

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Mathematisches Institut Prof. Dr. P. Müller

Probeklausur Samstag, 11. Dezember 2010

Analysis 1 Probeklausur

Nachname:			Vorname:			
Matrikelnr.:			Fach	nsemester: _		
Studiengang	:					
		Mobiltelefo d Studienausv		~		sch; legen Sie
Bitte überpr	üfen Sie, ob	Sie sechs A ı	ufgaben erh	alten haben.		
Schreiben Si Ihren Nachr				grün. Schrei	ben Sie auf	jedes Blatt
	rwenden Sie	bitte die lee	eren Seiten a	•		r Platz nicht dies auf dem
Bitte achten deutlich durc		•	_	nur eine Lösu	ing abgeben;	streichen Sie
Sie haben 12	20 Minuten	Zeit, um die	Klausur zu	bearbeiten.		
			Viel Erfolg!			
			1			
1	2	3	4	5	6	$\frac{1}{1}$

Aufgabe 1. (6 Punkte)

Es sei (a_n) die Zahlenfolge mit

$$a_n = \frac{2 + \frac{1}{\sqrt{n}}}{\sqrt{n} + 5^{-n}} \qquad (n \in \mathbb{N}).$$

Untersuche, ob (a_n) konvergiert und bestimme gegebenenfalls den Grenzwert.

Aufgabe 2. (6 Punkte)

Sei (a_n) eine reelle Zahlenfolge. Definiere:

- (a) (a_n) heißt Cauchy-Folge, wenn ...
- (b) Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt konvergent mit der Summe s, wenn ...

Aufgabe 3. (6 Punkte)

Sei $z=x+iy\in\mathbb{C},\ x,y\in\mathbb{R}$ und $z\neq0.$ Gib den Real- und den Imaginärteil der komplexen Zahl $w:=\overline{z}^2+\frac{1}{z^2}$ an.

Aufgabe 4. (6 Punkte)

Sei $n \in \mathbb{N}$. Für $1 \le k \le n$ sei $a_k \in \mathbb{R}$ mit $-1 \le a_k \le 0$ gegeben. Beweise mit vollständiger Induktion:

$$\prod_{k=1}^{n} (1 + a_k) \ge 1 + \sum_{k=1}^{n} a_k.$$

Aufgabe 5. (6 Punkte)

Bestimme alle Häufungswerte sowie Limes inferior und Limes superior der reellen Folge (a_n) mit

- (a) $a_n = -n$ $(n \in \mathbb{N});$
- (b) $a_n = (-n)^{\operatorname{Re}(i^n)}$ $(n \in \mathbb{N}).$

Aufgabe 6. (6 Punkte)

Es sei $A \subseteq \mathbb{R}$ eine nichtleere, von oben beschränkte Menge und $S := \sup A$.

Zeige: Es gibt eine Folge $(a_n)_{n\in\mathbb{N}}$ in A mit $a_n\to S$ $(n\to\infty)$.

1 Es sei
$$(a_n)_{n\in\mathbb{N}}$$
 eine Zahlenfolge mit $a_n:=\frac{2+\frac{1}{\sqrt{n}}}{\sqrt{n}+5^{-n}}$ $(n\in\mathbb{N})$.

Untersuche, ob $(a_n)_n$ konvergiert und bestimme gegebenenfalls den Grenzwert.

Lösung:

Für den Nenner gilt $\sqrt{n} + \frac{1}{5^n} > 0$ für alle $n \in \mathbb{N}$, d.h. die Folge ist wohldefiniert. Man forme um:

$$a_n = \frac{2 + \frac{1}{\sqrt{n}}}{\sqrt{n} + 5^{-n}} = \frac{\frac{1}{\sqrt{n}} \cdot \left(2 + \frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}} \cdot \left(\sqrt{n} + 5^{-n}\right)} = \frac{\frac{2}{\sqrt{n}} + \frac{1}{n}}{1 + \frac{1}{\sqrt{n} \cdot 5^n}}$$

Nun ist die Folge $\left(\frac{1}{\sqrt{n}}\right)_{n\in\mathbb{N}}$ eine Nullfolge:

 $\forall \ \epsilon>0 \ \exists \ N\in\mathbb{N}: N>rac{1}{\epsilon^2} \ (\text{nach Archimedes}), \ \text{also folgt für alle} \ \ n\in\mathbb{N} \ :$

$$n \ge N \implies \frac{1}{\epsilon^2} < n \implies \frac{1}{\epsilon} < \sqrt{n} \implies 0 < \frac{1}{\sqrt{n}} < \epsilon, \quad \text{also } \frac{1}{\sqrt{n}} \xrightarrow[n \to \infty]{} 0.$$

Nach Tutorium und Übung ist auch $\left(\frac{1}{5^n}\right)_n$ eine Nullfolge $(0<\frac{1}{5}<1)$, und so konvergiert nach den Grenzwertsätzen auch $\left(\frac{1}{\sqrt{n}}\cdot\frac{1}{5^n}\right)_n$ gegen 0.

