# 大規模言語モデルを用いたマルチモーダル検索モデルに基づく 生活支援ロボットによる物体操作

慶應義塾大学大学院 理工学研究科 開放環境科学専攻 是方諒介

# 概要: Open-Vocabularyな指示文に基づく物体操作

生活支援ロボットにopen-vocabularyな自然言語指示文を与え 対象物体および配置目に関する画像検索に基づき物体操作

マルチモーダル基盤モデルに基づくSwitching機構を導入し、 新規性 対象物体および配置目標に関する予測を単一モデルで実現

> 大規模環境で構築したデータセットにおいて既存手法を凌駕 ゼロショット転移条件の実機実験でタスク成功率82%を達成

# 関連研究:画像検索による物体操作を扱う手法は少数

| MultiRanklt           | 自動化とオペレータによる介入を組み合わせた           |
|-----------------------|---------------------------------|
| [Kaneda+, RA-L24]     | Human-in-the-Loop設定でのfetchタスク実行 |
| RREx-BoT              | 事前収集済み画像からの対象物体検索に基づく           |
| [Sigurdsson+, IROS23] | Vision-and-Language Navigation  |

open-vocabulary mobile manipulationタスク OVMM [Yenamandra+ CoRI 23] SOTA手法でもダスク成功率10%程度











## 手法: Dual-Mode Multimodal Ranking Model (DM2RM)

マルチモーダル基盤モデルを用いたSwitching機構により、対象物体および配置目標を単一モデルで検索可能

Switching Phrase Encoder:

モードトークンおよび**大規模言語モデル**による表現特定

Task Paraphraser:

結果

冗長または文法誤りを含む指示文を**標準形**に変換

**Segment Anything Region Encoder:** 

SAM [Kirillov+, ICCV23] によるセグメンテーションマスクを重畳

言語特徴量 htxtをt-SNE [Maaten+, JMLR08] により可視化

/ モードごとに クラスタが分離







### 実験設定:1.大規模屋内環境で収集したデータセット、2.標準家庭環境[Okada+, AR19]における実機実験

1. LTRRIE-FC: HM3D [Ramakrishnan+, NeurIPS21] を基に構築

クラウドソーシングにより

226人のアノテータから物体操作指示文を収集

| 環境数 | 画像数   | 指示文数  | 平均文長  |
|-----|-------|-------|-------|
| 774 | 7,148 | 6,581 | 15.69 |



2. ユーザ指示文に基づく画像検索 + 把持・配置動作



HSR [Yamamoto+, ROBOMECH J.19]

YCBオブジェクト [Calli+, RAM15]

#### 実験結果:1. 新規データセットにおいて既存手法を凌駕,2. ゼロショット転移条件でタスク成功率82%を達成

| 1. 定量的結果: 画像検索タスクにおける標準的な評価指標を採用 |      |      |              |                 |     |  |
|----------------------------------|------|------|--------------|-----------------|-----|--|
| 手法                               | 対象物体 | 配置目標 | MRR [%]      | Recall@10 [%]   |     |  |
| CLIP [Radford+, ICML21]          | ✓    | ✓    | 10.8         | 24.9            |     |  |
| MultiRankIt<br>[Kaneda+, RA-L24] | ✓    |      | 20.5 ± 2.3   | 48.2 ± 1.4      |     |  |
|                                  |      | ✓    | 19.8 ± 1.1 + | 11.5 49.1 ± 5.9 |     |  |
| DM <sup>2</sup> RM(提案手法)         | ✓    | ✓    | 32.0 ± 0.5   | 67.9 ± 0.8      | ⊦18 |  |
| DM <sup>2</sup> RM(提案手法)         | ✓    | ✓    | 32.0 ± 0.5   | 67.9 ± 0.8      |     |  |

2. 定性的結果:実機実験における成功例



Receptacle

Target モード



'Can you take the mustard container on the shelf to the black box