
FIG. 3A

100	200	300	400	払
CCAIGGAGGGGCCGIGCIGGGCCGCIGCTCGCCGTTGCGTTAGCTTGCCTTACACCCGCGCCGCG	The Met Glu Gly Bro The Lea Ala Val Lea Gly Ala Lea Lea Ala Val Ala Val See Lea Bro The Bro Ang Val The Val The Val Ago Bro Bro GGCGTACCCGATGCCGCGATACAACTGAACGCTGAACGCTACCGGGCCCATACCGGTCGCCCTTCGCAGACGGCCGAGCCCGTCGAGGTG mature gD	Ala Tyr Bro Met Bro Arg Tyr Arn Tyr Thr Glu Arg Thr Thr Gly Bro Tle Bro Ser Bro Bre Ala Arg Glu Glu Bro Val Glu Val COCTRACOCCACCACACCACACCACACACACACACACACACACA	ARG Tyr Ala Thr Sær Ala Ala As Ago Mæt Ieu Ala Ieu Ile Ala Ago Bro Gln Val Gly Arg Thr Ieu Tho Glu Ala Val Arg Arg His Ala Arg CGTACAACGCCACGGTCATATGGTACAAGATCGAGAGCGGGTGCCCCCGGCTGTACTACATGGAGTGCGAGTGCGAGCCCAGGAAGCACTTTTGG mature gD	Ala Tyr Asn Ala Thr Val The Thy Tyr Lys The Glu Ser Gly Cys Ala Arg Bro Leu Tyr Tyr Met Glu Tyr Thr Glu Cys Glu Bro Arg Lys His Fre Gly

FIG. 3B

100 +	
mature gD	
Tyr Cys Ang Tyr Ang Thr Pro Pro Fre The Tap Asp Ser Fre Lau Ala Cly Fre Ala Tyr Pro Thr Asp Asp Clu Lau Cly Lau Tle Met Ala Ala Pro Ala	
COCTICGICCACACACACACACACACACACACACACACACACAC	_
mature gD	_
Arg Leu Val Glu Cly Glu Tyr Arg Arg Ala Leu Tyr Ile Asp Cly Thr Val Ala Tyr Thr Asp Bre Met Val Ser Leu Bro Ala Cly Asp Cys Thp Bre	
CGAAACTICGGCGCGCGCGGTACACCTITIGGCGCGGGCTTCCCGGCCGGAATTIACGAGCAAAAGAAGGTTCTGCGCCTGACGTATCTCACGCAGTA	_
mature gD	.
SE LYS LEU CAY ALG ALG CAY 1.YE LIE CEUCLYS HE ETO ALG AEG 1.YE CAU CAU LAG LAS 1.XS VAL LEU LIE LIE LIE CAU LIE CAU LYE 	
CTACCCGCAGGAGGCACACAAGGCCATAGTCGACTACTGGTTCATGCGCCACGGGGGGGG	
mature gD)
Tyr Bro Gin Giu Ala His Iys Ala Tle Val Asp Tyr Trp Be Met Arg His Gly Gly Val Val Bro Bro Tyr Bre Giu Giu Ser Iys Gly Tyr Giu Bro	
CCCCTICCCCCCAITCCCCCCCCCCCCCCCCCCCCCCCC	_
mature gD	,
tm qD	
hydrophilic (*) charged AA	
Pro Pro Ala Ala Ago Gly Gly Ser Pro Ala Pro Alv Ago Ago Glu Ala Arg Glu Ago Glu Ago Glu Thr Glu Ago Gly Ala Ala Ala Gly Arg Glu Gly	

FIG. 3C

FIG. 4A

			· · · · · ·	-		
		10	2(0	30	40
1 1					GGCGCGCT GGCGCGCT	
		50	6(0	70	80
41 41					CGCCGCGG CGCCGCGG	
		90	100)	110	120
81 81					GATGCCGC GATGCCGC	
		130	140)	150	160
121 121					G G G C C C A T G G G C C C A T	
		170	180)	190	200
161 161					CCGTCGAG CCGTCGAG	
		210	220)	230	240
201 201					CATGCTGG CATGCTGG	
		250	260)	270	280
241 241					CTGTGGGA CTGTGGGA	
		290	300)	310	320
281 281					CCACGGTC CCACGGTC	
		330	34()	350	360
321 321					GCCGCTGT GCCGCTGT	
		370	380	0	390	400
361 361					A A G C A C T T A A G C A C T T	
	***************************************	410	42	0	430	440
401 401					G G G A C A G C G G G A C A G C	

