Endomorphismes orthogonaux

Dans tout le chapitre, E désignera un espace euclidien de dimension $n \in \mathbb{N}^*$.

Définitions et premières propriétés

1) Caractérisations équivalentes

<u>Définition</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $u^* \circ u = Id_E$
- (ii) $u \circ u^* = Id_E$
- (iii) u est bijectif et $u^{-1} = u^*$

<u>Définition</u>: On appelle endomorphisme orthogonal de E tout endomorphisme $u \in \mathcal{L}(E)$ tel que

$$u^* \circ u = Id_E$$

On note O(E) l'ensemble des endomorphismes orthogonaux de E

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$, et B une base <u>orthonormée</u> de E. On a équivalence entre :

- (i) u est un endomorphisme orthogonal de E.
- (ii) $Mat_B(u)$ est une matrice orthogonale.

Démonstration : 🖈

On a:

$$u \in O(E) \Leftrightarrow u^* \circ u = Id_E$$

 $\Leftrightarrow \operatorname{Mat}_B(u^*) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow {}^t\operatorname{Mat}_B(u) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow \operatorname{Mat}_B(u) \in O_n(\mathbb{R})$

(Le 3^e point vient du fait que B est orthonormée, donc $Mat_B(u^*) = {}^tMat_B(u)$)

Exemple: Soit F un sev de E tel que $F \neq E$, notons p_F la projection orthogonale sur F.

Comme
$$F \neq E$$
, et que $E = F \oplus F^{\perp}$, on a $F^{\perp} \neq \{0_E\}$

Donc
$$\exists x \in F^{\perp}, x \neq 0_E$$
. Alors $p_F(x) = 0_E$, donc $x \in \ker(p_F)$

Ainsi p_F n'est pas injectif, donc pas bijectif, donc $p_F \notin O(E)$.

Notons s_F la symétrie orthogonale par rapport à F. Dans une b.o.n B de E adaptée à la décomposition $E=F \oplus F^\perp$, alors $S=\mathrm{Mat}_B\bigl(s_f\bigr)$

Alors
$${}^tSS = SS = S^2 = I_n$$

Donc $S \in O_n(\mathbb{R})$.

Ainsi $s_F \in O(E)$.

<u>Propriété</u>: L'ensemble O(E) des endomorphismes orthogonaux de E muni de la composition est un groupe. Plus précisément, O(E) est un sous-groupe de $(GL(E), \circ)$ où GL(E) désigne l'ensemble des endomorphisme bijectifs de E:

- (i) $Id_E \in O(E)$
- (ii) $\forall u, v \in O(E), u \circ v \in O(E)$
- (iii) $\forall u \in O(E), u^{-1} \in O(E)$

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $u \in O(E)$
- (ii) u conserve la norme, ie $\forall x \in E$, ||u(x)|| = ||x||
- (iii) u conserve le produit scalaire, ie $\forall x, y \in E, \langle u(x), u(y) \rangle = \langle x, y \rangle$
- (iv) $\forall B = (e_1, ..., e_n)$ base orthonormée de E, l'image $(u(e_1), ..., u(e_n))$ de B est une base orthonormée de E (càd que u envoie toute b.o.n de E sur une b.o.n de E).
- (v) $\exists B = (e_1, ..., e_n)$ b.o.n de E telle que l'image $(u(e_1), ..., u(e_n))$ de B par u est une base orthonormée de E (càd u envoie au moins une b.o.n de E sur une b.o.n de E).

Remarque : Soit $u \in \mathcal{L}(E)$. Puisque $u \in O(E)$ ssi u conserve la norme, les endomorphismes orthogonaux de E sont aussi appelés isométries vectorielles de E.

2) Isométries directes et indirectes

Propriété : Soit $u \in O(E)$, alors $det(u) \in \{-1, 1\}$

Démonstration:

```
Soit u \in O(E), alors u^* \circ u = Id_E
```

Donc $\det u^* \times \det u = 1$

Soit B une b.o.n alors $\det u^* = \det \operatorname{Mat}_B(u^*) = \det({}^t\operatorname{Mat}_B(u)) = \det(\operatorname{Mat}_B(u)) = \det u$

Ainsi $(\det(u))^2 = 1$, donc $\det u = \pm 1$

Corollaire: Si $A \in O_n(\mathbb{R})$, det $(a) \in \{-1, +1\}$

Attention : Si det $u \in \{-1,1\}$, on n'a pas forcément u orthogonal!

