

“The Molecular Volume of Solids.” By EDWARD WILSON, M.A.
Communicated by Professor STOKES, Sec. R.S. Received
May 19. Read June 16, 1881.

The object of the present paper is to trace the relation between the molecular volume of any solid substance and its chemical constitution. This subject has engaged the attention of several previous inquirers, notably of Kopp, Schröder, and Hermann, but a review of their labours will be postponed till an exposition of the principles of this paper has been given. Such an arrangement, it is thought, will very much facilitate a comparison between the views and results of the present writer, and those of his predecessors in the same field of inquiry.

The molecular volume of any solid substance may be defined to be the weight of the molecule divided by the specific gravity of the substance. The weight is known in terms of the standard unit, if the chemical composition be known. The specific gravity may be determined by experiment. Then we may form either of the equations—

$$\text{Volume of molecule} = \frac{\text{weight of molecule}}{\text{specific gravity}}.$$

$$\text{Specific gravity} = \frac{\text{weight of molecule}}{\text{volume of molecule}}.$$

Another definition might be given as follows:—Every solid and liquid substance may be conceived as made up of molecules separated from one another by intervals of space, and kept apart by the repulsive forces which each molecule exerts on the molecules adjacent to it. At a certain distance the molecules cease to repel, and beyond that distance they attract one another; consequently, any molecule may be regarded as situate at the centre of a sphere within which any similar molecule would be repelled. This sphere may be called the sphere of repulsion, and the volume of the molecule may be defined as the volume of its sphere of repulsion. This definition is more suitable to the gaseous forms of matter, where the molecular volume is determined by observations on the interdiffusion of gases according to the plan adopted by Professor Loschmidt of Vienna. It is easy to show that according to this definition the molecular volume of any solid substance is equal to its molecular weight divided by its specific gravity.*

Each atom which enters into the composition of a molecule has a known and invariable atomic weight, and the weight of the molecule is the sum of the weights of the component atoms. In like manner

* *Vide note.*

the simple *monatomic* molecule of any element must have a determinate and invariable volume if the element could be reduced to the monatomic condition, and this volume may be defined as its atomic volume. But an element does not carry its atomic volume unchanged into its compounds in the same way that it carries its atomic weight; indeed, it is not probable that an atom of a compound molecule has any volume at all (except, of course, in so far as the mere matter of the atom may have a volume) in the sense of occupying exclusively of other atoms a discrete portion of space. The whole volume of the molecule is shared by its constituent atoms in common, and no separate portion of its space can be assigned exclusively to any one particular atom; nevertheless, each atom of the molecule must play its part in the formation of the common volume, and therefore a certain proportion of that volume may be attributed to each atom in it.

The invariable and all-important atomic volumes defined in the preceding paragraph cannot be the subject of direct experimental investigation, except perhaps in the case of the few elements, such as mercury, cadmium, and zinc, which are known to be monatomic in the gaseous state at terrestrial temperatures, though all the elements may be conceived as capable of thus existing under suitable conditions. The atomic volumes must in the case of each element be deduced from a comparison of the specific gravities of the various compounds in which that element figures as a constituent. The first point to be aimed at is to discover, by means of comparisons, the values of these atomic volumes, because they of necessity form the only sound and rational basis of all speculations on the volumes of compound molecules. There exists no other firm ground or secure starting point; atomic volumes are to molecular volumes what atomic weights are to molecular weights.

When two or more atoms combine to form a chemical compound, a very intimate union of some sort takes place between the atoms, of the real nature of which we are, in the present state of science, profoundly ignorant; but at any rate, a new molecule is formed with a new volume, and the question arises as to what relations subsist between this new volume and the atomic volumes of the components of the molecule. This is the problem which it is sought to solve, and the answer, perhaps, may best be given by the enunciation of the two following propositions:—

(1.) When any number of *similar* atoms combine, the volume of the resulting molecule is equal to that of the uncombined atom.

(2.) When *dissimilar* atoms combine, the volume to be attributed to each atom is some submultiple or simple aliquot part of its atomic volume, and the resulting molecular volume is the sum of these.

The somewhat speculative character of the above views will not escape the notice of any one, but before entering upon an explanation

of the tables which follow, the author thought it right to state the physical conceptions by which he was guided in his work. It must, however, be premised, as will appear more fully in the sequel, that these conceptions are provisional only, and should they hereafter prove erroneous, their invalidity would not affect the truth of the main result arrived at, which it is now proper to formulate in the shape of a general proposition as follows:—

(3.) Every element is capable of assuming different volumes in its various compounds, but these diverse volumes always bear to each other a simple numerical proportion, such as 1 : 2, 1 : 3, 2 : 3, &c., &c.

Attention must now be directed to the tables which follow, and which contain the evidence for the principles put forward in this paper.

Table I contains a list of the molecular or atomic volumes. The expression “molecular *or* atomic” is used as implying that the two values are identical, as indeed they must be by virtue of the principle enunciated in proposition (1). It will be observed that by virtue of the same principle equal molecular volumes are attributed to each of the allotropic forms of an element, the allotropism being supposed to consist in the different number of atoms contained in their respective molecules. With regard to the third column of the same table, it should be pointed out that, since chemists are possessed of no means of determining the number of atoms in the molecule of an element in the solid state, the molecular weights here assigned to the elements have been chiefly derived from a consideration of the volumes which the element is found to assume in the various substances of which it is a constituent. The atomic volumes of the elements whose specific gravities in the solid form are known, have been deduced from the specific gravities of such elements and their compounds conjointly, but the atomic volumes of such elements as hydrogen, oxygen, and nitrogen, whose specific gravities in the solid form are unknown, have been deduced from the specific gravities of their compounds alone, without the assistance to be derived from the specific gravity of the element itself. These last-mentioned compounds, however, are so numerous that their atomic volumes may be considered to be determined with greater accuracy than those of any of the other elements, with the exception of carbon.

It would be impossible to present the evidence in favour of the preceding propositions without an adequate notation, and, therefore, it is necessary to explain the system of notation that has been adopted. The atomic volume of each element is represented in the tables by the ordinary symbol used to denote that element, accented; whilst the submultiple of its atomic volume which the element assumes in a particular molecule is indicated by a suffix. Thus the atomic volume of potassium (90) is represented by K'; whilst K'₃ in an expression for the molecular volume of any substance containing potassium

would mean that the volume to be ascribed to potassium in that particular molecule is found by dividing the number 90 by 3, and then multiplying the quotient by the number of atoms of potassium in the molecule. Let us take an illustration from Table (IX). The molecular weight of potassium sulphate is expressed by K_2SO_4 ; the expression for its molecular volume is $K'_6S'_6O'_4$, which means that the number K' (=90) has to be divided by 6 and the quotient multiplied by 2; the number S' (=96) has to be divided by 6; the number O' (=20) has to be divided by 4, and the quotient multiplied by 4, and that the sum of the resulting numbers ($30+16+20=66$) is the molecular volume of potassium sulphate. The specific gravity is then obtained by dividing the molecular weight by the molecular volume: thus the specific gravity of potassium sulphate = $\frac{174}{66}=2.636$, which agrees very well with its observed value = 2.640.

Another method of notation might have been adopted which has the advantage of getting rid of the accent and exhibiting both the molecular weight and volume in one and the same formula. Thus both the molecular weight and volume of potassium sulphate might be expressed by $K_2S_6O_4$, if the numerators of the fractions are understood to represent the number of atoms and the denominators the sub-multiples of the atomic volumes.

It is now necessary to explain more in detail, how the fundamental numbers of column IV, Table I, have been obtained. In the first place it may be observed that these numbers are always some multiple of the *atomic* weight of the element divided by its specific gravity; but that it requires an examination of the compounds of the element to determine what this multiple ought to be. Let us take one or two illustrations. The atomic weight of sodium divided by its specific gravity is 24, and an examination of the compounds of sodium discloses the fact that this element assumes in its compounds most frequently the volumes 8 and 12, and occasionally 24: the number 2, therefore, is the proper multiple in this case, and the fundamental number to be assigned to sodium is 48. Again, the atomic weight of iodine divided by its specific gravity is 25.6, but the most frequent volume of iodine in its compounds is 32 and, less frequently $21\frac{1}{3}$: the number 5 therefore is its proper multiple, and the fundamental number to be assigned to iodine is 128. For $25.6 \times 5 = 128$, whilst 32 and $21\frac{1}{3}$ are respectively one-fourth and one-sixth of the same number. One more instance, perhaps, will suffice. The atomic weight of boron divided by its specific gravity is about = 4, whilst its compound volumes are 7 and 14: whence 7 is the proper multiple and 28 its fundamental number.

Ammonium (NH_4) and cyanogen (CN) may be treated as simple elements, having as fundamental numbers the sum of the fundamental numbers of their constituents, viz., $N' + 4H' = 24 + 32 = 56$ and

$C' + N' = 32 + 24 = 56$ respectively. The meaning of this is that the components of these radicles always undergo a like condensation. Water of crystallisation has a volume $H'_4O'_2 = 14$, whilst that of ammonia in ammonia-compounds is $N'_2H'_4 = 18$.

The tables which accompany this paper will be found to contain pretty strong evidence of the truth of a conjecture first made by Kopp with regard to oxygen, viz., that an element in one and the same compound may undergo different condensations if it enters into the composition of two *distinct* radicles. Hydrated ammonium sulphate, $(NH_4)_2SO_4 \cdot H_2O$, affords a good illustration of this, for its molecular volume is $(NH'_4)_3S'_6O'_4H'_4O'_2$, and it will be observed that the hydrogen in the ammonium radicle is condensed to one-third, whilst in the water of crystallisation it is condensed to one-fourth, and again the oxygen in the acid radicle is condensed to one-fourth, whilst in the water it is only one-half.

