Álgebra lineal I, Grado en Matemáticas

Febrero 2016, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matrices equivalentes por filas, equivalentes por columnas y equivalentes.
- (b) Subespacio vectorial
- (c) Matriz de cambio de base
- (d) Proyección y simetría

Ejercicio 1: (2 puntos)

Los vectores v_1, \ldots, v_m son linealmente dependientes si alguno de ellos es combinación lineal de los demás. Demuestre que los vectores v_1, \ldots, v_m son linealmente dependientes si sólo si existen escalares $\alpha_1, \ldots, \alpha_m$, no todos nulos, tales que $\alpha_1 v_1 + \ldots + \alpha_m v_m = 0$.

Ejercicio 2: (2 puntos)

- a) Determine la potencias de la matriz $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- b) Utilizando el apartado anterior calcule la potencia B^{10} siendo $B = I_3 + A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Nota: Utilice la fórmula del binomio de Newton $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Ejercicio 3: (4 puntos) Siendo $\mathbb{R}_3[x]$ el espacio vectorial de los polinomios con coeficientes reales, de grado menor o igual que 3, en la indeterminada x, se considera la aplicación lineal $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ definida por f(p(x)) = xp'(x), donde p'(x) denota la derivada del polinomio p(x). Respecto de la base $\mathcal{B} = \{1, x, x^2, x^3\}$:

- a) Determine la matriz de f.
- b) Obtenga unas ecuaciones implícitas y una base de los subespacios núcleo e imagen.
- c) Obtenga el subespacio imagen inversa $f^{-1}(U)$ siendo $U = \{\lambda + \mu x + \lambda x^2 : \lambda, \mu \in \mathbb{R}\}$ y determine un suplementario de U que no contenga al polinomio x^3 .

Soluciones

Ejercicio 1: Proposición 3.5 (2), página 94.

Ejercicio 2:

- a) Determine la potencias de la matriz $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- b) Utilizando el apartado anterior calcule la potencia B^{10} siendo $B = I_3 + A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Nota: Utilice la fórmula del binomio de Newton $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Solución:

a)
$$A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $A^3 = 0 \implies A^n = 0$, para $n \ge 3$.

b) $B^10 = (I_3 + A)^{10} = \sum_{k=0}^{10} \binom{10}{k} I_3^{10-k} A^k$. Teniendo en cuenta las potencias de A que son nulas se tiene

$$B^{10} = \begin{pmatrix} 10 \\ 0 \end{pmatrix} I_3^{10} A^0 + \begin{pmatrix} 10 \\ 1 \end{pmatrix} I_3^9 A + \begin{pmatrix} 10 \\ 2 \end{pmatrix} I_3^8 A^2 + 0 = \begin{pmatrix} 10 \\ 0 \end{pmatrix} I_3 + \begin{pmatrix} 10 \\ 1 \end{pmatrix} A + \begin{pmatrix} 10 \\ 2 \end{pmatrix} A^2$$

entonces

$$B^{10} = \left(\begin{array}{c} 10 \\ 0 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) + \left(\begin{array}{c} 10 \\ 1 \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) + \left(\begin{array}{c} 10 \\ 2 \end{array}\right) \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 1 & 10 & 45 \\ 0 & 1 & 10 \\ 0 & 0 & 1 \end{array}\right).$$

Ejercicio 3:

Siendo $\mathbb{R}_3[x]$ el espacio vectorial de los polinomios con coeficientes reales, de grado menor o igual que 3, en la indeterminada x, se considera la aplicación lineal $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ definida por f(p(x)) = xp'(x), donde p'(x) denota la derivada del polinomio p(x). Respecto de la base $\mathcal{B} = \{1, x, x^2, x^3\}$:

- a) Determine la matriz de f.
- b) Obtenga unas ecuaciones implícitas y una base de los subespacios núcleo e imagen.
- c) Obtenga el subespacio imagen inversa $f^{-1}(U)$ siendo $U = \{\lambda + \mu x + \lambda x^2 : \lambda, \mu \in \mathbb{R}\}$ y determine un suplementario de U que no contenga al polinomio x^3 .

