method and results

Sibei Liu sl4660

2020/4/28

Method

Adam

Adam is A Method for Stochastic Optimization proposed in 2015 from Diederik P Kingma that only need the first-order gradient. The Stochastic Gradient descent (SGD) is often used when the objective function is typically non-convex (as in our case). The "Ada" is derived from "adaptive", meaning this method change the learning rate over time according to gradients before. The detailed proof and explanation can be found in Diederik's paper. Here we just extracted the fake code part from original paper to clarify.

Algorithm:

1. Required: α : Stepsize $\beta_1, \beta_2 \in [0,1)$: Exponential decay rates for the moment estimates $f(\boldsymbol{\theta})$: The objective function with parameter vector $\boldsymbol{\theta}$ ϵ controls the converge

2. Required: θ_0 : Initial guess of parameters $\mathbf{m}_0 \leftarrow \mathbf{0}$: Initialize the 1st moment vector as $\mathbf{0}$ $\mathbf{v}_0 \leftarrow \mathbf{0}$: Initialize the 1st moment vector as $\mathbf{0}$ $t \leftarrow 0$: Initialize time step =0 while $\theta_t - \theta_{t-1} > \epsilon$ not converge, do $t \leftarrow t+1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$: Get gradients w.r.t objective function at timestep t $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t$: Update biased first moment estimate $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2$: Update biased second moment estimate $\hat{m}_t \leftarrow m_t/(1-\beta_t^t)$: Compute bias-corrected first moment estimate $\hat{v}_t \leftarrow v_t/(1-\beta_t^t)$: Compute bias-corrected second raw moment estimate $\theta_t = \theta_{t-1} - \alpha \cdot \hat{m}_t/(\sqrt{\hat{v}_t + \epsilon})$: Update parameters End while Return θ_t Result parameters

3. Defult setting: $\beta_1=0.9$ $\beta_2=0.999$ $\alpha=0.001$ $\epsilon=10^{-8}$

Notes: g_t^t indicate the element-wise t power like $(g_t)^t$. Similarly, β_1^t and β_2^t also means the β_1 and β_2 to the power of t. In our case, we set the maximum time step t = 10000 to decrease the computation.

Loss function:

$$f = \sum_{i=1}^{n} (y_i - \frac{a}{1 + exp(-b(t-c))})^2$$

Gradient for parametrs a,b,c:

$$\nabla f(t,a) = \sum_{i=1}^{n} \left(\frac{2a}{(1+e^{(-bt+bc)})^2} - \frac{2y}{1+e^{(-bt+bc)}} \right)$$

$$\nabla f(t,b) = -\sum_{i=1}^{n} \left(\frac{2a^2e^{(-bt+bc)}}{(1+e^{(-bt+bc)})^3} + \frac{2ae^{(-bt+bc)}(c-t)y}{(1+e^{(-bt+bc)})^2} \right)$$

$$\nabla f(t,c) = -\sum_{i=1}^{n} \left(\frac{2a^2be^{(-bt+bc)}}{(1+e^{(-bt+bc)})^3} + \frac{2abe^{(-bt+bc)}}{(1+e^{(-bt+bc)})^2} \right)$$

The initial guess of a,b,c in each country: a_0 =two times the cumulative case in 24 May, b_0 =0.3, c_0 =40. For some special countries for example China and South Korea, the initial guess are adjusted for many times and the iteration also increases.

Results

Task 1.1

After applying the Adam algorithm in 116 countries, we get the estimated a,b,c values for each country in Table 1. The maximum a value is 138340 from Italy. The b value ranges from 0.085 (Singapore) to 3.857 (Trinidad and Tobago). The c value changes from 70 (China, Taiwan) to 4 (Uzbekistan).

