Algebraic Topology

Hoyan Mok

February 17, 2022

Contents

Contents			
1	§ 1	motopy and Fundamental Group Homotopy	
bi	bliog	raphy	6
Symbol List			
In	dex		8

ii CONTENTS

Chapter 1

Homotopy and Fundamental Group

§1 Homotopy

Definition 1.1 (Homotopy). $f,g \in C(X,Y)$. If $\exists H \in C(X \times [0,1],Y)$ s.t. H(x,0) = f(x), H(x,1) = g(x), then we say f and g are **homotopic**, denoted by $f \simeq g \colon X \to Y$ or just $X \to Y$. H is called a **homotopy** between f and g, denoted by $H \colon f \simeq g$ or $f \simeq_H g$.

For $t \in [0,1]$, $h_t: X \to Y; x \mapsto H(x,t)$ is called a *t-slice*.

If f is homotopic to a constant mapping, we say that f is **null-homotopic**.

A *linear homotopy* is a homotopy between two functions to $Y \subseteq \mathbb{R}^n$ that change linearly, i.e.

$$H(x,t) = (1-t)f(x) + tg(x).$$

Theorem 1.1 (Maps to convex set are homotopic). $f, g \in C(X, Y)$. If Y is a convex set in \mathbb{R}^n , then $f \simeq g$.

Proof. Consider linear homotopy.

Theorem 1.2. Homotopic relation is an equivalence relation.

Proof. reflexity. $f \simeq f$, just take H(x,t) = f(x) for any t (Such homotopy is called a **constant** homotopy).

Symmetry. $f \simeq g$ then $g \simeq f$. Just take $\bar{H}(x,t) = H(x,1-t)$ (Here \bar{H} is called the inverse of H).

Transivity. $f \simeq g \land g \simeq h \rightarrow f \simeq h$. Let

$$H_1H_2(x,2t) = \begin{cases} H_1(x,2t) & t \in [0,1/2], \\ H_2(x,2t-1) & t \in [1/2,1]. \end{cases}$$

We can see that H_1H_2 is also a homotopy (see Theorem 11.6 in Point Set Topology)

Hence, we can define **homotopy classes** on C(X,Y), denoted by [X,Y].

As you might expect after reading the proof of Theorem 1.2, the homotopies between mappings within a homotopy class form a group.

Theorem 1.3 (Composition of homotopies). $f_1 \simeq f_2 \colon X \to Y$, $g_1 \simeq g_2 \colon Y \to Z$, then $g_1 \circ f_1 \simeq g_2 \circ f_2 \colon X \to Z$.

Proof i. Let $F: f_1 \simeq f_2, G: g_1 \simeq g_2$. Define:

$$F: X \times [0,1] \to Y \times [0,1]; (x,t) \mapsto (F(x,t),t).$$

It can be verified that $G \circ \mathbf{F} : g_1 \circ f_1 \simeq g_2 \circ g_2 : X \to Z$.

Proof ii. Let $F: f_1 \simeq f_2, G: g_1 \simeq g_2$.

We can verify that $H_1: (x,t) \mapsto g_1 \circ F(x,t)$ is a homotopy between $g_1 \circ f_1$ and $g_1 \circ f_2$; Similarly $H_2: g_1 \circ f_2 \simeq g_2 \circ f_2$ can be defined.

Now consider $H = H_1H_2$, or in detailed,

$$H(x,t) = \begin{cases} g_1 \circ F(x,2t) & (x,t) \in X \times [0,1/2] \\ G(f_2(x),2t-1). & (x,t) \in X \times [1/2,1] \end{cases}$$

Lemma 1 (Identity map in convex space is null-homotopic). $X \subset \mathbb{R}^n$ is a convex space. $\forall x_0 \in X$, $\mathrm{id}_X \simeq (x \mapsto x_0)$.

Proof. The linear homotopy can be constructed as:

$$H_{x_0}(x,t) = tx + (1-t)x_0.$$

Theorem 1.4 (Continuous mappings from a convex set are null-homotopic). $X \subseteq \mathbb{R}^n$ is a convex set. $\forall f \in C(X,Y), f$ is null-homotopic.

