

Presented by: AmirReza Azari

Context

- 1. The Problem
- 2. CNN
- 3. NST
- 4. VGG19
- 5. Losses
- 6. Results
- 7. Conclusion and Future work

The Problem

Problem:

- Implementing CNN from scratch
- Implementing NST from scratch

What is a CNN?

• A type of deep learning model specialized for **image & spatial data**

• Inspired by the human visual system

Why CNNs?

- Automatically learns features (edges, shapes, objects)
- Reduces manual feature engineering
- Excellent performance in:
 - Image classification
 - Object detection
 - Face recognition

CNN Architecture Overview

- Main building blocks:
 - Convolution Layer
 - Pooling Layer
 - Fully Connected Layer
 - Output Layer

What is NST?

 Al technique that combines the content of one image with the style of another image

• Example: A photo painted in Van Gogh's style

Why Neural Style Transfer?

- Creates artistic images with deep learning
- Bridges art and technology
- Applications:
 - Digital art
 - Photography filters
 - Entertainment & design

Key Idea

- Two inputs:
 - o Content image (e.g., your photo)
 - Style image (e.g., Van Gogh's Starry Night)
- Output: A new image = Content + Style

Underlying Technology

- Based on Convolutional Neural Networks (CNNs)
- CNN layers capture:
 - \circ Lower layers \rightarrow edges, textures (style)
 - Higher layers → objects, shapes (content)

The Loss Function

- Total loss = Content Loss + Style Loss (+ sometimes TV loss)
- Optimizes image to minimize this loss
- Balances "looking like the photo" vs "looking like the painting"

End-to-End Process

- Take content & style images
- Pass through CNN (like VGG-19)
- Compute losses
- Iteratively update the generated image
- Final stylized image

Results

Results

Results

Conclusion

- Convolutional Neural Networks (CNNs):
 - Core architecture for computer vision
 - \circ Automatically extracts features (edges \rightarrow objects)
 - Powers tasks like classification, detection, and recognition
- Neural Style Transfer (NST):
 - Creative application of CNNs
 - Blends content (structure) with style (textures, colors)
 - Bridges deep learning and artistic expression
- Takeaway:
 - CNNs provide the **foundation**
 - NST shows how these models enable both practical and creative applications of Al

Future Work

For CNNs:

- Improve efficiency with lightweight models (e.g., MobileNet, EfficientNet)
- Better explainability and interpretability of learned features
- Integration with multimodal AI (vision + text + audio)
- Applications in medical imaging, robotics, autonomous systems

For NST:

- Faster real-time style transfer with more stable outputs
- Multi-style & dynamic blending in a single model
- Style transfer for videos & 3D content
- Applications in creative industries, AR/VR, gaming

Thank you!