Численное решение краевой задачи принципа максимума в задаче оптимального управления методом стрельбы.

1 Постановка задачи.

Рассматривается задача Лагранжа с фиксированным временным отрезком и без ограничений вида "меньше или равно":

$$B_0 = \int_0^2 \frac{t^r}{1 + \dot{x}^2} dt \to inf,$$

$$x(0) = 0, x(2) = 1, r \in \{1, 2\}$$

$$u \in [0, 16]$$
(1)

Требуется формализовать задачу, как задачу оптимального управления. Свести задачу принципом максимума Понтрягина к краевой задаче, численно решить полученную задачу методом стрельбы и обосновать точность полученных результатов. Проверить полученные экстремали Понтрягина на оптимальность при различных значениям параметра $r \in \{1, 2\}$.

2 Формализация задачи.

Формализуем задачу, как задачу оптимального управления. Для этого обозначим $u = \ddot{x}, y = \dot{x}$. Тогда наша задача примет следующий вид:

$$\begin{cases}
\dot{x} = y \\
\dot{y} = u \\
u \in [0, 16] \\
x(0) = 0 \\
x(2) = 1 \\
r \in \{1, 2\} \\
B_0 = \int_0^2 \frac{t^r}{1 + \dot{x}^2} dt \to inf
\end{cases}$$
(2)

3 Система необходимых условий оптимальности.

Выпишем функции Лагранжа и Понтрягина:

$$\mathcal{L} = \int_0^T \mathbf{L} dt + l,$$
 Лагранжиан $\mathbf{L} = p_x \cdot (\dot{x} - y) + p_y \cdot (\dot{y} - u) + \lambda_0 \cdot \frac{t^r}{1 + y^2},$ Терминант $l = \lambda_1 \cdot x(0) + \lambda_2 \cdot (x(2) - 1),$
$$H = p_x \cdot y + p_y \cdot u - \lambda_0 \cdot \frac{t^r}{1 + y^2}.$$

Применим к задаче оптимального управления (2) принцип максимума Понтрягина. Необхоимые условия оптимальности: (а) Уравнение Эйлера-Лагранжа (сопряженная система уравнений, условие стационарности по $\begin{pmatrix} x \\ y \end{pmatrix}$), $\begin{pmatrix} \dot{p}_x \\ \dot{p}_y \end{pmatrix} = -\begin{pmatrix} \frac{\partial H}{\partial x} \\ \frac{\partial H}{\partial y} \end{pmatrix}$:

$$\begin{cases} \dot{p}_x = 0 \\ \dot{p}_y = -p_x - \lambda_0 \frac{2 \cdot t^r \cdot y}{(1 + y^2)^2} \end{cases}$$
 (3)

(б) Условие оптимальности на управление, $u = arg \ abs \ max \ H(u)$:

В нашем случае $H(u)=p_y\cdot u$: $u=arg\;abs\;max\;(p_y\cdot u)=\left\{egin{array}{l} 16 \ ,$ если $p_y>0 \ 0 \ ,$ если $p_y<0 \ \end{array}\right.$

(в) Условие трансверсальности по $\begin{pmatrix} x \\ y \end{pmatrix}, p_x(t_k) = (-1)^k \cdot \frac{\partial l}{\partial x(t_k)}, p_y(t_k) = (-1)^k \cdot \frac{\partial l}{\partial y(t_k)},$ где $k \in \{0,1\}, t_0 = 0, t_1 = 2$:

$$p_u(0) = 0, \ p_u(2) = 0, \tag{4}$$

$$p_x(0) = \lambda_1, \ p_x(2) = -\lambda_2$$
 (5)

- (г) Условие стационарности по t_k : Нет, так как в задаче (2) t_k - известные константы;
- (д) Условие дополняющей нежёсткости: Нет, так как в задаче (2) отсутсвуют условия вида "меньше или равно";
- (e) Условие неотрицательности: $\lambda_0 \ge 0$.
- (ж) Условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя);
- (з) НЕРОН (множители Лагранжа НЕ Равны Одновременно Нулю).