<u>Définition</u>: On appelle isométrie <u>directe</u> (ou positive) de E tout $u \in O(E)$ tel que $\det(u) = 1$.

On appelle isométrie indirecte de E tout $u \in O(E)$ tel que $\det(u) = -1$.

<u>Proposition</u>: L'ensemble des isométries directes de E, noté SO(E), est un sous-groupe de $(O(E), \circ)$, on l'appelle groupe spécial orthogonal de E. L'ensemble des matrices orthogonales de déterminant +1, noté $SO_n(\mathbb{R})$, est un sous-groupe de $(O_n(\mathbb{R}), \times)$, appelé groupe spécial orthogonal d'ordre n.

Exemples:

- $Id_E \in SO(E)$
- $-Id_E \in SO(E) \Leftrightarrow \dim(E)$ est paire

Soit F un sev de E, notons s_F la symétrie orthogonale par rapport à F. On a vu que $s_F \in O(E)$, et si on prend une b.o.n B de E adaptée à la décomposition $E = F \oplus F^{\perp}$ (ie B est la concaténation d'une b.o.n de F avec une b.o.n de F^{\perp}) alors

$$Mat_B(s_F) = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & -1 & & & \\ & & & & \ddots & & \\ & & & & & -1 \end{pmatrix}$$

Où le nombre de 1 correspond à $\dim F$ et celui de -1 à $\dim F^{\perp}$

On a alors $\det(s_F) = (-1)^{\dim(F^{\perp})}$

Ainsi $s_F \in SO(E) \Leftrightarrow \dim(F^{\perp})$ est paire

3) Lien avec les réflexions

<u>Définition</u>: Soit H un sev de E. On dit que H est un **hyperplan** de E si dim $H = \dim E - 1$

<u>Propriété</u>: Soit H un sev de E. On a équivalence entre :

- (i) H est un hyperplan de E
- (ii) $\exists a \in E \text{ avec } ||a|| = 1 \text{ tel que } H = (\text{Vect}(a))^{\perp}$

<u>Définition</u>: on appelle **réflexion** de *E* toute symétrie orthogonale par rapport à un hyperplan de *E*.

Remarque : Si s est une réflexion de E, il existe un hyperplan H de E tq s est la symétrie orthogonale par rapport à H.

<u>Théorème</u>: Tout endomorphisme orthogonal de E peut s'écrire comme la composée de m réflexions de E, avec $m \in [0, \dim(E)]$.

Réductions des endomorphismes orthogonaux

1) Quelques résultats utiles pour la réduction

Proposition: Soit $u \in O(E)$, alors $Sp(u) \in \{1, -1\}$

<u>Démonstration</u>: **★**

Soit $\lambda \in Sp(u)$, alors comme E est euclidien, $\lambda \in \mathbb{R}$

Alors $\exists x \in E, x \neq 0_E$, tel que $u(x) = \lambda x$.

Alors d'une part : $||u(x)|| = ||\lambda x|| = |\lambda|||x||$

Et d'autre part, $u \in O(E)$ donc u conserve la norme, ainsi ||u(x)|| = ||x||

D'où $||x|| = |\lambda| ||x||$, ie $|\lambda| = 1$

Donc $\lambda = \pm 1$

<u>Attention</u>: contrairement aux endomorphismes autoadjoints, qui possèdent toujours au moins une valeur propre (réelle), il existe des endomorphismes orthogonaux qui n'admettent aucune valeur propre.

Corollaire : Soit $A \in O_n(\mathbb{R})$, alors $Sp_{\mathbb{R}}(A) \subset \{-1,1\}$.

<u>Lemme</u>: Soit $u \in O(E)$. Soit F un sev de E stable par u, alors F^{\perp} est aussi stable par u. De plus, l'endomorphisme u_F (resp. $u_{F^{\perp}}$) est un endomorphisme orthogonal de F (resp. F^{\perp}).

