Tarea 7. Grafos

Ejercicio 1. Calcule el orden, el tamaño, las componentes conexas y el grado de cada vértice para el multigrafo que se ilustra en la siguiente figura.

Tamario:

$$y \bullet x \bullet c$$
 $z \bullet d d f$

$$gr(x) = 0$$

Orden
$$Ord(G) = 3$$

Ejercicio 3. Determine las matrices de adyacencias para los siguientes grafos.

		_		-		 						
	0	1	2	3	4		U	1	7	3	4	S
0	0	1	1	1	1	0	0			0	1	
	1	0	L		1		1	0	1	1	0	
2		1_	O	1	1	2	1	۱	\cap	1		0
3	1		1	0	1	3	0	1	1	0		
41	1	1	1	1.	0	4	-	0	1	1	\bigcirc	1_
						S		1	Ω	١	Ţ	0

_	3	-	-	e - Propo					
195	_	0		2	3	4	S	6	7
	0	0	L	Q	0	1	0		
		1	0	1	0	0		0	0
į.	2	0		0	1	0	0	1	0
	3	٥	0		0	1	0	0	(
	4	1	0	0	1	0		0	0
	S	0	1	0	0	1	0	1	0
	6	0	0	1	0	0	1	Q	l
-	7	1	0	0	1	Ó	0	1	0

Ejercicio 4. Muestre que K_n tiene $\frac{n(n-1)}{2}$ aristas.

La gráfica Kn es un grafo con n vértices en el que hay una avista entre cada por de vértices.

Cornenzaremos analizando un grafo kz... y vamos a conectar solo un vertice, generando 1 un grafo de tamouno = 2. Si hacemos lo mismo con uno de orden 4 ::, vemos que queda 1 un grafo de tamaño 3, o sea; n-1. Repitiendo el mismo procepara cada vertire 1, X, nos damos cuenta que, al ser un grafo no dirigido (ViVz = VzVi) estamos repitiendo cada arista 2 veces, as que, si obtenemos la mitad de eso, al final nos que da que el tamaño de una gráfica kn es n(n-1)

Ejercicio 5. Determine las matrices de incidencias para el siguientes grafo.

,	e,	C2	P3	Py	Ps	Pa	Pa	
V_1	١	1	1	0	Q	0	0	v_1 e_3 v_2 v_3
V_2	0	0	1_	1	1	0	2	e_1 e_2 e_5
Vs	Q	0	0	0	Q	1.	0	e_4 e_7 e_6
Vy	1	1	0		0	0	0	v_4 v_5
Vs	0	0	Ω.	0	.1.	1	0	who are the control of the second of the sec

Ejercicio 6 Dada la siguiente matriz encuentre la representación gráfica de su grafo correspondiente.

Es un grafo no dirigido

Ejercicio 7 Encuentre todos los caminos simples del vértice a al vértice e

abgade, abagde, abagde, abagde, abgde, abgde,

Bonus 1. Sea \mathcal{G} una gráfica y sean v y w vértices distintos. Si hay un camino de v a w, demuestre que existe un camino simple de v a w.

On comine es una succesión alternante de vertices y aristas, donde estas dos se poeden repetri. Pero, si nos reservamos el derecha de pasar mas de una vez por un vertice o arista, can el fundamento de que unas arista nos lleva al mismo aunto y cada vertice aduace siempre con los mismos aristas, obtenemos un camina simple.