

North America 2024

WG Device Management

Playlist | Charter Agenda | Mailing List | Zoom | Slack

November, 2024

Patrick Ohly (Intel)
Kevin Klues (NVIDIA)
John Belamaric (Google)

Working Group Co-Chairs

Patrick Ohly
Principal Engineer
Intel

Kevin Klues *Distinguished Engineer NVIDIA*

John Belamaric Sr Staff Software Engineer Google

Enable simple and efficient configuration, sharing, and allocation of accelerators and other specialized devices.

- Working Group Device Management
- New working group formed in April 2024, born out of KubeCon EU 2024
- SIGs: Architecture, Autoscaling, Network, Node and Scheduling
- Redefining Kubernetes relationship with hardware
- Accelerators but also other devices like NICs, FPGAs and even network-attached devices.

Dynamic Resource Allocation (DRA) in Four Parts

Part 1: New Kubernetes API to describe devices (ResourceSlice): This device is an nvidia.com/gpu, its product ID is A100-SXM4-40GB, it has 40Gi of memory, and 3456 FP64 cores.

Part 2: New Kubernetes API to request devices (ResourceClaim):

I need an nvidia.com/gpu with at least 30Gi of memory and at least 3000 FP64 cores.

Part 3: Updated scheduler to **match** requests to devices.

Part 4: New Kubelet API to actuate the scheduler's decisions.

DRA will be Beta in 1.32!

1.32 DRA Features

- Merged in 1.32
 - Removal of classic DRA
 - Structured parameters (DRA MVP) graduated to Beta
 - <u>Faster scheduling</u> (up to 16x)
 - <u>Driver-owned resource claim status</u> (for multi-networking use cases, primarily)
 - Significant progress on autoscaler integration
- Drivers for 1.32 (out-of-tree)
 - Example driver
 - Intel DRA Drivers for GPU, Gaudi and QAT
 - NVIDIA DRA Driver for GPUs and multi-node NVLink
 - <u>CNI DRA Driver</u> (in progress)
 - Google TPU Driver (in progress)

What's Next for DRA?

- Claim API Flexibility in requests? New constraints? New config options?
 Quota? In place updates? Native resources?
- Slice API New device models? Tracking allocation status for multi-scheduler support? Standardization of attributes? Native resources?
- Drivers Downward API? New drivers? Driver framework features? (for example, annotating devices based on a file with node-level / cluster topology)?
- Scheduling Preemption and priority? Scoring? User-provided scoring functions or hints?
- Usability Automatic support for existing device plugin specs? CEL improvements?

Getting Involved

Join us to help shape how accelerators and other devices are used in Kubernetes.

- Bi-Weekly Meetings
 - Tuesdays 8:30am PST
 - o **Zoom**
 - Agenda
 - Playlist
- Very active <u>Slack</u> channel
- Less active <u>Mailing List</u>
- Community Page

DRA Deep Dive

A Case Study with NVIDIA GPUs

- New way of requesting resources available (as an alpha feature) in Kubernetes 1.26+
- Provides an alternative to the "count-based" interface of e.g. nvidia.com/gpu:2
- Provides a much richer API for requesting / configuring resources
- Inspired by the persistent volume API

- New way of requesting resources available (as an alpha feature) in Kubernetes 1.26+
- Provides an alternative to the "count-based" interface of e.g. nvidia.com/gpu:2
- Provides a much richer API for requesting / configuring resources
- Inspired by the persistent volume API

DRA overcomes the limitations of device plugins

Can subdivide large devices

Can configure devices individually

Can share GPUs in the same node for diverse workloads

Foundational for new functionality:

- Workload-specific accelerator sharing configuration
- Dynamic MIG and TPU
- Alignment of multiple, independent devices (GPU and NIC alignment on PCIe)
- Consumption of multiple associated devices as a unit

DRA: Advertising resources

DRA: Requesting resources

Device Enumeration by a DRA Resource Driver

```
apiVersion: resource.k8s.io/v1alpha3
 kind: ResourceSlice
 metadata:
   name: gpu-node-0
 spec:
   driver gpu.nvidia.com
   nodeName: gpu-node 0
   pool: {...}
   devices:
                              A Device is a named list
   - basic:
                                  of attributes and
       name: gpu-0 ◀
       attributes:
                                      capacities
         uuid:
           string: GPU-18db0e85-99e9-c746-8531-ffeb86328b39
         index:
           int: 0
         model:
           string: "NVIDIA GH200 96GB HBM3"
         driverVersion:
           version: 550.94.0
       capacity:
         memory: 96Gi
```


Device Enumeration by a DRA Resource Driver

```
apiVersion: resource.k8s.io/v1alpha3
 kind: ResourceSlice
 metadata.
   name: gpu-node-0
 spec:
   driver gpu.nvidia.com
   nodeName: gpu-node 0
   pool: {...}
   devices:
                              A Device is a named list
   - basic:
                                  of attributes and
       name: gpu-0
       attributes:
                                      capacities
         uuid:
           string: GPU-18db0e85-99e9-c746-8531-ffeb86328b39
         index:
           int: 0
         model:
           string: "NVIDIA GH200 96GB HBM3"
         driverVersion:
           version: 550.94.0
       capacity:
         memory: 96Gi
```


