EXERCISES AND PROBLEMS FOR CHAPTER 2: MEASURES

A. Problems and Exercises for everyone:

All problems and exercises in parts B and C.

B. Non-assessed Problems and Exercises (corrected in class):

$$0.1.1;$$
 $0.1.3;$ $0.1.5;$ $0.1.7$ (a), (b); $0.2.1;$ $0.2.2;$ $0.2.3;$ $0.2.4;$ $0.2.9;$ $0.2.11;$ $0.2.13;$ $0.3.1;$ $0.3.3;$ $0.4.2;$ $0.5.4,$ $0.5.6.$

C. Assessed Assignments (to be submitted):

D. Bonus Problems and Exercises: Remaining exercises and problems.

0.1 ALGEBRAS AND σ -ALGEBRAS

Exercise 0.1.1. Show that a nonempty family $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra provided that for all $A, B \in \mathcal{A}$ we have $A^c \in \mathcal{A}$ and $A \cap B \in \mathcal{A}$.

Exercise 0.1.2. Prove that for any class \mathcal{E} of sets in X and any mapping $f: X \to X$, one has $\sigma(f^{-1}(\mathcal{E})) = f^{-1}(\sigma(\mathcal{E}))$, where $f^{-1}(\mathcal{E}) = \{f^{-1}(E) : E \in \mathcal{E}\}$.

Exercise 0.1.3. Prove that every countable set in \mathbb{R} is a Borel set.

Exercise 0.1.4. If Y is a nonempty Borel subset of \mathbb{R} , show that the Borel algebra of the subspace Y is $\{A \in \mathcal{B}(\mathbb{R}) : A \subset Y\}$.

Exercise 0.1.5. An F_{σ} -set is any countable union of closed sets, and a G_{δ} -set is any countable intersection of open sets. Prove that both types of sets are Borel sets.

Exercise 0.1.6. Let $\{E_n\}$ be a sequence in an algebra \mathcal{A} , then there is a sequence $\{F_n\}$ of disjoint sets of \mathcal{A} such that $F_n \subset E_n$ for each n, $\bigcup_{n=1}^k B_n = \bigcup_{n=1}^k A_n$ for each n, and $\bigcup_{n=1}^\infty B_n = \bigcup_{n=1}^\infty A_n$.

Exercise 0.1.7. Prove that $\mathcal{B}(\mathbb{R})$ is generated by each of the following:

- (a) the open intervals $\mathcal{E}_1 = \{(a, b) : a < b\}, a, b \in \mathbb{R};$
- (b) the closed intervals $\mathcal{E}_2 = \{[a, b] : a < b\}, a, b \in \mathbb{R};$
- (c) the half-open intervals $\mathcal{E}_3 = \{(a,b] : a < b\}$ or $\mathcal{E}_4 = \{[a,b) : a < b\}$ $(a,b \in \mathbb{R});$
- (d) the open rays $\mathcal{E}_5 = \{(a, \infty) : a \in \mathbb{R}\}\ \text{or}\ \mathcal{E}_6 = \{(-\infty, b) : b \in \mathbb{R}\};$
- (e) the open rays $\mathcal{E}_7 = \{[a, \infty) : a \in \mathbb{R}\}\ \text{or}\ \mathcal{E}_8 = \{(-\infty, b] : b \in \mathbb{R}\}.$

Exercise 0.1.8. Let D be an arbitrary dense set in \mathbb{R} (say $D = \mathbb{Q}$). Prove that $\mathcal{B}(\mathbb{R})$ is generated by any of the following classes of sets:

- (a) the open intervals $\mathcal{F}_1 = \{(a,b) : a < b\}, a,b \in D;$
- (b) the closed intervals $\mathcal{F}_2 = \{[a, b] : a < b\}, a, b \in D;$
- (c) the half-open intervals $\mathcal{F}_3 = \{(a, b] : a < b\}$ or $\mathcal{F}_4 = \{[a, b) : a < b\}, a, b \in D$;
- (d) the open rays $\mathcal{F}_5 = \{(a, \infty) : a \in D\}$ or $\mathcal{F}_6 = \{(\infty, b) : b \in D\}$;
- (e) the open rays $\mathcal{F}_7 = \{[a, \infty) : a \in D\}$ or $\mathcal{F}_8 = \{(\infty, b] : b \in D\}$.

