# GTI Aufgaben Serie 2

Vithusan Ramalingam (21-105-515)

Jan Ellenberger (21-103-643)

#### Aufgabe 1.)

i.) Zuerst erstellen wir die Wahrheitstabelle:



Mithilfe der Wahrheitstabelle können wir KNF und DNF bestimmen:





ii.) Wir erstellen auch hier wieder zuerst eine Wahrheitstabelle:

| M × > | XYY |
|-------|-----|
| 0 0 0 | 0   |
| 1 0 1 | 1   |
| 2 1 0 | 1   |
| 3 1 1 | 0   |

Und können dann wie in der Vorlesung gelernt KNF und DNF bestimmen:

$$DN \neq m_2 + m_3$$

$$= (\neg x \cdot y) + (x \cdot \neg y)$$

$$NF = M_0 \cdot M_4 = \neg m_6 \cdot \neg m_4$$

$$= \neg (\neg x \cdot \neg y) \cdot \neg (x \cdot y)$$

$$= (x + y) \cdot (\neg x + \neg y)$$

#### Aufgabe 1b):

Durch Umformung erhalten wir:  $x_1$  ( $x_2 + x_3$ ) diesen können wir in eine Wahrheitstabelle einsetzen.



| 1 | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | $X_1 \wedge (X_2 \vee X_3)$ |
|---|----------------|----------------|----------------|-----------------------------|
| 0 | 0              | 0              | 0              | 0                           |
| 1 | 0              | 0              | 1              | 0                           |
| 2 | 0              | 1              | 0              | 0                           |
| 3 | 0              | 1              | 1              | 0                           |
| 4 | 1              | 0              | 0              | 0                           |
| 5 | 1              | 0              | 1              | 1                           |
| 6 | 1              | 1              | 0              | 1                           |
| 7 | 1              | 1              | 1              | 1                           |

Dann können wir wieder wie in der Vorlesung gelernt KNF und DNF bestimmen:



# Aufgabe 1 c)

DNF und KNF sind zwei verschiedene Darstellungsarten derselben Funktion, einmal als Summe der Minterme deren Ausgabewert 0 ist und einmal als Produkt der Maxterme deren Ausgabewert 1 ist.

### Aufgabe 1 d.):

| I  | $X_0$ | $X_1$ | $X_2$ | X <sub>3</sub> |
|----|-------|-------|-------|----------------|
| 0  | 0     | 0     | 0     | 0              |
| 1  | 0     | 0     | 0     | 1              |
| 2  | 0     | 0     | 1     | 0              |
| 3  | 0     | 0     | 1     | 1              |
| 4  | 0     | 1     | 0     | 0              |
| 5  | 0     | 1     | 0     | 1              |
| 6  | 0     | 1     | 1     | 0              |
| 7  | 0     | 1     | 1     | 1              |
| 8  | 1     | 0     | 0     | 0              |
| 9  | 1     | 0     | 0     | 1              |
| 10 | 1     | 0     | 1     | 0              |
| 11 | 1     | 0     | 1     | 1              |
| 12 | 1     | 1     | 0     | 0              |
| 13 | 1     | 1     | 0     | 1              |
| 14 | 1     | 1     | 1     | 0              |
| 15 | 1     | 1     | 1     | 1              |

$$m_{11} = x_0 \cdot \neg x_1 \cdot x_2 \cdot x_3$$

$$M_9 = \neg (x_0 \cdot \neg x_1 \cdot \neg x_2 \cdot x_3)$$

$$= \neg x_0 + x_1 + x_2 + \neg x_3$$

#### Aufgabe 2.a)

|     | Za.) | (x, 1x, 17x2) V | (x, 1 x, 1 x2) | $\left(\begin{array}{c} \chi_{1} \cdot \tau \chi_{A} \cdot \chi_{2} \end{array}\right) \bigvee \left(\tau \chi_{O} \cdot \chi_{A} \chi_{2} \right)$ |
|-----|------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 0    | 0               | 0              | 0                                                                                                                                                   |
|     | 1    | 0               | 0              | 6                                                                                                                                                   |
| 0 1 | 0    | 6               | 0              | 6                                                                                                                                                   |
| 0 1 | 1    | Ь               | 1              | 1                                                                                                                                                   |
| 1 0 | 0    | Ó               | 6              | 0                                                                                                                                                   |
| 110 | 1    | 0               | 1              | 1                                                                                                                                                   |
| 1 1 | 0    | 1               | 1              | 0                                                                                                                                                   |
| 1 1 | 1    | 1               | 1              | 0                                                                                                                                                   |
|     |      |                 |                | =                                                                                                                                                   |

## Aufgabe 2.b)

| 2.6 | /   |    |     |   |  |  |
|-----|-----|----|-----|---|--|--|
| L.0 | , X | XA | 1/2 |   |  |  |
|     | 0 0 | 0  | 0   | 0 |  |  |
|     | 10  | 0  | 1   | 6 |  |  |
|     | 20  | 1  | 0   | 1 |  |  |
|     | (30 | 1  | 1   | 1 |  |  |
|     | 141 | 0  | 0   | Λ |  |  |
|     | 51  | 0  | 1   | 0 |  |  |
|     | 61  | 1  | 0   | 1 |  |  |
|     | 71  | 1  | 1   | 0 |  |  |
|     |     |    |     |   |  |  |

Für die mit grün gekennzeichneten Eingabewerte soll der Ausgabewert 1 sein, wir können also eine Wahrheitstabelle erstellen, ohne die Funktion zu kennen. Danach können wir die DNF berechnen und deren Schaltung darstellen.

$$\int NF = m_1 + m_3 + m_4 + m_6$$

$$(7x_0 \cdot x_1 \cdot 7x_2) + (7x_0 \cdot x_1 \cdot 7x_2) + (x_0 \cdot 7x_1 \cdot 7x_2) + (x_0 \cdot x_1 \cdot 7x_2)$$

Aufgabe 3.

