

矩阵分析与应用

第二讲 线性子空间

本讲主要内容

- ■线性子空间的定义
- ■线性子空间的性质
- ■线性子空间的交
- ■线性子空间的和
- 子空间交与和的有关性质

线性子空间

设V₁是数域K上的线性空间V上一个非空子集合,且对已有的线性运算满足以下条件:

- 1. 如果 $x, y \in V_1$, 则 $x + y \in V_1$;
- 2. 如果 $x \in V_1, k \in K$, $kx \in V_1$

则称V1是V的线性子空间或子空间

- ■线性子空间也是线性空间
- ■非零线性空间的平凡子空间:线性空间自身 以及零空间
- ■线性子空间的维数小于等于线性空间的维数

线性子空间V1也是线性空间

证明: 必要性由定义直接得出

充分性: 各运算律已在V中定义,我们只需证明

$$\exists \boldsymbol{\theta} \in \boldsymbol{V}_1 \qquad \forall \boldsymbol{x} \in \boldsymbol{V}_1, \exists -\boldsymbol{x} \in \boldsymbol{V}_1$$

实际上, $0 = 0 \cdot x \in V_1$

$$\forall x \in V_1, -1 \in K \qquad -x = (-1)x \in V_1$$

所以线性子空间V₁也是线性空间

V_1 是数域K上的线性空间V上一个非空子空间

$$\forall x, y \in V_1, \forall k, l \in K \exists kx + ly \in V_1$$

- **充分性:**设 k=l=1, $\forall x, y \in V_1 \Rightarrow x + y \in V_1$ 取 l=0, $\forall x \in V_1$, $\forall k \in K \Rightarrow kx \in V_1$
- ■必要性: $\forall x \in V_1, \forall k \in K \Rightarrow kx \in V_1$ (数乘封闭) $\forall y \in V_1, \forall l \in K \Rightarrow ly \in V_1$ (数乘封闭)

故 $kx + ly \in V_1$ (加法封闭)

n元齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots & \dots & \dots \\ a_{s1}x_1 + a_{s2}x_2 + \dots + a_{sn}x_n = 0 \end{cases}$$

的全部解向量所成集合V对于通常的向量加法和数量乘法构成的线性空间是n维向量空间 Rn的一个子空间,称V为方程组的解空间

- ■方程组的解空间V的维数=n一秩(A),
- ■方程组的一个基础解系就是解空间V的一组基

n元齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1sn}x_{sn} = c_{0,s+1}x_{s+1} + \cdots + c_{1n}x_n \\ a_{21}x_1 + a_{222}x_{22} + \cdots + a_{2n}x_{sn} = c_{0,s+1}x_{s+1} + \cdots + c_{2n}x_n \\ a_{s1}x_1 + a_{s2}x_2 + \cdots + a_{ssn}x_s = c_{0,s+1}x_{s+1} + \cdots + c_{sn}x_n \end{cases}$$

变形后,用n-s组数表示自由未知量 x_{s+1}, \dots, x_n $(1,0,\dots,0)$ $(0,1,\dots,0)$ ••• $(0,0,\dots,1)$

得到n-s个解向量

$$(\gamma_{11},\gamma_{12},\cdots,\gamma_{1s}1,0,\cdots,0)$$
 • • • $(\gamma_{s1},\gamma_{s2},\cdots,\gamma_{ss},0,0,\cdots,1)$

这个解向量组就是方程组的解空间的基

判断R"的下列子集合哪些是子空间:

$$V_{1} = \{(x_{1}, x_{2}, \dots, x_{n}) | x_{1} + x_{2} + \dots + x_{n} = 0, x_{i} \in R\}$$

$$V_{2} = \{(x_{1}, x_{2}, \dots, x_{n}) | x_{1} + x_{2} + \dots + x_{n} = 1, x_{i} \in R\}$$

$$V_{3} = \{(x_{1}, x_{2}, \dots, x_{n-1}, 0) | x_{i} \in R, i = 1, 2, \dots, n-1\}$$

若为R"的子空间,求出其维数与一组基.