FIG. 4B

	 . 45	0	46)		470	480
441 441			TACCCC TACCCC				
	 49	90	50	00		510	 520
481 481			CCGCGCC				
	 53	30	54	10		550	 560
521 521			CATCGA(CATCGA(
	5	70	. 58	30		590	600
561 561	 		CTGCCG(CTGCCG(
	 61	0	62	20		630	640
601 601	 		CTCGCGC CTCGCGC				
	 65	50	66	50		670	680
641 641			TTACGA (TTACGA (
	 69	90	7(00		710	 720
681 681			CAGTACT CAGTACT				
	 73	30	74	Ю		750	760
721 721			ACTGGTT ACTGGTT				
	77	70	78	30	_	790	800
761 761			TGAGGAG TGAGGAG				
	 81	0	82	20		830	 840
801 801			GGGGGT1 GGGGGT1				
ē	 8.	50	86	50		870	880
841 841			AGGATG <i>A</i> AGGATG <i>A</i>				

FIG. 4C

	890	900) 9	10	920
881 881	CAGCCGGGCGGG CAGCCGGGCGGG				
	930	940) 9	50	
921 921	AGGCGACGGCGA AGGCGACGGCGA				
	970	980		1	000
961 961	GCCGAGGGCGAG GCCGAGGGCGAG				
	. 1010	1020) 10	30 1	040
1001 1001	ACCGCCCCGAAG ACCGCCCCGAAG				
	1050	1060	10	70 1:	080
1041 1041	CCCCCGCCGC				
	1090	→TM 1100) 11	0 - TM - 11	120
1081 1078	GCTGTTTCGGTT GCCGTGCCGGTC				ŢĠ 3 G
	1130	1140	11!	50 11	160
1121 1158	CTATCGCTTGCG CGATCGCGTGCG				
	1170	1180) 119	90 1.	200
1161 1158	CGTTTATATTCG CGTCTATACGCG				
	1210	1220			240
1201 1198	AAACCGAAAAAA AAGCCAAAAAAG	CTGCCGGC CTGCCGGC	TTTCGGTAA CTTTGGCAA	CGTTAACTA(CGTCAACTA(CA CA
	1250				
1241 1238	GTGCTCTGCCGG GCGCGCTGCCCG				

FIG. 5

	·									
		10			20			30		40
1 1	MCGPTL MEGPTL									
		50			60			70		80
41 41	NYTERW NYTERW				_	-				
		90			100		1	10		120
81 81	IADPQV IADPQV									
		130)	•	140		1	50		 160
121 121	MEYTEC MEYTEC									
		17C)		180		1	90		200
161 161	IXAAPA IXAAPA									
		210)		220		2	230		240
201 201	KLGAAR KLGAAR									
		250)	:	260		2	270	-	280
241 241	AIVDYW AIVDYW									
		. 290)		300		3	10		320
281 281	DEARED DEARED									
		330)	,	340		3	50		360
321 321	AEGEPK AEGEPK									
		370			380		3	90		400
360 361	AVPVSV AVSVSV									
		410)			-			<u></u>	
400 401	KFKKLP KFKKLP				*					