Démonstration : 🖈

Comme $u(F) \subset F$ et $u \in O(E)$, u est bijectif donc u conserve les dimensions ainsi

$$\dim(u(F)) = \dim F$$

(cela se prouve facilement en prenant une base $(e_1, ..., e_r)$ de F, et en montrant que $(u(e_1), ..., u(e_r))$ est libre).

On en déduit donc que u(F) = F.

 \rightarrow Soit $x \in F^{\perp}$, on veut montrer que $u(x) \in F^{\perp}$. Soit $y \in F$, alors

$$\langle u(x), y \rangle = \langle u(x), u(z) \rangle$$
 car $y \in F = u(F)$, donc $\exists z \in F, u(z) = y$
= $\langle x, z \rangle$ car $u \in O(E)$ donc u conserve le produit scalaire.

 $= 0 \operatorname{car} x \in F^{\perp} \operatorname{et} z \in F.$

Ainsi $u(x) \in F^{\perp}$. D'où $u(F^{\perp}) \subset F^{\perp}$.

 \rightarrow Montrons que $u_F: F \rightarrow F, x \mapsto u(x)$ appartient à O(F)

Soit
$$x \in F$$
, alors $||u_F(x)|| = ||u(x)|| \underset{u \in O(E)}{\overset{\sim}{=}} ||x||$

Donc $u \in O(F)$.

(On fait pareil pour l'autre)

<u>Lemme</u>: Soit $u \in O(E)$. Alors il existe une droite vectorielle ou un plan vectoriel stable par u, ie

$$\exists F \text{ sev de } E \text{ avec dim } F \in \{1,2\} \text{ tel que } u(F) \subset F$$

- 2) Endomorphismes orthogonaux en dimension 1 et 2
- a) En dimension 1

On suppose que dim E=1. Soit $u \in O(E)$, soit $B=(e_1)$ une b.o.n de E.

Alors
$$M = \operatorname{Mat}_{R}(u) = (a) \in O_{1}(\mathbb{R})$$

Donc
$${}^tMM = I_1 \Leftrightarrow (a)(a) = (1) \Leftrightarrow a^2 = 1 \Leftrightarrow a = \pm 1$$

Donc
$$u = Id_E$$
 ou $u = -Id_E$

Réciproquement on a vu que $\pm Id_E \in O(E)$

Ainsi si dim
$$E = 1$$
, $O(E) = \{\pm Id_E\}$.

b) En dimension 2

Supposons que dim E=2. Soit $u\in O(E)$, soit $B=(e_1,e_2)$ une b.o.n de E.

Alors
$$M = \operatorname{Mat}_{R}(u) \in O_{2}(\mathbb{R})$$

 \rightarrow On va essayer de caractériser $O_2(\mathbb{R})$. Soit $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2(\mathbb{R})$. Alors $\det M \in \{\pm 1\}$

 \rightarrow Si det M = 1 (ie $M \in SO_2(\mathbb{R})$

Comme
$${}^{t}MM = I_{2} \Leftrightarrow \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{cases} a^{2} + c^{2} = 1 \\ ab + cd = 0 \\ b^{2} + d^{2} = 1 \end{cases}$$

Soit
$$z = a + ic \in \mathbb{C}$$
, $|z| = \sqrt{a^2 + c^2} = 1$

Donc $\exists \theta \in \mathbb{R}$ tel que $z = e^{i\theta} = \cos \theta + i \sin \theta$

Donc
$$a = \cos \theta$$

 $c = \sin \theta$

Comme $\det M = ad - bc = 1$, on a

$$(a-d)^{2} + (b+c)^{2} = a^{2} - 2ad + d^{2} + b^{2} + 2bc + c^{2}$$
$$= (a^{2} + c^{2}) + (b^{2} + c^{2}) - 2(ad - bc)$$
$$= 0$$

D'où a - d = 0 et b + c = 0

Ainsi
$$M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \coloneqq R_{\theta}$$

Réciproquement, ${}^tR_{\theta}R_{\theta}=I_2$, et $\det R_{\theta}=\cos^2\theta+\sin^2\theta=1$

