Lutte Informatique Défensive SOC, CERT et CTI

Georges Bossert - SEKOIA Frédéric Guihéry - AMOSSYS

15 janvier 2019 - Université Rennes 1

EXPERT IN CYBERSECURITY

L'analyse forensique

Introduction

- Le périmètre de l'analyse forensique
 - L'analyse des logs
 - L'analyse des disques
 - L'analyse de mémoires
 - L'analyse de flux réseau
 - Control L'analyse de malwares

Remote live forensic vs Forensic post-mortem

Question : quels avantages et inconvénients pour ces deux méthodes ?

Remote live forensic vs Forensic post-mortem

- Forensic post mortem : poste éteint, copie de disques et mémoires
 - Avantages : altération impossible, carving possible (fichiers supprimés / accès RAW disque), toutes les données sont disponibles
 - o Inconvénients : débranchement du poste (sauf en cas de ransomware), lent, passage à l'échelle difficile
- Remote live forensic : accès distant sur poste en cours de fonctionnement
 - Avantages : pas d'interruption du poste, rapide, déployable sur un parc
 - o Inconvénients : altération possible (pendant l'acquisition / après), données incomplètes
- A adapter en fonction du contexte
 - Incident terminé / en cours
 - But recherché

Remote live forensic

- Automatisation du déploiement (exemple : GPO sous Windows)
- Automatisation de l'extraction/la recherche d'information sur un ensemble de machines
- Recherche d'IOC en mémoire
 - o Inconvénient : l'IOC est transmis à une cible potentiellement infectée
- Outils: Mozilla MIG, Google Grr, les produits de type EDR, etc.

Remote Live Forensic: Google GRR

Récupération de données à distance sur un parc de machines

Remote Live Forensic: Google GRR

Accès aux systèmes de fichiers à distance

Remote Live Forensic: Google GRR

Recherche d'IOC en mémoire sur un parc

Analyse des logs

- Les étapes
 - Collecte des logs sur les équipements (si aucun SIEM/collecteur en place)
 - C:\Windows\System32\winevt\Logs*.evtx
 - Filtrage sur les évènements importants (création de processus, tentatives de connexion, créations de service, etc.)
 - Identification des évènements suspects
 - Qualification des évènements suspects
 - Reconstruction de la chronologie (timeline) des évènements supects qualifiés

- Techniques d'attaques et éléments d'investigation
 - psExec (version Metasploit)
 - Fonctionnement
 - Création d'un exécutable malveillant.
 - Connexion sur le partage caché ADMIN\$ sur le système distant via SMB
 - Dépôt de l'exécutable sur le partage
 - Utilisation du mécanisme Service Controle Manager (SCM) pour lancer un service
 - Chargement en mémoire de l'exécutable par le service, puis exécution
 - Mécanisme de communication possible avec la source
 - Détectable avec l'Event ID 7045 (service install)

- Techniques d'attaques et éléments d'investigation
 - WMI (Windows Management Instrumentation)
 - Fonctionnement
 - Exécution de commandes à distance avec utilitaire wmic
 - Pas de dépôt de fichier sur le disque ni création d'un nouveau service (donc plus difficile à détecter qu'un psExec
 - Détectable avec Sysmon (ID WmiEvent 19, 20 et 21)

- Techniques d'attaques et éléments d'investigation
 - WinRM (Windows Remote Management)
 - Event ID 4656 et 4658 (création d'un handle sur une ressource spécifique)
 - Powershell
 - Event ID 1 et 5 avec exécution du processus "wsmprovhost.exe"
 - Copie de malwares sur point de montage distant
 - Event ID 4624 / 4672 (successful network logon as admin)
 - Event ID 5140 (share mount)

Ressource très complète sur les mécanismes de mouvements latéraux, et les moyens de détection : https://www.jpcert.or.jp/english/pub/sr/20170612ac-ir_research_en.pdf

Event ID 4624 en détails

- Les étapes
 - Copie de disque
 - Copie parfaite, sans altérer le disque initial (mécanisme WriteProtect)
 - Analyse des partitions
 - Identification et accès aux partitions (FAT, NTFS, ext2/3/4, ...)
 - Analyse des fichiers
 - Si partition connue, parcours du système de fichiers
 - Sinon, reconstruction des fichiers à partir des données brutes (file carving)
 - Identification de fichiers cachés
 - Identification de fichiers supprimés

Point d'attention: il existe de nombreux moyens de cacher de l'information sur un disque

Question: lesquels?

