o}^h(\mathcal{E} \times^h K(I^o), \mathcal{C}_{h\perp})$ be the enhanced category of enhanced functors $\mathcal{E} \times^h K(I^o) \to \mathcal{C}_{h\perp}$ over $K(I^o)$. Then we have a functor $v(I, \mathcal{C}) : \mathcal{F}(I, \mathcal{C}, \mathcal{E}) \to (\mathcal{E} \setminus^h \mathcal{C}at^h)_{\langle I, \mathcal{C} \rangle}$ sending α to $\langle I, \mathcal{C}, \alpha \rangle$. However, in general, $v(I, \mathcal{C})$ is an epivalence but *not* an equivalence: different maps $a, a' : \alpha \to \alpha'$ in the enhanced functor category can given triples $\langle \operatorname{id}, \operatorname{id}, a \rangle$, $\langle \operatorname{id}, \operatorname{id}, a' \rangle$ that represent the same map in the fiber $(\mathcal{E} \setminus^h \mathcal{C}at^h)_{\langle I, \mathcal{C} \rangle}$ (this happens when $a' = a \circ (b_{h\perp} \circ \alpha)$ for some automorphism b of the identity enhanced functor id : $\mathcal{C} \to \mathcal{C}$). The best we can get is a natural presentation

(8.3.7.2)
$$\mathcal{F}'(I,\mathcal{C},\mathcal{E}) \quad \Rightarrow \quad \mathcal{F}(I,\mathcal{C},\mathcal{E}) \xrightarrow{\nu(I,\mathcal{C})} (\mathcal{E} \setminus^h \mathcal{C}at^h)_{\langle I,\mathcal{C} \rangle}$$

of the epivalence $v(I,\mathcal{C})$ in the sense of Definition 2.3.4.10. To obtain (8.3.7.2), one takes as $\mathcal{F}'(I,\mathcal{C},\mathcal{E})$ the category of quadruples $\langle \alpha,\alpha',\varphi,a\rangle$ of enhanced functors $\alpha,\alpha':\mathcal{E}\times^h K(I^o)\to\mathcal{C})h\perp$, an I-augmented equivalence $\varphi:\mathcal{C}\to\mathcal{C}$, and an isomorphism $a:\alpha'\cong\varphi_{h\perp}\circ\alpha$, with morphisms given by isomorphism classes of functors. The two projections π , π' in (8.3.7.2) send $\langle \alpha,\alpha',\varphi,a\rangle$ to α resp. α' , and $\langle \operatorname{id},\varphi,a\rangle$ provies an isomorphism $v(I,\mathcal{C},\mathcal{E})\circ\pi'\cong v(I,\mathcal{C},\mathcal{E})\circ\pi$. Forgetting α' and a but keeping φ provides an equivalence

(8.3.7.3)
$$\mathcal{F}'(I,\mathcal{C},\mathcal{E}) \cong \mathcal{F}(I,\mathcal{C},\mathcal{E}) \times \operatorname{Fun}_{I}^{h}(\mathcal{C},\mathcal{C})_{\star}^{\operatorname{id}},$$

where the second factor is the full subcategory in the isomorphism groupoid $\operatorname{Fun}_I^h(\mathcal{C},\mathcal{C})_\star$ spanned by the identity functor id.

Proposition 8.3.7.1. The family of categories $\mathcal{E} \setminus ^h Cat^h \to Pos^+$ is an enhanced category, and (8.3.7.1) is an enhanced functor.

Proof. Choose a universal object for \mathcal{E} provided by Proposition 8.3.3.4, and consider the corresponding semicocartesian square (8.3.4.11) of Example 8.3.4.5. Then the enhanced functor a induces a fully faithful embedding $\mathcal{E} \setminus {}^h \mathcal{C}at^h \to K(I^o) \setminus {}^h \mathcal{C}at^h$, and once we know that its target is an enhanced category, its source is an enhanced category by Corollary 8.2.2.18. Therefore we may assume right away that $\mathcal{E} \cong K(I^o)$ for some $I \in \operatorname{Pos}^+$. To simplify notation, let us denote $I^o \setminus {}^h \mathcal{C}at^h = K(I^o) \setminus {}^h \mathcal{C}at^h$.

To check that $I^o \setminus {}^h \mathcal{C}at^h \to \operatorname{Pos}^+$ is a reflexive family of categories, take some

To check that $I^o \ \ ^h \mathcal{C}at^h \to \operatorname{Pos}^+$ is a reflexive family of categories, take some $J \in \operatorname{Pos}^+$, with the maps $e: J \times [1] \to J$, $s: J \to J \times [1]$. By Lemma 2.2.2.4, we need to show that for any $\langle J \times [1], \mathcal{C}, \alpha \rangle \in I^o \ \ ^h \mathcal{C}at^h$, there exists a map $\langle \operatorname{id}, \varphi, a \rangle : \langle J \times [1], \mathcal{C}, \alpha \rangle \to e^*s^*\langle J \times [1], \mathcal{C}, \alpha \rangle$ satisfying the required universal property. Since $\mathcal{C}at^h$ is an enhanced category by Proposition 8.3.6.1, it is in particular a reflexive family, and this provides the enhanced functor $\varphi: \mathcal{C} \to e^*s^*\mathcal{C}$. But the required map a is then a map in the enhanced sections category $\operatorname{Sec}(I^o \times J^o \times [1]^o, (s^*\mathcal{C})_{h\perp})$ of (8.2.4.9), and its existence and the universal property immediately follow from the reflexivity of the enhanced category $\mathcal{C}_{h\perp} \to \operatorname{Pos}^+$ over $I \times J$.

Analogously, the fact that $I^o \setminus^h Cat^h$ is non-degenerate and separated immediately follows from the corresponding properties of Cat^h and the enhanced categories $C_{h\perp}$. Since $I^o \setminus^h Cat^h$ is obviously additive, it remains to check that it is semiexact, semicontinuous, and satisfies excision and the cylinder axiom. In other words, we have to check that $I^{o} \setminus {}^{h} Cat^{h}$ is semicartesian over any square (8.2.4.13) of Lemma 8.2.4.8. Since we already know this for Cat^h , by Lemma 2.3.3.7, it suffices to check that for any small J-augmented enhanced category C, the fiber of (8.3.7.1) over the corresponding cartesian section $[1]^2 \to \mathcal{C}at^h$ is semicartesian. Then by Lemma 2.3.4.12, it suffices to check that the squares formed by categories $\mathcal{F}(-,\mathcal{C},K(I^o)),\,\mathcal{F}'(-,\mathcal{C},K(I^o))$ of (8.3.7.2) are semicartesian. For \mathcal{F} , we have $\mathcal{F}(J,\mathcal{C},K(I^o)) \cong \operatorname{Sec}^h(I^o \times J^o,\mathcal{C}_{h\perp})$, so the claim immediately follows from Lemma 8.2.4.8. For \mathcal{F}' , (8.3.7.3) and Lemma 2.3.3.6 further reduce us to showing that the square formed by $\operatorname{Fun}^h(\mathcal{C},\mathcal{C})^{\operatorname{id}}_+$ is semicartesian. However, for any map $f: J' \to J$, Fun^h $(f^*\mathcal{C}, f^*\mathcal{C})^{id}_{\star}$ is the full subcategory in Fun^h $(f^*\mathcal{C},\mathcal{C})_{\star}$ spanned by the enhanced functor $f^*\mathcal{C} \to \mathcal{C}$, or equivalently, the subcategory in Fun^h($f^*\mathcal{C}_{h\perp}$, $\mathcal{C}_{h\perp}$) spanned by $f^*\mathcal{C}_{h\perp} \to \mathcal{C}_{h\perp}$. Then to finish the proof, it suffices to apply the following general result to $\mathcal{E} = \mathcal{C}_{h\perp}$.

Lemma 8.3.7.2. In the situation of Lemma 8.2.4.8, fix a small J-augmented enhanced category C, and let C_0 , C_1 , C_{01} be its restrictions to J_0 , J_1 , J_{01} . Then for any enhanced

category \mathcal{E} , the square

(8.3.7.4)
$$\mathcal{F}un^{h}(\mathcal{C}_{h\perp},\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{C}_{0h\perp},\mathcal{E})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}un^{h}(\mathcal{C}_{1h\perp},\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{C}_{01h\perp},\mathcal{E})$$

induced by (8.2.4.13) is semicartesian.

Proof. Choose a biordered set $I^{\diamond} \in \text{BiPos}^+$ and a universal object $c \in \mathcal{C}_{h\perp}^{\diamond}$ over I^{\diamond} provided by Proposition 8.3.3.4. Then in particular, the corresponding map $I = U(I^{\diamond}) \to J^o$ is a fibration, so that $I^o \to J$ is a cofibration, and the enhanced functor $K(I^o) \to \mathcal{C}_{h\perp}$ induces a full embedding $\mathcal{F}un^h(\mathcal{C}_{h\perp}, \mathcal{E}) \to \mathcal{S}ec^h(I^o, \mathcal{E})$, and similarly for \mathcal{C}_0 , \mathcal{C}_1 and \mathcal{C}_{01} . This reduces us to the case $\mathcal{C} \cong K(I)$, and in this case, the claim is Lemma 8.2.4.8.

Example 8.3.7.3. If $I = \operatorname{pt}$, then $\operatorname{Cat}^h = \operatorname{pt} \setminus^h \operatorname{Cat}^h$ is an enhancement for the category Cat^h of pairs of a small enhanced category $\mathcal C$ and an enhanced object $c \in \mathcal C_{\operatorname{pt}}$. This is an enhanced version of Example 2.3.3.9. Explicitly, objects in Cat^h are triples $\langle I, \mathcal C, c \rangle$, $\langle I, \mathcal C \rangle \in \operatorname{Cat}^h$, $c \in \mathcal C_{h \perp I}$, with morphisms $\langle I', \mathcal C', c' \rangle \to \langle I, \mathcal C, c \rangle$ represented by isomorphism classes of triples $\langle f, \varphi, g \rangle$, $f : I' \to I$, $\varphi : \mathcal C' \to K(f)^*\mathcal C$ an I-augmented enhanced functor, $g : \varphi_{h \perp}(c') \to f^{o*}c$ a map in $\mathcal C_{h \perp I'}$.

For $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$, the definition is similar but the proof is more difficult. Assume given an enhanced category \mathcal{E} , and note that by Corollary 8.3.3.5, even if \mathcal{E} is not small, $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$ is still well-defined, with the same definition as in Subsection 8.3.1. Let us construct an enhancement $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$ for $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$. By definition, its objects are triples $\langle I, \mathcal{C}, \alpha \rangle$, $\langle I, \mathcal{C} \rangle \in \operatorname{Cat}^h$, $\alpha : \mathcal{C}_{h\perp} \to \mathcal{E}$ an enhanced functor, where $\mathcal{C}_{h\perp} \to K(I^o)$ is the transpose I^o -coaugmented enhanced category of (8.2.2.4). Morphism from $\langle I', \mathcal{C}', \alpha' \rangle$ to $\langle I, \mathcal{C}, \alpha \rangle$ are represented by triples $\langle f, \varphi, a \rangle$ of a map $f : I' \to I$, an enhanced functor $\varphi : \mathcal{C}' \to \mathcal{C}$ that fits into a commutative square (8.3.6.1) and is cartesian over K(f), and a map $a : \alpha' \to \alpha \circ \varphi_{h\perp}$. Two triples $\langle f, \varphi, a \rangle$, $\langle f', \varphi', a' \rangle$ define the same morphism iff f = f', and there exists an isomorphism $b : \varphi' \cong \varphi$ over K(I) such that $a = a' \circ \alpha(b_{h\perp})$. The forgetful functor $\operatorname{Cat}^h /\!\!/^h \mathcal{E} \to \operatorname{Pos}^+$ sending a triple $\langle \mathcal{C}, I, \varphi \rangle$ to I is a fibration, and we have $(\operatorname{Cat}^h /\!\!/^h \mathcal{E})_{pt} \cong \operatorname{Cat}^h /\!\!/^h \mathcal{E}$. We also have the forgetful functor

(8.3.7.5)
$$\operatorname{Cat}^h /\!\!/^h \mathcal{E} \to \operatorname{Cat}^h, \qquad \langle I, \mathcal{C}, \alpha \rangle \mapsto \langle I, \mathcal{C} \rangle,$$

cartesian over Pos⁺, and as for (8.3.7.1), its fiber over some $\langle I, \mathcal{C} \rangle \in \mathcal{C}at^h$ is equipped with an epivalence $\nu^{\perp}(I,\mathcal{C}) : \operatorname{Fun}^h(\mathcal{C}_{h\perp},\mathcal{E}) \to (\mathcal{C}at^h /\!/^h \mathcal{E})_{\langle I,\mathcal{C} \rangle}$ that

admits a presentation

$$\operatorname{Fun}^h(\mathcal{C}_{h\perp},\mathcal{E}) \times \operatorname{Fun}^h(\mathcal{C},\mathcal{C})^{\operatorname{id}}_{\star} \rightrightarrows \operatorname{Fun}^h(\mathcal{C}_{h\perp},\mathcal{E}) \xrightarrow{\nu^{\perp}(I,\mathcal{C})} (\operatorname{Cat}^h /\!\!/^h \mathcal{E})_{\langle I,\mathcal{C} \rangle}.$$

Since partially ordered sets are rigid, $\nu^{\perp}(I, \mathcal{C})$ is an equivalence as soon as $\mathcal{C} \cong K(J)$, $J \in \text{Pos}^+$. The simplest case is I = pt, $\mathcal{C} = \text{pt}^h$ that gives a canonical embedding

$$(8.3.7.6) y: \mathcal{E} \cong \mathcal{F}un^h(\mathsf{pt}^h, \mathcal{E}) \cong (\mathcal{C}at^h \not \! / ^h \mathcal{E})_{\langle \mathsf{pt}, \mathsf{pt}^h \rangle} \to \mathcal{C}at^h \not \! / ^h \mathcal{E}.$$

More generally, if we restrict (8.3.7.5) with respect to the full embedding $\mathcal{P}oSets \to \mathcal{C}at^h$ of (8.3.6.12), it becomes a fibration: when one defines a category $\mathcal{P}oSets$ // h \mathcal{E} by the cartesian square

(8.3.7.7)
$$\begin{array}{cccc}
\mathcal{P}oSets //^{h} \mathcal{E} & \longrightarrow \mathcal{C}at^{h} //^{h} \mathcal{E} \\
\downarrow & & \downarrow \\
\mathcal{P}oSets & \longrightarrow \mathcal{C}at^{h},
\end{array}$$

the vertical arrow on the left is a fibration, and $\mathcal{P}o\mathcal{S}ets /\!/^h \mathcal{E}$ is an enhanced category. Explicitly, PoSets $/\!/^h \mathcal{E} = (\mathcal{P}o\mathcal{S}ets /\!/^h \mathcal{E})_{pt}$ is identified with $\iota^* \mathcal{E}^{\natural}$, where $\mathcal{E}^{\natural} \to \text{PoS}ets$ is the canonical bar-invariant extension of the family $\mathcal{E} \to \text{Pos}^+$, and the equivalence ι : PoSets $/\!/^h \mathcal{E} \cong \iota^* \mathcal{E}^{\natural} \to \mathcal{E}^{\natural}$ extends to an equivalence $\mathcal{P}o\mathcal{S}ets /\!/^h \mathcal{E} \cong \mathcal{E}_{\wr}$, where \mathcal{E}_{\wr} is the enhanced category of Lemma 8.2.4.4. Even more explicitly, for any fibration $J \to I$ in PoSets with the induced I-augmentation $K(J) \to K(I)$, we have $K(J)_{h\perp} \cong K(J_{\perp})$, where $J_{\perp} \to I^o$ is the transpose cofibration. Then by (8.1.2.16), objects in $\mathcal{P}o\mathcal{S}ets /\!/^h \mathcal{E}$ are triples $\langle I, J, e \rangle$ of $I \in \text{Pos}^+$, a fibration $J \to I$ in PoSets, and an object $e \in \mathcal{E}_{J_{\perp}^o}$. Moreover, for any $\langle I, \mathcal{C}, \alpha \rangle \in \mathcal{C}at^h /\!/^h \mathcal{E}$, we have

$$(8.3.7.8) \qquad (\mathcal{C}at^{h} //^{h} \mathcal{E})(\langle I, J, e \rangle, \langle I, \mathcal{C}, \alpha \rangle) \cong \pi_{0}(e \setminus_{\alpha} (\mathcal{C}_{h\perp})^{\dagger}_{J_{\perp}^{0}})_{\star},$$

where $(\mathcal{C}_{h\perp})_{J^o_{\perp}}^{\dagger} \subset (\mathcal{C}_{h\perp})_{J^o_{\perp}} \cong \operatorname{Fun}^h(K(J_{\perp}), \mathcal{C}_{h\perp})$ denotes the full subcategory spanned by functors co-augmented over I.

Proposition 8.3.7.4. The family of categories $Cat^h //^h \mathcal{E} \to Pos^+$ is an enhanced category, and (8.3.7.5) is an enhanced functor.

Proof. The family $Cat^h /\!/^h \mathcal{E} \to \operatorname{Pos}^+$ is obviously additive. To see that it is reflexive, assume given some $I \in \operatorname{Pos}^+$ and an object $\langle I \times [1], \mathcal{C}, \alpha \rangle$ in $Cat^h /\!/^h \mathcal{E}$. As in Definition 8.1.1.2, let $s: I \to I \times [1]$ be the embedding, and let $e: I \to I \times [n]$

 $I \times [1] \to I$ be the projection. Choose $J^{\diamond} \in \operatorname{BiPos}^+$ and a universal object $c \in (\mathcal{C}_{h\perp}^{\diamond})_{J^{\diamond}} \subset \mathcal{C}_{h\perp}^{\diamond}$ provided by Proposition 8.3.3.4. Then in particular, the map $J^{\diamond} \to L(I \times [1]) \to L([1])$ is a biordered fibration, with some fibers $J_0^{\diamond}, J_1^{\diamond} \in \operatorname{BiPos}^+$, and its transition functor $g_J: J_1^{\diamond} \to J_0^{\diamond}$ provides a map $a: J^{\diamond} \to J_0^{\diamond} \times L([1])$ equal to id resp. g_J on $J_0^{\diamond} \subset J^{\diamond}$ resp. $J_1^{\diamond} \subset J^{\diamond}$. Moreover, since $s^{o*}c$ is universal for $(s^{h*}\mathcal{C})_{\perp} \cong K(s^o)^*\mathcal{C}_{\perp}$, a induces a map $\langle a, \varphi \rangle : \langle I \times [1], \mathcal{C}, \alpha \to \langle I, s^{h*}\mathcal{C}, \alpha_s \rangle$ in $\mathcal{C}at^h$ //^h \mathcal{E} , where α_s is the restriction of α to $(s^{h*}\mathcal{C})_{h\perp} \subset \mathcal{C}_{h\perp}$. Then by Lemma 2.2.2.4, it suffices to show that for any $\langle I, \mathcal{C}', \alpha' \rangle \in \mathcal{C}at^h$ //^h \mathcal{E} and map $\langle b, \varphi' \rangle : \langle I \times [1], \mathcal{C}, \alpha_s \rangle \to e^* \langle I \times [1], \mathcal{C}', \alpha' \rangle$, we have

(8.3.7.9)
$$\langle b, \varphi' \rangle = e^* s^* (\langle b, \varphi' \rangle) \circ \langle a, \varphi \rangle$$

as morphisms in $\mathcal{C}at^h$ // $^h\mathcal{E}$. Moreover, consider the fibration $U(J^\diamond) \to I$, and let $J = U(J^\diamond)^o_\perp$, with the fibration $J \to I$. Then by (8.1.2.16), c defines an enhanced functor $\widetilde{c}: K(J) \to \mathcal{C}$, and Proposition 8.3.3.4 insures that \widetilde{c} is I-augmented, so that we obtain a morphism $\langle I \times [1], K(J), \alpha \circ \widetilde{c} \rangle \to \langle I \times [1], \mathcal{C}, \alpha \rangle$ in $\mathcal{C}at^h$ // $^h\mathcal{E}$. By (8.3.3.2) and (8.1.2.16), the induced map

$$Cat^h //^h \mathcal{E}(\langle I \times [1], C, \alpha \rangle, -) \to Cat^h //^h \mathcal{E}(\langle I \times [1], K(J), \widetilde{c} \circ \alpha \rangle, -)$$

is injective. Therefore when checking (8.3.7.9), we may replace \mathcal{C} with K(J). Then by (8.3.7.8), the two maps in (8.3.7.9) correspond to two objects c_0 , c_1 in $e \setminus_{\alpha} (\mathcal{C}'_{h\perp})^{\dagger}_{J^o_{\perp}}$, and we need to check that these two objects are isomorphic. Moreover, since $\mathcal{C}'_{h\perp}$ is reflexive, we have the adjoint pair of functors

$$s^*: e \setminus_{\alpha} (\mathcal{C}'_{h\perp})^{\dagger}_{J^{o}_{\perp}} \to e \setminus_{\alpha} (\mathcal{C}'_{h\perp})^{\dagger}_{s^*J^{o}_{\perp}}, \quad s^*_{\dagger}: e \setminus_{\alpha} (\mathcal{C}'_{h\perp})^{\dagger}_{s^*J^{o}_{\perp}} \to e \setminus_{\alpha} (\mathcal{C}'_{h\perp})^{\dagger}_{J^{o}_{\perp}}$$

induced by $s: s^*J^o_\perp \to J^o_\perp$ and its adjoint $s_+: J^o_\perp \to s^*J^o_\perp$, and we are already given an isomorphism $s^*(c_0) \cong s^*(c_1)$, so it suffices to check that both c_0 and c_1 lie in the essential image of the adjoint fully faithful embedding s_+^* . Thus at the end of the day, it suffices to check that for any [1]-augmented enhanced category \mathcal{C} , fibration $J \to [1]$ and [1]-augmented functor $\gamma: K(J) \to \mathcal{C}$ corresponding to an object $c \in \mathcal{C}_{J^o}$, the adjunction map $c \to e^*s^*c$ is an isomorphism. Since \mathcal{C} is non-degenerate, this can be checked pointwise over J, and this further reduces us to the case J = [1]. In this case, by Lemma 8.1.3.3, the essential image of the embedding $e^*: \mathcal{C}_{\mathsf{pt}} \to \mathcal{C}_{[1]}$ is $\mathcal{C}^{\diamond}_{R([1])} \subset \mathcal{C}_{[1]}$, and the claim immediately follows from the definition of the unfolding \mathcal{C}^{\diamond} .

To prove that the reflexive family Cat^h // h \mathcal{E} is non-degenerate, recall that Cat^h is non-degenerate by Proposition 8.3.6.1. For any $\langle I, \mathcal{C} \rangle \in Cat^h$, one can again choose a universal object for $C_{h\perp}$ and use (8.3.7.8) to reduce non-degeneracy

for $Cat^h //^h \mathcal{E}$ to non-degeneracy of \mathcal{E} . Then since $Cat^h //^h \mathcal{E}$ is non-degenerate, the corresponding functors (8.1.1.3) are automatically conservative, so to prove that Cat^h // h \mathcal{E} is separated, it suffices to check that they are essentially surjective and full. For essential surjectivity, assume given some $I \in Pos^+$ and a morphism $\langle id, \varphi, a \rangle : \langle I, C_0, \alpha_0 \rangle \to \langle I, C_1, \alpha_1 \rangle$ in $Cat^{\widetilde{h}} /\!/^h \mathcal{E}$ representing an object $c \in \operatorname{ar}((\operatorname{Cat}^h //^h \mathcal{E})_I)$. Then since we know that Cat^h is separated, we can find $\langle I \times [1], \mathcal{C} \rangle \in \mathcal{C}at^h$ such that $\nu_I(\langle I \times [1], \mathcal{C} \rangle)$ is identified with the image of cunder the projection (8.3.7.5), and we just need to construct an enhanced functor $\alpha: \mathcal{C}_{h+} \to \mathcal{E}$ such that $\nu_I(\langle I \times [1], \mathcal{C}, \alpha \rangle \cong c$. To do this, choose a universal object for C_{h+} over some $J^{\diamond} \in \text{BiPos}^+$ equipped with a biordered fibration $I^{\diamond} \to L(I \times [1])$, and use (8.3.7.8) and Corollary 8.2.1.15 for \mathcal{E} . To check that the essentially surjective functor v_I for Cat^h // h \mathcal{E} is full, assume given another object $\langle I \times [1], \mathcal{C}', \alpha' \rangle$ in $\mathcal{C}at^h //^h \mathcal{E}$, with $c' = \nu_I(\langle I \times [1], \mathcal{C}', \alpha' \rangle)$, and take a map $c \to c'$ that we need to lift to a morphism in $Cat^h //^h \mathcal{E}$. Then to do this, first lift our map to a morphism $\langle id, \varphi \rangle : \langle I \times [1], \mathcal{C} \rangle \to \langle I, \mathcal{C}' \rangle$ in Cat^h , and then again use (8.3.7.8) for $\langle I \times [1], C', \alpha' \rangle$ and Corollary 8.2.1.15 for \mathcal{E} to further lift $\langle id, \varphi \rangle$ to a morphism $\langle id, \varphi, a \rangle : \langle I \times [1], \mathcal{C}, \alpha \rangle \to \langle I \times [1], \mathcal{C}', \alpha' \rangle$ in $Cat^h //^h \mathcal{E}$.

To finish the proof, it remains to check that the separated non-degenerate reflexive family Cat^h // $^h\mathcal{E}\to Pos^+$ is semiexact, semicontinuous, and satisfies excision and the cylinder axiom. As in Proposition 8.3.7.1, Lemma 2.3.3.6 and Lemma 2.3.4.12 immediately reduce this to Lemma 8.3.7.2.

Finally, let us observe that we can combine Proposition 8.3.7.4 and Proposition 8.3.7.1, although we will only need the special case of the latter given in Example 8.3.7.3. Namely, assume given an enhanced category \mathcal{E} , and let $\mathcal{C}at^h_{\cdot}$ // \mathcal{E} be the category of quadruples $\langle I, \mathcal{C}, \alpha, c \rangle$ of $I \in \operatorname{Pos}^+$, an I-augmented enhanced category \mathcal{C} , an enhanced functor $\alpha:\mathcal{C}_{h\perp}\to\mathcal{E}$, and a object $c\in\mathcal{C}_{h\perp I}$. Morphisms $\langle I',\mathcal{C}',\alpha',c'\rangle\to\langle I,\mathcal{C},\alpha,c\rangle$ are isomorphism classes of quadruples $\langle f,\varphi,a,g\rangle$, $f:I'\to I$, $\varphi:\mathcal{C}'\to K(f)^*\mathcal{C}$ an I-augmented enhanced functor, $g:\varphi_{h\perp}(c')\to f^{o*}c$ a map in $\mathcal{C}_{h\perp I'}$. Then sending $\langle I,\mathcal{C},\alpha,c\rangle$ to I defines a fibration $\mathcal{C}at^h_{\cdot}$ // $^h\mathcal{E}\to\operatorname{Pos}^+$, and the forgetful functors sending it to $\langle I,\mathcal{C},\alpha\rangle$ resp. $\langle I,\mathcal{C},c\rangle$ fit into a commutative square

(8.3.7.10)
$$Cat_{\cdot}^{h} / \! \! /^{h} \mathcal{E} \xrightarrow{\pi} Cat_{\cdot}^{h} / \! \! /^{h} \mathcal{E}$$

$$\tau' \downarrow \qquad \qquad \downarrow$$

$$Cat_{\cdot}^{h} \longrightarrow Cat_{\cdot}^{h}$$

of fibrations over Pos⁺ and functors cartesian over Pos⁺. Moreover, by its very

definition, the square (8.3.7.10) is semicartesian, and we have a functor

(8.3.7.11)
$$\operatorname{Cat}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}^{h}/\!\!/^{h} \mathcal{E} \to \mathcal{E}, \qquad \langle I, \mathcal{C}, \alpha, c \rangle \mapsto \alpha(c),$$

also cartesian over Pos⁺. In fact, (8.3.7.11) gives an enhancement of Example 2.4.1.3.

Proposition 8.3.7.5. For any enhanced category \mathcal{E} , the family of categories $\operatorname{Cat}_{\cdot}^{h}/\!/^{h}\mathcal{E} \to \operatorname{Pos}^{+}$ is an enhanced category.

Proof. We already know that Cat^h // h $\mathcal E$ in (8.3.7.10) is an enhanced category by Proposition 8.3.7.4. Then as in Proposition 8.3.7.1, the fibers of the projection π admits presentations (8.3.7.2), and one can apply exactly the same argument as in Proposition 8.3.7.1.

8.4. The Yoneda package.

8.4.1. Enhanced cylinders and comma-categories. For any enhanced category \mathcal{C} , the simplest of the epivalences (8.1.1.3) is $\nu_{\mathsf{pt}}:\mathcal{C}_{[1]}\to\mathsf{ar}(\mathcal{C}_{\mathsf{pt}})$. When $\mathcal{C}=\mathcal{C}at^h$ is the enhanced category of small enhanced categories provided by Proposition 8.3.6.1, the existence of the epivalence ν_{pt} means that a pair \mathcal{C}_0 , \mathcal{C}_1 of small enhanced categories equipped with an enhanced functor $\gamma:\mathcal{C}_0\to\mathcal{C}_1$ defines a [1]-augmented enhanced category \mathcal{C} , uniquely up to an equivalence. If one spells out how the proof of Proposition 8.3.6.1 works in this case, then the main fact used is Corollary 8.3.5.4 for I=[1] and the embedding $r=t:\mathsf{pt}=[0]\to[1]$, and this reduces to the following enhanced version of the cylinder construction.

Definition 8.4.1.1. The *enhanced cylinder* $C_h(\gamma)$ and the *dual enhanced cylinder* $C_h(\gamma)$ of an enhanced functor $\gamma: C_0 \to C_1$ between small enhanced categories C_0 , C_1 are given by semicartesian squares

$$\begin{array}{cccc}
\mathsf{C}_{h}^{\iota}(\gamma) & \longrightarrow & \mathcal{C}_{1} \times^{h} K([1]) & & \mathsf{C}_{h}(\gamma) & \longrightarrow & \mathcal{C}_{1} \times^{h} K([1]) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{C}_{0}^{h<} & \xrightarrow{\gamma_{h<}} & \mathcal{C}_{1}^{h<}, & & \mathcal{C}_{0}^{h>} & \xrightarrow{\gamma_{h>}} & \mathcal{C}_{1}^{h>},
\end{array}$$

$$(8.4.1.1)$$

where $C_1^{h<} = t_*C_1$ and $C_1^{h>} = (C_1^{h<})_{h\perp}$ are the enhanced categories of (8.2.2.7), and the vertical arrows on the right are the adjoint to the equivalence $t^*(C_1 \times^h K([1])) \cong C_1$ and the transpose-opposite functor.

By construction, the enhanced cylinder $C_h(\gamma)$ resp. the dual enhanced cylinder $C_h^\iota(\gamma)$ is [1]-coaugmented resp. [1]-augmented in the sense of Definition 8.2.2.6, and we have $C_h(\gamma)^\iota \cong C_h^\iota(\gamma^\iota)$. Composing the projection $C_1 \times^h K([1]) \to C_1$ with the top arrows in (8.4.1.1) provides enhanced functors $t_+: C_h(\gamma) \to C_1$, $s_+: C_h^\iota(\gamma) \to C_1$. By Corollary 8.3.3.6, the embeddings $s,t: C_1 \to C_1 \times^h K([1])$ provide enhanced functors $s: C_0 \to C_h(\gamma)$, $t: C_1 \to C_h(\gamma)$, $s: C_1 \to C_h(\gamma)$, $t: C_0 \to C_h^\iota(\gamma)$ that come equipped with isomorphisms $t_+ \circ t \cong \operatorname{id}$, $s_+ \circ s \cong \operatorname{id}$, and fit into factorizations

$$(8.4.1.2) \mathcal{C}_0 \xrightarrow{s} \mathsf{C}_h(\gamma) \xrightarrow{t_{\dagger}} \mathcal{C}_1, \mathcal{C}_0 \xrightarrow{t} \mathsf{C}_h^{\iota}(\gamma) \xrightarrow{s_{\dagger}} \mathcal{C}_1$$

of the enhanced functor γ . In particular, both $C_h(\gamma)$ and $C_h^\iota(\gamma)$ are categories under $\mathcal{C}_0 \sqcup \mathcal{C}_1$. If \mathcal{C}_0 , \mathcal{C}_1 are equipped with enhanced functors $\pi_l : \mathcal{C}_l \to \mathcal{E}$, l=0,1 to some enhanced category \mathcal{E} , and γ is a functor over \mathcal{E} , we will treat $C_h(\gamma)$ resp. $C_h^\iota(\gamma)$ as categories over \mathcal{E} via the functors $\pi_1 \circ t_+$ resp. $\pi_1 \circ s_+$, and then the embeddings s, t and the factorizations (8.4.1.2) are all over \mathcal{E} . Any [1]-augmented small enhanced category \mathcal{C} is of the form $\mathcal{C} \cong C_h^\iota(\gamma)$ for an enhanced functor $\gamma : \mathcal{C}_1 = t^*\mathcal{C} \to \mathcal{C}_0 = s^*\mathcal{C}$, unique up to an isomorphism.

Lemma 8.4.1.2. For any enhanced functor $\gamma: C_0 \to C_1$ between small enhanced categories, the isomorphisms $s_{\dagger} \circ s \cong \operatorname{id} \operatorname{resp.id} \cong t_{\dagger} \circ t$ define an adjunction between s and s_{\dagger} resp. t_{\dagger} and t.

Proof. Since $C_h(\gamma) \cong C_h^t(\gamma^t)$, and this equivalence interchanges s, s_+ and t, t_+ , it suffices to consider the dual enhanced cylinder $C_h^t(\gamma)$. Then this is a [1]-augmented enhanced category, and $\varepsilon^h(0) : \operatorname{pt}^h \to K([1])$ is right-admissible, so $s : \mathcal{C}_1 \to C_h^t(\gamma)$ is right-admissible by Lemma 2.3.1.9. Moreover, the top arrow in (8.4.1.1) is [1]-augmented, and this identifies its right-adjoint s_+ with the enhanced functor (8.4.1.2).

For any enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ between small enhanced categories, we also have the enhanced functor $\gamma \times^h \operatorname{id}: \mathcal{C}_0 \times^h K([1]) \to \mathcal{C}_1 \times^h K([1])$, and again by Corollary 8.3.3.6, it induces enhanced functors from the product $\mathcal{C}_0 \times^h K([1])$ to $\mathsf{C}_h(\gamma)$ and $\mathsf{C}_h^\iota(\gamma)$ that fit into commutative squares

$$\begin{array}{cccc}
\mathcal{C}_{0} & \xrightarrow{\gamma} & \mathcal{C}_{1} & \mathcal{C}_{0} & \xrightarrow{\gamma} & \mathcal{C}_{1} \\
\downarrow_{id \times^{h} t} \downarrow & \downarrow_{t} & \downarrow_{s} \downarrow & \downarrow_{s} \\
\mathcal{C}_{0} \times^{h} K([1]) & \longrightarrow & \mathsf{C}_{h}(\gamma), & \mathcal{C}_{0} \times^{h} K([1]) & \longrightarrow & \mathsf{C}_{h}^{\iota}(\gamma),
\end{array}$$

an enhanced version of the squares (2.2.4.4).

Lemma 8.4.1.3. The commutative squares (8.4.1.3) are enhanced-semicocartesian in the sense of Definition 8.3.4.3.

Proof. As in Lemma 8.4.1.2, it suffices to consider enhanced dual cylinders. Then $C_h^\iota(\gamma)$ is [1]-augmented, and Proposition 8.3.3.4 provides a universal object in some fiber $C_h^\iota(\gamma)_{I^\diamond}^{\iota\diamond}$, $I^\diamond\in \text{BiPos}^+$ such that the underlying partially ordered set $I=U(I^\diamond)\in \text{Pos}^+$ is fibered over [1]. By universality, it then suffices to prove the claim for $C_h^\iota(\gamma)\cong K(I)$, and in this case, the claim is Example 8.3.4.6. \square

As in the unenhanced situation, the dual notion to cylinders and dual cylinders is the notion of a left and right comma-category. For any enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ between small enhanced categories, the *left* resp. *right* enhanced comma-category are defined by semicartesian squares

$$(8.4.1.4) \qquad \begin{array}{cccc} \mathcal{C}_{1} \setminus_{\gamma}^{h} \mathcal{C}_{0} & \xrightarrow{\tau} & \mathcal{C}_{0} & \mathcal{C}_{0} /_{\gamma}^{h} \mathcal{C}_{1} & \xrightarrow{\sigma} & \mathcal{C}_{0} \\ & \downarrow & & \downarrow \gamma & & \downarrow \gamma \\ & \mathsf{ar}_{h}(\mathcal{C}_{1}) & \xrightarrow{\tau} & \mathcal{C}_{1}, & \mathsf{ar}_{h}(\mathcal{C}_{1}) & \xrightarrow{\sigma} & \mathcal{C}_{1}, \end{array}$$

where $\operatorname{ar}_h(\mathcal{C}_1)$ and σ , τ are as in (8.2.4.7). We have $\mathcal{C}_0^\iota/_{\gamma^\iota}^h\mathcal{C}_1^\iota \cong (\mathcal{C}_1\setminus_{\gamma}^h\mathcal{C}_0)^\iota$ and $\mathcal{C}_1^\iota\setminus_{\gamma^\iota}^h\mathcal{C}_0^\iota \cong (\mathcal{C}_0/_{\gamma}^h\mathcal{C}_1)^\iota$. As in the unenhanced case, we drop the subscript γ when it is clear from the context. By Corollary 8.3.3.6, the enhanced functor $\eta:\mathcal{C}_1\to\operatorname{ar}_h(\mathcal{C}_1)$ of (8.2.4.7) gives rise to factorizations

$$(8.4.1.5) \mathcal{C}_0 \xrightarrow{\eta} \mathcal{C}_1 \setminus_{\gamma}^{h} \mathcal{C}_0 \xrightarrow{\sigma} \mathcal{C}_1, \mathcal{C}_0 \xrightarrow{\eta} \mathcal{C}_0 /_{\gamma}^{h} \mathcal{C}_1 \xrightarrow{\tau} \mathcal{C}_1$$

of the enhanced functor γ , where σ and τ are obtained by composing the projections to $\operatorname{ar}_h(\mathcal{C}_1)$ with $\sigma, \tau: \operatorname{ar}_h(\mathcal{C}_1) \to \mathcal{C}_1$. For any enhanced object c in the enhanced category \mathcal{C}_1 , the *left* resp. *right enhanced comma-fibers* of the enhanced functor γ over c are the enhanced fibers $\mathcal{C}_0/^h_{\gamma}c = (\mathcal{C}_0/^h_{\gamma}\mathcal{C}_1)_c$ resp. $c \setminus^h_{\gamma} \mathcal{C}_0 = (\mathcal{C}_1 \setminus^h_{\gamma} \mathcal{C}_1)_c$ of the projections τ resp. σ of (8.4.1.5) in the sense of (8.3.4.6), and we denote by

(8.4.1.6)
$$\sigma(c): \mathcal{C}_0/^h_{\gamma}c \to \mathcal{C}_0, \qquad \tau(c): c\setminus^h_{\gamma}\mathcal{C}_0 \to \mathcal{C}_0$$

the enhanced functors induced by (8.4.1.4). More generally, for any enhanced functor $\mathcal{C} \to \mathcal{E}$ between small enhanced categories, we define the *relative enhanced* arrow category by the cartesian square

(8.4.1.7)
$$\text{ar}^h(\mathcal{C}|\mathcal{E}) \longrightarrow \text{ar}^h(\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{E} \qquad \stackrel{\eta}{\longrightarrow} \text{ar}^h(\mathcal{E}),$$

where η is the fully faithful enhanced functor of (8.2.4.7), and if small enhanced categories C_0 , C_1 are equipped with enhanced functors $\pi_l : C_l \to \mathcal{E}$, l = 0, 1, we define the *enhanced relative comma-categories* of an enhanced functor $\gamma : C_0 \to C_1$ over \mathcal{E} by cartesian squares

$$(8.4.1.8) \begin{array}{cccc} \mathcal{C}_{1} \setminus_{\gamma,\mathcal{E}} \mathcal{C}_{0} & \longrightarrow \mathcal{C}_{1} \setminus_{\gamma} \mathcal{C}_{0} & \mathcal{C}_{0} /_{\gamma,\mathcal{E}} \mathcal{C}_{1} & \longrightarrow \mathcal{C}_{0} /_{\gamma} \mathcal{C}_{1} \\ \downarrow & & \downarrow \pi_{1} / \pi_{0} & \downarrow & & \downarrow \pi_{0} / \pi_{1} \\ \mathcal{E} & \stackrel{\eta}{\longrightarrow} \operatorname{ar}^{h}(\mathcal{E}), & \mathcal{E} & \stackrel{\eta}{\longrightarrow} \operatorname{ar}^{h}(\mathcal{E}). \end{array}$$

Then we have $C_0^{\iota}/_{\gamma^{\iota},\mathcal{E}^{\iota}}^h C_1^{\iota} \cong (C_1 \setminus_{\gamma,\mathcal{E}}^h C_0)^{\iota}$ and $C_1^{\iota} \setminus_{\gamma^{\iota},\mathcal{E}^{\iota}}^h C_0^{\iota} \cong (C_0/_{\gamma,\mathcal{E}}^h C_1)^{\iota}$, and (8.4.1.4) induce semicartesian squares

$$(8.4.1.9) \qquad \begin{array}{cccc} \mathcal{C}_{1} \setminus_{\gamma,\mathcal{E}}^{h} \mathcal{C}_{0} & \xrightarrow{\tau} \mathcal{C}_{0} & \mathcal{C}_{0} /_{\gamma,\mathcal{E}}^{h} \mathcal{C}_{1} & \xrightarrow{\sigma} \mathcal{C}_{0} \\ \downarrow & & \downarrow \gamma & & \downarrow \gamma \\ & \operatorname{ar}_{h}(\mathcal{C}_{1} | \mathcal{E}) & \xrightarrow{\tau} \mathcal{C}_{1}, & \operatorname{ar}_{h}(\mathcal{C}_{1} | \mathcal{E}) & \xrightarrow{\sigma} \mathcal{C}_{1}, \end{array}$$

where $\operatorname{ar}_h(\mathcal{C}_1|\mathcal{E})$ is the enhanced relative arrow category of (8.4.1.7) (in particular, for any $\mathcal{C} \to \mathcal{E}$, we have $\mathcal{C} \setminus_{\operatorname{id},\mathcal{E}} \mathcal{C} \cong \mathcal{C}/_{\operatorname{id},\mathcal{C}} \cong \operatorname{ar}_h(\mathcal{C}|\mathcal{E})$). The factorizations (8.4.1.5) induce factorizations

(8.4.1.10)
$$C_0 \xrightarrow{\eta} C_1 \setminus_{\gamma,\mathcal{E}}^h C_0 \xrightarrow{\sigma} C_1$$
, $C_0 \xrightarrow{\eta} C_0 /_{\gamma,\mathcal{E}}^h C_1 \xrightarrow{\tau} C_1$ of the enhanced functor γ .

By Corollary 8.3.3.6, the comma-category construction is functorial in the following sense: for any commutative square

(8.4.1.11)
$$\begin{array}{ccc}
\mathcal{C}' & \xrightarrow{\gamma} & \mathcal{C} \\
\pi' \downarrow & & \downarrow \pi \\
\mathcal{E}' & \xrightarrow{\varphi} & \mathcal{E}
\end{array}$$

of enhanced categories and enhanced functors, we have natural functors

$$(8.4.1.12) \gamma \setminus^h \varphi : \mathcal{E}' \setminus^h_{\pi'} \mathcal{C}' \to E \setminus^h_{\pi} \mathcal{C}, \quad \gamma /^h \varphi : \mathcal{C}' /^h_{\pi'} \mathcal{E}' \to \mathcal{C} /^h_{\pi} \mathcal{E},$$

unique up to an isomorphism. The duality between cylinders and commacategories of (2.2.4.7) carries over to the enhanced setting: for any enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ between small enhanced categories, and any small enhanced category \mathcal{E} , Lemma 8.3.4.4 and Lemma 8.4.1.3 provide identifications

(8.4.1.13)
$$\mathcal{F}un^{h}(\mathsf{C}_{h}(\gamma),\mathcal{E}) \cong \mathcal{F}un^{h}(\mathcal{C}_{0},\mathcal{E}) \setminus_{\gamma^{*}}^{h} \mathcal{F}un^{h}(\mathcal{C}_{1},\mathcal{E}),$$

$$\mathcal{F}un^{h}(\mathsf{C}_{h}^{\iota}(\gamma),\mathcal{E}) \cong \mathcal{F}un^{h}(\mathcal{C}_{1},\mathcal{E}) /_{\gamma^{*}}^{h} \mathcal{F}un^{h}(\mathcal{C}_{0},\mathcal{E}).$$

Moreover, we also have en enhanced version of (2.2.4.8).

Lemma 8.4.1.4. For any enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ between small enhanced categories, we have

$$(8.4.1.14) C_0/_{\gamma}^h C_1 \cong Sec^h([1], C_h(\gamma)), C_1\setminus_{\gamma}^h C_0 \cong Sec^h([1], C_h(\gamma)).$$

Proof. If $C_1 = \operatorname{pt}^h$, so that $C_h(\gamma) \cong C_0^{h>}$ and $C_h^\iota(\gamma) \cong C_0^{h<}$, the claim immediately follows from (2.4.3.2) applied to $K(s), K(t) : \operatorname{pt}^h = K(\operatorname{pt}) \to K([1])$. In the general case, the semicartesian squares (8.4.1.1) are [1]-augmented, and for any $J \in \operatorname{Pos}^+$, $\operatorname{Sec}^h(J,-)$ sends J-augmented semicartesian squares to semicartesian squares.

In terms of (8.4.1.14), the projections σ and τ in (8.4.1.4) and (8.4.1.5) are induced by the embeddings s,t: pt $=[0] \to [1]$, and Lemma 8.2.4.7 then immediately shows that $\eta: \mathcal{C}_0 \to \mathcal{C}_0/^h\mathcal{C}_1$ in (8.4.1.5) is left-adjoint to σ of (8.4.1.4), and dually, $\eta: \mathcal{C}_0 \to \mathcal{C}_1 \setminus ^h \mathcal{C}_0$ is right-adjoint to τ . In the relative situation, since the top arrows in (8.4.1.8) are fully faithful embeddings, these adjunctions induce the corresponding adjunction for η , τ and σ in (8.4.1.9) and (8.4.1.10).

Lemma 8.4.1.5. Assume given enhanced functors $\lambda: \mathcal{C}_0 \to \mathcal{C}_1$, $\rho: \mathcal{C}_1 \to \mathcal{C}_0$ between small enhanced categories. Then (i) λ is left-adjoint to ρ iff (ii) there exists an equivalence $\varepsilon: \mathsf{C}_h(\lambda) \cong \mathsf{C}_h^t(\rho)$ under $\mathcal{C}_0 \sqcup \mathcal{C}_1$ iff (iii) there exists an equivalence $\mathcal{C}_0 / {}^h_{\lambda} \mathcal{C}_1 \cong \mathcal{C}_0 \backslash {}^h_{\rho} \mathcal{C}_1$ over $\mathcal{C}_0 \times {}^h \mathcal{C}_1$. Moreover, if \mathcal{C}_0 , \mathcal{C}_1 are equipped with enhanced functors $\pi_l: \mathcal{C}_l \to \mathcal{E}$, l=0,1 to a small enhanced category \mathcal{E} , and ρ , λ are functors over \mathcal{E} adjoint over \mathcal{E} , then in (ii), one can choose an equivalence ε that fits into a commutative diagram

$$\begin{array}{cccc}
\mathcal{C}_0 \sqcup \mathcal{C}_1 & \xrightarrow{s \sqcup t} & \mathsf{C}_h(\lambda) & \xrightarrow{t_+ \circ \pi_1} & \mathcal{E} \\
\parallel & & \varepsilon \downarrow & & \parallel \\
\mathcal{C}_0 \sqcup \mathcal{C}_1 & \xrightarrow{t \sqcup s} & \mathsf{C}_h^{\iota}(\rho) & \xrightarrow{s_+ \circ \pi_1} & \mathcal{E}_{\ell}
\end{array}$$

and in (iii), one has an equivalence $C_0/_{\lambda,\mathcal{E}}^h C_1 \cong C_0 \setminus_{\rho,\mathcal{E}}^h C_1$ over $C_0 \times_{\mathcal{E}}^h C_1$.

Proof. Both (ii) and (iii) immediately imply (i), by (8.4.1.2) resp. (8.4.1.5). In the absolute case, (ii) implies (iii) by (8.4.1.14), and if we are over \mathcal{E} , then (8.4.1.15) insures that $Sec^h([1], \varepsilon)$ is an equivalence over

$$(\mathcal{C}_0 \times \mathcal{C}_1) imes_{\mathcal{E} imes \mathcal{E}}^h \mathcal{S}ec^h([1],[1] imes^h \mathcal{E}) \cong (\mathcal{C}_0 imes \mathcal{C}_1) imes_{\mathcal{E} imes \mathcal{E}}^h \operatorname{ar}^h(\mathcal{E})$$

which then restricts to an equivalence $C_0/_{\lambda,\mathcal{E}}^h C_1 \cong C_0 \setminus_{\rho,\mathcal{E}}^h C_1$ over $C_0 \times_{\mathcal{E}}^h C_1$ via the full embedding $\eta : \mathcal{E} \to \operatorname{ar}^h(\mathcal{E})$. To finish the proof, it remains to check

that (i) implies (ii). Decompose $\rho \cong s_{\dagger} \circ t$ by (8.4.1.2), let $a: \operatorname{id} \to \rho \circ \lambda$ be the adjunction map, and let $a': s \to t \circ \lambda$ be the adjoint map of enhanced functors $C_0 \to C_h^\iota(\rho)$ that exists by virtue of the adjunction of Lemma 8.4.1.2. Then by (8.3.3.3), a' defines an enhanced functor $\alpha: C_0 \times^h K([1]) \to C_h^\iota(\rho)$ equipped with isomorphisms $\alpha \circ s \cong s$, $\alpha \circ t \cong \lambda \circ t$, and by Lemma 8.4.1.3, this in turn gives rise to a functor $\epsilon: C_h(\lambda) \to C_h^\iota(\rho)$ and isomorphisms $\epsilon \circ s \cong s$, $\epsilon \circ t \cong t$. Moreover, if we are over \mathcal{E} , then by the same semicocartesian property of Lemma 8.4.1.3, we obtain (8.4.1.15). Dually, the adjunction map $a_t: \lambda \circ \rho \to \operatorname{id}$ defines a functor $\epsilon_t: C_h^\iota(\rho) \to C_h(\lambda)$, and a and a_t define an adjunction between λ and ρ if and only if $\epsilon \circ \epsilon_t \cong \operatorname{id}$ and $\epsilon_t \circ \epsilon \cong \operatorname{id}$.

Corollary 8.4.1.6. Assume given a commutative diagram

$$\begin{array}{cccc}
\mathcal{C}'_0 & \xrightarrow{\lambda'} & \mathcal{C}'_1 & \xrightarrow{\rho'} & \mathcal{C}'_0 & \longrightarrow & \mathcal{E}' \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{C}_0 & \xrightarrow{\lambda} & \mathcal{C}_1 & \xrightarrow{\rho} & \mathcal{C}_0 & \longrightarrow & \mathcal{E}
\end{array}$$
(8.4.1.16)

of small enhanced categories and enhanced functors, and assume that all squares in (8.4.1.16) are semicartesian, and λ is left-adjoint to ρ over \mathcal{E} . Then λ' is left-adjoint to ρ' over \mathcal{E}' .

Proof. Use Corollary 8.3.3.6 and the criterion of Lemma 8.4.1.5 (iii). □

Corollary 8.4.1.7. Assume given enhanced categories C, E with C small. Then for any right-reflexive enhanced functor $\lambda: E \to E'$ with right-adjoint $\rho: E' \to E$, the enhanced functors between $\operatorname{Fun}^h(C,E)$ and $\operatorname{Fun}^h(C,E')$ given by postcompostion with λ and ρ are adjoint, and for any left-reflexive enhanced functor $\rho: C' \to C$ from a small enhanced category C, with left-adjoint $\lambda: C \to C$, the pullback $\rho^*: \operatorname{Fun}^h(C,E) \to \operatorname{Fun}^h(C',E)$ is right-adjoint to the pullback $\lambda^*: \operatorname{Fun}^h(C',E) \to \operatorname{Fun}(C,E)$.

Proof. The first claim immediately follows from Lemma 8.4.1.5 (iii) applied to \mathcal{E} , \mathcal{E}' and the functor categories. For the second, use Lemma 8.4.1.5 (ii) for \mathcal{C} , \mathcal{C}' , and then apply (8.4.1.13) and Lemma 8.4.1.5 (iii).

Lemma 8.4.1.8. Assume given an enhanced functor $\lambda: \mathcal{C}_0 \to \mathcal{C}_1$ between small enhanced categories equipped with an enhanced section $\rho: \mathcal{C}_1 \to \mathcal{C}_0$. Then the isomorphism $\lambda \circ \rho \cong \operatorname{id}$ defines an adjunction between λ and ρ if and only if $\sigma: \mathcal{C}_0 \setminus_{\rho,\mathcal{C}_1}^h \mathcal{C}_1 \to \mathcal{C}_0$ is an equivalence.

Proof. Same as Lemma 2.2.4.6, with enhanced comma-categories instead of the usual ones, and Lemma 8.4.1.5 (iii) in the "only if" part. \Box

- **Corollary 8.4.1.9.** (i) Assume given a semicartesian square (2.1.3.1) of small enhanced categories and enhanced functors, and left resp. right-admissible enhanced full subcategories $C' \subset C$, $C'_l \subset C_l$, l = 0, 1, with adjoint enhanced functors $\lambda : C \to C'$, $\lambda_l : C_l \to C'_l$, l = 0, 1, such that $\gamma_l(C'_l) \subset C'$, l = 0, 1, and (2.2.1.4) is an isomorphism $\gamma_l \circ \lambda_l \cong \lambda \circ \gamma_l$, again for l = 0, 1. Then the full subcategory $C'_{01} = C'_0 \times^h_{C'}$, $C'_l \subset C_{01}$ is left resp. right-admissible, with some adjoint $\lambda_{01} : C_{01} \to C'_{01}$, and we have $\gamma^l_{01} \circ \lambda_{01} \cong \lambda_l \circ \gamma^l_{01}$ for l = 0, 1.
 - (ii) Assume given a commutative square (2.1.3.1) of small enhanced categories and enhanced functors, and left resp. right-admissible enhanced full subcategories $\mathcal{C}' \subset \mathcal{C}$, $\mathcal{C}'_l \subset \mathcal{C}_l$, l = 0, 1, 01, with adjoint enhanced functors $\lambda : \mathcal{C} \to \mathcal{C}'$, $\lambda_l : \mathcal{C}_l \to \mathcal{C}'_l$, l = 0, 1, 01, such that $\gamma_l(\mathcal{C}'_l) \subset \mathcal{C}'$, $\gamma^l_{01}(\mathcal{C}'_{01}) \subset \mathcal{C}'_l$, l = 0, 1, and (2.2.1.4) provides isomorphisms $\gamma_l \circ \lambda_l \cong \lambda \circ \gamma_l$, $\gamma^l_{01} \circ \lambda_{01} \cong \lambda_l \circ \gamma^l_{01}$, l = 0, 1. Then if the square is semicartesian, cartesian, enhanced-semicocartesian or enhanced-cocartesian, so is the square of categories \mathcal{C}' , \mathcal{C}'_l , l = 0, 1, 01.

Proof. The proof for (i) is the same as Corollary 2.2.4.7, with Lemma 8.4.1.8 instead Lemma 2.2.4.6, and semicartesian products instead of cartesian products. For (ii), in the semicartesian and cartesian case, since the adjoint functr $\lambda_l:\mathcal{C}_l\to\mathcal{C}'_l, l=0,1$ are essentially surjective, the adjoint $\lambda_{01}\cong(\lambda_0\circ\gamma_{01}^0)\times^h(\lambda_1\circ\gamma_{01}^1):\mathcal{C}_{01}\to\mathcal{C}'_{01}\subset\mathcal{C}_{01}$ must be essentially surjective onto $\mathcal{C}'_0\times^h_{\mathcal{C}'}\mathcal{C}'_1\supset\mathcal{C}'_{01}$, so the two full subcategories in \mathcal{C}_{01} coincide. In the semicocartesian and cocartesian case, combine Lemma 8.3.4.4, Corollary 8.4.1.7 and (ii) in the semicartesian resp. cartesian case.

8.4.2. Enhanced fibrations and cofibrations. Just as in Lemma 8.4.1.8 and Corollary 8.4.1.9 (i), if one replaces cartesian products with semicartesian products, and uses enhanced cylinders and enhanced comma-categories of Subsection 8.4.1, then most of the material of Subsection 2.3.1 and Subsection 2.3.2 extends to the enhanced setting with basically the same definitions and proofs. However, it is actually more convenient to use a slightly more general definition that makes sense for enhanced categories that are not small.

Definition 8.4.2.1. An enhanced functor $\pi : \mathcal{C} \to \mathcal{E}$ between enhanced categories is an *enhanced fibration* if the enhanced arrow category $\operatorname{ar}^h(\mathcal{C})$ admits a

left-admissible enhanced full subcategory $\mathcal{E} \setminus_{\pi}^{h} \mathcal{C} \subset \operatorname{ar}^{h}(\mathcal{C})$, with some embedding functor $\nu : \mathcal{E} \setminus_{\pi}^{h} \mathcal{C} \to \operatorname{ar}^{h}(\mathcal{C})$ such that the commutative square

$$\begin{array}{cccc} \mathcal{E} \setminus_{\pi}^{h} \mathcal{C} & \xrightarrow{\tau \circ \nu} & \mathcal{C} \\ & & & & \downarrow \pi \end{array}$$

$$(8.4.2.1) & & & & \downarrow \pi \\ & & & & \mathsf{ar}^{h}(\mathcal{E}) & \xrightarrow{\tau} & \mathcal{E} \end{array}$$

is semicartesian. An enhanced functor π is an *enhanced cofibration* if the enhanced-opposite enhanced functor π^{ι} is an enhanced fibration, and an *enhanced bifibration* if it is both an enhanced fibration and an enhanced cofibration.

If the enhanced categories \mathcal{E} , \mathcal{C} in Definition 8.4.2.1 are small, then by Corollary 8.3.3.6, $\mathcal{E} \setminus_{\pi}^{h} \mathcal{C}$ must be the comma-category of (8.4.1.4); this explains our notation. For enhanced cofibrations, we let $\mathcal{C}/_{\pi}^{h} \mathcal{E} = (\mathcal{E}^{\iota} \setminus_{\pi^{\iota}}^{h} \mathcal{C}^{\iota})^{\iota}$. In general, for any enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$, say that a full enhanced subcategory $\mathcal{C}' \subset \mathcal{C}$ is a *enhanced subfibration* if $\tau^{-1}(\mathcal{C}') \cap (\mathcal{E} \setminus_{\pi}^{h} \mathcal{C}) \subset \operatorname{ar}^{h}(\mathcal{C}')$; in this case, the induced enhanced functor $\pi': \mathcal{C}' \to \mathcal{E}$ is trivially an enhanced fibration. For any full enhanced subcategory $\mathcal{E}' \subset \mathcal{E}$, the induced enhanced functor $\pi': \mathcal{C}' = \pi^{-1}(\mathcal{E}') \to \mathcal{E}'$ is also trivially an enhanced fibration, with $\mathcal{E}' \setminus_{\pi'}^{h} \mathcal{C}' = \operatorname{ar}^{h}(\mathcal{C}') \cap (\mathcal{E} \setminus_{\pi}^{h} \mathcal{C})$.

Lemma 8.4.2.2. For any enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$ with small \mathcal{E} , \mathcal{C} is a filtered 2-colimit of small enhanced subfibrations $\mathcal{C}' \subset \mathcal{C}$. Conversely, assume given enhanced functor $\pi: \mathcal{C} \to \mathcal{E}$ such that \mathcal{C} is a filtered 2-colimit of full subcategories $\mathcal{C}' \subset \mathcal{C}$ such that the induced functor $\pi': \mathcal{C}' \to \mathcal{E}$ is a small enhanced fibration. Then π is an enhanced fibration, and all the full subcategories $\mathcal{C}' \subset \mathcal{C}$ are subfibrations.

Proof. For the first claim, for any small enhanced full subcategory $\mathcal{C}' \subset \mathcal{C}$, let $T(\mathcal{C}') \subset \mathcal{C}$ be the full enhanced subcategory spanned by \mathcal{C}' and the essential image of the projection $\sigma: \tau^{-1}(\mathcal{C}') \cap (\mathcal{E} \setminus^h \mathcal{C}) \to \mathcal{C}$, and define by induction $\mathcal{C}'_0 = \mathcal{C}'$, $\mathcal{C}'_{n+1} = T(\mathcal{C}'_n)$, $n \geq 0$. Then $T(\mathcal{C}')$ is still small, and so are all the full subcategories \mathcal{C}'_n and their union $\mathcal{C}'_\infty = \cup_n \mathcal{C}'_n$ that is obvously an enhanced subfibration. For the second claim, note that by the uniqueness claim of Corollary 8.3.3.6, for any two subcategories $\mathcal{C}' \subset \mathcal{C}''$ in our fltered 2-colimit, with the embedding functor $\varepsilon: \mathcal{C}' \to \mathcal{C}''$, $\operatorname{ar}^h(\varepsilon)$ sends $\mathcal{E} \setminus^h_{\pi'} \mathcal{C}'$ into $\mathcal{E} \setminus^h_{\pi''} \mathcal{C}''$, and we in fact have $\mathcal{E} \setminus^h_{\pi'} \mathcal{C} = \operatorname{ar}^h(\mathcal{C}') \cap (\mathcal{E} \setminus_{\pi''} \mathcal{C}'')$, so we can define $\mathcal{E} \setminus^h_{\pi} \mathcal{C} \subset \operatorname{ar}^h(\mathcal{C})$ as the union of $\mathcal{E} \setminus^h_{\pi'} \mathcal{C}' \subset \operatorname{ar}^h(\mathcal{C}') \subset \operatorname{ar}^2(\mathcal{C})$.

Corollary 8.4.2.3. For any enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$, the enhanced full subcategory $\mathcal{E} \setminus_{\pi}^{h} \mathcal{C}$ of Definition 8.4.2.1 is unique.

Proof. If \mathcal{E} and \mathcal{C} are small, this is Corollary 8.3.3.6. In general, \mathcal{E} is a filtered 2-colimit of small full enhanced subcategories $\mathcal{E}' \subset \mathcal{E}$, and then \mathcal{C} is the filtered 2-colimit of the corresponding enhanced full subcategories $\mathcal{C}' = \pi^{-1}(\mathcal{E}')$, and $\mathcal{E} \setminus_{\pi}^{h} \mathcal{C}$ is the filtered 2-colimit of $\mathcal{E}' \setminus_{\pi'}^{h} \mathcal{C}'$. Thus it suffices to consider the case when \mathcal{E} is small, and this reduces to the case when \mathcal{C} is also small by the first claim of Lemma 8.4.2.2.

Definition 8.4.2.4. For any enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$, an enhanced morphism in \mathcal{C} is *cartesian over* \mathcal{E} if the corresponding enhanced object in $\operatorname{ar}^h(\mathcal{C})$ lies in the unique enhanced full subcategory $\mathcal{E} \setminus_{\pi}^h \mathcal{C} \subset \operatorname{ar}^h(\mathcal{C})$ of Corollary 8.4.2.3. For a commutative square (8.4.1.11) of enhanced categories and functors such that π , π' are enhanced fibrations, γ is *cartesian over* φ if $\operatorname{ar}^h(\gamma): \operatorname{ar}^h(\mathcal{C}') \to \operatorname{ar}^h(\mathcal{C})$ sends $\mathcal{E}' \setminus_{\pi'}^h \mathcal{C}' \subset \operatorname{ar}^h(\mathcal{C}')$ into $\mathcal{E} \setminus_{\pi'}^h \mathcal{C} \subset \operatorname{ar}^h(\mathcal{C})$ (that is, γ sends enhanced morphisms in \mathcal{C}' cartesian over \mathcal{E}' to enhanced morphisms in \mathcal{C} cartesian over \mathcal{E}). Dually, for an enhanced cofbration $\pi: \mathcal{C} \to \mathcal{E}$, an enhanced morphism in \mathcal{C} is *cartesian over* \mathcal{E}' , and for a commutative square (8.4.1.11) with π , π' enhanced cofibrations, γ is *cocartesian over* φ iff γ' is cartesian over φ' .

Example 8.4.2.5. For any small enhanced groupoid \mathcal{E} , any enhanced functor $\pi:\mathcal{C}\to\mathcal{E}$ from a small enhanced category \mathcal{C} is an enhanced fibration and an enhanced cofibration — indeed, we have $\operatorname{ar}^h(\mathcal{E})\cong\mathcal{E}$, so that we can take $\mathcal{C}/^h_\pi\mathcal{E}\cong\mathcal{E}\setminus^h_\pi\mathcal{C}\cong\mathcal{E}$.

Example 8.4.2.6. Say that an enhanced functor $\pi : \mathcal{C} \to \mathcal{E}$ is an *enhanced family of groupoids* if the commutative square

is semicartesian. Then an enhanced family of groupoids is trivially an enhanced fibration.

As in the unenhanced case, an enhanced fibration $\pi:\mathcal{C}\to\mathcal{E}$ is an enhanced family of groupoids if and only if all enhanced maps in \mathcal{C} are cartesian over \mathcal{E} . In general, while it is not true that $\pi_{pt}:\mathcal{C}_{pt}\to\mathcal{E}_{pt}$ is a fibration, enhanced maps cartesian over \mathcal{E} still form a closed class \flat of maps in \mathcal{E}_{pt} , and we can define an

enhanced category C_{hb} by the cartesian square

$$(8.4.2.3) \qquad \begin{array}{ccc} \mathcal{C}_{h\flat} & \stackrel{\nu}{\longrightarrow} & \mathcal{C} \\ & \downarrow & & \downarrow \\ & K((\mathcal{C}_{\mathsf{pt}})_{\flat}) & \longrightarrow & K(\mathcal{C}_{\mathsf{pt}}), \end{array}$$

where as in (8.2.2.3), the vertical arrow on the right is the truncation functor (8.1.2.2). Then $\mathcal{C}_{h\flat}$ is an enhanced category by Lemma 8.2.2.4, the induced functor $\pi:\mathcal{C}_{h\flat}\to\mathcal{E}$ is an enhanced family of groupoids, and ν in (8.4.2.3) is cartesian over \mathcal{E} . If we have a commutative square (8.4.1.11) such that $\mathcal{C}'\to\mathcal{E}'$ is an enhanced family of groupoids, and γ is cartesian over φ , then γ uniquely factors through ν . If $\mathcal{E}=\operatorname{pt}^h$, then $\flat=\star$, and (8.4.2.3) recovers the enhanced isomorphism groupoid (8.2.2.3) and its universal property. Dually, for any enhanced cofibration $\pi:\mathcal{C}\to\mathcal{E}$ between small enhanced categories, we let

$$(8.4.2.4) C_{h\sharp} = (C_{h\flat}^{\iota})^{\iota},$$

with the induced enhanced cofibration $C_{h\sharp} \to \mathcal{E}$ and functor $\nu : C_{h\sharp} \to \mathcal{C}$ cocartesian over \mathcal{E} . If $\mathcal{E} = \operatorname{pt}^h$, then again, $C_{h\sharp} \cong C_{h\star}$.

Example 8.4.2.7. For any category I, the epivalence (8.2.4.8) for the enhanced category C = K(I) is an equivalence, and then for any $\gamma : I' \to I$, we have

(8.4.2.5)
$$K(I) \setminus_{K(\gamma)}^{h} K(I') \cong K(I) \setminus_{\gamma}^{\operatorname{Pos}^{+}} K(I') \cong K(I \setminus_{h} I'),$$

where the semicartesian product in (8.4.1.4) is actually cartesian by virtue of Lemma 8.2.2.4. Lemma 2.3.2.7 then shows that γ is an fibration if and only if $K(\gamma)$ is an enhanced fibration. Moreover, if we have two fibrations $I', I'' \to I$, then a functor $\gamma: I' \to I''$ is cartesian over I if and only if $K(\gamma)$ is cartesian in the sense of Definition 8.4.2.1.

As in the unenhanced setting, given enhanced fibrations $\pi:\mathcal{C}\to\mathcal{E}$, $\pi':\mathcal{C}'\to\mathcal{E}$, we say that an enhanced functor $\gamma:\mathcal{C}'\to\mathcal{E}$ over \mathcal{E} is *cartesian over* \mathcal{E} if it is cartesian over id: $\mathcal{E}\to\mathcal{E}$, and dually for cofibrations and cocartesian functors. For any enhanced fibration $\pi:\mathcal{C}\to\mathcal{E}$, with the left-admisible embedding $\nu:\mathcal{E}\setminus^h_\pi\mathcal{C}$, the left-adjoint ν^\dagger satisfies $\nu^\dagger\circ\nu\cong \mathrm{id}$ since ν is full. Then by (8.4.2.1), if \mathcal{C} and \mathcal{E} are small, we actually have $\nu^\dagger\cong(\pi\setminus^h\mathrm{id})$, so that π ia a fibration iff $\pi\setminus^h\mathrm{id}:\mathrm{ar}^h(\mathcal{C})\to\mathcal{E}\setminus^h_\pi\mathcal{C}$ admits a fully faithful enhanced right-adjoint $(\pi/^h\mathrm{id})_\dagger$. For a square (8.4.1.11) of small enhanced categories with π , π' enhanced fibrations, γ is cartesian over φ iff the base change map

 $\operatorname{ar}^h(\gamma) \circ (\pi' \setminus^h \operatorname{id})_d g \to (\pi \setminus^h \operatorname{id})_\dagger \circ (\varphi \setminus \gamma)$ is an isomorphism. In particular, by Corollary 8.4.1.6, this immediately implies that the composition $\varphi \circ \gamma : \mathcal{C}' \to \mathcal{E}$ of small enhanced fibrations $\gamma : \mathcal{C}' \to \mathcal{C}$, $\pi : \mathcal{C} \to \mathcal{E}$ is a fibration, and γ is cartesian over I.

Lemma 8.4.2.8. An enhanced functor $\pi: \mathcal{C} \to \mathcal{E}$ between small enhanced categories is an enhanced fibration if and only if the fully faithful embedding $\eta: \mathcal{C} \to \mathcal{E} \setminus_{\pi}^{h} \mathcal{C}$ of (8.4.1.5) admits a right-adjoint enhanced functor $\eta_{+}: \mathcal{E} \setminus_{\pi}^{h} \mathcal{C} \to \mathcal{C}$ over \mathcal{E} . Moreover, for a commutative square (8.4.1.11) of small enhanced categories and enhanced functors, with π , π' fibrations, γ is cartesian over φ iff the base change map $\gamma \circ \eta'_{+} \to \eta_{+} \circ (\varphi \setminus_{\pi}^{h} \gamma)$ is an isomorphism.

Proof. For the first claim, $\eta_{\dagger} = \sigma \circ (\pi \setminus^h id)_{\dagger}$ is right-adjoint to $\eta \cong (\pi \setminus^h id) \circ \eta$, and conversely, if π is an enhanced fibration, then the adjoint $(\pi \setminus^h id)_{\dagger}$ is given by the composition

$$(8.4.2.6) \mathcal{E} \setminus_{\pi}^{h} \mathcal{C} \xrightarrow{\tau^{-1}} \mathcal{C} /_{n,\mathcal{C}}^{h} (\mathcal{E} \setminus_{\pi}^{h} \mathcal{C}) \xrightarrow{\operatorname{id} /^{h} \tau} \mathcal{C} /^{h} \mathcal{C} \cong \operatorname{ar}^{2}(\mathcal{C}),$$

where $\tau: \mathcal{C}/_{\eta,\mathcal{C}}^h(\mathcal{E}\setminus_{\pi}^h,\mathcal{C}) \to \mathcal{E}\setminus_{\pi}^h\mathcal{C}$ is an equivalence by (the dual version of) Lemma 8.4.1.8, and τ^{-1} is the inverse equivalence. For the second claim, since $\sigma \times \tau: \operatorname{ar}^2(\mathcal{C}) \to \mathcal{C} \times^h \mathcal{C}$ is conservative for any \mathcal{C} , the base change map for $(\pi \setminus_{\pi}^h \operatorname{id})_{+}$ is an isomorphism iff the same hold for its compositions with σ and τ , and the latter is automatic since $\tau \circ (\pi \setminus_{\pi}^h \operatorname{id})_{+} \cong \tau$ by (8.4.2.6).

As a further slight repackaging of the data described in Lemma 8.4.2.8, we note that for any enhanced fibration $\pi:\mathcal{C}\to\mathcal{E}$ between small enhanced categories, the adjoint $\eta_{\dagger}:\mathcal{E}\setminus^h_{\pi}\mathcal{C}\to\mathcal{E}$ of Lemma 8.4.2.8 defines an enhanced functor

(8.4.2.7)
$$\rho = \eta_{+} \times \tau : \mathcal{E} \setminus_{\pi}^{h} \mathcal{C} \cong \tau^{*} \mathcal{C} \to \sigma^{*} \mathcal{C} \cong \mathcal{C} /_{\pi}^{h} \mathcal{E}$$

cartesian over $\operatorname{ar}^h(\mathcal{E})$, where $\tau: \tau^*\mathcal{C} \to \operatorname{ar}^h(\mathcal{E})$ is the projection.

Corollary 8.4.2.9. Assume given an enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$ of small enhanced categories such that the corresponding enhanced functor (8.4.2.7) is left-reflexive over $\operatorname{ar}^h(\mathcal{E})$. Then π is an enhanced bifibration.

Proof. The embedding $\eta: \mathcal{C} \to \mathcal{C}/_{\pi}^h \mathcal{E}$ factors as

$$(8.4.2.8) C \xrightarrow{\eta} \tau^* C \xrightarrow{\rho} \sigma^* C.$$

and η in (8.4.2.8) is right-adjoint to the projection $\tau : \tau^* \mathcal{C} \to \mathcal{C}$. Thus if ρ has some left-adjoint λ over $\operatorname{ar}^h(\mathcal{E})$, then $\tau \circ \lambda$ is left-adjoint to $\eta : \mathcal{C} \to \mathcal{C}/\frac{h}{\pi}\mathcal{E}$ over \mathcal{E} , and π^t is then an enhanced fibration by Lemma 8.4.2.8.

Lemma 8.4.2.10. For any right-closed embedding $f: J' \to J$ of partially ordered sets, and any J-coaugmented enhanced category C, the pullback functor $f^*: Sec^h(J, C) \to Sec^h(J', C)$ is an enhanced cofibration.

Proof. Let $\chi: J \to [1]$ be the characteristic map of the right-closed embedding f. Then the full embedding $[1] \setminus_{\chi} J \subset [1] \times J$ is right-reflexive, with some adjoint $g: [1] \times J \to [1] \setminus_{\chi} J$, and if we let

$$\operatorname{Sec}^h(J,\mathcal{C})/_{f^*}^h\operatorname{Sec}^h(J',\mathcal{C})\cong\operatorname{Sec}^h([1]\setminus_{\chi}J,\mathcal{C}),$$

then $g^*: Sec^h(J,\mathcal{C})/_{f^*}^h Sec^h(J',\mathcal{C}) \to ar^h(Sec^h(J,\mathcal{C}))$ is a right-admissible full embedding by Lemma 8.1.1.6, and the corresponding square (8.4.2.1) is semicartesian by Lemma 8.3.4.4 and Example 8.3.4.6.

Corollary 8.4.2.11. For any enhanced functor $\pi: \mathcal{C} \to \mathcal{E}$ between small enhanced categories \mathcal{C} , \mathcal{E} , the enhanced functor σ resp. τ in (8.4.1.5) is an enhanced fibration resp. cofibration.

Proof. For τ , consider the [1]-coaugmented enhanced cylinder $C_h(\pi)$, and combine Lemma 8.4.2.10 for the embedding $t : pt \to [1]$ and Lemma 8.4.1.4. For σ , pass to the enhanced-opposite categories.

Example 8.4.2.12. If \mathcal{C} in Corollary 8.4.2.11 is an enhanced groupoid, then σ is an enhanced family of groupoids in the sense of Example 8.4.2.6 — indeed, the adjoints of Lemma 8.2.4.7 are then cartesian functors between families of groupoids, so both are equivalences.

Example 8.4.2.13. If we apply Corollary 8.4.2.11 to id : $\mathcal{C} \to \mathcal{C}$, for some enhanced category \mathcal{C} , then we obtain a fully faithful left-admissible embedding $\mathcal{C} \setminus_{\sigma}^{h} \operatorname{ar}^{h}(\mathcal{C}) \subset \operatorname{ar}^{(} \operatorname{ar}^{h}(\mathcal{C}))$ identifying $\mathcal{C} \setminus_{\sigma}^{h} \operatorname{ar}^{h}(\mathcal{C}) \cong \operatorname{ar}^{h}(\operatorname{ar}^{h}(\mathcal{C})|\mathcal{C}) \cong [2]_{h}^{o}\mathcal{C}$. The square (4.1.3.1) for n = 2, l = 1 then provides a semicartesian square

(8.4.2.9)
$$\begin{array}{ccc} \operatorname{ar}^h(\operatorname{ar}^h(\mathcal{C})|\mathcal{C}) & \stackrel{\tau}{\longrightarrow} & \operatorname{ar}^h(\mathcal{C}) \\ \beta \!\!\! & & & \downarrow \sigma \\ & \operatorname{ar}^h(\mathcal{C}) & \stackrel{\tau}{\longrightarrow} & \mathcal{C}, \end{array}$$

and enhanced version of the cartesian square (2.2.4.13).

Lemma 8.4.2.14. For any enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$ between small enhanced categories, the relative enhanced arrow category $\operatorname{ar}^h(\mathcal{C}|\mathcal{E}) \subset \operatorname{ar}^h(\mathcal{C})$ is right-admissible, and we have a diagram with semicartesian squares

$$(8.4.2.10) \qquad \begin{array}{c} \operatorname{ar}^{h}(\mathcal{C}|\mathcal{E}) & \stackrel{\nu}{\longrightarrow} \operatorname{ar}(\mathcal{C}) & \stackrel{\nu_{\dagger}}{\longrightarrow} \operatorname{ar}(\mathcal{C}|\mathcal{E}) \\ \\ \tau \Big\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \tau \\ \\ \mathcal{C} & \stackrel{\eta}{\longrightarrow} \mathcal{E} \setminus_{\pi}^{h} \mathcal{C} & \stackrel{\eta_{\dagger}}{\longrightarrow} & \mathcal{C}, \end{array}$$

where v, v⁺ are the embedding and its right-adjoint.

Proof. Same as Lemma 2.3.1.4, with (2.2.4.13) replaced by (8.4.2.9).

Lemma 8.4.2.15. Assume given a semicartesian square (2.1.3.1) of small enhanced categories and functors, and an enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$ such that $\pi_l = \pi \circ \gamma_l$ is an enhanced fibration, and γ_l is cartesian for l = 0, 1. Then $\mathcal{C}_{01} \to \mathcal{E}$ is an enhanced fibration, and γ_{01}^0 , γ_{01}^1 are cartesian over \mathcal{E} .

Proof. Same as Lemma 2.3.2.5, with Corollary 2.2.4.7 replaced by Corollary 8.4.1.9 (i). \Box

Lemma 8.4.2.16. Assume given an enhanced fibration $C \to \mathcal{E}$ and a right-admissible enhanced full subcategory $C' \subset C$ such that the enhanced functor $\gamma : C \to C'$ right-adjoint to the embedding is right-adjoint over \mathcal{E} . Then $C' \to \mathcal{E}$ is an enhanced fibration, and γ is cartesian over \mathcal{E} .

Proof. Same as Lemma 2.3.2.6. □

Lemma 8.4.2.17. Assume given enhanced fibrations $\pi_l: \mathcal{C}_l \to \mathcal{E}$, l = 0, 1, and an enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ cartesian over \mathcal{E} . Then σ in (2.2.4.12) is an enhanced fibration, and the functor γ is an enhanced fibration if and only if $\gamma \setminus^h \operatorname{id} : \operatorname{ar}^h(\mathcal{C}_0|\mathcal{E}) \to \mathcal{C}_1 \setminus_{\gamma,\mathcal{E}} \mathcal{C}_0$ admits a fully faithful right-adjoint.

Proof. Same as Lemma 2.3.2.7, replacing Lemma 2.2.2.2 resp. Lemma 2.3.2.6 resp. (2.3.1.2) by Corollary 8.4.1.6 resp. Lemma 2.3.2.6 resp. (8.4.2.10).

Example 8.4.2.18. If $C_1 \to \mathcal{E}$ in Lemma 8.4.2.17 is an enhanced family of groupoids in the sense of Example 8.4.2.6, then $any \ \gamma : C_0 \to C_1$ is an enhanced fibration.

Lemma 8.4.2.19. Assume given an enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$ of small enhanced categories, and a right-admissible enhanced full subcategory $\mathcal{E}' \subset \mathcal{E}$. Then the enhanced full subcategory $\mathcal{C}' = \pi^{-1}(\mathcal{E}') \subset \mathcal{C}$ is right-admissible.

Proof. Let $\lambda: \mathcal{E}' \to \mathcal{E}$ we the embedding functor, with the right-adjoint enhanced functor $\rho: \mathcal{E} \to \mathcal{E}'$. Then we have $\mathcal{E} \cong \mathcal{E}'/^h_{\lambda,\mathcal{E}'}\mathcal{E}$ by (the dual version of) Lemma 8.4.1.8, and we can consider the composition

$$(8.4.2.11) \qquad \mathcal{C} \cong (\mathcal{E}'/_{\lambda,\mathcal{E}'}^h \mathcal{E}) \times_{\mathcal{E}}^h \mathcal{C} \xrightarrow{\nu} \mathcal{E} \setminus_{\pi}^h \mathcal{C} \xrightarrow{(\pi \setminus_{\mathsf{id}})_{\mathsf{f}}} \mathsf{ar}^h(\mathcal{C}),$$

where ν is the full embedding induced by $\mathcal{E}'/_{\lambda,\mathcal{E}'}^h\mathcal{E} \subset \operatorname{ar}^h(\mathcal{E})$, and $(\pi \setminus^h \operatorname{id})_+$ is the adjoint functor provided by Lemma 8.4.2.8. If we denote the enhanced functor (8.4.2.11) by φ , then $\tau \circ \varphi \cong \operatorname{id}$, and $p = \sigma \circ \varphi : \mathcal{C} \to \mathcal{C}$ factors through $\mathcal{C}' \subset \mathcal{C}$. Moreover, by (8.2.4.8), φ defines an enhanced map $a : \operatorname{id} \to p$, and it is clear from the construction this map is invertible on $\mathcal{C}' \subset \mathcal{C}$, so $\langle p, a \rangle$ is a left projector in the sense of Definition 2.2.3.5.

Lemma 8.4.2.20. Assume given a semicartesian square (8.4.1.11), and assume that π is small. If π is an enhanced fibration resp. an enhanced family of groupoids resp. an enhanced cofibration, then so is π' . Moreover, if we have enhanced fibrations resp. cofibrations $\pi_l: \mathcal{C}_l \to \mathcal{E}$, and an enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ cartesian resp. cocartesian over \mathcal{E} , then $\gamma': \mathcal{C}_0 \times_{\mathcal{E}}^h \mathcal{E}' \to \mathcal{C}_1 \times_{\mathcal{E}}^h \mathcal{E}'$ is cartesian resp. cocartesian over \mathcal{E}' .

Proof. By replacing \mathcal{E}' with an arbitrary small full enhanced subcategory \mathcal{E}'_0 , and then replacing \mathcal{E} with a small full enhanced subcategory containing the essential image of φ , we may assume right away that all the enhanced categories in (8.4.1.11) are small. But then the commutative squares

$$\operatorname{ar}_h(\mathcal{C}') \xrightarrow{\pi' \setminus h \operatorname{id}} \mathcal{E}' \setminus h \mathcal{C}' \qquad \operatorname{ar}_h(\mathcal{C}') \xrightarrow{\operatorname{id}/h \pi'} \mathcal{C}' / h \mathcal{E}'$$

$$\uparrow \vee h \gamma \downarrow \qquad \qquad \downarrow \varphi \vee h \gamma \qquad \gamma / h \gamma \downarrow \qquad \qquad \downarrow \gamma / h \varphi$$

$$\operatorname{ar}_h(\mathcal{C}) \xrightarrow{\pi \setminus h \operatorname{id}} \mathcal{E} \vee h \mathcal{C}, \qquad \operatorname{ar}_h(\mathcal{C}) \xrightarrow{\operatorname{id}/h \pi} \mathcal{C} / h \mathcal{E}$$

are semicartesian, and to prove all the claims, it suffices to combine Corollary 8.4.1.6 and Lemma 8.4.2.8.

Example 8.4.2.21. For any enhanced functor $\pi : \mathcal{C} \to \mathcal{E}$ between small enhanced categories, and any small enhanced category \mathcal{C}' , define an enhanced category

 $\mathcal{F}un^h(\mathcal{C}',\mathcal{C}|\mathcal{E})$ by the semicartesian square

(8.4.2.12)
$$\mathcal{F}un^{h}(\mathcal{C}',\mathcal{C}|\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{C}',\mathcal{C}) \\
\downarrow^{\varphi} \\
\mathcal{E} \xrightarrow{\theta^{*}} \operatorname{Fun}(\mathcal{C}',\mathcal{E}),$$

where φ is postcomposition with π , and $\theta: \mathcal{C}' \to \mathsf{pt}^h$ is the tautological projection. Then as soon as π is an enhanced fibration or cofibration, so is φ , by Corollary 8.4.1.7, and then also ν , by Lemma 8.4.2.20.

8.4.3. Enhanced fibers. As we saw in Example 8.4.2.7, an enhanced functor π between small enhanced categories of the form K(I) is an enhanced fibration if and only if it is a fibration in the usual sense. It turns out that this already holds if only the target of the functor π is of the form K(I).

Lemma 8.4.3.1. For any enhanced category C and category I, a small enhanced functor $\pi: C \to K(I)$ is an enhanced fibration iff it is a fibration in the usual unenhanced sense, and for two such fibrations, a functor $\gamma: C' \to C$ over K(I) is cartesian in the sense of Definition 8.4.2.1 iff it is cartesian in the usual sense.

Proof. The enhanced comma-category $K(I) \setminus_{\pi}^{h} C$ is given by (8.4.2.5), and the functor $\pi \setminus_{\pi}^{h}$ id factors as

$$(8.4.3.1) \qquad \operatorname{ar}_{h}(\mathcal{C}) \xrightarrow{\nu} \operatorname{ar}(\mathcal{C}|\operatorname{Pos}^{+}) \xrightarrow{\pi \setminus \operatorname{id}} K(I) \setminus_{\pi}^{\operatorname{Pos}^{+}} \mathcal{C},$$

where ν is the epivalence (8.2.4.8). Therefore if π is an enhanced fibration, it is a usual fibration by Lemma 2.3.2.7 and Corollary 2.2.2.5. Conversely, assume that π is a fibration. Then both $\operatorname{ar}_h(\mathcal{C})$ and $K(I)\setminus^h_\pi\mathcal{C}$ are fibered over $\operatorname{ar}_h(K(I))\cong K(\operatorname{ar}(I))$, and $\pi\setminus^h$ id is cartesian over $K(\operatorname{ar}(I))$, so by Lemma 2.3.2.8 (ii), it suffices to find a functor $(\pi\setminus^h\operatorname{id})_+:K\setminus^h_\pi\mathcal{C}\to\operatorname{ar}_h(\mathcal{C})$ cartesian over $K(\operatorname{ar}(I))$, and an isomorphism $(\pi\setminus^h\operatorname{id})\circ(\pi\setminus^h\operatorname{id})_+\cong\operatorname{id}$ that defines an adjunction between $\pi\setminus^h\operatorname{id}$ and $(\pi\setminus^h\operatorname{id})_+$ restricted to the fiber over any object in $K(\operatorname{ar}(I))$. Explicitly, such an object is given by a pair $\langle J,\alpha\rangle$, $J\in\operatorname{Pos}^+$, $\alpha:J^o\times[1]\to I$, and $\pi\setminus^h\operatorname{id}$ restricted to the corresponding fiber is the functor

$$(8.4.3.2) t^* : \operatorname{Sec}^h(J^o \times [1], K(\alpha)^* \mathcal{C}) \to \operatorname{Sec}^h(J^o, K(t \circ \alpha)^* \mathcal{C}).$$

Then the fully faithful right-adjoint to (8.4.3.2) is given by Lemma 8.2.4.7, and it is functorial with respect to $\langle I, \alpha \rangle$. This proves the first claim; for the second,

recall again that ν is (8.4.3.1) is an epivalence, thus conservative, and apply the last claim of Lemma 2.3.2.7.

In particular, Lemma 8.4.3.1 shows that for any small enhanced category \mathcal{C} and $I \in \operatorname{Pos}^+$, an enhanced fibration $\mathcal{C} \to K(I)$ is the same thing as an I-augmentation in the sense of Definition 8.2.2.6. Recall that for any small enhanced functor $\mathcal{C} \to \mathcal{E}$ and object $e \in \mathcal{E}_{pt}$, we have the enhanced fiber $\mathcal{C}_e = \operatorname{pt}^h \times_{\mathcal{E}}^h \mathcal{C}$ of (8.3.4.6); then by Lemma 8.4.2.20, this means for any small enhanced fibration $\mathcal{C} \to \mathcal{E}$ and object $e \in \mathcal{E}_I \subset \mathcal{E}$, $I \in \operatorname{Pos}^+$, the generalized enhanced fiber \mathcal{C}_e is an I-augmented enhanced category. This can be used to define transition functors for small enhanced fibrations and cofibrations.

Namely, if we have two objects $e,e' \in \mathcal{E}_{pt}$, then a morphism $f:e \to e'$ lifts to an enhanced morphism $f^h:K([1]) \to \mathcal{E}$, and then if $\mathcal{C} \to \mathcal{E}$ is a small enhanced fibration, $\mathcal{C}_f = K([1]) \times_{\mathcal{E}}^h \mathcal{C}$ is [1]-augmented by Lemma 8.4.2.20, so that $\mathcal{C}_f \cong \mathsf{C}_h^o(f^*)$ for an *enhanced transition functor* $f^*:\mathcal{C}_{e'} \to \mathcal{C}_e$, unique up to an isomorphism, as in (8.3.6.8). If π is a small enhanced cofibration, then analogously, $\mathcal{C}_f \cong \mathsf{C}_h(f_!)$ for a unique enhanced transition functor $f_!:\mathcal{C}_e \to \mathcal{C}_{e'}$. If we have a composable pair of maps f,g, then $(f \circ g)_! \cong f_! \circ g_!$ and $(f \circ g)^* \cong g^* \circ f^*$. Moreover, if we have two small enhanced fibrations $\mathcal{C},\mathcal{C}' \to \mathcal{E}$ and a functor $\gamma:\mathcal{C} \to \mathcal{C}'$ over \mathcal{E} , then for any map $f:e \to e'$ in \mathcal{E}_{pt} , the induced functor $\gamma_f:\mathcal{C}_f \to \mathcal{C}_f'$ comes equipped with isomorphism $\gamma_f \circ s \cong s, \gamma_f \circ t \cong t$, and then (8.4.1.2) induces a base change map

$$(8.4.3.3) \gamma_e \circ f^* \to f^* \circ \gamma_{e'},$$

an analog of (2.3.2.2) and (8.3.6.9). By definition, γ is cartesian over \mathcal{E} iff all the functors γ_f are [1]-augmented, and this happens iff all the maps (8.4.3.3) are invertible, so that we have commutative squares

(8.4.3.4)
$$\begin{array}{ccc}
\mathcal{C}_{e'} & \xrightarrow{\gamma_i} & \mathcal{C}'_{e'} \\
f^* \downarrow & & \downarrow f^* \\
\mathcal{C}_{e} & \xrightarrow{\gamma_i} & \mathcal{C}_{e'}
\end{array}$$

in Cat^h , a generalization of (8.4.3.4). The story for cofibrations is dual.

Lemma 8.4.3.2. Assume given a small enhanced functor $\pi: \mathcal{C} \to \mathcal{E}$, and a full enhanced subcategory $\mathcal{C}' \subset \mathcal{C}$ such that π is an enhanced fibration resp. cofibration, and for any morphism $f: e \to e'$ in \mathcal{E}_{pt} , the enhanced transition functor $f^*: \mathcal{C}_{e'} \to \mathcal{C}_e$ resp. $f_!: \mathcal{C}_e \to \mathcal{C}_{e'}$ sends $\mathcal{C}'_{e'} \subset \mathcal{C}_{e'}$ into $\mathcal{C}'_e \subset \mathcal{C}_e$ resp. \mathcal{C}'_e into $\mathcal{C}'_{e'}$. Then the induced functor $\pi': \mathcal{C}' \to \mathcal{E}$ is an enhanced fibration resp. cofibration, and the embedding

functor $\mathcal{C}' \to \mathcal{C}$ is cartesian resp. cocartesian over \mathcal{E} . Conversely, if we have enhanced fibrations resp. cofibrations $\mathcal{C}, \mathcal{C}' \to \mathcal{E}$ and an enhanced functor $v : \mathcal{C}' \to \mathcal{C}$ cartesian resp. cocartesian over \mathcal{E} , then v is fully faithful resp. an equivalence if and only if so are its fibers $\gamma_e : \mathcal{C}'_e \to \mathcal{C}_e$ for all enhanced objects $e \in \mathcal{E}_{pt}$.

Proof. The claims for fibrations and cofibrations are equivalent, by passing to enhanced-opposite categories, so we only consider the fibrations. For the first claim, it suffices to see that the adjoint $(\pi \setminus id)_{\dagger} : \mathcal{E} \setminus^h \mathcal{C} \to ar_h(\mathcal{C})$ sends the full enhanced subcategory $\mathcal{E} \setminus^h \mathcal{C}' \subset \mathcal{E} \setminus^h \mathcal{C}$ into the full enhanced subcategory $ar_h(\mathcal{C}') \subset ar_h(\mathcal{C})$. Since $(\pi \setminus id)_{\dagger}$ is fully faithful, Corollary 8.2.2.18 shows that it suffices to check this over pt \in Pos $^+$. But then up to an isomorphism, objects in $(\mathcal{E} \setminus^h \mathcal{C}')_{pt}$ are triples $\langle e, c, \alpha \rangle$, $e \in \mathcal{E}_{pt}$, $c \in \mathcal{C}'_{pt}$, $\alpha : e \to \pi(c')$, and $(\pi \setminus id)_{\dagger}$ sends such a triple to the arrow $\alpha^*(c) \to c$ that lies in $ar_h(\mathcal{C}') \subset ar_h(\mathcal{C})$ by assumption. For the second claim, the "only if" part is trivial, and Lemma 8.3.4.2 reduces the "if" part to the case $\mathcal{E} = K(I)$, $I \in \text{Pos}^+$, so that \mathcal{C} , \mathcal{C}' and γ are J-augmented. Moreover, the enhanced essential image of γ is then also J-augmented by the first claim, so we may replace \mathcal{C} with this essential image and assume that γ_i is an equivalence for any $i \in I$. Then since $\mathcal{C}at^h$ is an enhanced category, it is a non-degenerate family of categories over Pos $^+$, and this finishes the proof. \square

Lemma 8.4.3.3. Assume given two enhanced fibrations $C, C' \to \mathcal{E}$ between small enhanced categories, and an enhanced functor $\gamma: C \to C'$ cartesian over \mathcal{E} . Then if for any $e \in \mathcal{E}_{pt}$, γ_e is left-reflexive, γ itself is left-reflexive over \mathcal{E} , and if for any map $f: e \to e'$ in \mathcal{E}_{pt} , the square (8.4.3.4) is left-reflexive, then the adjoint enhanced functor γ_+ is cartesian over \mathcal{E} .

Proof. By Lemma 8.4.2.17, Lemma 8.4.1.5 (iii) and (8.4.1.10), it suffices to prove the claim after replacing \mathcal{C} with $\mathcal{C}' \setminus_{\gamma,\mathcal{E}}^h \mathcal{C}$ and \mathcal{E} with \mathcal{C} ; in other words, we may assume right away that $\mathcal{C}' = \mathcal{E}$ and γ is an enhanced fibration. We note that \mathcal{C}_e has an initial enhanced object for any $e \in \mathcal{E}_{pt}$, and we need to show that γ admits a fully faithful left-adjoint γ_+ , cartesian if all the squares (8.4.3.4) are left-reflexive. Let $\mathcal{C}' \subset \mathcal{C}$ be the full enhanced subcategory spanned by the inital objects $o \in \mathcal{C}_{e,pt}$, $e \in \mathcal{E}_{pt}$. Then to construct the adjoint γ_+ , it suffices to show that firstly, the induced functor $\mathcal{C}_0 \to \mathcal{E}$ is an equivalence, so that the inverse equivalence defines a fully faithful enhanced section $\gamma_+: \mathcal{E} \to \mathcal{C}$ of the functor γ , and secondly, that $\tau: \mathcal{E} \setminus_{\gamma_+,\mathcal{E}}^h \mathcal{C} \to \mathcal{C}$ is an equivalence, so that γ_+ is adjoint to γ by Lemma 8.4.1.8. By Lemma 8.3.4.2, both statements can be checked after passing to generalized enhanced fibers of the fibration $\gamma: \mathcal{C} \to \mathcal{E}$. By definition, checking whether the adjoint γ_+ is cartesian can also be done

after passing to enhanced fibers, so altogether, we are reduced to the case when $\mathcal{E} = K(J)$, $J \in \text{Pos}^+$, and \mathcal{C} is a J-augmented small enhanced category. Then γ is a fibration in the usual sense, so by Lemma 2.3.2.8 (i), it suffices to check that all its fibers have an inital object. By (8.2.4.11), this amounts to proving the following:

• for any $J \in \text{Pos}^+$ and J-augmented small enhanced category \mathcal{C} such that \mathcal{C}_j has an initial enhanced object for any $j \in J$, the category $Sec^h(J,\mathcal{C})$ also has an initial enhanced object preserved by the evaluation functor (8.2.4.12).

Now as in Lemma 8.2.2.17, say that $J \in Pos^+$ is *good* if it satisfies (\bullet) for any \mathcal{C} . Then $J = \operatorname{pt}$ is trivially good. Moreover, since (8.2.4.12) is conservative by Lemma 8.2.4.8, for any map $f: J_0 \to J_1$ between good $J_0, J_1 \in Pos^+$, the pullback functor $f^*: \mathcal{S}ec^h(J_1, -) \to \mathcal{S}ec^h(J_0, -)$ preserves the initial enhanced objects required in (\bullet). Then applying Corollary 8.4.1.9 (i) to semicartesian squares (8.2.4.14), we see that for any square (8.2.4.13) of Lemma 8.2.4.8 with good J_0, J_1, J_{01} , the set J is also good. Then the same induction as in Lemma 8.2.2.17 reduces us to showing that $J^>$ is good for a good $J \in Pos \subset Pos^+$. More generally, assume given good $J_0, J_1 \in Pos$ a map $f: J_0 \to J_1$, and let J = C(f). Then by Lemma 8.4.2.10, $s^*: \mathcal{S}ec^h(J,\mathcal{C}) \to \mathcal{S}ec^h(J_0,\mathcal{C})$ is an enhanced fibration for any small J-augmented enhanced category \mathcal{C} , and then by Lemma 8.4.2.19, an enhanced initial object in $\mathcal{S}ec^h(J_0,\mathcal{C})$ induces a left-admissible full embedding $\mathcal{S}ec^h(J_1,\mathcal{C}) \to \mathcal{S}ec^h(J,\mathcal{C})$. An enhanced initial object in $\mathcal{S}ec^h(J_1,\mathcal{C})$ then gives an enhanced initial object in $\mathcal{S}ec^h(J,\mathcal{C})$, so that J is good.

Corollary 8.4.3.4. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{E}$ between small enhanced categories is left resp. right-reflexive iff for any enhanced object e in \mathcal{E} , the right resp. left enhanced comma-fiber $e \setminus_{\gamma}^{h} \mathcal{C}$ resp. $\mathcal{C}/_{\gamma}^{h} e$ has an initial resp. terminal enhanced object.

Proof. For the first claim, apply Lemma 8.4.3.3 to the enhanced fibration σ : $\mathcal{E} \setminus_{\gamma}^{h} \mathcal{C} \to \mathcal{E}$ of Corollary 8.4.2.11, and recall that by Lemma 8.4.1.5 (iii), γ is left-reflexive if and only if so is σ . For the second claim, apply the first claim to the enhanced-opposite functor γ^{ι} .

Corollary 8.4.3.5. An enhanced fibration $\pi: \mathcal{C} \to \mathcal{E}$ between small enhanced categories is an enhanced bifibration if and only if for any enhanced morphism $f: e \to e'$ in $\mathcal{E}_{\mathsf{pt}}$, the transition functor $f^*: \mathcal{C}_{e'} \to \mathcal{C}_e$ is left-reflexive.

Proof. For the "only if" part, it suffices to consider the case $\mathcal{E} = K([1])$ where the claim holds more-or-less by the definition of the enhanced transition functors. For the "if" part, Lemma 8.4.3.3 over $\operatorname{ar}^h(\mathcal{E})$ shows that π satisfies the assumptions of Corollary 8.4.2.9.

We can now give example of enhanced fibrations and cofibrations between enhanced categories that are not small. Namely, assume given a small enhanced category \mathcal{E} , and consider the enhanced categories $\mathcal{E} \setminus {}^h \mathcal{C}at^h$, $\mathcal{C}at^h //{}^h \mathcal{E}$ of Subsection 8.3.7, with the functors (8.3.7.1) and (8.3.7.5).

Proposition 8.4.3.6. For any small enhanced category \mathcal{E} , the enhanced functor (8.3.7.1) is an enhanced cofibration, with enhanced transition functors $\varphi_!$: $\mathcal{F}un(\mathcal{E},\mathcal{C}) \to \mathcal{F}un^h(\mathcal{C}')$ corresponsing to $\varphi: \mathcal{C} \to \mathcal{C}'$ given by postcomposition with φ , and the enhanced functor (8.3.7.5) is an enhanced fibration, with enhanced transition functors $\varphi^*: \mathcal{F}un^h(\mathcal{C}',\mathcal{E}) \to \mathcal{F}un^h(\mathcal{C},\mathcal{E})$.

Proof. For the first claim, as in the proof of Proposition 8.3.7.1, choosing a universal object for the small enhanced category \mathcal{E} provides a fully faithful embedding $\mathcal{E} \setminus^h \mathcal{C}at^h \to I^o \setminus^h \mathcal{C}at^h$ for some $I \in \operatorname{Pos}^+$, and then Lemma 8.4.3.2 reduces us to the case $\mathcal{E} = K(I^o)$, $\mathcal{E} \setminus^h \mathcal{C}at^h = I^o \setminus^h \mathcal{C}at^h$. To simplify notation, let $\mathcal{K} = I^o \setminus^h \mathcal{C}at^h$, and let $\pi : \mathcal{K} \to \mathcal{C}at^h$ be the enhanced functor (8.3.7.1). Its fibers are given by $\mathcal{K}_{J,\mathcal{C}} = \mathcal{K}_{\langle J,\mathcal{C} \rangle} \cong \operatorname{Sec}^h((I \times J)^o, \mathcal{C}_{h\perp})$, where $\langle J,\mathcal{C} \rangle \in \mathcal{C}at^h$ is a pair of some $J \in \operatorname{Pos}^+$ and a J-augmented small enhanced category \mathcal{C} . Objects in the enhanced arrow category $\operatorname{ar}_h(\mathcal{C}at^h)$ are pairs $\langle J,\mathcal{C} \rangle$, $J \in \operatorname{Pos}^+$, \mathcal{C} a $(J \times [1])$ -augmented category, and the fibers of $\operatorname{ar}_h(\pi) : \operatorname{ar}_h(\mathcal{K}) \to \operatorname{ar}_h(\mathcal{C}at^h)$ are then given by $\operatorname{ar}_h(\mathcal{K})_{J,\mathcal{C}} = \mathcal{K}_{J\times[1],\mathcal{C}}$. The embedding $t: J \to J \times [1]$ gives a restriction functor $\rho = t^* : \operatorname{ar}_h(\mathcal{K})_{J,\mathcal{C}} \to \mathcal{K}_{J,t^*\mathcal{C}}$, and Lemma 8.2.4.7 provides a fully faithful functor

$$(8.4.3.5) \lambda: \mathcal{K}_{I,t^*\mathcal{C}} \to \operatorname{ar}_h(\mathcal{K})_{I,\mathcal{C}}$$

left-adjoint to ρ . We now let $\operatorname{ar}_h(\mathcal{K})^0 \subset \operatorname{ar}_h(\mathcal{K})$ be the full subcategory spanned by the essential images of all the functors (8.4.3.5), and we observe that the claim reduces to the following two statements:

- (i) $\operatorname{ar}_h(\mathcal{K})^0 \subset \operatorname{ar}_h(\mathcal{K})$ is a full enhanced subcategory that admits an enhanced functor $\operatorname{ar}_h(\mathcal{K}) \to \operatorname{ar}_h(\mathcal{K})^0$ right-adjoint to the embedding, and
- (ii) the projection id $/\pi : ar_h(\mathcal{K})^0 \subset ar_h(\mathcal{K}) \to \mathcal{K}/^h \mathcal{C}at^h$ is an equivalence.

For (i), note that for any object $\alpha \in ar_h(\mathcal{K})_{J,\mathcal{C}}$, we have the adjunction map $a(\alpha) : \alpha \to \lambda(\rho(\alpha))$, and $\alpha \in ar_h(\mathcal{K})^0$ iff $a(\alpha)$ is an isomorphism. Since

ho, λ and a commute with pullbacks with respect to maps $f: J' \to J$, and $\operatorname{ar}_h(\mathcal{K})$ is an enhanced category, thus non-degenerate, the condition can be checked after restriction with respect to all maps $\operatorname{pt} \to J$. This means that $\operatorname{ar}_h(\mathcal{K})^0 \subset \operatorname{ar}_h(\mathcal{K})$ is indeed the full enhanced subcategory corresponding to the full subcategory $\operatorname{ar}_h(\mathcal{K})^0_{\operatorname{pt}} \subset \operatorname{ar}_h(\mathcal{K})$ by Corollary 8.2.2.18 (and in particular, $\operatorname{ar}_h(\mathcal{K})^0$ is an enhanced category). Moreover, for any $\langle J, \mathcal{C}' \rangle$ in $\operatorname{ar}_h(\mathcal{C}at^h)$ and $(J \times [1])$ -augmented enhanced functor $\varphi: \mathcal{C} \to \mathcal{C}'$, we have a base change isomorphism $b(\varphi,\alpha): \lambda(\rho(\varphi_{h\perp}\circ\alpha))\cong \varphi_{h\perp}\circ\lambda(\rho(\alpha))$, functorial with respect to φ and J. Therefore sending $\langle J, \mathcal{C}, \alpha \rangle$ to $\langle J, \mathcal{C}, \lambda(\rho(\alpha)) \rangle$ and $\langle \operatorname{id}, \varphi, a \rangle : \langle J, \mathcal{C}, \alpha \rangle \to \langle J, \mathcal{C}', \alpha' \rangle$ to $\langle \operatorname{id}, \varphi, \lambda(\rho(a)) \circ b(\varphi, \alpha) \rangle$ provides a well-defined functor $\lambda \circ \rho: \operatorname{ar}_h(\mathcal{K})_J \to \operatorname{ar}^h(\mathcal{K})_J^0 \subset \operatorname{ar}_h(\mathcal{K})_J$, and the maps $\langle \operatorname{id}, \operatorname{id}, a(\alpha) \rangle : \langle J, \mathcal{C}, \alpha \rangle \to \langle J, \mathcal{C}, \lambda(\rho(\alpha)) \rangle$ give a functorial map $a: \operatorname{id} \to \lambda \circ \rho$ with invertible $\lambda \circ \rho(a)$. Thus $\lambda \circ \rho$ is a projector on $\operatorname{ar}_h(\mathcal{K})_J$ in the sense of Definition 2.2.3.5, and since everything is functorial with respect to J, we obtain a projector $\operatorname{ar}_h(\mathcal{K}) \to \operatorname{ar}_h(\mathcal{K})^0 \subset \operatorname{ar}_h(\mathcal{K})$.

For (ii), since we already know that $ar_h(\mathcal{K})^0$ is an enhanced category, the claim amounts to checking that

$$(8.4.3.6) \gamma = id / \pi : ar_h(\mathcal{K})^0 \to \mathcal{K}/Pos^+ Cat^h$$

is an epivalence. By Lemma 2.3.2.10, since γ is cartesian over Pos⁺, it suffices to check this over each $J \in \text{Pos}^+$. An object in the target of the functor γ is given by $\langle J \times [1], \mathcal{C} \rangle \in \mathcal{C}at^h$, $\langle J, \mathcal{C}', \alpha \rangle \in \mathcal{K}$ and a J-augmented equivalence $\varepsilon : \mathcal{C}' \cong t^*\mathcal{C}$, and then $\langle J, \mathcal{C}, \lambda(\alpha \circ \varepsilon) \rangle$ is an object in \mathcal{K}^0 , so that (8.4.3.6) is essentially surjective. For any two objects $\langle J, \mathcal{C}, \alpha \rangle$, $\langle J, \mathcal{C}', \alpha' \rangle$ in $\text{ar}_h(\mathcal{K})_J^0$, a morphism between their images under γ is represented by a pair of a $(J \times [1])$ -augmented enhanced functor $\varphi : \mathcal{C} \to \mathcal{C}'$ and a morphism $\langle \text{id}, \varphi', a' \rangle : \langle J, t^*\mathcal{C}, t^*\alpha \rangle \to \langle J, t^*\mathcal{C}', t^*\alpha' \rangle$ such that φ' is isomorphic to $t^*\varphi$, and then choosing such a isomorphism and replacing φ' with $t^*\varphi$ defines a morphism $\langle \text{id}, \varphi, \lambda(a') \rangle : \langle J, \mathcal{C}, \alpha \rangle \to \langle J, \mathcal{C}', \alpha' \rangle$ in $\text{ar}_h(\mathcal{K})^0$, so that γ is full. Finally, since λ is fully faithful, a is invertible if and only if so is $\lambda(a)$, and this shows that γ is conservative.

This finishes the proof of the first claim of the Proposition. The argument for the second claim is similar, so we only give a sketch. Objects in the enhanced arrow category $\operatorname{ar}_h(\mathcal{C}at^h/\!/^h\mathcal{E})$ are triples $\langle I,\mathcal{C},\alpha\rangle$ of some $I\in\operatorname{Pos}^+$, an $(I\times[1])$ -augmented small enhanced category \mathcal{C} , and an enhanced functor $\alpha:\mathcal{C}_{h\perp}\to\mathcal{E}$. The embedding $t:I\to I\times[1]$ gives rise to a restriction functor $\lambda=t^*:\operatorname{Fun}^h(\mathcal{C}_{h\perp},\mathcal{E})\to\operatorname{Fun}^h(t^*\mathcal{C}_{h\perp},\mathcal{E})$. As in the proof of Proposition 8.3.7.4, choosing a universal $(I\times[1])$ -augmented object J for \mathcal{C} provides a fully faithful embedding $\operatorname{Fun}^h(\mathcal{C}_{h\perp},\mathcal{E})\subset J_h^o\mathcal{E}$, and then Lemma 8.2.4.7 provides a fully faithful functor $\rho:\operatorname{Fun}^h(t^*\mathcal{C}_{h\perp},\mathcal{E})\to\operatorname{Fun}^h(\mathcal{C}_{h\perp},\mathcal{E})$ right-adjoint

to λ . Then again, let $\operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E})^0 \subset \operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E})$ be the full subcategory spanned by essential images of the functors ρ for all $\langle J, \mathcal{C} \rangle \in \operatorname{ar}_h(\operatorname{Cat}^h)$, and observe that this is a full enhaced subcategory, and $\rho \circ \lambda$ induces an enhanced functor $\operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E}) \to \operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E})^0$ left-adjoint to the full embedding $\operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E})^0 \to \operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E})$. Finally, by the same argument as in the first claim, the projection $\operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E}) \to \operatorname{Cat}^h \setminus (\operatorname{Cat}^h /\!/^h \mathcal{E})$ restricts to an equivalence between its target and $\operatorname{ar}_h(\operatorname{Cat}^h /\!/^h \mathcal{E})^0$.

Remark 8.4.3.7. Even if an enhanced category \mathcal{E} is not small, it is a filtered 2-colimit of its small enhanced full subcategories $\mathcal{E}' \subset \mathcal{E}$, and then $\operatorname{Cat}^h /\!/^h \mathcal{E}$ is a filtered 2-colimit of enhanced full subcategories $\operatorname{Cat}^h /\!/^h \mathcal{E}'$. Thus by the second claim of Lemma 8.4.2.2, Proposition 8.4.3.6 implies that (8.3.7.5) is an enhanced fibration for any enhanced category \mathcal{E} .

Example 8.4.3.8. By (8.3.7.2), the enhanced fiber of the enhanced cofibration $\mathcal{E} \setminus \mathcal{C}at^h \to \mathcal{C}at^h$ over some $\mathcal{C} \in \operatorname{Cat}^h$ is the enhanced category $\mathcal{F}un^h(\mathcal{E},\mathcal{C})$. For example, if $\mathcal{E} = \operatorname{pt}^h$, so that $\mathcal{E} \setminus \mathcal{C}at^h = \mathcal{C}at^h$ is the enhanced category of Example 8.3.7.3, this fiber is \mathcal{C} itself. More generally, for any $\langle I, \mathcal{C} \rangle \in \mathcal{C}at^h$, we have a semicartesian square

(8.4.3.7)
$$\begin{array}{c} \mathcal{C} & \longrightarrow & \mathcal{C}at^h \\ \downarrow & & \downarrow \\ K(I) & \longrightarrow & \mathcal{C}at^h , \end{array}$$

where the bottom arrow corresponds to $\langle I, \mathcal{C} \rangle$, and the top arrow sends an object in \mathcal{C} represented by a pair $\langle I', s \rangle$, $s \in \operatorname{Sec}^h(I', \mathcal{C})$, $f : I' \to I$ a map in Pos^+ to $\langle I', f^*\mathcal{C}, s \rangle \in \operatorname{Cat}^h$. Thus the generalized enhanced fiber (8.3.4.6) of Cat^h over $\langle I, \mathcal{C} \rangle \in \operatorname{Cat}^h$ is again \mathcal{C} .

8.4.4. Enhanced Grothendieck construction. Recall that for any enhanced category \mathcal{E} , we have a dense subcategory $\operatorname{Cat}^h /\!/_{\star}^h \mathcal{E} \subset \operatorname{Cat}^h /\!/_h^h \mathcal{E}$ whose morphisms are functors over \mathcal{E} . If \mathcal{E} is small, we can then consider the subcategory $\operatorname{Cat}^h /\!/_h^h \mathcal{E} \subset \operatorname{Cat}^h /\!/_{\star}^h \mathcal{E}$ whose objects are small enhanced categories \mathcal{C} equipped with an enhanced fibration $\mathcal{C} \to \mathcal{E}$, and whose morphisms are isomorphism classes of functors cartesian over \mathcal{E} . The enhancement $\operatorname{Cat}^h /\!/_h^h \mathcal{E}$ for the category $\operatorname{Cat}^h /\!/_h^h \mathcal{E}$ induces enhancements for $\operatorname{Cat}^h /\!/_h^h \mathcal{E} \subset \operatorname{Cat}^h /\!/_h^h \mathcal{E} \subset \operatorname{Cat}^h /\!/_h^h \mathcal{E}$

 $\operatorname{Cat}^h / \!\!/^h \mathcal{E}$, by cartesian squares

$$(8.4.4.1) \qquad Cat^{h} /\!/_{\flat}{}^{h} \mathcal{E} \xrightarrow{a} Cat^{h} /\!/_{\star}{}^{h} \mathcal{E} \xrightarrow{b} Cat^{h} /\!/_{h}{}^{h} \mathcal{E}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K(Cat^{h} /\!/_{\flat}{}^{h} \mathcal{E}) \longrightarrow K(Cat^{h} /\!/_{\star}{}^{h} \mathcal{E}) \longrightarrow K(Cat^{h} /\!/_{h}{}^{h} \mathcal{E}),$$

where the vertical arrow on the right is the truncation functor (8.1.2.2). We can also consider the twisted version $\operatorname{Cat}^h /\!/_\iota^h \mathcal{E}$ of the category $\operatorname{Cat}^h /\!/_\iota^h \mathcal{E}$; then it has an enhancement $\operatorname{Cat}^h /\!/_\iota^h \mathcal{E} \cong \iota^*(\operatorname{Cat}^h /\!/ \mathcal{E})$, where ι stands for the enhancement (8.3.6.6) of the involution $\mathcal{C} \mapsto \mathcal{C}^\iota$, and then all the other categories in (8.4.4.1) can be similarly twisted by ι ; as in Example 2.1.4.4, we have $\operatorname{Cat}^h /\!/_{\star^h} \mathcal{E} \cong \operatorname{Cat}^h /\!/_{\star^h} \mathcal{E}^\iota$.

Lemma 8.4.4.1. For any enhanced category \mathcal{E} , with enhanced isomorphism groupoid $\mathcal{E}_{h\star}$ and embedding $v:\mathcal{E}_{h\star}\to\mathcal{E}$, the enhanced category $\operatorname{Cat}^h//_{\star}^h\mathcal{E}$ of (8.4.4.1) is equivalent to the category of triples $\langle I,\mathcal{C},\beta\rangle$, $I\in\operatorname{Pos}^+$, \mathcal{C} a small enhanced category, $\beta:\mathcal{C}\to K(I)\times^h\mathcal{E}$ an enhanced functor such that $(\operatorname{id}\times v)^*\mathcal{C}\to K(I)\times^h\mathcal{E}_{h\star}$ is an enhanced fibration. Morphisms from $\langle I',\mathcal{C}',\beta'\rangle$ to $\langle I,\mathcal{C},\beta\rangle$ are represented by pairs $\langle f,\varphi\rangle$ of a map $I'\to I$ and a commutative square

(8.4.4.2)
$$\begin{array}{ccc} \mathcal{C}' & \stackrel{\varphi}{\longrightarrow} & \mathcal{C} \\ \beta' \Big\downarrow & & \Big\downarrow \beta \\ K(I') \times^h \mathcal{E} & \stackrel{K(f) \times \mathsf{id}}{\longrightarrow} & K(I) \times^h \mathcal{E} \end{array}$$

such that φ is cartesian over K(f); pairs $\langle f, \varphi \rangle$ are considered modulo isomorphism over \mathcal{E} . If \mathcal{E} is small, $\operatorname{Cat}^h /\!\!/_b{}^h \mathcal{E} \subset \operatorname{Cat}^h /\!\!/_\star{}^h \mathcal{E}$ is then equivalent to the subcategory of triples $\langle I, \mathcal{C}, \beta \rangle$ such that $\beta : \mathcal{C} \to K(I) \times^h \mathcal{E}$ is an enhanced fibration, with morphisms given by squares (8.4.4.2) such that φ is cartesian over $K(f) \times^h$ id.

Proof. For the first claim, note that for any $\langle I, \mathcal{C}, \alpha \rangle \in \mathcal{C}at^h /\!/^h \mathcal{E}$, with I-augmentation $\pi: \mathcal{C} \to K(I)$, the enhanced functor $\pi \times \alpha: \mathcal{C}_{h\perp} \to K(I) \times^h \mathcal{E}$ is coaugmented iff all the corresponding maps (8.3.6.9) are isomorphisms. Spelling out the construction of the functor (8.1.1.3) for the reflexive family $\mathcal{C}at^h /\!/^h \mathcal{E} \to \operatorname{Pos}^+$ given in the proof of Proposition 8.3.7.4, we see that this happens if and only if $\langle I, \mathcal{C}, \alpha \rangle$ lies in $\mathcal{C}at^h /\!/^h \mathcal{E} \subset \mathcal{C}at^h /\!/^h \mathcal{E}$. We can then take $\beta = (\pi \times \alpha)_{h\perp}$, and the claim for morphisms is also clear. For the second claim, note that by Lemma 8.4.2.17, $\beta: \mathcal{C} \to K(I) \times^h \mathcal{E}$ is an enhanced fibration iff $\operatorname{ar}^h(\mathcal{C}|K(I)) \to \mathcal{E} \setminus^h \mathcal{C}$ has a fully faithful I-augmented right-adjoint, and then applying Lemma 8.4.3.3 to the transpose-opposite I-augmented enhanced

categories, we see that this happens if $C_i \to \mathcal{E}$ is an enhanced fibration for any $i \in I$, and all the transition functors (8.3.6.8) are cartesian over \mathcal{E} . The claim for morphisms is again clear.

For any enhanced category \mathcal{E} , Lemma 8.3.3.7 and Corollary 8.3.3.6 show that the category $\operatorname{Cat}^h /\!\!/_{\star}^h \mathcal{E}$ has products (given by $-\times^h_{\mathcal{E}} -$). However, there is more functoriality. Assume that \mathcal{E} is small, and we have a small enhanced functor $\pi: \mathcal{C}' \to \mathcal{C}$. Then for any enhanced functor $\gamma: \mathcal{E} \to \mathcal{C}$, we can form a semicartesian square

(8.4.4.3)
$$\mathcal{E}'(\gamma) \longrightarrow \mathcal{C}'$$

$$\beta(\gamma) \downarrow \qquad \qquad \downarrow \pi$$

$$\mathcal{E} \xrightarrow{\gamma} \mathcal{C}.$$

If we have another enhanced functor $\gamma': \mathcal{E} \to \mathcal{C}$ and an isomorphism $b: \gamma \to \gamma'$, then replacing γ in (8.4.4.3) with γ' and composing the connecting isomorphism with $a \circ \beta$ defines another commutative square, and Corollary 8.3.3.6 then provides an enhanced functor $\varphi(b): \mathcal{E}'(\gamma) \to \mathcal{E}'(\gamma')$ equipped with an isomorphism $a(b): \beta(\gamma) \to \beta(\gamma') \circ \varphi$ (note that even if $\gamma' = \gamma$ but b is nontrivial, $\varphi(b)$ might well be a non-trivial endofunctor of $\mathcal{E}'(\gamma) = \mathcal{E}'(\gamma')$). The pair $\langle \varphi(b), a(b) \rangle$ is unique up to an isomorphism, thus gives a well-defined map in $\operatorname{Cat}^h /\!\!/_{\star}^h \mathcal{E}$, and sending γ to $\langle \mathcal{E}'(\gamma), \beta(\gamma) \rangle$ and b to $\langle \varphi(b), a(b) \rangle$ defines a functor from the isomorphism groupoid $\operatorname{Fun}^h(\mathcal{E},\mathcal{C})_{\star}$ to $\operatorname{Cat}^h/\!/_{\star}^h\mathcal{E}$. Passing to the enhanced-opposite categories, we get a functor $\operatorname{Fun}^h(\mathcal{E}^\iota,\mathcal{C})_\star \to \operatorname{Cat}^h/\!/_\star^h \mathcal{E}$, $\gamma \mapsto \mathcal{E}'(\gamma)^{\iota}$, and if $\pi : \mathcal{C}' \to \mathcal{C}$ is an enhanced cofibration, we can refine this construction to an enhanced functor $\mathcal{E}^{\iota}\mathcal{C} = \mathcal{F}un^{h}(\mathcal{E}^{\iota},\mathcal{C}) \to \mathcal{C}at^{h}/\!\!/_{b}{}^{h}\mathcal{E}$. Namely, explicitly, objects in $\mathcal{E}^{\iota}\mathcal{C}$ are pairs $\langle I, \gamma \rangle$, $I \in \text{Pos}^+$, $\gamma : \mathcal{E}^{\iota} \times^h K(I^{\circ}) \to \mathcal{C}$ an enhanced functor, and then for any such γ , $\beta(\gamma)^{\iota}: \mathcal{E}'(\gamma)^{\iota} \to \mathcal{E} \times^h K(I)$ is an enhanced fibration by Lemma 8.4.2.20, thus defines an object in $\operatorname{Cat}^h /\!\!/_{\!\!b}{}^h \mathcal{E}$ by Lemma 8.4.4.1. Then again, Corollary 8.3.3.6 shows that this is functorial with respect to maps in $\mathcal{E}^{\iota}\mathcal{C}$ cartesian over Pos⁺, and this then extends to an enhanced functor

$$(8.4.4.4) \mathcal{E}^{\iota}\mathcal{C} \to \mathcal{C}at^{h} /\!/_{\flat}{}^{h} \mathcal{E}, \langle I, \gamma \rangle \mapsto \langle I, \mathcal{E}'(\gamma)^{\iota}, \beta(\gamma)^{\iota} \rangle$$

by Lemma 8.2.2.9. In particular, we can take the enhanced cofibration (8.3.7.1) of Proposition 8.4.3.6 for the enhanced category $Cat^h = pt^h \setminus^h Cat^h$ of Example 8.3.7.3. We then obtain an enhanced functor

$$(8.4.4.5) \qquad \operatorname{Gr}: \mathcal{E}^{\iota} \operatorname{\mathcal{C}at}^{h} \to \operatorname{\mathcal{C}at}^{h} /\!\!/_{\flat}^{h} \mathcal{E}, \quad \langle I, \gamma \rangle \mapsto \langle I, \mathcal{E}'(\iota \circ \gamma)^{\iota}, \beta(\iota \circ \gamma)^{\iota} \rangle$$

by composing (8.4.4.4) with the involution $\iota : \mathcal{E}^{\iota} \mathcal{C}at^{h} \to \mathcal{E}^{\iota} \mathcal{C}at^{h}$, $\gamma \mapsto \iota \circ \gamma$ induced by (8.3.6.6).

Proposition 8.4.4.2. The enhanced functor (8.4.4.5) is an equivalence for any small enhanced category \mathcal{E} .

Proof. To construct an enhanced functor inverse to (8.4.4.5), consider the product $\mathcal{E}^{\iota} \times^{h} (\mathcal{C}at^{h} /\!\!/_{\flat}^{h} \mathcal{E})$. By Lemma 8.4.4.1, its objects are quadruples $\langle I, e, \mathcal{C}, \beta \rangle$, $I \in \text{Pos}^{+}$, $e : K(I) \to \mathcal{E}$ an enhanced functor, \mathcal{C} a small enhanced category, $\beta : \mathcal{C} \to K(I) \times^{h} \mathcal{E}$ an enhanced fibration. For any such quadruple, we can form a semicartesian square

(8.4.4.6)
$$\begin{array}{ccc}
\mathcal{C}(I,e,\mathcal{C},\beta) & \longrightarrow & \mathcal{C} \\
\pi(I,e,\mathcal{C},\beta) \downarrow & & \downarrow \beta \\
K(I) & \xrightarrow{\mathsf{id} \times e} & K(I) \times^h \mathcal{E},
\end{array}$$

and by Lemma 8.4.2.20 together with Lemma 8.4.3.1, $\pi(I,e,\mathcal{C},\beta)$ in (8.4.4.6) is an I-augmentation. Again, by Corollary 8.3.3.6 and Lemma 8.4.2.20, the square (8.4.4.6) is functorial with respect to morphisms cartesian over Pos⁺, so by Lemma 8.2.2.9, sending $\langle I,e,\mathcal{C},\beta \rangle$ to the corresponding pair $\langle \mathcal{C}(I,e,\mathcal{C},\beta),\pi(I,e,\mathcal{C},\beta) \rangle$ provides an enhanced functor

(8.4.4.7)
$$\mathcal{E}^{\iota} \times^{h} (\mathcal{C}at^{h} /\!/_{b}^{h} \mathcal{E}) \to \mathcal{C}at^{h}.$$

By the universal property of the functor categories, (8.4.4.7) then induces an enhanced functor $Gr': \mathcal{C}at^h /\!/_{\flat}{}^h \mathcal{E} \to \mathcal{E}^{\iota} \mathcal{C}at$, and the semicartesian squares (8.4.4.2) provide an isomorphism $Gr' \circ Gr \cong id$. Define enhanced categories $\mathcal{C}at^h_{\flat} /\!/_{\flat^h} \mathcal{E}$ and $\mathcal{C}at^h_{\star} /\!/_{\flat^h} \mathcal{E} \cong \mathcal{C}at^h_{\star} /\!/_{\flat^h} \mathcal{E}^{\iota}$ by semicartesian squares

and note that (8.3.7.11) then induces an enhanced functor

(8.4.4.9) $\operatorname{Cat}^h_{\cdot} /\!/_{\flat_l}^h \mathcal{E} \xrightarrow{a} \operatorname{Cat}^h_{\cdot} /\!/_{\star}^h \mathcal{E}^{\iota} \xrightarrow{b} \operatorname{Cat}^h_{\cdot} /\!/_h^h \mathcal{E}^{\iota} \longrightarrow \mathcal{E}^{\iota},$ and its product with π of (8.4.4.8) fits into a commutative square

(8.4.4.10)
$$\begin{array}{ccc}
\mathcal{C}at_{\:\:}^{h} /\!/_{\flat_{l}}{}^{h} \mathcal{E} & \longrightarrow \mathcal{C}at_{\:\:}^{h} \\
\pi'' \times {}^{h}\pi \downarrow & \downarrow \\
\mathcal{E}^{\iota} \times {}^{h} \left(\mathcal{C}at_{\:}^{h} /\!/_{\flat}{}^{h} \mathcal{E} \right) & \longrightarrow \mathcal{C}at_{\:}^{h},
\end{array}$$

where the bottom arrow is the pairing (8.4.4.7). Spelling out the definitions, we see that the square (8.4.4.10) is semicartesian as well.

Now to finish the proof, take some $\langle I, \mathcal{C}, \beta \rangle \in \mathcal{C}\mathit{at}^h /\!/_{\flat}^h \mathcal{E}$, with the corresponding enhanced functor $\gamma : K(I^o) \to \mathcal{C}\mathit{at}^h /\!/_{\flat}^h \mathcal{E}$, and note that since (8.4.4.8) and (8.4.4.2) are semicartesian, we have a semicartesian square

(8.4.4.11)
$$\begin{array}{ccc}
\mathcal{C}^{\iota} & \longrightarrow & \mathcal{C}at^{h}_{\bullet} /\!/_{\flat}^{h} \mathcal{E} \\
\beta^{\iota} \downarrow & & \downarrow \pi'' \times^{h} \pi \\
\mathcal{E}^{\iota} \times K(I^{o}) & \xrightarrow{\mathsf{id} \times \gamma} & \mathcal{E}^{\iota} \times^{h} (\mathcal{C}at^{h} /\!/_{\flat}^{h} \mathcal{E}).
\end{array}$$

The square (8.4.4.11) is then functorial with respect to C, and combining it with (8.4.4.10) defines an isomorphism $Gr \circ Gr' \cong id$.

Proposition 8.4.4.2 is an enhanced version of the Grothendieck construction, and we see that it actually works better than the unenhanced version. Namely, while by Example 2.3.3.10, a discrete small fibration over some I is the fibration $IX \to I$ for a unique functor $X: I^o \to \mathrm{Sets}$, one has to use pseudofunctors for fibrations that are not discrete. In the enhanced setting, the "pseudo" part is already incorporated into enhancement for functors, so enhanced fibrations $\mathcal{E}' \to \mathcal{E}$ over a small enhanced base \mathcal{E} simply correspond to enhanced functors $\mathcal{E}^\iota \to \mathcal{C}at^h$. It is convenient to keep the notation of Example 2.3.3.10, and denote the enhanced fibration corresponding to some $X: \mathcal{E}^\iota \to \mathcal{C}at^h$ by $\mathcal{E}X \to \mathcal{E}$. The role of discrete fibrations is played by enhanced families of groupoids, and by Lemma 8.4.2.20, $\mathcal{E}X \to \mathcal{E}$ is an enhanced family of groupoids iff X factors through $\mathcal{S}ets^h \subset \mathcal{C}at^h$.

As an immediate application, Proposition 8.4.4.2 allows one to define transpose enhanced cofibrations and transpose-opposite enhanced fibrations. Namely, for any enhanced fibration $\mathcal{C} \to \mathcal{E}$ between small enhanced categories, we can compose the corresponding enhanced functor $\mathcal{E}^\iota \to \mathcal{C}at^h$ with the involution ι , and obtain an enhanced fibration $\mathcal{C}^\iota_{h\perp} \to \mathcal{E}$ whose enhanced fibers are enhanced-opposite to those of \mathcal{E} . The enhanced-opposite category $\mathcal{C}_\perp = (\mathcal{C}^\iota_{h\perp})^\iota$ then comes equipped with an enhanced cofibration $\mathcal{C}_{h\perp} \to \mathcal{E}^\iota$. If we have another enhanced fibration $\mathcal{C}' \to \mathcal{E}$ with small \mathcal{C}' , then an enhanced functor $\gamma : \mathcal{C} \to \mathcal{C}'$ cartesian over \mathcal{E} induces a transpose functor $\gamma_{h\perp} : \mathcal{C}_{h\perp} \to \mathcal{C}'_{h\perp}$ cocartesian over \mathcal{E}^ι and the transpose-opposite functor $\gamma^\iota_{h\perp} : \mathcal{C}^\iota_{h\perp} \to \mathcal{C}'^\iota_{h\perp}$ cartesian over \mathcal{E} . This provides an enhanced equivalence

(8.4.4.12)
$$\operatorname{\mathcal{F}un}_{\mathcal{E}}^{\natural h}(\mathcal{C},\mathcal{C}') \cong \operatorname{\mathcal{F}un}_{\natural \mathcal{E}}^{h}(\mathcal{C}_{h\perp},\mathcal{C}'_{h\perp}),$$

where $\mathcal{F}un^h_{\mathcal{E}}(-,-)$ stands for the enhanced functor category over \mathcal{E} , as in (8.3.4.3), and $\mathcal{F}un^{\natural h}_{\mathcal{E}}$ resp. $\mathcal{F}un^h_{\natural \mathcal{E}}$ are the full enhanced subcategories spanned

by enhanced functors cartesian resp. cocartesian over \mathcal{E} . If we have $\mathcal{E} = K(I)$ for some $I \in \operatorname{Pos}^+$, this recovers our earlier construction for I-augmented enhanced categories. In general, we have a covariant version of the Grothendieck construction: any enhanced cofibration $\mathcal{E}' \to \mathcal{E}$ with a small base is of the form $\mathcal{E}' \cong X^* \operatorname{Cat}^h$ for a unique enhanced functor $X : \mathcal{E} \to \operatorname{Cat}^h$. Extending Example 2.3.3.10, we denote $\mathcal{E}^\perp X = X^* \operatorname{Cat}^h$.

Example 8.4.4.3. For any small enhanced category \mathcal{E} , with the enhanced arrow category $\operatorname{ar}^h(\mathcal{E})$, one can define the *enhanced twisted arrow category* $\operatorname{tw}^h(\mathcal{E})$ by $\operatorname{tw}^h(\mathcal{E})^\iota \cong \operatorname{ar}^h(\mathcal{E})_{h\perp}$, where $\sigma: \operatorname{ar}^h(\mathcal{E})_{h\perp} \to \mathcal{E}^\iota$ is transpose to the enhanced fibration $\sigma: \operatorname{ar}^h(\mathcal{E}) \to \mathcal{E}$. The enhanced cofibration $\tau: \operatorname{ar}^h(\mathcal{E}) \to \mathcal{E}$ then induces an enhanced cofibration $\tau: \operatorname{tw}^h(\mathcal{E})^\iota \to \mathcal{E}$ by (8.4.4.12), and the resulting enhanced functor $\operatorname{tw}^h(\mathcal{E}) \to \mathcal{E} \times^h \mathcal{E}^\iota$ is an enhanced family of groupoids.

8.4.5. Enhanced relative functor categories. As another direct application of Proposition 8.4.4.2, for any enhanced fibration $\mathcal{C} \to \mathcal{E}$ with small \mathcal{C} , we obtain a universal characterization of the relative functor category $\mathcal{F}un^h(\mathcal{C}',\mathcal{C}|\mathcal{E})$ of (8.4.2.12). Indeed, in terms of the equivalence (8.4.4.5), passing from \mathcal{C} to Fun($\mathcal{C}',\mathcal{C}|\mathcal{E}$) corresponds to composing an enhanced functor $\mathcal{E}^\iota \to \mathcal{C}at^h$ with the functor $\mathcal{F}un^h(\mathcal{C}',-):\mathcal{C}at^h \to \mathcal{C}at^h$, and then by Corollary 8.4.1.7, this is right-adjoint to the functor $\mathcal{C}' \times^h -$, so that we have a natural identification

$$(8.4.5.1) \qquad (\operatorname{Cat}^{h} /\!/_{\flat}^{h} \mathcal{E})(\mathcal{E}' \times^{h} \mathcal{C}', \mathcal{C}) \cong (\operatorname{Cat}^{h} /\!/_{\flat}^{h} \mathcal{E})(\mathcal{E}', \mathcal{F}un^{h}(\mathcal{C}', \mathcal{C}|\mathcal{E}))$$

for any enhanced fibration $\mathcal{E}' \to \mathcal{E}$ with small \mathcal{E}' . We note that the left-hand side in (8.4.5.1) can be also canonically expressed via (8.3.4.4): we have

(8.4.5.2)
$$\operatorname{Cat}^{h}(\mathcal{C}', \mathcal{F}un_{\mathcal{C}}^{\sharp h}(\mathcal{E}', \mathcal{C})) \cong (\operatorname{Cat}^{h} /\!\!/_{\flat}{}^{h} \mathcal{E})(\mathcal{C}' \times^{h} \mathcal{E}', \mathcal{C}),$$

where $\operatorname{\mathcal{F}\!\mathit{un}}^{\natural h}_{\mathcal{C}}(\mathcal{E}',\mathcal{C}) \subset \operatorname{\mathcal{F}\!\mathit{un}}^{h}_{\mathcal{C}}(\mathcal{E}',\mathcal{E})$ is the full enhanced subcategory spanned by enhanced functors cartesian over \mathcal{E} .

Now assume given an enhanced functor $\gamma: \mathcal{E}' \to \mathcal{E}$ between small enhanced categories, and recall that by (2.4.1.1), postcomposition with γ provides a functor $\gamma_{\triangleright}: \operatorname{Cat}^h /\!\!/^h \mathcal{E}' \to \operatorname{Cat}^h /\!\!/^h \mathcal{E}$. The functor γ_{\triangleright} has an obvious enhancement $\langle I, \mathcal{C}, \alpha \rangle \mapsto \langle I, \mathcal{C}, \gamma \circ \alpha \rangle$, so $\operatorname{Cat}^h /\!\!/^h - \operatorname{can}$ be thought of as a 2-functor sending small enhanced categories \mathcal{E} to enhanced categories $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$, and enhanced functors $\gamma: \mathcal{E}' \to \mathcal{E}$ to enhanced functors $\gamma_{\triangleright}: \operatorname{Cat}^h /\!\!/^h \mathcal{E}' \to \operatorname{Cat}^h /\!\!/^h \mathcal{E}$. By virtue of Proposition 8.4.3.6, $\operatorname{Cat}^h /\!\!/^h - \operatorname{inherits}$ the nice properties of the enhanced functor categories $\operatorname{Fun}^h(\mathcal{C}, -)$; in particular, it sends semicartesian squares to

semicartesian squares, and enhanced fibrations to enhanced fibrations (combine Corollary 8.4.1.7 and Lemma 8.4.2.17).

If we restrict our attention to the subcategory $\operatorname{Cat}^h /\!/_{\!\!\!/}{}^h \mathcal{E}' \subset \operatorname{Cat}^h /\!/^h \mathcal{E}'$, then γ_{\triangleright} sends it into $\operatorname{Cat}^h /\!/_{\!\!\!/}{}^h \mathcal{E} \subset \operatorname{Cat}^h /\!/^h \mathcal{E}$, and by Corollary 8.3.3.6 and Lemma 8.3.3.7, the resulting functor $\gamma_{\triangleright} : \operatorname{Cat}^h /\!/_{\!\!\!/}{}^h \mathcal{E}' \to \operatorname{Cat}^h /\!/_{\!\!\!/}{}^h \mathcal{E}$ admits a right-adjoint γ^* sending \mathcal{C} to $\mathcal{E}' \times_{\mathcal{E}}^h \mathcal{C}$. As it happens, this adjoint also has a natural enhancement. Namely, $\langle I, \mathcal{C}, \alpha \rangle \in \operatorname{Cat}^h /\!/_{\!\!\!/}{}^h \mathcal{E}$ represents an object in $\operatorname{Cat}^h /\!/_{\!\!\!/}{}^h \mathcal{E}$ iff the product $\alpha \times \pi : \mathcal{C}_{h\perp} \to K(I^o) \times^h \mathcal{E}$ of the enhanced functor α and the coaugmentation $\pi : \mathcal{C}_{h\perp} \to K(I^o)$ is I^o -coaugmented, and in this case, $\gamma^* \mathcal{C}_{h\perp} \to K(I^o)$ is an I^o -coaugmentation by Lemma 8.4.2.20. Then $\gamma^* \mathcal{C}_{h\perp} \cong \mathcal{C}'_{h\perp}$ for a unique I-augmented small enhanced category $\mathcal{C}' = (\gamma^* \mathcal{C}_{h\perp})^{h\perp}$, and we can let $\gamma^* (\langle I, \mathcal{C}, \alpha \rangle) = \langle I, \mathcal{C}', \gamma^*(\alpha) \rangle$. Moreover, if γ is an enhanced cofibration, then $\gamma^* \mathcal{C}_{h\perp} \to \mathcal{C}_{h\perp}$ is an enhanced cofibration as well, and then $\gamma^* \mathcal{C}_{h\perp} \to K(I^o)$ is an I^o -coaugmentation for any $\langle I, \mathcal{C}, \alpha \rangle \in \operatorname{Cat}^h /\!/^h \mathcal{E}$. Thus for an enhanced cofibration γ , we have a well-defined enhanced functor

$$(8.4.5.3) \qquad \gamma^* : \mathcal{C}at^h \not /\!/^h \mathcal{E} \to \mathcal{C}at^h \not /\!/^h \mathcal{E}', \quad \langle I, \mathcal{C}, \alpha \rangle \mapsto \langle I, (\gamma^* \mathcal{C}_{h\perp})^{h\perp}, \gamma^*(\alpha) \rangle,$$

enhanced right-adjoint to γ_{\triangleright} . Let us now show that we also have an enhanced version of Lemma 2.4.1.2 and the relative functor categories (2.4.1.4).

Lemma 8.4.5.1. For any enhanced cofibration $\gamma: \mathcal{E}' \to \mathcal{E}$ between small enhanced categories, the enhanced functor $\gamma^*: \mathcal{C}at^h /\!/_{\star}^h \mathcal{E} \to \mathcal{C}at^h /\!/_{\star}^h \mathcal{E}'$ admits an enhanced right-adjoint $\gamma_{\lhd}: \mathcal{C}at^h /\!/_{\star}^h \mathcal{E}' \to \mathcal{C}at^h /\!/_{\star}^h \mathcal{E}$. Moreover, let $\mathcal{E}'_{h\sharp}$ be as in (8.4.2.4), with the cocartesian functor $v: \mathcal{E}'_{h\sharp} \to \mathcal{E}$. Then for any small $\mathcal{C} \to \mathcal{E}'$ such that $v^*\mathcal{C} \to \mathcal{E}'_{h\sharp}$ is an enhanced fibration, $\gamma_{\lhd}\mathcal{C} \to \mathcal{E}$ is an enhanced fibration, and for any small enhanced fibration $\mathcal{C}' \to \mathcal{E}$ and a functor $\varphi: \gamma^*\mathcal{C}' \to \mathcal{C}$, the adjoint functor $\varphi': \mathcal{C}' \to \gamma_{\lhd}\mathcal{C}$ is cartesian over \mathcal{E} iff $v^*(\varphi)$ is cartesian voer $\mathcal{E}'_{h\sharp}$.

Proof. Let $E: \mathcal{E} \to \mathcal{C}at^h$ be the enhanced functor corresponding to $\mathcal{E}' \to \mathcal{E}$, so that $\mathcal{E}' \cong E^* \mathcal{C}at^h$, and for any small enhanced category \mathcal{C} , define an enhanced fibration $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{C}) \to \mathcal{E}$ by the semicartesian square

(8.4.5.4)
$$\mathcal{F}un^{h}(\mathcal{E}'|\mathcal{E},\mathcal{C}) \longrightarrow \mathcal{C}at^{h} /\!/^{h} \mathcal{C}$$

$$\downarrow \qquad \qquad \downarrow \pi$$

$$\mathcal{E} \xrightarrow{E} \mathcal{C}at^{h},$$

where π is the enhanced fibration (8.3.7.5) of Proposition 8.4.3.6. Then $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{C})$ is functorial with respect to \mathcal{C} via the postcomposition functors

(2.4.1.1), and $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},-)$ sends enhanced fibrations to enhanced fibrations and semicartesian squares to semicartesian squares. Moreover, by (8.3.7.10), we have $\gamma^* \mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{C}) \cong E^*(\mathcal{C}at^h_{\bullet} /\!\!/^h \mathcal{C})$, and (8.3.7.11) induces an enhanced functor

(8.4.5.5)
$$\operatorname{ev}: \gamma^* \operatorname{\mathcal{F}un}^h(\mathcal{E}'|\mathcal{E},\mathcal{C}) \to \mathcal{C}.$$

On the other hand, composing the tautological embedding (8.3.7.6) with (8.4.5.3) provides an enhanced functor $\gamma^* \circ y : \mathcal{E} \to \mathcal{C}at^h /\!/^h \mathcal{E}'$, and we tautologically have $\pi \circ \gamma^* \circ y \cong E$. Altogether, we obtain an enhanced section

$$(8.4.5.6) s: \mathcal{E} \to \mathcal{F}un(\mathcal{E}'|\mathcal{E}, \mathcal{E}')$$

of the enhanced fibration $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{E}') \to \mathcal{E}$, and moreover, this section factors through $\nu_{\triangleright}: \mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{E}'_{h\sharp}) \to \mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{E}')$. More generally, for any small enhanced category \mathcal{C} and enhanced functor $\alpha: \mathcal{C} \to \mathcal{E}$, the same construction applies to the enhanced cofibration $\mathcal{C}' = \alpha^*\mathcal{E}' \cong \gamma^*\mathcal{C} \to \mathcal{C}$, and provides an enhanced functor

$$(8.4.5.7) \quad s: \mathcal{C} \to \mathcal{F}un^h(\mathcal{C}'|\mathcal{C}, \mathcal{C}') \cong \alpha^* \mathcal{F}un^h(\mathcal{E}'|\mathcal{E}, \gamma^*\mathcal{C}) \to \mathcal{F}un^h(\mathcal{E}'|\mathcal{E}, \gamma^*\mathcal{C})$$

over \mathcal{E} . Now for any small enhanced category \mathcal{C} equipped with an enhanced functor $\pi: \mathcal{C} \to \mathcal{E}'$, we can define $\gamma_{\triangleleft}(\pi): \gamma_{\triangleleft}\mathcal{C} \to \mathcal{E}$ by the semicartesian square

(8.4.5.8)
$$\gamma_{\triangleleft} \mathcal{C} \longrightarrow \mathcal{F}un^{h}(\mathcal{E}'|\mathcal{E},\mathcal{C})$$

$$\gamma_{\triangleleft}(\pi) \downarrow \qquad \qquad \downarrow \pi_{\triangleright}$$

$$\mathcal{E} \stackrel{s}{\longrightarrow} \mathcal{F}un^{h}(\mathcal{E}'|\mathcal{E},\mathcal{E}),$$

where s is the section (8.4.5.6). Then s factors through $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{E}'_{h\sharp})$, so $\gamma_{\triangleleft}(\pi)$ is an enhanced fibration as soon as so is $v^*(\pi): v^*\mathcal{C} \to \mathcal{E}'_{h\sharp}$. Moreover, for any small enhanced category \mathcal{E}'' and enhanced functor $\varphi: \mathcal{E}'' \to \mathcal{E}$, we have $\varphi^*\gamma_{\triangleleft}\mathcal{C} \cong \varphi^*(\gamma)_{\triangleleft}\varphi^*\mathcal{C}$. In particular, by Lemma 8.4.4.1, objects in $\mathcal{C}at^h /\!/_*^h \mathcal{E}'$ correspond to triples $\langle I, \mathcal{C}, \beta \rangle$, where $\beta: \mathcal{C} \to K(I) \times^h \mathcal{E}'$ becomes a fibration after restricting to $K(I) \times^h \mathcal{E}_{h\star}$, and then for any such triple, $\langle I, (\operatorname{id} \times \gamma)_{\triangleleft} \mathcal{C}, (\operatorname{id} \times \gamma)_{\triangleleft} (\beta) \rangle$ is a well-defined object in $\mathcal{C}at^h /\!/_*^h \mathcal{E}$. This is functorial with respect to maps cartesian over Pos $^+$, thus defines an enhanced functor

$$(8.4.5.9) \gamma_{\triangleleft} : Cat^h //_{\star}^h \mathcal{E}' \to Cat^h //_{\star}^h \mathcal{E}$$

by Lemma 8.2.2.9, while (8.4.5.5) and (8.4.5.7) extend to functorial maps

$$\gamma^* \circ \gamma_{\triangleleft} \to \mathsf{id}, \qquad \mathsf{id} \to \gamma_{\triangleleft} \circ \gamma^*$$

that define adjunction between γ^* and γ_{\triangleleft} .

Just as in the unenhanced setting of Subsection 2.4.1, Lemma 8.4.5.1 implies a universal property for the relative enhanced functor category (8.4.5.4) and the evaluation functor (8.4.5.5): for any small enhanced category \mathcal{C}' over \mathcal{E} , an enhanced functor $\varphi: \gamma^*\mathcal{C}' \to \mathcal{C}$ factors as

$$(8.4.5.10) \gamma^* \mathcal{C}' \xrightarrow{\gamma^* \widetilde{\varphi}} \gamma^* \mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{C}) \xrightarrow{\text{ev}} \mathcal{C}$$

for an enhanced functor $\widetilde{\varphi}: \mathcal{C}' \to \mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{C})$ over \mathcal{E} , uniquely up to an isomorphism. As in Subsection 2.4.1, this property characterizes $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},\mathcal{C})$ uniquely up to a unique equivalence, Lemma 8.4.5.1 proves existence when $\gamma: \mathcal{E}' \to \mathcal{E}$ is an enhanced cofibration, but $\mathcal{F}un^h(\mathcal{E}'|\mathcal{E},-)$ actually exists for more general enhanced functors γ . In particular, if $\gamma: \mathcal{E}' \to \mathcal{E}$ is an enhanced fibration, we can define

$$(8.4.5.11) \mathcal{F}un^{h}(\mathcal{E}'|\mathcal{E},\mathcal{C}) = \mathcal{F}un^{h}(\mathcal{E}'^{\iota}|\mathcal{E}^{\iota},\mathcal{C}^{\iota})^{\iota} \cong \mathcal{F}un^{h}(\mathcal{E}'_{h\perp}|\mathcal{E}^{\iota},\mathcal{C})_{h\perp},$$

where $\gamma^{\iota}: \mathcal{E}'^{\iota} \to \mathcal{E}^{\iota}$ is the enhanced-opposite cofibration, and then (8.4.5.5) provides an enhanced functor

(8.4.5.12)
$$\operatorname{ev}^{\iota}: \gamma^{\iota *} \operatorname{\mathcal{F}un}^{h}(\mathcal{E}^{\prime \iota}|\mathcal{E}^{\iota}, \mathcal{C}^{\iota}) \to \mathcal{C}^{\iota}$$

that gives (8.4.5.5) after again passing to the enhanced-opposite categories. The resulting pairing has exactly the same universal property as in the cofibration case. If $\gamma = K(g)$ for some functor $g: I' \to I$ between essentially small categories that is either a fibration or a cofibration, we will simplify notation and write $\mathcal{F}un^h(I'|I,-) = \mathcal{F}un^h(K(I')|K(I),-)$.

8.4.6. Enhanced Yoneda embedding. Let us now give our main application of Proposition 8.4.4.2, namely, an enhanced version of the extended Yoneda embedding (2.1.4.6). To construct it, observe that for any small enhanced functor $\alpha: \mathcal{C} \to \mathcal{E}$, the enhanced comma-category $\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}$ comes equipped with the fibration $\sigma: \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C} \to \mathcal{E}$ of Corollary 8.4.2.11. More generally, for any object $\langle I, \mathcal{C}, \alpha \rangle \in \mathcal{C}at^{h}$ //^h \mathcal{E} , the enhanced comma-category $\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp}$ is I-coaugmented via $\tau: \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp} \to \mathcal{C}_{h\perp}$, and the projection $\sigma: \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp} \to \mathcal{E}$ is an enhanced fibration. Moreover, for any $i \in I$, the induced projection $(\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C})_{i} \cong \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{i} \to \mathcal{E}$ is also an enhanced fibration, and for any $i \leq i'$, the transition functor $\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp} \to \mathcal{E}$ is cartesian over \mathcal{E} . Since the correspondence $\mathcal{C} \mapsto (\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp})^{h\perp}$ is functorial with respect to I by Corollary 8.3.3.6, Lemma 8.2.2.9 provides an enhanced functor

$$(8.4.6.1) Y: Cat^h //^h \mathcal{E} \to Cat^h //_b^h \mathcal{E} \cong \mathcal{E}^\iota Cat^h$$

sending $\langle I, \mathcal{C}, \alpha \rangle$ to $\langle I, (\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp})^{h\perp}, \sigma \rangle$. Moreover, for any $\alpha : \mathcal{C} \to \mathcal{E}$, $\tau : \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C} \to \mathcal{C}$ is a lax functor over \mathcal{E} , its right-adjoint $\eta : \mathcal{C} \to \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}$ is a functor over \mathcal{E} , and if α is an enhanced fibration, then the second right-adjoint $\eta_{+} : \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C} \to \mathcal{C}$ to η is cartesian over \mathcal{E} . More generally, for any object $\langle I, \mathcal{C}, \alpha \rangle$ in $Cat^{h} //^{h} \mathcal{E}$, the lax functor $\tau : \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp} \to \mathcal{C}_{h\perp}$ over \mathcal{E} is I-coaugmented by definition, thus defines a morphism in $Cat^{h} //^{h} \mathcal{E}$, and its right-adjoint $\eta : \mathcal{C}_{\perp} \to \mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp}$, a functor over \mathcal{E} , is also I-coaugmented. Moreover, if the triple $\langle I, \mathcal{C}, \alpha \rangle$ is in the subcategory $Cat^{h} //_{b}^{h} \mathcal{E} \subset Cat^{h} //_{b}^{h} \mathcal{E}$, so that $\pi \times \alpha = \beta^{h\perp}$ for an enhanced fibration $\beta : \mathcal{C} \to K(I) \times_{a}^{h} \mathcal{E}$, as in Lemma 8.4.4.1, then $\mathcal{E} \setminus_{\alpha}^{h} \mathcal{C}_{h\perp} \cong (\mathcal{E} \setminus_{\pi' \circ \beta}^{h} \mathcal{C})_{h\perp}$, where $\pi' : K(I) \times_{b}^{h} \mathcal{E} \to \mathcal{E}$ is the projection, and the right-adjoint η_{+} defines a morphism in $Cat^{h} //_{b}^{h} \mathcal{E}$. By Lemma 8.2.2.9, we then have enhanced morphisms

$$(8.4.6.2) \tau: b \circ a \circ Y \to id, \eta: id \to a \circ Y \circ b, \eta_{+}: Y \circ b \circ a \to id,$$

where Y is (8.4.6.1), and a, b are the enhanced functors of (8.4.4.1). We also have adjunction isomorphisms $\eta_{+} \circ \eta \cong \operatorname{id}$, $\tau \circ \eta \cong \operatorname{id}$.

Proposition 8.4.6.1. For any small enhanced category \mathcal{E} , the morphisms (8.4.6.2) define an adjunction between enhanced functors a and $Y \circ b$, and between $a \circ Y$ and b, and the enhanced functor (8.4.6.1) is fully faithful.

Proof. For the first claim, it suffices to check the identities of Lemma 2.2.1.5, and all four immediately follow from the existence of the adjunction isomorphisms $\eta_+ \circ \eta \cong \operatorname{id}$, $\tau \circ \eta \cong \operatorname{id}$. By Lemma 2.2.1.5, this also proves that Y is fully fiathful over $\operatorname{pt} \in \operatorname{Pos}^+$. Over a more general $I \in \operatorname{Pos}^+$, this is not automatic, since b is no longer essentially surjective. However, let A be the class of morphisms in $\operatorname{Cat}^h /\!/^h \mathcal{E}$ represented by triples $\langle f, \varphi, a \rangle$ such that a is an isomorphism. Then the dense subcategory $(\operatorname{Cat}^h /\!/^h \mathcal{E})_A \subset \operatorname{Cat}^h /\!/^h \mathcal{E}$ is no longer an enhanced category, but the projection $(\operatorname{Cat}^h /\!/^h \mathcal{E})_A \to \operatorname{Pos}^+$ is still a fibration, the embedding functor $b' : (\operatorname{Cat}^h /\!/^h \mathcal{E})_A \to \operatorname{Cat}^h /\!/^h \mathcal{E}$ is cartesian over Pos^+ , and we have a diagram

$$\operatorname{Cat}^h /\!\!/_b{}^h \mathcal{E} \xrightarrow{a'} (\operatorname{Cat}^h /\!\!/^h \mathcal{E})_A \xrightarrow{b'} \operatorname{Cat}^h /\!\!/^h \mathcal{E} \xrightarrow{\mathsf{Y}} \operatorname{Cat}^h /\!\!/_b{}^h \mathcal{E},$$

where a' is cartesian over Pos⁺, and Y is the same enhanced functor (8.4.6.1). Moreover, η in (8.4.6.2) is a well-defined functor on the whole category $(Cat^h //^h \mathcal{E})_A$, and Lemma 2.2.1.5 still applies. Since b' is essentially surjective by definition, this finishes the proof.

The fully faithful embedding (8.4.6.1) of Proposition 8.4.6.1 is the enhanced version of the extended Yoneda embedding (2.1.4.6). To deduce the usual

version, one can first restrict the enhanced fibration (8.3.7.5) to the full enhanced subcategory $\mathcal{S}ets^h \subset \mathcal{C}at^h$ of enhanced groupoids. The resulting category $\mathcal{S}ets^h$ // $^h\mathcal{E}$ is then the enhanced category of enhanced groupoids \mathcal{C} equipped with an enhanced functor $\alpha:\mathcal{C}\to\mathcal{E}$. For any such \mathcal{C} , $Y(\mathcal{C})\to\mathcal{E}$ is an enhanced family of groupoids by Example 8.4.2.12, and then by Lemma 8.4.2.20, (8.4.4.5) sends $Y(\mathcal{C})$ to an enhanced functor that factors through $\mathcal{S}ets^h\subset\mathcal{C}at^h$, so that (8.4.6.1) induces a fully faithful enhanced functor $\mathcal{S}ets^h$ // $^h\mathcal{E}\to\mathcal{E}^\iota\mathcal{S}ets^h$. Restricting even further, we can compose Y with the full embedding (8.3.7.6), or in other words, restrict our attention to the full enhanced subcategory in $\mathcal{S}ets^h$ // $^h\mathcal{E}$ spanned by $\mathcal{C}=pt$. This enhanced subcategory is tautologically identified with \mathcal{E} itself, so that (8.4.6.1) provides a fully faithful embedding

(8.4.6.3)
$$Y(\mathcal{E}) : \mathcal{E} \to \mathcal{E}^{\iota} \mathcal{S}ets^{h}.$$

This is the enhanced version of (2.1.4.5), and here is its essential image.

Lemma 8.4.6.2. An enhanced family of small groupoids $\mathcal{E}' \to \mathcal{E}$ corresponding to an enhanced functor $E: \mathcal{E}^{\iota} \to \mathcal{S}ets^h$ lies in the essential image of the Yoneda embedding (8.4.6.3) iff \mathcal{E}' admits a terminal enhanced object.

Proof. By definition, for any enhanced object $e \in \mathcal{E}$, $Y(\mathcal{E})(e)$ corresponds to the enhanced family of groupoids $\mathcal{E}/^h e \to \mathcal{E}$, and this has the enhanced-terminal object given by the embedding $\eta: \operatorname{pt}^h \to \mathcal{E}/^h e \cong \mathcal{E} \setminus^h \operatorname{pt}^h$. Conversely, for any enhanced family of groupoids $\pi: \mathcal{E}' \to \mathcal{E}$ and enhanced object $e \in \mathcal{E}'_{\operatorname{pt}}$, the equivalence $\pi \setminus^h \operatorname{id} : \operatorname{ar}^h(\mathcal{E}') \to \mathcal{E} \setminus^h_{\pi} \mathcal{E}'$ induces an equivalence $\mathcal{E}'/^h e \to \mathcal{E}/^h \pi(e)$, and if e is terminal, we have $\mathcal{E}' \cong \mathcal{E}'/^h e$.

Remark 8.4.6.3. By the universal property of the enhanced functor category, (8.4.6.3) defines and is defined by the enhanced *Yoneda pairing*

(8.4.6.4)
$$\mathcal{E}^{\iota} \times^{h} \mathcal{E} \to \mathcal{S}ets^{h}$$
.

In words, (8.4.6.4) shows that for any enhanced objects e, e' in an enhanced category \mathcal{E} , the groupoids of enhanced morphisms from e to e' comes equipped with a canonical enhancement. The enhanced family of groupoids corresponding to (8.4.6.4) by the Grothendieck construction is $\operatorname{tw}^h(\mathcal{E}) \to \mathcal{E} \times^h \mathcal{E}^\iota$, where $\operatorname{tw}^h(\mathcal{E})$ is the enhanced twisted arrow category of Example 8.4.4.3.

Going back to the extended Yoneda embedding of Proposition 8.4.6.1, we note that as in Remark 2.4.2.2, we can express the enhanced left-adjoint $Y \circ b$ to $a : Cat^h /\!\!/_b{}^h \mathcal{E} \to Cat^h /\!\!/_*{}^h \mathcal{E}$ via the enhanced arrow category $ar^h(\mathcal{E})$ and

enhanced functors $\sigma, \tau : \operatorname{ar}^h(\mathcal{E})$ — namely, we have $Y \circ b \cong \sigma_{\triangleright} \circ \tau^*$. Explictly, for any enhanced fibrations $\mathcal{C}, \mathcal{C}' \to \mathcal{E}$, we have an equivalence

(8.4.6.5)
$$\operatorname{Fun}_{\mathcal{E}}^{\flat h}(\mathcal{E}\setminus^{h}\mathcal{C},\mathcal{C}')\cong\operatorname{Fun}_{\mathcal{E}}^{h}(\mathcal{C},\mathcal{C}'),$$

where $\mathcal{F}un_{\mathcal{E}}^{
abla h}$ has the same meaning as in (8.4.4.12). Let us show that as in Corollary 2.4.2.1, a dual procedure provides a right-adjoint.

Corollary 8.4.6.4. For any small enhanced category \mathcal{E} , the enhanced functor $a: Cat^h //_b ^h \mathcal{E} \to Cat^h //_\star ^h \mathcal{E}$ is right-reflexive.

Proof. As in Corollary 2.4.2.1, Lemma 8.4.5.1 shows that for any small enhanced category \mathcal{C} equipped with an enhanced functor $\mathcal{C} \to \mathcal{E}$, the enhanced category $\tau_{\triangleleft}\sigma^*\mathcal{C}$ exists since τ is an enhanced cofibration, and moreover, the functor $\tau_{\triangleleft}\sigma^*\mathcal{C} \to \mathcal{E}$ is an enhanced fibration. Moreover, for any other enhanced fibration $\mathcal{C}' \to \mathcal{E}$, a functor $\varphi: \mathcal{C}' \to \tau_{\triangleleft}\sigma^*\mathcal{C}$ over \mathcal{E} is cartesian over \mathcal{E} iff the adjoint functor $\varphi': \tau^*\mathcal{C}' \to \sigma^*\mathcal{C}$ becomes cartesian after restriction via $\nu: \mathcal{E}_{h\star}/^h\mathcal{E} \to \operatorname{ar}^h(\mathcal{E})$. By Corollary 8.3.3.6, isomorphism classes of functors $\varphi': \tau^*\mathcal{C}' \to \sigma^*\mathcal{C}$ correspond bijectively to isomorphism classes of functors $\varphi'': \tau^*\mathcal{C}' \to \mathcal{E} \setminus h \mathcal{C}' \to \mathcal{C}$ over \mathcal{E} , and since $\mathcal{C}' \to \mathcal{E}$ is an enhanced fibration, we have an adjoint pair of enhanced functors $\eta: \mathcal{C}' \to \mathcal{E} \setminus h \mathcal{C}'$, $\eta_{\dagger}: \mathcal{E} \setminus h \mathcal{C}' \to \mathcal{C}'$. Then φ' becomes cartesian over $\mathcal{E}_{h\star}/^h\mathcal{E}$ iff and only if the adjunction map $\varphi'' \to \varphi'' \circ \eta \circ \eta_{\dagger}$ is an isomorphism, so at the end of the day, sending $\varphi: \mathcal{C}' \to \tau_{\lhd}\sigma^*\mathcal{C}$ to the corresponding enhanced functor $\eta \circ \varphi'': \mathcal{C}' \to \mathcal{C}$ establises a bijection between the isomorphism classes of enhanced functors $\mathcal{C}' \to \tau_{\lhd}\sigma^*\mathcal{C}'$ cartesian over \mathcal{E} .

8.5. Limits and colimits.

8.5.1. Complete and cocomplete enhanced categories. Unfortunately, representability theorems of Subsection 8.3.1 and all their corollaries discussed in Section 8.3 only work for small enhanced categories. The theory of large enhanced categories is rather deficient, even more so than in the unenhanced setting, and it seems that to get a reasonable theory, one has to require the existence of some sort of limits or colimits. As a starting point, let us require them all.

Definition 8.5.1.1. An enhanced category \mathcal{E} is *complete* if it is a complete family over Pos⁺ in the sense of Definition 8.1.4.1, and *cocomplete* if the enhanced-opposite category \mathcal{E}^{ι} is complete.

We recall that by definition, \mathcal{E} is complete iff for any map $f: I \to I'$ in Pos⁺, the pullback functor $f^*: \mathcal{E}_{I'} \to \mathcal{E}_I$ has a right-adjoint functor f_* , and for any cartesian square (8.1.4.1) in Pos⁺ such that f is a cofibration, we have the base change isomorphism (8.1.4.2).

Lemma 8.5.1.2. Assume given an enhanced category \mathcal{E} with the canonical barinvariant extension $\mathcal{E}^{\sharp} \to \text{PoSets}$ of Proposition 8.2.3.7. Then \mathcal{E} is complete resp. cocomplete iff for any map $f: J' \to J$ in PoSets, the transition functor $f^*: \mathcal{E}_J^{\natural} \to \mathcal{E}_{J'}^{\natural}$ has a right-adjoint f_* resp. a left-adjoint $f_!$, and for any $j \in J$, with the induced maps $f/j: J'/j \to J/j$, $j \setminus f: j \setminus J' \to j \setminus J'$, the base change map $\sigma(j)^* \circ f_* \to (f/j)_* \circ \sigma(j)^*$ resp. $(j \setminus f)_! \circ \tau(j)^* \to \tau(j)^* \circ f_!$ is an isomorphism.

Proof. In the cocomplete case, recall that by definition, \mathcal{E}^{\natural} is the transpose-opposite fibration to $\iota^*\mathcal{E}^{\iota\natural}$, so it suffices to prove the claim for the complete enhanced category \mathcal{E}^{ι} . In the complete case, for the "if" part, note that since $\mathcal{E} \to \operatorname{Pos}^+$ is non-degenerate, it suffices to check that (8.1.4.2) is an isomorphism when $J'_0 = \operatorname{pt}$. In this case, it reduces to observing that for any cofibration $f: J' \to J$ in Pos^+ , and any element $j \in J$, the embedding $\varepsilon: J'_j \to J'/j$ is left-admissible, with some left-adjoint $\varepsilon^{\dagger}: J'/j \to J'_j$, and then since \mathcal{E} is reflexive, $\varepsilon^{\dagger}_* \cong \varepsilon^*$. For the "only if" part, assume given a map $f: J' \to J$ in PoSets, and consider the induced map $f \circ \xi: B(J') \to J$. Then since $\xi^*: \mathcal{E}^{\natural}_{J'} \to \mathcal{E}^{\natural}_{B(J')}$ is fully faithful by bar-invariance, it suffices to construct the adjoint $(f \circ \xi)_*$, and since \mathcal{E}^{\natural} is reflexive, it further suffices to construct τ_* for $\tau: B(J')/f \circ \xi J \to J$. This is a cofibration with fibers $B(J')/j \cong B(J'/j)$, and if we consider the corresponding cartesian square

$$(8.5.1.1) \qquad B^{\diamond}(J) \times_{L(J)} L(B(J')/J) \longrightarrow L(B(J')/J) \\ \downarrow^{\tau} \\ B^{\diamond}(J) \xrightarrow{\xi} L(J),$$

then $\mathcal{E}^{\dagger \diamond}$ is constant along the horizontal arrows by Lemma 3.2.8.4 and bar-invariance, while U(g) is a cofibration in Pos[±]. Then τ_* is induced by g_* , and the base change isomorphisms are provided by (8.1.4.2).

Definition 8.5.1.3. An enhanced functor $\gamma: \mathcal{E} \to \mathcal{E}'$ between complete enhanced categories is *enhanced-left-exact* if for any map $f: I \to I'$ in Pos⁺, the base change map $\gamma_{I'} \circ f_* \to f_* \circ \gamma_I$ is an isomorphism. An enhanced functor γ between cocomplete enhanced categories is *enhanced-right-exact* if γ^i is enhanced-left-exact.

Example 8.5.1.4. For any category \mathcal{E} , $K(\mathcal{E})$ is complete resp. cocomplete in the sense of Definition 8.5.1.1 iff \mathcal{E} is complete resp. cocomplete in the usual sense, and a functor $\gamma: \mathcal{E} \to \mathcal{E}'$ between complete resp. cocomplete categories is left resp. right-exact iff $K(\gamma)$ is enhanced-left-exact resp. enhanced-right-exact.

Example 8.5.1.5. Any enhanced functor $\gamma: \mathcal{E} \to \mathcal{E}'$ between complete enhanced categories that is left-reflexive in the enhanced sense is left-exact (the base change maps of Definition 8.5.1.3 are adjoint to the isomorphisms (2.3.2.2) for the left-adjoint enhanced functor $\gamma^{\dagger}: \mathcal{E}' \to \mathcal{E}$). Dually, a right-reflexive enhanced functor between cocomplete enhanced categories is right-exact.

Example 8.5.1.6. The enhanced category Cat^h of Proposition 8.3.6.1 is complete, and so is the full enhanced subcategory $Sets^h \subset Cat^h$. The embedding functor $Sets^h \to Cat^h$ is enhanced-left-exact.

Example 8.5.1.7. A right-admissible full enhanced subcategory $\mathcal{E}' \subset \mathcal{E}$ in a complete enhanced category \mathcal{E} is complete, and the adjoint enhanced functor $v^{\dagger}: \mathcal{E} \to \mathcal{E}'$ to the embedding $v: \mathcal{E}' \to \mathcal{E}$ is enhanced-left-exact (for any morphism $f: I \to I'$, the required right-adjoint is given by $v_{I'}^{\dagger} \circ f_*$). In the situation of Example 8.5.1.6, $\mathcal{S}ets^h \subset \mathcal{C}at^h$ is right-admissible, and the right-adjoint enhanced functor $\mathcal{C}at^h \to \mathcal{S}ets^h$ sends a small enhanced category $\mathcal{C} \in \mathsf{Cat}^h$ to its enhanced isomorphism groupoid $\mathcal{C}_{h\star}$ of (8.2.2.3).

Example 8.5.1.8. For any complete model category C, the enhanced localization $\mathcal{H}^W(C)$ of Lemma 8.2.4.1 is complete.

Proposition 8.5.1.9. For any enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, and any complete enhanced category \mathcal{E} , the pullback functor $\gamma^*: \mathcal{F}un^h(\mathcal{C}',\mathcal{E}) \to \mathcal{F}un^h(\mathcal{C},\mathcal{E})$ has a right-adjoint γ_* , and for any complete enhanced category \mathcal{E}' , enhanced functor $F: \mathcal{E} \to \mathcal{E}'$ that preseves limits, and functor $E: \mathcal{C}' \to \mathcal{E}$, the base change map $F \circ f_*(E) \to f_*(F \circ E)$ is an isomorphism. Moreover, for any semicartesian square

(8.5.1.2)
$$\begin{array}{ccc}
\mathcal{C}_1 & \xrightarrow{\nu} & \mathcal{C}_0 \\
\gamma_1 \downarrow & & \downarrow \gamma_0 \\
\mathcal{C}'_1 & \xrightarrow{\nu'} & \mathcal{C}'_0
\end{array}$$

of small enhanced categories and enhanced functors such that γ_0 , hence also γ_1 is an enhanced fibration, the base change map ${\nu'}^* \circ \gamma_{0*} \to \gamma_{1*} \circ \nu^*$ is an isomorphism as well.

Proof. If γ is enhanced right-reflexive, with adjoint enhanced functor γ_+ , then the adjoint $\gamma_*\cong\gamma_+^*$ is provided by Corollary 8.4.1.7, and all the claims are clear. By (8.4.1.5) and Corollary 8.4.2.11, we may then assume that γ is an enhanced fibration. If $\mathcal{C}=K(I^o)$, $\mathcal{C}'=K(I'^o)$ for some $I,I'\in \operatorname{Pos}^+$, so that $\gamma=K(f^o)$ for some cofibration $f:I\to I'$, all claims hold by definition. Next, assume that $\mathcal{C}'=K(I^o)$ but \mathcal{C} is arbitrary, so that γ is an I^o -coaugmentation. Then Proposition 8.3.3.4 applied to the augmentation $\mathcal{C}^\iota\to K(I)$ provides a fibration $g:J\to I$ in PoSets, and an I^o -coaugmented enhanced functor $\nu:K(J^o)\to\mathcal{C}$ such that the pullback enhanced functor $\nu^*:\mathcal{F}un^h(\mathcal{C},\mathcal{E})\to\mathcal{F}un^h(K(J^o),\mathcal{E})\cong J_h^o\mathcal{E}$ is the fully faithful embedding of Example 8.3.4.5. Then $\gamma_*=K(g^o)_*\circ \nu^*$ is right-adjoint to γ^* by Lemma 2.2.2.3, and all the claims for γ follow from the corresponding claims for $K(g^o)$.

Finally, assume that C' is arbitrary, again choose a universal object for C' provided by Proposition 8.3.3.4, with the corresponding enhanced functor $\nu: K(J) \to C'$ of (8.3.4.11), and consider the semicartesian square

(8.5.1.3)
$$\widetilde{C} \xrightarrow{\eta} C$$

$$\varphi \downarrow \qquad \qquad \downarrow \gamma$$

$$K(J) \xrightarrow{\nu} C'.$$

Then we already know all the claims for φ , and to prove them for γ , it suffices to check that $\varphi_* \circ \eta^*$ factors through the enhanced essential image of the full embedding ν^* . However, since the square (8.3.4.11) is cocartesian, this immediately follows from the base change isomorphisms for φ_* .

Corollary 8.5.1.10. For any complete enhanced category \mathcal{E} and small enhanced category \mathcal{C} , the enhanced functor category $\mathcal{C}^{\iota}\mathcal{E}$ is complete.

Corollary 8.5.1.11. Assume given a commutative diagram

(8.5.1.4)
$$\begin{array}{ccc}
\mathcal{C}'_1 & \xrightarrow{\gamma'} & \mathcal{C}'_0 & \xrightarrow{\pi'} & \mathcal{C}' \\
\nu_1 \downarrow & & \downarrow \nu_0 & & \downarrow \nu \\
\mathcal{C}_1 & \xrightarrow{\gamma} & \mathcal{C}_0 & \xrightarrow{\pi} & \mathcal{C}
\end{array}$$

of small enhanced categories and enhanced functors, such that both squares are semicartesian, and assume that π and $\pi \circ \gamma$ are enhanced fibrations, and γ is cartesian over C. Then for any complete enhanced category E, the base change map

$$(8.5.1.5) \gamma^* \circ \nu_{0*} \rightarrow \nu_{1*} \circ \gamma'^*$$

is an isomorphism.

Proof. Use the same argument as in Lemma 2.3.2.9, with Lemma 2.3.2.7 replaced by Lemma 8.4.2.17. \Box

Taking enhanced-opposite categories gives a dual version of Proposition 8.5.1.9 for cocomplete $\mathcal E$ and left-adjoint functors; we denote $\gamma_! = (\gamma_*^t)^t$. As in the unenhanced setting, if $\gamma: \mathcal C \to \operatorname{pt}^h$ is the projection to the point, we denote $\gamma_! = \operatorname{colim}_{\mathcal C}^h$ and $\gamma_* = \operatorname{lim}_{\mathcal C}^h$. For any $I \in \operatorname{Pos}^+$, we will write $\operatorname{colim}_I^h = \operatorname{colim}_{K(I)}^h$, $\operatorname{lim}_I^h = \operatorname{lim}_{K(I)}^h$. The simplest situation when this is non-trivial is colim_V^h resp. $\operatorname{lim}_{V^o}^h$,

Example 8.5.1.12. It immediately follows from semiexactness and properness that for any enhanced category \mathcal{E} , the functor $(V^{\iota}\mathcal{E})_{pt} \cong \mathcal{E}_{V} \to V^{o}\mathcal{E}_{pt}$ induced by (8.1.2.2) is an epivalence. Therefore for any commutative square $E:[1]^2 \to \mathcal{E}_{pt}$ in \mathcal{E}_{pt} , its restriction $E_{\bullet}: V^{o} \to \mathcal{E}_{pt}$ to $V^{o} \subset (V^{>})^{o} \cong [1]^{2}$ lifts to an enhanced functor $E^h: K(V^o) \to \mathcal{E}$, uniquely up to an isomorphism, and then if we denote by $p: V^o \to pt$ the projection, the map $p^*E(o) \to E$. lifts to an enhanced map $K(p)^*E^h(o) \to E^h$, where $E^h(o) : \operatorname{pt}^h \to \mathcal{E}$ is the enhanced object corresponding to $E(o) \in \mathcal{E}$. If \mathcal{E} is complete, we obtain an adjoint map $a: E^h(o) \to \lim_{h \to 0}^h E^h$. The square *E* is *homotopy cartesian* if *a* is an isomorphism. Note that this property only depends on E, not on the liftings, and moreover, if \mathcal{E} is complete, any functor $V^o \to \mathcal{E}_{pt}$ extends to a homotopy cartesian square $[1]^2 \to \mathcal{E}_{pt}$ (lift the functor to an enhanced functor $E^h_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}: K(V^o) \to \mathcal{E}$, and take $K(\varepsilon^o)_* E^h_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$, where $\varepsilon: V \to V^{>} \cong [1]^2$ is the embedding). The extension is unique up to an isomorphism (but the isomorphism is *not* unique). Dually, if \mathcal{E} is cocomplete, then a square *E* is homotopy cocartesian if $E^{\iota}:[1]^2\to\mathcal{E}_{\mathsf{pt}}^{\mathfrak{o}}$ is homotopy cartesian, and again, for a cocomplete \mathcal{E} , any functor $V \to \mathcal{E}_{pt}$ extends to a homotopy cocartesian square, uniquely up to a non-unique isomorphism.

Definition 8.5.1.13. A complete enhanced category \mathcal{E} is *cartesian-closed* if for any enhanced object $e \in \mathcal{E}_{pt}$, the enhanced functor $e \times - : \mathcal{E} \to \mathcal{E}$ is enhanced-right-reflexive.

Example 8.5.1.14. The categories $Sets^h$ and Cat^h are cartesian-closed, with the adjoint to $C \times^h$ – given by $Fun^h(C, -)$.

Lemma 8.5.1.15. For any enhanced object $e \in \mathcal{E}_{pt}$ in a complete cocomplete cartesian-closed enhanced category \mathcal{E} , the enhanced functor $e \times - : \mathcal{E} \to \mathcal{E}$ is enhanced-right-exact.

Proof. Example 8.5.1.5. □

8.5.2. Limits and colimits in Cat^h . The first example of a complete enhanced category is Cat^h of Example 8.5.1.6, with its right-admissible complete full enhanced subcategory $Sets^h \subset Cat^h$. Both are actually also cocomplete.

Proposition 8.5.2.1. The enhanced category Cat^h of Proposition 8.3.6.1 is cocomplete, and the full enhanced subcategory $Sets^h \subset Cat^h$ is enhanced left-admissible and cocomplete.

Proof. We have an enhanced full embedding $Cat^h \subset \mathcal{H}^W(\Delta^o\Delta^o \operatorname{Sets})$ provided by (8.3.6.2). Since the model category $\Delta^o\Delta^o \operatorname{Sets}$ is both complete and cocomplete, so is its enhanced localization, by Example 8.5.1.8 applied to $\Delta^o\Delta^o \operatorname{Sets}$ and the opposite model category $\Delta^o\Delta^o \operatorname{Sets}^o$. By Remark 7.4.1.2 and Lemma 7.3.4.12 (ii), $Cat^h(I) \subset h^W(I^o\Delta^o\Delta^o \operatorname{Sets})$ is left-admissible for any $I \in \operatorname{Pos}^+$, so by Lemma 2.3.2.8, $Cat^h \subset \mathcal{H}^W(\Delta^o\Delta^o \operatorname{Sets})$ is left-admissible as a category, with some functor $\lambda : \mathcal{H}^W(\Delta^o\Delta^o \operatorname{Sets}) \to Cat^h$ over Pos^+ left-adjoint to the embedding. Moreover, by Lemma 7.3.4.9 and (8.1.4.2), the embedding enhanced functor $Cat^h \to \mathcal{H}^W(\Delta^o\Delta^o \operatorname{Sets})$ is enhanced-left-exact. Then as in Example 8.5.1.5, λ is cartesian over Pos^+ , so that $Cat^h \subset \mathcal{H}^W(\Delta^o\Delta^o \operatorname{Sets})$ is left-admissible in the enhanced sense, and then it is cocomplete by (the dual version of) Example 8.5.1.7.

For the second claim, again, Δ^o Sets is complete and cocomplete, so that by (8.3.6.3), so is its enhanced localization $\mathcal{S}ets^h$. Then it suffices to check that $\mathcal{S}ets^h \cong \mathcal{H}^W(\Delta^o \operatorname{Sets})$ is enhanced left-admissible in $\mathcal{H}^W(\Delta^o \Delta^o \operatorname{Sets})$. This is again clear, since $h^W(I^o \Delta^o \operatorname{Sets}) \subset h^W(I^o \Delta^o \operatorname{Sets})$ is left-admissible for any I, and the embedding functor $\mathcal{H}^W(\Delta^o \operatorname{Sets}) \to \mathcal{H}^W(\Delta^o \Delta^o \operatorname{Sets})$ is enhanced-left-exact.

Example 8.5.2.2. By Corollary 8.5.1.10, the enhanced functor category $\mathcal{E}^{\iota} \mathcal{C}at^h$ is cocomplete for any small enhanced category \mathcal{E} . The embedding $a: \mathcal{E}^{\iota} \mathcal{C}at^h \cong \mathcal{C}at^h /\!\!/_{\flat}^h \mathcal{E} \to \mathcal{C}at^h /\!\!/_{\flat}^h \mathcal{E}$ of (8.4.4.1) is enhanced right-reflexive by Corollary 8.4.6.4. Moreover, the forgetful fibration $\mathcal{C}at^h /\!\!/_{\flat}^h \mathcal{E} \to \mathcal{C}at^h$ of (8.3.7.5) is actually given by γ_{\triangleright} , where $\gamma: \mathcal{E} \to \mathsf{pt}^h$ is the tautological projection, so as in Subsection 8.4.5, it is right-reflexive, with right-adjoint γ^* . Combining the

two observations, we see that the enhanced functor $\mathcal{E}^{\iota} \operatorname{Cat}^h \to \operatorname{Cat}^h$ that sends $X : \mathcal{E}^{\iota} \to \operatorname{Cat}^h$ to $\mathcal{E} X$ is enhanced right-reflexive, thus enhanced-right-exact by Example 8.5.1.5.

Definition 8.5.2.3. The *total localization functor* $\mathcal{H}^{\natural}: \mathcal{C}at^h \to \mathcal{S}ets^h$ is the enhanced functor left-adjoint to the embedding $\mathcal{S}ets^h \subset \mathcal{C}at^h$. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories is *h-invertible* resp. *h-trivial* if $\mathcal{H}^{\natural}(\gamma)$ is an equivalence resp. factors through pt^h, and a small enhanced category \mathcal{C} is *hyperconnected* if $\mathcal{C} \to \mathsf{pt}^h$ is *h-*invertible.

By adjunction, for any $\mathcal{C} \in \operatorname{Cat}^h$, its total localization $\mathcal{H}^{\natural}(\mathcal{C})$ comes equipped with a h-invertible enhanced functor $\lambda : \mathcal{C} \to \mathcal{H}^{\natural}(\mathcal{C})$, and then for any enhanced cataegory \mathcal{E} , it induces an enhanced functor

(8.5.2.1)
$$\lambda^* : \mathcal{F}un^h(\mathcal{H}^{\natural}(\mathcal{C}), \mathcal{E}) \to \mathcal{F}un^h(\mathcal{C}, \mathcal{E}).$$

For purely formal reasons — namely, $\mathcal{S}ets^h$ and $\mathcal{C}at^h$ are cartesian-closed, with internal Hom given by $\mathcal{F}un^h(-,-)$ — the functor (8.5.2.1) is an equivalence as soon as \mathcal{E} is an enhanced groupoid. In the general case, for the same purely formal reasons, it is an enhanced fully faithful embedding onto $\mathcal{F}un^h(\mathcal{C},\mathcal{E}_{h\star}) \subset \mathcal{F}un^h(\mathcal{C},\mathcal{E})$.

Example 8.5.2.4. In terms of the representing Segal spaces, \mathcal{H}^{\natural} is given by the homotopy colimit functor $R_!^h$ of (7.2.1.2). Thus by Lemma 7.2.2.3, if a small enhanced category \mathcal{C} has a universal object $c \in \mathcal{C}_{J^{\diamond}}^{\diamond}$ for some $J^{\diamond} \in \text{BiPos}^+$, and $J = U(J^{\diamond})$, with the adjunction map $a: J^{\diamond} \to R(J)$, then $\mathcal{H}^{\natural}(\mathcal{C})^{\diamond}$ is constant over a, and $\lambda(c) = a^*c'$ for a unique universal object $c' \in \mathcal{H}^{\natural}(\mathcal{C})^{\diamond}_{R(J)}$. In words, if J^{\diamond} represents \mathcal{C}^ι , then $R(U(J^{\diamond}))$ represents $\mathcal{H}^{\natural}(\mathcal{C})$. In particular, the enhanced functor $K(J^o) \to \mathcal{C}$ of (8.3.4.11) is h-invertible.

Example 8.5.2.5. For any anodyne map $f: J' \to J$ in Pos⁺, the enhanced functor $K(f): K(J') \to K(J)$ is h-invertible — again, this immediately follows from Lemma 7.2.2.3 and Lemma 7.1.1.10.

Example 8.5.2.6. Since total localization commutes with products, the product id $\times^h \gamma: \mathcal{E} \times^h \mathcal{C}' \to \mathcal{E} \times^h \mathcal{C}$ of the identity endofunctor of a small enhanced category \mathcal{E} and an h-invertible enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between small enhanced categories $\mathcal{C}, \mathcal{C}'$ is h-invertible. In particular, for any small enhanced \mathcal{C} , the projection $\mathcal{C} \times^h K([1]) \to \mathcal{C}$ is h-invertible. This immediately implies that any left or right-reflexive enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between small enhanced categories is h-invertible.

Example 8.5.2.7. The enhanced involution $\iota : \mathcal{C}at^h \to \mathcal{C}at^h$ of (8.3.6.6) is left and right-exact, and commutes with the total localization functor: we have $\mathcal{H}^{\natural}(\mathcal{C}) \cong \mathcal{H}^{\natural}(\mathcal{C}^{\iota})$ for any $\mathcal{C} \in \mathcal{C}at^h$.

We note that while the proof of Proposition 8.5.2.1 is almost tautological, it fully deserves to be called a proposition, not a lemma. Firstly, it is crucially important for many applications, and secondly, it really uses the equivalences (8.3.6.2), (8.3.6.3) in an essential way. This is the only place in the enhanced category theory where representability is used directly, not through the universal objects of Proposition 8.3.3.4. Both the existence and the properties of the total localization functor \mathcal{H}^{\natural} depend on the existence and properties of the model structure on Δ^o Sets. In particular, we have the following corollary of Lemma 6.3.2.3.

Lemma 8.5.2.8. Assume given a small enhanced category $\mathcal{E} \in \operatorname{Cat}^h_{\kappa}$, for a regular cardinal κ , and an enhanced functor $\gamma : \mathcal{E} \to \mathcal{C}$ to a hyperconnected small enhanced category \mathcal{C} . Then there exists a commutative square

(8.5.2.2)
$$\begin{array}{ccc}
\mathcal{E}_0 & \xrightarrow{\beta} & \mathcal{E}_1 \\
\eta \downarrow & & \downarrow \\
\mathcal{E} & \xrightarrow{\gamma} & \mathcal{C}
\end{array}$$

of enhanced categories and enhanced functors such that \mathcal{E}_0 , $\mathcal{E}_1 \in \mathsf{Cat}^h_{\kappa}$, η is h-invertible, and β is h-trivial.

Proof. The enhanced dual cone $C_h^\iota(\gamma)$ is [1]-augmented, and $C^\iota(\gamma)_1 \cong \mathcal{E}$ is κ -bounded. Thus by Proposition 8.3.3.4, we have a universal object for $C_h^\iota(\gamma)^\iota$ that defines a fibration $J \to [1]$ with $J \in \operatorname{Pos}^+$ and $J_1 \in \operatorname{Pos}^+_\kappa$, and a [1]-augmented enhanced functor $K(J) \to C_h^\iota(\gamma)$ h-invertible over both $0, 1 \in [1]$. Then since \mathcal{C} is hyperconnected, so is $K(J_0)$. Now take $\mathcal{E}_0 = K(J_1)$, and construct $\mathcal{E}_1 = K(J_1')$ by applying Lemma 6.3.2.3 to the transition map $J_1 \to J_0$ of the fibration $J \to [1]$. \square

Since $\mathcal{C}at^h$ is complete and cocomplete, for any small enhanced category \mathcal{C} , we have the functors $\lim_{\mathcal{C}}^h$, $\operatorname{colim}_{\mathcal{C}}^h: \mathcal{F}un^h(\mathcal{C},\mathcal{C}at^h) \to \mathcal{C}at^h$, and similarly for $\mathcal{S}ets^h$. To compute them explicitly, it helps to use the enhanced Grothendieck construction. Namely, assume given an enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between small enhanced categories, and assume given enhanced functors $E: \mathcal{C}^\iota \to \mathcal{C}at^h$, $E': \mathcal{C}'^\iota \to \mathcal{C}at^h$ with the corresponding enhanced fibrations $\mathcal{E} \to \mathcal{C}$, $\mathcal{E}' \to \mathcal{C}'$. By abuse of notation, let $\gamma_! \mathcal{E}', \gamma_* \mathcal{E}' \to \mathcal{C}$ be the enhanced fibrations corresponding

to $\gamma_!^{\iota}E'$, $\gamma_*^{\iota}E'$. Then the adjunction maps $\gamma^*\gamma_*E' \to E' \to \gamma^*\gamma_!E'$ correspond to enhanced functors $\gamma^*\gamma_*\mathcal{E}' \to \mathcal{E}' \to \gamma^*\gamma_!\mathcal{E}'$ cartesian over \mathcal{C}' , and together with (8.3.4.5), these produce enhanced functors

(8.5.2.3)
$$Fun_{\mathcal{C}}^{\natural h}(\gamma_{!}\mathcal{E}',\mathcal{E}) \to \mathcal{F}un_{\mathcal{C}'}^{\natural h}(\gamma^{*}\gamma_{!}\mathcal{E}',\gamma^{*}\mathcal{E}) \to \mathcal{F}un_{\mathcal{C}'}^{\natural h}(\mathcal{E}',\gamma^{*}\mathcal{E}) \\ \mathcal{F}un_{\mathcal{C}}^{\natural h}(\mathcal{E},\gamma_{*}\mathcal{E}') \to \mathcal{F}un_{\mathcal{C}'}^{\natural h}(\gamma^{*}\mathcal{E},\gamma^{*}\gamma_{*}\mathcal{E}') \to \mathcal{F}un_{\mathcal{C}'}^{\natural h}(\gamma^{*}\mathcal{E},\mathcal{E}').$$

Now, (8.4.5.1) immediately implies that for any small enhanced category \mathcal{C}'' , we have $\gamma_! \mathcal{E}' \times^h \mathcal{C}'' \cong \gamma_! (\mathcal{E}' \times^h \mathcal{C}'')$, and then (8.4.5.2) shows that both enhanced functors (8.5.2.3) are actually equivalences, so that the adjunction between $\gamma_!$, γ^* and γ_* also induces an adjunction on the level of enhanced categories of enhanced functors.

Lemma 8.5.2.9. Let C be a small enhanced category, and let $E: C^\iota \to \mathcal{C}at^h$ be an enhanced functor, with the enhanced fibration $\mathcal{E} = \mathcal{C}E \to \mathcal{C}$. Then $\lim_{C^\iota}^h E \cong \mathcal{S}ec^{\natural h}(\mathcal{C},\mathcal{E}) \subset \mathcal{S}ec^h(\mathcal{C},\mathcal{E})$ is the full enhanced subcategory spanned by cartesian sections, and $\mathrm{colim}_{C^\iota}^h E$ fits into an enhanced-cocartesian square

(8.5.2.4)
$$\begin{array}{ccc} \mathcal{E}_{h\flat} & \longrightarrow & \mathcal{E} \\ \downarrow & & \downarrow \\ \mathcal{H}^{\natural}(\mathcal{E}_{h\flat}) & \longrightarrow & \mathsf{colim}_{\mathcal{C}^{\iota}}^{h} E, \end{array}$$

where $\mathcal{E}_{h\flat} \to \mathcal{C}$ is the enhanced family of groupoids of (8.4.2.3), and \mathcal{H}^{\natural} is the total localization functor of Definition 8.5.2.3,

Proof. Since we have $\mathcal{E}'\cong \mathcal{F}un^h(\operatorname{pt}^h,\mathcal{E}')$ for any enhanced category \mathcal{E}' , in particular for $\mathcal{E}'=\lim_{\mathcal{C}^l}^h E$, the first claim immediately follows from the second equivalence in (8.5.2.3). For the second claim, if $\theta:\mathcal{C}^l\to\operatorname{pt}^h$ is the tautological projection, then the adjunction map $E\to\theta^*\theta_!E=\theta^*\operatorname{colim}_{\mathcal{C}^l}^h E$ provides an enhanced functor $\lambda:\mathcal{E}\to\operatorname{colim}_{\mathcal{C}^l}^h E$, functorially with respect to E. If E factors through $\operatorname{\mathcal{E}} et = \operatorname{\mathcal{E}} et = \operatorname{\mathcal{E$

 $\mathcal{E} \to \mathcal{E}'$ over \mathcal{C} is cartesian over \mathcal{C} iff it becomes cartesian after restricting to $\mathcal{E}_{hb} \subset \mathcal{E}$.

Remark 8.5.2.10. For small enhanced categories K(J), $J \in PoSets$, the square (8.5.2.4) is an upgraded version of the square (3.1.7.4) of Example 3.1.7.6.

Remark 8.5.2.11. Note that since the involution ι of Example 8.5.2.7 preserves all limits and colimits, there exists a version of Lemma 8.5.2.9 that uses a covariant version of the Grothendieck construction and encodes enhanced functor to $\mathcal{C}at^h$ by enhanced cofibrations rather than fibrations. Namely, for any small enhanced category \mathcal{C} and enhanced functor $E: \mathcal{C} \to \mathcal{C}at^h$, we have the corresponding enhanced cofibration $\mathcal{C}^{\perp}E \to \mathcal{C}$. Then by Lemma 8.5.2.9,

$$(8.5.2.5) \qquad \lim_{\mathcal{C}}^{h} E \cong (\lim_{\mathcal{C}}^{h} (\iota \circ E))^{\iota} \cong Sec^{\sharp h} (\mathcal{C}^{\iota}, (\mathcal{C}^{\perp} E)^{\iota})^{\iota} \cong Sec^{h}_{\sharp} (\mathcal{C}, \mathcal{C}^{\perp} E),$$

where Sec_{\natural}^{h} stands for the full enhanced subcategory in Sec^{h} spanned by cocartesian sections. For colimit, one can also write down an analogous covariant version of (8.5.2.4); we leave it to the reader.

Example 8.5.2.12. For any small enhanced category \mathcal{C} , the enhanced functor $a: \mathcal{C}^{\iota} \operatorname{Cat}^h \cong \operatorname{Cat}^h /\!/_{\flat}^h \mathcal{C} \to \operatorname{Cat}^h /\!/_{\star}^h \mathcal{C}$ has a left-adjoint $Y \circ b$ of Proposition 8.4.6.1, and for any enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ with small \mathcal{C} , we have the adjoint pair of enhanced functors γ^* , γ_{\triangleright} between $\operatorname{Cat}^h /\!/_{\star}^h \mathcal{C}'$ and $\operatorname{Cat}^h /\!/_{\star}^h \mathcal{C}$. Then a commutes with γ^* , and by adjunction, if we take $\mathcal{C}' = \operatorname{pt}^h$, we see that $\operatorname{colim}_{\mathcal{C}^l}^h \circ (Y \circ b): \operatorname{Cat}^h /\!/_{\star}^h \mathcal{C} \to \operatorname{Cat}^h$ is the forgetful functor (8.3.7.5). Explicitly, this means that for any small enhanced category \mathcal{E} and enhanced functor $\mathcal{E} \to \mathcal{C}$, we have $\mathcal{E} \cong \operatorname{colim}_{\mathcal{C}^l}^h \mathcal{C} \setminus^h \mathcal{E}$, where $\mathcal{C} \setminus^h \mathcal{E}: \mathcal{C}^l \to \operatorname{Cat}^h$ is understood as the enhanced functor corresponding to the enhanced fibration $\mathcal{C} \setminus^h \mathcal{E} \to \mathcal{C}$ by (8.4.4.5). In terms of (8.5.2.4), this can be seen by observing that $\eta: \mathcal{E}_{h\star} \to \mathcal{C} \setminus^h \mathcal{E}_{h\star} \cong (\mathcal{C} \setminus^h \mathcal{E})_{h\flat}$, being left-reflexive, is h-invertible.

Example 8.5.2.13. If an enhanced functor $\gamma: \mathcal{E}' = \mathcal{E}E \to \mathcal{E}$ is an enhanced family of groupoids corresponding to some $E: \mathcal{E}^\iota \to \mathcal{S}ets^h \subset \mathcal{C}at^h$, then the enhanced functor $\gamma^\iota_!: \mathcal{E'}^\iota \mathcal{S}ets^h \to \mathcal{E}^\iota \mathcal{S}ets^h$ is particularly simple. Indeed, since all enhanced morphisms in a family of groupoids are automatically cartesian, the embedding $a: \mathcal{E}^\iota \mathcal{S}ets^h \to \mathcal{C}at^h /\!/_{\star}^h \mathcal{E}$ is fully faithful, and similarly for $\mathcal{E'}$. Then since γ is an enhanced family of groupoids, the postcomposition functor $\gamma_{\triangleright}: \mathcal{C}at^h /\!/_{\star}^h \mathcal{E'} \to \mathcal{C}at^h /\!/_{\star}^h \mathcal{E}$ sends $\mathcal{E'}^\iota \mathcal{S}ets^h$ into $\mathcal{E}^\iota \mathcal{S}ets^h$, and we then simply have $\gamma^\iota_! \mathcal{C} \cong \gamma_{\triangleright} \mathcal{C}$, for any enhanced family of groupoids $\mathcal{C} \to \mathcal{E'}$. In particular, the

constant family with fiber pt^h corresponds to $\operatorname{id}: \mathcal{E}' \to \mathcal{E}'$, we have $\gamma_!^\iota(\operatorname{pt}^h) \cong E$, and then for any $\mathcal{C} \to \mathcal{E}'$, we have a semicartesian square

(8.5.2.6)
$$\begin{array}{ccc}
\mathcal{C} & \longrightarrow & \gamma^{\iota*} \gamma_!^{\iota} \mathcal{C} \\
\downarrow & & \downarrow \\
\mathcal{E}' & \longrightarrow & \gamma^{\iota*} \gamma_!^{\iota} \mathcal{E}',
\end{array}$$

where the horizontal arrows represent adjunction maps. For any enhanced object $e \in \mathcal{E}'_{pt}$, the enhanced family of groupoids $\sigma(e) : \mathcal{E}'/^h e \to \mathcal{E}'$ corresponds to $Y(\mathcal{E})(e)$, and then $\gamma_!^t Y(\mathcal{E}')(e) \cong Y(\mathcal{E})(\gamma(e))$ since $\mathcal{E}'/^h e \cong \mathcal{E}/^h \gamma(e)$, so that $\gamma_!^t Y(\mathcal{E}') \cong \gamma^{\iota *} Y(\mathcal{E})$. Moreover, we have $\operatorname{pt}^h \cong \operatorname{colim}_{\mathcal{E}'}^h Y(\mathcal{E}')$ by Example 8.5.2.12, so that

$$(8.5.2.7) E \cong \gamma_!^t \mathsf{pt}^h \cong \mathsf{colim}_{\mathcal{E}'}^h \gamma_!^t \mathsf{Y}(\mathcal{E}') \cong \mathsf{colim}_{\mathcal{E}'}^h \gamma^{t*} \mathsf{Y}(\mathcal{E}).$$

Thus just as in the usual category theory, every enhanced functor $\mathcal{E}^{\iota} \to \mathcal{S}ets^h$ is a colimit of representable functors.

The simplest examples of limits and colimits in Cat^h are given by the homotopy cocartesian and cocartesian squares of Example 8.5.1.12, and these actually reduce to (enhanced-)semicartesian and enhanced-semicocartesian squares of Subsection 8.3.4. Namely, by Example 2.3.3.4, a commutative square of small enhanced categories C_{00} , C_{01} , C_{10} , C_{11} and enhanced functors between them gives a fibration $C \to \operatorname{Pos}^+ \times [1]^2$, thus an object in the category $\operatorname{Cat}^h([1]^2|[1]^2)$. We have $[1]^2 \cong V^> \cong V^{o<}$, this gives embeddings $\lambda: V^o \to [1]^2$, $\rho: V \to [1]^2$, and Example 2.3.3.3 provides comparison functors $r: C_{11} \times V \to \rho^* C$ resp. $l: \lambda^* C \to C_{00} \times V^o$ cartesian over V resp. V^o . These define maps in $\operatorname{Cat}^h(V|V)$ resp. $\operatorname{Cat}^h(V^o|V^o)$. However, since $\dim V = \dim V^o = 1$, we can identify $\operatorname{Cat}^h(V|V)$ resp. $\operatorname{Cat}^h(V^o|V^o)$ with $\operatorname{Cat}^h(V)$ resp. $\operatorname{Cat}^h(V^o)$ by Corollary 8.3.5.3, so l resp. l actually give maps in $\operatorname{Cat}^h(V)$ resp. $\operatorname{Cat}^h(V^o)$. Then if we let $C_*: K([1]^2)^l \to \operatorname{Cat}^h$ be the enhanced functor corresponding to C by (8.4.4.5), we have natural comparison functors

(8.5.2.8)
$$\operatorname{colim}_{V}^{h} \lambda^{o*} \mathcal{C}_{\bullet} \to \mathcal{C}_{00}, \qquad \mathcal{C}_{11} \to \lim_{V^{o}}^{h} \rho^{o*} \mathcal{C}^{\bullet}$$

adjoint to the maps l resp. r.

Lemma 8.5.2.14. A commutative square $C \to Pos^+ \times [1]^2$ of small enhanced categories and enhanced functors is enhanced-semicocartesian resp. semicartesian if and only if the first resp. second of the comparison functors (8.5.2.8) is an equivalence.

Limits and Kan extensions. Informally, Proposition 8.5.1.9 says that enhanced functors to a complete enhanced category admit right Kan extensions that satisfy base change. To make this into a formal statement, we need to define those Kan extensions. Fix an enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, with the enhanced cylinder $C_h(\gamma)$ and the dual enhanced cylinder $C_h^{\iota}(\gamma)$. For any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ to some enhanced category \mathcal{E} , define a relative cone resp. relative dual cone for the functor E as functor $E_{>}: C_h(\gamma) \to \mathcal{E}$ resp. $E_{<}: C_h^{\iota}(\gamma) \to \mathcal{E}$ equipped with an isomorphism $s^*E_{>}\cong E$ resp. $t^*E_{<}\cong E$. If \mathcal{E} is small, then by (8.4.1.13), relative cones resp. relative dual cones form an enhanced category $Cone(E, \gamma) = E \setminus_{\gamma^*}^h \mathcal{F}un(\mathcal{C}', \mathcal{E})$ resp. $Cone^{\iota}(E,\gamma) = \mathcal{F}un(\mathcal{C}',\mathcal{E})/_{\gamma^*}^h E$, where E is understood as an enhanced object in $\mathcal{F}un(\mathcal{C},\mathcal{E})$. We say that a relative cone resp. a relative dual cone is universal if it is the initial resp. terminal enhanced object in the corresponding enhanced category. We note that since semicartesian products preserve fully faithful embedding, a universal relative cone $E_{>}$ that factors through a full enhanced subcategory $\mathcal{E}' \subset \mathcal{E}$ is also universal as a relative cone for a functor to \mathcal{E}' , and similarly for a universal relative dual cone. If the target enhanced category \mathcal{E} is not small, we say that a relative cone resp. dual cone is *universal* if it is universal as a relative cone resp. relative dual cone for functors to any small full enhanced subcategory $\mathcal{E}' \subset \mathcal{E}$ through which it factors.

Definition 8.5.3.1. For any enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, an enhanced functor $E: \mathcal{C} \to \mathcal{E}$ to some enhanced category \mathcal{E} admits a left resp. right enhanced Kan extension with respect to γ if it admits a universal relatie cone resp. relative dual cone. If this happens, then an enhanced functor $F: \mathcal{E} \to \mathcal{E}'$ preserves the Kan extension if it sends the universal relative cone resp. relative dual cone.

If an enhanced functor $E: \mathcal{C} \to \mathcal{E}$ admits a right Kan extension with respect to some enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ in the sense of Definition 8.5.3.1, then this Kan extension is defined as $\gamma_*E = s^*E_<: \mathcal{C}' \to \mathcal{E}$, where $E_<$ is the universal relative dual cone, and it comes equipped with an enhanced morphism $a: \gamma^*\gamma_*E \to E$. Dually, if E admits a left Kan extension, then this extension $\gamma_!E = t^*E_>: \mathcal{C}' \to \mathcal{E}$ comes equipped with an enhanced morphism $a: E \to \gamma^*E\gamma_!E$. If $\mathcal{C}' = \operatorname{pt}^h$, so that $\gamma: \mathcal{C} \to \operatorname{pt}^h$ is the tautological projection, then $C_h(\gamma) \cong \mathcal{C}^{h>}$, $C_h^\iota(\gamma) \cong \mathcal{C}^{h<}$, relative cones resp. dual cones are called simply cones resp. dual cones, we write $Cone(E) = Cone(E, \gamma)$, $Cone^\iota(E) = Cone^\iota(E, \gamma)$, and $\gamma_!E = \operatorname{colim}_{\mathcal{C}}^h E$, $\gamma_*E = \operatorname{lim}_{\mathcal{C}}^h E$ are called the *enhanced colimit* resp. *enhanced limit* of the enhanced functor E.

Example 8.5.3.2. For any functor $\gamma: I \to I'$ between essentially small categories, a functor $E: I \to \mathcal{E}$ to a category \mathcal{E} admits a left resp. right Kan extension with respect to γ iff the enhanced functor K(E) admits a left resp. right Kan extension with respect to $K(\gamma)$, and $K(\gamma)_!K(E) \cong K(\gamma_!E)$ resp. $K(\gamma)_*K(E) \cong K(f_*E)$. A functor $F: \mathcal{E} \to \mathcal{E}'$ preserves these Kan extensions iff so does K(F).

Example 8.5.3.3. The embedding $K(Pos^+) \rightarrow Cat^h$ preserves any of the standard cocartesian squares (8.2.4.13) of Lemma 8.2.4.8 (to see this, combine Lemma 8.2.4.8, Lemma 8.3.4.4 and Lemma 8.5.2.14).

Lemma 8.5.3.4. Assume given enhanced functors γ ; $\mathcal{C} \to \mathcal{C}'$, $\gamma' : \mathcal{C}' \to \mathcal{C}''$ between small enhanced categories, and an enhanced functor $E : \mathcal{C} \to \mathcal{E}$ that admits a right Kan extension $\gamma_*\mathcal{E}$ with respect to γ . Then γ_*E admits a right Kan extension with respect to γ' iff E admits a right Kan extension with respect to $\gamma'' = \gamma' \circ \gamma$, and if this happens, we have $\gamma'_*\gamma_*E \cong \gamma''_*E$.

Proof. By definition, it suffices to consider the case when \mathcal{E} is small. Then we have a semicartesian square

$$\mathcal{F}un^{h}(\mathcal{C}'',\mathcal{E})/_{\gamma'^{*}}^{h} \mathcal{F}un^{h}(\mathcal{C}',\mathcal{E})/_{\gamma^{*}}^{h} E \longrightarrow \mathcal{F}un^{h}(\mathcal{C}',\mathcal{E})/_{\gamma^{*}}^{h} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}un^{h}(\mathcal{C}'',\mathcal{E})/_{\gamma'^{*}}^{h} \mathcal{F}un^{h}(\mathcal{C}',\mathcal{E}) \longrightarrow \mathcal{F}un^{h}(\mathcal{C}',\mathcal{E})$$

induced by (4.1.3.1) for n=2, l=1, and since γ_*E exists, $\gamma'_*(\gamma_*E)$ exists iff $\mathcal{F}un^h(\mathcal{C}'',\mathcal{E})/^h_{\gamma'^*}\mathcal{F}un^h(\mathcal{C}',\mathcal{E})/^h_{\gamma^*}E$ has a terminal enhanced object. But then the left-reflexive map $s_+:[2]\to[1]$, $0\mapsto 0$, $1,2\mapsto 1$ provides a left-admissible fully faithful embedding

$$\mathcal{F}un(\mathcal{C}'',\mathcal{E})/^h_{\gamma''^*}E \to \mathcal{F}un^h(\mathcal{C}'',\mathcal{E})/^h_{\gamma'^*}\,\mathcal{F}un^h(\mathcal{C}',\mathcal{E})/^h_{\gamma^*}E,$$

so this happens iff $\gamma_*''E$ exists, and then $\gamma_*''E \cong \gamma_*'\gamma_*E$ by uniqueness.

Lemma 8.5.3.5. Assume given an enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, and an enhanced functor $E: \mathcal{C} \to \mathcal{E}$ that admits a right Kan extension γ_*E , with the corresponding map $a: f^*f_*E \to E$. Then for any functor $E': \mathcal{C}' \to \mathcal{E}$ equipped with a map $f: \gamma^*E' \to E$, there exists a unique map $f': E' \to \gamma_*E$ such that $f = a \circ \gamma^*(f)$.

Proof. As in Lemma 8.5.3.4, it suffices to consider the case when \mathcal{E} is small. Then by the definition of enhanced comma-fibers, we have an epivalence

(8.5.3.1)
$$\operatorname{Cone}(E,\gamma)_{\mathsf{pt}} = (\operatorname{\mathcal{F}un}^h(\mathcal{C}',\mathcal{E})/_{\gamma^*}^h E)_{\mathsf{pt}} \to \operatorname{Fun}^h(\mathcal{C}',\mathcal{E})/_{\gamma^*} E,$$

and if its source has a terminal object, then so does its target.

Both Lemma 8.5.3.4 and Lemma 8.5.3.5 have obvious dual version for left Kan extensions obtained by taking the enhanced opposite categories; we leave the precise formulations to the reader. Note that the universal property of Lemma 8.5.3.5 does *not* insure that an enhaned functor is the right Kan extension f_*E . Firstly, (8.5.3.1) is only an epivalence, so even if its target has a terminal object, this need not hold for its source; secondly, even if the terminal object lifts to the source, it need not be enhanced-terminal (see Example 8.2.2.15). However, if we do know that the right Kan extension f_*E exists, Lemma 8.5.3.5 completely characterizes it. Moreover, it is functorial: if Kan extensions γ_*E , γ_*E' exist for two enhanced functors $E, E' : \mathcal{C} \to \mathcal{E}$, then an enhanced map $f : \mathcal{E} \to \mathcal{E}'$ gives rise to a unique enhanced map $\gamma_*(f) : \gamma_*E \to \gamma_*E'$. There is even more functoriality if f_*E exists for all E.

Lemma 8.5.3.6. For any enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories $\mathcal{C}, \mathcal{C}'$, and any enhanced category \mathcal{E} , the following conditions are equivalent.

- (i) The pullback enhanced functor $\gamma^* : \mathcal{F}un^h(\mathcal{C}', \mathcal{E}) \to \mathcal{F}un^h(\mathcal{C}, \mathcal{E})$ admits a left resp. right-adjoint enhanced functor $\gamma_!$ resp. γ_* .
- (ii) Any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ admits a left resp. right Kan extension with respect to γ .

Proof. The two statements are equivalent by passing to the enhanced-opposite categories, so we only consider the right Kan extensions and right-adjoints. If \mathcal{E} is small, the claim immediately follows from Corollary 8.4.3.4. In the general case, note that f_*E is well-defined for any $E: \mathcal{C} \to \mathcal{E}$ under either

of the assumptions (i), (ii), and say that a full enhanced subcategory $\mathcal{E}' \subset \mathcal{E}$ is γ -closed if for any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ that factors through \mathcal{E}' , so does $f_*E: \mathcal{C}' \to \mathcal{E}'$. Then for any small enhanced full subcategory $\mathcal{E}' \subset \mathcal{E}$, the smallest γ -closed enhanced full subcategory containing \mathcal{E} is still small. Therefore \mathcal{E} is covered by γ -closed small enhanced full subcategories $\mathcal{E}' \subset \mathcal{E}$, and since \mathcal{C} , \mathcal{C}' are small, any enhanced functor \mathcal{C} , $\mathcal{C}' \to \mathcal{E}$ factors through such a \mathcal{E}' . Then (i) for \mathcal{E} implies (i) for each \mathcal{E}' , and this yields (ii). Conversely, (ii) implies (i) for any γ -closed small $\mathcal{E}' \subset \mathcal{E}$, and this implies (i) for \mathcal{E} by the uniqueness of adjoints.

By virtue of Lemma 8.5.3.6, Proposition 8.5.1.9 indeed says that any enhanced functor to a complete resp. cocomplete enhanced category \mathcal{E} admits a right resp. left Kan extension, and our notation is consistent. Moreover, these Kan extensions are preserved by any enhanced-left-exact resp. enhanced-right-exact enhanced functor $F: \mathcal{E} \to \mathcal{E}'$. In particular, $Sets^h$ is complete and cocomplete, and by Corollary 8.5.1.10, so is the functor category $\mathcal{E}^\iota Sets^h$ for any small enhanced category \mathcal{E} .

Definition 8.5.3.7. For any enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories $\mathcal{C}, \mathcal{C}'$, and an enhanced functor $E: \mathcal{C} \to \mathcal{E}$ to some enhanced category \mathcal{E} that admits a right Kan extension γ_*E , the Kan extension is *universal* if for any small full enhanced subcategory $\mathcal{E}_0 \subset \mathcal{E}$ such that γ_*E factors through \mathcal{E}_0 , it is preserved by the Yoneda embedding $Y(\mathcal{E}_0)$ of (8.4.6.3).

Lemma 8.5.3.8. All enhanced limits are universal in the sense of Definition 8.5.3.7.

Proof. For any small enhanced \mathcal{C} , \mathcal{E} and an enhanced functor $E:\mathcal{C}\to\mathcal{E}$, we can compute $\lim_{\mathcal{C}}^h(Y(\mathcal{E})\circ E)$ by Lemma 8.5.2.9, and this shows that the corresponding enhanced family of groupoids over \mathcal{E} is exactly the enhanced cone category Cone(E). If $\lim_{\mathcal{C}}^h E$ exists, then by definition, this category has a terminal enhanced object, and then $\lim_{\mathcal{C}}^h(Y(\mathcal{E})\circ E)$ lies in the image of $Y(\mathcal{E})$ by Lemma 8.4.6.2.

Corollary 8.5.3.9. Assume given an enhaced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, and an enhanced functor $E: \mathcal{C} \to \mathcal{E}$ to some enhanced category \mathcal{E} . Moreover, assume that for any enhanced object $c \in \mathcal{C}'_{pt}$, with the corresponding comma-fiber $c \setminus_{\gamma}^h \mathcal{C}$ and the projection $\tau(c)$ of (8.4.1.6), $\lim_{c \setminus_{\gamma}^h \mathcal{C}} \tau(c)^* E$ exists. Then E admits a universal right Kan extension $\gamma_* E$, and we have a base change isomorphism

(8.5.3.2)
$$\gamma_* E(c) \cong \lim_{c \setminus h_{\mathcal{C}}}^h \tau(c)^* E$$

for any $c \in C'_{pt}$.

Proof. For any small full enhanced subcategory $\mathcal{E}_0 \subset \mathcal{E}$ that contains $\gamma(c)$ for any $c \in \mathcal{C}_{pt}$ and $\lim_{c \setminus h\mathcal{C}}^h \tau(c)^* E$ for any $c \in \mathcal{C}'_{pt}$, with the Yoneda embedding $Y(\mathcal{E}_0) : \mathcal{E}_0 \to \mathcal{E}_0^t \mathcal{E}_0^t \mathcal{E}_0^h$, the Kan extension $\gamma_*(Y(\mathcal{E}_0) \circ E)$ satisfies (8.5.3.2) by Proposition 8.5.1.9, so that the corresponding universal relative cone factors through $\mathcal{E}_0 \subset \mathcal{E}_0^t \mathcal{E}_0^t \mathcal{E}_0^t$ by Lemma 8.5.3.8.

Remark 8.5.3.10. The converse to Corollary 8.5.3.9 is wrong — already in the unenhanced setting, there are exotic functors E such that the Kan extension γ_*E exists, but some of the limits in the right-hand side of (8.5.3.2) do not. For example, take the discrete category $\mathcal{E} = \{0,1\}$. Then $\text{Fun}(I,\mathcal{E}) \cong \mathcal{E}$ for any connected small category I, so for any functor $\gamma:I'\to I$ between connected small categories and any $E:I'\to E$, γ_*E trivially exists, but if a comma-fiber $i\setminus_{\gamma}I'$ is empty, $\lim_{i\setminus I'}\sigma(i)^*E$ does not. Such Kan extensions of course cannot be universal.

Corollary 8.5.3.11. An enhanced category \mathcal{E} is complete resp. cocomplete if and only if for any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ from a small enhanced cateogory \mathcal{C} , there exists $\lim_{\mathcal{C}}^h E$ resp. $\operatorname{colim}_{\mathcal{C}}^h E$.

Proof. The "only if" part is Proposition 8.5.1.9. Conversely, to prove that \mathcal{E} or \mathcal{E}^{ι} is complete, it suffices to check the condition of Lemma 8.5.1.2, and by virtue of Lemma 8.5.3.6, all these conditions reduce to checking something for enhanced functors to \mathcal{E} that factor through a small full enhanced subcategory $\mathcal{E}_0 \subset \mathcal{E}$. Then by Lemma 8.5.3.8, everything can be checked after composing our enhanced functors with the Yoneda embedding $Y(\mathcal{E}_0)$, and the category $\mathcal{E}_0^{\iota} \mathcal{S}ets^h$ is complete resp. cocomplete by Corollary 8.5.1.10.

Example 8.5.3.12. Assume given small enhanced categories C_0 , C_1 , and an enhanced functor $X: C_0 \times^h C_1 \to \mathcal{E}$ to some complete cocomplete enhanced category \mathcal{E} . By abuse of notation, we will denote $\mathrm{colim}_{C_0}^h X = \pi_{0!} X: C_1 \to \mathcal{E}$, $\mathrm{lim}_{C_1}^h X = \pi_{1*} X: C_0 \to \mathcal{E}$, where $\pi_l: C_0 \times^h C_1 \to C_l$, l=0,1 are the projections. By the universal properties of limits and colimits, we then have a natural map $\mathrm{colim}_{C_0}^h \mathrm{lim}_{C_1}^h X \to \mathrm{lim}_{C_1}^h \mathrm{colim}_{C_0}^h X$ that may or may not be an isomorphism. To check whether it is, it is useful to observe that if we let $Z = \mathrm{colim}_{C_0}^h X$, $Y = \mathrm{lim}_{C_1}^h X$, then the map $\mathrm{colim}_{C_0}^h Y \to \mathrm{lim}_{C_1}^h Z$ factors as

$$(8.5.3.3) \qquad \operatorname{colim}_{\mathcal{C}_0}^h Y \xrightarrow{\alpha} \operatorname{colim}_{\mathcal{F}un^h(\mathcal{C}_1,\mathcal{C}_0)}^h Y' \xrightarrow{\beta} \operatorname{lim}_{\mathcal{C}_1}^h Z,$$

where α is induced by $\gamma^*: \mathcal{C}_0 \to \mathcal{F}un^h(\mathcal{C}_1, \mathcal{C}_0)$, with $\gamma: \mathcal{C}_1 \to \operatorname{pt}^h$ being the tautological projection, and we denote $Y' = \lim_{\mathcal{C}_1}^h (\operatorname{ev} \times \operatorname{id})^* X$, where $\operatorname{ev}: \mathcal{C}_1 \times^h \mathcal{F}un^h(\mathcal{C}_1, \mathcal{C}_0) \to \mathcal{C}_0$ is the evaluation pairing of (8.2.4.5).

If $\mathcal{E} = \mathcal{S}ets^h$, then both α and β in (8.5.3.3) admit a convenient description in terms of the Grothendieck construction. Namely, let $\mathcal{Z} = \mathcal{C}_1^{\perp}Z \to \mathcal{C}_1$, $\mathcal{X} = (\mathcal{C}_0 \times^h \mathcal{C}_1)^{\perp}X \to \mathcal{C}_0 \times^h \mathcal{C}_1$ be the cofibrations corresponding to Z and X. Then the adjunction map $X \to \pi_0^*Z$ induces an enhanced functor $\pi: \mathcal{X} \to \mathcal{Z}$ over \mathcal{C}_1 , and by Example 8.4.2.18, π is an enhanced cofibration. Moreover, by Example 8.5.2.13, we have $\pi_! \operatorname{pt}^h \cong \operatorname{pt}^h$, so that π has hyperconnected fibers. Then if we denote $\mathcal{Y}' = \mathcal{F}un^h(\mathcal{C}_1,\mathcal{C}_0)^{\perp}Y'$, Lemma 8.5.2.9 provides equivalences $\mathcal{Y}' \cong \mathcal{S}ec^h(\mathcal{C}_1,\mathcal{X})$, $\lim_{\mathcal{C}_1}^h Z \cong \mathcal{S}ec^{\natural h}(\mathcal{C}_1,\mathcal{Z})$, and β in (8.5.3.3) is the total localization of $\mathcal{S}ec^h(\mathcal{C}_1,\pi)$ (where $\mathcal{S}ec^h(\mathcal{C}_1,\mathcal{Z}) \cong \mathcal{S}ec^{\natural h}(\mathcal{C}_1,\mathcal{Z})$ since the fibers of the cofibration $\mathcal{Z} \to \mathcal{C}_1$ are enhanced groupoids). On the other hand, if we let $\mathcal{Y} = \mathcal{C}_0^{\perp}Y$, then $\mathcal{Y} \cong \mathcal{S}ec^{\natural h}(\mathcal{C}_1,\mathcal{X})$, and α in (8.5.3.3) is the total localization of the embedding $\mathcal{S}ec^{\natural h}(\mathcal{C}_1,\mathcal{X}) \to \mathcal{S}ec^h(\mathcal{C}_1,\mathcal{X})$.

8.5.4. Kan extensions and functoriality. By passing to the enhanced-opposite categories, Corollary 8.5.3.9 has a dual version for left Kan extensions: we say that a left Kan extension $\gamma_! E$ is universal if so is $(\gamma_! E)^\iota = \gamma_*^\iota E^\iota$, and then for an enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, and any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ such that $\mathrm{colim}_{\mathcal{C}/h_{\mathcal{C}}}^h \sigma(c)^* E$ exists for any $c \in \mathcal{C}'_{\mathsf{pt}}$, a universal left Kan extension $\gamma_! E$ exists, and we have

$$(8.5.4.1) \gamma_! E(c) \cong \operatorname{colim}_{\mathcal{C}/h_c}^h \sigma(c)^* E, c \in \mathcal{C}'_{\operatorname{pt}}.$$

This is the enhanced counterpart of (2.2.5.2). In a nutshell, Corollary 8.5.3.9 and its dual show that if we restrict our attention to universal Kan extensions, then they inherit all the properties of the adjoint functors of Proposition 8.5.1.9. In particular, we have the base change isomorphisms of Corollary 8.5.1.11 and its dual — these follow immediately from (8.5.3.2) and (8.5.4.1). Another corollary is that if $\gamma:\mathcal{C}\to\mathcal{C}'$ is fully faithful, then for any $E:\mathcal{C}\to\mathcal{E}$ that admits a universal left resp. right Kan extension, the adjunction map $E\to\gamma^*\gamma_!E$ resp. $\gamma^*\gamma_*E\to E$ is an isomorphism. Thus for a fully faithful γ , Lemma 8.5.3.5 provides a factorization

$$(8.5.4.2) \mathcal{C} \xrightarrow{\gamma} \mathcal{C}' \xrightarrow{E'} \mathcal{E}$$

of the enhanced functor E with $E' = \gamma_* E$, and for any other factorization (8.5.4.2), there is a unique map $E' \to \gamma_* E$ that makes the diagram commute. For the left Kan extensions, the claim is dual: we have a factorization (8.5.4.2) with

 $E' = \gamma_! E$, and a unique map $\gamma_! E \to E'$ for any other such factorization. This is an enhanced version of Example 2.2.5.11.

As an application of the factorizations (8.5.4.2), we can define Kan extensions along enhanced functors $\gamma:\mathcal{C}\to\mathcal{C}'$ whose target is not small. This uses the filtered 2-colimits of Lemma 8.2.2.19. Assume given an enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ such that \mathcal{C} is small, and some enhanced functor $E: \mathcal{C} \to \mathcal{E}$. Say that *E admid a right Kan extension* with respect to γ if for any small full enhanced subcategory $C'_0 \subset C$ such that γ factors through C'_0 , E admits a universal right Kan extension with respect to the corresponding functor $\gamma_0: \mathcal{C} \to \mathcal{C}_0'$. Then in such a situation, for any two such small full enhanced subcategories $\mathcal{C}_0' \subset \mathcal{C}_1' \subset \mathcal{C}'$, $\gamma_{0*}E$ admits a right Kan extension with respect to the fully faithful embedding functor $\nu: \mathcal{C}'_0 \to \mathcal{C}'_1$ by Lemma 8.5.3.4, we have $\nu_* \gamma_{0*} E \cong \gamma_{1*} E$, and since $\gamma_{l*}E$, l=0,1 are universal, so is $\nu_*\gamma_{0*}$. In particular, since ν is fully faithful we have the adjunction isomorphism $\nu^* \gamma_{1*} E \cong \gamma_{0*} E$. Now as in Example 5.1.3.13, we can represent $\mathcal{C}' \cong \operatorname{colim}_I^2 \mathcal{C}'$, where *I* is formed by all small full enhanced subcategories in C' through which γ factors, and then for any $i \in I$, we have an enhanced functor $\gamma_{i*}E : \mathcal{C}'_i \to \mathcal{E}$, and for any map $i \to i'$ in I, we have the adjunction isomorphism $\nu^* \gamma_{i'} E \cong \gamma_{i*} E$. Taken together, these define a functor $\mathcal{C}' \to E$ that inverts maps cocartesian over I, thus descends to an enhanced functor $\gamma_*E:\mathcal{C}'\to\mathcal{E}$. This is our right Kan extension. Note that with this definition, Corollary 8.5.3.9 still holds (and all the enhanced comma-fibers in the right-hand side of (8.5.3.2) are small). If γ is fully faithful, we still have a universal factorization (8.5.4.2). Passing to the enhanced-opposite categories, we obtain the dual story for left Kan extensions including (8.5.4.1).

Example 8.5.4.1. When computing Kan extensions along an enhanced functor $\gamma:\mathcal{C}\to\mathcal{C}'$ whose target is not small, one has to be careful: technically speaking, to define the comma-fibers in the right-hand side of (8.5.3.2) or (8.5.4.1), we have to factor γ through a small enhanced full subcategory \mathcal{C}'_0 that contains the enhanced object c. Enlarging \mathcal{C}'_0 changes the comma-fibers by a canonical equivalence over \mathcal{C} , and since all small full enhanced subcategories containg $\gamma(\mathcal{C})\subset\mathcal{C}'$ and c form a filtered category, $\mathcal{C}/_{\gamma}^h c$ is well-defined as an object in $\operatorname{Cat}^h/_{\flat}^h \mathcal{C}$, and similarly for $c\setminus_{\gamma}^h \mathcal{C}$. To see that the correspondence $c\mapsto \langle \mathcal{C}/_{\gamma}^h c, \sigma(c)\rangle$ is functorial with respect to c, one can look at the universal situation: take the Yoneda embedding $Y(\mathcal{C}):\mathcal{C}\to\mathcal{C}^\iota\operatorname{Sets}^h$ of (8.4.6.3), and consider the Kan extension $\gamma_! Y(\mathcal{C}):\mathcal{C}'\to \mathcal{C}^\iota\operatorname{Sets}^h$ that exists since its target is cocomplete. Then since for any c, $\sigma(c):\mathcal{C}/_{\gamma}^h c\to \mathcal{C}$ is an enhanced family of groupoids, $\sigma(c)^* Y(\mathcal{C})$ in (8.5.4.1) is the enhanced functor $Y(\mathcal{C},\mathcal{C}/_{\gamma}^h c)$ of Example 8.5.2.12,

and we have

$$(8.5.4.3) \qquad \gamma_! \mathsf{Y}(\mathcal{C})(c) \cong \mathsf{colim}_{\mathcal{C}/^h c}^h \sigma(c)^* \mathsf{Y}(\mathcal{C}) \cong \mathsf{colim}_{\mathcal{C}/^h c}^h \mathsf{Y}(\mathcal{C}, \mathcal{C}/^h c) \cong \mathcal{C}/^h c,$$

with the enhanced fibration $\sigma(c): \mathcal{C}/^h c \to \mathcal{C}$. If $\mathcal{C}' = \mathcal{C}^\iota \operatorname{\mathcal{E}\mathit{ets}}^h$, $\gamma = Y(\mathcal{C})$, we tautologically have $Y(\mathcal{C})_! Y(\mathcal{C}) \cong Y(\mathcal{C})$ by (8.5.4.2), and (8.5.4.3) simply reads as

(8.5.4.4)
$$CE \cong C/_{Y(C)}^{h}E,$$

for any enhanced functor $E: \mathcal{C}^{\iota} \to \mathcal{S}ets^h$.

Example 8.5.4.2. For any enhanced object $e \in \mathcal{E}_{pt}$ in an enhanced category \mathcal{E} , we have the embedding $\varepsilon^h(e) : \operatorname{pt}^h \to \mathcal{E}$, and if we consider the constant enhanced functor $\operatorname{pt}^h : \operatorname{pt}^h \to \mathcal{S}ets^h$ with value pt^h , then by (8.5.4.1), it admits a left Kan extension

$$(8.5.4.5) Y(\mathcal{E}, e) = \varepsilon^h(e)_! \mathsf{pt}^h : \mathcal{E} \to \mathcal{S}ets^h$$

with respect to $\varepsilon^h(e)$, with $Y(\mathcal{E},e)(e')\cong (e\setminus^h\mathcal{E})_{e'}$ for any enhanced object $e'\in\mathcal{E}_{pt}$. If \mathcal{E} is small, $Y(\mathcal{E},e)$ corresponds to the enhanced cofibration $\tau:e\setminus^h\mathcal{E}\to\mathcal{E}$ by the covariant version of the Grothendieck construction, and $Y(\mathcal{E},e)$ is simply the restriction of the Yoneda pairing (8.4.6.4) with respect to the embedding $\varepsilon^h(e)^\iota \times^h \mathrm{id}: \mathcal{E} \cong \mathrm{pt}^h \times^h \mathcal{E} \to \mathcal{E}^\iota \times^h \mathcal{E}$. But even if \mathcal{E} is not small, the enhanced functor (8.5.4.5) is still well-defined.

Definition 8.5.4.3. A small full enhanced subcategory $\mathcal{C} \subset \mathcal{C}'$ in an enhanced category \mathcal{C}' , with the embedding functor $\gamma : \mathcal{C} \to \mathcal{C}'$, is *generating* if the enhanced functor $\gamma_! Y(\mathcal{C}) : \mathcal{C}' \to \mathcal{C}^\iota \operatorname{\mathcal{E}ets}^h$ of Example 8.5.4.1 is fully faithful.

Example 8.5.4.4. Any small enhanced category \mathcal{C} , with the Yoneda embedding, is trivially generating in $\mathcal{C}^{\iota} \operatorname{\mathcal{S}\it{ets}}^h$ (since $Y(\mathcal{C})_! Y(\mathcal{C}) \cong id$). In general, $\mathcal{C} \subset \mathcal{C}'$ is generating iff $\mathcal{C}' \subset \mathcal{C}^{\iota} \operatorname{\mathcal{S}\it{ets}}^h$ is a full enhanced subcategory containing the Yoneda image of \mathcal{C} .

Example 8.5.4.5. For any full embedding $\gamma: \mathcal{C} \subset \mathcal{C}'$ of small enhanced categories, \mathcal{C} is generating in \mathcal{C}' iff $Y(\mathcal{C}') \cong \gamma_!^\iota \circ Y(\mathcal{C})$. Thus for any generating small full enhanced subcategory $\mathcal{C} \subset \mathcal{E}$ in some \mathcal{E} , with the embedding functor $\gamma: \mathcal{C} \to \mathcal{E}$, and any small full enhanced subcategory $\mathcal{C}' \subset \mathcal{E}$, with the embedding functor $\gamma': \mathcal{C}' \to \mathcal{E}$, we have $\gamma_! Y(\mathcal{C}') \cong \gamma_! \circ \gamma_! Y(\mathcal{C})$, so that $\mathcal{C}' \subset \mathcal{E}$ is also generating.

We note that in the situation of Definition 8.5.4.3, the adjunction map $\gamma_! Y(\mathcal{C}) \circ \gamma = \gamma^* \gamma_! Y(\mathcal{C}) \to Y(\mathcal{C})$ induces an adjunction between $\gamma_! Y(\mathcal{C})$ and γ over $Y(\mathcal{C})$ in the sense of Definition 2.2.2.6. If the target enhanced category \mathcal{C}' is also cocomplete, then we have a Kan extension $Y(\mathcal{C})_! \gamma : \mathcal{C}^\iota \operatorname{Sets}^h \to \mathcal{C}'$ that is left-adjoint to $\gamma_! Y(\mathcal{C})$ in the usual sense. Thus if $\mathcal{C} \subset \mathcal{C}'$ is generating, $Y(\mathcal{C})_! \gamma : \mathcal{C}^\iota \operatorname{Sets}^h \to \mathcal{C}'$ is essentially surjective, so that by (8.5.2.7), any enhanced object $c' \in \mathcal{C}'$ is a colimit of objects in $\mathcal{C} \subset \mathcal{C}'$. This explains our terminology.

As another application of Kan extensions, we can describe functoriality of the Yoneda embeddings (8.4.6.1). The simplest statement here immediately follows from (8.5.4.1): for any enhanced functor $\gamma: \mathcal{E}_0 \to \mathcal{E}_1$ between small enhanced categories \mathcal{E}_0 , \mathcal{E}_1 , we have a commutative square

(8.5.4.6)
$$\mathcal{E}_{0} \xrightarrow{\mathsf{Y}(\mathcal{E}_{0})} \mathcal{E}_{0}^{t} \mathcal{S}ets^{h}$$

$$\gamma \downarrow \qquad \qquad \downarrow \gamma_{!}^{t}$$

$$\mathcal{E}_{1} \xrightarrow{\mathsf{Y}(\mathcal{E}_{1})} \mathcal{E}_{1}^{t} \mathcal{S}ets^{h} .$$

More generally, assume given an enhanced fibration $\mathcal{E} \to \mathcal{C}$ with a small base, with enhanced fibers \mathcal{E}_c . Then we cannot say that the functor categories $\mathcal{E}_c^o \operatorname{Sets}^h$ form an enhanced fibration over \mathcal{C}^ι with transition functors (8.5.4.6) since these enhanced categories are not small. However, the category of sections of this non-existent enhanced fibration is well-defined: this is simply the enhanced functor category $\mathcal{E}^\iota \operatorname{Sets}^h$. If $\mathcal{C} = K(I)$ for a partially ordered set I, so that \mathcal{E} is an I-augmented small enhanced category, then we can also consider a family $(\mathcal{E}|I)^o \operatorname{Sets}^h \to K(I|I) = \operatorname{Pos}^+ \times I$ of enhanced categories in the sense of Subsection 8.3.5, with fibers $\mathcal{E}_i^\iota \operatorname{Sets}^h$, $i \in I$, and transition functors $\gamma_!^o$ of (8.5.4.6). We then have a comparison functor

(8.5.4.7)
$$\mathcal{E}^{o} \operatorname{Sets}^{h} \to \operatorname{Sec}(I^{o}, (\mathcal{E}|I)^{o} \operatorname{Sets}^{h}_{\perp})$$

obtained by taking a universal object for \mathcal{E} of Proposition 8.3.3.4, with the corresponding fibration $J \to I$, and then taking the functor (8.1.2.12). For any small enhanced category \mathcal{C} , we can consider the transpose enhanced cofibration $\mathcal{E}_{h\perp} \to \mathcal{C}^{\iota}$, and then the Yoneda pairings (8.4.6.4) induce a relative Yoneda pairing $\mathcal{E}_{h\perp} \times_{\mathcal{C}^{\iota}}^{h} \mathcal{E}^{\iota} \to \mathcal{S}ets^{h}$, and we also have the evaluation functor $\mathcal{S}ec^{h}(\mathcal{C}_{0}, E_{h\perp}) \times_{h}^{h} \mathcal{C}_{0} \to \mathcal{E}_{h\perp}$. Taken together, these define a pairing

(8.5.4.8)
$$\mathcal{S}ec^{h}(\mathcal{C}^{\iota}, \mathcal{E}_{h\perp}) \times^{h} \mathcal{E}^{\iota} \cong (\mathcal{S}ec^{h}(\mathcal{C}^{\iota}, \mathcal{E}_{h\perp}) \times^{h} \mathcal{C}^{\iota}) \times^{h}_{\mathcal{C}^{\iota}} \mathcal{E}^{\iota} \to \mathcal{E}_{h\perp} \times^{h}_{\mathcal{C}^{\iota}} \mathcal{E}^{\iota} \to \mathcal{S}ets^{h}$$

that produces a relative version

$$(8.5.4.9) Y(\mathcal{E}|\mathcal{C}) : Sec^{h}(\mathcal{C}^{\iota}, \mathcal{E}_{h\perp}) \to \mathcal{E}^{\iota} Sets^{h}$$

of the Yoneda embedding (8.4.6.1). This is functorial with respect to C, and reduces to (8.4.6.1) when $C = \mathsf{pt}^h$. Explicitly, (8.4.4.12) and (8.4.6.5) provide an equivalence

$$(8.5.4.10) \qquad \mathcal{S}ec(\mathcal{C}^o, \mathcal{E}_{h\perp}) \cong \mathcal{F}un_{\mathbb{b}\mathcal{C}^o}^h(\mathsf{ar}^h(\mathcal{C}^o), \mathcal{E}_{h\perp}) \cong \mathcal{F}un_{\mathcal{C}}^{\flat h}(\mathsf{tw}^h(\mathcal{C}), \mathcal{E}),$$

and if some enhanced object $E \in Sec^h(\mathcal{C}^o, \mathcal{E}_{h\perp})_{pt}$ corresponds to an enhanced functor $tw(E): tw^h(\mathcal{C}) \to \mathcal{E}$ under (8.5.4.10), then we have

(8.5.4.11)
$$Y(\mathcal{E}|\mathcal{C})(E) \cong \mathsf{tw}(E)^{o}_{!}\mathsf{pt}^{h},$$

a relative version of (8.5.4.5). For any enhanced functor $X: \mathcal{E}^{\iota} \to \mathcal{S}ets^h$, with the corresponding enhanced family of groupoids $\mathcal{E}X \to \mathcal{E}$, (8.5.4.11) combined with (8.5.4.10) provides an equivalence

(8.5.4.12)
$$\operatorname{Sec}^h(\mathcal{C}^o, \mathcal{E}_{h\perp})/h_{\mathsf{Y}(\mathcal{E}|\mathcal{C})}X \cong \operatorname{Sec}^h(\mathcal{C}^o, (\mathcal{E}X)_{h\perp}),$$

where $(\mathcal{E}X)_{h\perp} \to \mathcal{C}^o$ is transpose to the enhanced fibration $\mathcal{E}X \to \mathcal{E} \to \mathcal{C}$. This is the relative version of (8.5.4.4).

One can also consider contravariant enhanced functors $\mathcal{E}^{\iota} \to \mathcal{C}$ from a small enhanced category \mathcal{E} to a cocomplete enhanced category \mathcal{C} . For any enhanced objects $e \in \mathcal{E}_{pt}$ and $c \in \mathcal{C}_{pt}$, we define the representable functor $Y(\mathcal{E},e,c)=\varepsilon(e)^o_!c\in\mathcal{E}^\iota\mathcal{C}$. To construct all these functors at once, observe that any cocomplete enhanced \mathcal{C} admits a natural action $\mathcal{S}ets^h \times^h \mathcal{C} \to \mathcal{C}$ of $\mathcal{S}ets^h$ obtained as $(\varepsilon(\mathsf{pt}^h)\times\mathsf{id})_!\,\mathsf{id}$, where $\varepsilon(\mathsf{pt}^h):\mathsf{pt}^h \to \mathcal{S}ets^h$ corresponds to the enhanced object $\mathsf{pt}^h \in \mathsf{Sets}^h$. Combining it with the Yoneda pairing (8.4.6.4) for \mathcal{E} , we obtain a pairing $\mathcal{E}^\iota \times^h \mathcal{E} \times^h \mathcal{C} \to \mathcal{S}ets^h \times^h \mathcal{C} \to \mathcal{C}$ that gives rise to a \mathcal{C} -valued version

(8.5.4.13)
$$Y(\mathcal{E}, \mathcal{C}) : \mathcal{E} \times^h \mathcal{C} \to \mathcal{E}^{\iota} \mathcal{C}$$

of the Yoneda embedding. On objects, we have $Y(\mathcal{E}, \mathcal{C})(e \times c) = Y(\mathcal{E}, e, c)$. As an application of (8.5.4.13), we can construct a version of (8.5.2.7) that shows that in fact for any cocomplete \mathcal{C} , every enhanced functor $X: \mathcal{E}^{\iota} \to \mathcal{C}$ is a colimit of representable ones; explicitly, we have

$$(8.5.4.14) X \cong \operatorname{colim}_{\mathsf{tw}^{h}(\mathcal{E})}^{h} \mathsf{Y}(\mathcal{E}, \mathcal{C}) \circ \pi(X),$$

where $\pi(X) = \sigma \times^h (X \circ \tau) : \mathsf{tw}^h(\mathcal{E}) \to \mathcal{E} \times^h \mathcal{C}$ is the product of the projection $\sigma : \mathsf{tw}^h(\mathcal{E}) \to \mathcal{E}$ and the composition $X \circ \tau : \mathsf{tw}^h(\mathcal{E}) \to \mathcal{E} \to \mathcal{C}$, and $\mathsf{Y}(\mathcal{E}, \mathcal{C})$ is the enhanced functor (8.5.4.13).

Example 8.5.4.6. Take $C = Cat^h$. Then $\mathcal{E}^{\iota}C \cong Cat^h /\!/_{\flat}^h \mathcal{E}$, and (8.5.4.13) says that for any small enhanced fibration $C \to \mathcal{E}$, we have

(8.5.4.15)
$$\mathcal{C} \cong \operatorname{colim}_{\mathsf{tw}^{h}(\mathcal{E})}^{h}(\mathcal{E}/^{h}e) \times^{h} \mathcal{C}_{e'},$$

where the colimit is over all enhanced objects in $\mathsf{tw}^h(\mathcal{E})$ represented by enhanced morphisms $f: e \to e'$ in \mathcal{E} . This is a generalization of the cylindrical colimits of Subsection 3.1.8.

8.5.5. Localizations and cofinality. To compute left and right Kan extensions by (8.5.3.2) and (8.5.4.1), it helps to know when particular limits or colimits exists. To control this, the following notion is very useful.

Lemma 8.5.5.1. Assume given an enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories. Then the following conditions are equivalent.

- (i) For any enhanced object $c \in C'_{pt}$, the enhanced comma-fiber $C/^h_{\gamma}c$ is hyperconnected.
- (ii) We have $\gamma_! \operatorname{pt}^h \cong \operatorname{pt}^h$.
- (iii) For any enhanced category \mathcal{E} and enhanced functor $E: \mathcal{C}' \to \mathcal{E}$, $\lim_{\mathcal{C}'}^h E$ exists if and only if so does $\lim_{\mathcal{C}}^h \gamma^* E$, and if both do, the adjunction map $\lim_{\mathcal{C}'}^h E \to \lim_{\mathcal{C}'}^h \gamma^* \mathcal{E}$ is an isomorphism.

Proof. To see that (iii) implies (i), take $\mathcal{E} = (\mathcal{S}ets^h)^\iota$ and the enhanced functor $E = \mathsf{Y}(\mathcal{C}',c)^\iota:\mathcal{C}'\to\mathcal{E}$. Then since the total localization of a small enhanced category with an initial or terminal enhanced object is trivial, the limit $\lim_{\mathcal{C}'}^h E \cong \operatorname{colim}_{\mathcal{C}'}^h \mathsf{Y}(\mathcal{C}',c) \cong \operatorname{pt}^h)$ is trivial by Lemma 8.4.6.2 and Lemma 8.5.2.9, and then $\lim_{\mathcal{C}}^h \gamma^* E \cong \operatorname{colim}_{\mathcal{C}^o}^h \gamma^* \mathsf{Y}(\mathcal{C}'c) \cong \mathcal{H}^{\natural}(\mathcal{C}/\gamma^h c)$.

Conversely, (i) implies (ii) by (8.5.3.2), and to see that this implies (ii), it suffices to check it for a small \mathcal{E} . Then by Lemma 8.5.3.8, it suffices to check that the map $\lim_{\mathcal{C}'}^h(\mathsf{Y}(\mathcal{E})\circ E)\to \lim_{\mathcal{C}}^h(\mathsf{Y}(\mathcal{E})\circ E\circ \gamma)$ is an isomorphism in $\mathcal{E}^\iota\operatorname{Sets}^h$. This can be checked after evaluating at each enhanced object $e\in\mathcal{E}$, so at the end of the day, it suffices to check (iii) for $\mathcal{E}=\operatorname{Sets}^h$. This immediately follows from (ii) by adjunction.

Definition 8.5.5.2. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories \mathcal{C} , \mathcal{C}' is *final* if it satisfies the equivalent condtions of Lemma 8.5.5.1, and *cofinal* if its enhanced-opposite γ^{ι} is final.

Example 8.5.5.3. A left resp. right-reflexive enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small \mathcal{C} , \mathcal{C}' is cofinal resp. final (since the total localization of a small enhanced category with an initial or terminal enhanced object is trivial, Lemma 8.5.5.1 (i) immediately follows from Corollary 8.4.3.4).

Example 8.5.5.4. In particular, for any enhanced fibration $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories, and any enhanced object $c \in \mathcal{C}'_{\mathsf{pt}}$, the right-reflexive embedding $\eta: \mathcal{C}_c \subset c \setminus_{\gamma}^h \mathcal{C}$ is final. Therefore one can compute right Kan extensions by replacing the enhanced comma-fibers in (8.5.3.2) with the usual enhanced fibers. Dually, for an enhanced cofibration and left Kan extensions, one can also use the usual enhanced fibers.

Example 8.5.5.5. The composition of final resp. cofinal enhanced functors is final resp. cofinal. For any enhanced fibrations $C_0, C_1 \to C$ between small enhanced categories, an enhanced functor $\gamma: C_0 \to C_1$ cartesian over C with cofinal enhanced fibers $\gamma_c, c \in C_{pt}$ is cofinal, and dually for enhanced cofibrations and final functors (apply Corollary 8.5.1.11 and its dual).

Example 8.5.5.6. Assume given an enhanced functor $\gamma: \mathcal{E}' \to \mathcal{E}$ between small enhanced categories \mathcal{E} , \mathcal{E}' , and enhanced functors $X: \mathcal{E}^\iota \to \mathcal{S}ets^h$, $X': \mathcal{E}'^\iota \to \mathcal{S}ets^h$, with the corresponding enhanced families of groupoids $\pi': \mathcal{E}'X' \to \mathcal{E}'$, $\pi: \mathcal{E}X \to \mathcal{E}$. Then a map $a: X' \to \gamma^{\iota*}X$ gives rise to a functor $\alpha: \mathcal{E}'X' \to \mathcal{E}X$, and α is cofinal iff the adjoint map $a_+: \gamma^\iota_!X' \to X$ is an isomorphism. Indeed, a_+ is obtained by applying $\pi^\iota_!$ to the tautological map $\alpha^\iota_!\mathsf{pt}^h \to \mathsf{pt}^h$, and $\pi^\iota_!$ is conservative by Example 8.5.2.13.

It is useful to also consider conditions stronger than finality or cofinality. To state one such condition, note that for any enhanced functor $\gamma:\mathcal{C}\to\mathcal{C}'$ between small enhanced categories, we have the commutative square

(8.5.5.1)
$$\begin{array}{ccc}
\mathcal{C}_{h\gamma^*\star} & \xrightarrow{\lambda} & \mathcal{H}^{\natural}(\mathcal{C}_{h\gamma^*\star}) \\
\downarrow & & \downarrow \\
\mathcal{C} & \longrightarrow & \mathcal{C}',
\end{array}$$

where $C_{h\gamma^*\star}$ is as in (8.2.2.2), and λ and \mathcal{H}^{\natural} are as in (8.5.2.1).

Definition 8.5.5.7. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between small enhanced categories is a *localization* if $\gamma^*: \mathcal{F}un^h(\mathcal{C}', \mathcal{E}) \to \mathcal{F}un^h(\mathcal{C}, \mathcal{E})$ is fully faithful for any enhanced category \mathcal{E} , and *hyperconnected* if the commutative square (8.5.5.1) is enhanced-semicocartesian.

An enhanced functor $\mathcal{C} \to \mathcal{C}'$ between small enhanced categories whose target \mathcal{C}' is an enhanced groupoid is hyperconnected iff it is h-invertible in the sense of Definition 8.5.2.3. In the general case, we have the following.

Lemma 8.5.5.8. Any localization γ in the sense of Definition 8.5.5.7 is both final and cofinal. If we have a enhanced-semicocartesian square (8.3.4.8) of small enhanced categories and enhanced functors such that the projection $C \to C_0$ is a localization, then so is $\gamma_0 : C_1 \to C_{01}$, and the square is in fact enhanced-cocartesian. An enhanced functor $\gamma : C \to C'$ between small enhanced categories that is an enhanced fibration or an enhanced cofibration is a localization iff all its enhanced fibers C_c , $c \in C'_{pt}$ are hyperconnected.

Proof. For the first claim, take $\mathcal{E} = \mathcal{S}ets^h$, note that if pt is the constant enhanced functor with value pt, then $\gamma_! pt \cong \gamma_! \gamma^* pt \cong pt \cong \gamma_* \gamma^* pt \cong \gamma_* pt$ since γ^* is fully faithful, and compute $\gamma_* pt$ resp. $\gamma_! pt$ by (8.5.3.2) resp. (8.5.4.1). For the second claim, apply Lemma 8.3.4.4, and note that fully faithful embeddings are stable under semicartesian products, and the semicartesian squares are in fact cartesian. For the third claim, the "only if" part immediately follows from the first claim, since the embeddings $\mathcal{C}_c \subset c \setminus^h \mathcal{C}$ resp. $\mathcal{C}_c \subset \mathcal{C}/^h c$ are final resp. cofinal when γ is an enhanced fibration resp. enhanced cofibration. Conversely, in either of the cases, for any \mathcal{E} , we have the relative functor category $\mathcal{F}un^h(\mathcal{C}|\mathcal{C}',\mathcal{E})$ and the equivalence

(8.5.5.2)
$$\operatorname{Fun}^{h}(\mathcal{C},\mathcal{E}) \cong \operatorname{Sec}^{h}(\mathcal{C},\operatorname{Fun}^{h}(\mathcal{C}|\mathcal{C}',\mathcal{E})),$$

and since $Sec^h(\mathcal{C},-)$ sends semicartesian squares to semicartesian squares, we are done by Lemma 8.3.4.4.

Corollary 8.5.5.9. Any enhanced functor hyperconnected in the sense of Definition 8.5.5.7 is a localization, and the square (8.5.5.1) is enhanced-cocartesian. For any enhanced-semicocartesian square (8.3.4.8) of small enhanced categories and enhanced functors such that the projection $C \to C_0$ is a localization, so is $\gamma_0 : C_1 \to C_{01}$. An enhanced fibration or cofibration $\gamma : C \to C'$ between small enhanced categories is hyperconnected iff all its enhanced fibers C_c , $c \in C'_{01}$ are hyperconnected.

Proof. For the first claim, note that for any small enhanced category \mathcal{C} with total localization $\mathcal{H}^{\natural}(\mathcal{C})$, the enhanced functor $\lambda: \mathcal{C} \to \mathcal{H}^{\natural}(\mathcal{C})$ is a localization by the third claim of Lemma 8.5.5.8, and apply its second claim to the square (8.5.5.1). Then for the second claim, it suffices to consider the case when $\mathcal{C}_0 \cong \mathcal{H}^{\natural}(\mathcal{C})$, and the enhanced functor $\mathcal{C} \to \mathcal{C}_0$ is the enhanced functor λ . Then $\mathcal{C} \to \mathcal{C}_1$ factors

through $C_1' = C_{1h\gamma^*(\star)}$, any for any small enhanced category \mathcal{E} , we have fully faithful enhanced functors

$$\mathcal{F}un^{h}(\mathcal{C}_{01}, \mathcal{E})$$

$$\alpha \downarrow$$

$$\mathcal{F}un^{h}(\mathcal{C}_{1}, E) \times_{\mathcal{F}un^{h}(\mathcal{C}'_{1}, \mathcal{E})}^{h} \mathcal{F}un^{h}(\mathcal{H}^{\natural}(\mathcal{C}'_{1}), \mathcal{E})$$

$$\beta \downarrow$$

$$\mathcal{F}un^{h}(\mathcal{C}_{1}, E) \times_{\mathcal{F}un^{h}(\mathcal{C}, \mathcal{E})}^{h} \mathcal{F}un^{h}(\mathcal{C}_{0}, \mathcal{E})$$

$$\downarrow$$

$$\mathcal{F}un^{h}(\mathcal{C}_{1}, \mathcal{E})$$

such that $\beta \circ \alpha$ is an equivalence by Lemma 8.3.4.4. Therefore α is also an equivalence, and (8.5.5.1) for γ is enhanced-cocartesian by Lemma 8.3.4.4. For the third claim, the "only if" part follows from the first claim and Lemma 8.5.5.8. For the "if" part, if $\gamma : \mathcal{C} \to \mathcal{C}'$ is an enhanced fibration resp. cofibration, then the left vertical arrow in (8.5.5.1) is cartesian resp. cocartesian over the right vertical arrow, and as in Lemma 8.5.5.8, the claim follows from Lemma 8.3.4.4 and (8.5.5.2).

Remark 8.5.5.10. It is *not* true that all localizations are hyperconnected, see Example 8.6.1.3.

Example 8.5.5.11. By Lemma 8.5.5.8, the total localization functor λ of (8.5.2.1) is both final and cofinal. For any small enhanced category \mathcal{E} with a universal object, the corresponding enhanced functor $K(I^o) \to \mathcal{E}$ of (8.3.4.11) is a localization, and in the situation of Lemma 8.5.2.9, so is the enhanced functor $\mathcal{E} \to \operatorname{colim}_{\mathcal{C}^\iota}^h \mathcal{E}$ of (8.5.2.4). Moreover, as in Remark 8.5.2.11, since $\iota : \mathcal{C}at^h \to \mathcal{C}at^h$ preserves colimits and sends localizations to localizations, we also have a localization $\mathcal{E}_{h\perp} \to \operatorname{colim}_{\mathcal{C}^\iota}^h \mathcal{E}$, where $\mathcal{E}_{h\perp} \to \mathcal{C}^\iota$ is the transpose enhanced cofibration.

Example 8.5.5.12. The 2-connected functors of Subsection 5.1.3 — specifically, those of Lemma 5.1.3.1, Lemma 5.1.3.4 and Lemma 5.1.3.5 — are also hyperconnected in the sense of Definition 8.5.5.7; the same proofs work.

8.5.6. Replacements and expansions. Looking at Example 8.5.5.12, one may wonder whether other 2-connected functors constructed in Section 5.1 and Section 5.2 are hyperconnected in the sense of Definition 8.5.5.7. The most

useful one is that of Lemma 5.2.1.1. This indeed works, and to prove it, we need to find an enhanced version of simplicial replacements of Subsection 4.2.1. Consider again the category Δ , with its embedding $\varphi: \Delta \to \text{PoSets} \to \text{Cat}$, and upgrade it to an enhanced embedding $\Phi: K(\Delta) \to K(\text{PoSets}) \cong \mathcal{P}o\mathcal{S}ets \to \mathcal{C}at^h$, where the second embedding is (8.3.6.12). Note that Φ then induces an enhanced functor $\Phi_! Y: \mathcal{C}at^h \to \Delta^o + h\,\mathcal{C}at^h$ that restricts to an enhanced functor

$$(8.5.6.1) \rho \circ \Phi_! Y : Cat^h \to \Delta_h^o Sets^h,$$

where $\rho: \mathcal{C}at^h \to \mathcal{S}ets^h$ is right-adjoint to the embedding $\mathcal{S}ets^h \subset \mathcal{C}at^h$. If we let $\delta: \Delta \to \Delta \times \Delta$ be the diagonal embedding, then as in (7.3.4.3), for any $[n], [m] \in \Delta$ and enhanced family of groupoids $\mathcal{C} \to K(\Delta)$ corresponding to some $X: \Delta_h^\iota \to \mathcal{S}ets^h$, we denote $\mathcal{C}_{[n],[m]} = K(\delta)_*^\iota X([n] \times [m])$.

Definition 8.5.6.1. An *enhanced Segal family* is an enhanced family of groupoids $C \to K(\Delta)$ that is semicartesian over each square (4.1.3.1), and an enhanced Segal family C is *complete* if for any $[n] \in \Delta$, the square

(8.5.6.2)
$$\mathcal{C}_{[n],[0]} \longrightarrow \mathcal{C}_{[n],[0]} \times \mathcal{C}_{[n],[0]}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{C}_{[n],[3]} \longrightarrow \mathcal{C}_{[n],[1]} \times \mathcal{C}_{[n],[1]}$$

induced by (7.3.4.2) is also semicartesian.

Proposition 8.5.6.2. The enhanced functor (8.5.6.1) induces an equivalence between Cat^h and the full enhanced subcategory in Δ_h^0 Sets^h spanned by small complete enhanced Segal families in the sense of Definition 8.5.6.1.

Lemma 8.5.6.3. For any complete cocomplete model category C, with the enhanced localization $\mathcal{H}^W(C)$ provided by Lemma 8.2.4.1, and for any Reedy category I, the enhanced functor

(8.5.6.3)
$$\mathcal{H}^{W}(I^{o}\mathcal{C}) \to I_{h}^{o}\mathcal{H}^{W}(\mathcal{C})$$

induced by the projection $K(I^o\mathcal{C})\cong I_h^oK(\mathcal{C})\to I_h^o\mathcal{H}^W(\mathcal{C})$ is an equivalence.

Proof. If $I = J \in \text{Pos}^+$ is a left-bounded partially ordered set, with the Reedy structure of Example 4.3.1.5, the claim holds tautologically. In general, choose a universal object of Proposition 8.3.3.4 for $K(I^o)$, with the corresponding $J \in \text{Pos}^+$ and functor $a: J^o \to I^o$ such that K(a) is a localization that fits into an enhanced-cocartesian square (8.3.4.11). Then on one hand, $a^{h*}: I_h^o \mathcal{H}^W(\mathcal{C}) \to J_h^o \mathcal{H}^W(\mathcal{C}) \cong$

 $\mathcal{H}^W(J^o\mathcal{C})$ is fully faithful, and on the other hand, so is $a^*:I^o\mathcal{C}\to J^*\mathcal{C}$. Moreover, since the Reedy structure on J is directed, Lemma 5.3.1.8 immediately shows that a^* and a_* define a Quillen adjunction between $I^o\mathcal{C}$ and $J^o\mathcal{C}$, so by Lemma 8.2.4.1, $\mathcal{H}^W(a^*):\mathcal{H}^W(I^o\mathcal{C})\to\mathcal{H}^W(J^o\mathcal{C})$ is a right-admissible full embedding. Then so is (8.5.6.3), and to finish the proof, it remains to check that it is essentially surjective. However, its essential image trivially contains representable functors $Y(K(I),i,c),\,i\in I,\,c\in\mathcal{C}$, and being right-admissible, (8.5.6.3) is enhanced-right-exact, so its essential image then contains any $X:K(I)^I\to\mathcal{H}^W(\mathcal{C})$ by (8.5.4.14).

Remark 8.5.6.4. In particular, Lemma 8.5.6.3 shows that any enhanced functor $K(I)^{\iota} \to \mathcal{H}^{W}(\mathcal{C})$ lifts to a functor $I^{o} \to \mathcal{C}$. This is actually true for any small category I, and can be shown by applying Lemma 8.5.6.3 to the simplicial replacement ΔI , along the lines of [DHKS]. We will not need this.

Proof of Proposition 8.5.6.2. Apply Lemma 8.5.6.3 to $C = \Delta^o$ Sets and $I = \Delta$, and combine the resulting equivalence (8.5.6.3) with (8.3.6.2).

Explicitly, the enhanced functor (8.5.6.1) can be computed by (8.5.4.1): for any small enhanced category \mathcal{C} , we have $\rho(\Phi_! Y(\mathcal{C})) \cong \Delta_h \mathcal{C}$, where the *enhanced* simplicial expansion $\Delta_h^{\natural} \mathcal{C}$ and the *enhanced* simplicial replacement $\Delta_h \mathcal{C} \subset \Delta_h^{\natural} \mathcal{C}$ are defined by

(8.5.6.4)
$$\Delta_{h}^{\natural} \mathcal{C} = \mathcal{F}un^{h}(\Delta_{\bullet}|\Delta,\mathcal{C}) \cong K(\Delta) //^{h} \mathcal{C}, \\ \Delta_{h} \mathcal{C} = \mathcal{F}un^{h}(\Delta_{\bullet}|\Delta,\mathcal{C})_{h\flat} \cong K(\Delta) //_{\star}^{h} \mathcal{C}.$$

Here as in (4.2.1.4), $\nu_{\bullet}: \Delta_{\bullet} \to \Delta$ is the tautological cofibration (4.2.1.5), with its right-adjoint $\nu^{\dagger}: \Delta \to \Delta_{\bullet}$, and $\mathcal{F}un^h(\Delta_{\bullet}|\Delta,\mathcal{C})$ is the relative enhanced functor category (8.4.5.4). The evaluation pairing provides an enhanced functor

$$(8.5.6.5) \xi^{\sharp}_{\bullet}: \Delta^{\sharp}_{h_{\bullet}} \mathcal{C} = K(\nu_{\bullet})^* \Delta^{\sharp}_{h} \mathcal{C} \to \mathcal{C}$$

that restricts to an enhanced functor

(8.5.6.6)
$$\xi_{\bullet}: \Delta_{h_{\bullet}}\mathcal{C} = K(\nu_{\bullet})^* \Delta_h \mathcal{C} \to \mathcal{C}.$$

Restricting further with respect to ν_{\bullet} , we obtain enhanced functors

$$(8.5.6.7) \xi^{\natural} = \xi^{\natural}_{\bullet} \circ K(\nu^{\dagger}) : \Delta^{\natural}_{h} \mathcal{C} \to \mathcal{C}, \quad \xi = \xi_{\bullet} \circ K(\nu^{\dagger}) : \Delta_{h} \mathcal{C} \to \mathcal{C},$$

an enhanced version of (4.2.1.7). Moreover, one can also consider the fibration $\nu^{\bullet}: \Delta^{\bullet} \to \Delta^{o}$ transpose to ν , and define the *enhanced cosimplicial expansion* $\Delta_{h\perp}^{\natural} \mathcal{C}$ by

(8.5.6.8)
$$\Delta_{h\perp}^{\natural} \mathcal{C} = \mathcal{F}un^{h}(\Delta^{\bullet}|\Delta^{o},\mathcal{C}) = \mathcal{F}un^{h}(\Delta_{\bullet}|\Delta,\mathcal{C})_{h\perp},$$

where the right-hand side is as in (8.4.5.11). Then $\Delta_{h\perp}^{\natural} \mathcal{C}$ comes equipped with an enhanced functor

(8.5.6.9)
$$\xi^{\bullet}: K(\nu^{\bullet})^* \Delta_{h}^{\natural} \mathcal{C} \to \mathcal{C},$$

again provided by evaluation.

Lemma 8.5.6.5. For any small enhanced category C, the enhanced functors ξ , resp. ξ of (8.5.6.6) resp. (8.5.6.7) are hyperconnected in the sense of Definition 8.5.5.7.

Proof. For any enhanced family of groupoids $\mathcal{E} \to K(\Delta)$, define its *contraction* $Con(\mathcal{E}) \in Cat^h$ by the enhanced-cocartesian square

(8.5.6.10)
$$K(\overline{\nu}_{\bullet})^{*}\mathcal{E} \xrightarrow{\lambda} \mathcal{H}^{\natural}(K(\overline{\nu}_{\bullet})^{*}\mathcal{E})$$

$$\downarrow \qquad \qquad \downarrow$$

$$K(\nu_{\bullet})^{*}\mathcal{E} \longrightarrow \operatorname{Con}(\mathcal{E}),$$

where $\Delta_{,\natural} \cong [0] \setminus \Delta \subset \Delta_{,}$ is the dense subcategory spanned by maps cocartesian over Δ , and $\overline{\nu}_{,}: \Delta_{,\natural} \to \Delta$ is induced by $\nu_{,}$. Note that since $\Delta_{,\natural}$ has an initial object [0], Lemma 8.4.2.19 provides a right-admissible full embedding $\mathcal{E}_{[0]} \to K(\overline{\nu}_{,})^*\Delta_h\mathcal{E}$, so we can identify $\mathcal{H}\natural(K(\overline{\nu}_{,})^*\mathcal{E})$ in (8.5.6.10) with the enhanced fiber $\mathcal{E}_{[0]}$. Then (8.5.6.10) is functorial with respect to \mathcal{E} , and (8.5.6.4) together with the adjunction of Lemma 8.4.5.1 provide a functorial identification

(8.5.6.11)
$$\mathcal{F}un_{\Lambda}^{h}(\mathcal{E}, \Delta_{h}\mathcal{C}) \cong \mathcal{F}un^{h}(\mathsf{Con}(\mathcal{E}), \mathcal{C})$$

for any $\mathcal{C} \in \operatorname{Cat}^h$, so that $\operatorname{Con}: \Delta_h^\iota \operatorname{\mathcal{S}ets}^h \to \operatorname{\mathcal{C}at}^h$ is a left-adjoint enhanced functor to (8.5.6.1). Since (8.5.6.1) is fully faithful by Proposition 8.5.6.2, we have $\mathcal{C} \cong \operatorname{Con}(\Delta_h \mathcal{C})$ for any small enhanced category \mathcal{C} , and (8.5.6.6) then appears as the bottom arrow in the corresponding square (8.5.6.10), so it is hyperconnected by Corollary 8.5.5.9. For (8.5.6.7), recall that the right-adjoint ν^\dagger to ν_\bullet itself has a right-adjoint $\nu_>: \Delta_\bullet \to \Delta$ such that $\xi_\bullet \cong \nu_>^*(\xi)$; then (8.5.6.10) for $\mathcal{E} = \Delta_h \mathcal{C}$ has an right-admissible full subsquare that looks like

(8.5.6.12)
$$\Delta_{+h}C \xrightarrow{\lambda} \mathcal{H}^{\natural}(\Delta_{h+}C)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta_{h}C \xrightarrow{\xi} C,$$

where $\Delta_{+h}\mathcal{C}$ is the restriction of $\Delta_h\mathcal{C}$ to $\Delta_+\subset\Delta$. Being right-admissible, (8.5.6.12) is itself enhanced-cocartesian by Corollary 8.4.1.9 (ii).

As an application of the cocartesian squares (8.5.6.10) of Lemma 8.5.6.5, we can give a characterization of the transpose enhanced cofibrations of Subsection 8.4.4 that does not use the enhanced Grothendieck construction. Namely, assume given an enhanced fibration $\gamma:\mathcal{C}\to\mathcal{E}$ between small enhanced categories, with the enhanced functor $\xi^{\natural}:\Delta_h^{\natural}\mathcal{E}\to\mathcal{E}$ of (8.5.6.7), and note that the adjunction map $a:\nu^{\dagger}\circ\nu_{\bullet}\to\mathrm{id}$ induces an enhanced functor $\alpha:\Delta_h^{\natural}\mathcal{C}\to\xi^{\natural*}\mathcal{C}$ over $K(\Delta)$. Then by Lemma 8.4.3.3 and Lemma 8.2.4.7, α admits a fully faithful right-adjoint

$$(8.5.6.13) \alpha^{\dagger} : \xi^{\dagger *} \mathcal{C} \to \Delta^{\sharp}_{h} \mathcal{C}$$

cartesian over $K(\Delta)$. Explicitly, enhanced objects in the enhanced simplicial expansion $\Delta_h^{\natural}\mathcal{C}$ are triples $\langle [n], \varphi, s \rangle$, $[n] \in \Delta$, $\varphi : K([n]) \to \mathcal{E}$ an enhanced functor, $s \in \operatorname{Sec}^h([n], \varphi^*\mathcal{C})$ a section, and then (8.5.6.13) identifies $\xi^{\natural *}\mathcal{C}$ with the enhanced full subcategory in $\Delta_h^{\natural}\mathcal{C}$ spanned by triples such that s is cartesian. Since (8.5.6.13) is cartesian over $K(\Delta)$, we have the transpose enhanced functor $\alpha_{h\perp}^{\dagger}: (\xi^{\natural *}\mathcal{C})_{h\perp} \to \Delta_{h\perp}^{\natural}\mathcal{C}$, and then restricting it to $(\xi^*\mathcal{C})_{h\perp}$ and composing with with the evaluation functor (8.5.6.9), we obtain an enhanced functor $K(\nu^{\bullet})^*(\xi^*\mathcal{C})_{h\perp} \to \mathcal{C}$ that fits into a commutative square

(8.5.6.14)
$$K(\overline{\nu}^{\bullet})^{*}(\xi^{*}\mathcal{C})_{h\perp} \longrightarrow \mathcal{C}_{h\gamma^{*}(\star)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$K(\nu^{\bullet})^{*}(\xi^{*}\mathcal{C})_{h\perp} \longrightarrow \mathcal{C},$$

where $\Delta_{\flat}^{\bullet} \subset \Delta^{\bullet}$ is the dense subcategory spanned by maps cartesian over Δ^{o} , $\overline{\nu}^{\bullet}: \Delta_{\flat}^{\bullet} \to \Delta^{o}$ is induced by ν^{\bullet} , and $\mathcal{C}_{h\gamma^{*}(\star)} = \mathcal{C} \times_{\mathcal{E}}^{h} \mathcal{E}_{h\star}$ is as in (8.2.2.2).

Lemma 8.5.6.6. For any enhanced fibration $C \to \mathcal{E}$ between small enhanced categories, the square (8.5.6.14) is enhanced-semicocartesian.

Proof. If $C \to \mathcal{E}$ is an enhanced family of groupoids, then the claim reduces to Lemma 8.5.6.5 applied to C^i . More generally, since Cat^h is cartesian-closed, the cartesian product of an enhanced-semicocartesian square with a fixed small enhanced category C' is enhanced-semicocartesian. Therefore the claim also holds when $C = C_0 \times^h C_1$ for some enhanced family of groupoids $C_0 \to \mathcal{E}$ and small enhanced category C_1 . In the general case, it is easy to see that both squares are actually functorial with respect to C — that is, define enhanced functors $\mathcal{E}^i \operatorname{Cat}^h \to [1]_h^2 \operatorname{Cat}^h$ — and we need to show that these functors factor through the full enhanced subcategory spanned by enhanced-semicocartesian squares. Since this subcategory is closed under enhanced colimits, and both

functors are obviously enhanced-right-exact, this immediately follows from (8.5.4.15).

Corollary 8.5.6.7. For any small enhanced category \mathcal{E} and enhanced fibration $\gamma: \mathcal{C} \to \mathcal{E}$, with transpose enhanced cofibration $\gamma': \mathcal{C}' = \mathcal{C}_{h\perp} \to \mathcal{E}^{\iota}$, there exist enhanced semicocartesian squares

$$(8.5.6.15) K(\iota \circ \overline{\nu}_{\bullet})^{*} \xi^{*} \mathcal{C} \longrightarrow \mathcal{C}_{h\gamma^{*}(\star)} K(\overline{\nu}_{\bullet})^{*} \xi^{\iota *} \mathcal{C}' \longrightarrow \mathcal{C}'_{h\gamma'^{*}(\star)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K(\iota \circ \nu_{\bullet})^{*} \xi^{*} \mathcal{C} \longrightarrow \mathcal{C}', K(\nu_{\bullet})^{*} \xi^{\iota *} \mathcal{C}' \longrightarrow \mathcal{C},$$

where as in (8.5.6.14), $C_{h\gamma^*(\star)} = C \times_{\mathcal{E}}^h \mathcal{E}_{h\star} \cong C' \times_{\mathcal{E}^l}^h \mathcal{E}_{h\star}^l = C'_{h\gamma'(\star)}$.

Proof. The second square is (8.5.6.14) on the nose, and the first one is enhanced-opposite to the square (8.5.6.14) for the transpose-opposite enhanced fibration $C_{h+}^{\iota} \to \mathcal{E}$.

For a slightly different interpretation of (8.5.6.10), note that Proposition 8.5.6.2 in particular means that $K(\Delta) \subset Cat^h$, with the embedding Φ , is a generating subcategory in the sense of Definition 8.5.4.3. Then by (8.5.2.7), we have

$$(8.5.6.16) C \cong \operatorname{colim}_{\Delta_h \mathcal{C}}^h \Phi \circ \pi,$$

where $\pi: \Delta_h \mathcal{C} \to K(\Delta)$ is the projection, and (8.5.6.10) is the corresponding square (8.5.2.4). One can also consider larger generating subcategories — for example, the category pos of all finite partially ordered sets. Then if one denotes by $\Psi: K(\mathsf{pos}) \to \mathcal{C}at^h$ the embedding functor, we have an enhanced functor

$$(8.5.6.17) \rho \circ \Psi_! \mathsf{Y} : \mathcal{C}at^h \to \mathsf{pos}_h^o \mathcal{S}ets^h$$

that reduces to (8.5.6.1) after further restricting with respect to the embedding ε : $\Delta \subset pos$.

Definition 8.5.6.8. A cone $E_>$ of a functor $E: J \to \text{pos}$ from a finite partially ordered set J is Ψ -universal if $\Psi \circ K(E_>): K(J)^{h>} \to \mathcal{C}at^h$ is universal. An enhanced functor $X: K(\text{pos})^\iota \to \mathcal{S}ets^h$ is Ψ -exact if the enhanced-opposite $X^\iota: K(\text{pos}) \to \mathcal{S}ets^{h\iota}$ sends Ψ -universal cones to universal cones.

Lemma 8.5.6.9. For any Ψ -exact enhanced functor $X: K(pos)^{\iota} \to \mathcal{S}ets$, $\varepsilon^{h*}Kpos)X \to K(\Delta)$ is a complete enhanced Segal family in the sense of Definition 8.5.6.1, and the map $X \to K(\varepsilon^{o})_{*}K(\varepsilon^{o})^{*}X$ is an isomorphism.

Proof. Since Ψ commutes with finite coproducts, any exact enhanced functor $X: K(\mathsf{pos})^\iota \to \mathcal{S}ets^h$ is additive. Moreover, say that a commutative square $[1]^2 \cong V^> \to \mathsf{pos}$ is Ψ-cocartesian if it is Ψ-universal in the sense of Definition 8.5.6.8. Then all squares (4.1.3.1) are Ψ-universal, and so is both the square (3.1.7.3) and its product with any $[n] \in \Delta$. Therefore $\varepsilon^{h*}K(\mathsf{pos})X \to K(\Delta)$ is indeed a complete enhanced Segal family for any Ψ-exact X. Moreover, for any $J \in \mathsf{pos}$, we have the perfect colimit (3.1.7.14), and by Remark 4.1.2.3, it is preserved by the nerve functor N. Therefore firstly, it is Ψ-universal, and secondly, by (8.5.3.2), it is preserved by $(K(\varepsilon)_*Y)^\iota : K(\mathsf{pos}) \to \mathcal{S}ets^{h*}$ for any $Y : \Delta_h^\iota \to \mathcal{S}ets$. Thus the map $X \to K(\varepsilon^o)_*K(\varepsilon^o)^*X$, being an equivalence over $K(\Delta) \subset K(\mathsf{pos})$, is an equivalence over the whole $K(\mathsf{pos})$.

Corollary 8.5.6.10. The enhanced functor (8.5.6.17) induces an equivalence between Cat^h and the full subcategory in $pos_h^o Sets^h$ spanned by exact enhanced functors.

Proof. Lemma 8.5.6.2 implies that ε^{oh*} : $\mathsf{pos}^o_h \, \mathcal{S}ets^h \to \Delta^\iota_h \, \mathcal{S}ets^h$ induces a fully faithful embedding from the category of Ψ -exact enhanced functors to the category of complete enhanced Segal families. Since the equivalence of Proposition 8.5.6.2 factors through this full embedding, it must be essentially surjective.

8.5.7. Adding colimits. Let us now consider the case when an enhanced category \mathcal{E} has some limits or colimits but not all of them. To formalize the situation, we introduce the following.

Definition 8.5.7.1. For any full enhanced subcategory $\mathcal{I} \subset \mathcal{C}at^h$, an enhanced category \mathcal{E} is \mathcal{I} -complete if the limit $\lim_{\mathcal{C}}^h E$ exists for any $\mathcal{C} \in \mathcal{I}$ and enhanced functor $E: \mathcal{C} \to \mathcal{E}$, and an enhanced functor $F: \mathcal{E} \to \mathcal{E}'$ between two \mathcal{I} -complete enhanced categories is \mathcal{I} -left-exact if it preserves all those limits. An enhanced category \mathcal{E} is \mathcal{I} -cocomplete if \mathcal{E}^ι is \mathcal{I} -complete, and an enhanced functor F is \mathcal{I} -right-exact if F^ι is \mathcal{I} -left-exact. An enhanced object $e \in \mathcal{E}_{pt}$ in an \mathcal{I} -cocomplete enhanced category \mathcal{E} is \mathcal{I} -projective if the enhanced functor $Y(\mathcal{E},e)$ of (8.5.4.5) is \mathcal{I} -right-exact.

Example 8.5.7.2. Consider the full enhanced subcategory $\{\emptyset\} \subset \mathcal{C}at^h$ spanned by the empty category \emptyset . Then an enhanced category is $\{\emptyset\}$ -cocomplete iff it has an initial enhanced object o, and an enhanced functor γ is $\{\emptyset\}$ -right-exact if it preserves it.

Example 8.5.7.3. For any regular cardinal κ , we have the full subcategory $\operatorname{Cat}^h_{\kappa} \subset \operatorname{Cat}^h$ of (8.3.2.3), with the induced enhancement $\operatorname{Cat}^h_{\kappa}$; to simplify terminology, we say that an enhanced category is κ -complete resp. κ -cocomplete if it is $\operatorname{Cat}^h_{\kappa}$ -complete resp. $\operatorname{Cat}^h_{\kappa}$ -cocomplete in the sense of Definition 8.5.7.1, and an enhanced functor is κ -left-exact resp. κ -right-exact if it is $\operatorname{Cat}^h_{\kappa}$ -left-exact resp. $\operatorname{Cat}^h_{\kappa}$ -right-exact

Example 8.5.7.4. For any regular cardinal κ , Lemma 8.5.2.9 immediately shows that Cat_{κ}^{h} is κ -cocomplete.

Example 8.5.7.5. In the particular case when κ is the countable cardinal, κ -complete resp. κ -cocomplete is also called "finitely complete" resp. "finitely cocomplete". This is consistent with our earlier terminology; in particular, the same argument as in Proposition 8.5.1.9 shows that an enhanced category $\mathcal E$ is finitely complete iff the family $\mathcal E|_{\operatorname{Pos}^\pm} \to \operatorname{Pos}^\pm$ is finitely complete in the sense of Definition 8.2.3.8.

Example 8.5.7.6. We have the full embedding $Sets = K(Sets) \subset Cat^h$ sending a set to the corresponding discrete small enhanced category, with the induced embedding $Sets_{\kappa} \subset Cat_{\kappa}^h$ of sets S with $|S| < \kappa$, for any regular κ . Then an enhanced category *has products* resp. *coproducts* if it is Sets-complete resp. Sets-cocomplete, and has κ -bounded products resp. coproducts if it is $Sets_{\kappa}$ -complete resp. cocomplete. If κ is the countable cardinal, κ -products resp. κ -coproducts are finite products resp. coproducts.

Lemma 8.5.7.7. Assume given an enhanced family of groupoids $\pi: \mathcal{C}' \to \mathcal{C}$ such that \mathcal{C} is I-cocomplete, and for any enhanced functor $E: I \to \mathcal{C}$ from some $I \in \mathcal{I}$, with the universal cone $E_{>}: I^{h>} \to \mathcal{C}$, the functor $I^{h>} \to \mathcal{S}ets^{h\iota}$ corresponding to $E_{>}^*\mathcal{C}' \to I^{h>}$ is a universal cone. Then \mathcal{C}' is \mathcal{I} -cocomplete, and π is \mathcal{I} -right-exact.

Proof. The condition actually insures that for any $I \in \mathcal{I}$ and $E: I \to \mathcal{C}'$, the projection $Cone(E) \to Cone(\pi \circ E)$ induced by π is an equivalence.

Example 8.5.7.8. Lemma 8.5.7.7 immediately shows that for any small enhanced category \mathcal{E} , the enhanced category $\mathcal{C}at^h$ //_{*} $^h\mathcal{E}$ is cocomplete, and the enhanced family of groupoids $\mathcal{C}at^h$ //_{*} $^h\mathcal{E} \to \mathcal{C}at^h$ induced by (8.3.7.5) is enhanced-right-exact. For any regular cardinal κ , the enhanced category $\mathcal{C}at^h_{\kappa}$ //_{*} $^h\mathcal{E}$ is κ -cocomplete, and $\mathcal{C}at^h_{\kappa}$ //_{*} $^h\mathcal{E} \to \mathcal{C}at^h_{\kappa}$ is κ -right-exact.

Lemma 8.5.7.9. Assume given an enhanced cofibration $\pi: \mathcal{C}' \to \mathcal{C}$ between small enhanced categories, and assume that \mathcal{C} is \mathcal{I} -complete for some full subcategory $\mathcal{I} \subset \mathcal{C}$ at f, the enhanced fiber \mathcal{C}'_c is \mathcal{I} -cocomplete for any enhanced object f is f and for any enhanced morphism f: f is f in f the transition functor f is f

Proof. For any enhanced functor $E: \mathcal{E} \to \mathcal{C}'$ from a small \mathcal{E} , postcomposition with π provides an enhanced functor $\pi(E): \mathcal{C}one(\mathcal{E}) \to \mathcal{C}one(\pi \circ E)$. Since π is an enhanced cofibration, $\pi(E)$ is also an enhanced cofibration by Example 8.4.2.21. To see what its enhanced fibers are, recall that $\mathcal{E}^{h>}$ is the enhanced cylinder of the tautological projection $\mathcal{E} \to \operatorname{pt}^h$, thus [1]-coaugmented. Then for any object in $\mathcal{C}one(\pi \circ E)$ represenseted by an enhanced functor $\gamma = (\pi \circ E)_{>}: \mathcal{E}^{h>} \to \mathcal{C}$, $\gamma^*\mathcal{C}'$ is also [1]-coaugmented, so $\gamma^*\mathcal{C}' \cong \mathsf{C}_h(\nu(\gamma)')$ for some enhanced functor $\nu(\gamma)': (\pi \circ E)^*\mathcal{C}' \to \mathcal{C}'_c$, where $c = \gamma(o)$ is the vertex of the cone γ . Then composing $\nu(\gamma)'$ with the taulological section $\mathcal{E} \to (\pi \circ E)^*\mathcal{C}'$ give an enhanced functor $\nu(\gamma): \mathcal{E} \to \mathcal{C}'_c$, and Lemma 8.4.1.3 together with Lemma 8.3.4.4 provide an equivalence

(8.5.7.1)
$$Cone(E)_{\gamma} \cong Cone(\nu(\gamma)).$$

If $\mathcal{E} \in \mathcal{I}$, then all these fibers have initial enhanced objects preserved by the transition functors, so by Lemma 8.4.3.3 applied to the transpose enhanced fibrations, $\pi(E)$ admits a left-adjoint section $\mathcal{C}one(\pi \circ E) \to \mathcal{C}one(E)$. But $\mathcal{C}one(\pi \circ E)$ has an initial enhanced object.

Note that different full enhanced subcategories $\mathcal{I} \subset \mathcal{C}at^h$ can lead to the same class of \mathcal{I} -complete enhanced categories and \mathcal{I} -right-exact enhanced functors – at the very least, both do not change if we enlarge \mathcal{I} by adding the targets \mathcal{C}' of all enhanced functors $\gamma:\mathcal{C}\to\mathcal{C}',\,\mathcal{C}\in\mathcal{I}$ that are final in the sense of Definition 8.5.5.2. The same goes for \mathcal{I} -cocomplete categories and cofinal functors. Again, let us formalize the situation (we concentrate on colimits).

Definition 8.5.7.10. A full enhanced subcategory $\mathcal{I} \subset \mathcal{I}'$ in a full enhanced subcategory $\mathcal{I}' \subset \mathcal{C}at^h$ is colim-dense if any \mathcal{I} -cocomplete enhanced category is \mathcal{I}' -cocomplete, and any \mathcal{I} -right-exact enhanced functor is \mathcal{I}' -right-exact. The colim-closure of a full enhanced subcategory $\mathcal{I} \subset \mathcal{C}at^h$ is the maximal full enhanced subcategory $\mathcal{I}' \subset \mathcal{C}at^h$ containing \mathcal{I} such that $\mathcal{I} \subset \mathcal{I}'$ is colim-dense, and a full enhanced subcategory $\mathcal{I} \subset \mathcal{C}at^h$ is colim-closed if it coincides with its colim-closure.

Lemma 8.5.7.11. Let $\mathcal{I} \subset Cat^h$ be a colim-closed full enhanced subcategory. Then (i) for any cofinal enhanced functor $\gamma : \mathcal{C} \to \mathcal{C}'$ in Cat^h with source $\mathcal{C} \in \mathcal{I}$, the target \mathcal{C}' is also in \mathcal{I} , (ii) $\mathsf{pt}^h \in \mathcal{I}$, (iii) for any enhanced cofibrations $\gamma : \mathcal{C}' \to \mathcal{C}$ such that $\mathcal{C} \in \mathcal{I}$ and $\mathcal{C}'_{\mathcal{C}} \in \mathcal{I}$ for any $c \in \mathcal{C}_{\mathsf{pt}}$, $\mathcal{C}' \in \mathcal{I}$, and (iv) \mathcal{I} is \mathcal{I} -cocomplete.

Proof. The first claim is tautological. For (ii), note that $\operatorname{colim}_{pt}^h E \cong E$ by Lemma 8.5.3.6, and it is trivially preserved by any enhanced functor. For (iii), use (8.5.4.1) in the form of Example 8.5.5.4 to shows that the Kan extensions $\gamma_!$ exist in any \mathcal{I} -cocomplete enhanced category and are preserved by \mathcal{I} -right-exact functors, and then identify $\operatorname{colim}_{\mathcal{C}'}^h E \cong \operatorname{colim}_{\mathcal{C}}^h \gamma_! E$. For (iv), note that for any enhanced functor $C: \mathcal{C} \to \mathcal{I} \subset \mathcal{C}at^h$, with the corresponding enhanced cofibration $\mathcal{C}' \to \mathcal{C}$, we have $\mathcal{C}' \in \mathcal{I}$ by (iii), and then $\operatorname{colim}_{\mathcal{C}}^h C \in \mathcal{I}$ by (i) and Example 8.5.5.11.

Of course, by Corollary 8.2.2.18, a full enhanced subcategory $\mathcal{I} \subset \mathcal{C}at^h$ is completely determined by the full subcategory $\mathcal{I}_{pt} \subset \operatorname{Cat}^h$. We use the whole \mathcal{I} in Definition 8.5.7.10 to allow for Lemma 8.5.7.11 (iv), but we will use the same terminology as in Definition 8.5.7.10 for full subcategories $\mathcal{I}_{pt} \subset \operatorname{Cat}^h$. Here are some very standard examples of colim-dense subcategories in Cat that are also colim-dense in Cat^h .

Lemma 8.5.7.12. The subcategory $\operatorname{Pos}^+ \subset \operatorname{Cat}^h$ is colim-dense, and so is the subcategory $\operatorname{Pos}^+_{\kappa} \subset \operatorname{Cat}^h_{\kappa}$ for any regular cardinal κ . Moreover, denote by $\rho : \operatorname{Sets} \to \operatorname{Pos}^+$ the embedding sending a set S to the partially ordered set $S^<$; then $\rho(\operatorname{Sets}) \cup \{\emptyset\} \subset \operatorname{Pos}^+_{\kappa}$, $\rho(\operatorname{Sets}_{\kappa}) \cup \{\emptyset\} \subset \operatorname{Pos}^+_{\kappa}$ are also colim-dense. Finally, let $\{K(\mathbb{I})\} \in \operatorname{Cat}^h$ be the full subcategory spanned by the Kronecker category \mathbb{I} ; then $\operatorname{Sets} \sqcup \{K(\mathbb{I})\} \subset \operatorname{Cat}^h$, $\operatorname{Sets}_{\kappa} \sqcup \{K(\mathbb{I})\} \subset \operatorname{Cat}^h_{\kappa}$ are also colim-dense.

In words, Lemma 8.5.7.12 says that en enhanced category has colimits iff it has the initial enhanced object and cofibered coproducts iff it has coproducts and coequalizers, and similarly for κ -bounded colimits.

Proof. The first claim immediately follows from Proposition 8.3.3.4 and Example 8.5.5.11. For the second claim, let $I \subset \operatorname{Cat}^h$ be the colim-closure of $\rho(\operatorname{Sets}) \cup \{\varnothing\}$; we need to show that I contains Pos^+ . But then by Lemma 8.5.7.11 (ii) and Example 8.5.5.3, for any map $J' \to J$ in Pos^+ such that $j \in I$ and $J'/j \in I$ for all $j \in J$, J' is also in I. Moreover, by Lemma 8.5.7.11 (iii), $I \cap \operatorname{Pos}^+$ is closed under colimits of cofibrant functors $S^< \to \mathcal{I}$ — indeed, by Lemma 8.2.4.8, these are preserved by the embedding $K(\operatorname{Pos}^+) \to \operatorname{Cat}^h$. Then the standard induction on skeleta reduces us to showing that $J^> \in I$ for any $I \in \operatorname{Pos}$, and this is again Example 8.5.5.3. Finally, for the third claim, let

 $I \subset \operatorname{Cat}^h$ be the colim-closure of $\operatorname{Sets} \cup \{\mathbb{I}\}$, and note that it is closed under coproducts and coequalizers by Lemma 8.5.7.11 (iii), and again, contains $K(J^>)$ for any $J \in \operatorname{Pos}$. Then for any $S \in \operatorname{Sets}_{\kappa}$, consider $S^{\natural} \in \operatorname{Pos}_{\kappa}$ of (3.1.4.6), with the corresponding projection $S^{\natural} \to V$, and compose it with the map $V \to \mathbb{I}$, $o \mapsto 0$, $0, 1 \mapsto 1$. Then by Lemma 8.5.2.9, we have $K(S^{\natural}) \cong \operatorname{colim}_{i \in \mathbb{I}}^h(K(S^{\natural}/i))$, and the comma-fibers are $K(S^{\natural}/0) \cong S \times \operatorname{pt}^h$, $K(S^{\natural}/1) \cong (S \times K([1])) \sqcup K(S^>)$. Thus all these comma-fibers are in I, so that $K(S^{\natural}) \in I$, and since the excision map $K(S^{\natural}) \to K(S^{<})$ is cofinal, $K(S^{<}) \in I$ by Lemma 8.5.7.11 (i). Thus we are done by the second claim.

Definition 8.5.7.13. For any full enhanced subcategory $\mathcal{I} \subset \mathcal{C}at^h$, the \mathcal{I} -envelope of an enhanced category \mathcal{E} is an \mathcal{I} -cocomplete enhanced category $\operatorname{Env}(\mathcal{E},\mathcal{I})$ with a fully faithful enhanced functor $Y(\mathcal{E},\mathcal{I}): \mathcal{E} \to \operatorname{Env}(\mathcal{E},\mathcal{I})$ such that for any \mathcal{I} -cocomplete enhanced category \mathcal{E}' , any enhanced functor $E: \mathcal{E} \to \mathcal{E}'$ factors as

(8.5.7.2)
$$\mathcal{E} \xrightarrow{\mathsf{Y}(\mathcal{E},\mathcal{I})} \mathsf{Env}(\mathcal{E},I) \xrightarrow{\mathsf{Env}(E,\mathcal{I})} \mathcal{E}',$$

with an \mathcal{I} -right-exact enhanced functor $\operatorname{Env}(E,\mathcal{I})$, and such a factorization (8.5.7.2) is unique up to a unique isomorphism.

Lemma 8.5.7.14. For any full enhanced subcategory $\mathcal{I} \subset \mathcal{C}at^h$, any enhanced category \mathcal{E} admits an \mathcal{I} -envelope $Y(\mathcal{I}): \mathcal{E} \to \operatorname{Env}(\mathcal{E}, \mathcal{I})$.

Proof. Replacing \mathcal{I} by its colim-closure, we may assume that \mathcal{I} is colim-closed. Assume first that \mathcal{E} is small, and let $\operatorname{Env}(\mathcal{E},\mathcal{I}) \subset \mathcal{E}^\iota \operatorname{Sets}^h$ be the full enhanced subcategory spanned by enhanced families of groupoids $\mathcal{E}' \to \mathcal{E}$ such that $\mathcal{E}' \in \mathcal{I}$. Then by Lemma 8.4.6.2, Lemma 8.5.7.11 (ii) and Example 8.5.5.3, $\operatorname{Env}(\mathcal{E},\mathcal{I})$ contains the essential image of the Yoneda embedding $Y(\mathcal{E})$ of (8.4.6.3), so it factors through a fully faithful embedding $Y(\mathcal{E},\mathcal{I}): \mathcal{E} \to \operatorname{Env}(\mathcal{E},\mathcal{I})$. By Lemma 8.5.7.11 (iv) and Example 8.5.2.2, $\operatorname{Env}(\mathcal{E},\mathcal{I})$ is \mathcal{I} -cocomplete, and then for any enhanced functor $\mathcal{E} \to \mathcal{E}'$ to an \mathcal{I} -cocomplete \mathcal{E}' , the left Kan extension $Y(\mathcal{E},\mathcal{I})_!\mathcal{E}$ exists by (8.5.4.1) and (8.5.4.4), and a canonical decomposition (8.5.7.2) is provided by (8.5.4.2).

In the general case, represent $\mathcal{E} \cong \operatorname{colim}_I^2 \mathcal{E}_i$ as the filtered 2-colimit of Lemma 8.2.2.19 of its small full enhanced subcategories $\mathcal{E}_i \subset \mathcal{E}$, and take $\operatorname{Env}(\mathcal{E}, \mathcal{I}) = \operatorname{colim}_I^2 \operatorname{Env}(\mathcal{E}_i, \mathcal{I})$.

Corollary 8.5.7.15. An enhanced category $\mathcal C$ is $\mathcal I$ -cocomplete if and only if $Y(\mathcal I): \mathcal C \to \operatorname{Env}(\mathcal C,\mathcal I)$ is left-reflexive.

Proof. Clear.

Corollary 8.5.7.16. A full enhanced subcategory $\mathcal{I} \subset Cat^h$ is colim-closed if and only if it satisfies the conditions (i)-(iii) of Lemmca 8.5.7.11.

Proof. The "only if" part is Lemma 8.5.7.11. For the "if" part, note that the construction of the envelope $\operatorname{Env}(\mathcal{E},\mathcal{I})$ given in Lemma 8.5.7.14 only uses the fact that \mathcal{I} satisfies the conditions (i), (ii) of Lemma 8.5.7.11, together with (iv) that is a formal corollary of (i) and (iii). Therefore for any small enhanced category \mathcal{E} , $\operatorname{Env}(\mathcal{E},\mathcal{I}) \subset \mathcal{E}^{\iota}\operatorname{Sets}^{h} \cong \operatorname{Sets}^{h}/\!/_{\flat}^{h}\mathcal{E}$ consists of families of enhanced groupoids $\mathcal{E}' \to \mathcal{E}$ such that $\mathcal{E}' \in \mathcal{I}$. Then if $\mathcal{E} \in \operatorname{Cat}^{h}$ lies in the colim-closure $\mathcal{I}' \supset \mathcal{I}$ of \mathcal{I} , $\operatorname{Env}(\mathcal{E},\mathcal{I}')$ contains the constant enhanced family of groupoids $\mathcal{E} \to \mathcal{E}$, and $\mathcal{E} \in \mathcal{I}$ since $\operatorname{Env}(\mathcal{E},\mathcal{I}') = \operatorname{Env}(\mathcal{E},\mathcal{I})$.

Lemma 8.5.7.17. For any small enhanced categories C, C' and adjoint pair of enhanced functors $\lambda: C \to C'$, $\rho: C' \to C$, and any enhanced full subcategory $\mathcal{I} \subset Cat^h$, $Env(\lambda, \mathcal{I})$ is adjoint to $Env(\rho, \mathcal{I})$.

Proof. Immediately follows from the uniqueness of the \mathcal{I} -right-exact extensions $\operatorname{Env}(\lambda, \mathcal{I})$ and $\operatorname{Env}(\rho, \mathcal{I})$.

Example 8.5.7.18. Take $\mathcal{I} = \{\varnothing\}$, as in Example 8.5.7.2. Then for any enhanced category \mathcal{E} , Env $(\mathcal{E}, \mathcal{I}) = \mathcal{E}^{h>}$ is the category of Example 8.2.2.16.

Example 8.5.7.19. Take $\mathcal{I} = \mathcal{C}at^h$ and $\mathcal{E} = \mathsf{pt}^h$. Then $\mathsf{Env}(\mathcal{E},\mathcal{I}) = \mathcal{S}ets^h$, and Lemma 8.5.7.14 says that for any enhanced object e in a cocomplete enhanced category \mathcal{E} , there exists a unique right-exact enhanced functor $\mathcal{S}ets^h \to \mathcal{E}$ sending pt^h to e.

Example 8.5.7.20. More generally, for $\mathcal{I} = \mathcal{C}at^h$ and any small enhanced category \mathcal{E} , we have $\operatorname{Env}(\mathcal{E},\mathcal{I}) \cong \mathcal{E}^\iota \operatorname{\mathcal{E}ets}^h$, and $\operatorname{Y}(\mathcal{I}) = \operatorname{Y}(\mathcal{E})$ is the Yoneda embedding (8.4.6.3). For any enhanced functor $\gamma: \mathcal{E}_0 \to \mathcal{E}_1$ between small enhanced categories, $\operatorname{Env}(\gamma,\mathcal{I}): \operatorname{Env}(\mathcal{E}_0,\mathcal{I}) \to \operatorname{Env}(\mathcal{E}_1,\mathcal{I})$ is the left Kan extension functor $\gamma_!^o$, and in particular, it has a right-adjoint enhanced functor $\operatorname{Env}(\gamma,\mathcal{I})^\dagger$ given by γ^{o*} . If \mathcal{E} is not small, the envelope $\operatorname{Env}(\mathcal{E},\mathcal{I})$ is still well-defined, and its enhanced objects correspond to enhanced functors $E:\mathcal{E}^o \to \mathcal{S}ets^h$, but not all such functors — indeed, all functors do not form a well-defined enhanced category. Instead, we only take functors of the form $\mathcal{E}_!^o$ for some small full enhanced subcategory $\mathcal{E}_0 \subset \mathcal{E}$, with the embedding $\mathcal{E}: \mathcal{E}_0 \to \mathcal{E}$, and some enhanced

functor $E: \mathcal{E}_0^t \to \operatorname{Sets}$. For any enhanced functor $\gamma: \mathcal{E}_0 \to \mathcal{E}_1$ such that \mathcal{E}_0 is small, the enhanced functor $\operatorname{Env}(\gamma, \mathcal{I})$ still admits a right-adjoint $\operatorname{Env}(\gamma, \mathcal{I})^{\dagger}$; for any $\mathcal{E}_0' \subset \mathcal{E}_1$ containing the essential image of γ , with the embedding functor $\varepsilon: \mathcal{E}_0' \to \mathcal{E}_1$, and any $E: \mathcal{E}_0^{t_0} \to \mathcal{S}ets$, we have $\operatorname{Env}(\gamma, \mathcal{I})^{\dagger}(\varepsilon_!^o E) \cong \gamma^{o*} \mathcal{E}$.

Lemma 8.5.7.21. Assume given a colim-closed full subcategory $\mathcal{I} \subset \operatorname{Cat}^h$ and an \mathcal{I} -cocomplete enhanced category \mathcal{C} , and let $\mathcal{C}_c \subset \mathcal{C}$ be a full subcategory spanned by \mathcal{I} -projective enhanced objects. Then the \mathcal{I} -right-exact extension $\varepsilon' : \operatorname{Env}(\mathcal{C}_c, \mathcal{I}) \to \mathcal{C}$ of the fully faithful embedding $\varepsilon : \mathcal{C}_c \to \mathcal{C}$ is fully faithful.

Proof. It suffices to consider the case when C_c is small. Let $\mathcal{I}' = Cat^h$, and note that we have a commutative diagram

$$\begin{array}{ccc}
\mathcal{C}_{c} & \xrightarrow{\mathsf{Y}(\mathcal{I})} & \mathsf{Env}(\mathcal{C}_{c}, \mathcal{I}) & \xrightarrow{\nu_{c}} & \mathsf{Env}(\mathcal{C}_{c}, \mathcal{I}') \\
\varepsilon \downarrow & & & & \downarrow \mathsf{Env}(\varepsilon, \mathcal{I}) & & \downarrow \mathsf{Env}(\varepsilon, \mathcal{I}') \\
\mathcal{C} & \xrightarrow{\mathsf{Y}(\mathcal{I})} & \mathsf{Env}(\mathcal{C}, \mathcal{I}) & \xrightarrow{\nu} & \mathsf{Env}(\mathcal{C}, \mathcal{I}'),
\end{array}$$

where ν is a fully faithful embedding such that $\nu \circ Y(\mathcal{I}) \cong Y(\mathcal{I}')$, and similarly for ν_c . Since \mathcal{C} is \mathcal{I} -cocomplete, $Y(\mathcal{I})$ in the bottom row has a left-adjoint enhanced functor $Y(\mathcal{I})^{\dagger} : \operatorname{Env}(\mathcal{C}, \mathcal{I}) \to \mathcal{C}$ provided by Corollary 8.5.7.15, and we have $\varepsilon' \cong Y(\mathcal{I})^{\dagger} \circ \operatorname{End}(\varepsilon, \mathcal{I})$. On the other hand, by Example 8.5.7.20, $\operatorname{Env}(\mathcal{C}_c, \mathcal{I}')$ in the top row is identified with $\mathcal{C}_c^{\iota} \operatorname{\mathcal{E}ets}^h$, and $\nu \circ Y(\mathcal{I})$ is then the Yoneda embedding $Y : \mathcal{C}_c \to \mathcal{C}_c^{\iota} \operatorname{\mathcal{E}ets}$, while $\operatorname{Env}(\varepsilon, \mathcal{I}')$ has a right-adjoint enhanced functor $\operatorname{Env}(\varepsilon, \mathcal{I}')^{\dagger}$. Then our two adjunctions provide a map

(8.5.7.4)
$$\nu_{c} \to \operatorname{Env}(\varepsilon, \mathcal{I}')^{\dagger} \circ \operatorname{Env}(\varepsilon, \mathcal{I}') \circ \nu_{c} \cong \operatorname{Env}(\varepsilon, \mathcal{I}')^{\dagger} \circ \nu \circ \operatorname{Env}(\varepsilon, \mathcal{I}) \\
\to \operatorname{Env}(\varepsilon, \mathcal{I}')^{\dagger} \circ \nu \circ \mathsf{Y}(\mathcal{I}) \circ \mathsf{Y}(\mathcal{I})^{\dagger} \circ \operatorname{Env}(\varepsilon, \mathcal{I}) \cong \varepsilon^{\dagger} \circ \varepsilon',$$

where we denote $\varepsilon^{\dagger} = \operatorname{Env}(\varepsilon, \mathcal{I}')^{\dagger} \circ \mathsf{Y}(\mathcal{I}')$, and the map (8.5.7.4) defines an adjunction between ε^{\dagger} and ε' over ν_c in the sense of Definition 2.2.2.6. Since ν_c is fully faithful, (2.2.2.4) reduces us to proving that (8.5.7.4) is an isomorphism. However, since $\mathcal{C}_c \subset \mathcal{C}$ is spanned by \mathcal{I} -projective enhanced objects, ε^{\dagger} is \mathcal{I} -right-exact, and then so is $\varepsilon^{\dagger} \circ \varepsilon'$. Then by the uniqueness part of Definition 8.5.7.13, it suffices to check that (8.5.7.4) becomes an isomorphism after restricting to $\mathcal{C}_c \subset \operatorname{Env}(\mathcal{C}_c, \mathcal{I})$, and this holds since ε is fully faithful.

8.6. Large categories.

8.6.1. Karoubi envelopes. We note that if an enhanced category \mathcal{E} is \mathcal{I} -cocomplete in the sense of Definition 8.5.7.1, for some $\mathcal{I} \subset \mathcal{C}at^h$, then the

universal property of Definition 8.5.7.13 provides an \mathcal{I} -right-exact enhanced functor $\operatorname{Env}(\mathcal{E},\mathcal{I}) \to \mathcal{E}$ left-adjoint to the embedding $Y(\mathcal{I})$, but $Y(\mathcal{I})$ itself is usually not an equivalence and not \mathcal{I} -right-exact. For instance, in Example 8.5.7.18, even if \mathcal{E} already has a terminal enhanced object, passing to $\mathcal{E}^{h>}$ just ignores this fact and formally adds a new one. As a consequence of this, the envelope construction is not idempotent, with one important exception: a subcategory $\mathcal{P} \subset \mathcal{C}at^h$ that controls idempotents.

Definition 8.6.1.1. An enhanced category \mathcal{E} is *enhanced-Karoubi-complete* if it is \mathcal{P} -cocomplete for the subcategory $\mathcal{P} = \{K(P)\} \subset \mathcal{C}at^h$, where P is as in Example 2.1.1.1. The *enhanced Karoubi envelope* of an enhanced category \mathcal{E} is its envelope $\operatorname{Env}(\mathcal{E}, \mathcal{P})$.

Lemma 8.6.1.2. Assume given an enhanced category \mathcal{E} .

- (i) A cone $E_>: K(P^>) \to \mathcal{E}$ of an enhanced functor $E: K(P) \to \mathcal{E}$ is universal if and only if it further extends to an enhanced functor $E_=: K(P^=) \to \mathcal{E}$, where $P^= \supset P^>$ is as in Example 2.2.5.3.
- (ii) Any limits or colimits of an enhanced functor $E:K(P)\to \mathcal{E}$ are preserved by any enhanced functor $F:\mathcal{E}\to \mathcal{E}'$.
- (iii) An enhanced category \mathcal{E} is enhanced-Karoubi-complete iff so is the enhanced-opposite category \mathcal{E}^{ι} , and this happens if and only if the embedding $Y(\mathcal{P}): \mathcal{E} \to \operatorname{Env}(\mathcal{E}, \mathcal{P})$ is an equivalence.
- (iv) For any enhanced category \mathcal{E} , $\mathcal{E}_{pt} \subset \operatorname{Env}(\mathcal{E}, \mathcal{P})_{pt}$ is Karoubi-dense, so that if \mathcal{E} is small, then so is $\operatorname{Env}(\mathcal{E}, \mathcal{P})$.

Proof. In (i), note that $P \cong P^o$ is self-opposite, and so is $P^=$, so by passing to the enhanced-opposite categories and functors, we reduce the statement to a dual one for dual cones. Then by Lemma 8.5.3.8, it further suffices to consider the case when \mathcal{E} is complete, and in this case, it suffices to compute the right Kan extension $K(\varepsilon)_*E$ with respect to the embedding $\varepsilon: P \to P^=$ by (8.5.3.2), and use the uniqueness of retracts. Then (ii) immediately follows from (i), and since $P^=$ is self-opposite, so does the first part of (iii). For the second part, the "if" part is tautological, and if \mathcal{E} is enhanced-Karoubi-complete, then by (ii), any functor $\mathcal{E} \to \mathcal{E}'$ to an enhanced-Karoubi-complete \mathcal{E}' factors uniquely through $y = Y(\mathcal{P})$. Thus we have an enhanced functor $y': \operatorname{Env}(\mathcal{E}, \mathcal{P}) \to \mathcal{E}$ such that $y' \circ y \cong \operatorname{id}$, and then by uniqueness, $y \circ y' \cong \operatorname{id}$ as well. Finally, for (iv), let $\operatorname{Env}(\mathcal{E}, \mathcal{P})' \subset \operatorname{Env}(\mathcal{E}, \mathcal{P})$ be the full enhanced subcategory corresponding

to the Karoubi closure of \mathcal{E}_{pt} in $Env(\mathcal{E},\mathcal{P})_{pt}$; then $Env(\mathcal{E},\mathcal{P})'$ is enhanced-Karoubi-complete by (i), so again, $Env(\mathcal{E},\mathcal{P})' = Env(\mathcal{E},\mathcal{P})$ by (ii) and the unique extension property of envelopes.

Example 8.6.1.3. The taulotogical projection $v:K(P)\to\operatorname{pt}^h$ of course factors through the embedding $K(P)\to K(P^=)$, and then Lemma 8.6.1.2 (i) and (8.5.3.2) immediately show that for any enhanced category $\mathcal E$ and enhanced functor $E:\operatorname{pt}^h\to\mathcal E$, the Kan extension v_*v^*E exists, and the adjunction map $E\to v_*v^*E$ is an isomorphism. Therefore v is a localization in the sense of Definition 8.5.5.7, so that K(P) is hyperconnected. In particular, this means that any enhanced groupoid is Karoubi-closed. By Lemma 8.6.1.2 (ii) and Lemma 8.5.7.9, this implies that any enhanced family of groupoids $\mathcal E\to\mathcal C$ over a Karoubi-closed base $\mathcal C$ is itself Karoubi-closed. In fact, the embedding $K(P)\to K(P^=)$ itself is a localization, but it is not hyperconnected (a fully faithful enhanced functor is hyperconnected only if it is an equivalence).

Example 8.6.1.4. Lemma 8.6.1.2 (iv) does *not* mean that $\text{Env}(\mathcal{E}, \mathcal{P})_{pt}$ is the unenhanced Karoubi closure of \mathcal{E}_{pt} ; in fact, $\text{Env}(\mathcal{E}, \mathcal{P})_{pt}$ need not be Karoubi-complete. This is because not all functors $P \to \mathcal{E}_{pt}$ lift to enhanced functors from K(P) to \mathcal{E} . This happens already for $\mathcal{E} = \mathcal{S}ets^h$, and in fact, already for the full subcategory in $\mathcal{S}ets^h$ spanned by the usual unenhanced groupoids. A counterexample is a group G equipped with an endomorphism $p: G \to G$ such that p^2 is conjugate to p, but p is not conjugate to a projector.

As Example 8.6.1.4 shows, constructing enhanced functors $K(P) \to \mathcal{E}$ to some enhanced category \mathcal{E} is non-trivial. In fact, the difficulty is essential, since K(P) does not admits a finite universal object — thus lifting a projector in \mathcal{E}_{pt} to an enhanced projector in \mathcal{E} requires providing an infinite amount of additional data. However, the situation is much better for projectors that have an image. Namely, consider again the category $P^=$ of Example 2.2.5.3, with its objects pt, $o \in P^+$, and note that the comma-fiber $P^=$ /pt can be identified with the ordinal [2] — the object $a: o \to \mathsf{pt}$ corresponds to $1 \in [2]$, and $0, 2 \in [2]$ are $f: \mathsf{pt} \to \mathsf{pt}$ for $f = \mathsf{id}$ and f = p. Then the fibration $\sigma: [2] \cong P^=/\mathsf{pt} \to P^=$ fits into a cartesian square

where $m:[1] \to [2]$ is the embedding onto $\{0,2\} \subset [2]$, and $\varepsilon(o): \operatorname{pt} \to P^=$ is the embedding onto $o \in P^=$.

Lemma 8.6.1.5. The commutative square (8.6.1.1) induces an enhanced-cocartesian square of small enhanced categories.

Proof. The fibers of the fibration $\sigma: [2] \to P^=$ are given by $([2])_{pt} \cong pt$ and $([2])_o \cong [1]$. Therefore by (8.5.3.2), for any enhanced category \mathcal{E} , the Kan extension $K(\sigma)_*KE'$ exists for any enhanced functor $E': K([2]) \to \mathcal{E}$, and $E \cong K(\sigma)_*K(\sigma)^*E$ for any enhanced functor $E: K(P^=) \to \mathcal{E}$, so that $K(\sigma)$ is a localization. Moreover, an enhanced functor $E': K([2]) \to \mathcal{E}$ lies in the essential image of the fully faithful embedding $K(\sigma)^*$ iff the adjunction map $K(\sigma)^*K(\sigma)_*E' \to E'$ is an isomorphism, this always holds over pt ∈ $P^=$, and over $o \in P^=$, this holds iff $K(m)^*E'$ lies in the essential image of $K(e)^*$ by virtue of (8.5.1.5). We are then done by Lemma 8.3.4.4.

By virtue of Lemma 8.6.1.5, for any enhanced category \mathcal{E} , any retract of an object $e \in \mathcal{E}_{pt}$ gives rise to an enhanced functor $K(P^{=}) \to \mathcal{E}$, uniquely up to an isomorphism. Here is one curious application of this fact.

Lemma 8.6.1.6. Assume given a Karoubi-closed small enhanced category C such that the identity functor $id : C \to C$ admits a cone. Then C has a terminal enhanced object.

Proof. Let $\alpha: \mathcal{C} \to \mathcal{C}^{h>}$ be the embedding, and let $\beta: \mathcal{C}^{h>} \to \mathcal{C}$ be the cone of $id: \mathcal{C} \to \mathcal{C}$, so that we have an isomorphism $id \cong \beta \circ \alpha$. Consider the enhanced functor $K(P^{=}) \to Cat^{h}$ provided by Lemma 8.6.1.5, sending o resp. pt to C resp. $\mathcal{C}^{h>}$ and a, b to α , β , and let $\pi^{=}:\mathcal{C}^{+}\to K(P^{=})$ be the corresponding enhanced cofibration with fibers C and $C^{h>}$. Note that $C^{h>}$ is [1]-coaugmented, with fibers C, pt^h, so it is Karoubi-closed by Lemma 8.5.7.9, and then so is C^{-} , by the same Lemma 8.5.7.9. Now let $\varepsilon: P \to P^{=}$ be the embedding. Then the only enhanced fiber of the induced cofibration $\pi: K(\varepsilon)^*\mathcal{C}^= \to K(P)$ is $\mathcal{C}^{h>}$, and it has an enhanced terminal object, so by Lemma 8.4.3.3, π admits a rightadjoint enhanced section $s: K(P) \to K(\varepsilon)^* \mathcal{C}^=$. Since the enhanced category $\mathcal{C}^{=}$ is Karoubi-closed, $K(\varepsilon) \circ s : K(P) \to K(\varepsilon)^* \mathcal{C}^{=} \to \mathcal{C}^{=}$ extends to a section $s^{=}: K(P^{=}) \to \mathcal{C}^{=}$ of the cofibration $\pi^{=}$ by Lemma 8.6.1.2 (i). But since s is the terminal enhanced object in $Sec^h(K(P), K(\varepsilon)^*C^=)$, its extension $s^=$ is the terminal enhanced object in $Sec^h(K(P^=), C^=)$ by the same Lemma 8.6.1.2 (i), so that the section $s^{=}$ is right-adjoint to the projection $\pi^{=}$. Then $s^{=}(o)$ is the terminal enhanced object in $\mathcal{C} = \mathcal{C}_o^+$.

Corollary 8.6.1.7. For any Karoubi-closed enhanced category \mathcal{C} and full subcategory $\mathcal{I} \subset \operatorname{Cat}^h$, an enhanced object in the envelope $\operatorname{Env}(\mathcal{C},\mathcal{I})$ of Lemma 8.5.7.14 is \mathcal{I} -projective iff it lies in the image of the full embedding $Y(\mathcal{I}): \mathcal{C} \to \operatorname{Env}(\mathcal{C},\mathcal{I})$.

Proof. The "if" part is clear: for any $E = Y(\mathcal{I})(c)$, $c \in \mathcal{C}_{pt}$, the enhanced functor $Y(C^{\iota} Sets^{h}, E) : Env(C, \mathcal{I}) \subset C^{\iota} Sets^{h} \to Sets^{h}$ is evaluation at c. Conversely, assume given some \mathcal{I} -projective $E \in \text{Env}(\mathcal{C}, \mathcal{I}) \subset \mathcal{C}^{\iota} \operatorname{\mathcal{S}ets}^h$, with the corresponding enhanced family of groupoids $\pi: \mathcal{E} \to \mathcal{C}$, and replace \mathcal{I} with its colim-closure so that $\mathcal{E} \in \mathcal{I}$ by Lemma 8.5.7.14. Then $E \cong \pi_! \mathsf{pt}^h$ by Example 8.5.2.13, and since $\operatorname{pt}^h \cong \operatorname{colim}_{\mathcal{E}}^h \mathsf{Y}(\mathcal{E})$ tautologically, we have $E \cong \operatorname{colim}_{\mathcal{E}}^h \pi_! \circ \mathsf{Y}(\mathcal{E})$. Since $\mathcal{E} \in \mathcal{I}$, $Y(\mathcal{C}^{\iota} \mathcal{S}ets^{h}, \mathcal{E})$ preserves this colimit. Enhanced objects in the enhanced groupoid $Y(C^t Sets^h, E)(E)$ are enhanced morphisms $E \to E$, so by Lemma 8.5.2.9, the identity morphism id : $E \rightarrow E$ factors through a map $f: E \cong \pi_! \operatorname{pt}^h \to \pi_! Y(\mathcal{E}, e)$ for some $e \in \mathcal{E}_{pt}$, and then by (8.5.2.6), $f \cong \pi_! f'$ for an enhanced map $f': pt^h \to Y(\mathcal{E}, e)$. But then pt^h is the vertex of a universal cone for $Y(\mathcal{E}): \mathcal{E} \to \mathcal{E}^{\iota} \operatorname{Sets}^{h}$, and f' gives rise to another cone for $Y(\mathcal{E})$, with vertex $Y(\mathcal{E},e)$. This cone then takes values inside the image of the full embedding $Y(\mathcal{E})$, so effectively, we obtain a cone $\mathcal{E}^{h>} \to \mathcal{E}$ of the identity functor id : $\mathcal{E} \to \mathcal{E}$. But since C is Karoubi-closed, E is Karoubi-closed by Example 8.6.1.3, and then *E* lies in the essential image of $Y(\mathcal{E})$ by Lemma 8.6.1.6 and Lemma 8.4.6.2. \square

Lemma 8.6.1.2 (iv) shows that the Karoubi envelope $\text{Env}(-, \mathcal{P})$ provides a well-defined functor $\text{Cat}^h \to \text{Cat}^h$. This functor is not especially well-behaved; in particular, it does not always preserve semicartesian squares (for a trivial example already in the unenhanced setting, note that $\text{pt} \times_{P^=} P \cong \varnothing$, where $\text{pt} \to P^=$ is the embedding $\varepsilon(o)$). However, this does not happen when one of the enhanced functors in the square is an enhanced fibration or cofibration.

Lemma 8.6.1.8. Assume given a semicartesian square (8.4.1.11) such that π is an enhanced fibration or cofibration in the sense of Definition 8.4.2.1. Then the corresponding commutative square of Karoubi envelopes $\text{Env}(-, \mathcal{P})$ is semicartesian.

Proof. Since $\text{Env}(\mathcal{C}, \mathcal{P})^{\iota} \cong \text{Env}(\mathcal{C}^{\iota}, \mathcal{P})$ for any \mathcal{C} , it suffices to consider the case of enhanced fibrations. Furthermore, since a functor is an epivalence iff it is an epivalence over any small subcategory in its target, we may assume that \mathcal{E}' and \mathcal{E} are small, and then by Lemma 8.4.2.2, we can assume the same for \mathcal{C} , hence also for \mathcal{C}' . Then (8.4.1.11) induces a fully faithful embedding

(8.6.1.2)
$$\operatorname{Env}(\mathcal{C}',\mathcal{P}) \to \operatorname{Env}(\mathcal{E}',\mathcal{P}) \times_{\operatorname{Env}(\mathcal{E},\mathcal{P})}^{h} \operatorname{Env}(\mathcal{C},\mathcal{P}),$$

and it suffices to check that it is essentially surjective. Explicitly, an enhanced object in the target of the enhanced functor (8.6.1.2) is represented by a triple

 $\langle e,c,\alpha\rangle$ of enhanced functors $e:K(P)\to\mathcal{E}'$, $c:K(P)\to\mathcal{C}$ and an isomorphism $\alpha:\operatorname{colim}_P^h(\varphi\circ e)\to \lim_P^h(\pi\circ c)$. Such an isomorphism lifts to a map $\beta:\varphi\circ e\to\pi\circ c$ such that $\operatorname{colim}_P^h(\beta)=\operatorname{id}$, and then since $\operatorname{\mathcal{F}un}^h(K(P),-)$ sends enhanced fibrations to enhanced fibrations and semicartesian products to semicartesian products, $\langle e,\beta^*c,\operatorname{id}\rangle$ lifts to an enhanced object $c'\in\operatorname{\mathcal{F}un}^h(K(P),\mathcal{C})'_{\operatorname{pt}}$, thus an enhanced functor $c':K(P)\to\mathcal{C}'$ such that $\operatorname{colim}_P^hc'\in\operatorname{Env}(\mathcal{C}',\mathcal{P})_{\operatorname{pt}}$ is sent to $\langle c,e,\alpha\rangle$ under (8.6.1.2).

8.6.2. Filtered colimits. While there are plenty of full subcategories in Cat^h that are colim-dense in the sense of Definition 8.5.7.10, they are usually obtained as the colim-closure of some explicit subcategory, and do not admit an explicit description themselves (note that even $Cat^h_{\kappa} \subset Cat^h$ is not colim-closed since by Example 8.5.5.3, it does not satisfy Lemma 8.5.7.11 (i)). Remarkably, there is one exception, or in fact, one exception for any regular cardinal κ .

Definition 8.6.2.1. For any regular cardinal κ , an enhanced category \mathcal{C} is κ -filtered if any enhanced functor $E: \mathcal{E} \to \mathcal{C}$ from some $\mathcal{E} \in \mathsf{Cat}^h_{\kappa}$ admits a cone. An enhanced category \mathcal{C} is *filtered* if it is κ -filtered for the smallest regular cardinal κ .

Example 8.6.2.2. For any category I, an enhanced functor $\mathcal{E} \to K(I)$ factors through the truncation $K(\mathcal{E}_{pt})$ by Proposition 8.1.2.1, so K(I) is filtered iff so is I. For a partially ordered set I, K(I) is κ -filtered iff I is κ -directed in the sense of Definition 3.1.6.1.

Example 8.6.2.3. Let P be the universal idempotent category of Example 2.1.1.1. Then id : $P \to P$ admits a cone $P^> \to P$. Thus *any* enhanced functor $\mathcal{E} \to K(P)$ admits a cone, and K(P) is κ -filtered for any κ .

Lemma 8.6.2.4. Assume given an enhanced cofibration $\pi: \mathcal{C}' \to \mathcal{C}$ such that for some regular cardinal κ , \mathcal{C} is κ -filtered, and the enhanced fiber \mathcal{C}'_c is κ -filtered for any enhanced object $c \in \mathcal{C}_{pt}$. Then \mathcal{C}' is κ -filtered.

Proof. Use (8.5.7.1) and exactly the same argument as in Lemma 8.5.7.9 — the only difference is that we need any enhanced object in the cone category, not necessarily an initial one, so we do not need to require that the transition functors are right-exact.

Lemma 8.6.2.5. An enhanced category C is κ -filtered iff for any $I \in \operatorname{Pos}_{\kappa}^+$, any enhanced functor $K(I) \to C$ admits a cone. A κ -filtered category is non-empty. For any small κ -filtered enhanced category C and enhanced functor $E : \mathcal{E} \to C$, $\mathcal{E} \in \operatorname{Cat}_{\kappa}^h$, the enhanced category C one (E) is κ -filtered.

Proof. For the first claim, note that if an enhanced functor $\gamma: \mathcal{E}' \to \mathcal{E}$ is a localization in the sense of Example 8.5.5.11, then $\gamma^*: \mathcal{C}one(E) \to \mathcal{C}one(\gamma^*E)$ is an equivalence for any $E: \mathcal{E} \to \mathcal{C}$, and apply Proposition 8.3.3.4. The second claim is obvious (take $\mathcal{E} = \emptyset$). For the third claim, the product of two κ-bounded enhanced categories is κ-bounded; then to obtain a cone for an enhanced functor $E': \mathcal{E}' \to \mathcal{C}one(E)$, it suffices to take a cone for the corresponding enhanced functor $\mathcal{E}' \times {}^h \mathcal{E}^{h>} \to \mathcal{C}$.

Lemma 8.6.2.6. Assume given a small κ -filtered enhanced category C and an enhanced functor $X: C \to Sets$, with the corresponding enhanced cofibration $\pi: C^{\perp}X \to C$. Then $C' = C^{\perp}X$ is κ -filtered if and only if it is hyperconnected (or equivalently, $\operatorname{colim}_C^h X \cong \operatorname{pt}^h$).

Proof. For the "only if" part, we may replace \mathcal{C}' with \mathcal{C} . The the total localization functor $\lambda: \mathcal{C} \to \mathcal{H}^{\natural}(\mathcal{C})$ of (8.5.2.1) is an enhanced cofibration by Example 8.4.2.5, and for any $J \in \operatorname{Pos}_{\kappa}$ and $\gamma: K(J) \to \mathcal{H}^{\natural}(\mathcal{C})$, $\gamma^*\mathcal{C}$ is a J-coaugmented enhanced category with κ -filtered fibers. So it has a section by Lemma 8.6.2.5, and then since \mathcal{C} is κ -filtered, this section has a cone that projects to a cone of γ . Thus in particular, for any finite $J \in \operatorname{pos} \subset \operatorname{Pos}_{\kappa}$ with the projection $p: J \to \operatorname{pt}$, the transition map $p^*: \pi_0(\mathcal{H}^{\natural}(\mathcal{C})_{\operatorname{pt}}) \to \pi_0(\mathcal{H}^{\natural}(\mathcal{C})_J)$ is surjective, and then by additivity, $\mathcal{H}^{\natural}(\mathcal{C}_J)$ is connected for any such J, so that $\mathcal{H}^{\natural}(\mathcal{C}) \cong \operatorname{pt}^h$ by Corollary 8.3.1.6.

For the "if" part, assume given an enhanced functor $E: \mathcal{E} \to \mathcal{C}'$ from some $\mathcal{E} \in \operatorname{Cat}^h_\kappa$. Then if \mathcal{C}' is hyperconnected, Lemma 8.5.2.8 provides a square (8.5.2.2), and if we let $\widetilde{\mathcal{E}}$ be the V-coaugmented category obtained by removing \mathcal{C} from this square, then $\widetilde{\mathcal{E}}$ is still κ -bounded. We then have the enhanced functor $\widetilde{\gamma}:\widetilde{\mathcal{E}}\to\mathcal{C}'$, and the composition $\pi\circ\widetilde{\gamma}:\widetilde{\mathcal{E}}\to\mathcal{C}$ has a cone with some vertex c. This can be restricted to a cone $\gamma=(\pi\circ E)_>$ for $\pi\circ E$, and since \mathcal{C}'_c is an enhanced groupoid, the corresponding functor $\nu(\gamma):\mathcal{E}\to\mathcal{C}'_c$ of (8.5.7.1) factors through the total localization $\mathcal{H}^{\natural}(\mathcal{E})$. But since η in (8.5.2.2) is h-invertible, while β is h-trivial, this means that $\nu(\gamma):\mathcal{E}\to\mathcal{C}'_c$ factors through pt^h . Therefore it admits a cone, and by (8.5.7.1), so does E.

Example 8.6.2.7. Take $C = \mathsf{pt}^h$. Then Lemma 8.6.2.6 says that a small enhanced groupoid C is κ -filtered iff $C \cong \mathsf{pt}^h$.

Corollary 8.6.2.8. An enhanced functor $\gamma: \mathcal{C} \to \mathcal{C}'$ between κ -filtered small enhanced categories is cofinal if and only if the comma-fiber $c \setminus_{\gamma}^{h} \mathcal{C}$ is κ -filtered for any enhanced object $c \in \mathcal{C}'_{\mathsf{pt}}$.

Proof. For any $c \in C_{pt}$, we have $c \setminus^h C \cong C^{\perp} \gamma^* Y(C', c)$, where the enhanced functor $Y(C', c) : C' \to Sets$ is as in (8.5.4.5).

Next, consider the following situation. Assume given a partially ordered set $J \in \operatorname{Pos}^+$ and J-coaugmented small enhanced categories \mathcal{C} , \mathcal{E} . For any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ over K(J), we can consider relative enhanced cones $E_{>}: \operatorname{C}(\gamma) \to \mathcal{E}$ over K(J) with respect to the coaugmentation enhanced functor $\gamma: \mathcal{C} \to K(J)$, and these form a small enhanced category $\operatorname{Cone}(E,J) = E \setminus_{\gamma^*}^h \operatorname{Sec}(J,\mathcal{E})$. For any $J' \in \operatorname{Pos}_\kappa$ equipped with a map $f: J' \to J$, we then have the functor

$$(8.6.2.1) K(f)^* : Cone(E, J) \rightarrow Cone(K(f)^*E, J')$$

given by restriction with respect to $K(f):K(J')\to K(J)$.

Lemma 8.6.2.9. Assume given a left- κ -bounded $J \in \operatorname{Pos}^+$ and J-coaugmented small enhanced categories \mathcal{C} , \mathcal{E} such that for any $j \in J$, \mathcal{C}_j is κ -bounded and \mathcal{E}_j is κ -filtered. Then any enhanced functor $E: \mathcal{C} \to \mathcal{E}$ over K(J) admits a relative enhanced cone $E_{>}: C(\gamma) \to \mathcal{E}$ over K(J) with respect to the coaugmentation $\gamma: \mathcal{C} \to K(J)$, and for any left-closed embedding $f: J' \to J$, the functor (8.6.2.1) has non-empty enhanced fibers.

Proof. The second claim trivially implies the first one (take $J' = \varnothing$). Moreover, for the second claim, Lemma 8.2.4.8 and the standard induction on skeleta reduce us to the case when f is the embedding $f: J \to J^>$ for some $J \in \operatorname{Pos}_{\kappa}$. Then $\mathsf{C}_h(\gamma)$ is $[1]^2$ -coaugmented, with the second coaugmentation $\mathsf{C}_h(\gamma) \to K([1])$ induced by the cofibration $J^> \to [1]$, and if we identify $[1]^2 \cong \mathsf{V}^>$ via an embedding $\varepsilon: \mathsf{V} \to [1]^2$ and let $\mathsf{C}_h(\gamma)_+ = \varepsilon^*\mathsf{C}_h(\gamma)$, $J_+ = \varepsilon^*([1] \times J^>)$, then $\mathsf{C}_h(\gamma) \cong \mathsf{C}_h(\gamma)_+^{h>}$ and $J^> \times [1] = J_+^>$. We are then given an enhanced functor $\mathsf{C}_h(\gamma)_+ \to K([1]) \times^h \mathcal{E}$ over $K(J_+)$, and we need to show that it admits a cone over $K(J_+^>)$. Since $\mathsf{C}_h(\gamma)_+$ is κ -bounded, this immediately follows from (8.5.7.1). □

Corollary 8.6.2.10. For any $J \in \operatorname{Pos}_{\kappa}$ and J-coaugmented small enhanced category \mathcal{E} such that \mathcal{E}_j is κ -filtered for any $j \in J$, the enhanced category $\operatorname{Sec}^h(J,\mathcal{E})$ is κ -filtered, and for any map $f: J' \to J$ im $\operatorname{Pos}_{\kappa}$, the restriction functor $f^*: \operatorname{Sec}^h(J,\mathcal{E}) \to \operatorname{Sec}(J',\mathcal{E})$ is cofinal.

Proof. The first claim is clear. For the second claim, for any enhanced section $e: K(J') \to \mathcal{E}$, let J'' = C(f) and $\mathcal{E}'' = C_h(e)$. Then \mathcal{E}'' is J''-coaugmented, satisfies the assumptions, and $e \setminus_{f^*}^h \mathcal{S}ec^h(J) \cong \mathcal{S}ec^h(J'', \mathcal{E}'')$, so we are done by Corollary 8.6.2.8.

Example 8.6.2.11. If J = [1], then Corollary 8.6.2.10 says that for any enhanced functor $C_0 \to C_1$ between κ -filtered small enhanced categories, the commacategory $C_0/{}^hC_1$ is κ -filtered.

Corollary 8.6.2.12. For any $J \in \operatorname{Pos}_{\kappa}$ and κ -filtered small enhanced category C, the enhanced functor $\gamma^* : C \to J_h^o C$ induced by $\gamma : J^o \to \operatorname{pt}$ is cofinal.

Proof. The enhanced category $J_h^o \mathcal{C} \cong Sec(J^o, K(J^o) \times^h \mathcal{C})$ is κ -filtered by Corollary 8.6.2.10, and then the comma-fibers $E \setminus_{\gamma^*}^h \mathcal{C} \cong Cone(E)$ are κ -filtered by Lemma 8.6.2.5, so that γ^* is cofinal by Corollary 8.6.2.8.

Corollary 8.6.2.13. Assume given a filtered small enhanced category C and enhanced functors $X_0, X_1 : C \to Cat^h$, with the corresponding enhanced cofibrations $C_l = C^{\perp}X_l \to C$, l = 0, 1. Then if C_0 and C_1 are non-empty, $C_0 \times_C^h C_1$ is non-empty as well.

Proof. We have $C_0 \times_{\mathcal{C}}^h C_1 \cong \mathcal{C}^\perp \delta^*(X_0 \times^h X_1)$, where $\delta : \mathcal{C} \to \mathcal{C} \times^h \mathcal{C}$ is the diagonal embedding. If C_0 , C_1 are not empty, then $\operatorname{colim}_{\mathcal{C} \times^h \mathcal{C}}^h X_0 \times^h X_1$ is not empty either, and δ is cofinal by Corollary 8.6.2.12 (for $J = \{0, 1\}$).

Lemma 8.6.2.14. Let $\gamma: \mathcal{C}' \to \mathcal{C}$ be a fully faithful enhanced functor such that \mathcal{C} is a small κ -filtered enhanced category, and the comma-fiber $c \setminus_{\gamma}^{h} \mathcal{C}'$ is non-empty for any $c \in \mathcal{C}_{pt}$. Then \mathcal{C}' is κ -filtered, and γ is cofinal.

Proof. For the first claim, any enhanced functor $E: \mathcal{E} \to \mathcal{C}'$ from some $\mathcal{E} \in \operatorname{Cat}^h_\kappa$ admits a cone $E_>: \mathcal{E} \to \mathcal{C}$, with some vertex $c \in \mathcal{C}$. Then since $c \setminus_{\gamma}^h \mathcal{C}'$ is non-empty, we can find $c' \in \mathcal{C}'$ equipped with an enhanced morphism $f: c \to \gamma(c')$, and since the projection $Cone(E) \to \mathcal{C}$ sending a cone to its vertex is a cofibration, we can replace $E_>$ with $f_!(E_>)$ and insure that it factors through $\mathcal{C}' \subset \mathcal{C}$. For the second claim, the functor $c \setminus_{\gamma}^h \mathcal{C}' \to c \setminus_{\gamma}^h \mathcal{C}$ induced by γ is also fully faithful and has non-empty right comma-fibers, and then $c \setminus_{\gamma}^h \mathcal{C} \cong Cone(\varepsilon^h(c))$ is κ -filtered by Lemma 8.6.2.5, so $c \setminus_{\gamma}^h \mathcal{C}'$ is κ -filtered by the first claim. We are done by Corollary 8.6.2.8.

Corollary 8.6.2.15. For any cofinal enhanced functor $\gamma: \mathcal{C}' \to \mathcal{C}$ between κ -filtered small enhanced categories, the embedding $\eta: \mathcal{C}' \to \mathcal{C}'/^h_{\gamma}\mathcal{C}$ is cofinal.

Proof. The tagret of the fully faithful embedding η is κ -filtered by Example 8.6.2.11, so by Lemma 8.6.2.14, it suffices to check that η has non-empty enhanced right comma-fibers. Take some enhanced object \widetilde{c} in $\mathcal{C}/_{\gamma}^{h}\mathcal{C}$, with projections $c' = \sigma(\widetilde{c}) \in \mathcal{C}_{pt}'$, $c = \tau(\widetilde{c}) \in \mathcal{C}$, and note that we have a semicartesian square

(8.6.2.2)
$$\widetilde{c} \setminus_{\eta}^{h} \mathcal{C}' \longrightarrow c' \setminus_{\eta}^{h} \mathcal{C}' \\
\downarrow \qquad \qquad \downarrow^{\rho} \\
c \setminus_{\gamma}^{h} \mathcal{C}' \xrightarrow{\lambda} \gamma(c') \setminus_{\gamma}^{h} \mathcal{C}',$$

where λ is induced by the enhanced morphism $\gamma(c') \to c$, and ρ is induced by the enhanced functor γ . Now, $c' \setminus^h \mathcal{C}'$ in (8.6.2.2) is trivially non-empty — it has an initial enhanced object — and by Corollary 8.6.2.8, $c \setminus^h_{\gamma} \mathcal{C}'$ is filtered, thus non-empty since γ is cofinal. But ρ and λ are enhanced cofibrations, and $\gamma(c') \setminus^h_{\gamma} \mathcal{C}'$ is filtered as well, so we are done by Corollary 8.6.2.13.

Proposition 8.6.2.16. For any regular cardinal κ , a small enhanced category \mathcal{C} is κ -filtered iff $\operatorname{colim}_{\mathcal{C}}^h : \mathcal{F}un(\mathcal{C}, \mathcal{S}ets^h) \to \mathcal{S}ets^h$ preserves κ -bounded limits.

Proof. For the "if" part, assume that $\operatorname{colim}_{\mathcal{C}}^h$ preserves κ -bounded limits. Then it suffices to check that $\operatorname{Cone}(E)$ is hyperconnected, hence non-empty for any enhanced functor $E: \mathcal{E} \to \mathcal{C}$ from a κ -bounded \mathcal{E} . But if we let $E': \mathcal{E}^\iota \times^h \mathcal{C} \to \operatorname{Sets}^h$ be the composition of $E^\iota \times^h$ id with the Yoneda pairing (8.4.6.4) for \mathcal{C} , then $\mathcal{H}^{\natural}(\operatorname{Cone}(E)) \cong \operatorname{colim}_{\mathcal{C}}^h \operatorname{lim}_{\mathcal{E}^\iota}^h E'$, whereas $\operatorname{lim}_{\mathcal{E}^\iota}^h \operatorname{colim}_{\mathcal{C}}^h E' \cong \operatorname{lim}_{\mathcal{E}^\iota}^h \mathcal{H}^{\natural}(E(e) \setminus^h \mathcal{C}) \cong \operatorname{lim}_{\mathcal{E}^\iota}^h \operatorname{pt}^h \cong \operatorname{pt}^h$, since all the comma-fibers $c \setminus^h \mathcal{C}$, $c \in \mathcal{C}_{\operatorname{pt}}$ are hyperconnected.

Conversely, assume that \mathcal{C} is κ -filtered. Then by Lemma 8.5.7.12, it suffices to check that $\operatorname{colim}_{\mathcal{C}}^h$ preserves $\operatorname{limits\ lim}_J^h$ in $\operatorname{\mathcal{S}\mathit{ets}}^h$ over all $J \in \operatorname{Pos}_\kappa$. Fix such a J, assume given an enhanced functor $X: \mathcal{C} \times K(J) \to \operatorname{\mathcal{S}\mathit{ets}}^h$, and consider the corresponding map (8.5.3.3) of Example 8.5.3.12, with $\mathcal{C}_0 = \mathcal{C}$, $\mathcal{C}_1 = K(J)$. Then α is invertible by Corollary 8.6.2.12, and β is induced by $\operatorname{\mathcal{S}\mathit{ec}}^h(J,\pi)$. However, π is an enhanced cofibration with hyperconnected fibers that are then κ -filtered by Lemma 8.6.2.6, and therefore $\operatorname{\mathcal{S}\mathit{ec}}^h(J,\pi)$ has κ -filtered fibers by Corollary 8.6.2.10. Thus again by Lemma 8.6.2.6, $\beta = \mathcal{H}^{\natural}(\operatorname{\mathcal{S}\mathit{ec}}^h(J,\pi))$ is invertible as well.

Corollary 8.6.2.17. For any regular cardinal κ , the full enhanced subcategory $\mathcal{F}_k \subset Cat^h$ spanned by small κ -filtered enhanced categories is colim-closed in the sense of Definition 8.5.7.10.

Proof. By Corollary 8.5.7.16, it suffices to check that \mathcal{F}_{κ} satisfies the conditions (i)-(iii) of Lemma 8.5.7.11. Indeed it does: (iii) is Lemma 8.6.2.4, (ii) is Lemma 8.6.2.5, and (i) immediately follows from Proposition 8.6.2.16.

8.6.3. Inductive completions and compact objects. Let us now discuss what happens when one adds filtered colimits to an enhanced category using the envelope construction of Lemma 8.5.7.14.

Definition 8.6.3.1. For any regular cardinal κ , an enhanced category \mathcal{E} is κ -filtered-cocomplete if it is \mathcal{F}_{κ} -cocomplete with respect to the full enhanced subcategory $\mathcal{F}_{\kappa} \subset \mathcal{C}at^h$ of Corollary 8.6.2.17, and an enhanced functor $\mathcal{E} \to \mathcal{E}'$ between κ -filtered-cocomplete enhanced categories \mathcal{E} , \mathcal{E}' is κ -filtered-right-exact if it is \mathcal{F}_{κ} -right-exact. An enhanced object $e \in \mathcal{E}_{pt}$ in a κ -filtered-complete enhanced category \mathcal{E} is κ -compact if it is \mathcal{F}_{κ} -projective, and $\mathcal{C}omp_{\kappa}(\mathcal{E}) \subset \mathcal{E}$ is the full enhanced subcategory spanned by κ -compact objects. An enhanced category is filtered-cocomplete if it is κ -filtered-cocomplete for the countable cardinal κ , and then a κ -compact object in such a category is simply compact, and a κ -filtered-right-exact functor between such categories is filtered-right-exact. The κ -inductive completion of an enhanced category \mathcal{C} is the enhanced category $\mathcal{I}nd_{\kappa}(\mathcal{C}) = \operatorname{Env}(\mathcal{C}, \mathcal{F}_{\kappa})$, and $\mathcal{I}nd(\mathcal{C})$ is $\mathcal{I}nd(\mathcal{C})_{\kappa}$ for the countable cardinal κ .

Lemma 8.6.3.2. For any small enhanced category C and regular cardinal κ , an enhanced functor $X: C^{\iota} \to \mathcal{S}ets$ with the corresponding enhanced family of groupoids $CX \to C$ lies in $\mathcal{I}nd_{\kappa}(C) \subset C^{\iota} \mathcal{S}ets^h$ iff CX is κ -filtered.

Proof. Combine Lemma 8.5.7.14 and Corollary 8.6.2.17. □

Example 8.6.3.3. A cocomplete enhanced category is trivially κ -filtered-cocomplete for any κ ; in particular, this applies to the functor category $\mathcal{E}^{\iota} \operatorname{Sets}_{\kappa}^{h}$ for any small enhaced category \mathcal{E} .

For any κ -filtered-cocomplete enhanced category \mathcal{E} , the full embedding $\mathcal{C}omp_{\kappa}(\mathcal{E}) \to \mathcal{E}$ extends to an enhanced functor

(8.6.3.1)
$$Ind_{\kappa}(Comp_{\kappa}(\mathcal{E})) \to \mathcal{E},$$

and this functor is also fully faithful by Lemma 8.5.7.21.

Lemma 8.6.3.4. For any small enhanced category C and regular cardinal κ , say that an enhanced functor $X: C^{\iota} \to \mathcal{S}ets^h$ is κ -generated if we have $X \cong \gamma^{\mathfrak{o}}_{!}\mathsf{pt}^h$ for some

 $J \in \operatorname{Pos}_{\kappa}^+$ and enhanced functor $\gamma: K(J) \to \mathcal{C}$. Then $\operatorname{Comp}_{\kappa}(\mathcal{C}^{\iota}\operatorname{Sets}^h)$ is the Karoubi closure of the full subcategory in $\mathcal{C}^{\iota}\operatorname{Sets}^h$ spanned by κ -generated enhanced functors, and the fully faithful embedding (8.6.3.1) for $\mathcal{E} = \mathcal{C}^{\iota}\operatorname{Sets}^h$ is an equivalence.

Proof. Let $Comp'_{\kappa} \subset C^{\iota} \operatorname{Sets}^h$ be the Karoubi closure in question. Proposition 8.6.2.16 immediately implies that any κ -generated X is κ -compact in $C^{\iota} \operatorname{Sets}^h$, and that $Comp_{\kappa}(C^{\iota} \operatorname{Sets})$ is closed under κ -bounded limits, in particular Karoubi-closed. Thus $Comp'_{\kappa} \subset Comp_{\kappa}(C^{\iota}, \operatorname{Sets}^h)$, and then by Corollary 8.6.1.7, it suffices to prove that the fully faithful embedding $\operatorname{Ind}_{\kappa}(\operatorname{Comp'_{\kappa}}) \to C^{\iota} \operatorname{Sets}^h$ of Lemma 8.5.7.21 is essentially surjective. In other words, we have to show that any $X:C^{\iota} \to \operatorname{Sets}^h$ is a κ -filtered colimit of κ -generated functors. This is clear: by Proposition 8.3.3.4, we have $X \cong \gamma^{\varrho}_! \operatorname{pt}^h$ for some $J \in \operatorname{Pos}^+$ and $\gamma:K(J) \to C$, and then J is the κ -filtered colimit of its κ -bounded left-closed subsets.

Example 8.6.3.5. Take $C = \mathsf{pt}^h$. Then Lemma 8.6.3.4 says that $S \in \mathcal{S}ets^h$ is κ -compact iff it is κ -bounded.

Lemma 8.6.3.6. For any regular cardinals $\kappa < \kappa'$, the enhanced category $Sets^h_{\kappa}$ is κ' -filtered-cocomplete

Proof. Note that if C is an essentially small groupoid such that $\|C\| \ge \kappa$, then there exists a partially ordered set I of cardinality $|I| = \kappa$ and a functor $I \to \mathcal{C}$ that does not factor through an essentially small category \mathcal{C}' with $\|\mathcal{C}'\| < \kappa$. Indeed, if $|\pi_0(\mathcal{C})| \geq \kappa$, it suffices to let *I* be a discrete set *S* with $|S| = \kappa$ numbering mutually non-isomorphic objects in C. Otherwise, $|\pi_1(C,c)| \geq \kappa$ for some $c \in \mathcal{C}$, we can choose an injective map $S \to \pi_1(\mathcal{C},c)$, $|S| = \kappa$ that is not conjugate to any map that factors through a set S' with $|S'| < \kappa$, and then we can take as I the coproduct of S copies of the partially ordered set $\mathbb{V} = \mathsf{V}^o \sqcup_{\{0,1\}} \mathsf{V}^o$, glued together along say $0 \in \mathbb{V}$. Note also that in both cases, dim $I \leq 1$. Then for any small enhanced groupoid C that is not κ -bounded, we have $\|\mathcal{C}_I\| \geq \kappa$ for some finite partially ordered set J. We then have $I \in \operatorname{Pos}_{\kappa}$, $|I| = \kappa$, dim $I \leq 1$, and a functor $\gamma: I \to \mathcal{C}_I \cong (J_h^o \mathcal{C})_{pt}$ that does not factor through a smaller category, and since dim $I \leq 1$, γ lifts to an enhanced functor $\gamma':K(I)\to J_h^o\mathcal{C}$, or equivalently, $\gamma'':K(I\times J^o)\to\mathcal{C}$. Now if $\mathcal{C}\cong\operatorname{colim}_{\mathcal{E}}^h\mathcal{C}$ for some κ' -filtered \mathcal{E} and enhanced functor $C: \mathcal{E} \to \mathcal{S}ets^h_{\kappa'}$, with the corresponding enhanced cofibration $\mathcal{C}' \to \mathcal{E}$, then γ'' factors through \mathcal{C}' by Lemma 8.6.2.5, and then since \mathcal{E} is κ' -filtered, it factors through the enhanced fiber \mathcal{C}'_{e} for some $e \in \mathcal{E}_{pt}$. Since $\mathcal{C}'_e \in \mathcal{S}ets^h_{\kappa}$, this is a contradiction. We conclude that $\mathcal{S}ets^h_{\kappa} \subset \mathcal{S}ets^h$ is closed under κ' -filtered colimits, thus κ' -filtered cocomplete.

Corollary 8.6.3.7. For any regular cardinals $\kappa < \kappa'$, a Karoubi-closed κ -bounded enhanced category \mathcal{C} is κ' -filtered-cocomplete, and moreover, we have $Comp_{\kappa'}(\mathcal{C}) = \mathcal{I}nd_{\kappa'}(\mathcal{C}) = \mathcal{C}$.

Proof. It suffices to check that any $E \in \mathcal{I}nd_{\kappa'}(\mathcal{C}) \subset \mathcal{C}^{\iota} \operatorname{\mathcal{S}ets}^h$ actually lies in $\mathcal{C} \subset \mathcal{I}nd_{\kappa'}(\mathcal{C})$. Indeed, let $\pi : \mathcal{E} \to \mathcal{C}$ be the corresponding enhanced family of groupoids. Then \mathcal{E} is κ' -filtered by Corollary 8.6.2.17 and Karoubi-closed by Example 8.6.1.3, so by Lemma 8.4.6.2 and Lemma 8.6.1.6, it suffices to show that \mathcal{E} is κ -bounded. But then as in Corollary 8.6.1.7, $E \cong \operatorname{colim}_{\mathcal{E}}^h \pi_! \circ Y(\mathcal{E})$, and since \mathcal{C} is κ -bounded, $\pi_! \circ Y(\mathcal{E}) \cong Y(\mathcal{C}) \circ \pi : \mathcal{E} \to \mathcal{C}^{\iota} \operatorname{\mathcal{S}ets}^h$ factors through $\mathcal{C}^{\iota} \operatorname{\mathcal{S}ets}^h_{\kappa}$. It remains to apply Lemma 8.6.3.6.

Lemma 8.6.3.8. For any regular cardinal κ and κ -bounded $J \in \operatorname{PoSets}_{\kappa}$, C = K(J) is κ -filtered-cocomplete, and $\operatorname{Comp}_{\kappa}(C) = \operatorname{Ind}_{\kappa}(C) = C$. Moreover, for any κ -filtered small enhanced category \mathcal{E} and enhanced functor $E : \mathcal{E} \to C$, with colimit $j = \operatorname{colim}^h E \in J$, there exists a cofinal full enhanced subcategory $\mathcal{E}' \subset \mathcal{E}$ such that $E|_{\mathcal{E}'}$ factors through $\varepsilon^h(j) : \operatorname{pt}^h \to C$.

Proof. Since $J \in \text{PoSets}$, the Yoneda embedding $\mathcal{C} \to \mathcal{C}^\iota \operatorname{\mathcal{S}ets}^h$ factors through $\mathcal{C}^\iota K([1])$, where the enhanced full subcategory $K([1]) \subset \operatorname{\mathcal{S}ets}^h$ is spanned by \varnothing and pt^h. This full subcategory is obviously closed under κ -filtered colimits, so that $\mathcal{I}nd_\kappa(\mathcal{C}) \subset \mathcal{C}^\iota \operatorname{\mathcal{S}ets}^h$ lies inside $\mathcal{C}^\iota K([1]) \subset \mathcal{C}^\iota \operatorname{\mathcal{S}ets}^h$. Then as in Corollary 8.6.3.7, for any $X \in \mathcal{I}nd_\kappa(\mathcal{C})$, we have $\mathcal{C}X \cong K(J')$ for some left-closed subset $J' \subset J$, and this J' must be κ -directed, so that J' = J/j for some $j \in J$. This proves the first claim. For the second, take $X = E_!^o \operatorname{pt}^h \in \operatorname{Ind}_\kappa(\mathcal{C})$, identify $\mathcal{C}X = K(J/j)$, and note that the induced functor $E' : \mathcal{E} \to K(J/j)$ is then cofinal by Example 8.5.5.6, so that $\mathcal{E}' = \mathcal{E}_j \cong j \setminus^h \mathcal{E} \subset \mathcal{E}$ is cofinal by Lemma 8.6.2.6. □

Next, we want to show that $\mathcal{I}nd_{\kappa}$ commutes with some natural operations such that taking the comma-categories. This has to be stated carefully since even for a small enhanced category \mathcal{C} , $\mathcal{I}nd_{\kappa}(\mathcal{C})$ is often not small, so that comma-categories are not well-defined. However, for any $J \in \text{PoSets}$ and small J-augmented enhanced category \mathcal{C} , with transpose J-coaugmented enhanced category $\mathcal{C}_{h\perp}$, fibers \mathcal{C}_j , $j \in J$, and embeddings $e(j): \mathcal{C}_j \to \mathcal{C}$, we can consider the full enhanced subcategory

(8.6.3.2)
$$\mathcal{I}nd\mathcal{S}ec_{\kappa}^{h}(J^{o},\mathcal{C}_{h\perp}) \subset \mathcal{C}^{\iota}\,\mathcal{S}ets^{h}$$

spanned by enhanced functors $X: \mathcal{C}^{\iota} \to \mathcal{S}ets^{h}$ such that for any $j \in J$, $e(j)^{*}X \in \mathcal{I}nd_{\kappa}(\mathcal{C}_{j}) \subset \mathcal{C}_{j}^{\iota}\mathcal{S}ets$. Note that $\mathcal{I}nd\mathcal{S}ec_{\kappa}^{h}(J^{o},\mathcal{C}_{h\perp})$ is trivially κ -filtered-cocomplete.

Lemma 8.6.3.9. For any $J \in \operatorname{Pos}_{\kappa}^+$ and J^o -augmented small enhanced category \mathcal{C} , with the transpose J-coaugmented enhanced category $\mathcal{C}_{h\perp}$, we have $\operatorname{Ind}_{\kappa}(\operatorname{Sec}^h(J,\mathcal{C}_{h\perp})) \cong \operatorname{Ind} \operatorname{Sec}_{\kappa}^h(J,\mathcal{C}_{h\perp})$.

Proof. The relative Yoneda embedding (8.5.4.9) provides an enhanced functor

$$(8.6.3.3) Y(\mathcal{C}|J^o) : \mathcal{S}ec^h(J, \mathcal{C}_{h\perp}) \to \mathcal{C}^\iota \, \mathcal{S}ets^h,$$

and since it is functorial with respect to J and reduces to (8.4.6.1) for $J = \operatorname{pt}$, it factors through $\operatorname{IndSec}_{\kappa}^h(J, \mathcal{C}_{h\perp}) \subset \mathcal{C}^{\iota}\operatorname{Sets}^h$. Moreover, explicitly, (8.6.3.3) is given by (8.5.4.11), so since $\operatorname{tw}(J)$ is κ -bounded, (8.6.3.3) sends all enhanced objects to κ -compact objects by Proposition 8.6.2.16. Then by Lemma 8.5.7.21, (8.6.3.3) extends to a fully faithful enhanced functor

(8.6.3.4)
$$\mathcal{I}nd_{\kappa}(\mathcal{S}ec^{h}(J,\mathcal{C}_{h\perp})) \to \mathcal{I}nd\mathcal{S}ec^{h}_{\kappa}(J,\mathcal{C}_{h\perp}),$$

and it suffices to check that it is essentially surjective. Indeed, for any $X \in \mathcal{I}nd\mathcal{S}ec^h_\kappa(J,\mathcal{C}_{h\perp})$ and $j \in J$, the forgetful functor $\mathcal{C}X \to C \to K(J)$ is a J-augmentation, and for any $j \in J$, its enhanced fiber $(\mathcal{C}X)_j$ is κ -filtered by Lemma 8.6.3.2. Then by (8.5.4.12) and Corollary 8.6.2.10, so is the commacategory $\mathcal{S}ec^h(J,\mathcal{C}_{h\perp})/^h_{Y(\mathcal{C}|J)}X \cong \mathcal{S}ec^h(J,(\mathcal{C}X)_{h\perp})$, so to see that X lies in the essential image of (8.6.3.4), it suffices to see that $Y(\mathcal{C}X|J^o)_!\operatorname{pt}^h \cong \operatorname{pt}^h$. This can be checked after composing with $e(j)^*$ for any j, and since Y(-|J|) is functorial with respect to J, this amounts to checking that the evaluation enhanced functor $\operatorname{ev}_j: \mathcal{S}ec^h(J,(\mathcal{C}X)_{h\perp}) \to (\mathcal{C}X)_j$ is cofinal. This is again Corollary 8.6.2.10. \square

Corollary 8.6.3.10. For any $J \in \operatorname{Pos}_{\kappa}^+$ and small enhanced category C, we have $\operatorname{Ind}_{\kappa}(J_h^oC) \cong J_h^o\operatorname{Ind}_{\kappa}(C)$.

Proof. If we consider the constant augmentation $K(J) \times^h \mathcal{C} \to K(\mathcal{C})$, then $\mathcal{I}nd\mathcal{S}ec^h_{\kappa}(J^o, (K(J) \times^h \mathcal{C})_{h\perp}) \cong J^o_h \mathcal{I}nd_{\kappa}(\mathcal{C}).$

Example 8.6.3.11. Take J = [1]. For any enhanced functor $\gamma : \mathcal{C}_0 \to \mathcal{C}_1$ between small enhanced \mathcal{C}_0 , \mathcal{C}_1 , we can apply Lemma 8.6.3.9 to $\mathcal{C} = \mathsf{C}_h^\iota(\gamma)$. Then $\operatorname{Sec}^h([1],\mathcal{C}_{h\perp}) \cong \mathcal{C}_0/^h_{\gamma}\mathcal{C}_1$ by Lemma 8.4.1.4, and if $\operatorname{Ind}_{\kappa}(\mathcal{C}_l)$, l = 0,1 are small, then $\operatorname{Ind}\operatorname{Sec}^h_{\kappa}([1],\mathcal{C}) \cong \operatorname{Ind}_{\kappa}(\mathcal{C}_0)/^h_{\operatorname{Ind}_{\kappa}(\gamma)}\operatorname{Ind}_{\kappa}(\mathcal{C}_1)$ by (8.4.1.13).

Lemma 8.6.3.9 does not apply to right comma-categories directly (indeed, an analog of Corollary 8.6.2.10 for *J*-augmented categories is very wrong).

However, note that since for any *κ*-bounded partially ordered set *J*, we have $\mathcal{I}nd_{\kappa}(K(J)) \cong K(J)$ by Lemma 8.6.3.8, we have an enhanced functor

(8.6.3.5)
$$Ind_{\kappa}(\varphi): Ind(\mathcal{C}) \to K(J) = Ind_{\kappa}(K(J))$$

for any enhanced category \mathcal{C} and enhanced functor $\varphi : \mathcal{C} \to K(J)$. If we have another κ -bounded partially ordered set J' equipped with a map $f : J' \to J$, then (8.6.3.5) fits into a commutative square

(8.6.3.6)
$$\mathcal{I}nd_{\kappa}(\mathcal{C}') \longrightarrow \mathcal{I}nd_{\kappa}(\mathcal{C}) \\
\downarrow^{\mathcal{I}nd_{\kappa}(\varphi')} \downarrow \qquad \qquad \downarrow^{\mathcal{I}nd_{\kappa}(\varphi)} \\
K(J') \xrightarrow{K(f)} K(J),$$

where $C' = K(f)^*C$, with the induced projection $\varphi' : C' \to K(J')$.

Lemma 8.6.3.12. For any κ -bounded partially ordered set J and small enhanced category C equipped with an enhanced functor $\varphi : C \to K(J)$, and for any other κ -bounded partially ordered set J' and a map $f : J' \to J$, the square (8.6.3.6) is cartesian, and

(8.6.3.7)
$$\mathcal{I}nd_{\kappa}(Sec^{h}(J',\mathcal{C})) \cong Sec^{h}(J',\mathcal{I}nd_{\kappa}(\mathcal{C})).$$

Moreover, if φ is an augmentation or a coaugmentation, then so is the enhanced functor (8.6.3.5).

Proof. If $J' = \operatorname{pt}$, so that $f : \operatorname{pt} \to J$ is the embedding onto an element $j \in J$, then the corresponding embedding functor $e(j) : \mathcal{C}_j \to \mathcal{C}$ is fully faithful, thus induces a fully faithful functor

(8.6.3.8)
$$Ind_{\kappa}(C_{j}) \to Ind_{\kappa}(C)_{j}.$$

By Lemma 8.6.3.8, for any enhanced functor $E: \mathcal{E} \to K(J)$ from a κ -filtered \mathcal{E} such that $\operatorname{colim}_{\mathcal{E}}^h E = j$, we have E = j on a cofinal subcategory $\mathcal{E}' \subset \mathcal{E}$. Therefore (8.6.3.8) is essentially surjective, thus an equivalence. This proves the first claim for $J' = \operatorname{pt}$. By Corollary 8.6.3.10, we have $\mathcal{I}nd_{\kappa}(\mathcal{F}un^h(K(J),\mathcal{C})) \cong \mathcal{F}un^h(J,\mathcal{I}nd_{\kappa}(\mathcal{C}))$, so applying the first claim to (8.2.4.10) proves (8.6.3.7) for any $f:J'\to J$. This in turns proves that for any $f:J'\to J$, (8.6.3.6) is cartesian over $\operatorname{Pos}_{\kappa}^+ \subset \operatorname{Pos}^+$, so by Corollary 8.3.1.6, the first claim holds in full generality as soon as \mathcal{C} is small. Since any enhanced category \mathcal{C} is a filtered 2-colimit of its small full enhanced subcategories, it then holds for any \mathcal{C} . Finally, if φ is an augmenation or coaugmentation, then to show the same for $\mathcal{I}nd_{\kappa}(\varphi)$, use Lemma 8.5.7.17 and the first claim for $J' = \operatorname{ar}(J)$ and $f = \tau$ resp. $f = \sigma$.

Remark 8.6.3.13. *A posteriori*, we see that in Lemma 8.6.3.9, the enhanced category (8.6.3.2) is actually given by

(8.6.3.9)
$$\mathcal{I}ndSec_{\kappa}^{h}(J^{o}, \mathcal{C}_{h\perp}) \cong Sec^{h}(J^{o}, \mathcal{I}nd_{\kappa}(\mathcal{C}_{h\perp})),$$

where $\mathcal{I}nd_{\kappa}(\mathcal{C}_{h\perp}) \to K(J^{o})$ is a J^{o} -coagumentation by Lemma 8.6.3.12.

Example 8.6.3.14. An analog of Lemma 8.6.3.9 for $\mathcal{S}ec^h_{\sharp}$ instead of $\mathcal{S}ec^h$ is *not* true already for J=V. Indeed, consider $\mathbb{N}\in \operatorname{PoSets}$, let $q_l:\mathbb{N}\to\mathbb{N}, l=0,1$ be the map $n\mapsto 2n+l$, and let $\mathbb{N}_{\bullet}\to V$ be the fibration with fibers \mathbb{N} and transition maps q_0, q_1 . Then $\mathcal{I}nd(K(\mathbb{N}))\cong K(\mathbb{N}^{>})$, with the new object $o\in\mathbb{N}^{>}$ corresponding to the filtered colimit of id: $K(\mathbb{N})\to K(\mathbb{N})$, and since both q_0 and q_1 are cofinal, $q_0(o)=q_1(o)=o$. But the full subcategory $\operatorname{Sec}^h_{\sharp}(V^o,\operatorname{Ind}(K(\mathbb{N}))_{\bullet})\subset\operatorname{Ind}(K(\mathbb{N}_{\bullet})|V)\cong\operatorname{Sec}^h_{\sharp}(V^o,\operatorname{Ind}(K(\mathbb{N}))_{\bullet})$ is then the product $K(\mathbb{N}^{>}\times_{\mathbb{N}^{>}}\mathbb{N}^{>})$, and contains a non-trivial object $o\times o$, while $\operatorname{Sec}^h_{\sharp}(V^o,K(\mathbb{N}_{\bullet})_{\perp})$ is $K(\mathbb{N}\times_{\mathbb{N}}\mathbb{N})\cong\varnothing$.

More generally, for any regular cardinal κ , take a κ -directed well-ordered set Q_{κ} , $|Q_{\kappa}| = \kappa$ of Example 3.1.6.3, and let $Q = Q_{\kappa} \times \mathbb{N}$ with lexicographical order, with the cofinal maps id $\times q_l : Q \to Q$, l = 0,1. Then again, we have $\mathcal{I}nd_{\kappa}(K(Q)) \cong K(Q^{>})$, and id $\times q_l$, l = 0,1 send the new object $o \in Q^{>}$ to itself, so that $Q^{>} \times_{Q^{>}} Q^{>}$ is not empty, while $Q \times_{Q} Q \cong \emptyset$.

8.6.4. Semicartesian products. In words, Example 8.6.3.14 says that $\mathcal{I}nd_{\kappa}$ does not compute with semicartesian products. It turns out that this can be circumvented if one increases κ . In general, for any regular cardinals $\kappa \leq \mu$ and enhanced category \mathcal{C} , denote $\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C}) = Comp_{\mu}(\mathcal{I}nd_{\kappa}(\mathcal{C}))$, and note that $\mathcal{I}nd_{\kappa}^{\kappa}(\mathcal{C})$ is the Karoubi closure of \mathcal{C} by Corollary 8.6.1.7.

Proposition 8.6.4.1. Assume given regular cardinals $\kappa < \mu$ such that $\kappa \triangleleft \mu$ in the sense of Definition 3.1.6.4. Then for any κ -filtered small enhanced category \mathcal{C} , $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C})$ is μ -filtered. Moreover, for any small enhanced category \mathcal{C} , the fully faithful enhanced functor

$$(8.6.4.1) \qquad \qquad \mathcal{I}nd_{\mu}(\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})) \to \mathcal{I}nd_{\kappa}(\mathcal{C})$$

of (8.6.3.1) is an equivalence, and $\mathcal{I}nd^{\mu}_{\kappa}(\mathcal{C}) = \mathcal{C}omp_{\mu}(\mathcal{C}^{\iota}\operatorname{\mathcal{S}ets}^{h}) \cap \mathcal{I}nd_{\kappa}(\mathcal{C}).$

Proof. Denote $\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})' = \mathcal{C}omp_{\mu}(\mathcal{C}^{\iota}\operatorname{\mathcal{S}ets}^{h}) \cap \mathcal{I}nd_{\kappa}(\mathcal{C})$. Since the embedding $\mathcal{I}nd_{\kappa}(\mathcal{C}) \to \mathcal{C}^{\iota}\operatorname{\mathcal{S}ets}^{h}$ is κ -filtered-right-exact, we have $\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})' \subset \mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})$. For the first claim, if \mathcal{C} is κ -filtered, then $\operatorname{pt}^{h} \in \mathcal{C}^{\iota}\operatorname{\mathcal{S}ets}^{h}$ is in $\mathcal{I}nd_{\kappa}(\mathcal{C})$ by

Lemma 8.6.3.2, and by the same Lemma 8.6.3.2, it suffices to show that it lies in the essential image of the full embedding (8.6.4.1). We thus have to show that pt^h is a μ -filtered colimit of μ -compact objects in $\operatorname{Ind}_{\kappa}(\mathcal{C})$. By Lemma 8.6.3.4, $\operatorname{Comp}_{\mu}(\mathcal{C}^{\iota}\operatorname{Sets}^h)$ is μ -filtered, and we have

$$\mathsf{pt}^h \cong \mathsf{colim}^h_{\mathcal{C}omp_u(\mathcal{C}^\iota \mathcal{S}ets)} \, \nu,$$

where $\nu: Comp_{\mu}(\mathcal{C}^{\iota} \operatorname{Sets}^h) \to \mathcal{C}^{\iota} \operatorname{Sets}^h$ denotes the embedding functor. By Lemma 8.6.2.14, it suffices to show that $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C})' \subset \operatorname{Comp}_{\mu}(\mathcal{C}^{\iota}, \operatorname{Sets}^h)$ is cofinal — then (8.6.4.2) reduces to a colimit over $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C})'$ that is moreover μ -filtered. In addition to this, Lemma 8.6.2.14 says that it suffices to check that for any $X \in \operatorname{Comp}_{\mu}(\mathcal{C}^{\iota} \operatorname{Sets}^h)$, there exists a map $X \to Y$ to some $Y \in \operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C})'$. By Lemma 8.6.3.4, we may further assume that $X \cong \gamma_!^0 \operatorname{pt}^h$ for some $J \in \operatorname{Pos}_{\mu}^+$ and enhanced functor $\gamma: K(J) \to \mathcal{C}$. But then, we can take a left-closed embedding $J \to J'$ provided by Corollary 3.1.6.9, with J' Noetherian, κ -filtered and μ -bounded, and by Corollary 8.3.1.8 for the identifity map $f = \operatorname{id}: J' \to J'$, the enhanced functor γ extends to an enhanced functor $\gamma': K(J') \to \mathcal{C}$. Now take $Y = \gamma_!^0 \operatorname{pt}^h$.

For the second claim, since $\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})'$ is Karoubi-closed, it actually suffices to show that the full embedding $\mathcal{I}nd_{\mu}(\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})') \to \mathcal{I}nd_{\kappa}(\mathcal{C})$ induced by (8.6.4.1) is essentially surjective. In other words, we need to check that any $X \in \mathcal{I}nd_{\kappa}(\mathcal{C}) \subset \mathcal{C}^{\iota} \operatorname{Sets}^{h}$ is a μ -filtered colimit of objects in $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C})'$. Indeed, let $\gamma: \mathcal{C}X \to \mathcal{C}$ be the enhanced family of groupoids corresponding to X. Then $\gamma_{!}^{\varrho}$ sends $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C}X)'$ into $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C})'$. But $\mathcal{C}X$ is κ -filtered by Lemma 8.5.7.14, so by the first claim, $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C}X)'$ is μ -filtered and cofinal in $\operatorname{Comp}_{\mu}((\mathcal{C}X)^{\iota}\operatorname{Sets}^{h})$. Then the required colimit presentation for $X = \gamma_{!}^{\varrho}\operatorname{pt}^{h}$ is induced by (8.6.4.2).

Corollary 8.6.4.2. For any regular cardinals $\kappa \leq \mu$ and small enhanced category C, the enhanced category $Ind_{\kappa}^{\mu}(C)$ is small.

Proof. For any $\mu' \geq \mu$, we have $\mathcal{I}nd_{\kappa}^{\mu'}(\mathcal{C}) \supset \mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})$, so by Example 3.1.6.6, we may assume that $\kappa \triangleleft \mu$. Then $Comp_{\mu}(\mathcal{C}^{\iota} \operatorname{\mathcal{S}ets}^h)$ is small by Lemma 8.6.3.4, hence so is $\operatorname{\mathcal{I}nd}_{\kappa}^{\mu}(\mathcal{C}) = \operatorname{\mathcal{C}omp}_{\mu}(\mathcal{C}^{\iota} \operatorname{\mathcal{S}ets}^h) \cap \operatorname{\mathcal{I}nd}_{\kappa}^{\mu}(\mathcal{C})$.

Corollary 8.6.4.3. Assume given regular cardinals $\kappa \triangleleft \mu$ and a small enhanced category \mathcal{C} . Then for any enhanced functor $X: \mathcal{C}^{\iota} \to \mathcal{S}ets^h$, we have $\mathcal{I}nd^{\mu}_{\kappa}(\mathcal{C}X) \cong \mathcal{I}nd^{\mu}_{\kappa}(\mathcal{C})/^hX$, where the comma-fiber is taken with respect to the full embedding $\mathcal{I}nd^{\mu}_{\kappa}(\mathcal{C}) \to Ind_{\kappa}(\mathcal{C}) \to \mathcal{C}^{\iota}\mathcal{S}ets^h$.

Proof. Let $\gamma: \mathcal{C}X \to \mathcal{C}$ be the enhanced family of groupoids corresponding to X. Then by adjunction, $\gamma_!^o$ sends μ -compact objects to μ -compact objects, thus induces an enhanced functor $\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C}X) \to \mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})/{}^hX$, and it suffices to prove that the corresponding fully faithful embedding

$$(8.6.4.3) \qquad \mathcal{I}nd_{\kappa}(\mathcal{C}X) \cong \mathcal{I}nd_{\mu}(\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C}X)) \to \mathcal{I}nd_{\mu}(\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})/^{h}X)$$

provided by Lemma 8.5.7.21 is essentially surjective. Indeed, up to an isomorphism, an enhanced object in its target is given by an enhanced object Y in $\mathcal{I}nd_{\mu}(\mathcal{I}nd_{\mu}^{\kappa}(\mathcal{C})) \cong \mathcal{I}nd_{\kappa}(\mathcal{C})$ and a morphism $Y \to X$, and any such pair manifestly lies in the essential image of the embedding (8.6.4.3).

Corollary 8.6.4.2 shows that for any regular cardinals $\kappa \leq \mu$, we have a well-defined enhanced functor

(8.6.4.4)
$$\mathcal{I}nd^{\mu}_{\kappa}: \mathcal{C}at^{h} \to \mathcal{C}at^{h}.$$

For any κ -bounded $J \in \operatorname{Pos}_{\kappa}^+$ and $X : K(J) \to \operatorname{Cat}^h$, with the corresponding J-coaugmented $\mathcal{C} = K(J)^{\perp}X$, the κ -inductive completion $\operatorname{Ind}_{\kappa}(\mathcal{C})$ is J-coaugmented by (8.6.3.5) by Lemma 8.6.3.12, and $\operatorname{Ind}_{\kappa}^{\mu}(\mathcal{C}) \subset \operatorname{Ind}_{\kappa}(\mathcal{C})$ is a J-coaugmented full subcategory corresponding to $\operatorname{Ind}_{\kappa}^{\mu} \circ X : K(J) \to \operatorname{Cat}^h$.

Lemma 8.6.4.4. For any regular cardinals $\kappa \triangleleft \mu$, $J \in Pos_{\kappa}$ and J-coaugmented small enhanced category C, we have

$$(8.6.4.5) \mathcal{I}nd_{\kappa}^{\mu}(Sec^{h}(J,\mathcal{C})) \cong Sec^{h}(J,\mathcal{I}nd_{\kappa}^{\mu}(\mathcal{C})).$$

Proof. By Lemma 8.6.3.9 and (8.6.3.9), it suffices to check that an enhanced object X in $\mathcal{I}nd\mathcal{S}ec^h(J,\mathcal{C})$ is μ -compact if and only if so is $e(j)^*X \in \mathcal{I}nd_\kappa(\mathcal{C}_j)$ for any $j \in J$. For the "if" part, X is a κ -bounded colimit of objects $e(j)_!e(j)^*X$, $j \in J$, and since e(j) is trivially μ -filtered-right-exact, all these objects are μ -compact by adjunction, and then X is μ -compact by Proposition 8.6.2.16. For the "only if" part, again by Proposition 8.6.2.16 and (8.5.3.2), $e(j)_*$ is μ -filtered-right-exact for any $j \in J$, so by adjunction, $e(j)^*$ sends μ -compact objects to μ -compact objects. \square

Remark 8.6.4.5. Note that even for $\kappa = \mu$, Lemma 8.6.4.4 is non-trivial: it says that $Sec^h(J, -)$ commutes with Karoubi envelopes.

In particular, by Example 3.1.6.3, we always have $\kappa \triangleleft \kappa^+$ for any regular cardinal κ with successor cardinal κ^+ . For any small enhanced category C, let

 $\mathcal{C}^+ = \mathcal{I}nd_{\kappa}^{\kappa^+}(\mathcal{C})$. Then by Proposition 8.6.4.1, $\mathcal{I}nd_{\kappa^+}(\mathcal{C}^+) \cong \mathcal{I}nd_{\kappa}(\mathcal{C})$, and if \mathcal{C} is κ -filtered, then \mathcal{C}^+ is κ^+ -filtered. By Corollary 8.6.4.2, it is also small, and by Corollary 8.6.4.3, $(\mathcal{C}X)^+ \cong \mathcal{C}^+/{}^hX$ for any $X: \mathcal{C}^\iota \to \mathcal{S}ets^h$.

Lemma 8.6.4.6. Assume given κ -filtered small enhanced categories C, C_0 , C_1 and cofinal enhanced functors $\gamma_l: C_l \to C$, l = 0, 1. Then $C_0^+ \times_{C^+}^h C_1^+$ is κ^+ -filtered, and the projections $C_0^+ \times_{C^+}^h C_1^+ \to C_0^+$, C_1^+ are cofinal.

Proof. Let C^+ be the V o -coaugmented enhanced category with fibers C^+_0 , C^+_1 , C^+ and transition functors γ^+_0 , γ^+_1 provided by Corollary 8.3.5.3. Then by Lemma 8.6.3.9, Example 8.6.3.11 and Corollary 8.6.2.10, it suffices to show that the fully faithful embedding $C^+_0 \times^h_{C^+} C^+_1 \cong Sec^h_1(V^o, C^+_*) \to Sec^h(V^o, C^+_*)$ is cofinal, and by Lemma 8.6.2.14, it further suffices to check that it has non-empty right comma-fibers. Let X be an enhanced object in $Sec^h(V^o, C^+_*)$ corresponding to a V^o -coaugmented enhanced functor $\gamma: K(J) \to C^+_*$, where $J = ar(V)^o$ is V^o -coaugmented via the projection $\sigma^o: ar(V)^o \to V^o$. Let $Q = Q_\kappa \times \mathbb{N}$ be the well-ordered set of Example 8.6.3.14, with embeddings $q_l: Q \to Q$, l = 0, 1, and let $Q_* \to V^o$ be the cofibration with fibers Q and transition functors q_0, q_1 . Let $J' = J \sqcup_\lambda Q_*$, where the gluing map $\lambda: Q \to L(J)$ sends any $q \in (Q_*)_v$, $v \in V^o$ to the whole fiber J_v . Then $\pi: J' \to V^o$ is a cofibration with cofinal transition functors, and it suffices to check that γ extends to a V^o -coaugmented enhanced functor $\gamma': K(J') \to C^+_*$ (then $Y = K(\pi)_! \gamma': V^o \to C^+_*$ exists since $|Q| = \kappa < \kappa^+$, and gives the desired enhanced object $Y \in Sec^h_b(V^o, C^+_*)$ with a map $X \to Y$).

To construct γ' , we use Corollary 8.3.2.2, or rather, its obvious dual version with augmented enhanced categories and functors replaced with coaugmented ones. Take $I = V^o$ and $J = J_o$, with the map $f: J' \to J$ adjoint to the embedding $J_o \to J'$, and take our original $J \subset J'$ as J_o . We then have to check that for any $q \in Q = J \setminus J_o$, a V^o -coaugmented enhanced functor $K(f^{-1}(J/q)) \to \mathcal{C}^+$. But we have $Q \cong q_0(Q) \sqcup q_1(Q)$ as sets, so the complement $f^{-1}(q) = f^{-1}(J/q) \setminus f^{-1}(J/q)$ is [1]-coaugmented via one of the two embeddings $\varepsilon(0)^<, \varepsilon(1)^< : [1] = \operatorname{pt}^< \to V^o = \{0,1\}^<$. Let ε be this embedding, and note that by Lemma 8.2.4.8, we can restrict our attention to what happens over $\varepsilon([1]) \subset V^o$. We thus have a [1]-coaugmented small enhanced category $\varepsilon^*\mathcal{C}^+$, a cofibration $\varepsilon^*J' \to [1]$, a subset $\varepsilon^*f^{-1}(J/q) \subset \varepsilon^*J'$, and a [1]-coaugmented enhanced functor $K(\varepsilon^*f^{-1}(J'/q)) \to \mathcal{C}^+$, and we need a [1]-coaugmented relative cone for this enhanced functor. Then a relative cone over [1] is provided by Lemma 8.6.2.9, and to turn it into a [1]-coaugmented relative cone, use Corollary 8.6.2.15 and Example 8.6.2.11. \square

Corollary 8.6.4.7. For any small enhanced categories C, C_0 , C_1 and enhanced functors $\gamma_l : C_l \to C$, l = 0, 1, and any regular cardinal κ , the square

(8.6.4.6)
$$\begin{array}{cccc} \mathcal{I}nd_{\kappa^{+}}(\mathcal{C}_{0}^{+}\times_{\mathcal{C}^{+}}^{h}\mathcal{C}_{1}^{+}) & \longrightarrow \mathcal{I}nd_{\kappa^{+}}(\mathcal{C}_{1}^{+}) \\ & & & \downarrow & & \downarrow \\ \mathcal{I}nd_{\kappa^{+}}(\mathcal{C}_{0}^{+}) & \longrightarrow \mathcal{I}nd_{\kappa^{+}}(\mathcal{C}^{+}) \end{array}$$

is semicartesian.

Proof. For any regular cardinal μ , $I \in PoSets$, and I-augmented small enhanced category \mathcal{C} , let $\mathcal{I}nd\mathcal{S}ec^{\natural h}_{\mu}(I^o,\mathcal{C}_{h\perp}) \subset \mathcal{I}nd\mathcal{S}ec^h_{\mu}(I^o,\mathcal{C}_{h\perp})$ be the full enhanced subcategory defined by the cartesian square

(8.6.4.7)
$$\mathcal{I}ndSec_{\mu}^{\dagger h}(I^{o}, \mathcal{C}_{h\perp}) \longrightarrow \mathcal{I}ndSec_{\mu}^{h}(I^{o}, \mathcal{C}_{h\perp})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Sec_{\dagger}(I^{o}, \mathcal{I}nd_{\mu}(\mathcal{C})_{\bullet}) \longrightarrow Sec(I^{o}, \mathcal{I}nd_{\mu}(\mathcal{C})_{\bullet}),$$

where $\mathcal{I}nd_{\mu}(\mathcal{C})_{\bullet} \to I^{o}$ is the cofibration with fibers $\mathcal{I}nd_{\mu}(\mathcal{C}_{i})$, $i \in I$, and transition functors $\gamma_{!}^{o}$ of (8.5.4.6) corresponding to the transition functors γ of the I-augmented enhanced category \mathcal{C} , while the vertical arrow on the right in (8.6.4.7) is induced by the comparison functor (8.5.4.7). Explicitly, by virtue of Example 8.5.5.6, $\mathcal{I}nd\mathcal{S}ec_{\mu}^{\dagger h}(I^{o},\mathcal{C}_{h\perp}) \subset \mathcal{C}^{\iota}\,\mathcal{S}ets^{h}$ is the full enhanced subcategory spanned by enhanced functors $X:\mathcal{C}^{\iota}\to\mathcal{S}ets^{h}$ such that for any $i\in I$, with the embedding functor $\nu_{i}:\mathcal{C}_{i}\to\mathcal{C}$, $X_{i}=\nu_{i}^{o*}X\in\mathcal{I}nd_{\mu}(\mathcal{C}_{i})$, and for any $i\leq i'$, the corresponding transition functor $\mathcal{C}_{i}X_{i}\to\mathcal{C}_{i'}X_{i'}$ of the I-augmented enhanced category $\mathcal{C}X$ is cofinal. Then if I has a largest element $o\in I$, it immediately follows from (8.5.4.1) and Example 8.5.5.6 that $\nu_{!}^{o}:\mathcal{I}nd_{\mu}(\mathcal{C}_{o})\to\mathcal{I}nd\mathcal{S}ec_{\mu}^{h}(I^{o},\mathcal{C}_{h\perp})$ induces an equivalence $\mathcal{I}nd_{\mu}(\mathcal{C}_{o})\cong\mathcal{I}nd\mathcal{S}ec_{\mu}^{h}(I^{o},\mathcal{C}_{h\perp})$. Explicitly, for any $X\in\mathcal{I}nd_{\mu}(\mathcal{C}_{o})$ and $i\in I$, we have $(\nu_{!}^{o}X)_{i}\cong\gamma_{!}^{o}X$, where $\gamma:\mathcal{C}_{o}\to\mathcal{C}_{i}$ is the transition functor of the I-augmented category \mathcal{C} .

Now let $\mathcal{C}^+_{\cdot} \in \operatorname{Cat}^h(\mathsf{V}) \cong \operatorname{Cat}^{\bar{h}}(\mathsf{V}|\mathsf{V})$ be the V-augmented small enhanced category with fibers \mathcal{C}^+_0 , \mathcal{C}^+_1 , \mathcal{C}^+ and transition functors γ^+_0 , γ^+_1 , identify $[1]^2 = \mathsf{V}^>$, with the embedding $\varepsilon: \mathsf{V} \to [1]^2$, and extend \mathcal{C}^+_{\cdot} to a $[1]^2$ -augmented small enhanced category $\varepsilon^h_*\mathcal{C}^+_{\cdot}$ with enhanced fiber $\mathcal{C}^+_{01} = \mathcal{C}^+_0 \times^h_{\mathcal{C}^+} \mathcal{C}^+_1$ over the largest element $o \in [1]^2$. Then on one hand, we have $\mathcal{I}nd\mathcal{S}ec^{\natural h}_{\kappa^+}([1]^2, (\varepsilon^h_*\mathcal{C}^+_{\cdot})_{h\perp}) \cong \mathcal{I}nd_{\kappa^+}(\mathcal{C}^+_{01})$, and on the other hand, Corollary 8.3.5.3 and Lemma 5.1.1.9 immediately imply that the comparison functor

$$(8.6.4.8) \qquad \operatorname{IndSec}_{\kappa^+}^{\natural h}(\mathsf{V}^o,(\mathcal{C}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}^+)_{h\perp}) \to \operatorname{Ind}_{\kappa^+}(\mathcal{C}_0^+) \times_{\operatorname{Ind}_{\kappa^+}(\mathcal{C})} \operatorname{Ind}_{\kappa^+}(\mathcal{C}_1^+)$$

induced by (8.5.4.7) is an epivalence. Thus to prove the claim, it suffices to check that $\varepsilon^{o*}: \mathcal{I}nd\mathcal{S}ec_{\kappa^+}^{\dagger h}([1]^2, (\varepsilon_*^h\mathcal{C}_{\cdot}^+)_{h\perp}) \to \mathcal{I}nd\mathcal{S}ec_{\kappa^+}^{\dagger h}(\mathsf{V}^o, (\mathcal{C}_{\cdot}^+)_{h\perp})$ is an equivalence. This reduces to checking that for any $X^+ \in \mathcal{I}nd_{\kappa^+}(\mathcal{C}^+)$ and $X_l^+ \in \mathcal{I}nd_{\kappa^+}(\mathcal{C}_l^+)$, l=0,1,01, any commutative square

(8.6.4.9)
$$\begin{array}{ccc}
\mathcal{C}_{01}^{+}X_{01}^{+} & \xrightarrow{\gamma_{1}'} & \mathcal{C}_{1}^{+}X_{1}^{+} \\
\gamma_{0}' \downarrow & & \downarrow \gamma_{1} \\
\mathcal{C}_{0}^{+}X_{0}^{+} & \xrightarrow{\gamma_{0}} & \mathcal{C}^{+}X^{+}
\end{array}$$

over $\varepsilon_*^h \mathcal{C}_*^+$ with cofinal γ_0 , γ_1 is semicartesian if and only if γ_0' and γ_1' are cofinal. Indeed, $\mathcal{C}^+X^+\cong (\mathcal{C}X)^+$ for $X=X^+\in \mathcal{I}nd_\kappa(\mathcal{C})\cong \mathcal{I}nd_{\kappa^+}(\mathcal{C}^+)$ by Corollary 8.6.4.3, and similarly for $\mathcal{C}_l^+X_l^+$, l=0,1, so that the "only if" part follows from Lemma 8.6.4.6. For the "if" part, we may replace \mathcal{C} , \mathcal{C}_0 , \mathcal{C}_1 with $\mathcal{C}X$, \mathcal{C}_0X_0 , \mathcal{C}_1X_1 , so that it suffices to consider the case when $X=\operatorname{pt}^h$, $X_l=\operatorname{pt}^h$, l=0,1. Then for any enhanced object c_{01} in \mathcal{C}_{01}^+ , with $c_l=\gamma_l'(c_{01})$, l=0,1, and $c=\gamma_0(c_0)\cong\gamma_1(c_1)$, we have

$$c_{01} \setminus {}^h \mathcal{C}_{01}^+ X_{01}^+ \cong (c_0 \setminus {}^h \mathcal{C}_0^+) \times_{(c \setminus {}^h \mathcal{C}^+)}^h (c_1 \setminus {}^h \mathcal{C}_1^+),$$

and this comma-fiber is κ^+ -filtered by Lemma 8.6.4.6. Since the embedding $X(c_{01}) \subset c_{01} \setminus {}^h C_{01}^+ X_{01}^+$ is right-admissible, the enhanced groupoid $X^+(c_{01})$ is then hyperconnected for any c_{01} , so that $X_{01}^+ \cong \operatorname{pt}^h$.

8.6.5. Accessible categories. We can now use filtered colimits and inductive completions to characterize a class of large enhanced categories that admit a reasonable theory in the spirit of Section 8.4.

Definition 8.6.5.1. For any regular cardinal κ , an enhanced category \mathcal{E} is κ -accessible if it is κ -filtered-cocomplete, $Comp_{\kappa}(\mathcal{E}) \subset \mathcal{E}$ is small, and the fully faithful functor (8.6.3.1) is essentially surjective. An enhanced functor $\mathcal{E} \to \mathcal{E}'$ between κ -accessible categories is κ -accessible if it is κ -filtered-right-exact. An enhanced category \mathcal{E} is accessible if it is accessible for some regular cardinal κ , and an enhanced functor $\mathcal{E} \to \mathcal{E}'$ between accessible categories is accessible if it is κ -accessible for some κ such that \mathcal{E} , \mathcal{E}' are κ -accessible.

Equivalently, an enhanced category \mathcal{E} is κ -accessible iff $\mathcal{E} \cong \mathcal{I}nd_{\kappa}(\mathcal{C})$ for a small enhanced category \mathcal{C} , and it actually suffices to require that for some small full enhanced subcategory $\mathcal{C} \subset \mathcal{C}omp_{\kappa}(\mathcal{E})$, the fully faithful embedding $\mathcal{I}nd_{\kappa}(\mathcal{C}) \to \mathcal{E}$ of Lemma 8.5.7.21 is essentially surjective. Such a $\mathcal{C} \subset \mathcal{C}omp_{\kappa}(\mathcal{E})$

is called a category of κ -compact generators of \mathcal{E} , it is generating in the sense of Definition 8.5.4.3, and $Comp_{\kappa}(\mathcal{E}) = Ind_{\kappa}^{\kappa}(\mathcal{C})$ is then the Karoubi closure of \mathcal{C} . For any regular cardinals $\kappa \triangleleft \mu$, a κ -accessible category \mathcal{E} is μ -accessible by Proposition 8.6.4.1, and by Example 3.1.6.6, for any collection of accessible enhanced categories and accessible enhanced functors between them, we can choose a single regular cardinal κ such that all of them are κ -accessible. Moreover, κ can be chosen to be arbitrarily large (that is, larger than any given κ'). By Lemma 8.6.3.4, any enhanced object X in an accessible enhanced category \mathcal{E} is μ -compact for a large enough μ , so that we have

(8.6.5.1)
$$\mathcal{E} = \bigcup_{\mu} Comp_{\mu}(\mathcal{E}),$$

and by Corollary 8.6.4.1, all the categories in the right-hand side are small.

Example 8.6.5.2. For any regular cardinal *κ* and *κ*-accessible enhanced category \mathcal{C} , the enhanced categories $\mathcal{C}^{h>}$ and $\mathcal{C}^{h<}$ are *κ*-accessible, and $\mathcal{C}omp_{\kappa}(\mathcal{C}^{h>}) \cong \mathcal{C}omp_{\kappa}(\mathcal{C})^{h>}$, $\mathcal{C}omp_{\kappa}(\mathcal{C}^{h<}) \cong \mathcal{C}omp_{\kappa}(\mathcal{C})^{h<}$.

Definition 8.6.5.3. An enhanced functor $\gamma: \mathcal{E} \to \mathcal{E}'$ between κ-accessible enhanced categories \mathcal{E} , \mathcal{E}' is κ-defined if $\gamma \cong \mathcal{I}nd_{\kappa}(\gamma_{\kappa})$ for an enhanced functor $\gamma_{\kappa}: \mathcal{C}omp_{\kappa}(\mathcal{E}) \to \mathcal{C}omp_{\kappa}(\mathcal{E}')$.

Lemma 8.6.5.4. For any set of accessible categories and functors between them, and any regular cardinal κ , there exists a regular cardinal $\mu > \kappa$ such that all the categories are μ -accessible, and all the functors are μ -defined.

Proof. By induction, it suffices to consider one accessible functor $\gamma: \mathcal{E} \to \mathcal{E}'$ between accessible categories. Choose a regular cardinal $\kappa' > \kappa$ such that \mathcal{E} and \mathcal{E}' are κ' -accessible, and then choose μ such that $\kappa' \triangleleft \mu$ and γ sends $\mathcal{C}omp_{\kappa'}(\mathcal{E})$ into $\mathcal{C}omp_{\mu}(\mathcal{E}')$. Then by Proposition 8.6.4.1, any μ -compact object in \mathcal{E} is a μ -bounded κ' -filtered colimit of κ' -compact object, and since $\mathcal{C}omp_{\mu}(\mathcal{E}') \subset \mathcal{E}'$ is closed under μ -bounded colimits by Proposition 8.6.2.16, γ is μ -defined.

Corollary 8.6.5.5. *In any adjoint pair* $\lambda : \mathcal{E} \to \mathcal{E}'$, $\rho : \mathcal{E}' \to \mathcal{E}$ *of enhanced functors between accessible enhanced categories, both* λ *and* ρ *are accessible.*

Proof. The left-adjoint λ is trivially accessible by Example 8.5.1.5. For ρ , choose μ such that \mathcal{E} , \mathcal{E}' are μ -accessible and λ is μ -defined, with the Yoneda embeddings $Y_{\mu}(\mathcal{E}): \mathcal{E} \to \mathcal{C}omp_{\mu}(\mathcal{E})^{\iota} \, \mathcal{S}ets^{h}$, $Y_{\mu}(\mathcal{E}'): \mathcal{E}' \to \mathcal{C}omp_{\mu}(\mathcal{E}')^{\iota} \, \mathcal{S}ets^{h}$, and note that $Y_{\mu}(\mathcal{E}) \circ \rho \cong \lambda^{*} \circ Y_{\mu}(\mathcal{E}')$ is then μ -accessible, so that ρ is also μ -accessible. \square

Definition 8.6.5.6. For any regular cardinal κ , an enhanced category \mathcal{E} is κ -presentable if it is κ -accessible and κ -cocomplete, and an enhanced category \mathcal{E} is presentable if it if κ -presentable for some regular cardinal κ .

Lemma 8.6.5.7. For any regular cardinal κ , a κ -presentable enhanced category \mathcal{E} is cocomplete, and conversely, a cocomplete enhanced category \mathcal{E} is κ -presentable if and only if it admits a generating small enhanced subcategory $\mathcal{C} \subset Comp_{\kappa}(\mathcal{E})$ in the sense of Definition 8.5.4.3. A κ -presentable category is complete, and the full embedding $\mathcal{E} \to Comp_{\kappa}(\mathcal{E})^{\iota}$ Sets^h identifies \mathcal{E} with the enhanced full subcategory $Comp_{\kappa}(\mathcal{E})^{\iota}$ Sets^h $\subset Comp_{\kappa}(\mathcal{E})^{\iota}$ Sets^h spanned by enhanced functors $X: Comp_{\kappa}^{\iota} \to Sets^h$ such that X^{ι} is κ -right-exact.

Proof. For the first claim, by Lemma 8.5.7.12, an enhanced category \mathcal{E} is cocomplete iff it admits colimits of enhanced functors $K(J) \to \mathcal{E}$, $J \in \operatorname{Pos}^+$, and any such J is a κ -filtered colimit of its κ -bounded subsets. Conversely, let $\mathcal{C}_{\kappa} \subset \mathcal{E}$ be the smallest κ -cocomplete full enhanced subcategory containing \mathcal{C} , with the embedding functor $\gamma: \mathcal{C}_{\kappa} \to \mathcal{E}$. Then \mathcal{C}_{κ} is still small, it is generating by Example 8.5.4.5, and by Proposition 8.6.2.16, γ still factors through $\operatorname{Comp}_{\kappa}(\mathcal{E})$, so by adjunction, $\gamma_! Y(\mathcal{C}_{\kappa}) : \mathcal{E} \to \mathcal{C}^{\iota}_{\kappa} \operatorname{Sets}^h$ is κ -filtered-cocomplete, thus factors through $\operatorname{Ind}_{\kappa}(\mathcal{C}_{\kappa})$. We then have an adjoint pair of fully faithful enhanced functors $\operatorname{Ind}_{\kappa}(\mathcal{C}_{\kappa}) \to \mathcal{E}$, $\mathcal{E} \to \operatorname{Ind}_{\kappa}(\mathcal{C}_{\kappa})$, so both are equivalences.

For the second claim, $Comp_{\kappa}(\mathcal{E})^{\iota}_{ex} \mathcal{S}ets^h \subset Comp_{\kappa}(\mathcal{E})^{\iota} \mathcal{S}ets^h$ is manifestly closed under limits, thus complete, and the fully faithful embedding $\gamma_! \mathsf{Y}(\mathcal{C}omp_{\kappa}) : \mathcal{E} \to \mathcal{C}omp_{\kappa}(\mathcal{E})^{\iota} \mathcal{S}ets^h$ factors through $Comp_{\kappa}(\mathcal{E})^{\iota}_{ex} \mathcal{S}ets^h$, so it suffices to check that $\gamma_! \mathsf{Y}(\mathcal{C}omp_{\kappa}) : \mathcal{E} \to \mathcal{C}omp_{\kappa}(\mathcal{E})^{\iota}_{ex} \mathcal{S}ets^h$ is essentially surjective. By (8.5.4.3) and Lemma 8.5.7.14, this amounts to checking that $\mathcal{C}omp_{\kappa}(\mathcal{E})/he$ is κ -filtered for any $e \in \mathcal{E}_{pt}$; however, by Proposition 8.6.2.16 and Lemma 8.5.7.7, it is actually κ -cocomplete.

Corollary 8.6.5.8. The enhanced categories $Sets^h$ and Cat^h are κ -presentable for any regular cardinal κ , and so is the enhanced category Cat^h // $_{\star}^h$ \mathcal{E} for any small enhanced category \mathcal{E} .

Proof. For $Sets^h$, {pt^h} $\subset Sets^h$ is generating, and pt^h $\in Sets^h$ is κ -compact by Lemma 8.6.3.4. For Cat^h , Corollary 8.5.6.10 implies that K(pos), with the full embedding $\Psi: K(pos) \subset Cat^h$, is generating. Moreover, by Proposition 8.6.2.16, the property of being Ψ-exact in the sense of Definition 8.5.6.8 is closed under κ -filtered colimits, so κ -filtered colimits in $pos_h^o Sets^h$ induce κ -filtered colimits in the full subcategory $Cat^h \subset pos_h^o Sets^h$. This means that K(J) is

 κ -compact for any $J \in \text{pos}$, so that $\Psi(K(\text{pos})) \subset Comp_{\kappa}(Cat^h)$. For $Cat^h /\!/_{\kappa}^h \mathcal{E}$, it is cocomplete by Example 8.5.7.8, and then the full embedding of Corollary 8.5.6.10 immediately extends to a κ -filtered-cocomplete full embedding $Cat^h /\!/_{\kappa}^h \mathcal{E} \subset (K(\text{pos}) /\!/_{\kappa}^h \mathcal{E})^\iota \mathcal{E}ets^h$.

By Lemma 8.5.7.14, for any κ -accessible enhanced categories \mathcal{E} , \mathcal{E}' , an enhanced functor $\mathcal{C}omp_{\kappa}(\mathcal{E}) \to \mathcal{E}'$ extends to a κ -accessible enhanced functor $\mathcal{E} \to \mathcal{E}'$, uniquely up to a unique isomorphism, and any κ -accessible enhanced functor is of this form. Therefore these enhanced functors form a well-defined enhanced category $\mathcal{F}un^h_{\kappa}(\mathcal{E},\mathcal{E}') = \mathcal{F}un^h(\mathcal{C}omp_{\kappa}(\mathcal{E}),\mathcal{E}')$. For any $\kappa \leq \mu$ such that both \mathcal{E} and \mathcal{E}' are both κ -accessible and μ -accessible, a κ -accessible enhanced functor $\mathcal{E} \to \mathcal{E}'$ is trivially μ -accessible, so we have a natural full embedding $\mathcal{F}un^h_{\kappa}(\mathcal{E},\mathcal{E}') \subset \mathcal{F}un^h_{\mu}(\mathcal{E},\mathcal{E}')$; taking the filtered 2-colimit with respect to these embeddings, we obtain an enhanced category

(8.6.5.2)
$$\operatorname{Fun}_{acc}^{h}(\mathcal{E},\mathcal{E}') = \bigcup_{\kappa} \operatorname{Fun}_{\kappa}^{h}(\mathcal{E},\mathcal{E}'),$$

where the union is over all regular cardinals κ such that \mathcal{E} and \mathcal{E}' are κ -accessible.

Proposition 8.6.5.9. For any accessible enhanced categories C, C_0 , C_1 and accessible enhanced functors C_0 , $C_1 \rightarrow C$, there exists a semicartesian square (8.1.2.6) with accessible C_{01} and γ_l , l=0,1, and for any cardinal κ' , there exists a regular cardinal $\kappa > \kappa'$ such $Comp_{\kappa}(-)$ sends this square to a semicartesian square. Moreover, for any such semicartesian square, and any other commutative square (8.3.3.4) with accessible C'_{01} and γ'_l , l=0,1, there exists an accessible enhanced functor $\alpha:C'_{01}\rightarrow C_{01}$ equipped with isomorphisms $a_l:\gamma_l\circ\alpha\cong\gamma'_l$, l=0,1, and the triple $\langle\alpha,a_0,a_1\rangle$ is unique up to a (non-unique) isomorphism.

Proof. To construct a semicartesian square (8.1.2.6), choose κ such that all enhanced categories and functors are κ -accessible, and apply Corollary 8.6.4.7. To check the universal property, increase κ if needed so that \mathcal{C}'_{01} , γ'_0 and γ'_1 are also κ -accessible, replace \mathcal{C}'_{01} with $\textit{Comp}_{\kappa}(\mathcal{C}'_{01})$, and apply Corollary 8.3.3.6. \square

Corollary 8.6.5.10. For any regular cardinal κ and κ -accessible enhanced categories \mathcal{E} , \mathcal{E}' , the enhanced category $\mathcal{F}un_{\kappa}^{h}(\mathcal{E},\mathcal{E}')$ of (8.6.5.2) is accessible.

Proof. Replacing \mathcal{E} with $Comp_{\kappa}(\mathcal{E})$, we may assume that \mathcal{E} is small, and then by Lemma 8.3.4.4, Example 8.3.4.5 and Proposition 8.6.5.9, we may further assume that $\mathcal{E} \cong K(J^o)$ for some $J \in \operatorname{Pos}^+$. Then choose μ such that \mathcal{E}' is μ -accessible and J is μ -bounded, and note that by Corollary 8.6.3.10, we have $J_h^o \mathcal{E}' \cong J_h^o \mathcal{I}nd_{\mu}(\mathcal{C}omp_{\mu}(\mathcal{E}')) \cong \mathcal{I}nd_{\mu}(J_h^o \mathcal{C}omp_{\mu}(\mathcal{E}'))$.

Lemma 8.6.5.11. For any $J \in \operatorname{Pos}^+$, an enhanced category \mathcal{C} equipped with an enhanced functor $\mathcal{C} \to K(J)$ that is either an augmentation or a coaugmentation is accessible if and only if all the fibers \mathcal{C}_j , $j \in J$ and all the transition functors $\mathcal{C}_{j'} \to \mathcal{C}_j$ are accessible. A J-augmented enhanced category \mathcal{C} is accessible iff so is the transpose J-caougmented enhanced category $\mathcal{C}_{h\perp}$, and if this holds, for any cardinal κ' , there exists a regular cardinal $\kappa > \kappa'$ such that $\operatorname{Comp}_{\kappa}(\mathcal{C})$ is J-augmented, $\mathcal{C} \cong \operatorname{Ind}_{\kappa} \operatorname{Comp}_{\kappa}(\mathcal{C})$, and $\mathcal{C}_{h\perp} \cong \operatorname{Ind}_{\kappa}(\operatorname{Comp}_{\kappa}(\mathcal{C})_{h\perp})$.

Proof. If \mathcal{C} is accessible, then \mathcal{C}_j are accessible by Proposition 8.6.5.9, and the transition functors are accessible by Proposition 8.6.5.9 and Corollary 8.6.5.5. Conversely, if \mathcal{C}_j and the transition functors are accessible, then by Lemma 8.6.5.4, we can choose a single regular cardinal κ such that \mathcal{C}_j , $j \in J$ are κ -accessible, the transition functors are κ -defined, and J is κ -bounded. Then by Lemma 8.6.3.12, all the embeddings $e(j):\mathcal{C}_j\to\mathcal{C}$ are κ -filtered-right-exact, so that \mathcal{C} is κ -filtered-cocomplete. Moreover, an enhanced object c in some $\mathcal{C}_j\subset\mathcal{C}$ is κ -compact in \mathcal{C} iff it is κ -compact in \mathcal{C}_j , so that $\mathcal{C}\cong \mathcal{I}nd_{\kappa}(\mathcal{C}omp_{\kappa}(\mathcal{C}))$ is accessible, and $\mathcal{C}omp_{\kappa}(\mathcal{C})\to\mathcal{K}(J)$ is an augmentation resp. coaugmentation with fibers $\mathcal{C}omp_{\kappa}(\mathcal{C})_j\cong\mathcal{C}omp_{\kappa}(\mathcal{C}_j)$, and the full embedding $\mathcal{C}omp_{\kappa}(\mathcal{C})\to\mathcal{C}$ is augmented resp. coaugmented.

Corollary 8.6.5.12. In the situation of Proposition 8.6.5.9, if C and C_l , γ_l , l = 0, 1 are J-augmented or coaugmented for some $J \in Pos^+$, then so is C_{01} and γ'_l , l = 0, 1.

Proof. By Lemma 8.6.5.11, Lemma 8.6.5.4 and Proposition 8.6.5.9, we can choose κ so that all the categories in the semicartesian square (8.1.2.6) are κ -accessible, the functors are κ -defined, $Comp_{\kappa}(-)$ sends the square to a semicartesuan square, and all the categories $Comp_{\kappa}(\mathcal{C})$, $Comp_{\kappa}(\mathcal{C}_l)$, l=0,1 and enhanced functors γ_l , l=0,1 between them are J-augmented resp, J-coaugmented. It then remains to apply the augmented part of Lemma 8.3.3.7 and Lemma 8.6.3.12.

With Proposition 8.6.5.9 and its corollaries, most of the results of Subsection 8.4.1 and Subsection 8.4.2 generalize to accessible categories with the same proofs. In particular, for any accessible enhanced functor $\gamma: \mathcal{C}_0 \to \mathcal{C}_1$ between accessible categories, we have the accessible cylinder $C_h(\gamma)$ and dual cylinder $C_h(\gamma)$ defined by the semicartesian squares (8.4.1.1), with the corresponding factorizations (8.4.1.2), and by Corollary 8.6.5.12, $C_h(\gamma)$ resp. $C_h(\gamma)$ is [1]-coaugmented resp. [1]-augmented, so that Lemma 8.4.1.2 holds with the same proof. Moreover, by virtue of Lemma 8.6.5.11, we have $\mathcal{C}omp_{\kappa}(C^h(\gamma)) \cong C^h(\mathcal{C}omp_{\kappa}(\gamma))$ for a cofinal family of regular cardinals κ , and

similarly for $C_h^\iota(\gamma)$, and then Lemma 8.4.1.3 immediately implies that the corresponding squares for γ are semicocartesian with respect to accessible enhanced functors. Then one defines the accessible enhanced comma-categories $\mathcal{C}_0/_\gamma^h\mathcal{C}_1$, $\mathcal{C}_1\setminus_\gamma^h\mathcal{C}_0$ by semicartesian squares (8.4.1.4), with the corresponding decompositions (8.4.1.5), and Lemma 8.4.1.4 holds with the same proof. The same goes for Lemma 8.4.1.5 and its Corollary 8.4.1.6. For accessible functors that are enhanced fibrations, we have Lemma 8.4.2.8, and its counterpart for accessible cofibrations. We then have Corollary 8.4.2.9, Lemma 8.4.2.10 and its Corollary 8.4.2.11, Lemma 8.4.2.15, Lemma 8.4.2.16, Lemma 8.4.2.19, Lemma 8.4.2.20, and their counterparts for cofibrations obtained by literally dualizing the proofs. Enhanced fibers of accessible enhanced functors are accessible, and so are the enhanced transition functors for enhanced fibrations and cofibrations. The material of Subsection 8.4.3 also carries over literally to the accessible setting; in particular, this includes Lemma 8.4.3.2, Lemma 8.4.3.3, Corollary 8.4.3.4 and Corollary 8.4.3.5.

Remark 8.6.5.13. As a bit of a warning, one operation on small enhanced categories that definitely does *not* extend to accessible categories is the involution ι sending \mathcal{C} to its enhanced-opposite \mathcal{C}^{ι} . In fact, already for the unenhanced category Sets, the opposite category Sets⁰ is not accessible. Thus in the accessible world, passing to the enhanced-opposite category is not always possible, and has to be carefully justified. As a consequence of this, one cannot expect a meaningful generalization of the Yoneda embedding. Another consequence is that facts about enhanced fibrations and cofibration no longer simply imply each other, and have to be proved separately.

8.6.6. Tame fibrations and cofibrations. By Corollary 8.6.3.7, any small Karoubi-closed enhanced category is accessible, or in other words, any small enhanced category is accessible "up to Karoubi closure". To handle the remaining discrepancy, one can introduce the following.

Definition 8.6.6.1. An enhanced category \mathcal{C} is *tame* if its Karoubi envelope $\operatorname{Env}(\mathcal{C},\mathcal{P})$ is accessible, and an enhanced functor $\gamma:\mathcal{C}\to\mathcal{C}'$ between tame enhanced categories is *tame* if $\operatorname{Env}(\gamma,\mathcal{P}):\operatorname{Env}(\mathcal{C},\mathcal{P})\to\operatorname{Env}(\mathcal{C}',\mathcal{P})$ is accessible.

Unfortunately, since $\text{Env}(-,\mathcal{P})$ is badly behaved, there is a price to pay for this generality: Proposition 8.6.5.9 does not hold anymore. Namely, since the embedding $\mathcal{C} \to \text{Env}(\mathcal{C},\mathcal{P})$ is enhanced fully faithful for any \mathcal{C} , we can apply Proposition 8.6.5.9 to construct a semicartesian product $\mathcal{C}_{01} = \mathcal{C}_0 \times_{\mathcal{C}}^h \mathcal{C}_1$ for any

tame enhanced categories C, C_0 , C_1 and tame enhanced functors $\gamma_l : C_l \to C$, l = 0, 1, but it is not true in general that C_{01} is tame. By Lemma 8.6.1.8, for enhanced fibrations and cofibrations, this problem does not occur.

Lemma 8.6.6.2. For any tame enhanced functor $\pi: \mathcal{C} \to \mathcal{E}$ between tame enhanced categories that is an enhanced fibration or cofibration in the sense of Definition 8.4.2.1, the Karoubi envelope $\operatorname{Env}(\pi, \mathcal{P})$ is an enhanced fibration resp. cofibration. For any semicartesian square (8.4.1.11) of enhanced categories such that \mathcal{C} , \mathcal{E} , \mathcal{E}' , π and φ are tame, and π is an enhanced fibration or cofibration, \mathcal{C}' , π' and γ are also tame, and π' is also an enhanced fibration resp. enhanced cofibration.

Proof. For the first claim, since $\operatorname{Env}(-,\mathcal{P})$ commutes with 2-filtered colimits of full embeddings, we may assume that \mathcal{E} is small, and then by Lemma 8.4.2.2, we may assume the same for \mathcal{C} . Then $\operatorname{Env}(-,\mathcal{P})$ commutes with taking enhanced right comma-categories by by Lemma 8.6.4.4 and Remark 8.6.4.5, and since it also commuted with $\iota:\operatorname{Cat}^h\to\operatorname{Cat}^h,\mathcal{C}\mapsto\mathcal{C}^\iota$, the same holds for left commacategories. The claim then immediately follows from Lemma 8.5.7.17. For the second claim, \mathcal{C}' is tame by Lemma 8.6.1.8, and then again by Lemma 8.4.2.2, it suffices to check that π' is a fibration when \mathcal{C} and \mathcal{E} are small. This is Lemma 8.4.2.20.

Example 8.6.6.3. For any enhanced category \mathcal{E} , with the enhanced arrow category $\operatorname{ar}^h(\mathcal{E})$, the projections $\sigma, \tau : \operatorname{ar}^h(\mathcal{E}) \to \mathcal{E}$ are an enhanced fibration resp. cofibration (apply Lemma 8.4.2.10 to the [1]-coaugmented enhanced category $\mathcal{E} \times^h K([1])$ and its enhanced-opposite). Therefore Lemma 8.6.6.2 applies to semicartesian squares (8.4.1.4), and for any tame enhanced functor $\gamma : \mathcal{C} \to \mathcal{E}$ between tame enhanced categories, we have tame comma-categories $\mathcal{C}/_{\gamma}^h \mathcal{E}$, $\mathcal{E} \setminus_{\gamma}^h \mathcal{C}$. Moreover, Lemma 8.6.6.2 also applies to the squares (8.4.1.1), so that the enhanced cylinder $C_h(\gamma)$ and the enhanced dual cylinder $C_h(\gamma)$ are also tame.

To construct tame enhanced fibrations and cofibrations, note that for any regular cardinals $\kappa' < \kappa$ and κ' -bounded Karoubi-closed small enhanced category $\mathcal{E} \in \operatorname{Cat}^h_{\kappa'}$, we have $\operatorname{Ind}_\kappa(\mathcal{E}) = \mathcal{E}$ by Corollary 8.6.3.7, so as in (8.6.3.5), any enhanced functor $\varphi: \mathcal{C} \to \mathcal{E}$ gives rise to an enhanced functor

(8.6.6.1)
$$\mathcal{I}nd_{\kappa}(\varphi): \mathcal{I}nd_{\kappa}(\mathcal{C}) \to \mathcal{E} = \mathcal{I}nd_{\kappa}(\mathcal{E}).$$

We then have the following weaker version of Lemma 8.6.3.12.

Lemma 8.6.6.4. For any regular cardinals $\kappa' < \kappa$, κ' -bounded Karoubi-closed small enhanced category \mathcal{E} , and enhanced functor $\varphi : \mathcal{C} \to \mathcal{E}$ from a small enhanced

category \mathcal{C} that is an enhanced fibration or an enhanced cofibration, (8.6.6.1) is an enhanced fibration resp. cofibration. Morever, for any Karoubi-closed enhanced category $\mathcal{E}' \in \mathsf{Cat}^h_{\kappa'}$ and enhanced functor $\gamma : \mathcal{E}' \to \mathcal{E}$, the commutative square

(8.6.6.2)
$$\begin{array}{ccc} \mathcal{I}nd_{\kappa}(\gamma^{*}\mathcal{C}) & \longrightarrow & \mathcal{I}nd_{\kappa}(\mathcal{C}) \\ & \downarrow & & \downarrow \\ \mathcal{E}' & \stackrel{\gamma}{\longrightarrow} & \mathcal{E} \end{array}$$

is semicartesian, and $Sec^h(\mathcal{E}', Ind_{\kappa}(\mathcal{C})) \cong Ind_{\kappa}(Sec^h(\mathcal{E}', \mathcal{C}))$.

Proof. For the first claim, $\mathcal{I}nd_{\kappa}(-)$ commutes with taking right and left enhanced comma-categories by Lemma 8.6.3.12, so the claim immediately follows from Lemma 8.5.7.17. For the second claim, as in Lemma 8.6.3.12, it suffices to show that (8.6.6.2) is semicartesian in the case when $\mathcal{E}' = \operatorname{pt}$, so that $\gamma = \varepsilon^h(e)$ is the embedding onto an enhanced object $e \in \mathcal{E}_{\operatorname{pt}}$. Then if we let $\mathcal{C}' \to K(\mathsf{V}^o)$ be the V^o -coaugmented enhanced category with fibers pt^h , \mathcal{C} , \mathcal{E} and transition functors $\varepsilon^h(e) : \operatorname{pt}^h \to \mathcal{E}$, $\varphi : \mathcal{C} \to \mathcal{E}$, Lemma 8.6.3.9 shows that $\mathcal{I}nd_{\kappa}(\mathcal{S}ec^h(\mathsf{V}^o,\mathcal{C}')) \cong \mathcal{S}ec^h(\mathsf{V}^o,\mathcal{I}nd_{\kappa}(\mathcal{C}'))$, the full embedding $\mathcal{C}_e \to \mathcal{S}ec(\mathsf{V}^o,\mathcal{C}')$ induces a full embedding

(8.6.6.3)
$$Ind_{\kappa}(\mathcal{C}_{e}) \to Ind_{\kappa}(\mathcal{C})_{e},$$

and we need to check that (8.6.6.3) is essentially surjective. Indeed, by Lemma 8.6.3.2, enhanced objects in $\mathcal{I}nd_{\kappa}(\mathcal{C})_e$ are given by enhanced functors $X:\mathcal{C}^\iota\to\mathcal{S}ets^h$ such that $\mathcal{C}X$ is κ -filtered and $\varphi_!^oX\cong Y(e)$. Take such a functor X, with the cofinal enhanced functor $\mathcal{C}X\to\mathcal{E}/he$ of Example 8.5.5.6. If φ is an enhanced cofibration, let $\mathcal{C}'=\mathcal{C}X/h(\mathcal{E}/he)$. Then the projection $\pi:\mathcal{C}X\to\mathcal{C}$ extends to an enhanced functor $\pi':\mathcal{C}'\to\mathcal{C}/he$ cocartesian over \mathcal{E}/he , we have the full embedding $\eta:\mathcal{C}X\to\mathcal{C}'$ that is cofinal by Corollary 8.6.2.15, and since e is the terminal enhanced object in E/he, we also have $\mathcal{C}X\cong\mathcal{C}'_e$, so that we obtain another full embedding $\psi:\mathcal{C}X\cong\mathcal{C}'_e\to\mathcal{C}'$ that is left-admissible, hence also cofinal. We then have

$$(8.6.6.4) X \cong \operatorname{colim}_{\mathcal{C}X}^{h} \mathsf{Y}(\mathcal{C}) \circ \pi \cong \operatorname{colim}_{\mathcal{C}'}^{h} \mathsf{Y}(\mathcal{C}) \circ \pi' \cong \operatorname{colim}_{\mathcal{C}'}^{h} \mathsf{Y}(\mathcal{C}) \circ \pi' \circ \psi,$$

and the right-hand side manifestly lies in the essential image of (8.6.6.3). Similarly, if φ is an enhanced fibration, let $\mathcal{C}' = (\mathcal{E}/^h e) \setminus^h \mathcal{C}X$, and extend π to an enhanced functor $\pi' : \mathcal{C}' \to \mathcal{C}/^h e$ cartesian over $\mathcal{E}/^h e$. Then we again have a full embedding $\eta : \mathcal{C}X \to \mathcal{C}'$ and another full embedding $\psi : \mathcal{C}'_e \to \mathcal{C}'$, η is left-admissible, hence cofinal, so to conclude that (8.6.6.4) still holds, we need to

check that ψ is cofinal as well. The argument for that is essentially the same as in Corollary 8.6.2.15; we leave it to the reader.

Lemma 8.6.6.5. Assume given an accessible enhanced functor $\varphi: \mathcal{C} \to \mathcal{E}$ to a small enhanced category \mathcal{E} , and assume that φ is either an enhanced fibration or an enhanced cofibration. Then for any cardinal κ' , there exists a regular cardinal $\kappa > \kappa'$ such that $Comp_{\kappa}(\mathcal{C}) \to \mathcal{E}$ is an enhanced fibration resp. cofibration, and an enhanced object $c \in \mathcal{C}_{pt}$ is κ -compact iff it is κ -compact as an object in the enhanced fiber $\mathcal{C}_{\varphi(c)}$.

Proof. By Lemma 8.6.5.4 and Corollary 8.6.3.7, we may choose a regular cardinal $\kappa > \kappa'$ such that the enhanced fibers C_e , $e \in \mathcal{E}_{pt}$ are κ -compact, the transition functors are κ -defined, and $\mathcal{E} = \mathcal{I}nd_{\kappa}(\mathcal{E})$. Then as in Lemma 8.6.6.4, all κ -filtered colimits in \mathcal{C} can be replaced with cofinal κ -filtered colimits that factor through an enhanced fiber C_e , $c \in \mathcal{E}_{pt}$, and by adjunction, this immediately implies that $c \in \mathcal{C}_{pt}$ is κ -compact in \mathcal{C} iff it is κ -compact in $\mathcal{C}_{\varphi(c)}$. Since all the transition functors are κ -defined, $\mathcal{C}omp_{\kappa}(\mathcal{C}) \subset \mathcal{C}$ is then a subfibration resp. subcofibration by Lemma 8.4.2.2 and Lemma 8.4.3.2.

A natural next question is whether tame enhanced fibrations and cofibrations admits some form of the Grothendieck construction, but this question is delicate and presents obvious problems. Firstly, for fibrations, we cannot pass to the opposite categories, as explained in Remark 8.6.5.13. Secondly, tame categories do not themselves form an enhanced category. Indeed, even if we fix a regular cardinal κ and only consider κ -accessible enhanced categories and enhanced functors, the functors categories $\mathcal{F}un^h_\kappa(\mathcal{C},\mathcal{C}')$ are usually large. We thus leave the general Grothendieck construction aside, and limit ourselves to one of its applications — namely, transpose enhanced cofibrations and fibrations.

Proposition 8.6.6.6. Assume given a small enhanced category \mathcal{E} . Then for any tame enhanced fibration $\mathcal{C} \to \mathcal{E}$, there exists a unique tame enhanced cofibration $\mathcal{C}' = \mathcal{C}_{h\perp} \to \mathcal{E}^{\iota}$, and dually, for any tame enhanced cofibration $\mathcal{C}' \to \mathcal{E}^{\iota}$, there exists a unique tame enhanced fibration $\mathcal{C} = \mathcal{C}'^{h\perp} \to \mathcal{E}$ such that the squares (8.5.6.15) are enhanced-cocartesian with respect to tame enhanced functors. Moreover, for any enhanced functor $\gamma: \mathcal{E}' \to \mathcal{E}$ from a small enhanced category \mathcal{E}' , we have $(\gamma^*\mathcal{C})_{h\perp} \cong \gamma^{\iota *}\mathcal{C}_{h\perp}$.

Proof. Assume first that we are given a tame fibration $\mathcal{C} \to \mathcal{E}$, and \mathcal{C} and \mathcal{E} are Karoubi-closed, thus accessible. Then by Lemma 8.6.6.5, we have $\mathcal{C} \cong \mathcal{I}nd_{\kappa}(\mathcal{C}omp_{\kappa}(\mathcal{C}))$ for some κ such that $\mathcal{E} = \mathcal{I}nd_{\kappa}(\mathcal{E})$, $\mathcal{E}^{\iota} = \mathcal{I}nd_{\kappa}(\mathcal{E}^{\iota})$ and $\mathcal{C}omp_{\kappa}(\mathcal{C}) \to \mathcal{E}$ is an enhanced fibration. Then by Lemma 8.5.6.6, the enhanced cofibration $\mathcal{C}omp_{\kappa}(\mathcal{E})_{h\perp} \to \mathcal{E}^{\iota}$ fits into an enhanced-cocartesian square (8.5.6.15),

and by Lemma 8.6.6.4, it it induces an analogous commutative square for the enhanced category $\mathcal{C}'_{\kappa} = \mathcal{I}nd_{\kappa}(\mathcal{C}omp_{\kappa}(\mathcal{C})_{h\perp})$ that is enhanced-cocartesian with respect to κ -accessible enhanced functors. Moreover, the category \mathcal{C}'_{κ} and the square are functorial with respect to enhanced functors $\gamma: \mathcal{E}' \to \mathcal{E}$ as required. Then for any μ such that $\kappa \triangleleft \mu$, $\mathcal{C}omp_{\mu}(\mathcal{C})_{h\perp}$ also fits into an enhanced-cocartesian square (8.5.6.15), and by universality, we have a comparison functor $\mathcal{C}omp_{\mu}(\mathcal{C})_{h\perp} \to \mathcal{C}omp_{\mu}(\mathcal{C}'_{\kappa})$, cocartesian over \mathcal{E}^{ι} . By functoriality with respect to γ , this functor is an equivalence over any enhanced object $e \in \mathcal{E}_{pt}$, thus an equivalence. We conclude that the square (8.5.6.15) for \mathcal{C}'_{κ} is also enhanced-cocartesian with respect to μ -accessible functors, and since μ is arbitrary, it is enhanced-cocartesian with respect to all accessible functors. This implies uniqueness.

If we are given \mathcal{C}' rather than \mathcal{C} , the argument is exactly the same. Moreover, in either case, by functoriality with respect to γ , \mathcal{C} and \mathcal{C}' have exactly the same enhanced objects. Then to finish the proof, it remains to consider the case when \mathcal{C} or \mathcal{C}' and \mathcal{E} are only tame, not accessible; in this case, it suffices to take $\operatorname{Env}(\mathcal{C},\mathcal{P})_{h\perp}$ resp. $\operatorname{Env}(\mathcal{C}',\mathcal{P})^{h\perp}$, and consider the full subcategory spanned by enhanced objects in \mathcal{C} resp. \mathcal{C}' .

Finally, let us consider the case when the base of a tame enhanced fibration or cofibration is not small. Here all we have is one non-example and one half-example.

Example 8.6.6.7. The enhanced cofibration $Cat^h \to Cat^h$ described in Example 8.3.7.3 is *not* tame. Indeed, were it tame, the enhanced fibers of its Karoubi closure would have been κ -accessible for some fixed regular cardinal κ . However, these enhanced fibers are all small enhanced categories, so it is not possible to fix a single κ for all of them.

What one can do is fix a regular cardinal κ , and construct an enhanced cofibration $\mathcal{C}at^h_{\kappa_{\bullet}} \to \mathcal{C}at^h$ with enhanced fibers $\mathcal{I}nd_{\kappa}(\mathcal{C})$, $\mathcal{C} \in \operatorname{Cat}^h$. It is possible to do this, and the resulting category $\mathcal{C}at^h_{\kappa_{\bullet}}$ is κ -accessible; however, it is not clear whether so is the projection $\mathcal{C}at^h_{\kappa_{\bullet}} \to \mathcal{C}at^h$.

Proposition 8.6.6.8. For any regular cardinal κ and κ -filtered-cocomplete enhanced category \mathcal{E} , the enhanced category Cat^h // $^h\mathcal{E}$ is is κ -filtered-cocomplete, and the enhanced fibration (8.3.7.5) is κ -right-exact. If \mathcal{E} is κ -presentable, then Cat^h // $^h\mathcal{E}$ is κ -presentable, and (8.3.7.5) is enhanced-right-exact. If \mathcal{E} is accessible, then for any small Karoubi-closed full enhanced subcategory $\mathcal{I} \subset \operatorname{Cat}^h$, the enhanced full subcategory \mathcal{I} // $^h\mathcal{E} \subset \operatorname{Cat}^h$ // $^h\mathcal{E}$ is accessible.

Proof. The enhanced category Cat^h is κ -presentable, hence κ -accessible by Corollary 8.6.5.8. By definition, for any small enhanced category \mathcal{I} , an enhanced functor $E: \mathcal{I} \to Cat^h$ // ℓ is determined by the pair $\langle E, EX \rangle$ of its composition $X: \mathcal{I} \to Cat^h$ with (8.3.7.5), and an enhanced functor $EX: \mathcal{I}^\perp X \to \mathcal{E}$. If we let $\mathcal{C} = \text{colim}_{\mathcal{I}}^h X$, then (8.5.2.4) provides an enhanced functor $\gamma: \mathcal{I}^\perp X \to \mathcal{C}$, and then $\text{colim}_{\mathcal{I}}^h E = \langle \mathcal{C}, \gamma_! EX \rangle$, provided the left Kan extension exists. Then for the first claim, we need to check that $\gamma_! EX$ exists if \mathcal{E} is κ -filtered-cocomplete and \mathcal{I} is κ -filtered. Indeed, composing X with the embedding (8.5.6.1) gives an enhanced functor $X': K(\Delta^o) \times^h \mathcal{I} \to \mathcal{S}ets^h$ and an enhanced functor $EX': (K(\Delta^o) \times^h \mathcal{I})^\perp X \to \mathcal{E}$; then γ induces an enhanced functor $\gamma': (K(\Delta^o) \times^h \mathcal{I})^\perp X' \to (\Delta_h \mathcal{C})^t$ cocartesian over $K(\Delta^o)$, and by Lemma 8.5.6.5, it suffices to check that $\gamma_! EX'$ exists. But then, (8.5.6.1) preserves filtered colimits, and if one computes $\gamma_!$ by (8.5.4.1), all the comma-fibers are κ -filtered by Lemma 8.6.2.6.

For the second claim, $\gamma_!$ always exists since presentable enhanced categories are enhanced-cocomplete, so by Lemma 8.6.5.7, it suffices to find a small generating full subcategory in $\operatorname{Cat}^h /\!\!/^h \mathcal{E}$ spanned by κ -compact objects. By Corollary 8.5.6.10, pos $/\!\!/^h \operatorname{Comp}_{\kappa}(\mathcal{E}) \subset \operatorname{Cat}^h /\!\!/^h \mathcal{E}$ does the job.

Finally, for the third claim, by Corollary 8.6.5.10, we may choose a regular cardinal $\mu > \kappa$ that is large enough so that \mathcal{I} is μ -bounded and μ -accessible, $\mathcal{F}un^h(\mathcal{C},\mathcal{E})$ is μ -accessible for any enhanced object $\mathcal{C} \in \mathcal{I}_{pt}$, and the pullback functor $\gamma^* : \mathcal{F}un^h(\mathcal{C}',\mathcal{E}) \to \mathcal{F}un^h(\mathcal{C},\mathcal{E})$ is μ -accessible for any enhanced morphism $\gamma : \mathcal{C} \to \mathcal{C}'$ in \mathcal{I} . Then $\mathcal{I}/\!\!/^h\mathcal{E}$ is μ -filtered-cocomplete by the first claim, and $\mathcal{C}omp_{\mu}(\mathcal{I}/\!\!/^h\mathcal{E}) \subset \mathcal{I}/\!\!/^h\mathcal{E}$ is an enhanced subfibration over \mathcal{I} with enhanced fibers $\mathcal{C}omp_{\mu}(\mathcal{F}un^h(\mathcal{C},\mathcal{E}))$, $\mathcal{C} \in \mathcal{I}_{pt}$, while the fully faithful embedding $\mathcal{I}nd_{\mu}(\mathcal{C}omp_{\mu}(\mathcal{I}/\!\!/^h\mathcal{E})) \to \mathcal{I}/\!\!/^h\mathcal{E}$ is cartesian over \mathcal{I} , and essentially surjective on each enhanced fiber. Therefore it is essentially surjective.

It is probably *not* true that Cat^h // h $\mathcal E$ is accessible for an arbitrary accessible enhanced category $\mathcal E$ (roughly speaking, were it κ -accessible for some regular cardinal κ , $\mathcal Fun^h(\mathcal C,\mathcal E)$ would have been κ -accessible for any κ -bounded small enhanced category $\mathcal E$, and by Corollary 8.6.5.10, it is only κ' -accessible for some $\kappa' > \kappa$). However, even the restricted statement given in Proposition 8.6.6.8 has its uses. In particular, for any enhanced cofibration $\mathcal C' \to \mathcal C$ between small enhanced categories, and any accessible enhanced category $\mathcal E$, we can still define

the relative functor category $\mathcal{F}un^h(\mathcal{C}'|\mathcal{C},\mathcal{E})$ by the semicartesian square

(8.6.6.5)
$$\begin{aligned}
& \mathcal{F}un^{h}(\mathcal{C}'|\mathcal{C},\mathcal{E}) & \longrightarrow \mathcal{C}at^{h} /\!/^{h} \mathcal{E} \\
& \downarrow \pi \\
& \mathcal{C} & \xrightarrow{X} \mathcal{C}at^{h},
\end{aligned}$$

where $X:\mathcal{C}\to\mathcal{C}at^h$ corresponds to $\mathcal{C}'\to\mathcal{C}$ by the covariant enhanced Grothendieck construction, and the square (8.6.6.5) exists since X factors through a small enhanced subcategory $\mathcal{I}\subset\mathcal{C}at^h$. The relative functor category $\mathcal{F}un^h(\mathcal{C}'|\mathcal{C},\mathcal{E})$ is accessible by Proposition 8.6.5.9, and has the same universal property with respect to accessible enhanced functors as the relative functor category (8.4.5.4) of Subsection 8.4.5. Moreover, the forgetful functor $\mathcal{F}un^h(\mathcal{C}'|\mathcal{C},\mathcal{E})\to\mathcal{C}$ is an accessible enhanced fibration, and we have an enhanced fibration $\mathcal{C}'\to\mathcal{C}$ between small enhanced categories, we can define

(8.6.6.6)
$$\operatorname{Fun}^{h}(\mathcal{C}'|\mathcal{C},\mathcal{E}) \cong \operatorname{Fun}^{h}(\mathcal{C}'_{h\perp}|\mathcal{C}^{\iota},\mathcal{E})_{h\perp},$$

where $\gamma^{\iota}: \mathcal{E}'^{\iota} \to \mathcal{E}^{\iota}$ is the enhanced-opposite cofibration, and the right-hand side is the transpose tame enhanced cofibration provided by Proposition 8.6.6.6. This again has the same universal property as the relative functor category (8.4.5.11) of Subsection 8.4.5.

Bibliography

- [AR] Jiří Adámek, Jiří Rosický, Locally presentable and accessible categories, Cambridge University Press, Cambridge, 1994.
- [A] J. F. Adams, A Variant of E. H. Brown's Representability Theorem, Topology, **10** (1971), 185-198.
- [BaK] C. Barwick and D. Kan, *Relative categories: another model for the homotopy theory of homotopy theories*, Indag. Math. (N.S.) **23** (2012), 42–68.
- [Bo1] A.K. Bousfield, *The localization of spaces with respect to homology*, Topology **14** (1975), 133–150.
- [Bo2] A.K. Bousfield, Constructions of factorization systems in categories, J. Pure Appl. Algebra 9 (1976/77), 207–220.
- [BoK] A.K. Bousfield and D. Kan, *Homotopy limits, completions and localizations*, Lecture Notes in Math. **304**, Springer-Verlag, Berlin, 1972.
- [Br] E. Brown, Cohomology theories, Ann. Math. 75 (1962), 467–484.
- [Dr] V. Drinfeld, On the notion of geometric realization, Mosc. Math. J. 4 (2004), 619–626, 782.
- [DHKS] W. Dwyer, P. Hirschhorn, D. Kan, and J. Smith, *Homotopy limit functors on model categories and homotopical categories*, Mathematical Surveys and Monographs, **113**, American Mathematical Society, Providence, RI, 2004.
- [DK] Dwyer and D. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980), 267–284.
- [DS] W. G. Dwyer and J. Spalinski, *Homotopy theories and model categories*, in *Handbook of Homotopy Theory (I. M. James, ed.)*, Elsevier Science B.V., 1996.

- [GZ] P. Gabriel and Michel Zisman, *Calculus of fractions and homotopy theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer (1967).
- [GU] P. Gabriel and F. Ulmer, *Lokal Präsentierbare Kategorien*, Lecture Notes in Mathematics **221** (1971), Springer, Berlin-Heidelberg-New York.
- [GM] S. Gelfand and Yu. Manin, *Methods of homological algebra*, Nauka Publishers, Moscow, 1988 (in Russian).
- [G1] A. Grothendieck, Sur quelques points d'algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221.
- [G2] A. Grothendieck, Catégories fibrées et descente, Exposé VI in SGAI.
- [G3] A. Grothendieck, Théorie des Topos et Cohomologie Étale des Schémas, SGAIV.
- [G4] A. Grothendieck, \hat{A} la poursuite des champs, unpublished manuscript, 1983.
- [Gr1] M. Groth, *Derivators, pointed derivators and stable derivators*, Algebr. Geom. Topol. **13** (2013), 313–374.
- [Gr2] M. Groth, Characterizations of abstract stable homotopy theories, arXiv:1602.07632.
- [Ho] M. Hovey, *Model categories*, Mathematical Surveys and Monographs, **63** American Mathematical Society, Providence, RI, 1999.
- [J] P.T. Johnstone, Topos Theory, Academic Press, New York, 1977.
- [K1] D. Kaledin, How to glue derived categories, Bull. Math. Sci. 8 (2018), 477–602.
- [K2] D. Kaledin, Adjunction in 2-categories, Russian Math. Surveys 75 (2020), 883-927.
- [K3] D. Kaledin, *Taming large categories*, to appear in São Paolo Journal of Mathematics.
- [K4] D. Kaledin, *How to enhance categories, and why?*, to appear in Russian Math. Surveys.
- [Le] T. Leinster, A general theory of self-similarity, Adv. Math. **226** (2011), 2935–3017.

- [Lu1] J. Lurie, *Higher topos theory*, Annals of Mathematics Studies, **170**, Princeton University Press, Princeton, NJ, 2009.
- [Lu2] J. Lurie, Stable Infinity Categories, arXiv:math/0608228.
- [M] S. Mac Lane, *Categories for the working mathematician*, second ed., Graduate Texts in Mathematics, **5**, Springer-Verlag, New York, 1998.
- [NS] T. Nikolaus and P. Scholze, *On topological cyclic homology*, Acta Math. **221** (2018), 203–409.
- [Q] D. Quillen, *Homotopical algebra*, Lecture Notes in Math. **43**, Springer-Verlag, Berlin-New York 1967.
- [Re] C. Reedy, *Homology of algebraic theories*, Ph.D. thesis, University of California at San Diego, 1974.
- [R] C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. **353** (2001), 973–1007.
- [S] R. Switzer, *Algebraic Topology: Homotopy and Homology*, Springer, Berlin, 1975.
- [T] B. Toën, Vers une axiomatisation de la théorie des catégories supérieures, K-Theory **34** (2005), 233–263.
- [V] J.-L. Verdier, *Des catégories dérivés des catégories abéliennes*, with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis, Astérisque **239** (1963, published in 1996).

Affiliations:

- 1. Steklov Mathematics Institute (main affiliation).
- 2. National Research University Higher School of Economics.

E-mail address: kaledin@mi-ras.ru