## Longest Common Subsequence

A DNA sequence is composed of 4 letters A, C, G, T

Example:  $X = \{A \ G \ G \ C \ T\}$ 

A **subsequence** of a sequence is the same sequence with 0 or more elements left out (deleted)

Subsequences of X = AC, GGG, GCT, GT, .....

Substring is different from subsequence, substring is consecutive string.

For example:

G T is subsequence of X but it is not substring of X.

A DNA sequence is composed of 4 letters A, C, G, T

Example:  $X = \{A \ G \ G \ C \ T\}$ 

A **subsequence** is of a sequence is the same sequence with 0 or more elements left out (deleted)

Subsequences of X = A C, G G G, G C T, G T, .....

Question: Which of the following are subsequences of above sequence X?

- a) AG
- b) GA
- c) GCT
- d) AT
- e) TA

A DNA sequence is composed of 4 letters A, C, G, T

Example:  $X = \{A \ G \ G \ C \ T\}$ 

A **subsequence** is of a sequence is the same sequence with 0 or more elements left out (deleted)

Subsequences of X = A C, G G G, G C T, G T, .....

Question: Which of the following are subsequences of above sequence X?

- a) AG
- b) GA
- c) GCT
- d) AT
- e) TA

Correct Answer: a), c), d)

**Common Subsequence**: A common subsequence of 2 DNA sequences is a subsequence present in both sequences

$$X = AGCGTAG$$

$$Y = GTCAGA$$

Common subsequences of X and Y = GT, GTA, GA, AG, GCA, ......

Longest Common subsequence is the longest sequence among common subsequences.

$$X = AG$$
  $C$   $GTAG$ 

$$Y = G T C A G A$$

**Longest is GCGA** 

## Application

Comparison of two DNA strings in evolutionary tree

#### Brute Force Algorithm

• Brute force algorithm would compute all subsequences of both sequences and find the common and print the longest.

#### OR

- Compute all subsequences of one sequence and check if it is also present in the other sequence. Print the longest common sequence.
- How many subsequences are there in a sequence of n elements?
- Think about the definition of a subsequence
- A subsequence is same sequence with 0 or more elements left out.
- For each of the n elements, we have an option, delete it or keep it.
- 2 possibilities for each of the n elements so total subsequences =
- $2 * 2 * 2 .... * 2 = 2^n$

#### Brute Force Algorithm

- if |X| = m, |Y| = n, then there are  $2^m$  subsequences of x; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is  $O(n 2^m)$

The brute force algorithm will take exponential time since computing all subsequences of any one sequence will take exponential time.

#### Counter Example

Suppose we have following two DNA sequences:

- X = A C G T A
- Y = A T G T T C
- LCS = A G T
- If you run the wrong O(m\*n) algorithm on it, it will fail both ways.
- You can try following as well
- X = A T G T T C
- Y = A C G T A
- LCS= A G T

#### Counter Example

1. The wrong O (m\*n) algorithm is following:

```
2. i = 1
3. while (i < m) {
4. j = 1
5. while (j < n) {
6. if (X[i] == Y[i])
         Print X[i], i++, j++
7.
8. else
9.
         j++
10. }
11. i++
12. }
```

This algorithm tries to print all common sub sequences but it will fail to print LCS which is A G T

- LCS problem has *optimal substructure*: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of *prefixes* of X and Y"
- If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.
- 1. If  $x_m = y_n$  then  $z_k = x_m$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$
- 2. If  $x_m \neq y_n$  then  $z_k \neq x_m$  then Z is an LCS of  $X_{m-1}$  and Y
- 3. If  $x_m \neq y_n$  then  $z_k \neq y_n$  then Z is an LCS of X and  $Y_{n-1}$

• If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.

1. If  $x_m = y_n$  then  $z_k = x_m$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$ 

$$X_1, X_2, X_3, \ldots, X_{m-2}, X_{m-1}, X_m$$

$$y_1, y_2, y_3, \ldots, y_{n-2}, y_{n-1}, y_n$$

$$X = GCGTAG$$

$$Y = GTTCAGAG$$

$$Z = GCGAG$$

• If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.

1. If  $x_m = y_n$  then  $z_k = x_m$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$ 

- If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.
- 1. If  $x_m = y_n$  then  $z_k = x_m$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$

#### **Proof by Contradiction:**

1.If  $z_k \neq x_m$  then we could add  $x_m = y_n$  to Z to get an LCS of length k + 1. By contradiction it must be that  $z_k = x_m = y_n$ .