The following circumstance is well worth consideration. Many substances, having the same chemical composition, appear to possess two distinct specific gravities, and therefore different molecular volumes; a good instance of this is to be found in mercuric sulphide, (HgS) , which, as cinnabar, has a specific gravity of about 9·0, but in its amorphous state, a specific gravity of about 7·6, corresponding to molecular volumes $Hg'_6S'_6$ and $Hg'_4S'_6$ respectively: (HgS) has also sometimes a specific gravity intermediate between these limits, indicating an admixture of the two states. These mixtures are rather puzzling to any theory of molecular volumes, just as the densities of gases at temperatures when they are undergoing dissociation appear to be anomalous according to Avogadro's law. Perhaps these substances might not inappropriately be called bivolumetric or disteric bodies; a few examples of such compounds are given in the following table:—

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Silicie dioxide (crystalline).....	SiO_2	$Si'_4O'_8$	2·688	2·690
Silicie dioxide (amorphous).....		$Si'_4O'_4$	2·200	2·200
Zirconium dioxide	$Zr''O_2$	$Zr'_4O'_8$	5·655	5·624
" "	"	$Zr'_4O'_4$	4·588	4·35—4·90
Titanium dioxide (rutile).....	TiO_2	$T'_2O'_8$	4·256	4·250
Titanium dioxide (anatase)		$Ti'_4O'_6$	3·875	3·890
Cobalt sesquioxide.....	Co_2O_3	$Co'_4O'_4$	5·627	5·600
" " "	"	$Co'_4O'_3$	4·811	4·814

There is one more circumstance deserving mention, and that is, the

invariability of the volume of the constituents of the acid radicle in salts of the acid; for instance, in upwards of 60 sulphates, the radicle SO_4 has the same volume $\text{S}'_6\text{O}'_4=36$. It is true, the carbonates appear to form an exception to this rule, the radicle CO_3 having in some cases the volume $\text{C}'_4\text{O}'_4=23$, and sometimes the volume $\text{C}'_8\text{O}'_4=19$, and curiously enough, the oxalates follow suit in indicating two volumes for the radicle C_2O_4 , viz., $\text{C}'_4\text{O}'_4=36$, and $\text{C}'_8\text{O}'_4=28$.

The observed specific gravities, with a few exceptions, have been taken from Clarke's "Constants of Nature," being No. 255 of the Smithsonian Miscellaneous Collections, a very compact and useful volume, which contains almost all the determinations that have been made by observers in all parts of the world.

We may now proceed to point out the very fair agreement between results obtained on the present theory and those reached by Professor Loschmidt by quite a different method, namely, by observations on the interdiffusion of gases. A simple inspection of the following table will show that the molecular volumes obtained on the principles of this theory agree very well with those arrived at by Loschmidt.

Comparison of the results of the present theory with those obtained by Professor Loschmidt from his experiments on the inter-diffusion of gases.

Substance.	Molecular volume.	Present theory.	Loschmidt.	
			I.	II.
H_2	H'_2	8	7	7
CO	$\text{C}'_2\text{O}'_2$	26	25	25
N_2	N'_2	24	26	24
NO	$\text{N}'_2\text{O}'_2$	22	24	23
O_2	O'_2	20	22	21
HCl	$\text{H}'_2\text{Cl}'_2$	26·5	26·3	26·3
Cl_2	Cl'_2	45	45·6	45·6
H_2O	$\text{H}'_2\text{O}'_2$	18	18	18
$\text{H}_2\text{S}'$	$\text{H}'_2\text{S}'_4$	32	33	33
CO_2	$\text{C}'_2\text{O}'_2$	36	36	35
N_2O	$\text{N}'_2\text{O}'_2$	34	37	35
SO_2	$\text{S}'_4\text{O}'_2$	44	48	48
NH_3	$\text{N}'_3\text{H}'_2$	24	23·5	22·5
CH_4	$\text{C}'_2\text{H}'_2$	32	35	28
C_2N_2	$\text{C}'_2\text{N}'_2$	56	54	56

Kopp's labours on molecular volumes were devoted chiefly to liquid substances, which are beyond the scope of this inquiry. The following brief account of his views on the molecular volumes of solids is derived from Miller's "Chemistry." Kopp supposes that, in the case

of the oxides, oxygen has three distinct volumes, 16, 32, and 64 (his numbers are adapted to the atomic weight of oxygen=100), which are in the simple numerical proportion 1, 2, and 4, but he never extends this principle to the other elements, unless it be, perhaps, to chlorine and the lighter metals; for, in the chlorides, the two values which he assigns to chlorine, 196 and 245, are in the ratio of 4 : 5 ; but then it is necessary to assume new volumes for the metals, which, like potassium, sodium, calcium, and magnesium, undergo condensation in the act of combining; and the volumes thus assumed for them exhibit no simple relation to the metals in an uncombined state. To the acid radicle SO_4 in the sulphates two volumes are likewise assigned, 186 and 236, which bear no simple relation to each other, and are not derived from the constituents of the radicle. To the radicles CrO_4 , CO_3 , and NO_3 , in the chromates, carbonates, and nitrates, are assigned the volumes 228, 151, and 179, but then it does not appear that any connexion is traced between these numbers and the components of the respective radicles.

Schröder propounds the following principle:—"In every solid compound the volume measure (volume-maas) or the stere, of one of its elements, which, through the forces acting during crystallisation, determines all the other components and respective constituents, causes equal volume measures to take up equal steres. In other words, one of the elements assimilates all the others."

The number of atoms of each element in a compound is indicated in the ordinary manner by a whole number placed to the right of the under side of the symbol, and the number of its steres by a whole number to the right of the upper side. The stere is distinguished by an overstroke, and the observed and calculated volumes by a similar understroke. The element in a compound which determines the stere is also indicated by an overstroke; thus metallic silver is $\overline{\text{Ag}}_i^2 = 2 \times \underline{5.14} = \underline{10.28}$, observed volume=10.28. Again, the chloride, bromide, and iodide of silver are represented thus:—

$$\overline{\text{Ag}}_i^3\text{Cl}_i^1 = 5 \times \underline{5.14} = \underline{25.70} \text{ obs. vol.} = \underline{25.70}.$$

$$\overline{\text{Ag}}_i^3\text{Br}_i^1 = 6 \times \underline{5.14} = \underline{30.81} \quad , \quad = \underline{30.81}.$$

$$\overline{\text{Ag}}_i^3\text{I}_i^1 = 8 \times \underline{5.14} = \underline{41.12} \quad , \quad = \underline{41.12}.$$

From this it is seen that in all these compounds the silver stere dominates.

Mercury has a stere=5.52. Thus:—

$$\text{Mercurous oxide} = \overline{\text{Hg}}_i^2\text{O}_i^2 = 7 \times \underline{5.52} = \underline{38.64} \text{ obs. vol.} \underline{38.64}.$$

$$\text{Mercuric oxide} = \overline{\text{Hg}}_i^2\text{O}_i^2 = 7 \times \underline{5.52} = \underline{38.64} = 2 \times \underline{19.38} \text{ obs. vol.} \underline{19.32}.$$

Amorphous black cinnabar = $\overline{\text{Hg}_2\text{S}_2} = 11 \times \overline{5.52} = 60.72 = 2 \times \underline{30.36}$ obs.
vol. 30.36.

Red rhombohedric cinnabar = $\overline{\text{Hg}_2\text{S}_2} = 11 \times \overline{5.30} = 58.30 = 2 \times \underline{29.10}$ obs.
vol. 29.10.

The black cinnabar is distinguished from the red by the fact that, in the former, the mercury stere dominates, whilst in the latter it is the sulphur = 5.30.

The mercury in its chlorides and bromides, and also in the cyanide is present as Hg_1^3 , and not as Hg_2^5 , thus :—

Mercurous chloride = $\overline{\text{Hg}_1^3\text{Cl}_1^3} = 6 \times \overline{5.52} = \underline{33.12}$ obs. vol. = 33.12.

,, bromide = $\overline{\text{Hg}_1^3\text{Br}_1^4} = 7 \times \overline{5.52} = \underline{38.64}$, , = 38.64.

Mercuric chloride = $\overline{\text{Hg}_1^3\text{Cl}_2^6} = 9 \times \overline{5.52} = \underline{49.68}$, , = 49.68.

,, bromide = $\overline{\text{Hg}_1^3\text{Br}_2^8} = 11 \times \overline{5.52} = \underline{60.72}$, , = 60.72.

,, cyanide = $\overline{\text{Hg}_1^3\text{C}_2^9} = 12 \times \overline{5.52} = \underline{66.24}$, , = 66.24.

Manganese oxides and silicates.—Metalic manganese has, according to John, the volume $6.9 = \frac{1}{2}$ magnesium.

$\text{Mn}_4^5 = 5 \times \overline{5.52} = 27.6 = 4 \times \underline{6.9}$ obs. vol. = 6.9.

Pyrolusite = $\overline{\text{Mn}_4^5\text{O}_8} = 13 \times \overline{5.52} = 71.76 = 4 \times \underline{17.94}$ obs. vol. = 17.8 — 18.0.

Manganite is isomorphous with göthite and diaspore.

The molecular volumes of these bodies are as follows :—

Diaspore = $\overline{\text{Al}_2^3\text{H}_2^1\text{O}_4^4} = 7 \times \overline{5.14} = \underline{35.98}$ obs. vol. = 35.98.

Manganite = $\overline{\text{Mn}_4^5\text{H}_2^1\text{O}_8^8} = 15 \times \overline{5.40} = 81 = 2 \times \underline{40.5}$ obs. vol. = 40.5.

Göthite = $\overline{\text{Fe}_2^3\text{H}_2^1\text{O}_8^8} = 15 \times \overline{5.40} = 81 = 2 \times \underline{40.5}$ obs. vol. = 40.5.