4 Анормальный случай и исследование задачи.

Исследуем возможность анормального случая $\lambda_0=0$. Из первого уравнения системы (3) имеем, что $p_x=const=p_x(0)$. Тогда при $\lambda_0=0$ из второго уравнения системы (3) имеем $p_y(t)=p_x(0)\cdot t+p_y(0)$. Но из условия (4) имеем $p_x(0)=0$, что означает, что $\lambda_1=\lambda_2=0$. Тогда получили следующую ситуацию:

в момент времени t=0 получили $(\lambda_0, \lambda_1, \lambda_2, p_x, p_y)=O$. Таким образом если $\lambda_0=0$, то все множители Лагранжа равны 0, что противоречит условию (3).

Так как $\lambda_0 \neq 0$, то можем в силу поункта (ж) положить $\lambda_0 = 1$, тогда все коэффициенты должны находится однозначно.

5 Краевая задача.

Таким образом, на основе принципа Понтрягина задача оптимального управления (2) сводится к краевой задаче. А именно из (2), (3), (4) получаем следующую систему:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \\ \dot{p}_{x} = 0 \\ \dot{p}_{y} = -p_{x} - \frac{2 \cdot t^{r} \cdot y}{(1+y^{2})^{2}} \\ u = \begin{cases} 16 \text{ ,если } p_{y} > 0 \\ 0 \text{ ,если } p_{y} < 0 \end{cases}$$

$$(6)$$

$$x(0) = 0, \ x(2) = 1,$$

 $p_y(0) = 0, \ p_y(2) = 0,$
 $r \in \{1, 2\}.$ (7)

6 Численное решение краевой задачи методом стрельбы.

Краевая задача (6)-(7) решается численно методом стрельбы. В качестве параметров пристрелки выбирают недостающие для задачи Коши значения при t=0. В нашем случае параметрами пристрелки будут $y(0)=\alpha_1,\ p_x(0)=\alpha_2$. Задав эту пару парметров, мы можем решить задачу Коши на конечном отрезке [0,2] и получить по соответсвующему выбронному $\overrightarrow{\alpha}=\{\alpha_1,\alpha_2\}$ функции $x(\cdot)[\alpha_1,\alpha_2],\ y(\cdot)[\alpha_1,\alpha_2],\ p_x(\cdot)[\alpha_1,\alpha_2],\ p_y(\cdot)[\alpha_1,\alpha_2]$. В частности можем получить $y(2)[\alpha_1,\alpha_2],\ p_x(2)[\alpha_1,\alpha_2]$. Задача Коши для системы дифференциальных уравнений (6) с начальными условиями (7), заданнымии в момент времени t=0, с учетом заданного $\overrightarrow{\alpha}$ решается численно явным способом, а имеено с помощью метода Рунге-Кутты 8-го порядка, основанным на расчетных формулах Дормана-Принса 8(7) DOPRI8 с автоматическим выбором шага(то есть с контролем относительной локальной погрешности на шаге по правилу Рунге). Для решения нашей краевой задачи нужно подобрать $\overrightarrow{\alpha}$ таким образом, чтобы выполнились условия:

$$x(2) [\alpha_1, \alpha_2] - 1 = 0, p_y(2) [\alpha_1, \alpha_2] = 0$$
(8)

Тогда можем определить вектор функцию невязок $X(\overrightarrow{\alpha}) = \begin{pmatrix} x(2) \, [\alpha_1, \alpha_2] - 1 \\ p_y(2) \, [\alpha_1, \alpha_2] \end{pmatrix}$. Таким образом, выбирая для решения краевой задачи метод стрельбы, решение краевой задачи свелось к решению двух алгебраических уравнений от двух неизвесных, а именно $X(\overrightarrow{\alpha}) = 0$. Корень $\overrightarrow{\alpha}$ системы алгебраических уравнений $X(\overrightarrow{\alpha}) = 0$ находится методом Ньютона с модификацией Исаева-Сонина. Решение линейной системы уравнений внутри модифицированного метода Ньютона осуществляется методом Гаусса с выбором главного элемента по столбцу, с повторным пересчетом. В нашей задаче крайне важен следующий тест части программы, решающей задачу Коши, на системе дифференциальных уравнений с известным аналитическим решением.

