JEE matrix problem through Python

Raktim Gautam Goswami (EE17BTECH11051) Abhishek Bairagi (EE17BTECH11004)

February 15, 2019

Table of contents

Problem Statement

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Steps to solve

Solution

Solution ...

Solution ...

Conclusion

Code

Problem Statement

Find the locus of the point of intersection of the lines:

$$\begin{pmatrix} \sqrt{2} & -1 \end{pmatrix} \mathbf{x} + 4\sqrt{2}k = 0$$

$$\left(\begin{array}{cc} \sqrt{2}k & k \end{array}\right)\mathbf{x} - 4\sqrt{2} = 0$$

The figure for the above problem from plotting is as follows.

The family of first equation of lines.

The family of second equation of lines.

Their intersection points.

Final locus.

Steps to solve

Find value of k from first equation

Find transpose of k and use it in second equation.

Simplify the eqaution

Check the condition for conic.

Solution

Find value of k from first equation

The given lines are:

$$\left(\begin{array}{cc}\sqrt{2} & -1\end{array}\right)\mathbf{x} + 4\sqrt{2}k = 0$$

$$\left(\begin{array}{cc}\sqrt{2}k & k\end{array}\right)\mathbf{x} - 4\sqrt{2} = 0$$

So from first line:

$$k = -\begin{pmatrix} \sqrt{2} & -1 \end{pmatrix} x / 4 \sqrt{2}$$

So,

$$k^T = -x^T \left(\begin{array}{c} \sqrt{2} \\ -1 \end{array} \right) / 4\sqrt{2}$$

And Second equation can be written as

$$k \left(\sqrt{2} \ 1 \right) \mathbf{x} = 4\sqrt{2}$$

Since k is a scalar, so

$$k^T = k$$

So putting value of k in second equation we get:

$$x^{T} \begin{pmatrix} \sqrt{2} \\ -1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 1 \end{pmatrix} x = -32$$
$$x^{T} \begin{pmatrix} 2 & \sqrt{2} \\ -\sqrt{2} & -1 \end{pmatrix} x + 32 = 0$$

This can be written as:

$$x^{T} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} x + x^{T} \begin{pmatrix} 0 & \sqrt{2} \\ -\sqrt{2} & 0 \end{pmatrix} x + 32 = 0$$

And

$$x^T \left(\begin{array}{cc} 0 & \sqrt{2} \\ -\sqrt{2} & 0 \end{array} \right) x = 0$$

So

$$x^T \left(\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array}\right) x + 32 = 0$$

General equation of conic section:

$$x^{T} V x + 2 u^{T} x + F = 0$$

Final Conclusion

On comparing our equation with general equation

We get det(V) as -2 which is less than 0.

So the conic is a hyperbola

So the locus of the intersection point is a hyperbola.

Code

The link of the code can be found here - Matrix code