Reconfigurable Systems with Xilinx FPGAs

Victor Orfeu Merlo

Prof. Dr. –Ing. Ali Hayek

What is a Reconfigurable System?

- System that combines high flexibility of software with high performance of hardware (Wikipedia)
- Use of FPGAs to achieve this
- Configuration or Reconfiguration:
 - Complete
 - Partial
 - Static
 - Dynamic

VLSI Design Session 3 Slide 27

Types of Reconfiguration

- Complete: All the FPGA is loaded with a new configuration
- Partial: Only part of the FPGA is loaded with a new configuration
 - Static: The device stops operating while reconfiguring
 - Dynamic: Only the reconfigured part stops operating while reconfiguring, the rest remains operational
- "Dynamic Function eXchange"

Advantages of Partial Reconfiguration

- Even more flexibility
- Reduction of resource consumption
- Enabling new techniques in design security
- Improving FPGA fault tolerance
- Accelerating configurable computing

Supported devices

- 7 Series
- Ultrascale
- Ultrascale+
- Versal Adaptive Compute Acceleration Platform (ACAP)
- Some exceptions, but in general every current device supports

Styles of Partial Reconfiguration

 Difference-Based: small changes, bitstream contained only the differences between old and new design

 Module-Based: FPGA is divided in Static and Reprogrammable Regions

Module-Based project flow

- Enable Partial Reconfiguration (PR)
- Define Reconfigurable Partitions (RPs) and Reconfigurable Modules (RMs)

Module-Based project flow

- Configurations: Combinations of RMs with the Static Region
- Synthesis and Implementation: Out-Of-Context and Bottom-Up. Implements the static region first and reuses it for each configuration
- Bitstreams:
 - Full Configuration Bitstreams: The usual
 - Partial Bitstreams: Delivered after first configuration, self-contained
 - Blanking Bitstreams: Logical black-box
 - Clearing Bitstreams: Specific to Ultrascale devices, shuts down clock region

Configuration modes and ports

- ICAP: Requires the creation of an ICAP controller as well as logic to drive the ICAP interface
- MCAP: (UltraScale and UltraScale+ devices only) Provides a dedicated connection to the ICAP from one specific PCIe block per device
- PCAP: The primary configuration mechanism only for Zynq-7000 AP SoC and Zynq UltraScale+ designs
- JTAG: A good interface for quick testing or debug. Can be driven with the Vivado Logic Analyzer
- Slave SelectMAP or Slave Serial: Good choices to perform full configuration and Partial Reconfiguration over the same interface.

Configuration Mode		7 Series	Zynq	UltraScale	UltraScale+		Zynq UltraScale+ MPSoC	
JTAG		Yes	Yes	Yes	Yes		Yes	
ICAP		Yes	Yes	Yes	Yes		Yes	
PCAP		N/A	Yes	N/A	N/A		Yes	
MCAP		N/A	N/A	Yes	Yes		Yes	
Slave Serial		Yes	N/A	Yes	Yes		N/A	
Slave SelectMap		Yes	N/A	Yes	Yes		N/A	
SPI (any width)*		No	N/A	No	Yes		N/A	
BPI sync mode*		No	N/A	No	Yes		N/A	
BPI async mode		Yes	N/A	Yes	Yes		N/A	
Master modes		No	N/A	No	No		N/A	
Port	I	Device	Max clock	Data w	idth Ma		x bandwidth	
ICAP	7-Series		100 MHz	32 b	32 bit		3.2 GB/s	
	Ultrascale		200 MHz	32 b	32 bit		6.4 GB/s	
MCAP	7-Series		N/A	N/A		N/A		
	Ultrascale		200 MHz	32 b	32 bit		6.4 GB/s	
SelectMAP	7-Series		100 MHz	32 bit		3.2 GB/s		
	Ultrascale		125 MHz	32 b	32 bit		4.0 GB/s	
JTAG	7-Series		66 MHz	1 bi	t	66 MB/s		
	Ultrascale		50 MHz	1 bi	1 bit		50 MB/s	

Configuration modes and ports

- Dynamic Reconfiguration Port
 (DRP): Port that exists in only
 some elements of 7-Series,
 Ultrascale and Ultrascale+ devices
 - Phase-Locked Loops (PLLs)
 - Mixed-Mode Clock Managers (MMCMs)
 - Serial transceivers (MGTs)
 - And others

Xilinx' IPs for Partial Reconfiguration

- DFX Controller: A controller that manages the partial bitstreams in the FPGA
- DFX Decoupler: Provides safe and managed boundaries between static logic and Reconfigurable Partitions during reconfiguration
- DFX AXI Shutdown Manager: Similar to the Decoupler, provides safe reconfiguration through AXI interfaces
- DFX Bitstream Monitor: Used to identify and track partial bitstream as they flow through the design

Brief mention of Altera

- Also supports PR, mainly in the families of devices Arria and Stratix, using their Quartus Prime software
- Requirements for a controller IP and the pBlocks (here called Logic Lock regions) already exist in non-PR projects

High-level modeling

- Even with all the automation, designing such project is still a difficult task
- Resource management even before simulations
- High-level tools are being developed to aid in this area

Fig. 1 from RTRLib: A High-Level Modeling Tool for the Implementation of Dynamically Partial Reconfigurable System-on-Chips by Daniel M. Muñoz and Regina M. Ivo

Thank you