 $|z_{k-1}| = k - 1$  and it is an LCS of  $X_{m-1}$  and  $Y_{n-1}$ . It is an LCS, if not then suppose W is LCS of  $X_{m-1}$  and  $Y_{n-1}$  with |W| > k - 1 and so by appending  $x_m = y_n$  to W we get a LCS of X and Y of length greater than k, a contradiction.

- If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.
- 2. If  $x_m \neq y_n$  then  $z_k \neq x_m$ , Z is an LCS of  $X_{m-1}$  and Y



- If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.
- 3. If  $x_m \neq y_n$  then  $z_k \neq y_n$  then Z is an LCS of X and  $Y_{n-1}$



- If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.
- 2. If  $x_m \neq y_n$  then  $z_k \neq x_m$ , Z is an LCS of  $X_{m-1}$  and Y
- 3. If  $x_m \neq y_n$  then  $z_k \neq y_n$ , Z is an LCS of X and  $Y_{n-1}$

 $Z_k$  is an LCS of  $X_{m-1}$  and Y



#### **Proof:**

2.If  $Z_k \neq X_m$  then Z is a LCS of  $X_{m-1}$  and Y.

If Z is not LCS then suppose W is LCS with of  $X_{m-1}$  and Y and |W| > k, then W would also be LCS of X and Y, a contradiction

3. Proof by reversing x and y

- LCS problem has *optimal substructure*: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of *prefixes* of X and Y"
- If  $X = \langle x_1, ..., x_m \rangle$  and if  $Y = \langle y_1, ..., y_n \rangle$  are sequences, let  $Z = \langle z_1, ..., z_k \rangle$  be some LCS of x and y.
- 1. If  $x_m = y_n$  then  $z_k = x_m$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$
- 2. If  $x_m \neq y_n$  then  $z_k \neq x_m$  then Z is an LCS of  $X_{m-1}$  and Y
- 3. If  $x_m \neq y_n$  then  $z_k \neq y_n$  then Z is an LCS of X and  $Y_{n-1}$

#### Recursive Function O(2<sup>n</sup>)

```
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )
{
   if (m == 0 || n == 0)
      return 0;
   if (X[m-1] == Y[n-1])
      return 1 + lcs(X, Y, m-1, n-1);
   else
      return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}
```

#### LCS Algorithm

- First we'll find the length of LCS (value of optimal solution). Later we'll modify the algorithm to find LCS (optimal solution) itself.
- Define  $X_i$ ,  $Y_j$  to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of  $X_i$  and  $Y_j$
- Then the length of LCS of X and Y will be c[m,n]

#### LCS Algorithm

- First we'll find the length of LCS (value of optimal solution). Later we'll modify the algorithm to find LCS (optimal solution) itself.
- Define  $X_i$ ,  $Y_j$  to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of  $X_i$  and  $Y_j$
- Then the length of LCS of X and Y will be c[m,n]

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

#### LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since  $X_0$  and  $Y_0$  are empty strings, their LCS is always empty (i.e. c[0,0]=0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

#### LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- **First case:** x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS  $X_i$  and  $Y_j$  equals to the length of LCS of smaller strings  $X_{i-1}$  and  $Y_{i-1}$ , plus 1

#### LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case:  $x/i \neq y/j$
- As symbols don't match, our solution is not improved, and the length of  $LCS(X_i, Y_j)$  is the same as before (i.e. maximum of  $LCS(X_i, Y_{j-1})$  and  $LCS(X_{i-1}, Y_j)$

#### LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m
                                  // for all X<sub>i</sub>
      for j = 1 to n
                                          // for all Y<sub>i</sub>
6.
             if (X_i == Y_i)
7.
                     c[i,j] = c[i-1,j-1] + 1
8.
9.
              else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c
```

#### LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

# What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$
  
 $X = A B C B$   
 $Y = B D C A B$ 

LCS Example (0) 3 0 Yj  $\mathbf{D}$  $\mathbf{B}$ B Xi B

$$X = ABCB$$
;  $m = |X| = 4$   
 $Y = BDCAB$ ;  $n = |Y| = 5$   
Allocate array c[5,4]

B

**ABCB** 

ABCB BDCAB

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|
| i |    | Yj | В | D | C | A | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  |   |   |   |   |   |
| 2 | В  | 0  |   |   |   |   |   |
| 3 | C  | 0  |   |   |   |   |   |
| 4 | В  | 0  |   |   |   |   |   |

$$\begin{array}{ll} \text{for } i=1 \text{ to m} & c[i,0]=0 \\ \text{for } j=1 \text{ to n} & c[0,j]=0 \end{array}$$

## LCS Example (2)

**A**BCB

|   | j  | 0  | 1   | 2 | 3 | 4 | 5 |
|---|----|----|-----|---|---|---|---|
| i |    | Yj | (B) | D | C | A | В |
| 0 | Xi | 0  |     | 0 | 0 | 0 | 0 |
| 1 | A  | 0  | 0   |   |   |   |   |
| 2 | В  | 0  |     |   |   |   |   |
| 3 | C  | 0  |     |   |   |   |   |
| 4 | В  | 0  |     |   |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (3)

ABCB

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|
| i | -  | Yj | В | D | C | A | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  | 0 | 0 | 0 |   |   |
| 2 | В  | 0  |   |   |   |   |   |
| 3 | C  | 0  |   |   |   |   |   |
| 4 | В  |    |   |   |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (4)

**A**BCB

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (5)

**A**BCB

|   | j  | 0  | 1 | 2 | 3 | 4   | 5        |
|---|----|----|---|---|---|-----|----------|
| i |    | Yj | В | D | C | A   | (B)      |
| 0 | Xi | 0  | 0 | 0 | 0 | 0   | 0        |
| 1 | A  | 0  | 0 | 0 | 0 | 1 - | <b>1</b> |
| 2 | В  | 0  |   |   |   |     |          |
| 3 | C  | 0  |   |   |   |     |          |
| 4 | В  | 0  |   |   |   |     |          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (6)

ABCB

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|
| i |    | Yj | B | D | C | A | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  | 0 | 0 | 0 | 1 | 1 |
| 2 | B  | 0  | 1 |   |   |   |   |
| 3 | C  | 0  |   |   |   |   |   |
| 4 | В  | 0  |   |   |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (7)

ABCB RDCAR

|   | j            | 0  | 1 | 2   | 3        | 4 | 5 B      |
|---|--------------|----|---|-----|----------|---|----------|
| i |              | Yj | В | D   | C        | A | <b>B</b> |
| 0 | Xi           | 0  | 0 | 0   | 0        | 0 | 0        |
| 1 | A            | 0  | 0 | 0   | 0        | 1 | 1        |
| 2 | $\bigcirc$ B | 0  | 1 | 1 - | <b>1</b> | 1 |          |
| 3 | C            | 0  |   |     |          |   |          |
| 4 | В            | 0  |   |     |          |   |          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (8) Yj B $\mathbf{D}$ $\mathbf{A}$ Xi $\mathbf{B}$

 $\mathbf{B}$ 

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (10)

ABCB

|   | j          | 0  | 1   | 2        | 3 | 4 | 5 |
|---|------------|----|-----|----------|---|---|---|
| i | ŗ          | Yj | B   | D        | C | A | В |
| 0 | Xi         | 0  | 0   | 0        | 0 | 0 | 0 |
| 1 | A          | 0  | 0   | 0        | 0 | 1 | 1 |
| 2 | В          | 0  | . 1 | .1       | 1 | 1 | 2 |
| 3 | $\bigcirc$ | 0  | 1 - | <b>1</b> |   |   |   |
| 4 | В          | 0  |     |          |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (11)

ABCB ABCB

|   | j          | 0  | 1 | 2  | 3          | 4 | 5 <sup>D</sup> |
|---|------------|----|---|----|------------|---|----------------|
| i |            | Yj | В | D  | <b>(C)</b> | A | В              |
| 0 | Xi         | 0  | 0 | 0  | 0          | 0 | 0              |
| 1 | A          | 0  | 0 | 0  | 0          | 1 | 1              |
| 2 | В          | 0  | 1 | 1, | 1          | 1 | 2              |
| 3 | $\bigcirc$ | 0  | 1 | 1  | 2          |   |                |
| 4 | В          | 0  |   |    |            |   |                |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (12) Yj B $\mathbf{D}$ $\mathbf{B}$ Xi $\mathbf{B}$ $\mathbf{B}$

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (13)

**ABCB** 

**BDCAB** 

|   | j  | 0   | 1 | 2 | 3 | 4 | 5 <sup>L</sup> |
|---|----|-----|---|---|---|---|----------------|
| i |    | Yj  | B | D | C | A | В              |
| 0 | Xi | 0   | 0 | 0 | 0 | 0 | 0              |
| 1 | A  | 0   | 0 | 0 | 0 | 1 | 1              |
| 2 | В  | 0   | 1 | 1 | 1 | 1 | 2              |
| 3 | C  | 0 、 | 1 | 1 | 2 | 2 | 2              |
| 4 | B  | 0   | 1 |   |   |   |                |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (14)

ABCB BDCAB

|   | j                         | 0  | 1   | 2        | 3                | 4        | 5 B      |
|---|---------------------------|----|-----|----------|------------------|----------|----------|
| i | -                         | Yj | В   | D        | C                | A        | <b>B</b> |
| 0 | Xi                        | 0  | 0   | 0        | 0                | 0        | 0        |
| 1 | $\mathbf{A}$              | 0  | 0   | 0        | 0                | 1        | 1        |
| 2 | В                         | 0  | 1   | 1        | 1                | 1        | 2        |
| 3 | C                         | 0  | 1   | 1        | 2                | 2        | 2        |
| 4 | $\left(\mathbf{B}\right)$ | 0  | 1 - | <b>1</b> | * <sub>2</sub> - | <b>2</b> |          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (15)

ABCB ABCB

|   | j  | 0  | 1 | 2 | 3 | 4   | <b>5</b> B |
|---|----|----|---|---|---|-----|------------|
| i | -  | Yj | В | D | C | A   | B          |
| 0 | Xi | 0  | 0 | 0 | 0 | 0   | 0          |
| 1 | A  | 0  | 0 | 0 | 0 | 1   | 1          |
| 2 | В  | 0  | 1 | 1 | 1 | 1   | 2          |
| 3 | C  | 0  | 1 | 1 | 2 | 2 🔨 | 2          |
| 4 | B  | 0  | 1 | 1 | 2 | 2   | 3          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m\*n)

since each c[i,j] is calculated in constant time, and there are m\*n elements in the array

## How to find actual LCS (Optimal Solution)

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

