KALSEL COAL FIRED POWER PLANT - WorkShop Storage

NO. **CALCULATION REF Modeling Geometry** 1) Frame Analsis Modeling Description a. Program : STAAD Pro V8i : WorkShop & Storage b. Building Name c. Structure : Steel Structure d. Lateral Load Resisting System : Steel ordinary moment frame (Transverse Side, Z-axis) Steel ordinary braced frame (Longitude Side, X-axis) e. Building Size : Building Width - 24.0m Building Length - 50m Building Mean Roof Height - 9.1m 1.00m 50.0m

NO.	CALCULATION	REF							
1.0	DESIGN INFORMATION								
1.0	DESCRIPTION								
	1) Location : The plant site is located in Mabu'un Village,								
	Murung Pudak District, Tabalong Regency,								
	South Kalimantan Province,								
	Indonesia about 185km northeast of Banjarmasin.								
	2) Structure : Reinforced Concrete Frames (Roof : Steel Frame)								
	3) Intended Use : Workshop & Storage								
	4) Building Width : 24.00 m								
	5) Building Length : 50.00 m								
	6) Mean Roof Height : 9.10 m								
	7) Seismic Resisting System : Intermediate Moment Frame								
	Steel Ordinary braced frame (X-dir)								
	Steel Ordinary moment-resisting frame (Z-dir)								
1.2	DESIGN CODES AND STANDARDS								
1.2	Project Specification								
	2) Steel: AISC 14th editions, LRFD method								
	① Load and resistance facotr design (LRFD) method in accordance with AISC								
	2) Painforced Congrete: Ultimate Strangth Design, USD								
	3) Reinforced Concrete: Ultimate Strength Design, USD								
	① Ultimate strength design (USD) method in accordance with ACI 318M-11								
1.3	Ultimate strength design (USD) method in accordance with ACI 318M-11 Design Loads ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure								
1.3	 ① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ∴ ASTM SECTION 								
1.3	Ultimate strength design (USD) method in accordance with ACI 318M-11 Design Loads ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel : ASTM SECTION - ASTM A36 : F _y = 245 MPa Fu = 400 MPa								
1.3	 ① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ∴ ASTM SECTION - ASTM A36 : F_y = 245 MPa 								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel : ASTM SECTION - ASTM A36 : F _y = 245 MPa Fu = 400 MPa - ASTM A572 Grade 50 : F _y = 345 MPa Fu = 450 MPa								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel : ASTM SECTIONASTM A36 : F _y = 245 MPa Fu = 400 MPaASTM A572 Grade 50 : F _y = 345 MPa Fu = 450 MPa ② Unit Weight : W _s = 78.5 kN/m ³								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ② ASTM SECTION - ASTM A36 □ F _y = 245 MPa Fu = 400 MPa - ASTM A572 Grade 50 □ F _y = 345 MPa Fu = 450 MPa ② Unit Weight □ W _s = 78.5 kN/m³ ② Modulus of Elasticity □ E _S = 200000 MPa								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel : ASTM SECTIONASTM A36 : F _y = 245 MPa Fu = 400 MPaASTM A572 Grade 50 : F _y = 345 MPa Fu = 450 MPa ② Unit Weight : W _s = 78.5 kN/m ³								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ② ASTM SECTION - ASTM A36 □ F _y = 245 MPa Fu = 400 MPa - ASTM A572 Grade 50 □ F _y = 345 MPa Fu = 450 MPa ② Unit Weight □ W _s = 78.5 kN/m³ ② Modulus of Elasticity □ E _S = 200000 MPa								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ② ASTM SECTION - ASTM A36 ② Eq. 400 MPa - ASTM A572 Grade 50 ② Fy = 345 MPa Fu = 400 MPa ② Unit Weight ③ Fu = 450 MPa ② Unit Weight ③ Modulus of Elasticity ⑤ Es = 200000 MPa ④ Structural Bolt ⑤ ASTM F1852 or F2280 ⑤ Anchor Bolt ⑤ ASTM A307 Grade C or equivalent.								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ② ASTM SECTION - ASTM A36 ② Fy = 245 MPa Fu = 400 MPa - ASTM A572 Grade 50 ② Fy = 345 MPa Fu = 450 MPa ② Unit Weight ③ Ws = 78.5 kN/m³ ② Modulus of Elasticity ② Es = 200000 MPa ④ Structural Bolt ③ ASTM F1852 or F2280 ⑤ Anchor Bolt ③ ASTM A307 Grade C or equivalent. 2) Reinforced Concrete Structure ① Compressive Strength ⑤ fc = 25.0 MPa ② Unit Weight Ws = 25.0 kN/m³								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ② ASTM SECTION - ASTM A36 ② E Fy = 245 MPa Fu = 400 MPa - ASTM A572 Grade 50 ② E Fy = 345 MPa Fu = 450 MPa ② Unit Weight ② Unit Weight ② Ws = 78.5 kN/m³ ③ Modulus of Elasticity ② Es = 200000 MPa ④ Structural Bolt ③ ASTM F1852 or F2280 ⑤ Anchor Bolt ③ ASTM A307 Grade C or equivalent. 2) Reinforced Concrete Structure ① Compressive Strength ② Unit Weight ③ Modulus of Elasticity ② Ec = 25.0 MPa ③ Modulus of Elasticity ③ Modulus of Elasticity ③ Modulus of Elasticity ⑤ Ec = 23500 MPa								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel								
1.3	① Ultimate strength design (USD) method in accordance with ACI 318M-11 4) Design Loads ① ANSI/ASCE7-10 "Minimum design loads for buildings and other structures" MATERIAL SPECIFICATIONS 1) Steel Structure ① Structural Steel ② ASTM SECTION - ASTM A36 ② ② ASTM SECTION - ASTM A572 Grade 50 ② ② ASTM A572 Grade 50 ② ② Unit Weight ② Unit Weight ② Ws = 78.5 kN/m³ ③ Modulus of Elasticity ② ② Es = 200000 MPa ④ Structural Bolt ③ ASTM F1852 or F2280 ⑤ Anchor Bolt ③ ASTM A307 Grade C or equivalent. 2) Reinforced Concrete Structure ① Compressive Strength ③ Grade C or equivalent. 2) Reinforced Structure ② Unit Weight ③ Ws = 25.0 kN/m³ ③ Modulus of Elasticity ⑤ Es = 23500 MPa ② Unit Weight ⑤ Ws = 25.0 kN/m³ ④ Modulus of Elasticity ⑤ Ec = 23500 MPa ④ Poison's Ratio for Concrete ⑤ U = 0.2 ⑤ Reinforcement Steel ⑤ SNI 07-2052 BJTS40								

