

MAT 520142: ALGEBRA y ALGEBRA LINEAL

Segundo Semestre 2003, Universidad de Concepción

CAPITULO 10: Espacios Vectoriales

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas

Definición de Cuerpo

Sea \mathbb{K} un conjunto y sean $+: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$, $\cdot: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ operaciones binarias internas. Se dice que $(\mathbb{K}, +, \cdot)$ es un cuerpo si:

- a) + es asociativa: $x + (y + z) = (x + y) + z \quad \forall x, y, z \in \mathbb{K}$.
- b) + es conmutativa: $x + y = y + x \quad \forall x, y \in \mathbb{K}$.
- c) Existe un elemento neutro $0 \in \mathbb{K}$ para +: $x + 0 = x \quad \forall x \in \mathbb{K}$.
- d) $\forall x \in \mathbb{K}$ existe un **simétrico** $-x \in \mathbb{K}$ tal que: x + (-x) = 0.

Definición de Cuerpo (...cont)

- e) \cdot es asociativa: $x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad \forall x, y, z \in \mathbb{K}$.
- f) Existe un elemento neutro $1 \in \mathbb{K}$ para $x \cdot 1 = 1 \cdot x = x \quad \forall x \in \mathbb{K}$.
- g) $\forall x \in \mathbb{K}$, $x \neq 0$ existe un **inverso** $x^{-1} \in \mathbb{K}$ tal que: $x \cdot x^{-1} = x^{-1} \cdot x = 1$.
- h) · es **distributiva** con respecto a +:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 y $(x+y) \cdot z = x \cdot z + y \cdot z$ $\forall x, y, z \in \mathbb{K}$.

Observación

Se dice que $(\mathbb{K}, +, \cdot)$ es un **cuerpo conmutativo**, si además se satisface: $x \cdot y = y \cdot x \quad \forall x, y \in \mathbb{K}$.

Ejemplos

Los números racionales (\mathbb{Q}), reales (\mathbb{R}) y complejos (\mathbb{C}) son cuerpos conmutativos con la suma y producto que se indican:

\mathbb{K}	x	y	x + y	$x \cdot y$
\mathbb{Q}	$\frac{a}{b}$	$\frac{c}{d}$	$rac{ad+bc}{bd}$	$rac{ac}{bd}$
\mathbb{R}	x	y	x + y	xy
\mathbb{C}	a+bi	c+di	(a+c) + (b+d)i	(ac-bd) + (ad+bc)i

Elementos NEUTRO, SIMETRICO E INVERSO para el cuerpo dado

\mathbb{K}	0	1	\boldsymbol{x}	-x	$x^{-1} (x \neq 0)$
\mathbb{Q}	$\frac{0}{1} = 0$	$\frac{1}{1} = 1$	$rac{a}{b}$	$\frac{(-a)}{b}$	$\frac{b}{a}$ $(a \neq 0)$
\mathbb{R}	0	1	x	-x	$\frac{1}{x}$ $(x \neq 0)$
\mathbb{C}	0+0i	1+0i	a+bi	(-a) + (-b)i	$\frac{a}{a^2+b^2}+\left(\frac{-b}{a^2+b^2}\right)i$
					$a^2 + b^2 \neq 0$

Definición de Espacio Vectorial

Sean V un conjunto, \mathbb{K} un cuerpo, y consideremos dos operaciones binarias:

- **Suma** (interna) $+: V \times V \rightarrow V$, $(x,y) \rightarrow x + y$
- **Producto por escalar** (externa) \cdot : \mathbb{K} × V → V , (α, x) → $\alpha \cdot x$

Se dice que $(V, +, \cdot)$ es un **espacio vectorial** sobre \mathbb{K} , o bién un \mathbb{K} -espacio vectorial, si:

- 1) + es asociativa y conmutativa.
- 2) Existe un **elemento neutro** $\theta \in V$ (vector nulo) para +: $x + \theta = x$, $\forall x \in V$.
- 3) $\forall x \in V$ existe un **simétrico** $-x \in V$ tal que: $x + (-x) = \theta$.
- 4) Para todo α , $\beta \in \mathbb{K}$ y para todo $x \in V$: $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$.

Definición de Espacio Vectorial (... cont)

- 5) Para todo $\alpha \in \mathbb{K}$ y para todo $x, y \in V$: $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$.
- 6) Para todo α , $\beta \in \mathbb{K}$ y para todo $x \in V$: $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$.
- 7) Para todo $x \in V$: $1 \cdot x = x$ (1 es la unidad de \mathbb{K}).

