Correlated Equilibrium and Coarse Correlated Equilibrium

Yingkai Li

EC4501/EC4501HM

Complete Information Game

A static game with complete information is denoted as $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$

- \bullet N is the set of players;
- A_i is the set of player i's actions;
- $u_i: A \to \mathbb{R}$ is player i's payoff function (where $A = \times_{i \in N} A_i$).

Complete Information Game

A static game with complete information is denoted as $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$

- \bullet N is the set of players;
- A_i is the set of player i's actions;
- $u_i:A\to\mathbb{R}$ is player i's payoff function (where $A=\times_{i\in N}A_i$).

In game Γ , a (mixed) strategy of player i is denoted by $\sigma_i \in \Delta(A_i)$.

Definition

A strategy profile $\sigma \in \Delta(A)$ is a correlated equilibrium if for any player i and any action a_i in the support of σ , we have

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i}) \mid a_i] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i}) \mid a_i], \quad \forall a_i' \in A_i.$$

Definition

A strategy profile $\sigma \in \Delta(A)$ is a correlated equilibrium if for any player i and any action a_i in the support of σ , we have

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i}) \mid a_i] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i}) \mid a_i], \quad \forall a_i' \in A_i.$$

Example: coordination game

	movie (M)	concert (C)
movie (M)	2,1	0,0
concert (C)	0,0	1,2

Definition

A strategy profile $\sigma \in \Delta(A)$ is a correlated equilibrium if for any player i and any action a_i in the support of σ , we have

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i}) \mid a_i] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i}) \mid a_i], \quad \forall a_i' \in A_i.$$

Example: coordination game

	movie (M)	concert (C)
movie (M)	2,1	0,0
concert (C)	0,0	1,2

Examples of correlated equilibria:

- (MM) or (CC);
- with probability $\frac{1}{2}$ (MM) and with probability $\frac{1}{2}$ (CC).
- with probability $\frac{1}{3}$ (MM), with probability $\frac{1}{3}$ (MC), and with probability $\frac{1}{3}$ (CC).

Theorem

If $\sigma \in \Delta(A)$ is a Nash equilibrium, then σ must also be a correlated equilibrium.

Theorem

If $\sigma \in \Delta(A)$ is a Nash equilibrium, then σ must also be a correlated equilibrium.

In Nash equilibrium, agents' strategies are independent.

• the requirement that

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i}) \mid a_i] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i}) \mid a_i], \quad \forall a_i' \in A_i$$

is the same as the condition for Nash equilibrium as the distribution over a_{-i} is the same conditional on any a_i .

Coarse Correlated Equilibrium

Definition

A strategy profile $\sigma \in \Delta(A)$ is a coarse correlated equilibrium if for any player i, we have

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i})] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i})], \quad \forall a_i' \in A_i.$$

Coarse Correlated Equilibrium

Definition

A strategy profile $\sigma \in \Delta(A)$ is a coarse correlated equilibrium if for any player i, we have

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i})] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i})], \quad \forall a_i' \in A_i.$$

Theorem

If $\sigma \in \Delta(A)$ is a correlated equilibrium, then σ must also be a coarse correlated equilibrium.

Coarse Correlated Equilibrium

Definition

A strategy profile $\sigma \in \Delta(A)$ is a coarse correlated equilibrium if for any player i, we have

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i})] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i})], \quad \forall a_i' \in A_i.$$

Theorem

If $\sigma \in \Delta(A)$ is a correlated equilibrium, then σ must also be a coarse correlated equilibrium.

Taking expectation over a_i for

$$\mathbf{E}_{\sigma}[u_i(a_i, a_{-i}) \mid a_i] \ge \mathbf{E}_{\sigma}[u_i(a_i', a_{-i}) \mid a_i], \quad \forall a_i' \in A_i.$$

Learning in Games

Given a complete information game Γ , instead of considering equilibrium strategies, suppose all agents use learning algorithms for making decisions.

Learning in Games

Given a complete information game Γ , instead of considering equilibrium strategies, suppose all agents use learning algorithms for making decisions.

Model as an adversarial bandit / expert learning from the perspective of each agent i':

- set of arms A_i ;
- realized payoff $u_i(a_i^t, a_{-i}^t)$ for any period $t \leq T$.

Convergence Under No-Regret

Theorem

Given a complete information game Γ , if all agents adopt no-regret learning algorithms, the empirical action profile converges to the coarse correlated equilibrium when the time horizon $T \to \infty$.

Convergence Under No-Regret

Theorem

Given a complete information game Γ , if all agents adopt no-regret learning algorithms, the empirical action profile converges to the coarse correlated equilibrium when the time horizon $T \to \infty$.

From the perspective of each agent i, treating the action profile of other agents as given, no-regret requires that

$$\frac{1}{T} \sum_{t \in [T]} u_i(a_{i,t}, a_{-i,t}) \ge \frac{1}{T} \sum_{t \in [T]} u_i(a_i, a_{-i,t}) - o(1), \quad \forall a_i \in A_i,$$

coinciding with the requirements for coarse correlated equilibrium.

Convergence Under No-Swap-Regret

Theorem

Given a complete information game Γ , if all agents adopt no-swap-regret learning algorithms, the empirical action profile converges to the correlated equilibrium when the time horizon $T \to \infty$.

Convergence Under No-Swap-Regret

Theorem

Given a complete information game Γ , if all agents adopt no-swap-regret learning algorithms, the empirical action profile converges to the correlated equilibrium when the time horizon $T \to \infty$.

From the perspective of each agent i, treating the action profile of other agents as given, no-swap-regret requires that

$$\frac{1}{T} \sum_{t \in [T]} u_i(a_{i,t}, a_{-i,t}) \ge \frac{1}{T} \sum_{t \in [T]} u_i(\pi_i(a_i), a_{-i,t}) - o(1), \quad \forall \pi_i : A_i \to A_i,$$

coinciding with the requirements for correlated equilibrium.

Convergence

Not all correlated equilibria or coarse correlated equilibria are reachable under natural learning algorithms (You may attain those equilibria under bizarre algorithms).

Convergence

Not all correlated equilibria or coarse correlated equilibria are reachable under natural learning algorithms (You may attain those equilibria under bizarre algorithms).

Example: second-price auction, two agents with value $v_1 > v_2$, each using Hedge algorithms [Kolumbus and Nisan '22]

- ullet the bid distribution of the high value agent converges to uniform distribution over $[v_2,v_1]$;
- ullet the bid distribution of the low value agent converges to uniform distribution over $[0,v_2].$