PROJECT

EE&SM(E)-I CPWD WING ORGANISATION LOCATION

Generated by GElectrical

Website: https://manuvarkey.github.io/GElectrical/

Table of contents

Table of contents

Elements

	A1 - Assembly	4
	A1-B1 - Bus Bar	4
	A1-Q1 - Circuit Breaker	4
	A1-Q2 - Circuit Breaker	5
	A1-Q3 - Circuit Breaker	6
	A1-Q4 - Circuit Breaker	7
	A2 - Assembly	8
	A2-K1 - Contactor	8
	A2-Q1 - Circuit Breaker	9
	G1 - External Grid	9
	M1 - Motor 3ph	10
	Q1 - Fuse	10
	T1 - Transformer	11
	W1 - Line (Custom Geometry)	12
	W2 - LV Cable (IEC)	13
	W3 - LV Cable (IEC)	14
	W4 - LV Cable (IEC)	15
	W5 - Bus Trunking	17
	X1 - Load 3ph	17
	X2 - Load 1ph	18
Dill	of quantities	
BICC	of quantities	
	Lines	19
	Loads	19
	Switches	20
	Nodes	20
	D	
Load	Profiles	
	Large Office - Building - Equipment	22
	Midrise Apartment - Apartment - Equipment	22
	Midrise Apartment - Building - Elevator	22
Analy	JS1S	
	Analysis options	23
	Analysis results	23
	1 - Network Node	23
	10 - Network Node	24

Table of contents

11 - Network Node	25
12 - Network Node	26
12 - Network Node	27
13 - Network Node	28
14 - Network Node	29
2 - Network Node	30
3 - Network Node	31
4 - Network Node	32
5 - Network Node	33
6 - Network Node	34
7 - Network Node	35
8 - Network Node	36
9 - Network Node	37
A1-B1 - Bus Bar	38
A1-Q1 - Circuit Breaker	39
A1-Q2 - Circuit Breaker	39
A1-Q3 - Circuit Breaker	39
A1-Q4 - Circuit Breaker	39
A2-Q1 - Circuit Breaker	40
G1 - External Grid	40
M1 - Motor 3ph	41
Q1 - Fuse	42
T1 - Transformer	42
W1 - Line (Custom Geometry)	44
W2 - LV Cable (IEC)	46
W3 - LV Cable (IEC)	49
W4 - LV Cable (IEC)	51
W5 - Bus Trunking	53
X1 - Load 3ph	56
X2 - Load 1ph	56

Elements

A1 - Assembly

SL.No.	Description	Value	Unit
1	Reference	A1	
2	Name	ASSEMBLY	
3	Text 1		
4	Text 2		
5	Text 3		
6	Sub-elements	A1-Q1, A1-B1, A1-Q2, A1-Q3, A1-Q4	

A1-B1 - Bus Bar

SL.No.	Description	Value	Unit
1	Reference	A1-B1	
2	In	630	Α
3	Isc	25.0	kA
4	#P(T)	1	
5	#P(B)	3	
6	Bay Width	16	pt
7	DF	0.8	
8	Earthing resistance	0	

A1-Q1 - Circuit Breaker

SL.No.	Description	Value	Unit
1	Reference	A1-Q1	
2	Name		
3	Closed ?	True	
4	Type	LV breakers	
5	Sub Type	ACB	
6	Line Protection curve	EM Trip	
7	Ground Protection curve	None	
8	Poles	TPN	
9	Un	0.415	kV
10	In	630	Α
11	In_set	1	xIn
12	Isc	100.0	kA
13	Line Protection		

A1-Q2 - Circuit Breaker

Sl.No.	Description	Value	Unit
1	Reference	A1-Q2	
2	Name		
3	Closed ?	True	
4	Type	LV breakers	
5	Sub Type	MCCB	
6	Line Protection curve	EM Trip	
7	Ground Protection curve	None	
8	Poles	TPN	
9	Un	0.415	kV
10	In	63	A
11	In_set	1	xIn
12	Isc	25.0	kA
13	Line Protection		

