第七章非参数学习机器与集成学习

苏智勇

可视计算研究组南京理工大学

suzhiyong@njust.edu.cn
https://zhiyongsu.github.io

主要内容

7.1 引言

7.2 近邻法

7.3 决策树与随机森林

7.4 Boosting集成学习

7.1 引言

• 参数学习机器

- 先确定学习机器实现的函数集, 然后选择函数集中的函数

• 非参数学习机器

- 通过对训练样本的学习直接构建分类机器
- 无法用一个包含若干待定参数的函数来表示

7.2 近邻法

- 回顾
 - 最简单的分段线性分类器
 - · 把各类划分为若干子类,以子类中心作为代表点, 考查新样本到各代表点的距离并将它分到最近的代 表点所代表的类
 - ►极端情况,所有样本都作为代表点,**无需构造分类** 面
 - 近邻法 (Nearest-Neighbor method)

7.2.1 最近邻法

- 样本集 $S_N = \{(x_1, \theta_1), (x_2, \theta_2), \dots, (x_N, \theta_N)\}, x_i$ 为样本i的特征向量, θ_i 为样本i的类别标号, $\theta_i = \{1, 2, \dots, c\}$
 - **定义1**: 样本 x_i 与 x_j 之间的距离 $\delta(x_i, x_j)$: 比如欧氏距离 $\|x_i x_j\|$ 。对未知样本x,求 S_N 中与之距离最近的样本x'(类别为 θ')

$$\delta(\mathbf{x}, \mathbf{x}') = \min_{j=1,\dots,N} \delta(\mathbf{x}, \mathbf{x}_j)$$

则将x分到 θ' 类,即 $\hat{\omega}(x) = \theta'$ (或记作 $\hat{\omega}_1(x)$)

7.2.1 最近邻法

- 样本集 $S_N = \{(x_1, \theta_1), (x_2, \theta_2), \dots, (x_N, \theta_N)\}, x_i$ 为样本i的特征向量, θ_i 为样本i的类别标号, $\theta_i = \{1, 2, \dots, c\}$
 - 定义2: ω_i 类别判别函数:

$$g_i(\mathbf{x}) = \min_{\mathbf{x}_j \in \omega_i} \delta(\mathbf{x}_i, \mathbf{x}_j), \quad i = 1, \dots, c$$

决策规则:

if
$$g_j(\mathbf{x}) = \min_{i=1,...,c} g_i(\mathbf{x})$$
, then $\mathbf{x} \in \omega_j$

简言之: 以距离新样本最近的已知样本的类别作为新样本类别

7.2.2 k-近邻法

- 最近邻法(1-近邻法)的推广
 - 找出x的k个近邻,看其中多数属于哪一类,则把x分到哪一类
- k-近邻的一般表示
 - N个已知样本,分属c个类别 ω_i , $i=1,\cdots,c$
 - k_i , $i = 1, \dots, c$, 为x的k个近邻中属于 ω_i 的样本数
 - 判別函数: $g_i(x) = k_i$, $i = 1, \dots, c$
 - 决策规则: if $g_j(\mathbf{x}) = \max_{i=1,\dots,c} k_i$, then $\mathbf{x} \in \omega_j$

7.2.2 k-近邻法

• 问题

- k的取值、距离的度量方式
- 计算和存储成本很大: 需要和每个已知样本比较和排序
- 票数接近时风险较大,有噪声时风险加大
- 有限样本下性能如何

• 改进

- 减少计算量和存储量
- 引入拒绝机制
- 根据实际问题修正投票方式: 如根据距离远近进行加权

- 近邻法在计算上的问题
 - 需存储所有训练样本
 - 新样本需与每个样本作比较
- 快速算法基本思想
 - 把样本集分级分成多个子集(树状结构)
 - 每个子集(结点)可用较少几个量代表
 - 通过将新样本与各结点比较排除大量候选样本
 - 只有最后的结点(子集)中逐个样本比较,找出近邻

• 分枝定界算法

- 符号约定
 - $\cdot \mathcal{X}_p$: 节点p对应的样本子集
 - $-N_p$: \mathcal{X}_p 中的样本数
 - M_p : 子集 \mathcal{X}_p 中的样本均值(中心点)
 - $r_p = \max_{x_i \in \mathcal{X}_p} D(x_i, M_p)$: \mathcal{X}_p 中离中心点最远的距离
 - · B: 当前搜索到的最近邻距离

