ALGORITHMS \$ EFFICIENT

CIENTALGORITHMS \$ EFFI

EFFICIENTALGORITHMS \$

ENTALGORITHMS \$ EFFICI

FFICIENTALGORITHMS \$ E

FICIENTALGORITHMS \$ E

GORITHMS \$ EFFICIENTAL

HMS \$ EFFICIENTALGORIT

String Matching – What's behind Ctrl+F?

17 November 2025

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 6: String Matching

- **1.** Know and use typical notions for *strings* (substring, prefix, suffix, etc.).
- **2.** Understand principles and implementation of the *KMP*, *BM*, and *RK* algorithms.
- 3. Know the *performance characteristics* of the KMP, BM, and RK algorithms.
- **4.** Be able to solve simple *stringology problems* using the *KMP failure function*.

Outline

6 String Matching

- 6.1 String Notation
- 6.2 Brute Force
- 6.3 String Matching with Finite Automata
- 6.4 Constructing String Matching Automata
- 6.5 The Knuth-Morris-Pratt algorithm
- 6.6 Beyond Optimal? The Boyer-Moore Algorithm
- 6.7 The Rabin-Karp Algorithm

6.1 String Notation

Ubiquitous strings

string = sequence of characters

- universal data type for ... everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ▶ ... a computer's memory → ultimately any data is a string
- → many different tasks and algorithms
- ► This unit: finding (exact) **occurrences of a pattern** text.
 - ► Ctrl+F
 - grep
 - computer forensics (e. g. find signature of file on disk)
 - virus scanner
- basis for many advanced applications

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - ▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - "what you can type on a keyboard", Unicode characters
- ▶ $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of **length** $n \in \mathbb{N}_0$ (n-tuples)
- $ightharpoonup \Sigma^* = \bigcup_{n \geq 0} \Sigma^n$: set of **all** (finite) strings over Σ
- ▶ $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- ε ∈ Σ⁰: the *empty* string (same for all alphabets)
 - zero-based (like arrays)!
- ▶ for $S \in \Sigma^n$, write S[i] (other sources: S_i) for ith character $(0 \le i < n)$
- ▶ for $S, T \in \Sigma^*$, write $ST = S \cdot T$ for **concatenation** of S and T
- ▶ for $S \in \Sigma^n$, write S[i..j] or $S_{i,j}$ for the **substring** $S[i] \cdot S[i+1] \cdots S[j]$ $(0 \le i \le j < n)$
 - ► S[0..j] is a **prefix** of S; S[i..n-1] is a **suffix** of S
 - ► S[i..j) = S[i..j 1] (endpoint exclusive) \rightsquigarrow S = S[0..n)

String matching – Definition

Search for a string (pattern) in a large body of text

► Input:

- ► $T \in \Sigma^n$: The <u>text</u> (haystack) being searched within
- ▶ $P \in \Sigma^m$: The <u>pattern</u> (needle) being searched for; typically $n \gg m$

Output:

- ▶ the first occurrence (match) of P in T: $\min\{i \in [0..n m) : T[i..i + m) = P\}$
- or NO_MATCH if there is no such i ("P does not occur in T")
- ▶ Variant: Find **all** occurrences of *P* in *T*.
 - \sim Can do that iteratively (update *T* to T[i+1..n) after match at *i*)

Example:

- ightharpoonup T = "Where is he?"
- $ightharpoonup P_1 = \text{"he"} \iff i = 1$
- ► $P_2 =$ "who" \rightsquigarrow NO MATCH
- ▶ string matching is implemented in Java in String.indexOf, in Python as str.find

6.2 Brute Force

Abstract idea of algorithms

String matching algorithms typically use *guesses* and *checks*:

- ▶ A **guess** is a position i such that P might start at T[i]. Possible guesses (initially) are $0 \le i \le n m$.
- ▶ A **check** of a guess is a comparison of T[i + j] to P[j].
- ▶ Note: need all *m* checks to verify a single *correct* guess *i*, but it may take (many) fewer checks to recognize an *incorrect* guess.
- ► Cost measure: #character comparisons
- \rightarrow #checks $\leq n \cdot m$ (number of possible checks)

Brute-force method

```
procedure bruteForceSM(T[0..n), P[0..m)):

for i := 0, ..., n-m-1 do

for j := 0, ..., m-1 do

if T[i+j] \neq P[j] then break inner loop

if j == m then return i

return NO_MATCH
```

- ▶ try all guesses *i*
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

Example:

T = abbbababbab P = abba

 \rightarrow 15 char cmps (vs $n \cdot m = 44$) not too bad!

