·WYUNDAI

HY514400A Series

1M x 4-bit CMOS DRAM

DESCRIPTION

The HY514400A is the 2nd generation and fast dynamic RAM organized 1,048,576 x 4-bit. The HY514400A utilizes Hyundai's CMOS silicon gate process technology as well as advanced circuit techniques to provide wide operating margins to the users. Multiplexed address inputs permit the HY514400A to be packaged in a standard 20/26 pin plastic SOJ, TSOP-II and Reverse TSOP-II.

The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipments. System oriented feature includes single power supply of 5V±10% tolerance and direct interfacing capability with high performance logic families such as Schottky TTL.

FEATURES

Low power dissipation
 Max. battery back-up 2.2mW (L-part)
 Max. CMOS standby 1.1mW (L-part)
 5.5mW

Max. TTL standby 11.0mW

max. operaung							
Speed	Power						
50	715.0mW						
60	632.5mW						
70	550.0mW						

- Single power supply of 5V±10%
- TTL compatible inputs and outputs
- Fast access and cycle time

Speed	trac	tCAC	t PC
50	50ns	15ns	35ns
60	60ņs	15ns	40ns
70	70ns	20ns	45ns

- · Fast page mode operation
- Multi-bit test capability
- · Read-Modify-Write capability
- · CAS-before-RAS, RAS-only, Hidden refresh
- 1024 refresh cycles / 128ms (L-part)
 1024 refresh cycles / 16ms

PIN DESCRIPTION

RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
ŌĒ	Output Enable
A0-A9	Address Input
DQ0-DQ3	Data Input/Output
Vcc	Power (+5V)
Vss	Ground

PIN CONNECTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

SYMBOL	PARAMETER	RATING	UNIT
TA	Ambient Temperature	0 to 70	°C
Тэтв	Storage Temperature	-55 to 150	°C
VIN, VOUT	Voltage on Any Pin Relative to Vss	-1.0 to 7.0	V
Vcc	Voltage on Vcc Relative to Vss	-1.0 to 7.0	V
los	Short Circuit Output Current	50	mA
PD	Power Dissipation	0.90	W
TSOLDER	Soldering Temperature • Time	260 • 10	°C • sec

NOTE: Operation at or above Absolute Maximum Ratings can adversely affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

(TA = 0°C to 70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VCC	Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.4	-	Vcc+1.0	V
VIL	Input Low Voltage	-1.0	-	0.8	V

NOTE: All voltage are referenced to Vss.

DC CHARACTERISTICS

(TA=0°C to 70°C, Vcc=5.0V±10%, Vss=0V, unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS	TEST CONDITIONS SPEED/		MAX.	UNIT	NOTE
lu	Input Leakage Current	Vss ≤ V IN ≤ 6.5V		-10	10	μA	
	(Any Input Pins)	All other pins not under test =	Vss	l	L		
ILO	Output Leakage Current	Vss ≤ Vout ≤ 5.5V		-10	10	μА	I
	(High impedance State)	RAS & CAS at ViH					
ICC1	Vcc Supply Current,	tRC = tRC(min.)	50	-	130	mA	1,2,3
	Operating		60	-	115	l	
	Operating		70	<u> </u>	100	L	
lcc2	Vcc Supply Current, TTL	RAS & CAS at VIH,		-	2	mA	
	Standby	other inputs ≥ VSS		1		ļ	l
lcc3	Vcc Supply Current,	trc = trc(min.)	50	T -	130	mA	1,3
	RAS-only refresh		60	-	115	1	'
	Tate only ronden		70	١ -	100		
ICC4	Vcc Supply Current,	tpc = tpc(min.)	50	-	80	mA	1,2,3
	Fast Page mode		60	۱ -	70	İ	
			70	-	60		
ICC5	Vcc Supply Current,	RAS & CAS ≥ Vcc-0.2V		-	1	mA	5
	CMOS Standby	1000 a 000 2 100 0.21	L-Part	-	0.2	L	
ICC6	Vcc Supply Current,	trc = trc (min.)	50	-	130	mA	1,3
	CAS-before-RAS		60	-	115	1	1
	refresh		70	<u> </u>	100		
ICC7	Vcc Supply Current,	trc = 125µs,	tras ≤	-	300	μA	1,4,5
	Battery Back up	CAS = CBR cycling or	300ns				
	(L-part only)	0.2V OE & WE =	tras≤	-	400	1	
		Vcc-0.2V,	1µs		1		1
		A0-A9 = Vcc-0.2V or 0.2V	1				i
	1	DQ 0-DQ3 = 0.2V,		1			1
	1	Vcc-0.2V or open					
Vol	Output Low Voltage	IOL = 4.2mA		·	0.4	V	1
Vон	Output High Voltage	Iон = -5mA		2.4	-	V	

