EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

11 de janeiro de 2018

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

- 1. (4 valores) Um condensador de 1.6 μF, um indutor de 1.1 H e uma resistência de 1.8 kΩ ligam-se em série a uma fonte de tensão alternada, com voltagem máxima de 80 V e frequência de 60 Hz. Encontre a expressão da voltagem no indutor, em função do tempo.
- 2. (4 valores) A figura ilustra o método inventado por Arthur J. Dempster, em 1918, para medir as massas de átomos e moléculas. O dispositivo usado é um contentor hermético e com vácuo, composto por um tubo de vidro (isolador), entre os pontos P e Q, e uma caixa metálica. Um átomo é ionizado, com carga positiva igual à carga elementar, e inserido no ponto P. O ião é acelerado no tubo, a partir do repouso, até o ponto Q, pelo campo elétrico devido à diferença de potencial V = 200 V ligada entre os pontos P e Q. No ponto Q o ião entra na caixa metálica, onde não existe campo elétrico, mas há campo magnético uniforme B, perpendicular à trajetória do ião e com módulo de 0.025 T. O ião descreve na caixa metálica uma trajetória semi-circular, deixando uma marca no ponto R numa placa fotográfica. Sabendo que a distância entre Q e R é 16.35 cm, determine a massa do ião.

PERGUNTAS. Avalia-se unicamente a **letra** que apareça na caixa de "Resposta". **Cotação**: certas, 0.8 valores, erradas, -0.2, em branco ou ilegível, 0.

3. A expressão da voltagem da fonte no circuito do diagrama é $V_e = 400\,t^2$ (unidades SI) em t>0 e 0 em $t\le0$. O condensador encontrava-se descarregado em t=0. Determine a expressão da corrente no circuito em t>0 (unidades SI).

- **(A)** 0.0016t
- **(C)** 0.004 *t*
- **(E)** 0.0032 t

- **(B)** $0.0016 t^2$
- **(D)** $0.0032 t^2$

Resposta:

- **4.** Um núcleo de tungsténio tem 74 protões e 110 neutrões. Quantos eletrões tem um ião positivo de tungsténio com carga +*e*? (onde *e* é a carga elementar)
 - **(A)** 73
- **(C)** 74
- **(E)** 185

- **(B)** 183
- **(D)** 75

Resposta:

- **5.** Dois fios condutores paralelos, retilíneos e muito compridos, encontram-se a uma distância de 9.3 cm e transportam correntes da mesma intensidade *I*. A força magnética entre os fios (por unidade de comprimento) é repulsiva e de módulo 3.98 nN/m. Calcule o valor de *I*.
 - (A) 52 mA
- (C) 34 mA
- (E) 43 mA

- (**B**) 27 mA
- (**D**) 65 mA

Resposta:

8. Um fio retilíneo, muito comprido, com carga linear de $9 \mu C/m$, encontra-se sobre o eixo dos z. Calcule o módulo do campo elétrico no ponto P, com coordenadas x=4 m, y=7 m e z=9 m.

(C) $2.07 \text{ k}\Omega$

(**D**) $1.7 \text{ k}\Omega$

6. Liga-se uma fonte de tensão alternada a um indutor e uma resis-

resistência e a fonte iguais, qual das afirmações será correta?

(A) O módulo da impedância total diminuirá.

(E) O fator de potência para a fonte aumentará.

 $2.3 \, \mathrm{H}$

(B) A corrente eficaz aumentará.

(D) A reatância total diminuirá.

tará.

Resposta:

(A) $1.48 \text{ k}\Omega$

(**B**) 1.66 kΩ

Resposta:

tência em série. Se aumentarmos a indutância L, mantendo a

(C) O desfasamento entre a corrente e a tensão da fonte aumen-

7. Calcule o módulo da impedância complexa entre os pontos A e B para uma tensão alternada com frequência f = 60 Hz.

/////

 $1.2 \text{ k}\Omega$

- (A) 40.5 kN/C
- (C) 23.14 kN/C
- **(E)** 18.0 kN/C

(E) $1.2 \text{ k}\Omega$

- (**B**) 9.0 kN/C
- (**D**) 20.09 kN/C

Resposta:

	liga-se a uma fonte ideal com f.e.m. de 3 V. Determine a intensidade da corrente na bobina, em mA, 1 mili-segundo após a fonte ter sido ligada.				(A) A f.e.m. induzida num circuito é igual a menos o fluxo magnético através dele.			
	(A) 3.752	(C) 1.876	(E) 4.690		(B) A indutância corrente ness	de um circuito é p se circuito.	proporcional à va	riação da
	(B) 2.814 Resposta:	(D) 0.938			(C) A indutância circuito.	de um circuito é pr	oporcional à corre	ente nesse
10.	Num condutor ligado a uma pilha com f.e.m. de 1.5 V, circulam 3×10^{16} eletrões de condução durante 7 segundos. Calcule a potência média fornecida pela pilha nesse intervalo.				 (D) A indutância de um circuito é proporcional à f.e.m. induzida nele. (E) A f.e.m. induzida num circuito é proporcional ao campo magnético através dele. 			
	(A) 0.1 mW	(C) 1.03 mW	(E) 0.51 mW		•	raves dele. .e.m. induzida nun	n circuito num in	ctanta am
	(B) 2.57 mW	(D) 0.82 mW			* *	nagnético através d		stante em
	Resposta:				Resposta:			
11.	carga $+2q$ encontry $y = 0$). Existe um	ra-se no ponto de coo ponto P, no semieixo	origem e uma segunda ordenadas ($x = 9$ cm, positivo dos y , onde o distância desde P até à		gado. Calcule a d muito tempo depo	ura, o condensador diferença de potencios do interruptor te k Ω 6 k \times 1 k Ω	cial na resistência er sido fechado.	
	_q _	•	$\xrightarrow{-2q} x$		(A) 12 V	(C) 9 V	(E) 3 V	
	(A) 6.36 cm	(C) 4.5 cm	•		(B) 4 V	(D) 8 V		
	(B) 10.39 cm	(D) 9.0 cm	(E) 5.2 cm		Resposta:			
	Resposta:					da resistência equi abendo que $R_1 = 2$	-	
12.	de 8×10^{-9} m e o 8.8×10^{6} N/C. Add	valor médio do campo mitindo que esse camp	seres vivos é da ordem o elétrico através dela é oo seja uniforme, qual a es interior e exterior da		$\begin{cases} R_1 - 4 \text{ K32.} \end{cases}$	R_2	R_3 B R_4	
	(A) $9.1 \times 10^{-16} \text{ V}$	(D) 1.7	V.		1	Ì	1	
	(B) 3.4 V.	(E) 70	mV.		A •	l .		
	(C) 1.1×10^{15} V.				(A) $1.61 \text{ k}\Omega$	(C) $2.69 \text{ k}\Omega$	(E) 8.07	kΩ
	Resposta:				(B) 3.76 kΩ	(D) 5.91 k Ω		
13.	Dois condensadores com capacidades 6 μF e 12 μF são ligados em série a uma fonte de 12 V. Calcule a carga no condensador do 6 μF				Resposta: Determine o valor da resistência duma lâmpada incandescente			
	de 6 μF.	(C) 49C (E) 60C			de 8 W e 12 V, nas condições normais de operação.			
	(A) 24 μC(B) 12 μC	(C) 48 μC (D) 36 μC	(E) 60 μC		(A) 18.0Ω	(C) 14.4 Ω	(E) 24.0	Ω
		(Β) 30 με			(B) 72.0Ω	(D) 36.0Ω		
	Resposta:				Resposta:			

9. Uma bobina, com indutância de $2.8~\mathrm{H}$ e resistência de $762~\Omega$, $14.~\mathrm{Qual}$ das seguintes afirmações é verdadeira?

Resolução do exame de 11 de janeiro de 2018

Regente: Jaime Villate

Apresenta-se a resolução de um dos estudantes que fez o exame, Pedro Miguel O. C. da Silva, a quem agradeço a sua disponibilidade para partilhar a sua resolução.

Utrano a Dentro da caixa metalica, a subcel o modulo da
Obrano a Dentro da caixa metalica, a pelocal o modulo da velocidade manter e - á constante mas a existe acelesação centrípeta igual a força magne Ita:
Nota: como a velocidade mantim-x sempre mo plano da folha e o campo magnetiro é sempre prependedas ao plano da folha entro 110×B1 = NB
Ignolando as exprimos da friça centripeta e unosine troa:
$F_{C} = m \frac{m^{2}}{\pi} \qquad F_{m} = q \pi \beta$ $= 0 m v^{2} = q \pi \beta = m \frac{q \beta \pi}{\pi}$
A carga q serci a carga do i $\bar{\omega}$ que no $\bar{\omega}$ sabemos ser +e, ou seja q = 1.609 xro ⁻¹⁹ C Como o compo magne tros e' constante, B = 0.025 T O 1010 é dedo indiretamente no enunciado proque $\bar{z} = \frac{\bar{Q}R}{2} \log b$ $\bar{z} = \frac{0.1632}{2} m$
Para calcular o ultimo elemento, pressamos de seber a velocidade em quolque ponto dentro da casa matalica.
Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: $E_{p} = E_{Q}$ Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: $E_{p} = E_{Q}$ Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ e im campo consensativo: e_{Q} Como o campo eletrico presentes entre $P_{e}Q$ Como campo compo consensativo: e_{Q} Como o campo consensativo: e_{Q} Co
$E_Q = \frac{1}{2} m v_g^2 + e \frac{1}{2} m v_g^2 + $
Logo: 2 Como a velede de em a será a velocidade até as final do movimento (ati-paran) entas of = vo.

Perguntas

 3. A
 6. C
 9. D
 12. E
 15. C

 4. A
 7. A
 10. C
 13. C
 16. C

 5. E
 8. D
 11. E
 14. F
 17. A

Critérios de avaliação

Problema 1

Cálculo da impedância complexa do condensador	0.4
Cálculo da impedância complexa do indutor	0.4
Cálculo da impedância complexa total	0.8
Determinação do fasor da corrente	0.8
Determinação do fasor da voltagem no indutor	0.8
Obtenção da expressão da voltagem no indutor em função do tempo	0.8
Problema 2	
Cálculo da energia potencial elétrica em P e Q	0.4
Cálculo da energia cinética em P e Q	0.4
• Equação para a massa e a velocidade obtida por conservação da energia mecânica	0.8
Expressão da força magnética no percurso entre Q e R	0.8
Expressão da força centrípeta no percurso entre Q e R	0.8
Cálculo da massa do ião	0.8