Proof. Let $H_{x_0}(x,t) = tx + (1-t)x_0$. Then, any $f: X \to Y$ can be written as $f = f \circ id_X$, hence $f \simeq f \circ H_{x_0}(x,1) = (x \mapsto f(x_0))$, which means f is null-homotopic.

Theorem 1.5 (Constant mappings to a path-connected space belong to one homotopy class). If Y is a path-connected space, $y_0 \in Y$, then $[X,Y] = [x \mapsto y_0]$ (i.e. homotopy class of constant mapping to $\{y_0\}$)

Proof. Let $f_1(x) = y_1$, $f_2(x) = y_2$ be two constant mappings, a is a path from y_1 to y_2 . Then the homotopy between f_1 and f_2 can be defined as:

$$H(x,t) = a(t).$$

Definition 1.2 (Homotopy relative to a set). Let $A \subseteq X$, $H: f \simeq g$. If $\forall a \in A, \forall t \in [0,1]$, f(a) = g(a) = H(a,t), we say that f and g are **homotopic relative to** A, denoted by $H: f \simeq grel A$.

We can have parallel results as Theorem 1.2 and Theorem 1.3:

Theorem 1.6. Given $A \subseteq X$, $\simeq \text{rel}A$ is an equivalence relation in C(X,Y).

Theorem 1.7 (Composition of relative homotopies). $f_1 \simeq f_2 \colon X \to Y \operatorname{rel} A$, $g_1 \simeq g_2 \colon Y \to Z \operatorname{rel} B$, and $f_1(A) \subset B$, then $g_1 \circ f_1 \simeq g_2 \circ f_2 \colon X \to Z$.

Definition 1.3 (Fixed-endpoint Homotopy). Let a, b be two paths in X. If $a \simeq b \operatorname{rel} \{0, 1\}$, we say that a and b are *fixed-endpoint homotopic*. The paths in X modulus fixed-point homotopy is denoted by [X], called the *path classes*. The path class which a belongs to is denoted by $\langle a \rangle$.

§2 Fundamental Group

Theorem 2.1. Let a, b, c, d be four paths in X.

$$\begin{split} a \simeq b \operatorname{rel} \left\{ 0, 1 \right\} \; \leftrightarrow \; \bar{a} \simeq \bar{b} \operatorname{rel} \left\{ 0, 1 \right\}, \\ a \simeq b \operatorname{rel} \left\{ 0, 1 \right\} \wedge a \simeq d \operatorname{rel} \left\{ 0, 1 \right\} \wedge a (1) = c(0) \; \to \; ac \simeq bd \operatorname{rel} \left\{ 0, 1 \right\}. \end{split}$$

Definition 2.1 (Inverse and product of path classes). $\alpha, \beta \in [X]$, $a \in \alpha$, $b \in \beta$. b(0) = a(1). We define $\alpha^{-1} := \langle \bar{a} \rangle$ to be the *inverse* of the path class α , and $\alpha\beta := \langle ab \rangle$ to be the *product* of the two path classes α and β .

While the product of paths does not obey associativity, we have:

Theorem 2.2 (Associativity of product of path classes). $\alpha, \beta, \gamma \in [X]$. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ (if they are productible).

Proof. Consider $\forall a \in \alpha, \forall b \in \beta, \forall c \in \gamma$.

Let $\tilde{a}(t) = t/3$, $\tilde{b}(t) = t/3 + 1/3$, $\tilde{c}(t) = t/3 + 2/3$. \tilde{a}, \tilde{b} and \tilde{c} are three paths in [0, 1], and $\tilde{a}(\tilde{b}\tilde{c}) \simeq (\tilde{a}\tilde{b})\tilde{c}$ rel $\{0, 1\}$, since [0, 1] is convex, therefore there is a linear homotopy between the two product paths.

