Inteligência Artificial – ACH2016 Aula24 – Estimando o Erro e Comparação de Modelos

Norton Trevisan Roman (norton@usp.br)

17 de junho de 2019

- Quando analisamos nossos dados, tipicamente fazemos suposições
 - Cada exemplo é independente dos demais
 - Conjunto de treino e teste são distribuídos de forma idêntica

- Quando analisamos nossos dados, tipicamente fazemos suposições
 - Cada exemplo é independente dos demais
 - Conjunto de treino e teste são distribuídos de forma idêntica
- Sob essas circunstâncias, o erro esperado de um modelo selecionado aleatoriamente é igual tanto no conjunto de treino quanto no de teste
 - Lembre que o modelo n\u00e3o foi treinado, mas selecionado aleatoriamente

- Selecionar modelos aleatoriamente, contudo, não é o que fazemos
 - Definimos um modelo e o ajustamos (treinamos) no conjunto de treino, testando no conjunto de teste
 - O erro esperado no teste é então maior que no treino

- Selecionar modelos aleatoriamente, contudo, não é o que fazemos
 - Definimos um modelo e o ajustamos (treinamos) no conjunto de treino, testando no conjunto de teste
 - O erro esperado no teste é então maior que no treino
- No entanto, um bom algoritmo deveria
 - Apresentar baixo erro no treino
 - Apresentar uma diferença pequena entre os erros de treino e teste

- É a tentativa de dar a melhor predição para alguma quantidade de interesse
 - Como a classificação de um determinado ponto, por exemplo

- É a tentativa de dar a melhor predição para alguma quantidade de interesse
 - Como a classificação de um determinado ponto, por exemplo
- Normalmente desconhecemos o valor real desse parâmetro para um ponto ainda não visto
 - Estimamos assim esse valor, com base no padrão observado durante o treinamento
 - Temos assim um $\hat{\theta}$, estimativa do parâmetro θ para um dado ponto

- Seja $\{\vec{x_1}, \dots, \vec{x_m}\}$ um conjunto de m pontos independentes e identicamente distribuídos
 - Um **Estimador** para esse conjunto é uma variável aleatória $\hat{\theta}$ usada para estimar algum parâmetro θ da população
 - É uma função $\hat{\theta} = g(\vec{x}_1, \dots, \vec{x}_m)$ dos dados

- Seja $\{\vec{x_1}, \dots, \vec{x_m}\}$ um conjunto de m pontos independentes e identicamente distribuídos
 - Um **Estimador** para esse conjunto é uma variável aleatória $\hat{\theta}$ usada para estimar algum parâmetro θ da população
 - É uma função $\hat{\theta} = g(\vec{x}_1, \dots, \vec{x}_m)$ dos dados
- Assim, cada modelo M_i aprendido para predizer uma classe θ pode ser visto como um estimador $\hat{\theta}_i$
 - M_i, por si só, é uma estimativa da função real que gera os dados (e cuja existência assumimos)

Estimador de Ponto: Viés

• Definimos o viés de um estimador como sendo

$$Vi\acute{es}(\hat{ heta}) = \mathbb{E}(\hat{ heta}) - heta$$

Estimador de Ponto: Viés

Definimos o viés de um estimador como sendo

$$extit{Vi\'es}(\hat{ heta}) = \mathbb{E}(\hat{ heta}) - heta \qquad ext{Valor esperado do} \ ext{estimador } \hat{ heta} \ ext{(sua m\'edia)}$$

Estimador de Ponto: Viés

Definimos o viés de um estimador como sendo

$$Vi\acute{es}(\hat{ heta}) = \mathbb{E}(\hat{ heta}) - \theta$$
 $\mathbb{E}(\hat{ heta}) = \sum_{i=1}^{n} \hat{ heta}_{i} P(\hat{\Theta} = \hat{ heta}_{i})$

