Plan 1/30

1. Codage de l'information

Plan 2/30

- 1. Codage de l'information
- 1.1 Le système binaire
- 1.2 Changement de bas
- 1.3 Opérations binaires
- 1.4 Codage du texte

- L'informatique est le traitement automatique de l'information.
 - ► automatique = réalisable par une machine
 - ▶ information = données de l'utilisateur (des nombres, du son, des images, du texte, . . .)
- Pour travailler sur des données l'ordinateur a besoin de les représenter dans un langage qu'il comprend : le langage machine basé sur le système binaire.
- ► On appelle **codage** le procédé qui consiste à traduire les données en langage machine et **décodage** le procédé inverse.

Le bit est la plus petite unité de représentation de l'information.
 bit = contraction de binary digit (chiffre binaire)

4/30

- ► Un bit a pour valeur 0 ou 1.

 ► Dans certains cas (voir les opérateurs logiques) on associe aussi :
- Dans certains cas (voir les opérateurs logiques) on associe aussi :
 0 à faux
 - ▶ 1 à vrai
- Une suite de 8 bits est appelée un octet.
 Une suite de 4 bits est appelée un quartet.
- ► En informatique, on code les données avec des séquences de bits (ou nombres binaires).

Notation

Le bit

- ▶ Pour préciser le système (binaire ou décimal) dans lequel est écrit un nombre on utilise un indice (2 ou 10).
- Exemples:
 - ▶ 1001₂ est un nombre binaire
 ▶ 1001₁₀ est un nombre décimal
- Si l'indice n'est pas précisé, le nombre est écrit dans le système décimal.

- ▶ Dans une séquence de bits $b_{n-1}b_{n-2}...b_0$, on appelle :
 - ightharpoonup bit de **poids faible**, le bit le plus à droite (b_0)
 - bit de **poids fort**, le bit le plus à gauche (b_{n-1})
 - ▶ bit de **poids** p, le bit b_p
- ▶ Par exemple, dans la séquence $\underline{1}0111\underline{0}01\underline{0}_2$:
 - Le bit de poids faible est 0.
 - ▶ Le bit de poids fort est 1.
 - Le bit de poids 3 est 0.

Basées sur les bits											
kilo-bit	kilo-bit Kb										
mega-bit	Mb	10 ⁶ bits									
giga-bit	Gb	10 ⁹ bits									
tera-bit	Tb	10^{12} bits									
peta-bit	Pb	10^{15} bits									
exa-bit	Eb	10 ¹⁸ bits									

Basées sur les octets										
kilo-octet	Ko	10 ³ octets								
mega-octet	Мо	10 ⁶ octets								
giga-octet	Go	10 ⁹ octets								
tera-octet	То	10 ¹² octets								
peta-octet	Ро	10 ¹⁵ octets								
exa-octet	Eo	10 ¹⁸ octets								

Quelques ordres de grandeurs :

- ▶ un document office = 10–100 Ko
- ▶ un fichier de musique = 1–10 Mo
- ▶ un DVD = 4–8 Go
- ▶ un disque dur standard = 1-10 To = 1 millier de DVDs
- ▶ quantité de données que peut stocker la NSA au data center de Bluffdale (Utah, USA) = 3-12 Eo = 3 millions de disques durs de 2 To

avec 2 bits? 4 séquences : 00, 01, 10 et 11.
 avec 3 bits? 8 séquences : 000, 001, 010, 011, 100.

Combien de séquences binaires différentes peut-on écrire

- ▶ avec 3 bits? 8 séquences : 000,001,010,011,100,101,110,111.
- avec n bits? 2^n séquences.

avec 1 bit? 2 séquences : 0 et 1.

- Autrement dit, l'utilisation d'un bit supplémentaire permet de doubler la capacité de codage.
- Chaque séquence binaire permet ensuite de coder une valeur parmi celles que l'on souhaite représenter (caractères, nombres, couleurs, ...).

▶ Inversement, pour trouver le nombre de bits nécessaires au codage de v

valeurs, il faut trouver la plus petite puissance de 2 supérieure à v. • (On obtient cette puissance, avec l'opération $log_2(v)$.)