A1-Q3 - Circuit Breaker

Sl.No.	Description	Value	Unit
1	Reference	A1-Q3	
2	Name		
3	Closed ?	True	
4	Type	LV breakers	
5	Sub Type	MCCB	
6	Line Protection curve	EM Trip	
7	Ground Protection curve	None	
8	Poles	TPN	
9	Un	0.415	kV
10	In	63	Α
11	In_set	1	xIn
12	Isc	25.0	kA
13	Line Protection		

A1-Q4 - Circuit Breaker

Sl.No.	Description	Value	Unit
1	Reference	A1-Q4	
2	Name		
3	Closed ?	True	
4	Type	LV breakers	
5	Sub Type	MCCB	
6	Line Protection curve	EM Trip	
7	Ground Protection curve	None	
8	Poles	DP	
9	Un	0.415	kV
10	In	63	A
11	In_set	1	xIn
12	Isc	25.0	kA
13	Line Protection		

A2 - Assembly

SL.No.	Description	Value	Unit
1	Reference	A2	
2	Name	ASSEMBLY	
3	Text 1		
4	Text 2		
5	Text 3		
6	Sub-elements	A2-Q1, A2-K1	

A2-K1 - Contactor

St.No.	Description	Value	Unit
1	Reference	A2-K1	
2	Name		
3	Туре	AC-3	
4	Poles	TP	
5	Un	0.415	kV
6	In	20.0	Α
7	Closed ?	True	

A2-Q1 - Circuit Breaker

1 Reference	Sl.No.	Description	Value	Unit
True	1	Reference	A2-Q1	
4 Type	2	Name		
Sub Type	3	Closed ?	True	
6 Line Protection curve EM Trip 7 Poles 8 Un 9 In 20.0 A 10 In_set 1 1	4	Туре	LV breakers	
7 Poles TPN 8 Un 0.415 kV 9 In 20.0 A 10 In_set 1	5	Sub Type	MPCB	
B Un 0.415 kV 9 In 20.0 A 10 In_set 1	6	Line Protection curve	EM Trip	
9 In 20.0 A 10 In_set 1	7	Poles	TPN	
10 In_set 1	8	Un	0.415	kV
Instantaneous pickup current: 1.05 xIr Time multiplier setting: 1 Line Protection Line Pro	9	In	20.0	Α
Line Protection Line Fault delay: 0 s Conventional fusing current: 1.05 xIr Time multiplier setting: 1 Line Fault delay: 0 s Convensional time: 2 Hrs Instantaneous trip time (min): 0.001 s Instantaneous trip time (max): 0.05 s k: 80 c: 0 alpha: 2 Current pickup tolerance: 20 %	10	In_set	1	×In
1,000 Line Protection 1,000 NI UNI O.1 O.01 O.01 I 100 CURRENT IN AMPERES Instantaneous pickup current: 8 xIn Conventional fusing current: 1.3 xIr Conventional non fusing current: 1.05 xIr Time multiplier setting: 1 Line fault delay: 0 s Convensional time: 2 Hrs Instantaneous trip time (min): 0.001 s Instantaneous trip time (max): 0.05 s k: 80 c: 0 alpha: 2 Current pickup tolerance: 20 %	11	Isc	10	kA
13 Drawout type ? False			1,000 Solution 1,000 Solution 1,000 Solution 1,000 CURRENT IN AMPERES Instantaneous pickup current: 8 xIn Conventional fusing current: 1.3 xIr Conventional non fusing current: 1.05 xIr Time multiplier setting: 1 Line fault delay: 0 s Convensional time: 2 Hrs Instantaneous trip time (min): 0.001 s Instantaneous trip time (max): 0.05 s k: 80 c: 0 alpha: 2 Current pickup tolerance: 20 % Time delay tolerance: 20 %	

G1 - External Grid

Sl.No.	Description	Value	Unit
1	Reference	G1	
2	Name	EXTERNAL GRID	
3	Vm	1	рυ
4	Vm<	0	degree
5	Vn	11	kV
6	Ssc_max	500	MVA

Sl.No.	Description	Value	Unit
7	Ssc_min	100	MVA
8	R/X max	0.2	
9	R/X min	0.05	
10	Ro/Xo max	0.2	
11	Ro/Xo min	0.1	
12	Xo/X max	3	
13	XO/X min	1	
14	In Service ?	True	

