PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C07K 14/78, 14/515, C12N 9/68, 15/62,
C07K 19/00

(11) International Publication Number: WO 00/11033

(43) International Publication Date: 2 March 2000 (02.03.00)

(21) International Application Number: PCT/US99/19329

(22) International Filing Date: 25 August 1999 (25.08.99)

(30) Priority Data: 60/097,883 25 August 1998 (25.08.98) US

(71) Applicant: LEXINGEN PHARMACEUTICALS CORP. [US/US]; 125 Hartwell Avenue, Lexington, MA 02173 (US).

(72) Inventors: LO, Kin-Ming; 6 Carol Lane, Lexington, MA 02420 (US). LI, Yue; 53 Loomis Street, Bedford, MA 01730 (US). GILLIES, Stephen, D.; 159 Sunset Road, Carlisle, MA 01741 (US).

(74) Agent: BRESNAHAN, Maureen, B.; Testa, Hurwitz & Thibeault, LLP, High Street Tower, 125 High Street, Boston, MA 02110 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: EXPRESSION AND EXPORT OF ANGIOSTATIN AND ENDOSTATIN AS IMMUNOFUSIS

(57) Abstract

Disclosed are nucleotide sequences, for example, DNA or RNA sequences, which encode an immunoglobulin Fc-angiogenesis inhibitor fusion protein. The angiogenesis inhibitors can be angiostatin, endostatin, a plasminogen fragment having angiostatin activity, or a collagen XVIII fragment having endostatin activity. The nucleotide sequences can be inserted into a suitable expression vector and expressed in mammalian cells. Also disclosed is a family of immunoglobulin Fc-angiogenesis inhibitor fusion proteins that can be produced by expression of such nucleotide sequences. Also disclosed are methods using such nucleotide sequences and fusion proteins for treating conditions mediated by angiogenesis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	ĽU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	CH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan, -		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

EXPRESSION AND EXPORT OF ANGIOGENESIS INHIBITORS AS IMMUNOFUSINS

Field of the Invention

This invention relates generally to methods and compositions for making and using fusion proteins containing an angiogenesis inhibitor. More particularly, the invention relates to methods and compositions for making and using fusion proteins called immunofusins which contain an immunoglobulin Fc region and an angiogenesis inhibitor.

Background of the Invention

5

10

15

20

Two potent angiogenesis inhibitors, angiostatin (O'Reilly et al. (1994) Cell 79:315) and endostatin (O'Reilly et al. (1997) Cell 88:277), were discovered and found to be generated naturally by primary tumors. Both proteins are specific inhibitors of endothelial cell proliferation and inhibit tumor growth by blocking angiogenesis, the formation of new blood vessels that nourish tumors. Studies have shown that these angiogenesis inhibitors are non-toxic even at very high doses and that they may suppressed the growth of metastases and primary tumors may regress to a dormant microscopic state. Both inhibitors were identified as proteolytic fragments of much larger intact molecules. Angiostatin was found to be a fragment of plasminogen, and endostatin a fragment of collagen XVIII.

These two proteins have generated great interest in the cancer area because they have been shown to suppress the growth of many different types of tumors in mice, with no obvious side effects or drug resistance. Traditional chemotherapy generally leads to acquired drug resistance caused primarily by the genetic instability of cancer cells. Rather than targeting cancer cells, therapies using angiogenesis inhibitors target the normal endothelial cells, which support the growth of the tumor. Because endothelial cells are genetically stable, it is possible that angiogenesis inhibitor therapies may result in less drug resistance. Studies indicate that drug resistance did not develop in mice exposed to prolonged anti-angiogenic therapy using endostatin. Furthermore, repeated cycles of endostatin treatment in mice resulted in prolonged

- 2 -

tumor dormancy and no recurrence of tumors following discontinuation of therapy (Boehm et al. (1997) Nature 390:404).

Despite promising results in mice, it has not been possible to produce clinical grade soluble, active angiostatin and endostatin in commercial quantities using *E. coli*, baculoviral, yeast, and mammalian expression systems. Expression in *E. coli* yielded insoluble protein aggregates of undefined composition, which could not be injected into humans. Other production methods, such as baculovirus and mammalian expression systems, yielded very low levels of the recombinant proteins (O'Reilly et al. (1997) Cell 88:277).

5

10

15

20

25

The poor yields of the expression systems to date may be explained by both angiostatin and endostatin being internal fragments of much larger proteins. The truncated proteins may not fold properly in the absence of the residues that are cleaved from the precursor molecules. For example, angiostatin has 26 cysteine residues which form numerous disulfide bonds. Expression of angiostatin by itself may not provide the optimal environment for these numerous disulfide bonds to form correctly in the secretory pathway. Also, the recombinant endostatin protein produced in *E. coli* precipitated during dialysis, possibly due to the hydrophobicity of endostatin (O'Reilly et al. (1997) Cell 88:277).

A major hurdle with the use of angiostatin and endostatin in their present forms is that relatively large amounts of proteins have to be injected daily for weeks to months to achieve the desired clinical outcome. For example, in current mouse models, dosages of 20 mg/kg/day of endostatin are needed to demonstrate optimal efficacy (Boehm et al. (1997) Nature 390:404). Given that there is an urgent need to test endostatin and angiostatin clinically, a production method that can generate large quantities of clinical grade material is important.

One expression system that has been used to produce high level expression of fusion proteins in mammalian cells is a DNA construct encoding, a signal sequence, an immunoglobulin Fc region and a target protein. The fusion product of this construct generally is termed an "immunofusin." Several target proteins have been expressed successfully as immunofusins which include: IL2, CD26, Tat, Rev, OSF-2, β IG-H3, IgE Receptor, PSMA, and gp120. These expression constructs are disclosed in U.S. Patent No. 5,541,087 and U.S. Patent No. 5,726,044, the disclosures of which are incorporated herein by reference.

- 3 -

A major purpose of expressing recombinant fusion proteins in mammalian cells has been to attempt to confer novel or useful properties to the hybrid molecules, e.g., proper folding, increased solubility, targeting of a cytokine or toxin *in vivo*, Fc receptor binding, complement fixation, protein A binding, increased circulation half-life, and increased ability to cross the blood-brain barrier. Examples of recombinant fusion proteins produced in mammalian cells include cytokine immunoconjugates (Gillies et al. (1992) Proc. Natl. Acad. Sci. USA 89:1428; Gillies et al. (1993) Bioconjugate Chemistry 4:230), immunoadhesins (Capon et al. (1989) Nature 337:525), immunotoxins (Chaudhary et al. (1989) Nature 339:394), and a nerve growth factor conjugate (Friden et al. (1993) Science 259:373). Each of the foregoing publications is incorporated herein by reference.

5

10

15

20

25

It is an object of the invention to provide novel DNAs which facilitate efficient production and secretion of angiogenesis inhibitors in a variety of mammalian host cells. It is another object of the invention to provide methods for treating mammals with nucleic acids encoding, or amino acid sequences defining angiogenesis inhibitor proteins, including non-native, biosynthetic, or otherwise artificial proteins such as proteins which have been created by rational design.

Summary of the Invention

The present invention features methods and compositions useful in making and using fusion proteins containing an angiogenesis inhibitor protein. The fusion proteins can facilitate a high level expression of biologically active angiogenesis inhibitor proteins. The angiogenesis inhibitor proteins can then be cleaved from the fusion protein and combined with a pharmaceutically acceptable carrier prior to administration to a mammal, for example, a human. Alternatively, nucleic sequences encoding, or amino acid sequences defining the angiogenesis inhibitor containing fusion proteins can be combined with a pharmaceutically acceptable carrier and administered to the mammal.

In one aspect, the invention provides nucleic acid molecules, for example, DNA or RNA molecules, encoding a fusion protein of the invention. The nucleic acid molecule encodes a signal sequence, an immunoglobulin Fc region, and at least one target protein, also referred to herein as the angiogenesis inhibitor protein, selected from the group consisting of angiostatin, endostatin, a plasminogen fragment having angiostatin activity, a collagen XVIII fragment

-4-

having endostatin activity, and combinations thereof. In a preferred embodiment, the nucleic acid molecule encodes, serially in a 5' to 3' direction, the signal sequence, the immunoglobulin Fc region and the target protein sequence. In another preferred embodiment, the nucleic acid molecule encodes, serially in a 5' to 3' direction, the signal sequence, the target sequence, and immunoglobulin Fc region.

5

10

15

20

25

In another preferred embodiment, the immunoglobulin Fc region comprises an immunoglobulin hinge region and preferably comprises at least one immunoglobulin constant heavy region, for example, an immunoglobulin constant heavy 2 (CH₂) domain, an immunoglobulin constant heavy 3 (CH₃) domain), and depending upon the type of immunoglobulin used to generate the Fc region, optionally an immunoglobulin constant heavy region 4 (CH4) domain. In a more preferred embodiment, the immunoglobulin Fc region comprises a hinge region, a CH₂ domain and a CH₃ domain. Under certain circumstances, the immunoglobulin Fc region preferably lacks at least the CH₁ domain. Although the immunoglobulin Fc regions may be based on any immunoglobulin class, for example, IgA, IgD, IgE, IgG, and IgM, immunoglobulin Fc regions based on IgG are preferred.

In another embodiment, the nucleic acid of the invention can be incorporated in operative association into a replicable expression vector which can then be transfected into a mammalian host cell. In another preferred embodiment, the invention provides host cells harboring such nucleic acid sequences of the invention.

In another aspect, the invention provides a fusion protein comprising an immunoglobulin Fc region linked, either directly through a polypeptide bond or by means of a polypeptide linker, to a target protein selected from the group consisting of angiostatin, endostatin, a plasminogen fragment having angiostatin activity, a collagen XVIII fragment having endostatin activity, and combinations thereof. The target protein may be fused via its C-terminal end to an N-terminal end of the immunoglobulin Fc region. However, in a more preferred embodiment the target protein is fused via its N-terminal end to a C-terminal end of the immunoglobulin Fc region.

In another embodiment, the fusion protein may comprise a second target protein selected from the group consisting of angiostatin, endostatin, a plasminogen fragment having angiostatin activity, and a collagen XVIII fragment having endostatin activity. In this type of construct the

first and second target proteins can be the same or different proteins. For example, in a preferred embodiment, the fusion protein comprises a first target protein of angiostatin, an immunoglobulin Fc region and a second target protein of endostatin. The first and second target proteins may be linked together, either directly or by means of a polypeptide linker.

Alternatively, both target proteins may be linked, either directly or via a polypeptide linker, to the immunoglobulin Fc region. In the latter case, the first target protein is connected to an N-terminal end of the immunoglobulin Fc region and the second target protein is connected to a C-terminal end of the immunoglobulin Fc region.

In another embodiment, two fusion proteins may associate, either covalently, for example, by a disulfide or peptide bond, or non-covalently, to produce a multimeric protein. In a preferred embodiment, two fusion proteins are associated covalently by means of one or more disulfide bonds through cysteine residues, preferably located within immunoglobulin hinge regions disposed within the immunoglobulin Fc regions of both chains.

10

15

20

25

30

In a preferred embodiment, the target protein comprises a plasminogen fragment having a molecular weight of approximately 40 kD and, optionally comprises, an amino acid sequence as set forth in SEQ ID NO: 3. In another preferred embodiment, the target protein comprises a collagen XVIII fragment having an amino acid sequence set forth in SEQ ID NO: 1. Furthermore, the target protein can be full-length angiostatin or endostatin or bioactive fragments thereof. The source of the target protein in generating certain fusion proteins will depend upon the intended use of the target protein. For example, if the target protein is to be administered to a human, the target protein preferably is of human origin.

In another aspect, the invention provides methods of producing a fusion protein comprising an immunoglobulin Fc region and a target protein selected from the group consisting of angiostatin, endostatin, a plasminogen fragment having angiostatin activity, and a collagen XVIII fragment having endostatin activity. The method comprises the steps of (a) providing a mammalian cell containing a DNA molecule encoding such a fusion protein, either with or without a signal sequence, and (b) culturing the mammalian cell to produce the fusion protein. The resulting fusion protein can then be harvested, refolded, if necessary, and purified using conventional purification techniques well known and used in the art. Assuming that the fusion protein comprises a proteolytic cleavage site disposed between the immunoglobulin Fc region

- 6 -

and the target protein, the target can be cleaved from the fusion protein using conventional proteolytic enzymes and if necessary, purified prior to use.

5

10

In another aspect, the invention provides methods for treating mammals, for example, a human, in need of an angiogenesis inhibitor based therapy. For example, it is contemplated that the angiogenesis inhibitors of the invention may be administered to a human afflicted with a tumor. Treatment with the angiogenesis inhibitor may slow down or stop tumor growth and, under certain circumstances, may cause tumor regression. Treatment may include administering to the mammal an amount of the angiogenesis inhibitor in an amount sufficient to slow down or stop tumor growth. The angiogenesis inhibitor may be provided in the form of a fusion protein or as a nucleic acid, preferably operatively associated with an expression vector, in combination with a pharmaceutically acceptable carrier.

The foregoing and other objects, features and advantages of the present invention will be made more apparent from the detailed description, drawings, and claims that follow.

-7-

Brief Description of the Drawings

Figures 1A-1F are schematic illustrations of exemplary angiogenesis inhibitor fusion proteins constructed in accordance with the invention (see Examples 10-15). The Figures depict, respectively, Figure 1A, Fc-Kringle 1 of Angiostatin; Figure 1B, Fc-inner Kringle 1 of Angiostatin; Figure 1C, Fc-Endostatin-GlySer linker-inner Kringle 1 of Angiostatin; Figure 1D, Fc-Endostatin-GlySer linker-Kringle 1 of Angiostatin; Figure 1E, Fc-Endostatin-GlySer linker-Angiostatin; Figure 1F, Angiostatin-Fc-Endostatin. The vertical lines represent optional disulfide bonds connecting cysteine residues (C) disposal within a hinge region of the Fc molecule.

•

- 8 -

Detailed Description of the Invention

The invention provides fusion proteins, referred to herein as immunofusins, which were useful in the production of commercial quantities of clinical grade angiogenesis inhibitors. The angiogenesis inhibitors may be cleaved from the immunofusin protein constructs prior to use. However, it is contemplated that the immunofusins or nucleic acids encoding the immunofusins may be administered directly to mammals in need of treatment with an angiogenesis inhibitor.

5

10

15

20

25

The invention thus provides fusion proteins comprising an immunoglobulin Fc region and at least one target protein, referred to herein as an angiogenesis inhibitor. The angiogenesis inhibitor preferably is selected from the group consisting of angiostatin, endostatin, a plasminogen fragment angiostatin activity, a collagen XVIII fragment having endostatin activity. It is contemplated, however, that other polypeptides having angiogenesis inhibitor activity, now known or late discovered, may be expressed as fusion proteins of the type described herein.

