Alcuni richiami

- Un enunciato φ è soddisfacibile se e solo se esiste una struttura $\mathcal A$ tale che $\mathcal A \models \varphi$.
- Un enunciato φ non è valido se e solo se esiste una struttura \mathcal{A} tale che $\mathcal{A} \not\models \varphi$ (cioè $\mathcal{A} \models \neg \varphi$).
- Un enunciato φ non è conseguenza logica dell'insieme di enunciati Γ se e solo se esiste una struttura $\mathcal A$ tale che $\mathcal A \models \Gamma$ ma $\mathcal A \not\models \varphi$. In particolare, $\psi_1, \dots, \psi_n \not\models \varphi$ se e solo se esiste una struttura $\mathcal A$ tale che

$$\mathcal{A} \models \psi_1 \wedge \dots \psi_n \wedge \neg \varphi$$

• Gli enunciati φ, ψ non sono logicamente equivalenti, cioè $\varphi \not\equiv \psi$ se e solo se esiste una struttura \mathcal{A} tale $\mathcal{A} \models \varphi \land \neg \psi$ oppure $\mathcal{A} \models \psi \land \neg \varphi$.

Sia $L=\{f\}$, con f simbolo funzionale binario, e sia φ l'enunciato

$$\forall x \exists y \forall z \ f(f(x,y),z) = z$$

- Mostrare che φ è soddisfacibile
- Mostrare che φ non è valido
- Stabilire se $(\mathbb{Q},\cdot) \models \varphi$

• È conveniente cominciare determinando se $(\mathbb{Q},\cdot) \models \varphi$. Questo si ha se e solo se, per ogni $x \in \mathbb{Q}$ esiste $y \in \mathbb{Q}$ tale che per ogni $z \in \mathbb{Q}$ si abbia

$$xyz = z$$

Questo è falso perché (ponendo x=0) si ha 0yz=0 quindi non esiste alcun y tale che per ogni z risulti xyz=z. Quindi

$$(\mathbb{Q},\cdot)\not\models\varphi$$

- Poiché $(\mathbb{Q},\cdot) \not\models \varphi$, segue che φ non è valido.
- Si ha $(\mathbb{Z},+)\models \varphi$. Infatti, per ogni $x\in \mathbb{Z}$, esiste $y\in \mathbb{Z}$ tale che per ogni $z\in \mathbb{Z}$ si abbia x+y+z=z: basta scegliere y=-x. Quindi φ è soddisfacibile.

Sia $L = \{R\}$, con R simbolo relazionale binario. Mostrare che

$$\forall x \exists y R(x, y) \not\models \exists y \forall x R(x, y)$$

Svolgimento. Basta osservare che

$$(\mathbb{N}, \leq) \models \forall x \exists y R(x, y), \qquad (\mathbb{N}, \leq) \not\models \exists y \forall x R(x, y)$$

Infatti:

- $(\mathbb{N}, \leq) \models \forall x \exists y R(x, y)$, perché per ogni $x \in \mathbb{N}$ c'è un numero y tale che $x \leq y$, per esempio y = x + 1
- $(\mathbb{N}, \leq) \not\models \exists y \forall x R(x, y)$, ovvero $(\mathbb{N}, \leq) \models \neg \exists y \forall x R(x, y)$, perché non c'è un numero massimo

Sia $L=\{P,Q\}$, con P,Q simboli relazionali unari. Mostrare che

$$\exists x (P(x) \to Q(x)) \not\models \exists x P(x) \to \exists x Q(x)$$

Si cerca una L-struttura A tale che

$$A \models \exists x (P(x) \rightarrow Q(x)), \quad \text{ma} \quad A \not\models \exists x P(x) \rightarrow \exists x Q(x)$$

La condizione $\mathcal{A} \models \exists x (P(x) \rightarrow Q(x))$ equivale a

$$\mathcal{A} \models \exists x (\neg P(x) \lor Q(x))$$

mentre la condizione $\mathcal{A} \not\models \exists x P(x) \to \exists x Q(x)$ equivale alle due condizioni

$$\mathcal{A} \models \exists x P(x)$$

$$\mathcal{A} \models \neg \exists x Q(x))$$

Svolgimento (cont.)

Le condizioni (2) e (3) significano che

$$P^{\mathcal{A}} \neq \emptyset, \qquad Q^{\mathcal{A}} = \emptyset$$

Pertanto, affinché anche $\mathcal{A} \models \exists x (\neg P(x) \lor Q(x))$, si deve e basta avere che esista un elemento che non soddisfi $P^{\mathcal{A}}$, cioè

$$P^{\mathcal{A}} \neq |\mathcal{A}|$$

Una struttura ${\mathcal A}$ come richiesto si può fare con un universo che abbia almeno due elementi. Per esempio

$$\mathcal{A} = (\{0,1\},\{0\},\emptyset)$$

Sia $L = \{f, c\}$, dove:

- f è simbolo funzionale binario
- c è simbolo di costante

Trovare un enunciato φ tale che

$$(\mathbb{N},\cdot,17)\models\varphi,\qquad (\mathbb{N},\cdot,12)\not\models\varphi$$

