SEQUENCE LISTING

SEQ ID NO: 1: Nucleotide sequence of 11.5 kb PCR product amplified from chromosomal DNA of C. jejuni OH4384 which includes LOS biosynthesis locus

aacacatata gatggatctt agcatctatt caataaaatc tttttgtatc	ttatgoctga ttaacaaaaa ctcaaaaaaa	tcaatgaaaa cacactatgg ccatagtggg	taaaaaagga taagattaaa aaagaagcaa tagagttttt	gacgctttgc aagcgttatt aaaagatttt agctaatgaa	ttttggagct tgatgctgat agaagataat atgtggttgg
gtattgatga ttacaaaaat ctttaaataa aaactcatat ataaaagtga	משטשמ	a ph a		ttttttcata taaaacaaat taaattcttt ccctaaaaat	cttttatagg ttttaagcat taaaacttca ggataaaggc
aatcttagtg ctaatggctt ttagcttttg aatgcttttc aagcatatcg	tttgaaattt agcaagaatc aatctgtttt	tctcaataaa tcctattatc ggctaaatat aattttaagc	aagacaaatg ctgcgtagaa gggagcaagc agaaggtggt	ggaatacttt aaaatgaatc cttgagtgtt agcgataata	tatcacaatg aatgattgga cttaaaaatt aaaggcgaat
agaggtttta tcttgaagag tccaacacat aagctaccgc ccaaaatgcc	tttattatat ctttgattgt caaatttgca	aagaaaaaat ctttaaagcg ttgcttatgc ttatqtatga	aaggcggtat ctgatcaaga attatcaaat atgcctataa	aaagaccttg acaagggtgc gcaaactttg caatgaaagt	tttatatatt ttatgcaaaa tattaaagag aaatctctat
aatttgctaa caaaatttaa atgatagcgg gtgcaacacc gtaaaaaaat	aayaayaaya tatcttagtc cattttttag atcatcaata	aacaccacca gatgccctgg attttaagcc	attgacaaaa ggaattttaa aaagaagtga atccctgttt	atgattaaaa gaggaaattt aaaatgctga ttttacttaa	attttgctaa ttgctttaag aaaatgagtg ttagccgtaa
aaagaatacg gaattagcgc atcataggaa acgatttttg attgatacag	acycycacay tgatagaata ttgtatcttg acaccycaaa	gcaaaatcaa ttttcttata aaactgggaa aaaaaaactta	catagaactt gagagctttg attttttaac tgctttgatc	ttgcgaagaa tagttataat atcatcgtaa gatgaaatta	tttaaaaaag ttaaaaaaatc gaagtgcttg atcatcgcac
1 121 181 241	3 6 4 4 7 7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	601 661 721 781	941 901 961 1021	1141 1201 1261 1321	1381 1441 1501 1561

tgataattta	aaatggattg	ctactcaagt	tttaagagct	999	മ	tcaaaaagaa	gaagttt	cas	agtaaaag	ggtgatat	ctttttt	caaagatgat	tttagctaaa	ď	ttgatggttt	tttat	tttatcacaa	ccatcaaaaa	caatctataa	atactaactt	ttgcaaaaga	gtttaagttc	acaaaactca	cttataatat	ccaattttac	aactaaactg	accatgattg	tttttgattt	gtgtaggatc	gcaaa	ttttgtttgc
ctcgttttaa	tttatcttaa	aaatgcagta	aa		aatatatgaa	taacttataa	ttttacccaa	ttgaagaata t	ggtttaaact	tagttattga	cacaaagaaa	ൽ	aaaattcttt		tttgatgaac	tttgttgcta			gtagttatac	بد		aaaaatgggg	-	at	aaagatttaa	gga	_	aaa	agcattaa	aattttttaa	tttgggataa
aaaaatttca	gctaaaaaaa	ttaattgaca	agtggtgtt	aaaaatggct	ttttt	ttaataataa	aatctagcct	gcaaggctta	gaagatgaag	gaatatataa	ttagaatttg	gaaagcgaag	aaaagttcta	aaaaatctt	taaaactgat	agatagtga	taaagctatt	tcatcaaatt	u	tagcgttatc	agatgaaca	ttttgataag	cggggaata		gaa	yat	ര	ŭ	gcaaa	gattgatttt	agatatacac
aatttttaat	gccaagtaat	tatctctcac	acacaaaaa	ttattttta	tgcattggga	aacttgcgct	tagtgttaaa	taca	catttggcaa	cgctgatagt		aataaaaa	aaaagatttt	aaaagatga	tgagttttt	ggggtagaga	gattaaaatt	ttgaaagcaa	aaaacatgaa	aatgtttaga	atggtagcac	gaataactct	aatactttag	taatagaatt	ctcaagcttt	ttatattctt	gaatgaaaaa	aaaataagca	ctccaaaaga	ggaatggaat	ttatcaatga
atgttttgag	gccttgttt	cttataagga	ப	tttttagaaa	r C	caaa	_	atggtagcaa	ctttaaaaca	ctataaaaaa	aagatttcat	gagtaatttt	tttttaataa	gtctttcaaa	ggttgcaata	tttattggtt	atttttagac		tcttggagat		cttgtcaatg	Ø	ataggtatag	aattctt	tataaaagct	ata		gacaatataa	ט	tcttttggat	ataaatttta
tggcctgatt	acat	cat	ctttgggcaa	ttttggactt	Ø	cttcaaagac	cgccttaaac	atcgcagatg	tttccttgtc	cgcaacaaa	gaaa	ggttcaa	tcgcataa	atattttaca	aggtattagg	atgaaat	taataaaggc	agaaaatagc	aaae	tgtagaaaa	agaaatcata	atatacctta	agctagaaat	acatataaaa	atataaagca	ttaccctagt	catagaagaa	cacctatgaa	taaaaaagaa	tagagatatt	acttaaattt
	1681	1741	1801	1861	1921	1981	2041	2101	2161	2221	2281	2341	2401	2461	2521	2581	2641	2701	2761	2821	2881	2941	3001	3061	3121	3181	3241	3301	3361	3421	3481

aatcagaaga tqattaaaaa cttttattca tttaataata cttttagaaa ataaaatcga aagatttaāt atgatgaaaa aaaatgaagc gtgttatagg aacaatatcc attttaatga tcaataacaa agcaattaaa ctttttaaa aatttaaaaa attttatata aagcagcaag acgaaaatgc atgagtggct gcttctatat gagattgctt aagaaactct ttgtttaaaa agaaaatatt aatacatctt tctaaataca gatcaaaaaa. aattattaa aaagctttaa gaattttgca attgacagaa cactctttag gctacaatac ataataac ttgtgtcgtt gtgtcagagt ttaattaaac ataaaaata taattatagg ttattcatcc atacaacgag tacaacaatg tattttaatt atacgagtaa atccaaagag caaaacccaa ataccaaaag ctttataaaa gatattcact aaagaaccag tatcattttc agtattgaag atgatttcaa ttaaataaa gttctttt tgaatatta cgcaaaagct aataatttgc ttggcaaaaa actaaaaac gcataaagga attttttaaa tgctaaaaaa caatatattg agaagtatta ttcaaatata taattggata atttttata catagagaac aaaqttqtat aaaagcaaat qqaaqcaaaa ctatgccaaa acaattagtt ataatcacta aattaataaa ttgggcttt attgcctgct aataattcta aattcaaatt tgcaagttt ttcaagggtt attaaataat agaaccttct ccattaattt actgcaactc tattattagg ttaacattgg gtcttaaact atccttatga aaagtttttc ttcacactga tttataaata aataatgtaa ttaattagca aattgataga ctcttgtgca gaagtgaaga atatctatga tagttagtta ataataatgg taaaatggaa tgttttaaaa tttaaaacca tgagcttgac tctttctcga ttttatcaca ttttaccttg atttaaagga ataattatgt atcataaaat caaattgaat agaagattac aaacgctaa tttggaaatt atttttaggt actttgtgaa aaacatttt taggggaggg ctttgaatcc ttgaaagcat aaagcttctc gcaacaaac gctcaagata actgctttaa gatcctttaa aaagctatta ccaaaatctc gatgtggatc aatcatgata ccttatgata aaattaatta aaaataaaa tgtaccgatg tatagctatt aaatatgatg ctttgtaaag aattataact aggatattat caaaatatta tattttagct tagcaaatat ccttaaatag cttagtatta tgctatttt gattttaaca aaaatttatg acttcgggg aaagaaacat ccaaaaaaa ccaataaat ttcttaacat tttcaatcat aaaacataga agttcatata cagccatatt cagtatatca tatataaa cagggttata acttgctata atttaaaaaa aaaatataaa ttcttattta tattacctta ttcatttata aaataactc qtataaacac attctattta aaaaaaata ttaaaatatt ttgaatata tataattttg aacaaaactt ttatatgcta aattagacat taaacttaat atctaaagat atataatgat taatttttt gcttatcaat ttggaaaaa tagtgctaat tataaaaata accaaaaac 601 1991 3721 3901 1201 5221 5401 3781 3841 3961 1021 1081 1141 261 321 381 501 561 621 681 741 801 861 4921 981 5161 5281 441 5041 5101 5341

