1 Общие замечания

Данный текст представляет из себя краткий конспект лекций по курсу «Математическая логика», рассказанных студентам ИТМО (группы M3234-M3239) в 2017-2018 учебном году.

2 Общая топология

Мы начинаем курс немного издалека: от некоторых базовых тем общей топологии. С одной стороны, эти знания пригодятся нам дальше в курсе, с другой — есть надежда, что они настроят слушателей курса на правильный лад.

Определение 2.1. Топологическим пространством мы назовём упорядоченную пару множеств $\langle X, \Omega \rangle$, где $\Omega \subseteq \mathcal{P}(X)$, отвечающую следующим трём свойствам:

- 1. Какое бы ни было семейство множеств $\{A_{\alpha}\}$, где $A_{\alpha} \in \Omega$, выполнено $\cup_{\alpha} \{A_{\alpha}\} \in \Omega$
- 2. Какое бы ни было конечное семейство множеств $\{A_1, \dots, A_n\}$, где $A_i \in \Omega$, выполнено $A_1 \cap A_2 \cap \dots \cap A_n \in \Omega$
- 3. $\varnothing \in \Omega$. $X \in \Omega$

Определение 2.2. Пусть дано топологическое пространство $\langle X,\Omega \rangle$. Тогда любое множество $A \in \Omega$ назовём *открытым*. Если же $X \setminus A \in \Omega$, то такое множество назовём *замкнутым*.

Теорема 2.1. Следующие объекты являются топологическими пространствами:

- 1. Топология стрелки: $\langle \mathbb{R}, \{(x, +\infty) | x \in \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}\} \rangle$
- 2. Дискретная топология на множестве $X \colon \langle X, \mathcal{P}(X) \rangle$
- 3. Топология Зарисского на множестве $X: \langle X, \{A \in \mathcal{P}(X) | (X \setminus A) \text{конечно } \} \rangle$

Определение 2.3. *Базой* топологического пространства $\langle X, \Omega \rangle$ назовём любое такое семейство множеств \mathcal{B} , что каждое открытое множество представляется объединением некоторого подмножества \mathcal{B} . Или, в формальной записи, $\Omega = \{ \cup S | S \subseteq B \}$. Также будем говорить, что данная база \mathcal{B} задаёт топологическое пространство $\langle X, \Omega \rangle$.

Теорема 2.2. Классическая топология Евклидова пространства ℝ: Множество

$$\mathcal{B} = \{(a, b) | a, b \in \mathbb{R}\}$$

является базой Евклидова пространства.

Определение 2.4. Топологическое пространство $\langle X, \Omega \rangle$ назовём связным, если единственные одновременно открытые и замкнутые множества в нём — \emptyset и X.

Теорема 2.3. Топологическое пространство (X, Ω) связно тогда и только тогда, когда в нём нет двух непустых открытых множеств A и B, что $A \cup B = X$ и $A \cap B = \emptyset$.

Определение 2.5. Назовём частичным порядком (\sqsubseteq) на множестве X любое рефлексивное, транзитивное и антисимметричное отношение на нём.

Определение 2.6. Рассмотрим множество X с заданным на нём частичным порядком \sqsubseteq . Рассмотрим множество $\mathcal{B}_{\sqsubseteq} = \{\{t \in X | x \sqsubseteq t\} | x \in X\}$. Тогда топологическое пространство X_{\sqsubseteq} , задаваемое базой топологии $\mathcal{B}_{\sqsubseteq}$, мы назовём топологией частичного порядка (\sqsubseteq) на X.

Теорема 2.4. При любом выборе X и (\sqsubseteq) X_{\sqsubset} является топологическим пространством.

Определение 2.7. Пусть задано топологическое пространство $\langle X, \Omega \rangle$, и пусть задано множество $A \subseteq X$. Тогда рассмотрим $\Omega_A = \{S \cap A | S \in \Omega\}$. Будем называть топологическое пространство $\langle A, \Omega_A \rangle$ пространством с топологией, индуцированной пространством $\langle X, \Omega \rangle$.

Теорема 2.5. При любом выборе топологического пространства $\langle X, \Omega \rangle$ и A (подмножества X) пространство с индуцированной топологией $\langle A, \Omega_A \rangle$ является топологическим пространством.

Теорема 2.6. Пусть задано топологическое пространство $\langle X, \Omega \rangle$, и пусть $A \subseteq X$. Тогда множество A называется связным, если оно связно как пространство с индуцированной пространством $\langle X, \Omega \rangle$ топологией.