FIG. 6A

CTCGĄGAAAŢCATAĄAAAAŢTTATŢTGCTŢTGTGĄGCGGĄTAACĄATTAŢAATAĢATTCĄATTGŢGAGCGGATAĄCAATŢ GAGCTCTTTAGTATTTTTAAATAAACGAAACACTCGCCTATTGTTAATATTATCTAAGTTAACACTCGCCTATTGTTAA	80
TCACĄCAGAĄTTCAŢTAAAĢAGGAĢAAATŢAACTĄTGAGĄGGATÇTCACÇATCAÇCATCĄCCATĄCGGAŢCCGCĄTGCCĄ ——————————————————————————————————	160
Met Arg Gly Ser His His His His Asp Pro His Ala 6x His His His His Asp Pro His Ala 6x his:MgD coding seq	
TGAGCTTGCCTACACCGCGCGCGGGTGACGGTATACGTCGACCCGGCGTACCCGATGCCGCGATGCCGCGATACAACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACAACTACACTACAACTACAACGAAACGGATGCGCGCGC	240
Met Ser Leu Pro Thr Pro Ala Pro Arg Val Thr Val Tyr Val Asp Pro Pro Ala Tyr Pro Met Pro Arg Tyr Asn Tyr Thr GAACGCTGGCACACTACCGGGCCCATACCGTCGCCCTTCGCAGACGGCCGAGCAGCAGCTGGGCTACGAGCTACAGAGCTACGAGCTACGAGCTACGAGCTACAGAGCTACGAGCTACAGAGCTACAGAGCTACGAGCTACAGAGCTACGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGCTACAGAGAGCTACAGAGCTACAGAGAGCTACAGAGCTACAGAGAGAG	C
CTTGCGACCGTGTGATGGCCCGGGTATGGCAGCGGGAAGCGTCTGCCGGCGCGCTCGTCGGGCAGCTCCACGCGATGCGCTG	370
Glu Arg Trp His Thr Thr Gly Pro Ile Pro Ser Pro Phe Ala Asp Gly Arg Glu Gln Pro Val Glu Val Arg Tyr Ala Thr	0.0

FIG. 6B

GAGCGCGCGCGCGTGCGACATGCTGGCGCTGATCGCAGACCCGCAGGTGGGGCCGCACGCTGTGGGAAGCGGTACGCCGGC	400
CTCGCGCCGCCGCACGCTGTACGACCGCGACTAGCGTCTGGGCGTCCACCCGCGTGCGACACCCTTCGCCATGCGGCCG	9
gD coding sequence	
Ser Ala Ala Ala Cys Asp Met Leu Ala Leu Ile Ala Asp Pro Gln Val Gly Arg Thr Leu Trp Glu Ala Val Arg Arg ————————————————————————————————————	
ACGCGCGCGCGTACAACGCCACGGTCATATGGTACAAGATCGAGAGCGGGTGCGCCCGGCCGCCGCTGTACTACATGGAGTAC	480
TGCGCGCGCGCATGTTGCGGTGCCAGTATACCATGTTCTAGCTCTCGCCCACGCGGGCCGGCGACATGATGTACCTCATG	2
gD coding sequence	
His Ala Arg Ala Tyr Asn Ala Tyr Val Ile Trp Tyr Lys Ile Glu Ser Gly Cys Ala Arg Pro Leu Tyr Tyr Met Glu Tyr 	
ACCGAGTGCGAGCCCCAGGAAGCACTTTGGGTACTGCCGCTACCGCACACCCCCGTTTTGGGACAGCTTCCTGGCGGCTT	560
TGGCTCACGCTCGGGTCCTTCGTGAAACCCATGACGGCGATGGCGTGTGGGGGGCAAAACCCCTGTCGAAGGACCGCCGAA	
gD coding sequence	
Thr Glu Cys Glu Pro Arg Lys His Phe Gly Tyr Cys Arg Tyr Arg Thr Pro Pro Phe Trp Asp Ser Phe Leu Ala Gly Phe	
——————————————————————————————————————	