M1 - Motor 3ph

2	Reference Name	M1	
	Name	Int	
3	rano		
	PF	0.85	
4	DF	1	
5	In Service ?	True	
6	Load Profile	Midrise Apartment - Building - Elevator	
7	Mechanical rated power	7.5	kW
	Efficiency at operating point	88.1	%
9	Isc/In	7.0	
10	R/X	0.42	
11	Damage curve	M1 1,000 SQ 100 N1 0.1 M1 - Damage M1 - Starting 0.01 1 100 10,000 CURRENT IN AMPERES Acceleration time: 5 s Safe stall time: 20 s	

Q1 - Fuse

SL.No.	Description	Value	Unit
1	Reference	Q1	
2	Name		
3	Closed ?	True	
4	Туре	MV HRC	
5	Poles	TP	

SL.No.	Description	Value	Unit
6	Un	0.415	kV
7	In	80.0	Α
8	In_set	1.0	xIn
9	Isc	63.0	kA
10	Line Protection	Q1 - L 1,000 SQ 100 NI HW 1 0.1 0.01 1 100 10,000 CURRENT IN AMPERES	
11	Switch Disconnector ?	True	

T1 - Transformer

Sl.No.	Description	Value	Unit
1	Reference	T1	
2	Name	IS1180, EEL2	
3	Sn	0.63	MVA
4	Un (HV)	11.0	kV
5	Un (LV)	0.415	kV
6	Usc (Real)	0.7	%
7	Usc	4.5	%
8	Uosc (Real)	0.7	%
9	Uosc	4.5	%
10	Zmo/Zo	10.0	
11	Rom/Xom	0.0	
12	Fraction of UO on HV side	0.1	
13	Shift Degree	30.0	deg
14	Vector Group	Dyn	
15	Pfe	0.713	kW
16	Io	2.5	%
17	HV Symbol	D	
18	LV Symbol	Yn	
19	Tap side	hv	
20	Minimum tap position	-2	
21	Maximum tap position	4	
22	Current tap position	0	
23	Tap step size	2.5	%
24	OLTC provided ?	False	

W1 - Line (Custom Geometry)

SL.No.	Description	Value	Unit
1	Reference	W1	
2	Name	OH FEEDER	
3	Length	1	km
4	Conductor material	Aluminium	
5	R	0.448	Ohm/km
6	X	0.322	Ohm/km
7	С	11.431	nF/km
8	Ron	0.596	Ohm/km
9	Xon	1.653	0hm/km
10	Rog	0.596	Ohm/km
11	Xog	1.653	Ohm/km
12	Tf	250	degC
13	Imax	0.3	kA
14	Isc phase (1s)	8.145	kA
15	Isc cpe (1s)	0.0	kA
16	DF	1	
17	Designation	ACSR Raccoon (80)	
18	# Parallel Lines	1	
19	Damage curve		

W2 - LV Cable (IEC)

SL.No.	Description	Value	Unit
1	Reference	W2	
2	Name		
3	Length	0.3	km
4	Conductor material	Aluminium	
5	Insulation	XLPE/EPR	
6	R	0.32	Ohm/km
7	X	0.08	Ohm/km
8	С	290.0	nF/km
9	Ron	1.969	Ohm/km
10	Xon	0.32	Ohm/km
11	Rog	6.986	Ohm/km
12	Xog	0.74	Ohm/km
13	Tf	250	degC
14	Imax	0.192	kA
15	Isc phase (1s)	11.346	kA
16	Isc cpe (1s)	4.755	kA
17	DF	0.75	
18	Designation	3.5×120 A2XFY	

W3 - LV Cable (IEC)

SL.No.	Description	Value	Unit
1	Reference	W3	
2	Name		
3	Length	0.3	km
4	Conductor material	Aluminium	
5	Insulation	XLPE/EPR	
6	R	0.32	Ohm/km
7	X	0.08	Ohm/km
8	С	290.0	nF/km
9	Ron	1.969	Ohm/km
10	Xon	0.32	Ohm/km