解: V_1 、 V_3 是 R^n 的子空间, V_2 不是 R^n 的子空间.

事实上, V_1 是n元齐次线性方程组

$$x_1 + x_2 + \dots + x_n = 0 \tag{1}$$

的解空间. 所以,维 $V_1=n-1$,①的一个基础解系

 $\eta_1 = (1,-1,0,\dots,0), \quad \eta_2 = (1,0,-1,0,\dots,0), \quad \dots,$ $\eta_{n-1} = (1,0,\dots,0,-1) \quad 就是V_1 \quad \text{的一组基}.$

而在 V_2 中任取两个向量 x,y, 设

$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n)$$

则 $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

但是
$$(x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n)$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n) = 1 + 1 = 2$$

∴ $x+y \notin V_2$, 故 V_2 不是 \mathbb{R}^n 的子空间.

下证 V_3 是 R^n 的子空间.

首先 $0 = (0,0,\dots,0) \in V_3$, $\therefore V_3 \neq \emptyset$

其次, $\forall x, y \in V_3, \forall k \in K$,

设 $x = (x_1, x_2, \dots, x_{n-1}, \mathbf{0}), y = (y_1, y_2, \dots, y_{n-1}, \mathbf{0})$

则有 $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_{n-1} + y_{n-1}, 0) \in V_3$

 $kx = (kx_1, kx_2, \dots, kx_{n-1}, \mathbf{0}) \in V_3$

故, V_3 为 R^n 的一个子空间,且维 $V_3 = n-1$,

$$\varepsilon_i = (0, \dots, 0, 1, 0, \dots, 0), i = 1, 2, \dots, n-1$$

就是 V_3 的一组基.

设 x_1, x_2, \dots, x_n 是数域K上的线性空间V的一组向量,所有可能的线性组合的集合

$$V_1 = \{k_1 x_1 + \dots + k_n x_n\} \quad k_i \in K, i = 1, 2, \dots, n$$

称为由 x_1, x_2, \dots, x_n 生成(或张成)的子空间,记为

$$L\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots,\boldsymbol{x}_{n}\right)=\left\{k_{1}\boldsymbol{x}_{1}+\cdots+k_{n}\boldsymbol{x}_{n}\right\}$$

如果 x_1, x_2, \dots, x_m $m \le n$ 是最大线性无关组,则 x_1, x_2, \dots, x_m 是生成的子空间的基

零子空间就是零元素生成的子空间

例:设V为数域K上的线性空间, $x_1, x_2, \dots, x_m \in V$ $V_1 = \{k_1 x_1 + k_2 x_2 + \dots + k_m x_m | k_i \in K, i = 1, 2, \dots, m\}$ 则 V_1 关于V的 E算作成V的一个子空间. $iE: \quad \forall x \in \longrightarrow x = k_1 x_1 + k_2 x_2 + \dots + k_m x_m$ 即 x_1, x_2, \dots, x_m 的一切 $x_2 + \dots + l_m x_m$ 线性组合所成集合. $\forall k, l \in \mathbb{N}$

 $\therefore kx + ly \in V_1$

因此,V₁关于V的运算作成V的一个子空间

定理: 设 V_1 为n 维线性空间V的一个m 维子空间, x_1, x_2, \dots, x_m 为 V_1 的一组基,则这组向量必定可扩充为V的一组基. 即在V中必定可找到n-m个向量 $x_{m+1}, x_{m+2}, \dots, x_n$,使 x_1, x_2, \dots, x_n 为V的一组基.

证明: 对n-m作数学归纳法.

 x_1, x_2, \dots, x_m 就是V的一组基. 定理成立. 假设当n-m=k时结论成立.

下面我们考虑 n-m=k+1 的情形.