Solución: Utilizamos la notación $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 = (a_0, a_1, a_2, a_3)_{\mathcal{B}}$.

a) Las columnas de la matriz pedida están formadas por las coordenadas en $\mathcal B$ de las imágenes de los vectores de $\mathcal B$

$$f(1) = 0 = (0, 0, 0, 0)_{\mathcal{B}},$$
 $f(x) = x = (0, 1, 0, 0)_{\mathcal{B}}$
 $f(x^2) = 2x^2 = (0, 0, 2, 0)_{\mathcal{B}}$ $f(x^3) = 3x^3 = (0, 0, 0, 3)_{\mathcal{B}}$

de donde

$$\mathfrak{M}_{\mathcal{B}}(f) = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 3 \end{pmatrix}$$

b) Las ecuaciones del núcleo de f respecto de la base \mathcal{B} son

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \implies \operatorname{Ker}(f) \equiv \{a_1 = 0, a_2 = 0, a_3 = 0\}$$

Es decir, Ker(f) está formado por los polinomios de grado 0, es decir, constantes. A la vista del número de ecuaciones podemos afirmar que dim Ker(f) = 1, así que una base de este subespacio es $\{1\}$.

Por la fórmula de dimensiones tenemos que dim $\text{Im}(f) = 1 = 4 - \dim \text{Ker}(f) = 3$. Un sistema generador del subespacio imagen de f es $\text{Im}(f) = L(f(1), f(x), f(x^2), f(x^3))$ y una base es

$$\operatorname{Im}(f) = \{ f(x) = (0, 1, 0, 0)_{\mathcal{B}}, \ f(x^2) = (0, 0, 2, 0)_{\mathcal{B}}, \ f(x^3) = (0, 0, 0, 3)_{\mathcal{B}} \}$$

Obtenemos unas ecuaciones implícitas de $\operatorname{Im} f$ de la condición:

$$(a_1, a_2, a_3, a_4)_{\mathcal{B}} \in \operatorname{Im} f \iff \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & a_0 \\ 1 & 0 & 0 & a_1 \\ 0 & 2 & 0 & a_2 \\ 0 & 0 & 3 & a_3 \end{pmatrix} = 3$$

de donde Im $f \equiv \{a_0 = 0\}$, es decir está formado por los polinomios múltiplos de x.

b)
$$f^{-1}(U) = \{(a_0, a_1, a_2, a_3)_{\mathcal{B}}: f((a_0, a_1, a_2, a_3)_{\mathcal{B}}) \in U\}$$
 siendo

$$U = \{\lambda + \mu x + \lambda x^2 : \ \lambda, \mu \in \mathbb{R}\} = \{(\lambda, \mu, \lambda, 0)_{\mathcal{B}} : \ \lambda, \mu \in \mathbb{R}\} = L((1, 0, 1, 0)_{\mathcal{B}}, \ (0, 1, 0, 0)_{\mathcal{B}})$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ a_1 \\ 2a_2 \\ 3a_3 \end{pmatrix} \Rightarrow f((a_0, a_1, a_2, a_3)_{\mathcal{B}}) = (0, a_1, 2a_2, 3a_3)_{\mathcal{B}}$$

por lo tanto

$$(0, a_1, 2a_2, 3a_3)_{\mathcal{B}} \in U$$
 si v sólo si $a_2 = a_3 = 0$

siendo estas últimas unas ecuaciones implícitas de $f^{-1}(U)$ respecto de \mathcal{B} . Es decir, $f^{-1}(U)$ está formado por los polinomios de grado menor o igual que 1 :

$$f^{-1}(U) = \{a_0 + a_1 x : a_0, a_1 \in \mathbb{R}\}\$$

Obtenemos un subespacio W suplementario de $U = L((1,0,1,0)_{\mathcal{B}}, (0,1,0,0)_{\mathcal{B}})$ ampliando una base de U con dos vectores hasta obtener una base de $\mathbb{R}_3[x]$. Entonces, basta escoger dos vectores (polinomios) con cuidado de modo que el polinomio $x^3 = (0,0,0,1)_{\mathcal{B}}$ no pertenezca al subespacio generado por ellos. Por ejemplo:

$$\mathbb{R}_{3}[x] = L(\underbrace{(1,0,1,0)_{\mathcal{B}},\,(0,1,0,0)_{\mathcal{B}}}_{\text{base de }U},\,\underbrace{(0,1,0,1)_{\mathcal{B}},\,(0,0,1,1)_{\mathcal{B}}}_{\text{base de }W}),$$

Si $W = L((0, 1, 0, 1)_{\mathcal{B}}, (0, 0, 1, 1)_{\mathcal{B}})$, entonces $\mathbb{R}_3[x] = U \oplus W$ y $x^3 \notin W$.