

Seminario de Tesis

Docente: Dr. Ing. Aland Bravo Vecorena

Escuela Profesional Ingeniería Civil Periodo académico: 2019-I

Semestre: I

Unidad: I

Generalidades de Herramientas para Tesis e Investigación

Ficheros: CAD, csv, etc.

Ficheros: Encuestas, etc.

Ficheros: PDF, png, etc.

Ficheros: html, etc.

 Repositorio gratuito de ficheros en línea.

Github y Git

 Formularios para Encuestas de Google.

Google Forms

 Indicadores y Métricas de Desempeño.

Google Data Studio

 Bitácora o agenda social.

Google Blogger

Validando Nuestra Tesis

Plan Encuestas Prueba de Hipótesis

Evolución de la Ciencia de los Datos

Tipos y Niveles de Medida de los Datos

Población versus Muestra

La Media Muestral versus la Media Poblacional

Mean

Sample formula

Population formula

$$\frac{\sum_{i=1}^{n} x_i}{n}$$

$$\frac{\sum_{i=1}^{N} x_i}{N}$$

N is the size of the population, n is the size of the sample

365√DataScience

Varianza Poblacional versus Varianza Muestral

Variance

Population variance

$$\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

Sample variance

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Desviación Estándar Poblacional y Muestral

Population standard deviation

 $\sigma = \sqrt{\sigma^2}$

Sample standard deviation

$$s = \sqrt{s^2}$$

365√DataScience

Coeficiente de Variación Poblacional y Muestral

Coefficient of variation (CV)

/relative standard deviation/

standard deviation

mean

Population formula

Sample formula

$$c_v = -\frac{\sigma}{\mu}$$

$$\widehat{c_v} = \frac{s}{\bar{x}}$$

Distribuciones de la Función de Probabilidad

Def: A distribution is a function that shows the possible values for a variable and how often they occur.

Probabilidad de Lanzar un Dado

Rolling a die

Outcome	Probability	
1	1/6	
2	1/6	
3	1/6	
4	1/6	
5	1/6	
6	1/6	
7	0	

Probabilidad de Lanzar un Dado

Probabilidad de Lanzar Dos Dados

Rolling two dice

Outcome	Probability
2	0.03
3	0.06
4	0.08
5	0.11
6	0.14
7	0.17
8	0.14
9	0.11
10	0.08
11	0.06
12	0.03
All else	0

Probabilidad de Lanzar Dos Dados

Distribución de la Probabilidad

Distribuciones de Probabilidades

Distribución Normal versus T-Student

Distribución Normal

Distribución Normal

Detalles de una Distribución Normal

Normal distribution. Controlling for standard deviation

Detalles de una Distribución Normal

Normal distribution. Controlling for the mean

Normalización hacia la Distribución Estándar Normal

From Normal to Standard normal

$$N \sim (\mu, \sigma^2) \longrightarrow N \sim (0, 1)$$

Every normal distribution can be 'standardized'

365 √DataScience

Normalización hacia la Distribución Estándar Normal

$$N \sim (\mu, \sigma^2) \longrightarrow N \sim (0, 1)$$

z-score =
$$\frac{x - \mu}{\sigma}$$

If you take a dataset, subtract its mean from each data point and then calculate the mean once again, you will get 0.

Ejemplo de Normalización de Datos

Teorema del Límite Central

The Central limit theorem

No matter the distribution

$$\bar{x}_1, \bar{x}_2, \bar{x}_3, \dots, \bar{x}_k$$

The more samples you extract

The bigger the samples

Teorema del Límite Central

How to find the standard error?

$$\bar{x}_1, \bar{x}_2, \bar{x}_3, \dots, \bar{x}_k$$

$$N \sim \left(\mu, \frac{\sigma^2}{n}\right)$$
Variance

Standard deviation =
$$\sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$$

Estimadores de los Parámetros

Estimando Precios de un Restaurante

Average price

Confidence interval: [20£, 25£]

5% chance that the population parameter is outside the range

Nivel de Significancia y Nivel de Confianza

∝→ Nivel de Significancia = Tamaño de Región de Rechazo del Error Tipo I.

1 − \propto → Nivel de Confianza = Tamaño de Región de Aceptación del Error Tipo I.