country_region	a value	b value	c value		a value	b_value	c valu
Afghanistan	342	0.202	37	country_region			
Albania	269	0.173	17	China	78732	0.223	1
Algeria	723	0.258	30	Colombia	777	0.335	1
Andorra	345	0.344	22	Congo (Kinshasa)	115	0.360	1
Argentina	970	0.315	23	Costa Rica	375	0.268	1
Armenia	514	0.288	23	Cote d'Ivoire	342	0.857	1
Australia	4072	0.293	58	Croatia	958	0.310	2
Austria	10760	0.275	28	Cuba	122	0.363	1
Azerbaijan	365	0.184	30				
Bahrain	795	0.118	29	Cyprus	272	0.234	1
Bangladesh	99	0.244	18	Denmark	3258	0.170	2
Belarus Belgium	102 8530	$0.276 \\ 0.254$	19 49	Dominican Republic	640	0.498	2
Bolivia	81	0.254 0.192	16	Ecuador	2180	0.449	2
Bosnia and Herzegovina	352	0.192 0.292	19	Egypt	806	0.193	3
Brazil	4507	0.292 0.380	$\frac{13}{27}$	Estonia	569	0.235	2
Brunei	98	0.380	7	Finland	1570	0.216	5
Bulgaria	459	0.253	16				
Burkina Faso	252	0.363	14	France	39932	0.148	6
Cambodia	168	0.317	56	Georgia	151	0.140	2
Canada	5462	0.338	58	Germany	65957	0.259	5
Chile	1862	0.318	21	Ghana	300	0.332	1
Netherlands	11170	0.239	26	Greece	1499	0.182	2°
New Zealand	505	0.420	27	Guatemala	23	0.589	
Nigeria	102	0.407	25	Honduras	$\frac{23}{32}$	0.549	
North Macedonia	309	0.325	27				
Norway	5557	0.175	26	Hungary	393	0.266	2
Oman	361	0.125	40	Iceland	1311	0.213	2
Pakistan	1774	0.326	26	India	1060	0.253	5-
Panama	715	0.321	14	Indonesia	1389	0.266	2
Paraguay	74	0.195	19	Iran	49441	0.131	3
Peru	678	0.322	16	Iraq	642	0.143	3
Philippines	$1091 \\ 1821$	0.240	$\frac{54}{20}$	Ireland	2673	0.309	2
Poland	$\frac{1821}{4741}$	0.283 0.335	20 22				
Portugal Qatar	889	0.335 0.175	19	Israel	4055	0.304	3
Romania	1783	0.175	29	Italy	138340	0.183	5
Russia	979	0.290	53	Jamaica	20	0.331	
Rwanda	107	0.356	11	Japan	2195	0.094	6
San Marino	230	0.191	19	Jordan	326	0.302	2
Saudi Arabia	1551	0.288	23	Kazakhstan	69	0.529	
Senegal	357	0.217	27	Kenya	237	0.320	1
Serbia	627	0.286	18	-			
Singapore	1262	0.085	67	Korea, South	8801	0.284	4
Slovakia	254	0.332	13	Kuwait	564	0.088	3
Slovenia	805	0.200	16	Kyrgyzstan	279	0.546	
South Africa	1303	0.343	20	Latvia	411	0.270	2
Spain	79759	0.257	52	Lebanon	829	0.169	3
Sri Lanka	105	0.459	51	Liechtenstein	55	0.500	1
Sweden	4381	0.171	52	Lithuania	432	0.451	2
Switzerland Taiwan*	19766	0.261	28				
Thailand	576 1634	$0.097 \\ 0.306$	$\frac{70}{62}$	Luxembourg	2213	0.354	2^{ϵ}
Trinidad and Tobago	53	3.857	6	Malaysia	3231	0.222	5
Tunisia Tunisia	419	0.242	24	Malta	242	0.248	1
Turkey	3770	0.537	13	Martinique	135	0.251	1
Ukraine	212	0.395	21	Mauritius	115	0.492	
United Arab Emirates	652	0.114	62	Mexico	748	0.317	2
United Kingdom	16258	0.279	53				
Uruguay	184	0.548	6	Moldova	273	0.285	1
US	106991	0.389	29	Monaco	60	0.272	2
Uzbekistan	50	0.729	4	Montenegro	124	0.507	
Venezuela	95	0.426	5	Morocco	357	0.291	2
Vietnam	418	0.102	69				

Table 1. Estimated a,b,c values in each country

Untill 24 May, It is estimaed that there are 27 countries that pass the midpoint. They are: Belarus, Brunei, Cambodia, China, Denmark, Estonia, Guatemala, Honduras, Iran, Jamaica, Japan, Kazakhstan, Korea South, Liechtenstein, Norway, Pakistan, Peru, Qatar, San Marino, Slovakia, Slovenia, Sri Lanka, Sweden, Trinidad and Tobago, Uruguay, Uzbekistan, Venezuela.

