Notching R&D Investment with Corporate Income Tax Cuts in China

CUHK Structural Estimation Method Workshop

November 12, 2023

Outline

- Context
- Descriptive Evidence
- Oescriptive Evidence
- Model
- Structural Estimation

Context

TABLE 1—REQUIREMENTS OF THE INNOCOM PROGRAM

Requirement	Before 2008		After 2008		
R&D intensity	5 percent		6 percent if sales < 50M 4 percent if 50M < sales < 200M 3 percent if sales > 200M		
Sales of high tech products		60 pe	rcent of total sales		
Workers with college degree	se 30 percent of workforce				
R&D workers	10 percent of workforce				
Certifying agency Local Ministry Science and Technol			Ministries of Science and Technolo Finance and National Tax Bureau		

Note: Size thresholds in millions of RMB, where 50M RMB \approx US\$7.75M and 200M RMB \approx US\$30M.

(ロト 4回 ト 4 重 ト 4 重 ト 9 9 9 9

Descriptive Evidence

Figure 2. Bunching at Different Thresholds of R&D Intensity, 2011

Descriptive Evidence

FIGURE 5. EMPIRICAL EVIDENCE OF RELABELING

Model

Consider a firm i with a unit cost function $c\left(\phi_{it},w_{t}\right)=w_{t}\exp\left\{-\phi_{it}\right\}$, where w_{t} is the price of inputs. The term ϕ_{it} is log TFP and has the following law of motion:

$$\phi_{i,t} = \rho \phi_{i,t-1} + \varepsilon \ln \left(D_{i,t-1} \right) + u_{it},$$

where $D_{i,t-1}$ is R&D investment and $u_{i,t} \sim \text{i.i.d. } N\left(0,\sigma^2\right)$.

We assume that the firm faces a demand function with a constant elasticity: $\theta > 1$. This setup implies that firm sales are given by $\theta \pi_{it}$ and that we can write expected profits as follows:

$$E\left[\pi_{it}\right] = \tilde{\pi}_{it} D_{i,t-1}^{(\theta-1)\varepsilon}$$

where $\tilde{\pi}_{it} \propto E\left[\exp\left\{(\theta-1)\phi_{it}\right\} \mid \phi_{i,t-1}\right]$ measures the non-R&D expected profitability of the firm.

We model firms' investment decision as a two-period problem.

コト ◆個 ト ◆ 重 ト ◆ 重 ・ 夕 Q ○

Model: R&D Choice under a Linear Tax

We first model how R&D investment decisions would respond to a linear income tax:

$$\max_{D_{i1}} (1 - t_1) (\pi_{i1} - D_{i1} - g(D_{i1}, \theta \pi_{i1})) + \beta (1 - t_2) \tilde{\pi}_{i2} D_{i1}^{(\theta - 1)\varepsilon}$$

In addition to the direct R&D investment cost D_{i1} , firms pay a cost $g\left(D_{i1},\theta\pi_{i1}\right)$ to adjust their R&D. Following the investment literature, we adopt a quadratic formulation for

$$g(D_{i1}, \theta \pi_{i1}) = b \times (\theta \pi_{1i}/2) [D_{i1}/(\theta \pi_{1i})]^2.$$

Model: R&D Choice under a Linear Tax

The optimal choice of D_{i1}^* is given by

$$\mathsf{FOC:} \quad -(1-t_1)\left(1+b\left[\frac{D_{i1}}{\theta\pi_{i1}}\right]\right) + \beta\left(1-t_2\right)\varepsilon(\theta-1)D_{i1}^{(\theta-1)\varepsilon-1}\tilde{\pi}_{i2} = 0.$$

R&D intensity, defined as the R&D-to-sales ratio, has an ambiguous relationship with ϕ_{i1} . To see this, we express the firm's FOC in terms of the choice of R&D intensity, $d_{i1} = D_{i1}/\theta \pi_{i1}$, such that

$$\underbrace{-\left(1-t_{1}\right)\left(1+bd_{i1}^{*}\right)}_{\text{Increase in Investment Cost}} + \beta\left(1-t_{2}\right)\varepsilon(\theta-1)d_{i1}^{*}(\theta-1)\varepsilon - 1\underbrace{\frac{\tilde{\pi}_{i2}}{\left(\theta\pi_{i1}\right)^{1-(\theta-1)\varepsilon}}}_{} = 0$$

