## Домашно $\mathbb{N}$ 1 по дисциплината "Дискретни структури" за специалност "Информатика", I курс, I поток, летен семестър на 2017/2018 уч. г. в СУ, ФМИ

Име: ..... Факултетен № ...... Група: .....

| Задача         | 1  | 2  | 3  | 4  | Овщо |
|----------------|----|----|----|----|------|
| получени точки |    |    |    |    |      |
| максимум точки | 10 | 10 | 10 | 10 | 40   |

Забележка 1: Всички отговори трябва да бъдат обосновани подробно.

**Забележка 2:** Не предавайте идентични решения дори когато работите заедно: идентичните решения ще бъдат анулирани!

**Задача 1.** а) Нека A е множество и нека f е функция с домейн декартовия квадрат на множеството A и ко-домейн множеството A, имаща следните свойства:

- $\forall x \in A \ \forall y \in A \ \forall z \in A \ f(f(x, y), z) = f(x, f(y, z))$
- $\exists x \in A \ \forall y \in A \ f(x, y) = y \ \land \ f(y, x) = y$
- $\exists x \in A \ \exists y \in A \ \neg (f(x, y) = f(y, x))$

Дайте добре обоснован пример за множеството A и функцията f, в който множеството A е крайно и пример, в който A е изброимо безкрайно. (5 точки)

- б) Нека A е множество и нека R е релация в множеството A, имаща следните свойства:
- R е рефлексивна и не е транзитивна.
- $\forall x \in A \ \exists y \in A \ ((y, \ x) \in R \ \land \ (x, \ y) \notin R)$

Дайте добре обоснован пример, в който A и R са крайни множества и пример, в който са изброимо безкрайни. (5 точки)

Задача 2. Дадена е окръжност върху, която са нарисувани n сини точки и n червени точки. Докажете, че за всяко естествено число n независимо от разположението на точките, можем да направим обиколка по часовниковата стрелка на окръжността, започвайки от една от точките, така че на всяко преминаване от оцветена точка в оцветена точка, броят на червените точки е винаги поне колкото броят на сините точки.

**Задача 3.** Нека  $D = \{0, 1, 2, 3, 4\}$  и нека  $R \subseteq D^3 \times D^3$  е следната релация:

$$(a, b, c) R(x, y, z) \iff ac \equiv xz \pmod{5}.$$

а) Докажете, че R е релация на еквивалетност.

- (3 точки)
- б) Намерете броят на класовете на еквивалетност относно релацията R. (2 точки)

в) Намерете броят на елементите във всеки клас на еквивалентност относно R. (5 точки)

**Задача 4.** Дадено е естествено число n. Всяка от четирите страни на квадрат се оцветява в точно един от n-те различни цвята. Да се намери броят на различните възможни оцветявания с точност до ротация и отражение. Тоест ако едно оцветяване се получава от друго чрез ротация или отражение ние не считаме тези оцветявания за различни.

## РЕШЕНИЯ

Задача 1. а) Да разгледаме дефиницията за група, която се използва в курсовете по алгебра:

Нека множеството G е непразно и е затворено относно бинарната операция \*. Казваме, че G е група относно бинарната операцията \*, ако:

- $\forall a \in G \, \forall b \in G \, \forall c \in G \, (a * b) * c = a * (b * c)$
- $\exists e \in G \, \forall g \in G \, e * g = g \, \land \, g * e = g$
- $\forall q \in G \exists r \in G \ q * r = e \land r * q = e$

G е абелева група относно бинарната операцията \*, ако е група относно бинарната операцията \* и е в сила:  $\forall a \in G \ \forall b \in G \ a*b=b*a$ . Тогава отрицанието на твърдението: "G е е абелева група относно бинарната операцията \*"е равносилно на:  $\neg \forall a \in G \ \forall b \in G \ a*b=b*a$ , което е логически еквивалентно на  $\exists a \in G \ \exists b \in G \ a*b \neq b*a$ , защото:

$$\neg \forall a \in G \, \forall b \in G \, a * b = b * a \equiv$$

$$\exists a \in G \, \neg \forall b \in G \, a * b = b * a \equiv$$

$$\exists a \in G \, \exists b \in G \, \neg a * b = b * a \equiv$$

$$\exists a \in G \, \exists b \in G \, a * b \neq b * a$$

Ние знаем, че \* е бинарна операция в множеството G и то е затворено относно \*, ако  $\forall a \in G \, \forall b \in G \, a * b \in G$ .