ttatatgaaa tgttcatcta gttggtaaga ccaaatgatt ttaaaacatt aaccaagctc gctcatttgg tatgcttttg aattcacact aaaacttaca gaactagcgc gatatactca agtttagaac gagetageae gttagcacag gcaataattt agacctaagt ttggctatat ttaaaagtct taacataaaa aaaaaagtta ggtaaaaaat cacgaaattt gccctaggat aaaataaaaa agtgatataa ctcgtgcag tgctcttaaa atcatcagga. agagtattct, aacttcatcc atttctagaa cacattataa aatttaatta ttttaaattt agtagccata taaaaatgat aaattttata taattttaaa acaaaatata atttttctt gtcaaacttt ttcaagacta ttctaattac tgggtcatct aagattacct tcataatggc tctatatct aataatcatg atactatctt atactacact tttcctgat ctacactaaa agtaattcct ttataaagat cacacctttt gcctatgata cttgatggaa gtcttttagc ccccacatag tccaatataa cagaattaaa tatattgttc ttgaagataa ttttgaaca atatgtgtgc aagctttaga caaaaaatat taggcattaa gcacaggtgc ccgctaaaaa gtgcttttaa acactaaatc gttccaaata tgtcttttt ctacaattat attttattat aaattgatta taattatgtg tttacgatta ttaatgetta tttatcaaaa ctcctaattt aagatctatt aaataaaat gtgctttaga tttatcttag cctttaaaaa cttcatatct aaaaaataa caagcattta acagatataa tgtcctaaca aagttgataa gcattgaaaa gcccttgcta ttaaaattgg gcagccttta ctataaaac actttcacac caatcatcaa tcaggggtct ggaattgatt atcatacaag taaatgaaag gtgcctgaaa tttattcttt agtttaaaag gagaccgaac gtaaaaactt cttaaagatt ggaaaatttt atgagtaagg atgggagtta tttattcctt aaaaataaat caattttatt cctattcttt atgcaaaaat ttaggtcttg cacatagcag tatttattac aaatggacca atattgctta tataaqtttc gtggattatt atcatttcca tttaaacata aagaattacc tagtaaaaat caaaggaaaa accettagte cttagaagat ctctttttg acactcttca agagtttgct taaaatcgtt tagatgtaat attttacaat tcaagaatat tgaaaattt tttcaaacaa ttatctttcg aaaaaatctt ttcaaatttt tgaggcttat tgaagatgag ttatgagatt cacagaaaa gcttattaaa ttcaacaata gctttctatt tatggtagat ttatataagg tctattttga ttattgctgg atctagaaaa gatatgattt atttcaatca atatcggaca caaatttaaa taccttctag ttaaagaaaa agcattattt aagaaaagc tagctaaaat cccacatcgt aaataagcat gtgcaaaccg ataattatcc atttctttct tttttacaaa taacattact aaattttat ttatactatt qattqataca tgattgaaat taatccaaaa acaaagaaat atactaaaca aaataaact ttaaagaata tttttcatt ttgatgtatt gcaaggcagt 6841 7141 5521 5641 6361 6421 6481 6541 6601 6661 6721 6781 6901 6961 7021 7081 5581 5701 5761 5821 5881 5941 6001 6061 6121 6181 6241 6301 201

ttctatggat acacaggctt gagaggaaat, aatgaaagta atcctgttac taatcttqca ttagatttga gtaagattaa gaccacacaa gtagtcagca aaaagacctg gcattaagag tgcaaaactc attttggcta taaattacga ctttagcagc gagagatttc ttaatgaagc tgatacaaag gttgtattt aaaatggaag tagatagete aaagggtatt tgaaatttta aatqaaattc ttgtgtgctt.gaaagacatt tcctttttat caagatatgt ttcatttagt aatctattt taaaaqctat cacaaaagt cattaaaqct tgcacaagat aggettaage cttattagac ctttgcaagc cttatgtttc ttccatcgc ggtaattcaa ggctcaaggc gatgaaatac gcataatctt tatttgggtt aggcaaaaa gtgaaaaaa ttaagcaaaa tatgaattta agaatcgagc attgaaggtg ctagcacata gaagatgaaa aaaatttcac gtaaaagcac ggttttgaat aaacttaaca gtggtggctc tttattacac gtgatagtga atgtacaggg gatggattt ttagagattt caattagcct cacttggtgc atatagtttg ctatggataa tatatcaaaa gcagcttgga aaacgataat ctacgctttg agataattta ttttataata aggattttgc taaatcttta aggaatgcac taaaaatatt acatggagat agtagcacat taatqattta atttaagctt tagcgccaag agaattttt atccctgctc aaacctttaa gttgtaagca ctgtaaaaat ttgattttgc aaaatattt cactacaatt aattttagtt tgcaaatagt ttaaaacgcc acccaaccc cttgtatggt tggctataat ataaaaccaa tacgccacgc tagaactttt ataaccctag aaaatgctga aaacagcagg tacaaagcgg cttagcaata ggtgcggttg tctttgcaac aaaatggctt aggetttage ggcgtttaat attatgaaaa aaaatcaagc tttatccaaa taaaaqttaa aagatttatt attaaacaat tagtaaagtt accaatctt gctgaatttg taatcgtagt acaatatctt tgttgatatt aaagaatttt agtggccctg agtgagcaaa caagtcacaa ttaagctatg attctaagat gaagttttat gaacttaaaa acaagcatta tatgatataa tatattgtta actttqttaa ttatacttaa cataaaaac tgcgtgttta tatgcataga tattatacaa taaaaaaggc aattagtgca tgatactcag gaactttaca gaactttata tcaaccgata aaacctgatt ggagcattaa gatgatagct tttgcaaaaa tegectgatt gaaaatacac ataaaatgag aaagtcaaaa tattgaaagt aatgcacaca tgaattaaaa taagcaagag agggctgatt tttgaatatt atttggtttt ctaaaagcat ggatgaatag aaatgagcta aagctatgaa gtattttata aaaagaggcc taataccatt gcactaaata aattatgcaa cctttgtttt acgctatgct cagataatct ttactgatag aaaagcagc ttaaaqatat gacttggtgg atatagaaa aacaggcact aagcgaattt tacagttaaa taaatattt agctattgtt aggaactatt aaatgatgag tatcataggt aaaaaatat aactgaaatt taacaaaat acttggcaat aaaattatt ttttaaqqat aaaaataaaa taaaagagct 8641 7441 7741 108 1861 7921 1981 8041 8101 8161 8221 8281 8341 8401 8461 8521 8581 8701 8761 8821 8881 8941 9001 9061 9121 9181 9241 7501 561 621 7681

gcaagtttta aaaataacc ctttttatca caagatgatg ggatgtgtca gcaggaattc ttaaaaattc tataatccaa aatctattt tggattaaat aaaataaata aaaatgcctt tgcaaaagtg aaattctaaa aaatcacatc aacaaaacat ctgatgaaat atcaaaacct tgagcaatgg tgcaatttat tacaaagcaa,aaccaagcat agactaaaaa gcggggctgg gattcatttt cttttagcgg atcttttcta cctcattata caaaagttgg aaggtattgt tcaatttctg tgaggcttt taagcgaatg tgataataaa cagggatttg.taatgatgaa tggaggattt aaaaaaggct ttattaaagc ttatgaagat aatcagcact tttaattata aatttcctac aatttctact cttttttgc agaaagatta aaaaattttt atcttccatt ccgaccagca cttcatcttq aacaaagcaa ttaaaaaatc acttgggact tcttaattta caaataattt cattacttt ctattttaat tgctatagtt cacaaaacat aagattttca agagagtgta gcaatatctt acatgaaatg tttacaaaga ttcatattga tatattaaat atggggtttc tatgtttaac tttcaacatc ctatggatag caataacgca tttattaacg atgcttgcca ttgcttaaac agggtatcac taccacctta taaaaaatc ttcgcccaaa tgattaaaaa aaggcatcaa qcatcaggtg attcttggat atgatattga taaaatcaaa aaaccccca aaaaaaaat tttaaaactt tttatgattt ttattctcat gctattttct aaacgctcat gcaataaaa attgactgtt aaaatcctag ccattggaaa acaatcaact agaacaaata cctagctttt gctctaaaat ctaattagcg ggcgatttag aaaacatata ccaagctcat ttcctctctc cctatqcaca actagaatgc actaaagatg tttaaaaaca gccataattc tttaaagcac aaattccttt agatttgatg gaaaaaatca attttagaac ggatagttt ttctttattt aaagattttt gctgatttt tatttcacaa tttaaattta ttcgccgcta tgcaaatgcc aagtttagat accttaaaat acttatatag gcttttacat taatgaatat aaaattgcct tttaaacaat ctttaaacgc taaaatcaga cttcattttg cctatgaaac aaatcatagt aaaagatgtt agctgtagtt tcacccctgc aaatgcaagt gcacatcttc tgatatctt aaaattctaa tggtttttac taaccataat caaactctt tatcaaatat atatcatttt cctactagaa ttttagagat qatttaaaat ggaaaaaata atattgtgct atgaaagctc ttatacaaaa tataaccttt taaaagaatt tacaacccac tgccaaggca gcgataaagt cctttgtttg aaaataqcaa tttggatagg aatggtggaa aatatcttga ataaacttta tcatcatgtg ctttttaaga tattactta aaaaacatta cctaaatttt ttcctatagt aatctatttt ccataatgat taaaattgtt taggacaaag cagccaaaat tgataatttt Laacaaaaa ttttcatct ttttaatgg ccaaagattt ggatagaaga attttaaaga gtagttttt aatctttata attctaaaag gaacagatat aatatatat aatactacaa tatcctttta 0021 0081 0141 0201 0261 0561 0621 0681 0741 0801 0861 0921 0321 0381 0501 0981 1041 1101 1161 0441 9481 9541 9601 1996 9721 9781 9841 9901 9961 9421

ttgcaaagct cttgagataa aatcgcaaga attaaaaagc tggcatattt ttcctaaatt ttgttaaaat aataaaaaca ctggttaggc tttactttta tcatcgataa tcaaaatttc aatatctttt attetateaa agtttaggaa atttatgaaa atttttatae aeetteeaae aactattatc gggattatga tagaaagttg ttatacaact gatacggtaa tggc accatattta aaagtctgat 11281 11341 11401 11461 11221