NOTE:

- 1. ICC1, ICC3, ICC4, ICC6 and ICC7 depend on cycle rate.
- 2. ICC1, ICC3, ICC4 depend on output loading. Specified values are obtained with the output open.
- 3. It depends on user whether column address is changed or not at least once while RAS=VII. and CAS=VIII.
- 4. Only tras(max.) =1 μ s is applied to refresh of battery backup but tras(max.) =10 μ s is applied to normal functional operation .
- Iccs(max.) =0.2mA and icc7 are applied to L-parts only (HY514400ALJ, HY514400ALT and HY514400ALR).

AC CHARACTERISTICS

(TA=0°C to 70°C, Vcc=5V ± 10%, Vss=0V, unless otherwise noted.) NOTE1,2,3,13

_	evenou		HY514400AJ/AT/AR/ALJ/ALT/ALR				LR				
#	SYMBOL	L PARAMETER		-50 -60				70	UNIT	NOTE	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1	
1	tRC	Random Read or Write Cycle Time	e	90	-	110	-	130	-	ns	
2	tRWC	Read-Modify-Write Cycle Time		130	-	150	-	180		ns	
3	tPC	Fast Page Mode Cycle Time		35	-	40	-	45	-	ns	
4	tPRWC	Fast Page Mode Read-Modify-Wri Cycle Time	te	75	-	80	-	95	-	ns	
5	tRAC	Access Time from RAS			50	-	60	-	70	ns	4,9,10
6	tCAC	Access Time from CAS		-	15	-	15		20	ns	4,9
7	taa	Access Time from Column Addres	5	-	25	-	30	-	35	ns	4,10
8	tCPA	Access Time from CAS Precharge	,	-	30	L.	35	-	40	ns	4,15
9	tCLZ	CAS to Output Low Impedance		0	-	0	-	0	-	ns	4
10	tOFF	Output Buffer Turn-off Delay		0	15	0	15	0	20	ns	5
11	tT	Transition Time (Rise and Fall)		3	50	3	50	3	50	ns	3
12	tRP	RAS Precharge Time		30	-	40		50	-	лs	Ť
13	tRAS	RAS Pulse Width		50	10K	60	10K	70	10K	ns	
14	tRASP	RAS Pulse Width (Fast Page Mode	n)	50	200K	60	200K	70	200K		
15	tRSH	RAS Hold Time	-,	15	-	15	2001	20	2001	ns	
$\overline{}$	tCSH	CAS Hold Time		50		60	- :	70		ns_	
17	tCAS	CAS Pulse width		15	tok	15	10K	20	10K	_ns	
$\overline{}$	tRCD	RAS to CAS Delay		15	35	20	45		11.00	ns	
_	tRAD	RAS to Column Address Delay Tin		10	25	15	30	20	50	ns_	9_
_	tCRP	CAS to RAS Precharge Time	16	5	25			15	35	ns	_10
-	tCP	CAS Precharge Time		_		5		5		ns	15
_	tasr	Row Address Set-up Time		10		10	-	10	-	ns_	17
_	tRAH	Row Address Hold time		0		0	-	0		nş.	
-	tASC	Column Address Set-up Time		8	-	10		10		ns	
_	tCAH	Column Address Hold Time		_ p		0		0		ns	14
\rightarrow	tAR	Column Address Hold Time from R	10	15		15		15	-	ns	14
_	tRAL	Column Address to RAS Lead Time		45		50		55		ns	
_			<u> </u>	25	-	30		35		ns	
_		Read Command Set-up Time Read Command Hold Time		0		0	-	-0		ns	14
4		Referenced to CAS Read Command Hold Time		0	-		-	0	-	ns	6,14
		Referenced to RAS		u	-	0	- 1	٥	-	ns	6
_		Write Command Hold Time		10	-	15		15	- 1	ns	14
_		Write Command Hold Time from RA	AS	40	-	50	-	55	-	ns	
-		Write Command Pulse Width		10	-	15	-	15	-	ns	
		Write Command to RAS Lead Time		15		15	- :	20	-	ns	
_	tCWL	Write Command to CAS Lead Time		15	-	15		20		ns ,	16
_	tos	Data-In Set-up Time		0	-	0	- 1	0	-	ns	7
37	tDH	Data-In Hold Time		10	-	15	-	15		ns	7
88	IDHR	Data-In Hold Time Referenced to R	ĀŠ	40	- 1	50	-	55	-	ns	
39	tREF	Refresh Period (1024 cycles)		- 1	16		16	-	16		12
\perp			L-part	-	128	-	128	-	128	ms	11
10	MCS	Write Command Set up Time		0	-	0	-	0	-	ns	8,14