既然 $x_1, x_2, ..., x_m$ 还不是V的一组基,它又是线性无关的,那么在Vn中必定有一个向量 x_{m+1} 不能被 $x_1, x_2, ..., x_m$ 线性表出,把它添加进去,则

 $x_1, x_2, ..., x_m, x_{m+1}$ 必定是线性无关的.

由定理, 子空间 $L(x_1, x_2, \dots, x_{m+1})$ 是m+1维的.

因 n-(m+1)=(n-m)-1=(k+1)-1=k,

由归纳假设, $L(x_1, x_2, \dots, x_{m+1})$ 的基 $x_1, x_2, \dots, x_m, x_{m+1}$

可以扩充为整个空间Vn的一组基. 由归纳原理得证.

■矩阵的值域

设A \in C^{m×n}的n个列向量为 a_1, a_2, \cdots, a_n 则 $R(A) = L(a_1, a_2, \cdots, a_n) = \{y \mid y = Ax, x \in C^n\}$

是 \mathbb{C}^m 的子空间,称为矩阵 \mathbb{A} 的值域,或列空间

■矩阵的零空间(核空间)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 的n个列向量为 a_1, a_2, \cdots, a_n 则 $N(\mathbf{A}) = \left\{ x \mid \mathbf{A}x = 0, x \in \mathbb{C}^n \right\}$

是 \mathbb{C}^n 的子空间,称为矩阵A的零空间,其维数为A的零度,记为 n(A)

■已知 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ 求A的秩和零度 显然A的秩为2,即 $\operatorname{rank} \mathbf{A} = 2$ 又由 $\mathbf{A} \mathbf{x} = 0$,可以解得 可以得到 $\mathbf{x} = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}^T t$ $n(\mathbf{A}) = 1$

同样可以得到 $\operatorname{rank} \mathbf{A}^T = 2$, $n(\mathbf{A}^T) = 0$

=若 $A \in R^{m \times n}$,有

 $\operatorname{rank} \mathbf{A} + n(\mathbf{A}) = n \quad n(\mathbf{A}) - n(\mathbf{A}^T) = n - m$

定理: 设 V_1 、 V_2 为线性空间V的子空间,则集合 $V_1 \cap V_2 = \{a \mid a \in V_1 \perp a \in V_2\}$

 $v_1 \mid v_2 - \{a \mid a \in v_1 \perp a \in v_2\}$

也为V的子空间,称之为 V_1 与 V_2 的交空间.

事实上, $: 0 \in V_1, 0 \in V_2, : 0 \in V_1 \cap V_2 \neq \emptyset$

任取 $x, y \in V_1 \cap V_2$, 即 $x, y \in V_1$,且 $x, y \in V_2$,

则有 $x+y \in V_1, x+y \in V_2, \therefore x+y \in V_1 \cap V_2$

同时有 $kx \in V_1, kx \in V_2$, $\therefore kx \in V_1 \cap V_2$, $\forall k \in K$ 故 $V_1 \cap V_2$, 为V的子空间.

定理: $设V_1$ 、 V_2 为线性空间V的子空间,则集合

 $V_1 + V_2 = \{x_1 + x_2 \mid x_1 \in V_1, x_2 \in V_2\}$

也为V的子空间,称之为 V_1 与 V_2 的和空间.

事实上, $:: 0 \in V_1, 0 \in V_2, :: 0 = 0 + 0 \in V_1 + V_2 \neq \emptyset$ 任取 $x, y \in V_1 + V_2$, 设 $x = x_1 + x_2, y = y_1 + y_2$, 其中, $x_1, y_1 \in V_1, x_2, y_2 \in V_2$, 则有 $x + y = (x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) \in V_1 + V_2$ $kx = k(x_1 + x_2) = kx_1 + kx_2 \in V_1 + V_2, \forall k \in K$ * 子空间的交满足交换率与结合率

$$V_1 \cap V_2 = V_2 \cap V_1,$$

$$(V_1 \cap V_2) \cap V_3 = V_1 \cap (V_2 \cap V_3)$$

* 子空间的和满足交换率与结合率

$$V_1 + V_2 = V_2 + V_1,$$

$$(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3)$$

注意:

V的两子空间的并集未必为V的子空间. 例如

$$V_1 = \{(a,0,0) | a \in R\}, V_2 = \{(0,b,0) | b \in R\}$$

皆为R3的子空间,但是它们的并集

$$V_1 \cup V_2 = \{(a,0,0), (0,b,0) | a,b \in R\}$$

$$= \{(a,b,0) | a,b \in R \perp a,b \mapsto 至少有一是0\}$$

并不是R3的子空间. 因为它对R3的运算不封闭,如

$$(1,0,0), (0,1,0) \in V_1 \cup V_2$$

但是
$$(1,0,0)+(0,1,0)=(1,1,0)\notin V_1\cup V_2$$

子空间的交与和的有关性。的最大的子空间

包含在V1和V2中

- $1、设 V_1, V_2, W$ 为线性空间V的子空、
 - 1) 若 $W \subseteq V_1, W \subseteq V_2$, 则 $W \subseteq V_1 \cap V_2$.
 - 2) 若 $V_1 \subseteq W$, $V_2 \subseteq W$, 则 $V_1 + V_2 \subseteq W$.
- 2、设 V_1,V_2 为线性空间V的子空间 $\sqrt{$ 则以下三

条件等价:

- 1) $V_1 \subseteq V_2$
- 2) $V_1 \cap V_2 = V_1$
- 3) $V_1 + V_2 = V_2$

包含V1和V2中的 最小的子空间

3、 $x_1, x_2, \dots, x_s; y_1, y_2, \dots, y_t$ 为线性空间V中两组

向量,则
$$L(x_1, x_2, \dots, x_s) + L(y_1, y_2, \dots, y_t)$$

= $L(x_1, x_2, \dots, x_s, y_1, y_2, \dots, y_t)$

4、维数公式 (定理1.6)

设 V_1,V_2 为线性空间V的两个子空间,则

$$\dim V_1 + \dim V_2 = \dim (V_1 + V_2) + \dim (V_1 \cap V_2)$$

或 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$

证: 设 dim $V_1 = n_1$, dim $V_2 = n_2$, dim $(V_1 \cap V_2) = m$

取 $V_1 \cap V_2$ 的一组基 x_1, x_2, \cdots, x_m

由扩基定理,它可扩充为V1的一组基

$$x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_{n_1-m}$$

它也可扩充为V2的一组基

$$x_1, x_2, \dots, x_m, z_1, z_2, \dots, z_{n_2-m}$$

即有
$$V_1 = L(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_{n_1-m})$$

$$V_2 = L(x_1, x_2, \dots, x_m, z_1, z_2, \dots, z_{n_2-m})$$

所以,有

线性无关. 假设有等式

$$k_1 x_1 + \dots + k_m x_m + p_1 y_1 + \dots + p_{n_1 - m} y_{n_1 - m}$$
$$+ q_1 z_1 + \dots + q_{n_2 - m} z_{n_2 - m} = 0$$

则有 $x \in V_1$ 且 $x \in V_2$, 于是 $x \in V_1 \cap V_2$,

即 x可被 x_1, x_2, \dots, x_m 线性表出

$$\Rightarrow x = l_1 x_1 + l_2 x_2 + \cdots + l_m x_m,$$

$$\iiint l_1 x_1 + l_2 x_2 + \dots + l_m x_m = -q_1 z_1 - \dots - q_{n_2 - m} z_{n_2 - m}$$

$$\mathbb{EP} \quad l_1 x_1 + l_2 x_2 + \dots + l_m x_m + q_1 z_1 + \dots + q_{n_2 - m} z_{n_2 - m} = 0$$