а	b	b	b	а	b	а	b	b	а	b
а	b	b	а							
	а									
		а								
			а							
				а	b	b				
					а					
						а	b	b	a	

Brute-force method – Discussion

- typically works well for natural language text
- ▶ also for random strings

- ► Worst possible input: $P = a^{m-1}b$, $T = a^n$
- ▶ Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

▶ Bad input: lots of self-similarity in $T! \rightsquigarrow$ can we exploit that?

a a b

a a a

a

▶ brute force does 'obviously' stupid repetitive comparisons → can we avoid that?

b

Roadmap

- ► **Approach 1** (this week): Use *preprocessing* on the **pattern** *P* to eliminate guesses (avoid 'obvious' redundant work)
 - ► Deterministic finite automata (**DFA**)
 - ► Knuth-Morris-Pratt algorithm
 - **▶ Boyer-Moore** algorithm
 - ► **Rabin-Karp** algorithm
- ► **Approach 2** (~~ Unit 13): Do *preprocessing* on the **text** *T*Can find matches in time *independent of text size*(!)
 - inverted indices
 - Suffix trees
 - ► Suffix arrays

6.3 String Matching with Finite Automata

Theoretical Computer Science to the rescue!

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $ightharpoonup \Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightsquigarrow can check for occurrence of P in |T| = n steps!

Job done!

WTF!?

We are not quite done yet.

- ▶ (Problem 0: programmer might not know automata and formal languages ...)
- ▶ Problem 1: existence alone does not give an algorithm!
- ▶ Problem 2: automaton could be very big!

String matching with DFA

- ▶ Assume first, we already have a deterministic automaton
- ► How does string matching work?

Example:

text:		а	а	b	а	С	а	а	b	а	b	а	С	а	а
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

String matching DFA – Intuition

Why does this work?

► Main insight:

State q means: "we have seen P[0..q) until here (but not any longer prefix of P)"

- \blacktriangleright If the next text character c does not match, we know:
 - (i) text seen so far ends with $P[0...q) \cdot c$
 - (ii) $P[0...q) \cdot c$ is not a prefix of P
 - (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.

- \rightarrow New longest matched prefix will be (weakly) shorter than q
- \rightarrow All information about the text needed to determine it is contained in $P[0...q) \cdot c!$

6.4 Constructing String Matching Automata

NFA instead of DFA?

It remains to *construct* the DFA.

- ▶ that actually is a *nondeterministic finite automaton* (NFA) for Σ^*P Σ^*
- → We *could* use the NFA directly for string matching:
 - ▶ at any point in time, we are in a *set* of states
 - accept when one of them is final state

Example:

text:		a	а	b	а	С	а	а	b	a	b	a	С	a	a
state:	0	0,1	0,1	0,2	0,1,3	0	0,1	0,1	0,2	0,1,3	0,2,4	0,1,3,5	0,6	0,1,7	0,1,7

But maintaining a whole set makes this slow . . .

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up!

I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*:

Suppose we add character P[j] to automaton A_j for P[0..j) to construct A_{j+1}

- ▶ add new state and matching transition → easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j)) when reading c)
- ▶ $\delta(j,c)$ = length of the longest prefix of P[0..j)c that is a suffix of P[1..j)c
 - = state of automaton after reading P[1..j)c
 - $\leq j \rightsquigarrow \text{can use known automaton } A_j \text{ for that!}$

State q means:
"we have seen P[0..q) until here
(but not any longer prefix of P)"

 \rightsquigarrow can directly compute A_{j+1} from A_j !

seems to require simulating automata $m \cdot \sigma$ times

Computing DFA efficiently

- ► KMP's second insight: simulations in one step differ only in last symbol
- \rightarrow simply maintain state x, the state after reading P[1..j).
 - copy its transitions
 - ▶ update *x* by following transitions for *P*[*j*]

Example: P[0..6) = ababac

$\delta(c,q)$	0	1	2	3	4	5
а	1	1	3	1	5	1
b	0	2	0	4	0	4
С	0	0	0	0	0	6

String matching with DFA – Discussion

► Time:

- ► Matching: *n* table lookups for DFA transitions
- ▶ building DFA: $\Theta(m\sigma)$ time (constant time per transition edge).
- \rightarrow $\Theta(m\sigma + n)$ time for string matching.

