Evaluating Performance I

Linear Regression

Logistic Regression

Linear Regression

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i$$

Resulting output $\hat{f}(x)$

Model

Estimate of the target variable

Range of
$$\hat{f}(x)$$
 $-\infty < \hat{f}(x) < \infty$

Logistic Regression

$$\hat{f}(\mathbf{x}) = \sigma\left(\sum_{i=0}^{p} w_i x_i\right)$$

Probability of the target being Class 1

$$0 < \hat{f}(x) < 1$$

KNN Classification

$$\frac{\# \bullet}{k} \to \hat{f}(x)$$

Fraction of Class 1 neighbors

$$0 < \hat{f}(x) < 1$$
 $\hat{f}(x) \in \left[0, \frac{1}{k}, \frac{2}{k}, \dots, \frac{k-1}{k}, 1\right]$

Note these are **NOT** binary predictions!

To create binary predictions, we need to threshold these values (apply a decision rule) These are confidence scores (which we may interpret as class probabilities)

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Missing data

- Noisy data
- Erroneous data

Data Cleaning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Feature Extraction

Dimensionality reduction eliminates redundant information

Model training

Select models (hypotheses)

Select model options that may fit the data well. We'll call them "hypotheses".

Fit the model to training data

Pick the "best" hypothesis function of the options by choosing model parameters Iteratively fine tune the model

Performance evaluation

Make a prediction on validation data

Metrics

Classification

Precision, Recall, F₁, ROC Curves (Binary), Confusion Matrices (Multiclass)

Regression

MSE, explained variance, R²

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Scaling (Standardization)

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Model training

Select models (hypotheses)

Fit the model to training data

Performance evaluation

> Make a prediction on validation data

Metrics

Classification

Precision, Recall, F₁, **ROC Curves** (Binary), **Confusion Matrices** (Multiclass)

Regression

MSE, explained variance, R²

Performance evaluation overview

Metrics

(regression/classification metrics, ROC curves)

Quantify model performance

Data resampling techniques

(Train/validation/test splits and cross validation)

Fairly evaluate generalization performance

Today

Next Class

Modeling Considerations

Accuracy

Computational Efficiency

Interpretability

Accuracy

Supervised Learning Performance Evaluation

Regression

Classification

Binary

Multiclass

Receiver Operating Characteristic (ROC) curves

Confusion matrices

- Mean squared error (MSE)
- Mean absolute error (MAE)
- R², coefficient of determination

Common Metrics

- Classification accuracy
- True positive rate
- False positive rate
- Precision
- F₁ Score
- Area under the ROC curve (AUC)

- Classification accuracy
- Micro-averaged F₁ Score
- Macro-averaged F₁ Score

Regression: Mean Squared Error

The mean squared error (MSE)

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Absolute measure of performance

One of the most widely used loss / cost functions

(when in doubt - use this!)

Regression: Mean Absolute Error

The mean absolute error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Absolute measure of performance Penalizes large errors less than MSE (can be more robust to outliers)

Regression: R² Coefficient of determination

Proportion of the response variable variation explained by the model

Residual sum of squares (variation in the residuals)

$$SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Total sum of squares (variation in the data)

$$SS_{tot} = \sum_{i=1}^{N} (y_i - \bar{y})^2$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

R-squared

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Relative measure of performance

Regression: R² Coefficient of determination

Essentially compares performance to a model that predicts the mean of the target variable

Relative measure of performance (relative to the mean)

Total sum of squares (variation in the data)

$$SS_{tot} = \sum_{i=1}^{N} (y_i - \bar{y})^2$$
 $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$ $SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

Residual sum of squares (variation in the residuals)

$$SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

R-squared

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Regression: R² can be negative

Essentially compares performance to a model that predicts the mean of the target variable

R-squared can be negative if the model is worse than just guessing the mean

Total sum of squares (variation in the data)

$$SS_{tot} = \sum_{i=1}^{N} (y_i - \bar{y})^2$$
 $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$ $SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

Residual sum of squares (variation in the residuals)

$$SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

R-squared

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Binary Classification

KNN Classification

Fraction of Class 1 neighbors

You input your training data into your KNN model

2 of the 3 nearest neighbors are Class 1, so we predict the class to be Class 1

What do we do if our training labels match that class? What if they don't?

Types of classification error

False Positive (Type I error)

False Negative (Type II error)

Image from: Ellis. *The Essential Guide to Effect Sizes*

Binary Classification

Class, y

Binary Classification Predicted Class, \hat{y}

True positive rate Probability of detection, p_D Sensitivity Recall

How many targets (Class 1) were correctly classified as targets?

Binary Classification

Predicted Class, \hat{y}

False positive rate Probability of false alarm, p_{FA}

How many non-targets (Class 0) were incorrectly classified as targets?

Binary Classification

Predicted Class, \hat{y}

Precision

true positive

true positive

+ false positive

How many of the predicted targets are targets?