Estimador de Ponto: Viés

Definimos o viés de um estimador como sendo

$$extit{Vi\'es}(\hat{ heta}) = \mathbb{E}(\hat{ heta}) - heta$$
 Valor real do parâmetro que estimamos com $\hat{ heta}$

Estimador de Ponto: Viés

• Definimos o viés de um estimador como sendo

$$Vi\acute{es}(\hat{ heta}) = \mathbb{E}(\hat{ heta}) - heta$$

- O viés mede assim o desvio esperado do estimador em relação ao valor real do parâmetro θ
- ullet Um bom estimador deveria dar um valor perto de heta
 - ullet Ou seja, um bom estimador $\hat{ heta}$ é aquele em que $extit{Vi\'es}(\hat{ heta}) pprox 0$
 - Se $Vi\acute{es}(\hat{\theta})=0$ trata-se de um **estimador sem viés**

Estimador de Ponto: Variância

$$Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \mathbb{E}(\hat{\theta}))^2)$$

= $\mathbb{E}(\hat{\theta}^2) - \mathbb{E}^2(\hat{\theta})$

Estimador de Ponto: Variância

$$Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \mathbb{E}(\hat{\theta}))^2)$$
$$= \mathbb{E}(\hat{\theta}^2) - \mathbb{E}^2(\hat{\theta})$$

Estimador de Ponto: Variância

$$Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \mathbb{E}(\hat{\theta}))^2)$$

= $\mathbb{E}(\hat{\theta}^2) - \mathbb{E}^2(\hat{\theta})$

Estimador de Ponto: Variância

$$\begin{array}{lll} _{\text{Demonstração no}} & \textit{Var}(\hat{\theta}) & = & \mathbb{E}((\hat{\theta} - \mathbb{E}(\hat{\theta}))^2) \\ & \text{final dos slides} & = & \mathbb{E}(\hat{\theta}^2) - \mathbb{E}^2(\hat{\theta}) \end{array}$$

- Mede como esperamos que $\hat{\theta}$ varie, em relação a seu valor esperado, ao treinarmos em novas amostras independentes dos dados
 - O tanto que $\hat{\theta}$ varia na medida em que mudamos os conjuntos de treino

Estimador de Ponto: Viés × Variância

 Da mesma forma que gostaríamos de ter um estimador com pouco viés, também gostaríamos que apresentasse baixa variância

- Da mesma forma que gostaríamos de ter um estimador com pouco viés, também gostaríamos que apresentasse baixa variância
 - Queremos então que se ajuste bem aos dados de treino (baixo viés)

- Da mesma forma que gostaríamos de ter um estimador com pouco viés, também gostaríamos que apresentasse baixa variância
 - Queremos então que se ajuste bem aos dados de treino (baixo viés)
 - E também a diferentes conjuntos de treino (baixa variância)

- Da mesma forma que gostaríamos de ter um estimador com pouco viés, também gostaríamos que apresentasse baixa variância
 - Queremos então que se ajuste bem aos dados de treino (baixo viés)
 - E também a diferentes conjuntos de treino (baixa variância)
- Note que uma grande variância é um indicativo do comportamento em dados não vistos
 - Se treinar com dados distintos leva a $\hat{\theta}$ s bastante distintos, o $\hat{\theta}$ de um treino pode não corresponder ao do teste

- Como podemos conciliar isso?
 - A maneira mais comum é usando validação cruzada
 - Ou então adotando uma medida de erro que leve em conta tanto viés quanto variância

Estimador de Ponto: Viés × Variância

- Como podemos conciliar isso?
 - A maneira mais comum é usando validação cruzada
 - Ou então adotando uma medida de erro que leve em conta tanto viés quanto variância
- Essa medida é o erro quadrático médio

$$EQM(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \theta)^2)$$
$$= Viés^2(\hat{\theta}) + Var(\hat{\theta})$$

que mede o desvio total esperado entre o estimador $\hat{\theta}$ e o valor real do parâmetro θ

