PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

14. QUANTUM HAMILTONIAN REDUCTION VS SRA

- **Exercise 14.1.** Prove that $\Phi([\xi, \eta]) = \frac{1}{\hbar} [\Phi(\xi), \Phi(\eta)]$ for any $\xi, \eta \in \mathfrak{g}$.
- **Exercise 14.2.** Prove that the center of $W_{\hbar}(V)$ coincides with $\mathbb{C}[\hbar]$.
- **Exercise 14.3.** Describe the map $\xi \mapsto \xi_{\mathcal{A}}$ for $\mathcal{A}_{\hbar} = D_{\hbar}(X_0)$ and show that $\xi \mapsto \xi_{X_0}$ is a quantum comoment map.
- **Problem 14.1.** Let X_0 be a vector space equipped with a linear action of a group G. Then $W_{\hbar}(X_0 \oplus X_0^*)$ is the same algebra as $D_{\hbar}(X_0)$. We get two quantum comoments maps, Φ_D, Φ_W for the G-action on this algebra. Describe the difference $\Phi_D \Phi_W$.
- **Exercise 14.4.** Let \mathcal{A}_{\hbar} be an associative unital algebra over $\mathbb{C}[\hbar]$, flat over $\mathbb{C}[\hbar]$, complete and separated in the \hbar -adic topology, and such that $A := \mathcal{A}_{\hbar}/(\hbar)$ is commutative. Let S be a multiplicatively closed subset of A that does not contain 0 and let π_k denote the projection $\mathcal{A}_{\hbar}/(\hbar^k) \twoheadrightarrow A$. Show that $\pi_k^{-1}(S)$ satisfies the Ore condition: i.e., for all $a \in \mathcal{A}_{\hbar}/(\hbar^k)$, $s \in \pi_k^{-1}(S)$, there are $a' \in \mathcal{A}_{\hbar}/(\hbar^k)$, $s' \in \pi_k^{-1}(S)$ such that as' = a's. Show that there are natural epimorphisms $\mathcal{A}_{\hbar}/(\hbar^{k+1})[\pi_{k+1}(S)^{-1}] \twoheadrightarrow \mathcal{A}_{\hbar}/(\hbar^k)[\pi_k(S)^{-1}]$ and prove that $\mathcal{A}_{\hbar}[S^{-1}] := \varprojlim_k \mathcal{A}_{\hbar}/(\hbar^k)[\pi_k(S)^{-1}]$ is flat over $\mathbb{C}[[\hbar]]$.
- **Exercise 14.5.** Show that the product on $A_{\hbar}///_{\mathcal{I}}G$ is well-defined.
- **Exercise 14.6.** Check that the image of $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ in $[\mathcal{A}_{\hbar}/\mathcal{A}_{\hbar}\Phi([\mathfrak{g},\mathfrak{g}])]$ consists of G-invariant elements that commute with $[\mathcal{A}_{\hbar}/\mathcal{A}_{\hbar}\Phi([\mathfrak{g},\mathfrak{g}])]^G$.
- **Problem 14.2.** Let G be a reductive group acting freely on a smooth affine variety X_0 . Identify $D_{\hbar}(X_0)///_0G$ with $D_{\hbar}(X_0//G)$.