SEQ ID NO: 2: Nucleotide sequence that encodes bifunctional sialyltransferase cstII from C. jejuni strain OH4384 (ORF 7a of LOS biosynthesis locus)

ATGAAAAAAG	TTATTATTGC	TGGAAATGGA	CCAAGTTTAA	AAGAAATTGA	50
TTATTCAAGA	CTACCAAATG	ATTTTGATGT	ATTTAGATGT	AATCAATTTT	100
ATTTTGAAGA	TAAATACTAT	CTTGGTAAAA	AATGCAAGGC	AGTATTTTAC	150
AATCCTATTC	TTTTTTTGA	ACAATACTAC	ACTTTAAAAC	ATTTAATCCA	200
AAATCAAGAA	TATGAGACCG	AACTAATTAT	GTGTTCTAAT	TACAACCAAG	250
CTCATCTAGA	AAATGAAAAT	TTTGTAAAAA	CTTTTTACGA	TTATTTTCCT	300
GATGCTCATT	TGGGATATGA	TTTTTTCAAA	CAACTTAAAG	ATTTTAATGC	350
TTATTTTAAA	TTTCACGAAA	TTTATTTCAA	TCAAAGAATT	ACCTCAGGGG	400
TTTATATGTG	TGCAGTAGCC	ATAGCCCTAG	GATACAAAGA	AATTTATCTT	450
TCGGGAATTG	ATTTTTATCA	AAATGGGTCA	TCTTATGCTT	TTGATACTAA	500
ACAAAAAAAT	CTTTTAAAAT	TGGCTCCTAA	TTTTAAAAAT	GATAATTCAC	550
ACTATATCGG	ACATAGTAAA	AATACAGATA	TAAAAGCTTT	AGAATTTCTA	600
GAAAAAACTT	ACAAAATAAA	ACTATATTGC	TTATGTCCTA	ACAGTCTTTT	650
AGCAAATTTT	ATAGAACTAG	CGCCAAATTT	AAATTCAAAT	TTTATCATAC	700
AAGAAAAAA	·TAACTACACT	AAAGATATAC	TCATACCTTC	TAGTGAGGCT	750
TATGGAAAAT	TTTCAAAAAA	TATTAATTTT	AAAAAAATAA	AAATTAAAGA	800
AAATATTTAT	TACAAGTTGA	TAAAAGATCT	ATTAAGATTA	CCTAGTGATA	850
TAAAGCATTA	TTTCAAAGGA	AAATAA			876

SEQ ID NO: 3: Amino acid sequence of bifunctional sialyltransferase CstII from C. jejuni strain OH4384 (encoded by ORF 7a of LOS biosynthesis locus)

```
10 20 30 40 50

1 MKKVIIAGNG PSLKEIDYSR LPNDFDVFRC NQFYFEDKYY LGKKCKAVFY
51 NPILFFEQYY TLKHLIQNQE YETELIMCSN YNQAHLENEN FVKTFYDYFP
101 DAHLGYDFFK QLKDFNAYFK FHEIYFNQRI TSGVYMCAVA IALGYKEIYL
151 SGIDFYQNGS SYAFDTKQKN LLKLAPNFKN DNSHYIGHSK NTDIKALEFL
201 EKTYKIKLYC LCPNSLLANF IELAPNLNSN FIIQEKNNYT KDILIPSSEA
251 YGKFSKNINF KKIKIKENIY YKLIKDLLRL PSDIKHYFKG K
```

SEQ ID NO: 4. Nucleotide sequence of bifunctional sialyltransferase-encoding cstII (ORF7a) from LOS biosynthesis locus of C. jejuni serotype O:10

ATGAAAAAAG	TTATTATTGC	TGGAAATGGA	CCAAGTTTAA	AAGAAATTGA	50
TTATTCAAGG	CTACCAAATG	ATTTTGATGT	ATTTAGATGC	AATCAATTTT	100
ATTTTGAAGA	TAAATACTAT	CTTGGTAAAA	AATTCAAAGC	AGTATTTTAC	150
AATCCTGGTC	TTTTTTTGA	ACAATACTAC	ACTTTAAAAC	ATTTAATCCA	200
AAATCAAGAA	TATGAGACCG	AACTAATTAT	GTGTTCTAAT	TACAACCAAG	250
CTCATCTAGA	AAATGAAAAT	TTTGTAAAAA	CTTTTTACGA	TTATTTTCCT	300
GATGCTCATT	TGGGATATGA	TTTTTTTAAA	CAACTTAAAG	AATTTAATGC	350
TTATTTTAAA	TTTCACGAAA	TTTATCTCAA	TCAAAGAATT	ACCTCAGGAG	400
TCTATATGTG	TGCAGTAGCT	ATAGCCCTAG	GATACAAAGA	AATTTATCTT	450
TCTGGAATTG	ATTTTTATCA	AAATGGGTCA	TCTTATGCTT.	TTGATACCAA	500
ACAAGAAAAT	CTTTTAAAAC	TGGCTCCTGA	TTTTAAAAAT	GATCGCTCAC	550
ACTATATCGG	ACATAGTAAA	AATACAGATA	TAAAAGCTTT	AGAATTTCTA	600
GAAAAAACTT	ACAAAATAAA	ACTATATTGC	TTATGTCCTA	ACAGTCTTTT	650
AGCAAATTTT	ATAGAACTAG	CGCCAAATTT	AAATTCAAAT	TTTATCATAC	700
AAGAAAAAA	TAACTACACT	AAAGATATAC	TCATACCTTC	TAGTGAGGCT	750

TATGGAAAAT TTTCAAAAAA TATTAATTTT AAAAAAATAA AAATTAAAGA AAATATTTAT TACAAGTTGA TAAAAGATCT ATTAAGATTA CCTAGTGATA TAAAGCATTA TTTCAAAGGA AAATAA	800 850 876
SEQ ID NO: 5. Amino acid sequence of bifunctional sialyltransferase cstII encode 7a of LOS biosynthesis locus from C. jejuni serotype O:10	ed by ORF
10 20 30 40 1 MKKVIIAGNG PSLKEIDYSR LPNDFDVFRC NQFYFEDKYY LGKKFKAN 51 NPGLFFEQYY TLKHLIQNQE YETELIMCSN YNQAHLENEN FVKTFYDN 101 DAHLGYDFFK QLKEFNAYFK FHEIYLNQRI TSGVYMCAVA IALGYKEN 151 SGIDFYQNGS SYAFDTKQEN LLKLAPDFKN DRSHYIGHSK NTDIKALN 201 EKTYKIKLYC LCPNSLLANF IELAPNLNSN FIIQEKNNYT KDILIPSN 251 YGKFSKNINF KKIKIKENIY YKLIKDLLRL PSDIKHYFKG K	YFP IYL EFL
SEQ ID NO: 6. Nucleotide sequence of <i>C. jejuni</i> serotype O:41 <i>cstII</i> coding region	
ATGAAAAAG TTATTATTGC TGGAAATGGA CCAAGTTTAA AAGAAATTGA TTATTCAAGA CTACCAAATG ATTTTGATGT ATTTAGATGC AATCAATTTT ATTTTGAAGA TAAATACTAT CTTGGTAAAA AATGCAAAGC AGTATTTTAC AATCCTAGTC TTTTTTTTGA ACAATACTAC ACTTTAAAAC ATTTAATCCA AAATCAAGAA TATGAGACCG AACTAATCAT GTGTTCTAAT TTTAACCAAG CTCATCTAGA AAATCAAAAT TTTGTAAAAA CTTTTACGA TTATTTTCCT GATGCTCATT TGGGATATGA TTTTTTCAAA CAACTTAAAG AATTCAATGC TTATTTTAAA TTTCACGAAA TTTATTTCAA CAACTTAAAG AATTCAATGC TCATATATGTG CACAGTAGCC ATAGCCCTAG GATACAAAGA AATTTATCTT TCGGGAATTG ATTTTATCA AAATGGATCA TCTTATGCTT TTGATACCAA ACAAAAAAAT CTTTTAAAAT TGGCTCCTAA TTTTAAAAAT GATAATTCAC ACTATATCGG ACATAGTAAA AATACAGATA TAAAAGCTTT AGAATTTCTT AGCAAATTTT ATGAAATAAA GCTATATTGT TAAAAGCTTT ACAAGTTAT AAAGAAAAAAA TAACTATACT AAAGAATAA TATTAATTTT AAAAAAAATAA AAATTAAAGA AAATATTTAT TACAAAAAA TATTAATTTT AAAAAAAA	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 876
SEQ ID NO: 7. Amino acid sequence of CstII from C. jejuni serotype O:41	
10 20 30 40 1 MKKVIIAGNG PSLKEIDYSR LPNDFDVFRC NQFYFEDKYY LGKKCKAY 51 NPSLFFEQYY TLKHLIQNQE YETELIMCSN FNQAHLENQN FVKTFYD 101 DAHLGYDFFK QLKEFNAYFK FHEIYFNQRI TSGVYMCTVA IALGYKE 151 SGIDFYQNGS SYAFDTKQKN LLKLAPNFKN DNSHYIGHSK NTDIKALI 201 EKTYEIKLYC LCPNSLLANF IELAPNLNSN FIIQEKNNYT KDILIPS	YFP IYL EFL

