1)
$$T(n) = 7 \cdot T(\frac{n}{3}) + n^2$$

$$\log_3 7 \quad v \quad 2$$

$$\log_3 7 \quad < \log_3 9 \implies \log_3 7 < 2, \quad \text{TOFga} \quad \text{NO} \quad \text{Macrep-Teopene} \quad T(n) = O(n^2).$$

2)
$$T(n) = 4T(\frac{n}{2}) + \log_2 n$$

$$\log_2 n < cn$$
 now $\forall c \ge 1$ $\forall n$, $\tau orga$ $f(n) = \log_2 n = O(\log n) \implies \forall k > 0$ $f(n) = O(n^k)$ $\log_2 4 = 2 < 1 \implies \pi o$ macrep - $\tau e o p e m e$ $T(n) = O(n^2)$

3)
$$T(n) = 0.5 \cdot T(\frac{n}{2}) + \frac{1}{n}$$

 $T.k. \quad \alpha = 0.5 < 1$, to macrep-teopeny primerite heavy.

$$T(n) = \frac{1}{2}T(\frac{n}{2}) + \frac{1}{n} = \frac{1}{2}(\frac{1}{2}T(\frac{n}{4}) + \frac{2}{n}) + \frac{1}{n} = \frac{1}{4}T(\frac{n}{4}) + \frac{1}{n} + \frac{1}{n} = \frac{1}{4}T(\frac{n}{4}) + \frac{1}{n} + \frac{1}{n} = \frac{1}{n} \cdot \log_2 n$$

В итоге получится
$$log_1 n$$
 слагаемых $\frac{1}{n}$, т.к. шаг рекурши $-\frac{n}{2}$. Следо вательно, $T(n) = O(\frac{log_1 n}{n})$.

4)
$$T(n) = 3 \cdot T(\frac{n}{3}) + \frac{n}{2}$$

$$C = 1$$

 $\log_3 3 = 1 = C \implies 170$ Macrep-Teopene $T(n) = O(n'\log_2 n) = O(n'\log_2 n)$

5)
$$T(n) = T(n-1) + T(n-2) + n \cdot \log_2 n$$

Мастер-теорема не может быть применена, так как рекуррентное соотно-шение не соответствует формуле $T(h) = a \cdot T(\frac{h}{h}) + O(f(n))$. Т.е. нарушен шаг рекурсии.

Найдём верхнюю асимптотическую границу.

$$T(n) = T(n-1) + T(n-2) + n \log_2 n \le 2 \cdot T(n-1) + n \log_2 n = T_n(n)$$

Das $T_1(h)$ применима мастер-теорема. $\alpha = 2 > 0$ b = 1 > 0 k = 1 > 0 $f(n) = \log n$

$$a > 1 \implies T_a(n) = O(a^{\frac{n}{b}} \cdot f(n)) = O(2^{\frac{n}{b}} \cdot \log_2 n)$$

$$T.u. T(n) \leq T(n) = O(2^{n} \log_{2} n), TO T(n) = O(2^{n} \log_{2} n)$$