Laurent Beaudou¹, Pierre Coupechoux², Antoine Dailly³, Sylvain Gravier⁴, Julien Moncel², Aline Parreau³, Éric Sopena⁵

LIMOS, Clermont-Ferrand
LAAS, Toulouse
JIRIS, Lyon
Institut Fourier, Grenoble
LaBRI, Bordeaux

This work is part of the ANR GAG (Graphs and Games).

CGTC 2017

Definition

Octal games are:

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

▶ NIM is 0.3333...

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

- ► NIM is 0.3333...
- ► KAYLES is 0.137

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

- ► NIM is 0.3333...
- ► KAYLES is 0.137

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137

IIIIII

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137

1111

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137

IIIIII

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137

IIIIII

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137
- ► CRAM on a single row is 0.07

11111

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137
- ► CRAM on a single row is 0.07

 \mathbf{I}

Definition

Octal games are:

- impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- ► NIM is 0.3333...
- ► KAYLES is 0.137
- ► CRAM on a single row is 0.07

11111

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

- ► NIM is 0.3333...
- ► KAYLES is 0.137
- ► CRAM on a single row is 0.07
- ► The James Bond Game is 0.007

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

- ► NIM is 0.3333...
- ▶ KAYLES is 0.137
- ► CRAM on a single row is 0.07
- ► The James Bond Game is 0.007

Definition

Octal games are:

- ▶ impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

- ► NIM is 0.3333...
- ► KAYLES is 0.137
- ► CRAM on a single row is 0.07
- ► The James Bond Game is 0.007

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size $0, 1, 2, \ldots$

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...

Examples

► NIM: 0,1,2,3,4,5,...

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...

- ► NIM: 0,1,2,3,4,5,...
- ► KAYLES: 0,1,2,3,1,4,3,2,... after a pre-period 72 it becomes periodic with period 12;

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...

- ► NIM: 0,1,2,3,4,5,...
- ► KAYLES: 0,1,2,3,1,4,3,2,... after a pre-period 72 it becomes periodic with period 12;
- ► CRAM on a single row: 0,1,1,2,0,3,1,1,... after a pre-period 53 it becomes periodic with period 34

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...

- ► NIM: 0,1,2,3,4,5,...
- ► KAYLES: 0,1,2,3,1,4,3,2,... after a pre-period 72 it becomes periodic with period 12;
- ► CRAM on a single row: 0,1,1,2,0,3,1,1,... after a pre-period 53 it becomes periodic with period 34
- ► The JAMES BOND GAME: 0,0,0,1,1,1,2,2,0,3,3,1,1,1,0,4,...still open, 2²⁸ values computed!

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...

Examples

- ► NIM: 0,1,2,3,4,5,...
- ► KAYLES: 0,1,2,3,1,4,3,2,... after a pre-period 72 it becomes periodic with period 12;
- ► CRAM on a single row: 0,1,1,2,0,3,1,1,... after a pre-period 53 it becomes periodic with period 34
- ► The JAMES BOND GAME: 0,0,0,1,1,1,2,2,0,3,3,1,1,1,0,4,... still open, 2²⁸ values computed!

Conjecture (Guy)

All finite octal games have ultimately periodic Grundy sequences.

Playing on heaps	Playing on graphs
111111	

Playing on heaps	Playing on graphs
Removing counters from a heap	
11111	

Playing on heaps	Playing on graphs
Removing counters from a heap	
1111	

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
1111	

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
1111	> -

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
111111	$\triangleright -$
Splitting a heap	

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
111111	$\triangleright -$
Splitting a heap	

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
11 11	\triangleright
Splitting a heap	

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
11 11	
Splitting a heap	Disconnecting a graph

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
11 11	
Splitting a heap	Disconnecting a graph

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
11 11	·
Splitting a heap	Disconnecting a graph

Natural generalization of the definition:

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
11 11	• •-
Splitting a heap	Disconnecting a graph

Playing on a heap

Natural generalization of the definition:

Playing on heaps	Playing on graphs
Removing counters from a heap	Removing connected vertices from a graph
11 11	·
Splitting a heap	Disconnecting a graph

Playing on a heap \equiv Playing on a path

••••

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6
 - Study of cycles, wheels, random graphs, . . .