- Exemple: Codage de l'alphabet latin
- ▶ Pour représenter les 26 caractères de l'alphabet latin, il nous faut 5 bits.
- Car 2⁴ = 16 < 26 et 2⁵ = 32 ≥ 26.)
 On peut ensuite utiliser la représentation suivante :
- ▶ $00000 \rightarrow a,00001 \rightarrow b,00010 \rightarrow c,...,11001 \rightarrow z.$

- ▶ Pour compter en binaire c'est le même principe qu'en décimal :
 - $0, 1, \underbrace{10}_{2}, \underbrace{11}_{3}, \underbrace{100}_{4}, \underbrace{101}_{5}, \underbrace{110}_{6}, \underbrace{111}_{7}, \underbrace{1000}_{9}, \underbrace{1001}_{9}, \dots$
- ▶ On a donc :
 - $\mathbf{1}_2 = 1 = 2^0$
 - ► $10_2 = 2 = 2^1$ ► $100_2 = 4 = 2^2$
 - ► $1000_2 = 1 = 2$
- ► Plus généralement, la valeur décimale associée au bit de poids *n* est 2^{*n*}.
- ▶ On en déduit donc la valeur décimale d'une suite binaire $b_{n-1}b_{n-2}...b_0$:

$$b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \ldots + b_0 \times 2^0 = \sum_{i=1}^{n-1} b_i \times 2^i$$

Exemple : $1001101_2 = 1 \times 2^6 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 64 + 8 + 4 + 1 = 77$

Plan 9/30

- 1. Codage de l'information
- 1.1 Le système binaire
- 1.2 Changement de base
- 1.3 Opérations binaires
- 1.4 Codage du texte

- ► On connaît maintenant le système binaire basé sur les bits et le système décimal basé sur les chiffres arabes.
- ▶ On appelle base *B* un système dans lequel on dispose d'un alphabet de *B* chiffres (ou symboles) pour écrire des nombres.
 - système binaire = base 2
 - ▶ système décimal = base 10
- ► Ce que l'on a vu pour le système binaire peut être généralisé :

 - ▶ Dans une base B, n chiffres permettent de coder B^n valeurs différentes.
- Exemples :
 - ► $5672_8 = 5 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 2 \times 8^0 = 3002$
 - ▶ En base 7 on peut coder, avec 3 chiffres, $7^3 = 343$ valeurs différentes.

В	Nom	Chiffres	Exemple:
			écriture de 93
2	binaire	0, 1	10111012
8	octale	0, 1, 2, 3, 4, 5, 6, 7	1358
10	décimale	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	93 ₁₀
16	hexadécimale	0, 1, 2, 3, 4, 5, 6, 7,	5 <i>D</i> ₁₆
		8, 9, <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i>	

Exemples d'utilisations :

- binaire : par l'ordinateur pour faire des calculs
- octale : pour représenter les droits sur un fichier (lecture, écriture, exécution)
- ▶ hexadécimale : pour représenter des séquences de bits de manière compacte

Problème : convertir un nombre décimal N en un nombre d'une base B

ightharpoonup On cherche à décomposer N en puissances de B :

$$N = r_{n-1} \times B^{n-1} + \ldots + r_0 \times B^0$$

- Méthode générale :
 - ► On divise *N* par *B*.
 - ▶ Le reste forme le chiffre de poids faible. (Le reste est forcément dans l'intervalle [0..B - 1].)
 - ▶ On recommence l'opération avec le quotient.
 - On s'arrête lorsque le quotient vaut 0.

conversion de 157 en binaire

```
division de
          157
               par 2 :
                       157 = 2 \times 78
division de
           78
               par 2 : 78 = 2 \times 39
division de
           39 par 2 : 39 = 2 \times 19 + 1
                                                ro
division de
           19 par 2 : 19 = 2 \times 9 + 1
                                                r<sub>3</sub>
division de 9 par 2 : 9 = 2 \times 4 + 1
division de 4 par 2 : 4 = 2 \times 2 + |0|
                                                r5
            2 par 2 : 2 = 2 \times 1 + 0
division de
            1 par 2 : 1 = 2 \times
                                      0 + | 1
division de
```

Le quotient vaut $0 \Rightarrow \text{ on s'arrête}$

Conclusion:
$$157_{10} = 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$$

conversion de 157 en hexadécimal

Conclusion:
$$157_{10} = 9$$
 D r_1 r_0

(13 est représenté par le caractère D en hexadécimal.)

