HOMEWORK 3.1

Soobin Rho

October 27, 2022

Chapter 3.1: Inequalities

B10. Prove Theorem 10, transitivity:

If a < b and b < c, then a < c.

PROOF

The first thought that came to my mind was, can I use Theorem 1.6.1 (Transitivity) "If $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$ " to solve this problem? Maybe I could, but then I couldn't find a way to translate our original problem into this this theorem. So, I took a different approach.

Assume $a < b$ and $b < c$,	
Then, $a < b$	by assumption
$\Leftrightarrow a - a < b - a$	Theorem 4
$\Leftrightarrow 0 < b - a$	Axiom 1
Also, $b < c$	by assumption
$\Leftrightarrow b - b < c - b$	Theorem 4
$\Leftrightarrow 0 < c - b$	Axiom 1
Since the sum of positive numbers is positive,	by Axiom 1B
(b-a) + (c-b) > 0	
$\Leftrightarrow -a+c > 0$	
$\Leftrightarrow -a > -c$	
$\Leftrightarrow a < c \square$	Theorem 7

B11. Reproduce and complete the given parts of the proof of Theorem 8F, and finish the proof:

If $a \neq 0$, then $a^2 > 0$.

 $a^2 > 0 \quad \square$

PROOF

If $a \neq 0$, then a is positive or -a is positive. Axiom 1

This is in the form of $H \Rightarrow (A \text{ or } B)$. So, I'll prove this by proving both cases – i.e. both the case in which a is positive and the other case in which -a is positive.

If a is positive, then $a > 0$	Axiom 1A
Also, since $a^2 = a \cdot a$,	Prior Result 0
and since a product of two positive numbers is positive,	Prior Result 0
$a^2 > 0$	Theorem 7
If $-a$ is positive, then $-a > 0$	Axiom 1A
Also, since $a^2 = a \cdot a$,	Prior Result 0
and since a product of two negative numbers is positive,	Prior Result 0

Theorem 7

Reflection on myself: I feel guilty about just assuming that a product of (two positive numbers and two negative numbers) is positive becaues of Prior Result 0. Is there a better way of proving this?

Update: I just found out that Axiom 1C actually states that the product of positive numbers is positive!

B13. Prove Theorem 13B:

(Multiplying the Sides of an Inequality by a Number) If c < 0 and a < b, then ca > cb.

Proof

Assume $c < 0$ and $a < b$,	
Then, $a < b$ implies $0 < b - a$	Theorem 4
Therefore, $b-a$ is positive.	Axiom 1A
Also since $-c$ is positive,	by assumption
0 < (b-a)(-c)	Axiom 1C
$\Leftrightarrow 0 < -cb + ca$	Prior Result 0
$\Leftrightarrow -ca < -cb$	Theorem 4
$\Leftrightarrow ca > cb$ \square	Theorem 7

B20. Resolve Conjecture 20:

If $c \ge 1$, then $cx \ge x$.

Counterexample

My intuition tells me that this conjecture is false. Thus, I'll come up with a counterexample, where the conjecture's negation is true.

Let
$$c = 2, x = -20,$$

Then $c = 2 \ge 1$, but $cx = (2)(-20) = -40 < -20 = x$

B24. Fix Conjecture 20 and provide a proof of it:

Conjecture 20: If $c \ge 1$, then $cx \ge x$.

PROOF

Conjecture 20 is a false generalization, but it can become a true generalization if we put one more condition into the hypothesis:

If
$$c \ge 1$$
 and $x > 0$, then $cx \ge x$.

In other words, x needs to be a positive number. Here's proof:

Assume $c \ge 1$ and x > 0,

Then, c and x are positive numbers.

Axiom 1A

Also, a product of positive numbers is positive.

Axiom 1C

Therefore, $c \cdot x$ is a poistive number.

Then, $c \geq 1$,

By assumption

$$c \cdot x \ge 1 \cdot x$$

Theorem 14A

$$\leftrightarrow cx \ge x \quad \Box$$

B27. Resolve this conjecture:

If, for all $\epsilon > 0$, $x < c + \epsilon$, then x < c.

Counterexample

This is false. The following counterexample shows a case in which the hypothesis is true but the conclusion is false.

Let
$$x=1, c=1,$$
 Let $\epsilon>0,$ By hypothesis Then $x=1<1+\epsilon=c+\epsilon,$ but $x=1\geq 1=c$