Six exemplary embodiments of protein constructs embodying the invention are illustrated in the drawing as Figures 1A-1F. Because dimeric constructs are preferred, all are illustrated as dimers cross-linked by a pair of disulfide bonds between cysteines on adjacent subunits. In the drawings, the disulfide bridges are depicted as linking together the portions of two immunoglobulin Fc regions via an immunoglobulin hinge region, and thus are characteristic of native forms of these molecules. While constructs including the hinge region of Fc are preferred and have been shown promise as therapeutic agents, the invention contemplates that the crosslinking at other positions may be chosen as desired. Furthermore, under some circumstances, dimers or multimers useful in the practice of the invention may be produced by non-covalent association, for example, by hydrophobic interaction.

Because homodimeric constructs are important embodiments of the invention, Figure 1 illustrates such constructs. It should be appreciated that heterodimeric structures also are useful but, as is known to those skilled in the art, often can be difficult to purify. However, viable constructs useful to inhibit angiogenesis in various mammalian species, including humans, can be constructed comprising a mixture of homodimers and heterodimers. For example, one chain of the heterodimeric structure may comprise endostatin and the another may comprise angiostatin.

5

10

15

20

25

30

-9-

Figure 1A illustrates a dimer construct produced in accordance with the procedure set forth in Example 10. Each monomer of the dimer comprises an immunoglobulin Fc region 1 including a hinge region, a CH₂ domain and a CH₃ domain. Attached directly to the C terminus of the Fc region 1 is the first Kringle region of angiostatin 2, both inner and outer rings. Figure 1B shows a second embodiment of the invention (see Example 11) comprising the same Fc region as in Figure 1A, this time having only the inner ring of Kringle one of angiostatin 3 attached to the C terminal end of the Fc region 1. Figures 1C through 1E depict various embodiments of the protein constructs of the invention, which include as a target protein plural angiogenesis inhibitors arranged in tandem and connected by a linker. In Figure 1C, the target protein comprises full-length endostatin 4, a polypeptide linker 5, and the inner ring of Kringle one of angiostatin 3. Figure 1D depicts a protein comprising an Fc region the same as that of Figure 1A and a target protein comprising a full-length endostatin 4, a polypeptide linker 5, and a full Kringle one region of angiostatin (both inner and outer rings) 2. Figure 1E differs from the construct of Figure 1D in that the most C terminal protein domain comprises a full-length copy of angiostatin 7.

Although Figures 1A-1E represent Fc-X type constructs, where X is the target protein, it is contemplated that X-Fc type constructs may also be useful in the practice of the invention. Furthermore, it is contemplated the useful proteins of the invention may also be depicted by the formula X-Fc-X, wherein the Xs may represent the same or different target proteins. Figure 1F depicts such a construct which comprises in an N- to C-terminal direction, full-length human angiostatin 7, a human immunoglobulin Fc region 6 including a hinge region, and full-length human endostatin domain 4.

The term "angiogenesis inhibitor," as used herein, refers to any polypeptide chain that reduces or inhibits the formation of new blood vessels in a mammal. With regard to cancer therapy, the angiogenesis inhibitor reduces or inhibits the formation of new blood vessels in or on a tumor, preferably in or on a solid tumor. It is contemplated that useful angiogenesis inhibitors may be identified using a variety of assays well known and used in the art. Such assays include, for example, the bovine capillary endothelial cell proliferation assay, the chick chorioallantoic membrane (CAM) assay or the mouse corneal assay. However, the CAM assay is preferred (see, for example, O'Reilly *et al.* (1994) Cell 79: 315-328 and O'Reilly *et al.* (1997) Cell 88: 277-285, the disclosures of which are incorporated herein by reference). Briefly,

- 10 -

embryos with intact yolks are removed from fertilized three day old white eggs and placed in a petri dish. After incubation at 37°C, 3% CO₂ for three days, a methylcellulose disk containing the putative angiogenesis inhibitor is applied to the chorioallantoic membrane of an individual embryo. After incubation for about 48 hours, the chorioallantoic membranes were observed under a microscope for evidence of zones of inhibition.

5

10

15

20

25

30

Preferred angiogenesis inhibitors useful in the practice of the invention include, for example, angiostatin (O'Reilly et al. (1994) Cell 79: 315-328, and U.S. Patent Nos. 5,733,876; 5,837,682; and 5,885,795), and endostatin (O'Reilly et al. (1997) Cell 88: 277-285 and U.S. Patent No. 5,854,205). As stated previously, angiostatin and endostatin are specific inhibitors of endothelial cell proliferation and are capable of inhibiting tumor growth by blocking angiogenesis, the formation of new blood vessels that nourish tumors.

Angiostatin has been identified as a proteolytic fragment of plasminogen (O'Reilly et al. (1994) Cell 79: 315-328, and U.S. Patent Nos. 5,733,876; 5,837,682; and 5,885,795, the disclosure of which is incorporated herein by reference). Specifically, angiostatin is a 38 kDa internal fragment of plasminogen containing at least three of the Kringle regions of plasminogen. Endostatin has been identified as a proteolytic fragment of collagen XVIII (O'Reilly et al. (1997) Cell 88: 277-285, the disclosure of which is incorporated herein by reference). Specifically, endostatin is a 20 kDa C-terminal fragment of collagen XVIII. The terms "angiostatin" and "endostatin," as used herein, refer not only to the full length proteins, but also to variants and bioactive fragments thereof, as well as to bioactive fragments of plasminogen and collagen XVIII, respectively. The term bioactive fragment, with respect to angiostatin refers to any protein fragment of plasminogen or angiostatin that has at least 30%, more preferably at least 70%, and most preferably at least 90% of the activity of full-length angiostatin as determined by the CAM assay. The term bioactive fragment, with respect to endostatin refers to any protein fragment of collagen XVIII or endostatin that has at least 30%, more preferably at least 70% and most preferably at least 90% of the activity of full length endostatin as determined by the CAM assay.

The term variants includes specifies and allelic variants, as well as other naturally occurring or non-naturally occurring variants, for example, generated by conventional genetic engineering protocols, that are at least 70% similar or 60% identical, more preferably at least

- 11 -

75% similar or 65% identical, and most preferably 80% similar or 70% identical to either the naturally-occurring sequences of endostatin or angiostatin disclosed herein.

5

10

15

20

25

To determine whether a candidate polypeptide has the requisite percentage similarity or identity to a reference polypeptide, the candidate amino acid sequence and the reference amino acid sequence are first aligned using the dynamic programming algorithm described in Smith and Waterman (1981), J. Mol. Biol. 147:195-197, in combination with the BLOSUM62 substitution matrix described in Figure 2 of Henikoff and Henikoff (1992), "Amino acid substitution matrices from protein blocks", Proc. Natl. Acad Sci. USA 89:10915-10919. For the present invention, an appropriate value for the gap insertion penalty is -12, and an appropriate value for the gap extension penalty is -4. Computer programs performing alignments using the algorithm of Smith-Waterman and the BLOSUM62 matrix, such as the GCG program suite (Oxford Molecular Group, Oxford, England), are commercially available and widely used by those skilled in the art.

Once the alignment between the candidate and reference sequence is made, a percent similarity score may be calculated. The individual amino acids of each sequence are compared sequentially according to their similarity to each other. If the value in the BLOSUM62 matrix corresponding to the two aligned amino acids is zero or a negative number, the pair-wise similarity score is zero; otherwise the pair-wise similarity score is 1.0. The raw similarity score is the sum of the pair-wise similarity scores of the aligned amino acids. The raw score then is normalized by dividing it by the number of amino acids in the smaller of the candidate or reference sequences. The normalized raw score is the percent similarity. Alternatively, to calculate a percent identity, the aligned amino acids of each sequence again are compared sequentially. If the amino acids are non-identical, the pair-wise identity score is zero; otherwise the pair-wise identity score is 1.0. The raw identity score is the sum of the identical aligned amino acids. The raw score is then normalized by dividing it by the number of amino acids in the smaller of the candidate or reference sequences. The normalized raw score is the percent identity. Insertions and deletions are ignored for the purposes of calculating percent similarity and identity. Accordingly, gap penalties are not used in this calculation, although they are used in the initial alignment.

- 12 -

The target proteins disclosed herein are expressed as fusion proteins with an Fc region of an immunoglobulin. As is known, each immunoglobulin heavy chain constant region is comprised of four or five domains. The domains are named sequentially as follows: CH₁-hinge-CH₂-CH₃(-CH₄). The DNA sequences of the heavy chain domains have cross-homology among the immunoglobulin classes, e.g., the CH₂ domain of IgG is homologous to the CH₂ domain of IgA and IgD, and to the CH₃ domain of IgM and IgE.

5

10

15

20

25

As used herein, the term, "immunoglobulin Fc region" is understood to mean the carboxylterminal portion of an immunoglobulin chain constant region, preferably an immunoglobulin heavy chain constant region, or a portion thereof. For example, an immunoglobulin Fc region may comprise 1) a CH₁ domain, a CH₂ domain, and a CH₃ domain, 2) a CH₁ domain and a CH₂ domain and a CH₃ domain, or 5) a combination of two or more domains and an immunoglobulin hinge region. In a preferred embodiment the Fc region used in the DNA construct includes at least an immunoglobulin hinge region a CH₂ domain and a CH₃ domain and preferably lacks at least the CH₁ domain.

The currently preferred class of immunoglobulin from which the heavy chain constant region is derived is IgG (Igγ) (γ subclasses 1, 2, 3, or 4). Other classes of immunoglobulin, IgA (Igα), IgD (Igδ), IgE (Igε) and IgM (Igμ), may be used. The choice of appropriate immunoglobulin heavy chain constant regions is discussed in detail in U.S. Patent Nos. 5,541,087, and 5,726,044. The choice of particular immunoglobulin heavy chain constant region sequences from certain immunoglobulin classes and subclasses to achieve a particular result is considered to be within the level of skill in the art. The portion of the DNA construct encoding the immunoglobulin Fc region preferably comprises at least a portion of a hinge domain, and preferably at least a portion of a CH₃ domain of Fcγ or the homologous domains in any of IgA, IgD, IgE, or IgM.

Depending on the application, constant region genes from species other than human e.g., mouse or rat may be used. The Fc region used as a fusion partner in the immunofusin DNA construct generally may be from any mammalian species. Where it is undesirable to elicit an immune response in the host cell or animal against the Fc region, the Fc region may be derived from the same species as the host cell or animal. For example, human Fc can be used when the

- 13 -

host animal or cell is human; likewise, murine Fc can be used where the host animal or cell will be a mouse. Further, substitution or deletion of constructs of these constant regions, in which one or more amino acid residues of the constant region domains are substituted or deleted also would be useful. One example would be to introduce amino acid substitutions in the upper CH₂ region to create a Fc variant with reduced affinity for Fc receptors (Cole et al. (1997) J. Immunol. 159:3613). One of ordinary skill in the art can prepare such constructs using well known molecular biology techniques.

5

10

15

20

25

30

The use of human Fcyl as the Fc region sequence has several advantages. For example, if the angiogenesis inhibitor Fc fusion protein is to be used as a biopharmaceutical, the Fcyl domain may confer the effector function activities to the fusion protein. The effector function activities include the biological activities such as complement fixation, antibody-directed cellular cytotoxicity, placental transfer, and increased serum half-life. The Fc domain also provides for detection by anti-Fc ELISA and purification through binding to *Staphylococcus aureus* protein A ("Protein A"). In certain applications, however, it may be desirable to delete specific effector functions from the Fc region, such as Fc receptor binding or complement fixation.

In the case of angiogenesis inhibitor immunofusins, one function of the immunoglobulin Fc fusion partner is to facilitate proper folding of the angiogenesis inhibitor protein to yield active angiogenesis inhibitor protein and to impact solubility to the active moieties, at least in the extracellular medium. Since the Fc fusion partner is hydrophilic, the angiogenesis inhibitor immunofusin readily is soluble unlike, for example, the recombinant endostatin produced in *E. coli* (O'Reilly (1997) Cell 88:277.) In all of the Examples disclosed herein, high levels of production of the immunofusins were obtained. The angiogenesis inhibitor immunofusins were secreted into media at concentrations typically of about 30 to 100 µg/ml, and could be purified readily to homogeneity by Protein A chromatography. In addition, the angiogenesis inhibitor immunofusins could be cleaved and further purified using conventional purification protocols using, for example, by heparin sepharose, lysine sepharose or affinity purification.

In addition to the high levels of expression, fusion proteins of the invention also exhibit longer serum half-lives, presumably due to their larger molecular sizes. For example, human Fchuman angiostatin has a serum half-life of 33 hours in mouse, as compared to 4-6 hours for human angiostatin (O'Reilly et al. (1996) Nature Medicine 2:689). It is believe that angiostatin

.

WO 00/11033

5

10

15

20

25

30

- 14 -

PCT/US99/19329

with a molecular weight of 40 kD, and endostatin with a molecular weight of 20 kD, are small enough to be cleared efficiently by renal filtration. In contrast, the dimeric forms of Fc-angiostatin and dimeric Fc-endostatin are 145 kD and 100 kD, respectively, because there are two immunoglobulin Fc regions attached to either two angiostatin molecules or two endostatin molecules. Such a bivalent structure may exhibit a higher binding affinity to the angiostatin or endostatin receptor. If the angiogenesis inhibiting activity is receptor-mediated, the Fc fusion proteins are potentially more effective to suppress tumors than monovalent angiostatin or monovalent endostatin by themselves. Furthermore, if angiostatin and/or endostatin belong to a class of dimeric protein ligands, the physical constraint imposed by the Fc on angiostatin or endostatin would make the dimerization an intramolecular process, thus shifting the equilibrium in favor of the dimer and enhancing its binding to the receptor. Cysteine residues can also be introduced by standard recombinant DNA technology to the monomer at appropriate places to stabilize the dimer through covalent disulfide bond formation.

As used herein, the term "multivalent" refers to a recombinant molecule that incorporates two or more biologically active segments. The protein fragments forming the multivalent molecule may be linked through a polypeptide peptide linker which attaches the constituent parts without causing a frame shift and permits each to function independently.

As used herein, the term "bivalent" refers to a multivalent recombinant molecule having two target proteins in a fusion construct of the invention, e.g., an Fc-X molecule, where X independently is selected from angiostatin, endostatin, or a variant thereof. Since there are two X moieties fused to an immunoglobulin Fc region (which typically itself is a dimer of the heavy chain fragments including at least a portion of the hinge region and CH₃ domain, and optionally the CH₂ domain), the molecule is bivalent (see, e.g., Figure 1A). If the fusion construct of the invention has the form Fc-X-X, the resulting Fc dimer molecule is tetravalent. The two proteins forming the Fc-X-X molecule may be linked through a peptide linker. A bivalent molecule can increase the apparent binding affinity between the molecule and its receptor. For instance, if one endostatin moiety of an Fc-endostatin can bind to a receptor on a cell with a certain affinity, the second endostatin moiety of the same Fc-endostatin may bind to a second receptor on the same cell with a much higher avidity (apparent affinity). This is because of the physical proximity of the second endostatin moiety to the receptor after the first endostatin moiety is already bound. In the case of an antibody binding to an antigen, the apparent affinity is increased by at least 10⁴.

