

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/10903 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/US00/21878

(22) International Filing Date: 9 August 2000 (09.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/147,986 9 August 1999 (09.08.1999) US
60/160,807 21 October 1999 (21.10.1999) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US	60/147,986 (CIP)
Filed on	9 August 1999 (09.08.1999)
US	60/160,807 (CIP)
Filed on	21 October 1999 (21.10.1999)

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043

(US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). YANG, Junming [CN/US]; 7125 Bark Lane, San Jose, CA 95129 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARtPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/10903 A2

(54) Title: PROTEASES AND PROTEASE INHIBITORS

(57) Abstract: The invention provides human proteases and protease inhibitors (PPIM) and polynucleotides which identify and encode PPIM. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of PPIM.

PROTEASES AND PROTEASE INHIBITORS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of proteases and protease inhibitors and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative and autoimmune/inflammatory disorders.

BACKGROUND OF THE INVENTION

Proteolytic processing is an essential component of normal cell growth, differentiation, remodeling, and homeostasis. The cleavage of peptide bonds within cells is necessary for the maturation of precursor proteins to their active forms, the removal of signal sequences from targeted proteins, the degradation of incorrectly folded proteins, and the controlled turnover of peptides within the cell. Proteases participate in apoptosis, inflammation, and tissue remodeling during embryonic development, wound healing, and normal growth. They are necessary components of bacterial, parasitic, and viral invasion and replication within a host. Four principal categories of mammalian proteases have been identified based on active site structure, mechanism of action, and overall three-dimensional structure. (See Beynon, R.J. and J.S. Bond (1994) Proteolytic Enzymes: A Practical Approach, Oxford University Press, New York NY, pp. 1-5.)

The serine proteases (SPs) are a large family of proteolytic enzymes that include the digestive enzymes, trypsin and chymotrypsin; components of the complement cascade and of the blood-clotting cascade; and enzymes that control the degradation and turnover of macromolecules of the extracellular matrix. SPs are so named because of the presence of a serine residue found in the active catalytic site for protein cleavage. The active site of all SPs is composed of a triad of residues including the aforementioned serine, an aspartate, and a histidine residue. SPs have a wide range of substrate specificities and can be subdivided into subfamilies on the basis of these specificities. The main subfamilies are trypases which cleave after arginine or lysine; aspases which cleave after aspartate; chymases which cleave after phenylalanine or leucine; metases which cleavage after methionine; and serases which cleave after serine. Clp protease is a unique member of the serine protease family as its activity is controlled by a regulatory subunit that binds and hydrolyzes ATP. Clp protease was originally found in plant chloroplasts but is believed to be widespread in both prokaryotic and eukaryotic cells (Maurizi, M.R. et al. (1990) J. Biol. Chem. 2665:12546-12552). SKD3, a mammalian homolog of the bacterial Clp regulatory subunit, has recently been identified in mouse (Perier, F. et al. (1995) Gene 152:157-163).

Cysteine proteases are involved in diverse cellular processes ranging from the processing of precursor proteins to intracellular degradation. Mammalian cysteine proteases include lysosomal

cathepsins and cytosolic calcium activated proteases, calpains. Of particular note, cysteine proteases are produced by monocytes, macrophages and other cells of the immune system which migrate to sites of inflammation and in their protective role secrete various molecules to repair damaged tissue. These cells may overproduce the same molecules and cause tissue destruction in certain disorders. In autoimmune diseases such as rheumatoid arthritis, the secretion of the cysteine protease, cathepsin C, degrades collagen, laminin, elastin and other structural proteins found in the extracellular matrix of bones. The cathepsin family of lysosomal proteases includes the cysteine proteases: cathepsins B, H, K, L, O2, and S; and the aspartyl proteases; cathepsins D and G. Various members of this endosomal protease family are differentially expressed. Some, such as cathepsin D, have a ubiquitous tissue distribution while others, such as cathepsin L, are found only in monocytes, macrophages, and other cells of the immune system.

Aspartic proteases include bacterial penicillopepsin, mammalian pepsin, renin, chymosin, and certain fungal proteases. The characteristic active site residues of aspartic proteases are a pair of aspartic acid residues, for example, Asp33 and Asp213 in penicillopepsin. Aspartic proteases are also called acid proteases because the optimum pH for their activity is between 2 and 3. In this pH range, one of the aspartate residues is ionized and the other is neutral. A potent inhibitor of aspartic proteases is the hexapeptide pepstatin which, in the transition state, resembles normal substrates.

Carboxypeptidases A and B are the principal mammalian representatives of the metallo-protease family. Both are exopeptidases of similar structure and active site configuration. Carboxypeptidase A, like chymotrypsin, prefers C-terminal aromatic and aliphatic side chains of hydrophobic nature, whereas carboxypeptidase B is directed toward basic arginine and lysine residues. Active site components include zinc, which coordinates two glutamic acid and one histidine residues in the protein.

Ubiquitin proteases are associated with the ubiquitin conjugation system (UCS), a major pathway for the degradation of cellular proteins in eukaryotic cells and some bacteria. The UCS mediates the elimination of abnormal proteins and regulates the half-lives of important regulatory proteins that control cellular processes such as gene transcription and cell cycle progression. In the UCS pathway, proteins targeted for degradation are conjugated to a ubiquitin, a small heat stable protein. The ubiquinated protein is then recognized and degraded by proteasome, a large, multisubunit proteolytic enzyme complex, and ubiquitin is released for reutilization by ubiquitin protease. The UCS is implicated in the degradation of mitotic cyclic kinases, oncoproteins, tumor suppressor genes such as p53, viral proteins, cell surface receptors associated with signal transduction, transcriptional regulators, and mutated or damaged proteins (Ciechanover, A. (1994) *Ccll* 79:13-21). A murine proto-oncogene, *Ubp*, encodes a nuclear ubiquitin protease whose overexpression leads to oncogenic transformation of NIH3T3 cells, and the human homolog of this gene is consistently elevated in small cell tumors and adenocarcinomas of the lung (Gray, D.A. (1995) *Oncogene* 10:2179-2183).

Protease inhibitors and other regulators of protease activity control the activity and effects of proteases. Protease inhibitors have been shown to control pathogenesis in animal models of proteolytic disorders (Murphy, G. (1991) Agents Actions Suppl. 35:69-76). Low levels of the cystatins, low molecular weight inhibitors of the cysteine proteases, correlate with malignant progression of tumors (Calkins, C. et al (1995) Biol. Biochem. Hoppe Seyler 376:71-80).

The plasma inter- α -trypsin inhibitor family molecules are serine protease inhibitors (serpins) composed of a 240 kDa plasma protein complex of at least five different types of glycoproteins. These glycoproteins consist of four heavy (H) chains and one 30 kDa light (L) chain named H1, H2, H3, H4, and L, and are independently synthesized and proteolytically processed from precursor proteins (Daveau, 10 M. et al. (1998) Arch. Biochem. Biophys. 350:315-323; and Salier, J.P. et al. (1992) Mamm. Genome 2:233-239). The plasma inter- α -trypsin inhibitor light chains have sequence similarity to the Kunitz trypsin inhibitors which appear to be present in all vertebrates (Salier, J.P. (1990) Trends Biochem. Sci. 15:435-439). Some examples of the Kunitz trypsin inhibitors are tissue factor pathway inhibitor, which regulates tissue factor-induced coagulation, and protease nexin-2, which regulates serum coagulation 15 factor XIa. (Broze, G.J. (1995) Annu. Rev. Med. 46:103-112; and Wagner, S.L. et al. (1993) Brain Res. 626:90-98). The heavy chain precursors encode a signal peptide sequence and the mature chain. Other plasma inter- α -trypsin inhibitor heavy chains have been described in human and rodents (Bourguignon, J. et al. (1993) Eur. J. Biochem. 212:771-776; Salier, 1992, *supra*; and Salier, J.P. (1996) Biochem. J. 315:1-9). The expression of the rat plasma inter- α -trypsin inhibitor genes is regulated by inflammation 20 *in vivo*. The genes are predominantly expressed in the rat liver, but H2 and H3 mRNA is also present in brain, intestine, and stomach (Daveau, *supra*).

Kallistatins are members of the serine protease inhibitor family. Kallistatin forms a specific and covalently-linked complex with tissue kallikrein, which is a serine proteinase capable of cleaving kininogen to release vasoactive kinin. Components of the tissue kallikrein-kinin system include tissue 25 kallikrein, kallistatin, kininogen, kinin, bradykininB1 and B2 receptors, and kininases (Chao, J. and L. Chao (1995) Biol. Chem. Hoppe Seyler 376:705-713).

Proteases and protease inhibitory molecules may contain amino acid sequence motifs which determine protein-protein interactions, such as the potential metal-binding site of von Willebrand factor type A3 (vWFA3) motif, glycine-amino acid-serine-amino acid-serine. This motif is also required for 30 ligand interaction in the homologous I-type domains of integrins CR3 and LFA-1 (Huizinga, E.G. (1997) Structure 5:1147-1156).

Protease inhibitors play a major role in the regulation of the activity and effect of proteases. They have been shown to control pathogenesis in animal models of proteolytic disorders and in the treatment of HIV (Murphy, G. (1991) Agents Actions Suppl. 35:69-76; and Pakyz, A. and D. Israel 35 (1997) J. Am. Pharm. Assoc. (Wash.) NS37:543-551).

The discovery of new proteases and protease inhibitors and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and autoimmune/inflammatory disorders.

5

SUMMARY OF THE INVENTION

The invention features purified polypeptides, proteases and protease inhibitors, referred to collectively as "PPIM" and individually as "PPIM-1," "PPIM-2," "PPIM-3," "PPIM-4," "PPIM-5," "PPIM-6," "PPIM-7," "PPIM-8," "PPIM-9," "PPIM-10," "PPIM-11," "PPIM-12," "PPIM-13," "PPIM-14," "PPIM-15," "PPIM-16," "PPIM-17," "PPIM-18," "PPIM-19," "PPIM-20," "PPIM-21," 10 "PPIM-22," "PPIM-23," "PPIM-24," "PPIM-25," "PPIM-26," and "PPIM-27." In one aspect, the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:I-27, c) a biologically active fragment of an 15 amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-27.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising an 20 amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting 25 of SEQ ID NO:1-27. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-27. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:28-54.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence 30 selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1- 35 27. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In

another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. The method comprises a) culturing a cell under conditions suitable for expression 10 of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27.

20 The invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) 25 an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) 30 an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in 35 the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions

whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

5 The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, c) a 10 polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide 15 comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected 20 from the group consisting of SEQ ID NO:1-27, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional PPIM, comprising administering to a patient in need of such treatment the composition.

25 The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected 30 from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a 35 method of treating a disease or condition associated with decreased expression of functional PPIM,

comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional PPIM, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-27. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a

change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:28-54, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, ii) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, ii) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:28-54, iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; 25 and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

30

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOS), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding PPIM.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of PPIM.

Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding PPIM were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

10 Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

15 It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings 20 as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in 25 connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"PPIM" refers to the amino acid sequences of substantially purified PPIM obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, 30 and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of PPIM. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PPIM either by directly interacting with PPIM or by acting on components of the biological pathway in which PPIM participates.

35 An "allelic variant" is an alternative form of the gene encoding PPIM. Allelic variants may

result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.

- 5 Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding PPIM include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as PPIM or a polypeptide with at least one functional characteristic of PPIM. Included within this definition are 10 polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PPIM, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PPIM. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PPIM. Deliberate 15 amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PPIM is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: 20 asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic 25 molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in 30 the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of PPIM. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PPIM either by directly interacting with PPIM or by acting on components of the biological pathway in which PPIM 35 participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant.

Antibodies that bind PPIM polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

15 The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-20 methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the 25 sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic PPIM, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

30 "Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or 35 amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.

Compositions comprising polynucleotide sequences encoding PPIM or fragments of PPIM may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

5 "Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (PE Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

10 "Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
20	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
25	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
30	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
35	Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, 40 (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the

side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

10 A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

A "fragment" is a unique portion of PPIM or the polynucleotide encoding PPIM which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a 15 fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected 20 from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:28-54 comprises a region of unique polynucleotide sequence that 25 specifically identifies SEQ ID NO:28-54, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:28-54 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:28-54 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:28-54 and the region of SEQ ID NO:28-54 to which the fragment corresponds are routinely 30 determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-27 is encoded by a fragment of SEQ ID NO:28-54. A fragment of SEQ ID NO:1-27 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-27. For example, a fragment of SEQ ID NO:1-27 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-27. The precise length of a 35 fragment of SEQ ID NO:1-27 and the region of SEQ ID NO:1-27 to which the fragment corresponds

are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full-length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full-

- 5 length" polynucleotide sequence encodes a "full-length" polypeptide sequence.

"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a

- 10 standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence

- 15 alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as 20 the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several

- 25 sources, including the NCBI, Bethesda, MD, and on the Internet at
<http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 30 Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

- 35 Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

5 *Expect: 10*

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the 10 length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

15 Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the 20 percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

25 Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with 30 polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (Apr-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

35 *Matrix: BLOSUM62*

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 3

5 *Filter: on*

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150
10 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for
15 chromosome replication, segregation and maintenance.

The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

“Hybridization” refers to the process by which a polynucleotide strand anneals with a
20 complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e.,
25 binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v)
30 SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target
35 sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for

nucleic acid hybridization are well known and can be found in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention

- 5 include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as
- 10 formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

- 15 The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or
- 20 their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

- 25 "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

- 30 An "immunogenic fragment" is a polypeptide or oligopeptide fragment of PPIM which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of PPIM which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

- 35 The term "modulate" refers to a change in the activity of PPIM. For example, modulation may

cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PPIM.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an PPIM may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of PPIM.

"Probe" refers to nucleic acid sequences encoding PPIM, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example

Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived 5 from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 10 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program 15 (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public 20 from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful 25 in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This 30 artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant 35 nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding PPIM, or fragments thereof, or PPIM itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels

and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants, and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook, J. et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides

generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for 5 example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 10 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

The invention is based on the discovery of new human proteases and protease inhibitors (PPIM), the polynucleotides encoding PPIM, and the use of these compositions for the diagnosis, treatment, or 15 prevention of cell proliferative and autoimmune/inflammatory disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding PPIM. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each PPIM were identified, and column 4 shows the cDNA libraries from which these 20 clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. In some cases, GenBank sequence identifiers are also shown in column 5. The Incyte clones and GenBank cDNA sequences, where indicated, in column 5 were used to assemble the consensus nucleotide sequence of each PPIM and are useful as fragments in hybridization technologies.

25 The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods 30 and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding PPIM. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are 35 useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:28-54 and

to distinguish between SEQ ID NO:28-54 and related polynucleotide sequences. The polypeptides encoded by the selected fragments of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, 5 SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, and SEQ ID NO:54 are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express PPIM as a fraction of total tissues expressing PPIM. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing PPIM as a fraction of total tissues expressing PPIM. Column 5 lists the vectors used to subclone each cDNA 10 library. Of particular note is the expression of SEQ ID NO:28 in gastrointestinal tissue. Of particular note is the tissue-specific expression of SEQ ID NO:51. Over 83% of the tissues expressing SEQ ID NO:51 are derived from gastrointestinal tissue, particularly the liver.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding PPIM were isolated. Column 1 references the nucleotide SEQ ID 15 NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

SEQ ID NO:30 maps to chromosome 9 within the interval from 78.4 to 90.6 centiMorgans. This interval also contains a gene associated with cell proliferation.

SEQ ID NO:37 maps to chromosome 12 within the interval from 116.6 to 118.9 centiMorgans.

20 This interval also contains a gene associated with a neurological disorder.

SEQ ID NO:47 maps to chromosome 4 within the interval from 99.2 to 105.2 centiMorgans. This interval also contains a gene associated with cardiovascular disease.

The invention also encompasses PPIM variants. A preferred PPIM variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence 25 identity to the PPIM amino acid sequence, and which contains at least one functional or structural characteristic of PPIM.

The invention also encompasses polynucleotides which encode PPIM. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:28-54, which encodes PPIM. The polynucleotide sequences of SEQ 30 ID NO:28-54, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding PPIM. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least 35 about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence

encoding PPIM. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:28-54 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:28-54. Any one of the 5 polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PPIM.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PPIM, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the 10 invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PPIM, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode PPIM and its variants are generally capable of 15 hybridizing to the nucleotide sequence of the naturally occurring PPIM under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PPIM or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons 20 are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PPIM and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode PPIM and PPIM 25 derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PPIM or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing 30 to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:28-54 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the 35 embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA

polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (PE Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with
5 machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (PE Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (PE Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms
10 which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding PPIM may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences,
15 such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) *PCR Methods Applic.* 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known
20 genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) *Nucleic Acids Res.* 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) *PCR Methods Applic.* 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown
25 sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) *Nucleic Acids Res.* 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding
30 intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include
35 sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library

does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

- Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing 5 may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, PE Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
- 10 Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PPIM may be cloned in recombinant DNA molecules that direct expression of PPIM, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of 15 the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PPIM.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PPIM-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA 20 shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULAR BREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 25 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of PPIM, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is 30 produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be 35 recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively,

fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding PPIM may be synthesized, in whole or in part, using 5 chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, PPIM itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, 10 J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (PE Biosystems). Additionally, the amino acid sequence of PPIM, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

15 The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active PPIM, the nucleotide sequences encoding PPIM or 20 derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding PPIM. Such elements may vary in their strength and specificity. Specific initiation signals may also be 25 used to achieve more efficient translation of sequences encoding PPIM. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PPIM and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control 30 signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression 35 vectors containing sequences encoding PPIM and appropriate transcriptional and translational control

elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

5 A variety of expression vector/host systems may be utilized to contain and express sequences encoding PPIM. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509; Bitter, G.A. et al. (1987) *Methods Enzymol.* 153:516-544; Scorer, C.A. et al. (1994) *Bio/Technology* 12:181-184; Engelhard, E.K. et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:3224-3227; Sandig, V. et al. (1996) *Hum. Gene Ther.* 7:1937-1945; Takamatsu, N. (1987) *EMBO J.* 6:307-311; Coruzzi, G. et al. (1984) *EMBO J.* 3:1671-1680; Broglie, R. et al. (1984) *Science* 224:838-843; Winter, J. et al. (1991) *Results Probl. Cell Differ.* 17:85-105; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci. USA* 81:3655-3659; and Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) *Cancer Gen. Ther.* 5(6):350-356; Yu, M. et al. (1993) *Proc. Natl. Acad. Sci. USA* 90(13):6340-6344; Buller, R.M. et al. (1985) *Nature* 317(6040):813-815; McGregor, D.P. et al. (1994) *Mol. Immunol.* 31(3):219-226; and Verma, I.M. and N. Somia (1997) *Nature* 389:239-242.) The invention is not limited by the host cell employed.

 In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PPIM. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PPIM can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PPIM into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of PPIM are needed, e.g. for the production of antibodies,

vectors which direct high level expression of PPIM may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of PPIM. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be 5 used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, supra; and Scorer, supra.)

Plant systems may also be used for expression of PPIM. Transcription of sequences encoding 10 PPIM may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, supra; Broglie, supra; and Winter, supra.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The 15 McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PPIM may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain 20 infective virus which expresses PPIM in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of 25 DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of 30 PPIM in cell lines is preferred. For example, sequences encoding PPIM can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the 35 introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue

culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232;

- 5 Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.)
- 10 Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β -glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of
- 15 transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PPIM is inserted within a marker gene sequence, transformed cells containing sequences encoding PPIM can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PPIM under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

- In general, host cells that contain the nucleic acid sequence encoding PPIM and that express PPIM may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
- 25
 - 30

Immunological methods for detecting and measuring the expression of PPIM using either

- 35 specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PPIM is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) *Serological Methods, a Laboratory Manual*, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al.

(1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization 5 or PCR probes for detecting sequences related to polynucleotides encoding PPIM include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding PPIM, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to 10 synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

15 Host cells transformed with nucleotide sequences encoding PPIM may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing 20 polynucleotides which encode PPIM may be designed to contain signal sequences which direct secretion of PPIM through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the 25 polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

30 In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PPIM may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PPIM protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PPIM activity. Heterologous protein and peptide moieties 35 may also facilitate purification of fusion proteins using commercially available affinity matrices. Such

moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PPIM encoding sequence and the heterologous protein sequence, so that PPIM may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled PPIM may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

PPIM of the present invention or fragments thereof may be used to screen for compounds that specifically bind to PPIM. At least one and up to a plurality of test compounds may be screened for specific binding to PPIM. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of PPIM, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which PPIM binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express PPIM, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing PPIM or cell membrane fractions which contain PPIM are then contacted with a test compound and binding, stimulation, or inhibition of activity of either PPIM or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with PPIM, either in solution or affixed to a solid support, and detecting the binding of PPIM to the compound. Alternatively, the

assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

PPIM of the present invention or fragments thereof may be used to screen for compounds that

- 5 modulate the activity of PPIM. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for PPIM activity, wherein PPIM is combined with at least one test compound, and the activity of PPIM in the presence of a test compound is compared with the activity of PPIM in the absence of the test compound. A change in the activity of PPIM in the presence of the test compound is indicative of a
- 10 compound that modulates the activity of PPIM. Alternatively, a test compound is combined with an in vitro or cell-free system comprising PPIM under conditions suitable for PPIM activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of PPIM may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

- 15 In another embodiment, polynucleotides encoding PPIM or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
- 20
- 25

- 30 Polynucleotides encoding PPIM may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

- 35 Polynucleotides encoding PPIM can also be used to create "knockin" humanized animals

(pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding PPIM is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with

- 5 potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress PPIM, e.g., by secreting PPIM in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between

- 10 regions of PPIM and proteases and protease inhibitors. In addition, the expression of PPIM is closely associated with cell proliferation, inflammation, the immune response, and gastrointestinal, neurological, and reproductive tissue. Therefore, PPIM appears to play a role in cell proliferative and autoimmune/inflammatory disorders. In the treatment of disorders associated with increased PPIM expression or activity, it is desirable to decrease the expression or activity of PPIM. In the treatment of 15 disorders associated with decreased PPIM expression or activity, it is desirable to increase the expression or activity of PPIM.

Therefore, in one embodiment, PPIM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PPIM.

Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, basal cell carcinoma, squamous cell carcinoma, and other premalignant or malignant connective tissue disease.

- 20 keratosis, arteriosclerosis, atherosclerosis, bursitis, chilosis, hepatitis, mixed connective tissue disease
(MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle,
25 ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis,
30 cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, crythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis,
35 psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic

anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

In another embodiment, a vector capable of expressing PPIM or a fragment or derivative thereof 5 may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PPIM including, but not limited to, those described above.

In a further embodiment, a composition comprising a substantially purified PPIM in conjunction 10 with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PPIM including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PPIM may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity 15 of PPIM including, but not limited to, those listed above.

In a further embodiment, an antagonist of PPIM may be administered to a subject to treat or 20 prevent a disorder associated with increased expression or activity of PPIM. Examples of such disorders include, but are not limited to, those cell proliferative and autoimmune/inflammatory disorders described above. In one aspect, an antibody which specifically binds PPIM may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express PPIM.

25 In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PPIM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PPIM including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate 30 therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of PPIM may be produced using methods which are generally known in the art. 35 In particular, purified PPIM may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PPIM. Antibodies to PPIM may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally

preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PPIM or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase 5 immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PPIM 10 have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of PPIM amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

15 Monoclonal antibodies to PPIM may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. 20 (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. 25 (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PPIM-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

30 Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for PPIM may also be generated. For 35 example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion

of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')² fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

5 Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PPIM and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two
10 non-interfering PPIM epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for PPIM. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of PPIM-antibody complex divided by the
15 molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PPIM epitopes, represents the average affinity, or avidity, of the antibodies for PPIM. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular PPIM epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10⁹ to 10¹²
20 L/mole are preferred for use in immunoassays in which the PPIM-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10⁶ to 10⁷ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of PPIM, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical
25 Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of PPIM-antibody
30 complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al., supra.)

In another embodiment of the invention, the polynucleotides encoding PPIM, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene
35 expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA,

PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding PPIM. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PPIM. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totowa NJ.)

5 In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Clin. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995) 10 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) *Blood* 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) *Pharmacol. Ther.* 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) *Br. Med. Bull.* 51(1):217-225; Boado, R.J. et 15 al. (1998) *J. Pharm. Sci.* 87(11):1308-1315; and Morris, M.C. et al. (1997) *Nucleic Acids Res.* 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding PPIM may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) *Science* 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) *Science* 270:475-480; Bordignon, C. et al. (1995) *Science* 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) *Cell* 75:207-216; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:643-666; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:667-703), thalassamias, familial 20 hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) *Science* 270:404-410; Verma, I.M. and N. Somia (1997) *Nature* 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) *Nature* 30 335:395-396; Poeschla, E. et al. (1996) *Proc. Natl. Acad. Sci. USA* 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in PPIM expression or regulation causes disease, the expression of PPIM from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic 35 deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in PPIM are treated by constructing mammalian expression vectors encoding PPIM and introducing these vectors by mechanical means into PPIM-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of PPIM include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA),

5 PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). PPIM may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-15 5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene 20 encoding PPIM from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and 25 A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to PPIM expression are treated by constructing a retrovirus vector consisting of (i) the 30 polynucleotide encoding PPIM under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. 35 USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate

vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding PPIM to cells which have one or more genetic abnormalities with respect to the expression of PPIM. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544; and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding PPIM to target cells which have one or more genetic abnormalities with respect to the expression of PPIM. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing PPIM to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction

and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the 5 large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding PPIM to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV 10 genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full-length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for PPIM into the alphavirus genome in place of 15 the capsid-coding region results in the production of a large number of PPIM-coding RNAs and the synthesis of high levels of PPIM in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) 20 Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of PPIM into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfactions, and performing alphavirus infections, are well known to those with ordinary skill in the art.

25 Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have 30 been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

35 Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme

molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PPIM.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by

- 5 scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using
- 10 ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.

Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PPIM. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterate linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutoxine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

25 An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding PPIM. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular

30 chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased PPIM expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding PPIM may be therapeutically useful, and in the treatment of disorders associated with

35 decreased PPIM expression or activity, a compound which specifically promotes expression of the

polynucleotide encoding PPIM may be therapeutically useful.

At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in 5 altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding PPIM is exposed to at least one test compound thus obtained. The sample may comprise, for 10 example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding PPIM are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding PPIM. The amount of hybridization may be quantified, thus forming the 15 basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. 20 (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. 25 (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using 30 methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

35 An additional embodiment of the invention relates to the administration of a composition which

generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of PPIM, antibodies to PPIM, and mimetics, agonists, antagonists, or inhibitors of PPIM.

5 The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

10 Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled 15 the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

20 Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising PPIM or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, PPIM or a fragment thereof may be joined to a short cationic N-terminal 25 portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, 30 or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example PPIM or fragments thereof, antibodies of PPIM, and agonists, antagonists or inhibitors of PPIM, which 35 ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by

standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large therapeutic indices are
5 preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
10 The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-
15 acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in
20 the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind PPIM may be used for the diagnosis of disorders characterized by expression of PPIM, or in assays to monitor patients being treated with
25 PPIM or agonists, antagonists, or inhibitors of PPIM. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PPIM include methods which utilize the antibody and a label to detect PPIM in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several
30 of which are described above, are known in the art and may be used.

A variety of protocols for measuring PPIM, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PPIM expression. Normal or standard values for PPIM expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to PPIM under conditions
35 suitable for complex formation. The amount of standard complex formation may be quantitated by

various methods, such as photometric means. Quantities of PPIM expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding PPIM may be used for

5 diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of PPIM may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PPIM, and to monitor regulation of PPIM levels during therapeutic intervention.

10 In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PPIM or closely related molecules may be used to identify nucleic acid sequences which encode PPIM. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the
15 probe identifies only naturally occurring sequences encoding PPIM, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the PPIM encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:28-54 or from genomic sequences including promoters, enhancers, and introns of the PPIM gene.

20 Means for producing specific hybridization probes for DNAs encoding PPIM include the cloning of polynucleotide sequences encoding PPIM or PPIM derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, 25 for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding PPIM may be used for the diagnosis of disorders associated 30 with expression of PPIM. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, 35 polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an autoimmune/inflammatory

disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding PPIM may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PPIM expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding PPIM may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding PPIM may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PPIM in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of PPIM, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PPIM, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the

presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays
5 may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ
10 preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding PPIM may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding PPIM, or
15 a fragment of a polynucleotide complementary to the polynucleotide encoding PPIM, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences
20 encoding PPIM may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding PPIM are used to amplify DNA using the polymerase chain reaction
25 (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are fluorescently labeled, which allows detection
30 of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble
35 into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San

Diego CA).

Methods which may also be used to quantify the expression of PPIM include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., McIby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the 10 polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described in Seilhamer, J.J. et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, incorporated herein by reference. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to 15 determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and 20 display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, antibodies specific for PPIM, or PPIM or fragments thereof may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to 25 generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by 30 hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

35 Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies,

or other biological samples. The transcript image may thus reflect gene expression *in vivo*, as in the case of a tissue or biopsy sample, or *in vitro*, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with *in vitro* model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at <http://www.niehs.nih.gov/oc/news/toxchip.htm>.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-

dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, *supra*). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as 5 Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard 10 methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for PPIM to quantify the 15 levels of PPIM expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) *Anal. Biochem.* 270:103-111; Mendoza, L.G. et al. (1999) *Biotechniques* 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino- 20 reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) *Electrophoresis* 18:533-537), so proteome toxicant signatures may be useful in the 25 analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological 30 sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

35 In another embodiment, the toxicity of a test compound is assessed by treating a biological

sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

5 Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-10 2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding PPIM may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either 15 coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), 20 yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a 25 particular chromosome region or restriction fragment length polymorphism (RFLP). (See, e.g., Landcr, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) 30 World Wide Web site. Correlation between the location of the gene encoding PPIM on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often 35 the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal

associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to 5 that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, PPIM, its catalytic or immunogenic fragments, or 10 oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PPIM and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds 15 having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with PPIM, or fragments thereof, and washed. Bound PPIM is then detected by methods well known in the art. Purified PPIM can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, 20 non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PPIM specifically compete with a test compound for binding PPIM. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PPIM.

25 In additional embodiments, the nucleotide sequences which encode PPIM may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding 30 description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, in particular U.S. Ser. No. 60/147,986 and U.S. Ser. No. 60/160,807, are hereby expressly incorporated by 35 reference.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in 5 phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity.

- 10 In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
- 15 In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic 20 oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid 25 (Stratagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

- 30 Plasmids obtained as described in Example I were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid 35 purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled

water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.

- 10 Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (PE Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM 15 BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (PE Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA 20 sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between 25 two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

- 35 The polynucleotide sequences were validated by removing vector, linker, and polyA sequences

and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation
5 using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the
10 GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and
15 amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:28-54. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene
20 and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel, 1995, *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much
25 faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \text{minimum}\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}}$$

30

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a
35 score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every

mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two 5 sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding PPIM occurred. Analysis involved the categorization of cDNA libraries by 10 organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/inumune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.

15 Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Chromosomal Mapping of PPIM Encoding Polynucleotides

The cDNA sequences which were used to assemble SEQ ID NO:28-54 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ 20 ID NO:28-54 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all 25 sequences of that cluster, including its particular SEQ ID NO:, to that map location.

The genetic map locations of SEQ ID NO:30, SEQ ID NO:37, and SEQ ID NO:47 are described in The Invention as ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal 30 markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. A disease associated with the public and Incyte sequences located within the indicated interval is also reported in the Invention.

VI. Extension of PPIM Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:28-54 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other 5 primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

10 Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-15 mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 20 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, 25 Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested 30 with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with 35 Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E.

coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amcrsham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 5 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC 10 DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).

In like manner, the polynucleotide sequences of SEQ ID NO:28-54 are used to obtain 5' regulatory sequences using the procedure above, along with oligonucleotides designed for such extension, and an appropriate genomic library.

15 **VII. Labeling and Use of Individual Hybridization Probes**

Hybridization probes derived from SEQ ID NO:28-54 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments.

Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National 20 Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human 25 genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under 30 conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate.

Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

VIII. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing 35 photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra), mechanical

microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), *supra*). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate 5 using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may 10 comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence 15 scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

20 Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse 25 transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by *in vitro* transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to stop the reaction and degrade the RNA. Samples are purified 30 using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μ l 5X SSC/0.2% SDS.

35 Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 µg.

5 **Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).**

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated

10 with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 µl of the array element DNA, at an average concentration of 100 ng/µl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

15 Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene).

Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water.

Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

20 **Hybridization**

Hybridization reactions contain 9 µl of sample mixture consisting of 0.2 µg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65 °C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 µl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45 °C in a second wash buffer (0.1X SSC), and dried.

Detection

30 Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a

resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

IX. Complementary Polynucleotides

Sequences complementary to the PPIM-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PPIM. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PPIM. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is

designed to prevent ribosomal binding to the PPIM-encoding transcript.

X. Expression of PPIM

Expression and purification of PPIM is achieved using bacterial or virus-based expression systems. For expression of PPIM in bacteria, cDNA is subcloned into an appropriate vector containing 5 an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PPIM upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of 10 PPIM in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PPIM by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA 15 transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, PPIM is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, 20 affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from PPIM at 25 specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified PPIM obtained by these methods can be used directly in the assays shown in Examples XI and 30 XV.

XI. Demonstration of PPIM Activity

Protease activity of PPIM is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules. The degree of hydrolysis is quantified by spectrophotometric (or fluorometric) absorption of the released chromophore (Beynon, R.J. and J.S.

Bond (1994) Proteolytic Enzymes: A Practical Approach, Oxford University Press, New York NY, pp.25-55). Peptide substrates are designed according to the category of protease activity as endopeptidase (serine, cysteine, aspartic proteases), aminopeptidase (leucine aminopeptidase), or carboxypeptidase (Carboxypeptidase A and B, procollagen C-proteinase). Chromogens commonly used are 2-naphthylamine, 4-nitroaniline, and furylacrylic acid. Assays are performed at ambient temperature using an aliquot of PPIM and the appropriate substrate in a suitable buffer. Reactions are carried out in an optical cuvette and followed by the measurement of increase/decrease in absorbance of the chromogen released during hydrolysis of the peptide substrate. The change in absorbance is proportional to PPIM activity in the assay.

10 XII. Functional Assays

PPIM function is assessed by expressing the sequences encoding PPIM at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector.

15 Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluoresccin-conjugated Annexin V protein to the

20 cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of PPIM on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding PPIM and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads

coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding PPIM and other genes of interest can be analyzed by northern analysis or microarray techniques.

5 XIII. Production of PPIM Specific Antibodies

PPIM substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the PPIM amino acid sequence is analyzed using LASERGENE software

- 10 (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A

- 15 peptide synthesizer (PE Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-PPIM activity by, for example, binding the peptide or PPIM to a substrate, blocking with 1% BSA, reacting 20 with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIV. Purification of Naturally Occurring PPIM Using Specific Antibodies

Naturally occurring or recombinant PPIM is substantially purified by immunoaffinity chromatography using antibodies specific for PPIM. An immunoaffinity column is constructed by covalently coupling anti-PPIM antibody to an activated chromatographic resin, such as CNBr-activated 25 SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing PPIM are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PPIM (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PPIM binding (e.g., 30 a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PPIM is collected.

XV. Identification of Molecules Which Interact with PPIM

PPIM, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) *Biochem. J.* 133:529-539.) Candidate molecules

previously arrayed in the wells of a multi-well plate are incubated with the labeled PPIM, washed, and any wells with labeled PPIM complex are assayed. Data obtained using different concentrations of PPIM are used to calculate values for the number, affinity, and association of PPIM with the candidate molecules.

5 Alternatively, molecules interacting with PPIM are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

PPIM may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions 10 between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.

15 Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
				TESTNOT01	BRSTTUT01
1	28	088718	LIVRNNOT01	088718H1 (LIVRNNOT01), 151754F1 (FIBRAGT01), 151754R1 (FIBRAGT01), SCEA00861V1, SCEA01403V1, SCEA03107V1, SCEA01683V1	
2	29	114551	TESTNOT01	1273531F1 (TESTTUT02), 1498122F1 (SINTBST01), 1686926F6 (PROSNOT15), 1922870R6 (BRSTTUT01), 2270121R6 (UTRSNOT02), 3227104F6 (COTRNNOT01)	
3	30	1261376	SYNORAT05	428341R6 (BLADNOT01), 488402R6 (HNT2AGT01), 1261376H1 (SYNORAT05), 1261376T6 (SYNORAT05), 1413230F6 (BRAINOT12), 1448134F1 (PLACNOT02), 1869342F6 (SKINBIT01), 2263303H1 (UTRSNOT02), 2365444T6 (ADRENOT07), 2875019H1 (THYRMOT10), 2908347H1 (THYMNOT05), 3818352H1 (BONSTUT01), g3840298, 91965665, g848456	
4	31	1299481	BRSTNOT07	1299481H1 (BRSTNOT07), 1302262F6 (PLACNOT02), 1596742X330D1 (BRAINOT14), 1725693F6 (PROSNOT14), 2125677X306D3 (BRSTNOT07), SCHAO02258V1, SCHAO0613V1, g1477302	
5	32	1873139	LEUKNOT02	003818R1 (HMC1NOT01), 1873139F6 (LEUKNOT02), 1873139X325D1 (LEUKNOT02), 1873139X326V1 (LEUKNOT02), 1899870F6 (BLADTUT06), 2510118F6 (CONUTUT01)	
6	33	1903112	OVARNOT07	1903112H1 (OVARNOT07), 1905330T6 (OVARNOT07), 2509325H1 (CONUTUT01), 2621121R6 (KERANOT02)	
7	34	1993044	CORPNOT02	1858513F6 (PROSNOT18), 1993044H1 (CORPNOT02), 3733554F6 (SMCCCNOS01), 4749046H1 (SMGRDNT01), 4960159H1 (TLYMNNOT05), 5397428H1 (LIVRTUT13), SBCA07095F3	
8	35	2292182	BRAINNON01	2199554H1 (SPLNFET02), 2199554X305B1 (SPLNFET02), 2292182R6 (BRAINNON01), 3480414T6 (OVARNOT11), 5427954H1 (THYMTUT03)	
9	36	2331301	COLNNOT11	125371H1 (LUNGFET03), 2331301H1 (COLNNOT11), 2331301R6 (COLNNOT11)	
10	37	2517512	BRAITUT21	1222614R1 (COLNTUT02), 1486943F6 (UCMCL5T01), 1486943T6 (UCMCL5T01), 1569195F1 (UTRSNOT05), 1813007F6 (PROSTUT12), 2517512H1 (BRAITUT21), 5847584H1 (BRAENOT04)	
11	38	34889039	EPIGNOT01	2541141F6 (BONRTUT01), 3489039H1 (EPIGNOT01), 4871852H1 (COLDDNOT01)	

Table 1 (cont.)

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
12	39	5432879	SPLNNNOT17	1429082F6 (SINTBST01), 1807480F6 (SINTNOT13), (BRSTNOT05), 2669584F6 (ESOGTUT02), 3073745H1 (BONEUNT01), 3190142R6 (THYMNNON04), 4693457H2 (BRAENOT02), 4774453H1 (BRAQNOT01), 5432879H1 (SPLNNNOT17), 9836070	
13	40	5853753	FIBAUNT02	834033T1 (PROSNNOT07), 1521711F6 (BLADTUT04), 1757751R6 (PITUNNOT03), 2161634F6 (ENDCNOT02), SAEA01666R1, SCGA11716V1, SCGA05971V1, SCGA07285V1	
14	41	411344	BRSTNOT01	411344F1 (BRSTNOT01), 411344H1 (BRSTNOT01), 411344R1 (BRSTNOT01), 1859850F6 (PROSNOT18), 2183379F6 (SININOT01), 2474963H1 (SMCANOT01), 2546619X300D1 (UTRSNOT11), 3728811H1 (SMCCCNON03), 3932959H1 (PROSTUT09)	
15	42	1256390	MENITUT03	1256390H1 (MENITUT03), SBAA04311F1, SBAA04104F1, SBAA03263F1, SBAA01188F1	
16	43	1786774	BRAINNOT10	857246H1 (NGANNNOT01), 1786774F6 (BRAINNOT10), 1786774H1 (BRAINOT10), 1810671T6 (PROSTUT12), 5202653H1 (STOMNOT08)	
17	44	1911808	CONNNTUT01	1255942F6 (MENITUT03), 1354692F6 (LUNGNOT09), 1354692T1 (LUNGNOT09), 1418156T1 (KIDNNNOT09), 1436123F6 (PANCNOT08), 1498302T1 (SINTBST01), 1735923X304D1 (COLNNNOT22), 1735923X318D4 (COLNNNOT22), 1834236R6 (BRAINNON01), 1911808F6 (CONNNTUT01), 1911808H1 (CONNNTUT01), 2360308H1 (LUNGFFET05), 3075823H1 (BONEUNT01), 4106766H1 (BRSTTUT17), 5713020H1 (MASTTXXT01)	
18	45	1973875	UCMCL5T01	1220149R6 (NEUTGMT01), 1377281F1 (LUNGNOT10), 1377281T1 (LUNGNOT10), 1508602F6 (LUNGNOT14), 1973875H1 (UCMCL5T01), 5098879F6 (EPIMNON05)	
19	46	2323917	OVARNOT02	1609987F6 (COLNTUT06), 2012426R6 (TESTNOT03), 2012426T6 (TESTNOT03), 2323917H1 (OVARNOT02), 2323917T6 (OVARNOT02), 4851027H1 (TESTNOT10)	
20	47	2754960	THP1AZS08	039061R6 (HUVENOBO1), 580098H1 (BRAVXT05), 2025465H1 (KERANOT02), 2754960H1 (THP1AZS08), 2754960R6 (THP1AZS08), 2754960X11F1 (THP1AZS08), 2754960X15F1 (THP1AZS08), 2754960X310U1 (THP1AZS08), 2754960X50F1 (THP1AZS08), 3821989T6 (BONSTUT01), 93736615	

Table 1 (cont.)

