Adopted Levels, Gammas

	His	story	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 127, 69(2015)	1-Apr-2015

 $Q(\beta^-)$ =-18601 *SY*; S(n)=19385 *16*; S(p)=5504.3 *4*; $Q(\alpha)$ =-8142.5 *5* 2012Wa38 $\Delta Q(\beta^-)$ =401(syst) 2012Wa38.

²²Mg Levels

Cross Reference (XREF) Flags

		B 23 S C 1H0 D 1H0	Al ε decay F ii ε p decay G (21 Na, γ) H (21 Na,P): res I C(12 C,2n γ) J	$ \begin{array}{lll} ^{12}{\rm C}(^{16}{\rm O},^{6}{\rm He}) & {\rm K} & ^{24}{\rm Mg(p,t)} \\ ^{12}{\rm C}(^{22}{\rm Mg},^{22}{\rm Mg'}) & {\rm L} & ^{24}{\rm Mg}(\alpha,^{6}{\rm He}) \\ ^{12}{\rm C}(^{23}{\rm Al},^{22}{\rm Mg}\gamma) & {\rm M} & ^{25}{\rm Mg}(^{3}{\rm He},^{6}{\rm He}) \\ ^{18}{\rm Ne}(\alpha,{\rm p}) & ^{20}{\rm Ne}(^{3}{\rm He},{\rm n}),(^{3}{\rm He},{\rm n}\gamma) \\ \end{array} $
E(level) [†]	J^π	T _{1/2} &	XREF	Comments
0.0	0+	3.8755 s 12	ABC EF HIJK M	$%\varepsilon+%β^+=100$ $δ(^{26}Mg,^{22}Mg)=+0.214$ fm ² 5 (stat) 51 (syst) (2012Yo01). $^{1/2}=3.0691$ fm 7 (stat) 86 (syst) (2012Yo01). J^π : L=0 in (p,t). $T_{1/2}$: From 2003Ha20. Other value: 3.857 s 9 (1972Ha58,1975Ha21). 2015Ha07 Weighted average of data in 2003Ha20 and 1975Ha21 is 3.8752 s 24 at 2σ (2015Ha07).
1247.02 3	2+	2.0 ps 8	ABC EF H JK M	J^{π} : L=2 in (p,t); E2 γ to 0 ⁺ . $T_{1/2}$: From weighted average of 2.9 ps 10 (1975Gr04) and 1.3 ps 9 (symmetric value of 0.7 ps +15-3 (1972Ro20)) in (3 He,n,)(3 He,n γ).
3308.22 6	4+	200 fs 45	A C EF H JK M	J^{π} : E2 γ to 2 ⁺ , member of isobaric triplet.
4402.0 <i>3</i>	2+	<21 fs	C EF JK M	J^{π} : L=(2) and natural parity in (p,t). (M1) to 2^+ , γ' s to 0^+ and 4^+ .
5035.4 5	2+	<0.07 ns	EF JK M	E(level): From (12 C,2n γ).
				J^{π} : L=2 in (³ He,n) and L=(2) and natural parity in (p,t).
5089.3 8	(1+)		E K M	J^{π} : Assigned in 2005Se02 (12 C,2n γ) based on γ ray feeding and transition characteristics.
5293.11 <i>16</i>	(4+)	44 fs <i>15</i>	А Е Н ЈК	J^{π} : (M1+E2) γ to 4 ⁺ . 2005Se02 (¹² C,2n γ) assigned 4 ⁺ comparing with a 4 ⁺ state at 5146.0 keV in ²² Ne mirror. Natural parity in (p,t).
5296.0 4	(2-)		E J	J^{π} : Dipole γ to 2 ⁺ . 2005Se02 (12 C,2n γ) assigned 2 ⁻ comparing with a 2 ⁻ state at 5146.0 keV in 22 Ne mirror.
5318 4	(1,2,3)	<17 ns	J	J^{π} : γ to 0^+ .
5452.4 <i>4</i>	(3^+)	<0.07 ns	A E JK	XREF: J(5464).
0.02	(6)	1010 / 110		J^{π} : Dipole γ to 2 ⁺ . 2005Se02 (12 C,2n γ) assigned 3 ⁺ in analogy with a 3 ⁺ state at 5641.2 keV in 22 Ne mirror. Natural parity in 2001Ba17 (p,t) probably doubtful – 2005Se02 note the strength is noticeably suppressed.
5711.4 7	2+	28 fs 10	C EF JK M	J^{π} : L=2 in and natural parity in (p,t); L=2 in (³ He,n). $\Gamma_p/\Gamma < 0.20$ (2003Da36).
5838 <i>5</i>	2+,3,4+	<17 ns	C J	J^{π} : γ' s to 2^+ and 4^+ .
5953.8 8	0+		C JK	XREF: J(5980). $\Gamma_p/\Gamma = 0.98 \ I \ (2003Da36)$. E(level): From (p,t). J^{π} : L=0 in (³ He,n) and (p,t).
6043 3	(0+)		C F KLM	E(level): From 6036.2 8 (p,t), 6042 13 (21 Na, γ), 6051 4 (3 He, 6 He), 6041 11 (16 O, 6 He), 6059 9 (α , 6 He) using The Limitation of Relative Statistical Weight method (1985 ZiZY). J ^{π} : Natural parity in 2001Ba17 (p,t), L=0 in (p,t). However,

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ &	XRE	F	Comments
					2003Da36 assign 1 ⁻ .
6226.1 10	(4^{+})		A C F	K M	$\Gamma_p/\Gamma = 0.97 \ 3 \ (2003Da36).$ E(level): From (p,t).
022011 10	(.)				J^{π} : L=4 in (3 He,n); Analogue state of 6345.1 (J^{π} =4 ⁺) in 22 Ne.
6242.79.11			С Б	м	(2009Ma68).
6242.7? 11			C F	М	XREF: F(6255). E(level): From (²¹ Na,γ). Evaluator lists this level as doubtful based on observations in 2009Ma68 (p,t). It is noted that 2001Ba17 (p,t) measured a peak at 6241.1 keV 51 (width 26 keV 6) and suggested as a doublet. 2005Se02 (¹² C,2nγ) resolved the doublet by measuring a 6 ⁺ state at 6254 keV. 2009Ma68 measured only one level at 6226.1 keV 10 (width 13 keV). Evaluator's note: Average of 6254.23 and 6226.1 is 6240.1.
6254.23 [‡] 21	6+		Е	JKL	XREF: K(6226). E(level): From (12C,2ny).
6313 5	4+	<17 ns	A	JK	J^{π} : L=6 in ((p,t) – see comments for level at 6226.1), Q γ to 4 ⁺ . E(level): Weighted average of 6307 8 (²² Al β ⁺ decay) and 6317 6 (p,t). J^{π} : L=4 in (p,t) and (³ He,n).
6325.6 10	(1 ⁺)#	13.6 keV <i>14</i>	CD	K M	E(level): From $(^{21}\text{Na},\gamma)$.
					J^{π} : Analogue state of 6853.5 ($J^{\pi}=(1^{+})$) in ²² Ne.
6476 8			A		Γ: Other value – 16 keV 3 ((21 Na, γ) – 2004Da17).
6578 7	(1 ⁻)#	12.8 keV <i>15</i>	D	JK	E(level): From (p,t).
	,				J^{π} : From differential cross section fittings (2005Ru01).
6608 2	(2 ⁺) [#]	17.9 keV <i>16</i>	CD F	KLM	$\Gamma_{\rm p}$ =11.9 keV 14 and $\Gamma_{\rm p'}$ =0.94 keV 11 ((21 Na,p) – 2005Ru01). E(level): Weighted average of 6611 11 (21 Na,p), 6606 7 (p,t), 6605.4 25 (21 Na,γ), 6616 4 (3 He, 6 He), 6606 11 (16 O, 6 He), 6606 9 (α, 6 He). J ^π : L=0 and natural parity in (21 Na,p), analogue state of 6819.4
					$(J^{\pi}=2^{+})$ in 22 Ne. Γ : Other values: -30 keV 7 ((21 Na, γ) -2004 Da17). Γ_{p} =17.6 keV $I5$ and $\Gamma_{p'}$ =0.3 keV I ((21 Na, γ) -2005 Ru01); Γ_{p} =23 keV T ((21 Na, γ) -2009 He12).
6724 8	ш		A		
6766 12	(3 ⁻)#	105 keV <i>33</i>	D F	JKLM	J ^π : L=3 in (³ He,n). But (1 ⁺ ,2 ⁺) in 2008He04 (²¹ Na,p). E(level): Weighted average of 6792 <i>17</i> (²¹ Na,p), 6770 <i>20</i> (³ He,n),(³ He,nγ), 6768.8 <i>12</i> (p,t), 6771 <i>5</i> (³ He, ⁶ He), 6767 <i>20</i> (¹⁶ O, ⁶ He), and 6766 <i>12</i> (α , ⁶ He). Also Γ_p =94 keV <i>32</i> and $\Gamma_{p'}$ =11.1 keV <i>8</i> (2005Ru01); Γ_p =64 keV <i>20</i> (2009He12).
6865 8	(3 ⁺)#		A		J^{π} : From ²² Al β^+ decay, log $ft=5.6$ from $(4)^+$.
6876.0 12	(1 ⁻)#		D F	K M	E(level): From (p,t) .
6983 <i>9</i> 7027 <i>9</i>	(3^{-}) $[3^{+}]^{@}$			J K	J^{π} : L=3 in (³ He,n).
7027 9 7048 5	[3] ¹ [4 ⁺] [@]		Α	K	E(level): Weighted average of 7052 8 (22 Al β^+ decay) and 7045 7
7060 <i>7</i>				K	(p,t).
7079 8	[1 ⁻]@			K	
7132 8	(5^{+})		A		J^{π} : From ²² Al β^+ decay, log ft =4.75 from (4) ⁺ .
7218.3 10	0+			JKLM	E(level): From (p,t). J^{π} : L=0 in (3 He,n).

E(level) [†]	J^{π}	_	XR	EF	Comments
7254 8	(1 ⁻)#	A	D		XREF: D(7270).
7338 13	$(2^+)^{\#}$		D	K	E(level): From (p,t).
7384 8 7573 8	(3 ⁻)#	A	D F	K M	E(level): Weighted average of 7402 13 (¹⁶ O, ⁶ He), 7389 12 (p,t), and 7373 9 (³ He, ⁶ He).
7599.5 29	(2 ⁺) [#]		D	KLM	XREF: D(7585). E(level): From (p,t). Γ_p =23 keV 7 ((²¹ Na,p) - 2009He12).
7674 <i>18</i> 7741.1 <i>2</i>	(1 ⁻)#		D F	K M	XREF: D(7654). XREF: M(7757). E(level): From (p,t).
7810 <i>40</i>	(2 ⁻)#		D	J	XREF: D(7802). J^{π} : Unnatural parity (21 Na,p).
7928 <i>3</i>	[2+]@		D F	JKLM	XREF: D(7920). E(level): Weighted average of 7920.6 <i>15</i> (p,t), 7931 <i>5</i> (3 He, 6 He), 7964 <i>16</i> (16 O, 6 He), 7938 <i>9</i> (α , 6 He).
8007.0 14	[3-]@	A	D	KL	E(level): from (p,t). J^{π} : Natural parity (21 Na,p).
8062 <i>16</i>			F		
8180.3 <i>17</i> 8290 <i>40</i>	[2+]@	A	D F	KLM J	XREF: F(8203)L(8197)M(8229). E(level): From (p,t). XREF: A(8339).
8398 8	[2 ⁺] [@]		D F	KLM	XREF: D(8353).
6376 6	[2]	А	DΓ	KLII	E(level): Weighted average of 8416 8 (22 Al β^+ decay), 8394 21 (3 He, 6 He), 8396 15 (16 O, 6 He), 8380 10 (α , 6 He), 8383 13 (p,t).
8519.3 <i>21</i>	(3 ⁻)#		D F	JKLM	XREF: $F(8547)J(8550)M(8487)$. E(level): From (p,t). Γ_p =60 keV 20 ((21 Na,p) - 2009He12).
8579 6		A	D	K M	E(level): Weighted average of 8589 8 (22 Al β^{+} decay), 8598 20 (3 He, 6 He), and 8572 6
8657.5 17			D F	KL	(p,t). XREF: D(8677)F(8613)L(8644). E(level): From (p,t).
8727	$(2^+)^{\#}$		D		
8743 <i>14</i>	[4 ⁺] [@]			K	
8784.5 <i>23</i>	[1-]@		F	KLM	XREF: F(8754). E(level): From (p,t).
8827	$(1^{-})^{\#}$		D		
8933.1 29	$[2^+]^{@}$		D F	KL	E(level): Weighted average of 8925 19 (16 O, 6 He) and 8921 9 (α , 6 He).
8991 7	(1 ⁻)#	A	D	L	XREF: D(9050). E(level): Weighted average of 8985 8 (22 Al β^+ decay) and 9029 20 (α , 6 He).
9080 7			F	KL	XREF: L(9029). E(level): Weighted average of 9082 7 (p,t) and 9066 18 (¹⁶ O, ⁶ He).
9157 4	(4 ⁺)#		D F	KL	XREF: F(9172). E(level): From (p,t).
9248? 20			F		2(3,5), 110 (4,5),
9318 <i>12</i>			F	K	E(level): Weighted average of 9329 26 (¹⁶ O, ⁶ He), 9315 14 (p,t).
9378? 22				L	E(level): Weighted average of 9378 22 (¹⁶ O, ⁶ He), 9315 14 (p,t).
9452? <i>21</i>			F		
9481 18	[3 ⁻] [@]		F	K	E(level): Weighted average of 9452 21 (¹⁶ O, ⁶ He) and 9492 13 (p,t).
9529 7		A	F	KL	XREF: A(9518). E(level): Weighted average of 9518 8 (22 Al β^+ decay), 9533 24 (16 O, 6 He), 9542 12 (α , 6 He), and 9546 15 (p,t).

E(level) [†]	\mathbf{J}^{π}		XREF	Comments
				J^{π} : [2 ⁺] in 2009Ma68 (p,t) and (1 ⁻) in 2009Ch28 (p,t).
9640 9			F L	E(level): Weighted average of 9638 21 (16 O, 6 He) and 9640 10 (α , 6 He).
9712 <i>21</i>	$[0^+]^{\textcircled{@}}$	a	F K	E(level): From (¹⁶ O, ⁶ He).
9751.6 27	$(2^+,1^+)^{@}$	a	KL	E(level),J ^π : From (p,t). 2009Ma68 (p,t) propose [2 ⁺] from mirror analogy with 10137 keV level in ²² Ne.
9859 <i>5</i>	$[0^+]^{\textcircled{0}}$		F KL	E(level): Weighted average of 9827 44 (16 O, 6 He), 9853 11 (α , 6 He), and 9861 6 (p,t).
9960 <i>7</i>		Α	F L	XREF: A(9965).
				E(level): Weighted average of 9965 8 (22 Al β^+ decay), 9924 28 (16 O, 6 He), and 9953 13 (α , 6 He).
10084 <i>13</i>	$[2^+]^{\textcircled{@}}$		F KL	XREF: L(10128).
	6			E(level): Weighted average of 10087 15 (p,t) and 10078 24 ((16 O, 6 He).
10168 9	$[3^+]^{\textcircled{0}}$		F K	E(level): From (p,t).
10271.7 <i>17</i>	$[2^+]^{\textcircled{0}}$		F KL	XREF: F(10297).
				E(level): Weighted average of 10297 25 (^{16}O , ^{6}He) and 10260 10 (α , ^{6}He).
10418 8	$[4^+]^{\textcircled{0}}$	A	F KL	XREF: L(10389).
				E(level): Weighted average of 10413 IO (22 Al β^+ decay), 10429 26 (16 O, 6 He), and 10430 $I9$ (p,t).
				J^{π} : From (p,t). 2009Ch28, also in (p,t), propose (1 ⁻). Considering the presence of this level in ²² Al β^+ decay, evaluator lists [4 ⁺].
10572 22			FI	E(level): Weighted average of 10580 50 (α, p) and 10570 25 $(\alpha, {}^{6}\text{He})$.
10665 11	[3 ⁻] [@]	A	F KL	E(level): Weighted average of 10678 $I2$ (22 Al β^+ decay), 10660 28 (16 O, 6 He), 10627 20 (α , 6 He), and 10667 $I9$ (p,t).
10768 <i>13</i>	[2 ⁺] [@]		F i KL	E(level): Weighted average of 10750 31 (16 O, 6 He), 10776 20 (α , 6 He), and 10768 21 (p,t).
10876 <i>14</i>	[4 ⁺] [@]		FiK	E(level): Weighted average of 10881 15 (p,t) and 10844 38 (¹⁶ O, ⁶ He).
10901 <i>17</i>			F I L	E(level): Weighted average of 10910 50 (α ,p), 10844 38 (16 O, 6 He), and 10915 20 (α , 6 He).
11001 <i>11</i>	[0 ⁺] [@]		F I KL	E(level): Weighted average of 10990 50 (α ,p), 10980 31 (16 O, 6 He), 11015 20 (α , 6 He), and 10999 15 (p,t).
11122 <i>17</i>			F I L	E(level): Weighted average of 11130 50 (α ,p), 11135 40 (16 O, 6 He), and 11118 20 (α , 6 He).
11231? 20			L	
11314 <i>16</i>	$[4^+]^{\textcircled{0}}$	A	KL	E(level): From 11313 20 (α , ⁶ He) and 11317 27 (p,t).
11410 8		Α		
11499 <i>17</i>	$[2^+]^{@}$		K	
11594 <i>12</i>			KL	E(level): Weighted average of 11581 20 (α , ⁶ He) and 11603 16 (p,t). J^{π} : (3 ⁻ ,4 ⁺) in 2009Ch28 and [1 ⁻] in 2009Ma68 both in (p,t).
11748 <i>17</i>	$[0^+]^{\textcircled{a}}$		KL	E(level): Weighted average of 11742 20 (α , ⁶ He) and 11760 30 (p,t).
11914 <i>13</i>			KL	E(level): Weighted average of 11881 20 (α , ⁶ He) and 11937 17 (p,t). J^{π} : (1 ⁻ ,2 ⁺) in 2009Ch28 and [0 ⁺] in 2009Ma68 both in (p,t).
12003? 20			L	
12185 <i>17</i>	[3-]@		KL	E(level): Weighted average of 12169 20 (α , ⁶ He) and 12220 30 (p,t).
12474 26	[2 ⁺] [@]		K	
12665 <i>17</i>	[3 ⁻] [@]		K	22
13014 <i>37</i>		A	K	E(level): Weighted average of 13018 56 (22 Al β^+ decay) and 13010 50 (p,t). J^{π} : [0 ⁺] in (p,t) not consistent, considering population of this level in 22 Al β^+ decay from (4) ⁺ .
14012 3		A	G	E(level): IAS of ²² Al g.s., $J^{\pi}=4^{+}$. Other value: 14044 keV 15 (1982Ca16).

²²Mg Levels (continued)

$\gamma(^{22}{ m Mg})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f J_f^{π}	Mult.#	δ	Comments
1247.02	2+	1246.98 [†] 3	100	0.0 0+	E2		B(E2)(W.u.)=26 11
3308.22	4+	2061.09 [†] 5	100	1247.02 2+	E2		B(E2)(W.u.)=21 5
4402.0	2+	1090 [‡] <i>50</i>	6 [‡] 5	3308.22 4+			
		3154.7 [‡] <i>3</i>	100‡ 5	1247.02 2+	(M1)		B(M1)(W.u.)>0.029
		4400 [‡] <i>50</i>	9 [‡] 5	$0.0 0^{+}$	[E2]		B(E2)(W.u.)>0.33
5035.4	2+	3788.0 [‡] 5	100‡ 5	1247.02 2+	(M1)		$B(M1)(W.u.)>5.1\times10^{-6}$
		5037 [‡] 6	14 [‡] 5	$0.0 0^{+}$	[E2]		$B(E2)(W.u.) > 8.3 \times 10^{-5}$
5089.3	(1^+)	3841.0 [†] <i>10</i>	55 [†] 9	1247.02 2+			
		5089.9 [†] <i>12</i>	100 [†] <i>10</i>	$0.0 0^{+}$			
5293.11	(4^{+})	1984.80 [†] <i>14</i>	100	3308.22 4+	(M1+E2)		
5296.0	(2^{-})	893.98 [†] 9	100	4402.0 2+	D		E_{γ} : Placement from (12 C,2n γ).
5318	(1,2,3)	4070 [‡] 5	100 [‡] 21	1247.02 2+			
		5317 [‡] 6	43 [‡] 21	$0.0 0^{+}$			
5452.4	(3^{+})	2143.5 [†] 6	29 [†] 5	3308.22 4+			
		4205.4 [†] 5	100 [†] 7	1247.02 2+	D		
5711.4	2+	4463.5 [‡] <i>10</i>	100 [‡] 3	1247.02 2+	M1+E2	-0.17 10	B(M1)(W.u.)=0.007 3; B(E2)(W.u.)=0.08 5
		5711 [‡] <i>1</i>	15 [‡] 3	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.12 5
5838	$2^+,3,4^+$	2530 [‡] 45	25 [‡] 19	3308.22 4+			
		4590 [‡] 5	100 [‡] <i>19</i>	1247.02 2+			
6242.7?		2934.3 ^{&}		3308.22 4+			E_{γ} : From (21 Na, γ). Evaluator lists this γ -ray as doubtful based on the existence of the level at 6242.7 keV 11 . Please see comments for the depopulating level.
6254.23	6 ⁺	2945.8 [†] 2	100	3308.22 4+	Q		
6325.6	(1 ⁺)	5077.9 [@]		1247.02 2+			
	. /	6324.6 [@]		0.0 0+			
6608	(2^{+})	2205.9 [@]		4402.0 2+			
		5360.3 [@]		1247.02 2+			

[†] From (12 C,2n γ).

[†] From least squares fit to γ -ray energies for excited levels up to 5838 keV.

[‡] From (12 C,2n γ).

[#] From R-matrix analysis in 2014Zh05 (²¹Na,p).

[®] Based on mirror analogy with 22 Ne nucleus in 2009Ma68 (p,t). [&] From (3 He,n),(3 He,n $^{\gamma}$), except otherwise noted. Γ_{tot} from (21 Na,p) – additional data listed in the comments section.

[‡] From (3 He,n),(3 He,n γ).

[#] From γ -ray angular distribution measurements in (12 C,2 12 C), (3 He, 12 He, 12 Placement from (21 Na, 12 Placement from level energy difference, recoil energy subtracted.

[&]amp; Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Adopted Levels, Gammas History Author Literature Cutoff Date M. Shamsuzzoha Basunia, Anagha Chakraborty NDS 186, 2 (2022) 31-Mar-2022 $Q(\beta^{-})=-13884.77 \ 23; \ S(n)=16531.22 \ 3; \ S(p)=11692.69 \ 1; \ Q(\alpha)=-9316.56 \ 1$ S(2n)=29676.23 16, S(2p)=20486.805 22 (2021Wa16). Other reactions: 2004Be18, 2004Be08: 12 C(24 Mg, 12 C), E=130 MeV; measured Eγ, (particle)γ-coin. 2011Fr14: ¹²C(¹³C,n) E=12, 13.5, 20 MeV; measured reaction products ²⁵Mg; deduced ²⁴Mg excited states and reported resonance energies at 13.25 MeV 20 and 14.25 MeV 20. 2001Di12: 11 B(13 N,X), (13 N, 12 C), E=29.5, 45 MeV. Measured particle spectra, fusion σ . Deduced 24 Mg 6- α decay features, isospin purity/mixing in 24 Mg at excitation energy ~47 MeV, GDR γ -emission features. 2006Va20: 28 Si(p,p'X) 24 Mg, E=1 GeV; measured Eγ; deduced σ . ²⁴Mg Levels Cross Reference (XREF) Flags

Α	²⁴ Na β^- decay (14.956 h)	N	20 Ne(α, γ):Resonances	Other	rs:
В	²⁴ Na β^{-} decay (20.18 ms)	0	20 Ne(α,α),(α,α'):Resonances	AA	Coulomb excitation
C	²⁴ Al ε decay (2.053 s)	P	20 Ne(6 Li,d),(7 Li,t)	AB	24 Mg($\alpha,\alpha'\gamma$)
D	²⁴ Al ε decay (130.7 ms)	Q	22 Ne(3 He,n)	AC	24 Mg(6 Li, 6 Li')
E	²⁵ Si εp decay	R	23 Na(p, γ),(p,p'),(p,X),	AD	24 Mg(16 O, 16 O')
F	²⁶ P ε2p decay	S	23 Na(3 He,d),(3 He,d γ)	ΑE	25 Mg(p,d)
G	28 P εα decay	T	24 Mg(γ,γ')	AF	25 Mg(3 He, 4 He)
H	$^{12}C(^{12}C,\gamma)$	U	24 Mg(e,e')	AG	$^{27}\text{Al}(\mu^-, v3n\gamma)$
I	¹² C(¹² C,p):Resonances	٧	24 Mg($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$)	AH	27 Al(p, α)
J	$^{12}C(^{14}N,d)$	W	²⁴ Mg(p,p'),(pol p,p'),	ΑI	28 Si(d, 6 Li)
K	$^{12}\text{C}(^{24}\text{Mg},^{12}\text{C}\gamma)$	X	24 Mg(n,n' γ)	AJ	28 Si(28 Si,X γ)
L	$^{12}\text{C}(^{16}\text{O},\alpha),(^{16}\text{O},\alpha\gamma)$	Y	24 Mg(3 He, 3 He')		
М	$^{12}C(^{24}Mg, 2^{12}C)(^{20}Ne, 2^{12}C)$	7	24 Mg($\alpha \alpha'$)		

		12C(12C, 12C(14N, 12C(24M) 12C(16O,	p):Resonances d) g, 12 C γ) α), $(^{16}$ O, $\alpha\gamma$)	V 24 W 24 X 24 Y 24	⁴ Mg(p, ⁴ Mg(n,	+,π+'),(π -,π-') p'),(pol p,p'),	AG AH AI AJ	27 Al(μ^- , ν^3 n γ) 27 Al(p, α) 28 Si(d, 6 Li) 28 Si(2 Si, 2 X γ)
E(level) [†]	J^{π}	$\frac{12}{12} \text{C}(^{24}\text{M})$ $\frac{\text{T}_{1/2} \text{ or } \Gamma^{j}}{12}$	g,2 ¹² C),(²⁰ Ne,2 ¹² C)		⁴ Mg(α,	α')	(Comments
0 <i>P</i>	0+	stable	ABCDEFGH JKL N	PQRSTUVI	WXYZ	δ < r^2 >(26Mg, 2 4Mg)= (2012Yo01). < r^2 > $^{1/2}$ (2 4Mg)=3.05 evaluation). Other	=+0.140 570 <i>16</i> (rs: 3.057	AE, AF, AG, AH, AI, AJ 0 fm ² 5 (stat) 25 (syst) (charge radius) (2013An02 70 fm 7 (stat) 48 (syst) (1971Li26 – (e,e')).
1368.667 ^p 5	2+	1.36 ps <i>3</i>	A CDEF H JKL N	PQRSTUV	WXYZ	XREF: Others: AA, μ =+1.08 β ; Q=-0.2 g=0.538 $I3$ (2015K T=0 (2015Ku05) J ^π : L=2 in ²⁴ Mg(p, T _{1/2} or Γ: From τ= lifetimes of (α, γ) (¹⁶ O, α),(¹⁶ O, $\alpha\gamma$): (1970Al10), 2.09 (1970Cu02); (e,e' (1969Ti01), 1.9 p (γ, γ'): 1.76 ps 2 I ps $I5$ (1971Sw07 ps $I0$ (1979Fe05) (1970Ha04), 2.02	AB, AC, 19 3 u05) p'). E2 1 1.96 ps 1.96 ps 13 (1.19 ps 2 (1976) (1981C), 1.92 ps 10 (AD, AE, AF, AG, AH, AI, AJ to 0 ⁺ . 5: weighted average of mean