			C	ALCULA	TION		R
^	Stool Momber Design						
.0	Steel Member Design						
.2	Design of Member						
1) SC1						
		START OF DES	SIGN OUTPU	T OF MEMB	ER 369		
	MEMBER NO: 369 (CRITICAL RATI	0: 0.953	(PASS)	LOAD: 20	9	
	LOCATION (ft): 3.28	CONDITION: E	q. H1-1b				
	SECTION: ST W24X104			C SECTION	S)		
		ASTM A					
	UNIT: KIP FEET	Fy=345	ымра				
	STRENGTH CHECKS:						
	CRITICAL RATIO: 0.95	53(PASS)	LOAD CASE:	: 209	LOCATION (ft): 3 28 CONDI	TION: Fa H1-1b
	DESIGN FORCES: Fx:				Fz:		Trons Eq. III 10
		-6.38E-02					
		ADEL SELNDENI	NESS HATTO	200.00	0		
	FORCE & MOMENT CAPAC	ITY UNIT: KIF	P FEET				
				200.00 LOC	O LOAD CASE:	CRITERIA:	
	FORCE & MOMENT CAPAC	ITY UNIT: KIF	P FEET			CRITERIA: Eq. D2-1	
	FORCE & MOMENT CAPACI	ITY UNIT: KIF	P FEET	LOC	LOAD CASE:		
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING:	ITY UNIT: KIF CAPACITY 978.613	P FEET RATIO 0.000	LOC 0.000	LOAD CASE:	Eq. D2-1	E - 7
	FORCE & MOMENT CAPACT DETAILS: TENSION YIELDING: TENSION RUPTURE:	OF THE STATE OF TH	P FEET RATIO 0.000 0.000	LOC 0.000 0.000	LOAD CASE: 201 201	Eq. D2-1 Eq. D2-2	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK:	OF STATE OF	P FEET RATIO 0.000 0.000 0.066 0.067 0.066	LOC 0.000 0.000 0.000 0.000 0.000	LOAD CASE: 201 201 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1	•
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR:	978.613 1331.100 960.567 944.568 955.788 244.647	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000	LOC 0.000 0.000 0.000 0.000 0.000	LOAD CASE: 201 201 209 209 209 244	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. E7-1	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842	LOC 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LOAD CASE: 201 201 209 209 209 244 209	Eq. 02–1 Eq. 02–2 Eq. E7–1 Eq. E7–1 Eq. E7–1 Eq. G2–1 Eq. G2–1	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MAJOR FLEXURE YIELD:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920	LOC 0.000 0.000 0.000 0.000 0.000 0.000 3.281	LOAD CASE: 201 201 209 209 209 244 209 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. G2-1 Eq. G2-1 Eq. F2-1	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MAJOR FLEXURE YIELD: MINOR FLEXURE YIELD:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02 1.66E+02	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920 0.000	LOC 0.000 0.000 0.000 0.000 0.000 0.000 3.281 3.281	LOAD CASE: 201 201 209 209 209 244 209 209 244	Eq. 02–1 Eq. 02–2 Eq. E7–1 Eq. E7–1 Eq. E7–1 Eq. G2–1 Eq. G2–1 Eq. F2–1 Eq. F6–1	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MAJOR FLEXURE YIELD: MINOR FLEXURE YIELD: FLEX COMP INTER:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02 1.66E+02 N/A	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920 0.000 0.033	LOC 0.000 0.000 0.000 0.000 0.000 0.000 3.281 3.281 0.000	LOAD CASE: 201 201 209 209 209 244 209 209 244 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. G2-1 Eq. G2-1 Eq. F2-1 Eq. F6-1 Eq. H1-1b	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MAJOR FLEXURE YIELD: MINOR FLEXURE YIELD: FLEX COMP INTER: FLEX TENS INTER:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02 1.66E+02 N/A	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920 0.000 0.033 0.920	LOC 0.000 0.000 0.000 0.000 0.000 0.000 3.281 3.281 0.000 3.281	LOAD CASE: 201 201 209 209 209 244 209 209 244 209 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. G2-1 Eq. G2-1 Eq. F2-1 Eq. F6-1 Eq. H1-1b	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MAJOR FLEXURE YIELD: MINOR FLEXURE YIELD: FLEX COMP INTER: FLEX TENS INTER: IN PLANE FLEX COMP:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02 1.66E+02 N/A N/A	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920 0.000 0.033 0.920 0.953	LOC 0.000 0.000 0.000 0.000 0.000 0.000 3.281 3.281 0.000 3.281 3.281	LOAD CASE: 201 201 209 209 209 244 209 209 244 209 209 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. G2-1 Eq. G2-1 Eq. F6-1 Eq. H1-1b Eq. H1-1b	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MAJOR FLEXURE YIELD: MINOR FLEXURE YIELD: FLEX COMP INTER: FLEX TENS INTER:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02 1.66E+02 N/A	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920 0.000 0.033 0.920	LOC 0.000 0.000 0.000 0.000 0.000 0.000 3.281 3.281 0.000 3.281	LOAD CASE: 201 201 209 209 209 244 209 209 244 209 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. G2-1 Eq. G2-1 Eq. F2-1 Eq. F6-1 Eq. H1-1b	Members with
	FORCE & MOMENT CAPACI DETAILS: TENSION YIELDING: TENSION RUPTURE: MAJOR COMPRESSION: MINOR COMPRESSION: FLEX TOR BUCK: MAJOR SHEAR: MINOR SHEAR: MINOR SHEAR: MINOR FLEXURE YIELD: FLEX COMP INTER: FLEX TENS INTER: IN PLANE FLEX COMP: OUT PLANE FLEX COMP:	978.613 1331.100 960.567 944.568 955.788 244.647 256.486 7.70E+02 1.66E+02 N/A N/A	P FEET RATIO 0.000 0.000 0.066 0.067 0.066 0.000 0.842 0.920 0.000 0.033 0.920 0.953 0.943	LOC 0.000 0.000 0.000 0.000 0.000 3.281 3.281 0.000 3.281 3.281 3.281	LOAD CASE: 201 201 209 209 209 244 209 209 244 209 209 209	Eq. D2-1 Eq. D2-2 Eq. E7-1 Eq. E7-1 Eq. E7-1 Eq. G2-1 Eq. G2-1 Eq. F6-1 Eq. H1-1b Eq. H1-1b Eq. H1-1b	Members with