► Space:

• $\Theta(m\sigma)$ space for transition matrix.

- fast matching time actually: hard to beat!
- total time asymptotically optimal for small alphabet (for $\sigma = O(n/m)$)
- $\hfill \Box$ substantial $space\ overhead$, in particular for large alphabets

6.5 The Knuth-Morris-Pratt algorithm

Failure Links

- ► Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- → KMP's third insight: do this last step of simulation from state *x* during matching!
 ... but how?
- ► **Answer:** Use a new type of transition: ×, the *failure links*
 - ▶ Use this transition (only) if no other one fits.
 - ► × does not consume a character. → might follow several failure links

→ Computations are deterministic (but automaton is not a real DFA.)

Failure link automaton – Example

Example: T = abababaaaca, P = ababaca

T:	а	b	а	b	а	b	а	а	b	а	b
P:	а	b	а	b	a	×					
			(a)	(b)	(a)	b	а	×			
								а	b	а	b

to state 3 to state 1

<i>a</i> •	1	2	3	1	5	3 /	5	3,1,0,1	2	3	1
9.	1		J	T	J	0,1	J	3, 1, 0, 1		0	-

(after reading this character)

The Knuth-Morris-Pratt Algorithm

```
1 procedure KMP(T[0..n), P[0..m)):
      fail[0..m] := failureLinks(P)
      i := 0 // current position in T
3
       q := 0 // current state of KMP automaton
      while i < n do
           if T[i] == P[q] then
               i := i + 1; q := q + 1
7
               if q == m then
8
                    return i - q // occurrence found
9
           else // i.e. T[i] \neq P[q]
10
               if q \ge 1 then
11
                    q := fail[q] // follow one \times
12
                else
13
                    i := i + 1
14
       end while
15
       return NO MATCH
16
```

- only need single array fail for failure links
- ► (procedure failureLinks later)

Analysis: (matching part)

- ▶ always have fail[j] < j for $j \ge 1$
- → in each iteration
 - either advance position in text (i := i + 1)
 - or shift pattern forward (guess i q)
- each can happen at most *n* times
- $\rightsquigarrow \le 2n$ symbol comparisons!

Computing failure links

- ► failure links point to error state *x* (from DFA construction)
- \rightarrow run same algorithm, but store fail[j] := x instead of copying all transitions

```
1 procedure failureLinks(P[0..m)):
     fail[0] := 0
     x := 0
      for j := 1, ..., m-1 do
          fail[i] := x
5
           // update failure state using failure links:
           while P[x] \neq P[i]
7
               if x == 0 then
8
                    x := -1; break
               else
10
                    x := fail[x]
11
           end while
12
           x := x + 1
13
      end for
14
```

Analysis:

- ► *m* iterations of for loop
- ightharpoonup while loop always decrements x
- ➤ *x* is incremented only once per iteration of for loop
- \rightsquigarrow $\leq m$ iterations of while loop *in total*
- $\rightsquigarrow \leq 2m$ symbol comparisons

Knuth-Morris-Pratt – Discussion

- ► Time:
 - $ightharpoonup \leq 2n + 2m = O(n + m)$ character comparisons
 - clearly must at least *read* both *T* and *P*
 - → KMP has optimal worst-case complexity!
- ► Space:
 - $ightharpoonup \Theta(m)$ space for failure links
- total time asymptotically optimal (for any alphabet size)
- reasonable extra space

The KMP prefix function

- ▶ It turns out that the failure links are useful beyond KMP
- ▶ a slight variation is (more?) widely used: (for historic reasons) the (KMP) *prefix function* $F : [1..m-1] \rightarrow [0..m-1]$:

```
F[j] is the length of the longest prefix of P[0..j] that is a suffix of P[1..j].
```

► Can show: fail[j] = F[j-1] for $j \ge 1$, and hence

$$fail[q] = length ext{ of the } longest prefix of $P[0..q)$ that is a suffix of $P[1..q)$.$$

► EAA Buch: String indices are 1-based, but definition of failure links matches! $\Pi_P(q) = fail[q]$ $\Pi_P : [1..m] \rightarrow [0..m-1]$ with $\Pi_P(q) = \max\{k \in \mathbb{N}_0 : k < q \land P[0..k) \supset P[0..q)]\} = fail[q]$

6.6 Beyond Optimal? The Boyer-Moore Algorithm

Motivation

- ► KMP is an optimal algorithm, isn't it? What else could we hope for?
- ► KMP is "only" optimal in the worst-case (and up to constant factors)
- ▶ how many comparisons do we need for the following instance?

$$T=$$
aaaaaaaaaaaaaaaa, $P=$ xxxxx

- there are no matches
- ▶ we can *certify* the correctness of that output with only 4 comparisons:

T	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
					Х											
										Х						
															Х	
																Х

→ We did *not* even read most characters!