Estimador de Ponto: Viés × Variância

- Como podemos conciliar isso?
 - A maneira mais comum é usando validação cruzada
 - Ou então adotando uma medida de erro que leve em conta tanto viés quanto variância
- Essa medida é o erro quadrático médio

$$EQM(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \theta)^2)$$
$$= Viés^2(\hat{\theta}) + Var(\hat{\theta})$$

que mede o desvio total esperado entre o estimador $\hat{\theta}$ e o valor real do parâmetro θ

Estimador de Ponto: Viés × Variância

- Como podemos conciliar isso?
 - A maneira mais comum é usando validação cruzada
 - Ou então adotando uma medida de erro que leve em conta tanto viés quanto variância
- Essa medida é o erro quadrático médio

Demonstração no
$$EQM(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \theta)^2)$$
 final dos slides $= Vi\acute{e}s^2(\hat{\theta}) + Var(\hat{\theta})$

que mede o desvio total esperado entre o estimador $\hat{\theta}$ e o valor real do parâmetro θ

- $EQM(\hat{\theta}) = \mathbb{E}((\hat{\theta} \theta)^2)$
 - Note que a variância $Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} \mathbb{E}(\hat{\theta}))^2)$ nada mais é que o erro quadrático esperado ao usarmos uma única observação de $\hat{\theta}$ para estimar sua média $\mathbb{E}(\hat{\theta})$

- $EQM(\hat{\theta}) = \mathbb{E}((\hat{\theta} \theta)^2)$
 - Note que a variância $Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} \mathbb{E}(\hat{\theta}))^2)$ nada mais é que o erro quadrático esperado ao usarmos uma única observação de $\hat{\theta}$ para estimar sua média $\mathbb{E}(\hat{\theta})$
- Se pudéssemos reduzir o erro indefinidamente, então teríamos:
 - $Vi\acute{e}s(\hat{\theta}) = 0$ e $Var(\hat{\theta}) = 0$
 - Estaríamos com o modelo real, calibrado em infinitos dados
 - Esse, contudo, não é o caso

- Temos dados finitos, e geralmente com ruído
 - Ou seja, $\theta = \theta_{real} + \varepsilon$ (θ não é de fato o valor real, há um ruído ε), e assim $EQM(\hat{\theta}) > 0$

- Temos dados finitos, e geralmente com ruído
 - Ou seja, $\theta = \theta_{real} + \varepsilon$ (θ não é de fato o valor real, há um ruído ε), e assim $EQM(\hat{\theta}) > 0$
- Ressurge assim nosso dilema:
 - Suponha que $EQM(\hat{\theta}) = Vi\acute{es}^2(\hat{\theta}) + Var(\hat{\theta}) > 0$ é mínimo
 - Então, ao reduzirmos $Vi\acute{e}s(\hat{\theta})$, necessariamente aumentamos $Var(\hat{\theta})$ para compensar \rightarrow overfitting
 - E, ao reduzirmos $Var(\hat{\theta})$, necessariamente aumentamos $Vi\acute{e}s(\hat{\theta})$ para compensar \rightarrow underfitting

- E como reduzimos o viés de um modelo?
 - Aumentando sua capacidade (ou complexidade)

- E como reduzimos o viés de um modelo?
 - Aumentando sua capacidade (ou complexidade)
- Informalmente, capacidade é a habilidade de um modelo de se ajustar a uma variedade de funções

- E como reduzimos o viés de um modelo?
 - Aumentando sua capacidade (ou complexidade)
- Informalmente, capacidade é a habilidade de um modelo de se ajustar a uma variedade de funções
 - Modelos com alta capacidade reduzem o erro de treino
 - Em compensação, podem se ajustar até ao ruído lá existente (overfitting)

- E como reduzimos o viés de um modelo?
 - Aumentando sua capacidade (ou complexidade)
- Informalmente, capacidade é a habilidade de um modelo de se ajustar a uma variedade de funções
 - Modelos com alta capacidade reduzem o erro de treino
 - Em compensação, podem se ajustar até ao ruído lá existente (overfitting)
 - Modelos com baixa capacidade podem ter dificuldades em se ajustar aos dados de treino (underfitting)
 - Em compensação a diferença com dados de teste não será grande

