۱- مقادير ماكزيمم و مىنيمم.

تعریف: فرض کنیم $D \subset \mathbb{R}$ تابع $D \to f: D \to \mathbb{R}$ را در نقطه $C \in D$ دارای ماکزیمم مطلق (مینیمم مطلق) بر $D \subset \mathbb{R}$ نامیم هر گاه برای هر $D \to f: D \to \mathbb{R}$ را (در صورت وجود) گاه برای هر $D \to f: D$ را (در صورت وجود) گاه برای هر $D \to f: D$ را (در صورت و کمترین و کم

نقطه $f:D\to\mathbb{R}$ را یک نقطه درونی برای مجموعه D نامیم هرگاه D حاوی یک همسایگی از این نقطه باشد. تابع $c\in D$ را در نقطه درونی $c\in D$ دارای یک اکسترمم نسبی یا موضعی نامیم هرگاه همسایگی از $c\in D$ مانند $c\in D$ وجود داشته باشد که تابع $c\in D$ در $c\in D$ در $c\in D$ در یک اکسترمم مطلق داشته باشد.

۲- قضیه: اگر $f:D \to \mathbb{R}$ در نقطه درونی $f:D \to \mathbb{R}$ یک اکسترمم نسبی داشته باشد آنگاه یا $f:D \to \mathbb{R}$ در $f:D \to \mathbb{R}$ در f'(c) = 0

اثبات: فرض کنیم f در c یک ماکزیمم موضعی داشته باشد. پس همسایگی چون $(c-r,c+r) \subset D$ وجود دارد که برای $\frac{f(x)-f(c)}{x-c} \geq \circ$ ، $x \in (c-r,c)$ و برای هر برای $\frac{f(x)-f(c)}{x-c} \leq \circ$ ، $x \in (c-r,c+r)$ در نتیجه $\frac{f(x)-f(c)}{x-c} \leq \circ$ ، $x \in (c,c+r)$

c ورض کنیم $c \in D$ نقطه ای درونی باشد. این نقطه را یک نقطه بحرانی برای تابع $c \in D$ نامیم هرگاه یا $c \in D$ مشتق پذیر نباشد یا $c \in D$ بنابر قضیه فوق، هر نقطه نظیر یک اکسترمم نسبی $c \in D$ بیک نقطه بحرانی این تابع است. $c \in D$ بنابر قضیه فوق، هر نقطه نظیر یک اکسترمم نسبی $c \in D$ بیک نقطه بحرانی برای تابع با ضابطه $c \in D$ است ولی عکس این خاصیت لزوما برقرار نیست. به طور مثال نقطه $c \in D$ یک نقطه بحرانی برای تابع با ضابطه $c \in D$ است ولی در این نقطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ است ولی در این نقطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه $c \in D$ نقطه بحرانی برای تابع با ضابطه بحرانی با نقطه و نقطه بحرانی برای تابع با ضابطه بحرانی با نقطه و نقطه بحرانی برای تابع با ضابطه بحرانی با نقطه و نقطه بحرانی برای تابع با ضابطه برای با نقطه و نقطه برای نقطه برای نقطه و نقطه برای نقطه و نقطه برای نقطه و نقطه برای نقط برای نقطه برای نقطه برای نقطه برای نقطه برای نقطه برای نقطه برای نقطه

۴- قضیه اکسترممهای مطلق: اگر \mathbb{R} اگر $[a,b] \to \mathbb{R}$ تابعی پیوسته باشد آنگاه f اکسترممهای مطلق خود را بر $[a,b] \to \mathbb{R}$ اتخاذ میکند. یعنی نقاطی چون $[a,b] \to \mathbb{R}$ وجود دارد که برای هر $[a,b] \to \mathbb{R}$ وجود دارد که برای هر $[a,b] \to \mathbb{R}$ وجود دارد که برای میل این مبنا بنابر بحث قبل اگر $[a,b] \to \mathbb{R}$ باشد آنگاه یک نقطه بحرانی برای $[a,b] \to \mathbb{R}$ خواهد بود. بر این مبنا

۵- دستورالعمل تعیین اکسترممهای مطلق تابعی پیوسته بر بازهای بسته و کراندار: ابتدا نقاط بحرانی f بر بازه (a,b) را به دست می آوریم. سپس با مقایسه مقادیر f در این نقاط و نقاط a و a، بیشترین مقدار و کمترین مقدار f را به دست می آوریم.