- 15 -

As used herein, the terms "multimer" and "multimeric" refers to the stable association of two or more polypeptide chains either covalently, for example, by means of covalent interaction, for example, by a disulfide bond or non-covalently, for example, by hydrophobic interaction. The term multimer is intended to encompass both homomultimers, wherein the polypeptides are the same, as well as heteromultimers, wherein the polypeptides are different.

5

10

15

20

25

30

As used herein, the term "dimeric" refers to a specific multimeric molecule where two protein polypeptide chains are stably associated through covalent or non-covalent interactions. It should be understood that the immunoglobulin Fc region Fc fragment itself typically is a dimer of the heavy chain fragments including at least a portion of the hinge region and CH₃ domain, and optionally the CH₂ domain. Many protein ligands are known to bind to their receptors as a dimer. If a protein ligand X dimerizes naturally, the X moiety in an Fc-X molecule will dimerize to a much greater extent, since the dimerization process is concentration dependent. The physical proximity of the two X moieties connected by associated immunoglobulin Fc region would make the dimerization an intramolecular process, greatly shifting the equilibrium in favor of the dimer and enhancing its binding to the receptor.

It is understood that the present invention exploits conventional recombinant DNA methodologies for generating the Fc fusion proteins useful in the practice of the invention. The Fc fusion constructs preferably are generated at the DNA level, and the resulting DNAs integrated into expression vectors, and expressed to produce the immunofusins. As used herein, the term "vector" is understood to mean any nucleic acid comprising a nucleotide sequence competent to be incorporated into a host cell and to be recombined with and integrated into the host cell genome, or to replicate autonomously as an episome. Such vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors and the like. Non-limiting examples of a viral vector include a retrovirus, an adenovirus and an adeno-associated virus. As used herein, the term "gene expression" or "expression" of a target protein, is understood to mean the transcription of a DNA sequence, translation of the mRNA transcript, and secretion of an Fc fusion protein product.

A useful expression vector is pdCs (Lo et al. (1988) Protein Engineering 11:495, the disclosure of which is incorporated herein by reference) in which the transcription of the Fc-X gene utilizes the enhancer/promoter of the human cytomegalovirus and the SV40

- 16 -

polyadenylation signal. The enhancer and promoter sequence of the human cytomegalovirus used was derived from nucleotides -601 to +7 of the sequence provided in Boshart et al., 1985, Cell 41:521, the disclosure of which is incorporated herein by reference. The vector also contains the mutant dihydrofolate reductase gene as a selection marker (Simonsen and Levinson (1983) Proc. Nat. Acad. Sci. USA 80:2495, the disclosure of which is incorporated herein by reference).

5

10

15

20

25

An appropriate host cell can be transformed or transfected with the DNA sequence of the invention, and utilized for the expression and secretion of a target protein. Currently preferred host cells for use in the invention include immortal hybridoma cells, NS/O myeloma cells, 293 cells, Chinese hamster ovary cells, Hela cells, and COS cells.

The fusion proteins of the invention preferably are generated by conventional recombinant DNA methodologies. The fusion proteins preferably are produced by expression in a host cell of a DNA molecule encoding a signal sequence, an immunoglobulin Fc region and a target protein (also referred to herein as an angiogenesis inhibitor). Preferred constructs may encode in a 5' to 3' direction, the signal sequence, the immunoglobulin Fc region and the target protein. Alternatively, the constructs may encode in a 5' to 3' direction, the signal sequence, the target protein and the immunoglobulin Fc region.

As used herein, the term "signal sequence" is understood to mean a peptide segment which directs the secretion of the angiogenesis inhibitor immunofusin protein and is thereafter cleaved following translation in the host cell. The signal sequence of the invention is a polynucleotide, which encodes an amino acid sequence that initiates transport of a protein across the membrane of the endoplasmic reticulum. Signal sequences which will be useful in the invention include antibody light chain signal sequences, e.g., antibody 14.18 (Gillies et. al., 1989, Jour. of Immunol. Meth., 125:191-202), antibody heavy chain signal sequences, e.g., the MOPC141 antibody heavy chain signal sequence (Sakano et al., 1980, Nature 286:5774), and any other signal sequences which are known in the art (see for example, Watson, 1984, Nucleic Acids Research 12:5145). Each of these references is incorporated herein by reference.

Signal sequences have been well characterized in the art and are known typically to contain 16 to 30 amino acid residues, and may contain greater or fewer amino acid residues. A typical

- 17 -

signal peptide consists of three regions: a basic N-terminal region, a central hydrophobic region, and a more polar C-terminal region. The central hydrophobic region contains 4 to 12 hydrophobic residues that anchor the signal peptide across the membrane lipid bilayer during transport of the nascent polypeptide. Following initiation, the signal peptide is usually cleaved within the lumen of the endoplasmic reticulum by cellular enzymes known as signal peptidases. Potential cleavage sites of the signal peptide generally follow the "(-3, -1) rule." Thus a typical signal peptide has small, neutral amino acid residues in positions -1 and -3 and lacks proline residues in this region. The signal peptidase will cleave such a signal peptide between the -1 and +1 amino acids. Thus, the portion of the DNA encoding the signal sequence may be cleaved from the amino-terminus of the immunofusin protein during secretion. This results in the secretion of a immunofusin protein consisting of the Fc region and the target protein. A detailed discussion of signal peptide sequences is provided by von Heijne (1986) Nucleic Acids Res., 14:4683 the disclosure of which is incorporated herein by reference.

5

10

15

20

25

30

As would be apparent to one of skill in the art, the suitability of a particular signal sequence for use in the invention may require some routine experimentation. Such experimentation will include determining the ability of the signal sequence to direct the secretion of an immunofusin and also a determination of the optimal configuration, genomic or cDNA, of the sequence to be used in order to achieve efficient secretion of immunofusins. Additionally, one skilled in the art is capable of creating a synthetic signal peptide following the rules presented by von Heijne, referenced above, and testing for the efficacy of such a synthetic signal sequence by routine experimentation. A signal sequence may also be referred to as a "signal peptide," "leader sequence," or "leader peptide."

The fusion of the signal sequence and the immunoglobulin Fc region is sometimes referred to herein as secretion cassette. An exemplary secretion cassette useful in the practice of the invention is a polynucleotide encoding, in a 5' to 3' direction, a signal sequence of an immunoglobulin light chain gene and an Fcγ1 region of the human immunoglobulin γ1 gene. The Fcγ1 region of the immunoglobulin Fcγ1 gene preferably includes at least a portion of the hinge domain and at least a portion of the CH₃ domain, or alternatively at least portions of the hinge domain, CH₂ domain and CH₃ domain. The DNA encoding the secretion cassette can be in its genomic configuration or its cDNA configuration.

- 18 -

In another embodiment, the DNA sequence encodes a proteolytic cleavage site interposed between the secretion cassette and the angiogenesis inhibitor protein. A cleavage site provides for the proteolytic cleavage of the encoded fusion protein thus separating the Fc domain from the angiogenesis inhibitor protein. As used herein, "proteolytic cleavage site" is understood to mean amino acid sequences which are preferentially cleaved by a proteolytic enzyme or other proteolytic cleavage agents. Useful proteolytic cleavage sites include amino acids sequences which are recognized by proteolytic enzymes such as trypsin, plasmin or enterokinase K. Many cleavage site/cleavage agent pairs are known. See, for example, U.S. Patent No. 5,726,044, the disclosure of which is incorporated herein by reference. Where the target protein sequence is a precursor molecule to angiostatin, endostatin, or an active variant thereof, the desired protein product may be produced by cleavage with the endogenous proteolytic enzyme, such as elastin or plasmin or urokinase.

5

10

15

20

25

30

The present invention also encompasses fusion proteins containing different combinations of recombinant angiostatin and endostatin, or fragments thereof, which can be made in large quantities. Despite the demonstrated efficacy in suppressing tumor growth, the mechanism of how angiostatin and endostatin block angiogenesis is not completely known. Angiostatin has several Kringle structures and endostatin has different structural motifs, each of which may be solely responsible for or assist in binding of the proteins to endothelial cells and exerting an anti-angiogenic effect. Accordingly, this invention includes target proteins which are bioactive fragments of angiostatin, such as Kringle 1, Kringle 2, Kringle 3, and combinations thereof, and endostatin which exhibit physiologically similar behavior to naturally occurring full-length angiostatin and endostatin.

Another embodiment of the present invention provides for bifunctional hybrid constructs of angiogenesis inhibitors. As used herein, a bifunctional hybrid molecule or construct means a protein produced by combining two protein subunits, where the two subunits can be derived from different proteins. Each protein subunit has its own independent function so that in the hybrid molecule, the functions of the two subunits may be additive or synergistic. Such functional hybrid proteins would allow the synergistic effect of angiostatin and endostatin to be explored in animal models. A preferred bifunctional hybrid may comprise at least two different angiogenesis inhibitors linked in tandem, either directly or by means of a polypeptide linker. For example, in a preferred embodiment, the target sequence encodes at least a portion of angiostatin linked in

- 19 -

frame with at least a portion of endostatin and both the angiostatin and endostatin domains exhibit anti angiogenesis activity or angiogenesis inhibition. The two units may be linked by a polypeptide linker.

As used herein the term "polypeptide linker is understood to mean an peptide sequence that can link two proteins together or a protein and an Fc region. The polypeptide linker preferably comprises a plurality of amino acids such as glycine and/or serine. Preferably, the polypeptide linker comprises a series of glycine and serine peptides about 10-15 residues in length. See, for example, U.S. Patent No. 5,258,698, the disclosure of which is incorporated herein by reference. It is contemplated however, that the optimal linker length and amino acid composition may be determined by routine experimentation.

5

10

15

20

25

It is found that when different parts of the angiostatin are expressed as Fc fusion molecules, high levels of expression are obtained, presumably because the Fc portion acts as a carrier, helping the polypeptide at the C-terminus to fold correctly. In addition, the Fc region can be glycosylated and highly charged at physiological pH, thus the Fc region can help to solubilize hydrophobic proteins.

The present invention also provides methods for the production of angiostatin and endostatin of non-human species as Fc fusion proteins. Non-human angiogenesis inhibitor fusion proteins are useful for preclinical studies of angiogenesis inhibitors because efficacy and toxicity studies of a protein drug must be performed in animal model systems before testing in humans. A human protein may not work in a mouse model because the protein may elicit an immune response, and/or exhibit different pharmacokinentics skewing the test results. Therefore, the equivalent mouse protein is the best surrogate for the human protein for testing in a mouse model.

The standard Lewis lung carcinoma model in mice (O'Reilly et al. (1997) Cell 88:277) was used to compare soluble huFc-huAngiostatin, huFc-huEndostatin, muFc-muAngiostatin, muFc-muEndostatin with the insoluble proteins produced in an *E. coli* expression system. The soluble Fc fusion proteins were more efficacious in suppressing tumor growth in the Lewis lung model than the corresponding proteins produced in E. coli. Furthermore, laboratory mice are inbred and their tumors are induced and not spontaneous. Therefore, efficacy in a mouse model

- 20 -

may not correlate to probable efficacy against human tumors. Preclinical studies in dogs will provide more precise information about the efficacy of these angiogenesis inhibitors on spontaneous tumors because there are numerous naturally occurring, spontaneous canine tumors. The methods of producing murine (mu) Fc-mu angiostatin, muFc-mu endostatin, and canine (ca) Fc-ca angiostatin, caFc-ca endostatin of the present invention will facilitate preclinical studies of angiogenesis inhibitors in both murine and canine systems.

5

10

15

20

25

30

The present invention provides methods of treating a condition mediated by angiogenesis by administering the DNA, RNA or proteins of the invention. Conditions mediated by angiogenesis include, for example: solid tumors; blood born tumors, tumor metastasis, benign tumors including hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyrogenic granulomas; rheumatoid arthritis; psoriasis; ocular angiogenic diseases (diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma) retrolental fibroplasia, rubeosis, Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints' angiofibroma; and wound granulation; and excessive or abnormal stimulation of endothelial cells, intestinal adhesions, artherosclerosis, sclerodermal and hypertrophic scars, i.e., keloids.

The DNA constructs disclosed herein can be useful in gene therapy procedures in which the endostatin or angiostatin gene is delivered into a cell by one of various means e.g., native DNA associated with a promoter or DNA within a viral vector. Once inside a cell, the angiostatin and/or endostatin gene or gene fragment is expressed and the protein is produced *in vivo* to carry out its normal biological function. The DNA construct of the present invention results in high levels of expression of the fusion protein. The fusion proteins of the present invention may also be useful in treating conditions mediated by angiogenesis and may have greater clinical efficacy than native angiogenesis inhibitors and other recombinant angiogenesis inhibitors because the angiogenesis inhibitor immunofusins of the present invention have a longer serum half-life than the other recombinant angiogenesis inhibitors or native angiogenesis inhibitors alone. The bivalent and dimeric forms of the present invention should have higher binding affinity due to the bivalent and dimeric structure. The bifunctional hybrid molecules of the present invention may have a higher clinical efficacy due to possible synergistic effects of two different angiogenesis inhibitors connected by the fused Fc region or a flexible polypeptide linker.

The compositions of the present invention may be provided to an animal by any suitable means, directly (e.g., locally, as by injection, implantation or topical administration to a tissue locus) or systemically (e.g., parenterally or orally). Where the composition is to be provided parenterally, such as by intravenous, subcutaneous, ophthalmic, intraperitoneal, intramuscular, buccal, rectal, vaginal, intraorbital, intracerebral, intracranial, intraspinal, intraventricular, intrathecal, intracisternal, intracapsular, intranasal or by aerosol administration, the composition preferably comprises part of an aqueous or physiologically compatible fluid suspension or solution. Thus, the carrier or vehicle is physiologically acceptable so that in addition to delivery of the desired composition to the patient, it does not otherwise adversely affect the patient's electrolyte and/or volume balance. The fluid medium for the agent thus can comprise normal physiologic saline (e.g., 9.85% aqueous NaCl, 0.15 M, pH 7-7.4).

Preferred dosages of the immunofusins per administration are within the range of 50 ng/m^2 to 1 g/m^2 , more preferably $5 \mu\text{g/m}^2$ to 200 mg/m^2 , and most preferably 0.1 mg/m^2 to 50 mg/m^2 . Preferred dosages of nucleic acids encoding the immunofusins per administration are within the range of $1 \mu\text{g/m}^2$ to 100 mg/m^2 , more preferably $20 \mu\text{g/m}^2$ to 10 mg/m^2 , and most preferably $400 \mu\text{g/m}^2$ to 4 mg/m^2 . It is contemplated, however, that the optimal modes of administration, and dosages may be determined by routine experimentation well within the level of skill in the art.

The invention is illustrated further by the following non-limiting examples.

