JVC

SERVICE MANUA

VIDEO CASSETTE RECORDER

BR-S822E/BR-S622E

BR-S622E

SPECIFICATIONS

PAL

GENERAL

VHS/S-VHS Europe standard Format

Power consumption : 90 W

AC 110 - 127 V/220 - 240 V~ 50/60 Hz Power requirment 42.9 (W) X 18.8 (H) X 56.5 (D) cm **Dimensions**

Weight 23 kg

Operating

temperature 5°C to 40°C Storage temperature : -20°C to 60°C

Tape speed

23.39 mm/sec

Recording & Playback time

: Max. 180 min. with JVC SE-180/E-180

Fast forward/Rewind time: Less than 2.5 min. for 180 min. tape VIDEO

Recording and

Rotary two-head helical scanning system playback

Luminance FM recording

Phase shift, converted sub-carrier direct recording Colour signal PAL-type colour signal/PAL-type Y/C signal

Video signal system: Input

1.0 Vp-p, 75 ohms, unbalanced

Y/C 443 Y: 1.0 Vp-p, 75 ohms, unbalanced C: 0.3 Vp-p, 75 ohms, unbalanced (Burst)

Output

Line 1.0 Vp-p, 75 ohms, unbalanced

Y: 1.0 Vp-p, 75 ohms, unbalanced C: 0.3 Vp-p, 75 ohms, unbalanced (Burst)

Signal-to-noise ratio:

Y/C 443

More than 46 dB (S-VHS) More than 45 dB (VHS) More than 400 lines (S-VHS)

Horizontal resolution: More than 250 lines (VHS)

Reference video

input 0.3 to 1.0 Vp-p, 75 ohms, unbalanced

(with loop-through, with the SA-T22E)

External sync input 0.3 to 4.0 Vp-p, 75 ohms, unbalanced

(with one loop-through, without the SA-T22E)

AUDIO

Input

Line -6/0/+4 dBs, 10 k-ohms/600 ohms, balanced

(Hi-Fi/Normal)

-67 dBs, 10 k-ohms, unbalanced Mic

Output Line

-6/0/+4 dBs, Low impedance, balanced

(Hi-Fi/Normal)

Monitor -6 dBs, Low impedance, unbalanced

Phones ∞ to -17 dBs, 8 ohms

Signal-to-noise ratio More than 43 dB (NR-off, Normal at 3% distortion)

Dynamic range More than 87 dB (Hi-Fi) Frequency response 20 to 20,000 Hz (Hi-Fi)

40 to 12,000 Hz (Normal) Less than 0.005% WRMS (Hi-Fi)

Less than 0.3% RMS (Normal)

TIME CODE

Wow & flutter

Input 0 dB ± 6 dBs, 10 k-ohms, unbalanced Output 0 dB ± 3 dBs. Low impedance, unbalanced

CONNECTORS

Video

Line input BNC-type connector Line output **BNC-type connectors**

Y/C 443

input/output: 7-pin connectors

Monitor BNC-type connector Audio

Hi-Fi input/

output XLR connectors

Normal input/

output XLR connectors Monitor RCA connector Remote control 9-pin connector

ACCESSORIES

Provided accessories : 7-pin cable

Design and specifications subject to change without notice

COMPARISON TABLE OF DIFFERENT PARTS & FUNCTION BY MODEL

	ITEM	BR-S822E	BR-S622E
Ed	Insert edit	○ (Yes)	AUD-2 DUB
iting	Assembly edit	○ (Yes)	× (No)
tu t	Swap control	○ (Yes)	× (No)
Editing functions			
0	TIME BASE CORRECTOR : SA-T22E	△ (Option)	△ (Option)
Options	DNR: SA-N22W(E)	△ (Option)	△ (Option)
ns	4 5 PIN I/F : SA-K 2 8 E	△ (Option)	△ (Option)
	RS-232C I/F: SA-K27E	△ (Option)	△ (Option)
	RACK MOUNT ADAPTOR : SA-K63EB	△ (Option)	△ (Option)
	U-VCR Y/C OUT : SA-E92E	△ (Option)	△ (Option)
	TIME CODE G/R: SA-R22E	△ (Option)	△ (Option)
Cabinet parts	CASSETTE PANEL OPERATION PANEL RAITING LABEL	PRD10229G-01 PRD10230B PRD30085-05	PRD10229H-01 PRD10259C PRD30085-06
Pa	INSTRUCTIONS	PGD30002-283	PGD30002-284
Š	PACKING CASE	PRD20370-09	PRD20370-10
Packing parts	Y/C CABLE	PGZ00793-006	× (No)
Во	OPERATION CPU BOARD <42>	PRK10085D1	PRK10085E1
ard	OPERATION KEY-1 BOARD <43>	PRK10085A2	PRK10085B2
Board assemblies	OPERATION KEY-2 BOARD <44>	PRK10085A3	PRK10085B3
emi	DIRECTION LED BOARD <47>	PRK10085A5	PRK10085B5
#1			

O=STANDARD, △=OPTION, ×=EXCLUDE

Note

*1 Branch numbers of parts numbers are omitted.

TABLE OF CONTENTS

Section	Title	Page	Secti	ion Title F	age
Importa	nt Safety Precautions		4. I	DIAGRAMS AND CIRCUIT BOARDS	
			4.1	KEY TO ABBREVIATIONS	4-2
INSTRU	CTIONS		4.2	REPLACING SUBMINATURE "CHIP" PARTS	
1. GEN	IERAL DESCRIPTION AND DISASSEMBLY		4.3	CIRCUIT BOARD LOCATIONS	
	MOVAL OF EXTERNAL COVERS	1_1	4.4	REC/PB Y BLOCK DIAGRAM	
	Top cover		4.5	REC/PB COLOR-1 BLOCK DIAGRAM	
	Cassette panel (Upper part of the front panel)		4.6	REC/PB COLOR-2 BLOCK DIAGRAM	
	Operation panel (Lower part of the front panel)		4.7	R/P ADJUST BLOCK DIAGRAM	
	Side covers		4.8	OUTPUT BLOCK DIAGRAM	
			4.9	Y COMB BLOCK DIAGRAM	
	Bottom cover		4.10		
	rear panel			Hi-Fi AUDIO BLOCK DIAGRAM	
	Rear bracket			NORMAL AUDIO BLOCK DIAGRAM	
	MOVAL OF MAIN BOARDS			AV MICOM/ON SCREEN BLOCK DIAGRAM	
	GROUP C			SYSCON BLOCK DIAGRAM	
	GROUP D		4.14	M-CTL & REEL SERVO BLOCK DIAGRAM	4-17
	GROUP F			OVERALL WIRING DIAGRAM	
	TERNAL SWITCHES			MOTHER BOARD-1 SCHEMATIC DIAGRAM	
	Function of switch				
	EMORY SWITCH			MOTHER BOARD-1 CIRCUIT BOARD	
	Initialization of memory switch			MOTHER BOARD-2 SCHEMATIC DIAGRAM	
	Indication of ROM and microprocessor versions			MOTHER BOARD-2 CIRCUIT BOARD	
	PIN CABLE			SLOTMOTHER SCHEMATIC DIAGRAM	
	HEN INTROUBLE			SYSCON MOTHER SCHEMATIC DIAGRAM	
	To take cassette out of set manually		4.23	SYSCON MOTHER & SLOT MOTHER CIRCUIT BOARDS	4-26
	Troubleshooting			FUSE SCHEMATIC DIAGRAM	
	Check of supply voltage			FUSE CIRCUIT BOARD	
	OTOCOL OF 9-PIN REMOTE CONNECTOR			DECK TERMINAL SCHEMATIC DIAGRAM	4-27
	SPECIFICATION OF 9-PIN CONNECTOR		4.27	DECK TERMINAL & CASSETTE HOUSING CIRCUIT	
	COMMUNICATION FORMAT			BOARDS	
	COMMAND FORMAT			REC/PB Y SCHEMATIC DIAGRAM	
	COMMAND TABLE			REC/PB Y CIRCUIT BOARD	
	IDE ASPECT ID			REC/PB COLOR CIRCUIT BOARD	
1.8.1	Necessity of wide aspect ID	1-30		REC/PB COLOR-1 SCHEMATIC DIAGRAM	
	Wide aspect ID		4.32	REC/PB COLOR-2 SCHEMATIC DIAGRAM	4-34
1.9 AD	JUSTMENT MODE	1-30		REC/PB COLOR-2 CIRCUIT BOARD	
				REC/PB ADJUST SCHEMATIC DIAGRAM	
				REC/PB ADJUST CIRCUIT BOARD	
2. MEG	CHANISM ADJUSTMENT			Y COMB SCHEMATIC DIAGRAM	
2.1 GE	NERAL DESCRIPTION	. 2-1		Y COMB CIRCUIT BOARD	
	Precautions			OUTPUT SCHEMATIC DIAGRAM	
	Mechanism operation check			OUTPUT CIRCUIT BOARD	
	Jigs and special tools for mechanism adjustment			PRE/REC SCHEMATIC DIAGRAM & CIRCUIT BOARD	4-47
	RIODIC REPLACEMENT OF MAIN PARTS		4.41	FM AUDIO PRE/REC SCHEMATIC DIAGRAM & CIRCUIT	
	Location of main parts			BOARD	
2.2.2	Cleaning			AUDIO-1 SCHEMATIC DIAGRAM	
	Oilling and greasing			AUDIO-1 CIRCUIT BOARD	
	PLACEMENT OF MAIN PARTS			AUDIO-2 SCHEMATIC DIAGRAM	
	SEMBLING OF MECHANISM		4.45	AUDIO-2 CIRCUIT BOARD	4-55
	DJUSTMENT OF REEL SERVO CIRCUIT			AUDIO-3 SCHEMATIC DIAGRAM	
	TERCHANGE ABILITY ADJUSTMENT			AUDIO-3 CIRCUIT BOARD	
2.7 AD	DJUSTMENT OF TAPE TRANSPORT SYSTEM	2-28	4.48	XLR (AUDIO-4, -5) SCHEMATIC DIAGRAM	4-59
2./ AL	DOG TWENT OF TAPE THANGS ON STOTEM	2 20		XLR (AUDIO-4, -5) CIRCUIT BOARD	
			4.50	FRONT (AUDIO-6, JACK, VR) SCHEMATIC DIAGRAM	4-61
2 EIE	CTPICAL AD HISTMENT			FRONT (AUDIO-6, JACK, VR) & A/C HEAD CIRCUIT BOARD	
	CTRICAL ADJUSTMENT	0.5	4.52	DRUM/CAPSTAN SERVO SCHEMATIC DIAGRAM	4-63
	RECAUTIONS		4.53	DRUM/CAPSTAN SERVO CIRCUIT BOARD	4-64
3.1.1	Required tools and test instruments			MECHACONTROL/REEL SERVO CIRCUIT BOARD	
3.1.2	Specification of alignment tapes			MECHACONTROL/REEL SERVO SCHEMATIC DIAGRAM	
3.1.3	Signals required for video system adjustment			SYSCON SCHEMATIC DIAGRAM	
3.1.4	Main boards location			SYSCON CIRCUIT BOARD	
3.1.5	Explanation of main columns in check and adjustment table		4.58	AV MICOM/ONSCREEN SCHEMATIC DIAGRAM	4-70
	C SERVO CIRCUIT		4.59	AV MICOM/ONSCREEN & COUNTER DISPLAY CIRCUIT	
	JDIO CIRCUIT			BOARDS	4-71
3.5 SL	JB PANEL CIRCUIT	3-32			

Section	Title	Page
4.60 O	PERATION SCHEMATIC DIAGRAM	4-72
4.61 O	PERATION CIRCUIT BOARD	4-73
4.62 RI	EAR (REAR-1 to -3) SCHEMATIC DI	AGRAM 4-74
	EAR (REAR-1 to -3) CIRCUIT BOAR	
	JBPANEL SCHEMATIC DIAGRAM	
	JBPANEL CIRCUIT BOARD	
	ETER SCHEMATIC DIAGRAM	
	ETER CIRCUIT BOARD	
	WITCHING REGULATOR SCHEMA	
	BLOCK DIAGRAM	
	N 0000 10010 110 DADTO 1101	
	PLODED VIEWS AND PARTS LIST KPLODED VIEWS AND PARTS LIST	
5.1.1	Packing assembly <m1></m1>	
5.1.2	Cabinet assembly <m2></m2>	5-4
5.1.3	Chassis assembly <m3></m3>	5-0
5.1.4	Frame assembly <m4></m4>	
5.1.5	Rear frame assembly <m5></m5>	
5.1.6	Mechanism-1 assembly <m6></m6>	
5.1.7	Mechanism-2 assembly <m7></m7>	
5.1.8	Cassette housing assembly <m8></m8>	
5.1.9	Drum assembly <m9></m9>	
5.1.10	Front panel assembly <ma><mb< td=""><td>>5-18</td></mb<></ma>	>5-18
	ECTRICAL PARTS LIST	
MOTHE	R 1 BOARD ASSEMBLY <01>	6-1
MOTHE	R 2 BOARD ASSEMBLY <02>	6-1
	NOTHER BOARD ASSEMBLY <03>	
SYSCO	N MOTHER BOARD ASSEMBLY <	04> 6-2
FUSE B	OARD ASSEMBLY <05>	6-2
R/P Y B	OARD ASSEMBLY <10>	6-2
R/P CO	LOR BOARD ASSEMBLY <11>	6-8
R/P CO	LOR-2 BOARD ASSEMBLY <12>	6-13
PRE/RE	C BOARD ASSEMBLY <15>	6-16
	JUST BOARD ASSEMBLY <16>	
YCOM	B ASSEMBLY <17>	6-20
OUTPU	T BOARD ASSEMBLY <19>	6-25
FMA P	RE/REC BOARD ASSEMBLY <20>	6-29
AUDIO	1 BOARD ASSEMBLY <21>	6-29
	2 BOARD ASSEMBLY <22>	
AUDIO	3 BOARD ASSEMBLY <23>	6-37
AUDIO	4 BOARD ASSEMBLY <24>	6-40
AUDIO	5 BOARD ASSEMBLY <25>	6-41
AUDIO	6 BOARD ASSEMBLY <26>	6-42
JACK B	OARD ASSEMBLY <27>	6-44
	ARD ASSEMBLY <28>	
A/C HE	AD BOARD ASSEMBLY <29>	6-44
D/C SE	RVO BOARD ASSEMBLY <30>	6-44
MCTL	R.SERVO BOARD ASSEMBLY <31	> 6-47
SYSCO	N BOARD ASSEMBLY <40>	6-50
AVM/O	S BOARD ASSY <41>	6-52
OPERA	TION-CPU BOARD ASSEMBLY <4	2>6-54
OPERA	TION-KEY, 1 BOARD ASSEMBLY <	43> 6-55
	TION-KEY 2 ASSEMBLY <44>	
	TER DISPLAY BOARD ASSEMBLY	
	ED BOARD ASSEMBLY <46>	
DIRECT	TION LED BOARD ASSEMBLY <47	>
FIFCT	SW BOARD ASSEMBLY <48>	6-57
	BOARD ASSEMBLY <71>	
	BOARD ASSEMBLY <77>	

Section	Title	Page
REAR 3 BOA	ARD ASSEMBLY <73>	6-58
	ARD ASSEMBLY <80>	
METER SW	BOARD ASSEMBLY <81>	6-59
TRACKING V	VR BOARD ASSEMBLY <82>	6-59
	BOARD ASSEMBLY <83>	
TP TERMINA	AL BOARD ASSEMBLY <84>	6-59
DECK TERM	INAL BOARD ASSEMBLY <91>	6-60
CASSETTE I	HOUSING BOARD ASSEMBLY <	33> 6-60

Important Safety Precautions

Prior to shipment from the factory, JVC products are strictly inspected to conform with the recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Precautions during Servicing

- Locations requiring special caution are denoted by labels and inscriptions on the cabinet, chassis and certain parts of the product. When performing service, be sure to read and comply with these and other cautionary notices appearing in the operation and service manuals.
- Parts identified by the symbol and shaded (parts are critical for safety.

Replace only with specified part numbers.

Note: Parts in this category also include those specified to comply with X-ray emission standards for products using cathode ray tubes and those specified for compliance with various regulations regarding spurious radiation emission.

3. Fuse replacement caution notice.

Caution for continued protection against fire hazard. Replace only with same type and rated fuse(s) as specified.

- 4. Use specified internal wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulation Tape
- 3) Spacers
- 5) Barrier

- 2) PVC tubing
- 4) Insulation sheets for transistors
- When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.) wrap ends of wires securely about the terminals before soldering.

- Observe that wires do not contact heat producing parts (heatsinks, oxide metal film resistors, fusible resistors, etc.)
- Check that replaced wires do not contact sharp edged or pointed parts.
- When a power cord has been replaced, check that 10-15 kg of force in any direction will not loosen it.

10. Also check areas surrounding repaired locations.

11. Products using cathode ray tubes (CRTs) In regard to such products, the cathode ray tubes themselves, the high voltage circuits, and related circuits are specified for compliance with recognized codes pertaining to X-ray emission. Consequently, when servicing these products, replace the cathode ray tubes and other parts with only the specified parts. Under no circumstances attempt to modify these circuits. Unauthorized modification can increase the high voltage value and cause X-ray emission from the cathode ray tube.

12. Crimp type wire connector

In such cases as when replacing the power transformer in sets where the connections between the power cord and power transformer primary lead wires are performed using crimp type connectors, if replacing the connectors is unavoidable, in order to prevent safety hazards, perform carefully and precisely according to the following steps.

- 1) Connector part number : E03830-001
- Required tool: Connector crimping tool of the proper type which will not damage insulated parts.
- 3) Replacement procedure
 - (1) Remove the old connector by cutting the wires at a point close to the connector.

Important: Do not reuse a connector (discard it).

Fig. 3

(2) Strip about 15 mm of the insulation from the ends of the wires. If the wires are stranded, twist the strands to avoid frayed conductors.

(3) Align the lengths of the wires to be connected. Insert the wires fully into the connector.

Fig. 5

(4) As shown in Fig. 6, use the crimping tool to crimp the metal sleeve at the center position. Be sure to crimp fully to the complete closure of the tool.

ia. 6

(5) Check the four points noted in Fig. 7.

Not easily pulled free Crimped at approx. center of metal sleeve

Wire insulation recessed more than 4 mm

Fig. 7

Safety Check after Servicing

Examine the area surrounding the repaired location for damage or deterioration. Observe that screws, parts and wires have been returned to original positions, Afterwards, perform the following tests and confirm the specified values in order to verify compliance with safety standards.

1. Insulation resistance test

Confirm the specified insulation resistance or greater between power cord plug prongs and externally exposed parts of the set (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.). See table 1 below.

2. Dielectric strength test

Confirm specified dielectric strength or greater between power cord plug prongs and exposed accessible parts of the set (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.). See table 1 below.

3. Clearance distance

When replacing primary circuit components, confirm specified clearance distance (d), (d') between soldered terminals, and between terminals and surrounding metallic parts. See table 1 below.

4. Leakage current test

Confirm specified or lower leakage current between earth ground/power cord plug prongs and externally exposed accessible parts (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.).

Measuring Method: (Power ON)

Insert load Z between earth ground/power cord plug prongs and externally exposed accessible parts. accessible part Use an AC voltmeter to measure across both terminals of load Z. See figure 9 and following table 2.

5. Grounding (Class I model only)

Confirm specified or lower grounding impedance between earth pin in AC inlet and externally exposed accessible parts (Video in, Video out, Audio in, Audio out or Fixing screw etc.).

Measuring Method:

Connect milli ohm meter between earth pin in AC inlet and exposed accessible parts. See figure 10 and grounding specifications.

Fig. 10

Grounding Specifications

Region	Grounding Impedance (Z)
USA & Canada	Z ≦ 0.1 ohm
Europe & Australia	Z ≦ 0.5 ohm

AC Line Voltage	Region	Insulation Resistance (R)	Dielectric Strength	Clearance Distance (d), (d')
100 V		R≧1 MΩ/500 V DC	AC 1 kV 1 minute	d, d' ≧ 3 mm
100 to 240 V	Japan	R ≥ 1 M/22/500 V DC	AC 1.5 kV 1 minute	d, d' ≧ 4 mm
110 to 130 V	USA & Canada	_	AC 900 V 1 minute	d, d' ≧ 3.2 mm
110 to 130 V 200 to 240 V	Europe & Australia	R≧10 MΩ /500 V DC	AC 3 kV 1 minute (Class II) AC 1.5 kV 1 minute (Class I)	d ≧ 4 mm d' ≧ 8 mm (Power cord) d' ≧ 6 mm (Primary wire)

Table 1 Specifications for each region

AC Line Voltage	Region	Load Z	Leakage Current (i)	a, b, c
100 V	Japan	0—ΛΛ	i ≦ 1 mA rms	Exposed accessible parts
110 to 130 V	USA & Canada	0.15 μF	i ≦ 0.5 mA rms	Exposed accessible part
110 to 130 V	Europe & Australia	0	$i \leq 0.7 \text{ mA peak}$ $i \leq 2 \text{ mA dc}$	Antenna earth terminal
220 to 240 V	Europe & Australia	0—///—0 50 ks2	i ≦ 0.7 mA peak i ≦ 2 mA dc	Other terminals

Table 2 Leakage current specifications for each region

Note: These tables are unofficial and for reference only. Be sure to confirm the precise values for your particular country and locality.

INSTRUCTIONS

JVC

BR-S822E

VIDEO CASSETTE RECORDER VIDEOKASSETTENREKORDER MAGNETOSCOPE A CASSETTE

0

SAFETY PRECAUTIONS

Warning Notice

Insert this plug only into effectively earthed three-pin FOR YOUR SAFETY (Australia)

- power outlet.

 2. If any doubt exists regarding the earthing, consult a
- qualified electrician. Extension cord, if used, must be three-core correctly

IMPORTANT (In the United Kingdom) Mains Supply (AC 240 V∼) WARNING - THIS APPARATUS

The wires in this mains lead are coloured in accordance with the following code;
GREEN-and-YELLOW:
EARTH MUST BE EARTHED

NEUTRAL LINE

As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured markings identifying the terminals in your place, proceed as follows. The wire which is coloured GREEN-AND-YELLOW must be connected to the terminal in the plug which is marked with the letter or by the sately early symbol 4 or coloured GREEN or GREEN-AND-YELLOW must be coloured BLUE must be connected to the terminal which is coloured BLUE must be connected to the terminal which is wire which is coloured BLUEN. The wire which is coloured BLUEN. The wire which is coloured BLUEN. The wire which is coloured BLUEN.

POWER SYSTEM
Connection to the mains supply
The operating voltage of this set is preset to 220 – 240 V~
at the factory.
Before connecting to mains, check that the voltage selector on the rear panel is set to the same voltage as your local mains supply.
Adapting to local power line
This set operates on 110 – 127 V/220 – 240 V~ AC, 50/60

Hz.

Hz. preset voltage is different from the power line voltage
if the preset voltage is different from the power line voltage selector by inserting a screwdriver into the slot of the voltage selector and turning it until the correct voltage is displayed.

This unit is produced to comply with Directives 76/889/EEC, 82/499/EEC, 87/308/EEC, and IEC Publ.65.

TO PREVENT FIRE OR SHOCK HAZARD, DO NOT EXPOSE THIS APPLIANCE TO RAIN OR MOISTURE.

CAUTION

To prevent electric shock, do not open the cabinet. No user serviceable parts inside. Refer servicing to qualified service personnet.

The rating plate and the safety caution are on the bottom of the unit.

It should be noted that it may be unlawful to re-record pre-recorded tapes, records, or discs without the consent of the owner of copyright in the sound or video recording, broadcast, or cable programme and in any filterary, dramatic, musical, or artistic work embodied therein.

Time Code Editing

Time Code

User Bits

ID Code

CONTENTS

How to Use This Manual3	Time Code/User Bits Recording/	
Precautions 3	Playback	
VCR	Preset Recording24	24
Video Cassettes	Regenerated Recording25	.25
Features 4	Playback	.25
d Connectors		1
Front Panel	Quick Guide to Editing	
Front Sub-Panel9	Techniques26	.26
Rear Panel 11	tions	27
Connections	Tapes For	
Video Equipment13		29
Audio Equipment14		
Reference Sync Signals for	Preroll Editing 30	.30
Recording and Playback15	Run Editing 31	31
Loading and Unloading Video		
Cassettes 16	Operation Flowchart32	.32
Loading	Preparation32	.32
Unloading	On-Screen Edit Data Display33	.33
On-Screen Displays17	Procedure33	.33
Playback	Counter Display36	36
Preparation18		
Procedure18	Operation 37	.37
Shuttle Search19	Menu Settings38	38
Jog Search19		45
Rewind and Fast-Forward20	Warning Display47	.47
rback	Test Points 49	.49
Recording	liser .	49
Preparation21	Installation	
	Rack Mounting (SA-K63UB)50	.50
Procedure22	Connector Specifications51	.51
Record-Pause and Assemble	Specifications 52	52
Editing22		
Time Code/User Bits.		

HOW TO USE THIS MANUAL

person who has some experience in videotape editing and is manual introduces you to the BR-S822E S-VHS Editing Recorder and shows you how to make the most of its many advanced features. Because the manual is written for the familiar with the terms and techniques described, explanations and definitions are kept to a minimum.

Also, some functions are available only when the corresponding optional boards are plugged in. Whenever these functions are referred to in the text, it is assumed that the corresponding boards have been installed.

- TBC functions are available only when the optional SA-T22E Time Base Corrector boards are installed.
- Component Y/R-Y/B-Y outputs are available only when the optional SA-T22E Time Base Corrector boards and accom-
- functions are available only when the optional SA-R22E panying component output connector board are installed. TC functions are available only when the optional SA-F

Time Code Reader/Generator board is installed.

- 45-Pin parallel interface is possible only when the optional SA-K28E Interface board is installed.
 - RS-232C interface is possible only when the optional SA-
- K27E Interface board is installed.
 Y/C 686/Y/C 924 Output is available only when the optional SA-E92E Output board is installed.

MPORTANT

menu's initial settings unless otherwise specified. We recommend that you familiarise yourself with the available settings before operating the VCR. For more information, nstructions for all operations are based on the setup please refer to "Setup Menu", 13 p.37

PRECAUTIONS

- Avoid using the recorder in places subject to the following conditions
- extreme heat, cold, or humidity,
- poor ventilation. vibrations, and
- Do not use the recorder immediately after moving it from a cold place to a warm place. The water vapor in warm air will condense on the still-cold video head drum and tape guides and may cause damage to the tape and the recorder. Be careful of moisture condensation.
 - Handle the recorder carefully.
- Do not block the ventilation openings.
 Do not place anything heavy on the recorder.
 Do not place anything which might spill on the top cover of
 - the recorder.
- Use in horizontal (flat) position only. During transportation,
- · Avoid violent shocks to the recorder during packing and
 - Before packing, be sure to remove the cassette from the transportation.

execute the section of the section o

This recorder uses S-VHS, S-VHS-C, VHS, and VHS-C Only cassettes recorded in the standard play (SP) mode can be played on this recorder. LP recording is not possible. cassettes.

SE-60 for 60 minutes, and SE-30 for 30 minutes of SE-180 for 180 minutes, SE-120 for 120 minutes,

S-VHS:

S-VHS-C: SE-C30 for 30 minutes of recording.

VHS: E-180 for 180 minutes, E-120 for 120 minutes, E-90 for 90 minutes, E-60 for 60 minutes, and E-30 for 30 minutes of recording.

/HS-C:

- HS.C: EC:30 for 30 minutes of recording.
 To prevent accidental erasure, remove the cassette's safety tab. To record on a cassette whose safety tab has been removed, cover the hole with adhesive tape.
- slack. If there is any slack, turn the gear on the cassette in Before loading a compact cassette, be sure the tape is not the direction of the arrow to take up the slack.
- Avoid exposing the cassettes to direct sunlight. Keep them away from heaters.
 - Avoid extreme humidity, violent vibrations or shocks, strong magnetic fields (near a motor, transformer or magnet), and
 - Place the cassettes in cassette cases and position vertically

FEATURES

Newly-developed full-size/compact-compatible cassette loading mechanism

on-air transmission, and other applications. Since direct editing from C-size cassettes is possible with the BR-S822E, higher-quality edits are assured. Similar in principle to the loading mechanisms employed in equipment, the BR-S822E's newly-developed cassette oading mechanism can directly accept both regular and Csized S-VHS cassettes. The tape transport system has also been improved to provide faster search speeds and more stable transport. C-size S-VHS cassettes are already popular in image acquisition — as exemplified by the success of JVC's GY-X1 S-VHS-C camcorder — and are expected to assume a more important role in distribution, M-II, 3/4-inch, and other high-performance professional

Open-ended system architecture with plug-in TC and TBC capability

system expansion. Built-in interfaces are provided for 9-pin RS-422A serial remote, COMPOSITE IN/OUT, and Y/C443 IN/OUT. Further system expansion and RS-232C remote control board for connection to a OUT circuit, as well as a 45-pin remote control board, an Since these circuit boards can be slotted directly into the BR-S822E, it can easily be configured to fit into any existing system without the need for expensive alterations To better meet the requirements of different edit suites, the BR-S822E has been designed to permit open-ended customisation is facilitated by a variety of optional "snapin" boards. These include a time code reader/generator (LTC/VITC), a TBC with field memory and COMPONENT computer, and a Y/C 686/Y/C 924 OUT processor board. or additional space.

High-quality pictures

separator and digital DOC. Moreover, this high picture S-VHS picture quality* has been improved still further with he addition of advanced circuitry including a digital Y/C quality is maintained through multi-generational dubbing; even after as many as five generations, the results match hose available from 3/4-inch equipment. For improved playback picture performance, noise reduction circuitry and switching noise masking are provided.

- Technology licensed by FAROUDJA Laboratores.
- Employs chroma-enhancing technology co-developed by JVC and FAROUTAALaxoraxnes and modified for S-VHS applications.

Fully-equipped for high-performance

heads, preroll, colour frame servo, auto H-Phase lock, and capstan bump functions. Convenient editing functions such as swap editing, preview, review, go-to, and edit point entry make high-performance editing possible even maximum visual search speed increased to 32x. Edit quality is enhanced by features such as twin rotary erase the BR-S822E is equipped with a comprehensive set of studio-level editing functions. Search/jog dials are provided for fast and accurate location of edit points with when an editing controller is not incorporated in the

Menu Display and On-Screen Mode Check

system.

indications on the counter display or on-screen. As a result, many seldom-used external switches have been and switching of most basic functions while referring to eliminated. Even functions normally requiring DIP switch resetting can be switched directly via the menu display. On-screen mode check and warning Indications are also for easy set-up and customisation, the BR-S822E features a menu display which allows simple dial setting provided.

Other features

- 4-Field sequence colour frame servo
- · Hi-Fi Stereo system with Hyper-tangent system to minimise switching noise for a dynamic range of more than 67 dB
 - Two-channel normal audio with switchable Dolby B" noise reduction
 - Independent audio level controls for all four channels
 - XLR balanced audio connectors
- Two level meters switchable between Hi-Fi and Normal audio; the right meter can also function as a video level/tracking meter
- Video recording level control
- 8-Digit time counter for indication of editing data in either TC or CTL mode
 - Built-in black burst signal generator

 - Wide-aspect (16:9) ID recording capability External sync input for reference video
 - Y-Frequency response control
- Heavy-duty full-loading mechanism with high-speed Tiltable control panel
- Self-diagnostic warning system chassis
- Automatic head cleaning mechanism
- Front-access test points
- 9999-hour meter switchable from tape counter Headphone jack with adjustable level output
- 19-inch EIA rack mounting

Dolby noise reduction manufactured under license from Dolby D symbol CD are trademarks of Dolby Laboratories Laboratories Licensing Corporation. "DOLBY" and the double-Licensing Corporation.

S

CONTROLS AND CONNECTORS

TENNAL METERS OF THE PARTY PARTY.

- When power is ON, the time counter and level meters will be illuminated. POWER switch
 - EJECT button with LED indicator
- Ejects the cassette (from any mode).
 The indicator lights while the cassette is being ejected.
 - Cassette loading slot
- Accepts either a compact or full:size S-VHS/VHS cassette according to the type selected with the CASSETTE SELECT button ©.

O LED indicators

- is ready to accept a full-size cassette. When only the centre indicator is blinking, the recorder is ready to accept a compact cassette. Press the CASSETTE SELECT button (3) to change modes. When a cassette is inserted, the blinking will stop and the corresponding indicator(s) will Indicate whether the recorder is in the Full or Compact mode. When all three indicators are blinking, the recorder CASSETTE SIZE indicators remain continuously lit.
- · Lights when the unit malfunctions. All other controls are AUTO OFF Indicator
- Lights when an S-VHS or S-VHS-C cassette is inserted with the unit in the S-VHS mode, or when playing back a blank part of the tape. S-VHS indicator
- Blinks when S-VHS recording is attempted with a VHS

TBC indicators
(with optional SA-T22E TBC installed)
OPERATE: Lights when the TBC is in operation. A timebase-corrected signal is output.

GENLOCK: Lights when the TBC is in operation and locked to the external reference signal.

Lights when the capstan and drum servos SERVO Indicators SERVO LOCK:

Lights during playback of a tape with no are locked to the reference signal. control pulse recorded. CTL PULSE:

COLOUR FRAME: Lights when the capstan and drum serves are locked to PAL 4-field colour frame.

AUDIO Indicators

setting) or when playing back Hi-Fi-recorded Lights when the Hi-Fi REC circuit is ON (via menu

LIMITER: Lights when the built-in audio limiter circuit is set

to ON (via menu setting). Lights when the Dolby B* noise reduction circuit is set to ON (via menu setting). Ë

TC (TIME CODE) Indicators (with optional SA-R22E TC (time code) generator/reader installed)

(via menu setting). If LTC is not picked up, the green when normal-audio-recorded tapes are played Lights green when LTC-recorded tapes are played back with the normal audio-2 track set for LTC use indicator lights orange. This indicator may also light

VITC: Lights when VITC-recorded tapes are played back or when recording a VITC signal.

 Adjusts tracking. Turn in either direction until the tracking meter deflects all the way to the right.
 Normally leave in the centre click-stop position. TRACKING control

CASSETTE SELECT button

6

- Press to select FULL or COMPACT. The corresponding indicator(s) will light
 - Indicates the audio level of the normal audio-2 or Hi-Fi AUD-2/R (VIDEO/TRACKING) level meter
- right-channel signal during recording and playback.

 Functions as a video level meter during recording and as a tracking meter during playback when the METER SELECT switch (a) is set to VIDEO/TRACKING.

AUD-1/L level meter

- Indicates the audio level of the normal audio-1 or Hi-Fi leftchannel signal during recording and playback.

 • METER SELECT switch
 - and video level indication.
 - Meter functions as the audio-2/Hi-Fi right-channel level meter.

VIDEO/TRACKING: Meter functions as a video level

meter in recording, and as a tracking

- meter in playback Indicate the current tape direction. Tape direction indicators
 - - S ö
 - ☐: Reverse
- ring, the inner as a Jog dial. The Jog and Shuttle modes can be entered directly from the Play, Stift, FF, REW, or Dual concentric controls. The outer functions as a Shuttle **● JOG/SHUTTLE dials**
 - from 1/30 to 32 times normal (up to 14 SHUTTLE ring: Search speed can be varied continuously
- times normal with C-size cassettes) in stop position to engage the Still mode. Manual frame-by-frame search in either the speed of dial rotation. Releasing the dial engages the Still mode. Also used in edit point trimming, menu setting and forward or reverse. Set to the centre clickdirection. Tape speed is determined by

JOG dial:

Control panel lock release buttons

TC/UB presetting.

- To till the control panel, press these buttons and lift the panel at the same time. The panel can be tilted to 90° and locked at angles of 25°, 50°, and 75°.
 - Instantly re-activates the Shuttle mode with search speed O JOG/SHUTTLE button with JOG/SHTL mode indicators
 - determined by the current dial setting. ① Time counter
- Shows tape time in hours, minutes, seconds, and frames
 - Displays edit-in and -out points.
 Displays user bits.
 Displays menu settings and warnings.

Operation buttons with LED indicators PAUSE/STILL button

- Temporarily stops recording when pressed in the Record
 - Displays a still picture when pressed in the Play mode.

PLAY button

- Re-starts normal playback when pressed in the Still or Starts playback. Search mode
 - Starts recording when pressed together with the REC button.
- Starts editing when pressed together with the EDIT button in the Play mode (Run Editing).
 - Re-starts recording when pressed in the Record-Pause

REC button

 Displays TC generator data when pressed in the Stop mode with REMOTE select switch ® set to LOCAL. Starts recording when pressed together with the PLAY Outputs EE signafs when pressed in the Play mode. button.

(Released by pressing STOP button.) **EDIT** button

- Starts editing when pressed together with the PLAY button in the Play mode.
- buttons) when pressed on its own in the Play mode.

 Displays TC generator data when pressed in the Stop mode. (Released by pressing STOP button.) Outputs EE signals (selected with the Edit Mode Select
 - Switches the recorder between the Standby-On and Standby-Off modes while the VCR is in the Stop mode. STAND BY button
- Standby-On is automatically engaged when the Stop Standby-On: The tape is loaded and the drum is rotating. button is pressed.
- Standby-Off: The tape is loaded but tape tension is reduced and the drum does not rotate. The The indicator is lit.

REW button

- Starts rewind when pressed in any mode.
- Engages the Stop mode (Standby-On). The tape stops, but remains in the full-loaded position with the drum STOP button
 - rotating.

 The STOP and STAND BY indicators will light.
- Starts fast forward when pressed in any mode. FF button
 - Resets the CTL counter to zero. COUNTER RESET button

 - Clears the entered edit point.
- The CTL counter will be reset even if this button is pressed in the TC mode.

Edit control buttons PREROLL button with LED indicator

•

- Prerolls the tape by about 7 seconds.
 CANCEL button
- Press together with the IN or OUT button to clear the edit point from memory.
- Press together with the IN or OUT button to access the IN or OUT point. GO TO button
 - Press together with the IN or OUT button to enter an IN or OUT point. **ENTRY button**
 - N/OUT buttons with LED indicators
- Press together with the ENTRY button to enter the IN or OUT point.
 - Press either button on its own to display the IN or OUT
- Press simultaneously to display edit duration.
 Turn the JOG dial while holding either button to trim the IN
- Player/Recorder select buttons or OUT point.

- For swap editing via the 9-pin connector.

 Press P to operate the Player with this recorder's controls.

 Press R to operate this recorder.
 - Cett operation buttons with LED indicators

 - To select the editing mode.
- All input video and audio signals are
- Inserts the video signal and the Hi-Fi audio VIDEO/HI-FI:
 - signal together. AUD-1: AUD-2:
- Inserts the normal audio-1 signat. Inserts the normal audio-2 signal or the LTC

7

REVIEW button

- Reviews the executed edit.
 EDIT STOP button Stops automatic editing.
 AUTO EDIT button
- Executes automatic editing.
 - PREVIEW button
- Previews the programmed edit.
 Time Code setting buttons
- To preset time code/user bit data (with optional SA-R22E TC generator/reader installed). HOLD button
- This button is only effective when the SA-R22E's PRESET/REGEN switch is set to PRESET. Holds the current counter data; the leftmost digit will blink.
 SHIFT button
 - Shifts the blinking digit to the right. (You can also shift the blinking digit in either direction by holding down the SHIFT button and turning the JOG dial.)
- ADV (ADVANCE) button

 Advances the value of the blinking digit. (You can also change the value in either direction by holding down the ADV button and furning the JOG dial.) RESET button
 - Transfers the data set with the HOLD, SHIFT, and ADV buttons to the time code generator.
 Automatically cancels the Hold mode.
 - MIC Jacks (AUD-1/L, AUD-2/R)
- For microphone connection. Input signal switches from

PHONES jack/LEVEL control

- Connect a set of headphones to monitor sound recording.
- Adjust output level with the LEVEL control.
 Hi-Fi L/R and NORM AUD-1/AUD-2 AUDIO REC LEVEL.

To separately adjust recording levels for the Hi-Fi left/right-channel signals and the normal (linear) audio-1/2

Optimum level is the point where the corresponding meter's peak deflection is "0".

AUDIO MONITOR select switches

To record the signal input to the VIDEO IN LINE connector. BLACK: LINE

WIDEO INPUT select switch
 To select an input video signal for recording.
 V/C443: To record the signal input to the V/C443

signal un a blank tape in preparation for insert editing. If set to this position during menu setting, on-screen information is output from all To record the internally-generated black burst output connectors, not only the MONITOR OUT

REMOTE select switch connector.

To select the audio output for the PHONES jack and the AUDIO MONITOR OUT connector.
 The HI-FI/NORM switch also switches the audio level

 To select between remote and local control of the recorder. 9-PtN: For remote control via the rear panel 9-pin

- LOCAL: For direct control with the recorder's function connector buttons.
- REM-2: For remote control via the optional 45-pin or RS-232C interface.
 - COUNTER select switch

together. To monitor the normal audio-2 signal or Hi-Fi

right-channel signal.

AUD-2/R:

To monitor the AUD-1/L and AUD-2/R signals

channel signal.

XIX

AUD-1/L:

NORM:

To monitor the normal audio signals.

To monitor the normal audio-1 or Hi-Fi left-

To monitor the Hi-Fi audio signals.

meters between Hi-Fi and NORMAL.

- TC generatior/reader installed. If this is not installed, CTL signis are displayed regardless of the switch setting. CTI. CTL signists are displayed on the time counter. TC. Time code signals are displayed on the time To select the time counter display mode with the SA-R22E
 - - UB: User bits are displayed on the time counter.

FRONT SUB-PANEL

The controls in this section function when the optional SA-T22E TBC (time base corrector) is installed.

WIDEO LEVEL UNITY/VARIABLE select switch/level

The output signal's video level is the same as the playback signal. Normally set to this position. VARIABLE:

Allows you to adjust the output signal's video level with the VIDEO LEVEL control. Adjustment is possible within ±3 dB.

CHROMA LEVEL UNITY/VARIABLE select switch/level control

Allows you to adjust the output signal's chroma level with the CHROMA LEVEL control. Adjust-The output signal's chroma level is the same as the playback signal. Normally set to this VARIABLE Ë Z

ment is possible within ±3 dB.
CHROMA PHASE UNITY/VARIABLE select switch/level control

•

as the playback signal.
Allows you to adjust the output signal's chroma phase with the CHROMA PHASE control.
Adjustment is possible within ±30°. The output signal's chroma phase is the same VARIABLE:

VARIABLE: Allows you to adjust the output signal's setup level with the BLACK LEVEL (SET UP) control. the playback signal.

 Adjusts the output signal's horizontal phase with respect 0

Adjusts the output signal's subcarrier phase with respect

Adjusts the output signal's video phase with respect to the

playback signal's H sync. Up to 15 rotations are possible

with continuous variation over a range of ±1.5 µsec.

 Adjusts the output signal's C signal delay time with D YC TIMING control

• BLACK LEVEL VARIABLE/UNITY select switch/level

The output signal's setup tevel is the same as

Adjustment is possible within ±107 mV.

SYSTEM PHASE control

to that of the reference input signal. Adjustment is possible within a range of ±3 µsec.

to that of the reference input signal. Up to 15 rotations are possible with continuous variation over a range of ±180°. ■ VIDEO PHASE control

reference to the Y signal. Adjustable within ±500 nsec.
• Normally set to "6".

TBC ON/OFF switch.

 Set to ON for TBC playback. (During TBC operation, the servo is locked to the reference signal supplied to the EXT REF connector even if the SYNC select switch is set to VIDEO.)

Pressing any of the edit select buttons defeats TBC

Set to OFF to bypass TBC.

MENU SET ON/OFF switch

SET to ON to activate the On-Screen Menu. The counter display will also switch to the Menu Set mode.

 Most basic system setup operations are performed using the Menu.

PB Y ENHANCE switch

Enhances the luminance signal for a sharper playback

+4 dB: Boosts luminance signal level by 4 dB at 2.5 MHz

for a sharper picture. 0 dB: No effect. The same result is obtained by setting +2 dB: Boosts luminance signal level by 2 dB at 2.5 MHz for maximum picture sharpness.

the VIDEO OUT select switch
to EDIT.

SYNC select switch

The servo is synchronised with the external reference signal supplied to the EXT REF input.

VIDEO: The servo is synchronised with the input video (Use S-VHS REC MODE select switch

S-VHS: To record in the S-VHS mode. To record in the VHS mode. cassettes only) VHS:

IN recorder in editing.

NORM: Normally set to this position.

Set to this position when using this VCR as a feeder

VIDEO OUT select switch

-

EDIT:

VIDEO AGC ON/OFF switch
 Set to ON to activate the built-in VIDEO AGC circuit.
 Set to OFF to activate the huminance video recording level

 Use to adjust video recording level, referring to the VIDEO/TRACKING meter. The centre click-stop is the standard position. The VIDEO AGC switch must be OFF to WIDEO control

(With SA-R22E TC generator/reader installed) TIME CODE GENERATOR/READER SETTING SWITCHES

ON: To record the ID code specifically preset for each ID PRESET ON/OFF switch

OFF: To use the user bits memory for standard procedures in the Preset mode.

ON: To record VITC time codes.

OFF: VITC time codes are not recorded. VITC REC ON/OFF switch 9

This switch has no effect on LTC recording (enabled by setting menu item #206 to "01 -- LTC"). NOTE:

FREE/REC switch

switch is set to PRESET and the INT/EXT switch is set to This switch is effective only when the PRESET/REGEN

FREE: The time code runs in real time, regardless of the The time code runs only during recording. video recorder's operating mode. REC:

PRESET: To use the internal TC generator in the Preset mode (with the INT/EXT switch set to INT), ur to use an external TC generator via the TIME CODE IN connector (with the INT/EXT switch set to PRESET/REGEN switch

REGEN: To use the internal TC generator in sync with either the playback time codes (with the INT/EXT switch set to INT), or externally input time codes (with the INT/EXT switch set to EXT).

■ INT/EXT switch

INT: To use the internal TC generator.

EXT: To use an externally-connected LTC/VITC generator.

AUTO/LTC/VITC switch

to the type of reference time code with which the internal TC generator is synchronised in the Regen mode. To select the TC reader mode. Select the mode according

and in LTC at speeds higher than normal, Missing sections are interpolated with CTL counts. AUTO: For tapes with matching VITC and LTC data. Counts time codes in VITC at tape speeds lower than normal,

For LTC-only tapes or when editing with LTC data. Counts time codes in CTL at tape speeds lower than normal and higher than 10 times normal, and in LTC at speeds higher than normal. Missing sections are <u>;</u>

interpolated with CTL counts.

For VITC-only tapes ar when editing with VITC data.

Counts time codes in VITC at tape speeds lower than 10 times normal, and in CTL at speeds higher than 10 times normal. Missing sections are interpolated with CTL counts. VITC

V-RF test point
 Outputs the video head FM signal during playback.

Can be used for detection of clogged or worn heads.
 A-RF test point

Outputs the Hi-Fi audio FM signal during playback.
 Can be used for detection of clogged or worn heads.

D-PULSE pin

Connect to the external trigger terminal of an oscilloscope.

The second of th

AC IN socket

Connect to 110 – 120 V or 220 – 240 V AC, 50/60 Hz power

Fuse holder
 NORM AUDIO INPUT impedance select switch

ON: 600 ohms. Ormally set to this position.

AUDIO IN NORMAL: Normal audio input connectors for Audio-1 and Audio-2. Audio input connectors

0

Hi-Fi audio input connectors for Left AUDIO IN HI-FI:

and Right.

AUDIO OUT NORMAL: Normal audio output connectors for Audio-1 and Audio-2. Audio output connectors

Hi-Fi audio output connectors for Left HI-FI AUDIO INPUT Impedance select switch

AUDIO OUT HI-FI:

ON: 600 ohms.
OFF: 10 k-ohms. Normally set to this position.

• VIDEO OUT LINE (1, 2) connectors

The composite video signal is output from these

WIDEO OUT Y/C443 (1, 2) connectors
 The Y/C443 signal is output from these connectors.

@ AUDIO MONITOR OUT connector

 The audio signal selected with the AUDIO MONITOR select switches is available at this connector

 ◆ VIDEO MONITOR OUT connector
 ◆ The composite video output signal is available at this connector. On-screen information is also supplied.

 Expansion slot
 For installation of optional interface (SA-K28E or SA-K27E).

D NORMAL INPUT LEVEL select switch

 To select -6 dB, 0 dB, or +4 dB according to the level of the normal audio input signal. Both channels are switched

 Hi-Fi INPUT LEVEL select switch
 To select -6 dB, or +4 dB according to the level of the Hi-Fi audio input signal. Both channels are switched

AUDIO INPUT SELECT switch

HCOM: "Hi-Fi Combined" recording. Set to this position to record audio signals input to the AUDIO IN HI-Fi connectors on both the Hi-Fi and Normal audio

racks.

"Separate" recording. Set to this position to record audio signals input to the AUDIO IN Hi-Fi and NORMAL connectors separately on the Hi-Fi and Normal audio tracks. SEP:

"Normal Combined" recording. Set to this position to record audio signals input to the AUDIO IN NORMAL connectors on both the Hi-Fi and Normal audio NCOW:

♠ AUDIO OUTPUT LEVEL select switch

 To select -6 dB, 0 dB, or +4 dB according to the input level of connected audio equipment. All four audio channels are

TIME CODE IN/OUT connectors

Set menu item #206 to "01 - LTC" to record LTC time codes on the normal audio-2 track.

 Connect a time code generator to the IN connector for external time code recording.

Connect a time code reader to the OUT connector

external time code reading. WIDEO IN LINE connectors

The composite video signal is Input to the left connector.
To output the loop-through signal to another unit, set the

75-ohm terminating switch to OFF. # 75-Ohm terminating switch

ON: The foop-through signal is terminated at the BR-S822

 Connect to an RS-422 9-pin serial remote control unit or to The loop-through signal is output to another unit. 9-PiN connector OFF

the RS-422 9-pin connector of a feeder for swap editing. **® VIDEO IN V/C443 connector**

The Y/C443 signal is input to this connector.

OPTION connector

 Delivers the Y/C 686/Y/C 924 signal (with optional SA-E92E Output board installed) to the DUB IN connector of 3/4" U-VCR machines.

 EXT REF connectors with 75-ohm terminating switch
 Supply the reference signal (either black burst signal or composite video) to the left connector and set the 75-ohm terminating switch to ON.

 When using the SA-T22E, do not use a black-and-white signal or sync signal without burst as the reference signal, otherwise the intended synchronisation will not be To output a loop-through signal to another unit, set the 75-ohm terminating switch to OFF.

NOTE:

© Fans © Expansion sfot obtained.

For installation of COMPONENT OUT connector board when optional SA-T22E TBC is installed. Y/R-Y/B-Y output connectors: MII or Betacam component

signal is output.

TBC remote terminal: Connect a 15-pin remote controller

 Select voltage according to your local power supply.
 (Be sure the POWER is off when setting the voltage.) W VOLTAGE SELECTOR

CONNECTIONS

- To output the loop-through signal, set the 75-ohm terminating switch to OFF, otherwise set it to ON. (Be sure to terminate the signal at the last of the connected units.)

 or h-screen information is subquir from the VIDEO MONITOR OUT connector only.

 VR-VR-Y component signals can be output when the optional TBC board SA-T22E is installed. M-II and Betacam component signals are selectable via menu tiem #104, (£7 p.39)

NOTES:

• The MIC jack has priority over the rear panel AUDIO IN connectors. When a microphone is connected, the input signal is automatically shifted from AUDIO IN to MIC.

REFERENCE SYNC SIGNALS FOR RECORDING AND PLAYBACK

LOADING AND UNLOADING VIDEO CASSETTES

LOADING

CASSETTE SIZE indicators AUTO OFF indicator

CASSETTE SELECT bulton

.

JVE

- condensation has occurred. All functions except Eject Switch on the power.
 Check the AUTO OFF indicator.

 If this indicator lights, some abnormal condition such is
- are disabled.

 3. Check the CASSETTE SIZE indicators.
- If you're loading a full-size cassette, be sure that all three indicators are blinking.

- If you're loading a compact cassette, be sure that only the centre indicator is bilinking.
 Press the CASSETTE SELECT button to change modes.
 Insert a cassette with its label side facing you.
 The CASSETTE salomatically retracted and loaded.
 The VCR enters the Stop/Standby-On mode. The STOP and STAND BY indicators will light. In this mode, the tape is fully loaded and the head drum is rotating. The CASSETTE SIZE indicator(s) will stop blinking but remain
- Output signal changes from EE to playback.

- Be sure that the CASSETTE SIZE indicator(s) is blinking when inserting a cassette.
- To cancel the Standby-On mode, press the STAND BY
- The head drum will stop rotating, but the tape remains in the full-loaded position. The STAND BY indicator will go
 - As soon as you engage another mode (Play, Rewind, Fast Forward, Record, etc.), the STAND BY indicator will come g H

000000000 1000 0 0 0 0 0

- EJECT button M I:3 aaaaa 🗅 🗅

The cassette is ejected automatically,
 You can press the ELECT button in any mode.
 Output signal changes from playback to EE. Remove the cassette.

1. Press EJECT.

UNLOADING

- Do not insert fingers or foreign objects into the cassette loading slot as this may result in personal injury or damage to the mechanism.
 Do not try to remove the cassette once automatic loading has started.

STAND BY button

ON-SCREEN DISPLAYS

You can choose the display mode via menu setting. The time counter, operation mode, and Jog/Shuttle tape speed displays are available with the initial setting. You can reset the menu parameters to obtain any of the following displays:

Time counter Indicates tape position in CTL or TC mode. Indicates current operating mode and Jog/Shuttle tape speed (eg. "SHTL + 0.03"). VITC user bits reader data Time code generator data : LTC user bits reader data Operation mode CTL reader data VITC reader data External TC data LTC reader data CTL * 88:18:82:14 Time Counter + Operation mode + Jog/Shuttle tape speed Editing data CTL interpolation mode indicates that displayed TC data is interpolated with CTL counts.

NOTE

For edit data display, rr p. 33.

PLAYBACK

PREPARATION

- Set the SYNC select switch as required. (r² p.10)
 Set the AUDIO MONITOR select switches as required. (r² p.8)
 Set the COUNTER select switch as required. (r² p.8)
 Set the VIDEO OUT select switch as required. (rα p.8)
 NOR: for normal playback.
 EDIT: when using the VCR as an edit feeder.
 Set the RIMOTE select switch as required. (r² p.8)
 Set the REMOTE select switch as required. (r² p.8)
 Set the TBC switch to ON if you are using the SA-T22E or an external TBC.

PROCEDURE

- Press the PLAY bulton.

- Normal playback starts.
 Check the tracking level.
 Set the METER SELECT switch to VIDEO/TRACKING.
- Adjust the TRACKING control until the tracking meter (AUD-2R) defects fully to the right.
 Chack the monitor screen to be sure that the picture is not burned or marred by noise bars.
 Set the RB Y ENHANCE switch as required.
 If the VIDEO OUT select switch is set to EDIT, this switch.

: User bits generator data

- has no effect.
 4. Press the STOP button to stop playback.
- STOP button PLAY button METER SELECT switch

PB Y ENHANCE switch

- button while in the Play mode.

 Do not press the REC and PLAY buttons simultaneously,

- LP recordings cannot be played back.
 To monitor the input signal during playback, press the REC
- otherwise the VCR will enter the Record mode.

 * The VCR is preset to enter the Stop mode at tape end. If you want the VCR to automatically rewind when the end of the tape is reached, set menu item #312 to "01 REW" (

SHUTTLE SEARCH

The Shuttle Search mode is automatically activated when you turn the outer Shuttle ring in the Play, Still, FF, REW, or Stop mode. Turn the ring to adjust tape speed and direction as

- required.

 The STILL position (centre click-stop) provides a still picture.

 Turn the dial clockwise to search in the forward direction;
- counterclockwise to search in the reverse direction.

 The X1 click-stop provides normal speed search in the forward direction. X-1 provides normal speed search in the reverse direction.
- Another click-stop is located between X1 and the maximum position. This provides search at 4 times normal speed.

 When the dials is turned fully clockwise or counterclockwise, maximum search speed (about 22 times normal with luil-size cassettes and 10 times normal with C-size cassettes) is
- provided.

 To change modes, press the button corresponding to the desired mode (PLAY, STOP, REW, FF)
 For immediate reactivation of the Shuttle mode at the search speed corresponding to the current dial setting, press the JOG/SHUTTLE button.

JOG SEARCH

furn the inner Jog dial to adjust tape speed and direction as

The VCR enters the Jog mode and the JOG indicator lights. Tape speed varies in relation to how quickly you turn the dist. When the dial is released, the VCR enters the Siff mode.

0

j(| 4

NOTES:

Leaving the VCR in the Still mode for too long may damage the tape. To prevent this, the tape is automatically shifted to another video track when the Still mode continues for more than 5 minutes, (selectable with menu item #307, t.z. p.40.)

Jog dial

10

100

: : : : 808

PREROLL PLAYBACK

This function allows you to cue programmes for feeding or insertion and ensures that the tape is stabilised when the picture

- 1. Locate the point where you wish playback to begin.
- Press PRERDLL.
 The tape will rewind about 7 seconds of programme time and enter the Stop mode. (Preroll time is selectable via menu tiem #320, rr. p.41)
 Press PLAY exactly 7 seconds before the scheduled innertion time.
 Playback starts. When transmission starts, the picture will be fully stabilised.

To rewind the tape at high speed, press REW in any mode. To advance the tape at high speed, press FF in any mode. Press STOP to stop rewind or fast-forward.

REWIND AND FAST-FORWARD

RECORDING

PREPARATION

Set the REC MODE select switch.
VHS: To record in the VHS SP mode.
S-VHS: To record in the S-VHS SP mode. (Use S-VHS

cassette only)

2. Set the SYNC select switch as required. (cr p.10)
3. Set the ACUNITE select switch as required. (cr p.8)
4. Set the VIDEO INPUT select switch as required. (cr p.8)
5. Set the REMOTE select switch as required. (cr p.8)
6. Set the AUDIO MONITOR select switches as required.
7. Set the VIDEO OUT select switch as required. For normal recording.

For recording with the aparture control circuit P.

Set menu item #000 to "01 — 4 FIELD". (r.r. p.38)

RECORDING LEVEL ADJUSTMENTS

Video Level Adjustment

For automatic level control, set the VIDEO AGC switch to ON.
 For manual level control, set the VIDEO AGC switch to OFF.
 Set the METER SELECT switch to VIDEO/TRACKING and turn the VIDEO control until the VIDEO/TRACKING meter deflects to "0" with EBU-standard colour bar input.

Audio Level Adjustment

- Set the rear panel AUDIO INPUT SELECT switch as required.
 Set the rear panel AUDIO INPUT LEVEL select switches to match the input signal level.
 Set the METER SELECT switch to AUD-2R.
 For Hi-T audio recording level adjustment, set the AUDIO MONITYR switch to Hi-Fi and adjust the Hi-Fi AUDIO REC LEVEL L/R controls until the meters deflect to "0" at peak
 - signal level.

 For normal audio recording level adjustment, set the AUDIO

 No NonIYOR switch to NORM and adjust the NORM AUDIO REC

 LEVEL AUD-1/AUD-2 controls until the melers deflect to '0" al

VIDEO LEVEL /IDEO AGC switch

Hi-Fi AUDIO REC LEVEL controls NORM AUDIO REC LEVEL controls :

FIEC MODE select switch

SYNC select switch

REC button PLAY button

- Press the REC and PLAY buttons simultaneously to start
 - Boin the REC and PLAY LEDs will light.
 To temporarity stop recording, press PAUSE/STILL.
 To resume recording, press PLAY.
 Press the STOP button to stop recording.

RECORD-PAUSE & ASSEMBLE EDITING

The BR-S822E is equipped with an AEF function which automatically backspaces the tape about 3 seconds whenever the Record-Pause mode is engaged. In combination with the rotary erase head, this assures clean, smooth editing

- Press the PAUSE/STILL button during recording. Recording will stop but the REC indicator will remain lit.
- The tape automatically rewinds about 3 seconds of programme time and stops in the Record-Pause mode. Both the REC and PAUSE/STILL LEDs will light.
- Press the PLAY button to restart recording.
 The recorder will play back the tape for 3 seconds, then
- switch automatically to the Record mode at the point where the PAUSE/STILL button was originally pressed.

 Duning the 3-second playback prior to re-engagement of the Record mode, the picture seen on the screen is not the playback picture, but the input signal.

TIME CODE/USER BITS

IME CODE

This system simplifies location and specification of video frames by marking each frame with an 8-digit code number or "address". Essential for accurate editing, these "addresses" represent seconds, and frames, allowing you to specify exactly where edits are to start and stop by entering the IN and OUT time code absolute tape positions and are displayed in hours, minutes,

There are two different time code systems: LTC and VITC.

LTC (Longitudinal Time Code)

Time code addresses are recorded on a dedicated linear track by a fixed head. With the BR-S822E, the audio-2 track can be switched to LTC recording.

VITC (Vertical Interval Time Code)

The VITC is recorded during the video signal's vertical blanking period by a rotary head. Besides leaving the audio-2 channel free for editing, this permits accurate readout during still and search at speeds less than normal The time code used for the BR-S822E and the SA-R22E time code reader/generator conforms to the EBU standard.

"User bits" is a portion of the time code signal allocated to the user. It can be used to record the operator number or reel numbers.

ID COD

User bits can also be used to identify the operating VCR. You can preset the VCR's ID code and record it on tape by setting the ID preset ON/OFF switch (on the TC board) to ON. Once the ID code has been preset, it need not be re-set unless you want

TIME CODE EDITING

editing suites controlled via 9-pin serial interface.

Install the SA-R22E TC board in the BR-S822E.

Use another VCR with TC reading capability as the player, eg. Accurate editing in reference to time code data is possible with

- the BR-S822E or BR-S622E with SA-R22E TC board installed.

 For swap editing, connect the recorder and player via 9PIN connectors. Set the COUNTER switch to TC.

 For externally controlled editing, use a 9-pin serial editing controller. Switching between TC and CTL modes can be done
 - with the controller.
- Time code editing is also possible with RS-232C interface using the optional SA-K27E.

NOTES:

When editing with VITC using SA-T22E's TBC, set menu item #601 V BLANK MASK to "00 — OFF". (rz p.44)

TIME CODE/USER BITS RECORDING/PLAYBACK

PRESET RECORDING

This technique lets you record time code data starting from a

- Put the VCR in the Stop mode.
- Set the INT/EXT switch to INT.
 Set the PRESET/REGEN switch to PRESET.
 Set the FREE/REC switch to the desired position.

FREE: Time code runs in real time, regardless of VCR's

operating mode.

REC: Time code runs only during VCR recording.
Set the VITC REC switch to the desired position.

ω,

- Records VITC on the tape. OFF: VITC is not recorded.
- Do not record the VITC signal on lines 7, 8, or 11. Line 11 is used for AUTO EQ. (S-VHS only)
 To record LTC, set menu item #206 to "01 LTC"
 - Set initial time code/user till values. (cz. p. 39).

VOTES:

- The time code/user bits signal input to the rear panel TiME CODE in competitor can be recorded in its original form by setting the PRESET/REGEN switch to PRESET and the INT/EXT switch to EXT.
 - Time code colour frame data may not always match VCR

Setting initial Time Code/User Bit Values

Engage the EE mode by pressing the REC button in the Stop mode. TC generator data is displayed on the

IO I

- Set the COUNTER select switch to TC or UB.
- TC: To set the time code. UB: To set the user bits. (When using user bits for ID, also set the ID PRESET switch to ON.) Press the HOLD button.
 - The current counter data is held; the leftmost digit will blink in the Preset mode.

o.i

- Press the ADV (ADVANCE) button.

