

ETR0308 008

High Speed LDO Regulators, Low ESR Cap. Compatible, Ultra Small Package

GENERAL DESCRIPTION

The XC6213 series is a highly precise positive voltage LDO regulator with low noise manufactured using CMOS process. The series achieves high ripple rejection and low dropout and consists of a voltage reference, an error amplifier, a current limiter and a phase compensation circuit plus a driver transistor. Output voltage is selectable in 0.05V increments within a range of 1.2V to 5.0V. The series is also compatible with low ESR ceramic capacitors, which give output stability. The current limiter's foldback circuit also operates as a short circuit protection for the output pin. The CE function enables the output to be turned off, resulting in greatly reduced power consumption. Ultra small package SSOT-24, SOT-25, USPN-4 and USP-4 are available.

APPLICATIONS

Smart phones / Mobile phones

Portable game consoles

DSC / Camcorders

Digital audio equipments

Mobile devices / terminals

FEATURES

Maximum Output Current : 150mA @ Vout=3.0V, VIN=4.0V

Dropout Voltage : 400mV @ IOUT = 100mA

Input Voltage Range : 2.0 ~ 6.0V

Output Voltage Range : 1.2 ~ 5.0V (0.05V Increments)

Highly Accurate : $\pm 2\%$

Packages : SSOT-24

SOT-25 USP-4 USPN-4

Environmentally Friendly : EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT

SSOT-24 package

TYPICAL PERFORMANCE CHARACTERI STICS

Ripple Rejection Rate vs. Ripple Frequency

PIN CONFIGURATION

*The dissipation pad for the USP-4 package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the Vss (No. 2) pin

PIN ASSIGNMENT

	PIN NU	JMBER	PIN NAME	FUNCTION	
SOT-25	SSOT-24	USP-4	USPN-4	PIN NAIVIE	FUNCTION
1	4	4	4	VIN	Power Supply
2	2	2	2	VSS	Ground
3	1	3	3	CE	On / Off Switch
4	-	1	-	NC	No Connection
5	3	1	1	VOUT	Output

PRODUCT CLASSIFICATION

Ordering Information

XC6213 - (*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
	Type of Regulator	В	High Active with no pull-down resistor (standard)
	Output Voltage	12~50	Output Voltage: ex.) 3.0V =3, = 0
	Output Voltage	2	0.1V increments, ± 2% accuracy ex.) 2.80V =2, = 8, = 2
	Accuracy	Α	0.05V increments, ± 2% accuracy ex.) 2.85V =2, = 8, = A
		MR	SOT-25 (3,000/Reel)
		MR-G	SOT-25 (3,000/Reel)
	Dealters	NR	SSOT-24 (3,000/Reel)
-	Package	NR-G	SSOT-24 (3,000/Reel)
	(Oder Unit)	GR	USP-4 (3,000/Reel)
		GR-G	USP-4 (3,000/Reel)
		7 R-G	USPN-4 (5,000/Reel)

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully EU RoHS compliant.

BLOCK DIAGRAM

^{*}Diode inside the circuit is a protection diode.

ABSOLUTE MAXIMUM RATINGS

Ta = 25

PARAMETER		SYMBOL	RATINGS	UNITS
Input Vo	ltage	Vin	Vss - 0.3 ~ 7.0	V
Output C	urrent	lout	500 (*1)	mA
Output Vo	oltage	Vout	Vss - 0.3 ~ Vin + 0.3	V
CE Input \	/oltage	VCE	Vss – 0.3 ~ 7.0	V
	SOT-25		250	
	301-25		600(PCB mounted)(*2)	
	SSOT-24		150	
Dower Dissinction		Pd	500(PCB mounted)(*2)	mW
Power Dissipation	USP-4	Pu	120	HIVV
	USP-4		1000(PCB mounted)(*2)	
	LICON 4		100	
	USPN-4		600(PCB mounted)(*2)	
Operating Ambien	t Temperature	Topr	- 40 ~ + 85	
Storage Temper	ature Range	Tstg	- 55 ~ + 125	

^{*1:} IOUT=Pd/(VIN-VOUT)

^{*2:} The power dissipation figure shown is PCB mounted. Please refer to pages 29 to 32 for details.