0.2 MEASURES

Exercise 0.2.1. Let (X, \mathcal{M}, μ) be a measure space. Show that if μ is σ -finite, then for every set $E \in \mathcal{M}$, there exists a sequence $\{E_n\} \subset \mathcal{M}$ such that $E = \bigcup_n E_n$ and $\mu(E_n) < \infty$ for each n, i.e., every $E \in \mathcal{M}$ is σ -finite.

Exercise 0.2.2. Show that a countable union of null sets is again a null set.

Exercise 0.2.3. Let (X, \mathcal{M}, μ) be a measure space, and let $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M}$. Prove that

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu\left(\bigcup_{i=1}^{n} A_i\right).$$

Exercise 0.2.4. Let \mathcal{M} be a σ -algebra of subsets of a set X and the set function $\mu: \mathcal{M} \to [0, \infty)$ be finitely additive.

(a) Prove that μ is a measure if and only if whenever $\{A_n\} \subset \mathcal{M}, A_1 \subset A_2 \subset \cdots$, then

$$\mu\bigg(\bigcup_{n=1}^{\infty} A_n\bigg) = \lim_{n \to \infty} \mu(A_n).$$

(b) Suppose that μ is finite. Prove that μ is a measure if and only if whenever $\{A_n\} \subset \mathcal{M}, A_1 \supset A_2 \supset \cdots$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$, then

$$\lim_{n\to\infty}\mu(A_n)=0.$$

Exercise 0.2.5. Let \mathcal{A} be the algebra of sets $A \subset \mathbb{N}$ such that either A or $\mathbb{N} \setminus A$ is finite. For finite A, let $\mu(A) = 0$, and for A with a finite complement let $\mu(A) = 1$. Then μ is an additive, but not countably additive set function.

Exercise 0.2.6. Let X be a countably infinite set, and let \mathcal{A} be the algebra consisting of all finite subsets of X and their complements. If A is finite, set $\mu(A) = 0$, and if A^c is finite, set $\mu(A) = 1$.

- (a) Show that μ is finitely additive but not countably additive on \mathcal{A} .
- (b) Show that X is the limit of a sequence of sets $A_n \in \mathcal{A}$, $A_1 \subset A_2 \subset \cdots$ such that $\mu(A_n) = 0$ for all n but $\mu(X) = 1$.

Exercise 0.2.7. Let μ be counting measure on X, where X is an infinite set. Show that there is a sequence of sets $A_1 \supset A_2 \supset \cdots$ with $\bigcap_{n=1}^{\infty} A_n = \emptyset$ and $\lim_{n\to\infty} \mu(A_n) \neq 0$.

Exercise 0.2.8. Let μ_1, \ldots, μ_n be measures on (X, \mathcal{M}) and c_1, \ldots, c_n positive numbers. Show that $\mu := c_1 \mu_1 + \cdots + c_n \mu_n$ is a measure on (X, \mathcal{M}) .

Exercise 0.2.9. Let (X, \mathcal{M}, μ) be a measure space. Prove that for $A, B \in \mathcal{M}$,

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B). \tag{0.2.1}$$

Applications: Show that if μ is a probability measure, then for any measurable sets A, B we have

- (i) $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$, and
- (ii) $\min\{\mu(A), \mu(B)\} \ge \mu(A \cap B) \ge \mu(A) + \mu(B) 1.$

Exercise 0.2.10. Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for $A \in \mathcal{M}$. Show that μ_E is a measure on \mathcal{M} .

Exercise 0.2.11. Let (X, \mathcal{M}, P) be a probability space and $B \in \mathcal{M}$ with P(B) > 0. The number

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

is called the **conditional probability of** A **given** B.

Show that the function $A \mapsto P(A|B)$ is a probability measure on the σ -algebra \mathcal{M} .