True Class Label (y)	Classifier Confidence
1	1.40
1	0.95
0	0.80
1	0.60
0	-0.10

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
?	1	1.40
?	1	0.95
?	0	0.80
?	1	0.60
?	0	-0.10

$$= \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
?	1	1.40
?	1	0.95
?	0	0.80
?	1	0.60
?	0	-0.10

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
?	1	1.40
?	1	0.95
?	0	0.80
?	1	0.60
?	0	-0.10

 $= \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
?	1	1.40
?	1	0.95
?	0	0.80
?	1	0.60
?	0	-0.10

$$\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-----------	---------------------	--------------------------	----------------------	---------------------------

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
?	1	1.40
?	1	0.95
?	0	0.80
?	1	0.60
?	0	-0.10

$$\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-----------	---------------------	--------------------------	----------------------	---------------------------

True Class Label (y)	Classifier Confidence
1	1.40
1	0.95
0	0.80
1	0.60
0	-0.10

ROC Curves

1. confidence score > thre

$$= \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-----------	---------------------	--------------------------	----------------------	---------------------------

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
() /	() /	
0	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

	Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-	∞	0	0	0	0

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

 $\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

Total Positives = 3

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
8	0	0	0	0
1.0	1	0.333	0	0

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

ROC Curves

$$\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Total Positives = 3

	Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
	∞	0	0	0	0
	1.0	1	0.333	0	0
_	0.9	2	0.667	0	0

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
0	1	0.60
0	0	-0.10

 $= \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

Total Positives = 3

Total Negatives = 2

	Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
	∞	0	0	0	0
	1.0	1	0.333	0	0
	0.9	2	0.667	0	0
_	0.7	2	0.667	1	0.5

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
0	0	-0.10

 $\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

ROC Curves

Total Positives = 3

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
∞	0	0	0	0
1.0	1	0.333	0	0
0.9	2	0.667	0	0
0.7	2	0.667	1	0.5
0.0	3	1	1	0.5

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
1	0	-0.10

ROC Curves

 $\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

Total Positives = 3

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
8	0	0	0	0
1.0	1	0.333	0	0
0.9	2	0.667	0	0
0.7	2	0.667	1	0.5
0.0	3	1	1	0.5
$-\infty$	3	1	2	1

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
1	0	-0.10

$$\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

ROC Curves

$$AUC = \left(\frac{2}{3}\right)\left(\frac{1}{2}\right) + (1)\left(\frac{1}{2}\right) = \frac{5}{6} \approx 0.833$$

Total Positives = 3

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
∞	0	0	0	0
1.0	1	0.333	0	0
0.9	2	0.667	0	0
0.7	2	0.667	1	0.5
0.0	3	1	1	0.5
$-\infty$	3	1	2	1

ROC Curves: how do they compare?

The model represented by this ROC curve is the most discriminative (but usually predicts incorrectly)

ROC Curves: where do we operate?

What does it mean to operate at a point on this curve?

True Class Label (y)	Classifier Confidence
1	1.40
1	0.95
0	0.80
1	0.60
0	-0.10

PR Curves

$$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$$

Total Positives = 3

Total Negatives = 2

Threshold	# True	Recall	# Predicted	Precision
11116211010	Positives	necali	Positive	FIECISION

PR Curves

positive

Total Positives = 3

Total Negatives = 2

Threshold	# True Positives	Recall	# Predicted Positive	Precision
8	0	0	0	undefined

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
0	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{thresh} \\ 0, \text{ confidence score} \le \text{thresh} \end{cases}$

true

positive

false positive

Total Positives = 3

Total Negatives = 2

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

Threshold	# True Positives	Recall	# Predicted Positive	Precision
∞	0	0	0	undefined
1.0	1	0.333	1	1

0

Classifier decision rule:

$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{thresh} \\ 0, \text{ confidence score} \le \text{thresh} \end{cases}$

PR Curves

Precision

undefined

Total Positives = 3

Total Negatives = 2

Recall		Threshold	# True	Recall	# Predicted		
Estimate	True Class	Classifier		11116311010	Positives	Hecan	Positive
(ŷ)	Label (y)	Confidence		∞	0	0	0
1	1	1.40		1.0	4	0.000	4
1	1	0.95		1.0	I	0.333	I
•	ı		←	0.9	2	0.667	2
0	0	0.80	•				
0	1	0.60					

-0.10

$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$

PR Curves

Total Positives = 3

Total Negatives = 2

	Reca	all	Threshold	# True	Recall	# Predicted	Precision
Estimate	True Class	Classifier	mesnoid	Positives	necali	Positive	FIECISION
(ŷ)	Label (y)	Confidence	8	0	0	0	undefined
1	1	1.40	1.0	1	0.333	1	1
1	1	0.95	0.9	2	0.667	2	1
1	0	0.80	0.3	2		2	0.007
0	1	0.60	U.7	2	0.667	3	0.667