FIG. 6C

7 	GC 720	7CT 900 1 1 1 1 1 1 1 1 1	GT 880	096 55 1	lla -
GCGGATGGGGTGCCTGCTCGACCTAATACCGCCGGGGCGCGCCGAGCAGCTCCCGGTCATGGCTGCGCGCGC	TGTACATCGACGCCACGCTCGCCTATACAGATTTCATGGTTTCGCTGCCGGCGGGGACTGCTGGTTCTCGAAACTCGGC ACATGTAGCTGCCGTGCCAGCGGATATGTCTAAAGTACCAAAGCGACGGCCGGC	6x his:MgD coding seq controccedccccedcaraacaacaacerrcreccccreacera ccaacecccedcccraarccrccrrrrrrrrrrcraccccccarccar gD coding sequence gD coding sequence ys Phe Pro Ala Arg Asp Tyr Glu Gln Lys Lys Val Leu Arg Leu Thr Tyr	CAAGGCCATAGTCGACTACTGGTTCATGCGCCCACGGGGCGTCGTTC GTTCCGGTATCAGCTGATGACCAAGTACGCGGTGCCCCCGCAAG GD coding sequence	The Gln Tyr Tyr Pro Gln Glu Ala His Lys Ala Ile Val Asp Tyr Trp Pre Met Arg His Gly Gly Val Val Pro Pro 6x his:MgD coding seq 7 ATTTTGAGGAGTCGAAGGGCTACGAGCCGCCGCCGCCGCCGCCGCCCCCCCGCGCGCG	Tyr Phe Glu Glu Ser Lys Gly Tyr Glu Pro Pro Pro Ala Asp Gly Gly Ser Pro Ala Pro Pro Gly Asp Asp Glu Ala

nosusayo naasin

Arg Glu Asp Glu Gly Glu Thr Glu Asp Gly Ala Ala Gly Arg Glu Gly Asn Gly Gly Pro Pro Gly Pro Glu Gly Asp Gly
CGAGAGTCAGACCCCCGAAGCCAACGGAGGCGCCGAGGGGGGGG
GCTCTCAGTCTGGGGGCTTCGGTTGCCTCCGCGGCTCCGCTTTGGGCCCGGGGTCGGGCTGCGGCTTGGCGGC
gD coding sequence
Glu Ser Gln Thr Pro Glu Ala Asn Gly Gly Ala Glu Gly Glu Pro Lys Pro Gly Pro Ser Pro Asp Ala Aso Arg Pro
AAGGCTGGCCGAGCCTCGAAGCCATCACGCACGCCCCGCCCCCCCC
Trccgaccegecticgaagcticggtagtgcgtgggggggggggggggggg
gD coding sequence vector coding seq
V
——————————————————————————————————————
ACCTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTT
TGGACGTCGGTTCGAATTAATCGACTCGAACCTGAGGACAACTATCTAGGTCATTACTGGAGTCTTGAGGTAGACCTAAA
vector coding seq
Thr Cys Ser Gln Ala * 6x his:MgD coding seq_

FIG. 7A

CTCGAGAAATCATAAAAAATTTATTTGCTTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATT 80
TCACACAGAATTCATTAAAGAGAGAAATTAACTATGAGAGGATCTCACCATCACCATCACCATACGGATCCGCATGCCA 1
Met Asp Pro Glu Hrs Trp Ser Tyr Gly Ieu Arg Pro Gly Glu His Trp Ser Tyr Gly Ieu Arg Pro His-LHRH-gD fusion
TATGGCTTACGGCCGGGAGGTTACGGCCTCCGGTCCAGGTTCCATGAGCTTGCCTACACCCGCGCGCG
Tyr Cly Leu Arg Pro Cly Clu His Trp Ser Tyr Cly Leu Arg Pro Cly Ser Met Ser Leu Pro Thr Pro Ala Pro Ala Pro Arg Val His-Lhrh-gD fusion GACGGTATACGTCGACCCGGCGTACCCGATGCCGCGATACAACTACACTGAACGCTGGCACACTACCGGGCCCATAC 400
Thr Val Tyr Cal Asp Pro Pro Ala Tyr Pro Met Pro Arg Tyr Asn Tyr Thr Glu Arg Tro His Thr Thr Gly Pro Ile