AC CHARACTERISTICS

(continued)

			HY514400AJ/AT/AR/ALJ/ALT/ALR							
#	SYMBOL	PARAMETER	•	- 50		60	- 70		UNIT	NOTE
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.]	
41	tCWD	CAS to WE Delay Time	35	-	35		40	-	ns	8
42	tRWD	RAS to WE Delay Time	70	-	80	_	95	-	ns	8
43	tAWD	Column Address to WE Delay Time	45	-	50		60	-	ns	8
44	tCSR	CAS Set-up Time (CBR Cycle)	5	_	5	-	5	-	ns	14
45	tCHR	CAS Hold Time (CBR Cycle)	10	-	10	-	10	-	ns	15
46	tRPC	RAS to CAS Precharge Time	5	-	5	-	5	-	ns	14
47	tCPT	CAS Precharge Time (CBR Counter Test)	25	-	30	-	35	-	ns	17
48	tROH	RAS Hold Time Referenced to OE	10	-	10	-	10	20	ns	
49	tOEA	OE Access Time		15	-	15	-	20	ns	
50	tOED	OE to Data Delay	15	_	15	-	20	-	пѕ	
51	tOEZ	Output Buffer Turn Off Delay Time from OE	0	15	0	15	0	20	ns	5
52	tOEH	OE Command Hold Time	15	-	15	-	20	-	ns	
53	tCPWD	WE Delay time from CAS Precharge	50	-	55	-	65	-	ns	8
54	tRHCP	RAS Hold Time from CAS Precharge	30	-	35	-	40	-	ns	
55	tWRP	WE to RAS Precharge Time (CBR Cycle)	10	-	10	-	10	-	ns	
56	tWRH	WE to RAS Hold Time (CBR Cycle)	10	-	10	-	10	-	ns	
57	twts	Write Command Set-up Time (Test Mode In)	10	-	10	-	10	-	ns	
58	twTH	Write Command Hold Time (Test Mode In)	10	-	10	-	10	-	ns	

AC CHARACTERISTICS IN TEST MODE NOTE 18

			HY514400AJ/AT/AR/ALJ/ALT/ALR										
#	SYMBOL	PARAMETER	-	- 50		- 50		- 50 - 60		-	70	UNIT	NOTE
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1	1			
1	tRC	Random Read or Write Cycle Time	95	-	115	-	135	-	ns				
2	tRWC	Read-Modify-Write Cycle Time	135	-	155	-	185	-	ns				
3	tPC	Fast Page Mode Cycle Time	40	-	45	-	50	-	ns				
4	tPRWC	Fast Page Mode Read-Modify-Write Cycle Time	80	-	85	-	100	-	ns				
5	tRAC	Access Time from RAS	-	55	-	65	-	75	ns	4,9,10			
6	tCAC	Access Time from CAS	-	20	_	20		25	ns	4.9			
7	tAA	Access Time from Column Address	-	30	-	35	-	40	ns	4,10			
8	tCPA	Access Time from CAS Precharge	_	35	-	40	_	45	ns	4			
.13	tRAS	RAS Pulse Width	55	10K	65	10K	75	10K	ns	<u> </u>			
14	tRASP	RAS Pulse Width (Fast Page Mode)	55	200K	65	200K	75	200K	ns	†			
15	tRSH	RAS Hold Time	20	-	20		25		ns				
16	tCSH	CAS Hold Time	55	-	65	-	75	-	ns				
17	tCAS	CAS Pulse Width	20	10K	20	10K	25	10K	ns				
27	tral	Column Address to RAS Lead Time	30	-	35	-	40	-	ns				
41	tCWD	CAS to WE Delay Time	40	-	40	-	50		ns	8			
42	tRWD	RAS to WE Dealy Time	75	-	85	-	100	-	ns	8			
43	tAWD	Column Address to WE Delay Time	50	-	55	-	65	-	ns	8			
49	tOEA	OE Access Time	-	20	_	20	•	25	ns				
50	tOED	OE to Data Delay	20	-	20		25	-	ns				
52	tOEH	OE Command Hold Time	20	-	20		25	-	ns				

NOTE:

