

Algebra relaţională

- Reuniune, intersecţie, diferenţă
- Redenumire, selecţie, proiecţie, joncţiune
- Interogări în algebra relaţională
- Valori NULL în algebra relaţională
- Vederi

Actualizare - funcţie care pornind de la o bază de date produce o altă bază de date (fără a-i modifica schema).

□ Interogare - funcţie care returnează o relaţie, plecând de la o bază de date.

Algebra relaţională

Se bazează pe o colecţie de operatori ce sunt aplicaţi relaţiilor, producând relaţii.

Operatorii algebrici relaţionali se împart în următoarele clase:

- Operatori clasici din teoria mulţimilor reuniune, intersecţie, diferenţă;
- Operatori de redenumire, selecţie, proiecţie;
- Operatorul join (joncţiune), împreună cu variantele sale joncţiune naturală, produs cartezian, theta joncţiune şi joncţiune externă.

Reuniune, intersecţie, diferenţă - se aplică doar asupra perechilor de relaţii definite pe aceleaşi atribute.

GPS

Producător	MODEL
Nokia	N2310
Samsung	S5100
Samsung	S5600
Nokia	N4215

RADIO

Producător	MODEL
Nokia	N4215
Samsung	S2110
Samsung	S5600
Samsung	S1100

Reuniune?

Diferență?

Definiţii

Reuniunea a două relaţii $r_1(X)$ şi $r_2(X)$ este relaţia notată $r_1 \cup r_2$ care conţine tupluri ce aparţin fie lui r_1 fie lui r_2 , fie ambelor relaţii r_1 şi r_2 .

Intersecţia dintre relaţiile $r_1(X)$ şi $r_2(X)$ este relaţia notată $r_1 \cap r_2$ formată din tuplurile comune relaţiilor r_1 şi r_2 .

Diferența dintre relațiile $r_1(X)$ și $r_2(X)$ este relația notată r_1 - r_2 care conține tuplurile din r_1 care nu se regăsesc în r_2 .

TATA_COPIL

Tata	Copil
Adam	Dan
Adam	Marian
Radu	Cristi
Radu	Catalin

MAMA_COPIL

Mama	Copil
Eva	Dan
Eva	Lucian
Maria	Cristi
Carmen	Catalin

Operaţia de redenumire (ρ)

Limitările impuse operatorilor standard din teoria mulţimilor pot fi restrictive în anumite situaţii.

Exemplu

Să considerăm cele două relaţii din figura 3.1.

TATA_COPIL

Tata	Copil
Adam	Dan
Adam	Marian
Radu	Cristi
Radu	Catalin

MAMA_COPIL

Mama	Copil
Eva	Dan
Eva	Lucian
Maria	Cristi
Carmen	Catalin

Figura 3.1 Reuniune logică, dar incorectă

Ar avea sens executarea unei reuniuni între cele două relaţii cu scopul de a obţine toate perechile 'părinte – copil' din baza de date.

Acest lucru nu este însă posibil deoarece atributul denumit de noi 'părinte' are numele 'tata' într-o relaţie şi numele 'mama' în cealaltă relaţie.

Operatorului de redenumire – adaptează numele atributelor atunci când este necesară aplicarea unui operator din teoria mulţimilor.

Obs. Acest operator modifică numele atributelor lăsând intact conţinutul relaţiei.

Exemplu

Fig.3.2 Exemplu de redenumire

Definiție

Fie r o relaţie definită pe mulţimea X de atribute şi fie Y o altă mulţime de atribute având aceeaşi cardinalitate ca şi X; fie secvenţele ordonate şi $A_1A_2...A_k$, $B_1B_2...B_k$ formate din atributele mulţimii X respectiv Y.

Redenumirea $\rho_{A_iA_i...A_k\leftarrow B_iB_i...B_k}(r)$ conţine pentru fiecare tuplu t din r un tuplu t' definit pe Y astfel încât $t'[B_i] = t[A_i], \ i = \overline{1,k}$.

