Двойной интеграл

1. Площадь плоской фигуры.

Пусть D - фигура на плоскости.

Как ввести понятие площадт фигуры D?

Если D является треугольником (или прямоугольником), то понятие площади очевидно.

Если D является многоугольником, то её можно разбить на треугольники, а площадь области D определить как сумму составляющих её треугольников.

Что делать, если D - произвольная фигура?

а) Рассмотрим множество многоугольников m, каждое из которых целиком содержатся в D.

Обозначение: $S_* = \sup S(m)$

 \mathbf{m} - многоугольник $\mathbf{S}(\mathbf{m})$ - площадь многоугольника \mathbf{m}

б) Рассмотрим множество многоугольников M, каждый из которых целиком содержат в себе D.

Обозначение: $S^* = \inf_M S(M)$

Определение: Область D на плоскости называется квадрируемой, если \exists конечные значения $S_*, S^*,$ причем $S_* = S^*.$ При этом число $S = S_* = S^*$ называется площадью области D.

Определение: Говорят, что множество D точек плоскости имеет площадь нуль, если D можно целиком заключить в многоугольник сколь угодно малой площади, т.е. $\forall \varepsilon>0$ \exists многоугольник M площади ε такой, что $D\subseteq M$.

Пример:

- 1) $D = \{A\}, A$ точка.
- 2) D = [AB] отрезок.
- 3) Спрямляемая (т.е. имебщая конечную длину) кривая.

<u>Th.</u> Пусть D - замкнутая плоская область.

Тогда D - квадрируемая \Leftrightarrow граница D имеет площадь D.

 $\underline{\mathrm{Th.}}$ Пусть L - плоская спрямляемая кривая. Тогда L - имеет площадь нуль.

Следствие: Пусть

- 1) D область на плоскости
- 2) D ограничена конечным числом спрямляемых кривых.

Тогда D квадрируема.

Замечание: в дальнейшем мы будем рассматривать только квадрируемые области.

- 2. Задачи, приводящие к понятию двойного интеграла.
- I. Задача об объеме цилиндрического тела.

Пусть D - область на плоскости Оху. $f:D\to\mathbb{R}$ - функция определенная на множестве D. $f(x,y) \geqslant 0, (x,y) \in D$

Рассмотрим тело Т, которое ограничено ...

Разобъем область D на непересекющиеся части

$$D=igcup_{i=1}^n D_i$$
 $intD_i\cap intD_j=\emptyset$ при $i\neq j$ (*) $intD_i$ - множество внутренних точек области D_i .

Условие (*) означает, что различные элементы имеют общи.. внутренние точек.

- 2) Выберем точку $M_i \in D_i, i = \overline{1,m}$
- 3) Считая, что размеры подобласти D_i малы, причем $\Delta V_i \approx f(M_i) \Delta S_i$, где $\Delta S_i = S(D_i)$. ΔV_i - объем той части тела, которая ... под D_i .

$$V = \sum_{i=1}^{n} \Delta V_i \approx \sum_{i=1}^{n} f(M_i) \Delta S_i$$

Тогда объем тела Т $V = \sum_{i=1}^n \Delta V_i \approx \sum_{i=1}^n f(M_i) \Delta S_i$ Эта формула тем точнее, чем меньше размеры D_i , поэтому естественно

перейти к пределу:
$$V = \lim_{\substack{maxdiam(D_i) \to 0 \\ i=1,m}} \sum_{i=1}^n f(M_i) \Delta S_i.$$

Обозначим $(D) = \sup_{M,N \in D} |\underline{MN}|$ - диаметр множества D.

II. Задача о вычислении массы пластины.

Пусть

- 1) пластина занимает область D на плоскости;
- 2) $f(x,y) \ge 0$ плотность (поверхностного) материала пластины в точке M(x, y).
- 1) Разобъем область D на непересекающиеся части D_i :

$$D = \bigcup_{i=1}^n D_i$$
 $intD_i \cap intD_j = \emptyset$ при $i \neq j;$

- 2) В пределах D_i выберем точку $M_i, i = \overline{1, n}$
- 3) Считая, что размеры D_i малы, можно принять, что в пределах каждой из областей D_i плотность пластины меняется незначительно, поэтому во всех точках области D_i плотность $\approx f(M_i)$.