EXAMPLES

20 Example 1. Expression of huFc-huEndostatin

5

10

15

25

Human endostatin was expressed as a human Fc-human endostatin (huFc-huEndo) fusion protein according to the teachings of Lo et al. (1998) Protein Engineering 11:495. Fc refers to the Fc fragment of the human immunoglobulin gamma (DNA sequence set forth in SEQ ID NO:1; amino acid sequence set forth in SEQ ID NO:2). (Polymerase chain reactions PCR) was used to adapt the endostatin cDNA (SEQ ID NO:3; whose amino acid sequence is disclosed in SEQ ID NO:4), for expression in an Fc-Endo fusion protein. The forward primer was either 5'-CC CCG GGT AAA CAC AGC CAC CGC GAC TTC C (SEQ ID NO:5; encoded amino acids disclosed in SEQ ID NO:6) or 5'-C AAG CTT CAC AGC CAC CGC GAC TTC C (SEQ ID NO:7; encoded amino acids disclosed in SEQ ID NO:8), where the XmaI site or the HindIII site

- 22 -

was followed by sequence encoding the N-terminus of endostatin. The primer with the Xmal site adapted the endostatin cDNA for ligation to the Xmal site at the end of the CH₃ domain of the IgGFc region. The primer with the HindIII site adapted the endostatin cDNA for ligation to the HindIII site of the pdCs-Fc(D₄K) vector, which contains the enterokinase recognition site Asp₄-Lys (LaVallie et al. (1993) J. Biol. Chem. 268:23311-23317) at the junction of the fusion protein. The reverse primer was 5'-C CTC GAG CTA CTT GGA GGC AGT CAT G (SEQ ID NO:9), which was designed to put a translation STOP codon (anticodon, CTA) immediately after the C-terminus of endostatin, and this was followed by an XhoI site. The PCR products were cloned and sequenced, and the Xmal-XhoI fragment was ligated to the resulting Xmal and XhoI digested pdCs-Fc vector. Similarly, the HindIII-XhoI fragment encoding endostatin was ligated into appropriately digested pdCs-huFc(D₄K) vector. Stable clones expressing Fc-endo or Fc(D₄K)-endostatin were obtained by electroporation of NS/0 cells followed by selection in growth medium containing 100 nM methotrexate. Protein expression level was assayed by antihuman Fc ELISA (Example 3) and confirmed by SDS-PAGE, which showed a protein product of ~52 kD. The best producing clones were subcloned by limiting dilutions.

Example 2. Cell culture and transfection

5

10

15

20

25

30

For transient transfection, the plasmid was introduced into human kidney 293 cells by coprecipitation of plasmid DNA with calcium phosphate (Sambrook et al. (1989) Molecular Cloning - A Laboratory Manual, Cold Spring Harbor, NY) or by lipofection using LipofectAMINE Plus (Life Technologies, Gaithersburg, MD) according to supplier's protocol.

In order to obtain stably transfected clones, plasmid DNA was introduced into the mouse myeloma NS/0 cells by electroporation. NS/0 cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum. About 5 x 106 cells were washed once with PBS and resuspended in 0.5 ml PBS. Ten µg of linearized plasmid DNA then was incubated with the cells in a Gene Pulser Cuvette (0.4 cm electrode gap, BioRad, Hercules, CA) on ice for 10 min. Electroporation was performed using a Gene Pulser (BioRad, Hercules, CA) with settings at 0.25 V and 500 µF. Cells were allowed to recover for 10 min. on ice, after which they were resuspended in growth medium and then plated onto two 96 well plates. Stably transfected clones were selected by growth in the presence of 100 nM methotrexate (MTX), which was introduced two days post-transfection. The cells were fed every 3 days for three more times, and

MTX-resistant clones appeared in 2 to 3 weeks. Supernatants from clones were assayed by anti-Fc ELISA to identify high producers. High producing clones were isolated and propagated in growth medium containing 100 nM MTX.

Example 3. ELISA Procedures

Three different ELISAs were used to determine the concentrations of protein products in the supernatants of MTX-resistant clones and other test samples. The anti-human Fc (huFc) ELISA was used to measure the amount of human Fc-containing proteins. The anti-murine Fc (muFc) and anti-canine Fc (caFc) antibodies were used in ELISAs to measure the amount of murine Fc- and canineFc-containing proteins, respectively. The procedure for the anti-huFc ELISA is described in detail herein below.

A. Coating plates

5

10

15

20

25

ELISA plates were coated with AffiniPure Goat anti-Human IgG (H+L) (Jackson ImmunoResearch Laboratories, West Grove, PA) at 5 μg/ml in PBS, and 100 μl/well in 96-well plates (Nunc-Immuno plate MaxiSorpTM, Nalge Nunc International, Rochester, NY). Coated plates were covered and incubated at 4°C overnight. Plates then were washed 4 times with 0.05% Tween 20 in PBS, and blocked with 1% BSA/1% Goat Serum in PBS, 200 μl/well. After incubation with the blocking buffer at 37°C for 2 hours, the plates were washed 4 times with 0.05% Tween in PBS and tapped dry on paper towels.

B. Incubation with test samples and secondary antibody

Test samples were diluted to the proper concentrations in a sample buffer, containing 1% BSA/1% Goat Serum/0.05% Tween in PBS. A standard curve was prepared with a chimeric antibody (with a human Fc), the concentration of which was known. To prepare a standard curve, serial dilutions were made in the sample buffer to give a standard curve ranging from 125 ng/ml to 3.9 ng/ml. The diluted samples and standards were added to the plate, 100 μl/well and the plate was then incubated at 37°C for 2 hr. After incubation, the plate was washed 8 times with 0.05% Tween in PBS. To each well was then added 100 μl of secondary antibody, the horse radish peroxidase (HRP)-conjugated anti-human IgG (Jackson ImmunoResearch Laboratories, Inc. West Grove, PA), diluted about 1:120,000 in sample buffer. The exact dilution of the secondary antibody had to be determined for each lot of the HRP-conjugated Anti-

- 24 -

Human IgG. After incubation at 37°C for 2 hr, the plate was washed 8 times with 0.05% Tween in PBS.

C. Development

5

15

20

25

A substrate solution was prepared by dissolving 30 mg (1 tablet) of o-phenylenediamine dihydrochloride (OPD) into 15 ml of 0.025 M citric acid/0.05 M Na₂HPO₄ buffer, pH 5, containing 0.03% of freshly added H_2O_2 . The substrate solution was added to the plate at 100 μ l/well. The color was allowed to develop for 30 min. at room temperature in the dark. The developing time can be subject to change, depending on lot to lot variability of the coated plates, the secondary antibody, etc. The reaction was stopped by adding 4N H_2SO_4 , 100 μ l/well. The plate was read by a plate reader, which was set at both 490 and 650 nm, and programmed to subtract the background OD at 650 nm from the OD at 490 nm.

The procedure for the anti-muFc ELISA was similar, except that ELISA plate was coated with AffiniPure Goat anti-murine IgG (H+L) (Jackson ImmunoResearch, West Grove, PA) at 5 μg/ml in PBS, and 100 μl/well; and the secondary antibody was horse radish peroxidase-conjugated goat anti-mulgG, Fcγ (Jackson ImmunoResearch West Grove, PA), used at 1 in 5000 dilution. Similarly, for the anti-caFc ELISA, the ELISA plate was coated with AffiniPure Rabbit anti-dog IgG, Fc Fragment specific (Jackson ImmunoResearch, West Grove, PA) at 5 μg/ml in PBS, and 100 μl/well; and the secondary antibody was horse radish peroxidase-conjugated AffiniPure rabbit anti-dog IgG, Fc fragment specific (Jackson ImmunoResearch, West Grove, PA), used at 1 in 5000 dilution.

Example 4. Expression of huFc-huAngiostatin

Human angiostatin (DNA sequence set forth in SEQ ID NO:10; amino acid sequence set forth in SEQ ID NO:11) was expressed as a human Fc-human angiostatin (huFc-huAngio) fusion protein essentially as described in Example 1. PCR was used to adapt the angiostatin cDNA (SEQ ID NO:3), for expression in the pdCs-huFc or pdCs-huFc(D₄K) vectors. The respective forward primers were 5'-CC CCG GG T AAG AAA GTG TAT CTC TCA GAG (SEQ ID NO 12; encoded amino acids disclosed in SEQ ID NO:13), and 5'- C CCC AAG CTT AAA GTG TAT CTC TCA GAG (SEQ ID NO:14; encoded amino acids disclosed in SEQ ID NO:15), where the Xmal site or the HindIII site was followed by sequence encoding the N-terminus of

- 25 -

angiostatin. The reverse primer was 5'-CCC CTC GAG CTA CGC TTC TGT TCC TGA GCA (SEQ ID NO:16), which was designed to put a translation STOP codon (anticodon, CTA) immediately after the C-terminus of angiostatin, and this was followed by an XhoI site. The PCR products were cloned and sequenced, and the resulting XmaI-XhoI fragment and the HindIII-XhoI fragment encoding angiostatin were ligated to the pdCs-huFc and the pdCs-huFc(D₄K) vectors, respectively. Stable NS/0 clones expressing huFc-huAngio and huFc(D₄K)-huAngio were selected and assayed as described in Examples 2 and 3.

Example 5. Expression of muFc-mu-Endostatin

5

10

15

20

25

Murine endostatin (DNA sequence set forth in SEQ ID NO:17; amino acid sequence set forth in SEQ ID NO:18) and murine Fc (DNA sequence set forth in SEQ ID NO:19; encoded amino acids set forth in SEQ ID NO:20) were expressed as a murine Fc-murine endostatin (muFc-muEndo) fusion protein essentially as described in Example 1. PCR was used to adapt the endostatin cDNA (SEQ ID NO:4), for expression in the pdCs-muFc(D₄K) vector. The forward primer was 5'-C CCC AAG CTT CAT ACT CAT CAG GAC TTT C (SEQ ID NO:21; encoded amino acids disclosed in SEQ ID NO:22), where the HindIII site was followed by sequence encoding the N-terminus of endostatin. The reverse primer was 5'-CCC CTC GAG CTA TTT GGA GAA AGA GGT C (SEQ ID NO:23), which was designed to put a translation STOP codon (anticodon, CTA) immediately after the C-terminus of endostatin, and this was followed by an XhoI site. The PCR product was cloned and sequenced, and the resulting HindIII-XhoI fragment encoding endostatin was ligated into the pdCs-muFc(D₄K) vector. Stable NS/0 clones expressing muFc(D₄K)-muEndo were selected and assayed (anti-muFc ELISA) as described in Examples 2 and 3.

Example 6. Expression of muFc-muAngiostatin

Murine angiostatin (DNA sequence set forth in SEQ ID NO:24; amino acid sequence set forth in SEQ ID NO:25) was expressed as a murine Fc-murine angiostatin (muFc-muAngio) fusion protein essentially as described in Example 1. PCR was used to adapt the angiostatin cDNA (SEQ ID NO:6) for expression in the pdCs-Fc(D₄K) vector. The forward primer was 5'-C CCC AAG CTT GTG TAT CTG TCA GAA TGT AAG CCC TCC TGT CTC TGA GCA (SEQ ID NO: 26; encoded amino acids disclosed in SEQ ID NO:27), where the HindIII site was

- 26 -

followed by sequence encoding the N-terminus of angiostatin. The reverse primer was 5'-CCC CTC GAG CTA CCC TCC TGT CTC TGA GCA (SEQ ID NO:28), which was designed to put a translation STOP codon (anticodon, CTA) immediately after the C-terminus of angiostatin, and this was followed by an XhoI site (CTCGAG). The PCR product was cloned and sequenced, and the HindIII-XhoI fragment encoding angiostatin was ligated to the pdCs-muFc(D₄K) vector. Stable NS/0 clones expressing muFc(D₄K)-muAngio were selected and assayed (anti-muFc ELISA) as described in Examples 2 and 3.

Example 7. Expression of canine Fc (caFc)

5

10

15

20

25

Canine peripheral blood monocytic cells (PBMCs) isolated from dog's blood were used to prepare mRNA. After synthesis of the first strand cDNA with reverse transcriptase and oligo(dT), PCR was performed to amplify the canine Fc (Kazuhiko et al., (1992) JP 1992040894-A1) using the forward primer 5'-CC TTA AGC GAA AAT GGA AGA GTT CCT CGC (SEQ ID NO:29; encoded amino acids disclosed in SEQ ID NO:30), in which an AfIII site was introduced immediately upstream of the sequence encoding the hinge region of the canine Fc, and the reverse primer 5'-C CTC GAG TCA TTT ACC CGG GGA ATG GGA GAG GGA TTT CTG (SEQ ID NO:31), in which an XhoI site was introduced after the translation STOP codon (anticodon, TCA) of the canine Fc. The reverse primer also introduced a silent mutation to create a Xmal restriction site, which facilitates the construction of the pdCs-caFc(D₄K) vector through a linker-adaptor and ligation to DNA constructs encoding canine endostatin or angiostatin. Similar to the construction of pdCs-huFc, which was described in detail in Lo et al. (Lo et al., Protein Engineering (1998) 11:495), the expression vector for the pdCs-caFc was constructed as follows. The AfIII-XhoI fragment encoding the canine Fc was ligated to the XbaI-AfIII fragment encoding the light chain signal peptide and the XbaI-XhoI digested pdCs vector. The resulting pdCs-caFc expression vector then was used to transfect 293 cells. About 3 days post-transfection, the supernatant was purified by Protein A chromatography. Expression of dog Fc (DNA sequence set forth in SEQ ID NO:32; amino acid sequence set forth in SEQ ID NO:33) was confirmed by SDS-PAGE followed by Western blot analysis using a peroxidaseconjugated Rabbit anti-Dog IgG, Fc fragment specific (Jackson ImmunoResearch, West Grove, PA).

- 27 -

Example 8. Expression of caFc-caEndostatin.

The coding sequence for canine endostatin (DNA sequence set forth in SEQ ID NO:34; amino acid sequence set forth in SEQ ID NO:35) was adapted to a HindIII-XhoI fragment for expression as a Fc fusion protein, essentially as described in Example 5. At the 3' end, a STOP codon was introduced, for example, by PCR, immediately after the codon encoding the C-terminal lysine residue, and this was followed by the NotI restriction site. At the 5' end, however, there was a DraIII restriction site convenient for reconstruction. An oligonucleotide duplex consisting of a HindIII and a DraIII sticky ends was chemically synthesized and used to ligate to the DraIII-XhoI restriction fragment which encodes the rest of the canine endostatin cDNA. The duplex used is shown below:

HindIII

5'-AGCTT CAC ACC CAC CAG GAC TTC CAG CCG GTG CTG CAC CTG (SEQ ID NO:36)
A GTG TGG GTG GTC CTG AAG GTC GGC CAC GAC GTG-5' (SEQ ID NO:38)

DrallI

15

20

25

30

10

5

The first CAC in the duplex encodes the N-terminal histidine residue of the canine endostatin. The HindIII-XhoI fragment encoding the full-length canine endostatin thus could be ligated to the HindIII-XhoI digested pdCs-caFc vector (see Example 7) for expression. Stable NS/0 clones expressing caFc-caEndo were selected and assayed by anti-caFc ELISA, as described in Examples 2 and 3. The protein product was analyzed on SDS-PAGE and confirmed by Western blot analysis.

