organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-[4-(4-Fluorophenyl)-5-hydroxymethyl-6-isopropylpyrimidin-2-yl]-*N*-methyl-methanesulfonamide

Hong Xu, a Hong-shun Sunb* and Feng-mao Luoc

^aDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, ^bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, and ^cNanjing Xiansheng Dongyuan Pharmaceutic Company Limited, Xinglong Road No. 8 Nanjing, Nanjing 211800, People's Republic of China Correspondence e-mail: njutshs@126.com

Received 26 September 2011; accepted 17 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.057; wR factor = 0.168; data-to-parameter ratio = 14.9.

In the title compound, $C_{16}H_{20}FN_3O_3S$, the pyrimidine and benzene rings are oriented at a dihedral angle of 38.8 (3)°. An intramolecular $C-H\cdots O$ hydrogen bond occurs. The crystal structure is stabilized by $O-H\cdots N$ hydrogen bonds. In addition, $C-H\cdots O$ interactions are also present.

Related literature

For a related structure, see: He et al. (2008).

Experimental

Crystal data

 $C_{16}H_{20}FN_3O_3S$

 $M_r=353.41$

 $\begin{aligned} & \text{Monoclinic, } P2_1/c & Z = 4 \\ & a = 5.8080 \text{ (12) Å} & \text{Mo } K\alpha \text{ radiation} \\ & b = 11.803 \text{ (2) Å} & \mu = 0.21 \text{ mm}^{-1} \\ & c = 25.867 \text{ (5) Å} & T = 293 \text{ K} \\ & \beta = 93.10 \text{ (3)}^{\circ} & 0.30 \times 0.20 \times 0.10 \text{ mm} \\ & V = 1770.6 \text{ (6) Å}^3 \end{aligned}$

Data collection

 $\begin{array}{lll} \text{Enraf-Nonius CAD-4} & 3234 \text{ independent reflections} \\ \text{diffractometer} & 2200 \text{ reflections with } I > 2\sigma(I) \\ \text{Absorption correction: } \psi \text{ scan} & R_{\text{int}} = 0.034 \\ \text{(North et al., 1968)} & 3 \text{ standard reflections every } 200 \\ T_{\text{min}} = 0.939, \ T_{\text{max}} = 0.979 & \text{reflections} \\ 3576 \text{ measured reflections} & \text{intensity decay: } 1\% \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.057 & 217 \ {\rm parameters} \\ wR(F^2) = 0.168 & {\rm H-atom\ parameters\ constrained} \\ S = 1.00 & \Delta\rho_{\rm max} = 0.27\ {\rm e\ \mathring{A}^{-3}} \\ 3234\ {\rm reflections} & \Delta\rho_{\rm min} = -0.35\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
$O1-H1A\cdots N2^{i}$	0.82	2.10	2.896 (3)	165
C5−H5A···O1	0.93	2.53	3.309 (4)	141
C15−H15 <i>C</i> ···O3 ⁱⁱ	0.96	2.39	3.350 (4)	176
$C16-H16A\cdots O3^{iii}$	0.96	2.55	3.402 (4)	148

Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x, -y + 1, -z.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2454).

References

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. He, W., Yang, D.-L., Cui, Y.-T., Xu, Y.-M. & Guo, C. (2008). Acta Cryst. E64, o1126.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3432 [doi:10.1107/S1600536811049051]

N-[4-(4-Fluorophenyl)-5-hydroxymethyl-6-isopropylpyrimidin-2-yl]-N-methylmethanesulfonamide

H. Xu, H. Sun and F. Luo

Comment

The derivatives of pyrimidine are important chemical compound. We report here the crystal structure of the title compound.

In the title molecule (Fig. 1), the pyrimidine (N1/N2/C7—C10) and benzene (C1—C6) rings are inclined at a dihedral angle of 38.7 (3)°. The structure is stabilized by intermolecular hydrogen bonding of the type O—H···N. In addition, intramolecular C—H···N and C—H···O and intermolecular C—H···O hydrogen bonding interactions are also present in the crystal structure (Table 1). The crystal structure of a related compound has been reported recently (He *et al.*, 2008).