SL.No.	Description	Value	Unit
11	Rog	6.986	Ohm/km
12	Xog	0.74	Ohm/km
13	Tf	250	degC
14	Imax	0.174	kA
15	Isc phase (1s)	11.346	kA
16	Isc cpe (1s)	4.755	kA
17	DF	1	
18	Designation	3.5×120 A2XFY	
19	# Parallel Lines	2	
20	Damage curve	W3 - Damage curve 1,000 1,000 100 W3 - Damage 0.01 0.01 100 CURRENT IN AMPERES	
21	In Service ?	True	
22	Phase nominal cross-sectional area	120.0	sq.mm.
23	Neutral cross-sectional area	0.583	xSph
24	Туре	3ph	
25	CPE Conductor	Cable armour	
26	Armour material	Steel	
27	Armour nominal cross-sectional area	92.0	sq.mm.
28	Laying type	Reference method D1 - Multi-core cable in ducts in the ground	
6	Laying arrangement	Ducts touching	
7	# of cables in group	1	
8	# of layers	1	
9	Ground temperature	20	degC
10	Soil thermal resistivity	2.5	K·m/W
11	Additional DF	1	

W4 - LV Cable (IEC)

SL.No.	Description	Value	Unit
1	Reference	W4	
2	Name		

SL.No.	Description	Value	Unit
3	Length	0.05	km
4	Conductor material	Aluminium	
5	Insulation	XLPE/EPR	
6	R	0.32	Ohm/km
7	X	0.08	Ohm/km
8	С	290.0	nF/km
9	Ron	1.969	Ohm/km
10	Xon	0.32	Ohm/km
11	Rog	6.986	Ohm/km
12	Xog	0.74	Ohm/km
13	Tf	250	degC
14	Imax	0.192	kA
15	Isc phase (1s)	11.346	kA
16	Isc cpe (1s)	4.755	kA
17	DF	0.75	
18	Designation	3.5×120 A2XFY	
19	# Parallel Lines	2	
20	Damage curve	1,000 100 100 100 W4 - Damage 0.01 0.01 1 100 10,000 CURRENT IN AMPERES	
21	In Service ?	True	
22	Phase nominal cross-sectional area	120.0	sq.mm.
23	Neutral cross-sectional area	0.583	xSph
24	Туре	3ph	
25	CPE Conductor	Cable armour	
26	Armour material	Steel	
27	Armour nominal cross-sectional area	92.0	sq.mm.
28	Laying type	Reference method D2 - Multi-core cable in the ground	
7	Laying arrangement	Cables touching	
8	# of cables in group	2	
9	# of layers	1	
10	Ground temperature	20	degC

SL.No.	Description	Value	Unit
11	Soil thermal resistivity	2.5	K·m/W
12	Additional DF	1	

W5 - Bus Trunking

SL.No.	Description	Value	Unit
1	Reference	W5	
2	Name		
3	Length	0.015	km
4	R	0.068	Ohm/km
5	X	0.017	Ohm/km
6	Ron	0.239	Ohm/km
7	X0n	0.068	Ohm/km
8	Rog	0.443	Ohm/km
9	Xog	0.266	Ohm/km
10	Tf	155	degC
11	Imax	1.0	kA
12	DF	1	
13	Designation	1000A-SCP-AL	
14	Damage curve	1,000 W5 - Damage curve 1,000 W5 - Damage 1,000 W5 - Damage 1,000 CURRENT IN AMPERES	
15	In Service ?	True	
16	Rn	0.057	Ohm/km
17	Xn	0.017	Ohm/km
18	Rpe	0.125	Ohm/km
19	Xp-pe	0.1	Ohm/km
20	Icw (1s)	30.0	kA
21	Ipk	66.0	kA

X1 - Load 3ph

SL.No.	Description	Value	Unit
1	Reference	X1	
2	Name		
3	Rated power	100.0	kVA
4	PF	0.8	

Sl.No.	Description	Value	Unit
5	DF	1	
6	Inductive ?	True	
7	In Service ?	True	
8	Load Profile	Large Office - Building - Equipment	

X2 - Load 1ph

Sl.No.	Description	Value	Unit
1	Reference	X2	
2	Name		
3	Rated power	25.0	kVA
4	PF	0.8	
5	DF	1	
6	Phase	A	
7	Inductive ?	True	
8	In Service ?	True	
9	Load Profile	Midrise Apartment - Apartment - Equipment	

