OSI

▶ TCP / IP 4계층

- * Packet = datagram
- ※ MTU (Maximum Transmission Unit : 대역폭)는 하나의 프레임이나 패킷이 한번에 전송가능한 데이터의 크기이다.

일반적으로 이더넷을 사용하기 때문에 최대 MTU 사이즈는 1500 바이트 이다.

► OSI 7 Layer (Open System Interconnection)

국제 표준 기관(ISO)으로써 개방형 통신을 할 수 있게 OSI 7 Layer를 만들었다.

OSI 7 Layer & TCP/IP 4 Layer

Encapsulation ---- Decapsulation

Ethernet II Header

Layer 3 IPv4 Header

Version

Version of IP Protocol. 4 and 6 are valid. This diagram represents version 4 structure only.

Header Length

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

Protocol

IP Protocol ID. Including (but not limited to): 1 ICMP 17 UDP 57 SKIP

1 ICMP 17 UDP 57 SKIP 2 IGMP 47 GRE 88 EIGRP 6 TCP 50 ESP 89 OSPF 9 IGRP 51 AH 115 L2TP

Total Length

Total length of IP datagram, or IP fragment if fragmented. Measured in Bytes.

Fragment Offset

Fragment offset from start of IP datagram. Measured in 8 byte (2 words, 64 bits) increments. If IP datagram is fragmented, fragment size (Total Length) must be a multiple of 8 bytes.

Header Checksum

Checksum of entire IP header

IP Flags

x D M

x 0x80 reserved (evil bit) D 0x40 Do Not Fragment M 0x20 More Fragments follow

RFC 791

Please refer to RFC 791 for the complete Internet Protocol (IP) Specification.

Sender Response 11

- L1 (네트워크 인터페이스)

1. MAC 주소 (48bit)

MAC주소는 내부PC끼리 통신을 주고받을 시 이용되는 근거리 통신

10진수 = 0 1 2 3 4 5 6 7 8 9

16잔수 = 0 1 2 3 4 5 6 7 8 9 A B C D E F

- L2 (인터넷 계층) 인터넷 계층은 IP를 이용한 Routing 과 Forwarding 기능이 존재한다. . Routing 외부 통신을 위해 목적지까지 최적의 경로를 정하는 역할입니다. . Forwarding 목적지주소로 가기위해 나가는 포트로 패킷을 이동시키는 역할입니다. A Class: 1 - 126 B Class: 128 - 191 C Class: 192 - 223 D Class: 224 - 239 unicast (global unicast): A,B,C = 유일한 MAC 주소 multicast : D = 0100-5e - 로 시작 broadcast : 255.255.255.255 , 1.255.255.255 = FFFF.FFFF.FFFF loopback : 127.0.0.1 사설 주소 10.0.0.0 ~ 10.255.255.255 (10/8 prefix) $172.16.0.0 \sim 172.31.255.255 (172.16/12 \text{ prefix})$ 192.168.0.0 ~ 192.168.255.255 (192.168/16 prefix) 자동 사설주소: 169.254.0.0/16

- L3 (전송 계층)

. TCP : 3way-handshake 사용 신뢰성이 높고 속도가 느리다.

. UDP: 신뢰성이 낮고 속도가 빠르다. 스트리밍(동영상) 서비스에 사용.

- L4 (응용 계층)

- . 응용프로그램을 사용하는 계층으로 FTP, HTTP 등 있습니다.
- . 프로그램상에서 수신측에 전달할 데이터가 만들어지는 곳입니다.

웹서버 = TCP 80 FTP서버 = TCP 21 (20) Telnet서버 = TCP 23

DNS 서버 = TCP 53 , UDP 53

스텝 2. 1.1.1.2 -> 1.1.1.1 경류할때

출발지 IP : 1.1.1.2 목적지 IP : 1.1.1.1 출발지 MAC: 0000.0000.1112 목적지 MAC: 0000.0000.1111

■ Collision 영역 과 Broadcast 영역

▶ Collision Domain (콜리전 도메인)

이더넷 방식의 LAN에서 전송매체를 공유하고 있는 단말 사이의 경쟁 (동시에 정보를 전송하는 등)이 생겼을 경우를 충돌이라한다. 이 때, 이 러한 충돌이 전파되어서 정보의 송, 수신에 영향을 받는 영역을 Collision Domain이라 한다.

Collision Domain은 동일 매체에 연결된 장치들의 그룹니다.

스위치 및 브리지는 이러한 도메인을 더 작은 단위로 나눔으로써 네트 워크 내부의 Collision Domain을 분할 할 수 있도록 한다.

리피터, 허브등을 통하여 네트워크를 구성할 경우 이는 2계층 장비가 아니므로 Collision을 나눌 수 없다.

▶ Broadcast Domain (브로드캐스트 도메인)

Broadcast Domain은 네트워크상에 연결된 단말중 한 노드가 브로드 캐스트 패킷을 전송할 때 그 패킷을 수신 할 수 있는 노드들의 집합을 의미한다.

Broadcast Domain 분할이 가능한 장비는 3계층 장비인 라우터, VLAN등이 존재한다.

Collision Domain을 나누는 장비들은 Collision을 나눌수는 있지만 Broadcast 패킷을 전송하는 부분에는 대책이 없다. 이때 라우터에 이 러한 Domain을 연결함으로써 Broadcast Domain을 분할 가능하다.

