Введение в теорию меры

- Опр. 1 Пусть задано множество X, в нём выделено некоторое семейство подмножеств \mathcal{A} . Семейство \mathcal{A} называется алгеброй множеств, если
 - 1) $\emptyset \in \mathcal{A}$;
 - 2) $A \cup B \in \mathcal{A} \ \forall A \ u \ B \in \mathcal{A}$;
 - 3) $A^c \in \mathcal{A} \ \forall A \in \mathcal{A}$.

Семейство множеств A называется σ -алгеброй множеств, если

- $2a) \bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \ \forall A_n \in \mathcal{A};$ $3) A^c \in \mathcal{A} \ \forall A \in \mathcal{A}.$
- Опр. 2 Если в X выделена какая-то σ -алгебра множеств \mathcal{A} , то пара (X, \mathcal{A}) называется измеримым пространством, а элементы $A \in \mathcal{A}$ называются измеримыми (относитель-(HOM) множествами.
 - 1. Образуют ли данные системы множеств алгебру:
- а) прямоугольники $< a, b > \times < c, d >$ в \mathbb{R}^2 (предполагается, что левый и правый концы промежутков < a, b > u < c, d > могут как принадлежать, так и не принадлежать промежуткам);
- б) произвольные конечные множества в \mathbb{N} ?
 - 2. Пусть $\mathcal{A}-\sigma$ -алгебра. Докажите что $\forall A_n\in\mathcal{A}\bigcap_{n=1}^\infty A_n\in\mathcal{A}.$
- 3. Проверьте, что двумерные элементарные множества имеют элементарные дополнения (на примере множеств вида $[a,b) \times [c,d)$).
 - 4. Докажите свойство счётной полуаддитивности меры: если μ мера на σ -алгебре

$$\mathcal{A}, A_n \in \mathcal{A}, n \geq 1, \text{ TO } \mu\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mu(A_n).$$

- 5. Докажите, что σ -алгебра, порождённая элементарными множествами, совпадает с борелевской в \mathbb{R} (предлагается доказать, что каждая из этих σ -алгебр содержит другую).
- 6. Пусть на σ -алгебре A множеств некоторого пространства задана мера. Доказать свойство непрерывности сверху: если $A_n \in \mathcal{A}, \ n \geq 1$ и $A_1 \supset A_2 \supset \ldots$, причём $\mu(A_1) < \infty$,

To
$$\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).$$

- 7. Найти меру множества всех точек отрезка [0, 1], в двоичном разложении которых на всех чётных местах стоят нули.
- 8. Найти меру множества всех точек отрезка [0,1], двоичное разложение которых содержит бесконечно много серий из ста нулей подряд.
- 9. Докажите, что если f(x) интегрируема по Риману на [a,b], то её график имеет в \mathbb{R}^2 лебегову меру нуль.