FIG. 7B

CGTCGCCCTTCGCAGACGCCGCGCGCGCCGTCGAGGTGCGCTACGCGACGAGCGCGGCGGCGGCGTGCGACATGCTGGCG 480	000
Pro Ser Pro Phe Ala Asp Glv Arg Glu Gln Pro Val Arg Tvr Ala Thr Ser Ala Ala Ala Asp Met Leu Ala	
CTGATCGCAGACCCGCAGGTGGGGCGCACGCTGTGGGAAGCGGTACGCCGGCGCGCGC	0
gD coding sequence	
Leu Ile Ala Asp Pro Gln Val Gly Arg Thr Leu Trp Glu Ala Val Arg Arg His Ala Arg Ala Tyr Asn Ala Thr Val Ile	
ATGGTACAAGATCGAGAGCGGGTGCGCCCGGCCGCTGTACTACATGGAGTACACCGAGTGCGAGCCCAGGAAGCACTTTG 640	요
gD coding sequence	
Tro Tyr Lys Ile Glu Ser Gly Cys Ala Arg Pro Leu Tyr Tyr Met Glu Tyr Thr Glu Cys Glu Pro Arg Lys His Phe His-LHRH-gD fusion	
GGTACTGCCGCTACCGCACACCCCCCGTTTTGGGACAGCTTCCTGGCGGGCTTCGCCTACCCCACGGACGACGAGCTGGGA 720	Ç
gD coding sequence)
Gly Tyr Cys Arg Tyr Arg Thr Pro Pro Pro Pre Trp Asp Ser Pre Leu Ala Gly Pre Ala Tyr Pro Thr Asp Aso Glu Leu Gly His-LHRH-gD fusion	
CTGATTATGGCGCCCCCGCGCGCTCGTCGAGGGCCCAGTACCGACGCGCGCTGTACATCGACGGCACGGTCGCCTATAC 800	\subseteq
gD coding sequence	
Leville Met Ala Ala Pro Ala Arg Levi Val Glu Gly Gln Tyr Arg Arg Ala Levi Tyr Ile Asp Gly Thr Val Ala Tyr Thr His-Inbh-rh fusion	

FIG. 7C

AGATTTCATGGTTTCGCTGCCGGGGGACTGCTGGTTCTCGAAACTCGGCGCGGCTCGCGGGTACACCTTTGGCGCGT	880
ASP Pire Met Val Ser Leu Pro Ala Gly Asp Cys Trp Pire Ser Lys Leu Gly Ala Ala Arg Gly Tyr Thr Pire Gly Ala GCTTCCCGGCCCGGGATTACGAGAAAGAAAGAAGGTTCTGCGCCTGACGTATCTCACGCAGTACTACCCGCAGGAGGCACAC	096
Gys Phe Pro Ala Arg Asp Tyr Gly Gln Lys Lys Val Leu Arg Leu Thr Tyr Leu Thr Gln Tyr Tyr Pro Gln Glu Ala His	
AAGGCCATAGTCGACTACTGGTTCATGCGCCACGGGGGGGG	1040
Lys Ala Ile Val Asp Tyr Trp Phe Met Arg His Gly Gly Val Val Pro Pro Tyr Phe Glu Glu Ser Lys Gly Tyr Glu Pro GCCGCCTGCCGCGATGGGGGTTCCCCCGCGCCACCGGGGGGGG	1120
gD coding sequence Pro Pro Ala Ala Asp Gly Gly Ser Pro Ala Pro Pro Gly Asp Asp Glu Ala Arg Glu Asp Glu Gly Glu Thr Glu Asp His-LHRH-gD fusion GGGCAGCCGGGCGGCGCCCCCAGGACCCCCAGGACCCCCAGGAGCCGAAGGCCAACGGA	1200
Gly Ala Ala Gly Arg Glu Gly Asn Gly Gly Pro Pro Gly Pro Glu Gly Asp Gly Glu Ser Gln Thr Pro Glu Ala Asn Gly His I upp on fine of fine of the content of the	
HIS-LHKH-GD IUSION	

FIG. 7D

FIG. 8A

CTCGAGAAAȚCATAAAAAȚTTATTTGCTTTGTGAGCGGATAACAATTAȚAATAGATTCAATTGTGAGCGGATAACAATŢ	80
TCACACAGAATTCATTAAAGAGGAGAAATTAACTATGAGAGGATCTCACCATCACCATCACCATACGGATCCGCATGCCA	160
6X His Leader	
TGAGCTTGCCTACACCCGCGCGCGGGTGACGGTATACGTCGACCCGCCGGCGTACCGATGCCGCGATACACTACACT	. 240
mature gD coding seq	
Met Ser Leu Pro Thr Pro Ala Pro Arg Val Thr Val Tyr Val Asp Pro Pro Ala Tyr Pro Met Pro Arg Tyr Asn Tyr Thr His-gD-LHRH fusion	
GAACGCTGGCACACTACCGGGCCCCATACCGTCGCCCTTCGCAGACGGCCGCGAGCAGCCGGTCGAGGTGCGCTACGCGAC	320
mature gD coding seq	
Glu Arg Trp His Thr Gly Pro Ile Pro Ser Pro Phe Ala Asp Gly Arg Glu Gln Pro Val Arg Tyr Ala Thr History	