 This advances the value of the blinking digit. Set to the desired value. (You can also change the value in either direction by holding down the ADV button and turning the
- Press SHIFT

PRESET button

ADV button

SHIFT button

COUNTER select switch HÓLD button

į·□ ·•□ **2**0

- The blinking digit shifts to the right. (You can also shift the blinking digit in either direction by holding down the SHIFT button and turning the JOG dial.) Repeat steps 3 & 4 until all data is set. 4
 - က် တဲ
- · The preset data will be transferred to the time code Press the PRESET button.
 - In the Free Run mode, time code starts running.
 - Press the STOP button to finish setting. 7
 - Proceed with recording or editing. (cr. p.21, 26)
- If the COUNTER RESET button is pressed during TC data setting, the counter is reset to "00:00:00:00" NOTES:
 - · In user bits setting, all 8 digits can be changed from "0" to

 - TC data is cleared when the VCR's power is turned off.

REGENRATED RECORDING

Internal Regenerate Mode

This technique less you record time code data on a new edit in sync with the playback time code data on the preceding edit. In automate editing, ien-ayor is also available.

1. Set the INTEXT switch to INT.

2. Set the PRESET/REGEN switch to REGEN.

- When editing, use the Regenerate mode.
 If there is discontinuity in time code during preroll, go-to, or edit, the intended result may not be obtained.

External Regenerate Mode

This technique lets you record time code data regenerated in sync with externally input time codes.

- Connect an external LTC time code generator or the TIME CODE OUT connector of another VCR to the TIME CODE IN connector.

- 2. Set the COUNTER switch to TC.
 3. Set the INTEXT switch to EXT.
 4. Set the PRESETRECEN switch to REGEN.
 5. Set the VITC REC switch as required.
 6. Press the REC button in the Stop mode.
 The REC indicator lights and the counter shows time code running in sync with the external TC generator.

- When using an external VITC time code generator, menu item #408 must be re-set to "01 VITC" (cr. p.43) and the VIDEO IN connector must be used instead of the TIME CODE IN
 - connector. The EE picture does not include the VITC signal.

- When tapes with time code are played back, the rear panel TIME CODE CUT connector outputs the playback time code signal in its original form. The counter shows time code bring read by the internal TC reader (with COUNTER switch set to TC).

 It you need regenerated time code from the TIME CODE OUT connector, it set men tilem #405 to 'OI TCG' (tr. p.43), and set the front panel INT/EXT switch to INT and the PRESET/REGEN switch to REGEN. To dubt time code, or to supply the playback time code signal to another VCR, use this mode for more assured time code recording.

- All time code data is cleared when power is switched off.
 For more options, refer to TIME CODE menu settings.

GUIDE TO EDITING

QUICK GUIDE TO EDITING TECHNIQUES

Technique		Operation
Manual preroll editing	Without 9-pin connection:	Accurate insert or assemble editing of input camera or tape signats is possible using the BR-S822E's PREROLL and AUTO EDIT buttons.
Manual run editing	Without 9-pin connection:	insert or assemble editing of input camera or tape signals is possible directly from the Play mode.
Automatic swap editing	With 9-pin connection:	Ali operations for both player and recorder can be controlled directly at the recorder. Once edit IN and OUT points have been entered, editing is automatic. Automatic insert and assemble editing are both possible.
A/B roll editing	With 9-pin editing controller:	 With 9-pin editing controller: Automatic editing from two source players is possible. When a special effects generator is incorporated in the edit suite, special effects such as mixes, wipes, and fades can be applied to the edits. An audio mixer can be also incorporated in the edit suite for enhanced audio flexibility.

For Swap Editing

- To avoid distortion of the recorder's playback signal while the player is in the search mode, connect an external sync signal
 - generator.

 If the player doesn't have an auto H-phase function, editing with the external sync signal may produce skew at the top of the edited
- To avoid distortion or missing colours caused by unstable input signats, the player's signal should be processed by a TBC. (If you are using the BR-S822E or BR-S622E as the player. For a void the BR-S822E or BR-S822E or BR-S822E or BR-S82E or BR-S82E or the player is TBC switch to ON.)
 Be sure so the player's TBC switch to ON.)
 Be sure to set the recorder's INTEXT switch to INT in cases where the player doesn't have a TBC or the colour frame is not bocked to EXT SYNC (eg. when connecting to the BR-S811E and SA-F911E.)

NOTES:

If the special effects generator includes a TBC, set the player's TBC to OFF.

PREPARING RECORDING TAPES FOR

For Assemble Edits

When starting assemble editing from the beginning of a tape, or after a blank in the middle of tape, CTL signals must be recorded before the first edit-in point for a period exceeding the preroll

 Since the full erase head operates in assemble editing, a non-recorded asgement is produced after the postroil point. If assemble editing is applied in the middle of a recorded tape, the picture will be distorted after the postrall point

For insert Edite
Record CTL, signals before editing. At minimum, CTL signals
must be continuously recorded in the section shown in the figure
below.

- To record CTL signals on blank tape, set the VIDED INPUT switch to BLACK and engage the Record mode.
 The edit-in point cannot be specified at the very beginning of a tape. Allow for a section corresponding to the preroil time before the first edit-in point.
 The LTC signal may lask onto normal audio-1 during LTC insert editing. When playing back such a tape, turn the TRACKING control fully clockwise.

It takes a few seconds for tape running to stabilize after starting. To ensure that tape running is stable before it reaches an edit point, the tape must start running before the edit in point (prerolling). The preroll time can be set via menu item #320. (pr p.41)

If the player and the recorder's colour frames do not match, missing colour or colour phase reverse may occur at the edit IN point. In this case, set menu item #000 to "01 — 4 FIELD" (Cp ρ .38) Colour frame editing

Edit-out point & Postroll point CTL signals required Edit-in point Prevoll point Recorder

Postroff point Edit-out point CTL signals required Edit-in point Preroll point

MANUAL EDITING

When editing from a camera ur a VCR not connected to one of the BR-S822E's remote terminats, it is still possible to edit smoothly and accurately using the BR-S822E's AUTO EDIT and PREROLL buttons (Preroll Editing). Run editing is also possible

- using the EDIT button.
- Connect all necessary components correctly.
 Make all necessary preparations for recording. (cr p.21)
 Set menu item #000 to "01 4 FIELD". (cr p.38)

PREROLL EDITING

- Select the editing mode.

 Press ASSEM for assemble editing. All available input channels will be recorded.
- editing. Only the selected input channels will be recorded. VIDEO/Hi-Fi: The previously-recorded video/Hi-Fi audio signal will be replaced. Video and Hi-Fi cannot be inserted separately. Press one or more of the INSERT buttons for insert

AUD-1: AUD-2:

- The previously-recorded audio-1 soundtrack will be replaced.
- The previously-recorded audio-2 soundtrack or LTC will be replaced.
 - Press PLAY.

લં

- Playback starts.

- Search for the edit IN point.
 Use the JogShuttle controls to locate the IN point.
 Engage the Still mode at the IN point.
 Pess PREROLL.

ŏ

- The recorder will automatically rewind 7 seconds programme time and enter the Stop mode.
- Recording starts Operate the player or camera as required.
 Press AUTO EDIT to start editing.
 The tape is played back for 7 seconds. I
 - automatically at the edit IN point.

 8. Press EDIT STOP to stop editing.

 The recorder enters the Still mode.
- To continue preroll editing, repeat steps 3 to 7.
 To end preroll editing, press STOP.

- Insert editing is not possible if the recording tape does not have properly-recorded CTL signals.
 Insert editing will stop automatically if a tape segment without

 - properly-recorded CTL is reached.

PLAY button STOP button [][[[[[[]]]]][[[[]]][[[]]][[[]]][[[]]][[[]]][[][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[][[]][[] PREROLL button AUTO EDIT STOP button ASSEM button **INSERT buttons**

RUN EDITING

This type of editing allows you to edit directly from the Play mode. It is particularly useful in situations where you're editing stable, unchanging camera images (titles, stills, etc.) onto a perecorded tape.

- Connect all necessary components correctly.
 Make all necessary preparations for recording. (rz p.21)

- 1. Select the editing mode.

 Press ASSEM for assemble editing. All available input channels will be recorded.

 Press one or more of the INSERT buttons for inserf editing. Only the selected input channels will be recorded. VIDEO/HI-Fi: The previously-recorded video/Hi-Fi audio signal will be replaced.

 AUD-1: The previously-recorded audio-1 soundtrack will be replaced.

 AUD-2: The previously-recorded audio-2 soundfrack or LTC will be replaced.
- જં
- Playback starts.
 Press EDIT and PLAY simultaneously to start editing.
 To stop run editing, press PLAY or STOP.
- છં 4

STOP button **EDIT button** INSERT buttons ASSEM button . PMC

AUTOMATIC EDITING

This recorder is fully equipped for programmed automatic assemble and insert editing in conjunction with a player equipped with a 9-pin serial remote connector (such as the BR-S622E). IN and OUT points can be preset for frame-accurate automatic editing and full control over all player operations is possible directly from the recorder.

OPERATION FLOWGHART

PREPARATION

- Make sure all components are connected correctly.
 Connect the BR-S822E's 9-pin connector to the player's 9-pin

- Set the player's REMOTE select switch to 9-PIN.
 Set the player's menu tiem 4000 to '01 4 FIELD'.
 Set the BR-S822E's FEMOTE select switch to LOCAL.
 Make all necessary preparations for recording. (27 p.21)

ON-SCREEN EDIT DATA DISPLAY

All edit data including IN/OUT points for both player and recorder can be displayed on-screen when the REMOTE select switch is set to LOGAL.
To display edit data on-screen, set menu item #504 to "02 - EDIT DATA". For details on menu setting operation, refer to "Setup Menu", (r* p.37)

PROCEDURE

Edit Mode Selection

- Select the editing mode.
- Press ASSEM for assemble editing. All available input
- channels will be recorded.

 Press one ur more of the INSERT buttons for insert editing. Only the selected input channels will be recorded. VIDEO/H-F: The previously-recorded video/H-F: audio signal will be replaced.

 AUD-1: The previously-recorded audio-1 sound track will be replaced.

 AUD-2: The previously-recorded audio-2 sound-

track on LTC will be replaced.

Edit Point Entry

Enter the edit IN points for both the player and recorder, and the edit OUT point for either unit.

1. Press P (Player) or R (Recorder) to select the VCR to be

- The corresponding indicator will light.
 Use the search functions to locate the edit IN point. (CP p.19)
 - - Engage the Still mode at the fN point.
 3. Press IN and ENTRY simultaneously.
 The edit IN point is entered.
- Use the search functions to locate the edit OUT point.
 Engage the Still mode at the OUT point.
 Press OUT and ENTHY simultaneously.
 - The edit OUT point is entered.
- Edit point entry is also possible white the unit is in the Play mode. NOTES:

Edit Point Correction

When a new edit point is entered, the previous edit point is

- automatically cancelled.

 To check the picture at an edit point, press the GO TO button while holding the IN or OUT button.
- To cancel an edit point without entering a new one, press the IN or OUT button together with the CANCEL button.
 To trim the IN or OUT point, turn the JOG dist while pressing.
 - the corresponding button.

Edit Preview

- Press PREVIEW.
- The player and recorder rehearse the programmed edit, then enter the Stall mode.
 This step can be onnitted if desired.
 Press STOP at any time to stop Preview.

si

Executing An Edit

- 1. Press AUTO EDIT.
- Automatic editing takes place. Editing starts and stops at the entered IN and OUT points.

 - e if desired, you may switch input channels at any time during itsert editing.

 In assemble editing, in recorder continues recording for about 2 seconds after the OUT point, then rewinds and enter the Still mode at the OUT point, then rewinds and be deteated with the menu item #329 set to "01 DISABLE".)
- In insart editing, the recorder switches to the Play mode at the OUT point and continues playback for about 2 seconds after the OUT point, then rewinds and enters the Silli mode at the OUT point, (This function can be defeated with the menu item #329 set to '01 DISABLE'.)
 Press the EUT STOP button if you want to cancel the editing operation before the designated OUT point. The recorder will enter the Still mode.

- Press REVIEW on completion of the adit.
 The VCR will play back the completed edit for review.
 This step can be omitted if desired.

COUNTER DISPLAY

The BR-S822E's time counter shows tape time in hours, minutes, seconds, and frames in both CTL and TC modes. It also displays user bits, edit IN/OUT points, edit duration, menu settings, and warning codes.

Resetting the counter in the COUNTER RESET button to reset the time counter to zero.

NOTES:

- Stored edit points will be cleared if the COUNTER RESET button is pressed.
 The counter cannot be reset during preroll and automatic editing.

COUNTER RESET button

Edit duration display

Press IN and OUT simultaneously. The counter shows edit duration in hours, minutes, seconds, and frames.

For details on menu setting and warning code displays, ⟨xp. 37 and p. 47.

SETUP MENU

OPERATION

By engaging the Menu Set mode, you can cancel any preset functions that you don't require or change certain parameters as desired.

- 1. Set the MENU SET switch to ON.

- The set-up menu appears on the monitor screen. The counter display will also switch to the Menu Set mode.
 The Menu number (000) for the first item will bithin.
 Turn the Jog dial to locate the item you want to set.
 Turn the Jog dial to locate the item you want to set.
 Turn the Jog dial to locate the item you want to set.
 Turn the Jog dial to locate the item you want to set.
 Turning the dial clockwise increments the setting items decrements the setting items.
 - When you locate an item you wish to change, press PLAY. Press PLAY again to change the setting. To commune setting, speat stopes 2 to 4. Press REC to store the new settings.

 To exit the menu, set the MENU SET switch to OFF.

e. All menu items can be automatically restored to their initial settings. To do this, first switch off the VCR's power. Then, while pressing COUNTER RESET and EJECT simultaneously, switch on the power. All menu items will have been restored to their initial settings.

Some of the menu items cannot be set during the VCR is in the Record mode. We recommend that menu setting be done in the Stop mode.

MENU SETTINGS

- Satting 00 = OFF 01 = ON <u>. - 2</u> -1.00

NOTE:
For items with more setting variations, 02, 03 ... are displayed.
In such cases, 00/01 does not mean OFF/ON.

Blinking: Item ready to be set Š 001: AUTOH PHASE

Description Setting

O003 FRAME SERVO

On-Screen Display

- en	
==	
-	
- =	
-	
ပ	
•	
~	
~	
_	
_	
-	
_	
-	
=	
æ	
-	
90	
8	
Ē	
thg	
tting	
etting	
tting	
setting	
il setting	
al setting	
tial setting	
Itial setting	
nitial setting	
Itial setting	
nitial setting	

				Date Land	Carlengian
METU NO.	ė	Description	Counter	On-Screen	
SERVO	000	FRAME SERVO	8	OFF	OFF: To defeat Frame Servo. When random-interlaced or tow-
			[01]	(4 FIELD)	4 FIELD: To use Colour Frame Serve when editing in colour frame
			8	2 FIELD	2 PIELD: To use Frame Servo.
	9	AUTOHPHASE	8	OFF	OFF: To defeat Auto H-Phase Lock. Set to OFF for animation or
			[01]	Nol	CG recording. ON: To use Auto H-Phase Lock. Normally set to ON.
VIDEO	100	SWITCHING POINT	[00]	(REC6.5H, P84.5H)	Selects head switching point. REC6.5H. PB4.5H: To position head switching point 6.5H ahead
					of V sync in recording, and to shift it 2H in playback (1H lower than normal). Normally use this setting.
			8	REC6.5H, PB5.5H	REC6.5H, PB5.5H: To position head switching point 6.5H ahead
			8	REC2.25H, PB1.25H	REC2.25H, PB1.25H: To position had switching point 2.25H ahead of V sync in recording, and to shift it 1H in playback. Use this setting when you want a lower switching point for
	101	S-VHS REC. EQ.			Selects video frequency response according to the characteristics of the tape used.
			83	TAPE TYPE-1	TAPE TYPE-1: Do not use this setting. TAPE TYPE-2: Professional Stane or other double-coaled tense
			88	TAPE TYPE-3	TAPE TYPE-3: S-VHS master tape. TAPE TYPE-4: Do not use this setting.
	102	U-VCR Y/C MODE			Selects the mode of the signal output via rear panel OPTION (Y-
			[00]	[CONV.]	cobysca connector, Energye with SA-ESSE coard) CONV.: To output Y-686/924 dubbing signal to conventional 3/4*
			δ	HB/SP	HB/SP: To output Y-686/924 dubbing signal to 3/4" U-VCR SP or Hi-Band machines.
	501	WIDE ASPECT ID			Selects recording in wide aspect format (16:9 aspect ratio) or
			[00]	[AUTO]	AUTO: Automatically detects wide aspect ID of input signal (Y/C
			Б	WIDE	WIDE: Records in wide aspect format regardless of the format of
					input signal. When recording wide-aspect pictures via composite input, use this setting.
			8	NORM.	NORM.: Records in normal aspect format regardless of the format of tryout signat.

-	╮
2	~

		panel Y/R-nes.			ts to avoid justment is	ectors. NMAL AUD-	MAL AUD-1 IAL AUD-2 FIL outputs nat audio-2	connectors	io-1 track. 1 AUD-2 are lly with the the normal 1 -LTC*.	ack.	o mode.	JOG/SHTL.	Picture will of about 3	s. Normally g indication	lab in place. se of safety player.	nly. Always
Explanation		Selects the level of component signals output via rear panel V/R-Y/B+Y connections. (Tellective with SA-T72E) LOW: To output component signals to Mil machines. HIGH: To output component signals to Belacam machines.	OFF: To defeat Hi-Fi audio recording. ON: To record Hi-Fi audio.	OFF: To defeat Dolby MR circuit for normal audio. ON: To activate Dolby MR circuit for normal audio.	OFF: To defeat aucho limiter for normal aucio fracks. ON: To activate aucho limiter for normal aucio fracks to avoid oner-level recording. (Audio recording level adjustment is possible with limiter ON.)	Selects output signals via rear panel AUDIO OUT connectors. SEP: To output as labelled: normal audio from NORMAL AUD. 1/AUD.2. Hi-FT audio from Hi-FT LR.	H-Fi: To output Hi-Fi audio from all connectors: NORMAL AUD-1 outputs Hi-Fi elist-chemne signal and NORMAL AUD-2 outputs Hi-Fi right-channel signal. NORM: To output normal audio from all connectors: Hi-Fi L outputs normal audio - I signal and Hi-Fi R outputs normal audio- I signal and Hi-Fi R outputs normal audio-2 signal.	Selects output signets via rear panel Hi-Fi AUDIO DUT connectors during search. MUTE: To output mated Hi-Fi audio. NORM: To output normal audio.	Selects audio signate to be recorded on the normal audio-1 track. AUD-17. Audio signals high it AUD-1 are recorded. AUD-12. MIX. Mixed audio signals input to AUD-1 and AUD-2 are recorded. (Levels are controlled independently with the orresponding control.) Nothing is recorded on the normal audio-2 track unless menu from \$200 is set to '01 - LTC'.	Selects signals to be recorded on the normal audio-2 track. AUD-2: Audio signals input to AUD-2 are recorded. LTC: LTC signal is recorded.	DISABLE: EJECT command is accepted only from Stop mode. ENABLE: EJECT command is accepted from any mode.	DISABLE: Jog/Shulle dials do not function unless JOG/SHTL bullon is pressed first. ENABLE: Jog/Shulle dials function directly from Stop, Play, Still F and REW modes.	DISABLE: Enters Record-Pause mode without preroll. Picture will be distorted at record-start point. Enters Record-Pause mode with preroll of about 3 seconds.	OFF: Martunctions are detected for warning indications. Normally keep set to this position. ON: Detection of mafunctions is inhibited. No warning indication is available.	OFF: Recording is possible with caseeties with salety tab in place, ON: Recording is inhibited regardless of the presence of salety tab. Use this position if the VCR is used only as a player.	This setting is for manufacturer adjustment purposes only. Always keep set to DISABLE.
Settings	On-Screen	(LOW) HIGH	OFF	OFF [ON]	OFF [ON]	(SEP.)	H:FI NORM	(MUTE) NORM	(AUD-1) AUD-1/2 MIX	(AUD-2) LTC	DISABLE (ENABLE)	DISABLE [ENABLE]	DISABLE [ENABLE]	[OFF]	(OFF)	(DISABLE) ENABLE
	Counter	00.0	8 2	8 2	85	(oo)	2 8	600	(00) 04	90.00	8 2	8 <u>[0</u>	8 6	[00]	[00] 00 01	<u>[0</u>
On-Screen	Description	COMPONENT OUT	Hi-FI AUDIO REC.	NORIM. AUDIO DOLBY NR	AUDIO LIMITER	AUDIO OUT		H-FI OUT AT SEARCH	AUD-1 REC.	AUD-2/LTC *2	DIRECT EJECT	DIRECT SEARCH	AUTO REC. PREROLL	WARNING INHIBIT	RECORDING INHIBIT	REPEAT REC.
ė		2	200	28	202	203		204	205	206	900	301	302	303	304	305
Menu No.		VIDEO	AUDIO								SYSTEM					

Menu No.	No.	On-Screen		Settings	Explanation
		Description	Counter	On-Screen	
SYSTEM	306	LONG PAUSE	[01]	DISABLE (ENABLE)	DISABLE: To defeat Long Pause function. ENABLE: To use Long Pause function in Stanctby-On, Still and Record-Pause modes, (Long Pause parameters are selected with menu items \$2007, \$308 and \$4309.)
	307	LONG PAUSE TIME	98 98 98 98 99 107]	1 SEC 10 SEC 30 SEC 1 MIN 1 MIN 3 MIN 4 MIN [5 MIN]	With menu item #306 set to ENABLE, selects the length of time before normal Pause (Standby-On, Still and Record-Pause) mode changes to Long Pause.
	908	LONG PAUSE (STILL)	00 01 (02)	STANDBY.OFF T. RELEASE (STEP FWD)	Selects the contents of Long Pause mode. (After the time set with menu liem #307 expires in Still or Record-Pause mode, the VCR operates as specified.) T. RELEASE: Tension arm is released for tape protection. Still STEP FWD: Tape advances in stow-motion for about 2 seconds (about 2 transe). This action is repeated 5 times at the time intervals set with menu lam #307. The VCR enters the Standby-Off mode after the final intervals.
	308	LONG PAUSE (STOP.)	[00] 01 02	(STANDBY-OFF) T. RELEASE STEP FWD	Selects the contents of Long Pause mode. (After the time set with menu (tem #207 expires in the Standby-On mode, the VCR operates as specified.) STANDBY-OFF: Enters Standby-Oif mode. T. RELEASE: Tension amis is released for tape protection. STEP WO. Tape advances in slow-motion for about 2 seconds intervals set with menu tiam #307. The VCR enters the Standby-Oif mode after the final intervals.
	310	STANDBY-OFF MODE	8 <u>6</u> 8	DRUMON (DRUM OFF) UNLOAD	Selects the status of Standby-Oll mode. DRUM ON! Head dum onthinuse to pains with tape loaded. DRUM OFF: Head drum stops rotaling with tape loaded. UNLOAD: Head drum stops rotaling and tape unloads.
	31.1	MODE AT TAPE BEGIN	[00]	(SHORT-FF) PLAY	Selects the mode entered when the beginning of the tape is delected. SHORT-FF feat-forwards the leader section and enters Standby-On mode. PLAY: Enters Play mode.
	312	MODE AT TAPE END	[00]	(SHORT-REW) REW	Selects the mode entered when the end of the tape is detected. SHOAT-REW. Rewinds the leader section and enters Standby-On mode. REW: Rewinds to the beginning of tape and enters Standby-On or Play mode depending with setting of many item #311.
	313	PB•PB/E€	(01)	P8/EE [PB]	Selects output signal in the mode specified with menu item #314. PB/EE: Outputs EE signal. PB: Outputs playback signal.
	314	PB/EE MODE	[00]	(STOP /FF/REW) STOP	Selects the mode in which EE signal is output. STOP IFFREW: EE signal is output in Stop. FF and REW modes. STOP: EE signal is not output in FF and REW modes.
	315	LOCAL FUNCTION	(00) 00 00 00 00	(STOP ,EJECT] STP,EJ,PLY,FF, RW,STL ALL ENABLE ALL DISABLE	Selects functions that can be locally operated when front panel REMOTE switch is set to 9PIN or REM.2.

Menu No.	On-Screen Description	Counter	Settings On-Screen	Explanation
316	9PIN CMD FUNCTION	1 1	(ALL DISABLE) STOP, EJECT	Selects 9-pin remote control commands that are acceptable when from panel REMOTE switch is set to LOCAL. ALL DISABLE, Accepts no command from 9-pin remote control. STOP, E.JECT: Accepts STOP and E.JECT commands only, (Note: With some remote controls, no command is accepted.)
317	9PIN DEVICE TYPE	<u>(00)</u> 100	(JVC SVHS-1) JVC SVHS-2 OTHER TYPE-1 OTHER TYPE-2	Selects device type ID returned from VCR to 9-pin remote control in response to its request to the selection VCR SV4S-1: Use this selling with BR-Sc22E/BR-S922E. JVC SVHS-2: Use this selling if SA-F911E is included in the system. System. OTHER TYPE-I/OTHER TYPE-2: Consult a JVC dealer.
318	TC DATA W/O TC BOARD	<u>[6</u>	(TC MISSING) CTL DATA	Selects VCR's response to 9-ph remote control when remote control requests time code data when TC board is not installed. TC AMSSING: VCR returns code meaning TC MISSING. CTL DATA. VCR returns substitute GTL data.
319	TAPE MAX SPEED	(60)	(X100) X32 X16	Selects maximum tape speed (full-size cassette only). (FF and REW speeds also correspond to this setting. In the 100x mode, the EE signals sought. In the 32x and 18x search modes, the playback signal is output. The CTL signal is output in the 16x search mode using the RMx88U 45-pin remote controt).
350	PREROLL TIME	00(107)	0 SEC (7 SEC) 15 SEC	Selects preroil time in one-second steps from 0 to 15 seconds.
32	TIME REF. FOR PREROLL	8 [0]	cn. (rc)	Selects time count reference for preroil in TC operation. CTL: Refers to CTL counts. Preroil is possible even when time codes are missing. TC: Refers to time codes.
355	IN POINT AUTO ENTRY	8 [10]	NOT ENTERED [ENTERED]	Activates or defeast automatic IN point entry function. NOT ENTERED: IN point is not entered automatically by pressing PREROLL button. ENTERE: IN point is entered automatically by pressing PREROLL button if no IN point has been previously entered.
323	MODE AFTER PREROLL	100 G	(STOP.) STILL	STOP: Enters Stop mode after prenoit is completed. STILL: Enters Still mode after prenoit is completed.
324	EDIT FIELD	[00]	[1st] 2nd	1st: Starts recording-editing an the first field and ends on the second field. 2nd: Starts recording-editing on the second field and ends on the first lield. Use this setting when inserting two pictures in one frame for animation.
325	CTL COUNTER MODE	(00 <u>)</u>	[±9H] 24H	19H: Counter shows from –9 to +9 hours in CTL mode. 24H: Counter shows from 0 to 24 hours in CTL mode.
326	CTL COUNTER MEMORY	<u>[00]</u>	(OFF) CN	OFF: No counter memory function is available. ON: Enters Stop mode at CTL counter reading of zero in FF and REW modes.
327	CTL CLEAR AT EJECT	8 <u>6</u>	DISABLE [ENABLE]	DISABLE: CTL counter is not reset when cassette is ejected. ENABLE: CTL counter is reset when cassette is ejected.
328	EDIT POINT CLEAR	00 [01]	DISABLE (ENABLE)	DISABLE: IN and OUT points are not automatically cleared. ENABLE: IN and OUT points are automatically cleared after execution of an edit with AUTO EDIT button.

Menu No.	No.	On-Screen		Settings	Explanation
		Description	Counter	On-Screen	
SYSTEM	329	OUTPOINT	B <u>6</u>	DISABLE (ENABLE)	Activates or defeats OUT Point Return function. (After execution of an edit with AUTO EDIT button, tape automatically returns to the OUT point.)
	330	VIDEO EDIT DELAY	(00) 10	(8 FRAMES) 3 FRAMES	Selects the length of time before video recording starts after reception of EDIT command.
	331	AUDIO EDIT DELAY	[00]	[8 FRAMES] 3 FRAMES	B FRAMES: To delay audio signals by 8 trames in editing for accuses synchronisation with video frames. Normally use this setting. 3 FRAMES: To delay audio signals by 3 frames. Use this setting only when the VCR is controlled via RM-86U remole control units.
	332	CASSETTE SEL.	(00)	(OFF)	OFF: Cassette size selection is possible with the CASSETTE SELECT button on the front panel. ON: Cassette size selection is imblilied.
	333	CF SERVO LOCK REPLY	8 <u>[0</u>	DISABLE	Selects information to deliver to 9-pin remote. DISABLE: Colour frame servo lock cannot be engaged. ENABLE: Colour frame is locked to 4-field colour framing mode.
	334	CF RE-LOCK AT PLAY	[00]	(DISABLE) ENABLE	Activates or defeats colour frame re-lock function when colour frame lock is disengaged in Play mode.
	390	SWAPVTR	<u></u>	(AUTO) PR-800 AUTO AUTO AUTO BR-S822 KR-MA40 KR-M820 KR-M840 KR-M840 KR-M840 KR-M840	Selects player type for swap editing. Normally use AUTO position.
	321	SYNCHRONIZE	0 <u>[</u> 0	DISABLE [ENABLE]	Activates or defeats Capsian Bump function in swap editing.
	352	SYNCHRONIZED	[00]	(RECORDER) PLAYER	RECORDER: Applies capsian bump to recorder in swap editing with menu item #351 set to ENABLE. PLAYER: Applies capsian bump to player.
	353	SYNC GRADE	<u>6</u> 288	(ACCURATE) ±1 FRAME ±2 FRAME ROUGH	Selects odining accuracy after capstan bump. ACCURATE: In-phase editing at 0 frame accuracy. 42 FRAME: In-phase editing at ± 1 frame accuracy. 42 FRAME: In-phase editing at ± 2 frame accuracy. FOUGH: Editing starts when in-phase status is carched
	354	SYNC GRADE AT RE-TRY	[00]	[NO CHANGE] DOWN	NO CHANGE: Applies same editing accuracy as set with menu tiem #353 when edit is re-tried. DOWN: Lowers editing accuracy of re-tries.
	355	AUTO-EE	[00] (00)	(RECORDER ONLY) AUTO-EE	RECORDER ONLY: EE output is not available when 'P' is pressed in swap editing. AUTO-EE: Recorder automatically switches to EE mode when 'P' is pressed in swap editing. Convenient in one-monitor editing.
	326	MODE AT CF UNLOCK	8 5 6 6	EDIT STOP [RE:TRY]	Selects the VCR mode in cases where colour frame is unlocked when automatic editing or edit preview is started. EDIT: Executes editing or edit preview. STOP: Enlets Stop mode. RE-TRYT: Re-ties to bio a times.

Mens No	2	On-Screen		Settings	Exclanation
		Description	Counter	On-Screen	
CODE	400	VITC POSITION-1	8 <u>5</u> \$	71.INE (191.INE) 221.INE	Selects the horizontal scarning line on which VITC data is stored. Selectable from line 7 to line 22 in the vertical blanking interval. • Do not select line 11 in S-VHS recording as this is reserved for AUTO EQ. • When using the SA-T22E TBC board, set above line 9.
	104	VITC POSITION-2	8 🚡 ñ	7LINE (21LINE)	Selects the horizontal scanning line on which VITC data is stored. Selectable from line 7 to line 22 in the verticab blanding interval. (Two lines par field are used to store VITC data.) • Do not as select line 11 in S-VHS recording as this is reserved for AUTO EQ signal. • When using the SA-T22E TBC board, set above line 9.
	89	TCG REGEN MODE	<u>[00]</u> 29 88	(RO & UB) OF BU	Selects code data to be regenerated in Internal Regen mode (with TC beards INTEXT switch set to INTEXT switch set to INTEXT Set Set Set of REGEN). TC & US: Records both time code and user bit data in Regen mode. TC: Records time code data in Regen mode and user bit data in Regen mode and user bit data in Regen mode and user bit data in Regen mode and time code data in Preset mode.
	\$	TC SOURCE AT REGEN	[00]	(LTC) VRC	Selects the type of reference time code in the Regen mode. LTC: Reference code is LTC. VITC: Reference code is VITC.
	405	LTC OUT (REGEN)	ю [00]	(OFF TAPE) TCG	Selects output signal from TIME CODE OUT connector while playback is in progress in internal agent mode. PLF APE, Outputs time code signal regenerated up from tape. TCG. Outputs time code signal regenerated by TC generator.
	904	U-BIT BINARY GROUP	[00] 98	INOT SPECIFIED] ISO CHAR. UNASSIGNED-1 UNASSIGNED-2	Selects character set configuration to use TC generator's user bits. NOT SPECIFIED: Characters set configuration is not specified. 8- Bit character set conforming to ISO 646 and ISO 2022 (with binery group flegs at bit counts UNASSIGNED-1: Undefined. UNASSIGNED-2: Undefined.
	407	PHASE CORRECTION BIT	88 (10)	OFF	Selects recording of LTC phase correction bit (pairly bit for bit error check). OFF: Not recorded, (Use this setting if 10s readout is not correct with external TC reader connected.) ON: Recorded.
	408	VITC LINE	[00] 04	[VITC MIX] CLEAN ONLY	Selects whether lines set with menu lienrs #400 and #401 are to be cleaned in recording to VITC MIX: VITC MIX: VITC MIX: Lines are cleaned.
	409	EXT REGEN TC	[00] or	(LTC) VITC	Selects the type of externally input reference time code in External Regen mode. LTC: To use LTC via TMME CODE IN connector. VITC: To use VITC via VIDEO IN connector.
	410	AUTO REGEN MODE	looj	[ASM+INS]	Selects the edit mode in which time codes are recorded automatically in Regen mode regardless of PRESET/ REGEN switch selfing in automatic editing. ASM+INS. Records in Regen mode in both Assemble and Insert modes.
			28.83	ASM INS OFF	ASM: Records in Regen mode in Assemble mode only. INS: Records in Regen mode in Insert mode only. OFF: Records in the mode specified by PRESET/REGEN switch.

Menu No.	No.	On-Screen		Settings	Explanation
		Description	Counter	On-Screen	
ON- SCREEN	200	ON-SCREEN DISPLAY	[01]	OFF [ON]	OFF: No data is displayed on-screen. ON: Data is displayed on-screen.
	501	CHAR. H-POSITION	[00] ::-80	(00) ::	Adjusts on-screen VCR data display position in the horizontal direction. (Vote effective when men light #\$64 is also 10.2.) 2. VCR data is displayed at the rightmost position. 1-8. Display position shifts to the leff with increasing numbers.
	205	CHAR. V.POSITION	<u>6</u> 8	[00]	Adjusts on-screen VCR data display position in the vertical direction. (Not effective when manui term 8504 is set to 02). VCR data is displayed at the bottom of screen. 1-9: Display position shifts up with increasing numbers.
	503	CHAR. BACKGROUND	<u>6</u> 2 <u>6</u>	(BORDER) SEMI. BLACK	BORDER: Displays bordered characters. SEMI: Displays semi-transparent characters. BLACK: Displays characters on black background.
	202	INFORMATION	88 [10] 82	TIME [TIME & MODE] EDIT DATA	Selects available on-screen information. TIME: Time counter data, TIME & MODE: Time counter data, operation mode and Jog/Shuttle Edit gespeed. Edit data in swap editing.
18C	8	TBC FREEZE	1001	(DISABLE) ENABLE	Selects the mode of still pictures in TBC operation. DISARLE: Outputs normal still pictures. ENABLE: Outputs freeze still pictures from TBC's field memory when PAUSE/STILL button is pressed while in Pisy mode.
	8	V BLANK MASK	[00] 04	(OFF) ON	Adivates or defeats vertical blanking interval masking function in TBC operation. OFF: No masking function. ON: Masks the entire vertical blanking interval in playback to erase VITC. VITC readout its impossible with this setting.

^{*1:} When you set this item to "02 – REC 2.25"4PB 1.25" in recording, be sure to set it to this position when playing back the tape in the TBC mode.
*2: When playing back a tape with no LTC recorded on the normal audio-2 track, set this item to "00 – AUD-2".

ROM VERSION/HOUR METER DISPLAY

By engaging the Menu Set mode, you can also check the numbers of device ROMs and the hour meter.

- Set the MENU SET switch to ON.
 The set-up menu appears on the monitor screen. The counter display will also switch to the Menu Set mode.
 The Menu number (000) for the first item will blink.
 Turn the Jog dial to locate items with numbers in the order of 900.
 - For quicker location, turn the Jog dial counterclockwise.

10:10 MENU SET switch

On-Screen Display

901:MECHACON ROM Ver. 01 902:OPERATION ROM Ver. 01 903:SLOT ROM Ver. NO CONNECT 00 AVM/OS ROM Ver. 8 900:SYSCON ROM Ver.

000

CD

.

7

() ()

CD

•

.

ı

05

CD

١

ı

.

07 (2)

ŧ

ı

ı

C) C)

Counter Display

910:CAP HOUR METER 0000H 911:REEL HOUR METER 0000H 908:POWER HOUR METER 909:DRUM HOUR METER

(3 (3 (3 (3

ı

Q'n, C) On

0000

•

8006

ŧ

Qn.

1

Menu No.	On-Screen Description	Explanation
006	SYSCON ROM Ver.	Indicates version number of SYSCON ROM.
901	MECHACON ROM Ver.	Indicates version number of MECHACON ROM.
802	OPERATION ROM Ver.	Indicates version number of OPERATION ROM.
903	SLOT ROM Ver.	Indicales version number of SLOT ROM. This item also shows the type of remote control installed in the slot. Available indications are: JVC45PIN (20 on 5th and 6th digits on counter display) RS-23CC (21 on 5th and 6th digits on counter display) NO CONNECT (00 on 5th and 6th digits on counter display)
***	AVM/OS ROM Ver.	Indicates version number of AV microcomputer/on-screen ROM.
806	POWER HOUR METER	Indicates the total time (up to 4 digits in hours) the VCR has been powered.
606	DRUM HOUR METER	Indicates the total working time of the drum motor in hours.
910	CAP HOUR METER	Indicates the total working time of the capstan motor in hours.
911	REEL HOUR METER	Indicates the total working time of the reel motors in hours.

CAUTION ont set the following three settings together:
Menu item #303 WARNWG INHIBIT — 01 ON, #305 REPEAT REC. — 01 ENABLE and #306 LONG PAUSE — 00 DISABLE.
We are not responsible for any malfunctions caused by this combination of settings.

WARNING DISPLAY

DIAGNOSTIC CODES

The WARNING display uses numerical codes to indicate various malfunctions and warnings on the counter display. Worded warning messages are provided on-screen. In some cases, power must be turned off before the machine can be recovered. When the AUTO OFF indicator lights, power must be turned on and off again before the machine can be recovered.

Symptom/Operation	Tape-end sensor LED burns out. The cassette will be ejected. Alt controls become inoperative.	Moisture condensation on drum and in transport. The casselle is ejected. After ejection, the drum starts rotating and cassettes cannot be hoaded until condensation has been eliminated. Do not turn the power off until the AUTO OFF indicator goes out.	Slack tape on the supply reel. All controls become inoperative.	Tape cannol load correctsy, Tape unloads and the cassette is ejected. The display luns off when a cassette is inserted again. Normal operation is restored.	Tape cannot unload. All controls become inoperative.	Cassette carriage does not tiff during tape ejection (even after 3 seconds have passed). All controls become inoperative.	Tape beginning and end sensors turn OM during loading because the tape is broken. The cassette is ejected. If the cassette fails to load properly, if may get stuck in the cassette slot. In this case, remove it by hand. The display turns of when an undamaged cassette is inserted. Normal operation is restored.	Tape-end sensor turns ON during loading. Hewind mode is engaged. If the leader tape is detected within 3 seconds, the cassette is ejected. The display turns off when a cassette is inserted again. Normal operation is restored.	Tape-beginning sensor turns ON during loading. Fr mode is enjaged. If the feader hape is celected within 3 seconds, the cassette is ejected. The display turns off when a cassette is inserted again. Normal operation is restored.
WARNING (On-Screen Display)	WARNING DI LAMP FAILURE	WARNING 02 CONDENSATION ON DRUM	WARNING DE SUP TENSION FAILURE	WARNING 32 FAILURE LOADING	WARNING 33 FAILURE UNLOADING	WARNING 41 CASSETTE EJECT FAILURE	WARNING 56 TAPE DEFECTIVE	WARNING 57 END LEADER DETECTION	WARNING 58 BEGIN LEADER DETECTION
Dis- play code	10	05	90	32	33	41	56*	57	58
AUTO OFF Indicator	YES	YES	YES		YES	YES			
		Stoenes		Buii meinei	Losd	Cassette Carriage		Leader	

	AUTO OFF Indicator	Dis- play code	WARNING (On-Screen Display)	Symptom/Operation
	YES	20	WARNING 70 DRUM MOTOR FAILURE	Drum motor stops. All controls become inoperative. Recovers when a cassette is inserted again.
griise mei	YES	7.1	WARNING 71 CAP MOTOR FAILURE	Capstan motor stops. All controls become inoperative. Recovers when a cassette is inserted again.
Sys Hou	YES	72	WARNING 72 SUP REEL MOTOR FAILURE	Supply reel rotates abnormally. Alt controls become inoperative. Recovers when a cassette is inserted again.
	YES	73*	WARNING 73 TU REEL MOTOR FAILURE	Take-up reel rotates abnormally. All controls become inoperative. Recovers when a cassette is inserted again.
sı	YES	04	WARNING 04 REEL SERVO FAILURE	Power supply to reel tension servo stops. All controls become inoperative.
Othe		Ē	INVALID OPERATION	Invalid command has been given. (eg. S-VHS recording on a VHS cassette, Record or Edit command with VCR set to RECORDING INHIBIT, etc.)

^{*} Cassette insertion is not possible if the cassette slot remains open after cassette ejection. In this case, press the EJECT button to close the slot door, and insert the cassette again.

TEST POINTS

The output signals from the Hi-Fi audio heads and video heads are available at the front panel test points. Connect an oscilloscope to these test points to check the VCR's performance and condition.

Standard waveform	CH-1 CH-E	0+10 a+10
Items to be checked	Tape to head contact Tape unining stability In the unining stability Infector RF affer head replacement RF recording level	Compatibility of tape pattern Tape contact Tape contact Tape numbring stability Tracking stability Tracking stability Tracking stability Tracking stability Tracking stability Abnormality in RF Use a 10:1 probe
Connection	Hi-Fi audio head output	Video head output Vie Control forminal of control forminal for

AUTOMATIC EQUALISER

To prevent deterioration of the luminance signal frequency caused by worn heads, or when using tapes with different signal characteristics or that have been over-played, the BR-S822E incorporates an automatic equaliser (AUTO EQ) oricuit which functions in the S-VHS mode. The reterance signal to operate this circuit is added to one H line of the vertical blanking time. Prof to shipment, the BR-S622E is present to add the reference signal to line II. If VITC (Vertical Inserval Time Code) or VITS (Vertical Interval Test Signal) is inserted in this line, these signals will be erased. If you do not went these signals carsed, consult a JVC service agent.

NOTE:
The AUTO EQ circuit does not function if the reference signal reading position differs from the position of the reference signal added in recording. It will also malfunction if VITC nr VITS is recorded at the reference signal reading position.

NSTALLATION

RACK MOUNTING

Using the optional SA-K63UB Rack Mount Adapter, you can install the BR-S822E in a 19" EIA-standard rack.

- Use a complete slide and bracket unit such as the Accuride slide and bracket unit (Part No. C-2038-22/BK-2038).
 - For more details, consult your local JVC service agent.
- 1. Attach the inner members of the slide rails with screws as
- illustrated. (Screws should be no more than 8 mm long.)
 2. Attach the SA-K63UB rack mount adapter.

- Attach the right and left brackets and outer members of the slide rails to the rack.
 When installing the bracket at the back of the rack's panel
- When installing the bracket at the front of the rack's panel surface.

- Adjust the distance between the front panel and the slide rail to between 50 and 55 mm.
 Check that the unit slides in and out smoothly.

The rack mount adapter handle is only for sliding the unit. Do not carry the unit holding the handle.
 Leave enough space at the back of the unit (at least 10 cm) for ventilation and connections.

52

CONNECTOR SPECIFICATIONS

nnector	Remote	GND	TRANS A	RECEIVE B	GND	J	GND	TRANSB	RECEIVE A	GND
9-Pin Remote Connector	Local	· QND	RECEIVE A	THANSB	GND	1	GND	RECEIVE B	TRANSA	GND
9.	Pin No.	-	C	6	4	ĸ	9	7	8	6

Y/C 443 7-Pin Connector	Signal	Y SIGNAL	GND (Y SIGNAL)		1	CSIGNAL	GND (C SIGNAL)	1
Y/C 443	Pin No.	-	.2	3	4	5	9	

XLR 3-Pin Connector	Signal	GND	COLD	HOT	
XLR 3	Pin No.	-	2	6	

15-Pin Remo	15-Pin Remote Connector (option)
Pin No.	Signal
-	FG
23	+12V
9	GND
4	VIDEO LEVEL
in	CHROMA LEVEL
9	CHROMA PHASE
7	SET UP LEVEL
8	HSVD DC 1
6	RSVD DC 2
10	REMOTE EN
-	FREEZE EN
12	RSVD CTL.1
13	RSVD CTL. 2
14	OPERATE
15	GENLOCK

SEARCH STOPE COLL STOPE C		45-Pin R	E	ote C		Remote Connector (option)	<u>.</u>	=
PREC CAND 22 EDIT TALLY	-	CND	7		21	V SPEED CTI.	▽	ANALOG
STOP CAND	-	CINC	7		22	EDIT TALLY	Δ	
STOP CMD 24 TALLY TALL	ď	RECCMD	V	t_	23	STILL TALLY	٨	
STOP GMD			1	3	24	SEARCH		
PLAY CAND	ෆ	STOP CMD	V	<u>t</u>		TALLY	À	
FF CMD 26 FF TALLY				ı t	52	PREHOLL	-	
FF CAUD C	4	PLAY CMD	∇		1	2000		
FG CMD	Ĺ		Г	t	8	FF IALLY	Δ	
FEW CAND	တ	FF CMD	V	_	22	PLAY TALLY	A	
REW CAND				t.	82	STOP TALLY	Δ	
SEARCH CAND 30 REC 7ALLY	9	REW CMD	⊽	_	58	REW TALLY	Δ	
SEARCH CAND 31 TAPE REV				-	30	REC TALLY	A	
SEARCH CAMD 32 CTL PULSE	`	FWDCMD	∇]	31	TAPE REV	A	
SEAMCH CAND 33 NC	Ľ		,	١	32	CTL PULSE	A	
PREVOKAD 34 IZVDC	0	SEARCH CMD	7	ם	33	NC	A	
STILL CAND	٥	BEVCHO	7	r	8	12V DC	Α	
STILL CAND 36 FE CAND	1		7	1	35	CTL PULSE	Δ	
FRENOLL CAID	5	STILL CMD	∇		98	EE CMD	∇	ئے
E. STOP CMD 38	=	PREROLL CMD		7	37	X2 CMD	∇	ئے '
E. STOP CAND	5	E. START CMD	∇	7	38			
PREVIEW CMD 40 DFR STOP	2	E STOP CMO	7	t_	39	X1/5 CMD	⊽	۲
CMD	2		7	ן כ	40	DFR STOP		٦
AT INS CAID AZ IN	<u>‡</u>	PREVIEW CMD	∇	لم		CMD	∇	اُـــ
A1 NIS CAD 0 4 42 EXTENSAL A2 INS CAD 0 43 VIS VINS CAD 0 44 44 44 44 EXECT CAD SERVOLOCK P 7 FOAV VIR	5	REMOTE CMD	∇	لہ	14	X1 CMD	∇	أئے
A2 INS CMD <1	16	A1 INS CIAD	7		42	EXTERNAL CAP SEARCH	∇	7
VINS CMD <	12	A2 INS CMD	V	لم	43	VHS	A	
SERVOLOCK ▼ A FRO	\$	V INS CMD	∇		45 45	EJECT CMD	V	7
F C C C C C C C C C C C C C C C C C C C	\$	SERVOLOCK	•			TO VTR		
ASSEMICIMO <	କ	ASSEMICMD	▽	لُـ	7	PULSE 7	Ť	STATUS

Y-686/924 7-Pin Output (option)	Signal	GND (Y SIGNAL)	Y SIGNAL	-	weben	CSIGNAL	GND (C SIGNAL)	COLOUR FRAME PULSE
Y-686/924 7	Pin No.	-	2	3	4	9	9	7

SPECIFICATIONS

General	VHS/S-VHS Europe slandard	Input	2001.4 dB 40 Lohmo
Power consumption :	90 W AC 110 – 127 V/220 – 240 V~, 50/60 Hz		balanced (Hi-Fi/Normal) 67 dBs 10 k-ohms unhalanced
Dimensions :	42.9 (W) X 18.8 (H) X 56.5 (L) cm 23 kg	Output	-07 dbs, 10 k-tillis, ulibalaticat
Operating :	5°C to 40°C	Line	-6/0/+4 dBs, Low impedance, balanced (Hi-Fi/Normal)
Storage temperature :		Monitor :	-6 dBs, Low impedance, unbalanced
Tape speed	23.39 mm/sec	Phones	∞ to -17 dBs, 8 ohms
Recording & Dayback time .	May 180 min with IVC SE-180/E-180	Signal-to-noise ratio :	More than 43 dB (NR-off, Normal at 3% distortion)
Fast forward/	Might 100 mill with 000 CE 1000	Dynamic range :	More than 87 dB (Hi-Fi)
Rewind time :	: Less than 2.5 min. for 180 min. tape	Frequency response:	20 to 20,000 Hz (Hi-Fi) 40 to 12,000 Hz (Normal)
VIDEO		Wow & flutter ::	Less than 0.005% WRMS (Hi-Fi)
	: Rotary two-head helical scanning	TIME CODE	
Luminance	FM recording	luput	0 dB ± 6 dBs, 10 k-ohms, unbalanced
Colour signal	Phase shift, converted sub-carrier direct recording	Output :	0 dB ± 3 dBs, Low impedance, unbalanced
Video signal system	: PAL-type colour signal/PAL-type Y/C signal	CONNECTORS	
		Video	
Line	1.0 Vp-p, 75 ohms, unbalanced	Line input	BNC-type connector BNC-type connectors
170 4443	C: 0.3 Vp-p, 75 ohms, unbalanced (Rurst)	Y/C 443	
	(10.30)	Monitor	
Line	1.0 Vp.p, 75 ohms, unbalanced	Audio Hi-Fi input	
		output :	XLR connectors
Signal-to-noise ratio	: More than 46 dB (S-VHS)	output	XLR connectors
	More than 45 dB (VHS)	Manitor	RCA connector
Horizontal resolution	More than 400 lines (S-VHS) More than 250 lines (VHS)	Hemote control	a-pin connector
Reference video input	0.3 to 1.0 Vp-p, 75 ohms, unbalanced	ACCESSORIES Provided accessories	: 7-pin cable
External sync input	(with loop-through, with the SA-122E) O.3 to 4.0 Vp-p, 75 ohrms, unbalanced (with one loop-through, without the CA TOCE)		

Design and specifications subject to change without notice.

INSTRUCTIONS

JVC

BR-S622E

VIDEO CASSETTE RECORDER VIDEOKASSETTENREKORDER MAGNETOSCOPE A CASSETTE

CONTROLS AND CONNECTORS

POWER switch

When power is ON, the time counter and level meters will

EJECT button with LED indicator

Ejects the cassette (from any mode).

The indicator lights while the cassette is being ejected.

Cassette loading slot

 Accepts either a compact or full-size S-VHS/VHS cassette according to the type selected with the CASSETTE SELECT button @. O LED indicators

CASSETTE SIZE Indicators

 Indicate whether the recorder is in the Full or Compact mode. When all three indicators are blinking, the recorder is ready to accept a full-size cassette. When only the centre indicator is blinking, the recorder is ready to accept a compact cassette. Press the CASSETTE SELECT button @ to change modes. When a cassette is inserted, the blinking will stop and the corresponding indicator(s) will

remain continuously lit. AUTO OFF Indicator

Lights when the unit malfunctions. All other controls are

S-VHS indicator

Lights when IIII S-VHS or S-VHS-C cassette is inserted with the unit in the S-VHS mode, or when playing back a

blank part of the tape. Blinks when S-VHS recording is attempted with a VHS

TBC indicators

(with optional SA-T22E TBC installed)
OPERATE: Lights when the TBC is in operation. A

timebase-corrected signal is output.

GENLOCK: Lights when the TBC is in operation and locked to the external reference signal.

SERVO indicators SERVO LOCK:

Lights when the capstan and drum servos are tocked to the reference signal. CTL PULSE:

Lights during playback of a tape with no control pulse recorded.

COLOUR FRAME: Lights when the capstan and drum servos are locked to PAL 4-field colour frame.

AUDIO indicators

setting) or when playing back Hi-Fi-recorded LIMITER: Lights when the built-in audio limiter circult is set Lights when the Hi-Fi REC circuit is ON (via menu

to ON (via menu setting). Lights when the Dolby B* noise reduction circuit is Ë

set to ON (via menu setting). TC (TIME CODE) indicators

(with optional SA-R22E TC [time code] generator/reader installed)
LTC: Lights green when LTC-recorded tapes are played back with the normal audio-2 track set for LTC use (via menu setting). If LTC is not picked up, the indicator lights orange. This indicator may also light green when normal-audio-recorded tapes are played VITC: Lights when VITC-recorded tapes are played back or when recording a VITC signal.

TRACKING control

Adjusts tracking. Turn in either direction until the tracking meter deflects all the way to the right.
 Normally leave in the centre click-stop position.

g

CASSETTE SELECT button
◆ Press to select FULL or COMPACT. The corresponding indicator(s) will light.

B AUD-2/R (VIDEO/TRACKING) level meter

Indicates the audio level of the normal audio-2 or Hi-Fi

right-channel signal during recording and playback.

• Functions as a wideo level meter during recording and as a tracking meter during playback when the METER SELECT switch (a) is set to VIDEO/FTAACKING.

AUD-1/L level meter

Indicates the audio level of the normal audio-1 or Hi-Fi left-

channel signal during recording and playback. METER SELECT switch

 Switches the AUD-2/R level meter petween audio level and video level indication.

Meter functions as the audio-2/Hi-Fi right-channel level meter. AUD-2/R:

VIDEO/TRACKING: Meter functions as a video level meter in recording, and as a tracking

meter in playback. Tape direction indicators 9

Indicate the current tape direction.

● JOG/SHUTTLE dials : Reverse

 Dual concentric controls. The outer functions as a Shuttle ring, the inner as a Jog dial. The Jog and Shuttle modes can be entered directly from the Play, Still, FF, REW, or Stop 1

Search speed can be varied continuously SHUTTLE ring:

from 1/30 to 32 times normal (up to 14 times normal with C-size cassettes) in forward or reverse. Set to the centre clickstop position to engage the Still mode.

JOG dial:

direction. Tape speed is determined by the speed of dial rotation. Releasing the dial engages the Still mode. Also used in edit point trimming, menu setting and TC/UB Manual frame-by-frame search in either presetting.

Control panel lock release buttons

 To tilt the control panel, press these buttons and lift the panel at the same time. The panel can be titled to 90° and locked at angles of 25°, 50°, and 75°. JOG/SHUTTLE button with JOG/SHTL mode indicators

 Instantly re-activates the Shuttle mode with search speed determined by the current dial setting.

Time counter

Shows tape time in hours, minutes, seconds, and frames.

Displays edit-in and -out points.

Displays menu settings and warnings Displays user bits.

Operation buttons with LED indicators PAUSE/STILL button

Temporarily stops recording when pressed in the Record

Displays a still picture when pressed in the Play mode.

PLAY button

 Re-starts normal playback when pressed in the Still or Starts playback. Search mode.

Starts recording when pressed together with the REC

 Starts audio dubbing when pressed together with the AUD DUB button in the Still mode.

 Re-starts recording when pressed in the Record-Pause REC button

Starts recording when pressed together with the PLAY

Outputs EE signals when pressed in the Play mode.

Displays TC generator data when pressed in the Stop mode with REMOTE select switch @ set to LOCAL. Released by pressing STOP button.)

AUD DUB button

 Starts audic dubbing when pressed together with the STAND BY button

Switches the recorder between the Standby-On and Standby-On is automatically engaged when the Stop button is pressed. Standby-On: The tape is loaded and the drum is rotating. Standby-Off modes while the VCR is in the Stop mode.

Standby-Off: The tape is loaded but tape tension is reduced and the drum does not rotate. The The indicator is lit.

indicator is not lit. REW button

Starts rewind when pressed in any mode.

STOP button

 Engages the Stop mode (Standby-On). The tape stops, but remains in the full-loaded position with the drum rotating.

The STOP and STAND BY indicators will light.

FF button

Starts fast forward when pressed in any mode.
 COUNTER RESET button

 Resets the CTL counter to zero. 0

 The CTL counter will be reset even if this button is pressed in the TC mode.

Time Code setting buttons
To preset time code/user bit data (with optional SA-R22E TC
generator/reader installed).
HOLD button

This button is only effective when the SA-R22E's PRESET/REGEN switch is set to PRESET. Holds the current counter data; the leftmost digit will blink.

 Shifts the blinking digit to the right. (You can also shift the blinking digit in either direction by holding down the SHIFT button and turning the JOG dial.) SHIFT button

ADV (ADVANCE) button

• Advances the value of the binking digit. (You can also change the value in either direction by holding down the ADV button and turning the JOG diat.) PRESET button

Transfers the data set with the HOLD, SHIFT, and ADV

buttons to the time code generator.

• Automatically causels the Hold mode.

• Milic jacks (ALID-1/II, ARID-2/R)

• For microphone connection. Input signal switches from

PHONES jack/LEVEL control

Connect a set of headphones to monitor sound recording.
 Adjust output level with the LEVEL control.
 HI-FI L/R and NORM AUD-1/AUD-2 AUDIO REC LEVEL.

controls

To separately adjust recording levels for the Hi-Fi left/right-channel signals and the normal (linear) audio 1/2

Optimum level is the point where the corresponding meter's peak defection is 'Or.

 AUDIO MONITOR select switches
 To select the audio output for the PHONES jack and the AUDIO MONITOR OUT connection.

 The Hi-FINORM switch also switches the audio level meters between Hi-Fi and NORMAL.

To monitor the normal audio-1 or Hi-Fi left-To monitor the Hi-Fi audio signals. To monitor the normal audio signals. AUD-1/L: NORM: 正主

channel signal. To monitor the AUD-1/I. and AUD-2/R signals MIX:

together. To monitor the normal audio-2 signal or Hi-Fi right-channel signal. AUD-2/R:

œ

VIDEO INPUT select switch
 To select an input video signal for recording.
 Y/C443: To record the signal input to the Y/C443

To record the signal input to the VIDEO IN LINE LINE

signal on a blank tape in preparation for insert editing. If set to this position during menu setting, on-screen information is output from all output connectors, not only the MONITOR OUT To record the internally-generated black burst connector. BLACK:

 ⊕ REMOTE select switch
 ● To select between remote and local control of the recorder.

9-PIN: For remote control via the rear panel 9-pin

LOCAL: For direct control with the recorder's function

REM-2: For remote control via the optional 45-pin or RS-232C interface.

@ COUNTER select switch

• To select the time counter display mode with the SA-R22E

TC generator/reader installed. If this is not installed, CTL
signals are displayed regardless of the switch setting.

CTL: CTL signals are displayed on the time counter.

TC: Time code signals are displayed on the time

User bits are displayed on the time counter.

The controls in this section function when the optional SA-T22E TBC (time base corrector) is installed.

WIDEO LEVEL UNITY/VARIABLE select switch/level

The output signal's video level is the same as the playback signal. Normally set to this

position.

VARIABLE: Allows you to adjust the output signal's video level with the VIDEO LEVEL control. Adjust-

ment is possible within ±3 dB.
CHROMA LEVEL UNITY/VARIABLE select switch/level

The output signal's chroma level is the same as

Allows you to adjust the output signal's chroma level with the CHROMA LEVEL control. Adjustment is possible within ±3 dB. VARIABLE:

playback signal. Normally set to this

흌

CHROMA PHASE UNITY/VARIABLE select switch/level

The output signal's chroma phase is the same as the playback signal.

VARIABLE: Allows you to adjust the output signal's chroma phase with the CHROMA PHASE control. Adjustment is possible within ±30°

© BLACK LEVEL VARIABLE/UNITY select switch/level

The output signal's setup level is the same as

VARIABLE: Allows you to adjust the output signal's setup level with the BLACK LEVEL (SET UP) control. stment is possible within ±107 mV.

SYSTEM PHASE control

 Adjusts the output signal's horizontal phase with respect to that of the reference input signal. Adjustment is possible within a range of ±3 µsec.

SC PHASE

 Adjusts the output signal's subcarrier phase with respect to that of the reference input signal. Up to 15 rotations are possible with continuous variation over a range of $\pm 180^\circ$. WIDEO PHASE control

 Adjusts the output signal's video phase with respect to the playback signal's H sync. Up to 15 rotations are possible with continuous variation over a range of ± 1.5 µsec.

 Adjusts the output signal's C signal delay time with reference to the Y signal. Adjustable within ±500 nsec. O YC TIMING control

Normally set to "8".

TBC ON/OFF switch.

Set to ON for TBC playback. (During TBC operation, the serve is locked to the reference signal supplied to the EXT REF connector even if the SYNC select switch is set to

Set to OFF to bypass TBC

MENU SET ON/OFF switch

SET to ON to activate the On-Screen Menu. The counter display will also switch to the Menu Set mode.

Most basic system setup operations are performed using

PB Y ENHANCE switch

Enhances the luminance signal for a sharper playback

+4 dB: Boosts fuminance signal level by 4 dB at 2.5 MHz for maximum picture sharpness.

for a sharper picture. 0 dB: No effect. The same result is obtained by setting +2 dB: Boosts fuminance signal level by 2 dB at 2.5 MHz

the VIDEO OUT select switch (to EDIT.

SYNC select switch

VIDEO: The servo is synchronised with the input video The servo is synchronised with the external reference signal supplied to the EXT REF input.

® REC MODE select switch

S-VHS: To record in the S-VHS mode. (Use S-VHS cassettes only)

To record in the VHS mode. VIDEO OUT select switch VHS 9

EDIT: Set to this position when using this VCR as a feeder or recorder in dubbing.

NORM: Normally set to this position.

■ VIDEO AGC ON/OFF switch

Set to ON to activate the built-in VIDEO AGC circuit.
 Set to OFF to adjust the luminance video recording level

● VIDEO control

 Use to adjust video recording level, referring to the VIDEO/TRACKING meter. The centre click-stop is the standard position. The VIDEO AGC switch must be OFF to use this control

TIME CODE GENERATOR/READER SETTING

(With SA-R22E TC generator/reader installed)

ID PRESET ON/OFF

ON: To record the ID code specifically preset for each

OFF: To use the user bits memory for standard procedures VITC REC ON/OFF switch in the Preset mode.

ON: To record VITC time codes. OFF: VITC time codes are not recorded.

This switch has no effect on LTC recording (enabled by NOTE:

setting menu item #206 to "01 - LTC").

