Exercício 1

a)

Dado o potencial u(r) = $\begin{cases} 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} + \frac{1}{4} \right], r < r_{c} \\ 0, r > r_{c} \end{cases}$ temos que a força $F = -\nabla u(r)$ é dada por: $F = \frac{\partial u(r)}{\partial r} = 24\frac{\epsilon}{\sigma} \left[2\left(\frac{\sigma}{r}\right)^{13} - \left(\frac{\sigma}{r}\right)^{7} \right], r < r_{c}$

$$F = \frac{\partial u(r)}{\partial r} = 24 \frac{\epsilon}{\sigma} \left[2 \left(\frac{\sigma}{r} \right)^{13} - \left(\frac{\sigma}{r} \right)^{7} \right], r < r_c$$
 (1)

$$F = \frac{\partial u(r)}{\partial r} = 0, r > r_c \tag{2}$$

Na Figura 1 estão representados os gráficos do potencial adimensional $u(r)/\epsilon$ e da aceleração F/m_p .

Figura 1: Potencal adimensional (esquerda) e aceleração (direita) em função da distância.