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
				(1989Ke04), 2.00 ps 45 (1973Le15). Others τ: (α,α'γ): 1.44 ps +11-9 (1968Ro05); (γ,γ'): 1.11 ps 13 (1970He01), 1.1 ps 2 (1965Ka15); (p,γ): 1.40 ps 45 (1972Me09) – omitted as outlier. μ: From 2020StZV, 2015Ku05 – Time Dependent Recoil in Vacuum. Other: +1.02 4 from 2014StZZ – Recoil into Vacuum, Differential method (1975Ho15), Perturbed Angular Correlation after Ion Implantation (1974Eb02). Q: From 2021StZZ – Coulomb Excitation Reorientation (1990Gr11). Others: -0.18 2 (1981Sp07), -0.178 13 (13) (1979Fe05), -0.07 3 (1981Ko06) – also listed in 2014StZZ.
4122.853 ^p 12	4+	24.3 fs <i>21</i>	ACE H jKL N P RS U WXYZ	Uncertainty in g-factor includes 0.011 (statistical) and 0.007 (systematic). XREF: Others: AB, AD, AE, AF, AG, AH, AI, AJ
				μ =+1.7 <i>12</i> XREF: AJ(4115.1).
				J^{π} : L=4 in (α,α') and in 24 Mg(p,p'); E2 to 2^+ .
				$T_{1/2}$ or Γ: From mean lifetime τ =35 fs 3: Weighted
				average of τ values from ($^{16}O_{,}\alpha$),($^{16}O_{,}\alpha\gamma$): 53 fs 9 (1975Br10) and 48 fs 9 (1983Sp01); (p, γ),(p,p'): 32 fs 3, 33 fs 2 (both from 1989Ke04), 40 fs 4 (1973Le15), 25 fs
				5 (1972Me09); (³ He,d),(³ He,dγ): 68 fs 25 (1969An08); (n,n'γ): 56 fs 19 (1984El12); (p,p'),(pol p,p'): 65 fs 19 (1972Pe02); (σ,σ'γ): 51 fs + 22 28 (1068Pe02). Other
				(1972Ba93); $(\alpha, \alpha' \gamma)$: 51 fs +33-28 (1968Ro05). Other: mean lifetime τ =169 fs 34 (outlier) (1971Ha32 – $(\alpha, \alpha' \gamma)$).
4238.35 ^q 4	2+	45.7 fs <i>35</i>	A CDE H jKL N P RS UVWXYZ	μ : From 2020StZV, 1983Sp01 – Transient Field. XREF: Others: AB, AD, AE, AF, AG, AH, AI, AJ μ =+1.3 4
				J ^π : L=2 in (α , α') and ²⁴ Mg(p,p'). T _{1/2} or Γ: From τ =66 fs 5: Weighted average of mean lifetimes (¹⁶ O, α),(¹⁶ O, $\alpha\gamma$): τ =85 fs 15 (1975Br10), 110 fs 26 (1970Cu02 – revised value of τ =83 fs 16
				(1968Cu05)); (p, γ),(p, p'): 66 fs 5, 63 fs 5 (1989Ke04), 88 fs II (1973Le15), 53 fs 9 (1972Me09); (3 He,d),(3 He,d γ): τ =86 fs 30 (1969An08); (e,e'): 63 fs
				10 (1974Jo10), 60 fs 6 (1978Za07), 69 fs 12 (1969Ti01); (p,p'),(pol p,p'): 120 fs 30 (1967AlZV), 95 fs 25 (1972Ba93); $(\alpha,\alpha'\gamma)$: 101 fs 25. Others: $(\alpha,\alpha'\gamma)$: 185 fs 22 (1971Ha22); $(\alpha,\alpha'\gamma)$: $(\alpha,\alpha$
				33 (1971Ha32); (n,n'γ): τ=105 fs 5 (1984E112). μ: From 2020StZV, 1983Sp01 – Transient Field.
5235.16 ^q 5	3 ⁺	68 fs 5	A C H JKL N RS W Y	XREF: Others: AB, AE, AF, AG, AH, AI, AJ XREF: AH(5251).
				J^{π} : L(p,d)=0+2, unnatural parity ($^{16}O,\alpha$). Band
				assignment. L=3 in 24 Mg(p,p') gives π =– is inconsistent. $T_{1/2}$ or Γ : From τ =98 fs 7: weighted average of data from
				$(^{16}\text{O},\alpha),(^{16}\text{O},\alpha\gamma): \tau=109 \text{ fs } 15 \text{ (1975Br10)}; (p,\gamma),(p,p'): 105 \text{ fs } 16, 101 \text{ fs } 7 \text{ (1989Ke04)}, 65 \text{ fs } 11 \text{ (1972Me09)},$
				120 fs 16 (1973Le15); (3 He,d),(3 He,dy): 95 fs 25 (1969An08); (p,p'),(pol p,p'): 130 fs 70 (1967AlZV) and 128 fs 32 (1972Ba93); ($\alpha,\alpha'\gamma$): 173 fs 46 (1971Ha32), 79 fs +47-51 (1968Ro05).
6010.34 ^q 5	4+	53 fs 4	C H JKL N P RS UVWXYZ	XREF: Others: AB, AD, AE, AF, AH, AI, AJ μ =+2.1 16
				XREF: V(5.93E3)AD(6.1E3)AJ(6007.3).

E(level) [†]	$_J^\pi$	$T_{1/2}$ or Γ^{j}	XREF	Comments
6432.2 10	0+	69 fs <i>12</i>	JKL N PQR UVW YZ	J ^π : L=4 in (α,α') and ²⁴ Mg(p,p'), natural parity (¹⁶ O,α). T _{1/2} or Γ: From τ =77 fs δ : weighted average of data from (³ He,d),(³ He,dy): τ =50 fs 25 (1969An08); (p,p'),(pol p,p'): 85 fs 22 (1972Ba93); (¹⁶ O,α),(¹⁶ O,αy): 77 fs $I4$ (1975Br10); (p,γ),(p,p'): 63 fs $I0$ and 83 fs δ (1989Ke04); and 83 fs $I0$ (1973Le15), 46 fs $I4$ (1972Me09); (n,n'γ): 115 fs 20 (1984E112); $(\alpha,\alpha'\gamma)$: 71 fs +37–40 (1968Ro05). Others: (p,p'),(pol p,p'): 200 fs I 0 (1967AlZV); I 124 fs I 120 (1971Ha32). μ: From 2020StZV, 1984Sp03 – Transient Field. XREF: Others: AB, AD, AE, AF, AH, AI XREF: AF(6448). J ^π : L=0 in I 0 in I 12 (I 13 AB,
7.0×10 ³ 7348.60 <i>10</i>	2+	6.5 fs 22	C JKL N P RS UVW YZ	lowest input value. XREF: Others: AD XREF: Others: AD, AE, AF, AH, AI, AJ J^{π} : L=2 in (α,α') and 24 Mg(p,p'), natural parity $(^{16}$ O, $\alpha)$. $T_{1/2}$ or Γ : Weighted average of 4.5 fs 14 from
7555.3 10	1-	270 ^l fs 55	JKL N RS W YZ	(p,γ) , 10 fs 2 from (e,e') , and 24 fs 11 from (p,p') . XREF: Others: AD, AE, AF, AH XREF: J(7.58E3).
7616.41 7	3-	1.01 ps <i>15</i>	C H KL N RS UVW YZ	J^{π} : L=1 in 24 Mg(p,p'), natural parity (16 O, α). XREF: Others: AE, AF, AH, AI XREF: V(7.55E3). J^{π} : L=3 in (α,α') and 24 Mg(p,p'), natural parity
7747.7 2	1+	12.5 fs 28	L N RS W Y	(16 O,α). $T_{1/2}$ or Γ: From τ =1.46 ps 22: Weighted average of τ values from (p,γ),(p,p'): 1.19 ps 20 (1989Ke04), 2.00 ps 55 (1973Le15); (p,p'),(pol p,p'): 2.1 ps 4 (1967AlZV) and 1.8 ps 6 (1972Ba93). XREF: Others: AF E(level): Other values: 7750 3 (3 He,d) and 7746 3
7812.4 <i>5</i>	(4 ⁻ ,5 ⁺)	21 fs <i>3</i>	C JKL N RS W Y	(p,p'). J^{π} : L(³ He,d)=0+2 and unnatural parity (¹⁶ O, α). XREF: Others: AF, AH
8113.2 ^p 10	6 ⁺	3.6 fs <i>12</i>	JKL PRS WY	XREF: AH(7797). T _{1/2} or Γ: Weighted average of 24 fs 3 (16 O, α) and 17 fs 4 (p, γ). J ^{π} : γ to 3 ⁺ and 4 ⁺ states; and γ from 5 ⁻ . Unnatural parity (16 O, α). XREF: Others: AD, AF, AH, AI, AJ XREF: Y(8120)AJ(8104.7).

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XRE	F	Comments
					J ^{π} : L=6 in (p,p'), natural parity (16 O, α). T _{1/2} or Γ: Weighted average of 3.9 fs 21 (16 O, $\alpha\gamma$) and 3.5 fs 12 (p, γ).
8358.1 [‡] <i>3</i>	3-	63 fs 8	H jKL N	RS UVW YZ	XREF: Others: AD, AF, AH, AI J^{π} : L=3 in (p,p'), natural parity ($^{16}O,\alpha$). $T_{1/2}$ or Γ : Weighted average of 76 fs 38 ($^{16}O,\alpha\gamma$),
8438.4 10	1-	9 fs 2	jK N	RS W YZ	54 fs 8 (p, γ), 76 fs 13 (e,e'), and 82 fs 17 (p,p'). XREF: Others: AB, AD, AH, AI T=0
8439.29 5	4+	3.2 fs <i>14</i>	C H KL N	R	J^{π} : D γ to 0 ⁺ and L=1 in ²⁴ Mg(p,p'). XREF: Others: AF , AH J^{π} : γ to 2 ⁺ . log ft =3.93 from 4 ⁺ . Natural parity.
8654.9 [‡] 4	2+	14 fs <i>3</i>	L N	PRS WY	XREF: Others: AF , AI E(level): Other values: 8655 3 (3 He,d), 8654 3 (p,p'), and 8661 10 (3 He, 4 He). J ^{π} : L=2 in (p,p'), γ to 0 ⁺ , natural parity. T _{1/2} or Γ: From τ =20 fs 5 : Unweighted ave. of data from (16 O, α),(16 O, $\alpha\gamma$): t=28 fs 7 (1976Br34); (p, γ),(p,p'): 10 fs 2 (1989Ke04), 13 fs 5 (1972Me09), and 29 fs 7 (1973Le15).
8864.5 [‡] 2	2-	5.5 fs 21	L N	RS W Y	XREF: Others: AF , AI E(level): Others: 8870 <i>3</i> (3 He,d), 8864 <i>3</i> (p,p'), and 8866 <i>10</i> (3 He, 4 He). J ^{π} : 2 from $\gamma\gamma(\theta)$ in 23 Na(p, γ)) (1969Ba47). Unnatural parity (16 O, α).
9003.5 [‡] 2	2+	8.4 ^m fs 12	L N	RS U W YZ	XREF: Others: AB , AF , AI E(level): Others: 8995 21 from (e,e'), 9002 3 from (p,p'), and 9012 10 from (³ He, ⁴ He). J ^π : L=2 in (p,p'). Natural parity (¹⁶ O,α).
9146.2 [‡] <i>3</i>	1-		L	RS W YZ	XREF: Others: AB, AF, AI XREF: S(9166)AF(9166). J^{π} : L=1 in (p,p'). Natural parity (16 O, α).
9160 <i>15</i> 9284.4 <i>3</i>	[5 ⁻] ^h 2 ⁺ ,4 ⁺	11 fs <i>3</i>	J H KL N	RS u W Y	XREF: Others: AF J^{π} : L=2 in (3 He,d), natural parity (16 O, α), γ from (3) and $^{4+}$.
9299.8 [‡] 3			K n	R	24
9301.07 9	(4^{+})	7 fs 2	C H L n	R VW	J^{π} : γ' s to 2 ⁺ and 4 ⁺ . log ft =4.8 from 4 ⁺ in ²⁴ Al ε decay (2.053 s).
9305.39 24	0+	173 ⁿ fs 35	L	R u Z	J^{π} : From ²⁴ Mg(α,α'), based on comparison of differential cross sections to DWBA calculations.
9450 <i>15</i> 9457.81 <i>4</i>	$[5^-,6^+]^h$ $(3)^+$	4.3 fs 21	C L N	RS W Y	XREF: Others: AI XREF: Others: AF J^{π} : L=2 in (3 He,d), in (3 He, 4 He), and in (3 He, 3 He'); γ' s to 1 ⁺ and 4 ⁺ . Tentative unnatural parity in (16 O, α).
9516.18 <i>5</i>	4+	12 fs 5	C L N	RS W	XREF: Others: AF T=1 J^{π} : γ' s to 2 ⁺ and 4 ⁺ , isobaric analog to ²⁴ Na ground
9527.6 ⁹ 7	(6 ⁺)	8 ⁿ fs 4	KL	WY	state. Natural parity (16 O, α). L(3 He,d)=2. XREF: Others: AF, AI, AJ XREF: W(9521)Y(9520)AJ(9523).

E(level) [†]	$\underline{\hspace{1cm}}^{\pi}$	$T_{1/2}$ or $\Gamma^{\dot{j}}$		XREF	7		Comments
						_	J^{π} : L=(6) in (³ He, ³ He'); band member in (²⁴ Mg, ¹² C γ).
9532.7 [‡] 2	$(2,3)^{+}$	14 fs 7			R	W	XREF: Others: AF, AI T=0
							XREF: AF(9650).
							J^{π} : L(p,p')=2 and γ to 3 ⁻ . T _{1/2} or Γ: Weighted average of 34 fs <i>14</i>
4		***					$(p,p'),(pol\ p,p')$ and 11 fs 5 $(p,\gamma),(p,p')$.
9828.0 [‡] <i>20</i>	1+	0.30 ^m fs 7	D	N	RSTU	JWY	XREF: Others: AF T=0&1
	L						J^{π} : Log ft =4.6 from 1 ⁺ ; γ to 0 ⁺ ; D γ from 0 ⁺ at 13048.
9940 <i>15</i> 9965.3 <i>11</i>	[5 ⁻] ^h	71 ^m as 7	D	J N	RSTU	T W	XREF: Others: AF
9903.3 11	1	/1 as /	D	IN	KSTC) W	T=1
							J^{π} : Log ft =3.5 from 1 ⁺ ; γ to 0 ⁺ . $T_{1/2}$ or Γ : Weighted average of 93 as $I8$ from
							(γ, γ') and 69 as 6 from (e,e').
10027.97 [‡] 9	5-	62 ⁿ fs 18	Н	KL N	RS V	W Y	XREF: Others: AI T=0
							XREF: V(9.97E3).
							J^{π} : L=5 in (p,p') and in (3 He, 3 He'), natural parity (16 O, α).
10059.1‡ 4	$(1,2)^+$	<3 fs	D	L N	RS	W	XREF: Others: AF
							T=1 E(level): Other: Least-squares fit yields 10059 3.
±							J^{π} : log ft =4.5 from 1 ⁺ , L=(0)+2 (³ He,d).
10110.9 [‡] 4	(0^+)	<50 keV		L N	R	WY	T=0 J^{π} : L=0 in (3 He, 3 He'); also in 1968Ol04
							$(^{16}\text{O},\alpha\gamma)$, based on simultaneous fits to the angular correlations of the two cascade gamma rays involved.
10161 <i>3</i>	(0^+)			L N	S	W	XREF: Others: AF
							J^{π} : L=0 in (p,p'). γ to 2 ⁺ . Tentative L(³ He,d)=(1) inconsistent for π =+.
	,						E(level): From (p,p') , $(pol p,p')$.
10250 <i>15</i> 10333.6 [‡] 2	$[4^+,5^-]^h$ 3^{-c}	<70 keV		J	D.C.	7.7	T. 0
10555.0* 2	3		Н	L N	RS	W	T=0 J^{π} : L=3 in (p,p').
10360.7 [‡] 3	2+	1.0 fs <i>3</i>		KL N	RSTU	J W YZ	XREF: Others: AF, AI T=0
							$T_{1/2}$ or Γ : weighted average of 0.8 fs 2 from
							(γ, γ') and 1.3 fs 3 from (e,e'). J^{π} : L=2 in (α, α') , 24 Mg(p,p') and $^{(3}$ He, $^{(3)}$ He');
10575.93 8	(4)+	9 ⁿ fs 2	С	JLN	c		γ 's to 0 ⁺ . XREF: Others: AI
10373.93 6	$(4)^{+}$	9 18 2	C	JLN	S	W	T=0
							XREF: J(10490). J^{π} : L=4 in (p,p') for doublet. log ft =4.5 in from
							4^+ in ²⁴ Al ε decay (2.053 s).
10581.26 [‡] <i>13</i>	$(2^+,3^+,4^+)$	<2 fs			R	W	XREF: Others: AF, AI J^{π} : γ 's to 2 ⁺ and 4 ⁺ . L=4 in (p,p') for doublet.
10659.8‡ 2	$(1,2^+)$			L	Rs		J^{π} : γ' s to 0^+ and 2^+ .

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}		XREF			Comments
10660.17 [‡] 17	(3+,4+)	<2 fs		N	Rs	W	J^{π} : γ' s to 3^+ and 4^+ . L=4 in (p,p') for doublet.
10679.7 [‡] <i>3</i>	0+	2.1 ⁿ eV 8	D	L N	Rs	W YZ	XREF: Others: AF T=0
+		***					J ^π : Spin=0 from $\gamma\gamma(\theta)$ in (α,γ) ; π =+ from L=2 in (³ He, ⁴ He). Also L=0 in (³ He, ³ He').
10712.2 [‡] 2	1+	23 ^m as 2		L	R TI	JW	T=1 J^{π} : M1 excitation in (e,e') and (γ, γ') .
10731.1‡ 2	2+	7 fs <i>3</i>		L N	RS	W	XREF: Others: AF T=0
							J ^π : 6491.8γ D to 2 ⁺ , Δ J=0; π =+ from L(=3He,d)=0+2.
10820.8 4	3+,4+	7.5 ⁿ eV 11	С	L N	RS	WY	XREF: Others: AF XREF: S(10838).
10017.0 2	2+	0.0111 5 1	_		D.C.		J^{π} : γ to 2 ⁺ , L=4 in 24 Mg(p,p'), and RUL.
10917.2 [‡] 3	2+	0.8 ^m fs 1	D	L N	RST	JWY	XREF: Others: AF, AI T=0
							XREF: U(10939). J^{π} : L=2 in (3 He, 4 He), (3 He,d), and
11012 3	3,5 ⁺			L N	s		(3 He, 3 He'); γ' s to 0 $^{+}$ and 4 $^{+}$, and RUL.
11012 5	5,5			LN	3		E(level): Weighted average of 11008 4
11018 3	2+	<30 keV	D	L N	S	vW Y	($^{16}\text{O},\alpha$) and 11014 3 (α,γ). XREF: Others: AF, AI
							T=0 E(level): Weighted average of 11017 3 from
							(p,p'), 11018 4 from (16 O, α), 11020 3 from (α , γ), 11022 10 from (3 He, 4 He), 11016 7 (d, 6 Li).
							J ^{π} : L=2 in (³ He, ³ He'); γ' s to 0 ⁺ and 4 ⁺ ; and RUL; also in (α , γ) based on $\alpha\gamma(\theta)$ for spin 2.
11133 <i>3</i>		26 ⁿ fs 4		L N		vW	E(level): From (α, γ) . Others: 11128 3 $(^{16}\text{O}, \alpha)$, 11128 3 (p, p') .
11150 <i>15</i> 11165 2	$[6^+,7^-]^h$	<30 keV		J		W. W.	T=0
11103 2	3	<5° kev		L N		WY	E(level): Weighted average of 11161 4
							$(^{16}\text{O},\alpha)$, 11167 2 (α,γ) , and 11161 3 (p,p') . J^{π} : L=3 in (p,p') and $(^{3}\text{He},^{3}\text{He}')$; spin=3 from
11181 <i>3</i>				L N		W	$\alpha \gamma(\theta)$ in (α, γ) . E(level): From (p, p') , (pol p, p'). Others: 11182
11101 5				LA			$4 (^{16}\text{O},\alpha)$ and 11185 (α,γ) . J^{π} : L=3 in (p,p') possibly for doublet.
11187.3 [‡] 3		0.002211 77.12		K N	R	W	
11207 3		0.0022 ⁿ eV 12		L N	R	W	T=0&1 XREF: N(11215). E(level): From (p,p').
11216.69 [‡] <i>18</i>	3+,4+	0.78 ⁿ eV 11	С	L N	R	W Y	XREF: Others: AF
							T=0 XREF: N(11226)AF(11228).
11293 <i>3</i>		20 ⁿ fs 3		L N	s	W	J^{π} : L=4 in (p,p') and (3 He, 3 He'); γ to 2 ⁺ . E(level): From (p,p').
11314.4 <i>15</i>	$(3,4)^+$		С	L N	S	WY	XREF: Others: AF

E(level) [†]	J^π	$T_{1/2}$ or Γ^{j}		XREF			Comments
11330 <i>3</i> 11390 <i>20</i>	0+ <i>i</i>			L N	Rs	WZ	J ^π : log ft =5.2 in ²⁴ Al ε decay (2.053 s). γ to 2 ⁺ . E(level): From (p,p').
11390 20	1-	0.5° keV		L NO	Rs I	JWY	XREF: Others: AF T=0
							E(level): Weighted average of 11390 4 (16 O, α), 11395 3 (α , γ), 11390 5 (α , α), 11389 3 (p,p'). J ^{π} : L=1 in (p,p') and (3 He, 3 He'); γ to 0 ⁺ .
11394 [#] 4				L	S		XREF: Others: AF L(³ He, ⁴ He)=1 probably for a doublet.
11452.8 [‡] 4	2+	<20 keV		L N	Rι	ı W Y	T=0 J^{π} : L=2 in (p,p') and (3 He, 3 He').
11457 3	(0 ⁺)&		D	NO	S		XREF: Others: AF T=0
							E(level): Weighted average of 11455 4 (16 O, α), 11461 4 (α , γ), 11460 5 (α , α), 11457 3 (3 He,d), and 11456 3 (p,p').
11522 2	2+	0.5° keV	D	L N	Rs I	JWY	XREF: Others: AF T=0
							XREF: U(11474). E(level): Weighted average of 11523 2 (α , γ), 11519 4 (16 O, α), and 11521 3 (p,p'). J ^{π} : L=2 in (p,p') and spin=2 from $\alpha \gamma(\theta)$ in (α , γ).
11527 4	(2 ⁺)&			J L 0	S		XREF: Others: AF
11560	(2+)						E(level): Weighted average of 11528 4 (16 O, α), 11526 5 (α , α).
11568 11600 2	(2 ⁺) 3 ⁻	15 ⁿ fs 4		L N		Y W	J ^π : L=2 in (³ He, ³ He'). XREF: Others: AF, AI T=0
							E(level): From (α, γ) . J^{π} : spin=3 from $\alpha \gamma(\theta)$ in (α, γ) , natural parity $\binom{16}{0}, \alpha$.
11618 <i>3</i> 11698.2 <i>13</i>	4 ⁺	1.6 ⁿ eV 6	С	L N L N	c	W	E(level): From (p,p') .
11098.2 13	4	1.0 ev 0	C	L N	S	W	XREF: Others: AF, AI T=0 Edward: Weighted according for 11700 2 (cm) 11608 (
							E(level): Weighted average of 11700 2 (α, γ) , 11698.6 13 (³ He,d), 11694 3 (p,p') , 11694 4 (¹⁶ O, α), and 11701 10 (³ He, ⁴ He).
11730 2	0^{+i}	10° keV 2		L NO	S	w z	J ^π : L=4 in (p,p'); spin=4 from $\alpha \gamma(\theta)$ in (α,γ). T=0
							E(level): Weighted average of 11727 4 (16 O, α), 11732 2 (α , γ), 11735 5 (α , α), 11724 5 (3 He,d), and 11727 3 (p,p').
11830 2				JLN	S	W	J^{π} : L=0 in (p,p'). XREF: J(11810).
				<i>y</i>			E(level): Weighted average of 11827 4 ($^{16}\text{O},\alpha$), 11831.7 18 ($^{3}\text{He,d}$), and 11828 3 (p,p').
11860 [‡] 2	(8+)	63 ⁿ fs 24		KL N			XREF: Others: AI XREF: N(11865).
							J ^{π} : From linear polarization measurements (1978We03) (16 O, $\alpha\gamma$); γ to 6 ⁺ ; π =N (16 O, α). The possibility of 6 ⁺ assignment discarded with 85% confidence (1978We03).
							$T_{1/2}$ or Γ: From (16 O, α).
				Continued	on ne	xt page	(footnotes at end of table)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}		XREF			Comments
11862.8 13	1 ⁻ⁱ	7.0° keV 3		NO	RS	W Z	E(level): Weighted average of 11868 5 (α , α'), 11869 3 (α , γ), 11862.7 12 (3 He,d), 11862 3 (p,p'), and 11860 2 (p, γ).
11909 2		5.5° keV 22		N	R		J ^{π} : L=1 in (p,p'); spin=1 from $\alpha\gamma(\theta)$ in (α , γ). T=0 E(level): Weighted average of 11904 4 (α , γ) and 11910 2 (p, γ),(p,p'),(p,x).
11932.9 [‡] 2	(3) ⁺	<0.02 keV		L N	RS	W	XREF: Others: AF J^{π} : L(3He,d)=2,0+2; γ to 2 ⁺ and 2 ⁻ and 4 ⁺ and $(4^{-},5^{+})$.
11966.6 [‡] 5	2+	2.0 keV 4		L NO	RS	W	T=0 J ^π : L=2 in (p,p'); spin=2 from $\alpha\gamma(\theta)$ in (α , γ). T _{1/2} or Γ: Weighted average of 2.4 keV 5 (α , γ) and 1.8 keV 4 (p, γ).
11988.5 [‡] <i>1</i>	2+	<0.02 keV		L	RS	W	XREF: Others: AI T=0
12003 3		<10 keV		N		W	J ^π : L=2 in (p,p'); L=0+2 in (3 He,d); γ to 2 ⁺ ,4 ⁺ . T=0 E(level): Weighted average of 12004 4 (α , γ) and 12002 3 (p,p').
12017.2 [‡] 6	3-	0.7 keV 2		N	RS	U W	T=0 XREF: U(11990). J ^{π} : L=3 in (p,p'); L(³ He,d)=1; populated in (α , γ) implies natural parity. In (e,e') 11990 keV25 overlaps two lower levels; J^{π} =3 ⁻ implies excitation of this level.
12051.3 [‡] 5	4+	<0.02 keV	С	N	RS	VW	XREF: Others: AF T=0&1 J^{π} : L=4 in (p,p'); populated in (α, γ) implies natural parity.
12119.0 [‡] <i>10</i>	4 ⁺ f	1.9° keV 3	С	L N	R	W	T=0 J ^{π} : log ft =5.3 from 4 ⁺ ; γ' s to 2 ⁺ and 4 ⁺ ; populated in (α, γ) implies natural parity.
12128 [‡] 3 12162 3	4+	0.9° keV 3	С	N	R	W W	T=0 E(level): Weighted average of 12163 4 (α , γ) and 12161 3 (p,p'). J^{π} : L=4 in (p,p'); populated in (α , γ): resonance – implies natural parity.
12183.3 [‡] <i>1</i> 12244 <i>3</i>		<0.046 keV			R	W W	γ' s to 0^+ and 4^+ .
12259.3 [‡] 5	2-	<0.06 keV			R	W	J ^{π} : From (p, γ) 1963Gl05, based on γ (θ) and γ - γ correlation measurements. L=3 in (p,p') for doublet.
12259.8 [‡] 4	3-	1.8° keV 3		N	R	W	T=0 J^{π} : From 1956Ba96, based on elastic scattering (p ₀) in 23 Na(p,p). L=3 in (p,p') for doublet.
12273 <i>5</i> 12340 <i>15</i>	$(3^{-})^{\&}$ $[7^{+}]^{h}$			O J			
12340.2‡ 4	3+	<0.07 keV			R	W	J ^{π} : From (p, γ) 1963Gl05, based on γ (θ) and γ - γ correlation measurements.
12342 3		3.5 ⁿ fs 14		L		W	E(level): From (p,p'),(pol p,p').