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
				BRSTNOT19	3092341H1 (BRSTNOT19), 3092341T6 (BRSTNOT19)
21	48	3092341	BRSTNOT19	3092341H1 (BRSTNOT19), 3092341T6 (BRSTNOT19)	
22	49	3658034	ENDPNOT02	2623516R6 (KERANOT02), 3658034F6 (ENDPNOT02), 3658034H1 (ENDPNOT02), 3658034T6 (ENDPNOT02), 5216522H1 (BRSTNOT35), 5590053H1 (ENDINOT02)	
23	50	3883861	UTRSNOT05	858111H1 (NGANNNOT01), 858233H1 (NGANNNOT01), 1364808R1 (SCORNON02), 1861181F6 (PROSNOT19), 1906985T6 (OVARNOT07), 2687868H1 (LUNGNOT23), 2687868X366D1 (LUNGNOT23), 2721116X369D1 (LUNGUT10), 3883861H1 (UTRSNOT05), 5217169H1 (BRSTNOT35)	
24	51	4993873	LIVRTUT11	4987943H1 (LIVRTUT10), 4993873H1 (LIVRTUT11), SCEA01665V1, SCEA00232V1, SXBC01625V1, SXBC01802V1, SCSA03627V1	
25	52	5208004	BRAFNOT02	4696870F6 (BRALNOT01), 520804H1 (BRAFNOT02)	
26	53	5267783	BRAFDIT02	220636R1 (STOMNOT01), 679457R6 (UTRSNOT02), 1330537F6 (PANCNOT07), 1808720F6 (PROSTUT12), 1969475H1 (BRSTNOT04), 2697426F6 (UTRSNOT12), 2991180H1 (KIDNFET02), 3532849H1 (KIDNNOT25), 4992376F6 (LIVRTUT11), 5004695F6 (PROSTUT21), 5267783H1 (BRAFDIT02)	
27	54	5583922	FIBAUNTO1	726878R1 (SYNOOAT01), 956818X11 (KIDNNOT05), 1658964X12 (URETTUT01), 1658964X13 (URETTUT01), 2544879F6 (UTRSNOT11), 3748858H1 (UTRSNOT18), 4761921H1 (PLACNOT05), 5043801H1 (PLACFER01)	

Table 2

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Homologous Sequence	Analytical Methods and Databases
1 444	S91 T244 T251 S277 T386 T38 S182 T263 T373 Y346	N36 N180 N197 N295	Signal_peptide: M1-A23 Serpins (serine protease inhibitors): M1-P441, L68-L444	g1397241 RASP1	Motifs BLAST-GenBank HMMER SPScan HMMER-PFAM BLIMPS-BLOCKS ProfileScan BLAST-PRODOM BLAST-DOMO	
2 565	S9 S19 T343 T458 S5 S58 S82 S114 S184 S185 S295 T382 T432 T476 T495 T543 S2 S5 S12 S25 S42 T169 S307 T337 S352 T357 T426 S513 T523 Y220 Y514	N112 N494	Ubiquitin carboxyl-terminal hydrolases family 2: G226-L243, Y235-I549	g2746775 Similar to peptidase family C19 (ubiquitin carboxyl-terminal peptidase)	Motifs BLAST-GenBank HMMER-PFAM BLIMPS-BLOCKS BLAST-PRODOM BLAST-DOMO	
3 589	T43 S71 S181 S200 S260 S304 S312 T506 T572 T40 S66	N55 N126 N136 N164 N167 N302 N501	Ubiquitin family signature: M37-K107 Ubiquitin-associated domain: Q541-S586	g3873621 Similar to ubiquitin family	Motifs BLAST-GenBank HMMER-PFAM	
4 775	T305 T2 S27 S43 S67 S392 S611 S615 T647 S665 S710 S729 S759 S96 T106 S217 S288 S301 S316 S432 S438 T443 S575 T719 S723 Y334	N49 N215 N322 N387 N468 N487 N497 N504 N508 N568 N600	Ubiquitin carboxyl-terminal hydrolases family 2: G112-L129, G193-L202, V230-C244, Y354-V391, N380-S401 Ubiquitin hydrolase carboxyl-terminal thioesterase: G112-K211	g2739431 Hematopoietic-specific IL-2 deubiquitinating enzyme	Motifs BLAST-GenBank HMMER-PFAM BLIMPS-BLOCKS BLAST-PRODOM BLAST-DOMO	

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Homologous Sequence	Analytical Methods and Databases
5 351	S9 S41 S48 S194 S201 T203 T257 S278 T322 T324 S129 S162 S181 S194 S225 T226 S348 Y271	N46 N123 N317	Ubiquitin carboxyl-terminal hydrolases family 2: L49-L337	g5410230 Ubiquitin-specific protease 3	Motifs BLAST-GenBank HMMER-PFAM BLIMPS-BLOCKS BLAST-PRODOM BLAST-DOMO	Motifs
6 136	T30 S104 Y98		Dipeptidyl serine protease iv: I9-S128 Serine family prolyl endopeptidase: M4-I136	g577284 Dipeptidyl peptidase IV	Motifs BLAST-GenBank BLAST-PRODOM BLAST-DOMO	Motifs
7 396	S24 S139 T168 T177 S198 S223 S279 T369 S26 S60 S223 S292	N166	Ubiquitin carboxyl-terminal hydrolase: E74-I283	92854121 BRCA1 associated protein 1	Motifs BLAST-GenBank BLIMPS-PRINTS BLAST-PRODOM BLAST-DOMO HMMER-PFAM	Motifs
8 246	S87 Y65	N94 N156 N195 N225	Zinc-binding metalloprotease domain: R121-H133		HMMER-PFAM	Motifs
9 262	T32 S78 S85 T89 S125 S26 S170 S244	N168	Inter-alpha-trypsin glycoprotein inhibitor precursor: T32-T197		BLAST-PRODOM	Motifs
10 406	S18 S37 T80 S98 S112 S178 T292 S298 T320 T391 S105 S212 S220 Y213	N14 N56 N176 N318		g3309170 COP9 complex subunit 4	BLAST-GenBank	Motifs

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Homologous Sequence	Analytical Methods and Databases
11 172	T117 S135 S146			signal peptide motif: M1-G13 ATP-binding kinase: I6-E164 AAA-protein family: P4-M69	g3875433 Similar to ATP binding protein	Motifs BLAST-GenBank SPScan BLAST-PRODOM BLAST-DOMO
12 517	S485 S4 T11 S128 T133 S155 S156 S171 S172 S278 T288 S485 S3 T57 T199 T204 S278 T455 S462 T480	N286		Ubiquitin carboxyl-terminal hydrolases family 2: K61-P256, F436-V481, S470-S491	g2459395 Ubiquitin protease	Motifs BLAST-GenBank HMMER-PFAM BLIMPS-BLOCKS BLAST-PRODOM
13 346	T237 S12 T64 T72 T124 T236 T261 S319 S150 T194 S226 T251 S319			Ubiquitin-activating enzyme signature: S297-344, 11-163, 19-189, 7-174, 9-192, R35-G170	g3647283 Ubiquitin activating enzyme	Motifs BLAST-GenBank HMMER BLAST-PRODOM BLAST-DOMO
14 151	T24 T47 S118 S61 Y131			Membrane protein: 11-249	g4090259 Ubiquitin-conjugating enzyme: M1-D148 Active site: F58-M115	Motifs BLAST-GenBank HMMER-PFAM ProfileScan BLAST-PRODOM BLAST-DOMO
15 362	S199 S208 S212 S270 S281 T317 S327 S52 S122 T149	N120 N162 N175 N239		Signal peptide: M1-S26 Zinc carboxypeptidase: Y38-E320 Zinc binding region: E202-L258	g6013463 Carboxypeptidase homolog	Motifs BLAST-GenBank SPScan HMMER-PFAM ProfileScan BLAST-PRODOM BLAST-DOMO

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Homologous Sequence	Analytical Methods and Databases
16	123	S2 S9 T37 T46 T60 S112 T53 S112	N104	Kunitz type protease inhibitor active site region: C70-C120	g512802 Kunitz type protease inhibitor	Motifs BLAST-GenBank HMMER-PFAM ProfileScan BLAST-DOMO
17	983	S87 S461 S531 T761 T123 T143 S191 S445 S634 S660 T789 T820 S879 S886 S888 T890 T17 S158 T280 T398 T549 S598 S601 S687 Y268 Y688	N278 N427 N625 N884 N922	Ubiquitin carboxyl-terminal hydrolases family 2: G90-w107, Y336-I374	g1429371 Ubiquitin-specific protease	Motifs BLAST-GenBank HMMER-PFAM BLAST-DOMO
18	227	S49 T101 T131 T157 S166 S49 S144 S194 T199		Ubiquitin signature: K159-H179, A180-D200 (P value = 0.00032)	g9372 Ubiquitin (P value = 1.7e-08)	Motifs BLAST-GenBank BLIMPS-PRINTS
19	403	T47 S146 T261 T352 T381 S4 T119 S234 S291 S313	N117 N145 N232 N260 N289 N317	Ubiquitin carboxyl-terminal hydrolases family 2: G221-L238	g4731026 Nod1 activator of caspase-9 and NFKB	Motifs BLAST-GenBank HMMER-PFAM
20	372	T87 S291 S22 S197 T208 S343 T169 S185 S223 S260 T266	N188 N335	Ubiquitin carboxyl-terminal hydrolases family 2: A166-Q348 Active site: Y302-C320	g4469352 Ubiquitin specific protease UBP43	Motifs BLAST-GenBank HMMER-PFAM BLAST-DOMO
21	94	T9	N50	Signal peptidase: V41-R55	g3687497 Putative mitochondrial inner membrane protease subunit	Motifs BLAST-GenBank

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Homologous Sequence	Analytical Methods and Databases
22 248	S77 S135 S156 S183 S205 T3 S71 S72 T139	N47 N158	Alpha-2-macroglobulin family: T3-Y198 Complement precursor: E4-S206	g20733373 Alpha-2-macroglobulin protease inhibitor	Motifs BLAST-GenBank HMMER-PFAM BLAST-PRODOM	Motifs BLAST-GenBank HMMER-PFAM BLAST-PRODOM
23 520	S166 S272 T301 S326 S379 S455 S56 T82 S136 S227 S498	N164 N355	Signal peptide: M1-R27 Peptidase M10: F39-S225 Matrixin domain: F128-G288 Neutral zinc metallopeptidase zinc-binding region: V237-L246 Hemopexin domain: I341-K400	g1731986 MMP-19 matrix metalloproteinase SPScan HMMER-PFAM ProfileScan BLAST-PRODOM BLAST-DOMO	Motifs BLAST-GenBank SIGPEPT SPScan HMMER-PFAM ProfileScan BLAST-PRODOM BLAST-DOMO	Motifs BLAST-GenBank SIGPEPT SPScan HMMER BLIMPS-BLOCKS ProfileScan BLAST-PRODOM BLAST-DOMO
24 422	T188 S156 S306 T386 S130 T176 T226 T295 S357 S365	N94 N106 N169 N350	Signal peptide: M1-G26 Transmembrane domain: F398-N418 Serpins (serine protease inhibitors): P43-V420 Protease "bait" region: A371-G422	g425146 Kallistatin	Motifs BLAST-GenBank SIGPEPT SPScan HMMER BLIMPS-BLOCKS ProfileScan BLAST-PRODOM BLAST-DOMO	Motifs BLAST-GenBank ProfileScan
25 114	S74 S16		Eukaryotic thiol (cysteine) protease active site: R71-S114		Motifs BLAST-GenBank ProfileScan	

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Homologous Sequence	Analytical Methods and Databases
26	742	T167 S186 S308 S337 S343 T360 S439 S578 S92 S172 S239 T256 T278 S329 T414 S504 S633 T656 T708 Y28 Y107 Y356		Zinc carboxypeptidases, zinc-binding regions signatures: H32-W42		BLAST-GenBank
27	734	T83 S128 S151 S223 S233 T523 S574 T616 T665 T688 T34 S122 S203 S340 T546 S547 T703	N57 N210 N220 N318 N428 N472	Signal peptide: M1-G20 Zinc carboxypeptidases: H299-Y412, W421-Y678 Enkephalin convertase: P458-V687 Zinc binding region: E478-F529	g4322263	Motifs BLAST-GenBank SIGPEPT SPScan HMMER-PFAM ProfileScan BLIMPS-PRINTS BLAST-PRODOM BLAST-DOMO

Table 3

Nucleotide SEQ ID NO:	Selected Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
28	164-208	Gastrointestinal (1.000)	Inflammation (0.500) Cancer (0.524)	PBLUESCRIPT
29	57-101	Reproductive (0.274) Nervous (0.202) Cardiovascular (0.119) Gastrointestinal (0.119)	Inflammation (0.273) Cell Proliferation(0.190)	PBLUESCRIPT
30	111-155	Nervous (0.222) Reproductive (0.194) Gastrointestinal (0.139)	Cancer (0.403) Inflammation (0.361)	PSPORT1
31	921-965	Nervous (0.300) Reproductive (0.200) Cardiovascular (0.100) Dermatologic (0.100) Developmental (0.100) Gastrointestinal (0.100)	Cancer (0.400) Cell Proliferation(0.300) Neurological (0.100)	PINCY
32	809-853	Hematopoietic / Immune (0.100) Reproductive (0.239) Gastrointestinal (0.164)	Cancer (0.403) Inflammation (0.269) Cell Proliferation(0.134)	PINCY
33	273-317	Reproductive (0.500) Cardiovascular (0.125) Dermatologic (0.125) Gastrointestinal (0.125) Hematopoietic / Immune (0.125)	Cancer (0.625) Cell Proliferation(0.125) Inflammation (0.125)	PINCY
34	55-99	Nervous (0.185) Cardiovascular (0.111) Gastrointestinal (0.111)	Cancer (0.352) Inflammation (0.204) Cell Proliferation(0.204)	PINCY
35	218-262	Gastrointestinal (0.313) Hematopoietic / Immune (0.250)	Cancer (0.630) Cell Proliferation(0.250)	PSPORT1
36	325-369	Developmental (0.500) Gastrointestinal (0.500)	Cancer (0.500) Cell Proliferation(0.500)	PSPORT1
37	99-143	Nervous (0.198) Reproductive (0.165) Cardiovascular (0.154)	Cancer (0.374) Inflammation (0.374) Cell Proliferation(0.154)	PINCY

Table 3 (cont.)

Nucleotide SEQ ID NO:	Selected Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
38	1-46	Reproductive (0.278) Gastrointestinal (0.208) Cardiovascular (0.125)	Cancer (0.347) Inflammation (0.306) Cell Proliferation (0.153)	pINCY
39	109-153	Gastrointestinal (0.280) Hematopoietic/Immune (0.200) Musculoskeletal (0.120)	Inflammation (0.440) Cancer (0.280) Cell Proliferation (0.160)	pINCY
40	489-533	Nervous (0.209) Reproductive (0.203) Gastrointestinal (0.135)	Cancer (0.473) Cell Proliferation (0.243) Inflammation (0.264)	pINCY
41	589-633	Reproductive (0.229) Cardiovascular (0.200) Gastrointestinal (0.171) Nervous (0.171)	Cancer (0.314) Cell Proliferation (0.314) Inflammation/Trauma (0.372)	PBLUESCRIPT
42	649-693	Nervous (0.250) Reproductive (0.214) Cardiovascular (0.143)	Cancer (0.500) Inflammation/Trauma (0.321) Cell Proliferation (0.179)	pINCY
43	164-208	Nervous (0.333) Gastrointestinal (0.333) Reproductive (0.333)	Cancer (0.444) Inflammation/Trauma (0.444) Neurological (0.111)	pINCY
44	271-208	Reproductive (0.226) Developmental (0.151) Nervous (0.151)	Cancer (0.377) Inflammation/Trauma (0.358) Cell Proliferation (0.321)	pINCY
45	784-828	Reproductive (0.257) Hematopoietic/Immune (0.171) Nervous (0.171)	Cancer (0.486) Inflammation/Trauma (0.486) Cell Proliferation (0.143)	PBLUESCRIPT
46	219-263	Reproductive (0.444) Gastrointestinal (0.222) Nervous (0.222)	Inflammation/Trauma (0.666) Cancer (0.222)	PSPORT1
47	597-641	Reproductive (0.364) Cardiovascular (0.212) Nervous (0.152)	Cancer (0.545) Cell Proliferation (0.242) Inflammation/Trauma (0.273)	PSPORT1

Table 3 (cont.)

Nucleotide SEQ ID NO:	Selected Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
48	271-315	Gastrointestinal (0.278) Reproductive (0.278) Cardiovascular (0.111) Hematopoietic/Immune (0.111) Nervous (0.111)	Cancer (0.444) Inflammation/Trauma (0.555) Cell Proliferation(0.167)	pINCY
49	217-261	Hematopoietic/Immune (0.364) Reproductive (0.273)	Cell Proliferation(0.364) Inflammation/Trauma (0.364) Cancer (0.182)	pINCY
50	164-208	Reproductive (0.333) Nervous (0.222) Gastrointestinal (0.167)	Cancer (0.611) Inflammation/Trauma (0.223)	pINCY
51	388-432	Gastrointestinal (0.833) Reproductive (0.166)	Cancer (0.666) Cell Proliferation(0.166)	pINCY
52	218-262	Nervous (0.750) Hematopoietic/Immune (0.250)	Inflammation/Trauma (0.500) Neurological (0.250)	pINCY
53	325-369	Reproductive (0.289) Nervous (0.253) Gastrointestinal (0.120)	Cancer (0.410) Inflammation/Trauma (0.386) Cell Proliferation(0.145)	pINCY
54	165-209	Reproductive (0.352) Urologic (0.185) Developmental (0.130)	Cancer (0.630) Cell Proliferation(0.167) Inflammation/Trauma (0.204)	pINCY

Table 4

Polynucleotide SEQ ID NO:	Library	Library Comment
28	LIVRNOT01	Library was constructed at Stratagene, using RNA isolated from the liver tissue of a 49-year-old male.
29	TESTNOT01	Library was constructed using RNA isolated from the testicular tissue of a 37-year-old Caucasian male, who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.
30	SYNORAT05	Library was constructed using RNA isolated from the knee synovial tissue of a 62-year-old female with rheumatoid arthritis.
31	BRSTNOT07	Library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, cardiovascular disease, and type II diabetes.
32	LEUKNOT02	Library was constructed using RNA isolated from white blood cells of a 45-year-old female with blood type O+. The donor tested positive for cytomegalovirus (CMV).
33	OVARNOT07	Library was constructed using RNA isolated from left ovarian tissue removed from a 28-year-old Caucasian female during a vaginal hysterectomy and removal of the fallopian tubes and ovaries. The tissue was associated with multiple follicular cysts, endometrium in a weakly proliferative phase, and chronic cervicitis of the cervix with squamous metaplasia. Family history included benign hypertension, hyperlipidemia, and atherosclerotic coronary artery disease.
34	CORPNOT02	Library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.
35	BRAINON01	Library was constructed and normalized from 4.88 million independent clones from a brain tissue library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.
36	COLNNOT11	Library was constructed using RNA isolated from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy.

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Library	Library Comment
37	BRAITUT21	Library was constructed using RNA isolated from brain tumor tissue removed from the midline frontal lobe of a 61-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated subfrontal meningothelial meningioma with no atypia. One ethmoid and mucosal tissue sample indicated meningioma. Family history included cerebrovascular disease, senile dementia, hyperlipidemia, benign hypertension, atherosclerotic coronary artery disease, congestive heart failure, and breast cancer.
38	EPIGNOT01	Library was constructed using RNA isolated from epiglottic tissue removed from a 71-year-old male during laryngectomy with right parathyroid biopsy. Pathology for the associated tumor tissue indicated recurrent grade 1 papillary thyroid carcinoma.
39	SPLNNNOT17	Library was constructed using polyA RNA isolated from the spleen tissue of a 2-year-old Hispanic male who died from cerebral anoxia.
40	FIBAUNT02	Library was constructed using RNA isolated from untreated aortic adventitial fibroblasts removed from a 65-year-old Caucasian female.
41	BRSTNOT01	Library was constructed using RNA isolated from the breast tissue of a 56-year-old Caucasian female who died in a motor vehicle accident.
42	MENITUT03	Library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included hypothyroidism. Family history included myocardial infarction and breast cancer.
43	BRAINOT10	Library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 74-year-old Caucasian male, who died from Alzheimer's disease.
44	CONNUTU01	Library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin.
45	UCMCL5T01	Library was constructed using RNA isolated from mononuclear cells obtained from the umbilical cord blood of 12 individuals. The cells were cultured for 12 days with IL-5 before RNA was obtained from the pooled lysates.
46	OVARNOT02	Library was constructed using RNA isolated from ovarian tissue removed from a 59-year-old Caucasian female who died of a myocardial infarction. Patient history included cardiomyopathy, coronary artery disease, previous myocardial infarctions, hypercholesterolemia, hypotension, and arthritis.

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Library	Library Comment
47	THP1AZS08	This subtracted THP-1 promonocyte cell line library was constructed using 5.76 million clones from a 5-aza-2'-deoxycytidine (AZ) treated THP-1 cell library. Starting RNA was made from THP-1 promonocyte cells treated for three days with 0.8 micromolar AZ. The hybridization probe for subtraction was derived from a similarly constructed library, made from RNA isolated from untreated THP-1 cells. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (1991) Nucleic Acids Res. 19:1954; and Bonaldo et al. (1996) Genome Research 6:791. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
48	BRSTNOT19	Library was constructed using RNA isolated from breast tissue removed from a 67-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated residual invasive lobular carcinoma. The focus of residual invasive carcinoma was positive for both estrogen and progesterone. Patient history included depressive disorder and benign large bowel neoplasm. Family history included cerebrovascular disease, benign hypertension, congestive heart failure, and lung cancer.
49	ENDPNOT02	Library was constructed using RNA isolated from pulmonary artery endothelial cells removed from a 10-year-old Caucasian male. The cells were treated with TNF alpha and IL-1 beta 10ng/ml each for 20 hours.
50	UTRSNOT05	Library was constructed using RNA isolated from the uterine tissue of a 45-year-old Caucasian female during a total abdominal hysterectomy and total colectomy. Pathology for the associated tumor tissue indicated multiple leiomyomas of the myometrium and a grade 2 colonic adenocarcinoma of the cecum. Patient history included multiple sclerosis and mitral valve disorder. Family history included type I diabetes, cerebrovascular disease, atherosclerotic coronary artery disease, malignant skin neoplasm, hypertension, and malignant neoplasm of the colon.

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Library	Library Comment
51	LIVRTUT11	Library was constructed using 1.1 micrograms of polyA RNA isolated from a treated C3A hepatocyte cell line which is a derivative of Hep G2, a cell line derived from a hepatoblastoma removed from a 15-year-old Caucasian male. The cells were treated with phenobarbital (PB), 1mM for 48 hours. cDNA synthesis was initiated using a NotI-anchored oligo (dT) primer. Double-stranded cDNA was blunted, ligated to EcoRI adaptors, digested with NotI, size-selected, and cloned into the NotI and EcoRI sites of the PINCY vector (Incyte).
52	BRAFNOT02	The library was constructed using RNA isolated from superior frontal cortex tissue removed from a 35-year-old Caucasian male who died from cardiac failure. Pathology indicated moderate leptomeningeal fibrosis and multiple microinfarctions of the cerebral neocortex. Patient history included dilated cardiomyopathy, congestive heart failure, cardiomegaly, and an enlarged spleen and liver.
53	BRAFDIT02	The library was constructed using RNA isolated from diseased right frontal lobe tissue removed from the brain of a 57-year-old Caucasian male, who died from a cerebrovascular accident. Patient history included Huntington's disease and emphysema.
54	FIBAUNT01	Library was constructed using RNA isolated from untreated aortic adventitial fibroblasts obtained from a 48-year-old Caucasian male.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	PE Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	PE Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	PE Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	<i>EST₅</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, ifasta, fastx, tfasta, and tsearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>EST₅</i> : fasta E value= 1.0E-6 <i>Assembled EST₅</i> : fasta identity= 95% or greater and Match length=200 bases or greater; fasta E value= 1.0E-8 or less <i>Full Length sequences</i> : fasta score=100 or greater
BLIMPS	A BLOCKS IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score \geq GC-G-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score=120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 - 5 a) an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27,
 - b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, 15 SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27,
 - c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, 20 SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, and
 - d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27.
- 30 2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27.

3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, and SEQ ID NO:54.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
- 15 7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method for producing a polypeptide of claim 1, the method comprising:
 - 20 a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 - b) recovering the polypeptide so expressed.
- 25 10. An isolated antibody which specifically binds to a polypeptide of claim 1.
11. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
 - a polynucleotide sequence selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, and SEQ ID NO:54,
 - 35 b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a

polynucleotide sequence selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, and SEQ ID NO:54,

5 c) a polynucleotide sequence complementary to a),
d) a polynucleotide sequence complementary to b), and
e) an RNA equivalent of a)-d).

10 12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a
polynucleotide of claim 11.

13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

15 a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and

20 b) detecting the presence or absence of said hybridization complex, and, optionally, if present,

14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.

15. A method for detecting a target polynucleotide in a sample, said target polynucleotide
25 having a sequence of a polynucleotide of claim 11, the method comprising:
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction
amplification, and
b) detecting the presence or absence of said amplified target polynucleotide or fragment
thereof, and, optionally, if present, the amount thereof.

30
16. A composition comprising an effective amount of a polypeptide of claim 1 and a

17. A composition of claim 16, wherein the polypeptide comprises an amino acid sequence
25 selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4,

SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27.

5

18. A method for treating a disease or condition associated with decreased expression of functional PPIM, comprising administering to a patient in need of such treatment the composition of claim 16.

10 19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting agonist activity in the sample.

15 20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.

21. A method for treating a disease or condition associated with decreased expression of functional PPIM, comprising administering to a patient in need of such treatment a composition of 20 claim 20.

22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting antagonist activity in the sample.

23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.

30 24. A method for treating a disease or condition associated with overexpression of functional PPIM, comprising administering to a patient in need of such treatment a composition of claim 23.

25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:

- 35 a) combining the polypeptide of claim 1 with at least one test compound under suitable

conditions, and

b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

5 26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:

a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,

10 b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and

c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

15

27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:

a) exposing a sample comprising the target polynucleotide to a compound, and

20 b) detecting altered expression of the target polynucleotide.

28. A method for assessing toxicity of a test compound, said method comprising:

a) treating a biological sample containing nucleic acids with the test compound;

25 b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof;

c) quantifying the amount of hybridization complex; and

30 d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

SEQUENCE LISTING

<110> INCYTE GENOMICS, INC.

YUE, Henry
TANG, Y. Tom
BANDMAN, Olga
LAL, Preeti
BAUGHN, Mariah R.
AZIMZAI, Yalda
LU, Dyung Aina M.
YANG, Junming

<120> PROTEASES AND PROTEASE INHIBITORS

<130> PF-0727 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/147,986; 60/160,807
<151> 1999-08-09; 1999-10-21

<160> 54

<170> PERL Program

<210> 1

<211> 444

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 088718CD1

<400> 1

Met	Lys	Va1	Val	Pro	Ser	Leu	Leu	Leu	Ser	Val	Leu	Leu	Ala	Gln	
1				5					10						15
Val	Trp	Leu	Val	Pro	Gly	Leu	Ala	Pro	Ser	Pro	Gln	Ser	Pro	Glu	
					20				25						30
Thr	Pro	Ala	Pro	Gln	Asn	Gln	Thr	Ser	Arg	Val	Val	Gln	Ala	Pro	
				35				40							45
Arg	Glu	Glu	Glu	Glu	Asp	Glu	Gln	Glu	Ala	Ser	Glu	Glu	Lys	Ala	
				50				55							60
Gly	Glu	Glu	Glu	Lys	Ala	Trp	Leu	Met	Ala	Ser	Arg	Gln	Gln	Leu	
				65				70							75
Ala	Lys	Glu	Thr	Ser	Asn	Phe	Gly	Phe	Ser	Leu	Leu	Arg	Lys	Ile	
				80				85							90
Ser	Met	Arg	His	Asp	Gly	Asn	Met	Val	Phe	Ser	Pro	Phe	Gly	Met	
				95				100							105
Ser	Leu	Ala	Met	Thr	Gly	Leu	Met	Leu	Gly	Ala	Thr	Gly	Pro	Thr	
				110				115							120
Glu	Thr	Gln	Ile	Lys	Arg	Gly	Leu	His	Leu	Gln	Ala	Leu	Lys	Pro	
				125				130							135
Thr	Lys	Pro	Gly	Leu	Leu	Pro	Ser	Leu	Phe	Lys	Gly	Leu	Arg	Glu	
				140				145							150
Thr	Leu	Ser	Arg	Asn	Leu	Glu	Leu	Gly	Leu	Ser	Gln	Gly	Ser	Phe	
				155				160							165
Ala	Phe	Ile	His	Lys	Asp	Phe	Asp	Val	Lys	Glu	Thr	Phe	Phe	Asn	
				170				175							180
Leu	Ser	Lys	Arg	Tyr	Phe	Asp	Thr	Glu	Cys	Val	Pro	Met	Asn	Phe	
				185				190							195
Arg	Asn	Ala	Ser	Gln	Ala	Lys	Arg	Leu	Met	Asn	His	Tyr	Ile	Asn	
				200				205							210
Lys	Glu	Thr	Arg	Gly	Lys	Ile	Pro	Lys	Leu	Phe	Asp	Glu	Ile	Asn	
				215				220							225
Pro	Glu	Thr	Lys	Leu	Ile	Leu	Val	Asp	Tyr	Ile	Leu	Phe	Lys	Gly	

	230	235	240
Lys Trp Leu Thr Pro Phe Asp Pro Val	Phe Thr Glu Val Asp	Thr	
245	250	255	
Phe His Leu Asp Lys Tyr Lys Thr Ile	Lys Val Pro Met Met	Tyr	
260	265	270	
Gly Ala Gly Lys Phe Ala Ser Thr Phe	Asp Lys Asn Phe Arg	Cys	
275	280	285	
His Val Leu Lys Leu Pro Tyr Gln Gly	Asn Ala Thr Met Leu	Val	
290	295	300	
Val Leu Met Glu Lys Met Gly Asp His	Leu Ala Leu Glu Asp	Tyr	
305	310	315	
Leu Thr Thr Asp Leu Val Glu Thr Trp	Leu Arg Asn Met Lys	Thr	
320	325	330	
Arg Asn Met Glu Val Phe Phe Pro Lys	Phe Lys Leu Asp Gln	Lys	
335	340	345	
Tyr Glu Met His Glu Leu Leu Arg Gln	Met Gly Ile Arg Arg	Ile	
350	355	360	
Phe Ser Pro Phe Ala Asp Leu Ser Glu	Leu Ser Ala Thr Gly	Arg	
365	370	375	
Asn Leu Gln Val Ser Arg Val Leu Gln	Arg Thr Val Ile Glu	Val	
380	385	390	
Asp Glu Arg Gly Thr Glu Ala Val Ala	Gly Ile Leu Ser Glu	Ile	
395	400	405	
Thr Ala Tyr Ser Met Pro Pro Val Ile	Lys Val Asp Arg Pro	Phe	
410	415	420	
His Phe Met Ile Tyr Glu Glu Thr Ser	Gly Met Leu Leu Phe	Leu	
425	430	435	
Gly Arg Val Val Asn Pro Thr Leu Leu			
440			

<210> 2

<211> 565

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 114551CD1

<400> 2

Met Ser Gly Arg Ser Lys Arg Glu Ser Arg Gly Ser Thr Arg Gly	1	5	10	15
Lys Arg Glu Ser Glu Ser Arg Gly Ser Ser Gly Arg Val Lys Arg	20	25	30	
Glu Arg Asp Arg Glu Arg Glu Pro Glu Ala Ala Ser Ser Arg Gly	35	40	45	
Ser Pro Val Arg Val Lys Arg Glu Phe Glu Pro Ala Ser Ala Arg	50	55	60	
Glu Ala Pro Ala Ser Val Val Pro Phe Val Arg Val Lys Arg Glu	65	70	75	
Arg Glu Val Asp Glu Asp Ser Glu Pro Glu Arg Glu Val Arg Ala	80	85	90	
Lys Asn Gly Arg Val Asp Ser Glu Asp Arg Arg Ser Arg His Cys	95	100	105	
Pro Tyr Leu Asp Thr Ile Asn Arg Ser Val Leu Asp Phe Asp Phe	110	115	120	
Glu Lys Leu Cys Ser Ile Ser Leu Ser His Ile Asn Ala Tyr Ala	125	130	135	
Cys Leu Val Cys Gly Lys Tyr Phe Gln Gly Arg Gly Leu Lys Ser	140	145	150	
His Ala Tyr Ile His Ser Val Gln Phe Ser His His Val Phe Leu	155	160	165	
Asn Leu His Thr Leu Lys Phe Tyr Cys Leu Pro Asp Asn Tyr Glu	170	175	180	
Ile Ile Asp Ser Ser Leu Glu Asp Ile Thr Tyr Val Leu Lys Pro	185	190	195	
Thr Phe Thr Lys Gln Gln Ile Ala Asn Leu Asp Lys Gln Ala Lys	200	205	210	

Leu Ser Arg Ala Tyr Asp Gly Thr Thr Tyr Leu Pro Gly Ile Val
 215 220 225
 Gly Leu Asn Asn Ile Lys Ala Asn Asp Tyr Ala Asn Ala Val Leu
 230 235 240
 Gln Ala Leu Ser Asn Val Pro Pro Leu Arg Asn Tyr Phe Leu Glu
 245 250 255
 Glu Asp Asn Tyr Lys Asn Ile Lys Arg Pro Pro Gly Asp Ile Met
 260 265 270
 Phe Leu Leu Val Gln Arg Phe Gly Glu Leu Met Arg Lys Leu Trp
 275 280 285
 Asn Pro Arg Asn Phe Lys Ala His Val Ser Pro His Glu Met Leu
 290 295 300
 Gln Ala Val Val Leu Cys Ser Lys Lys Thr Phe Gln Ile Thr Lys
 305 310 315
 Gln Gly Asp Gly Val Asp Phe Leu Ser Trp Phe Leu Asn Ala Leu
 320 325 330
 His Ser Ala Leu Gly Gly Thr Lys Lys Lys Lys Thr Ile Val
 335 340 345
 Thr Asp Val Phe Gln Gly Ser Met Arg Ile Phe Thr Lys Lys Leu
 350 355 360
 Pro His Pro Asp Leu Pro Ala Glu Glu Lys Glu Gln Leu Leu His
 365 370 375
 Asn Asp Glu Tyr Gln Glu Thr Met Val Glu Ser Thr Phe Met Tyr
 380 385 390
 Leu Thr Leu Asp Leu Pro Thr Ala Pro Leu Tyr Lys Asp Glu Lys
 395 400 405
 Glu Gln Leu Ile Ile Pro Gln Val Pro Leu Phe Asn Ile Leu Ala
 410 415 420
 Lys Phe Asn Gly Ile Thr Glu Lys Glu Tyr Lys Thr Tyr Lys Glu
 425 430 435
 Asn Phe Leu Lys Arg Phe Gln Leu Thr Lys Leu Pro Pro Tyr Leu
 440 445 450
 Ile Phe Cys Ile Lys Arg Phe Thr Lys Asn Asn Phe Phe Val Glu
 455 460 465
 Lys Asn Pro Thr Ile Val Asn Phe Pro Ile Thr Asn Val Asp Leu
 470 475 480
 Arg Glu Tyr Leu Ser Glu Glu Val Gln Ala Val His Lys Asn Thr
 485 490 495
 Thr Tyr Asp Leu Ile Ala Asn Ile Val His Asp Gly Lys Pro Ser
 500 505 510
 Glu Gly Ser Tyr Arg Ile His Val Leu His His Gly Thr Gly Lys
 515 520 525
 Trp Tyr Glu Leu Gln Asp Leu Gln Val Thr Asp Ile Leu Pro Gln
 530 535 540
 Met Ile Thr Leu Ser Glu Ala Tyr Ile Gln Ile Trp Lys Arg Arg
 545 550 555
 Asp Asn Asp Glu Thr Asn Gln Gln Gly Ala
 560 565

<210> 3

<211> 589

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1261376CD1

<400> 3

Met Ala Glu Ser Gly Glu Ser Gly Gly Pro Pro Gly Ser Gln Asp
 1 5 10 15
 Ser Ala Ala Gly Ala Glu Gly Ala Gly Ala Pro Ala Ala Ala
 20 25 30
 Ser Ala Asp Ala Lys Ile Met Lys Val Thr Val Lys Thr Pro Lys
 35 40 45
 Glu Lys Glu Glu Phe Ala Val Pro Glu Asn Ser Ser Val Gln Gln
 50 55 60
 Phe Lys Glu Glu Ile Ser Lys Arg Phe Lys Ser His Thr Asp Gln

65	70	75
Leu Val Leu Ile Phe Ala Gly Lys Ile	Leu Lys Asp Gln Asp	Thr
80	85	90
Leu Ser Gln His Gly Ile His Asp Gly	Leu Thr Val His Leu	Val
95	100	105
Ile Lys Thr Gln Asn Arg Pro Gln Asp	His Ser Ala Gln Gln	Thr
110	115	120
Asn Thr Ala Gly Ser Asn Val Thr Thr	Ser Ser Thr Pro Asn	Ser
125	130	135
Asn Ser Thr Ser Gly Ser Ala Thr Ser	Asn Pro Phe Gly Leu	Gly
140	145	150
Gly Leu Gly Gly Leu Ala Gly Leu Ser	Ser Leu Gly Leu Asn	Thr
155	160	165
Thr Asn Phe Ser Glu Leu Gln Ser Gln	Met Gln Arg Gln Leu	Leu
170	175	180
Ser Asn Pro Glu Met Met Val Gln Ile	Met Glu Asn Pro Phe	Val
185	190	195
Gln Ser Met Leu Ser Asn Pro Asp Leu	Met Arg Gln Leu Ile	Met
200	205	210
Ala Asn Pro Gln Met Gln Gln Leu Ile	Gln Arg Asn Pro Glu	Ile
215	220	225
Ser His Met Leu Asn Asn Pro Asp Ile	Met Arg Gln Thr Leu	Glu
230	235	240
Leu Ala Arg Asn Pro Ala Met Met Gln	Glu Met Met Arg Asn	Gln
245	250	255
Asp Arg Ala Leu Ser Asn Leu Glu Ser	Ile Pro Gly Gly Tyr	Asn
260	265	270
Ala Leu Arg Arg Met Tyr Thr Asp Ile	Gln Glu Pro Met Leu	Ser
275	280	285
Ala Ala Gln Glu Gln Phe Gly Gly Asn	Pro Phe Ala Ser Leu	Val
290	295	300
Ser Asn Thr Ser Ser Gly Glu Gly Ser	Gln Pro Ser Arg Thr	Glu
305	310	315
Asn Arg Asp Pro Leu Pro Asn Pro Trp	Ala Pro Gln Thr Ser	Gln
320	325	330
Ser Ser Ser Ala Ser Ser Gly Thr Ala	Ser Thr Val Gly Gly	Thr
335	340	345
Thr Gly Ser Thr Ala Ser Gly Thr Ser	Gly Gln Ser Thr Thr	Ala
350	355	360
Pro Asn Leu Val Pro Gly Val Gly Ala	Ser Met Phe Asn Thr	Pro
365	370	375
Gly Met Gln Ser Leu Leu Gln Gln Ile	Thr Glu Asn Pro Gln	Leu
380	385	390
Met Gln Asn Met Leu Ser Ala Pro Tyr	Met Arg Ser Met Met	Gln
395	400	405
Ser Leu Ser Gln Asn Pro Asp Leu Ala	Ala Gln Met Met Leu	Asn
410	415	420
Asn Pro Leu Phe Ala Gly Asn Pro Gln	Leu Gln Glu Gln Met	Arg
425	430	435
Gln Gln Leu Pro Thr Phe Leu Gln Gln	Met Gln Asn Pro Asp	Thr
440	445	450
Leu Ser Ala Met Ser Asn Pro Arg Ala	Met Gln Ala Leu Leu	Gln
455	460	465
Ile Gln Gln Gly Leu Gln Thr Leu Ala	Thr Glu Ala Pro Gly	Leu
470	475	480
Ile Pro Gly Phe Thr Pro Gly Leu Gly	Ala Leu Gly Ser Thr	Gly
485	490	495
Gly Ser Ser Gly Thr Asn Gly Ser Asn	Ala Thr Pro Ser Glu	Asn
500	505	510
Thr Ser Pro Thr Ala Gly Thr Thr Glu	Pro Gly His Gln Gln	Phe
515	520	525
Ile Gln Gln Met Leu Gln Ala Leu Ala	Gly Val Asn Pro Gln	Leu
530	535	540
Gln Asn Pro Glu Val Arg Phe Gln Gln	Gln Leu Glu Gln Leu	Ser
545	550	555
Ala Met Gly Phe Leu Asn Arg Glu Ala	Asn Leu Gln Ala Leu	Ile
560	565	570

Ala Thr Gly Gly Asp Ile Asn Ala Ala Ile Glu Arg Leu Leu Gly
575 580 585

Ser Gln Pro Ser

<210> 4
<211> 775
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1299481CD1

<400> 4
Met Thr Ile Val Asp Lys Ala Ser Glu Ser Ser Asp Pro Ser Ala
1 5 10 15
Tyr Gln Asn Gln Pro Gly Ser Ser Glu Ala Val Ser Pro Gly Asp
20 25 30
Met Asp Ala Gly Ser Ala Ser Trp Gly Ala Val Ser Ser Leu Asn
35 40 45
Asp Val Ser Asn His Thr Leu Ser Leu Gly Pro Val Pro Gly Ala
50 55 60
Val Val Tyr Ser Ser Ser Val Pro Asp Lys Ser Lys Pro Ser
65 70 75
Pro Gln Lys Asp Gln Ala Leu Gly Asp Gly Ile Ala Pro Pro Gln
80 85 90
Lys Val Leu Phe Pro Ser Glu Lys Ile Cys Leu Lys Trp Gln Gln
95 100 105
Thr His Arg Val Gly Ala Gly Leu Gln Asn Leu Gly Asn Thr Cys
110 115 120
Phe Ala Asn Ala Ala Leu Gln Cys Leu Thr Tyr Thr Pro Pro Leu
125 130 135
Ala Asn Tyr Met Leu Ser His Glu His Ser Lys Thr Cys His Ala
140 145 150
Glu Gly Phe Cys Met Met Cys Thr Met Gln Ala His Ile Thr Gln
155 160 165
Ala Leu Ser Asn Pro Gly Asp Val Ile Lys Pro Met Phe Val Ile
170 175 180
Asn Glu Met Arg Arg Ile Ala Arg His Leu Arg Phe Gly Asn Gln
185 190 195
Glu Asp Ala His Glu Phe Leu Gln Tyr Thr Val Asp Ala Met Gln
200 205 210
Lys Ala Cys Leu Asn Gly Ser Asn Lys Leu Asp Arg His Thr Gln
215 220 225
Ala Thr Thr Leu Val Cys Gln Ile Phe Gly Gly Tyr Leu Arg Ser
230 235 240
Arg Val Lys Cys Leu Asn Cys Lys Gly Val Ser Asp Thr Phe Asp
245 250 255
Pro Tyr Leu Asp Ile Thr Leu Glu Ile Lys Ala Ala Gln Ser Val
260 265 270
Asn Lys Ala Leu Glu Gln Phe Val Lys Pro Glu Gln Leu Asp Gly
275 280 285
Glu Asn Ser Tyr Lys Cys Ser Lys Cys Lys Lys Met Val Pro Ala
290 295 300
Ser Lys Arg Phe Thr Ile His Arg Ser Ser Asn Val Leu Thr Leu
305 310 315
Ser Leu Lys Arg Phe Ala Asn Phe Thr Gly Gly Lys Ile Ala Lys
320 325 330
Asp Val Lys Tyr Pro Glu Tyr Leu Asp Ile Arg Pro Tyr Met Ser
335 340 345
Gln Pro Asn Gly Glu Pro Ile Val Tyr Val Leu Tyr Ala Val Leu
350 355 360
Val His Thr Gly Phe Asn Cys His Ala Gly His Tyr Phe Cys Tyr
365 370 375
Ile Lys Ala Ser Asn Gly Leu Trp Tyr Gln Met Asn Asp Ser Ile
380 385 390
Val Ser Thr Ser Asp Ile Arg Ser Val Leu Ser Gln Gln Ala Tyr

	395	400	405
Val Leu Phe Tyr Ile Arg Ser His Asp Val Lys Asn Gly Gly Glu		410	420
	415	425	435
Leu Thr His Pro Thr His Ser Pro Gly Gln Ser Ser Pro Arg Pro		425	435
	430	440	450
Val Ile Ser Gln Arg Val Val Thr Asn Lys Gln Ala Ala Pro Gly		440	450
	445	455	465
Phe Ile Gly Pro Gln Leu Pro Ser His Met Ile Lys Asn Pro Pro		455	465
	460	470	480
His Leu Asn Gly Thr Gly Pro Leu Lys Asp Thr Pro Ser Ser Ser		470	480
	475	485	495
Met Ser Ser Pro Asn Gly Asn Ser Ser Val Asn Arg Ala Ser Pro		485	495
	490	500	510
Val Asn Ala Ser Ala Ser Val Gln Asn Trp Ser Val Asn Arg Ser		500	510
	505	515	525
Ser Val Ile Pro Glu His Pro Lys Lys Gln Lys Ile Thr Ile Ser		515	525
	520	530	540
Ile His Asn Lys Leu Pro Val Arg Gln Cys Gln Ser Gln Pro Asn		530	540
	535	545	555
Leu His Ser Asn Ser Leu Glu Asn Pro Thr Lys Pro Val Pro Ser		545	555
	550	560	570
Ser Thr Ile Thr Asn Ser Ala Val Gln Ser Thr Ser Asn Ala Ser		560	570
	565	575	585
Thr Met Ser Val Ser Ser Lys Val Thr Lys Pro Ile Pro Arg Ser		575	585
	580	590	600
Glu Ser Cys Ser Gln Pro Val Met Asn Gly Lys Ser Lys Leu Asn		590	600
	595	605	615
Ser Ser Val Leu Val Pro Tyr Gly Ala Glu Ser Ser Glu Asp Ser		605	615
	610	620	630
Asp Glu Glu Ser Lys Gly Leu Gly Lys Glu Asn Gly Ile Gly Thr		620	630
	625	635	645
Ile Val Ser Ser His Ser Pro Gly Gln Asp Ala Glu Asp Glu Glu		635	645
	640	650	660
Ala Thr Pro His Glu Leu Gln Glu Pro Met Thr Leu Asn Gly Ala		650	660
	655	665	675
Asn Ser Ala Asp Ser Asp Ser Asp Pro Lys Glu Asn Gly Leu Ala		665	675
	670	680	690
Pro Asp Gly Ala Ser Cys Gln Gly Gln Pro Ala Leu His Ser Glu		680	690
	685	695	705
Asn Pro Phe Ala Lys Ala Asn Gly Leu Pro Gly Lys Leu Met Pro		695	705
	700	710	720
Ala Pro Leu Leu Ser Leu Pro Glu Asp Lys Ile Leu Glu Thr Phe		710	720
	715	725	735
Arg Leu Ser Asn Lys Leu Lys Gly Ser Thr Asp Glu Met Ser Ala		725	735
	730	740	750
Pro Gly Ala Glu Arg Gly Pro Pro Glu Asp Arg Asp Ala Glu Pro		740	750
	745	755	765
Gln Pro Gly Ser Pro Ala Ala Glu Ser Leu Glu Glu Pro Asp Ala		755	765
	760	770	775
Ala Ala Ser Leu Phe Pro Phe Ser Glu Gly		770	775

<210> 5

<211> 351

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1873139CD1

<400> 5

Met Asn Ala Ile Leu Gln Ser Leu Ser Asn Ile Glu Gln Phe Cys		1	5	10	15
Cys Tyr Phe Lys Glu Leu Pro Ala Val Glu Leu Arg Asn Gly Lys		20	25	30	
Thr Ala Gly Arg Arg Thr Tyr His Thr Arg Ser Gln Gly Asp Asn		35	40	45	

Asn Val Ser Leu Val Glu Glu Phe Arg Lys Thr Leu Cys Ala Leu
 50 55 60
 Trp Gln Gly Ser Gln Thr Ala Phe Ser Pro Glu Ser Leu Phe Tyr
 65 70 75
 Val Val Trp Lys Ile Met Pro Asn Phe Arg Gly Tyr Gln Gln
 80 85 90
 Asp Ala His Glu Phe Met Arg Tyr Leu Leu Asp His Leu His Leu
 95 100 105
 Glu Leu Gln Gly Gly Phe Asn Gly Val Ser Arg Ser Ala Ile Leu
 110 115 120
 Gln Glu Asn Ser Thr Leu Ser Ala Ser Asn Lys Cys Cys Ile Asn
 125 130 135
 Gly Ala Ser Thr Val Val Thr Ala Ile Phe Gly Gly Ile Leu Gln
 140 145 150
 Asn Glu Val Asn Cys Leu Ile Cys Gly Thr Glu Ser Arg Lys Phe
 155 160 165
 Asp Pro Phe Leu Asp Leu Ser Leu Asp Ile Pro Ser Gln Phe Arg
 170 175 180
 Ser Lys Arg Ser Lys Asn Gln Glu Asn Gly Pro Val Cys Ser Leu
 185 190 195
 Arg Asp Cys Leu Arg Ser Phe Thr Asp Leu Glu Glu Leu Asp Glu
 200 205 210
 Thr Glu Leu Tyr Met Cys His Lys Cys Lys Lys Gln Lys Ser
 215 220 225
 Thr Lys Lys Phe Trp Ile Gln Lys Leu Pro Lys Val Leu Cys Leu
 230 235 240
 His Leu Lys Arg Phe His Trp Thr Ala Tyr Leu Arg Asn Lys Val
 245 250 255
 Asp Thr Tyr Val Glu Phe Pro Leu Arg Gly Leu Asp Met Lys Cys
 260 265 270
 Tyr Leu Leu Glu Pro Glu Asn Ser Gly Pro Glu Ser Cys Leu Tyr
 275 280 285
 Asp Leu Ala Ala Val Val Val His His Gly Ser Gly Val Gly Ser
 290 295 300
 Gly His Tyr Thr Ala Tyr Ala Thr His Glu Gly Arg Trp Phe His
 305 310 315
 Phe Asn Asp Ser Thr Val Thr Leu Thr Asp Glu Glu Thr Val Val
 320 325 330
 Lys Ala Lys Ala Tyr Ile Leu Phe Tyr Val Glu His Gln Ala Lys
 335 340 345
 Ala Gly Ser Asp Lys Leu
 350

<210> 6

<211> 136

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1903112CD1

<400> 6
 Met Ala Leu Met Gln Arg Ser Asp Ile Phe Arg Val Ala Ile Ala
 1 5 10 15
 Gly Ala Pro Val Thr Leu Trp Ile Phe Tyr Asp Thr Gly Tyr Thr
 20 25 30
 Glu Arg Tyr Met Gly His Pro Asp Gln Asn Glu Gln Gly Tyr Tyr
 35 40 45
 Leu Gly Ser Val Ala Met Gln Ala Glu Lys Phe Pro Ser Glu Pro
 50 55 60
 Asn Arg Leu Leu Leu Leu His Gly Phe Leu Asp Glu Asn Val His
 65 70 75
 Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu Val Arg Ala Gly
 80 85 90
 Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg His Ser Ile
 95 100 105
 Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu His