- 1. An initial pause of 200µs is required after power-up followed by any 8 RAS-only or CAS-before-RAS refresh cycles before proper device operation is achieved.
- If RAS=Vss during power-up, the HY514400A could begin an active cycle. These condition results in higher current than necessary current which is demanded from the power supply during power-up. It is recommended that RAS and CAS track with Vcc during power-up or be held at a valid VIH in order to minimize the power-up current
- 3. VIH(min.) and VIL(max.) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH(min.) and VIL(max.), and are assumed to be 5ns for all inputs.
- 4. Measured at VOH=2.4V and VOL=0.4V with a load equivalent to 2 TTL loads and 100pF.
- 5. toFF(max.) define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 6. Either tRCH or tRRH must be satisfied for a read cycle.
- 7. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in Read-Modify-Write cycles.
- 8. twos, trwo, towo, two and topwo are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twos≥twos(min.), the cycle is an early write cycle and data out pin will remain open circuit (high impedance) through the entire cycle. if trwo≥trwo(min.), tcwo≥tcwo(min.), tAwo≥tAwo(min.), and tcpwo≥tcpwo(min.), the cycle is a Read-Modify-Write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminated.
- Operation within the tRCD(max.) limit insures that tRAC(max.) can be met. tRCD(max.) is specified as a
 reference point only. If tRCD is greater than the specified tRCD(max.) limit, then access time is controlled by
 tCAC.
- 10. Operation within the tRAD(max.) limit insures that tRAC(max.) can be met. tRAD(max.) is specified as a reference point only. If tRAD is greater than the specified tRAD(max.) limit, then access time is controlled by tAA.
- 11.tREF(max.)=128ms is applied to L-Parts(HY514400ALJ, HY514400ALT and HY514400ALR).
- 12.A burst of 1024CAS-before-RAS refresh cycles must be executed within 16ms(128ms for L-part) after exiting self refresh.
- 13. When CAS goes low, 4-bits data are written into the device.
- 14. These parameters are determined by the earlier falling edge of CAS.
- 15. These parameters are determined by the later rising edge of CAS.
- 16.tcwL must be satisfied by CAS for 16-bits access cycles.
- 17.tcp and tcpt are measured when CAS is high state.
- 18. These specificaitons are applied to the test Mode.

CAPACITANCE

(Ta=25°C, Vcc=5V±10%, Vss=0V, f=1MHz, unless otherwise noted.)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
CIN1	Input Capacitance (A0-A9)		5	pF
CIN2	Input Capacitance (RAS,CAS,WE, OE)	-	7	pF
CDQ	Data Input/Output Capacitance (DQ0-DQ3)	-	7	pF

TIMING DIAGRAM

READ CYCLE

EARLY WRITE CYCLE

READ-MODIFY-WRITE CYCLE

FAST PAGE MODE READ CYCLE

FAST PAGE MODE EARLY WRITE CYCLE

4675088 0004164 2Tl 🖿

FAST PAGE MODE READ-MODIFY-WRITE CYCLE

RAS-ONLY REFRESH CYCLE

NOTE:A0-10 = "H" or "L"

CAS-BEFORE-RAS REFRESH CYCLE

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

TEST MODE

The HY514400A is a DRAM organized 1,048,576 x 4-bit. It is internally organized 524,288 x 8-bit. In Test Mode, data are written into 8 sectors (Each is composed of 512K bits) in parallel and retrieved the same way. Column address A0 is not used. If, upon reading, all 8-bit data from 8 sectors are equal (all "1"s or "0"s), the DQ2 pin indicates a "1". If they are not equal, the DQ2 pin indicates a "0". The DQ0, DQ1 and DQ3 pins always indicate a "1" in Test Mode Read cycles. The diagram below shows the timing of the HY514400A to enter Test Mode. In Test Mode, the 1Mx4 DRAM can be tested as if it were a 512Kx4 DRAM. WE, CAS-before-RAS cycle (Test Mode In Cycle) puts the HY514400A into Test Mode and CAS-before-RAS or RAS-only refresh cycle puts it back into Normal Mode. In Test Mode, WE, CAS-before-RAS cycle shall be used for the refresh operation. The Test Mode function reduces test time. (1/2 in case of N test pattern)

TEST MODE IN CYCLE

BLOCK DIAGRAM IN TEST MODE

PACKAGE INFORMATION

300 mil 20/26 pin Small Out line J-form Package (J)

300 mil 20/26 pin Thin Small Outline Package (T) (R)

ORDERING INFORMATION

PART NUMBER	SPEED	POWER	PACKAGE
HY514400AJ	50/60/70		SOJ
HY514400ALJ	50/60/70	L-part	SOJ
HY514400AT	50/60/70		TSOP-II
HY514400ALT	50/60/70	L-part	TSOP-II
HY514400AR	50/60/70		TSOP-II(P)
HY514400ALR	50/60/70	L-part	TSOP-II(P)