Estimador de Ponto: Capacidade

• Ex: Função real quadrática

- O truque está em achar a capacidade ideal
 - Devemos testar várias capacidades, identificando o ponto em que a distância entre erro de treino e de generalização começa a ficar muito grande

Medidas Alternativas de Erro

- Considere o seguinte cenário
 - Uma determinada doença fatal atinge 0,1% da população
 - Queremos desenvolver um sistema que, a partir de determinados atributos, diga se uma pessoa tem ou não alta probabilidade de ter essa doença

- Considere o seguinte cenário
 - Uma determinada doença fatal atinge 0,1% da população
 - Queremos desenvolver um sistema que, a partir de determinados atributos, diga se uma pessoa tem ou não alta probabilidade de ter essa doença
- Agora considere um sistema que, independentemente de quem entre no consultório, diz que essa pessoa não possui essa doença

- Considere o seguinte cenário
 - Uma determinada doença fatal atinge 0,1% da população
 - Queremos desenvolver um sistema que, a partir de determinados atributos, diga se uma pessoa tem ou não alta probabilidade de ter essa doença
- Agora considere um sistema que, independentemente de quem entre no consultório, diz que essa pessoa não possui essa doença
 - Taxa de erro de 0,1% Maravilhoso!

- Qual o problema?
 - A taxa de erro supõe custos de erro idênticos para cada classe
 - Não importa se os erros ficaram bem distribuídos entre as classes ou se se concentraram em uma única delas

- Qual o problema?
 - A taxa de erro supõe custos de erro idênticos para cada classe
 - Não importa se os erros ficaram bem distribuídos entre as classes ou se se concentraram em uma única delas
- Em algumas situações, contudo, o custo de errar em uma classe é maior que o de errar em outra
 - É melhor termos um alarme falso (apontarmos como doentes pessoas sem a doença) do que não detectarmos um caso real (apontarmos como sadios quem possui a doença)

- Dada uma instância, as possíveis saídas de um classificador binário são:
 - A instância é positiva e foi classificada como positiva (verdadeiro positivo)
 - A instância é positiva e foi classificada como negativa (falso negativo)
 - A instância é negativa e foi classificada como negativa (verdadeiro negativo)
 - A instância é negativa e foi classificada como positiva (falso positivo)

Medidas alternativas

 Dado um classificador e um conjunto de instâncias, essas 4 possibilidades podem ser organizadas em uma tabela

Medidas alternativas

- Dado um classificador e um conjunto de instâncias, essas 4 possibilidades podem ser organizadas em uma tabela
 - A Matriz de Confusão, ou Tabela de Contingência

р n γ True False. **P**ositives **P**ositives Hypothesized class False True Ν Negatives Negatives Column totals: Ν Fonte: [6]

True class

- Valores na diagonal principal representam as decisões corretas
 - Os da secundária representam os erros – a confusão entre as classes
 - Daí o nome...

Medidas alternativas

 Podemos então calcular diversas métricas

Column totals:

P

N

Fonte: [6]

Medidas alternativas

- Podemos então calcular diversas métricas
- Taxa de verdadeiros positivos

• $t_{VP} = \frac{TP}{P}$

Também chamada de abrangência ou

revocação (recall)

Hypothesized class

True class p n True γ False **P**ositives Positives False True N Negatives Negatives

Column totals:

Fonte: [6]

• De todos os positivos existentes, quantos classificamos como tal

- Taxa de falsos positivos
 - $t_{FP} = \frac{FP}{N}$ Também chamada de taxa de alarmes falsos
 - De todos os negativos, quantos classificamos incorretamente