Dann gilt für die

Zählerfolge
$$Z_n = \frac{2}{\sqrt{n}} + \frac{1}{n} \xrightarrow[n \to \infty]{} 0 + 0 = 0$$

Nennerfolge
$$N_n = 1 + \frac{1}{\sqrt{n} \cdot 5^n} \xrightarrow[n \to \infty]{} 1 + 0 = 1 \neq 0$$

d.h nach dem Quotientensatz:
$$a_n = \frac{Z_n}{N_n} \xrightarrow[n \to \infty]{} \frac{0}{1} = 0$$
.

Alternativ:

$$\forall n \in \mathbb{N} : 2 + \frac{1}{\sqrt{n}} \le 3 \text{ (da } \sqrt{n} \ge 1) \text{ und } \sqrt{n} + \frac{1}{5^n} > \sqrt{n} \implies$$

$$0 < a_n = \frac{2 + \frac{1}{\sqrt{n}}}{\sqrt{n} + 5^{-n}} \le \frac{3}{\sqrt{n}}$$

$$\begin{vmatrix} n \to \infty \\ 0 \end{vmatrix}$$

und damit liefert der Einschließungssatz ("Sandwich-Lemma"), daß $a_n \xrightarrow[n \to \infty]{} 0$.

Natürlich muß auch hier wie oben bewiesen werden, daß die Folge $\left(\frac{3}{\sqrt{n}}\right)_n$ eine Nullfolge ist.

- (2) Sei $(a_n)_n$ eine reelle Zahlenfolge. Definiere:
 - (a) $(a_n)_n$ heißt *Cauchy-Folge*, wenn:

$$\forall \ \epsilon \in \mathbb{R}, \ \epsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall \ n, m \in \mathbb{N}, \ n, m \geq N \ : \ |a_n - a_m| < \epsilon$$

(b) Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt *konvergent* mit der Summe *s*, wenn:

die Partialsummenfolge $(S_n)_{n\in\mathbb{N}}$ mit $S_n = \sum_{k=1}^n a_k$ gegen s konvergiert, d.h wenn

$$\forall \ \epsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall \ n \ge N : |S_n - s| < \epsilon$$

3 Sei $z=x+iy\in\mathbb{C},\ x,y\in\mathbb{R}$ und $z\neq 0$. Gib den Real- und den Imaginärteil der komplexen Zahl $w:=\overline{z}^2+\frac{1}{z^2}$ an.

Lösung:

Es ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$ und $\overline{z}^2 = (x - iy)^2 = x^2 - y^2 - i(2xy)$. Damit folgt:

$$\bar{z}^2 + \frac{1}{z^2} = \bar{z}^2 + \frac{\bar{z}^2}{z^2 \cdot \bar{z}^2} = \bar{z}^2 \left(1 + \frac{1}{(z \cdot \bar{z})^2} \right) = \bar{z}^2 \left(1 + \frac{1}{(|z|^2)^2} \right) = \bar{z}^2 \left(1 + \frac{1}{|z|^4} \right)$$

$$= (x^2 - y^2 - 2xyi) \cdot \left(1 + \frac{1}{(x^2 + y^2)^2} \right)$$

Damit folgt

Re(w) =
$$(x^2 - y^2) \cdot \left(1 + \frac{1}{(x^2 + y^2)^2}\right)$$

Im(w) =
$$-2xy \cdot \left(1 + \frac{1}{(x^2 + y^2)^2}\right)$$

4 Sei $n \in \mathbb{N}$. Für $1 \le k \le n$ sei $a_k \in \mathbb{R}$ mit $-1 \le a_k \le 0$ gegeben. Beweise mit vollständiger Induktion:

$$\prod_{k=1}^{n} (1+a_k) \ge 1 + \sum_{k=1}^{n} a_k$$

Lösung:

Induktionsanfang
$$n = 1$$
:
$$\prod_{k=1}^{1} (1 + a_k) = 1 + a_1 \ge 1 + a_1 = 1 + \sum_{k=1}^{1} a_k$$

Induktionsschritt $n \rightarrow n+1$:

Induktions voraus setzung: Es gelte für ein $n \in \mathbb{N}$: $\prod_{k=1}^{n} (1 + a_k) \ge 1 + \sum_{k=1}^{n} a_k$ (IV)

