

Exercise 2K

Question 11:

Putting (a - b) = x, (b - c) = y and (c - a) = z, we get, $(a - b)^3 + (b - c)^3 + (c - a)^3$ $= x^3 + y^3 + z^3$, where (x + y + z) = (a - b) + (b - c) + (c - a) = 0 = 3xyz [Since $(x + y + z) = 0 \Rightarrow (x^3 + y^3 + z^3) = 3xyz$] = 3(a - b) (b - c) (c - a).

Question 12:

We have:

$$(3a - 2b) + (2b - 5c) + (5c - 3a) = 0$$

So, $(3a - 2b)^3 + (2b - 5c)^3 + (5c - 3a)^3$
= $3(3a - 2b) (2b - 5c) (5c - 3a)$.

Question 13:

$$a^{3} (b - c)^{3} + b^{3} (c - a)^{3} + c^{3} (a - b)^{3}$$
= $[a (b - c)]^{3} + [b (c - a)]^{3} + [c (a - b)]^{3}$
Now, since, $a (b - c) + b (c - a) + c (a - b)$
= $ab - ac + bc - ba + ca - bc = 0$
So, $a^{3} (b - c)^{3} + b^{3} (c - a)^{3} + c^{3} (a - b)^{3}$
= $3a (b - c) b (c - a) c (a - b)$
= $3abc (a - b) (b - c) (c - a)$.

Question 14:

$$(5a - 7b)^3 + (9c - 5a)^3 + (7b - 9c)^3$$

Since, $(5a - 7b) + (9c - 5a) + (7b - 9c)$
= $5a - 7b + 9c - 5a + 7b - 9c = 0$
So, $(5a - 7b)^3 + (9c - 5a)^3 + (7b - 9c)^3$
= $3(5a - 7b)(9c - 5a)(7b - 9c)$.

********* END ********