

FCC PART 22H, PART 24E FCC PART 27 MEASUREMENT AND TEST REPORT

For

Bluesky Samoa

Maluafou Headquarters, Apia, Samoa

FCC ID: 2AKGQBSS45

Report Type: Product Type: Original Report Mobile Phone

Report Number: RDG180914003-00C

Report Date: 2018-09-29

Reviewed By: Jerry Zhang EMC Manager

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

Jerry Zhang

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
SUPPORT EQUIPMENT LIST AND DETAILS	6
CONFIGURATION OF TEST SETUP	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC §1.1310 & §2.1093- RF EXPOSURE	
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) & § 27.50 - RF OUTPUT POWER	11
Applicable Standard	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	17
TEST DATA	17
FCC §2.1049, §22.917, §22.905 & §24.238 & §27.53- OCCUPIED BANDWIDTH	25
APPLICABLE STANDARD	
TEST PROCEDURE	25
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A) & §27.53 - SPURIOUS EMISSIONS AT ANTENNA T	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §2.1053, §22.917 & §24.238 & §27.53 - SPURIOUS RADIATED EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §22.917(A) & §24.238(A) & §27.53 - BAND EDGES	
APPLICABLE STANDARD	
TEST PROCEDURE	56
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	57

Bay Area Compliance Laboratories Corp. (Dongguan)

FCC §2.1055, §22.355 & §24.235 & §27.54 - FREQUENCY STABILITY	83
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	Mobile Phone	
	EUT Model:	Super BSS45	
	FCC ID:	2AKGQBSS45	
Rated In	put Voltage:	3.7VDC from battery and 5VDC from adapter	
	Model:	BSS45	
Adapter Information	Input:	AC 100-240V, 50/60Hz, 200mA	
	Output:	DC 5.0V, 1000mA	
The Highest Operating	Frequency:	2480MHz	
External Dimension:		135mm(L)*68mm(W)*12mm(H)	
Serial Number:		180914003	
EUT Re	ceived Date:	2018-09-14	

Objective

This report is prepared on behalf of *Bluesky Samoa* in accordance with: Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules. Part 2, Part 27 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AKGQBSS45. FCC Part 15C DSS submissions with FCC ID: 2AKGQBSS45.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - Personal Communication Services

Part 27 – Miscellaneous wireless communications services

Applicable Standards: TIA/EIA 603-D-2010.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Unwanted Emissions, radiated	30MHz ~ 1GHz:5.85 dB 1G~26.5GHz: 5.23 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1℃
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D 2010.

The test items were performed with the EUT operating at testing mode. The device support GSM/GPRS/EDGE 850 band, WCDMA/HSUPA/HPDPA/HSPA+ band 5, LTE band 2, 12. Other bands were shielded by software.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universial Radio Communication Tester	CMU200	109038
R&S	Wideband Radio Communication Tester	CMW500	147473
N/A	ANTENNA	N/A	N/A

Configuration of Test Setup

Block Diagram of Test Setup

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
\$2.1046; \$ 22.913 (a); \$ 24.232 (c); \$27.50	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
\$ 2.1049; \$ 22.905 \$ 22.917; \$ 24.238; \$27.53	Occupied Bandwidth	Compliance
§ 2.1051, § 22.917 (a); § 24.238 (a); §27.53	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 22.917 (a); § 24.238 (a); §27.53	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a); §27.53	Out of band emission, Band Edge	Compliance
\$ 2.1055 \$ 22.355; \$ 24.235; \$27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG180914003-20.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC \S 2.1047(d), Part 22H & 24E, Part 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Page 10 of 88

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) & § 27.50 - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to §27.50

- (b)(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.
- (c) (10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.
- (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.
- (h),(2) Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

Test Procedure

GSM/GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 > 27 dBm for EGPRS 850 > 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

Channel Type > Off P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal on to turn on the signal and change settings

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

WCDMA General Settings	Loopback Mode	Test Mode 1		
	Rel99 RMC	12.2kbps RMC		
	Power Control Algorithm	Algorithm2		
	βc / βd	8/15		

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA	
	Subset	1	2	3	4	
	Loopback Mode			Test Mode 1		
	Rel99 RMC			12.2kbps RM	C	
	HSDPA FRC			H-Set1		
WCDMA	Power Control Algorithm					
WCDMA General	βε	2/15	12/15	15/15	15/15	
Settings	βd	15/15	15/15	8/15	4/15	
Settings	βd (SF)	64				
	βc/ βd	2/15	12/15	15/8	15/4	
	βhs	4/15	24/15	30/15	30/15	
	MPR(dB)	0	0	0.5	0.5	
	DACK			8		
	DNAK			8		
HSDPA	DCQI			8		
Specific	Ack-Nack repetition			3		
Settings	factor			<u> </u>		
Settings	CQI Feedback			4ms		
	CQI Repetition Factor			2		
	Ahs=βhs/ βc			30/15		

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA			
	Subset	1	2	3	4	5			
	Loopback Mode	Test Mode 1							
	Rel99 RMC			12.2kbps RMC	7				
	HSDPA FRC			H-Set1					
	HSUPA Test		H	SUPA Loopba	ck				
WCDM	Power Control Algorithm	Algorithm2							
WCDMA									
General	βс	11/15 6/15 15/15 2/15 1							
Settings	βd	15/15	15/15	9/15	15/15	0			
	βес	209/225	12/15	30/15	2/15	5/15			
	βc/ βd	11/15	6/15	15/9	2/15	-			
	βhs	22/15	12/15	30/15	4/15	5/15			
	CM(dB)	1.0	3.0	2.0	3.0	1.0			
	MPR(dB)	0	2	1	2	0			
	DACK			8					
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack repetition	3							
Settings	factor								
Settings	CQI Feedback	4ms							
	CQI Repetition Factor			2					
	Ahs=βhs/ βc			30/15					
	DE-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI	75	67	92	71	81			
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9			
HSUPA Specific Settings	Reference E_FCls	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	TI PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	E-TFCI 11 E-TFCI PO4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E E-TFCI PO 4 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO23 E-TFCI PO26 E-TFCI PO26 E-TFCI PO27				