Exercise 0.2.12. Given a probability space (X, \mathcal{M}, P) we say that the elements of \mathcal{M} are **events**. The events A, B are **independent** if

$$P(A \cap B) = P(A) \cdot P(B).$$

Show that if A and B are independent events, then A^c and B are also independent.

Exercise 0.2.13. The **symmetric difference** of two sets A and B is $A\Delta B = (A \setminus B) \cup (B \setminus A)$. Let (X, \mathcal{A}, μ) be a measure space.

- (a) Show that if A and B are measurable and $\mu(A\Delta B) = 0$, then $\mu(A) = \mu(B)$.
- (b) Show that if μ is complete, $A \in \mathcal{A}$ and $\mu(A\Delta B) = 0$, then $B \in \mathcal{A}$.

Exercise 0.2.14. Let (X, \mathcal{M}) be a measurable space. Verify the following:

- (a) If μ and μ are measures defined on \mathcal{M} , then the set function λ defined on \mathcal{M} by $\lambda(E) = \mu(E) + \nu(E)$ also is a measure. We denote λ by $\mu + \nu$.
- (b) If μ and ν are measures on \mathcal{M} and $\mu \geq \nu$, then there is a measure ξ on \mathcal{M} for which $\mu = \nu + \xi$.
- (c) If ν is σ -finite, the measure ξ in (b) is unique.
- (d) Show that in general the measure ξ in (b) need not be unique but that there is always a smallest such ξ .

0.3 OUTER MEASURES

Exercise 0.3.1. Let $X = \{a, b\}$ and define $\mu^*(\emptyset) = 0$, $\mu^*(\{a\}) = 1$, $\mu^*(\{b\}) = 2$, and $\mu^*(X) = 2$. Show that μ^* is an outer measure but is not additive.

Exercise 0.3.2. Let X be any set. Define $\nu : \mathcal{P}(X) \to [0, \infty]$ by defining $\nu(\emptyset) = 0$ and for $E \subset X$, $E \neq \emptyset$, defining $\nu(E) = \infty$. Show that ν is an outer measure.

Exercise 0.3.3. Prove that for any outer measure μ^* and any set A such that $\mu^*(A) = 0$, A is μ^* -measurable.

Exercise 0.3.4. Let $X = \mathbf{N}$ and \mathcal{E} be the family of all singletons and the whole set \mathbf{N} . Let $\mu(\emptyset) = 0$, $\mu(\{n\}) = \frac{1}{2^n}$, and $\mu(\mathbf{N}) = 2$. Determine $\mu^*(\mathbf{N})$ and all μ^* -measurable sets.

Exercise 0.3.5. Prove that if μ^* is an outer measure on X and if $B \subset X$, $\mu^*(B) = 0$, then $\mu^*(A \cup B) = \mu^*(A \setminus B) = \mu^*(A)$.

Exercise 0.3.6. Let μ^* be an outer measure on X, and let $Y \subset X$. Define $\nu^*(A) = \mu^*(A)$ when $A \subset Y$. Is ν^* an outer measure on Y?

Exercise 0.3.7. Let μ^* be an outer measure on X, and let $Y \subset X$. Define $\nu^*(A) = \mu^*(Y \cap A)$. Is ν^* an outer measure on X?

Exercise 0.3.8. Show that a subset E of X is μ^* -measurable if and only if for each $\epsilon > 0$ there exists a measurable set F such that $F \subset E$ and $\mu(E \setminus F) < \epsilon$.

0.4 THE LEBESGUE MEASURE ON \mathbb{R}^n

Exercise 0.4.1. Let I_1, I_2, \ldots, I_n be a finite set of intervals covering the rationals in [0,1]. Show that $\sum_{k=1}^{n} m(I_k) \geq 1$.

Exercise 0.4.2. Let S be a subset of \mathbb{R}^n such that for each $\epsilon > 0$ there is a closed set F contained in S for which $m^*(S \setminus F) < \epsilon$. Prove that S is Lebesgue measurable.

Exercise 0.4.3. Prove that a subset E of \mathbb{R}^n is Lebesgue measurable if for each $\epsilon > 0$, there exists an open set U such that $E \subset U$ and $m^*(U \setminus E) < \epsilon$.