Lys Ala Gln Glu Thr Lys
395

<210> 8

<211> 246

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2292182CD1

<400> 8

Met	Ala	Gly	Ala	Pro	Asp	Glu	Arg	Arg	Gly	Pro	Ala	Ala	Gly	
1	5					10					15			
Glu	Gln	Leu	Gln	Gln	Gln	His	Val	Ser	Cys	Gln	Val	Phe	Pro	Glu
					20				25				30	
Arg	Leu	Ala	Gln	Gly	Asn	Pro	Gln	Gly	Phe	Phe	Ser	Ser	Phe	
	35							40			45			
Phe	Thr	Ser	Asn	Gln	Lys	Cys	Gln	Leu	Arg	Leu	Leu	Lys	Thr	Leu
	50							55			60			
Glu	Thr	Asn	Pro	Tyr	Val	Lys	Leu	Leu	Leu	Asp	Ala	Met	Lys	His
	65							70			75			
Ser	Gly	Cys	Ala	Val	Asn	Lys	Asp	Arg	His	Phe	Ser	Cys	Glu	Asp
	80							85			90			
Cys	Asn	Gly	Asn	Val	Ser	Gly	Gly	Phe	Asp	Ala	Ser	Thr	Ser	Gln
	95							100			105			
Ile	Val	Leu	Cys	Gln	Asn	Asn	Ile	His	Asn	Gln	Ala	His	Met	Asn
	110							115			120			
Arg	Val	Val	Thr	His	Glu	Leu	Ile	His	Ala	Phe	Asp	His	Cys	Arg
	125							130			135			
Ala	His	Val	Asp	Trp	Phe	Thr	Asn	Ile	Arg	His	Leu	Ala	Cys	Ser
	140							145			150			
Glu	Val	Arg	Ala	Ala	Asn	Leu	Ser	Gly	Asp	Cys	Ser	Leu	Val	Asn
	155							160			165			
Glu	Ile	Phe	Arg	Leu	His	Phe	Gly	Leu	Lys	Gln	His	His	Gln	Thr
	170							175			180			
Cys	Val	Arg	Asp	Arg	Ala	Thr	Leu	Ser	Ile	Leu	Ala	Val	Arg	Asn
	185							190			195			
Ile	Ser	Lys	Glu	Val	Ala	Lys	Lys	Ala	Val	Asp	Glu	Val	Phe	Glu
	200							205			210			
Ser	Cys	Phe	Asn	Asp	His	Glu	Pro	Phe	Gly	Arg	Ile	Pro	His	Asn
	215							220			225			
Lys	Thr	Tyr	Ala	Arg	Tyr	Ala	His	Arg	Asp	Phe	Glu	Asn	Arg	Asp
	230							235			240			
Arg	Tyr	Tyr	Ser	Asn	Ile									
	245													

<210> 9

<211> 262

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2331301CD1

<400> 9

Met	Glu	Val	Tyr	Ile	Arg	His	Leu	Glu	Lys	Val	Leu	Arg	Arg	Tyr
1	5							10			15			
Val	Gln	Arg	Leu	Gln	Trp	Leu	Leu	Ser	Gly	Ser	Arg	Arg	Leu	Phe
					20			25			30			
Gly	Thr	Val	Leu	Glu	Ser	Lys	Val	Cys	Ile	Leu	Leu	Asp	Thr	Ser
	35							40			45			
Gly	Ser	Met	Gly	Pro	Tyr	Leu	Gln	Gln	Val	Lys	Thr	Glu	Leu	Val
	50							55			60			
Leu	Leu	Ile	Trp	Glu	Gln	Leu	Arg	Lys	Cys	Cys	Asp	Ser	Phe	Asn
	65							70			75			
Leu	Leu	Ser	Phe	Ala	Glu	Ser	Leu	Gln	Ser	Trp	Gln	Asp	Thr	Leu

	80	85	90
Val Glu Thr Thr Asp Ala Ala Cys His	Glu Ala Met Gln Trp	Val	
95	100	105	
Thr His Leu Gln Ala Gln Gly Ser Thr Ser	Ile Leu Gln Ala	Leu	
110	115	120	
Leu Lys Ala Phe Ser Phe His Asp Leu	Glu Gly Leu Tyr Leu	Leu	
125	130	135	
Thr Asp Gly Lys Pro Asp Thr Ser Cys	Ser Leu Val Leu Asn	Glu	
140	145	150	
Val Gln Lys Leu Arg Glu Lys Arg Asp	Val Lys Val His Thr	Ile	
155	160	165	
Ser Leu Asn Cys Ser Asp Arg Ala Ala	Val Glu Phe Leu Arg	Lys	
170	175	180	
Leu Ala Ser Phe Thr Gly Gly Arg Tyr	His Cys Pro Val Gly	Glu	
185	190	195	
Asp Thr Leu Ser Lys Ile His Ser Leu	Leu Thr Lys Gly Phe	Ile	
200	205	210	
Asn Glu Lys Asp Arg Thr Leu Pro Pro	Phe Glu Gly Asp Asp	Leu	
215	220	225	
Arg Ile Leu Ala Gln Glu Ile Thr Lys	Ala Arg Ser Phe Leu	Trp	
230	235	240	
Gln Ala Gln Ser Phe Arg Ser Gln Leu	Gln Lys Lys Asn Asp	Ala	
245	250	255	
Glut Pro Lys Val Thr Leu Ser			
260			

<210> 10

<211> 406

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2517512CD1

<400> 10

Met Ala Ala Ala Val Arg Gln Asp Leu Ala Gln Leu Met Asn Ser			
1	5	10	15
Ser Gly Ser His Lys Asp Leu Ala Gly Lys Tyr Arg Gln Ile Leu			
20	25	30	
Glu Lys Ala Ile Gln Leu Ser Gly Ala Glu Gln Leu Glu Ala Leu			
35	40	45	
Lys Ala Phe Val Glu Ala Met Val Asn Glu Asn Val Ser Leu Val			
50	55	60	
Ile Ser Arg Gln Leu Leu Thr Asp Phe Cys Thr His Leu Pro Asn			
65	70	75	
Leu Pro Asp Ser Thr Ala Lys Glu Ile Tyr His Phe Thr Leu Glu			
80	85	90	
Lys Ile Gln Pro Arg Val Ile Ser Phe Glu Glu Gln Val Ala Ser			
95	100	105	
Ile Arg Gln His Leu Ala Ser Ile Tyr Glu Lys Glu Glu Asp Trp			
110	115	120	
Arg Asn Ala Ala Gln Val Leu Val Gly Ile Pro Leu Glu Thr Gly			
125	130	135	
Gln Lys Gln Tyr Asn Val Asp Tyr Lys Leu Glu Thr Tyr Leu Lys			
140	145	150	
Ile Ala Arg Leu Tyr Leu Glu Asp Asp Asp Pro Val Gln Ala Glu			
155	160	165	
Ala Tyr Ile Asn Arg Ala Ser Leu Leu Gln Asn Glu Ser Thr Asn			
170	175	180	
Glu Gln Leu Gln Ile His Tyr Lys Val Cys Tyr Ala Arg Val Leu			
185	190	195	
Asp Tyr Arg Arg Lys Phe Ile Glu Ala Ala Gln Arg Tyr Asn Glu			
200	205	210	
Leu Ser Tyr Lys Thr Ile Val His Glu Ser Glu Arg Leu Glu Ala			
215	220	225	
Leu Lys His Ala Leu His Cys Thr Ile Leu Ala Ser Ala Gly Gln			
230	235	240	

Gln Arg Ser Arg Met Leu Ala Thr Leu Phe Lys Asp Glu Arg Cys
 245 250 255
 Gln Gln Leu Ala Ala Tyr Gly Ile Leu Glu Lys Met Tyr Leu Asp
 260 265 270
 Arg Ile Ile Arg Gly Asn Gln Leu Gln Glu Phe Ala Ala Met Leu
 275 280 285
 Met Pro His Gln Lys Ala Thr Thr Ala Asp Gly Ser Ser Ile Leu
 290 295 300
 Asp Arg Ala Val Ile Glu His Asn Leu Leu Ser Ala Ser Lys Leu
 305 310 315
 Tyr Asn Asn Ile Thr Phe Glu Glu Leu Gly Ala Leu Leu Glu Ile
 320 325 330
 Pro Ala Ala Lys Ala Glu Lys Ile Ala Ser Gln Met Ile Thr Glu
 335 340 345
 Gly Arg Met Asn Gly Phe Ile Asp Gln Ile Asp Gly Ile Val His
 350 355 360
 Phe Glu Thr Arg Glu Ala Leu Pro Thr Trp Asp Lys Gln Ile Gln
 365 370 375
 Ser Leu Cys Phe Gln Val Asn Asn Leu Leu Glu Lys Ile Ser Gln
 380 385 390
 Thr Ala Pro Glu Trp Thr Ala Gln Ala Met Glu Ala Gln Met Ala
 395 400 405
 Gln

<210> 11
 <211> 172
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3489039CD1

<400> 11
 Met Leu Leu Pro Asn Ile Leu Leu Thr Gly Thr Pro Gly Val Gly
 1 5 10 15
 Lys Thr Thr Leu Gly Lys Glu Leu Ala Ser Lys Ser Gly Leu Lys
 20 25 30
 Tyr Ile Asn Val Gly Asp Leu Ala Arg Glu Glu Gln Leu Tyr Asp
 35 40 45
 Gly Tyr Asp Glu Glu Tyr Asp Cys Pro Ile Leu Asp Glu Asp Arg
 50 55 60
 Val Val Asp Glu Leu Asp Asn Gln Met Arg Glu Gly Gly Val Ile
 65 70 75
 Val Asp Tyr His Gly Cys Asp Phe Phe Pro Glu Arg Trp Phe His
 80 85 90
 Ile Val Phe Val Leu Arg Thr Asp Thr Asn Val Leu Tyr Glu Arg
 95 100 105
 Leu Glu Thr Arg Gly Tyr Asn Glu Lys Lys Leu Thr Asp Asn Ile
 110 115 120
 Gln Cys Glu Ile Phe Gln Val Leu Tyr Glu Glu Ala Thr Ala Ser
 125 130 135
 Tyr Lys Glu Glu Ile Val His Gln Leu Pro Ser Asn Lys Pro Glu
 140 145 150
 Glu Leu Glu Asn Asn Val Asp Gln Ile Leu Lys Trp Ile Glu Gln
 155 160 165
 Trp Ile Lys Asp His Asn Ser
 170

<210> 12
 <211> 517
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5432879CD1

<400> 12
 Met Leu Ser Ser Arg Ala Glu Ala Ala Met Thr Ala Ala Asp Arg
 1 5 10 15
 Ala Ile Gln Arg Phe Leu Arg Thr Gly Ala Ala Val Arg Tyr Lys
 20 25 30
 Val Met Lys Asn Trp Gly Val Ile Gly Gly Ile Ala Ala Ala Leu
 35 40 45
 Ala Ala Gly Ile Tyr Val Ile Trp Gly Pro Ile Thr Glu Arg Lys
 50 55 60
 Lys Arg Arg Lys Gly Leu Val Pro Gly Leu Val Asn Leu Gly Asn
 65 70 75
 Thr Cys Phe Met Asn Ser Leu Leu Gln Gly Leu Ser Ala Cys Pro
 80 85 90
 Ala Phe Ile Arg Trp Leu Glu Glu Phe Thr Ser Gln Tyr Ser Arg
 95 100 105
 Asp Gln Lys Glu Pro Pro Ser His Gln Tyr Leu Ser Leu Thr Leu
 110 115 120
 Leu His Leu Leu Lys Ala Leu Ser Cys Gln Glu Val Thr Asp Asp
 125 130 135
 Glu Val Leu Asp Ala Ser Cys Leu Leu Asp Val Leu Arg Met Tyr
 140 145 150
 Arg Trp Gln Ile Ser Ser Phe Glu Glu Gln Asp Ala His Glu Leu
 155 160 165
 Phe His Val Ile Thr Ser Ser Leu Glu Asp Glu Arg Asp Arg Gln
 170 175 180
 Pro Arg Val Thr His Leu Phe Asp Val His Ser Leu Glu Gln Gln
 185 190 195
 Ser Glu Ile Thr Pro Lys Gln Ile Thr Cys Arg Thr Arg Gly Ser
 200 205 210
 Pro His Pro Thr Ser Asn His Trp Lys Ser Gln His Pro Phe His
 215 220 225
 Gly Arg Leu Thr Ser Asn Met Val Cys Lys His Cys Glu His Gln
 230 235 240
 Ser Pro Val Arg Phe Asp Thr Phe Asp Ser Leu Ser Leu Ser Ile
 245 250 255
 Pro Ala Ala Thr Trp Gly His Pro Leu Thr Leu Asp His Cys Leu
 260 265 270
 His His Phe Ile Ser Ser Glu Ser Val Arg Asp Val Val Cys Asp
 275 280 285
 Asn Cys Thr Lys Ile Glu Ala Lys Gly Thr Leu Asn Gly Glu Lys
 290 295 300
 Val Glu His Gln Arg Thr Thr Phe Val Lys Gln Leu Lys Leu Gly
 305 310 315
 Lys Leu Pro Gln Cys Leu Cys Ile His Leu Gln Arg Leu Ser Trp
 320 325 330
 Ser Ser His Gly Thr Pro Leu Lys Arg His Glu His Val Gln Phe
 335 340 345
 Asn Glu Phe Leu Met Met Asp Ile Tyr Lys Tyr His Leu Leu Gly
 350 355 360
 His Lys Pro Ser Gln His Asn Pro Lys Leu Asn Lys Asn Pro Gly
 365 370 375
 Pro Thr Leu Glu Leu Gln Asp Gly Pro Gly Ala Pro Thr Pro Val
 380 385 390
 Leu Asn Gln Pro Gly Ala Pro Lys Thr Gln Ile Phe Met Asn Gly
 395 400 405
 Ala Cys Ser Pro Ser Leu Leu Pro Thr Leu Ser Ala Pro Met Pro
 410 415 420
 Phe Pro Leu Pro Val Val Pro Asp Tyr Ser Ser Ser Thr Tyr Leu
 425 430 435
 Phe Arg Leu Met Ala Val Val Val His His Gly Asp Met His Ser
 440 445 450
 Gly His Phe Val Thr Tyr Arg Arg Ser Pro Pro Ser Ala Arg Asn
 455 460 465
 Pro Leu Ser Thr Ser Asn Gln Trp Leu Trp Val Ser Asp Asp Thr
 470 475 480
 Val Arg Lys Ala Ser Leu Gln Glu Val Leu Ser Ser Ser Ala Tyr
 485 490 495

Leu Leu Phe Tyr Glu Arg Val Leu Ser Arg Met Gln His Gln Ser
 500 505 510
 Gln Glu Cys Lys Ser Glu Glu
 515
 <210> 13
 <211> 346
 <212> PRT
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 5853753CD1

 <400> 13
 Met Val Glu Lys Glu Glu Ala Gly Gly Ile Ser Glu Glu Glu
 1 5 10 15
 Ala Ala Gln Tyr Asp Arg Gln Ile Arg Leu Trp Gly Leu Glu Ala
 20 25 30
 Gln Lys Arg Leu Arg Ala Ser Arg Val Leu Leu Val Gly Leu Lys
 35 40 45
 Gly Leu Gly Ala Glu Ile Ala Lys Asn Leu Ile Leu Ala Gly Val
 50 55 60
 Lys Gly Leu Thr Met Leu Asp His Glu Gln Val Thr Pro Glu Asp
 65 70 75
 Pro Gly Ala Gln Phe Leu Ile Arg Thr Gly Ser Val Gly Arg Asn
 80 85 90
 Arg Ala Glu Ala Ser Leu Glu Arg Ala Gln Asn Leu Asn Pro Met
 95 100 105
 Val Asp Val Lys Val Asp Thr Glu Asp Ile Glu Lys Lys Pro Glu
 110 115 120
 Ser Phe Phe Thr Gln Phe Asp Ala Val Cys Leu Thr Cys Cys Ser
 125 130 135
 Arg Asp Val Ile Val Lys Val Asp Gln Ile Cys His Lys Asn Ser
 140 145 150
 Ile Lys Phe Phe Thr Gly Asp Val Phe Gly Tyr His Gly Tyr Thr
 155 160 165
 Phe Ala Asn Leu Gly Glu His Glu Phe Val Glu Glu Lys Thr Lys
 170 175 180
 Val Ala Lys Val Ser Gln Gly Val Glu Asp Gly Pro Asp Thr Lys
 185 190 195
 Arg Ala Lys Leu Asp Ser Ser Glu Thr Thr Met Val Lys Lys Lys
 200 205 210
 Val Val Phe Cys Pro Val Lys Glu Ala Leu Glu Val Asp Trp Ser
 215 220 225
 Ser Glu Lys Ala Lys Ala Ala Leu Lys Arg Thr Thr Ser Asp Tyr
 230 235 240
 Phe Leu Leu Gln Val Leu Leu Lys Phe Arg Thr Asp Lys Gly Arg
 245 250 255
 Asp Pro Ser Ser Asp Thr Tyr Glu Glu Asp Ser Glu Leu Leu Leu
 260 265 270
 Gln Ile Arg Asn Asp Val Leu Asp Ser Leu Gly Ile Ser Pro Asp
 275 280 285
 Leu Leu Pro Glu Asp Phe Val Arg Tyr Cys Phe Ser Glu Met Ala
 290 295 300
 Pro Val Cys Ala Val Val Gly Gly Ile Leu Ala Gln Glu Ile Val
 305 310 315
 Lys Ala Leu Ser Gln Arg Asp Pro Pro His Asn Asn Phe Phe Phe
 320 325 330
 Phe Asp Gly Met Lys Gly Asn Gly Ile Val Glu Cys Leu Gly Pro
 335 340 345
 Lys

 <210> 14
 <211> 151
 <212> PRT
 <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 411344CD1

<400> 14
Met Ala Ser Met Gln Lys Arg Leu Gln Lys Glu Leu Leu Ala Leu
1 5 10 15
Gln Asn Asp Pro Pro Pro Gly Met Thr Leu Asn Glu Lys Ser Val
20 25 30
Gln Asn Ser Ile Thr Gln Trp Ile Val Asp Met Glu Gly Ala Pro
35 40 45
Gly Thr Leu Tyr Glu Gly Glu Lys Phe Gln Leu Leu Phe Lys Phe
50 55 60
Ser Ser Arg Tyr Pro Phe Asp Ser Pro Gln Val Met Phe Thr Gly
65 70 75
Glu Asn Ile Pro Val His Pro His Val Tyr Ser Asn Gly His Ile
80 85 90
Cys Leu Ser Ile Leu Thr Glu Asp Trp Ser Pro Ala Leu Ser Val
95 100 105
Gln Ser Val Cys Leu Ser Ile Ile Ser Met Leu Ser Ser Cys Lys
110 115 120
Glu Lys Arg Arg Pro Pro Asp Asn Ser Phe Tyr Val Arg Thr Cys
125 130 135
Asn Lys Asn Pro Lys Lys Thr Lys Trp Trp Tyr His Asp Asp Thr
140 145 150
Cys

<210> 15
<211> 362
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1256390CD1

<400> 15
Met Leu Val Pro Gly Gly Leu Gly Tyr Asp Arg Ser Leu Ala Gln
1 5 10 15
His Arg Gln Glu Ile Val Asp Lys Ser Val Ser Pro Trp Ser Leu
20 25 30
Glu Thr Tyr Ser Tyr Asn Ile Tyr His Pro Met Gly Glu Ile Tyr
35 40 45
Glu Trp Met Arg Glu Ile Ser Glu Lys Tyr Lys Glu Val Val Thr
50 55 60
Gln His Phe Leu Gly Val Thr Tyr Glu Thr His Pro Met Tyr Tyr
65 70 75
Leu Lys Ile Ser Gln Pro Ser Gly Asn Pro Lys Lys Ile Ile Trp
80 85 90
Met Asp Cys Gly Ile His Ala Arg Glu Trp Ile Ala Pro Ala Phe
95 100 105
Cys Gln Trp Phe Val Lys Glu Ile Leu Gln Asn His Lys Asp Asn
110 115 120
Ser Ser Ile Arg Lys Leu Leu Arg Asn Leu Asp Phe Tyr Val Leu
125 130 135
Pro Val Leu Asn Ile Asp Gly Tyr Ile Tyr Thr Trp Thr Thr Asp
140 145 150
Arg Leu Trp Arg Lys Ser Arg Ser Pro His Asn Asn Gly Thr Cys
155 160 165
Phe Gly Thr Asp Leu Asn Arg Asn Phe Asn Ala Ser Trp Cys Ser
170 175 180
Ile Gly Ala Ser Arg Asn Cys Gln Asp Gln Thr Phe Cys Gly Thr
185 190 195
Gly Pro Val Ser Glu Pro Glu Thr Lys Ala Val Ala Ser Phe Ile
200 205 210
Glu Ser Lys Lys Asp Asp Ile Leu Cys Phe Leu Thr Met His Ser
215 220 225

Tyr	Gly	Gln	Leu	Ile	Leu	Thr	Pro	Tyr	Gly	Tyr	Thr	Lys	Asn	Lys
				230					235					240
Ser	Ser	Asn	His	Pro	Glu	Met	Ile	Gln	Val	Gly	Gln	Lys	Ala	
				245					250					255
Asn	Ala	Leu	Lys	Ala	Lys	Tyr	Gly	Thr	Asn	Tyr	Arg	Val	Gly	Ser
				260					265					270
Ser	Ala	Asp	Ile	Leu	Tyr	Ala	Ser	Ser	Gly	Ser	Ser	Arg	Asp	Trp
				275					280					285
Ala	Arg	Asp	Ile	Gly	Ile	Pro	Phe	Ser	Tyr	Thr	Phe	Glu	Leu	Arg
				290					295					300
Asp	Ser	Gly	Thr	Tyr	Gly	Phe	Val	Leu	Pro	Glu	Ala	Gln	Ile	Gln
				305					310					315
Pro	Thr	Cys	Glu	Glu	Thr	Met	Glu	Ala	Val	Leu	Ser	Val	Leu	Asp
				320					325					330
Asp	Val	Tyr	Ala	Lys	His	Trp	His	Ser	Asp	Ser	Ala	Gly	Arg	Val
				335					340					345
Thr	Ser	Ala	Thr	Met	Leu	Leu	Gly	Leu	Leu	Val	Ser	Cys	Met	Ser
				350					355					360

Leu Leu

<210> 16
<211> 123
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1786774CD1

<400> 16

Met	Ser	Gly	Glu	Glu	Leu	Ser	Glu	Ser	Thr	Pro	Glu	Pro	Gln	Lys
				5					10					15
Glu	Ile	Ser	Glu	Ser	Leu	Ser	Val	Thr	Arg	Asp	Gln	Asp	Glu	Asp
					20				25					30
Asp	Lys	Ala	Pro	Glu	Pro	Thr	Trp	Ala	Asp	Asp	Leu	Pro	Ala	Thr
				35					40					45
Thr	Ser	Ser	Glu	Ala	Thr	Thr	Thr	Pro	Arg	Pro	Leu	Leu	Ser	Thr
				50					55					60
Pro	Val	Asp	Gly	Ala	Glu	Asp	Pro	Arg	Cys	Leu	Glu	Ala	Leu	Lys
				65					70					75
Pro	Gly	Asn	Cys	Gly	Glu	Tyr	Val	Val	Arg	Trp	Tyr	Tyr	Asp	Lys
				80					85					90
Gln	Val	Asn	Ser	Cys	Ala	Arg	Phe	Trp	Phe	Ser	Gly	Cys	Asn	Gly
				95					100					105
Ser	Gly	Asn	Arg	Phe	Asn	Ser	Glu	Lys	Glu	Cys	Gln	Glu	Thr	Cys
				110					115					120

Ile Gln Gly

<210> 17
<211> 983
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1911808CD1

<400> 17

Met	Ala	Pro	Arg	Leu	Gln	Leu	Glu	Lys	Ala	Ala	Trp	Arg	Trp	Ala
1				5				10						15
Glu	Thr	Val	Arg	Pro	Glu	Glu	Val	Ser	Gln	Glu	His	Ile	Glu	Thr
				20					25					30
Ala	Tyr	Arg	Ile	Trp	Leu	Glu	Pro	Cys	Ile	Arg	Gly	Val	Cys	Arg
				35				40						45
Arg	Asn	Cys	Lys	Gly	Asn	Pro	Asn	Cys	Leu	Val	Gly	Ile	Gly	Glu
				50				55						60
His	Ile	Trp	Leu	Gly	Glu	Ile	Asp	Glu	Asn	Ser	Phe	His	Asn	Ile

65	70	75
Asp Asp Pro Asn Cys	Glu Arg Arg Lys	Asn Ser Phe Val Gly
80	85	90
Leu Thr Asn Leu Gly	Ala Thr Cys Tyr	Val Asn Thr Phe Leu Gln
95	100	105
Val Trp Phe Leu Asn	Leu Glu Leu Arg	Gln Ala Leu Tyr Leu Cys
110	115	120
Pro Ser Thr Cys Ser	Asp Tyr Met Leu	Gly Asp Gly Ile Gln Glu
125	130	135
Glu Lys Asp Tyr Glu	Pro Gln Thr Ile	Cys Glu His Leu Gln Tyr
140	145	150
Leu Phe Ala Leu Leu	Gln Asn Ser Asn	Arg Arg Tyr Ile Asp Pro
155	160	165
Ser Gly Phe Val Lys	Ala Leu Gly Leu	Asp Thr Gly Gln Gln Gln
170	175	180
Asp Ala Gln Glu Phe	Ser Lys Leu Phe	Met Ser Leu Leu Glu Asp
185	190	195
Thr Leu Ser Asn Gln	Lys Asn Pro Asp	Val Arg Asn Ile Val Gln
200	205	210
Gln Gln Phe Cys Gly	Glu Tyr Ala Tyr	Val Thr Val Cys Asn Gln
215	220	225
Cys Gly Arg Glu Ser	Lys Leu Leu Ser	Lys Phe Tyr Glu Leu Glu
230	235	240
Leu Asn Ile Gln Gly	His Lys Gln Leu	Thr Asp Cys Ile Ser Glu
245	250	255
Phe Leu Lys Glu Glu	Lys Leu Glu Gly	Asp Asn Arg Tyr Phe Cys
260	265	270
Glu Asn Cys Gln Ser	Lys Gln Asn Ala	Thr Arg Lys Ile Arg Leu
275	280	285
Leu Ser Leu Pro Cys	Thr Leu Asn Leu	Gln Leu Met Arg Phe Val
290	295	300
Phe Asp Arg Gln Thr	Gly His Lys Lys	Lys Leu Asn Thr Tyr Ile
305	310	315
Gly Phe Ser Glu Ile	Leu Asp Met Glu	Pro Tyr Val Glu His Lys
320	325	330
Gly Gly Ser Tyr Val	Tyr Glu Leu Ser	Ala Val Leu Ile His Arg
335	340	345
Gly Val Ser Ala Tyr	Ser Gly His Tyr	Ile Ala His Val Lys Asp
350	355	360
Pro Gln Ser Gly Glu	Trp Tyr Lys Phe	Asn Asp Glu Asp Ile Glu
365	370	375
Lys Met Glu Gly Lys	Lys Leu Gln Leu	Gly Ile Glu Glu Asp Leu
380	385	390
Ala Glu Pro Ser Lys	Ser Gln Thr Arg	Lys Pro Lys Cys Gly Lys
395	400	405
Gly Thr His Cys Ser	Arg Asn Ala Tyr	Met Leu Val Tyr Arg Leu
410	415	420
Gln Thr Gln Glu Lys	Pro Asn Thr Thr	Val Gln Val Pro Ala Phe
425	430	435
Leu Gln Glu Leu Val	Asp Arg Asp Asn	Ser Lys Phe Glu Glu Trp
440	445	450
Cys Ile Glu Met Ala	Glu Met Arg Lys	Gln Ser Val Asp Lys Gly
455	460	465
Lys Ala Lys His Glu	Glu Val Lys Glu	Leu Tyr Gln Arg Leu Pro
470	475	480
Ala Gly Ala Glu Pro	Tyr Glu Phe Val	Ser Leu Glu Trp Leu Gln
485	490	495
Lys Trp Leu Asp Glu	Ser Thr Pro Thr	Lys Pro Ile Asp Asn His
500	505	510
Ala Cys Leu Cys Ser	His Asp Lys Leu	His Pro Asp Lys Ile Ser
515	520	525
Ile Met Lys Arg Ile	Ser Glu Tyr Ala	Ala Asp Ile Phe Tyr Ser
530	535	540
Arg Tyr Gly Gly Gly	Pro Arg Leu Thr	Val Lys Ala Leu Cys Lys
545	550	555
Glu Cys Val Val Glu	Arg Cys Arg Ile	Leu Arg Leu Lys Asn Gln
560	565	570

Leu Asn Glu Asp Tyr Lys Thr Val Asn Asn Leu Leu Lys Ala Ala
 575 580 585
 Val Lys Gly Ser Asp Gly Phe Trp Val Gly Lys Ser Ser Leu Arg
 590 595 600
 Ser Trp Arg Gln Leu Ala Leu Glu Gln Leu Asp Glu Gln Asp Gly
 605 610 615
 Asp Ala Glu Gln Ser Asn Gly Lys Met Asn Gly Ser Thr Leu Asn
 620 625 630
 Lys Asp Glu Ser Lys Glu Glu Arg Lys Glu Glu Glu Leu Asn
 635 640 645
 Phe Asn Glu Asp Ile Leu Cys Pro His Gly Glu Leu Cys Ile Ser
 650 655 660
 Glu Asn Glu Arg Arg Leu Val Ser Lys Glu Ala Trp Ser Lys Leu
 665 670 675
 Gln Gln Tyr Phe Pro Lys Ala Pro Glu Phe Pro Ser Tyr Lys Glu
 680 685 690
 Cys Cys Ser Gln Cys Lys Ile Leu Glu Arg Glu Gly Glu Glu Asn
 695 700 705
 Glu Ala Leu His Lys Met Ile Ala Asn Glu Gln Lys Thr Ser Leu
 710 715 720
 Pro Asn Leu Phe Gln Asp Lys Asn Arg Pro Cys Leu Ser Asn Trp
 725 730 735
 Pro Glu Asp Thr Asp Val Leu Tyr Ile Val Ser Gln Phe Phe Val
 740 745 750
 Glu Glu Trp Arg Lys Phe Val Arg Lys Pro Thr Arg Cys Ser Pro
 755 760 765
 Val Ser Ser Val Gly Asn Ser Ala Leu Leu Cys Pro His Gly Gly
 770 775 780
 Leu Met Phe Thr Phe Ala Ser Met Thr Lys Glu Asp Ser Lys Leu
 785 790 795
 Ile Ala Leu Ile Trp Pro Ser Glu Trp Gln Met Ile Gln Lys Leu
 800 805 810
 Phe Val Val Asp His Val Ile Lys Ile Thr Arg Ile Glu Val Gly
 815 820 825
 Asp Val Asn Pro Ser Glu Thr Gln Tyr Ile Ser Glu Pro Lys Leu
 830 835 840
 Cys Pro Glu Cys Arg Glu Gly Leu Leu Cys Gln Gln Gln Arg Asp
 845 850 855
 Leu Arg Glu Tyr Thr Gln Ala Thr Ile Tyr Val His Lys Val Val
 860 865 870
 Asp Asn Lys Lys Val Met Lys Asp Ser Ala Pro Glu Leu Asn Val
 875 880 885
 Ser Ser Ser Glu Thr Glu Glu Asp Lys Glu Glu Ala Lys Pro Asp
 890 895 900
 Gly Glu Lys Asp Pro Asp Phe Asn Gln Ile Met His Ala Phe Ser
 905 910 915
 Val Ala Pro Phe Asp Gln Asn Leu Ser Ile Asp Gly Lys Ile Leu
 920 925 930
 Ser Asp Asp Cys Ala Thr Leu Gly Thr Leu Gly Val Ile Pro Glu
 935 940 945
 Ser Val Ile Leu Leu Lys Ala Asp Glu Pro Ile Ala Asp Tyr Ala
 950 955 960
 Ala Met Asp Asp Val Met Gln Val Cys Met Pro Glu Glu Gly Phe
 965 970 975
 Lys Gly Thr Gly Leu Leu Gly His
 980

<210> 18
 <211> 227
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1973875CD1

<400> 18
 Met Gly Asn Cys Val Gly Arg Gln Arg Arg Glu Arg Pro Ala Ala

1	5	10	15											
Pro	Gly	His	Pro	Arg	Lys	Arg	Ala	Gly	Arg	Asn	Glu	Pro	Leu	Lys
					20						25			30
Lys	Glu	Arg	Leu	Lys	Trp	Lys	Ser	Asp	Tyr	Pro	Met	Thr	Asp	Gly
					35						40			45
Gln	Leu	Arg	Ser	Lys	Arg	Asp	Glu	Phe	Trp	Asp	Thr	Ala	Pro	Ala
					50						55			60
Phe	Glu	Gly	Arg	Lys	Glu	Ile	Trp	Asp	Ala	Leu	Lys	Ala	Ala	Ala
					65						70			75
Tyr	Ala	Ala	Glu	Ala	Asn	Asp	His	Glu	Leu	Ala	Gln	Ala	Ile	Leu
					80						85			90
Asp	Gly	Ala	Ser	Ile	Thr	Leu	Pro	His	Gly	Thr	Leu	Cys	Glu	Cys
					95						100			105
Tyr	Asp	Glu	Leu	Gly	Asn	Arg	Tyr	Gln	Leu	Pro	Ile	Tyr	Cys	Leu
					110						115			120
Ser	Pro	Pro	Val	Asn	Leu	Leu	Leu	Glu	His	Thr	Glu	Glu	Glu	Ser
					125						130			135
Leu	Glu	Pro	Pro	Glu	Pro	Pro	Pro	Ser	Val	Arg	Arg	Glu	Phe	Pro
					140						145			150
Leu	Lys	Val	Arg	Leu	Ser	Thr	Gly	Lys	Asp	Val	Arg	Leu	Ser	Ala
					155						160			165
Ser	Leu	Pro	Asp	Thr	Val	Gly	Gln	Leu	Lys	Arg	Gln	Leu	His	Ala
					170						175			180
Gln	Glu	Gly	Ile	Glu	Pro	Ser	Trp	Gln	Arg	Trp	Phe	Phe	Ser	Gly
					185						190			195
Lys	Leu	Leu	Thr	Asp	Arg	Thr	Arg	Leu	Gln	Glu	Thr	Lys	Ile	Gln
					200						205			210
Lys	Asp	Phe	Val	Ile	Gln	Val	Ile	Ile	Asn	Gln	Pro	Pro	Pro	Pro
					215						220			225

Gln Asp

<210> 19

<211> 403

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2323917CD1

<400> 19

Met	Glu	Lys	Ser	Gln	Lys	Ile	Asn	Pro	Phe	Ile	Leu	His	Ile	Leu
1					5					10			15	
Gln	Glu	Val	Asp	Glu	Glu	Ile	Lys	Lys	Gly	Leu	Ala	Ala	Gly	Ile
					20					25			30	
Thr	Leu	Asn	Ile	Ala	Gly	Asn	Asn	Arg	Leu	Val	Pro	Val	Glu	Arg
					35					40			45	
Val	Thr	Gly	Glu	Asp	Phe	Trp	Ile	Leu	Ser	Lys	Ile	Leu	Lys	Asn
					50					55			60	
Cys	Leu	Tyr	Ile	Asn	Gly	Leu	Asp	Val	Gly	Tyr	Asn	Leu	Leu	Cys
					65					70			75	
Asp	Val	Gly	Ala	Tyr	Tyr	Ala	Ala	Lys	Leu	Leu	Gln	Lys	Gln	Leu
					80					85			90	
Asn	Leu	Ile	Tyr	Leu	Asn	Leu	Met	Phe	Asn	Asp	Ile	Gly	Pro	Glu
					95					100			105	
Gly	Gly	Glu	Leu	Ile	Ala	Lys	Val	Leu	His	Lys	Asn	Arg	Thr	Leu
					110					115			120	
Lys	Tyr	Leu	Arg	Met	Thr	Gly	Asn	Lys	Ile	Glu	Asn	Lys	Gly	Gly
					125					130			135	
Met	Phe	Phe	Ala	Ala	Met	Leu	Gln	Ile	Asn	Ser	Ser	Leu	Glu	Lys
					140					145			150	
Leu	Asp	Leu	Gly	Asp	Cys	Asp	Leu	Gly	Met	Gln	Ser	Val	Ile	Ala
					155					160			165	
Phe	Ala	Thr	Val	Leu	Thr	Gln	Asn	Gln	Ala	Ile	Lys	Ala	Ile	Asn
					170					175			180	
Leu	Asn	Arg	Pro	Ile	Leu	Tyr	Gly	Glu	Gln	Glu	Glu	Ser	Thr	Val
					185					190			195	

WO 01/10903

His	Val	Gly	Leu	Met	Leu	Lys	Glu	Asn	His	Cys	Leu	Val	Ala	Leu
				200					205					210
His	Met	Cys	Lys	His	Asp	Ile	Lys	Asn	Ser	Gly	Ile	Gln	Gln	Leu
				215					220					225
Cys	Asp	Ala	Leu	Tyr	Leu	Asn	Ser	Ser	Leu	Arg	Tyr	Leu	Asp	Val
				230					235					240
Ser	Cys	Asn	Lys	Ile	Thr	His	Asp	Gly	Met	Val	Tyr	Leu	Ala	Asp
				245					250					255
Val	Leu	Lys	Ser	Asn	Thr	Thr	Leu	Glu	Val	Ile	Asp	Leu	Ser	Phe
				260					265					270
Asn	Arg	Ile	Glu	Asn	Ala	Gly	Ala	Asn	Tyr	Leu	Ser	Glu	Thr	Leu
				275					280					285
Thr	Ser	His	Asn	Arg	Ser	Leu	Lys	Ala	Leu	Ser	Val	Val	Ser	Asn
				290					295					300
Asn	Ile	Glu	Gly	Glu	Gly	Leu	Val	Ala	Leu	Ser	Gln	Ser	Met	Lys
				305					310					315
Thr	Asn	Leu	Thr	Phe	Ser	His	Ile	Tyr	Ile	Trp	Gly	Asn	Lys	Phe
				320					325					330
Asp	Glu	Ala	Thr	Cys	Ile	Ala	Tyr	Ser	Asp	Leu	Ile	Gln	Met	Gly
				335					340					345
Cys	Leu	Lys	Pro	Asp	Asn	Thr	Asp	Val	Glu	Pro	Phe	Val	Val	Asp
				350					355					360
Gly	Arg	Val	Tyr	Leu	Ala	Glu	Val	Ser	Asn	Gly	Leu	Lys	Lys	His
				365					370					375
Tyr	Tyr	Trp	Thr	Ser	Thr	Tyr	Gly	Glu	Ser	Tyr	Asp	His	Ser	Ser
				380					385					390
Asn	Ala	Gly	Phe	Ala	Leu	Val	Pro	Val	Gly	Gln	Gln	Pro		
				395					400					

<210> 20

<211> 372

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2754960CD1

<400> 20

Met	Ser	Lys	Ala	Phe	Gly	Leu	Leu	Arg	Gln	Ile	Cys	Gln	Ser	Ile
1				5					10					15
Leu	Ala	Glu	Ser	Ser	Gln	Ser	Pro	Ala	Asp	Leu	Glu	Glu	Lys	Lys
				20					25					30
Glu	Glu	Asp	Ser	Asn	Met	Lys	Arg	Glu	Gln	Pro	Arg	Glu	Arg	Pro
				35					40					45
Arg	Ala	Trp	Asp	Tyr	Pro	His	Gly	Leu	Val	Gly	Leu	His	Asn	Ile
				50					55					60
Gly	Gln	Thr	Cys	Cys	Leu	Asn	Ser	Leu	Ile	Gln	Val	Phe	Val	Met
				65					70					75
Asn	Val	Asp	Phe	Thr	Arg	Ile	Leu	Lys	Arg	Ile	Thr	Val	Pro	Arg
				80					85					90
Gly	Ala	Asp	Glu	Gln	Arg	Arg	Ser	Val	Pro	Phe	Gln	Met	Leu	Leu
				95					100					105
Leu	Leu	Glu	Lys	Met	Gln	Asp	Ser	Arg	Gln	Lys	Ala	Val	Arg	Pro
				110					115					120
Leu	Glu	Leu	Ala	Tyr	Cys	Leu	Gln	Lys	Cys	Asn	Val	Pro	Leu	Phe
				125					130					135
Val	Gln	His	Asp	Ala	Ala	Gln	Leu	Tyr	Leu	Lys	Leu	Trp	Asn	Leu
				140					145					150
Ile	Lys	Asp	Gln	Ile	Thr	Asp	Val	His	Leu	Val	Glu	Arg	Leu	Gln
				155					160					165
Ala	Leu	Tyr	Thr	Ile	Arg	Val	Lys	Asp	Ser	Leu	Ile	Cys	Val	Asp
				170					175					180
Cys	Ala	Met	Glu	Ser	Ser	Arg	Asn	Ser	Ser	Met	Leu	Thr	Leu	Pro
				185					190					195
Leu	Ser	Leu	Phe	Asp	Val	Asp	Ser	Lys	Pro	Leu	Lys	Thr	Leu	Glu
				200					205					210
Asp	Ala	Leu	His	Cys	Phe	Phe	Gln	Pro	Arg	Glu	Leu	Ser	Ser	Lys

Ser	Lys	Cys	Phe	215	Cys	Glu	Asn	Cys	Gly	220	Lys	Lys	Thr	Arg	Gly	225
				230						235						240
Gln	Val	Leu	Lys	245	Leu	Thr	His	Leu	Pro	250	Thr	Leu	Thr	Ile	His	255
Leu	Met	Arg	Phe	260	Ser	Ile	Arg	Asn	Ser	265	Arg	Lys	Ile	Cys	270	
His	Ser	Leu	Tyr	275	Phe	Pro	Gln	Ser	Leu	280	Phe	Ser	Gln	Ile	Leu	285
Pro	Met	Lys	Arg	290	Glu	Ser	Cys	Asp	Ala	295	Glu	Glu	Gln	Ser	Gly	300
Gln	Tyr	Glu	Leu	305	Phe	Ala	Val	Ile	Ala	310	Asp					315
Ser	Gly	His	Tyr	320	Cys	Val	Tyr	Ile	Arg	325	Asn	Ala	Val	Asp	Gly	330
Trp	Phe	Cys	Phe	335	Asn	Asp	Ser	Asn	Ile	335	Cys	Leu	Val	Ser	Trp	Glu
Asp	Ile	Gln	Cys	350	Asn	Tyr	Gly	Asn	Pro	340	Tyr	His	Trp	Gln	Glu	345
Thr	Ala	Tyr	Leu	365	Leu	Val	Tyr	Met	Lys	355						360
										370						

<210> 21
<211> 94
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3092341CD1

Met	Leu	Arg	Gly	Val	Leu	Gly	Lys	Thr	Phe	Arg	Leu	Val	Gly	Tyr	
1					5				10						15
Thr	Ile	Gln	Tyr	Gly	Cys	Ile	Ala	His	Cys	Ala	Phe	Glu	Tyr	Val	
					20				25						30
Gly	Gly	Val	Val	Met	Val	Pro	Met	Gly	His	Val	Trp	Leu	Glu	Gly	
					35				40						45
Asp	Asn	Leu	Gln	Asn	Ser	Thr	Asp	Ser	Arg	Cys	Tyr	Gly	Pro	Ile	
					50				55						60
Pro	Tyr	Gly	Leu	Ile	Arg	Gly	Arg	Ile	Phe	Phe	Lys	Ile	Trp	Leu	
					65				70						75
Leu	Ser	Asp	Phe	Gly	Phe	Leu	Arg	Ala	Ser	Pro	Asn	Gly	His	Arg	
					80				85						90
Phe	Ser	Asp	Asp												

<210> 22
<211> 248
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3658034CD1

Met	Asn	Thr	Glu	Arg	Thr	Asn	Ile	Gln	Val	Thr	Val	Thr	Gly	Pro	
1					5					10					15
Ser	Ser	Pro	Ser	Pro	Val	Lys	Phe	Leu	Ile	Asp	Thr	His	Asn	Arg	
					20				25						30
Leu	Leu	Leu	Gln	Thr	Ala	Glu	Leu	Ala	Val	Val	Gln	Pro	Thr	Ala	
					35				40						45
Val	Asn	Ile	Ser	Ala	Asn	Gly	Phe	Gly	Phe	Ala	Ile	Cys	Gln	Leu	
					50				55						60
Asn	Val	Val	Tyr	Asn	Val	Lys	Ala	Ser	Gly	Ser	Ser	Arg	Arg	Arg	
					65				70						75
Arg	Ser	Ile	Gln	Asn	Gln	Glu	Ala	Phe	Asp	Leu	Asp	Val	Ala	Val	
					80				85						90

<210> 23
<211> 520
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3883861CD1

<400> 23
 Met Val Ala Arg Val Gly Leu Leu Leu Arg Ala Leu Gln Leu Leu
 1 5 10 15
 Leu Trp Gly His Leu Asp Ala Gln Pro Ala Glu Arg Gly Gly Gln
 20 25 30
 Glu Leu Arg Lys Glu Ala Glu Ala Phe Leu Glu Lys Tyr Gly Tyr
 35 40 45
 Leu Asn Glu Gln Val Pro Lys Ala Pro Thr Ser Thr Arg Phe Ser
 50 55 60
 Asp Ala Ile Arg Ala Phe Gln Trp Val Ser Gln Leu Pro Val Ser
 65 70 75
 Gly Val Leu Asp Arg Ala Thr Leu Arg Gln Met Thr Arg Pro Arg
 80 85 90
 Cys Gly Val Thr Asp Thr Asn Ser Tyr Ala Ala Trp Ala Glu Arg
 95 100 105
 Ile Ser Asp Leu Phe Ala Arg His Arg Thr Lys Met Arg Arg Lys
 110 115 120
 Lys Arg Phe Ala Lys Gln Gly Asn Lys Trp Tyr Lys Gln His Leu
 125 130 135
 Ser Tyr Arg Leu Val Asn Trp Pro Glu His Leu Pro Glu Pro Ala
 140 145 150
 Val Arg Gly Ala Val Arg Ala Ala Phe Gln Leu Trp Ser Asn Val
 155 160 165
 Ser Ala Leu Glu Phe Trp Glu Ala Pro Ala Thr Gly Pro Ala Asp
 170 175 180
 Ile Arg Leu Thr Phe Phe Gln Gly Asp His Asn Asp Gly Leu Gly
 185 190 195
 Asn Ala Phe Asp Gly Pro Gly Gly Ala Leu Ala His Ala Phe Leu
 200 205 210
 Pro Arg Arg Gly Glu Ala His Phe Asp Gln Asp Glu Arg Trp Ser
 215 220 225
 Leu Ser Arg Arg Arg Gly Arg Asn Leu Phe Val Val Leu Ala His
 230 235 240
 Glu Ile Gly His Thr Leu Gly Leu Thr His Ser Pro Ala Pro Arg
 245 250 255
 Ala Leu Met Ala Pro Tyr Tyr Lys Arg Leu Gly Arg Asp Ala Leu