Productivity Gain from R&D

Model: A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure, modeled after the incentives in the InnoCom program:

$$t_2 = \begin{cases} t_2^{LT} & \text{if } d_{i1} < \alpha \\ t_2^{HT} & \text{if } d_{i1} \ge \alpha \end{cases}$$

where $t_2^{LT} > t_2^{HT}$ and where LT/HT stands for low-tech/high-tech. In practice, firms with high R&D intensity may not participate in the program if other constraints prevent them from hiring a sufficient number of technical employees, if they do not obtain a significant fraction of their sales from high-tech products, or if the compliance and registration costs are too high. We model these constraints by assuming that firms pay a fixed cost of certification: $c \times \theta \pi_{1i}$, where c varies across firms.

Model: A Notch in the Corporate Income Tax

A firm decides whether to bunch by comparing the value of the firm from bunching, by setting $d_1^* = \alpha$, to the value of the firm at its optimal R&D intensity below the notch. The value-to-sales ratio of the firm conditional on bunching, $\Pi\left(\alpha \mid t_2^{HT}\right) / (\theta \pi_{i1})$, is given by

$$\frac{\Pi\left(\alpha \mid t_{2}^{HT}\right)}{\theta \pi_{i1}} \equiv (1 - t_{1}) \frac{1}{\theta} + \beta \left(1 - t_{2}^{HT}\right) \alpha^{(\theta - 1)\varepsilon} \frac{\tilde{\pi}_{i2}}{\left(\theta \pi_{i1}\right)^{1 - (\theta - 1)\varepsilon}} - (1 - t_{1}) \left[\alpha \left(1 + \frac{b\alpha}{2}\right) + c\right]$$

Similarly, the value-to-sales ratio at the interior optimal $d_{i1}^*, \Pi(d_{i1}^* \mid t_2^{LT}) / (\theta \pi_{i1}), \text{ is}$

$$egin{aligned} rac{\Pi\left(d_{i1}^* \mid t_2^{LT}
ight)}{ heta\pi_{i1}} &\equiv (1-t_1)rac{1}{ heta} + eta\left(1-t_2^{LT}
ight)d_{i1}^*(heta-1)arepsilonrac{ ilde{\pi}_{i2}}{\left(heta\pi_{i1}
ight)^{1-(heta-1)arepsilon}} \ &- (1-t_1)\,d_{i1}^*\left(1+rac{bd_{i1}^*}{2}
ight) \end{aligned}$$

Denote a firm's reported level of R&D spending by \tilde{D}_{i1} . Firms qualify for the lower tax whenever $\tilde{D}_1 \geq \alpha \theta \pi_1$. We assume that firms face an expected cost of misreporting that is given by $h\left(D_{i1}, \tilde{D}_{i1}\right)$, which represents the likelihood of being caught and the punishment from the tax authority. We further assume that the cost of misreporting is proportional to the reported R&D and depends on the percentage of misreported R&D, $\delta_{i1} = \left(\tilde{D}_{i1} - D_{i1}\right)/\tilde{D}_{i1}$, so that

$$h\left(D_{i1},\tilde{D}_{i1}\right)=\tilde{D}_{i1}\tilde{h}\left(\delta_{i1}\right)$$

where \tilde{h} satisfies $\tilde{h}(0)=0$ and $\tilde{h}'(\cdot)\geq 0$.

