1 Experiment

1.1 Sparse Linear Regression

Assume that we observe

$$Y = Hx + \sigma \xi$$
,

with ξ is Gaussian.

The goal is to estimate the optimal \hat{x} with the relationship $Y \approx H\hat{x}$.

1.2 ISTA (Iterative Shrinkage-Thresholding Algorithm)

The goal is to find

$$\min_{x} \frac{1}{2n} ||Y - Hx||_{2}^{2} + \lambda ||x||_{1}.$$

The solution is

$$x_{k+1} = soft(x_k + \frac{1}{\alpha n}H^T(Y - Hx_k), \lambda).$$

In Ista.py, generate data with n=100, p=1000. $X \in \mathbb{R}^{p*1}$ has 20 nonzero elements.

The optimal $\lambda = 3\sigma\sqrt{\log(p)} \approx 0.5$.

1.3 Hard Thresholding Algorithm

Loss function $L: \mathbb{R}^p \to \mathbb{R}$,

$$L = \frac{1}{2n}||Y - Hx||_2^2.$$

The solution is

$$hard(x + \frac{1}{\alpha n}H^T(y - Hx), \lambda).$$