Calcolatori Elettronici (12AGA)

Esame del 2.7.2015 Correzione

Esercizio 10 - A

Si scrivano le microistruzioni eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione

Tale istruzione somma il contenuto di R2 al contenuto della cella di memoria il cui indirizzo è scritto in R3, e scrive il risultato in R1.

Possibile soluzione

- 1. Fase di fetch

 - PC_{out}MAR_{in}Clear Y

 - Set Carry In to ALU
 - Add
- Z_{in}MAR_{out}
- Read
- aspetta MFC
- Z_{out}PC_{in}
- SEL=0
- MDR_{in}
- MDR² out
- IR_{in}

Possibile soluzione

2. Fase di esecuzione

- R3_{out} MAR_{in}
- MAR_{out}
- Read
- R2_{out}
- Y_{in} aspetta MFC

- MDR_{in} MDR² out
- Add

Esercizio 10 - B

Si scrivano le microistruzioni eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione

Tale istruzione sottrae al contenuto di R2 il contenuto di R3, e scrive il risultato nella cella di memoria il cui indirizzo è scritto in R1.

Possibile soluzione

- 1. Fase di fetch

 - PC_{out}MAR_{in}Read

 - Clear Y
 - Set Carry In to ALU
 - Add

 - MAR_{out}
 - Z_{out}PC_{in}

 - aspetta MFC
 - SEL=0
 - MDR_{in}
 - MDR² out
 - IR_{in}

Possibile soluzione

2. Fase di esecuzione

- $R3_{out}$

- Sub

- R1_{out} MAR_{in}
- MAR_{out}
- Write
- aspetta MFC
- End.

Esercizio 13 - A

- Si progetti il circuito sequenziale sincrono corrispondente al seguente diagramma di stato utilizzando FF di tipo D. In particolare
 - si indichi se il circuito è di tipo Mealy o Moore
 - si scrivano le espressioni booleane dell'uscita e degli ingressi dei FF
 - si disegni il circuito logico corrispondente.

Esercizio 13 - A

Esercizio 13 - A

L'uscita dipende esclusivamente dallo stato

Il circuito è di tipo Moore

Funzione di transizione

Stato corrente	I	stato futuro	Υ
00	0	00	0
00	1	01	0
01	0	00	1
01	1	10	1
10	0	00	0
10	1	10	0
11	0		_
11	1		-

$$A = b \cdot I + a \cdot I$$

$$B = \bar{a} \cdot \bar{b} \cdot I$$

Circuito

Esercizio 13 - B

- Si progetti il circuito sequenziale sincrono corrispondente al seguente diagramma di stato utilizzando FF di tipo D. In particolare
 - si indichi se il circuito è di tipo Mealy o Moore
 - si scrivano le espressioni booleane dell'uscita e degli ingressi dei FF
 - si disegni il circuito logico corrispondente.

Esercizio 13 - B

Esercizio 13 - B

L'uscita dipende esclusivamente dallo stato

Il circuito è di tipo Moore

Funzione di transizione

Stato corrente	I	stato futuro	Υ
00	0	01	1
00	1	00	1
01	0	10	0
01	1	00	0
10	0	10	1
10	1	00	1
11	0		_
11	1		-

$$A = b \cdot \bar{I} + a \cdot \bar{I}$$

$$B = \bar{a} \cdot \bar{b} \cdot \bar{I}$$

Circuito

