Organization and Function of the Nervous System

Peripheral
Nervous System (PNS)
Somatic Autonomic

Central
Nervous System (CNS)
Brain Spinal Cord

Peripheral Nervous System (PNS)

Somatic: Nerves connecting to voluntary skeletal muscles and sensory receptors

- Afferent Nerve Fibers (incoming): Axons that carry info away from the periphery to the CNS
- **Efferent Nerve Fibers (outgoing)**: Axons that carry info from the CNS outward to the periphery

Autonomic: Nerves that connect to the heart, blood vessels, smooth muscles, and glands

Central Nervous System (CNS)

CNS = Spinal Cord + Brain

Spinal Cord

- Local feedback loops control reflexes ("reflex arcs")
- Descending motor control signals from the brain activate spinal motor neurons
- Ascending sensory axons convey sensory information from muscles and skin back to the brain

CNS = Spinal Cord + **Brain**

Major Brain Regions: The Hindbrain

Medulla Oblongata

Controls breathing, muscle tone and blood pressure

Pons

Connected to the cerebellum & involved in sleep and arousal

Cerebellum
Coordination and timing of voluntary movements, sense of equilibrium, language, attention,...

Major Brain Regions: Midbrain & Retic. Formation

Midbrain

Eye movements, visual and auditory reflexes

Reticular Formation

Modulates muscle reflexes, breathing & pain perception. Also regulates sleep, wakefulness & arousal

Major Brain Regions: Thalamus & Hypothalamus

Thalamus

"Relay station" for all sensory info (except smell) to the cortex, regulates sleep/wakefulness

Hypothalamus

Regulates basic needs
Fighting, Fleeing,
Feeding, and
Mating

Major Brain Regions: The Cerebrum

Consists of: <u>Cerebral</u>
 <u>cortex</u>, <u>basal ganglia</u>,
 <u>hippocampus</u>, and
 <u>amygdala</u>

♣ Involved in perception and motor control, cognitive functions, emotion, memory, and learning

Cerebral Cortex: A Layered Sheet of Neurons

- **♦** Cerebral Cortex: Convoluted surface of cerebrum, about 1/8th of an inch thick
 - Approximately 30 billion neurons
 - Each neuron makes about 10,000 synapses, approximately 300 trillion connections in total
- → Six layers of neurons
 - Relatively uniform in structure
 - Is there a common computational principle operating across cortex?

How do all of these brain regions interact to produce cognition and behavior?

Don't know fully yet!

But inching closer based on:

- electrophysiological,
- optical,
- molecular,
- functional imaging,
- psychophysical,
- anatomical
- connectomic
- lesion (brain damage) studies...

Neural versus Digital Computing

♦ Device count:

- \Rightarrow Human Brain: 10^{11} neurons (each neuron $\sim 10^4$ connections)
- \Rightarrow Silicon Chip: 10^{10} transistors with sparse connectivity

→ Device speed:

- ⇒ Biology has 100µs temporal resolution
- ⇒ Digital circuits are approaching a 100ps clock (10 GHz)

♦ Computing paradigm:

- ⇒ Brain: Massively parallel computation & adaptive connectivity
- ⇒ Digital Computers: sequential information processing via CPUs with fixed connectivity

→ Capabilities:

- Digital computers excel in math & symbol processing...
- ⇒ Brains: Better at solving ill-posed problems (speech, vision)

Conclusions and Summary

- → Structure and organization of the brain suggests computational analogies

 - Primary computing elements: Neurons
 - Computational basis: Currently unknown
- ❖ In this course, we will try to understand computation in the brain through:
 - Descriptive models
 - ⇒ Mechanistic models
 - ❖ Interpretive models

Computational Neuroscience