Now Let $f: [0,1] \to X$ be

$$f(t) = \begin{cases} a(3t), & t \in [0, 1/3]; \\ b(3t-1), & t \in [1/3, 2/3]; \\ c(3t-2), & t \in [2/3, 1]. \end{cases}$$

$$a(bc) = f \circ \tilde{a}(\tilde{b}\tilde{c}) \simeq f \circ (\tilde{a}\tilde{b})\tilde{c} = (ab)c \operatorname{rel} \{0,1\}, \text{ by Theorem } 1.3.$$

Theorem 2.3 (Identity-like properties of point path). $\alpha \in [X]$. Let the initial and the terminal point of α be x_0 and x_1 . (i) $\alpha^{-1}\alpha = \langle t \mapsto x_1 \rangle$, $\alpha \alpha^{-1} = \langle t \mapsto x_0 \rangle$; (ii) $\alpha \langle t \mapsto x_0 \rangle = \alpha = \langle t \mapsto x_1 \rangle \alpha$.

Proof. Note that
$$id_{[0,1]}$$
 is a path in the convex set $[0,1]$.

For now path classes are not closed under production.

Definition 2.2 (Fundamental group). $x_0 \in X$. The path classes of loops at x_0 (paths that have both endpoints at x_0), equiped with production, is the **fundamental group** of X at x_0 , denoted by $\pi_1(X, x_0)$.

Definition 2.3 (Homomorphism induced by continuous function). $f \in C(X,Y)$, $x_0 \in X$. We define $f_{\pi} : [X] \to [Y]$ as $f_{\pi}(\langle a \rangle) = \langle f \circ a \rangle$, where a is a path in X.

The limitation of f_{π} on $\pi_1(X, x_0)$ is said to be a **homomorphism induced by** f.

For simplicity, we would write such homomorphism by f_{π} (without explicitly referring limitation).

Theorem 2.4 (Isomorphism induced by homeomrphism). Let f be a homeomorphism from X to Y, then $\forall x_0 \in X$, f_{π} is an isomorphism from $\pi_1(X, x_0)$ to $\pi_1(Y, f(x_0))$.

Proof. $f^{-1} \circ f = \mathrm{id}_X \to (f^{-1})_\pi \circ f_\pi = \mathrm{id}_{\pi_1(X,x_0)}, \ f \circ f^{-1} = \mathrm{id}_Y \to f_\pi \circ (f^{-1})_\pi = \mathrm{id}_{\pi_1(Y,f(x_0))},$ therefore $(f^{-1})_\pi$ is the inverse of f_π . An invertible homomorphism is an isomorphism.

Theorem 2.5 (Fundamental groups of path connected space at different points are isomorphic). X is path connected, $x_1, x_2 \in X$. $\pi_1(X, x_1) \cong \pi_1(X, x_2)$.

Proof. $\langle a \rangle \in \pi_1(X, x_1), \langle b \rangle \in \pi_1(X, x_2), \langle c \rangle$ is a path class with initial point x_1 and terminal point x_2 .

It can be verify that

$$g \colon \pi_1(X, x_1) \to \pi_2(X, x_2); \langle a \rangle \mapsto \langle \bar{c}ac \rangle$$

is a homomorphism. Same as $g'(\langle b \rangle) = cb\bar{c}$.

$$g \circ g'(\langle b \rangle) = \langle \bar{c}cb\bar{c}c \rangle = \mathrm{id}_{\pi_1(X,x_2)}; \quad g' \circ g(\langle a \rangle) = \langle c\bar{c}ac\bar{c} \rangle = \mathrm{id}_{\pi_1(X,x_2)},$$

therefore g is an isomorphism.

With Theorem 2.5, we can write the fundamental group of a path-connected space X by $\pi_1(X)$. For different path-connected branches, a topological space can have different fundamental groups, while they are isomorphic within one branch.

Definition 2.4 (Simply connected). If the fundamental group of a path connected space X is trivial i.e. $\pi_1(X) \cong \{1\}$, we say that X is **simply connected**.

Theorem 2.6 (Convex set is simply connected). If $X \subset \mathbb{R}^n$ is convex, then X is simply connected.

Proof.
$$x_0 \in X$$
, $a \in C([0,1], X)$ s.t. $a(0) = a(1) = x_0$. $H_{a,x_0}(s,t) = (1-t)a(s) + tx_0$.

Now we can calculate the fundamental group of S^n .