În practică, cele două secvenţe $A_1A_2...A_k$ şi $B_1B_2...B_k$ vor conţine doar atributele ce urmează a fi redenumite şi noile lor nume.

Operatorul de selecţie (σ)

Rezultatul unei selecţii conţine tuplurile relaţiei operand ce satisfac condiţia asociată operatorului.

Exemplu

Se consideră relaţia ANGAJAT din figura următoare:

ANGAJAT

Nume	Prenume	Varsta	Salariu
Ionescu	Maria	25	2000
Popescu	Lucia	40	3000
Diaconescu	Nicu	36	4500
Ionescu	Marin	40	3900

Operatorul de selecţie (σ)

Exemplu

ANGAJAT

Nume	Prenume	Varsta	Salariu
Ionescu	Maria	25	2000
Popescu	Lucia	40	3000
Diaconescu	Nicu	36	4500
Ionescu	Marin	40	3900

σ _{Virsta<30} Salariu>4000	(ANGAJAT)
--	-----------

Nume	Prenume	Varsta	Salariu
Ionescu	Maria	25	2000
Diaconescu	Nicu	36	4500

Fig.3.3 Exemplu de selecţie

După cum se poate observa, sunt selectate tuplurile din relaţia ANGAJAT care îndeplinesc condiţia: Varsta < 30 sau Salariu > 4000 (formulă propoziţională).

Definiţii

Fiind dată o relaţie r definită pe o mulţime de atribute X, spunem că o formulă propoziţională F definită pe X este o formulă compusă din condiţii atomice de tipul $A\theta B$ sau $A\theta c$ legate prin conectorii \vee (OR), \wedge (AND) şi \neg (NOT), în care:

- \bullet este un operator de comparaţie $(=, \neq, <, \leq, >, \geq)$;
- A şi B sunt atribute din X compatibile (conţin valori pentru care are sens comparaţia);
- c este o constantă compatibilă cu domeniul atributului A.

Definiţii

Fiind dată formula propoziţională *F* şi tuplul *t*, se defineşte *valoarea de adevăr* a lui *F* pe *t*:

- $A\theta B$ este adevărată dacă şi numai dacă t[A] este în relaţia θ cu t[B];
- $A\theta c$ este adevărată dacă şi numai dacă t[A] este în relaţia θ cu c;
- $F_1 \vee F_2$, $F_1 \wedge F_2$ şi $\neg F_1$ au semnificaţia uzuală.

O selecţie $\sigma_F(r)$ produce o relaţie care are aceleaşi atribute ca relaţia r şi care conţine acele tupluri din r pentru care F este adevărată.

Operatorul de proiecţie (π)

Definiţie

Fie dată relaţia *r* definită pe mulţimea de atribute *X* şi o submulţime *Y* a lui *X*.

Proiecţia relaţiei r pe Y (notată $\pi_Y(r)$) reprezintă mulţimea tuplurilor definite pe Y obţinute din tuplurile lui r luând în considerare numai valorile corespunzătoare atributelor din Y:

$$\pi_{Y}(r) = \{t[Y]/t \in r\}$$

ANGAJAT

Nume	Prenume	Departament	Sef
Ionescu	Maria	Vanzari	Luca
Popescu	Lucia	Vanzari	Luca
Diaconescu	Maria	Personal	Damian
Ionescu	Marin	Personal	Damian

 $\pi_{\textit{Departament},\textit{Sef}}$ (ANGAJAT) ??

