

Esmiralda Moradian 2021-12-02

Introduction

- OS goals
- Methods of protection
 - Physical separation
 - Temporal separation
 - Logical separation
 - Cryptographic separation

Memory and address protection

- Fence
- Relocation
- Base register
- Bounds register
- Tagged architecture
- Segmentation

Access control

- Directory
- Access control list
- Access control matrix
- Capability
- Passwords

Security Policies

- Defines what is allowed
- Security policy
 - Considers all relevant aspects of confidentiality, integrity and availability
 - Partitions a system into
 - Set of secure states
 - Set of non-secure state

Security policies (cont.)

Military security policy Commercial security policy

Security model

- Provides a formal representation of a security policy or set of policies
- Indicate which rules decide who and in which way get an access to the information resources or resources that gives access to the information resources

The Bell-LaPadula Model (BLP)

- Was published in 1973
- Specifies multilevel security
- BLP consists of:
 - Subjects, denoted individually S
 - Objects passive entities, denoted O
 - The modes of access are represented by access attributes x
 - Four different access modes are defined in model:
 - <u>e</u> (execute)
 - <u>r</u> (read)
 - <u>a</u> (append)
 - <u>w</u> (write)

The Bell-LaPadula Model (BLP)

- •BLP enforces 2 properties
 - 1.Simple security property (ss-property)(no read-up)
 - S can read O if and only if S dominates O and S has discretionary read access to O
 - 2. Star property (* property) (no write-down)
 - S can write to O if and only if O dominates S and S has discretionary write access to O

Biba model

- defined by Biba in 1977
- The model consists of:
 - A set S of subjects
 - A set O of objects
 - A set I of ordered integrity levels
- Uses a read up, write down approaches

Clark-Wilson Integrity Model

- Address the security requirements of commercial applications
- Models
 - control of internal and external consistency
 - control of authorised users activities inside the system based on two key concepts:
 - 1. Well-formed transactions
 - 2. Separation of duty

Clark-Wilson Integrity Model

The elements of Clark-Wilson model

- Constrained data items (CDIs)
- Unconstrained data items (UDIs)
- Integrity verification procedures (IVPs)
- Transformations procedures (TPs)
- •IVPs check that a system starts in a valid state that can only be changed by TPs.
- •TPs are certified to preserve the validity of system states
- Enforces four separate, but related security properties, such as Integrity, Access control, Auditability, Accountability

Rule	Description
CR1	IVPs must ensure that CDIs are valid
CR2	TPs on CDIs must result in a valid CDI
ER1	Only certified TPs can operate on TPs
ER2	Users must only access CDIs through TPs for which they are authorised
CR3	Separation of priviledge & least priviledge
ER3	Users must be authenticated
CR4	TPs must be logged
CR5	TPs on UDIs must result in a valid CDI
ER4	Only administrator can specify TP authorisation

Certification rules (CR) Enforcement rules (ER)

Chinese Wall Security Policy

- •The goal of this model is to prevent a conflict of interest
- •All corporate information objects are stored in a hierarchically arranged structure
- Three layers of abstraction
 - Objects: objects are items of information related to a company
 - Company group: objects concerning each corporation are grouped together in a company dataset (CD)
 - Conflict classes: datasets whose corporation are in competition, are grouped together in a conflict of interest (COI) class

Chinese Wall Model

- Mandatory rule for restricting read access:
 - Subject S can read object O only if
 - O is in the same company dataset as an object already accessed by that subject (i.e. O is within the wall), or
 - 2. O belongs to an entirely different conflict of interest class
- The write rule:
 - 1. S can read O by the read-rule, and
 - 2. No object can be read which is in a different company dataset to the one from which access is requested and contains unsinitized information

The security kernel

- Security Kernel responsible for enforcing security mechanisms of the entire OS
 - Coverage: ensure that every access is checked
 - Separation: security mechanisms are isolated from the rest of OS and from user space → easier to protect
 - Unity: all security mechanisms are performed by a single set of code → easier to trace problems
 - Modifiability: security mechanism changes are easier to make and test
 - Verifiability: formal methods, all situations are covered

Reference monitor

- Reference monitor: an access control concept that refers to an abstract machine that mediates all accesses to objects by subjects
- Collection of access controls for devices, files, memory and other objects
- Must be single point through which all access requests must pass
- Must be correct

Trusted Computing Base (TCB)

- Trusted Computing Base (TCB) is defined as a totality of hardware and software protection mechanisms responsible for enforcing the security policy of a given system.
- When is TCB monitors four basic interactions:
 - Process activation
 - Domain switching
 - Memory protection
 - I/O operations

Vulnerabilities

- User interaction
- Ambiguity
- Incomplete mediation
- Generality

Assurance methods

- Testing
- Penetration testing
- Formal verification
- Validation
- Evaluation

Thank you!