Теорема 2.7. Рассмотрим ациклический граф G с множеством вершин V. Построим по нему отношение: положим, что $x \sqsubseteq y$, если имеется путь из x в y. Тогда граф слабо связен тогда и только тогда, когда связно соответствующее топологическое пространство частичного порядка.

3 Исчисление высказываний

Матлогика — это наука о правильных математических рассуждениях, а поскольку рассуждения обычно ведутся на каком-то языке, то она неразрывна связана с идеей двух языков: языка исследователя (или иначе его называют мета-языком), и предметного языка. Как следует из названий, языком исследователя пользуемся мы, формулируя утверждения или доказывая теоремы о разных способах математических рассуждений, или просто их обсуждая. Сами же математические рассуждения, собственно и составляющие предмет исследования, формализованы в некотором предметном языке.

Мы начнём с очень простого предметного языка — языка исчисления высказываний. Элементами (строками) данного языка являются некоторые выражения (формулы), по структуре очень похожие на арифметические, которые называются высказываниями.

Каждое высказывание — это либо *пропозициональная переменная* — большая буква латинского алфавита, возможно, с цифровым индексом, либо оно составлено из одного или двух высказываний меньшего размера, соединённых логической связкой.

Связок в языке мы определим 4 (хотя при необходимости этот список может быть в любой момент изменен).

- конъюнкция: если α и β высказывания, то $\alpha \& \beta$ тоже высказывание.
- ullet дизъюнкция: если α и β высказывания, то $\alpha \lor \beta$ тоже высказывание.
- ullet импликация: если lpha и eta высказывания, то lpha o eta тоже высказывание.
- ullet отрицание: если lpha высказывание, то $\neg lpha$ тоже высказывание.

Высказывания, подробности которых нас не интересуют, мы будем обозначать начальными буквами греческого алфавита (α , β , γ и т.п.).

3.1 Оценка высказываний

Процесс «вычисления» значения высказываний (оценка высказываний) имеет совершенно естественное определение. Мы фиксируем некоторое множество истичностных значений V, для начала мы в качестве такого множества возьмем множество $\{\mathtt{И},\mathtt{I}\}$, здесь $\mathtt{И}$ означает истину, а $\mathtt{I}-$ ложь. Всем пропозициональным переменным мы приписываем некоторое значение, а затем рекурсивно вычисляем значение выражения естественным для указанных связок образом.

В дальнейшем мы будем брать необычные множества истинностных значений, и будем давать неожиданный смысл связкам, однако, классическая интерпретация связок всегда будет подразумеваться, если не указано иного.

Среди высказываний выделяются те, что остаются истинными при любой оценке пропозициональных переменных. Такие высказывания называют *тавталогиями* или *общезначимыми высказываниями*. Также, на языке исследователя общезначимость высказывания α можно кратко записать как $\models \alpha$.

Оценку высказываний мы будем записывать с помощью двойных квадратных скобок. Например, нетрудно видеть, что $[\![P \to P]\!] = \mathtt{N}$. Если нам требуется явно задать значения некоторых пропозициональных переменных, мы будем записывать эти значения как верхний индекс: $[\![P \to Q]\!]^{P:=\mathtt{N}} = \mathtt{N}$.

3.2 Доказательства

В любой теории есть некоторые утверждения (аксиомы), которые принимаются без доказательства. В исчислении высказываний мы должны явно определить список всех возможных аксиом. Например, мы можем взять утверждение $A\&B \to A$ в качестве аксиомы. Однако, есть множество аналогичных утверждений, например, $B\&A \to B$, которые не отличаясь по сути, отличаются по записи, и формально говоря, являются другими утверждениями.

Для решения вопроса мы введём понятие *схемы аксиом* — некоторого обобщённого шаблона, подставляя значения в который, мы получаем различные, но схожие аксиомы. Например, схема аксиом $\psi \& \phi \to \psi$ позволяет получить как аксиому $A\&B \to A$ (при подстановке $\psi := A, \phi := B$), так и аксиому $B \& A \to B$.

Возьмем следующие схемы аксиом для исчисления высказываний.

