UT Austin CSE 386D

Homework 7

Jonathan Zhang EID: jdz357

Exercise (8.1). If A is positive definite, show that its eigenvalues are positive. If A is symmetric and has positive eigenvalues, then A is positive definite.

Proof. Suppose that A is positive definite. Let (λ, ν) be an eigenpair for A. Then by the positive definiteness,

$$0 < (v, Av) = (v, \lambda v) = \lambda (v, v) = \lambda ||v||^2.$$

Since this quantity is strictly positive, we must have $\lambda > 0$.

On the other side, assume now that A has all positive eigenvalues. Then, A admits a diagonalization $A = U\Lambda U^*$ for some $U^* = U^{-1}$ unitary matrix. Pick $x \neq 0$, and set $y = U^*x \neq 0$. Then

$$(x,Ax) = (x,U\Lambda U^*x) = (y,\Lambda y).$$

Expand $y = \sum y_i e_i$, then

$$(y, \Lambda y) = \sum_{i} \overline{y_i} y_i \lambda_i > 0$$

since $\lambda_i > 0$ and $\overline{y_i}y_i = |y_i|^2 \ge 0$ since $y \ne 0$ by assumption. This shows that $(x, Ax) = (y, \Lambda y) > 0$ and A is positive definite.

CSE 386D UT Austin

Exercise (8.3). Suppose we wish to find $u \in H^2(\Omega)$ satisfying $-\Delta u + cu^2 = f \in L^2(\Omega)$ for $\Omega \subset \mathbb{R}^d$ is a bounded Lipschitz domain. For consistency, we would require that $cu^2 \in L^2(\Omega)$. Determine the smallest p such that if $c \in L^p(\Omega)$, then this holds. Depends on d.

Proof. We want $cu^2 \in L^2(\Omega)$. Suppose that $u \in L^r(\Omega)$ and $c \in L^p(\Omega)$. Then by Generalized Hölder's, we have the estimate

$$||cu^2||_2^2 = \int_{\Omega} c^2 u^4 \le ||c||_p^2 ||u||_r^4$$

provided that 2/p + 4/r = 1. That is, given r, we determine $p = \frac{2}{1 - 4/r}$, and if $c \in L^p$, then we have $cu^2 \in L^2(\Omega)$.

We make use now of the Sobolev embedding theorem. We know $u \in H^2(\Omega) = W^{2,2}(\Omega)$. Let j = 0, m = 2, p = 2. Then we have

- 1. If 4 < d, then $W^{2,2}(\Omega) \hookrightarrow W^{0,r}(\Omega)$ for every $r \le \frac{2d}{d-4}$. Let us first investigate when $r = \frac{2d}{d-4}$. Substituting in, we find $p = \frac{2d}{8-d}$. We immediately find that we have problems when d > 8, which is admissible in this case. Enforcing that $p \ge 1$, we obtain $r \ge 4$, so we must have $r \in [4, \frac{2d}{d-4}]$. However, we run into an issue when d > 8. Then, there are no values for r that work, and hence the argument breaks down.
- 2. If d < 4, then $W^{2,2}(\Omega) \hookrightarrow C_B^0(\Omega) = C^0(\Omega) \cap L^{\infty}(\Omega)$. In this case, we obtain $r = \infty$, and calculate p = 2, so c can be in L^2 .

Therefore, we have the following result:

d	p
< 4	2
4	2+
5	10/3
6	6
7	14
8	∞

UT Austin CSE 386D

Exercise (8.5). Suppose that $\Omega \subset \mathbb{R}^d$ is a smooth, bounded, connected domain. Let

$$H = \left\{ u \in H^2(\Omega) : \int_{\Omega} u = 0, \nabla u \cdot n = 0 \text{ on } \partial \Omega \right\}.$$

Show that H is a Hilbert space, and prove there exists C > 0 such that

$$||u||_{H^1(\Omega)} \le C \sum_{|\alpha|=2} ||D^{\alpha}u||_{L^2(\Omega)}$$

for every $u \in H$.

