prueba

October 25, 2019

```
[1]: import numpy as np
     import matplotlib.pyplot as plt
     from scipy.optimize import curve_fit
     from pylab import *
     from io import StringIO
[2]: s = open("Datos12.txt").read().replace(",", ".")
    t,T = transpose(loadtxt(StringIO(s)))
     DT= 0.2
     dS=DT/sqrt(12)*np.ones_like(T)
     def fit_func(t, tau,TF ,DeltaT):
        return TF - DeltaT*exp(-t/tau)
     params,pcov12 = curve_fit(fit_func, t, T,sigma=dS, absolute_sigma=True)
     tau12, T0, DeltaT = params
     plot(t, T, "o")
     plot(t, fit_func(t, tau12, T0, DeltaT))
     xlabel("t (s)")
     ylabel("T ($^\circ$C)")
     plt.show()
```


0.1 Materiale

Strumenti	Divisione	Portata
2 Termometri a mercurio	$0.2^{\circ}C$	$100^{\circ}C$
Bilancia	0.1g	_
Calorimetri	_	1l
Cronometro	0.01s	

0.2 1. Costante di tempo del termometro

0.2.1 Relazioni di base per il processo ideale

La relazione che lega la risposta del termometro al tempo è data dalla seguente formula:

$$T(t) = T_{amb} + (T_f - T_{amb})e^{-\frac{t}{\tau}}$$

dove: - T(t) rappresenta la temperatura mostrata sul termometro all'istante di tempo t; - T_{amb} rappresenta la temperatura riportata sul termometro prima che questo venga inserito nel bagno di acqua cala, ovvero la temperatura al tempo t=0; - T_f rappresenta la temperatura dell'acqua calda; - τ rappresenta la costante di tempo del termometro che vogliamo stimare;

0.2.2 Procedimento di misura

1. Nel primo calorimetro versiamo una quantità di acqua alla temperatura di $\sim 54^{\circ}C$, che rappresenta la nostra T_f ; nel secondo una quantità di acqua a temperatura ambiente;

- 2. Immergiamo il termometro nel bagno di acqua a temperatura ambiente e aspettiamo che termalizzi con l'acqua stessa; a termalizzazione avvenuta registriamo la temperatura segnata dal termometro come T_{amb}
- 3. Immergiamo il termometro nel calorimetro con l'acqua calda e registriamo la temperatura segnta ad intervalli di tempo fissati (0.5s);

Effettuiamo l'analisi dei dati servendoci di Python. ### Dati

t: tempo (s)

T: temperatura (${}^{\circ}C$)

DT: risoluzione del termometro (distanza tra due tacche)

sT: incertezza (deviazione standard) su T

0.3 Calcolo attraverso la legge di raffreddamento di Newton

E' possibile calcolare analiticamente il valore di τ attraverso la legge di raffreddamento di Newton

$$\tau = \frac{C}{hA}$$

dove - C é la capacitá termica del mercurio, che possiamo calolare come attraverso il calore specifico e la massa, il primo noto, la seconda ricavata dalla relazione $v\rho=m$. Sapendo che $\rho=1.3\cdot 10^4 Kg/m^3$ e, assumendo una forma cilindrica per il bulbo, dati l'altezza 1=11 mm e il diametro 1=11 del bulbo, si ottiene che

$$C = cv\rho$$

- h é il coefficiente di convezione in acqua statica e vale \$ 750 W/m^2K \$; - A é la superficie del bulbo

[]: