DOKUMENTACJA PROJEKTU - AAL

Zadanie – hotel (10)

Wybrany język programowania: java

Reprezentacja rozwiązania:

- hotelowych gości będę reprezentował jako wierzchołki grafu
- relację znajomości będę reprezentował jako krawędź między danymi wierzchołkami

Powstanie w ten sposób graf nieskierowany, w którym wierzchołkom będzie można przyporządkować jeden z 3 typów:

- T (pokój z telewizorem)
- Ł (pokój z łazienką)
- N (pusty pokój)

Każda klasa reprezentująca wierzchołek będzie miała 2 zmienne typu boolean (T i Ł), oznaczające dostęp do pokoju z telewizorem/łazienką. Dzięki czemu będziemy wiedzieli czy warunki zadania są spełnione

Zadanie sprowadza się do takiego przyporządkowania T/Ł/N aby w grafie występowało jak najwięcej wierzchołków typu N

Algorytm zachłanny

- 1. Przeglądamy graf i tworzymy tablicę posortowanych wierzchołków według stopnia.
- 2. Spośród wierzchołków wybieramy ten o najwyższym stopniu i przyporządkowujemy mu T.
- 3. Spośród sąsiadów wierzchołka z punktu 2 wybieramy ten o najwyższym stopniu i przypisujemy mu Ł. (czas: x, gdzie x liczba sąsiadów danego wierzchołka)
- 4. Następnie powtarzamy operację dla wszystkich wierzchołków (do momentu, w którym wszystkie wierzchołki będą miały dostęp do wierzchołka Ł lub T) przeglądając naszą posortowaną tablicę i wybierając kolejny wierzchołek o najwyższym stopniu bez przypisanego typu (który jednocześnie nie ma dostępu do Ł lub T) i przypisujemy mu odpowiedni typ.
- 5. Powrót do punktu 3.

Algorytm heurystyczny

1. Algorytm rozpoczynam od rozpatrywania węzłów – liści w danym grafie. Każdej grupie liści przypisujemy jeden typ pokoi, pamiętając o tym, aby "sąsiednie" grupy liście miały różne typy pokoi.

2. Każdy wierzchołek będzie miał następujące pola

Wierzchołek	Stopień	Sąsiedzi	Typ wierzchołka (T/Ł/N)	Czy ma dostęp do łazienki	Czy ma dostęp do telewizora
A	3	B, C, D	N	false	false
В	3	A, C, D	N	false	false
С	2	A, B	N	false	false
D	2	B, C	N	false	false

3. Na podstawie powyższych informacji tworzymy strukturę danych, w której będziemy umieszczać "żądania dotyczące pokoju". Jeśli wierzchołek A nie ma dostępu do łazienki i telewizora to wysyła żądania T i Ł do siebie oraz wszystkich sąsiadów. Dla poniższego grafu tablica żądań będzie wyglądała następująco:

Wierzchołek	Żądania	
A	TŁTŁTŁ	
В		
С	TŁTŁTŁ	
D	ŁŁTŁTŁTŁ	
E		

Na podstawie tych danych dokonujemy wyboru typu dla następnego wierzchołka, według następujących zasad:

- 1) Obliczamy różnicę między liczbą T i Ł (bierzemy wartość bezwzględną) i przypisujemy odpowiedni typ pokoju wierzchołkowi o największej różnicy, w przypadku równego wyniku:
 - a) wstawiamy odpowiedni typ wierzchołkowi o większej liczbie żądań danego T/Ł
 - b) jeżeli w a) mieliśmy po równo wstawiamy losowo