由于 $x_1, x_2, \dots, x_m, z_1, z_2, \dots, z_{n,-m}$ 线性无关,得

$$l_1 = l_2 = \cdots = l_m = q_1 = \cdots = q_{n_2-m} = 0,$$

因而 x=0 从而有

 $k_1 x_1 + \dots + k_m x_m + p_1 y_1 + \dots + p_{n_1 - m} y_{n_1 - m} = 0$

由于 $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_{n_1-m}$ 线性无关,得

$$k_1 = k_2 = \cdots = k_m = p_1 = \cdots = p_{n_1 - m} = 0$$

所以, $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_{n_1-m}, z_1, z_2, \dots, z_{n_2-m}$

线性无关. 因而它是 $V_1 + V_2$ 的一组基.

$$\therefore \dim (V_1 + V_2) = m + (n_1 - m) + (n_2 - m) = n_1 + n_2 - m$$

$$= \dim V_1 + \dim V_2 - \dim (V_1 \cap V_2)$$

注意:从维数公式中可以看到,子空间的和的维数往往比子空间的维数的和要小.

例如,在R3中,设子空间

$$V_1 = L(\varepsilon_1, \varepsilon_2), \ V_2 = L(\varepsilon_2, \varepsilon_3)$$

其中, $\varepsilon_1 = (1,0,0)$, $\varepsilon_2 = (0,1,0)$, $\varepsilon_3 = (0,0,1)$

则, $\dim V_1 = 2$, $\dim V_2 = 2$

但,
$$V_1 + V_2 = L(\varepsilon_1, \varepsilon_2) + L(\varepsilon_2, \varepsilon_3) = L(\varepsilon_1, \varepsilon_2, \varepsilon_3) = R^3$$

dim $(V_1 + V_2) = 3$

由此还可得到, $dim(V_1 \cap V_2) = 1$, $V_1 \cap V_2$ 是一直线.

推论: 设 V_1,V_2 为n维线性空间V的两个子空间,

若 $\dim V_1 + \dim V_2 > n$,则 V_1, V_2 必含非零的公共向量. 即 $V_1 \cap V_2$ 中必含有非零向量.

证: 由维数公式有

 $\dim(V_1 \cap V_2) = \dim V_1 + \dim V_2 - \dim(V_1 + V_2)$

又 V_1+V_2 是V的子空间,∴ $\dim(V_1+V_2) \le n$

若 $\dim V_1 + \dim V_2 > n$, 则 $\dim(V_1 \cap V_2) > 0$.

故 $V_1 \cap V_2$ 中含有非零向量.

例1、在 R^n 中,用 V_1,V_2 分别表示齐次线性方程组

的解空间,则 $V_1 \cap V_2$ 就是齐次线性方程组③

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{s1}x_1 + a_{s2}x_2 + \dots + a_{sn}x_n = 0 \\ b_{11}x_1 + b_{12}x_2 + \dots + b_{1n}x_n = 0 \end{cases}$$

$$b_{t1}x_1 + b_{t2}x_2 + \dots + b_{tn}x_n = 0$$

的解空间.

证:设方程组①,②,③分别为

$$AX = 0,$$
 $BX = 0,$ $\begin{pmatrix} A \\ B \end{pmatrix} X = 0$

设V为③的解空间,任取 $X_0 \in V$,有

$$\binom{A}{B}X_0 = 0$$
, 从而 $\binom{AX_0}{BX_0} = 0$, 即

$$AX_0 = BX_0 = 0$$
. $\therefore X_0 \in V_1 \cap V_2$

反之,任取, $X_0 \in V_1 \cap V_2$,则有

$$AX_0 = BX_0 = 0$$
, 从前 $\begin{pmatrix} AX_0 \\ BX_0 \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} X_0 = 0$,

$$X_0 \in V$$

故
$$V = V_1 \cap V_2$$
.