• 分枝定界算法

- 两条规则
 - 对新样本x,节点p,如果存在 $D(x,M_p)>B+r_p$,则 $x_i\in\mathcal{X}_p$ 不可能是x的最近邻
 - 如果 $D\left(x,M_p\right)>B+D(x_i,M_p)$,则 $x_i\in\mathcal{X}_p$ 不可能是x的最近邻

7.2.3 近邻法的

- 分枝定界算法
 - 两大步
 - · 样本集的分级分解,计算并存储 \mathcal{X}_p 的 $M_p, r_p, D(\mathbf{x}_i, M_p)$
 - · 用分枝定界算法搜索x的最近邻

•	L=0		L=1	L=2	L=3		
					p	r_p	N_p
•			r_{12} =2.01		39	0.67	20
			$N_{12}=75$	12	38	1.63	24
					37	2.86	31
	7.00		m -6 12				
	$r_3 = 7.08$	3	r_{11} =6.13 N_{11} =158	1.1	36	0.19	34
1	$N_3 = 358$		N ₁₁ -136	11	35	0.54	55
					34	1.27	69
			-0.75				
			r_{10} =8.75	10	33	2.54	41
			N_{10} =124	10	32	2.12	47
					31	3.15	36
			$r_9 = 2.33$		30	0.78	27
			$N_9 = 79$	9	29	2.12	22
					28	3.61	30
	10.01				20	5.01	30
	$r_2 = 10.21$		r_8 =4.46		27	0.57	23
N_0	$N_2 = 292$	2	$N_8 = 75$	8	26	2.21	16
					25	6.65	36
					23	0.03	30
			$r_7 = 8.24$		24	0.23	57
			$N_7 = 138$	7	23	0.23	57 29
					23	1.11	52
						1.11	32
			$r_6 = 0.67$		•	0.05	4.0
			$N_6 = 148$	6	21	0.25	48
					20	0.53	62
					1 9	0.83	38
	$r_1 = 17.27$		r_5 =2.91		10	0.45	5 0
	$N_1 = 351$	1	$N_5 = 95$	5	18	0.45	53
'					17	1.31	21
					16	2.74	21
			r_4 =10.17		1.7	0.06	4.7
			$N_4 = 108$	4	——————————————————————————————————————	0.96	47
					——————————————————————————————————————	1.80	48'
				L	13	3.08	13

7.2.3 近邻法的

• 树搜索算法(最近邻)

- (1)置 $B = \infty$,L = 1,p = 0(L是当前水平,p是当前节点)
- (2)将当前节点所有**直接后继节点**放入目录表中,并对这些节点 计算 $D(x,M_p)$
- (3)对步骤(2)中每个节点p,根据规则1,如果有 $D(x, M_p) > B + r_p$,则从目录表中去掉
- (4)如果步骤(3)目录表中已没有节点,则后退到前一水平,即置 L = L 1。如果L = 0则停止,否则转步骤(3)。如目录表中有 节点存在,则转步骤(5)
- (5)在目录表中选择最近节点p',它使 $D(x, M_p)$ 最小化,并称该p'为当前执行节点,从目录表中去掉p'。如果当前水平L是最终水平,则转步骤(6)。否则置L=L+1,转步骤(2)

	L=0		L=1	L=2	L=3		
					p	r_p	N_p
			r_{12} =2.01		39	0.67	20
			$N_{12}=75$	12	38	1.63	24
					37	2.86	31
	7.00		r_{11} =6.13				
	$r_3 = 7.08$	3	$N_{11} = 158$	1.1	36	0.19	34
١	$N_3 = 358$		14]] 130	11	35	0.54	55
					34	1.27	69
			r_{10} =8.75				
			$N_{10} = 124$	10	33	2.54	41
			110 124	10	32	2.12	47
					31	3.15	36
			2.22				
			$r_9 = 2.33$		30	0.78	27
			$N_9 = 79$	9	29	2.12	22
					28	3.61	30
	$r_2 = 10.21$		r ₈ =4.46				
7.7	N_2 =292	2	$N_8 = 75$	0	27	0.57	23
N_0			148 75	8	26	2.21	16
					25	6.65	36
			r ₇ =8.24				
			$N_7 = 138$	7	24	0.23	57
			117 130	/	23	0.76	29
					22	1.11	52
			·· -0.67				
			$r_6 = 0.67$		21	0.25	48
			$N_6 = 148$	6	20	0.53	62
					1 9	0.83	38
	—17 2 7		2 01				
	$r_1 = 17.27$	1	$r_5 = 2.91$	<i>5</i>	1 8	0.45	53
L	$N_1 = 351$	1	N ₅ =95	5	1 7	1.31	21
					16	2.74	21
			r_4 =10.17				
			$N_4 = 10.17$	4	15	0.96	47
			114 100	'	1 14	1.80	48¹
					13	3.08	13