Source : Data Hiding Tactics for Windows and Unix File Systems

Point d'attention: il existe de nombreux moyens de cacher de l'information sur un disque

Reconstruction de la chronologie de l'activité sur un poste (outil Autopsy)

Reconstruction de la chronologie d'une attaque à partir d'une analyse disque (outil log2timeline)

- Possibilité d'identifier des comportements suspects au travers des mécanismes prefetch/superfetch
- Pré-chargement en mémoire de .exe/.dll souvent utilisés
- Prefetchs
 - Fichiers « .pf » indiquant les processus lancés couramment
 - %windir%\Prefetch
 - o Indique quels fichiers il a l'habitude de loader
- Superfetchs
 - Apprentissage des habitudes de l'utilisateur
 - Fichiers « Ag*.db »
 - Prémapping des fichiers en fonction de ses habitudes
 - Exemple : « firefox.exe exécuté généralement à 18h »

- Éléments d'investigation de techniques d'attaque de persistance
 - Altération de la chaîne de boot (MBR, UEFI, Grub, ...)
 - Comparaison de hash avec liste blanche
 - Utilisation de certaines clés de registre
 - Ex: chargement d'une DLL spécifique dans tous les processus exécutés
 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\AppCertDLLs
 - Fichiers de login altérés (.bash_profile, .bashrc, ...)
 - Analyse manuelle de ces fichiers et/ou des dates de modification
 - Attaque "sethc.exe" (démarrage en mode réparation, accès à un terminal, remplacement du binaire "sethc.exe" par "cmd.exe", redémarrage normal et appui 5 fois sur la touche Shift)
 - Comparaison de hash avec liste blanche

- Éléments d'investigation de techniques d'attaque d'élévation de privilèges
 - "DLL search order hijacking" sous Windows
 - Fonctionnement
 - Profiter d'un processus privilégié chargeant ses DLL depuis un chemin de recherche accessible en écriture par tout le monde
 - Investigation
 - Analyser les prefetchs pour identifier le chargement de DLLs suspectes

- Éléments d'investigation de techniques d'attaque d'élévation de privilèges
 - "API hooking"
 - Fonctionnement sous Linux
 - Exploitation de la variable d'environnement LD_PRELOAD
 - Permet de charger une bibliothèque automatiquement au lancement d'un processus
 - Si positionné sur un binaire *setuid*, cela permet une élévation de privilèges
 - => ne fonctionne que sur d'anciennes versions de Linux
 - Investigation
 - Dump mémoire des processus (outils ProcessDumper)
 - Analyse des variables d'environnement (plugin Volatility)

- Éléments d'investigation de techniques d'attaque d'élévation de privilèges
 - "Application Shimming"
 - Fonctionnement
 - Exploitation du mécanisme de rétro-compatibilité de Windows
 - Positionnement de faux hooks de rétro-compatibilité sur l'exécution de certaines API
 - Possibilité de contourner certains mécanismes (UAC, SEH, ...)
 - Investigation
 - Analyse des bases de données des "Shims"
 - %WINDIR%\AppPatch\sysmain.sdb
 - %WINDIR%\AppPatch\custom
 - %WINDIR%\AppPatch\AppPatch64\Custom
 - Outil ShimCacheParser.py (Mandiant)

- Constat
 - Certaines activités suspectes restent entièrement en mémoire volatile (meterpreter, ...)
 - Aucune écriture sur disque, donc aucune trace détectable par les précédents outils de forensic
- Approches d'analyse
 - Dump de mémoires volatiles
 - Listing
 - des processus en cours d'exécution
 - des connexions en cours
 - des utilisateurs connectés
 - des drivers chargés
 - **...**
 - Recherche d'indicateurs de compromission en mémoire
 - Analyse des fichiers d'échange, d'hibernation et des dump de crash d'exécution (core dump)