Table 1-1 (continued) W Shapes **Dimensions**

				Web			Flange				Distance				
Shape	Area,		oth,	Thick	ness,	ŧw	Wic	dth,	Thick	ness,	-	k		_ [Work-
Snape	A	'	d	t,	w ´	2	b _f		tf		K _{des} K _{det}		<i>k</i> ₁		able Gage
	in. ²	İſ	٦.	in.		in.	in.		in.		in.	in.	in.	in.	in.
W24×370 ^h	109	28.0	28		11/2	3/4	13.7	13 ⁵ /8	2.72	2 ³ / ₄	3.22	3 ⁵ /8	1 ⁹ / ₁₆	20 ³ / ₄	51/2
$\times 335^{h}$	98.4	27.5	271/2	1.38	1 ³ /8	11/16	13.5	13 ¹ / ₂	2.48	21/2	2.98	33/8	11/2	$\sqcup \sqcup$	
$\times 306^{h}$	89.8	27.1	27 ¹ /8	1.26	11/4	5/8	13.4	13 ³ /8	2.28	21/4	2.78	33/16	17/16		
x279 ^h	82.0	26.7	26 ³ / ₄	1.16	1 ³ / ₁₆	5/8	13.3	131/4	2.09	2 ¹ / ₁₆	2.59	3	1 ⁷ / ₁₆		
×250	73.5	26.3	26 ³ /8	1.04	11/16	9/16	13.2	13 ¹ /8	1.89	1 ⁷ /8	2.39	213/16	1 ³ /8		
×229	67.2	26.0	26	0.960	¹⁵ / ₁₆	1/2	13.1	13 ¹ /8	1.73	1 ³ / ₄	2.23	2 ⁵ /8	1 5/16		
×207	60.7	25.7	25 ³ /4	0.870	7/8	7/16	13.0	13	1.57	1 ⁹ / ₁₆	2.07	21/2	11/4		
×192	56.3	25.5	251/2	0.810	¹³ /16	⁷ /16	13.0	13	1.46	1 ⁷ /16	1.96	2 ³ /8	11/4	l I I	
×176	51.7	25.2	25 ¹ / ₄	0.750	3/4	3/8	12.9	12 ⁷ /8	1.34	1 5/ ₁₆	1.84	21/4	1 ³ / ₁₆		
×162	47.7	25.0	25	0.705	11/16	3/8	13.0	13	1.22	11/4	1.72	21/8	1 ³ / ₁₆		
×146	43.0	24.7	243/4	0.650	5/8	⁵ /16	12.9	12 ⁷ /8	1.09	11/16	1.59	2	11/8		
×131	38.5	24.5	241/2	0.605	5/8	⁵ /16	12.9	12 ⁷ /8	0.960	15/16	1.46	17/8	11/8		
×117°	34.4	24.3	241/4	0.550	9/16	⁵ /16	12.8	12 ³ / ₄	0.850	7/8	1.35	13/4	1 ¹ /8		
×104 ^c	30.6	24.1	24	0.500	1/2	1/4	12.8	12 ³ /4	0.750	3/4	1.25	1 ⁵ /8	11/16	\ \	Y
W24×103°	30.3	24.5	24 ¹ / ₂	0.550	⁹ /16	⁵ /16	9.00	9	0.980	1	1.48	1 ⁷ /8	1 ½	20 ³ / ₄	5 ¹ / ₂
×94°	27.7	24.3	241/4	0.515	1/2	1/4	9.07	91/8	0.875	7/8	1.38	1 ³ /4	11/16	111	
×84°	24.7	24.1	24 ¹ /8	0.470	1/2	1/4	9.02	9	0.770	3/4	1.27	111/16	11/16		
×76°	22.4	23.9	237/8	0.440	⁷ / ₁₆	1/4	8.99	9	0.680	11/16	1.18	1 9/ ₁₆	11/16		J
×68°	20.1	23.7	233/4	0.415	7/16	1/4	8.97	9	0.585	⁹ /16	1.09	11/2	11/16	🔻	Y
W24×62 ^c	18.2	23.7		0.430		1/4	7.04		0.590	⁹ /16	1.09	11/2	11/16	203/4	3 ¹ /2 ^g
×55 ^{c,v}	16.2	23.6	235/8	0.395	3/8	³ /16	7.01	7	0.505	1/2	1.01	1 ⁷ /16	1	203/4	$3^{1/2^{9}}$
W21×201	59.2	23.0	23	0.910	15/16	1/2	12.6	12 ⁵ /8	1.63	1 ⁵ /8	2.13	21/2	15/16	18	5 ¹ / ₂
×182	53.6	22.7	223/4		¹³ / ₁₆	7/16	12.5	12 ¹ / ₂	1.48	11/2	1.98	2 ³ /8	11/4		
×166	48.8	22.5	221/2			3/8	12.4	12 ³ /8	1.36	1 ³ /8	1.86	21/4	1 ³ /16		
×147	43.2	22.1	22	0.720		3/8	12.5	12 ¹ /2	1.15	11/8	1.65	2	1 ³ / ₁₆		
×132	38.8	21.8	21 ⁷ /8	0.650	5/8	5/16	12.4	121/2	1.04	1 ¹ /16	1.54	1 ¹⁵ /16		\	
×122	35.9	21.7		0.600		⁵ /16	12.4	12 ³ /8	0.960		1.46	1 ¹³ / ₁₆	11/8		
×111	32.7	21.5	211/2			5/16	12.3	12 ³ /8	0.875		1.38	13/4	11/8	↓	
×101 ^c	29.8	21.4	213/8	0.500	1/2	1/4	12.3	121/4	0.800	1 ³ /16	1.30	111/16	11/16	7	▼
						-									

 $^{^{\}circ}$ Shape is slender for compression with $F_{\nu} = 50$ ksi. 9 The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section to ensure compatibility.

