USTHB

Faculté d'Informatique

Département Intelligence Artificielle et Sciences des Données

Master 2 Informatique visuelle

Représentation des Connaissances et Raisonnement

TD5- TP5

Année Universitaire: 2023-2024

Théorie des Fonctions de Croyance

Rappel:

Distribution de masses de croyance :

$$m: 2^{\Omega} \to [0,1]$$

$$i)m(\emptyset) = 0$$

$$ii)\sum_{A\subset\Omega}m(A)=1$$

Deux mesures sont définies

Crédibilité

$$bel: \mathbf{2}^{\Omega} \to [0,1]$$
$$bel(A) = \sum_{B \subset A} m(B)$$

Toute la masse de croyance placée exactement sur A.

$$bel(A) = 1 - pl(\overline{A})$$

Crédibilité
$$bel: 2^{\Omega} \to [0,1]$$

$$bel(A) = \sum_{B \subseteq A} m(B)$$

$$pl(A) = \sum_{A \cap B \neq \emptyset} m(B)$$

$$pl(A) = \sum_{A \cap B \neq \emptyset} m(B)$$
 Force avec laquelle on ne doute pas de la proposition
$$pl(\emptyset) = 0; pl(\Omega) = 1$$

doute pas de la proposition A.

$$pl(\emptyset) = 0; pl(\Omega) = 1$$

$$bel(A) \le P(A) \le pl(A)$$

Combinaison conjonctive:

<u>Degré de conflit</u>:

$$K = (m_1 \cap m_2)(\emptyset) = \sum_{A \cap B = \emptyset} m_1(A) \cdot m_2(B)$$

Règle de Dempster: somme conjonctive + normalisation

$$(m_1 \oplus m_2)(C) = \frac{\sum_{A \cap B = C} m_1(A) \cdot m_2(B)}{1 - K}$$

Exercice 1:

Nous désirons développer un système afin de définir l'espèce d'une plante végétale "l'iris». Les trois espèces possibles sont: Setosa, Versicolor, Virginica. Trois experts en botanique évaluent l'appartenance d'un échantillon à une espèce comme suit:

- le premier expert appui l'appartenance de l'échantillon au type Versicolor avec un degré 0.6.
- le second expert estime l'appartenance de l'échantillon:
 - au type Setosa à 0.1,
 - et au type Setosa ou au type Virginica à 0.5.
- le troisième expert ne donne pas d'indice particulier.
 - 1- Modélisez ces connaissances en utilisant la théorie des fonctions de croyance

 Ω ={Setosa (S), Versicolor (V), VIrginica (I) }

Expertise 1

 $M_1(\{V\})=0.6$; $M_1(\Omega)=0.4$

Expertise 2:

 $M_2(\{S\})=0.1$; $M_2(\{S,I\})=0.5$; $M_2(\Omega)=0.4$

Expertise 3: $M_1(\Omega)=1$

2- Calculez les degrés de croyance et les degrés de plausibilité associés à la distribution du premier expert.

Hypothèse	m	Bel	Pl
{V}	0.6	0.6	1
{S}	0	0	0.4
{I}	0	0	0.4
{V,I}	0	0.6	1
{V,S}	0	0.6	1
{S,I}	0	0	0.4
Ω	0.4	0.6+0.4=1	
Ø	0	0	0

- 3- Quelle est l'hypothèse la plus soutenue? Aucune hypothèse n'est privilégiée.
- 4- Comment combiner les différentes hypothèses en utilisant la théorie des fonctions de croyance? Explicitez chaque étape.

Degré de conflit :

$$K = (m_1 \cap m_2)(\varnothing) = \sum_{A \cap B = \varnothing} m_1(A) \cdot m_2(B)$$

Règle de Dempster: somme conjonctive + normalisation

$$(m_1 \oplus m_2)(C) = \frac{\sum_{A \cap B = C} m_1(A) \cdot m_2(B)}{1 - K}$$

a- Combinaison de m1 et de m2

m1	{V}	Ω
m2	0.6	0.4
{S}	Ø	{S}
0.1	0.1*0.6=0.06	0.1*0.4=0.04
{S,I}	Ø	{S,I}
0.5	0.5*0.6=0.3	0.5*0.4=0.2
Ω	{V}	Ω
0.4	0.6*0.4=0.24	0.4*0.4=0.16

K=0.06+0.3=0.36

1/1-k=1.5625

 $m_{12}(\{V\})=1.5625*0.24=0.375$

 $m_{12}(\{S\})=1.5625*0.04=0.0625$

 $m_{12}(\{S,I)\}=1.5625*0.2=0.3125$

 $m_{12}(\Omega)=1.5625*0.160=0.25$

b- Combinaison de m12 avec m3:

M12	{V}	{S}	{SI}	Ω
M3	0.375	0.0625	0.3125	0.25
Ω	{V}	{S}	{SI}	Ω
1	0.375	0.0625	0.3125	0.25

Etant donné que la troisième expertise correspond à un cas d'ignorance totale, la combinaison de m_{12} avec m_3 fournit la même distribution de masse que m_{12} (1 étant l'élément neutre de la multiplication). Les éléments focaux restent inchangés et k=0 (1/1-k=1).

Ainsi,

 $m_{123}(\{V\})=1.5625*0.24=0.375$

 $m_{123}(\{S\})=1.5625*0.04=0.0625$

 $m_{123}({S,I})=1.5625*0.2=0.3125$

 $m_{123}(\Omega)=1.5625*0.160=0.25$

 Σ m₁₂₃(A)=1 et m₁₂₃(Ø)=0 dans le cas d'un monde clos.