B FREE/REC switch

switch is set to PRESET and the INT/EXT switch is set to This switch is effective only when the PRESET/REGEN

FREE: The time code runs in real time, regardless of the video recorder's operating mode

The time code runs only during recording. PRESET/REGEN switch REC

PRESET: To use the internal TC generator in the Preset mode (with the INT/EXT switch set to INT), or to use an external TC generator via the TIME CODE IN connector (with the INT/EXT switch set to

either the playback time codes (with the INT/EXT switch set to INT), or externally input time codes (with the INT/EXT switch set to EXT). To use the internal TC generator in sync with REGEN:

■ INT/EXT switch

INT: To use the internal TC generator. EXT: To use an externally-connected LTC/VITC generator.

to the type of reference time code with which the Internal TC generator's synchronised in the Regen mode. AUTC For tapes with matching VITC and LTC data. Counts time codes in VITC at tape speeds lower than normal, ● AUTO/LTC/VITC switch
 ● To select the TC reader mode. Select the mode according

and in LTC at speeds higher than normal. Missing

at speeds higher than normal. Missing sections are interpolated with CTL counts. sections are interpolated with CTL counts. For LTC-only tapes or when editing with LTC data. Counts time codes in CTL at tape speeds lower than normal and higher than 10 times normal, and in LTC ë

For VITC-only tapes or when editing with VITC data. Counts time acodes in VITC at atpes peaced lower than 10 times normal, and in CIT at speeds higher than 10 times normal. Missing sections are interpolated with times normal. CTL counts. VITC

6

Outputs the video head FM signal during playback.
Can be used for detection of clogged or worn heads.
A-RF test point

Outputs the Hi-Fi audio FM signal during playback

Can be used for detection of clogged or worn heads.

D-PULSE pin

Connect to the external trigger terminal of an oscilloscope.

Connect to the ground terminal of an oscilloscope.

AC IN socket

Connect to 110 – 120 V or 220 – 240 V AC, 50/60 Hz power

NORM AUDIO INPUT impedance select switch

ON: 600 ohms. OFF: 10 k-ohms. Normally set to this position.

Audio Input connectors

AUDIO IN NORMAL: Normal audio input connectors for Hi-Fi audio input connectors for Lett Audio-1 and Audio-2. AUDIO IN HI-FI:

AUDIO OUT NORMAL: Normal audio output connectors for Audio-1 and Audio-2. and Right. Audio output connectors

Hi-Fi audio output connectors for Left Hi-Fi AUDIO INPUT impedance select switch and Right. AUDIO OUT HI-FI:

Ø

 The composite video signal is output from these ON: 600 ohms.
OFF: 10 k-ohms. Normally set to this position.

O, Ø VIDEO OUT LINE (1, 2) connectors

@, @ VIDEO OUT Y/C443 (1, 2) connectors

The Y/C443 signal is output from these connectors.
 AUDIO MONITOR OUT connector

The audio signal selected with the AUDIO MONITOR select switches is available at this connector.

WIDEO MONITOR OUT connector

The composite video output signal is available at this connector. On screen information is also supplied.

Expansion slot

 For installation of optional interface (SA-K28E or SA-K27E).

C NORMAL INPUT LEVEL select switch

To select -6 dB, 0 dB, or +4 dB according to the level of the

normal audio input signal. Both channels are switched

 To select -6 dB, 0 dB, or +4 dB according to the level of the simultaneously.

Chi-Fi INPUT LEVEL select switch

HCOM: "Hi-Fi Combined" recording. Set to this position to record audio signals input to the AUDIO IN Hi-Fi Hi-Fi audio input signal. Both channels are switched simultaneously.

AUDIO INPUT SELECT switch

"Separate" recording. Set to this position to record audio signals input to the AUDIO IN Hi-Fi and NORMAL connectors separately on the Hi-Fi and Normal audio tracks. racks. SEP:

connectors on both the Hi-Fi and Normal audio

record audio signats input to the AUDIO IN NORMAL connectors on both the Hi-Fi and Normal audio tracks. "Normal Combined" recording. Set to this position to NCOM:

OPTION connector

To select -6 dB, 0 dB, or +4 dB according to the input level

Audio output Level select switch

of connected audio equipment. All four audio channels are

⊕ TIME CODE IN/OUT connectors Set menu item #206 to "01 - LTC" to record LTC time codes Connect B time code generator to the IN connector for

Delivers the Y/C 686/Y/C 924 signal (with optional SA-E92E Output board installed) to the DUB IN connector of

© EXT REF connectors with 75-ohm terminating switch e Supply the reference signal (either black burst signal or composite video) to the left connector and set the 75-ohm terminating switch to ON. 3/4" U-VCR machines.

signal or sync signal without burst as the reference signal, otherwise the intended synchronisation will not be When using the SA-T22E, do not use a black-and-white NOTE:

To output the loop through signal to another unit, set the

75-ohm terminating switch to OFF.

75-Ohm terminating switch

The composite video signal is input to the left connector.

WIDEO IN LINE connectors external time code reading

To output a loop-through signal to another unit, set the 75-ohm terminating switch to OFF.

ģ

Connect a time code reader to the OUT connector

external time code recording.

on the normal audio-2 track.

FansExpansion slot

the

ON: The loop-through signal is terminated at OFF: The loop-through signal is output to another unit. 9-PIN connector

BR-S622E.

optional SA-T22E TBC is installed.

• Y/R-Y/B-Y output connectors: Mil or Betacam component For installation of COMPONENT OUT connector board when

 TBC remote terminal: Connect a 15-pin remote controller signal is output.

Connect to an RS-422 9-pin serial remate control unit or to the RS-422 9-pin connector of a recorder for swap editing.
 WIDEO IN Y/C443 connector

The Y/C443 signal is input to this connector.

 Select voltage according to your local power supply.
 (Be sure the POWER is off when setting the voltage.) **● VOLTAGE SELECTOR**

AUDIO DUBBING

To simplify insertion of an additional or new soundtrack (such as narration for music), on a previously-recorded tape, the BR-8622E is equipped with an audio dubbing function. Microphone or other external audio input can be recorded directly on the normal audio-2 track.

- PREPARATION

- Connect a microphone to the AUD-2/R MIC connector or connect an audio source to the rear panel NORIMAL AUDIO IN AUD-2/R connector.

 - Load a cassette.
 Set the AUDIO MONITOR select switches to NORM and MIX or AUD-2/R.
 - Adjust the audio recording level as required with the AUD-2
 - recording level control.

If menu item #206 is set to "01 -LTC", LTC can be inserted.

- Search for the audio dubbing IN point.
 Use the Jog/Shuttle controls to locate the IN point.
 Engage the Still mode at the IN point.
 Press AUD DUB and PLAY logather to start audio dubbing.
 The AUD DUB and PLAY indicators will light.
 Tress PAUS ESTITL to temporarily stop audio dubbing.
 Press PLAY to re-start audio dubbing.
 Press PLAY to re-start audio dubbing.
 Press STOP to end audio dubbing.

	Description Setting	
On-Screen Display	000: FRAME SERVO 4 FIELD 001: AUTO H PHASE ON	
	Menu No.	

Blinking: Item ready to be set

NOTE: For items with more setting variations, 02, 03 ... are displayed. In such cases, 00/01 does not mean OFF/ON.

Menu No.	و ا	On-Screen		Settings	Total and the second
		Description	Counter	On-Screen	
SERVO	8	FRAME SERVO	8	OFF	OFF: To defeat Frame Servo. When random-interlaced or low-
			[01]	(4 FIELD)	S/N vidoo signals are used, set to OFF. 4 FIELD: To use Colour Frame Servo when editing in colour frame
			8	2 FIELD	servo mode. 2 FIELD: To use Frame Servo.
	00 1	AUTO H PHASE	8	OFF.	OFF: To defeat Auto H-Phase Lock. Set to OFF for animation or
			[10]	[ov]	ON: To use Auto H-Phase Lock, Normally set to ON.
VIDEO	9	SWITCHING POINT	[00]	[REC6.5H, PB4.5H]	Selects head switching point. REC6.5H, PB4.5H: To position head switching point 6.5H ahead
			5	REC6.5H, PBS.5H	of V syrc in recording, and to shift it 2H in playback (1H kower than normal). Normally use hits setting. REC6.5H, R95.5H: To position head switching point 6.5H ahead
			8	REC2.25H	of V sync in recording, and to shift if 1H in playback. REC2.25H PR1.25H To position had switching point 2.25U
				PB1.25H	ahead of V sync in recording, and to shift it H in playback. Use this setting when you want a lower switching point for closed-circuit systems.
	ē	S-VHS REC. EQ.			Selects video frequency response according to the
			8	TABE TVDE.1	
			<u></u>	[TAPE TYPE-2]	TAPE TYPE:2: Professional-S tape or other double-coated tapes.
			88	TAPE TYPE-3 TAPE TYPE-4	TAPE TYPE-3: S-VHS master tape, TAPE TYPE-4: Do not use this setting.
	50	U-VCR Y/C MODE			Selects the mode of the signal output via rear panel OPTION (Y-
			[00]	[conv.]	686/924) connector. (Effective with SA-E92E board) CONV.: To output Y-686/924 dubbing signal to conventional 3/4*
			8	HB/SP	U-VCR machines. HB/SP: To output V-566/924 dubbing signal to 3/4" U-VCR SP or Hi-Bard methines.
	103	WIDE ASPECT ID			Selects recording in wide aspect format (16.9 aspect ratio) or
			[00]	lauroj	AUTO: Automatically detects wide aspect ID of input signal (Y/C
			5	WIDE	input only) and records in wide aspect format. WIDE: Records in wide aspect format regardless of the format of
					input signat. When recording wide-aspect pictures via composite input, use this setting.
			8	NORM	NORM: Records in normal aspect format regardless of the format of input signal.

27

		SYS														
tation		mals output via rear panel YRA- AA-TZEZ Is to Mil machines.	Ç.	r normal audio. for normal audio.	To defeat audio limiter for normal audio leacks. To activate audio limiter for normal audio tracks to avoid over-level recording, fululto recording level adjustment is possible with limiter ON.).	without signals via rear panel AUDIO OUT connectors. To output its labelled: normal audio from NORMAL AUD- IMUD-2, Hi-Fl audio from Hi-Fl L/R.	To output H-F1 audio from all connectors: NORIMAL AUD: 1 outputs H-F1 field rearner is signal and NORIMAL. AUD: 2 output H-F1 right-channel signal. To output normal audio from all connectors: H-F1 L outputs normal audio-1 signal and H-F1 R outputs normal audio-1 signal and H-F1 R outputs normal audio-2.	el Hi-Fi AUDIO OUT connectors lo.	audio signais to be recorded on the normal audio-1 track. Audio signais input to AUD-1 are accorded. EMIX. Mixed audio signals input to AUD-1 are accorded. (Leveis are controlled independently with the operatoring controlly. Weiting its excorded of the normal audio-2 track undes menu item ?206 is set to V01 - LTC.	he normal audio-2 track. -2 are recorded.	repled only from Stop mode.	Jog/Shuthe dials do not luncition unless JOG/SHIT. Dutton is pressed first. JOG/SHIT dials function directly from Stop, Play, Silli, FF and REW modes.	Enters Record-Pause mode without preroll. Picture will be distorted at record-start point. Be distorted at record-start point. Seconds.	Mathurctions are detected for warning indications. Normatly keep set to this position. Detection of mathurctions is inhibited. No warning indication is variable.	Recording is possible with cassettes with safety tab in place. Recording is infinited required set of the presence of safety the Use this position if the VCR is used only as a player.	tetment purposes only. Awaye
Explanation		Selects the level of component signals output via rear panel VIR-YR9-V connectors, Effective with SA-1722E; LVW: To output component signals to Mil machines. HIGH: To output component signals to Beleacam machines.	OFF: To defeat Hi-Fi audio recording. ON: To record Hi-Fi audio.	OFF: To defeat Dolby NR circuit for normal audio. ON: To activate Dolby NR circuit for normal audio.	OFF: To defeat audio limiter for normal audio tracks. ON: To activate audio limiter for normal audio to over-level recording. (Audio recording level possible with limiter ON.)	Selects output signals via rear panel AUDIO OUT connectors SEP.: To output as labelled: normal audio from NORMAL MAUD-2, Hi-Fl audio from Hi-Fl L/R.	H-FI: To output H-FI audio from all con- outputs H-FI abd-Channels aigna outputs H-FI right-Channel signal. NOPBA: To output normal audio from all co normal audio-1 signal and H-FI R signal.	Selecte output signate via rear panel Hi-Fi AUDIO OUT connectors during search. MAITE: To output muted Hi-Fi audio. NORM: To output normal audio.	Selects audio signals to be recorded on the normal audio-1 track. AUD: 1. Audio signals input to AUD: 1 are seconded. AUD: 1.2 MIX: Mixed audio signals input to AUD: 1 and AUD.2 are recorded. (Levels are controlled independently with the corresponding control.) Northing is recorded on the normal audio-2 track unless menu item \$206 is set to '01 – LTC:	Selects signals to be recorded on the normal audio-2 track AUD-2. Audio signals input to AUD-2 are recorded. LTC: LTC signal is recorded.	DISABLE: EJECT command is accepted only from Stop mode. EMABLE: EJECT command is accepted from any mode.	DISABLE: Jog/Shuttle dials do not tenction unless JOG/SHTL button is pressed first. ENABLE: Jog/Shuttle dials function directly from Stop, Play, Still, FF and REW modes.	DISABLE: Enters Record-Pause mode with be distorted at record-start point. ENABLE: Enters Record-Pause mode wi seconds.	OFF: Malfunctions are detected to keep set to this position. ON: Detection of malfunctions is is available.	OFF: Recording is possible with ca ON: Recording is inhibited regard tab. Use this position if the VC	This sating is for manufacturer adjustment numposes only. Always keep set to DISABLE.
Settings	On-Screen	ILOW] HIGH	OFF [ON]	OFF (ON)	FIOO!	(SEP.)	H6-F1 NORM	(MUTE) NOPM	(AUD-1) AUD-1/2 MIX	(AUD-2) LTC	DISABLE (ENABLE)	DISABLE (ENABLE)	DISABLE [ENABLE]	(OFF)	(OFF) ON	DISABLE
	Counter	[00] OI	86 [0]	8 2	8 6	[00]	S 8	[00]	[00]	600	8 2	(01)	(01)	[00]	00 0	1001
On-Screen	Description	COMPONENT OUT	H-FI AUDIO REC.	NORIM. AUDIO DOLBY NR	AUDIO LIMITER	AUDIO OUT		H-H-OUT AT SEARCH	AUD-1 REC.	AUD-2/LTC '2	DIRECT EJECT	DIRECT SEARCH	AUTO REC. PREROLL	WARNING INHIBIT	RECORDING	REPEAT REC.
ó		\$	200	201	202	203		204	202	506	300	301	302	303	304	305
Menu No.		VIDEO	AUDIO								SYSTEM					

Menu No.	٥	On-Screen		Settings	Explanation
		Description	Counter	On-Screen	
SYSTEM	306	LONG PAUSE	(01)	DISABLE	DISABLE: To defeat Long Pause function. ENABLE: To use Long Pause function in Standby-On. Still and Record-Pause modes. (Long Pause parameters are selected with menu fenns #307, #308 and #308.)
	302	LONG PAUSE TIME	8 2 8 8 2 8 8 (07)	1 SEC 10 SEC 30 SEC 1 MIN 2 MIN 3 MIN 4 MIN (5 MIN)	With manu from #306 set to ENABLE, selects the length of time before normal Pause (Standby-On, Silfl and Record-Pause) mode changes to Long Pause.
	308	LONG PAUSE (STILL)	85	STANDBY.OFF T. RELEASE	Selects the contents of Long Pause mode. (After the time set with men, tiem #307 expless in Stift or Record-Pause mode, the VCR operates as specified.) STANDBY-OFF: Enters Standby-Oil mode. If RELEASE, Translor amt is reased for tape protection. Still prictures continue to be available.
			[02]	(STEP FWD)	STEP FWD: Tape advances in slow-motion for about 2 seconds about 2 suches). This adding repeated 5 times at the time intervals set with menu item \$30.7 The VCR enters the Standby-Off mode after the final interval.
	308	LONG PAUSE (STOP)	<u>8</u> 8	(STANDBY-OFF) T. RELEASE STEP FWO	Selects the contents of Long Pause mode. (After the time set with menu item 1937 expires in the Standby-On mode, the VCR operates as specified.) STANDBY-GFF. Enters Standby-Off mode. T. RELE-KEST: Tentor amm is released for tage protection. STEP FWID: Tage advances in slow-motion for about 2 seconds (about 2 femes). This action is repeated 5 times at the time infervals set with menu test #807. The VCR enters the Standby-Off mode after the final interval.
	310	STANDBY-OFF MODE	8 0 8	DRUMON (DRUM OFF) UNLOAD	Selects the status of Standby-Olf mode. DRUM OFF Head drum continues to rotate with tape loaded. DRUM OFF: Head drum stops rotating with tape loaded. WILOAD. Head drum stops rotating with tape loaded.
	311	MODE AT TAPE BEGIN	[00] 00	ISHORT-FF] PLAY	Selects the mode enlered when the beginning of the tape is detected. SHORT-FFF Rest-forwards the leader section and enters Standby-Ormode. PLAY: Enters Play mode.
	312	MODE AT TAPE END	[00]	[SHORT-REM] REW	Selects the mode entered when the end of the tape is detected. SHORT/REW: Rewinds the leader section and enters Standby-On mode. REW: Rewinds to the beginning of tape and enters Standby-On or Play mode depending on the setting of men item #311.
	313	Р В- РВ/ЕЕ	80 [10]	PB/EE [PB]	Selects output signal in the mode specified with menu flem #314. PB/EE: Outputs EE signal. PB: Outputs playback signal.
	314	PB/EE MODE	[00]	(STOP /FF/REW) STOP	Selects the mode in which EE signal is output. STOP /FFREW: EE signal is output in Stop, FF and REW modes. STOP: EE signal is not output in FF and REW modes.
	315	LOCAL FUNCTION	[00] [00]	STOP , EJECT) STP, EJ, PLY, FF, RW, STL	Selects functions that can be locally operated when front panel REMOTE switch is set to 9PIN or REM.2.
			8	ALL DISABLE	

Explanation		Selects 9-pin remote control commands that are acceptable when front panel REMOTE switch is set to LOCAI. ALL DISABLE: Accepts no command from 9 pin remote control. STOP, EJECT: Accepts STOP and EJECT commands only, (Note: With some remote controls, no command is accepted.)	Selects device type ID returned from VCR to 9-pin remote control in response to its requires to list equals to 10 VAC SVH21: Use this selling with BR-S62ZE/BR-S62ZE. UVC SVHS-2: Use this selling with SAF-911E is included in the	system. OTHER TYPE-1/OTHER TYPE-2: Consult a JVC dealer.	Selects VCR's response to 9-pin remote control when remote control requests time code data when TC board is not installed. TC MISSING: VCR returns code meaning TC MISSING. CLT DATA. VCR returns substitute CLT data.	Selects maximum tapo spood (full-size casselle only). (FF and REW speeds also correspond to this selting, in the 100x mode, the EE signal is output, in the 32x and 18x search modes, the playback signal is output. The CTL signal is output in the 16x search mode using the RM-804 45-pin remote control.)	Selects preroil time in one-second steps from 0 to 15 seconds.		Selects time count reference for preroit in TC operation. Cit.: Refers to CTL counts. Preroit is possible even when time	codes are missing. Refers to time codes.	Activates or defeats automatic IN point entry function. NOT ENTERED: IN point is not entered automatically by pressing	*Prenchal button. #ED: IN point is entered automatically by pressing PREHOLL button if no IN point has been previously entered.	STOP: Enters Stop mode after preroil is completed. STILL: Enters Stiff mode after preroil is completed.	Starts recording on the first field and ends on the second	Pare cocording on the second field and ends on the first field. Use this setting when inserting two pictures in one frame for animation.	Counter shows from -9 to +9 hours in CTL mode. Counter shows from 0 to 28 hours in CTL mode.	
		Selects 9-pin r front panel REI ALL DISABLE: STOP, EJECT With so	Selects device type ID response to its request, JVC SVHS-1: Use this JVC SVHS-2: Use this	OTHER TYPE.	Selects VCR's control request TC MISSING: CTL DATA:	Selects maxim (FF and REW mode, the EE the playback s search mode u	Selects preroll		Selects time or CTL: Refers t	codes au TC: Refers to	Activates or de	ENTERED: IN point is PREROLL button entered.	STOP: Enters STILL: Enters	1st: Starts re	2nd: Starts re field. Us frame for	19H: Counter a 24H: Counter a	
Settings	On-Screen	(ALL DISABLE) STOP, EJECT	LIVC SVHS-1] JVC SVHS-2	OTHER TYPE-1 OTHER TYPE-2	[TC MISSING] CTL DATA	(X100) X32 X16	0 SEC	(7 SEC)	5	[JC]	NOT ENTERED	[ENTERED]	(STOP) STILL	[1st]	2nd	[±9H] 24H	
	Counter	[00] 01	[00]	88	0.00	60 8 9	8	107st	8	(01)	8	[01]	00]	(00)	8	00]	
On-Screen	Description	9PIN CMD FUNCTION	9P&N DEVICE TYPE		TC DATA W/O TC BOARD .	TAPE MAX SPEED	PREROLL TIME		TIME REF. FOR PREROLL		IN POINT AUTO ENTRY		MODE AFTER PREROLL	EDIT FIELD		CTL COUNTER MODE	
ģ		316	317		318	319	320		321		322		323	324		325	
Menu No.		SYSTEM															

Menu No.	No.	On-Screen		Settings	Explanation
		Description	Counter	On-Screen	The state of the s
SYSTEM	335	CASSETTE SEL. INHIBIT	[00]	(OFF)	OFF: Casselle size selection is possible with the CASSETTE SELECT button on the front panel. CN: Casselle size selection is inhibited.
	333	CF SERVO LOCK REPLY	00 (10)	DISABLE [ENABLE]	Selects information to deliver to 9-pin remote. DISABLE: Colour frame servo lock cannot be engaged. ENABLE: Colour frame is locked to 4-lield colour framing mode.
	334	CF RE-LOCK AT PLAY	(00) 01	(DISABLE) ENABLE	Activates or defeats colour frame re-lock function when colour frame lock is disengaged in Play mode.
TIME	400	VITC POSITION-1	00 :: [112] :: 15	7LINE [19LINE] : : : : : : : : : : : : : : : : : : :	Selects the horizontal scanning line on which VITC data is stored. Selectable from fine 7 to line 22 in the vertical blanking interval. • Do not select line 11 in S-VHS recording as this is reserved for AUTO EC. • When using the SA-1722E TBC board, set above line 9.
	401	VITC POSITION:2	00 [14]	7LINE	Selects the horizonal scanning line on which VITC data is stored. Selectable from line 7 to line 22 in the verticab blanking inlevral. (Two lines per field are used to store VITC data.) • Do not select line 11 in S-WHS recording as this is reserved for AJITC 62 signal. • When using his 63-1722E TBC board, set above line 9.
	403	TCG REGEN MODE	[00]	(TC& UBJ	Selects code data to be regenerated in Internal Regen mode (with TC boards NYTEXT switch set to INT and PRESET /REGEN switch set to REGEN, IT C& US: Records both time code and user bit data in Regen mode. TC: Records time code data in Regen mode and user bit data in Regen mode.
			8	8	Preset mode. UE: Records user bit data in Regen mode and time code data in Preset mode.
	404	TC SOURCE AT REGEN	[00 <u>0</u>	(LTC) VITC	Selects the type of reference time code in the Regen mode. LTC: Reference code is LTC. VITC: Reference code is VITC.
	405	LTC OUT (REGEN)	[00]	(OFF TAPE) TCG	Selects output signal from TIME CODE OUT connector while playback is in progress in fintental Regen mode. Playback BE: Outputs time code signal picked up from tape. TCG: Outputs time code signal regenerated by TC generator.
	406	U-BIT BINARY GROUP	(00) 04	(NOT SPECIFIED) ISO CHAR. UNASSIGNED-1	Selects character set configuration to use TC generator's user bits. NOT SPECIFIED: Character set configuration is not specified. 6-Bit character set confouring to ISO 646 and ISO 2022 (with binary group flage at bit counts 43 and 59 in LTC; at 55 and 75 in VITC.)
	403	PHASE	3	UNASSIGNED-Z	UNASSIGNED-2: Underined. Selecte control of LTC phase correction bit for bit asset
	è	CORRECTION BIT	8 [5]	OPF	selects tracording or Li C prises confection bit (parity bit for bit enfort otherby). OFF: Not recorded. (Use this setting if 10s readout is not correct with external TC reader connected.) ON: Recorded.
	408	VITC LINE	[00] 6	(VITC MIX) CLEAN ONLY	Selects whether lines set with menu items #400 and #401 are to be cleaned irrecording. VITC MIN: VITC MIN: CLEAN ONLY: Lines are cleaned.
	409	EXT REGEN TC	[00]	[LTC] VITC	Selects the type of externally input reference time code in External Regen mode. LTC: To use LTC via TIME CODE in connector. YTC: To use VITC via VIDEO IN connector.

Design and specifications subject to change without notice.

SPECIFICATIONS

GENERAL		AUDIO	
Format	VHS/S-VHS Europe standard	Input	
Power consumption :	M 06	Line :	-6/0/+4 dBs, 10 k-ohms/600 ohms,
Power requirment	AC 110 - 127 V/220 - 240 V 50/60 Hz		halanced (Hi-Fi/Normal)
Dimensions	AD D (MA) Y 18 Q (LA) Y 6.6 E (D) cm		67 dD 40 k ohme unhelenged
Danelisions	46.5 (VI) A 10.0 (FI) A 30.3 (U) CIII		-or obs, to k-orans, unbalanced
Weignt	23 Kg	Culput	
Operating		Line :	-6/0/+4 dBs, Low impedance, balanced
temperature	5°C to 40°C		(Hi-Finormal)
Storage temperature :	-20°C to 60°C	: Monitor :	-6 dBs. Low impedance, unbalanced
Tape speed		Phones	∞ to -17 dBs. 8 ohms
Recording &		Signal to noise ratio	More than 43 dB
		Charles of the control of the control	CO CHIEF TO CO
n	. Max. 160 Hills. WILL SY'C SE-160/E-160		(INFI-OIL, NORMAI AT 3% DISTORTION)
		Dynamic range :	More than 87 dB (Hi-Fi)
Rewind time	: Less than 2.5 min. for 180 min, tape	Frequency response:	20 to 20,000 Hz (Hi-Fi) 40 to 12,000 Hz (Normal)
VIDEO		Wow & flutter	Less than 0.005% WRMS (Hi-Fi)
Recording and			Less than 0.3% RMS (Normal)
	. Rotary two-hand halical econolog		
		Time Cone	
. occanismi	Charles and the second	1000	
Luminance	BIND IN THE REAL PROPERTY IN T	·	O UD II O UDS, 10 N-UIIIIS, UIIDBIBIICBU
Colour signal	Phase shift, converted sub-carrier direct recording	Output	0 dB ± 3 dBs, Low impedance, unbalanced
Video signal system :	PAL-type colour signat/PAL-type Y/C		
	signal	CONNECTORS	
Input		Video	
Line	1.0 Vp-p, 75 ohms, unbalanced	Line input :	BNC-type connector
Y/C 443	Y: 1.0 Vp-p. 75 ohms, unbalanced	Line outout	BNC-type connectors
	C: 0.3 Vp·p, 75 ohms, unbalanced	Y/C 443	
Outhout	(Burst)	input/output :	7-pin connectors
l inc	4 O Vene and a second of the second		CIAC-19 Per COIII GCIOI
45	V. 4 O.V 75 - France Company	Audio	
1/0 443	T. I.O vp-p, 75 orans, unbalanced	andui I-II-II	
	C: 0.3 Vp-p, 75 ohms, unbalanced	: output	XLR connectors
Olympia and an analysis	the section of the se	Nomar Input	
Signal-to-noise ratio	More than 45 dB (S-VHS)	ondpot	XLH connectors
	_	Monitor	RCA connector
Horizontal resolution :	More than 400 lines (S·VHS) More than 250 lines (VHS)	Remote control	9-pin connector
Reference video		ACCESSORIES	
input :	0.3 to 1.0 Vp.p, 75 ohms, unbalanced	Provided accessories	: 7-pin cable
External sync input	: 0.3 to 4.0 Vp-p, 75 ohms, unbalanced (with one loop-through, without the		
	SA-T22E)		

TBC

Adjusts on-screen VCR data display position in the horizontal direction 0 : VCR data is displayed at the rightmost position.

1 - 8: Display position shifts to the left with increasing numbers.

გ...∞

<u>6</u>...8

CHAR. H-POSITION

OFF: No data is displayed on-screen. ON: Data is displayed on-screen.

H S

8 2

On-Screen
Description
ON-SCREEN
DISPLAY

Menu No.

8

ON-SCREEN Adjusts on-screen VCR data display position in the vertical direction 0: VCR data is displayed at the bottom of screen. 1-9. Display position shifts up with increasing numbers.

<u>8</u>...e

§...8

CHAR. V-POSITION

202

1: When you set this item to '02 – REC 2.25H/PB 1.25H' in recording, be sure to set it to this position when playing back the tape in the TBC mode.

"2: When playing back a tape with no LTC recorded on the normal audio-2 track, set this item to '00 – AUD-2:

SECTION 1 GENERAL DESCRIPTION AND DISASSEMBLY

1.1 REMOVAL OF EXTERNAL COVERS

1.1.1 Top cover

 Remove two screws (a) and lift the top cover by the rear to remove it upward.

Fig. 1-1-1

1.1.2 Cassette panel (Upper part of the front panel)

- 1. Remove the top cover.
- 2. Remove three screws (a) and lift up the cassette panel to the front side while taking it off.
- 3. For removing the cassette panel entirely from the main body, disconnect the relay connector and connectors connected with the operation panel.

Fig. 1-1-2

1.1.3 Operation panel (Lower part of the front panel)

- 1. Remove the top cover and the cassette panel.
- 2. Remove two screws © from the both sides of the operation panel.
- 3. Draw the connector out of the main body while disconnecting it.
- 4. Draw the operation panel frontwoard while removing it.

Fig. 1-1-3

1.1.4 Side covers

- 1. Remove the top cover and the cassette panel.
- 2. Remove four screws (a) (see Fig. 1-1-1) and take off a side cover.
- 3. Remove the other side cover in the same manner.

1.1.5 Bottom cover

- 1. Remove the left side cover.
- 2. Raise the set so as to stand on its rear panel.
- 3. Remove five screws (a) and take off the bottom cover.

Fig. 1-1-4

1.1.6 Rear panel

Remove screws retaining the side cover in the rear panel side.

- Rear panel (A) -
- 1. Remove four screws (F) and two feet (G).
- 2. Remove the rear panel (A).
- Rear panel (B) -
- 3. Remove two screws (1) and two feet (3).
- 4. Remove the rear panel (B).
- Rear panel (C) -
- 5. Remove two screws @ to remove the rear panel (C).

Fig. 1-1-5 (45-PIN board is optional.)

1.1.7 Rear bracket

- 1. Remove two screws retaining the left side cover in the rear panel side.
- 2. Remove five screws ® (see Fig. 1-1-5) and a screw ® (see Fig. 1-1-4) to remove the rear bracket.

1.2 REMOVAL OF MAIN BOARDS

Note: • When removing/installing any P. C. board, cut off the power supply beforehand.

Make sure to reinstall any P. C. board as it was originally assembled.

Group	Board Name	Extension Board	Removing and Resetting Manner
A	05 FUSE 16 R/P ADJUST 17 Y COMB 19 OUTPUT 22 AUDIO-2 23 AUDIO-3 41 AVM/OS 61 TBC-2 (Optional) 62 TBC-3 (Optional) 66 U-VCR Y/C OUT (Optional) 10 R/P Y 11 R/P COLOR 1 12 R/P COLOR 2	PGJ05044 PGJ05043	1) Remove the top cover. 2) After removing the board holder, pull up the ejector of the board for removal. Note: When installing a shield plate, place it with the instructions facing outward. Otherwise, it may cause a shortcircuit. Ejector
	60 TBC-1 (Optional)		
В	40 SYSCON 65 TC G/R (Optional)	PGJ05043 x2 PGJ05045 (TC G/R)	 Open the operation panel. Remove two lock screws, and draw out the SYSCON board to remove. The TC G/R board is inserted into the SYSCON board.
С	OI MOTHER 1 OI MOTHER 2 SIO D/C SERVO SII M. CTL/R. SERVO	_	1) Raise the set so as to stand on the rear panel, and remove the bottom cover. (Refer to Sec. 1.1.5) 2) Proceed to do things described in "1.2.1 Group C".
D	24 AUDIO-4 25 AUDIO-5 71 REAR-1 72 REAR-2 73 REAR-3 74 REAR-4 (Optional)		Remove the rear bracket (see 1.1.7). Proceed to do things described in "1.2.2 Group D".
E	20 FMA PRE 21 AUDIO-1	_	1) Take off the top cover. For the AUDIO-1 board, remove the right side cover. (See Fig. 1-2-1.) 2) Release the hinge to unlatch the board and disconnect connectors while removing the board.
F	42 OPERATION CPU 43 OPERATION KEY-1 44 OPERATION KEY-2 26 AUDIO-6 (Incl. 27 JACK, 28 VR)		Open the operation panel. Proceed to do things described in "1.2.3 Group F".
G	15 PRE/REC		Refer to the upper drum replacing procedure (1 through 6) in the subsection 2.3.4.
Н	67 45 PIN I/F (Optional) 55 RS-232C I/F (Optional)	PGJ05035	1) Remove two screws © shown in Fig. 1-1-5, and draw out the board by the knob.

Table 1-2-1

1.2.1 Group C

- 1. D/C SERVO board and M. CTL/R. SERVO board
- With the operation panel opened, stand the set on its rear.
- 2) Remove two screws @ and tilt the board frontward.
- 3) Remove four screws ® retaining the boards and brackets, and disconnect connectors. Then, the D/C SERVO board and the M. CTL/R. SERVO board can be removed.

2. MOTHER 1 board and MOTHER 2 board

- 1) Remove all boards belonging to the Group A.
- 2) Remove twelve screws © and connectors to remove the boards.

Note: The MOTHER 1 and the MOTHER 2 boards are connected with a flat cable.

Fig. 1-2-3

1.2.2 Group D

Note:In the BR-S522E, soldering points of connectors are less in number since it is equipped with no input terminal.

1. AUDIO-5 board and AUDIO-4 board

- 1) Remove spacers from the four corners and disconnect connectors. Then remove the AUDIO-5 board.
- 2) After the AUDIO-5 board has been removed, remove three screws to remove the AUDIO-4 board.

2. REAR-1 board

- Unsolder connectors (7 points for BNC, 1 for RCA and 4 for Y/C).
- 2) Remove a screw @ retaining the board.
- 3) Disconnect all connectors and remove the board.

3. REAR-2 board

- 1) Unsolder the TIME CODE OUT and AUDIO OUT connectors.
- 2) Unsolder the 9-pin connector and remove the board.

4. REAR-3 board

 Unsolder the XLR connector at 8 points and remove the board.

5. REAR-4 board (Optional)

1) Remove four screws (h) shown in Fig. 1-1-5 and disconnect connectors to remove the board.

1.2.3 Group F

1. OPERATION CPU board

- 1) Remove four screws (1) and the board cover.
- 2) Disconnect connectors concerned and remove the board.

2. OPERATION KEY-1 board

- 1) Remove the OPERATION CPU board.
- 2) Remove seven screws retaining the OPERATION KEY-1 board

3. OPERATION KEY-2 board

- Remove five screws @ retaining the board cover to remove it.
- 2) Remove the AUDIO-6 board. (Refer to 1.2.3.4.)
- Remove four screws retaining the OPERATION KEY-2 board and disconnect connectors concerned to remove the board

4. AUDIO-6 board (Incl. 2 7 JACK, 2 8 VR boards)

- Remove five screws @ retaining the board cover to remove it.
- 2) Remove all VR knobs.
- 3) Remove two screws © and a screw ® and disconnect connectors concerned to remove the board.

42 OPERATION CPU. 43 OPERATION KEY-1

Fig. 1-2-5 (A) (Actually equipped with black cover)

Fig. 1-2-5 (B) (Actually equipped with black cover)

1.3 INTERNAL SWITCHES

Note: • For location of respective switches, see "Location of test points and VRs" at the back of the section 3.

• Numeral and alphabet in parentheses (4 I, for example) following a symbol number indicates the section where the part is located in the board.

1.3.1 Function of switch

1 0 R/P Y

Symbol No.	Switch Name	Setting at Shipment	Function
S1 (41)	DOC switch	S1 OFF ON	ON: DOC circuit is activated except in SEARCH mode. OFF: DOC circuit is inactivated.
S2 (7 E)	SW POINT MASK switch	S2 ON D OFF	ON : SW point MASK circuit is activated. OFF : SW point MASK circuit is inactivated.

12 R/P COLOR 2

Symbol No.	Switch Name	Setting at Shipment	Function
S1 (1B)	Adjusting switch	SW1 OFF D ON	To be used REF. burst adjustment.
SW301(A3)	Adjusting switch	Changeable (Set by adjustment.)	To be used in P. burst phase detect adjustment mode.
SW302 (2C)	Adjusting switch	SW302 ADJ. D NORM	For adjusting mode of cross talk cancel circuit.
SW303 (2D)	Adjusting switch	ADJ. NORM	For adjusting mode of cross talk cancel circuit.

16 R/P ADJUST

Symbol No.	Switch Name	Setting at Shipment	Function
S1 (4 E)	Adjusting switch	S1 RAP D NORM	RAP: For adjusting mode of playback picture recorded by the same set. For detail, refer to the Technical Guide (No. T-9024) for BR-S822/S622 (Section 6.18 "RAP MODE", page 6-23). NORM: For normal operation Usually set to NORM position.
S2 (4 E)	Adjusting switch	S2 RAP 2 RAP 1	Effective with S1 set to RAP position RAP 1: For adjusting mode of CH-1 head. RAP 2: For adjusting mode of CH-2 head.
D23 (4 E)	RAP MODE LED		When S1 set to RAP position, RAP MODE LED is turned on.

17 Y COMB

Symbol No.	Switch Name	Setting at Shipment	Function
SW1-1 (7 I) 1-2 1-3 1-4	- PB Y COMB FILTER LIMTTER LEVEL setting switch	S1 ON 1 2 3 4 5 6 7 8	SW1 4 3 2 1 OFF OFF OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF
1-5 1-6 1-7	REF. SIGNAL LINE SELECT switch Not used		SW1 SW1 Reference signal addition line Non-addition OFF ON ON ON ON OFF ON ON OFF ON OFF ON ON OFF OFF
SW2 (7 E)	COMB FILTER swtich	S2 NOR ADJ.	NOR: To activate comb filter always. ADJ.: To inactivate comb filter at all.

19 OUTPUT

Symbol No.	Switch Name	Setting at Shipment	Function
SW1 (8 I)	AUTO EQ switch	SW1 AUTO MANU	AUTO: In S-VHS playback mode, if reference signal is recorded on the line selected by S1-5, -6 and -7 of 17 Y COMB board, AUTO EQ functions. MANU: AUTO EQ does not function. Usually set to AUTO position.
D5 (10 I)	AUTO EQ REF. SIGNAL DETECTION LED	_	In S-VHS playback mode, if reference signal is recorded on the line selected by S1-5, -6 and -7 of 17 Y COMB board, AUTO EQ REF. SIGNAL DET. LED lights regardless of SW1 setting.

31 M. CTL & R. SERVO

Symbol No.	Switch Name	Setting at Shipment					Function
SW1	Adjusting switch	SW1	When power is turned on after SW1 was set, more changes as shown in the following table.			turned on after SW1 was set, mode in the following table. In turned on with SW1 set on all, and at a of R. SERVO circuit will be the on such an occasion, readjust R.	
			1	2	3	4	Mode
			ON				Normal operation Load end stop mode, Reel FG duty adjustment mode
				ON			F. cassette loading torque check mode
			ON	ON			Play back tension adjustment mode, Warning tension setting mode
					ON		C. cassette loading torque data setting mode (Up)
			ON		ON		C. cassette loading torque data setting mode (Down)
				ON	ON		Inhibit
			ON	ON	ON		Inhibit
						ON	Emergency roll mode
1			ON			ON	
				ON		-	Inhibit
			ON	ON		_	Inhibit
					ON	ON	
			ОИ		ON	ON	
				ON	ON	ON	
			ON	ON	ON	ON	
							(To initialize adjustment data)
SW2	Tact switch for adjustment	—	To rai	se/d	eclin	e tor	stment mode. que and to set data in adjustment modes pressing increases torque by 2 g-cm.

6 0 TBC-1 (SA-T22E optional)

Symbol No.	Switch Name	Setting at Shipment	Function
SW1 (71)	Adjusting switch (Y/C TIMING)	— Refer to Item No. 15 "Y/C timing adjustment" in Sect.	
SW2-1 (6 I)	NTSC V. BLANKING PERIOD SELECT switch	SW2 ON 1 2 3 4	Invalid with SW2-2 set to OFF.
SW2-2	NTSC/PAL		ON: NTSC (Make sure to set to OFF.) OFF: PAL
SW2-3	Not used		_
SW2-4	Not used		-
SW3 (5 I)	Adjusting switch (FORCED TBC)	ADJ NOR (OFF)	ADJ (ON): TBC is activated regardless of setting of TBC switch on the front sub-panel (on the back of operation panel. NOR (OFF): TBC functions according to TBC switch setting.

6 2 TBC-3 (SA-T22E optional)

Symbol No.	Switch Name	Setting at Shipment	Function
SW1-1 (3 H)	Adjusting switch	SW1	ON : For decoder adjustment mode OFF : For normal operation Usually set to OFF position.
SW1-2	SYNC DETECT MODE switch	1 2 3 4	ON : For period detection mode OFF : For width detection mode and period detection mode
SW1-3	W. CLOCK SELECT (1)		ON : For AFC mode OFF : For APC selection mode to affect SW1-4
SW1-4	W. CLOCK SELECT (2)		With SW1-3 set to OFF: ON : For APC mode OFF : For AFC-APC automatic selection mode

6 5 TIME CODE G/R (SA-R22E optional)

Symbol No.	Switch Name	Setting at Shipment	Function
S8-1 (13 A)	VITC H POSITION CHANGE switch	S8 ** ** ** ** ** ** ** ** ** ** ** ** **	For changing VITC position in horizontal direction Do not change the setting without reason.
\$8-2	UNDEFINED BIT OPERATION switch	(Showing the state of \$8 built in SYSCON board)	Bit 58 is not defined for LTC while bit 74 is not defined for VITC. These bits are regarded as "0" until they are defined by SMPTE. ON: "1" OFF: "0" Make sure to set this switch to OFF position usually.
S8-3	Not used		_
S8-4	ERROR BYPASS ON/OFF		ON : To activate the error bypass circuit OFF : To inactivate the error bypass circuit

6 7 45 PIN MAIN (SA-K28E optional)

Symbol No.	Switch Name	Setting at Shipment	Function
SW1 SW2 SW3	Not used	SW1, SW2, SW3	Ineffective when the set is connected with the professional S22 series
SW4-1 (3 A)	VTR SELECT switch	SW4	Item Search Max. CTL Mute
SW4-2	CONTROLLER SELECT switch	1 2 3 4	Switch Speed Data (FF/REW) SW4-1 ON : 22 series Depends on SW4-2 OFF OFF: BR-S605 x7 ON
SW4-3, 4-4	Not used	1 2 3 4	SW4-2 ON : RM-86 ×10 OFF: Others ×32

5 5 RS-232C (SA-K27E optional)

Symbol No.	Switch Name	Setting at Shipment			Function	
SW1 SW2 SW3	Not used	SW1, SW2, SW3	Ineffective v S22 series	vhen the set	is connecte	ed with the professional
SW4-1 SW4-2	DATA RATE SELECT switch	SW4 ON 1 2 3 4	SW4-1 OFF ON OFF ON	SW4-2 OFF OFF ON ON	bps 1200 2400 4800 9600	
SW4-4	TEST MODE ON/OFF switch		ON : For OFF : For Usually set		(Factory use	e only)

1.4 MEMORY SWITCH

Mode setting of this model can be operated with the memory switch, which the hour meter is built in.

For operation of the memory switch, refer to the instruction book (pages 37 through 46 for S822 or pages 26 through 33 for S622).

1.4.1 Initialization of memory switch

To initialize the memory switch as it was at shipment, proceed to do the following steps.

- 1. Eject the cassette tape and turn off the power switch.
- Press the EJECT button and the COUNTER RESET button simultaneously while turning on the power switch. Again turn off the power switch after 5 or more seconds elapsed.
- 3. The memory switch is initialized as it was set at shipment.

1.4.2 Indication of ROM and microprocessor versions

The memory switch of this model has a function to display ROM and microprocessor versions.

The following table shows details of the display.

Memory SW No.	Board Name	Symbol No.	Version No. (X)
900	40 SYSCON	IC2	PGD30620-2-X
901	3 1 M. CTL & R. SERVO	IC1	PGD30241-10-XX
902	4 2 OPERATION CPU	IC1	μPD78P214CW-0XX
903	6 7 45 PIN I/F	IC1	μPD75P116CW-2XX
	5 5 RS-232C I/F	IC16	PGD30240-12-X
_	4 1 AVM/OS	IC13	μPD75P116CW-3XX

1. To preset the memory switch

1.5 7-PIN CABLE

There are two kinds of Y/C OUTPUT connectors provided for this model; namely, the Y/C443 OUTPUT and the Y/C924 or Y/C686 OUTPUT (for use of optional SA-E92E).

When this set is used as a playback machine, use any cable of the following.

	Part No.	Wiring diagram and Col	or of bushing	Main applicable models
Y/C443 output cable	VC-G10XX (optional) PGZ00793-006 (service part)	Diagram ②	Blue	BR-S822/S622 BR-S811/S611 BR-S411
	PGZ00752-01-01 (service part)	Diagram ①	Red	BR-S405 KR-M800/M820
Y/C686 output cable Y/C924	PGZ00752-01-01 (service part)	Diagram ①	Red	BR-S822/S622

Note: Do not use these cables for any set other than those specified above as applicable models. Otherwise characteristics of the set becomes different from the original.

• Internal wiring of cable

1.6 WHEN IN TROUBLE

1.6.1 To take cassette out of set manually

If a loaded tape cannot be ejected because of electrical failure, etc., take it out in the following manner.

- 1. Turn off the power and remove the top cover.
- 2. Open the operation panel and set the DIP switch SW1-4 on 31 M. CTL & R. SERVO board to ON.
- 3. Turn on the power, and the set enters the emergency roll mode.
- 4. Depress the tact switch SW2 on the M. CTL board while rotating the loading motor clockwise. The mechanism starts unloading while taking in the slack of the tape.
- 5. After the mechanism returns to the unloading end position, turn off the power and turn the gear of the cassette housing clockwise while taking out the cassette tape. If it is hard to turn the gear, remove the cassette panel and do the same.

Fig. 1-6-1 F cassette unloading end position

1.6.2 Troubleshooting

1. Video system

Problem	Cause and Check
Abnormal operation of Auto EQ (No. 400, 401)	 Is the same reference signal line selected for recording and playback? (See 1.3 17 Y COMB board.) Are signal lines to record VITC and reference signal for Auto EQ separate from each other? (See 1.3 and Memory switches No. 400 and No.401.)
No picture appears.	Check the setting position of brush and its contact pressure. (See 2.3.3.)
No V. lock in TBC operation (No. 100)	Are REC switching point and PB switching point set the same? (For instance, recording was operated with 6.5H switching point but PB switching point is set to 1.25H.) Set PB switching point to be the same as REC switching point. (See Memory switch No. 100.)
Abnormal tint when the COMPONENT output is connected to MII VTR or β-cam VTR. (No. 104)	Check applicability of Memory switch No. 104 COMPONENT OUT LEVEL to the connected equipment.
Uncolored playback picture	Check if SW1 on 12 R/P COLOR board is wrongly set to "ADJ" position. (See 1.3.)
In TBC operation, playback picture is abnormal in the level and phase.	Check setting of the TBC operation section on the front sub panel.
Many dropouts	Check if S1 on 10 R/P Y board is wrongly set to "OFF". (See 1.3.)
Signals in blanking period are not recorded. (No. 400, 401, 601)	Are signal lines used separately for recording VITC and impressing reference signal for Auto EQ set by 17 Y COMB board? (See 1.3 and Memory switches No. 400 and No. 401.) Check if Memory switch No. 601 V. BLANK MASK is wrongly set to "ON" in TBC operation.
H. distortion at editing points (No. 100)	Check if Memory switch No. 001 AUTO H. PHASE is wrongly set to "OFF" ?
Inverted picture in S-VHS mode (No. 101)	Check S-VHS REC EQ. (See Memory switch No. 101.)

2. Audio system

Problem	Cause and Check
Hi-Fi audio signal is not recorded. (No. 200)	Check if Memory switch No. 200 Hi-Fi AUDIO REC is wrongly set to "OFF".
No audio output (No. 203)	Check setting of Memory switch No. 203 AUDIO OUT.
Normal audio CH-2 (AUD-2) signal is not recorded. (No. 206)	Check if Memory switch No. 206 AUD-2/LTC is wrongly set to "LTC".

3. Operation system

Problem	Cause and Check				
Any operation command is not accepted.	Check if the REMOTE switch on the front panel is wrongly set to "LOCAL". Check if the MENU SET switch on the front sub panel is wrongly set to "ON".				
Slow Tape speed (x16 speed at maximum) (No. 319)	Check if Memory switch No. 319 TAPE MAX SPEED is wrongly set to "x16".				
Recording is impossible with unlocked cassette tape (recording prevention tab is not yet broken).	Check if Memory switch No. 304 RECORDING INHIBIT is wrongly set to "ON".				
Deck enters Playback mode as tape is rewound to the beginning of tape. (No. 311)	Check if Memory switch No. 311 MODE AT TAPE BEGIN is wrongly set to "PLAY".				
Deck enters Recording mode as the power is turned on. (No. 305)	Check if Memory switch No. 305 REPEAT REC is wrongly set to "ENABLE".				
Inoperative by remote control unit	1. Check setting of the REMOTE switch on the front panel. "9 PIN" : To use a 9-pin remote control unit "REM-2" : To use a 45-pin remote control unit (when optional SA-K28 connected) or an RS-232C remote control unit (when optional SA-K27 connected) 2. When RS-232C remote control unit is connected, check the conformity of every data rate.				

4. Syscon system

Problem	Cause and Check				
LTC is not recorded. (No. 206)	Check if Memory switch No. 206 AUD-2/LTC is wrongly set to "AUD-2".				
VITC is not read or output. (No. 400, 401, 601)	 Are signal lines used separately for recording VITC and for impressing reference signal for Auto EQ ? (See 1.3, 17 Y COMB and Memory switches No. 400 and No. 401.) Check if Memory switch No. 601 V. BLANK MASK is wrongly set to "ON" in TBC operation. 				

5. Mechanism system

Problem	Cause and Check
Mechanism malfunctions.	Check that all switches of DIP SW1 on 3 M. CTL & R. SERVO board are set to "OFF". (See 1.3.)

1.6.3 Check of supply voltage

When trouble occurs in the power supply system, first check the primary fuse and fuse of 0.5 FUSE board if there is something blown out or not. Secondly, confirm that all of output voltages of the switching regulator meet the specifications. For voltage measurement, use CN1 on 0.5 FUSE board. (It is convenient to measure at test points of an extension board PGJ05044.)

Output	Connector of SW Regulator	Measuring Point (CN1, 0 5 FUSE)	Voltage (V)
–15 V	CN3-1 CN3-2 (GND)	CN1-24A CN1-23A	-15.0 ± 0.75
+15 V	CN4-1 CN4-2 (GND)	CN1-31A, 32A CN1-29A, 30A	+15.0 ± 0.75
+8 V	CN4-3 CN4-4 (GND)	CN1-27A, 28A CN1-25A, 26A	+8.0 ± 0.4
+12 V	CN5-1 CN5-2	CN1-22A CN1-21A	+12.5 ± 0.625
+18 V	CN5-3 CN5-4 (GND)	CN1-20A CN1-19A	+18.0 ± 0.9

1.7 PROTOCOL OF 9-PIN REMOTE CONNECTOR

In this section, the following is the contents of the remote control signal which is used for 9-pin connector of the PROFESSIONAL S22 series (We will call the 22 series in the followings.).

In this protocol, it is defined that the CONTROLLER means the equipment which controls a VTR, and the DEVICE means the equipment which is controlled.

- EX 1. When two VTRs are connected (SWAP editing), the RECORD VTR is called as a CONTROLLER, and PLAY VTR as a DEVICE.
- EX 2. When an editor is connected to a VTR, the editor is called as a CONTROLLER, and the VTR as a DEVICE,

1.7.1 SPECIFICATION OF 9-PIN CONNECTOR

Interface connector: 9-pin D-sub female

When two VTRs are connected, a pin arrangement of the RECORD VTR (only BR-S822E) changes the CONTROLLER. When the REMOTE switch of the front panel sets to the 9-PIN, a pin arrangement of the 9-pin connector changes the DEVICE. A pin arrangement of BR-S622E / 522E becomes always the DEVICE.

Pin	CONTROLLER	DEVICE		
1	Frame Ground	Frame Ground		
2	Receive A	Transmit A		
3	Transmit B	Receive B		
4	Transmit Common	Receive Common		
5	Spare	Spare		
6	Receive Common	Transmit Common		
7	Receive B	Transmit B		
8	Transmit A	Receive A		
9	Frame Ground	Frame Ground		

1.7.2 COMMUNICATION FORMAT

Format

: EIA RS-422A

Mode

: No synchronization

Character length: 1 Start bit + 8 Data bits + 1 Parity bit + 1 Stop bit

Data rate

: 38400 bps

Parity

: Odd parity $D_0 + D_1 + \cdots + D_7 + P = An odd number$

Start bit

: 1bit "SPACE"

Stop bit

: 1bit "MARK"

• The composition of bits.

1.7.3 COMMAND FORMAT

All the data communications is composed of the CMD1/DATA COUNT, CMD2, DATA and CHECKSUM, and commands are transmitted in order from a LSB of the CMD1/DATA COUNT. When the DATA COUNT is zero, no data is transmitted, but when the DATA COUNT is not zero, a number of data which correspond with the value of DATA COUNT are inserted between the CMD2 and CHECKSUM.

1. COMMAND BLOCK FORMAT

The data communication between the CONTROLLER and the DEVICE is performed as follows.

CMD 1	DATA COUNT	CMD 2		DATA n (n=0~15)		СНІ	ECKSU	М	→
MSD ← 1 B	LSD Byte →	← 1 Byte	→	← n Byte	→	← 1	Byte	→	

2. CONTENTS OF COMMAND

CMD 1 : Indicates the value according to the function and direction of the command.

CMD1	FUNCTION	DIRECTION		
CIVIDI	FONCTION	Controller [Device	
0	SYSTEM CONTROL	→		
1	SYSTEM CONTROL RETURN	-		
2	TRANSPORT CONTROL	→		
4	PRESET & SELECT CONTROL	→		
6	SENSE REQUEST	_ →		
7	SENSE RETURN	-		

DATA COUNT :: Indicates the number of DATA bytes (0~15) where inserted between the CMD2

and CHECKSUM.

CMD 2 : Designates the particular command.

DATA: When the data is added to the COMMAND which is defined by the CMD1 and CMD2,

DATA-1 to DATA-15 shows the value corresponding to their contents.

CHECKSUM: This is used for checking up on the data communication error, adds from the first

byte of the COMMAND block to the last DATA byte, and indicates the least

significant 8 bits.

EX. COMMAND "61 4C 84"

1.7.4 COMMAND TABLE

In this table, each kind marks which are shown in a column of the DEVICE show as followings.

- 1) The COMMAND of "O" mark is applied in the model, if there is printed in the column of RETURN FROM DEVICE, the DEVICE will send back RETURN COMMAND with data, but there is no printed the DEVICE will send back "ACK:10.01".
- 2) The COMMAND of " \triangle " mark, when the DEVICE receives the command, the DEVICE will send back "ACK:10.01", but does not put into the action.
- 3) The COMMAND of "x" mark is not applied, the DEVICE will send back "NAK undifined:11.12.01" with a data.
- 4) The COMMAND of "*" mark, when the model as CONTROLLER can be sent to the DEVICE.

COMMAND FROM CON	TROLL	.ER	RETURN FROM	DEVICE		DEVICE		
NAME	CMD 1	CMD 2	NAME	CMD 1	CMD 2	BR-S822E	BR-S622E	BR-S522E
LOCAL DISABLE	00	0C	ACK	10	01	0	0	0
DEVICE TYPE REQUEST	00	11	DEVICE TYPE RETURN	12	11	0 *	0	0
LOCAL ENABLE	00	1D	ACK	10	01	0	0	0
STOP	20	00	ACK	10	01	0 *	0	0
PLAY	20	01	ACK	10	01	0 *	0	0
REC	20	02	ACK	10	01	0	0	Δ
STANDBY OFF	20	04	ACK	10	01	0 *	0	0
STANDBY ON	20	05	ACK	10	01	0 *	0	0
EJECT	20	0F	ACK	10	01	0 *	0	0
FAST FWD	20	10	ACK	10	01	0 *	0	0
JOG FWD	2X	11	ACK	10	01	0 *	0	0
VAR FWD	2X	12	ACK	10	01	0 *	0	0
SHUTTLE FWD	2X	13	ACK	10	01	0 *	0	0
REWIND	20	20	ACK	10	01	0 *	0	0
JOG REV	2X	21	ACK	10	01	0 *	0	0
VAR REV	2X	22	ACK	10	01	0 *	0	0
SHUTTLE REV	2X	23	ACK	10	01	0 *	0	0
PREROLL	20	30	ACK	10	01	0 *	0	0
CUE UP WITH DATA	24	31	ACK	10	01	0 *	0	0
SYNC PLAY	20	34	ACK	10	01	0	0	0
PROGRAM PLAY +	21	38	ACK	10	01	0	0	0
PROGRAM PLAY -	21	39	ACK	10	01	0	0	0
PREVIEW	20	40	ACK	10	01	0	Δ	Δ
REVIEW	20	41	ACK	10	01	0	Δ	Δ
AUTO EDIT	20	42	ACK	10	01	0	Δ	Δ
TENSION RELEASE	20	52	ACK	10	01	0	0	0
ANTI-CLOG TIMER DISABLE	20	54	ACK	10	01	0 *	0	0
ANTI-CLOG TIMER ENABLE	20	55	ACK	10	01	0 *	0	0
FULL EE OFF	20	60	ACK	10	01	0 *	0	Δ
FULL EE ON	20	61	ACK	10	01	0 *	0	Δ
SELECTED EE ON	20	63	ACK	10	01	0	Δ	Δ
EDIT OFF	20	64	ACK	10	01	0 *	Δ	Δ
EDIT ON	20	65	ACK	10	01	0	Δ	Δ
TIMER-1 PRESET	44	00	ACK	10	01	0	0	0
TIME CODE PRESET	44	04	ACK	10	01	0	0	Δ
U-BIT PRESET	44	05	ACK	10	01	0	0	Δ
TIMER-1 RESET	40	08	ACK	10	01	0 *	0	0
IN ENTRY.	40	10	ACK	10	01	0 *	0	0
OUT ENTRY	40	11	ACK	10	01	0 *	0	0
IN PRESET	44	14	ACK	10	01	0 *	0	0
OUT PRESET	44	15	ACK	10	01	0 *	0	0
IN SHIFT +	40	18	ACK	10	01	0 *	0	0
IN SHIFT -	40	19	ACK	10	01	0 *	0	0

COMMAND FROM CON	TROLL	.ER	RETURN FROM I	DEVICE		DEVICE			
NAME	CMD 1	CMD 2	NAME	CMD1	CMD 2	BR-S822E	BR-S522E		
OUT SHIFT +	40	1A	ACK	10	01	0 *	0	0	
OUT SHIFT -	40	1B	ACK	10	01	0 *	0	0	
IN RESET	40	20	ACK	10	01	0 *	0	0	
OUT RESET	40	21	ACK	10	01	0 *	0	0	
IN RECALL	40	24	ACK	10	01	0	0	0	
OUT RECALL	40	25	ACK	10	01	0	0	0	
EDIT PRESET	41	30	ACK	10	01	0 *	0	Δ	
PREROLL TIME PRESET	44	31	ACK	10	01	0 *	0	0	
TAPE/AUTO SELECT	41	32	ACK	10	01	0	0	Δ	
SERVO REFERENCE SELECT	41	33	ACK	10	01	0	0	Δ	
HEAD SELECT	41	34	ACK	10	01	Δ	Δ	Δ	
COLOR FRAME SELECT	41	35	ACK	10	01	0 *	Δ	Δ	
TIMER MODE SELECT	41	36	ACK	10	01	0	0	0	
INPUT CHECK	41	37	ACK	10	01	0	0	Δ	
AUTO MODE OFF	40	40	ACK	10	01	Δ	Δ	Δ	
AUTO MODE ON	40	41	ACK	10	01	Δ	Δ	Δ	
VIDEO REFERENCE DISABLE OFF	40	48	ACK	10	01	0	0	Δ	
VIDEO REFERENCE DISABLE ON	40	49	ACK	10	01	0	0	Δ	
TC GEN DATA SENSE	61	0A	GEN TC DATA	74	08	0	0	0	
			GEN UB DATA	74	09	0	0	0	
			GEN TC & UB DATA	78	08	0	0	0	
CURRENT TIME SENSE	61	0C	TIMER-1 DATA	74	00	0 *	0	0	
			LTC TIME DATA	74	04	0 *	0	0	
			LTC INTERPOLATED TIME DATA	74	14	0 *	0	0	
			LTC UB DATA	74	05	0 *	0	0	
			LTC TIME & UB DATA	78	04	0 *	0	0	
			LTC INTERPOLATED TIME & UB DATA	78	14	0 *	0	0	
			VITC TIME DATA	74	06	0 *	0	0	
	ŀ		VITC HOLD TIME DATA	74	16	0 *	0	0	
	ĺ		VITC UB DATA	74	07	0 *	0	0	
			VITC TIME & UB DATA	78	06	0 *	0	0	
			VITC HOLD TIME & UB DATA	78	16	0 *	0	0	
			REQUEST TIME MISSING	70	0D	0 *	0	0	
IN DATA SENSE	60	10	IN DATA	74	10	0 *	0	0	
OUT DATA SENSE	60	11	OUT DATA	74	11	0 *	0	0	
STATUS SENSE	61	20	STATUS DATA	7X	20	0 *	0	0	
COMMAND SPEED SENSE	60	2E	COMMAND SPEED DATA	7X	2E	0	0	0	
VAR MEM SPEED SENSE	60	2F	VAR MEM SPEED DATA	7X	2F	×	×	×	
EDIT PRESET SENSE	60	30	EDIT PRESET DATA	71	30	0	0	Δ	
PREROLL TIME SENSE	60	31	PRETOLL TIME DATA	74	31	0 *	0	0	
TIMER MODE SENSE	60	36	TIMER MODE DATA	71	36	0-*	0	0	

()COMMAND FROM CONTROLLER

- LOCAL DISABLE: 00.0C

When receiving this command, all operational functions of the DEVICE will be disabled.

DEVICE TYPE REQUEST: 00.11

• DEVICE TYPE: 12.11

When the DEVICE receives the "DEVICE TYPE REQUEST; 00.11" command, the "DEVICE TYPE : 12.11" with 2 bytes data will be sent back to the CONTROLLER as a response.

MODEL	DATA-1	DATA-2
JVC SVHS-1	F1	1F
JVC SVHS-2	F1	0B
OTHER TYPE-1	11	00
OTHER TYPE-2	21	25

Data are changed in accordance with the setting of the memory switch which name is No.317 9-PIN DEVICE TYPE ID.

• LOCAL ENABLE : 00.1D

When receiving this command, the front panel operation of the DEVICE will be enabled in accordance with the settings of the memory switch. When the power of the DEVICE is turned on, it will be set to the LOCAL ENABLE state.

• ACK : 10.01

When receiving acknowledgment command, the DEVICE will send back this command.