^h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shape does not meet the h/t_{w} limit for shear in Specification Section G2.1a with $F_{y}=50$ ksi.

Table 1–1 (continued) W Shapes Properties

Nom-	Sec		on Axis X-X					Axis	Y-Y	-	r _{ts}	h _o	Torsional Properties	
Wt.	Crit	eria h	1	s	r	Z		s	r	Z	- 13	0	J	Cw
lb/ft	$\frac{D_f}{2t_f}$	$\frac{n}{t_{\rm w}}$	in.4	in. ³	in.	in. ³	in. ⁴	in. ³	in.	in. ³	in.	in.	in.4	in. ⁶
370	2.51	14.2	13400	957		1130	1160	170	3.27	267	3.92	25.3	201	186000
335	2.73	15.6	11900	864	11.0	1020	1030	152	3.23	238	3.86	25.0	152	161000
306	2.94	17.1	10700	789	10.9	922	919	137	3.20	214	3.81	24.9	117	142000
279	3.18	18.6	9600	718	10.8	835	823	124	3.17	193	3.76	24.6	90.5	125000
250	3.49	20.7	8490	644	10.7	744	724	110	3.14	171	3.71	24.5	66.6	108000
229	3.79	22.5	7650	588	10.7	675	651	99.4	3.11	154	3.67	24.3	51.3	96100
207	4.14	24.8	6820	531	10.6	606	578	88.8	3.08	137	3.62	24.1	38.3	84100
192	4.43	26.6	6260	491	10.5	559	530	81.8	3.07	126	3.60	24.0	30.8	76300
176		28.7	5680	450	10.5	511	479	74.3	3.04	115	3.57	23.9	23.9	68400
162		30.6	5170	414	10.4	468	443	68.4	3.05	105	3.57	23.8	18.5	62600
146		33.2	4580	371	10.3	418	391	60.5	3.01	93.2	I	23.7	13.4	54600
131	6.70	l .	4020	329	10.2	370	340	53.0	2.97	81.5		23.5	9.50	47100
117	7.53		3540	291	10.1	327	297	46.5	2.94	71.4	3.46		6.72	40800
104	8.50	43.1	3100	258	10.1	289	259	40.7	2.91	62.4	3.42	23.3	4.72	35200
103	4.59	39.2	3000	245	10.0	280	119	26.5	1.99	41.5	2.40	23.6	7.07	16600
94		41.9	2700	222	9.87	254	109	24.0	1.98	37.5	ı	23.4	5.26	15000
84	5.86	45.9	2370	196	9.79	224	94.4	20.9	1.95	32.6	1	23.3	3.70	12800
76	6.61	49.0	2100	176	9.69	200	82.5	18.4	1.92	28.6	2.34	23.2	2.68	11100
68	7.66	52.0	1830	154	9.55	177	70.4	15.7	1.87	24.5	2.30	23.1	1.87	9430
62	5.97	50.1	1550	131	9.23	153	34.5	9.80	1.38	15.7	1.75	23.2	1.71	4620
55	6.94	54.6	1350	114	9.11	134	29.1	8.30	1.34	13.3	1.71	23.1	1.18	3870
201	3.86	20.6	5310	461	9.47	5 30	542	86.1	3.02	133	3.55	21.4	40.9	62000
182	4.22	22.6	4730	417	9.40	476	483	77.2	3.00	119	3.51	21.2	30.7	54400
166	4.57	25.0	4280	380	9.36	432	435	70.0	2.99	108	3.48	21.1	23.6	48500
147	5.44	26.1	3630	329	9.17	373	376	60.1	2.95	92.6	3.45	20.9	15.4	41100
132	6.01	28.9	3220	295	9.12	333	333	53.5	2.93	82.3	3.42	20.8	11.3	36000
122	6.45	31.3	2960	273	9.09	307	305	49.2	2.92	75.6	3.40	20.7	8.98	32700
111	7.05	34.1	2670	249	9.05	279	274	44.5	2.90	68.2	3.37	20.6	6.83	29200
101	7.68	37.5	2420	227	9.02	253	248	40.3	2.89	61.7	3.35	20.6	5.21	26200

