# Aplicación de las ecuaciones diferenciales de primer orden

# Ejercicio

Un paracaidista con una masa de 68.1 kg salta de un globo aerostático fijo. Calcular la velocidad antes de que se abra el paracaídas. Considere que el coeficiente de arrastre es igual a 12.5 kg/s.



## Solución



## Solución



$$\frac{dv}{dt} = g - \frac{k}{m}v$$

#### Solución



$$v(t) = 53.44(1 - e^{-0.18355t})$$



#### Velocidad terminal



De acuerdo con el modelo, el paracaidista acelera rápidamente, alcanzando una velocidad de 44.92 m/s después de 10 s. Observe también que, después de un tiempo suficientemente grande, alcanza una velocidad constante llamada velocidad terminal de 53.44 m/s. Esta velocidad es constante porque después de un tiempo la fuerza de gravedad estará en equilibrio con la resistencia del aire. Entonces, la fuerza es cero y cesa la aceleración.

# Caída de los cuerpos con resistencia del aire

Para este problema, hay dos fuerzas que actúan sobre el cuerpo: la fuerza debido a la gravedad dada por el peso w del cuerpo, que es igual a mg y la fuerza debida a la resistencia del aire, dada por -kv, donde k es una constante de proporcionalidad.

$$F = mg - kv$$

#### Problemas de enfriamiento

La ley de Newton establece que la razón de cambio en el tiempo de la temperatura de un cuerpo es proporcional a la diferencia entre el cuerpo y el medio ambiente.

$$\frac{dT}{dt} = -k(T - T_m),$$

#### donde:

T es la temperatura del cuerpo.

 $T_m$  es la temperatura del medio ambiente.

k es una constante de proporcionalidad.

### Problemas de crecimiento y decrecimiento

Llámese N(t) la cantidad de sustancia (o población) que está creciendo o decreciendo. Si asumimos que  $d^N/dt$ , el tiempo necesario para el cambio de una sustancia, es proporcional a la cantidad de sustancia presente, entonces

$$\frac{dN}{dt} = kN,$$

donde k es la constante de proporcionalidad.

# Ejemplo

Al sacar un pastel del horno, su temperatura es de 150°C. Tres minutos después su temperatura es de 90°C. ¿Cuánto tiempo le tomará al pastel enfriarse hasta la temperatura de 30°C?. Considere una temperatura ambiente de 20°C



| t  | Т           |
|----|-------------|
| 0  | 150         |
| 1  | 125.7982999 |
| 2  | 106.1021559 |
| 3  | 90.0727824  |
| 4  | 77.02754806 |
| 5  | 66.41090487 |
| 6  | 57.77072949 |
| 7  | 50.73906897 |
| 8  | 45.01647106 |
| 9  | 40.3592316  |
| 10 | 36.56901609 |
| 11 | 33.48441333 |
| 12 | 30.97406158 |
| 13 | 28.9310543  |
| 14 | 27.26838739 |
| 15 | 25.91525407 |
| 16 | 24.81402942 |
| 17 | 23.91781637 |
| 18 | 23.18844855 |
| 19 | 22.59486489 |
| 20 | 22.11178688 |
| 21 | 21.71864201 |
| 22 | 21.39868771 |
| 23 | 21.13829833 |
| 24 | 20.92638483 |
| 25 | 20.75392261 |
| 26 | 20.61356716 |
| 27 | 20.49934125 |
| 28 | 20.40638043 |
| 29 | 20.33072583 |
| 30 | 20.26915562 |

#### Temperatura vs tiempo



# Ejemplo

Al sacar un pastel del horno, su temperatura es de 150°C. Tres minutos después su temperatura es de 90°C. ¿Cuánto tiempo le tomará al pastel enfriarse hasta la temperatura ambiente de 20°C?



# Ejemplo

Se sabe que la población de cierto país aumenta a una razón proporcional al número de habitantes actuales del país. Si después de dos años la población se ha duplicado y después de tres años la población es de 20,000 habitantes, hallar el número de habitantes que había inicialmente en el país.