- $(\phi) \rightarrow ((\psi) \rightarrow (\phi))$ (1)
- (2) $((\phi) \to (\psi)) \to ((\phi) \to (\psi) \to (\pi)) \to ((\phi) \to (\pi))$
- $(\phi) \to (\psi) \to (\phi) \& (\psi)$ (3)
- (4) $(\phi)\&(\psi)\to(\phi)$
- $(\phi)\&(\psi)\to(\psi)$ (5)
- $(\phi) \rightarrow (\phi) \lor (\psi)$ (6)
- $(\psi) \rightarrow (\phi) \lor (\psi)$ (7)
- $((\phi) \to (\pi)) \to ((\psi) \to (\pi)) \to ((\phi) \lor (\psi) \to (\pi))$ $((\phi) \to (\psi)) \to ((\phi) \to \neg(\psi)) \to \neg(\phi)$ (8)
- (9)
- (10) $\neg\neg(\phi) \to (\phi)$

Помимо аксиом, нам требуется каким-то образом научиться преобразовывать одни верные утверждения в другие. Сделаем это с помощью правил вывода. У нас пока будет одно правило вывода — Modus Ponens. Это также схема, она позволяет при доказанности двух формул ψ и $\psi \to \phi$ считать доказанной формулу ϕ .

Определение 3.1. Доказательство в исчислении высказываний — это некоторая конечная последовательность выражений $\alpha_1, \alpha_2 \dots \alpha_n$ из языка L, такая, что каждое из утверждений $\alpha_i (1 \le i \le n)$ либо является аксиомой, либо получается из других утверждений $\alpha_{P_1}, \, \alpha_{P_2} \dots \alpha_{P_k} \, (P_1 \dots P_k < i)$ по правилу вывода.

Определение 3.2. Высказывание α называется доказуемым, если существует доказательство $\alpha_1, \alpha_2 \dots \alpha_k$, и в нем α_k совпадает с α .

Вообще, схемы аксиом и правила вывода существуют для удобства задания исчисления. В дальнейшем будет очень неудобно возиться с этими объектами. Поэтому мы считаем, что в исчислении имеется бесконечно много аксиом и правил вывода, которые порождаются подстановкой всех возможных формул вместо параметров в схемы.

В качестве сокращения записи в языке исследователя мы будем писать $\vdash \alpha$, чтобы сказать, что α доказуемо.

Традиционно правило вывода Modus Ponens записывают так:

$$\frac{\phi \quad (\phi) \to (\psi)}{\psi}$$

4 Теорема о дедукции

Соглашение об обозначениях. Будем обозначать буквами $\Gamma, \Delta, \Sigma, \Pi$ списки формул (возможно, пустые).

Определение 4.1. Вывод из допущений. Пусть Γ – некоторый список высказываний, а α — некоторое высказывание. Тогда мы будем говорить, что высказывание α выводимо из Γ (и записывать это как $\Gamma \vdash \alpha$), если существует такая последовательность высказываний $\alpha_1, \alpha_2, \ldots \alpha_{n-1}, \alpha$ (называемая выводом α из Γ), что каждое из высказываний α_i — это

- либо аксиома,
- либо получается по правилу Modus Ponens из предыдущих высказываний,
- либо высказывание из списка Г.

Элементы Γ мы будем называть *допущениями*. Также эти элементы называют предположениями или гипотезами.

В свете данного определения можно заметить, что доказательство — это вывод из пустого списка допущений.

Теорема 4.1. Теорема о дедукции. Утверждение $\Gamma \vdash \alpha \to \beta$ справедливо тогда и только тогда, когда справедливо, что $\Gamma, \alpha \vdash \beta$.

Для доказательства рассмотрим следующую лемму:

Лемма 4.2. $\vdash \alpha \rightarrow \alpha$

Доказательство.

Доказательство теоремы 4.1. Сперва докажем прямое следствие. Для этого нам достаточно научиться по любому выводу $\alpha \to \beta$ из Γ строить вывод β из Γ, α . Возьмем вывод формулы $\alpha \to \beta$, то есть некоторую последовательность формул $\delta_1 \dots \delta_{m-1}$; $\alpha \to \beta$. Добавив к выводу 2 формулы, получаем требуемый вывод:

П

(1)
$$\delta_1$$
 $(m-1)$ δ_{m-1} (m) $\alpha \to \beta$ $(m+1)$ α «Свежедобавленная» аксиома $(m+2)$ β М.Р. $m, m+1$

Теперь докажем обратное. Нам необходимо построить вывод утверждения $\Gamma \vdash \alpha \to \beta$ по имеющемуся выводу $\delta_1 \dots \delta_{m-1}, \beta$. Мы поступим так: сперва набросаем план вывода – разместим по тексту «ключевые» формулы, которые потом дополним до полноценного вывода промежуточными формулами.