Notice first that if a firm decides not to bunch at the level $\alpha\theta\pi_1$, it does not have an incentive to misreport R&D spending, as doing so would not affect total profits or the tax rate. However, a firm might find it optimal to report $\tilde{D}_1=\alpha\theta\pi_1$ even if it actually invested in a lower level of R&D. Conditional on bunching, the firm's optimal relabeling strategy solves the following problem:

$$\begin{aligned} & \max_{D_{i1}^K} \left(1 - t_1\right) \left(\pi_{i1} - D_{i1}^K - \theta \pi_{i1} c - \frac{b \theta \pi_{i1}}{2} \left[\frac{D_{i1}^K}{\theta \pi_{i1}}\right]^2\right) - \alpha \theta \pi_1 \tilde{h} \left(\frac{\alpha \theta \pi_1 - D_{i1}^K}{\alpha \theta \pi_1}\right) \\ & + \beta \left(1 - t_2^{HT}\right) \tilde{\pi}_{i2} \left(D_{i1}^K\right)^{(\theta - 1)\varepsilon}. \end{aligned}$$

The first-order condition for relabeling in terms of the real R&D intensity $d_1^K = D_1^K/\left(\theta\pi_1\right)$ is then

$$0 = \underbrace{-\left(1-t_1\right)\left(1+bd_{i1}^{K*}\right)+\tilde{h}'\left(1-\frac{d_{i1}^{K*}}{\alpha}\right)}$$

Increase in Investment Cost and Reduction in Relabeling Cost

$$+\beta\left(1-t_2^{HT}\right)\varepsilon(\theta-1)d_{i1}^{K*(\theta-1)\varepsilon-1}\frac{\tilde{\pi}_{i2}}{\left(\theta\pi_{i1}\right)^{1-(\theta-1)\varepsilon}}.$$

Productivity Gain from Real R&D

To gain further intuition, consider the simple case where b=c=0. Using equation (2) to simplify $\Pi\left(d_{i1}^{K*},\alpha\mid t_{2}^{HT}\right)$, it follows that firms decide to bunch when the following inequality holds:

$$\underbrace{\left(\frac{d_{i1}^{K*}}{\alpha}\right)^{(\theta-1)\varepsilon}\left(\frac{d_{i1}^{*}}{\alpha}\right)^{1-(\theta-1)\varepsilon}\left(\frac{1-t_{2}^{HT}}{1-t_{2}^{LT}}\right)\frac{1}{(\theta-1)\varepsilon}-\frac{d_{i1}^{K*}}{\alpha}}_{\text{-}}-\underbrace{\frac{\tilde{h}\left(\delta_{i1}^{*}\right)}{\alpha\left(1-t_{1}\right)}}_{\text{-}}$$

Relative Profit from Bunching

Relabeling Cost

$$\geq \frac{d_{i1}^*}{lpha}\left(rac{1}{(heta-1)arepsilon}-1
ight)$$

Relative Profit from Not Bunching

Estimation Framework

- Parameterize the model:
 - Set $\theta = 5$ based on the survey by Head and Mayer (2014)
 - Given a value of θ , the persistence and volatility of log value-added of non-R&D performing firms map directly into ρ and σ^2 , which yields the following calibrated values of $\rho=0.725$ and $\sigma=0.385$. This process implies a stationary normal distribution for the underlying productivity ϕ_1 .
 - Set $\beta = 0.925$

Estimation Framework

- Parameterize the distributions of b and c, which we assume are i.i.d. across firms:
 - Assume b is log-normally distributed, $b \sim \mathcal{LN}\left(\mu_b, \sigma_b^2\right)$
 - ullet c has an exponential distribution, $c \sim \mathcal{EXP}\left(\mu_c
 ight)$
- Adopt the following functional form for the costs of relabeling: $(\exp\{\eta\delta\}-1)/\eta$, where δ is the fraction of reported R&D corresponding to relabeling

to estimate the parameters $\Omega = \{\varepsilon, \eta, \mu_b, \sigma_b, \mu_c\}$

- We simulate productivity and adjustment and fixed costs for 30,000 firms.
- We determine whether each firm finds it optimal to bunch depending on the firm's optimal R&D investment conditional on not bunching and the optimal relabeling strategy conditional on bunching. Based on these firm-level decisions, we compute data moments that are analogous to those discussed in Section II.
- We obtain the simulated moments by repeating this process 10 times and averaging over these instances.