19 Bill of Quantities

Bill of Quantities

Lines

Sl.No.	Referen ce	Name	Designation	Type	# Paralle l Lines		Imax	Deratin 3 Factor	C	% Loading		% P loss	Item Class
						km	kA			%	MW	%	
1	W1	OH FEEDER		Over Head	1	1	0.3	1	True	2.6	6e-05		Line (Custom Geometry)
2	W2		14 6V100 AOXEY	Under Ground	2	0.3	0.192	0.75	True	1.9	0.0	0.13	LV Cable (IEC)
3	W3		14 6¥190 A9XEY	Under Ground	2	0.3	0.174	1	True	37.5	0.00243	3.25	LV Cable (IEC)
4	W4		12 6 4000 4000	Under Ground	2	0.05	0.192	0.75	True	45.3	0.00041	0.56	LV Cable (IEC)
5	W5		1100004-50 P-41	Under Ground	1	0.015	1.0	1	True	22.6	9e-05	0.1	Bus Trunking
Σ											0.00299		

Loads

SL.No.	Referen ce	Name	Rated power	PF	Sa	Sb	Sc	In Service ?	Load Profile	Item Class
			kVA		kVA	kVA	kVA			
1	X1		100.0	0.8 Lag				True	Large Office - Building - Equipment	Load 3ph
2	X2		25.0	0.8 Lag	20.0+j15.0	0+j0	0+j0	True	Midrise Apartment - Apartment - Equipment	Load 1ph
3	M1		7.7735	0.85 lag				True	Midrise Apartment - Building - Elevator	Motor 3ph

20 Bill of Quantities

S	L.No.	Referen ce	Name	Rated power	PF	Sa	Sb	Sc	In Service ?	Load Profile	Item Class
Σ				132.7735							

Switches

SL.No.	Reference	Type	Poles	Un	In	Closed
				kV	A	
1	Q1	MV HRC	TP	0.415	80.0	True
2	A1-Q1	LV breakers	TPN	0.415	630	True
3	A1-Q2	LV breakers	TPN	0.415	63	True
4	A1-Q3	LV breakers	TPN	0.415	63	True
5	A1-Q4	LV breakers	DP	0.415	63	True
6	A2-Q1	LV breakers	TPN	0.415	20.0	True
7	A2-K1	AC-3	TP	0.415	20.0	True

Nodes

Node ID	Vn	ΔV	Isc (sym, max)	Isc (sym, min)	Isc (pk, max)	Isc (L-G, max)	Isc (L-G, min)
	kV	%	kA	kA	kA	kA	kA
1	11.0	0.07	9.1	3.56	14.08	5.23	2.85
2	11.0	0.01	26.25	5.25	57.82	15.75	5.24
3	11.0	0.07	9.1	3.56	14.08	5.23	2.85
4	0.415	3.54	4.41	2.28	6.37	0.64	0.31
5	0.415	3.96	3.86	1.98	5.58	0.55	0.26
6	0.415	0.96	19.58	15.95	42.93	20.0	16.81
7	0.415	1.09	18.87	15.24	38.52	16.98	13.86
8	0.415	1.19	4 . 47	2.34	6.45	0.64	0.31
9	0.415	1.19	4 . 47	2.34	6.45	0.64	0.31
10	0.415	1.09	18.87	15.24	38.52	16.98	13.86
11	0.415	1.09	18.87	15.24	38.52	16.98	13.86

21 Bill of Quantities

Node ID	Vn	ΔV	Isc (sym, max)	Isc (sym, min)	Isc (pk, max)	Isc (L-G, max)	Isc (L-G, min)
12	0.415	1.19	4 . 47	2.34	6.45	0.64	0.31
13	0.415	1.09	18.87	15.24	38.52	16.98	13.86
14	0.415	1.09	18.87	15.24	38.52	16.98	13.86
15							

