درس نرم افزر ریاضی2 نیمسال دوم سال تحصیلی ۹۸-۱۳۹۷ کروه علوم کامپیوتر

هفته اول و دوم

جلسه1: آشنایی با جبرخطی

۱- معرفی ماتریسها

ماتریسها با دستور () Matrix معرفی میشوند. در این دستور میتوان ماتریس را به صورتهای مختلفی معرفی کرد. نمونههایی از این صورتها در مثالهای زیر آمدهاند.

restart	شروع
M:= Matrix(3,2,1)	ماتریس M به صورت یک ماتریس ۲×۳ با درایه های برابر با ۱ معرفی میشود.
M1:=Matrix([[1,2],[3,-1],[2,1]])	ماتریس $M = \begin{bmatrix} 1 & Y \\ W & -I \\ Y & I \end{bmatrix}$ معرفی میشود.
M2:=Matrix(13,15,fill=2)	ماتریس ۵×۳ که همه درایه های آن برابر با ۲ هستند معرفی میشود.
Matrix(3)	ماتریس ۳×۳ که همه درایه های آن برابر با ۰ هستند معرفی میشود.
Matrix(3,1)	ماتریس ۱×۳ که همه درایه های آن برابر با ۰ هستند معرفی میشود.
s={(1,1)=3,(1,2)=1,(2,2)=-1} Matrix(2,3,s)	مقدار دهی به درایه ها در مجموعه S ساختن ماتریس ۳×۲ با اعضای S که در آن بقیه اعضا برابر با صفر قرار داده میشوند.
A:=[[2,1],[1,1,1]] M:=convert(A,Matrix)	لیست A معرفی میشود. این لیست به ماتریس تبدیل میشود.
M:=Matrix([[1,1],[2,2],[3,3]]) M1:=Matrix(3,4,M)	ماتریس اولیه $ M $ تعریف می شود. ماتریس $ M $ با استفاده از $ M $ ساخته می شود.
f:=(i,j)->i+2*j	تابع دومتغیره f تعریف میشود.
Mf:=Matrix(3,5,f)	ماتریس Mf که در آن درایهها با تابع f تعریف شدهاند، معرفی میشود.

درس نرم افزر ریاضی2 نیمسال دوم سال تحصیلی ۹۸-۱۳۹۷ کروه علوم کامپیوتر

نکته ۲: Matrix یک نوع هم هست و می توان در دستورهایی مانند convert از آن استفاده کرد.

شکل ماتریس را هم میتوان با استفاده از عبارت shape = name در تعریف ماتریس مشخص کرد. برخی از شکلهای ماتریس عبارتند از: قطری (diagonal)، همانی (identity)، مثلثی (triangular)، متقارن (symmetric)، ثابت ماتریس عبارتند از: قطری (zero). شکلهای دیگری از ماتریسها هم تعریف شدهاند که میتوانید برای بررسی آنها به راهنمای Maple مراجعه کنید. مثالهای زیر این شکلها را نشان میدهند.

Matrix(3, shape=identity)	ماتریس همانی ۳×۳
Matrix(4,3,shape=constant[-1])	ماتریس ۴×۴ معرفی میشود که همه درایههای آن برابر با ۱- هستند.
x(1,1) := 2 : x(1,2) := 3 : x(1,3) := -1 : x(2,2) := 1 :	معرفی درایههای X
x(3,3) := 4 : x(2,3) := -2 : x(2,1) := 6:	
Matrix(3,shape=triangular,x)	معرفی ماتریس بالامثلثی با درایههای X
<pre>M:=Matrix(3,[[a],[b,c],[d,e,f]], shape=triangular[lower])</pre>	ماتریس پایین مثلثی M معرفی میشود.
<pre>Matrix(3,{(1,1)=2,(1,2)=3,(1,3)=5}, fill=- 1,shape=symmetric)</pre>	یک ماتریس ۳×۳ متقارن معرفی میشود که برخی درایههای آن داده شدهاند و بقیه درایهها همگی برابر با ۱-هستند.
<pre>V:=Vector([1,3,5]) M:=Matrix(4,v,shape=diagonal)</pre>	بردار ۷ تعریف می شود. ماتریس قطری۴×۴ به نام m با بردار ۷ روی قطر اصلی آن تعریف می شود.

