21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

25- Wednesday November 2, 2011.

Definition 25.1: The ring R((x)) of formal Laurent series with coefficients in R is the set of elements of R indexed by \mathbb{Z} , i.e. $\{a_n \mid n \in \mathbb{Z}\}$, such that $a_n = 0$ for all $n \leq m$ for some $m \in \mathbb{Z}$, and it is interpreted as $\sum_{n \in \mathbb{Z}} a_n x^n$.

For $A = \sum_{n \in \mathbb{Z}} a_n x^n \in R((x))$ and $B = \sum_{n \in \mathbb{Z}} b_n x^n \in R((x))$, one has $A + B = C = \sum_{n \in \mathbb{Z}} c_n x^n$ and $AB = D = \sum_{n \in \mathbb{Z}} d_n x^n$, with $c_n = a_n + b_n$ for all $n \in \mathbb{Z}$, and $d_n = \sum_{j \in \mathbb{Z}} a_j b_{n-j}$ for all $n \in \mathbb{Z}$, noticing that the sum defining each d_n only has a finite number of non-zero terms.

The valuation of a non-zero element is the largest $m \in \mathbb{Z}$ such that $a_n = 0$ for all n < m.

Remark 25.2: If F is a field, then F[[x]] is an integral domain, and its field of fractions is isomorphic to F((x)): indeed, a non-zero element in R[[x]] has the form $a_m x^m (1+B)$ with $a_m \neq 0$ and $val(B) \geq 1$, and for defining its inverse one needs to notice that $a_m^{-1} \in F$, $x^{-m} \in F((x))$, and the inverse of $1-B \in F[[x]]$ is $1+B+B^2+\ldots \in F[[x]] \subset F((x))$. Conversely, any non-zero element $A \in F((x))$ with val(A) < 0 may be written as $\frac{x^m A}{x^m}$ with m = -val(A) and one has $x^m A \in F[[x]]$.

Remark 25.3: The motivation for the ring of formal power series R[[x]] and the ring of formal Laurent series R(x) is to mimic at an algebraic level something done in analysis concerning Taylor expansions of differentiable functions in an open set of \mathbb{R} or of \mathbb{C} . Although every function f which is indefinitely differentiable around a point x_0 can be well approached in a small ball $B(x_0, r)$ by the Taylor expansion of f at order n with an error in r^{n+1} , the Taylor series might diverge at any other point than x_0 ; if the Taylor expansion converges at other points it defines an analytic function in the case of \mathbb{R} , called an holomorphic function in the case of \mathbb{C} , and the radius of convergence of the power series is limited by the nearest singularity in the complex plane: for example, the Taylor expansion of $f(x) = \frac{1}{1+x^2}$ (which is analytic on the whole \mathbb{R}) at $x_0 \in \mathbb{R}$ has a radius of convergence $\sqrt{1+x_0^2}$, which is the distance to the two singularities of f in \mathbb{C} , which are $\pm i$.

If f is holomorphic in a disc minus its center z_0 , it might be that z_0 is a removable singularity, i.e. one can extend f by continuity at z_0 ; it might be that z_0 is a pole, i.e. the function tends to ∞ when one approaches z_0 , and in this case each pole has a finite order $m \geq 1$ so that $(z - z_0)^m f$ is continuous and non-zero at z_0 , and it is at such poles that one uses a "Laurent" series (introduced before LAURENT by WEIERSTRASS); it might be that z_0 is an essential singularity, i.e. the function has no limit when one approaches z_0 , and in this case the set of values taken by f in any small pointed disc around z_0 is dense in \mathbb{C} , as was proved by CASORATI and then WEIERSTRASS, a result then improved by PICARD, who proved that f takes all values of \mathbb{C} except possibly one in any small pointed disc around z_0 .

Definition 25.4: In a ring R, an ideal P is called *prime* if $P \neq R$ and if for any two ideals A, B of R satisfying $AB \subset P$ one has $A \subset P$ or $B \subset P$ (recall that AB is the set of finite sums of terms like ab with $a \in A$ and $b \in B$).

