

Group 3: Nguyễn Huỳnh Đức, Lại Thị Hạnh, Lê Bảo Trung, Hoàng Lê Mỹ Anh, Nguyễn Thảo My

Table of contents

01

02

03

Introduction

Theoretical background & Literature Review

Data Selection & Methodology

04

The two-pass regression test

05

Black, Jensen & Scholes Test 06

Conclusion & Limitation

Introduction of HNX, Function of HNX, Purpose of the study

Introduction:

1. Hanoi Stock Exchange:

Operated markets including: Listed stock market, Government Bond Market, Unlisted Public Company market (UPCoM) and Derivatives market.

- 2. Function of Hanoi Stock Exchange:
- Financial raising system
- Redistribution of shares
- Measure of the economy
- 3. Purpose of the study:
- Uses the assets traded on the Hanoi Stock Exchange to examine the accuracy of the Capital Asset Pricing Model.

Theoretical Background Literature review

Model concept, Model assumptions, Data

$$\beta_i = \frac{Cov[r_i, r_m]}{Var[r_m]}$$

O2 Model concept:

$$R_i = R_f + \beta_i \times (R_m - R_f)$$

We can express it in terms of an expected excess of returns on an asset or portfolio over the risk – free return:

$$E(z_i) = \beta_i E(z_m)$$
 Where
$$E(z_i) = E(r_i) - r_f$$

$$E(z_m) = E(r_M) - r_f$$

Figure 1. The Capital Asset Pricing Model

03 Model assumption:

1. Perfect market:

- No investors in the market large enough to influence stock prices
- Borrow and lend at risk-free rates, no transaction fees, all assets are divisible and market-traded, tax-free, short-sold.

2. Efficient market:

- Investors are risk-averse, making decisions based on expected returns and standard deviations of returns.
- Investors have equal access to investment opportunities.
- Investors have uniform periods of return and risk (standard deviation, variance) of an investment opportunity.
- Investors have two ways to invest: risk-free securities and market portfolios.
- The risks mentioned in the model are systematic risk.

Literature review

FINDING	MAIN RESULT	
The original Capital Asset Pricing Model (CAPM)	The relationship between the expected return of an asset and its risk.	
The relationship between portfolios betas and their average returns.	The relationship between portfolios betas and their average returns was linear with a positive and significant slope.	
The relationship between expected returns and exposure to (priced) risk factors	A linear relationship between expected returns and exposure to (priced) risk factors.	
Value and small-cap stocks outperform markets on a regular basis	Result is supportive for CAPM.	
The relationship between beta and return of stocks	The intercept term was significantly non-zero and there was a positive relationship between beta and return of stocks.	
	The original Capital Asset Pricing Model (CAPM) The relationship between portfolios betas and their average returns. The relationship between expected returns and exposure to (priced) risk factors Value and small-cap stocks outperform markets on a regular basis The relationship	

Data Selection Methodology

Two – pass regression test Black, Jensen and Scholes Test

Data Selection

Closing stock price of 50 companies

- Period: 1 January 2021 30 June 2022, daily
- Number of observations: 370
- Listed on Hanoi Stock Exchange (HNX)

$$R_t = \ln(\frac{P_t}{P_{t-1}})$$

 R_m is the expected return of the market portfolio

 R_t is the risk-free return (government bond yields)

Source data: tvsi.com.vn

Testing Equation:

Two-pass regression test:

• Intercept = 0
$$z_{ti} = \alpha_i + \beta_i z_{Mt} + \varepsilon_{ti}$$

• Slope = average risk premium
$$ar{z}_i = \gamma_0 + \gamma_1 \beta_i + \varepsilon_i$$

• Non-linearity
$$\bar{z}_p = \gamma_0 + \gamma_1 \beta_p + \gamma_2 {\beta_p}^2 + \varepsilon_p$$

• Non – systematic risk
$$\bar{z}_p = \gamma_0 + \gamma_1 \beta_2 + \gamma_2 {\beta_p}^2 + \gamma_3 R V_p + \varepsilon_p$$

Black, Jensen and Scholes Test

Based on daily returns from 2nd quarter to 4th quarter of 2021

stock beta

Ranked stock

Stocks will be ranked and 10 portfolios will be created based on stocks' betas

Computing daily return

The daily returns on these portfolios will be computed in 4th quarter of 2021

Portfolio reconstructed

The portfolios will be reconstructed and the daily returns in the 1st quarter of 2022 will be computed.

Estimated the portfolio beta

The portfolios betas will be estimated by regressing returns

Estimated beta and reconstucted the portfolio

The portfolios will be reconstructed again, and their returns will be computed for 2nd quarter of 2022.