	260		265		270
Leu Ser Trp Asp	Asp	Val Leu Ala Val	Gln	Ser Leu Tyr Gly	Lys
	275		280		285
Pro Leu Gly Gly	Ser	Val Ala Val Gln	Leu	Pro Gly Lys	Leu Phe
	290		295		300
Thr Asp Phe Glu	Thr	Trp Asp Ser Tyr	Ser	Pro Gln Gly Arg	Arg
	305		310		315
Pro Glu Thr Gln	Gly	Pro Lys Tyr Cys	His	Ser Ser Phe Asp	Ala
	320		325		330
Ile Thr Val Asp	Arg	Gln Gln Leu Tyr	Ile	Phe Lys Gly	Ser
	335		340		345
His Phe Trp Glu	Val	Ala Ala Asp Gly	Asn	Val Ser Glu Pro	Arg
	350		355		360
Pro Leu Gln Glu	Arg	Trp Val Gly Leu	Pro	Pro Asn Ile	Glu Ala
	365		370		375
Ala Ala Val Ser	Leu	Asn Asp Gly Asp	Phe	Tyr Phe Phe Lys	Gly
	380		385		390
Gly Arg Cys Trp	Arg	Phe Arg Gly Pro	Lys	Pro Val Trp Gly	Leu
	395		400		405
Pro Gln Leu Cys	Arg	Ala Gly Gly Leu	Pro	Arg His Pro Asp	Ala
	410		415		420
Ala Leu Phe Phe	Pro	Pro Leu Arg Arg	Leu	Ile Leu Phe Lys	Gly
	425		430		435
Ala Arg Tyr Tyr	Val	Leu Ala Arg Gly	Gly	Leu Gln Val Glu	Pro
	440		445		450
Tyr Tyr Pro Arg	Ser	Leu Gln Asp Trp	Gly	Gly Ile Pro Glu	Glu
	455		460		465
Val Ser Gly Ala	Leu	Pro Arg Pro Asp	Gly	Ser Ile Ile Phe	Phe
	470		475		480
Arg Asp Asp Arg	Tyr	Trp Arg Leu Asp	Gln	Ala Lys Leu Gln	Ala
	485		490		495
Thr Thr Ser Gly	Arg	Trp Ala Thr Glu	Leu	Pro Trp Met Gly	Cys
	500		505		510
Trp His Ala Asn	Ser	Gly Ser Ala Leu	Phe		
	515		520		

<210> 24

<211> 422

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4993873CD1

<400> 24

Met	Gly	Pro	Ala	Trp	Leu	Trp	Leu	Leu	Gly	Thr	Gly	Ile	Leu	Ala	
1					5				10						15
Ser	Val	His	Cys	Gln	Pro	Leu	Leu	Ala	His	Gly	Asp	Lys	Ser	Leu	
						20			25						30
Gln	Gly	Pro	Gln	Pro	Pro	Arg	His	Gln	Leu	Ser	Glu	Pro	Ala	Pro	
					35				40						45
Ala	Tyr	His	Arg	Ile	Thr	Pro	Thr	Ile	Thr	Asn	Phe	Ala	Leu	Arg	
					50				55						60
Leu	Tyr	Lys	Glu	Leu	Ala	Ala	Asp	Ala	Pro	Gly	Asn	Ile	Phe	Phe	
					65				70						75
Ser	Pro	Val	Ser	Ile	Ser	Thr	Thr	Leu	Ala	Leu	Leu	Ser	Leu	Gly	
					80				85						90
Ala	Gln	Ala	Asn	Thr	Ser	Ala	Leu	Ile	Leu	Glu	Gly	Leu	Gly	Phe	
					95				100						105
Asn	Leu	Thr	Glu	Thr	Pro	Glu	Ala	Asp	Ile	His	Gln	Gly	Phe	Arg	
					110				115						120
Ser	Leu	Leu	His	Thr	Leu	Ala	Leu	Pro	Ser	Pro	Lys	Leu	Glu	Leu	
					125				130						135
Lys	Val	Gly	Asn	Ser	Leu	Phe	Leu	Asp	Lys	Arg	Leu	Lys	Pro	Arg	
					140				145						150
Gln	His	Tyr	Leu	Asp	Ser	Ile	Lys	Glu	Leu	Tyr	Gly	Ala	Phe	Ala	
					155				160						165

Phe Ser Ala Asn Phe Thr Asp Ser Val Thr Thr Gly Arg Gln Ile
 170 175 180
 Asn Asp Tyr Leu Arg Arg Gln Thr Tyr Gly Gln Val Val Asp Cys
 185 190 195
 Leu Pro Glu Phe Ser Gln Asp Thr Phe Met Val Leu Ala Asn Tyr
 200 205 210
 Ile Phe Phe Lys Ala Lys Trp Lys His Pro Phe Ser Arg Tyr Gln
 215 220 225
 Thr Gln Lys Gln Ala Ser Phe Phe Val Asp Glu Arg Thr Ser Leu
 230 235 240
 Gln Val Pro Met Met His Gln Lys Glu Met His Arg Phe Leu Tyr
 245 250 255
 Asp Gln Asp Leu Ala Cys Thr Val Leu Gln Ile Glu Tyr Arg Gly
 260 265 270
 Asn Ala Leu Ala Leu Leu Val Leu Pro Asp Pro Gly Lys Met Lys
 275 280 285
 Gln Val Glu Ala Ala Leu Gln Pro Gln Thr Leu Arg Lys Trp Gly
 290 295 300
 Gln Leu Leu Leu Pro Ser Leu Leu Asp Leu His Leu Pro Arg Phe
 305 310 315
 Ser Ile Ser Gly Thr Tyr Asn Leu Glu Asp Ile Leu Pro Gln Ile
 320 325 330
 Gly Leu Thr Asn Ile Leu Asn Leu Glu Ala Asp Phe Ser Gly Val
 335 340 345
 Thr Gly Gln Leu Asn Lys Thr Ile Ser Lys Val Ser His Lys Ala
 350 355 360
 Met Val Asp Met Ser Glu Lys Gly Thr Glu Ala Gly Ala Ala Ser
 365 370 375
 Gly Leu Leu Ser Gln Pro Pro Ser Leu Asn Thr Met Ser Asp Pro
 380 385 390
 His Ala His Phe Asn Arg Pro Phe Leu Leu Leu Leu Trp Glu Val
 395 400 405
 Thr Thr Gln Ser Leu Leu Phe Leu Gly Lys Val Val Asn Pro Val
 410 415 420

Ala Gly

<210> 25
<211> 114
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5208004CD1

<400> 25
Met Arg Trp Arg Gln Arg Ser Phe Leu Leu Arg Leu Phe Leu Gly
 1 5 10 15
 Ser Leu Arg Gly Gly Gln His His Pro Pro Leu Thr Leu Pro Ser
 20 25 30
 Ala Ser Ser Leu Pro Phe Ser Thr Leu Ser Leu Leu Leu Ala Ser
 35 40 45
 Ser Leu Ser Cys Cys Leu Val Ser Pro Cys Pro Lys Thr Pro Gly
 50 55 60
 Ser Phe Val Leu Leu Pro Trp Pro Pro Pro Arg Arg Arg Ser Gln
 65 70 75
 Ala Pro Ser Pro Pro Arg Gly Ile His Thr Thr Gly Ser Cys Trp
 80 85 90
 Gly Trp Gly Ser Pro Ala Gly Phe Leu Met Pro Cys Ala Gln Gly
 95 100 105
 Ser Ala Ala Val Ile Phe Gly Leu Ser
 110

<210> 26
<211> 742
<212> PRT
<213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5267783CD1

<400> 26
 Met Pro Ala Gly Gly Lys Gly Ser His Pro Ser Ser Thr Pro Gln
 1 5 10 15
 Arg Val Pro Asn Arg Leu Ile His Glu Lys Ser Pro Tyr Leu Leu
 20 25 30
 Gln His Ala Tyr Asn Pro Val Asp Trp Tyr Pro Trp Gly Glu Glu
 35 40 45
 Ala Phe Asp Lys Ala Arg Lys Glu Asn Lys Pro Ile Phe Leu Ser
 50 55 60
 Val Gly Tyr Ser Thr Cys His Trp Cys His Met Met Glu Glu Glu
 65 70 75
 Ser Phe Gln Asn Glu Glu Ile Gly Arg Leu Leu Ser Glu Asp Phe
 80 85 90
 Val Ser Val Lys Val Asp Arg Glu Glu Arg Pro Asp Val Asp Lys
 95 100 105
 Val Tyr Met Thr Phe Val Gln Ala Thr Ser Ser Gly Gly Gly Trp
 110 115 120
 Pro Met Asn Val Trp Leu Thr Pro Asn Leu Gln Pro Phe Val Gly
 125 130 135
 Gly Thr Tyr Phe Pro Pro Glu Asp Gly Leu Thr Arg Val Gly Phe
 140 145 150
 Arg Thr Val Leu Leu Arg Ile Arg Glu Gln Trp Lys Gln Asn Lys
 155 160 165
 Asn Thr Leu Leu Glu Asn Ser Gln Arg Val Thr Thr Ala Leu Leu
 170 175 180
 Ala Arg Ser Glu Ile Ser Val Gly Asp Arg Gln Leu Pro Pro Ser
 185 190 195
 Ala Ala Thr Val Asn Asn Arg Cys Phe Gln Gln Leu Asp Glu Gly
 200 205 210
 Tyr Asp Glu Glu Tyr Gly Gly Phe Ala Glu Ala Pro Lys Phe Pro
 215 220 225
 Thr Pro Val Ile Leu Ser Phe Leu Phe Ser Tyr Trp Leu Ser His
 230 235 240
 Arg Leu Thr Gln Asp Gly Ser Arg Ala Gln Gln Met Ala Leu His
 245 250 255
 Thr Leu Lys Met Met Ala Asn Gly Gly Ile Arg Asp His Val Gly
 260 265 270
 Gln Gly Phe His Arg Tyr Ser Thr Asp Arg Gln Trp His Val Pro
 275 280 285
 His Phe Glu Lys Met Leu Tyr Asp Gln Ala Gln Leu Ala Val Ala
 290 295 300
 Tyr Ser Gln Ala Phe Gln Leu Ser Gly Asp Glu Phe Tyr Ser Asp
 305 310 315
 Val Ala Lys Gly Ile Leu Gln Tyr Val Ala Arg Ser Leu Ser His
 320 325 330
 Arg Ser Gly Gly Phe Tyr Ser Ala Glu Asp Ala Asp Ser Pro Pro
 335 340 345
 Glu Arg Gly Gln Arg Pro Lys Glu Gly Ala Tyr Tyr Val Trp Thr
 350 355 360
 Val Lys Glu Val Gln Gln Leu Leu Pro Glu Pro Val Leu Gly Ala
 365 370 375
 Thr Glu Pro Leu Thr Ser Gly Gln Leu Leu Met Lys His Tyr Gly
 380 385 390
 Leu Thr Glu Ala Gly Asn Ile Ser Pro Ser Gln Asp Pro Lys Gly
 395 400 405
 Glu Leu Gln Gly Gln Asn Val Leu Thr Val Arg Tyr Ser Leu Glu
 410 415 420
 Leu Thr Ala Ala Arg Phe Gly Leu Asp Val Glu Ala Val Arg Thr
 425 430 435
 Leu Leu Asn Ser Gly Leu Glu Lys Leu Phe Gln Ala Arg Lys His
 440 445 450
 Arg Pro Lys Pro His Leu Asp Ser Lys Met Leu Ala Ala Trp Asn
 455 460 465

Gly Leu Met Val Ser Gly Tyr Ala Val Thr Gly Ala Val Leu Gly
 470 475 480
 Gln Asp Arg Leu Ile Asn Tyr Ala Thr Asn Gly Ala Lys Phe Leu
 485 490 495
 Lys Arg His Met Phe Asp Val Ala Ser Gly Arg Leu Met Arg Thr
 500 505 510
 Cys Tyr Thr Gly Pro Gly Gly Thr Val Glu His Ser Asn Pro Pro
 515 520 525
 Cys Trp Gly Phe Leu Glu Asp Tyr Ala Phe Val Val Arg Gly Leu
 530 535 540
 Leu Asp Leu Tyr Glu Ala Ser Gln Glu Ser Ala Trp Leu Glu Trp
 545 550 555
 Ala Leu Arg Leu Gln Asp Thr Gln Asp Arg Leu Phe Trp Asp Ser
 560 565 570
 Gln Gly Gly Tyr Phe Cys Ser Glu Ala Glu Leu Gly Ala Gly
 575 580 585
 Leu Pro Leu Arg Leu Lys Asp Asp Gln Asp Gly Ala Glu Pro Ser
 590 595 600
 Ala Asn Ser Val Ser Ala His Asn Leu Leu Arg Leu His Gly Phe
 605 610 615
 Thr Gly His Lys Asp Trp Met Asp Lys Cys Val Cys Leu Leu Thr
 620 625 630
 Ala Phe Ser Glu Arg Met Arg Arg Val Pro Val Ala Leu Pro Glu
 635 640 645
 Met Val Arg Ala Leu Ser Ala Gln Gln Gln Thr Leu Lys Gln Ile
 650 655 660
 Val Ile Cys Gly Asp Arg Gln Ala Lys Asp Thr Lys Ala Leu Val
 665 670 675
 Gln Cys Val His Ser Val Tyr Ile Pro Asn Lys Val Leu Ile Leu
 680 685 690
 Ala Asp Gly Asp Pro Ser Ser Phe Leu Ser Arg Gln Leu Pro Phe
 695 700 705
 Leu Ser Thr Leu Arg Arg Leu Glu Asp Gln Ala Thr Ala Tyr Val
 710 715 720
 Cys Glu Asn Gln Ala Cys Ser Val Pro Ile Thr Asp Pro Cys Glu
 725 730 735
 Leu Arg Lys Leu Leu His Pro
 740

<210> 27
 <211> 734
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5583922CD1

<400> 27
 Met Trp Gly Leu Leu Leu Ala Leu Ala Ala Phe Ala Pro Ala Val
 1 5 10 15
 Gly Pro Ala Leu Gly Ala Pro Arg Asn Ser Val Leu Gly Leu Ala
 20 25 30
 Gln Pro Gly Thr Thr Lys Val Pro Gly Ser Thr Pro Ala Leu His
 35 40 45
 Ser Ser Pro Ala Gln Pro Pro Ala Glu Thr Ala Asn Gly Thr Ser
 50 55 60
 Glu Gln His Val Arg Ile Arg Val Ile Lys Lys Lys Lys Val Ile
 65 70 75
 Met Lys Lys Arg Lys Lys Leu Thr Leu Thr Arg Pro Thr Pro Leu
 80 85 90
 Val Thr Ala Gly Pro Leu Val Thr Pro Thr Pro Ala Gly Thr Leu
 95 100 105
 Asp Pro Ala Glu Lys Gln Glu Thr Gly Cys Pro Pro Leu Gly Leu
 110 115 120
 Glu Ser Leu Arg Val Ser Asp Ser Arg Leu Glu Ala Ser Ser Ser
 125 130 135
 Gln Ser Phe Gly Leu Gly Pro His Arg Gly Arg Leu Asn Ile Gln

	140	145	150											
Ser	Gly	Leu	Glu	Asp	Gly	Asp	Leu	Tyr	Asp	Gly	Ala	Trp	Cys	Ala
	155	160	165											
Glu	Glu	Gln	Asp	Ala	Asp	Pro	Trp	Phe	Gln	Val	Asp	Ala	Gly	His
	170	175	180											
Pro	Thr	Arg	Phe	Ser	Gly	Val	Ile	Thr	Gln	Gly	Ser	Asn	Ser	Val
	185	190	195											
Trp	Arg	Tyr	Asp	Trp	Val	Thr	Ser	Tyr	Lys	Val	Gln	Phe	Ser	Asn
	200	205	210											
Asp	Ser	Arg	Thr	Trp	Trp	Gly	Ser	Arg	Asn	His	Ser	Ser	Gly	Met
	215	220	225											
Asp	Ala	Val	Phe	Pro	Ala	Asn	Ser	Asp	Pro	Glu	Thr	Pro	Val	Leu
	230	235	240											
Asn	Leu	Leu	Pro	Glu	Pro	Gln	Val	Ala	Arg	Phe	Ile	Arg	Leu	Leu
	245	250	255											
Pro	Gln	Thr	Trp	Leu	Gln	Gly	Gly	Ala	Pro	Cys	Leu	Arg	Ala	Glu
	260	265	270											
Ile	Leu	Ala	Cys	Pro	Val	Ser	Asp	Pro	Asn	Asp	Leu	Phe	Leu	Glu
	275	280	285											
Ala	Pro	Ala	Ser	Gly	Ser	Ser	Asp	Pro	Leu	Asp	Phe	Gln	His	His
	290	295	300											
Asn	Tyr	Lys	Ala	Met	Arg	Lys	Leu	Met	Lys	Gln	Val	Gln	Glu	Gln
	305	310	315											
Cys	Pro	Asn	Ile	Thr	Arg	Ile	Tyr	Ser	Ile	Gly	Lys	Ser	Tyr	Gln
	320	325	330											
Gly	Leu	Lys	Leu	Tyr	Val	Met	Glu	Met	Ser	Asp	Lys	Pro	Gly	Glu
	335	340	345											
His	Glu	Leu	Gly	Glu	Pro	Glu	Val	Arg	Tyr	Val	Ala	Gly	Met	His
	350	355	360											
Gly	Asn	Glu	Ala	Leu	Gly	Arg	Glu	Leu	Leu	Leu	Leu	Met	Gln	
	365	370	375											
Phe	Leu	Cys	His	Glu	Phe	Leu	Arg	Gly	Asn	Pro	Arg	Val	Thr	Arg
	380	385	390											
Leu	Leu	Ser	Glu	Met	Arg	Ile	His	Leu	Leu	Pro	Ser	Met	Asn	Pro
	395	400	405											
Asp	Gly	Tyr	Glu	Ile	Ala	Tyr	His	Arg	Gly	Ser	Glu	Leu	Val	Gly
	410	415	420											
Trp	Ala	Glu	Gly	Arg	Trp	Asn	Asn	Gln	Ser	Ile	Asp	Leu	Asn	His
	425	430	435											
Asn	Phe	Ala	Asp	Leu	Asn	Thr	Pro	Leu	Trp	Glu	Ala	Gln	Asp	Asp
	440	445	450											
Gly	Lys	Val	Pro	His	Ile	Val	Pro	Asn	His	His	Leu	Pro	Leu	Pro
	455	460	465											
Thr	Tyr	Tyr	Thr	Leu	Pro	Asn	Ala	Thr	Val	Ala	Pro	Glu	Thr	Arg
	470	475	480											
Ala	Val	Ile	Lys	Trp	Met	Lys	Arg	Ile	Pro	Phe	Val	Leu	Ser	Ala
	485	490	495											
Asn	Leu	His	Gly	Gly	Glu	Leu	Val	Val	Ser	Tyr	Pro	Phe	Asp	Met
	500	505	510											
Thr	Arg	Thr	Pro	Trp	Ala	Ala	Arg	Glu	Leu	Thr	Pro	Thr	Pro	Asp
	515	520	525											
Asp	Ala	Val	Phe	Arg	Trp	Leu	Ser	Thr	Val	Tyr	Ala	Gly	Ser	Asn
	530	535	540											
Leu	Ala	Met	Gln	Asp	Thr	Ser	Arg	Arg	Pro	Cys	His	Ser	Gln	Asp
	545	550	555											
Phe	Ser	Val	His	Gly	Asn	Ile	Ile	Asn	Gly	Ala	Asp	Trp	His	Thr
	560	565	570											
Val	Pro	Gly	Ser	Met	Asn	Asp	Phe	Ser	Tyr	Leu	His	Thr	Asn	Cys
	575	580	585											
Phe	Glu	Val	Thr	Val	Glu	Leu	Ser	Cys	Asp	Lys	Phe	Pro	His	Glu
	590	595	600											
Asn	Glu	Leu	Pro	Gln	Glu	Trp	Glu	Asn	Asn	Lys	Asp	Ala	Leu	Leu
	605	610	615											
Thr	Tyr	Leu	Glu	Gln	Val	Arg	Met	Gly	Ile	Ala	Gly	Val	Val	Arg
	620	625	630											
Asp	Lys	Asp	Thr	Glu	Glu	Leu	Gly	Ile	Ala	Asp	Ala	Val	Ile	Ala
	635	640	645											

Asp	Gly	Ile	Asn	His	Asp	Val	Thr	Thr	Ala	Trp	Gly	Gly	Asp	Tyr
				650					655					660
Trp	Arg	Leu	Leu	Thr	Pro	Gly	Asp	Tyr	Met	Val	Thr	Ala	Ser	Ala
				665					67.0					675
Glu	Gly	Tyr	His	Ser	Val	Thr	Arg	Asn	Cys	Arg	Val	Thr	Phe	Glu
				680					685					690
Glu	Gly	Pro	Phe	Pro	Cys	Asn	Phe	Val	Leu	Thr	Lys	Thr	Pro	Lys
				695					700					705
Gln	Arg	Leu	Arg	Glu	Leu	Leu	Ala	Ala	Gly	Ala	Lys	Val	Pro	Pro
				710					715					720
Asp	Leu	Arg	Arg	Arg	Leu	Glu	Arg	Leu	Arg	Gly	Gln	Lys	Asp	
				725					730					

<210> 28
<211> 2080
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 088718CB1

<400> 28
tgaaggactt ttccaggacc caaggccaca cactggaagt cttgcagctg aagggaggca 60
ctcctggcc tccgcagccg atcacatgaa ggttgtgcca agtctctgc tctccgtct 120
cctggcacag gtgtggctgg taccggctt ggccccca gctcagtcg cagagacccc 180
agcccctcg aaccagacca gcagggttagt gcaggctccc agggaggaaag aggaagatga 240
gcaggaggcc agcgaggaga aggccggta ggaagagaaa gcctggctga tggcagcag 300
gcagcagctt gccaaggaga cttcaaaattt cggatcagc ctgtcgcgaa agatctccat 360
gaggcacatg gcaacatgg tcttcctcc atttggcatg tccttgccca tgacaggctt 420
gtatcggtgg gccacaggc cgactgaaaac ccagatcaag agagggctcc acttcgcaggc 480
cctgaagccc accaagcccg ggctcctgcc ttccctctt aagggactca gagagaccct 540
ctcccgcaac ctggaactgg gcctctcaca ggggagttt gccttcatcc acaaggattt 600
tgatgtcaaa gagactttct tcaatttatac caagaggat tttgatacag agtgcgtgcc 660
tatgaattt cgcaatgcct cacaggccaa aaggctcatg aatcattaca ttaacaaaaga 720
gactcggtgg aaaattccca aactgttta tgagattaat cctgaaacca aattaattct 780
tgtggattac atcttgttca aagggaatg gttgacccca ttgcaccctg tcttcaccga 840
agtgcgact ttccacctgg acaatgataa gaccattaaat gtgcccattga tgtaacgggtc 900
aggcaagttt gcctccacct ttgacaagaa tttcggtgt catgtcctca aactgcctta 960
ccaaggaaat gccaccatgc ttgtggctt catggagaaa atgggtgacc acctgcctt 1020
tgaagactac ctgaccacag acttgggtga gacatggctc agaaacatga aaaccagaaa 1080
catggaattt ttctttccga agttcaagct agatcagaag tatgagatgc atgagctgt 1140
taggcagatg ggaatcagaa gaatcttctc accctttgtc gaccttagtgc aactctcagc 1200
tacttggaa aatctccaaatg tatccagggt ttacaaaaga acagtgattt aagtgtatga 1260
aaggggcact gggcagttt caggaatctt gtccagaaattt actgttgcattt ccattgcctt 1320
tgtcatcaa gtggaccggc cattttttttt catgatcttat gaagaaaacctt ctggaatgtc 1380
tctttttctg ggcagggtgg tgaatccgac tctcttataa ttcaggacat gcataagcaa 1440
cttcgtgtcg tagtagatgc tgaatcttgcgt gatcaaaaca cacacaggat accagcaatg 1500
gatggcaggg gagagtgttc cttttttttt taacttagttt aggggtttt ccaaataaaata 1560
cagtagtccc cacttatctg agggggatac attcaaaagac ccccgacaga tgcctgaaac 1620
ggtggacagt gctgaacctt atatatattt ttcttctacac atacataacct atgataaaagt 1680
ttaatttata aattaggcac agtaagagat taacaataat aacaacattt agtaaaatga 1740
gttacttggaa cgcacggact gcaatccat aacagtcaaa ctgattttatag agaaggctac 1800
taagtgtact atgggcgagg agcatagaca gtgtggagac attgggcaag gggagaattt 1860
acatccctggg tggacagag caggacatg caagatttca tcccaactact cagaatggca 1920
tgctgtcttaa gacttttataa ttgtttttt ctgaaatttt tcatttaatg ttttggacc 1980
atgggtgacc atggtaact gagactgcag aaagcaaaac catggataag ggaggactac 2040
tacaaaagca ttaattttat atatattttt taaaaaaaaaa 2080

<210> 29
<211> 2225
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 114551CB1

<400> 29
gtgcttggcg cctgcgctgg acgactcggc cggtagtgg gatgtccggc cggtctaagc 60
gggagtctcg cggttccact cgccggaaac gagagtctga gtcgcggggc agctccggc 120
gcgtcaagcg ggagcgagat cgggagccgg accttgaggc ggcgagctcc cggggcagcc 180
cttgtcgccgt gaagcgggag ttcgagccgg cgagcgccg cgaggcccccc gctttgttgc 240
tcccgttgc gcgggttaag cgggagcgcg aggtcgatga gacttcggag cctgagcggg 300
aggtgtcgacg aaaaatggc cagatgtttt ctgaggaccg gaggagccgc cactgcccgt 360
acctggacac cattaacagg agtgtgttgc actttgactt tgagaaaactg ttttttatct 420
ccctctcaca catcaatgt tatgcctgtc tggtgtgtgg caagtactt caagccggg 480
gtttgaagtc tcacgcctac attcacatgt tccagtttag ccaccatgtt ttccctcaacc 540
tccacacctt caagttttac tgcccttccag acaactatga gatcatcgat tcctcattgg 600
aggatatcac gtatgtgttgc aagcccactt tcacaaagca gcaaatttgc aacttggaca 660
agcaagccaa atttttccgg gcatatgtatgttgc gtaccactt cttggccgggt atttggggc 720
tgaataacat aaaggccaaat cttctctccg gactacttt gattatggca acgtgttctt tcaaggcttca ttaatgttcc 780
gggatatcat gttttgttgc ctcgaaatttt caaggcacat ctggagaagaa acaattataa gaacatcaaa cgtctccag 840
gtgtctcccc accaaacaag gagatggcgt tgactttctt tcttgggttcc 1020
gtaagaagac ttttcagatc tggggggca caaagaagaa aaagaagactt atgtgacttgc 1080
tgaatgtctc gcactcagatc aggatcttca ctaaaaaaatg tccccatctt gatctgccag 1140
atgttttcca ggggtccatg cagaagaaaa agagcgttgc ctccataatg acgatccca ggagacaatgtt gttggacttca 1200
cttttatgtt cctgacgctg agctcatatc tccccaaatgtt gaccttcttca ctggcccccctt tcaaaaggac gagaaggagc 1260
tcccatatctt aatctttgtt atccaactat tgcatttttca aacttcttca acatccctggc taagttcaat ggcactactt 1320
agaaggaaata taagacttac ctccatataatc aatctttgtt atcaagagat tcactaagaa cttccagctt accaagtgc 1380
atccaactat tgcatttttca aatctttgtt atccaactat tgcatttttca aatcttctt gttgagaaga 1440
aagtacaacg agtacacaag gcaaggccctc cgagggtctcc atgaatgttca tgcacatgtt gagaataatc ttgtctgaag 1500
atgaattaca agaccccttca cttacatca gatttggaaatggggcgctt agggcttgc tcccaaggccg tgcgtgttgc gatgttcaat gtcacatgtt 1560
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1620
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1680
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1740
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1800
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1860
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1920
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 1980
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 2040
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 2100
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 2160
aaatgttgc tggactgaca tccctccca aggcgagatac atgttgc gatgttcaat ggcacatgtt ggcacatgtt 2220
aaaaaa tagatggatt aaatagtctc ctgttttaa accaaaaaaaaa 2225

<210> 30
<211> 3287
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1261376CB1

<i>c400> 30</i>	<i>caggcgcgtt</i>	<i>acccggcggt</i>	<i>ctccgcgcgg</i>	<i>cggccggcgaa</i>	<i>gggacgtggg</i>	<i>ggaaggggca</i>	<i>60</i>
<i>gggaggagga</i>	<i>agcggtgtggct</i>	<i>gctgcggatg</i>	<i>tcggtgtgag</i>	<i>cgagcggcg</i>	<i>ctgaacacac</i>	<i>120</i>	
<i>ggcggtgc</i>	<i>gagccgcgtt</i>	<i>cccgggcgt</i>	<i>cgccacagcc</i>	<i>tgcaccgagc</i>	<i>tccggggccc</i>	<i>180</i>	
<i>cacacccgc</i>	<i>acggtgcccc</i>	<i>tgccccgtt</i>	<i>gtactgagg</i>	<i>cgccgtgtc</i>	<i>tgcattttc</i>	<i>240</i>	
<i>gtctgtccagg</i>	<i>cctgcggct</i>	<i>ctggtgtctg</i>	<i>ctggcttc</i>	<i>ctgttcgtcc</i>	<i>tgctccctc</i>	<i>300</i>	
<i>tgcttgctct</i>	<i>agtccaccgc</i>	<i>ggccgcggcc</i>	<i>ccacagccat</i>	<i>ggccgagagt</i>	<i>gtgtaaaagcg</i>	<i>360</i>	
<i>cggtcctcc</i>	<i>gggtccccag</i>	<i>gatacgcccg</i>	<i>ccggagccga</i>	<i>aggtgtctgc</i>	<i>gcccccgcgg</i>	<i>420</i>	
<i>ccgcgtgc</i>	<i>cgccgacgc</i>	<i>aaaatcatga</i>	<i>aagtccacgt</i>	<i>gaagaccccg</i>	<i>aaggaaaaagg</i>	<i>480</i>	
<i>aggaattcgc</i>	<i>cgtgcccag</i>	<i>aatacgctcg</i>	<i>tccagcagtt</i>	<i>taaggaagaa</i>	<i>atctctaaac</i>	<i>540</i>	
<i>gttttaaatc</i>	<i>acatactgac</i>	<i>caacttgtgt</i>	<i>tgatatttgc</i>	<i>tggaaaaatt</i>	<i>ttgaaagatc</i>	<i>600</i>	
<i>aagataacct</i>	<i>gagtcagcat</i>	<i>ggaatttcat</i>	<i>atggacttac</i>	<i>tgttcacctt</i>	<i>gtcattaaaa</i>	<i>660</i>	
<i>cacaaaacag</i>	<i>gcctcaggat</i>	<i>cattcagctc</i>	<i>agcaacaaaa</i>	<i>tacagctgga</i>	<i>agcaatgtt</i>	<i>720</i>	
<i>ctacatcatc</i>	<i>aactcttaat</i>	<i>agtaactcta</i>	<i>catctggtt</i>	<i>tgctactaga</i>	<i>aacccttttgc</i>	<i>780</i>	
<i>gtttaggtgg</i>	<i>ccttggggga</i>	<i>cttcaggtc</i>	<i>tgagtagctt</i>	<i>gggtttgaat</i>	<i>actaccact</i>	<i>840</i>	
<i>tctctgaact</i>	<i>acagagttag</i>	<i>atgcagcgac</i>	<i>aactttgtc</i>	<i>taaccctgaa</i>	<i>atgatggtcc</i>	<i>900</i>	
<i>agatcatatgg</i>	<i>aaatccctt</i>	<i>gttcagagca</i>	<i>tgctctcaa</i>	<i>tcctgacctg</i>	<i>atgagacagt</i>	<i>960</i>	
<i>taatttatggc</i>	<i>caatccacaa</i>	<i>atgcagcagt</i>	<i>tgatacagag</i>	<i>aaatccagaa</i>	<i>attagtctata</i>	<i>1020</i>	

WO 01/10903

tgttgaataa	tccagatata	atgagacaaa	cgttggact	tgccaggaat	ccagcaatga	1080
tgcaggagat	gatgaggaac	caggaccgag	cttgagcaa	cctagaaugc	atcccagggg	1140
gatataatgc	tttaaggcgc	atgtacacag	atttcggaa	accatgtcg	agtgtgcac	1200
aagagcagtt	tggtggtaat	ccattgtct	ccttggtag	caatacatcc	tctggtaag	1260
gtagtcaacc	ttcccgatca	gaaaatagag	atccactacc	caatccatgg	gctccacaga	1320
cttcccagag	ttcatcgct	tccagcggca	ctggcagcac	tgtgggtggc	actactggta	1380
gtactggcag	tggcacttct	gggcagagta	ctactgcgcc	aaatttggtg	cctggagtag	1440
gagctagtat	gttcaacaca	ccaggaatgc	agagcttgtt	gcaacaataa	actgaaaacc	1500
cacaacttat	gcaaaaacatg	ttgtctccc	cctacatgag	aagcatgatg	cagtcactaa	1560
gccagaatcc	tgaccttgct	gcacagatga	tgctgaataa	tcccctattt	gctggaaatc	1620
ctcagcttca	agaacaaatg	agacaacagc	tcccaactt	cctccaacaa	atgcagaatc	1680
ctgatacact	atcagcaatg	tcaaaccctt	gagcaatgca	ggccttggta	cagattcagc	1740
agggtttaca	gacatttagca	acggaaagccc	cgggcctcat	cccagggtt	actctggct	1800
tggggcatt	aggaaggact	ggaggctt	caggactaa	tggatcta	gcoacaccta	1860
gtaaaaaacac	aagtcccaaca	gcaggaacca	ctgaacctgg	acatcagcag	tttattcagc	1920
agatgcttca	ggcttctgt	ggagtaatc	ctcagctaca	gaatccagaa	gtcagattc	1980
agcaacaact	ggaacaactc	agtgcatagg	gattttgaa	ccgtgaagca	aacttgcag	2040
ctctaatacg	aacaggaggt	gataatcaatg	cagctattga	aaggtaactg	ggctcccagc	2100
catcatagca	gcatttctgt	atcttggaaa	aatgttaattt	atttttgata	acggcttta	2160
aactttaaaa	tacctgtctt	atttcatttt	gactcttgg	attctgtct	gttataaaca	2220
aacccaat	gtatgcattt	aagggtggat	acagtaat	gtgtgggtt	ttctgttattt	2280
ttctttctg	gacagttggg	aattaaaggct	actgcata	tcacttctgc	atttatttga	2340
atttttaaa	aacatcacct	tttatagttg	ggtgaccaga	ttttgttctg	cattctgtcca	2400
gtttatttgc	tttttaaaca	ttagctttag	gttagtaattt	atgtagaata	aaagcattaa	2460
aaagaagcaa	atcatttgc	ctctataatt	tgtggtagc	tattgctt	tgtgacttt	2520
gcatgcattt	ttgcaaacaa	tgctgttaga	tttatactac	tgataattt	tttttattt	2580
tatacaata	agagttatgc	catttggac	tgcatattctg	aaaacactact	gcaataggt	2640
ctctgagca	aacacctgt	actaaaaaa	tgaagtag	aaaatactct	taaagctgag	2700
tatttcctaa	ttgtatagaa	tcttacagca	tctttgacaa	acatctccca	gcaaaagtgc	2760
cgttagtca	ggttgggt	aaatacagta	gaaaagctg	ttctgggtat	ctcttaagg	2820
acaattaatt	gtacagacac	ataatgttac	attgtctca	cattcattca	cagattgact	2880
gtaaattacc	ttaatcttt	tgcatgactg	aggAACACTG	tagtataccc	caaagtgc	2940
ttgccttaga	cttctcagct	tctccatag	gtattttac	aggcattaa	attttaattt	3000
gaaatgtgc	tttcaactgaa	aaagtgtctt	gatgtttcag	ttatttttaa	tcgcccataaa	3060
aaaatagaac	tatcttttgg	gtttatctgt	tttctcatgc	acaggcaata	cacaatttta	3120
aatatgtgc	tgagccaatt	gtttctgaa	tgttttggta	gttcttattaa	gaaatagtt	3180
aatattgtgc	tttcagagc	ctcagagaca	gggggacgcg	gtgcggggt	ggggcagcgg	3240
aatctgtcct	ggatggggcc	agcttaataa	atactggcaa	ccaagat		3287

<210> 31
<211> 2412
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1299481CB1

<400> 31
ggcctgtgtg cggcggcggc ggcggcggcc gagggggatg gagcggagcgc cgagccgggt 60
cagagtgaa caatgaccat agttgacaaa gcttctgtat cttagacacc atcagcctat 120
cagaatcagc ctggcagctc cgaggcagtc tCACCTGGAG acatggatgc agtttctgcc 180
agctgggggt ctgtgttttcc attgaatgt gtgtcaatc acacacttcc tttaggacca 240
gtacctgggt ctgtgttta ttctgaggatca tctgtacactg ataaatcaaa accatcacca 300
caaaaggatc aagccctagg tgatggcatc gctcctccac agaaaaggctt tttccatct 360
gagaagatcc gctttaagtgc gcaacaaact catagagttt gagctgggtt ccagaatttgc 420
ggcaataacct gtttgcacaa tgcagcactg cagtgtttaa cctacacacc acctcttgcc 480
aattacatgc tacatcatgc acactccaaa acatgtcatg cagaaggctt ttgtatgtat 540
tgtacaatgc aagcacatcatccacatgc tcttagtatac ctggggacgt tattaaacca 600
atgtttgtca tcaatgagat gccccgttata gctaggcacc tccgtttgg aaaccaagaa 660
gatgccccat aattcccttca atacactgtt gatgtctgc agaaaaggatc cttaatggc 720
agcaataataat tagacagaca cacccaggcc accactctt gttgtcagat attggagga 780
tacctaagat cttagatca atgtttaaat tgcaggccggtt ttcagatac ttttgcata 840
tatcttgata taacatttggaa gataaaaggct gctcagagtg tcaacaaggc attggagcag 900
tttgcgttgc cggaaacagct tgcgtggaa aactcgtaca agtgcagcaaa gtgtaaaaag 960
atggttccag cttaaaagag gttcactatc catagatcct ctaatgttct tacactttct 1020
ctgaaacatgtt tgcacaaattt taccgggttggaa aaaatttgcata aggatgtgaa ataccctgag 1080

tatcttgata ttcggccata tatgtctcaa cccaacggag agccaattgt ctacgtcttg 1140
tatgcagtgc tggccacac tggtttaat tgccatgtg gccattactt ctgtacata 1200
aaagcttagca atggcctctg gtatcaaatt aatgactcca ttgtatctac cagtatatt 1260
agatcggtac tcagccaaca agctatgtg ctctttata tcaggtccca tgatgtgaaa 1320
aatggaggtg aacttactca tcccacccat agccccggcc agtcctctcc ccgccccgtc 1380
atcagtcagc gggttgtcac caacaacag gctgcgccag gctttatcgg accacagctt 1440
ccctctcaca tgataaagaa tccacccatc ttaaatggga ctggaccatt gaaagacacg 1500
ccaaggagtt ccatgtcgag tcctaaccggg aattccagtg tcaacagggc tagtctgtt 1560
aatgcttcag ctctgtcca aaactggica gtaataggt cctcagtgat ccagaacat 1620
cctaagaaac aaaaaattac aatcagtatt cacaacaagt tgccctgtcg ccagtgtcag 1680
tctcaacacta acttcatag taattttt gagaacccta ccaaggccgt tcctcttct 1740
accattacca attctcgatc acgttacc tcaacacgtat ctagatgtc agtttcttagt 1800
aaagtaacaa aaccgatccc cccgagtgaa tcctgtccc agccctgtat gaatggcaaa 1860
tccaagctga actccagcggt gctggccccc tatggcccg agtcctctga ggactctgac 1920
gaggagtcaa aggggctggg caaggagaat gggattggta cgattgtgag ctccactct 1980
cccgcccaag atgccaaga tgaggaggcc actccgcacg agcttcaaga acccatgacc 2040
ctaaacggtg ctaatagtgc agacagcgac agtgaccgg aagaaaacgg cctagcgcc 2100
gatgggtcga gctgccaagg ccagectgccc ctgcactcag aaaatccctt tgctaaggca 2160
aacggcttcc ctggaaagt gatgcctgtc cttttgcgt ctctccca agacaaaatc 2220
ttagagacct tcaggcttag caacaaactg aaaggctcgat cggatggaaat gagtgcaccc 2280
ggagcagaga gggccctcc caggaccgc gacgcccggc cttagctgg cagccccggcc 2340
gccgaatccc tgaggagcc agatggggcc gcaagcttat tcccctttag tgagggttaa 2400
tttagcttg ca

<210> 32
<211> 2286
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1873139CB1

<400> 32
aaaaaccggc cgccggaaag cccgtcttt ctttgacgca agggctcgag acgcagccgc 60
cgccggccga gcgcggcgct agaaggcaca ccagacggag cctccggagt tcctccggcc 120
ccacccctccgccc ggtcctggc gcccgcgtcc tcccagctgc cctcctctgt gccatggagt 180
gtccacacact gagctcccgac gtctgcattt ctccggactc agccaagttc cccaaacggct 240
ccccgtcgcc ctgggtctgc agcggtatcg ctgtatgtat tttgtgtta atgacaccaa 300
gctgggactg gtacagaaag tcagagaaca ctacagaac ttggaaaact cagctttcac 360
agctgacagg cataagaaaa gaaaactttt gggaaactca acactaaaca gcaagttatt 420
aaaagtaataa ggaaggccacca ctgcccattt tgccacaggc ctccggatt tgggaaacac 480
atgtttcatg aatgcctatc ttcaatgtcact cagtaacatt gaggatttt gctgttattt 540
caaagaactg cccggcggtt agttaaaggaa tggggaaaca gcaggaaggc ggacatacca 600
caccaggagc caaggggata acaatgtgtc ttggtagaa gagtttagaa agacactctg 660
tgctttatgg caaggcagcc agactgcatt tagcccagag tccttattttt atgttgggg 720
gaagattatg ccaaacttta gggctatca acaggcaggac gcccattaaat tcatgcgcta 780
ccttttggac cacctacact tggaaacttca gggcggttt aacgggtttt cccgctcagc 840
aattctcgatc gagaatttca ctctgtctgc aagtaacaag tggatgtataa atggagcatac 900
tactgtgtc acggatatcat tcggaggcat tcctccaaat gaggttaact gctctatatg 960
tgggacagaa tttagaaatgttgcattt cctagacattt tcattagata ttccaagtca 1020
gttcagaatg aagcgctcta agaataaaga aatggacca gtttgcgt tacgagattt 1080
tcttcgactt ttaccgact tagaagaact tgatgagaca gagttatata tggccataa 1140
atgcaaaaaa aacaaaaatg ccacaaaaaa gtttggatt caaaaactac ccaaggtgct 1200
atgcttacat ttggaaatgttgcatttgcac agatattta agaaataaag ttgatacata 1260
cgtagaattt ccactgagag gcctagacat gaaatgtctac ttactagacg ctgagaacag 1320
tggccggag agctgcctgt atgacccgtc cgtgtgtgt gtgcaccatg gtccgggggt 1380
tggttctggc cattacacag catacgaac tcacgaaggc cgtgtgttcc acttcaatga 1440
cagtagtgc acactgtact acggaggagac tgggtgttgc gcaagggct acatcccttt 1500
ctacgtggaa caccaggcca aagctggatc ggataaactt taatactcc tccaaatcat 1560
cattcacca ccataccaga gaaacattt cagttttcca caaatactt atacaagatt 1620
taatttcattt atgcactttt caatttccat ttttggattt agtttgcgt atggtagtga 1680
cttactgaac atgggcacca actaattttt ttgtgttctt accagaaaac ctacgtacat 1740
gttttgattt gctgcttttag ttgtataat tcaattttt taggtatgtt taagaactta 1800
gtcttatttg acctttttat ttatgttaa tgggttgcgt tctcactttt aggacacattt 1860
acatcaatgc ttgtgttcc ctcacatgtc gaaagcaaga tgggttccattt attgtgaaga 1920
gcaacacaac tcgctgtgc cttccacag ctataatggc catcaggatc actctaaatc 1980

aaggatcatg tgtgcacaat acttgtggcc cacaaaattt cacaatgact gctgaggaat 2040
 catttttt gcctgtaaaa tataacaaag ggcatttcata agtagaccag gtaattactg 2100
 ctgtctctc aaggctgctg tctttatcg cactaactaa ataaatttg tggtcagtt 2160
 gtacttgccc tgcaaataca agaattactc tctttgttgg ttttttgg tttggggcat 2220
 acttgttgc ggggaggtaa gatgggagta aagaccaa atcatgtatg tttaaaaaaa 2280
 aaaaaa 2286

<210> 33
 <211> 873
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1903112CB1

<400> 33
 taaaaaacatt tatcatctt gaaagcactc ttacgagact tttattcatc agaatcagtg 60
 aaatgttctc cctttttga cagggtcaaa tagaaattga cgatcagggtg gaaggactcc 120
 aatatctagc ttctcgatat gatttgcgactt acttagatcg tggggcatc cacggctgg 180
 cctatggagg atacctctcc ctgtggcat taatgcagag gtcagatc ttcagggtt 240
 ctattgtgg gccccccagtc actctgtgg tcttctatga tacaggatatac acgaaacgtt 300
 atatgggtca ccctgaccag aatgaacagg gctattactt aggatctgtg gccatgcaag 360
 cagaaaagtt ccctctgaa ccaaatacggt tactgctt acatggttt ctggatgaga 420
 atgtccattt tgacatacc agtatattac tgatgggg 480
 atgatttaca gatctatcct caggagagac acagcataag agttcctgaa tcgggagaac 540
 attatgaact gcatctttt cactaccc aaaaaacact tggatcacgt attgctgtc 600
 taaaagtgtataatggat cctgtgttga actctctgtt atacactggc tatttaacca 660
 aatgaggagg ttatcaat agaaaacaca gaattgtca tcacattttg atacctgcca 720
 tgtaacatct actcctgaaa ataaatgtgg tgccatgca gggctacgg tttgtggtag 780
 taatctaata ccttaacccc acatgtcaaa aatcaaatac tacatattcc tgagagaccc 840
 agcaatacca taagaattac taaaaaaaaaaa aaa 873

<210> 34
 <211> 1658
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1993044CB1

