Теория вероятностей. Конспект 2 сем.

Мастера Конспектов

(по материалам лекций Давыдова Ю. А., а также других источников)

16 февраля 2021 г.

к содержанию к списку объектов 2

Некоторые записи по теории вероятностей.

Содержание

1 Лекция 1.

1 Лекция 1.

Начинаем мы с самого базового - аксиоматики и введения определений.

Определение 1. Ω - пространство элементарных событий или множество элементарных исходов, есть множество, состоящее из ω_i , элементарных событий. Нам важно лишь, чтобы это множество было непустым. $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ - некоторая совокупность подмножеств Ω , есть множество событий, элементы которого есть A_i - события.

Определение 2. \mathbb{P} - вероятность $A \Rightarrow \mathbb{P}(A)$ - вероятность события A.

Для вероятностей существует несколько аксиом:

- $0 \le \mathbb{P}(a \le 1)$ для любого события,
- $\mathbb{P}(\Omega) = 1$,
- для любого счётного набора попарно непересекающихся события $\{A_i\}_{i\in N}\subseteq \mathcal{F}$ выполнена *счётная аддитивность*:

$$\mathbb{P}\left(\bigsqcup_{n\in N} A_n\right) = \sum_{n\in N} \mathbb{P}(A_n).$$

Некоторые свойства вероятностей:

- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$;
- $\mathbb{P}(A) = 1 \mathbb{P}(A^c);$
- $\forall A, B \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B);$
- $\mathbb{P}(\bigcup_n A_n) \leq \sum_n \mathbb{P}(A_n)$.

Теперь перейдём к некоторым примерам вероятностных пространств:

Пример(ы) 1. Пространство $(\Omega, \mathcal{F}, \mathbb{P})$ дискретно, если Ω не более, чем счётно. $\mathcal{F} = \mathcal{P}(\Omega)$, элементы $\{\omega\}$ также считаем событиями.

Утверждение 1. Несколько предложений:

- Пусть $\mathbb P$ вероятность в $(\Omega, \mathcal F, \mathbb P)$. Тогда $\mathbb P(A) = \sum_{\omega \in A} p_\omega$, где $p_\omega = \mathbb P\{\omega\}$. При этом $p_\omega \geq 0, \sum_\omega p_\omega = 1$.
- Предположим, что $\{p_{\omega}\}_{{\omega}\in\Omega}$ такие, что выполнено последнее предложение предыдущего пункта, тогда ?

Начнём теперь разбираться с понятием условная вероятность.

Пример(ы) 2. Начнём с такого примера. Пусть у нас есть события A, B, причём их пересечение в вероятностном пространстве пусть. Тогда если исполнится B, то A уже исполнится не может.

Определение 3. Условная вероятность: $\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (при $\mathbb{P}(B) > 0$).

(тут два каких-то утверждения)

Утверждение 2. Для условной вероятности выполнены аксиомы вероятности.

А теперь - несколько утверждений, которые касаютсся условной вероятности.

Утверждение 3. (B_n) - разбиение Ω (дизъюнктный набор, который в объединении даёт всё множество). Тогда для любого $A \mathbb{P}(A) = \sum_k \mathbb{P}(B_k) \mathbb{P}_{B_k}(A)$.

Доказательство.

$$\mathbb{P}(A) = \mathbb{P}(A \cap \Omega) = \sum_n \mathbb{P}(A \cap (\bigcup_n B_n)) = \mathbb{P}(\bigcup_n (A \cap B_n)) = \sum_n \mathbb{P}(A \cap B_n) = \mathbb{P}(B_n) \cdot \mathbb{P}_{B_n}(A).$$

Утверждение 4. Формула Байеса. Пусть мы знаем событие A, имеется разбиение (B_n) , тогла

$$\mathbb{P}_{A}(B_{k}) = \frac{\mathbb{P}(A \cap B_{k})}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_{k}) \mathbb{P}_{B_{k}}(A)}{\sum_{n} \mathbb{P}(B_{n}) \mathbb{P}_{B_{n}}(A)}$$

Утверждение 5. Формула умножения. -//-

Перейдём к Hезависимости событий. Начнём рассуждения с двух событий: A и B. Если $\mathbb{P}(B) = \mathbb{P}_A(B), \, \mathbb{P}(A) = \mathbb{P}_B(A), \,$ или, что равносильно им обоим $\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B), \,$ то события называются nesaeucumыmu.

Пусть теперь имеется не два, а больше событий $\{A_q, \ldots, A_n\}$. Нельзя сказать, что нам хватает попарной независимости для независимости совокупной.

Пример(ы) 3. (Пирамида Бернштейна). Рассмотрим тетраедр, у которого стороны покрашены таким образом: белый, синий, красный и флаг России. Рассматриваем события: A_1 - на выпавшем основании есть белый цвет, и так далее A_2 и A_3 . Эти события попарно независмы, но не независимы в совокупности.

$$\mathbb{P}(A_i) = \frac{1}{2}, \ \mathbb{P}(A_1 \cap A_2) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(A_1) \, \mathbb{P}(A_2),$$

но тогда

$$\mathbb{P}((A_1 \cap A_2) \cap A_3) = \frac{1}{4} \neq \frac{1}{8}.$$

Таким образом, нужно ввести корректное определение.

Определение 4. События A_1, \ldots, A_n независимы, если выполнено:

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \, \mathbb{P}(A_j), \, \forall i \neq j,$$

$$\mathbb{P}(A_i \cap A_j \cap A_k) = \mathbb{P}(A_i) \, \mathbb{P}(A_j) \, \mathbb{P}(A_k), \, \forall i \neq j \neq k,$$

$$\cdots$$

$$\mathbb{P}(\bigcup_{1}^{n} A_i) = \prod_{1}^{n} \mathbb{P}(A_i).$$

(какая-то теорема)

Определение 5. *Случайная величина* - это функция $X: \Omega \to R$.

Пример(ы) 4. Число выпавших решек на n бросках.

4

_

Теперь немного о распределении случайной величины. Пусть имеется вероятностное пространство и случайная величина X. Нас интересует $\{\omega|X(\omega)\in B\}$, то есть, мы хотим исследовать попадания случайной величины в те или иные зоны на прямой. Такую вероятность можно рассматривать как вероятность от множества B, но это слишком сложно, поэтому продолжим на таких двух пунктах:

- значения $X, X(\Omega) = \{a_1, \ldots\}, \{a_k\}$ значение X,
- $A_k = \{\omega | X(\omega) = a_k\}; p_k = \mathbb{P}(A_k)$, причём каждая $p_k \geq 0$, а их сумма равна единице.

Тогда мы можем сделать вывод, что $\mathbb{P}\{X\in B\}=\sum_{k|a_k\in B}p_k$, но левая часть есть $\mathbb{P}\{\bigcup_{k|a_k\in B}\}$, что равно S

 $\mathbf{\Pi}\mathbf{pumep}(\mathbf{\mathbf{b}})$ 5. Приведём примеры распределений:

• вырожденное: $X(\omega) = a$ для любого ω .

(ещё несколько примеров над одописать)