Série 3

David Wiedemann

4 octobre 2020

1

On construit une bijection de \mathbb{N} vers \mathbb{Z} .

$$\phi\colon\mathbb{Z}\to\mathbb{N}$$

$$m\to\begin{cases}2m\text{ si }m\geq0\\-2m+1\text{ si }m<0\end{cases}$$

On considère le 0 comme pair.

Pour vérifier que cette application définit une injection, on montre la surjectivité dans les deux sens.

Surjectivité

Soit $n \in \mathbb{N}$, si n pair, $\exists k \in \mathbb{N}$ tel que n = 2k. Alors k est l'antécédent de k par ϕ .

Si *n* impair, $\exists j \in \mathbb{N}$ tel que 2j+1=n, on pose k=-j, alors -2k+1=n.

Injectivité

Supposons $\exists k, j \in \mathbb{Z}$ tel que $\phi(k) = \phi(j)$. Si k et j sont de signe différent, alors soit $\phi(k)$ ou $\phi(j)$ est impair et donc l'égalité ne peut pas tenir.

Supposons donc k, j > 0, alors $\phi(k) = 2k$ et phi(j) = 2j donc 2k = 2j et j = k.

Si
$$k, j < 0$$
, alors $\phi(k) = -2k + 1$ et $\phi(j) = -2j + 1$ donc $-2k + 1 = -2j + 1 \Rightarrow k = j$.

On en déduit que l'application ϕ est bijective et que $|\mathbb{Z}| = |\mathbb{N}|$.

 $\mathbf{2}$

Par Cantor-Schroeder-Bernstein, il suffit de trouver une injection de $\mathbb{N}^n \to \mathbb{N}$ et de $\mathbb{N} \to \mathbb{N}^n$.

Injection de $\mathbb{N} \to \mathbb{N}^n$

Soit

$$\phi: \mathbb{N} \to \mathbb{N}^n$$

$$k \to (k, \underbrace{0, \dots, 0}_{n-1 \text{ fois}})$$

Cette application est clairement injective car (m, 0, ..., 0) = (j, 0, ..., 0) implique m = j.

Injection de $\mathbb{N}^n \to \mathbb{N}$

Soit

$$\psi: \mathbb{N}^n \to \mathbb{N}$$

$$(a_1, \dots, a_n) \to \prod_{i=1}^n p_i^{a_i}$$

où p_1, \ldots, p_n sont les *n* premiers nombres premiers.

L'injectivité de cette application suit directement de l'unicité de la décomposition en nombres premiers.

En effet, si $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)\in\mathbb{N}^n$, alors l'unicité implique que

$$\prod_{i=1}^n p_i^{a_i} \neq \prod_{i=1}^n p_i^{b_i}$$

et donc l'application ϕ est injective.

On en déduit que $|\mathbb{N}^n| = |\mathbb{N}|$

3

On utilise à nouveau Cantor-Schroeder-Bernstein.

Injection de $\mathbb{N} \to \mathbb{Q}$

L'application

$$K: \mathbb{N} \to \mathbb{Q}$$

$$n \to n$$

est une injection.

Injection de $\mathbb{Q} \to \mathbb{N}$

On montre un résultat préliminaire.

Théorème 1. Si A_1, \ldots, A_n des ensembles infini dénombrables, alors

$$K = A_1 \times \ldots \times A_n$$
 est infini dénombrable.

Démonstration. Soit $(a_1, \ldots, a_n) \in K$.

Par hypothèse, $\exists \phi_1, \dots, \phi_n$ des bijections $\phi_i : A_i \to \mathbb{N}, 0 < i \leq n$. L'application

$$\Phi: K \to \mathbb{N}^n$$

$$(a_1, \dots, a_n) \to (\phi_1(a_1), \dots, \phi_n(a_n))$$

est une bijection.

Par la partie 2, on sait qu'il existe une bijection de $\psi: \mathbb{N}^n \to \mathbb{N}$ et donc

est une bijection de $K \to \mathbb{N}$.

On est pret à montrer l'injection de $\mathbb{Q} \to \mathbb{N}$.

On construit une bijection de $\mathbb{Z} \times \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

Soit $\phi: \mathbb{Z} \to \mathbb{N}$ la bijection définie précédemment et $t_1: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ la bijection ¹:

$$t_1: n \to n-1$$

On peut donc, par le théorème 1, construire une bijection de $G: \mathbb{Z} \times \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

On définit la surjection ²

$$Q: \mathbb{Z} \times \mathbb{N} \setminus \{0\} \to \mathbb{Q}$$
$$(a,b) \to \frac{a}{b}$$

^{1.} L'injectivité et la surjectivité de cette bijection sont évidentes.

^{2.} La surjectivité suit du fait qu'à chaque fraction, on puisse assimiler un 2-uplet.

Par l'exercice 5, de la série 2, on peut construire une injection F

$$F: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N} \setminus \{0\}$$

Et donc, l'application

$$G \circ F$$

est une injection de $\mathbb{Q} \to \mathbb{N}$

4

Soit $q(t) \in \mathbb{Q}[t]$, alors

$$q(t) = \sum_{i=1}^{n} q_i t^{i-1}$$
, avec $q_i \in \mathbb{Q}$

Soit

$$Q: \mathbb{Q}[t] \to \mathbb{Q}^n$$

 $q(t) \to (q_1, \dots, q_n)$

Cette application est une bijection.

Surjectivité

Soit $(a_1, \ldots, a_n) \in \mathbb{Q}^n$, alors le polynôme

$$a(t) = \sum_{i=1}^{n} a_i t^{i-1}$$

est un antécédent de a(t).

Injectivité

Soit $a(t), b(t) \in \mathbb{Q}[t], a(t) \neq b(t)$, alors $\exists 0 < i \le n \text{ tq } a_i \neq b_i$, donc

$$Q(a(t)) = (a_1, \dots, a_n) \neq Q(b(t)) = (a_1, \dots, a_n)$$

Par la partie 3, on sait que \mathbb{Q} est infini dénombrable, et donc, par le théorème 1, \mathbb{Q}^n l'est aussi. Donc $\exists M : \mathbb{Q}^n \to \mathbb{Q}$, M une bijection.

La fonction définie par

$$M \circ Q$$

est donc une bijection, et donc $\mathbb{Q}[t]$ est infini dénombrable.

On pose

$$A = \{z \in \mathbb{C} | z \text{ algébrique } \}$$

Soit $a(t) \in \mathbb{Q}[t]$, on dénote par $S_{a(t)}$, l'ensemble des solutions de l'équation a(t) = 0.

On veut montrer que

$$A = \bigcup_{a(t) \in \mathbb{Q}[t]} S_{a(t)}$$

Om montre la double inclusion.

Soit $z\in A,$ alors $\exists Z(t)\in \mathbb{Q}[t]$ tel que Z(a)=0, donc $z\in S_{Z(t)},$ donc

$$z \in \bigcup_{a(t) \in \mathbb{Q}[t]} S_{a(t)}.$$

 Soit

$$z \in \bigcup_{a(t) \in \mathbb{Q}[t]} S_{a(t)}$$

donc $\exists b(t) \in \mathbb{Q}[t]$ tel que b(a) = 0, donc a algébrique, donc $a \in A$.