План вывода будет такой:

(1)
$$\Gamma \vdash \alpha \to \delta_1$$

... $(m-1)$ $\Gamma \vdash \alpha \to \delta_{m-1}$
 (m) $\Gamma \vdash \alpha \to \beta$

Теперь надо дополнить его до полноценного вывода. Будем рассматривать формулы подряд и перед каждой формулой добавлять некоторое количество формул, обосновывающих соответствующий шаг доказательства. Рассмотрим формулу номер i. Возможны следующие варианты:

- 1. δ_i это аксиома или предположение, входящее в Γ . Тогда перед этой формулой вставим формулы δ_i и $\delta_i \to (\alpha \to \delta_i)$, и окажется, что i-я формула выводится из предыдущих двух формул путем применения правила Modus Ponens.
- 2. δ_i совпадает с α . Тогда мы вставим перед ней 4 первые формулы из леммы, и $\delta_i \to \alpha$ будет получаться по правилу Modus Ponens.
- 3. δ_i выводится по правилу Modus Ponens из каких-то других утверждений δ_j и δ_k (при этом $\delta_k \equiv \delta_j \to \delta_i$), где j < i и k < i. Покажем, что $\alpha \to \delta_i$ тоже может быть выведена из утверждений $\alpha \to \delta_j$ и $\alpha \to (\delta_j \to \delta_i)$.

Для этого добавим два высказывания:

$$\begin{array}{ll} (\alpha \to \delta_j) \to ((\alpha \to (\delta_j \to \delta_i)) \to (\alpha \to \delta_i)) & \text{Cx. akc. 2} \\ ((\alpha \to (\delta_j \to \delta_i)) \to (\alpha \to \delta_i)) & \text{M.P. из } j \text{ и } i - 6 \end{array}$$

По аналогии мы можем рассмотреть отношение *следования*. Будем говорить, что высказывание α следует из высказываний Γ , если при любой оценке пропозициональных переменных, входящих в высказывания Γ и α , на которых все высказывания из Γ истинны, α также истинно. Записывать, что α следует из Γ , будем так: $\Gamma \models \alpha$.

5 Теорема о полноте исчисления высказываний

Определение 5.1. Введем обозначение. Пусть α — это некоторое высказывание, а x — некоторое истинностное значение. Тогда обозначим за $_{[x]}\alpha$ высказывание α , если x — истина, и $\neg(\alpha)$, если x — ложь. Также, если формула α — это формула с n пропозициональными переменными $P_1 \dots P_n$, и $x_1 \dots x_n$ — некоторые истинностные значения, то за $\llbracket \alpha \rrbracket^{P_1:=x_1,\dots P_n:=x_n}$ обозначим значение формулы α при подстановке значений $x_1 \dots x_n$ вместо переменных $P_1 \dots P_n$.

Лемма 5.1. Если $\Gamma, \Sigma \vdash \alpha$, то $\Gamma, \Delta, \Sigma \vdash \alpha$. Если $\Gamma, \Delta, \Sigma, \Pi \vdash \alpha$, то $\Gamma, \Sigma, \Delta, \Pi \vdash \alpha$.

Доказательство. Упражнение

Лемма 5.2. Если справедливы 3 утверждения: $\Gamma \vdash \gamma$, $\Delta \vdash \delta$ и γ , $\delta \vdash \alpha$, то справедливо и Γ , $\Delta \vdash \alpha$

Доказательство. Мы получим требуемый вывод, просто последовательно соединив все три исходных вывода. Первые два вывода будут (очевидно) корретными при допущениях Γ и Δ . В третьем же выводе могут использоваться высказывания γ и δ , отсутствующие в предположениях. Но поскольку эти высказывания доказаны в первых двух частях вывода, мы будем иметь полное право их упоминать — на тех же основаниях, на которых они указаны в конце соответствующих доказательств.

Возьмем некоторую связку исчисления высказываний, например конъюнкцию: A&B. Построим для нее таблицу истинности. По каждой строчке построим утверждение, в котором отрицания появляются там, где в таблице истинности находится \mathcal{J} :

A	B	A&B	утверждение
Л	Л	Л	$\neg A, \neg B \vdash \neg (A \& B)$
Л	И	Л	$\neg A, B \vdash \neg (A \& B)$
И	Л	Л	$A, \neg B \vdash \neg (A \& B)$
И	И	И	$A, B \vdash A \& B$

Лемма 5.3. Каждое из построенных по таблицам истинности утверждений доказуемо.

Доказательство. Упражнение.

Лемма 5.4 (Правило контрапозиции). Каковы бы ни были формулы α и β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Доказательство. Сперва докажем, что $\alpha \to \beta$, $\neg \beta \vdash \neg \alpha$.