-0.10

$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$

PR Curves

Total Positives = 3

Total Negatives = 2

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
0	0	-0.10

Threshold	# True Positives	Recall	# Predicted Positive	Precision
∞	0	0	0	undefined
1.0	1	0.333	1	1
0.9	2	0.667	2	1
0.7	2	0.667	3	0.667
0.0	3	1	4	0.75

$\begin{cases} 1, \text{ confidence score} > \text{thresh} \\ 0, \text{ confidence score} \leq \text{thresh} \end{cases}$

PR Curves

true

positive

Total Positives = 3

Total Negatives = 2

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
1	0	-0.10

Threshold	# True Positives	Recall	# Predicted Positive	Precision
∞	0	0	0	undefined
1.0	1	0.333	1	1
0.9	2	0.667	2	1
0.7	2	0.667	3	0.667
0.0	3	1	4	0.75
$-\infty$	3	1	5	0.6

Be wary of overall accuracy as sole metric

i	y_i	\widehat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	0
8	0	1
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study 1

true negative

.87

Overall classification accuracy = 13/15 = 0.87

ROC Curves measure the tradeoff between...

A False positive rate =

- 1/8 = 0.13
- B True positive rate (Recall) = 6/7 = 0.86

PR Curves measure the tradeoff between...

- B True positive rate (Recall) =
- 6/7 = 0.86

Precision=

$$6/7 = 0.86$$

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	0
4	1	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study 2

true negative

ROC Curves measure the tradeoff between...

Overall classification accuracy = 13/15 = 0.87

$$0/11 = 0$$

B True positive rate (Recall) =
$$2/4 = 0.5$$

PR Curves measure the tradeoff between...

B True positive rate (Recall) =
$$2/4 = 0.5$$

$$\mathbf{C}$$
 Precision= $2/2 = \mathbf{1}$

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1
10	1	1
11	1	1
12	1	1
13	1	1
14	0	1
15	0	1

Case study 3

false + true negative

Overall classification accuracy = 13/15 = 0.87

ROC Curves measure the tradeoff between...

A False positive rate =

- 2/2 = 1
- B True positive rate (Recall) = 13/13 = 1

B

PR Curves measure the tradeoff between...

- B True positive rate (Recall) =
- 13/13 = **1 C**

Multiclass Classification: Confusion Matrix

confusion matrix with number of samples

Multiclass Classification: Confusion Matrix

confusion matrix with number of samples

confusion matrix with probabilities

F₁-score

$$F_1 = 2 \frac{1}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$$

Harmonic mean of precision and recall

$$= 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Generally:

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}$$

 β controls the relative weight of precision/recall

Multiclass F₁

Micro-average: Calculate precision and recall metrics globally by counting the total true positives, false negatives, and false positives (average for the whole dataset)

Macro-average: Use the average precision and recall for each class label (average of class-averages)

Computational Efficiency

Measure of how an algorithm's run time (or space requirements) grow as the input size grows

Complexity of making predictions with kNN

(compare an unseen sample to the training samples)

Assume we have n = 10,000, p = 2

The Euclidean distance between $\begin{bmatrix} x_{1,1} \\ x_{1,2} \end{bmatrix}$ and $\begin{bmatrix} x_{2,1} \\ x_{2,2} \end{bmatrix}$ can be measured as:

$$\sqrt{\left(x_{2,1}-x_{1,1}\right)^2+\left(x_{2,1}-x_{1,1}\right)^2}$$

That's two (p) distinct sets of operations dependent on the data We repeat that n times – once for each sample in the training dataset

O(np)

Computational Efficiency

Training time efficiency?

Test time efficiency?

How do each change with the size of our data?

Interpretability

Transparency (can I tell how the model works)

- Simulatability: can I contemplate the whole model at once?
- Decomposability: is there an intuitive explanation for each part of the model? (e.g. all patients with diastolic blood pressure over 150)

Explainability (post-hoc explanations)

Visualization, local explanations, explanations by example

(e.g. this tumor is classified as malignant because to the model it looks a lot like these other tumors)

Lipton, Zachary C. "The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability Is Both Important and Slippery." Queue 16, no. 3 (2018): 31–57.

Recidivism prediction algorithm

Performance as good as a black box model with 130+ factors; might include socio-economic info; expensive (software license); within software used in US justice system

IF	age between 18-20 and sex is male	THEN predict arrest (within 2 years)
ELSE IF	age between 21–23 and 2–3 prior offences	THEN predict arrest
ELSE IF	more than three priors	THEN predict arrest
ELSE	predict no arrest	

Rudin, Cynthia. "Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead." Nature Machine Intelligence 1, no. 5 (2019): 206–15.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Model-Agnostic Interpretability of Machine Learning." ArXiv Preprint ArXiv:1606.05386, 2016.