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Sub- test	β _c (Note3)	β _d	βнs (Note1)	β_{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	(Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
Note 1 Note 2 Note 3 Note 4 Note 5	CM = DPD β _{ed} c All th	= 3.5 a CH is an not e sub CH ca	and the MF not config t be set dii -tests requategory 7.	PR is bas jured, the rectly; it is uire the U E-DCH T	with $\beta_{hs} = 30/15$ ed on the relative refore the β_c is seen to transmit 2S of the seen to 2ms allocated. The U	e CM difference, et to 1 and β₄ = Grant Value. F2+2SF4 16QAI TTI and E-DCH	0 by defau M EDCH a table index	It. nd they a c = 2. To s	pply for U	nese E-D	

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value		
Nominal	Avg. Inf. Bit Rate	kbps	60		
Inter-TTI	Distance	TTľs	1		
Number	of HARQ Processes	Proces	6		
		ses	0		
Informati	on Bit Payload (N_{INF})	Bits	120		
Number	Code Blocks	Blocks	1		
Binary Cl	hannel Bits Per TTI	Bits	960		
Total Ava	ailable SML's in UE	SML's	19200		
Number (of SML's per HARQ Proc.	SML's	3200		
Coding F	Rate		0.15		
Number (of Physical Channel Codes	Codes	1		
Modulatio			QPSK		
Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table.					
Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.					

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)							
	1.4 MHz								
QPSK	>5	>4	>8	> 12	> 16	> 18	≤1		
16 QAM	≤ 5	≤ 4	≤8	≤ 12	≤ 16	≤ 18	≤ 1		
16 OAM	> 5	5.4	>8	> 12	> 16	> 18	< 2		

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Signalling value	(sub-clause)		bandwidth (MHz)	Blocks (N _{RS})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
			5	>6	≤1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤1
			15	>8	≤1
			20	>10	≤ 1
NO 04	NS_04 6.6.2.2.2	41	5	>6	s 1
NS_04		41	10, 15, 20	See Table 6.2.4-4	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
 NS_32					

Radiated method:

ANSI/TIA-603-D section 2.2.17

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05
НР	Amplifier	8447D	2727A05902	2018-09-05	2019-09-05
Sinoscite	Band-stop filter	BSF824-862MS- 1438-001	1438001	2018-06-16	2019-06-16
R&S	Universal Radio Communication Tester	CMU200	110 822	2017-12-14	2018-12-14
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2018-09-05	2019-09-05
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2018-09-05	2019-09-05

25-S-42 BSF824-862MS-

1438-001

CMU200

E8247C

1438001

106 891

MY43321350

2018-06-16

2017-12-14

2017-12-11

2019-06-16

2018-12-14

2018-12-11

Test Data

Sinoscite

R&S

Agilent

Environmental Conditions

Temperature:	26.8~27.3 °C
Relative Humidity:	41 %
ATM Pressure:	100.4~100.6 kPa

Band-stop filter

Universal Radio

Communication

Tester Signal Generator

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

^{*} The testing was performed by Blake Yang & Vern Shen from 2018-09-26 to 2018-09-27 .

Conducted Output Power

Cellular Band

Report No.: RDG180914003-00C

			Conducted Peak Output Power (dBm)									
Band	Channel No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot		
	128	30.30	30.25	29.21	27.52	26.73	25.86	23.88	21.83	20.54		
Cellular	190	30.00	29.97	28.88	27.18	26.42	26.05	23.82	21.78	20.51		
	251	30.40	30.33	29.26	27.62	26.79	26.03	23.85	21.74	20.56		

WCDMA Band V

	3GPP	Low C	hannel	Middle (Channel	High C	hannel
Mode	Sub Test	Ave. Power (dBm)	PAR (dB)	Ave. Power (dBm)	PAR (dB)	Ave. Power (dBm)	PAR (dB)
Rel 99	1	21.35	2.04	21.55	2.68	21.61	2.12
	1	21.29	3.24	21.49	3.84	21.56	3.04
HSDPA	2	21.26	3.21	21.44	3.82	21.52	3.01
пзрга	3	21.18	3.29	21.23	3.89	21.33	2.99
	4	21.11	3.25	21.19	3.76	21.26	3.07
	1	20.98	3.28	21.19	3.08	21.27	2.60
	2	20.86	3.22	21.03	3.14	21.12	2.66
HSUPA	3	20.77	3.31	20.96	3.05	21.03	2.54
	4	20.65	3.26	20.85	3.11	20.93	2.63
	5	20.54	3.34	20.77	3.06	20.82	2.43
HSPA+ (16QAM)	1	20.74	2.14	20.11	2.15	20.71	2.22

LTE Band 2

ir .		LTE I	Danu Z		
Channel Bandwidth	Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1#0	22.36	22.49	22.63
		1#3	22.51	22.62	22.41
	ODGIZ	1#5	22.37	22.5	22.15
	QPSK	3#0	22.18	22.51	22.43
		3#3	22.15	22.45	22.21
1.0.01		6#0	21.46	21.58	22.05
1.4MHz		1#0	21.13	21.52	21.53
		1#3	21.27	21.68	21.62
	160 AM	#5	21.12	21.49	21.58
	16QAM	3#0	20.46	22.45	22.36
		3#3	22.26	22.45	22.15
		6#0	20.34	20.49	20.66
		1#0	22.59	22.55	22.86
		1#8	22.56	22.55	22.61
	ODCK	1#14	22.59	22.56	22.04
	QPSK	6#0	21.61	21.5	21.86
		6#9	21.6	21.53	21.99
3MHz		15#0	21.41	21.51	21.62
3MHZ	16QAM	1#0	21.76	21.65	21.55
		1#8	21.7	21.56	21.6
		1#14	21.69	21.59	21.64
		6#0	20.4	20.45	20.57
		6#9	20.37	20.48	20.58
		15#0	20.3	20.43	20.49
		1#0	22.56	22.5	22.63
		1#13	22.62	22.63	22.91
	QPSK	1#24	22.54	22.57	22.09
	QFSK	15#0	21.46	21.53	21.7
		15#10	21.43	21.55	21.65
5MHz		25#0	21.31	21.47	21.54
JIVITIZ		1#0	21.28	21.75	21.63
		1#13	21.37	21.75	21.61
	16QAM	1#24	21.31	21.61	21.5
	IUQAWI	15#0	21.46	21.51	21.69
		15#10	21.43	21.56	21.65
		25#0	20.27	20.37	20.42

