## LÒGICA I LLENGUATGES

## CURSO 2017-18

## TERCERA PRUEBA PARCIAL DE PROBLEMAS

(a) Definir un autómata determinista M tal que  $L(M) = \{x \in \{0,1\}^* : \text{cada } 0 \text{ en } x \text{ va inmediatamente precedido e inmediatamente seguido por un } 1\}.$  (1,5 puntos)

(b) Consideremos el autómata indeterminista  $M = (\{A, B, C, D, E\}, \{0, 1\}, \Delta, A, \{B, C\})$  donde  $\Delta$  está definida por la siguiente tabla:

| A              | $\lambda$ | B |
|----------------|-----------|---|
| $\overline{A}$ | λ         | C |
| $\overline{B}$ | 0         | D |
| $\overline{B}$ | 1         | B |
| $\overline{C}$ | 0         | C |
| $\overline{C}$ | 1         | E |
| $\overline{D}$ | 0         | B |
| $\overline{D}$ | 1         | D |
| $\overline{E}$ | 0         | E |
| E              | 1         | C |
|                |           |   |

Se pide entonces:

(1) Describir el lenguaje L(M).

(1,5 puntos)

- (2) Siguiendo el método visto en clase, transformar el autómata M en un autómata determinista equivalente. (4 puntos)
  - (3) Programar en JAVA el autómata determinista obtenido en (2). (3 puntos)

## SOLUCIÓN:

(a) Definimos el siguiente autómata determinista, que consta de los estados  $q_0,\ q_1,\ q_2$  y  $q_3,$  donde  $q_0$  es el estado inicial y  $q_0$  y  $q_1$  son los estados aceptadores.



(b)(1) Se observa que el estado B reconoce las palabras de bits que tienen un número par de ceros, y el estado C reconoce las palabras de bits que tienen un número par de unos. Por tanto, como B y C son los estados aceptadores de M, tenemos que

$$L(M) = \{x \in \{0,1\}^* : n_0(x) \text{ es par o } n_1(x) \text{ es par}\}.$$

(2) Se tiene que  $\Lambda(A)=\{A,B,C\}=ABC,\ \Lambda(B)=B,\ \Lambda(C)=C,\ \Lambda(D)=D\ y\ \Lambda(E)=E.$  Construimos entonces el autómata determinista M' equivalente a M. El estado inicial de M' es  $\Lambda(A)=ABC$ . Definimos ahora la función de transición  $\delta'$  para M'.

$$\delta'(ABC, 0) = \Lambda(C) \cup \Lambda(D) = CD,$$
  
$$\delta'(ABC, 1) = \Lambda(B) \cup \Lambda(E) = BE,$$
  
$$\delta'(CD, 0) = \Lambda(B) \cup \Lambda(C) = BC,$$

```
\begin{split} \delta'(CD,1) &= \Lambda(D) \cup \Lambda(E) = DE, \\ \delta'(BE,0) &= \Lambda(D) \cup \Lambda(E) = DE, \\ \delta'(BE,1) &= \Lambda(B) \cup \Lambda(C) = BC. \\ \delta'(BC,0) &= \Lambda(C) \cup \Lambda(D) = CD, \\ \delta'(BC,1) &= \Lambda(B) \cup \Lambda(E) = BE, \\ \delta'(DE,0) &= \Lambda(B) \cup \Lambda(E) = BE, \\ \delta'(DE,1) &= \Lambda(C) \cup \Lambda(D) = CD. \end{split}
```

Por tanto, los estados de M' son: ABC, CD, BE, BC y DE. Como B y C son los estados aceptadores de M, los estados aceptadores de M' son ABC, CD, BE y BC.

(3) Representamos a ABC por 0, a CD por 1, a BE por 2, a BC por 3 y a DE por 4. Podemos escribir entonces el siguiente programa en JAVA para simular el autómata M':

```
public boolean simular (String entrada)
\{ \text{ int } q = 0, i = 0; 
  char c = entrada.charAt(0);
  while (c != `\$')
  { switch(q)
        \{ case 0: 
        if (c == '0') q = 1; else if (c == '1') q = 2;
        break:
        case 1:
        if (c == '0') q = 3; else if (c == '1') q = 4;
        break;
        case 2:
        if (c == '0') q = 4; else if (c == '1') q = 3;
        break;
        case 3:
        if (c == '0') q = 1; else if (c == '1') q = 2;
        break;
        case 4:
        if (c == '0') q = 2; else if (c == '1') q = 1;
        break; }
  c = \text{entrada.charAt}(++i); 
  if (q == 4) return false; else return true; }
```