If we define the cumulative cases at 24 May surpass the 80% of a value in corresponding country is "appraoching the end". Then there are 15 countries: Brunei, China, Guatemala, Honduras, Jamaica, Kazakhstan, Korea South, Liechtenstein, San Marino, Slovakia, Sri Lanka, Trinidad and Tobago, Uruguay, Uzbekistan, Venezuela.

Task 1.2

We select three kinds of countries to do the visualization: 1) The early stages of COVID-19 outbreak, no deliberate intervention implemented. Representatives: Afghanistan and Vietnam. 2) Outbreak stage, the government intervention hasn't come into effect. Representatives: UK and US. 3) After the outbreak and the govrnment interventions have been effective. Representatives: China and South Korea. The a,b,c values of above 6 example countries are as follow:

country_region	a_value	b_value	c_value
Afghanistan	342	0.202	37
China	78732	0.223	18
Korea, South	8801	0.284	40
United Kingdom	16258	0.279	53
US	106991	0.389	29
Vietnam	418	0.102	69

Table 2. Estimated a,b,c values in 6 countries

The data from 25 May to 5 April (11 days) is used as test data to examine the predictivity of fitted model. The MSEs of training data(data before 24 May) and test data are as follow. Because the original data itself is relatively large, so the calculated MSE seems to be large.

Country	Train_error
Afghanistan	2.080206e+01
China	4.077602e + 06
$Korea_South$	4.471121e+04
$United_Kingdom$	9.472004e+03
US	1.871744e + 05
Vietnam	5.664849e + 01

Table 3. MSE of train data

Country	test_error
Afghanistan	3.200053e+03
China	1.211702e + 07
Korea_South	9.565317e + 05
United_Kingdom	2.690240e + 08
US	1.428445e + 10
Vietnam	8.978671e + 01

Table 4. MSE of test data

But if we visualize the model fitted value (red line) and observed values (train data is black and test data is blue). In the following plot, the fitted logistic curve fits the train data well, but deviations from test data in those two countries are different. The Afghanistan and Vietnam are both at the initial outbreak, so a dramatic increase of cases can be expected.

The maximum cases(a=342) is expected to be reached around the 60th day in Afghanistan. The deviation of test data before around 1 April is smaller than that after 1 April. But the data in April 5, apparently exceeds the estimated a value, which denote the bias of our fitted model since we built the model only based on the data before 24 May.

For Vietnam, the The maximum cases(a=418) is expected to be reached around the 120th day. The fitteness of both train and test data is good.

Figure 1. Afghanistan and Vietnam fitted and predicted values

In second kind country is as follow. The estimated a values are 16258 and 106991 for UK and US respectively. And the estimated stable stage when a is reach is 70th day and 50th day for UK and US respectively. For both of them, the red line fits black train data very well. But the increase of cases after 25 May is soaring, which is far away from the fitted line. To some extend, the Figure 2 denotes the lack of predictivity beause the lack of data when we built the model.

Figure 2. UK and US fitted and predicted values

In third kind country, who breakout reported at early Jan, their growths are very similar to each other. Old problem of fitted model re-appears that it estimates both of them already reached the end of spreading. But in fact both of them is undering increase cases after May 25. But the increase of cases is much slighter than UK and US. And the increase in China after 25 May is more flat given 1) it may already enters the stable part, which means the increase slows and 2) the interventions China takes may paly an important role.

Figure 3. China and South Korea fitted and predicted values