Induktionsbeweis:

$$\prod_{k=1}^{n+1} (1 + a_k) = \left(\prod_{k=1}^{n} (1 + a_k)\right) \cdot (1 + a_{n+1})$$

$$\stackrel{\text{IV}}{\geq} \left(1 + \sum_{k=1}^{n} a_k\right) \cdot (1 + a_{n+1})$$

$$= 1 + \sum_{k=1}^{n} a_k + a_{n+1} + a_{n+1} \cdot \sum_{k=1}^{n} a_k$$

$$= 1 + \sum_{k=1}^{n+1} a_k + \underbrace{a_{n+1}}_{\leq 0} \cdot \underbrace{\sum_{k=1}^{n} a_k}_{\leq 0}$$

$$\stackrel{\geq}{\geq} 1 + \sum_{k=1}^{n+1} a_k$$

Dabei gilt (*), weil mit $-1 \le a_{n+1}$ folgt, daß $0 \le 1 + a_{n+1}$, dh. die Multiplikation mit diesem Term die größer-gleich-Relation bei (*) nicht verändert, und es gilt (**), weil in einem angeordneten Körper die Multiplikation zweier Elemente, die kleiner-gleich Null sind, ein Element größer gleich Null ergibt: $u, v \le 0 \implies uv \ge 0$.

Damit ist $a_{n+1} \cdot \sum_{k=1}^{n} a_k \ge 0$, und (**) ist gerechtfertigt.

- (5) Bestimme alle Häufungswerte sowie Limes inferior und Limes superior der reellen Folge $(a_n)_n$ mit
 - (a) $a_n = -n$ $(n \in \mathbb{N})$
 - (b) $a_n = (-n)^{Re(i^n)}$ $(n \in \mathbb{N})$

Lösung:

ad (a):

Für jede Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ gilt: $a_{n_k}=-n_k\leq -k$, da ja $n_k\geq k$ (wie in den Übungen gezeigt). Damit aber gilt $a_{n_k}\xrightarrow[k\to\infty]{}-\infty$

(Für alle $S \in \mathbb{N}$ gibt es $L \in \mathbb{N}$, nämlich L := S, so daß für alle $l \ge L = S$: $a_{n_l} \le -l \le -L = -S$ q.e.d.)

Damit gibt es keine konvergente Teilfolge von $(a_n)_n$, also auch keinen Häufungspunkt dieser Folge.

Weiter gilt, da $a_{n+1} = -(n+1) < -n = a_n$, d.h. die Folge streng antiton ist:

$$y_n^+ := \sup\{a_k \mid k \ge n\} = a_n = -n \xrightarrow[n \to \infty]{} -\infty \implies \limsup(a_n) = \lim_{n \to \infty} y_n^+ = -\infty$$

$$y_n^- := \inf\{a_k \mid k \ge n\} = \inf\{-k \mid k \ge n\} = -\infty \stackrel{\text{Def.}}{\Longrightarrow} \liminf(a_n) = -\infty$$

ad (b):

$$\forall k \in \mathbb{N} : i^{4k} = (i^4)^k = 1^k = 1$$
, d.h. $i^{4k+1} = i^{4k} \cdot i = i$, $i^{4k+2} = i^{4k} \cdot i^2 = -1$, $i^{4k+3} = i^{4k+2} \cdot i = -i$

$$Re(i^{4k}) = 1$$
, $Re(i^{4k+1}) = Re(i^{4k+3}) = 0$, $Re(i^{4k+2}) = -1$

Es gilt also für alle $k \in \mathbb{N}$: $a_{4k+1} = (-(4k+1))^0 = 1$, d.h. die Teilfolge $(a_{4k+1})_k$ hat den Grenzwert 1.

Weiter für alle $k \in \mathbb{N}$: $a_{4k+2} = (-(4k+2))^{-1} = -\frac{1}{4k+2} \xrightarrow[k \to \infty]{} 0 \quad (0 > -\frac{1}{4k+2} > -\frac{1}{k})$,

d.h. die Teilfolge $(a_{4k+2})_k$ hat den Grenzwert 0. Somit hat die Folge $(a_n)_n$ die beiden Häufungspunkte 0 und 1.

