VAN (VEHICLE AREA NETWORKS)

SHINYOUNG CHO

CONTENTS

- Definition
- Central vision of VAN
- IN-Vehicle Van
- Vehicle-to-Vehicle Communication(V2V)
- Vehicle-to-Cloud Communication
- Vehicle-to-Roadside Infrastructure Communication
- Communication Standards for VAN
- Security and Privacy of VAN
- Secure Communication
- Conclusion

DEFINITION

Vehicle Area Networks(VAN)

- A local area network in and around a moving vehicle
- Enables devices in and around the vehicle to communicate, either directly connected or through wireless protocols over the Internet

Key objective

To improve driver and vehicle safety

CENTRAL VISION OF VAN(1/2)

CENTRAL VISION OF VAN(2/2)

[VAN key components and functions]

IN-VEHICLE VAN(1/4)

In-Vehicle Data Collection/Analysis Systems.

Intelligent intra-vehicle communication system

 A major stream of research in the area of intelligent vehicle systems

Onboard equipment(OBE)

- Collect information from the driver or vehicle
- Analyze and classify the data collectively to predict or detect driver fatigue

IN-VEHICLE VAN(2/4)

Onboard equipment(OBE) (cont'd)

- Standard vehicle information
 - Speed
 - Pressure on the brake
 - Gas pedal
 - Steering wheel rotation
 - Global positioning system(GPS) routing
 - Driver behavioral information(ex. Facial expression)
 - Physiological signals(ex. BP, EGC)

IN-VEHICLE VAN(3/4)

In-Vehicle Communication Network.

Interconnect all Onboard equipment(OBE)s

	CAN	LIN	FlexRay	MOST	J1850
Application	soft real-time	low cost low speed	hard real-time	multimedia	diagnostics
Bandwidth	500kpbs	19.6kpbs	10Mbps	24.8Mbps	41.6kpbs
Control	multi-master	single-master	multi-master	timing-master	multi- master
Bus Access	CSMA/CA	Polling	TDMA	TDM/CSMA	CSMA/NDA
Redundancy	No	No	Yes	No	No
Physical Layer	Electrical	Electrical	Electrical Optical	Optical	Electrical

[Common in-vehicle protocols]

IN-VEHICLE VAN(4/4)

Top Challenges

- Car-Suited Physiological Sensors
- In-Vehicle Data Analysis
- Generic Plug and Play Gateway

Existing Solutions

- Intel In-Vehicle Devices
- Software for Automotives

VEHICLE-TO-VEHICLE COMMUNICATION(V2V)(1/2)

V2V communication

- Provide a data exchange platform
- Expand driver assistance
- Facilitate active safety vehicle system development

Wireless connectivity

VEHICLE-TO-VEHICLE COMMUNICATION(V2V)(2/2)

Top Challenges

- Hardware/Software/Firmware
- Cooperative Communication

Existing Solutions

Vehicle Telematic

VEHICLE-TO-CLOUD COMMUNICATION(1/3)

Vehicles communicating with a broadband cloud

- Communicate via wireless broadband mechanisms
 - 3G/4G, LTE, WiMAX, etc

Useful for...

- Active driver assistance
- Vehicle tracking in network fleet management

VEHICLE-TO-CLOUD COMMUNICATION(2/3)

V2B networks can provide useful information

- Outgoing data
 - Vehicle-centric information
 - Driver-centric information
 - Audio/video
 - Forwarded to a central monitoring server for further analysis and storage
- In-coming data
 - Receiving data from a central office
 - Infotainment
 - Entertainment (ex. Multimedia streaming)
 - Internet

VEHICLE-TO-CLOUD COMMUNICATION(3/3)

Top Challenges

- Communication Latency
- Gateway
- Data Processing
- Fleet Management
- Security

VEHICLE-TO-ROADSIDE INFRASTRUCTURE COMMUNICATION (1/2)

Vehicle-to-road communication

For environmental sensing and monitoring

Information

- Speed limit
- Weather condition information
- Road conditions
- Sensed data of road surface

VEHICLE-TO-ROADSIDE INFRASTRUCTURE COMMUNICATION (2/2)

Top Challenges

- Next Generation of Car Radars
- Prioritization

Existing Solutions

Radio-Frequency Identification(RFID) technology

COMMUNICATION STANDARDS FOR VAN

Communication protocols for VAN

- IEEE 802.11p
- IEEE 1609
 - IEEE P1609.1 : resource manager
 - IEEE P1609.2 : security issues in WAVE
 - IEEE P1609.3 : network protocol layer standard in WAVE
 - IEEE P1609.4 : multichannel WAVE operations
- ASTM F2213-03

SECURITY AND PRIVACY OF VAN(1/2)

How false or stolen data

- Insert false information
- Eavesdrop private information
- Use private information

The mobility feature of vehicles

 Be carefully designed to avoid overwhelming the radio link bandwidth with sudden node density fluctuations

SECURITY AND PRIVACY OF VAN(2/2)

VAN Communication

V₂V

 The client side should be equipped with content inspection or anomaly detection engines to combat intrusions, phishing, spam, and denial-of-service attacks

V2B

 A central monitoring station can assess normalcy of a driver's behavior and diagnose a vehicle's malfunction occurrences

V2I

 The security against undesired or malicious incoming data becomes a challenge

SECURE COMMUNICATION(1/2)

Secure Communication

- Message authentication
- Integrity
- Accountability
- Privacy protection

Current research on security in vehicular communication protocols

- Periodic beaconing
- Flooding
- Geocast
- Positionbased mechanisms

SECURE COMMUNICATION(2/2)

Top Challenges

- Adapting to Future Platforms
- Secure Beaconing
- Privacy Issues
- Real-world Simulation
- Securing Vehicle Access Control and Theft Prevention

Existing Solution

- Secure Vehicular Communication(SeVeCom) project
 - Customized hardware security modules (HSM)
 - Protects private keys for digital signature generation
 - Handles the key and device management

CONCLUSION

Key elements of VAN
Intelligent in-vehicle systems
V2V, V2B, V2I
Main challenges and solutions
IEEE/ASTM standards
VAN security and privacy

REFERENCE

- Maid Faezipour, Mehrdad Nourani, Adnan Saeed, Sateesh Addepalli, "Progress and Challenges in Intelligent Vehicle Area Networks", Communication of the ACM, Feb. 2012
- Xiaodong Lin, Rongxing Lu, Chenxi Zhang, Haojin Zhu, Pin-Han Ho, Xuemin Shen, "Security in Vehicular Ad Hoc Networks", IEEE Communications Magazine, Apr. 2008
- Frank Kargl, Levente Buttyan, Ta-Vinh Thong, Giorgio Calandriello, Albert Held, Antonio Kung, Jean-Pierre Hubaux, "Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges", IEEE Communications Magazine, Nov. 2008