- Especificidade
 - $esp = 1 t_{FP}$

Medidas alternativas

- Especificidade
 - $esp = 1 t_{FP}$
- Precisão

•
$$pr = \frac{TP}{TP + FP}$$

 De todos os que dissemos serem positivos, quantos realmente o eram

Hypothesized class

Y True False Positives

N False True Negatives Negatives

True class

n

Column totals:
Fonte: [6]

P

N

Medidas alternativas

Acurácia

•
$$ac = \frac{TP + TN}{P + N}$$

- De todos os dados que temos, quantos classificamos corretamente
- Corresponde à taxa de sucesso que usamos até agora

Hypothesized class

Column totals:

Fonte: [6]

N

- Medida-f (f-measure)
 - $F = 2 \times \frac{pr \times t_{VP}}{pr + t_{VP}}$
 - Média harmônica de precisão e abrangência (taxa de verdadeiros positivos)
 - Também chamada de medida F₁, por conta de pr e t_{VP} estarem com pesos iguais

Comparando Algoritmos

- Um modo de usar algumas dessas métricas é criarmos um gráfico ROC
 - Receiver operating characteristics

- Um modo de usar algumas dessas métricas é criarmos um gráfico ROC
 - Receiver operating characteristics
- Gráfico de $t_{VP} \times t_{FP}$
 - Mostra a relação entre as taxas de acertos e de alarmes falsos
 - Relação entre benefícios e custos
- Ilustração bidimensional do desempenho de um classificador

- E como criamos um gráfico ROC?
 - Depende do tipo de classificador

- E como criamos um gráfico ROC?
 - Depende do tipo de classificador
- Classificadores discretos:
 - São os que produzem um rótulo de classe apenas
 - Ex: árvores de decisão
 - Representados por um único ponto no gráfico
 - Pois produzem uma única matriz de confusão para o conjunto de teste

- E como criamos um gráfico ROC?
 - Depende do tipo de classificador
- Classificadores discretos:
 - São os que produzem um rótulo de classe apenas
 - Ex: árvores de decisão
 - Representados por um único ponto no gráfico
 - Pois produzem uma única matriz de confusão para o conjunto de teste

Gráficos ROC – Classificadores discretos

 Mesmo parecendo simples, esse gráfico já nos mostra muita coisa

- Mesmo parecendo simples, esse gráfico já nos mostra muita coisa
 - Se queremos aumentar os positivos verdadeiros, mesmo que isso gere falsos positivos, então B é melhor que A

- Mesmo parecendo simples, esse gráfico já nos mostra muita coisa
 - Se queremos aumentar os positivos verdadeiros, mesmo que isso gere falsos positivos, então B é melhor que A
 - D é o melhor de todos: 100% de acertos nos positivos, sem falsos positivos

- Note também que
 - O ponto (0,0) representa a estratégia de nunca classificar algo como positivo
 - Não acerta um positivo, mas também não tem falsos positivos

- Note também que
 - O ponto (0,0) representa a estratégia de nunca classificar algo como positivo
 - Não acerta um positivo, mas também não tem falsos positivos
 - A estratégia oposta, de classificar tudo como positivo, corresponde ao ponto (1,1)

- Note também que
 - O ponto (0,0) representa a estratégia de nunca classificar algo como positivo
 - Não acerta um positivo, mas também não tem falsos positivos
 - A estratégia oposta, de classificar tudo como positivo, corresponde ao ponto (1,1)

- E (0,1) representa a classificação perfeita
 - É nesse ponto que desejamos estar

- A linha y = x representa a decisão aleatória
 - Se um classificador aleatoriamente escolher a classe positiva 50% das vezes, espera-se que classifique como positivos 50% dos positivos, mas também 50% dos negativos
 - O que o coloca no ponto (0.5, 0.5)

- A linha y = x representa a decisão aleatória
 - Se um classificador aleatoriamente escolher a classe positiva 50% das vezes, espera-se que classifique como positivos 50% dos positivos, mas também 50% dos negativos
 - O que o coloca no ponto (0.5, 0.5)
 - Se escolher a positiva 90% das vezes, espera-se que acerte 90% dos positivos, e erre 90% dos negativos
 - Levando ao ponto (0.9, 0.9)

