Job No.: Johnny Baxter - 2 **Address:** 142 Havelock Road, Havelock North, New **Date:** 10/30/2023

Zealand

Latitude: -39.660576 **Longitude:** 176.866485 **Elevation:** 10 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.95 m
Wind Region	NZ2	Terrain Category	2.5	Design Wind Speed	36.54 m/s
Wind Pressure	0.8 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Medium	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Open

For roof Cp, i = -0.3

For roof CP,e from 0 m To 4.95 m Cpe = -0.9 pe = -0.65 KPa pnet = -0.81 KPa

For roof CP,e from 4.95 m To 9.90 m Cpe = -0.5 pe = -0.36 KPa pnet = -0.52 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 12 m Cpe = 0.7 pe = 0.50 KPa pnet = 0.74 KPa

For side wall CP,e from 0 m To 4.95 m Cpe = pe = -0.47 KPa pnet = -0.47 KPa

Maximum Upward pressure used in roof member Design = 0.81 KPa

Maximum Downward pressure used in roof member Design = 0.38 KPa

Maximum Wall pressure used in Design = 0.74 KPa

Maximum Racking pressure used in Design = 0.86 KPa

Design Summary

Rafter Design External

External Rafter Load Width = 500 mm External Rafter Span = 11936 mm Try Rafter 300x45 LVL11

First Page

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.88

K8 Upward =0.88 S1 Downward =15.50 S1 Upward =15.50

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	3.01 Kn-m	Capacity	10.84 Kn-m	Passing Percentage	360.13 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	6.05 Kn-m	Capacity	14.45 Kn-m	Passing Percentage	238.84 %
$M_{0.9D\text{-W}nUp}$	-5.21 Kn-m	Capacity	-18.07 Kn-m	Passing Percentage	346.83 %
$V_{1.35D}$	1.01 Kn	Capacity	21.71 Kn	Passing Percentage	2149.50 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.03 Kn	Capacity	28.94 Kn	Passing Percentage	1425.62 %
$ m V_{0.9D ext{-}WnUp}$	-1.75 Kn	Capacity	-36.18 Kn	Passing Percentage	2067.43 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 40.40 mm Limit by Woolcock et al, 1999 Span/240= 50.00 mm Deflection under Dead and Service Wind = 46.46 mm Limit by Woolcock et al, 1999 Span/100 = 120.00 mm

Reactions

Maximum downward = 2.03 kn Maximum upward = -1.75 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Second page

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -37.80 kn > -1.75 Kn

Single Shear Capacity under short term loads = -14.56 Kn > -1.75 Kn

Girt Design Front and Back

Girt's Spacing = 0 mm

Girt's Span = 1000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1K8 Downward =1.00

K8 Upward =1.00

S1 Downward = 9.63

S1 Upward = 10.15

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$

0.00 Kn-m

Capacity

2.10 Kn-m

Passing Percentage

Infinity %

 $V_{0.9D\text{-W}nUp}$

0.00 Kn-m

Capacity

12.06 Kn-m

Passing Percentage

Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm

Limit by Woolcock et al, 1999 Span/100 = 10.00 mm

Sag during installation = 0.06 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm

Girt's Span = 12000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward = 1.00

K8 Upward =0.24

S1 Downward =9.63

S1 Upward =35.17

Shear Capacity of timber = 3 MPa

Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	0.50 Kn-m	Passing Percentage	Infinity %
$ m V_{0.9D ext{-}WnUp}$	0.00 Kn-m	Capacity	12.06 Kn-m	Passing Percentage	Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm Limit by Woolcock et al. 1999 Span/100 = 120.00 mm Sag during installation = 1257.31 mm

Reactions

Maximum = 0.00 kn

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level)	Dry Use	Height	4750 mm
Area	20729 mm2	As	15546.6796875 mm2
Ix	34210793 mm4	Zx	421056 mm3
Iy	34210793 mm4	Zx	421056 mm3
Lateral Restraint	mm c/c		

Loads

Total Area over Pole = 6 m^2

Dead	1.50 Kn	Live	1.50 Kn
Wind Down	2.28 Kn	2.28 Kn Snow	
Moment Wind	1.97 Kn-m		
Phi	0.8	K8	0.34
K1 snow	0.8	K1 Dead	0.6
K1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa

ft = 22 MPa E = 9257 MPa

Capacities

PhiNcx Wind 101.82 Kn PhiMnx Wind 4.17 Kn-m PhiVnx Wind 36.81 Kn PhiNcx Dead 61.09 Kn PhiMnx Dead 2.50 Kn-m PhiVnx Dead 22.09 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.52 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.28 < 1 \text{ OK}$

Deflection at top under service lateral loads = 21.37 mm < 49.38 mm

 $D_S = 0.6 \text{ mm}$ Pile Diameter

L= 0 mm Pile embedment length

f1 = 3713 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 6 m^2

Moment Wind = 1.97 Kn-m Shear Wind = 0.53 Kn

Pile Properties

Safety Factory 0.55

Hu = 0.00 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.00 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = Infinity < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 0 mm Pile embedment length

f1 = 3713 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 1.97 Kn-m Shear Wind = 0.53 Kn

Pile Properties

Safety Factory 0.55

Hu = 0.00 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.00 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = Infinity < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1650) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1650)

Skin Friction = 21.99 Kn

Weight of Pile + Pile Skin Friction = 25.77 Kn

Uplift on one Pile = 3.51 Kn

Uplift is ok