Identification des processus en cours d'exécution au moment du dump (outil Rekall, plugin pslist)

2.72	2272					
 	 PPID	Ihds 	Hnds	Sess	Wow64 Start	Exit -
4	0	61	1140		False -	-
448	4	3	21		False 2015-06-25 16:47:28	-
504	448	12	596	0	False 2015-06-25 16:47:30	-
528	448	21	508	0	False 2015-06-25 16:47:31	-
580	528	18	401	0	False 2015-06-25 16:47:31	-
	448 504 528	4 0 448 4 504 448 528 448	4 0 61 448 4 3 504 448 12 528 448 21	4 0 61 1140 448 4 3 21 504 448 12 596 528 448 21 508	4 0 61 1140 448 4 3 21 504 448 12 596 0 528 448 21 508 0	4 0 61 1140 False - 448 4 3 21 False 2015-06-25 16:47:28 504 448 12 596 0 False 2015-06-25 16:47:30 528 448 21 508 0 False 2015-06-25 16:47:31

Identification des connexions réseau en cours d'exécution au moment du dump (outil Volatility, plugin connscan)

<pre>\$ vol.py -f Win2K3SP0x64.vmemprofile=Win2003SP2x64 connscan</pre>								
Offset(P)	Local Address	Remote Address	Pid					
0x0ea7a610	172.16.237.150:1419	74.125.229.187:80	213					
0x179099e0	172.16.237.150:1115	66.150.117.33:80	285					
0x2cdb1bf0	172.16.237.150:139	172.16.237.1:63369	4					
0x339c2c00	172.16.237.150:1138	23.45.66.43:80	133					
0x39b10010	172.16.237.150:1148	172.16.237.138:139	0					
• • •								
• •								

Identification des zones mémoire suspectes au moment du dump (outil Volatility, plugin malfind)

```
$ python vol.py -f stuxnet.vmem --profile=WinXPSP2x86 malfind -D stuxout/
Process: services.exe Pid: 668 Address: 0x13f0000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6
                                                                     Le plugin malfind s'appuie
                                                                    sur différentes heuristiques
0x013f0000 4d 5a 90 00 03 00 00 04 00 00 00 ff ff 00 00
                                                                     suspectes. Ici, suspect car
0x013f0010 b8 00 00 00 00 00 00 40 00 00 00 00 00 00
                                                                      page mémoire en W+X
0x013f0000 4d
                   DEC EBP
0x013f0001 5a
                   POP EDX
0x013f0002 90
                   NOP
0x013f0003 0003
                   ADD [EBX], AL
                   ADD [EAX], AL
0x013f0005 0000
0x013f0007 000400
                   ADD [EAX+EAX], AL
```

Identification des DLLs suspectes en mémoire au moment du dump (outil Volatility, plugin Idrmodules)

\$./vol.py ldrmodules -	p 1928			Sugnest our quoup
Pid Process	Base Inl	Load	InI	Suspect car aucun fichier correspondant
1928 lsass.exe	0x00080000	0	0	o - sur le disque
1928 lsass.exe	0x7C900000	1	1	1 \WINDOWS\system32\ntdll.dll
1928 lsass.exe	0x773D0000	1	1	1 \WINDOWS\WinSxS\x86_Microsoft.Windows\comctl32.dll
1928 lsass.exe	0x77F60000	1	1	1 \WINDOWS\system32\shlwapi.dll
1928 lsass.exe	0x771B0000	1	1	1 \WINDOWS\system32\wininet.dll
1928 lsass.exe	0x77A80000	1	1	1 \WINDOWS\system32\crypt32.dll
1928 lsass.exe	0x77FE0000	1	1	1 \WINDOWS\system32\secur32.dll
1928 lsass.exe	0x77C00000	1	1	1 \WINDOWS\system32\version.dll
1928 lsass.exe	0x01000000	1	0	1 -
1928 lsass.exe	0x5B860000	1	1	1 \WINDOWS\system32\netapi32.dll