<400> 34
 ggaagagttt cgatgtctctc agggtggctt gagcgtcctc ccgcgcctc tgcgcgtc 60
 ggtgacggcg cccggggct gtcgggaagt atgcgggtt acgtgtgggtt gacgagctcg 120
 gcggcggtt tgcgtggatc tgcggccgc ggcagctggt gcggggggca gctgagagcg 180
 agaggtggat cggggcggtt tgcggccagg gcatgacgg gcaatgccgg ggagtgggtc 240
 ctcatgaaa ggcacccccc ggtcttccacc gagcttattaa aaggattcgg ttgccgagga 300
 gcccaagtag aagaaatatg gagtttagag cctgagaatt ttgaaaaatt aaagccagg 360
 catgggttaa tttttctttt caagtggcag ccaggagaag aaccagcagg ctcgtgggtt 420
 caggactccc gacttgacac gatattttt gctaaggcagg taattaacca tgcttgcgtc 480
 actcaagcca tagtgatgtt gttactgaac tgcaccacc aggtgtcca tttaggcgag 540
 acattatccatc agttttaaaa attttccaa agtttgcgtt cagctatgaa aggctggca 600
 ctgagcaattt cagatgtgtat tcgacaactt cacaacaggat tcgcccagaca gcaaatagtttt 660
 gaatttgata cgaagacatc agaaaaaaa gaagatgtt ttcactttgtt cagttatgtt 720
 cctgttaatg gtagactgtt tgaatttagt ggattaagag aaggaccat tgatttaggt 780
 gcatgcaatc aagatgattt gttcagtgc gtaaggcctt tcatagaaaa aaggatacaa 840
 aagtacatgt aaggtgaaat tcgatattaa ttaatggcca ttgtgtctga cagaaaaatg 900
 atatatgac agaagatagc agagttacaa agacaactt cagaggagga acccatggat 960
 acagatcaag gtaatgtat gttaaatgtt attcgttcag aagtggccaa aaatcagatg 1020
 cttatgttgg aagaatgtt gaaataaaaa agatataaga ttgagaatata cagaaggaaag 1080
 cataattatc tgccttcat tatggatgtt taaaagactt tagcagaaca ccacgttta 1140
 ataccatgt tagaaaaaggc aaaagaaaaa cagaacgca agaaacttca gggaaaccaa 1200
 tgaagatgtt ttcagatgtt tacacatttgc tgcgttgcataatttca tggaaaccat 1260
 tatgtataaa gaacttagatc caacatcttca atggctcag tgcacgtttt gcaatagtgc 1320
 cagcctgtct tgcctttaat gcatggattt ataaacttct tccctacctt catcatgtgc 1380
 atgtatgtca tattaaatgtt aagaatgtt tcccaattt cattatttgc 1440

```
catttgaggt cctgaccact gtttaagttt tcctgggttg tcctaactaa ccattaatgg 1500  
aggcctgaga aaatggcgcc aaacggatta ttgtttaat ctgtaaattt aaaataaacgt 1560  
aacaatttg cacattggtc agatccttgg attaaaccgg gttggtccta atttgcttcc 1620  
tccatccata accggaaaaa aaaattccgg gtttcccc 1658
```

<210> 35
<211> 1255
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2292182CB1

<400>	35	gcctaacgtc	ttcagcccg	ccaggctgcc	cttcttccct	gcggagggag	ggcctggcgc	60
gtcgcggtgg		cgggagggag	gttacccccc	ccagtctcgc	tctggccggc	tgagccaggc		120
ggaagcagcg		gccccggatctg	cgggaggcat	ggccgggagct	ccggacgagc	gccccggggg		180
ccccggcgca		ggggagcagc	tgcagcagca	acaatgtctc	tgccaggatct	tccccggatcg		240
tctggcccg		gggaatcccc	agcaagggtt	cttctccagc	tttttcacca	gcaaccagaa		300
gtgcagctt		aggctctga	agacgcttga	gacaaatcca	tatgtcaaac	ttctgcttga		360
tgctatgaaa		cactcaggtt	gtgctgttaa	caaagataga	cactttctt	gcgaagactg		420
taatggaaat		gtcagtggag	gttttgatgc	ttcaacatct	cagatagttt	tgtgccagaa		480
taatatccat		aatcaggccc	atataacacag	agtggtcaca	cacgagctt	ttcatgcatt		540
tgatcattgt		cgtggccatgt	tcgactgtt	caccaacatc	agacatttgg	cgtgctcaga		600
ggttcgact		gctaacccta	gtggagactg	ctcaacttgtc	aatgaaatat	tcaaggttaca		660
ttttggatata		aaacaacacc	accagacttg	tgtgcgagac	agagccactt	tttttatctt		720
ggctgttagg		aataatcagca	aagaagtagc	taaaaaaggtt	gttgcgttgc	tttttgcattt		780
ttgtttcaat		gaccatgaac	cttttggaaag	gatcccacat	aacaagactt	atgcaagata		840
tgctcacaga		gactttgaaa	accgtgatcg	gtattattca	aatatatgag	cacaatgaca		900
tttttatatt		acagagcttc	catcatcatg	aaaaaaaaaa	aatttgcgtt	tcaagtgttgc		960
aaacatataa		aatgtaaaca	atccctacaa	tccagataaa	acagagaaga	ctgtgttctt		1020
agcatatata		cagaaaaaagt	aactatggca	aaaaatggaa	ctgtttttaa	ctccaaaggca		1080
gaaattgtat		ctttagatct	aaccatttag	taaaaaataa	cattacattt	ttgtatttta		1140
gtcattttttt		ttttagatcat	gtgattattt	taaaaatttga	ttatgaaacc	tgtgaagtgt		1200
gtcttccat		gatgttgata	ggtgaccact	gttggatattt	acattaaatg	taaaag		1255

<210> 36
<211> 1139
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2331301CB1

<210> 37
 <211> 1753
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2517512CB1

<400> 37
 gtggcggact agcccaggct cccacacccg acgctctggc ccacacagac gctactctgt 60
 agcatctcgat gtccctctg gctgcactct ggaggaccac actcggtttc ttttggctg 120
 ccagaggccc cccatccac cgctgagctg ggagaaagat ggcggcagcc gtgcgacagg 180
 atttggccca gtcatgaat tcgagccgct ctataaaga tctggctggc aagtatcg 240
 agatccctgaa aaaaggcatt cagttatctg gacgacaacta actagaagct ttgaaagctt 300
 ttgttggaaac aatggtaaat gagaatgtca gtctcgatctcgatctg 360
 atttttcac acatcttcct aacttgctg atagcacagc caaagaaaatc tatcacttca 420
 ccttggaaaaa gatccaggct agagtcat catttgagga gcaggttgct tccataagac 480
 agcatcttgc atctatataat gagaaagaag aagattggag aaatgcagcc caagtgttgg 540
 tggaaattcc ttggaaaca ggacaaaac agtacaatgt agattataaa ctggagactt 600
 acttgaagat tgctaggctatctggagg atgatgatcc agtccaggca gaggcttaca 660
 taaatcgagc atcggttgc cagaatgaat caaccaatgca acaattacag atacattata 720
 aggtatgtca tgcacgtgtt ctgttataat gaagaaaattt cattgaagct gcacaaagg 780
 acaatgact ctcttacaaat acaatagtcc acggaaatgtca aagactagag gccttaaaac 840
 atgcttgc acgttacgatc tttagcatcg cagggcagca gcgttctgg atgcttagcta 900
 ctcttttaa ggatggaaagg tgccagcaac ttgtcgctt tggatctt gagaaaatgt 960
 atcttagatag gatcatcaga gggaaatcaac ttcaagaattt tgctgcattt ctgatgcctc 1020
 accaaaaaaggc aactacagct gatgggtcca gcatcttggc cagagctgtt attgaacaca 1080
 atttgttgc tgcaggcaaa ttatataata atattaccc tcaagaactt ggagctt 1140
 tagagatccc tgcagctaaag gggaaaaaaa tagcatctca aatgataacc gaaggacgta 1200
 tgaatggatttatttggaggcatttggatggaa tagtttattt tgaaacacgaa gaggccctgc 1260
 caacgtggaa taagcagatc caatcatttt gtttccaaatgtaaataacattt ttggagaaaa 1320
 tttagtcaaac agcaccagaa tggacacgac aagccatggc agcccaatgtgatcgtt 1380
 tccttgcaga acttctgtgc acatgacatc ttttccatgtt tggtcgatc cagtttactt 1440
 atctccaaatg catttgcattt atgacccat tcaatccat cccctttatgc tggattccg 1500
 tttaaaggaaatcattttagt agcaggaaatg acaagcattt aaaaatgtta gttccat 1560
 atttcagggt ctctgtgtat taagctact cagatgtttt gaaagctttt tctttaaaca 1620
 gaggttggaaatctgttggctt aaaaaggttt agatttggatc taacttggatc gtcatgtaaa 1680
 acttaatgtc ttcatgcctc tccaaatgtt gttattctaa taaatggaga aatgagccaa 1740
 aaaaaaaaaaaa aaa 1753

<210> 38
 <211> 580
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3489039CB1

<400> 38
 cgaggcgcccc gaagccgtcg cggcggggac catgttgctt ccgaacatcc tgctcaccgg 60
 tacaccagggttggaaaaaa ccacactagg caaagaactt gcgtaaaat caggactgaa 120
 atacattaaat gttgggtgatt tagctcgaga agagcaattt tatgtatggct atgatgaaga 180
 gtatgactgt cccattttagt atgaagacag agtagttgat gagttagata accaaatgag 240
 agaagggtggatgttggatttggatccatgg ttgtgatttccctgtaaac gctgggttca 300
 tataatgttggatgttggatccatgg ttgtgatttccctgtaaac gctgggttca 360
 ttataatgttggatgttggatccatgg ttgtgatttccctgtaaac gctgggttca 420
 agaaggccaca gcatcctaca aggaagaaat cgtgcattcgatctg 480
 agagcttagaa aataatgttag atcagatctt gaaatggattt gaggcgttggatc tcaaagatca 540
 taacttgcatttggatccatgg ttgtgatttccctgtaaac gctgggttca 580

<210> 39
 <211> 2186
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5432879CB1

<400> 39

gtccggcggc ggcggcggcg gtagccgagg agacggttt aggccctccgg tgccggctgca 60
 atgctgagct cccggggccga ggccggcgatg accggccggc acagggccat ccagcgcttc 120
 ctgcggaccg gggcgccgt cagatataaa gtcatgaaga actggggagt tatagggtgga 180
 attgctgctg ctcttgacg aggaaatatat gttatttggg gtcccattac agaaaagaaag 240
 aagctgatcaa aagggttgt gcctggcctt gtaatttag ggaacacactg cttcatgaac 300
 tccctgtac aaggcctgtc tgccctgtct gctttcatca ggtggctgga agagttcacc 360
 tcccagtact ccaggatcatc gaaggagcc ccttcacacc agtattata ctaaacactc 420
 ttgcacccctc tggaaaggctt gtcctggccaa gaagttactg atgatgaggt ctagatgca 480
 agctgttgtt gggatgttctt aagaatgtac agatggcaga tctcatcatt tgaagaacag 540
 gatgtcactg aattattcca tgcattacc tcgtcattgg aagatgagcg agaccggccag 600
 cctcggtca cacattgtt tgatgtcat tccctggcgc agcagtcaga aataactccc 660
 aaacaaatta cctgccgac aagagggtca ctcacccca catccaatca ctggaaagtct 720
 caacatccctt ttcatggaaactcactgt aatatggtct gcaaaacactg tgaacacccag 780
 agtcctgtt gatttgcata ctttgatago ctttcaactaa gtattccgc cgccacatgg 840
 ggtcacccat tggccctggc ccactgcctt caccacttca tctcatcaga atcagtgcgg 900
 gatgttgtgt gtgacaactg tacaagatt gaagccaagg gaaacgttggaa cggggaaaag 960
 gtggAACACCAGAGGACACCTTTGGTAAACAGTTAAACATGGAAAGCTCCTCAGTGT 1020
 ctctgcattcc acctacagcg gctgagctgg tccagccacg gcacgcctct gaagcggcat 1080
 gagcacgtgc agttcaatgaa gttccctgtatg atggacattt acaagatcca ctccttgga 1140
 cataaaaccta gtcaacaccaa ccctaaactg aacaagaacc cagggcctac actggagctg 1200
 caggatgggc cgggagcccc cacaccgtt ctgatgc cagggggcccc caaaacacag 1260
 attttatgaa tggcgccctg ctccccatct ttattggccaa cgctgtcage ggcgtatggcc 1320
 ttcctctcc cagttgttcc cgactacagc tccctccacat accttccgc getgtatggca 1380
 gttgtctcc accatggaga catgcactt ggacactttg tcacttaccg acggtcccc 1440
 cttctgcca ggaaccctct ctcaactagc aatcagtggc tgggggtctc cgatgacact 1500
 gtccgcagg ccagcctgca ggaggctctg tccctccagcg ctcacctgt gttctacgag 1560
 cgcgtctt ccaggatgca gcaccagagc caggagtgc agtctgaaatgactgtgc 1620
 ctcctgcaa ggcttagagct gatggactg tctgcactgt ccaggaaaaaa agtaaaaactg 1680
 tactgttgcg tggcaagcg gccccactag agccttccag ctttctggc ttttctaaga 1740
 gcaggctcca cctggggagcc agccccagtt cacaccaaaac caggctccct gaacagtcc 1800
 gttcatgtgtt ctgttgtt aaaaagcat tcattatgtc cggagtgtct 1860
 ttttactcat ctgatcagg taattaaaag aactcagatt cttgaagcca ccttttcat 1920
 attgtatgt taggtgttctt cagagggggat gtagctttgt ctaatcaacg ttccactta 1980
 gatctttat ttttataaag caggccata aaaatttttgc acaagaatta atgaaattat 2040
 taaaggcaac aattttagaaag aaaaagtgc tttcaacttc gattgtttt gtagcacgtc 2100
 cattgtgaaa tattccttcc aggctactca aaggatagca agagaacagg taaatgtgc 2160
 ctaaaacaac cttccctttt tctatg 2186

<210> 40
 <211> 2522
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5853753CB1

<400> 40

ctccggcgt gtcggccggcg gcggttaggtg gcgccgggggt ccggccggcg gttggcttga 60
 gcccggaccgg agctgaggca ggaagagccg gcccgcggatgg ggagaaggag gaggctggcg 120
 gcccgcattag cgaggaggag gcccgcacagt atgaccggca gatccgcctg tggggactgg 180
 aggcccgaaa acggctggcg gcctctcggt tgcttcttgc cggctgtaaa ggacttgggg 240
 ctgaaattgc caagaatctc atcttggcag gagtggaaagg actgaccatg ctggatcacg 300
 aacaggtaac tccagaagat cccggagctc agttcttgcat tcgtactggg ttgttgtggc 360
 gaaataggcg tgaaggctt ttggagcgat ctcaaatctt caacccatg gtggatgtga 420
 aggtggacac tgaggatata gagaagaaac cagagtcat tttcaacttca ttccatgtctg 480
 tggctgtac ttgtctgc tggatgtca tagttaaatg tgaccagatc tggcacaataaa 540
 atagcatcaa gttcttaca ggagatgttt ttggcttacca tggatcacaca ttggccaatc 600
 taggagagca tggatgtt gaggagaaaa ctaaaggatgc caaaggatgc caaggagtag 660
 aagatggggcc cgacaccaag agagcaaaac ttgattcttgc tgagacaacg atggtaaaaa 720
 agaagggtgtt ctctgcctt gttaaagaag ccctggaggt ggactggagc agtgagaaaag 780
 caaaggctgc tctgaagcgac acgacccctcg actactttctt cttcaacttgc ctcttaaagt 840

tccgtacaga	taaaggaaga	gatcccagt	ctgatacata	ttaggaagat	tctggatgt	900
tgcgtccagat	acgaaaatgt	gtgttgcact	cactgggtat	tagtcctgac	ctgtttcctg	960
aggactttgt	caggtaactgc	ttctccgaga	tggccccagt	gtgtgcgggt	gttggaggga	1020
ttttggcaca	gaaatttgt	aaggccctgt	ctcagcgaaa	ccctcctcac	aacaacct	1080
tcttcttcga	tggcatgaag	ggaaatggga	ttgtggagtg	ccttggcccc	aagtgaactc	1140
aagatttggc	agccccagag	atgccaactg	cagcatgcc	acctgtattc	cctgtccct	1200
tccttcatga	aggcatctcc	aggcaaggaa	aactgaagtc	attggcccg	tacaaaacat	1260
ttcctgcAAC	gaaggagggt	gtggccacgt	gctgttccc	ataccacgca	gctgctcgac	1320
aagggggcga	gggtggctgt	ctttgttcca	gactgttca	ggctgcgtgt	catccccggc	1380
ctgcaggtc	ccctgagtga	tgagcaccc	caagcacccc	tctgccttt	ctctgtcctt	1440
atgcgttccc	ggcctcgcca	gcccctctggg	gcattgtggg	agatgcgtc	caggaatgag	1500
caagctctgt	tgctcgggag	cctcttgc	ccttcttgg	tttattcccc	acctgtatcc	1560
ttatagagaa	aagtgtgaat	tcaggtggag	agttagggca	ggccccatga	ggcaccagt	1620
gaagcacacg	tccaaagtca	gacaggtgcc	cttagagagg	aaaaccatga	caggcaaatg	1680
catttcctct	ggagtttgag	accctgcaca	acaacaggt	gcatctgg	tgtgttctt	1740
gagttttcg	ttaggattag	ttgagttcca	gctggggttt	ggggagaaagg	agatgtacc	1800
aagtcttgg	tgttagggcg	agaccctgca	agttgagat	tagagagtt	gtcttcaag	1860
gcaggttct	ggggcttcag	ggcttaggagg	gaggagcctg	cccttttaac	agaacccca	1920
tcacatcg	ctcaagtcac	tcagaggctg	ttgcatttca	gggctatgtt	ggctttgt	1980
ttacctccta	aaccacagct	gtttgtt	caatatgtt	gtgaattttc	cttggtttctt	2040
tttaaaggaa	tgataataaa	gttacttgc	ttaggattt	cttggttt	ttccacttca	2100
gaagcttctg	agagggaaatg	ggatgatct	accagttgcc	ttttcagacc	tgaggctcta	2160
actcaagaga	ttccctctct	ccctcaccat	tcctggcacc	atttttctg	ggtgatgcag	2220
caagagttaa	attgttcaca	ttctagaatg	tgtagaagct	tctggctca	gttgtctaat	2280
ggataattca	gctaaatagt	ggcttatttc	agttggcaaga	attataataa	taaagggaaag	2340
tcaaaaagtga	tgcctcatat	gcccccaagt	ccacagcgcc	tacgggtcag	agctttatt	2400
ggaagacacg	gttgccttg	atgcagccaa	agtgcggtcc	agttcacc	acttttgctt	2460
gtgtttcttc	tttatgtaaa	ttgtgtgatg	tttcaataaa	tcagtcctt	tcctaaaaaa	2520
aa						2522

<210> 41
<211> 2167
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 411344CB1

<400>	41					
cgccggatctt	ggggggatgg	ttccatcatg	gcgtcaatgc	agaaaacgact	acagaaaagaa	60
ctgttggtt	tgc当地atga	ccc当地ctct	ggaatgaccc	taaatgagaa	gagtgttcaa	120
aattcaatta	cacagtggat	tgttagacatg	gaagggtcac	cagggtaccc	atatgaaggg	180
aaaaaatttc	aacttctatt	taaattttagt	agtc当地atc	ctt当地gtac	tcctcagggtc	240
atgtttactc	gtggaaaatat	tcctgttcat	cctc当地gttt	atagcaatgg	tcatatctgt	300
ttatccatc	taacagaaga	ctgggtcccc	gc当地ctctcag	tccaaatcagt	ttgtctttagc	360
atttagtagc	tgctttccag	ctgcaaggaa	aagagacgac	caccggataa	ttcttttat	420
gtgcgaacat	gtaacaagaa	tccaaagaaa	acaaaatggt	ggtatcatga	tgatacttgt	480
tgatgccact	gttatcatcc	tccttagcaga	agatagtcct	actgagaaaa	tgagcactt	540
gatcattcag	tcttgaact	ttaacccctt	actggaagtg	acctataggc	aatgaagact	600
acttccttt	actgcattt	tactcggtg	cattctgggc	gcatgttcat	cgctgggtca	660
gtccaggcaa	ctgacatgt	tttatttagt	atacagttt	aatgcagggt	tcaggaaatg	720
tcaaatataa	ttccattttt	tatatttttt	tttttaaaget	tttggaaaag	ctccagggtcc	780
tcatgttatt	tgc当地ataaca	atgacttcct	tggcggtttt	ggtacgttca	ttgcccggcaa	840
tgggcgttgt	aacaggaaaa	gttttcatta	actcctgcca	ttcaatgatt	aatgc当地atgat	900
agggcctatg	aaatgaactt	actgggtata	gtgggaatat	aaataaaatg	agggatccaa	960
cattacttta	aaagtccaccc	caactgttta	tatttggatt	ctatgcactg	tgatcctaag	1020
gttaacacgca	tgaattaaca	tgc当地cttta	aaggactgt	atgaaagatc	attgc当地atatt	1080
tattgaattt	tttatatatct	ctgtcaagtt	gttttgacat	ggaagatttt	caagtaacat	1140
tggcagagag	gtacagttatg	ttatccctat	ggtgaaaata	aattaatttg	ttgtatata	1200
ttccctcaatc	tctgaaagtt	aggtataggt	aatatagggt	atgaatgtt	taatcaaggc	1260
tttattttgg	aaagtaagaaa	aatggcagtg	atgatataat	tgctgcagtc	cataatttgg	1320
gcttgttatt	tgtacattaa	agatttttc	caagtaagg	acactctgtt	aacttccctgc	1380
tagccatcag	catgagccct	actgc当地taaa	cactatttca	tttattttatg	tttggaaaacc	1440
cgc当地aaatc	ttttgttgc	aatcttgc当地	cttttgc当地	aagtcaagtt	tgaatgttac	1500
aataactttt	ttgaaaacttt	tgttaagttt	tttcttgc当地	attttcttta	cttgc当地gtta	1560
tcatcttgc	ctt当地atcc	gtaccctaaa	ataagaaata	catttttgac	agaggcttaa	1620

tgttttaaca aaagagtgtg gacatttttta ttttaaaatt taggcaaaag tcactatcaa 1680
 atggttgctt atttgtctca cacagccata tagttttcc tggagggtt tgggggtt 1740
 ttgttgaaaa gactttgtc acagctagat gaaactttct atagaaaaaaa aaaattgtt 1800
 aaagggtccag ttctcgtac catgtgaggta aatgatacta caactaagtt ctttttaaaa 1860
 agtgattaat gtatTTTata aattacctt tcacatatgc aaaatctgtt tctactacaa 1920
 tggttttt actaatgcct tattgtggca ctcttttga aacatcctgc agtgaatata 1980
 tgaatcaatt tgggcttaaa actgaaagcc agttgggctg aaaggttga aataacgtacc 2040
 ccagtaaaac cattcaatcc ataattggta aataatattt taaaatggt tttaatccgt 2100
 atagatgaca tttttagct ttggacatgg tggtaattaa gggcattaa ttacactc 2160
 caaggtt 2167

<210> 42
 <211> 1826
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1256390CB1

<220>
 <221> unsure
 <222> 1755
 <223> a, t, c, g, or other

<400> 42
 ccccccgcctt tctatagcat agttctcttt aggtggaaatg attcctataa gatttctcat 60
 tattaaatca tgcatttttc aagatggaaat caatcttgc tttaaatctaa gctgatattc 120
 tcatttttta gaagaacaac ctacatgta gagagagagg agggaaatata cccacgacca 180
 cacagccagt tagtatccag ttgggtgtgg actccagccca ggtgtctgc ctcatggtag 240
 ttaaatgata tatagaaaaag gtaaattttt aaagaaaatata ttattaaatattt attcctataa 300
 aacattttaa aggttaaccac ataaaaatgg ttaattttt cattccaaag taaatgctaa 360
 gcatgtttat taatgaagca gtacttctga ttgttatatg acattctgaa gtaatttaaa 420
 ctcattgcac taaatgtgtc ttcccttggta tagtggagga tttgaggatt ggaatataga 480
 gtagagtgtc tgcttaagcc tctgtgtgaa acccttttata ttgggggt gctgggttct 540
 ggagggtctgg gatatgtatg atcttagcc caacacagac aagaggatgt ggacaagtca 600
 gtgagttccat ggagcctgga gacgttcc tataacatata accacccat gggagagatc 660
 tatgagtggaa tgagagagat cagtggaaag tacaaggaaag tggtgacaca gcatttccta 720
 ggagtgcacct atgagaccca ccccatgtat tatctgaaga tcagccaaacc atctggtaat 780
 cccaagaaaa tcaatttggat ggactgtgga attcacgcca gagaatggat tgctcctgct 840
 ttttgc当地 ggttgc当地 agaaattcttca caaaaccata aagacaactc aagtatacgc 900
 aagctccctt ggaacacgttca cttctatgtc ctccctgtt ttaacataga tggttatact 960
 tacacttggaa caactgtatcg tctttggagg aaatccccgtt caccctataa taatggcaca 1020
 tggttggaa cggatctca tggaaatttc aatgcattt ggtgtatgt tggtgcctct 1080
 agaaactgc当地 aagatcaaacc attctgtggg acaggccag tggctgaaacc agagactaaa 1140
 gctgttgc当地 gtttcataga gagcaagaag gatgatattt tggtcttct gaccatgc当地 1200
 tcttatggc当地 agttattctt cacacccatc ggctacacca aaaataaaatc aagtaaccac 1260
 ccagaaatgaa ttcaagttgg acagaaggca gcaaaatgc当地 tgaaagcaaa gtagggaaacc 1320
 aattatagag ttggatcgag tgcagatattt ttatatgc当地 catcagggtc ttcaagagat 1380
 tggggccggag acatttttca tatacgtttgg agctgggggaa cagtggaaaca 1440
 tatgggggtt ttctggccaga agctcagatc cagccacccat gtggggagac catggggct 1500
 gtgctgtc当地 ttctggatga tggtgtatgc当地 aacactggc actcggccag tggctggaaagg 1560
 gtgacatctg ccaactatgtc gctggccctg ctgggtctt gcatgttctct tctctaagtg 1620
 cattctgccc aggcttttctt ctggccagaaa ttcccttta ttttcttcc tagtaaagtc 1680
 tttcttggat actaattctg acattacctg tggaaattttt gctgacttcc acagattttt 1740
 ttttctctcc ttctntaact gttttagtacac actttaatgt aataatttac agacttgc当地 1800
 agtgagatag gatattacat gccctg 1826

<210> 43
 <211> 1371
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1786774CB1

<400> 43
 gcaaaaattg tttcaaaaaa tttgtgagga tttgattcc tatctcgcc aaattttgg 60
 ttcatcgta cctcaacctg gatttggat gtcaggggaa gaactcaatg aacttactcc 120
 agagcctcaa aaagaaaattt ctgactcatt gagtgtcacc agagaccagg atgaagatga 180
 taaggctcca gagccaaacgt gggctgtatga tctgcctgcc actacccat ctgaggccac 240
 caccacccc aggccactgc tcagcacccc tggatgggg gcagaggatc cttagatgtt 300
 ggaagccttg aagcctggaa actgtgtga atatgtgtt cgatggatt atgacaaca 360
 ggtcaactct tggcccgat tttgtttag tggctgtat ggcctcaggaa atagattcaa 420
 cagtggaaag gaatgtcaag aaacctgcatt tcaaggatga gcaagtaaat tggctgtct 480
 ctatcaaag catagaactc cctaattcc acatattcac ccaatacaa tacagacta 540
 tattttagtg tatactgagt attacaact tatacatgtt attgaattct cactacagcc 600
 ctagatgtt catattatta accactata tagtaagaa agctgaggct ctgagaagtt 660
 tagtaacttgc tcaactgtca cccaaactaa aagttttaga gctgaggatt tagacttaga 720
 gctgtgttac ttcaatacact agacttccat tacttcacaa cctgcattgt gattctgatt 780
 cctttaattc ctgtttagtgc tactatgtca gctcaaaccct ctaaccctgt ccctgccccat 840
 acctccaccc actcacctcc ctaaccctct tatgtccctc acagtagcaa gatgttaggtg 900
 ataggaagga cttcggtgtg agaattagaa atgatgtaaa tgttacgca ggagtgcgtgg 960
 gataggagtc gggatgggtga gggtagtttag atttttgcct cacttgcctt gaaagtggta 1020
 atagggagaa accaatctga attacaatta cttaaatgtt tcaacagactg tcactttgtt 1080
 ttccctccaac atgtttggta acaagtgtt aatgtatgtt aaaataaaga aggttttat 1140
 accctccat taaaatatgt cagtgccccc ttccattttt tggagtggaa tggaaaggcc 1200
 cttgacagcc aggaaccact tgaagctggc atccactt gaacagagag tattaaagac 1260
 aggattcaca ctgaaaatgtt agccacaaa ttgaaatgcg agtaatggg agtaacggag 1320
 aatcgcttgc ccctggaaag cagaggatc agagagccgg gattgccccca g 1371

<210> 44
 <211> 3634
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1911808CB1

<400> 44
 gccgcggcag tggcgccac aggtgattga ctggccagct gcctgaagga gcgcaggcgtc 60
 ctccctgtcg gcagggtggcg aagccattt gggcgccgtt gcagaccgcg gggcggtcg 120
 cggcggtctg gctcgggagg ctggcttgg gccaaggcca tggcccgcg gctgcagctg 180
 gagaaggcgg cttggcgctg ggcggagacg gtgcggcccg aggagggtgc gcaggagcat 240
 atcgagaccg ctaccgcatt ctggcttggag ccctgcattt cggcggtgtg cagacgaaac 300
 tgcaaggaa atccgaattt ctgggttggt atgggtgagc atattttgggtt aggagaaata 360
 gatgaaaata gtttcataa catcgatgtt cccaaactgtt agaggagaaa aaagaactca 420
 tttgtggcc tgaactaacct tggagccact tggatgtca acacatttct tcaagtgtgg 480
 tttctcaact tggagcttgc gcaggactc tactatgtt caagcacttgc tagtgactac 540
 atgctggag acggcatcca agaagaaaaa gattatgagc ctcaaaacat ttgtgagcat 600
 ctccagact tgggttgcctt gttcaaaaactt agtaataggc gatacatttgc tccatcagga 660
 tttgtttaaag ctttgggcctt ggacacttgg caacagcaggat atgctcaaga attttcaaaag 720
 ctcttatgt ctctatttggaa agataacttgc tctaaccaaa agaattccaga tggcgcaat 780
 attgttcaac agcagtttgc tggagaatat gcctatgtt ctgttgcctt ccagtgtggc 840
 agagagttca agcttttgc aaaattttt gactggagt taaatatcca aggccacaaa 900
 cagttaacag attgttatctc ggaattttt gaggaaagaaa aattagaagg agacaatcgc 960
 ttttttgcg agaactgtca aagcaacacg aatgtcaacaa gaaagatccg acttcttagc 1020
 ctccctgtca ctctgttgc ctgcactatgc ctttttgcctt ttgacaggca aactggacat 1080
 aagaaaaaagg tgaatacttca cattgggttc tcaagaaattt tggatgttgc gccttatgtg 1140
 gaacataaaag tgggttgcctt cgtgtatgaa ctcagcgcag tcctcatata cagaggagtg 1200
 agtgcttattt ctggccacta catgcacccat gtgaaagatc cacagttctgg tgaatggat 1260
 aagtttataatg atgaagacat agaaaagatg gaggggaaaga aattacaact agggatttgag 1320
 gaagatcttgc cagaacccatc taagtcttgc acacgttacaa ccaagtgtgg caaaggaact 1380
 cattgttctc gaaatgcata tatgttgggtt tataactgtc aaactcaaga aaagcccaac 1440
 actactgttc aagttccatc ctttcttcaat gagctggatc atcggttataa ttccaaattt 1500
 gaggagggtt gtatttggat ggcgttgcgtt cgttgcacaa gtgtggataa agaaaagca 1560
 aaacacgaaatg agttaagggat gctgttacaa agtttacccgt ctggagctga gccttatgtg 1620
 tttgttgc tgaatggctt gcaaaatgggg ttggatgttgc caaaccttac caaacctt 1680
 gataatcactg ctggctgtt ttccatgttca aagtttgcattt cggataaaat atcaattatg 1740
 aagaggatattt ctgaaatatgtc agtgcacatt ttctatgtt gatatgggg aggttcaaga 1800
 ctaactgttgc aagccctgtt taaggatgtt gtagttagaaat gttgtcgat attgcgtctg 1860
 aagaaccaac taaatgttgc ttataaaactt gtaataatc tgcgttgc tgcgttgc 1920

ggcagcgatg gattttgggt ggggaagtcc tccttgcgga gttggcgcca gctagctt 1980
 gaacagctgg atgagcaaga tggtgatgc gaacaaagca acgaaaatg gaacggtagc 2040
 accttaaata aagatgaatc aaaggaaagaa agaaaaaaag aggaggaatt aaattttat 2100
 gaagatattc tggtccaca tggtagtta tgcataatctg aaaatgaaag aaggcttgg 2160
 tctaaagagg ctggagcaa actgcagcag tactttccaa aggctctga gttccaagt 2220
 tacaaaagagt gctgttcaca gtcaagatt ttagaaagag aaggggaga aaatgaagcc 2280
 ttacataaga tgattgcaaa cgagcaaaag acttctctcc caaatttgg ccaggataaa 2340
 aacagaccgt gtctcagta ctggccagag gatacggatg tcctctacat cgtgtctcag 2400
 ttctttgtag aagagtggcg gaaatttggt agaaaaggcta caagatgcag ccctgtgtca 2460
 tcagttggga acagtgtctt tttgtgtccc cacggggggc tcatgtttac atttgttcc 2520
 atgaccaaag aagattctaa acttatagtc tcataatggc ccagtgtg gcaaatgata 2580
 caaaagctt tggtgtgg a tcatgttaaaatc aaaaatcacga gaatttggt gggagatgta 2640
 aacccttcag aacacacagta tatttcttag cccaaactct gtccagaatg cagagaaggc 2700
 ttatttgtgc acgacggcag ggacctgcgt gaatacactc aagccaccat ctatgtccat 2760
 aaagttgtgg ataataaaaaa ggtgtatgg gattcggctc cggaaactgaa tggtagt 2820
 tctgaaacag aggaggacaa ggaagaagct aaaccagatg gagaaaaaaga tccagat 2880
 aatcaaatca tgcatttgcatttccatc ccttttggc agaatttggc aattgtatgg 2940
 aagattttaa gtgtatgtc tgccaccccta ggcaccccttgc gctgttccatc tgaatctgtc 3000
 atttttaga aggctgtatgc accaaatgc gattatgtc caatggatg tgcattgca 3060
 gtttgtatgc cagaagaagg gttttaaagg actggcttc ttggacatc atctttgat 3120
 acttgcgtgc tgctaaaggaa tgaccaggagg ggaaggaggatg tttgacatgt tagggcatta 3180
 aagcaaaagggt ggtttaaga attaaaccat tacatgcccc ttccaaaagg cagaaatcca 3240
 ttcaaacgtg actgtcccaa atgccttatc tcaaataaaag cagattgcac tgatggacat 3300
 cagactgaa gggaaatgtt ccaattttat atttaagggg ggtgtgggt gggagggggc 3360
 aagtaaaagac ggaacaagtt tagtagcgt aatagtaat catgtttaca tatgagattt 3420
 atagtcgtgg ggggggata aagttctgtt atatttcctt gctcgagttt cataccagat 3480
 gcgttgggcc ataaaggatt gtatcaagta gatgggacaa cattctgtc tgaacgaaaa 3540
 gtaatttttag agacataacc tgcttacca tgccctgtt tgattcatat tctactttca 3600
 ataaagcatg aaagtgaaga acttgtaaaaa aaaa 3634

<210> 45
 <211> 1661
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1973875CB1

<400> 45

ctcgagccga ttccggctcga ggcggactgg tctccggccg ggcacccgtcg cggggccccc 60
 tggcccccggcc acttggggacc gtgtggggg gtcgtccact tcctcttc ccttggggccg 120
 caaagtttgc gggggccatcg cgctggggct gggccggccc cggggggggatcggggggc 180
 gcccgtatgc gggggccggc agccattgtac cccggggccgccc gccgtccgtc gggccggcc 240
 ccacccggcc gcttccgggt catggggact ggctgaggag ccagcatggg caactgcgtg 300
 gggagacaggc gccggggaggg gccggcagcc cccggggacacc cccgcaagcg agcaggacgc 360
 aatgagcccc tgaagaaaaga gccggcttaag tggaaagagcg actaccatc gactgacggg 420
 cagctgcgg gcaaaacggga tgagttctgg gacacagcgc ctgccttcga gggccgcaag 480
 gagatctggg atgccttcaa ggctggccgc tatgtctgtc aagccaaacga ccacggactg 540
 gcccaggccca tcttggatgg agccagcatc accctgcctc atggccatcc ctgtgaatgc 600
 tacgtatggc tggggccatcg ctaccatcg cccatctact gcctgtcacc gccggtaac 660
 ctgctgtgg agcacacggg gggggggggc ctggagccccc cccggccatcc acccagcg 720
 cggccgtgatg tcccgtgaa ggtgcggctg tccacggggca aggacgttag gctcagcgcc 780
 agcctgcccc acacagtggg gcagctcaag aggacgtgc acggccaggag gggcatcgag 840
 ccatctgtggc agcgggtggc ttctccggg aagctgtca cagaccgcac accgctccag 900
 gagaccaaga tccagaaaga ttttgcattc caggtcatca tcaaccagcc cccaccaccc 960
 caggactgtat gggcccacgg accccctgggaa agaggcccccc cctggagccatc tagggggccca 1020
 ccctgtgtgtc gcttccatcg gtcgttattt ttccatgggg ccctccccc ggtgtggctg 1080
 gtgggtggc cgtgaaggggc ccctggctt caggcacta cggccacca gttcccggt 1140
 cccaggggc accggcggccac acacggggct tgcacccctt tcagagaaaa ggcgaacagg 1200
 gcccctccccc tgcctgtctc cggcggccatc tgcgttccatcg aaggccaaac caggaggccc 1260
 ctggagccca gatctgtcat ctggatgtc cagctgtgtc cactctgtt ttctgtc 1320
 ggtctgaaggc agctgtgtc tccctccatc gcccggccatc cctggcttc ccctggggcc 1380
 agtgcactc ccttggaaagg gaggaaacca cccgtgagcc ccaggccatc ggaagcctga 1440
 ggcggggccctc tgcctctccc tggcccccacg acaattggca gagatgaggc ggtgtggg 1500
 cggctgggct gtcgtggccatc ggtctgcaca gggccatgtc ctggctgtaa cccaggccatc 1560
 gggagggtctg cagcctggtc atggccatcc cagcaggatc ctgtggacag acatatctgc 1620

atatttatca ataaagcctt ttgctccttc aaaaaaaaaa a

1661

<210> 46
<211> 1910
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2323917CB1

<400>	46					
gtactccgcg	cgcagccctg	gcggtccagc	gcaaatctcc	agaatctgg	ctccagaaac	60
attattctaa	tctgttatg	aaaaaatccc	agaaaattaa	tcctttata	ttgcatatac	120
tccaagaagt	ggatgaagaa	attaaaaagg	ggctagcagc	aggaatcaca	ttaaacattg	180
ctggtaacaa	tcgcttagt	ccagtagaaa	gaggtagcagg	tgaagattt	tggattctt	240
caaaaattt	aaagaattgt	ctgtatatta	atgtttgg	tgttgatat	aaccttctat	300
gtgatgtgg	tgcatactat	gctcgaaac	tcgttcgaaa	acaactataat	ctcatttact	360
taaaccctat	gtttaatgtat	attggccccg	aagggtggaga	attgtatgtct	aaagtgtcac	420
ataagaatcg	gactctgaaa	tacctaagaa	tgactggaaa	caaaatgaa	aataaaaggtg	480
gaatgtttt	tgctgcaatg	ctgcaaattt	attcatcatt	agagaaatta	gatctgggtg	540
actgtgatct	ggaaatgcaa	agtgtgatag	cattgtctac	agtactaact	caaaaccaag	600
caattaaggc	aataaaccta	aaccgaccta	tactgtacgg	tgaacaggaa	gagtctacag	660
tccatgttag	cctcatgttg	aaagaaaattc	actgttctgt	tgcactacac	atgtgtaa	720
atgatataaa	aaacagtgtt	atacaacagt	tatgtatgc	actgtatctg	aacatgtcc	780
tgcgctacct	tgatgtcagc	tgcacaaaaa	taactcatga	tggaaatgg	tatttggctg	840
atgtactgaa	aagcaacact	accctggaaag	taatagatct	ttcctttaac	agaatagaaa	900
atgcaggcgc	aaactatctc	agtgaaactc	ttacttcaca	caacaggagt	cttaaagcgt	960
tgtcagtagt	cagcaacaac	atagagggag	aaggacttgt	tgcacttca	caatcaatga	1020
aaacaaatct	cactttctct	cataatctaca	tttggggaaa	caaatttgat	gaggctacgt	1080
gtatagcata	ttcagacta	attcaaatgg	gttgtctaaa	accagacaat	acagatgtgg	1140
agccatttgt	ggtagatgga	cgtgtatatac	ttgcagaagt	ctccaatggc	ctaaaaaagc	1200
attattattt	gacatcaact	tatggagaat	cttagatcca	ctcatctaat	cgagggtttg	1260
ctctgttcc	agtaggtcaa	cagccatgaa	aaagtagctg	taaaataatt	ttcatacact	1320
tgtcttattt	tttcacagag	attaatattc	tatagcttat	tttctttat	aaattaaaac	1380
aagttacttt	tttcaaatgt	gtaaaagata	atgactgtat	taaactttgt	ataactgtca	1440
aaaaaaaaaaa	aaaggggggcg	gccccgatta	gtgagctcgt	ccccgcgggt	attactccc	1500
ggggcccggt	cccttggggg	gggttaacca	gtcttccgc	caaggggtgt	gtctgtata	1560
tacaggcgtc	ttgaaagag	aagtctgtc	gtccctgggc	tcttctctg	gtcgaggggc	1620
attttactcg	tctgtcccc	ctggtgtaat	atagatccgc	cacgcgtgt	gtccgtgtta	1680
tgttggaaat	aagtgttgg	tggagtcgtc	tcgggttgg	gacgttagta	gatcctcgc	1740
gacgttctca	tatcggttg	gcgttggcgt	tggccccgt	tcccggtgtt	gtgttgcga	1800
ggttagtggtg	ttgcacatgt	atttatattt	gtccctccgc	cgcgcggggt	ggaggcgtgg	1860
ttgggtttagt	agtcgtggc	ggttgggttg	ttctcaacc	cacacacaat		1910

<210> 47
<211> 2162
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2754960CB1

```

<400> 47
gacagcgc aa ccgcactcca gcctggacga cagaatgaga ctccgtctca aaaaaaaaaaa 60
aaaaaaaaaa aaggcgaggc tggaagtctg gagcagggtgc gcggctgcaa cggcagccgc 120
ggaaagctcg ggccggcagg gtttccccgc acgctggcgc ccagctccc ggcgggaggc 180
cgctgttaagt ttgcgttcc attcagtgga aaacgaaagc tggggcggggt gccacgagcg 240
cggggccaga ccaaggcggg cccggagcgg aacctcggtc ccagctcggt ccccggtctca 300
gtcccgacgt ggaactcagc agcggaggtc ggacgcttgc atggcgcttgc agagatttca 360
tcgtgcctgg ctacataag cgtttccctgg aagtgaagtc gtgcgttgc gaacgcggc 420
caggcagctg cggcctgggg gttttggagt gatcacaatc gagaaggcgt tttttggctcc 480
tgaggccaaat ctgcgttcc attcgttggctg agtccctcgca gtccccggca gatcttgaag 540
aaaagaagga agaagacagc aacatgaaga gagagcagcc cagagagcgt cccaggccct 600
gggactaccc tcatggcctg gttggttac acaacattgg acagacatgc tgctttaact 660
ccttgattca qqtqttcgtt atqaatgtgg acttcaccag gatattgaag aggatcacgg 720

```

tgcccagggg	agctgacgag	cagaggagaa	gcgtccctt	ccagatgctt	ctgctgctgg	780
agaagatgca	ggacagccgg	cagaaggcag	tgcggccct	ggagctggcc	tactgcctgc	840
agaagtgc当地	cgtgccctt当地	tttgtccaac	atgatgctgc	ccaactgtac	ctcaaactct	900
ggaacctgat	taaggaccag	atcaactgtat	tgcacttgg	ggagagactg	caggccctgt	960
atacgatccg	ggtaaggac	tccttgattt	gcgttactg	tgccatggag	agttagcagaa	1020
acagcagcat	gctcacccctc	ccacttctc	tttttgcgt	ggactcaaaag	cccttgaaga	1080
caetggagga	cgcctgcac	tgcttcttcc	agccccaggga	gttatcaagc	aaaagcaagt	1140
gcttctgtga	gaactgtggg	aagaagacc	gtggaaaca	ggtcttgaag	ctgacccatt	1200
tgccccagac	cctgacaatc	cacccatgc	gatttccat	caggaattca	cagacgagaa	1260
agatctgcca	ctccctgtac	ttcccccaga	gcttggattt	cagccagatc	cttccaatga	1320
agcgagatc	tttgtatgt	gaggagcagt	ctggagggca	gtatgagctt	tttgcgtgt	1380
ttgcgcacgt	ggaatggca	gactccggc	attactgtgt	ctacatccgg	aatgtgtgt	1440
atggaaaatg	gttctgttcc	aatgactcca	atattgttt	ggtgtccctgg	gaagacatcc	1500
agtgtaccta	cggaaatct	aactaccat	ggcaggaaac	tgcataat	ctgtttaaca	1560
tgaagatgga	gtgtaatgg	aatggccaa	aaccttcaga	gattgacacg	ctgtcatttt	1620
ccathttccgt	tcctggatct	acggagtctt	ctaagagatt	ttgcaatgag	gagaaggatt	1680
gttttcaaac	tatataactg	agccttattt	ataatttaggg	atattatcaa	aatatgtaac	1740
catgaggccc	ctcaggctt	gatcagtcag	aatggatgt	ttcaccagca	gaccgggcca	1800
tgtggctgt	cggctctggg	tgctcgctc	tgtcaagac	attagccctt	tagttatgag	1860
cctgtgggaa	cttcagggtt	tcccagttgg	gagagcagt	gcagtgggag	gcatctgggg	1920
gccaaaggtc	agttgcaggg	ggtatttcag	tattatacaa	ctgctgtac	cagactgt	1980
tactggctga	atatcagtgc	tgtttgtat	tttcactt	gagaaccaac	attaattcca	2040
tatgaatcaa	gtgtttgt	actgtatcc	attattcag	caaattat	ttgtatcat	2100
cttctccata	agatagtgt	ataaacacag	tcatgaataa	agttat	cacaaaaaaa	2160
aa						2162

<210> 48
<211> 578
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3092341CB1

```

<400> 48
gaaaggccca cctgtgtcct gtttgggggt ctccagggtt ctttggggcc cgaggaattt 60
cagacctgaa caatcagggt gacaacttct tggactttg ggtattctga aattactcat 120
cttgactcta ctgtgcctgg atgttagctgt gtgttttgg tggatccctgt tcattggccaa 180
tgggtggcaga gtcatacatag aactatgtt cgtgggttgg tggggaaaac ctttcgactt 240
gttggctata ctatccaata tggctgtata gtcattgtt ctttgaata cgttgggtgt 300
gttgtcatgg tgccaatggg tcatgtttgg tttagaagggtg acaatctaca gaattctaca 360
gattccagggt gtcataggacc tattccatata ggactaataa gaggacgaat ctctttaag 420
atttgggttc tgagtgttta tggatttta cgtgccagcc ctaatggccca cagattttct 480
gatgatttagt aagcatttat tcttttgact tgattattgt ctcccttca tgtgaattta 540
ttactcccggt tgaaaccgtg tacttaccaa taaactat 578