例2、设 $R^{2\times2}$ 的两个子空间为

$$V_{1} = \left\{ A \mid A = \begin{bmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{bmatrix}, x_{1} - x_{2} + x_{3} - x_{4} = 0 \right\}$$

$$V_2 = L(B_1, B_2), B_1 = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}, B_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

求

- 1. 将 $V_1 + V_2$ 表示成生成子空间
- 2. 求 V_1+V_2 的基和维数
- $3. 求 V_1 \cap V_2$ 的基和维数

解: 先将V₁表示为生成子空间

齐次线性方程 $x_1 - x_2 + x_3 - x_4 = 0$ 的基础解系

$$\alpha_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T \quad \alpha_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T \quad \alpha_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$$

所以V₁的一个基为

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

于是 $V_1 = L(A_1, A_2, A_3)$, 从而有

$$V_1 + V_2 = L(A_1, A_2, A_3, B_1, B_2)$$

矩阵组 A_1, A_2, A_3, B_1, B_2 在简单基 $E_{11}, E_{12}, E_{21},$ E_{22} 下的坐标依次为

 $\alpha_1, \alpha_2, \alpha_3, \beta_1 = \begin{bmatrix} 1 & 0 & 2 & 3 \end{bmatrix}^T, \beta_2 = \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix}^T$ 该向量组的一个最大无关组为 $\alpha_1, \alpha_2, \alpha_3, \beta_2$ 矩阵组的一个最大无关组为 A_1, A_2, A_3, B_2 构成了 $V_1 + V_2$ 的一个基,且 $\dim(V_1 + V_2) = 4$

设 $A \in V_1 \cap V_2$ 则有数 k_1, k_2, k_3 ,与数 l_1, l_2 ,使得 $A = k_1 A_1 + k_2 A_2 + k_3 A_3 = l_1 B_1 + l_2 B_2$ $k_1A_1 + k_2A_2 + k_3A_3 - l_1B_1 - l_2B_2 = 0$ 比较上式等号两端矩阵的对应元素的值 $k_1 - l_1 - l_2 = 0$ $k_1 + k_2 + l_2 = 0$ $k_2 + k_3 - 2l_1 = 0$ $k_3 - 3l_1 - l_2 = 0$ 方程组的通解为 $(k_1,k_2,k_3,l_1,l_2)^T = k(1,-1,3,1,0)^T$ 可得 $A = l_1 B_1 + l_2 B_2 = k \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix}$ 所以 $V_1 \cap V_2$ 的基为 $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$,且维数为1

设 V_1 , V_2 为线性空间V的两个子空间,由维数公式 $\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2)$ 有两种情形:

- 1) $\dim(V_1 + V_2) < \dim V_1 + \dim V_2$ 此时 $\dim(V_1 \cap V_2) > 0$, 即, $V_1 \cap V_2$ 必含非零向量.
- 2) $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$ 此时 $\dim(V_1 \cap V_2) = 0$, $V_1 \cap V_2$ 不含非零向量,即 $V_1 \cap V_2 = \{0\}$

定义 设 V_1,V_2 为线性空间V的两个子空间,若和

 $V_1 + V_2$ 中每个向量x 的分解式

$$x = x_1 + x_2, \qquad x_1 \in V_1, x_2 \in V_2$$

是唯一的,和 V_1+V_2 就称为**直和**,记作 $V_1\oplus V_2$.

- ① 分解式 $x = x_1 + x_2$ 唯一的,意即 若有 $x = x_1 + x_2 = y_1 + y_2$, $x_1, y_1 \in V_1, x_2, y_2 \in V_2$ 则 $x_1 = y_1, x_2 = y_2$.
- ② 分解式唯一的,不是在任意两个子空间的和中都成立。

例如,R³的子空间

$$V_1 = L(\varepsilon_1, \varepsilon_2), \ V_2 = L(\varepsilon_2, \varepsilon_3), \ V_3 = L(\varepsilon_3)$$

这里, $\varepsilon_1 = (1,0,0), \ \varepsilon_2 = (0,1,0), \ \varepsilon_3 = (0,0,1)$
在和 $V_1 + V_2$ 中,向量的分解式不唯一,如
 $(2,2,2) = (2,3,0) + (0,-1,2) = (2,1,0) + (0,1,2)$
所以和 $V_1 + V_2$ 不是直和.

