Tutorato 7 - Elettrotecnica

Daniele Pani - daniele.pani@edu.unito.it

13 Maggio 2019

1

Della rete illustrata in figura, si vuole conoscere la resistenza fra i morsetti A-B e tra i nodi A-C; con R_1 =3 $k\Omega$ R_2 =1,2 $k\Omega$ R_3 =22 $k\Omega$ R_4 =400 Ω :

[Risp.: R_{AB} =1,04 k Ω 2 R_{AC} =0,9 k Ω]

2

La corrente che attraversa la resistenza R è I=6A e va dal morsetto A al morsetto B. Sono noti inoltre i potenziali dei punti A e B che valgono rispettivamente
$$V_A$$
=24V e V_B =6V.

Si calcoli il valore della resistenza R e quello della resistenza R_1 da mettere in parallelo ad R affinché, ferma restando la d.d.p. V_{AB} la corrente totale assorbita dal carico totale sia I_T =10A. [Risp:R=3 Ω , R_1 =4,5 Ω]

3

In questo tratto di circuito

$$A \longrightarrow I_1 \longrightarrow I_2 \longrightarrow I_3 \longrightarrow$$

Sono note le correnti I₁=2A e I₂=1,4A

le resistenze R_1 =6 Ω R_4 =2,5 Ω ed R_2 =4 Ω . Trovare:

1]
$$V_{AC}$$
, V_{CB} , V_{AB}

$$2]R_3=?$$

3] la resistenza equivalente vista tra i morsetti A-B.

$$\left[\text{Risp.:V}_{\text{AC}} = 17\text{V}, \, \text{V}_{\text{CB}} = 5,6\text{V}, \, \text{V}_{\text{AB}} = 22,6\text{V}, \, \text{R}_{3} = 9,33\Omega, \, \text{R}_{\text{AB}} = 11,3\Omega \right]$$

4

 $\left[\text{Risp.:V}_{\text{AO}}\text{=}14,08\text{V}\right]$

5

Utilizzando le leggi di Kirchhoff , trovare le 3 correnti ${\rm I_1},\,{\rm I_2},\,{\rm I_3}$

note:

 $E_1=11V$

E₂=7V

R₁=2Ω

 $R_2=1\Omega$

 $R_3=1\Omega$

I₁=? I₂=? I₃=?

[Risp.:I₁=3A, I₂=2A, I₃=5A]

6

Nel circuito assegnato trovare il valore di R_4 note:

 $E_1 = 12V$

 $R_1=1\Omega$

 $R_2=3 \Omega$

R₃=4 Ω

R₅=2 Ω

[Risp.: $R_4=2\Omega$]