Observaciones

- Los elementos de V se llaman vectores.
- In Todo espacio vectorial V es no vacío $(\theta \in V)$.
- lacksquare $V:=\{\theta\}$ es el espacio vectorial trivial.
- lacksquare V se dice un espacio vectorial

real si
$$\mathbb{K}=\mathbb{R}.$$
 complejo si $\mathbb{K}=\mathbb{C}.$

Notación. Dados $x, y \in V$, se define la diferencia: x-y := x+(-y).

LEMA (Ley de Cancelación).

Sean $x, y, z \in V$ tales que x + y = x + z. Entonces y = z.

TEOREMA.

Sea V un espacio vectorial sobre un cuerpo \mathbb{K} . Entonces:

- P_1) el elemento neutro θ para la suma es único.
- \mathbf{P}_1') para cada $x \in V$ existe un **único** simétrico (inverso aditivo) $-x \in V$.
- \mathbf{P}_2) para todo $\alpha \in \mathbb{K}$: $\alpha \cdot \theta = \theta$.
- \mathbf{P}_3) para todo $x \in V$: $0 \cdot x = \theta$.
- \mathbf{P}_4) para todo $\alpha \in \mathbb{K}$ y para todo $x \in V$: $(-\alpha) \cdot x = -(\alpha \cdot x)$.
- **P**₅) $\forall \alpha \in \mathbb{K}, \ \forall x \in V: \ (\alpha \cdot x = \theta) \iff (\alpha = 0 \ \lor \ x = \theta).$

EJEMPLO 1 (Soluciones de un Sistema Homogéneo).

Sean \mathbb{K} un cuerpo, $m,\,n\in\mathbb{N}$, $A:=(a_{ij})\in\mathcal{M}_{m\times n}(\mathbb{K})$ y definamos

$$V:=\{(x_1,...,x_n)\in\mathbb{K}^n \text{ tal que } (x_1,...,x_n) \text{ es solución de } (1)\}$$

(1)
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

$$+ : V \times V \to V$$

$$+: V \times V \to V$$

$$(x_1,...,x_n)+(y_1,...,y_n):=(x_1+y_1,...,x_n+y_n)$$

$$\cdot : \mathbb{K} \times V \to V$$

$$\alpha \cdot (x_1, ..., x_n) := (\alpha \cdot x_1, ..., \alpha \cdot x_n)$$

Entonces $(V, +, \cdot)$ es un espacio vectorial sobre \mathbb{K} .

EJEMPLO 2 (ejemplos simples).

Sea

K un cuerpo. Entonces

lacksquare es un espacio vectorial sobre \mathbb{K} . Casos particulares:

 \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n $(n \in \mathbb{N})$ son espacios vectoriales sobre \mathbb{R} ;

 \mathbb{C}^2 es espacio vectorial sobre \mathbb{C} ;

 \mathbb{Q}^2 es un espacio vectorial sobre \mathbb{Q} .

K es espacio vectorial sobre sí mismo. Casos particulares:

 \mathbb{R} es espacio vectorial real;

C es espacio vectorial complejo.

lacksquare C también es espacio vectorial sobre $\mathbb R$. Notar las diferencias en las definiciones de + y \cdot .

EJEMPLO 3 (Espacios de Polinomios).

Sean $\mathbb K$ un cuerpo, $n \in \mathbb N$ y definamos

$$V := \{ p \in \mathcal{P}(\mathbb{K}) : p(x) = a_0 + a_1 x + \dots + a_n x^n, \forall x \in \mathbb{K} \}$$

$$+:V\times V\to V$$

$$p, q \in V, \quad p(x) = a_0 + a_1 x + \dots + a_n x^n, \quad q(x) = b_0 + b_1 x + \dots + b_n x^n$$

$$(p+q)(x) := (a_0+b_0) + (a_1+b_1)x + \dots + (a_n+b_n)x^n \quad \forall x \in \mathbb{K}$$

$$\cdot : \mathbb{K} \times V \to V$$

$$\alpha \in \mathbb{K}, \quad p \in V, \qquad (\alpha \cdot p)(x) := (\alpha \cdot a_0) + (\alpha \cdot a_1) x + \dots + (\alpha \cdot a_n) x^n \quad \forall x \in \mathbb{K}$$

Entonces $(V, +, \cdot)$ es un espacio vectorial sobre \mathbb{K} .