Тогава нека A е произволна не абелева група относно бинарната операция # и нека  $f: A \times A \to A$  е функцията:  $f = \{((x, y), x \# y) \mid x, y \in A\}$ , тогава  $\forall x \in A \, \forall y \in A \, f(x, y) = x \# y$  и нека  $\varepsilon$  е неутралния елемент на A относно #, тогава е вярно:

- $\forall x \in A \ \forall y \in A \ \forall z \in A \ f(f(x, y), z) = f(x, f(y, z))$
- $\forall x \in A \ f(x, \ \varepsilon) = x \ \land \ f(\varepsilon, \ x) = x \implies \exists x \in A \ \forall y \in A \ f(x, \ y) = y \ \land \ f(y, \ x) = y$
- $\forall x \in A \exists y \in A \ f(x, y) = \varepsilon \land f(y, x) = \varepsilon$
- $\exists x \in A \ \exists y \in A \ \neg (f(x, y) = f(y, x))$

В частност е вярно:

- $\forall x \in A \ \forall y \in A \ \forall z \in A \ f(f(x, y), z) = f(x, f(y, z))$
- $\exists x \in A \ \forall y \in A \ f(x, y) = y \ \land \ f(y, x) = y$
- $\exists x \in A \ \exists y \in A \ \neg (f(x, y) = f(y, x))$

От курсът по Висша Алгебра е известно, че с точност до изоморфизъм съществува единствена група с изброимо безкрайно много елементи и това е множеството на целите числа (ние знаем, че множествата  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$  са изброимо безкрайни) относно операцията събиране. Тогава ако  $A = \mathbb{Z}$  и  $f = \{((a, b), a + b) \mid a, b \in \mathbb{Z}\}$  е пример, в който множеството A е изброимо безкрайно.

Отново от курсът по Висша Алгебра ни е известно, че множеството от неутралния елемент на коя да е група е група (минимална подгрупа) относно груповата операция.

Тогава ако  $A = \{0\}$  и  $f = \{(0, 0), 0\}$  е пример, в който множеството A е крайно.

б) Ако A е множество, то R е релация по дефиниция, ако  $R \subseteq A \times A$ .

R е рефлексивна, ако е вярно:  $\forall a \in A (a, a) \in R$ .

R е транзитивна, ако е вярно:  $\forall x \in A \ \forall y \in A \ \forall z \in A \ ((x, y) \in R \land (y, z) \in R \implies (x, z) \in R)$  Тогава R не е транзитивна, ако е вярно:

 $\exists x \in A \ \exists y \in A \ \exists z \in A \ ((x, y) \in R \land (y, z) \in R \land (x, z) \notin R)$ , защото:

$$\neg \forall x \in A \ \forall y \in A \ \forall z \in A \ ((x, y) \in R \ \land \ (y, z) \in R \implies (x, z) \in R) \equiv \exists x \in A \ \neg \forall y \in A \ \forall z \in A \ ((x, y) \in R \ \land \ (y, z) \in R \implies (x, z) \in R) \equiv \exists x \in A \ \exists y \in A \ \neg \forall z \in A \ ((x, y) \in R \ \land \ (y, z) \in R \implies (x, z) \in R) \equiv \exists x \in A \ \exists y \in A \ \exists z \in A \ \neg ((x, y) \in R \ \land \ (y, z) \in R \implies (x, z) \in R) \equiv \exists x \in A \ \exists y \in A \ \exists z \in A \ \neg (\neg ((x, y) \in R \ \land \ (y, z) \in R) \lor (x, z) \in R) \equiv \exists x \in A \ \exists y \in A \ \exists z \in A \ ((x, y) \in R \ \land \ (y, z) \in R) \land \neg ((x, z) \in R))) \equiv \exists x \in A \ \exists y \in A \ \exists z \in A \ ((x, y) \in R \ \land \ (y, z) \in R) \land \neg ((x, z) \notin R))) \equiv \exists x \in A \ \exists y \in A \ \exists z \in A \ ((x, y) \in R \ \land \ (y, z) \in R) \land \neg ((x, z) \notin R))$$

В крайния случай ще построим стъпка по стъпка минимални A и R, започвайки от множество A, което да е празно.

Следкато A е празно множество, то и  $R \subset \emptyset \times \emptyset$  следва, че  $R = \emptyset$ , но тогава R е празната релация, която по тривални причини е транзитивна.

Нека 
$$A = \{a\}$$
, понеже  $R$  е рефлексивна то нека  $R = \{(a, a)\}$ , но тогава  $(a, a) \in R \land (a, a) \in R \land (a, a) \in R$ , тоест  $R$  е транзитивна.

Тогава нека  $A = \{a, b\}$ , понеже R е рефлексивна, то започваме с  $R = \{(a, a), (b, b)\}$ . Искаме да бъде изпълнено:  $\forall x \in A \ \exists y \in A \ ((y, x) \in R \land (x, y) \notin R)$ . Тогава ако си вземем елемента b понеже е изпълнено  $(b, b) \in R$ , то добавяме двойката (a, b) към R. По аналогични съображения добавяме и симетричната двойка (b, a). Нека разгледаме диаграма на релацията  $R = \{(a, a), (b, b), (a, b), (b, a)\}$ .

Понеже искаме релацията R да не е транзитивна, то съобразяваме от диаграмата на релацията, че текущата релация е транзитивна и продължаваме със следващата стъпка, която е да добавим нов елемент към множеството A и да се пробваме да изградим релация с желаните свойства. Нека  $A = \{a, b, c\}$  искаме R да е рефлексивна, за това започваме от релацията  $R = \{(a, a), (b, b), (c, c)\}$ . Отново искаме да бъде вярно:  $\forall x \in A \; \exists y \in A \; ((y, x) \in R \; \land \; (x, y) \notin R)$ . Тогава по абсолютно сходни разсъждения като в предният опит добавяме двойката (a, b). Ако добавим двойката (b, c) то ще е вярно, че  $(b, c) \in R \; \land \; (c, b) \notin R$ , както и е вярно, че R няма да бъде транзитивна релация, защото R на R на

Тоест  $A = \{a, b, c\}$  и  $R = \{(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)\}$  е краен пример, изпълняващ условията на задачата. Ето и как изглежда диаграмата на релацията:



В крайния случай ни беше сравнително лесно да построим множествата, които търсим в изброимо безкрайния ще ни е малко по-трудно, за това там ще използваме друга стратегия. Досещаме се, че ако вземем изброимо безкрайно множество A и подходяща изброимо безкрайна релация, която е рефлексивна, транзитивна и има свойството  $\forall x \in A \ \exists y \in A \ ((y, x) \in R \ \land (x, y) \notin R)$ , то ако премахнем само една транзитивна "тройка", като запазим рефлексивността ще получим релация с търсените свойства. Тогава нека  $A = \mathbb{Z}$  и нека T да бъде релацията "по-малко или равно" на цели числа. Ще се борим да покажем, че T притежава свойството

$$\forall x \in A \ \exists y \in A \ ((y, \ x) \in T \ \land \ (x, \ y) \notin T). \ \forall z \in \mathbb{Z} \ z - 1 \in \mathbb{Z} \ \land \ z - 1 \leq z \ \land \ z \not\leq z - 1 \Longrightarrow \\ \forall z \in \mathbb{Z} \ (z - 1, \ z) \in R_{\leq} \ \land \ (z, \ z - 1) \notin R_{\leq} \Longrightarrow \ \forall x \in A \ \exists y \in A \ ((y, \ x) \in T \ \land \ (x, \ y) \notin T).$$

