	Kolle's Theorem
H Ø:	1. Rolle's Theorem.
*	Let a < b. Let f be a function defined on [a b].
o 3	If of is continuous on Ia. b.]
40: 1	$\mathfrak{D} f$ is differentiable on (a, b) . $\mathfrak{D} f(a) = f(b).$ $\mathfrak{D} f(a) = f(b).$ $\mathfrak{D} f(a) = \mathfrak{D} f(a) = \mathfrak{D} f(b).$
9	
	1> Proof:
	WJS: 3c 6 (a, b). s.t. f'(c) =0.
	Assume: HO, HO, HO
	Since f is continuous on Ia, b]
	By EVT. f must have a max & min on Ia. b.].
	D max and min at some C & (a, b).
	Then c to also a local entremum.
	By Local EVT. f'(c) 20 or DNE.
	Since f is differentiable. $f'(c) = 0$.
	D max and min at end-points.
	Since flai) = fcb). f nuet be constant.
	Ψx ε (a, b), f'(x)=0.
	3. Rollés Theorem Application. (how many zeros?).
	1). A number CBR is a zero of a function f when fled =0
	zero of $f = Solution of f(x) = 0$.
	23 Horo many zeros?
	D. Use LVT to prove it has at least n.
	a) 1 See Rolle's theorem to prove it has at must n.