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}		XREF		Comments
12385	0^{-d}	7 keV 2		R		
12400.3 [‡] 5	3+	<0.09 keV		R		T=0
						J ^{π} : From 1963Gl05, based on $\gamma(\theta)$ and γ - γ angular correlation measurements.
12404.9 [‡] 5	2+	<0.1 keV	D	N R	W	T=0&1
12443 <i>3</i>	6+,7-	11 ⁿ fs 3		L N	W	J ^{π} : L=2 in (p,p'); Log ft =5.5 from 1 ⁺ ; γ to 4 ⁺ . T=0
	,					E(level): Weighted average of 12446 4 (α, γ) and 12441 3 (p,p') .
						J ^{π} : From $\alpha\gamma\gamma$ angular correlations ((16 O, $\alpha\gamma$) – 2012Di04).
12450 <i>3</i>	1^{-d}	5.7° keV 4		N R	W	T=0
		Į,				E(level): Weighted average of 12456 4 (α, γ) and 12447 3 (p,p') .
12467 <i>3</i>	2+	5.1 ^k keV <i>1</i>	D	NO	W	T=0 E(lavel): Weighted everage of 12467, 4 (e.g.), 12466
						E(level): Weighted average of 12467 4 (α, γ) , 12466 5 (α, α) , and 12467 3 (p, p') . J ^{π} : L=2 in (p, p') .
12478 <i>3</i>	2^{+} &d	3.8° keV 3		NO R	W	E(level): Weighted average of 12472 4 (α, γ) , 12484
						5 (α, α) , and 12479 3 (p, p') ; populated in (α, γ) , (α, α) resonances – implies natural parity.
12507 <i>3</i>	4+	2.3° keV 3		NO R	W	T=0
						XREF: O(12515). E(level): Weighted average of 12508 4 (α, γ) , 12515
						$5 (\alpha, \alpha)$, and 12504 3 (p,p').
						J ^{π} : L=4 in (p,p'); populated in (α , γ), (α , α) resonances – implies natural parity.
12527.6 [‡] 6	1^{+d}	7.5 keV 10	L	. R	U W	T=0&1
						XREF: L(12.54E3). J^{π} : 2 ⁺ in (e,e') for 12522 30 (larger uncertainty) is
						inconsistent.
12581 <i>3</i>	2^{+d}	5.5 keV 6		NO R	W	T=0
						E(level): Unweighted average of 12580 4 (α, γ) ,
						12587 2 (α,α) , and 12577 3 (p,p') . J^{π} : L=2 in (p,p') .
						$T_{1/2}$ or Γ: Weighted average of 6.2 keV 6 (α , γ),
4-						5.2 keV 9 (α,α) , and 4 keV I (p,γ) .
12638.7 [‡] <i>1</i>	4 ⁺	0.03 keV 2		L N R	W	T=0&1
						J ^{π} : L=4 in (p,p'); populated in (α , γ): resonance – implies natural parity.
12659.1 [‡] <i>1</i>		0.08 keV 8		R	W	• •
12660.8 [‡] 5	3-	0.9° keV 3		NO R	W	T=0 J^{π} : L=3 in (p,p').
12670.0 [‡] 5	2^{-d}	4.0 keV 5		R	U W	T=1
						J^{π} : 8430.1 γ D to 2 ⁺ , ΔJ =0.
12733.3‡ 6		<0.6 keV		o R	U	XREF: U(12706).
12739.0 [‡] 7	2+	8.0° keV 7		No R	W	T=0
						J ^{π} : L=2 in (p,p'); populated in (α , γ): resonance – implies natural parity.
						$T_{1/2}$ or Γ : weighted average of 8.3 keV 5 from
	-1.0	k				(α, γ) and 6.7 keV 10 from (p, γ) .
12744 <i>I</i>	$(2^+)^a$	11 ^k keV 2		0		

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}		XREF			Comments
12747 2	$(4^+)^a$	2 ^k keV 2		0			
12778 [‡] <i>1</i>	2+ <i>e</i>	30 keV 5		O R	2	W	T=0
12784 2	$(1^{-})^{a}$	28 ^k keV 4		0			
12807.8‡ 5	2+	1.8 keV 6		N R	ł	W	T=0 J^{π} : L=2 in (p,p'); populated in (α,γ) : resonance
							- implies natural parity. $T_{1/2}$ or Γ : Unweighted average of 2.3 keV 3 (α, γ) and 1.2 keV I (p, γ) .
12818.1‡ 2	1^{+de}	2.3 keV 4		O R	t .		T=0&1
12846.9 [‡] 5	(3-,4+)	0.2 keV <i>1</i>		L R	l	W	$T=0$ J^{π} : L=3 or 4 in (p,p').
12852.3 [‡] 5		0.3 keV 1		N R	ł		T=0
12854 <i>I</i>	$(1^+, 2^+, 3^+)$	0.4 keV <i>I</i>		R	l		J^{π} : γ to 0 ⁺ and 3 ⁺ . Others: (1 ⁺ ,2,3 ⁻) in 1972Me09; (0 ⁻) in 1987Va24 probably erroneous – both in (p, γ),(p,p'),(p,x).
12861 <i>3</i>	2+,3-	<10 keV		N		W	T=0 E(level): From (p,p') , $(pol\ p,p')$. J^{π} : γ' s to 1 ⁻ and 4 ⁺ .
12895.1‡ 5	1^{+de}	0.3 keV 2		R	Ł	W	T=0
12921.6 [‡] 5	$(2^+,3^-,4^+)$	6.5 keV 5		N R	2	W	T=0&1
							J ^π : γ 's to 2 ⁺ and 4 ⁺ ; populated in (α, γ) : resonance – implies natural parity. $T_{1/2}$ or Γ : Weighted average of 6.7 keV 6 (α, γ)
12955.5 [‡] <i>1</i>	1+	1.9 keV <i>1</i>		L R		T-7	and 6.3 keV 5 (p, γ). T=1
12933.31	1	1.9 KeV 1		L R		W	J^{π} : 1 from $\gamma\gamma(\theta)$ measurements in 23 Na(p, γ) (1969Ba47); γ' s to 0 ⁺ and 2 ⁺ . 1 ⁺ in 1987Va24 – 23 Na(p, χ).
12963.9 [‡] <i>5</i>	2- e	3.5 keV 2		R	t .	W	T=0
12967.9 5		<1.5 keV	_	R			
12975 3	4 ⁺	3.3 ⁰ keV 3	С	NO		W	T=0 XREF: O(12983). E(level): Weighted average of 12973 3 (p,p'), 12977 4 (α, γ) , and 12983 10 (α, α) . J ^{π} : L=4 in (p,p').
12997.9 [‡] <i>5</i>		0.3 keV 2		O QR	U	W	XREF: O(13005?).
13029.8 [‡] <i>1</i>	2+,3- e	0.7 keV 1		R	l	W	T=1
13048 2	0+	3.0 keV 7		L NO R)	W	γ' s to 1 ⁻ and 4 ⁺ . 2 ⁺ in $(p,\gamma),(p,p'),(p,x)$. T=1
		3.0 KeV /		LNOR		w	E(level): Weighted average of 13047 4 (α , γ), 13049 2 (p, γ), and 13047 3 (p,p'). J ^π : D γ to 1 ⁺ , based on $\gamma\gamma(\theta)$ in (α , γ); populated in (α , γ), (α , α') resonances – implies natural parity. T _{1/2} or Γ: Unweighted average of 2.3 keV 4 (α , γ) and 3.7 keV 5 (p, γ).
13050.0 [‡] <i>I</i>	4+ <i>d</i>	0.09 keV 3		N R	l	W	T=0&1 J^{π} : L=4 in (p,p'); populated in (α,γ) resonance – implies natural parity.
13057 3	5- <i>f</i>	<10 keV		L N		W	T=0 XREF: L(13070). E(level): Weighted average of 13070 20 (16 O, α), 13061 4 (α , γ), and 13055 3 (p,p').

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	X	REF				Comments
13088.8‡ 5	2+	9 keV 3		N	R	W		T=0&1 J ^π : L=2,3 in (p,p'), γ to 4 ⁺ and 0 ⁺ . T _{1/2} or Γ: Unweighted average of 11.9 keV 6 (α , γ), and 6.4 keV 7 (p, γ).
13095 2	$(2^+)^a$	14 ^k keV 3		0				* **
13133 3	0+ <i>i</i>	7 keV <i>1</i>	J	N	R		Z	T=0 E(level): Weighted average of 13136 4 (α, γ) and 13132 3 (p, γ) . T _{1/2} or Γ : Weighted average of 9 keV 2 (α, γ) and 6 keV $I(p, \gamma)$.
13138 3		5.4° keV 5		N	R	W		T=0 XREF: N(13141). E(level): Weighted average of 13141 4 (α, γ) and 13137 3 (p,p') .
13146		3.2 keV 5			R			TAT /
13160.5 [‡] 7 13178 <i>3</i>		1.7 keV 7			R	W W	z	T=0
13184.6 [‡] 8		5.6° keV 4		N	R	W	Z	T=0
13196 2	0 ^{+<i>i</i>}	2.7° keV 4	I	NO	R	W	Z	T=0 E(level): Weighted average of 13202 4 (α , γ), 13194 2 (α , α), and 13198 3 (p,p'). J ^π : From $\alpha_0(\theta)$ in ²³ Na(p,X), X= α_0 . T _{1/2} or Γ: Others: 12 keV 3 (α , α),(α , α'); 3 keV I (p, γ).
13206 2	$(4^+)^a$	14 ^k keV 3		0				
13212.8 13260 <i>4</i>	1 ^{-e}	2.3 ⁿ fs 12 36 ^o keV 3	KL	N	R	V		T=0
12269 7 7	(1) ⁺ ^e	≈8 keV			D			E(level): From (α, γ) .
13268.7 <i>7</i> 13275.5 <i>10</i>	(1)	≈8 keV ≈2 keV			R R			T=0
13335 3	1 ^{-e}	33° keV 3		N	R			T=0 E(level): Weighted average of 13338 4 from (α, γ) , 13334 3 from (p, γ) .
13345.7‡ 6	3-	0.6 keV 2		0	R	W		T=0&1 J ^π : L=3 in (p,p'). T _{1/2} or Γ: Other: 42 keV $\beta(\alpha,\alpha),(\alpha,\alpha')$.
13352					R			1)2
13355.0 8	2- e	15.2 keV 2			R			
13366.9 [‡] 8	(2)	1.6 keV 7			R	Ū		T=1 XREF: U(13371). J^{π} : γ to 0 ⁺ and (4 ⁻ ,5 ⁺).
13370 10	0^{+i}						Z	
13390 <i>15</i>	[7 ⁻] ^h		J					
13413 4		2.8° keV 3		No	D			T-0
13419.3 8		3.2 keV 7		no	R			T=0 $T_{1/2}$ or Γ: From (α, γ) for doublet.
13424.7‡ 12	2-	3.2 keV 7		no	R			T=0 $T_{1/2}$ or Γ: From (α, γ) for doublet.
13437 4	3-	15.0° keV 25		No		W		T=0 E(level): Weighted average of 13436 4 (α, γ) and 13440 7 (p,p') . J ^{π} : L(p,p')=3; populated in (α, γ) : resonance – implies natural parity.
13446.8 [‡] 8	(1,2)	<0.4 keV			R			T=0

²⁴Mg Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XREF			Comments
						J^{π} : γ to 0^+ and 1^- and 2^+ .
13450 [#] 20	6^{+f}	<15 ⁿ keV	J L			,
13452.4 8	$2^+,(1^+)^e$	3.2 keV 7	J L	R		T=0
13474.9 [‡] 8	2+,3,4+	<1 keV		R		J^{π} : γ' s to 2^+ and 4^+ .
13482.9 [‡] 8	2 ,5,4	1.2° keV 3	M			
13482.91 8		6.9 keV 10	N	R R		T=0 T=0
and the second s	(1)=0					
13585 [‡]	(1) ^{-e}	21 keV 2	n	R		T=0
10505 1 7 10	1-0	0.01.17.10		_		$T_{1/2}$ or Γ: From (α, γ) .
13587.1‡ 10	1-a	8.0 keV <i>10</i>	n0	R		T=0 J^{π} : Also from $\alpha_0(\theta)$ in 23 Na(p,X), X= α_0 T Other: and 33 keV 5 (α , α) is comparable with 21 keV 2 of 13585 level, however, the level energy 13589 2 matches with this level.
13632.6 11		2.1 keV 12		R		T=0
13677.4 [‡] 9		6.5 ^k keV <i>17</i>	N	R		T=0
						$T_{1/2}$ or Γ : Unweighted average of 4.8 keV 8 (α, γ) and 8.2 keV 5 (p, γ) .
13686 [‡] <i>1</i>	2 ^{-e}	23 keV 3	C 0	R		
13708	$(3^{-})^{b}$	≈130 ^k keV	0			
13722 4	2+	4.3° keV 3	N	R		T=0
						E(level): From (α, γ) .
						J^{π} : From $\alpha_0(\theta)$ in ²³ Na(p,X), $X=\alpha_0$.
13738 <i>1</i>	$(2^+)^a$	13 ^k keV 3	0			
13771 3	5- <i>é</i>	5.5 keV 23	N	R		T=0 E(level): Weighted average of 13768 4 (α , γ) and 13772 3 (p , γ). J ^{π} : From L(p , α ₀)=5 (1987Va24); T _{1/2} or Γ: Unweighted average of 3.2 keV 4 (α , γ) and 7.8 keV 10 (p , γ).
13788 10	(4 ⁺) ^b	≈21 ^k keV	0			E(level): Weighted average of 13786 10 from (α,α) , and 13790 10 from 24 Mg (α,α') . Uncertainty is the input value.
13800 3	0+ <i>i</i>	4.5° keV 7	N	R	Z	T=0 XREF: Z(13790). $T_{1/2}$ or Γ : Weighted average of 4.4 keV 4
12012 2	1-6	241 77 4		_		(α, γ) and 8 keV 2 (p, γ) .
13813 3	1^{-e} 2^{-e}	24 keV 4		R		T=0
13819 2 13841 <i>3</i>	2	39 keV <i>9</i> 2.5 keV <i>5</i>	1	R R		1=0
13850 4		<1° keV	1 N	K		T=0
13882 [‡] 2	1 ⁺ e			D.		
		2.0 keV 2		R		T=0 XREF: O(13868).
13886 [‡] 3	2 ^{+e}	38 keV 8	0	R		T=0 XREF: O(13890). Γ : Weighted average of 32 keV 8 (α , α) and 48 keV 10 (p , γ).
13893 [‡] <i>3</i>	0+ <i>i</i>	13 keV 2	N	R	Z	T=0 XREF: N(13885)Z(13890). Γ: weighted average of 12.0 keV 18 (α , γ) and 15 keV 3 (p, γ).
13910 <i>1</i>	4 ^{+a}	18 ^k keV 3	0			***
13933 2	$(1,2,3)^{+e}$	3.0 keV 6	ŭ	R		T=0
13948 <i>3</i>	1+e	4.0 keV 8		R		T=0
						1.6.11

Continued on next page (footnotes at end of table)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
13984 <i>3</i> 14019 <i>4</i>	$(1,2,3)^{+e}$ 3^{-e}	4.9 keV 5	O R V	T=0 T=0 XREF: V(13.96E3). E(level): Weighted average of 14007 10 (α,α) and 14020 3 (p,γ) .
14026 [‡] 3	2 ⁺ e	5.1 keV 8	N R	T=0 T _{1/2} or Γ: Weighted average of 6.2 keV 7 (α, γ) and 4.5 keV 5 (p, γ) .
14037 2	$(1^{-})^{a}$	21 ^k keV 4	0	(2)
14060 10		<4 ^k keV	0	
14079 4		24° keV 5	NO	E(level): Unweighted average of 14080 4 (α, γ) and 14077 (α, α) . Uncertainty from (α, γ) .
14081 <i>3</i>	1 ⁺ e	6.0 keV <i>6</i>	NO R	T=0 XREF: O(14091). E(level): Weighted average of 14084 4 (α, γ) and 14080 3 (p, γ) .
14101 <i>4</i>		1.4° keV 4	j NO	T=0 XREF: O(14097). E(level): From (α, γ) .
14150 4	8+ <i>f</i>	1.8° keV 4	j L N	T=0 E(level): From (α, γ) .
14152 4		6.2° keV 7	N W	$T=0$ E(level): From (α, γ) .
14157 <i>4</i>			N	T=0
14165 <i>1</i>	$(4^+)^a$	11.1 ^k keV <i>19</i>	0	
14245 <i>4</i>		11.3° keV 14	N	T=0
14264 <i>1</i>	$(4^{+})^{a}$	16 ^k keV 2	0	
14329 4	4 ⁺ f	<10 keV	L N	T=0 E(level): From (α, γ) .
14355 12	$(3^{-})^{a}$	112 ^k keV 29	0	
14397 2	4+ <i>af</i>	12 ^k keV 3	L 0	T=0 XREF: L(14410).
14461 [@] <i>10</i>		46 ^k keV	OP	
14500		•	W	
14568 <i>10</i>	$(3^-,5^-)^a$	<13 ^k keV	L O	XREF: L(14560).
14582 10		61 ^k keV	0	
14648 [@] 6		11 ^k keV 9	L O	J^{π} : (4 ⁺) in (1 ⁶ O, α),(1 ⁶ O, $\alpha\gamma$). 6 ⁺ in ²⁰ Ne(α , α),(α , α').
14696 [@] 1	$(5^{-})^{\&}$	9 ^k keV 1	OP	J^{π} : L=3 in $(\alpha,\alpha),(\alpha,\alpha')$.
14745 [@] 10 ≈14793	$(4^+)^{b}$	13 ^k keV	L O I	XREF: L(14740).
14928 [@] 10	$(0^+,1^-)^{b}$	≈10 ^k keV	L O	XREF: L(14920).
14995 <i>10</i>	$(4^+,5^-)^{b}$	≈20 ^k keV	0	
15045 35	(6-)		UVW	T=1 XREF: V(15.1E3)W(15137). E(level),J ^π : From (e,e') 1977Za02. Spin parity assignment based on form factor calculations.
≈15093	.	k	I	
15117 [@] 10	$h^{(4^+)^{D}}$	15^k keV	0 w	
15141 [@] 10	п	15 ^{<i>k</i>} keV	J L O w	T=0 XREF: L(15150).

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XF	REF		Comments
						J ^{π} : 4 ⁺ in (α,α) , (α,α') , assigned in 1991Ab05, based on excitation function trend (visual); 6 ⁻ in 24 Mg(p,p') probably for a doublet at 15137 22; 7 ⁻ in $(^{16}$ O, α), $(^{16}$ O, $\alpha\gamma$) 15150 20; 9 ⁺ in $(^{14}$ N,d) at 15150 15. Appears to be more than one level.
15179 3	$(4^+)^a$	57 ^k keV 7		0		
15214 [@] 1	$(5^{-})^{a}$	36 ^k keV 3	L	0p	W	XREF: L(15210)W(15200).
15233 [@] 3	$(4^+)^a$	27 ^k keV 6		0p		
15266 <i>10</i>	$(1^-,3^-)^a$	≈8 ^k keV		0		
15330 <i>30</i>	0^{+i}	1			2	Z
15354 <i>3</i>	$(4^+)^a$	21 ^k keV 4		0		
15385 [@] 3	$(4^+)^a$	31 ^k keV 7		0	VW	XREF: W(15370).
15437.5 [‡] 6	0+	0.7 keV <i>3</i>		QR	W	T=2 J ^π : In 1978Mc07, (p,p ₀) and (p,α ₀) via l=2 in ²³ Na(p,p) and l=0 in ²³ Na(p,α). T _{1/2} or Γ: unweighted average of 1.02 keV 34 from (p,γ) and 0.345 keV 50 from (p,p').
15443 10	$(2^+)^{b}$	13 ^k keV		0		
15484 [@] 10	$(2^+)^{b}$	15 ^k keV	I	0		XREF: I(15473).
15533 [@] 1	$(6^+)^a$	18 ^k keV 2	L	OP	W	XREF: L(15540)W(15540). $T_{1/2}$ or Γ: Other: < 15 keV ((16 O, α) – 1984Le21).
15570 <i>15</i>			J			170 (EC21).
15611 <i>3</i>	$(2^+)^a$	31 ^k keV 8		0		
15640 20	$(6^+)^f$		L			
15691 <i>10</i>	$(0^+)^{b}$	≤15 ^k keV		0		
15716 <i>10</i>	$(4^+)^{b}$			0		
15750 <i>15</i>	[7 ⁻ ,8 ⁺] ^h		J			
15790 <i>30</i>	0^{+i}				2	Z
15793 10	$(4^+)^{b}$	13 ^k keV	L	0		XREF: L(15800). J^{π} : L=2 in (α,α) , (α,α') .
15828 <i>10</i>		87 ^k keV		0		
15853 <i>10</i>		$<13^k$ keV		0		
15886 <i>10</i>	$(4^+)^{b}$	42 ^k keV		0		
15978	$(1^-,3^-)^{b}$	≈35 ^k keV		0		J^{π} : L=1 in (α,α) , (α,α') .
16070 [#] <i>20</i>	6^{+f}		L	P		T=0
16136 <i>10</i>	$(3^{-})^{b}$	19 keV <i>6</i>	L	0		XREF: L(16.15E3). $T_{1/2}$ or Γ: From 16 O, α) 1984Le21. Other: 29 keV (α,α) , (α,α') .
16170 <i>10</i>	$(4^+,6^+)^{b}$	<8 ^k keV		0		J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16203 [@] 10	$(6^+)^a$	8 ^k keV	L	OP		
16278 <i>10</i>	$(4^+)^a$	30 ^k keV		0		
16309 <i>10</i>		10 ^k keV	L	0		T=0 E(level): From $(\alpha,\alpha),(\alpha,\alpha')$.
16333	$(4^+,6^+)^{b}$			0		J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16343 10	$(4^+)^{b}$	13 ^k keV		0		
16395 4	$(2^+)^a$	37 ^k keV 10		0		

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
16440 10	$(7^{-})^{b}$	10 ^k keV	1 0	
16477 [@] 1	$(6^+)^{b}$	8 ^k keV 2	1 OP	J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16529 [@] 2	$(6^+)^{b}$	31 ^k keV	Ор	J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16564 10	8+fh		J L Op	T=0 E(level): From $(\alpha,\alpha),(\alpha,\alpha')$.
				J ^{π} : Other: [10 ⁺] in (¹⁴ N,d).
16602 <i>10</i>	6+ <i>f</i>	30 ^k keV	L 0	T=0 XREF: L(16590). E(level): Weighted average of 16605 10 $(\alpha,\alpha),(\alpha,\alpha')$ and 16590 20 $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$. Uncertainty is the lowest input value.
16611 <i>10</i>	$(5^{-})^{b}$	$\leq 8^{k}$ keV	0	
16674 <i>10</i>	6^{+f}	30 ^k keV	L O	E(level): From $(\alpha, \alpha), (\alpha, \alpha')$.
16782 <i>10</i>	$(4^+,6^+)^{b}$	30 ^k keV	L O	XREF: L(16.80E3).
	1	1		$T_{1/2}$ or Γ: < 15 keV (16 O, α) (1984Le21).
16844 10	$(6^+)^{b}$	22^{k} keV	L O	E(level): From $(\alpha, \alpha), (\alpha, \alpha')$.
16874 [@] 6	$(5^{-})^{a}$	73 ^k keV 17	J OP	
16904 3		<7 ⁿ fs	L	T=0
16929 [@] 3	$(6^+)^a$	44 ^k keV 6	L 0	
17017 [@] 3	$(7^{-})^{a}$	15 ^k keV 10	L OP	XREF: P(16.98E3).
17088 [@] 3	$(6^+)^a$	44 ^k keV 6	OP	XREF: P(17.06E3).
17140 2	$(5^{-})^{a}$	26 ^k keV 6	L O	XREF: L(17.12E3).
17190 <i>15</i>	8+ <i>f</i>		J L	
17227 2	$(4^+)^a$	17 ^k keV 3	0	
17.29×10^{3} 4		$\approx 46^{k}$ keV	L O	
17407 10	$(6^+)^{b}$	20 ^k keV	0	
17444 <i>10</i>	$(6^+)^{b}$	20 ^k keV	L O	E(level): From $(\alpha,\alpha),(\alpha,\alpha')$. J^{π} : Other: $(6^+,7^-)$ in $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$.
17465 10			0	
17520 <i>15</i>			J L	E(level): From $(^{14}N,d)$.
17623 <i>3</i>	$(5^{-})^{a}$	23 ^k keV 8	L O	XREF: L(17.59E3).
17740 <i>10</i>	$(4^+)^{b}$	$\approx 25^{k}$ keV	0	
17748 10		$\approx 20^{k}$ keV	0	
17782 10		$\approx 42^{k}$ keV	0	
17840 <i>10</i>		≈42 ^k keV	0	
17.90×10^3	(8 ⁺)		L	
17948 <i>3</i>	$(4^+)^{b}$	56 ^k keV 8	0	
17990 <i>10</i>	$(6^+)^{b}$	$\approx 17^{k}$ keV	0	
18038 <i>3</i> 18075 <i>10</i>	$(5^{-})^{a}$	50 ^k keV 8	0 0	
18097 <i>10</i>		20 ^k keV	0	
18157 <i>10</i>	$(5^{-})^{b}$	20 ^k keV	0	
18.16×10 ^{3#}	$(5^{-})^{b}$ $8^{+}f$		L	
18169 <i>10</i>	$(7^{-})^{b}$	<8 ^k keV	0	E(level): From $(\alpha, \alpha), (\alpha, \alpha')$.
18203 <i>10</i>		≈25 ^k keV	0	
18273 10	(7 ⁻) ^{b}	≈21 ^{<i>k</i>} keV	0	

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
18332 10		$\approx 17^{k} \text{ keV}$	L O	XREF: Others: AC E(level): From $(\alpha,\alpha),(\alpha,\alpha')$.
18423 10	$(6^+)^{b}$	≈17 ^k keV	0	
18465 <i>10</i>	. ,	≈13 ^k keV	0	
18740 <i>15</i>			J L	XREF: L(18.70E3).
2				E(level): From $(^{14}N,d)$.
18.97×10^3	$(8^+)^f$		L	
19.0×10 ³ 3 19110 <i>15</i>	(10^+)		L J L	XREF: L(19.07E3).
	(10)		J L	E(level): From $(^{14}N,d)$. Other: $(19.2\ I) \times 10^3$ (2001Wi18 – $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$). From measured $E\alpha$, 2001Wi18 report the excited level energy of 19139 keV 5 and note that for particle channel an uncertainty of 100 keV was expected with a possibility of doublet. J**: From 2012Di04, based on $\alpha\gamma\gamma$ angular correlations in $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$. γ - α branching ratio 0.0007 3 (2001Wi18).
$19.2 \times 10^3 \ 3$			L	
$19.21 \times 10^3 4$	$(9^{-})^{f}$		L	
19400 <i>15</i> 19.69×10 ³ <i>3</i>			J	
19.69×10° 3 19890 <i>15</i>			L J L	XREF: L(19.92E3).
19990 <i>15</i>	$(7^{-})^{f}$	59 ⁿ keV 5	J L	XREF: L(19.98E3).
$20.03 \times 10^3 \ 3$	(,)	28 ⁿ keV 5	L	7 (19.7023).
20.09×10^3	$(9^{-})^{f}$	35 ⁿ keV 13	L	
20210 15	[10 ⁺] ^h	35 ⁿ keV 13	J L	XREF: L(20.17E3).
20260 15	$(8^+)^{f}$	64 ⁿ keV 8	J L	XREF: L(20.24E3).
20.28×10^{3} # 2	$(2^+)^{g}$		LM	
20.42×10^3	$(9^{-})^{f}$		L	
$20.46 \times 10^3 I$	c	<15 ⁿ keV	L	
$20.53 \times 10^3 3$	$(6^+)^f$	43 ⁿ keV 13	L	
20.68×10 ^{3#} 5		1571 1 37	LM	
$20.83 \times 10^3 \ 3$ $20.91 \times 10^3 \ 3$		<15 ⁿ keV <15 ⁿ keV	L L	
$20.94 \times 10^3 \ 3$		<15 KC V	L	
21.20×10^{3} 2	$(4^+)^{8}$		LM	
$21.29 \times 10^3 \ 3$,	<15 ⁿ keV	L	
$21.39 \times 10^3 2$	$(6^+)^{f}$		L	
$21.46 \times 10^3 2$			L	
21.66×10 ^{3#} 5			Lm	
21.80×10^{3} <i>I</i>		<15 ⁿ keV	Lm	
$22.3 \times 10^3 2$ $22.4 \times 10^3 2$	$(4^+)^g (8)^g$		M	
$22.4 \times 10^{3} 2$ $22.79 \times 10^{3} 2$	(0)0		M L	
$22.87 \times 10^{3} I$		<15 ⁿ keV	L	
$22.93 \times 10^3 \ 3$		73 ⁿ keV 13	L	
$23.00 \times 10^3 2$			L	
$23.10 \times 10^3 \ 3$			L	

E(level) [†]	${f J}^\pi$	$T_{1/2}$ or Γ^{j}	XREF	Comments
23.19×10 ³ 3		<15 ⁿ keV	L	
$23.26 \times 10^3 I$		<15 ⁿ keV	L	
23.77×10 ^{3#} 1	$(6^+,(8^+))^g$		LM	
$24.37 \times 10^3 \ 3$	$(9)^{g}$	27 ⁿ keV 3	LM	
24.53×10^{3} 5			L	
24.60×10 ^{3#} 3	$(8^+)^{g}$		LM	
24.98×10 ^{3#} 14	$(9)^{g}$		LM	
$25.18 \times 10^3 \ 3$	$(6^+)^{g}$	163 ⁿ keV 6	LM	XREF: M(25.1E3).
$25.40 \times 10^3 \ 3$			L	
$25.8 \times 10^3 2$	$(9,10)^{8}$		1M	
$26.2 \times 10^3 \ 2$	$(10)^{g}$		1M	
$26.28 \times 10^3 2$	$(12^{+})^{f}$		L	
$26.45 \times 10^3 \ 3$	$(8^+)^g$	115 ⁿ keV 20	LM	XREF: M(26.4E3).
$26.67 \times 10^3 \ 3$	$(12^{+})^{f}$		L	
$26.8 \times 10^3 2$	$(10)^{8}$		M	
27.4×10 ^{3#} 1			LM	
28.0×10^{3} <i>l</i>	$(10)^{g}$		LM	XREF: M(27.8E3).
28.5×10^{3} <i>l</i>			L	
29.3×10^{3} 1	$(10,12)^{g}$		LM	XREF: M(29.1E3).
29.7×10^{3} <i>l</i>			L	
30.1×10^{3} <i>I</i>	(12) <mark>8</mark>		LM	XREF: M(30.3E3).
31.2×10 ^{3#} 1	$(12)^{g}$		LM	
31.8×10 ^{3#} 1			L	
32.6×10 ^{3#} 1	(10) <mark>8</mark>		LM	XREF: M(32.7E3).
33.1×10 ^{3#} <i>1</i>			L	
37.5×10^3			M	
43.0×10^3			M	
46.4×10^3	$(14^+, 16^+)^g$		M	

[†] From a least squares fit to the measured γ -ray energies for levels with depopulating γ , assuming $\Delta E=1$ keV where not given, unless where otherwise noted. Calculated $E\gamma$ were not considered in the least squares fit.

