Week 5

Who? Jinxi Xiao

When? October 25, 2023

E-mail: xiaojx@shanghaitech.edu.cn

Equivalance Theorem

All kinds of Matrices

Homework

Number of Solutions of a Linear System

Theorem

- A system of linear equations has zero, one, or infinitely many solutions. There are no other possibilities
- If A is an invertible $n \times n$ matrix, then for each $n \times 1$ matrix b, the system of equations Ax = b has exactly one solution

Equivalance Theorem

All kinds of Matrices

Homework

We will see this again later

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

- A is invertible
- Ax = 0 has only the trivial solution
- The reduced row echelon form of A is I_n
- A is expressible as a product of elementary matrices
- Ax = b is consistent for every b, and x is unique

Equivalance Theorem

All kinds of Matrices

Homework

Three important kinds of the matrices

- Diagonal Matrices
- Triangular Matrices
- Symmetric Matrices

LU? Every matrix A can be decomposed to LU

Properties of Triangular Matrices

Theorem. The following properties of triangular matrices hold.

- (1) The transpose of a lower/upper triangular matrix is upper/lower triangular.
- (2) The product of upper/lower triangular matrices is still upper/lower triangular.
- (3) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.
- (4) The inverse of an upper/lower triangular matrix is still upper/lower triangular.

Properties of Symmetric Matrices

Theorem. Let $A, B, C \in M_n$ be symmetric. Let $D \in M_{m \times n}$ and c be a scalar. Also suppose that C is invertible.

- (1) A^T is symmetric.
- (2) A + B is symmetric.
- (3) cA is symmetric.
- (4) C^{-1} is symmetric.
- (5) DD^T and D^TD are symmetric.
- (6) AB is symmetric if and only if AB = BA.

Equivalance Theorem

All kinds of Matrices

Homework

Need to Remember

Need To Know

- Practice your calculation skills
- Revise the PPT
- Do not take things as granted

Equivalance Theorem

All kinds of Matrices

Homework

Problem

This question is about an m by n matrix A for which

$$Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 has no solutions and $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ has exactly one solution.

- (a) Give all possible information about m and n and the rank r of A.
- (b) Find all solutions to Ax = 0 and explain your answer.
- (c) Write down an example of a matrix A that fits the description in part (a).

Solution

Solution.

(a)
$$Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 has one solution $\Longrightarrow N(A) = \{0\}$ so $r = n$. (Also, $m = 3$ since $Ax \in \mathbb{R}^3$.)

$$Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ has no solution} \Longrightarrow C(A) \neq \mathbb{R}^3, \text{ so } r < m.$$

There are two possibilities:
$$\begin{array}{ccc} m=3 & m=3 \\ r=n=1 & r=n=2 \end{array}.$$

(b) Since $N(A) = \{0\}$ (because $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ has 1 solution), there is a unique solution to

$$Ax=0$$
, which is clearly $x=0$. (Can be either $x=\begin{bmatrix}0\\0\end{bmatrix}$ or $x=\begin{bmatrix}0\\0\end{bmatrix}$ depending on if $n=1$ or $n=2$.)

(c) A could be $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (many more possibilities).