• Our estimate of Ω minimizes the difference between data moments and moments generated by the distribution of simulated firms as measured by the criterion function:

$$Q(\Omega) = \left[egin{array}{c} m^D(\Omega) \ m^B(\Omega) \end{array}
ight]' W \left[egin{array}{c} m^D(\Omega) \ m^B(\Omega) \end{array}
ight]$$

where W is a bootstrapped covariance weighting matrix, and $m^D(\Omega)$ and $m^B(\Omega)$ are moment conditions based on the descriptive statistics and on the bunching estimator, respectively.

Our initial model relies solely on the moments in $m^D(\Omega)$ to estimate the model. Moment condition $m^D(\Omega)$ includes four types of moments based on the data patterns in Section II.

- The first set of moments uses information from the histogram of R&D intensity. We include the fraction of firms falling in three equally spaced intervals below the 3 percent notch (i.e., [0.003, 0.012], [0.012, 0.021], and [0.021,0.03]). We summarize the top of the R&D intensity distribution by including moments that measure the fraction of firms falling in three equally spaced intervals between 5 percent and 9 percent (i.e., [0.05,0.063], [0.063,0.076], and [0.076,0.09]).
- Second, we include the average R&D intensity for firms that potentially respond to the InnoCom program (i.e., over the interval [0.03, 0.05]).

- Third, we include the average TFP for firms below and above the notch.
- Finally, we include the drop in the administrative cost ratio from Figure 5. This last moment plays an important role in disciplining the costs of relabeling.

For robustness, we show that we obtain similar structural estimates when we also consider additional moments based on the bunching estimator $m^B(\Omega)$. These moments include the following: (i) the lower threshold of the excluded region d^{*-} ; (ii) the fraction of firms in the excluded region that do not bunch a^* ; and (iii) the percentage increase in R&D intensity over the excluded region Δd . In this case, our model parameters are additionally disciplined by the results from Figure 4.

• these moments jointly inform the three parameters that determine bunching: ε, η , and μ_c , providing additional over-identifying restrictions.

Estimates of Structural Parameters

TABLE 3—STRUCTURAL ESTIMATES

	TFP elasticity of R&D	Relabeling cost η	Distribution of adjustment costs		Distribution of fixed costs
	arepsilon		μ_b	σ_b	μ_c
Panel A. Point estim	ates				
Model 1: Excluding	bunching moments				
Estimate	0.089	5.900	7.989	2.047	0.687
Standard error	(0.002)	(0.493)	(0.086)	(0.076)	(0.062)
Model 2: All momen	ıts				
Estimate	0.091	6.755	8.011	2.014	0.532
Standard Error	(0.002)	(0.449)	(0.075)	(0.073)	(0.012)

Estimates of Structural Parameters

	Data	Simulated		
		Model 1: excluding bunching	Model 2: all moments	
Panel B. Simulated versus data moments				
R&D dist. moments: $m^D(\Omega)$				
Below the notch (percent)				
[0.3, 1.2]	0.373	0.382	0.379	
[1.2, 2.1]	0.113	0.157	0.146	
[2.1, 3]	0.067	0.080	0.069	
Above manipulated region (percent)				
[5, 6.3]	0.056	0.055	0.057	
[6.3, 7.6]	0.026	0.037	0.038	
[7.6, 9]	0.012	0.026	0.027	
Mean R&D intensity [3 percent, 5 percent]	0.037	0.035	0.035	
Average TFP below notch	-0.015	-0.017	-0.020	
Average TFP above notch	0.027	0.023	0.025	
Admin. cost ratio break at notch (%)	0.9	0.8	0.7	
Bunching moments: $m^B(\Omega)$				
Bunching point d^{*-}	0.009	(0.009)	0.010	
Increase in reported R&D: Δd	0.157	(0.124)	0.150	
Fraction of firms not bunching	0.641	(0.738)	0.665	

Cimulated

Implications

- A 100 percent increase in real R&D would increase TFP by 9 percent.
- Complier firms are, on average, 13.5 percent more productive than
 firms in the excluded region that do not comply with the policy. They
 also have idiosyncratic adjustment costs that are 24.3 percent lower
 than noncompliers, which indicates much better technological
 opportunities from R&D investment.
- 24.2 percent of the reported R&D investment is due to relabeling.

Code

Example: excluding bunching moments MatlabStructuralCode/Baseline/Density Moments/Main.m