[‡] From (p,γ) .

[#] From $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$.

[@] From $(\alpha,\alpha),(\alpha,\alpha')$:Resonance.

[&]amp; From $(\alpha, \alpha), (\alpha, \alpha')$, based on measured $\sigma(\theta)$ and Legendre polynomial fits (1954Go70).

^a From $(\alpha,\alpha),(\alpha,\alpha')$, based on fit of measured $\sigma(\theta)$ data (1991Ab05 or 1992Da10).

^b From $(\alpha,\alpha),(\alpha,\alpha')$, assigned in 1991Ab05, based on excitation function trend (visual).

^c From $\alpha \gamma$ angular correlations (1983Sc17,1965Sm03) (α,γ).

^d From 1956Ba96 – ²³Na(p,p), based on either of the elastic scattering (p₀) or capture $\gamma(\theta)$ measurements.

^e From 1987Va24 – ²³Na(p,p), based on the elastic and inelastic scattering through allowed channels for resonances in ²⁴Mg or capture $\gamma(\theta)$ measurements.

^f From 2012Di04 – (16 O,α),(16 O,αγ), based on αγγ angular correlations, the γ cascade is 2614γ – 1633γ in 20 Ne, or based on αα angular correlations.

^g From ¹²C(²⁴Mg,2¹²C),(²⁰Ne,2¹²C) based on measured and projected angular correlation measurement data of the decaying state in 2001Sh08 or 2001Fr03. The periodicity of the ridges is is described by a Legendre polynomial of order of the spin of the

²⁴Mg Levels (continued)

decaying state. Parity $(-1)^{J}$ for the decaying state of natural parity, if the recoiling particle has spin-zero.

- ^h Used for Hauser-feshbach calculations to fit the measured differential cross section data in (¹⁴N,d).
- ⁱ From 2021Ad09 (24 Mg(α,α')) based on comparison of differential cross sections to DWBA calculations.
- ^j From $(p,\gamma),(p,p'),(p,X)$ mainly by DSA method, except where otherwise noted.
- ^k From $(\alpha,\alpha),(\alpha,\alpha')$, from resonance fits.
- ^l From (p,p'), $(pol\ p,p')$, $(pol\ p,p'\gamma)$, by DSA method.
- ^m From (e,e'), from Γ_0 and adopted γ-ray branching.
- ⁿ From ($^{16}O,\alpha$),($^{16}O,\alpha\gamma$), by DSA method.
- ^o From (α, γ) , by DSA method.
- ^p Band(A): Prolate $K^{\pi}=0^{+}$ band.
- ^q Band(B): Prolate $K^{\pi}=2^{+}$ band.

Adopted	Levels,	Gammas	(continued)
---------	---------	---------------	-------------

γ (²⁴Mg)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}{}^{b}$	E_f	\mathbf{J}_f^{π}	Mult.d	δ	$\alpha^{m{e}}$	Comments
1368.667	2+	1368.625 5	100	0	0+	E2		5.62×10 ⁻⁵ 8	B(E2)(W.u.)=21.07 +48-46 α =5.62×10 ⁻⁵ 8; α (K)=9.29×10 ⁻⁶ 13; α (L)=5.97×10 ⁻⁷ 9; α (M)=2.21×10 ⁻⁸ 3 α (IPF)=4.63×10 ⁻⁵ 7
4122.853	4+	2754.016 <i>11</i>	100	1368.667	2+	E2		6.78×10 ⁻⁴	E _γ : From ²⁴ Na β^- decay (14.956 h). B(E2)(W.u.)=35.7 +34-29 α (K)=2.54×10 ⁻⁶ 4; α (L)=1.632×10 ⁻⁷ 23; α (M)=6.05×10 ⁻⁹ 9 α (IPF)=0.000675 10
4238.35	2+	2869.50 <i>6</i>	27.8 8	1368.667	2+	M1+E2	-23 9	7.30×10 ⁻⁴	E _γ : Weighted average of 2754.007 <i>11</i> from ²⁴ Na β^- decay (14.956 h), 2754.030 <i>14</i> from ²⁴ Al ε decay (2.053 s). Other: 2751.8 <i>15</i> (³ He,dγ). B(M1)(W.u.)=8×10 ⁻⁶ + <i>15</i> -4; B(E2)(W.u.)=3.36 27
1230.33	2		27.0 0	1300.007	_	WI 152	23 7	7.50×10	$\alpha(K)=2.38\times10^{-6}~4;~\alpha(L)=1.528\times10^{-7}~22;~\alpha(M)=5.67\times10^{-9}~8$ $\alpha(IPF)=0.000727~11$ E _{γ} : From 24 Al ε decay (2.053 s). Others: 2871.0 $10~(^{24}$ Na β^- decay (14.956 h)) and 2869.3 $4~(^{24}$ Al ε decay (130.7 ms)). I _{γ} : weighted average of 30 5 from 24 Na β^- decay (14.956 h), 30.5 $11~$ from 24 Al ε decay (2.053 s), 3E1 3 from 24 Al ε decay (130.7 ms), 33 3 from 25 Si β^+ p decay, 24 6 from (12 C, γ), 30 3 from (α , γ), and 26.7 6 from (p, γ). Mult., δ : From 1960Ba19 (pol p,p' γ) and RUL – see (p,p'),(pol p,p').
		4237.96 [†] 6	100.0 6	0	0+	[E2]		1.25×10 ⁻³	B(E2)(W.u.)=1.72 +14-12 α (K)=1.330×10 ⁻⁶ 19; α (L)=8.53×10 ⁻⁸ 12; α (M)=3.16×10 ⁻⁹ 5 α (IPF)=0.001253 18 E _{γ} : From ²⁴ Al ε decay (2.053 s). I _{γ} : From (p, γ).
5235.16	3+	996.83 [†] <i>10</i>	2.63 [†] 14	4238.35	2+	D+Q			Mult., δ : +5.1 +12-8 and +0.47 4 (1973Le15 – (p, γ)).
		3866.15 10	100.0 [†] 5	1368.667	2+	E2(+M1)	-17 4	1.12×10 ⁻³	B(M1)(W.u.)= 1.7×10^{-5} +12-6; B(E2)(W.u.)= 2.08 16 α (K)= 1.516×10^{-6} 22; α (L)= 9.73×10^{-8} 14; α (M)= 3.61×10^{-9} 5 α (IPF)= 0.001122 16 E _γ : Weighted average of 3866.14 10 from ²⁴ Al ε decay (2.053 s), and 3867.2 14 from (3 He,dγ). Mult., δ : From (pol p,p' γ) in 1973Gl01 and RUL.
		5235 ^a	10 3	0	0+	[M3]			I_{γ} : From (28 Si, X_{γ}). B(M3)(W.u.)=1.16×10 ⁴ 33 exceeds RUL=10.
6010.34	4+	775.4 [†] 2	1.6 [†] 2	5235.16	3+				
		1771.92 [†] 7	11.4 4	4238.35	2+	[E2]		2.11×10^{-4}	B(E2)(W.u.)=14.9 <i>12</i> α (K)=5.50×10 ⁻⁶ 8; α (L)=3.53×10 ⁻⁷ 5; α (M)=1.310×10 ⁻⁸ <i>19</i>

19

γ (²⁴Mg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}{}^{b}$	E_f	\mathbf{J}_f^{π}	Mult. ^d	α^{e}	Comments
								$\alpha(IPF)=0.000205 \ 3$
								I_{γ} : weighted average of 11.70 29 from ²⁴ Al ε decay (2.053 s), 7.5 32 from
								(α, γ) , and 10.5 5 from (p, γ) . Other: 15 4 (28 Si, $X\gamma$).
6010.34	4+	1887.52 [†] 20	1.64 [†] <i>18</i>	4122.853				
		4641.19 [†] 9	100.0 5	1368.667	2+	[E2]	1.38×10^{-3}	B(E2)(W.u.)=1.06 8
								$\alpha(K)=1.172\times10^{-6}\ 17;\ \alpha(L)=7.52\times10^{-8}\ 11;\ \alpha(M)=2.79\times10^{-9}\ 4$ $\alpha(IPF)=0.001381\ 20$
								E_{γ} : Other: 4636.4 <i>16</i> (³ He,d γ).
								I _{γ} : Weighted average of 100.0 32 from (α, γ) and 100.0 5 from (p, γ) . Other: 100 7 from ²⁴ Al ε decay (2.053 s).
								Branching to g.s. could, in principle, be deduced from B(E4) ((e,e'), 1978Za07) and level lifetime.
6432.2	0_{+}	2194 ^a	21.0 9	4238.35	2+	[E2]	4.13×10^{-4}	B(E2)(W.u.)=6.8 +15-11
								$\alpha(K)=3.72\times10^{-6} 6$; $\alpha(L)=2.39\times10^{-7} 4$; $\alpha(M)=8.86\times10^{-9} 13$ $\alpha(IPF)=0.000409 6$
								I _{γ} : Weighted average of 25 13 from (α, γ) , 21.1 9 from (p, γ) , and 20 3 24 Mg(pol p,p' γ).
		5063.2‡‡	100.0 9	1368.667	2+	[E2]	1.51×10^{-3}	B(E2)(W.u.)=0.50 +10-7
								$\alpha(K)=1.040\times10^{-6}\ 15;\ \alpha(L)=6.68\times10^{-8}\ 10;\ \alpha(M)=2.48\times10^{-9}\ 4$
							2	$\alpha(IPF) = 0.001505 \ 21$
		6432		0	0_{+}	E0	8.76×10^{-3}	E _γ : From level energy difference.
								Mult., α : From pair-conversion electron intensity measurements (2020Do10 – (p,p' γ)). α – estimated by the evaluators using $q_{\pi}^2(E0/E2)=5.8~8$ (2020Do10) and $\alpha(5063\gamma - E2)=0.00151$.
								$q_{\pi}^{2}(E0/E2)=5.8 8$ – the ratio of the pair-conversion electron intensity
								$q_{\pi}(2020Do10 - (p,p'\gamma)).$
								$X(E0/E2)=27$ 4 – absolute transition rate $B(E0)/B(E2)$ (2020Do10 – $(p,p'\gamma)$).
								ρ^2 (E0)=0.380 70 – E0 transition strength (2020Do10 – (p,p' γ)).
7348.60	2+	5979.5 [†] 8	61 <i>3</i>	1368.667	2+			
		7347.2 [†] 9	100 <i>3</i>	0	0_{+}	[E2]		B(E2)(W.u.)=0.61 +31-15
7555.3	1-	3316.7 ^a	49 <i>4</i>	4238.35	2+	[E1]	1.39×10^{-3}	$B(E1)(W.u.)=1.9\times10^{-5} +5-4$
								$\alpha(K)=1.369\times10^{-6}\ 20;\ \alpha(L)=8.79\times10^{-8}\ 13;\ \alpha(M)=3.26\times10^{-9}\ 5$
		(105.00		1260.665	2+	DD 13		α(IPF)=0.001393 20
		6185.8 ^a	64 4	1368.667		[E1]		$B(E1)(W.u.)=3.8\times10^{-6}+10-7$
5616 **	a -	7554.0 [‡]	100 6	0	0+	[E1]		B(E1)(W.u.)= 3.3×10^{-6} +9-6
7616.41	3-	2381.0 [†] 3	7 [†] 2		3+	[E1]		$B(E1)(W.u.)=2.6\times10^{-6} +9-8$
		3378.3 [†] 8	8.0 [†] 13	4238.35	2+	[E1]	1.42×10^{-3}	B(E1)(W.u.)= $1.04 \times 10^{-6} + 25 - 21$ $\alpha(K)=1.339 \times 10^{-6} 19$; $\alpha(L)=8.59 \times 10^{-8} 12$; $\alpha(M)=3.18 \times 10^{-9} 5$
		2402.24		4400 0 ===	4.1	CT 43		α(IPF)=0.001420 20
		3493.3 ^a	7.2 14	4122.853	4+	[E1]	1.47×10^{-3}	B(E1)(W.u.)= $8.5 \times 10^{-7} + 22 - 19$
								$\alpha(K)=1.285\times10^{-6}\ 18;\ \alpha(L)=8.24\times10^{-8}\ 12;\ \alpha(M)=3.06\times10^{-9}\ 5$

20

$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbb{E}_{γ}	I_{γ}^{b}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.d	α^{e}	Comments
								α (IPF)=0.001473 21 I_{γ} : weighted average of 7.4 19 from ²⁴ Al ε decay (2.053 s), 9 4 from (α, γ) , and 6.9 14 from (p, γ) .
7616.41	3-	6246.89 [†] 11	100 3	1368.667	2+	[E1]		B(E1)(W.u.)= $2.06\times10^{-6} +37-28$
		7615.2 [†] 9	38 3	0	0+	[E3]		B(E3)(W.u.)=5.6 +11-8
		,,,,,,				[]		I_{γ} : Unweighted average of 41.5 28 from ²⁴ Al ε decay (2.053 s), 41.4 86 from (α, γ) , and 31.9 28 from (p, γ) .
7747.7	1+	3509.1 <mark>a</mark>	12.9 9	4238.35	2+			
		6378.1 ^a	100 <i>3</i>	1368.667				
		7746.4 <mark>a</mark>	39 <i>3</i>	0	0_{+}			
7812.4	$(4^-,5^+)$	1800 [#]	12 3	6010.34	4+			
		2577.4 [†] 8	100 ^C 5	5235.16	3+			E_{γ} : Other: 2580 ($^{16}O_{\gamma}\alpha_{\gamma}$), ($^{16}O_{\gamma}\alpha_{\gamma}$).
		3690 [#]	51 7	4122.853	4+			I _{γ} : Weighted average of 59 9 from (^{16}O , α), 32 9 from (α , γ), and 55 5 from (p , γ).
8113.2	6+	3990.0 [‡]	100	4122.853	4+	[E2]	1.17×10^{-3}	B(E2)(W.u.)=38 + 18-10
								$\alpha(K)=1.449\times10^{-6}\ 21;\ \alpha(L)=9.30\times10^{-8}\ 13;\ \alpha(M)=3.45\times10^{-9}\ 5$ $\alpha(IPF)=0.001166\ 17$
8358.1	3-	2347.7 ^a	22 4	6010.34	4+	[E1]	8.77×10^{-4}	$B(E1)(W.u.)=1.34\times10^{-4} +30-27$
								$\alpha(K)=2.14\times10^{-6} \ 3; \ \alpha(L)=1.375\times10^{-7} \ 20; \ \alpha(M)=5.10\times10^{-9} \ 8$ $\alpha(IPF)=0.000875 \ 13$
								I_{γ} : From (p,γ) . Others: 13 11 (α,γ) , 52 10 from $(^{12}C,\gamma)$.
		3122.7 ^a	33 4	5235.16	3+	[E1]		$B(E1)(W.u.)=8.6\times10^{-5} +16-13$
								I_{γ} : From (p,γ) . Others: 35 11 (α,γ) , 75 17 from $(^{12}C,\gamma)$.
		6988.3 [‡]	100 7	1368.667	2+	[E1]		$B(E1)(W.u.)=2.31\times10^{-5} +35-28$
								I_{γ} : weighted average of 100 7 from ($^{12}C, \gamma$), 100 11 from (α, γ), and 100 8
		0256.50	0.6.10	0	0.+	FE01		from (p,γ) .
		8356.5 ^a	8.6 10	0	0+	[E3]		B(E3)(W.u.)= $10.4 + 20 - 17$ I _y : deduced from B(E3) in (e,e') (1974Jo10) and adopted level half-life.
8438.4	1-	7068.6 <mark>a</mark>	25 13	1368.667	2+	[E1]		$B(E1)(W.u.)=5.1\times10^{-5} +28-22$
0430.4	1	8436.8 [‡]	100 13	0	0+	(E1)		B(E1)(W.u.)= 3.1×10^{-4} +37-24
		0430.01	100 13	U	U.	(E1)		Mult.: D from $\gamma(\theta)$ (1969Ca18 – $(\alpha, \alpha'\gamma)$ and $\Delta\pi$ =yes from levels scheme.
8439.29	4+	822.0 [†] 6	0.05 † 2	7616.41	3-	[E1]		B(E1)(W.u.)=0.00015 +13-7
U T J₹.47	7	1090.67 [†] 10	$0.03^{\dagger} 2$ $0.32^{\dagger} 2$	7348.60	2 ⁺	[E1]		B(E2)(W.u.)=59 +43-19
		1090.07 10	0.32 2	1340.00	2	[E4]		B(E2)(W.u.)=59+43-19 B(E2)(W.u.)=59+43-19 upper bound exceeds RUL=100.
		2428.97 [†] <i>15</i>	1.79 [†] 4	6010.34	4+			C // Company to the to approximate the control of t
		3203.88 [†] 8	7.21 16	5235.16	3+			I_{γ} : Weighted average of 7.13 <i>16</i> from ²⁴ Al ε decay (2.053 s) and 7.49 <i>31</i> from (p, γ).
		4200.54 [†] <i>13</i>	9.5 <i>5</i>	4238.35	2+	[E2]	1.24×10^{-3}	B(E2)(W.u.)=2.1 + 15-6
				4/.30.31				

-									
	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathbf{J}_f^π	Mult.d	$\alpha^{m{e}}$	Comments
ı									α (IPF)=0.001239 18
ı									I_{γ} : Weighted average of 9.3 5 from ²⁴ Al ε decay (2.053 s) and 9.7 5 from
									(p,γ) .
	8439.29	4+	4316.00 [†] <i>12</i>	33 3	4122.853	4+			I_{γ} : Weighted average of 30.8 <i>14</i> from ²⁴ Al ε decay (2.053 s) and 36.7 <i>16</i> from (p, γ).
			7069.50 [†] <i>12</i>	100.0 17	1368.667	2+	[E2]		B(E2)(W.u.)=1.6 +12-5
	8654.9	2+	2222.3 ^a	6.1 12	6432.2	0_{+}	[E2]	4.27×10^{-4}	B(E2)(W.u.)=9.0 +32-22
									$\alpha(K)=3.64\times10^{-6} 5$; $\alpha(L)=2.34\times10^{-7} 4$; $\alpha(M)=8.66\times10^{-9} 13$ $\alpha(IPF)=0.000423 6$
ı			4416.1 <mark>a</mark>	17 <i>3</i>	4238.35				I_{γ} : weighted average of 26 7 from (α, γ) and 15.9 25 from (p, γ) .
	004:-	_	7285.0 ^a	100.0 25	1368.667				D (TA) (TA) A (A) 5 A (A) 5
	8864.5	2-	3629.0 ^a	2.17 16	5235.16	3+	[E1]	1.53×10^{-3}	B(E1)(W.u.)= $6.0 \times 10^{-5} + 36 - 17$
١									$\alpha(K)=1.226\times10^{-6}\ 18;\ \alpha(L)=7.87\times10^{-8}\ 11;\ \alpha(M)=2.92\times10^{-9}\ 4$ $\alpha(IPF)=0.001533\ 22$
			4625.7 <mark>a</mark>	8.9 <i>3</i>	4238.35	2+	[E1]		$\alpha(\text{IPF}) = 0.001333 22$ B(E1)(W.u.)=1.2×10 ⁻⁴ +7-3
ı			7494.6 ^a	100.0 3	1368.667		[E1]		B(E1)(W.u.)=0.00031 + 19-9
ı			8862.7 ^a	1.03 16	0	0^{+}	[M2]		B(M2)(W.u.)=0.11 +7-4
ı	9003.5	2+	1654.4 <mark>a</mark>	12 4	7348.60	2+	. ,		
l			2570.9 ^a	14 6	6432.2	0_{+}	[E2]	5.94×10^{-4}	B(E2)(W.u.)=13 +6-5
ı									$\alpha(K)=2.84\times10^{-6} 4$; $\alpha(L)=1.83\times10^{-7} 3$; $\alpha(M)=6.77\times10^{-9} 10$
ı								2	$\alpha(IPF) = 0.000591 9$
ı			4880.1 ^a	35 10	4122.853	4+	[E2]	1.46×10^{-3}	B(E2)(W.u.)=1.29 +39-34
ı									$\alpha(K)=1.094\times10^{-6}\ 16;\ \alpha(L)=7.02\times10^{-8}\ 10;\ \alpha(M)=2.60\times10^{-9}\ 4$ $\alpha(IPF)=0.001454\ 21$
			9001.7 ^a	100 12	0	0^{+}	[E2]		$\alpha(\text{IFF}) = 0.001434 \ 21$ B(E2)(W.u.)=0.172 +34-26
ı	9146.2	1-	4907.3 ^a	53 4	4238.35	2+	[L2]		D(L2)(W.d.)=0.172 +37 20
ı			7776.2 ^a	60 4	1368.667	2+			
١			9144.3 ^a	100 6	0	0_{+}			
I	9284.4	$2^{+},4^{+}$	5161	27 4	4122.853	4+			E_{γ} : From ($^{12}C_{\gamma}$).
									I _{γ} : Weighted average of 18 6 from (α, γ) , and 28.2 26 from (p, γ) . Other: 60 10 from $(^{12}C, \gamma)$.
l			7914.3 [‡]	100 3	1368.667	2+			
l	9299.8		1683.3 [‡]	100	7616.41	3-			
۱	9301.07	(4^{+})	1952.38 [†] 20	7.3 [†] 5	7348.60	2+			
l			5060.7 [†] 8	2.8 [†] 10	4238.35	2+			
I			5177.51 [†] 20	76 [†] 8	4122.853	4+			
1			7930.87 [†] <i>15</i>	100 [†] 8	1368.667				
	9305.39	0^{+}	7935.3 ^a	100	1368.667				
1	9457.81	$(3)^{+}$	1710.0 <mark>a</mark>	2.1 9	7747.7	1+			
			2108.65 ^a	1.5 5	7348.60	2+			
۱			3447.21 ^a	2.1 3	6010.34	4+			
٠									

								=
E_i (level)	\mathtt{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	J_f^π	Mult.d	α^e	Comments
9457.81	$(3)^{+}$	4222.20 ^a	12.0 8	5235.16	3+			
		5218.81 ^a	5.6 6	4238.35				
		5334.29 ^a	28.4 9	4122.853				
		8087.66 ^a	100.0 17	1368.667				
9516.18	4+	1076.86 [†] 4	85.8 [†] <i>17</i>	8439.29	4+			
		1704.8 [†] 8	$0.09^{\dagger} 2$	7812.4	$(4^-,5^+)$			
		1899.70 [†] 6	4.74 [†] <i>12</i>	7616.41	3-	[E1]	5.75×10 ⁻⁴	B(E1)(W.u.)=0.00023 +15-7 α (K)=2.89×10 ⁻⁶ 4; α (L)=1.85×10 ⁻⁷ 3; α (M)=6.87×10 ⁻⁹ 10 α (IPF)=0.000572 8
		3505.61 [†] 9	11.5 [†] 4	6010.34	4+			
		4280.62 [†] <i>13</i>	3.82 [†] 23	5235.16	3+			I_{γ} : Other: 7.6 8 in (p,γ) .
		5277.2 ^a	2.0 10	4238.35				7
		5392.68 [†] 9	100 6	4122.853	4+			
		8146.0 ^a	0.16 [†] 4	1368.667		[E2]		B(E2)(W.u.)=0.00025 +18-9
9527.6	(6^+)	3517.0 [‡]	100# 6	6010.34		[E2]	1.00×10^{-3}	B(E2)(W.u.)=25 +22-9
9321.0	(0)	3317.0	100 0	0010.54	7	[E2]	1.00×10	$\alpha(K)=1.742\times10^{-6} 25$; $\alpha(L)=1.118\times10^{-7} 16$; $\alpha(M)=4.15\times10^{-9} 6$ $\alpha(IPF)=0.000999 14$
		5404.0 [‡]	28 [#] 6	4122.853	4+	[E2]	1.60×10^{-3}	B(E2)(W.u.)=0.8 +7-3 α (K)=9.53×10 ⁻⁷ 14; α (L)=6.12×10 ⁻⁸ 9; α (M)=2.27×10 ⁻⁹ 4 α (IPF)=0.001601 23
9532.7	$(2,3)^+$	1916.0 <mark>a</mark>	7.4 10	7616.41	3-			u(H1) 0.001001 25
	()-)	4297.1 <mark>a</mark>	39 6	5235.16				
		5293.7 ^a	84 6	4238.35				
		8162.5 ^a	100 26	1368.667	2+			
9828.0	1+	3395.2 ^a	2.1 5	6432.2	0+			
		8457.7 ^a	30.3 20	1368.667	2+			
		9825.9 <mark>&</mark> 20	100.0 19	0	0_{+}			
9965.3	1+	8595.1 ^{&} <i>15</i>	38 <mark>&</mark> 6	1368.667	2+			
		9963.0 <mark>&</mark> <i>15</i>	100 <mark>&</mark> 12	0	0^{+}			
10027.97	5-	1670 [@]	45.4 22	8358.1	3-	[E2]	1.66×10^{-4}	B(E2)(W.u.)=32+14-8
						. ,		$\alpha(K)=6.17\times10^{-6} 9$; $\alpha(L)=3.96\times10^{-7} 6$; $\alpha(M)=1.469\times10^{-8} 21$ $\alpha(IPF)=0.0001595 23$
		2215.6 ^a	7.3 12	7812.4	$(4^-,5^+)$			
		2411.2 ^a	8.8 24	7616.41	3-	[E2]	5.19×10^{-4}	B(E2)(W.u.)=1.0 +5-3 α (K)=3.17×10 ⁻⁶ 5; α (L)=2.03×10 ⁻⁷ 3; α (M)=7.53×10 ⁻⁹ 11 α (IPF)=0.000515 8
		4017.2 ^a	23 3	6010.34	4 ⁺	[E1]	1.69×10 ⁻³	B(E1)(W.u.)= $1.9 \times 10^{-5} + 9 - 5$ α (K)= 1.085×10^{-6} 16; α (L)= 6.96×10^{-8} 10; α (M)= 2.58×10^{-9} 4 α (IPF)= 0.001687 24