An ideal M is called maximal if it is a proper ideal (i.e. $M \neq R$) and it is maximal (for inclusion) among proper ideals (i.e. $M \subset N$ and N is a proper ideal, then N = M).

Remark 25.5: A prime element was defined at Definition 23.3 for a commutative unital ring R, by $q \neq 0$, q not a unit, and q divides a b implies that either q divides a or q divides b. Since the definition mentions units, the ring has to be unital, but one could avoid this hypothesis by asking that $(q) \neq R$, which makes sense in a general ring, and for a commutative unital ring it is equivalent to q not being a unit, since $(q) = \{r \mid r \in R\}$ in this case.

Lemma 25.6: In a commutative unital ring R, a non-zero element $q \in R$ is prime if and only if the ideal (q) which it generates is a prime ideal.

¹ One works with $\mathbb{C}P^1$, the projective 1-dimensional space, which adds to \mathbb{C} only one point at infinity.

² Charles Émile Picard, French mathematician, 1856–1941. He worked in Toulouse and in Paris, France.

³ For example, $f(z) = e^{1/z}$ has an essential singularity at 0, and it avoids the value 0.

Proof: Suppose (q) is a prime ideal, and q divides ab, so that $ab \in (q)$, but in a commutative unital ring one has (a)(b) = (ab), so that $(a)(b) \subset (q)$, hence either $(a) \subset (q)$ or $(b) \subset (q)$, but $(x) \subset (q)$ implies $x \in (q)$, i.e. q divides x.

Suppose q is prime, and two ideals A, B are such that $AB \subset (q)$: if one does not have $A \subset (q)$, there exists $a \in A \setminus (q)$ and since for every $b \in B$ one has $ab \in AB \subset (q)$ and q does not divide a, q must then divide b, so that $b \in (q)$, hence $B \subset (q)$.

Lemma 25.7: In a commutative unital ring R, an ideal P is prime if and only if for all $a, b \in R$, $ab \in P$ implies $a \in P$ or $b \in P$; in particular, the trivial ideal $\{0\}$ is prime if and only if R is an integral domain. Proof: If P is prime and $ab \in P$ then $(a)(b) = (ab) \subset P$, so that $(a) \subset P$ or $(b) \subset P$, i.e. $a \in P$ or $b \in P$. Conversely, if A and B are ideals such that $AB \subset P$ but $A \not\subset P$, then there exists $a \in A \setminus P$ and for all $b \in B$ one has $ab \in P$, so that $b \in P$, hence $B \subset P$.

In particular, $\{0\}$ is a prime ideal if and only if there is no zero-divisor, and since R is a commutative unital ring, it means that it is an integral domain.

Lemma 25.8: If R is a commutative unital ring, and J is a proper ideal of R (i.e. $J \neq R$), then the quotient R/J is an integral domain if and only if J is prime.

Proof: Since R/J is a commutative unital ring, it is an integral domain if and only if it has no zero-divisor, but a zero-divisor is aJ with $a \notin J$ for which there exists bJ with $b \notin J$ such that $ab \in J$, i.e. J is not prime.

Remark 25.9: Since the initial reason for a general definition of primes was to extend the notion of primes in \mathbb{Z} (actually in \mathbb{N}) to a general ring, it is useful to observe that, when applied to \mathbb{Z} , the general definition gives either a prime p or -p.⁴

The general definition of irreducible elements applied to \mathbb{Z} also gives $\pm p$ for a prime p, but the initial difficulty was to observe that there are rings where unique factorization does not hold, and that a definition of irreducible elements is needed.

