Ayudantía 7 - Estructura de Datos y Algoritmos ELO320 Método Divide et Impera

Werner Creixell, Felipe Vera 30 de mayo del 2013

1. El motivo

El método *divide et impera* (divide y vencerás) consiste en dividir un problema hasta que se pueda resolver con una cantidad pequeña de elementos. Se puede aplicar en un sinnúmero de problemas, como trabajar con arreglos (ordenar y buscar), y funciones matemáticas (FFT, serie de Fibonacci).

La ventaja es que este método es la base de muchos algoritmos muy eficientes, como Quick Sort y FFT, de manera que estos dos algoritmos, al ser implementados de manera iterativa (Bubble Sort y DFT directa) tienen una complejidad de $\Theta(n^2)$, y el método con *divide et impera* tiene una complejidad de $\Theta(n \log(n))$. Recordar que $n \log n$ es una función que crece mucho más lentamente que n^2 para un número muy grande de elementos (Para n = 1024, $n^2 = 1048576$, y $n \log_2(n) = 10240$).

2. Implementación

Para crear e implementar un algoritmo que aproveche la estrategia de *divide et impera*, se debe seguir los siguientes pasos:

- **Dividir**: Se debe encontrar algún método con el cual dividir el problema en varios, cada uno con menos elementos.
- **Resolver**: Una vez que el problema se haya dividido en una cantidad grande de problemas, cada uno con pocos elementos, cada uno de estos se resuelve de forma directa.
- Combinar: Se combina cada una de dichas soluciones para tener la solución del problema entero.

3. Un ejemplo

Un buen ejemplo para explicar este método es el de los algoritmos de ordenamiento. Estos cumplen con los preceptos del *divide et impera* porque:

- Se puede dividir.
- Se puede resolver como problemas pequeños: Ordenar una lista de un elemento es algo trivial, y
 ordenar una lista de dos elementos cada una también.
- **Se puede combinar**. Si se toman las medidas correspondientes, se puede combinar cada una de estas pequeñas listas en una lista grande que corresponde a la solución completa del problema.

3.1. Quick Sort

El método que se aplica en Quick Sort es el siguiente:

- Se puede resolver como problemas triviales: Se elige como pivote a algún elemento de la lista y se ordena la lista de modo que todos los elementos menores al pivote queden a su izquierda y los elementos mayores a su derecha.
- **Se puede dividir**: Luego, la lista se divide en dos (elementos a la izquierda y derecha del pivote), y se aplica la misma solución arriba.
- **Combinar**: Al tener una gran cantidad de listas ordenadas, la combinación genera la lista ordenada.

4. Ejercicios

- 1. Cree un método para aproximar $x = \sin(x)$ ocupando los siguientes principios:
 - a) Para $x \approx 0$, $\sin(x) \approx x$. Un rango prudente para hacer esa aproximación es |x| < 0.001.
 - b) $\sin(2x) = 2 \cdot \sin(x) \cos(x)$.
 - c) $cos(x) = sin(x + \frac{\pi}{2})$