۲– عملیات اولیه روی ماتریسها

عملیات ساده جمع، تفریق، ضرب، توان، تعیین معکوس (در صورت وجود) در Maple به سادگی انجام میشود.

restart;	شروع
A:= Matrix([[1,2,3],[4,2]])	
B:= Matrix([[3],[2,-1,-1]])	$\operatorname{C}_{}$ معرفی ماتریسهای $\operatorname{A}_{}$ و $\operatorname{B}_{}$
C:= Matrix(3,4,[[2,1],[3],[5,-1]])	
A+B	
2A	انجام عملیات ساده جمع و ضرب روی ماتریسها
C.A	

درس نرم افزر ریاضی2 نیمسال دوم سال تحصیلی ۹۸-۱۳۹۷ کروه علوم کامپیوتر

نكتهها:

- ۱- دقت کنید عمل ضرب در ماتریس ها با استفاده از علامت "." به جای "*" انجام می شود.
- ۲- برای ضرب دو ماتریس می توان از دستور Multiply که در بسته LinearAlgebra وجود دارد هم استفاده کرد.

M:=Matrix([[1,2],[3,1]])	معرفی ماتریس M
M^2 M^4	محاسبه توان های ۲ و ۴ از M
M^-1	محاسبه وارون ماتریس M
M^-1.M	محاسبه حاصلضرب ماتریس M و وارون آن

برای محاسبه دترمینان یک ماتریس مربعی از دستور Determinant که در بسته LinearAlgebra وجود دارد استفاده می شود.

with(LinearAlgebra)	فراخوانی بسته LinearAlgebra
Determinant(M)	محاسبه دترمینان ماتریس M
Row (M, 1)	بردار سطر اول M برگردانده می شود.
Column (C,2)	بردار ستون دوم ${ m C}$ برگردانده می شود.
Column (C, 24)	بردارهای ستونهای دوم تا چهارم C برگردانده میشود.
C2:= Matirx(5,4,C,fill=1)	ماتریس C2 معرفی میشود.
DeleteRow(C2,2)	حذف سطر ۲ از ماتریس C2
DeleteColumn(C2,[1,4])	حذف ستونهای ۱ و ۴ از ماتریس C2
SubMatrix(C2,[24],[3,1,4])	زیرماتریسی از سطرها و ستونهای مشخص شده ماتریس C2 میسازد.
MatrixMatrixMultiply(M,N)	دو ماتریس M و N را ضرب می کند. خروجی یک ماتریس است.

۲- حل دستگاه معادله در Maple

برای حل دستگاه معادله از دستورهای بسته [Student[LinearAlgebra استفاده می کنیم.

درس نرم افزر ریاضی2 نیمسال دوم سال تحصیلی ۹۸-۱۳۹۷ کروه علوم کامپیوتر

with(LinearAlgebra)	فراخوانی بسته LinearAlgebra
A:=Matrix([[1,2,3],[4,2,1],[1,0,-1]])	
b:=Vector([2,-3,5])	b و بردار A
LinearSolve(A,b)	دستگاه معادله $AX=b$ را حل می کند. خروجی این
type(%,Vector)	دستور یک بردار است.
ReducedRowEchelonForm(<a,b>)</a,b>	فرم سطری کاهش یافته ماتریس را میدهد.

نکته: برای معرفی ماتریسها به جای عبارت Matrix میتوان از علامت های < و > هم استفاده کرد. در این صورت هر ستون ماتریس به صورت یک بردار مشخص می شود و بین هر دو بردار یک جدا کننده قرار می گیرد. شکل زیر روش استفاده از این دستور را نشان می دهد.

$M := \langle \langle 1, 2, 1 \rangle \langle 2, 4, 5 \rangle \langle 1, 2, 2 \rangle \rangle$	معرفی ماتریس M
--	----------------

۳- بردارها

برای نمایش بردارها در Maple از دستور Vector استفاده می شود. سایر دستورهای مورد استفاده برای کارکردن با بردارها در در بسته LinearAlgebra وجود دارد.

V:=Vector(5,[1,4,2])	بردار ۵ بعدی ۷ معرفی می شود. دو عضو آخر آن برابر با صفر هستند.
f:= i-> i^2	تعریف تابع f
u:=Vector(5,f)	تعریف بردار u

نکته: در حالت پیش فرض در Maple، بردارها به صورت ستونی معرفی میشوند، اما میتوان آنها را به شکل سطری هم تعریف کرد. برای انجام عملیات جمع و تفریق روی بردارها باید همه بردارها سطری یا همه ستونی باشند.