• NAK: 11.12

When detecting the following errors, the DEVICE will send back this command as not-acknowledgment. Bit-7 to bit-0 of DATA-1 is set in accordance with the contents of the errors.

DATA	-1 Bit-7	6	5	4	3	2	1	0
j	TIME OUT	FRAMING ERROR	OVERRUN ERROR	PARITY ERROR		CHECKSUM ERROR		UNDEFINED

STOP : 20.00PLAY : 20.01REC : 20.02

STANDBY OFF: 20.04
 STANDBY ON: 20.05
 FAST FWD: 20.10
 REWIND: 20.20

These commands are used for setting of the DEVICE to the specified mode. The "STANDBY OFF": 20.04" command is available only in the STOP mode.

JOG FWD : 2X.11
 VAR FWD : 2X.12
 SHUTTLE FWD : 2X.13

JOG REV : 2X.21
 VAR REV : 2X.22
 SHUTTLE REV : 2X.23

When receiving one of the above commands, the DEVICE will start running in accordance with speed data. When only DATA-1 is given, the tape speed will be defined as follows.

TAPE SPEED = 10 (N/32-2)

N : SPEED DATA OF DATA-1

(DECIMAL)

When both DATA-1 and DATA-2 are given, the tape speed is more precise value than the tape speed defined by DATA-1, the tape speed will be defined as follows.

TAPE SPEED = $10^{(N/32-2)} + N'/256 \{10^{(N+1/32-2)} - 10^{(N-32-2)}\}$

N : SPEED DATA OF DATA-1

N': SPEED DATA OF DATA-2

• PRE ROLL : 20.30

This command is used for cueing up the DEVICE to the point as follows.

IN POINT - PRE ROLL TIME

• CUE UP WITH DATA: 24.31

This command is used for cueing up the DEVICE to the point defined by DATA-1 to DATA-4.

DATA-1		DA"	ΓA-2	DA	Γ A-3	DATA-4		
10 1		10	1	10	1	10	1	
Frame	Frame	Second	Second	Minute	Minute	Hour	Hour	
MSD	LSD	MSD	LSD	MSD	LSD	MSD	LSD	

Refer to 3TIME DATA FORMAT.

SYNC PLAY: 20.34

This command is used for setting the DEVICE to the PLAY mode while the phase modification is controlled. When the tape position of the DEVICE is near the PRE ROLL POINT, the DEVICE will execute the SYNC PLAY mode as the tape position is the PRE ROLL POINT.

PROGRAM PLAY + : 21.38

■ PROGRAM PLAY - : 21.39

This commands are used for setting the DEVICE into the play back mode accordance with the DATA-1 as a speed data. At this time range of speed data is -25.5% to +25.5% by 0.1% step.

TAPE SPEED= (x1 PLAY SPEED) x0.1 x SPEED DATA (DECIMAL) SPEED DATA; 00H to FFH

PREVIEW: 20.40REVIEW: 20.41

- AUTO EDIT : 20.42

These commands are used for setting the DEVICE to above specified modes.

TENSION RELEASE: 20.52

When receiving this command, the DEVICE becomes TENSION RELEASE mode in the state of STOP or STILL in SHUTTLE/JOG/VAR mode.

ANTI-CLOG TIMER DISABLE: 20.54

• ANTI-CLOG TIMER ENABLE: 20.55

These command are used for selecting DISABLE/ENABLE of the ANTI-CLOG TIMER. When the power of the DEVICE is turned on, it will be set to the ANTI-CLOG TIMER ENABLE.

• FULL EE OFF : 20.60

• FULL EE ON : 20.61

These commands are used for setting or clearing all channels to EE mode.

- SELECT EE ON : 20.63

This command is used for setting each EDIT PRESET channel assigned by the DATA-1 of the "EDIT PRESET: 41,30" command to the EE mode. To clear the EE mode, use the "EDIT OFF: 20.64" command.

EDIT OFF: 20.64

This command is used for clearing the EDIT mode and also clearing the SELECT EE mode.

• EDIT ON: 20.65

This command is used for setting the DEVICE, which is running at the normal PLAY speed during the EDIT PRESET mode, to the EDIT mode.

- TIMER-1 PRESET: 44.00

This command is used for presetting the value, which has been given by the DATA-1 to DATA-4, to the CTL COUNTER of the DEVICE. As for the data format, refer to "CUE UP WITH DATA; 24.31" command.

• TIME CODE PRESET: 44.04

This command is used for presetting the value, which has been given by the DATA-1 to DATA-4, to the TIME CODE of the time code generator. As for the data format, refer to "CUE UP WITH DATA: 24.31" command.

• U-BIT PRESET : 44.05

This command is used for presetting the value, which has been given by the DATA-1 to DATA-4 as follows, to the USER BIT of the time code generator.

DATA-1		DAT	ΓA-2	DAT	ΓA-3	DATA-4		
2nd BINARY GROUP	1st BINARY GROUP	4th BINARY GROUP	3rd BINARY GROUP	6th BINARY GROUP	5th BINARY GROUP	8th BINARY GROUP	7th BINARY GROUP	
MSD	LSD	MSD	LSD	MSD	LSD	MSD	LSD	

TIMER-1 RESET: 40.08

This command is used for resetting the CTL COUNTER to zero.

- IN ENTRY: 40.10
- OUT ENTRY : 40.11

These commands are used for storing the value which is displayed on the DEVICE into the IN ENTRY or OUT ENTRY memory as an IN POINT or OUT POINT data.

- IN PRESET: 44.14
- OUT PRESET: 44.15

These commands are used for presetting the value, which has been given by the DATA-1 to DATA-4, into the IN ENTRY or OUT ENTRY memory. As for the data format, refer to "CUE UP WITH DATA: 24.31" command.

- IN SHIFT + : 40.18
- IN SHIFT. -: 40.19

These commands are used for adding or subtracting the value of an IN POINT data, by one frame.

- OUT SHIFT + : 40.1A
- OUT SHIFT : 40.1B

These commands are used for adding or subtracting the value of an OUT POINT data, by one frame.

• IN RESET: 40.20

• OUT RESET: 40.21

These commands are used for resetting the value of an IN POINT or an OUT POINT data, which has been stored.

• IN RECALL : 40.24

• OUT RECALL : 40.25

These commands are used for recalling the value, which has been resetting by the "IN RESET : 40.20" or "OUT RESET : 40.21" command, as an IN POINT or an OUT POINT data.

• EDIT PRESET: 41.30

Each bit in the DATA-1 is defined as follows.

DATA-1

Bit-7	6	5	4	3	2	1	0	
	INSERT	ASSEMBLE	VIDEO		TIME	AUD-2	AUD-1	

INSERT or ASSEMBLE mode is defined by the bit-6 and 5, and each channel is defined by Bit-4 to Bit-0.

• PRE ROLL TIME PRESET: 44.31

These commands are used for presetting the pre roll time, which has given by the DATA-1 to DATA-4, to the DEVICE. As for the data format, refer to "CUE UP WITH DATA: 24.31" command.

• TAPE/AUTO SELECT: 41.33

The TAPE/EE mode is selected by the state of the DATA-1 as follows.

DATA-1

00 : AUTO (TAPE/EE)

01 : TAPE

FF: It depends on the setting of the DEVICE.

SERVO REFERENCE SELECT: 41.33

The SERVO reference signal is selected by the state of the DATA-1 as follows.

DATA-1

00 : AUTO

01 : EXTERNAL

FF: It depends on the setting of the DEVICE.

• HEAD SELECT: 41.34 (Except for 22 series)

The heads used in the PLAY mode are selected by the state of the DATA-1 as follows.

DATA-1

00 : R/P HEAD 01 : PLAY HEAD

FF: It depends on the setting of the DEVICE.

- COLOR FRAME SELECT : 41.35 (Except for 22 series)

The color frame mode of the servo system is selected by the state of the DATA-1 as follows.

DATA-1

00 : 2 Field 01 : 4 Field

FF: It depends on the setting of the DEVICE.

- TIMER MODE SELECT: 41.36

This command is used for selecting the TIMER system by the state of the DATA-1 as follows.

DATA-1

00 : TIME CODE 01 : CTL COUNTER

FF: It depends on the setting of the DEVICE.

• INPUT CHECK: 41.37

When the DATA-1 is "01", the VIDEO and AUDIO system of the DEVICE will be become to EE mode.

- AUTO MODE OFF: 40.40 (Except for 22 series)
- AUTO MODE ON: 40.41 (Except for 22 series)

This command is used for switching ON/OFF the AUTO mode of the DEVICE.

- VIDEO REFERENCE DISABLE OFF: 40.48
- VIDEO REFERENCE DISABLE ON: 40.49

In the state of PLAY or EE mode of the DEVICE, this command is used for switching ON/OFF the EXTERNAL REFERENCE mode as a SERVO REFERENCE. When the power of the DEVICE is turned on, it will be set to the VIDEO REFERENCE DISABLE OFF.

• TC GEN DATA SENSE : 61.0A

This command is used for requesting the TIME CODE data that the DEVICE is generating, and it will make a response according to the contents of the DATA-1.

DATA-1

Bit-7	6	5	4	3	2	1	0	
•••	•••		GEN UB	•••	•••	•••	GEN TC	

DATA-1=01 : Request for GEN TC → "GEN TIME DATA : 74.08" Respond

DATA-1=10 : Request for GEN UB → "GEN UB DATA : 74.09" Respond

DATA-1=11 : Request for GEN TC & UB -> "GEN TC & UB DATA : 78.08" Respond

• CURRENT TIME SENSE: 61.0C

This command is used for requesting the TIME DATA or USER BIT, and the DEVICE will make a response according to the contents of DATA-1.

DATA-1 Bit-7	6	5		4		3		2	1		0	
	•••	VITC UB	C UB LTC UB				CTL COUNTER		VITC TIME		LTC TIME	
	М 9	S D	•			LSD						
Response con		DATA-1	01	02	03	04	10	20	30	11	22	33
74.00 ; CTL	. COUNTER	DATA				0						
74.04 : LTC	TIME DAT	A	0		0							
74.14 : LTC INTERPOLATED TIME DATA			0		0							
74.05 ; LTC U-BIT DATA							0		0			
78.04 : LTC	TIME & U-	BIT DATA								0		0
-	INTERPOL									0		0
74.06 : VIT	C TIME DA	TA		0	0				ı			
74.16 : VITC INTERPOLATED TIME DATA				0	0							
74.07 : VITC U-BIT DATA								0	0			
1	78.06 : VITC TIME & U-BIT DATA										0	0
78.16: VITC INTERPOLATED TIME & U-BIT DATA											0	0

⁻ IN DATA SENSE : 60.10

These commands are used for requesting the IN ENTRY DATA or OUT ENTRY DATA, and the DEVICE will make a response according to the contents of DATA-1. As for the data format, refer to "CUE UP WITH DATA : 24.31" command.

• STATUS SENSE : 61.20

This command is used for requesting the status of the DEVICE, and the DEVICE will send back a response command "STATUS DATA: 7X.20" according to the contents of DATA-1 of the CONTROLLER.

MSD (Bit7~4): Indicates the initial DATA No. of the "7X.20: STATUS DATA" to be sent back.

LSD (Bit3~0) : Indicates the number of data bytes in "7X.20 : STATUS DATA" to be sent back.

EX. When the DATA-1 is "33".

The DEVICE will send back three bytes from the DATA No.3, i.e. DATA No.3 to DATA No.5 of the "7X.20; STATUS DATA".

⁻ OUT DATA SENSE: 60.11

BR-S822E/622E/522E STATUS DATA

BIT	BIT-7	BIT-6	BIT-5	BiT-4	BIT-3	BIT-2	BIT-1	BIT-0
DATA								
DATA-0			CASSETTE OUT			HARD ERROR		LOCAL
DATA-1	STANDBY ON	TENSION RELEASE	STOP	EJECT	REW	F.FWD	*2 REC	PĻAY
DATA-2	SERVO LOCK	TSO	SHUTTLE	JOG	VAR	REV/FWD	STILL	CUE UP COMPLETE
DATA-3	AUTO MODE	FREEZE ON					OUT	IN
DATA-4	*1 SELECT EE ON	*2 FULL EE ON		*2 EDIT	*1 PREVIEW	*1 AUTO EDIT	*1 REVIEW	PREROLL OR CUE UP
DATA-5		*2 INSERT	*1 ASSEMBLE	*1 VIDEO		*1 TIME CODE	*2 AUDIO CH-2	*1 AUDIO CH-1
DATA-6		LAMP STILL	LAMP FWD	LAMP REV				
DATA-7				SYNC ACTIVE				IN~OUT STATUS
DATA-8			NEAR END OF TAPE	END OF TAPE				REC INHIBIT
S								
DATA-F								

Note *1) This bit does not set to "1" in BR-S622E/522E.

①DATA-0

• BIT-2 : HARD ERROR

This bit will be set to "1" when tape path system errors occur in the DEVICE.

- BIT-0 : LOCAL

This bit will be set to "1" when the REMOTE switch on the front panel is set to "local".

②DATA-1

• BIT-1 : REC

This bit will be set to "1" when the DEVICE goes into the REC mode, also the "DATA-4/BIT-4 : ED|T" is set to "1".

^{*2)} This bit does not set to "1" in BR-S522E.

- BIT-0 : PLAY

This bit will be set to "1" when the DEVICE goes into the PLAY, REC or EDIT mode, also the DEVICE is in the CAPSTAN OVERRIDE mode.

3DATA-2

- BIT-6: TSO MODE

This bit will be set to "1" when the DEVICE is in the CAPSTAN OVERRIDE mode.

• BIT-3 : VAR

This bit will be set to "1" when the DEVICE is in the VAR or CAPSTAN OVERRIDE mode.

- BIT-2: TAPE DIRECTION

This bit shows the tape direction of the DEVICE in the STILL or STOP mode.

0 = FWD

1 = REV

• BIT-1: STILL

This bit will be set to "1" when the DEVICE is in the STOP or STILL of SHUTTLE/JOG/VAR mode.

• BIT-0 : CUE UP COMPLETE

This bit will be set to "1" when the DEVICE receives the PRE ROLL or CUE UP WITH DATA command and then cue-up operation is completed, and it will be set to "0" as soon as the tape starts running.

@DATA-4

BIT-4 : EDIT

This bit will be set to "1" when the DEVICE is in the EDIT mode, and at the same time, the "DATA-1/BIT-1: REC" is also set to "1".

BIT-3: PREVIEW

This bit will be set to "1" when the DEVICE is in the PREVIEW mode.

• BIT-2: AUTO EDIT

This bit will be set to "1" when the DEVICE is in the AUTO EDIT mode.

• BIT-1: REVIEW

This bit will be set to "1" when the DEVICE is in the REVIEW mode.

• BIT-0 : PRE ROLL OR CUE UP

This bit will be set to "1" when the DEVICE goes into the PRE ROLL and CUE-UP modes, also the PRE ROLL is performed in the AUTO EDIT or PREVIEW mode.

⑤DATA-6

BIT-6, 5, 4: LAMP STILL, LAMP FWD, LAMP REV

When the DEVICE receives the SEARCH command, the corresponding bit of DATA-6 will be set to "1" according to the direction of the SEARCH command.

®DATA-7

• BIT-0 : IN-OUT STATUS

This bit will be set to "1" when the DEVICE is in the PREVIEW or AUTO EDIT mode and the tape is running between the IN POINT and OUT POINT.

COMMAND SPEED SENSE : 60.2E

This command is used for requesting the tape speed which is been running of the DEVICE, and the DEVICE is send back the "COMMAND SPEED DATA; 71.2E" command with a data.

- TIMER MODE SENSE: 60.36

This command is used for requesting the TIMER mode of the DEVICE. When the DEVICE receives this command, it will send back the "TIMER MODE STATUS; 71.36" with DATA-1 as shown below.

"TIMER MODE STATUS : 71.36" DATA-1 : 00 ... TIME CODE

01 ··· CTL COUNTER

2RETURN FROM DEVICE

- GEN TC DATA: 74.08

This command is sent back to the CONTROLLER with the TIME data of the TC which the DEVICE is generating. For the data format, refer to the "CUE UP WITH DATA; 24.31".

- GEN UB DATA: 74.09

This command is sent back to the CONTROLLER with the UB data of the TC which the DEVICE is generating. For the data format, refer to the "U-BIT PRESET: 44.05".

• GEN TC & UB DATA: 78.08

This command is sent back to the CONTROLLER with the TIME data and UB data of the TC which the DEVICE is generating that are added to DATA-1 to DATA-4 as a TIME data and DATA-5 to DATA-8 as a UB data. For the data format, refer to the "CUE UP WITH DATA: 24.31" and "U-BIT PRESET: 44.05".

* IN DATA: 74.10

This command is sent back to the CONTROLLER with the IN POINT DATA. For the data format, refer to the "CUE UP WITH DATA: 24.31".

• OUT DATA: 74.11

This command is sent back to the CONTROLLER with the OUT POINT DATA. For the data format, refer to the "CUE UP WITH DATA; 24.31".

LTC INTERPOLATED TIME DATA: 74.14

When the LTC TIME DATA of the DEVICE is requested, if the data of LTC played back by the DEVICE is corrected by the CTL either or it is read incorrectly, this command will be sent back to the CONTROLLER with the LTC TIME DATA. For the data format, refer to the "CUE UP WITH DATA; 24.31".

• TIMER MODE DATA: 71.36

Refer to the "TIMER MODE SENSE : 60.36" command.

- TIMER-1 DATA : 74.00

This command is sent back to the CONTROLLER with the CTL COUNTER DATA. At this time, the BIT-6 of DATA-1 is set to "1" ("0") when the CTL COUNTER of the DEVICE is set to DF (NDF) mode. For the data format, refer to the "CUE UP WITH DATA: 24.31".

LTC TIME DATA: 74.04

When the LTC TIME DATA of the DEVICE is requested, if the data of LTC is read correctly and this command is sent back to the CONTROLLER with four data. For the data format, refer to the "CUE UP WITH DATA": 2 4.31".

. LTC TIME & UB DATA: 78.04

This command is sent back to the CONTROLLER with data which are added to DATA-1 to DATA-4 as a LTC TIME DATA and DATA-5 to DATA-8 as a LTC UB DATA. For the data format, refer to the "CUE UP WITH DATA: 24.31" and "U-BIT PRESET: 44.05".

• LTC UB DATA: 74.05

This command is sent back to the CONTROLLER with the LTC UB DATA. For the data format, refer to the "U-BIT PRESET: 44.05".

- LTC INTERPOLATED TIME & UB DATA: 78.14

When the LTC TIME DATA and UB DATA of the DEVICE is requested, if the data of LTC played back by the DEVICE is corrected by the CTL either or it is read incorrectly, this command will be sent back to the CONTROLLER with data which are added to DATA-1 to DATA-4 as a LTC TIME DATA and DATA-5 to DATA-8 as a LTC UB DATA. For the data format, refer to the "CUE UP WITH DATA: 24.31" and "U-BIT PRESET: 44.05".

- VITC TIME DATA: 74.06

This command is sent back to the CONTROLLER with the VITC TIME DATA. For the data format, refer to the "CUE UP WITH DATA: 24.31".

VITC TIME & UB DATA: 78.06

This command is sent back to the CONTROLLER with data which are added to DATA-1 to DATA-4 as a VITC TIME DATA and DATA-5 to DATA-8 as a VITC UB DATA. For the data format, refer to the "CUE UP WITH DATA: 24.31" and "U-BIT PRESET: 44.05".

• VITC HOLD TIME DATA: 74.16

When the VITC TIME DATA of the DEVICE is requested if it will be read incorrectly, this command will be sent back to the CONTROLLER with the VITC TIME DATA. For the data format, refer to the "CUE UP WITH DATA : 24.31".

VITC HOLD TIME & UB DATA: 78:16

When the VITC TIME DATA and VITC UB DATA of the DEVICE are requested if they will be read incorrectly, this command will be sent back to the CONTROLLER with data which are added to DATA-1 to DATA-4 as a VITC TIME DATA and DATA-5 to DATA-8 as a VITC UB DATA. For the data format, refer to the "CUE UP WITH DATA: 24.31" and "U-BIT PRESET: 44.05".

3FORMAT OF TIME DATA

The format of the TIME DATA is used by the "CUE UP DATA: 24.31" command etc. show as follows.

1. DATA-1/BIT-7: CF FLAG ("1"CF ON, "0"CF OFF)

When the DEVICE receives the "CURRENT TIME SENSE : 61.0C" command, if the DEVICE has been set to the CF mode and it will be set to "1".

2. The BIT of mark has no meaning as a TIME DATA.

1.7.5 DETAIL TIMING CHART

1.8 WIDE ASPECT ID

1.8.1 Necessity of wide aspect ID

Signal such as D2-MAC whose aspect ratio is 16:9 can be recorded by ordinary VTR if it is converted to PAL signal by decoder. To play back a tape on which such converted signal is recorded, the recorded signal must be expanded by TV set to reproduce picture in the aspect ratio of 16:9. For this operation, TV set is required to switch the aspect ratio corresponding to reception signal, however, WIDE ASPECT ID signal solves this problem because it enables TV set to switch switches the aspect ratio automatically.

The 22 series VTR has the function to record and play back WIDE ASPECT ID signal. If it is used in combination with TV set capable of discriminating WIDE ASPECT ID signal, it is also capable of automatic switching between 16:9 wide aspect picture and 4:3 ordinary aspect picture.

Fig. 1-8-1 Duty ratio of CTL pulse

1.8.2 Wide aspect ID

Wide aspect ID is recorded on the CTL track by CTL coding. However, in the VHS format which uses CTL codes for VISS and VASS systems, a particular method compatible with these systems is adopted for discriminating the wide aspect as mentioned below.

For VISS and VASS, "1" and "0" pulses are defined by modulating CTL pulse width in wide deviation as shown in Fig. 1-8-1. For wide aspect ID, additional modulation of these pulses in narrow deviation takes place within the tolerance to define "L" and "S" pulses, too. When "L" and "S" pulses are alternately recorded every two frames, it indicates the wide aspect ratio of 16:9.

Fig. 1-8-2 Wide aspect ID

1.9 ADJUSTMENT MODE

To set to the Adjustment Mode, depress the COUNTER RESET button, the FF button and the REW button while pressing the POWER switch to ON. The counter displays "-------" and the set enters the "Adjustment Mode 0".

To select an adjustment mode, turn the JOG dial to change the mode. Turning off the power cancels the adjustment mode. Kinds of the adjustment modes with details are shown in the following table.

Adjustment Mode	Counter Display	Description	Adjustment Item
1	0 1	Normal Audio CH-1 is set to REC mode.	
2	0 2	Normal Audio CH-2 is set to REC mode.	Not used in the adjustment procedures.
3	0 3	Both channels of Normal Audio are set to REC mode.	procedures.
4	0 4	Tracking VR function is cancelled.	Used for X value adjustment (2.6.5)
5	0 5	Drum and capstan rotate.	Not used in the adjustment.
6	0 6	Enters to RAP mode.	Used for video circuit adjustment. (3.4)
7	0 7	CTL signal is recorded.	Not used in the adjustment.
8	0 8	17	
\$	5	- Not used	
2 4	······ 2 4 ······		

SECTION 2 MECHANISM ADJUSTMENT

2.1 GENERAL DESCRIPTION

2.1.1 Precautions

- 1. Before use of a soldering iron, make sure to disconnect the power cord of the set from the outlet.
- Do not pull connector cables strongly for disconnecting connectors.
- 3. Do not disturbe VRs and other adjusting parts with a trouble of unknown origin.
- 4. When inserting a cassette tape into the set, place the set correctly horizontally. Under the circumstances that the set is laid on its side or its rear, or upside down, insertion of a cassette may damage the cassette housing.

2.1.2 Mechanism operation check

For operating the mechanism with the cassette housing removed, proceed to do the following steps.

- 1. Disconnect the power cord of the set from the outlet.
- Remove the cassette housing from the set and disconnect the connector CN1 of the CASSETTE HOUSING board.
- 3. Shortcircuit pin 3 and pin 5 of the connector cable with each other.
- Set a cassette tape with its door open on the main deck and turn on the power while selecting an operation mode with operation buttons.

2.1.3 Jigs and special tools for mechanism adjustment

The following jigs and special tools are necessary for adjusting the mechanism.

,			
Alignment tapes MHPE, MBPE-2, MBAE, MBAE-3, MBPE-X	Cassette torque meter PUJ42881/PUJ42881B	Parallel check plate PGJ04035 (0.05)/ PUJ50204 (0.1)	Height gauge PGJ04032
Taper nut driver PUJ50637	Tension pole mechanism positioning jig PGJ04031	Microchecker PUJ49712-2	Hex. driver PGJ04034 (2 mm)
	Too Too		
Line head wrench PGJ04033	Guide arm height adjustment driver PGJ04036		
		 General tools require Nut driver (7 mm) Hex. keys (1.27 mm, 2 Ordinary (+) screwdriv PGJ04038(2.6 mm)] Spacer (0.1 mm) 	

Table 2-1-1

2.2 PERIODIC REPLACEMENT OF MAIN PARTS

Periodic inspection and maintenance are needed in order to ensure the original performance and reliability of the set. The following table shows just standard periods according to general and average use. In actual, each period will widely differ from the standard depending on environmental and usage conditions.

If inspection and maintenance work of the following items are improperly performed, it not only shortens the service period and the life of the parts but also gives bad influence on the set as a whole. Also be aware that rubber parts may deform and age even when the set is new and not used for a long time. The service life of the upper drum is particularly affected by environmental and usage conditions.

System	No.	Part Name	Part Number		dard se			Ref. Sect.	Remark	
e votom	,		I dit Number	1000	·	3000		nei. sect.	nemark	
Tape	1	Supply guide shaft	_	*	*	*	*	_		
trans-	2	Tension arm ass'y	PQ45314A-2					2.3.9		
port	3	Supply guide roller	PRD43721A					2.7.2		
system	4	Full erase head	PU60616					_		
	(5)	Supply pole base ass'y	PRD30821B					2.3.15		
	6	Supply inertia roller	PGZ01667	1				2.3.4	Not included in Drum ass'y	
	7	Take-up inertia roller	PGZ01667-02	*	*	*	•	2.3.4	Not included in Drum ass'y	
	8	Take-up pole base ass'y	PRD30864A-01					2.3.15		
	9	A/C head	PGZ01536A					2.3.7	Excluding A/C Head board	
	10	Take-up guide pole	PRD43733					2.7.3		
		Upper flange	PRD43732							
		Lower flange	PRD43670-01-01							
	11	Guide arm roller ass'y	PRD43404D					2.7.4		
	12	Capstan shaft	-	*	*	*	*			
	13	Pinch roller arm ass'y	PRD43387A-01	0	•	0	•	2.3.10		
	14	Drum ass'y	PDV2273B	*	*	0	•	2.3.6	For check, see 2.3.6.	
	15	Upper drum ass'y	PRD20380C-1	•	•	•	•	2.3.4-5	Included in Drum ass'y	
Drive	16	Capstan motor	PGZ01535-01-01				•	2.3.11		
system	1	Reel motor	PGZ01541A-04				•	2.3.12	Assembled part	
	(18)	Loading motor	PRD44016A				•	2.3.13		
	19	Loading belt	PRD30022-12	•	•		•	2.3.13	Motor side worm gear side	
			PRD30022-16							
	20	Cassette motor	PQ45489A				•	2.3.2		
	21	Supply main brake	PRD43388A		•		•	2.3.14		
	22	Take-up main brake	PRD43395A		•		•	2.3.14		
	23	Take-up sub brake	PRD43479A		•		•	2.3.14		
Others	24)	Brush ass'y (A)/(B)	PRD43986A/B		•		•	2.3.3	Included in Drum ass'y	
	25)	Slip ring ass'y	PGZ01630	0	•	0	•	2.3.4	Included in Drum ass'y	
	26	Head cleaner	PRD40510-01-02	•	•	•	•		Not included in Drum ass'y	

^{*} Know the standard service time by the drum's hour meter. For the capstan motor and the reel motor, perform service according to respective hour meters.

★ : Cleaning

O: Check and Replace if necessary, or Check and Clean.

: Replacement

2.2.1 Location of main parts

Fig. 2-2-1

Fig. 2-2-2

Fig. 2-2-3 (Reel motor is removed.)

Fig. 2-2-4

2.2.2 Cleaning

Although periodical cleaning of the tape transport system is required, it is almost impossible to put it into practice. Therefore, it is strongly recommended to clean the tape transport system when a set is brought in for repair, etc. For cleaning, use fine wooven cotton cloth moistened with

ethyl alcohol.

1. Dirty video head causes rough playback picture and non

picture reproduction in the extreme case. For cleaning video heads, lightly press the cloth to the upper drum by finger while turning the upper drum.

Note: Since the video head is weak against vertical force (applied in up-down direction), movement of cloth may possibly damage it.

- 2. Dirty tape guide not only increases video heads in getting dirty much more but also damages tapes.
- 3. Dirty and dusty brush causes snow noise in playback picture.

For cleaning the brush show as follows.

Note: It is not necessary to clean up the slip ring.

- ① Remove the brush assemblies (A) and (B). (Refer to section 2.3.3.)
- ② Clip the brush, use fine wooven cotton cloth moistend with ethyl alcohol.
- ③ Pull out the brush from cloth movement of cloth may possible damage brush.
- (4) After cleaning the brush, reassemble the brush assemblies (A) and (B) refering to the section 2.3.3.

2.2.3 Oiling and greasing

Periodical oiling and greasing are not required, but new parts need them when they replace old ones. If oil or grease on the other party is old, wipe it off and apply new oil or grease.

1. Oil and grease used in this set are as follows.

Item	Name	JVC Part No.				
	Cosmo Hydro HV56	COSMO-HV56				
– Gei	 General spindle oil (low viscosity) is substitutable – 					
Grease	MOS2-C					
	Fuloil G-31KAV (Light Blue)	KANTO-G31KAV				

- 2. Grease the control cam every 2000 hours of operation.
- 3. For other parts, apply grease to them every 4000 hours of operation or on parts replacement.

REPLACEMENT OF MAIN PARTS

Note: For parts replacement, remove external covers, P. C. boards, cassette housing, etc. as required.

Adjustment and Check No. Item

Cassette housing assembly

With change of the installation method of the cassette housing in the middle of production of this set, the mechanism assembly and the cassette housing assembly have been altered partially since then. Under those circumstances, the cassette housing assembly of the old type cannot be installed to the new mechanism assembly, however, the new cassette housing assembly can be installed to the old mechanism assembly.

The following table shows respective models' serial numbers from which the new mechanism assembly is installed.

Model	BR-S822E	BR-S622E
Serial No.	#825 and after	#918 and after

• Difference to distinguish between old and new mechanism assemblies:

Old mechanism

New mechanism

1-1 In case of Old mechanism assembly

Fig. 2-3-1 (Housing cover is removed)

Screw ①	Screws 2, 3
	② Brass color ③ Black
7–9 kg-cm	2.5–4 kg-cm

- 1) Remove the cassette panel ass'y (see 1.1.2).
- 2) Remove the cassette housing cover.
- 3) Remove two screws 3.
- 4) Insert a cassette tape and push it in just before the cassette holder goes down (see Fig. 2-3-2). Then, take out the cassette tape in that condition.
- 5) Remove two screws ② and two screws ①.
- 6) Raise the cassette housing and disconnect the housing connector while removing the cassette housing.

Fig. 2-3-2

No. Adjustment and Check Item 1-2 In case of New mechanism assembly 1) Remove the cassette panel ass'y (see 1.1.2). 2) Remove the cassette housing cover. 3) Remove two screws ①, one screw ② and two screws (3). 4) Push the cassette housing toward the drum once and raise it with the hook disengaged to disconnect the housing connector while removing the cassette housing. Cassette housing Top frame Fig. 2-3-3 (Housing cover is removed) Screw (1) Screws 2, 3 Main deck Hook ② Brass color 3 Black 7-9 kg-cm 2.5-4 kg-cm Cassette housing motor - Removal -1) Remove the cassette housing ass'y. Gear's hole and motor bracket's 2) Set the cassette housing to the assembly position (in which the holes of the motor bracket and the gear coincide with each other) as shown in Fig. 2-3-4. 3) Remove the hold lever after removing patching. 4) Remove three screws (4) (see Fig. 2-3-3) and remove the top frame. 5) Remove two screws (5) and remove the cassette motor together with the motor bracket. 6) Remove two screws (6) and unsolder wires. Then, Arm stands the cassette motor can be removed. upright. Hold lever Fig. 2-3-4 (Perspective view of assembly position) Reinstallation – Red portion

1) Reinstall the cassette motor and peripheral parts in the reverse order of removal referring to Fig. 2-3-5.

Front of set

2) When reassembling the motor bracket to the cassette housing, pay attention to the phase of the gear.

3 In this model, power supply control signal and PRE/REC amp. control signal are supplied to the PRE/REC board from the brush. If either of installation and the contact pressure of the brush is incorrect, picture may not be played back.

Brush assembly

- Removal - Setscrew ① (2 mm)
(for adjusting contact pressure)

Brush assy

Setscrew ② (2 mm)

Fig. 2-3-6

Setscrew ③ (2 mm) (for adjusting height)

- · Required tool: Hexagon key (2 mm)
- 1) Disconnect connectors from the brush ass'y (A) and (B).
- 2) Loosen the setscrew ① to remove bending in the brush.
- Remove two screws ② and detach the brush ass'y
 (A)
- 4) Remove the brush ass'y (B) in the same manner.

- Reinstallation -

Fig. 2-3-7

- 1) First of all, reinstall the brush assembly (A).
- 2) Confirm that the mount plate is positioned just 6 mm apart from the brush base as shown in Fig. 2-3-6.
- 3) Adjust the position of the brush so that its tip slightly contacts the slip ring, and tighten the setscrews ② to fix the brush.
- 4) Confirm that the brush is positioned in the center of the groove of the slip ring and parallel with the slip ling.
- 5) If not, adjust as follows.
 - a) Loosen the setscrews 2.
 - b) Set the bursh as its tip is positioned approximately 1 mm apart from the slip ring, and tighten the setscrew ②.
 - c) Adjust the setscrews ③ so that the brush is positioned in the center of the slip ring's groove and in parallel with the slip ring.
 - d) Loosen the setscrew ② and tighten the setscrews ② as the tip of the brush slightly contacts the slip ring.
- 6) As the brush's tip is in slight contact with the slip ring, turn the setscrew ① clockwise at an angle of 90° +45°.

Fig. 2-3-8

7) In the same manner as above, reinstall the brush assembly (B).

No. Item Adjustment and Check

5 Centering of upper drum (To remove upper drum wobbling in the rim)

If the upper drum is installed being deviated from the center of the drum shaft, it causes jitter, etc.

After replacement of the upper drum, if it was done, make sure to confirm no wobbling in the upper drum's rim.

Fig. 2-3-12

Cautions to handle microchecker

- 1) Keep the microchecker out of any shock or strong vibration since it is a high precision instrument.
- Do not apply unnecessary force to the measuring probe.
- Although the outer rim of the micrometer is turnable in a range of ±10 graduations, do not turn it with strong force (more than 300 gr-cm).
- Be careful not to touch the microchecker with heads, particularly with the video heads.
- On setting the microchecker, make sure that the working direction of the measuring probe points at the center of the upper drum.
- 6) If rubbing or grating sound occurs in measuring, it results from incorrect setting or abnormal contact of the microchecker. Confirm that there is no dust and other contamination on the upper drum and tip of the measuring probe.

Note:For centering the upper drum, a setscrew (SDSP2610Z) is necessary besides a microchecker

- 1) Set the operation mode to the C. cassette mode and turn off the power switch.
- 2) Prepare a microchecker and remove its hex. head screw from the base.
- Set the microchecker holder at the position shown in Fig. 2-3-12 and fix it with a setscrew (SDSP-2610Z).
- Set the micrometer with care not to knock it against the upper drum.
- 5) Slowly turn the fine adjustment knob of the microchecker clockwise until the pointer reads "0". Pointer adjustment is possible by turning the outer ring of the micrometer, but it must be within ±10 graduations.

To apply the microchecker to the drum ass'y, place it between the 4th and 5th grooves of the drum from the top.

- 6) Turn the upper drum gently (with a paper string, for instance) with care not to apply lateral pressure to it. If the pointer deflects, it must be for ±1 micron at maximum.
- 7) When the pointer deflection exceeds ±1 micron, turn the fine adjustment knob counterclockwise and remove the measuring probe from the upper drum. Loosen two screws retaining the upper drum while adjusting its position slightly, and tighten the screws again.
- 8) Check the pointer deflection again. If it is still out of the limit, repeat the above step until deflection becomes within ±1 micron.
- After deflection is confirmed allowable, turn the fine adjustment knob counterclockwise and remove the microchecker.
- Turn on the power switch and set the operation mode to the Full Cassette mode.
- 11) Connect an oscilloscope's probe to the front service terminal "V-RF", and play the MHPE alignment tape.
- 12) Turn the oscilloscope's tracking VR while confirming that CH-1 FM waveform and CH-2 FM waveform are maximized at the same time.
- 13) When the waveforms greatly differ from each other, remove the upper drum and clean both of the upper drum's lower surface and the upper surface of the lower drum's flywheel. After cleaning, repeat the above steps 1) through 12).
- 14) If waveforms are still unsatisfactory after the above adjustment, it is recommended to replace the drum ass'y.

No. Item Adjustment and Check Note: When holding the drum ass'y, do not catch it 6 **Drum assembly** by the brush ass'y. For replacing the pole base, do it after removing the drum ass'y. 1) Referring to Fig. 2-3-9, remove the slit washer ①, then remove the inertia rollers. 2) Remove the head cleaner ass'y. 3) Remove three screws (1) and disconnect connectors while removing the drum ass'y for replacing. 4) Reassemble the inertia rollers. 5) After the replacement, check and adjust according to the flowchart in page 2-9. Torsional torque: 0.49N-m (5 kg-cm) Fig. 2-3-13 - Reference -1) Connect an oscilloscope's probe to the front service Before replacing drum assembly terminal "V-RF" and input D-PULSE to the oscilloscope for external triggering. 2) With the MBPE-2 alignment tape being played back, turn the oscilloscope's tracking control while observing the FM waveform.

- 3) When such waveforms as shown in the figures are observed, they indicate that drum leads are worn. In that event replace the drum ass'y.

Tracking center

Tracking (-)

Tracking (+)

No. Item Adjustment and Check A/C head · Required tools · Taper nut driver (PUJ50637) - Replacement -· Nut driver (7 mm) 1) Disconnect connectors from the A/C HEAD board. 2) Remove the taper nut (1) for X value adjustment. 3) Remove the nut (2) and detach the A/C head together with the head base with care not to lose the spring 3 positioned underneath. Also pay attention to the spacer under the nut not to lose it. 4) After removing two screws (4) and a screw (5), take the A/C head out of the main deck. At that time, be careful not to lose the spring. 5) Remove soldering from the A/C head and replace it. Fig. 2-3-14 Installation – 1) Before reassembling the A/C head to the main deck, temporarily adjust its height as shown in the figure. 1.5 mm approx. 2) Reassemble the A/C head and its peripheral parts to the main deck in the reverse order of disassembling. 3) On setting the taper nut, adjust the height as shown in the figure below. Fig. 2-3-15 - Check and Adjustment -Note: Before confirming normal tape transport, do not use any alignment tape to prevent it from damag. Make sure to check tape transport with an ordinary recording tape beforehand. After confirming normal tape transport, perform the following checks and adjustments. 1) A/C head adjustment (see 2.6.4) 2) Tape transport check (see 2.7) 3) X value adjustment (see 2.6.5) 4) FM waveform check (see 2.6.2) 5) Electrical adjustments for audio circuit (see 3.3) • PB level (3.3.2) • PB frequency response (3.3.3) REC/PB level (3.3.5)* • REC/PB frequency response (3.3.6)* • Cross talk cancel (3.3.9)* * BR-S522E need not these adjustments.

2.4 ASSEMBLING OF MECHANISM

No. Adjustment and Check In the mechanism of this model, there is a close relation between the rotary encoder and the mechacon circuit. Namely, operations of the mechanism parts are determined by rotational angle of the rotary encoder, in detail, cam gear's rotational angle. If there is something installed abnormally in these mechanism parts, it causes malfunction of the mechanism. Assembling of mechanism parts of this model must be performed in the C. cassette mode (the pole base assy is returned to the utmost reel side). 1 Cam gear 1) Set the control carn so that its hole coincides with Pinch roller cam the main deck's hole, and temporarily fix them by Pinch roller Insert pin of cassette housing lever into inserting a precision screwdriver, etc. inner groove of pinch roller cam. Control cam 2) Fit the pinch roller cam together with its hole being Guide arm gear positioned as shown in Fig. 2-4-1. At that time, insert the pin of the cassette housing lever into the inner groove of the pinch roller cam. Back of main deck -3) Fit the pinch roller together. 4) After adjusting the phase of the rotary encoder. engage the cam gear with care of its phase. Engage cam gear's pawl with this. For phase adjustment Working points Cassette housing lever a) Fix the control cam with a precision screwdriver, etc. to prevent it from rotating. Cam gear b) Make sure to insert the pin of the cassette housing lever into the inner groove of the pinch roller cam. Rotary encoder c) Fit the cam gear's pawl into the dimple of the rotary encoder. Control cam -Pinch roller cam Guide arm gear Fix control cam with a precision screwdriver, etc. Fig. 2-4-1 Loading gear (S) 1) Assemble the supply loading gear and the take-up Loading gear (T) loading gear to the main deck as respective gear Cancel lever holes of the two face each other. Arm gear 2) Engage the cancel lever and the arm gear with them as their holes face the holes of the loading gears respectively. Insert arm gear's pin into outer groove of control cam. Working point Control cam a) When engaging the arm gear, turn the control cam Loading gear(S) clockwise as viewed from the deck's back side (in other words, turn the loading motor counterclockwise) so that the arm gear's pin is put in the outer groove of the control cam. Arm gear Cancel lever Loading gear(T) Fig. 2-4-2

2.5 ADJUSTMENT OF REEL SERVO CIRCUIT

Item

No.

Note: Before proceeding to adjust this item, make sure that the "Tension poly perpendicularity (vertical centering) check" (2.7-5) is correctly adjusted.

Adjustment and Check

Note: 1. Setting back of the cassette torque meter must be performed in the Search (X10) mode, otherwise it may be damaged. Do not do it in the FF/REW mode and the Reel Search mode. 2. In the middle of loading torque adjustment, pressing SW2 varies torque by 2 g-cm at each pressing. 3. If the cassette torque meter reaches the tape end or the tape beginning in the middle of adjustment, repeat it from 1) of the following adjustment steps. 4. In the following description, all test points and adjustment parts are located on 31 M. CTL & R. SERVO board unless otherwise specified. 5. Location map of test points and adjustment parts is printed in page 2-19. • Required jigs: · Spacer (0.1 mm thick) Tension sensor position or, PRD40300 (earth plate on the subdeck of BR-S811 type) Tension arm positioning iig (PGJ04031) Spacer (t: 0.1 mm) 1) Turn off the power once and remove the cassette housing. After setting SW1 as shown on the left, **TENSION ARM SHAFT** again turn on the power. 2) The mechanism is in the loading end stop mode. 3) Loosen the setscrew (1) and move the base of the tension sensor in the direction of the arrow → to the **TENSION SENSOR** extent. Then tighten the setscrew 1. 4) Loosen the setscrew ② slightly. 5) Insert a spacer of 0.1 mm thick between the tension Move tightely. sensor and the tension arm shaft as shown in the figure, and adjust the position of the tension sensor so that the gap between the tension sensor and the tension arm shaft is 0.1 mm. After adjustment, tighten the setscrew (2). 6) Remove the spacer and connect a digital voltmeter to TP6 to measure output voltage. Take note of the data as V1. 7) Set the tension pole to the "MAX" position of the Apply screw tension arm positioning jig, and measure the output sealant. voltage. Take note of this result as V2. 8) Change the setting position of the tension arm positioning jig to the "PLAY" and measure the output voltage (V3). Confirm that V3 meets the following SP guide roller specifications. $V3 \le 0.581 \cdot V1 + 0.419 \cdot V2$ V3 ≥ 0.681 · V1 + 0.319 · V2 Tension pole 9) If not, proceed as follows. a) If out of the upper limit, loosen the setscrew ① and move the hall element leftward. b) If out of the lower limit, loosen the setscrew (1) SP guide shaft and move the hall element rightward. Tension arm positioning jig (Stopper position) c) In either case, the gap between the tension sen-(PGJ04031) sor and the tension arm shaft must be 0.1 mm. 10) Again check the above steps 6) through 8). 11) After confirming the results satisfactory, apply screw sealant to the setscrews (1) and (2). 12) On completion of the above procedure, check and adjust the following items. a) Hall element output bias voltage (see 2.5.2) Max. position b) Hall element output gain (see 2.5.3) Play position c) Play mode back tension (see 2.5.6) d) Reverse (x1) torque (see 2.5.7) Fig. 2-5-1 e) Tension warning data setting (see 2.5.8)

2.6 INTERCHANGEABILITY ADJUSTMENT

- servo without picking-up of control signal in the worst case when a recorded tape is played back.
 - · Required tools and alignment tapes: · Nut driver (7 mm)
 - Alignment tapes (MBAE-3, MHPE, MBAE)

Adjustment and Check

Parallel check plate: PGJ04035 (0.05) PUJ50204 (0.1)

(1) Temporary height check before adjustment

1) At the stage of tape transport check prior to proceeding to adjust the A/C head, fix the A/C head at a temporary height in order to prevent the alignment tape from being damaged as well as to perform adjustment with ease.

(2) Tilt (forward bent) adjustment

- 1) With the parallel check plate (PGJ04035 for 0.05), adjust the setscrew (1) to tilt the A/C head to match the plate.
 - If thers is a gap in the upper part of the A/C head, tighten the setscrew (1) to increase the tilt. If there is a gap in the lower part of the A/C head, loosen the setscrew (1) to decrease the tilt.
- 2) Confirm that the tape is not wrinkled and damaged at the lower flange of the take-up guide pole. If so, fine adjust the height of the take-up guide pole.

(3) Adjustment of A/C head height and azimuth

- 1) Connect an oscilloscope's CH-1 to TP3 on 21 AUDIO-1 board and CH-2 to TP4, and set the oscilloscope to the CHOP mode.
- 2) Play back the alignment tape MBAE-3 while turning the hex. head nut 3 to minimize both CH-1 and CH-2 output levels by adjusting the A/C head height.
- 3) Play back the alignment tape MHPE while turning setscrew 2 to match CH-1 and CH-2 output waveforms in the phase as well as to maximize the output levels. (azimuth adjustment)
- 4) Repeat the above steps 2) and 3) alternately for finer adjustment.

(4) Azimuth check

- 1) Connect an oscilloscope's CH-1 to TP3 on 21 AUDIO-1 board and CH-2 to TP4, and set the oscilloscope to the CHOP mode.
- 2) Play back the alignment tape MBAE and confirm no phase difference between CH-1 and CH-2 output waveforms (allowance: 0.1 msec or less). If phase difference is more than 0.1 msec, repeat the previous item No. (3) "Adjustment of A/C head height and azimuth".

(5) A/C head parallel check

- 1) With the parallel check plate (PUJ50204), confirm that tilt of the A/C head is within 0.1 mm on the measurement basis shown in the figure.
- 2) If not, repeat the above adjustment procedures from (2) to (4).

0.05 mm

 (0.1_{min})

clockwise.

Fig. 2-6-8

counterclock-

wise.

No. Item Adjustment and Check

X value adjustment

If the X value is adjusted incorrectly, it results in time lag between picture and normal sound in playback of a tape recorded by a set whose X value is correctly adjusted.

Fig. 2-6-9

Adjust two phases.

Fig. 2-6-10

- Required tool and alignment tapes
 - Taper nut driver (PUJ50637)
 - · Alignment tapes (MBPE-X, MHPE)

For BR-S822/S622

- 1) Preparation
- Connect an oscilloscope's CH-1 to "V-RF" of the front service terminal and CH-2 to the rear panel's AUDIO MONITOR OUT terminal, and set the front panel's AUDIO MONITOR switch to NORM, AUD-1/L.
- · Connect the oscilloscope's external input terminal with the D-PULSE of the front service terminal for external synchronization.
- Record the signal and play it back to confirm that the FM waveform is maximum with the tracking control set to the center position. If not, check the tracking adjustment (3.2.2) again.
- Set the tracking control to the center position.
- 2) Play back the alignment tape MBPE-X.
- 3) Adjust the taper nut (4) so that non-recording portions of AUDIO and FM siganls match in the phase (±1 field) with maximum FM output.
- 4) Play back the alignment tape MHPE and confirm that FM waveform is maximum with the tracking control set at the center position.
- 5) If the result of the above step 4) is unsatisfactory, move the A/C head to the maximum FM waveform position nearest the adjustment point of the above step 3).

For BR-S522

Note: The following is for X-value adjustment and tracking preset adjustment.

- 1) Preparation
- Set for the "adjustment mode 4". (Refer to 1.9 Adjustment Mode, page 1-30.)
- Connect an oscilloscope's CH-1 to "V-RF" of the front service terminal and CH-2 to the rear panel's AUDIO MONITOR OUT terminal, and set the front panel's AUDIO MONITOR switch to NORM, AUD-1/L.
- Connect the oscilloscope's external input terminal with the D-PULSE of the front service terminal for external synchronization.
- 2) Play back the alignment tape MBPE-X.
- 3) Adjust the taper nut (4) so that non-recording portions of AUDIO and FM siganls match in the field (±1 field) with maximum FM output.
- 4) Cancel the adjustment mode and play back the alignment tape MBPE-X.
- 5) Adjust R146 on 30 D/C SERVO board so that nonrecording portions of AUDIO and FM signals match in the phase (±1 field) with maximum FM output.

- · Synchronizing of oscilloscope:
- 1. Set the oscilloscope's time sweep to 10 msec.
- 2. In synchronization with D. FF signal, turn the oscilloscope's HOLD OFF knob in the (+) direction to stabilize non-recording portion.

2.7 ADJUSTMENT OF TAPE TRANSPORT SYSTEM

SECTION 3 ELECTRICAL ADJUSTMENT

3.1 PRECAUTIONS

- Before proceeding to any electrical adjustment, it is the firstprerequisite to confirm that the objective item is out of order or of breakdown.
 - Moreover, for parts and items that need correct mechanical adjustment prior to electrical adjustment, begin by confirming that they are exactly mechanically adjusted.
- Make sure to start electrical adjustment 5 or more minutes after the power is turned on.
- Adjustment procedure of the reel servo circuit is described in the previous section 2.5 "Adjustment of Reel Servo Circuit".

3.1.1. Required tools and test instruments

Besides the special implements shown in Fig. 3-1-1, the following test instruments are necessary for electrical adjustment.

- Frequency counter (10MHz or more and 100mV or less in the sensitivity)
- Video signal generator (TG-7/2, Model 1411, or equivalent)
- Waveform monitor (1485R or equivalent)
- Digital voltmeter (available for 1mV_{pc} or under)
- Sweep signal generator (100kHz to 10MHz, or equivalent)
- Oscilloscope (dual-trace type, for more than 50MHz)
- TV monitor
- Vectorscope (521A or equivalent)
- Audio tester

Fig. 3-1-1 Required special implements

3.1.2 Speciffication of alignment tapes

•MHPE

Video signal	Audio signal	Application	Remark
VHS SP mode Stairstep	172 H 2	For check adjustment of interchangeability For adjustment of PB swiching point	MH-2 stairstep signal substitutable.

•MHVE-2

Video signal	Audio signal	Application	Remark
VHS SP mode Color bar	_	•For check and adjustment of video PB circuit	MH-2 color bar signal is substitutable.

•MBAE

Video signal	Audio signal	Application	Remark
CTL signal only	1kHz(0dB)	•For check and adjustment of audio PB circuit	MH-2 1kHz signal is substitutable.

•MH-8

No.	PB time	Video signal	Audio signal	Application
1	2 minutes	Color sweep	400Hz(-10dB)	-Check and adjustment of video signal's frequency response in
2	2 minutes	Color sweep	100Hz(-10dB)	PB circuit. -Check and adjustment of audio signal's frequency response in
3	2 minutes	Color sweep	8kHz(-10dB)	PB circuit.
4	4 minutes	Color sweep	_	

•MH-F8

No.	PB time	Video signal	Audio signal	Application
1	5 minutes	_	Carrier only	Check and adjustment of interchangeability of mechanism.
2	5 minutes	Stairstep	Carrier only	Check and adjustment of interchangeability of mechanism.
3	5 minutes	-	1kHz (±50kHz DEV)	Check and adjustment of FM audio PB circuit.

-MHVE-2H

Video signal	Audio signal	Application	Remark
VHS SP mode Color bar	-	•For check and adjustment of video PB circuit	MH-2 color bar signal is substitutable.

-MBVE-14H

Video signal	Audio signal	Application	Remark
S-VHS SP mode Sweep	_	• For AUTO EQ adjustment	-

-MBVE-3H

Video signal	Audio signal	Application	Remark
VHS SP mode Video sweep	-	 For check and adjustment of video frequency response 	Only MHVE-3H part name changed.

3.1.3 Signals required for video system adjustment

1) EBU 75% color bar

2) Stairstep (5 steps) signal

3) Modulation stairstep signal

4) Pulse and bar signal

4) Multiburst

6) Video sweep signal (100kHz to 5MHz)

To supply this signal through the LINE IN terminal, make sure to use a sweep signal having a good characteristic in the H correlation in order to avoid erroneous operation of comb filters. For a reference, a signal having a good H correlation shows such a clear pattern as neighboring black and white lines are the same in the width and the interval on the monitor as shown in the figure below.

7) Blue or Yellow signal Another monochromatic signal is substitutable. Use of any monochromatic signal whose color level is high

8) Sine wave (5.0MHz)

3.1.4 Main boards location

In the following sections, P.C. boards on which check points, adjustment parts and DIP switches are provided are indicated by board numbers respectively. The photo below shows only P.C. boards for which check and adjustment may possibly be required.

Note:

One adjusting, set switches and controls on the front and rear panels to the respective default setting (setting position at shipment) unless otherwise specified.

Before adjustment, set the following switches as indicated below

- MEMORY switch -

No.201(DOLBY NR) : "OFF" No.313(PB/EE · PB) : "PB/EE"

(For resetting manner of the memory switch, refer to the section 1.)

Fig. 3-1-2 Location of main P.C. boards

Fig. 3-1-3 Initial setting of front and rear panel switches at shipment

3.1.5. Explanation of main columns in check and adjustment table

1. "Check Point" column

The Check Point column indicates measuring instrument(s) to be used besides test points to be connected with it. However, oscilloscope is not indicated except for audio adjustment.

In case of the example on the left, connect a digital voltmeter to TP3 on the AUDIO 1 board.

If no measuring instrument is specified for check and adjustment of the audio circuit, use an audio tester.

This column indicates not only test points on P.C. boards but also terminals on the rear panel. In such a case, connect a measuring instrument directly to the specified terminal.

- a. HiFi AUDIO OUT = HiFi AUDIO output terminal (XLR connector)
- b. N. AUDIO OUT = NORMAL AUDIO output terminal (XLR connector)
- c. Y/C 443 OUT, Y OUT, C OUT = Y/C 443 output terminals (7-pin connectors)

Note: Y or C output to be connected with a measuring instrument is indicated in this column.

d. COMPONENT = Component (Y,R-Y,B-Y) output terminals (BNC connectors)

Note: One of Y, R-Y and B-Y connectors is specified in this column for connecting a measuring instrument.

e. VIDEO OUT = LINE output terminal (BNC connector)

2. "Signal" column

The Signal column indicates signals to input as well as terminals to input the signals.

if no input terminal is specified, input signals to the LINE IN terminal.

In case of the example on the left, input 1 kHz/-6 dBs signal to the NORMAL AUDIO input terminal.

In case of adjustment with an alignment tape being played back, its part number and the segment to be played back are indicated in parentheses.

3. "Mode" column

This column indicates operation mode of the set for adjustment.

Since this set has two recording modes of "S-VHS" and "VHS", set the REC MODE switch on the sub panel (inside the front panel) to the specified position if one of them is indicated in this column.

When "VHS" mode is specified, use a VHS cassette tape, while use an S-VHS cassette tape for "S-VHS" mode. if neither mode is specified, the mode does not matter.

Note: Make sure to use double-coated tape for measurement. (If not, measurement value may be incorrect.)

4. About RAP mode

For items having RAP indication in the "Mode" column, set the switch S1 on the R/P ADJUST board to "RAP" position and set the mode to the STANDBY ON (STANDBY and STOP LEDs will come on).

Then, select "06" of the adjustment mode.

If "06" is not selected, it may cause abnormal triggering.

(For setting of the adjustment mode, refer to the section 1.9 "Adjustment mode".)

In the above condition, change over the switch S2 (between RAP1 and RAP2), and real time observation of CH1 (RAP1) and CH2 (RAP2) waveforms that were recorded by the same set becomes possible.

For this observation, set and trigger oscilloscope as mentioned below.

V-rate: with signal from TP11

(R/P ADJUST-3E)

Minus (-) slope

H-rate: with signal from TP10

(R/P ADJUST-3E)

Minus (-) slope

Note: There is a slight difference between two signal levels of one measured in the RAP mode and the other measured in playback of signal recorded and by the same set. Therefore, do not use this RAP mode for items other than those indicated with it.

3. 2 D/C SERVO CIRCUIT

Note • Unless otherwise mentioned, check points and adjustments are on the D/C SERVO bord.

3. 3 AUDIO CIRCUIT

Note • All adjustment values are balanced values with $600\,\Omega$ resistance.

*Turn off the memory switch No.201 (DOLBY NR) unless otherwise indicated.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
	AUDIO REC LEVEL VR setting & AUDIO LEVEL METER adjustment	HiFi AUDIO OUT (600Ω terminator)	R87(Lch) R88(Rch) (AUDIO-2)	1kHz∕ −6dBs ↓ HiFi AUDIO IN	E-E	 Set the AUDIO MONITOR switch to the "Hi-Fi" position. Adjust output level at the HiFi AUDIO output terminal to be —6.0dBs with the HiFi REC LEVEL VR. Note For the following adjustment, leave the Hi-Fi REC LEVEL VR as it is set in the step 2). Reading the AUDIO LEVEL METER head-on, adjust R87(L-ch) and R88(R-ch) so that the meter reads 0.0dB respectively.
		N. AUDIO OUT (600Ω terminator)		1kHz∕ −6dBs ↓ N. AUDIO IN	E-E	1) Set the AUDIO MONITOR switch to the "NORM" position. 2) Adjust output level at the N.AUDIO output terminal to be -6.0dBs with the N.AUDIO REC LEVEL VR. Note For the following adjustment, leave the N.AUDIO REC LEVEL VR as it is set in the step 2). 3) Read the AUDIO LEVEL METER head-on while confirming that the pointer indicates 0.0±0.5dB. Note Confirm that level difference between R and L channels is within 0.5dB.
	Normal Audio playback level	N. AUDIO OUT (600Ω terminator)	R26(Rch) (AUDIO-1)	MBAE	PB	1) Make sure of the MEMORY switch No. 201 (DOLBY NR) being set to "OFF". 2) Adjust R25(L-ch) and R26(R-ch) so that each output level is -6.0dBs. Note Adjust the TRACKING VR to the best tracking position.
						Note Confirm that the meter pointer does not overshake in the Search FWD / REV mode.
3	Normal Audio playback frequency response	N. AUDIO OUT (600 Ω terminator) - Rated free 400Hz 0dB (Reference	R126(Rch) (AUDIO-1) quency response 100Hz	8kH		1) Make sure of the MEMORY switch No.201 (DOLBY NR) being set to "OFF". 2) With the alignment tape MH-8, confirm that playback level of the 100Hz signal is —D.5dB as against playback level of the 400Hz signal. 3) With the same tape used, adjust R125(L-ch) and R126(R-ch) so that playback level of the 8kHz signal is 0dB compared with that of the 400Hz signal.
						Note Adjust the TRACKING VR to the best racking position.

No.	Item	Check point	Adjustmen	t Signal	Mode	Check and Adjustment
4	Audio bias frequency & level	TP5 (AUDIO-1)	L405 (AUDIO-1)	No input signal	REC S-VHS	1) Adjust frequency at TP5 to be 70kHz.
		Frequency counter	Т	P5:70±3kH	z	
		TP5(Lch) TP6(Rch) (AUDIO-1)	T401(Lch) T402(Rch) (AUDIO-1)	No input signal	REC S-VHS	2) Turn R425 and R426 on the AUDIO1 board full clockwise. In this condition, adjust T401(L-ch) and T402(R-ch) to maximize bias oscillation respectively. (more than 80Vp-p)
		Oscilloscope	TPS	TP6: Maxim	um	
			R425(Lch) R426(Rch) (AUDIO-1)	No input signal	REC S-VHS	Adjust R425 (L-ch) and R426 (R-ch) to obtain 44Vp-p as respective bias levels. Note The above bias levels may be readjusted later in
			TF	5,TP6 : 44Vp	- p	the Item No.8.
			R455(Lch) R456(Rch) (AUDIO-1)	No input signal	REC VHS	erform recording without signal input in the VHS mode.
				s level : 33Vr)-D	5) Adjust R455(L-ch) and R456(R-ch) to obtain 33Vp-p as respective bias levels.
	N					Note The above bias levels may be readjusted later in the Item No.8.
5	Normal Audio REC / PB	N. AUDIO OUT (600Ω terminator)	R7(Lch) R8(Rch) (AUDIO-1)	1kHz∕ -6dBs ▼ N. AUDIO	REC VHS PB	 Record the 1kHz/-6dBs signal and play it back. Confirm that the playback level is -6.0± 0.5dBs on R and L channels respectively (level difference between channels must be within 0.5dB.). When playback level is out of the the specifications, roughly adjust R7(L-ch) orR8(R-ch), and repeat the above steps 1) and 2) until the adjust-
			Playback	Playback level: -6.0±0.5dBs		ment brings satisfactory result.
			-	1kHz/ -6dBs V. AUDIO	REC S-VHS PB	4) Record the 1kHz/-6dBs signal and play it back. 5) Confirm that the playback level is -6.0±%dBs.
			Playbad	ck level : -6.0	D±2%dBs	

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
6	Normal audio PB frequency response (REC/PB)	N. AUDIO OUT (600Ω terminator) - Rated freque (S-VHS NI 1kHz 0dB (Refere	ency response - R: "OFF")		REC S-VHS PB	 Make sure of MEMORY switch No.201(DOLBY NR) being set to "OFF". Record the 1kHz and 10kHz signals, and play them back. Confirm that playback level of the 10kHz signal is -0.5±0.5dB as against that of the 1kHz signal. If not, fine adjust the bias levels explained in the previous item, No.4. a) If the level of the 10kHz signal is higher than the specifications, raise the bias level according to the step 3) of the Item No.4. b) If the level of the 10kHz signal is lower than the specifications, decline the bias level according to the same step. After the bias adjustment, repeat the steps 2) and 3) to meet the specifications.
	(\$2)	- Rated frequency respond (S-VHS NR: "ON") 1kHz 0dB (Reference)		1kHz, 12kHz/ -26dBs W N. AUDIO	REC S-VHS PB	6) Set the NR switch to "ON", and record the 1kHz and 12kHz signals and play them back. 7) Confirm that playback level of the 12kHz signal is —0.0±13dB as against that of the 1kHz signal (level difference between R and L channels must be within 3.0dB). 8) Return the NR switch to "OFF" position.
		N. AUDIO OUT (600 Ω terminator) - Rated freque (VHS NR: 1kHz 0dB (Referer	ncy response - "OFF")		PB	 9) Record the 1kHz and 10kHz signals, and play them back. 10) Confirm that playback level of the 10kHz signal is — 0.5±0.5dB as against that of the 1kHz signal. 11) If not, fine adjust the bias levels explained in the previous item, No.4. a) If the level of the 10kHz signal is higher than the specifications, raise the bias level according to the step 3) of the Item No.4. b) If the level of the 10kHz signal is lower than the specifications, decline the bias level according to the same step. 12) After the bias adjustment, repeat the steps 9) and 10) to meet the specifications.
	(VH		2kHz	1kHz, 12kHz/ −26dBs ▼ N. AUDIO	VHS PB	13) Set the NR switch to "ON", and record the 1kHz and 12kHz signals and play them back. 14) Confirm that playback level of the 12kHz signal is —0.0±35dB as against that of the 1kHz signal (level difference between R and L channels must be within 3.0dB). 15) Return the NR switch to "OFF" position.

