Unit 1 Linear Classifiers and Course > Generalizations (2 weeks)

> Homework 1 > 3. Decision Boundaries

3. Decision Boundaries

In this problem, we will investigate the decision boundary of different classifiers.

3. (a)

2/2 points (graded)

Consider the function defined over three binary variables: $f(x_1,x_2,x_3)=(\neg x_1\wedge \neg x_2\wedge \neg x_3)$.

We aim to find a heta such that, for any $x=[x_1,x_2,x_3]$, where $x_i\in\{0,1\}$:

$$\theta \cdot x + \theta_0 > 0$$
 when $f(x_1, x_2, x_3) = 1$, and

$$heta \cdot x + heta_0 < 0 ext{ when } f\left(x_1, x_2, x_3
ight) = 0.$$

If $heta_0=0$ (no offset), would it be possible to learn such a heta?

Yes

No

Would it be possible to learn the pair θ and θ_0 ?

Yes

No

Solution:

- ullet Since $heta \cdot 0 = 0$, it is impossible to obtain $heta \cdot x + heta_0 > 0$ for f(0,0,0) = 1.
- $oldsymbol{ heta}_1= heta_2= heta_3=-1$ and $heta_0=0.5$ is a valid solution.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

3. (b-1)

1/1 point (graded)

You are given the following labeled data points:

- ullet Positive examples: [-1,1] and [1,-1],
- ullet Negative examples: [1,1] and [2,2].

For each of the following parameterized families of classifiers, identify which parameterized family has a family member that can correctly classify the above data and find the corresponding parameters of a family member that can correctly classify the above data.

Note: If there is no family member inside the parameterized family that can correctly classify the above data, just enter 0 for all the parameters.

Inside (positive) or outside (negative) of an origin-centered circle with radius r. Enter a scalar for r. If there is no such r, just enter 0.

0 **✓ Answer**: 0

Solution:

ullet Any circle that correctly classifies [-1,1] and [1,-1] would incorrectly classify [1,1]

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

3. (b-2)

2/2 points (graded)

Inside (positive) or outside (negative) of an [x,y]-centered circle with radius r.

[x,y]: **\(\simeq \ Answer:** See solution

r: 2.1 \checkmark Answer: See solution

Solution:

ullet A valid solution is [x,y]=[-1,-1], r=2.1

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

3. (b-3)

1.0/1 point (graded)

Strictly above (positive) or below (negative) a line through the origin with normal θ . Here we define "above" as $\theta \cdot x > 0$, and define "below" similarly. **Note:** Please enter a list for θ as $[\theta_1, \theta_2]$. If there is no solution, enter [0, 0]

[0,0] **Answer**: [0, 0]

Solution:

ullet There is no line through the origin that can simultaneously be strictly below [1,-1] and [-1,1]

Submit You have used 1 of 3 attempts

1 Answers are displayed within the problem

3. (b-4)

2/2 points (graded)

Strictly above (positive) or below (negative) a line with normal θ and offset θ_0 . Here we define "above" as $\theta \cdot x + \theta_0 > 0$, and define "below" similarly. **Note:** If there is no solution, enter $\theta = [0,0]$ and $\theta_0 = 0$.

$[heta_1, heta_2]$: [-1,-1] $ ightharpoonup$ Answer: See solution	
$ heta_0$: 0.1 $ wo$ Answer: See solution	
Solution:	
$ullet$ A valid solution is $[heta_1, heta_2, heta_0]=[-1,-1,0.5]$	
Submit You have used 2 of 3 attempts	
Answers are displayed within the problem	
3. (b-5)	
1/1 point (graded) Which of the below are families of linear classifiers?	
(Choose all that apply.)	
lacksquare Inside or outside of an origin-centered circle with radius r .	
lacksquare Inside or outside of an $[x,y]$ -centered circle with radius r .	
lacksquare Strictly above or below a line through the origin with normal $ heta.$	
$lacksquare$ Strictly above or below a line with normal $ heta$ and offset $ heta_0$. $lacksquare$	
✓	
Solution:	
• The first two families are nonlinear (circles), and the last two families are linear classifiers (lines).	
Submit You have used 1 of 2 attempts	
Answers are displayed within the problem	
Discussion	Chan Di
Topic: Unit 1 Linear Classifiers and Generalizations (2 weeks):Homework 1 / 3. Decision Boundaries	Show Discussion
	© All Rights Reserved