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6
 - ▶ Study of cycles, wheels, random graphs, . . .
- Scoring version of 0.6 (Duchêne et al., 2017+)

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6
 - ▶ Study of cycles, wheels, random graphs, ...
- Scoring version of 0.6 (Duchêne et al., 2017+)
- ▶ NODE-KAYLES is **not** an octal game

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6
 - ▶ Study of cycles, wheels, random graphs, ...
- Scoring version of 0.6 (Duchêne et al., 2017+)
- ▶ NODE-KAYLES is **not** an octal game

- ARC-KAYLES (Schaeffer, 1978) is 0.07
 - ► FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- ▶ GRIM (Adams et al., 2016) is 0.6
 - ▶ Study of cycles, wheels, random graphs, ...
- Scoring version of 0.6 (Duchêne et al., 2017+)
- ▶ NODE-KAYLES is **not** an octal game

Rules

Rules

Rules

Rules

Rules

Rules

In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.

Remark

For every integer n, we have $\mathcal{G}(P_n) = n \mod 3$.

Rules

In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.

Remark

For every integer n, we have $\mathcal{G}(P_n) = n \mod 3$.

Corollary

A path can be **reduced** to its **length modulo 3** without changing its Grundy value.

Subdivided stars

A subdivided star $S_{\ell_1,...,\ell_k}$ is a graph composed of a central vertex connected to k paths of length $\ell_1,...,\ell_k$.

Subdivided stars

A subdivided star $S_{\ell_1,...,\ell_k}$ is a graph composed of a central vertex connected to k paths of length $\ell_1,...,\ell_k$.

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$. In other words, each path of a subdivided star can be **reduced** to its **length modulo 3** without changing the Grundy value of the star.

Subdivided stars

A subdivided star $S_{\ell_1,...,\ell_k}$ is a graph composed of a central vertex connected to k paths of length $\ell_1,...,\ell_k$.

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$. In other words, each path of a subdivided star can be **reduced** to its **length modulo 3** without changing the Grundy value of the star.

Subdivided stars

A subdivided star $S_{\ell_1,...,\ell_k}$ is a graph composed of a central vertex connected to k paths of length $\ell_1,...,\ell_k$.

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$. In other words, each path of a subdivided star can be **reduced** to its **length modulo 3** without changing the Grundy value of the star.

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

$$\mathcal{G}(\nearrow) = 0$$
 $\mathcal{G}(\nearrow) = 1$

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

 $\mathcal{G}=\ell+2 \text{ mod } 3$

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

Lemma

For all ℓ , we have $\mathcal{G}(S_{1,1,\ell}) = \ell \mod 3$.

Proof

We use induction on ℓ .

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \bmod 3, \ldots, \ell_k \bmod 3})$.

Proof

We prove by induction that $\mathcal{G}(S_{\ell_1,\dots,\ell_i,\dots,\ell_k}) = \mathcal{G}(S_{\ell_1,\dots,\ell_i+3,\dots,\ell_k})$.

Theorem

For all ℓ_1, \ldots, ℓ_k , we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof

We prove by induction that $\mathcal{G}(S_{\ell_1,\dots,\ell_i,\dots,\ell_k}) = \mathcal{G}(S_{\ell_1,\dots,\ell_i+3,\dots,\ell_k})$.

 \Rightarrow We only need to study stars with paths of length 1 and 2

Subdivided bistars

The subdivided bistar $S_1 \stackrel{\bullet m}{\bullet} S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

Subdivided bistars

The subdivided bistar $S_1 \stackrel{\bullet m}{\bullet} S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

Theorem

Each path of a subdivided bistar can be **reduced** to its **length modulo 3** without changing the Grundy value of the bistar.