In diaspore, therefore, the aluminium stere dominates, but in manganese and göthite the oxygen stere = 5.40.

All the other oxides of manganese contain the manganese as Mn_2^3 , thus :—

Manganous oxide = $\overline{\text{Mn}_2^3\text{O}_2^2} = 5 \times \overline{5.52} = 2 \times \underline{13.80}$ obs. vol. = 13.80.

Braunite , , = $\overline{\text{Mn}_2^3\text{O}_3^3} = 6 \times \overline{5.52} = \underline{33.12}$ obs. vol. = 33.12.

Hausmannite , , = $\overline{\text{Mn}_6^9\text{O}_8^8} = 17 \times \overline{5.52} = \underline{93.82} = 2 \times \underline{46.91}$ obs. vol. = 47.10.

In the manganese silicates, the manganese has the condensation

Mn_2^3 , and the silicic acid the same volume constitution as quartz, viz., $\text{Si}_4^2\text{O}_8^2$, thus:—

In the first of these minerals the oxygen stere dominates, whilst in the latter it is the manganese stere.

Hermann, examining a series of oxides having the form RO , finds that the volume of the oxygen in them=5, which he designates as its normal value. The volume (5) is probably correct, but why this particular volume should be dignified by the term normal, it is not so easy to see. The volume of a monatomic molecule of oxygen is the only one entitled to be called normal if it could be got at, and is probably=20. He then infers that the specific gravity of solid oxygen is $\frac{1.6}{5}=3.2$. It is unnecessary to speculate on what is the specific gravity of solid oxygen, but it may be remarked, in passing, that solid oxygen cannot have less than two atoms in its molecule, and that its molecular volume is probably 20, which would give $\frac{3.2}{2}=1.6$ as its probable specific gravity. Hermann then proceeds to assign this volume (5) to the oxygen of water, H_2O , the molecular volume of which=18, and then deducting (5) from (18) he obtains 13 for the volumes of the two hydrogen and 6.5 for a single atom of hydrogen. It is submitted that the tables which accompany this paper contain abundant evidence that oxygen contributes (10) to the molecular volume of water, and the hydrogen atoms (4) each. For in nearly a hundred compounds containing hydrogen, the hydrogen atom is never found with a volume greater than (4), but in a great number of cases with that volume. The next step is to determine the volume of nitrogen from a consideration of the density of fluid ammonia which is taken as .629. Dividing the molecular weight of ammonia (17) by .629 gives (27) as its molecular volume. Then deducting from (27) 3×6.5 for the three hydrogen atoms, leaves 7.5 for the volume of nitrogen. The same observation may be applied to this determination as to the previous one, that hydrogen never has so great a volume as 6.5. According to the system of this paper, the molecular volume of ammonia is 24—Loschmidt makes it 23.5—the nitrogen contributing 12 and the three atoms of hydrogen (4) each, and therefore, though the density of liquid ammonia may be .629 at a certain temperature, the probable specific gravity of solid ammonia is $\frac{1.7}{4}=.708$. The density of liquid ammonia at $-10^{\circ}.7$ C. has been found to be as high as .650. By such methods as the above, and others, Hermann determines the normal volumes of the elements, but he supposes the non-metallic elements and the lighter metals capable of assuming other volumes than the normal ones in their compounds, though not so

the heavy metals. For instance, taking unity to represent the normal volume, oxygen may assume the following volumes:— $\frac{1}{2}$, 1, $1\frac{1}{3}$, $1\frac{1}{2}$, $1\frac{2}{3}$, 2 and 3; sulphur, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, 1 and $1\frac{1}{2}$; and the halogens, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{7}{8}$, $1\frac{1}{4}$.

In conclusion, it may be remarked that the tables lend their chief support to proposition (3). Propositions (1) and (2) must be considered more hypothetical, but the writer wished to place them on record, because, if true, they would afford a physical interpretation to the fundamental numbers of column (IV) Table I. In proposition (1) also is to be found an explanation of the allotropism of the elements, carbon, silicon and phosphorus, based as it is upon the supposition that these allotropic forms contain a different number of atoms in the nucleus of their molecules with the same molecular volumes, and there are independent physical reasons, which render it not improbable that the accumulation of similar atoms in the nucleus of a molecule would not alter its volume, whatever be the law of force in action. The question is perhaps not altogether beyond the reach of direct experimental investigation. For if experiments on interdiffusion could be carried on at the temperature of gaseous mercury, the determination of the molecular volume of *monatomic* mercury, by the method of Loschmidt, would shed a very great deal of light on the subject.

Note.—Let V be the volume of any solid or liquid substance, W its weight, S its specific gravity, then

$$S = \frac{W}{V}.$$

The unit of volume being the volume of the unit of weight of the standard substance.

For distinctness we will take the hydrogen atoms as the unit of weight, and water at its greatest density as the standard substance. Then

$$\text{Volume of molecule of water} = \frac{\text{weight of molecule}}{\text{specific gravity of water}} = \frac{H_2O}{1} = 18,$$

or the unit of volume is $\frac{1}{18}$ part of the volume of the molecule of water.

Suppose the substance to contain n molecules, then—

$$S = \frac{\frac{W}{n}}{\frac{V}{n}}.$$

Now $\frac{W}{n}$ is the weight of one molecule, and we may define $\frac{V}{n}$ as the volume of one molecule.

But $\frac{V}{n} = \frac{\text{volume of molecule of substance}}{\frac{1}{18} \text{ volume of molecule of water}}.$

Consequently, the numerical value of $\frac{V}{n}$ would not be altered if we took for our definition of molecular volume any volume bearing a fixed proportion to the volume first taken as such definition. The numerator and denominator of the fraction (1) would both be increased or diminished in the same proportion. Now, inasmuch as the molecules of any substance will pack themselves as closely as their mutual repulsions will allow, it follows from geometry that the space $\frac{V}{n}$ is proportional to the sphere of repulsion of the molecule of the substance.

Hence we may define the volume of a molecule as the volume of its sphere of repulsion without affecting the equation.

$$\text{Specific gravity of substance} = \frac{\text{weight of molecule}}{\text{volume of molecule}}.$$

Table I.

Element.	Atomic weight.	Molecular weight.	Molecular or atomic volume.	Calculated sp. gr.	Observed sp. gr.
H.....	1	..	8		
O.....	16	..	20		
N.....	14	..	24		
F.....	19	..	24		
Cl.....	35.5	..	45		
Br.....	80	..	88		
I.....	127	I ₅	128	4.950	4.961
C (diamond).....	12	C ₉	32	3.350	3.375
C (graphite).....	"	C ₆	32	2.250	2.250
C (lamp-black).....	"	C ₅	"	1.885	1.875
B (adamantine).....	11	B ₇	28	2.680	2.750
Si (graphitoidal).....	28.5	Si ₆	70	2.490	2.443
Si (amorphous).....	"	Si ₅	"	2.000	2.035
P (red).....	31	P ₇	102	2.140	2.127
P (yellow).....	"	P ₆	"	1.830	1.823
P (white).....	"	P ₅	"	1.515	1.519
S.....	32	S ₆	96	2.050	2.000
K.....	39	K ₂	90	.865	.866
Na.....	23	N ₃ ₂	48	.970	.958
Ba.....	137		92		
Sr.....	87.5	Sr ₂	70	2.500	2.500
Ca.....	40	Ca ₂	50	1.600	1.600
Mg.....	24	Mg ₂	27	1.777	1.777
Al.....	27.5	Al ₃	32	2.578	2.600
Zr.....	89.6	Zr ₃	66	4.073	4.150
Ag.....	108	Ag ₄	43	10.047	10.428
Cd.....	112	Cd ₄	52	8.619	8.600
Zn.....	65		37	7.027	6.8-7.2

Elements.	Atomic weight.	Molecular weight.	Molecular or atomic volume.	Calculated sp. gr.	Observed sp. gr.
Cu.....	63·5	Cu ₄	29	8·760	8·800
Hg.....	2·00	Hg ₄	58	13·793	13·590
Pb.....	207	Pb ₄	74	11·200	11·445
Ti.....	50	Ti ₆	58	5·173	5·300
Sn.....	118	Sn ₄	66	7·151	7·280
Sb.....	122	Sb ₄	72	6·777	6·700
Bi.....	208	Bi ₄	84	9·904	9·830
Ni.....	59	Ni ₄	29	8·138	8·500
Co.....	59	Co ₄	29	8·138	8·500
As.....	75	As ₆	76	5·921	5·900
Cr.....	52·5	Cr ₆	45	7·000	7·014
Fe.....	56	Fe ₆	43	7·814	7·800
Mn.....	55	Mn ₆	43	7·697	7·0-8·0
Pt.....	197·4	Pt ₆	56	21·150	21·150

Table II.—Oxides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Barium oxide.....	BaO	Ba' ₄ O'	5·464	5·456
Strontium.....	Sr' ₄ O'	4·600	4·611
Calcium.....	Ca' ₄ O'	3·200	3·180
Magnesium.....	Mg' ₄ O'	3·404	3·2-3·6
Zinc.....	Zn' ₄ O'	5·684	5·684
Cadmium.....	Cd' ₄ O'	6·111	6·950
Cupric.....	Cu' ₄ O'	6·490	6·500