Example 9. Expression of caFc-caAngiostatin

The cDNA encoding the full length canine angiostatin (DNA sequence set forth in SEQ ID NO:39; amino acid sequence set forth in SEQ ID NO:40) was adapted for expression as a caFc fusion protein essentially as in the aforementioned examples. Briefly, at the 3' end, a STOP codon was introduced, for example, by PCR, immediately after the codon encoding the C-terminal lysine residue and this was followed by a NotI restriction site instead of an XhoI site, since there was an internal XhoI restriction site in the cDNA of the canine angiostatin. At the 5' end, a HindIII site was introduced in-frame immediately upstream of the N-terminus of angiostatin. The HindIII-NotI fragment encoding the full length canine angiostatin then was ligated to the HindIII-NotI digested pdCs-caFc vector (where the NotI site was introduced at the

XhoI site through linker ligation) for expression. Stable NS/0 clones expressing caFc-caAngio were selected and assayed by anti-caFc ELISA, as described in Examples 2 and 3. The protein product was analyzed on SDS-PAGE and confirmed by Western blot analysis.

Example 10. Expression of muFc-K1 of muAngio

5

10

15

20

25

Angiostatin comprises the first four of the five Kringle domains of plasminogen. To determine if any one or several Kringle domains are responsible for the observed anti-angiogenic activity of angiostatin, it is possible to produce single Kringle domains by themselves or combination thereof for testing. To demonstrate the utility of Fc as a fusion protein partner, the expression of the first Kringle domain of murine angiostatin (K1) was achieved in the following way. The first Kringle domain ends at Glu-87 of murine angiostatin (SEQ ID NO:25). There was a convenient NsiI restriction site in the cDNA at this position so that after digestion by NsiI, the four-base 3'-overhang was removed by T4 polymerase to create a blunt end. A translation STOP codon was introduced immediately downstream of the GAA encoding Glu-87 via ligation to the palindromic linker TGA CTC GAG TCA (SEQ ID NO: 41), where the STOP codon TGA was followed by an XhoI site. The HindIII-XhoI fragment encoding this truncated angiostatin, i.e., first Kringle only, then was ligated into the pdCs-muFc(D₄K) vector for expression. High levels of expression were obtained in both transient and stable expression, as analyzed by anti-muFc ELISA and SDS-PAGE.

Example 11. Expression of muFc-innerK1 of muAngio

A Kringle domain consists of multiple loops, including an outer loop and an inner loop. In the first Kringle of murine angiostatin, the inner loop is defined by Cys 55 and Cys 79, which together form a disulfide bond at the base of the loop. The Cys-67 of the inner loop forms another disulfide bond with a Cys residue of the outer loop to give the Kringle structure. To test if the inner loop has any anti-angiogenic activity, it was expressed as a muFc-inner K1 (Kringle 1) as follows. With a DNA fragment encoding the first Kringle as template, a mutagenic primer having the sequence 5'GGG CCT TGG AGC TAC ACT ACA (SEQ ID NO: 42; encoded amino acids disclosed in SEQ ID NO:43) was used to mutagenize TGC (Cys-67) to AGC (Ser), by PCR. This ensures that the Cys-67 does not form a disulfide bond when the inner loop of Kringle 1 is expressed without the outer loop. An upstream primer having the sequence

- 29 -

5'GCGGATCCAAGCTT AGT ACA CAT CCC AAT GAG GG (SEQ ID NO:44; encoded amino acids disclosed in SEQ ID NO:45) was used to introduce a HindIII site in frame immediately 5' to the codon for Ser-43 (AGT). A BamHI site was also introduced immediately upstream of the HindIII site. The BamHI site is useful for ligating to the BamHI site at the end of the flexible Gly-Ser linker shown in Example 12 below. Thus a HindIII-XhoI DNA fragment encoding Ser-43 through Glu-87 of murine angiostatin was ligated to the pdCs-muFc(D₄K) vector for expression. High levels of expression of muFc-innerK1 were obtained in both transient and stable expression, as analyzed by anti-muFc ELISA and SDS-PAGE.

Example 12. Expression of muFc-muEndo-GlySer linker-innerK1 of muAngio

5

10

15

20

The hybrid molecule muFc-muEndo-innerK1 comprises muFc-muEndo joined by a polypeptide linker containing glycine and serine residues, to the inner loop of the first Kringle of murine angiostatin. The DNA construct was assembled as follows.

There is a BspHI site at the 3' end of the murine endostatin cDNA. To introduce a flexible linker of glycine and serine residues at the C-terminus of murine endostatin, a 540-bp HindIII-BspHI fragment encoding endostatin was ligated to an overlapping oligonucleotide duplex formed by the oligonucleotides disclosed in SEQ ID NO:46 and SEQ ID NO:48. The amino acid linker encoded by SEQ ID NO:46 is disclosed in SEQ ID NO:47.

The HindIII-BamHI fragment encoding murine endostatin and the Gly-Ser linker was subcloned into a standard cloning vector. The BamHI site was then used to introduce the BamHI-XhoI fragment encoding the innerK1 in Example 11. The resulting HindIII-XhoI fragment encoding muEndo-GlySer linker-innerK1, was ligated to the pdCs-muFc(D₄K) vector for expression. High levels of expression of muFc-muEndo-GlySer linker-innerK1 were obtained in both transient and stable expression, as analyzed by anti-muFc ELISA and SDS-PAGE.

Example 13. Expression of muFc-muEndo-GlySer linker-K1 of muAngio

The hybrid molecule muFc-muEndo-K1 comprises muFc-muEndo joined by a polypeptide linker containing glycine and serine residues, to the first Kringle of murine angiostatin. The DNA construct was assembled as follows.

- 30 -

The BamHI end of the HindIII-BamHI fragment encoding the muEndo-GlySer linker (Example 12) was ligated to the HindIII-XhoI fragment encoding the Kringle 1 of murine angiostatin (Example 10) via the following adaptor:

BamHI
5 5' GA TCC TCA GGC C (SEQ ID NO:49)
G AGT CCG GTCGA (SEQ ID NO:50)
HindIII

10

15

20

25

The adaptor has a HindIII' sticky end, which upon ligation, would not regenerate the HindIII site. Thus, the resulting HindIII-XhoI fragment, which encodes the muEndo-GlySer linker-Kringle 1, was ligated to the pdCs-muFc(D₄K) vector for expression. High levels of expression of muFc-muEndo-GlySer linker-K1 were obtained in both transient and stable expression, as analyzed by anti-muFc ELISA and SDS-PAGE.

Example 14 Expression of muFc-muEndo-GlySer linker-muAngio

The hybrid molecule muFc-muEndo-GlySer linker-muAngio comprises muFc-muEndo joined by a polypeptide linker containing glycine and serine residues, to murine angiostatin. The DNA construct was assembled essentially as follows. The BamHI end of the HindIII-BamHI fragment encoding the muEndo-GlySer linker (Example 12) was ligated to the HindIII-XhoI fragment encoding murine angiostatin via the adaptor described in Example 13. The resulting HindIII-XhoI fragment, which encodes the muEndo-GlySer linker-muAngio, was ligated to the pdCs-muFc(D₄K) vector for expression. High levels of expression of muFc-muEndo-GlySer linker-muAngio were obtained in both transient and stable expression, as analyzed by anti-muFc ELISA and SDS-PAGE.

Example 15. Expression of huAngio-huFc-huEndo

The hybrid molecule huAngio-huFc-huEndo comprises human angiostatin joined by a peptide bond to huFc-huEndo. The DNA construct was assembled as follows. A HindIII-XhoI fragment which encodes human angiostatin without a STOP codon was first generated by PCR, so that the codon for the last amino acid residue of angiostatin was followed immediately by CTCGAG of the XhoI site. The HindIII at the 5' end was ligated to an XbaI-AfIII fragment of

- 31 -

the light chain signal peptide (Lo et al., Protein Engineering (1998) 11:495) via a AfIII-HindIII' adaptor:

AfIII
5' TTA AGC GGC C (SEQ ID NO:51)
CG CGG GTCGA (SEQ ID NO:52)
HindIII'

The HindIII' sticky end of the adaptor, upon ligation, would not regenerate a HindIII site. At the 3' end, the XhoI site was ligated to the AfIII site of the AfIII-XhoI fragment encoding the huFc-hu-Endo via the following XhoI'-AfIII adaptor:

XhoI'
5' TC GAC TCC GGC (SEQ ID NO:53)
G AGG CCG AATT (SEQ ID NO:54)
AfIII

The XhoI sticky end of the adaptor, upon ligation, would not regenerate a XhoI site. The resulting XbaI-XhoI fragment encoding the signal peptide-human angiostatin-huFc-human endostatin was cloned into the pdCs vector for expression. High levels of expression of were obtained in both transient and stable expression, as analyzed by anti-muFc ELISA and SDS-PAGE.

Example 16 Pharmacokinetics

5

10

15

20

25

In one set of pharmacokinetic studies, C57/BL6 mice with implanted Lewis lung tumors at 100-200 mm³ were injected in the tail vein with 720 µg huFc-huAngio per mouse. The size of the tumors and the dosage of huFc-huAngio used in this study were chosen to simulate the actual treatment protocol described by O'Reilly (O'Reilly et al., (1996) Nature Medicine 2:689). Blood was harvested by retro-orbital bleeding at 1/2, 1, 2, 4, 8, 24, and 48 hr. post injection. The blood samples were analyzed by anti-huFc ELISA followed by Western analysis. HuFc-huAngio was found to have a circulating half-life of about 32 hr. in mouse and Western analysis showed that over 90% of the hu-Fc-huAngio remained as an intact molecule in circulation.

The pharmacokinetic studies was also repeated in Swiss mice without tumors at a dosage of 200 µg/mouse. In this case huFc-huAngio was found to have a circulating half-life of about 33 hr.

- 32 -

Equivalents

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

•

- 33 -

PCT/US99/19329

What is claimed is:

WO 00/11033

1]	l.	A DNA	molecul	e encodin	ig a	fusion	protein	comprising:
-----	----	-------	---------	-----------	------	--------	---------	-------------

- 2 (a) a signal sequence;
- 3 (b) an immunoglobulin Fc region; and
- 4 (c) a target protein sequence selected from the group consisting of angiostatin,
- endostatin, a plasminogen fragment having angiostatin activity, a collagen XVIII
- fragment having endostatin activity, and combinations thereof.
- The DNA of claim 1 wherein said signal sequence, said immunoglobulin Fc region and
- said target protein sequence are encoded serially in a 5' to 3' direction.
- 1 3. The DNA of claim 1, wherein said signal sequence, said target sequence, and said
- 2 immunoglobulin Fc region are encoded serially in a 5' to 3' direction.
- 1 4. The DNA of claim 1 wherein said immunoglobulin Fc region comprises an
- 2 immunoglobulin hinge region.
- 1 5. The DNA of claim 1 wherein said immunoglobulin Fc region comprises an
- 2 immunoglobulin hinge region and an immunoglobulin constant heavy chain domain.
- 1 6. The DNA of claim 1 wherein said immunoglobulin Fc region comprises a hinge region
- 2 and an CH₃ domain.
- 7. The DNA of claim 1 wherein said immunoglobulin Fc region lacks at least the CH₁
- domain.
- 1 8. The DNA of claim 1 wherein said immunoglobulin Fc region encodes at least a portion of
- immunoglobulin gamma.
- 9. A replicable expression vector for transfecting a mammalian cell, said vector comprising
- the DNA of claim 1.
- 1 10. A mammalian cell harboring the DNA of claim 1.

2.4	
 34	_

1	11.	A fusion protein comprising an immunoglobulin Fc region, and a target protein selected
2		from the group consisting of angiostatin, endostatin, a plasminogen fragment having
3		angiostatin activity, a collagen XVIII fragment having endostatin activity, and
4		combinations thereof

- 1 12. The fusion protein of claim 11 wherein said plasminogen fragment has molecular weight of approximately 40 kD and comprises an amino acid sequence set forth in SEQ ID No:3.
- 1 13. The fusion protein of claim 11 wherein said target protein comprises amino acid sequence set forth in SEQ ID No:3.
- 1 14. The fusion protein of claim 11 wherein of said collagen XVIII fragment comprises the amino acid sequence set forth in SEQ ID No:1.
- The fusion protein of claim 11 wherein said target protein comprises at least two
 molecules selected from the group consisting of angiostatin, endostatin, a plasminogen
 fragment, and a collagen XVIII fragment, wherein said two molecules are linked by a
 polypeptide linker.
- 1 16. The fusion protein of claim 11 wherein said target protein is linked to an N-terminal end of said immunoglobulin Fc region.
- 1 17. The fusion protein of claim 11 wherein said target protein is linked to a C-terminal end of said immunoglobulin Fc region.
- 1 18. A multimeric protein comprising at least two fusion proteins of claim 11 linked via a disulfide bond.
- The multimeric protein of claim 18 wherein the target protein of at least one said fusion protein is angiostatin and the target protein of at least one said fusion protein is endostatin.
- The multimeric protein of claim 18 wherein the target protein of both of said fusion proteins is angiostatin.

- 35 -

1	21.	The multimeric protein of claim 18 wherein the target protein of both of said fusion
2		proteins is endostatin.

- 1 22. The fusion protein of claim 11 further comprising a second target protein selected from
- the group consisting of angiostatin, endostatin, a plasminogen fragment having
- angiostatin activity, and a collagen XVIII fragment having endostatin activity.
- The fusion protein of claim 22 wherein said second target protein is linked by a polypeptide linker to said first target protein.
- 1 24. The fusion protein of claim 22 wherein said first target protein is connected to an N-
- terminal end of said immunoglobulin Fc region and said second target protein is
- connected to a C-terminal end of said immunoglobulin Fc region.
- A multimeric fusion protein comprising at least two fusion proteins of claim 11, wherein said fusion proteins are linked by a polypeptide bond.
- 1 26. A method of producing a fusion protein, the method comprising the steps of:
- a) providing the mammalian cell of claim 10; and
- b) culturing the mammalian cell to produce said fusion protein.
- 1 27. The method of claim 26 comprising the additional step of collecting said fusion protein.
- The method of claim 26 comprising the additional step of cleaving said immunoglobulin Fc region from said target protein.
- 1 29. A method of treating a condition mediated by angiogenesis comprising the step of administering the DNA of claim 1 to a mammal in need of an angiogenesis inhibitor.
- 1 30. A method of treating a condition mediated by angiogenesis comprising the step of administering the vector of claim 9 to a mammal in need of an angiogenesis inhibitor.
- 1 31. A method of treating a condition alleviated by the administration of angiostatin or
- endostatin comprising the step of administering an effective amount of the fusion protein
- of claim 11 to a mammal having said condition.