EJEMPLO 4 (Espacios de Matrices).

Sean $m, n \in \mathbb{N}$, \mathbb{K} un cuerpo, y definamos

$$V := \mathcal{M}_{m \times n}(\mathbb{K})$$

$$+:V\times V\to V$$

$$A := (a_{ij}), B := (b_{ij}) \in V, \qquad (A+B) := (a_{ij} + b_{ij})$$

$$\cdot : \mathbb{K} \times V \to V$$

$$\alpha \in \mathbb{K}, \quad A := (a_{ij}) \in V, \qquad (\alpha \cdot A) := (\alpha \cdot a_{ij})$$

Entonces $(V, +, \cdot)$ es un espacio vectorial sobre \mathbb{K} .

Subespacios Vectoriales

Sea V un \mathbb{K} -espacio vectorial y $S \subseteq V$. Diremos que S es un **Subespacio** vectorial de V, si S es un espacio vectorial sobre \mathbb{K} con las mismas operaciones binarias definidas en V.

Observación

lacksquare V y $\{\theta\}$ se dicen subespacios triviales de V.

Caracterización de Subespacios

Sea V un \mathbb{K} -espacio vectorial y $S \subseteq V$. Entonces S es un subespacio de V sí y sólo sí:

- (i) $S \neq \emptyset$
- (ii) $(\forall x, y \in S)$: $x + y \in S$ (S es cerrado c/r a la suma)
- (iii) $(\forall \lambda \in \mathbb{K}) \ (\forall x \in S) : \lambda \cdot x \in S$ (S es cerrado c/r a la multiplicación por escalar)

Ejemplos de Subespacios Vectoriales

- 1. El conjunto de soluciones de un sistema homogéneo (de n incógnitas con coeficientes en \mathbb{K}) es un \mathbb{K} -subespacio vectorial de \mathbb{K}^n .
- 2. Sean a, b y c tres números reales. Entonces
 - $U = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}$
 - $W = \{(x, y, z) \in \mathbb{R}^3 : x = az, y = bz\}$

son subespacios de \mathbb{R}^3 .

- 3. $\{A \in M_{2\times 2}(\mathbb{R}): A = A^t\}$ es un subespacio de $M_{2\times 2}(\mathbb{R})$
- 4. $\{A \in M_{2\times 2}(\mathbb{R}): A = -A^t\}$ es un subespacio de $M_{2\times 2}(\mathbb{R})$.
- 5. $\{A \in M_{2\times 2}(\mathbb{C}): A = -\bar{A}^t\}$ es un subespacio de $M_{2\times 2}(\mathbb{C})$.
- 6. Sea $n \in \mathbb{N}, n \geq 2$. Entonces, $\mathbb{K}^{n-1} \times \{0\}$ es un \mathbb{K} -subespacio vectorial de \mathbb{K}^n .

Subespacios Vectoriales Notables

Sea V un \mathbb{K} -espacio vectorial y $U,W\subseteq V$ dos subespacios de V. Entonces los siguientes subconjuntos

(S1)
$$U \cap W = \{ v \in V : v \in U \land v \in W \}$$

(S2)
$$U + W = \{ v \in V : v = u + w, u \in U \land w \in W \}$$

son subespacios vectoriales de V, con las mismas operaciones binarias.

Suma directa (interna)

Sea V un \mathbb{K} -espacio vectorial y $U,W\subseteq V$ dos subespacios de V. Se dice que U+W es suma directa si $U\cap W=\{\theta\}$, y se escribe $U\oplus W$.

Observación

Sea V un \mathbb{K} -espacio vectorial y U, W dos subespacios de V. Entonces, en general:

lacksquare $U \cup W$ no es subespacio vectorial de V.

Contra ejemplo

Considerar las rectas que pasan por el origen:

$$U=\{\ (x,y)\in\mathbb{R}^2:\ y=2x\ \}$$

$$W=\{\ (x,y)\in\mathbb{R}^2:\ x=2y\ \}$$
 y sean $u=(1,2)$ y $v=(2,1)\in U\cup W.$ Entonces $u+v\notin U\cup W.$

Proposición

 $U \cup W$ subespacio vectorial de $V \iff U \subseteq W \lor W \subseteq U$

Ejemplos

lacksquare Si U y W son como en el contra ejemplo, entonces

$$U+W=\left\{\left[\begin{array}{c} x\\y\end{array}\right]\in\mathbb{R}^2:\left[\begin{array}{c} x\\y\end{array}\right]=t\cdot\left[\begin{array}{c} 1\\2\end{array}\right]+s\cdot\left[\begin{array}{c} 2\\1\end{array}\right]\;s,t\in\mathbb{R}\;\right\}$$

Notar que $U+W=\mathbb{R}^2$.