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Mercurie oxide.....	HgO	Hg'4O'4	11.077	11.100
Lead	PbO	Pb'4O'4	9.489	9.500
Potassium	K ₂ O	K'6O'4	2.665	2.660
Sodium	Na ₂ O	Na'6O'4	2.952	2.870
Silver	Ag ₂ O	Ag'6O'4	7.365	7.250
Cuprous	Cu ₂ O	Cu'7O'2	5.836	5.750
Mercurous	Hg ₂ O	Hg'4O'2	10.666	10.680
Silicate dioxide (amorphous)	SiO ₂	Si'4O'4	2.200	2.200
Silicate (crystalline)	SiO ₂	Si'4O'4	2.688	2.690
Titanium	TiO ₂	Ti'4O'8	4.256	4.250
"	TiO ₂	Ti'4O'6	3.875	3.890
Zirconium	ZrO ₂	Zr'4O'8	5.655	5.624
"	ZrO ₂	Zr'4O'6	4.588	4.35—4.90
Lead	PbO ₂	Pb'4O'4	9.497	9.500
Manganese	MnO ₂	Mn'4O'6	5.000	5.026
Stannic	SnO ₂	Sn'4O'8	6.976	6.960
Chromium trioxide.....	CrO ₃	Cr'2O'4	2.680	2.674
Arsenic sesquioxide.....	As ₂ O ₃	As'4O'4	3.733	3.738
Antimony	Sb ₂ O ₃	Sb'4O'4	5.725	5.778
Bismuth	Bi ₂ O ₃	Bi'4O'4	8.140	8.200
Co b alt	Co ₂ O ₃	Co'4O'4	5.627	5.600
"	Co ₂ O ₃	Co'4O'3	4.811	4.814
Nickel	Ni ₂ O ₃	Ni'4O'3	4.811	4.814
Boron	B ₂ O ₃	B'2O'6	1.842	1.830
Aluminium	Al ₂ O ₃	Al'4O'6	3.953	3.950
Manganese	Mn ₂ O ₃	Mn'4O'6	4.331	4.325
Ferric	Fe ₂ O ₃	Fe'4O'4	5.080	5.121
Antimony tetroxide.....	Sb ₂ O ₄	Sb'4O'8	6.695	6.615
Antinomie oxide.....	Sb ₂ O ₅	Sb ₄ O ₈	6.680	6.600
Minium	Pb ₃ O ₄	Pb ₄ O ₄	9.080	9.073

Table III.—Fluorides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Sodium fluoride	NaF	Na ₆ F ₃	2.625	2.600
Potassium fluoride	KF	K ₆ F ₃	2.521	2.454
Calcium fluoride	CaF ₂	Ca ₃ F ₆	3.162	3.162
Barium fluoride	BaF ₂	Ba ₃ F ₆	4.526	4.580
Aluminum fluoride	Al ₂ F ₆	Al ₇ F ₁₈	3.018	3.065
Hydro ammonic fluoride	(NH ₄) ₂ H ₃ F ₃	(NH ₄) ₂ H ₃ F ₃	1.221	1.211
Potassio titanate	K ₂ TiF ₆	K ₄ Ti ₆ F ₆	3.076	3.079*
Barium silicofluoride	BaSiF ₆	Ba ₃ Si ₆ F ₆	4.213	4.279
Ammonium fluoride	(NH ₄) ₂ SiF ₆	(NH ₄) ₂ Si ₆ F ₆	1.946	1.970
Sodium silicofluoride	Na ₂ SiF ₆	Na ₆ Si ₄ F ₄	2.710	2.754
Potassium silicofluoride	K ₂ SiF ₆	K ₆ Si ₄ F ₄	2.641	2.664
Ammonium stannofluoride	(NH ₄) ₂ SnF ₆	(NH ₄) ₂ Sn ₆ F ₆	2.966	2.887
Potassium zirconofluoride	K ₂ ZrF ₆	K ₄ Zr ₆ F ₆	3.520	3.582
" titanofluoride	K ₂ TiF ₆ .H ₂ O	K ₆ Ti ₃ F ₆ .H ₄ O ₂	2.977	2.992
Copper silicofluoride.. .	(CuSiF ₆) ₂ .13.H ₂ O	Cu ₃ Si ₃ F ₆ .H ₄ O ₂	2.182	2.157

* In Clarke's " Constants of Nature," this is given as 2.079, but surely this is a misprint for 3.079; for it is highly improbable that the sp. gr. of K₂TiF₆ is less than that of its hydrate, K₂TiF₆.H₂O = 2.992, or of K₂SiHF₆ = 2.664.

Table IV.
Chlorides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Chlorides.</i>				
Potassium chloride	KCl	K ₄ Cl' ₃	1.986	1.994
Sodium	NaCl	Na ₄ Cl' ₃	2.166	2.148
Silver	A ₅ Cl	A ₆ ⁴ Cl' ₃	5.572	5.567
Lead	PbCl ₂	Pb ₄ Cl' ₃	5.732	5.742
Barium	BaCl ₂	Ba ₄ Cl' ₃	3.961	3.886
Strontium	SrCl ₂	Sr ₃ Cl' ₃	2.971	2.960
Calcium	CaCl ₂	Ca ₃ Cl' ₃	2.380	2.362
Mercuric	HgCl ₂	Hg ₃ Cl' ₃	5.493	5.420
Mercurous	Hg ₂ Cl ₂	Hg ₃ Cl' ₃	6.821	6.946
Ammonium	(H ₄ N) ₂ Cl	(H ₄ N) ₂ Cl' ₃	1.589	1.578
Magnesium	MgCl ₂	Mg ₂ Cl' ₃	2.183	2.177
Cupric	CuCl ₂	Cu ₂ Cl' ₃	3.022	3.054
Cuprous	Cu ₂ Cl ₂	Cu ₂ Cl' ₃	3.355	3.376
Zinc	ZnCl ₂	Zn ₂ Cl' ₃	2.804	2.753
Cobalt	CoCl ₂	Co ₂ Cl' ₃	2.921	2.937
Manganese	MnCl ₂	Mn ₂ Cl' ₃	2.448	2.480
Ferrous	FeCl ₂	Fe ₂ Cl' ₃	2.467	2.529
<i>b. Double Chlorides.</i>				
Potassium zincochloride	K ₂ ZnCl ₄	K ₂ Zn' ₂ Cl' ₃	2.307	2.297
Ammonium	(NH ₄) ₂ ZnCl ₄	(NH ₄) ₂ Zn' ₂ Cl' ₃	1.806	1.72
Potassium platinochloride	K ₂ PtCl ₆	K ₆ Pt' ₄ Cl' ₃	3.645	-1.879
Ammonium	(NH ₄) ₂ PtCl ₆	(NH ₄) ₃ Pt ₃ Cl ₃	3.016	3.386
				3.694

Table IV (*continued*).
c. Hydrated Chlorides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Calcium chloride.	$\text{CaCl}_2 \cdot 6\text{H}_2\text{O}$	$\text{Ca}'_3\text{Cl}'_3\text{H}'_4\text{O}'_2$	1.676	1.680
Strontrium	$\text{SrCl}_2 \cdot 6\text{H}_2\text{O}$	$\text{Sr}'_3\text{Cl}'_3\text{H}'_4\text{O}'_2$	1.941	1.921
Barium	$\text{BaCl}_2 \cdot 2\text{H}_2\text{O}$	$\text{Ba}'_4\text{Cl}'_3\text{H}'_4\text{O}'_2$	3.031	3.052
Cobaltous	$\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$	$\text{Co}'_2\text{Cl}'_3\text{H}'_4\text{O}'_2$	1.852	1.840
Cupric	$\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$	$\text{Cu}'_2\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.518	2.535
Magnesium	$\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$	$\text{Mg}'_2\text{Cl}'_3\text{H}'_4\text{O}'_2$	1.592	1.562
Stannous	$\text{SnCl}_2 \cdot 2\text{H}_2\text{O}$	$\text{Sn}'_3\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.812	2.759
Platine	$\text{PtCl}_4 \cdot 8\text{H}_2\text{O}$	$\text{Pt}'_6\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.417	2.431
Potassium iron	$\text{K}_2\text{FeCl}_4 \cdot 2\text{H}_2\text{O}$	$\text{K}'_4\text{Fe}'_4\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.170	2.162
" copper	$\text{K}_2\text{CuCl}_4 \cdot 2\text{H}_2\text{O}$	$\text{K}'_4\text{Cu}'_2\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.411	2.410
Ammonium	$(\text{NH}_4)_2\text{CuCl}_4 \cdot 2\text{H}_2\text{O}$	$(\text{NH}_4)'_3\text{Cu}'_2\text{Cl}'_3\text{H}'_4\text{O}'_2$	1.984	1.977
Potassium tin	$\text{K}_2\text{SnCl}_4 \cdot 3\text{H}_2\text{O}$	$\text{K}'_6\text{Sn}'_3\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.545	2.514
Ammonium tin	$(\text{NH}_4)_2\text{SnCl}_4 \cdot 3\text{H}_2\text{O}$	$(\text{NH}_4)'_3\text{Sn}'_3\text{Cl}'_3\text{H}'_4\text{O}'_2$	2.169	2.104