As mentioned at the end of lecture 21, $(4+\sqrt{10})$ $(4-\sqrt{10})=6=2\cdot 3$ in $\mathbb{Z}[\sqrt{10}]$, and $4+\sqrt{10}$, $4-\sqrt{10}$, 2, 3 are irreducible. Since multiples of 2 have the form $a+b\sqrt{10}$ with a,b even, neither $4+\sqrt{10}$ nor $4-\sqrt{10}$ are multiples of 2, hence 2 is not prime in $\mathbb{Z}[\sqrt{10}]$; similarly, 3 is not prime in $\mathbb{Z}[\sqrt{10}]$, since neither $4+\sqrt{10}$ nor $4-\sqrt{10}$ are multiples of 3, which have the form $a+b\sqrt{10}$ with a,b multiple of 3. $4+\sqrt{10}$ and $4-\sqrt{10}$ are not prime either since they divide neither 2 nor 3, and it is checked more easily by noticing that $N(4\pm\sqrt{10})=6$ while N(2)=4 and N(3)=9, which are not multiples of 6, where $N(a+b\sqrt{10})=a^2-10b^2$, which satisfies $N(z_1z_2)=N(z_1)N(z_2)$ for all $z_1,z_2\in\mathbb{Z}[\sqrt{10}]$.

Lemma 25.10: If R is a commutative unital ring, and J is a proper ideal of R (i.e. $J \neq R$), then the quotient R/J is a field if and only if J is maximal.

Proof: If J is maximal and $a \notin J$, then the ideal generated by $\{a\} \cup J$ is R (since it contains J strictly and J is maximal), so that 1 can be expressed as r_0a+j with $j\in J$ for some $r_0\in R$ (but $r_0\notin J$ since $J\neq R$), and this shows that the inverse of a+J in the quotient is r_0+J , so that every non-zero element of R/J has an inverse, hence R/J is a field. Conversely, if R/J is a field and $a\notin J$, then a+J has an inverse b+J in the quotient, so that $ab\in 1+J$, hence the ideal generated by a and J contains 1, so that it is R, which shows that there cannot be a proper ideal containing J strictly (since it would contain some $a\notin J$), i.e. J is maximal.

Remark 25.11: If R is a commutative unital ring, every maximal (proper) ideal is prime, since every field is an integral domain, and the converse is obviously not true: for example if $D \in \mathbb{Z}$ is not a square, then $\mathbb{Z}[\sqrt{D}]$ is an integral domain, but not a field since $z = a + b\sqrt{D}$ is a unit if and only if $N(z) = \pm 1$, with $N(a + b\sqrt{D}) = a^2 - Db^2$, so that since $\mathbb{Z}[\sqrt{D}] = \mathbb{Z}[x]/(x^2 - D)$, one finds that $(x^2 - D)$ is a prime ideal but not a maximal ideal of $\mathbb{Z}[x]$.

Of course, each proper ideal J is contained in a maximal ideal M by Zorn's lemma, and the hypothesis of Zorn's lemma consists in checking that if $J_i, i \in I$, is a totally ordered family of proper ideals (indexed by a nonempty set I) then it has a least upper bound (in the ordered set of proper ideals), which is simply $\bigcup_{i \in I} J_i$: the fact that it is an additive subgroup of R relies on the fact that if $i_1 \neq i_2$ one of the two ideals

⁴ General definitions cannot actually differentiate between the various associates of an element.

 J_{i_1} and J_{i_2} is included in the other, and the union is a proper ideal, since if it contained 1, then 1 would belong to one J_i , which then would not be proper.

In a field F the only ideals are $\{0\}$ and F, and $\{0\}$ is both prime and maximal.

Remark 25.12: If R is an integral domain, every prime element is irreducible: if p = ab then $p \mid a$ or $p \mid b$, and if $p \mid a$, one has a = px, so that p = ab = pxb, i.e. 1 = xb, so that b is a unit.

The converse is not true, since one has seen a few irreducible elements of $\mathbb{Z}[\sqrt{10}]$ which are irreducible but not prime, and for $D \in \mathbb{Z}$ not a square $\mathbb{Z}[\sqrt{D}]$ is an integral domain.

The next step will be to compare irreducible elements and prime elements, and define what a UFD (unique factorization domain) is.