Семинар 11

24 ноября 2020 г.

Задача 1. Теорема Гаусса-Маркова для стохастических регрессоров.

Если:

- 1. Модель задана как $y=X\beta+u$, и при помощи МНК оценивается линейная регрессия $\hat{y}=X\hat{\beta}$.
- 2. β вектор констант.
- 3. $\mathbb{P}(\{{\sf y}\ {\sf матрицы}\ X\ {\sf есть}\ {\sf линейно}\ {\sf зависимыe}\ {\sf столбцы}\})=0.$
- 4. $\mathbb{E}(u|X) = 0$, $\operatorname{Var}(u|X) = \sigma^2 I$,

TO

- 1. $\hat{\beta}$ существуют и единственны с вероятностью один.
- 2. $\hat{\beta}$ линейны по y.
- 3. $\mathbb{E}(\hat{\beta}|X) = \beta$.
- 4. $\hat{\beta}$ эффективны в классе линейных по y и условно несмещённых оценок.
- а) Покажите, что если предпосылки ТГМ со стохастическими регрессорами выполнены, то оценки $\hat{\beta}$ являются состоятельными.
- b) При нарушении какого условия ТГМ оценки МНК перестанут быть состоятельными?

Задача 2. Причины эндогенности.

- а) Рассмотрим модель $y_i = \beta x_i + u_i$ со стохастическими регрессорами, в которой выполнены все предпосылки ТГМ, кроме $\mathbb{E}(u_i|X) \neq 0$ по какой-то причине. Покажите, что если оценивается регрессия $\hat{y}_i = \hat{\beta} x_i$ при помощи МНК, то $\hat{\beta}$ не являются состоятельными.
- b) (Пропущенные переменные) Рассмотрим модель $y_i = \beta x_i + \gamma z_i + u_i$ со стохастическими переменными, в которой выполнены все предпосылки ТГМ. Исследователь Дорофей оценивает регрессию $\hat{y}_i = \hat{\beta} x_i$ при помощи МНК. Покажите, что оценки в регрессии Дорофея не являются состоятельными.
- с) (Ошибки измерения) Отчаянный исследователь Афанасий пытается предсказать результаты контрольной по статистике при помощи модели со стохастическими регрессорами $y_i = \beta x_i + u_i$, где x_i количество съеденных бургеров известной фирмы. Для сбора данных производится опрос студентов. Афанасий догадывается, что полученные данные отражают не настоящие x_i , а строятся следующим образом:

$$x_i^* = x_i + \alpha + v_i,$$

где α – показатель русской народной скромности, а v_i – случайная величина, отражающая несовершенство человеческой памяти. Предположим, что α – константа, а $\mathbb{E}(x_i) = \mu_x$, $\mathbb{E}(u_i) = 0$, $\mathbb{E}(v_i) = 0$, $\mathrm{Var}(x_i) = \sigma_x^2$, $\mathrm{Var}(u_i) = \sigma_u^2$, $\mathrm{Var}(v_i) = \sigma_v^2$. Предположим, что x_i не коррелирует с v_i и u_i , а все u_i и v_i не коррелируют друг с другом и между собой.

Афанасий оценивает регрессию $\hat{y}_i = \hat{\beta} x_i^*$ при помощи МНК по собранным данным. Покажите, что $\hat{\beta}$ не является состоятельной. Как смещение зависит от α ?

Задача 3. Двухшаговый МНК.

Переменные z_i называются инструментальными, если

- 1. (релевантность) $\mathbb{E}(x_i z_i) \neq 0 \sim \operatorname{Cov}(x_i, z_i) \neq 0 \sim \operatorname{plim}_{n \to \infty} Z_i' X \neq 0$.
- 2. (валидность) $\mathbb{E}(u_i z_i) = 0 \sim \operatorname{Cov}(u_i, z_i) = 0 \sim \operatorname{plim}_{n \to \infty} Z_i' u = 0.$

Если подобрали подходящие инструменты, то можно применить двухшаговый МНК:

- **Шаг 1.** Оценить регрессию X на Z, получить прогнозы \hat{X} .
- **Шаг 2.** Оценить регрессию y на \hat{X} , получить оценки $\hat{\beta}_{2SLS}$.
 - а) Выведите оценки двухшагового МНК в общем случае (Z имеет размеры $n \times m, m \geqslant k$).
 - b) Выведите оценки метода инструментальных переменных (Z имеет размеры $n \times m, m = k$).
 - с) Покажите, что оценки метода инструментальных переменных являются состоятельными.