2.1 (5) If X, Y, 2 satisfy the 1st two egns, then they also satisfy the 3rd egn, since it is a linear combination of the first two.

To find so 12s, use elimination

Back substituting y=1 into eqn 1, we see the line of solbs is given by x+ z=1.

- 3 pts on the line, for example: $(1,1,0), (0,1,1), (\frac{1}{2},1,\frac{1}{2}) \text{ etc.}$
- any point of the form (x,1,1-x).
- 21) Let $R = \begin{bmatrix} r_1 & r_2 \\ r_3 & r_4 \end{bmatrix}$. $R \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} r_1 & r_2 \\ r_3 & r_4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_3 \end{bmatrix} = \begin{bmatrix} r_2/2 \\ r_2/2 \end{bmatrix}$ $R \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} r_2/2 \\ r_4 \end{bmatrix} = \begin{bmatrix} -\sqrt{2}/2 \\ r_2/2 \end{bmatrix}$

So
$$R = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$$
. $\begin{bmatrix} \frac{1}{2} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$

(26) X-2Y = 0 ROW PICTURE:

(27) For two egns in 3 unknowns, x, y, Z, the row picture will show Two planes in 3-dimensional space.

The column picture is in 2-dimensional space. The solas normally lie on a line. (If one egns is a scalar multiple of the other, the solas will lie on a plane).

2.2 \bigcirc when a=42, the two lines are parallel \Rightarrow No sol². When a=0, elimination fails, but can be resolved by reordering the rows:

$$4x + 6y = 6$$
$$3y = -3$$

so back substitution gives y=-1, x=3.

(9) Note that, on the left side, 6x-4y is 2 times 3x-2y. When $b_2=2b_1$, then both equations describe the same line (the line of solutions, there are only many sol²s on this line). When $b_2 \neq 2b_1$, the equations describe parallel lines \Rightarrow no sol² exists.

(1) a) any linear combination of
$$(x,y,z)$$
 and (x,y,z) is also a sol ^{Δ} .

b) Along the line containing those 2 points.

(13) subtract
$$2 \times row \mid from row 2$$

11 | $\times row \mid 1$ | $\times row$

$$24) \quad a=2 \quad \text{or} \quad a=0$$

(25)
$$a = 0$$
, (zero column)
 $a = 4$, (equal rows)
 $a = 2$, (equal columns)

2.3
$$E_{Z_{1}} = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad E_{Z_{2}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

$$M = E_{32} E_{31} E_{Z_{1}} = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 10 & -2 & 1 \end{bmatrix}$$

$$\begin{cases}
4 & \text{ Elimination } of \\
b & \text{ of } column \\
b & \text{ of } column
\end{cases}$$

$$\begin{cases}
1 \\
-4 \\
0
\end{cases}$$

$$\begin{cases}
1 \\
-4 \\
2
\end{cases}$$

$$\begin{cases}
1 \\
-4 \\
10
\end{cases}$$

back subs gives $\left(\frac{1}{2}, \frac{1}{2}, -5\right)$.

(16) a) The ages of X and Y are
$$x$$
 and y : $x-2y=0$

$$x+y=33$$

$$501^{\frac{11}{2}} x=22 \text{ and } y=11.$$

b) The line
$$y=mx+c$$
 contains $x=2$, $y=5$ and $x=3$, $y=7$ when $2m+c=5$ $\Rightarrow m=2$, $c=1$.

(A)
$$PQ = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 $QP = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

any matrix $M - \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ has $M^2 = I$ if $a^2 + bc = 1$.

25) no solt because last eqn becomes
$$0=3$$
 change 6 to 3. Then $RI+RZ=R3$. $ooly many sol^25$.

$$\begin{bmatrix}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
7 \\
2
\end{bmatrix}$$
and $x^* = \begin{bmatrix}4 \\
-1
\end{bmatrix}.$

(28)
$$A = AI = A(BC) = (AB)C = IC = C.$$

2.4
$$\bigcirc$$
 a) T b) F e.g.
$$\begin{cases} \begin{cases} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} \begin{cases} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} \begin{cases} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} \begin{cases} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} \begin{cases} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$

e) T (helpful to look at the product
$$\begin{bmatrix} -r_1 \\ -r_2 \\ -r_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A$$
) F : $(AB)^2 = ABAB$
not in general the same as $AABB = A^2B^2$.

(8)
$$DA = \begin{bmatrix} 3a & 3b \\ 5c & 5d \end{bmatrix}$$
 so $3 \times RI$, $5 \times R2$

$$EA = \begin{bmatrix} c & d \\ c & d \end{bmatrix}$$
 both rows are $R2$ of A .

The columns of AD are $3(column \ lof A)$ and $5(column \ 2 \ of A)$ The columns of EA are zero and the sum of columns $l \not\equiv 2 \ of A$.

(1) a)
$$B = 4I$$
 b) $B = 0$ c) $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ d) $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

L.5 (6) a)
$$AB = AC$$
 multiply both sides by A^{-1} , since A invertible $A^{-1}AB = A^{-1}AC$
 $B = C$.

b)
$$AB = AC$$

$$A(B-C) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad [et B=C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
then $A(B-C) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

So
$$B-C = \begin{bmatrix} a & b \\ -a & -b \end{bmatrix}$$

any pair of matrices satisfying this relationship will do.

$$(7)$$
 a) In $A\overrightarrow{x} = (1,0,0)$, equation $1 + eqn 2 - eqn 3 = 0$ (LHS) but the RHS = 1. $0 = 1$ \times

- b) The RHS must also satisfy $b_1 + b_2 = b_3$
- c) row of zeros: no 3rd pivot.