251 YGKFTKNINF KKIKIKENIY YKLIKDLLRL PSDIKHYFKG K

SEQ ID NO: 8. Nucleotide sequence of coding region for CstII from C. jejuni O:19.

```
1 atgaaaaaag ttattattgc tggaaatgga ccaagtttaa aagaaattga
 51 ttattcaagg ctaccaaatg attttgatgt atttagatgt aatcaatttt
101 attttgaaga taaatactat cttggtaaaa aatgcaaagc agtgttttac
151 acccctaatt tettetttga geaatactae aetttaaaae atttaateea
201 aaatcaagaa tatgagaccg aactaattat gtgttctaat tacaaccaag
251 ctcatctaga aaatgaaaat tttgtaaaaa ctttttacga ttattttcct
301 gatgeteatt tgggatatga tttttttaaa caacttaaag aatttaatge
351 ttattttaaa tttcacgaaa tttatttcaa tcaaagaatt acctcagggg
401 totatatgtg tgcagtagcc atagccctag gatacaaaga aatttatctt
451 tcgggaattg atttttatca aaatgggtca tcttatgctt ttgataccaa
501 acaagaaaat cttttaaaac tagcccctga ttttaaaaat gatcgctcgc
551 actatatcgg acatagtaaa aatacagata taaaagcttt agaatttcta
601 gaaaaaactt acaaaataaa actatattgc ttatgtccta atagtctttt
651 agcaaatttt atagaactag cgccaaattt aaattcaaat tttatcatac
701 aagaaaaaa taactacact aaagatatac tcataccttc tagtgaggct
751 tatqqaaaat tttcaaaaaa tattaatttt aaaaaaataa aaattaaaqa
801 aaatgtttat tacaagttga taaaagatct attaagatta cctagtgata
851 taaagcatta tttcaaagga aaataa
```

SEQ ID NO: 9: Amino acid sequence of CstII from C. jejuni O:19.

```
1 MKKVIIAGNG PSLKEIDYSR LPNDFDVFRC NQFYFEDKYY LGKKCKAVFY
51 TPNFFFEQYY TLKHLIQNQE YETELIMCSN YNQAHLENEN FVKTFYDYFP
101 DAHLGYDFFK QLKEFNAYFK FHEIYFNQRI TSGVYMCAVA IALGYKEIYL
151 SGIDFYQNGS SYAFDTKQEN LLKLAPDFKN DRSHYIGHSK NTDIKALEFL
201 EKTYKIKLYC LCPNSLLANF IELAPNLNSN FIIQEKNNYT KDILIPSSEA
251 YGKFSKNINF KKIKIKENVY YKLIKDLLRL PSDIKHYFKG K
```

SEO ID NO: 10. Amino acid sequence of CstII from C. jejuni strain NCTC 11168

```
10 20 30 40 50

1 MSMNINALVC GNGPSLKNID YKRLPKQFDV FRCNQFYFED RYFVGKDVKY
51 VFFNPFVFFE QYYTSKKLIQ NEEYNIENIV CSTINLEYID GFQFVDNFEL
101 YFSDAFLGHE IIKKLKDFFA YIKYNEIYNR QRITSGVYMC ATAVALGYKS
151 IYISGIDFYQ DTNNLYAFDN NKKNLLNKCT GFKNQKFKFI NHSMACDLQA
201 LDYLMKRYDV NIYSLNSDEY FKLAPDIGSD FVLSKKPKKY INDILIPDKY
251 AQERYYGKKS RLKENLHYKL IKDLIRLPSD IKHYLKEKYA NKNR
```

SEQ. ID NO: 11. Nucleotide sequence for coding region for Cst II from C. jejuni 0:4

1	ATGAAAAAAG	TTATTATTGC	TGGAAATGGA	CCAAGTTTAA	AAGAAATTGA	TTATTCAAGG
61	CTACCAAATG	ATTTTGATGT	ATTTAGATGT	AATCAATTTT	ATTTTGAAGA	TAAATACTAT
121	CTTGGTAAAA	AATGCAAAGC	AGTGTTTTAC	ACCCCTGGTT	TCTTCTTTGA	GCAATACTAC
181	ACTTTAAAAC	ATTTAATCCA	AAATCAAGAA	TATGAGACCG	AACTAATTAT	GTGTTCTAAT
241	TACAACCAAG	CTCATCTAGA	AAATGAAAAT	TTTGTAAAAA	CTTTTTACGA	TTATTTTCCT
301	GATGCTCATT	TGGGATATGA	TTTTTTTAAA	CAACTTAAAG	AATTTAATGC	TTATTTTAAA
361	TTTCACGAAA	TTTATTTCAA	TCAAAGAATT	ACCTCAGGGG	TCTATATGTG	TGCAGTAGCC
421	ATAGCCCTAG	GATACAAAGA	AATTTATCTT	TCGGGAATTG	ATTTTTATCA	AAATGGGTCA
481	TCTTATGCTT	TTGATACCAA	ACAAGAAAAT	CTTTTAAAAC	TAGCCCCTGA	TTTTAAAAAT
541	GATCGCTCAC	ACTATATCGG	ACATAGTAAA	AATACAGATA	TAAAAGCTTT	AGAATTTCTA

```
GAAAAACTT ACAAAATAAA ACTATATTGC TTATGTCCTA ACAGTCTTTT AGCAAATTTT
661 ATAGAACTAG CGCCAAATTT AAATTCAAAT TTTATCATAC AAGAAAAAAA TAACTACACT
721 AAAGATATAC TCATACCTTC TAGTGAGGCT TATGGAAAAAT TTTCAAAAAA TATTAATTTT
781 AAAAAAATAA AAATTAAAGA AAATGTTTAT TACAAGTTGA TAAAAGATCT ATTAAGATTA
841 CCTAGTGATA TAAAGCATTA TTTCAAAAGA AAA
```

SEO ID NO: 12. Amino acid sequence of Cst II from C. jejuni 0:4

and the first of the control of the second o

```
MKKVIIAGNG PSLKEIDYSR LPNDFDVFRC NQFYFEDKYY LGKKCKAVFY TPGFFFEQY
YTLKHLIQNQ EYETELIMCS NYNQAHLENE NFVKTFYDYF PDAHLGYDFF KQLKEFNAY
FKFHEIYFNQ RITSGVYMCA VAIALGYKEI YLSGIDFYQN GSSYAFDTKQ ENLLKLAPD
FKNDRSHYIG HSKNTDIKAL EFLEKTYKIK LYCLCPNSLL ANFIELAPNL NSNFIIQEK
NNYTKDILIP SSEAYGKFSK NINFKKIKIK ENVYYKLIKD LLRLPSDIKH YFKGK
```

```
SEQ ID NO: 14. Amino acid sequence of Cst II from C. jejuni 0:36.

MKKVIIAGNG PSLKEIDYSR LPNDFDVFRC NQFYFEDKYY LGKKCKTVFY TPNFFFEQY
YTLKHLIQNQ EYETELIMCS NYNQAHLENE NFVKTFYDYF PDAHLGYDFF KQLKEFNAY
FKFHEIYFNQ RITSGVYMCA VAIALGYKEI YLSGIDFYQN GSSYAFDTKQ ENLLKLAPD
FKNDRSHYIG HSKNTDIKAL EFLEKTYKIK LYCLCPNSLL ANFIELAPNL NSNFIIQEK
NNYTKDILIP SSEAYGKFSK NINFKKIKIK ENVYYKLIKD LLRLPSDIKH YFKGK
```

SEQ ID NO: 15: Nucleotide sequence of glycosyltransferase-encoding ORF 4a of LOS biosynthesis locus from C. jejuni strain OH4384