- (1) $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ Cx. akc. 9
- (2) $\alpha \to \beta$ Допущение
- $(3) \quad (\alpha \to \neg \beta) \to \neg \alpha$ M.P. 2,1
- $(4) \quad \neg \beta \to (\alpha \to \neg \beta)$ Сх. акс. 1
- $(5) \quad \neg \beta$ Допущение
- (6) $\alpha \to \neg \beta$ M.P. 5,4
- M.P. 6,3 $(7) \quad \neg \alpha$

Тогда, применив 2 раза Теорему о дедукции, получим вывод требуемого утверждения.

Лемма 5.5. Правило исключенного третьего. Какова бы ни была формула $\alpha, \vdash \alpha \lor \neg \alpha$ Доказательство. Доказательство проведем в 3 этапа.

1. Для начала покажем $\vdash \neg(\alpha \lor \neg \alpha) \to \neg \alpha$:

$$\begin{array}{lll} (1) & \alpha \to \alpha \vee \neg \alpha & \text{Cx. акс. 6} \\ (2) \dots (n+1) & \gamma_1, \dots \gamma_{n-1}, (\alpha \to \alpha \vee \neg \alpha) \to (\neg (\alpha \vee \neg \alpha) \to \neg \alpha) & \text{Д-во из леммы 5.4} \\ (n+2) & \neg (\alpha \vee \neg \alpha) \to \neg \alpha & \text{M.P. } 1, n+1 \end{array}$$

2. Затем докажем $\vdash \neg(\alpha \lor \neg \alpha) \rightarrow \neg \neg \alpha$:

$$\begin{array}{lll} (1) & \neg\alpha \to \alpha \vee \neg\alpha & \text{Cx. акс. 7} \\ (2) \dots (k+1) & \delta_1, \dots \delta_{k-1}, (\neg\alpha \to \alpha \vee \neg\alpha) \to (\neg(\alpha \vee \neg\alpha) \to \neg\neg\alpha) & \text{Д-во из леммы 5.4} \\ (k+2) & \neg(\alpha \vee \neg\alpha) \to \neg\neg\alpha & \text{M.P. } 1, k+1 \end{array}$$

3. Теперь докажем все вместе:

$$\begin{array}{lll} (1) & \neg(\alpha \vee \neg \alpha) \to \neg \alpha & \text{по пункту 1} \\ (2) & \neg(\alpha \vee \neg \alpha) \to \neg \neg \alpha & \text{по пункту 2} \\ (3) & (\neg(\alpha \vee \neg \alpha) \to \neg \alpha) \to (\neg(\alpha \vee \neg \alpha) \to \neg \neg \alpha) \to (\neg \neg(\alpha \vee \neg \alpha)) & \text{Cx. akc. 9} \\ (4) & (\neg(\alpha \vee \neg \alpha) \to \neg \neg \alpha) \to \neg \neg(\alpha \vee \neg \alpha) & \text{M.P. 1,3} \\ (5) & \neg\neg(\alpha \vee \neg \alpha) & \text{M.P. 2,4} \end{array}$$

(6) $\neg \neg (\alpha \lor \neg \alpha) \to (\alpha \lor \neg \alpha)$ Сх. акс. 10

(7) $\alpha \vee \neg \alpha$ M.P. 5,6

Лемма 5.6. Об исключении допущения. Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$. Тогда также справедливо $\Gamma \vdash \alpha$.

Доказательство. Применив теорему о дедукции к условиям теоремы получим следующее:

$$\Gamma \vdash \rho \to \alpha$$
$$\Gamma \vdash \neg \rho \to \alpha$$

Тогда следующий вывод покажет $\Gamma \vdash \alpha$:

$$\begin{array}{llll} (1)\ldots(p) & \gamma_1,\ldots\gamma_{p-1},\rho\to\alpha & \text{Вывод }\Gamma\vdash\rho\to\alpha \\ (p+1)\ldots(q) & \delta_1,\ldots\delta_{q-p-1},\neg\rho\to\alpha & \text{Вывод }\Gamma\vdash\neg\rho\to\alpha \\ (q+1)\ldots(r) & \epsilon_1,\ldots\epsilon_{r-q-1},\rho\vee\neg\rho & \text{Лемма 5.5} \\ (r+1) & (\rho\to\alpha)\to(\neg\rho\to\alpha)\to(\rho\vee\neg\rho)\to\alpha & \text{Сх. аксиом 8} \\ (r+2) & (\neg\rho\to\alpha)\to(\rho\vee\neg\rho\to\alpha) & \text{M.P. 1, }r+1 \\ (r+3) & \rho\vee\neg\rho\to\alpha & \text{M.P. p, }r+2 \\ (r+4) & \alpha & \text{M.P. }r,r+3 \end{array}$$

Теорема 5.7. О полноте исчисления высказываний. Пусть справедливо $\models \alpha$. Тогда также справедливо, что $\vdash \alpha$.