180 22.6 22.5 22.7 1825 22.77 22.71 22.88 2580 21.43 21.55 21.71 25825 21.38 21.57 21.67 5080 21.31 21.55 21.64 180 21.73 21.64 21.57 1825 21.8 21.79 21.75 1849 21.75 21.53 21.58 2580 21.46 21.53 21.58 2580 21.46 21.53 21.58 2580 21.46 21.53 21.58 2580 21.46 21.53 21.59 25825 21.35 21.59 21.66 25825 21.35 21.59 21.66 25825 21.35 21.59 21.66 25825 21.35 21.59 21.66 25825 21.35 21.59 21.66 25825 21.35 21.59 21.66 25826 22.46 22.75 1838 22.66 22.6 22.76 1838 22.66 22.6 22.76 22.42 3680 21.74 21.67 21.94 36839 21.62 21.78 21.89 7580 21.66 21.71 21.66 1838 21.79 21.67 21.97 1874 21.83 21.48 21.64 3680 21.71 21.66 21.97 1874 21.83 21.48 21.64 36839 21.62 21.77 21.89 7580 20.47 20.66 20.79 180 22.35 22.36 22.49 1850 22.7 22.8 22.74 1890 22.3 22.44 22.41 20MHz 20000 21.46 21.53 21.75 180 21.39 21.57 21.88 10000 21.46 21.53 21.55 10000 21.42 21.55 21.58 10000 21.42 21.55 21.58 50850 21.41 21.55 21.59 10000 20.37 20.49 20.66 20.79 20.66 20.79 20.66 20.70 20.70 20.80 20.70 20.80 20.70 20.80 20.						
10MHz			1#0	22.6	22.5	
10MHz 10MHz			1#25	22.77	22.71	22.88
10MHz 25#05 21.38 21.57 21.67 50#0 21.31 21.55 21.64 1#0 21.73 21.64 21.57 1#25 21.8 21.79 21.75 1#49 21.75 21.53 21.58 25#0 21.46 21.53 21.75 25#0 21.46 21.53 21.77 25#25 21.35 21.59 21.66 50#0 20.23 20.55 20.63 1#0 22.52 22.46 22.75 1#38 22.66 22.6 22.76 25#25 21.35 21.59 21.66 50#0 20.23 20.55 20.63 1#0 22.52 22.46 22.75 1#38 22.66 22.6 22.76 25#25 21.35 21.59 21.67 21.94 36#39 21.62 21.78 21.94 36#39 21.62 21.78 21.99 1#0 21.69 21.62 21.71 21.93 1#0 21.69 21.62 21.67 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.64 36#0 21.71 21.66 21.97 1#74 21.83 21.48 21.64 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#50 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.59 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.59		QPSK	1#49	22.58	22.59	22.27
10MHz 16QAM			25#0	21.43	21.55	21.71
16QAM 16			25#25	21.38	21.57	21.67
16QAM	101/11-		50#0	21.31	21.55	21.64
16QAM	TUMITZ		1#0	21.73	21.64	21.57
15MHz 16QAM 25#0 21.46 21.53 21.7 25#25 21.35 21.59 21.66 50#0 20.23 20.55 20.63 1#0 22.52 22.46 22.75 1#38 22.66 22.6 22.76 1#74 22.44 22.59 22.42 36#0 21.74 21.67 21.94 36#39 21.62 21.78 21.89 75#0 21.66 21.71 21.93 1#0 21.69 21.62 21.78 21.89 75#0 21.69 21.62 21.67 1#38 21.79 21.67 21.97 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.69 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.37 22.8 22.74 1#99 22.3 22.44 22.41 20.68 50#50 21.42 21.55 21.58 100#0 21.46 21.37 21.66 1#50 21.75 21.66 1#50 21.75 21.66 1#50 21.75 21.66 1#50 21.75 21.66 1#50 21.75 21.66 21.75 21.66 20.79 20.66 20.79 20.66 20.79 21.67 21.89 22.76 22.8 22.74 22.8 22.75 22.8 22.74 22.8 22.74 22.8 22.75 22.8 22.74 22.8 22.75 22.8 22.74 22.8 22.75 22.8 22.75 22.8 22.76 22.			1#25	21.8	21.79	21.75
15MHz 15MHz 0PSK 25#0 21.46 21.53 21.59 21.66 50#0 20.23 20.55 20.63 1#0 22.52 22.46 22.75 1#38 22.66 22.6 22.76 22.76 1#74 22.44 22.59 22.42 36#0 21.74 21.67 21.94 36#39 21.62 21.78 21.89 75#0 21.66 21.71 21.93 1#0 21.69 21.62 21.78 21.97 1#38 21.79 21.67 21.97 1#38 21.79 21.67 21.97 1#38 21.79 21.67 21.97 1#38 21.79 21.66 21.71 21.97 1#74 21.83 21.48 21.64 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 20.68 50#50 21.42 21.55 21.58 100#0 21.46 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.65 50#50 21.42 21.55 21.65 50#50 21.41 21.55 21.59		160414	1#49	21.75	21.53	21.58
S0#0 20.23 20.55 20.63 1#0 22.52 22.46 22.75 1#38 22.66 22.6 22.76 1#74 22.44 22.59 22.42 36#0 21.74 21.67 21.94 36#39 21.62 21.78 21.89 75#0 21.66 21.71 21.93 1#0 21.69 21.62 21.67 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.67 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.64 36#0 21.71 21.66 21.94 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#0 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.59 50#50 21.42 21.55 21.59		16QAM	25#0	21.46	21.53	21.7
PSK 1#0 22.52 22.46 22.75 1#38 22.66 22.6 22.76 1#74 22.44 22.59 22.42 36#0 21.74 21.67 21.94 36#39 21.62 21.78 21.89 75#0 21.66 21.71 21.93 1#0 21.69 21.62 21.67 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.64 36#0 21.71 21.66 21.97 1#74 21.83 21.48 21.64 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#0 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.59 1#99 21.63 21.33 21.7 50#50 21.42 21.55 21.59			25#25	21.35	21.59	21.66
OPSK 1#38 22.66 22.6 22.76 1#74 22.44 22.59 22.42 36#0 21.74 21.67 21.94 36#39 21.62 21.78 21.89 75#0 21.66 21.71 21.93 1#0 21.69 21.62 21.67 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.64 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#0 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.55 1#99 21.63 21.33 </td <td></td> <td></td> <td>50#0</td> <td>20.23</td> <td>20.55</td> <td>20.63</td>			50#0	20.23	20.55	20.63
QPSK			1#0	22.52	22.46	22.75
15MHz 15MHz 36#0		QPSK	1#38	22.66	22.6	22.76
15MHz 15MHz 15MHz 16QAM 16			1#74	22.44	22.59	22.42
15MHz 1#0			36#0	21.74	21.67	21.94
15MHz 1#0			36#39	21.62	21.78	21.89
1#0 21.69 21.62 21.67 1#38 21.79 21.67 21.97 1#74 21.83 21.48 21.64 36#0 21.71 21.66 21.94 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#0 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.55 21.65 50#50 21.41 21.55 21.59	15) ([]		75#0	21.66	21.71	21.93
16QAM	ISMHZ	16QAM	1#0	21.69	21.62	21.67
20MHz 16QAM 36#0			1#38	21.79	21.67	21.97
OPSK OPSK 21.71 21.66 21.94 36#39 21.62 21.77 21.89 75#0 20.47 20.66 20.79 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#0 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.75 21.84 22.14 1#99 21.63 21.75 21.65 50#50 21.41 21.55 21.59			1#74	21.83	21.48	21.64
OPSK 1#0 22.35 22.36 22.49 1#50 22.7 22.8 22.74 1#99 22.3 22.44 22.41 50#0 21.43 21.49 21.68 50#50 21.42 21.55 21.58 100#0 21.46 21.53 21.75 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59			36#0	21.71	21.66	21.94
QPSK			36#39	21.62	21.77	21.89
QPSK			75#0	20.47	20.66	20.79
QPSK			1#0	22.35	22.36	22.49
20MHz Some color			1#50	22.7	22.8	22.74
20MHz S0#0 21.43 21.49 21.68		ODCK	1#99	22.3	22.44	22.41
20MHz 100#0 21.46 21.53 21.75 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59		QPSK	50#0	21.43	21.49	21.68
16QAM 1#0 21.39 21.57 21.66 1#50 21.75 21.84 22.14 1#99 21.63 21.33 21.7 50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59			50#50	21.42	21.55	21.58
16QAM 21.39 21.57 21.66 21.59 21.66 1#50 21.75 21.84 22.14 21.63 21.33 21.7 50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59	201411-		100#0	21.46	21.53	21.75
16QAM 1#99 21.63 21.33 21.7 50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59	ZUIVIHZ		1#0		21.57	21.66
16QAM 50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59			1#50	21.75	21.84	22.14
50#0 21.42 21.52 21.65 50#50 21.41 21.55 21.59		160434	1#99	21.63	21.33	21.7
		16QAM	50#0	21.42	21.52	21.65
100#0 20.37 20.49 20.66			50#50	21.41	21.55	21.59
			100#0	20.37	20.49	20.66