22 Load Profiles

Load Profiles

Large Office - Building - Equipment

Midrise Apartment - Apartment - Equipment

Midrise Apartment - Building - Elevator

Analysis

Analysis options

SL.No.	Description	Value	Unit
1	Run diagnostics	True	
2	Enable assymetric power flow calculation	True	
3	Run time series power flow	True	
4	Run symmetric short circuit calculation	True	
5	Run line to ground short circuit calculation	True	
6	Export results of simulation	True	
7	Include graphs in report	True	
8	Power flow method	Time series	
9	Grid voltage tolerance	6.0	%
10	Grid Frequency	50	Hz
11	Fault resistance	0.0	Ohm
12	Fault reactance	0.0	Ohm

Analysis results

SL.No.	Description	Value	Unit
1	Vn	11.0	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.03 μ: 0.05 0.07] ΔVb: [0.03 μ: 0.04 0.05] ΔVc: [0.02 μ: 0.03 0.05] (0.07 μ: 0.03 μ: 0.04 0.05] (π) 0.07 μ: 0.03 μ: 0.04 0.05] (π) 0.04 μ: 0.04 μ: 0.04 0.05] (π) 0.05 μ: 0.04 μ: 0.04 0.05] (π) 0.04 μ: 0.04 μ: 0.04 0.05] (π) 0.05 μ: 0.04 μ: 0.04 0.05] (π) 0.07 μ: 0.04 μ: 0.04 μ: 0.04 0.05] (π) 0.07 μ: 0.04 μ: 0.04 μ: 0.04 μ: 0.05] (π) 0.07 μ: 0.04 μ: 0.04 μ: 0.05 μ: 0.05] (π) 0.07 μ: 0.03 μ: 0.04 μ: 0.05 μ: 0.05] (π) 0.07 μ: 0.03 μ: 0.04 μ: 0.05 μ: 0.05] (π) 0.07 μ: 0.05 μ: 0.05 μ: 0.05 μ: 0.05] (π) 0.07 μ: 0.05 μ: 0.05 μ: 0.05 μ: 0.05] (π) 0.07 μ: 0.05 μ: 0.05 μ: 0.05 μ: 0.05 μ: 0.05] (π) 0.07 μ: 0.05 μ: 0.05	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.5 μ: 0.79 1.09] ΔVb: [0.31 μ: 0.46 0.65] ΔVc: [0.3 μ: 0.44 0.63] ΔVa: [0.5 μ: 0.46 0.65] ΔVc: [0.3 μ: 0.44 0.63] ΔVa	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.51 μ: 0.84 1.19] ΔVb: [0.32 μ: 0.52 0.76] ΔVc: [0.31 μ: 0.5 0.74] 1.2 ΔVa ΔVa ΔVb ΔVc Θ Ο 0.8 Ο 0.8 Ο 10 20 Time (Hr)	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	11.0	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.0 μ: 0.0 0.0] ΔVb: [0.0 μ: 0.0 0.0] ΔVc: [-0.01 μ: -0.0 -0.0]	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	11.0	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.03 μ: 0.05 0.07] ΔVb: [0.03 μ: 0.04 0.05] ΔVc: [0.02 μ: 0.03 0.05] (0.07 (2.002 μ: 0.03 0.05] (3.004 (2.002 μ: 0.03 0.05] (3.004 (2.002 μ: 0.03 0.05] (3.004 (2.002 μ: 0.03 0.05] (4.002 (2.002 μ: 0.03 0.05] (5.002 μ: 0.03 0.05] (6.003 μ: 0.04 0.05] (7.004 0.05 0.05] (8.004 0.05 0.05] (9.004 0.05 0.05] (1.002 0.05 0.05] (1.002 0.05 0.05] (1.002 0.05 0.05]	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.5 μ: 0.79 1.09] ΔVb: [0.31 μ: 0.46 0.65] ΔVc: [0.3 μ: 0.44 0.63] ΔVa: [0.5 μ: 0.46 0.65] ΔVc: [0.3 μ: 0.44 0.63] ΔVa	%, %, %
3	ΔV		%

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.51 μ: 0.84 1.19] ΔVb: [0.32 μ: 0.52 0.76] ΔVc: [0.31 μ: 0.5 0.74] 1.2 ΔVa ΔVb ΔVb ΔVc Θ ΔVc Θ Ο 0.8 ΔVc Θ Ο 10 20 Time (Hr)	%, %, %
3	ΔV		%

