Aljabar Linier

[KOMS120301] - 2023/2024

7.1 - Vektor di R^n

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 7 (November 2023)

Tujuan pembelajaran

Setelah pembelajaran ini, Anda diharapkan dapat:

- menjelaskan pengertian vektor secara umum;
- menjelaskan definisi vektor dalam Aljabar Linier;
- menjelaskan beberapa operasi pada vektor, seperti:
 - penjumlahan vektor dan perkalian skalar;
 - · kombinasi linier.

Bagian 1: **Vektor** (*definisi umum*)

Apa itu vektor??

Tiga cara mendefinisikan vektor:

- Perspektif Fisika
- Perspektif Matematika
- Perspektif Ilmu Komputer

Apa itu vektor (dalam fisika)?

Vektor adalah besaran yang memiliki *nilai* dan *arah* dan digambarkan dengan himpunan ruas garis berarah.

Biasanya, vektor dilambangkan dengan huruf yang diketik dengan huruf tebal, atau dengan panah di atasnya; misalnya \vec{a} . Vektor sering dinyatakan sebagai tanda panah yang memiliki panjang dan arah yang bersesuaian.

Bagaimana mendefinisikan vektor (dalam fisika)?

- Panjang (besar)
- Arah

Dua vektor dikatakan sama jika

panjang dan arahnya sama

Contoh vektor dalam Fisika

Kecepatan sebuah mobil adalah $60 \, km/jam$, dan melaju ke 30^o ke arah timur laut.

Vektor dalam ruang berdimensi 3 (dalam fisika)

Vektor-vektor yang terdistribusi pada ruang berdimensi 3

Apa itu vektor (dalam Ilmu Komputer)?

Contoh

Seorang guru perlu memeriksa kesehatan siswanya, dengan mengukur berat dan tinggi mereka. Bagaimana seharusnya data tersebut direpresentasikan?

40	kg
40 150	cm

Vektor berdimensi 2

Dalam Ilmu Komputer, sebuah vektor dapat dianggap sebagai list elemen yang terurut (tupel). Elemen ini berupa bilangan riil jika kita berbicara tentang vektor di \mathbb{R} .

Apa itu vektor (dalam Matematika)?

Konsep matematika vektor adalah kombinasi dari keduanya:

- Vektor dapat dipandang secara geometris atau aljabar;
- Kita dapat melakukan operasi seperti penjumlahan, perkalian, pengurangan, dll.

Operasi sederhana antar vektor yang mungkin telah Anda pelajari dalam mata pelajaran Fisika di SMA

Coba ingat kembali:

- penjumlahan vektor
- perkalian skalar

Penjumlahan vektor $(\mathbf{u} + \mathbf{v})$

- ullet Secara geometris, *resultan* ${f u}+{f v}$ diperoleh dengan hukum jajaran genjang
- Jika \mathbf{u} memiliki titik akhir (a, b, c) dan \mathbf{v} memiliki titik akhir (a', b', c'), maka $\mathbf{u} + \mathbf{v}$ memiliki titik akhir (a + a', b + b', c + c')

Perkalian skalar (ku)

- Misalkan $k \in \mathbb{R}$, maka $k\mathbf{u}$ adalah vektor yang besarnya k kali besar u, dan arahnya sama ketika k>0 atau berlawanan arah ketika k<0.
- Jika \mathbf{u} memiliki titik akhir (a, b, c), maka titik akhir $k\mathbf{u}$ adalah (ka, kb, kc).

Bagian 2: Vektor dalam Aljabar Linier

Vektor dalam Aljabar Linier

Secara geometris:

- Vektor adalah panah yang berasal dari titik asal O
- Notasi: $\mathbf{u}, \mathbf{v}, \mathbf{w}, \dots$ atau $\vec{u}, \vec{v}, \vec{w}, \dots$

Vektor dalam Aljabar Linier

Dalam ruang berdimensi 2

Vektor adalah tanda panah yang berpangkal di titik asal *O*.

Namun ini tidak sama dengan titik.

Vektor \vec{u} sama dengan \overrightarrow{OP}

Nilai a dan b dalam $\begin{bmatrix} a \\ b \end{bmatrix}$ menunjukkan seberapa jauh vektor \vec{u} bergerak sepanjang sumbu x dan sumbu y.

Tanda positif (resp. negatif) dari a atau b menunjukkan bahwa ia bergerak ke kanan atau ke atas (resp. kiri atau bawah).

Dalam 3D, hal ini serupa, tetapi kita menggunakan tiga sumbu koordinat, yaitu x, y, dan z.

Apa itu ruang vektor?

- Barisan n terurut (n-tupel) adalah barisan bilangan riil: (a_1, a_2, \ldots, a_n) (atau, dapat dipandang sebagai vektor).
- Ruang-n (n-space) adalah himpunan semua n-tupel bilangan real. Biasanya dilambangkan sebagai \mathbb{R}^n . Untuk n=1, cukup ditulis \mathbb{R} .
 - Ruang ini adalah ruang dimana vektor dapat didefinisikan dengan baik. Ruang ini juga disebut ruang Euclid.