ورا بر بازه $[\circ, T]$ تعیین کنید. $f(x) = x^{\mathsf{T}} + \mathcal{F} x^{\mathsf{T}} - \mathsf{V} x - \mathsf{V} x$ وا بر بازه $f(x) = x^{\mathsf{T}} + \mathcal{F} x^{\mathsf{T}}$ تعیین کنید.

۷- مثال. تابع f با دستور \mathbb{R} بر f را تعیین کنید. $f(x)=\begin{cases} \sqrt[r]{x^{\mathsf{Y}}-\mathbf{Y}x} & x\geq\circ\\ x^{\mathsf{Y}}+\mathbf{Y}x & x<\circ\\ x^{\mathsf{Y}}-\mathbf{Y}x & x<0 \end{cases}$ ب) اکسترممهای مطلق f بر بازه [-1,7] را به دست آورید.

قضیع رل:فرض کنیم \mathbb{R} جاشد. اگر $f:[a,b] \to \mathbb{R}$ تابعی پیوسته بر $f:[a,b] \to \mathbb{R}$ و مشتقپذیر بر $f:[a,b] \to \mathbb{R}$ آنگاه $c \in (a,b)$ وجود دارد که $c \in (a,b)$

۹- مثال: نشان دهید معادله $\alpha = -1$ که دارای دقیقا یک ریشه در $\mathbb R$ است.

 $c^{\mathsf{r}} = rac{1}{1+c^{\mathsf{r}}}$ مثال: نشان دهید یک و تنها یک $c \in \mathbb{R}$ وجود دارد که -۱۰

۱۱- مثال: فرض کنید $\mathbb{R} o \mathbb{R}$ توابعی مشتق پذیر باشند. اگر نمودار دو تابع حداقل در دو نقطه یکدیگر را قطع کنند $f,g:\mathbb{R} o \mathbb{R}$ وجود دارد که f'(c)=g'(c)

۱۲- قضیه مقدار میانگین: فرض کنیم تابع \mathbb{R} $f:[a,b] o \mathbb{R}$ بیوسته و بر (a,b) مشتق پذیر باشد. در این صورت f:[a,b] o f:[a,b] o f:[a,b] وجود دارد که $f'(c)=\frac{f(b)-f(a)}{b-a}$ وجود دارد که $f'(c)=\frac{f(b)-f(a)}{b-a}$

۱۳ - مثال: هریک از نامساوی های زیر را ثابت کنید.

(الف)
$$\forall a,b \in \mathbb{R}, \qquad |\sin b - \sin a| \le |b - a|$$
 (الف) $\forall a,b \in (-\frac{\pi}{7},\frac{\pi}{7}), \quad |a - b| \le |\tan a - \tan b|$

۱۴- مثال: فرض کنید $g:[a,b] o \mathbb{R}$ توابعی پیوسته بر این بازه و مشتقپذیر بر f(a)=f(b)=f(a) باشند و f(a)=f(b)=f(a) برای هر f(b)< g(b) نشان دهید f'(a)=f(a)=f(a) نشان دهید رای بازه و مشتقپذیر بر f(a)=f(a)

۱۵- مثال: فرض کنید mx+d تابعی دو بار مشتقپذیر باشد. اگر نمودار $f:\mathbb{R} o \mathbb{R}$ به معادله mx+d را حداقل در سه نقطه قطع کند نشان دهید نقطه ای چون $c\in\mathbb{R}$ وجود دارد که $c\in\mathbb{R}$