Proiecţie

Situaţii în care numărul de tupluri ale rezultatului este egal, respectiv mai mic decât numărul de tupluri ale operandului:

ANGAJAT

Nume	Prenume	Departament	Sef
Ionescu	Maria	Vanzari	Luca
Popescu	Lucia	Vanzari	Luca
Diaconescu	Maria	Personal	Damian
Ionescu	Marin	Personal	Damian

$\pi_{Departament,Sef}$ (ANGAJAT)

Departament	Sef
Vanzari	Luca
Personal	Damian

Fig.3.4 Exemplu de proiecţie cu mai puţine tupluri decât operandul

ANGAJAT

Nume	Prenume	Varsta	Salariu
Ionescu	Maria	25	2000
Popescu	Lucia	40	3000
Diaconescu	Nicu	36	4500
Ionescu	Marin	45	3900

$\pi_{\mathit{Varsta},\,\mathit{Salariu}}$ (ANGAJAT)

Varsta	Salariu
25	2000
40	3000
36	4500
45	3900

Fig.3.5 Exemplu de proiecție cu același număr de tupluri ca și operandul

Întrebare:

Când $\pi_{\gamma}(r)$ conţine acelaşi număr de tupluri ca şi r?

Propoziție

 $\pi_{Y}(r)$ conţine acelaşi număr de tupluri ca şi r dacă şi numai dacă Y este o super-cheie pentru r.

Operatorul joncţiune – "join"

Permite realizarea unei conexiuni între datele conţinute de diverse relaţii.

Joncţiunea naturală () – "natural join" - corelează datele din relaţii diferite pe baza valorilor egale asociate atributelor cu acelaşi nume.

CONTRAVENTIE

OOMINATERINE					
Cod	Data	Cadru	Judet	NrInmat	
143256	25/10/92	567	IS	02 AAA	
987554	26/10/92	456	IS	02 AAA	
987557	26/10/92	456	IS	03 BBB	
630876	15/10/92	456	VS	03 BBB	
539856	12/10/92	567	VS	03 BBB	

AUTOVEHICUL

NrInmat	Judet	Proprietar	Adresa
03 BBB	IS	Maftei Eduard	Nicolina 30
01 CCC	IS	Maftei Eduard	Nicolina 30
02 AAA	IS	Luca Marian	Primaverii 4
03 BBB	VS	Melinte Dan	Primaverii 17

CONTRAVENTIE > AUTOVEHICUL

Cod	Data	Cadru	Judet	NrInmat	Proprietar	Adresa
143256	25/10/92	567	IS	02 AAA	Luca Marian	Primaverii 4
987554	26/10/92	456	IS	02 AAA	Luca Marian	Primaverii 4
987557	26/10/92	456	IS	03 BBB	Maftei Eduard	Nicolina 30
630876	15/10/92	456	VS	03 BBB	Melinte Dan	Primaverii 17
539856	12/10/92	567	VS	03 BBB	Melinte Dan	Primaverii 17

Operatorul joncţiune – "join"

- Permite realizarea unei conexiuni între datele conţinute de diverse relaţii.
- Există două versiuni principale ale acestui operator, care, oricum, se pot obţine una din cealaltă.

Joncţiunea naturală (▷□) – "natural join" - corelează datele din relaţii diferite pe baza valorilor egale asociate atributelor cu acelaşi nume.

Definiție

Fie $r_1(X_1)$ şi $r_2(X_2)$ două relaţii. *Joncţiunea naturală* $r_1 \bowtie r_2$ este o relaţie definită pe X_1X_2 (reuniunea dintre X_1 şi X_2) astfel încât:

$$r_1 \bowtie r_2 = \{t \text{ definit pe } X_1 X_2 / \exists t_1 \in r_1, \exists t_2 \in r_2, a.i. \ t[X_1] = t_1 \text{ si } t[X_2] = t_2\}$$

Pe scurt putem scrie:

$$r_1 \bowtie r_2 = \{t \text{ definit pe } X_1 X_2 / t[X_1] \in r_1 \text{ si } t[X_2] \in r_2\}$$

Exemplu

CONTRAVENTIE

Cod	Data	Cadru	Judet	NrInmat
143256	25/10/92	567	IS	02 AAA
987554	26/10/92	456	IS	02 AAA
987557	26/10/92	456	IS	03 BBB
630876	15/10/92	456	VS	03 BBB
539856	12/10/92	567	VS	03 BBB