Problème : convertir un nombre d'une base B en un nombre décimal

- ▶ Il suffit de décomposer le nombre en fonction des puissances de la base et d'additionner.
- ► Exemples :
 - ▶ $10111101_2 = 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 93_{10}$
 - $E07_{16} = 14 \times 16^2 + 0 \times 16^1 + 7 \times 16^0 = 3591_{10}$

Problème : convertir un nombre binaire en un nombre hexadécimal

- Avec 4 bits on peut coder $2^4 = 16$ valeurs = 1 chiffre hexadécimal.
 - Méthode générale :
 - ▶ On groupe les bits par 4 en commençant par les bits de poids faible.
 - ➤ On rajoute si nécessaire des bits de poids fort à 0 pour obtenir un nombre de bits multiple de 4.
 - On convertit chaque suite de 4 bits en hexadécimal comme suit :

0000	\Rightarrow	0	0100	\Rightarrow	4	1000	\Rightarrow	8	1100	\Rightarrow	С
0001	\Rightarrow	1	0101	\Rightarrow	5	1001	\Rightarrow	9	1101	\Rightarrow	D
0010	\Rightarrow	2	0110	\Rightarrow	6	1010	\Rightarrow	Α	1110	\Rightarrow	Ε
0011	\Rightarrow	3	0111	\Rightarrow	7	1011	\Rightarrow	В	1111	\Rightarrow	F

- Exemples :
 - ▶ $10110011_2 = 1011\ 0011_2 = B3_{16}$
 - $11100_2 = 0001 \ 1100_2 = 1C_{16}$

Problème : convertir un nombre hexadécimal en un nombre binaire

- ▶ Il suffit de coder chaque chiffre hexadécimal en une suite de 4 bits.
- Exemples :
 - $A7_{16} = 1010 \ 0111_2$
 - ightharpoonup 7*EF*₂ = 0111 1110 1111₁₆

Plan 18/30

- 1. Codage de l'information
- 1.1 Le système binaire
- 1.2 Changement de base
- 1.3 Opérations binaires
- 1.4 Codage du texte

L'addition 19/30

- L'addition se fait (quelle que soit la base) comme en base 10.
- lacktriangle Exemple : addition de $149=10010101_2$ et $305=100110001_2$ en binaire

On trouve bien $111000110_2 = 454 = 149 + 305$

20/30

► Ces registres ont des tailles limitées (8, 32 ou 64 bits par exemple). ⇒ L'intervalle des valeurs que l'on peut y stocker est limité.

- Si le résultat d'une opération ne tient pas dans le registre, certains bits
- seront « oubliés » et le résultat sera incorrect. ▶ On appelle ce phénomène dépassement de capacité ou overflow.
- \triangleright Exemple: addition sur 8 bits de 77 = 01001101₂ et 201 = 11001001₂. 1 1 1 1 retenues 0 1 0 0 1 1 0 1

registres (zones mémoire très rapides d'accès).

 \Rightarrow Lorsque l'ordinateur effectue $77_{10} + 201_{10}$ avec des registres de 8 bits, il

trouve $00010110_2 = 22_{10}$. Le dépassement de capacité est la source de nombreux bugs.

Exemple: crash d'ariane 5 en 1996 dû à l'utilisation de registres de 16 bits pour des opérations nécessitant 64 bits.

- ▶ En plus des opérateurs arithmétiques $(+, -, \times, /)$ les programmes ont parfois besoin d'effectuer des opérations logiques.
- ▶ On ne voit plus alors la séquence binaire comme un nombre mais comme une suite de valeurs vrai (1) ou faux (0).
- ▶ Les opérateurs logiques sont des opérateurs bit à bit : dans le résultat, le bit de poids *p* dépend uniquement du (ou des) bit(s) de poids *p* dans le(s) opérandes.
- ▶ On utilise pour cela une **table de vérité** qui donne, en fonction des bits des opérandes, le bit résultant de l'opération.
- ▶ Nous allons voir 4 opérateurs logiques : ET, OU, OU exclusif et NON.
- Exemples d'utilisation de ces opérateurs :
 - ET, OU et NON utilisés pour certains calculs sur les adresses IP (voir cours et TD 2)
 - ➤ OU exclusif utilisé par des algorithmes de cryptage (voir TD 1)

- Les deux bits doivent être à vrai.
- ► Table de vérité du ET :

а	Ь	a ET b
0	0	0
0	1	0
1	0	0
1	1	1

Exemple :

- Au moins une des opérandes doit être à vrai.
- ► Table de vérité du OU :

а	b	a OU b
0	0	0
0	1	1
1	0	1
1	1	1

Exemple:

- ▶ Une des deux opérandes doit être à vrai mais pas les deux.
- ► Table de vérité du XOR :

а	Ь	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

Exemple :

- ► Inversion du bit de l'opérande.
- ► Table de vérité du NON :

а	NON a
0	1
1	0

Exemple:

NON	0	1	1	1	0	0	1	1
	1	0	0	0	1	1	0	0

- ► Certains connecteurs logiques sont en réalité redondant.
- ▶ Un ensemble de connecteurs logiques est fonctionnellement complet si ces connecteurs sont suffisant pour écrire toute fonction binaire.
- Exemples:
 - ▶ {ET, NON}
 - ▶ {OU, NON}

Exercice

Écrire en fonction de ET et NON tous les autres opérateurs.

