Wstęp do Teorii Zbiorów

notatki na podostawie wykładów J. Kraszewskiego

Weronika Jakimowicz

Ze wstępem do matematyki jest jak z uświadamianiem sekualnym dzieci - mówi im się wszystkiego.

Spis treści

1	JĘZY	K LOGIKI																3									
	1.1	FUNKCJE																									3
	1.2	OPERACJE	UOG	ÓLN:	IONE																 		 				3

1 JĘZYK LOGIKI

1.1 FUNKCJE

FUNKCJA – zbiór par uporządkowanych o właśności jednoznaczości, czyli nie ma dwóch par o tym samym poprzedniku i dwóch różnych następnikach.

Teraz dziedzinę i przeciwdziedzinę określamy poza definicją funkcji - nie są na tym samym poziomie co sama funkcja:

$$\begin{split} \operatorname{dom}(f) &= \{x \ : \ (\exists \ y) \ \langle x,y \rangle \in f \} \\ \operatorname{rng}(f) &= \{y \ : \ (\exists \ x) \ \langle x,y \rangle \in f \}. \end{split}$$

Warto pamiętać, że definicja funkcji jako podzbioru $f \in X \times Y$ takiego, że dla każdego $x \in X$ istnieje dokładnie jeden $y \in Y$ takie, że $\langle x,y \rangle \in f$ jest tak samo poprawną definicją, tylko kładzie nacisk na inny aspekt funkcji.

1.2 OPERACJE UOGÓLNIONE

```
Dla rodziny indeksowanej \{A_i: i\in I\} definiujemy:

- jej sumę: \bigcup_{i\in I}A_i=\{x: (\exists\ i\in I)\ x\in A_i\}

- jej przekrój: \bigcap_{i\in I}A_i=\{x: (\forall\ i\in I)\ x\in A_i\}
```