E3 Problem 4. Energy of Sampled Signal

Consider $x(\cdot)$ with W band width and samples $x \in I$ at T_s seconds sample interval: $x \in I = x(nT_s)$, $n \in \mathbb{Z}$. Assume $T_s = \frac{1}{2}W$. What is the relation between the energy of these the samples, $E_s = \sum_{N=-\infty}^{\infty} |x \in II|^2$, and the signal, $E_c = \prod_{N=-\infty}^{\infty} |x \in II|^2 dt$?

No aliasing P_s rol. $E_s = \sum_{N=-\infty}^{\infty} |x \in III|^2 = \int |\hat{x}_s(f)|^2 df = \sum_{N=-\infty}^{\infty} |\hat{x}_s(f)|^2 df$ $E_c = \int_{-\infty}^{\infty} |x \in III|^2 dt = \int |\hat{x}_s(f)|^2 df = \int |\hat{x}_s(f)|^2 df$

No during > F.S. esefficients on are the same