Definition 2.5 (Lift). Let X, Y, Z be three topological spaces, and $f \in C(X, Z)$, $p \in C(Y, Z)$. If $\tilde{f} \in C(X, Y)$, s.t. $f = p \circ \tilde{f}$, we say that \tilde{f} is a *lift* of f.

In some case, given f and p, \tilde{f} might do not exist.

Lemma 2 (Lift of path). $a \in C([0,1], S^1)$, $p: \mathbb{R} \to S^1; x \mapsto e^{2\pi x i}$. Let $t_0 \in \mathbb{R}$ s.t. $p(x_0) = a(0)$. There exists a unique lift $\tilde{a} \in C(\mathbb{R}, S^1)$ of a s.t. $\tilde{a}(0) = x_0$.

Proof. Existence. The collection of open sets that the images under a do not cover S^1 , $\{(\alpha_i, \beta_i) \cap [0,1] \mid a_i, b_i \in \mathbb{R}^I \wedge S^1 \subsetneq a((\alpha_i, \beta_i))\}$, is a cover of S^1 by the definition of continuity. Since S^1 is compact, there exists a finite subcover $\{(\alpha_i, \beta_i) \cap [0,1] \mid a_i, b_i \in \mathbb{R}^n \wedge S^1 \subsetneq a((\alpha_i, \beta_i))\}$, where $n \in \mathbb{N}$. By dividing these open intevals into closed intevals that has no inner points intersecting, we can get $\Omega = \{I_k := [t_i, t_{i+1}] \mid k \in m\}$ (This can be done by sorting α_i and β_i).

The mapping p is locally homeomorphic i.e. there exists $[x_i, x_i'] \subset \mathbb{R}$ s.t. $p_i := p|_{[x_i, x_i']} : [x_i, x_i'] \to a(I_i)$ is a homeomorphism (and $p_i(x_i) = a(t_i)$), therefore $\tilde{a}_i := p_i^{-1} \circ a$ is a lift of $a_i := a|_{I_i}$. Since $p_0(t_0) = a(t_0)$, $p_{i+1}(t_i) = p_i(t_i)$, we can define piecewisely the lift of a by $\tilde{a} = \bigcup \{\tilde{a}_i \mid i \in m\}$. Uniqueness. Let \tilde{a}' be another lift of a, $p(\tilde{a}'(t) - \tilde{a}(t)) = p \circ \tilde{a}'(t)/p \circ \tilde{a}(t) = a(t)/a(t) = 1$, therefore $\tilde{a}'(t) - \tilde{a}(t) \in \mathbb{Z}$. Since [0,1] is connected, the image of $t \mapsto \tilde{a}'(t) - \tilde{a}(t)$ must be connected, which is possible only if it is constant. $\tilde{a}'(0) = \tilde{a}(0) = x_0$, therefore $\tilde{a} = \tilde{a}'$.

bibliography

- [1] 尤承业. 基础拓扑学讲义. 北京: 北京大学出版社, 1997. ISBN: 9787301031032.
- [2] 熊金诚, ed. 点集拓扑讲义. 2nd ed. 北京: 高等教育出版社, 1998. ISBN: 9787040062823.

Symbol List

Here listed the important symbols used in these notes

$\langle a \rangle$, 3	$H \colon f \simeq g, \frac{1}{H} \colon f \simeq g \operatorname{rel} A, \frac{2}{2}$
$ ilde{f}, rac{4}{f_\pi, 4} \ f \simeq g, 1$	$\pi_1(X), \frac{4}{\pi_1(X, x_0), \frac{3}{3}}$
$f \simeq_H g, \frac{1}{I}$ $\bar{H}, \frac{1}{I}$	$[X], \frac{3}{3}$ $[X, Y], \frac{2}{3}$

Index

constant homotopy, 1	lift, 4 linear homotopy, 1 null-homotopic, 1	
fixed-endpoint homotopic, $\frac{3}{3}$		
fixed-endpoint homotopy, $\frac{3}{3}$ fundamental group, $\frac{3}{3}$		
homomorphism induced by f , 4 homotopic, 1 homotopic relative to A , 2	path classes, 3 product, 3	
homotopy, 1 homotopy classes, 2	simply connected, 4	
inverse, 3	t-slice, 1	