### Summary

## Summary of what we have been doing up to now.









**Design Optimization** 

Johan Ölvander

The Banana function  $(x^*=[1\ 1], f^*=0)$ 

|                         | Complex                                              | Fmincon        | GA                                                              |
|-------------------------|------------------------------------------------------|----------------|-----------------------------------------------------------------|
|                         |                                                      |                |                                                                 |
| Finding the true optima | Almost always                                        | Yes, always    | Real: Almost always Binary: Almost always                       |
| No of evaluations       | Medium                                               | Low            | High                                                            |
| Comments                | Withou rfak and gamma it gets faster but maybe wrong | Piece of cake! | Need parameter adjustments for good performance  Johan Ölvander |

<u>3D staircase</u>  $(x_i^*=\{-512, -5.\}, f^*=-18)$ 

|                         | Complex                               | Fmincon                                      | GA             |
|-------------------------|---------------------------------------|----------------------------------------------|----------------|
|                         |                                       |                                              |                |
| Finding the true optima | Almost always                         | Never                                        | Always         |
| No of evaluations       | Low                                   | Low                                          | Medium         |
| Comments (              | With rfak and gamma it manages better | No gradients. Starting point! Gradient eval. | Piece of cake! |

<u>Peaks</u> (x\*=[0.22 -1.6], f\*=-6.55)

|                         | Complex                                                 | Fmincon                     | GA                          |
|-------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|
| Finding the true optima | Almost always                                           | Not so often                | Always Both real and binary |
| No of evaluations       | Medium                                                  | Low                         | High                        |
| Comments                | With rfak and more points in the complex it gets better | Starting point sensitivity! | Piece of cake!              |

# Statistics for the Complex method on the peaks function

|                      | k=4, rfak=0.3<br>gamma=0.3 | k=6, rfak=0.3<br>gamma=0.3 | k=4, rfak=1<br>gamma=1 | k=4, rfak=0<br>gamma=0 |
|----------------------|----------------------------|----------------------------|------------------------|------------------------|
| Global<br>optima     | 67/100                     | 84/100                     | 74/100                 | 53/100                 |
| Local optima         | 26/100                     | 14/100                     | 20/100                 | 26/100                 |
| Bad<br>solution      | 7/100                      | 2/100                      | 6/100                  | 21/100                 |
| Function evaluations | 110                        | 185                        | 155                    | 100                    |

**DeJong5**  $x^*=[-32 -32], f^*=-499$ 

|                         | Complex                                                   | Fmincon                     | GA               |
|-------------------------|-----------------------------------------------------------|-----------------------------|------------------|
| Finding the true optima | Not so often                                              | Not so often                | Often, always?   |
| No of evaluations       | Medium                                                    | Low                         | High             |
| Comments                | With rfak and more points in the complex it is still hard | Starting point sensitivity! | Piece of cake??? |

#### The Complex method

- Does not require gradients
- Finds global optima (sometimes local)
- Require more evolutions than gradient based methods.

#### Good all-round method!

## Fmincon (Quasi-Newton, SQP)

- Require gradients
- Finds local optima
- > Fast
- Sensitive to starting point

#### Good method for smooth problems with gradients available

#### Genetic Algorithms

- Does not require gradients
- Finds global optima
- > Require many function evolutions
- Performance is depending on many parameter settings.
- Binary vs. real encoding

Good method for global optimization if you can afford many function evaluations and are a skilled GA-user

#### General comments

- Function evaluations is always more than the number of iterations/generations.
- There is a difference between convergence in parameter and function space.
- If true optima is not known it is often hard to say whether it has been found or not.

#### Peer Review

- Check in the Excel-document which group's report you should Peer Review
- Meet with that group, for example during the seminar
- Discuss each others reports and write a document of around one page of what you have talked about
  - Upload the document to your folder on Lisam
- If you had any major errors, upload a new version of your report to your folder in Lisam.
  - Highlight the changes with for example red color of the text