22 in- rase	TP403 (AUDIO-1) Frequency counter TP401 (AUDIO-1) Oscilloscope	T403 (AUDIO-1)	No input signal No input signal Relevel: Max	REC VHS AUD-1 INSERT VHS	1) Adjust T405 so that frequency at TP403 becomes 70kHz. 1) Perform the AUD-1 insert editing. 2) Adjust T403 to maximize erase level at TP401 (more than 200mVp-p).
in- rase	TP401 (AUDIO-1) Oscilloscope	T403 (AUDIO-1)	No input signal	AUD-1 INSERT	2) Adjust T403 to maximize erase level at TP401
in- rase	(AUDIO-1) Oscilloscope	(AUDIO-1)	signal	INSERT	2) Adjust T403 to maximize erase level at TP401
		Lch eras	se level : Max		Note After this adjustment, repeat the AUD-1 insert
				cimum	editing while confirming the erase level being the same as adjusted in the step 2).
	TP402 (AUDIO-1) Oscilloscope	T404 (AUDIO-1)	No input signal	AUD-2 INSERT VHS	3) Perform the AUD-2 insert editing. 4) Adjust T404 to maximize erase level at TP402 (more than 200mVp-p.)
		Rch eras	se level : Max	imum	Note After this adjustment, repeat the AUD-2 insert editing while confirming the erase level being the same as adjusted in the step 4).
22 post- ing	TP402 (AUDIO-1) Oscilloscope	T404 (AUDIO-1)	No input signal	AUDIO DUB VHS	1) Perform audio dubbing (postrecording). 2) Adjust T404 to maximize erase level at TP402 (more than 200mVp-p).
		Rch eras	se level : Max	imum	Note After this adjustment, repeat the audio dubbing operation while confirming the erase level being the same as adjusted in the step 2).
	TP401 (AUDIO-1)	T403 (AUDIO-1)	No input signal	REC VHS	3) Adjust T403 to maximize erase level at TP401.
	Oscilloscope				Note After this adjustment, set the deck to the REC mode again while confirming the erase level being the same as adjusted in the step 3).
		(AUDIO-1)	(AUDIO-1)	(AUDIO-1) signal	(AUDIO-1) signal VHS

No.	Item	Check point	Ad	justment	Signal	Mode	Check and Adjustment
9	BR-S822 Normal audio insert crosstalk cancel	N. AUDIO OUT (600Ω terminator)	R30		1kHz∕ -6dBs ₩ N. AUDIO	AUD-1 INSERT VHS	Perform AUD-1 insert editing with a tape on which no audio signal is recorded. Adjust R302 to minimize output level on R-ch.
				Rch output level : Minimum			Note For this adjustment, use a tape on which normal audio signal is not recorded.
			R30 (AL	1 JDIO-1)	1kHz/ -6dBs	AUD-2 INSERT VHS	Perform AUD-2 insert editing with a tape on which no audio signal is recorded. Adjust R301 to minimize output level on L-ch.
			<u> </u>	N. AUDIO	Note For this adjustment, use a blank tape on which any signal is not recorded.		
					out level : Mi		
		L3 (A	R32 L302 (AL		10kHz∕ −6dBs ₩	AUD-1 INSERT VHS	 5) Perform AUD-1 insert editing with a tape on which no audio signal is recorded. 6) Adjust R320 and L302 to minimize output level on R-ch.
				Rch output level : Minimum		nimum	Note Repeat the above steps 5), 6) and 7), 8) until respective output levels are minimized.
			R31 L30 (AL		10kHz/ -6dBs	AUD-2 INSERT VHS	7) Perform AUD-2 insert editing with a tape on which no audio signal is recorded. 8) Adjust R319 and L301 to minimize output level or L-ch.
				Lch outp	N. AUDIO	nirnurn	Note Repeat the above steps 5), 6) and 7),8) until respective output levels are minimized.
	BR-S622 Normal audio post- recording crosstalk cancel	N. AUDIO OUT (600Ω terminator)	i	1 JDIO-1)	1kHz∕ −6dBs ₩ N. AUDIO	AUDIO DUB VHS	1) Perform audio dubbing (postrecording) with a tape on which no audio signal is recorted. 2) Adjust R301 to minimize output levelon L-ch.
	Cancel			Lch outp	out level : Min	nimum	
			R31 L30 (AL		10kHz∕ −6dBs ₩	AUDIO DUB VHS	3) With the 10kHz/-6dBs signal input,perform audio dubbing (postrecording). 4) Adjust R319 and L301 to minimize output level on L-ch.
				Lch outp	IN out level : Min	nimum	

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
10	BR-S822 Normal Audio insert bias trap	TP7 (AUDIO-1) Oscilloscope	L9 (AUDIO-1) TP7: N	No input signal	AUD-2 INSERT VHS	Perform AUD-2 (R-ch) insert editing. Adjust L9 to minimize bias level (70kHz) at TP7.
		TP8 (AUDIO-1) Oscilloscope	L10 (AUDIO-1)	No input signal	AUD-1 INSERT VHS	3) Perform AUD-1 (L-ch) insert editing. 4) Adjust L10 to minimize bias level (70kHz) at TP8.
	BR-S622 Normal audio	TP7 (AUDIO-1) Oscilloscope	L9 (AUDIO-1)	No input signal	AUDIO DUB VHS	Perform audio dubbing. Adjust L9 to minimize bias (70kHz) at TP7.
11	BR-S822 Time code bias trap	TP601 (AUDIO-1) Oscilloscope	L601 (AUDIO-1)	No input signal	AUD-1 INSERT VHS	 Make sure of MEMORY switch No.206(AUD-2/LTC) being set to "LTC". Perform AUD-1 insert editing. Adjust L601 to minimize level at TP601. After the adjustment, return the MEMORY switch to "AUD-2" position.
12	Hi-Fi audio carrier frequency	TP4	R63 (AUDIO-3) carrier frequent	No input	REC	1) Turn on the HiFi REC switch. 2) Adjust R63 so that frequency at TP3 becomes 1.400MHz. 3) Adjust R64 so that frequency at TP4 becomes 1.800MHz.
13	Hi-Fi audio FM output level	A-RF terminal (Front panel)	(AUDIO-3) carrier frequen R11 (FMA PRE/AMP)	MH-F8	D.002MHz	1) Adjust R11 so that FM output level at the A-RF terminal inside the front panel becomes 100mVp-p. Note If there is level difference in two channels, adjust the level by the channel having the lower level. Adjust the TRACKING VR to the best tracking
		Oscilloscope	A-RF te	rminal : 100	mVp-p	position.

No.	item	Check point	Adjustment	Signal	Mode	Check and Adjustment
14	Hi-Fi audio PB level	HiFi AUDIO OUT (600Ω terminator)	R3 (Lch) R4 (Rch) (AUDIO-3)	MH-F8 (1kHz)	РВ	1) With the alignment tape MH-F8 being played back, adjust R3(L-ch) and R4(R-ch) so that playback level of the 1kHz signal is —6.0dBs. Note Adjust the TRACKING VR to the best tracking position.
15	Hi-Fi audio REC FM level	TP1 (FM A PRE/AMP) Oscilloscope	R159 R160 (AUDIO-3)	No input signal	REC VHS	1) Make sure of the MEMORY switch No.200 (HiFi REC) being set to "ON". 2) Referring to the figure on the left, adjust R159 and R160 alternately so that the portion "A" becomes 60mVp-p while the portion "B" becomes 220mVp-p.
			0mVp-p(R159) 20mVp-p(R160)		M	
16	Hi-Fi audio REC / PB level	HiFi AUDIO OUT (600Ω terminator)	R55 (Lch) R56 (Rch) (AUDIO-3)	1kHz∕ −6dBs ↓ HiFi AUDIO IN	REC VHS PB	 Make sure of the MEMORY switch No.200 (HiFi REC) being set to "ON". Record the 1kHz/-6dBs signal and play it back. Confirm that playback level of the recorded signal is -6.0±0.5dBs on the both channels and level difference between channels is within 0.5dB. If the playback level is out of the specifications, roughly adjust R55(L-ch) and R56(R-ch) and repeat the previous steps 2) and 3) to meet the specifications.
		lio REC / PB level	we de			
	(Level di	ifference between R	8 & L channel: w 6.0 ± 0.5dBs	ithin 0.5dB)	REC	1) Repeat the above steps 2) and 3) in the S-VHS
	S-VI		6.0±1.0dBs		S-VHS PB	mode, and confirm that the level is $-6.0\pm1.0 dBs$ on the both channels and level difference between channels is within 0.5dB.

3. 4 VIDEO CERCUIT

- Note Confilm that the VIDEO OUT switch is set to "EDIT" position.
 Set the S1 on the OUTPUT board to "MANU" position.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
1	vcxo	TP1 (4fsc) V Digital Voltmeter	R1 (4fsc)	No input signal	E-E	1) Adjust R1 to obtain 2.0V _{pc} as the level.
2	AGC	VIDEO OUT (75Ω terminator)	R2: 7B (Y COMB)	1.00 Vp	E-E	1) Confirm that the AGC switch is set to "ON". 2) Adjust R2 so that signal level at the VIDEO OUTPUT terminal is 1.00Vp-p.
3	Video input level	VIDEO OUT (75Ω terminator)	R1: 8C (Y COMB)	1.00 Vp	E-E	1) Turn off the AGC switch. 2) Make sure that the VIDEO LEVEL VR is set to the center click position. 3) Adjust R1 so that signal level at the VIDEO OUTPUT terminal is 1.00Vp-p. 4) Turn on the AGC switch.
4	Y/C 443 Y input level	VIDEO OUT (75Ω terminator)	R3: 5B (Y COMB)	Color bar Y/C 443	E-E	 Set the VIDEO INPUT switch to "Y/C 443" position. Adjust R3 so that signal level at the VIDEO OUTPUT terminal is 1.00Vp-p. Note Measure the level at a dense portion of the sync-tip.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
5	E-E Color input level	nous point of	R6: 1H (Y COMB) equalize level of the burst signal vout color bar sign	with the	E-E	 Input the color bar signal directly to the vectorscope. While adjusting the GAIN control so that the burst level crosses the scope's circumference. Connect the vectorscope with the VIDEO OUTPUT terminal and supply the color bar signal to the LINE INPUT terminal. Set the VIDEO INPUT switch to the "LINE" position. Adjust R6 to equalize level of the luminous point of the burst signal with the level of the reference color bar signal.
6	VIDEO LEVEL METER	VIDEO LEVEL METER	R4: 5B (Y COMB)	Color bar	E-E	1) Set the METER SELECT switch to the "VIDEO" position. 2) Adjust R4 so that the LEVEL METER reads "0".
7	Sub- emphasis input level	TP1: 4G (R/PY)	R1: 15 (R/PY) H-rate Overshoot	0.4Vp-p	E-E	1) Adjust the level at TP1 to be 0.4Vp-p by R1. 2) With the VIDEO OUT switch set to the "NORM" position, confirm that shoot is observed in the leading edge of the waveform. 3) Set the VIDEO OUT switch to the "EDIT" position.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
10	S-VHS mode detection (PB mode)	TP7: 1A (R/P ADJ)	R17: 1A (R/P ADJ)	TP6: 2A (R/P ADJ)	E-E	 Make shortcircuits between TP5(:1A) and TP GND4(:1A) as well as TP8(:2A) and TP9(:1A) on the R/P ADJUST BOARD. Supply 5.0MHz/200mVp-p sine wave to TP6. Note At that time, do not use TP GND6. Adjust R17 so that the duty factor at TP7 is fifty-fifty (A=B in the figure).
11	Modulation balance	TP8: 11G (R/P Y)	R14: 1F R15: 2G (R/P Y)	Color bar	REC S-VHS PB	Adjust R14 and R15 alternately to minimize carrier leak in the sync tip portion of the waveform at TP8.
12	PB sub- demphasis	TP1: 4G (R/P Y)	R11: 9G (R/P Y)	Color bar	REC S-VHS PB	1) Adjust R11 to obtain 0.4 Vp-p as the level at TP1.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
14	REC FM level	TP4: 3E (R/P ADJ)	R8: 4B(CH1) R7: 4B(CH2) (R/P ADJ)		RAP S-VHS	1) Set the switch S1 the R/P ADJUST board to "RAP" for the RAP mode while S2 on the same board to "RAP 1"(CH 1).
						Adjust R8 so that the FM level of TP4 becomes maximum.
			Maxin	num level		Adjust the oscilloscope's GAIN control to set the FM level for 6.0 scale divisions on the scope.
			SSSSSSSS	r 6.0 divisions toscope)		4) Adjust R8 so that the FM level becomes 4.0 so divisions.
				countercl	ockwise	5) Set the switch S2 to the "RAP 2" (CH2).
	TRIG :	TP11(R/P ADJ-3E	Adj	ust for 4.0 sca sions	ole	6) In the same as above for RAP 1 mode, adjust R7 to set the FM level to 4.0 scale divisions.
		1	1 1			7) Set the switch S1 to "NOR".
		TP2: 4C (R/P ADJ)	R8: 4B(CH1) R7: 4B(CH2)	5 step	REC S-VHS	Adjust the oscilloscope's GAIN control to set the TP2's level for 3.0 scale divisions.
		(11)	(R/P ADJ)		(3-V113)	9) Adjust the R8 and R7 so that the FM level be-
						comes 6.0 scale divisions.
			Set for 3.0 (Oscillosco			
	TRIG - B	IAP mode	Adjust for 6.0 sca	le divisions		
		TP11(R/P ADJ-3E) OSLOPE			
		REC∕PB mode D-FF ⊝SLOPE(C ⊕SLOPE(C	H1) H2)			
		TP4: 3E (R/P ADJ)	R6: 4B(CH1) R5: 5B(CH2) (R/P ADJ)	5 step (nonburst)	RAP VHS	10) In the same as above for S-VHS mode, adjust the oscilloscope's GAIN control to set the TP4's maximum level to 6.0 scale divitions respectively in the VHS mode.
						11) Adjust R6 and R5 to set the FM level to 4.0 scale divisions.
		TP2: 4C (R/P ADJ)	R6: 4B(CH1) R5: 5B(CH2)	5 step (nonburst)	REC VHS	12) Adjust the oscilloscope's GAIN control to set the TP2's level for 3.0 scale divisions.
			(R/P ADJ)			13) Adjust the R6 and R5 so that the FM level becomes 6.0 scale divisions.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
21	REC color level	TP3:1C (R/P ADJ)	R12: 4B(CH1) R11: 5B(CH2) (R/P ADJ)	i i	РВ	Note For grounding of this adjustment, use any TPGND6 other than TP GND. 1) Play back the MHVE-2H alignment tape. Note Adjust the TRACKING VR to the best tracking
	- MHVE-2H	- MHVE-2H PB -				position. 2) Adjust the oscilloscope's GAIN control to set the CH1 output level at TP3 for 4.0 scale divisions.
	Adjust for 5.0scale div.	SLOPE(CH1), mode -	V-rate	Color bar	REC S-VHS PB	 3) Record the color bars signal and play it back. 4) Adjust R12 so that the level of waveform at TP3 is 5.0 scale divisions (+2dB as against the alignment tape) on the oscilloscope. If a satisfactory result cannot be obtained: a) Roughly turn R12. R12 : increases the colour level. b) Repeat the adjustments of the steps 3) and 4) of this item. 5) With the MHVE-2H alignment tape being played back, set the CH2 level for 4.0 scale divisions on the oscilloscope in the same manner as above. Note Adjust the TRACKING VR to the best tracking position. 6) Adjust R11 so that TP'3 level becomes for 5.0 scale divisions in the same manner as above. If a satisfactory result cannot be obtained: a) Roughly turn R11. R11 : increases the colour level. b) Repeat the adjustments of steps 5) and 6) of this item.
	- VHS mc		R10: 4B(CH1) R9: 4B(CH2) (R/P ADJ)	1 1	PB	 7) In the same manner as for the S-VHS mode, adjust for the VHS mode. 8) With the MHVE-2 alignment tape being played back, set CH1 and CH2 levels for 5.0 scale divisions respectively. Note Adjust the TRACKING VR to the best tracking position.
	against the	F self-recorded signs PB level of the align AP mode PP11(R/P ADJ-3E EC/PB mode O-FF	e) OSLOPE	Color bar	REC VHS PB	9) Record the color bar signal and play it back. 10) Adjust R10 and R9 so that TP3's level becomes for 4.5 scale divisions (-1.0dB) as against the level of the alignment tape on the both channels. If a satisfactory result cannot be obtained: a) Roughly turn R10(CH1) and R9(CH2). R10 (R9) : increases the colour level. b) Repeat the adjustments of steps 9) and 10) of this item.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
22	DG COMP	Y/C 443 OUT (75Ω terminator)	R23:8E(CH1) R22:8E(CH2) (R/P C)	Mod. 5step	S-VHS	1) Set the switch S1 on the R/P ADJ board to the "RAP" position to realize the RAP mode while setting the switch S2 to "RAP1"(CH1) position. Note In the RAP mode, trigger the oscilloscope with signal of TP10 (on minus slope).
		monitor &				2) Connect the Y/C OUT terminal with the scope.3) Adjust R23 to flatten the CH1 waveform(See the
		Oscilloscope				left figure).
		- RAP mode - (Oscilloscope)		ens.		4) Set the switch S2 to the "RAP2" (CH2) position. 5) Adjust R22 to make the CH2 waveform the same
į				Ž.	DEC.	as the CH1 waveform (flat waveform).
					REC S-VHS	6) Connect a waveform monitor with the Y/C 443 OUT terminal, and confirm that the levels in the odd field and the even field are the same (see the lower left figure).
			FLAT	H-rate	PB	7) If there is a difference in the levels, decline the REC FM level of the channel having the higher level and again adjust the REC color level. (Refer to Items No. 14 and No. 21.)
		TRIG : TP10(⊖SL	R/P ADJ-3E) OPE			Note In the above adjustment, make sure to decline the REC FM level within 2.0dB compared as the original level. (In other words, when the original level is for 5.0 scale divisions of the oscilloscope, make sure not to decline the level lower than 4.0 scale divisions.) When the adjustment of the Item No. 14 "REC FM level" was carried out, the Item No. 21 "REC color level" must be checked again. If so, this item must be checked again after the recheck of the Item No.21.
			R7: 9E(CH1) R6: 9E(CH2)	Mod. 5step	RAP VHS	8) Set the REC MODE switch to the "VHS" position.
	PEC /I	PB mode -	(R/PC)	·		9) In the same manner as for the S-VHS mode, flatten the CH1 and CH2 waveforms in the DG by R7(CH1) and R6(CH2).
		form monitor) Wave	form must not naged double.		REC VHS	10)Confirm that the levels in the odd field and the even field are the same (see the left figure). 11)If there is a difference in the levels, decline the
					▼ PB	REC FM level of the channel having the higher level and again adjust the REC color level. (Refer to Items No. 14 and No. 21.) Note
		TRIG : Y	OUT			 In the above adjustment, make sure to decline the REC FM level within 2.0dB compared as the original level. (In other words, when the original level is for 5.0 scale divisions of the oscilloscope, make sure not to decline the level lower than 4.0 scale divisions.) When the adjustment of the Item No. 14 "REC FM level" was carried out, the Item No. 21 "REC color level" must be checked again. If so, this item must be checked again after the recheck of the Item No.21.

	Check point	Adjustment	Signal	Mode	Check and Adjustment
E-E Pilot Burst level	TP8: 3G (R/P C)	R10: 12F (R/P C)	Color bar	E-E	Adjust R10 to make the pilot burst level the same as the burst level.
	PILOT BL	IRST level = BUR	RST level		
Color DOC	TP33: 4D TP34: 4D (R/P C-2)	R22: 4D (R/P C-2)	Color bar	E-E	1) Turn on the oscilloscope's 20 MHz filter. 2) Adjust R22 to equalize waveform levels at TP33 and TP34.
	TP33 = TP3 V-rate				
Crosstalk cancel	TP39: 5D (R/P C-2)	R23: 4D L305: 2D (R/P C-2)	Color bar	REC S-VHS	 Set the switch SW302(2C) on the R/P C-2 board to "ADJ" position. Shortcircuit between TP38(4C) and GND on the
	TP39		minimum	PB	R/P COLOR-2 board with a shorting wire. 3) Adjust R23 and L305 to minimize signal level (leakage of color component) at TP39. 4) Remove the shorting wire from TP38 and GND.
		H-rate			
		R24: 4E L307: 2E (R/P C-2)	Color bar	REC S-VHS	5) Set the switch SW303 (R/P COLOR-2) to "ADJ" position. 6) Shortcircuit between TP38 and TP 5V2(5C) on the R/P COLOR-2 board with a shorting wire.
	TP39			1 1 1	7) Adjust R3 and L12 to minimize signal level (leakage of color component) at TP39.
	+===		minimum		8) After the adjustment, remove the shorting wire TP38 and TP5V2.
	H-rat				9) After the adjustment return SW302 and SW303 to "NOR" position.
	Crosstalk	PILOT BL PILOT BL PILOT BL TP33: 4D TP34: 4D (R/P C-2) TP33=TP3 V-rate Crosstalk cancel TP39: 5D (R/P C-2)	PILOT BURST level = BUF PILOT BURST level = BUF TP33: 4D R22: 4D (R/P C-2) TP34: 4D (R/P C-2) TP33=TP34 V-rate Crosstalk cancel TP39: 5D R23: 4D L305: 2D (R/P C-2) TP39 H-rate R24: 4E L307: 2E (R/P C-2)	PILOT BURST level = BURST level	PILOT BURST level = BURST level Color DOC TP33: 4D

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
26		TP39: 5D (R/P C-2)	R25: 5D (R/P C-2)	Color bar	REC S-VHS	Set the VIDEO OUT switch to "NORM" position. Adjust R25 so that signal level at TP39 becomes 0.27 Vp-p.
		0.27∨p-p	Heasure at this point	V-rate	РВ	
		TP40: 5E (R/P C-2)	R26: 6E L308: 6D (R/P C-2)	Color bar	REC S-VHS	3) Shortcircuit between TP42(6B) and GND on the R/P COLOR-2 board with a shorting wire. 4) Adjust R26 and L308 to minimize signal level
					PB	(leakage of color component) at TP40. 5) After the adjustment, remove the shorting wire.
		TP40	TP40			6) Set the VIDEO OUT switch to "EDIT" position.
		H-r	ate	minimum		
27	CNR feedback ratio	TP40: 8A (R/P C-2)	R27: 5E (R/P C-2)	MHVE-2	PB	 Set the VIDEO OUT switch to "NOR" position. Shortcircuit between TP42(6B) and GND on the R/P COLOR-2 board with a shorting wire.
	C OUT					Magnify the portion "A" of the waveform by the oscilloscope's time axis.
		/	V-rate			4) In the magnified view of the waveform, set the portion "B" (maximum amplitude) for 3.0 scale divisions on the oscilloscope with its GAIN control.
	TP40 <		Magnify time	<u>-</u> ,		 Adjust R6 so that the level "C" 2H after the maximum amplitude "B" becomes for 1.0 scale divisions.
				в)		6) After the adjustment, remove the shorting wire.
			c=	-B/3		7) Set the VIDEO OUT switch to "EDIT" position.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
28	PB Pilot Burst phase detct	TP32: 5E (R / P C-2) - OK - B A = - NG -	R21 :3B EQ301:3B (R/P C-2)	Color bar	REC S-VHS PB	 Set the switch SW301(3A) on the R/P COLOR-2 board to the upper position. Confirm that the waveform of TP32's signal is as shown in the upper left figure (pulse turns upwards). If it turns in the contrary direction (downwards), set the switch SW301 on the R/P COLOR-2 board to the lower position. Adjust R21 and EQ301 to equalize the levels of the "A" and "B" shown in the upper left figure to each other. Note In the adjustment of the above step, make sure to do it not to leave any leak as shown in the lower left figure. For adjustments of further steps, leave the switch S301 as it is set in the above procedure.
29	CRI equalizer	TP6: 7H TP8: 7F (OUTPUT)	EQ1: 6H EQ2: 6G EQ3: 6F R8: 5H (OUTPUT)	Color bar	REC S-VHS PB	1) Minimize signal level at TP6 with EQ1. 2) Shortcircuit between TP8 and TP9 on the OUTPUT board. 3) Adjust EQ2 so that signal level at TP8 becomes minimum. 4) Shortcircuit TP8 and TP7 on the OUTPUT board. 5) Adjust EQ3 and R8 to minimize signal level at TP8.
30	AFC	TP202 (Burst Gate)	R27 (Burst Gate)	No input signal	E-E	1) Adjust R27 to obtain 7.812kHz as frequency at TP202

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
31	R21. Adjust R5 sc	VIDEO OUT (75Ω terminator) Vectorscope cyp r ievels of these two be that the phases of the tan angle of 90°.	MG B B mg B	1	REC S-VHS PB	 Set the switch SW1 on the BURST SW board to the "ON" position. Make a shortcircuit between TP201 of the BURST GATE board and TPGND of the R P C board. Equalize the levels of these two burst signals to each other by R21. Adjust R5 so that the phases of the two burst signals meet each other at an angle of 90°.
			R14 (level) R13 (phase) (BURST SW)	Color bar	REC S-VHS PB	 5) Check the phase and level of the burst signal after removing the shorting wire. 6) Again shortcircuit TP201 and TPGND. 7) Check the phase and level of the burst signal and adjust R14(LEVEL) and R13(PHASE) so that they are the same as those measured after removing the shorting wire.
32	Color output level	nous point of	R7: 51 (OUTPUT) equalize level of the burst signal wout color bar sign	vith the	REC S-VHS PB	 Set the VIDEO OUT switch to "NORM" position. Input the color bar signal directly to the vectorscope while adjusting the GAIN control so that the burst level crosses the scope's circumference. With the vectorscope connected with the VIDEO OUT, supply the color bar signal to the VIDEO IN to record and play it back. Adjust R7 so that the burst level is the same as in the step 2). After the adjustment, return the VIDEO OUT switch to "EDIT" position.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
34	Pilot Burst delete	Y/C 443 •C OUT (75Ω terminator)	R19: 10C (R/P C)		REC S-VHS PB	1) Adjust R19 to remove leak of the pilot burst as shown in the figure. Note In this adjustment, make sure not to break the burst waveform.
35	S-VHS sideband comparator	TP9: 3G (R/P C)		Multi burst	E-E S-VHS Burst level	Note Since there are two best points obtained by adjusting R11 turn it full clockwise first and then return counterclockwise to find the best adjustment point for the first time. 1) Short circuit between TP7(3B) and GND 3 on the R/P COLOR board with a shorting wire. 2) Set the burst level at TP9 for 5.0 scale divisions on the oscilloscope screen. Note Turn on the oscilloscop's 20MHz filter. 3) Remove the shorting wire. 4) Adjust R11 so that the burst level is for 4.0 scale divisions on the scope.
36	REC Y/C delay	TP12: 14B TP10: 3E (R/P C)	R3: 2H (R/PC) Flat or symmetric R4: 1H (R/PC)	Pulse & bar Pulse & bar	E-E S-VHS	 Shortcircuit between TP7(3B) and GND3 on the R/P COLOR board with a shorting wire. Mix outputs from TP10 and TP12 in the oscilloscope which is triggered with signal from TP12 at this time. Adjust R3 so that the modulated 20T pulse waveform is symmetric in the base. In the same manner as above, adjust R4 to symmetrize the waveform in the base in the VHS mode. After the adjustment, remove the shorting wire.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
37	PB Y/C delay	Y/C 443 OUT (75Ω) terminator)	R1: 14I (R/P C)	Pulse & bar	REC S-VHS PB	 Mix Y and C outputs at the Y / C 443 OUT connector in the oscilloscope which is triggered with Y output. Play back recorded pulse & bar signal, and adjust R17 to symmetrize the modulated 20T pulse in the base.
			R2: 5I (R/P C)	Pulse & bar	REC VHS PB	3) In the same manner as above, adjust R2 to symmetrize the modulated 20T pulse in the base in the VHS mode.
38	2fc cancel	Y/C 443 •Y OUT (75Ω terminator)	R12: 2C (R∕P C)	Yellow signal	RAP S-VHS	 Set the VIDEO OUT switch to "NORM" position. Set S1 on the R/P ADJUST board to "RAP" position for the RAP mode. Adjust R12 to minimize the level "A" shown in the figure on the left. At that time, trigger the oscilloscope with signal from TP19(16H) on the R/P COLOR board.
	TP19			1		
			R13: 2B (R/P C)	Yellow signal	RAP VHS	4) In the same manner as above, adjust R13 to minimize the level "A" in the VHS mode, too. 5) Set S1 to "NOR" position.
39	į.	VIDEO OUT (75Ω terminator)	R4: 7D R5: 6E (OUT PUT)	Color bar	REC S-VHS PB STILL	1) Turn off the TBC switch. 2) Record the color bar signal, and play it back in the STILL mode. 3) Adjust R4 and R5 to position the ADD V pulse as shown in the figure.
		D.FF	340 µsec 70	00 μ sec		

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment	
40	On screen	TP13: 3B (AVM/ONS)	C101: 3B (AVM/ONS)	Color bar	E-E	1) Adjust C101 to obtain 17.734476 MHz as the f quency at TP13.	
		Frequency counter	TP13: 17	.734476MHz	±100Hz		
		TP14: 5B (AVM/ONS)	C102: 4C (AVM/ONS)	Color bar	E-E	2) Adjust C102 to obtain 7.0 MHz as the frequency at TP14.	
		counter	TP14:	7.0MHz±50	kHz		
41	VITC SEP CLAMP Voltage	TP10: 2F (AVM/ONS)	R1001: 3G (AVM/ONS)	Color bar	E-E	1) Adjust DC level of the sync tip to be 0.75V with R1001. Note Adjust level near V. sync. (See the figure below).	
				To zev	1		
				0.75V _{oc}	ı	Measure at this point	

■ LOCATION OF TEST POINTS AND ADJUSTMENT PARTS

3-32

3. 5 SUB PANEL CIRCUIT

Note *Subject of the following adjustments is the BR-S822E / BR-S622E equipped with the SA-T22E(TBC-1,2,3 boards).

*Before proceeding to the following adjustment, make sure that the TBC-1,2,3 boards are correctly adjusted.

*Unless otherwise indicated, all check points and adjustment parts are located on the SUB PANEL board.

*For check and adjustment of this circuit, supply color bar signal to the EXT. REF IN terminal of the VIDEO LINE IN connector.

No.	Item	Check point	Adjustment	Signal	Mode	Check and Adjustment
1	Video phase	VIDEO OUT (75Ω terminator)	VIDEO PHASE VR	Color bar	E-E	 Set the switch SW3 on the TBC-1 board to "NORM". Adjust the oscilloscope's GAIN control so that the portion "A" (see the figure) of the out put waveform from the VIDEO OUT becomes for 4.0 scale divisions on the scope. Set the switch SW3 to "ADJ". Adjust the VIDEO PHASE VR so that the portion "A" (see the figure) of the output waveform from the VIDEO OUT becomes for 4.0 scale divisions on the oscilloscope. Return SW3 to "NORM" position.
2	Genlock H phase	VIDEO OUT EXT.REF. OUT (75Ω terminator) EXT. REF OU		Color bar		1) Set the switch SW3 to "ADJ". 2) Obeserve output waveforms at the VIDEO OUT and EXT. REF OUT terminals. 3) Adjust the SYSTEM PHASE VR so that the two waveforms mentioned above become the same in the phase (to be the same waveform). 4) Return SW3 to "NORM" position.
3	phase	VIDEO OUT (75Ω terminator) Vectorscope Adjust the SC PHASE // R so that the two vaveforms mentioned bove become the same in the phase.	SC PHASE VR	Color bar	E-E	1) Set the switch SW3 on the TBC-1 board to "ADJ" position. 2) Connect a vectorscope's A INPUT terminal to the VIDEO OUT terminal and B INPUT terminal to the EXT. REF OUT terminal. 3) Trigger the vectorscope externally (B-INPUT). 4) Set the vectorscope's PHASE and GAIN controls to position the burst signal of the B INPUT terminal correctly. 5) Adjust the SC PHASE VR to position the burst signal of A INPUT correctly. 6) Return SW3 to "NORM" position.

SECTION 4 DIAGRAMS AND CIRCUIT BOARDS

■ FOREWORD

1. Expression of connector

Connector is expressed in two ways.

1) The following illustrates 'CN2 pin 1' for example.

2) The following illustrates 'CN1 pins 1 and 2'.

2. Expression of wiring

As the following circuit diagram is divided to print on some sheets, such an indication as the following is found in the case the wiring extends over two or more divided sections.

1) Circuit diagram divided into two or more sections:

Board No.	Board Name	Number of divided sections
02	MOTER-2	2 (1/2~2/2)
10	REC/PB Y	2 (1/2~2/2)
12	REC/PB COLOR	2 (1/2~2/2)
19	OUTPUT	2 (1/2~2/2)
21	AUDIO-1	3 (1/3~3/3)
23	AUDIO-3	2 (1/2~2/2)
31	M CTL/REEL SERVO	2 (1/2~2/2)
_	OVERALL	2 (1/2~2/2)

2) Indication of wiring which extends to another section:

(Example)

On the ''1/2" diagram of REC/PB Y board, such an indication as the following is found on the "PB (H)" signal line.

In the above case, the end of the wiring is connected to the "2/2-PB (H)" on the 2nd section of the diagram.

3. Wiring of connector

In the above example, CN1 is connected with CN2 on 12 SYSCON board.

4. Signal flow on the diagram

The following arrow marks indicate the specified signal paths respectively.

: RECORDING or EE signal path

: PLAYBACK signal path
: REC/PLAY signal path

5. Measurement of voltage and waveform

1) Voltage

Measured by digital voltmeter in REC mode.

Value in () shows voltage in S-VHS PB mode, and it is indicated only in the case PB voltage is different from that in REC.

2) Waveform

Video: Unless otherwise indicated, (a) color bars signal input through LINE IN terminal in REC in S-VHS mode, (b) color bars signal of MHVE-2H alignment tape in PB.

6. Unit of value

Unless otherwise specified:

- 1) Resistance is in Ω (1/6 W)
- 2) Capacitance in µF
- 3) Inductance in μH
- 4) Screened parts (in are important for safety assurance. When replacing them, use specified parts.
- Circuit board diagrams are printed as viewed from the back side of respective boards unless otherwise remarked.

4.1 KEY TO ABBREVIATIONS

				COL	: Color
				COM	: Common
^	ACC	Automotic Calan Cantral		COMP	: Comparator
~		: Automatic Color Control		00	Composite
	ADD	: Adder			•
	ADC	: Analog to Digital Converter		CONINI	Compensation
	ADJ	: Adjustment		CONN	: Connector
	A DUB	: Audio Dubbing		CT	: Ceramic Trap
	AE	: Audio Erase		CTC	: Crosstalk Cancel
	AEF	: Automatic Edition Function		CTL	: Control
	AFC	: Automatic Frequency Control	D	D	: Drum
	AFT	: Automatic Fine Tuning	_	DAC	: Dightal to Analog Converter
	AGC	: Automatic Gain Control		DD	: Direct Drive
	AH	: Audio Head		DEC	: Decoder
	AL	: After Loading		DEMOD	
	ALC	: Automatic Level Control			: Demodulator
	ALM	: Alarm		DET	: Detector
				DEV	: Deviation
	AM	: Amplitude Modulation		DFRS	: Drum Free RUN STOP
	AMP	: Amplifier		DIF TRANS	: Differential Transformer
	ANT	: Antenna		DISCR	: Discriminator
	APC	: Automatic Phase Control		DL	: Delay Line
	APL	: Average Picture Level		DOC	: Dropout Compensator
	ASSEM	: Assembly		DRUM FF	: Drum Flip Flop
	ASS'Y	: Assembly		DUB	: Dubbing
	ATT	: Attenuator	_		
	AUTO	: Automatic	E	Ε	: Edit, Erase
	AUX	: Auxiliary		EDP	: Electronic Data Processing
	AUD	: Audio		E-E	: Electric to Electric
-				EF	: Emitter-Follower
В	В	: Brake		EMPHA	: Emphasis
В	BAL	: Balance		EMPHA EMG	•
В	BAL BATT	: Balance : Battery			: Emergency
Б	BAL BATT BCD	: Balance : Battery : Binary Coded Decimal		EMG	•
Б	BAL BATT BCD BEG	: Balance : Battery		EMG ENC	: Emergency : Encoder : Enable
Ь	BAL BATT BCD	: Balance : Battery : Binary Coded Decimal		EMG ENC EN	: Emergency : Encoder : Enable : Equalizer
Ь	BAL BATT BCD BEG	: Balance : Battery : Binary Coded Decimal : Beginning		EMG ENC EN EQ ESNS	: Emergency : Encoder : Enable : Equalizer : End Sensor
В	BAL BATT BCD BEG BFP	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse		EMG ENC EN EQ ESNS EXP	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander
В	BAL BATT BCD BEG BFP BIT	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit		EMG ENC EN EQ ESNS	: Emergency : Encoder : Enable : Equalizer : End Sensor
Б	BAL BATT BCD BEG BFP BIT BLK	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue	F	EMG ENC EN EQ ESNS EXP	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander
Б	BAL BATT BCD BEG BFP BIT BLK BLU	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector	F	EMG ENC EN EQ ESNS EXP EXT	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External
Б	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter	F	EMG ENC EN EQ ESNS EXP EXT	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward
В	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown	F	EMG ENC EN EQ ESNS EXP EXT	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop
Б	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness	F	EMG ENC EN EQ ESNS EXP EXT FE FF	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator
Ь	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid	F	EMG ENC EN EQ ESNS EXP EXT FE FF	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness	F	EMG ENC EN EQ ESNS EXP EXT FE FF	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : FM Audio
С	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid	F	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : FM Audio : Frequency
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White	F	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : FM Audio : Frequency : Frequency to Voltage Converter
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White	F	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : FM Audio : Frequency
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan		EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : FM Audio : Frequency : Frequency to Voltage Converter
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP CASS CF	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Cassette : Ceramic Filter, color Frame		EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency : Frequency : Frequency to Voltage Converter : Forward : Grass Delay Line
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP CASS CF CC	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Cassette : Ceramic Filter, color Frame : Cassette compartment		EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency : Frequency : Frequency
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W CAP CASS CF CC CE	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable		EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency : Grass Delay Line : Generator Lock : Ground
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP CASS CF CC CE CH	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable : Channel		EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND GRN	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency to Voltage Converter : Forward : Grass Delay Line : Generator Lock : Ground : Green
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP CASS CF CC CE CH CHROMA	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable : Channel : Chrominance	G	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND GRN GRY	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency : Grass Delay Line : Generator Lock : Ground : Green : Gray
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP CASS CF CC CE CH CHROMA CLK	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable : Channel : Chrominance : Clock		EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND GRN	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency to Voltage Converter : Forward : Grass Delay Line : Generator Lock : Ground : Green
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B.SOL B/W C CAP CASS CF CC CH CHROMA CLK CLR	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable : Channel : Chrominance : Clock : Clear	G	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND GRN GRY	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency : Grass Delay Line : Generator Lock : Ground : Green : Gray
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B. SOL B/W C CAP CASS CF CC CH CHROMA CLK CLR CMD	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable : Channel : Chrominance : Clock : Clear : Command	G	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND GRN GRY H	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency : Grass Delay Line : Generator Lock : Ground : Green : Gray : High, Horizontal
	BAL BATT BCD BEG BFP BIT BLK BLU BNC BPF BRN BRT B.SOL B/W C CAP CASS CF CC CH CHROMA CLK CLR	: Balance : Battery : Binary Coded Decimal : Beginning : Burst Flag Pulse : Binary Digit : Black : Blue : Bayonet connector : Bandpass Filter : Brown : Brightness : Brake Solenoid : Black and White : Ceramic : Capstan : Cassette : Ceramic Filter, color Frame : Cassette compartment : Chip Enable : Channel : Chrominance : Clock : Clear	G	EMG ENC EN EQ ESNS EXP EXT FE FF FG FM FMA FREQ F-V CONV FWD GDL GEN LOCK GND GRN GRY H HG	: Emergency : Encoder : Enable : Equalizer : End Sensor : Expander : External : Full Erase : Fast Forward Flipflop : Frequency Generator : Frequency Modulation : FM Audio : Frequency : Frequency : Frequency to Voltage Converter : Forward : Grass Delay Line : Generator Lock : Ground : Green : Gray : High, Horizontal : Hall Generator

1	1F	: Intermediate Frequency		REG	: Regulated
-	IFT	: Intermediate Frequency Transformer		REV	: Reverse
	IND	: Indicator		REW	: Rewind
	INH	: Inhibit		RF	: Radio Frequency
	INS	: Insert		RST	: Reset
	INT	: Internal, Interrupt		R/P	: Record/Playback
	INV	: Inverter		RPT	: Repeat
	1/0	: Input/Output		RT	: Rotary Transformer
				RY	: Relay
L	L	: Low	S	S	: Search, Servo
	LB	: Low Band	٠	SC	: Subcarrier
	LCD	: Liquid Crystal Display		SEAR	: Search
	LE	: Loading End		SEL	: Select
	LED	: Light Emitting Diode		SENS	: Sensor
	LIN	: Linearity		SEP	: Separator
	LIM	: Limiter		SF	: Source Follower
	LOAD	: Loading		SFF	: Short Fast Forward
	LP	: Long Play		SFWD	: Search Forward
	LPF	: Lowpass Filter			: Serial In
	LT	: Loading Tension		SI SIG	
М	MAX	: Maximum			: Signal
•••	MDA	: Motor Drive Amplifier		SO	: Serial Out
	MIC	: Microphone		SOL	: Solenoid
	MIN	: Minimum		sos	: Sound on Sound
	MIX	· Mixer		SP	: Standard Play
	MM	: Monostable Multivibrator		, \$R	: Supply Reel
	MOD	: Modulator		SREV	: Search Reverse
	MON	: Monitor		SREW	: Short Rewind
	MOS	: Metal Oxide Semkonductor		SSG	: Sync Signal Generator
	MPX	: Multiplexer		STL	: Still
	MS	: Mode Select		SUP	: Supply
	MUT	: Muting		SYNC	: Synchronization
N	NC	: Noise Cancel	_	SYSCON	: System control
IN	NEB		Т	TBC	: Time Base Corrector
	NO	: Negative Feedback		TC	: Tension Control, Time Code
_	-	: Normally Open		TDG	: Time Date Generator
0	OPAMP	: Operational Amplifier		T. EALM	: Tape End Alarm
	OP	: Operation		TEN	: Tension
	ORN	: Orange		TIM	: Timing
	osc	: Oscillator		TK	: Tracking
Ρ	PB	: Playback		TL	: Time Lapse
	PC	: Photocoupler		TREC	: Timer Record
	PCM	: Pulse Code Modulation		TSW	: Time Switch
	PGM	: Program		TU	: Take-up
	PG	: Pulse Generator		TUR	: Take-up Reel
	PI	: Photo Interrupter	U	UNLD	: Unloading
	PLL	: Phase Locked Loop		UNREG	: Unregulated
	POS	: Position		UNSW	: Unswitched
	PR	: Pinch Roller	V	V	: Video, Vertical
	PREV	: Preview		VCO	: Voltage Controlled Oscillator
	PRL	: Preroll		VD	: Vertical Drive
	PU	: Pickup		VXO	: Variable Crystal Oscillator
	PWB	: Printed Wiring Board		VLT	: Violet
Q	a	: Quality Factor		VSCH	: Variable Search
			w		: White
R	RA	: Resistor Array	44		
		: Random Access		WV	: Working Voltage
	RAM	: Random Access Memory		WARN	: Warning
	REC	: Recording	X	XTL	: Crystal
			Υ	Y	: Luminance
			-	YLW	: Yellow

4.2 REPLACING SUBMINATURE "CHIP" PARTS

1. General description

Some of resistors, variable resistors, shorting jumpers (0 Ω resistors), ceramic capacitors, transistors, diodes are chip parts. Those removed once cannot be used again.

2. Replacement of chip parts

Replacement of chip parts should be performed as follows. Use a soldering iron (17 W for 260-30°C approx.) that has sharp-pointed tip and high performance in insulation.

It is more convenient to use a soldering iron with solder absorber (55 W approx.).

- (1) Soldered condition of chip parts
- Resistors, capacitors, etc.

• Transistors, diodes, etc.

- (2) Removing of chip parts
- Resistors, capacitors, etc.
 - i) Melt solder at a side.

ii) Holding the chip with tweezers, melt solder at the other side.

iii) Take off the chip in twisting and sliding motion.

- Transistors, diodes, etc.
 - i) Melt solder at the side of single lead.

ii) Lift the unsolderd side upwards.

iii) Simultaneously melt solder at two leads of the other side and pull up the chip.

(3) Preheating and soldering of chip parts

Except transistors, make sure to preheat all chip parts, capacitors in particular, with a hot wind of 150°C approx. (of a hair dryer, etc.) for 2 minutes just before soldering, and immediately solder by a soldering iron of approx. 30 W.

- (4) Attaching of chip parts
 - i) Heap up a proper amount of solder beforehand.

 Holding down a new chip by tweezers, solder it to the board by a soldering iron to melt solder from its lower part to the upper part (in the direction shown by a big arrow).

Note: • Don't heat chip parts over 3 seconds.

- Don't rub electrodes.
- Don't use chip parts which were once removed.
- No cement is required.

3. Shapes of transistors & diodes

Transistors

DTA124EK DTA144EK	2 2
DTC114EK	1
DTC114YK	1
DTC144EK	1
DTC144EU	1
FMG2	3
FMS1	4
FMW1	5
IMX1	6
IMZ1	7
IMZ2	8
2SA1022C	9
2SB709	9
2SC2412K	9
2SC2778	9
2SC4081	9
2SD601/A 2SD602/A	9
2SK621	10
23/(02	,0

Diodes

DAN202K	11
DAP202K	12
MA28WA	13
MA3056	13
MA3075	13

4.3 CIRCUIT BOARD LOCATIONS

· Index to board by kind of diagram

Board No.	Board Name	Page of diagram			
		Block diagram	Schematic diagram	Circuit board	Parts list
01	MOTHER-1	_	4-20	4-21	6-1
লি তা	MOTHER-2	l 	4-22, 23	4-24	6-1, 6-2
ចាំទា	SLOT MOTHER		4-25	4-25	6-2
04	SYSCON MOTHER		4-26	4-26	6-2
03 04 05 10	FUSE		4-26	4-26	6-2
	REC/PB Y	4-7	4-28, 29	4-30	6-2 ~ 6-8
	REC/PB C	4-8	4-32, 33	4-31	6-8 ~ 6-13
12	REC/PB C-2	4-9	4-34	4-37	6-13 ~ 6-16
115 16	PRE/REC		4-47	4-47	6-16
16	R/P ADJUST	4-10	4-38	4-39	6-16 ~ 6-20
117	Y COMB (1H DELAY, 4Fsc INC.)	4-12	4-40	4-43	6-20 ~ 6-25
19	OUTPUT	4-11	4-44, 45	4-46	6-25 ~ 6-29
20	FMA PRE/REC	4-14	4-47	4-47	6-29
21 22 23 24 25 26	AUDIO-1	4-15	4-48, 49, 50	4-53	6-29 ~ 6-35
22	AUDIO-2	4-15	4-54	4-55	6-35, 6-36
23	AUDIO-3	4-14	4-56, 57	4-58	6-37 ~ 6-40
24	AUDIO-4) XLR	4-15	4-59	4-60	6-40, 6-41
2 5	AUDIO-5	4-15	4-59	4-60	6-41, 6-42
26	AUDIO-6 (27 JACK, 28 VR INC.)	4-15	4-61	4-62	6-42 ~ 6-44
2 9	A/C HEAD		_	4-62	6-44
30	D/C SERVO	4-13	4-63	4-64	6-44 ~ 6-47
29 30 31	M-CTL/REEL SERVO	4-17	4-66, 67	4-65	6-47 ~ 6-50
40	SYSCON	4-17	4-68	4-69	6-50 ~ 6-52
411	AV MICOM/ON SCREEN	4-16	4-70	4-71	6-52 ~ 6-54
42	OPERATION (43,44,46,47,48INC.)	_	4-72	4-73	6-54 ~ 6-57
45	COUNTER DISPLAY	i –	4-72	4-71	6-57
42 45 71	REAR-1 (72 -2, 73 -3 INC.)	4-15	4-74	4-75	6-58
80 83 91	METER (8 1 SWITCH, 8 2 TRACKING VR INC.)	4-15	4-77	4-77	6-59
8 3	SUB PANEL (8 4 TP TERMINAL INC.)	i –	4-76	4-76	6-59
9 1	DECK TERMINAL (92 -2 INC.)	_	4-27	4-27	6-60
9 3	CASSETTE HOUSING	1 –	-	4-27	6-60

Ε

4-21

C OI MOTHER BOARD-1 4-21

4-24

102 MOTHER BOARD-2 4-24

2/

- DECK TERMINAL -

- S. F. CASSETTE - S. C. CASSETTE SENSOR -SENSOR —

G

9 2 DECK TERMINAL2 T.SENS IN+ T.SENS OUT-T.SENS IN-IC184 NJM2868S-0 CLN SOL+
CLN SOLPINCH SOL1
PINCH SOL2
PINCH SOL COM
MCDE M+
MCDE M+
HUSING M+
HUSING M+
MCDE SW 8
MCDE SW 1
MCDE SW 2 B 2 CN67 3 8 CN6 D/C SERVO 9 1 DECK TERMINAL1

9 1 DECK TERMINAL 4-27

4-27

4.28 REC/PB Y SCHEMATIC DIAGRAM — DIAGRAM (1/2) —

- DC voltage (1/2) - (R/P Y)

SYMBOL	No. REC PB	SYMBOL No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL No). F	REC	PB	SYMBO	OL No.	REC	PB	SYMBO	L No.	REC	РВ
INTEGR	ATED CIRCUIT	IC23 5	0.0	6.4	IC29	1	2.0	2.0	IC33 20	=	1.4	1.4	IC37	11	0.0	0.0	IC41	14	- 4.1	4.1
IC1	1 11.7 11.7	6	7.3	7.3		2	0.0	5.0	2	1 [3.8	0.8		12	0.0	0.1		15	4.1	4.1
	2 0.0 0.0	7	11.7	11.7		3	3.4	3.5	2	2	2.8	2.8		13	0.0	0.1		16	5.0	5.0
	3 14.7 14.7	IC24 1	7.7	7.7		4	3.5	3.5		1	2.5	2.5		14	3.2	3.2	IC42	1	5.0	5.0
IC2	1 11.8 11.8	2	-	7.0		5	5.1	5.1		2 _	1.9	1.9		15	4.9	5.0		2	3.7	3.7
	2 0.0 0.0	3	0.1	0.1		6	2.2	2.2	•	3 _	2.1	2.1		16	2.2	2.2		3	3.9	3.9
100	3 14.7 14.7	4	11.7	11.7		7	2.0	2.0		4	2.1	2.1	ĺ	17	3.2	3.2		4	4.1	4.1
IC3	1 12.0 12.0 2 0.0 0.0	5 6	7.7	7.7	1	8	5.1 1.4	5.1 1.4		5 6	0.0	0.0	IC38	18	5.1 2.5	5.1 2.9		5	0.0	3.8 0.0
	3 14.7 14.7	7	7.0	7.0	ł	10	3.0	2.9		, 7	0.0	0.0	1.000	2	2.4	2.8		7	0.0	0.0
IC4	1 5.1 5.0	8	7.7	7.8	1	11	3.0	2.9		8	0.0	0.0	1	3	0.0	0.0		8	0.0	0.0
	2 0.0 0.0	9		7.7		12	2.9	2.9		<u>ا</u> و	0.7	0.7	1	4	2.4	2.8		9	0.0	0.0
	3 7.9 7.9	10	0.0	7.6	1	13	0.0	0.0	10	0	0.7	0.7	1	5	2.4	2.8		10	3.6	3.6
IC5	1 11.8 11.8	11	0.1	0.0		14	2.9	2.9	1	1 [0.7	0.0	1	6	0.1	0.1		11	4.5	4.5
1	2 0.0 0.0	12	7.7	7.7		15	2.9	2.9	1:	2[3.5	3.5		7	0.0	0.0		12	4.5	4.5
	3 14.7 14.7	13	0.0	7.6		16	2.0	2.0	13	3 🗌	2.5	2.5		8	0.0	0.0		13	3.6	3.6
IC6	1 11.7 11.7	14	0.0	0.0		17	2.0	2.0	14	4	3.5	3.5	1	9	0.0	0.0		14	0.0	0.0
1	2 0.0 0.0	15	0.0	7.6		18	2.0	2.0	. 1	-	1.9	1.9	1	10	0.0	0.0		15	0.0	0.0
107	3 14.7 14.7	16	-	7.7	IC30	1	8.3	8.3	1005	_	5.1	5.1	l	11	0.0	0.1	1040	16	5.0	5.0
IC7	1 5.1 5.1 2 0.0 0.0	IC25 1	5.1 4.8	5.1	1	3	0.0 8.3	0.0 8.3		1 2	0.0 4.7	0.0 4.7	1	12 13	0.0	0.1	IC43	1 2	6.3	6.3
	3 7.9 7.9	3		5.1	1		0.0	0.0		3	5.1	5.1	ł	14	5.1	5.1		3	2.7	2.7
IC8	1 5.1 5.1	4	5.1	5.1	1	5	6.7	6.6		4	0.1	0.1	IC39	1	5.1	5.1		4	0.0	0.0
	2 0.0 0.0	5	4.7	4.7	1	6	7.5	7.5		5	4.4	4.4	1	2	3.8	0.8	IC44	1	11.8	11.8
	3 7.9 7.9	6	0.0	0.0	1	7	11.8	11.8		6	0.1	0.1	1	3	2.6	2.6		2	4.0	4.0
IC9	1 5.1 5.1	7	0.0	0.0	IC31	1	11.7	11.7		7	4.9	4.9	1	4	2.6	2.6		3	4.1	4.1
	2 0.0 0.0	8	0.0	0.0]	2	4.1	4.1		8	0.0	0.0	1	5	0.0	0.0		4	6.9	6.9
	3 7.9 7.9	9	11.2	11.2		3	4.1	4.1		9	5.1	5.1	ļ	6	2.6	2.6		5	3.3	3.3
IC10	1 5.0 5.0	10		11.8	1	4	8.4	8.4	11	-	0.0	0.0	1	7	0.0	0.0		6	3.3	3.3
	2 0.0 0.0	11	11.8	11.6	-	5	3.4	3.4	1	-	0.0	0.0		8	2.9	2.7		7	0.0	0.0
IC11	3 7.9 7.9 1 11.9 11.9	12	9.8	4.8 9.8	-	7	0.0	0.0	1:	-	0.0	0.0	IC40	1	5.0	5.0	ICAE	8 1	6.6	1.2
	1 11.9 11.9 2 0.0 0.0	13 14		9.7	1	8	1.1	1.1	14	-	5.1	0.0 5.1	1	2	4.2	4.1	IC45	2	11.8	6.6 11.8
	3 14.7 14.7	15		5.1	IC32	1	8.2	8.2	19	-	0.0	0.0	1	4	4.1	4.0		3	2.7	2.7
IC12	1 11.8 11.8	16		11.8	1.002	2	0.0	0.0	10	-	5.1	5.1	1	5	4.1	4.0		4	0.0	0.0
	2 0.0 0.0			4.8	1	3	8.2	8.2		1	0.0	0.0	1	6	4.1	4.0	IC46	1	11.8	11.8
	3 14.7 14.7	2	-	4.8	1	4	0.0	0.0	:	2	4.7	4.7	1	7	4.1	4.0		2	4.0	4.0
IC13	1 11.8 11.9	3	4.7	4.7]	5	6.5	6.5	;	3	5.1	5.1]	8	0.0	0.0		3	4.0	4.0
	2 0.0 0.0] 4	0.0	0.0		6	7.4	7.4	4	4	4.6	4.7	4	9	3.8	3.8		4	7.1	7.1
	3 14.7 14.7	5	4.8	4.7		7	11.7	11.7		5	5.0	5.0	1	10	3.8	3.8	ļ	5	3.3	3.3
IC21	1 11.7 11.7	6	4.8	4.8	IC33	1	3.3	3.3		6	0.1	0.1	1	11	3.8	3.8		6	3.3	3.3
	2 4.0 4.0	7		4.8	-	2	_	0.0		7	5.0	5.0	1	12	4.1	4.2		7	0.0	0.0
1	3 4.1 4.1	IC27 1	+	11.8	1	3	3.4	3.4		8 9	0.0	0.0	1	13	4.2	4.1	IC47	8 1	1.1 8.3	1.1 8.3
	4 6.8 6.8 5 3.3 3.3	IC27 1		9.7 5.2	1	4	0.2	0.0	1	·	5.0 0.1	5.0 0.1	1	14 15	4.1	4.2	104/	2	0.0	0.0
	6 3.3 3.3	3		5.2	1	6	0.5	0.0	1	-	5.1	5.1	1	16	5.0	5.0		3	8.2	8.3
	7 0.0 0.0	1 4	8.0	8.1	1	7	5.1	5.1	1:	_	5.0	5.0		1	5.0	5.0	1	4	0.0	0.0
	8 1.3 1.3	5	-	4.5	1	8	4.1	4.3	1:	_	4.7	4.7		2	4.2	4.2		5	6.6	6.6
IC22	1 11.7 11.7	6		4.5	1	9	4.1	4.3	1-	~	4.7	4.7		3	4.1	4.2	Ì	6	7.4	7.4
	2 3.0 3.0	7	0.0	0.0]	10	3.5	3.5	1	5	0.0	0.0	1	4	4.2	4.2		7	11.8	11.8
	3 3.0 3.0	8	_	1.1]	11	3.0	3.4	11	6	5.1	5.1		5	4.1	4.2	IC48	1	8.3	8.3
	4 7.0 7.0	1		9.7	1	12	2.1	2.1		1	2.8	2.8	1	6	4.0	4.1		2	0.0	0.0
I	5 2.2 2.3	2		12.0	-	13	1.9	1.9		2	0.0	0.0	4	7	4.1	4.1		3	8.3	8.3
	6 2.3 2.3	3	-	8.8	-	14	$\overline{}$	2.0		3	0.6	0.9		8	0.0	0.0		4	0.0	0.0
	7 0.0 0.0	4	8.0	8.2	1	15	2.2	1.9		4	3.9	3.9	-	9	4.1	4.2	1	5	0.0	6.4
IC23	8 1.3 1.3 1 8.1 8.2	5 6	8.1 6.5	8.1 6.5	1	16 17	2.5	1.6 2.5		5 6	0.0	3.8 0.1	ł	10	4.2 3.8	4.2 3.8		6 7	7.5 11.8	7.5 11.9
1023	2 0.0 0.0	7	0.0	0.0	1	18	1.5	0.9		? -	0.0	0.0	1	11 12	3.8	3.8	IC49	1	6.8	6.8
	3 8.2 8.2	8		5.5	1	19	\rightarrow	0.0		8	0.0	0.0	1	13	3.8	3.8	1.545	2	11.8	11.8
	4 0.0 0.0			5.5	1 .		 			9	0.0	0.1	1	.0	5.0	5.5	Í	3	2.7	2.7
L		1							1	-	0.0	0.1	1				1	4	0.0	0.0
										-	- 1									

- DC voltage (2/2) - (R/P Y)

