

David Axelrod, MD, MBA, Transplant Surgeon, Health Services Research, Case Western University Vikas Dharnidharka, MD, MPH, Pediatric Transplant Nephrologist, Rutgers University



## **Background**

- The transplant recipient's immune system recognizes new kidney transplant as foreign and attacks it
- Multiple medicines (i.e., immunosuppresants, IS) suppress the immune system but does not always work perfectly
- Therefore, transplant recipients susceptible to life-threatening infections
- Each IS medicine we use has some potentially major side effects; they can add up
- Q: How do we choose which IS medicines, and how do we adjust over time?



## First Study: CISTEM1

#### Evaluated association of <u>initial immunosuppression regimen</u> with key clinical outcomes

- Patient and kidney transplant survival
- Development of cardiometabolic complications (e.g. diabetes)
- Infectious complications

#### Data sources

- Transplant Registry (SRTR) data on donor and recipient outcomes
- Medicare FFS claims
- Pharmacy claims

#### Results and Contribution

- Recognize that the choice of IS varies markedly across centers, even those serving nearly identical populations in the same region in the U.S.
- Developed and piloted a free web-based application for kidney transplant
  - https://neph-calc-i2-wustl.azurewebsites.net/
  - Shared decision making
  - Improve discussion of options with patients
- Utilize data sources beyond SRTR to assess outcome
  - SRTR/Medicare data to assess long term outcomes



## First Study: CISTEM1

#### Limitations

- Medicare claims lack detailed clinical data on kidney function and meaningful outcomes
  - Patients with advanced CKD are equivalent to patients with normal function
  - E.g., serum creatinine levels/eGFR, tacrolimus drug levels, measures of viremia and viruria, malignancy diagnoses, and rehospitalization events
- Selection bias of patient cohort
  - Only assessed patients with Medicare primary insurance
  - Medicare pays > 60% of transplants but has fewer living donor recipients
- Paucity of longitudinal data and responsive outcomes
  - How should immunosuppression be adjusted after an episode of rejection



### **Objective and Aims**

- **Aim 1**: establish a novel, robust and curated database (CISTEM2 Database) integrating transplant registry data with multi-site EHRs, claims and social determinants of health data for KT recipients, leveraging the PCORnet infrastructure.
- **Aim 2**: develop longitudinal machine learning (ML) algorithms to dynamically suggest immunosuppression (IS) strategies that optimize renal allograft function (at 1-, 3- and -5-years post-KT), reduce cost, and limit IS comorbidities.
- **Aim 3**: validate and fine-tune the temporal-aware ML models to determine reliability in predicting long-term graft function in by additionally incorporating data from other two PCORI networks.



## **Study Team**





# Participating Sites

| Transplant Hospital/ Health System             | PCORnet CRN | #KTx 2012-23 |
|------------------------------------------------|-------------|--------------|
| University of Missouri (DCC)                   | GPC         | 179          |
| Allina Health System                           | GPC         | 290          |
| Intermountain Healthcare                       | GPC         | 1078         |
| Medical College of Wisconsin                   | GPC         | 728          |
| University of Iowa                             | GPC         | 836          |
| University of Kansas Medical Center            | GPC         | 1383         |
| University of Nebraska Medical Center          | GPC         | 1448         |
| University of Utah                             | GPC         | 1276         |
| <b>UT Health Science Center at San Antonio</b> | GPC         | 1078         |
| UT Southwestern Medical Center                 | GPC         | 989          |
| Washington University in St. Louis             | GPC         | 2526         |
| UT Health Science Center at Houston            | GPC         | 637          |
| GPC Total                                      |             | 12,448       |
| Vanderbilt University Medical Center           | STAR        | 2286         |
| Duke University Medical Center                 | STAR        | 1497         |
| Health Sciences of South Carolina              | STAR        | 2630         |
| Mayo Clinic Arizona                            | STAR        | 3407         |
| Mayo Clinic Rochester                          | STAR        | 2171         |
| Mayo Clinic Florida                            | STAR        | 1673         |
| University of Florida                          | OneFlorida+ | 970          |
| University of Miami                            | OneFlorida+ | 3726         |
| Advent Health                                  | OneFlorida+ | 1592         |
| Emory University                               | OneFlorida+ | 2766         |
| Tampa General Hospital                         | OneFlorida+ | 2749         |
| University of Alabama at Birmingham            | OneFlorida+ | 2620         |
|                                                |             | 40,535       |

#### **Dataflow**



## Site SOW and Budget

#### Site SOW

- Administrative readiness: IRB or NHS, DUA
- Technical readiness: Datavant license
- Hash token generation and linkage (Datavant portal access)
- CDM extraction and submission

#### Site budget

| Budgeted Items                                                            | Each Performing Site |
|---------------------------------------------------------------------------|----------------------|
| 1. Infrastructure Cost Recovery (ICR)                                     | \$ 10,962            |
| 2. Administrative and Startup costs (including small PI oversight effort) | \$ 5,000             |
| 3. Hash token generation and linkage                                      | \$ 7,800             |
| 4. Site CDM Data-as-a-Product                                             | \$ 5,000             |
| Total                                                                     | \$ 28,762            |