Tipos de Errores

- Hipótesis Nula: denotada como H₀; siempre especifica un solo valor del parámetro de la población.
- <u>Hipótesis Alternativa:</u> denotada como H_1 ; es la que responde nuestra pregunta, la que se establece en base a la evidencia que tenemos.
- Error Tipo I: Se comete cuando la hipótesis nula es verdadera y, después del contraste, se rechaza.

• Error Tipo II: Se comete cuando la hipótesis nula es falsa y, después del contraste se acepta.

C	omrasie se acepia .	H ₀ es VERDADERA	H ₀ es FALSA
	Rechazamos H ₀	Error Tipo I $P(Error Tipo I) = \alpha$	Decisión Correcta
	Aceptamos H ₀	Decisión Correcta	Error Tipo II $P(Error Tipo II) = \beta$

Nivel de Significancia α y Nivel de Confianza (1- α)

Estimación Puntual

Estimación Puntual

Intervalos de Confianza

Confidence intervals

Population variance known

Z

Population variance unknown

Т

Intervalos de Confianza

Confidence intervals

$$N \sim (\mu, \sigma^2)$$

CLT

Population variance known

Distribución T-Student

Ejemplos con y sin Varianza de la Población

Fórmulas de los Intervalos de Confianza

Confidence intervals formulas

Population variance known

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Population variance unknown

$$\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

Margin of error

$$\bar{x} \pm ME$$

Aplicando la Distribución a las Hipótesis

			1	
	xa	m		
	\mathbf{x}			
-	Λ u		Ю.	
			100	

Hypotheses	Notation
Null hypothesis	H _o
Alternative hypothesis	H₁ or H₄

365√DataScience

Aplicando la Distribución a las Hipótesis: Bilateral

Grades in a UK university

Distribución a las Hipótesis: Unilateral Derecha

Grades in a UK university

Distribución de las Hipótesis: Unilateral Izquierda

Grades in a UK university

Valor del estadístico p-value

Esfuerzo

Tareas

Orientación

Toma de decisiones

Continuidad

Esfuerzo

Tiempo

Trabajo en equipo

Productividad

Participación activa

Actitud del trabajo

Crecimiento personal

Mejor desempeño

Autoestima

Conocimiento y

Adaptabilidad

del puesto

habilidades

Caso de Estudio: Prueba de Hipótesis

1) Un alumno de la EAPIC-UAP se ha planteado la siguiente hipótesis de trabajo:

VARIABLES

DIMENSIONES

INDICADORES

"Motivación y Desempeño Laboral en los Trabajadores de Construcción Civil del Distrito de Huánuco"

Ho: La motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco.

H1: La motivación no influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco.

VI: La Motivación en Obras Civiles	Intensidad Dirección	
	Persistencia	
	La participación	
	del trabajador	
VD:	Formación de	
Desempeño Laboral	desarrollo profesional	

Adecuación /

Ambiente de trabajo

Para efectuar la prueba de su hipótesis de trabajo, ha decidido utilizar como instrumento de medición un **Cuestionario**, que será realizado a los trabajadores de construcción civil, para ello ha utilizado:

II. INSTRUMENTO DE MEDICIÓN DE MOTIVACIÓN

NUNCA	CASI NUNCA	A VECES	CASI SIEMPRE	SIEMPRE
1	2	3	4	5

N°	INTENSIDAD	1	2	3	4	5	
	Esfuerzo						
1	¿Considera Ud. que se esfuerza lo suficiente para realizar sus actividades?						
2	¿Ud. cumple con el horario de trabajo establecido por la empresa?						
	Tareas						
3	¿Considera que las tareas que realiza son acorde a sus capacidades?						
4	¿Las tareas que realiza tienen buen resultado?						
	DIRECCION						
	Orientación						
5	¿Ud. Es guiado hacia la consecución de sus metas?						
6	¿Ud. Recibe orientación antes de realizar una actividad?						
	Toma de decisiones						
7	¿Cuándo su jefe no está, asume el cargo en su área de trabajo?						
8	¿Cree que los jefes se relacionan con los demás trabajadores positivamente?						
	PERSISTENCIA						
	Continuidad						
9	¿Considera Ud. que se esfuerza continuamente en la realización de sus labores?						
$\overline{}$							

10	¿Cree Ud. que debería haber una capacitación continua para mejorar su productividad?			
	Esfuerzo			
11	¿Considera Ud. que sus esfuerzos de superación deberían ser capacitadas?			
12	¿Considera que sus esfuerzos están acorde con su remuneración salarial?			
	Tiempo			
13	¿Ud. ejecuta sus actividades en el menor tiempo establecido?			
14	¿Es recompensado por el sobre tiempo que pasa en sus labores?			