Wir erstellen zuerst eine Wertetabelle wie vorgegeben und rechnen diese aus. Mithilfe der Tabelle können wir nun DNF und KNF berechnen.

| Aaf | 3 |           |       |           |    |    |    |    |    |            |                |   |  |
|-----|---|-----------|-------|-----------|----|----|----|----|----|------------|----------------|---|--|
| ų.  | , | Buchshabe | ASC// | Birarcole | Xa | XR | X3 | Xx | Xs | 5 ×6       | × <sub>z</sub> | P |  |
|     | 0 | I         | 73    |           |    |    |    | 1  | 0  | 0          | 1              | Л |  |
|     | 1 | N         | 78    | 1001110   | 1  | 0  |    | 1  | 1  | 1          | 0              | 0 |  |
|     | 2 | F         | 70    | 1000 110  | 1  | 0  | 0  |    | 1  | 1          | 0              | 1 |  |
|     | 3 | 0         | 79    | 1001111   | 1  | 0  |    | 1  | 1  | 1          | 1              | 1 |  |
|     | 4 | R         | 82    | 1010010   | 1  |    | 1  | Ó  |    | 1          | 0              | 1 |  |
|     | 5 | M         | 77    | 1001101   | 1  | 0  |    | 1  | 1  | 0          | 1              | 0 |  |
|     | 6 | A         | 65    | 1000001   | 1  | 0  | () |    |    | $\Diamond$ | 1              | 0 |  |
|     | 7 | T         | 84    | 1010100   | A  |    | 1  | 0  | 1  |            |                | 1 |  |
|     |   | K         | 75    | 1001011   | 1  | 0  | 0  | 1  |    | 1          | 1              | 0 |  |
|     |   |           |       |           |    |    |    |    |    |            |                |   |  |

Schalf function DNF 
$$f: B^7 \rightarrow B^1$$

$$f(x_1 x_2 x_3 x_4 x_3 x_6 x_7) = m_0 + m_2 + m_3 + m_4 + m_7$$

$$= (x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot 7x_5 \cdot 7x_6 \cdot x_7) + (x_1 \cdot 7x_2 \cdot 7x_3 \cdot 7x_4 \cdot x_5 \cdot x_6 \cdot x_7)$$

$$+ (x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_7) + (x_1 \cdot 7x_2 \cdot x_3 \cdot 7x_4 \cdot 7x_5 \cdot x_6 \cdot x_7)$$

$$+ (x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot x_5 \cdot 7x_6 \cdot x_7)$$

Danach berechnen wir die KNF und können die Funktion als Schaltung zeichnen.

Funkion in KNF

$$f(x_1 x_7 x_3 x_4 x_5 x_6 x_7) = M_1 \cdot M_5 \cdot M_6 \cdot M_8$$

$$= -m_1 \cdot -m_5 \cdot -m_6 \cdot -m_8$$

$$= 7 \left( x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot x_5 \cdot x_6 \cdot 7x_7 \right) \cdot 7 \left( x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot x_5 \cdot 7x_6 \cdot x_7 \right)$$

$$= 7 \left( x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_7 \right) \cdot 7 \left( x_1 \cdot 7x_2 \cdot 7x_3 \cdot x_4 \cdot 7x_5 \cdot x_6 \cdot x_7 \right)$$

$$= \left( 7x_1 + x_2 + x_3 + 7x_4 + 7x_5 + 7x_6 + x_7 \right) \cdot \left( 7x_1 + x_2 + x_3 + 7x_4 + 7x_5 + x_6 + 7x_7 \right)$$

$$= \left( 7x_1 + x_2 + x_3 + 7x_4 + 7x_5 + 7x_6 + x_7 \right) \cdot \left( 7x_1 + x_2 + x_3 + 7x_4 + 7x_5 + 7x_6 + 7x_7 \right)$$



# Aufgabe 4.a.)

$$A_{4}4.)a.)$$

$$f_{1}:B^{3}\rightarrow B$$

$$(x_{0}\times_{1}\times_{2})=(1x_{0}\cdot x_{2})+x_{1}\cdot (x_{1}+x_{2})+x_{0}$$

$$f(1); B^3 \rightarrow B$$

$$(x_0 x_1 x_2) = (x + 7x_1) \cdot (x_1 + x_2) + x_0$$

6.) 
$$f(x_0, x_1, y_2) = (x_0 + x_1) \cdot (-1x_2 \cdot x_0 + x_1) + x_0$$

$$X_0 \times X_1 \times X_2 \times X_3 \times X_4 \times X_4 \times X_5 \times X_4 \times X_5 \times X_5 \times X_5 \times X_6 \times$$

$$g(x_0, x_1, x_2) = (x_0 + x_2) \cdot (7x_1 + 7x_2) + x_0$$

$$X_0$$

$$X_0$$

$$X_1$$

$$X_1$$

$$X_0$$

$$X_1$$

$$X_1$$

$$X_1$$

$$X_1$$

$$X_1$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_1$$

$$X_2$$

### Aufgabe 5.)

In der Vorlesung haben wir gelernt, dass DNF zu bevorzugen ist, wenn die Anzahl der einschlägigen Indizes kleiner ist als die der nicht-einschlägigen und KNF wenn mehr nicht einschlägige vorliegen.

Die NAND Verknüpfung ergibt nur 0 wenn alle Variablen den gleichen Eingangswert haben, dieser Fall kommt aber seltener vor als unterschiedliche Eingangswerte.

Die Anzahl einschlägiger Indizes ist also bei NAND-Verknüpfungen meistens höher. Somit ist KNF zu bevorzugen.