近世代数作业6

cycleke

November 23, 2020

Contents

1	课后	习题																							2
	1.1	第一题																							2
	1.2	第二题																							2
	1.3	第三题																							3
	1.4	第四题																							3
	1.5	第五题																							3
		第六题																							
	1.7	第七题																							
	1.8	第八题																							3
	1.9	第九题																							3
	1.10	第十题																							۷
	1.11	第十一點	页	_					_	_		_		_	_							_	_	_	_

1 课后习题

1.1 第一题

证明 由于 A, B 为 G 的有限子群,所以 $A \cap B$ 为 A 和 B 的子群。设 $H = A \cap B$, $S_l = \{a_1H, a_2H, \ldots, a_kH\}$ 为 H 的所有不同的左陪集之集,其中 $a_i \in A, i = 1, 2, \ldots, k$ 。 所以 S_l 为 A 的一个划分,所以 |A| = k|H|。

因为 $\forall a_i, a_j (i \neq j)$, $a_i H \neq a_j H$, 所以 $a_i a_j^{-1} \notin H$, 然而 $a_i a_j^{-1} \in A$, 所以 $a_i a_i^{-1} \notin B$ 。

又因为对于 AB, 有

$$AB = (\bigcup_{i=1}^{k} a_i H)B$$

$$= \bigcup_{i=1}^{k} (a_i HB)$$

$$= \bigcup_{i=1}^{k} (a_i (A \cap B)B)$$

$$= \bigcup_{i=1}^{k} (a_i B)$$

所以 $\forall a_i, a_j (i \neq j), a_i B \neq a_j B$ (否则有 $a_i a_j^{-1} \in B$,矛盾)。所以 $a_1 B, a_2 B, \ldots, a_k B$ 为AB的一个划分,进而有|AB| = k|B|。

为
$$AB$$
 的一个划分,进而有 $|AB|=k|B|$ 。 综上有, $|AB|=k|B|=\frac{|A||B|}{|H|}=\frac{|A||B|}{|A\cap B|}$ 。 \Box

1.2 第二题

当 n=1 时,命题并不成立,下面给出 $n \ge 2$ 时的证明。

证明 设 $P=x^{-1}Hx$ 首先证明 $P\leq G$ 。由于 $e\in H$ 所以 $e=x^{-1}ex\in x^{-1}Hx$ 。我们只需证明封闭性和逆元存在。

对于封闭性,有 $\forall p_1, p_2 \in P, \exists h_1, h_2 \in H, p_1 = x^{-1}h_1x, p_2 = x^{-1}h_2x, h_1h_2 \in H$, 所以 $p_1p_2 = (x^{-1}h_1x)(x^{-1}h_2x) = x^{-1}(h_1h_2)x \in P$ 。

对于逆元存在,有 $\forall p \in P, \exists h \in H, p = x^{-1}hx,$ 因为 $x^{-1}h^{-1}x \in P,$ 而 $p(x^{-1}h^{-1}x) = e$,所以每个元素均有逆元存在。

所以 $P \le G$,且 P_0 与 H 内自同构,|P| = |H| = n。

假设 $\exists x_0 \in G, s.t.x_0^{-1}Hx_0 \cap H = \{e\}$ 。设 $P_0 = x_0^{-1}Hx_0$,则 P_0 与 H 内自同构, $|P_0| = n$ 。

 $\forall a \in H, b \in P_0$,且 a,b 不同时为 e,则有 $ab \notin H$ 且 $ab \notin P_0$ (否则 $a \in P_0$ 或 $b \in H \Rightarrow P \cap H \neq \{e\}$)。所以 $|HP_0| = |H||P_0| = n^2 = |G|$,由于 $ab \in G$,所以 $HP_0 = G$ 。由例 12.7.1 知 $HP_0 \neq \{e\}$,矛盾。

综上所述,
$$\forall x \in G, x^{-1}Hx \cap H \neq \{e\}$$
。

1.3 第三题

证明由前面的习题知三阶子群存在。

若三阶子群不唯一,不妨设 A, B 为六阶群 G 两个不同的三阶子群。则 $|AB| = \frac{9}{|A \cap B|}$ 。由于 A, B 为两个不同的三阶子群,所以 $|A \cap B| = 1 \Rightarrow |AB| = 9 > 6$,产生矛盾。

所以六阶群中有唯一一个三阶子群。

1.4 第四题

证明 设有群 G, H 为 G 的一个子群且 [G:H] = 2。则在 G 中,H 有且只有两个 左陪集 H 和 G - H。

 $\forall a \in H, \ aH = H = Ha$.

 $\forall a \in G - H, \ aH = G - H = Ha.$

所以 H 为 G 的一个正规子群。

1.5 第五题

证明 设 A, B 为 G 的两个正规子群, $C = A \cap B$ 。显然 C 为 G 的一个子群。 $\forall g \in G, \forall c \in C, \exists g c g^{-1} \in A, g c g^{-1} \in B, \exists g c g^{-1} \in C, \exists g$

1.6 第六题

证明 由于 N 是群 G 的子群,H 是 G 的正规子群,所以 $\forall h \in H, Nh = hN$,即 $\forall x \in NH, \exists y \in HN, x = y$ 。所以 $NH \subseteq HN$,同理有 $HN \subseteq NH$ 。所以 $NH \le G$ 。 \square

1.7 第七题

证明 由于 G 为有限交换群,拉格朗日定理的逆命题成立,所以 G 有一个二阶子群,而 G 对其的划分为一个 n 阶商群。

1.8 第八题

证明 ⇒. 由于 $H \triangleleft G$,所以 H 的左陪集集族构成商群,所以其任两个左陪集的乘积还是一个左陪集。

 \Leftarrow . $\forall a, b \in G$, $\exists c \in G$, aHbH = cH。因为 $e \in H$,所以 $ab = aebe \in cH$ 。进而有 abH = cH,aHbH = abH。所以 $\forall a \in G$, $aHa^{-1}H = H$,所以 $aHa^{-1} = aHa^{-1}e \in H$ 。所以 $H \triangleleft G$ 。

1.9 第九.题

证明 不妨设 $H = e, a, a^2 = e \forall x \in G, xHx^{-1} = H$ 。 因为 $xex^{-1} = e$, 所以 $xax^{-1} = a$ 。 所以 $e, a \in C, H \subseteq C$ 。

1.10 第十题

证明 设 G 为群, $\forall H \leq G, G^{(1)} \subseteq H$,显然 $G^{(1)} \leq H$ 。 $\forall x \in G, h \in H, xhx^{-1}h^{-1} \in G^{(1)} \leq H$ 。进而有 $xhx^{-1} = (xhx^{-1}h^{-1})h \in H$,所以 $xHx^{-1} \leq H$,所以 $H \triangleleft G$ 。 \square

1.11 第十一题

证明 先证 $AB \subseteq G$, 显然。

再证 $G \subseteq AB$ 。 $\forall g \in G, |A^{-1}g| = |A|$,所以 $|A^{-1}g| + |B| = |A| + |B| > |G|$,所以 $A^{-1}g \cap B \neq \emptyset$. 于是 $\exists a \in A, b \in B, s.t.a^{-1}g = b, g = ab \in AB$,所以 $G \subseteq AB$ 。 综上所述,AB = G。