Experimental

For the preparation of the title compound, sodium salt of *N*-methyl methane sulphonamide (106 g, 631.00 mmol) and 4-(4-fluorophenyl)-6-isopropyl-2-methyl sulfonylpyrimidine-5-methanol (92 g, 284.0 mmol) were added to dimethylformamide (1000 ml) in a round bottom flask, and then stirred for 1 h at 303 K. After completion of the reaction, demineralized water (1000 ml) was added and stirred for 1 h. The mixture was filtered, washed with water, and then dried (yield; 90%). Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically with O—H = 0.82 Å and C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.5$ times $U_{eq}(C_{iso}(H))$, and 1.2 times $U_{eq}(C_{iso}(H))$ and 1.2 times $U_{eq}(C_{iso}(H))$

Figures

Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

N-[4-(4-Fluorophenyl)-5-hydroxymethyl-6-isopropylpyrimidin-2-yl]- N-methylmethanesulfonamide

Crystal data

 $C_{16}H_{20}FN_3O_3S$

 $M_r = 353.41$

F(000) = 744

 $D_{\rm x} = 1.326 \; {\rm Mg \; m}^{-3}$

Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections

Than symbol. 4 2ybc a = 5.8080 (12) Å $\theta = 9-13^{\circ}$ b = 11.803 (2) Å $\mu = 0.21 \text{ mm}^{-1}$ c = 25.867 (5) Å T = 293 K

c = 25.86 / (5) A I = 293 K $\beta = 93.10 (3)^{\circ}$ Block, colorless $V = 1770.6 (6) \text{ Å}^3$ $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $V = 1770.6 (6) \text{ Å}^3$ $0.30 \times 0.20 \times 0.2$

Data collection

Enraf-Nonius CAD-4 diffractometer 2200 reflections with $I > 2\sigma(I)$

Radiation source: fine-focus sealed tube $R_{int} = 0.034$

graphite $\theta_{\text{max}} = 25.4^{\circ}, \, \theta_{\text{min}} = 1.6^{\circ}$

 $\omega/2\theta$ scans $h = 0 \rightarrow 7$

Absorption correction: ψ scan (North *et al.*, 1968) $k = 0 \rightarrow 14$

 $T_{\text{min}} = 0.939, T_{\text{max}} = 0.979$ $l = -31 \rightarrow 31$

3576 measured reflections 3 standard reflections every 200 reflections

3234 independent reflections intensity decay: 1%

Refinement

Refinement on F^2 Primary atom site location: structure-invariant direct

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

 $R[F^2 > 2\sigma(F^2)] = 0.057$ Hydrogen site location: inferred from neighbouring sites

. ()1

 $wR(F^2) = 0.168$ H-atom parameters constrained

S = 1.00 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.098P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

3234 reflections $(\Delta/\sigma)_{max} < 0.001$ 217 parameters $\Delta\rho_{max} = 0.27 \text{ e Å}^{-3}$

0 restraints $\Delta \rho_{min} = -0.35 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{\mathbb{A}}^2)$