$E_i(level)$	J_i^{π}	\mathbb{E}_{γ}	$I_{\gamma}{}^{b}$	E_f	\mathbf{J}_f^{π}	Mult. ^d	α^{e}	Comments
10027.97	5-	5904.2 [‡]	100 10	4122.853	4+	[E1]	0.00227	B(E1)(W.u.)= 2.6×10^{-5} +11-6 α (K)= 6.95×10^{-7} 10; α (L)= 4.46×10^{-8} 7; α (M)= 1.652×10^{-9} 24 α (IPF)= 0.00227 4
		8657.5 <mark>a</mark>	61 12	1368.667	2+	[E3]		B(E3)(W.u.)=39 +18-11
10059.1	$(1,2)^+$	5820.0 ^a	16 4		2+	1		(-)(,
	. , ,	8688.6 <mark>&</mark> 25	100 4	1368.667	2+			
10110.9	(0^+)	8740.5 ^a	100	1368.667				
10333.6	3-	6094.4 ^a	61 11	4238.35	2+			
		8963 [@]	100 11	1368.667	2+			
10360.7	2+	3927.9 ^a	1.2 4	6432.2	0^{+}	[E2]	1.15×10^{-3}	B(E2)(W.u.)=1.0 +6-4
						[]		$\alpha(K)$ =1.482×10 ⁻⁶ 21; $\alpha(L)$ =9.51×10 ⁻⁸ 14; $\alpha(M)$ =3.53×10 ⁻⁹ 5 $\alpha(IPF)$ =0.001144 16
		5124.9 ^a	3.0 7	5235.16	3+			
		8990.2 [‡]	100 4	1368.667	2+			
		10358.3 ^a	72 4	0	0_{+}	[E2]		B(E2)(W.u.)=0.47 +20-11
10575.93	$(4)^{+}$	1059.78 [†] 8	100 [†] 6	9516.18	4+			
	. ,	1274.71 [†] <i>10</i>	37.2 [†] 21	9301.07	(4^{+})			
		2136.58 [†] <i>15</i>	59 [†] 3	8439.29	4+			
		5340.3 [†] 4	40 [†] 5	5235.16	3 ⁺			
10581.26	$(2^+,3^+,4^+)$	4570.4 ^a	20.6 8	6010.34	3 4 ⁺			
10301.20	(2 ,5 ,1)	5345.4 ^a	53.4 15	5235.16	3+			
		6342.0 ^a	100 3	4238.35	2+			
		6457.4 ^a	37.6 <i>13</i>	4122.853	4+			
		9210.6 <mark>a</mark>	46.1 <i>15</i>	1368.667	2+			
10659.8	$(1,2^+)$	9289.2 ^a	43 11	1368.667				
		10657.3 ^a	100 11	0	0+			
10660.17	$(3^+,4^+)$	5424.2 ^a	12 3	5235.16	3+			
		6536.3 ^a	35 13	4122.853				
10670.7	0^{+}	9289.5 ^a 3124 ^a	100 <i>13</i> 0.6 ^c 4	1368.667				
10679.7	0.	3331 ^a	0.6° 4 2.4° 4	7555.3 7348.60	1 ⁻ 2 ⁺			
		6440 ^a	14.7° 12	4238.35	2+			
		9309 ^a	$14.7 12$ $100^{\circ} 3$	1368.667				
10712.2	1+	10709.6 <mark>a</mark>	100 3	0	0+			
10731.1	2+	5495.2 ^a	10 3	5235.16	3+			
		6491.8 ^a	27 3	4238.35	2+	(M1)		B(M1)(W.u.)=0.0023 +16-7 Mult.: D from (γ, θ) in (α, γ) ; $\Delta \pi$ =yes from level scheme.
		9360.5 a	100 4	1368.667	2+			V V V V V V V V V V V V V V V V V V V
10020 0	3+,4+	9450.1 [†] 4	100	1368.667	2+			
10820.8	J , 1							

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^d	α^{e}	Comments
								$\alpha(K)$ =1.229×10 ⁻⁶ 18; $\alpha(L)$ =7.88×10 ⁻⁸ 11; $\alpha(M)$ =2.92×10 ⁻⁹ 4 $\alpha(IPF)$ =0.001337 19
0917.2	2+	4906.3 ^a	1.70 ^c 21	6010.34	4 +	EE:01	1.46×10^{-3}	
0917.2	2.	4906.3	1.70° 21	0010.34	4	[E2]	1.46×10	B(E2)(W.u.)=0.48 +10-8
								$\alpha(K)=1.086\times10^{-6}$ 16; $\alpha(L)=6.97\times10^{-8}$ 10; $\alpha(M)=2.58\times10^{-9}$ 4 $\alpha(IPF)=0.001462$ 21
		5681.3 ^a	2.77 ^c 21	5235.16	3 ⁺			u(H1)=0.001102 21
		6677.8 ^a	1.06 ^c 21	4238.35				
		6793.3 ^a	34.0° 21	4122.853		[E2]		B(E2)(W.u.)=1.90 +29-24
		9546.5 ^a	100° 4	1368.667		[22]		5(22)(\\\\\\\\)
		10914.5 ^a	72 ^c 4	0	0^{+}	[E2]		B(E2)(W.u.)=0.38 +6-5
1012	3,5+	2573 ^a	100 11	8439.29	4 ⁺	[22]		D(DD)(11.dl.) 0.30 10 3
1012	5,5	5001 ^a	47 9	6010.34	4 ⁺			
1018	2+	1048 <mark>a</mark>	2.5° 6	9965.3	1+			
1010	-	3270 ^a	0.62 ^c 12	7747.7	1+			
		3462 ^a	0.37 ^c 12	7555.3	1-			
		5007 ^a	0.86° 12	6010.34	4 ⁺			
		5782 ^a	1.5° 3	5235.16	3 ⁺			
		6779 <mark>a</mark>	2.4 ^c 4	4238.35	2+			
		6894 <mark>a</mark>	1.0° 3	4122.853				
		9647 <mark>a</mark>	100° 3	1368.667				
		11015 ^a	14.2° 12	0	0^{+}			
1133		3518	100	7616.41	3-			E_{γ} : From (α, γ) .
1165	3-	2726 ^a	5.8° 3	8438.4	1-			L_{γ} . From (u, y) .
1103	3	3609 ^a	6.2 ^c 3	7555.3	1-			
		5154 <mark>a</mark>	13.1 ^c 3	6010.34	4 ⁺			
		5929 ^a	11.3 ^c 3		3 ⁺			
		7041 <mark>a</mark>	1.81 ^c 14	4122.853				
		9794 ^a	100° 3	1368.667				
1107.2		9816.5 [‡]						
1187.3			100	1368.667				
1207	2+ 4+	9836 ^a	100	1368.667				
1216.69	3+,4+	1700 ^a	1.40° 12	9516.18	4 ⁺			
		2562 ^a	0.81 ^c 12	8654.9	2+			
		3868 ^a	0.35 ^c 12	7348.60	2+			
		5981 ^a	0.93 ^c 12	5235.16				
		7093 ^a	12.8° 12	4122.853				
		9846 ^a	100.0° 23	1368.667				
1314.4	$(3,4)^{+}$	9943.5 [†] <i>15</i>	100	1368.667				
1330		9959 ^a	100	1368.667				
1391	1-	1332 ^a	1.9 ^c 3	10059.1	$(1,2)^+$			
		1426 <mark>a</mark>	1.01 ^c 14	9965.3	1+			

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	$I_{\gamma}{}^{b}$	\mathbf{E}_f	${\rm J}_f^\pi$	Mult.d	$\alpha^{m{e}}$	Comments
11391	1-	2953 <mark>a</mark>	1.01 ^c 14	8438.4	1-			
11391	1	3643 ^a	1.45 ^c 14	7747.7	1+			
		4958 <mark>a</mark>	1.45 14 1.16 ^c 14	6432.2	0+			
		7152 ^a	2.2° 3	4238.35	2+			
		10020 ^a	100° 3	1368.667				
		11388 ^a	36.2 ^c 14	0	0+			
11452.8	2+	721.7 ^a	3.4° 5	10731.1	2+			
11432.0	2	1393.7 ^a	1.14 ^c 23	10751.1	$(1,2)^{+}$			
		1393.7 1487.5 <mark>a</mark>	12.7° 7	9965.3	1+			
		3704.8 ^a	$\frac{12.7}{3.2^{\circ}}$ 5	9903.3 7747.7	1 1 ⁺			
		3836.0 ^a	0.9° 5	7616.41	3-			
		4103.4 <mark>a</mark>	1.36 ^c 23	7348.60	3 2 ⁺			
		6216.7 ^a	4.1° 5	5235.16	3 ⁺			
		7213.3^{a}	4.1° 3 47.7° 23	4238.35	2 ⁺			
		7213.3° 7328.7 <mark>a</mark>	1.82° 23	4122.853				
		10081.8 ^a	$1.82^{\circ} 23$ $100.0^{\circ} 23$	1368.667				
		10081.8" 11449.8 <mark>a</mark>	50.0° 23	0	2 0+			
11522	2+	791 ^a	1.59 16	10731.1	2+			
11322	2.	1463 ^a	2.1 3	10751.1	$(1,2)^{+}$			
		1557 ^a	2.1 3 1.11 <i>16</i>	9965.3	$(1,2)$ 1^{+}			
		3164 ^a	0.32 16	8358.1	3-			
		3164" 3774 <mark>a</mark>			3 1 ⁺			
		37/4 ^a 3905 ^a	1.11 <i>16</i> 1.43 <i>16</i>	7747.7	3-			
		5089 ^a		7616.41 6432.2	0 ⁺			
		7282 ^a	12.2 5		2+			
		7282 ^a	8.1 <i>3</i> 7.0 <i>3</i>	4238.35 4122.853				
		10151 ^a	23.8 16	1368.667				
44600	-	11519 ^a	100 3	0	0+	577.43	- 0 - 10-1	D. (T.L.) (1) 0.000 (2) 0.1 10
11600	3-	2084 ^a	21.8 ^c 14	9516.18	4+	[E1]	7.05×10^{-4}	B(E1)(W.u.)=0.00057 + 21-13
								$\alpha(K) = 2.53 \times 10^{-6} 4$; $\alpha(L) = 1.622 \times 10^{-7} 23$; $\alpha(M) = 6.01 \times 10^{-9} 9$
		2200				577.43		$\alpha(IPF) = 0.000702 \ 10$
		2299 ^a	75 ^c 5	9301.07	(4^{+})	[E1]		B(E1)(W.u.)=0.0015 +5-3
		2300 ^a	5.9 ^c 14	9299.8				
		2315 ^a	12.5° 11	9284.4	2+,4+	[E1]		$B(E1)(W.u.)=2.4\times10^{-4}+9-6$
		3242 ^a	8.2° 7	8358.1	3-			
		3983 ^a	100° 5	7616.41	3-			
		7476 <mark>a</mark>	3.9° 5	4122.853		[E1]		$B(E1)(W.u.)=2.2\times10^{-6} +9-6$
11698.2	4+	686 <mark>a</mark>	1.82 ^c 23	11012	$3,5^{+}$			
		2397 <mark>a</mark>	100° 5	9301.07	(4^{+})			
		2398 <mark>a</mark>	1.1 ^c 5	9299.8	` /			

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}
11698.2	4+	3043 ^a	2.5° 5	8654.9	2+	11988.5	2+	2703.9 ^a	2.0 11	9284.4	2+,4+
		3259 ^a	3.6° 5	8439.29	4+			2984.8 ^a	1.3 7	9003.5	2+
		3885 ^a	1.4 ^c 5	7812.4	$(4^-,5^+)$			3122.8 ^a	11 5	8864.5	2-
		4349 ^a	5.9° 5	7348.60	2+			3549.8 ^a	6.3 4	8438.4	1-
		5687 ^a	5.0° 5	6010.34	4 ⁺			4240.4 ^a	11 5	7747.7	1+
		6462 ^a	6.8° 5	5235.16	3 ⁺			4432.8 ^a	3.3 17	7555.3	1-
		7459 ^a	19.8° 9	4238.35	2+			6752.3 ^a	17 9	5235.16	3 ⁺
		7574 ^a	15.7° 9	4122.853				7748.8 ^a	100 5	4238.35	2 ⁺
11720	0+	10327 ^a	64 ^c 5 3.48 ^c 22	1368.667				10617.3 ^a	61 2	1368.667	2 ⁺ 0 ⁺
11730	0_{+}	1765 ^a 4174 ^a	3.48° 22 1.63° 11	9965.3 7555.3	1 ⁺ 1 ⁻	12002		11985.3 ^a 991 ^a	1.7 9 19 ^c 3	0	
			3.59 ^c 22			12003			9.5° 16	11012	3,5 ⁺
		7490 ^a 10359 ^a	3.59° 22 100.0° 22	4238.35 1368.667	2 ⁺ 2 ⁺			3563 ^a 5992 ^a	9.5° 16 30° 3	8439.29	4 ⁺ 4 ⁺
										6010.34	
11860	(8+)	3747.0 [‡]	100	8113.2	6+			7879 ^a	100° 3	4122.853	4+
11862.8	1-	4306 ^a	4.4 ^c 4	7555.3	1-	12051.3	4+	6040 ^a	6.9° 7	6010.34	4+
		4513 ^a	1.75 ^c 18	7348.60	2+			6815 ^a	30.6° 14	5235.16	3 ⁺
		7622 ^a	4.4 ^C 4	4238.35	2+			7927 ^a	100° 3	4122.853	4 ⁺
		10491 ^a	65° 4	1368.667		12110.0	4.4	10680 ^a	1.4° 3	1368.667	2 ⁺ 4 ⁺
11000	(2) ±	11859 ^a	100° 4	0	0+	12119.0	4+	2603 ^a	100° 8 27° 5	9516.18	•
11932.9	$(3)^{+}$	2631.9 ^a	0.19 7	9301.07	(4 ⁺)			6108 ^a	92° 5	6010.34	4 ⁺
		3068.4 ^a	0.34 7	8864.5	2-			7879 ^a	92° 5 38° 5	4238.35	2 ⁺ 4 ⁺
		4120.5 ^a	1.41 16	7812.4	$(4^-,5^+)$			7995 ^a		4122.853	
		4583.6 ^a	1.62 19	7348.60	2+	12120		10748 ^a	14° 3	1368.667	2+
		5922.0 ^a	4.3 5	6010.34	4 ⁺ 3 ⁺	12128	4+	4315 ^a	100 17.6 ^c 20	7812.4	$(4^-,5^+)$ 4^+
		6696.9 ^a	1.27 <i>21</i> 0.51 <i>19</i>	5235.16	2+	12162	4	2646 ^a 3158 ^a	3.9° 10	9516.18	2 ⁺
		7693.4 ^a 7808.9 ^a	0.51 <i>19</i> 24.4 <i>24</i>	4238.35 4122.853	_			6926 ^a	5.9° 10 5.9° 20	9003.5 5235.16	3 ⁺
		10561.9 ^a	24.4 <i>24</i> 100 <i>10</i>	1368.667				7922 ^a	11.8° 20	4238.35	2 ⁺
11966.6	2+	760 ^a	0.9° 3	1308.007	2			8038 ^a	$100^{\circ} 6$	4238.33	4 ⁺
11900.0	2	1236 ^a	3.7 ^c 6	10731.1	2+			10791 ^a	57 ^c 6	1368.667	2 ⁺
		1908 ^a	12.0° 6	10751.1	$(1,2)^+$	12183.3		966.6 ^a	2.1 11	11216.69	3 ⁺ ,4 ⁺
		2001 ^a	4.9 ^c 6	9965.3	1+	12103.3		1452.2 ^a	2.0 10	10731.1	2 ⁺
		5534 ^a	9.4 ^c 6	6432.2	0+			1822.5 ^a	5.0 25	10360.7	2 ⁺
		6731 ^a	60° 3	5235.16	3 ⁺			2217.9 ^a	1.4 7	9965.3	1 ⁺
		7727 ^a	46 ^c 3	4238.35	2 ⁺			3528.1 ^a	4.8 24	8654.9	2 ⁺
		7842 <mark>a</mark>	3.4 ^c 3	4122.853	4 ⁺			4435.2 ^a	3.7 18	7747.7	1+
		10596 ^a	100° 6	1368.667	-			5750.4 ^a	1.8 10	6432.2	0+
		11964 ^a	46 ^c 3	0	0 ⁺			7943.5 <mark>a</mark>	12.8 7	4238.35	2 ⁺
11988.5	2+	1257.4 ^a	0.9 4	10731.1	2+			10812.0 ^a	100 6	1368.667	2 ⁺
		1929.3 ^a	1.5 9	10059.1	$(1,2)^+$			12180.0 ^a	7 4	0	0^{+}

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	J_f^π	E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}
12259.3	2-	1042.6 <mark>a</mark>	3.3 18	11216.69	3+,4+	12404.9	2+	7168.6 <mark>a</mark>	1.9 10	5235.16	3+
		2293.9 ^a	1.1 7	9965.3	1+			8165.1 <mark>a</mark>	100 5	4238.35	2+
		2431.0 <mark>a</mark>	2.2 11	9828.0	1+			8280.5 <mark>a</mark>	1.4 8	4122.853	4+
		3255.6 <mark>a</mark>	4.4 22	9003.5	2+			11033.5 <mark>a</mark>	3.3 17	1368.667	2+
		3394.5 <mark>a</mark>	9 4	8864.5	2-			12401.5 ^a	3.0 15	0	0_{+}
		3819.7 <mark>a</mark>	5.6 28	8439.29	4+	12443	$6^+,7^-$	2415 ^a	100	10027.97	5-
		4910.2 ^a	9 4	7348.60	2+	12507	4+	5158 ^a	5.8 ^c 10	7348.60	2+
		7023.0 ^a	24.4 22	5235.16	3+			7271 ^a	15.4 ^c 19	5235.16	3+
		8019.5 <mark>a</mark>	100 5	4238.35	2+			8267 ^a	46 ^c 4	4238.35	2+
		8135.0 ^a	1.1 7	4122.853				8382 ^a	25 ^c 4	4122.853	
		10888.0 ^a	60 2	1368.667	2+			11136 ^a	100° 6	1368.667	2+
		12255.9 ^a	2.2 11	0	0+	12527.6	1+	1796.4 ^a	1.9 10	10731.1	2+
12340.2	3+	1680.3 ^a	1.1 7	10659.8	$(1,2^+)$			2468.4 ^a	6 3	10059.1	$(1,2)^+$
		3336.5 ^a	5.1 27	9003.5	2+			2699.2 ^a	2.6 13	9828.0	1+
		3685.0 ^a	2.4 13	8654.9	2+			3662.8 ^a	7 3	8864.5	2-
		4723.3 ^a	9 4	7616.41	3-			3872.4 ^a	13 6	8654.9	2+
		4991.0 ^a	29 2	7348.60	2+			4088.8 ^a	7 4	8438.4	1-
		7103.9 ^a	47 2	5235.16	3+			4779.4 ^a	16 8	7747.7	1+
		8100.4 ^a	100 5	4238.35	2+			6094.6 ^a	33 2	6432.2	0+
		8215.8 ^a	4.9 24	4122.853				8287.7 ^a	36 2	4238.35	2+
		10968.8 ^a	24 1	1368.667				11156.2 ^a	15 8	1368.667	2+
12342	- 1	4529 ^a	100	7812.4	$(4^-,5^+)$. 1	12524.1 ^a	100 5	0	0+
12400.3	3 ⁺	2341.1 ^a	3.9	10059.1	$(1,2)^{+}$	12638.7	4+	3180.7 ^a	0.9 5	9457.81	$(3)^{+}$
		2883.9 ^a	18	9516.18	4+			4825.8 ^a	3.6 18	7812.4	$(4^{-},5^{+})$
		2942.3 ^a	2.8	9457.81	(3)+			6627.4 ^a	15.8 8	6010.34	4 ⁺
		3396.5 ^a	4.9	9003.5	2+			7402.3 ^a	8.7 43	5235.16	3 ⁺
		4783.4 ^a	10	7616.41	3 ⁻ 2 ⁺			8398.8 ^a	0.7 4	4238.35	2 ⁺ 4 ⁺
		5051.1 ^a 7164.0 ^a	31 44	7348.60	3 ⁺			8514.2 ^a 11267.2 ^a	100 <i>5</i> 2.0 <i>11</i>	4122.853	
		8160.5 ^a	100	5235.16 4238.35	2+	12660.0	3-	11267.2 ^a	5° 3	1368.667 10731.1	2+
		8275.9 ^a	6	4238.33		12660.8	3	2602 ^a	16 ^c 3	10751.1	$(1,2)^{+}$
		11028.9 ^a	36	1368.667				3144 ^a	22° 3	9516.18	(1,2) · 4 ⁺
12404.9	2+	3103.6 ^a	2.4 12	9299.8	Z			3796 ^a	22° 5	9310.18 8864.5	2-
12404.9	2	3401.1 ^a	4.4 22	9299.8	2+			4913 ^a	5° 3	7747.7	1 ⁺
		3540.1 ^a	2.5 13	8864.5	2-			5312 ^a	19 ^c 3	7348.60	2+
		3749.7 ^a	19 <i>I</i>	8654.9	2+			7424 ^a	8 ^c 3	5235.16	3 ⁺
		3966.1 ^a	4.1 21	8438.4	1-			8421 ^a	100° 11	4238.35	2+
		4046.4 ^a	1.6 8	8358.1	3-			8536 ^a	16 ^c 3	4122.853	
		4788.0 ^a	12.6	7616.41	3-			11289 ^a	51° 5	1368.667	2+
		5055.7 ^a	3.0 15	7348.60	2+	12670.0	2-	682.5 ^a	0.36 2	11988.5	2 ⁺
							_				

29

γ (²⁴Mg) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbb{E}_f	\mathbf{J}_f^{π}
12818.1	1+	6385.0 ^a	18 9	6432.2	0+
		7581.6 ^a	2.6 13	5235.16	3+
		8578.1 <mark>a</mark>	54 <i>3</i>	4238.35	2+
		11446.5 <mark>a</mark>	26 13	1368.667	2+
		12814.4 <mark>a</mark>	100 5	0	0^{+}
12846.9	$(3^-,4^+)$	6835.5 <mark>a</mark>	6.1 31	6010.34	4+
	, , ,	7610.4 <mark>a</mark>	4.1 20	5235.16	3 ⁺
		8606.9 <mark>a</mark>	100 5	4238.35	2+
		8722.3 <mark>a</mark>	73 <i>4</i>	4122.853	4+
		11475.3 <mark>a</mark>	20 10	1368.667	2+
12854	$(1^+, 2^+, 3^+)$	7618 <mark>a</mark>	52 <i>3</i>	5235.16	3 ⁺
		8614 <mark>a</mark>	100 5	4238.35	2+
		11482 <mark>a</mark>	18 9	1368.667	2+
		12850 ^a	9 5	0	0^{+}
12861	$2^{+},3^{-}$	3560 ^a	52 ^c 4	9301.07	(4^{+})
		4422 ^a	40 ^c 4	8438.4	1-
		6850 ^a	100° 4	6010.34	4+
		8736 ^a	19 ^c 4	4122.853	4+
12895.1	1+	4239.8 ^a	4.2 21	8654.9	2+
		5146.8 <i>af</i>	6.9 35	7747.7	1+
		7658.6 <mark>a</mark>	16.7 8	5235.16	3 ⁺
		8655.1 ^a	11 6	4238.35	2+
		11523.4 <mark>a</mark>	100 6	1368.667	2+
12921.6	$(2^+,3^-,4^+)$	3636.9 ^a	24 12	9284.4	$2^{+},4^{+}$
		4266.3 ^a	14 <i>7</i>	8654.9	2+
		4563.0 ^a	59 <i>3</i>	8358.1	3-
		7685.1 ^a	100 5	5235.16	3 ⁺
		8681.6 ^a	72 4	4238.35	2+
		8797.0 ^a	52 <i>3</i>	4122.853	4+
		11549.9 ^a	24 12	1368.667	2+
12955.5	1+	1502.6 ^a	0.06 1	11452.8	2+
		2243.2 ^a	0.016 5	10712.2	1+
		2275.7 ^a	0.021 4	10679.7	0_{+}
		2594.6 ^a	1.43 5	10360.7	2+
		2844.4 ^a	0.123 6	10110.9	(0^{+})
		2896.2 ^a	0.157 7	10059.1	$(1,2)^+$
		2990.0 ^a	0.029 4	9965.3	1+
		3127.1 ^a	0.89 2	9828.0	1+
		3649.8 ^a	0.81 2	9305.39	0_{+}
		3809.0 <mark>a</mark>	0.65 2	9146.2	1-

30

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbb{E}_f	$\underline{\hspace{1cm}} \mathbf{J}^{\pi}_f$	Mult.d	Comments
12955.5	1+	3951.6 <mark>a</mark>	0.030 2	9003.5	2+		
		4090.6 ^a	0.31 1	8864.5	2-		
		4300.2 ^a	0.20 1	8654.9	2+		
		4516.6 <mark>a</mark>	0.064 5	8438.4	1-		
		5206.6 ^a	0.014 2	7747.7	1+		
		5605.1 <mark>a</mark>	0.16 6	7348.60	2+		
		6521.4 <mark>a</mark>	1.17 4	6432.2	0^{+}		
		8714.8 <mark>a</mark>	1.12 4	4238.35	2+		
		11583.2 <mark>a</mark>	100.0 5	1368.667			
		12951.1 <mark>a</mark>	9.6 <i>4</i>	0	0^{+}		
12963.9	2-	2904.6 <mark>a</mark>	4.1	10059.1	$(1,2)^+$		
		7727.4 <mark>a</mark>	21	5235.16	3+		
		8723.8 <mark>a</mark>	4.1	4238.35	2+		
		11592.2 ^a	100	1368.667			
		12960.1 ^a	8.2	0	0_{+}		
13029.8	$2^{+},3^{-}$	2668.9 ^a	1.0	10360.7	2+		
		3571.7 ^a	4.1	9457.81	$(3)^{+}$		
		3729.7 ^a	3.1	9299.8			
		4025.9 ^a	8	9003.5	2+		
		4374.5 <mark>a</mark>	4.1	8654.9	2+		
		4590.9 ^a	3.1	8438.4	1-		
		5412.7 <mark>a</mark>	22	7616.41	3-		
		7793.3 <mark>a</mark>	100	5235.16	3+		
		8789.7 ^a	49	4238.35	2+		
		8905.2 ^a	6.1	4122.853			
		11658.1 <mark>a</mark>	3.5	1368.667			
13048	0_{+}	3082 ^a	70° 7	9965.3	1+		
		3220 ^a	100° 7	9828.0	1+	D	Mult.: From $\gamma\gamma(\theta)$ (1978Fi08 – (α,γ)).
		4609 ^a	30° 5	8438.4	1-		
		5300 ^a	23° 5	7747.7	1+		
100500		5492 ^a	14 ^c 5	7555.3	1-		
13050.0	4+	922.0 ^a	0.040 4	12128			
		1719.0 ^a	0.021 7	11330	2+ 4+		
		1833.2 ^a	0.32 1	11216.69	3 ⁺ ,4 ⁺		
		2229.1 ^a	0.052 5	10820.8	3+,4+		
		2389.7 ^a	0.30 1	10660.17	$(3^+,4^+)$		
		2468.6 ^a	2.28 7	10581.26	$(2^+,3^+,4^+)$		
		3021.8 ^a	0.52 2	10027.97	5-		
		3591.9 ^a	2.52 8	9457.81	$(3)^{+}$		
		3748.6 ^a	0.09 3	9301.07	(4^{+})		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathtt{J}_f^π
13050.0	4+	3749.9 ^a	0.35 3	9299.8	
1000010	•	3765.3 ^a	0.139 6	9284.4	2+,4+
		5237.0 <mark>a</mark>	0.20 1	7812.4	$(4^-,5^+)$
		5432.9 ^a	0.013 4	7616.41	3-
		7038.6 <mark>a</mark>	1.83 6	6010.34	4+
		7813.5 <mark>a</mark>	1.58 6	5235.16	3 ⁺
		8925.4 <mark>a</mark>	100.0 2	4122.853	4+
		11678.3 <mark>a</mark>	0.09 1	1368.667	2+
13057	5-	2723 <mark>a</mark>	16 ^c 3	10333.6	3-
		4698 <mark>a</mark>	15 ^c 3	8358.1	3-
		5440 <mark>a</mark>	16 ^c 3	7616.41	3-
		8932 <mark>a</mark>	100° 5	4122.853	4+
13088.8	2+	3804.1 ^a	27	9284.4	$2^{+},4^{+}$
		4433.5 ^a	6	8654.9	2+
		4730.2 ^a	67	8358.1	3-
		7077.3 ^a	10	6010.34	4+
		7852.3 ^a	100	5235.16	3 ⁺
		8848.7 <mark>a</mark>	40	4238.35	2+
		8964.2 ^a	63	4122.853	4+
		11717.1 <mark>a</mark>	20	1368.667	2+
		13085.0 ^a	0.7	0	0_{+}
13212.8		5099.0 [‡]	100	8113.2	6 ⁺
13345.7	3-	1824 <mark>a</mark>	1.9	11522	2+
		2685.7 ^a	19	10659.8	$(1,2^+)$
		3887.6 <mark>a</mark>	19	9457.81	$(3)^{+}$
		4045.5 ^a	28	9299.8	
		4341.8 ^a	2.8	9003.5	2+
		4905.9 ^a	100	8439.29	4+
		5728.6 ^a	33	7616.41	3-
		5996.3 ^a	6	7348.60	2+
		8109.1 ^a	2.8	5235.16	3 ⁺
		9105.5 ^a	25	4238.35	2+
		9220.9 ^a	31	4122.853	4+
		11973.8 <mark>a</mark>	8	1368.667	2+
		13341.7 ^a	0.8	0	0+
13366.9	(2)	2785 ^a	100	10581.26	$(2^+,3^+,4^+)$
		5554 ^a	35	7812.4	$(4^-,5^+)$
		11995 <mark>a</mark>	9	1368.667	2+
		13363 ^a	9	0	0+
13446.8	(1,2)	2056 ^a	65 3	11391	1-

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Comments
13446.8	(1,2)	5008 ^a	21 10	8438.4	1-	
		9323 <mark>a</mark>		4122.853	4+	
		12075 <mark>a</mark>	100 4	1368.667	2+	
		13443 <mark>a</mark>	23 <i>1</i>	0	0_{+}	
13474.9	$2^+,3,4^+$	7463 <mark>a</mark>	60 <i>3</i>	6010.34	4+	
		8238 ^a	100 5	5235.16	3 ⁺	
		9350 ^a	15 7	4122.853	4+	
		12103 ^a	7 4	1368.667	2+	
13771	5-	5412 ^a	100° 10	8358.1	3-	
		9646 <mark>a</mark>	72 ^c 10	4122.853	4+	
14081	1+	3069 ^a	40° 4	11012	$3,5^{+}$	
		4779 ^a	2.2 ^c 9	9301.07	(4^{+})	
		8069 ^a	80°7	6010.34	4+	
		9956 ^a	100°7	4122.853	4+	
14150	8+	4620 [#] 25	100 # 4	9527.6	(6^{+})	
		6040 [#] 25	33 [#] 4	8113.2	6+	
16904		5043 ^a	100	11860	(8^{+})	
19110	(10^{+})	5856 ^{af}	100	13212.8		E_{γ} : Tentatively placed in 2001Wi18 (($^{16}O_{\gamma}\alpha$),($^{16}O_{\gamma}\alpha$)) with a measured energy 5927 keV 5.