Boyer-Moore Algorithm

- ► Let's check guesses *from right to left*!
- ▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for $T = a^n$, $P = ba^{m-1}$

- → New rules:
 - ▶ **Bad character jumps**: Upon mismatch at T[i] = c:
 - ▶ If P does not contain c, shift P entirely past i!
 - ightharpoonup Otherwise, shift P to align the *last occurrence* of c in P with T[i].
 - ► Good suffix jumps:

Upon a mismatch, shift so that the already matched *suffix* of *P* aligns with a previous occurrence of that suffix (or part of it) in *P*. (Details follow; ideas similar to KMP failure links)

→ two possible shifts (next guesses); use larger jump.

Boyer-Moore Algorithm – Code

```
1 procedure boyerMoore(T[0..n), P[0..m)):
       \lambda := \text{computeLastOccurrences}(P)
2
       \gamma := \text{computeGoodSuffixes}(P)
3
      i := 0 // current guess
      while i < n - m
5
           j := m - 1 // next position in P to check
           while j \ge 0 \land P[j] == T[i+j] do
7
                i := i - 1
           if j == -1 then
                return i
10
            else
11
                i := i + \max\{j - \lambda [T[i+j]], \gamma[j]\}
12
       return NO MATCH
13
```

- \blacktriangleright λ and γ explained below
- shift forward is larger of two heuristics
- shift is always positive (see below)

Bad character examples

→ 6 characters not looked at

→ 4 characters not looked at

Last-Occurrence Function

- ▶ Preprocess pattern P and alphabet Σ
- ▶ *last-occurrence function* $\lambda[c]$ defined as
 - ▶ the largest index i such that P[i] = c or
 - ▶ -1 if no such index exists
- ► Example: *P* = moore

С	m	0	r	е	all others
$\lambda[c]$	0	2	3	4	-1

- ▶ λ computed in $O(m + \sigma)$ time.
- ▶ store as array $\lambda[0..\sigma)$.

$$i = 0, j = 4, T[i + j] = r, \lambda[r] = 3$$

 \Rightarrow shift by $j - \lambda[T[i + j]] = 1$

- procedure computeLastOccurrences(P[0..m)): $\lambda[0..\sigma) := \text{ array initialized to } 0$ $\text{for } j = 0, \dots, m-1$ $\lambda[P[j]] := j$
- 5 return λ

Good suffix examples

1. $P = sells_shells$

S	h	е	i	ι	а	ш	S	е	l	l	S	ш	S	h	е	l	l	S
							h	е	l	l	S							
								(e)	(1)	(1)	(s)							

2. P = odetofood

matched suffix

- ▶ **Crucial ingredient:** longest suffix of P[j+1..m) that occurs earlier in P.
- ▶ 2 cases (as illustrated above)
 - **1.** complete suffix occurs in $P \rightarrow$ characters left of suffix are *not* known to match
 - **2.** part of suffix occurs at beginning of *P*

Good suffix jumps

- ▶ Precompute *good suffix jumps* $\gamma[0..m)$:
 - ► For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1..i+m) = P[j+1..m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ▶ P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

				h	е	ι	l	S				
ſ				×	(e)	(1)	(1)	(s)				

-OR-

▶ $P[0..\ell)$ is a suffix of P[j+1..m)

		0	f	0	0	d					
					(0)	(d)					

▶ Computable (similar to KMP failure function) in $\Theta(m)$ time.

Good suffix jumps – Efficient Computation

```
1 procedure computeGoodSuffixes(P[0..m)):
       fail[0..m] := failureLinks(P)
       revFail[0..m] := failureLinks(reverseString(P))
       \gamma[0..m) := \text{new array initilized to } m - fail[m]
       for \ell := 1, ..., m
            i := m - revFail[\ell] - 1
            if \gamma[i] > \ell - fail[\ell]
7
                 \gamma[i] := \ell - revFail[\ell]
            end if
       end for
10
       return \gamma
11
```

- Reuses failureLinks function from KMP
 - ▶ on both *P* and the reversed pattern!
- Correctness not obvious ...
 Requires careful analysis
 of all possible cases
- ▶ Clearly $\Theta(m)$ time

Boyer-Moore algorithm – Discussion

Worst-case running time $\in O(n + m + \sigma)$ if *P* does *not* occur in *T*. (follows from not at all obvious analysis!)