• 树搜索算法 (最近邻)

(6)对现在执行节点p'中的每个 x_i ,利用规则(2)作如下检验。如果

$$D(\mathbf{x}, M_p) > D(\mathbf{x}_i, M_p) + B$$

则 x_i 不是x的最近邻。否则计算 $D(x,x_i)$ 。若

$$D(\mathbf{x}, \mathbf{x}_i) < B$$

置NN = i和 $B = D(x, x_i)$ 。

在当前执行节点中所有 x_i 被检验之后,转步骤(3)。

当算法结束时,输出x的最近邻 x_{NN} 和x的距离 $D(x,x_{NN})=B$ 。

k-近邻只需修改步骤(6)

动机

- 处在两类交界处或分布重合区的样本可能误导近邻法决策,应将它们从样本集中 去掉

• 基本思路

- 考查样本是否为可能误导样本,若是则从样本集中去掉一一剪辑
- 考查方法是通过试分类,认为错分样本为误导样本

• 基本做法

- 将已知样本集划分为测试集 \mathcal{X}^{NT} 和训练集 \mathcal{X}^{NR} :

$$\mathcal{X}^{N} = \mathcal{X}^{NT} \bigcup \mathcal{X}^{NR}, \mathcal{X}^{NT} \cap \mathcal{X}^{NR} = \phi$$

- **剪辑**:用训练集 \mathcal{X}^{NR} 中的样本对测试集 \mathcal{X}^{NT} 中的样本进行近邻法分类。剪掉 \mathcal{X}^{NT} 中被错分的样本, \mathcal{X}^{NT} 中剩余样本构成剪辑样本集 \mathcal{X}^{NTE}
- 分类: 利用 \mathcal{X}^{NTE} 和近邻法对未知样本x分类。

· 多重剪辑方法MULTIEDIT

- (1) (划分) 把样本集随机划分为s个子集, $\mathcal{X}_1, \ldots, \mathcal{X}_1, \ldots, \mathcal{X}_s, s \geq 3$
- (2) (分类) 用 $\mathcal{X}_{(i+1)mod(s)}$ 对 \mathcal{X}_i 中的样本分类, i=1,...,s
- (3) (剪辑) 去掉(2)中错分的样本
- (4)(混合)将剩下的样本合在一起,形成新的样本集 \mathcal{X}^{NE}
- (5)(迭代)用新的样本集 \mathcal{X}^{NE} 替代原样本集,转步骤1。如果最近m次迭代都没有样本被剪掉,则停止,用最后的 \mathcal{X}^{NE} 作为分类的样本集

(a) 原始样本集

(c) 经过三次剪辑的样本集

(b) 经过一次剪辑的样本集

(d) 算法终止时的样本集

(a) 原始数据和贝叶斯分类面

(b) 经过一次剪辑的数据与贝叶斯分类面

(c) 最终的剪辑结果、多重剪辑近邻法的分类面与贝叶斯分类面

7.2.5 压缩近邻法

CONDENSE算法

- -动机: 同一类型的样本大量集中在类簇的中心,而这些集中在中心的样本对分类 没有起到太大的作用,因此可以舍弃掉这些样本。
- -将样本集 \mathcal{X}^N 分为 \mathcal{X}_S , \mathcal{X}_G 两个子集,开始时 \mathcal{X}_S 中只有一个样本,其余均在 \mathcal{X}_G 中
- -考查 \mathcal{X}_G 中的每一个样本x,若用 \mathcal{X}_S 中的样本能够对它正确分类,则该样本保留 在 \mathcal{X}_G ,否则移到 \mathcal{X}_S 中
- -依次类推,直到没有样本再需要搬移为止。最后用 \mathcal{X}_S 中的样本作为代表样本,对
- 未来样本进行近邻法分类
- 可与剪辑法配合使用: 去噪

7.2.5 压缩近邻法

• 总结

- 近邻法快速算法: 样本数不变

- 剪辑近邻法: 去掉两类边界附近的样本

- 压缩近邻法: 去掉类中心附近的样本

7.3 决策树与随机森林

7.3.1 非数值特征的量化

- 名义特征: 正交编码
 - -例如颜色、形状、性别、职业、字符串中的字符等
- 序数特征: 等同于名义特征处理或转化为数值特征
 - -例如序号、分级,不能看作是欧氏空间中的数值
- 区间特征: 通过设定阈值变成二值特征或序数特征
 - -与研究目标之间的关系呈现出明显的非线性。取值是实数,可以比较大小,但是没有一个"自然的"零,比值没有意义
 - -例如年龄、温度、考试成绩等