AUTOVEHICUL

NrInmat	Judet	Proprietar	Adresa
03 BBB	IS	Maftei Eduard	Nicolina 30
01 CCC	IS	Maftei Eduard	Nicolina 30
02 AAA	IS	Luca Marian	Primaverii 4
03 BBB	VS	Melinte Dan	Primaverii 17

CONTRAVENTIE > AUTOVEHICUL

Cod	Data	Cadru	Judet	NrInmat	Proprietar	Adresa
143256	25/10/92	567	IS	02 AAA	Luca Marian	Primaverii 4
987554	26/10/92	456	IS	02 AAA	Luca Marian	Primaverii 4
987557	26/10/92	456	IS	03 BBB	Maftei Eduard	Nicolina 30
630876	15/10/92	456	VS	03 BBB	Melinte Dan	Primaverii 17
539856	12/10/92	567	VS	03 BBB	Melinte Dan	Primaverii 17

Joncţiunea naturală a celor două relaţii s-a obţinut prin combinarea fiecărui tuplu din CONTRAVENŢIE cu exact un tuplu din AUTOVEHICUL:

- cu cel mult unul deoarece atributele Judet și Nrlnmat formează o cheie a relaţiei AUTOVEHICUL;
- cu cel puţin unul datorită constrângerii de referinţă dintre atributele Judet şi Nrlnmat din CONTRAVENTII şi relaţia AUTOVEHICUL.

Definiție. Fie $r_1(X_1)$ și $r_2(X_2)$ două relații. Spunem că joncțiunea naturală $r_1 \bowtie r_2$ este completă dacă:

$$\forall t_1 \in r_1, \exists t \in r_1 \bowtie r_2, \ a.i. \ t[X_1] = t_1$$
$$\forall t_2 \in r_2, \exists t' \in r_1 \bowtie r_2, \ a.i. \ t'[X_2] = t_2$$

 r_1

Angajat	Departament
Ionescu	vanzari
Balint	productie
Baltag	productie

 r_2

Departament	Sef
productie	Manole
vanzari	Burlacu

 $r_1 \bowtie r_2$

Angajat	Departament	Sef
Ionescu	vanzari	Burlacu
Balint	productie	Manole
Baltag	productie	Manole

Fig.3.6 Exemplu de joncţiune naturală completă

Joncţiune

 r_1

Angajat	Departament
Ionescu	vanzari
Balint	productie
Baltag	productie

 r_2

Departament	Sef
productie	Manole
depanare	Burlacu

 $r_1 \bowtie r_2$

Angajat	Departament	Sef
Balint	productie	Manole
Baltag	productie	Manole

Exemplu de joncţiune naturală incompletă

Joncţiune

 r_1

Angajat	Departament
Ionescu	vanzari
Balint	productie
Baltag	productie

 r_2

Departament	Sef
marketing	Manole
depanare	Burlacu

 $r_1 \bowtie r_2$

Angajat	Departament	Sef

Exemplu de joncţiune vidă

Joncţiunea externă – "outer join"

Operatorul de joncţiune exclude tuplurile unei relaţii ce nu au corespondent în celălalt operand.

Operatorul de joncţiune externă - asigură prezenţa în relaţia rezultat a tuturor tuplurilor unei relaţii, acestea fiind completate cu valori NULL atunci când nu au corespondent în cealaltă relaţie.

Acest operator are trei variante :

- joncţiune externă la stânga extinde doar tuplurile primului operand;
- joncţiune externă la dreapta extinde doar tuplurile celui de-al doilea operand;
- joncţiune externă completă extinde toate tuplurile.