9 - Network Node

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.51 μ: 0.84 1.19] ΔVb: [0.32 μ: 0.52 0.76] ΔVc: [0.31 μ: 0.5 0.74] 1.2 ΔVa ΔVb ΔVb ΔVc Θ 10 20 Time (Hr)	%, %, %
3	ΔV		%

A1-B1 - Bus Bar

SL.No.	Description	Value	Unit
1	Vn	0.415	kV
2	ΔVa, ΔVb, ΔVc	ΔVa: [0.5 μ: 0.79 1.09] ΔVb: [0.31 μ: 0.46 0.65] ΔVc: [0.3 μ: 0.44 0.63] α α α α α α α α α α α α α α α α α α	%, %, %
3	ΔV		%

A1-Q1 - Circuit Breaker

SL.No.	Description	Value	Unit
1	Vn	0.415	kV

A1-Q2 - Circuit Breaker

SL.No.	Description	Value	Unit
1	Vn	0.415	kV

A1-Q3 - Circuit Breaker

Sl.No.	Description	Value	Unit
1	Vn	0.415	kV

A1-Q4 - Circuit Breaker

SL.No.	Description	Value	Unit
1	Vn	0.415	kV

A2-Q1 - Circuit Breaker

SL.No.	Description	Value	Unit
1	Vn	0.415	kV

G1 - External Grid

M1 - Motor 3ph

Q1 - Fuse

SL.No.	Description	Value	Unit
1	Vn	11.0	kV

T1 - Transformer

SL.No.	Description	Value	Unit
1	P	0.08 0.08 0.06 0.04 0.06 0.04 0.04 0.06 0.04 0.06 0.06 0.07 0.0941]	MW
2	P (max)	0.0941	MW
3	PF		

SL.No.	Description	Value	Unit
		0.74 0.72 Δ 0.7 0.68 0 10 20 Time (Hr)	
4	PF (min)	0.67	
5	Pa, Pb, Pc	Pa: [0.0163 μ: 0.0268 0.0369] Pb: [0.0107 μ: 0.0173 0.0256] Pc: [0.0141 μ: 0.0231 0.0323] (M) 0.035 (N) 0.025 (N) 0.015 (N) Pc (Hr)	MW, MW,
6	% Loading	[11.3 µ: 17.5 23.5] 22.5	%
7	% Loading (max)	23.5	%
8	P Loss		MW

W1 - Line (Custom Geometry)

SL.No.	Description	Value	Unit
		0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74	
4	PF (min)	0.67	
5	Pa, Pb, Pc	Pa: [0.0163 μ: 0.0268 0.0369] Pb: [0.0107 μ: 0.0173 0.0256] Pc: [0.0141 μ: 0.0231 0.0323]	MW, MW,
6	% Loading	[1.2 µ: 1.9 2.6] 2.5 Suippo 2 No 1.5 Time (Hr)	%
7	% Loading (max)	2.6	%
8	P Loss		MW

W2 - LV Cable (IEC)

Sl.No.	Description	Value	Unit
1	P		MW

SL.No.	Description	Value	Unit
		[0.0003 μ: 0.0016 0.0033] 0.003 0.001 0.001 Time (Hr)	
2	P (max)	0.0033	MW
3	PF	0.85 μ: 0.85 0.86] 0.8575 0.8525 0.8525 0.86 μ: 0.85 0.86]	
4	PF (min)	0.85	
5	Pa, Pb, Pc	Pa: [0.0001 μ: 0.0005 0.0011] Pb: [0.0001 μ: 0.0005 0.0011] Pc: [0.0001 μ: 0.0005 0.0011] 0.0012 (MW 0.0008 Pa Pb Pc 0.00004 0.00004 Pb Pc Time (Hr)	MW, MW, MW
6	% Loading		%

SL.No.	Description	Value	Unit
		[0.2 µ: 0.9 1.9] 2 (%) Surpose 1 0 10 20 Time (Hr)	
7	% Loading (max)	1.9	%
8	P Loss	[0.0 µ: 0.0 0.0] 0.04 0.02 0.02 0.04 0.02 0.04 Time (Hr)	MW
9	P Loss (max)	0.0	MW
10	% P Loss	[0.01 μ: 0.06 0.13] 0.125 0.075 0.025 0.025 Time (Hr)	%
11	% P Loss (max)	0.13	%
12	Vn	0.415	kV

