Stabilization and Synchronization of Logical Clocks

Franck Petit

UPMC
Paris

Preliminaries

- $_{\circ}$ G=(V,E) is a connected network
- V: set of n nodes/processes
- E: set of m bidirectional links
- N_p : set of neighboring nodes of p
- Memory shared between neighboring nodes

Preliminaries, Distributed Algorithm

- In each computation step:
 - According to its variables and the variables of its neighbors, a node/process is either enabled to execute an action or not
 - Synchronous system
 - Every enabled nodes execute an action atomically
 - Asynchronous system
 - Some enabled nodes are chosen by an unfair adversary
 - The chosen nodes execute an action atomically

- Each node p maintains a logical clock register r_p
- Synchronous/Asynchronous Environment

$$r_p := r_p + 1$$

- $_{\circ}$ Each node p maintains a logical clock register r_{p}
- Synchronous Asynchronous Environment

Global Synchronizer (asynchronous) distributed systems

In systems with unique IDs or a particular node (root, leader, main server...)?

- $_{\circ}$ Wave Algorithms, e.g.,
 - Propagation of Information with Feedback (PIF)
 - Depth-First Token Circulation
- Global Synchronization, e.g.,
 - (Group) Mutual Exclusion
 - Leader Election
 - Reset
 - Logical Clock Synchronization
 - Rooted Spanning Tree
 - O ...

Propagation of Information with Feedback

For One Puse:

Best Case: O(D)

Worst Case: O(N)

Can we provide better complexities?

- Each node p maintains a phase clock register r_p
- Synchronous/Asynchronous Environment

If
$$\forall q \in N_p : r_p \le r_q$$
 then $r_p := r_p + 1$

Unison

- Each node maintains a phase clock register
 r in [o,...,K-1]=Z_K
- Safety: The gap between the phase clock of two neighboring nodes is at most equal to 1 (mod K).
- No starvation (Vivacity): Each phase clock r is incremented by 1 (mod K) infinitely often.

Unison

- o K=2?
- No possible order among the clocks

Synchronous

- o K=2?
- No possible order among the clocks

Asynchronous

- Successor Function and Predecessor Function possible if K≥3
- K=3
 - Local total order \leq_1 over $Z_3 = \{0,1,2\}$

$$a \le_l b \text{ iff } 0 \le b - a \mod 3 \le 1$$

$$0 \le 1$$
; $1 \le 2$; $2 \le 0$;

K=3, Lifting

p.R, virtual register, it counts the number of increments of *p*

The lifting is compatible with the local ordering of Z_K

The lifting defines a global preorder over the nodes

Generalization over Z_{κ}

- o (Local) total order ≤ over Z_K={o,1,2,...,K}
- Let $M \ge 1$ and $K \ge 2M+1$

 $a \leq_l b \ iff \ 0 \leq b - a \ mod \ K \leq M$

With M=2 and K=5, then for 1 $4 \le 1$; $0 \le 1$; $1 \le 1$; $1 \le 2$; $1 \le 3$;

Complexities

- Space : O(1)
- Time, for one pulse:
 - Best Case: O(1)
 - \circ Worst Case: O(D) ← [DELAY]

Fault Tolerance

Starting from an arbitrary configuration?

Self-stabilization

A self-stabilizing system, regardless of its initial state, is guaranteed to converge to the intended behavior in finite time. [Dijkstra 74]

→ Transient Faults

• K=6

• K=6

o K=6

MUTUAL EXCLUSION!

What are the conditions to be able to (re)-synchronize the system?

System Configurations

 Γ : The register values are arbitrary

 Γ_1 : The register of two neighboring process is less than or equal to 1

 $\Gamma^{\circ}_{_{1}}$: There is no deadlock (there exists a compatible lifting to the configuration)

System Configurations

 Γ : The register values are arbitrary

 Γ_1 : The register of two neighboring process is less than or equal to 1

 Γ_1° : There is no deadlock (there exists a compatible lifting to the configuration)

K>C_G=>
$$\Gamma_1 = \Gamma_1^0$$

 $C_G(C_G \le n)$, the cyclomatic characteristic of the graph: Equal to the size of the greatest cycle in one of the cycle basis of G where the size of the greatest cycle is minimum (equal to 2 if G is acyclic)

[Boulinier, Petit, and Villain, PODC 2004]

C_G =4 in meches and tories

C_G =6 in honeycombs

C_G =4 in hypercubes

 $C_G = n$ on rings

To avoid deadlock due arbitrary initial values, K must be greater than C_G ($C_G \le n$), the cyclomatic characteristic of the graph

System Configurations

 Γ : The register values are arbitrary

 $\Gamma_{\mathbf{1}}$: The register of two neighboring process is less than or equal to 1

 $\Gamma^{o}_{_{1}}$: There is no deadlock (there exists a compatible lifting to the configuration)

Stabilization

- Global Reset (Stabilizing PIF), implies a root or IDs
- Local Reset (also woks in anonymous networks)

QUESTION:

What is the motivation behind anonymity?