LTE Band 12

LTE Band 12											
Channel Bandwidth	Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)						
Danawiath		1#0	22.64	22.56	22.6						
		1#3	22.84	22.77	22.89						
		1#5	22.59	22.57	22.62						
	QPSK	3#0	22.71	22.69	22.6						
		3#3	22.69	22.64	22.66						
		6#0	21.62	21.59	21.66						
1.4MHz		1#0	21.58	21.66	21.45						
		1#3	21.68	21.85	21.72						
		1#5	21.59	21.67	21.53						
	16QAM	3#0	22.73	22.67	22.65						
		3#3	22.69	22.68	22.68						
		6#0	20.68	20.7	20.57						
		1#0	22.73	22.62	22.77						
		1#8	22.66	22.62	22.72						
		1#14	22.64	22.58	22.69						
	QPSK	10#0	21.64	21.53	21.6						
		10#5	21.6	21.53	21.59						
		15#0	21.64	21.62	21.59						
3MHz		1#0	22.16	21.71	21.56						
		1#8	22.10	21.73	21.55						
		1#14	22.09	21.67	21.53						
	16QAM	10#0	20.71	20.61	20.51						
		10#5	20.72	20.65	20.54						
		15#0	20.72	20.63	20.65						
		1#0	22.61	22.57	22.64						
		1#13	22.73	22.7	22.76						
		1#24	22.54	22.58	22.63						
	QPSK	10#0	21.6	21.66	21.64						
		10#15	21.77	21.56	21.55						
		25#0	21.64	21.56	21.53						
5MHz		1#0	21.56	21.81	21.58						
		1#13	21.64	21.94	21.67						
		1#24	21.52	21.75	21.58						
	16QAM	10#0	21.56	21.65	21.65						
		10#15	21.75	21.57	21.56						
		25#0	20.82	20.63	20.51						
		1#0	22.68	22.62	22.61						
		1#25	22.82	22.76	22.92						
		1#49	22.56	22.72	22.71						
	QPSK	25#0	21.56	21.69	21.79						
		25#25	21.59	21.59	21.64						
		50#0	21.56	21.64	21.72						
10MHz		1#0	22.09	21.73	21.55						
		1#25	22.28	21.73	21.78						
		1#49	22.07	21.74	21.78						
	16QAM	25#0	21.58	21.74	21.83						
		25#25	21.59	21.58	21.64						
		50#0	20.62	20.68	20.79						
	<u> </u>	50#0	20.02	20.00	40.17						

Test Modulation		Channel Bandwidth	Low Channel PAR (dB)	Middle Channel PAR (dB)	High Channel PAR (dB)	Limit (dB)
QPSK	1 RB	20 MHz	1.56	3.32	3.24	13
Qrsk	100 RB	20 MITZ	6.32	6.56	6.64	13
160AM	1 RB	20 MHz	2.72	4.40	3.68	13
16QAM	100 RB	20 MHZ	6.92	7.28	7.16	13

PAR, Band 12

Test Modulation		Channel Bandwidth	Low Channel PAR (dB)	Middle Channel PAR (dB)	High Channel PAR (dB)	Limit (dB)
QPSK	1 RB	10 MHz	2.44	3.80	3.24	13
QFSK	50 RB	10 MITZ	5.20	4.92	4.96	13
16QAM	1 RB	10 MHz	3.56	4.60	4.20	13
	50 RB	10 MIZ	6.04	6.00	5.84	13

Note: peak-to-average ratio (PAR) <13 dB.

