DMath_U10_bf

10.5

Let $F=\mathbb{Z}_5[x]_{x^2+4x+1}$

(a) Prove that F is a field

Proof:

 \mathbb{Z}_5 is a field, since 5 is prime. (Theorem 5.23.)

Now, since we have shown \mathbb{Z}_5 to be a field, it remains to show that the polynomial x^2+4x+1 on \mathbb{Z}_5 is irreducible (Theorem 5.37.). To do this, we must prove that x^2+4x+1 has no roots in \mathbb{Z}_5 .

Since

$$\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$$

we do this:

$$\begin{array}{l} x=0 \implies 0^2+4(0)+1\not\equiv 50\\ x=1 \implies 1^2+4(1)+1\not\equiv 50\\ x=2 \implies 2^2+4(2)+1\not\equiv 50\\ x=3 \implies 3^2+4(3)+1\not\equiv 50\\ x=4 \implies 4^2+4(4)+1\not\equiv 50 \end{array}$$

which concludes the proof, as the polynomial $x^2 + 4x + 1$ is congruent to zero over no element in the field \mathbb{Z} .

(b) Prove that $F^* = \langle x+3 \rangle$

Proof:

To prove that $F^*=\langle x+3 \rangle$, we need to show two things:

1.
$$F^* \subseteq \langle x+3
angle$$

Every nonzero element in F can be represented as a(x+3)+b, where $a,b\in\mathbb{Z}_5$, and a is not congruent to 0. This is because x^2+4x+1 is irreducible in $\mathbb{Z}_5[x]$. Let f(x)=a(x+3)+b be an arbitrary nonzero element in F^* . We need to show that f(x) can be generated by $\langle x+3\rangle$. Consider the polynomial g(x)=x+3. Notice that g(x) generates the ideal $\langle x+3\rangle$. Therefore, any multiple of g(x) is in $\langle x+3\rangle$. Since f(x) is a multiple of g(x), we can conclude that $f(x)\in\langle x+3\rangle$, and thus, $F^*\subseteq\langle x+3\rangle$.

2.
$$\langle x+3 \rangle \subseteq F^*$$

Consider an arbitrary element h(x)=c(x+3) where $c\in\mathbb{Z}_5$ and c is not congruent to 0. This element is in $\langle x+3\rangle$. Since x^2+4x+1 is irreducible, c(x+3) is nonzero, and thus, $h(x)\in F^*$. This is because every nonzero element in F can be expressed as a(x+3)+b. Therefore, $\langle x+3\rangle\subset F^*$

Combining both steps, we can conclude that $F^* = \langle x+3 \rangle$, and we have shown that every nonzero element in F can be generated by $\langle x+3 \rangle$.

(c) Write $a(y)=(2x+3)y^2+(2x+1)y+1\in F[y]$ as a product of irreducible polynomials. Hint: $2x+1\equiv_{x^2+4x+1}2(x+3)\in\mathbb{Z}_5[x].$

Proof:

The given polynomial is $a(y) = (2x+3)y^2 + (2x+1)y + 1$. Using the hint, we substitute (2x+1) with (2(x+3)):

$$a(y) = (2(x+3))y^2 + (2(x+3))y + 1$$

Factoring out the common factor (2(x+3)):

$$a(y) = 2(x+3)(y^2+y) + 1$$

Factoring the quadratic (y^2+y) over \mathbb{Z}_5 : $y^2+y=y(y+1)$

Substituting this back into the expression:

$$a(y)=2(x+3)y(y+1)+1$$

So, the irreducible factorization of $a(y) \ F[y]$ is:

$$a(y)=(2(x+3))\cdot y\cdot (y+1)+1$$

The irreducible polynomials are 2(x+3), y, and y+1.

П