Тогда масса части D_i : $\Delta m_i pprox f(M_i) \Delta S_i$, где $\Delta S_i = S(D_i), i = \overline{1,m}$

4) Тогда масса всей пластины:

$$m = \sum_{i=1}^{n} \Delta m_i \approx \sum_{i=1}^{n} f(M_i) \Delta S_i$$

 $m=\sum\limits_{i=1}^n \Delta m_i pprox \sum\limits_{i=1}^n f(M_i) \Delta S_i$ Получается формула тем точнее, чем меньше размеры D_i ,

$$m = \lim_{\substack{\max diam D_i \to 0 \\ i=\overline{1,n}}} \sum_{i=1}^{n} f(M_i) \Delta S_i$$

3. Определение и свойства двойного интеграла

Пусть D - квадрируемая замкнутая плоская область.

Определение: Разбиением области D называется множество $R = \{D_1, ..., D_n\},\$ где

- 1) $D = \bigcup_{i=1}^{\infty} D_i$
- 2) $intD_i \cap intD_j = \emptyset$ при $i \neq j$
- 3) D_i квадрируемая, $i=\overline{1,n}$

Определение: Диаметром разбиения $R = \{D_1, ..., D_n\}$ называется число $d(R) = maxdiam(D_i).$

Пусть D - квадрируемая замкнутая область на плоскости Оху $f:D\to\mathbb{R}$

(f является функцией двух переменных, т.к. D - область на плоскости).

Определение: Двойным интегралом функции f по области D называется число

$$\iint\limits_{D}f(x,y)dxdy=\lim\limits_{d(R) o 0}\sum\limits_{f}f(M_{i})\Delta S_{i}$$
, где

$$R = \{D_1, ..., D_n\}$$
 - разбиение области D,

$$M_i \in D_i, i = \overline{1,n} - \dots$$

Замечание: В определении подразумевается, что указанный предел \exists , конечен и не зависит от разбиения R области D и ...

Свойства двойного интеграла

$$1^o \iint\limits_{D} 1 dx dy = S(D)$$

 2^o Линейность

Если f, g - интегрируемы в D ..., то

а)
$$f\pm g$$
 также интегрирума в D, причем
$$\iint\limits_D (f\pm g) dx dy = \iint\limits_D f dx dy \pm \iint\limits_D g dx dy$$

б)
$$c\cdot f,\, c=const,\,$$
 также интегрируема в D, причем
$$\iint\limits_{D}c\cdot fdxdy=c\iint\limits_{D}fdxdy$$

3° Аддитивность

Пусть

- 1) D_1, D_2 плоские квадрируемые области
- 2) f интегрируема в D_1 и в D_2
- 3) $intD_i \cap intD_j = \emptyset$

Тогда f интегрируема в
$$D=D_1\cup D_2,$$
 $\iint\limits_D f dx dy = \iint\limits_{D_1} f dx dy + \iint\limits_{D_2} f dx dy$

- 4° О сохранении интегралом знака функции Пусть
 - 1) $f(x,y) \ge 0$ в D
 - 2) f интегрируема в D

Тогда
$$\iint\limits_D f(x,y) dx dy \geqslant 0$$

- 5^o Пусть
 - 1) $f(x,y) \ge f(x,y)$ в D
 - f,g интегрируемы в D

Тогда
$$\iint\limits_{D} f dx dy \geqslant \iint\limits_{D} g dx dy$$

 6^o th об оценке модуля двойного интеграла.

Пусть f интегрируемы в D.

Тогда |f| также интегрируема в D, причем

$$\left| \iint\limits_{D} f dx dy \right| \leqslant \iint\limits_{D} |f| \, dx dy$$

 7^{o} th об оценке двойного интеграла (обобщенная th).