ERP & EIRP

Part 22H

		D	Su	bstituted Met	thod	A11 4.			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
GSM 850 Middle Channel									
836.60	Н	92.26	17.34	0.00	0.97	16.37	38.45	22.08	
836.60	V	100.86	29.07	0.00	0.97	28.10	38.45	10.35	
			EDGE 3	850 Middle C	hannel				
836.60	Н	88.94	14.02	0.00	0.97	13.05	38.45	25.40	
836.60	V	97.49	25.70	0.00	0.97	24.73	38.45	13.72	
			WCDMA	Band V Midd	le Channel				
836.60	Н	84.57	9.65	0.00	0.97	8.68	38.45	29.77	
836.60	V	92.84	21.05	0.00	0.97	20.08	38.45	18.37	

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain 3) Margin = Limit-Absolute Level

LTE Band	2	т				F		
		Receiver	Su	bstituted Met	thod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK 1.4	MHz Midd	le Channel			
1880.000	Н	89.37	16.76	11.66	2.66	25.76	33.00	7.24
1880.000	V	88.76	16.29	11.66	2.66	25.29	33.00	7.71
			16QAM 1.4	4 MHz Mido	lle Channel			
1880.000	Н	89.35	16.74	11.66	2.66	25.74	33.00	7.26
1880.000	V	88.63	16.16	11.66	2.66	25.16	33.00	7.84
_			QPSK 3	MHz Middle	e Channel			
1880.000	Н	88.83	16.22	11.66	2.66	25.22	33.00	7.78
1880.000	V	87.86	15.39	11.66	2.66	24.39	33.00	8.61
			16QAM 3	MHz Midd	le Channel			
1880.000	Н	88.72	16.11	11.66	2.66	25.11	33.00	7.89
1880.000	V	87.54	15.07	11.66	2.66	24.07	33.00	8.93
			QPSK 5	MHz Middle	Channel			
1880.000	Н	87.92	15.31	11.66	2.66	24.31	33.00	8.69
1880.000	V	87.01	14.54	11.66	2.66	23.54	33.00	9.46
			16QAM 5	MHz Midd	le Channel			
1880.000	Н	87.58	14.97	11.66	2.66	23.97	33.00	9.03
1880.000	V	86.94	14.47	11.66	2.66	23.47	33.00	9.53
			QPSK 10	MHz Midd	le Channel			
1880.000	Н	87.69	15.08	11.66	2.66	24.08	33.00	8.92
1880.000	V	86.83	14.36	11.66	2.66	23.36	33.00	9.64
			16QAM 10	0 MHz Mide	lle Channel			
1880.000	Н	87.52	14.91	11.66	2.66	23.91	33.00	9.09
1880.000	V	86.55	14.08	11.66	2.66	23.08	33.00	9.92
		+	QPSK 15	MHz Midd	e Channel			
1880.000	Н	90.31	17.70	11.66	2.66	26.70	33.00	6.30
1880.000	V	89.48	17.01	11.66	2.66	26.01	33.00	6.99
			16QAM 1:	5 MHz Mido	lle Channel			
1880.000	Н	90.19	17.58	11.66	2.66	26.58	33.00	6.42
1880.000	V	89.36	16.89	11.66	2.66	25.89	33.00	7.11
+			<u> </u>	MHz Midd	1		 	
1880.000	Н	90.04	17.43	11.66	2.66	26.43	33.00	6.57
1880.000	V	88.85	16.38	11.66	2.66	25.38	33.00	7.62
<u>.</u>		_		0 MHz Mido	lle Channel	,		
1880.000	Н	89.78	17.17	11.66	2.66	26.17	33.00	6.83
1880.000	V	88.46	15.99	11.66	2.66	24.99	33.00	8.01

			Substituted Method					
Frequency (MHz)	Polar Rea	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
	QPSK 1.4 MHz Middle Channel							
707.500	Н	90.16	13.30	0.00	0.94	12.36	34.77	22.41
707.500	V	96.27	21.85	0.00	0.94	20.91	34.77	13.86
	16QAM 1.4 MHz Middle Channel							
707.500	Н	90.23	13.37	0.00	0.94	12.43	34.77	22.34
707.500	V	96.30	21.88	0.00	0.94	20.94	34.77	13.83
	QPSK 3 MHz Middle Channel							
707.500	Н	89.64	12.78	0.00	0.94	11.84	34.77	22.93
707.500	V	95.41	20.99	0.00	0.94	20.05	34.77	14.72
			16QAM 3	MHz Midd	le Channel			
707.500	Н	89.80	12.94	0.00	0.94	12.00	34.77	22.77
707.500	V	96.27	21.85	0.00	0.94	20.91	34.77	13.86
QPSK 5 MHz Middle Channel								
707.500	Н	89.22	12.36	0.00	0.94	11.42	34.77	23.35
707.500	V	94.80	20.38	0.00	0.94	19.44	34.77	15.33
	16QAM 5 MHz Middle Channel							
707.500	Н	90.56	13.70	0.00	0.94	12.76	34.77	22.01
707.500	V	95.08	20.66	0.00	0.94	19.72	34.77	15.05
QPSK 10 MHz Middle Channel								
707.500	Н	90.16	13.30	0.00	0.94	12.36	34.77	22.41
707.500	V	92.79	18.37	0.00	0.94	17.43	34.77	17.34
16QAM 10 MHz Middle Channel								
707.500	Н	90.17	13.31	0.00	0.94	12.37	34.77	22.40
707.500	V	94.22	19.80	0.00	0.94	18.86	34.77	15.91

Note:

¹⁾ The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

²⁾ Absolute Level = Substituted Level - Cable loss + Antenna Gain

³⁾ Margin = Limit-Absolute Level

Report No.: RDG180914003-00C

Applicable Standard

FCC §2.1049, §22.917, §22.905, §24.238 and §27.53.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03	
R&S	Spectrum Analyzer	FSP 38	100478	2017-12-08	2018-12-08	
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A	
Pasternack	RF Coaxial Cable	0.5m	C-5	Each time	N/A	
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each time	N/A	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.8°C	
Relative Humidity:	61 %	
ATM Pressure:	100.5 kPa	