7 Тест решения задачи Коши - гармонический осциллятор

В таблице ниже приведены результаты численного интегрирования системы дифференциальных уравнений гармонического осциллятора $\begin{cases} \dot{x} = y \\ \dot{y} = -x \end{cases} \text{ с начальными условиями } \begin{cases} x(0) = 0 \\ y(0) = 1 \end{cases}$ явным методом Рунге-Кутты с оценкой погрешности на шаге через 8-ую производную для различного конечного времени T и различных значений максимально допустимой относительной погрешности на шаге интегрирования Δ_{loc} . Steps - общее число сделанных шагов интегрирования (число принятых шагов); |x(T)| и |y(T)-cos(T)| - невязки в конце; $\Delta x(\cdot)$ и $\Delta y(\cdot)$ - максимальное отличие полученного решения от известного аналитического $\begin{cases} x(t) = sin(t) \\ y(t) = cos(t) \end{cases}$ по всем шагам; $\delta_K(T)$ - оценка глобальной погрешности по формуле $\delta_K(t_{i+1}) = r_i + \delta_K(t_i) \cdot e^{L_i}$, где r_i - главный член в оценке локальной погрешности, а $L_i = \int_{t_i}^{t_{i+1}} \mu dt$; μ - логарифмическая норма матрицы Якоби исходной системы дифференциальных уравнений, $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, равная максимальному собственному значению матрицы $\frac{(J+J^T)}{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, то есть $0 \Rightarrow \delta_K(t_{i+1}) = r_{i+1} + \delta_K(t_i)$; $R_x = \left| \frac{x_{10-8}(T) - x_{10-10}(T)}{x_{10-10}(T) - x_{10-10}(T)} \right|$, $R_y = \left| \frac{y_{10-8}(T) - y_{10-10}(T)}{y_{10-10}(T) - y_{10-12}(T)} \right|$.

В таблице ниже представлены полученные данные:

T	Δ_{loc}	Steps	x(T)	$ y(T) - \cos(T) $	$\Delta x(\cdot)$	$\Delta y(\cdot)$	$\delta_K(T)$	R_x	R
π	10^{-08}	6	$1.99 \cdot 10^{-08}$	$1.26 \cdot 10^{-08}$	$1.45 \cdot 10^{-08}$	$1.42 \cdot 10^{-08}$	$2.04 \cdot 10^{-08}$		
	10^{-10}	10	$2.24 \cdot 10^{-10}$	$3.42 \cdot 10^{-10}$	$2.57 \cdot 10^{-10}$	$2.57 \cdot 10^{-10}$	$3.61 \cdot 10^{-10}$	88.73	36.
	10^{-12}	17	$2.29 \cdot 10^{-12}$	$6.71 \cdot 10^{-12}$	$4.55 \cdot 10^{-12}$	$4.48 \cdot 10^{-12}$	$6.29 \cdot 10^{-12}$		
$10 \cdot \pi$	10^{-08}	53	$2.00 \cdot 10^{-07}$	$1.27 \cdot 10^{-07}$	$1.44 \cdot 10^{-07}$	$1.44 \cdot 10^{-07}$	$2.05 \cdot 10^{-07}$		
	10^{-10}	93	$2.23 \cdot 10^{-09}$	$3.41 \cdot 10^{-09}$	$2.56 \cdot 10^{-09}$	$2.56 \cdot 10^{-09}$	$3.60 \cdot 10^{-09}$	89.82	37.
	10^{-12}	165	$2.31 \cdot 10^{-11}$	$6.79 \cdot 10^{-11}$	$4.57 \cdot 10^{-11}$	$4.57 \cdot 10^{-11}$	$6.39 \cdot 10^{-11}$		
$10^2 \cdot \pi$	10^{-08}	522	$2.00 \cdot 10^{-06}$	$1.27 \cdot 10^{-06}$	$1.44 \cdot 10^{-06}$	$1.44 \cdot 10^{-06}$	$2.05 \cdot 10^{-06}$		
	10^{-10}	926	$2.24 \cdot 10^{-08}$	$3.43 \cdot 10^{-08}$	$2.57 \cdot 10^{-08}$	$2.57 \cdot 10^{-08}$	$3.62 \cdot 10^{-08}$	89.41	36.
	10^{-12}	1645	$2.31 \cdot 10^{-10}$	$6.80 \cdot 10^{-10}$	$4.58 \cdot 10^{-10}$	$4.58 \cdot 10^{-10}$	$6.40 \cdot 10^{-10}$		
$10^3 \cdot \pi$	10^{-08}	5216	$2.00 \cdot 10^{-05}$	$1.27 \cdot 10^{-05}$	$1.44 \cdot 10^{-05}$	$1.44 \cdot 10^{-05}$	$2.05 \cdot 10^{-05}$		
	10^{-10}	9252	$2.24 \cdot 10^{-07}$	$3.43 \cdot 10^{-07}$	$2.57 \cdot 10^{-07}$	$2.57 \cdot 10^{-07}$	$3.62 \cdot 10^{-07}$	89.49	36.
	10^{-12}	16441	$2.31 \cdot 10^{-09}$	$6.80 \cdot 10^{-09}$	$4.58 \cdot 10^{-09}$	$4.58 \cdot 10^{-09}$	$6.40 \cdot 10^{-09}$		
$10^4 \cdot \pi$	10^{-08}	52155	$2.00 \cdot 10^{-04}$	$1.27 \cdot 10^{-04}$	$1.44 \cdot 10^{-04}$	$1.44 \cdot 10^{-04}$	$2.05 \cdot 10^{-04}$		
	10^{-10}	92519	$2.24 \cdot 10^{-06}$	$3.43 \cdot 10^{-06}$	$2.57 \cdot 10^{-06}$	$2.57 \cdot 10^{-06}$	$3.62 \cdot 10^{-06}$	89.48	36.
	10^{-12}	164407	$2.25 \cdot 10^{-08}$	$6.80 \cdot 10^{-08}$	$4.58 \cdot 10^{-08}$	$4.58 \cdot 10^{-08}$	$6.40 \cdot 10^{-08}$		
$10^5 \cdot \pi$	10^{-08}	521580	$2.00 \cdot 10^{-03}$	$1.27 \cdot 10^{-03}$	$1.44 \cdot 10^{-03}$	$1.44 \cdot 10^{-03}$	$2.05 \cdot 10^{-03}$		
	10^{-10}	925185	$2.24 \cdot 10^{-05}$	$3.43 \cdot 10^{-05}$	$2.57 \cdot 10^{-05}$	$2.57 \cdot 10^{-05}$	$3.62 \cdot 10^{-05}$	89.60	36.
	10^{-12}	1644068	$2.45 \cdot 10^{-07}$	$6.80 \cdot 10^{-07}$	$4.58 \cdot 10^{-07}$	$4.58 \cdot 10^{-07}$	$6.40 \cdot 10^{-07}$		
$10^6 \cdot \pi$	10^{-08}	5219496	$2.02 \cdot 10^{-02}$	$1.26 \cdot 10^{-02}$	$1.44 \cdot 10^{-02}$	$1.44 \cdot 10^{-02}$	$2.05 \cdot 10^{-02}$		
	10^{-10}	9252025	$2.24 \cdot 10^{-04}$	$3.43 \cdot 10^{-04}$	$2.57 \cdot 10^{-04}$	$2.57 \cdot 10^{-04}$	$3.62 \cdot 10^{-04}$	89.99	36.
	10^{-12}	16440684	$2.22 \cdot 10^{-06}$	$6.80 \cdot 10^{-06}$	$4.58 \cdot 10^{-06}$	$4.58 \cdot 10^{-06}$	$6.40 \cdot 10^{-06}$		

8 Аналитическое решение задачи.