FIG. 8B

GAGCGCGCGCGCGTGCGACATGCTGGCGCTGATCGCAGACCCGCAGGTGGGGCGCACGCTGTGGGAAGCGGTACGCCGGC 40	400
mature gD coding seq Ser Ala Ala Asp Met Leu Ala Leu Ile Ala Asp Pro Gln Val Gly Arg Thr Leu Trp Glu Ala Val Arg Arg His-gD-LHRH fusion	
ACGCGCGCGCGTACAACGCTCATATGGTACAAGATCGAGGCGGGTGCGCCCGGCCGCTGTACTACATGGAGTAC 48	480
His Ala Arg Ala Tyr Asn Ala Thr Val Ile Trp Tyr lys Ile Glu Ser Gly Cys Ala Arg Pro Leu Tyr Tyr Met Glu Tyr His-gD-LHRH fusion	
ACCGAGTGCGAGCCCCAGGAAGCACTTTGGGTACTGCCGCTACCGCACACCCCCGTTTTGGGACAGCTTCCTGGCGGGCTT 56	560
mature gD coding seq Glu Cys Glu Pro Arg Lys His Phe Gly Tyr Cys Arg Tyr Arg Thr Pro Pro Phe Trp Asp Ser Phe Leu Ala Gly Phe His-gD-LHRH fusion	
CGCCTACCCCACGGACGACGAGCTGGGACTGATTATGGCGGCGCCCCGCGGGGCTCGTCGAGGGCCCAGTACCGACGCGCGC	640
Mature gD coding seq Ala Tyr Pro Thr Asp Asp Glu Leu Gly Leu Ile Met Ala Ala Pro Ala Arg Leu Val Glu Gly Gln Tyr Arg Arg Ala His-gD-LHRH fusion	
TGTACATCGACGGCACGGTCGCCTATACAGATTTCATGGTTTCGCTGCCGGCCG	720
le Asp Gly Thr Val Ala Tyr Thr Asp Phe Met Val Ser Leu Pro Ala Gly Asp Cys Trp Phe Ser Lys Leu Gly His-qD-LHRH fusion	
gD coding seq Val Ser Leu Pro Ala Gly Asp Cys Trp Pre Ser Lys Leu)-LHRH fusion	

FIG. 8C

008 I	880	096	70-1 1 N	1120
Ala Ala Arg Gly Tyr Thr Phe Gly Ala Cys Phe Pro Ala Arg Asp Tyr Glu Gln Lys Lys Val Leu Arg Leu Thr Tyr Leu His-gD-LHRH fusion	CACGCACTACTACCGCAGGAGGCCACACAGGCCATAGTCGACTACTGGTTCATGCGCCCACGGGGGCGTCGTTCGT	ATTTTGAGGAGTCGAAGGGCTACGAGCCGCCGCCGCCGCCGATGGGGGGTTCCCCCCGCGCCCCGGGCGACGACGAGGCC mature gD coding seq Tyr Bre Glu Glu Ser Lys Gly Tyr Glu Bro Pro Pro Ala Ala Asp Gly Gly Ser Pro Ala Pro Pro Gly Asp Asp Glu Ala His-gD-LHRH fusion	CGCGAGGATGAAGGGGAGGGACGGGGCAGCCGGGGGGGAACGGCCCCCC	CGAGAGTCAGACCCCCGAAGCCGAGGCGCGGGCGAAACCCGGCCCCCAGCCCCGACGCCCCGG mature gD coding seq Glu Ser Gln Thr Pro Glu Ala Asn Gly Gly Ala Glu Gly Glu Pro Lys Pro Gly Pro Ser Pro Asp Ala Asp Arg Pro His-gD-LHRH fusion