The testing was performed by Andy Huang on 2018-09-21.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Band	Mode	99% Occupied Bandwidth (MHz)	26 dB Occupied Bandwidth (MHz)
Cellular	GSM	0.24	0.33
Centulai	EDGE	0.25	0.33
	Rel 99	4.21	4.81
WCDMA Band V	HSDPA	4.23	5.33
	HSUPA	4.25	5.47

Band	Bandwidth	Modulation	99% occupied bandwidth (MHz)	26 dB bandwidth (MHz)
	1.4 MHz	QPSK	1.098	1.353
	1.4 MIIZ	16QAM	1.107	1.326
	3 MHz	QPSK	2.724	3.018
		16QAM	2.724	3.000
LTE	5 MHz	QPSK	4.540	5.302
Band 2		16QAM	4.530	5.132
Dallu Z	10 MHz	QPSK	8.980	10.060
		16QAM	8.960	9.720
	15 MHz	QPSK	13.680	15.792
		16QAM	13.560	15.192
	20 MHz	QPSK	18.000	20.812
	20 MHZ	16QAM	18.000	20.412
LTE Band 12	1.4 MHz	QPSK	1.092	1.290
	1.4 MITIZ	16QAM	1.101	1.308
	3 MHz	QPSK	2.724	3.000
		16QAM	2.712	3.018
	6 MII-	QPSK	4.520	5.178
	5 MHz	16QAM	4.510	5.078
	10 MH-	QPSK	8.940	9.788
	10 MHz	16QAM	8.940	9.788

GSM 850 Cellular Band

EDGE 850 Cellular Band

Report No.: RDG180914003-00C

WCDMA Band V, Rel 99

WCDMA Band V, HSUPA

Report No.: RDG180914003-00C

WCDMA Band V, HSDPA

LTE Band 2

QPSK_1.4 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 13:20:59

QPSK_3 MHz

Date: 21.SEP.2018 13:22:15

QPSK_5 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 13:25:57

QPSK_10 MHz

Date: 21.SEP.2018 13:15:58

QPSK_15 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 13:31:26

QPSK_20 MHz

Date: 21.SEP.2018 13:34:58

16QAM_1.4 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 13:20:39

16QAM_3 MHz

Date: 21.SEP.2018 13:21:43

16QAM_5 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 13:23:51

16QAM_10 MHz

Date: 21.SEP.2018 13:14:34

16QAM_15 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 13:29:46

16QAM_20 MHz

Date: 21.SEP.2018 13:35:44

LTE Band 12:

Date: 21.SEP.2018 09:53:09

QPSK_3 MHz

Date: 21.SEP.2018 09:55:09

QPSK_5 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 09:57:37

QPSK_10 MHz

Date: 21.SEP.2018 09:59:38

16QAM_1.4 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 09:52:34

16QAM_3 MHz

Date: 21.SEP.2018 09:54:36

16QAM_5 MHz

Report No.: RDG180914003-00C

Date: 21.SEP.2018 09:56:17

16QAM_10 MHz

Date: 21.SEP.2018 09:59:01

Applicable Standard

FCC §2.1051, §22.917(a), §24.238(a) and §27.53.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP 38	100478	2017-12-08	2018-12-08
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Pasternack	RF Coaxial Cable	0.5m	C-5	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.8°C
Relative Humidity:	61 %
ATM Pressure:	100.5~100.6 kPa

The testing was performed by Andy Huang from 2018-09-21 to 2018-09-22.

Please refer to the following plots.

GSM850_Middle Channel

WCDMA Band V,Rel99

LTE Band 2 (Middle Channel)

QPSK_1.4 MHz

Date: 22.SEP.2018 00:09:54

Date: 22.SEP.2018 00:10:51

Date: 22.SEP.2018 00:13:21

Date: 22.SEP.2018 00:13:00

QPSK_5 MHz

Date: 22.SEP.2018 00:13:46

Date: 22.SEP.2018 00:14:14

QPSK_10 MHz

Date: 22.SEP.2018 00:14:34

Date: 22.SEP.2018 00:16:33

QPSK_15 MHz

Date: 22.SEP.2018 00:16:46

Date: 22.SEP.2018 00:17:23

QPSK_20 MHz

Date: 22.SEP.2018 00:17:46

Date: 22.SEP.2018 00:19:07

LTE Band 12 (Middle Channel)

Fundamental

QPSK_1.4 MHz

Date: 22.SEP.2018 00:21:43

Date: 22.SEP.2018 00:21:58

QPSK_3 MHz

Date: 22.SEP.2018 00:22:37

Date: 22.SEP.2018 00:22:53

QPSK_5 MHz

Date: 22.SEP.2018 00:23:18

Date: 22.SEP.2018 00:23:33

QPSK_10 MHz

Date: 22.SEP.2018 00:24:07

Date: 22.SEP.2018 00:24:32

FCC §2.1053, §22.917 & §24.238 & §27.53 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917, § 24.238 and § 27.53.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) - the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
НР	Amplifier	8447D	2727A05902	2018-09-05	2019-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2018-09-05	2019-09-05
HP	Signal Generator	1026	320408	2017-12-08	2018-12-08
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2017-06-16	2020-06-15
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2018-09-05	2019-09-05

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.3 °C
Relative Humidity:	41 %
ATM Pressure:	100.6 kPa

^{*} The testing was performed by Blake Yang & Vern Shen on 2018-09-26

EUT Operation Mode: Transmitting

Cellular Band (PART 22H)

30 MHz-10 GHz:

Danim		Substituted Method			A la a la 4 a			
Frequency Polar Rea	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
	GSM850, Frequency:836.600 MHz							
1673.200	Н	67.16	-47.05	10.6	0.73	-37.2	-13.0	24.2
1673.200	V	66.83	-47.98	10.6	0.73	-38.1	-13.0	25.1
2509.800	Н	74.91	-38.11	13.1	1.25	-26.3	-13.0	13.3
2509.800	V	73.95	-39.1	13.1	1.25	-27.2	-13.0	14.2
3346.400	Н	64.65	-46.01	13.8	1.61	-33.8	-13.0	20.8
3346.400	V	64.25	-46.46	13.8	1.61	-34.2	-13.0	21.2
365.630	Н	54.39	-51.74	0.0	0.58	-52.3	-13.0	39.3
774.960	V	50.09	-52.69	0.0	0.93	-53.6	-13.0	40.6