Sean

$$U = \{ p \in \mathcal{P}_3(\mathbb{R}) : p(0) = 0, p'(0) = 0 \}$$

$$W = \{ p \in \mathcal{P}_3(\mathbb{R}) : p(x) = p(-x), \forall x \in \mathbb{R} \}.$$

Entonces

$$U \cap W = \{bx^2 : b \in \mathbb{R}\}$$

Ejemplos ... (cont)

Descomposición de $\mathcal{M}_n(\mathbb{R})$. Sean

$$U = \{A \in \mathcal{M}_n(\mathbb{R}) : A = A^t \} \text{ y } W = \{A \in \mathcal{M}_n(\mathbb{R}) : A = -A^t \}.$$

Entonces:

$$U\cap W=\{ heta\}\quad ext{y}\quad U+W=\mathcal{M}_n(\mathbb{R}), ext{ e. d. }\quad U\oplus W=\mathcal{M}_n(\mathbb{R}).$$

Descomposición de U. Sean

$$D = \{ A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) : a_{ij} = 0 \text{ si } i \neq j \}$$
 $\tilde{U} = \{ A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) : a_{ii} = 0 \land a_{ij} = a_{ji} \quad i \neq j \}.$

Entonces:

$$U = D + \tilde{U}$$
.

■ Si $A \in W$: ¿ diag(A)= ?

Sistema de generadores

Sean V un \mathbb{K} -espacio vectorial y $A = \{x_1, x_2, \dots, x_n\} \subseteq V$. El vector $X \in V$ es *combinación lineal* (c.l.) de los vectores de A si existen escalares $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ tales que:

$$X = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = \sum_{i=1}^n \alpha_i x_i$$

Observación

El vector nulo es *combinación lineal* (c.l.) de cualquier conjunto de vectores de V.

Ejemplos

(a) Sea $V=\mathbb{R}^2$ y sean $\vec{v},$ $\vec{d}\in V$. Entonces \vec{v} es c.l de \vec{d} sí y sólo si \vec{v} pertenece a la recta:

$$L := \{ \vec{x} \in V : \vec{x} = t \cdot \vec{d}, \quad t \in \mathbb{R} \}$$

(b) Sea $V=\mathbb{R}^3$ y sean $\vec{v}, \vec{v}_1, \vec{v}_2 \in V$. Entonces \vec{v} es c.l. de los vectores \vec{v}_1, \vec{v}_2 sí y sólo si \vec{v} pertenece al plano:

$$\Pi := \{ \vec{x} \in V : \quad \vec{x} = t \cdot \vec{v}_1 + s \cdot \vec{v}_2, \quad t, s \in \mathbb{R} \}$$

NOTA:

Si $\vec{v}_1 \mid |\vec{v}_2$, entonces se reduce a la situación del caso (a).

Ejemplos ... (cont)

(c) Sean $V=\mathbb{R}^3$ y $x_1=(1,0,1),\; x_2=(-1,1,0),\; x_3=(0,0,1),\; x_4=(1,2,3).$ Entonces:

(d) Sean $V = \mathcal{P}_2(\mathbb{R})$ y $p_1(x) = (x-1)^2, \ p_2(x) = \frac{1}{2}x+1, \ p_3(x) = 5.$ Entonces:

$$x^{2} - 2x + 3 = 1 \cdot p_{1}(x) + 0 \cdot p_{2}(x) + \frac{2}{5} \cdot p_{3}(x)$$

Observar que esta c.l es única.

Ejemplos ... (cont)

(e) Sean $V = \mathcal{M}(\mathbb{R})$ y los vectores

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & -4 \\ 8 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & \frac{1}{4} \\ -\frac{1}{2} & 0 \end{pmatrix}$$

Entonces

$$A = \left(\begin{array}{cc} 2 & -10 \\ 20 & 4 \end{array}\right)$$

se puede expresar como c.l. de A_1, A_2 y A_3 de *infinitas maneras*.

