Electronic and Topological Properties In Graphene and Kagome Lattices

Final report on Class PH353

Gengpu Li

Shanghai JiaoTong University Zhiyuan Colledge Physics

ligengpu_lim@sjtu.edu.cn
January 12, 2019

Outline

- Introduction
- Band Structure
- Berry Curvature and Chern Number
- Conclusion

- Introduction
- Band Structure
- Berry Curvature and Chern Number
- Conclusion

Review of Proposal

- (Basic) Learn some basis ideas and theory of solid-state physics and then deduce the band structure of graphene by tight-binding model.
- ▷ (Initial Applications) Deduce the band structure in Kagome lattice if time allows.
- Chern number

WORK TO DO	Begin	Finish
Reading Text Book	Sep. 23rd/Sep. 23rd	Nov. 4th/Oct. 28th
Graphene	TBD/Oct. 28th	Nov. 4th/Nov. 4th
Kagome Lattices	Nov. 19th/Nov. 4th	Nov. 25th/Nov. 18th
Preparation	Nov. 25th/Nov. 15th	Exam Weeks/Dec. 2nd
Berry Curvature	Winter/Nov. 15th	TBD /Dec. 16nd

Introduction

Figure: Mind map

Structure of Two Lattices

Figure: Structure of Kagome Lattices and Line Graph relation

Line Graph

Given a graph $G = (V_1, E_1)$, its line graph $L(G) = (V_2, E_2)$

- $\triangleright V_2 = E$
- two vertices of L(G) are adjacent iff their corresponding edges are incident in G.

- Introduction
- Band Structure
- Berry Curvature and Chern Number
- Conclusion

Tight-Binding Model

The main assumption of TBM(LCAO) is that crystal states is linear combinations of atomic orbitals. By some further meticulous semi-empirical approach, one takes that:

Formula

The energy are obtained from

$$||H_{ij} - E\delta_{ij}|| = 0 \tag{1}$$

$$H_{ij} = E_i \delta_{ij} + \sum_{\mathbf{t_I}} e^{i\mathbf{k} \cdot \mathbf{t_I}} \int \phi_i^*(\mathbf{r}) V_a(\mathbf{r} - \mathbf{t_I}) \phi_j(\mathbf{r} - \mathbf{t_I})$$
 (2)

 E_i : atomic energy $\mathbf{t_I}$: first neighbors

 ϕ_i : atomic orbitals

 $V_a(r)$: atomic-liked potential

Band Structure in Graphene and Kagome Lattices

$$E_{\text{gra}} = \pm t \sqrt{1 + 4\cos^2\frac{k_x a}{2} + 4\cos\frac{k_x a}{2}\cos\frac{\sqrt{3}k_y a}{2}}$$

$$E_{\text{kago}} = t(1 \pm \sqrt{1 + 4\cos^2\frac{k_x a}{2} + 4\cos\frac{k_x a}{2}\cos\frac{\sqrt{3}k_y a}{2}})/-2t$$

Discussion

- \triangleright The upper bands are similar but Kagome have a flat bands \rightarrow infinite mass
- \triangleright Upper bands are degenerate at $K^{'}, K$ and the energy is linear dependent of length of momentum($E = v_F \hbar |k|$) \rightarrow massless

The effective mass

The effective mass is defined by

$$\frac{1}{m^*} = \frac{1}{\hbar} \frac{\partial^2 E}{\partial k^2} \tag{3}$$

- Introduction
- Band Structure
- Berry Curvature and Chern Number
- Conclusion

Definition of Berry Phase

The Berry Curvature is defined by the geometric Berry phase which was introduced by Berry in 1984.[?] The Berry Phase was defined by

$$\gamma_n(C) := i \oint \langle \phi_n(r; \mathbf{R}) | \nabla_{\mathbf{R}} \phi_n(r; \mathbf{R}) \rangle \cdot d\mathbf{R}$$

$$:= \oint A_n(\mathbf{R}) d\mathbf{R}$$
(4)

The Physical means of Berry phase is related to adiabatic evolution:

Physical Meaning

Consider the time dependent Schrödinger equation.

$$i\hbar \frac{\partial}{\partial t} \Phi(t) = H(\mathbf{R}(t))\Phi(t)$$
 (5)

The evolution of eigenstate can be deduced from TD-Schrödinger equation,

$$\Phi(t) = e^{i\gamma(t)} e^{-i/\hbar \int E(t)dt} \phi(t)$$

($\phi(t)$ is the eigenstate $H(R)\phi(t)=E(R)\phi(t)$)

Besides normal mechanical phase, there is an additional geometric phase change during adiabatic evolution.

topological properties

Physical Meaning

Consider the time dependent Schrödinger equation.

$$i\hbar \frac{\partial}{\partial t} \Phi(t) = H(\mathbf{R}(t))\Phi(t)$$
 (5)

The evolution of eigenstate can be deduced from TD-Schrödinger equation,

$$\Phi(t) = e^{i\gamma(t)} e^{-i/\hbar \int E(t)dt} \phi(t)$$

 $(\phi(t))$ is the eigenstate $H(R)\phi(t)=E(R)\phi(t)$ Besides normal mechanical phase, there is an additional geometric phase change during adiabatic evolution. topological properties!

Gauge Transform and Berry Curvature

We now that wave functions can have an arbitrarily phase. $\phi^{'}=\mathrm{e}^{i\alpha(R)}\phi$

$$A'_{n}(R) = \left\langle \phi'_{n}(r; \mathbf{R}) \middle| \nabla_{\mathbf{R}} \phi'_{n}(r; \mathbf{R}) \right\rangle = A_{n}(R) - \nabla_{\mathbf{R}} \alpha(R)$$
 (6)

Roughly apply Stock's law.(whether A is continuous?)

$$B_n(\mathbf{R}) \coloneqq \nabla_{\mathbf{R}} \times A_n(\mathbf{R}) \tag{7}$$

We have:

$$B_n(\mathbf{R}) := -\Im \sum_{m(\neq n)} \langle \nabla_{\mathbf{R}} \phi_n \, | \, \phi_m \rangle \times \langle \phi_m \, | \, \nabla_{\mathbf{R}} \phi_n \rangle \tag{8}$$

Berry Curvature in Graphene and Kagome Lattices

Naturally, we use k as parameters. Here we modify the Hamiltonian with a small energy gap to avoid the ill define. (BN lattices)

Figure: Graphene

The Berry Curvature in Kagome Lattices vanish everywhere.

Discussion

Time Reversal Symmetry: B(k) = -B(-k)

Spatial Inversion Symmetry: B(k) = -B(k)

Small energy gap break the spatial inversion symmetry in Graphene but not in Kagome. So Berry Curvature vanishes in kagome lattices.

Chern Number

We naturally extend Gauss-Bonet Theorem into Chern-Gauss-Bonet Theorem:

$$\begin{cases} \iint KdS = 2\pi\chi \text{ (GB-Theorem)} \\ \iint BdS = 2\pi c \text{ (CGB-Theorem)} \end{cases}$$
 (9)

The χ is Euler characteristic number and c is Chern number. Chern Number is an topological invariable which measure whether there is an obstruction to choosing a perfect gauge to make Berry connection continuity.

- Introduction
- I ight-binding model and its application
- Berry Phase and Chern Number
- Conclusion

Conclusion

The band structure of Graphene and Kagome reflect to different types of carriers.

TRS \rightarrow 0 Chern number \rightarrow trivial topological properties

Further works

Break TRS \rightarrow magnetic field \rightarrow QHE

