Вычислительная техника

Лисид Лаконский

October 2022

Содержание

1	Выч	Вычислительная техника - 03.10.2022		
	1.1	Табличные методы минимизации		
		1.1.1 N	Линимизация с помощью карт Карно	2
		1.1.2 N	Линимизация с помощью диаграмм Вейча	2
	1.2	Цифров	ые комбинационные устройства	3
		1.2.1 Y	<i>У</i> стройство равнозначности	3
		1.2.2 Y	<i>Т</i> стройство неравнозначности	3
		1.2.3 I	Іолусумматор	3
			Комбинационный сумматор	

1 Вычислительная техника - 03.10.2022

Ревью прошлого зантия: совершенная дизъюнктивная (или) форма, соершенная конъюнктивная (и) нормальная форма, минимазция с помощью трех методов: алгебраического, с помощью карт Карно, с помощью диаграммы Вейча.

1.1 Табличные методы минимизации

1.1.1 Минимизация с помощью карт Карно

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & \end{pmatrix}$$
 - шаблон карты Карно для функции, принимающей два аргумента. $\begin{pmatrix} 00 & 01 & 11 & 10 \\ 0 & & & \\ 1 & & \end{pmatrix}$ - шаблон карты Карно для функции, принимающей три аргумента. $\begin{pmatrix} 00 & 01 & 11 & 10 \\ 00 & & & \\ 11 & & & \\ 10 & & & \end{pmatrix}$ - шаблон карты Карно для функции, принимающей четыре аргумента.

Основные принципы склейки:

Основные принципы склеики:

- 1. Склейку клеток одной и той же карты Карно можно осуществлять как по единицам (а), так и по нулям (б). Первое необходимо для получения $ДН\Phi$, второе для получения $KH\Phi$
- 2. Склеивать можно только прямоугольные области с числом единиц (нулей), являющимся целой степенью двойки
- 3. Рекомендуется выбирать максимально возможные области склейки
- 4. Для карт Карно с числом переменных 3 и 4 применимо следующее правило: крайние клетки каждой горизонтали и каждой вертикали граничат между собой и могут объединяться в прямоугольники (топологически карта Карно представляет собой тор). Следствием этого правила является смежность всех четырёх угловых ячеек карты Карно для 4 переменных

1.1.2 Минимизация с помощью диаграмм Вейча

Метод минимизации с помощью диаграмм Вейча основан на методе с применением карт Карно, однако элементы записываются иначе, более удобно для формирования итоговой формулы: лучше смотреть, что изменяется, а что нет.

Все записывается так же с помощью кода Грея, неизменяющиеся элементы подписываются так, чтобы образовывать единицу.

1.2 Цифровые комбинационные устройства

1.2.1 Устройство равнозначности

$$y = (x_1 x_2) + (\overline{x_1 x_2}) = \overline{\overline{x_1 x_2} * \overline{\overline{x_1 x_2}}}$$

Возвращает единицу, если оба аргумента равны, иначе ноль.

1.2.2 Устройство неравнозначности

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$

Возвращает единицу, если оба аргумента не равны, иначе ноль.

1.2.3 Полусумматор

$$S=x_1\oplus x_2, P=x_1x_2$$
 S - сумма, P - перенос

1.2.4 Комбинационный сумматор

Комбинационный сумматор, удивительно, получается при помощии комбинации полусумматоров или других сумматоров.

Схемы тут не будет, так как в LaTeX крайне неудобно прикреплять картинки. По крайней мере, мне лень сейчас разбираться, как тут в Overleaf это делать.

Складываются аргументы, а потом результат работы сумматора складывается с переносом.