As given, worst-case running time $\Theta(nm)$ if we want to report all occurrences

- ► To avoid that, have to keep track of implied matches. (tricky because they can be in the "middle" of *P*)
- Note: KMP reports all matches in O(n + m) without modifications!
- On typical *English text*, Boyer Moore probes only approx. 25% of the characters in *T*!
 - → Faster than KMP on English text.
- requires moderate extra space $\Theta(m + \sigma)$

6.7 The Rabin-Karp Algorithm

Space – The final frontier

- ► Knuth-Morris-Pratt has great worst case and real-time guarantees
- ► Boyer-Moore has great typical behavior
- ► What else to hope for?
- ► All require $\Omega(m)$ extra space; can be substantial for large patterns!
- ► Can we avoid that?

Rabin-Karp Fingerprint Algorithm – Idea

Idea: use *hashing* (but without explicit hash tables)

- ▶ Precompute & store only *hash* of pattern
- ► Compute hash for each guess
- ► If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers)

$$P = 59265$$

T = 3141592653589793238

Hash function:
$$h(x) = x \mod 97$$

 $h(P) = 95$.

h(59262) = 95

Rabin-Karp Fingerprint Algorithm – First Attempt

```
procedure rabinKarpSimplistic(T[0..n), P[0..m)):

M := suitable prime number

h_P := computeHash(P[0..m), M)

for i := 0, ..., n - m do

h_T := computeHash(T[i..i + m), M)

if h_T == h_P then

if T[i..i + m) == P // m comparisons

then return i

return NO_MATCH
```

- ▶ never misses a match since $h(S_1) \neq h(S_2)$ implies $S_1 \neq S_2$
- ▶ h(T[k..k+m) depends on m characters \rightsquigarrow naive computation takes $\Theta(m)$ time
- \sim Running time is $\Theta(mn)$ for search miss . . . can we improve this?

Rabin-Karp Fingerprint Algorithm – Fast Rehash

- ► **Crucial insight:** We can update hashes in constant time.
 - Use previous hash to compute next hash

for above hash function!

ightharpoonup O(1) time per hash, except first one

Example:

► Pre-compute: 10000 mod 97 = 9

► Previous hash: 41592 mod 97 = 76

► Next hash: 15926 mod 97 = ??

Observation:

```
15926 \mod 97 = (41592 - (4 \cdot 10000)) \cdot 10 + 6 \mod 97= (76 - (4 \cdot 9)) \cdot 10 + 6 \mod 97= 406 \mod 97 = 18
```

Rabin-Karp Fingerprint Algorithm – Code

- use a convenient radix $R \ge \sigma$ (R = 10 in our examples; $R = 2^k$ is faster)
- ► Choose modulus M at random to be huge prime (randomization against worst-case inputs) \rightsquigarrow false positive probability $\approx 1/M$
- ▶ all numbers remain $\leq 2R^2 \implies O(1)$ time arithmetic on word-RAM

```
procedure rabinKarp(T[0..n), P[0..m), R):
      M := suitable prime number
     h_P := \text{computeHash}(P[0..m), M)
     h_T := \text{computeHash}(T[0..m), M)
    s := R^{m-1} \mod M
  for i := 0, ..., n - m do
         if h_T == h_P then
              if T[i..i+m) = P
                   return i
          if i < n - m then
10
               h_T := ((h_T - T[i] \cdot s) \cdot R + T[i + m]) \mod M
11
      return NO MATCH
12
```

Rabin-Karp – Discussion

 $\bigcap_{\Theta(mn)}$ worst-case; but this is very unlikely

Extends to 2D patterns and other generalizations

Only constant extra space!

String Matching Conclusion

	Brute- Force	DFA	KMP	ВМ	RK	Suffix trees*
Preproc. time	_	$O(m\sigma)$	O(m)	$O(m + \sigma)$	O(m)	O(n)
Search time	O(nm)	O(n)	O(n)	O(n) (often better)	O(n + m) (expected)	O(m)
Extra space	_	$O(m\sigma)$	O(m)	$O(m + \sigma)$	O(1)	O(n)

^{* (}see Unit 13)