III. INSTRUMENTO DE MEDICIÓN DEL DESEMPEÑO LABORAL

NUNCA	CASI NUNCA	A VECES	CASI SIEMPRE	SIEMPRE
1 2		3	4	5

Ν°	LA PARTICIPACIÓN DEL TRABAJADOR	1	2	3	4	5	
	Trabajo en equipo						
1	1 ¿Prefiere Ud. trabajar en equipo más que trabajar solo?						
2	¿Fomenta Ud. el trabajo en equipo?						
	Productividad						
3	3 ¿Ud. ha demostrado a los demás trabajadores la efectividad?						
4	¿Ud. produce igual cuando su pago no es muy bien remunerado?						
	Participación activa						
5	5 ¿Cómo trabajador participa con los demás compañeros?						
6	¿Ud. Soluciona problemas inmediatamente en su trabajo?						
	Actitud del trabajo						
7	¿Cómo trabajador participa con los demás compañeros?						
8	¿Ud. Tiene las ganas de actuar e incentivar al grupo de trabajo?						
		$\overline{}$					

	FORMACIÓN DE DESARROLLO PROFESIONAL						
	Crecimiento personal						
5	¿Ud. Es guiado hacia la consecución de sus metas?						
6	¿Ud. Recibe orientación antes de realizar una actividad?						
	Mejor desempeño del puesto						
7	¿Cuándo su jefe no está, asume el cargo en su área de trabajo?						
8	¿Cree que los jefes se relacionan con los demás trabajadores positivamente?						
	Autoestima						
9	¿La empresa le proporciona, oportunidades de crecimiento profesional?						
10	¿La empresa me proporciona oportunidades de crecimiento económico?						
	ADECUACIÓN / AMBIENTE DE TRABAJO						
	Conocimiento y habilidades						
11	¿Conoce cuáles son sus obligaciones y derechos dentro de la organización?						
12	¿Cree Ud. que tendría más habilidades si recibiría capacitación permanente?						
	Adaptabilidad						
13	¿Disfruta trabajar en equipo más que trabajar solo?						
14	¿Le gusta influir a otras personas para que imiten su trabajo?						
	Clima del trabajo						
15	¿Acostumbra construir relaciones estrechas con sus compañeros de trabajo?						
16	¿Prefiere trabajar con mucha libertad, sin supervisión directa o muy cercana?						

Para definir la cantidad de encuestas a realizar ha utilizado el teorema de muestreo, lo cual le ha definido una muestra de 9 sindicatos detallados en 65 trabajadores a encuestar (a criterio del investigador):

Tamaño d	e Muestra							
Entradas:								
N=	9	Tamaño del U	Jniverso de	e Poblaciór	n de Sindic	atos - Huár	nuco	
p=	0.5	Probabilidad	de Ocurre	ncia de los	Casos			
E=D=	0.05	Error de mue	streo					
α=	0.05	Nivel de Sign	ificancia					
Salidas								
q=(1-p)=	0.5							
n=	9	n =N	I (Z) ² P (Q				
Z_(1-α/2):	1.959963985	(D)	(D)2 (N 4) + (Z)2 DO					
		(D)·	² (N-1) + (Z)* PQ				

Región de aceptación

Caso de Estudio: Prueba de Hipótesis

Los resultados parciales de su Ficha de Cuestionario se muestra a continuación:

Ho: La motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco.

H1: La motivación no influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco.

Population variance unknown

	4.0	S
$x \pm$	$t_{n-1,\alpha/2}$	$\overline{\sqrt{n}}$

NUNCA	CASI NUNCA	A VECES	CASI SIEMPRE	SIEMPRE					
1	2	3	4	5					
$\propto = 5^{\circ}$	%								
n = 65	5								
$\bar{X} = 4.1$ $H_0: \mu \geq 4$									
S=0.3	19								

1 - a	а	z a	
0.90	0.10	1.28	
0.95	0.05	1.645	
0.99	0.01	2.33	

1 - a	a/2	z _{a/2}
0.90	0.05	1.645
0.95	0.025	1.96
0.99	0.005	2.575

Pasos de una Prueba de Hipótesis:

- 1. Se plantea la hipótesis nula y la alternativa.
- 2. Se selecciona el **nivel de significancia** y el **nivel de confianza**.
- 3. Se identifica el **estadístico de prueba**.
- 4. Se forma la **regla de decisión** y la **región de rechazo**.
- Se toma una muestra, analiza y se decide:
 - \diamond Acepta H_0
 - **\diamond** O se **Rechaza** H_0 y se **Acepta** H_1 .
 - El propósito de la prueba de hipótesis no es cuestionar el valor calculado del estadístico (muestral), sino hacer un juicio con respecto a la diferencia entre estadístico de muestra y un valor planteado del parámetro.