	Receiver		Substituted Method			Absolute		
Frequency (MHz)	iency Polar Reading	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
WCDMA Band V R99,Frequency:836.600 MHz								
1673.200	Н	64.06	-50.15	10.6	0.73	-40.3	-13.0	27.3
1673.200	V	63.18	-51.63	10.6	0.73	-41.8	-13.0	28.8
2509.800	Н	56.84	-56.18	13.1	1.25	-44.3	-13.0	31.3
2509.800	V	55.73	-57.32	13.1	1.25	-45.5	-13.0	32.5
3346.400	Н	47.85	-62.81	13.8	1.61	-50.6	-13.0	37.6
3346.400	V	46.52	-64.19	13.8	1.61	-52.0	-13.0	39.0
191.020	Н	45.37	-63.78	0.0	0.47	-64.3	-13.0	51.3
39.700	V	46.60	-40.07	-26.3	0.21	-66.5	-13.0	53.5

LTE Band 2 (30MHz-20GHz):

		Receiver	Su	bstituted Met	hod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	QPSK,Frequency:1880.000 MHz							
3760.00	Н	49.24	-59.56	13.76	1.63	-47.43	-13.00	34.43
3760.00	V	48.73	-59.94	13.76	1.63	-47.81	-13.00	34.81
5640.00	Н	52.98	-53.05	14.02	1.31	-40.34	-13.00	27.34
5640.00	V	51.46	-54.45	14.02	1.31	-41.74	-13.00	28.74
140.58	Н	37.07	-68.85	0.00	0.35	-69.20	-13.00	56.20
39.70	V	44.91	-41.76	-26.26	0.21	-68.23	-13.00	55.23

LTE Band 12 (30MHz-10GHz):

		Receiver Substituted Method		Absolute				
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	QPSK,Frequency:707.500 MHz							
1415.00	Н	58.41	-55.09	9.08	1.22	-47.23	-13.00	34.23
1415.00	V	62.29	-51.74	9.08	1.22	-43.88	-13.00	30.88
2122.50	Н	63.54	-49.25	11.27	1.11	-39.09	-13.00	26.09
2122.50	V	60.48	-52.29	11.27	1.11	-42.13	-13.00	29.13
2830.00	Н	55.67	-56.41	13.34	1.36	-44.43	-13.00	31.43
2830.00	V	59.73	-52.58	13.34	1.36	-40.60	-13.00	27.60
450.50	Н	40.50	-64.02	0.00	0.66	-64.68	-13.00	51.68
39.70	V	45.57	-41.10	-26.26	0.21	-67.57	-13.00	54.57

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §22.917(a) & §24.238(a) & §27.53 - BAND EDGES

Applicable Standard

FCC § 2.1053, §22.917, § 24.238 and § 27.53.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
R&S	Spectrum Analyzer	FSP 38	100478	2017-12-08	2018-12-08
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Pasternack	RF Coaxial Cable	0.5m	C-5	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Page 56 of 88

Test Data

Environmental Conditions

Temperature:	27.8°C
Relative Humidity:	61 %
ATM Pressure:	100.5 kPa

The testing was performed by Andy Huang on 2018-09-21.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

GSM 850, Left Band Edge

GSM 850, Right Band Edge

EDGE 850, Left Band Edge

EDGE 850, Right Band Edge

WCDMA Band V Rel 99, Left Band Edge

WCDMA Band V Rel 99, Right Band Edge

WCDMA Band V HSUPA, Left Band Edge

Report No.: RDG180914003-00C

WCDMA Band V HSUPA, Right Band Edge

WCDMA Band V HSDPA, Left Band Edge

WCDMA Band V HSDPA, Right Band Edge

LTE Band II

Date: 21.SEP.2018 16:04:58

QPSK_1.4MHz_6 RB_ Right

Date: 21.SEP.2018 16:06:42

QPSK_3MHz_15 RB_Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:09:43

QPSK_3MHz_15 RB_Right

Date: 21.SEP.2018 16:08:16

QPSK_5MHz_25 RB_Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:13:26

QPSK_5MHz_25 RB_Right

Date: 21.SEP.2018 16:14:03

QPSK_10MHz_50 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:16:46

QPSK_10MHz_50 RB_Right

Date: 21.SEP.2018 16:15:22

DOLL 1-1-1-1

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:18:12

QPSK_15MHz_75 RB_Right

Date: 21.SEP.2018 16:19:07

QPSK_20MHz_FULL RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:20:48

QPSK_20MHz_FULL RB_ Right

Date: 21.SEP.2018 16:20:07

16QAM_1.4MHz_ 6 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:04:40

$16QAM_1.4MHz_6~RB_Right$

Date: 21.SEP.2018 16:05:58

16QAM_3MHz_ 15 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:09:25

16QAM_3MHz_15 RB_ Right

Date: 21.SEP.2018 16:08:01

16QAM_5MHz_ 25 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:13:10

16QAM_5MHz_25 RB_ Right

Date: 21.SEP.2018 16:13:55

16QAM_10MHz_50 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:16:28

$16QAM_10MHz_50~RB_Right$

Date: 21.SEP.2018 16:15:10

16QAM_15MHz_ 75 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:17:51

$16QAM_15MHz_75~RB_Right$

Date: 21.SEP.2018 16:18:47

16QAM_20MHz_FULL RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 16:20:33

16QAM_20MHz_FULL RB_ Right

Date: 21.SEP.2018 16:19:39

LTE Band 12

Date: 21.SEP.2018 10:26:31

QPSK_1.4MHz_ 6 RB_ Right

Date: 21.SEP.2018 10:24:02

QPSK_3MHz_15 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:49:31

QPSK_3MHz_15 RB_ Right

Date: 21.SEP.2018 10:48:43

QPSK_5MHz_25 RB_Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:52:09

QPSK_5MHz_25 RB_ Right

Date: 21.SEP.2018 10:50:51

QPSK_10MHz_50 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:57:36

QPSK_10MHz_50 RB_Right

Date: 21.SEP.2018 10:53:56

16QAM_1.4MHz_ 6 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:25:05

$16QAM_1.4MHz_6~RB_Right$

Date: 21.SEP.2018 10:22:51

16QAM_3MHz_ 15 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:49:12

16QAM_3MHz_15 RB_ Right

Date: 21.SEP.2018 10:48:03

16QAM_5MHz_ 25 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:51:49

16QAM_5MHz_25 RB_ Right

Date: 21.SEP.2018 10:50:34

16QAM_10MHz_50 RB_ Left

Report No.: RDG180914003-00C

Date: 21.SEP.2018 10:57:02

$16QAM_10MHz_50~RB_Right$

Date: 21.SEP.2018 10:53:37

FCC §2.1055, §22.355 & §24.235 & §27.54 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235, §27.54