Exemplu

$\mathbf{r}_{\mathbf{1}}$

Angajat	Departament
Ionescu	vanzari
Balint	productie
Luca	productie

$\mathbf{r_2}$

Departament	Sef
productie	Manole
achizitii	Burlacu

$r_1 \bowtie LEFT r_2$

Angajat	Departament	Sef
Ionescu	vanzari	null
Balint	productie	Manole
Luca	productie	Manole

$\mathbf{r_1} \bowtie_{\mathsf{RIGHT}} \mathbf{r_2}$

Angajat	Departament	Sef
Balint	productie	Manole
Luca	productie	Manole
null	achizitii	Burlacu

$r_1 \bowtie_{FULL} r_2$

Angajat	Departament	Sef
Ionescu	vanzari	null
Balint	productie	Manole
Luca	productie	Manole
null	achizitii	Burlacu

Fig.3.7 Exemple de joncţiuni externe

Theta-joncţiune şi echi-joncţiune

În general produsul cartezian nu prezintă interes deoarece combină tuplurile celor doi operanzi într-o manieră lipsită de semnificaţie.

ANGAJAT

Angajat	Proiect
Ionescu	A
Balint	A
Balint	В

PROIECT

Cod	Nume
A	Venus
В	Marte

ANGAJAT M PROIECT

Angajat	Proiect	Cod	Nume
Ionescu	A	A	Venus
Balint	A	A	Venus
Balint	В	Α	Venus
Ionescu	A	В	Marte
Balint	A	В	Marte
Balint	В	В	Marte

Figura 3.8 Produs cartezian

Operatorul de theta-joncţiune - produs cartezian urmat de o selecţie.

$$r_1 \bowtie_F r_2 = \sigma_F(r_1 \bowtie r_2)$$

F este condiția de selecție

ANGAJAT

Angajat	Proiect
Ionescu	A
Balint	A
Balint	В

PROIECT

Cod	Nume
A	Venus
В	Marte

 $\sigma_{\textit{Proiect}=Cod}$ (ANGAJAT \bowtie PROIECT)

Angajat	Proiect	Cod	Nume
Ionescu	A	A	Venus
Balint	A	A	Venus
Balint	В	В	Marte

Figura 3.9 Produs cartezian urmat de o selecţie

Echi—joncţiunea - o theta—joncţiune în care condiţia de selecţie F este o conjuncţie de atomi de egalitate, fiecare atom implicând câte un atribut din fiecare operand.

□ A treia relaţie din figura anterioară - rezultat al unei echi–joncţiuni.

Obs.

- 1. Majoritatea sistemelor de gestiune a bazelor de date nu exploatează avantajele numelor atributelor în combinarea relaţiilor ⇒ theta şi echijoncţiunea au o importanţă deosebită.
- 2. interogările SQL corespund echi joncţiunilor.
- 3. Joncţiunea naturală a devenit disponibilă doar în versiunile recente de SQL.

Interogări în algebra relaţională

- Interogarea funcţie care, aplicată asupra unei instanţe a unei baze de date, produce o relaţie;
 - □ Fiind dată o schemă R a unei baze de date, o interogare este o funcţie care, pentru fiecare instanţă r a lui R, produce o relaţie definită pe o mulţime X de atribute.
- În algebra relaţională, interogările unei scheme R de baze de date sunt formulate cu ajutorul unor expresii, ale căror atomi sunt relaţii din R.

Interogări în algebra relaţională

Exemple

Se consideră o bază de date formată din relaţiile:

ANGAJAT (NrInreg, Nume, Varsta, Salariu) SUPERVIZOR (NrSup, NrAng)

ANGAJAT

NrInreg	Nume	Varsta	Salariu
101	Maria Ionescu	34	40
103	Maria Balint	23	35
104	Lucia Popescu	38	61
105	Nicu Luca	44	38
210	Marcel Burlacu	49	60
231	Alin Lupu	50	60
252	Nicu Luca	44	70
301	Andrei Popa	34	70
375	Maria Ionescu	50	65

SUPERVIZOR

NrSup	NrAng
210	101
210	103
210	104
231	105
301	210
301	231
375	252

Fig.3.10 Bază de date pentru exemplificarea interogărilor în algebra relaţională

1) Să se găsească numerele de înregistrare pentru supervizorii acelor angajaţi ce câştigă mai mult de 40.