Exercise 0.4.4. Let $\{A_k\}$ be an increasing sequence of subsets of \mathbb{R}^n , that is, $A_1 \subset A_2 \subset \cdots$, and let $A = \bigcup_{k=1}^{\infty} A_k$. Show that $\lim_{k \to \infty} m^*(A_k) = m^*(A)$. (*Hint.* Let B_k be a Lebesgue measurable set with $A_k \subset B_k$ and $m(B_k) = m^*(A_k)$, $k = 1, 2, \dots$ Set $C_m = \bigcup_{k=m}^{\infty} B_k$ and $C = \bigcap_{m=1}^{\infty} C_m$. Show that $C \supset A$, $m^*(A_k) = m(B_k) = m(C_k)$, and $\lim_{k \to \infty} m^*(A_k) = m(C)$.)

0.5 BOREL MEASURES ON $\mathbb R$

Exercise 0.5.1. Show that if $f:[a,b] \to [c,d]$ is both monotone and onto, then f is continuous.

Exercise 0.5.2. Show that any monotone function $f : \mathbb{R} \to \mathbb{R}$ has points of continuity in every (nonempty) open interval.

Exercise 0.5.3. Show that a strictly increasing function that is defined on an interval is Lebesgue measurable and then use this to show that a monotone function that is defined on an interval is Lebesgue measurable. (Every monotone function is measurable.)

A distribution function on \mathbb{R} is a function $F : \mathbb{R} \to \mathbb{R}$ that is increasing and right continuous.

Exercise 0.5.4. If F is a distribution function, the measure $\mu_F(I)$ of any interval I may be expressed in terms of F: for $-\infty < a < b < \infty$,

$$\mu_F((a,b]) = F(b) - F(a), \qquad \mu_F([a,b]) = F(b) - F(a-)$$

$$\mu_F((a,b)) = F(b-) - F(a), \qquad \mu_F([a,b]) = F(b-) - F(a-).$$

Thus if F is continuous at a and b, all four expressions are equal. Show that F is continuous if and only if $\mu_F(\{y\}) = 0$ for all y.

Exercise 0.5.5. Let F be the distribution function on \mathbb{R} given by

$$F(x) = \begin{cases} 0 & \text{if } x < -1; \\ 1+x & \text{if } -1 \le x < 0; \\ 2+x^2 & \text{if } 0 \le x < 2; \\ 9 & \text{if } x \ge 2. \end{cases}$$

If μ is the Lebesgue-Stieltjes measure corresponding to F, compute the measure of each of the following sets:

(a) $\{2\}$,

(b) $\left[-\frac{1}{2}, 3\right)$

(d) $[0, \frac{1}{2}) \cup (1, 2],$ (e) $\{x : |x| + 2x^2 > 1\}.$

(c) $(-1,0] \cup (1,2)$,

(*Hint:* Apply Exercise 0.5.4.)

Exercise 0.5.6. A probability distribution is by definition a probability measure P on \mathbb{R} defined on the σ -algebra of Borel sets $\mathcal{B}(\mathbb{R})$. The function $F: \mathbb{R} \to [0,1]$ defined as

$$F(x) = P((-\infty, x]), \quad x \in \mathbb{R},$$

is called the (cumulative) distribution function. Prove the following properties of F.

- (a) $F(x) \leq F(y)$ for every $x \leq y$ (that is, F is non-decreasing);
- (b) $\lim_{x\to a} F(x) = F(a)$ for each $a \in \mathbb{R}$ (that is, F is right-continuous);
- (c) $\lim_{x \to -\infty} F(x) = 0$.
- (d) $\lim_{x\to +\infty} F(x) = 1$.

Exercise 0.5.7. Show that if $F = \chi_{[c,\infty)}$, then $m_F = \delta_c$, the Dirac measure concentrated at c.

Exercise 0.5.8. Determine the probability measure on $\mathcal{B}(\mathbb{R})$ which has $f(x) = \max\{0, \min\{x, 1\}\}\$ as its distribution function.