Training Loss

The reduction in loss was approximately 25% gradually.

Training Images

Applauding

Comparison Table

Feature	Paper Proposal	My Code	Impact on Project Idea
Patch Embedding	Convolution for $P \times P$	3D convolution with	Allows flexibility in spatial
	patches with shared	interpolated positional	dimensions but may not fully
	positional encoding.	encoding.	align with video-specific
			positional encoding.
Attention	Linear attention for	Combination of Scaled	Adds complexity but supports
Mechanism	efficiency and stability.	Dot Product and Linear	versatile attention mechanisms
		Attention.	for better spatial feature
			learning during image training.
Recurrent	Hidden states recurrently	Updates hidden states	Recurrent dropout enhances
Processing	transfer temporal	with added recurrent	robustness but may underutilize
	features.	dropout.	temporal dependencies when
			training on static images.
Memory Efficiency	Frame-by-frame reduces	Sequential processing	Suitable for reduced
	GPU usage significantly.	reduces memory usage	computational resources in the
		compared to batch	new approach.
		processing.	
Classifier Design	Concatenates spatial and	Uses global average	Simplifies static image training
	temporal tokens for	pooling on hidden states	but may miss nuanced
	classification.	before classification.	spatial-temporal interactions.
Position Encoding	Learnable positional	Learnable encoding with	Ensures consistency for
	encoding shared across	dynamic resizing via	image-based training, less
	frames.	trilinear interpolation.	tailored for videos.
Flexibility to Video	Processes varying video	Sequential	Works for fixed-length
Length	lengths with attention	frame-by-frame	predictions but may need tuning
	gate interactions.	processing without	for variable-length videos.
		handling variable lengths.	
Temporal Features	Explicitly modeled	Inferred during testing	Relies on recurrent design to
	through recurrent hidden	via recurrent processing.	compensate for lack of temporal
	states.		training, weakening performance
			on intricate videos.

Key Insights

Aspect	Strengths	Weaknesses
Efficiency	Avoids expensive and	Sacrifices explicit temporal
	time-consuming video training	learning, making predictions less
	by using image augmentations	reliable for videos with complex
	and frame extraction.	motion dynamics.
Cross-Modality	Demonstrates RViT's ability to	Generalization from images to
Versatility	adapt to image-based training	videos depends heavily on
	and video-based testing.	recurrent feature extraction,
		possibly leading to errors.
Scalability	Works with datasets of varying	Lack of temporal data in
	sizes and is computationally	training limits scalability for
	efficient.	tasks requiring temporal
		reasoning.

Augmentation Benefits	Simulates a larger training dataset with augmentations, enhancing feature diversity.	Over-reliance on augmentations may bias the model and fail to generalize to real-world video data.
Recurrent Customization	Recurrent dropout improves regularization and reduces overfitting.	Dropout might weaken temporal feature propagation, critical for video-based tasks.