Eine Woche, ein Beispiel 7.18 irreducible representation of semisimple Lie alg

today: 5/2(C) & 5/3(C)

Goal. 1 Get some informations of irr rep
- dim
- weight space + dim
- realization (eg. Sym'V, ^hV,...)

2. Understand why "each irr rep corresponds to each highest weight vector".

1. 56(C)

Notations.

the split basis
$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 $N + = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

the compact basis
$$k = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 $x_{+} = \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & -1 \end{bmatrix}$ $x_{-} = \frac{1}{2} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$

$$X_{+} = \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & -1 \end{bmatrix}$$

$$X_{-} = \frac{1}{2} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$$

the Casimir element
$$\Omega = -\frac{K^2}{4} + \frac{X_+ X_-}{2} + \frac{X_- X_+}{2}$$

$$h_1V_1 = 2V_1$$

 $h_1V_2 = -2V_2$
 $[V_1V_2] = h$

ad
$$h = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 ad $v_{+} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ ad $v_{-} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

ad
$$V_{-} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

Lie bracket structure on N'sli@ = C & sli(C) & A'sli(C) & A'sli(C). of degree -1

$[\downarrow, \rightarrow]$	ı	h	е	f	enf	hAf	hne	LNEAF
1	0	0	0	0	o	ð	0	ס
h	0	0	2e	2f	o	-zhaf	2110	0
e	0	-26	0	À	-h1e	-zenf	0	0
f	0	-2f	4	0	-haf	ο,	-2 e 1f	6
enf	0	0	Lne	haf	0,	0	0	Ó
4NF	0	2h1f	2e1f	0	0	0	- 461eAf	0
hne	0	-2418	0	2015	0	-4hren-	0	٥
LAREAF	0	0	0	0	0	0	0	0

Representations: Symⁿ
$$\vee$$
 e.g. $n=3$

V≅ C² standard representation

e.g.
$$n = 3$$

$$h \mapsto \begin{bmatrix} 3 \\ & 1 \\ & & 1 \end{bmatrix} \qquad v_{+} \mapsto \begin{bmatrix} 0 & 1 \\ & 0 & 2 \\ & & 0 \end{bmatrix} \qquad v_{-} \mapsto \begin{bmatrix} 0 \\ & 3 & 0 \\ & & 1 & 0 \end{bmatrix}$$

$$V_{+} \longmapsto \begin{bmatrix} 0 & 1 & \\ 0 & 2 & \\ 0 & 3 & \\ 0 & \end{bmatrix}$$

$$V \mapsto \begin{bmatrix} 0 \\ 30 \\ 10 \end{bmatrix}$$

e.p. the adjoint representation is Sym²V

$$2V - \int_{2}^{2} h \int_{2}^{2} -2V_{+} \qquad \qquad y^{2} \int_{2}^{2} xy \int_{2}^{2} x^{2}$$

2. sl3(C)

Ref: I would recommend the book "Representation Theory -- a First Course" by Fulton. [Lecture 11-13].

Actually, if you just want to find the answer, then the website "https://www.jgibson.id.au/lievis/" can satisfy most of your requirement. And also if you want to draw the rank 2 root diagrams, then "https://ctan.org/pkg/rank-2-roots" may be a good choice.