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
S	0.19836 (15)	0.47414 (7)	0.06975 (3)	0.0468 (3)
F	0.3816 (4)	0.31374 (19)	0.44364 (7)	0.0810(7)
01	-0.2240 (4)	0.06223 (19)	0.24443 (9)	0.0574 (7)
H1A	-0.2602	0.0043	0.2595	0.086*
N1	0.1043 (4)	0.2659 (2)	0.12672 (9)	0.0390(6)
C1	0.4508 (6)	0.3093 (3)	0.30694 (13)	0.0491 (8)
H1C	0.5589	0.3309	0.2836	0.059*
O2	0.2945 (5)	0.58313 (19)	0.06090 (9)	0.0665 (7)
N2	0.2636 (4)	0.34440 (19)	0.20528 (9)	0.0358 (6)
C2	0.4998 (7)	0.3252 (3)	0.35873 (14)	0.0572 (9)
H2C	0.6402	0.3558	0.3708	0.069*
N3	0.3087 (5)	0.4355 (2)	0.12759 (9)	0.0454 (7)
O3	-0.0463 (4)	0.4631 (2)	0.06957 (9)	0.0610(7)
C3	0.3365 (7)	0.2948 (3)	0.39237 (12)	0.0548 (9)
C4	0.1316 (7)	0.2479 (3)	0.37660 (13)	0.0550 (9)
H4A	0.0251	0.2278	0.4006	0.066*
C5	0.0833 (6)	0.2305 (3)	0.32381 (12)	0.0453 (8)
H5A	-0.0562	0.1979	0.3124	0.054*
C6	0.2421 (5)	0.2614(2)	0.28818 (11)	0.0384(7)
C7	0.1927 (5)	0.2532 (2)	0.23138 (11)	0.0362 (7)
C8	0.0778 (5)	0.1639 (2)	0.20606 (11)	0.0383 (7)
C9	0.0296 (5)	0.1763 (2)	0.15288 (11)	0.0374 (7)
C10	0.2204 (5)	0.3436 (2)	0.15435 (11)	0.0358 (7)
C11	0.0129 (6)	0.0571 (3)	0.23370 (13)	0.0461 (8)
H11A	0.0408	-0.0083	0.2122	0.055*
H11B	0.1062	0.0496	0.2658	0.055*
C12	-0.1153 (6)	0.0935 (3)	0.12057 (13)	0.0510 (9)
H12A	-0.1274	0.0234	0.1405	0.061*
C13	-0.3530 (8)	0.1421 (5)	0.1122 (2)	0.117(2)
H13A	-0.4160	0.1570	0.1450	0.176*
H13B	-0.4498	0.0889	0.0932	0.176*
H13C	-0.3455	0.2114	0.0929	0.176*
C14	-0.0079 (9)	0.0648 (4)	0.07052 (16)	0.0964 (17)
H14A	0.1431	0.0337	0.0778	0.145*
H14B	0.0039	0.1322	0.0500	0.145*
H14C	-0.1023	0.0102	0.0518	0.145*
C15	0.5194 (6)	0.4925 (3)	0.14861 (13)	0.0599 (10)
H15A	0.5627	0.4619	0.1821	0.090*
H15B	0.4908	0.5722	0.1516	0.090*
H15C	0.6419	0.4803	0.1258	0.090*
C16	0.3091 (7)	0.3781 (3)	0.02622 (12)	0.0582 (10)
H16A	0.2511	0.3961	-0.0083	0.087*
H16B	0.2629	0.3027	0.0349	0.087*
H16C	0.4744	0.3828	0.0281	0.087*