ELECTRICAL CHARACTERISTICS

XC6213B series Ta=25

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUITS
Output Voltage	Vout(E)	IOUT=30mA, CE=VIN	Vout(t) x 0.98	Vout(t)	Vout(t) x 1.02	V	
		VIN=VOUT(T)+1.0V, VOUT(T)=1.20~1.45V, CE=VIN	100	-	-		
Maximum Output Current	IOUTMAX	VIN=VOUT(T)+1.0V, VOUT(T)=1.50~2.95V, CE=VIN	120	-	ı	mA	
Maximum Output Current	TOOTMAX	VIN=VOUT(T)+1.0V, VOUT(T)=3.00~4.05V, CE=VIN	150	-	-	IIIA	
		VIN=VOUT(T)+1.0V, VOUT(T)=4.10~5.00V, CE=VIN	200	1	ı		
Load Regulation	Vout	VIN=VOUT(T)+1.0V, 1mA lout 100mA, CE=VIN	ī	15	50	mV	
5	Vdif1	IOUT = 30mA, CE=VIN	= 30mA, CE=VIN E-1		mV		
Dropout Voltage	Vdif2	IOUT=100mA, CE=VIN		E-2			
Supply Current	Iss	VIN=VOUT(T)+1.0V, CE=VIN	25	35	50	μА	
Stand-by Current	Istby	VIN=VOUT(T)+1.0V ~ 6.0V, CE=Vss	-	0.01	0.10	μА	
Line Regulation	Vout Vin · Vout	Vout(t)+1.0V VIN 6V Iout=30mA, CE=VIN	1	0.01	0.20	%/V	
Input Voltage	Vin	-	2.0	-	6.0	V	-
Output Voltage Temperature Characteristics	Vout Topr · Vout	Iout=30mA, CE=VIN - 40 Topr 85	-	± 100	-	ppm/	
Ripple Rejection Rate	PSRR	VIN=[VOUT(T)+1.0 V] +0.5Vp-pAC IOUT=50mA, f=10kHz, CE=VIN	-	60	-	dB	
Short Circuit Current	Ishort	VIN=VOUT(T) + 1.0V, CE=VIN	-	50	-	mA	
CE 'H' Level Voltage	VCEH	-	1.3	ı	6.0	V	
CE 'L' Level Voltage	VCEL	-	-	-	0.25	V	
CE 'H' Level Current	Ісен	VCE = VIN=VOUT(T) + 1.0V	- 0.1	-	0.1	μΑ	
CE 'L' Level Current	ICEL	VIN=VOUT(T) +1.0V, VCE =VSS	- 0.1	1	0.1	μA	

NOTE:

- *1: VOUT(T): Setting output voltage
- *2: Vout(E) = Effective output voltage
 (i.e. the output voltage when "Vout (T) + 1.0V" is provided at the VIN pin while maintaining a certain lout value).
- *3: Vdif = { VIN1 (*5) VOUT1 (*4)}
- *4: Vout1 = A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT { Vout(T) + 1.0V } is input.
- *5: VIN1 = The input voltage when Vout1 appears as input voltage is gradually decreased.
- *6: Unless otherwise stated, (VIN = VOUT(T) + 1.0V).
- *7: $Vout(t) \le 1.45V$ = Minimum: Vout(t) 30mV, Maximum: Vout(t) + 30mV

ELECTRICAL CHARACTERISTICS (Continued)