Отыскание общего решения данной системы является достаточно тяжелой задачей, поэтому наша цель будет найти такие решения, которые удовлетворяютя данной системе. Итак, имеем следующую систему уравнеий:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \\ \dot{p}_x = 0 \\ \dot{p}_y = -p_x - \frac{2 \cdot t^r \cdot y}{(1 + y^2)^2} \\ u = \begin{cases} 16 \text{ ,если } p_y > 0 \\ 0 \text{ ,если } p_y < 0 \end{cases} \\ x(0) = 0, \ x(2) = 1, \\ p_y(0) = 0, \ p_y(2) = 0, \\ r \in \{1, 2\}. \end{cases}$$

Задаем начальные условия:

$$x(0) = 0$$
, $y(0) = y_0$, $p_y(0) = 0$, $p_x(0) = p_x^0$. (9)

Решим для начала задачу с параметром r = 1.

Будем считать, что $p_x^0 > 0$. Тогда имеем $\dot{p}_y(0) < 0$, что означает, что необходимо выставить параметр u = 0.. Решая эту систему уравнеий получаем следующие решения:

$$\begin{cases} x(t) = y_0 \cdot t \\ y(t) \equiv y_0 \\ p_x(t) \equiv p_x^0 \\ p_y(t) = -p_x^0 \cdot t - \frac{y_0}{(1+u^2)^2 \cdot t^2} \end{cases}$$

Пусть t^* - момент, когда $p_x(t^*)=0$. Заметим лишь, что если $y_0=0$, то имеем противоречие с $p_y(2)=0$. Тогда для этого момента времени справедливо:

$$\begin{cases} x(t^*) &= y_0 \cdot t^* \\ y(t^*) &= y_0 \\ p_x(t^*) &= p_x^0 \\ p_y(t^*) &= 0 \end{cases}$$
,где $t^* = \frac{p_x^0 \cdot (1 + y_0^2)^2}{-y_0}$.

$$t^*>0\Rightarrow y_0<0$$
 $t^*\in(0\,,\,2]$, причем если $t^*=2$, то имеем противоречие с $x(2)=1;\Rightarrow$ \Rightarrow $t^*\in(0\,,\,2)\Leftrightarrow 0< p_x^0<\frac{-2\cdot y_0}{(1+y_0^2)^2}$

Заметим, что $\dot{p}_y(t^*)=p_x^0>0$, что означает, что решение переходит в верхнюю полуплоскость трансверсально, поэтому после точки t^* считаем u=16. Для удобства совершим сдвиг по оси времени $t=\tau+t^*$, и тогда новая систеа примет следующий вид:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \\ \dot{p}_x = 0 \\ \dot{p}_y = -p_x - \frac{2 \cdot (\tau + t^*) \cdot y}{(1 + y^2)^2} \end{cases},$$
 с начальными условиями
$$\begin{cases} x(0) = y_0 \cdot t^* \\ y(0) = y_0 \\ p_x(0) = p_x^0 \\ p_y(0) = 0 \end{cases}$$

Решаем эту систему уравнений и получаем следующее решение:

$$\begin{cases} x(\tau) &= 8\tau^{2} + \tau \cdot y_{0} + y_{0} \cdot t^{*} \\ y(\tau) &= 16\tau + y_{0} \\ p_{x}(\tau) &= p_{x}^{0} \\ p_{y}(\tau) &= \frac{1}{256} \left(16 \left(-16 \cdot p_{x}^{0} \cdot \tau - \frac{t^{*}}{1 + y_{0}^{2}} + \frac{\tau + t^{*}}{1 + (16 \cdot \tau + y_{0})^{2}} \right) + \operatorname{Arctan}(y_{0}) - \operatorname{Arctan}(16\tau + y_{0}) \right) \end{cases}$$