Table V.
Bromides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Bromides.</i>				
Sodium bromide	NaBr	$\text{Na}'_4\text{Br}'_4$	3·029	3·011
Potassium bromide	KBr	$\text{K}'_4\text{Br}'_4$	2·674	2·672
Ammonium bromide	$(\text{NH}_4)\text{Br}$	$(\text{NH}'_4)_3\text{Br}'_4$	2·409	2·379
Silver bromide	AgBr	$\text{Ag}'_4\text{Br}'_4$	5·740	5·800
" "	Ag_2Br	$\text{Ag}'_6\text{Br}'_4$	6·445	6·425
Strontium bromide	SrBr_2	$\text{Sr}'_4\text{Br}'_4$	3·962	3·962
Lead bromide	PbBr_2	$\text{Pb}'_6\text{Br}'_4$	6·514	6·611
Zinc bromide	ZnBr_2	$\text{Zn}'_2\text{Br}'_4$	3·600	3·643
Cadmium bromide	CdBr_2	$\text{Cd}'_2\text{Br}'_4$	4·712	4·712
Aluminum bromide	Al_2Br_6	$\text{Al}'_2\text{Br}'_6$	2·571	2·540
Potassium platinobromide	K_2PtBr_6	$\text{K}'_4\text{Pt}'_6\text{Br}'_6$	4·693	4·680
Ammonium zinc bromide	$(\text{NH}_4)_2\text{ZnBr}_4$	$(\text{NH}'_4)_2\text{Zn}'_2\text{Br}'_4$	2·598	2·625
Potassium stannobromide	K_2SnBr_6	$\text{K}'_6\text{Sn}'_4\text{Br}'_4$	3·787	3·783
<i>b. Hydrated Bromides.</i>				
Barium bromide	$\text{BaBr}_3\text{H}_2\text{O}$	$\text{Ba}'_4\text{Br}'_6\text{H}'_4\text{O}'_2$	3·721	3·690
" platinobromide	$\text{BaPtBr}_{10}\text{H}_2\text{O}$	$\text{Ba}'_4\text{Pt}'_6\text{Br}'_6\text{H}'_4\text{O}'_2$	3·724	3·713
Phosphorus sulphobromide	$\text{PSB}_3\text{H}_2\text{O}$	$\text{P}'_4\text{S}'_3\text{Br}'_6\text{H}'_4\text{O}'_2$	2·771	2·793

Table VI.
Iodides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Sodium iodide	NI	$\text{Na}'\text{I}'^4$	3.410	3.450
Potassium iodide	KI	$\text{K}'\text{I}'^4$	3.046	3.056
Ammonium iodide	$(\text{NH}_4)\text{I}$	$(\text{NH}_4)'^2\text{I}'^4$	2.417	2.498
Silver iodide	AgI	$\text{Ag}'\text{I}'^4$	5.500	5.500
SrI ₂	SrI ₂	$\text{Sr}'_6\text{I}'^4$	4.510	4.415
Strontium iodide	BaI ₂	$\text{Ba}'_6\text{I}'^4$	4.949	4.917
Barium iodide	PbI ₂	$\text{Pb}'_6\text{I}'^4$	6.040	6.021
Lead iodide	HgI ₂	$\text{Hg}'_6\text{I}'^4$	7.848	7.750
Mercurous iodide	HgI	$\text{Hg}'_6\text{I}'^4$	6.163	6.270
Mercuric iodide	HgI ₂	$\text{Hg}'_6\text{I}'^4$	4.448	4.390
Arsenic iodide	AsI ₃	$\text{As}'_2\text{I}'^6$	5.005	5.010
Antimony iodide	SbI ₃	$\text{Sb}'_2\text{I}'^6$	5.555	5.632
Bismuth iodide	BiI ₃	$\text{Bi}'_2\text{I}'^6$	5.161	5.154
Potassium platinioiodide	K ₂ PtI ₆	$\text{K}'_4\text{Pt}'_4\text{I}'^6$	2.843	2.873
Ferrous iodide	FeI ₂	$\text{Fe}'_3\text{I}'_4\text{H}_4\text{O}'_2$		

Table VII.
Cyanides and Cyanates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Potassium cyanide	K ₂ CY	K' ₂ CY'	1.512	1.520
Silver	AgCY	Ag' ₃ (CY) ₃	4.060	3.943
Potassium cyanate	K ₂ CY ₂ O	K' ₆ Y ₃ O ₄	2.095	2.047
Silver	Ag ₂ CY ₂ O	Ag' ₆ CY ₃ O ₄	3.947	4.004
Sodium ferrocyanide	Na ₄ CY ₆ Fe ₂ H ₂ O	Na' ₃ CY ₃ Fe ₂ H ₄ O ₂	1.455	1.458
Potassium	K ₄ CY ₆ F ₃ H ₂ O	K' ₆ CY ₃ Fe ₂ H ₄ O ₂	1.860	1.860
" ferricyanide	K ₃ CY ₆ Fe	K' ₆ Y ₃ Fe ₂	1.843	1.845
" cobalticyanide	K ₃ CY ₆ Co	K' ₆ CY ₃ Co ₂	1.936	1.906
" Barium platinocyanide	Ba ₂ CY ₄ Pt	Ba' ₂ CY ₃ Pt ₂	2.969	3.054
Potassium sulphocyanide	KCY ₅	K' ₆ CY ₃ S ₆	1.953	1.906
" manganiocyanide	K ₃ CY ₆ Mn	K' ₆ Y ₃ Mn ₂	1.832	1.821

Table VIII.
Sulphides.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Sodium sulphide	N _a S	N _{a'} S' ₆	2.438	2.471
Oldhamite.....	C _a S	C _{a'} S' ₆	2.526	2.580
Lead monosulphide.....	PbS	Pb' ₄ S' ₆	6.927	6.923
Mercury sulphide.....	HgS	Hg' ₄ S' ₆	7.606	7.552
" "	HgS	Hg' ₆ S' ₆	9.027	8.998
Copper	CuS	Cu' ₃ S' ₆	3.739	3.800
" "	CuS	Cu' ₆ S' ₆	4.584	4.636
Zinc	ZnS	Zn' ₃ S' ₈	3.986	3.980
Cadmium	CdS	Cd' ₃ S' ₈	4.499	4.900
Tin	SnS	Sn' ₄ S' ₈	5.263	5.267
Cobalt	CoS	Co' ₆ S' ₈	5.407	5.450
Iron	FeS	Fe' ₈ S' ₈	5.008	5.035
Manganese disulphide.....	MnS ₂	Mn' ₃ S' ₈	3.424	3.463
Tin	SnS ₂	Sn' ₄ S' ₈	4.494	4.415
Cobalt	CoS ₂	Co' ₆ S' ₈	4.266	4.269
Arsenio	As ₂ S ₂	As' ₄ S' ₈	3.452	3.4—3.6
Bismuth	Bi ₂ S ₂	Bi' ₄ S' ₈	7.272	7.260
Arsenio tri sulphide	As ₂ S ₃	As' ₄ S' ₈	3.324	3.400
Antimony	Sb ₂ S ₃	Sb' ₄ S' ₈	4.662	4.641

Table IX.
Sulphates.

Substance.	Molecular weight.	Sulphates.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Sulphates.</i>				
Potassium sulphate...	K_2SO_4	$K'_2S'_6O_4$	2.636	2.640
Sodium	"	Na_2SO_4	2.730	2.730
Barium	"	$BaSO_4$	4.590	4.590
Strontium	"	$SrSO_4$	3.850	3.900
Calcium	"	$CaSO_4$	3.068	3.100
Mercuric	"	$HgSO_4$	6.481	6.466
Lead	"	$PbSO_4$	6.269	6.257
Mercerous	"	Hg^+SO_4	7.630	7.560
Silver	"	Ag^+SO_4	5.426	5.425
Copper	"	$CuSO_4$	3.683	3.631
Cobalt	"	$CoSO_4$	3.583	3.531
Ammonium	"	$(NH_4)_2SO_4$	1.800	1.771
Zinc	"	$ZnSO_4$	3.331	3.400
Magnesium	"	$MgSO_4$	2.666	2.648
Aluminium	"	$Al_2(SO_4)_3$	2.766	2.740
<i>b. Double Sulphates.</i>				
Potassium hydrogen zinc	sulphate ...	$KHSO_4$	1.474	1.475
" copper	"	$K_2Zn(SO_4)_2$	2.780	2.816
" magnesium	"	$K_2Cu(SO_4)_2$	2.862	2.797
" nickel	"	$K_2Mg(SO_4)_2$	2.649	2.676
" sodium	"	$K_2Ni(SO_4)_2$	2.944	2.897
" manganese	"	$K_2Na(SO_4)_2$	2.656	2.668
		$K_2Mn(SO_4)_2$	2.965	3.008

Table IX (*continued*).

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Ammonium aluminium sulphate	$(\text{NH}_4)^2\text{Al}(\text{SO}_4)_2$	$(\text{NH}_4)^2\text{Al}'\text{S}'_6\text{O}'_4$	2.035	2.039
" zinc	$(\text{NH}_4)_2\text{Zn}(\text{SO}_4)_2$	$(\text{NH}_4)^2\text{Zn}'\text{S}'_6\text{O}'_4$	2.292	2.222
Calcium sodium	$\text{CaNa}_2(\text{SO}_4)_2$	$\text{Ca}^4\text{Na}'_6\text{S}'_6\text{O}'_4$	2.766	2.767
" barium	$\text{CaBa}_3(\text{SO}_4)_4$	$\text{Ca}'_3\text{Ba}'_3\text{S}'_6\text{O}'_4$	3.330	3.2-3.4
<i>c. Hydrated Sulphates.</i>				
Sodium sulphate	$\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$	$\text{Na}'_2\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.437	1.445
Ammonium	$(\text{NH}_4)\text{SO}_4 \cdot 7\text{H}_2\text{O}$	$(\text{NH}_4)^2\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.719	1.72-1.73
Copper	$\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$	$\text{Cu}'_4\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.203	2.200
Manganese	$\text{MnSO}_4 \cdot 5\text{H}_2\text{O}$	$\text{Mn}'_4\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.060	2.087
Magnesium	$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	$\text{Mg}'_3\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.720	1.751
Zinc	$\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$	$\text{Zn}'_3\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.961	1.957
Nickel	$\text{NiSO}_4 \cdot 7\text{H}_2\text{O}$	$\text{Ni}'_3\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.955	1.931
Cobalt	$\text{CoSO}_4 \cdot 7\text{H}_2\text{O}$	$\text{Co}'_3\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.955	1.924
Iron	$\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$	$\text{Fe}'_3\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.874	1.884
Cadmium	$\text{CdSO}_4 \cdot \text{H}_2\text{O}$	$\text{Cd}'_2\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.973	2.939
"	$\text{Cd}_3(\text{SO}_4)_3 \cdot 8\text{H}_2\text{O}$	$\text{Cd}'_4\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	3.000	3.050
Iron	$\text{Fe}_2(\text{SO}_4)_3 \cdot 9\text{H}_2\text{O}$	$\text{Fe}'_2\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.029	2.029
Aluminium	$\text{Al}_2(\text{SO}_4)_3 \cdot 18\text{H}_2\text{O}$	$\text{Al}'_2\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.702	1.671

