

Liquid Neural Networks

Ahmadieslamloo Elaheh

Ausilio Lorenzo

Jafarpour Farshad

Prodan George

University of Padova Laboratory of Computational Physics Group 2210

Table of contents

I. Introduction

I.1 Liquid neural networks

I.2 Secondary structure prediction

I.3 Previous results

II. Methods

II.1 LTC implementation

II.2 DSSP

III. Results

III.1 One-hot vector sequences

III.2 Other methods

IV. Discussion and conclusion

Liquid Neural Networks

- Novel time-continuous RNN instance
- flow of hidden states is determined by ODEs
- inspired by neural dynamics in small species
- several possible application such as autonomous driving, recognition of hand gestures or human activities

RNN Architecture

$$a^{(t+1)} = \sigma(w_a a^{(t)} + w_x x^{(t+1)} + b)$$
$$y^{(t)} = \sigma'(w' a^{(t)} + b'^{(t)})$$

Types of Recurrent Neural Networks

- Standard RNN: discretized version of continuous flow
- Standard Recurrent Neural Network (RNN) Hopfield 1982
- $x(t+1) = f(x(t), I(t), t; \theta)$

 Neural ODE: time continuous network; the representation is a differential equation

Neural ODE Chen et al. NeurIPS, 2018

 $\frac{dx(t)}{dt} = f(x(t), I(t), t; \theta)$

- CT-RNN: a more stable version of Neural ODE
- Continuous-time (CT) RNN Funahashi et al. 1993

 $\frac{dx(t)}{dt} = -\frac{x(t)}{\tau} + f(x(t), I(t), t; \theta)$

Standard RNNs vs ODE Networks

- ODE Networks : are continuous depth equivalent of a Residual Network
- Residual Networks : finite transformation of computation graphs
- Main difference : adaptive computations for ODE Networks
- transform space into a vector field

LTCs: Implementation

- RNN with the following hidden state equation
- Numerical ODE solvers to approximate the equation
- Forward pass complexity depends on choice of ODE solver

$$\frac{dx(t)}{dt} = f(x(t), t, \theta)$$

$$\frac{dx(t)}{dt} \approx \frac{x(t+\delta t) - x(t)}{\delta t} \approx f(x(t), t, \theta)$$

$$\Leftrightarrow x(t+\delta t) = x(t) + \delta t f(x(t), t, \theta)$$

LTCs: Training

- we use classical BPTT
- adjoint sensitivity method :
 - less computationally expensive
 - but can lead to errors

Backpropagation through-time (BPTT)

[Werbos, 1990, Gholami et. al, 2019, Lechner et al. 2019, Lechner et al. 2020, Hasani et al. 2020]

Perform a forward-pass

$$\mathbf{x}(t + \delta t) = \mathbf{x}(t) + \delta t f(\mathbf{x}(t), t, \theta)$$

Compute gradients through the ODE solver

$$d\Theta = \left[\frac{dL}{dx(t+\delta t)}, \frac{dx(t+\delta t)}{dx(t)}, \frac{dx(t+\delta t)}{df}, \frac{df}{dx(t)}, \frac{df}{dt}, \frac{df}{d\theta} \right]$$

Update parameters

$$\Theta_{new} \leftarrow \Theta_{old} + \gamma d\Theta$$

Neural dynamics

[Lapicque 1907; Koch and Segev 1998, Wicks et al, 1996] the dynamic of neurons potential and the behaviour of synaptic currents:

$$\frac{dv(t)}{dt} = -gv(t) + S(t)$$
$$S(t) = f(v(t), I(t))(A - v(t))$$

where

- v(t) neurons potential
- g a leakage conductance
- S the sum of all synaptic inputs to the cell from presynaptic sources
- f is a sigmoidal nonlinearity depending on the state of all neurons
- I(t) external inputs to the cell

Liquid Time-Constant Networks

$$d\mathbf{x}(t)/dt = -\mathbf{x}(t)/\tau + \mathbf{S}(t)$$
 $\mathbf{S}(t) \in \mathbb{R}^{M}$

$$\mathbf{S}(t) = f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)(A - \mathbf{x}(t))$$

$$\frac{d\mathbf{x}(t)}{dt} = -\left[\frac{1}{\tau} + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)\right] \mathbf{x}(t) + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta) A$$

"Liquid" = variable

$$au_{sys} = rac{ au}{1+ au f(\mathbf{x}(t),\mathbf{I}(t),t, heta)}$$

System time-constant

Previous results using LNNs

Structural hierarchy of proteins

Types of acids

Serine

(Ser/S)

H₃N+-C

CH₂ CH₂

NH

NH₂

C = NH2+

Arginine

DSSP classification

G = 3-turn helix (310 helix). Min length 3 residues.

H = 4-turn helix (α helix). Minimum length 4 residues.

 $\overline{I} = 5$ -turn helix (π helix). Minimum length 5 residues.

T = hydrogen bonded turn (3, 4 or 5 turn)

E = extended strand in parallel and/or anti-parallel β -sheet conformation. Min length 2 residues.

B = residue in isolated β-bridge (single pair β-sheet hydrogen bond formation)

S = bend (the only non-hydrogen-bond based assignment).

C = coil (residues which are not in any of the above conformations).

