Annihilation data

See www.hepdata.net/record/ins191231, Table 2, 14.0 GeV.

$$\begin{array}{ccc} x & y \\ 0.0502 & 0.09983 \\ 0.1505 & 0.10791 \\ 0.2509 & 0.12026 \\ 0.3512 & 0.13002 \\ 0.4516 & 0.17681 \\ 0.5521 & 0.19570 \\ 0.6526 & 0.27900 \\ 0.7312 & 0.33204 \\ \end{array}$$

Data x and y have the following relationship with the differential cross section formula.

$$x = \cos \theta, \quad y = \frac{d\sigma}{d\Omega}$$

The cross section formula is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2s} \left(\frac{1 + \cos\theta}{1 - \cos\theta} + \frac{1 - \cos\theta}{1 + \cos\theta} \right) \times (\hbar c)^2$$

To compute predicted values \hat{y} , multiply by 10^{37} to convert square meters to nanobarns.

$$\hat{y} = \frac{\alpha^2}{2s} \left(\frac{1+x}{1-x} + \frac{1-x}{1+x} \right) \times (\hbar c)^2 \times 10^{37}$$

The following table shows predicted values \hat{y} for $s = (14.0 \,\text{GeV})^2$.

x	y	\hat{y}
0.0502	0.09983	0.106325
0.1505	0.10791	0.110694
0.2509	0.12026	0.120005
0.3512	0.13002	0.135559
0.4516	0.17681	0.159996
0.5521	0.19570	0.198562
0.6526	0.27900	0.262745
0.7312	0.33204	0.348884

The coefficient of determination \mathbb{R}^2 measures how well predicted values fit the data.

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.98$$

The result indicates that the model $d\sigma$ explains 98% of the variance in the data.