NO. **CALCULATION REF** BASIC LOAD CASES AND LOAD COMBINATIONS 8.0 2) Load Combinations For Concrete Design, Foundation Design WIND Earthquake Live Crane 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 Load Combination D LL LR WX+ WX-WZ+ WZ-EX+ EX-EZ+ EZ-EY+ CS1 CS2 CS3 CS4 CF1 CF2 CF3 CF4 LC #201 1.40 LC #202 1.20 1.60 0.50 LC #203 1.20 1.60 0.50 1.60 LC #204 1.20 1.60 0.50 1.60 LC #205 1.20 1.60 Normal LC #206 1.20 1.60 1.60 Condition LC #207 1.20 1.00 1.60 LC #208 1.20 1.00 1.60 1.00 LC #209 1.20 1.00 1.60 1.00 LC #210 1.20 1.00 1.60 1.00 LC #211 1.20 1.00 1.60 1.00 LC #212 0.75 LC #213 1.20 0.50 1.60 LC #214 1.20 0.50 1.60 LC #215 1.20 1.60 0.50 LC #216 1.20 1.60 0.50 LC #217 1.20 1.00 0.50 1.00 LC #218 1.20 1.00 0.50 1.00 LC #219 1.20 1.00 LC #220 1.20 1.00 0.50 1.00 1.00 LC #221 1.20 1.00 1.00 0.50 1.00 LC #222 1.20 1.00 0.50 1.00 1.00 1.00 LC #223 1.20 1.00 0.50 1.00 Wind Condition LC #224 1.20 1.00 0.50 1.00 LC #225 1.20 1.00 0.50 1.00 1.00 LC #226 1.00 0.50 1.00 LC #227 1.20 1.00 1.00 1.00 0.50 LC #228 1.20 1.00 0.50 1.00 1.00 LC #229 1.20 1.00 0.50 1.00 1.00 LC #230 1.20 1.00 0.50 1.00 1.00 LC #231 1.20 1.00 0.50 1.00 1.00 LC #232 1.20 1.00 0.50 1.00 LC #233 1.20 1.00 LC #234 1.20 1.00 0.50 1.00 1.00 LC #235 1.20 1.00 0.50 1.00 1.00 LC #236 1.20 1.00 1.00 1.00 LC #237 1.20 1.00 1.00 1.00 LC #238 1.20 1.00 1.00 1.00 LC #239 1.00 1.00 Seismic Condition LC #240 1.00 LC #241 1.20 1.00 1.00 1.00 LC #242 1.20 1.00 1.00 1.00 LC #243 1.20 1.00 1.00 1.00

NO. CALCULATION REF

8.0 BASIC LOAD CASES AND LOAD COMBINATIONS

8.1 BASIC LOAD CASES

Load Case	Description		
1	Dead Load	-	D
2	Live Load	-	LL
3	Roof Live Load	-	LR
4	Wind Load X +direction	-	WX+
5	Wind Load X -direction	-	WX-
6	Wind Load Z +direction	-	WZ+
7	Wind Load Z -direction	-	WZ-
8	Earthquake Load X +direction	-	EX+
9	Earthquake Load X -direction	-	EX-
10	Earthquake Load Z +direction	-	EZ+
11	Earthquake Load Z -direction	-	EZ-
12	Earthquake Load Y+direction	-	EY+
13	Earthquake Load Y -direction	-	EY-
14	Crane Empty Load	-	CS1
15	Crane Empty Load	-	CS2
16	Crane Empty Load	-	CS3
17	Crane Empty Load	-	CS4
18	Crane Operating Load	-	CF1
19	Crane Operating Load	-	CF2
20	Crane Operating Load	-	CF3
21	Crane Operating Load	-	CF4