ATGAAGAAAA	TAGGTGTAGT	TATACCAATC	TATAATGTAG	AAAAATATTT	50
AAGAGAATGT	TTAGATAGCG	TTATCAATCA	AACTTATACT	AACTTAGAAA	100
TCATACTTGT	CAATGATGGT	AGCACAGATG	AACACTCACT	CAATATTGCA	150
AAAGAATATA	CCTTAAAAGA	TAAAAGAATA	ACTCTTTTTG	ATAAGAAAAA	200
TGGGGGTTTA	AGTTCAGCTA	GAAATATAGG	TATAGAATAC	TTTAGCGGGG	250
AATATAAATT	AAAAAACAAA	ACTCAACATA	TAAAAGAAAA	TTCTTTAATA	300
GAATTTCAAT	TGGATGGTAA	TAATCCTTAT	AATATATA	AAGCATATAA	350
AAGCTCTCAA	GCTTTTAATA	ATGAAAAAGA	TTTAACCAAT	TTTACTTACC	400
CTAGTATAGA	TTATATTATA	TTCTTAGATA	GTGATAATTA	TTGGAAACTA	450
AACTGCATAG	AAGAATGCGT	TATAAGAATG	AAAAATGTGG	ATGTATTGTG	500
GTTTGACCAT	GATTGCACCT	ATGAAGACAA	TATAAAAAAT	AAGCACAAAA	550
AAACAAGGAT	GGAAATTTTT	GATTTTAAAA	AAGAATGTAT	AATCACTCCA	600

a compression and a stranger and

```
AAAGAATATG CAAATCGAGC ATTAAGTGTA GGATCTAGAG ATATTTCTTT
                                                         650
TGGATGGAAT GGAATGATTG ATTTTAATTT TTTAAAGCAA ATTAAACTTA
                                                         700
AATTTATAAA TTTTATTATC AATGAAGATA TACACTTTGG GATAATTTTG
                                                         750
TTTGCTAGTG CTAATAAAAT TTATGTTTTA TCACAAAAGT TGTATTTGTG
                                                         800
TCGTTTAAGA GCAAACAGTA TATCAAATCA TGATAAGAAG ATTACAAAAG
                                                         850
CAAATGTGTC AGAGTATTTT AAAGATATAT ATGAAACTTT CGGGGAAAAC
                                                         900
GCTAAGGAAG CAAAAAATTA TTTAAAAGCA GCAAGCAGGG TTATAACTGC
                                                         950
TTTAAAATTG ATAGAATTTT TTAAAGATCA AAAAAACGAA AATGCACTTG 1000
CTATAAAAGA AACATTTTTA CCTTGCTATG CCAAAAAAGC TTTAATGATT 1050
AAAAAATTTA AAAAAGATCC TTTAAATTTA AAGGAACAAT TAGTTTTAAT 1100
TAAACCTTTT ATTCAAACAA AACTTCCTTA TGATATTTGG AAATTTTGGC 1150
AAAAAATAAA AAATATTTAA
                                                        1170
```

SEQ ID NO: 16: Nucleotide sequence of β1,4 GalNAc transferase-encoding ORF 5a of LOS biosynthesis locus from C. jejuni strain OH4384

```
ATGCTATTTC AATCATACTT TGTGAAAATA ATTTGCTTAT TCATCCCTTT
                                                          50
TAGAAAAATT AGACATAAAA TAAAAAAAAC ATTTTTACTA AAAAACATAC
                                                         100
AACGAGATAA AATCGATTCT TATTTACCAA AAAAAACTCT TGTGCAAATT
                                                         150
AATAAATACA ACAATGAAGA TTTAATTAAA CTTAATAAAG CTATTATAGG
                                                         200
GGAGGGGCAT AAAGGATATT TTAATTATGA TGAAAAATCT AAAGATCCAA
                                                         250
AATCTCCTTT GAATCCTTGG GCTTTTATAC GAGTAAAAA TGAAGCTATT
                                                         300
ACCTTAAAAG CTTCTCTTGA AAGCATATTG CCTGCTATCC AAAGAGGTGT
                                                         350
TATAGGATAT AATGATTGTA CCGATGGAAG TGAAGAAATA ATTCTAGAAT
                                                         400
TTTGCAAACA ATATCCTTCA TTTATACCAA TAAAATATCC TTATGAAATT
                                                         450
CAAATTCAAA ACCCAAAATC AGAAGAAAAT AAACTCTATA GCTATTATAA
                                                         500
TTATGTTGCA AGTTTTATAC CAAAAGATGA GTGGCTTATA AAAATAGATG
                                                         550
TGGATCATAT CTATGATGCT AAAAAACTTT ATAAAAGCTT CTATATACCA
                                                         600
AAAAACAAAT ATGATGTAGT TAGTTATTCA AGGGTTGATA TTCACTATTT
                                                         650
TAATGATAAT TTTTTTCTTT GTAAAGATAA TAATGGCAAT ATATTGAAAG
                                                         700
AACCAGGAGA TTGCTTGCTT ATCAATAATT ATAACTTAAA ATGGAAAGAA
                                                         750
GTATTAATTG ACAGAATCAA TAACAATTGG AAAAAAGCAA CAAAACAAAG
                                                         800
TTTTTCTTCA AATATACACT CTTTAGAGCA ATTAAAGTAT AAACACAGGA
                                                         850
TATTATTCA CACTGAATTA AATAATTATC ATTTTCCTTT TTTAAAAAAA
                                                         900
CATAGAGCTC AAGATATTTA TAAATATAAT TGGATAAGTA TTGAAGAATT
                                                         950
TAAAAAATTC TATTTACAAA ATATTAATCA TAAAATAGAA CCTTCTATGA 1000
TTTCAAAAGA AACTCTAAAA AAAATATTCT TAACATTGTT TTAA
                                                        1044
```

SEQ ID NO: 17: Amino acid sequence of β1,4 GalNAc transferase from C. jejuni strain OH4384 (encoded by ORF 5a of LOS biosynthesis locus)

```
10 20 30 40 50

1 MLFQSYFVKI ICLFIPFRKI RHKIKKTFLL KNIQRDKIDS YLPKKTLVQI
51 NKYNNEDLIK LNKAIIGEGH KGYFNYDEKS KDPKSPLNPW AFIRVKNEAI
101 TLKASLESIL PAIQRGVIGY NDCTDGSEEI ILEFCKQYPS FIPIKYPYEI
151 QIQNPKSEEN KLYSYYNYVA SFIPKDEWLI KIDVDHIYDA KKLYKSFYIP
201 KNKYDVVSYS RVDIHYFNDN FFLCKDNNGN ILKEPGDCLL INNYNLKWKE
251 VLIDRINNNW KKATKQSFSS NIHSLEQLKY KHRILFHTEL NNYHFPFLKK
301 HRAQDIYKYN WISIEEFKKF YLQNINHKIE PSMISKETLK KIFLTLF
```

```
SEO. ID NO: 18. Nucleotide sequence of \beta-1,4-GalNAc transferase from C. jejuni 0:1.
ATGACTTTGT TTTATAAAAT TATAGCTTTT TTAAGATTGC TTAAAAATTGA TAAAAAAATTA
AAATTTGATA ATGAATATTT TTTAAACTTA AATAAAAAAA TCTACAATGA AAAGCATAAA
GGTTTTTTTG ATTTTGATCC AAACTCAAAA GATACAAAAT CTCCTTTAAA TCCATGGGCT
TTTATAAGAG TAAAAAATGA AGCCACTACT TTAAGAGTAT CACTTGAAAG TATGTTACCT
GCCATACAAA GAGGTGTTAT AGGATATAAT GATTGTACTG ATGGAAGTGA AGAAATTATT
TTGGAATTTT GCAAACAATA CCCTTCGTTT ATACCAGTAA AATATCCCCA TGAGGTGCAA
ATTGAAAATC CGCAAAGCGA AGAAAATAAA CTTCATAGTT ATTATAACTA TGTAGCTAGT TTTATACCGC AAGATGAGTG GCTTATAAAA ATAGATGTGG ATCATTACTA TGATGCAAAA
AAATTATATA AGAGTTTTTA TATGGCATCA AAAAATACTG CTGTTAGATT TCCAAGAATT
AATTTTTTAA TACTAGATAA AATTGTAATT CAAAATATAG GAGAATGTGG TTTTATCGAT
GGAGGGGATC AATTGTTAAT TCAAAAGTGC AATAGTGTAT TTATAGAAAG AATGGTTTCA
AAGCAAAGTC AGTGGATTGA TCCTGAAAAA ACTGTGAAAG AATTGTATTC TGAACAGCAA
ATTATACCCA AACATATAAA AATCTTACAA GCAGAATTAC TTCAATGGCA TTTTCCTGCT
TTAAAATATC ATAGAAATGA TTATCAAAAA CATTTGGATG CTTTAACTTT AGAAGATTTT
AAAAAATCC ATTATAGACA TAGAAAAATA AAGAAAATAA ATTATACAAT GCTTGATGAA
AAAGTAATTC GTGAAATATT AGATAAATTT AAATTGAGTG GTAAAAAAAT GACTTTAGCT
ATAATACCTG CTCGAGCTGG TTCAAAAGGT ATAAAAAATA AAAATTTAGC TCTTTTGCAT
GATAGGCCTT TGTTGTATTA TACTATCAAT GCAGCAAAAA ATTCAAAGTA TGTAGATAAA
ATTGTTTTAA GTAGTGATGG CGATGATATA TTAGAATATG GACAAACTCA AGGTGTAGAT
GTGTTAAAAA GACCTAAAGA ATTAGCGCTA GATGATACAA CTAGTGATAA GGTTGTATTG
CATACCTTGA GTTTTATAA AGATTATGAA AATATTGTTT TATTACAACC CACTTCTCT
TTAAGGACAA ATGTACATAT AGATGAAGCT TTTTTAAAAT TTAAAAATGA AAACTCAAAT
GCATTAATAA GTGTTGTAGA ATGTGATAAT AAAATTTTAA AAGCTTTTAT AGATGATAAT
GGTAACTTAA AAGGAATTTG TGATAACAAA TATCCATTTA TGCCTAGACA AAAATTACCA
AAAACTTATA TGAGTAATGG TGCAATTTAT ATAGTAAAGT CAAATTTATT TTTAAATAAC
CCAACTTTTC TACAAGAAAA AACAAGTTGC TATATAATGG ACGAAAAAGC TAGTTTGGAT
ATAGATACAA CAGAGGATTT AAAAAGAGTT AATAATATAA GCTTCTTA
```