W3 - LV Cable (IEC)

SL.No.	Description	Value	Unit
1	P	[0.0325 μ: 0.0515 0.0748] 0.07 0.06 0.04 0.03 0.04 10 20 Time (Hr)	MW
2	P (max)	0.0748	MW
3	PF	0.81	
4	PF (min)	0.8	
5	Pa, Pb, Pc		MW, MW, MW

SL.No.	Description	Value	Unit
		Pa: [0.0108 μ: 0.0172 0.025] Pb: [0.0108 μ: 0.0171 0.0249] Pc: [0.0108 μ: 0.0171 0.0249] O.025 O.015 Pa Pb Pc O.01 O Time (Hr)	
6	% Loading	[16.3 µ: 25.8 37.5] 35 (%) Suipped 25 20 15 0 10 20 Time (Hr)	%
7	% Loading (max)	37.5	%
8	P Loss	[0.00046 μ: 0.00131 0.00243] 0.0025 0.0015 0.0005 0.0005	MW
		Time (Hr)	
9	P Loss (max)	0.00243	MW

W4 - LV Cable (IEC)

SL.No.	Description	Value	Unit
1	P	[0.0321 μ: 0.0502 0.0724] 0.07 0.06 0.04 0.03 0.04 0.03 0.04 0.07 0.04 0.07 0.07 0.07 0.07 0.07	MW
2	P (max)	0.0724	MW
3	PF		

SL.No.	Description	Value	Unit
		[0.8 μ: 0.8 0.8] 0.84 0.82 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	
4	PF (min)	0.8	
5	Pa, Pb, Pc	Pa: [0.0107 μ: 0.0167 0.0241] Pb: [0.0107 μ: 0.0167 0.0241] Pc: [0.0107 μ: 0.0167 0.0241] 0.025 (MW 0.015 0.015 Pa Pa Pb Pc 0.01 Time (Hr)	MW, MW,
6	% Loading	[19.7 µ: 31.2 45.3] (**)	%
7	% Loading (max)	45.3	%
8	P Loss		MW

W5 - Bus Trunking

SL.No.	Description	Value	Unit
1	Р		MW

SL.No.	Description	Value	Unit
		0.0405 μ: 0.0664 0.0932] 0.08 0.06 0.04 0.04 Time (Hr)	
2	P (max)	0.0932	MW
3	PF	0.81 μ: 0.81 0.81] 0.8075 0.8025 0.8025 0.8 μ: 0.81 0.81] Time (Hr)	
4	PF (min)	0.8	
5	Pa, Pb, Pc	Pa: [0.0186 μ: 0.0309 0.0433] Pb: [0.011 μ: 0.0177 0.0261] Pc: [0.011 μ: 0.0177 0.0261] Pa	MW, MW,
6	% Loading		%

SL.No.	Description	Value	Unit
		[9.7 µ: 16.2 22.6] (%) Suppose 15 % 10 10 Time (Hr)	
7	% Loading (max)	22.6	%
8	P Loss	[2e-05 µ: 5e-05 9e-05] 8e-05 6e-05 2e-05 Time (Hr)	MW
9	P Loss (max)	9e-05	MW
10	% P Loss	[0.04 µ: 0.07 0.1] 0.1 8 0.08 0 0.06 0 10 20 Time (Hr)	%
11	% P Loss (max)	0.1	%
12	Vn	0.415	kV

X1 - Load 3ph

SL.No.	Description	Value	Unit
1	P, Q	P: [0.032 µ: 0.05 0.072] Q: [0.024 µ: 0.0375 0.054] 0.07 Q Q Q Q 0.04 0.05 O 0.04 O 0.04 O 0.04 O 0.04 O 0.05	MW, MVAr
2	PF	[0.8 μ: 0.8 0.8] 0.84 0.82 0.78 0.76 0 10 20 Time (Hr)	

X2 - Load 1ph

Sl.No.	Description	Value	Unit
1	Р		MW