2) SC2				C	ALCULA	TION			RI
### ACTUAL SENDERNESS RATIO: 46.461 LOAD: 287 LOC.(ft): 0.000 ### CAPACITY UNIT: KIP FEET DESIGN FORCEs: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mx: -4.47E-03 My: 1.48E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 46.461 LOAD: 287 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY RATIO 0.000 0.000 201 Eq. D2-1 TENSION FIRETHER: 448.050 0.000 0.000 201 Eq. D2-2 MMJGR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR SHEAR: 101.566 0.027 5.249 247 Eq. E3-1 MINOR SHEAR: 101.566 0.027 5.249 247 Eq. E3-1 MINOR SHEAR: 101.566 0.004 2.625 217 Eq. E2-1 MINOR SHEAR: 101.566 0.004 5.249 216 Eq. G2-1 MINOR FLEXURE YIELD: 9.25E+01 0.004 2.625 217 Eq. F2-1 MINOR FLEXURE YIELD: 9.25E+01 0.004 2.625 217 Eq. F2-1 MINOR FLEXURE YIELD: 4.29E+01 0.038 5.249 247 Eq. F3-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F3-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F3-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F3-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F3-1		Otrack Manusham Bassiana							
MEMBER NO: 396 CRITICAL RATIO: 0.348(PASS) LOAD: 247	.0	Steel Member Design							
MEMBER NO: 396 CRITICAL RATIO: 0.348(PASS) LOAD: 247 LOCATION (ft): 5.25 CONDITION: Eq. H1-1b SECTION: ST (MBX35) (AISC SECTIONS) UNIT: KIP FEET STRENGTH CHECKS: CRITICAL RATIO: 0.348(PASS) LOAD CASE: 242 LOCATION (ft): 5.25 CONDITION: Eq. H1-1b DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mo: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 46.461 LOAD: 267 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY RATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. 02-1 TENSION RUPTURE: 448.050 0.000 0.000 201 Eq. 02-2 IMAJOR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR COMPRESSION: 294.459 0.045 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E4-1 MAJOR SHEAR: 53.668 0.004 5.249 247 Eq. 62-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. 62-1 MINOR SHEAR: 53.668 0.004 5.249 247 Eq. 62-1 MINOR FLEXURE YIELD: 4.29E+01 0.338 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1	2)	SC2							
MEMBER NO: 396 CRITICAL RATIO: 0.348(PASS) LOAD: 247 LOGATION (ft): 5.25 CONDITION: Eq. H1-1b SECTION: ST MBX35 (AISC SECTIONS) UNIT: KIP FEET STRENGTH CHECKS: CRITICAL RATIO: 0.348(PASS)) LOAD CASE: 247 LOCATION (ft): 5.25 CONDITION: Eq. H1-1b DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mx: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 200.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY RATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. D2-1 TENSION RUPTURE: 448.050 0.000 0.000 201 Eq. D2-2 IMAJOR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR COMPRESSION: 294.459 0.045 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E3-1 MINOR SHEAR: 53.668 0.004 5.249 247 Eq. Q2-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. Q2-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. Q2-1 MINOR FLEXURE YIELD: 9.25E+01 0.004 2.625 217 Eq. F2-1 MINOR FLEXURE YIELD: 9.25E+01 0.004 2.625 217 Eq. F2-1 MINOR FLEXURE YIELD: 9.25E+01 0.038 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1									
MEMBER NO: 396 CRITICAL RATIO: 0.348(PASS) LOAD: 247 LOGATION (ft): 5.25 CONDITION: Eq. H1-1b SECTION: ST MBX35 (AISC SECTIONS) UNIT: KIP FEET STRENGTH CHECKS: CRITICAL RATIO: 0.348(PASS)) LOAD CASE: 242 LOCATION (ft): 5.25 CONDITION: Eq. H1-1b DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mo: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 200.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY RATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. D2-1 TENSION RUPTURE: 448.050 0.000 0.000 201 Eq. D2-2 MAJOR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR COMPRESSION: 294.459 0.045 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E3-1 MAJOR SHEAR: 53.668 0.004 5.249 247 Eq. Q2-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. Q2-1 MINOR FLEXURE YIELD: 4.29E+01 0.038 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1									