Device Enumeration by a DRA Resource Driver

```
apiVersion: resource.k8s.io/v1alpha3
 kind: ResourceSlice
 metadata.
   name: gpu-node-0
 spec:
   driver gpu.nvidia.com
   nodeName: gpu-node 0
   pool: {...}
   devices:
                              A Device is a named list
   - basic:
                                  of attributes and
       name: gpu-0
       attributes:
                                      capacities
         uuid:
           string: GPU-18db0e85-99e9-c746-8531-ffeb86328b39
         index:
           int: 0
         model:
           string: "NVIDIA GH200 96GB HBM3"
         driverVersion:
           version: 550.94.0
       capacity
         memory: 96Gi
```

```
apiVersion: resource.k8s.io/v1alpha2
kind: DeviceClass
metadata:
 name: gpu.nvidia.com
spec:
 selectors:
 - cel:
     expression: "device.driverName == 'gpu.nvidia.com'"
                       Select any device governed
                        by the NVIDIA DRA driver
                                  for GPUs
```


Sharing across containers in a single Pod

```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
   name: shared-gpu
spec:
   devices:
    requests:
    - deviceClassName: gpu.nvidia.com
```

```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: ctr0
      resources:
       claims:
        - name: gpu
    - name: ctr1
                              Shared access
      resources:
                                 to same
        claims:
                             underlying GPU
        - name: gpu
  resourceClaims:
  - name: gpu
   resourceClaimName: shared-gpu
```


Sharing across containers in a different Pods

```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
   name: shared-gpu
spec:
   devices:
    requests:
    - deviceClassName: gpu.nvidia.com
```

```
apiVersion: v1
                                               apiVersion: v1
kind: Pod
                                               kind: Pod
metadata:
                                               metadata:
 name: gpu-example0
                                                 name: gpu-example0
spec:
                                               spec:
  containers:
                                                 containers:
    - name: ctr
                                                    - name: ctr
      resources:
                                                      resources:
                                                       claims:
        claims:
        - name:gpu
                                                       - name:gpu
resourceClaims:
                                               resourceClaims:
  - name: gpu
                                                  - name: gpu
   resourceClaimName: shared-gpu
                                                   resourceClaimName: shared-gpu
                               Shared access to same underlying GPU
```


Selection vs. Configuration of a Device

```
apiVersion: resource.k8s.io/v1alpha2
kind: DeviceClass
metadata:
 name: gpu.nvidia.com
spec:
 selectors:
 - cel:
     expression: "device.driverName == 'gpu.nvidia.com'"
                       Select any device governed
                         by the NVIDIA DRA driver
                                  for GPUs
```


Selection vs. Configuration of a Device

```
apiVersion: resource.k8s.io/v1alpha2
kird: DeviceClass
metadata:
 name: gpu.nvidia.com
spec:
 selectors:
 - cel:
     expression: "device.driverName == 'gpu.nvidia.com'"
                       Select any device governed
                         by the NVIDIA DRA driver
                                  for GPUs
```

```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
 name: shared-gpu
                            Reference a DeviceClass
spec:
                             to inherit its selectors
 devices:
   requests:
    - name: gpu
     deviceClassName: gpu.nvidia.com
  config:
- requests: ["gpu"]
  opaque:
     driver: gpu.nvidia.com
      parameters:
       apiVersion: gpu.resource.nvidia.com/v1alpha1
       kind: GpuConfiguration
       sharing:
        - strategy: MPS
         mpsConfig:
           defaultActiveThreadPercentage: 20
           defaultPinnedDeviceMemoryLimit: 10Gi
          Configure it to give each client dedicated
         10Gi of memory and 20% of active compute
```



```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
 name: big-gpu-with-aligned-nic
spec:
  devices:
    requests:
```



```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
 name: big-gpu-with-aligned-nic
spec:
 devices:
    requests:
                                               Give me a GPU with
    - name: gpu
     deviceClassName: gpu.nvidia.com
                                            at least 80GB of memory
     selectors:
     - cel:
         expression: "device.capacity['memory'].compareTo(quantity('80Gi')) >= 0"
```



```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
 name: big-gpu-with-aligned-nic
spec:
 devices:
    requests:
                                               Give me a GPU with
    - name: gpu
     deviceClassName: gpu.nvidia.com
                                            at least 80GB of memory
     selectors:
     - cel:
         expression: "device.capacity['memory'].compareTo(quantity('80Gi')) >= 0"
                                                 Together with an
    - name: nic
     deviceClassName: rdma.nvidia.com
                                              RDMA virtual function
     selectors:
     - cel:
         expression: "device.attribute['sriovType'] == 'vf'"
```



```
apiVersion: resource.k8s.io/v1alpha2
kind: ResourceClaim
metadata:
 name: big-gpu-with-aligned-nic
spec:
 devices:
   requests:
                                              Give me a GPU with
   - name: gpu
     deviceClassName: gpu.nvidia.com
                                           at least 80GB of memory
     selectors:
     - cel:
         expression: "device.capacity['memory'].compareTo(quantity('80Gi')) >= 0"
                                                Together with an
   - name: nic
     deviceClassName: rdma.nvidia.com
                                            RDMA virtual function
     selectors:
     - cel:
         expression: "device.attribute['sriovType'] == 'vf'"
   constraints:
                                       Make sure the GPU and NIC are aligned
    - requestNames: ["gpu", "nic"]
                                            on the same PCIe root complex
     matchAttribute: k8s.io/pcieRoot
```


