PS200C Section: Basic Linear Algebra Review

Haotian (Barney) Chen

2024-04-03

Definitions Matrix Operations Regression in matrix form
This document is a slight modification of notes from the previous TAs, Doeun Kim and Soonhong Cho.

Section 1

Definitions

Definition (Matrix)

A **matrix** is a rectangular array of numbers. An $(n \times k)$ matrix has n rows and k columns.

$$\mathbf{A}_{(n \times k)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}$$

- We'll often organize our data such that each row is an observation, and each column is a covariate.
- Type mathbf{X} is Latex.
- We denote each element of a matrix with the lower case and its location, like a_{12} .

Definition (Row Vector)

A $(1 \times k)$ matrix is a **row vector**.

$$\mathbf{y}_{(1\times k)} = \begin{bmatrix} y_{11} & \cdots & y_{1k} \end{bmatrix}$$

Definition (Column Vector)

A $(n \times 1)$ matrix is a **column vector**.

$$\mathbf{y} = \begin{bmatrix} y_{11} \\ \vdots \\ y_{n1} \end{bmatrix}$$

Definition (Scalar)

A scalar is a (1×1) matrix/vector (i.e., a constant).

Definition (Square Matrix)

A square matrix is one where n = k: the same number of rows and columns.

$$\mathbf{A}_{(n \times n)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Definition (Diagonal Matrix)

A diagonal matrix is a square matrix where $a_{ij} = 0$ if $i \neq j$.

$$\mathbf{A}_{(n \times n)} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Definition (Identity Matrix)

An **identity matrix** is a diagonal matrix whose diagonal elements $(a_{ij}$ where i = j) are one, and off-diagonal elements $(a_{ij}$ where $i \neq j)$ are zero.

$$\mathbf{I}_{(n\times n)} \equiv \mathbf{I}_n \equiv \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

The identity matrix is the matrix version of "1." That is, any matrix multiplied by the identity matrix is itself.

Section 2

Matrix Operations

Addition (A+B)

We can add two matrices **A** and **B** if they have the same dimensions. It is conducted element by element, and represented by $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$.

$$\mathbf{A}_{n \times k} + \mathbf{B}_{n \times k} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1k} + b_{1k} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2k} + b_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{nk} + b_{nk} \end{bmatrix}$$

For example: if
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$, then $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$

Scalar multiplication (cA)

For any scalar $c \in \mathbb{R}^1$, $c\mathbf{A} = [c \cdot a_{ij}]$:

$$c\mathbf{A} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1k} \\ ca_{21} & ca_{22} & \cdots & ca_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{n1} & ca_{n2} & \cdots & ca_{nk} \end{bmatrix}$$

Matrix multiplication

The matrix multiplication \mathbf{A} \mathbf{B} is only possible if they are **conformable**: the number of columns of the left one \mathbf{A} must be equal to the number of rows of the right one \mathbf{B} . The dimension of resulting matrix $\mathbf{A}\mathbf{B}$ is $(n \times m)(m \times k) = (n \times k)$. However, \mathbf{B} \mathbf{A} is undefined, because the matrices are not conformable.

Matrix multiplication

One trick for easier life is thinking column-wise way: the rows of ${\bf B}$ give a "recipe" to combine the columns of ${\bf A}$. Here is one example: say we want to compute ${\bf AB}$ for

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{n1} & a_{n2} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}.$$

They are conformable and the dimension of the resulting matrix must be $(3 \times 2) \times (2 \times 2) = (3 \times 2)$. We have:

$$\begin{array}{l}
\mathbf{A} \quad \mathbf{B} \\
(3\times2)(2\times2)
\end{array} = \begin{bmatrix}
b_{11} \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + b_{21} \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} \quad b_{12} \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + b_{22} \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}
\end{bmatrix}$$

$$= \begin{bmatrix}
b_{11} a_{11} + b_{21} a_{12} & b_{12} a_{11} + b_{22} a_{12} \\ b_{11} a_{21} + b_{21} a_{22} & b_{12} a_{21} + b_{22} a_{22} \\ b_{11} a_{31} + b_{21} a_{32} & b_{12} a_{31} + b_{22} a_{32}
\end{bmatrix},$$

where the first equality is our "trick," and the second one is the definition.