FIG. 8D

+

 \top

FIG. 9A

CTCGAGAAATCATAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATT 80	_
TCACACAGAATTCATTAAAGAGAGAAATTAACTATGAGAGGATCTCACCATCACCATCACCATACGGATCCGCATGCCA	160
Met Arg Cly Ser His His His His Thr Asp Pro His Ala	
SGAACACTGGTCT	240
Met Asp Pro Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Glu His Trp Ser His-LHRH-gd-LHRH fusion TATGGCTTAÇGGCCGGGAGAGCATTGGAGTTACGGCCTCÇGTCCAGGTTÇCATGAGCTTGCCTACACCCGCGCGGGGT	320
)
GACGGTATACGTCCGCCGCCGCGTACCCCGATGCCGCGATACAACTACACTGACGCTGGCACACTACCGGCCCATAC 4	400
Thr Val Tyr Val Asp Pro Pro Ala Tyr Pro Met Pro Arg Tyr Asn Tyr Thr Glu Arg Trp His Thr Gly Pro Ile	
CGTCGCCCTTCGCAGACGCCGCGCGCAGCAGCCGTCGAGGTGCGCTACGCGACGACGAGCGCGGCGCGTGCGACATGCTGGCG	480
gD coding sequence	
Pro Ser Pro Phe Ala Asp Gly Arg Glu Gln Pro Val Glu Val Arg Tyr Ala Thr Ser Ala Ala Ala Cys Asp Met Leu Ala	
ACGCGCGCGTACAACGCCACGGTCAT	560
gD coding sequence	
Lev Ile Ala Asp Pro Gln Val Gly Arg Thr Lev Trp Glu Ala Val Arg Arg His Ala Arg Ala Tyr Asn Ala Thr Val Ile His-IHRH-Ad-IHRH finsion	
his-bakh-ga-bakh iusion	

FIG. 9B

FIG. 9C

FIC. 9D

A: pQE_gD B: pQE_gD-LHRH C: pQE_LHRH-gD D: pQE_LHRH-gD-LHRH

-R-T-P-G-S-T-C-S-Q-A* gD truncated-mature 6XHIS-Leader -M-S-⋖

* -P- 4X LHRH truncated-mature gD

6XHIS-Leader -M-S-

Β

truncated-mature gD 6XHIS-Leader - M-D-P 4X LHRH - S-M-S- \cup

gD truncated-mature 6XHIS-Leader - M-D-P | 4X LHRH | -S-M-S-

-P- 4X LHRH

-R-T-P-G-S-T-C-S-Q-A*

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 12B

že.	Macure go sequence Ly Arg Glu Gly Arn Gly Gly Pro Pro Gly Pro Glu Gly Arp Gly Glu Ser Gln Thr Pro Glu Ala Arn Gly Gly Ala Glu Gly Glu Pro Lys Pro Gly gd-lhrh Coding Sequence
1000	CGGGCGGAGGGCAACGGCGCCCCCAGGAACCCGAAGGCGACGGCGACGGCTAAGACCCAAGGCCAAGGCGAGGGCGAGGCGAAGCCGAAACCCGGC
Þ	Mature gD Sequence ■ GD Ala Pro Pro Pro Ala Pro Pro Pro Ala Pro Pro Pro Ala Pro Pro Ala Pro Pro Pro Ala Pro
900	AGGGCTACGAGCCCGCCGCGCGCGATGGGGGTTCCCCCCGCGCCACCCAC
	Tyr Ieu Thr Gin Tyr Tyr Pro Gin Giu Ala His Iys Ala Ile Val Asp Tyr Tap He Met Arg His Gly Gly Val Val Pro Pro Tyr He Giu Giu Ser
800	TATICTICACGCAGTACTIACCCGCAGGAGGCACAAAGGCCATAGTICGACTACTIGGTTCATGCGCCACGGGGGGGTTCGTTCCGCCGTATTTTTGAGGAGTICGA
	p C/s Trp He Ser Lys Leu Gly Ala Ala Arg Gly Tyr Thr He Gly Ala Cys He Bro Ala Arg Asp Tyr Glu Gln Lys Lys Val Leu Arg Leu Thr
700	GCACTOCTOGTTCTCCAAAACTCGGGGGGGGGGGGTACACCTTTGGGGGGGG

FIG. 12C