Dropout Voltage Chart

Ta=25°C

						Ta=25°C	
SYMBOL		-0	E	-1	E-2		
SETTING	OUTPUT VOLTAGE		DROPOUT VOLTAGE 1		DROPTOUT VOLTAGE 2		
VOLTAGE	(V)		IOUT=30mA (mV)		IOUT=100mA (mV)		
	Vo	OUT	Vdif1	Vdif1	Vdif2	Vdif2	
Vout(t)	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
1.20	1.170	1.230	760	800	850	1000	
1.25	1.220	1.280	760	800	850	1000	
1.30	1.270	1.330	660	700	810	960	
1.35	1.320	1.380	660	700	810	960	
1.40	1.370	1.430	560	600	770	920	
1.45	1.420	1.480	560	600	770	920	
1.50	1.470	1.530	460	500	730	880	
1.55	1.519	1.581	460	500	730	880	
1.60	1.568	1.632	360	400	690	840	
1.65	1.617	1.683	360	400	690	840	
1.70	1.666	1.734	260	300	650	800	
1.75	1.715	1.785	260	300	650	800	
1.73	1.764	1.836	200	240	600	750	
1.85	1.813	1.887	200	240	600	750	
1.90	1.862	1.938	200	240	600	750	
1.95	1.002	1.936	200	240	600	750	
			1				
2.00	1.960	2.040	190	230	530	670	
2.05	2.009	2.091	190	230	530	670	
2.10	2.058	2.142	190	230	530	670	
2.15	2.107	2.193	190	230	530	670	
2.20	2.156	2.244	190	230	530	670	
2.25	2.205	2.295	190	230	530	670	
2.30	2.254	2.346	190	230	530	670	
2.35	2.303	2.397	190	230	530	670	
2.40	2.352	2.448	190	230	530	670	
2.45	2.401	2.499	190	230	530	670	
2.50	2.450	2.550	180	210	470	580	
2.55	2.499	2.601	180	210	470	580	
2.60	2.548	2.652	180	210	470	580	
2.65	2.597	2.703	180	210	470	580	
2.70	2.646	2.754	180	210	470	580	
2.75	2.695	2.805	180	210	470	580	
2.80	2.744	2.856	180	210	470	580	
2.85	2.793	2.907	180	210	470	580	
2.90	2.842	2.958	180	210	470	580	
2.95	2.891	3.009	180	210	470	580	
3.00	2.940	3.060	150	180	400	500	
3.05	2.989	3.111	150	180	400	500	
3.10	3.038	3.162	150	180	400	500	
3.15	3.087	3.213	150	180	400	500	
3.20	3.136	3.264	150	180	400	500	
3.25	3.185	3.315	150	180	400	500	
3.30	3.234	3.366	150	180	400	500	
3.35	2.283	3.417	150	180	400	500	
3.40	2.332	3.468	150	180	400	500	
3.45	3.381	3.519	150	180	400	500	

ELECTRICAL CHARACTERISTICS (Continued)

Dropout Voltage Chart (Continued)

Ta=25°C

	ı					1a=25 C
SYMBOL	E-0		E-1		E	-2
SETTING	OUTPUT VOLTAGE		DROPOUT VOLTAGE 1		DROPTOUT VOLTAGE 2	
VOLTAGE	(V)		IOUT=30mA (mV)		IOUT=100mA (mV)	
.,	Vo	DUT	Vdif1	Vdif1	Vdif2	Vdif2
Vout(t)	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.
3.50	3.430	3.570	140	170	350	450
3.55	3.479	3.621	140	170	350	450
3.60	3.528	3.672	140	170	350	450
3.65	3.577	3.723	140	170	350	450
3.70	3.626	3.774	140	170	350	450
3.75	3.675	3.825	140	170	350	450
3.80	3.724	3.876	140	170	350	450
3.85	3.773	3.927	140	170	350	450
3.90	3.822	3.978	140	170	350	450
3.95	3.871	4.029	140	170	350	450
4.00	3.920	4.080	130	160	320	420
4.05	3.969	4.131	130	160	320	420
4.10	4.018	4.182	130	160	320	420
4.15	4.067	4.233	130	160	320	420
4.20	4.116	4.284	130	160	320	420
4.25	4.165	4.335	130	160	320	420
4.30	4.214	4.386	130	160	320	420
4.35	4.263	4.437	130	160	320	420
4.40	4.312	4.488	130	160	320	420
4.45	4.361	4.539	130	160	320	420
4.50	4.410	4.590	120	150	300	400
4.55	4.459	4.641	120	150	300	400
4.60	4.508	4.692	120	150	300	400
4.65	4.557	4.743	120	150	300	400
4.70	4.606	4.794	120	150	300	400
4.75	4.655	4.845	120	150	300	400
4.80	4.704	7.896	120	150	300	400
4.85	4.753	4.947	120	150	300	400
4.90	4.802	4.998	120	150	300	400
4.95	4.851	5.049	120	150	300	400
5.00	4.900	5.100	120	150	300	400

TEST CIRCUITS

Circuit

Circuit

Circuit

OPERATIONAL EXPLANATION

<Output Voltage Regulator Control>

The voltage, divided by resistors R1 & R2, which are connected to the Vout pin is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the Vout pin is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled & stabilized by negative feedback. The current limit circuit and short circuit protection operate in relation to the level of output current. Further, the voltage regulator's internal circuitry can be shutdown via the CE pin's signal.