LOCATION (ft): 5.25 CONDITION: Eq. H1-1b SECTION: ST WBX35 (AISC SECTIONS) UNIT: KIP FEET STRENGTH CHECKS: CRITICAL RATIO3 0.348(PASS) LOAD CASES 247 LOCATION (ft): 5.25 CONDITION: Eq. H1-1b DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mx: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 46.461 LOAD: 287 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY RATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. D2-1 TENSION RUPTURE: 448.050 0.000 0.000 201 Eq. D2-2 MAJOR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR COMPRESSION: 294.459 0.048 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E3-1 MAJOR SHEAR: 101.566 0.027 5.249 247 Eq. G2-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. G2-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. G2-1 MINOR FLEXURE YIELD: 9.25E+01 0.004 2.625 217 Eq. F2-1 MINOR FLEXURE YIELD: 4.29E+01 0.338 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1			START OF DE	SIGN OUTPL	JT OF MEMB	ER 396 -			
LOCATION (ft): 5.25 CONDITION: Eq. H1-1b SECTION: ST W8X35									
SECTION: ST WEX35 (AISC SECTIONS)		MEMBER NO: 396	CRITICAL RAT	10: 0.348	B(PASS)	LOAD: 2	247		
STRENGTH CHECKS: CRITICAL RATIO		LOCATION (ft): 5.25	CONDITION:	Eq. H1-1b					
STRENGTH CHECKS: CRITICAL RATIO: 0.348(PASS) LOAD CASE: 247 LOCATION (ft): 5.25 CONDITION: Eq. H1-16 DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mx: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 46.461 LOAD: 287 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY RATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. 02-1 TENSION RUPTURE: 448.050 0.000 0.000 201 Eq. 02-2 MAJOR COMPRESSION: 317.242 0.045 0.000 211 Eq. E3-1 MINOR COMPRESSION: 294.459 0.048 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. E4-1 MAJOR SHEAR: 101.566 0.027 5.249 247 Eq. G2-1 MINOR SHEAR: 53.668 0.004 5.249 216 Eq. G2-1 MAJOR FLEXURE YIELD: 9.25E+01 0.004 2.625 217 Eq. F2-1 MINOR FLEXURE YIELD: 4.29E+01 0.338 5.249 247 Eq. F6-1 FLEX COMP INTER: N/A 0.348 5.249 247 Eq. F6-1		SECTION: ST W8X35		(AIS	SC SECTION	S)			
CRITICAL RATIO: 0.348(PASS) LOAD CASE: 247 LOCATION (ft): 5.25 CONDITION: Eq. HI-1b DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mx: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 46.461 LOAD: 287 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 200.000 287 LOC.(ft): 0.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET KIP FEET DETAILS: CAPACITY RATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. 02-1 TENSION YIELDING: 329.402 0.000 0.000 201 Eq. 02-2 MAJOR COMPRESSION: 317.242 0.045 0.000 201 Eq. 02-2 MINOR COMPRESSION: 314.167 0.045 0.000 211 Eq. Eq. E4-1 M		UNIT: KIP FEET							
CRITICAL RATIO: 0.348(PASS) LOAD CASE: 247 LOCATION (ft): 5.25 CONDITION: Eq. HI-1b DESIGN FORCES: Fx: 5.52(C) Fy: -0.01 Fz: 2.77 Mx: -4.47E-03 My: 1.45E+01 Mz: 3.02E-02 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 46.461 LOAD: 287 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 200.000 287 LOC.(ft): 0.000 FORCE & MOMENT CAPACITY UNIT: KIP FEET DETAILS: CAPACITY BATIO LOC LOAD CASE: CRITERIA: TENSION YIELDING: 329.402 0.000 0.000 201 Eq. 02-1 TENSION RUPTURE: 448.050 0.000 0.000 201 Eq. 02-2 MAJOR COMPRESSION: 317.242 0.045 0.000 211 Eq. Eq. 3-1 FLEX TOR BUCK: 314.167 0.045 0.000 211 Eq. Eq. E4-1									