[†] From 24 Al ε decay (2.053 s). ‡ From (24 Mg, 12 C γ). # From (16 O, α),(16 O, $\alpha\gamma$). @ From (12 C, γ). & From 24 Al ε decay (130.7 ms).

^a From level energy difference, recoil energy subtracted. Not considered in the least-squares fit.

^b From (p,γ) , except where otherwise noted.

^c From (α, γ) .

^d From ²⁴Na β^- decay (14.956 h), except where otherwise noted.

Additional information 1.
 Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

 $^{24}_{12} Mg_{12}$

	Histor	ry	
Type	Author	Citation	Literature Cutoff Date
Full Evaluati	ion M. S. Basunia and A. M. Hurst	NDS 134,1 (2016)	1-Feb-2016
$Q(\beta^{-})=-4004.43 \ 6; \ S(n)=11093.09$	<i>4</i> ; S(p)=14145.7 <i>12</i> ; Q(α)=-10614.8	1 2012Wa38	
²⁷ Al(¹³ C, ¹⁴ N): 1988Va08,1987Ad07 ²⁸ Si(¹⁸ O, ²⁰ Ne): 1979Me12. ²⁹ Si(n,α): 2011Zh22,2010Zh44. ²⁰⁸ Pb(²⁶ Mg, ²⁶ Mg), E=200 MeV: 19 Production cross section 0.394 mb 4	8Ko18,1982Sc21. 3,1980Tr02. 1987Wi09,1986Ci06,1982Fu09, 1982Sp. 7. 991He09. 44, from ¹³⁶ Xe spallation by proton – sprotons, E=1 GeV, and 2p emission – 2	2007Na31.	06.

$^{26}{ m Mg}$ Levels

Cross Reference (XREF) Flags

		A 2	26 Na β^- decay	H	24 Mg(t,p)	0	26 Mg(e,e')
			²⁶ Al ε decay (7.17×10 ⁵ y)	I	25 Mg(n, γ) E=thermal	P	26 Mg(p,p'),(p,p' γ)
		C 2	²⁶ Al ε decay (6.3460 s)	J	25 Mg(n, γ),(n,n):res	Q	26 Mg($\alpha, \alpha' \gamma$), 22 Ne(α ,n)
			27 Na β^- n decay	K	25 Mg(d,p)	R	27 Al(μ^- , ν n γ)
			$^{18}O(^{13}C,\alpha n\gamma)$	L	25 Mg(α , 3 He)	S	27 Al(d, 3 He)
			²² Ne(⁶ Li,d)	M	26 Mg(pol γ, γ'), (γ, γ')	T	27 Al(t, α)
		G ²	23 Na(α ,p γ)	N	26 Mg(γ ,n):res	U	28 Si(μ^- , ν pn γ)
E(level) [†]	J^{π}	$T_{1/2}$	XREF				Comments
0.0	0+	stable	ABCDEFGHI KLM OPO	RSTU			ectroscopy (1931Mu02,2013Ma15).
					Charge radius=2.99 fr quoted in 2012Yo01		2014Wa14). Matter radius=3.0340 fm 26 ilterature.
1808.74 <i>4</i>	2+	476 fs 21	AB DE GHI KLM OPQ	R TU	μ =+1.0 3; Q=-0.14 3		
					μ : From 1981Sp04, 20		
							1982Sp05, 2014StZZ.
					J^{π} : L=2 in (t,p) and (t		C (07 C 20 W : 1, 1
							of 687 fs 30: Weighted average of 653
							a,P)), 700 fs <i>50</i> and 730 fs <i>30</i> 982Sp05), and 683 fs <i>75</i> (1983Ko18 –
					(t,t')). Uncertainty -		
2938.33 <i>4</i>	2+	141 fs 8	AB E GHI KLM OPQ	R TU	J^{π} : L=2 in (t,p) and (p		est input value.
							204 fs 12 (1981Dy01 – (23 Na,P)).
3082.9 20			E		1/2		
3420.2 17			E				
3564.9 19			E				
3588.56 9	0_{+}	6.45 ps	48 E GHI KLM OPC	R TU	J^{π} : L=0 in (t,p).		

The first continue of the first continue	E(level) [†]	J^π	$T_{1/2}^{\ \ d}$	XREF	Comments
3941.57 # 3					9.6 ps 12 (1974Be08), 9.5 ps 7 (1974Be43), and 9.29 ps 23 (1984Bh03) – all from (α, p) . Uncertainty – lowest input
4318.89 5	3941.57 <i>4</i>	3+	0.83 ps <i>12</i>	A E GHI KL OP R TU	J^{π} : 3 in (p,p') and 1003.25 γ M1+E2 to 2 ⁺ . $T_{1/2}$: From unweighted mean lifetime values of 1.38 ps 11
433.2.52	4318.89 5	4+	272 fs <i>16</i>	A E GHI L OPQR TU	J^{π} : 4 in (p,p') , $(p,p'\hat{\gamma})$. Natural parity in (α,α') . $T_{1/2}$: From mean lifetime of 392 fs 23 (1981Dy01 –
4350.09 4 3* 105 fs 28	4332.52 5	2+	20 fs 3	A E GHI LM OPQR U	J ^{π} : (2) in (p,p'),(p,p' γ), β ^{$-$} from 3 ⁺ in ²⁶ Na β ^{$-$} Decay, natural parity in (α , α ').
4835.13 5 2+ 28 fs 6		3+	105 fs 28		J ^{π} : 3 in (p,p'),(p,p' γ), M1+E2 γ to 2 ⁺ . T _{1/2} : From mean lifetime of 150 fs 40: Weighted average of 180 fs 55 (1972Du05 – (α ,p)), 90 fs 40 (1968Ha18 – (p,p')), 160 fs 55 (1975Wa10 – (α , α ')). Uncertainty –
4901.44 7 4+ 29 fs 6 A E GHI KL OPQR T J ^π : From mean lifetime 41 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 37 fs 8 (1986Gl06 – $(^{23}$ Na,P)). Other value: 37 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 37 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 34 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 34 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 34 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 34 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 34 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 45 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 45 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 45 fs 8 (1981Dy01 – $(^{23}$ Na,P)). Other value: 47 fs 8 fs 8 fs 10 fs 250 (1968Ha18 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1986Gl06 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1986Gl06 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1986Gl06 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1986Gl06 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P)). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1986Gl06 – $(^{23}$ Na,P). Other value: 15.9 fs 76 (1975Wa10 – $(^{23}$ Na,P). Ot		2+	28 fs 6		I^{π} · $I = 2$ in (t, p)
in (p,p'),(p,p'y). T _{1/2} : From mean lifetime 42 fs 8 (1981Dy01 - (²³ Na,P)). Other value: 34 fs 8 (1986Gl06 - (α,p).	4033.13 3	2	20 13 0	A L GIT KL T K T	$T_{1/2}$: From mean lifetime 41 fs 8 (1981Dy01 – (23 Na,P)). Other value: 37 fs 8 (1986Gl06 – (α ,p).
4972.30 <i>I</i> 3 0 ⁺ 446 fs 70	4901.44 7	4+	29 fs 6	A E GHI KL OPQR T	in $(p,p'),(p,p'\gamma)$. $T_{1/2}$: From mean lifetime 42 fs 8 (1981Dy01 – (²³ Na,P)).
5180.5 7 5291.74 6 2+ <10 fs	4972.30 <i>13</i>	0+	446 fs 70	GHI KLM OPQR T	J ^{π} : L=0 in (t,p). T _{1/2} : From mean lifetime of 644 fs <i>100</i> : Weighted average of 760 fs 240 (1972Du05 – (α ,p)), 540 fs 250 (1968Ha18 – (p,p')), 640 fs 100 (1975Wa10 – (α , α ')). Uncertainty –
parity in (α, α') . T _{1/2} : From 1981Dy01 - $(^{23}\text{Na,P})$. Other values: 15.9 fs 76 (1986Gl06 - (α, p)), <35 fs (1968Ha18 - (p, p')), 100 fs 60 (1975Wa10 - (α, α')). 5476.05 7 4+ 21 fs 6 A E GHI KL OPQR T J^{π} : L=4 in (t, p) . T _{1/2} : From mean lifetime of 30 fs 8: Weighted average of 35 fs 15 (1974Be08 - (α, p)) and 28 fs 9 (1986Gl06 - (α, p)). Other values: <70 fs (1972Du05 - (α, p)), <50 fs (1975Wa10 - (α, α')). 5691.08 19 (1+) <8 fs E G I L PQR T J^{π} : From 1990Ya07 - $(\alpha, ^{3}\text{He})$, based on cross section measurement and DWBA calculations. Possible unnatural parity in (α, α') . J ^{\$\pi\$} : From (1986Gl06 - (α, p)). Other values: <35 fs (1972Du05), 70 fs 50 (1986Gl06) - both from (α, p)). 5711.2 8 (1+,2+) E H K T J^{π} : L=2 in (d, p) , γ to 0+. 5715.91 8 4+ 53 fs 16 A E G I L OPQ J^{π} : J^{π} : From 3+ in J^{π} 0 Na J^{π} 0 Decay, natural parity in (α, α') , γ 1 transitions to 3+, 2+; L=4 in (e,e'). T _{1/2} : From mean lifetime of 77 fs 23: weighted average of 125 fs 35 (1974Be08 - (α, p)), 48 fs 23 (1986Gl06 -		2+	<10 fo		
5476.05 7 4+ 21 fs 6 A E GHI KL OPQR T J^{π} : L=4 in (t,p). $T_{1/2}$: From mean lifetime of 30 fs 8: Weighted average of 35 fs 15 (1974Be08 – (α,p)) and 28 fs 9 (1986Gl06 – (α,p)). Other values: <70 fs (1972Du05 – (α,p)), <50 fs (1975Wa10 – (α,α')). J^{π} : From 1990Ya07 – (α, J^{π} He), based on cross section measurement and DWBA calculations. Possible unnatural parity in (α,α'). J^{π} : From (1986Gl06 – (α,p)). Other values: <35 fs (1972Du05), 70 fs 50 (1986Gl06) – both from (α,p)). J^{π} : L=2 in (d,p), γ to 0+. J^{π} : From J^{π} : L=2 in (d,p), γ to 0+. J^{π} : From mean lifetime of 77 fs 23: weighted average of 125 fs 35 (1974Be08 – (α,p)), 48 fs 23 (1986Gl06 –	5291./4 0	2'	<10 is	A E GHI KLM OPQR I	parity in (α, α') . $T_{1/2}$: From 1981Dy01 – (²³ Na,P). Other values: 15.9 fs 76 (1986Gl06 – (α,p)), <35 fs (1968Ha18 – (p,p')), 100 fs 60
5691.08 19 (1 ⁺) <8 fs E G I L PQR T J^{π} : From 1990Ya07 – (α , ³ He), based on cross section measurement and DWBA calculations. Possible unnatural parity in (α , α'). J^{π} : From (1986Gl06 – (α ,p)). Other values: <35 fs (1972Du05), 70 fs 50 (1986Gl06) – both from (α ,p)). 5711.2 8 (1 ⁺ ,2 ⁺) E H K T J^{π} : L=2 in (d,p), γ to 0 ⁺ . 5715.91 8 4 ⁺ 53 fs 16 A E G I L OPQ J^{π} : β^- from 3 ⁺ in ²⁶ Na β^- Decay, natural parity in (α , α'), γ transitions to 3 ⁺ , 2 ⁺ ; L=4 in (e,e'). $T_{1/2}$: From mean lifetime of 77 fs 23: weighted average of 125 fs 35 (1974Be08 – (α ,p)), 48 fs 23 (1986Gl06 –	5476.05 7	4+	21 fs 6	A E GHI KL OPQR T	J ^{π} : L=4 in (t,p). T _{1/2} : From mean lifetime of 30 fs 8: Weighted average of 35 fs 15 (1974Be08 – (α ,p)) and 28 fs 9 (1986Gl06 – (α ,p)). Other values: <70 fs (1972Du05 – (α ,p)), <50 fs
5711.2 8 (1 ⁺ ,2 ⁺) E H K T J ^{π} : L=2 in (d,p), γ to 0 ⁺ . 5715.91 8 4 ⁺ 53 fs 16 A E G I L OPQ J ^{π} : β from 3 ⁺ in β Decay, natural parity in (α , α'), γ transitions to 3 ⁺ , 2 ⁺ ; L=4 in (e,e'). T _{1/2} : From mean lifetime of 77 fs 23: weighted average of 125 fs 35 (1974Be08 – (α ,p)), 48 fs 23 (1986Gl06 –	5691.08 <i>19</i>	(1 ⁺)	<8 fs	E G I L PQR T	J ^{π} : From 1990Ya07 – $(\alpha,^3$ He), based on cross section measurement and DWBA calculations. Possible unnatural parity in (α,α') . J ^{π} : From (1986Gl06 – (α,p)). Other values: <35 fs
5715.91 8 4+ 53 fs 16 A E G I L OPQ J^{π} : β^- from 3^+ in 26 Na β^- Decay, natural parity in (α, α') , γ transitions to 3^+ , 2^+ ; L=4 in (e,e'). $T_{1/2}$: From mean lifetime of 77 fs 23: weighted average of 125 fs 35 (1974Be08 – (α, p)), 48 fs 23 (1986Gl06 –	5711.2 8	$(1^+, 2^+)$		ЕНК Т	
(α, p) , and 220 fs 100 (1975Wa10 – (α, α')). Other mean			53 fs <i>16</i>		J ^π : β ⁻ from 3 ⁺ in 26 Na β ⁻ Decay, natural parity in (α,α') , γ transitions to 3 ⁺ , 2 ⁺ ; L=4 in (e,e'). T _{1/2} : From mean lifetime of 77 fs 23: weighted average of 125 fs 35 (1974Be08 – (α,p)), 48 fs 23 (1986Gl06 – (α,p)), and 220 fs 100 (1975Wa10 – (α,α')). Other mean
lifetime: <50 fs $(1972\text{Du}05 - (\alpha, p))$. 6125.47 5 3+ 14 fs 6 A E GHI KL OPQ ST J^{π} : From angular distribution measurements and analysis in	6125.47 5	3 ⁺	14 fs 6	A E GHI KL OPQ ST	

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{1$		XREF	Comments
					1990Ya07 – $(\alpha,^3$ He) and from (e,e'). Unnatural parity in
6256.2 14	0+	53 fs <i>31</i>		E GH KL OPQ T	(α, α') . E(level): From $((\alpha, \alpha \gamma) - 1975 \text{Na}06)$, also in $((\alpha, p \gamma) - 1986 \text{Gl}06)$. J^{π} : L=0 in (t,p). $T_{1/2}$: From mean lifetime of 77 fs 45: Weighted average of 60 fs 50 (1968Ha18 - (p,p')), 90 fs 45 (1975Wa10 - (α, α')). Uncertainty – lowest input value.
6483.2 <i>15</i> 6622.94 <i>14</i>	(4 ⁺)	19 fs 5	Α	E E G L PQ ST	E(level): Weighted average of 6621 3 (1976Mo27 – (p,p')),
	(,)				6623 I (1986Gl06 – $(\alpha,\pi\gamma)$), and 6621 I (1975Na06 – $(\alpha,\alpha\gamma)$). J^{π} : From $(\alpha,\pi\gamma)$), based on particle- γ -ray angular correlation. $T_{1/2}$: Other: <70 fs (1975Wa10 – (α,α')).
6634.2 3	2+	≤7 fs		E G I	IT. I 2 :- (/) (/.)
6745.13 <i>15</i>	2+	16 fs 8	Α	GHI KL PQ ST	J ^π : L=2 in (p,p'),(p,p'γ). T _{1/2} : From mean lifetime of 23 fs 11 (1986Gl06 – (α,p)). Other mean lifetime values: 80 fs 40 (1968Ha18 – (p,p')), <50 fs (1975Wa10 – (α,α')).
6876.42 5	3-	83 fs <i>35</i>		GHI KL OPQ ST	J^{π} : L=3 in (t,p). $T_{1/2}$: From mean lifetime of 120 fs 50: Weighted average of 100 fs 60 (1968Ha18 – (p,p')) and 150 fs 75 (1975Wa10 – (α,α')).
6951.7 <i>16</i>	(4±)			E	7 [#] 2020 D 0 2 dt D 1 2 1 1 1 1 1 1 1 1
6971.8 <i>20</i> 6978.3 [‡] <i>8</i>	(4 ⁺)	14.6.7		E	J^{π} : 3030 γ D+Q to 3 ⁺ ; Parity from shell model calculations.
7061.90 <i>20</i>	(5 ⁺) 1 ⁻	14 fs 5 ≤7 fs		E G PQ ST HI L oPQ ST	J^{π} : From γ -decay and γ -feeding (Table 26.12a in 1990En08). J^{π} : L=1 in (t,p).
7099.68 13	2+	≤14 fs	Α	E HI LM oPQ ST	J^{π} : L=2 in (t,p).
7200 20	$(0,1)^+$			P	J^{π} : From 1989Cr02 (p,p'), based on measured cross section and calculation.
7246.49 [‡] <i>17</i>	3+ b	≤7 fs	Α	OP ST	
7261.40 <i>4</i>		≤7 fs		E HI K P T	XREF: T(7252).
7282.82 6	(4 ⁻) 3 ⁻	24 fs 8		E HI KL P S	J^{π} : From $(\alpha, p\gamma)$ and γ -feeding. J^{π} : L=3 in (t,p). Natural parity $(\alpha, {}^{3}\text{He})$.
7348.86 <i>6</i> 7371.36 <i>17</i>	2^{+}			GHI KL PQ ST G I OPO ST	J [*] : L=3 in (i,p). Natural parity (α , He).
7371.30 17 7396.0 [‡] 10	(5 ⁺)	≤14 fs	Α	G I OPQ ST E GH PQ ST	J^{π} : 1680 γ (M1+E2) to 4 ⁺ . D+Q γ from 5 at 9064.
7428 [#] 3	$(0,1)^+$	≥14 18		H P S	J^{π} : From 1989Cr02 (p,p'), based on measured cross section
7.120 3	(0,1)				and calculation.
7541.71 6	(2-)	≤7 fs		E HIK P T	J ^π : From R(θ) with gate on ΔJ =2 transition and pol values (2014Bh03 – (¹³ C, α n γ)).
7677 [‡] 1	(4^{+})	≤11 fs		GH L P ST	J^{π} : γ -transition to $4^+,3^+$; Natural parity $(\alpha,^3\text{He})$.
7696.8 8	1 ⁽⁻⁾			HI LM OP S	J^{π} : From 1993Ve03 (d, ³ He); 1 ⁺ in 1990Ya07 – (α , ³ He).
7725.8 4	3+ b		A	G I K OP ST	XREF: T(7716).
7773.7‡ 6	(4 ⁺)	≤7 fs	A	E KL P ST	XREF: T(7762). J^{π} : From R(θ) with gate on ΔJ =2 transition and pol values (2014Bh03 – (13 C, α n γ)).
7817.8 [@] 7	$(2,3)^{+}$		A	H K oPQ T	J^{π} : L=0+2 in (d,p).
7824 [@] 3	3 ^{-b}			G L oP RS	J^{π} : Natural parity (α , ³ He).
7840 [‡] 2 7851 <i>3</i>	2+			G o P	J^{π} : γ transitions to 0^+ , 2^+ , and 4^+ .
7950.0 [‡] 20	5-	14 fs 6		E H KL P ST	J^{π} : From 1989Se01 (pol p,p'), based on angular distributions and analyzing power.

E(level) [†]	$_ J^\pi$	$T_{1/2}$	XREF	Comments
8034 [@] 2			G P ST	L=6 in (p,p') , $(p,p'\gamma)$ probably erroneous.
8052.4 7	2(+)		GHI P RS	J^{π} : L=2 in (t,p). L=1 in (d, 3 He).
8184.93 <i>15</i>	3- b	-14 C	G I L OPQ ST	E(I I) W. I. I
8201.1 7	(6 ⁺)	≤14 fs	E G PQ S	E(level): Weighted average of 8201 2 (1975Na06 – $(\alpha, \alpha' \gamma)$ and 8202 I (1986Gl0 – $(\alpha, p\gamma)$). J^{π} : 1223 γ d to (5 ⁺), γ to 4 ⁺ .
8227.31 24	1^{-b}	1.0 ^e fs 2	GHI M OP ST	XREF: H(8240). J^{π} : L=1 in (t,p).
8250.58 <i>16</i> 8399 <i>3</i>	$(3^+)^{b}$		GIL OP S P T	J^{π} : Natural parity in $(\alpha,^3He)$ does not agree. XREF: T(8384).
8458.9 <i>4</i> 8464 <i>2</i>	3+ b		G I OP ST G	J^{π} : L=2 in (d, 3 He).
8472.3 [‡] <i>16</i>	(6^+)	≤14 fs	E G PQ S	J^{π} : 1494 γ D+Q to (5 ⁺), γ transitions to 4 ⁺ .
8503.7 3	1-		G I M P ST	XREF: T(8488). J^{π} : In (pol γ, γ), based on angular correlation and polarization measurements (2009Lo06).
8532.1 4	$(2^+)^{b}$		G I OP ST	XREF: T(8518).
8576 [#] 3			P ST	XREF: T(8566).
8625‡ 1	5-	29 fs 6	GH L PQ ST	XREF: T(8611). J^{π} : From 1989Se01 (pol p,p'), based on angular distributions and analyzing power. Also in $(\alpha,p\gamma)$. Natural parity $(\alpha,^3\text{He})$.
8670 [‡] <i>1</i>	(3,5)	≤7 fs	G P ST	XREF: T(8660). J^{π} : 3193 γ and 4350.7 γ D+Q to 4 ⁺ .
8705.6 <i>3</i>	$(2 \text{ to } 4)^+$		G I L PQRST	J^{π} : L=2 in (d, 3 He) and from γ decay.
8863.8 <i>4</i> 8903.52 <i>9</i>	$(2^+)^{b}$		GHI P ST	J^{π} : L=2 in (t,p).
8903.32 9 8930 [‡] 2	(2)		EGIL OP ST GH P ST	XREF: L(8914)T(8889). XREF: T(8917).
8959.4 5	1-		I M P S	J^{π} : In (pol γ , γ), based on angular correlation and polarization measurements (2009Lo06).
9020‡ 2	() L		G T	2
9043.4 9	$3^{(+)}b$		G I L OP RS	J^{π} : Natural parity (α , ³ He) does not agree. Also L=1 in (d, ³ He).
9064 [@] 2	5+	≤7 fs	G PQ S	J ^{π} : From 1986Gl06 – (α ,p γ), 1668 γ D+Q to (5 ⁺), γ transition to 4 ⁺ .
9111.2 [‡] <i>5</i> 9139.5 <i>13</i>	6 ⁺	≤11 fs	G PQ ST	J ^{π} : From 1986Gl06 – (α ,p γ), γ transitions to 4 ⁺ , (5 ⁺). J ^{π} : From (γ , γ').
9169 [‡] 3	$(6^{-})^{\&}$	26 fs 8	E G L P ST	
9206‡ 2	1(+)	21.48 40	G T	VDEE 1 (025 ()
9238.9 8	1 ⁽⁺⁾	314 ^e as 40	I LM OP ST	XREF: L(9256). J^{π} : From (γ, γ') based on angular correlation and polarization measurements. Also in 1989Cr02 – (p,p') . Uncertain parity by evaluators for L=1 in $(d, {}^{3}\text{He})$.
9261‡ 2	(4^+)		GH P	J^{π} : L=4 in (t,p); γ to 3 ⁺ .
9281# 3	$(2^+)^{b}$		оР	
9291 [‡] 2 9304 2			G o T G oP	
9316 [@] 2			G P	
9325.57 20	$(2^+ \text{ to } 4^+)$		G I L P	J^{π} : γ to 2 ⁺ , 3 ⁺ , and 4 ⁺ .

