

Track: Implementation Track

Project Description: Build an AI to predict radiation exposure levels for astronauts based on numerical data from space weather (e.g., solar activity, cosmic ray flux).

Dataset: Use NASA's space weather datasets.

Models:

- 1. Use Neural Network
- 2. Use regression models (e.g., Linear Regression, XGBoost) to predict radiation levels from input variables like solar flare intensity.

Features (inputs):

- •Solar wind speed (VxGSE) speed of charged particles flowing from the Sun
- •Proton density (Np) concentration of solar protons in the solar wind
- •IMF components (BxGSE, ByGSE, BzGSE) interplanetary magnetic field vector components
- •Solar radio flux (F10) 10.7 cm solar radio emission, a proxy for solar activity
- •Geomagnetic index (kp_3h) geomagnetic disturbances over 3-hour intervals
- •Proton flux (proton_flux_10MeV) high-energy solar protons measured by GOES satellites

Target (output):

•Radiation dose (radiation_dose_mSv) — a synthetic value representing astronaut radiation exposure in millisieverts, generated as a weighted sum of input features plus noise

Data Distributions

Neural Network

ReLu Activation

Loss Function: Adam Optimizer

Sequential Model

2 Layers

Evaluation

MSE: 0.00

R^2: 0.9623

Training VS Loss Validation

Regression Models

Linear Regression:

MSE = 0.00, R2 = 0.9649

Ridge Regression:

MSE = 0.00, R2 = 0.9650

Lasso Regression:

MSE = 0.04, R2 = -0.0000

Random Forest:

MSE = 0.00, R2 = 0.9616

Bayesian Ridge: MSE = 0.00, R2 = 0.9649

XGBoost:

MSE = 0.00, R2 = 0.9592

Comparisons