Доказательство. Для доказательства теоремы мы докажем чуть более сильное утверждение — что для любого k от 0 до n и любой оценки переменных $x_1, \ldots x_k$ справедливо $[x_1]P_1, \ldots [x_k]P_k \vdash \alpha$. Нетрудно заметить, что утверждение теоремы непосредственно следует из данного утверждения для k=0. Доказательство будет вестись индукцией по n-k.

База. Пусть n-k=0, то есть $k=n. \models \alpha$ означает, что при любой оценке $x_1, \ldots x_n$ пропозициональных переменных $P_1, \ldots P_n$ справедливо $\alpha[P_1:=x_1, \ldots P_n:=x_n]=$ И. Возьмем некоторую оценку переменных $x_1, \ldots x_n$. Тогда, по лемме 5, $[x_1]P_1, \ldots [x_n]P_n \vdash \alpha[P_1:=x_1,\ldots P_n:=x_n]\alpha$ то есть $[x_1]P_1,\ldots [x_n]P_n \vdash \alpha$.

Переход. Пусть утверждение уже доказано для некоторого n-k>0, покажем его для n-k+1 (то есть доказано для k< n, покажем его для k-1). Возьмем некоторую оценку переменных $x_1, \ldots x_{k-1}$. По предположению, $[x_1]P_1, \ldots [x_k]P_k \vdash \alpha$, то есть

$$[x_1]P_1, \dots [x_{k-1}]P_{k-1}, \neg P_k \vdash \alpha$$

 $[x_1]P_1, \dots [x_{k-1}]P_{k-1}, P_k \vdash \alpha$

Тогда по лемме об исключении допущения, справедливо $[x_1]P_1, \ldots [x_{k-1}]P_{k-1} \vdash \alpha$.

Теорема 5.8. О корректности исчисления высказываний. Пусть справедливо $\vdash \alpha$. Тогда также справедливо, что $\models \alpha$.

Доказательство. По условию теоремы, у нас есть доказательство высказывания α , то есть последовательность высказываний $\alpha_1, \dots \alpha_m$. Каждое высказывание — это либо аксиома, либо применение правила Modus Ponens. Докажем, что для каждого k все высказывания α_l при l < k — тавтологии. Доказательство будем вести индукцией по k.

База. Пусть k=0, тогда нет ни одного высказывания, про которое нужно доказать, что оно — тавтология, то есть утверждение автоматически верно.

Переход. Пусть для некоторого k утверждение справедливо, докажем его для k+1. Выберем некоторую оценку $x_1, \ldots x_n$ пропозициональных переменных $P_1, \ldots P_n$, использованных в высказываниях $\alpha_1 \ldots \alpha_{k+1}$. Рассмотрим случаи.

Пусть α_{k+1} — аксиома. В данную аксиому входят одна, две или три формулы $\beta_1, \beta_2, \beta_3$. Подставив всех возможных истинностных значений вместо данных формул можно проверить, что все аксиомы являются тавтологиями, значит, они будут истинны и на тех конкретных значениях, которые примут данные формулы после подстановки значений $x_1, \dots x_n$.

Пусть α_{k+1} получается по правилу Modus Ponens из α_p и α_q , причем $\alpha_q \equiv \alpha_p \to \alpha_{k+1}$. Тогда $[\![\alpha_p]\!]^{P_1:=x_1,\dots P_n:=x_n}=$ И и $[\![\alpha_p\to\alpha_{k+1}]\!]^{P_1:=x_1,\dots P_n:=x_n}=$ И. Из таблицы истинности импликации следует, что неизбежно $[\![\alpha_{k+1}]\!]^{P_1:=x_1,\dots P_n:=x_n}=$ И.

Заметим, что вместе из этих двух теорем следует, что если неверно, что $\vdash \alpha$, то неизбежно найдется контрпример.

6 Литература

Список литературы

[1] Виро О.Я., Иванов А.О., Нецветаев Н.Ю., Харламов В.М. Элементарная топология — М.: МЦНМО, 2012