Table IX (*continued*).*d. Hydrated Double Sulphates.*

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Ammonium sodium sulphate	$(\text{NH}_4)^3\text{Na}^2\text{S}_6^{\text{O}'_4\text{H}'_4\text{O}'_2}$	1.621	1.630	
" magnesium	$(\text{NH}_4)^2\text{Mg}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	1.740	1.721	
" copper	$(\text{NH}_4)^2\text{Cu}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	1.924	1.931	
" zinc	$(\text{NH}_4)^2\text{Zn}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	1.893	1.897	
" cadmium	$(\text{NH}_4)^2\text{Cd}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.043	2.073	
" nickel	$(\text{NH}_4)^2\text{Ni}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	1.905	1.915	
" cobalt	$(\text{NH}_4)^2\text{Co}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	1.905	1.873	
" iron	$(\text{NH}_4)^2\text{Fe}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	1.825	1.830	
Potassium magnesium sulphate	$\text{K}_2^2\text{Mg}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.061	2.076	
" copper	$\text{K}_2^2\text{Cu}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.255	2.244	
" zinc	$\text{K}_2^2\text{Zn}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.334	2.240	
" cobalt	$\text{K}_2^2\text{Co}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.179	2.154	
" cadmium	$\text{K}_2^2\text{Cd}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.462	2.438	
" iron	$\text{K}_2^2\text{Fe}^2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$	2.205	2.202	
Sodium alum	$\text{AlNa}(\text{SO}_4)_2\cdot 12\text{H}_2\text{O}$	1.637	1.641	
Ammonium	$\text{Al}(\text{NH}_4)^4(\text{SO}_4)_2\cdot 12\text{H}_2\text{O}$	1.651	1.653	
Potassium	$\text{AlK}(\text{SO}_4)_2\cdot 12\text{H}_2\text{O}$	1.751	1.753	
" chrome alum	$\text{CrK}(\text{SO}_4)_2\cdot 12\text{H}_2\text{O}$	1.850	1.848	
Ammonium	$\text{Cr}(\text{NH}_4)(\text{SO}_4)_2\cdot 12\text{H}_2\text{O}$	1.748	1.738	
" iron sulphate	$\text{Fe}(\text{NH}_4)(\text{SO}_4)_2\cdot 12\text{H}_2\text{O}$	1.714	1.712	
Magnesium iron sulphate	$\text{MgFe}(\text{SO}_4)_2\cdot 14\text{H}_2\text{O}$	1.730	1.733	
" copper	$\text{MgCu}(\text{SO}_4)_2\cdot 14\text{H}_2\text{O}$	1.825	1.813	
" zinc	$\text{MgZn}(\text{SO}_4)_2\cdot 14\text{H}_2\text{O}$	1.814	1.817	
" cadmium	$\text{MgCd}(\text{SO}_4)_2\cdot 14\text{H}_2\text{O}$	1.970	1.983	

Table X.
Nitrates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Nitrates.</i>				
Sodium nitrate	NaNO_3	$\text{Na}'_6\text{N}'_2\text{O}'_3$	2.125	2.180
Potassium nitrate	KNO_3	$\text{K}'_6\text{N}'_2\text{O}'_3$	2.148	2.143
Ammonium nitrate	$(\text{NH}_4)\text{NO}_3$	$(\text{NH}_4)'_3\text{N}'_2\text{O}'_3$	1.579	1.579
" " " " "	" " " " "	$(\text{NH}_4)_4\text{N}'_2\text{O}'_3$	1.739	1.737
Silver nitrate	AgNO_3	$\text{Ag}'_6\text{N}'_2\text{O}'_3$	4.340	4.336
Calcium nitrate	$\text{Ca}(\text{NO}_3)_2$	$\text{Ca}'_6\text{N}'_2\text{O}'_3$	2.267	2.240
Sr(No ₃) ₂		$\text{Sr}'_6\text{N}'_2\text{O}'_3$	2.807	2.847
Ba(No ₃) ₂		$\text{Ba}'_6\text{N}'_2\text{O}'_3$	3.289	3.284
Pb(No ₃) ₂		$\text{Pb}'_6\text{N}'_2\text{O}'_3$	4.336	4.340
<i>b. Hydrated Nitrates.</i>				
Calcium nitrate	$\text{CaN}_2\text{O}_6 \cdot 4\text{H}_2\text{O}$	$\text{Ca}'_6\text{N}'_2\text{O}'_3\text{H}'_4\text{O}'_2$	1.843	1.78-1.90
Strontium nitrate	$\text{SrN}_2\text{O}_6 \cdot 5\text{H}_2\text{O}$	$\text{Sr}'_6\text{N}'_2\text{O}'_3\text{H}'_4\text{O}'_2$	2.069	2.113
Manganese nitrate	$\text{MnN}_2\text{O}_6 \cdot 6\text{H}_2\text{O}$	$\text{Mn}'_6\text{N}'_2\text{O}'_3\text{H}'_4\text{O}'_2$	1.836	1.819
Cobalt nitrate	$\text{CoN}_2\text{O}_6 \cdot 6\text{H}_2\text{O}$	$\text{Co}'_6\text{N}'_2\text{O}'_3\text{H}'_4\text{O}'_2$	1.845	1.830
Iron nitrate	$\text{Fe}_2(\text{NH}_3)_6 \cdot 18\text{H}_2\text{O}$	$\text{Fe}'_6\text{N}'_2\text{O}'_3\text{H}'_4\text{O}'_2$	1.692	1.683
Bismuth nitrate	$\text{BiN}_2\text{O}_9 \cdot 5\text{H}_2\text{O}$	$\text{Bi}'_6\text{N}'_2\text{O}'_3\text{H}'_4\text{O}'_2$	2.688	2.736

Table XI.
Chromates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Chromates.</i>				
Potassium chromate	K_2CrO_4	$K'_6Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	2·682	2·682
Silver	$AgCrO_4$	$Ag'_6Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	5·850	5·770
Barium	$BaCrO_4$	$Ba'_4Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	3·870	3·900
Lead	$PbCrO_4$	$Pb'_6Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	5·900	5·950
Potassium dichromate	$K_2Cr_2O_7$	$K'_6Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	2·682	2·680
Ammonium	$(NH_4)_2Cr_2O_7$	$(NH_4)_2Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	2·343	2·367
Potassium trichromate	$K_2Cr_3O_10$	$K'_6Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	2·681	2·655
Phenicochroite	$Pb_3Cr_2O_9$	$Pb'_6Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}$	6·980	6·000
<i>b. Hydrated Chromates.</i>				
Copper chromate	$CuCr_4H_2O$	$Cu'_4Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}H'_{\frac{1}{2}}O'_{\frac{1}{2}}$	2·254	2·262
Zinc	$ZnCr_4H_2O$	$Zn'_4Cr'_{\frac{1}{2}}O'_{\frac{1}{2}}H'_{\frac{1}{2}}O'_{\frac{1}{2}}$	2·053	2·096
Magnesium	$MgCr_4H_2O$	$Mg'_2Cr_2O_4H_4O_2$	1·730	1·750

Table XII.
Phosphates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Phosphates.</i>				
Trisilver phosphate	Ag_3PO_4	$\text{Ag}'_6\text{P}'_6\text{O}'_4$	7.163	7.300
Lead	$\text{Pb}_6(\text{PO}_4)_2$	$\text{Pb}'_6\text{P}'_6\text{O}'_4$	7.306	7.308
Silver Eryophosphate	$\text{Ag}^4\text{P}^2\text{O}_7$	$\text{Ag}'_4\text{P}'_6\text{O}'_4$	5.410	5.306
Ammonium dihydrogen phosphate	$(\text{NH}_4)_2\text{H}_2\text{PO}_4$	$(\text{NH}_4)'_3\text{H}'_2\text{P}'_6\text{O}'_4$	1.805	1.758
Diammonium hydrogen	$(\text{NH}_4)_2\text{HPO}_4$	$(\text{NH}_4)'_3\text{H}'_2\text{P}'_6\text{O}'_4$	1.655	1.678
<i>b. Hydrated Orthophosphates.</i>				
Trisodium phosphate	$\text{Na}_3\text{PO}_4 \cdot 12\text{H}_2\text{O}$	$\text{Na}'_6\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.659	1.622
Sodium pyrophosphate	$\text{Na}_4\text{P}_2\text{O}_7 \cdot 10\text{H}_2\text{O}$	$\text{Na}'_6\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.850	1.836
Disodium hydrogen phosphate	$\text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$	$\text{Na}'_4\text{H}'_4\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.549	1.550
Dihydrogen sodium	$\text{NaH}_2\text{PO}_4 \cdot \text{H}_2\text{O}$	$\text{Na}'_4\text{H}'_4\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.059	2.040
Triple phosphate No. I	$(\text{NH}_4)_3\text{HPO}_4 \cdot 4\text{HO}$	$(\text{NH}_4)'_2\text{Na}'_4\text{H}'_4\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.549	1.554
" No. II	$\text{KNaHPO}_4 \cdot 7\text{H}_2\text{O}$	$\text{K}'_4\text{Na}'_4\text{H}'_4\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.657	1.671
Stervite	$(\text{NH}_4)_2\text{MgPO}_4 \cdot 6\text{H}_2\text{O}$	$(\text{NH}_4)'_3\text{M}'_2\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.650	1.650
Berlinite	$\text{Al}_4(\text{PO}_4)_3 \cdot \text{H}_2\text{O}$	$\text{Al}'_4\text{P}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.620	2.640