Пусть

- 1) f,g интегрируема в ${\bf D}$
- 2) $m \leqslant f(x,y) \leqslant M$ в D
- 3) $g(x,y) \ge 0$ в D

Тогда
$$m\iint\limits_D g(x,y)dxdy\leqslant \iint\limits_D f(x,y)g(x,y)dxdy\leqslant M\iint\limits_D g(x,y)dxdy$$

<u>Следствие:</u> Если g(x,y)=1 в D, то получаем "просто"th об оценке двойного интеграла:

$$m \cdot S \leqslant \iint f(x,y) dx dy \leqslant M \cdot S,$$
где $S = S(D)$.

 8^o th о среднем значении.

Определение: Средним значением функции f области D называется

$$\langle f \rangle = \frac{1}{S(D)} \iint\limits_D f(x,y) dx dy$$

Свойство: Пусть

- 1) D линейносвязная замкнутая область (т.е. граница D является связным множеством)
- 2) f непрерывна в D

Тогда
$$\exists M_0 \in D$$
 такая, что $f(M_0) = < f >$

9° Обобщенная th о среднем значении.

Пусть

- 1) f непрерывна
- 2) g интегрируема
- 3) д знакопостоянна
- 4) D линейно связное множество

Тогда

4. Повторный интеграл

Определение: Повторным интегралом называется выражение

$$\int\limits_a^b \frac{\varphi_2(x)}{\int\limits_{\varphi_1(x)}^a f(x,y) dy},$$
 значения I которого определяется правилом

$$I_{ ext{повт.}}=\int\limits_a^b F(x)dx$$
 где $F(x)=\int\limits_{arphi_1(x)}^{arphi_2(x)}f(x,y)dy$ $x\in [a,b],\,x=const$

Пример: Вычислить

5. Вычисление двойного интеграла

Определение: Область D на плоскости Оху называется у-правильной, если любая прямая, ||-ая Оу, пересекает границу D не более чем в 2-х точках, либо содержит участок границы целиком.

Замечание:

- 1) у-правильная область можно задать в виде: $D = \{(x, y) : a \leqslant x \leqslant b, \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\} \ (*)$
- 2) х- правильная область определяется аналогично.

<u>Тh:</u> Пусть

1)
$$\exists \iint_D f(x,y) dx dy = I$$

2) D является у-правильной и задается соотношением (*).

3)
$$\forall x \in [a, b]$$

$$\exists \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy = F(x)$$

Тогда

1) \exists повторный интеграл $\int\limits_a^b dx \int\limits_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) = I_{\text{повт.}}$

2) $I = I_{\text{повт.}}$

Замечание: Если область D не является правильной в направлении какойнибудь из координатных осей, то её можно разбить на правильные части и воспользоваться свойством аддитивности двойного интеграла.

6. Замена переменных в двойном интеграле. Пусть

1)
$$I = \iint_{D_x y} f(x, y) dx dy$$

2)
$$\Phi: D_{uv} \to D_{xy}$$

$$\Phi \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

где
$$D_{uv}$$
 - проще

 $\underline{{
m Th:}}$ о замене переменных в двойном интеграле. Пусть:

- 1) $D_{xy} = \Phi(D_{uv})$
- 2) Ф биективно
- 3) Φ интегрируема и непрерывно дифференцируема в D_{uv}

4)
$$J_{\Phi} \neq 0$$
 в D_{uv}
 $J_{\Phi} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix}$

Тогда:

1) функция $f\left(x\left(u,v\right),y\left(u,v\right)\right)\cdot\left|J_{\Phi}\left(u,v\right)\right|$ интегрируема в D

2)
$$\iint\limits_{D_{xy}} f(x,y) dx dy = \iint\limits_{D_{uv}} f\left(x\left(u,v\right),y\left(u,v\right)\right) \cdot \left|J_{\Phi}\left(u,v\right)\right| du dv$$

Замечание:

1) th остается справедливой и в том случае, если условия 2), 3), 4) нарушаются в отдельности.