NO. **CALCULATION REF** BASIC LOAD CASES AND LOAD COMBINATIONS 8.0 2) Load Combinations For Concrete Design, Foundation Design WIND Earthquake Live Crane 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Load Combination D LL LR WX+ WX-WZ+ WZ-EX+ EX-EZ+ EZ-EY+ CS1 CS2 CS4 CF1 CF2 CF3 CF4 LC #244 1.20 1.00 1.00 1.20 1.00 LC #245 1.20 1.00 1.00 1.00 1.20 LC #246 1.20 1.20 1.00 1.00 1.00 1.20 1.00 1.00 1.00 LC #248 1.00 1.00 1.00 1.20 LC #249 1.20 1.00 1.00 LC #250 1.20 1.00 1.00 1.00 1.20 LC #251 1.20 1.00 1.00 1.20 1.00 LC #252 1.20 1.00 1.20 1.00 1.00 LC #253 1.00 1.20 1.00 1.00 1.20 LC #254 1.20 1.00 1.00 1.00 LC #255 1.00 1.00 1.00 1.20 LC #256 1.20 1.00 1.00 1.00 LC #257 1.20 1.00 1.00 1.00 LC #258 1.20 1.00 1.00 1.00 1.20 LC #259 1.00 1.20 1.00 1.00 1.20 Seismic Condition LC #260 1.20 1.00 1.00 1.00 1.20 LC #261 1.20 1.00 1.00 1.00 1.20 LC #262 1.20 1.00 1.00 1.00 1.20 LC #263 1.00 1.20 1.20 1.00 1.00 LC #264 1.20 1.00 1.00 1.00 1.20 LC #265 1.20 1.00 1.00 1.00 1.20 LC #266 1.20 1.00 1.00 1.00 1.20 LC #267 1.20 1.00 1.00 1.00 1.20 LC #268 1.20 1.00 1.00 1.00 1.20 LC #269 1.20 1.00 LC #270 1.20 1.00 1.20 1.00 1.00 LC #271 1.00 1.20 1.20 1.00 1.00 LC #272 1.20 1.20 1.00 1.00 1.00 LC #273 1.20 1.20 1.00 1.00 1.00 LC #274 1.20 1.00 1.00 1.00 1.20 LC #275 1.20 1.00 1.00 1.00 1.20 LC #276 0.90 1.00 Wind Condition LC #278 0.90 1.00 LC #279 0.90 1.00 LC #280 0.90 1.00 LC #281 0.90 1.00 LC #282 LC #283 0.90 Seismic Condition LC #284 0.90 1.00 LC #285 0.90 1.00 LC #286 0.90 1.00 LC #287 1.00 0.90