Table XIII.
Arsenites and Arsenates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Arsenites and Arsenates.</i>				
Lead arsenite	Pb(AsO ₃) ₂	Ph'As' O' / N' ₆ As' ₄ O' ₄	5.985	5.950
Native nickel arsenate.....	Ni ₃ AsO ₄ . ₂	K' ₄ H' ₂ As' ₄ O' ₄	4.919	4.982
Potassium	KH ₂ AsO ₄	(NH ₄) ₂ H ₄ As' ₄ O ₄	2.748	2.638
Ammonium	(NH ₄) ₂ H ₂ AsO ₄		2.240	2.249
<i>b. Hydrated Arsenates.</i>				
Sodium dihydrogen arsenate	NaH ₂ AsO ₄ .H ₂ O	Na' ₄ H' ₂ As' O' ₄ H' ₄ O'	2.494	2.535
Disodium hydrogen	Na ₂ HAsO ₄ .7H ₂ O	Na' ₄ H' ₂ As' O' ₄ H' ₄ O' ₂	1.891	1.871
Trisodium arsenate	Na ₃ HAsO ₄ .12H ₂ O	Na' ₄ H' ₂ As' O' ₄ H' ₄ O' ₂	1.711	1.736
Triple arsenate No. I	Na ₃ AsO ₄ .12H ₂ O	Na' ₄ H' ₂ As' O' ₄ H' ₄ O' ₂	1.835	1.804
" " No. II	(NH ₄) ₂ NaHAsO ₄ .4H ₂ O	(NH ₄) ₂ Na' ₄ H' ₂ As' O' ₄ H' ₄ O' ₂	1.946	1.838
KNaHAsO ₄ .7H ₂ O	K' ₁ Na' ₄ H' ₂ As' O' ₄ H' ₄ O' ₂		1.890	1.884
Hoernesite	Mg ₃ (AsO ₄) ₂ .8H ₂ O	Mg' ₆ As' ₄ O' ₄ H' ₄ O' ₂	2.427	2.474
Erythrite	Co ₃ (AsO ₄) ₂ .8H ₂ O	Co' ₆ As' ₄ O' ₄ H' ₄ O' ₂	2.924	2.948
Scorodite	Fe' ₂ (AsO ₄) ₂ .4H ₂ O	Fe' ₆ As' ₄ O' ₄ H' ₄ O' ₂	3.115	3.110

Table XIV.
Borates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Sodium diborate	$\text{Na}_3\text{B}_4\text{O}_7$	$\text{Na}'_4\text{B}'_4\text{O}'_4$	2.322	2.367
" "	$\text{Na}_3\text{B}_4\text{O}_7 \cdot 5\text{H}_2\text{O}$	$\text{Na}'_4\text{B}'_4\text{O}'_4 \cdot \text{H}'_4\text{O}'_2$	1.859	1.815
" "	$\text{Na}_3\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}$	$\text{Na}'_4\text{B}'_4\text{O}'_4 \cdot \text{H}'_4\text{O}'_2$	1.683	1.632
Lead borate	$\text{Pb}_2\text{B}_2\text{O}_4$	$\text{Pb}'_6\text{B}'_4\text{O}'_4$	5.580	5.598
" hydrogen	PbHB_3O_6	$\text{Pb}'_6\text{H}'_4\text{B}'_4\text{O}'_4$	5.208	5.255
Magnesium	$\text{Mg}_3\text{B}_2\text{O}_6$	$\text{Mg}'_4\text{B}'_4\text{O}'_4$	2.988	2.987

Table XV.
Chlorates and Bromates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Sodium chlorate	NaClO_6	$\text{Na}'_4\text{Cl}'_4\text{O}'_4$	2.535	2.467
Potassium	KClO_6	$\text{K}'_4\text{Cl}'_3\text{O}'_4$	2.333	2.326
Lead	$(\text{Pb}(\text{ClO}_3)_2)_2\text{H}_2\text{O}$	$\text{Pb}'_6\text{Cl}'_3\text{O}'_4 \cdot \text{H}'_4\text{O}'_2$	3.981	3.989
Mercury	$\text{Hg}_2\text{Cl}_2\text{O}_2\text{H}_2\text{O}$	$\text{Hg}'_3\text{Cl}'_3\text{O}'_4 \cdot \text{H}'_4\text{O}'_2$	5.107	5.151
Sodium bromate	NaBrO_3	$\text{Na}'_6\text{Br}'_4\text{O}'_4$	3.355	3.339
Potassium	KBrO_3	$\text{K}'_6\text{Br}'_4\text{O}'_4$	3.211	3.218
Magnesium	$\text{Mg}(\text{BrO}_3)_2\text{H}_2\text{O}$	$\text{Mg}'_2\text{Br}'_4\text{O}'_4 \cdot \text{H}'_4\text{O}'_2$	2.262	2.289

Table XVI.
Silicates and Titanates.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Silicates and Titanates.</i>				
Wollastonite.....	CaSiO ₃	Ca' ₃ Si' ₄ O' ₈	2·800	2·805
Rhodonite.....	MnSiO ₃	Mn' ₄ Si' ₄ O' ₈	3·673	3·630
Grünertite	FeSiO ₃	Fe' ₄ Si' ₄ O' ₈	3·706	3·713
Enstatite	MgSiO ₃	Mg' ₄ Si' ₄ O' ₈	3·165	3·130
Tephroite	Mn ₂ SiO ₄	Mn' ₄ Si' ₄ O' ₈	4·132	4·120
Faralite	Fe ₂ SiO ₄	Fe' ₄ Si' ₄ O' ₈	4·173	4·138
Willemite	Zn ₂ Si ₂ O ₄	Zn' ₄ Si' ₄ O' ₈	3·922	3·935
Olivine	Mg ₂ SiO ₄	Mg' ₄ Si' ₄ O' ₈	3·426	3·440
Andalusite	Al ₂ SiO ₅	Al' ₃ Si' ₄ O' ₈	3·185	3·154
" cyanite	Al ₂ SiO ₅	Al' ₃ Si' ₄ O' ₈	3·554	3·480—3·680
Zircon	ZrSiO ₄	Zr' ₄ Si' ₄ O' ₈	4·136	
Calcium titanate	CaTiO ₃	Ca' ₄ Ti' ₄ O' ₈	4·000	4·000
Magnesium	MgTiO ₃	Mg' ₃ Ti' ₄ O' ₈	3·935	3·910
<i>b. Double Silicates.</i>				
Felspar	KAlSi ₃ O ₈	K' ₄ Al' ₃ Si' ₄ O' ₈	2·522	2·53—2·59
Albite	NaAlSi ₃ O ₈	Na' ₄ Al' ₂ Si' ₄ O' ₈	2·627	2·54—2·64
Batra-chite	CaMg(SiO ₃) ₂	Ca' ₄ Mg' ₃ Si' ₄ O' ₈	3·034	3·033
Monticellite	CaMg(SiO ₃) ₂	Ca' ₆ Mg' ₃ Si' ₄ O' ₈	3·222	3·245—3·275
Lencite	KAl(SiO ₃) ₂	K' ₄ Al' ₂ Si' ₄ O' ₈	3·432	2·45—2·5

Table XVII.
Carbonates.

Substance,	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Simple Carbonates.</i>				
Barium carbonate.....	$\text{Ba}'_4\text{C}'_4\text{O}'_4$	4·283	4·301	
Stronitium	$\text{Sr}'_4\text{C}'_4\text{O}'_4$	3·642	3·626	
Calcium	$\text{Ca}'_4\text{C}'_4\text{O}'_4$	2·817	2·815	
Lead	$\text{Pb}'_4\text{C}'_4\text{O}'_4$	6·433	6·430	
Silver	$\text{Ag}'_4\text{C}'_4\text{O}'_4$	6·202	6·080	
<i>b. Simple Carbonates.</i>				
Sodium carbonate.....	$\text{Na}'_4\text{C}'_8\text{O}'_4$	2·469	2·466	
Potassium	$\text{K}'_2\text{C}'_3\text{O}'_4$	2·156	2·103-2·267	
Ferric	$\text{Fe}'_4\text{C}'_5\text{O}'_4$	3·891	3·872	
Zinc	$\text{Zn}'_4\text{C}'_8\text{O}'_4$	4·424	4·420	
Magnesium	$\text{Mg}'_3\text{C}'_8\text{O}'_4$	3·000	3·017	
<i>c. Double Carbonates.</i>				
Barytocalcite	$\text{Ca}'_4\text{Ba}'_4\text{C}'_4\text{O}'_4$	3·666	3·660	
Manganocalcite	$\text{Ca}'_4\text{Mn}'_3\text{C}'_4\text{O}'_4$	3·000	3·037	
Dolomite	$\text{Ca}'_4\text{Mg}'_4\text{C}'_4\text{O}'_4$	2·819	2·845	
Pistomelite	$\text{Fe}'_4\text{Mg}'_3\text{C}'_8\text{O}'_4$	3·463	3·427	
Mesite	$\text{Fe}'_4\text{Mg}'_3\text{C}'_8\text{O}'_4$	3·311	3·349	
<i>d. Hydrated Double Carbonates</i>				
Sodium carbonate.....	$\text{Na}'_4\text{C}'_8\text{O}'_4\text{H}'_4\text{O}'_2$	1·531	1·5-1·6	
Calcium	$\text{Ca}'_4\text{C}'_4\text{O}'_4\text{H}'_4\text{O}'_2$	1·800	1·733	
Sodium potassium	$\text{K}'_6\text{Na}'_6\text{C}'_8\text{O}'_4\text{H}'_4\text{O}'_2$	1·619	1·608	
Gay-lussite	$\text{Ca}'_4\text{Na}'_6\text{C}'_4\text{O}'_4\text{H}'_4\text{O}'_2$	1·941	1·950	
Hydrodolomite	$\text{Ca}'_3\text{Mg}'_4\text{C}'_4\text{O}'_4\text{H}'_4\text{O}'_2$	2·535	2·495	