 $x\in\mathbb{R}$ مثال: فرض کنید $f:\mathbb{R} o\mathbb{R}$ تابعی مشتقپذیر بوده، $f'(x)=rac{1}{1+x^{rac{1}{4}}}$ اگر $f:\mathbb{R} o\mathbb{R}$ نشان دهید برای هر $f:\mathbb{R} o\mathbb{R}$ مثال: فرض کنید $f(x)=\frac{1}{1+x^{rac{1}{4}}}$ تابعی مشتقپذیر بوده، $f(x)=\frac{1}{1+x^{rac{1}{4}}}$ نشان دهید برای هر $f(x)=\frac{1}{1+x^{rac{1}{4}}}$ نشان دهید برای نشان دهید برای خود برای نشان دهید برای

۱۷- رفتار هندسی توابع مشتقپذیر.

یادآوری مفهوم صعودی بودن و نزولی بودن.

قضیه: فرض کنیم I بازه ای از اعداد حقیقی و $\mathbb{R} o \mathbb{R}$ تابعی پیوسته بر این بازه و در نقاط درونی I مشتقپذیر باشد. در این صورت

است. الف) اگر برای هر نقطه درونی I معودی $f'(x) > \circ$ الف) آنگاه f بر f صعودی (اکیدا صعودی) است.

ب) اگر برای هر نقطه درونی $x \in I$ ، $x \in I$ نزولی) آنگاه f بر f تابعی نزولی (اکیدا نزولی) است.

ج) اگر برای هر نقطه درونی I ثابت است. $f'(x)=\circ$ ، $x\in I$ ثابت است.

۱۸ - آزمون مشتق اول در تعیین اکسترممهای نسبی یک تابع.

۱۹ مثال: کلیه اکسترممهای تابع f با ضابطه $f(x) = rac{1}{1+|x|} + rac{1}{1+|x-1|}$ را بر π تعیین کنید.

۲۰ فرض کنید ۱ $x^p \leq (1+x)^p$ عددی گویا باشد. الف) نشان دهید برای هر $x \geq 0$ ، $x \geq 0$ عددی گویا باشد. الف $a^p + b^p \leq (a+b)^p$ نشان دهید $a,b \geq 0$ نشان دهید

 $c\in I$ به جز $x\in I$ به جز اگر برای هر $x\in I$ به جز این بازه مشتق پذیر باشد. اگر برای هر $x\in I$ به جز این بازه مشتق پذیر باشد. اگر برای هر $x\in I$ به جز این بازه مشتق پذیر باشد. اگر برای هر $x\in I$ به جز این بازه و $x\in I$ بازه و $x\in I$ به جز این بازه و $x\in I$ به جز این بازه و $x\in I$ به بازه و $x\in I$ به جز این بازه و $x\in I$ به جز این بازه و $x\in I$ بازه و $x\in I$ به جز این بازه و $x\in I$ به بازه و $x\in I$ بازه و $x\in I$ به بازه و $x\in I$ بازه و $x\in I$ به بازه و $x\in I$

۲۲- پادمشتق و تابع اولیه. فرض کنیم G(x)=I تابع G(x)=I را یک تابع اولیه برای $F:I\to\mathbb{R}$ بر این هرگاه برای $F:I\to\mathbb{R}$ برای هرگاه برای F(x)=I به طور مثال، هر یک از توابع F(x)=I و F(x)=I توابع اولیهای برای برای F(x)=I برای هر F(x)=I برای هر F(x)=I برای هر F(x)=I برای هر تند.

 $C \in \mathbb{R}$ است که در آن F + C قضیه: اگر F یک تابع اولیه برای f بر f باشد آنگاه فرم کلی توابع اولیه f بر f به صورت f است که در آن f ثابتی دلخواه است.

(a,b) ومشتقپذیر بر این بازه و مشتقپذیر بر این بازه و مشتقپذیر بر این بازه و مشتقپذیر بر این برای هر $f,g:[a,b] o \mathbb{R}$ وجود دارد که f(a,b) o (a,b) و جود دارد که و خدارد که و جود دارد که و خدارد که و

c مثال: فرض کنید f در یک همسایگی x تابعی دوبار مشتقپذیر باشد. نشان دهید برای هر x در این همسایگی x دو تابع x دو