ANGAJAT (NrInreg, Nume, Varsta, Salariu) SUPERVIZOR (NrSup, NrAng)

$$\pi_{NrSup}(SUPERVIZOR \bowtie_{NrAng=NrInreg}(\sigma_{Salariu>40}(ANGAJAT)))$$

Interogări în algebra relaţională

2) Să se găsească numerele de înregistrare şi numele supervizorilor ce au numai subalterni ce câştigă mai mult de 40.

ANGAJAT (NrInreg, Nume, Varsta, Salariu) SUPERVIZOR (NrSup, NrAng)

 se găsesc toţi supervizorii pentru care există subalterni care câştigă maxim 40;

$$\pi_{NrSup}(SUPERVIZOR \bowtie_{NrAng=NrInreg} (\sigma_{Salariu \leq 40}(ANGAJAT)))$$

ANGAJAT

NrInreg	Nume	Varsta	Salariu
101	Maria Ionescu	34	40
103	Maria Balint	23	35
104	Lucia Popescu	38	61
105	Nicu Luca	44	38
210	Marcel Burlacu	49	60
231	Alin Lupu	50	60
252	Nicu Luca	44	70
301	Andrei Popa	34	70
375	Maria Ionescu	50	65

SUPERVIZOR

NrSup	NrAng
210	101
210	103
210	104
231	105
301	210
301	231
375	252

Interogări în algebra relaţională

ANGAJAT (NrInreg, Nume, Varsta, Salariu) SUPERVIZOR (NrSup, NrAng)

se aplică operatorul de diferenţă între submulţimea supervizorilor şi mulţimea obţinută la pasul anterior.

$$\pi_{NrInreg,Nume}(ANGAJAT \bowtie_{NrInreg=NrSup} (\pi_{NrSup}(SUPERVIZOR) -$$

$$\pi_{NrSup}(SUPERVIZOR \bowtie_{NrAng=NrInreg} (\sigma_{Salariu \leq 40}(ANGAJAT)))))$$

ANGAJAT

NrInreg	Nume	Varsta	Salariu
101	Maria Ionescu	34	40
103	Maria Balint	23	35
104	Lucia Popescu	38	61
105	Nicu Luca	44	38
210	Marcel Burlacu	49	60
231	Alin Lupu	50	60
252	Nicu Luca	44	70
301	Andrei Popa	34	70
375	Maria Ionescu	50	65

SUPERVIZOR

NrSup	NrAng
210	101
210	103
210	104
231	105
301	210
301	231
375	252

Valori NULL în algebra relaţională

În cele discutate anterior am presupus că expresiile algebrice sunt aplicate unor relaţii ce nu conţin valori NULL.

Ţinând cont de importanţa valorilor NULL în aplicaţii, vom vedea care este impactul lor asupra limbajelor de interogare şi actualizare a datelor.

Exemplu. Să considerăm relaţia din figura următoare

PERSOANA

Nume	Varsta	Salariu
Ionescu	35	500
Popescu	27	600
Popa	NULL	500

Figura 3.12 Relație cu valori NULL

și selecția $\sigma_{Varsta>30}(PERSOANA)$

- Primul tuplu va contribui la rezultatul selecţiei, iar al doilea tuplu nu.
- Ce putem spune despre al treilea tuplu (valoarea NULL având semnificația unei informații pe care o ignoram)?

M

Valori NULL în algebra relaţională

În raport cu interogările prezentate anterior vom utiliza o logică trivalentă în locul celei bivalente:

- O formulă poate avea valorile de adevăr TRUE (T), FALSE (F) sau UNKNOWN (U).
- Rezultatul unei condiţii atomice va avea valoarea de adevăr UNKNOWN dacă cel puţin un termen al comparaţiei are valoarea NULL.

Revenind la exemplul anterior, expresia va produce o relaţie formată din primul tuplu, pentru care valoarea de adevăr a expresiei a fost TRUE.