```

<210> 49
<211> 1300
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3658034CB1

```

<400> 49
aggaaatccc aattatgagg cggttaagca ggcaaagaaa tagttgggt ggtttgcata 60
ctactcagga taccactgtg gctttaaagg ctgtctgaat ttgcagccct aatgaataca 120
gaaaggacaa atatccaagt gaccgtgacg gggccttagct caccaggatcc tgtaaagtt 180
ctgattgaca cacacaaacct acggcagttt atatccgc aaatggggtt ggatttgcta 240
tataatgtga aggcttcgtt ttgtttagt atgttgcgt gtctttaga agacgaagat 300
tttggatggat tttttttttt aaaaagaaaaat aaagatgtatc tcatccaaaa tcaagaagcc 360
gtgtgtacaa gcttttcggg cccgggttagg agtggcatgg tcaatcatgt ggatttgaat 420
ttaagtggct ttatggtgcctt aatataatgtca aatgtttttttt ttcagaagca atttctctga 480
aatatgtatc atgaaaaact caacctctat ttagattctgt gcgagacagt gaagaaaatgt 540
ttaatgtttttt taaatgtttttt taaatgtttttt taaatgtttttt taaatgtttttt taaatgtttttt 600

```

gttaatattc ctgctgtgag aaactttaaa gttcaaata cccaagatgc ttcaagtgtcc 660
 atagtggatt actatgagcc aaggagacag gggttgagaa gttacaactc tgaagtgaag 720
 ctgtcccttc gtgacctttc cagtgatgtc cagggtcgcc gtccttgc gatggagct 780
 tcaggctccc atcatcactc ttcaagtgtt tttatatttct gttcaagct tctgtacttt 840
 atggaaactt ggctgtgatt tatttttaaa ggactctgtg taacactaac atttccagta 900
 gtcacatgtg attgtttgt ttcgttagaa gaatactgt tctatatttga aaaaagagtt 960
 tttttctt ctatgggtt gcaggatgg tgacaaacag gtcctagcat gtatagctgc 1020
 atagatttct tcacctgtc tttgtgtgaa agatcagaat gaatgcagtt gtgtgtctat 1080
 atttccctt ctcaaaaatct tttagaattt tttggaggt gttgttttc tccagaataa 1140
 agttattact tttagaatagg tattctcttc atttgtgaa agaaatgaac ctagattctt 1200
 aagcattatt acacatccat gttgtctaa agatggattt ccctggaaat gggagaaaaac 1260
 agccagcagg aggagcttca tctgtttcccccaccc 1300

<210> 50
 <211> 2241
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3883861CB1

<400> 50
 gctccccgag ccgggctgca ccggaggcgg cgagatggc ggcgcgtcg gcctcctgtc 60
 ggcgcctcg cagctgtac tggggcca cttggacgcc cagccgcgg agcgcggagg 120
 ccaggagctg cgaaggagg cggaggcatt cctagagaag tacggatacc tcaatgaaca 180
 ggtccccaaa gctcccaccc caactcgatt cagcgatgcc atcagacgt ttcaagtgggt 240
 gtcggacta cctgtcagcg gctgtgtgaa cggcgccacc ctgcgcaga tgactcgtcc 300
 ccgctgcggg ttacagata ccaacagtt tgccgcctgg gctgagagga tcagtgactt 360
 gttgtctaga caccggacca aaatgaggcg taagaaacgc ttgtcaagc aaggtAACAA 420
 atggtaacaag cagcacctct cttaccgcct ggtgacttgg cctgagacatc tgccggagcc 480
 ggcagttcg ggcgcgtgc ggcgcctt ccagttgtgg agcaacgtct cagcgcttga 540
 gttctggag gccccagcca caggccccgc tgacatccgg ctcacccctt tccaagggg 600
 ccacaacgat ggctgggca atgccttga tggcccaagg ggcgccttgc cgcaacgcctt 660
 cctgccccgc cgcggcgaag cgcacttgc ccaagatgag cgctggtccc tgagccgc 720
 cgcggggcgc aacctgttcg tgggtgttgc gcaagagatc ggtcacacgc ttggccttac 780
 ccactcgccc ggcgcgcgc cgctcatggc gctactac aagaggctgg gccgcacgc 840
 gtcgtctcgc tggacgacg tgctggccgt gcaagacgt tatggaaagc ccctagggg 900
 ctcagttggcc gtccagctcc cagggaaagct ttcaacttgc tttagagacct gggactctta 960
 cagcccccaa ggaaggcgcc ctgaaacgc gggccctaaa tactgcact cttccttca 1020
 tgccatcaat gtagacaggc aacagcaact gtacattttt aaaggagcc atttctgg 1080
 ggtggcagct gatggcaacg tctcagagcc cgttccactg cagggaaat gggctgggt 1140
 gccccccaaat attggggctg cggcgttgc attgaatgt ggagatctt acttcttcaa 1200
 aggggggtcg tgggtggggcc caagccatg tgggttcc cacagctgtg 1260
 cggggcaggg ggcctggccc gcatcttgc cggccccc ttcttcctc ctctgcgc 1320
 cctcatctc ttcaagggtg cccgctacta cgtgttggcc cggggggac tgcaagtgg 1380
 gccctactac ccccgaaatc tgcaaggactg gggaggcatc cctgaggagg tcagcggcgc 1440
 cctggccagg cccgatggct ccatcatctt ctccggagat gaccgtact ggcgcctcga 1500
 ccaggccaaa ctgcaggc aa ccacccggg cgcgtggcc accgagctgc cctggatggg 1560
 ctgctggcat gccaactcgg ggagccctt gtctgaagg cacccttca cctcagaaac 1620
 tgggtggtgc ctcaaggccaa aatcatgttcc cccacccccc gggcagaacc cctttagaa 1680
 gcctctgatg ccctctgcgc aagacccggc agcaaaacgtt ccatctggaa gtctgtctgc 1740
 ctttgttct tgaagaatgc agcattttt ttgtctgtcc ccaccatcg gaggtgggg 1800
 tgggatcaat cttagaaaaa gcaaaaaagg ttcccaatgttcc ctttggccct ttctcccgag 1860
 gacttctatc ctccccaggc ctttgttcttccatgttcc ctttggcccttccatgttcc ttcaagagg 1920
 taacagcaat gggatccaag cagggggatg aaaaactcg cagagaaattt cggaccatt 1980
 ttgcaagact gtcccttcttccatgttcc ctttggcccttccatgttcc ttcaagagg 2040
 tatttagtca gaggccccac ccccaaggaaatgttcc ctttggcccttccatgttcc ttcaagagg 2100
 caacctcaga gggcccttgc ggggtcaaggc cacagactgg gaggagact gatgcaggcc 2160
 taccagtccc tggcttttttgc tctggggcttgc gaataaagag gtcccttccatgttcc ttcaagagg 2220
 gagaggcagg aaaaaaaaaa a 2241

<210> 51
 <211> 1860
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<223> Incyte ID No: 4993873CB1

<400> 51
agaattgacc tgacaaaatat tgaccagggtt gctgtgatct tcaaacadcca tttccctgtg 60
ggtagaggtg atgcagtgtc gaagacctgg gcccctgctc agtgcccttg ctctagaatg 120
ggtccagctt ggctttggct actggaaaca gggatcctgg cctctgtcca ctgtcagccc 180
cttcttgcctt atggagataa aagtctgcag gggcctcaac cccccaggca tcagctctca 240
gagccagccc cccgcttacca cagaatcaca cccaccattt ccaattttgc tttgcgtttg 300
tataaaagagc tggcagcaga cgccccccggaa aacatcttc ttcgcctact gacatctcc 360
accacccctgg ccctgtctc tcttggggcc caagctaaca cctcagctct gatccctggag 420
ggcctgggat tcaacactac agaaaacctt gaagccgaca tccaccaggg cttccggagc 480
ctcctccaca cccttgcctt gcccagcccc aaactcgaac taaaagttagg aaactccctg 540
ttccttagaca agcactaaa gcctcggcag cactattttg acagcatcaa ggagctttat 600
ggagcttttgc cttttctgc caacttcaca gattctgttta caactgggag gcagattaat 660
gactatttga gaaggcaaaac atacgggcaa gtcgtggact gcctcccgga gttcagccag 720
gacacgttca tggttcttgc caattacatc ttcttcaaaag ccaagtggaa gcaccccttc 780
agtgcgttcc accccccagaa gcaggcaagt ttcttgcgtt atgagaggac ttctctccag 840
gtccccatgt tgacccaaaaa gggaaatgcac agatctctt atgaccaggaa tttggcttgc 900
actgtcctcc agatagaata cagaggaaat gccttggcgc tgctggctt ccctgaccgg 960
gggaaaatgt aagcagggttga ggctgctctg cagccacaga ccctgagaaa atggggccaa 1020
ttgctcttgc ccagtctgtt ggatttgcac ttgccaagggt ttcaatttc tggAACATAT 1080
aacctggaaag acataacttcc ccaaatttgtt ctcaccaaca tactcaactt agaagctgac 1140
ttctcaggag tcaactggcga gctcaacaaa accatcttca aggtgtcaca caaggcgtatg 1200
gtggacatgt gtgagaaggg gaccggggc ggggctgtt caggcctctt ctcccgagccc 1260
ccatcttgc accatcttca agacccacat gcccacttca acaggccttt cctttgtctc 1320
cttggggagg tcaccaccca gagcttactc ttcttgggaa aagttgtcaa cccagttgca 1380
ggtaaccat ggtggggaggc caggagttt ctatctcat cctggaccaa acagataggc 1440
cagaaccaggc ctgcatactt gggctgttat gtggttcaactt taatcagtgt gccaagatcc 1500
taataaaagt gaccttgggt tctgtgaaaa aaaaaaaaaaag aacaaccaac gcataaaagt 1560
gcggcgtaaa ggatgtgaa agcaaatacc ccgtttgcc cgtccaaatt taacataagg 1620
ggggggccgg cagtagagaa ggtccctcag agtgtgtttt atggccgtcg actgatttgc 1680
ggggggggccgg agagagttt tacgcattt tgacacgtttt agcaccgggg gggggggggc 1740
ccataggacc cccggagctg gagggttgc ttgcggccggc acttggggg ggggttttat 1800
gaccgactt tagtggcaca aactgtgggg ctttcataat gtgtgcggcgc gcttctgtt 1860

<210> 52
<211> 550
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5208004CB1

<400> 52
ggcggtggc tggaggacac ggtgttaggcc ttggccgtgt ctgggttctt cgccactgca 60
ggagcaggac tggttctggaa aacactgggc tgctgggtgac ccgtcaact tctccacaa 120
attctgaatc cgagaaagtg aagggaggat ggtggggaaag tgaggaggca ggacggagg 180
ccacaggagc cgaccaggaga tgccgtggag acagaggagc ttcccttctca ggctgtttct 240
ggaaaggctg agaggcggcc agcaccaccc tccgctact ctcccttcag cctcttcgtt 300
tcccttctca accctttctc ttcccttcgc ctcttccctt tcttgcgttgc ttgttagtcc 360
ctgtcccaaa actcttgcgtt cctttgttct gtcgtccgtgg cccccaccca ggaggaggc 420
tcaggccacca tccccccac gagggtatcca cacaacaggt tcatgtgtttt gctggggggag 480
ccccgttggg ttctgtatgc ttgtgcaca ggaaagtgtt gcaacttctt ttggactctc 540
ctgaatgtt 550

<210> 53
<211> 2597
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5267783CB1

```

gcctgggttgg	gcccgtcct	tctgctgcc	cgcgcgggt	caggcctcg	cgcgagccg	60
aggtgtcctg	gagtctggcc	caggacctgg	ccccacagga	gtcccagcag	ggtagctcc	120
tcccgggaca	aggaccgaag	tgcgacggtc	agtatgttcag	tgcccatcg	tgtggaggg	180
aaaggaagcc	atcttcatc	tacaccgg	agggtccccca	accgcctgtat	ccacgagaag	240
tcaccatacc	tcctacaaca	tgcctcaat	cctgtggact	gttacccctg	gggagaggaa	300
gccttcgaca	aggccaggaa	ggaaaacaag	ccgatttcc	tctcagtgg	gtactccacc	360
tgccactgg	gcccacatgt	ggaagaggag	tccttccaga	atgaggagat	tgccgcctg	420
ctcagtgg	acttgttag	tgtgaaggt	gaccgtgagg	agcggctgt	cgtggacaag	480
gtgtacatga	cgttcgtgca	ggccaccaggc	agcggcgggg	gctggccat	aatgtgtgg	540
ctgactccca	acctccagcc	cttgtcggg	ggcacctatt	tccctctgt	ggatggctt	600
acccgagtcg	gctccgcac	agtgtgtctg	agaatacagag	aacagtggaa	acagaacaag	660
aacaccctgc	tagaaaatag	ccagcgtgtc	accactgccc	tgctggcc	atcagagatc	720
agcgtgggt	accgcacgt	gcccgcctt	gcccaccagg	tgaacaatcg	ctgtttccag	780
cagctggatg	agggtatgt	tggaataac	ggtggcttcg	ctgaggcccc	caagttccc	840
acgcgggtga	tcctgagctt	cctgttcc	tactggctca	gcatcgact	gactcaggat	900
ggctctcgg	cccagcagat	ggcttgcatt	accctgaaaa	tatggctaa	cgggggcato	960
cgggaccatg	tggggcaggg	cttccaccgc	tactccacag	accgcctgt	gcacgtccct	1020
cactttgaga	agatgtctca	tgaccaggca	cagtcgtctg	tggcttattc	gcaggcctt	1080
cagctctctg	gtgtatgaatt	ctactctgac	gtggccaaag	gcatcctgca	gtacgtggct	1140
cggagcctga	gccaccggtc	cgaggcttc	tatagcgcag	aagatcgaga	ctcgccccca	1200
gagcggggcc	agcggcccaa	agagggcgtt	tactatgtgt	ggacggtaa	agaggttcag	1260
cagctccctcc	cggagcctgt	gttgggttcc	accggacggc	tgacccctagg	ccagctctt	1320
atgaagact	acgccttcac	agaggctgtt	aacatcagcc	ccagtcagga	ccccaaagggg	1380
gagctgcagg	gccagaatgt	gctgaccgtc	cgttacttcg	tggagctgac	tgctggccgc	1440
tttggcttgg	atgtggaggc	cgtcggttcc	ttgtctcaatt	cagggttgg	gaagctttc	1500
caggccccgg	agcatcgccc	caagccgcac	ctggacagca	agatgttgc	tgcttggaaat	1560
ggcttggatgg	tgtcaggctt	tgtgtgtact	ggggctgtcc	tggccaaga	caggctgtatc	1620
aactatgcca	ccaatgggtc	caagttctg	aagcggcaca	tgtttgtatgt	ggccagtggc	1680
cgcctgtatgc	ggacctgtct	caccggccct	ggggggactg	tggagcacag	caaccaccc	1740
tgctggggct	tcctggagga	ctacgcctt	gtgtgtgggg	gcctgttgg	cctgttatgag	1800
gcctcacagg	agagtgcgtt	gctcgatgg	gcttgcgggc	tgcaggacac	acaggacagg	1860
ctctttttgg	actccagggg	tggcggttac	tttgcgtatg	aggctgagct	gggggcttggc	1920
ctggcccttc	gtctgaagga	cggacaggat	ggagcagagc	ccagcgcacaa	ttccgtgtca	1980
gcccacaacc	tgctccggct	gcatggctt	acgggcacaca	aggactggat	ggacaagtgt	2040
gtgtgcctat	tgaccggctt	ttcccgagcgc	atgcgtctgt	tcccggttgc	gttgcggcag	2100
atggtcccg	ccctctcagc	ccagcagcag	accctcaagc	agatcgtat	ctgtggagac	2160
cgtcaggcca	aggacaccaa	ggccctgggt	cagtgcgtcc	actctgtcta	cattcctaacc	2220
aagggtctga	ttctggctga	tggggacccc	tcgagcttcc	tgtccccc	gctgcctt	2280
ctgagtaacc	tccgcacgg	ggaagaccag	gcaactgtat	atgtgtgt	gaatcaagcc	2340
tgctcgtgc	ccatcaactg	tccctgcgaa	ttacgaaaac	tactatcc	atgactgccc	2400
caaaaaaaaa	gggtggggc	agaagggtaa	gcatcccaac	tgactagaga	ctcaggccct	2460
gcaggccct	atagaacactg	tggccatccc	tgacgcaccc	gccaccagg	gacctcgccc	2520
atactcaact	cccccccttgg	gcacccactc	acccttagaat	aaacttaaca	gttcccgtg	2580
gtaaaaaaaaa	aaaaaaaaaa					2597

<210> 54
<211> 2385
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5583922CB1

```

<400> 54
gaccgacccg ccacccggcg tagccccgcg gcccctggca ctc当地atcccc gccatgtggg 60
ggctccttgt ctgccttgcc gccttcgcgc cggccgtcg cccggctctg ggggcggcca 120
ggaactcggt gctggccctc gcgcaaaaaa ggaccacaa ggtcccaggc tcgacccccgg 180
ccctgcatacg cagccccggca cagccggccgg cggagacagc taacgggacc tcagaacagc 240
atgtcccgat tcgagtcatc aagaagaaaa aggtcattat gaagaaggcg aagaagactaa 300
ctctaactcg ccccacccca ctggtgactg ccggggccct tgc当地accccc actccagcag 360
ggacccctcg a ccccgctgag aaacaagaaaa caggtgtcc tc当地tttgggt ctggagtc 420
tgcgagttc agatagccgg cttgaggcat ccagcagcca gtccctttgggt ctggaccac 480
accgaggacg gctcaacatt cagtcagggcc tggaggacgg cgatctatat gatggagcc 540
ggtgtgtcgaa ggagcaggac gccgatccat ggttcagggt ggacgctggg cacccccccc 600
qcttcctcggt tggttatcaca cagggcagta actctgtctg gaggtatgac tggtcacat 660

```

catacaaggt ccagttcagc aatgacagtc ggacctggtg gggaaagttagg aaccacagca 720
gtgggatgga cgcaagtatt cctgccaatt cagacccaga aactccagtg ctgaacctcc 780
tgccggagcc ccagggtggcc cgcttcatc gcgtctgcc ccagacctgg ctccaggag 840
gcccgccttgc cctccggggca gagatctgg cctcgccagt ctcagacccc aatgacctat 900
tccttgaggc ccctgcgtcg ggatccttg accctctaga ctttcagcat cacaattaca 960
aggccatgag gaagctgatg aagcaggtac aagagcaatg ccccaacatc acccgcatct 1020
acagcattgg gaagagctac cagggcctga agctgtatgt gatggaaatg tcggacaagc 1080
ctggggagca ttagctgggg gagectgagg tgctgctacgt ggctggcatg catggaaacg 1140
aggccctggg gcgggagttt ctctgtcc ttatgcagtt cctgtccat gagttccctgc 1200
gagggaaaccc acgggtgacc cggctgtct ctgagatgca cattcacctg ctgcccctcca 1260
tgaaccctga tgcttatgag atcgcctacc accggggttc agagctggtg ggctgggccc 1320
agggccgtg gaacaaccag agcatcgatc ttaaccataa ttttgcgtac ctcacacac 1380
caactgtggga agcacaggac gatggaaagg tgccccacat cgtccccaaac catcacctgc 1440
cattggccac ttactacacc ctgccccatg ccaccgtggc tcctgaaacg cgggcagtaa 1500
tcaagttgtt gaagcggatc ccctttgtgc taatgtccaa cctccacggg ggtgagctcg 1560
tggtgtcccta cccattcgac &tgactcgca ccccggtggc tgcccgag ctcacgcca 1620
caccagatga tgctgtgttt cgctggctca gcactgtcta tgctggcagt aatctggcca 1680
tgccaggacac cagccgcccga ccctgcccaca gccaggactt ctccgtgcac ggcaacatca 1740
tcaacggggc tgactggcac acggtccccg ggagcatgaa tgacttcagc tacctacaca 1800
ccaaactgttt tgaggtcaat gtggagctgt cctgtgacaa gttccctcac gagaatgaat 1860
tgccccagga gtgggagaac aacaaagacg ccctccctcac ctacctggag caggtgcgc 1920
tggcattgc aggagtggtg agggacaagg acacggagct tgggattgtc gacgcgtgtca 1980
ttggcggtga tggatttaac catgacgtga ccaacggcggtg gggcgggat tattggcgtc 2040
tgctgacccc aggggactac atggtgactg ccagtggcga gggctaccat tcagtgcac 2100
ggaactgtcg ggtcacctt gaagaggccc cttccctgt caatttcgtc ctcaccaaga 2160
ctccccaaaca gaggctgcgc gagctgttgg cagctggggc caaggtgccc ccggaccttc 2220
gcaggcgctt ggagcggcta aggggacaga aggattgata cctgcgttt aagagcccta 2280
gggcaggctg gacctgtcaa gacgggaagg ggaagagtag agagggaggg acaaagttag 2340
aaaaagggtgc tcattaaagc taccgggcac cttaaaaaaaaaaa aaaaa 2385

SEQUENCE LISTING

<110> IMCYTE GENOMICS, INC.
YUE, Henry
TANG, Y. Tom
BANDMAN, Olga
LAL, Preeti
BAUGHN, Mariah R.
AZIMZAI, Valda
LU, Duyung Anna M.
YANG, Junming

<130> PROTEASES AND PROTEASE INHIBITORS

4130> PF-0727 VCT

<140> To Be Assigned
<141> Herewith

<150> 60/147,986; 60/160,807
<151> 1999-08-09; 1999-10-21

<1,60> 54
<170> PERL Program

<210> 1
<211> 444
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 08071BCD1

```

<400> 1
Met Lys Val Val Pro Ser Leu Leu Leu Ser Val Leu Leu Ala Glu
      5          10          15
      1
Val Trp Leu Val Pro Gly Leu Ala Pro Ser Pro Gln Ser Pro Glu
      20          25          30
Thr Pro Ala Pro Gln Asn Gln Thr Ser Arg Val Val Gln Ala Pro
      35          40          45
Arg Glu Glu Glu Glu Asp Glu Gln Glu Ala Ser Glu Glu Lys Ala
      50          55          60
Gly Glu Glu Glu Lys Ala Trp Leu Met Ala Ser Arg Gln Gln Leu
      65          70          75
Ala Lys Glu Thr Ser Asn Phe Gly Phe Ser Leu Leu Arg Lys Ile
      80          85          90
Ser Met Arg His Asp Gly Asn Met Val Phe Ser Pro Phe Gly Met
      95          100         105
Ser Leu Ala Met Thr Gly Leu Met Leu Gly Ala Thr Gly Pro Thr
      110          115         120
Glu Thr Gln Ile Lys Arg Gly Leu His Leu Gln Ala Leu Lys Pro
      125          130         135
Thr Lys Pro Gly Leu Leu Pro Ser Leu Phe Lys Gly Leu Arg Glu
      140          145         150
Thr Leu Ser Arg Asn Leu Glu Leu Gly Leu Ser Gln Gly Ser Phe
      155          160         165
Ala Phe Ile His Lys Asp Phe Asp Val Lys Glu Thr Phe Phe Asn
      170          175         180
Leu Ser Lys Arg Tyr Phe Asp Thr Glu Cys Val Pro Met Asn Phe
      185          190         195
Arg Asn Ala Ser Gln Ala Lys Arg Leu Met Asn His Tyr Ile Asn
      200          205         210
Lys Glu Thr Arg Gly Lys Ile Pro Lys Leu Phe Asp Glu Ile Asn
      215          220         225
Pro Glu Thr Lys Leu Ile Leu Val Asp Tyr Ile Leu Phe Lys Gly

```

	230	235	240
Lys Trp Leu Thr Pro Phe Asp Pro Val Phe Thr Glu Val Asp Thr	245	250	255
Phe His Leu Asp Lys Tyr Lys Thr Ile Lys Val Pro Met Met Tyr	260	265	270
Gly Ala Gly Lys Phe Ala Ser Thr Phe Asp Lys Asn Phe Arg Cys	275	280	285
His Val Leu Lys Leu Pro Tyr Gln Gly Asn Ala Thr Met Leu Val	290	295	300
Val Leu Met Glu Lys Met Gly Asp His Leu Ala Leu Glu Asp Tyr	305	310	315
Leu Thr Thr Asp Leu Val Glu Thr Trp Leu Arg Asn Met Lys Thr	320	325	330
Arg Asn Met Glu Val Phe Phe Pro Lys Phe Lys Leu Asp Gln Lys	335	340	345
Tyr Glu Met His Glu Leu Leu Arg Gln Met Gly Ile Arg Arg Ile	350	355	360
Phe Ser Pro Phe Ala Asp Leu Ser Glu Leu Ser Ala Thr Gly Arg	365	370	375
Asn Leu Gln Val Ser Arg Val Leu Gln Arg Thr Val Ile Glu Val	380	385	390
Asp Glu Arg Gly Thr Glu Ala Val Ala Gly Ile Leu Ser Glu Ile	395	400	405
Thr Ala Tyr Ser Met Pro Pro Val Ile Lys Val Asp Arg Pro Phe	410	415	420
His Phe Met Ile Tyr Glu Glu Thr Ser Gly Met Leu Leu Phe Leu	425	430	435
Gly Arg Val Val Asn Pro Thr Leu Leu	440		

<210> 2

<211> 565

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 114551CD1

<400> 2

Met Ser Gly Arg Ser Lys Arg Glu Ser Arg Gly Ser Thr Arg Gly	1	5	10	15
Lys Arg Glu Ser Glu Ser Arg Gly Ser Ser Gly Arg Val Lys Arg	20	25	30	
Glu Arg Asp Arg Glu Arg Glu Pro Glu Ala Ala Ser Ser Arg Gly	35	40	45	
Ser Pro Val Arg Val Lys Arg Glu Phe Glu Pro Ala Ser Ala Arg	50	55	60	
Glu Ala Pro Ala Ser Val Val Pro Phe Val Arg Val Lys Arg Glu	65	70	75	
Arg Glu Val Asp Glu Asp Ser Glu Pro Glu Arg Glu Val Arg Ala	80	85	90	
Lys Asn Gly Arg Val Asp Ser Glu Asp Arg Arg Ser Arg His Cys	95	100	105	
Pro Tyr Leu Asp Thr Ile Asn Arg Ser Val Leu Asp Phe Asp Phe	110	115	120	
Glu Lys Leu Cys Ser Ile Ser Leu Ser His Ile Asn Ala Tyr Ala	125	130	135	
Cys Leu Val Cys Gly Lys Tyr Phe Gln Gly Arg Gly Leu Lys Ser	140	145	150	
His Ala Tyr Ile His Ser Val Gln Phe Ser His His Val Phe Leu	155	160	165	
Asn Leu His Thr Leu Lys Phe Tyr Cys Leu Pro Asp Asn Tyr Glu	170	175	180	
Ile Ile Asp Ser Ser Leu Glu Asp Ile Thr Tyr Val Leu Lys Pro	185	190	195	
Thr Phe Thr Lys Gln Gln Ile Ala Asn Leu Asp Lys Gln Ala Lys	200	205	210	

Leu Ser Arg Ala Tyr Asp Gly Thr Thr Tyr Leu Pro Gly Ile Val
 215 220 225
 Gly Leu Asn Asn Ile Lys Ala Asn Asp Tyr Ala Asn Ala Val Leu
 230 235 240
 Cln Ala Leu Ser Asn val Pro Pro Leu Arg Asn Tyr Phe Leu Glu
 245 250 255
 Glu Asp Asn Tyr Lys Asn Ile Lys Arg Pro Pro Gly Asp Ile Met
 260 265 270
 Phe Leu Leu Val Gln Arg Phe Gly Glu Leu Met Arg Lys Leu Trp
 275 280 285
 Asn Pro Arg Asn Phe Lys Ala His Val Ser Pro His Glu Met Leu
 290 295 300
 Gln Ala Val Val Leu Cys Ser Lys Lys Thr Phe Gln Ile Thr Lys
 305 310 315
 Gln Gly Asp Gly Val Asp Phe Leu Ser Trp Phe Leu Asn Ala Leu
 320 325 330
 His Ser Ala Leu Cys Gly Thr Lys Lys Lys Lys Thr Ile Val
 335 340 345
 Thr Asp Val Phe Gln Gly Ser Met Arg Ile Phe Thr Lys Lys Leu
 350 355 360
 Pro His Pro Asp Leu Pro Ala Glu Glu Lys Glu Gln Leu Leu His
 365 370 375
 Asn Asp Glu Tyr Gln Glu Thr Met Val Glu Ser Thr Phe Met Tyr
 380 385 390
 Leu Thr Leu Asp Leu Pro Thr Ala Pro Leu Tyr Lys Asp Glu Lys
 395 400 405
 Glu Gln Leu Ile Ile Pro Gln Val Pro Leu Phe Asn Ile Leu Ala
 410 415 420
 Lys Phe Asn Gly Ile Thr Glu Lys Glu Tyr Lys Thr Tyr Lys Glu
 425 430 435
 Asn Phe Leu Lys Arg Phe Gln Leu Thr Lys Leu Pro Pro Tyr Leu
 440 445 450
 Ile Phe Cys Ile Lys Arg Phe Thr Lys Asn Asn Phe Phe Val Glu
 455 460 465
 Lys Asn Pro Thr Ile Val Asn Phe Pro Ile Thr Asn Val Asp Leu
 470 475 480
 Arg Glu Tyr Leu Ser Glu Glu Val Gln Ala Val His Lys Asn Thr
 485 490 495
 Thr Tyr Asp Leu Ile Ala Asn Ile Val His Asp Gly Lys Pro Ser
 500 505 510
 Glu Gly Ser Tyr Arg Ile His Val Leu His His Gly Thr Gly Lys
 515 520 525
 Trp Tyr Glu Leu Gln Asp Leu Gln Val Thr Asp Ile Leu Pro Gln
 530 535 540
 Met Ile Thr Leu Ser Glu Ala Tyr Ile Gln Ile Trp Lys Arg Arg
 545 550 555
 Asp Asn Asp Glu Thr Asn Gln Gln Gly Ala
 560 565

<210> 3

<211> 589

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1261376CD1

<400> 3

Met Ala Glu Ser Gly Glu Ser Gly Gly Pro Pro Gly Ser Cln Asp
 1 5 10 15
 Ser Ala Ala Gly Ala Glu Gly Ala Gly Ala Pro Ala Ala Ala
 20 25 30
 Ser Ala Asp Ala Lys Ile Met Lys Val Thr Val Lys Thr Pro Lys
 35 40 45
 Glu Lys Glu Glu Phe Ala Val Pro Glu Asn Ser Ser Val Cln Gln
 50 55 60
 Phe Lys Glu Glu Ile Ser Lys Arg Phe Lys Ser His Thr Asp Cln

	65	70	75
Leu Val Leu Ile Phe Ala Gly Lys Ile Leu	Lys Asp Gln Asp	Thr	
80	85	90	
Leu Ser Gln His Gly Ile His Asp Gly Leu	Thr Val His Leu Val		
95	100	105	
Ile Lys Thr Gln Asn Arg Pro Gln Asp His	Ser Ala Gln Gln	Thr	
110	115	120	
Asn Thr Ala Gly Ser Asn Val Thr Thr Ser	Ser Ser Thr Pro Asn	Ser	
125	130	135	
Asn Ser Thr Ser Gly Ser Ala Thr Ser Asn	Pro Phe Gly Leu	Gly	
140	145	150	
Cly Leu Gly Gly Leu Ala Gly Leu Ser	Ser Leu Gly Leu Asn	Thr	
155	160	165	
Thr Asn Phe Ser Glu Leu Gln Ser Gln	Met Gln Arg Gln Leu	Leu	
170	175	180	
Ser Asn Pro Glu Met Met Val Gln Ile	Met Glu Asn Pro Phe	Val	
185	190	195	
Gln Ser Met Leu Ser Asn Pro Asp Leu	Met Arg Gln Leu Ile	Met	
200	205	210	
Ala Asn Pro Gln Met Gln Gln Leu Ile	Gln Arg Asn Pro Glu	Ile	
215	220	225	
Ser His Met Leu Asn Asn Pro Asp Ile	Met Arg Gln Thr Leu	C10	
230	235	240	
Leu Ala Arg Asn Pro Ala Met Met Gln	Glu Met Met Arg Asn	Gln	
245	250	255	
Asp Arg Ala Leu Ser Asn Leu Glu Ser	Ile Pro Gly Gly Tyr	Asn	
260	265	270	
Ala Leu Arg Arg Met Tyr Thr Asp Ile	Gln Glu Pro Met Leu	Ser	
275	280	285	
Ala Ala Gln Glu Gln Phe Gly Gly Asn	Pro Phe Ala Ser Leu	Val	
290	295	300	
Ser Asn Thr Ser Ser Gly Glu Gly Ser	Gln Pro Ser Arg Thr	Glu	
305	310	315	
Asn Arg Asp Pro Leu Pro Asn Pro Trp	Ala Pro Gln Thr Ser	Gln	
320	325	330	
Ser Ser Ser Ala Ser Ser Gly Thr Ala	Ser Thr Val Gly Gly	Thr	
335	340	345	
Thr Gly Ser Thr Ala Ser Gly Thr Ser	Gly Gln Ser Thr Thr	Ala	
350	355	360	
Pro Asn Leu Val Pro Gly Val Gly Ala	Ser Met Phe Asn Thr	Pro	
365	370	375	
Gly Met Gln Ser Leu Leu Gln Gln Ile	Thr Glu Asn Pro Gln	Leu	
380	385	390	
Met Gln Asn Met Leu Ser Ala Pro Tyr	Met Arg Ser Met Met	Gln	
395	400	405	
Ser Leu Ser Gln Asn Pro Asp Leu Ala	Ala Gln Met Met Leu	Asn	
410	415	420	
Asn Pro Leu Phe Ala Gly Asn Pro Gln	Leu Gln Glu Gln Met	Arg	
425	430	435	
Gln Gln Leu Pro Thr Phe Leu Gln Gln	Met Gln Asn Pro Asp	Thr	
440	445	450	
Leu Ser Ala Met Ser Asn Pro Arg Ala	Met Gln Ala Leu Leu	Gln	
455	460	465	
Ile Gln Gln Gly Leu Gln Thr Leu Ala	Thr C10 Ala Pro Gly	Leu	
470	475	480	
Ile Pro Gly Phe Thr Pro Gly Leu Gly	Aia Leu Gly Ser Thr	Gly	
485	490	495	
Gly Ser Ser Gly Thr Asn Gly Ser Asn	Ala Thr Pro Ser Glu	Asn	
500	505	510	
Thr Ser Pro Thr Ala Gly Thr Thr Glu	Pro Gly His Gln Gln	Phe	
515	520	525	
Ile Gln Gln Met Leu Gln Ala Leu Ala	Gly Val Asn Pro C10	Leu	
530	535	540	
Gln Asn Pro Glu Val Arg Phe Gln Gln	Gln Leu Gln C10 Leu	Ser	
545	550	555	
Ala Met Gly Phe Leu Asn Arg Glu Ala	Asn Leu Gln Ala Leu	Ile	
560	565	570	

Ala Thr Gly Gly Asp Ile Asn Ala Ala Ile Glu Arg Leu Leu Gly
575 580 585

Ser Gln Pro Ser

<210> 4

<211> 775

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1299481CD1

<400> 9

Met Thr Ile Val Asp Lys Ala Ser Glu Ser Ser Asp Pro Ser Ala
1 5 10 15
Tyr Gln Asn Gln Pro Gly Ser Ser Glu Ala Val Ser Pro Gly Asp
20 25 30
Met Asp Ala Gly Ser Ala Ser Trp Gly Ala Val Ser Ser Leu Asn
35 40 45
Asp Val Ser Asn His Thr Leu Ser Leu Gly Pro Val Pro Gly Ala
50 55 60
Val Val Tyr Ser Ser Ser Val Pro Asp Lys Ser Lys Pro Ser
65 70 75
Pro Gln Lys Asp Gln Ala Leu Gly Asp Gly Ile Ala Pro Pro Gln
80 85 90
Lys Val Leu Phe Pro Ser Glu Lys Ile Cys Leu Lys Trp Gln Gln
95 100 105
Thr His Arg Val Gly Ala Gly Leu Gln Asn Leu Gly Asn Thr Cys
110 115 120
Phe Ala Asn Ala Ala Leu Gln Cys Leu Thr Tyr Thr Pro Pro Leu
125 130 135
Ala Asn Tyr Met Leu Ser His Glu His Ser Lys Thr Cys His Ala
140 145 150
Glu Gly Phe Cys Met Met Cys Thr Met Gln Ala His Ile Thr Gln
155 160 165
Ala Leu Ser Asn Pro Gly Asp Val Ile Lys Pro Met Phe Val Ile
170 175 180
Asn Glu Met Arg Arg Ile Ala Arg His Leu Arg Phe Gly Asn Gln
185 190 195
Glu Asp Ala His Glu Phe Leu Gln Tyr Thr Val Asp Ala Met Gln
200 205 210
Lys Ala Cys Leu Asn Gly Ser Asn Lys Leu Asp Arg His Thr Gln
215 220 225
Ala Thr Thr Leu Val Cys Gln Ile Phe Gly Gly Tyr Leu Arg Ser
230 235 240
Arg Val Lys Cys Leu Asn Cys Lys Gly Val Ser Asp Thr Phe Asp
245 250 255
Pro Tyr Leu Asp Ile Thr Leu Glu Ile Lys Ala Ala Gln Ser Val
260 265 270
Asn Lys Ala Leu Glu Gln Phe Val Lys Pro Glu Gln Leu Asp Gly
275 280 285
Glu Asn Ser Tyr Lys Cys Ser Lys Cys Lys Lys Met Val Pro Ala
290 295 300
Ser Lys Arg Phe Thr Ile His Arg Ser Ser Asn Val Leu Thr Leu
305 310 315
Ser Leu Lys Arg Phe Ala Asn Phe Thr Gly Gly Lys Ile Ala Lys
320 325 330
Asp Val Lys Tyr Pro Glu Tyr Leu Asp Ile Arg Pro Tyr Met Ser
335 340 345
Gln Pro Asn Gly Glu Pro Ile Val Tyr Val Leu Tyr Ala Val Leu
350 355 360
Val His Thr Gly Phe Asn Cys His Ala Gly His Tyr Phe Cys Tyr
365 370 375
Ile Lys Ala Ser Asn Gly Leu Trp Tyr Gln Met Asn Asp Ser Ile
380 385 390
Val Ser Thr Ser Asp Ile Arg Ser Val Leu Ser Gln Gln Ala Tyr

	395		400		405									
Val	Leu	Phe	Tyr	Ile	Arg	Ser	His	Asp	Val	Lys	Asn	Gly	Gly	Glw
														420
														425
Leu	Thr	His	Pro	Thr	His	Ser	Pro	Gly	Cln	Ser	Ser	Pro	Arg	Pro
														430
														435
Val	Ile	Ser	Gln	Arg	Val	Val	Thr	Asn	Lys	Gln	Ala	Ala	Pro	Gly
														440
														445
Phe	Ile	Gly	Pro	Gln	Leu	Pro	Ser	His	Met	Ile	Lys	Asn	Pro	Pro
														450
														455
Mis	Leu	Asn	Gly	Thr	Gly	Pro	Leu	Lys	Asp	Thr	Pro	Ser	Ser	Glw
														460
														465
Met	Ser	Ser	Pro	Asn	Gly	Asn	Ser	Ser	Val	Asn	Arg	Ala	Ser	Pro
														470
														475
Val	Asn	Ala	Ser	Ala	Ser	Val	Gln	Asn	Trp	Ser	Val	Asn	Arg	Ser
														480
														485
														490
														495
Ser	Val	Ile	Fro	Glu	His	Pro	Lys	Lys	Gln	Lys	Ile	Thr	Ile	Ser
														500
														505
														510
														515
Ile	His	Asn	Lys	Leu	Pro	Val	Arg	Gln	Cys	Gln	Ser	Gln	Pro	Asn
														520
														525
Leu	His	Ser	Asn	Ser	Leu	Glu	Asn	Pro	Thr	Lys	Pro	Val	Pro	Ser
														530
														535
Ser	Thr	Ile	Thr	Asn	Ser	Ser	Ala	Val	Gln	Ser	Thr	Ser	Asn	Ala
														540
														545
Thr	Met	Ser	Val	Ser	Ser	Lys	Val	Thr	Lys	Pro	Ile	Pro	Arg	Ser
														550
														555
Glu	Ser	Cys	Ser	Gln	Pro	Val	Met	Asn	Gly	Lys	Ser	Lys	Leu	Asn
														560
														565
Ser	Ser	Val	Leu	Val	Pro	Tyr	Gly	Ala	Glu	Ser	Ser	Glu	Asp	Ser
														565
														570
Asp	Glu	Glu	Ser	Lys	Gly	Leu	Gly	Lys	Glu	Asn	Gly	Ile	Gly	Thr
														575
														580
Ile	Val	Ser	Ser	His	Ser	Pro	Gly	Gln	Asp	Ala	Glu	Asp	Glu	Glu
														585
														590
Ala	Thr	Pro	His	Gln	Leu	Gln	Glu	Pro	Met	Thr	Leu	Asn	Gly	Ala
														595
														600
Asn	Ser	Ala	Asp	Ser	Asp	Ser	Asp	Pro	Lys	Glu	Asn	Gly	Leu	Asn
														605
														610
Pro	Asp	Gly	Ala	Ser	Cys	Gln	Gly	Gln	Ile	Ala	Leu	His	Ser	Glu
														615
														620
Asn	Pro	Phe	Ala	Lys	Ala	Asn	Gly	Leu	Pro	Cly	Lys	Leu	Met	Pro
														625
														630
Ala	Pro	Leu	Leu	Ser	Leu	Pro	Glu	Asp	Lys	Ile	Leu	Glu	Thr	Phe
														635
														640
Arg	Leu	Ser	Asn	Lys	Leu	Lys	Gly	Ser	Thr	Asp	Glu	Met	Ser	Ala
														645
														650
Pro	Gly	Ala	Glu	Arg	Gly	Pro	Pro	Glu	Asp	Arg	Asp	Ala	Glu	Pro
														655
														660
Gln	Pro	Gly	Ser	Pro	Ala	Ala	Glu	Ser	Leu	Glu	Glu	Pro	Asp	Ala
														665
														670
Ala	Ala	Ser	Leu	Phe	Pro	Phe	Ser	Glu	Gly					675
														680
														685
														690
														695
														700
														705
														710
														715
														720
														725
														730
														735
														740
														745
														750
														755
														760
														765
														770
														775

<210> 5

<211> 351

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1873139CDI

<400> 5

Met	Asn	Ala	Ile	Leu	Gln	Ser	Leu	Ser	Asn	Ile	Glu	Gln	Phe	Cys
1					5					10				15
Cys	Tyr	Phe	Lys	Glu	Leu	Pro	Ala	Val	Glu	Leu	Arg	Asn	Gly	Lys
										20	25			30
Thr	Ala	Gly	Arg	Arg	Thr	Tyr	Tyr	His	Thr	Arg	Ser	Gln	Gly	Asp
										35	40			45

Asn Val Ser Leu Val Glu Glu Phe Arg Lys Thr Leu Cys Ala Leu
 50 55 60
 Trp Gln Gly Ser Gln Thr Ala Phe Ser Pro Glu Ser Leu Phe Tyr
 65 70 75
 Val Val Trp Lys Ile Met Pro Asn Phe Arg Gly Tyr Gln Gln Gln
 80 85 90
 Asp Ala His Glu Phe Met Arg Tyr Leu Leu Asp His Leu His Leu
 95 100 105
 Glu Leu Gln Gly Gly Phe Asn Gly Val Ser Arg Ser Ala Ile Leu
 110 115 120
 Gln Gln Asn Ser Thr Leu Ser Ala Ser Asn Lys Cys Cys Ile Asn
 125 130 135
 Gly Ala Ser Thr Val Val Thr Ala Ile Phe Gly Gly Ile Leu Gln
 140 145 150
 Asn Glu Val Asn Cys Leu Ile Cys Gly Thr Glu Ser Arg Lys Phe
 155 160 165
 Asp Pro Phe Leu Asp Leu Ser Leu Asp Ile Pro Ser Gln Phe Arg
 170 175 180
 Ser Lys Arg Ser Lys Asn Gln Glu Asn Gly Pro Val Cys Ser Leu
 185 190 195
 Arg Asp Cys Leu Arg Ser Phe Thr Asp Leu Glu Glu Leu Asp Glu
 200 205 210
 Thr Glu Leu Tyr Met Cys His Lys Cys Lys Lys Lys Gln Lys Ser
 215 220 225
 Thr Lys Lys Phe Trp Ile Gln Lys Leu Pro Iys Val Leu Cys Leu
 230 235 240
 His Leu Lys Arg Phe His Trp Thr Ala Tyr Leu Arg Asn Lys Val
 245 250 255
 Asp Thr Tyr Val Glu Phe Pro Leu Arg Gly Leu Asp Met Lys Cys
 260 265 270
 Tyr Leu Leu Glu Pro Glu Asn Ser Gly Pro Glu Ser Cys Leu Tyr
 275 280 285
 Asp Leu Ala Ala Val Val Val His His Gly Ser Gly Val Gly Ser
 290 295 300
 Gly His Tyr Thr Ala Tyr Ala Thr His Glu Gly Arg Trp Phe His
 305 310 315
 Phe Asn Asp Ser Thr Val Thr Leu Thr Asp Glu Glu Thr Val Val
 320 325 330
 Lys Ala Lys Ala Tyr Ile Leu Phe Tyr Val Glu His Gln Ala Lys
 335 340 345
 Ala Gly Ser Asp Lys Leu
 350

<210> 6
 <211> 136
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1903112CD1

<400> 6
 Met Ala Leu Met Gln Arg Ser Asp Ile Phe Arg Val Ala Ile Ala
 1 5 10 15
 Gly Ala Pro Val Thr Leu Trp Ile Phe Tyr Asp Thr Gly Tyr Thr
 30 35 40 45
 Glu Arg Tyr Met Gly His Pro Asp Gln Asn Glu Gln Gly Tyr Tyr
 35 40 45
 Leu Gly Ser Val Ala Met Gln Ala Glu Lys Phe Pro Ser Glu Pro
 50 55 60
 Asn Arg Leu Leu Leu Leu His Gly Phe Leu Asp Glu Asn Val His
 65 70 75
 Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu Val Arg Ala Gly
 80 85 90
 Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg His Ser Ile
 95 100 105
 Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu Leu His

Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile Ala Ala Lys Val
 110 115 120 135
 125 130
 ile
 <210> 7
 <211> 396
 <212> PR1
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 1993041CD1
 <400> 7
 Met Ser Leu Gly Trp Leu Glu Arg Pro Pro Ala Leu Ser Arg Ala
 1 5 10 15
 Ala Gly Asp Gly Ala Arg Arg Leu Ser Gly Ser Met Arg Gly Asp
 20 25 30
 Val Trp Leu Thr Ser Ser Ala Ala Gly Leu Leu Arg Ser Val Ala
 35 40 45
 Gly Gly Ser Trp Cys Gly Gly Gln Leu Arg Ala Arg Gly Gly Ser
 50 55 60
 Gly Arg Cys Val Ala Arg Ala Met Thr Gly Asn Ala Gly Glu Trp
 65 70 75
 Cys Leu Met Glu Ser Asp Pro Gly Val Phe Thr Glu Leu Ile Lys
 80 85 90
 Gly Phe Gly Cys Arg Gly Ala Cln Val Glu Clu Ile Trp Ser Leu
 95 100 105
 Glu Pro Glu Asp Phe Glu Lys Leu Lys Pro Val His Gly Leu Ile
 110 115 120
 Phe Leu Phe Lys Trp Gln Pro Gly Glu Glu Pro Ala Gly Ser Val
 125 130 135
 Val Gln Asp Ser Arg Leu Asp Thr Ile Phe Phe Ala Lys Gln Val
 140 145 150
 Ile Asn Asn Ala Cys Ala Thr Gln Ala Ile Val Ser Val Leu Ile
 155 160 165
 Asn Cys Thr His Gln Asp Val His Leu Gly Clu Thr Leu Ser Glu
 170 175 180
 Phe Lys Glu Phe Ser Cln Ser Phe Asp Ala Ala Met Lys Gly Leu
 185 190 195
 Ala Leu Ser Asn Ser Asp Val Ile Arg Gln Val His Asn Ser Phe
 200 205 210
 Ala Arg Cln Gln Met Phe Glu Phe Asp Thr Lys Thr Ser Ala Lys
 215 220 225
 Clu Glu Asp Ala Phe His Phe Val Ser Tyr Val Pro Val Asn Gly
 230 235 240
 Arg Leu Tyr Glu Leu Asp Gly Leu Arg Glu Gly Pro Ile Asp Leu
 245 250 255
 Gly Ala Cys Asn Gln Asp Asp Trp Phe Ser Ala Val Arg Pro Val
 260 265 270
 Ile Glu Lys Arg Ile Gln Lys Tyr Ser Glu Gly Glu Ile Arg Phe
 275 280 285
 Asn Leu Met Ala Ile Val Ser Asp Arg Lys Met Ile Tyr Glu Glu
 290 295 300
 Lys Ile Ala Glu Leu Gln Arg Gln Leu Ala Glu Clu Glu Pro Met
 305 310 315
 Asp Thr Asp Gln Gly Asn Ser Met Leu Ser Ala Ile Gln Ser Glu
 320 325 330
 Val Ala Lys Asn Gln Met Leu Ile Glu Glu Glu Val Gln Lys Leu
 335 340 345
 Lys Arg Tyr Lys Ile Glu Asn Ile Arg Arg Lys His Asn Tyr Leu
 350 355 360
 Pro Phe Ile Met Glu Leu Leu Lys Thr Leu Ala Glu His Gln Glu
 365 370 375
 Leu Ile Pro Leu Val Glu Lys Ala Lys Glu Lys Gln Asn Ala Lys
 380 385 390

Lys Ala Gln Glu Thr Lys
395

<210> 8
<211> 246
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2292182CD1

<400> 8
Met Ala Gly Ala Pro Asp Glu Arg Arg Arg Gly Pro Ala Ala Gly
1 5 10 15
Glu Gln Leu Gln Gln Gln His Val Ser Cys Gln Val Phe Pro Glu
20 25 30
Arg Leu Ala Gln Gly Asn Pro Gln Gln Gly Phe Phe Ser Ser Phe
35 40 45
Phe Thr Ser Asn Gln Lys Cys Gln Leu Arg Leu Leu Lys Thr Leu
50 55 60
Cys Thr Asn Pro Tyr Val Lys Leu Leu Leu Asp Ala Met Lys His
65 70 75
Ser Gly Cys Ala Val Asn Lys Asp Arg His Phe Ser Cys Glu Asp
80 85 90
Cys Asn Gly Asn Val Ser Gly Gly Phe Asp Ala Ser Thr Ser Gln
95 100 105
Ile Val Leu Cys Gln Asn Asn Ile His Asn Gln Ala His Met Asn
110 115 120
Arg Val Val Thr His Glu Leu Ile His Ala Phe Asp His Cys Arg
125 130 135
Ala His Val Asp Trp Phe Thr Asn Ile Arg His Leu Ala Cys Ser
140 145 150
Glu Val Arg Ala Ala Asn Leu Ser Cys Asp Cys Ser Leu Val Asn
155 160 165
Glu Ile Phe Arg Leu His Phe Gly Leu Lys Gln His His Gln Thr
170 175 180
Cys Val Arg Asp Arg Ala Thr Leu Ser Ile Leu Ala Val Arg Asn
185 190 195
Ile Ser Lys Glu Val Ala Lys Lys Ala Val Asp Glu Val Phe Glu
200 205 210
Ser Cys Phe Asn Asp His Glu Pro Phe Gly Arg Ile Pro His Asn
215 220 225
Lys Thr Tyr Ala Arg Tyr Ala His Arg Asp Phe Glu Asn Arg Asp
230 235 240
Arg Tyr Tyr Ser Asn Ile
245

<210> 9
<211> 262
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2331301CD1

<400> 9
Met Glu Val Tyr Ile Arg His Leu Glu Lys Val Leu Arg Arg Tyr
1 5 10 15
Val Gln Arg Leu Gln Trp Leu Leu Ser Gly Ser Arg Arg Leu Phe
20 25 30
Gly Thr Val Leu Glu Ser Lys Val Cys Ile Leu Leu Asp Thr Ser
35 40 45
Gly Ser Met Gly Pro Tyr Leu Gln Gln Val Lys Thr Cys Leu Val
50 55 60
Leu Leu Ile Trp Cys Gln Leu Arg Lys Cys Cys Asp Ser Phe Asn
65 70 75
Leu Leu Ser Phe Ala Glu Ser Leu Gln Ser Trp Cys Asp Thr Ile

80	85	90
Val Glu Thr Thr Asp Ala Ala Cys His Glu Ala Met Gln Trp Val		
95	100	105
Thr His Leu Gln Ala Gln Gly Ser Thr Ser Ile Leu Gln Ala Leu		
110	115	120
Leu Lys Ala Phe Ser Phe His Asp Leu Glu Gly Leu Tyr Leu Leu		
125	130	135
Thr Asp Gly Lys Pro Asp Thr Ser Cys Ser Leu Val Leu Asn Glu		
140	145	150
Val Gln Lys Leu Arg Glu Lys Arg Asp Val Lys Val His Thr Ile		
155	160	165
Ser Leu Asn Cys Ser Asp Arg Ala Ala Val Glu Phe Leu Arg Lys		
170	175	180
Leu Ala Ser Phe Thr Gly Gly Arg Tyr His Cys Pro Val Gly Glu		
185	190	195
Asp Thr Leu Ser Lys Ile His Ser Leu Leu Thr Lys Gly Phe Ile		
200	205	210
Asn Glu Lys Asp Arg Thr Leu Pro Pro Phe Glu Gly Asp Asp Leu		
215	220	225
Arg Ile Leu Ala Gln Glu Ile Thr Lys Ala Arg Ser Phe Leu Trp		
230	235	240
Gln Ala Gln Ser Phe Arg Ser Gln Leu Gln Lys Lys Asn Asp Ala		
245	250	255
Glu Pro Lys Val Thr Leu Ser		
260		

<210> 1D

<211> 406

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2517512CD1

<400> 1D

Met Ala Ala Ala Val Arg Gln Asp Leu Ala Gln Leu Met Asn Ser		
1	5	10
Ser Gly Ser His Lys Asp Leu Ala Gly Lys Tyr Arg Gln Ile Leu		
20	25	30
Glu Lys Ala Ile Gln Leu Ser Gly Ala Glu Gln Leu Glu Ala Leu		
35	40	45
Lys Ala Phe Val Glu Ala Met Val Asn Glu Asn Val Ser Leu Val		
50	55	60
Ile Ser Arg Gln Leu Leu Thr Asp Phe Cys Thr His Leu Pro Asn		
65	70	75
Leu Pro Asp Ser Thr Ala Lys Glu Ile Tyr His Phe Thr Leu Glu		
80	85	90
Lys Ile Gln Pro Arg Val Ile Ser Phe Glu Glu Gln Val Ala Ser		
95	100	105
Ile Arg Gln His Leu Ala Ser Ile Tyr Glu Lys Glu Glu Asp Trp		
110	115	120
Arg Asn Ala Ala Gln Val Leu Val Gly Ile Pro Leu Glu Thr Gly		
125	130	135
Gln Lys Gln Tyr Asn Val Asp Tyr Lys Leu Glu Thr Tyr Leu Lys		
140	145	150
Ile Ala Arg Leu Tyr Leu Glu Asp Asp Asp Pro Val Gln Ala Glu		
155	160	165
Ala Tyr Ile Asn Arg Ala Ser Leu Leu Gln Asn Glu Ser Thr Asn		
170	175	180
Glu Gln Leu Gln Ile His Tyr Lys Val Cys Tyr Ala Arg Val Leu		
185	190	195
Asp Tyr Arg Arg Lys Phe Ile Glu Ala Ala Gln Arg Tyr Asn Glu		
200	205	210
Leu Ser Tyr Lys Thr Ile Val His Glu Ser Glu Arg Leu Glu Ala		
215	220	225
Leu Lys His Ala Leu His Cys Thr Ile Leu Ala Ser Ala Gly Gln		
230	235	240

Gln Arg Ser Arg Net Leu Ala Thr Leu Phe Lys Asp Glu Arg Cys
 245 250 255
 Gln Gln Leu Ala Ala Tyr Gly Ile Leu Glu Lys Met Tyr Leu Asp
 260 265 270
 Arg Ile Ile Arg Gly Asn Gln Leu Gln Glu Phe Ala Ala Met Leu
 275 280 285
 Met Pro His Gln Lys Ala Thr Thr Ala Asp Gly Ser Ser Ile Leu
 290 295 300
 Asp Arg Ala Val Ile Glu His Asn Leu Leu Ser Ala Ser Lys Leu
 305 310 315
 Tyr Asn Asn Ile Thr Phe Glu Glu Leu Gly Ala Leu Leu Glu Ile
 320 325 330
 Pro Ala Ala Lys Ala Glu Lys Ile Ala Ser Gln Met Ile Thr Gln
 335 340 345
 Gly Arg Met Asn Gly Phe Ile Asp Gln Ile Asp Gly Ile Val His
 350 355 360
 Phe Glu Thr Arg Glu Ala Leu Pro Thr Trp Asp Lys Gln Ile Gln
 365 370 375
 Ser Leu Cys Phe Gln Val Asn Asn Leu Leu Glu Lys Ile Ser Gln
 380 385 390
 Thr Ala Pro Glu Trp Thr Ala Gln Ala Met Glu Ala Gln Met Ala
 395 400 405
 Gln

<210> 11

<211> 172

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3489039CD1

<400> 11

Met Leu Leu Pro Asn Ile Leu Leu Thr Gly Thr Pro Gly Val Gly
 1 5 10 15
 Lys Thr Thr Leu Gly Lys Glu Leu Ala Ser Lys Ser Gly Leu Lys
 20 25 30
 Tyr Ile Asn Val Gly Asp Leu Ala Arg Glu Glu Gln Leu Tyr Asp
 35 40 45
 Gly Tyr Asp Glu Glu Tyr Asp Cys Pro Ile Leu Asp Glu Asp Arg
 50 55 60
 Val Val Asp Glu Leu Asp Asn Gln Met Arg Glu Cys Gly Val Ile
 65 70 75
 Val Asp Tyr His Gly Cys Asp Phe Phe Pro Glu Arg Trp Phe His
 80 85 90
 Ile Val Phe Val Ile Arg Thr Asp Thr Asn Val Leu Tyr Glu Arg
 95 100 105
 Leu Glu Thr Arg Cys Tyr Asn Glu Lys Lys Leu Thr Asp Asn Ile
 110 115 120
 Gln Cys Glu Ile Phe Gln Val Leu Tyr Glu Glu Ala Thr Ala Ser
 125 130 135
 Tyr Lys Glu Glu Ile Val His Gln Leu Pro Ser Asn Lys Pro Glu
 140 145 150
 Glu Leu Glu Asn Asn Val Asp Gln Ile Leu Lys Trp Ile Glu Gln
 155 160 165
 Trp Ile Lys Asp His Asn Ser

170

<210> 12

<211> 517

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5432879CD1

<400> 12
 Met Leu Ser Ser Arg Ala Glu Ala Ala Met Thr Ala Ala Asp Arg
 1 5 10 15
 Ala Ile Gln Arg Phe Leu Arg Thr Gly Ala Ala Val Arg Tyr Lys
 20 25 30
 Val Met Lys Asn Trp Gly Val Ile Gly Gly Ile Ala Ala Ala Leu
 35 40 45
 Ala Ala Gly Ile Tyr Val Ile Trp Gly Pro Ile Thr Glu Arg Lys
 50 55 60
 Lys Arg Arg Lys Gly Leu Val Pro Gly Leu Val Asn Leu Gly Asn
 65 70 75
 Thr Cys Phe Met Asn Ser Leu Leu Gln Gly Leu Ser Ala Cys Pro
 80 85 90
 Ala Phe Ile Arg Trp Leu Glu Glu Phe Thr Ser Gln Tyr Ser Arg
 95 100 105
 Asp Gln Lys Glu Pro Pro Ser His Gln Tyr Leu Ser Leu Thr Leu
 110 115 120
 Leu His Leu Leu Lys Ala Leu Ser Cys Gln Glu Val Thr Asp Asp
 125 130 135
 Glu Val Leu Asp Ala Ser Cys Leu Leu Asp Val Leu Arg Met Tyr
 140 145 150
 Arg Trp Gln Ile Ser Ser Phe Glu Glu Gln Asp Ala His Glu Leu
 155 160 165
 Phe His Val Ile Thr Ser Ser Leu Glu Asp Glu Arg Asp Arg Gln
 170 175 180
 Pro Arg Val Thr His Leu Phe Asp Val His Ser Leu Glu Gln Gln
 185 190 195
 Ser Glu Ile Thr Pro Lys Gln Ile Thr Cys Arg Thr Arg Gly Ser
 200 205 210
 Pro His Pro Thr Ser Asn His Trp Lys Ser Gln His Pro Phe His
 215 220 225
 Gly Arg Leu Thr Ser Asn Met Val Cys Lys His Cys Glu His Gln
 230 235 240
 Ser Pro Val Arg Phe Asp Thr Phe Asp Ser Leu Ser Leu Ser Ile
 245 250 255
 Pro Ala Ala Thr Trp Gly His Pro Leu Thr Leu Asp His Cys Leu
 260 265 270
 His His Phe Ile Ser Ser Glu Ser Val Arg Asp Val Val Cys Asp
 275 280 285
 Asn Cys Thr Lys Ile Gln Ala Lys Gly Thr Leu Asn Gly Glu Lys
 290 295 300
 Val Gln His Gln Arg Thr Thr Phe Val Lys Gln Leu Lys Leu Gly
 305 310 315
 Lys Leu Pro Gln Cys Leu Cys Ile His Leu Gln Arg Leu Ser Trp
 320 325 330
 Ser Ser His Gly Thr Pro Leu Lys Arg His Glu His Val Gln Phe
 335 340 345
 Asn Glu Phe Leu Met Met Asp Ile Tyr Lys Tyr His Leu Leu Gly
 350 355 360
 His Lys Pro Ser Gln His Asn Pro Lys Leu Asn Lys Asn Pro Gly
 365 370 375
 Pro Thr Leu Glu Leu Gln Asp Gly Pro Gly Ala Pro Thr Pro Val
 380 385 390
 Leu Asn Gln Pro Gly Ala Pro Lys Thr Gln Ile Phe Met Asn Gly
 395 400 405
 Ala Cys Ser Pro Ser Leu Leu Pro Thr Leu Ser Ala Pro Met Pro
 410 415 420
 Phe Pro Leu Pro Val Val Pro Asp Tyr Ser Ser Ser Thr Tyr Leu
 425 430 435
 Phe Arg Leu Met Ala Val Val Val His His Gly Asp Met His Ser
 440 445 450
 Gly His Phe Val Thr Tyr Arg Arg Ser Pro Pro Ser Ala Arg Asn
 455 460 465
 Pro Leu Ser Thr Ser Asn Gln Trp Leu Trp Val Ser Asp Asp Thr
 470 475 480
 Val Arg Lys Ala Ser Leu Gln Glu Val Leu Ser Ser Ser Ala Tyr
 485 490 495

<210> 50
<211> 2261
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3883861CB1

<210> 51
<211> 1860
<212> DNA
<213> *Homo sapiens*

<210> 48
<211> 578
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3092341CB1

<210> 49
<211> 1300
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3658034CR1

