LOOP INVARIANT

At the start of each iteration of the **for** loop of lines 1–8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order.

We use loop invariants to help us understand why an algorithm is correct. We must show three things about a loop invariant:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration of the loop. (Of course, we are free to use established facts other than the loop invariant itself to prove that the loop invariant remains true before each iteration.) Note the similarity to mathematical induction, where to prove that a property holds, you prove a base case and an inductive step. Here, showing that the invariant holds before the first iteration corresponds to the base case, and showing that the invariant holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since we are using the loop invariant to show correctness. Typically, we use the loop invariant along with the condition that caused the loop to terminate. The termination property differs from how we usually use mathematical induction, in which we apply the inductive step infinitely; here, we stop the "induction" when the loop terminates.

Let us see how these properties hold for insertion sort.

INSERTION-SORT (A)1 **for** j = 2 **to** A.length2 key = A[j]3 # Insert A[j] into the sorted sequence A[1..j-1]. 4 i = j-15 **while** i > 0 and A[i] > key

6 A[i + 1] = A[i]7 i = i - 18 A[i + 1] = key

Initialization: We start by showing that the loop invariant holds before the first loop iteration, when j = 2. The subarray A[1..j-1], therefore, consists of just the single element A[1], which is in fact the original element in A[1]. Moreover, this subarray is sorted (trivially, of course), which shows that the loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration maintains the loop invariant. Informally, the body of the **for** loop works by moving A[j-1], A[j-2], A[j-3], and so on by one position to the right until it finds the proper position for A[j] (lines 4–7), at which point it inserts the value of A[j] (line 8). The subarray A[1..j] then consists of the elements originally in A[1..j], but in sorted order. Incrementing j for the next iteration of the **for** loop then preserves the loop invariant.

A more formal treatment of the second property would require us to state and show a loop invariant for the **while** loop of lines 5–7. At this point, however,

we prefer not to get bogged down in such formalism, and so we rely on our informal analysis to show that the second property holds for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. The condition causing the **for** loop to terminate is that j > A.length = n. Because each loop iteration increases j by 1, we must have j = n + 1 at that time. Substituting n + 1 for j in the wording of loop invariant, we have that the subarray A[1..n] consists of the elements originally in A[1..n], but in sorted order. Observing that the subarray A[1..n] is the entire array, we conclude that the entire array is sorted. Hence, the algorithm is correct.