```
Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]
```

For each c[i,j] we can say how it was acquired:



For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

#### How to find actual LCS - continued

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m,n] and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

## Finding LCS



Finding LCS (2)



LCS (reversed order): **B C B**LCS (straight order): **B C B**(this string turned out to be a palindrome)<sub>46</sub>

## Print LCS using same array

|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|---|
|   |   | ø | м | z | J | A | w | x | U |
| 0 | Ø | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | x | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 2 | М | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 3 | J | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| 4 | Υ | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| 5 | A | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 3 |
| 6 | U | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 4 |
| 7 | z | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |

```
1. // Start from the right-most-bottom-most corner and
     // one by one store characters in lcs[]
     int i = m, j = n;
                                                           Time Complexity =
     while (i > 0 \&\& j > 0)
                                                           O(m+n)
5.
6. // If current character in X[] and Y are same, then
7.
      // current character is part of LCS
8.
      if(X[i-1] == Y[i-1])
9.
10.
         lcs[index-1] = X[i-1]; // Put current character in result
         i- -; j- -; index- -; // reduce values of i, j and index
11.
12.
13.
14.
     // If not same, then find the larger of two and
15.
      // go in the direction of larger value
16.
       else if (L[i-1][j] > L[i][j-1])
17.
       i- -;
18.
      else
19.
    j- -;
20. }
21.
22.
     // Print the lcs
     cout << "LCS of " << X << " and " << Y << " is " << lcs;
23.
                                                                             48
24.}
```

### LCS: Algo

```
LCS-LENGTH(X, Y)
     m \leftarrow length[X]
 2 n \leftarrow length[Y]
 3 for i \leftarrow 1 to m
            do c[i, 0] \leftarrow 0
     for j \leftarrow 0 to n
           \mathbf{do}\ c[0,\ j] \leftarrow 0
     for i \leftarrow 1 to m
 8
             do for j \leftarrow 1 to n
                       do if x_i = y_i
10
                               then c[i, j] \leftarrow c[i - 1, j - 1] + 1
11
                                      b[i, i] \leftarrow " \setminus "
                              else if c[i - 1, j] \ge c[i, j - 1]
12
13
                                         then c[i, j] \leftarrow c[i-1, j]
14
                                                b[i, j] \leftarrow "\uparrow"
15
                                         else c[i, j] \leftarrow c[i, j-1]
16
                                                b[i, j] \leftarrow "\leftarrow"
17
      return c and b
```

```
PRINT-LCS(b, X, i, j)
   if i == 0 or j == 0
        return
  if b[i, j] == "\\"
        PRINT-LCS(b, X, i-1, j-1)
        print x_i
  elseif b[i, j] == "\uparrow"
        PRINT-LCS(b, X, i - 1, j)
   else Print-LCS(b, X, i, j - 1)
```

Time complexity = O(m + n)

# We cannot use only last row to print LCS, it will not work on following example

|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|---|
|   |   | Ø | М | z | J | A | w | x | U |
| 0 | Ø | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | х | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 2 | М | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 3 | J | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| 4 | Υ | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| 5 | A | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 3 |
| 6 | U | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 4 |
| 7 | z | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |

## Practice Problem for Dry Run