"Only a few amount of bits allows to distinguish a huge number of nodes!"

Advantages of Anonymous Solutions

- Lack of (underlying) infrastructure
 - No unique identifier assignation or no central process
 - No maintenance of any distributed structure
- Economic advantages
- User privacy preserved
 [Delporte-Gallet, Fauconnier, Guerraoui, and Ruppert, OPODIS 2007]
- No one-to-one routing
- Very suitable for sensor networks

Self-Stabilizing Logical Clock Synchronization

To avoid starvations due arbitrary initial values, K must be greater than C_G ($C_G \le n$), the cyclomatic characteristic of the graph

Safety eventually guaranteed using a reset mechanism: Register r is set in $[-\alpha,...,o]$

To avoid starvations due arbitrary initial values, α must be greater than than H_G+1 ($H_G \le n$), the greatest chordless cycle of the graph [Boulinier, Petit, and Villain, PODC 2004]

Self-Stabilizing Logical Clock Synchronization

SSSync

AN: $\forall q \in N_p$: $Correct_p(q) \land (NormalStep_p) \rightarrow <<appli>>; <math>r_p := \varphi(r_p)$;

AR: $\neg (\forall q \in N_p: Correct_p(q)) \land (r_p \notin tail \phi) \rightarrow r_p:=-\alpha; //reset$

AC: $r_p \in \text{init} \phi^* \land (\forall q \in N_p : r_q \in \text{init} \phi^* \land r_p \leq \phi(r_q) \rightarrow r_p := \phi(r_p)$:

Asynchronous, Anonymous Logical Clock, Related Works

# of	states	Stabilizing Time	
Gouda, Couvreur, Francez, 1992	$O(n^2)$	O(nd)	
Dolev, 2000	O(n²)	O(d)	
o SSSync(K,α,M)			
α =0, K>M.C _G , M>H _G -2	O(nd)	O(nd)	
α >H _G -2, M=1, K>C _G	O(n)	O(n)	
Tree networks	O(1)	O(d)	

Wave Algorithms in Anonymous Networks

- All existing solutions for coordination problems (either global, local or at distance ρ) are based on:
 - Existence of unique IDs (or a root)
 - Underlying wave mechanism

QUESTION:

Can we provide wave algorithms using neither IDS nor root, i.e., working in an anonymous system?

• Anonymous global (ρ = Diam) waves for non fault-tolerant systems
[Tel, Concurrency'88]

Logical Clock Synchronization in Asynchronous Settings

- Let us observe a possible execution of the self-stabilizing phase clock synchronization again
- The system (a chain of 4 nodes) is stabilized
- o *K*=5

Logical Clock Synchronization in Asynchronous Settings

- Let us observe a possible execution of the self-stabilizing phase clock synchronization again
- The system (a chain of 4 nodes) is stabilized
- \circ K=5

Phase Clock Synchronization in Asynchronous Settings

- Observe that:
 - After stabilization, the phase clock synchronization algorithm provides a wave stream

In the future of a coherent phase P_i , the d^{th} phase clock incrementation causally depends on nodes at distance $\leq d$.

Self-Stabilizing ho-Wavelets

When the clock register r is equal to a particular value, e.g., 0, add a particular event "DECIDE"

THEOREM:

The self-stabilizing phase clock synchronization provides a self-stabilizing ρ -wavelet mechanism

Self-Stabilizing ho-Wavelets

For instance, if ρ =Diam, the above protocol provides a Propagation of Information with Feedback over an anonymous network

Self-Stabilizing ho-Local Infimum Computation \oplus

An infimum
 over a set S is an associative,
 commutative, and idempotent (x+x=x) binary
 operator.

For instance, $\oplus = \bigcup$

Self-Stabilizing ho-Local Infimum Computation \oplus

An infimum
 over a set S is an associative,
 commutative, and idempotent (x+x=x) binary
 operator.

For instance, \oplus = min

Enabling Snap-Stabilization in Anonymous Networks

QUESTION:

Can we design snap-stabilizing waves algorithms in anonymous networks?

After an enought long normal action sequence (NA), a coherent phase is guaranteed in the past.

Snap-Stabilization Wave Protocol for Anonynous Networks

Enabling Snap-Stabilization in Anonymous Networks

Some references

- UNISON and its applications
 - Boulinier, Petit, Villain [PODC 04]
 When Graph Theory helps Self-Stabilization
 - Boulinier, Petit, Villain, [Algorithmica o8]
 Synchronous vs. Asynchronous Unison
 - Boulinier, Petit, [APDCM 08]
 Self-Stabilizing Wavelets and ρ-Hop Coordination
 - Boulinier, Levert, Petit [ICDCN 08]
 Snap-Stabilizing Waves in Anonymous Networks
- Snap-Stabilization
 - Bui, Datta, Petit, Villain [Distributed Computing 07]
 Snap-stabilization and PIF in Tree Networks