Matrix multiplication

A more specific example: say $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then, we have:

$$\textbf{AB} = \begin{bmatrix} 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 4 \end{pmatrix} & 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ 4 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 6 \end{bmatrix}.$$

In R, do not use the usual multiplication mark * as it's for element-wise multiplication (in the above example, it will return $\begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$). You have to use %*% for matrix multiplication!

```
A \leftarrow matrix(c(1, 2, 3, 4), byrow=FALSE, ncol=2)
Α
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
B \leftarrow cbind(c(1, 0), c(1, 1)) \#"column vector" way
В
## [,1] [,2]
## [1,] 1 1
## [2,] 0 1
A*B #element-wise multiplication ("Hadamard product")
## [,1] [,2]
## [1,] 1 3
## [2,] 0 4
A %*% B #matrix multiplication
## [,1] [,2]
## [1,] 1
## [2,] 2
```

Properties of matrix multiplication

The commutative property does not hold! Notice that BA is NOT conformable:

$$\mathbf{A} \mathbf{B}_{(n \times m)(m \times k)} \neq \mathbf{B} \mathbf{A}_{(m \times k)(n \times m)}$$

Associative property:

$$(AB)C = A(BC)$$

Oistributive properties (both left and right hold):

$$A(B+C) = AB + AC$$
 and $(B+C)A = BA + CA$

Multiplicative identity property:

$$IA = A$$
 and $AI = A$

Oimension property:

The product of an $(n \times m)$ matrix and an $(m \times k)$ matrix is an $(n \times k)$ matrix.

Transpose

Definition (Transpose)

Let $\mathbf{A} = [a_{ij}]$ be an $(n \times k)$ matrix. The **transpose** of \mathbf{A} , denoted \mathbf{A}' or \mathbf{A}^T is the $k \times n$ matrix whose elements are $\mathbf{A}' \equiv [a_{ji}]$

When you transpose, you essentially "mirror" the matrix about its diagonal. This is the same as saying that column i of a matrix is row i of its transpose. For

example, if
$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
, then $\mathbf{A}' = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

Properties of Transpose

- (A')' = A

- **3** (A + B)' = A' + B'
- **(AB)** ' = B'A', where **A** is $(n \times k)$ and **B** is $(k \times m)$. Note that they become $(m \times n)$ matrices.
- **1** Inner product: let **x** be a $(n \times 1)$ vector. Then $\mathbf{x}'\mathbf{x} = \sum_{i=1}^{n} x_i^2$. For example,

if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, then

$$\mathbf{x}'\mathbf{x} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1^2 + x_2^2 + x_3^2 = \sum_{i=1}^3 x_i^2.$$

Expanding this result, you will likely run into the construction **X'X** (hint: in OLS estimator); this is the matrix world equivalent of "squaring and summing".

```
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

t(A) #transpose: function `t`

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

Symmetric Matrix

Definition (Symmetric Matrix)

A square matrix **A** is **symmetric** if and only if $\mathbf{A}' = \mathbf{A}$. If **A** is a $(n \times k)$ non-square matrix, then $\mathbf{A}'\mathbf{A}$ is always defined and is symmetric.

Let's see if $\mathbf{A}'\mathbf{A}$ is symmetric using the definition and some properties:

$$(\mathbf{A}'\mathbf{A})' = \mathbf{A}'(\mathbf{A}')' = \mathbf{A}'\mathbf{A},$$

so $\mathbf{A}'\mathbf{A}$ is symmetric.

Trace

Definition (Trace)

For any $(n \times n)$ symmetric matrix **A**, the trace of **A**, denoted $tr(\mathbf{A})$, is the sum of its diagonal elements: $tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$.

- Some useful properties include:

 - $2 tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$

 - **1** tr(AB) = tr(BA), where **A** is $(n \times k)$ and **B** is $(k \times n)$. This one is really useful when you learn more advanced matrix algebra in the context of statistics.

Definition (Inverse)

An $(n \times n)$ square matrix **A** has an **inverse** \mathbf{A}^{-1} if and only iff $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n$.

- In this case A is said to be invertible or non-singular. Otherwise, A is called non-invertible or singular.
- An inverse is only defined for square matrices, but not all square matrices has an inverse.

Rank

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent rows/columns.

 To get the rank, transform the matrix to row echelon form and count nonzero rows. A matrix has rank min(m, n) is called full-rank.

(Back to) Inverse

- Intuitively, if a matrix is full-rank, it means that every row/column provides unique and new information that we can't get from any of the other rows/columns or their some combinations.
- This is why OLS does not work under "perfect multicollinearity": because the OLS estimator $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ needs to invert the quantity $(\mathbf{X}'\mathbf{X})$, it requires that \mathbf{X} to be full-rank.

• Example: are they invertible?

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 3 & 2 \\ 4 & 6 & 2 \end{bmatrix}$$

solve(A) #R function for inverse is `solve`