Subespacio generado

Sean V un \mathbb{K} -espacio vectorial y $A = \{v_1, v_2, \dots, v_r\} \subseteq V$. El conjunto de todas las combinaciones lineales de estos r vectores de A:

$$S = \left\{ v \in V : v = \sum_{i=1}^{r} \alpha_i \cdot v_i, \ \alpha_i \in \mathbb{K}, \ i = 1, \dots, r \right\}$$

es un subespacio vectorial de V.

Observaciones

- lacksquare A es un sistema de generadores de S
- lacksquare es el subespacio generado por A
- lacksquare Otras notaciones: $S = lin\{A\}, \quad S = span\{A\}$

Ejemplos

- 1. Sean $V=\mathbb{R}^3$ y los vectores $v_1=(0,1,2),\ v_2=(-1,3,-1)$ y $v_3=(2,-\frac{11}{2},3).$ Entonces, $S=\langle\,\{v_1,v_2,v_3\}\,\rangle$ es un plano que pasa por el origen.
- 2. Sea $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ y los vectores (matrices)

$$E_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \ E_2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \ E_3 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

Entonces $S = \langle \{E_1, E_2, E_3\} \rangle = \{A \in V : A = A^t \}$

3. Sea $V=\mathcal{P}_3(\mathbb{R})$ y los vectores (monomios) $p_1(x)=x$ y $p_2(x)=x^3$. Entonces:

$$S = \langle \{p_1, p_2\} \rangle = \{p \in V : p(-x) = -p(x) \}$$

Dependencia e independencia lineal de vectores

Sean V un \mathbb{K} -espacio vectorial y $A = \{v_1, v_2, \dots, v_r\} \subseteq V$. Se dice que A es un conjunto **linealmente dependiente** (l.d.) si existen escalares no todos nulos $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathbb{K}$ tales que:

$$\alpha_1 \cdot v_1 + \cdots + \alpha_r \cdot v_r = \theta$$

Si A no es l.d., se dice que es linealmente independiente (l.i).

Observación

La dependencia lineal de A no implica que cada v_i sea c.l. de los demás. Contraejemplo:

Consideremos $V=\mathbb{R}^3$ y $v_1=(1,0,0)$, $v_2=(0,1,0)$ y $v_3=(0,2,0)$. Es inmediato que $A=\{v_1,v_2,v_3\}$ es l.d., y sin embargo $v_1\not\in \langle\{v_2,v_3\}\rangle$. Observar que **sí** existe al menos un vector de A que es c.l. de los otros.

Observación ...(cont)

- lacksquare Si A es un conjunto l.i. en V, entonces todo subconjunto finito es l.i.
- lacksquare Si $heta \in A$ entonces A es l.d. en V.
- lacksquare Si $A = \{x\}$ con $x \neq \theta$ entonces A es l.i.
- lacksquare El conjunto vacío \emptyset es l.i. en V.

Ejemplos

Sean $V = \mathbb{R}^3$ y los siguiente subconjuntos de V:

$$A_1 = \{ (1,0,0), (0,1,0), (0,0,1) \}$$
 $A_2 = \{ (0,0,1), (0,1,1), (1,1,1) \}$
 $A_3 = \{ (1,-1,0), (0,-1,1), (-1,0,1) \}$

 A_1 y A_2 son l.i. A_3 es l.d en V.

Ejemplos ...(cont)

Sean $V = \mathcal{P}_2(\mathbb{R})$ y los siguientes conjuntos de V:

$$A_1 = \{ 3x^2 - 2x, x^2 + 1, -3x + 2, x^2 - 1 \}$$

$$A_2 = \{ 3x^2 - 2x, x^2 + 1, -3x + 2 \}$$

$$A_3 = \{ 1, x, x^2 \}$$

 A_1 es l.d. A_2 y A_3 son l.i. en V.

El conjunto

$$A = \left\{ |x|, \max_{x \in \mathbb{R}} \{0, x\}, \max_{x \in \mathbb{R}} \{0, -x\} \right\}$$

es l.d. en $V = \mathcal{C}(\mathbb{R})$.

Bases Vectoriales

Lema de Dependencia Lineal

Sea V un \mathbb{K} espacio vectorial. Si $\{v_1,v_2,....,v_m\}$ es linealmente dependiente en V y $v_1 \neq \theta$, entonces existe $j \in \{2,3,...,m\}$ tal que

Teorema

Sea V un \mathbb{K} - espacio vectorial y $A \subset V$, card(A) finita. Las siguientes proposiciones son equivalentes:

- (a) A es l.i.
- (b) Toda c.l. de los vectores de A, cuyo resultado sea el vector nulo, es la trivial.
- (c) Ningún vector de A es c.l. de los demás.