Table XVIII.
Metallic Salts of Organic Acids.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
<i>a. Oxalates.</i>				
Potassium oxalate	$K_2C_2O_4H_2O$	$K'_4C'_4O'_4H'_4O'_2$	2.114	2.104
Ammonium	$(NH_4)_2C_2O_4H_2O$	$(NH_2)_2C'_2O'_4H'_4O'_2$	1.450	1.461
Hydrogen sodium	$Na_2C_2O_4H_2O$	$Na'_4C'_4O'_4H'_4O'_2$	2.321	2.315
Potassium quadroxalate	$KH_3(CO_4)_2H_2O$	$K'_2H'_2C'_2O'_4H'_4O'_2$	1.802	1.807
Hydrogen ammonium oxalate	$(NH_4)K_2C_2O_4H_2O$	$(NH_4)_2H'_2C'_2O'_4H'_4O'_2$	1.562	1.563
" potassium	$KH_2C_2O_4$	$K'_2H'_2C'_2O'_4H'_4O'_2$	2.080	2.088
Potassium copper	$K_2CuC_4O_8H_2O$	$K'_4Cu'_3C'_4O'_4H'_4O'_2$	2.285	2.288
Ammonium	$(NH_4)_2Cu(C_2O_4)_2H_2O$	$(NH_4)_2Cu'_4C'_4O'_4H'_4O'_2$	1.908	1.923
Whewellite	CaC_2O_4	$Ca'_4C'_4O'_4$	2.666	2.50-2.75
<i>b. Acetates.</i>				
Sodium acetate	$NaC_2H_3O_2$	$Na'_4C'_4H'_3O'_2$	1.464	1.421
"	$NaC_2H_3O_26H_2O$	$Na'_6C'_4H'_3O'_2H'_4O'_2$	1.400	1.400
Silver	$AgC_2H_3O_2$	$Ag'_4C'_4H'_3O'_2O'_2$	3.050	3.128
Lead	$Pb(C_2H_3O_2)_2^3H_2O$	$Pb'_3C'_4H'_3O'_2H'_4O'_2$	2.471	2.496
Barium	$Ba(C_2H_3O_2)_2H_2O$	$Ba'_4C'_4H'_3O'_2H'_4O'_2$	2.184	2.190
Zinc	$Zn(C_2H_3O_2)_2^3H_2O$	$Zn'_4C'_4H'_3O'_2H'_4O'_2$	1.701	1.717
<i>c. Tartrates.</i>				
Sodium tartrate	$Na_3C_4H_4O_64H_2O$	$Na'_4C'_4H'_4O'_4H'_4O'_2$	1.773	1.794
Potassium	$K_2C_4H_4O_6$	$K'_4C'_4H'_4O'_4$	1.965	1.975
Hydrogen potassium	$KHC_4H_4O_6$	$K'_4H'_2C'_4H'_4O'_4$	1.918	1.943
" ammonium	$(NH_4)HC_4H_4O_6$	$(NH_4)_2H'_2C'_4H'_4O'_4$	1.670	1.680
Sodium potassium	$NaKC_4H_4O_64H_2O$	$Na'_4K'_4C'_4H'_4O'_4H'_4O'_2$	1.757	1.767
" ammonium	$(NH_4)NaC_4H_4O_64H_2O$	$(NH_4)_2Na'_4C'_4H'_4O'_4H'_4O'_2$	1.572	1.576

Table XIX.
Organic Compounds.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Naphthalene.....	C ₁₀ H ₈	C' ₄ H' ₂	1·143	1·153
Anthracene	C ₁₄ H ₁₀	C' ₄ H' ₂	1·171	1·147
Paraffin.....	X(C ₂ H ₂)	X(C' ₄ H' ₂)	0·875	0·870
Cacetone	X(C ₅ H ₈)	X(C' ₄ H' ₂)	0·944	0·92—·906
Succinic acid	C ₄ H ₆ O ₄	C' ₄ H' ₂ O' ₄	1·552	1·552
Essence of aniseed	C ₁₀ H ₂₂ O	C' ₄ H' ₂ O' ₂	1·072	1·073
Camphor	C ₁₀ H ₁₆ O	C' ₄ H' ₂ O' ₂	0·987	0·996
Starch	X(C ₆ H ₁₀ O ₅)	X(C' ₄ H' ₃ O' ₃)	1·500	1·500
Sugar	C ₁₂ H ₂₂ O ₁₁	C' ₄ H' ₄ O' ₃	1·603	1·606
Perchlorinated ether	C ₂ Cl ₆ O	C ₂ Cl ₃ O' ₄	1·913	1·900
Trichloroacetic acid	HC ₂ Cl ₃ O ₂	H' ₂ C' ₂ Cl' ₃ O' ₂	1·618	1·617
Urea	CH ₄ N ₂ O	C' ₄ H ₂ N' ₄ O' ₂	1·304	1·300

Table XX.
Ammonio Compounds.

Substance.	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Cadmium ammonio chloride	CdCl_2NH_3	$\text{Cd}'_3\text{Cl}'_3\text{N}'_2\text{H}'_4$	2.605	2.632
Pupaneo cobalt chloride.....	$\text{Co}_2\text{Cl}_4\text{NH}_3$	$\text{CO}'_6\text{Cl}'_3\text{N}'_2\text{H}'_4$	1.800	1.802
Luteo	$\text{Co}_2\text{Cl}_6\text{NH}_3$	$\text{CO}'_6\text{Cl}'_3\text{N}'_2\text{H}'_4$	1.706	1.701
Copper ammonio	CuCl_2NH_3	$\text{Cu}'_3\text{Cl}'_3\text{N}'_2\text{H}'_4$	2.225	2.194
"	1st	$\text{Cu}'_3\text{Cl}'_3\text{N}'_2\text{H}'_4$		
"	2nd	$\text{Cu}'_2\text{Cl}'_3\text{N}'_2\text{H}'_4\text{O}'_2$	1.689	1.672
Silver	sulphate	$\text{Ag}'_2\text{S}'_6\text{O}'_4\text{N}'_2\text{H}'_4$	2.933	2.918
"	chromate	$\text{Ag}'_6\text{Cr}'_3\text{O}'_4\text{N}'_2\text{H}'_4$	3.108	3.063
Copper	sulphate	$\text{Cu}'_4\text{S}'_6\text{O}'_4\text{N}'_2\text{H}'_4$	2.441	2.476
"	"	$\text{Cu}'_2\text{S}'_6\text{O}'_4\text{N}'_2\text{H}'_4\text{O}'_2$	1.798	1.790
"	"	$\text{Cu}'_2\text{S}'_6\text{O}'_4\text{N}'_2\text{H}'_4\text{H}'_4\text{O}'_2$	1.926	1.950

Table XXI.
Miscellaneous Compounds.

Substance	Molecular weight.	Molecular volume.	Calculated sp. gr.	Observed sp. gr.
Cyanogen iodide	C_2I	$\text{C}_2'\text{I}'_2$	1.8.0	1.850
Chromic chloride.....	Cr_2Cl_6	$\text{Cr}_2'\text{Cl}'_6$	3.028	3.030
chromate	Cr_5O_9	$\text{Cr}'_4\text{O}'_4$	4.014	4.000
" Nitrogen sulphide	N_2	N'_2	2.090	2.116
Sodium hydrate	$\text{Na}\text{H}_2\text{O}$	$\text{Na}'_4\text{H}_4\text{O}'_4$	2.105	2.180
Zinc	$\text{Zn}\text{H}_2\text{O}_2$	$\text{Zn}'_2\text{H}_4\text{O}'_4$	3.046	3.053
Boric acid	$\text{H}_3\text{B}_3\text{O}_3$	$\text{H}'_3\text{B}'_2\text{O}'_3$	1.476	1.479
Sodium sulphite	$\text{Na}_2\text{SO}_3\text{10H}_2\text{O}$	$\text{Na}'_4\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.569	1.561
" hyposulphite	$\text{Na}_2\text{S}_2\text{O}_3\text{5H}_2\text{O}$	$\text{Na}_4\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	1.758	1.736
Potassium disulphite	$\text{K}_2\text{S}_2\text{O}_6$	$\text{K}'_4\text{S}'_6\text{O}'_4$	2.224	2.277
Sodium	$\text{Na}_2\text{S}_2\text{O}_6\text{2H}_2\text{O}$	$\text{Na}'_4\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.122	2.189
Calcium	$\text{CaS}_2\text{O}_6\text{4H}_2\text{O}$	$\text{Ca}'_6\text{S}'_6\text{O}'_4\text{H}'_4\text{O}'_2$	2.153	2.180
Turpeth mineral	$\text{Hg}_3\text{S}_3\text{O}_6$	$\text{Hg}'_4\text{S}'_6\text{O}'_4$	8.134	8.319
Romeite	$\text{Ca}_3\text{Sb}_4\text{O}_4$	$\text{Ca}'_4\text{Sb}'_4\text{O}'_4$	4.737	4.714
Sodium antimonite	$\text{NaSb}_3\text{O}_3\text{3H}_2\text{O}$	$\text{Na}'_4\text{Sb}'_4\text{O}'_4\text{H}'_4\text{O}'_2$	2.808	2.864
Silicohydric chloride	$\text{Si}_3\text{H}_4\text{Cl}_{10}$	$\text{Si}'_2\text{H}_2\text{O}_3$	1.640	1.650