Subdivided bistars

The subdivided bistar $S_1 \stackrel{\bullet m}{\bullet} S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

Theorem

Each path of a subdivided bistar can be **reduced** to its **length modulo 3** without changing the Grundy value of the bistar.

Subdivided bistars

The subdivided bistar $S_1 \stackrel{\bullet m}{\bullet} S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

Theorem

Each path of a subdivided bistar can be **reduced** to its **length modulo 3** without changing the Grundy value of the bistar.

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing on a subdivided bistar

Playing independently on the two subdivided stars

bistar

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing independently on the two subdivided stars

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

12/19

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing on a subdivided bistar

Playing independently on the two subdivided stars

... except at the end!

$$\mathcal{G}(\cdot) \longrightarrow (\cdot) = 0$$
 $\mathcal{G}(\cdot) + (\cdot) = 0$

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing on a subdivided bistar

Playing independently on the two subdivided stars

... except at the end!

$$\mathcal{G}(\overset{\longleftarrow}{\longleftrightarrow}) = 0$$
 $\mathcal{G}(\overset{\longleftarrow}{\longleftrightarrow} + \overset{\longleftarrow}{\longleftrightarrow}) = 0$ $\mathcal{G}(\overset{\longleftarrow}{\longleftrightarrow} + \overset{\longleftarrow}{\longleftrightarrow}) = 0$

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing on a subdivided bistar

Playing independently on the two subdivided stars

... except at the end!

$$\mathcal{G}(\overset{}{\longleftrightarrow}\overset{}{\longleftrightarrow})=0$$
 $\mathcal{G}(\overset{}{\longleftrightarrow}\overset{}{\longleftrightarrow}\overset{}{\longleftrightarrow})=0$ $\mathcal{G}(\overset{}{\longleftrightarrow}\overset{}{\longleftrightarrow}\overset{}{\longleftrightarrow})=0$

 \Rightarrow Refinement of \equiv

Reminder - Equivalence of games

 $J_1 \equiv J_2 \iff \forall X$, $J_1 + X$ and $J_2 + X$ have the same outcome.

Reminder - Equivalence of games

 $J_1 \equiv J_2 \iff \forall X$, $J_1 + X$ and $J_2 + X$ have the same outcome.

Refinement of ≡

 $S \sim_1 S' \iff \forall X, S^{\bullet 1} X \text{ and } S'^{\bullet 1} X \text{ are equivalent.}$

Reminder - Equivalence of games

 $J_1 \equiv J_2 \iff \forall X$, $J_1 + X$ and $J_2 + X$ have the same outcome.

Refinement of ≡

 $S \sim_1 S' \iff \forall X, S \stackrel{1}{\bullet \bullet} X \text{ and } S' \stackrel{1}{\bullet \bullet} X \text{ are equivalent.}$

Reminder - Equivalence of games

 $J_1 \equiv J_2 \iff \forall X$, $J_1 + X$ and $J_2 + X$ have the same outcome.

Refinement of ≡

 $S \sim_1 S' \iff \forall X, S^{\bullet - \bullet}X \text{ and } S'^{\bullet - \bullet}X \text{ are equivalent.}$

The Grundy classes will be split into several classes for \sim_1 .

Equivalence classes of \sim_1 for the game 0.33

The Grundy value of $S_1 \stackrel{1}{•} S_2$ depending on the classes of S_1 and S_2 is given by:

The Grundy value of $S_1 \stackrel{1}{•} S_2$ depending on the classes of S_1 and S_2 is given by:

	0	1	1*	2	2*	2^{\square}	3	3□
0	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
1	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
1*	\oplus	\oplus	2	\oplus	0	\oplus	\oplus	\oplus
2	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
2*	\oplus	\oplus	0	\oplus	1	1	\oplus	0
2^{\square}	\oplus	\oplus	\oplus	\oplus	1	\oplus	\oplus	\oplus
3	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
3	\oplus	\oplus	\oplus	\oplus	0	\oplus	\oplus	\oplus

where \oplus is the Nim-sum.