0x010014c6 0000

Identification des zones de mémoire suspectes (outil Volatility, plugin hollowfind)

ADD [EAX],

```
oot@kratos:~/Volatility# python vol.py -f stuxnet.vmem hollowfind
Volatility Foundation Volatility Framework 2.5
Hollowed Process Information:
       Process: lsass.exe PID: 1928 PPID: 668
       Process Base Name(PEB): lsass.exe
       Hollow Type: Invalid EXE Memory Protection and Process Path Discrepancy
VAD and PEB Comparison:
       Base Address(VAD): 0x1000000
       Process Path(VAD):
       Vad Protection: PAGE EXECUTE READWRITE
       Vad Tag: Vad
                                                                                      Attaque de type
       Base Address(PEB): 0x1000000
                                                                                    "Process hollowing"
        Process Path(PEB): C:\WINDOWS\system32\lsass.exe
        Memory Protection: PAGE EXECUTE READWRITE
                                                                                     (remplacement de
       Memory Tag: Vad
                                                                                  processus) potentielle
Disassembly(Entry Point):
                                   JMP 0x1003121
       0x010014bd e95f1c0000
       0x010014c2 0000
                                   ADD [EAX], AL
       0x010014c4 0000
                                   ADD [EAX], AL
```

Source : BlackHat Asia 2017

Récupération de credentials

- Techniques d'attaques et éléments d'investigation
 - Pré-requis des attaques
 - Capture de credentials en mémoire, dans la base SAM, base de registre ou sur le réseau
 - Privilèges administrateur local la plupart du temps
 - Objectif: acquérir les droits administrateur du domaine
 - Techniques
 - Pass the hash: authentification avec hash du mot de passe plutôt que par le mot de passe lui même
 - Pass the ticket: rejeu d'un ticket Kerberos légitime afin d'obtenir un TS (Ticket Service) ou TGT (Ticket Granting Ticket)
 - Golden ticket : capacité à générer un ticket valide sans limitation de durée et pour tous les comptes
 - **...**
 - Détection :
 - Difficile mais possible avec la combinaison de l'Event ID 4624 (authentification réussi) et d'un nom de processus suspect sur la machine source

Récupération de credentials

- Techniques d'attaques et éléments d'investigation
 - Attaquer "Responder" sur le protocole LLMNR/Netbios
 - Capture d'un hash NTLMv2 potentiellement crackable

Step 1: User sends incorrect SMB share address \\SNARE01

an error back to the client

Source: kali.org

L'analyse de malwares

L'analyse de malwares

Question : quels peuvent être les objectifs de l'analyse de malware ?

Objectifs de l'analyse de malwares

- Comprendre l'impact d'un malware : destruction, compromission, vol, espionnage, ...
- Comprendre le fonctionnement d'un malware
- Produire une signature pour détecter des compromissions passées et futures
- Partager l'information à d'autres entités, et récupérer des renseignements sur la menace
- Difficulté
 - Les malwares peuvent se protéger contre l'analyse (packing, machine virtuelle, anti-débug, détection de sandbox, etc.)

Approches et outillage pour une analyse manuelle

- Analyse statique
 - IDA Pro / Hex rays decompiler
 - Objdump / readelf / strings
 - Radare2
- Analyse dynamique
 - Cuckoo sandbox
 - Ollydbg
 - Windbg
 - Gdb
- Analyse réseau / rétro-ingénierie de protocoles
 - Wireshark
 - Tcpdump
 - Netzob

Plateformes d'analyse

- Open source
 - Cuckoo
- En ligne
 - Anubis
 - VirusTotal
 - Malwr
- Commercial
 - Lastline
 - FireEye

Exemple d'un rapport d'analyse automatique

Résultat d'une analyse comportementale avec la plateforme malwr.com

Exemple d'un rapport d'analyse de malware

Analyse du malware GREENCAT à priori conçu par le groupe APT1, par la société Mandiant/FireEye

Persistence Mechanism

- The malware sets the following value to the path of the GREENCAT DLL:
 - o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<service_name>\Param eters\ServiceDll
- The malware creates the following value to the path of the original ServiceDLL value:
 - o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<service_name>\Param eters\DllPath
- The malware sets
 - HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<service_name>\Start
 - Value: 2 (SERVICE_AUTO_START)

Host-Based Signatures

The malware may write BMP files to a directory on the system identified as <number>.bmp,
 such as 1.bmp or 17.bmp.