Попытаемся найти такие начальные значения, что будут выполнены краевые условия, то есть:

$$\left\{ \begin{array}{l} x(2-t^*) \,=\, 1 \\ p_y(2-t^*) \,=\, 0 \end{array} \right. , \text{ причем } p_x^0 \,=\, -\frac{t^* \cdot y_0}{(1+y_0^2)^2} \\ x(2-t^*) \,=\, 1 \,\Rightarrow\, t^* \,=\, 2 \,\pm \frac{\sqrt{2}}{4} \sqrt{1-2 \cdot y_0} \;, \end{array}$$

также необходимо вспомнить об ограничении $t^* \in (0,2)$,

подставляя соответствующие функции в последнее уравннение системы \Rightarrow

$$\begin{split} \frac{4(-8+\sqrt{2-4}\cdot y_0)}{1+y_0^2} + \\ + 32 \cdot \frac{\sqrt{2-4}\cdot y_0}{(132\cdot y_0 - 264\cdot y_0^2 + 20\cdot y_0^3) + (1-33\cdot y_0 + 196\cdot y_0^2 - 257\cdot y_0^3 + 3\cdot y_0^4)}{(1+y_0^2)^2\cdot (33+8(-8+\sqrt{2-4}\cdot y_0)\cdot y_0 + y_0^2)} + \\ + \mathbf{Arctan}(y_0) - \mathbf{Arctan}(4\sqrt{2-4\cdot y_0} + y_0) \ = \ 0 \end{split}$$

Из рисунка видно, что последнее уравнение не разрешимо на промежутке $-\frac{31}{2} < y_0 < 0$. Причем из рисунка также видно, что $p_y(2-t^*)$ в зависимости от y_0 может принимать как положительные, так и отрицатеьные значения, поэтому опять найдется точка переключения со своими ограничениями. После точки переключения управление u=0.

Это породит новую систему уравнений со своими начальными условиями, с учетом сдвигом по времени эту систему можно записать так:

Для удобства введем обозначения $t_1=t^*$, t_2 -момент времени, когда посленяя функция $p_y(t2)=0$.

$$\begin{cases} \dot{x} = y \\ \dot{y} = 0 \\ \dot{p}_x = 0 \\ \dot{p}_y = -p_x - \frac{2 \cdot (t + t_1 + t_2) \cdot y}{(1 + y^2)^2} \end{cases},$$

с начальными условиями

$$\begin{cases} x(0) = x_2 \\ y(0) = y_2 \\ p_x(0) = p_x^0 \\ p_y(0) = 0 \end{cases}, \text{ рде } \begin{cases} x_2 = 8t_2^2 + t_2 \cdot y_0 + y_0 \cdot t_1 \\ y_2 = 16t_2 + y_0 \\ t_1 = \frac{p_x^0 \cdot (1 + y_0^2)^2}{-y_0} \end{cases}$$

Далее хотим разрешить краевую задачу. Решение системы уравнений примет вид:

$$\begin{cases} x(t) = x_2 \cdot t + x_2 \\ y(t) = y_2 \\ p_x(t) = p_x^0 \\ p_y(t) = t \left(-p_x^0 - \frac{2 \cdot (t_1 + t_2) \cdot y_2}{(1 + y_2^2)^2} - \frac{t \cdot y_2}{(1 + y_2^2)^2} \right) = t \cdot \psi(t, t_2, t_1, y_2, p_x^0) \end{cases}$$