```
## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
C <- matrix(c(3,1,4,4,3,6,1,2,2), nrow=3)
solve(C) #not invertible ("singular")</pre>
```

Error in solve.default(C): system is computationally singular: recip Why C is not invertible? Check the sum of column 1 and column 3.

Properties of the Inverse

- $(AB)^{-1} = B^{-1}A^{-1}$, if they are invertible.
- **a** $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$
- 3 The inverse of a matrix is unique, if exists.

Matrix Differentiation

- When we derive a regression model in matrix form, we have to use some partial derivative of a matrix. A partial derivative of a function of some variables is its derivative with respect to one of those variables, with the others held constant.
- Let **A** be a $(n \times n)$ symmetric matrix, **a** be a $(n \times 1)$ vector of constants (i.e., not random variables), and **y** be a $(n \times 1)$ vector of **random variables**.
- Consider a linear function $f(y) = a'y = (a_1y_1 + \cdots + a_ny_n)$.
- Then the partial derivative of if with regard to the vector **a** is:

$$\frac{\partial f(\mathbf{y})}{\partial \mathbf{y}} = \frac{\partial \mathbf{a}' \mathbf{y}}{\partial \mathbf{y}} = \begin{pmatrix} \frac{\partial \mathbf{a}' \mathbf{y}}{\partial y_1} \\ \vdots \\ \frac{\partial \mathbf{a}' \mathbf{y}}{\partial y_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial (a_1 y_1 + \dots + a_n y_n)}{\partial y_1} \\ \vdots \\ \frac{\partial (a_1 y_1 + \dots + a_n y_n)}{\partial y_n} \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \mathbf{a}.$$

Section 3

Regression in matrix form

Setting

• The (multiple) regression model in matrix form is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where

$$\mathbf{y}_{(n\times 1)} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \mathbf{X}_{(n\times (k+1))} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{bmatrix},$$

$$\beta = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_k \end{bmatrix}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

Setting

• Then $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ is the solution to the least square problem:

$$\hat{\beta}_{\textit{OLS}} = \underset{\beta}{\operatorname{argmin}} (\mathbf{Y} - \mathbf{X}\beta)' (\mathbf{Y} - \mathbf{X}\beta)$$

- $\epsilon = \mathbf{y} \mathbf{X}\boldsymbol{\beta}$ is the error term which we cannot observe. Denote e as the residual.
- $\epsilon' \epsilon = (\mathbf{y} \mathbf{X}\beta)'(\mathbf{y} \mathbf{X}\beta)$ sum of squared errors.
- Note that inner product of a matrix is like "squaring" the matrix: so we call

$$\epsilon' \epsilon = \begin{pmatrix} \epsilon_1 & \cdots & \epsilon_n \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix} = \epsilon_1^2 + \cdots + \epsilon_n^2 = \sum_{i=1}^n \epsilon_i$$

• $e'e = (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$ - sum of squared residuals.

The goal is to find $\hat{\beta}$ minimizes the sum of squared residuals.

$$\begin{aligned} \mathbf{e}^\mathsf{T} \mathbf{e} &= (y - \mathbf{X} \beta)^\mathsf{T} (y - \mathbf{X} \beta) \\ &= \mathsf{expand} \ \mathsf{the} \ \mathsf{equation} \ \mathsf{yourself} \\ &= (y^\mathsf{T} y - 2 \hat{\beta}^\mathsf{T} \mathbf{X}^\mathsf{T} y + \hat{\beta}^\mathsf{T} X^\mathsf{T} X \hat{\beta}) \\ &\frac{d e^\mathsf{T} e}{d \hat{\beta}} &= \frac{d}{d \hat{\beta}} (Y^\mathsf{T} Y - 2 \hat{\beta}^\mathsf{T} \mathbf{X}^\mathsf{T} Y + \hat{\beta}^\mathsf{T} X^\mathsf{T} X \hat{\beta}) \\ &= -2 \mathbf{X}^\mathsf{T} Y + 2 \mathbf{X}^\mathsf{T} \mathbf{X} \hat{\beta} \end{aligned}$$

Set it to be zero (first order condition)

$$2\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}} = 2\mathbf{X}^{\mathsf{T}}Y$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}Y$$

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{X})\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y$$

$$I\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y$$

We can derive the variance-covariance matrix of the OLS estimator, $\hat{\beta}$:

$$\mathbb{V}(\hat{\beta}) = \mathbb{E}[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$