Si osserva che 17 è un numero primo, mentre 12 non lo è. Un enunciato φ come richiesto sarebbe allora un enunciato che affermi

c è un numero primo

cioè

per ogni
$$x$$
 e y , se $xy = c$, allora $x = 1$ o $y = 1$

l'asserzione la cui interpretazione è x=1 può essere espressa in L con

$$\forall z \ f(x,z) = z$$

e similmente per y=1. Allora un enunciato φ come richiesto è

$$\forall x \forall y (f(x,y) = c \rightarrow \forall z \ f(x,z) = z \lor \forall z \ f(y,z) = z)$$

Sia $L = \{R, f, c\}$, con

- R simbolo relazionale binario
- f simbolo funzionale binario
- c simbolo di costante

Dimostrare che l'enunciato

$$\varphi : \forall x R(f(x,x),c)$$

è soddisfacibile, ma non valido

Sia
$$A = (A, R^A, f^A, c^A)$$
, dove

- $A = \{0\}$
- $R^{A} = \{(0,0)\}$
- $f^{\mathcal{A}}: A^2 \to A$ è definita ponendo: $f^{\mathcal{A}}(0,0) = 0$
- $c^{\mathcal{A}}=0$

Allora $A \models \varphi$. Quindi φ è soddisfacibile.

Sia $\mathcal{B} = (B, R^{\mathcal{B}}, f^{\mathcal{B}}, c^{\mathcal{B}})$ uguale in tutto a \mathcal{A} , salvo nell'interpretazione di R:

- $B = \{0\}$
- $R^{\mathcal{B}} = \emptyset$
- $f^{\mathcal{B}}: B^2 \to B$ è definita ponendo: $f^{\mathcal{B}}(0,0) = 0$
- $c^{B} = 0$

Allora $\mathcal{B} \not\models \varphi$. Quindi φ non è valido.

Sia $L = \{R\}$, con R simbolo relazionale binario.

Per ogni numero naturale positivo k, sia Div(k) l'insieme dei divisori di k. Sia | la relazione di divisibilità tra naturali positivi, cioè

 $n|m \Leftrightarrow n$ è un divisore di m

Determinare per quali k, con $1 \le k \le 10$ si ha che

$$(Div(k),|) \models \forall x \forall y (R(x,y) \lor R(y,x))$$

Si ha che $(Div(k), |) \models \forall x \forall y (R(x, y) \lor R(y, x))$ se e solo se dati due divisori di k, uno dei due è divisore dell'altro. Questo equivale a dire che o k = 1, o nella decomposizione in fattori primi di k:

$$k=p_1^{n_1}p_2^{n_2}\cdot\ldots\cdot p_r^{n_r}$$

c'è un solo fattore, cioè

$$k = p^n$$

per qualche numero primo p.

Quindi i numeri k tra 1 e 10 tali che $(Div(k), |) \models \forall x \forall y (R(x, y) \lor R(y, x))$ sono:

Esercizio (esame del 10-1-2019)

Sia $\mathcal{L} = \{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale unario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}),$ dove:

- Z è l'insieme dei numeri interi;
- $f^{\mathcal{A}}$ è l'operazione di opposto, cioè $f^{\mathcal{A}}(u) = -u$ per ogni $u \in \mathbb{Z}$;
- $f^{\mathcal{B}}$ è l'operazione di raddoppio, cioè $f^{\mathcal{B}}(u)=2u$, per ogni $u\in\mathbb{Z}$.

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A}\models\varphi,\mathcal{B}\not\models\varphi$.

Esercizio (esame del 10-1-2019)

Sia $\mathcal{L}=\{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale unario. Si considerino le \mathcal{L} -strutture

$$\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}), \text{ dove:}$$

- Z è l'insieme dei numeri interi;
- $f^{\mathcal{A}}$ è l'operazione di successore, cioè $f^{\mathcal{A}}(u) = u + 1$ per ogni $u \in \mathbb{Z}$;
- $f^{\mathcal{B}}$ è l'operazione di elevamento al quadrato, cioè $f^{\mathcal{B}}(u) = u^2$, per ogni $u \in \mathbb{Z}$.

Determinare, se esiste, un enunciato φ che distingua $\mathcal A$ da $\mathcal B$, cioè tale che $\mathcal A\models\varphi,\mathcal B\not\models\varphi.$

Esercizio (esame del 10-1-2019)

Sia $\mathcal{L} = \{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale binario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}),$ dove:

- Z è l'insieme dei numeri interi;
- $f^{\mathcal{A}}$ è l'operazione di addizione, cioè $f^{\mathcal{A}}(u,v) = u + v$ per ogni $u, v \in \mathbb{Z}$;
- $f^{\mathcal{B}}$ è l'operazione di sottrazione, cioè $f^{\mathcal{B}}(u,v)=u-v$, per ogni $u,v\in\mathbb{Z}$.

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

Esercizio (esame del 3-6-2019)

Sia $\mathcal{L}=\{P,Q\}$ un linguaggio del prim'ordine, dove P è simbolo relazionare unario e Q è simbolo relazionale binario. Si considerino gli enunciati

$$\varphi: \forall x \forall y \ (Q(x,x) \land P(y)), \qquad \psi: \forall x \forall y \ (Q(x,y) \land P(y))$$

Si definisca una *L*-struttura

$$\mathcal{A}=(A,P^{\mathcal{A}},Q^{\mathcal{A}})$$

tale che $\mathcal A$ soddisfi esattamente uno tra φ e ψ .