Тогава ако  $R = T \setminus \{(0, 9)\}$  е рефлексивна и притежава свойството  $\forall x \in A \ \exists y \in A \ ((y, x) \in R \ \land \ (x, y) \notin R)$ . Остава да покажем, че не е транзитивна.  $0 \leq 8 \land 8 \leq 9 \land (0, 8) \neq (0, 9) \land (8, 9) \neq (0, 9) \land (0, 9) \notin R \implies (0, 8) \in R \land (8, 9) \in R \land (0, 9) \notin R$  Премахнали сме краен брой (една двойка) елементи на изброимо безкрайно множество, тогава R е изброимо безкрайно.

## Задача 2.

## **Задача 3.** а)

- R е рефлексивна, защото  $\forall (a, b, c) \in D^3$   $ac \equiv ac \pmod{5} \implies (a, b, c)$  R (a, b, c) (Рефлексивност на релацията  $\equiv_{\text{mod } 5}$ ).
- R е симетрична, защото  $\forall (a, b, c), (x, y, z) \in D^3$  :  $(a, b, c) R(x, y, z) \implies ac \equiv xz \pmod 5 \implies ac \equiv xz \pmod 5 \implies (x, y, z) R(a, b, c)$  (Симетричност на релацията  $\equiv_{\text{mod } 5}$ ).
- R е транзитивна, защото  $\forall (a, b, c), (x, y, z), (m, n, k) \in D^3 : (a, b, c) R(m, n, k) \wedge (m, n, k) R(x, y, z)$   $\implies ac \equiv mk \pmod{5} \wedge mk \equiv xz \pmod{5} \implies ac \equiv xz \pmod{5} \implies (a, b, c) R(x, y, z)$  (Транзитивност на релацията  $\equiv_{\text{mod } 5}$ ).

R е рефлексивна, симетрична и транзитивна следователно е релация на еквивалентност.

б) Нека фиксираме един елемент на домейна  $(a, b, c) \in D^3$  тогава класът на (a, b, c) по дефиниция е:

$$[(a, b, c)] = \{(x, y, z) \in D^3 \mid (a, b, c) R(x, y, z)\} =$$

$$= \{(x, y, z) \in D^3 \mid ac \equiv xz \pmod{5}\},$$

но понеже (a, b, c) е фиксиран елемент на домейна на релацията, то и ac е фиксирана константа, която е с фиксиран остатък при делеление с частно и остатък на 5. Ние знаем, че има точно пет различни остатъци "по модул" 5, това са елементите на множеството D. Тогава множеството от класовете на еквивалентност относно R е:

$$\{\{(x, y, z) \in D^3 \mid xz \equiv k \pmod{5}\} \mid k \in D\}$$

и броят на елементите му съвпада с броят на елементите на множеството D, който е 5. implies

в) От комбинаторния принцип на умножението следва, че броят на елементие на домейна е:  $|D^3| = |D|^3 = 5^3 = 125$ .

Нека разгледаме подробно всеки един клас на еквивалентност.

Започваме със следното наблюдение ако  $m, n \in D$ , то  $0 \le mn \le 16$ .

Нека означим с M множеството от целите числата от 0 до 16, тоест  $M = \{0, 1, 2, ..., 16\}$ .