	L No.	REC	PB	SYMBOL	No.	REC	РВ	SYMBOL NO	0.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL I	Ю.	REC	PB	SYMBO	L No.	REC	PB
	RANS			Q21	G	0.0	4.4	Q41 I	В	8.4	8.4	Q61	В	0.0	4.3	Q81	В	1.5	1.5		ONNE		
Q1	В	6.8	6.8		D	0.1	0.0		c	11.7	11.7		C	0.0	0.0		С	0.0	0.0	CN1	1A	0.2	0.1
	С	11.7	11.7		S	0.0	0.0		E	7.7	7.7		E	0.0	0.0		Ε	2.2	2.2		1 B	0.0	0.0
	E	6.2	6.2	Q22	G	3.8	0.8	Q42	В	7.4	7.4	Q62	В	2.7	2.7	Q82	В	7.5	7.5		8A	6.8	6.8
Q2	В	7.0	7.0		D	0.0	0.4	(C	11.7	11.7		C[0.0	0.0		С	11.8	11.8		8 B	0.0	0.0
	C	11.7	11.7		S	0.0	0.0		E	6.7	6.7		E	3.3	3.3		E	6.8	6.8		13A	2.1	2.1
	E	6.4	6.4	Q23	В	9.9	9.9	Q43	В	6.8	6.8	Q63	В	3.9	3.9	Q83	G	0.0	0.0		13 B	0.0	0.0
Q3	В	3.8	0.8		С	0.0	0.0	(C	0.0	0.0		C	5.1	5.1		D	0.0	0.0		14A	6.5	6.5
	C	0.0	7.6		E	0.0	0.0	1	E	7.5	7.5		E	3.3	3.3		S	0.0	0.0		14 B	0.0	0.0
	E	0.0	0.0	Q24	G	0.5	0.5	1	в	3.0	3.4	Q64	В	4.8	4.8	Q84	В	7.5	7.5		15A	0.0	0.0
Q4	В	5.7	5.7		D	9.9	9.9	1	C	0.0	0.0		С	5.1	5.1		С	11.8	11.8		15 B	0.0	0.0
	С	11.8	11.8		S	0.0	0.0		E	3.5	4.0		Е	4.2	4.2		E	6.8	6.8		16A	0.0	0.0
	E	5.1	5.1	Q25	В	5.3	5.2	ſ	В	3.8	3.8	Q65	G	3.6	3.7	Q86	В	4.6	4.6		16 B	0.0	0.0
Q5	В	5.7	5.7		C	12.0	12.0	1	C	5.1	5.1		D	0.0	0.0		С	7.8	7.8		18A	3.6	4.0
	C	11.8	11.8		E	4.6	4.6		E	3.1	3.1		S	0.0	0.0		Ε	4.0	4.0		18 B	0.0	0.0
-	<u>E</u>	5.1	5.1	Q26	В	4.7	4.7	1	В	3.1	3.1	Q66	В	3.3	0.4	Q87	В	4.0	4.0		20A	0.0	0.0
Q6	В	5.1	5.1		C	0.0	0.0	1	C	0.0	0.0		C	0.0	0.0		С	11.8	11.8		21A	6.0	6.0
	C	0.0	0.0	007	E	5.3	5.3		E	3.7	3.7	007	E	0.0	0.0	000	E	3.4	3.4		22A	5.0	0.2
07	E	5.7	5.7	Q27	В	5.3	5.3	1	В	0.9	0.8	Q67	В	3.3	0.4	Q88	В	4.1	4.1	0110	22 B	0.2	0.2
Q7	B C	9.8	9.7		C E	12.0 4.7	12.0 4.7	1	C E	5.1 3.2	5.1 3.2		C	0.0	0.1		C	8.3	8.3	CN2	1AB	0.0	0.0
	E	5.7	5.7	Q28	В	5.3	5.3		- G	3.2	3.2	Q68	В	2.9	2.9	Q89	В	3.5	3.5		2AB 3AB	7.9	7.9
Q8	В	5.7	5.7	420	C	12.0	12.0		D	0.9	0.8	200	C	5.0	5.0	203	C	11.8	11.8		4AB	14.7	14.7
	C	11.8	11.8		E	4.7	4.7	1	s	0.0	0.0		E	2.3	2.3		E	2.9	2.9		7A	0.0	0.0
1	E	5.1	5.1	Q29	В	3.8	0.8		G	0.9	0.8	Q69	В	2.3	2.3		-	2.0	2.0		7 B	0.0	0.0
Q9	G	0.0	0.1		C	0.0	5.0	1	D	4.6	4.7		c	0.0	0.0						9A	4.7	4.7
1	D	11.8	11.6		E	0.0	0.0		s	0.0	0.0		E	3.0	3.0						9 B	0.0	0.0
	S	0.0	0.0	Q30	В	2.3	2.2	-	G	0.9	0.8	Q70	В	3.1	3.1				į		10A	4.7	4.7
Q10	G	0.0	0.0		C	0.0	0.0	1 1	D	4.4	4.4		C	6.5	6.5						10 B	0.0	0.0
	D	11.8	11.8		E	2.9	2.9		s	0.0	0.0		E	2.4	2.5						11A	4.5	4.5
	S	0.0	0.0	Q31	В	3.2	3.2	Q51 I	В	0.0	7.6	Q71	В	6.5	6.5						11 B	0.0	0.0
Q11	G	0.1	0.1		С	5.1	5.1	1	C	0.0	0.0		C	11.9	11.9						13A	Р	Р
	D	11.2	11.2		E	2.6	2.6		E	0.0	0.0		E	5.9	5.9		-				13 B	0.0	0.0
	<u> </u>	0.0	0.0	Q32	В	1.4	1.4	1	В	3.0	3.0	Q72	В	5.8	5.8		1				15A	2.1	2.8
Q12	В	6.3	6.3	:	C	0.0	0.0	1	디	5.1	5.1		C	11.8	11.8		ļ				15 B	0.0	0.0
1	C	11.7	11.7	000	_ <u>E</u>	2.0	2.0		E	2.3	2.3	000	E	5.1	5.1						17A	0.0	0.0
012	E B	5.7	5.7	Q33	В	2.3	2.3	1	В	2.4	2.4	Q73	В	2.3	2.3		i				17 B	0.0	0.0
Q13	C	11.7	6.3 11.7		C E	5.1 1.6	5.1 1.6	1		0.0	0.0		္ခါ	8.2	8.2						19A	8.3	8.3
1	E	5.7		Q34	В				E B	3.0 0.6	3.0	Q74	E B	1.7 6.9	1.7 6.9				- 1		19 B	0.0	0.0
Q14	В	5.4	5.4	QQ-	C	11.8	11.8	1	c	5.1	5.1	Q/4	c	11.8	11.8				- 1		20 B	0.0	0.0
14.14	C	0.0	0.0		E	5.7	5.7	1	E	3.5	3.5		E	6.3	6.3				- 1		20 0	0.0	0.0
l	E	6.1		Q35	В	2.6			G	3.5		Q75	В	6.3	6.3								- 1
Q15	В	6.3	6.3		C	0.0	0.0	5	D	0.6	0.6		C	0.0	0.0								
	C	11.7	11.7		E	3.2	3.2	1	s	0.0	0.0		E	6.9	6.9				ļ				
ĺ	E	5.7	5.7	Q36	В	4.5			G	0.6	0.6	Q76	В	5.8	5.8				ľ				
Q16	В	5.7	5.7		С	11.8	11.8		D	4.6	4.6		-	11.8	11.8								
	С	0.0	0.0		Ε	3.9	3.9	,	s	0.0	0.0		E	5.1	5.1		j						
	Ε	6.3	6.3	Q37	В	6.4	6.4		В	0.0	1.5	Q77	В	2.5	2.5			j					
Q17	В	6.3	6.3		С	11.8	11.8	(c	5.1	5.1		C	7.7	7.7		i						
1	С	0.0	0.0		E	5.7	5.8		E	0.2	0.9		E	1.9	1.9			1					
<u></u>	E	6.9		Q38	В	3.4			В	3.8		Q78	В	8.1	8.1			-	ı			l	
Q18	В	10.4	10.4		С	0.0	0.0	1	c	0.0	1.5		-	11.8	11.8		-		ļ				
	C	11.7	11.7		Е	4.0	4.0		E	0.0	0.0		E	7.5	7.5			-					
	E	9.7		Q39	В		8.9	t	В	0.6	0.9	Q79	В	7.4	7.4								
Q19	В	5.9	5.9		С	11.8	11.8	1	C	0.0	0.0		c	0.0	0.0		-						
	C	12.0	12.0	040	Ε	8.3	8.3		E	0.5	1.5	000	E	8.1	8.1			1	ļ			-	
-	E	5.3		Q40	В	0.7	0.7	1	В	3.8	0.8	Q80	В	6.1	6.1								
Q20	G	3.8	0.8		C	7.9	7.9	1		0.0	4.3		-	11.8	11.8		-	- 1					
	D S	0.0	0.0		_ E	0.0	0.0	<u>'</u>	E	0.0	0.0		E	5.5	5.5				- 1		1		
<u> </u>	3	0.0	0.0	L				L															

- MAIN WAVEFORMS OF REC/PB Y CIRCUIT -

9	P1	TP2	TP3	TP4	TP5	TF	P6 .	T	P7	TI	28
	أرمين أرب		4-4-4-4								,== <u>,</u> ==
[REC] 400 mVp-p	[PB] 400 mVp-p	[REC] 320 mVp-p	[REC] S-VHS: 860 mVp-p VHS: 470 mVp-p	(REC) S-VHS: 1.0 Vp-p VHS: 890 mVp-p	(PB) 1.8 Vp-p	[S-VHS PB] 1.8 Vp-p	[VHS PB] 1.8 Vp-p	[S-VHS REC] 310 mVp-p	[VHS REC] 200 mVp-p	[S-VHS P8] 1.5 Vp-p	[VHS PB] 1.7 Vp-p
	E	,	10 REC/PI	B Y 4-30	4-30 ^D				Ĭ.	-	

- REC/PB COLOR -

4-31

- DC voltage (1/2) - (R/P COLOR 1)

SYMBO	L No. REC PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB	SYMB	OL No.	REC	PB	SYMBO	OL No.	REC	PB	SYMB	OL No.	REC	98
INTEG	RATED CIRCUIT	IC16 1	_	9.4		3.2	3.2	IC25	14	2.1	2.1	IC29	15	0.0		IC33	13		5.0
IC1	1 11.9 11.9	2	4.5	4.5	2	0.0	0.0		15	2.1	2.1		16	5.0	5.0	1	14		4.6
	2 0.0 0.0	3	4.5	4.5	3	3.2	3.2		16	5.0	5.0	IC30	1	0.0	0.0		15	-	0.0
	3 14.7 14.7	1 4	9.6	9.6	4	0.0	0.0	IC26	1	2.4	0.0		2	5.0	5.0	1	16		5.0
1C2	1 5.0 5.0	5	3.8	3.8	5	0.2	0.0		2	2.6	2.2	1	3	5.0		IC34	1		0.4
	2 0.0 0.0	1 6	3.8	3.8	6	2.6	3.0		3	3.6	3.6	i	4	0.0	0.0	1.001	2		0.4
	3 7.9 7.9	7	0.0	0.0	7	5.0	5.0		4	0.0	0.0		5	2.0	2.0	1	3		2.6
IC3	1 11.8 11.8	8	1.2	1.2		8.8	8.8		5	2.1	2.6		6	0.0	0.0	1	4		0.0
	2 0.0 0.0	IC17 1	8.2	8.2	2	0.0	0.0		6	0.0	0.0		7	5.0	5.0	1	5		2.5
1	3 14.7 14.7] 2	0.0	0.0	3	0.0	0.0	1	7	0.0	0.0		8	0.0	0.0	1	6		3.8
IC4	1 11.8 11.8] 3	8.2	8.2	4	0.0	0.0		8	0.0	0.0		9	4.9	4.9	1	7		4.7
!	2 0.0 0.0	1 4	0.0	0.0	5	0.0	0.6		9	2.8	2.6		10	0.2	0.2	1	8		5.1
İ	3 14.7 14.7	5	2.2	2.2	6	0.0	0.0		10	0.0	0.0		11	5.0		IC35	1		0.0
IC5	1 5.0 5.0	6	7.4	7.4	7	6.3	6.3	1	11	3.6	3.6		12	5.0	5.0	1.000	2		0.0
	2 0.0 0.0	7	11.8	11.8	8	6.0	6.0		12	2.4	2.5		13	5.0	5.0	1	3		0.0
	3 7.9 7.9	IC18 1	2.6	2.2	9	0.0	0.0		13	2.6	2.5		14	4.8	4.8	1	4		0.0
IC6	1 8.8 8.8	2	2.6	2.2	10	2.1	2.1		14	5.0	5.0	1	15	0.0	0.0	1	5		0.0
	2 0.0 0.0	3	2.5	2.7	- 11	0.0	0.0	IC27	1	2.3	2.5		16	5.0	5.0	1	6		0.0
	3 14.7 14.7	4	0.0	0.0	12	2.1	2.1		2	2.3	2.5	IC31	1	3.7	3.7	1	7		0.0
IC7	1 5.0 5.0	5	0.0	0.0	13	6.7	6.7		3	2.5	2.6		2	3.0	3.0	1	8		2.5
	2 0.0 0.0	6	5.0	5.0	14	6.7	6.7		4	3.0	2.6		3	5.0	5.0	1	9		2.5
	3 7.9 7.9	7	0.0	0.0	15	0.0	0.0		5	3.0	2.6		4	1.9	1.9	1	10		2.5
IC8	1 5.1 5.1	8	5.0	2.6	16	2.1	2.1		6	2.1	2.6		5	1.5	1.5	1	11		2.4
	2 0.0 0.0	9	2.7	2.6	17	2.1	2.1		7	0.0	0.0		6	2.2	2.2	1	12		0.0
	3 7.9 7.9	10	0.0	4.9	18	8.3	8.3		8	0.0	0.0		7	3.0	3.0	1	13		2.5
IC11	1 8.3 8.3	11	5.0	2.4	19	8.7	8.7		9	5.0	0.0		8	0.0	0.0	1	14		5.1
1	2 0.0 0.0	12	0.0	4.9	20	3.6	3.6		10	0.0	0.0		9	3.0	3.0	IC36	1	6.6	6.6
	3 8.3 8.3	13	2.2	2.7	21	3.4	3.4		11	1.1	1.1		10	5.0	0.0	1	2	8.8	8.8
	4 0.0 0.0	14	5.0	5.0	22	8.7	8.7		12	0.0	0.0		11	2.6	2.6		3	2.3	2.3
	5 0.0 0.0	1	-	0.4	23	2.5	7.4		13	0.0	0.0		12	3.1	3.1		4	6.0	6.0
	6 7.5 7.5	2	$\overline{}$	3.8	24	8.8	8.8		14	2.4	2.6		13	3.3	3.3]	5	0.0	0.0
	7 11.9 11.9	3		5.0	25	6.9	6.9		15	2.4	2.5		14	2.0	1.9]	6	6.0	6.0
IC12	1 0.0 0.0	4	_	2.0	26	3.4	3.4		16	5.0	5.0	1C32	1	0.0	0.0	l	7	2.3	2.3
	2 0.0 0.0	5	-	1.7	27	8.8	8.7	IC28	1	5.0	0.7		2	0.0	2.7	1	8	6.0	6.0
1	3 3.0 3.0	6	5.0	5.0	28	0.0	0.0		2	0.0	5.0		3	5.0	5.0		9	6.1	6.1
	4 3.7 3.4	7	21	2.0	29	5.0	5.0		3	0.0	5.0		4	3.0	3.0	IC37	1		6.6
Ì	5 3.0 3.0	8	2.5	2.5	30	8.8	8.7	-	4	5.0	0.0		5	4.4	4.4		2	_	1.8
	6 5.0 5.0	9	5.0	5.0	IC23 1	8.3	8.3		5	0.0	0.0		6	3.0	3.0		3	_	2.7
1	7 0.0 0.0	10	3.2	3.1	2	0.0	0.0		6	5.0	5.0		7	2.0	2.0		4		0.0
-	8 3.2 3.0 9 3.2 3.2	11	0.0	0.0	3	8.3	8.3		7	0.0	0.0		8	0.0		IC38	1		3.4
l		12		4.4	4	0.0	0.0		8	0.0	0.0		9	4.7	4.7		2		5.0
1		13	3.1	3.1	٥	0.1	0.1		9	5.0	5.0		10	0.3	0.3		3		1.7
	11 5.0 · 5.0 12 1.9 1.9	14	2.7	2.7	7	7.5	7.5		10	5.0	5.0		11	5.0	5.0		4		0.0
IC13		15		3.5	7	11.8	11.8		11	0.7	0.7		12	3.0		IC39	1		2.8
1013	1 8.3 8.3	16			IC24 1	3.0	3.0		12	0.0	0.0		13	5.0	5.0		2		4.4
	3 8.3 8.3	17	5.0 2.5	5.0 2.5	2	5.0	5.0		13	5.0	5.0		14	4.7	4.7		3		0.0
1	4 0.0 0.0	18	_		3	1.7	1.7	1020	14	5.0	5.0		15	0.0	0.0		4		5.0
	5 0.0 0.0	19 20	$\overline{}$	3.0 2.7	IC25 1	2.1		IC29	1 2	0.0	0.0	ICSS	16	5.0	5.0	1040	5		5.0
1	6 7.5 7.5	20 21	5.0	5.0	2	2.1	2.1		3	5.0	2.6 5.0	IC33	1	0.0		IC40	1		0.0
	7 11.8 11.8	22	2.7	1.7	3	2.1	2.1		4	0.0	0.6		2	4.7	4.7		2		0.6
IC14	1 8.2 8.2	23	0.0	0.0	4	2.1	21		5	1.9	1.9		3	5.0	5.0		3		4.1
1	2 0.0 0.0	24	1.7	2.7	5	2.1	2.1		6	3.1	3.1		4	3.0	3.0		4		3.6
1	3 8.2 8.2	25	3.6	3.6	6	0.0	0.0		7	1.9	1.9		5	5.0	5.0		5		5.0
l	4 0.0 0.0	26	24	2.4	7	0.0	0.0		8	0.0	0.0		3	0.3	0.3		6		2.9
1	5 4.1 4.1	27	0.0	0.0	8	0.0	0.0		9	4.7	4.7		7	4.7	4.7		7		0.0
1	6 7.4 7.4	28	2.7	2.7	9	0.0	4.4		10	0.4	0.4		8	0.0	0.0		8		3.0
	7 11.8 11.8	29	20	20	10	0.0	0.0		11	5.0	5.0		9	4.7	4.7		9		4.9
IC15	1 6.7 6.7	30	2.8	2.9	11	0.0	0.0		12	3.1	3.1		10	0.3	0.3		10		5.0
	2 11.8 11.8	- 30	IC25	21	· -	IC29	5.0		13	5.1			11	5.0	5.0 0.0		11		0.2
1	3		12	۱ ۵۰۰۰	13	13	3.0		14				:4	0.0	0.0		12		0.7
I	4 27 27		"-		,3	2.1	21		•	4.6	4.6						13	4.9	4.9
I	0.0 0.0				ł		-'			7.0	7.0	ļ.							
	1 22																		

- DC voltage (2/2) - (R/P COLOR 1)

SYMBOL	No.	REC	PB	SYM	BOL No.	REC	PB	SYMBOL N	lo.	REC	РВ	SYMBOL No		REC P	3 3	SYMBOL No.	REC	PB	SYMBO	DL No.	REC	PB
IC40	14	4.1	4.1		TRANSI	STOR		Q21	В	9.6	9.6	Q42 E	3 [7.5 7	5 (Q68 G	1.9	1.8		ONNE	CTOR	
	15	0.5	0.5	Q1	В	6.0	6.0		C	11.8	11.8		:[11.8 11	8.	D	0.0	0.0	CN1	4A	3.2	3.2
	16	0.5	0.5		С	11.9	11.9		E	8.9	8.9	E	: [6.9 6	.8	S	0.0	0.0		4 B	0.0	0.0
(BURS	T GA	TE PW	/B)		E	5.4	5.4	Q22	В	9.4	9.4	Q43 E	3[2.7 2	.7 (Q69 G	1.2	1.3		6A	3.0	3.0
IC20	1	0.0	0.0	Q2	В	1.0	1.0		C	11.8	11.8]:	5.0 5	.0	D	0.0	0.0		6 B	0.0	0.0
	2	0.0	4.9	1	С	11.5	11.5		E	8.7	8.7	E	ŧΓ	2.2 2	.2	s	0.0	0.0		7A	2.8	2.9
1	3	5.1	0.0		Ε	0.4	0.4	Q23	G	0.2	0.2	Q44 E	3	1.4 1	.4	Q70 G	2.5	2.1		7 B	0.0	0.0
1	4	0.0	0.0	Q3	8	0.4	0.4		D	0.0	0.0		٦:	4.3 4	.3	D	2.1	2.0		8A	6.9	6.9
Ì	5	4.3	4.3]	С	0.0	0.0		S	0.0	0.0	E	Ξ[0.9 0	.9	s	0.0	0.0		8 B	0.0	0.0
1	6	0.0	0.1		Ε	1.1	1.1	Q24	G	0.2	0.2	Q45 E	3	27 2	.7	Q71 B	4.7	4.7		9A	4.7	4.7
	7	0.0	5.0	Q4	В	1.0	1.0		D	0.0	0.0		٦,	5.0 5	.0	C	0.0	0.0		9 B	0.0	0.0
	8	0.0	0.0	1	С	11.5	11.5		s	0.0	0.0	E	ΞĪ	2.4 2	.5	E	0.0	0.0	1	12A	6.6	6.6
	9	5.1	5.0	1	E	0.4	0.4	Q25	В	0.9	0.9	Q46 E	3	27 2	.7	Q72 B	4.7	4.7	l	12 B	0.0	0.0
1	10	0.0	0.0	Q5	В	0.4	0.4		C	0.0	0.0		٦,	5.0 5	.0	С	0.0	0.0		13A	2.1	2.1
	11	4.7	4.7	1	С	0.0	0.0		Ε	1.6	1.5	E	ΞΓ	2.1 2	.1	E	0.0	0.0		13 B	0.0	0.0
1	12	0.0	0.0	1	E	1.1	1.1	Q26	В	2.2	0.0	Q48 E	3	2.7 2	.7	(BURST GA	TE PW	VB)	1	16A	6.9	6.9
İ	13	0.2	0.2	Q6	В	7.5	7.5		C	1.5	0.1		٦[5.0 5	.0	Q20 B	4.3	4.3		16 B	0.0	0.0
1	14	5.1	5.1	1	Ç	11.9	11.9	l	Ε	1.6	1.5		Ξľ	2.1 2	.1	c	0.2	0.2		18A	5.4	5.3
1	15	0.0	0.0	1	Ε	6.9	6.9	Q27	В	5.0	4.7	Q49 E	3	0.0 2	.1	E	0.0	0.0		18 B	0.0	0.0
	16	5.1	5.1	Q7	В	0.4	0.4	1	С	0.0	4.9		اد	2.9 2	.8	Q21 B	0.1	0.1	1	20A	0.5	0.6
IC21	1	0.0	3.3	1	C	0.0	0.0	ĺ	Ε	5.0	5.0		Ξſ	0.0	.0	c	0.2	0.2	1	21A	6.0	6.0
	2	0.0	3.9	1	Ε	0.0	0.0	Q28	В	5.0		Q50 E	3	0.0	.0	E	0.0	0.0	1	22A	4.9	0.2
	3	0.0	0.0	Q8	В	0.7	0.7		С	0.0	5.0		ا:	2.7 2	8.	(BUFFER	PWB)	1	22 B	0.2	0.2
1	4	5.1	5.1	1	С	0.1	0.0	l	E	5.0	5.0		Εľ	0.0	.0	Q73 B	3.6	3.6	CN2	1AB	0.0	0.0
1	5	24	2.4	1	E	0.0	0.0	Q29	В	2.7	2.7	Q51 i	3	2.8 2	.8	C	11.8	11.8		2AB	0.0	0.0
1	6	0.0		Q9	В	11.2	11.1	1	C	5.0	5.0	1 (3	5.0 5	.0	E	3.0	3.0	1	3AB	7.9	7.9
ì	7	0.0	0.0	1	С	11.8	11.8		Ε	2.1	2.1		Εĺ	2.4 2	.5				1	4AB	14.7	14.7
	8	0.0	0.0	1	Ε	10.5	10.5	Q30	В	2.0	2.0	Q52 I	В		.7					7A	4.7	4.8
				Q10	В	1.2	1.2		С	5.0	5.0	1	٥Ì	5.1 5	.1		1			78	0.0	0.0
1	1				C	11.3	11.3		E	1.4	1.4	1	Εľ	2.5 2	.6					8A	0.0	0.0
	1				E	0.6	0.6	Q31	В	27	2.7	Q53 I	В	2.6 2	.6	İ				88	0.0	0.0
				Q11	В	0.6	0.6	1	С	5.0	5.0	1 (11.9 11	.9				1	9A	0.0	0.0
					C	0.0	0.0	1	Ε	21	21	1 1	Εľ	2.0 2	.0				ļ	9 B	0.0	0.0
	1				Ε	1.3	1.3	Q32	В	0.0	4.5	Q54 I	В	2.5 2	8		1			11A	4.6	4.6
1				Q12	В	1.2	1.3	1	С	0.2	0.0	1	10	5.0 5	.0				l	11 B	0.0	0.0
	ļ			i	С	11.3	11.3	1	Ε	0.0	0.0	1 1	ΕÌ	2.0 2	.3					13A	2.0	2.6
	-			1	E	0.6	0.6	Q33	В	4.0	4.0	Q55 I	в	1.9 1	.9					13 B	0.0	0.0
1	1			Q13	В	0.6	0.6	1	C	5.0	5.0	1 (٥Ì	3.1 3	.1					15A	2.5	2.9
1				1	C	0.0	0.0	1	Ε	3.4	3.4	1	Εĺ	1.3 1	.3		ļ			15 B	0.0	0.0
i	j				Ε	1.3	1.3	Q34	В	1.6	1.6	Q56	В	3.1 3	.1					18A	0.3	0.3
	- 1			Q14	В	7.5	7.5	1	С	4.0	4.0	1	c١		.0	ĺ				18 B	0.0	0.0
1					С	11.8	11.8	1	E	1.1	1.1	1	Εİ		.5					21A	6.9	6.9
	1			1	Ε	6.9		Q35	В	3.3	3.3		в		.0							
1				Q15		-		1	C	5.0	5.0	1			.0							
						11.8			Ε	2.8		•	- 1		.0							
1					Ε			Q36	В	2.8	2.9	Q58	В		.0							
				Q16				1	C	0.0	0.0	1			.0			1				
1					C		-	4	Ε	3.3	3.3	4	E		.4							
					Ε			Q37	В	5.0			В		.3							
1				Q17					C	0.0	0.0				.8							
1					Č				Ē	0.0	0.0		E		.6							
					E	1.5		Q38	В	5.0			В		1.7							
				Q18		-			C	5.0		4			.0							
				1	c	-		4	E	4.7	4.7	1	E		.1							
1 .					E	6.1		Q39	В	2.5			В		iil							i
1	- 1			Q19					C	5.0	_				.0					ĺ		Ì
		į		1	c	-	_	4	E	2.3	2.3	1	E		7				l			
Ī	- 1				E	3.1	_	Q41	В	5.0	_		В		.0						-	
Ī	- 1			Q20		3.7	_		C	0.0	7.4	1	S		1.5	1	l		1			
					c				E	0.0	0.0	1	E		.0			k .				
1					E	3.1		4	-			· '	-			1	i		1		1	1
	- 1				_							1										
				_			-		_				_									

4

2

1

— BURST GATE —

- MAIN WAVEFORMS OF REC/PB COLOR CIRCUIT -

1 2 **REC/PB COLOR-2** 4-33

Ε

4-33

37

- WIRING TABLE -

G

- DC voltage (1/2) - (R/P COLOR 2)

SYME	BOL No.	REC	PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB
		TED CIRCUI		IC316 1	8.2	8.2	IC322 1	6.4	6.5
IC301	1	5.1	5.1	2	0.0	0.0	2	11.8	11.8
	2	0.0	0.0	3	8.3	8.3	3	2.7	2.7
	3	7.9	7.9	4	0.0	0.0	4	0.0	0.0
1C302	1	11.8	11.8	5	0.0		IC323 1	9.5	9.5
	2	0.0	0.0	6	7.5	7.5	2	5.4	5.4
	3	14.7	14.7	7	11.8	11.8	3	5.5	5.4
IC303	1	5.0	5.0	IC317 1	6.1	6.1	4	8.0	8.0
	2	0.0	0.0	2	11.8	11.8	5	4.8	4.8
_	3	7.9	7.9	3	2.7	2.7	6	5.1	5.1
IC304	1	11.8	11.8	4	0.0	0.0	7	0.0	0.0
	2	0.0		IC318 1	6.4	6.4	8	1.1	1.1
	3	14.7	14.7	2	11.8		IC324 1	9.5	9.5
IC311	1	4.3	4.3	3	0.0	2.7	2	11.8	11.8
	2	2.5	2.5	4	0.0	0.0	3	8.8	8.7
	3	1.9		IC319 1	5.0	5.0	4	8.0	8.0
	4	0.0	0.0	2	2.0	2.0	5	8.0	8.0
	5	1.9	1.9	3	3.6	3.6	6	6.4	6.4
	6	2.5	2.5	4	2.5	2.5	7	0.0	0.0
	7	2.5	2.5	5	0.0	0.0	8	5.4	5.4
	8	5.1	5.1	6	3.4	3.4	IC325 1	8.3	8.3
IC312	1	3.1	3.1	7	2.4	2.4	2	0.0	0.0
	2	5.1	5.1	8	4.0	4.0	3	8.3	8.3
	3	1.7	1.7	9	2.5	2.5	4	0.3	0.3
	4	0.0	0.0	10	3.0	3.0	5	0.0	0.0
IC313	1	4.3	4.3	11	2.2	2.2	6	8.3	8.3
	2	2.5	2.5	12	3.3	3.3	7	0.0	0.0
	3	1.9	1.9	13	2.6	2.6	8	7.5	7.5
	4	0.0	0.0	14	2.6	2.5	9	11.8	11.8
	5	1.9	1.9	15	2.3	2.3		SW PWB)	
	6	2.5	2.5	16	2.3		IC1 1	8.2	8.2
	7	2.5	2.5	17	2.7	2.7	2	0.0	0.0
	8	5.1	5.1	18	2.1	2.1	3	8.2	8.2
IC314	1	0.0	0.0	19	2.3	2.3	4	0.0	0.0
	2	0.0	0.0	20	2.6	2.6	5	0.0	0.0
	3	0.0	0.0	21	2.6	2.6	6	7.4	7.4
	4	3.8	3.8	22	3.3	3.3	7	11.8	11.8
	5	3.6	3.6	IC320 1	3.3	3.3	IC2 1	8.3	8.3
	6	0.0	0.0	2	2.7	2.7	2	0.0	0.0
	7	2.7	2.7	3	3.6	3.6	3	8.3	8.3
	8	0.0	0.0] 4	5.0		4	0.0	0.0
	9	3.6	3.6	5	3.3	3.3	5	0.0	0.0
	10	3.6	3.6	6	0.5	0.5	6	7.5	7.5
	11	5.1	5.1	7	0.0	3.0	7	11.8	11.8
	12	5.0	5.0	8	2.0	2.0			
	13	0.0	0.0	9	1.9	1.9			
	14	0.0	0.0	10	2.0	2.0			
IC315	1	5.0	5.0] 11	3.3	3.3			
	2	0.0	0.0	12	0.0	0.0			
	3	0.0	0.0	13	1.9	1.9			
	4	5.1	5.1	14	2.2	2.3			
	5	0.0	0.0	IC321 1	8.1	8.1			
	6	5.1	5.1	2	4.4	4.4			
	7	0.0	0.0	3	4.4	4.4			
	8	2.6	2.6		8.1	8.1			
	9	2.5	2.5	5	3.7	3.7			
	10	0.0	2.5	6	3.7	3.7			
	10			4			I		
			2.7	7	0.0	0.0			
	11	2.7	2.7 0.0	7 8	0.0 1.5	0.0 1.5			
		2.7 0.0	2.7 0.0 5.1	4	1.5	0.0 1.5			

- DC voltage (2/2) - (R/P COLOR 2)

SYMBO		REC	PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB
		ISISTOR		Q322 B	7.8	7.8		NECTOR	
Q301	G	4.7	4.7	[с	11.8	11.8		3.5	3.5
	D	0.0	0.0	E	7.2	7.2	4 B	0.0	0.0
	S	0.0		Q323 B	7.5	7.5	6A	3.1	3.1
Q302	В	3.4	3.4	С	11.8	11.8	6 B	0.0	0.0
	c	5.1	5.1	E	7.2	7.2	7A	2.8	2.9
	E	2.8		Q324 B	7.5	7.5	7 B	0.0	0.0
Q303	В	2.0	2.0		11.8	11.8	9A	4.7	4.7
	C	3.7	3.7	E COOS	7.2	7.2	9 B	0.0	0.0
0004	E	1,4		Q326 B	2.6	2.6	15A CN2 1AB	4.5	4.6
Q304	В	2.0 5.1	2.0 5.1	C E	0.0 3.2	0.0 3.2	CN2 TAB	0.0	0.0
	C E	1.4		Q327 B	3.2	3.2	3AB	7.9	7.9
Q305	В	4.3	4.3	C	11.8	11.8	4AB	14.7	14.7
14000	c	5.1	5.1	Ĕ	2.6	2.6	5A	2.6	2.6
	E	3.6		Q328 B	2.6	2.6	5 B	0.0	0.0
Q306	В	0.6	0.6	С	9.4	9.4	17A	0.0	0.0
	c	0.0	0.0	•	2.0	2.0	17 B	0.0	0.0
	Ē	0.0		Q329 B	9.4	9.4	18A	0.3	0.3
Q307	В	2.7	2.7	С	11.8	11.8	18 B	0.0	0.0
	С	5.1	5.1	E	8.8	8.8	19A	7.0	7.0
	Ę	2.2		Q330 B	2.4	2.4	19 B	0.0	0.0
Q308	G	4.7	4.7	С	4.9	4.9	21A	6.8	6.8
	D	0.0	0.0	Ε	2.1	2.1	21 B	0.0	0.0
_	S	0.0	0.0	Q331 B	4.9	4.9			
Q309	В	3.4	3.4	С	0.0	0.0			
	C	5.1	5.1	E	5.4	5.4			
	E	2.8		Q332 B	5.9	5.9			
Q310	В	4.2	4.2	C	11.8	11.8			
	c	5.1	5.1	E	5.3	5.3			
	<u>E</u>	3.6		Q333 B	5.3	5.3			
Q311	В	0.0	0.0	C	0.0	0.0			
	C	0.0	0.0	E 0004	5.9	5.9			
0210	E	0.0 6.4	6.4	Q334 B C	5.9 11.8	5.9 11.8			
Q312	B C	11.8	11.8	E	5.4	5.4			
	E	5.9		Q335 B	7.5	7.5			
Q313	В	7.4	7.4	C	11.8	11.8	=		
40.0	c	11.8	11.8	E	6.8	6.8			
	E	6.9		Q336 B	2.3	2.3			
Q314	В	2.7	2.7	С	5.0	5.0			
	С	7.2	7.2	Ε	1.9	1.9			
	E	2.1	2.1						
Q315	В	7.2	7.2						
	c[11.8	11.8						
	E	6.7	6.7						
Q316	В	4.6	4.6						
	С	7.9	7.9						
	E	4.0	4.0						
Q317	В	7.9	7.9						
	C	11.8	11.8						
0015	E	7.4	7.4						
Q319	В	8.1	8.1						
	C	11.8	11.8						
O330	E	7.5	7.5						
Q320	В	8.1	8.1 11.8						
	C	11.8 7.5	7.5						
Q321	E	1.5	1.5						
2321	C	7.8	7.8						
1	E	0.9	0.9						
<u> </u>		0.9	0.3		<u> </u>				

- MAINWAVEFORMS OF REC/PB COLOR-2 CIRCUIT -

TP33 ~ TP35,	TP37 ~ TP39	TPS	36	TP41	TP42	TF	°43
W. JW.			em (ESS) parts (ES)			操件	
[S-VHS P8] TP33 360 mVp TP34 420 mVp		[S-VHS PB] 55 m	[VHS PB] Vp-p	UPPER: VIDEO OUT LOWER: TP41	UPPER: VIDEO OUT LOWER: TP42	[S-VHS PB] 300 mVp-p:	[VHS PB] : Burst level
TP35 140 mVp TP37 120 mVp TP38 55 mVp TP39 140 mVp	o-p: Burst level o-p: Burst level -p: Burst level						

12 REC/PB COLOR-2 4-37

20

- R/P ADJ SUB -

- MAIN WAVEFORMS OF REC/PB ADJUST CIRCUIT -

TP1 (TP8)	TP2	T	23	I	P4		TP5, TP6		TP10	TP12, TP13
4.7 Vp-p/25 Hz	IRECI	[S-VHS PB]	IVHS PB1	[S-VHS PB]	[VHS PB]	REC]	[S-VHS PB]	[VHS PB]	4.7 Vp-p/15.63 kHz	IVIDEO INSERTI
Ď. FF	S-VHS: 2.1 Vp-p VHS: 1.7 Vp-p	550 mVp-p : Burst level	850 mVp-p : Burst level	300 mVp-p	420 mVp-p	S-VHS: 0.7 Vp-p VHS: 0.4 Vp-p	300 mVp-p	170 mVp-p	5	UPPER: TP13 LOWER: TP12

A B C 116 REC/PB ADJUST 4-39 E F G H

- DC voltage (1/2) - (R/P ADJUST)

NTEGRATE CIRCUIT 1014	YMBOL N	lo.	REC	PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB
Column C	INTEGR	ATED	CIRCU	IT	IC14 1	1.9	1.9	IC18 1	5.9	5.9	IC24 10	5.1	5.1
C		1	11.9	11.9] 2	2.5	2.9	2		5.9	11	5.1	5.1
C		2	0.0	0.0	3	0.0		3	_		12	0.0	0.0
Column C		3	14.7		4	5.0	0.2	4	5.9	5.9		-	5.1
C3	2		8.7		5			-				+	5.1
C3		2			ł		5.0						0.0
2		3	14.7	14.7	7		0.0	7					3.8
C4	3	1	5.0		1							-	3.5
ICA					9	1.1							11.9
Column C		3			10	-	5.0	10				-	0.3
CS	,	1			4								0.0
CS					-								1.3
100 0.0					4							-	5.8
14.7	5												3.3
IC6					4		_						5.8
Column C					1		-						0.0
107	5		\vdash		1		_				1		3.8
IC7			-		4								3.5
Column C					4								11.9
Ca	,				1						1		0.3
IC8			_		4	-					1		0.0
Column C	 				4	_					•		1.3
ICS	3		8.7		-			1			1		5.7
CS					4						ł.		3.3
10					4			1				-	5.7
IC11 1 11.9 11.9 C16 1 2.6 2.3 2 1 10.1 10.1 10.1 4 0.0	9				-{		-	1					6.4
C 1					-1		-				ŧ	$\overline{}$	11.9
2 3.6 0.0 3 3 0.0 5.0 3 10.1 10.1 IC28 1 6.4 4 9.9 9.9 4 4 0.0 5.0 5.0 5.0 5.0 4 10.1 10.1 10.1 2 11.8 4 9.9 9.9 4 4 0.0 5.0 5 10.1 10.1 10.1 3 2.7 5 2.9 2.8 5 2.3 5.0 6 0.0 0.0 0.0 129 1 6.0 6 3.0 2.7 6 0.0 0.0 0.0 8 0.0 0.0 129 1 6.0 6 0.0 0.0 129 1 6.0 1 6.0 11.1 1.1 8 5.0 0.0 9 6.6 6.6 3 2.7 1 1 1.9 11.9 9 0.0 0.0 10 6.6 6.6 6 3 2.7 1 1 1.9 11.9 9 0.0 0.0 10 6.6 6.6 6 4 0.0 0.0 12 11.8 11.9 11.9 11.9 11.9 11.5 0.0 0.0 12 8.9 8.9 11.9 1 8.3 4.7 8.7 8. 12 5.0 5.0 13 8.9 8.9 12 0.0 13 8.9 8.9 12 0.0 13 8.9 8.9 12 0.0 13 8.9 8.9 12 0.0 13 8.9 8.9 12 0.0 13 8.9 8.9 12 0.0 13 8.9 8.9 12 0.0 14 8.9 8.9 12 1.8 8.9 8.9											1		2.7
3 3.6 3.6 3.6 3.6 3.0 0.0 5.0 4 10.1 10.1 2 11.8 4 9.9 9.9 4 0.0 5.0 5 10.1 10.1 3 2.7 6 3.0 2.7 6 0.0 5.0 7 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0	11				1			i		-			0.0
Second Part				_	4	_		ł				-	6.4
S 2.9 2.8 5 2.3 5.0 6 0.0 0.0 0.0 4 0.0		3			-1						1		11.8
Color Colo					1	$\overline{}$	_	1	$\overline{}$		1		2.7
Total Tota			_		4		+	1					0.0
No. No.					-1		_	1					6.0
IC12 1 11.9 11.9 11.9 9 0.0 0.0 10 10 6.6 6.6 4 0.0 2 3.5 3.5 3.5 10 2.5 0.0 11 11.9 0.0 3 3.5 3.5 11 5.0 0.0 12 8.9 8.9 IC19 1 8.3 4 7.8 7.8 7.8 12 5.0 5.0 13 8.9 8.9 IC19 1 8.3 5 2.8 2.8 13 2.3 2.5 14 8.9 8.9 8.9 2 0.0 7 0.0 0.0 IC17 1 2.9 2.5 16 11.8 11.8 5 0.0 8 1.1 1.1 2 0.0 0.0 IC23 1 3.5 3.5 6 8.3 IC13 1 4.1 4.1 3 1.0 0.1 2 0.0 0.0 IC23 1 3.5 3.5 6 8.3 3 4.1 4.1 4.1 4 3.9 3.9 3 3 4.0 3.8 8 8 7.5 3 4.1 4.1 4.1 5 3.8 3.8 4 0.0 0.0 0.0 0.0 0.0 5 4.1 4.1 4.1 6 0.0 0.0 5 0.0 0.0 1.0 6 0.0 0.0 0 8 0.0 0.0 5 0.0 0.0 1.0 7 0.0 0.0 9 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 9 0.0 0.0 8 5.0 5.1 4 0.0 9 6.0 6.7 11 0.0 0.0 12 0.0 0.0 9 6.0 6.7 12 0.0 0.0 12 0.0 0.0 10 0.0 0.0 9 2.3 2.3 11 0.0 0.0 12 0.0 0.0 12 7.1 7.1 14 3.2 3.2 4 0.6 0.6 13 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 2 6 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 2 6 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 2 6 6 5.1 5.1 16 0.0 0.0 0.0 0.0 0.0 17 0.0 0.0 0.0 0.0 0.0 18 0.0 0.0 0.0 0.0 0.0 19 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0 0.0 11 0.0 0.0 0.0 0.0 0.0 12 0.0 0.0 0.0 13 0.0 0.0 0.0 14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 7 0.0 0.0 16 0.0 0.0 0.0 17 0.0 0.0 0.0 18 0.0 0.0 0.0 19 0.0 0.0 0.0 10 0.0 0.0 0.0 10 0.0 0.0 0.0 11 0.0 0.0 0.0 12 0.0 0.0 0.0 13 0.0 0.0 0.0 14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 2 6 6 5.1 5.1 16 0.0 0.0 0.0 17 0.0 0.0 0.0 18 0.0 0.0 0.0 19 0.0 0.0 0.0 10 0.0 0.0 0.0 1					-1		 	-			1		11.8
2 3.5 3.5 3.5 10 2.5 0.0 11 11.9 0.0 (R/P SUB1 PWB) 3 3.5 3.5 11 5.0 0.0 12 8.9 8.9 IC19 1 8.3 4 7.8 7.8 12 5.0 5.0 13 8.9 8.9 2 0.0 5 2.8 2.8 13 2.3 2.5 14 8.9 8.9 3 3 8.3 6 2.9 2.7 14 5.0 5.0 15 10.1 10.1 10.1 4 0.0 7 0.0 0.0 IC17 1 2.9 2.5 16 11.8 11.8 5 0.0 8 1.1 1.1 2 0.0 0.0 IC23 1 3.5 3.5 6 8.3 IC13 1 4.1 4.1 3 1.0 0.1 2 0.0 0.0 IC23 1 3.5 3.5 6 8.3 3 4.1 4.1 4.1 5 3.8 3.8 4 0.0 3.8 8 7.5 3 4.1 4.1 5 3.8 3.8 4 0.0 0.0 9 11.9 6 0.0 0.0 0.0 8 0.0 0.0 5 0.0 0.0 IC30 1 6.6 6 0.0 0.0 0.0 8 0.0 0.0 7 3.3 3.3 3 3 0.0 7 0.0 0.0 8 0.0 0.0 8 0.0 0.0 7 3.3 3.3 3 3 0.0 8 0.0 0.0 10 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 10 0.0 0.0 8 5.0 5.1 4 0.0 11 11.9 11.9 11.9 13 0.0 0.0 12 7.1 7.1 14 3.2 3.2 4 0.6 0.6 13 9.3 9.3 15 0.0 0.0 14 9.3 9.3 15 0.0 0.0 15 5.0 0.7 14 9.3 9.3 15 0.0 0.0 16 2.3 2.2 6 5.1 5.1 11 15 4.2 4.1 17 3.2 3.2 3.2 7 0.0 0.0					4	_	-	1			1		2.7
3 3.5 3.5 3.5 11 5.0 0.0 12 8.9 8.9 IC19 1 8.3 4 7.8 7.8 12 5.0 5.0 5.0 13 8.9 8.9 8.9 2 0.0 14 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	12				-1		-						0.0
The color of the					4		+	Į.		_			
5 2.8 2.8 13 2.3 2.5 14 8.9 8.9 3 8.3 6 2.9 2.7 14 5.0 5.0 15 10.1 10.1 4 0.0 7 0.0 0.0 IC17 1 2.9 2.5 16 11.8 11.8 5 0.0 8 1.1 1.1 2 0.0 0.0 IC23 1 3.5 3.5 6 8.3 IC13 1 4.1 4.1 3.9 3.9 3 4.0 3.8 8 7.5 3 4.1 4.1 5 3.8 3.8 4 0.0 0.0 9 11.9 4 4.1 4.1 5 3.8 3.8 4 0.0 0.0 9 11.9 4 4.1 4.1 6 0.0 0.0 5 0.0 0.0 11.9 11.9 13.3 3.3 3.3 3.3 3.0 11.9 11.9 13.0 0.0 0.0 0.0 0.0					-			•			1	$\overline{}$	8.3
6 2.9 2.7 14 5.0 5.0 15 10.1 10.1 4 0.0 1 1.8 11.8 5 0.0 16 11.8 11.8 5 0.0 16 11.8 11.8 5 0.0 16 11.8 11.8 5 0.0 16 11.8 11.8 5 0.0 16 11.8 11.8 5 0.0 16 11.8 11.8 5 0.0 16 11.8 11.8 5 0.0 17 0.0 1		-			4		-	1			1		8.6
7 0.0 0.0 C17					4			1	-		t		8.3
S			—					4			ł		0.0
C13					4		1				1		0.0
2 4.1 4.1 4.1 5 3.8 3.8 4 0.0 0.0 9 11.9 4 4.1 4.1 6 0.0 0.0 5 0.0 0.0 15 0.0 0.0 0.0 15 0.0 0.0 0.0 15 0.0 0.0 0.0 15 0.0 0.0 0.0 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			_		4		_	1			1		8.3
3 4.1 4.1 5 3.8 3.8 4 0.0 0.0 9 11.9 4 4.1 4.1 6 0.0 0.0 5 0.0 0.0 1 6.6 5 4.1 4.1 7 0.0 0.0 6 4.2 4.2 2 11.9 6 0.0 0.0 0.0 7 3.3 3.3 3 0.0 7 0.0 0.0 9 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 0.0 9 2.3	13				-1			4			4		8.1
4 4.1 4.1 4.1 6 0.0 0.0 5 0.0 0.0 1 6.6 5 4.1 4.1 7 0.0 0.0 6 4.2 4.2 4.2 2 11.9 6 0.0 0.0 0.0 0.0 7 3.3 3.3 3 0.0 0.0 7 0.0 0.0 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 0.0 9 2.3					4	-	-	4			1		7.5
5 4.1 4.1 7 0.0 0.0 6 4.2 4.2 2 11.9 6 0.0 0.0 0.0 0.0 7 3.3 3.3 3 0.0 7 0.0 0.0 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 0.0 0.0 9 2.3 2.3 2.3 9 6.0 6.7 11 0.0 0.0 10 9 2.3 2.3 10 6.0 6.7 12 0.0 0.0 12 5.0 0.7 11 11.9 11.9 13 0.0 0.0 2 5.0 0.7 11 11.9 11.9 13 0.0 0.0 3 0.0 5.0 12 7.1 7.1 14 3.2 3.2 4 0.6 0.6 13 9.3 9.3 15 0.0 0.0 5 5.0 0.7 14 9.3 9.3 16					1	_	_	4				_	11.9
6 0.0 0.0 8 0.0 0.0 7 3.3 3.3 3 0.0 7 0.0 0.0 9 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 10 0.0 0.0 9 2.3 2.3 9 6.0 6.7 11 0.0 0.0 10 10 0.0				-	-1		_	4		_	4		6.3
7 0.0 0.0 0.0 9 0.0 0.0 8 5.0 5.1 4 0.0 8 0.0 0.0 0.0 9 2.3 2.3 9 6.0 6.7 11 0.0 0.0 10 0.0 10 0.0 0.0 10 0.0 10 0.0 0.					-1	_	+	4			1		11.9
8					H			4			1		0.0
9 6.0 6.7 11 0.0 0.0 IC24 1 5.0 0.7 10 6.0 6.7 12 0.0 0.0 3 0.0 5.0 11 11.9 11.9 13 0.0 0.0 3 0.0 5.0 12 7.1 7.1 14 3.2 3.2 4 0.6 0.6 13 9.3 9.3 15 0.0 0.0 5 5.0 0.7 14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 7 0.0 0.0					-1		-	1				0.0	2.7
10 6.0 6.7 11 11.9 11.9 12 7.1 7.1 13 9.3 9.3 14 9.3 9.3 15 4.2 4.1 12 0.0 0.0 12 0.0 0.0 13 0.0 5.0 14 0.6 0.6 15 0.0 0.0 5 5.0 0.7 6 5.1 5.1 7 0.0 0.0					-1		_						
11 11.9 11.9 13 0.0 0.0 3 0.0 5.0 12 7.1 7.1 14 3.2 3.2 4 0.6 0.6 13 9.3 9.3 15 0.0 0.0 5 5.0 0.7 14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 7 0.0 0.0					-1		_	1		_			
12 7.1 7.1 14 3.2 3.2 4 0.6 0.6 13 9.3 9.3 15 0.0 0.0 5 5.0 0.7 14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 7 0.0 0.0			-		-1		_	-			1		
13 9.3 9.3 15 0.0 0.0 5 5.0 0.7 14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 7 0.0 0.0				_	-1			4			1		
14 9.3 9.3 16 2.3 2.2 6 5.1 5.1 15 4.2 4.1 17 3.2 3.2 7 0.0 0.0		12	7.1	7.1	1		_	4					
15 4.2 4.1 17 3.2 3.2 7 0.0 0.0		13	9.3	9.3	1:			4		-	1		
		14	9.3	9.3	₹			4	_	_			
16 119 119 18 51 51 8 02 02		15	4.2	4.1	1	_		4					
		16	11.9	11.9	1	5.1	5.1	-1		0.2	1		
9 5.1 5.1							L.,_	9	5.1	5.1	<u> </u>	1	

- DC voltage (2/2) - (R/P ADJUST)

Q1 B 5.8 5.8 C 0.0 -0.1 C 11.8 1.8 D 0.0 0.0 0.0 C 11.9 1.9 0.0 0.0 C 11.8 11.8 D 0.0 0.0 C 8 3.1 3.1 C 0.0 0.0 0.1 C 11.8 11.8 D 0.0 0.0 G3 G 2.0 0.0 0.0 0.0 0.0 0.0 0.0 G3 G 2.2 2.5 2.0 0.0	SYM	BOL No.	REC	PB	SYMBOL No.	REC	PB	SY	MBOL No.	REC	PB	SYMBOL No.	REC	PB
C		TRANSIS	STOR		Q21 B	2.3	0.1	Q44	В	10.1	10.1	Q64 C	4.6	4.6
E	Q1	В	5.8	5.8	С	0.0	-0.1		С	11.8	11.8] [0.0	0.1
Carried Color		С	11.9	11.9	E	0.0	0.0		E	9.5	9.5		0.0	0.0
C S S S S S C C C C		E	5.4	5.2	Q22 B	1.9	0.2	Q45	В	9.5	9.5	Q65 C	0.0	0.0
E	Q2	В	3.1	3.1	С	0.0	0.1		С	11.8	11.8] [4.6	4.6
Column Column		С	9.0	9.0	E	0.0	0.0		Ε.	8.9	8.9		0.0	0.0
D		E	2.5	2.5	Q23 G	0.7	0.7	Q46	В	10.1	10.1	CONN	CTOR	
S	Q3	G	4.7	4.7	D	11.9	11.9	l	С	11.8	11.8	CN1 1AE	0.0	0.0
Q4 G A7 47 C D S. 1.92 C II.8 11.8 AAB II.7 II.4 II.8 AB II.7 II.4 II.8 II.8 S. 5 S. 6.0 S. 7 S. 8 II.8		D	0.0	0.0	S	0.0	0.0		E	9.5	9.5	2AE	0.0	0.0
D		S	0.0	0.0	Q24 G	3.4	3.2	Q47	В	10.1	10.1	3AE	8.0	8.0
S	Q4	G	4.7	4.7	D	5.1	5.9		С	11.8	11.8	4AE	14.7	14.7
QS		D	0.0	0.0	S	0.0	0.0		E	9.5	9.5	5A	6.0	6.0
C		S	0.0	0.0	Q25 B	5.9	0.0	Q48	В	9.5	9.5	5 8	14.7	0.0
E 00 00 027	Q5	В	0.0	0.0	С	11.9	11.9		C	11.8	11.8	6A	5.0	0.2
Column C		С	0.0	0.0	E	5.3	1.8	Ĺ	E	8.9	8.9	6 6	0.2	0.2
C		E	0.0	0.0	Q27 B	5.0	0.0	Q49	В	8.9	8.9	7A	4.8	0.6
E 3.6 3.5 C28 B 6.6 6.3 C30 C0 C C C0.0 C C C0.0 C C C C C C C C C	Q6	В	4.1	4.1	С	0.0	8.7		С	11.8	11.8	7 8	0.6	4.8
Q7 B 9.9 9.9 9.9 9.9 9.9 0.0 0.0 0.0 0.0 0.0	-	С	11.9	11.9	E	0.0	0.0		· E	8.3	8.2	8A	0.0	0.0
C 11.9 E 62.70 S 00 0.0 9B 0.0 0.0 C8 B 5.9 S C 11.8 11.8 D 0.0 0.0 10A 0.0 0.0 C8 B 5.9 C 11.8 11.8 D 0.0 0.0 110B 0.0 0.0 C9 B 3.1 3.1 C 0.0 0.0 D 4.5 4.4 12A 3.6 3.5 C9 B 3.1 3.1 C 0.0 0.0 D 4.5 4.4 12A 3.6 3.		E	3.6	3.5	Q28 B	6.6	6.3	Q50	G	4.0	3.9	8 8	0.6	4.5
C 11.9 E 62.70 S 0.0 0.0 9B 0.0 0.0 C8 B 5.9 C 11.8 11.8 D 0.0 0.0 10A 0.0 0.0 C8 B 6.9 C 11.8 11.8 D 0.0 0.0 110B 0.0 0.0 C9 B 3.1 3.1 C 0.0 0.0 D 4.5 4.4 12A 3.6 3.6 C9 B 3.1 3.1 C 0.0 0.0 D 4.5 4.4 12A 3.6 3.8 C1 1.9 1.9 S 0.0 0.0 D 4.4 1.0 1.1 8.0 0.0 0.0 1.1 8.0 0.0 0.0 1.1 8.0 0.0 0.0 0.0 0.0 1.1 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>Q7</td> <td>В</td> <td>9.9</td> <td>9.9</td> <td>C</td> <td>0.0</td> <td>0.0</td> <td></td> <td>D</td> <td>0.0</td> <td>0.0</td> <td>9A</td> <td>0.0</td> <td>0.0</td>	Q7	В	9.9	9.9	C	0.0	0.0		D	0.0	0.0	9A	0.0	0.0
E 9.3 9.3 C29 B 4.1 4.1 C51 G 6.6 6.6 6.6 10A 0.0		С	11.9	11.9		6.2	7.0			0.0	0.0	9 8	0.0	0.0
C 11.9 11.9 E 3.5 3.5 S 0.0 0.0 11A 14.7 12.7 25.7 25.7 25.8 25.9 24.5 24.4 24.9 24.9 24.5 24.4 24.9 24.9 24.2 24.4 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2		E	9.3	9.3	Q29 B	4.1	4.1	Q51	G	6.6	6.6	10A	0.0	0.0
E 5.5 5.3 O30 B 1.7 1.7 O52 G 0.0 0.0 11 B 0.0 0.0 C 5.0 5.0 5.0 E 2.4 2.4 S 0.0 0.0 12 B 0.0 0.0 C 5.0 5.0 5.0 0.0 0.0 4.4 0.7 13 B 3.6 3. 3.6 3. C119 11.9 11.9 5.0 0.0 0.0 S.0 0.0 0.0 4.4 0.7 13 B 0.0 0.0 E 3.5 3.5 0.0 0.0 0.0 0.0 4.4 1.9 1.1 9.0 1.9 1.1 9.0 0.0 0.0 1.4 1.9 1.1 9.0 0.0 0.0 0.0 1.4 1.9 1.1 9.0 0.0 0.0 1.1 1.1 0.0 0.0 0.0 0.0 1.1 1.1 0.0 0.0 0.0<	Q8	В	5.9	5.9	С	11.8	11.8		Đ	0.0	0.0	10 E	0.0	0.0
G9 B C 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		С	11.9	11.9	E	3.5	3.5		S	0.0	0.0	11A	14.7	14.7
C S.0 S.0 E Z.4 Z.4 S D.0 D.0 12 B D.0		E	5.5	5.3	Q30 B	1.7	1.7	Q52	G	0.0	0.0	11 6	0.0	0.0
E 2.5 2.5 031 G 1.1 4.7 053 G 4.4 0.7 13A 3.6 3.	Q9	В	3.1	3.1	С	0.0	0.0		D	4.5	4.4	12A	3.6	3.6
Q10		С	5.0	5.0		2.4	2.4			0.0	0.0	12 E	0.0	0.0
C 11.9 11.9 S 0.0 0.0 S 0.0 0.0 14A 1.9 1. 1.9 1. 1.9 1.9 1.9 1.9 1.0 0.0 0.0 0.0 0.0 0.0 1.14 B 0.0 0.0 0.0 0.0 1.14 B 0.0 0.0 0.0 1.14 B 0.0 0.0 0.0 0.0 1.15 B 0.0 0.0 0.0 0.0 1.15 B 0.0 0.0 0.0 0.0 0.0 1.15 B 0.0 0.0 0.0 0.0 0.0 1.15 B 0.0 0.0 0.0		Ε	2.5	2.5	Q31 G	1.1	4.7	Q53	G	4.4	0.7	13A	3.6	3.6
E 3.5	Q10	В	4.1	4.1	D	0.7	0.0		D	0.0	4.6	13 E	0.0	0.0
C		С	11.9	11.9	S	0.0	0.0			0.0	0.0	14A	1.9	1.9
C 11.9 11.9 E 0.0 0.0 S 0.0 0.0 15 B 0.0 0.0 C12 B 7.1 7.1 033 B 1.2 1.2 Q55 G 4.7 0.0 16A 8.7 8.8 C1 11.9 11.9 11.9 E 0.6 0.6 S 0.0 0.0 17A 4.4 4.7 17 B 4.4 4.7 17 B 4.4 4.7 17 B 4.4 4.7 4.7 <		E	3.5	3.5	Q32 B	0.7	0.0	Q54	G	0.0	4.6	14 E	0.0	0.0
E	Q11	В	7.8	7.8] c	0.0	0.0		D	0.0	0.1	15A	0.2	4.8
C		С	11.9	11.9	E	0.0			S	0.0	0.0	15 E	0.0	0.0
C 11.9 11.9 E 0.6 0.5 S 0.0 0.0 17A 4.4 4.5 5.1 5.2 S 0.0 0.0 18B 9.0 5.0 5.0 5.0 0.0 0.0 18B 9.0 0.0 0.0 18B 9.0 0.0 0.0 18A 4.6		E	7.1	7.1	Q33 B	1.2	1.2	Q55	G	4.7	0.0	16A	8.7	8.7
E 8.8 8.7 Q34 B 5.7 5.8 Q56 G 4.7 4.7 T7 B 4.4 4. 4. Q13 B 4.1 4.1 C 11.8 11.8 D 0.0 0.0 0.4 18A 5.1 5. 5. E 3.6 3.6 Q36 B 3.1 3.1 Q57 G 4.4 0.7 19A 4.6 4. Q14 B 4.1 4.1 C 9.4 9.4 D 0.0 0.4 20A 2.2 2. Q15 E 0.6 0.6 Q41 B 3.1 3.1 Q57 G 4.4 0.7 19A 4.6 4. Q14 C 11.9 11.9 E 2.5 2.5 Q58 G 3.8 3.8 22A 6.9 6. Q15 Q59 G 3.8 3.8 3.8 22A 6.9 6. Q15 Q59 G 3.8 3.8 3.8 22A 6.9 6. Q15 Q59 G 3.8 3.8 Q15 Q59 Q59 Q59 Q59 Q59 Q59 Q59 Q59 Q59 Q5	Q12	В	9.3	9.3	C	5.7	5.8		D	0.2	4.5	16 E	0.0	0.0
C13 B 4.1 4.1 C 11.8 11.8 D 0.0 0.4 18A 5.1 5. C 11.9 11.9 E 5.1 5.2 S 0.0 0.0 18 B 0.0 0.0 C 11.9 11.9 E 5.1 5.2 S 0.0 0.0 18 B 0.0 0.0 C11.4 B 4.1 4.1 C 9.4 9.4 D 0.0 0.4 20A 2.2 2.2 C11.9 11.9 E 2.5 2.5 5.5 S 0.0 0.0 20A 2.2 2.5 2.5		C	11.9	11.9	E	0.6	0.6		s	0.0	0.0	17A	4.4	4.4
C 11.9 11.9 E 5.1 5.2 S 0.0 0.0 18 B 0.0 0.0 E 2.5 2.5 Q58 G 3.8 3.8 Q2A 6.9 6. C 11.9 11.9 E 2.5 2.5 Q58 G 3.8 3.8 Q2A 6.9 6. C 11.9 11.9 E 2.5 2.5 Q58 G 3.8 3.8 Q2A 6.9 6. C 10.8 10.8 D 0.0 0.0 Q24		E	8.8	8.7	Q34 B	5.7	5.8	Q56	G	4.7	4.7	17 E	4.4	4.4
E 3.6 3.6 Q36 B 3.1 3.1 Q57 G 4.4 0.7 19A 4.6 4.6 Q14 B 4.1 4.1 C 9.4 9.4 D 0.0 0.0 0.4 20A 2.2 2.2 2.5 Q5 S 0.0 0.0 0.0 E 3.5 3.5 Q37 B 2.5 2.5 Q58 G 3.8 3.8 Q2A 6.9 6. Q15 G 4.6 4.6 C 10.8 10.8 D 0.0 0.0 Q38 B 10.8 10.8 Q59 G 3.8 3.8 Q24 D 0.0 0.0 Q38 D 10.8 11.8 D 0.0 0.0 Q40 D 0.0 Q40 D 0.0 Q40 D 0.0 Q40 D 0.0 Q40 D 0.0 Q40 D 0.0 Q40 D 0.0 Q40 D 0.0 D 0.0 D 0.0 Q40 D 0.0	Q13	В	4.1	4.1	С	11.8	11.8		D	0.0	0.4	18A	5.1	5.1
Q14 B 4.1 4.1 C 9.4 9.4 D 0.0 0.4 20A 2.2		C												0.0
C 11.9 11.9 E 2.5 2.5 S 0.0 0.0 0.0 20 B 0.0 0.0 E 3.5 3.5 Q37 B 2.5 2.5 Q58 G 3.8 3.8 22A 6.9 6. Q15 G 4.6 4.6 C 10.8 10.8 D 0.0 0.0 0.0 22 B 0.0 0.0 S 0.0 0.0 Q38 B 10.8 10.8 Q59 G 3.8 3.8 24 B 0.0 0.0 C 11.8 11.8 D 0.0 0.0 26A 0.0 0.0 E 0.0 0.0 0.0 Q40 B 3.1 3.1 Q60 B 5.9 5.9 27A 5.4 5. Q17 B 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0.0 C 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0.0 C 0.0 0.0 E 2.5 2.5 E 5.4 5.3 28A 4.7 4. E 0.6 0.6 0.6 Q41 B 2.5 2.5 Q61 B 14.7 0.0 28 B 0.0 0.0 C 0.1 0.1 D E 1.9 1.8 E 0.0 0.0 0.0 30 B 3.3 8. Q18 B 5.0 5.0 C 10.8 10.8 C 0.0 10.0 30 B 3.3 8. Q19 B 2.4 2.7 C 11.8 11.8 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		E	3.6	3.6	Q36 B	3.1	3.1	Q57	G	4.4	0.7	19A	4.6	4.6
E 3.5 3.5 G37 B 2.5 2.5 G58 G 3.8 3.8 22A 6.9 6. Q15 G 4.6 4.6 D 0.0 0.0 E 1.9 1.9 S 0.0 0.0 0.0 24A 0.0 0. S 0.0 0.0 C 11.8 11.8 D 0.0 0.0 0.0 26A 0.0 0. E 0.0 0.0 C 11.8 11.8 D 0.0 0.0 0.0 26B 0.0 0.0 E 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0.0 E 0.6 0.6 0.6 C 0.1 B 2.5 2.5 C 0.0 E 5.4 5.3 28A 4.7 4. Q18 B 5.0 5.0 C 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Q14	В	4.1	4.1	C	9.4	9.4			0.0	0.4	20A	2.2	2.5
Q15 G 4.6 4.6 C 10.8 10.8 D 0.0 0.0 22 B 0.0		C	11.9	11.9	E	2.5	2.5		S	0.0	0.0	20 E	0.0	0.0
D 0.0 0.0 0.0 E 1.9 1.9 S 0.0 0.0 0.0 24A 0.0 0.0 S 0.0 0.0 S 0.0 0.0 C 11.8 11.8 D 0.0 0.0 0.0 26A 0.0 0.0 C 8.7 8.7 E 10.1 10.1 S 0.0 0.0 26B 0.0 0.0 E 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0.0 0.0 C 0.0 C 0.0 0.0 E 2.5 2.5 E 5.4 5.3 28A 4.7 4. E 0.6 0.6 0.6 0.41 B 2.5 2.5 0.61 B 14.7 0.0 28 B 0.0 0.0 0.0 C 0.1 0.1 C 11.8 11.8 E 0.0 0.0 0.0 30A 8.3 8. C 0.0 0.0 0.0 E 1.9 1.8 E 0.0 0.0 30B 0.0 0.0 C 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30B 0.0 0.0 C 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30B 0.0 0.0 C 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30B 0.0 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30B 0.0 0.0 0.0 E 1.9 1.8 I1.8 E 0.0 0.0 0.0 S 0.0 0.0 E 1.9 I1.8 I1.8 E 0.0 0.0 0.0 S 0.0 0.0 0.0 E 1.9 I1.8 I1.8 E 0.0 0.0 0.0 S 0.0 0.0 0.0 E 1.9 I1.9 I1.9 S 0.0 0.0 0.0 E 1.9 I1.8 I1.8 E 0.0 0.0 0.0 S 0.0 0.0 0.0 E 0.0 0.0 0.0 E 1.8 I1.8 I1.8 E 0.0 0.0 0.0 0.0 S 0.0 0.0 0.0 E 0.0 0.0 0.0 E 1.8 I1.8 I1.8 E 0.0 0.0 0.0 0.0 0.0 E 0.0 0.0 0.0 E 0.0 0.0		E	3.5	3.5	Q37 B	2.5	2.5	Q58	G	3.8	3.8	22A	6.9	6.9
S 0.0 0.0 Q38 B 10.8 10.8 Q59 G 3.8 3.8 24 B 0.0	Q15	G	4.6	4.6		10.8	10.8			0.0	0.0	1		0.0
Q16 B 0.0 0.0 C 11.8 11.8 D 0.0 0.0 26A 0.0 </td <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>1.9</td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td>ł</td> <td></td> <td>0.0</td>			0.0			1.9				0.0		ł		0.0
C 8.7 8.7 E 10.1 10.1 S 0.0 0.0 0.0 E 0.0 0.0 E 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0.0 C 0.0 0.0 E 2.5 2.5 E 5.4 5.3 28A 4.7 4. E 0.6 0.6 0.6 0.6 0.1 B 2.5 2.5 0.6 10.8 10.8 C 0.0 10.0 28 B 0.0 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 28 B 0.0 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30 B 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30 B 0.0 0.0 E 1.9 1.8 E 0.0 0.0 0.0 30 B 0.0 0.0 0.0 E 1.9 1.8 11.8 E 0.0 0.0 0.0 0.0 E 1.9 1.8 11.8 E 0.0 0.0 0.0 0.0 E 1.9 1.8 11.8 E 0.0 0.0 0.0 0.0 E 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9		S	0.0	0.0	Q38 B	10.8	10.8	Q59	G	3.8	3.8	24 E	0.0	0.0
E 0.0 0.0 Q40 B 3.1 3.1 Q60 B 5.9 5.9 27A 5.4 5. Q17 B 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0 0. C 0.0 0.0 E 2.5 2.5 E 5.4 5.3 28A 4.7 4. E 0.6 0.6 0.6 Q41 B 2.5 2.5 Q61 B 14.7 0.0 28 B 0.0 0. Q18 B 5.0 5.0 C 10.8 10.8 C 0.0 10.0 30A 8.3 8. C 0.1 0.1 E 1.9 1.8 E 0.0 0.0 30 B 0.0 0. E 1.9 1.8 E 0.0 0.0 0.0 30 B 0.0 0. Q19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0	Q16	В	0.0	0.0	C	11.8	11.8		D	0.0	0.0	26A	0.0	0.0
Q17 B 0.0 0.0 C 9.3 9.4 C 11.9 11.9 27 B 0.0<		С	8.7	8.7	Ε	10.1	10.1		S	0.0	0.0	26 E	0.0	0.0
C 0.0 0.0 E 2.5 2.5 E 5.4 5.3 28A 4.7 4. E 0.6 0.6 0.6 0.41 B 2.5 2.5 Q61 B 14.7 0.0 28 B 0.0 0. Q18 B 5.0 5.0 C 10.8 10.8 C 0.0 10.0 30A 8.3 8. C 0.1 0.1 E 1.9 1.8 E 0.0 0.0 30 B 0.0 0. E 5.0 5.0 0.42 B 10.8 10.8 Q62 B 6.6 6.3 32A 3.6 4. Q19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. Q20 B 2.4 0.1 C 11.8 11.8 C 11.9 11.9 C 11.9 11.9 C 11.8 11.8 C 11.9 11.9 C 11.9 11.9 C 11.9 11.9 C 11.9 11.9		E	0.0	0.0	Q40 B	3.1	3.1	Q60	В	5.9	5.9	27A	5.4	5.3
C 0.0 0.0 E 2.5 2.5 E 5.4 5.3 28A 4.7 4. E 0.6 0.6 0.6 0.41 B 2.5 2.5 0.61 B 14.7 0.0 28 B 0.0 0. Q18 B 5.0 5.0 C 10.8 10.8 C 0.0 10.0 30A 8.3 8. C 0.1 0.1 E 1.9 1.8 E 0.0 0.0 30 B 0.0 0. E 5.0 5.0 0.42 B 10.8 10.8 0.62 B 6.6 6.3 32A 3.6 4. Q19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0	Q17		0.0	0.0] c	9.3	9.4		С	11.9	11.9	27 E	0.0	0.0
E 0.6 0.6 0.6 0.41 B 2.5 2.5 0.61 B 14.7 0.0 28 B 0.0 0. Q18 B 5.0 5.0 C 10.8 10.8 C 0.0 10.0 30A 8.3 8. C 0.1 0.1 E 1.9 1.8 E 0.0 0.0 30 B 0.0 0. E 5.0 5.0 0.42 B 10.8 10.8 0.62 B 6.6 6.3 32A 3.6 4. Q19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 0.0 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0			0.0	0.0	ΕΕ	2.5	2.5		1	5.4		28A	4.7	4.7
C 0.1 0.1 E 1.9 1.8 E 0.0 0.0 30 B 0.0 0. E 5.0 5.0 C42 B 10.8 10.8 C62 B 6.6 6.3 32A 3.6 4. C19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 C43 B 10.1 10.1 C19 C 11.8 11.8 C 11.8 11.8 C 11.8 C 11.9 11.9 C 11.9			0.6	0.6	Q41 B	2.5	2.5	Q61	В	14.7	0.0	28 E	0.0	0.0
C 0.1 0.1 E 1.9 1.8 E 0.0 0.0 30 B 0.0 0. E 5.0 5.0 042 B 10.8 10.8 062 B 6.6 6.3 32A 3.6 4. C 11.9 11.9 C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Q18		5.0	5.0] c	10.8				0.0	10.0	30A	8.3	8.3
E 5.0 5.0 C42 B 10.8 10.8 C62 B 6.6 6.3 32A 3.6 4. Q19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 Q43 B 10.1 10.1 Q63 G 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0			0.1			1.9	1.8		E	0.0	0.0	30 E	0.0	0.0
Q19 B 2.4 2.7 C 11.8 11.8 C 11.9 11.9 32 B 0.0 0. C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 Q43 B 10.1 10.1 Q63 G 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0			5.0	5.0	Q42 B	10.8	10.8	Q62	В	6.6	6.3	32A	3.6	4.0
C 2.2 0.1 E 10.1 10.2 E 6.4 5.7 E 0.0 0.0 Q43 B 10.1 10.1 Q63 G 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0	Q19	В	2.4			11.8	11.8	l	С	11.9	11.9	32 E	0.0	0.0
E 0.0 0.0 C43 B 10.1 10.1 Q63 G 0.0 0.0 Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0			2.2			10.1	10.2			6.4				
Q20 B 2.4 0.1 C 11.8 11.8 D 4.6 4.6 C 2.0 0.2 E 9.5 9.5 S 0.0 0.0			0.0	0.0		10.1	10.1	Q63		0.0	0.0			
C 2.0 0.2 E 9.5 9.5 S 0.0 0.0	Q20		2.4	0.1] c	11.8	11.8		D	4.6	4.6			I
					4									l