The Grundy value of $S_1 \stackrel{1}{•} S_2$ depending on the classes of S_1 and S_2 is given by:

where \oplus is the Nim-sum.

 \Rightarrow The values are still in the range [0; 3]

Equivalence classes of \sim_2 for the game 0.33

The Grundy value of $S_1 \stackrel{2}{\longleftrightarrow} S_2$ depending on the classes of S_1 and S_2 is given by:

	0	0*	1	1*	$\mid 1^{\square}$	2	2*	2^{\square}	3	3□
0	\oplus	\oplus_1	\oplus	2	\oplus_1	\oplus	0	\oplus_1	\oplus	\oplus_1
0*	\oplus_1	\oplus_1	\oplus_1	2	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	\oplus_1
1	\oplus	\oplus_1	\oplus	3	\oplus_1	\oplus	1	\oplus_1	\oplus	\oplus_1
1*	2	2	3	0	3	0	1	1	1	0
1^{\square}	\oplus_1	\oplus_1	\oplus_1	3	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	\oplus_1
2	\oplus	\oplus_1	\oplus	0	\oplus_1	\oplus	2	\oplus_1	\oplus	\oplus_1
2*	0	0	1	1	1	2	2	2	3	3
2^{\square}	\oplus_1	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	2	0	\oplus_1	1
3	\oplus	\oplus_1	\oplus	1	\oplus_1	\oplus	3	\oplus_1	\oplus	\oplus_1
3	\oplus_1	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	3	1	\oplus_1	0

where \oplus is the Nim-sum and $x \oplus_1 y$ stands for $x \oplus y \oplus 1$.

The Grundy value of $S_1 \stackrel{2}{\longleftrightarrow} S_2$ depending on the classes of S_1 and S_2 is given by:

	0	0*	1	1*	$\mid 1^{\square}$	2	2*	2^{\square}	3	3□
0	\oplus	\oplus_1	\oplus	2	\oplus_1	\oplus	0	\oplus_1	\oplus	\oplus_1
0*	\oplus_1	\oplus_1	\oplus_1	2	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	\oplus_1
1	\oplus	\oplus_1	\oplus	3	\oplus_1	\oplus	1	\oplus_1	\oplus	\oplus_1
1*	2	2	3	0	3	0	1	1	1	0
1^{\square}	\oplus_1	\oplus_1	\oplus_1	3	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	\oplus_1
2	\oplus	\oplus_1	\oplus	0	\oplus_1	\oplus	2	\oplus_1	\oplus	\oplus_1
2*	0	0	1	1	1	2	2	2	3	3
2^{\square}	\oplus_1	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	2	0	\oplus_1	1
3	\oplus	\oplus_1	\oplus	1	\oplus_1	\oplus	3	\oplus_1	\oplus	\oplus_1
3□	\oplus_1	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	3	1	\oplus_1	0

where \oplus is the Nim-sum and $x \oplus_1 y$ stands for $x \oplus y \oplus 1$.

 \Rightarrow The values are still in the range [0; 3]

Proposition

The reduction of paths to their length modulo 3 does not work on trees:

Proposition

The reduction of paths to their length modulo 3 does not work on trees:

Proposition

The reduction of paths to their length modulo 3 does not work on trees:

Conjecture

For all $n \ge 4$, there exists a tree T such that $\mathcal{G}(T) = n$.

$$\mathcal{G}(\cdots \cdots \cdots)=10$$

Conclusion Summary

Summary

► Natural generalization of octal games on graphs;

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars' Grundy values;

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars' Grundy values;
- ► The result does not hold for trees.

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars' Grundy values;
- The result does not hold for trees.

Perspectives

Prove that trees can have arbitrarily large Grundy values;

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars' Grundy values;
- ► The result does not hold for trees.

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars' Grundy values;
- ► The result does not hold for trees.

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;
- Generalize some results on other octal games.

Summary

- Natural generalization of octal games on graphs;
- ► Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars' Grundy values;
- ► The result does not hold for trees.

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;
- ▶ Generalize some results on other octal games.