Atomic displacement parameters (\mathring{A}^2)							
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
S	0.0611 (6)	0.0414 (5)	0.0392 (5)	0.0019 (4)	0.0142 (4)	0.0066(3)	
F	0.124(2)	0.0785 (16)	0.0398 (12)	0.0170 (14)	-0.0057 (12)	-0.0016 (10)	
O1	0.0590 (16)	0.0441 (13)	0.0707 (16)	-0.0090 (11)	0.0171 (12)	0.0151 (11)	
N1	0.0419 (14)	0.0378 (14)	0.0376 (14)	-0.0066 (12)	0.0051 (11)	-0.0017 (11)	
C1	0.048(2)	0.052(2)	0.0471 (19)	0.0018 (16)	0.0007 (15)	0.0042 (15)	
O2	0.099(2)	0.0409 (14)	0.0616 (16)	-0.0055 (13)	0.0266 (14)	0.0134 (11)	
N2	0.0414 (14)	0.0336 (13)	0.0332 (13)	-0.0017 (11)	0.0096 (10)	0.0011 (10)	
C2	0.061(2)	0.056(2)	0.054(2)	0.0067 (18)	-0.0092 (18)	0.0006 (17)	
N3	0.0580 (17)	0.0442 (15)	0.0345 (14)	-0.0159 (13)	0.0089 (12)	0.0010 (11)	
O3	0.0540 (15)	0.0709 (17)	0.0590 (15)	0.0089 (12)	0.0095 (11)	0.0162 (12)	
C3	0.084(3)	0.0451 (19)	0.0352 (18)	0.0163 (19)	-0.0012 (18)	0.0034 (15)	
C4	0.077(3)	0.047(2)	0.0422 (19)	0.0133 (19)	0.0180 (18)	0.0092 (15)	
C5	0.0510 (19)	0.0401 (17)	0.0455 (18)	0.0035 (15)	0.0077 (15)	0.0080 (14)	
C6	0.0438 (17)	0.0320 (15)	0.0394 (17)	0.0104 (14)	0.0034 (13)	0.0044 (12)	
C7	0.0348 (16)	0.0353 (16)	0.0392 (16)	0.0049 (13)	0.0079 (12)	0.0038 (13)	
C8	0.0417 (17)	0.0310 (15)	0.0428 (17)	0.0009 (13)	0.0079 (13)	0.0027 (13)	
C9	0.0343 (16)	0.0345 (16)	0.0442 (17)	-0.0026 (13)	0.0089 (13)	-0.0017 (13)	
C10	0.0387 (17)	0.0346 (16)	0.0349 (16)	-0.0016 (13)	0.0104 (12)	0.0001 (12)	
C11	0.050(2)	0.0355 (17)	0.054(2)	0.0001 (14)	0.0067 (15)	0.0064 (14)	
C12	0.051(2)	0.0440 (19)	0.058(2)	-0.0140 (16)	0.0015 (16)	-0.0028 (15)	
C13	0.055(3)	0.106 (4)	0.186 (6)	0.000(3)	-0.040(3)	-0.042 (4)	
C14	0.109 (4)	0.110 (4)	0.073 (3)	-0.052(3)	0.026(3)	-0.047(3)	
C15	0.065(2)	0.062(2)	0.054(2)	-0.0297 (19)	0.0150 (17)	-0.0032 (17)	
C16	0.080(3)	0.058(2)	0.0375 (18)	0.008(2)	0.0176 (17)	0.0002 (16)	
Geometric par	rameters (Å, °)						
S—O2		1.426 (2)	C6—C	27	1.48	5 (4)	
S—O3		1.427 (3)	C7—C	28	1.39	1 (4)	
S-N3		1.659 (3)	C8—C	C8—C9		1.396 (4)	
S-C16		1.745 (3)	C8—C	211	1.507 (4)		
F—C3		1.356 (4)	C9—C12		1.511 (4)		
O1—C11		1.419 (4)	C11—H11A		0.9700		
O1—H1A		0.8200	C11—H11B		0.9700		
N1—C10		1.325 (4)	C12—C13		1.500 (6)		
N1—C9		1.340 (4)	C12—C14		1.506 (5)		
C1—C2		1.367 (4)	C12—H12A		0.9800		
C1—C6		1.400 (4)	C13—H13A		0.9600		
C1—H1C		0.9300	C13—H13B		0.9600		
N2—C10		1.328 (3)	C13—	·H13C	0.9600		
N2—C7		1.347 (4)	C14—	H14A	0.96	00	
C2—C3		1.369 (5)	C14—	H14B	0.96	00	
С2—Н2С		0.9300	C14—	·H14C	0.96	00	
N3—C10		1.399 (4)	C15—	H15A	0.96	00	
N3—C15		1.474 (4)	C15—	H15B	0.96	00	

