### exp3

#### January 6, 2022

```
Computational Neuroscience Experiment 3
    Roshan Srivastava
    J047
    MBA Tech. EXTC SEM 8
    Part 1: Calculating Characteristics
[]: import pandas as pd
     import numpy as np
     import glob
     import matplotlib.pyplot as plt
     import warnings
     warnings.filterwarnings("ignore")
[]: def shannon_entropy(x):
         prob_energy = pow(x,2)/np.sum(pow(x,2))
         shannon = - np.sum(prob_energy*np.log2(prob_energy))
         return shannon
     def lee(x):
         prob_energy = pow(x,2)/np.sum(pow(x,2))
         log_energy = np.sum(prob_energy*np.log(prob_energy))
         return log_energy
[]: def individual_chars(path):
         data = pd.read_csv(path)
         for col in ['FZ -A2 ', 'CZ -A1 ', 'PZ -A2 ', 'BP2-REF']:
             data.pop(col)
         print(f"Individual Data for {path}\n")
         data_chars = pd.DataFrame({"Mean":data.mean(),"Median":data.
      omedian(), "Summation":data.sum(), "Variance":data.var(), "Standard Deviation":
      -data.std(), "Shannon Entropy": shannon_entropy(data), "Log Energy Entropy":
      →lee(data)})
         return data_chars
[ ]: def hemisphere_chars(path):
         print(f"Hemisphere Data for {path}")
```

```
data = pd.read_csv(path)
         for col in ['FZ -A2 ', 'CZ -A1 ', 'PZ -A2 ', 'BP2-REF']:
             data.pop(col)
         right_hemisphere = data[[i for i in data.columns if "A2" in i]].sum()
         left_hemisphere = data[[i for i in data.columns if "A1" in i]].sum()
         combined = pd.DataFrame({"Mean":[left_hemisphere.mean(),right_hemisphere.
      -mean()],"Median":[left_hemisphere.median(),right_hemisphere.
      omedian()], "Summation": [left_hemisphere.sum(), right_hemisphere.
      Sum()], "Variance": [left_hemisphere.var(), right_hemisphere.var()], "Standard_
      Deviation": [left_hemisphere.std(), right_hemisphere.std()], "Shannon Entropy":
      → [shannon_entropy(left_hemisphere), shannon_entropy(right_hemisphere)], "Log_u
      SEnergy Entropy":[lee(left_hemisphere),lee(right_hemisphere)]})
         combined.index = ["Left", "Right"]
         combined = combined.transpose()
         return combined
[]: def ecg_chars(path):
         print(f"ECG Data for {path}")
         data = pd.read_csv(path)
         data = data[["BP1-REF","BP2-REF"]]
         bp1 = data["BP1-REF"]
         bp2 = data["BP2-REF"]
         combined = pd.DataFrame({"Mean":[bp2.mean(),bp1.mean()],"Median":[bp2.
      -median(),bp1.median()],"Summation":[bp2.sum(),bp1.sum()],"Variance":[bp2.

¬var(),bp1.var()],"Standard Deviation":[bp2.std(),bp1.std()],"Shannon
□
      →Entropy": [shannon_entropy(bp2), shannon_entropy(bp1)], "Log Energy Entropy":
      \hookrightarrow [lee(bp2),lee(bp1)]})
         combined.index = ["BP1","BP2"]
         combined = combined.transpose()
         return combined
[]: for file in list(glob.glob("*"))[:2]:
         print(individual_chars(file),"\n\n")
     for file in list(glob.glob("*"))[:2]:
         print(hemisphere_chars(file),"\n\n")
     for file in list(glob.glob("*"))[:2]:
         print(ecg_chars(file),"\n\n")
    Individual Data for 5_filtered.csv
                 Mean Median Summation
                                                Variance Standard Deviation \
    FP2-A2
             0.037109
                       -1.0
                                     95.0
                                              826.277247
                                                                   28.745039
    F8 -A2 0.013281
                          0.0
                                     34.0
                                              374.283528
                                                                   19.346409
    T4 -A2 0.019922
                         -1.0
                                    51.0
                                              629.104331
                                                                   25.081952
    T6 -A2 -0.014453
                         0.0
                                   -37.0
                                              361.839963
                                                                   19.022091
    F4 -A2 0.015234
                        -0.5
                                    39.0
                                              367.993906
                                                                   19.183167
```