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

T-1	TD 1 C	TD	• .1	D 11'	3 f 1 '1 C '
Frequency	Lolerance to	r Transmitters	in the	Public	Mobile Services
1 1 cquency	I Officiallee 10	1 II unsimmed	III tiiC	1 uonc	TVIOUTIC DCI VICCS

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-4	2018-08-28	2019-08-28
R&S	Universal Radio Communication Tester	CMU200	109 038	2018-07-18	2019-07-18
R&S	Wideband Radio Communication Tester	CMW500	147473	2018-08-31	2019-08-31
UNI-T	Multimeter	UT39A	M130199938	2018-04-02	2019-04-02
Unknown	Coaxial Cable	C-SJ00- 0010	C0010/01	Each time	N/A
Pro instrument	DC Power Supply	pps3300	N/A	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.8 °C
Relative Humidity:	61 %
ATM Pressure:	100.5 kPa

The testing was performed by Andy Huang on 2018-09-21.

GSM850:

GMSK, Middle Channel, f _c = 836.6 MHz						
Temperature	Voltage Frequency Error Frequency Error		Limit			
${\mathfrak C}$	V_{DC}	Hz	ppm	ppm		
-30		1	0.001195314			
-20		5	0.005976572			
-10		6	0.007171886			
0		-6	-0.007171886			
10	3.7	3	0.003585943			
20		-3	-0.003585943	2.5		
30		1	0.001195314			
40		4	0.004781257			
50		2	0.002390629			
25	3.5	-2	-0.002390629			
25	4.2	1	0.001195314			

EDGE850:

8PSK, Middle Channel, f _c = 836.6 MHz						
Temperature	Voltage	Frequency Error	Frequency Error	Limit		
C	V_{DC}	Hz	ppm	ppm		
-30		-1	-0.001195314			
-20		2	0.002390629			
-10		3	0.003585943			
0		7	0.008367201			
10	3.7	-3	-0.003585943			
20		4	0.004781257	2.5		
30		-2	-0.002390629			
40		2	0.002390629			
50		6	0.007171886			
25	3.5	1	0.001195314			
25	4.2	3	0.003585943			

	Middle Channel, f _c = 836.6 MHz						
Temperature	Frequency Fi		Frequency Error	Limit			
င	V _{DC}	Hz	ppm	ppm			
-30		-4	-0.004781257				
-20		9	0.010757829				
-10		6	0.007171886				
0		3	0.003585943				
10	3.7	-6	-0.007171886				
20		7	0.008367201	2.5			
30		-4	-0.004781257				
40		5	0.005976572				
50		3	0.003585943				
25	3.5	6	0.007171886				
25	4.2	1	0.001195314				

LTE Band 2:

	QPSK, Channel Bandwidth:10MHz Middle Channel, f _c = 1880 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result		
င	V _{DC}	Hz	ppm			
-30		-3.11	-0.0017			
-20		-2.73	-0.0015			
-10		-2.57	-0.0014			
0		-2.69	-0.0014			
10	3.7	-3.17	-0.0017			
20		-3.45	-0.0018	Pass		
30		-3.38	-0.0018			
40		-2.79	-0.0015			
50		-2.86	-0.0015			
25	3.5	-2.66	-0.0014			
25	4.2	-3.48	-0.0019			

16QAM, Channel Bandwidth:10MHz Middle Channel, f _c =1880 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
C	V _{DC} Hz		ppm		
-30		-2.80	-0.0015		
-20		-3.19	-0.0017		
-10		-3.06	-0.0016		
0		-2.85	-0.0015		
10	3.7	-3.11	-0.0017		
20		-3.33	-0.0018	Pass	
30		-3.32	-0.0018		
40		-3.33	-0.0018		
50		-3.20	-0.0017		
25	3.5	-2.83	-0.0015		
25	4.2	-2.66	-0.0014		

т		T	1.10	
	. I Н.	Rand	1 1 7.	

QPSK, Channel Bandwidth:10MHz					
Temperature	Voltage		Result Hz)		mit Hz)
°C	V_{DC}	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$
-30		699.5343	715.4660	699	716
-20		699.5273	715.4925	699	716
-10		699.5287	715.4674	699	716
0		699.5592	715.4678	699	716
10	3.7	699.5232	715.4826	699	716
20		699.5400	715.4800	699	716
30		699.5534	715.4850	699	716
40		699.5221	715.4835	699	716
50		699.5545	715.4900	699	716
25	3.5	699.5228	715.4666	699	716
25	4.2	699.5377	715.4993	699	716

16QAM, Channel Bandwidth:10MHz					
Temperature	Voltage Test Result Lir (MHz) (MH		Test Result		
°C	V_{DC}	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$
-30		699.5388	715.4642	699	716
-20		699.5459	715.4743	699	716
-10		699.5458	715.4921	699	716
0		699.5250	715.4750	699	716
10	3.7	699.5425	715.4914	699	716
20		699.5400	715.4800	699	716
30		699.5367	715.4990	699	716
40		699.5295	715.4866	699	716
50		699.5535	715.4683	699	716
25	3.5	699.5403	715.4939	699	716
25	4.2	699.5457	715.4886	699	716

Note: The fundamental emissions stay within the authorized bands of operation based on the frequency deviation measured is small, the extreme voltage was declared by applicant.

***** END OF REPORT *****