Започвайки от онези наредени тройки с елементи от D, за които

$$\{(x, y, z) \in D^3 \mid xz \equiv 0 \pmod{5}\}.$$

Числата даващи остатък 0 при деление с частно и остатък на 5 са числата от множеството:

$${m \in M \mid 5 \mid m} = {0, 5, 10, 15}$$

Понеже  $5 \notin D$ , то единственото число кратно на 5, което може да се получи като произведение на числа от D е 0. Тогава  $\{(x,\ y,\ z)\in D^3\mid xz\equiv 0\ (\text{mod }5)\}=\{(x,\ y,\ z)\in D^3\mid x=0\ \lor\ z=0\}=\{(0,\ y,\ z)\in D^3\}\cup\{(x,\ y,\ 0)\in D^3\}$ . Тогава от принципа на включването и изключването получаваме:

$$\begin{aligned} |\{(x,\ y,\ z)\in D^3\mid xz\equiv 0\ (\text{mod}\ 5)\}| &= |\{(0,\ y,\ z)\in D^3\}\cup \{(x,\ y,\ 0)\in D^3\}| = \\ &= |\{(0,\ y,\ z)\in D^3\}| + |\{(x,\ y,\ 0)\in D^3\}| - |\{(0,\ y,\ z)\in D^3\}\cap \{(x,\ y,\ 0)\in D^3\}| = \\ &= |D^2| + |D^2| - |\{(0,\ y,\ 0)\mid y\in D\}| = 2|D|^2 - |D| = 50 - 5 = 45. \end{aligned}$$

Числата даващи остатък 1 при делеление с частно и остатък на 5 от M са: 1, 6, 11, 16. 11 е просто число строго по-голямо от 4, следователно никой две числа от D не дават произведение 11. За останалите числа съществува единствено (с точност до реда) разлагане като произведение на числа от множеството D, по-кокретно: 1 = 1.1, 6 = 2.3 = 3.2 и 16 = 4.4. Тогава:

$$|\{(x, y, z) \in D^3 \mid xz \equiv 1 \pmod{5}\}| =$$

$$= |\{(x, y, z) \mid y \in D, (x, z) \in \{(1, 1), (2, 3), (3, 2), (4, 4)\}\}| =$$

$$= |D| \cdot |\{(1, 1), (2, 3), (3, 2), (4, 4)\}| = 5.4 = 20.$$

Числата даващи остатък 2 при делеление с частно и остатък на 5 от M са: 2, 7, 12. 7 е просто число строго по-голямо от 4, следователно никой две числа от D не дават произведение 7. За 2 и 12 съществува единствено (с точност до реда) разлагане като произведение на числа от множеството D, по-кокретно: 2 = 1.2 = 2.1 и 12 = 3.4 = 4.3. Тогава:

$$|\{(x, y, z) \in D^3 \mid xz \equiv 1 \pmod{5}\}| =$$

$$= |\{(x, y, z) \mid y \in D, (x, z) \in \{(1, 2), (2, 1), (3, 4), (4, 3)\}\}| =$$

$$= |D| \cdot |\{(1, 2), (2, 1), (3, 4), (4, 3)\}| = 5.4 = 20.$$

Числата даващи остатък 3 при делеление с частно и остатък на 5 от M са: 3, 8, 13. 13 е просто число строго по-голямо от 4, следователно никой две числа от D не дават произведение 13. За 3 и 8 съществува единствено (с точност до реда) разлагане като произведение на числа от множеството D, по-кокретно: 3=1.3=3.1 и 8=2.4=4.2. Тогава:

$$\begin{aligned} |\{(x,\ y,\ z)\in D^3\mid xz\equiv 1\ (\text{mod }5)\}| =\\ =|\{(x,\ y,\ z)\mid y\in D,\ (x,\ z)\in \{(1,\ 3),\ (3,\ 1),\ (2,\ 4),\ (4,\ 2)\}\}| =\\ =|D|.|\{(1,\ 3),\ (3,\ 1),\ (2,\ 4),\ (4,\ 2)\}| =5.4=20. \end{aligned}$$

Получихме: 45 + 4.20 = 45 + 80 = 125.

Задача 4.