E(level) [†]	${f J}^\pi$	$T_{1/2}^{\ \ d}$	X	REF			Comments
9371‡ 2	4 ⁺		GH		p	T	J^{π} : L=4 in (t,p).
9383‡ 1	6+	≤7 fs	fG		p	S	J ^π : $(4^+,6^+)$ in 1986Gl06 $(\alpha,p\gamma)$; 2404.6 γ d to (5^+) and 2759.9 γ and 3666.8 γ Q to 4^+ .
9427.8 <i>4</i>	3+ b		fG I	0	P	ST	
9471‡ 2	$(1 \text{ to } 5)^+$		G		P	ST	J^{π} : L=2 in (d, 3 He), γ to 3 +.
9540.3 [@] 15	5+	≤14 fs	E G		P	ST	J ^π : From 1986Gl06 (α ,p γ). 2562 γ d to (5 ⁺), 5221 γ D+Q to 4 ⁺ .
9563.5 8	1+	563 ^e as 99		LM	P	T	E(level), J^{π} : From 2009Lo06 – (γ , γ)). Spin and parity based on angular correlation and polarization measurements.
9574.06 11	$(2^{-} \text{ to } 4)$		GΙ		P	S	J^{π} : From γ decay.
9579 [#] <i>3</i> 9590 <i>2</i>	4 ⁺		H G		P		J^{π} : L=4 in (t,p).
9617.0 9	$(1 \text{ to } 3)^{-}$		I		P	ST	J^{π} : L=1 in (d, 3 He); γ to 2^{+} .
9681‡ 2	$(0 \text{ to } 5)^+$		G		P	ST	J^{π} : L=2 in (d, 3 He).
9714 [#] 3	()			L O	P	T	
9770.8 9	1(-)			M			J^{π} : From (γ, γ') .
9771 [‡] 2			G		P	T	77. 72. 4000.7.02. ()
9779 [#] 3	1+				P		J^{π} : From 1989Cr02 – (p,p') – angular distribution measurements.
9814 [‡] 2			G	0	p	T	_
9829.5 [‡] <i>14</i>	$(5,7)^+$	37 fs 10	E G		p	T	J ^{π} : From 1986Gl06 – (α ,p γ) – angular distribution measurements.
9856.8 [#] 4	2+		HI	0	P		J^{π} : L=2 in (t,p).
9883 [#] 3	1				P	T	
9900.3 @ 10	3+ b		G	0	P		
9927‡ 2			G			T	
9939‡ 2			G		P		
9967 [@] 2	2+		GH		P	T	J^{π} : L=2 in (t,p).
9982 [‡] 2 9989 [‡] 1	(C+)	.T. 6	fG		p		TT (251 T2) (5t) 1 (6t)
9989* <i>1</i> 10040 [@] 2	(6 ⁺) 5 ⁻	≤7 fs	fG		p		J^{π} : (M1+E2) γ to (5 ⁺) and (6 ⁺).
10040 ± 2 10069 ‡ 2	3		GH		P	T	J^{π} : L=5 in (t,p).
10102.5 4	1-		G I	M	P	T	J^{π} : From (γ, γ') .
10126.7 6	4+		GHI		P	T	XREF: $G(10122)H(10108)$. J^{π} : L=4 in (t,p).
10136 <i>3</i>					P		
10147.1 1	1+	112 ^e as 15			P		E(level), J^{π} : From (γ, γ') .
10159# 3	0_{+}		Н		P		J^{π} : L=0 in (t,p).
10184 [‡] 2 10219.9 9			G	0	P	т	
10234 2			G I	U	r	T	
10271 [#] 3	2+		Н		P	Т	J^{π} : L=2 in (t,p).
10319.5 7 10328 3	1+	345 ^e as 83		M	P P	T	E(level), J^{π} : From (γ, γ') .
10341 [#] <i>3</i>				L	P		J^{π} : 1 ⁺ in $(\alpha, {}^{3}\text{He})$.
10349.4 9	$(0^+ \text{ to } 4^+)$		GI		P	_	J^{π} : γ to 2^{+} .
10362.26 <i>21</i> 10377 <i>2</i>	$(2^+ \text{ to } 4^+)$		G I G		P	T	J^{π} : γ to 2^{+} , 3^{+} , 4^{+} .
10311 4			G				

E(level) [†]	${\tt J}^\pi$	$T_{1/2}^{d}$	XREF	Comments
10400 15			T	
10414 [#] 3	4+		H P T	J^{π} : L=4 in (t,p).
10487 [#] 3			oP T	***
10493 [#] 3	2+		oP	J^{π} : From (e,e'). Note for doublet.
10516 [#] 3	(2^{+})		H oP T	J^{π} : L=(2) in (t,p).
10529 [@] 2	,		G P	() () ()
10567 3			f P	
10573.3 8	1-	0.20 eV 5	M	J^{π} : From (γ, γ') .
10576 2	(1+ , 4+)		fG	WREE (C/10500)
10600.1 4	$(1^+ \text{ to } 4^+)$		G I P	XREF: G(10590). J^{π} : From γ decay.
10647.3 8	1+	97 ^e as 5	LM P	$E(\text{level}),J^{\pi}$: From (γ,γ') .
10650 <i>I</i>	(4 ⁻ to 7 ⁻)	21 fs 6	G	J^{π} : From γ decay.
10681.9 <i>3</i>			P	
10693 3			G L P	
10707 [@] 3			G P	
10718.75 <i>9</i> 10726 <i>3</i>			P P	
10745.98 12			P	
10767 [@] 2			G P	
10805.9 4	$(0^+ \text{ to } 4^+)$		f I M P	J^{π} : γ to 2^{+} .
10824 [#] <i>3</i>	(2^{+})		f OP	J^{π} : From (e,e').
10881 <i>3</i>			P	
10893 3			P	
10915 <i>3</i> 10927 [#] <i>3</i>	+		P	IT N. () () () () ()
10927" 3 10945 [@] 3			L P	J^{π} : Natural parity from $(\alpha,^{3}He)$.
10945 3	1-	1.87 eV <i>30</i>	G J P M	E(level), J^{π} : From (γ, γ') .
10978# 3	1	1.07 CV 30	oP	$E(\text{rever}), S$. From (γ, γ) .
10978 3			oP	
11012 [@] 3			G oP	
11012 3			P	
11084 3			P	
11114 <i>3</i>	(2+)		J P	J ^{π} : Assignment in 2012Ma14 ((n, γ),(n,n):res, based on R-matrix analysis.
11142 6	1 ^{+a}		Q	
11153.5 <i>10</i> 11162.93 <i>7</i>	2+ <i>c</i>	5.08 keV 8	J MN P J	E(level), J^{π} : From (γ, γ') .
11162.33 7	$(3^+)^{c}$	1.56 keV 8	J	
11171# 3	(-)		J L P	
11183.06 6	(1 ⁻) ^c	0.6 eV 2	j	
11189.24 6	3+ <i>c</i>	5.24 keV 4	J	
11191 2			G J	
11196.51 6	(2 ⁻) ^c	2 eV 1	J	
11243.36 <i>6</i> 11274.13 <i>5</i>	$(2)^{+}c$	5.520 keV 20 0.590 keV 20	J J	
11280.03 5	4(-) <i>c</i>	1.730 keV 20	J	
11285.52 7	1 ^{-c}	1.41 keV 6	J	
11286.24 5	$(2^{+})^{c}$	0.7 eV 7	J	
11289.06 4	$(2^{-})^{c}$	2 eV 1	J	
11293.28 5		0.230 eV <i>20</i>	J	

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}d$	X	REF		Comments
11296.04 9	(2-)	12.40 keV <i>10</i>	:	J		J ^{π} : Spin assignment based on χ^2 in 2012Ma14 ((n, γ),(n,n):res).
11310.57 4	$(1^{-})^{c}$	0.4 eV 2]	q	
11326.15 6	(1^{-})	0.3 eV 2]	q	
11328.20 7	$(1^{-})^{c}$	50 eV 20]	-	
11329.11 4	, ,		FG :]		E(level): From $(n,\gamma),(n,n)$:res.
11336.88 5	$(1^{-})^{c}$	0.1 eV 1]		
11344.77 7	4(-) <i>c</i>	3.49 keV 6		J		
11361.84 23	$(2^+)^{\it c}$	3.29 keV 5]		
11392.57 5	$(5^{+})^{c}$	240 eV 10]		
11441.08 6	4+ <i>c</i>	2.020 keV 40)	Q	
11457 2	•	2.020 RC 1 70	FG	,	•	
11465.62 8	$(5^{-})^{c}$	8.91 keV 8		J	Q	XREF: Q(11461).
11500.09 5	$(1^{-})^{c}$	25 eV 10)	Q	MCD: Q(11101).
11526.82 10	$(3^{-})^{c}$	3.00 keV 10)	Q	
11570 2	(5)	3.00 KC V 10	G	,	Q	
11570 2	$(2^{-})^{c}$	1.80 keV 10]		
11608.29 6	$(4^{-})^{c}$	0.84 keV 4)		
11611 5	(+)	0.04 KC V 4	f	,	Q	
11630 2					Q	
11646 5		<3 keV	f		Q	
11749 10		NO NO V	-			
11795 10		<3 keV			Q Q	
11827 2		<3 keV	F		Q	
11890 2		<3 keV	•		Q	
11909 2		6 keV 1			Q	
11945 10	$(6^{-})^{\&}$	o ne v 1		L	P	E(level): From $(\alpha,^3$ He).
12049 2	(0)	6 keV 2		L		E(level). Fight $(\alpha, \text{ He})$.
12049 2		U KEV Z	G		Q	
12110 2		25 keV 2	ď		Q	
12110 2		15 keV 2			Q	
12196 2		13 KC V 2	G		Q	
12345 2	0	40 keV 5	ď		Q	
12479 [‡] 2	(6 ⁻)&	40 KC V 3				VDDE 1 (10510)
			G	L	P	XREF: L(12512).
12865 <i>10</i>	$(6^{-})^{\&}$			L	P	E(level): From $(\alpha, {}^{3}\text{He})$.
12958 <i>10</i>				L		
13958 <i>10</i>	6			L		
14542 10	$(6^{-})^{\&}$			L	P	E(level): From $(\alpha,^3$ He).
16580 <i>10</i>	$(6^{-})^{\&}$			L	P	E(level): From $(\alpha, {}^{3}\text{He})$.
18050 <i>50</i>	$(6^{-})^{\&}$			_	P	T=2
10000 00	(0)				1	1-2

[†] From a least-squares fit to γ -ray energies, except otherwise noted. γ rays without uncertainty were calculated after the fit. Source of excited level energies for particle data sets are noted. During least-squares fit, the uncertainty for 1384.70 γ from 5716 keV level 958.81 γ from 4901 keV level were doubled to obtain the χ^2 value below normalized χ^2 =1.33. Yet 892.85 γ from 4835, 569.67 γ from 4901, 2776.82 γ from 5716, and 1223.35 γ from 6125 yield poor fit including aforementioned γ rays.

[‡] From 1986Gl06 (α ,p γ).

[#] From $1976\text{Mo}27 - (p,p'),(p,p'\gamma)$.

[@] Weighted average of data from (1976Mo27 – (p,p')) and (1986Gl06 – $(\alpha,p\gamma)$).

[&]amp; From 1989Se01 (pol p,p'), based on measured angular distributions and analyzing power.

^a Assignment in 2012Ma14 (n,γ) ,(n,n):res, based on R-matrix analysis.

^b From (e,e'), based on form factors, γ decay and shell model calculations.

²⁶Mg Levels (continued)

^c Assignment in 2012Ma14 (n,γ),(n,n):res, based on R-matrix analysis. ^d From 1986Gl06 (α,pγ), except otherwise noted. ^e Deduced by evaluators from Γ_0 in 1984Be26 – (γ,γ').

γ (²⁶Mg)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^c	δ	Comments
1808.74	2+	1808.68 4	100	0.0 0+	E2		B(E2)(W.u.)=13.4 6
2938.33	2+	1129.61 4	100.0 6	1808.74 2+	M1+E2	-0.12 2	B(M1)(W.u.)=0.096 6; B(E2)(W.u.)=6.1 21 δ : From 1963Br15 – (p,p' γ). Other values: -0.16 4 (1975Wa10 – (α , α ' γ)), -0.11 6 (1977Ki02 – (p,p' γ)), -0.09 5 (1969Ca18 – (α , α ')).
		2938.15 5	10.7 6	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.39 4
3082.9		1274.1 [#] 20	100	1808.74 2 ⁺			
3420.2		1611.4 [#] <i>17</i>	100	1808.74 2+	D+Q#		
3564.9		1756.1 [#] <i>19</i>	100	1808.74 2 ⁺			
3588.56	0_{+}	1779.74 8	100	1808.74 2 ⁺	E2		B(E2)(W.u.)=1.07 8
3941.57	3 ⁺	1003.25 4	100.0 <i>16</i>	2938.33 2+	M1+E2	-0.05 4	B(M1)(W.u.)=0.0162 24; B(E2)(W.u.)=0.23 +37-22
							δ: Weighted average of -0.06 6 (1968FeZY), -0.04 5 (1974Na22), and -0.05 10 (1975Wa06).
		2132.71 4	61.3 16	1808.74 2 ⁺	M1		B(M1)(W.u.)=0.00104 16
4318.89	4+	1380.88 18	1.85 11	2938.33 2+	1,11		E_{γ} , I_{γ} : From ²⁶ Na β^- decay (2005Gr07).
		2510.01 5	100 2	1808.74 2 ⁺	[E2]		B(E2)(W.u.)=4.5 3
4332.52	2+	1394.28 7	19.3 10	2938.33 2+			
		2523.69 6	100.0 <i>13</i>	1808.74 2+			
		4332.2 3	7.6 8	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.24 5
4350.09	3+	409.4 ^f 5	0.041^{f} 25	3941.57 3+			$E_{\gamma}I_{\gamma}$: More precise 409.22 γ 20 in ²⁶ Na β ⁻ decay (2005Gr07) yield poor fit. Branching from ²⁶ Na β ⁻ decay (2005Gr07).
		1411.72 <i>4</i>	93 4	2938.33 2+	M1+E2	-0.31 6	B(M1)(W.u.)=0.033 9; B(E2)(W.u.)=9 4 δ: From 1974Na22. Other value: -0.31 16 (1975Wa10).
		2541.18 6	100 4	1808.74 2+	M1+E2	-0.10 4	B(M1)(W.u.)=0.0066 18; B(E2)(W.u.)=0.06 5 δ: Weighted average of -0.11 6 (1968FeZY), -0.09 6 (1974Na22).
4644.9		2836.0 [#] <i>13</i>	100	1808.74 2+	D+Q#		
4835.13	2+	485.05 [@] 9	2.77 [@] 5	4350.09 3+			
		502.73 [@] 9	2.65 [@] 4	4332.52 2+			I_{γ} : 2.1 4 in (n,γ) .
		892.85 [@] 19	0.26 [@] 4	3941.57 3 ⁺			'
		1896.72 5	100.0 [@] 4	2938.33 2+	M1		B(M1)(W.u.)=0.096 21
		3026.6 [@] 5	4.19 [@] <i>15</i>	1808.74 2 ⁺			I_{γ} : 4.8.5 in (n,γ) .
		4834.61 <i>18</i>	10.8 [@] 9	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.15 4 I_{γ} : 13.1 I_{γ} in (n,γ) .
4901.44	4+	551.28 [@] 13	1.61 [@] 14	4350.09 3+			-y· ··· (···,1)·
	-	569.67 [@] 25	0.67 [@] 11	4332.52 2+			
		582.46 [@] 21	0.88 @ 18	4318.89 4+			
		958.81 [@] 12	3.9 [@] 5	3941.57 3 ⁺			
		1962.99 [@] 24	1.89 [@] 14	2938.33 2 ⁺	[E2]		D(E2)(W ₁₁)=2.5.6
		1902.99 - 24	1.09 - 14	2930.33 Z	[E2]		B(E2)(W.u.)=2.5 6

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{a}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^C	δ	Comments
4901.44	4+	3092.31 11	100 <i>I</i>	$1808.74 2^{+}$	[E2]		B(E2)(W.u.)=14 3
4972.30	0_{+}	2033.88 12	100 4	2938.33 2+	E2		B(E2)(W.u.)=7.4 13
		3163.35	8 ^b 4	1808.74 2+	E2		B(E2)(W.u.)=0.06 4
5180.5		1238.9 [#] 7	100	3941.57 3 ⁺			
5291.74	2+	456.0 [@] 4	1.9 [@] 7	4835.13 2+			
		1350.20 <i>16</i>	3.4 7	3941.57 3 ⁺	[M1]		B(M1)(W.u.)>0.026
		2353.27 5	100.0 14	2938.33 2+			26
		3482.2 5	6.6 9	1808.74 2+	F-2		E _{γ} : Weighted average of data from (n, γ) and ²⁶ Na β^- decay (2005Gr07).
	. 1	5291.1 5	3.9 7	0.0 0+	E2		B(E2)(W.u.)>0.10
5476.05	4+	640.5 [@] 3	19 [@] 6	4835.13 2+	M1 . E2	. 0. 00. 7	DAMAWA \ 0.24 10 D/E0/WA \ 12 . 10 11
		1157.23 6	100 4	4318.89 4+	M1+E2	+0.09 7	B(M1)(W.u.)=0.34 10; B(E2)(W.u.)=12 +19-11 δ: From 1975Wa10. Other: +0.05 19 (1974Na22).
		1534.49 <i>15</i>	51 4	3941.57 3 ⁺	M1+E2	-0.27 4	B(M1)(W.u.)=0.071 22; B(E2)(W.u.)=12 5
		1331.17 13	31 7	3711.37 3	1011 122	0.27 7	δ : From 1974Na22. Other: -0.27 15 (1975Wa10).
		3667.4 5	25 2	1808.74 2 ⁺	[E2]		B(E2)(W.u.)=1.1 4
							E_{γ} : Weighted average of data from (n,γ) and 26 Na β^{-} decay (2005Gr07).
5691.08	(1^{+})	1358.4 9	6 2	4332.52 2+			
		2752.56 25	46 3	2938.33 2+			
		3882.0 <i>3</i> 5691.1 <i>9</i>	100 <i>5</i> 11 <i>3</i>	1808.74 2 ⁺ 0.0 0 ⁺	D		
5711.2	$(1^+, 2^+)$	2122.5 [#] 8	100	3588.56 0 ⁺	D		
	(1°,2°) 4 ⁺	240.12 [@] 11	2.16 [@] 17				
5715.91	4 '	424.3 [@] 3	0.38 9	5476.05 4 ⁺			
				5291.74 2+			
		1365.54 20	95.1 [@] 4	4350.09 3+	M1+E2	-0.17 3	B(M1)(W.u.)=0.036 10; B(E2)(W.u.)=3.1 14 δ: Weighted average of -0.18 3 (1974Na22), -0.05 12 (1975Wa10).
		1384.70 [@] <i>16</i>	4.41 [@] 17	4332.52 2+			
		1774.0 9	100 5	3941.57 3 ⁺	M1+E2	-0.12 4	B(M1)(W.u.)=0.017 5; B(E2)(W.u.)=0.4 2 δ: From 1974Na22.
		2776.82 20	51.4 [@] <i>14</i>	2938.33 2 ⁺	[E2]		B(E2)(W.u.)=1.75
		3906.8 [@] 7	3.35 [@] 22	1808.74 2 ⁺			
6125.47	3 ⁺	409.4 ^f 5	0.10^{f} 5	5715.91 4 ⁺			E_{γ} , I_{γ} : More precise 409.22 γ 20 in ²⁶ Na β ⁻ decay (2005Gr07) yield poor fit. Branching from ²⁶ Na β ⁻ decay (2005Gr07).
		833.47 <i>21</i>	3.4 4	5291.74 2+			E _{γ} : Unweighted average of data from (n,γ) and ²⁶ Na β^- decay (2005Gr07).
		1223.35 [@] 15	1.3 3	4901.44 4+			Zy. Chile Egilled a lotting of data from (11,7) and 11,4 p decay (2005 0107).
		1290.40 7	5.2 4	4835.13 2 ⁺			
		1775.31 5	100.0 14	4350.09 3+	[M1]		B(M1)(W.u.)=0.20 9
		1792.87 <i>12</i>	6.5 6	4332.52 2+			
		2183.83 6	13.7 7	3941.57 3 ⁺			

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{a}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. ^c	δ	Comments
	6125.47	3+	3187.14 28 4316.39 24	5.8 <i>6</i> 4.8 <i>6</i>	2938.33 2 ⁺ 1808.74 2 ⁺			
l	6256.2	0+	565.1 [#] <i>13</i> 4447.1	8 <i>4</i> 100 <i>4</i>	5691.08 (1 ⁺) 1808.74 2 ⁺	D E2		B(E2)(W.u.)=1.2 8
	6483.2		1302.7 [#] <i>13</i>		5180.5			
	6622.94	(4^{+})	1146.9‡	19^{b}_{0} 2	5476.05 4+	[M1]		B(M1)(W.u.)=0.063 18
			1721.39 [@] 20	100 @ 4	4901.44 4+	M1(+E2)	$-0.26^{\circ} +60-10$	B(M1)(W.u.)=0.09 4; B(E2)(W.u.)=12 +52-8
			2272.7 [@] 3	43.8 [@] 18	4350.09 3+			
			2290.2 [@] 3	26.2 [@] 14	4332.52 2+	[E2]		B(E2)(W.u.)=12 4
			2304.2 [@] 3	37.6 [@] 18	4318.89 4+			I_{γ} : Other: 23 4 (α ,p γ).
			4813.7 [@] 10	3.8 [@] 5	1808.74 2+			
	6634.2		3695.63 25	100 1	2938.33 2+			
			4825.0 [‡]	6 ^b 1	1808.74 2+			
	6745.13	2+	1453.16 [@] 17	24 [@] 4	5291.74 2+			
			3807.0 5	100 [@] 6	2938.33 2+			E _{γ} : Weighted average of data from (n, γ) and ²⁶ Na β^- decay (2005Gr07).
			4026.2.2	99 [@] 8	1808.74 2+			I_{γ} : Other: 59 6 (n, γ).
			4936.3 <i>3</i> 6743.9 <i>@</i> 21	1.9 [@] 5	$0.0 0^{+}$			
	6876.42	3-	2041.44 16	4.7 6	4835.13 2 ⁺			
	00701.12		2543.7 4	6.1 9	4332.52 2+			
			2557.2 <i>3</i>	4.4 4	4318.89 4+			,
			2934.8 6	4.2 9	3941.57 3 ⁺	[E1]		$B(E1)(W.u.)=1.1\times10^{-5} 5$
			3937.80 <i>11</i> 5067.13 <i>4</i>	26.2 <i>12</i> 100.0 <i>19</i>	2938.33 2 ⁺ 1808.74 2 ⁺			
	6951.7		1771.1 [#] 14	100.0 17	5180.5			
	6971.8	(4^{+})	3030.0 [#] 20	100	3941.57 3 ⁺	D+Q#		
	6978.3	(5 ⁺)	1263.7 [#] 21	8 2	5715.91 4+			
		(-)	1501.8 [#] 10	100 8	5476.05 4+	M1+E2	-0.21 ^e 5	B(M1)(W.u.)=0.22 9; B(E2)(W.u.)=24 15
			2076.8	22 4	4901.44 4 ⁺	M1+E2	-1.0 ^e 6	B(M1)(W.u.)=0.010 7; B(E2)(W.u.)=13 9
			2628.1	9 2	4350.09 3+	[E2]		B(E2)(W.u.)=3.2 14
			2660.0 [#] 20	34 4	4318.89 4+	M1+E2	-0.4^{e} 2	B(M1)(W.u.)=0.012 5; B(E2)(W.u.)=1.5 12
	7061.90	1-	3036.5 3472.9 <i>3</i>	28 <i>4</i> 94 <i>8</i>	3941.57 3 ⁺ 3588.56 0 ⁺	E2 [E1]		B(E2)(W.u.)=4.8 <i>19</i> B(E1)(W.u.)>0.00089
	7001.70	1	4122.9 6	28 6	2938.33 2 ⁺	[11]		D(D1)(11.0.)> 0.0000>
			5252.9 <i>3</i>	56 8	1808.74 2+	[E1]		B(E1)(W.u.)>0.00015
			7060.6 7	100 14	$0.0 0^{+}$			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ	Comments
7099.68	2+	2264.25 21	40 6	4835.13 2+			
		3158.4 6	18 <i>4</i>	3941.57 3+			
		4160.96 20	100 10	2938.33 2+			
		5290.3 5	32 4	1808.74 2+			1 01 06 4 26N 07 1 (2005G 07)
	2+	7098.9 5	10 4	$0.0 0^{+}$			I_{γ} : Other: 26 4 – ²⁶ Na β^- decay (2005Gr07).
7246.49	3 ⁺	1953.6 [@] 7	11 [@] 5	5291.74 2+			
		2411.5 [@] 3	100 @ 4	4835.13 2 ⁺			I_{γ} : Other: 40 δ (α ,p γ).
		2896.4 [@] 4	97 [@] 5	4350.09 3+			
		2913.7 [@] 4	59 [@] 4	4332.52 2+			I_{γ} : Other: 100 $I6$ (α ,p γ).
		2927.2 [@] 5	22 [@] 3	4318.89 4+			I_{γ} : Other: 76 16 (α ,p γ).
		3304.6 [@] 5	51 [@] 3	3941.57 3 ⁺			I_{γ} : Other: 96 16 (α ,p γ).
		4308.1 [@] 8	42 [@] 3	2938.33 2+			
		5436.1 [@] 13	3.6 [@] 7	1808.74 2 ⁺			
7261.40		2426.09 6	25.1 8	4835.13 2 ⁺			
		2911.12 <i>19</i>	8.0 6	4350.09 3+			
		2928.56 17	9.4 6	4332.52 2+			
		3319.66 5	47.4 18	3941.57 3 ⁺			
		4322.68 8 5452.03 <i>4</i>	15.2 8 100.0 25	2938.33 2 ⁺ 1808.74 2 ⁺			
7282.82	(4^{-})	1567.06 11	9.2 8	5715.91 4 ⁺			
7202.02	(')	2381.28 15	10.2 10	4901.44 4+			
		2932.5 4	18.2 20	4350.09 3+			
		2963.61 9	62 4	4318.89 4+	(E1+M2)	+0.5 4	B(E1)(W.u.)=0.00031 15; B(M2)(W.u.)=4.E+1 +6-3
		3341.01 7	100 4	3941.57 3+	[E1]		B(E1)(W.u.)=0.00043 15
7348.86	3-	1873.1 <i>5</i>	1.5 4	5476.05 4+			
		2513.52 8 3016.18 23	42 <i>3</i> 11.9 <i>1</i> 2	4835.13 2 ⁺ 4332.52 2 ⁺			
		3029.6 8	3.2 4	4332.32 2 4318.89 4+			
		4410.15 5	100 4	2938.33 2+			
		5539.53 15	31.5 19	1808.74 2 ⁺			
7371.36	2+	1245.68 [@] 24	38 [@] 5	6125.47 3+			
		2080.0 [@] 6	5.1 [@] 16	5291.74 2+			
		3021.9 4	27 4	4350.09 3+			E_{γ} : Weighted average of data from (n,γ) and 26 Na β^{-} decay (2005Gr07).
		3039.1 [@] 5	6.3 [@] 10	4332.52 2+			<i>y g</i>
		3428.7 4	100 15	3941.57 3 ⁺			E_{γ} : Other: 3430.2 5 (2005Gr07) – 26 Na β^{-} decay.
		5562.9 9	27 4	1808.74 2+			,
		7369.8 7	54 15	$0.0 0^{+}$			
7396.0	(5^{+})	1680.0 [#] <i>10</i>	100 6	5715.91 4 ⁺	(M1+E2)	$-0.14\ 2$	B(M1)(W.u.)>0.16; B(E2)(W.u.)>4.6

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^C	δ	Comments
7396.0	(5 ⁺)	2494.4	36 <i>4</i>	4901.44 4+			
	, ,	3045.7	26 2	4350.09 3+			
		3076.9	14 4	4318.89 4+			
		3454.2	24 2	3941.57 3 ⁺			
7541.71	(2^{-})	3191.2 6	8.7 11	4350.09 3+			
		3208.98 8	100 4	4332.52 2+			
		3599.86 <i>14</i>	38 3	3941.57 3+			
		4602.93 7	84 <i>4</i> 39 <i>3</i>	2938.33 2+			
7677	(4^{+})	5732.37 <i>15</i> 1551.5	39 3 35 <i>4</i>	1808.74 2 ⁺ 6125.47 3 ⁺			
077	(4)	1961.0	100 8	5715.91 4+			
		2775.4	44 6	4901.44 4+			
		3357.9	29 4	4318.89 4+			
7696.8	1(-)	4757.6 <mark>&</mark>	37 <mark>&</mark> 13	2938.33 2+			
, 0, 0, 0	-	5887.9 <mark>&</mark>	17 ^{&} 5	1808.74 2 ⁺			
		7695.6 8	100 <mark>&</mark> 31	$0.0 0^{+}$			
725.8	3 ⁺	3406.9 [@] 5	100 4	4318.89 4+			
		3783.7 [@] 7	19 <i>4</i>	3941.57 3 ⁺			I_{γ} : Other: 50 7 – (2005Gr07) – ²⁶ Na β ⁻ decay.
		5915.5 [@] <i>16</i>	20 [@] 4	1808.74 2+			
773.7	(4^{+})	2297.5	30 8	5476.05 4+			
		2938.4	30 8	4835.13 2 ⁺			
		3454.7 [@] 9	20 6	4318.89 4+			
		3831.7 [@] 7	100 14	3941.57 3 ⁺			
		4834.9	20 6	2938.33 2+			
7817.8	$(2,3)^+$	3485.0 [@] 7	100 [@] 15	4332.52 2+			
		6008.7 [@] 16	67 [@] 9	1808.74 2 ⁺			
7824	3-	3882	100 13	3941.57 3 ⁺			
		4885	100 13	2938.33 2+			
	- 1	6015	50 10	1808.74 2+			
840	2+	3521	47 10	4318.89 4+	F-0		
		4251	100 12	3588.56 0 ⁺	E2		
		4901 6030.5	63 <i>12</i> 23 <i>7</i>	2938.33 2 ⁺			
1050 O	5-	2234.0 [#] 20	23 / 47 5	1808.74 2 ⁺ 5715.91 4 ⁺	E1 - M2	0.10.15	$D(E1)/W_{11} = 0.0015 \ 7. \ D(M2)/W_{11} = 5.E + 1. + 0.4$
950.0	3	3633.8 [#] 10			E1+M2	-0.19 <i>15</i>	B(E1)(W.u.)=0.0015 7; B(M2)(W.u.)=5.E+1 +8-4
3034		3633.8" <i>10</i> 5095	100 <i>5</i> 100	4318.89 4 ⁺ 2938.33 2 ⁺	E1+M2	+0.13 11	B(E1)(W.u.)=0.0008 4; B(M2)(W.u.)=5 +8-4
3054 3052.4	2(+)	6242.9 7	100	1808.74 2 ⁺			
	4. 1	ひムサム・ク /	100	1000.74 4			