而在和 V_1+V_3 中,向量(2,2,2)的分解式是唯一的, (2,2,2)=(2,2,0)+(0,0,2) 事实上,对 $\forall \alpha=(a_1,a_2,a_3)\in V_1+V_3$,都只有唯一分解式: $\alpha=(a_1,a_2,0)+(0,0,a_3)$. 故 V_1+V_3 是直和.

直和判断定理: $V_1 + V_2$ 是直和的充要条件是

$$V_1 \cap V_2 = L(0)$$

则有 $x_1 = -x_2 \in V_1 \cap V_2 = \{0\}$

 $\therefore x_1 = x_2 = 0$, 即 $V_1 + V_2$ 是直和.

"
⇒ " 任取 $x \in V_1 \cap V_2$,

 $0 = x + (-x), x \in V_1, -x \in V_2.$

由于 V_1+V_2 是直和,零向量分解式唯一,

推论: 和 $V_1 + V_2$ 是直和

 \Leftrightarrow $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$

证: 由维数公式

 $\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2)$

有, $\dim(V_1+V_2)=\dim V_1+\dim V_2$

- \Leftrightarrow dim $(V_1 \cap V_2) = 0$
- $\Leftrightarrow V_1 \cap V_2 = \{0\}$
- $\Leftrightarrow V_1 + V_2$ 是直和.

总之,设 V_1 , V_2 为线性空间V的子空间,则下面四个条件等价:

- 1) $V_1 + V_2$ 是直和
- 2) 零向量分解式唯一
- 3) $V_1 \cap V_2 = \{0\}$
- 4) $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$

设 $x_1, x_2, \dots, x_r; y_1, y_2, \dots, y_s$ 分别是线性子空间 V_1, V_2 的一组基,则

 $V_1 + V_2$ 是直和 $\Leftrightarrow x_1, x_2, ..., x_r, y_1, y_2, ..., y_s$ 线性无关.

证: 由题设, $V_1 = L(x_1, x_2, ..., x_r)$, dim $V_1 = r$

$$V_2 = L(y_1, y_2, \dots, y_s), \quad \dim V_2 = s$$

$$\therefore V_1 + V_2 = L(x_1, x_2, ..., x_r, y_1, y_2, ..., y_s).$$

 $若x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_s$ 线性无关,

则它是 V_1+V_2 的一组基。 从而有

 $\dim(V_1 + V_2) = r + s = \dim V_1 + \dim V_2$

 $\therefore V_1 + V_2$ 是直和.

反之, 若 $V_1 + V_2$ 直和,则

 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 = r + s$

从而 $x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_s$ 的秩为r+s.

所以 $x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_s$ 线性无关。

定义:

 V_1, V_2, \dots, V_s 都是线性空间V的子空间,若和

$$\sum_{i=1}^{s} V_i = V_1 + V_2 + \dots + V_s$$
 中每个向量 x 的分解式

$$x = x_1 + x_2 + \dots + x_s, \ x_i \in V_i, i = 1, 2, \dots, s$$

是唯一的,则和 $\sum_{i=1}^{s} V_i$ 就称为直和,记作

$$V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

判定方法:

设 $V_1,V_2,...,V_s$ 都是线性空间V的子空间,则下面四个条件等价:

1)
$$W = \sum_{i=1}^{s} V_i$$
是直和

2) 零向量分解式唯一,即

$$x_1 + x_2 + \dots + x_s = 0, x_i \in V_i, \text{ if } x_i = 0, i = 1, 2, \dots, s$$

3)
$$V_i \cap \sum_{j \neq i} V_j = \{0\}, i = 1, 2, \dots, s$$

4)
$$\dim W = \sum_{i=1}^{s} \dim V_i$$

作业

■ P26: 10、11、12