Homework (required):

Read §§ 10.1, 10.2 for next lecture.

Homework (optional, not for extra credit):

The purpose of this assignment is to prove that A_5 is simple using Sylow theory. Notice that $\langle (12345) \rangle$ and $\langle (13245) \rangle$ are distinct Sylow 5-subgroups of A_5 . Thus it suffices to prove:

If |G| = 60 and G has more than one Sylow 5-subgroup, then G is simple.

We proceed by contradiction. Let G be a group of order 60 and suppose

$$n_5(G) := \# \{ \text{Sylow 5-subgroups} \} > 1,$$

and $H \triangleleft G$, $H \neq 1$, G.

(1) Show that $n_5(G) = 6$.

Let P be a Sylow 5-subgroup. Since $[G:N_G(P)]=n_5(G)=6$, we have $|N_G(P)|=10$.

Claim 1. $5 \nmid |H|$

We prove the claim by contradiction. Suppose 5|#H.

- (2) Show that this implies H contains every Sylow 5-subgroup of G.
- (3) Show that H must contain at least 24 elements of order 5.
- (4) Show that #H = 30.

The Sylow theorem shows that $n_3(H)$ must be 1 or 10.

(5) Show that $n_3(H)$ cannot equal 10 (count elements).

Thus $n_3(H)$ is 1 and we may let $Q \triangleleft H$ be the Sylow 3-subgroup of H. Recall that also $P \subset H$.

(6) Show that PQ is a subgroup of H of order 15.

Since [H:PQ]=2, $PQ\lhd H$. The Sylow theorem implies that $n_5(PQ)=1$, and since $P\subset PQ$ is a Sylow 5-subgroup, we must have $P\lhd PQ$.

(7) Show that P must therefore actually be normal in H.

This is a contradiction since $n_5(H)=6$, and the claim is proved.

So now we know $5 \nmid \#H$. The claim shows that there is no nontrivial proper normal subgroup of G with order divisible by 5. To get a contradiction, we will construct from H another normal subgroup $H_2 \triangleleft G$, $H_2 \neq 1, G$ such that $5 \mid \#H_2$.

Claim 2. G contains a normal subgroup of order 2, 3 or 4.

Since $5 \nmid \#H$, the only possible orders for H are 2, 3, 4, 6, 12.

- (8) Show that if H has order 6 then G contains a normal subgroup of order 3.
- (9) Show that if H has order 12 then G contains a normal subgroup of order 3 or 4.

Thus indeed there is $H_1 \triangleleft G$ of order 2, 3 or 4, proving the claim.

Let $\overline{G} = G/H_1$, which must have order 30, 20 or 15.

(10) Show that in any of these cases \overline{G} contains a normal 5-Sylow subgroup \overline{P} .

Let $H_2 = \{ g \in G : g \mod H \in \overline{P} \subset \overline{G} \}.$

(11) Show that H_2 is a normal subgroup of G which is neither 1 nor G, and that $5|\#H_2$.

This contradicts $Claim\ 1$. Hence A_5 is simple.