04

Two-pass regression test

Estimating 50 beta value of 50 assets:

- The range of estimated betas is from -0.136 to 1.941
- 98% of all estimated betas are significant with 95% confidence
- 0% of estimations exhibited an intercept significantly different from zero

SML Estimation

Line intercept is nearly zero, but the SML is upward sloping which supports the idea of CAPM that expected returns are positively and proportionally related to beta.

SML Estimation

	Regression results	<i>t</i> -value	<i>p</i> -value	CAPM predicted values
γ_0	-0.009678	-0.391	0.6976	0
γ_1	0.069608	2.561	0.0136	0.0740154
R-square	12.02%			
Standard Error	0.09475			

The estimated SML supports the CAPM theory, the γ_0 is equal to 0. The slope of the estimated SML is positive and significant.

Non-linearity test

Standard Error

	Regression results	<i>t</i> -value	<i>p</i> -value	CAPM predicted values
γ ₀	-0.011355	-0.301	0.764	0
γ_1	0.075346	0.752	0.456	0.0740154
γ ₂	-0.003275	-0.060	0.953	0
R-square	12.03%			

The slope of SML γ_1 is positive and statistically significant. No linear relationship between stocks' beta and return.

0.09575

Non-systematic risk test

Standard Error

	Regression results	<i>t</i> -value	<i>p</i> -value	CAPM predicted values
γ_0	-0.045297	-0.999	0.323	0
γ ₁	0.076640	0.771	0.445	0.0740154
γ_2	-0.011860	-0.216	0.830	0
γ_3	0.003241	1.322	0.193	0
R-square	0.1525			

This result supports the CAPM. All the risk is captured by beta and non-systematic risk has no influence on stocks' returns.

0.095

05

Black, Jensen and Scholes Test

SML Estimation
Non – systematic test
Non – systematic risk test

Stocks' betas calculated in each of the 3 sub-periods

SML Estimation

Figure 2. Estimation of the Security Market Line on Hanoi Stock Exchange

SML Estimation

	Regression results	<i>t</i> -value	<i>p</i> -value	CAPM predicted values
γ_0	-0.1730	-0.669	0.522	0
γ_1	0.7629	0.830	0.431	0.0740154
R-square	7.92%			
Standard Error	0.1431			

The estimated SML supports the CAPM theory, the γ_0 is equal to 0. The slope of the estimated SML is positive but insignificant.

Non-linearity test

Standard Error

	Regression results	<i>t</i> -value	<i>p</i> -value	CAPM predicted values
γ_0	0.6538	0.497	0.634	0
γ_1	-5.3188	-0.558	0.431	0.0740154
γ_2	10.7807	0.641	0.542	0
R-square	13.04%			

The slope of SML γ_1 is negative and insignificant. Have linear relationship between stocks' beta and return.

0.1487

Non-systematic risk test

Standard Error

	Regression results	<i>t</i> -value	<i>p</i> -value	CAPM predicted values
γο	-0.2015	-0.080	0.939	0
γ_1	-3.0922	-0.269	0.797	0.0740154
γ_2	7.6636	0.395	0.707	0
γ_3	0.2196	0.414	0.693	0
R-square	15.45%			

This result supports the CAPM. All the risk is captured by beta and non-systematic risk has no influence on stocks' returns.

0.1584

05

Conclusion Limitation

Conclusion

 	Two-pass Technique	Black, Jensen and Scholes
Intercept = 0	Passed	Passed
Slope = average risk premium	Significantly positive and nearly equal	Positive but much higher and insignificant
Non-linearity	Passed	Passed
Non-systematic risk	Passed	Passed

The above study shows that the excess return of the stocks under test depends on the excess return of the market, the beta estimate is suitable to measure the systematic risk of the stock. However, testing by Black, Jensen and Scholes methods shows that the data in this study do not support the theory of CAPM.

Limitation

The assumptions of CAPM theory may not completely match the current reality of the market.

The price level accounts for only a minor portion of the business, owing to the influence of supply and demand on the stock of speculators.

The HNX-Index currently does not represent the market portfolio because there are insufficient business lines and significant firms.

Thanks!

Do you have any question?

- Nguyễn Huỳnh Đức <u>11200853@st.neu.edu.vn</u>
- Lê Bảo Trung <u>11207312@st.neu.edu.vn</u>
- Hoàng Lê Mỹ Anh <u>11204296@st.neu.edu.vn</u>
- Lại Thị Hạnh 11201358@st.neu.edu.vn
- Nguyễn Thảo My 11202634@st.neu.edu.vn