- DC voltage (1/2) - (Y COMB)

SYMBO	L No. F	REC F	В	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB	SYMBOL No.		REC : PE
INTEG	RATED CI	RCUIT		IC22 1	11.8	11.8		1.5			26	4.6 4.
IC1	1	11.8 1	1.8	2	6.7	6.7	7	0.0	0.0	1	27	4.5 4.
	2	0.0	0.0	3	6.7	6.7	8	4.8	4.8		28	5.0 5.
	3	14.7 1	1.7	4	8.7	8.6	9	0.3	0.3		29	0.0 0.
IC2	1	5.0	5.0	5	6.0	6.0	10	0.0	0.0		30	5.0 5.
	2	0.0	0.0	6	6.0	6.0	11	0.0	0.0	:	31	0.0 0.
	3	7.9	7.9	7	0.0	0.0	12	Р	Р		32	0.0 0.
IC3	1 1	12.1 1	2,1	8	1.6	1.6	13	Р	P	:	33	5.0 5.
	2	0.0	0.0	IC23 1	4.0	4.0	14	5.0	5.0		34	5.0 5.
	3 1	14.7 1	1.7	2	2.9	2.9	15	0.0	0.0	;	35	1.6 1.
IC4	1	5.0	5.0	3	5.0	5.0	16	0.0	0.0		36	4.4 0.
	2	0.0	0.0	4	1.9	1.9	17	0.0	0.0		37	0.3 0.
	3	7.9	7.9	5	1.6	1.6	18	0.0	0.0		38	5.0 5.
IC5	1 1	11.8 1	8.	6	2.8	2.1	19	0.0	0.0		39	0.0 0.
	2	0.0	0.0	7	2.8	2.9	20	0.2	0.2	4	40	5.0 5.
	3 1	14.7 1	1.7	8	0.0	0.0	21	0.0	0.0	4	41	5.0 5.
IC6	1		5.0	9	2.9	2.9	22	5.0	5.0	4	42	0.0 0.
	2	_	0.0	10	0.0	0.0	23	0.0	0.0	4	43	5.0 5.
	3		'.9	11	2.6	2.6	24	0.0	0.0	4	44	0.0 0.
IC7	1		5.0	12	3.1	3.1	25	0.0	0.0	4	45	5.0 5.
	2		0.0	13	2.8	2.8	26	0.3	0.3	4	46	0.0 0.
	3		.9	14	2.2	2.2	27	0.0	0.0	4	47	5.0 5.
IC8	1 _		0.0	IC24 1	8.3	8.3	28	5.0	5.0	4	48	0.0 0.
	2		0.0	2	0.0	0.0	IC29 1	5.0		IC32	1	11.8 11.
	3		.9	3	8.2	8.2	2	1.6	1.6		2	3.1 3.
IC9	1 _	_	0.0	4	0.0	0.0	3	0.0	0.0		3	3.1 3.
	2		0.0	5	9.3	9.3	4	1.2	1.2		4	9.1 9.
1010	3		.9	6	7.4	7.4	5	5.0	5.0		5	2.4 2.
IC10	_	_	.8	7	11.8		IC30 1	1.1	1.1		6	2.4 2.4
	2			IC25 1	8.2	8.2	2	0.3	0.3		7	0.0 0.0
1044			.7	2	0.0	0.0	3	1.1	1.1	1000	8	1.3 1.:
IC11	1		0.0	3	8.2	8.3	4	0.0		IC33	1	8.3 8.3
	2 _		'.9	4 5	0.0	0.0	5	-0.7	-0.7		2	0.0 0.0
IC12	1		.0	5 6	4.4 7.5	7.4	6	4.7	4.8		3	8.3 8.3
1012	2		0.0	7	11.8	11.8	7	-0.8 5.0	-0.9 5.0		4	0.0 0.0
	3		.9	IC26 1	12.1		IC31 1	0.0	0.0		5	9.3 9.3
IC13	1		. <u>.</u> i.1	2	3.2	3.2	2	0.0	0.7		7	7.5 7.5 11.8 11.6
	-		0.0	3	3.2	3.2	3	0.7	0.5	IC34	1	8.3 8.3
	3		·.9	4	8.9	8.9	4	0.0	0.0	1004	2	
IC14			.0	5	2.5	2.5	5	1.4	1.5		3	
1017	2		0.0	6	2.5	2.5	6	2.6	2.6		4	
		_	.9	7	0.0	0.0	7	5.0	5.0		5	0.0 0.0
IC15	1		.0	8	1.3	1.3	8	3.6	3.6		6	7.5 7.5
			_	IC27 1	0.0	0.0	9	4.6	4.7		7	
	_		.9	2	0.0	0.0	10	0.0		IC35	1	4.1 4.
IC21			.2	3	0.0	0.0	11	5.0			2	3.0 3.0
	-		0.0	4	0.0	0.0	12	0.0			3	5.0 5.0
			.2	5	7.9	7.9	13	5.0	5.0		4	1.9 1.9
	- Amore		.2	6	0.0	0.0	14	0.0	0.0		5	1.6 1.6
	5		0.0	7	7.8	7.8	15	0.0	0.0		6	2.2 2.2
			.2	8	7.1	7.1	16	0.0	0.0		7	2.9 2.9
	7	0.0	0.0	9	11.8	11.8	17	0.0	0.0		8	0.0 0.0
	8	7.5	.5	10	7.8	7.8	18	5.0	5.0		9	2.9 2.9
	9 1	11.8 1	.8	11	7.1	7.1	19	0.0	0.0	1	10	0.0 0.0
			٦	12	7.8	7.8	20	0.0	0.0		11	2.7 2.7
				IC28 1	5.0	5.0	21	5.0	5.0		12	3.0 3.0
		j		2	0.0	0.0	22	0.0	0.0		13	2.8 2.8
				3	5.0	5.0	23	0.0	0.0		14	1.6 1.6
				4	0.0	0.0	24	0.0	0.0			
				5	0.0	0.0	25	4.6	4.6		_]	
			_								- +	

- DC voltage (2/2) - (Y COMB)

SYMBOL	No.	REC	PB	SYMB	OL No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL No	REC	PB	SYMBOL No.	REC	PB
IC36	1	0.0	0.0		(4FSC I	PWB)		Q19	В	4.1	4.1	Q39 E	6.0	6.0	CONNE	CTOR	
	2	4.7	4.7	IC1	1	2.6	2.6		С	0.0	0.0) c	0.0	0.0	CN1 1AB	0.0	0.0
	3	5.0	5.0		2	2.0	2.0		Ε	4.7	4.7	E	6.6	6.6	2AB	0.0	0.0
	4	0.0	0.0		3	0.0	0.0	Q20	В	4.1	4.1	Q40 B	6.0	6.0	3AB	7.9	7.9
	5	4.1	4.1		4	3.2	3.2		С	11.8	11.8	C	11.8	11.8	4AB	14.7	14.7
l	6	0.3	0.3		5	5.0	5.0		Е	3.4	3.5	E	5.4	5.4	5A	6.0	6.0
	7	4.7	4.7		6	5.0	5.0	Q21	В	1.7	1.7	Q44 E	6.4	6.4	5 B	9.6	9.6
	8	0.0	0.0		7	3.6	3.6		С	7.1	7.1	C	0.0	0.0	6A	5.0	0.2
	9	4.8	4.8		8	0.0	0.0		E	1.1	1.1	E		7.0	6 B	0.2	0.2
ŀ	10	0.3	0.3	-	TRANS			Q22	В	7.1	7.0	Q45 B		0.1	7A	9.0	9.0
l	11	5.0	5.0	Q1	В	9.8	9.8		C	0.0	0.0			0.0	7 B	5.0	5.0
İ	12	4.7	4.7		C	0.0	0.0		E	7.6	7.7	E	_	0.8	8A	0.0	0.0
ł	13	5.0	5.0		E	0.0	0.0	Q23	G	5.2	5.2	Q46 B		5.2	8 B	0.0	0.0
	14	4.7	4.7	Q2	В	7.4	7.5		D	0.0	0.0		0.0	0.0	9A	0.0	0.0
1	15	0.0	0.0		C	11.8	11.8	004	S	0.0	0.0	C47 E		0.0	9 B	0.0	0.0
1027	16	5.0	5.0	04	E	6.8	6.8	Q24	В	7.1	7.1	Q47 E		2.5	10A	0.0	0.0
IC37	1 2	3.0 5.0	3.0 5.0	Q4	B	6.2 11.8	6.2 11.8		C E	11.8 6.5	11.8 6.5	C	5.0 1.9	5.0 1.9	10 B	0.0	0.0
	3	1.7	1.7	1	E	5.8	5.7	Q25	B	7.1	7.1	Q48 E		0.0	11A 11 B	0.0	0.0
	4	0.0	0.0	Q5	В	3.3	3.3	G25	C	11.8	11.8	C440		4.3	12A	0.0	0.0
1C38	1	4.2	4.2	1	C	0.0	0.0		E	6.5	6.5	Ē	_	1.0	12 B	0.0	0.0
	2	2.5	2.5		E	3.8	3.8	Q26	G	1.2	1.0	Q49 E	-	4.3	13A	4.6	4.6
	3	1.8	1.8	Q6	В	6.2	6.2		D	4.1	4.1	1 0	2.7	2.7	13 B	0.0	0.0
	4	0.0	0.0		С	11.8	11.8		S	0.0	0.0] E	4.9	4.9	14A	0.0	0.0
	5	1.8	1.8	1	E	5.7	5.6	Q27	G	3.4	3.4	Q50 E	2.7	2.7	14 B	0.0	0.0
	6	2.5	2.5	Q7	G	4.4	0.7		D	1.2	1.0] c	5.0	5.0	15A	6.5	6.5
	7	2.5	2.5		D	0.0	9.7		S	0.0	0.0	E	2.2	2.2	15 B	0.0	0.0
	8	5.0	5.0		S	0.0	0.0	Q28	В	1.2	1.0	Q51 G	4.8	4.8	16A	6.1	6.1
IC39	1	0.0	0.0	Q8	В	0.0	9.7		С	5.0	5.0		$\overline{}$	0.0	16 B	0.0	0.0
	2	0.0	0.0		С	1.5	0.0		E	3.4	3.4	S	0.0	0.0	17A	6.5	6.5
1	3	0.0	0.0		E	0.0	0.0	Q29	В	3.8	3.8	Q52 E	-	3.4	17 B	0.0	0.0
	4	3.6	3.6	Q9	В	1.5	0.0		C	0.0	0.0]	5.0	5.0	18A	7.0	7.0
1	5	3.6	3.6	}	C	11.8	11.8	020	E	4.4	4.4	Q53 E		2.8	18 B	0.0	0.0
1	6 7	3.8	0.0	Q10	E B	0.9 6.5	0.1 6.5	Q30	B	0.7 5.0	0.7 5.0	Q53 E	5.0	4.2 5.0	19A	9.1	9.1
1	. 8	4.2	3.8 4.2	210	C	0.0	0.0		E	5.0	5.0	E		3.6	19 B 20A	0.0	0.0
	9	0.1	0.0		E	7.1	7.1	Q31	В	8.8	8.8	Q55 G	+	4.1	20A 20 B	0.0	0.0
1	10	0.1	0.1	Q11	В	6.5	6.5	4 0.	C	11.8	11.9		0.2	0.2	21A	0.2	0.1
	11	5.0	5.0		c	12.0	12.1		E	8.1	8.1	s	0.0	0.0	21 B	0.0	0.0
	12	2.7	2.7		E	5.9	5.8	Q32	В	8.2	8.2	Q56 E	-	8.6	22A	4.0	4.0
	13	0.0		Q12	В	4.6	4.6		С	0.0	0.0	1 0	$\overline{}$	11.8		0.0	0.0
	14	5.0	5.0		С	0.0	0.0		Ε	8.8	8.8	E	8.1	8.1	23A	2.6	2.6
IC40	1	2.7	2.7		E	5.2	5.3	Q33	В	6.1	6.1				23 B	0.0	0.0
	2	2.6	2.6	Q13	В	8.9	8.9		С	0.0	0.0				24A	0.0	0.0
	3	0.0	0.0	1	C	12.1	12.1		E	6.7	6.7	1			24 B	0.0	0.0
	4	0.0	0.0	-	E	8.4		Q34	В	6.1	6.1				25A	0.0	0.0
	5	5.0		Q14	В	3.8	3.8		C	11.8	11.8				25 B	0.0	0.0
1	6	2.4	2.4	1	C	5.0	5.1	00=	E	5.5	5.5				26A	0.0	0.0
	7	2.4	2.4		E	3.2	3.1	Q35	B	2.7	2.7				26 B	0.0	0.0
ICII	8	5.0		Q15	В	3.1	3.1		C	0.0	0.0				27AB	0.0	0.0
IC41	1	7.0	7.0	-	C	0.0	0.0	025	E B	3.3	3.3				28AB	0.0	0.0
	2	11.8 2.7	11.8	Q16	E B	3.7 0.6	0.6	Q36	C	9.1	9.1				29AB 30AB	0.0	0.0
i	3 4	0.0	0.0	1	C	5.1	5.1		E	8.5	8.5	1			31AB	0.0	0.0
		0.0	0.0	1	E	3.5	3.6	Q37	В	6.1	6.1	1			32AB	0.2	0.0
				Q17	G	3.5	3.6		C	0.0	0.0	1			02.0	7.5	
					D	0.6	0.6		E	6.8	6.7	1					
					s	0.0	0.0	Q38	В	6.7	6.7						İ
				Q18	G	0.6	0.6		С	11.8]				İ	
1					D	4.6	4.7		E	6.1	6.1						
					S	0.0	0.0										

- DC voltage (1/2) - (OUTPUT)

SYMBOL No.	REC	PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB	SYMBOL No.	REC	PB
INTEGRATED		IIT	IC16 1	0.7	3.5	IC21 8	0.0	_	IC29 1	5.0	5.0
IC 1 1	11.7	11.7	2		3.5	9	5.0	5.0	2	3.6	3.6
2	0.0	0.0	3	1.4	3.2	10	0.0	0.0	3	2.9	2.9
3	14.7	14.7	4	10.9	10.9	11	0.1	0.1	4	2.9	3.0
IC 2 1	11.9	11.9	5	0.0	0.0	12	5.0	5.0	5	2.9	2.9
2	0.0	0.0	6	0.0	0.0	13	5.0	5.0	6	3.0	3.0
3	14.7	14.7	7	0.0	0.0	14	5.0	5.0	7	3.0	3.0
IC 3 1	11.7	11.7	8	1.0	1.8	15	0.0	0.0	8	1.8	1.8
2	0.0	0.0	9	0.7	3.5	16	5.0	5.0	9	3.0	3.0
3	14.7	, 14.7	10	0.7		IC22 1	4.7	4.8	10	1.9	1.9
IC 4 1	11.7	11.8	11	1.0	1.9	2	11.8	11.8	11	3.0	3.0
2	0.0	0.0	12	-	0.0	3	0.0	0.0	12	0.0	0.0
3	14.7	14.7	13		11.9	4	4.0 0.0	4.0 0.0	13	2.9 3.0	2.9 3.0
IC 5 1	11.7	11.8	14 IC17 1		11.9 3.5	5	4.7	4.7	14 15	0.0	0.0
2	0.0		1	1.4	3.6	7	0.0	0.0	16	1.2	1.2
IC 6 1	14.7 5.0	14.7 5.0	3		1.8	8	4.3	4.3	17	2.8	2.8
	0.0	0.0	4	0.0	0.0	9	2.2	0.4	18	2.1	2.1
3	8.0	8.0	5		1.9	IC23 1	8.3	8.3	19	2.6	2.7
IC11 1	11.7	11.7	6		3.7	2	0.0	0.0	20	2.8	2.8
2	6.5	6.5	7		3.7	3	8.3	7.7	21	2.8	2.8
3	6.5	6.5	, s		0.0	4	0.0	0.0	22	2.8	2.8
4	7.6	-		_	0.0	5	4.2	4.2	23	1.2	1.2
5	5.7	5.7	2		4.5	6	7.5	7.5	24	2.8	2.8
6	5.7	5.7	3	-	4.2	7	11.8	11.8	25	2.5	2.2
7	0.0	0.0	1 4			IC24 1	0.6	0.6	26	2.9	2.9
8	1.1	1.1	5		11.8	2	7.5	7.5	27	0.0	0.0
IC12 1	9.6	9.6	6	11.8	11.8	3	7.5	7.5	28	1.8	1.8
2	6.0	6.0	7	11.4	11.4	4	0.0	0.0	29	2.9	2.9
3	4.0	4.0	8	11.9	11.9	5	0.0	0.0	30	2.1	2.1
4	0.0	0.0	IC19 1	0.0	0.0	6	6.9	6.9	IC31 1	6.3	6.3
5	4.0	4.0] 2	11.9	11.9	7	11.8	11.8	2	11.7	11.7
6	5.8	5.8] 3		0.0	8	0.5	0.5	3	2.7	2.7
7	5.8	5.8] 4			IC25 1	8.3	8.3	4	0.0	0.0
8	11.7	11.7	5		11.9	2	0.0	0.0	1	5.0	5.0
IC13 1	8.1	8.1	[6		0.0	3	8.3	8.3	2	5.0	5.0
2	0.0	0.0	7		11.9	4	0.0	0.0	3	0.0	0.0
3	8.1	8.1	8		0.0	5	3.8	0.8	4	5.0	5.0
4	0.0		9		11.9	6	7.5	7.5	5	0.0	0.0
5	0.0		10		0.0	7	11.8	11.8	6	0.0	0.0
6	8.1		11			IC26 1	8.3	8.3	1		0.0
7	0.0		12		0.0	2	0.0	0.0	4	4.8	4.8
8	7.3	+	13		0.4	3	8.2	8.2	1	4.8 0.0	4.8
IC14 1	11.7	_	14 15		11.9 0.0	5	4.2	0.0 4.2	4	5.0	0.0 5.0
			4		11.9	6	7.5	7.5	•		0.6
2 3			IC20 1	_	11.7	4	11.8	11.8	1		0.6
3	7.7	_	1			IC27 1	0.6	0.6	1		5.0
5	1.9		4		6.0	2			IC33 1		11.8
6	1.9		4		7.6	3		7.5	1		0.0
7	0.0		1		5.3	4	0.0	0.0	1		14.7
8	1.1			_	5.3	5			IC34 1		11.8
IC15 1		-	4		0.0	6	6.8	6.8	1	0.0	0.0
2			4	-	1.1	7	11.8	-	1	-	14.7
3		+	IC21 1		0.0						
4			4	4.9	4.9	IC28 1	0.5	0.5	1		
5			1	5.0	5.0	2	6.9	6.9]		
6	1.4		1	0.0	0.0	3	$\overline{}$	6.9]		[
7	1.4] 5	4.9	4.9	4	0.0	0.0			
8	11.7	_] 6	0.1	0.1	5	0.0	0.0]		
			7	4.9	4.9	6	6.3	6.3			
i						7		11.8	4		
						8	0.5	0.5	L		
											_

19 OUTPUT 4-45

- DC voltage (2/2) - (OUTPUT)

SYME	BOL No.	REC	PB	SYMBOL No.	REC	PB	SYMBOL	No.	REC	PB	SYMB	OL No.	REC	PB
	TRANSIS	STOR		Q23 B	4.7	6.2	Q43	В	3.2	3.1		CONNEC	CTOR	
Q 1	В	6.5	6.5	С	6.6	5.0		С	7.4	7.4	CN 1	1AB	0.0	0.0
l	С	11.7	11.7	E	0.0	0.0		E	2.5	2.5		2AB	0.0	0.0
	Ε	5.8	5.8	Q24 B	11.0	11.0	Q44	В	7.4	7.4		3AB	8.0	8.0
Q 2	В	5.8	5.8	c	0.0	0.0		C	11.7	11.7		4AB	14.7	14.7
	С	0.0	0.0	E	11.4	11.5		E	6.7	6.7		5A	6.0	6.0
	E	6.5	6.5	Q25 B	11.4	11.5	Q45	В	2.1	2.9		5 B	0.0	0.0
Q3	В	5.8	5.8	С	11.9	11.9		C	2.9	2.1		6A	5.0	0.2
l	С	0.0	0.0	E	10.8	10.8		E	0.0	0.0		6 B	0.2	0.2
	E	6.5	6.5	Q26 B	2.9	2.5	Q46	В	4.0	4.0		7A	0.0	0.0
Q 4	В	7.6	7.6	С	4.6	5.6		C	11.8	11.8		7 B	4.4	4.4
1	С	11.7	11.7	E	0.0	0.0		E	3.4	3.4		8A	0.0	0.0
	E	6.9		Q27 B	10.0	10.0	Q47	В	6.9	6.9		8 B	0.0	0.0
Q 5	В	0.4	0.4	С	0.0	0.0		C	0.0	0.0		9A	0.0	0.0
	С	11.7	11.7	E	0.0	0.0		E	7.6	7.5		9 B	0.0	0.0
	E	11.7		Q28 B	0.0	0.0	Q48	В	6.9	6.9		10A	0.0	0.0
Q 6	В	9.6	9.6	C	10.0	10.0		C	11.8	11.8		10B	0.0	0.0
	C	11.7	11.7		0.0	0.0	0.0	E	8.4	8.5		11A	0.0	0.0
	E	9.0	9.0	Q29 B	$\overline{}$	10.0	Q49	В	7.5	7.5		11 B	0.0	0.0
Q 7	В	6.4	6.4	C	0.0	0.0		C	11.8	11.8		12A	0.0	0.0
	C	11.7	11.7	E	0.0	0.0	0-0	E	6.9	6.9		12 B	0.0	0.0
<u> </u>	E	5.8	5.8	1		0.0	Q50	В	7.2	7.2		15A	6.5	6.5
Q 9	В	5.8	5.8	ļ c	10.0	10.0		C	0.0	0.0		15 B	0.0	0.0
	C	10.5	10.5		0.0	0.0	Q51	E	7.5	7.5		16A	6.1	6.1
Q10	E	5.2 10.5	10.5	Q31 B C	11.7	11.7	ופטו	c	11.8	8.0 11.8		16 B 17A	0.0 6.5	0.0 6.5
QIO	C	7.9	7.9	E	0.0	0.0		E	6.2	9.3		17 B	0.0	0.0
	E	11.2		Q32 B	6.0	6.0	Q52	В	6.3	6.4		18A	0.6	0.6
Q12	В	7.7	7.7	C	11.7	11.7	GOE.	C	0.0	0.0		18 B	0.6	0.6
\\ \text{\tinx}\\ \text{\tint{\text{\tinit}\\ \text{\te}\titt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi{\text{\texi}\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\tet	C	11.7	11.7	1	5.4	5.4		E	6.8	6.9		19A	6.9	6.9
	E	6.4	6.4			5.4	Q53	В	6.4	6.4		19 B	0.0	0.0
Q13	В	7.7	7.7	4	0.0	0.0		c	11.8	11.8		20A	2.3	2.1
	C	11.7	11.7	1	6.0	6.0		Ē	7.6	8.1		20 B	0.0	0.0
	E	6.5	6.5		5.4	5.4	Q55	В	1.4	1.4		21A	0.0	0.0
Q14	В	3.2	3.2		0.0	0.0		c	3.6	3.6		21 B	0.0	0.0
	С	0.0	0.0	1	6.0	6.0		E	0.8	0.8		22A	4.2	4.2
1	E	3.9	3.9	Q35 B	7.1	7.1	Q56	В	3.6	3.6		22 B	9.7	9.7
Q15	В	1.4	3.5	С	11.7	11.7		C	5.0	5.0		23A	3.9	3.9
	С	0.0	0.0	E	11.7	11.7		E	2.9	2.9		23 B	0.0	0.0
	Ε	2.0	4.2	Q36 G	7.6	7.6	Q61	В	9.9	9.9		24A	5.0	5.0
Q16	В	1.4	3.7	D	8.1	8.1		C[0.0	0.0		24 B	0.0	0.0
	C	0.0	0.0		7.6	7.6		E	0.0	0.0		25A	6.9	6.9
	E	2.0	4.2	Q37 B	0.6	0.6	Q62	В	3.4	3.4		25 B	0.0	0.0
Q17	В	11.4	11.4	С	0.0	0.0		C	7.6	7.6		26A	3.4	3.4
	С	0.0	0.0	E	0.0	0.0		Е	2.7	2.7		26 B	0.0	0.0
	. E	0.0	0.0	1		0.6	Q63	G	3.9	0.8		27A	0.0	0.0
Q18	В	11.4	11.4	C	0.0	0.0		D	0.1	11.9		27 B	0.0	0.0
	C	0.4	0.4		0.0	0.0		S	0.0	0.0		28A	0.0	0.0
	E	11.9		Q39 B	7.6		Q64	G	0.0	0.0		28 B	0.0	0.0
Q19	G	0.0	0.0	4	11.7	11.7		D	0.0	0.0		29A	0.0	0.0
	D	11.9	11.9		7.0	7.0	000	S	0.0	0.0		29 B	0.0	0.0
-	<u>s</u>	0.0		Q40 B			Q65	В	7.5	7.5		30A	0.0	0.0
Q20	В	11.3	11.3	Ç	0.0	0.0		c	11.9	11.8		30 B	0.0	0.0
	C	11.9	11.9	E 041 B	6.7	6.7	OSS	E	6.9	6.9		31A	0.0	0.0
021	E	11.9		Q41 B		1.7	Q66	В	7.5	7.5		31 B	0.0	0.0
Q21	В	0.6	0.6	1	7.0	7.0		C	11.9	11.8		32A 32 B	0.0	0.0
	C E	0.0	0.0	Q42 B		6.9	Q67	G	0.1	6.9 0.1		32 B	0.0	0.0
Q22	В	4.6	6.4	C C	11.7	11.7	201	D	0.0	0.0			1	
المكك	C	7.2	0.0	E		6.3		s	0.0	0.0				- 1
	E	11.9	11.9		5.4	3.0			0.0	<u> </u>				- 1
			. 1.9				<u> </u>						1	لــــــــــــــــــــــــــــــــــــــ

- MAIN WAVEFORMS OF OUTPUT CIRCUIT -

B C 119 OUTPUT 4-46 4-46 E F G H

- DC Voltage (1/2) -

SYMBOL		age (1/	PB	SYMBOL	No	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB
		ED CI		IC4					. .			IC605			0.0
IC1	·				1234567890123456	115055555555555555555555555555555555555	115055555555555655		12345678	0.0 5.3 5.3 -11.5 5.3 0.0 11.2	0. 0 5. 3 5. 3 -11. 5 5. 3 0. 0 11. 2		15 16 17 18 19 20	- - - -	0. 0 11. 9 12. 0 11. 9 0. 1 5. 1
	967-809	0. 2 4. 7 8. 9 4. 7	9. 1 4. 7 8. 9 4. 7		8 9 10 11	5.5.5.0. 5.880 5.800 5.8	5.8 5.8 5.0	IC12	1 2 3	11. 2 14. 6 0. 0 12. 0	11. 2 14. 6 0. 0 12. 0	IC607	12345678		99808998 55505555 11
	10 11 12 13	4. 7 4. 6 0. 0 4. 8	4.7 4.8 0.0 4.8		13 14 15 15	5.56.5.c	5.56.55 5.56.55	IC13	1 2 3	0. 0 -14. 6 -12. 3	0. 0 14. 6 12. 3		5678	_	
	15 16 17 18	0. 1 0. 0 0. 0 4. 7	0. 1 0. 0 0. 3 4. 7	IC5	-			IC14	1 2 3	14. 6 0. 0 12. 0	14. 6 0. 0 12. 0	IC608	1234	1	55556
	1234567890123456789012345678	4.0672797760811007777777777777777777777777777777	4.044.9484.44.049.000.444.44.04.44.44.44.44.44.44.44.44.4		1234567890123456	0.1000000000000000000000000000000000000	0.1099999999999911	IC301	12345678		0. 0 0. 0 0. 0 -11. 5 0. 0 0. 0 11. 2		1234567890123456		99999999999999999999999999999999999999
	25 26 27 28	4. 7 4. 7 4. 7 4. 7	4. 7 4. 7 4. 7 4. 7 4. 7		10 11 12 13	11.00	11.99 11.99 11.90	IC401					11 12 13 14 15		00909
IC2	1 2	4. 5 4. 6	4.5 4.6		15 16	0. 0 5. 1	9. I 5. 1	10401	1 2 3	14. 6 0. 0 12. 1	_ _ _	IC609	1		
	34567890	0.06 4.7 4.7 4.8 4.7 4.7	0.06 4.7 9.17 8.77 4.7	IC6	1234567	0.0 0.0 0.0 0.0 0.0 11.9	0. 0 0. 1 0. 0 11. 9 11. 9 11. 9	IC402	12345678	6.6.6.0.000 6.6.0.6.6.6.000 12.000	- - - - - -	1000	1234567890123456		X666660000
	1234567-890-1234567-890-12346	4.7 0.8 8.9 0.0 0.0 4.7	4.8 0.0 4.8 9.1 0.1 0.0 0.3		1234567890123456	0.100000000000000000000000000000000000		IC602		12. 0 - - - - -	666600		10123456 1123456		90000000000000000000000000000000000000
	90123345678 22222222222	4.044.4.8.4.4.0.0.0.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	5606717977808110378778707777	IC7	12345	5. 1 12. 0 0. 0 0. 0 0. 0 12. 0 11. 9 11. 9 11. 9	5. 1 12.00 0.00 0.00 12.09 11.99 11.99 11.99		1203456789012334		6.6.6.6.0.0.6.6.6.6.0.1.2. 112.	IC610	12345678	- - - - - - - - -	0.4604706 11.
IC3	1234567890123456	115055505550555655		IC8	6 7 8 9 10 11 12			10603	12345678		66505660 12:	IC611	12345678		5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
	67	5. 8 0. 0 5. 8	5. 8 5. 5 5. 8		3 4	0. 0 0. 0 0. 1	0. 0 0. 0 0. 0	IC604	+	_					
	10	5.8	5.8		5	0.1	0.0		3	_	5. 8 5. 8	Q7	RAN	SIST	
	12 13 14	0.08 5.8 5.6	0.5.5.6. 5.6.		123456789012	12.0 0.0 0.1 0.1 12.0 11.9 11.9 11.9	12.0 0.0 0.0 0.0 0.0 12.9 11.9 11.9		12345678		55505555 11.		BCE	-	0. 2 0. 0 0. 0
	15	5. 8 5. 6	5. 8	IC9	-	i		IC605				Q8	B C E	<u>-</u>	0. 2 0. 0 0. 0
	-		:	IC10	1 2 3	12. 0 0. 0 9. 1	12. 0 0. 0 9. 1		3456		0. 0 11. 9 0. 0	Q 9	B C E		0. 2 0. 0 0. 0
					1 2 3	12. 0 0. 0 8. 9	12. 0 0. 0 8. 9		7 8 9 10	_ _ _	11. 9 0. 0 0. 0 6. 7	Q 10	B C E	<u>-</u> -	0. 2 0. 0 0. 0
									123456789011234	_ _ _	0.1 0.1 0.0 11.9 0.0 11.0 0.0 11.5 0.0 0.0 0.0 0.0	Q11	B C E	=	0. 7 0. 0 0. 0

— DC Voltage (2/2) —

SYMBOL		REC (2/	PB	SYMBOL 1	lo.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	. —	REC	PB
Q 12	B C E		0. 7 0. 0 0. 0	Q 39	B C E	=	0. 2 0. 0 0. 0	Q424	BCE	0. 8 0. 0 0. 0		Q615	BCE	_	0. 0 12. 0 12. 0
Q17	BCE	=	0.50 5.0	Q 40	B C E	_	0. 2 0. 0 0. 0	Q425	BCE	11. 2 11. 9 11. 9	-	C O) R
Q 18	E BCXT	<u>-</u>	0. 0 0. 0 5. 0	Q 41	B C E		11. 5 0. 0 11. 5	Q426	BCE	-1. 1 8. 8 0. 2		CNI	1 2 3 4	0. 0 0. 0 0. 0	_ _ _
Q19	-	-		Q 42		_		Q427				CN2	1 2	14. 9 0. 0	-
	E CE		0. 0 9. 0 0. 0		BCE	_	11. 5 0. 0 11. 5		BCE	2. 0 8. 9 3. 5	_	CN3	1/2	0.0	_
Q 20	BCE		0. 0 9. 0 0. 0	Q 43	BCE	_		Q428	BCE	6. 0 12. 0 5. 4	_ 	CN4	1234	=	4.7 0.0 0.5
Q 21	B C E	=	11. 9 0. 0 12. 0	Q 407	BCE	0. 4 8. 3 0. 3	_	Q429	BCE	6. 0 12. 0 5. 4	=	CN5	1 2 3	=	0. 0 0. 0 0. 0
Q 22	B C E	_ 	11. 9 0. 0 12. 0	Q 408	BCE	0. 5 8. 7 0. 4		Q 431	B C E	6. 7 0. 1 0. 0		CN6	1 2 3	- - -	0. 0 0. 0 0. 0
Q 23	BCE	_		Q 409	BCE	0. 4 8. 3 0. 3	_ 	Q 432	B C E	6.5 0.1 0.0		CN7			15. 0 0. 0 -14. 6
Q 24	BCE		=	Q 410	B C E	0. 5 8. 7 0. 4		Q 601	BCE	=	0. 1 0. 0 0. 0	CN8	123		
Q 25	BCE		11. 9 0. 2 12. 0	Q411	B C E	0. 7 0. 1 0. 0		Q 602	B C E		11. 9 0. 0 12. 0		12345	_ _ _	0.000
Q26	BCE		11. 9 0. 2 12. 0	Q412	BCE	0. 7 0. 1 0. 0		Q 603	BCCE	_	0. 0 0. 0 0. 0	CN9	1234		0. 0 0. 0 0. 0
Q27	BCE	=	11. 9 0. 0 12. 0	Q413	BCE	_	_ _ _	Q604	B C E	=	11. 9 0. 0 12. 0	CN10	12345		0.00
Q 28	BCE	=	11. 9 0. 0 12. 0	Q414	B C E	9. 3 12. 1 8. 7	_	Q 605	BCE	=	11. 5 0. 0 0. 0	CN11	 	_	
Q 29	BCE	_	11. 9 0. 0 12. 0	Q415	B C E	0. 6 11. 3 0. 9	_	Q606	BCE	=	0. 0 11. 5 11. 5	CN12	1 2		5. 0 0. 0 5. 1
Q 30	B C E	=	11. 9 0. 0 12. 0	Q 416	B C E	0. 7 11. 4 1. 0	_	Q 607	B C E				12345678	_ _ _	5.10
Q 34	B C E	=	11. 9 12. 0 11. 2	Q417	BCE	0. 6 11. 3 0. 9	_	Q608	BCE		-0. 2 0. 0 0. 0		8		Ŏ. Ŏ O. O
Q 35	B C E	_	-12. 2 -12. 3 -11. 5	Q 418	BCE	0. 6 11. 4 1. 0	=	Q 609	BCE	_ 	11. 5 -0. 2 11. 6	The state of the s			
Q 36	B C E	=	:	Q 419	BCE	0. 8 0. 1 0. 0	=	Q 610	B C E	_ 	-1. 1 0. 0 0. 0				
Q 37	123456	=	5.003300 5.00500	Q 420	BCE	0. 8 0. 1 0. 0		Q 611	BCE	=	0. 0 11. 8 0. 0				
	-+			Q421	B C E	0. 8 0. 0 0. 0	-	Q 612	BCE	= =	11. 8 11. 9 11. 2				
Q 38	123456	_ _ _ _	5. 3 0. 3 5. 0 0. 3 0. 3	Q422	B C E	0. 8 0. 0 0. 0		Q 613	BCE	=	11. 2 0. 0 0. 0				
	56	_	0. 0	Q 423	BCE	0. 8 0. 0 0. 0		Q614	BCE		12. 0 0. 0 12. 0				

2 AUDIO-1 4-53

4-53

55

	— DC Voltage —	PRK10061 AUDIO2 PWB ASS'Y
_	SYMBOL No. REC PB SYMBOL No. REC PB SYMBOL No. REC PB	22PRK10061-01-02 AUDIO2 PWB PRK10061 AUDIO2 PWB ASS Y
5	1C1 1 - 10.3 1C11 1 - 0.0 E - 0.0 E	RIO8
	$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	R35 R37 R107
	8 - 120 8 - 03 E - 00	
		R31 R31 R39 R31 R39 R31 R39 R31 R39 R31 R39 R31 R39 R31 R39 R31 R39 R31 R39 R31 R31 R39 R31 R31 R31 R31 R31 R31 R31 R31 R31 R31
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R29
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R76 R9 R9 R97
4	023 B - 0.1	R73 B Q8 C28 C28 C28
	3 - 61 E - 0.0 024 B - 0.1	
	7 - 60 E - 00 CONNECTOR	
	1C5 1 - 10.3	
		Ret Ret Ret Ret Ret Ret Ret Ret Ret Ret
	100 2 - 6.0 - 10AB - 0.2	
3	3	
	[IC7 1 - 12.0 - 15AB - U.U	R71
	1C8 1 - 9.5 Q10 8 - 15 0 2348 - 0.0 B	R23
	3 - 0.0 0 2448 - 0.0 0 5 - 0.0 0 5 - 0.0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	8 - 12.0	
2	2 3 - 60 Q13 B - 0.5 32AB - 0.0 -	ICH RIO RIO RIO RIO RIO RIO RIO RIO RIO RIO
_	7 - 120 Q14 B - 120 1C10 1 - 6.0 E - 120 1 - 6.0	
	3 - 600 Q15 B - 0.0 5 - 600 E - 0.0	0 CNE 10 CNE 15 20 10 23 20 10 23 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20
	A	
1	1	
'		
_		
	A B	C 22 AUDIO-2 4-55 E F G H

59

— DC Voltage (1/2) —

SYMBOL !	Vo.	REC REC	PB	SYMBOL	No.	REC	PB	SYMBOL 1	No.	REC	PB
INTEG	RAT	ED CI	RCUIT	IC4	10 11	_	0. 0 3. 1	IC12	1 2	=	6. 1 6. 1
IC1	1 2	_	0. 0 6. 1		10 112 133 145 156 178 190		010250904440 03032034440		12345678	=	6.6.6.0.0 6.6.6.6.6.0.0 12.0
	4 5	_	6. 1 6. 1		15 16	_	0. 0 3. 9		67	_	6.0
	6	-	6. 1 6. 1		17 18 10	_	4. U 4. 4	IC13	-	15.0	
	9 10	-	6. 1 6. 1		_			1010	1 2 3	15. 0 0. 0 12. 1	15. 0 0. 0 12. 1
	11 12 13 14	- -	6. 1 0. 9 0. 4 0. 1	IC7	234	_ _ _	3. 2 0. 0 2. 6	IC14	1 2 3	5. 1 0. 0 11. 9	5. 1 0. 0 11. 9
	123456789011234567890122345678		0111111101111094100166666666666666666666		12345678901123456789012322567889933335667889444444		7206111609735666066666666606305062601504222222224	IC15	1 2 3	5. 1 0. 0 12. 0	5. 1 0. 0 12. 0
	19 20 21	_ _ _	6. 1 6. 1 6. 1		10 11 11	=	0. 0 2. 9 3. 7	IC16	1 2	_	000001100000000000000000000000000000000
	22 23	_	6. 1 6. 1 6. 1		12 13 14	_	4.3 2.5 2.6		1234567-890112		0. 0 5. 1
	25 26	_	6. 1 6. 1		15	_	2.6		67	· =	5. 1 0. 0
	27 28				18	_	2.6 2.6		9 10	_	0. 0 12. 0
IC2	1 2	_	0.0 6.1		20 21	_	2.6 0.0		11 12		
	5 6	_ _ _	6. 1 6. 1 6. 1		23 24 25	=	4.3 0.5 0.5	IC17	1 2 3	12. 1 0. 0 5. 1	12. 1 0. 0 5. 1
	123456789011123456789901223245678		011111101111041101011111111111111111111		26 27 28 29	_ _ _	5. U 0. 0 2. 6 0. 2	IC18	1 2 3	14. 9 0. 0 8. 3	0. 0 0. 0 0. 0
	11 12	_	6. 1 0. 9 0. 4		30 31 32	=	0.0 5.1 0.5	IC20	1 2	5. 9 8. 1	0. 0 0. 0
	14 15	<u>-</u>	0. 1 0. 0	ļ	33	=	4.3		3 4 5	2. 2 5. 6	0.0
	17 18	_	6. 0 6. 1		36 37	-	2.6		123456789	582506267	0.00 0.00 0.00 0.00 0.00 0.00
	19 20 21	-	6.1		38 39 40	=	0.0		-		i
	22 23 24	-	6. 1 6. 1 6. 1		41 42 43	- -	2.6 2.6 2.1	IC21	1234	4.7 8.2 2.2 0.0	0. 0 0. 0 0. 0 0. 0
	25 26 27		6. 1 6. 1 6. 1	IC8	+	_		1022	+-		
IC3	-				12345678	-	6.1 6.0 6.0 6.1 6.1 12.1		1 2 3 4	4. 7 8. 2 2. 2 0. 0	0. 0 0. 0 0. 0 0. 0
100	2 3	=	3.0		56	_	6.1				
	123456789011234567890		60605-66660-02150904440		_						
	7 8	_	2.6	IC10	12345678	- - - - - -	6. 0 6. 1 6. 0 6. 1 6. 1 12. 1				
	10 11	=	0.0 3.1		1 4 5	=	0. 0 6. 1				
	12	=	0.0 3.2		6	_	6. 1				
	15 16	=	0.0	IC11		-					
	17 18 19	=	4.0 4.4 4.4		34	_	6.1				
IC4	-	-		-	12345678	-	6. 1 6. 1 6. 0 6. 0 6. 0 12. 0				
104	2 3	=	3.0		8	_	12.0				
	5	=	0.0								
	123456789		232001666								
	9		2.6			<u> </u>	<u></u>				

— DC Voltage (2/2) —

SYMBOL	No.	REC	PB	SYME	BOL No.	REC	PB
TR	A N	SIST	0 R	Q27	BCE	1. 1 3. 8 0. 4	0. 0 0. 0 0. 0
Q2	BCE	12.0 0.0 12.1	0. 1 12. 1 12. 1		Ĕ		
	Ĕ	12. 1		Q 28	BCE	4. 1 0. 0 4. 7	0. 0 0. 0 0. 0
Q 3	BCE	_	5. 1 0. 0 0. 0			4.7	
	Ě	_		Q 33	BCE	_	5. 1 0. 0 2. 5
Q4	BCE	_	4. 5 5. 1 5. 1	005			
0=				Q35	BCE	_	5. 1 0. 0 2. 5
Q 5	B C E	_	2. 1 2. 6 2. 6		CONI	NECT	0 R
Q 6				CN1	31AB	_	6.1
Q O	B C E	_	2. 1 2. 6 2. 6	0.112	30AB	-	0.0
Q 9					28AB	-	6.1
	B C E	_ _ _	5. 1 0. 5 0. 5		29AB	-	0.0
Q 10	В	5. 1	4.4		18B	-	0.1
	B C E	5. 1 0. 0 5. 1	4. 4 5. 0 5. 1		21AB	_	15. 2
Q11	B C E	12.0 -0.3 12.1	0. 0 12. 0 12. 1		22AB	-	0.0
	Ĕ				26AB 25AB	_	0. 0 0. 0
Q12	B C E	0. 6 8. 2 8. 2	0. 0 0. 0 0. 0		26AB 25AB 23AB 24AB	=	0. 0 0. 0 0. 0 0. 0
		<u> </u>			7A	-	0.0
Q14	B C E	7. 5 8. 1 8. 2	0. 0 0. 0 0. 0		7B	-	0.0
Q15	_				15A] –	0.0
ATO	BCE	6. 8 0. 0 0. 0	0. 0 0. 0 0. 0		15B	_	0.0
Q 16	_				14AB	_	0.0
415	BCE	0. 7 12. 0 0. 0	9. 9 0. 0 0. 0		13AB	_	0.0
Q17	В				12AB	-	0.1
	BCE	3. 9 8. 1 3. 3	0. 0 0. 0 0. 0		7AB	_	0.0
Q18	B	3.9	0.0		6AB	_	0.0
	C E	8. 1 3. 3	0.0		5AB	_	0.0
Q19	BCE	3. 9 8. 1 3. 3	0. 0 0. 0 0. 0		8A	_	12.0
					9B	-	-0.2
Q 20	BCE	3. 9 8. 1 3. 2	0. 0 0. 0 0. 0		19B	-	9.7
001					19A	_	0.1
Q21	BCE	2. <u>1</u> 6. <u>5</u> 1. 5	0. 0 0. 0 0. 0		9A	_	0.0
Q 22	-				10A	_	0.0
400	B C E	1. 5 0. 0 2. 2	0. 0 0. 0 0. 0		10B	_	5.0
Q 23	-						
	B C E	5. 1 0. 0 5. 1	0. 6 5. 1 5. 1				
Q24	B C E	0. 0 0. 0 0. 0	5. 1 0. 0 0. 0				
	Ĕ	0.0					
Q 25	BCE	4. 1 7. 9 3. 5	0. 0 0. 0 0. 0				
Q26	BCE	6. 8 3. 8 7. 5	0. 0 0. 0 0. 0				
	E	7.5	0.0				

24, 25 XLR (AUDIO-4, -5) 4-59

E

4-59

G

63

SYMBOL No. REC PB SYMBOL No. REC PB SYMBOL No. REC REC PB SYMBOL No. REC	6	— DC	Volt	tage —									
Time	_			1			No.	REC	1				PB
Time			Т.	_		IC107	123456	-	12. 1 0. 0 0. 0 0. 0 -12. 1		1		0 R
Time	5		5678	_ _ _	0.0 0.0 0.0 12.1	10100	+		0.0 0.0 0.0 12.1		-		0.
4		IC2	1 2 3		0. 0 0. 0 0. 0	10108	234		0.0		-	=	0.00
4 TC3 1	_		45670		0.0		6780		0.0 0.0 0.0		1		0.00
3		IC3	1	_	0.0	IC109	┿	 	12. 1 0. 0 0. 0		-		0. 0. 0.
3	4		45678	_ _ _ _	-12. 2 0. 0 0. 0 0. 0 12. 1		45678	-	-12.1 0.0 0.0 0.0		-		0,
3		IC4	ļ -		0.0	IC110	1		12. 1 12. 1 0. 0		1 2 3	=	0. 0. 0.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			567	_ 	-12. 2 0. 0 0. 0 0. 0		3456		0. 0 0. 0 -12. 1 0. 0		1 2 3	=	0. 0. 0.
2		IC5	-		0. 0 0. 0			=			+		12. 0. -12.
2	٠		3456	_ _ _	-12.2 0.0 0.0			T -					15. 0. -15.
2 Chi Ch	3	IC6	-		0. 0 12. 1 0. 0	Q 2	-		1			=	0. 0. 0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2345	_ _ _	0. 0 0. 0 -12. 2 0. 0	Q 3	<u> </u>	 			-		0. 0. 0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	_		Q 4	╄	=			2 3	_	0. 0. 0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ļ			Q 5	-	=)		+		0. 0. 0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			0. 0 -14. 9 -12. 2		Q 6	<u> </u>		ı	UNIS	234		0. 0. 0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		-	-	_	Q 7	<u> </u>	=	1	CN16	1 2 3 4	<u>-</u> - -	0. 0. 0. 0.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-14. 9 -12. 1	-14.9 -12.1	Q 8		=	<u> </u>	CN17	-	= .	0. 0. 0.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2345	_ _ _	0. 0 0. 0 -12. 2 0. 0	Q 9				CN18		<u>-</u>	0. 0. 0.
1		10100		_	0. 0 0. 0 12. 1	Q 10	B C E	_ _ _	12.0 0.0 12.1	CN19	1 2 3	=	12. 0. -12.
	1	10106	12345678	- - - - -	0.0 0.0 0.0 -12.2 0.0 0.0 0.0 12.1	Q11	BCE	_					

24, 25 XLR (AUDIO-4, -5) 4-60

4-60

4.49 XLR (AUDIO-4, -5) CIRCUIT BOARD

— AUDIO-4 —

— AUDIO-5 —

5

3

— DC Voltage —

SYMBOL No. REC

CONNECTOR

PB

-- AUDIO-6 ---

	AU	ס-טוטי	

Can E		1 CH3 4 1	CN2 4 1 CM	C64 %		٦
-4			Cte -	les les	9 TAN	
C37 . C23	R28 CS	7		. B + 3091		
	138	3 Ra	2 NIZBIEDS			956
	R42 R33	7			51	\$25 +
** T - 2		- RI	100			1
834 R34	C38 + C	5	R14 C48	+2	R46	
- R35 [J , 	R5 RI	C15 R13		المالياً ا	
	R3			C4	5	E
			C15	2 +		الپا
C19 C28 +	1 CM12 5		CNII 5	23 S	5 5	
		R26	TEE PERSO	966 A1 AUDIO	6 PMB 155 ⁵ T	

1\$0 550	CM15		una 	2 ON 12	\$ - -
	78	.	120	22	- 8
7-8		<u> </u>	· • [111]	т і ; . — ят	
9NO 9	Щ. Н		, HII e, T	Π', <u>a</u> {	
290 200 200 200 200 200 200 200 200 200	1111, <u>60</u>	1111		2598 20 00 = 1	
To Section 2000	- 101		8 993	1. F.F.	3 10
	· · · ·		200.9	5 €	

- A/C HEAD -

-VR-

— JACK —

A

26, 27, 28, 29 FRONT (AUDIO-6, JACK, VR) & A/C HEAD 4-62

4-62

F

G

H

- DC Voltage -

SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB		No.	REC	PB
	RAT	ED CI		IC11	3 4	12. 1 0. 1	0.0 12.1	1020	14 15	2.5 0.0	2.5 0.0	Q4	BCH	11.3 6.8 12.0	11. 4 6. 8 12. 0	Q32	BCE	0. 0 12. 1 0. 0	0. 0 12. 1 0. 0
IC1	1 234567890 11 1234	404040404610101	404040104710101		34567890-23456	1405-800000221-1-1 1405-800066652122	010110999901011		167	21.8 0.0	0.082	Q5	2000	6. 8 0. 0 6. 1	6.8 12.1 6.2	Q33	BCE	0. 0 9. 6 0. 0	0. 0 9. 6 0. 0
:	67	0.1	0.1		10	6.0 6.0	6.9 6.9		21 22	3.3	3.4 2.5	Q6	-			CC	1		
	8	0. 4 4. 6	0.4 4.7	}	12 13	6. 2 5. 2	7.0 12.1		23 24	0.0	2.5 0.0		BCC	3.3 5.1 2.8	3. 3 5. 1 2. 8	CN1	1 2	0. 0 0. 0	0. 0 0. 0
	10 12 12 13	0. 0 5. 0 0. 0	5. 0 5. 1 0. 0						26	0006	0.0 0.0 2.6	Q7	S	3.3 2.8 0.0	3. 3 2. 8 0. 0	CN2	1 2	4. 6 0. 0	4. 6 0. 0
IC2	-			IC12	1004567-890-00456	94400-10000-1-1-1404-1 100555500001-1-1-1404-1 1000007-02	00055500001011144441 100010001011100001		4567-292123345678893333335658894444444444455555555555556666666666	100-84-0-8114000064-1-1-4011140000009-10-1-000000000000000	500820-455000061-1-40003500001-1-1:100001-10-1-0-1-00-1-100-1-000-1-00-45908-4000 2001-2592620000061-1-400035000001-1-1:100001-10-1-0-1-00-1-100-1-100-1-00-1-00-1-00-1-00-1-00-1-00-1-00-1-0	Q8	BCE	0.4 5.1 0.7	0. 4 5. 1 0. 7	CN3	123345	0.2 5.6 4.0 9.6	0. 0 5. 1 6. 0 9. 6
	567	4.6 0.0 0.0	4.6 0.0 0.0		78000	0.0 0.0 12.0	000		35 35 36 37	25400 22200	0.0 0.3 0.5 0.5	Q 9	BCE	1.5 0.1 0.0	1.5 0.0 0.0	CN5	1 2 3	6.2 6.1 0.0	6. 1 6. 1 0. 0
	12345678901123456	4.0066000001006061 4.0044000000004045	966666000001066661		123	000011 10000 12000 1400 1400 121	12 1 12 1 0.4 0.4		39 40 41 42	0000	0.0 0.0 0.1	Q11	BC EN B0	5. 0 5. 1 4. 5 0. 0	5. 1 5. 1 4. 5 0. 0	CN6	1234	5.1 5.2 0.2 5.2 0.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	5.1 2.5 2.5 2.5
	13 14 15	4.6 0.0 4.6	4.6 4.6 4.6		15 16				43 44 45	5. 0 5. 0	5. 1 5. 1		BCE	0. 0 5. 0 0. 0	0. 0 5. 1 0. 0	CN7	1 2	0.5 0.0	0.5
IC3	1			IC13	23	12. 1 0. 0 15. 0	12. 1 0. 0 15. 0		46 47 48	5. 1 5. 1 0. 0	5.1 5.1 0.0	Q12	BC	0. 0 0. 0 0. 0	5. 0 0. 0 0. 0	CN9	1.1		
100	234	0. 0 0. 1 0. 0	0.0	IC14	-				49 50 51	5.0	0.0 0.0 0.0	Q13	BCC	11.7 7.0 12.1	12. 1 5. 8 12. 1		2334	5.0 3.0 4.9	5.0 5.6 0.0 4.9
	567	0.0 0.0	0.0		10045670	055005571 2220032325	2220020000		53 54	5.0	5.0	Q14	BC	0.3 7.0 0.0	0. 0 5. 8 0. 0	CN10	1 2	0. 0 0. 0	2. 2 0. 0
	100	0.5 4.5 5.4	0.5 4.0 5.4	IC15	-				56 57 58 59	500	5.0	Q15	BCE	0. 0 0. 3 0. 3 0. 0	0. 0 12. 1 0. 0	CN11	1 2 3	4. 4 2. 5 0. 6	4.5 0.6
	1234567-890-23456	0010000005504111111	0010000005041101	1010	12345678	66505761 22202225	22205761 22202225		60 61 62 63	5.0 5.0 5.0 5.0	5.1 5.0 5.1	Q16	B C C E	5. 0 0. 1 0. 0	0. 0 12. 1 0. 0	CN12	1234567890	50006688889 20054244444	00000767889
IC4	_		5. 0 0. 4		8	2.7 2.6 5.1	2.7 2.6 5.1		64 65 66	5. 0 0. 0 0. 0	5. 1 0. 0 0. 0	Q17	-	2.5 5.1 5.1	2.8 5.1 2.5		567	4.6 2.6 4.8	2.6 4.7
	1004567-0	0430000 56363656	5030303055.1	IC16	1 2 3	5. 1 0. 0 7. 6	5. 1 0. 0 7. 6		67 68 69 70	0.0 5.1 5.0 0.0	0. 0 5. 1 5. 0 5. 0	Q18	BCE	5. 1 0. 3 2. 0	0.7 0.1 0.0	AVI O	-		
IC5	+ -			IC17	23	0.0 0.0 5.1	0.0 0.0 5.1		71 72 73	0.0 0.5 4.5	5.1 0.4 4.5	Q19	E B			CN13	123456	15.160 7.000 12.00 12.00	15. 1 7. 6 0. 0 12. 3 0. 0
100		1:1005901 1:002405	1.3450 0.590 40.000		-N94567-80	Ö. 0 2. 6 5. 0	0.6 2.0 5.0		75 76 77	0.0 4.3 5.1	0.0 4.8 5.1		BCC	5. 0 0. 1 0. 0	5. 0 0. 0 0. 0		-		12.3
	567	2.5 2.0 0.0	245 0.0			0.0 5.0 2.6	5.6		78 79 80	0.0 0.0 0.0	0.0 0.0 0.0	Q 20	BCE	0. 0 12. 0 0. 0	0. 0 12. 1 0. 0	CN14	123	12.3 0.0 1.9	12.3 0.0 2.0 0.0 5.0
IC7	8		5. I 6. 1 0. 0		10 12 13 14	00-106000600000000000000000000000000000	00-060000606661	IC22	12345	5. 1 2. 0 0. 0 1. 3 5. 1	5. 1 2. 0 0. 0 1. 3 5. 1	Q 22	enc)	0. 0 5. 2 0. 0	0. 0 5. 3 0. 0	CN15	5	0.0 50 12.3	5. ŏ
	10045670	6.0000 12662 12.1	6.1 0.0 0.0 0.0 0.0 6.1 12.1	IC18				IC23	+			Q23	BCŒ	2.5 5.1 5.1	2. 5 5. 1 5. 1		12345	12.3 0.0 0.9 3.9	12.3 0.0 0.2 3.9
IC8	-					2660 25.1	22025 22025	IC24	3	5.1 0.0 7.6	5. 1 0. 0 7. 6	Q24	BCŒ	4. 0 0. 0 2. 6	4.0 0.0 2.6	CN17	1 2 3		4. 9 4. 9 0. 0
100	N03415607-00	6.0 6.1 6.0 6.1 0.0 0.0 12.1	6.1 6.1 6.0 6.0 6.0 6.0 0.0	IC19	1234567-89012334	006-600000001	00606000000000	1024	123456789011234	1	888-22220000550 1-1-5-1-3000000550	Q 25	BCE	3. 1 15. 1 2. 5	3. 2 15. 1 2. 6		100345678	4.990 0.000 0.000 0.000	4.90 4.00 0.00 0.00 0.00 0.00 0.00 0.00
	678	0.0 0.0 12.1	6. Î 0. 0 0. 0		567	2.6 0.0 0.0	2.6 0.0 0.0		6 7 8	1. 1 3. 1 0. 0	1.2 3.0 0.0	Q26	BCE	2.5 12.2 1.9	2 6 12 1 2 0	CN19			
IC9	1 2	3. 0 3. 0	3. 0 3. 0		10 11	0.0 0.0	0.0		10 11 12	0.0	0.0	Q27	BCE	2.5 0.0 1.9	2.6 0.0 2.0		1 2 3 4	3.1 3.1 0.0 4.9	0.6 0.0 0.0 4.9
	-N94567-8	3330001001 121	332066 121 121		12 13 14				13 14 R A N			Q28	DGS	1. 9 0. 0 3. 3 0. 0	2.0 0.0 3.3 0.0	CN20	1034567	4000000	4:000 0:00 5:00 0:00
IC10	-		12.1	IC20	1 2 3	0.1 4.8 4.9	0. 0 4. 8 4. 9	Q1	B	6.5 0.0 7.2	6.5 0.0 7.2	Q 29	SBCE	7. 0 6. 4 6. 4	7. 0 6. 5 6. 5		567	5. 2 0. 0 0. 0	5. 3 0. 0 0. 0
	12345678	666602020 12	7.0 6.1 6.0 2.7 2.2 12.1		1234567-890-23	1-809807-6006621-15 0-4-4-0-4-2-0-2-2-15	0444042022202	Q 2	BCE	7. 2 0. 1 0. 0 0. 7	7. 2 0. 1 0. 0 0. 7	Q 30	BCE	6. 4 6. 6 6. 0 6. 0	6. 5 6. 6 6. 0 6. 1				
	6 7 8		2.7 2.6 12.1		10	U2669	0.6665	Q3	BCC	0.7 4.4 11.3 3.8	4. 4 11. 3 3. 8	Q31							
IC11	1 2	0. 2 7. 0	11. 7 0. 4		12 13	0.1 2.5	0. ĭ 2. 5		Ĕ	13.8	*3. 8		BCE	12.1 0.0 8.5	12. 1 0. 0 8. 6				

