Simplify. Show the work that leads to your answer.

1.
$$\frac{x-4}{x^2-3x-4}$$

2.
$$\frac{x^3-8}{x-2}$$

$$3. \qquad \frac{5-x}{x^2-25}$$

4.
$$\frac{x^2 - 4x - 32}{x^2 - 16}$$

II. Complete the following identities.

1.
$$\sin^2 x + \cos^2 x =$$

2. 1 +
$$tan^2x =$$

3.
$$\cot^2 x + 1 =$$

III. Simplify each expression.

$$1. \ \frac{1}{x+h} - \frac{1}{x}$$

2.
$$\frac{\frac{2}{x^2}}{\frac{10}{x^5}}$$

3.
$$\frac{\frac{1}{3+x} - \frac{1}{3}}{x}$$

4.
$$\frac{2x}{x^2-6x+9} - \frac{1}{x+1} - \frac{8}{x^2-2x-3}$$

IV. Solve for z:

1.
$$4x + 10yz = 0$$

2.
$$y^2 + 3yz - 8z - 4x = 0$$

V. If
$$f(x) = \{(3,5), (2,4), (1,7)\}$$
 $g(x) = \sqrt{x-3}$

$$h(x) = \{(3,2), (4,3), (1,6)\}$$
 $k(x) = x^2 + 5$

$$(x) = x^{-} + 5$$

2.
$$(k-g)(5) =$$

1. (f + h)(1) = _____

7.
$$\frac{1}{f(x)} =$$

VI. Miscellaneous: Follow the directions for each problem.

1. Evaluate
$$\frac{f(x+h)-f(x)}{h}$$
 and simplify if $f(x) = x^2 - 2x$.

- 2. Expand $(x + y)^3$
- 3. Simplify: $x^{\frac{3}{2}}(x+x^{\frac{5}{2}}-x^2)$
- * 4. Eliminate the parameter and write a rectangular equation for $x = t^2 + 3$

VII. Expand and simplify

* 1.
$$\sum_{n=0}^{4} \frac{n^2}{2}$$

VIII. Simplify

1.
$$\frac{\sqrt{x}}{x}$$

2.
$$e^{\ln 3}$$

3.
$$e^{(1+\ln x)}$$

5.
$$\ln e^7$$
 6. $\log_3(1/3)$

7.
$$\log_{1/2} 8$$
 8. $\ln \frac{1}{2}$

9.
$$e^{3\ln x}$$

$$10. \frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$$

12.
$$(5a^{2/3})(4a^{3/2})$$

13.
$$(4a^{5/3})^{3/2}$$
 * 14. $\frac{3(n+1)!}{5n!}$

* 14.
$$\frac{3(n+1)}{5n!}$$

IX. Using the point-slope form
$$y - y_1 = m(x - x_1)$$
, write an equation for the line

* X. Given the vectors
$$\mathbf{v} = -2\mathbf{i} + 5\mathbf{j}$$
 and $\mathbf{w} = 3\mathbf{i} + 4\mathbf{j}$, determine

1.
$$\frac{1}{2}$$
v

XI. Without a calculator, determine the exact value of each expression.

2.
$$\sin \frac{\pi}{2}$$

2.
$$\sin \frac{\pi}{2}$$
 _____ 3. $\sin \frac{3\pi}{4}$ _____

5.
$$\cos \frac{3\pi}{4}$$

4.
$$\cos \pi$$
 _____ 5. $\cos \frac{3\pi}{4}$ _____ 6. $\cos \frac{\pi}{3}$ _____

7.
$$\tan \frac{7\pi}{4}$$

8. tan
$$\frac{\pi}{6}$$

7.
$$\tan \frac{7\pi}{4}$$
 _____ 8. $\tan \frac{\pi}{6}$ _____ 9. $\tan \frac{2\pi}{3}$ _____

10.
$$\cos(\sin^{-1}\frac{1}{2})$$

10.
$$\cos(\sin^{-1}\frac{1}{2})$$
 _____ 11. $\sin^{-1}(\sin\frac{7\pi}{6})$ _____

XII. For each function, determine its domain and range.

1.
$$y = \sqrt{x-4}$$

2.
$$y = \sqrt{x^2 - 4}$$

3.
$$y = \sqrt{4 - x^2}$$

4.
$$y = \sqrt{x^2 + 4}$$

XIII. Determine all points of intersection.

1. parabola
$$y = x^2 + 3x - 4$$
 and line $y = 5x + 11$

1. parabola
$$y = x^2 + 3x - 4$$
 and $y = \sin x$ in the line $y = 5x + 11$ 2. $y = \cos x$ and $y = \sin x$ in the first quadrant

XIV. Solve for x, where x is a real number. Show the work that leads to your solution.

1.
$$x^2 + 3x - 4 = 14$$

$$2. \ \frac{x^4 - 1}{x^3} = 0$$

3.
$$(x-5)^2 = 9$$

4.
$$2x^2 + 5x = 8$$

Solve for x, where x is a real number. Show the work that leads to your solution.

5.
$$(x + 3)(x - 3) > 0$$

6.
$$x^2 - 2x - 15 \le 0$$

7.
$$12x^2 = 3x$$

8.
$$\sin 2x = \sin x$$
, $0 \le x \le 2\pi$

* 9.
$$|x-3| < 7$$

10.
$$(x + 1)^2(x - 2) + (x + 1)(x - 2)^2 = 0$$

11.
$$27^{2x} = 9^{x-3}$$

12.
$$\log x + \log(x - 3) = 1$$

XV. Graph each function. Give its domain and range.

1.
$$y = \sin x$$

Domain_____

Domain_____

Range _____

Range _____

3.
$$y = \sqrt{x}$$

4. y =
$$\sqrt[3]{x}$$

Domain_____

Domain____

Range _____

Range _____

Graph each function. Give its domain and range.

5.
$$y = \ln x$$

Domain_____

Domain____

Range _____

Range _____

$$7. y = \frac{1}{x}$$

8.
$$y = \begin{cases} x^2 & \text{if } x < 0 \\ x + 2 & \text{if } 0 \le x \le 3 \\ 4 & \text{if } x > 3 \end{cases}$$

Domain_____

Domain_____

Range _____

Range _____

graph (e.g. radi etc.)	, by name, each polar graph. Give at least one characteristic of each ius, location, length of petal, point (other than the pole) on the graph,
1. r = 2	
2. r = 3sec θ	
$3. r = 1 + \sin \theta$	
4. r = 2cos 3θ	
	ns ! You have finished the calculus summer packet. Please use the you would like to make some comments to your calculus teacher packet.
space below if	you would like to make some comments to your calculus teacher
space below if	you would like to make some comments to your calculus teacher

Summer 2009 page 10