2016 级 大学物理上册 期末考试 A 卷 解答

$$2. \quad \frac{3GMm}{4R}, \quad -\frac{GMn}{4R}$$

3.
$$-20\pi(N \cdot m)$$
, 125π

4.
$$4.3 \times 10^{-8} s$$

6. 4m,
$$0.02\Delta m \pi^2 \sin^2(\pi t)$$

7.
$$\pi/3$$
, 2A

二. 解: (1) 由
$$s = v_0 t - \frac{1}{2} b t^2$$
 可知 $v = v_0 - b t$

$$a_t = \frac{v^2}{R} = \frac{\left(v_0 - bt\right)^2}{R} \,,$$

$$a_n = \frac{dv}{dt} = -b$$

$$a_n = \frac{dv}{dt} = -b$$
, $a = \sqrt{a_n^2 + a_t^2} = \frac{\sqrt{R^2b^2 + (v_0 - bt)^4}}{R}$

得到
$$v_0 - bt = 0$$
,

则
$$t = \frac{v_0}{h}$$

$$(3) t = \frac{v_0}{h} \not \pitchfork \lambda s,$$

(3)
$$t = \frac{v_0}{b} \text{ (h)} s$$
, $\text{ ($h$)} s = v_0 t - \frac{1}{2} b t^2 = \frac{{v_0}^2}{2b}$,

则
$$n = \frac{v_0^2}{4\pi bR}$$

$$mg\frac{l}{2}\cos\theta + mgl\cos\theta = (\frac{1}{3}ml^2 + ml^2) \not\gg$$
,

则
$$\alpha = \frac{9g\cos\theta}{8l}$$

$$mg\frac{l}{2} + mgl = \frac{1}{2}(ml^2 + \frac{1}{3}ml^2)\omega^2$$
,

则
$$\omega = \frac{3}{2} \sqrt{\frac{g}{l}}$$
 , $v = \frac{3}{2} \sqrt{gl}$

四. 解: (1)
$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{0.72}{0.02}} = 6.0\text{s}^{-1}$$

将
$$x_0=0.05m$$
, $v_0=0.3m/s$ 代入 $\frac{1}{2}kA^2=\frac{1}{2}kx_0^2+\frac{1}{2}mv_0^2$, 得到 $A=\sqrt{0.005}\,m=0.0707m$

由旋转矢量法,求出初相位:
$$\varphi = -\frac{\pi}{4}$$

振动方程为:
$$x = 0.0707\cos(6.0t - \frac{\pi}{4})m$$

(2) 机械能为:
$$E = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 = 0.0018J$$

五. 解: 由 T = 0.02s , $u = 100m \cdot s^{-1}$ 可得: $\omega = 2\pi / T = 100\pi \ rad \cdot s^{-1}$, $\lambda = uT = 2m$

(1) 由旋转矢量法可得 x=0 处质元的初相为: $\varphi_0 = -\pi/2$

波动方程为:
$$y = A\cos[100\pi(t-x/100) - \pi/2]$$

 $x_1=15m$ 和 $x_2=5m$ 两处质元的运动方程分别为:

$$y_1 = A\cos(100\pi t - 15.5\pi)$$
, $y_2 = A\cos(100\pi t - 5.5\pi)$

(2) $x_3=16$ m 和 $x_4=17$ m 处两处质元的相位差为: $\Delta \varphi = 2\pi (x_4-x_3)/\lambda = \pi$

六. 解:(1)对 λ_1 =420nm 和 λ_2 =630nm 同时反射加强时, $2ne=k_1\lambda_1=k_2\lambda_2$

得到
$$\frac{k_1}{k_2} = \frac{3}{2}$$
 , $k_{1\min} = 3$, $k_{2\min} = 2$, $e_{\min} = \frac{k_{2\min}\lambda_2}{2n} = 4.2 \times 10^{-7} m$

(2) 由反射干涉相消条件: $2ne = \frac{1}{2}(2k+1)\lambda$, 得到: $\lambda = \frac{4ne}{2k+1} = \frac{1260}{k+0.5}(nm)$ 在可见光(400nm ~700nm)范围内,k 只能取 2, $\lambda = 504nm$ 即只有 504nm 的光因干涉而反射相消

七 解: (1) 由垂直入射时的光栅衍射方程: $(a+b)\sin \varphi = \pm k\lambda$

得到:
$$a+b=\frac{k\lambda}{\sin\varphi}=\frac{5'\ 600}{0.5}=6'\ 10^{-4}cm$$

(2) 第 4 级缺级的条件为: $\frac{a+b}{a} = \frac{4}{1}$ 或 $\frac{4}{2}$ 或 $\frac{4}{3}$, $a_{\min} = \frac{a+b}{4} = 1.5' \cdot 10^{-4} cm$

(3) $\pm (a+b)\sin \varphi = \pm k\lambda$

令
$$\varphi$$
= $\pm \frac{\pi}{2}$, 可得: $k_{\text{max}} = \frac{(a+b)}{\lambda} = 10$, 所以能看到的最高级别为第 9 级。

可观察到的全部主极大级次为: k=0,1,2,3,5,6,7,9 。