Hypothèse	M_{123}	Bel	Pl
{V}	0.375	0.375	0.375+0.25=0.625
{S}	0.0625	0.0625	0.0625+0.3125+0.25=0.625
{I}	0	0	0.3125+0.25=0.5625
{V,I}	0	0.375	0.375+0.3125+0.25=0.9375
{V,S}	0	0.375+0.0625=0.4375	0.375+0.0625+0.3125+0.25=1
{S,I}	0.3125	0.0625+0.3125=0.375	0.0625+0.3125+0.25=0.625
Ω	0.25	0.375+0.0625+0.3125+0.25=1	0.375+0.0625+0.3125+0.25=1
Ø	0	0	0

L'intervalle de confiance est définie par [bel(A), Pl(A)]. Plus l'intervalle est petit, plus l'hypothèse est soutenue ce qui correspond dans cet exercice aux hypothèses {V} et {S,I}.

Exercice 2:

Trois experts ont la tâche de classifier des images IRM cérébrales afin de détecter des tumeurs cérébrales.

- Le premier atteste que la zone considérée appartient à la matière blanche ou à la zone tumorale à 66 % et à la matière grise à 15%.
- Le deuxième expert affirme que la zone appartient à la matière grise à 33% et à la zone tumorale à 50%.
- Le troisième expert atteste que la zone attribuée appartient à chaque catégorie d'une manière équitable.
- 1- Modélisez ce problème en utilisant la théorie de Dempster-Shafer.

```
\begin{split} &\Omega {=} \{ \text{ Matière Blanche (MB), Zone Tumorale(ZT), Matière Grise (MG) } \} \\ &\underline{\text{Expertise 1}} \\ &M_1(\{MB,ZT\}) {=} 0.66 \; ; M_1(\{MG\}) {=} \; 0.15; M_1(\Omega) {=} 0.19 \; ; \\ &\underline{\text{Expertise 2:}} \\ &M_2(\{MG\}) {=} 0.33 \; ; M_2(\{ZT\}) {=} \; 0.5; M_2(\Omega) {=} 0.17 \\ &\underline{\text{Expertise 3:}} \\ &M_3(\{MB\}) {=} M_3(\{MG\}) {=} M_3(\{ZT\}) {=} 1/3 \end{split}
```

2- Sachant que la première source est affaiblie à 12%, comment peut-on prendre en compte ces différents indices afin de trouver le coupable. Explicitez Que peut-on conclure?

Affaiblissement (discounting)

- m induite par une source S
- P(S non fiable) = α
- Affaiblissement de *m* :

$${}^{\alpha}m(A) = (1 - \alpha)m(A) \quad \forall A \in 2^{\Omega} \setminus \Omega$$

$${}^{\alpha}m(\Omega) = m(\Omega) + \alpha(1 - m(\Omega))$$

- Si α = 1 \mathcal{P}^{α} $m(\Omega)$ =1
- Si $\alpha = 0$ m = m

```
Expertise 1 affaiblie à 12%
```

```
 \begin{array}{l} \hline M_1^*(\{MB,ZT\}) = & (1-0.12)^* \ M_1(\{MB,ZT\}) = & 0.66^*0.88 = 0.5808 \ ; \\ M_1^*(\{MG\}) = & 1-0.12)^* \ M_1(\{MG\}) = & 0.15^*0.88 = & 0.132; \\ M_1^*(\Omega) = & M_1(\Omega) + & 0.12(1-M_1(\Omega)) = & 0.19 + & 0.12^*(1-0.19) = & 0.2872 \ ; \\ \end{array}
```

3- Comment tenir compte des trois sources de connaissances. Explicitez

a- Combinaison de m'1 et m2:

m' ₁	{MB,ZT}	{MG}	Ω
m_2	0.5808	0.132	0.2872
{MG}	Ø	{MG}	{MG}
0.33	0.5808*0.33=	0.04356	0.094
	0.1916		
{ZT}	{ZT}	Ø	{ZT}
0.5	0.2904	0.066	0.1436
Ω	{MB,ZT}	{MG}	Ω
0.17	0.0987	0.0224	0.0488

K=0.1916+0.066=0.2576

1/1-k=1.3469

 $M_{12}(\{MG\})=1.3469*(0.04356+0.094+0.0224)=0.2154$

 $M_{12}({ZT})=1.3469*(0.2904+0.1436)=0.5845$

 $M_{12}(\{MB,ZT\})=1.3469*0.0987=0.1329$

 $M_{12}(\Omega)=1.3469*0.0488=0.0657$

b- Combinaison de m₁₂ et m₃

m_{12}	{MG}	{ZT}	{MB,ZT}	Ω
m_3	0.2154	0.5845	0.1329	0.0657
{MG}	{MG}	Ø	Ø	{MG}
0.3333	0.0717	0.1948	0.0442	0.0218
{ZT}	Ø	{ZT}	{ZT}	Ø
0.3333	0.0717	0.1948	0.0442	0.0218
{MB}	Ø	Ø	{MB}	{MB}
0.3333	0.0717	0.1948	0.0442	0.0218

K=0.1948+0.0442+0.0717+0.0218+0.0717+0.1948=0.599

1/1-k=2.4937

Il vient:

 $m_{123}(\{MG\}) = 2.4937*(0.0717+0.0218)=0.2331$

 $m_{123}({ZT}) = 2.4937*(0.1948+0.0442)=0.5967$

 $m_{123}(\{MB\}) = 2.4937*(0.0442+0.0218)=0.1645$

 Σ m₁₂₃(A)=1 et m₁₂₃(Ø)=0 dans le cas d'un monde clos.

Remarque:

Les éléments focaux de la distribution de masse résultante sont des singletons. Cette distribution correspond à une distribution de probabilités.