Ferner gilt für alle $k \in \mathbb{N}$: $a_{4k} = (-4k)^1 = -4k \xrightarrow[k \to \infty]{} -\infty$

Damit zeigen wir:

(i) Die Folge hat keine weiteren Häufungspunke neben $0\ und\ 1\ :$

Wäre $a \notin \{0,1\}$ ein weiterer Häufungspunkt, so gäbe es mit Aufgabe 24 zu $\epsilon := \frac{1}{2} \cdot \min\{|a|,|a-1|\}$ und zu $N \ge |a| + \frac{2}{|a|} + \epsilon$ ein $n \ge N$, so daß $|a_n - a| < \epsilon$.

Nun ist aber $Re(i^n) \in \{-1, 0, 1\}$, d.h. es gilt entweder

$$\left| (-n)^1 - a \right| = |n + a| \ge n - |a| \ge N - |a| \ge \epsilon$$
 (Wahl von N) oder

$$\left| (-n)^0 - a \right| = |1 - a| > \epsilon$$
 (Wahl von ϵ) oder

$$\left| (-n)^{-1} - a \right| = \left| a + \frac{1}{n} \right| \ge |a| - \frac{1}{n} \ge \epsilon$$
,

und dies letztere weil $n \ge N \ge \frac{2}{|a|} \implies \frac{|a|}{2} \ge \frac{1}{n} \implies |a| - \frac{1}{n} \ge |a| - \frac{|a|}{2} = \frac{|a|}{2} \ge \epsilon$

(ii) $y_n^+ = \sup\{a_k \mid k \ge n\} = 1$ (für k = 4n, und da alle Folgenterme $a_n \le 1$)

$$\implies \lim \sup(a_n) = \lim_{n \to \infty} y_n^+ = 1$$

(iii)
$$y_n^- = \inf\{a_k \mid k \ge n\} \le a_{4n} = -4n \implies \liminf(a_n) = \lim_{n \to \infty} y_n^- = -\infty$$

Die Eindeutigkeit der Häufungspunkte in Teil (b), (iii) kann man auch folgendermaßen zeigen: Sei $(a_{n_k})_k$ eine konvergente Teilfolge von $(a_n)_n$; dann ist die Teilfolge beschränkt, d.h. es gibt ein $K \in \mathbb{N}$ mit $\forall k \in \mathbb{N}$: $|a_{n_k}| < K$. Da aber $|a_{4m}| = 4m > K$ für m > K, kann es nur endlich viele Indizes n_k der Gestalt $n_k = 4m$ geben. Da aber mit $(n_k)_k$ streng isoton die Menge $\{n_k \mid k \in \mathbb{N}\}$ unendlich ist, müssen entweder unendlich viele der Terme n_k ungerade sein oder aber von der Gestalt 4m + 2 $(m \in \mathbb{N})$.

Im ersten Fall hat die Teilfolge $(a_{n_k})_k$ eine Teilfolge $(a_{n_{k_l}})_l$ mit $a_{n_{k_l}}=1$ für alle $l\in\mathbb{N}$, die damit gegen 1 konvergiert, weshalb auch die Teilfolge selbst (da konvergent) gegen 1 konvergiert, im zweiten Fall hat sie eine Teilfolge $(a_{n_{k_l}})_l$ mit $a_{n_{k_l}}=-\frac{1}{n_{k_l}}$ für alle $l\in\mathbb{N}$, die mit $l\longrightarrow\infty$ gegen 0 konvergiert, so daß auch die ursprüngliche Teilfolge eine Nullfolge ist. In beiden Fällen erhält man entweder Grenzwert 0 oder 1.

6 Es sei $A \subseteq \mathbb{R}$ eine nichtleere, von oben beschränkte Menge und $S := \sup A$. Zeige: Es gibt eine Folge $(a_n)_{n \in \mathbb{N}}$ in A mit $a_n \xrightarrow[n \to \infty]{} S$.

Lösung:

 $S \in \mathbb{R}$ existiert, da $A \neq \emptyset$ nach oben beschränkt ist.

Für jedes $k \in \mathbb{N}$ ist $S - \frac{1}{k} < S$, d.h. mit der Definition von S als kleinster oberer Schranke von A ist $S - \frac{1}{k}$ keine obere Schranke von A mehr, weshalb es ein Element $a_k \in A$ geben muß mit der Eigenschaft

$$S - \frac{1}{k} < a_k \le S$$

Damit ist für jedes $k \in \mathbb{N}$ ein $a_k \in A$ definiert und somit eine Folge $(a_k)_{k \in \mathbb{N}}$ in A. Für diese gilt:

$$\begin{array}{cccc}
S - \frac{1}{k} & < a_k & \leq & S \\
\downarrow^{k \to \infty} & & & \downarrow^{k \to \infty} \\
S & & & S
\end{array}$$

Nach dem Einschließungssatz ist damit $(a_k)_k$ konvergent mit Grenzwert S.