- 决策树
 - 组成
 - · 节点: 一个特征和相应的决策规则
 - · 根: 最顶端的节点
 - · 叶节点: 只包含单纯一类的样本, 不需要继续划分

- 决策树
 - 构造
 - ► 特征选择
 - 决策树的生成
 - · 决策树的修剪

Visual Computing Group @ NJUST

- ID3(interactive dichotomizer-3)方法: 交互式二分法
 - 基本思想:通过选择有辨别力的特征对数据进行分类,直到每个叶节点上只包含单一类型的数据为止
 - 香农熵(Shannon Entropy): 设离散型随机变量X的取值有 x_1, x_2, \dots, x_k ,其发生概率分别为 p_1, p_2, \dots, p_k ,其信息熵为:

$$I = -\left(P_1 \log_2 P_1 + P_2 \log_2 P_2 + \dots + P_k \log_2 P_k\right) = -\sum_{i=1}^k P_i \log_2 P_i$$

信息熵用以描述信源的不确定度(不纯度)。对于决策而言,不确定度越小越好。

- ID3(interactive dichotomizer-3)方法:交互式二分法
 - 汽车顾客的例子, 在不考虑任何特征时:

$$I(16,4) = -\left(\frac{4}{16}\log_2\frac{4}{16} + \frac{12}{16}\log_2\frac{12}{16}\right) = 0.8113$$

- 如采用年龄作为根节点,则把所有样本分为两组:

$$I_{age} = \frac{6}{16}I(6,1) + \frac{10}{16}I(10,3) = 0.7946$$

- 不纯度减少量(信息增益Information Gain):

$$\Delta I_{age}$$
(16) = I (16,4) - I_{age} = 0.0167

		表 6-1 顾客数据		
膜 客 编 号	年 龄	性 别	月 收 入	是否购买
1	21	男	4000	否
2	33	女	5000	否
3	30	女	3800	否
4	38	女	2000	否
5	25	男	7000	否
6	32	女	2500	否
7	20	女	2000	否
8	26	女	9000	是
9	32	男	5000	是
10	24	男	7000	否
11	40	女	4800	否
12	28	男	2800	否
13	35	女	4500	否
14	33	男	2800	是
15	37	男	4000	是
16	31	女	2500	否
	表 6-2	经过初步整理后的原	客数据	

 顾客编号
 年 龄
 性 別
 月 收 人
 是否购买

 1
 <30</td>
 男
 中
 否

 2
 ≥30
 女
 中
 否

 3
 ≥30
 女
 中
 否

 4
 ≥30
 女
 低
 否

 5
 <30</td>
 男
 高
 否

 6
 ≥30
 女
 低
 否

 7
 <30</td>
 女
 低
 否

 8
 <30</td>
 女
 高
 是

 9
 ≥30
 男
 中
 是

 10
 <30</td>
 男
 市
 否

 11
 ≥30
 女
 中
 否

 12
 <30</td>
 男
 低
 否

 13
 ≥30
 男
 低
 是

 14
 ≥30
 男
 低
 是

 15
 ≥30
 男
 中
 是

 16
 ≥30
 女
 低
 否

Visual Computing Group @ NJUST

- ID3 (interactive dichotomizer-3) 方法
 - 一般地, 不纯度减少量计算公式:

$$\Delta I(N) = I(N) - \left(P_1 I(N_1) + P_2 I(N_2) + \dots + P_m I(N_m)\right), P_m = \frac{N_m}{N}$$

- 上例中:

$$\Delta I_{gender}(16) = I(16,4) - I_{gender} = 0.0972$$

$$\Delta I_{income}(16) = I(16,4) - I_{income} = 0.0177$$

选取性别作第一个特征能够带来不纯度最大的减小。

- ID3 (interactive dichotomizer-3) 方法
 - 下一层节点构建
 - · 分别考察月收入、年龄特征所得到的不纯度减少量,选择不纯度减少最大的特征作为决策树节点

Visual Computing Group @ NJUST

- ID3 (interactive dichotomizer-3) 流程
 - 计算当前节点包含的所有样本的信息熵(熵不纯度);
 - 比较不同特征的信息增益,选择具有最大信息增益的特征赋予当前节点; 该特征的取值个数决定了该节点下的分支数目;
 - 如果后继节点只包含一类样本,则停止该枝的生长;
 - 如果后继节点包含不同类样本,则重复以上步骤。

