Session 2 - The Cequel

Welcome to the Cequel!

See what I did there

I hope you enjoyed Session 1 and are now comfortable with using variables, for loops, and if statements to create very basic **C** programs (including commenting and being able to compile your code), and are familiar with undefined behaviour and arrays - we can now start to explore

It's getting to the harder stuff ...

Good luck and happy coding!

CHANGE THE README

Contents

- Pointers
 - Memory Addresses
 - The Point (Intro to Pointers)
 - Dereferencing
 - The Null Pointer
 - Pointer Exercises
- Functions
 - Void
 - Function Prototypes
 - Revisiting Hello World
- Reading Input
- Finish exercises for pointers

Pointers

We are about to learn arguably the most fundamental part of **C**: pointers. They may seem scary but we'll soon see that they're not *actually* that bad!

Memory Addresses: How Variables Are Stored

We know that variables store values for us; but what does this actually look like, in the memory of our computers?

Let's think about the following variable initialisations:

```
char a = 5;
char b = 14;
```

These variables correspond to the following address table:

Memory Address		Value Stored
64220	39	5
64220	40	14

We can see that the variable **a** has been stored at 6422039, and that variable **b** has been stored at 6422040 (the next **memory addresss**). These **memory addresses** tell you where you'd find the variables in all of the RAM your computer is currently using so they tend to be fairly large values.

Memory addresses are actually in **binary** (which uses only 2 symbols: 0, 1) and converting to **denary** (our numbering system which uses 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) is a bit of a pain, so we don't usually represent addresses with denary. However, because of the large values that memory addresses tend to be, we can't exactly read them in their binary form since you get values like this: 11000011111111000010111 (6422039 in binary).

Therefore, we typically represent addresses using **hexadecimal** (which uses 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) which is both more compact than binary and, unlike denary, can be easily converted to and from binary.

Our memory addresses in various different bases:

Denary	Binary	Hexadecimal (what is commonly used!)
6422039	110000111111111000010111	61FE17
6422040	110000111111111000011000	61FE18

The Point

It turns out that we can actually access the memory address of a variable in **C**, with the **address** operator (&). This returns a value which is the memory address of a variable so this value is said to **point** to that variable. This value is a **pointer**! Pointers have their own format specifier **%p** (**p** for **p**ointer) which we'll use to inspect some pointers:

```
char a = 5;
char b = 14;

printf("%p\n", &a); // 61FE17
printf("%p\n", &b); // 61FE18
```

So we know variable **a** is stored at memory address 61FE17, and variable **b** is stored at memory address 61FE18.

So far, we've only been dealing with pointers to **char** which is convenient since each char takes up **1 byte** in most machines, and each bit of memory (that has an address) stores **1 byte** of memory; what about ints which typically take up **4 bytes**? How are these stored in memory?

```
int a = 7;
int b = 22;

printf("%p\n", &a); // 61FE18
printf("%p\n", &b); // 61FE1C
```

This can be visualised:

Red cells are taken up by int a, blue cells are taken up by int b

Since each cell (bit of memory) can store 1 byte and ints take up 4 bytes, each int covers 4 cells. The pointer contains the memory address of the first cell; when you check the contents of a variable using its pointer, you have to keep in mind the number of bytes it takes up so you know how many cells to check.

We can also initialise variables for pointers which require:

- 1. the **type** of value it's pointing to
- 2. a memory address (the variable's value)
- 3. a **name** for the variable
- 4. an asterisk * to tell C that it's a pointer

type* variableName = &aVariable;

Of course, you can opt to just *declare* the pointer and not give it a value but this will lead to undefined behaviour.

Interestingly, the position of the * doesn't matter as long as it's between the type and the name of the pointer. All of the following are valid pointer declarations:

```
char* a, char * b, char *c;
```

I would personally recommend the first one: putting the * next to the type makes it obvious that it's related to the type. For example, that char* is a type that is different from the type char.

Dereferencing Pointers

We can access the value pointed to by the pointer by using the **dereferencing** operator (*); **don't get confused** by the fact that * is used both in the **type** when you're declaring a variable and as the dereferencing operator - they are completely different uses of the symbol!

```
int a = 51;
int* pointerToA = &a;
int b = *pointerToA; // the pointer "pointerToA" is said to be dereferenced here
```

So we can access the value stored by pointers by dereferencing the pointer, and actually manipulate it as well:

```
int a = 3;
int* pointerToA = &a;

(*pointerToA)++; // updating a

printf("%d\n", a); // 4
```

Recall that you do the operations inside the brackets first!

The Null Pointer

There's a special kind of pointer that points to no memory address called the **null** pointer. This value is special because any type of pointer can be set to **null**!

```
int* p1 = NULL;
char* p2 = NULL;
short* p3 = NULL;
```

Note that the definition for the null pointer lives inside

Pointer Exercises

• Hex and Binary exercise (explain how to use)

Functions

If you want to write good code, then you want to write organised code. You want to write code that easily clicks into place with other code like lego, and can be easily reused.

This is called **adaptability:** how easily and quickly you can modify your code to introduce new features.