- Note que C n\u00e3o difere de um classificador que escolha positivo 70% das vezes
 - Dizemos que classificadores na diagonal não têm qualquer informação sobre a classe

- Note que C n\u00e3o difere de um classificador que escolha positivo 70\u00f3 das vezes
 - Dizemos que classificadores na diagonal não têm qualquer informação sobre a classe
- Mas pior é E
 - Se negarmos suas decisões obteremos B
 - Classificadores assim têm informação útil, mas a aplicam de forma errada

- Classificadores contínuos
 - São os que produzem um valor (ex: uma probabilidade) representando o quanto uma instância pertence a uma determinada classe
 - Ex: Naïve Bayes e redes neurais

- Classificadores contínuos
 - São os que produzem um valor (ex: uma probabilidade) representando o quanto uma instância pertence a uma determinada classe
 - Ex: Naïve Bayes e redes neurais
 - Aplica-se então um limiar (threshold), para predizer a classe dessa instância
 - Se a saída do classificador for maior ou igual ao limiar, ele produz um Y, do contrário produzirá um N

- Classificadores contínuos
 - São os que produzem um valor (ex: uma probabilidade) representando o quanto uma instância pertence a uma determinada classe
 - Ex: Naïve Bayes e redes neurais
 - Aplica-se então um limiar (threshold), para predizer a classe dessa instância
 - Se a saída do classificador for maior ou igual ao limiar, ele produz um Y, do contrário produzirá um N
 - Transformamos assim o classificador em um classificador discreto

Classificadores contínuos

- E como os representamos no gráfico ROC?
 - Inserimos um ponto diferente para cada limiar

Classificadores contínuos

- E como os representamos no gráfico ROC?
 - Inserimos um ponto diferente para cada limiar
- Considere o conjunto de teste

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

- E como os representamos no gráfico ROC?
 - Inserimos um ponto diferente para cada limiar
- Considere o conjunto de teste
 - Temos 10 exemplos p e 10 n
 - Ordenados pelo valor dado pelo classificador
 - Um limiar de 0,7 classificaria como P apenas os 3 exemplos do topo (score > 0,7)

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1
		Font	e: [6]		

onte: [0

Classificadores contínuos

- Variamos então esse limiar
 - 0,9: apenas o exemplo 1 recebe o rótulo P, os demais N
 - 0,8: apenas 2 e 3 são **P**, os demais **N**
 - ...
 - 0,3: do 1 ao 19 são P, os demais N
 - 0,1: todos são **P**

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

1 p .9 11 p .4 2 p .8 12 n .39 3 n .7 13 p .38 4 p .6 14 n .37 5 p .55 15 n .36 6 p .54 16 n .35
3 n .7 13 p .38 4 p .6 14 n .37 5 p .55 15 n .36
4 p .6 14 n .37 5 p .55 15 n .36
5 p .55 15 n .36
6 p .54 16 n .35
_
7 n .53 17 p .34
8 n .52 18 n .33
9 p .51 19 p .30
10 n .505 20 n .1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Classificadores contínuos

Levando ao gráfico

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Área sob a Curva

- Para comparar classificadores pode ser útil reduzir a curva ROC a um único valor
 - Representando o desempenho esperado (ou seja, médio) de cada classificador

Área sob a Curva

 Para comparar classificadores pode ser útil reduzir a curva ROC a um único valor

- Representando o desempenho esperado (ou seja, médio) de cada classificador
- Uma forma de fazer isso é calcular a área sob a curva
 - $0 \le \text{área} \le 1$

Área sob a Curva

- O classificador com maior área será aquele que, em média, possui o melhor desempenho
 - No caso, B