SEQUENCE LISTING

<110	L	i, Y	ue	ing Step	hen											
<120			ssio ofus		d Ex	port	of.	Angi	ogen	esis	Inh	ibit	ors	as		
<130	> L	EX-0	06PC													
<140	>															
<141	>															
<150 <151				•												
<160	> 5	4							•	•						
<170	> Pa	aten	tIn '	Ver.	2.0											
<210	> 1															
<211 <212																
<213			sapi	ens												
<220	>															
<221			1606													•
<222 <223					f the	e hur	man :	immuı	noglo	bul:	in ga	amma				
<400	> 1															
gag (48
Glu 1	FIO	րդշ	Ser	5	Asp	пÀ2	III	nis	10	Cys	Pro	Pro	Cys	Pro 15	Ala	
cct	gaa	ctc	ctg	ggg	qqa	ccq	tca	atc	ttc	ctc	ttc	ccc	сса	aaa	ccc	96
Pro (Val					Pro			30
								25					30			
aag d Lys 1																144
_	_	35					40					45	-1-		•	
gtg	gac	gtg	agc	cac	gaa	gac	cct	gag	gtc	aag	ttc	aac	tgg	tac	gtg	192
Val A	Asp 50	Val	Ser	His	Glu	Asp 55	Pro	Glu	Val	Lys	Phe 60	Asn	Trp	Tyr	Val	
gar (777	ata	asa	ata	aat	22+	770	22~	202	222						240
gac o	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	gag Glu	Gln	24 Q
65					70					75					80	
tac a													_		_	288
Tyr 1	4211	ser	Inr	85	Arg	val	var	ser	90	Leu	Thr	val	Leu	H15	Gln	
gac 1	tgg	ctq	aat	gac	aaq	gaq	tac	aaa	tac	aaa	atc	tcc	aac	aaa	acc	336
Asp :													Asn			
,													110			
ctc	cca	gcc	ccc	atc	gag	aaa	acc	atc	tcc	aaa	gcc	aaa	ggg	cag	ccc	384

Leu	Pro	Ala 115	Pro	Ile	Glu	Lýs	Thr 120	Ile	Ser	Lys	Ala	Lys 125	Gly	Gln	Pro	
cga Arg	gaa Glu 130	cca Pro	cag Gln	gtg Val	tac Tyr	acc Thr 135	ctg Leu	ccc Pro	cca Pro	tca Ser	cgg Arg 140	gag Glu	gag Glu	atg Met	acc Thr	432
aag Lys 145	aac Asn	cag Gln	gtc Val	agc Ser	ctg Leu 150	acc Thr	tgc Cys	ctg Leu	gtc Val	aaa Lys 155	ggc Gly	ttc Phe	tat Tyr	ccc Pro	agc Ser 160	480
gac Asp	atc Ile	gcc Ala	gtg Val	gag Glu 165	tgg Trp	gag Glu	agc Ser	Asn	999 Gly .170	cag Gln	ccg Pro	gag Glu	aac Asn	aac Asn 175	tac Tyr	528
aag L y s	acc Thr	acg Thr	cct Pro 180	ccc Pro	gtg Val	ctg Leu	gac Asp	tcc Ser 185	gac Asp	ggc Gly	tcc Ser	ttc Phe	ttc Phe 190	ctc Leu	tat Tyr	576
agc Ser	Lys	ctc Leu 195	acc Thr	gtg Val	gac Asp	aag Lys	agc Ser 200	agg Arg	tgg Trp	cag Gln	cag Gln	ggg Gly 205	aac Asn	gtc Val	ttc Phe	624
tca Ser	tgc Cys 210	tcc Ser	gtg Val	atg Met	cat	gag Glu 215	gct Ala	ctg Leu	cac His	aac Asn	cac His 220	tac Tyr	acg Thr	cag Gln	aag Lys	672
			ctg Leu													696
<211 <212)> 2 .> 23 !> PF B> Ho	RT	sapie	ens												
)> 2 Pro	Lys	Ser	Ser	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	
1				5					10					15		
Pro	Glu	Leu			Gly			Val 25	Phe	Leu	Phe	Pro	Pro 30	Lys	Pro	
Lys	Asp	Thr 35	Leu	Met	Ile	Ser	Arg 40	Thr	Pro	Glu	Val	Thr 45	Cys	Val	Val	
Val	Asp 50	Val	Ser	His	Glu	Asp 55	Pro	Glu	Val	Lys	Phe 60	Asn	Trp	Tyr	Val	
Asp 65	Gly	Val	Glu	Val	His 70	Asn	Ala	Lys	Thr	Lys 75	Pro	Arg	Glu	Glu	Gln 80	
lyr	Asn	Ser	Thr	Tyr 85	Arg	Val	Val	Ser	Val 90	Leu	Thr	Val	Leu	His 95	Gln	
Asp	Trp	Leu	Asn 100	Gly	Lys	Glu	Tyr	Lys 105	Cys	Lys	Val	Ser	Asn 110	Lys	Ala	

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr 130 135 140 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 145 150 155 160 Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 165 170 175 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220 Ser Leu Ser Leu Ser Pro Gly Lys 225 230 <210> 3 <211> 549 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(549) <223> endostatin <400> 3 cac age cae ege gae tte cag eeg gtg ete cae etg gtt geg ete aac 48 His Ser His Arg Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn 1 15 age ece etg tea gge gge atg egg gge ate ege ggg gee gae tte eag 96 Ser Pro Leu Ser Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln 20 25 tgc ttc cag cag gcg cgg gcc gtg ggg ctg gcg ggc acc ttc cgc gcc 144 Cys Phe Gln Gln Ala Arg Ala Val Gly Leu Ala Gly Thr Phe Arg Ala 35 ttc ctg tcc tcg cgc ctg cag gac ctg tac agc atc gtg cgc cgt gcc 192 Phe Leu Ser Ser Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala 50 55 60 gac cgc gca gcc gtg ccc atc gtc aac ctc aag gac gag ctg ctg ttt 240 Asp Arg Ala Ala Val Pro Ile Val Asn Leu Lys Asp Glu Leu Leu Phe 65 70 75 80 ccc age tgg gag get etg tte tea gge tet gag ggt eeg etg aag eec 288 Pro Ser Trp Glu Ala Leu Phe Ser Gly Ser Glu Gly Pro Leu Lys Pro 85 90 95

Gly	gca Ala	cgc Arg	atc Ile 100	ttc Phe	tcc Ser	ttt Phe	gac Asp	ggc Gly 105	aag Lys	gac Asp	gtc Val	ctg Leu	agg Arg 110	cac	ccc Pro	336
				aag Lys												384
				agc Ser											tcg Ser	432
gcc Ala 145	acg Thr	ggc Gly	cag Gln	gcc Ala	tcc Ser 150	tcg Ser	ctg Leu	ctg Leu	.ggg	ggc Gly 155	agg Arg	ctc Leu	ctg Leu	99 9 Gly	cag Gln 160	480
				tgc Cys 165												528
-		_		gcc Ala		-									,	549
<212	l> 18 2> PF		sapie	ens												
\Z_I.			•													
<400)> 4		-		5)		_						- 2	_	_	
<400)> 4		-	Asp 5	Phe	Gln	Pro	Val	Leu 10	His	Leu	Val	Ala	Leu 15	Asn	
<400 His 1)> 4 Ser	His	Arg	Asp					10					15		
<400 His 1 Ser)> 4 Ser Pro	His Leu	Arg Ser 20	Asp 5	Gly	Met	Arg	Gly 25	10	Arg	Gly	Ala	Asp 30	15 Phe	Gln	
<400 His 1 Ser)> 4 Ser Pro	His Leu Gln 35	Arg Ser 20 Gln	Asp 5 Gly	Gly Arg	Met Ala Gln	Arg Val 40 Asp	Gly 25 Gly Leu	10 Ile Leu	Arg Ala	Gly Gly Ile	Ala Thr 45	Asp 30 Phe	15 Phe Arg	Gln Ala	
<400 His 1 Ser Cys	> 4 Ser Pro Phe Leu 50	His Leu Gln 35 Ser	Arg Ser 20 Gln	Asp 5 Gly Ala	Gly Arg Leu	Met Ala Gln 55	Arg Val 40 Asp	Gly 25 Gly Leu	10 Ile Leu Tyr	Arg Ala Ser	Gly Gly Ile 60	Ala Thr 45 Val	Asp 30 Phe	15 Phe Arg	Gln Ala Ala	
<400 His 1 Ser Cys Phe Asp 65	Pro Phe Leu 50 Arg	His Leu Gln 35 Ser	Arg Ser 20 Gln Ser	Asp 5 Gly Ala Arg	Gly Arg Leu Pro 70	Met Ala Gln 55 Ile	Arg Val 40 Asp	Gly 25 Gly Leu Asn	10 Ile Leu Tyr	Arg Ala Ser Lys 75	Gly Gly Ile 60 Asp	Ala Thr 45 Val	Asp 30 Phe Arg	15 Phe Arg Arg	Gln Ala Ala Phe 80	
<400 His 1 Ser Cys Phe Asp 65 Pro	Pro Phe Leu 50 Arg	His Leu Gln 35 Ser Ala	Arg Ser 20 Gln Ser Ala	Asp 5 Gly Ala Val	Gly Arg Leu Pro 70 Leu	Met Ala Gln 55 Ile Phe	Arg Val 40 Asp Val	Gly 25 Gly Leu Asn	10 Ile Leu Tyr Leu Ser 90	Arg Ala Ser Lys 75 Glu	Gly Gly Ile 60 Asp	Ala Thr 45 Val Glu	Asp 30 Phe Arg Leu	Phe Arg Arg Leu Lys 95	Gln Ala Ala Phe 80 Pro	
<400 His 1 Ser Cys Phe Asp 65 Pro	Pro Phe Leu 50 Arg Ser	His Leu Gln 35 Ser Ala Trp	Arg Ser 20 Gln Ser Ala Glu Ile 100	Asp 5 Gly Ala Arg Val	Gly Arg Leu Pro 70 Leu Ser	Met Ala Gln 55 Ile Phe	Arg Val 40 Asp Val Ser	Gly 25 Gly Leu Asn Gly 105	10 Ile Leu Tyr Leu Ser 90 Lys	Arg Ala Ser Lys 75 Glu Asp	Gly Gly Ile 60 Asp Gly Val	Ala Thr 45 Val Glu Pro	Asp 30 Phe Arg Leu Arg 110	Phe Arg Arg Leu Lys 95 His	Gln Ala Ala Phe 80 Pro	

```
Ala Thr Gly Gln Ala Ser Ser Leu Leu Gly Gly Arg Leu Leu Gly Gln
145
                    150
                                         155
                                                             160
Ser Ala Ala Ser Cys His His Ala Tyr Ile Val Leu Cys Ile Glu Asn
                                     170
                165
                                                         175
Ser Phe Met Thr Ala Ser Lys
            180
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Forward primer
      for human Fc-Endo
<220>
<221> CDS
<222> (3)..(29)
<400> 5
cc ccg ggt aaa cac agc cac cgc gac ttc c
                                                                   30
   Pro Gly Lys His Ser His Arg Asp Phe
     1
<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence
<400> 6
Pro Gly Lys His Ser His Arg Asp Phe
<210> 7
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Forward primer
      for human Fc-endo
<220>
<221> CDS
<222> (2)..(25)
<400> 7
c aag ctt cac agc cac cgc gac ttc c
                                                                   26
  Lys Leu His Ser His Arg Asp Phe
    1
<210> 8
```

```
<211> 8
<212> PRT
<213> Artificial Sequence
<400> 8
Lys Leu His Ser His Arg Asp Phe
<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Reverse primer
      for human Fc-Endo
<400> 9
cctcgagcta cttggaggca gtcatg
                                                                   26
<210> 10
<211> 1089
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(1089)
<223> angiostatin
<400> 10
aaa gtg tat ctc tca gag tgc aag act ggg aat gga aag aac tac aga
Lys Val Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg
ggg acg atg tcc aaa aca aaa aat ggc atc acc tgt caa aaa tgg agt
                                                                   96
Gly Thr Met Ser Lys Thr Lys Asn Gly Ile Thr Cys Gln Lys Trp Ser
             20
                                                      30
tcc act tct ccc cac aga cct aga ttc tca cct gct aca cac ccc tca
                                                                   144
Ser Thr Ser Pro His Arg Pro Arg Phe Ser Pro Ala Thr His Pro Ser
         35
                             40
                                                  45
gag gga ctg gag gag aac tac tgc agg aat cca gac aac gat ccg cag
                                                                   192
Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Pro Gln
     50
                          55
ggg ccc tgg tgc tat act act gat cca gaa aag aga tat gac tac tgc
                                                                   240
Gly Pro Trp Cys Tyr Thr Thr Asp Pro Glu Lys Arg Tyr Asp Tyr Cys
 65
                     70
                                          75
                                                              80
gac att ctt gag tgt gaa gag gaa tgt atg cat tgc agt gga gaa aac
                                                                   288
Asp Ile Leu Glu Cys Glu Glu Glu Cys Met His Cys Ser Gly Glu Asn
                 85
                                      90
tat gac ggc aaa att tcc aag acc atg tct gga ctg gaa tgc cag gcc
                                                                   336
Tyr Asp Gly Lys Ile Ser Lys Thr Met Ser Gly Leu Glu Cys Gln Ala
```

	100	105		110	
			gga tac att Gly Tyr Ile		
			tgt cgt aac Cys Arg Asn 140		
			ccc aac aag Pro Asn Lys 155		
			cca cca tct Pro Pro Ser 170		
			aac tat cgc Asn Tyr Arg		
			cac tgg agt His Trp Ser		
			ttc ccc tgc Phe Pro Cys 220		
			aaa agg gcc Lys Arg Ala 235		
			tac tgt aag Tyr Cys Lys 250	_	_
			ttg gct ccc Leu Ala Pro		
			tac cat ggt Tyr His Gly		-
			aca gga aag Thr Gly Lys 300		
			cag aag acc Gln Lys Thr 315		
			tgc agg aat Cys Arg Asn 330		-
aaa ggc ccc	tgg tgt ttt	acc aca gac	ccc agc gtc	agg tgg gag	tac 1056

Lys Gly Pro Trp Cys Phe Thr Thr Asp Pro Ser Val Arg Trp Glu Tyr 340 345 350

8

tgc aac ctg aaa aaa tgc tca gga aca gaa gcg Cys Asn Leu Lys Lys Cys Ser Gly Thr Glu Ala