Tabelele de adevăr în logica trivalentă pentru conectorii not, and şi or sunt:

not		and	T	U	F	or	T	U	F
U	U	T	Т	U	F	T	T	T	T
F	T	U	U	U	F	U	T	U	U
T	F	F	F	F	F	F	T	U	F

Valori NULL în algebra relaţională

Este de notat că această logică trivalentă pentru operatorii algebrici prezintă unele dezavantaje.

Exemplu

Să considerăm expresia

Nume	Varsta	Salariu
Ionescu	35	500
Popescu	27	600
Popa	NULL	500

$$\sigma_{Varsta>30}(PERSOANA) \cup \sigma_{Varsta\leq30}(PERSOANA)$$

- Logic, această expresie ar trebui să returneze relaţia PERSOANA.
- Pe de altă parte, dacă cele două subexpresii sunt evaluate separat, al treilea tuplu va produce un rezultat necunoscut pentru fiecare subexpresie, deci şi pentru reuniune.
- Numai prin intermediul unei evaluări globale (abordare care nu este practică în cazul expresiilor complexe) putem ajunge la concluzia că un astfel de tuplu trebuie să apară în rezultat.

NA.

Valori NULL în algebra relaţională

Cea mai bună metodă practică de a depăşi astfel de dificultăți este de a trata valorile NULL din punct de vedere pur sintactic.

În acest sens sunt introduse două noi condiţii atomice de selecţie pentru a verifica dacă o valoare este specificată sau este NULL:

- A is NULL este adevărată pentru tuplul t dacă t[A] = NULL şi falsă în rest;
- A is NOT NULL este adevărată pentru tuplul *t* dacă *t[A] ≠ NULL* şi falsă în rest.

Exemplu

 $\sigma_{Varsta>30}(PERSOANA)$ - returnează persoanele cu vârsta peste 30 ani.

 $\sigma_{\textit{Varsta}>30\,\lor\,\textit{Varsta}\,\textit{IS}\,\textit{NULL}}(\textit{PERSOANA})$ - returnează persoanele care au sau care pot avea peste 30 ani.

Această abordare este utilizată în versiunile recente de SQL care suportă logica trivalentă.

VEDERI

În cele prezentate anterior am văzut că se pot construi reprezentări diferite ale datelor, reprezentări ce vor fi disponibile utilizatorilor prin intermediul relaţiilor derivate.

Tipuri de relaţii într-o bază de date relaţională

- relaţii de bază conţinutul este autonom şi stocat în baza de date
- relaţii derivate conţinutul este definit pe baza conţinutului altor relaţii

Există două tipuri principale de relaţii derivate:

- vederi materiale relaţii derivate stocate în baza de date;
- vederi (relaţii virtuale) relaţii definite prin intermediul unor funcţii (expresii ale limbajului de interogare) care nu sunt stocate în baza de date, dar pot fi folosite în interogări ca şi cum ar exista fizic.

Vederile materiale oferă un avantaj când numărul cererilor de interogare este mai mare decât operaţiile de actualizare ale relaţiei pe care se bazează vederea.

Deoarece nu se pot specifica tehnici generale de păstrare a consistenței între relaţiile de bază şi vederile materiale, majoritatea sistemelor comerciale oferă mecanisme numai pentru relaţiile virtuale (vederi).

Vederile sunt definite în sistemele relaţionale ca fiind expresii ale unui limbaj de interogare.

 un utilizator interesat numai de o porţiune din baza de date poate evita contactul cu componentele ce nu prezintă interes;

Exemplu

Într-o bază de date cu două relaţii având schemele

ANGAJAT (NrAngajat, Departament) MANAGER (Departament, NrSupervizor),

un utilizator interesat doar de angajaţi şi de supervizorii lor ar putea fi ajutat de existenţa unei vederi definită astfel:

 $\pi_{\mathit{NrAngajat},\mathit{NrSupervizor}}(\mathit{ANGAJAT}\bowtie \mathit{MANAGER})$