C3—C4	1.355 (5)	C15—H15C	0.9600
C4—C5	1.395 (4)	C16—H16A	0.9600
C4—H4A	0.9300	C16—H16B	0.9600
C5—C6	1.388 (4)	C16—H16C	0.9600
C5—H5A	0.9300		
O2—S—O3	118.72 (16)	N1—C10—N2	127.1 (3)
O2—S—N3	104.90 (14)	N1—C10—N3	117.4 (3)
O3—S—N3	108.28 (14)	N2—C10—N3	115.5 (2)
O2—S—C16	108.74 (16)	O1—C11—C8	109.1 (2)
O3—S—C16	109.90 (18)	O1—C11—H11A	109.9
N3—S—C16	105.41 (16)	C8—C11—H11A	109.9
C11—O1—H1A	109.5	O1—C11—H11B	109.9
C10—N1—C9	116.3 (2)	C8—C11—H11B	109.9
C2—C1—C6	121.7 (3)	H11A—C11—H11B	108.3
C2—C1—H1C	119.2	C13—C12—C14	112.5 (4)
C6—C1—H1C	119.2	C13—C12—C9	108.3 (3)
C10—N2—C7	116.5 (2)	C14—C12—C9	112.1 (3)
C1—C2—C3	118.2 (3)	C13—C12—H12A	107.9
C1—C2—H2C	120.9	C14—C12—H12A	107.9
C3—C2—H2C	120.9	C9—C12—H12A	107.9
C10—N3—C15	119.3 (3)	C12—C13—H13A	109.5
C10—N3—S	121.7 (2)	C12—C13—H13B	109.5
C15—N3—S	118.7 (2)	H13A—C13—H13B	109.5
C4—C3—F	118.8 (3)	C12—C13—H13C	109.5
C4—C3—C2	122.9 (3)	H13A—C13—H13C	109.5
F—C3—C2	118.3 (4)	H13B—C13—H13C	109.5
C3—C4—C5	118.8 (3)	C12—C14—H14A	109.5
C3—C4—H4A	120.6	C12—C14—H14B	109.5
C5—C4—H4A	120.6	H14A—C14—H14B	109.5
C6—C5—C4	120.4 (3)	C12—C14—H14C	109.5
C6—C5—H5A	119.8	H14A—C14—H14C	109.5
C4—C5—H5A	119.8	H14B—C14—H14C	109.5
C5—C6—C1	118.1 (3)	N3—C15—H15A	109.5
C5—C6—C7	122.7 (3)	N3—C15—H15B	109.5
C1—C6—C7	119.1 (3)	H15A—C15—H15B	109.5
N2—C7—C8	121.4 (3)	N3—C15—H15C	109.5
N2—C7—C6	113.3 (3)	H15A—C15—H15C	109.5
C8—C7—C6	125.3 (3)	H15B—C15—H15C	109.5
C7—C8—C9	116.8 (3)	S—C16—H16A	109.5
C7—C8—C11	122.4 (3)	S—C16—H16B	109.5
C9—C8—C11	120.8 (3)	H16A—C16—H16B	109.5
N1—C9—C8	121.8 (3)	S—C16—H16C	109.5
N1—C9—C12	114.6 (3)	H16A—C16—H16C	109.5
C8—C9—C12	123.6 (3)	H16B—C16—H16C	109.5
C6—C1—C2—C3	-1.2 (5)	C6—C7—C8—C9	174.4 (3)
O2—S—N3—C10	167.0 (2)	N2—C7—C8—C11	175.2 (3)
O3—S—N3—C10 C16—S—N3—C10	39.2 (3)	C6—C7—C8—C11	-7.2 (4)
C10—3—N3—C10	-78.3 (3)	C10—N1—C9—C8	-1.9(4)

O2—S—N3—C15	-19.4 (3)	C10—N1—C9—C12	176.2 (3)
O3—S—N3—C15	-147.1 (3)	C7—C8—C9—N1	4.6 (4)
C16—S—N3—C15	95.3 (3)	C11—C8—C9—N1	-173.8(3)
C1—C2—C3—C4	1.3 (5)	C7—C8—C9—C12	-173.3 (3)
C1—C2—C3—F	-178.0 (3)	C11—C8—C9—C12	8.3 (4)
F—C3—C4—C5	178.8 (3)	C9—N1—C10—N2	-2.6(4)
C2—C3—C4—C5	-0.5 (5)	C9—N1—C10—N3	177.3 (2)
C3—C4—C5—C6	-0.4 (5)	C7—N2—C10—N1	4.0 (4)
C4—C5—C6—C1	0.5 (4)	C7—N2—C10—N3	-175.9 (2)
C4—C5—C6—C7	-175.1 (3)	C15—N3—C10—N1	-151.1 (3)
C2—C1—C6—C5	0.3 (5)	S—N3—C10—N1	22.6 (4)
C2—C1—C6—C7	176.1 (3)	C15—N3—C10—N2	28.9 (4)
C10—N2—C7—C8	-0.8 (4)	S—N3—C10—N2	-157.5 (2)
C10—N2—C7—C6	-178.7 (2)	C7—C8—C11—O1	100.5 (3)
C5—C6—C7—N2	136.6 (3)	C9—C8—C11—O1	-81.2 (3)
C1—C6—C7—N2	-39.0 (4)	N1—C9—C12—C13	-77.6 (4)
C5—C6—C7—C8	-41.2 (4)	C8—C9—C12—C13	100.4 (4)
C1—C6—C7—C8	143.3 (3)	N1—C9—C12—C14	47.0 (4)
N2—C7—C8—C9	-3.1 (4)	C8—C9—C12—C14	-134.9 (4)

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H1A···N2 ⁱ	0.82	2.10	2.896 (3)	165.
C5—H5A···O1	0.93	2.53	3.309 (4)	141.
C15—H15A···N2	0.96	2.33	2.765 (4)	107.
C15—H15C···O3 ⁱⁱ	0.96	2.39	3.350 (4)	176.
C16—H16A···O3 ⁱⁱⁱ	0.96	2.55	3.402 (4)	148.

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x+1, y, z; (iii) -x, -y+1, -z.

Fig. 1

