Coupled Line Directional Coupler (CLDC)

For Input at Port 1:

Port 2 is Directly Coupled Port or Through Port

Port 3 is Coupled Port (|S₃₁| may be -10 dB to -30 dB)

Port 4 is Isolated Port ($|S_{41}|$ should be as large as possible)

CLDC – Even and Odd Modes

Even Mode Excitation

Odd Mode Excitation

CLDC – Analysis and Design

Coupling (C) is maximum for $l = \lambda/4$. For desired C:

$$Z_{0_e} = Z_0 \sqrt{\frac{1+C}{1-C}}$$

$$Z_{0_o} = Z_0 \sqrt{\frac{1-C}{1+C}}$$

$$Z_0 = \sqrt{Z_{0_e} \times Z_{0_o}}$$

For
$$Z_0 = 50$$
 Ω

Coupling Numeric Z_{0e} Z_{0o} (Ω)

-6 0.5 86.6 28.9

-10 0.316 69.4 36.0

-20 0.1 55.3 45.2

-30 0.0316 51.6 48.4

Where Z_{0e} and Z_{0o} are even and odd mode characteristic impedances.

Coupled Microstrip Line - Z_{0e} and Z_{0o}

Plot for Z_{0e} and Z_{0o} for $Z_0 = 50 \Omega$ and $\varepsilon_r = 10$

As s/d increases,

 Z_{0e} decreases and Z_{0o} increases As w/d increases, both Z_{0e} and Z_{0o} decrease.

For 10 dB coupling, $Z_{0e} = 69.4 \Omega$ and $Z_{00} = 36 \Omega$.

From graph: w/d = 0.75 and s/d = 0.4

Coupled Microstrip Line – Even Mode ε_e

Plot for Even Mode ε_e for $\varepsilon_{\rm r} = 9.6$

As w/h increases, $\varepsilon_{\rm e}$ increases.

As s/h increases, $\varepsilon_{\rm e}$ decreases.

Microstrip Line CLDC (C = -20 dB)

f = 800 - 1000 MHz $\varepsilon_r = 4.4, \ h = 0.8 \text{mm}, \ \tan \delta = 0.02$ Length $l = \lambda/4 = 46 \text{ mm}$ Width = 1.5 mm, Gap = 1 mm
Coupling is max. for $l = \lambda/4$ and $3\lambda/4$ and min. for $l = 2\lambda/4 = \lambda/2$ $|S_{11}| \le -35 \text{ dB}$ $|S_{21}| \approx -0.2 \text{ dB}$ $|S_{31}| = C \approx -20.6 \text{ dB}$ $|S_{41}| = I = -23 \text{ dB at } 900 \text{ MHz. Directivity} = |C - I| \text{ is very poor.}$