 Con VARIANZA CONOCIDA: Se utiliza el siguiente estadístico de prueba:

$$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \ (\geq 30) \ ó \left[t = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}; (n - 1)gl \right] (< 30)$$

 Con VARIANZA DESCONOCIDA: Se utiliza el siguiente estadístico de prueba:

$$Z = \frac{\overline{x} - \mu}{S/\sqrt{n}} \ (\ge 30) \ ó \ t = \frac{\overline{x} - \mu}{S/\sqrt{n}}; (n-1)gl \ (< 30)$$

Como se desconoce la varianza de la población, y se tiene 65 muestras, entonces utilizaremos el estadístico de prueba Z:

$$H_0: \mu \ge 4$$

$$z = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{4.1 - 4}{0.19/\sqrt{65}} = \frac{0.1}{0.0235} = 4.2432$$

$$\propto = 0.05$$

$$-Z_{\infty} = -Z_{0.05} = -1.645$$

RR -1.645

Tabla Normal Z

4.2432

Concluimos: Como se Acepta la H_0 ; «Estamos 95% seguros, que la motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco»

Como se desconoce la varianza de la población, y se tiene 65 muestras, entonces utilizaremos el estadístico de prueba T:

$$H_0: \mu \ge 4$$

$$t = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{4.1 - 4}{0.19/\sqrt{65}} = \frac{0.1}{0.0235} = 4.2432$$

$$\propto = 0.05$$

$$n = 65$$

$$n = 65$$
 $gl = n - 1 = 64$

$$-t_{\propto;gl} = -t_{0.05;64} = -1.669$$

Concluimos: Como se Acepta la H_0 ; «Estamos 95% seguros, que la motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco»

4.2432

Los resultados parciales de su Ficha de Cuestionario se muestra a continuación:

Ho: La motivación no influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco.

NUNCA	CASI NUNCA	A VECES	CASI SIEMPRE	SIEMPRE
1	2	3	4	5
•				_
$H_0: \mu \leq 3$			$H_1: \mu > 3$	

H1: La motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco.

Population variance unknown

$$\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

$$t_{n-1,\alpha} = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

Como se desconoce la varianza de la población, y se tiene 65 muestras, entonces utilizaremos el estadístico de prueba Z:

$$z = \frac{\bar{X} - \mu}{S / \sqrt{n}} = \frac{4.1 - 3}{0.19 / \sqrt{65}} = 46.6762$$

$$\propto = 0.05$$

$$Z_{\alpha} = Z_{0.05} = 1.645$$
RA
RR

1.645

46.6762

<u>Concluimos</u>: Como se Rechaza la H_0 y se Acepta la H_1 ; «Estamos 95% seguros, que la motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco»

Como se desconoce la varianza de la población, y se tiene 65 muestras, entonces utilizaremos el estadístico de prueba T:

$$H_0$$
: $\mu \leq 3$

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} = \frac{4.1 - 3}{0.19 / \sqrt{65}} = 46.6762$$

$$\propto = 0.05$$

$$n = 65$$

$$n = 65$$
 $gl = n - 1 = 64$

$$t_{\alpha;gl} = t_{0.05;64} = 1.669$$

Concluimos: Como se Rechaza la H_0 y se Acepta la H_1 ; «Estamos 95% seguros, que la motivación influye positivamente en el desempeño laboral de los trabajadores de construcción civil del Distrito de Huánuco»

Tarea N° 01

- 1) Defina el tema de su tesis y el problema a solucionar.
- 2) Elabore una Tabla de Variables, Dimensiones e Indicadores.
- 3) Realice una Ficha de Encuesta sobre su propuesta de Tesis.
- 4) Simule datos para llenado de registros de encuestados en Excel, con la finalidad de Probar su Hipótesis utilizando la Distribución Normal y de T-Student (ambos métodos).

¡Gracias!