Пример: Двойной интеграл в полярной системе координат.

$$\begin{cases} x = \rho \cdot \cos \varphi \\ y = \rho \cdot \sin \varphi \end{cases}$$

$$J_{\Phi} = \begin{vmatrix} x'_{\rho} & x'_{\varphi} \\ y'_{\rho} & y'_{\varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \cdot \sin \varphi \\ \sin \varphi & \rho \cdot \cos \varphi \end{vmatrix} = \rho \left(\cos^{2} \varphi \cdot \sin^{2} \varphi \right) = \rho$$

$$\begin{cases} x = \rho \cdot \cos \varphi \\ y = \rho \cdot \sin \varphi \\ \text{Рассмотрим двойной интеграл} \end{cases}$$

$$J_{\Phi} = \begin{vmatrix} x'_{\rho} & x'_{\varphi} \\ y'_{\rho} & y'_{\varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \cdot \sin \varphi \\ \sin \varphi & \rho \cdot \cos \varphi \end{vmatrix} = \rho \left(\cos^2 \varphi \cdot \sin^2 \varphi \right) = \rho$$
 Таким образом
$$\iint_{D_{xy}} f(x,y) dx dy = \iint_{D_{\rho\varphi}} f \left(\rho \cdot \cos \varphi, \rho \cdot \sin \varphi \right) \rho \ d\rho \ d\varphi$$
 7. Приложение двойного интеграда.

- 7. Приложение двойного интеграла.
- І. Вычисление площади плоской фигуры.

$$S(D) = \iint\limits_{D} 1 dx dy.$$

(Свойство 1^{o} двойного интеграла)

- II. Вычисление массы пластины. Пусть
 - 1) Пластина занимает область D на плоскости Оху
 - f(x,y) значение плотности

Тогда масса этой пластины

$$M = \iint\limits_D f(x,y) dx dy$$

III. Вычисление объема тела.

Пусть тело Т:

Tyers restrict 1.
$$T = \{(x, y, z) : (x, y) \in D_{xy}, z_1(x, y) \leq z \leq z_2(x, y)\}$$

$$V(T) = \iint_{D_{xy}} [z_2(x, y) - z_1(x, y)] dxdy$$

Тройной интеграл

1. Понятие кубируемой области.

Рассмотрим область $G \subseteq \mathbb{R}^3$. Как ввести понятие объема тела, которое занимает эту область?

Понятие объема легко ввести для параллелепипеда или, более ... многогранника в \mathbb{R}^3 , что делать, если $G\subseteq\mathbb{R}^3$ - произвольная область?

Пример: Тонкая, кривая, гладкая поверхности имеет объем ... $\overline{\text{Th: }\Pi\text{усть G}}$ - замкнутая область в \mathbb{R}^3 . Тогда G ...

2. Задача о вычислении массы тела. Пусть

- 1) Тело T занимает области $G \subseteq \mathbb{R}^3$
- $f(x,y,z) \geqslant 0$ значения плотности материала этого тела в точке

Требуется найти массу m(T) тела T.

1) Разобъем область G на части:

$$G = \bigcup_{i=1}^n G_i$$
 $intG_i \cap intG_j = \emptyset$ при $i \neq j$

2) В пределах каждой из побобластей выберем ...

$$G_i$$
 ... macca:
 $\Delta m_i = m(G_i) \approx f(M_i) \Delta V_i$

где $\Delta V_i = V(G_i)$,

 Δm_i - масса части тела, занимающего подобласть G_i

4) Масса тела Т тогда:

$$m(T) = \sum_{i=1}^{n} \Delta m_i \simeq \sum_{i=1}^{n} f(M_i) \Delta V_i$$

5) Эта формула тем точнее, чем меньше размеры G_i , поэтому естествен-

но перейти к пределу:
$$m(T) = \lim_{\max diam(G_i) \to 0} \sum_{i=1}^n f(M_i) \Delta V_i$$

3. Определение тройного интеграла. Пусть

- 1) $G \subseteq \mathbb{R}^3$ тело
- $f:G \to \mathbb{R}$ функция

Разобъем область G на части, как это было сделано в задаче о вычислении массы тела.

Обозначение: $R = \{G_1, ..., G_n\}$ - разбиение тела G.

