Raport - Ćwiczenie nr 3

Grzegorz Janysek

9 maja 2022

1

Zapoznano się ze schematem ideowym wzmacniacza operacyjnego oraz charakterystyką idealnego wzmacniacza operacyjnego:

- zerową impedancją wyjściową
- nieskończenie dużą impedancją wejściową
- nieskończenie dużym różnicowym wzmocnieniem napięciowym
- zerowym wejściowym napięciem niezrównoważenia
- nieskończenie szerokim pasmem przenoszonych częstotliwości

Rysunek 1: Schemat ideowy wzmacniacza operacyjnego

Zmontowano wzmacniacz odwracający fazę o wzmocnieniu 10. Zmierzone wartości rezystancji R_1 i R_2 to odpowiednio $2.01k\Omega$ i $19.77k\Omega$. Jako wzmacniacza operacyjnego użyto układu scalonego uA741. Wyznaczona charakterystyka odpowiada zawartym w nocie katalogowej uA741 informacjom na temat maksymalnego napięcia wyjściowego od częstotliwości (charakterystyka załamuje się od $10 \mathrm{kHz}$).

$$U_{wy} = -\frac{R_2}{R_1} U_{we} = -\frac{19.77k\Omega}{2.01k\Omega} U_{we} = -9.836 U_{we}$$
 (1)

Rysunek 2: Schemat wzmacniacza odwracającego fazę

	1		
f [Hz]	ϕ [deg]	U_{we} [V]	U_{wy} [V]
100	176.7	959m	9.32
200	178.2	$957 \mathrm{m}$	9.38
500	179.8	953m	9.27
1k	176.7	954m	9.25
2k	175.8	950m	9.30
5k	177.8	952m	9.23
10k	174.2	966m	9.24
20k	162.6	958m	9.02
50k	133.7	985m	6.70
100k	114.1	982m	3.28
200k	97.6	989m	1.67
500k	91.7	985m	0.70
1M	75.7	981m	0.33

Tablica 1: Zmierzone napięcia wejściowego, wyjściowego oraz kąta przesunięcia fazowego dla zadanych częstotliwości. Od około 30kHz sygnał wyjściowy był znacząco zniekształcony

Rysunek 3: Odpowiedź układu w funkcji częstotliwości

Rysunek 4: Przesunięcie fazowe w funkcji częstotliwości

Zmontowano sumator o dwóch wejściach. Zsumowano drgania sinusoidalne U_1 i U_2 z dwóch generatorów o zbliżonych częstotliwościach $f_1=3 \rm kHz$ i $f_2=3.2 \rm kHz$. Zmierzona częstotliwość powstałego w ten sposób przebiegu dudnień $f_{dz}=100.2 \rm Hz$ odpowiada wartości teoretycznej $f_d=100 \rm Hz$ wynikającej z obliczeń.

$$R_0 = 19.77k\Omega \tag{2}$$

$$R_1 = 1.99k\Omega \tag{3}$$

$$R_2 = 2.01k\Omega \tag{4}$$

$$U_{wy} = -R_0 \left(\frac{U_1}{R_1} + \frac{U_2}{R_2} \right) = -\left(9.934 \ U_1 + 9.836 \ U_2 \right) \tag{5}$$

$$f_d = \frac{|f_1 - f_2|}{2} = 100 \text{Hz} \tag{6}$$

Rysunek 5: Schemat sumatora o dwóch wejściach

Rysunek 6: Przebieg napięcia wyjściowego ${\cal U}_{wy}$

4

Zbudowano przerzutnik Schmidta o napięciu histerezy 1V. Zaobserwowano przebiegi napięcia wyjściowego przy sinusoidalnym i trójkątnym napięciu wejściowym oraz zmierzono histerezę. Zmierzone napięcie histerezy jest większe o około 3.5% od wartości teoretycznej wynikającej z obliczeń.

$$R_1 = 109.5k\Omega \tag{7}$$

$$R_2 = 9.9k\Omega \tag{8}$$

$$U_p = \frac{R_2}{R_1 + R_2} U_{wy} = \frac{9.9k\Omega}{109.5k\Omega + 9.9k\Omega} 12.11V = 1.004V$$
 (9)

Rysunek 7: Schemat przerzutnika Schmidta

Rysunek 8: Napięcie U_{wy} (Y) w funkcji napięcia U_{we} (X)

Rysunek 9: Przebieg napięcia wyjściowego U_{wy} przy sinusoidalnym napięciu wejściowym U_{we}

Rysunek 10: Przebieg napięcia wyjściowego U_{wy} przy trójkątnym napięciu wejściowym U_{we}

Zbudowano multiwibrator astabilny oraz zaobserwowano przebiegi impulsów na wyjściu układu oraz na kondensatorze. Zmierzona częstotliwość drgań $f_z=1.012 \rm kHz$ jest o 11.3% mniejsza od częstotliwości teoretycznej f wynikającej z obliczeń.

$$R_1 = 109.5k\Omega \tag{10}$$

$$R_2 = 9.9k\Omega \tag{11}$$

$$R_3 = 6.08k\Omega \tag{12}$$

$$C = 433nF \tag{13}$$

$$T = 2R_3C \ln \frac{1+\gamma}{1-\gamma} \quad \text{gdzie} \quad \gamma = \frac{R_2}{R_1 + R_2} \tag{14}$$

$$\gamma = 0.0829 \tag{15}$$

$$T = 2 \cdot 6.08k\Omega \cdot 433nF \cdot ln \frac{0.9171}{1.0829} = 0.875ms \tag{16}$$

$$f = \frac{1}{T} = 1.142kHz \tag{17}$$

Rysunek 11: Schemat multiwibratora astabilnego

Rysunek 12: Przebiegi impulsów na wyjściu układu oraz na kondensatorze

Rysunek 13: Napięcie na kondensatorze (Y) w funkcji napięcia na wyjściu układu (X)