Data Mining Assignment 3

- 1) Read Chapter 6 (only sections 6.1 and 6.7).
- 2) Do Chapter 6 textbook problem #2 (parts a,b,c,d only) on page 404.

Customer ID	Transaction ID	Items Bought
1	0001	$\{a,d,e\}$
1	0024	$\{a,b,c,e\}$
2	0012	$\{a,b,d,e\}$
2	0031	$\{a, c, d, e\}$
3	0015	$\{b, c, e\}$
3	0022	$\{b,d,e\}$
4	0029	$\{c,d\}$
4	0040	$\{a,b,c\}$
5	0033	$\{a,d,e\}$
5	0038	$\{a,b,e\}$

Table 6.22. Example of market basket transactions.

(a) Compute the support for itemsets {e}, {b,d}, and {b,d,e} by treating each transaction ID as a market basket.

we have 10 distinct transactions,

$$\{e\}$$
: $s = 8/10 = 0.8$

$$\{b,d\}$$
: $s = 2/10 = 0.2$

$$\{b,d,e\}: s = 2/10 = 0.2$$

(b) Use the results in part (a) to compute the confidence for the association rules {b,d} ---, {e} and {"} -----+ {b,d}. Is confidence a symmetric measure?

Both the rules have support 0.2:

$$\{b,d\} \rightarrow \{e\}: c = .2/.2 = 1$$

$$\{e\}$$
--> $\{b,d\}$: $c = .2/.8 = 0.25$

(c) Repeat part (a) by treating each customer ID as a market basket. Each item should be treated as a binary variable (1 if an item appears in atleast one transaction bought by the customer, and 0 otherwise.)

Ans: we have 5 baskets in total.

$$\{e\}$$
: $s = \% = 0.8$

$$\{b,d\}$$
: $s = 5/5 = 1$

$$\{b,d,e\}$$
: $s = \% = 0.8$

(d) Use the results in part (c) to compute the confidence for the association rules $\{b, d\} \longrightarrow \{e\}$ and $\{e\} \longrightarrow \{b, d,\}$.

Ans:
$$\{b,d\} \rightarrow \{e\}$$
 : $c = 0.8 / 1 = 0.8$

$$\{e\} \rightarrow \{b,d\}$$
: c = 0.8 / 0.8 = 1

3) Do Chapter 6 textbook problem #6 (parts d,e only) on page 406.

Table 6.23. Market basket transactions.

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

Consider the market basket transactions shown in Table 6.23.

(d)Find an itemset (of size 2 or larger) that has the largest support.

Ans: Below are the itemsets with non-zero support count

Itemset	Support
cookies milk	1
bread cookies	1
milk	5
beer cookies	2
beer diapers	3
bread butter milk	3
bread butter cookies	1
beer milk	1
butter cookies	1
butter milk	3
butter	5
bread butter diapers milk	2

has add button	F
bread butter	5
bread	5
butter diapers milk	2
bread diapers	3
cookies	4
beer	4
butter diapers	3
diapers	7
diapers milk	4
beer cookies diapers	1
beer diapers milk	1
bread diapers milk	2
bread butter diapers	3
bread milk	3
cookies diapers milk	1
cookies diapers	2
Ø	10

From the above table, the itemset with larger support is {better,butter}.

(e) Find a pair of items, a and b, such that the rules {o} -, {b} and {b} -----> {a} have the same confidence.

Ans: Bread and butter have the same support (s = 5). This means that the rules $\{bread\} \rightarrow \{butter\}$ and $\{butter\} \rightarrow \{bread\}$ have the same confidence (c = 5/5 = 1). The same can be said with beer and cookies (s = 4, c = 2/4 = 0.5).

4) Using the data at www.stats202.com/more_stats202_logs.txt and treating each row as a "market basket" compute the support and confidence for the rule ip=65.57.245.11 → "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3".

State what the support and confidence values mean in plain English in this context.

Ans:

```
The rule for which we have to find the support and confidence is {65.57.245.11} -> {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}

Support for {65.57.245.11} = 5021 / 14803 = 0.33

Support for {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309

Firefox/2.0.0.3"} = 1619/14803 = 0.109

Confidence for rule {65.57.245.11} -> {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)}

Gecko/20070309 Firefox/2.0.0.3"}

= support count ({65.57.245.11, "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)}

Gecko/20070309 Firefox/2.0.0.3"}) / support count ({65.57.245.11})

= 1619 / 5021

= 0.32
```