Optimal Control Problem D-T

Giorgio Medico

25 October 2025

1 Problem Formulation

The goal is to find the optimal state sequence $X = \{x_1, \ldots, x_T\}$ and control sequence $U = \{u_0, \ldots, u_{T-1}\}$ that minimize a cost function subject to the system's dynamics. This is a nonlinear optimal control problem, which can be stated in the following general form:

$$\min_{X,U} \sum_{t=0}^{T-1} L(x_t, u_t) + L_f(x_T)$$
 (1)

s.t.
$$x_{t+1} = f(x_t, u_t),$$
 $t = 0, \dots, T-1$

$$x_0 = x^0$$

$$u_{min} \le u_t \le u_{max},$$
 $t = 0, \dots, T-1$

$$q_{min} \le q_t \le q_{max},$$
 $t = 1, \dots, T$

$$\bar{q}_{min} \le \dot{q}_t \le \dot{q}_{max},$$
 $t = 1, \dots, T$

$$\bar{\eta}_i(x_t) \le \bar{\eta}_{lim},$$
 $t = 1, \dots, T,$ $i \in \{IC, EC\}$

(where q_t and \dot{q}_t are sub-vectors of the state x_t)

1.1 Problem-Specific Definitions

The general terms L, L_f, f, x, u , and x^0 are defined for our specific robot-and-sloshing problem as follows:

• Time Horizon (T): The number of discrete time steps, $T = t_{end}/dt$.

• State Vector (x_t) : The \mathbb{R}^{20} state at time t:

$$x_{t} = [q_{t}^{T}, \dot{q}_{t}^{T}, x_{IC,t}, y_{IC,t}, \dot{x}_{IC,t}, \dot{y}_{IC,t}, x_{EC,t}, y_{EC,t}, \dot{x}_{EC,t}, \dot{y}_{EC,t}]^{T}$$

(where q_t and \dot{q}_t are respectively joint position and velocity)

• Control Vector (u_t) : The \mathbb{R}^6 joint torque vector at time t:

$$u_t = \tau_t$$

• Stage Cost (L): This includes pose tracking, sloshing suppression (with $\overline{\eta}^{des} = 0$), and control effort (with $u^{des} = 0$).

$$L(x_t, u_t) = \frac{1}{2} \|p_{EE}(q_t) - p_{ref,t}\|_{Q_p}^2 + \frac{1}{2} \sum_{i \in \{IC.EC\}} \|\overline{\eta}_i(x_t)\|_{Q_\eta}^2 + \frac{1}{2} \|u_t\|_R^2$$

Here, $p_{EE}(q_t)$ is the robot's **Forward Kinematics** function. The sloshing height $\overline{\eta}_i(x_t)$ is calculated from the state variables (using the paper's Eq. (18)):

$$\overline{\eta}_i(x_t) = \frac{\xi_{11}^2 h m_1}{m_F R} \sqrt{x_{i,t}^2 + y_{i,t}^2}$$

(where $x_{i,t}$ and $y_{i,t}$ are components of the state x_t).

• Terminal Cost (L_f) : The cost on the final state, x_T . This heavily penalizes final pose error, final velocity, and residual sloshing.

$$L_f(x_T) = \frac{1}{2} \|p_{EE}(q_T) - p_{ref,T}\|_{P_p}^2 + \frac{1}{2} \sum_{i \in \{IC,EC\}} \|\overline{\eta}_i(x_T)\|_{P_{\eta}}^2 + \frac{1}{2} \|\dot{q}_T\|_{P_{\dot{q}}}^2$$

(Note: \dot{q}_T is a sub-vector of x_T).

• Discrete Dynamics (f): The function that maps the current state and control to the next state.

$$x_{t+1} = f(x_t, u_t) = RK4(\dot{x}, x_t, u_t, \Delta t)$$

This represents one step of a numerical integrator (like 4th-order Runge-Kutta). It is applied to the continuous dynamics function $\dot{x} = f_{cont}(x, u)$, which is the core of the coupled model:

To compute $\dot{x} = f_{cont}(x, u)$, the following steps are performed:

1. **Robot Dynamics:** Calculate joint accelerations \ddot{q} from the current state (q, \dot{q}) and torque input $u = \tau$:

$$\ddot{q} = M(q)^{-1}(\tau - C(q, \dot{q})\dot{q} - G(q))$$

2. **EE Kinematics:** Calculate the EE (tray) linear and angular velocities and accelerations from the robot's joint state:

$$\begin{split} [\dot{r}^T, \omega^T]^T &= J(q)\dot{q} \\ [\ddot{r}^T, \dot{\omega}^T]^T &= \dot{J}(q, \dot{q})\dot{q} + J(q)\ddot{q} \end{split}$$

3. Container Acceleration: Calculate the acceleration \ddot{r}_i for each container (IC, EC) using the EE motion and relative position, as defined in the paper's Eq. (10):

$$\ddot{r}_i = \ddot{r} + \dot{\omega} \times d_i + \omega \times (\omega \times d_i)$$

4. Sloshing Dynamics: Use \ddot{r}_i , ω (for $\dot{\theta}$), and $\dot{\omega}$ (for $\ddot{\theta}$) as inputs to the sloshing EOMs to solve for the sloshing accelerations (\ddot{x}_n, \ddot{y}_n) . From the paper's Eq. (16):

$$\begin{bmatrix} 1 + P_n^2 x_n^2 & P_n^2 x_n y_n \\ P_n^2 x_n y_n & 1 + P_n^2 y_n^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_n \\ \ddot{y}_n \end{bmatrix} = \begin{bmatrix} a_{i,n} \\ b_{i,n} \end{bmatrix}$$

where $a_{i,n}$ and $b_{i,n}$ are functions of the state and the calculated accelerations (from paper's Eq. 17).

5. State Derivative Vector: Construct the full state derivative \dot{x} :

$$\dot{x} = [\dot{q}^T, \ddot{q}^T, \dot{x}_{IC}, \dot{y}_{IC}, \ddot{x}_{IC}, \ddot{y}_{IC}, \dot{x}_{EC}, \dot{y}_{EC}, \ddot{x}_{EC}, \ddot{y}_{EC}]^T$$

The RK4 integrator then uses this \dot{x} vector to compute x_{t+1} .

• Initial State (x^0) :

$$x^0 = [q_0^T, 0_6^T, 0_8^T]^T$$

where $q_0 = \text{InverseKinematics}(p_{ref,0})$.

- Path Constraints: These are the physical limits on the system:
 - Torque Limits: $u_{min} = \tau_{min}$ and $u_{max} = \tau_{max}$.
 - Joint Position Limits: q_{min} and q_{max} .
 - Joint Velocity Limits: \dot{q}_{min} and \dot{q}_{max} .
 - Sloshing Height Limit: $\overline{\eta}_{lim}$, a positive scalar value.