Network-Based Signatures

- The malware has been observed with the following User-Agent strings:
 - o Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; SV1)
 - o Mozilla/5.0
 - o Mozilla/4.0
- Reference Appendix F for known APT1-generated certificates used in conjunction with this malware.

La plateforme Cuckoo

Source: OWASP / Alain Sullam

Architecture de la plateforme Cuckoo

Source: OWASP / Alain Sullam

Les données produites par Cuckoo

Source: OWASP / Alain Sullam

Productions d'indicateurs de compromission et de règles de détection

MAEC – Malware Attribute Enumeration and Characterization

- Standard du MITRE
- Objectif : Structuration de la caractérisation d'un malware
- Sous la forme d'un langage (grammaire et vocabulaire) et d'une collection
- Compatible avec CybOX (depuis la version 2.0) pour la structuration des observables

MAEC: Structure

Source : MITRE

MAEC: Cas d'applications

Source: MITRE

Création de règles de détection

Création d'un loC avec l'outil RedLine de Mandiant

Extraction d'IOC de rapports d'analyse

Extraction d'IOC et production de données structurées (exemple avec Yara en sortie de l'outil IOC Parser)

```
$ ./iocp.py -p patterns.ini -i html -l requests -d -o yara
http://blog.malwaremustdie.org/2015/09/mmd-0042-2015-hunting-mr-black-ids-via.html
rule mmd 0042 2015 hunting mr black ids via
    strings:
        $URL1 = "http://www.blogger.com/go/cookiechoices"
        $IP1 = "210.92.18.118"
        \$IP2 = "106.120.167.25«
        $Host23 = "libworker.so"
        $Host24 = "www.blogger.com"
        $Email1 = "ppyy@astpbx.com"
    condition:
```

Outillage pour l'investigation

Plateformes de réponse à incident

La plateforme FIR

- FIR: Fast Incident Response
- Origine : CERT Société Générale
- Objectif: permet le suivi des tickets d'incidents

La plateforme FIR

Date 🕶		Category	Subject	Business Lines Seve	erity Status		Detection	Leader	Last A	Action	Plan	Lv	1 11	Н	Edit
015-03-10	*	Phishing	http://phishingsite.com/url/	Sub BL 1	Open	(CERT	CERT	Abuse	16 hours ago	В	C1	l d	ev	/
Open	Bloc	cked Old	Tasks												
Date 🕶		Category	Subject	Business Lines	Se	verity	Status	Detection	Leader	Last Action		Plan	LvI	IH	Edi
015-03-10	*	Phishing	http://phishingsite.com/url/	Sub BL 1	2		Open	CERT	CERT	Abuse 16 hours ago		В	C1	dev	1
015-01-15	☆	Phishing	test	Demo BusinessLine 1	0		Open	CERT	None	Opened 2 months ago)	None	C1	dev	1
015-01-05	☆	Phishing	test	Demo BusinessLine 1, Demo BusinessLin	e 2 2		Open	Pôle	None	Alerting 2 months ago		None	C1	dev	1
015-01-05	☆	Phishing	test	Demo BusinessLine 1, Demo BusinessLin	e 2 2		Open	Pôle	None	Opened 2 months ago)	None	C1	dev	1
014-12-17	☆	IS integrity	Alerte Jokeware	Demo BusinessLine 1	0		Open	SOC	None	Opened 3 months ago)	None	C1	dev	1
014-12-17	☆	Phishing	phishing	Demo BusinessLine 1, Demo BusinessLin	e 2 2		Open	CERT	CERT	Info 3 months ago		В	C1	dev	1

La plateforme FIR

- Plateforme de réponse à incidents
- Origine : CERT Banque de France
- Principales fonctionnalités
 - Management des incidents
 - Analyse automatisée d'observables
 - Intégration avec MISP