1089

355 360

<210> 11

<211> 363

<212> PRT

<213> Homo sapiens

<400> .11

Lys Val Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg
1 5 10 15

Gly Thr Met Ser Lys Thr Lys Asn Gly Ile Thr Cys Gln Lys Trp Ser 20 25 30

Ser Thr Ser Pro His Arg Pro Arg Phe Ser Pro Ala Thr His Pro Ser 35 40 45

Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Pro Gln
50 55 60

Gly Pro Trp Cys Tyr Thr Thr Asp Pro Glu Lys Arg Tyr Asp Tyr Cys
65 70 75 80

Asp Ile Leu Glu Cys Glu Glu Glu Cys Met His Cys Ser Gly Glu Asn 90 95

Tyr Asp Gly Lys Ile Ser Lys Thr Met Ser Gly Leu Glu Cys Gln Ala 100 105 110

Trp Asp Ser Gln Ser Pro His Ala His Gly Tyr Ile Pro Ser Lys Phe 115 120 125

Pro Asn Lys Asn Leu Lys Lys Asn Tyr Cys Arg Asn Pro Asp Arg Glu 130 135 140

Leu Arg Pro Trp Cys Phe Thr Thr Asp Pro Asn Lys Arg Trp Glu Leu 145 150 150

Cys Asp Ile Pro Arg Cys Thr Thr Pro Pro Pro Ser Ser Gly Pro Thr 165 170 175

Tyr Gln Cys Leu Lys Gly Thr Gly Glu Asn Tyr Arg Gly Asn Val Ala 180 185 190

Val Thr Val Ser Gly His Thr Cys Gln His Trp Ser Ala Gln Thr Pro 195 200 205

His Thr His Asn Arg Thr Pro Glu Asn Phe Pro Cys Lys Asn Leu Asp 210 215 220

Glu Asn Tyr Cys Arg Asn Pro Asp Gly Lys Arg Ala Pro Trp Cys His 225 230 235 240

<213> Artificial Sequence

```
Thr Thr Asn Ser Gln Val Arg Trp Glu Tyr Cys Lys Ile Pro Ser Cys
                245
                                     250
                                                         255
Asp Ser Ser Pro Val Ser Thr Glu Gln Leu Ala Pro Thr Ala Pro Pro
            260
                                 265
                                                     270
Glu Leu Thr Pro Val Val Gln Asp Cys Tyr His Gly Asp Gly Gln Ser
        275
                             280
                                                 285
Tyr Arg Gly Thr Ser Ser Thr Thr Thr Thr Gly Lys Lys Cys Gln Ser
    290
                         295
                                             300
Trp Ser Ser Met Thr Pro His Arg His Gln Lys Thr Pro Glu Asn Tyr
                     310
305
                                         315
                                                             320
Pro Asn Ala Gly Leu Thr Met Asn Tyr Cys Arg Asn Pro Asp Ala Asp
                325
                                     330
                                                         335
Lys Gly Pro Trp Cys Phe Thr Thr Asp Pro Ser Val Arg Trp Glu Tyr
            340
                                 345
                                                     350
Cys Asn Leu Lys Lys Cys Ser Gly Thr Glu Ala
        355
                             360
<210> 12
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Forward primer
      for human Fc-Angio
<220>
<221> CDS
<222> (3)..(29)
<400> 12
cc ccg ggt aag aaa gtg tat ctc tca gag
                                                                    29
   Pro Gly Lys Lys Val Tyr Leu Ser Glu
<210> 13
<211> 9
<212> PRT
<213> Artificial Sequence
<400> 13
Pro Gly Lys Lys Val Tyr Leu Ser Glu
<210> 14
<211> 28
<212> DNA
```

```
<220>
<223> Description of Artificial Sequence: Forward primer
      for human Fc-Angio
<220>
<221> CDS
<222> (2)..(28)
<400> 14
c ccc aag ctt aaa gtg tat ctc tca gag
                                                                   28
  Pro Lys Leu Lys Val Tyr Leu Ser Glu
    1
<210> 15
<211> 9
<212> PRT
<213> Artificial Sequence
<400> 15
Pro Lys Leu Lys Val Tyr Leu Ser Glu
  1
<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Reverse primer
      for human Fc-Angio
<400> 16
cccctcgagc tacgcttctg ttcctgagca
<210> 17
<211> 552
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(552)
<223> endostatin
<400> 17
cat act cat cag gac ttt cag cca gtg ctc cac ctg gtg gca ctg aac
                                                                   48
His Thr His Gln Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn
 1
                                      10
                                                          15
acc ccc ctg tct gga ggc atg cgt ggt atc cgt gga gca gat ttc cag
                                                                   96
Thr Pro Leu Ser Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln
             20
                                  25
                                                      30
tgc ttc cag caa gcc cga gcc gtg ggg ctg tcg ggc acc ttc cgg gct
                                                                   144
Cys Phe Gln Gln Ala Arg Ala Val Gly Leu Ser Gly Thr Phe Arg Ala
         35
                              40
                                                  45
```

													•			
	ctg Leu 50															192
	cgg Arg															240
	agc Ser															288
Gly	gcc Ala	cgc Arg	atc. Ile 100	ttt Phe	tct Ser	ttt Phe	gac Asp	ggc Gly 105	aga Arg	gat Asp	gtc Val	ctg Leu	aga Arg 110	cac His	cca Pro	336
	tgg Trp															384
	ctg Leu 130															432
	aca Thr												_	_	_	480
	gct Ala										_	_				528
_	ttc Phe	_														552
<211 <212	0> 18 L> 18 2> PF 3> Mu	34 RT	uscul	lus												
	0> 18 Thr		Gln	Asp 5	Phe	Gln	Pro	Val	Leu 10	His	Leu	Val	Ala	Leu 15	Asn	
Thr	Pro	Leu	Ser 20	Gly	Gly	Met	Arg	Gly 25	Ile	Arg	Gly	Ala	Asp 30	Phe	Gln	
Cys	Phe	Gln 35	Gln	Ala	Arg	Ala	Val 40	Gly	Leu	Ser	Gly	Thr 45	Phe	Arg	Ala	
Phe	Leu 50	Ser	Ser	Arg	Leu	Gln 55	Asp	Leu	Tyr	Ser	Ile 60	Val	Arg	Arg	Ala	
_	-				_	~ 3		_	_	_				_		

Asp Arg Gly Ser Val Pro Ile Val Asn Leu Lys Asp Glu Val Leu Ser 65 .70 80

12

Pro Ser Trp Asp Ser Leu Phe Ser Gly Ser Gln Gly Gln Val Gln Pro 85 90 95 Gly Ala Arg Ile Phe Ser Phe Asp Gly Arg Asp Val Leu Arg His Pro 100 105 110 Ala Trp Pro Gln Lys Ser Val Trp His Gly Ser Asp Pro Ser Gly Arg 115 120 125 Arg Leu Met Glu Ser Tyr Cys Glu Thr Trp Arg Thr Glu Thr Thr Gly 130 135 140 Ala Thr Gly Gln Ala Ser Ser Leu Leu Ser Gly Arg Leu Leu Glu Gln 145 . 150 155 160 Lys Ala Ala Ser Cys His Asn Ser Tyr Ile Val Leu Cys Ile Glu Asn 175 165 170 Ser Phe Met Thr Ser Phe Ser Lys 180 <210> 19 <211> 699 <212> DNA <213> Mus musculus <220> <221> CDS <222> (1)..(699) <223> Fc <400> 19 gag ccc aga ggg ccc aca atc aag ccc tgt cct cca tgc aaa tgc cca Glu Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro gca cct aac ctc ttg ggt gga cca tcc gtc ttc atc ttc cct cca aag 96 Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys 20 30 25 atc aag gat gta ctc atg atc tcc ctg agc ccc ata gtc aca tgt gtg 144 Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val 35 40 45 gtg gtg gat gtg agc gag gat gac cca gat gtc cag atc agc tgg ttt 192 Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe 50 60 gtg aac aac gtg gaa gta cac aca gct cag aca caa acc cat aga gag 240 Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu 65 80 70 75 gat tac aac agt act etc egg gtg gte agt gee etc eec atc eag cac 288 Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His 85 95 90 cag gac tgg atg agt ggc aag gag ttc aaa tgc aag gtc aac aac aaa 336 Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys

gac ctc cca gcg ccc atc gag aga acc atc tca aaa ccc aaa ggg tca Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser gta aga gct cca cag gta tat gtc ttg cct cca cca gaa gaa gag atg Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met act aag aaa cag gtc act ctg acc tgc atg gtc aca gac ttc atg cct Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro gaa gac att tac gtg gag tgg acc aac aac ggg aaa aca gag cta aac Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn tac aag aac act gaa cca gtc ctg gac tct gat ggt tct tac ttc atg Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met tac agc aag ctg aga gtg gaa aag aag aac tgg gtg gaa aga aat agc Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser tac tee tgt tea gtg gte cae gag ggt etg cae aat cae cae aeg aet Tyr Ser Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr aag age tte tee egg ace eeg ggt aaa Lys Ser Phe Ser Arg Thr Pro Gly Lys <210> 20 <211> 233 <212> PRT <213> Mus musculus <400> 20 Glu Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His

14

Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys 100 105 110 Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser 115 120 125 Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met 130 135 140 Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro 145 150 155 160 Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn 165 170 175 Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met 180 185 Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser 195 200 205 Tyr Ser Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr 210 215 220 Lys Ser Phe Ser Arg Thr Pro Gly Lys 225 230 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer for mouse Fc-Endo <220> <221> CDS <222> (2)..(28) <400> 21 c ccc aag ctt cat act cat cag gac ttt c 29 Pro Lys Leu His Thr His Gln Asp Phe <210> 22 <211> 9 <212> PRT <213> Artificial Sequence <400> 22 Pro Lys Leu His Thr His Gln Asp Phe 1 <210> 23 <211> 28

15

<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Reverse primer for mouse Fc-Endo <400> 23 cccctcgagc tatttggaga aagaggtc 28 <210> 24 <211> 1086 <212> DNA <213> Mus musculus <220> <221> CDS <222> (1)..(1086) <223> Angiostatin <400> 24 gtg tat ctg tca gaa tgt aag acc ggc atc ggc aac ggc tac aga gga 48 Val Tyr Leu Ser Glu Cys Lys Thr Gly Ile Gly Asn Gly Tyr Arg Gly 10 acc atg tcc agg aca aag agt ggt gtt gcc tgt caa aag tgg ggt gcc 96 Thr Met Ser Arg Thr Lys Ser Gly Val Ala Cys Gln Lys Trp Gly Ala 20 25 30 acg ttc ccc cac gta ccc aac tac tct ccc agt aca cat ccc aat gag 144 Thr Phe Pro His Val Pro Asn Tyr Ser Pro Ser Thr His Pro Asn Glu 35 40 45 gga cta gaa gag aac tac tgt agg aac cca gac aat gat gaa caa ggg Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Glu Gln Gly 50 55 cct tgg tgc tac act aca gat ccg gac aag aga tat gac tac tgc aac 240 Pro Trp Cys Tyr Thr Thr Asp Pro Asp Lys Arg Tyr Asp Tyr Cys Asn 65 70 75 80 att cct gaa tgt gaa gag gaa tgc atg tac tgc agt gga gaa aag tat 288 Ile Pro Glu Cys Glu Glu Cys Met Tyr Cys Ser Gly Glu Lys Tyr 85 90 gag ggc aaa atc tcc aag acc atg tct gga ctt gac tgc cag gcc tgg 336 Glu Gly Lys Ile Ser Lys Thr Met Ser Gly Leu Asp Cys Gln Ala Trp 100 105 110 gat tot cag ago coa cat got cat gga tac atc cot goo aaa ttt coa 384 Asp Ser Gln Ser Pro His Ala His Gly Tyr Ile Pro Ala Lys Phe Pro 115 120 125 agc aag aac ctg aag atg aat tat tgc cac aac cct gac ggg gag cca 432 Ser Lys Asn Leu Lys Met Asn Tyr Cys His Asn Pro Asp Gly Glu Pro 130 135 140

agg ccc tgg tgc ttc aca aca gac ccc acc aaa cgc tgg gaa tac tgt

Arg 145	Pro	Trp	Cys	Phe	Thr 150	Thr	Asp	Pro	Thr	Lys 155	Arg	Trp	Glu	Tyr	Cys 160	
	atc Ile															528
	tgt Cys												_		gtc Val	576
	gtg Val															624
	cac His 210												_	_		672
	tac Tyr												_		•	720
	gac Asp								_					_		768
	tca Ser										_					816
	aca Thr								-	-	-		_	_		864
	ggt Gly 290															912
	gct Ala															960
	gct Ala														•	1008
	cct Pro														-	1056
	ctg Leu	_		_		-										1086

<210> 25

<211> 362

<212> PRT

<213> Mus musculus

<400> 25

Val Tyr Leu Ser Glu Cys Lys Thr Gly Ile Gly Asn Gly Tyr Arg Gly
1 5 10 15

Thr Met Ser Arg Thr Lys Ser Gly Val Ala Cys Gln Lys Trp Gly Ala 20 25 30

Thr Phe Pro His Val Pro Asn Tyr Ser Pro Ser Thr His Pro Asn Glu
35 40 45

Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Glu Gln Gly 50 . 60

Pro Trp Cys Tyr Thr Thr Asp Pro Asp Lys Arg Tyr Asp Tyr Cys Asn 65 70 75 80

Ile Pro Glu Cys Glu Glu Cys Met Tyr Cys Ser Gly Glu Lys Tyr
85 90 95

Glu Gly Lys Ile Ser Lys Thr Met Ser Gly Leu Asp Cys Gln Ala Trp
100 105 110

Asp Ser Gln Ser Pro His Ala His Gly Tyr Ile Pro Ala Lys Phe Pro 115 120 125

Ser Lys Asn Leu Lys Met Asn Tyr Cys His Asn Pro Asp Gly Glu Pro 130 135 140

Arg Pro Trp Cys Phe Thr Thr Asp Pro Thr Lys Arg Trp Glu Tyr Cys 145 150 155

Asp Ile Pro Arg Cys Thr Thr Pro Pro Pro Pro Pro Ser Pro Thr Tyr 165 170 175

Gln Cys Leu Lys Gly Arg Gly Glu Asn Tyr Arg Gly Thr Val Ser Val 180 185 190

Thr Val Ser Gly Lys Thr Cys Gln Arg Trp Ser Glu Gln Thr Pro His 195 200 205

Arg His Asn Arg Thr Pro Glu Asn Phe Pro Cys Lys Asn Leu Glu Glu 210 215 220

Asn Tyr Cys Arg Asn Pro Asp Gly Glu Thr Ala Pro Trp Cys Tyr Thr 225 230 235 240

Thr Asp Ser Gln Leu Arg Trp Glu Tyr Cys Glu Ile Pro Ser Cys Glu 245 250 255

Ser Ser Ala Ser Pro Asp Gln Ser Asp Ser Ser Val Pro Pro Glu Glu 260 265 270

Gln Thr Pro Val Val Gln Glu Cys Tyr Gln Ser Asp Gly Gln Ser Tyr 275 280 285

Arg Gly Thr Ser Ser Thr Thr Ile Thr Gly Lys Lys Cys Gln Ser Trp 290 295 300

<212> DNA

WO 00/11033 PCT/US99/19329

```
Ala Ala Met Phe Pro His Arg His Ser Lys Thr Pro Glu Asn Phe Pro
305
                    310
                                         315
                                                             320
Asp Ala Gly Leu Glu Met Asn Tyr Cys Arg Asn Pro Asp Gly Asp Lys
                325
                                     330
                                                         335
Gly Pro Trp Cys Tyr Thr Thr Asp Pro Ser Val Arg Trp Glu Tyr Cys
            340
                                 345
                                                     350
Asn Leu Lys Arg Cys Ser Glu Thr Gly Gly
        355
                             360
<210> 26
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Forward primer
      for mouse Fc-Angio
<220>
<221> CDS
<222> (2)..(49)
<400> 26
c ccc aag ctt gtg tat ctg tca gaa tgt aag
                                                                   31
  Pro Lys Leu Val Tyr Leu Ser Glu Cys Lys
    1
                     5
                                        10
<210> 27
<211> 10
<212> PRT
<213> Artificial Sequence
<400> 27
Pro Lys Leu Val Tyr Leu Ser Glu Cys Lys
  1
<210> 28
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Reverse primer
      for mouse Fc-Angio
<400> 28
cccctcgagc taccctcctg tctctgagca
                                                                   30
<210> 29
<211> 29
```