(8) a)
$$\vec{x} = (1, 1, -1)$$
 satisfies $A\vec{x} = \vec{0}$.

- b) after elim. cols | and 2 end in zeros. Then since col 3 = coll+ col 2, so does $\neq col 3 \Rightarrow no 3^{rd}$ pivot.
- (1) a) If A = -B, the A + B = Zero matrix, which is NOT invertible.

b)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. $A + B = I$, which is invertible $I = I$.

(15) CLAIM: A matrix with a column of zeros cannot have an inverse.

PROOF: If A has column of zeros, then so does the product BA.

Then BA = I is impossible, therefore there is no A^{-1}

(18) CLAIM: If B is the inverse of
$$A^2$$
, of then AB is the inverse of A.

PRODF: 移
$$A^2B = I$$
, since B is the inverse of A $A(AB) = I$

$$\Rightarrow A = (AB)^{-1}$$
.

$$Z \cdot G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix} = U$$

$$E^{-1} = L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
 A= Lu.

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
-1 & -1 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
0 & 0 & c - b & c - b \\
0 & 0 & c - b & c - b
\end{bmatrix}$$

and
$$L=E^{-1}=\begin{bmatrix}1&0&0&0\\ 71&1&0&0\\ 71&1&1&1\end{bmatrix}$$
, $A=LU$ with 4 pivots if $a\neq 0$ a $\neq b$ a $\neq c$.

2.7
$$\bigcirc$$
 A = $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ has $A^2 = 0$.

The diagonal of ATA has dot products of columns with themselves. If ATA = 0, Zero diagonals => zero dot products => zero columns

$$\Rightarrow$$
 A=0.

- b) F. The transpose of AB is $B^TA^T = BA$, since A, B symmetric. So $(AB)^T = AB$ implies AB = BA, which is not true in general.
- c) T. Consider the transpose of $AA^{-1} = I$: $(AA^{-1})^T = (A^{-1})^T A^T = (A^{-1})^T A = I. \text{ Molt. both sides by } A^{-1} \stackrel{\text{(a)}}{\longrightarrow} A^{-1} \stackrel{\text{(b)}}{\longrightarrow} A^{-1} \stackrel{\text{(c)}}{\longrightarrow} A^$

$$(A^{-1})^T A A^{-1} = A^{-1}$$
 \Rightarrow $(A^{-1})^T = A^{-1}$, so A^{-1} is symmetric

d) T.
$$(ABC)^T = C^T(AB)^T = C^TB^TA^T = CBA$$
.

3-1
$$\bigoplus$$
 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$, $\begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix}$. A , for $C \in \mathbb{R}$.

7 rule 8: Note
$$(c_1+c_2)f(x)=f((c_1+c_2)x)$$
, which is not in general the same as $f(c_1x)+f(c_2x)=c_1f(x)+c_2f(x)$.

(11) a) all matrices
$$\begin{bmatrix} a & b \\ o & o \end{bmatrix}$$
 b) all matrices $\begin{bmatrix} a & a \\ o & o \end{bmatrix}$; $a \in \mathbb{R}$.

(4) a) all of
$$\mathbb{R}^2$$
, lines through the origin, $\{(0,0)\}$.

b) all of D, all matrices of the form
$$\begin{bmatrix} a & 0 \\ o & 0 \end{bmatrix}$$
, all matrices of the form $\begin{bmatrix} 0 & 0 \\ o & a \end{bmatrix}$ all matrices of the form $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$, and $\begin{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$.

- b) point, line
- c) if \vec{x} , \vec{y} are in both S and T, then since S, T are subspaces, $\vec{x} + \vec{y} \in S$ and \vec{T} . So $\vec{x} + \vec{y} \in S \cap T$. Similarly $c\vec{x}$ and $t\vec{y}$ massis in both s and t, $so c\vec{x} \in S \cap T$ too.

(22) a) solas for every
$$\vec{b}$$
, b) solvable only if $b_3 = 0$, c) solvable only if $b_2 = b_3$

(23) unless
$$\vec{b}$$
 is already in the col space.

$$\begin{bmatrix} A \ \vec{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{larger col. space} \\
 \text{no sol} \underline{n} \quad \text{to } A \overrightarrow{x} = \overrightarrow{b}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \stackrel{?}{b} \text{ is in col space}$$

$$A\overrightarrow{x} = \stackrel{?}{b} \text{ has } - \text{ a sol}^{2}.$$

- $B = 0, A \neq 0.$ Then the col space of AB is smaller than the col space of A.
- (27) a) F. (0,...,0) is not in this set.
 - b) T
 - c) T
 - d) F. Let A = I. Then $col\{A I\} = 0$, but $col\{A\} = \mathbb{R}^2$.
- Additional probs: First note $\vec{o} \in H$, since $0\vec{v} \in \text{span } \{\vec{v}, \vec{w}\}.$

Consider two elements of span $\{\vec{v}, \vec{w}\}\$, $c_1\vec{v}+c_2\vec{w}$ and $d_1\vec{v}+d_2\vec{w}$.

Then $(c_1\vec{v}+c_2\vec{w})+(d_1\vec{v}+d_2\vec{w})=(c_1+d_1)\vec{v}+(c_2+d_2)\vec{w}$, which is, in

the span of v and w.

Finally, consider $c(c_1\vec{v}+c_2\vec{w})=cc_1\vec{v}+cc_2\vec{w}$, which is also in span $\{\vec{v},\vec{w}\}$. Hence span {v, w} meets the requirements of a subspace.

K contains \vec{v} and \vec{w} , by definition of a subspace K. 2 Since contains all linear combinations civ + czw , which is precisely definition of the span of \vec{v} and \vec{w} . So K contains the span of V and w.