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{a}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^c	δ	Comments
8184.93	3-	6375.38 16	100 4	1808.74	2+			
8201.1	(6^{+})	1223.0 14	44 4	6978.3		$D^{\boldsymbol{e}}$		
		3299.5 10	78 7	4901.44				
		3881.8 <i>10</i>	100 9	4318.89				
8227.31	1-	6417.9 3	85 6	1808.74				
8250.58	(3 ⁺)	8225.6 <i>4</i> 5311.66 <i>16</i>	100 <i>6</i> 100 <i>6</i>	0.0 2938.33				
0230.30	(3)	6441.1 8	3.9 8	1808.74				
8458.9	3 ⁺	4139.7 5	55 8	4318.89				
		6649.1 7	100 6	1808.74	2+			
8464		4144.8	100	4318.89) 4 ⁺			
8472.3	(6^{+})	1494.0 [#] <i>14</i>	38 5	6978.3		D+Q <mark>e</mark>	-0.32 ^e 10	
		3570.6	100 6	4901.44				
0502.7	1-	4153.1	21 3	4318.89				
8503.7	1-	6694.0 <i>7</i> 8502.2 <i>3</i>	39 <i>6</i> 100 <i>6</i>	1808.74 0.0				
8532.1	(2^{+})	4181.9 7	66 11	4350.09				
0332.1	(2)	5593.2 4	100 13	2938.33				
		6722.1 7	47 9	1808.74				
8625	5-	2002	100 4	6622.94	(4+)	E1+M2	+0.03 ^e 1	B(E1)(W.u.)=0.0028 6; B(M2)(W.u.)=2.9 21
		4305.7	18 4	4318.89) 4 ⁺	E1 d		$B(E1)(W.u.)=5.1\times10^{-5}$ 16
8670	(3,5)	3193.7	54 8	5476.05	5 4 ⁺	D+Q	<+0.5	δ: also, >-0.5. Measured values: +0.35 15 (for J=3); -0.13 +7-26 (for J=5).
		4350.7	100 8	4318.89) 4 ⁺	D+Q	<+0.13	δ : also, >-0.13. Measured values: +0.03 +3-9 (for J=3); +0.09 +4-9 (for J=5).
8705.6	$(2 \text{ to } 4)^+$	3229.3	29 <mark>b</mark> 7	5476.05	5 4 ⁺			,
	(= :: ')	4355.3 6	12 3	4350.09				E_{γ} , I_{γ} : γ-ray energy from (n,γ) . Branching normalized to I_{γ} of 5766γ in 1992Wa06 and $(\alpha,p\gamma)$.
		4386.3	100 ^b 11	4318.89) <u>4</u> +			in 1992 (disp/)
		4763.6	64 ^b 9	3941.57				
		5766.6 <i>3</i>	29 ^b 7	2938.33				
8863.8	2+	5924.8 <i>4</i>	69 8	2938.33				
		7054.0 6	100 8	1808.74				
8903.52	(2^{+})	1554.8 <i>4</i>	7.9 14	7348.86				
		1620.8 <i>3</i>	21 2	7282.82				
		1642.09 25	22 2	7261.40				
		3611.5 <i>4</i> 4001.8 <i>3</i>	30 <i>3</i> 30 <i>3</i>	5291.74 4901.44				
		4001.8 <i>3</i> 4553.02 <i>13</i>	30 3 100 7	4901.44				
		4961.42 22	97 7	3941.57				

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ	Comments
8903.52	(2 ⁺)	5964.31 20	36 <i>3</i>	2938.33 2+			
8930		2307	50 11	6622.94 (4+)			
		3214	100 14	5715.91 4+			
		3453.7	75 <i>14</i>	5476.05 4 ⁺			
0050 4	1-	4987.9 7149.4	53 <i>11</i> 64 <mark>&</mark> 7	3941.57 3 ⁺			
8959.4	1-		100 ^{&} 12	1808.74 2+			
9020		8957.7 <i>5</i> 4701	100 × 12 100	0.0 0 ⁺ 4318.89 4 ⁺			
9043.4	3(+)	6104.3 9	100	2938.33 2 ⁺			
9064	5 ⁺	1668	26 5	7396.0 (5+)	D+Q ^e	+0.6 ^e 4	
		4162	26 5	4901.44 4+			
		4744.7	100 8	4318.89 4+	$D^{\boldsymbol{e}}$		
9111.2	6+	1715	16 ^b 4	7396.0 (5 ⁺)	[M1]		B(M1)(W.u.)>0.032
		2488	16 ^b 4	6622.94 (4 ⁺)	[E2]		B(E2)(W.u.)>9.4
		3635	100 <mark>b</mark> 12	5476.05 4+	[E2]		B(E2)(W.u.)>8.8
		4209.4	32 <mark>b</mark> 6	4901.44 4+	[E2]		B(E2)(W.u.)>1.4
		4792	36 <mark>b</mark> 6	4318.89 4+	[E2]		B(E2)(W.u.)>0.80
9139.5	1	9137.8	100	$0.0 0^{+}$			
9169	(6-)	1218.7 [#] <i>23</i>	100 <mark>b</mark> 7	7950.0 5-	M1+E2 ^d	−0.14 ^e 6	B(M1)(W.u.)=0.25 8; B(E2)(W.u.)=18 17
		1773	39 <mark>b</mark> 6	7396.0 (5 ⁺)	E1+M2 ^d	+0.07 ^e 5	B(E1)(W.u.)=0.0011 4; B(M2)(W.u.)=8 +12-7
		1886	24 ^b 4	7282.82 (4-)	[E2]		B(E2)(W.u.)=26 10
		2190.6	22 ^b 4	6978.3 (5 ⁺)	[E1]		B(E1)(W.u.)=0.00034 13
9206		4887	100	4318.89 4+			
9238.9	1 ⁽⁺⁾	5649.5 <mark>&</mark>	23 ^{&} 5	3588.56 0+			
		9237.1 8	100 <mark>&</mark> 20	$0.0 0^{+}$	M1		B(M1)(W.u.)=0.072 9
9261	(4^{+})	5319	100	3941.57 3 ⁺			
9291 9304		7481 4985	100 100	1808.74 2 ⁺ 4318.89 4 ⁺			
9304		4983	100	4332.52 2 ⁺			
9325.57	$(2^+ \text{ to } 4^+)$	4424.2 8	27 4	4901.44 4+			
	, , ,	4489.4 9	27 4	4835.13 2+			
		4975.3 9	32 5	4350.09 3+			
		4992.4 8	48 5	4332.52 2+			
		5383.8 <i>7</i> 6386.34 <i>23</i>	16 <i>3</i> 100 <i>8</i>	3941.57 3 ⁺ 2938.33 2 ⁺			
9371	4+	5429	100 8	3941.57 3 ⁺			
9383	6 ⁺	1182	15^{b} 3	8201.1 (6 ⁺)			
1000	J	2404.6	74 ^b 10	6978.3 (5 ⁺)	D+Q ^e	-0.14 ^e 6	

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	E_f J_f^{π}	Mult. ^c	δ	Comments
9383	6+	2759.9	38 ^b 5	6622.94 (4+)	Q^e		
		3666.8	100 ^b 13	5715.91 4+	Q^e		
		5063.6	28 <mark>b</mark> 5	4318.89 4+			
9427.8	3 ⁺	5077.4 9	23 6	4350.09 3+			
		6488.6 <i>4</i>	100 8	2938.33 2+			
0.471	(1 4- 5)+	7617.8 <i>7</i>	33 5	1808.74 2 ⁺			
9471	$(1 \text{ to } 5)^+$ 5 ⁺	5529	100	3941.57 3 ⁺	De		
9540.3	5'	2562	5.3 ^b 16	6978.3 (5 ⁺)	D^e		
		3824.0 [#] 20	$23^{b} 3$	5715.91 4+			
		4638.4	34 ^b 7	4901.44 4+			
		5221.0 [#] 20	100 ^b 10	4318.89 4+	D+Q ^e	+0.06 ^e 5	
9563.5	1+	7753.1 <mark>&</mark>	49 <mark>&</mark> 11	1808.74 2 ⁺			
		9561.6 <mark>&</mark>	100 <mark>&</mark> 21	$0.0 0^{+}$	M1		
9574.06	$(2^{-} \text{ to } 4)$	2290.8 4	14.0 24	7282.82 (4-)			
		2697.7 <i>3</i> 3448.8 <i>7</i>	24.4 <i>24</i> 20.7 <i>24</i>	6876.42 3 ⁻ 6125.47 3 ⁺			
		5223.37 12	100 9	4350.09 3+			
		5632.3 6	14.6 18	3941.57 3 ⁺			
9590		6651	100 <mark>b</mark> 13	2938.33 2+			
		7780	67 <mark>b</mark> 13	1808.74 2+			
9617.0	$(1 \text{ to } 3)^{-}$	7807.0 9	100	1808.74 2+			
9681	$(0 \text{ to } 5)^+$	7871	100	1808.74 2+			
9770.8	1(-)	7961.1 <mark>&</mark>	69 <mark>&</mark> 14	1808.74 2+			
		9768.8 <mark>&</mark>	100 <mark>&</mark> 19	$0.0 0^{+}$			
9771		4869	100 <mark>b</mark> 16	4901.44 4+			
		5452	100 <mark>b</mark> 16	4318.89 4+			
9814		5495	100	4318.89 4+			
9829.5	$(5,7)^+$	1357.2	6.7 <mark>b</mark> 11	8472.3 (6 ⁺)			
		1628.3 [#] <i>12</i>	100.0 ^b 22	8201.1 (6 ⁺)	M1(+E2)	<+0.24	B(M1)(W.u.)>0.084; B(E2)(W.u.)<18 δ : also, >-0.24. Measured values: +0.19 +5-11 (for J^{π} =5+); -0.03 +1-4 (for J^{π} =7+).
		2433.4	5.6 <mark>b</mark> 11	7396.0 (5 ⁺)			12 1 (101 0 -1).
9856.8	2+	5020.7 8	62 10	4835.13 2 ⁺			
		5523.6 7	100 12	4332.52 2+			
		5915.8 9	31 10	3941.57 3 ⁺			
	a.t.	9854.5 7	43 10	$0.0 0^{+}$			
9900.3	3+	6961	100	2938.33 2+			

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. ^c	δ		Comments	
9927		5025	100	4901.44 4+					
9939		5619	100	4318.89 4+					
9967	2+	5065	100 <mark>b</mark> 9	4901.44 4+					
		7028	67 <mark>b</mark> 9	2938.33 2 ⁺					
9982		6040	100	3941.57 3 ⁺					
9989	(6^{+})	1517	25 b 4	8472.3 (6+)	$(M1+E2)^{e}$	−0.17 ^e 10	B(M1)(W.u.)>0.15		
		3011	100 <mark>b</mark> 7	6978.3 (5 ⁺)	$(M1+E2)^{e}$	−0.09 ^e 5	B(M1)(W.u.)>0.078		
		5669.5	20 <mark>b</mark> 4	4318.89 4+	[E2]		B(E2)(W.u.)>0.42		
10040	5-	4323.7	100 <mark>b</mark> 13	5715.91 4 ⁺					
		5138.0	51 <mark>b</mark> 9	4901.44 4+					
		5720.4	71 <mark>b</mark> 9	4318.89 4+					
10069		5167	100	4901.44 4+					
10102.5	1-	7162.4 9	35 9	2938.33 2+					
		10100.5 4	100 13	$0.0 0^{+}$					
10126.7	4 ⁺	7187.4 8	52 9	2938.33 2 ⁺					
101451		8316.4 8	100 <i>13</i> 43& 3	1808.74 2+					
10147.1	1+	8337.9		1808.74 2+	3.61				
10184		10145.0& 5282	100& 9 100	0.0 0 ⁺ 4901.44 4 ⁺	M1				
10184		3282 8409.7 9	100	1808.74 2 ⁺					
10234		5332	100	4901.44 4+					
10319.5	1+	7378.4 <mark>&</mark>	67 <mark>&</mark> 19	2938.33 2+					
		10317.3 <mark>&</mark>	100 <mark>&</mark> 22	0.0 0+	M1				
10349.4	$(0^+ \text{ to } 4^+)$	8539.2 9	100	1808.74 2 ⁺	1111				
10362.26	$(2^+ \text{ to } 4^+)$	3261.8 <i>4</i>	62 5	7099.68 2+					
		4886.3 5	46 8	5476.05 4+					
		6011.2 <i>5</i> 8552.2 <i>3</i>	49 <i>8</i> 100 <i>10</i>	4350.09 3 ⁺ 1808.74 2 ⁺					
10377		8552.2 5 4661	100 10	5715.91 4+					
10529		4813	100 b 17	5715.91 4+					
10329		6196	67 ^b 17	4332.52 2+					
10572.2	1-		100 & 17	4332.32 2 4972.30 0 ⁺					
10573.3	1	5600.4	89& 19						
10576		10571.0		0.0 0+					
10576		2044	85 ^b 8	8532.1 (2 ⁺)					
10600 1	(1+ , 4+)	3597	100 ^b 8	6978.3 (5 ⁺)					
10600.1	$(1^+ \text{ to } 4^+)$	3500.6 9	0.06 2	7099.68 2+					

Adopted Levels, Gammas (continued)

γ (²⁶Mg) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^c
10600.1	$(1^+ \text{ to } 4^+)$	6267.0 6	100 17	4332.52	2+	
		6657.3 <i>5</i>	86 17	3941.57	3 ⁺	
		7660.4 9	39 6	2938.33	2+	
10647.3	1+	3547.4	1.41 ^{&} 14	7099.68	2+	
		5355.0	1.84 <mark>&</mark> 15	5291.74	2+	
		5674.4	1.84 ^{&} 15	4972.30	0_{+}	
		7707.7	7.3 & 4	2938.33	2+	
		8837.0	1.76 ^{&} 21	1808.74	2+	
		10645.0	100 & 4	0.0	0_{+}	M1
10650	$(4^- \text{ to } 7^-)$	1481	56 ^b 8	9169	(6-)	
		3254	100 ^b 8	7396.0	(5^{+})	
10693		3297	100	7396.0	(5 ⁺)	
10707		4991	100 100 ^b 9	5715.91	4 ⁺	
10767		6416	45^{b} 9	4350.09	3 ⁺	
4000 7 0	(0± 4±)	7827	45° 9 100 <mark>&</mark> 12	2938.33	2+	
10805.9	$(0^+ \text{ to } 4^+)$	8995.5 4	100 ^{&} 12 28 ^{&} 8	1808.74	2+	
40045		10803.3		0.0	0+	
10945		1562	$16^{b} 4$	9383	6+	
		1776	100 ^b 9	9169	(6-)	
		2320	48 ^b 7	8625	5-	
10949.1	1-	6615.6	18.9 <mark>&</mark> 18	4332.52	2+	
		7359.4	8.2 ^{&} 13	3588.56	0_{+}	
		8009.4	23.7 & 23	2938.33	2+	
		9138.7	100 & 6	1808.74	2+	
		10946.6	24 <mark>&</mark> 4	0.0	0_{+}	
11012		6110	61 ^b 12	4901.44		
		6692	100 ^b 12	4318.89	4+	
11153.5	1+	6180.4	14 ^{&} 4	4972.30	0_{+}	
		6820.0	11.2 ^{&} 16	4332.52	2+	
		7563.8	16 ^{&} 4	3588.56	0_{+}	
		9343.0	4.2 ^{&} 6	1808.74	2+	
		11150.9	100 ^{&} 12	0.0	0_{+}	
11191		3241	72 ^b 14	7950.0	5-	

Adopted Levels, Gammas (continued)

γ ⁽²⁶Mg) (continued)

$E_i(level)$ J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{a}	\mathbf{E}_f \mathbf{J}_f^{π}
11191	5474	100 ^b 14	5715.91	4+	12088		4692	79 ^b 15	7396.0 (5+)
11329.11	3933		7396.0				5109	100 ^b 15	6978.3 (5 ⁺)
	4350	56 <mark>b</mark> 8	6978.3	(5^{+})	12196		3723		8472.3 (6+)
11457	6555	100	4901.44				3995		8201.1 (6+)
11570	3098		8472.3			(6-)	2649		9829.5 (5,7)+
	4174	82 ^b 15	7396.0	(5^{+})			4278	64 ^b 10	8201.1 (6+)

[†] From (n,γ) , except otherwise noted. ‡ From level energy differences. Recoil energy subtracted. # From $(^{13}C,\alpha n\gamma)$. @ From $^{26}Na \beta^-$ decay (2005Gr07). & From $(\text{pol }\gamma,\gamma'),(\gamma,\gamma')$.

^a Relative photon branching from each level.

^b γ -ray branching from $(\alpha, p\gamma)$ 1986Gl06.

^c Based on reported mixing ratio and RUL. Details are noted as comments.

^d From $(\alpha, p\gamma)$ and recommended upper limits for γ -ray transition strengths.

^e From (α, pγ) - 1986Gl06.

f Multiply placed with intensity suitably divided.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

History Author Citation Literature Cutoff Date Full Evaluation M. Shamsuzzoha Basunia NDS 114, 1189 (2013) 1-Apr-2013

 $Q(\beta^{-})=1831.8\ 20$; $S(n)=8503.4\ 20$; $S(p)=16790\ 4$; $Q(\alpha)=-11492.0\ 21$ 2012Wa38

²⁸Mg production cross sections are reported in:

2012Zh06: ⁹Be(⁴⁰Ar,X), E=57 MeV/nucleon.

2011Ti03: nat Cr(p,X), E=248 to 2605 MeV; ⁵⁶Fe(p,X), E=249 to 2605 MeV.

2011Ti04: ^{nat}Ni(p,X), E=599 to 2605 MeV ⁹³Nb(p,X), E=1599- and 2605 MeV.

2011Ti05: nat W(p,X), E=1199-, 1599-, 2605-MeV nat Ta(p,X), E=1199-, 1598-, 2605-MeV.

2008Ti05: 56 Fe(p,X), E=300 to 2600 MeV.

2007No13: ${}^{9}\text{Be}({}^{40}\text{Ar,X})$, E=90A MeV, and ${}^{181}\text{Ta}({}^{40}\text{Ar,X})$, E=94A MeV. 2003Ya20: $\text{Cu}({}^{40}\text{Ar,X})$, Cu(${}^{20}\text{Ne,X}$), E=100 and 230 MeV/nucleon.

2000Da06: 124Sn(p,X), E=8.1 GeV.

2000Ka25: $^{232}\text{Th}(\gamma,\text{F})^{28}\text{Mg}$, E=12⁻, 16.5-, 24-MeV bremsstrahlung. Other: 2000Ma75.

1997Fo01: ²⁰⁸Pb(³⁷Cl,X), E=230 MeV. 1997Vo03: ⁵⁶Fe(p,X), E=800 MeV.

2006Kh08: 28 Mg beam, 55.93 MeV/nucleon, bombarded a Si target, measured σ =2069 mb 186 for Si(28 Ne,X) reaction and a square reduced absorption radius $r_0^2=1.11$ fm² 10 is deduced and used to study the isospin dependence.

²⁸Mg Levels

Cross Reference (XREF) Flags

Α	28 Na β^- decay	D	Coulomb excitation
В	²⁹ Na β ⁻ n decay	E	150 Nd(26 Mg, 28 Mg)
C	26 Mg(t py)		

			•	1418(1,177)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{@}$	XREF	Comments
0.0	0_{+}	20.915 h 9	ABCDE	$\%\beta^{-}=100$
				$\delta < r^2 > (^{26}\text{Mg}, ^{28}\text{Mg}) = +0.216 \text{ fm}^2 \text{ 9 (statistical) } 27 \text{ (systematic) } (2012\text{Yo}01).$
				Charge radius $\langle r^2 \rangle^{1/2} = 3.0695$ fm 14 (statistical) 51 (systematic) (2012Yo01).
				$T_{1/2}$: from 1991Ko34. Other values: 20.88 h 6 (1963We19) and 20.93 h 4
				(1974Ro18).
1473.54 10	2+	1.2 ps <i>1</i>	ABCDE	$T_{1/2}$: Other: 0.93 ps 15 (Coulomb excitation).
3862.15 <i>14</i>	0_{+}	0.55 ps 7	ABC	
4021.0 5	4+	105 fs <i>35</i>	A C E	
4554.6 <i>5</i>	2+	<0.03 ps	ABC	
4561.0 5	1+		ABC	J^{π} : From ²⁸ Na β^{-} decay.
4878.6 <i>13</i>	2+	<0.08 ps	A C	
5171.3 <i>4</i>	3-	0.11 ps 9	ACE	
5184.6 7			C	
5193.1 5	1	<0.02 ps	A C	
5270.2 <i>4</i>	1+	<0.1 ps	A C	J^{π} : 1974Ra15 (t,py) presents $J^{\pi}=1^{-}$ in the decay scheme, however, from ²⁸ Na β^{-} decay, 1984Gu19 assigns $J^{\pi}=1^{+}$.
5470.1 5	2		A C	p deedy, 170 really distigns v 1.
5672.7 5	2+		C	
5702.1 7	0^{+}	0.21 ps <i>3</i>	C	
5916.9 <i>11</i>	$(0,1,2)^{+}$	1	A C	
6135 15	(0,1,2)		C	
6416 15			Č	
6516 <i>15</i>			Č	

Adopted Levels, Gammas (continued)

²⁸Mg Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
6544.9 5	(2 ⁺)#	A C	
6599 <i>15</i>		C	
6708 <i>15</i>		C	
6759 <i>15</i>		C	
7200.9 7	$(0,1,2)^{+\#}$	A	
7462.0 <i>4</i>	$(2^+)^{\#}$	Α	
8439.4? 11	(6^{+})	E	J^{π} : 4418 γ to 4 ⁺ state.

[†] From a least-squares fit to measured γ -ray energies. $\Delta E=1$ keV is assumed for 4418 γ and used in the fitting. Calculated γ -ray energies are obtained after the fitting.

Comments

 E_{γ}^{\dagger} I_{γ}^{\dagger} E_{f} J_{f}^{π} Mult. †

4877 10

292.7

616.7

1150.5 4

3696.8 6

314.5

25 4

<1

3 1

38 2

100 2

<1

0.0 0^{+}

1473.54 2+

4878.6 2⁺

2+

4+

4878.6

4554.6

4021.0

E2

(E1)

(E1)

 $E_i(level)$

5171.3

5193.1

	_							
1473.54	2+	1473.5 [‡] <i>1</i>	100	0.0	0+	E2		B(E2)(W.u.)=13.4 <i>12</i>
3862.15	0_{+}	2388.5 <i>1</i>	100	1473.54	2+	E2		B(E2)(W.u.)=2.6 4
								E_{ν} : Weighted average of data from 2012Ku11,
								1984Gu19 (28 Na β^- decay), 29 Na β^- n decay and
								26 Mg(t,py).
4021.0	4+	2547.7 6	100	1473.54	2+	(E2)		B(E2)(W.u.)=10 4
4021.0	4	2347.7 0	100	1473.34	2	(E2)		
								E_{γ} : Weighted average of data from 2012Ku11 (²⁸ Na
								β^- decay) and ²⁶ Mg(t,p γ).
4554.6	2+	533.6	<2	4021.0	4+			
		692.4	<2	3862.15	0_{+}			
		3082.6 <i>13</i>	100	1473.54	2+	M1+E2	+0.04 3	B(M1)(W.u.) > 0.024
								E_{γ} : Using the Limitation of Relative Statistical
								Weight (LWM) averaging method of data 3081.3
								keV 3 (2012Ku11), 3087.4 keV 9 (1984Gu19) of
								²⁸ Na β^- decay, 3083.4 keV 7 (t,py), and 3080.9
								keV 10 (²⁹ Na β ⁻ n decay).
		4553.8	<3	0.0	0^{+}			ke v 10 (1va p ii decay).
4561.0	1+	3087.3 5	100	1473.54	-			E. Waighted average of data from 2012Vv11
4301.0	1	3067.3 3	100	14/3.34	2			E_{γ} : Weighted average of data from 2012Ku11,
10=0 <		221	~ ~		a.±			1984Gu19 in ²⁸ Na β^- decay and ²⁹ Na β^- n decay.
4878.6	2+	324	<2.5	4554.6	2+			
			<4	3862.15	0_{+}			
		3404.9 [‡] <i>13</i>	100 4	1473.54	2+	M1+E2	+0.35 6	B(M1)(W.u.)>0.0046; B(E2)(W.u.)>0.18
1070.0	2	857.6 1016.4 3404.9 [‡] <i>13</i>	<2.5 <4	4021.0 3862.15	4+ 0+	M1+E2	+0.35 6	B(M1)(W.u.)>0.0046; B(E2)(W.u.)>0.18

B(E2)(W.u.)>0.097

B(E1)(W.u.)=0.0012 10

B(E1)(W.u.)=9.E-5 8

 E_{γ} : Weighted average of 1150.3 keV 4 (t,p γ) and 1151.6 keV 11 (2012Ku11 – 28 Na β^- decay).

 E_{γ} : Weighted average of 3697.5 keV 7 (t,p γ) and 3694.2 keV 13 (2012Ku11 – 28 Na β ⁻ decay).

[‡] From L values in 26 Mg(t,p γ), except otherwise noted. [#] From 28 Na β^- decay, based on the angular distribution measurements of β and γ -ray emissions.

[@] From 26 Mg(t,p γ), except otherwise noted.

Adopted Levels, Gammas (continued)

γ ⁽²⁸Mg) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
5193.1	1	638.5 1330.9 3719	<1.1 2.9 6 11.4 11	4554.6 2 ⁺ 3862.15 0 ⁺ 1473.54 2 ⁺			
		5192.6 [‡] 5	100.0 11	$0.0 0^{+}$			
5270.2	1+	5269.6 [‡] 4	100	$0.0 0^{+}$			
5470.1	2	3996.3 5	100.0	1473.54 2+			E _{γ} : Weighted average of 3996.5 keV 5 (t,p γ) and 3994.9 keV 15 (2012Ku11 – 28 Na β^- decay).
		5469	<2	$0.0 0^{+}$			
5672.7	2+	1118	21 5	4554.6 2+			
		1651.6	<7.3	4021.0 4+			
		1810.4	< 5.9	3862.15 0 ⁺	M1(, E2)	.02.26	
		4198.5	100 6	1473.54 2 ⁺ 0.0 0 ⁺	M1(+E2) E2	+0.3 +2-6	
5702.1	0+	5671.5 431.9	26 <i>6</i> 17.5 <i>15</i>	$0.0 0^+ $ $5270.2 1^+ $	EZ		
3702.1	U	1141	100.0 19	4561.0 1 ⁺			
		4227.9	28.5 16	1473.54 2 ⁺	[E2]		B(E2)(W.u.)=0.077 12
5916.9	$(0,1,2)^+$	4443.0 [‡] 11	100	1473.54 2 ⁺	. ,		, , , , , , , , , , , , , , , , , , ,
6544.9	(2^{+})	1373.4 [‡] 2	< 50	5171.3 3			
	` /	1990.7 [‡] 5	100 50	4554.6 2 ⁺			
7200.9	$(0,1,2)^+$	2007.7 [‡] 4	100	5193.1 1			
7462.0	(2^{+})	2191.7 [‡] <i>3</i>	100 13	5270.2 1+			
		2290.9 [‡] 6	<13	5171.3 3			
		2906.9 [‡] 6	75 13	4554.6 2 ⁺			
9420 49	(6 ⁺)	4418 [#]	13 13				
8439.4?	(6^{+})	4410		$4021.0 4^{+}$			

[†] From 26 Mg(t,p γ), except otherwise noted. The γ rays without uncertainty are calculated by the evaluator from level energy (after a least-squares fit to measured γ rays) differences and recoil energy subtraction. [‡] From 28 Na β^- decay.

[#] Placement of transition in the level scheme is uncertain.

 $^{28}_{12}{\rm Mg}_{16}\text{--}4$

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)Coincidence