19

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Forward primer
      for canine Fc
<220>
<221> CDS
<222> (3)..(29)
<400> 29
cc tta agc gaa aat gga aga gtt cct cgc
                                                                   29
   Leu Ser Glu Asn Gly Arg Val Pro Arg
     1
                      5
<210> 30
<211> 9
<212> PRT
<213> Artificial Sequence
<400> 30
Leu Ser Glu Asn Gly Arg Val Pro Arg
  1
<210> 31
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Reverse primer
      for canine Fc
<400> 31
cctcgagtca tttacccggg gaatgggaga gggatttctg
                                                                   40
<210> 32
<211> 702
<212> DNA
<213> Canis familiaris
<220>
<221> CDS
<222> (1)..(702)
<223> Fc
<400> 32
gaa aat gga aga gtt cct cgc cca cct gat tgt ccc aaa tgc cca gcc
                                                                   48
Glu Asn Gly Arg Val Pro Arg Pro Pro Asp Cys Pro Lys Cys Pro Ala
  1
                  5
                                      10
                                                          15
cct gaa atg ctg gga ggg cct tcg gtc ttc atc ttt ccc ccg aaa ccc
                                                                    96
Pro Glu Met Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro
                                  25
             20
                                                      30
```

aag gac acc ctc ttg att gcc cga aca cct gag gtc aca tgt gtg gtg

PCT/US99/19329 WO 00/11033

Lys	Asp	Thr 35	Leu	Leu	Ile	Ala	Arg 40	Thr	Pro	Glu	Val	Thr 45	Cys	Val	Val	
				cca Pro												192
-		_	_	atg Met												240
				tac Tyr 85												288
				Gly												336
				atc Ile												384
				gtg Val												432
				agc Ser												480
				gag Glu 165												528
				acc Thr											ttc Phe	576
_		•		ctc Leu				Lys							gac Asp	624
		Ile					His					Asn			aca Thr	672
	Lys			tcc Ser		Ser										702
	0> 3 1> 2															

<212> PRT

<213> Canis familiaris

<400> 33

Glu Asn Gly Arg Val Pro Arg Pro Pro Asp Cys Pro Lys Cys Pro Ala

20

WO 00/11033 PCT/US99/19329

30

1 5 10 15

Pro Glu Met Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro

21

25

Lys Asp Thr Leu Leu Ile Ala Arg Thr Pro Glu Val Thr Cys Val Val 35

Val Asp Leu Gly Pro Glu Asp Pro Glu Val Gln Ile Ser Trp Phe Val 50 55 60

Asp Gly Lys Gln Met Gln Thr Ala Lys Thr Gln Pro Arg Glu Glu Gln 65 70 75 80

Phe Asn Gly Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gly His Gln
85 90 95

Asp Trp Leu Lys Gly Lys Gln Phe Thr Cys Lys Val Asn Asn Lys Ala 100 105 110

Leu Pro Ser Pro Ile Glu Arg Thr Ile Ser Lys Ala Arg Gly Gln Ala 115 120 125

His Gln Pro Ser Val Tyr Val Leu Pro Pro Ser Arg Glu Glu Leu Ser 130 135 140

Lys Asn Thr Val Ser Leu Thr Cys Leu Ile Lys Asp Phe Phe Pro Pro 145 150 150

Asp Ile Asp Val Glu Trp Gln Ser Asn Gly Gln Gln Glu Pro Glu Ser 165 . 170 . 175

Lys Tyr Arg Thr Thr Pro Pro Gln Leu Asp Glu Asp Gly Ser Tyr Phe 180 185 190

Leu Tyr Ser Lys Leu Ser Val Asp Lys Ser Arg Trp Gln Arg Gly Asp 195 200 205

Thr Phe Ile Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr 210 220

Gln Lys Ser Leu Ser His Ser Pro Gly Lys 225 230

<210> 34

<211> 552

<212> DNA

<213> Canis familiaris

<220>

<221> CDS

<222> (1)..(552)

<223> Endostatin

<400> 34

cac acc cac cag gac ttc cag ccg gtg ctg cac ctg gtg gcc ctg aac 48
His Thr His Gln Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn
1 5 10

		cag Gln													_	96
		cag Gln 35	_		•	_									_	144
		tcg Ser											_	_	_	192
		acc Thr														240
		tgg Trp														288
		cgc Arg														336
_		ccc Pro						_						-	cgc Arg	384
		acc Thr														432
		ggg Gly														480
		gcg Ala				_						_				528
		atg Met					_									552
<21 <21	0> 3! 1> 1! 2> P! 3> Ca	3 4	fam	ilia	ris											
	0> 3! Thr	5 His	Gln	Asp 5	Phe	Gln	Pro	Val	Leu 10	His	Leu	Val	Ala	Leu 15	Asn	

Cys Phe Gln Gln Ala Arg Ala Ala Gly Leu Ala Gly Thr Phe Arg Ala

Ser Pro Gln Pro Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln

25

20

23

WO 00/11033 PCT/US99/19329

35 40 45

Phe Leu Ser Ser Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala 50 55 60

Asp Arg Thr Gly Val Pro Val Val Asn Leu Arg Asp Glu Val Leu Phe 65 70

Pro Ser Trp Glu Ala Leu Phe Ser Gly Ser Glu Gly Gln Leu Lys Pro 85 90 95

Gly Ala Arg Ile Phe Ser Phe Asp Gly Arg Asp Val Leu Gln His Pro 100 105 110

Ala Trp Pro Arg Lys Ser Val Trp His Gly Ser Asp Pro Ser Gly Arg 115 120 125

Arg Leu Thr Asp Ser Tyr Cys Glu Thr Trp Arg Thr Glu Ala Pro Ala 130 135 140

Ala Thr Gly Gln Ala Ser Ser Leu Leu Ala Gly Arg Leu Leu Glu Gln 145 150 155 160

Glu Ala Ala Ser Cys Arg His Ala Phe Val Val Leu Cys Ile Glu Asn 165 170 175

Ser Val Met Thr Ser Phe Ser Lys 180

<210> 36

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: HindIII/DraIII linker: top strand

<220>

<221> CDS

<222> (3)..(41)

<400> 36

ag ctt cac acc cac cag gac ttc cag ccg gtg ctg cac ctg Leu His Thr His Gln Asp Phe Gln Pro Val Leu His Leu 1 10

41

<210> 37

<211> 13

<212> PRT

<213> Artificial Sequence

<400> 37

Leu His Thr His Gln Asp Phe Gln Pro Val Leu His Leu 1 10

24

<210> 38 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: HindIII/DraIII linker: bottom strand <400> 38 gtgcagcacc ggctggaagt cctggtgggt gtga 34 <210> 39 <211> 1077 <212> DNA <213> Canis familiaris <220> <221> CDS <222> (1)..(1077) <223> angiostatin <400> 39 ata tat ctt tca gag tgc aag act gga aat ggg aaa acc tac agg ggg. 48 Ile Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Thr Tyr Arg Gly 1 10 acc atg gcc aaa acg aag aat gat gtt gcc tgt caa aaa tgg agt gac 96 Thr Met Ala Lys Thr Lys Asn Asp Val Ala Cys Gln Lys Trp Ser Asp 20 25 30 aat tot cog cac aaa cot aac tat acg cot gag aag cac coc ttg gag 144 Asn Ser Pro His Lys Pro Asn Tyr Thr Pro Glu Lys His Pro Leu Glu 35 40 45 ggg ctg gag gag aac tat tgc agg aac cct gac aac gac gag aac ggg 192 Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Glu Asn Gly 50 ccc tgg tgc tac acc aca aac cca gac gtg agg ttc gac tac tgc aac 240 Pro Trp Cys Tyr Thr Thr Asn Pro Asp Val Arg Phe Asp Tyr Cys Asn 65 70 75 80 att cca gaa tgt gaa gag gaa tgt atg cat tgc agt ggg gaa aat tat 288 Ile Pro Glu Cys Glu Glu Cys Met His Cys Ser Gly Glu Asn Tyr 85 90 95 gag ggc aaa att tcc aag aca aag tct gga ctc gag tgc caa gcc tgg 336 Glu Gly Lys Ile Ser Lys Thr Lys Ser Gly Leu Glu Cys Gln Ala Trp 100 105 110 aac tct caa acc cca cat gct cat gga tat att cct tcc aaa ttt cca 384 Asn Ser Gln Thr Pro His Ala His Gly Tyr Ile Pro Ser Lys Phe Pro 115 120 125 age aag aac ttg aag atg aat tac tgc cgt aac cct gat ggg gag ccc 432 Ser Lys Asn Leu Lys Met Asn Tyr Cys Arg Asn Pro Asp Gly Glu Pro 130

135

	tgg Trp													_	480
	ccc Pro														528
	ctg Leu						_		•		_				576
	tct Ser 195	_													624
	aac Asn				_				_			_	_	_	672
	tgt Cys											· - -			720
	agt Ser					_		_	•		_		_	, ,	768
	cca Pro										=-				816
	caa Gln 275										-				864
	cga Arg										_		_	-	912
	tca Ser		•						· –	_			_		960
-	gag Glu	_		•					_					_	1008
	agc Ser			=				=			_	_			1056
_	aac Asn 355	_	_		-										1077

<211> 359

<212> PRT

<213> Canis familiaris

<400> 40

Ile Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Thr Tyr Arg Gly
1 10 15

Thr Met Ala Lys Thr Lys Asn Asp Val Ala Cys Gln Lys Trp Ser Asp 20 25 30

Asn Ser Pro His Lys Pro Asn Tyr Thr Pro Glu Lys His Pro Leu Glu 35 40

Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Glu Asn Gly
50 55 60

Pro Trp Cys Tyr Thr Thr Asn Pro Asp Val Arg Phe Asp Tyr Cys Asn 65 70 75 80

Ile Pro Glu Cys Glu Glu Glu Cys Met His Cys Ser Gly Glu Asn Tyr
85 90 95

Glu Gly Lys Ile Ser Lys Thr Lys Ser Gly Leu Glu Cys Gln Ala Trp
100 105 110

Asn Ser Gln Thr Pro His Ala His Gly Tyr Ile Pro Ser Lys Phe Pro 115 120 125

Ser Lys Asn Leu Lys Met Asn Tyr Cys Arg Asn Pro Asp Gly Glu Pro 130 135 140

Arg Pro Trp Cys Phe Thr Met Asp Pro Asn Lys Arg Trp Glu Phe Cys 145 150 155 160

Asp Ile Pro Arg Cys Thr Thr Pro Pro Pro Pro Ser Gly Pro Thr Tyr 165 170 175

Gln Cys Leu Lys Gly Arg Gly Glu Ser Tyr Arg Gly Lys Val Ser Val 180 185 190

Thr Val Ser Gly His Thr Cys Gln His Trp Ser Glu Gln Thr Pro His 195 200 205

Lys His Asn Arg Thr Pro Glu Asn Phe Pro Cys Lys Asn Leu Asp Glu 210 220

Asn Tyr Cys Arg Asn Pro Asp Gly Glu Thr Ala Pro Trp Cys Tyr Thr 225 230 235 240

Thr Asn Ser Glu Val Arg Trp Glu His Cys Gln Ile Pro Ser Cys Glu 245 250 255

Ser Ser Pro Ile Thr Thr Glu Tyr Leu Asp Ala Pro Ala Ser Val Pro 260 265 270

Pro Glu Gln Thr Pro Val Val Gln Glu Cys Tyr His Gly Asn Gly Gln 275 280 285

```
Ser Tyr Arg Gly Thr Ser Ser Thr Thr Ile Thr Gly Arg Lys Cys Gln
    290
                        295
                                             300
Ser Trp Ser Ser Met Thr Pro His Arg His Glu Lys Thr Pro Glu His
305
                    310
                                         315
                                                             320
Phe Pro Glu Ala Gly Leu Thr Met Asn Tyr Cys Arg Asn Pro Asp Ala
                325 ·
                                     330
                                                         335
Asp Lys Ser Pro Trp Cys Tyr Thr Thr Asp Pro Ser Val Arg Trp Glu
            340
                                 345
                                                     350
Phe Cys Asn Leu Arg Lys Cys
        355
<210> 41
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:palindromic
      linker where the STOP codon TGA is followed by an
      XhoI site
<400> 41
tgactcgagt ca
                                                                   12
<210> 42
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mutagenic
      primer for murine angiostatin
<220>
<221> CDS
<222> (1)..(21)
<400> 42
ggg cct tgg agc tac act aca
                                                                   21
Gly Pro Trp Ser Tyr Thr Thr
  1
<210> 43
<211> 7
<212> PRT
<213> Artificial Sequence
<400> 43
Gly Pro Trp Ser Tyr Thr Thr
  1
```

```
<210> 44
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer used to
      introduce HindIII into murine angiostatin
<220>
<221> CDS
<222> (9)..(32)
<400> 44
gcggatcc aag ctt agt aca cat ccc aat gag gg
                                                                   34
         Lys Leu Ser Thr His Pro Asn Glu
<210> 45
<211> 8
<212> PRT
<213> Artificial Sequence
<400> 45
Lys Leu Ser Thr His Pro Asn Glu
  1
<210> 46
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: BspHI/BamHI
      linker: top strand
<220>
<221> CDS
<222> (2)..(58)
<400> 46
c atg acc tct ttc tcc aaa tcg agc ggg ggc agc ggg ggc gga ggc agc 49
  Met Thr Ser Phe Ser Lys Ser Ser Gly Gly Ser Gly Gly Gly Ser
                                       10
ggc ggg ggc g
                                                                   59
Gly Gly Gly
<210> 47
<211> 19
<212> PRT
<213> Artificial Sequence
<400> 47
Met Thr Ser Phe Ser Lys Ser Ser Gly Gly Ser Gly Gly Gly Ser
 1
                  5
                                     10
                                                          15
```

29

Gly Gly Gly <210> 48 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:BspHI/BamHI linker: bottom strand <400> 48 gatecgeece egeegetgee teegeeceeg etgeeceege tegatttgga gaaagaggt 59 <210> 49 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:BamHI/HindIII linker: top strand <220> <221> CDS <222> (3)..(11) <400> 49 ga tcc tca ggc c 12 Ser Ser Gly 1 <210> 50 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:BamHI/HindIII linker: bottom strand <400> 50 agctggcctg ag 12 <210> 51 <211> 10 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: AflII/HindIII linker: top strand

```
<220>
<221> CDS
<222> (1)..(9)
<400> 51
tta agc ggc c
                                                                   10
Leu Ser Gly
  1
<210> 52
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: AflII/HindIII
      linker: bottom strand
<400> 52
agctgggcgc
                                                                   10
<210> 53
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:XhoI/AflII
      linker: top strand
<220>
<221> CDS
<222> (3)..(11)
<400> 53
tc gac tcc ggc
                                                                   11
   Asp Ser Gly
     1
<210> 54
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:XhoI/AflII
      linker: bottom strand
<400> 54
ttaagccgga g
                                                                   11
```