| C4 -A2  | 0.032813  | -1.0  | 84.0  | 399.743354    | 19.993583  |
|---------|-----------|-------|-------|---------------|------------|
| P4 -A2  | 0.003125  | 0.0   | 8.0   | 576.565836    | 24.011785  |
| 02 -A2  | 0.007422  | 0.0   | 19.0  | 325.106236    | 18.030703  |
| FP1-A1  | -0.016016 | 1.0   | -41.0 | 1015.930576   | 31.873666  |
| F7 -A1  | -0.012109 | 0.0   | -31.0 | 682.249560    | 26.119907  |
| T3 -A1  | -0.008594 | 0.0   | -22.0 | 475.606804    | 21.808411  |
| T5 -A1  | -0.006250 | 0.0   | -16.0 | 524.801837    | 22.908554  |
| F3 -A1  | 0.001953  | 0.0   | 5.0   | 542.681903    | 23.295534  |
| C3 -A1  | -0.013672 | 0.0   | -35.0 | 510.626230    | 22.597040  |
| P3 -A1  | -0.024219 | 1.0   | -62.0 | 521.439820    | 22.835057  |
| 01 -A1  | -0.017188 | 2.0   | -44.0 | 1264.352186   | 35.557730  |
| BP1-REF | 0.066016  | -37.0 | 169.0 | 125332.497790 | 354.023301 |

|         | Shannon Entropy | Log Energy Entropy |
|---------|-----------------|--------------------|
| FP2-A2  | 9.991692        | -6.925713          |
| F8 -A2  | 9.989861        | -6.924444          |
| T4 -A2  | 9.702919        | -6.725551          |
| T6 -A2  | 9.910432        | -6.869388          |
| F4 -A2  | 10.286965       | -7.130381          |
| C4 -A2  | 9.960380        | -6.904010          |
| P4 -A2  | 10.069736       | -6.979809          |
| 02 -A2  | 10.051941       | -6.967474          |
| FP1-A1  | 9.845378        | -6.824296          |
| F7 -A1  | 10.197430       | -7.068320          |
| T3 -A1  | 10.057748       | -6.971500          |
| T5 -A1  | 10.117729       | -7.013075          |
| F3 -A1  | 9.989024        | -6.923864          |
| C3 -A1  | 10.054928       | -6.969545          |
| P3 -A1  | 10.057916       | -6.971616          |
| 01 -A1  | 9.956933        | -6.901620          |
| BP1-REF | 9.165193        | -6.352828          |

# Individual Data for 5\_unfiltered.csv

|        | Mean         | Median  | Summation  | Variance     | Standard Deviation | \ |
|--------|--------------|---------|------------|--------------|--------------------|---|
| FP2-A2 | -532.105078  | -538.0  | -1362189.0 | 34918.605992 | 186.865208         |   |
| F8 -A2 | -912.291406  | -919.5  | -2335466.0 | 50633.135057 | 225.018077         |   |
| T4 -A2 | -683.771094  | -685.0  | -1750454.0 | 36277.901470 | 190.467586         |   |
| T6 -A2 | -291.118359  | -296.5  | -745263.0  | 40198.961757 | 200.496787         |   |
| F4 -A2 | -1018.371875 | -1019.0 | -2607032.0 | 10643.294246 | 103.166343         |   |
| C4 -A2 | -370.224609  | -378.0  | -947775.0  | 37360.661137 | 193.289061         |   |
| P4 -A2 | -56.543750   | -62.5   | -144752.0  | 49656.828097 | 222.838121         |   |
| 02 -A2 | -748.427344  | -750.5  | -1915974.0 | 30537.644582 | 174.750235         |   |
| FP1-A1 | 89.635156    | 89.0    | 229466.0   | 8488.654645  | 92.133895          |   |
| F7 -A1 | 182.542188   | 181.5   | 467308.0   | 9088.840736  | 95.335412          |   |
| T3 -A1 | -268.410937  | -268.0  | -687132.0  | 9389.642710  | 96.900169          |   |
| T5 -A1 | -174.315234  | -176.0  | -446247.0  | 8472.975618  | 92.048768          |   |