SEQ. ID NO: 19. Amino Acid sequence of β-1,4-GalNAc transferase from C. jejuni 0:1. MTLFYKIIAF LRLLKIDKKL KFDNEYFLNL NKKIYNEKHK GFFDFDPNSK DTKSPLNPW AFIRVKNEAT TLRVSLESML PAIQRGVIGY NDCTDGSEEI ILEFCKQYPS FIPVKYPHE VQIENPQSEE NKLHSYYNYV ASFIPQDEWL IKIDVDHYYD AKKLYKSFYM ASKNTAVRF PRINFLILDK IVIQNIGECG FIDGGDQLLI QKCNSVFIER MVSKQSQWID PEKTVKELY SEQQIIPKHI KILQAELLQW HFPALKYHRN DYQKHLDALT LEDFKKIHYR HRKIKKINY TMLDEKVIRE ILDKFKLSGK KMTLAIIPAR AGSKGIKNKN LALLHDRPLL YYTINAAKN SKYVDKIVLS SDGDDILEYG QTQGVDVLKR PKELALDDTT SDKVVLHTLS FYKDYENIV LLQPTSPLRT NVHIDEAFLK FKNENSNALI SVVECDNKIL KAFIDDNGNL KGICDNKYP FMPRQKLPKT YMSNGAIYIV KSNLFLNNPT FLQEKTSCYI MDEKASLDID TTEDLKRVNNI SFL

SEO. ID NO: 20. Nucleotide sequence of β -1,4-GalNAc transferase from C. jejuni 0:10.

SEQ. ID NO: 21. Amino acid sequence of β-1,4-GalNAc transferase from C. jejuni 0:1.

```
MLFQSYFVKI ICLFIPFRKI RHKIKKTFLL KNIQRDKIDS YLPKKTLIQI NKYNNEDLI
KLNKAIIGGG HKGYFNYDEK SKDPKSPLNP WAFIRVKNEA ITLKASLESI LPAIQRGVI
GYNDCTDGSE EIILEFCKQY PSFIPIKYPY EIQIQNPKSE ENKLYSYYNY VASFIPKDE
WLIKIDVDHY YDAKKLYKSF YIPRKNYHVI SYSRIDFIFN EEKFYVYRNK EGEILKAPG
DCLAIQNTNL FWKEILIEDD TFKWNTAKNN IENAKSYEIL KVRNRIYFTT ELNNYHFPF
IKNYRKNDYK QLNWVSLDDF IKNYKEKLKN QIDFKMLEYK TLKKVYKKLT SSASDKI
```

SEQ. ID NO: 22. Nucleotide sequence of β -1,4-GalNAc transferase from C. jejuni 0:1. O:36

DNA:						
ATGCTTAAAA	AAATCATTTC	TTTATATAAA	AGATACTCGA	TTTCTAAAAA	ATTGGTTTTA	
GATAATGAGC	ATTTCATTAA	GGAAAATAAA	AACATCTATG	GAAAAAAACA	TAAGGGCTTT	
			AAATCACCCC			
AGGGTTAAAA	ATGAAGCTTT	AACCCTAAGA	GTTTCTTTAG	AAAGTATACT	ACCTGCTTTA	
			GATGATGGGA			
TTTTGCAAGC	AATATCCCAA	CTTCATTGCT	AAAAAATATC	CTTATAAAGT	AGATCTAGAA	
AATCCTAAAA	ATGAAGAAAA	TAAACTTTAC	TCTTATTACA	ATTGGGCAGC	ATCTTTTATA	
CCCTTAGATG	AGTGGTTTAT	AAAAATCGAT	GTGGATCATT	ACTACGATGC	CAAGAAGCTT	
TATAAGAGTT	TTTATAGGAT	TGATCAAGAA	AATAAAGCCT	TATGCTACCC	AAGAATTAAT	
TTTATAATCT	TAAATGGAAA	TATTTATGTG	CAAAATAGTG	GAAATTATGG	ATTCATAGGG	
GGGGGGGATC	AACTCTTGAT	TAAAAGAAGA	AATAGTAGCT	TTATAGAAAG	AAGGGTTTCA	Α
AAAAAAGCCA	ATGGATAGAT	CCTAAGGGAC	TTATAGAAGA	ACTCTACTCC	GAGCAACAAG	
TCTTATCTCA	AGGAGTGAAA	ATACTACAAG	CTCCCCTACT	TCAGTGGCAT	TTTCCTGCCT	
			ATTTAGATAT			
AGGCCTTTCA	TCGTAAGAGC	AAAGAGGCTA	AAAAAATAGA	CTTTGCCATG	CTAAAACGCC	
CTGTAATCGA	GCAAATATTA	AAGAAATTTC	AAGGAGAGAT	AAAA		

SEQ. ID NO: 23. Amino acid sequence of β -1,4-GalNAc transferase from C. jejuni 0:36.

```
MLKKIISLYK RYSISKKLVL DNEHFIKENK NIYGKKHKGF FDFDEKAKDV KSPLNPWGFI RVKNEALTLR VSLESILPAL QRGIIAYNDC DDGSEELILE FCKQYPNFIA KKYPYKVDLE NPKNEENKLY SYYNWAASFI PLDEWFIKID VDHYYDAKKL YKSFYRIDQE NKALCYPRIN FIILNGNIYV QNSGNYGFIG GGDQLLIKRR NSSFIERRVS KKSQWIDPKG LIEELYSEQQ VLSQGVKILQ APLLQWHFPA LKYRNDYQQ YLDILSLEEF QAFHRKSKEA KKIDFAMLKR PVIEQILKKF QGEIK
```

SEQ. ID NO: 24. Nucleotide sequence of β -1,4-GalNAc transferase from C. jejuni NCTC11168

ATGACTTTGT	TTTATAAAAT	TATAGCTTTT	TTAAGATTGC	TTAAAATTGA	TAAAAAATTA	
			AATAAAAAAA			
GGTTTTTTTG	ATTTTGATCC	AAACTCAAAA	GATACAAAAT	CTCCTTTAAA	TCCATGGGCT	
TTTATAAGAG	TAAAAAATGA	AGCCACTACT	TTAAGAGTAT	CACTTGAAAG	TATGTTACCT	
			GATTGTACTG			
TTGGAATTTT	GCAAACAATA	CCCTTCGTTT	ATACCAGTAA	AATATCCCCA	TGAGGTGCAA	
			CTTCATAGTT			
			ATAGATGTGG			
			AAAAATACTG			
AATTTTTTAA	TACTAGATAA	AATTGTAATT	CAAAATATAG	GAGAATGTGG	TTTTATCGAT	
GGAGGGGATC	AATTGTTAAT	TCAAAAGTGC	AATAGTGTAT	TTATAGAAAG	AATGGTTTCA	

AAGCAAAGTC	AGTGGATTGA	TCCTGAAAAA	ACTGTGAAAG	AATTGTATTC	TGAACAGCAA
ATTATACCCA	AACATATAAA	AATCTTACAA	GCAGAATTAC	TTCAATGGCA	TTTTCCTGCT
TTAAAATATC	ATAGAAATGA	TTATCAAAAA	CATTTGGATG	CTTTAACTTT	AGAAGATTTT
AAAAAAATCC	ATTATAGACA	TAGAAAAATA	AAGAAAATAA	ATTATACAAT	GCTTGATGAA
AAAGTAATTC	GTGAAATATT	AGATAAATTT	AAATTGAGTG	GTAAAAAAAT	GACTTTAGCT
ATAATACCTG	CTCGAGCTGG	TTCAAAAGGT	ATAAAAAATA	AAAATTTAGC	TCTTTTGCAT
GATAGGCCTT	TGTTGTATTA	TACTATCAAT	GCAGCAAAAA	ATTCAAAGTA	TGTAGATAAA
ATTGTTTTAA	GTAGTGATGG	CGATGATATA	TTAGAATATG	GACAAACTCA	AGGTGTAGAT
GTGTTAAAAA	GACCTAAAGA	ATTAGCGCTA	GATGATACAA	CTAGTGATAA	GGTTGTATTG
CATACCTTGA	GTTTTTATAA	AGATTATGAA	AATATTGTTT	TATTACAACC	CACTTCTCCT
TTAAGGACAA	ATGTACATAT	AGATGAAGCT	TTTTTAAAAT	TTAAAAATGA	AAACTCAAAT
GCATTAATAA	GTGTTGTAGA	ATGTGATAAT	AAAATTTTAA	AAGCTTTTAT	AGATGATAAT
GGTAACTTAA	AAGGAATTTG	TGATAACAAA	TATCCATTTA	TGCCTAGACA	AAAATTACCA
AAAACTTATA	TGAGTAATGG	TGCAATTTAT	ATAGTAAAGT	CAAATTTATT	TTTAAATAAC
				ACGAAAAAGC	TAGTTTGGAT
ATAGATACAA	CAGAGGATTT	AAAAAGAGTT	AATAATATAA	GCTTCTTA	