Proof. 1. H is the finite intersection of two null spaces. The null space of the averaging operator and the null space of the γ_1 operator. Therefore, H is closed. H also inherits the $H^2(\Omega)$ inner product.

2. Assume to the contrary that the inequality fails. That is, there exists a sequence $u_n \in H$ such that

$$\|u_n\|_{H^1}=1 \qquad ext{and} \qquad \sum_{|lpha|=2} \|D^lpha u_n\|_{L^2(\Omega)} o 0.$$

We remark that the second assumption implies that $D^{\alpha}u_n \to 0$ in L^2 for every $|\alpha| = 2$ multiindex. We claim now that u_n is a bounded sequence in H. This follows since

$$||u_n||_{H^2}^2 = ||u_n||_{H^1}^2 + \sum_{|\alpha|=2} ||D^{\alpha}u_n||_{L^2(\Omega)}^2 = 1 + C$$

where $C < \infty$ is the bound for the sequence $\sum_{|\alpha|=2} \|D^{\alpha}u_n\|_{L^2(\Omega)}^2$. We know it is bounded since it converges. Thus, we conclude there is a subsequence $u_{n_k} \rightharpoonup u$ in H.

On one hand, we have a bounded sequence in H^1 from which we can extract a weakly converging subsequence, denoted with the same symbol, $u_n \rightharpoonup u$ in H^1 . This implies weak convergence $D^{\alpha}u_{n_k} \rightharpoonup D^{\alpha}u$ in L^2 for every $|\alpha|=2$. However, we know already that $D^{\alpha}u_n \to 0$ for every such multiindex, so we conclude that $D^{\alpha}u=0$ almost everyhwere. Condition $\nabla u \cdot n=0$ implies then that $\nabla u=0$.

On the other hand, the R-K theorem implies that there exists a subsequence $u_{n_{k_{\ell}}} \to u$ in H^1 . Strong convergence implies strong convergence of $\nabla u_{n_{k_{\ell}}} \to \nabla u$ in L^2 . Finally, we need the Poincare estimate to show the result. Notice that

$$1 = \|u\|_{H^1}^2 \leftarrow \|u_{n_{k_{\ell}}}\|_{H^1}^2 = \|u_{n_{k_{\ell}}}\|^2 + \|\nabla u_{n_{k_{\ell}}}\|^2 \le \left(C_P^2 + 1\right)\|\nabla u_{n_{k_{\ell}}}\|^2 \to \left(C_P^2 + 1\right)\|\nabla u\|^2 \to 0.$$

CSE 386D UT Austin

Exercise (8.8). $\Omega \subset \mathbb{R}^d$ bounded, connected, Lipschitz domain. Let $V \subset \Omega$ have positive measure. Let $H = \{u \in H^1(\Omega) : u|_V = 0\}$.

- 1. Why is H a Hilbert space?
- 2. Prove that there exists C > 0 such that

$$||u|| \le C||\nabla u||$$

for every $u \in H$.

- 1. H is the null space of the restriction to V operator. Since restriction is continuous, then H is closed. As a closed subspace of Hilbert space $H^1(\Omega)$, then H is itself a Hilbert space.
- 2. Go by contradiction. Assume to the contrary that there exists a sequence $u_n \in H$ such that

$$||u_n|| = 1$$
 and $||\nabla u_n|| \to 0$.

Now, from every bounded sequence in a Hilbert space, we can extract a weakly convergent subsequence $u_{n_k} \rightharpoonup u \in H$. Weak convergence of u_{n_k} implies weak convergence of $\nabla u_{n_k} \rightharpoonup \nabla u$ in L^2 . Since the norm is continuous we pass to the limit and we have that $\nabla u = 0$, i.e. u is a constant. But if u vanishes on V, then the only possibility is that $u \equiv 0$.

On the other side, we know from the Rellich-Kondrachov Theorem that we have $u_{n_k} \to u$ in L^2 . Convergence in L^2 also implies convergence in the norm, butt since $||u_n|| = 1$ that means ||u|| = 1, a contradiction.