W:=Vector[row](3,[1,2,4])	تعریف بردار سطری W
u+2*v	محاسبات مقدماتى
with(Student[LinearAlgebra])	فراخوانی بسته LinearAlgebra
DotProduct(u,v)	ضرب نقطه ای دوبردار
x:=<1,2,0>	بردارها را می توان با کمک نمادهای > و < هم تعریف
y:=<2,-1,3>	کرد.
CrossProduct(x,y)	ضرب خارجی دو بردار X و y محاسبه میشود.

درس نرم افزر ریاضی2 نیمسال دوم سال تحصیلی ۹۸-۱۳۹۷ گروه علوم کامپیوتر

Norm(v)	اندازه بردار V محاسبه می شود.
VectorAngle(x,y)	زاویه دو بردار x و y برحسب رادیان محاسبه می شود.
evalf(%)	مقدار بالا به صورت اعشاری محاسبه میشود.
convert(%,degrees)	عدد به دست آمده در بالا (برحسب رادیان) به درجه تبدیل می شود.
M:=Matrix([[1,2,3],[4,1,1],[-1,0,1])	
MatrixVectorMultiply(M,y)	ماتریس M و بردار y را ضرب می کند. خروجی یک بردار M
type(%,Vector)	است.

نکته ۱: ضرب خارجی دو بردار فقط برای بردارهای دو و سه بعدی تعریف شده است.

نکته ۲: دستور (type(expr,t بررسی می کند آیا عبارت expr دارای نوع t است.

۴- بردارهای ویژه و مقدارهای ویژه (اختیاری)

برای به دست آوردن بردارهای ویژه و مقدارهای ویژه از دستورهای Eigenvectors و Eigenvalues که در بسته LinearAlgebra وجود دارند استفاده می کنیم.

with(LinearAlgebra)	فراخوانی بسته LinearAlgebra
A:=<<1,2,3> <3,1,1> <-1,0,1>>	معرفی ماتریس A
v:= Eigenvalues(A)	مقدارهای ویژه A را در بردار v قرار میدهد.
v,e:=Eigenvectors(A)	مقدارهای ویژه ماتریس را در بردار ۷ و بردارهای ویژه متناظر را در ستونهای ماتریس e قرار میدهد.
v1:= v[1]	
e1:= e[13,1]	اولین مقدار ویژه و بردار ویژه متناظر با آن را میدهد.
M.e1 = v1*e1	بررسی درستی مقدار و بردار ویژه

راه معمول برای به دست آوردن مقدارهای ویژه یک ماتریس M، محاسبه ریشههای دترمینان ماتریس M است. این ماتریس را ماتریس مشخصه 1 و دترمینان آن را که یک چندجملهای برحسب λ است، چندجملهای مشخصه 2 مینامند. با دستورهای زیر این مقادیر را به دست می آوریم.

Characteristic matrix '

Characteristic polynomial ^{*}

درس نرم افزر ریاضی2 نیمسال دوم سال تحصیلی 98-1397 گروه علوم کامپیوتر

A:=<<1,2,3> <3,1,1> <-1,0,1>>	معرفی ماتریس A
CharacteristicMatrix(A, lambda)	محاسبه ماتریس مشخصه ماتریس
Determinant(%)	محاسبه دترمينان ماتريس بالا
solve(%)	حل چندجملهای حاصل برای محاسبه ۸
CharacteristicPolynomial(A)	محاسبه چندجملهای مشخصه
solve(%)	حل چندجملهای بالا

۵- دستورات بسته [LinearAlgebra]

- دستور AddRow(A,i,j,s) در ماتریس A سطر i را با سطر i برابر سطر j جمع می کند و در سطر i قرار می دهد. i,j شماره سطر و s عدد است.
 - سطر i از ماتریس A را در s ضرب می کند. MultiplyRow (A,I,s) سطر
 - دستور $\operatorname{SwapRow}(A,i,j)$ جای دو سطر i و i را در ماتریس A عوض می کند.