• 其他决策树算法

- 其他不纯度度量:

Gini不纯度(方差不纯度):
$$I(N) = \sum_{m \neq n} P(\omega_m) P(\omega_n) = 1 - \sum_{i=1}^{\kappa} P^2(\omega_i)$$

- ·误差不纯度: $I(N) = 1 \max_{j} P(\omega_{j})$
- C4.5算法:
 - ,以信息增益率代替信息增益: $\Delta I_R(N) = \frac{\Delta I(N)}{I(N)}$
 - · 能够处理连续数值特征
- CART算法:
 - · 每个节点上都采用二分法, 最后构成二叉树

Visual Computing Group @ NJUST

7.3.3 过学习与决策树的剪枝

• 决策树的过学习问题

- 算法在训练数据上表现好,在测试数据或新样本上表现较差
- 为正确分类样本,不停地对节点划分,容易导致树分枝过多,造成决策树庞大,从而易出现过拟合。决策树越复杂,过拟合的程度会越高。

7.3.3 过学习与决策树的剪枝

• 剪枝

- 先剪枝: 边构造边剪枝

在构造决策树的过程中,先对每个结点在划分前进行估计:如果当前结点的划分不能带来决策树模型泛化性能的提升,则不对当前结点进行划分并且将当前结点标记为叶结点。

b数据划分法

训练集+测试集;利用训练集对决策树生长,直至在测试集上的分类错误率达到最小时停止生长。

- 阈值法

设定信息增益阈值,小于阈值时结点停止向下生长。

- 信息增益的统计显著性分析

统计已有结点的信息增益分布,如果继续生长得到的信息增益与该分布相比不显著(卡方检验),则 停止生长。

7.3.3 过学习与决策树的剪枝

• 剪枝

- 后剪枝: 构造完再剪枝

先把整颗决策树构造完毕,然后自底向上的对非叶结点进行考察,若将该结点对应的子树换为叶结点能够带来泛化性能的提升(分支合并),则把该子树替换为叶结点。

- 减少分类错误修剪法: 错误率
- 最小代价与复杂性的折衷: 错误率、复杂度
- 最小描述长度(MDL)准则: 决策树编码

Visual Computing Group @ NJUST

7.3.4 过学习与随机森林

- 对样本数据进行自举(bootstrap)**重采样**,得到多个样本集。所谓自举重采样,就是每次从原来的N个训练样本中有放回地<u>随机抽取N个样本</u>(包括可能的重复样本):样本的随机性
- 用每个重采样样本集作为训练样本构造一个决策树。 在构造决策树的过程中,每次从所有候选特征中<u>随机</u> 地抽取<u>m个特征</u>,作为当前节点下决策的备选特征, 从这些特征中选择最好地划分训练样本的特征
- 最后,对决策树的输出进行**投票**,以得票最多的类作为随机森林的决策

7.4 Boosting集成学习

AdaBoost算法

- 设给定N个训练样本 $\{x_1, \dots, x_N\}$,用 $f_m(x) \in \{-1,1\}(m = 1, \dots, M)$ 表示M个弱分类器在样本x上的输出,算法过程如下:
 - 1. 初始化训练样本 $\{x_1, \dots, x_N\}$ 的权重, $w_i = \frac{1}{N}, i = 1, \dots, N$
 - 2. 对 $m=1 \rightarrow M$, 重复以下过程
 - ① 利用 $\{w_i\}$ 加权后的训练样本构造分类器 $f_m(x) \in \{-1,1\}$
- 注意:加权指的是指对分类器算法**目标函数**中各个样本所对应的项进行加权。例如,对于最小平方误差差判别,加权后的最小平方误差(MSE)准则函数为: $\sum_{i=1}^{N} w_i \left(\boldsymbol{\alpha}^T \boldsymbol{x}_i y_i \right)^2$

7.4 Boosting集成学习

AdaBoost算法

② 计算样本用 $\{w_i\}$ 加权后的分类错误率 e_m , 计算各分类器得分:

$$c_m = \log\left(\frac{1 - e_m}{e_m}\right)$$

③ 令 $w_i = w_i \exp\left[c_m 1_{(y_i \neq f_m(x_i))}\right], i = 1, 2, \dots, N$,并归一化使 $\sum_{i=1}^{N} w_i = 1$

 $(1_{(y_i \neq f_m(x_i))}$ 表示当 $y_i \neq f_m(x_i)$ 时取1,否则取0)

3. 对于待分类样本x,分类器的输出为sgn $\sum_{n=1}^{M} c_n f_n(x)$