ER – Diagramm (Entity-Relationship-Diagramm)

Entites: wohlunterscheidbare Dinge (Objekt) z.B. Auto, Firma usw.

Eigenschaft: Attribute z.B. Person besitzt einen Namen und Adresse usw.

Konkretes Entity: Dem Attribut wird ein Wert zugewiesen

Wertebereich: Menge aller möglichen Werte für ein Attribut

Definition des Entity:

Attribut Wertebereich

ID ganzstellige positive Zahlen

Vorname Zeichenkette max. Länge 30 Zeichen Nachname Zeichenkette max. Länge 30 Zeichen

Geburtsdatum Datum im Format JJJJ-MM-DD

Graphische Darstellung eines Entity:

Name des Entity steht in einem Rechteck | Miarbeiter |

Attribute stehen in einer Ellipse Name

Primärschlüssel unterstichen (<u>ID</u>)

Mehrwertige Attribute doppelt umrahmt: (Abteilung

Beispiel ER-Diagramm:

Aufgabe 1.) Zeichnen Sie Ein ER-Diagramm für den Entity-Typ "Mitarbeiter".

Definition des Entity:

Attribut	Wertebereich				
PID	ganzstellige positive Zahl				
Name	Zeichenkette der Länge 100				
Bereich	Zeichenkette der Länge 200				

- .) Das Attribut Name ist ein zusammengesetztes Attribut, welches aus Vorname und Nachname besteht.
- .) Das Attribut Bereich stellt ein mehrwertiges Attribut dar, denn ein Mitarbeiter kann für mehrere Bereiche arbeiten.

Relationships:

Die verschiedenen Entity-Sets können miteinander in Beziehung stehen, wobei es 3 unterschiedliche Beziehungsarten gibt:

1:1 Beziehung:

Die liegt vor wenn genau ein Entity aus dem ersten Entity-Set dem zweiten Entity-Set zugewiesen werden kann und auch umgekehrt.

1:n Beziehung: (oder 1:∞)

Dies liegt vor, wenn genau ein Entity aus dem ersten Entity-Set dem zweiten Entity-Set zugewiesen werden kann und umgekehrt, können aus dem zweiten Entity – Set keines, eines oder mehrere Entities dem ersten Entity-Set zugewiesen werden. z.B. Mehrere Mitarbeiter können in einer Abteilung arbeiten.

m:n Beziehung: (oder ∞: ∞)

Diese liegt vor, wenn keines, eines oder mehrere Entites aus dem ersten Entity - Set dem zweiten Entity - Set zugewiesen werden und umgekehrt, können aus dem zweiten Entity - Set keines, eines oder mehrere Entities dem ersten Entity - Set zugewiesen werden .z.B. Ein Arzt behandelt mehrere Patienten und umgekehrt kann ein Patient von mehreren Ärzten behandelt werden.

Aufgabe 2:

Es sollen folgende Begebenheiten am Wifi festgehalten werden:

- Kurs hat die Attribute KursNr. Titel
- Teilnehmer hat die Attribute TnNr., Vorname, Nachname
- Vortragende hat die Attribute PersNr., Vorname, Nachname
- Ein Vortragender hält mehrere Kurse und prüft mehrere Teilnehmer
- Je Prüfung wird eine Note als Eigenschaft zugewiesen
- Ein Teilnehmer kann mehrere Kurse besuchen und wird geprüft.

Aufgabe 3:

Es sollen folgende Sachverhalte einer Softwarefirma festgelegt werden:

Ein Mitarbeiter hat einen Namen, der sich aus Vor- und Nachname zusammensetzt. Er ist über eine dienstliche Telefonnummer erreichbar und bekommt einen festgelegten Stundenlohn. Die Firma hat mehrere Kunden, von denen jeder Name, Straße mit Hausnummer, PLZ und Ort hat. Ein Kunde beauftragt ein Projekt zu einem bestimmten Datum. An den Projekten, dieser Softwarefirma, arbeiten Mitarbeiter mit einer bestimmten Stundenanzahl. Jedes Projekt hat einen eigenen Namen.

Aufgabe 4:

Auto Carsharing:

Mieter können Autos anmieten. Falls das Auto vermietet ist, kann der Mieter eine Vormerkung auf das Auto hinterlassen.