| F3 -A1  | -5.176953   | -6.0   | -13253.0   | 11575.022603  | 107.587279 |
|---------|-------------|--------|------------|---------------|------------|
| C3 -A1  | -280.126562 | -280.0 | -717124.0  | 5242.481826   | 72.404985  |
| P3 -A1  | 49.713672   | 49.0   | 127267.0   | 9956.438109   | 99.781953  |
| 01 -A1  | 349.441797  | 348.0  | 894571.0   | 12698.221699  | 112.686386 |
| BP1-REF | -908.325000 | -936.0 | -2325312.0 | 162914.573505 | 403.626775 |

|         | Shannon Entropy | Log Energy Entropy |
|---------|-----------------|--------------------|
| FP2-A2  | 11.020299       | -7.638689          |
| F8 -A2  | 11.160303       | -7.735733          |
| T4 -A2  | 11.120128       | -7.707885          |
| T6 -A2  | 10.563676       | -7.322182          |
| F4 -A2  | 11.292742       | -7.827532          |
| C4 -A2  | 10.767502       | -7.463464          |
| P4 -A2  | 10.774761       | -7.468495          |
| 02 -A2  | 11.176100       | -7.746682          |
| FP1-A1  | 10.433953       | -7.232265          |
| F7 -A1  | 10.770833       | -7.465772          |
| T3 -A1  | 11.006232       | -7.628939          |
| T5 -A1  | 10.765435       | -7.462031          |
| F3 -A1  | 10.779446       | -7.471743          |
| C3 -A1  | 11.146279       | -7.726012          |
| P3 -A1  | 10.560701       | -7.320120          |
| O1 -A1  | 11.066104       | -7.670439          |
| BP1-REF | 11.107876       | -7.699393          |
|         |                 |                    |

## Hemisphere Data for 5\_filtered.csv

|                    | Left        | Right       |
|--------------------|-------------|-------------|
| Mean               | -30.750000  | 36.625000   |
| Median             | -33.000000  | 36.500000   |
| Summation          | -246.000000 | 293.000000  |
| Variance           | 406.785714  | 1774.553571 |
| Standard Deviation | 20.168929   | 42.125450   |
| Shannon Entropy    | 2.445421    | 2.238853    |
| Log Energy Entropy | -1.695037   | -1.551855   |

## ${\tt Hemisphere\ Data\ for\ 5\_unfiltered.csv}$

|                    | Left          | Right         |
|--------------------|---------------|---------------|
| Mean               | -1.814300e+04 | -1.476113e+06 |
| Median             | 5.700700e+04  | -1.556322e+06 |
| Summation          | -1.451440e+05 | -1.180890e+07 |
| Variance           | 3.243688e+11  | 6.978557e+11  |
| Standard Deviation | 5.695338e+05  | 8.353776e+05  |
| Shannon Entropy    | 2.296372e+00  | 2.467787e+00  |
| Log Energy Entropy | -1.591724e+00 | -1.710539e+00 |

#### ECG Data for 5\_filtered.csv BP2 BP1 -0.024219 Mean 0.066016 Median 0.000000 -37.000000 Summation -62.000000 169.000000 Variance 246.054122 125332.497790 Standard Deviation 15.686112 354.023301 Shannon Entropy 9.299781 9.165193 Log Energy Entropy -6.446117 -6.352828 ECG Data for 5\_unfiltered.csv BP2 BP1 Mean -6.062273e+02 -9.083250e+02 Median -6.050000e+02 -9.360000e+02 Summation -1.551942e+06 -2.325312e+06 Variance 5.767807e+02 1.629146e+05 Standard Deviation 2.401626e+01 4.036268e+02 Shannon Entropy 1.131739e+01 1.110788e+01 Log Energy Entropy -7.844618e+00 -7.699393e+00