<Low ESR Capacitor>

With the XC6213 series regulator, a stable output voltage is achievable even if low ESR capacitors are used, as a phase compensation circuit is built-in to the regulator. In order to ensure the effectiveness of the phase compensation, please connect an output capacitor (CL) with a capacitance, based on the chart below. The equivalent serial resistor (ESR) of the output capacitor (ESR) should be within the range as the graph below shown. We also suggest an input capacitor (ESR) of 1.0 ESR1 this should be connected between ESR2 in order to stabilize input power source.

Output Capacitor Corresponding Chart

SETTING VOLTAGE	1.2 ~ 1.75V	1.8 ~ 5.0V
CL	More than 3.3 µ F	More than 1.0 μ F

<Short-Circuit Protection>

The XC6213 series regulator offers circuit protection by means of a built-in foldback circuit. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, the output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal regulator circuitry can be shut down via the signal from the CE pin with the XC6213 series. In shutdown mode, output at the Vout pin will be pulled down to the Vss level. Note that as the XC6213B types are 'High Active / No Pull-Down', operations will become unstable with the CE pin open. We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a voltage other than VIN or Vss is applied.

<Minimum Operating Voltage>

Please apply input voltage more than 2.0V or more in order to stabilize the operation of the IC's. Normal output voltage may not be obtained when the input voltage is lower than 2.0V.

NOTES ON USE

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible. Should rapid input fluctuation or load fluctuation occur, please increase the capacitor value such as C_{IN} or CL to stabilize the operation.
- 4. Make sure not to use the IC with large current at high temperature. When exceeding power dissipation of a package, heat occurs before short protection operates, and the IC may break.

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

3.0

3

Input Voltage: VIN (V)

6

(3) Dropout Voltage vs. Output Current

0.2

0.0

50

200

150 Output Current: IOUT (mA) 250

(4) Supply Current vs. Input Voltage

0 L

1

3

Input Voltage: VIN (V)

4

5

6

(5) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

(8) Input Transient Response

XC6213 B122

XC6213 B152

XC6213 B182

XC6213 B122

XC6213 B152

XC6213 B182

(8) Input Transient Response (continued)

(9) Load Transient Response

XC6213 B122

XC6213 B122

Time (100 µ s/div)

XC6213 B152

XC6213 B152

XC6213 B182

XC6213 B182

(9) Load Transient Response (Continued)

(10) Turn-On Response

XC6213 B122

XC6213 B152

XC6213 B182

XC6213 B122

XC6213 B152

Ta=25 , IOUT=30mA, tr=tf=5 μ s, VIN=VCE=0 2.5V, CL=3.3 µ F (ceramic)

XC6213 B182

Ta=25 , IOUT=30mA, tr=tf=5 μ s,

(10) Turn-On Response (Continued)

(11) Enable Response

XC6213 B122

XC6213 B152

XC6213 B182

XC6213 B122

XC6213 B152

XC6213 B182

(11) Enable Response (Continued)

(12) Ripple Rejection Rate

XC6213 B122

XC6213 B152

Ripple Frequency: f (kHz)

XC6213 B182

XC6213 B302

XC6213 B502

PACKAGING INFORMATION

SOT-25

SSOT-24

USP-4

(0. 6) 1. 0±0. 05

0.6

(Unit: mm)

Reference Pattern Layout

PACKAGING INFORMATION (Continued)

Reference pattern Layout

Reference metal mask design

MARKING RULE

SOT-25 & USP-4

USP-4 (TOP VIEW)

represents product series

MARK	PRODUCT SERIES		
С	XC6213xxxxxx		

represents type of regulator

	MA			
VOLTAGE	VOLTAGE	VOLTAGE	VOLTAGE	PRODUCT SERIES
=0.1~3.0V	=3.1~6.0V	=0.15~3.05V	=3.15~6.05V	
X	В	F	М	XC6213xxxxxx

represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)			GE (V)	
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	-	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	-	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	ı	3.5	-	3.55	М	2.0	5.0	2.05	1
5	1	3.6	-	3.65	N	2.1	-	2.15	1
6	ı	3.7	-	3.75	Р	2.2	-	2.25	ı
7	ı	3.8	-	3.85	R	2.3	-	2.35	1
8	1	3.9	-	3.95	S	2.4	-	2.45	1
9	ı	4.0	-	4.05	T	2.5	-	2.55	1
Α	-	4.1	-	4.15	U	2.6	-	2.65	-
В	1.2	4.2	1.25	4.25	V	2.7	-	2.75	1
С	1.3	4.3	1.35	4.35	Х	2.8	-	2.85	-
D	1.4	4.4	1.45	4.45	Y	2.9	-	2.95	-
Е	1.5	4.5	1.55	4.55	Z	3.0	-	3.05	-

represents production lot number

0 to 9, to Z reverse character 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