We can organise our code more with **functions**, which we've already been using (**printf** is a function)! A function is a block of code that we can execute by **calling** the function, with some properties:

- you can pass values to the function by calling the function with **arguments**; think about *printf* it wouldn't be very useful if you couldn't pass it the values you want to output
- the function can **return** a *single* value to its caller

The syntax of declaring a function:

typeOfReturnValue functionName(arg1, arg2, ...){

// Some statements

}

An example of a simple function:

```
int sumTwoInts(int a, int b){
   int result = a + b;
   return result; // result matches return type of sumTwoInts (int)
}
```

Notice that we need a

Or even simpler:

```
int sumTwoInts(int a, int b){
   return a + b;
}
```

We can call this function like so:

```
int x = 10;
int y = 5;
int sum = sumTwoInts(x, y);

printf("Sum of x, y: %d\n", sum); // 15
printf("Sum of 2, 4: %d\n", sumTwoInts(2, 4)); // 6
```

Notice how we can use the return value directly (like in summing 2 and 4), or store it in a variable (like in summing 10 and 5).

Void

Sometimes, like in printf, you may not want to return something: you might want the function to just carry out some action(s) and have no reason to return anything.

You can just set the function's return type to **void**:

```
#include <stdio.h>

void shout(){
```

```
printf("THIS FUNCTION SHOUTS THIS MESSAGE!!!!!\n");
}
int main(){
    shout(); // trying to set a variable's value to this will error!
}
```

So we now know that printf is a function of return type void.

Function Prototypes

Revisiting Main

Now that we know about functions, we can revisit our old friend - the **main** function.

```
int main(){
}
```

C lets us get away with not explicitly returning an int, but what would it mean if we did?

Function Exercises 1

1. In higher-level languages, you have to return a value from a non-void function. In **C**, you can return nothing from a non-void function like so:

```
int div(int a, int b){
   if(b != 0){
      return a/b;
   }
}
```

No value is returned from div when b=0

Can you see what happens when div returns nothing? Can you output its return value?

2. Read the solution to Exercise 1 (cFiles/exerciseSolutions/FunctionExercises1/Exercise1.c)

3.

Passing Around Pointers

- Mention that this is a way of returning multiple arguments
- arguments: difference between passing a pointer, and passing a regular old value

Pointers to Functions

Function Exercises 2

Revisiting Arrays

- RESEARCH and mention that arrays decay into pointers
- Mention strings are arrays of chars?
- Pointer arithmetic
- wow, sizeof kind of makes sense -> sizeof arrays, sizeof int. Crazy

Input

• a mid-way (maybe end-level) exercise: create a function for processing int input safely

USEFUL ARTICLE: https://www.geeksforgeeks.org/all-forms-of-formatted-scanf-in-c/ USEFUL EXERCISE: https://www.hackerrank.com/challenges/playing-with-characters/problem? isFullScreen=true

Recommend Hackerrank?

Preprocessing and Macros

In Session 1, we briefly mentioned preprocessor directives which is what **#include** is. To understand them, we need to discuss **preprocessing**.

Note that there are more stages you can split building a C file into, but this is as far as we'll break it down in this course

The **define** preprocessor directive lets us define a macro by telling the compiler to replace text in your code (the macro) with other text (the text that is defined by your macro):

#define thingToReplace whatToReplaceWith

Here 'thingToReplace' is also the name of your macro

It can be useful to define **true** and **false** in this way:

```
#define true 1
#define false 0
```

Everytime you write 'true', it will be replaced with '1' after preprocessing

You might ask: why use macros?

There are a couple reasons but one is **performance**

- no memory used for variable
- no cost from using the variable, or calling a function

•

mention it'll be useful for next session (sneak peak?)

Memory Allocation

Arrays have a fixed size that we have to specify in the **C** code, but sometimes we want to grow our array according to a variable's value (dynamic size). For example, if we want to store a list of **n** numbers where **n** is inputted by a user. Luckily, the standard library (<stdlib.h>) has got us covered with malloc, realloc, and calloc!

Malloc

We can use **malloc**! We can **alloc**ate **m**emory with **malloc**; we just need to tell it how many bytes we want and it'll give us a pointer to that block of memory. So if we want to store 20 characters, then we'll need to allocate (probably) 20 bytes; if we want to store 20 ints, we'll need to allocate (probably) 80 bytes. We don't have to rely on chars and ints being a byte or 4 bytes each though, since we know how to get their size from Session 1:

```
int nItems = 20;
int* p = malloc(nItems * sizeof(int));
```

Hang on though, how can malloc return a pointer that works for any type we want a block of memory for? This is because malloc returns a pointer of a special type: **void*** which begs the question, what does a pointer to **void** mean? It means that we don't specify what type of data it points to, which makes sense since malloc should just give us the memory address to the start of the block of memory. This gives us the flexibility to convert a **void*** pointer to an **int*** pointer, **char*** pointer, **short*** pointer etc.

We could easily do:

```
char* cP = malloc(10 * sizeof(int)); // 40 bytes on my machine
```

Which, assuming an int takes up 4 times the space of a char (it does on my machine), is a block of memory that can store 40 chars.

• malloc, calloc, realloc

Next Session...

Well done on completing Session 2! You're almost through to the end; just one more session to go...

If you're not tired of **C** by then, then remember there's a bonus session on (INSERT DATE)

- maybe do static keyword?
- do structs and unions!
- Makefiles (and multiple files) -> header files? More complicated macros!

Optional Exercises

Not sure what to put here yet

Acknowledgements

Thanks to ...

Originally created by Edward Denton.