#### Part 2: Unfiltered Data Graphs

```
\lceil \rceil : | \mathbb{N} = 2
    ind = np.arange(N)
    width = 0.1
    fig = plt.figure(figsize=(30,20))
    ax = fig.add_subplot(2,3,1)
    mean = [-98214.66, -144752.0]
    rects1 = ax.bar(ind, mean, width, color='r')
    median = [-13253.0, -1200034.5]
    rects2 = ax.bar(ind+width, median, width, color='g')
    ax.set_ylabel('Features')
    ax.set xticks(ind+width)
    ax.set_xticklabels(('Left', 'Right'))
    ax.legend(['Mean','Median'],loc="best")
    def autolabel(rects):
      for rect in rects:
        h = rect.get_height()
        ax.text(rect.get_x()+rect.get_width()/2., 1.05*h, '%0.
```

```
autolabel(rects1)
autolabel(rects2)
ax = fig.add_subplot(2,3,2)
var = [341525930172.0,609048699770.4888]
rects1 = ax.bar(ind+width, var, width, color='g')
ax.set_ylabel('Features')
ax.set xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Variance'],loc="center")
autolabel(rects1)
ax = fig.add_subplot(2,3,3)
std = [584402.19,780415.72]
rects1 = ax.bar(ind+width, std, width, color='g')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Standard Deviation'],loc="center")
autolabel(rects1)
ax = fig.add_subplot(2,3,4)
               [-1.0395, -0.833]
kurt =
rects2 = ax.bar(ind+width, kurt, width, color='g')
skew = [0.370, -0.219]
rects1 = ax.bar(ind+width, skew, width, color='r')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Kurtosis','Skewness'],loc="best")
autolabel(rects1)
autolabel(rects2)
ax = fig.add_subplot(2,3,5)
rms = [559664.833, 1547272.762]
rects1 = ax.bar(ind+width, rms, width, color='g')
ax.set_ylabel('Features')
ax.set xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Root Mean Square'],loc="center")
autolabel(rects1)
```

```
ax = fig.add_subplot(2,3,6)
se = [2.560,2.720]
rects1 = ax.bar(ind+width, se, width, color='r')

lee = [-1.774     ,-1.885]
rects2 = ax.bar(ind+width, lee, width, color='g')

ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Shannon Entropy','Log Energy Entropy'],loc="center")
autolabel(rects1)
autolabel(rects2)
```



Part 3: Filtered Data Graphs

```
[]: N = 2
ind = np.arange(N)
width = 0.1

fig = plt.figure(figsize=(30,20))
ax = fig.add_subplot(2,3,1)

mean = [-29.555 , 42.8]
```

```
rects1 = ax.bar(ind, mean, width, color='r')
median = [-31.0]
                      , 36.5]
rects2 = ax.bar(ind+width, median, width, color='g')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Mean','Median'],loc="best")
def autolabel(rects):
 for rect in rects:
   h = rect.get_height()
   ax.text(rect.get_x()+rect.get_width()/2., 1.05*h, '%0.
 autolabel(rects1)
autolabel(rects2)
ax = fig.add_subplot(2,3,2)
                     ,2417.733]
var = [368.777]
rects1 = ax.bar(ind+width, var, width, color='g')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Variance'],loc="center")
autolabel(rects1)
ax = fig.add_subplot(2,3,3)
std = [19.203]
               , 49.170]
rects1 = ax.bar(ind+width, std, width, color='g')
ax.set_ylabel('Features')
ax.set xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Standard Deviation'],loc="center")
autolabel(rects1)
ax = fig.add_subplot(2,3,4)
              [0.629, -0.138]
rects2 = ax.bar(ind+width, kurt, width, color='g')
skew = [0.141, 0.300]
rects1 = ax.bar(ind+width, skew, width, color='r')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
```

```
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Kurtosis','Skewness'],loc="best")
autolabel(rects1)
autolabel(rects2)
ax = fig.add_subplot(2,3,5)
rms = [34.660]
                    , 63.307]
rects1 = ax.bar(ind+width, rms, width, color='g')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Root Mean Square'],loc="center")
autolabel(rects1)
ax = fig.add_subplot(2,3,6)
se = [2.583]
                   , 2.282]
rects1 = ax.bar(ind+width, se, width, color='r')
lee_met = [-1.790, -1.582]
rects2 = ax.bar(ind+width, lee_met, width, color='g')
ax.set_ylabel('Features')
ax.set_xticks(ind+width)
ax.set_xticklabels(('Left', 'Right'))
ax.legend(['Shannon Entropy','Log Energy Entropy'],loc="center")
autolabel(rects1)
autolabel(rects2)
```



[]:[