I21: Introduction à l'algorithmique Cours 2: Analyse des algorithmes

Nicolas Méloni Licence 1: 2ème semestre (2017/2018)

Prévoir les ressources nécessaire à son exécution

Le type de ressource dépend du contexte :

- Le type de ressource dépend du contexte :
 - temps

- Le type de ressource dépend du contexte :
 - temps
 - espace mémoire

- Le type de ressource dépend du contexte :
 - temps
 - espace mémoire
 - consommation électrique

- Le type de ressource dépend du contexte :
 - temps
 - espace mémoire
 - consommation électrique
 - coût financier

Indépendance

L'analyse ne doit pas dépendre :

- de la machine sur laquelle tourne l'algorithme
- du langage de programmation utilisé pour l'implanter
- Nécessité de concevoir un modèle d'étude indépendant : le modèle RAM.

La modèle RAM

(R)andom (A)ccess (M)achine

Machine hypothétique pour laquelle :

- les opérations simple (+,-,*,/,if, appels) consomment une unité de temps
- les boucles sont des compositions d'opération simples, leur temps d'exécution dépend du nombre d'itérations et de la nature des opérations à l'intérieur de la boucle
- un accès mémoire consomme une unité de temps
- la quantité de mémoire n'est pas limitée

La modèle RAM

Mesurer le temps d'exécution = compter le nombre d'étapes effectuées pour une instance donnée.

Malgré sa simplicité, le modèle permet une analyse très juste du comportement d'un algorithme sur une machine réelle.

Problème : recherche d'un élément dans un tableau

Entrée : un tableau de n élément et un élément e Sortie : l'indice du tableau où se trouve l'élélement ou 0 s'il ne s'y trouve pas

- A priori, plus la taille de l'entrée est grande plus longue est la résolution du problème.
- Pour étudier l'éfficacité d'un algorithme on considère toujours des instances du problème à taille fixée.
- La complexité d'un algorithme nous renseigne sur comment évolue le temps d'exécution avec la taille de l'entrée.
- ightharpoonup C'est une fonction de n souvent notée C(n) ou T(n).

Problème de la recherche d'un élément :

- \blacksquare n cases à tester
- 5 cases : au plus 5 tests
- 10 cases : au plus 10 tests

Problème du ramassage de plots :

- n! chemins à tester
- 5 plots : 120 chemins possibles
- ▶ 10 plots : 3628800 chemins possibles!

Même à taille fixée, certaines instances peuvent être plus faciles à résoudre que d'autres.

- cas facile :
- cas difficile:
- cas moyen :

Même à taille fixée, certaines instances peuvent être plus faciles à résoudre que d'autres.

- cas facile : l'élement recherché est au début du tableau (1 tour de boucle)
- cas difficile:
- cas moyen :

Même à taille fixée, certaines instances peuvent être plus faciles à résoudre que d'autres.

- cas facile : l'élement recherché est au début du tableau (1 tour de boucle)
- cas difficile : l'élement recherché n'est pas dans le tableau (n tours de boucle)
- cas moyen :

Même à taille fixée, certaines instances peuvent être plus faciles à résoudre que d'autres.

- cas facile : l'élement recherché est au début du tableau (1 tour de boucle)
- cas difficile : l'élement recherché n'est pas dans le tableau (n tours de boucle)
- cas moyen : l'élement recherché est au milieu (environ n/2 tours de boucle)

- On considère traditionnelement trois cas :
 - Meilleur cas : $\check{T}(n)$
 - ightharpoonup Pire cas : $\hat{T}(n)$
 - Cas moyen : $\overline{T}(n)$

Meilleur cas

Le nombre minimal d'étapes effectuées par l'algorithme pour n'importe qu'elle instance de taille *n* du problème.

Pire cas

Le nombre maximal d'étapes effectuées par l'algorithme pour n'importe qu'elle instance de taille n du problème.

Cas moyen

Le nombre moyen d'étapes effectuées par l'algorithme pour l'ensemble des instances de taille n du problème.

La complexité d'un algorithme est toujours une fonction numérique. Elles sont diffiles à manipuler :

- Trop de cas à gérer : l'écriture ne peut se faire en une seule formule close.
- Trop complèxe : l'écriture exacte fait intervenir de nombreux termes qui n'apporte pas beaucoup d'information.

$$f(n) = O(g(n))$$
 (grand-O)

Il existe une consctante c et un entier n_0 tels que $\forall n \geqslant n_0, f(n) \leqslant cg(n)$

- $3n^2 n + 6 = O(n^2)$ en prenant c = 3 et $n_0 = 6$
- ▶ $3n^2 n + 6 = O(n^3)$ en prenant c = 1 et $n_0 = 4$
- $\label{eq:condition} 3n^2-n+6 \neq O(n) \text{ car } \forall c,cn < 3n^2-n+6 \text{ quand } n>c+1$

$$f(n) = \Omega(g(n))$$
 (oméga)

Il existe une consctante c et un entier n_0 tels que $\forall n \ge n_0, f(n) \ge cg(n)$.