<u>Área sob a</u> Curva

- O classificador com maior área será aquele que, em média, possui o melhor desempenho
 - No caso, B
- Lembre que a escolha aleatória produz a linha y = x
 - Nenhum classificar real pode ter uma área menor que 0,5

Área sob a Curva

 Podemos inclusive comparar classificadores discretos e contínuos

Área sob a Curva

- Podemos inclusive comparar classificadores discretos e contínuos
- No exemplo, A é discreto e B contínuo
 - Vemos que A representa o desempenho de B quando este é usado com um único limiar fixo
 - Embora nesse ponto o desempenho de ambos seja igual, o desempenho de A é inferior nos demais pontos

<u>Área</u> sob a Curva

- A área possui uma propriedade interessante
 - Equivale à probabilidade do classificador elencar um exemplo positivo escolhido aleatoriamente mais alto que um exemplo negativo escolhido aleatoriamente
 - Se p = 1, então há um limiar dividindo perfeitamente positivos de negativos
 - Corresponde ao teste de Wilcoxon (Wilcoxon rank-test)

Referências

- Witten, I.H.; Frank, E. (2005): Data Mining: Practical Machine Learning Tools and Techniques. Elsevier. 2a ed.
- Goodfellow, I.; Bengio, Y.; Courville, A. (2016): Deep Learning. MIT Press.
- Mitchell, T.M.: Machine Learning. McGraw-Hill. 1997.
- Mastie, T.; Tibshirani, R.; Friedman, J. (2009): The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. 2a ed.
- Salpaydin, E. (2010): Introduction to Machine Learning. MIT Press. 2 ed.
- Fawcett, T. (2006): An Introduction to ROC Analysis. Pattern Recognition Letters, 27, pp. 861-874.
- https://www.dataquest.io/blog/learning-curves-machinelearning/

Referências

- http://scott.fortmann-roe.com/docs/BiasVariance.html
- https://en.wikipedia.org/wiki/Precision_and_recall

Apêndice I

Variância

$$Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \mathbb{E}(\hat{\theta}))^{2})$$

$$= \mathbb{E}(\hat{\theta}^{2} - 2\hat{\theta}\mathbb{E}(\hat{\theta}) + \mathbb{E}^{2}(\hat{\theta}))$$

$$= \mathbb{E}(\hat{\theta}^{2}) - 2\mathbb{E}(\hat{\theta})\mathbb{E}(\hat{\theta}) + \mathbb{E}^{2}(\hat{\theta})$$

$$= \mathbb{E}(\hat{\theta}^{2}) - 2\mathbb{E}^{2}(\hat{\theta}) + \mathbb{E}^{2}(\hat{\theta})$$

$$= \mathbb{E}(\hat{\theta}^{2}) - \mathbb{E}^{2}(\hat{\theta})$$

Apêndice II

Erro quadrático médio

$$\begin{split} EQM(\hat{\theta}) &= \mathbb{E}((\hat{\theta} - \theta)^2) \\ &= \mathbb{E}(\hat{\theta}^2 - 2\theta\hat{\theta} + \theta^2) \\ &= \mathbb{E}(\hat{\theta}^2) - 2\theta\mathbb{E}(\hat{\theta}) + \theta^2 \\ &= \mathbb{E}(\hat{\theta}^2) - 2\theta\mathbb{E}(\hat{\theta}) + \theta^2 + \mathbb{E}^2(\hat{\theta}) - \mathbb{E}^2(\hat{\theta}) \\ &= (\mathbb{E}^2(\hat{\theta}) - 2\theta\mathbb{E}(\hat{\theta}) + \theta^2) + (\mathbb{E}(\hat{\theta}^2) - \mathbb{E}^2(\hat{\theta})) \\ &= (\mathbb{E}(\hat{\theta}) - \theta)^2 + (\mathbb{E}(\hat{\theta}^2) - \mathbb{E}^2(\hat{\theta})) \\ &= Vi\acute{e}s^2(\hat{\theta}) + Var(\hat{\theta}) \end{split}$$