Опишем идею построения уравнений:

$$\begin{aligned}
t_1 &= t_1(y_0, p_x^0) \Rightarrow p_x^0 = p_x^0(y_0, t_1) \\
y_2 &= y_2(y_0, t_2) \\
x_2 &= x_2(t_2, t_1, y_0) \\
x(2 - t_1 - t_2) &= \phi(y_2, x_2, t_1, t_2) = 1
\end{aligned} \right\} \Rightarrow t_1 = t_1(t_2, y_0)$$

$$\Rightarrow p_x^0 = p_x^0(y_0, t_2)$$

$$\Rightarrow f(t_2, y_0) = 0.$$

$$\psi(2 - t_1 - t_2, t_2, t_1, y_2, p_x^0) = 0$$

Рис. 1: $y_0 = -0.681078049$ $t_2 = 0.054491750283$

А также вспоминая предшествующее уравнение $p_y(t_2) = 0 \Leftrightarrow G(t_2, t_1, y_0, p_x^0) = 0$ и совершая аналогичный ряд действия, имеем:

$$f(t_2, y_0) = 0 g(t_2, y_0) = 0$$

Было найда пара точек (рис.1 и рис.2), которые могут претедовать на решение, но не одна из точек не подхоит, так как вычесленное по ним время $t_1 < 0$.

Рис. 2: $y_0 = -6.977892188$ $t_2 = 0.43614901116$

Таким образом мы можем далее искать точку переключения и продолжать решение, но это уже сложная задача, поэтому будем пытаться найти решение среди других начальных параметров.

Далее будем считать, что $p_x^0=0$. Заметим, что $y(0)=y_0\neq 0$, так как решения, тождественно равные 0 нас не интересуют. Таким образом задача распадается на два случая:

Пусть $y_0>0$. Тогда для достаточно маленьково δ верным будет утверждение, что $\dot{p}_y(\tau)<0$ на всем промежутке $(0,\delta)$. Так как $p_y(0)=0$, то необходимо брать u=0. Это приведет к тому, что:

$$p_y(t) = \frac{-t^2 \cdot y_0}{(1+y_0^2)^2} \Rightarrow$$
 $\not\equiv t_1$, что $p_y(t_1) = 0$, что приводит к противоречию.

Пусть $y_0<0$. Тогда для достаточно маленьково δ верным будет утверждение, что $\dot{p}_y(\tau)>0$ на всем промежутке $(0,\delta)$. Так как $p_y(0)=0$, то необходимо брать u=16. Это приведет к тому, что:

$$\begin{split} p_y(t) &= \frac{\mathbf{Arctan}(y_0) - \mathbf{Arctan}(16 \cdot t + y_0)}{256} + \frac{t}{16(1 + (16 \cdot t + y_0)^2)} \\ x(t) &= 8t^2 + t \cdot y_0 \text{ , требуем, чтобы } p_y(2) = 0 \text{ и } x(2) = 1. \\ x(2) &= 1 \ \Rightarrow \ y_0 = -\frac{31}{2} \ \Rightarrow \ p_y(2) \neq 0. \end{split}$$

Это означает, что следует искать точку переключения t_1 , затем строить новую систему уравнений и ее решать, в ходе чего будет получено: Для удобства считаем, что произошел сдвиг по времени.

$$p_y(t) = rac{-t^2 \cdot y_1}{(1+y_1^2)^2}$$
, где $y_1 = 16 * t_1 + y_0$.

Таким образом имеем, что необходимо выполение $y_1=0$, иначе невозможно выполнение краевых условие. Тогда имеем уравнение $t_1=t_1(y_0)$, подстановка которого в $p_y(t_1)=0$, полученного на первом шаге дает противоречие, значит решение вообще невозможно при $p_x^0=0$.

Тогда разберемся с последним случаем $p_x^0 < 0$.

