UNIVERSIDAD POLITECNICA SALESIANA

Práctica Lógica Difusa

Alumna: Narcisa Araujo ¶

Enunciado

En un galpón se tiene una temperatura de 18 grados centígrados, y una humedad de aproximadamente 22 grados centígrados. Según estos valores determinar cual es la velocidad que debería estar funcionando el motor. Para revisar las reglas, función de pertinencia y el proceso revisar el siguiente link: https://medium.com/@javierdiazarca/l%C3%B3gica-difusa-ejercicio-2-bases-de-la-ia-1a8ae594cc15) En base a ello, desarrollar e implementar el sistema dentro de Python o Java en donde me permita modificar los valores de la temperatura y humedad, generando así un sistema experto basado en lógica difusa para obtener la velocidad del motor de aire acondicionado. Este sistema deberá tener la opción de poder modificar los valores de la temperatura y humedad con un scroll bar y obtener la velocidad de giro. Ademas, deberá presentarme las graficas de pertenencia de INPUT/OUPUT del sistema difuso y como estas varían de acuerdo al cambio de las variables.

Valores del Problema

Reglas a considerar

Temperatura	Humedad	RPM del Motor
Baja	Alta	Baja
Media	Alta	Media
Alta	Alta	Media
Baja	Media	Baja
Media	Media	Baja
Alta	Media	Media
Baja	Baja	Baja
Media	Baja	Baja
Alta	Baja	Alta

Desarrollo

¹⁻ Ubico los valores indicados en el gráfico tanto en Humedad y Temperatura, para ubicar los grados de pertenencia e indico unos valores de conveniencia. 2- Según las reglas activadas, ubico el valor mínimo de cada una [Método Mamdani] 3- Proyecto los mínimos según las reglas en "RPM del Motor" 4- Defuzzyficación: Aplicamos el método del Centroide

Centroides

C1: (18 / 2) = 9

C2:[(20-18)/3]+18=16.66

Áreas Parciales

A1: B x A

 $A1:18 \times 0.3 = 5.4$

A2: (B x A) / 2

 $A2: (2 \times 0.3) / 2 = 0.3$

Área Total

AT = A1 + A2

AT = 5.4 + 3.0 = 8.4

CALCULO DEL CENTROIDE

$$C = \frac{C1 \times A1 + C2 \times A2}{A(total)}$$

$$C = \frac{9x5.4 + 18.66x0.3}{8.4} = 6.38$$

Ejemplo Resuelto en Python

```
In [1]: from tkinter import messagebox, ttk
    from tkinter import *
    import tkinter
    import matplotlib.pyplot as plt
    import numpy as np
    from tkinter.messagebox import showinfo
```

```
In [30]: #VENTANA PRINCIPAL
         root = tkinter.Tk()
         root.title("LOGICA DIFUSA")
         root.geometry("800x800")
         nb = ttk.Notebook(root)
         nb.pack(fill='both', expand='yes')
         p1 = ttk.Frame(nb)
         p2 = ttk.Frame(nb)
         p3 = ttk.Frame(nb)
         nb.add(p1, text='Temperatura')
         nb.add(p2, text='Humedad')
         nb.add(p3, text='RPM Motor')
         campo_de_texto = ttk.Entry(p1)
         campo de texto.pack()
         def grafico_temp():
             print("TEMPERATURA")
             valoresX = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 10,11,12
         ,13,14,15,16,17,18
                       ,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
         40,41,42,43,44,45,
                      46,47,48,49,50, 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,
         56,57,58,59,60]
             valoresY = [1,1,1,1,1,1,1,1,1,1,1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0, 0
         ,0.1,0.2,0.3,0.4,0.5,
                       8,0.7,0.6,0.5,0.4,
                       0.3,0.2,0.1,0, 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1,1,1,1,1
         ,1,1,1,1,1
             plt.plot(valoresX[:21], valoresY[:21], lw=5,label="Baja")
             plt.plot(valoresX[21:62], valoresY[21:62], lw=5, label="Media")
             plt.plot(valoresX[62:], valoresY[62:], lw=5, label="Alta")
             plt.axis([min(valoresX), max(valoresX), min(valoresY), max(valoresY)])
             plt.grid()
             plt.legend(loc="lower right", title="Legend Title", frameon=False)
             a = campo_de_texto.get()
             plt.axvline(int(a), label='pyplot vertical line')
             #if int(a)>= 0 and int(a)>= 0
             plt.scatter(int(a), 0.25, color='black' )
             plt.scatter(int(a), 0.78, color='green' )
             plt.show()
         boton tem = Button(p1, text="TEMPERATURA", command=grafico temp)
         boton tem.pack()
         def grafico_hume():
             print("HUMEDAD")
             valoresX = [70, 60, 50, 60, 50, 30, 20, 30, 20, 10]
```

```
valoresY = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
   plt.plot(valoresX[:3], valoresY[:3], lw=5,label="Alta")
   plt.plot(valoresX[3:7], valoresY[3:7], lw=5, label="Media")
   plt.plot(valoresX[7:], valoresY[7:], lw=5, label="Baja")
   plt.axis([max(valoresX),min(valoresX),min(valoresY),max(valoresY)])
   plt.grid()
   plt.legend(loc="lower right", title="Legend Title", frameon=False)
   a=campo de texto.get()
   plt.axvline(int(a),label='pyplot vertical line')
   plt.scatter(int(a),0.3, color='black')
   plt.scatter(int(a),0.7, color='green')
   plt.show()
boton_hum = Button(p2, text="HUMEDAD", command=grafico_hume)
boton hum.pack()
def grafico RPM():
   print("RPM")
   valoresX = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 10,11,12
,13,14,15,16,17,18
             ,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
40,41,42,43,44,45,
             46,47,48,49,50, 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,
56,57,58,59,60]
   valoresY = [1,1,1,1,1,1,1,1,1,1,1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0,0]
,0.1,0.2,0.3,0.4,0.5,
             8,0.7,0.6,0.5,0.4,
             0.3, 0.2, 0.1, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1, 1, 1, 1, 1
,1,1,1,1,1]
   plt.plot(valoresX[:21], valoresY[:21], lw=5,label="Baja")
   plt.plot(valoresX[21:62], valoresY[21:62], lw=5, label="Media")
   plt.plot(valoresX[62:], valoresY[62:], lw=5, label="Alta")
   plt.axis([min(valoresX), max(valoresX), min(valoresY), max(valoresY)])
   plt.grid()
   plt.legend(loc="lower right", title="Legend Title", frameon=False)
   a = campo de texto.get()
   plt.axvline(int(a), label='pyplot vertical line')
   plt.scatter(int(a), 0.25, color='black' )
   plt.scatter(int(a), 0.3, color='green' )
   plt.scatter(int(a), 18, color='red' )
   plt.show()
boton_rpm = Button(p3, text="RPM", command=grafico_RPM)
boton rpm.pack()
```

TEMPERATURAOP()

HUMEDAD

RPM

Bibliografia

https://medium.com/@javierdiazarca/I%C3%B3gica-difusa-ejercicio-2-bases-de-la-ia-1a8ae59	<u>4cc15</u>
(https://medium.com/@javierdiazarca/I%C3%B3gica-difusa-ejercicio-2-bases-de-la-ia-1a8ae5	<u> 34cc15)</u>

Tn I I	
TII •	