- $3n^2-n+6=\Omega(n^2)$ en prenant c=2 et $n_0=2$
- $3n^2-n+6=\Omega(n)$ en prenant c=1 et $n_0=1$

$$f(n) = \Theta(g(n))$$
 (théta)

Il existe deux consctantes c_1 et c_2 ainsi qu'un entier n_0 tels que $\forall n \geqslant n_0, c_1 g(n) \leqslant f(n) \leqslant c_2 g(n)$.

$$(f(n) = O(g(n)) \text{ et } f(n) = \Omega(g(n)))$$

- $3n^2 n + 6 = \Theta(n^2)$
- $3n^2 n + 6 \neq \Theta(n^3)$
- $3n^2 n + 6 \neq \Theta(n)$

Mnémotechnique

- f(n) = O(g(n)) : f est plus petite que g
- $f(n) = \Omega(g(n)) : f$ est plus grande que f
- $f(n) = \Theta(g(n)) : f \text{ est } g \text{ son équivalente}$

Règles de compositions

- $f(n) + g(n) = O(\max(f(n), g(n)))$
- $cf(n) = O(f(n)), \forall c > 0$
- f(n)g(n) = O(f(n)g(n))

Valable également pour le Ω et Θ .

Logarithmique

- $f(n) = \log(n)$
- Propriété du log:

 - $a = b^{\log_b(a)}$
 - $\log_c(ab) = \log_c(a) + \log_c(b)$
 - $a^{\log_b(n)} = n^{\log_b(a)}$

Polynomiale

- $f(n) = a_k n^k + a_{k+1} n^{k-1} + \dots + a_1 n + a_0, \ a_k > 0$
- Propriété des polynômes :
 - $f(n) = \Theta(n^k)$
 - k = 1 on parle de complexité linéaire
 - k = 2 on parle de complexité quadratique
 - On peut étendre la définition au puissance réelles : $n\sqrt{n} = n^{1.5} = O(n^2)$
 - $\forall a > 1, b > 0, \lim_{n \to +\infty} \frac{\log(n)^a}{n^b} = 0 \Rightarrow \log(n)^a = O(n^b)$

Exponentielle

- $f(n) = a^n$
- Propriété de l'exponentielle :

$$a^0 = 1, a^1 = a, a^{-1} = 1/a$$

- $a^{m+n} = a^m a^n$
- $(a^m)^n = (a^n)^m = a^{mn}$
- $\Rightarrow \forall a, b > 0, \lim_{n \to +\infty} \frac{n^b}{a^n} = 0 \Rightarrow n^b = O(a^n)$

Factorielle

- f(n) = n!
- Propriété de la factorielle :
 - 0! = 1
 - $n! = n \times (n-1) \times \cdots \times 2 \times 1$
 - (n+1)! = (n+1)n!
 - $\forall a > 0, \lim_{n \to +\infty} \frac{a^n}{n!} = 0 \Rightarrow a^n = O(n!)$

Ordre de grandeur

Estimation des temps de calcul pour quelques complexités standards (vit. de calcul : 3.5×10^9 op/s)

	n	$\log(n)$	n	$n\log(n)$	n^2	2^n	n!
Î	10	$0.001 \mu s$	$0.003 \mu s$	$0.007 \mu s$	$0.029 \mu s$	$0.293 \mu s$	0.001s
	20	$0.001 \mu s$	$0.006 \mu s$	$0.017 \mu s$	$0.114 \mu s$	0.3ms	22ans
	30	$0.001 \mu s$	$0.009 \mu s$	$0.029 \mu s$	$0.257 \mu s$	0.307s	$2.4 \times 10^{15} ar$
	40	$0.001 \mu s$	$0.011 \mu s$	$0.042 \mu s$	$0.457 \mu s$	5.2min	$7.3 \times 10^{30} ar$
	50	$0.001 \mu s$	$0.014 \mu s$	$0.056 \mu s$	$0.714 \mu s$	3.7 jours	$2.7 \times 10^{47} ar$
Ì	100	$0.001 \mu s$	$0.029 \mu s$	$0.132 \mu s$	0.003ms	$1.1 \times 10^{13} ans$	
	1000	$0.002 \mu s$	$0.286 \mu s$	0.002ms	0.286ms		
	10000	$0.003 \mu s$	0.003ms	0.026ms	0.029s		
	100000	$0.003 \mu s$	0.029ms	0.329ms	2.8s		
	1000000	$0.004 \mu s$	0.286ms	0.004s	4.7min		
	10000000	$0.005 \mu s$	0.003s	0.046s	7.9h		