 With the model in Kubernetes 1.30, we cover 6 / 12 use-cases identified in <u>NVIDIA GPU Use-Cases for Dynamic Resource Allocation (DRA)</u>

Supported:

- Controlled GPU sharing
- o GPU selection via complex constraints
- Multiple GPU types per node
- User-driven time-slicing support across a subset of GPUs on a node
- User-driven MPS support across a subset of GPUs on a node
- O Dynamic swapping of NVIDIA driver with vfio driver depending on intended use of GPU

Unsupported:

- "Management" pods with access to all GPUs without allocating them
- Dynamic allocation of MIG devices
- MIG device alignment
- Subdivision of MIG devices with shared memory but dedicated compute resources
- Custom policies to align multiple resource types (e.g. GPUs and NICs)
- Application-specific policies for how GPUs are allocated across containers / pods

 With the model in Kubernetes 1.30, we cover 6 / 12 use-cases identified in <u>NVIDIA GPU Use-Cases for Dynamic Resource Allocation (DRA)</u>

• Supported:

- Controlled GPU sharing
- GPU selection via complex constraints
- Multiple GPU types per node
- User-driven time-slicing support across a subset of GPUs on a node
- User-driven MPS support across a subset of GPUs on a node
- O Dynamic swapping of NVIDIA driver with vfio driver depending on intended use of GPU

In 1.31 we

support 9/12

- "Management" pods with access to all GPUs without allocating them
- Custom policies to align multiple resource types (e.g. GPUs and NICs)
- MIG device alignment

Unsupported:

- Dynamic allocation of MIG devices
- Subdivision of MIG devices with shared memory but dedicated compute resources
- Application-specific policies for how GPUs are allocated across containers / pods

 With the model in Kubernetes 1.30, we cover 6 / 12 use-cases identified in <u>NVIDIA GPU Use-Cases for Dynamic Resource Allocation (DRA)</u>

Supported:

- Controlled GPU sharing
- GPU selection via complex constraints
- Multiple GPU types per node
- User-driven time-slicing support across a subset of GPUs on a node
- User-driven MPS support across a subset of GPUs on a node
- o Dynamic swapping of NVIDIA driver with vfio driver depending on intended use of GPU

By 1.33 we plan

to support 11/12

- "Management" pods with access to all GPUs without allocating them
- Custom policies to align multiple resource types (e.g. GPUs and NICs)
- MIG device alignment
- Dynamic allocation of MIG devices
- Subdivision of MIG devices with shared memory but dedicated compute resources
- Unsupported:
 - Application-specific policies for how GPUs are allocated across containers / pods

NVIDIA GB200 with Multi-Node NVLink

Google Booth Lightning Talk: Deploying DRA for Al Infrastructure - Tech Talk & Ask the Experts Panel Laura Lorenz (Google), Kevin Klues (NVIDIA), Tim Hockin (Google), John Belamaric (Google)

Friday, 12:50pm - 1:05pm MST | Salt Palace | Google Cloud Booth

Upcoming Talks, Feedback, and Questions

A Tale of 2 Drivers: GPU Configuration on the Fly Using DRA
Alay Patel (NVIDIA), Varun Ramachandra Sekar US (NVIDIA)

Wednesday November 13, 2024 3:25pm - 4:00pm MST | Salt Palace | Level 2 | 255 B

Which GPU Sharing Strategy Is Right for You?

A Comprehensive Benchmark Study Using DRA

Kevin Klues (NVIDIA), Yuan Chen (NVIDIA)

Thursday November 14, 2024 4:30pm - 5:05pm MST | Salt Palace | Level 2 | 255 E

Better Together! GPU, TPU and NIC Topological Alignment with DRA John Belamaric (Google), Patrick Ohly (Intel)

Friday November 15, 2024 11:00am - 11:35am MST | Salt Palace | Level 2 | 250 AD

Google Booth Lightning Talk
Deploying DRA for Al Infrastructure - Tech Talk & Ask the Experts Panel
Laura Lorenz (Google), Kevin Klues (NVIDIA), Tim Hockin (Google), John Belamaric (Google)

Friday, 12:50pm - 1:05pm MST | Salt Palace | Google Cloud Booth

Feedback

