

Evolution Strategies for Neural Policy Search

Author: Paul Templier¹
Advisors: Emmanuel Rachelson¹, Dennis G. Wilson¹

[paul.templier@isae-supaero.fr]

June 29, 2022

¹ University of Toulouse, ISAE-SUPAERO

[Context] Mid-thesis report

[Context] Mid-thesis report

Initial topic

Bio-inspired methods for artificial neural networks

[Context] Mid-thesis report

Initial topic

Bio-inspired methods for artificial neural networks

Goal of this report

Organize past and present work, and highlight future research directions.

1. [Context] Context of this PhD

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

[Policy search] Policy search

[Policy search] Policy search

Environment

https://github.com/d9w/evolution/blob/master/imgs/erl.png

[Policy search] Neural networks

Neural Network used in Deep Q Networks [3]

[Policy search] Variants of Evolution Strategies

Evolution Strategies

- \blacktriangleright (μ, λ) ES
- ► SNES
- ► Canonical ES
- ► OpenAl ES

- ► CMA-ES
- ► XNES
- Cross-Entropy Method
- ► Augmented Random Search

[Policy search] Variants of Evolution Strategies

Evolution Strategies

- \blacktriangleright (μ, λ) ES
- ► SNES
- ► Canonical ES
- ▶ OpenAl ES

- ► CMA-ES
- ➤ XNES
- Cross-Entropy Method
- ► Augmented Random Search

Neuroevolution for policy search

- ► large dimensions (1.6 .10⁶ parameters)
- ► expensive evaluation

[Policy search] Benchmarking Evolutionary Reinforcement Learning

Reproduction settings

Reproducing Canonical ES [1] and OpenAl ES [4] on the Arcade Learning Environment.

Figure: Evolution of Canonical ES and OpenAI ES on Alien with 800 CPUh compute budget

[Search space] A Geometric Encoding for Neural Network Evolution

[Search space] A Geometric Encoding for Neural Network Evolution

Fully connected neural network

[Search space] A Geometric Encoding for Neural Network Evolution

Fully connected neural network

GENE encoding

[Search space] GENE: Distance functions

$$w_{i,j} = dist(n_i, n_j) \tag{1}$$

Euclidean distance

$$\sqrt{\sum_{k=1}^{D} \left(n_1^k - n_2^k\right)^2} \tag{2}$$

[Search space] GENE: Weight distribution

Figure: Distribution of weight values in networks evolved with different encodings.

[Search space] Competitive results - Arcade Learning Environment

[Search space] Competitive results - Arcade Learning Environment

Figure: SNES on SpaceInvaders

Figure: XNES on SpaceInvaders

[Search space] Competitive results - Arcade Learning Environment

Figure: SNES on SpaceInvaders

Figure: SNES on Krull

Figure: XNES on SpaceInvaders

Figure: XNES on Krull

[Search space] Improving results - Arcade Learning Environment

Figure: SNES on IceHockey

Figure: XNES on IceHockey

[Search space] Improving results - Arcade Learning Environment

Figure: SNES on IceHockey

Figure: SNES on Seaquest

Figure: XNES on IceHockey

Figure: XNES on Seaquest

[Search space] Computational cost

Evolutionary Strategy update of μ and σ						
	Encoding	D	Genes		Mean time (s)	Memory (KiB)
	pL2-GENE	3	804	SNES	0.000357	630.56
	pL2-GENE	10	2211	SNES	0.000678	1372.16
	Direct	-	5609	SNES	0.001350	3133.44
	pL2-GENE	3	804	XNES	1.475000	1352663.04
	pL2-GENE	10	2211	XNES	14.244000	11806965.76
	Direct	-	5609	XNES	119.976000	79765176.32

[Search space] Future Work

Distance functions

Design new distance functions, or optimize them through co-evolution.

Hybrid encoding

Switch between indirect and direct encodings during the evolution.

Gradient descent

Use backpropagation and gradient descent to optimize genomes instead of evolution.

Complex networks

Design encodings for convolution layers and recurrent networks.

[Search direction] Using samples to drive the search

[Noisy fitness] ES on noisy environments

[Noisy fitness] ES on noisy environments

Figure: ES on BigFish, same level

[Noisy fitness] ES on noisy environments

Figure: ES on BigFish, same level

Figure: ES on BigFish, random level

[Noisy fitness] ONEMAX and LEADINGONES

[Noisy fitness] ONEMAX and LEADINGONES

Bandit problem

- ► Split
- ► Rank

Bandit problem

- ► Split
- ► Rank

Bandit problem

- ► Split
- ► Rank

Bandit problem

- ► Split
- ► Rank

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ▶ Rank

Heritage

- ► Elitist ES
- ► Importance Mixing

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ► Rank

Heritage

- ► Elitist ES
- ► Importance Mixing

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ► Rank

Heritage

- ► Elitist ES
- ► Importance Mixing

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ► Rank

Heritage

- ► Elitist ES
- ► Importance Mixing

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ► Rank

Heritage

- ► Elitist ES
- ► Importance Mixing

LUCI ES

- ▶ Explore (μ, λ) ES
- ► Ranking in Bandit problems
- ► Heritage (Importance Mixing, elitism)
- ► Scalability

LUCI ES

- ▶ Explore (μ, λ) ES
- ► Ranking in Bandit problems
- ► Heritage (Importance Mixing, elitism)
- ► Scalability

ES for Policy Search

- Neuroevolution constraints and theory
- ► Ablation study of existing methods

LUCI ES

- ▶ Explore (μ, λ) ES
- ► Ranking in Bandit problems
- ► Heritage (Importance Mixing, elitism)
- ► Scalability

ES for Policy Search

- ► Neuroevolution constraints and theory
- ► Ablation study of existing methods

Evolving Evolution Strategies

- ► Make ES methods emerge from scratch
- ► Neuromodulation: adapting ES during the evolution

[Directions] Timeline

References I

- P. Chrabaszcz, I. Loshchilov, and F. Hutter.

 Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari.
 pages 1419–1426, 2018.
- E. Lecarpentier, P. Templier, E. Rachelson, and D. G. Wilson.

 LUCIE: An Evaluation and Selection Method for Stochastic Problems.

 In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2022), 2022.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

References II

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. Mar. 2017.

[Search space] Signed distances

Bounded identity function

$$\alpha: \left\{ \begin{array}{l} \text{if } x \geq 1 : \alpha(x) = 1\\ \text{if } x \leq -1 : \alpha(x) = -1 \\ \text{else: } \alpha(x) = x \end{array} \right. \tag{3}$$

[Search space] Distance functions

pL2-GENE
$$\alpha \left(\prod_{k=1}^{D} n_1^k - n_2^k \right) \sqrt{\sum_{j=1}^{D} \left(n_1^j - n_2^j \right)^2} \qquad (4)$$

[Noisy fitness] Classic Control

