X is non-singular if $\forall x \in X$, dim $\frac{m_x}{m_x} = \dim X$.

Ex. Homogeneous spaces.

Def. An action of an alg. group G on a variety X is a regular map as $G_1 \times X \longrightarrow X$ with the usual properties.

where MiGxG-> G is group law.

Def The action is transitive if the orbit of any \times is \times .

Def, X is homogeneous (forb) if G acts transitively on X.

Example. Cr :s homogeneous for Cr, ul jeft-action.
Never under conjugation.

Rmk. Homogeneous spaces are non-singular, since

spts. of a homogeneous space are "indistinguishable,"

since g sit. gix=y is an iso X ~ x x sending

x ~ y. So all points are sing, or none are.

However, any variety is non-singular at some

point.

Example. PGL(n+1, k) = GL(n+1)/k: is an affine algebraic group. Acts transitively on IPx.

RMK. The projective homogeneous spaces for linear alaphraic groups /k are the flag varieties.

Ex. G(m,n) $F((m_1,...,m_n,n))$ homog. sodo spaces

for PGL(n)

2Λ, c ... - c Λχ c κη?

dim Λ; = n; .

Rock. GxX - X homos. Then X = G/H,
H is stale of a point X.

For G=G(n),

= B=stalo ceus c(eoseis)

G/B = & M, , M. c. .. c M==== } Conh flag variety.

Rule. An action of Cr on X is Cr C Aut (X).

Prop. Ant (P") = PG(LINH, 1=).

Pf. g: Pio -> Pk ! by we saw that
g= LFo: Fn) to as not munt. vanish

Et F= Ea; y: won state ave _, plen metholines! gen(a;j). If deg F = d 11, 9 comms biss. (consider pecipr) de ex(IP") degree d. EX. P'->P' (x2,y2) look at affires. (x:1) -> (x2:1) kcy) ck(x) c -> K ~ ~ x2=4

Ex. Degueracy loci:

Mat n > Xn-1 > ... > X, = (0)

11 $k^{n^2} \cdot 2A = (a_{ij})^3$ $\times r = \frac{2}{3}A \cdot rk \cdot (A) \leq r^3$ $\times r = \frac{2}{3}A \cdot rk \cdot (A) \leq r^3$ $\times r = V \cdot (det(M_{r+1}) \cdot M_{r+1} \cdot r^3 \cdot an \cdot r^{+1})^3$ min or of $(x_{ij})^3$

Ex.
$$A(X_{n-1} = V(\Delta))$$
 $\Delta = \det(X_{ij})$
 $A = \pm X_{ij} \det(M_{ij})$
 $A = \pm X_{ij} \det(M_{ij})$

Similarly, $A = \pm \det(M_{ij})$.

Equations: $A = \pm \det(M_{rel})$
 $A = \pm X_{ij} \det(M_{rel})$
 $A = \pm X_{ij} \det(M_{rel})$
 $A = \pm X_{ij} \det(M_{rel})$
 $A = \pm \det($

A MIXATER : TT (N=<e1,...,en-r)) = } A= (A, A) \ Clear (A) }

Consider: TT (N=<e1,...,en-r)) = } A= (i) }