```

<400> 49
aggaaatccc aattatgagg cggctaagca ggcaaagaaa tagettgggt ggtttgcatt 60
ctactcgga taccactgtt yctttaaagg vtgtctgtat ttgcgttccat xatgaatac 120
yaaaggcacaa statccaagt gacecgtagc gggcttagct caccaggctc tgtaaagttt 180
ctgatgtaca cacacaaaccq cttaatctttt cagacagccay apetgttgtt ygtacagccat 240
acggcgttta statttccge aaatggttt ygttttgctt tttytcagct caatgttgc 300
tataatgtga aggttttgg ttcttctttaga aagaagaatgtt cttatccaaa traagaagcc 360
tttggattttag atgttgtgtt aaaaagaaat aaagatgttc tcaatcatgt ggatttgaat 420
gtgtgtacaa gcttttgggg ccqgggttagg agtggcatgg ctctttagaa agttaxccat 480
tttaagtgtgt ttatgggtcc ttcagaaagca attttctgtaa gaagaaagtgg 540
gaatatgtatc atggaaaaact caaccttat ttagatttgc traatyyaac cragttttgt 600

```

atattataa ataaaaaccc ttgtcttttc aaaaaaaaaa 4

1661

<210> 46
<211> 1910
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2323917CB1

<400> 46
gtactccggc cgcaagccctg ggggtccagg gggatctcc agaaatgggt ctccaggaaa 60
atattataa tctgtgtatg gaaaaatccc agaaaatttaa tcctttata ttgcataatac 120
tccaaagaatg gatatggaaa attaaaaaagg ggcttagcagg aaaaaatcaa taaaacattt 180
ctggtaacaa tccgttagtg ccagtayaaa ggtttacagg tgaagattt tgattttt 240
ccaaaaatttt aaagaatgtt ctgtatatta algttllgtt tttttttttt aaccctttttt 300
gtgtatggg tgcataactat gtcgtccaaa tgcattttttt aaaaaatccat 360
tataccctat gttttatgtt alttggccccg aattygtgyaum attgtatttctt aatgtgtttt 420
ataagaatcg gactctgaaa tacctaagaa tgcattttttt aaaaatttggaa aataaagggtt 480
gatgtttttt tgcgtttttt tgcattttttt aatcatattt aatgtgtttt gatctgggtt 540
actgtgtatct gggaaatgcaaa agtgtgtatg catttgcatac agtactactt caaaaaatccat 600
ccatccggcc aataaaaaatccat aatccgtttt tgcattttttt tgcattttttt aatgtgtttt 660
tccatgttgg cccatgtttt aaaaaatccat aatgtgtttt tgcattttttt aatgtgtttt 720
atgtatataa aatccgtttt aatccatccat tgcattttttt aatgtgtttt gatctgggtt 780
tgcgtttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 840
atgtactgaa aatccatccat acccttggaaat tgcattttttt tgcattttttt aatgtgtttt 900
atgcaggccg aatccatccat aatccatccat tgcattttttt tgcattttttt aatgtgtttt 960
tgcgtttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt gatctgggtt 1020
aaaaatccatccat tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1080
gtataccatccat tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1140
agccctttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1200
attattttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1260
ctttttttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1320
tgtttttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1380
aagttaatccat tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1440
aaaaatccatccat tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1500
ggggccgggtt cccttgggggg gggatccatccat tgcattttttt tgcattttttt aatgtgtttt 1560
tacagggcc tggaaagggaa aatccatccat tgcattttttt tgcattttttt aatgtgtttt 1620
atttttttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1680
tgtttttttt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1740
gacgttccatccat tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1800
ggtagtgggtt tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1860
ttggtttccatccat tgcattttttt tgcattttttt aatccatccat tgcattttttt aatgtgtttt 1910

<210> 47
<211> 2162
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2754960CB1

<400> 47
gacacggccaa ccccaatccaa gcttggacca aatccatccat tttttttttt aaaaaaaaaa 60
aaaaatccatccat aatccatccat tggaaatccatccat gggatccatccat tttttttttt aaaaaaaaaa 120
ggggatccatccat tggaaatccatccat tttttttttt aatccatccat tttttttttt aaaaaaaaaa 180
tgcgtttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 240
ccggccggcc aatccatccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 300
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 360
tgcgtttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 420
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 480
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 540
aaaaatccatccat aatccatccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 600
gggacttccatccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660
ctttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 720

ggcagcgatg gattttgggt ggggggggtcc tccttgcggga atlggyrgccca gtcgttgtt 1980
 gaaacgttgg atyagcaaga tggtgatgca gaacaaagca acggaaagat gaacgttage 2040
 accttaataa aagatgaaatc aaaaaggaaatc agaaaaaaatc aggaggaaatt aaattttaat 2100
 gaagatattc tgggtccaca tggtgatgtt tggatatactg aaatgtaaag aaggttgtt 2160
 tcttaaagggt cttygaccaactc acgtcagcag taccttccaa aggetctga gtttccaaagt 2220
 tacazagatgt gctgttcaca gtgcacaaattt ttagaaaaagag aaggggaaaga aaatgtaaatc 2280
 ttacataaaga tgatttgcacaa cggacaaatc acttcttcccaaaatttgc ttcgttccat cttgttccay 2340
 aacagaccgt gtcctcgttac ctggccagag galactggatc tcccttccat cttgttccay 2400
 ttcttccatc aagagtggcg gaaatttgc tggatgttccaaatc caagatgcag ccctgttcc 2160
 tcagttggga acagtgttcc tttgttgcen caxggggdgc tctgttccat tttgttcc 2520
 atgaccatcag aatatttccaa tttatatactt ctcataatgc ccagtgttcc gcaaatgttca 2580
 caaaatgttccat ttgttgcggatc ttcgttccat aatgttccaaatc gatgttccat gggatgttca 2640
 ascocctcag aacacatgttccat tttttgttccat cccaaatgttccat gtttccat gggatgttca 2700
 ttatgtgtc acgacgttccat gggatgttccat gtttccat gtttccat gggatgttca 2760
 aaatgttccat aatataaaaaa ggtgtatgttccat gatgttccat cggatgttca tttgttccat 2820
 ttcgttccat gggatgttccat gggatgttccat aatccatgttccat gggatgttca tttgttccat 2880
 aatccatgttccat ttcgttccat ttcgttccat gtttccat gggatgttccat aatgttccat 2940
 aatgttccat aatgttccat ttcgttccat gggatgttccat ttcgttccat ttcgttccat 3000
 attttatgttccat aatgttccat accaaatgttccat gtttccat gtttccat ttcgttccat 3060
 gtttccat gggatgttccat gtttccat gtttccat ttcgttccat ttcgttccat 3120
 acttgcgttccat ttcgttccat gggatgttccat gggatgttccat ttcgttccat 3180
 aaccaatgttccat gggatgttccat aatccatgttccat ttcgttccat ttcgttccat 3240
 ttcgttccat gtttccat gtttccat ttcgttccat ttcgttccat ttcgttccat 3300
 cagacttccat gggatgttccat ttcgttccat ttcgttccat gggatgttccat 3360
 aatgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 3420
 atagtcgttccat gggatgttccat aatccatgttccat ttcgttccat gtttccat 3480
 gggatgttccat aatccatgttccat ttcgttccat ttcgttccat ttcgttccat 3540
 gtaatttttag agacatzaacc ttcgttccat ttcgttccat ttcgttccat ttcgttccat 3600
 aatccatgttccat aatgttccat aatccatgttccat 3634

<210> 45
<211> 1661
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1973875CB1

<400> 45
 tcgcgatgttccat ggcggacttgg ttcgttccat ggcacccgttccat gggccccccc 60
 tggcccccggcc accttggggcc ttcgttccat gtcgttccat ttcgttccat ttcgttccat 120
 caaatgttccat gggatgttccat ttcgttccat gggatgttccat ttcgttccat 180
 gggatgttccat gggatgttccat ttcgttccat gggatgttccat ttcgttccat 240
 ccaccccccgttccat gggatgttccat ttcgttccat gggatgttccat ttcgttccat 300
 ttcgttccat gggatgttccat ttcgttccat gggatgttccat ttcgttccat 360
 aatgttccat ttcgttccat gggatgttccat ttcgttccat ttcgttccat 420
 cagatgttccat gggatgttccat ttcgttccat gggatgttccat ttcgttccat 480
 gagatgttccat ttcgttccat gggatgttccat ttcgttccat ttcgttccat 540
 gggatgttccat ttcgttccat gggatgttccat ttcgttccat ttcgttccat 600
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 660
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 720
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 780
 aatgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 840
 ccaccccccgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 900
 gagatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 960
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 1020
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 1080
 gggatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 1140
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 1200
 gggatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 1260
 ttcgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 1320
 gggatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 1380
 aatgttccat gggatgttccat ttcgttccat ttcgttccat ttcgttccat 1440
 gggatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 1500
 gggatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 1560
 gggatgttccat ttcgttccat ttcgttccat ttcgttccat ttcgttccat 1620

<210> 44
<211> 3634
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1911808CB1

tgttttaaca	aaagagtgtg	gacattttta	ttttttttttt	taggc当地	tcactatcaa	1680
atgggtgttt	atttgttcc	cacagccata	tagttttcc	tgggggttt	tgttttgg	1740
ttgttgaaaa	gatttgttt	awgcteyat	gaaatttct	ataggaaaaa	aaaattgtt	1800
aaaggcccaag	tttcgtac	catgtgagtl	aatgabacta	aaactaegtt	ctttttaaaa	1860
agtgatataat	gtatttata	aattttttt	tcacatatgc	aaatatctgt	tctactacaa	1920
tgttattttt	actaatgec	tattgtggca	cttttttga	aaacatctgtc	aytgaaata	1980
tgaatcaatt	tggcttaaa	actgsaaagcc	atggggctg	aaagggttga	aataatgtcc	2040
ccatggaaaa	cattcaatcc	ataatgtgt	aaataatett	taaaaatgtt	tttaatecg	2100
atagatgca	ttttgtatgt	tggacatgg	tggtaattra	ggggcattaa	tttacactc	2160
caagggtc						2167

<210> 42
<211> 1826
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Involve ID No: 1256390CB1

<220>
<221> unsure
<222> 1755
<223> a. t. c. q. or other

<210> 43
<211> 1371
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> 3ncvtp ID No: 1786774CA1

tccgtacaga taaaggaaga gatcccagt ctgatacata tggggaaat tetgaggatc 900
 tgctccagat acgaaatgt gtgcgttgcact cactgggtat taglccgtac ctgttttcly 960
 aaggactttgt caggactgc ttotccyaga tggcccccaat gtgtgcyytg gtggaggga 1020
 ttttggcaca gaaaattgtg aaggccctgt ctccgggaa cccttcac aaccacttct 1080
 tettccttccgtt tggcgatgaa gggatggga ttgtggagtg cttggggccc aagtgaactc 1140
 aagatttgc agccccagag atgcoactc cggatcycctt acctgtatc cctgtttcc 1200
 tccttcataa agccatctcc agggcaggaa aactgaatc attggccca taaaaaacat 1260
 ttctgtccac gaaaggagggt gtgcggcaat gtgtttccat cttccatggaa tctgtccac 1320
 aaggggcaca ggggtgggtgt ctgttgcata gcaactgttca ggtgtccgtt catccccggc 1380
 ctggccatc cccgtgttgcata tgaaatctt cccggccccc tctgtccctt 1440
 atgtgttcc ggcctegcca gcccctggg gcaattgtggg agatgcgtgc caggaaatgg 1500
 caagcttgtt tgcctggag ccccttgcata ctttcttgcata cttatcccc accgtataacc 1560
 ttatcgagaa aagtgtgaat tcagggtggag agtagggccca ggcctccatgtc ggcctccatgtc 1620
 gggccacago tccaaatgttca gaaagggttgc ctttagagagg aaaaaccatgtc caggcaaatgtc 1680
 catttccctt ggaggttgcac accctgacaa acaaaccatgtc gcatctgggt tgggtttt 1740
 dagtttccgt tttggattttt tttggatgttca gttgggtttt gggagaaagg agatgttcc 1800
 aaggcttggg ttttaggggg agacccgtca aattgtgtat tagagatctt gttttccatgg 1860
 gcaagggttccgtt ggggtttccgtt gggatgggg gaggagccgtc ccctttttaac agaaccggcag 1920
 tcacatgggg ctcaaggtaac tcagaggtgt tttccatgtca gggatgttccgtt ggtttttttt 1980
 ttatcttca aaccatgtt gtttgcgtttt cacatatgtt gtaattttt cttgggtttt 2040
 tttaaaggaa tgataataaa ttatcttgcata tttggatlttccgtt gtttttttccatgtca 2100
 gaagcttcttggatggatgttccgtt accatgttccgtt tttccatgtca tttgggttttccatgtca 2160
 atctcaagaga ttccatgttccgtt accatgttccgtt ttttttttccgtt ggtgtatgtc 2220
 caagatgttccatgttccgtt tttccatgttccgtt ttttttttccgtt gttgttccatgtca 2280
 ttatcttca gttatgttccgtt ggttttttccgtt aatgttccatgttccgtt ttatataaa taaaggaaatgg 2340
 taaaaatgttccgtt gtttccatgttccgtt gggccatgtc cccatgttccgtt tttgggttttccgtt 2400
 gggccatgttccgtt gtttccatgttccgtt atgcagccaa atgttccgttccgtt accatgttccgtt 2460
 gtttttttccgtt tttatgttccgtt tttggatgttccgtt ttttttttccgtt ttttttttccgtt 2520
 aa

<210> 41
 <211> 2167
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 011344CB1

<400> 41
 cggccgttccggggggatgg ttccatcatgt ggcgtcaatgtc agaaatcgact acaggaaatggaa 60
 ctgttggctt tccatgttccggggggatgg tttccatgttccgtt ggtgttccatgtca 120
 aatccatata cccatgttccgtt ggtgttccgtt ggtgttccatgtca 180
 aatccatata cccatgttccgtt ggtgttccgtt ggtgttccatgtca 240
 gaaaalltc aacttccatgttccgtt ggtgttccgtt ggtgttccatgtca 300
 atgtttccatgttccgtt ggtgttccgtt ggtgttccgtt ggtgttccatgtca 360
 ttatccatgttccgtt ggtgttccgtt ggtgttccgtt ggtgttccatgtca 420
 attattatgttccgtt ggtgttccgtt ggtgttccgtt ggtgttccatgtca 480
 gttttccatgttccgtt ggtgttccgtt ggtgttccatgtca 540
 tttttccatgttccgtt ggtgttccgtt ggtgttccatgtca 600
 acttccatgttccgtt ggtgttccgtt ggtgttccatgtca 660
 gttttccatgttccgtt ggtgttccatgtca 720
 tttttccatgttccgtt ggtgttccatgtca 780
 tttttccatgttccgtt ggtgttccatgtca 840
 tttttccatgttccgtt ggtgttccatgtca 900
 agggccatgttccgtt ggtgttccatgtca 960
 cttttccatgttccgtt ggtgttccatgtca 1020
 gttttccatgttccgtt ggtgttccatgtca 1080
 tttttccatgttccgtt ggtgttccatgtca 1140
 tttttccatgttccgtt ggtgttccatgtca 1200
 tttttccatgttccgtt ggtgttccatgtca 1260
 tttttccatgttccgtt ggtgttccatgtca 1320
 gttttccatgttccgtt ggtgttccatgtca 1380
 tttttccatgttccgtt ggtgttccatgtca 1440
 cttttccatgttccgtt ggtgttccatgtca 1500
 aatccatata tttttccatgttccgtt ggtgttccatgtca 1560
 tttttccatgttccgtt ggtgttccatgtca 1620