Liste des cas d'analyse

Tâches associées à un cas d'analyse

Rapport d'analyse d'une tâche

Liste des observables liés à l'analyse

Moteurs d'analyse des observables (liés au composant Cortex)

TheHive	♣ New Case	My tasks 1	Waiting tasks 7	Alerts 0	Lill Statistics	Q Case, use	r, URL, hash, IP, don
Observable	Analyzers						
Analyzer				c	ortex Server	L	ast analysis
Abuse_Finder_2_6 Find abuse contact addresses		domain names,	URLs, IPs and emai		OCAL CORTEX	N	one
CIRCLPassiveSSL Check CIRCL's Pas	alife all	ı IP address or a	X509 certificate has		OCAL CORTEX	Ν	one
DNSDB_IPHistory Provide history re		ess using DNSI	B Passive DNS serv		OCAL CORTEX	N	one
DomainTools_Rev Use DomainTools the same IP addre	Reverse IP service t	o provide a list	of domain names sl		OCAL CORTEX	Λ	one

Nouvelle analyse d'un observable (composant Cortex)

Run new analysis

TLP	AMBER
Data Type	ip
Data	8.8.8.8
Analyzers	☐ FireHOLBlocklists_2_0
	□ Nessus_2_0
	✓ Abuse_Finder_2_0
	☐ PassiveTotal_Ssl_Certificate_History_2_0
	☐ PassiveTotal_Passive_Dns_2_0
	PassiveTotal_Malware_2_0
	✓ PassiveTotal_Osint_2_0
	☐ PassiveTotal_Unique_Resolutions_2_0
	☐ PassiveTotal_Whois_Details_2_0
	☐ PassiveTotal_Enrichment_2_0
	☐ PassiveTotal_Ssl_Certificate_Details_2_0
	☐ CIRCLPassiveSSL_2_0
	☐ HippoMore_2_0

Partage du renseignement

La plateforme MISP

- Plateforme de partage d'IOC et d'indicateurs de menaces
- Fonctionnalités
 - Partage
 - Collaboration autour d'évènements
 - Corrélation d'indicateurs
 - Import
 - Export
- 320 organisations et 800 utilisateurs à ce jour

La plateforme MISP : les évènements

La plateforme MISP : un évènement

La plateforme MISP : les attributs des évènements

La plateforme MISP : la corrélation d'évènements

- Corrélation d'évènements
 - Partage d'au moins un attribut en commun
- Intérêts :
 - Pouvoir corréler des campagnes s'appuyant sur les mêmes outils / vecteurs d'attaques.
 - Faciliter l'attribution

La plateforme MISP : les tags

20	•	on ontopio marriada
24	*	circl:topic="industry"
25	~	circl:topic="medical"
26	*	circl:topic="services"
27	~	circl:topic="undefined"
31	*	ecsirt:malicious-code="malware"
10	*	ecsirt:malicious-code="ransomware"
35	4	estimative-language:likelihood-probability="almost-certain"
43	~	estimative-language:likelihood-probability="very-likely"
38	4	expansion:whois-registrant-email
4	~	malware_classification:malware-category="Ransomware"
40	~	ms-caro-malware:malware-type="Ransom"
41	4	ms-caro-malware:malware-type="RemoteAccess"
44	*	tlp:amber
46	*	tlp:ex:chr
11	4	tlp:green
45	~	tlp:red
2	4	tlp:white
42	4	veris:action:malware:variety="Ransomware"

La plateforme MISP: les tags

Liste des évènements ayant un tag spécifique

La plateforme MISP : les taxonomies

- Objectif : supporter différents standards de classification
- Exemples de standards
 - NATO Admiralty Scale
 - CIRCL Taxonomy Schemes of Classication in Incident
 - Response and Detection
 - EU classied information marking
 - Information Security Marking Metadata from DNI (Director of National Intelligence US)
 - NATO Classication Marking
 - TLP Trac Light Protocol
 - VERIS Vocabulary for Event Recording and Incident Sharing
 - 0 ...