SEQ. ID NO: 25. Amino Acid sequence of β -1,4-GalNAc transferase from C. jejuni NCTC11168

```
MTLFYKIIAF LRLLKIDKKL KFDNEYFLNL NKKIYDEKHK GFFDFDNSK DTKSPLNPW
AFIRVKNEAT TLRVSLESML PAIQRGVIGY NDCTDGSEEI ILEFCKQYPS FIPVKYPHE
VQIENPQSEE NKLHSYYNYV ASFIPQDEWL IKIDVDHYYD AKKLYKSFYM ASKNTAVRF
PRINFLILDK IVIQNIGECG FIDGGDQLLI QKCNSVFIER MVSKQSQWID PEKTVKELY
SEQQIIPKHI KILQAELLQW HFPALKYHRN DYQKHLDALT LEDFKKIHYR HRKIKKINY
TMLDEKVIRE ILDKFKLSGK KMTLAIIPAR AGSKGIKNKN LALLHDRPLL YYTINAAKN
SKYVDKIVLS SDGDDILEYG QTQGVDVLKR PKELALDDTT SDKVVLHTLS FYKDYENIV
LLQPTSPLRT NVHIDEAFLK FKNENSNALI SVVECDNKIL KAFIDDNGNL KGICDNKYP
FMPRQKLPKT YMSNGAIYIV KSNLFLNNPT FLQEKTSCYI MDEKASLDID TTEDLKRVNN ISFL
```

SEQ ID NO: 26: Nucleotide sequence of β1,3-galactosyltransferase-encoding ORF 6a of LOS biosynthesis locus from C. jejuni strain OH4384

TTTCAATCAT	CTTACCAACT	TATAATGTGG	AACAATATAT	50
ATAGAAAGCT	GTATCAATCA	GACTTTTAAA	GATATAGAAA	100
TGATGATTGT	GGAAATGATA	ATAGTATAAA	TATAGCCAAA	150
AAAAAGACAA	AAGAATAAAA	ATAATCCACA	ATGAAAAAA	200
TTAAGAGCAA	GATATGAAGG	TGTGAAAGTA	GCAAACTCTC	250
GTTTTTAGAT	CCTGATGATT	ATTTGGAACT	AAATGCTTGT	300
TAAAAATTTT	AGATGAACAG	GATGAAGTTG	ATTTAGTGTT	350
ATTGTTGAAA	GTAATGTTAT	TTCATATAAA	AAGTTTGACT	400
TTTTTATAGC	AAAAAAGAGT	TTGTAAAAA	AATTATTGCA	450
TATATTGGAC	TATGTGGGGG	AAACTTATAA	GAAAGAAATT	500
GCTTTTGCGA	GTTTAAGACT	CGAGAAAGAT	GTTAAAATCA	550
AGATGTATTG	TTATATTATC	CAATGTTAAG	TCAAGCTCAA	600
ATATGAACTG	TAATTTATAT	CATTACGTGC	CTAATAATAA	650
AATACTAAGA	ATGAAGTGCT	TGTTAAAAAT	AATATTCAAG	700
GGTTTTAAAC	TATTTAAGGC	AAAATTATAT	TTTAAACAAG	750
TTCTCTATGT	GCTAATTAAA	TATTTGCTAT	ATATTCAAAT	800
AAAAGAACAA	AATTAATGGT	TACATTATTA	GCTAAAATAA	850
TTTAAAAATT	TTATTTAAAT	ATAAAAAATT	TTTAAAACAA	900
				906
	ATAGAAAGCT TGATGATTGT AAAAAGACAA TTAAGAGCAA GTTTTTAGAT TAAAAATTTT ATTGTTGAAA TTTTTATAGC TATATTGGAC GCTTTTGCGA AGATGTATTG ATATGAACTG AATACTAAGA GGTTTTAAAC TTCTCTATGT AAAAGAACAA	ATAGAAAGCT GTATCAATCA TGATGATTGT GGAAATGATA AAAAAGACAA AAGAATAAAA TTAAGAGCAA GATATGAAGG GTTTTTAGAT CCTGATGATT TAAAAATTTT AGATGAACAG ATTGTTGAAA GTAATGTTAT TTTTTATAGC AAAAAAGAGT TATATTGGAC TATGTGGGGG GCTTTTGCGA GTTTAAGACT AGATGTATTG TAATATTATC ATATGAACTG TAATTTATAT AATACTAAGA ATGAAGTGCT GGTTTTAAAC TATTTAAGC TTCTCTATGT GCTAATTAAA AAAAGAACAA AATTAATGGT	ATAGAAAGCT GTATCAATCA GACTTTTAAA TGATGATTGT GGAAATGATA ATAGTATAAA AAAAAGACAA AAGAATAAAA ATAATCCACA TTAAGAGCAA GATATGAAGG TGTGAAAGTA GTTTTTAGAT CCTGATGATT ATTTGGAACT TAAAAATTTT AGATGAACAG GATGAAGTTG ATTGTTGAAA GTAATGTTAT TTCATATAAA TTTTTTATAGC AAAAAAGAGT TTGTAAAAAA TATATTGGAC TATGTGGGGG AAACTTATAA GCTTTTGCGA GTTTAAGACT CGAGAAAGAT AGATGTATTG TTATATTATC CAATGTTAAG ATATGAACTG TAATTTATAT CATTACGTGC AATACTAAGA ATGAAGTGCT TGTTAAAAAT GGTTTTAAAC TATTTAAGGC AAAATTATAT TTCTCTATGT GCTAATTAAA TATTTGCTAT AAAAGAACAA AATTAATGGT TACATTATTA	ATAGAAAGCT GTATCAATCA GACTTTTAAA GATATAGAAA TGATGATTGT GGAAATGATA ATAGTATAAA TATAGCCAAA AAAAAGACAA AAGAATAAAA ATAATCCACA ATGAAAAAAA TTAAGAGCAA GATATGAAGG TGTGAAAGTA GCAAACTCTC GTTTTTAGAT CCTGATGATT ATTTGGAACT AAATGCTTGT TAAAAATTTT AGATGAACAG GATGAAGTTG ATTTAGTGTT ATTGTTGAAA GTAATGTTAT TTCATATAAA AAGTTTGACT TTTTTATAGC AAAAAAGAGT TTGTAAAAAA AATTATTGCA TATATTGGAC TATGTGGGGG AAACTTATAA GAAAGAAATT GCTTTTGCGA GTTTAAGACT CGAGAAAGAT GTTAAAAATCA AGATGTATTG TTATATTATC CAATGTTAAG TCAAGCTCAA ATATGAACTG TAATTTATAT CATTACGTGC CTAATAATAA AATACTAAGA ATGAAGTGCT TGTTAAAAAT AATATTCAAG GGTTTTAAAC TATTTAAGC AAAATTATAT TTTAAACAAG TTCTCTATGT GCTAATTAAA TATTTGCTAT ATATTCAAAT AAAAGAACAA AATTAATGGT TACATTATTA GCTAAAATAA

SEQ ID NO: 27 Amino acid sequence of β1,3-galactosyltransferase encoded by ORF 6a of LOS biosynthesis locus from C. jejuni strain OH4384

10 20 30 40 50

1 MFKISIILPT YNVEQYIARA IESCINQTFK DIEIIVVDDC GNDNSINIAK
51 EYSKKDKRIK IIHNEKNLGL LRARYEGVKV ANSPYIMFLD PDDYLELNAC
101 EECIKILDEQ DEVDLVFFNA IVESNVISYK KFDFNSGFYS KKEFVKKIIA
151 KKNLYWTMWG KLIRKKLYLE AFASLRLEKD VKINMAEDVL LYYPMLSQAQ
201 KIAYMNCNLY HYVPNNNSIC NTKNEVLVKN NIQELQLVLN YLRQNYILNK
251 YCSVLYVLIK YLLYIQIYKI KRTKLMVTLL AKINILTLKI LFKYKKFLKQ
301 C

SEQ ID NO: 28. Nucleotide sequence of CgtB β1,3 galactosyltransferase from C. jejuni serotype O:2 (strain NCTC 11168).

ATGAGTCAAA TTTCCATCAT ACTACCAACT TATAATGTGG AAAAATATAT 50 TGCTAGAGCA TTAGAAAGTT GCATTAACCA AACTTTTAAA GATATAGAAA 100 TCATTGTAGT AGATGATTGT GGTAATGATA AAAGTATAGA TATAGCTAAA 150 GAGTATGCTA GTAAAGATGA TAGAATAAAA ATCATACATA ATGAAGAGAA 200 TTTAAAGCTT TTAAGAGCAA GATATGAAGG TGCTAAAGTA GCAACTTCAC 250 CTTATATCAT GTTTTTAGAT TCTGATGATT ATTTAGAACT TAATGCTTGC 300 350 400 GTTGTGTTTT GAAGCTTTTA TTACCAATGC AAAAAAATCA ATAAAAAAAT TAAATATAAA ACAAGGAAAA TACAACAACA AAGAATTTAC AATGCAAATA 450 CTTAAAACTA AAAATCCATT TTGGACAATG TGGGCTAAAA TAATCAAAAA 500 AGATATTTAT TTAAAAGCCT TCAACATGTT AAATCTCAAA AAAGAAATCA 550 AAATAAATAT GGCAGAAGAT GCCTTATTAT ATTATCCTTT GACAATATTA 600 TCTAATGAAA TATTTTACTT AACACAACCT TTGTATACCC AGCATGTAAA 650 700 TAGCAATTCT ATAACAAATA ATATTAATTC TTTAGAAGCT AATATTCAAG 750 AACATAAAAT TGTTTTAAAT GTTTTAAAAT CAATTAAAAA TAAAAAAAACA CCTCTATATT TTCTAATTAT ATATTTATTA AAAATTCAAT TATTGAAATA 800 TGAACAAAAT TTTAATAAAA GAAATATAAA TCTTATTTAT TATAAAATAA 850 900 ATATTTTATA TCAAAAATAT CAATTCAAAT GGAAAAAATT TTTATATAAT 912 TTAATTCCGT AA

SEQ ID NO: 29. Amino acid sequence of CgtB β1,3 galactosyltransferase from C. jejuni serotype O:2 (strain NCTC 11168).