Auto (Marke, Typ, Kategorie[PKW,Transporter], Verleihanzahl, Leihdauer) Mieter (Vorname, Nachname, Ausleihanzahl, Adresse, Eintrittsdatum, Austrittsdatum) Falls die Leihdauer auf 0 gesetzt ist, dann kann das Auto nicht ausgeliehen werden.

Verleih (MieterNr., AutoNr, ausleihdatum, Leihdauer)

Relationsshema:

Die Entites werden in ein Relationsschema transformiert.

1:1 Beziehung: → 1 Tabelle

1:n Beziehung: → 2 Tabellen

m:n Beziehung: → 3 Tabellen

Aufgabe 4:

Transformieren Sie die beiden Aufgaben Wifi (Aufgabe 2), Softwarefirma (Aufgabe 3) und Carsharing (Aufgabe 4) in ein Relationsschema.

Normalisierung:

Eine relationale Datenstruktur lässt sich durch Normalisierung erreichen.

Ziel: gute Speichernutzung, einfache Datenverwaltung.

1. Normalform

wenn jedes ihrer Attribute nur atomare Werte (max. einen Wert) annehmen kann.

Kunde	KdNR	Name	Strasse	PLZ/Ort	KontoNR	Bank
						_

d.h. PLZ und Ort sind zusammen in einem Feld, daher ist die 1.Normalform nicht gegeben.

Kunde	KdNR	Name	Strasse	PLZ	Ort	KontoNR	Bank

2. Normalform

wenn die Bedingung der 1. Normalform erfüllt ist, und jedes Nichtschlüsselattribut funktional vom gesamten Schlüssel abhängt.

Kunde	KdNR	Name	Strasse	PLZ /Ort	<u>KontoNR</u>	Bank

Das Nichtschlüsselattribut Bank hängt von dem Schlüsselfeld KontoNR ab, nicht von KdNR. Daher wird Bank und KontoNR in eine eigene Tabelle gebracht.

Kunde	<u>KdNR</u>	Name	Strasse	PLZ	Ort	<u>KontoNR</u>
						_
Bank		<u>KontoNR</u>	Ban	nk		
				_		

3. Normalform,

wenn die Bedingung der 2. Normalform erfüllt ist, und jedes Nichtschlüsselattribut innerhalb einer Tabelle NUR vom ID-Schlüssel abhängig ist und somit keine sonstigen Abhängigkeiten existieren.

Kunde	<u>KdNR</u>	Name	Strasse	PLZ	Ort	<u>KontoNR</u>
Bank		KontoNR_	В	ank		

Das Nichtschlüsselattribut Ort hängt nur über die PLZ von der KdNR ab.

Kunde	<u>KdNR</u>	Name	Strasse	<u>PLZ</u>	<u>KontoNR</u>
Bank	Konto	<u>NR</u>	Bank		
Ort	PLZ	<u>Z</u>	Ort		

Aufgabe 6: Normalisierung Auto

KNr	Kunde	Adresse	Marke	Тур	Seriennummer	Verkäufer	Datum
1	Meier	Planetenweg 7	1,VW	Golf	123456	1, Schmid	23.4.17
1	Meier	Planetenweg 7	2,Opel	Corsa	345678	2, Plüss	7.8.16
2	Müller	Altstadt 12	3,VW	Golf	388721	3, Frey	17.6.16
3	Steffen	Gartenstr. 7	4,VW	Polo	222245	1, Schmid	15.7.15
4	Steffen	Augasse 12	5,Audio	A4	122154	3, Frey	13.11.17
4	Steffen	Augasse 12	6,Opel	Astra	445321	4, Schenk	16.11.14

Aufgabe 7: Normalisierung Konto

S: Sparbuch GK: Geschäftskunde

G: Girokonto PK: Privatkunde

Filiale NR	Filiale	Straße	Leiter	Konto	Kstand	Art	KdNR	Name	Kstrasse	Status
123	Burg	Burgg. 10	17,Meier	120334	234.34	S	2345	Seidl	Hof 23	GK
123	Burg	Burgg. 10	17,Meier	678334	124.34	G	8722	Schmitz	Kleing 12	GK
472	Berg	Bergg. 22	58,Huber	542883	503.44	G	4430	Rohner	Burgg. 20	PK
123	Burg	Burgg. 10	17,Meier	900233	602.55	G	2345	Seidl	Hof 23	GK
123	Burg	Burgg. 10	17,Meier	320457	23.88	S	8722	Schmitz	Kleing 12	GK