Contoh:

Vektor dalam ruang Euclid \mathbb{R}^2

Vektor dalam ruang Euclid \mathbb{R}^3

Contoh

- ② $\vec{v} = (2, -4, 5) \rightarrow \text{vektor dalam } \mathbb{R}^3$

Nanti kita akan mempelajari lebih dalam tentang ruang vektor \mathbb{R}^n .

Untuk saat ini, mari kita cermati \mathbb{R}^2 dan \mathbb{R}^3 .

Bagian 3: Operasi vektor dalam \mathbb{R}^2 dan \mathbb{R}^3

Penjumlahan vektor (representasi geometris)

Diberikan vektor-vektor berikut:

Vektor manakah yang menyatakan $\vec{u} + \vec{v}$?

Penjumlahan vektor (representasi geometris)

Sebuah vektor mendefinisikan gerakan tertentu dalam ruang (seberapa jauh, ke arah mana).

- $\vec{u} = [a_1 \ a_2] \rightarrow$ memindahkan a_1 langkah ke arah sumbu x, dan a_2 langkah ke arah sumbu y.
- $\vec{v} = [b_1 \ b_2] \rightarrow$ memindahkan b_1 langkah ke arah sumbu x, dan b_2 langkah ke arah sumbu y.

Jadi $\vec{u}+\vec{v}$ dapat dipandang sebagai pergerakan sepanjang vektor \vec{u} dilanjutkan dengan bergerak sepanjang vektor \vec{v} , yaitu memindahkan a_1+b_1 melangkah ke arah sumbu x, dan a_2+b_2 melangkah ke arah sumbu y.

$$\vec{u} + \vec{v} = [(a_1 + b_1) \ (a_2 + b_2)]$$

Perkalian skalar (representasi geometris)

Mengalikan vektor dengan skalar dapat dipandang sebagai "penskalaan" sebuah vektor (meregangkan, dan terkadang membalikkan arah vektor). Perkalian dengan skalar negatif mengubah arah vektor sejauh 180° (untuk contoh, lihat gambar ketiga).

Latihan

Berikan dua vektor pada \mathbb{R}^2 .

- Hitunglah penjumlahan kedua vektor tersebut.
- Gambarkan secara geometris kedua vektor beserta resultannya pada bidang Kartesius.
- Kalikan salah satu vektor dengan suatu skalar \mathbb{R}^+ dan vektor lainnya dengan suatu skalar \mathbb{R}^- .
- ullet Gambarkan kedua vektor hasil pada bidang \mathbb{R}^2 .

Bagian 4: Vektor spasial

Vektor dalam \mathbb{R}^3

Vektor dalam \mathbb{R}^3 disebut vektor spasial, muncul di banyak aplikasi, terutama dalam ilmu Fisika.

Notasi khusus:

- $oldsymbol{i} = [1,0,0]$ menunjukkan vektor satuan pada arah x
- $oldsymbol{i} = [0,1,0]$ menunjukkan vektor satuan pada arah y
- $\mathbf{k} = [0, 0, 1]$ menunjukkan vektor satuan pada arah z

Setiap vektor $\mathbf{u} = [a, b, c]$ dalam \mathbb{R}^3 dapat diekspresikan secara unik dalam bentuk:

$$\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

Vektor dalam \mathbb{R}^3

Important! i, j, dan k adalah vektor, dan ketiganya merupakan vektor satuan. Lebih lanjut:

$$\mathbf{i}\cdot\mathbf{i}=1,\ \mathbf{j}\cdot\mathbf{j}=1,\ \mathbf{k}\cdot\mathbf{k}=1\quad \textit{dan}\quad \mathbf{i}\cdot\mathbf{j}=0,\ \mathbf{i}\cdot\mathbf{k}=0,\ \mathbf{j}\cdot\mathbf{k}=0$$

Persamaan yang tepat menunjukkan bahwa i, j, dan k saling ortogonal satu sama lain.

Semua operasi vektor masih berlaku:

Untuk $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, dan $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, maka:

•
$$\mathbf{u} + \mathbf{v} = (u_1 + v_1)\mathbf{i} + (u_2 + v_2)\mathbf{j} + (u_3 + v_3)\mathbf{k}$$

- $k\mathbf{u} = ku_1\mathbf{i} + ku_2\mathbf{j} + ku_3\mathbf{k}$ untuk setiap skalar $k \in \mathbb{R}$
- $\bullet \ \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$
- $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Contoh

Misal
$$\mathbf{u} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$$
 dan $\mathbf{v} = 4\mathbf{i} - 8\mathbf{j} + 5\mathbf{k}$. Tentukan $3\mathbf{u} - 2\mathbf{v}$.

$$3\mathbf{u} - 2\mathbf{v} = 3(3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}) - 2(4\mathbf{i} - 8\mathbf{j} + 5\mathbf{k})$$

= $(9\mathbf{i} + 15\mathbf{j} - 6\mathbf{k}) + (-8\mathbf{i} + 16\mathbf{j} - 10\mathbf{k})$
= $1\mathbf{i} + 31\mathbf{j} - 16\mathbf{k}$

bersambung...