```

<220>
<221> misc_feature
<223> Incyte ID No: 5432879CB1

<400> 39
gtccggcgcc gggggggggc gtagcggagg agacggtttc aggcctcgg tgcugtgcg 60
atgcgtgagct cccggggccgg uggcggcgatg acggcgccg acaggycat ccagegettc 120
cggcgccggcgg ggggggccgt cgatataaa gtcatgaaga actggggagt tatautggg 180
atgttgtgtgt ctatccgtgc agggatataat gttatccggg gteccattac agaaaagaaag 240
aaggcttagaa aagggttgtt gctggcett ylkaaktttg gyaaacacotg cttcatggac 300
tccccgtctac aaggccgtgc tgcgtgtctt gettcatea ggtggctyga agaggccacc 360
tccccgtact ccagggtatca gaaggccggcc cctccaaaaa aytatlttac ttbaacatc 420
ttgcacccct tgaaggccctt gtcgtgtccaa gaagttactg atgtgtgggt cttagatgc 480
atgtgtgtgtt tggatgttctt aaggatgtac agatggccgg tctcatctt tgaaacacag 540
gtatgtccacg aattatccca ctcgggttgc cccatgttt aatgttgcgtt tccctgggg 600
aaacaaatata cctggccgcac aagagggtca cctccaaaaa catccaatca ctggaaatgtt 660
caacatctt ttcatggaaag atccatgtt aatgtgttctt gcaaaacactg tgaacacccag 720
atgttgtgttc gattgtatcc ggtcancat tgaaccttgg aatgttgcgtt aatgttgcgtt 780
gtatgtgtgt gtgacaaactg ttgtttaaa cagttttttt tagggaaatgtt ccctcgtgt 840
gtggaaacacc agaggaccac ctatgtatcc acctaaatgg gulgagctgg lccaggtttt gggccatgtt gggccatgtt 900
ggcacgtgc agttcaatga cccatgtt caccatca tataaaatgtt gaaacatgtt edggaaaaaaag 960
catatccatca gtcataatca cccatgtt caccatca tccaaatgtt gaaacatgtt edggaaaaaaag 1020
caggatgggc cgggagcccc tttttttttt tagggaaatgtt ccctcgtgtt 1080
atttttatgtt atggccgtt gttctgtatg atggacattt acaagttacca cctcttggg 1140
ttccctctcc cagtgttcc cccatgtt caccatca cccatgtt caccatca tccaaatgtt 1200
gttgtgtgtcc accatggaga catgttccatcc gggccatgtt caccatca tccaaatgtt 1260
ccctctgtcc gggccatgtt cccatgtt caccatca tccaaatgtt gggccatgtt caccatca 1320
gttccgttcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1380
gttgtgtgtcc accatggaga catgttccatcc gggccatgtt caccatca tccaaatgtt 1440
gttccgttcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1500
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1560
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1620
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1680
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1740
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1800
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1860
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1920
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 1980
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 2040
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 2100
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 2160
gttgtgtgtcc cccatgtt caccatca tccaaatgtt gggccatgtt caccatca tccaaatgtt 2186

```

<210> 40
<211> 2522
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5853753CB1

<210> 31
<211> 2412
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1.299481C83

<400> 29	gtgcgttggcg octgcgcgtgg	acgactcggc	cggtagtggc	gatgtccggc	cygtctaagg	60
	gggagtctcg cggttccact	cgggggaaac	tgagagtctcg	ytgcgggggc	agctccggtc	120
	gggtcaagcg	ggggagat	agecgagggc	ggegagctcc	cgggcagecc	180
	ctgtgcgcgt	gaaggcgggag	ttagagcgg	cgacgcycgc	cyaggcccc	240
	tcccglttgk	yogggttaag	ggggagcgcg	ggactcggag	cctgagoggg	300
	agggtgcgac	aaagaatggc	cgatggatt	ctgagggaccy	gaggggccgc	360
	acatggacac	cattaaacagg	agtgtgtgg	acttgcatt	cactgcccgt	420
	cocttcacaa	catcaatgt	tatgcctgtc	tggtgtgtgg	tgagaaaactg	480
	gtttgaagtc	tccgcgtac	ttccatcgatg	caagttactt	tgttctatct	540
	tccacaccc	caagttttac	tgccttcacag	ttccatgttgc	caaggccggg	600
	aggatatacc	gtatgtgttg	aaggccatcc	ttccatgtgc	ttccatgtgg	660
	ggcggcccaa	attgtccggg	gtatgtatgc	ttccatgtgc	acttgcggcc	720
	tgatbsact	aaaggcccaat	gtatgtatgc	ttccatgtgc	ttccatgtgg	780
	ctccctctcg	gaaactacttt	gtggaaayaag	ttccatgtgc	ttccatgtgc	840
	gggatatacat	gttcttggtg	gtccaycggt	ttccatgtgc	ttccatgtgc	900
	ctcgaaaaat	caaggccat	gtgtctccccc	atgagatgt	ttccatgtgc	960
	gtaaaggac	tttccagatc	accssssseag	ttccatgtgc	ttccatgtgc	1020
	tgaaatgtct	gtacttcgt	ctggggggca	ttccatgtgc	ttccatgtgc	1080
	atgtttttca	gggggtccatg	aggatcttc	ttccatgtgc	ttccatgtgc	1140
	caggaaaaaa	agagccgttg	ctccatatacg	ttccatgtgc	ttccatgtgc	1200
	cttttatgt	ctgtacgtg	acggatcc	ttccatgtgc	ttccatgtgc	1260
	Aggttcatcl	tcgtttttgt	gaccccttca	ttccatgtgc	ttccatgtgc	1320
	Lccccaaatg	ttccatgtgc	ttccatgtgc	ttccatgtgc	ttccatgtgc	1380
	zgaaggaaata	taagacttac	ttccatgtgc	ttccatgtgc	ttccatgtgc	1440
	ctccatatact	atcttttgt	ttccatgtgc	ttccatgtgc	ttccatgtgc	1500
	atccaaactat	tgtcaattt	ttccatgtgc	ttccatgtgc	ttccatgtgc	1560
	aagtacaacg	egtacacaaag	ttccatgtgc	ttccatgtgc	ttccatgtgc	1620
	ggaaaggccct	cgagggtttcc	ttccatgtgc	ttccatgtgc	ttccatgtgc	1680
	atgaattaca	agacccctccag	ttccatgtgc	ttccatgtgc	ttccatgtgc	1740
	cttccatata	ytatttggag	ttccatgtgc	ttccatgtgc	ttccatgtgc	1800
	ggggggcgct	agggttttgc	ttccatgtgc	ttccatgtgc	ttccatgtgc	1860
	aaatgtgtac	tgtacacacgg	ttccatgtgc	ttccatgtgc	ttccatgtgc	1920
	ttctggctac	ccacagacac	ttccatgtgc	ttccatgtgc	ttccatgtgc	1980
	agetgttttt	tgtatcattt	ttccatgtgc	ttccatgtgc	ttccatgtgc	2040
	datctatgtt	caggcaggcc	ttccatgtgc	ttccatgtgc	ttccatgtgc	2100
	ctggggatgt	tttggaaaca	ttccatgtgc	ttccatgtgc	ttccatgtgc	2160
	caaggcggaa	gcctgttttt	ttccatgtgc	ttccatgtgc	ttccatgtgc	2220
	catttcctga	tttgtatttt	ttccatgtgc	ttccatgtgc	ttccatgtgc	2280
	aaaaaa					2225

<210> 30
<211> 3287
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1261376CB1

<400> 30
 cggggccgtt acccgccgtg ctccgggggg ccgcggcggaa gggacgtggg ggaaggggca 60
 gggaggagga aggggtggct gtggggatg tgggtgtgg cgagggggc ctgacacac 120
 ggccgtggcc gacggcgttggcc cccggggcg cggccggcc tccaccggc tccggggcvc 180
 cacacccgtt aeggtggccc tgccgggtt getactgggg cgggggtgtcc tgcatttttc 240
 gtcgttcagg cctggccgtt ctgggtgttg ctgggttccctt ctlyclogcc tgcctccctcc 300
 tggttgttgg tggcacccgc gcccggccg ccacacccat ggcggagagt ggtggaaagcg 360
 ygggttcctcc gggttcckgg gatggccggc cggggccggaa aaygttcgtggc gccccccgggg 420
 ccgtgttcgtt cggggacggc aaaaatcatga aatgtccacgtt gaagaccccg aaggaaaagg 480
 ygggttcgtt cgtggccgggg aatacgttcgg tccggcgtt tggggggaa atctttaacc 540
 gttttaaatc acatactgac ccacttgtt tgatatttgc tggaaaaattt ttcggggatc 600
 aayatcacctt gagtcggatc gggatccatg atggacttac ttttcacccctt tgcattttaa 660
 cacaaaaacag gtcgtggatc ctttcagtc aycaaaaacaaa tacacgttgg aycatgttta 720
 ctatccatc aacttcataat agtaacttc catctggtt tgcgtactgc aacccttttg 780
 gtttaggtgg cttggggggatc ttggcgttc tgggtgttgc ggggttgtaa acttccatrtt 840
 tcttcgtgttcc aagagtcgtt atgcacggac aactttgttgc taaatctggaa atgtatggcc 900
 agatcatggaa aataccctttt gtttcggagca tgcgttcataa tccgttcgtt aytggatgtt 960
 taatttgcgtt caatccacaa atgcacggatg tgcatacagaat aatcccaagaa attatgttata 1020

Asp	Gly	Ile	Asn	His	Asp	Val	Thr	Thr	Ala	Trp	Gly	Gly	Asp	Tyr
									655					660
Trp	Arg	Leu	Leu	Thr	Pro	Gly	Asp	Tyr	Met	Val	Thr	Ala	Ser	Ala
									670					675
Glu	Gly	Tyr	His	Ser	Val	Thr	Arg	Asn	Cys	Arg	Val	Thr	Phe	Glu
									685					690
Glu	Gly	Pro	Phe	Pro	Cys	Asn	Phe	Val	Leu	Thr	Lys	Thr	Pro	Lys
									700					705
Gln	Arg	Leu	Arg	Glu	Leu	Leu	Ala	Ala	Gly	Ala	Lys	Val	Pro	Pro
									715					720
Asp	Leu	Arg	Arg	Arg	Leu	Glu	Arg	Leu	Arg	Gly	Gln	Lys	Asp	
									725					
										730				

<210> 28
<211> 2080
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 088715CB1

<210> 29
<211> 2225
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 114551CPJ

Ser	Gly	Leu	Glu	Asp	Gly	Asp	Leu	Tyr	Asp	Gly	Ala	Trp	Cys	Ala	140	145	150
															155	160	165
Glu	Glu	Gln	Asp	Ala	Asp	Pro	Trp	Phe	Gln	Val	Asp	Ala	Gly	His	170	175	180
															185	190	195
Pro	Thr	Arg	Phe	Ser	Gly	Val	Ile	Thr	Gln	Gly	Ser	Asn	Ser	Val	200	205	210
															215	220	225
Asp	Ser	Arg	Thr	Trp	Trp	Gly	Ser	Arg	Asn	His	Ser	Ser	Gly	Met	230	235	240
															245	250	255
Asp	Ala	Val	Phe	Pro	Ala	Asn	Ser	Asp	Fro	Glu	Thr	Pro	Val	Leu	260	265	270
															275	280	285
Ala	Pro	Ala	Ser	Gly	Ser	Ser	Asp	Pro	Leu	Asp	Phe	Gln	His	His	290	295	300
															305	310	315
Asn	Tyr	Lys	Ala	Met	Arg	Lys	Leu	Met	Lys	Gln	Val	Gln	Glu	Gln	320	325	330
															335	340	345
His	Glu	Leu	Gly	Glu	Pro	Glu	Val	Arg	Tyr	Val	Ala	Gly	Met	His	350	355	360
															365	370	375
Phe	Leu	Cys	His	Glu	Phe	Leu	Arg	Gly	Asn	Pro	Arg	Val	Thr	Arg	380	385	390
															395	400	405
Asp	Cly	Tyr	Glu	Ile	Ala	Tyr	His	Arg	Gly	Ser	Gln	Leu	Val	Gly	410	415	420
															425	430	435
Trp	Ala	Glu	Gly	Arg	Trp	Asn	Asn	Gln	Ser	Ile	Asp	Leu	Asn	His	440	445	450
															455	460	465
Gly	Lys	Val	Pro	His	Ile	Val	Pro	Asn	His	His	Leu	Pro	Leu	Pro	470	475	480
															485	490	495
Thr	Tyr	Tyr	Thr	Leu	Pro	Asn	Ala	Thr	Val	Ala	Pro	Glu	Thr	Arg	500	505	510
															515	520	525
Asn	Ile	His	Gly	Gly	Glu	Leu	Val	Val	Ser	Tyr	Pro	Phe	Asp	Met	530	535	540
															545	550	555
Leu	Ala	Met	Gln	Asp	Thr	Ser	Arg	Arg	Pro	Cys	His	Ser	Gln	Asp	560	565	570
															575	580	585
Phe	Ser	Val	His	Gly	Asn	Ile	Ile	Asn	Gly	Ala	Asp	Trp	His	Thr	590	595	600
															605	610	615
Val	Pro	Gly	Ser	Met	Asn	Asp	Phe	Ser	Tyr	Leu	His	Thr	Asn	Cys	620	625	630
															635	640	645
Asp	Lys	Asp	Thr	Glu	Glu	Leu	Gly	Ile	Ala	Asp	Ala	Val	Ile	Ala	Val		

Gly Leu Met Val Ser Gly Tyr Ala Val Thr Gly Ala Val Leu Gly
 470 475 480
 Gln Asp Arg Leu Ile Asn Tyr Ala Thr Asn Gly Ala Lys Phe Leu
 485 490 495
 Lys Arg His Met Phe Asp Val Ala Ser Gly Arg Leu Met Arg Thr
 500 505 510
 Cys Tyr Thr Gly Pro Gly Gly Thr Val Glu His Ser Asn Pro Pro
 515 520 525
 Cys Trp Gly Phe Leu Glu Asp Tyr Ala Phe Val Val Arg Gly Leu
 530 535 540
 Leu Asp Leu Tyr Glu Ala Ser Gln Glu Ser Ala Trp Leu Glu Trp
 545 550 555
 Ala Leu Arg Leu Gln Asp Thr Gln Asp Arg Leu Phe Trp Asp Ser
 560 565 570
 Gln Gly Gly Gly Tyr Phe Cys Ser Glu Ala Glu Leu Gly Ala Gly
 575 580 585
 Leu Pro Leu Arg Leu Lys Asp Asp Gln Asp Gly Ala Glu Pro Ser
 590 595 600
 Ala Asn Ser Val Ser Ala His Asn Leu Leu Arg Leu His Gly Phe
 605 610 615
 Thr Gly His Lys Asp Trp Met Asp Lys Cys Val Cys Leu Leu Thr
 620 625 630
 Ala Phe Ser Glu Arg Met Arg Arg Val Pro Val Ala Leu Pro Glu
 635 640 645
 Met Val Arg Ala Leu Ser Ala Gln Gln Thr Leu Lys Gln Ile
 650 655 660
 Val Ile Cys Gly Asp Arg Gln Ala Lys Asp Thr Lys Ala Leu Val
 665 670 675
 Gln Cys Val His Ser Val Tyr Ile Pro Asn Lys Val Leu Ile Leu
 680 685 690
 Ala Asp Gly Asp Pro Ser Ser Phe Leu Ser Arg Gln Leu Pro Phe
 695 700 705
 Leu Ser Thr Leu Arg Arg Leu Glu Asp Gln Ala Thr Ala Tyr Val
 710 715 720
 Cys Glu Asn Gln Ala Cys Ser Val Pro Ile Thr Asp Pro Cys Glu
 725 730 735
 Leu Arg Lys Leu Leu His Pro
 740

<210> 27

<211> 734

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5583922CD1

<400> 27

Met Tyr Oly Ile Leu Leu Ala Leu Ala Ala Phe Ala Pro Ala Val
 1 5 10 15
 Gly Pro Ala Leu Gly Ala Pro Arg Asn Ser Val Leu Gly Leu Ala
 20 25 30
 Cln Pro Gly Thr Thr Lys Val Pro Gly Ser Thr Pro Ala Leu His
 35 40 45
 Ser Ser Pro Ala Cln Pro Pro Ala Glu Thr Ala Asn Gly Thr Ser
 50 55 60
 Clu Cln His Val Arg Ile Arg Val Ile Lys Lys Lys Lys Val Ile
 65 70 75
 Met Lys Lys Arg Lys Lys Leu Thr Leu Thr Arg Pro Thr Pro Leu
 80 85 90
 Val Thr Ala Gly Pro Leu Val Thr Pro Thr Pro Ala Gly Thr Leu
 95 100 105
 Asp Pro Ala Glu Lys Gln Glu Thr Gly Cys Pro Pro Leu Gly Leu
 110 115 120
 Glu Ser Leu Arg Val Ser Asp Ser Arg Leu Glu Ala Ser Ser Ser
 125 130 135
 Gln Ser Phe Gly Leu Gly Pro His Arg Gly Arg Leu Asn Ile Gln

220

<221> misc_feature

<223> Incyte ID No: 5267783CD1

<400> 26

Met	Pro	Ala	Gly	Gly	Lys	Gly	Ser	His	Pro	Ser	Ser	Thr	Pro	Gln
1					5				10					15
Arg	Val	Pro	Asn	Arg	Leu	Ile	His	Glu	Lys	Ser	Pro	Tyr	Leu	Leu
								20				25		30
Gln	His	Ala	Tyr	Asn	Pro	Val	Asp	Trp	Tyr	Pro	Trp	Gly	Glu	Glu
					35				40				45	
Ala	Phe	Asp	Lys	Ala	Arg	Lys	Glu	Asn	Lys	Pro	Ile	Phe	Leu	Ser
					50				55				60	
Val	Gly	Tyr	Ser	Thr	Cys	His	Trp	Cys	His	Met	Met	Glu	Glu	Glu
					65				70				75	
Ser	Phe	Gln	Asn	Glu	Glu	Ile	Gly	Arg	Leu	Leu	Ser	Gln	Asp	Phe
					80				85				90	
Val	Ser	Val	Lys	Val	Asp	Arg	Glu	Clu	Arg	Pro	Asp	Val	Asp	Lys
					95				100				105	
Val	Tyr	Met	Thr	Phe	Val	Cln	Ala	Thr	Ser	Ser	Gly	Gly	Gly	Trp
					110				115				120	
Pro	Met	Asn	Val	Trp	Leu	Thr	Pro	Asn	Leu	Gln	Pro	Phe	Val	Gly
					125				130				135	
Gly	Thr	Tyr	Phe	Pro	Pro	Glu	Asp	Gly	Leu	Thr	Arg	Val	Gly	Phe
					140				145				150	
Arg	Thr	Val	Leu	Leu	Arg	Ile	Arg	Glu	Gln	Trp	Lys	Gln	Asn	Lys
					155				160				165	
Asn	Thr	Leu	Leu	Glu	Asn	Ser	Gln	Arg	Val	Thr	Thr	Ala	Leu	Leu
					170				175				180	
Ala	Arg	Ser	Glu	Ile	Ser	Val	Gly	Asp	Arg	Gln	Leu	Pro	Pro	Ser
				185					190				195	
Ala	Ala	Thr	Val	Asn	Asn	Arg	Cys	Phe	Gln	Gln	Leu	Asp	Glu	Cly
				200					205				210	
Tyr	Asp	Glu	Clu	Tyr	Gly	Gly	Phe	Ala	Glu	Ala	Pro	Lys	Phe	Pro
				215					220				225	
Thr	Pro	Val	Ile	Leu	Ser	Phe	Leu	Phe	Ser	Tyr	Trp	Leu	Ser	His
				230					235				240	
Arg	Leu	Thr	Gln	Asp	Gly	Ser	Arg	Ala	Gln	Gln	Met	Ala	Leu	His
				245					250				255	
Thr	Leu	Lys	Met	Met	Ala	Asn	Gly	Gly	Ile	Arg	Asp	His	Val	Gly
				260					265				270	
Gln	Gly	Phe	His	Arg	Tyr	Ser	Thr	Asp	Arg	Gln	Trp	His	Val	Pro
				275					280				285	
His	Phe	Glu	Lys	Met	Leu	Tyr	Asp	Gln	Ala	Gln	Leu	Ala	Val	Ala
				290					295				300	
Tyr	Ser	Gln	Ala	Phe	Gln	Leu	Ser	Gly	Asp	Glu	Phe	Tyr	Ser	Asp
				305					310				315	
Val	Ala	Lys	Gly	Ile	Leu	Gln	Tyr	Val	Ala	Arg	Ser	Leu	Ser	His
				320					325				330	
Arg	Ser	Gly	Gly	Phe	Tyr	Ser	Ala	Glu	Asp	Ala	Asp	Ser	Pro	Pro
				335					340				345	
Glu	Arg	Gly	Gln	Arg	Pro	Lys	Glu	Gly	Ala	Tyr	Tyr	Val	Trp	Thr
				350					355				360	
Val	Lys	Glu	Val	Gln	Gln	Leu	Leu	Pro	Glu	Pro	Val	Leu	Gly	Ala
				365					370				375	
Thr	Glu	Pro	Leu	Thr	Ser	Gly	Gln	Leu	Ieu	Met	Lys	His	Tyr	Gly
				380					385				390	
Leu	Thr	Glu	Ala	Gly	Asn	Ile	Ser	Pro	Ser	Gln	Asp	Pro	Lys	Gly
				395					400				405	
Glu	Leu	Gln	Gly	Gln	Asn	Val	Leu	Thr	Val	Arg	Tyr	Ser	Leu	Glu
				410					415				420	
Leu	Thr	Ala	Ala	Arg	Phe	Gly	Leu	Asp	Val	Glu	Ala	Val	Arg	Thr
				425					430				435	
Leu	Leu	Asn	Ser	Gly	Leu	Gln	Lys	Leu	Phe	Gln	Ala	Arg	Lys	His
				440					445				450	
Arg	Pro	Lys	Pro	His	Leu	Asp	Ser	Lys	Met	Leu	Ala	Ala	Trp	Asn
				455					460				465	

Phe Ser Ala Asn Phe Thr Asp Ser Val Thr Thr Gly Arg Gln Ile
 170 175 180
 Asn Asp Tyr Leu Arg Arg Gln Thr Tyr Gly Gln Val Val Asp Cys
 185 190 195
 Leu Pro Glu Phe Ser Gln Asp Thr Phe Met Val Leu Ala Asn Tyr
 200 205 210
 Ile Phe Phe Lys Ala Lys Trp Lys His Pro Phe Ser Arg Tyr Gln
 215 220 225
 Thr Gln Lys Gln Ala Ser Phe Phe Val Asp Glu Arg Thr Ser Leu
 230 235 240
 Gln Val Pro Met Met His Gln Lys Glu Met His Arg Phe Leu Tyr
 245 250 255
 Asp Gln Asp Leu Ala Cys Thr Val Leu Gln Ile Glu Tyr Arg Gly
 260 265 270
 Asn Ala Leu Ala Leu Leu Val Leu Pro Asp Pro Gly Lys Met Lys
 275 280 285
 Gln Val Glu Ala Ala Leu Gln Pro Gln Thr Leu Arg Lys Trp Gly
 290 295 300
 Gln Leu Leu Leu Pro Ser Leu Leu Asp Leu His Leu Pro Arg Phe
 305 310 315
 Ser Ile Ser Gly Thr Tyr Asn Leu Gln Asp Ile Leu Pro Gln Ile
 320 325 330
 Gly Leu Thr Asn Ile Leu Asn Leu Gln Ala Asp Phe Ser Gly Val
 335 340 345
 Thr Gly Gln Leu Asn Lys Thr Ile Ser Lys Val Ser His Lys Ala
 350 355 360
 Met Val Asp Met Ser Glu Lys Gly Thr Glu Ala Gly Ala Ala Ser
 365 370 375
 Gly Leu Leu Ser Gln Pro Pro Ser Leu Asn Thr Met Ser Asp Pro
 380 385 390
 His Ala His Phe Asn Arg Pro Phe Leu Leu Leu Trp Glu Val
 395 400 405
 Thr Thr Gln Ser Leu Leu Phe Leu Gly Lys Val Val Asn Pro Val
 410 415 420

Ala Gly

<210> 25
<211> 119
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5208004CD1

<400> 25
Met Arg Trp Arg Gln Arg Ser Phe Leu Leu Arg Leu Phe Leu Gly
 1 S 10 15
 Ser Leu Arg Gly Gly Gln His His Pro Pro Leu Thr Leu Pro Ser
 20 25 30
 Ala Ser Ser Leu Pro Phe Ser Thr Leu Ser Leu Leu Leu Ala Ser
 35 40 45
 Ser Leu Ser Cys Cys Leu Val Ser Pro Cys Pro Lys Thr Pro Gly
 50 55 60
 Ser Phe Val Leu Leu Pro Trp Pro Pro Arg Arg Arg Ser Gln
 65 70 75
 Ala Pro Ser Pro Pro Arg Gly Ile His Thr Thr Gly Ser Cys Trp
 80 85 90
 Gly Trp Gly Ser Pro Ala Gly Phe Leu Met Pro Cys Ala Gln Gly
 95 100 105
 Ser Ala Ala Val Ile Phe Gly Leu Ser
 110

<210> 26
<211> 742
<212> PRT
<213> Homo sapiens

Lys Glu Asn Lys Asp Asp Leu Asn His Val Asp Leu Asn Val Cys
 95 100 105
 Thr Ser Phe Ser Gly Pro Gly Arg Ser Gly Met Ala Leu Met Glu
 110 115 120
 Val Asn Leu Leu Ser Gly Phe Met Val Pro Ser Glu Ala Ile Ser
 125 130 135
 Leu Ser Glu Thr Val Lys Lys Val Glu Tyr Asp His Gly Lys Leu
 140 145 150
 Asn Leu Tyr Leu Asp Ser Val Asn Glu Thr Gln Phe Cys Val Asn
 155 160 165
 Ile Pro Ala Val Arg Asn Phe Lys Val Ser Asn Thr Gln Asp Ala
 170 175 180
 Ser Val Ser Ile Val Asp Tyr Tyr Glu Pro Arg Arg Gln Ala Val
 185 190 195
 Arg Ser Tyr Asn Ser Glu Val Lys Leu Ser Ser Cys Asp Leu Cys
 200 205 210
 Ser Asp Val Gln Gly Cys Arg Pro Cys Glu Asp Gly His Ser Gly
 215 220 225
 Ser His His His Ser Ser Val Ile Phe Ile Phe Cys Phe Lys Leu
 230 235 240
 Leu Tyr Phe Met Glu Leu Trp Leu
 245

<210> 23

<211> 520

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3883861CD1

<400> 23

Met Val Ala Arg Val Gly Leu Leu Leu Arg Ala Leu Gln Leu Leu
 1 5 10 15
 Leu Trp Glu His Leu Asp Ala Gln Pro Ala Glu Arg Gly Gly Gln
 20 25 30
 Glu Leu Arg Lys Glu Ala Glu Ala Phe Leu Glu Lys Tyr Gly Tyr
 35 40 45
 Leu Asn Glu Gln Val Pro Lys Ala Pro Thr Ser Thr Arg Phe Ser
 50 55 60
 Asp Ala Ile Arg Ala Phe Gln Trp Val Ser Gln Leu Pro Val Ser
 65 70 75
 Gly Val Leu Asp Arg Ala Thr Leu Arg Gln Met Thr Arg Pro Arg
 80 85 90
 Cys Gly Val Thr Asp Thr Asn Ser Tyr Ala Ala Trp Ala Glu Arg
 95 100 105
 Ile Ser Asp Leu Phe Ala Arg His Arg Thr Lys Met Arg Arg Lys
 110 115 120
 Lys Arg Phe Ala Lys Gln Gly Asn Lys Trp Tyr Lys Gln His Leu
 125 130 135
 Ser Tyr Arg Leu Val Asn Trp Pro Glu His Leu Pro Glu Pro Ala
 140 145 150
 Val Arg Gly Ala Val Arg Ala Ala Phe Gln Leu Trp Ser Asn Val
 155 160 165
 Ser Ala Leu Glu Phe Trp Glu Ala Pro Ala Thr Gly Pro Ala Asp
 170 175 180
 Ile Arg Leu Thr Phe Phe Gln Gly Asp His Asn Asp Gly Leu Gly
 185 190 195
 Asn Ala Phe Asp Gly Pro Gly Gly Ala Leu Ala His Ala Phe Leu
 200 205 210
 Pro Arg Arg Gly Glu Ala His Phe Asp Gln Asp Glu Arg Trp Ser
 215 220 225
 Leu Ser Arg Arg Arg Gly Arg Asn Leu Phe Val Val Leu Ala His
 230 235 240
 Glu Ile Gly His Thr Leu Gly Leu Thr His Ser Pro Ala Pro Arg
 245 250 255
 Ala Leu Met Ala Pro Tyr Tyr Lys Arg Leu Gly Arg Asp Ala Leu

	260		265		270									
Leu	Ser	Trp	Asp	Asp	Val	Leu	Ala	Val	Gln	Ser	Leu	Tyr	Gly	Lys
					275				280					285
Pro	Leu	Gly	Gly	Ser	Val	Ala	Val	Gln	Leu	Pro	Gly	Lys	Leu	Phe
					280				285					300
Thr	Asp	Phe	Glu	Thr	Trp	Asp	Ser	Tyr	Ser	Pro	Gln	Gly	Arg	Arg
					290				295					315
Pro	Glu	Thr	Gln	Gly	Pro	Lys	Tyr	Cys	His	Ser	Ser	Phe	Asp	Ala
					305				310					330
Ile	Thr	Val	Asp	Arg	Gln	Gln	Gln	Leu	Tyr	Ile	Phe	Lys	Gly	Ser
					320				340					345
His	Phe	Trp	Glu	Val	Ala	Ala	Asp	Gly	Asn	Val	Ser	Glu	Pro	Arg
					335				355					360
Pro	Leu	Gln	Glu	Arg	Trp	Val	Gly	Leu	Pro	Pro	Asn	Ile	Glu	Ala
					365				370					375
Ala	Ala	Val	Ser	Leu	Asn	Asp	Gly	Asp	Phe	Tyr	Phe	Phe	Lys	Gly
					380				385					390
Gly	Arg	Cys	Trp	Arg	Phe	Arg	Gly	Pro	Lys	Pro	Val	Trp	Gly	Leu
					395				400					405
Pro	Gln	Leu	Cys	Arg	Ala	Gly	Gly	Leu	Pro	Arg	His	Pro	Asp	Ala
					410				415					420
Ala	Leu	Phe	Phe	Pro	Pro	Leu	Arg	Arg	Leu	Ile	Leu	Phe	Lys	Gly
					425				430					435
Ala	Arg	Tyr	Tyr	Val	Leu	Ala	Arg	Gly	Gly	Leu	Gln	Val	Glu	Pro
					440				445					450
Tyr	Tyr	Pro	Arg	Ser	Leu	Gln	Asp	Trp	Gly	Gly	Ile	Pro	Glu	Cys
					455				460					465
Val	Ser	Gly	Ala	Leu	Pro	Arg	Pro	Asp	Gly	Ser	Ile	Ile	Phe	Phe
					470				475					480
Arg	Asp	Asp	Arg	Tyr	Trp	Arg	Leu	Asp	Gln	Ala	Lys	Leu	Gln	Ala
					485				490					495
Thr	Thr	Ser	Gly	Arg	Trp	Ala	Thr	Glu	Leu	Pro	Trp	Met	Gly	Cys
					500				505					510
Trp	His	Ala	Asn	Ser	Gly	Ser	Ala	Leu	Phe					
					515				520					

<210> 24
<211> 622
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 4993873CD1

```

<400> 24
Met Gly Pro Ala Trp Leu Trp Leu Leu Gly Thr Gly Ile Leu Ala
      1          5          10          15
Ser Val His Cys Gln Pro Leu Leu Ala His Gly Asp Lys Ser Leu
      20          25          30
Gln Gly Pro Gln Pro Pro Arg His Gln Leu Ser Glu Pro Ala Pro
      35          40          45
Ala Tyr His Arg Ile Thr Pro Thr Ile Thr Asn Phe Ala Leu Arg
      50          55          60
Leu Tyr Lys Glu Leu Ala Ala Asp Ala Pro Gly Asn Ile Phe Phe
      65          70          75
Ser Pro Val Ser Ile Ser Thr Thr Leu Ala Leu Leu Ser Leu Cys
      80          85          90
Ala Gln Ala Asn Thr Ser Ala Leu Ile Leu Glu Gly Leu Gly Phe
      95          100         105
Asn Leu Thr Glu Thr Pro Glu Ala Asp Ile His Gln Gly Phe Arg
     11.0          115         120
Ser Leu Leu His Thr Leu Ala Leu Pro Ser Pro Lys Leu Glu Leu
     125          130         135
Lys Val Gly Asn Ser Leu Phe Leu Asp Lys Arg Leu Lys Pro Arg
     140          145         150
Gln His Tyr Leu Asp Ser Ile Lys Glu Leu Tyr Gly Ala Phe Ala
     155          160         165

```

215	220	225
Ser Lys Cys Phe Cys Glu Asn Cys Gly	Lys Lys Thr Arg Gly	Lys
230	235	240
Gln Val Leu Lys Leu Thr His Leu Pro	Gln Thr Leu Thr Ile	His
245	250	255
Leu Met Arg Phe Ser Ile Arg Asn Ser	Gln Thr Arg Lys Ile	Cys
260	265	270
His Ser Leu Tyr Phe Pro Gln Ser Leu	Asp Phe Ser Gln Ile	Leu
275	280	285
Pro Met Lys Arg Glu Ser Cys Asp Ala	Glu Glu Gln Ser Gly	Gly
290	295	300
Gln Tyr Glu Leu Phe Ala Val Ile Ala	His Val Gly Met Ala	Asp
305	310	315
Ser Gly His Tyr Cys Val Tyr Ile Arg	Asn Ala Val Asp Gly	Lys
320	325	330
Trp Phe Cys Phe Asn Asp Ser Asn Ile	Cys Leu Val Ser Trp	Glu
335	340	345
Asp Ile Gln Cys Thr Tyr Gly Asn Pro	Asn Tyr His Trp Gln	Glu
350	355	360
Thr Ala Tyr Leu Leu Val Tyr Met Lys	Met Glu Cys	
365	370	

<210> 21

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3D92341CD1

<400> 21

Met Leu Arg Gly Val Leu Gly Lys Thr Phe Arg Leu Val Gly Tyr		
1 5 10 15		
Thr Ile Gln Tyr Cys Ile Ala His Cys Ala Phe Glu Tyr Val		
20 25 30		
Gly Gly Val Val Met Val Pro Met Gly His Val Trp Leu Glu Gly		
35 40 45		
Asp Asn Leu Gln Asn Ser Thr Asp Ser Arg Cys Tyr Gly Pro Ile		
50 55 60		
Pro Tyr Gly Leu Ile Arg Gly Arg Ile Phe Phe Lys Ile Trp Leu		
65 70 75		
Leu Ser Asp Phe Gly Phe Leu Arg Ala Ser Pro Asn Gly His Arg		
80 85 90		
Phe Ser Asp Asp		

<210> 22

<211> 248

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3E58034CD1

<400> 22

Met Asn Thr Glu Arg Thr Asn Ile Gln Val Thr Val Thr Gly Pro		
1 5 10 15		
Ser Ser Pro Ser Pro Val Lys Phe Leu Ile Asp Thr His Asn Arg		
20 25 30		
Leu Leu Leu Gln Thr Ala Glu Leu Ala Val Val Gln Pro Thr Ala		
35 40 45		
Val Asn Ile Ser Ala Asn Gly Phe Gly Phe Ala Ile Cys Gln Leu		
50 55 60		
Asn Val Val Tyr Asn Val Lys Ala Ser Gly Ser Ser Arg Arg Arg		
65 70 75		
Arg Ser Ile Gln Asn Gln Glu Ala Phe Asp Leu Asp Val Ala Val		
80 85 90		

His Val Gly Leu Met Leu Lys Glu Asn His Cys Leu Val Ala Leu
 200 205 210
 His Met Cys Lys His Asp Ile Lys Asn Ser Gly Ile Gln Gln Leu
 215 220 225
 Cys Asp Ala Leu Tyr Leu Asn Ser Ser Leu Arg Tyr Leu Asp Val
 230 235 240
 Ser Cys Asn Lys Ile Thr His Asp Gly Met Val Tyr Leu Ala Asp
 245 250 255
 Val Leu Lys Ser Asn Thr Thr Leu Glu Val Ile Asp Leu Ser Phe
 260 265 270
 Asn Arg Ile Glu Asn Ala Gly Ala Asn Tyr Leu Ser Glu Thr Leu
 275 280 285
 Thr Ser His Asn Arg Ser Leu Lys Ala Leu Ser Val Val Ser Asn
 290 295 300
 Asn Ile Glu Gly Glu Gly Leu Val Ala Leu Ser Gln Ser Met Lys
 305 310 315
 Thr Asn Leu Thr Phe Ser His Ile Tyr Ile Trp Gly Asn Lys Phe
 320 325 330
 Asp Cys Ala Thr Cys Ile Ala Tyr Ser Asp Leu Ile Gln Met Gly
 335 340 345
 Cys Leu Lys Pro Asp Asn Thr Asp Val Glu Pro Phe Val Val Asp
 350 355 360
 Gly Arg Val Tyr Leu Ala Glu Val Ser Asn Gly Leu Lys Lys His
 365 370 375
 Tyr Tyr Trp Thr Ser Thr Tyr Gly Glu Ser Tyr Asp His Ser Ser
 380 385 390
 Asn Ala Gly Phe Ala Leu Val Pro Val Gly Gln Gln Pro
 395 400

<210> 20
 <211> 372
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2754960CD1

<400> 20
 Met Ser Lys Ala Phe Gly Leu Leu Arg Gln Ile Cys Gln Ser Ile
 1 5 10 15
 Leu Ala Glu Ser Ser Gln Ser Pro Ala Asp Leu Glu Glu Lys Lys
 20 25 30
 Glu Glu Asp Ser Asn Met Lys Arg Glu Gln Pro Arg Glu Arg Pro
 35 40 45
 Arg Ala Trp Asp Tyr Pro His Cys Leu Val Gly Leu His Asn Ile
 50 55 60
 Gly Gln Thr Cys Cys Leu Asn Ser Leu Ile Gln Val Phe Val Met
 65 70 75
 Asn Val Asp Phe Thr Arg Ile Leu Lys Arg Ile Thr Val Pro Arg
 80 85 90
 Gly Ala Asp Glu Gln Arg Arg Ser Val Pro Phe Gln Met Leu Leu
 95 100 105
 Leu Leu Glu Lys Met Gln Asp Ser Arg Gln Lys Ala Val Arg Pro
 110 115 120
 Leu Glu Leu Ala Tyr Cys Leu Gln Lys Cys Asn Val Pro Leu Phe
 125 130 135
 Val Gln His Asp Ala Ala Gln Leu Tyr Leu Lys Leu Trp Asn Leu
 140 145 150
 Ile Lys Asp Gln Ile Thr Asp Val His Leu Val Glu Arg Leu Gln
 155 160 165
 Ala Leu Tyr Thr Ile Arg Val Lys Asp Ser Leu Ile Cys Val Asp
 170 175 180
 Cys Ala Met Gln Ser Ser Arg Asn Ser Ser Met Leu Thr Leu Pro
 185 190 195
 Leu Ser Leu Phe Asp Val Asp Ser Lys Pro Leu Lys Thr Leu Glu
 200 205 210
 Asp Ala Leu His Cys Phe Phe Gln Pro Arg Glu Leu Ser Ser Lys

<220>

<221> misc_feature

<223> Incyte ID No: 411349CD1

<400> 14

Met	Ala	Ser	Met	Gln	Lys	Arg	Leu	Gln	Lys	Glu	Leu	Leu	Ala	Leu
1				5					10					15
Gln	Asn	Asp	Pro	Pro	Pro	Gly	Met	Thr	Leu	Asn	Glu	Lys	Ser	Val
							20			25				30
Gln	Asn	Ser	Ile	Thr	Gln	Trp	Ile	Val	Asp	Met	Glu	Cly	Ala	Pro
			35						40					45
Cly	Thr	Leu	Tyr	Glu	Gly	Glu	Lys	Phe	Gln	Ileu	Leu	Phe	Lys	Phe
			50						55					60
Ser	Ser	Arg	Tyr	Pro	Phe	Asp	Ser	Pro	Gln	Val	Met	Phe	Thr	Cly
			65						70					75
Glu	Asn	Ile	Pro	Val	His	Pro	His	Val	Tyr	Ser	Aen	Gly	His	Ile
			80						85					90
Cys	Leu	Ser	Ile	Leu	Thr	Glu	Asp	Trp	Ser	Pro	Ala	Leu	Ser	Val
			95						100					105
Gln	Ser	Val	Cys	Leu	Ser	Ile	Ile	Ser	Met	Leu	Ser	Ser	Cys	Lys
			110						115					120
Glu	Lys	Arg	Arg	Pro	Pro	Asp	Asn	Ser	Phe	Tyr	Val	Arg	Thr	Cys
			125						130					135
Asn	Lys	Asn	Pro	Lys	Lys	Thr	Lys	Trp	Trp	Tyr	His	Asp	Asp	Thr
			140						145					150

Cys

<210> 15

<211> 362

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1256390CD1

<400> 15

Met	Leu	Val	Pro	Gly	Gly	Leu	Gly	Tyr	Asp	Arg	Ser	Leu	Ala	Gln
1		5							10					15
His	Arg	Gln	Glu	Ile	Val	Asp	Lys	Ser	Val	Ser	Pro	Trp	Ser	Leu
				20					25					30
Glu	Thr	Tyr	Ser	Tyr	Asn	Ile	Tyr	His	Pro	Met	Cly	Glu	Ile	Tyr
			35					40						45
Glu	Trp	Met	Arg	Glu	Ile	Ser	Glu	Lys	Tyr	Lys	Glu	Val	Val	Thr
			50						55					60
Gln	His	Phe	Leu	Gly	Val	Thr	Glu	Thr	His	Pro	Met	Tyr	Tyr	
			65					70						75
Leu	Lys	Ile	Ser	Gln	Pro	Ser	Gly	Asn	Pro	Lys	Lys	Ile	Ile	Trp
			80					85						90
Met	Asp	Cys	Gly	Ile	His	Ala	Arg	Glu	Trp	Ile	Ala	Pro	Ala	Phe
			95					100						105
Cys	Gln	Trp	Phe	Val	Lys	Glu	Ile	Leu	Gln	Asn	His	Lys	Asp	Asn
			110					115						120
Ser	Ser	Ile	Arg	Lys	Leu	Leu	Arg	Asn	Leu	Asp	Phe	Tyr	Val	Leu
			125					130						135
Pro	Val	Leu	Asn	Ile	Asp	Gly	Tyr	Ile	Tyr	Thr	Trp	Thr	Thr	Asp
			140					145						150
Arg	Leu	Trp	Arg	Lys	Ser	Arg	Ser	Pro	His	Asn	Asn	Gly	Thr	Cys
			155					160						165
Phe	Gly	Thr	Asp	Leu	Asn	Arg	Asn	Phe	Asn	Ala	Ser	Trp	Cys	Ser
			170					175						180
Ile	Gly	Ala	Ser	Arg	Asn	Cys	Gln	Asp	Gln	Thr	Phe	Cys	Gly	Thr
			185					190						195
Gly	Pro	Val	Ser	Glu	Pro	Glu	Thr	Lys	Ala	Val	Ala	Ser	Phe	Ile
			200					205						210
Glu	Ser	Lys	Lys	Asp	Asp	Ile	Leu	Cys	Phe	Leu	Thr	Met	His	Ser
			215					220						225

Leu Leu Phe Tyr Glu Arg Val Ileu Ser Arg Met Gln His Gln Ser
500 505 510

Glu Cys Lys Ser Glu Glu
515

<210> 13
<211> 346
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No.: 5853753CD1

Lv 5

<210> 14
<211> 151
<212> PRT
<213> *Homo sapiens*

Tyr Gly Gln Leu Ile Leu Thr Pro Tyr Gly Tyr Thr Lys Asn Lys
 230 235 240
 Ser Ser Asn His Pro Glu Met Ile Gln Val Gly Gln Lys Ala Ala
 245 250 255
 Asn Ala Leu Lys Ala Lys Tyr Gly Thr Asn Tyr Arg Val Gly Ser
 260 265 270
 Ser Ala Asp Ile Leu Tyr Ala Ser Ser Gly Ser Ser Arg Asp Trp
 275 280 285
 Ala Arg Asp Ile Gly Ile Pro Phe Ser Tyr Thr Phe Glu Leu Arg
 290 295 300
 Asp Ser Gly Thr Tyr Gly Phe Val Leu Pro Glu Ala Gln Ile Gln
 305 310 315
 Pro Thr Cys Glu Glu Thr Met Glu Ala Val Leu Ser Val Leu Asp
 320 325 330
 Asp Val Tyr Ala Lys His Trp His Ser Asp Ser Ala Gly Arg Val
 335 340 345
 Thr Ser Ala Thr Met Leu Leu Gly Leu Leu Val Ser Cys Met Ser
 350 355 360

Ile Leu

<210> 16
<211> 123
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1786774CD1

<400> 16
Met Ser Gly Glu Glu Leu Ser Glu Ser Thr Pro Glu Pro Gln Lys
 1 5 10 15
Glu Ile Ser Glu Ser Leu Ser Val Thr Arg Asp Gln Asp Glu Asp
 20 25 30
Asp Lys Ala Pro Glu Pro Thr Trp His Asp Asp Leu Pro Ala Thr
 35 40 45
Thr Ser Ser Glu Ala Thr Thr Pro Arg Pro Leu Leu Ser Thr
 50 55 60
Pro Val Asp Gly Ala Glu Asp Pro Arg Cys Leu Glu Ala Leu Lys
 65 70 75
Pro Gly Asn Cys Gly Glu Tyr Val Val Arg Trp Tyr Tyr Asp Lys
 80 85 90
Gln Val Asn Ser Cys Ala Arg Phe Trp Phe Ser Gly Cys Asn Gly
 95 100 105
Ser Gly Asn Arg Phe Asn Ser Glu Lys Glu Cys Gln Glu Thr Cys
 110 115 120

Ile Gln Cys

<210> 17
<211> 983
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1911808CD1

<400> 17
Met Ala Pro Arg Leu Gln Leu Glu Lys Ala Ala Trp Arg Trp Ala
 1 5 10 15
Glu Thr Val Arg Pro Glu Glu Val Ser Gln Gln His Ile Glu Thr
 20 25 30
Ala Tyr Arg Ile Trp Leu Glu Pro Cys Ile Arg Gly Val Cys Arg
 35 40 45
Arg Asn Cys Lys Cys Asn Pro Asn Cys Leu Val Gly Ile Gly Glu
 50 55 60
His Ile Trp Leu Cys Gln Ile Asp Glu Asn Ser Phe His Asn Ile

Tyr Gly Gln Leu Ile Leu Thr Pro Tyr Gly Tyr Thr Lys Asn Lys
 230 235 240
 Ser Ser Asn His Pro Glu Met Ile Gln Val Gly Gln Lys Ala Ala
 245 250 255
 Asn Ala Leu Lys Ala Lys Tyr Gly Thr Asn Tyr Arg Val Gly Ser
 260 265 270
 Ser Ala Asp Ile Leu Tyr Ala Ser Ser Gly Ser Ser Arg Asp Trp
 275 280 285
 Ala Arg Asp Ile Gly Ile Pro Phe Ser Tyr Thr Phe Glu Leu Arg
 290 295 300
 Asp Ser Gly Thr Tyr Gly Phe Val Leu Pro Glu Ala Gln Ile Gln
 305 310 315
 Pro Thr Cys Glu Glu Thr Met Glu Ala Val Leu Ser Val Leu Asp
 320 325 330
 Asp Val Tyr Ala Lys His Trp His Ser Asp Ser Ala Gly Arg Val
 335 340 345
 Thr Ser Ala Thr Met Leu Leu Gly Leu Leu Val Ser Cys Met Ser
 350 355 360

Ile Ile

<210> 16
 <211> 123
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1786774CD1

<400> 16
 Met Ser Gly Glu Glu Leu Ser Glu Ser Thr Pro Glu Pro Gln Lys
 1 5 10 15
 Glu Ile Ser Glu Ser Leu Ser Val Thr Arg Asp Gln Asp Glu Asp
 20 25 30
 Asp Lys Ala Pro Glu Pro Thr Trp Ala Asp Asp Leu Pro Ala Thr
 35 40 45
 Thr Ser Ser Glu Ala Thr Thr Pro Arg Pro Leu Leu Ser Thr
 50 55 60
 Pro Val Asp Gly Ala Glu Asp Pro Arg Cys Leu Glu Ala Leu Lys
 65 70 75
 Pro Gly Asn Cys Gly Glu Tyr Val Val Arg Trp Tyr Tyr Asp Lys
 80 85 90
 Gln Val Asn Ser Cys Ala Arg Phe Trp Phe Ser Gly Cys Asn Gly
 95 100 105
 Ser Gly Asn Arg Phe Asn Ser Glu Lys Glu Cys Gln Glu Thr Cys
 110 115 120

Ile Gln Cys

<210> 17
 <211> 983
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1911808CD1

<400> 17
 Met Ala Pro Arg Leu Gln Leu Glu Lys Ala Ala Trp Arg Trp Ala
 1 5 10 15
 Glu Thr Val Arg Pro Glu Glu Val Ser Gln Gln His Ile Glu Thr
 20 25 30
 Ala Tyr Arg Ile Trp Leu Gln Pro Cys Ile Arg Gly Val Cys Arg
 35 40 45
 Arg Asn Cys Lys Gly Asn Pro Asn Cys Leu Val Gly Ile Gly Glu
 50 55 60
 His Ile Trp Leu Cys Gln Ile Asp Glu Asn Ser Phe His Asn Ile

1	5	10	15											
Pro	Gly	His	Pro	Arg	Lys	Arg	Ala	Gly	Arg	Asn	Glu	Pro	Leu	Lys
					20				25				30	
Lys	Clu	Arg	Leu	Lys	Trp	Lys	Ser	Asp	Tyr	Pro	Met	Thr	Asp	Gly
					35				40				45	
Gln	Leu	Arg	Ser	Lys	Arg	Asp	Glu	Phe	Trp	Asp	Thr	Ala	Pro	Ala
					50				55				60	
Phe	Glu	Gly	Arg	Lys	Clu	Ile	Trp	Asp	Ala	Leu	Lys	Ala	Ala	Ala
					65				70				75	
Tyr	Ala	Ala	Glu	Ala	Asn	Asp	His	Glu	Leu	Ala	Gln	Ala	Ile	Leu
					80				85				90	
Asp	Gly	Ala	Ser	Ile	Thr	Leu	Pro	His	Gly	Thr	Leu	Cys	Glu	Cys
					95				100				105	
Tyr	Asp	Glu	Leu	Gly	Asn	Arg	Tyr	Gln	Leu	Pro	Ile	Tyr	Cys	Leu
					110				115				120	
Ser	Pro	Pro	Val	Asn	Leu	Leu	Leu	Glu	His	Thr	Gly	Glu	Glu	Ser
					125				130				135	
Leu	Glu	Pro	Pro	Glu	Pro	Pro	Pro	Ser	Val	Arg	Arg	Glu	Phe	Pro
					140				145				150	
Leu	Lys	Val	Arg	Leu	Ser	Thr	Gly	Lys	Asp	Val	Arg	Leu	Ser	Ala
					155				160				165	
Ser	Leu	Pro	Asp	Thr	Val	Gly	Gln	Leu	Lys	Arg	Gln	Leu	His	Ala
					170				175				180	
Gln	Glu	Gly	Ile	Glu	Pro	Ser	Trp	Gln	Arg	Trp	Phe	Phe	Ser	Gly
					185				190				195	
Lys	Leu	Leu	Thr	Asp	Arg	Thr	Arg	Leu	Gln	Glu	Thr	Lys	Ile	Gln
					200				205				210	
Lys	Asp	Phe	Val	Ile	Gln	Val	Ile	Ile	Asn	Gln	Pro	Pro	Pro	Pro
					215				220				225	

Gln Asp

<210> 19

<211> 403

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2323917CD1

<400> 19

Met	Glu	Lys	Ser	Gln	Lys	Ile	Asn	Pro	Phe	Ile	Leu	His	Ile	Leu
1	5								10				15	
Gln	Glu	Val	Asp	Glu	Glu	Ile	Lys	Gly	Leu	Ala	Ala	Gly	Ile	
						20			25				30	
Thr	Leu	Asn	Ile	Ala	Gly	Asn	Asn	Arg	Leu	Val	Pro	Val	Clu	Arg
					35				40				45	
Val	Thr	Gly	Glu	Asp	Phe	Trp	Ile	Leu	Ser	Lys	Ile	Leu	Lys	Asn
					50				55				60	
Cys	Leu	Tyr	Ile	Asn	Gly	Leu	Asp	Val	Gly	Tyr	Asn	Leu	Leu	Cys
					65				70				75	
Asp	Val	Gly	Ala	Tyr	Tyr	Ala	Ala	Lys	Leu	Gln	Lys	Gln	Leu	
					80				85				90	
Asn	Leu	Ile	Tyr	Leu	Asn	Leu	Met	Phe	Asn	Asp	Ile	Gly	Pro	Glu
					95				100				105	
Gly	Gly	Glu	Leu	Ile	Ala	Lys	Val	Leu	His	Lys	Asn	Arg	Thr	Leu
					110				115				120	
Lys	Tyr	Leu	Arg	Met	Thr	Gly	Asn	Lys	Ile	Glu	Asn	Lys	Gly	
					125				130				135	
Met	Phe	Phe	Ala	Ala	Met	Leu	Gln	Ile	Asn	Ser	Ser	Leu	Glu	Lys
					140				145				150	
Leu	Asp	Leu	Gly	Asp	Cys	Asp	Leu	Gly	Met	Gln	Ser	Val	Ile	Ala
					155				160				165	
Phe	Ala	Thr	Val	Leu	Thr	Gln	Asn	Gln	Ala	Ile	Lys	Ala	Ile	Asn
					170				175				180	
Leu	Asn	Arg	Pro	Ile	Leu	Tyr	Gly	Glu	Gln	Glu	Clu	Ser	Thr	Val
					185				190				195	

Leu Asn Glu Asp Tyr Lys Thr Val Asn Asn Leu Leu Lys Ala Ala
 575 580 585
 Val Lys Gly Ser Asp Gly Phe Trp Val Gly Lys Ser Ser Leu Arg
 590 595 600
 Ser Trp Arg Cln Leu Ala Leu Glu Gln Leu Asp Glu Gln Asp Gly
 605 610 615
 Asp Ala Glu Gln Ser Asn Gly Lys Met Asn Gly Ser Thr Leu Asn
 620 625 630
 Lys Asp Glu Ser Lys Glu Glu Arg Lys Glu Glu Glu Leu Asn
 635 640 645
 Phe Asn Glu Asp Ile Leu Cys Pro His Gly Glu Leu Cys Ile Ser
 650 655 660
 Glu Asn Glu Arg Arg Leu Val Ser Lys Glu Ala Trp Ser Lys Leu
 665 670 675
 Gln Gln Tyr Phe Pro Lys Ala Pro Glu Phe Pro Ser Tyr Lys Glu
 680 685 690
 Cys Cys Ser Gln Cys Lys Ile Leu Glu Arg Glu Cys Glu Glu Asn
 695 700 705
 Glu Ala Leu His Lys Met Ile Ala Asn Cln Gln Lys Thr Ser Leu
 710 715 720
 Pro Asn Leu Phe Gln Asp Lys Asn Arg Pro Cys Leu Ser Asn Trp
 725 730 735
 Pro Glu Asp Thr Asp Val Leu Tyr Ile Val Ser Gln Phe Phe Val
 740 745 750
 Glu Glu Trp Arg Lys Phe Val Arg Lys Pro Thr Arg Cys Ser Pro
 755 760 765
 Val Ser Ser Val Gly Asn Ser Ala Leu Leu Cys Pro His Gly Gly
 770 775 780
 Leu Met Phe Thr Phe Ala Ser Met Thr Lys Glu Asp Ser Lys Leu
 785 790 795
 Ile Ala Leu Ile Trp Pro Ser Glu Trp Gln Met Ile Gln Lys Leu
 800 805 810
 Phe Val Val Asp His Val Ile Lys Ile Thr Arg Ile Glu Val Cys
 815 820 825
 Asp Val Asn Pro Ser Glu Thr Gln Tyr Ile Ser Glu Pro Lys Leu
 830 835 840
 Cys Pro Glu Cys Arg Glu Gly Leu Leu Cys Gln Gln Arg Asp
 845 850 855
 Leu Arg Glu Tyr Thr Gln Ala Thr Ile Tyr Val His Lys Val Val
 860 865 870
 Asp Asn Lys Lys Val Met Lys Asp Ser Ala Pro Glu Leu Asn Val
 875 880 885
 Ser Ser Ser Glu Thr Glu Glu Asp Lys Glu Glu Ala Lys Pro Asp
 890 895 900
 Gly Glu Lys Asp Pro Asp Phe Asn Cln Ile Met His Ala Phe Ser
 905 910 915
 Val Ala Pro Phe Asp Cln Asn Leu Ser Ile Asp Gly Lys Ile Leu
 920 925 930
 Ser Asp Asp Cys Ala Thr Leu Gly Thr Leu Gly Val Ile Pro Glu
 935 940 945
 Ser Val Ile Leu Leu Lys Ala Asp Glu Pro Ile Ala Asp Tyr Ala
 950 955 960
 Ala Met Asp Asp Val Met Gln Val Cys Met Pro Glu Glu Gly Phe
 965 970 975
 Lys Gly Thr Gly Leu Leu Gly His
 980

<210> 18

<211> 227

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1973875CD1

<400> 18

Met Cys Asn Cys Val Cys Arg Cln Arg Arg Glu Arg Pro Ala Ala

<210> 54
<211> 2385
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 55B3922CB1

catacgggt	ccagttcage	atggacagtc	ggactctggg	ggcahyttag	aaaaaccajca	720
gtgggatgja	cgccgttattt	cotgcacatt	cagaaccaga	aactccagt	ctgaacctcc	780
tgcggagcc	ccagggtggcc	cgttccatc	gectgtgtcc	ccagacctgg	ctccaggggag	840
gegegccttg	cctccgggca	gagatcttgg	cctggcccaat	ctcagacccc	aaalgaacct	900
tccttggagge	ccttcgcgtcg	ggatctcttg	acccttctaga	ctttaeagat	cacaattaca	960
tttgtatgg	ggatgtatgt	ggcagggtat	aaagacalgt	ccccacatc	acccgcattt	1020
acagcatgg	gaagagctac	cagggtctga	agctgtatgt	gtggaaatgt	tggacaazgc	1080
cggggggatc	tgatgtgggg	gagcctgtgg	tgccatctgt	tggtggatgt	atggggggcc	1140
aggccctggg	goggggagggt	cttctgtgtc	tgatgtgggt	cttgtgtccat	gagtccctgc	1200
gagggaacc	acygggtgacc	cggtgtctct	ctyagatgtcg	catcccccgt	ctgccttcca	1260
ttaaccctga	tggcttatgt	atgccttacc	accgggggttc	agagctgggt	ggctggggccg	1320
agggccgtg	gaacaacccgt	egcatactatc	tttccatcata	ttttgtgtac	ctcaacacac	1380
acttgtggj	aycacaggac	gatgggaaagg	tgccccacat	ctgtccccaaac	catcaactgc	1440
cattgcceac	ttactacacc	ctggccaaatg	ccacccgtgtc	tcctgtggatc	ggggccatgt	1500
trauttgat	ggggggggatc	ccctlltgc	taatgtgcac	ctccacacggg	ggtgagctcg	1560
tggtgtctca	ccccatcgac	ltgacttgc	ccccgtgggc	tgccccgggg	cttacgttcc	1620
carccatgt	tgcgttgttt	egcttggatca	gtactgttata	tgatgtggatgt	aatctggcca	1680
tgcaggacac	cacggccgg	ccctggccaca	ggccaggact	ctccgtgtca	ggcaacatca	1740
tcacacgggt	tgcactgtcc	acggulecccc	ggayatgtca	tgacttggatc	taatccataca	1800
ccactgttt	tgagggtca	gtggagctgt	cctgtgacaa	gttccctcac	gagaatgtaa	1860
tgcccccajya	gtggggagaac	aaaaaaatgt	ccctcttcc	cttactgtgt	caatgtggca	1920
ttggccatgt	agggtgtgt	ggggacaagg	acacggagct	tgggatgtct	gacgtgttca	1980
ttgcgtgtgg	tgggattaaac	catgacgtga	ccacggcgty	ggggggggat	tatgggtgt	2040
tgtgtacccc	agggggtactc	atggtgactg	ccatgtccga	gggttccat	teatgtcac	2100
ggaaactgtcg	ggtcacccct	gaagaggggc	ccttccccgt	caetttgtt	ctccacccaa	2160
ctcccaaaaa	ggayatgtgc	gagctgtgtt	catgtggggcc	caaggtggcc	coggacccct	2220
ggaggcgcet	ggggggggta	aggggacaca	aggattgtata	cctgggggtt	bagagcccta	2280
gggcagggct	gaccgtgtca	gtggggaaatg	ggggggatgt	agagggtttgg	aaaaaagtgt	2340
gaaaagggtgc	tcattaaagg	tacccgggcac	cttaaaaaaa	aaaaaa		2385