CHAPITRE 2: INTEGRALES IMPROPRES

Définition de l'intégrale impropre :

L'intégrale $\int_a^b f(x) dx$ est dite intégrale impropre si :

- $a = -\infty$ où $b = +\infty$ ou les deux.
- On peut trouver plusieurs points dans le même intervalle tant que $a \le x \le b$. Ces points sont appelés les points de singularité de f(x).

Intégrale impropre de première espèce :

Soit f(x) une fonction bornée et intégrable sur tout intervalle fini $a \le x \le b$. Alors, par définition :

$$\int_{a}^{+\infty} f(x) \, dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) \, dx$$

On dit que $\int_a^{+\infty} f(x) dx$ est convergente si $\lim_{b \to +\infty} \int_a^b f(x) dx$ existe.

On dit que $\int_a^{+\infty} f(x) dx$ est divergente si $\lim_{h \to +\infty} \int_a^b f(x) dx$ n'existe pas.

La même définition pour :

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

Intégrale impropre de première espèce de fonctions particulières :

- \triangleright L'intégrale géométrique ou exponentielle: $\int_a^{+\infty} e^{-tx} dx$, où t est une constante; est convergente si t > 0, et divergente si $t \leq 0$.
- Intégrale puissance de première espèce : $\int_a^{+\infty} \frac{dx}{x^p}$ où p est une constante et a > 0; convergente si p > 1, et divergente si $p \le 1$. (série de Riemann)
- Intégrale puissance de première espèce : $\int_0^1 \frac{dx}{x^p}$ où p est une constante et a=0 est point de singularité ; convergente si p < 1, et divergente si $p \ge 1$. (série de Riemann)

Critères de convergence pour les intégrales impropres de première espèce :

Critère de comparaison pour les intégrales avec intégrande non négatif :

- a) Convergence: soit $g(x) \ge 0$ pour tout $x \ge a$, et supposons que $\int_a^{+\infty} g(x) \, dx$ converge. Alors, si $0 \le f(x) \le g(x)$ pour tout $x \ge a$, $\int_a^{+\infty} f(x) \, dx$ converge.
- b) divergence : soit $g(x) \ge 0$ pour tout $x \ge a$, et supposons que $\int_a^{+\infty} g(x) \, dx$ diverge. Alors, si $f(x) \ge g(x)$ pour tout $x \ge a$, $\int_a^{+\infty} f(x) \, dx$ diverge.
- > Critère du quotient pour les intégrales avec intégrande non négatif :
 - a) Si $f(x) \ge 0$ et $g(x) \ge 0$, si $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A \ne 0$ ou ∞ , alors $\int_a^{+\infty} f(x) \, dx$ et $\int_a^{+\infty} g(x) \, dx$ convergent toutes les deux ou divergent toutes les deux.
 - b) Si A = 0 dans (a) et si $\int_a^{+\infty} g(x) dx$ converge, alors $\int_a^{+\infty} f(x) dx$ converge.
 - c) Si $A = \infty$ dans (a) et si $\int_a^{+\infty} g(x) dx$ diverge, alors $\int_a^{+\infty} f(x) dx$ diverge.

Ce critère est relie au critère de comparaison dont il est une forme alternative très utile.

En particulier, en prenant $g(x) = \frac{1}{x^p}$, nous avons, à partir du comportement connu cette intégrale :

Théorème 1 : soit $\lim_{x \to +\infty} x^p f(x) = A$, alors :

- $\int_a^{+\infty} f(x) dx$ converge si p > 1 et si A est fini.
- $\int_a^{+\infty} f(x) dx$ diverge si $p \le 1$ et si $A \ne 0$ (A peut-être infini).
- Convergence absolue et semi-convergente : $\int_a^{+\infty} f(x) dx$ est dite absolument convergente si : $\int_a^{+\infty} |f(x)| dx$ converge si $\int_a^{+\infty} f(x) dx$ converge mais que : $\int_a^{+\infty} |f(x)| dx$ diverge, alors $\int_a^{+\infty} f(x) dx$ est dite semi-convergente.