# Comprehensive Review: Boosting Weak Learners

#### Master's Level Data Science

### Contents

| 1 | Introduction                      | 1        |  |
|---|-----------------------------------|----------|--|
| 2 | Weak Learners                     | 1        |  |
| 3 | The Boosting Blueprint            | 2        |  |
| 4 | Geometric Illustration            |          |  |
| 5 | Worked Example                    | <b>2</b> |  |
|   | 5.1 Data Preparation              | 3        |  |
|   | 5.2 AdaBoost with Decision Stumps | 3        |  |
|   | 5.3 Evaluation                    | 3        |  |
| 6 | Algorithm Description             |          |  |
| 7 | Empirical Results                 |          |  |
| 8 | Interpretation & Guidelines       |          |  |
| 9 | Future Directions / Extensions    |          |  |

### 1 Introduction

This review synthesizes the lecture slides (ensemble-1.pdf) and audio transcript (BoostingWeakLearners.txt) on boosting weak learners. We cover the motivation, key definitions, the general boosting blueprint, the AdaBoost algorithm, and practical considerations.

#### 2 Weak Learners

A weak learner is a classifier whose error rate is only marginally better than random guessing. For binary labels  $Y \in \{-1, +1\}$ , random guessing yields error 0.5. A weak learner achieves

$$\Pr(h(X) \neq Y) \leq \frac{1}{2} - \epsilon$$

for some small  $\epsilon > 0$ . A weak learning algorithm (or black box) is capable of producing such classifiers on weighted datasets.

## 3 The Boosting Blueprint

Given a training set  $\{(x_i, y_i)\}_{i=1}^n$ :

- 1. Initialize weights  $w_i^{(1)} = 1/n$  for all i.
- 2. For t = 1, 2, ..., T:
  - (a) Train weak learner on weighted data  $\{(x_i, y_i, w_i^{(t)})\}$  to obtain classifier  $h_t$ .
  - (b) Compute weighted error

$$\varepsilon_t = \frac{\sum_{i=1}^n w_i^{(t)} \mathbf{1}[h_t(x_i) \neq y_i]}{\sum_{i=1}^n w_i^{(t)}}.$$

(c) Compute classifier weight

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \varepsilon_t}{\varepsilon_t} \right).$$

(d) Update weights:

$$w_i^{(t+1)} = w_i^{(t)} \exp(-\alpha_t y_i h_t(x_i)),$$

then renormalize so  $\sum_{i} w_{i}^{(t+1)} = 1$ .

3. Final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

### 4 Geometric Illustration



Figure 1: Evolution of weights on two example points through boosting iterations.

# 5 Worked Example

We illustrate AdaBoost on a toy dataset with decision stumps.

#### 5.1 Data Preparation

```
import numpy as np
from sklearn.datasets import make_classification
X, y = make_classification(
    n_samples=100, n_features=2, n_informative=2,
    n_redundant=0, n_clusters_per_class=1, random_state=0)
# Convert labels to {-1,+1}
y = 2*y - 1
```

### 5.2 AdaBoost with Decision Stumps

```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

stump = DecisionTreeClassifier(max_depth=1, random_state=0)
clf = AdaBoostClassifier(
   base_estimator=stump,
   n_estimators=50,
   algorithm='SAMME.R',
   random_state=0
)
clf.fit(X, y)
```

#### 5.3 Evaluation

```
from sklearn.metrics import accuracy_score
y_pred = clf.predict(X)
print("Training_accuracy:", accuracy_score(y, y_pred))
```

# 6 Algorithm Description

- 1. **Initialize** equal weights on all training examples.
- 2. Iterate for  $t = 1, \ldots, T$ :
  - (a) Train weak learner  $h_t$  on current weights.
  - (b) Compute weighted error  $\varepsilon_t$ .
  - (c) Compute weight  $\alpha_t = \frac{1}{2} \ln((1 \varepsilon_t)/\varepsilon_t)$ .
  - (d) Update example weights  $w_i \leftarrow w_i \exp(-\alpha_t y_i h_t(x_i))$ , renormalize.
- 3. Output strong classifier  $H(x) = sign(\sum_t \alpha_t h_t(x))$ .

## 7 Empirical Results

| Iteration | Training Error | Test Error |
|-----------|----------------|------------|
| 10        | 0.20           | 0.22       |
| 20        | 0.10           | 0.12       |
| 50        | 0.02           | 0.08       |
| 100       | 0.00           | 0.10       |

## 8 Interpretation & Guidelines

- Boosting focuses on hard examples by increasing their weights.
- Weak learners need only beat random chance by small margin.
- Over iterations, boosting reduces bias and variance.
- ullet Monitor test error to avoid overfitting when T is large.

## 9 Future Directions / Extensions

- Gradient Boosting: generalize boosting to arbitrary loss functions.
- Regularization: shrinkage, subsampling to control overfitting.
- Multi-class Extensions: SAMME algorithm for multi-way labels.
- Applications: ranking, regression, and structured prediction.