Zestaw 3

Zadanie 1. Niech A bedzie zdarzeniem losowym takim, że $\mathbb{P}(A) > 0$ i niech X będzie zmienną losową taką, że $\mathbb{E}X < \infty$. Wykaż, że wtedy $\mathbb{E}(X|A) =$ $\frac{1}{\mathbb{P}(A)} \int_A X d\mathbb{P}$.

Zadanie 2. Niech $\{A_i\}_{i\in I}$ będzie przeliczalnym rozbiciem przestrzeni Ω i takim, $\dot{z}e \ dla \ dowolnego \ i \ \mathbb{P}(A_i) > 0. \ Wyka\dot{z}, \ \dot{z}e \ wtedy \ \mathbb{E}X = \sum_{i \in I} \mathbb{E}(X|A_i)\mathbb{P}(A_i).$

Zadanie 3. Niech $\Omega = [0,1]$ i niech \mathbb{P} będzie miarą Lebesgue'a na tym odcinku. $Znajd\acute{z} \mathbb{E}(f|\mathcal{F})$ jeśli

- $f(x) = \sqrt{x}$ i \mathcal{F} jest generowane przez zbiory [0, 1/4) i [1/4, 1],
- f(x) = -x i \mathcal{F} jest generowane przez zbiory [0, 1/4) i [1/3, 1].

Zadanie 4. Niech $X \in L^2(\Omega)$. Możemy wtedy zdefiniować warunkową wariancję jako $Var(X|\mathcal{F}) = \mathbb{E}\left[(X - \mathbb{E}(X|\mathcal{F}))^2|\mathcal{F}\right]$. Pokaż, że zachodzi związek $VarX = \mathbb{E}\left(Var(X|\mathcal{F})\right) + Var\left(\mathbb{E}(X|\mathcal{F})\right).$

Zadanie 5. Niech X_1, X_2, \ldots, X_n będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie i takim, że $\mathbb{E}X_1 < \infty$. Wyznacz $\mathbb{E}(X_1 | \sum_{i=1}^n X_i)$.

Zadanie 6. Niech X, Y będą niezależnymi zmiennymi losowymi o rozkładzie $\mathcal{N}(0,1)$. Wyznacz $\mathbb{E}(X|X^2+Y^2)$.

Zadanie 7. Niech $\{X_i\}$ będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie i takim, że $\mathbb{E}|X_i| < \infty$. Niech $S_n = \sum_{i=1}^n X_i$ i niech $\mathcal{F}_n =$ $\sigma\left(S_{n}, S_{n+1}, S_{n+2}, \ldots\right). \quad Wyznacz$ $- \mathbb{E}(X_{1}|\mathcal{F}_{n}),$ $- \mathbb{E}\left(\sum_{i=1}^{n} a_{i}X_{i}|\mathcal{F}_{n}\right), \quad gdzie \sum_{i=1}^{n} a_{i} = 1.$

Zadanie 8. Niech X będzie zmienną losową o rozkładzie Poissona z parametrem λ. Znajdź warunkową wartość oczekiwaną tej zmiennej losowej pod warunkiem, że przyjmuje ona wartość parzystą.

Zadanie 9. Niech X,Y będą zmiennymi losowymi o standardowym rozkładzie normalnym i kowariancji równej ρ . Znajdź $\mathbb{E}(X|Y)$.

Zadanie 10. Niech zmienne losowe X, Y będą określone na pewnej przestrzeni probabilistycznej w następujący sposób

- $-X(x) = 2x^2, Y(x) = 1 |2x 1|,$ $-X(x) = 2x^2, Y(x) = 1 \frac{1}{2}|3x 1|,$
- $-X(x) = 2x^{2}, \quad Y(x) = 1 \frac{1}{2} |3x 1|,$ $-X(x) = x^{2}, \quad Y(x) = 2\mathbf{1}_{[0,1/2)} + x\mathbf{1}_{[1/2,1]}.$ $Znajd\acute{z} \mathbb{E}(X|Y)$.

Zadanie 11. Niech $(\Omega = [0,1], \mathcal{F} = \mathcal{B}_{[0,1]}, \lambda)$ bedzie przestrzenią probabilistyczną. Niech $Y(\omega) = \omega(1-\omega)$. Udowodnij, że dla dowolnej zmiennej losowej X określonej na tej przestrzeni zachodzi

$$\mathbb{E}(X|Y)(\omega) = \frac{X(\omega) + X(1-\omega)}{2}.$$

1