10 20 30 40 50

1 MSQISIILPT YNVEKYIARA LESCINQTFK DIEIIVVDDC GNDKSIDIAK
51 EYASKDDRIK IIHNEENLKL LRARYEGAKV ATSPYIMFLD SDDYLELNAC
101 EECIKILDMG GGGKIDLLCF EAFITNAKKS IKKLNIKQGK YNNKEFTMQL
151 KTKNPFWTMW AKIIKKDIYL KAFNMLNLKK EIKINMAEDA LLYYPLTILS
201 NEIFYLTQPL YTQHVNSNSI TNNINSLEAN IQEHKIVLNV LKSIKNKKTP
251 LYFLIIYLLK IQLLKYEQNF NKRNINLIYY KINILYQKYQ FKWKKFLYNL
301 IP

SEO ID NO. 30: Nucleotide sequence of β-1,3-galactosyl transferase from C. jejuni O:10

SEQ ID NO. 31. Amino acid sequence of β-1,3-galactosyl transferase from C. jejuni O:10 mfkisiilpt ynveqyiara iescinqtfk nieiivvddc gsdksidivk eyakkddri kiihneenlk llraryegvk vanspyimfl dpddylelna ceecmkilkn neidllffn afvlennnki erklnfqekc yvkkdflkel lktknlfwtv wakvikkely lkavglisl enakinmaed vllyyplini sntifhlskn lynyqinnfs itktltlqni ktniqeqdn vlyllkkmqy nynfnltlk lieyflliek yslsskrnvl cfkiniffkk iqfkfyrllk m

SEQ ID NO: 32. Amino acid sequence of lipid A biosynthesis acyltransferase (C. jejuni OH4384).

```
1 MKNSDRIYLS LYYILKFFVT FMPDCILHFL ALIVARIAFH LNKKHRKIIN
51 TNLQICFPQY TQKERDKLSL KIYENFAQFG IDCLQNQNTT KEKILNKVNF
101 INENFLIDAL ALKRPIIFTT AHYGNWEILS LAYAAKYGAI SIVGKKLKSE
151 VMYEILSQSR TQFDIELIDK KGGIRQMLSA LKKERALGIL TDQDCVENES
201 VRLKFFNKEV NYQMGASLIA QRSNALIIPV YAYKEGGKFC IEFFKAKDSQ
251 NASLEELTLY QAQSCEEMIK KRPWEYFFFH RRFASYNEEI YKGAK
```

SEQ ID NO: 33. Amino acid sequence of glycosyltransferase encoded by ORF 3a of C. jejuni OH4384 LOS locus.

```
1 MNLKQISVII IVKNAEQTLL ECLNSLKDFD EIILLNNESS DNTLKIANEF
51 KKDFANLYIY HNAFIGFGAL KNLALSYAKN DWILSIDADE VLENECIKEL
101 KNLKLQEDNI IALSRKNLYK GEWIKACGWW PDYVLRIFNK NFTRFNDNLV
151 HESLVLPSNA KKIYLKNGLK HYSYKDISHL IDKMQYYSSL WAKQNIHKKS
201 GVLKANLRAF WTFFRNYFLK NGFLYGYKGF IISVCSALGT FFKYMKLYEL
251 QRQKPKTCAL IIITYNQKER LKLVLDSVKN LAFLPNEVLI ADDGSKEDTA
301 RLIEEYQKDF PCPLKHIWQE DEGFKLSKSR NKTIKNADSE YIIVIDGDMI
351 LEKDFIKEHL EFAQRKLFLQ GSRVILNKKE SEEILNKDDY RIIFNKKDFK
```

SEQ ID NO: 34. Amino acid sequence of glycosyltransferase encoded by ORF 4a of C. jejuni OH4384 LOS locus.

- 1 MKKIGVVIPI YNVEKYLREC LDSVINQTYT NLEIILVNDG STDEHSLNIA 51 KEYTLKDKRI TLFDKKNGGL SSARNIGIEY FSGEYKLKNK TQHIKENSLI 101 EFQLDGNNPY NIYKAYKSSQ AFNNEKDLTN FTYPSIDYII FLDSDNYWKL 151 NCIEECVIRM KNVDVLWFDH DCTYEDNIKN KHKKTRMEIF DFKKECIITP 201 KEYANRALSV GSRDISFGWN GMIDFNFLKQ IKLKFINFII NEDIHFGIIL 251 FASANKIYVL SQKLYLCRLR ANSISNHDKK ITKANVSEYF KDIYETFGEN 301 AKEAKNYLKA ASRVITALKL IEFFKDQKNE NALAIKETFL PCYAKKALMI 351 KKFKKDPLNL KEQLVLIKPF IQTKLPYDIW KFWQKIKNI
- SEQ ID NO: 35. Amino acid sequence of sialic acid synthase encoded by ORF 8a of C. jejuni OH4384 LOS locus.
- 1 MKEIKIQNII ISEEKAPLVV PEIGINHNG SLELAKIMVD AAFSTGAKII 51 KHQTHIVEDE MSKAAKKVIP GNAKISIYEI MQKCALDYKD ELALKEYTEK 101 LGLVYLSTPF SRAGANRLED MGVSAFKIGS GECNNYPLIK HIAAFKKPMI 151 VSTGMNSIES IKPTVKILLD NEIPFVLMHT TNLYPTPHNL VRLNAMLELK 201 KEFSCMVGLS DHTTDNLACL GAVALGACVL ERHFTDSMHR SGPDIVCSMD 251 TQALKELIIQ SEQMAIMRGN NESKKAAKQE QVTIDFAFAS VVSIKDIKKG 301 EVLSMDNIWV KRPGLGGISA AEFENILGKK ALRDIENDTQ LSYEDFA
- SEQ ID NO: 36. Amino acid sequence of enzyme involved in sialic acid biosynthesis encoded by ORF 9a of *C. jejuni* OH4384 *LOS* locus.
- 1 MYRVQNSSEF ELYIFATGMH LSKNFGYTVK ELYKNGFKNI YEFINYDKYF 51 STDKALATTI DGFSRYVNEL KPDLIVVHGD RIEPLAAAIV GALNNILVAH 101 IEGGEISGTI DDSLRHAISK LAHIHLVNDE FAKRRLMQLG EDEKSIFIIG 151 SPDLELLNDN KISLNEAKKY YDINYENYAL LMFHPVTTEI TSIKNQADNL 201 VKALIQSNKN YIVIYPNNDL GFELILQSYE ELKNNPRFKL FPSLRFEYFI 251 TLLKNADFII GNSSCILKEA LYLKTAGILV GSRQNGRLGN ENTLKVNANS 301 DEILKAINTI HKKQDLFSAK LEILDSSKLF FEYLQSGEFF KLNTQKVFKD 351 IK
- SEQ ID NO: 37. Amino acid sequence of CMP-sialic acid synthetase encoded by ORF 10a of C. jejuni OH4384 LOS locus.
- 1 MSLAIIPARG GSKGIKNKNL VLLNNKPLIY YTIKAALNTK SISKVVVSSD 51 SDEILNYAKS QNVDILKRPI SLAQDNTTSD KVLLHALKFY KDYEDVVFLQ 101 PTSPLRTNIH IDEAFNLYKN SNANALISVS ECDNKILKAF VCNEYGDLAG 151 ICNDEYPFMP RQKLPKTYMS NGAIYILKIK EFLNNPSFLQ SKTKHFLMDE 201 SSSLDIDCLE DLKKAEQIWK K
- SEQ ID NO: 38. Amino acid sequence of acetyltransferase encoded by ORF 11a of *C. jejuni* OH4384 *LOS* locus.
 - 1 MEKITLKCNK NILNLLKQYN IYTKTYIENP RRFSRLKTKD FITFPLENNQ 51 LESVAGLGIE EYCAFKFSNI LHEMDSFSFS GSFLPHYTKV GRYCSISDGV

- 101 SMFNFQHPMD RISTASFTYE TNHSFINDAC QNHINKTFPI VNHNPSSSIT
- 151 HLIIQDDVWI GKDVLLKQGI TLGTGCVIGQ RAVVTKDVPP YAIVAGIPAK 201 IIKYRFDEKT IERLLKIQWW KYHFADFYDI DLNLKINQYL DLLEEKIIKK
- 251 SISYYNPNKL YFRDILELKS KKIFNLF

SEO ID NO: 39. Amino acid sequence of glycosyltransferase encoded by ORF 12a of C. jejuni OH4384 LOS locus.

- 1 MPQLSIIIPL FNSCDFISRA LQSCINQTLK DIEILIIDDK SKDNSLNMVL
- 51 EFAKKDPRIK IFQNEENLGT FASRNLGVLH SSSDFIMFLD SDDFLTPDAC
- 101 EIAFKEMKKG FDLLCFDAFV HRVKTKQFYR FKQDEVFNQK EFLEFLSKQR
- 151 HFCWSVWAKC FKKDIILKSF EKIKIDERLN YGEDVLFCYI YFMFCEKIAV
- 201 FKTCIYHYEF NPNGRYENKN KEILNQNYHD KKKSNEIIKK LSKEFAHDEF
- 251 HQKLFEVLKR EEAGVKNRLK