Plan 27/30

- 1. Codage de l'information
- 1.1 Le système binaire
- 1.2 Changement de base
- 1.3 Opérations binaires
- 1.4 Codage du texte

- Une table de codage associe une séquence binaire à chaque caractère de l'alphabet que l'on veut coder.
- L'ordinateur traduit ensuite chaque caractère du texte en la séquence de bits correspondante en utilisant cette table.
- ▶ Il y a différentes tables de codage.
- Elles se différencient par :
 - ▶ l'ensemble des caractères qu'elles permettent de coder
 - et le nombre de bits qu'elles utilisent pour coder les caractères.
- ▶ Nous allons en voir 2 : l'ASCII et l'UTF-8.
- Pour voir le codage utilisé pour un fichier : file <nom-du-fichier>.
- Exemple :

```
$ file message.txt
message.txt: UTF-8 Unicode text
```

► ASCII = American Standard Code for Information Interchange

5

- caractères ASCII codés sur 7 bits
- Permet de coder : les lettres de l'alphabet latin (minuscules et majuscules), les chiffres arabes, les caractères de ponctuation et d'autres caractères spéciaux (ex : +, -, ESC (la touche Echap du clavier)).

8

R

► La table des caractères ASCII :

					ENQ	ACK	BEL	RS	HT	ΙF	VT	FF	CR	\overline{SO}	SI
DLE	DC1	DC2	DC3	D C 4				23		LI	v I		CIV	50	51
c D C		D C 2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
SPC	ļ	•	#	\$	%	&	`	()	*	+	,	-		/
0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0	Α	В	C	D	Ε	F	G	Н	- 1	J	K	L	М	Ν	0
Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	[\]	^	_
,	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
p	q	r	S	t	u	V	W	Х	У	Z	{		}	~	DE
_	0 @ P ^ p	P Q	P Q R	0 1 2 3 @ A B C P Q R S ' a b c	0 1 2 3 4 @ A B C D P Q R S T ' a b c d	0 1 2 3 4 5 @ A B C D E P Q R S T U ' a b c d e	0 1 2 3 4 5 6 @ A B C D E F P Q R S T U V ' a b c d e f	0 1 2 3 4 5 6 7 @ A B C D E F G P Q R S T U V W ' a b c d e f g	0 1 2 3 4 5 6 7 8 @ A B C D E F G H P Q R S T U V W X ' a b c d e f g h	0 1 2 3 4 5 6 7 8 9 @ A B C D E F G H I P Q R S T U V W X Y ' a b c d e f g h i	0 1 2 3 4 5 6 7 8 9 : @ A B C D E F G H I J P Q R S T U V W X Y Z ' a b c d e f g h i j	0 1 2 3 4 5 6 7 8 9 : ; @ A B C D E F G H I J K P Q R S T U V W X Y Z [' a b c d e f g h i j k	0 1 2 3 4 5 6 7 8 9 : ; < @ A B C D E F G H I J K L P Q R S T U V W X Y Z [\	0 1 2 3 4 5 6 7 8 9 : ; < = @ A B C D E F G H I J K L M P Q R S T U V W X Y Z [\] a b c d e f g h i j k l m	0 1 2 3 4 5 6 7 8 9 : ; < = > @ A B C D E F G H I J K L M N P Q R S T U V W X Y Z [\] ^ ^ ^ a b c d e f g h i j k l m n

- ▶ En ligne : les 3 bits de poids fort. En colonne : les 4 bits de poids faible.
- Exemple : le caractère E est codé $\underbrace{100}_{4}$ $\underbrace{0101}_{5}$

- ▶ UTF-8 = Universal character set Transformation Format 8 bits
- codage le plus utilisé dans les systèmes Linux
- caractères UTF-8 codés sur 1, 2, 3 ou 4 octets
- permet de coder des textes d'à peu près n'importe quel alphabet (arabe, chinois, grec, indien, latin, ...)
 compatible avec l'ASCII : Un texte codé en ASCII est codé de la même
 - manière en UTF-8.

 (Les caractères ASCII étant codés sur 7 bits on rajoute un bit de poids fort à
 - O pour obtenir un caractère UTF-8 sur 1 octet.)
- Exemples de codage :

```
\mathsf{E} \ \to \ 01000101
```

$$6 \rightarrow 11000011 \ 10101001$$

$$\alpha \rightarrow 11001110 \ 10110001$$