Donc $R_{\theta} \in SO_2(\mathbb{R})$

Propriété : On a $SO_2(\mathbb{R}) = \{R_\theta \mid \theta \in \mathbb{R}\}$

De plus, $SO_2(\mathbb{R})$ est un sous-groupe commutatif de $(O_2(\mathbb{R}),\times)$:

$$\forall \theta, \theta' \in \mathbb{R}, R_{\theta} \times R_{\theta'} = R_{\theta + \theta'} = R_{\theta'} \times R_{\theta}$$

ightarrow Reprenons les notations ci-dessus. Soit $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2(\mathbb{R})$ avec $\det M=ad-bc=-1$

Comme
$${}^{t}MM = I_{2} \Leftrightarrow \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{cases} a^{2} + c^{2} = 1 \\ ab + cd = 0 \\ b^{2} + d^{2} = 1 \end{cases}$$

Comme $\det M = ad - bc = -1$, on a

$$(a+d)^{2} + (b-c)^{2} = a^{2} + 2ad + d^{2} + b^{2} - 2bc + c^{2}$$
$$= (a^{2} + c^{2}) + (b^{2} + c^{2}) + 2(ad - bc)$$
$$= 0$$

Donc a + d = 0 et b - c = 0

Ainsi
$$M = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \coloneqq S_{\theta}$$

Réciproquement, ${}^tS_{\theta}S_{\theta} = I_2$, et $\det S_{\theta} = -(\cos^2\theta + \sin^2\theta) = -1$

 $\operatorname{Donc} R_{\theta} \in O_2(\mathbb{R}) \backslash SO_2(\mathbb{R})$

Propriété: On a
$$O_2(\mathbb{R}) \setminus SO_2(\mathbb{R}) = \{S_\theta \mid \theta \in \mathbb{R}\}, \text{ où } S_\theta = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$
.

Revenons aux endomorphismes orthogonaux

Soit $u \in O(E)$, $B = (e_1, e_2)$ une b.o.n de E, alors $M = \operatorname{Mat}_B(u) \in O_2(\mathbb{R})$

- Cas où $\det u = 1$ (ie u est une isométrie directe du plan E)

Alors $M = R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ Alors $u(e_1) = \cos \theta \ e_1 + \sin \theta \ e_2$ et $u(e_2) = -\sin \theta \ e_1 + \cos \theta \ e_2$

Intéressons-nous à la diagonalisabilité de u:

Le polynôme caractéristique de u est :

$$\chi_u = \chi_M = \begin{vmatrix} X - \cos \theta & \sin \theta \\ -\sin \theta & X - \cos \theta \end{vmatrix}$$

Donc

$$\chi_u = (X - \cos \theta)^2 + \sin^2 \theta = (X - \cos \theta - i \sin \theta)(X - \cos \theta + i \sin \theta) = (X - e^{i\theta})(X - e^{-i\theta})$$

Si $\theta \equiv 0[2\pi]$, alors $M = I_2$, donc $u = Id_E$

Si
$$\theta \equiv \pi[2\pi]$$
, $M = -I_2$ donc $u = -Id_E$

Sinon, $e^{i\theta}$ et $e^{-i\theta} \in \mathbb{C} \setminus \mathbb{R}$ donc $Sp(u) = \emptyset$ donc u n'est pas dz.

- Cas où $\det u = -1$ Soit $B = (e_1, e_2)$ une b.o.n de EAlors $\exists \theta \in \mathbb{R}$, $\operatorname{Mat}_B(u) = S_\theta$ On a ${}^tS_\theta = S_\theta$

> Donc u est autoadjoint et orthogonal, donc $u \circ u = Id_E$ Donc u est la symétrie sur $E_1 = \ker(u - Id_E)$ parallèlement à $E_{-1} = \ker(u + Id_E)$ Comme de plus, u est autoadjoint, ses sev propres, sont orthogonaux et

$$E = E_1 \stackrel{\perp}{\bigoplus} E_{-1}$$

Ainsi u est la symétrie orthogonale par rapport à E_1 .

Dans une b.o.n B' adaptée à la décomposition $E=E_1\oplus E_{-1}$, on a $\mathrm{Mat}_{B'}(u)=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Ainsi u est la réflexion par rapport à la droite vectorielle E_1 .

3) Réduction des automorphismes orthogonaux

Remarque : Quitte à réorganiser les éléments de la b.o.n B, on peut trouver une b.o.n B' de E telle