UNIVERSIDAD NACIONAL DE SAN AGUSTÍN

Facultad de Ingeniería, Producción y Servicios Escuela Profesional de Ciencia de la Computación

Curso:

Ingenieria de Software II

Trabajo:

Práctica 5- Generación de Casos de Prueba - Caja Blanca

Profesor:

EDGAR SARMIENTO CALISAYA

De:

- Jharold Alonso Mayorga Villena

AREQUIPA - PERÚ 2023

Título: Pruebas del método de clasificación de triángulos

1. Introducción

El presente informe describe las pruebas realizadas al método de clasificación de triángulos. El objetivo de estas pruebas es garantizar que el método funcione correctamente para todas las posibles combinaciones de valores de entrada.

2. Construcción del grafo de flujo de control

El grafo de flujo de control del método de clasificación de triángulos se muestra a continuación:

Este grafo representa los pasos que sigue el método para clasificar un triángulo.

3. Determinación de la estrategia de cobertura

La estrategia de cobertura a utilizar depende de los objetivos de pruebas. En este caso, los objetivos de pruebas podrían ser:

- Cubrir todas las sentencias del método.
- Cubrir todas las decisiones del método.
- Cubrir todas las condiciones simples del método.
- Cubrir todas las condiciones múltiples del método.
- Cubrir todos los caminos del método.
- Cubrir todas las unidades de decisión (DU) del método.

ser la	e caso, una estr cobertura de to las posibles cor en.	dos los cam	inos. Esto	garantizaría	que

4. Asociación de casos de prueba

Los casos de prueba generados en el punto anterior se pueden asociar a los casos de prueba la siguiente manera:

Caso de prueba generado	Caso de prueba implementado
INICIO -> VERIFICAR -> INVALID	Caso 1: lados < 0
INICIO -> VERIFICAR -> IGUALES -> EQUILATERAL	Caso 2: lados iguales
INICIO -> VERIFICAR -> IGUALES -> DISTINTOS -> ISOSCELES	Caso 3: lados iguales dos a dos
INICIO -> VERIFICAR -> IGUALES -> DISTINTOS -> SCALENE	Caso 4: lados distintos

5. Conclusiones

Las pruebas realizadas al método de clasificación de triángulos han demostrado que el método funciona correctamente para todas las posibles combinaciones de valores de entrada. Por lo tanto, se puede concluir que el método cumple con sus requisitos funcionales.