Trace Duality

Claim: If $f \in C^1(I)$, and X, H are self adjoint matrices, then there is a unique quantity g(X) such that

$$trDf(X)[H] = trHg(X).$$

We start with a construction from Bhatia's Matrix Analysis: Let $f \in C^1(I)$ and define $f^{[1]}$ on $I \times I$ by

$$f(\lambda, \mu) = \begin{cases} \frac{f(\lambda) - f(\mu)}{\lambda - \mu} & \lambda \neq \mu \\ f'(\lambda) & \lambda = \mu. \end{cases}$$

We call $f^{[1]}(\lambda,\mu)$ the first divided difference of f at (λ,μ) . If Λ is a diagonal matrix with entries $\{\lambda_i\}$, We may extend f to accept Λ by defining the (i,j)-entry of $f^{[1]}(\Lambda)$ to be $f^{[1]}(\lambda_i,\lambda_j)$. If A is a self adjoint matrix with $A=U\Lambda U^*$, then we define $f^{[1]}(A)=Uf^{[1]}(\Lambda)U^*$. Now we borrow a theorem from Bhatia:

Theorem 1 (Bhatia V.3.3). Let $f \in C^1(I)$ and let A be a self adjoint matrix with all eigenvalues in I. Then

$$Df(A)[H] = f^{[1]}(A) \circ H,$$

where \circ denotes the Schur-product in a basis where A is diagonal.

That is, if $A = U\Lambda U^*$, then

$$Df(A)[H] = U\left(f^{[1]}(\Lambda) \circ (U^*HU)\right)U^*.$$

To prove our claim, we need to take the trace of both sides. Since trace is invariant under a change of basis, it is clear that

$$\operatorname{tr} Df(A)[H] = \operatorname{tr} \left(f^{[1]}(\Lambda) \circ (U^*HU) \right).$$

If $U = u_{ij}$, $U^* = \overline{u}_{ij}$ and $H = h_{ij}$, then the (i, j)-entry of U^* is

$$(U^*HU)_{ij} = \overline{u}_{ik}h_{k\ell}u_{\ell j}$$

Where we sum over the duplicate indices k and ℓ . While the structure of $f^{[1]}(\Lambda)$ is a bit unruly, our diagonal entries are $f'(\lambda)$. This means that when we take the trace of the Schur product, we have

$$\sum_{i} f(\lambda_i) \overline{u}_{ik} h_{k\ell} u_{\ell i}$$

Now consider the matrix product $U \operatorname{diag}\{f'(\lambda_1), \ldots, f'(\lambda_n)\} U^*H$. Since one of our terms is diagonal, the trace of this multiplication is simple:

tr
$$U$$
 diag $\{f'(\lambda_1), \ldots, f'(\lambda_n)\} U^*H = \sum_k u_{ik} f(\lambda_k) \overline{u}_{k\ell} h_{\ell i}$

Since our entries commute, we can relable our indices $i \mapsto \ell \ \ell \mapsto k \ k \mapsto i$ to get

tr
$$U$$
 diag $\{f'(\lambda_1), \ldots, f'(\lambda_n)\}\ U^*H = \sum_i f(\lambda_i)\overline{u}_{ik}h_{k\ell}u_{\ell i},$

See that the quantity a $U \operatorname{diag}\{f'(\lambda_1), \ldots, f'(\lambda_n)\} U^*H$ is independent of our choice of H, so is it the needed quantity g(X). Further, since $X = U\Lambda U^*$, g(X) = f'(X). This recovers theorem 3.3 of $LEARN\ TO\ DO\ CITATIONS$ as we have

$$\operatorname{tr} Df(X)[H] = \operatorname{tr} Hg(X)$$

Now we turn our attention to the example in *citation*. I verified that

$$\operatorname{tr} H \cdot \operatorname{div} (1 + XY) = \operatorname{tr} (H_1 Y + X H_2) (1 + XY)^{-1}$$

=
$$\operatorname{tr} H_1 Y (1 + XY)^{-1} + H_2 (1 + XY)^{-1} X$$

=
$$\operatorname{tr} (H_1, H_2) \cdot (Y (1 + XY)^{-1}, (1 + XY)^{-1} X),$$

but how can we be confident that this means we have $\operatorname{div}(1+XY) = (Y(1+XY)^{-1}, (1+XY)^{-1}X)$? We consider the general case: Say that $\operatorname{tr} H \cdot f = \operatorname{tr} H \cdot g$. Since this holds for all H, we may choose our H carefully to show the equality of f and g. Say that H, f, g are k-tuples—we will first show that $f_1 = g_1$ and we will do so entry by entry. Let E_{ij} be the matrix will all zeroes and a 1 in the (i,j)-entry. Now let $H = (E_{ji}, 0, \dots, 0)$. So $\operatorname{tr} E_{ji}f_1 = \operatorname{tr} E_{ji}g_1$. In our products, the only elements on the diagonal are $(f_1)_{ij}$ and $(g_1)_{ij}$, so when we take the trace we have $(f_1)_{ij} = (g_1)_{ij}$. If we do this for every (i,j), we see that $f_1 = g_1$. Showing that the other components are equal is identical.

 \mathbf{QQ} : Is this necessarily true? This is very nitpicky, but does the fact that f and g have the same components mean they have the same expression? I see how it would make the same function, but I see a potential issue with domain—if they have different domains then they could have different expressions but still have the same entries when the domains overlap.