SSOT-24

represents integer of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6213B3xxNx
5	5.X	XC6213B5xxNx

represents decimal point of output voltage

•		•			
MARK	VOLTAGE	PRODUCT SERIES	MARK	VOLTAGE	PRODUCT
WARK	(V)	PRODUCT SERIES	IVIANN	(V)	SERIES
0	X.0	XC6213Bx0xNx	Α	X.05	XC6213Bx0ANx
1	X.1	XC6213Bx1xNx	В	X.15	XC6213Bx1ANx
2	X.2	XC6213Bx2xNx	С	X.25	XC6213Bx2ANx
3	X.3	XC6213Bx3xNx	D	X.35	XC6213Bx3ANx
4	X.4	XC6213Bx4xNx	E	X.45	XC6213Bx4ANx
5	X.5	XC6213Bx5xNx	F	X.55	XC6213Bx5ANx
6	X.6	XC6213Bx6xNx	Н	X.65	XC6213Bx6ANx
7	X.7	XC6213Bx7xNx	K	X.75	XC6213Bx7ANx
8	X.8	XC6213Bx8xNx	Ĺ	X.85	XC6213Bx8ANx
9	X.9	XC6213Bx9xNx	M	X.95	XC6213Bx9ANx

represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded). Note: No character inversion used.

MARKING RULE (Continued)

USPN-4

represents product series

MARK	PRODUCT SERIES
С	XC6213xxxxxx

represents type of regulator

MARK				
VOLTAGE	VOLTAGE	VOLTAGE	VOLTAGE	PRODUCT SERIES
=0.1~3.0V	=3.1~6.0V	=0.15~3.05V	=3.15~6.05V	
X	В	F	М	XC6213Bxxxxx

represents output voltage

MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)			GE (V)		
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	-	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	-	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	-	3.55	М	2.0	5.0	2.05	-
5	-	3.6	-	3.65	N	2.1	-	2.15	1
6	-	3.7	-	3.75	Р	2.2	-	2.25	-
7	-	3.8	-	3.85	R	2.3	-	2.35	1
8	-	3.9	-	3.95	S	2.4	-	2.45	1
9	-	4.0	-	4.05	Т	2.5	-	2.55	-
Α	-	4.1	-	4.15	U	2.6	-	2.65	-
В	1.2	4.2	1.25	4.25	V	2.7	-	2.75	1
С	1.3	4.3	1.35	4.35	Х	2.8	-	2.85	-
D	1.4	4.4	1.45	4.45	Υ	2.9	-	2.95	-
Е	1.5	4.5	1.55	4.55	Z	3.0	-	3.05	-

represents production lot number

01 to 09, 0A to 0Z 11 to 9Z, A1 to A9, AA to Z9,ZA to ZZ repeated (G, I, J, O, Q, W excluded). Note: No character inversion used.

SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature()	Power Dissipation Pd (mW)	Thermal Resistance (/W)
25	600	166.67
85	240	100.07

XC6213 Series

SSOT-24 Power Dissipation

Power dissipation data for the SSOT-24 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature ()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	500	200.00
85	200	200.00

USP-4 Power Dissipation

Power dissipation data for the USP-4 is shown in this page.

The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described

condition.

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature ()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	1000	100.00
85	400	100.00

XC6213 Series

USPN-4 Power Dissipation

Power dissipation data for the USPN-4 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1.Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the front and 50%

of the back.

The copper area is divided into four block,

one block is 12.5% of total.

The USPN-4 package has for terminals.

Each terminal connects one copper block in the front and

one in the back.

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature ()	Power Dissipation Pd (mW)	Thermal Resistance (/W)
25	600	166.67
85	240	100.07

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.