Определение: Диаметром разбиения R тела G - называется число d(R) = $max \ diam \ G_i$ $i=\overline{1,n}$

Определение: Тройным интегралом функции f(x, y, z) по области G на-

$$\iiint\limits_G f(x,y,z) dx dy dz = \lim\limits_{d(R) \to 0} \sum_{i=1}^n f(M_i) \Delta V_i$$
 где $M_i, \, \Delta V_i$ имеют...

Свойства тройного интеграла:

Полностью аналогичны свойствам 1° - 9° двойного интеграла. При из за-

$$f(x,y) \mapsto f(x,y,z)$$

$$\iint\limits_D f(x,y) dx dy \mapsto \iiint\limits_G f(x,y,z) dx dy dz \\ D \mapsto G.$$

(записать самостоятельно).

4. Вычисление тройного интеграла.

Основная идея - сведение к повторному интегралу.

<u>Определение:</u> Область $G\subseteq \mathbb{R}^3$ называется z-правильной, если любая прямая, $\|$ -ая \overline{Oz} , пересекает границу G не более чем в двух точках или содержит участок границы целиком.

z-правильную область G можно задать в виде:
$$G: \{(x,y,z): (x,y) \mid D_{xy}, z_1(x,y) \leqslant z \leqslant z_2(x,y)\}$$
 (*)

<u>Тh:</u> Пусть

1)
$$\exists \iiint_G f(x, y, z) dx dy dz = I$$

- 2) G является z-правильной и задана (*)
- 3) Для каждой фиксированной $(x,y) \in D_{xy}$ $\exists \int\limits_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz = F(x,y)$

Тогда

1) ∃ повторный интеграл

$$I_{\text{повт.}} = \iint_{D_{xy}} F(x, y) dx dy = \iint_{D_{xy}} dx dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz$$

2) и $I_{\text{повт.}} = I$

Замечание: Если в условиях сформулированных th область D_{xy} является у-правильной и задается в виде $D_{xy} = \{(x,y): a\leqslant x\leqslant b, \varphi_1(x)\leqslant y\leqslant \varphi_2(x)\},$

$$\iiint\limits_{G} f(x,y,z) dx dy dz = \int\limits_{a}^{b} dx \int\limits_{\varphi_{1}(x)}^{\varphi_{2}(x)} dy \int\limits_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz$$

5. Замена переменных в тройном интеграле.

Th: Пусть

1)
$$G_{xyz} = \Phi(G_{uvw}).$$

2)
$$\Phi: G_{uvw} \to G_{xyz}$$

$$\Phi: \begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \\ z = z(u, v, w) \end{cases}$$

3) Отображение Ф биективно

4) Φ непрерывна и непрерывно-дифференцируемы в G_{uvw}

5)
$$J_{\Phi}(u, v, w) = \begin{vmatrix} x'_u & x'_v & x'_w \\ y'_u & y'_v & y'_w \\ z'_u & z'_v & z'_w \end{vmatrix} \neq 0$$

6) f(x,y,z) интегрируема в G_{xyz}

$$\iiint\limits_{G} f(x,y,z) dx dy dz = \iiint\limits_{G_{uvw}} f\left(x\left(u,v,w\right),y\left(u,v,w\right),z\left(u,v,w\right)\right) \left|J_{\Phi}(u,v,w)\right| du dv dw$$
 Пример: Цилиндрическая система координат:

Декартовая система координат:

Цилиндрическая система координат:

Связь цилиндрической и декартовой системой координат:

$$\begin{cases} x = \rho \cdot \cos \varphi \\ y = \rho \cdot \sin \varphi \\ z = z \end{cases}$$

$$J_{\text{цил.}} = \begin{vmatrix} \cos \varphi & -\rho \cdot \sin \varphi & 0 \\ \sin \varphi & \rho \cdot \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

Сферическая система координат:

Связь декартовой и полярной системы координат:
$$\begin{cases} x=r\cdot\cos\Theta\cdot\cos\varphi\\ y=r\cdot\cos\Theta\cdot\sin\varphi\\ z=r\cdot\sin\Theta \end{cases}$$

$$|J_{c\phi}| = r^2 \cdot \cos \Theta$$