Тогда $\dot{p}_y(0)>0$, и в качестве параметра необходимо взять u=16 . Тогда получим систему, решением которого имеет вид:

$$\begin{cases} x(t) = 8t^2 \cdot y_0 \\ y(t) = 16t + y_0 \\ p_x(t) \equiv p_x^0 \\ p_y(t) = -p_x^0 \cdot t + \frac{\mathbf{Arctan}(y_0) - \mathbf{Arctan}(16 \cdot t + y_0)}{256} + \frac{t}{16(1 + (16 \cdot t + y_0)^2)} \end{cases}$$

Рис. 3: $p_x^0 = -0.00566313$

Тогда попытаемся решыть такую систему:

$$x(2)=1 \Rightarrow y_0=-\frac{31}{2}$$

 $p_y(2)=0$, при $y_0=-\frac{31}{2} \Rightarrow p_x^0=-0.00566313$

Таким образом мы нашли решение, не имеющее точки переключения с начальными параметрами $(p_x^0, y_0) = (-0.00566313, -\frac{31}{2}).$

Рис. 4: $p_x^0 = -0.00725785633$ $y_0 = -14.4849204322$

Попытаемся теперь построить решение, проходящее через одну точку переключения. Тогда получим новую систему уравнений(с учетом сдвига по времени и сменой значения параметра на 0):

$$\begin{cases} \dot{x} \equiv y_1 \\ \dot{y} \equiv 0 \\ p_x(t) \equiv p_x^0 \\ \dot{p}_y = -p_x^0 - \frac{2(t+t_1)\cdot y_1}{(1+y_1^2)^2} \end{cases} , \text{ где } \begin{cases} x(0) = x_1 = 8t_1^2 + t_1 \cdot y_0 \\ y(0) = y_1 = 16t_1 + y_0 \\ p_y(0) = 0 \end{cases} \Rightarrow$$

$$\begin{cases} x(t) &= y_1 \cdot t + x_1 \\ y(t) &= y_1 \\ p_y(t) &= -p_x^0 \cdot t - \frac{t^2 \cdot y_1}{(1+y_1^2)^2} - \frac{2t \cdot t_1 \cdot y_1}{(1+y_1^2)^2} \end{cases},$$
 где

$$0 = -p_x^0 \cdot t_1 + \frac{\mathbf{Arctan}(y_0) - \mathbf{Arctan}(16 \cdot t_1 + y_0)}{256} + \frac{t_1}{16(1 + (16 \cdot t_1 + y_0)^2)} \Leftrightarrow f_2(y_0, t_1, p_x^0) = 0$$

$$x(2-t1) = y_1 \cdot (2-t1) + x_1 = 1 \Rightarrow t_1 = \frac{1}{2}(4-\sqrt{16+y_0})$$

$$\begin{cases} p_y(2-t_1) = 0 \\ t_1 = t_1(y_0) \Rightarrow F_1(p_x^0, y_0) = 0 \\ y_1 = y_1(y_0, t_1) \end{cases} \Rightarrow F_1(p_x^0, y_0) = 0$$

$$\begin{cases} f_2(y_0, t_1, p_x^0) = 0 \\ t_1 = t_1(y_0) \end{cases} \Rightarrow F_2(p_x^0, y_0) = 0$$

Решая эту систему, находим точку $(p_x^0, y_0) = (-0.00725785633, -14.4849204322)$ осталось проверить, что эта точка определяет допустимое t_1 .

$$t_1 = \frac{1}{2}(4 - \sqrt{16 + y_0}) \implies t_1 = 1.384553 \in (0, 2) \implies$$
 удовлетворяет ограничениям на время.

$$\begin{split} &(\mathbf{p}_x^0,y_0)=(-0.00566313,-\frac{31}{2})\\ &\text{- без точек переключения .}\\ &(\mathbf{p}_x^0,y_0)=(-0.00725785633,-14.4849204322)\\ &\text{- с одной точкой переключения.} \end{split}$$

Но если для первой пары точек явно постоить функцию p_x^0 , то увидем, что у этой функции на самом деле должна быть точка переключения, чего мы не обнаружили.

А если посмотреть на вторую пару точек и явно построим p_x^0 после первой точки переключения, то увидем, что график расположен выше оси, что противоречит выбору управления.

Поэтому оба нами найденных "решения" таковыми не являются.