- Identifier les valeurs initiales des variables impliquées et la condition d'arrêt
- Identifier les instructions où sont modifiées les variables dont dépend la condition d'arrêt
- Compter le nombres d'exécutions
- Utiliser des techniques de sommation sur les entiers

- initialisation: $i \leftarrow 1$
- condition d'arrêt : i > n
- i est modifié à l'instruction 4 : $i \leftarrow i+1$
- les valeurs de i sont $1, 2, 3, \ldots$
- la condition d'arrêt est réalisée quand i = n + 1
- nb tours de boucles : n, complexité : $\Theta(n)$

- ightharpoonup complexité du bloc : f(i)
- ightharpoonup nb tours de boucles : n
- ightharpoonup complexité : $\sum_{i=1}^{n} f(i)$

Formule de sommation

Série arithmétique

- $u_{n+1} = u_n + r$

Exemple

- $(u_n) = (0, 1, 2, 3, \dots)$
- $u_0 = 1, u_{n+1} = u_n + 1 \ (\forall n, u_n = n)$
- $\sum_{i=0}^{n} i = (n+1)\frac{n}{2}$

Formule de sommation

Série géométrique

- $u_{n+1} = qu_n$
- si $q \neq 1$, $\sum_{i=1}^{n} u_i = u_0 \frac{1 q^{n+1}}{1 q}$

Exemple

- $(u_n) = (1, 2, 4, 8, 16, \dots)$
- $u_0 = 1, u_{n+1} = 2u_n \ (\forall n, u_n = 2^n)$
- $\sum_{i=0}^{n} 2^{i} = \frac{1-2^{n+1}}{1-2} = 2^{n+1} 1$

```
DEBUT
i ← 1
TQ i ≤ n FAIRE
 TQ j ≤ i FAIRE
  j ← j+1
  FTQ
 i ← i+1
 FTQ
FIN
```

- complexité boucle intérieure : $C_{in}(i) = i$
- \blacksquare nb tours de boucles : n
- complexité : $\sum_{i=1}^{n} C_{in}(i) =$ $(n+1)n/2 = \Theta(n^2)$

```
DEBUT
i ← 1
TQ i ≤ n FAIRE
 TQ j \leqslant 2^i FAIRE
   j ← j+1
  FTQ
  i ← i+1
 FTQ
FIN
```

- complexité boucle intérieure : $C_{in}(i) = 2^i$
- \blacksquare nb tours de boucles : n
- complexité : $\sum_{i=1}^{n} C_{in}(i) =$ $2^{n+1} - 1 = \Theta(2^n)$

- on ne connait pas les valeurs exactes prises par *i*
- on les majore par la suite $(n, n/2, n/4, \dots)$
- lacksquare après k tours de boucles on a $i \leqslant n/2^k$
- la condition d'arrêt est satisfaite quand $n/2^k < 1$ i.e. $n < 2^k \Leftrightarrow \log_2(n) < k$
- nb tours de boucles majoré par $\lfloor \log_2(n) \rfloor + 1$
- complexité : $C(n) = O(\log(n))$

```
DEBUT
  TQ i \ge 1 FAIRE
       \leftarrow |i/2|
  FTQ
FIN
```

On peut montrer de façon similaire que $C(n) = \Omega(\log(n))$ et donc que $C(n) = \Theta(\log(n))$

```
DEBUT
   i ← 1
   TQ i ≤ n FAIRE
       proc(i) //procedure
               //en \Theta(f(i))
       i \leftarrow i+1
6
     FTQ
   FIN
```

On encadre la complexité de la procédure $C_{proc}(i)$:

$$c_1 f(i) \leqslant C_{proc(i)} \leqslant c_2 f(i)$$

On en déduit :

$$\sum_{i=1}^{n} c_1 f(i) \leq \sum_{i=1}^{n} C_{proc(i)} \leq \sum_{i=1}^{n} c_2 f(i)$$

```
DEBUT

i \leftarrow 1

TQ i \leq n FAIRE

proc(i) //procedure

//en \Theta(f(i))

FTQ

FIN
```

• finalement :

$$c_1\left(\sum_{i=1}^n f(i)\right) \leqslant C(n) \leqslant c_2\left(\sum_{i=1}^n f(i)\right)$$

On en déduit le résultat :

$$C(n) = \Theta\left(\sum_{i=1}^{n} f(i)\right)$$

Ce résultat justifie l'abus de notation :

$$\sum_{i=1}^{n} \Theta f(i) = \Theta \left(\sum_{i=1}^{n} f(i) \right)$$