مثال:

```
A := \langle \langle 2, 3, 4 \rangle | \langle -1, 3, 0 \rangle | \langle 1, 5, 9 \rangle \rangle
AddRow(A, 1, 2, -1)
B := MultiplyRow(A, 2, x)
subs(x = 2, B)
SwapRow(B, 1, 3)
```

نکته: مشابه این دستورات ولی کلی تر در دستورهای RowOperation و ColumnOperation در بسته LinearAlgebra

```
یمودار بردارهای u و v و بردار حاصلضرب برداری آنها را رسم می کند.  
u:=\langle 2,1,3\rangle v:=\langle 2,0,-1\rangle u\ \&x\ v CrossProductPlot <math>(u,v)
```

- دستور $\operatorname{Diagonal}(A)$ قطر ماتریس A را به صورت یک بردار ستونی میدهد.
- برای برداریا کیست L از اعداد یا ماتریس ها، دستور DiagonalMatrix(L) یک ماتریس قطری با عناصر L روی قطر آن می سازد.

```
L1 := \langle 2, 5, 3 \rangle
Diagonal Matrix (L1)
L2 := [\langle 1, 2 \rangle, \langle 1, 4 \rangle]
Diagonal Matrix (L2)
L3 := [\langle \langle 1, 2 \rangle | \langle 8, -1 \rangle \rangle, \langle \langle 1, 1 \rangle | \langle -2, -1 \rangle \rangle]
```

درس نرم افزر ریاضی۲ نیمسال دوم سال تحصیلی ۹۸-۱۳۹۷ گروه علوم کامپیوتر

DiagonalMatrix (L3)

- دستور PlanePlot به دو صورت استفاده می شود:

الف) زمانی که معادله صفحه داده شده باشد. در این صورت ورودی دستور به شکل (PlanePlot(p , var است که در آن p معادله صفحه و var لیست متغیرهای آن است.

PlanePlot(-3 x + 2 y + z = -3, [x, y, z])

 $PlanePlot(\langle 1, 1, 1 \rangle, \langle 2, 2, 2 \rangle)$ $PlanePlot([\langle 1, 2, 3 \rangle, \langle -1, 2, 1 \rangle])$

نکته: برای معرفی صفحه می توان از دو یا چند بردار استفاده کرد که دقیقا ۲ تای آنها مستقل خطی باشند.

- دستور ProjectionPlot بردار دو یا سه بعدی داده شده را روی یک خط یا فضای دیگر تصویر می کند. برای تصویر - برای حالت دو ProjectionPlot(v, <a,b,c>) کافی است دستور $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$ کافی است دستور بردار $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$ کافی است دستور بردار $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$ کافی است دستور برداری حالت دو بردار کنید. (برای حالت دو بردار کنید می به صورت مشابه عمل می کنیم.)

برای تصویر کردن بردار V روی صفحه، معادله صفحه یا بردارهای تشکیل دهنده آن را به دستور میدهیم. دقت کنید که در این صورت لازم است لیست نام متغیرها هم در دستور بیاید.

ProjectionPlot ($\langle -2, 3 \rangle, \langle 5, 7 \rangle$)
ProjectionPlot ($\langle -3, 5, -3 \rangle, x + 3 y = 0, [x, y, z]$)
ProjectionPlot ($\langle 1, 5, 3 \rangle, \{\langle 1, 1, 1 \rangle, \langle 1, -1, -1 \rangle\}$, vectoroptions = [color = magenta])

تمرین۱: ماتریس مربعی 2x2 بسازید که معکوس آن با ترانهاده آن یکسان باشد. (دستور ReflectionMatrix هم کار می کند.)

تمرین ۲: ماتریس زیر را برحسب n بسازید.

$$A = \begin{bmatrix} 1 & \frac{1}{2} & & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & & \dots & \frac{1}{n+1} \\ \vdots & \vdots & & \dots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & & \dots & \frac{1}{2n-1} \end{bmatrix}$$

تمرین \mathbf{m} : وارون پذیری ماتریس فوق را برای \mathbf{n} =4 بررسی کنید. (راهنمایی: ماتریس \mathbf{M} وارون پذیر است اگر و تنها اگر دترمینان آن ناصفر باشد.)

تمرین ۴: مقادیر ویژه ماتریس فوق را برای n=3 بدست آورید. (اختیاری)

تمرین ۵: پنج بردار به طور تصادفی انتخاب و استقلال خطی آنها را بررسی کنید. (اختیاری)