Impact of Environmental Factors

on Acute Myocardial Infarction

Gabriela Zemenčíková

June, 2024

• Develop targeted interventions to reduce the incidence and impact of AMI in the Metropolitá region of Catalonia.

- Develop targeted interventions to reduce the incidence and impact of AMI in the Metropolitá region of Catalonia.
- Identify disparities or differential susceptibility to environmental variables across different population segments.

- Develop targeted interventions to reduce the incidence and impact of AMI in the Metropolitá region of Catalonia.
- Identify disparities or differential susceptibility to environmental variables across different population segments.
- Implementation and comparison of models for series prediction.

- Develop targeted interventions to reduce the incidence and impact of AMI in the Metropolitá region of Catalonia.
- Identify disparities or differential susceptibility to environmental variables across different population segments.
- Implementation and comparison of models for series prediction.
 - Seasonal Autoregressive Integrated Moving Average (SARIMAX)
 - Long Short-Term Memory (LSTM)

- Develop targeted interventions to reduce the incidence and impact of AMI in the Metropolitá region of Catalonia.
- Identify disparities or differential susceptibility to environmental variables across different population segments.
- Implementation and comparison of models for series prediction.
 - Seasonal Autoregressive Integrated Moving Average (SARIMAX)
 - Long Short-Term Memory (LSTM)
- Applied to hospital admission data from 2010 to 2018, stratified by province, sex, and age.

 The environmental dataset and census data taken from the Statistical Institute of Catalonia.

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.
- 22,812 hospital admissions at the scale of the 948 municipalities in Catalonia stratified by province, sex and age

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.
- 22,812 hospital admissions at the scale of the 948 municipalities in Catalonia stratified by province, sex and age
- Response variable: Age Standardised Incidence Rate (ASIR)

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.
- 22,812 hospital admissions at the scale of the 948 municipalities in Catalonia stratified by province, sex and age
- Response variable: Age Standardised Incidence Rate (ASIR)
- A total of 5 predictors Humidity, Temperature, Ozone levels, Particulate Matter, Public holidays

• Ensures comparability of events across populations.

- Ensures comparability of events across populations.
- Ensures comparability across different age distributions.

- Ensures comparability of events across populations.
- Ensures comparability across different age distributions.
- Adjusts for age as a confounding factor, providing a more accurate representation of AMI incidence.

- Ensures comparability of events across populations.
- Ensures comparability across different age distributions.
- Adjusts for age as a confounding factor, providing a more accurate representation of AMI incidence.
- Allows comparisons between regions or over time periods.

SARIMAX

SARIMAX model can be represented as:

$$Y_t = \beta X_t + \epsilon_t$$

- Y_t is the observed ASIR at time t,
- X_t represents the vector of exogenous variables at time t,
- ullet eta is the vector of coefficients for the exogenous variables,
- ullet ϵ_t is the error term following a stationary ARIMA process.

SARIMAX

SARIMAX model can be represented as:

$$Y_t = \beta X_t + \epsilon_t$$

- *Y_t* is the observed ASIR at time *t*,
- X_t represents the vector of exogenous variables at time t,
- β is the vector of coefficients for the exogenous variables,
- ϵ_t is the error term following a stationary ARIMA process.

By incorporating exogenous variables, it allows for a more comprehensive modeling of the relationship between environmental factors and ASIR.

SARIMAX

SARIMAX model can be represented as:

$$Y_t = \beta X_t + \epsilon_t$$

- Y_t is the observed ASIR at time t,
- X_t represents the vector of exogenous variables at time t,
- β is the vector of coefficients for the exogenous variables,
- ullet ϵ_t is the error term following a stationary ARIMA process.

By incorporating exogenous variables, it allows for a more comprehensive modeling of the relationship between environmental factors and ASIR.

By integrating both temporal and environmental variables, it enables more robust forecasting, taking into consideration seasonality

• a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.

- a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.
- The LSTM cell has a memory cell and three gates: input gate, forget gate, and output gate

- a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.
- The LSTM cell has a memory cell and three gates: input gate, forget gate, and output gate
- LSTM networks are capable of learning long-term dependencies in sequential data, making them suitable for time series forecasting tasks.

- a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.
- The LSTM cell has a memory cell and three gates: input gate, forget gate, and output gate
- LSTM networks are capable of learning long-term dependencies in sequential data, making them suitable for time series forecasting tasks.
- can capture complex patterns and relationships to forecast future ASIR.

Hyperparameter optimization

SARIMAX Model Optimization:

- Utilized grid search over a range of parameters (p, d, q, P, D, Q, s).
- Evaluated using time series cross-validation (TimeSeriesSplit).
- Identified best parameters:
 - p = 1, d = 0, q = 1
 - P = 1, D = 1, Q = 1, s = 52

Hyperparameter optimization

SARIMAX Model Optimization:

- Utilized grid search over a range of parameters (p, d, q, P, D, Q, s).
- Evaluated using time series cross-validation (TimeSeriesSplit).
- Identified best parameters:

•
$$p = 1$$
, $d = 0$, $q = 1$

•
$$P = 1$$
, $D = 1$, $Q = 1$, $s = 52$

LSTM Model Optimization:

- Conducted random search over the search space for hyperparameters.
- Executed multiple trials with different configurations.
- Best hyperparameters:

Units: **150**

Activation: ReLU

Dropout: **0.2**

Number of layers: 1

LSTM layer 0 units: 150

Optimizer: Adam

LSTM layer 1 units: 150

Results - SARIMAX

Results - SARIMAX

 Maximum temperature (max_temp): A decrease of 1°C in maximum temperature is associated with a decrease of approximately 0.345 units in the Age-Standardized Incidence Rate (ASIR) of AMI.

Results - SARIMAX

- Maximum temperature (max_temp): A decrease of 1°C in maximum temperature is associated with a decrease of approximately 0.345 units in the Age-Standardized Incidence Rate (ASIR) of AMI.
- Mean PM10 concentration (mean_PM10): An increase of 1 $\mu g/m^3$ in mean PM10 concentration is associated with an increase of approximately 0.146 units in ASIR of AMI.

Diagnostics - SARIMAX

Results - LSTM

Comparison

Table 1: Results

	SARIMAX	LSTM
MAE	0.12	0.15
MSE	0.02	0.03
RMSE	0.15	0.19
MAPE	26.60	14.53
AIC	-327.86	909872.17
BIC	-291.56	1806258.44

Comparison

Table 1: Results

	SARIMAX	LSTM
MAE	0.12	0.15
MSE	0.02	0.03
RMSE	0.15	0.19
MAPE	26.60	14.53
AIC	-327.86	909872.17
BIC	-291.56	1806258.44

 SARIMAX outperforms LSTM in terms of both MAE and MSE, making it a more suitable choice for this forecasting task.

Comparison

Table 1: Results

	SARIMAX	LSTM
MAE	0.12	0.15
MSE	0.02	0.03
RMSE	0.15	0.19
MAPE	26.60	14.53
AIC	-327.86	909872.17
BIC	-291.56	1806258.44

- SARIMAX outperforms LSTM in terms of both MAE and MSE, making it a more suitable choice for this forecasting task.
- However, the LSTM model exhibits substantially lower AIC and BIC values compared to SARIMAX, indicating a potentially better fit to the data and superior long-term forecasting capabilities

Thank you for your attention