Other methods for prediction

- Statistical Analysis
- Information theory (GOR)
- Hydrophobicity profiles
- Multiple Sequence
- Alignment
- ML Technology
- Joined

Previous results on PSSP

Q3 (ACCURACY)

Liquid NN class (implemented as RNN subclass)

```
class LTCCell(tf.nn.rnn cell.RNNCell):
1
2
3
4
5
6
7
8
9
10
11
12
13
             def init (self, num units)
                 # boundaries, initalization of parameters
                 map inputs(self, inputs, resuse scope=False):
                 # compute cell inputs based on w and b
             def call (self, inputs, state, scope=None):
                 # compute cell outputs using the chosen ODESolver
             def get variables(self):
                 # getter for parameters
14
             def sigmoid(self, v pre, mu, sigma):
                 # Sigmoid implementation
```

Boundaries of trainable parameters

```
self._w_min_value = 0.00001

self._w_max_value = 1000

self._gleak_min_value = 0.00001

self._gleak_max_value = 1000

self._cm_t_min_value = 0.000001

self._cm_t_max_value = 1000
```

Define a trainable variable

e.g. W - the matrix of weights involved in the hidden state output

```
self.W = tf.get_variable(
name='W',
shape=[self._num_units,self._num_units]

trainable=True,
initializer= tf.initializers.constant(
np.random.uniform(
low=self._w_init_min,
high=self._w_init_max,
size=[self._num_units,self._num_units])

)
```

FusedSolver

$$x(t + \Delta t) = \frac{x(t) + \Delta t f(x(t), I(t), t, \theta) A}{1 + \Delta t (1/\tau + f(x(t), I(t), t, \theta))}$$

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
              def ode step(self,inputs,state):
                  # FusedStep Algorithm - Semilmplicit Euler
                       w activation =
                       self.W * self. sigmoid(v pre, self.mu, self.sigma)
                       rev activation = w activation*self.erev
                       w numerator = tf.reduce sum(rev activation, axis=1)
                       + w numerator sensory
                       w denominator = tf.reduce sum(w activation, axis=1)
                       + w denominator sensory
                       numerator = self.cm t * v pre + self.gleak*self.vleak
                       + w numerator
                       denominator = self.cm t + self.gleak + w denominator
19
                       v pre = numerator/denominator
```

Datasets used for PSSP

Name of dataset	Number of proteins	sequence lengths range
CB513	514	20 - 874
CASP12	21	76 - 1494
PDB	9079	20 - 1632
CATH40	31731	18 - 497

METHODS

Results

- One-hot vector inputs
 - Varying sequence length
 - Full protein sequences
 - GridSearch

- Inputs based on other methods
 - NNI, NNIH methods
 - GridSearch
 - Testing on multiple datasets

Varying sequence length

Full protein sequence

- Load data from JSON for each protein
- Create the sequences using delimiters between proteins

DSSP data JSON format

GridSearch

Developed methods

Neighbour-neighbour interaction

We consider a window of 2K+1 amino acids, and we focus to obtain the prediction of the secondary structure corresponding to the amino acid located in the middle. Let us denote this window by the following sequence $(A_j)_{j \in \overline{1.21}}$.

We compute an interaction score based on the distance of the amino acid with respect to the middle amino acid, A[K]. Thus, this distance is between -K and K. Several functions are tested for evaluating the interaction score.

The score of the amino acid, A_j located at a distance $d \in [-K, K]$ will be $f(d_{A_j})$.

A1 A15 A10 A14 A7

K=2 (window of 5 amino acids)
Middle amino acid: A10

Neighbour-neighbour interaction

RESULTS: NNI

Neighbour-neighbour interaction

RESULTS: NNI

GridSearch NNI method

Amino acids windows

Sequence length improving NNI

About hydrophobicity

RESULTS: NNIH

Results - hydrophobicity

RESULTS: NNIH

Testing on different datasets

Name of dataset	Number of proteins	sequence lengths range	test accuracy (+/-)
CB513	514	20 - 874	0.56 +/- 0.01
CASP12	21	76 - 1494	0.64 +/- 0.01
PDB	9079	20 - 1632	0.59 +/- 0.01
САТН40	31731	18 - 497	0.64 +/- 0.01

Literature comparison

Comparing with different networks

all the networks are trained on the best parameters found from the previous GridSearch on LTC dataset: CATH40

Network	training acc (+/- std)	validation acc (+/- std)	test accuracy (+/- std)
LTC	55.56 +/- 0.03	54.73 +/- 0.91	63.31 +/- 0.88
LSTM	59.37 +/- 0.03	51.29 +/- 0.91	61.55 +/- 0.89
NODE	55.97 +/- 0.03	52.74 +/- 0.91	59.86 +/- 0.90
CTGRU	43.54 +/- 0.04	44.60 +/- 0.90	48.37 +/- 0.91
CTRNN	54.89 +/- 0.04	52.28 +/- 0.91	61.45 +/- 0.89

DISCUSSIONS AND CONCLUSIONS 36

LIMITATIONS

• Computational resources

NVIDIA GeForce GTX 1650 Ti, 4096MiB

• LNNs fail to learn from features related to physical properties?

NNIH experiment

MAIN CONCLUSIONS

- Liquid neural network's performance increases when using better input representations
- Larger window size of amino acids and sequence length can increase the performance of the network
- The structure of larger proteins is more difficult to be predicted

FURTHER WORK

- Adding convolutional layers for mapping more representative inputs to the LTC network
- Implementing methods such as PSSM

Thank You!

https://github.com/prodangp/LCP-B