Análogamente, son equivalentes:

- (\tilde{a}) A es l.d.
- (\tilde{b}) Existe una c.l. de los vectores de A con escalares no todos nulos, cuyo resultado es el vector nulo.
- (\tilde{c}) Algún vector de A es c.l. de los restantes.

Definición

Se dice que un \mathbb{K} - espacio vectorial es **finito dimensional** si posee un sistema de generadores de cardinalidad finita.

Teorema

En un espacio finito dimensional, la cardinalidad de todo conjunto linealmente independiente (l.i.) es menor o igual a la cardinalidad de cualquier sistema de generadores.

Proposición

Todo subespacio de un espacio finito dimensional es finito dimensional.

Definición

Sea V un \mathbb{K} -espacio vectorial. El subconjunto *ordenado* de V dado por $B = \{v_1, v_2, ..., v_n\}$ es una **Base** de V si:

(i)
$$B$$
 es I.i. (ii) $V = \langle B \rangle$

Proposición

Una familia $\{v_1, v_2, ..., v_n\}$ de vectores de V es una base de este \mathbb{K} espacio vectorial sí y sólo sí cada vector $v \in V$ puede ser **escrito de manera única** como la c.l.: $v = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_n \cdot v_n$, donde $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$.

Proposición

Dos bases cualesquiera de un mismo espacio vectorial tienen la misma cardinalidad.

Teorema

Corolario

Todo espacio finito dimensional posee una base.

Teorema de Steinitz

Todo conjunto I.i. en un \mathbb{K} -espacio vectorial V, finito dimensional, puede **extenderse** a una base de V.

Dimensión de un espacio vectorial

Se llama dimensión de un \mathbb{K} - espacio vectorial V a la **cardinalidad** de una base de V

Proposición

En un \mathbb{K} -espacio vectorial V de dimensión n, todo subconjunto l.i. de cardinalidad n es una base de V.

Observación

Sea V un \mathbb{K} -espacio vectorial de dimensión n:

- 1. Todo subconjunto de cardinalidad mayor que n es l.d.
- 2. Si W es subespacio de V, entonces $dim W \leq n$.
- 3. Si W es subespacio de V y dim W = n, entonces V = W.

Teorema de Grassmann

Sea V un \mathbb{K} -espacio vectorial de dimensión finita, y sean U, W subespacios de V. Entonces:

$$\dim (U + W) = \dim (U) + \dim (W) - \dim (U \cap W)$$

Proposición (Suma directa de varios Subespacios)

Sea V un \mathbb{K} -espacio vectorial, y sean $U_1, U_2, \dots U_n$ subespacios de V. Entonces $V = U_1 \bigoplus U_2 \bigoplus \dots \bigoplus U_n \Leftrightarrow$

$$(1) V = U_1 + \cdots + U_n$$

(2) La escritura de θ es única en la suma $U_1 + \cdots + U_n$. $(\theta = \underbrace{\theta + \cdots + \theta})$

Proposición

Sea V un \mathbb{K} -espacio vectorial de dimensión finita, y sean $U_1, U_2, \dots U_n$ subespacios de V, tal que:

- $\bullet V = U_1 + \cdots + U_n$
- $\bullet \dim (V) = \dim (U_1) + \cdots + \dim (U_n)$

Entonces

$$V = U_1 \bigoplus U_2 \bigoplus \cdots \bigoplus U_n$$

Proposición

Sea V un \mathbb{K} -espacio vectorial de dimensión finita, y sea U un subespacio de V. Entonces existe un subespacio W de V tal que

$$V = U \bigoplus W$$

Coordenadas

Dada una base $B = \{v_1, \dots, v_n\}$ de un \mathbb{K} -espacio vectorial V, la escritura única de cada $v \in V$ como **c.l.** de los vectores de B, esto es

$$v = \alpha_1 \cdot v_1 + \cdots + \alpha_n \cdot v_n, \quad \alpha_1, ..., \alpha_n \in \mathbb{K}$$

establece la identificación, vía la base B:

$$v \in V \quad \longleftrightarrow \quad [v]_B = [\alpha_1, \dots, \alpha_n] \in \mathbb{K}^n$$

En tal caso, se dice que $[v]_B$ es el **vector coordenada** de v en la **base** B.