4.53 DRUM/CAPSTAN SERVO CIRCUIT BOARD

6

- MAIN WAVEFORMS OF D/C SERVO CIRCUIT -

TP4, TP5

UPPER: TP4 LOWER: TP5

UPPER: TP6(800 Hz) LOWER: TP7(25 Hz)

5.0 Vp-p/25 Hz

2.1 Vp-p [MAX]

30 DRUM/CAPSTAN SERVO 4-64

4-64

D

E

,

3

2

1

— MAIN WAVEFORMS OF M-CTL/REEL SERVO CIRCUIT —

B 31 MECHACONTROL/REEL SERVO 465 465 E F G H

- DC Voltage (1/2) -

SYMBOL		REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB		
INTEG	RAT		RCUIT	IC2	60 61	2.5 4.9	2.5 4.9	IC5	45 46	0. 0 0. 0	0. 0 0. 0	IC17	12 13 14	0. 0 4. 9 5. 0	0. 0 4. 9 5. 0		
IC1	123345678990112345677899012232456678	9510915454461001918750037859	95518990546446610009-8730047859		60 61 623 645 667 669 77 77 77 77 77 77 77 77 77 77 77 77 77	596000173299999002158505	596000756999999002158509		44445555555555666666666666666666666666	000880688191916407088	00088068190016407089	IC18	1234567-8	0.33 0.33 -11.9 0.1 0.1 0.1 0.1	0. 22 0. 22 0. 22 0. 1 0. 1 0. 1 5. 0		
	11234 156 1789	24610019121313	24610009918		72 73 74 75 76 77 78 79 80	4003003505	9002158503 400300222	IC6	+			IC19	1234567890123456	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	20 21 22	1.7 2.5 0.0	1.7 2.3 0.0	IC3	1 2 3	3. 2 3. 2 0. 0	3. <u>1</u> 3. <u>1</u> 1. 7		2 3	0. 0 -14. 0 -12. 0	0. 0 -14. 0 -12. 0		10 11 12	0. 0 0. 0 0. 0	0. 0 4. 9 1. 1		
	24 25 26	1.3 2.7 0.8	1.4 2.7 0.8		56	1.7 2.5 4.9	1.7 2.3 4.9	IC7	1 2 3	7. 6 0. 0 5. 0	7. 6 0. 0 5. 0		13 14 15	- 0.0 4.8	- 0.0 4.8		
IC2					8 9	1.3 1.7	1.4 1.7	IC8	1 2 3	12. 2 0. 0 14. 2	12. 2 0. 0 14. 2	IC20	-				
102	23456	221991 22231	2.7 2.2 2.3 3.0		123456789011234	33012404110444	33.1.124.041.10444.	IC9	1234	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 17. 7	0.00 0.00 0.00 0.00 0.00 17.88		1234567890123456	0.0100000000000000000000000000000000000	005000000000000000000000000000000000000		
	7 8 9 10 11	2.5 2.4 2.4 2.4 0.1	2.5 2.6 2.6 1.8	IC4	12345678	0. 0 4. 9 0. 0 4. 8 0. 0 4. 9 4. 9	0.09 0.40 0.40 0.09 4.9		123456789	0. 0 0. 0 0. 0 17. 7 17. 7			9 10 11 12	0. 0 0. 0 4. 9	0.0 0.0 4.9		
	12 13 14 15	0.1 0.1 0.1	2.1 1.9 2.0 2.0					IC10	1 2 3		6. 4 3. 3 3. 3		14 15 16	0. 0 4. 8	0. 0 4. 8		
	16 17 18 19 20	0. 1 0. 1 1. 2 4. 9 4. 9	2164 2244 4.9	IC5	123456780	4.8 0.1 4.8 0.05	4.8 0.1 4.8 0.0 0.5		12345678	633005591 1001	6.4 3.3 0.5 0.5 10.9 12.1	IC21	12345678	4.00 0.00 0.00 0.00 0.00 0.00	4. 8 0. 0 0. 0 0. 0		
	21 22 23 24 52 27 29 29 29	443343500	4334424300			4.2.2.4.4.4.4.0.4.0.4.0.4.0.4.0.4.0.4.0.	4224444040	IC11	12345678	4.55 4.55 0.66 0.66 0.12.1	0. 1 0. 1 4. 5 0. 0 0. 6 0. 6 12. 1		67 89 10 11 12 13 14	00000000000000000000000000000000000000	40000000000000000000000000000000000000		
	31 32 334 35 36 37 89	0980438978 0440224444	0.980438897 0.224444	0.0980 4.0224 4.0224 4.78	U440224498978		16 17 18 19 20 22 23 24	0.00	0.0 0.0 0.0 0.0 0.0 4.9 0.0	IC12	12345678	0. 4 0. 1 0. 1 0. 3 0. 3 3. 0 12. 1	1. 0 0. 1 0. 0 0. 2 0. 2 1. 8 12. 1	IC22	12345678	05005509	33505555 522524244
	40 41 42 43 44 45 46 47	31142205	300422051		25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 34 34 34 34 34	90888888888888888888888888888888888888	4.0.888888884 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	IC13	12345678	0. 2 1. 7 -11. 9 0. 2 1. 9 12. 1	0. 2 1. 7 1. 7 -11. 9 0. 2 1. 9 12. 1	IC23	12345678	05505529	34505549		
	1234567890123456789901233456788901233356788901234547849555555555555555555555555555555555	37-199-154441-1-1-11-129999327-229999998043897-89339155309947-000229992 124212323232320000000144443334334300440022444431-1422051-1-1020551-1-1442	472889054648-900164999882575790098043897891-95530899200002995 122223232221212222244433442430044022444430042205-110105501442		01123141567899212232568788935333355678894444444	8-8059548898090000000000000888888888888809090909099888888	8-805954889809000000000000000888888400090909090	IC17	1 23 45 67 89 10 11	0.3 0.1 0.1 0.0 0.1 0.1 0.1	0.00.40.000000 0.00.0000000000000000000	IC24	12345678	202025549 20202224	55505549		

- DC Voltage (2/2) -

SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB	SYMBOL	No.	REC	PB
IC25	12345678	200052229 20002004	2.2.2.0.2.2.2.4.	IC31	1234567	2.4 -0.1 4.8 0.0 2.4 4.0 4.8	2.4 -0.1 4.8 0.0 2.4 4.8	Q18 Q19	BCE	4.5 0.88 4.8 6.3 1.9 4.8	3. 7 1. 1 4. 8 5. 8 1. 8 4. 8	CN7	1234567890	4534-33333333	4321222222
IC26	-			IC33	1 2			Q 21	BCE	0. 0 17. 7 0. 0	0. 0 17. 7 0. 0		8 9 10	2, 2 2, 2 2, 2	2. 2 2. 2 2. 2
	12345678	00205549 00202224	555055559		1 2 3 4 5	4. 9 1. 4 0. 0 1. 3 4. 8	4. 9 1. 4 0. 0 1. 3 4. 8	Q 22	B	0. 0 0. 0 17. 7 0. 0	0. 0 17. 7 0. 0	CN8	1 2 3	5. 2 5. 2 5. 0	4. 4 4. 2 4. 4
				IC34	12345	17. 7 1. 6 0. 0 1. 3 4. 8	17. 8 1. 6 0. 0 1. 3 4. 8	Q 23	B C E	0. 0 17. 7 0. 0 17. 7	0. 0 17. 7 0. 0 17. 7	CN9	12345	1. 3 4. 9 0. 9 5. 0	0. 5 4. 9 0. 0 3. 9 5. 0
IC27	1 2 3	2,5	255	TR	A N			Q24	—		1	CNIO	-		
	12345678	555055555	55505555 22224	Q1	BCE	17. 7 1. 5 17. 7	17. 8 1. 6 17. 8	C	B C E	17. 7 0. 0 17. 7	17. 7 0. 0 17. 7	CN10	234	4. 8 4. 8 4. 8	4. 9 4. 9 4. 8 4. 7
IC28	 			Q 2	BCE	17. 0 17. 6 17. 7	17. 0 17. 7 17. 8	CN1					1234567890	9888660205 4444245202	4444245200 0.
	12345678	0.22.0.1.20.4. 0.4.38	0.348 0.1.204 4.38	Q 3	BCE	0. 7 0. 1 0. 0	0. 7 0. 0 0. 0		12345678	17. 7 0. 0 15. 1 0. 0 7. 6 0. 0 -14. 5 0. 0	17. 8 0. 0 15. 0 0. 0 7. 6 0. 0 -14. 6 0. 0	CN11	-		
7.000	-			Q 4	BCE	17. 0 17. 7 17. 7	17. 0 17. 8 17. 8	CN2	↓				1 2 3 4	5.2.0.5 0.5.0.5	5. 0 2. 5 0. 0 2. 5
IC29	2345	0. 1 1. 0 0. 5 2. 2	1. 2 0. 1 1. 2 0. 7	Q 5	BCE	7. 6 0. 0 0. 0	7. 6 0. 0 0. 0		43456	0. 0 4. 8 0. 1 4. 9	0. 0 4. 8 0. 1 4. 9	CN12	1 2 3 4	5.0 2.0 2.5 2.5	5. 0 2. 5 0. 0 2. 5
	12345678901123456789012324	0-1052222222278880-182006102 10-1022222222142000-1000014	101022222227880-83006127	Q 6	BCCE	17. 6 4. 4 17. 7	17. 6 3. 7 17. 7		123456789011	0.35 0.08 1.99 4.98 0.10	0.004.044.001.001.001.001.001.001.001.00	CN13	12345	0. 0 0. 0 1. 5 17. 6 0. 0	0. 0 0. 0 1. 6 17. 7 0. 0
	10 11 12 13	2.2 2.2 1.7 4.8	2. 2 2. 2 1. 7 4. 8	Q 7	BCE	0. 3 16. 7 0. 0	0. 3 16. 3 0. 0	CN3	+			CN14	1		
	14 15 16 17	2. 8 0. 0 0. 1 0. 8	2. 8 0. 0 0. 1 0. 8	Q 8	BC	17. 4 6. 4 17. 7	17. 5 5. 8 17. 7		1234567	0.00 0.00 4.00 0.00	0. 0 0. 0 0. 0 4. 8 0. 0 0. 0		1233	0. 0 0. 0 0. 0	0. 0 0. 0 0. 0
	18 19 20 21	1. 2 0. 0 0. 0 0. 6	1. 3 0. 0 0. 0 0. 6	Q 9	B C E	0. 4 12. 8 0. 0	0. 4 13. 7 0. 0	CN4	+						
1000	-			Q 10	B C E	0. 0 9. 1 0. 0	0. 0 9. 1 0. 0		123456789	12. 1 0. 0 -11. 9 3. 1 0. 0 2. 5 11. 4 4. 9 10. 8	12. 1 0. 0 -11. 9 3. 1 0. 2. 5 11. 4 4. 9 10. 8				
IC30	234	3.0 4.2 2.0	0.3 0.3 1.8	Q 11	BCE	0. 7 0. 1 0. 0	0. 7 0. 1 0. 0	CN5	-						
	567-80	N20230	X2222	Q12	BCE	0. 0 4. 8 4. 9	0. 0 4. 8 4. 9	CNO	234	1.22	06220				
	12345678990112314567899212324	80000000000000000000000000000000000000	00012222222142400100005	Q 13	B C E	0. 0 17. 7 0. 0	0. 0 17. 7 0. 0		1234567890 10	21222222227 179.	2.1.2.2.2.2.2.2.7.1 9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				
13 14 15	13 14 15 16	4. 8 2. 9 4. 9 0. 3	4. 8 2. 8 4. 9 0. 3	Q14	BCE	4. 8 0. 1 0. 0	4. 8 0. 1 0. 0	CN6							
	17 18 19 20	0. 8 1. 3 0. 0 0. 0	0. 8 1. 3 0. 0 0. 0	Q15	BCE	0. 0 17. 7 0. 0	0. 0 17. 7 0. 0		1 2 3	1. 0 1. 0 1. 0	1. 1 1. 0 1. 0				
	21 22 23 24	0. 7 0. 3 4. 3 6. 0	0. 7 0. 3 0. 3 5. 0	Q16	B C E	17. 7 0. 0 17. 7	17. 7 0. 0 17. 7								
				Q17	BCE	0. 0 4. 7 4. 8	0. 0 4. 7 4. 8								

4-66 MECHACONTROL/REEL SERVO 31

- DC Voltage -

			itage										T	: 1	200	- DD	010400	M Ma	DEC	nn l
	SYMBOL		REC	PB		No.	REC	PB		No.	REC	PB	SYMBOL	_	REC	PB	SYMBO		REC	PB
		RAT	ED CI		IC7	8 9	_	4.0	IC13	32	=	5.1	IC20	2 3	_	7. 2 0. 0 5. 1	CN1		ECT	
5	IC2	1 2		2.2		89 10 12 13 14	111111	42522333		35	=	0.2	TO	A N	SIST		CUT	32A 32B	_	0.0 0.0
		3	_	2.5		12 13	=	3.0		37	=	5.1	Q1					4AB	_	15.1
		6	_	0.3	IC9	\vdash				39	=	0.9	AT	BC	Ξ	1.9 8.2 2.3		3AB	_	7.4
		8	_	2.2	109	2	Ξ	Ö.Ö		41 42	_	0.9	Q2	-				1AB 2AB	=	0.0
		ļŎ	_	4.6		4	_	0.0		43	=	0.9		BCXE	=	8. 2 4. 6 8. 9		30A 30B	=	4.7 0.0
		1234567869012334		25557302060551		6	_	0.0 3.5		45 46	=	3.0	Q 3	В	_	4.6				
		_				8	_	0. U 1. 25		48	=	0.9		BCXE	=	4. 6 0. 0 5. 2		23B 22B	=	0. 0 0. 0
	IC3	2	_	ğ. ş		11	_	51		50		0.9	Q4	EDC ZEI	=	2.8 5.1 3.2		31A 31B	=	0.0
		122345678		3.03.00 3.03.00 5.30 6.50 6.50 6.50		123456789011234		00000050521-15000		52 53	=	5.1		-		3. 2		29A 29B	=	1. 8 0. 0
		6	_	5. i 2. 3	IC10					54 55	=	0.9	Q5	B) (14)	=	351 252 5				
		1				3	_	4.8 0.3		57	=	0.9	Q 6	-				23A 22A 21B 19B 20B	=	0.3 4.9 4.1 9.7 12.0
4	IC4	2	=	0.0 3.9		5	_	4.3		59	=	5.1	₩o	BCE	=	2.5 5.1 1.9		198 208		9.7
		4		24		123456789011234		\$883333204008441 44044000444015		333455678994424445678995123456789961234			Q7						1	
		67	_	5.0		10	_	4.0		63	=	0.9		B) C) (S)	=	6.4 12.0 5.8		26B 27B	=	5.1
		8	=	3.7		11 12	_	4.8 0.4	1C14	1	_	0.9	Q8	BCE	=	5. 8 11. 0 5. 2		68 68		5.2
		10 11	=	5.0 0.0		13	_	5. 1		3	=	0.9		Ĕ				98 268 278 288 68 64 14A 14B		554020 55405055
\dashv		13	_	į.ğ	IC11	1 2	_	0.0		5	=	5.1	Q 9	BC	=	11. 0 9. 6 11. 7			1	
		15	=	1.9 0.7		3		0.2 0.0		8	=	0.9						24B 17A	=	0.0
		17 18	=	0.9 5.1		5	_	5.1		10 10	=	0. 0 5. 0	Q10	BC	=	9. 6 0. 0 10. 2		25B 24B 17A 17B 18A 19A	=	0.9 0.66 4.63 4.6
		19 20	_	0.1		1234567890-234		012010000001101		1234567890123456		9999-09000676600	Q11		-				-	
		22		0.5		ļÕ	=	Į Ģ.		14		4.6	ATT	BCXE	=	2.5 12.0 1.8		8Å	=	4.5
3		24	Ξ	Ö.j			=	5.1		┼			Q12	-		6.0		10A 8A 5B 5A 7B 7A 8B		0.7 4.7 4.7 4.7
		26 27	=	0.1 4.6					IC15	1 2	=	0.9 5.1		BCE	=	6. 0 12. 0 5. 3		7A 8B	=	4.9
		-034567860-1034567867803-103456780353		09-430078000007979-1-0053-12-60-1-0-1 035225-13050-1-0-10050-0000000422455	IC12	12345	=	5. 1 1. 4 0. 0 1. 3 5. 1		123456789901123456		91999999008099775	Q13	В		6. 0 0. 0 6. 7		24A	-	0.8
		30	_	4. l 5. 0		3		1.3		6	=	0.9		DOC XXX	_			24A 25A 26A 28A 11B 11A 15B	= = = = = = = = = = = = = = = = = = = =	0.000000 0.00000 0.55.1
	105	-			IC13	-				8	=	ÖÖ	Q14	eo Cra		2.3 0.0 3.0		IIB	=	0.9 5.1
\dashv	163	2	Ξ	0.0	1010	2 3	_	5. Î 5. 0		1Ŏ 11	_	9.8								
		1234567890-1234		10111433317111205		5		0-0-323221 5656666644		12 13	=	4.9	Q15	BCE	=	1. 0 0. 0 1. 7		13B 13A 12B 12A 18B 16B	<u>-</u> -	110-969-962 55050005000
		6 7	_	0.3		7	_	5. 2 0. 3			_	0.7	Q16					12A 18R	_	5.1
		100	_	27		18	-	4.1	IC17	-			ATO	BCE	=	0. 7 0. 1 0. 0		16B 16A		0. š
			=	21		1Ĭ 12	= 1	3. 7 3. 9	1011	2 3	_	3.4 1.8	Q17	-		2.5		16A 15A 25B 10A 9A	1111	5.1
2		13 14		3. 0 3. 5		13 14	=	1. 2 5. 1		5	=	0.0 1.1		B C E	=	2. 5 5. 1 1. 8		10A 9A	=	0.6
	1C6	 				15 16	=	0. 4 0. 4		12345678901234		0.0	Q18	BCE		2.3 5.1 1.6		20A	_	0.7
		3		3.1		ig	Ξ	4. 1 q. 7		10	=	5. 1		Ĕ	_					
		5	_	0.0		20 21	_	12. Ó 0. 7				5. 1 0. 0	Q19	B	=	1. 0 2. 7 0. 3				
		12345678	=	3030000000		22 23	=	0. 9 0. 6		13 14	_	33101405505050	000							
\dashv	IC7	1				24 25	_	0. 6 0. 7	IC18	_			Q 20	BCE	=	2. 7 5. 1 2. 1				
		3	=	0. 0 1. 1		27	=	0. 9 5. 1		123		15. 1 0. 0 12. 0	Q21	-						
		1234567		1:0-1-1-4-33		-0.074567-8090-10.074567-8090-0.007457-8090-0.0074567-8090-0.007467-8090-0.007467-8090-0.007467-8090-0.007467-8090-0.007560-0.007467-8090-0.007467-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-8090-0.007567-900-0.007567-8090-0.007567-8090-0.007567-900-0.007567-8090-0.007567-900-0.007567-900-0.007567-900-0.007567-900-0.007567-900-0.		+07-08-14440-+1-07-06667-0-16661-4681-16661-16661-16661-16661-16661-16661-16661-16661-16661-16661-16661-16661-	IC19	1 2 3		5. 1 0. 0 7. 4	de7	BCE	=	1.8 5.1 1.2				
		7		4.3		3ĭ		š. ĭ		3		7. 4								

- AV MICOM/ON SCREEN -

- COUNTER DISPLAY -

B 41, 45 AV MICOM/ONSCREEN & COUNTER DISPLAY 4-71

4-71

E

F

G

ŀ

4.61 OPERATION CIRCUIT BOARD — DC Voltage — - OPERATION CPU -SYMBOL No. REC PB SYMBOL No. REC SYMBOL No. REC PB SYMBOL No. PB INTEGRATED CIRCUIT IC1 48887 (88888) 48888 (8888) 48888 (8888) IC6 5. 2 0. 0 7. 6 CN7 CONNECTOR IC2 13.5 CN1 CN8 202378223802848488888388000888888 5. 2 CN2 5. 2 13. 4 12. 9 12. 9 13. 4 IC3 2353233944463385669866666666666666 CN10 13. 4 13. 4 CN3 CN11 13. 5 13. 7 13. 5 13. 5 CN4 4. 0 5. 0 IC3 IC4 Q. Q CN5 - MAIN LED -CN6 - OPERATION KEY-2 -- OPERATION KEY-1 -OPE KEY2 PWB ASS'Y OPE KEY2 PWB PRK10085-01-01 - JOG LED -- EJECT SWITCH -EJECT SW PWB DIRECTION LED PWB 485'Y 1 7 PRK10085 5-01 © 8 6NB / 1 PRK10085 EJECT SW PWB ASS-Y PRK20143 # 43, 44, 46, 47, 48 OPERATION 4-73 4-73

— REAR-1 —

— REAR-3 —

— DC Voltage —

REAR 1 <71>
SYMBOL No. REC

TR	A N	SIST	0 R
Q1	BCE	Appropriate to the control of the co	0.1 5.0
CO	NN	IECT	0 R
CNI	1003456	aprilately supplied to the supplied 0000 500000	
CN2	1004567-800		000000000000000000000000000000000000000
CN3	23	-manifesta	0.0 0.0 0.0
CN4	12345		30800 5050 5050
CN5	1 2		0. 0 0. 0

REAR 2 <72>

SYMBOL	No.	REC	PB		
CO	NN	ECT	0 R		
CN1	~3001PC		05500040		
CN2	2004	Annual An			

SYMBUL	No.	REC	PB
CO	NA	ECT	0 R
CN6	123		000
CN7	-23	atouriu- endidos Julganier	000
CN8	1-223	, median-i-	0000

REAR 3 <73>

SYMBOL	No.	REC	PB
C O	NN	ECT	0 R
CNI	123	-	0.00
CN2	123		0.00
CN3	23	Annageria Annageria	0,000
CN4	123	Onescore Visitable mininger	0,000
CN5	123	TO SECOND	0, 0

B 71, 72, 73 REAR (REAR-1 to -3) 4-75

5

4-75

Ε

G

Н

4.64 SUBPANEL SCHEMATIC DIAGRAM

4.65 SUBPANEL CIRCUIT BOARD

- SUBPANEL -

83 SUBPANEL 4-76

- TP TERMINAL -

Ε

4-76

G

82

4.69 IC BLOCK DIAGRAM

GND

- AN608P -Wide Band Amplifier Circuit

- AN1082S -**Dual Operation Amplifier**

GND 20

HEAT PROECTION

-- AN3296 ---

-- AN3370K --

Flyng Erase

- AN3398 -

- AM3480K -C.T.C. And Y/C Separator

- AN3834K -

Reel Motor Driver

- AN3920S -

RF Amplifier Circuit for FM Audio

- AN3922NS -

FM Audio Signal Processing Circuit

MODULATO

- AN3931NC-A -

- AN3916 -

AGC

Stereo Audio REC/PB Circuit

[Terminal Description]

in lo.	Description	Pin No.	Description
1	GND	11	Auto Linear Detection Terminal
2	RF (R-ch) Input Terminal	12	Linear High Output Terminal
3	6H High Input Terminal	13	D.0. Detection Terminal
4	+12 dB High Input Terminal	14	S/H Output Terminal
5	Variable Amplifier Control Terminal	15	M.M. 2
6	RF Output Terminal	16	A.H. SW Output Terminal
7	Vcc	17	M.M. 1
8	Enve Output Terminal	18	H. SW Input Terminal
9	Enve Detection Terminal	19	GND
0	RF Input Terminal	20	RF (L-ch) Input Terminal

[Terminal Description]

Pin No.	Description	Pin No.	Description
1	Audio Signal Input on Rec. Mode	11	RF Signal Input on PB Mode
2	Hold Amp. Input Terminal	12	Rec./PB Control
3	Hold Control	13	FM Demodulation Control
4	GND (Audio)	14	FM Demodulation Output
5	Hold Output Terminal	15	GND (RF)
6	Vcc	16	FM Modulation Output
7	Switchig Noise Reduction Input Terminal	17	VCO Frequency Adjustment
8	Switching Noise Reduction Output Terminal	18	VCO Capacitance
9	1/2 Vcc	19	VCO Capacitance
10	Hold Pulse Input Terminal	20	VCO Oscillation Control

- 8VT15 -Driver

- AN6041 -

Dual Balanced Modulator For Video Cameras

4-79

Peak-Noise-Reduction System for Hi-Fi VHS VRTs

[Terminal Description]

Pin No.	Description	Pin No.	Description
1	GND	15	Encode Decode SW
2	Encode Input	16	CCA Amp. Input
3	Reference Voltage-1	17	CCA Gain Cell Output
4	Reference Voltage-2	18	CCA Gain Cell Input
5	Filter Amp. 3 Output	19	BF Amp. 1 Output
6	Filter Amp. 3 Input	20	NR-Emphasis-Amp. Output
7	Line Output	21	NR-Emphasis
8	Rec. Mute SW	22	Filter Amp. 2 Output
9	Output Emphasis	23	Filter Amp. 2 Input
10	Encode Output	24	Filter Amp. 1 Output
11	BF Amp. 2 Output	25	Filter Amp. 1 Input
12	Level Sensor Input	26	Input SW-Amp. Output
13	Timing Condensor	27	Decode Input
14	Recovery	28	Vcc

- BA10358F -Reference BA6993F
- BA10393F Reference BA6993F
- BA4558F -Reference AN1082S

- BA222 -

Monolithic Timer

— AN6366N —

MODE	A	cc	BURST 6 dB DOWN		
DATA	REC	PB	REC	PB	
H : EP	C ACC			ON	
C: LP	BURST ACC	BURST ACC	-	OFF	
L:SP	C ACC			ON	

- AN6394 -

VTR Audio REC/PB Circuit

MODE	A	CC	BURST 6 dB DOWN			
DATA	REC	PB	REC	PB		
H : EP	C ACC			ON		
C: LP	BURST ACC	BURST	_	OFF		
L : SP	C ACC			ON		

- BA6993F --**Dual Operational Amplifier**

Tone decorder/Phase locked loop

- NJM1496D -

Double Balanced Mod/Demodulator

- NJM2068MD -

Dual Operation Amplifier

- NJM2068S-D -

Dual Operational Amplifier

6. 8+INPUT 7. 8-INPUT 8. 8 CUTPUT 9. V⁴

- NJM2233BD -

Switching Bias Amp

- NJM4556S -Reference NJM2068S-D

— PGD30241 —

CMOS One Time Programmable ROM

— PGD30620 —

524288 Bit Programmed EPROM

MUTE IMPUT 7 Pin 8 Pin

L INPUT(I)

L L

IMPUT(2)

- SN16913 -

Double Balanced Mixer

- SM6430C -

Divider

— TA7347P —

2-Input Switch

- TA7629P -

Dolby B Type Noise Reduction Processor

— TA7742P —

2ch Preamp & Rec Amp

[Terminal Description]

Pin No.	Description	Pin No.	Description
1	GND	9	DC FEEDBACK FILTER
2	PREAMP IN	10	PREAMP OUT
3	REC/PB SELECT SW	11	REC SIGNAL IN
4	GND	12	REC Vcc
5	REC/PB SELECT SW	13	GND
6	PREAMP IN	14	DFF IN (AB)
7	PB Vcc	15	REC SIGNAL IN
8	GND	16	DC FEEDBACK FILTER

- TA78L009AP/012AP --

Regulator

COMMON Pin3

- TA79L012P -

Regulator

Pin1 OUT Pin2 GND Pin3

- TA7348P -

3-Input Switch

Truth Table CONTROL CONTROL (2) 2 Pin 4 Pin

- TA8405S -DC Motor Drive

TRUTH TABLE

	INPU	T		INPUT		MODE				
IN 1	IN 2	IN 3	OUT (C)	OUT A	OUT B	MA	MB			
0	0	1/0	*	*	*	STOP	STOP			
1	0	0	Н	L	*	CW/CCW	STOP			
1	0	1	L	Н	*	CCW/CW	STOP			
0	1	0	Н	*	L	STOP	CW/CCW			
0	-1	1	L	*	Н	STOP	CCW/CW			
1	1	1/0	L	L	L	BRAKE	BRAKE			

*: High Impedance

— TC4011BP/BF — Quad 2 Input NAND Gate

Dual D-type Flip-Flop

	INP	OUTPUTS					
RESET	SET	DATA	CLOCK △	Qn+1	Qn+1		
L	н	*	*	H	L ,		
н	Ł	*	*	L	н		
н	Н	*	*	L	H		
L	L	L	-	L	H		
L	L	н	1	н	L		
L	L		1 3 1	On*	Ŏn*		

- ₩ : Don't Care
- △ : Level Change
- · : No Change

— TC4073BP/BF —

Triple 3 Input AND Gate

- TC4526BF -Programmable Divide-by-N

CLOCK	INHIBIT	PRESET ENABLE	MASTER RESET	ACTION			
L		L	L	но соли			
5	L	L	L	COUNT			
	H	L	r	NO COUR			
H	7	L	L	COUNT			
*	*	E	L	PRESET			
*	*		E	RESET			

- TA8644FN -

Color Signal Processing Circuit

[Terminal Description]

Triple 2-channel

f s es	Ittitidi Describrioni		
Pin No.	Description	Pin No.	Description
1	COMP. SYNC IN	16	PB(H)/REC(L)
2	BURST GATE PULSE OUT	17	EP(H)/LP(M)/SP(L)
3	VCO TIME CONSTANT	18	REC VIDEO IN
4	VCO CTL FILTER	19	DC FEEDBACK FILTER
5	SW PULSE IN	20	BPF DRIVE
6	2fsc OUT	21	Vcc (2)
7	VXO CTL FILTER	22	REC COLOR IN
8	VXO OUT	23	GND (2)
9	Vcc (1)	24	PB COLOR IN
10	VXO IN	25	ACC FILTER
11	GND (1)	26	COLOR IN (1)
12	SUB CONV OUT	27	NTSC(H)/SECAM(M)/PAL(L)
13	B. ID FILTER	28	COLOR IN (2)
14	CONV CARRIER IN	29	MISLOCK FILTER
15	ACK FILTER	30	COLOR OUT

— TC4053BP/BF — - TC4051BP/BF --— TC4052BP/BF — Signal 8-channel Differential 4-channel Multiplexer/Demultiplexer Multiplexer/Demultiplexer Multiplexer/Demultiplexer

	/		1			¬ /			7	
4	1	16	V _{DD}	OY I	1	16 V _{DD}	1Y l	1	16	V _{DD}
5	2	15	2	2Y 🛮	2	15 2X	0Y	2	15	Y-CON
сом 1	3	14	1	Y-COM	3	14 1 1X	12	3	14	X-COM
7 1	4	13	0	3Y 🛭	4	13 X-COM	Z-COM	4	13	1X
5	5	12	13	1Y 🛙	5	12 0X	0Z I	5	12	0X
INH I	6	11	ĒΑ	INH I	6	11 3 X	INH	6	11	Α
VEE I	7	10	BВ	V _{EE}	7	10 E A	V _{EE} I	7	10	В
V _{SS}	1	9	€ C	V _{SS}	8	9 8 B	V _{SS} I	8	9	C
	L		j							

TRUTH TABLE

CON	TROL	NPUT	S	"ON" CHANNEL					
INHIBIT	ح∆	В	A	TC4051BP TC4051BF	TC4052BP TC4052BF	TC4053BP TC4053BF			
L	L	L	L	0	0X, 0Y	0X, 0Y, 0Z			
L	L	L	Н	1	1X, 1Y	1X, 0Y,0Z			
L	Ł	Н	L	2	2X, 2Y	0X, 1Y, 0Z			
L	L	Н	Н	3	3X, 3Y	1X, 1Y, 0Z			
L	Н	L	L	4	-	0X, 0Y, 1Z			
L	н	L	Н	5	-	1X, 0Y, 1Z			
L	Н	Н	L	6	-	0X, 1Y, 1Z			
L	н	Н	н	7	-	1X, 1Y, 1Z			
н	*	*	*	NONE	NONE	NOTE			

Quad Bilateral Switch

— TC4066BP/BF —

-- TC4538BP/BF --

Dual Precision Retriggerable/Resettable Monostable Multivibrator

TRUTH TABLE

* Den't Care

A8 (25)-A9 (24)-A10 (21)-

A12 (2)

1/01 (1)-

1/04 (5)-

V05 (6)-

1/06 (17) 1/07 (18) 1/08 (19)

Œ2 26

- TC5564APL-15 -

8192 Word x8 Bit CMOS RAM

RECHARGE CIRCUIT

256×256 (65536)

SENSE AMP.

COLUMN DECODER

09876-AO AI A2 A3 A4

CLOCK GENERATOR

(14) GND

- TC4572BP/BF -

Quad INV. plus, NOR plus NAND Gate

- TC4W53F -

2 Channel Multi Plexer/Demulti Plexer

TRUTH TABLE

4 Vas

CONTROL	INPUT	ON
INH	Α	CHANNEL
Ĺ	L	ch 0
L	Н	ch 1
Н	*	NONE

3 VEE

*Don't Care

- TC5068BP/TC5069BP -

BCD to 7-Segment Latch/Decoder/Driver

TRUTH TABLE

	INPUTS																			
		INI	010				T	5 5	068	3 B	P	Δ		T	Q50	069	B:	P	Δ	ZERO
ST	BL	Œ	С	В	A	a	ъ	С	d	θ	f	g	a	ď	С	đ	9	f	g	OUT
*	H	*	豪	*	*	L	L	L	L	L	L	L	L	L	L	L	L	L	L	☆
H	L	L	L	L	L	H	H	H	H	H	H	L	H	H	Н	H	H	H	L	H
H	L	L	L	L	н	L	H	H	L	L	Ŀ	L	L	H	H	L	L	L	L	ь
H	L	L	L	H	L	H	H	L	H	H	L	Н	H	H	L	H	H	L	H	L
H	L	L	L	Н	H	H	H	H	H	L	L	H	H	H	H	H	L	Г	H	L
Н	L	L	H	L	L	L	H	H	L	L	Ĥ	H	L	н	н	L	L	н	H	L
H	L	L	н	L	Н	H	Ŀ	н	H	L	H	H	н	L	H	H	L	Н	н	L
H	L	L	H	H	L	Н	L	н	H	H	H	H	H	L	н	Н	H	Н	Н	L
H	Г	L	H	H	H	H	H	Н	L	L	H	L	н	H	Ħ	L	L	н	L	L
H	L	H	L	L	L	Ħ	н	H	H	H	H	H	Н	H	Н	н	H	н	н	L
н	L	Н	L	Ŀ	Н	H	H	H	H	L	H	н	H	H	H	H	L	н	H	L
H	L	Ħ	L	H	L	H	H	H	L	H	H	H	L	L	L	H	Н	H	L	L
Н	L	Ħ	L	H	H	L	L	H	н	H	H	Н	L	H	н	L	Н	Н	Н	L
н	L	H	H	L	L	н	L	L	H	H	H	L	H	Н	н	L	н	н	н	r
H	L	H	H	L	H	L	H	Н	H	H	L	H	H	н	L	L	H	Н	H	L
н	L	н	H	H	L	H	L	L	Н	Ħ	H	H	L	L	L	L	L	L	H	L
H	L	H	H	Н	H	H	L	L	L	H	H	н	L	Ŀ	L	L	L	L	L	L
L	L	獙	豪	瀠	*								ΔΔ	7						

★; Don't care ☆; Undetermined △; Depends Upon the BCD Code Previously applied when ST="H" △; Required pull down resister "R_L"

1 B

1 Y

2 A

2 B

2 Y

GND

- TC4S30F -Exclusive-OR Gate

Triple Inverter

- TC7W04F -

- TC7W08F -Dual AND Gate

- TC74HC00AF/AP -Quad 2-Input NAND Gate

- TC74HC04AF/AP -Hex Inverter

- TC74HC08AF/AP -Quad 2-Input AND Gate

4-85

- TC74HC32AP/AF-

H

X:Don't Cate

Z: High impedance

X-Don't care

- TC74HC74AP/AF -

CLR PR D CE Q Q

L H · · L H

H L e e H L PRESET L L • • H H

CLEAR

- TC74HC541AP/AF -	_
--------------------	---

TRUTH TAI	3LE	
CLOCK	CLEAR	OUTPUT STATE
X	H	ALL OUTPUTS = "L"
	L	NO CHANGE
٦	L	ADVANCE TO NEXT STATE
		X : DON'T CARE

- TC74HC4028AP/AF -BCD -to- Decimal Decoder

_	TC74HC4053AF	_
	Reference	
	TC4053BP/BF	

	INPUTS OUTPUTS											AE) EATER AUTHUR				
D	C	В	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	SELECTED OUTPUT		
L	L	L	L	Н	Ļ	L	L	L	L	L	L	L	L	Y0		
L.	L	L	н	L	Н	L	L	L	L	L	L	L	L	Y1		
L	L	Н	L	Ł	L.	Н	L	L	L	L	L	L	L	Y2		
L	L	Н	Н	Ł	L	L	Н	L	L	L	L	L	L	Y3		
L	H	L	L	L	L	L	L	H	L	L	L	L	L	Y4		
L	Н	L	H	L	L	L	L	L	Н	L	L	L	L	Y5		
L	Н	H	L	Ł	L	L	L	L	L	Н	Ł	L	L	Y6		
L	H	H	H	Ł	L	L	L	L	L	L	H	L	L	Y7		
н	L	L	L	L	L	L	L	L	£	L	L	н	L	Y8		
H	L	L	Н	L	L	L	L	L	L	L	L	L	Н	Y9		
Н	X	Н	X	L	L	L	L	L	L	L	L	L	L	NONE		
н	H	X	X	L	L	L	L	L	Ł	L	L	L	L	NONE		

- TC74HC4066AP -

- TC74HC4538AF/AP --Reference TC4538BP

— VC2520 — Chroma Enhancer

PIN NO.	IN/OUT	PIN NAME	DESCRIPTION		INVOUT	PIN NAME	DESCRIPTION		
1. CLOC	K SIGNAL						CNTD CNT1 MODE		
27	1	CKIN	CLOCK IN	7			H H 24H COUNT		
26	0	XCXO	CLOCK, OUT	1			H L 10H COUNT		
24	0	XTALO	X'TAL OUT	1			L L WATCH		
2. SYST	EM CONT	ROL SIGNAL		1			Specifications other than the above are not defined.		
12	1	PCLR	POWER ON CLR	3 CTL S	GNAL				
1	1	iS1	SIGNAL FORMAT SELECT S1	14	1	СТЦ	CTL SIGNAL IN		
2	1	IS2	SIGNAL FORMAT SELECT S2	18		FRE	CTL DIRECTION SIGNAL IN		
3	1	1S4	SIGNAL FORMAT SELECT S4	13		RESET	CTL RESET IN		
	SI SZ SA SIGNAL NAME SYSTEM			4. DATA OUTPUT & OUTPUT CONTROL SIGNAL					
			H H H NTSC DROP FRAME \$25/60	4	1.0	ADO	ADRESS DATA IN/OUT		
	1		L H H NTSC NON DROP FRAME 525/80	5	LO	AD1			
			L L H PAL SECAM 625/50	6	LO	AD2			
			L L FILM 655/48	10	1	XACS	ADRESS LINE OUTPUT ENABLE		
44	1	RUHO	RUN OR HOLD MODE SELECT IN	32	0	XDOO	DATA OUT		
35	1	SWFR	FRAME PRESET SW	31	0	XDO1			
36	1	SWFT	10 FRAME PRESET SW	30	٥	XDO2			
37	i	SWSC	SECOND PRESET SW	29	٥	XDO3			
38		SWST	10 SECOND PRESET SW	34	0	XWR	WRITE SIGNAL OUT (NEGATIVE LOGIC)		
40	1	SWMN	MINUTE PRESET SW	11	1	CPURDZ	CPU READ SIGNAL IN (NEGATIVE LOGIC)		
41	1	SWMT	10 MINUTE PRESET SW	33	0	BSRT	BUSY REAL TIME COUNTER		
42	1	SWHR	HOUR PRESET SW	21	0	RTSDTO	REAL TIME DATA OUT		
43	1	SWHT	10 HOUR PRESET SW	22	0	RTSCKO	REAL TIME SERIAL CLOCK OUT		
19		CNTO	COUNTER MIDE SELECT 0	16	ø	ZFLG	ZERO FLAG OUT		
20	1	CNT1	COUNTER MIDE SELECT 1	15	0	MFLG	MINUS FLAG OUT		
				1					

— VC2054 — Real time Counter

SECTION 5 EXPLODED VIEWS AND PARTS LIST

SAFETY PRECAUTION

Parts identified by the \triangle symbol are critical for safety. Replace only with specified part numbers.

NOTE: "X " indicates quantity per set.

5.1 EXP	PLODED VIEWS AND PARTS LIST	
5.1.1	Packing assembly <m1></m1>	5-2
5.1.2	Cabinet assembly <m2></m2>	5-4
5.1.3	Chassis assembly <m3></m3>	5-6
5.1.4	Frame assembly <m4></m4>	
5.1.5	Rear frame assembly <m5></m5>	5-10
5.1.6	Mechanism-1 assembly <m6></m6>	5-12
5.1.7	Mechanism-2 assembly <m7></m7>	5-14
5.1.8	Cassette housing assembly <m8></m8>	5-16
5.1.9	Drum assembly <m9></m9>	5-18
5.1.10	Front panel assembly <ma> <mb></mb></ma>	5-18

5.1 EXPLODED VIEWS AND PARTS LIST

5.1.1 Packing assembly <M1>

PACKING ASSEMBLY M1

	M	1	M	M				
--	---	---	---	---	--	--	--	--

A REF	PART No.	PART NAME, DESCRIPTION
1	PRD20370-09	PACKING CASE, BR-S822E
	PRD20370-10	PACKING CASE, BR-S622E
2	PGD30005-05	PE BAG
3	PRD10251A-02	CUSHION ASSY
4	PUP40619	SERIAL NO.STICKER, ×2
△ 5	PGD30002-283-01	INSTRUCTIONS, BR-S822E
\triangle	PGD30002-284	INSTRUCTIONS, BR-S622E
6	QPGB024-03404	POLY BAG
12	PGZ00793-006	CABLE ASSY, BR-S822E
15	QPGB020-02804	POLY BAG
16	PRD30848	SPACER CUSHION, ×2
18	PRD43892-04	PACKING LABEL, ×2

•InItIal setting of front and rear panel switches at shipment

- FRONT PANEL -

- FRONT SUB PANEL -

- REAR PANEL -

5.1.2 Cabinet assembly <M2>

A REF	PART No.	PART NAME, DESCRIPTION
1	PRD43431A	VR KNOB ASSY, ×6
2	PRD30196-03	SEARCH KNOB
3	DPSP2006Z	SCREW, ×3
4	PRD41819B	JOG KNOB ASSY
5	YWS3004B	SET SCREW
6	PRD41818	TIRE
7	PRD10247A-02	TOP COVER ASSY
8	PGD40255-02	SPACER, ×2
9	REE3000	"E" RING, ×2
10	PRD30088-02	COIN SCREW, ×2
11	PRD30841	COVER
12	PRD30088	COIN SCREW, ×2
13	REE2500	"E" RING, ×2
△ 14	PRD10232-01-03	BOTTOM COVER
15	SDST3008Z	SCREW, ×5
△ 16	PRD10233-01-02	LEFT SIDE COVER
17	SDSP4008R	SCREW, ×4
△ 18	PRD10234-01-02	RIGHT SIDE COVER
19	SDSP4008R	SCREW, ×4
△ 20	PRD30730-03	REAR PANEL(B)
21	SDSP3006M	SCREW, ×2
△ 22	PRD30085-05	RATING LABEL, BR-S822E
\triangle	PRD30085-06	RATING LABEL, BR-S622E
23	PQ40111-1-5	SERIAL NO PLATE
24	QZF2319-001	FOOT, ×4
25	SDSP4018M	SCREW, ×4
△ 26	PRD43423-01-02	REAR PANEL(C)
27	SDSP3006M	SCREW, ×2
28	PRD30802-02	BOARD LABEL(A)
29	PRD43611-02	BOARD LABEL(B)
30	PRD30840-01-02	BOARD HOLDER(A)
31	PRD30030-64	PAD HOLDER (P)
32	PRD43460	BOARD HOLDER(B)
33	PRD30030-54	PAD
34	PQM30017-23	SLIT WASHER
35	SDST3008Z	SCREW, ×3
36	PRD30835	TOP PLATE(L)
37	PGD40292	FELT WASHER, ×6
38	SBST3006Z	SCREW, ×2
39 40	PRD20412 SBST3006Z	HOUSING COVER SCREW, ×4
		, and the second
41	PGD41496-05	LABEL
42	WBS4000N	WASHER, ×2
43	PRD30858	SHEET, ×2
46	PRD30861	SPACER
△ 48	PGD41228	CAUTION LABEL
,		

5.1.3 Chassis assembly <M3>

		M[3]M[M]
A REF	PART No.	PART NAME, DESCRIPTION
2	LPSP2612Z	SCREW, ×3
3	LPSP4016Z	SCREW, ×3
4	SDSP2604M	SCREW, ×2
5	PRD30082	FLANGE SCREW, ×2
6	GBST3006Z	SCREW, ×14
7	SDSP3006M	SCREW, ×2
8	SDSP3006M	SCREW, $\times 2$
9	PRD30767	COVER
10	PRD43457-01-01	SPECIAL SCREW, ×2
11	PRD30797A-03	HEAD CLEANER ASSY
11A	PRD42664	CLEANER HOLDER
11B	PRD40510-01-02	CLEANER
11C	Q03093-829	WASHER
11D	PQM30017	SLIT WASHER
11E	PRD30024-62	TENSION SPRING
△ 11F	PU59401-2	SOLENOID
11G	PRD30023-36	COMPRESSION SPRING
11H	SPSP2003Z	SCREW, ×2
11J	REE2500	"E" RING
11K	PU49485-3	WIRE CLAMP
11L	SPSP2003Z	SCREW
12	PRD30027-04	SCREW
13	SDSP2608Z	SCREW, ×2
14	GBST3008Z	FLANGE SCREW, ×2
15	Q03093-517	WASHER, ×2
18	PGW0205-030100	FLAT WIRE
19	PRD30762-01-01	BOARD BRACKET, ×2
20	PRD30082	FLANGE SCREW, ×2
21	GBST3006Z	SCREW, ×8
22	SBST3006Z	SCREW
23	PU49485-4	WIRE CLAMP
24	PU49486	WIRE CLAMP, ×2
25	PRD44048	COLLAR, ×2
	43. 1 111111	

M4MM

A REF	PART No.	PART NAME, DESCRIPTION
1	PRD20354A-06	MECHA HOLDER ASSY
1A	PU49485-4	WIRE CLAMP
1B	SBST3006Z	SCREW
2	PRD20374A-05	LEFT STAY ASSY
2A	PGZ00493-03	GUIDE RAIL
2B	PU49881	EDGE COVER
2C	PU43147-3	WIRE SADDLE, ×2
2D	PRD30030-70	PAD
3	PRD20375A-06	RIGHT STAY ASSY
3A	PGZ00493-03	GUIDE RAIL
3B	PU49881	EDGE COVER
3C	PGZ00605	BOARD SPACER, ×2
3D	PGZ00606	BOARD HOLDER, ×2
3E	PU43147-3	WIRE SADDLE, ×2
4	PRD20378A-01	CENTER BRACKET ASSY
4A	PU55353-2	W.LOCKING SPACE, ×2
5	PRD20366A-06	CENTER FRAME ASSY
5A	PU43172-9-120	NYLON GROMMET
5B	PGZ00452-02	WIRE CLAMP, ×4
5C	PU43172-9-65	NYLON GROMMET
5D	PGZ00493-02	GUIDE RAIL, ×14
6	SBST3006Z	SCREW, ×62
7	PRD20376A-01	GUIDE FRAME ASSY
7A	PGZ00493-03	GUIDE RAIL
8	PRD20377A-03	POWER FRAME ASSY
8A	PGZ00493-03	GUIDE RAIL
8B	PU43135-1-100	NYLON EDGGING PFAR FRAME(C)ASSV
9 9	PRD20367A-03	REAR FRAME(C)ASSY GUIDE RAIL, ×10
9A 10	PGZ00493-02 PRD10237-01-03	LEFT SIDE FRAME
10	1 111/1043/-01-03	AMERICA DESCRIPTION
11	PRD10273A-01	RIGHT SIDE FRAME ASSY
11A	PU43153-1-200	NYLON EDGGING
11A 12	PC45155-1-200 PRD10248A-04	FRONT FRAME ASSY
12A	PU43172-9-89	NYLON GROMMET
13	SPST3006M	SCREW, ×4
14	PRD30736-03-03	SUB PANEL(A)
15	PRD43433	SUB PANEL(B)
16	PRD30739-01-04	POWER SW BRACKET
17	PRD43708	TOP PLATE(R)
18	PRD30743A-01	FRONT BRACKET ASSY
18A	PGZ00493-02	GUIDE RAIL, ×4
19	PRD43816	FOOT, ×4
20	SBST3010Z	SCREW, ×4
△ 21	PGZ01652	SWITCHING REGURATOR
22	DPSP4008Z	ASSY SCREW, ×2
23	LPSP3006Z	ASSY SCREW, ×2
24	GBST3006Z	SCREW, ×3
△ 25	QSE2A21-L01	POWER SWITCH
△ 26	PRD42023	SW COVER CONNECTOR STAY
27	PRD30836	CONNECTOR STAY
28	PRD43700 PRD43709_02	CORNER BRACKET, ×3
29 30	PRD43709-02 PRD43709	BRACKET BRACKET
△ 31	PRD30857	INSULATOR
33	PU49486	WIRE CLAMP
34	PU59311	WIRE CLAMP, ×3(Incl. by 21)
35	PU49485-2	WIRE CLAMP
△ 37	PU54551	CAUTION LABEL
38	PGZ01726	CAP

5.1.5 Rear frame assembly <M5>

5-10

REAR FRAME ASSEMBLY M5

M 5 M M

⚠ REF No.	PART No.	PART NAME, DESCRIPT	ION
1	PRD20365-01-04	REAR FRAME(B)	
△ 2	PGZ00760	AC INLET	
3	QXT695H-025	NYLON TUBE	
△ 4	QMG0301-004	FUSE HOLDER	
△ 5	PU50316	FUSE COVER	
△ 6	DPSP4008N	SCREW	
△ 7	PGZ01137	FAN MOTOR	
8	PRD43419-01-01	FAN MOTOR BRACKET	
9	SDSP3025M	SCREW, ×2	
10	PRD43465-01-01	FAN GUARD	
11	PGZ01822	REAR FRAME(A) ASSY	
12	PGZ00592	7P CONNECTOR(IN),	Incl. by 11
13	PGZ00593	7P CONNECTOR(OUT),X3	Incl. by 11
14	PGZ01208	XLR CONNECTOR(MALE)	
15	PGZ01209	XLR CONNECTOR(FEMALE)	
16	PGZ00915	9P CONNECTOR (REMOTE)	Incl. by 11
17	PGZ00924	SPRING LOCK, ×2	Incl. by 11
18	PGZ00925	SCREW(2 IN 1)	Incl. by 11
△ 19	PGZ01137	FAN MOTOR	
20	PRD43419-01-01	FAN MOTOR BRACKET	
21	SDSP3025M	SCREW, ×2	
△ 22	PRD43424-01-03	REAR PANEL(D)	
△ 27	PRD30729-05	REAR PANEL(A)	
28	SDSP3006M	SCREW, ×8	
29	PRD43465-01-01	FAN GUARD	
30	GBST3006Z	SCREW, ×3	
31	SDSP2605N	SCREW, ×10	
32	SDSP3008M	SCREW, ×4	
33	PGZ01086	FLAT CABLE CLIP	
△ 34	PU44457	STICKER	
△ 35	PGZ01701	VOLTAGE SELECTOR	
36	SDSF2608M	SCREW, ×2	
37	PRD42023	SW COVER	
△ F 1	QMF51E2-4R0	FUSE	T4.0A

5.1.6 Mechanism-1 assembly <M6>

M	6	М	М			П
141	121	14.	1141	LI	 	-

Δ	REF No.	PART No.	PART NAME, DESCRIPTION
	1	PRD30764-01-05	SUB DECK, SUPPLY
	2	PQ33995	GUIDE RAIL 2, SUPPLY
	3	PQ33994	GUIDE RAIL 1, SUPPLY
	4	SDSP2604Z	SCREW
	5	PRD44024A	TENSION ARM ASSY
	5A	PRD30024-65	TENSION SPRING
	6	PRD43714	TENSION SPRING
	7	PQM30017	SLIT WASHER
	8	PRD43466-01-02	TENSION SENSOR BASE
	9	SDSP2003Z	SCREW
	10	PU61338	TENSION SENSOR
	11	SDSP2604Z	SCREW
	12	PRD43721A	GUIDE ROLLER ASSY
	13	YFS2603B	SET SCREW
	14	PU60616	FULL ERASE HEAD
	15	SDSP2608Z	SCREW
	16	PRD30821B	POLE BASE ASSY, SUPPLY
	16A		STOPPER(S2)
	16B	Q03093-829	WASHER "E" RING
	16C	REE1500 PRD43747A-05	LOADING ASSY, TAKE-UP
	17 17A		GUIDE RAIL ASSY, TAKE-UP
	17B		POLE BASE ASSY, TAKE-UP
	17C	PRD43819	STOPPER(T), ×2
	17D	PRD43875	COLLAR
	18	PQ34000	C.GUIDE ARM
	19	PQM30001-317	TENSION SPRING
	20	PQM30002-207	COMPRESSION SPRING
	21	SDSP2604Z	SCREW, ×3
	22	SDSP2608M	SCREW, ×2
	23	PGZ01536A	AUDIO/CONTROL HEAD
	24	PQ34008	HEAD ARM
	25	PQM30002-197	COMPRESSION SPRING SCREW
	26 27	SDSP2612Z	SPECIAL SCREW
	28	PQ44621 PQ43687B	SPECIAL SCREW
	29	PQ44119	TORSION SPRING
	30	PQ44541	SPACER
	31	PQ44630	NYLON NUT
	32	PQ45181	TAPER NUT
	33	PRD30023-45	COMPRESSION SPRING
	34	PRD43670-01-01	TAPE GUARD
	35	PRD43732	GUIDE FLANGE
	36	PRD43733	TAPE GUIDE
	37	PU61339	ROTARY ENCORDER
	38	SDSP2004Z	SCREW
	39	PU61357	DEW SENSOR
	40	SDSP2604Z	SCREW
	41	PRD43380B	MOTOR BRACKET ASSY
	42	PRD43745	SPACER
	43	PQ44129	WORM BEARING 2
	44	PRD44015A	WORM GEAR ASSY
	45	PQ45278	COLLAR
	46	PQ33992-1-1	LOCK LEVER 1
	47	PQM30001-313	TENSION SPRING
	48 49	PQ45279 PQ33993-1-2	LOCK LEVER 2 LOCK LEVER 3
	50	PQ33993-1-2 PQM30001-314	TENSION SPRING, ×2
	บบ	T ASTANDADAT TOTAL	I I I I I I I I I I I I I I I I I I I

A REF	PART No.	DADT NAME DESCRIPTION
No.	PARI NO.	PART NAME, DESCRIPTION
51	PQM30017-6	SLIT WASHER
52	PRD44016A	MODE MOTOR ASSY
53	SPSP3003Z	SCREW, ×2
54	PRD30022-16	BELT
55	PQ21313	CAM GEAR
56	PQM30017-12	SLIT WASHER
57	PRD43383A-02	SOLENOID LEVER ASSY
58	PRD43386	TORSION SPRING
59	PQM30017-12	SLIT WASHER
∆ 60	PGZ01590	SOLENOID
61	PSE3010	SPRING PIN
62	DPSP3005Z	SCREW, ×3
63	PU49485-4	WIRE CLAMP
64	SDSP2604Z	SCREW, ×4
65	PQ21315-1-2	CONTROL CAM
66	PQM30017-28	SLIT WASHER
67	PQ21312	PINCH ROLLER CAM
68	PRD43387A-01	PINCH ROLLER ARM ASSY
	or PRD43387B-01	PINCH ROLLER ARM ASSY
68A		TENSION SPRING
69	PRD43791A-01	GUIDE ARM GEAR ASSY
69A	•	TENSION SPRING
70	PRD43404D	GUIDE ARM ROLLER ASSY
71	PRD30023-48	COMPRESSION SPRING
72	PRD43800	BUSHING
73	PRD30023-49	COMPRESSION SPRING
74	WSS3000Z	WASHER
75	REE2500	"E" RING
76	PRD43783B	GUIDE PIN ASSY, ×2
77	SDSP2604Z	SCREW, ×2
78	PQ45332A	REC SAFETY ASSY
79	PQM30017-6	SLIT WASHER
80	PRD43889	F-S.SW BASE
81	SDSP2604Z	SCREW, ×2
82	Q03093-838	WASHER
83	PQ45294	"O" RING
84	PRD43165	SPECIAL SCREW
85	Q03093-819	WASHER
86	Q03093-849	WASHER
87	Q03093-818	WASHER
88	SDSP2608M	SCREW
89	Q03093-831	WASHER
90	PRD43802	ADJUST GEAR
91	SPSP2004Z	SCREW, ×2
92	PRD43804	COLLAR
93	SPSH2635M	MINI SCREW
94	Q03093-819	WASHER
95	PRD43826	SPACER
97	PRD44013-02	STOPPER PLATE
98	SSSP2606Z	SCREW
99	PRD43890	SOCKET L
100	SSSP2606Z	SCREW, ×2
101	PRD43968	CONNECT DITTEV
101	Q03093-829	CONNECT PULLEY WASHER
102	REE1200	"E"RING
103	PRD30022-12	BELT
	1 11.1.J.MNIAA*1A	1 DELLE

MECHANISM 2 ASSEMBLY M7

M	7	М	М		

	_ 1		
A	REF No.	PART No.	. PART NAME, DESCRIPTION
Δ	1	PGZ01535-01-01	CAPSTAN MOTOR
	2	SDSP2608Z	SCREW, ×3
	3	PRD43479A	REEL BRAKE ASSY
	3A	PRD30024-58	TENSION SPRING
	4	PQM30017-6	SLIT WASHER
	5	PQ34033	LOADING GEAR, TAKE-UP
	6	PRD43473A	LOADING GEAR ASSY, SUPPLY
	6A	PQM30001-318	TENSION SPRING
	7	PRD44019	COLLAR
	8		
		PRD43818	STOPPER(S1)
	9	PQ45306B-2	ARM GEAR ASSY
	9A	PQM30001-320	TENSION SPRING
	10	REE3000	"E" RING
	11	PQ45304A	F.LOCK LEVER ASSY
	11A	PQM30001-319	TENSION SPRING
	12	Q03093-825	WASHER
	13	PQM30017-6	SLIT WASHER
	14	PQ34005-1-1	LOCK ARM
	15	REE2500	"E" RING
	16	PRD43464A	HOUSING LEVER ASSY
	17	PQM30017-6	SLIT WASHER
	18	Q03093-825	WASHER
	19	PQ34007	CANCEL LEVER
	20	PQ45313	TORSION SPRING
	21	PQM30017-12	SLIT WASHER
	22	PRD43388A	
	22A		BRAKE LEVER (L) ASSY, SUPPLY
		PRD30024-53	TENSION SPRING
	23	PQM30017-6	SLIT WASHER
	24	PRD43395A	BRAKE LEVER(R) ASSY
	24A	PRD30024-53	TENSION SPRING
	25	PQM30017-6	SLIT WASHER
	26	PRD43397A-01	LEVER BASE ASSY
	27	PRD43400	F/C LEVER
	28	PRD43401	TENSION SPRING, ×2
	29	PQM30017-25	SLIT WASHER
	30	SDSP2604Z	SCREW
⚠	31	PGZ01541A-04	REEL MOTOR
	32	SDSP2604Z	SCREW, ×4
	33	PRD43485A	RELEASE PLATE ASSY
	34	REE3000	"E" RING
	35	REE1500	"E" RING
	36	SDSP2608Z	SCREW, ×2
	37	PRD30023-35	COMPRESSION SPRING
	39	SDSP2604Z	SCREW, ×4
	40	PU61174	CASSETTE SWITCH, (C-S)
	41	PU61008	CASSETTE SWITCH, (F-S)
	42	SDSP2605Z	SCREW
	43	PRD43467-01-01	C.S.SW BASE
	44	SDSP2603Z	
			SCREW, ×2
	45	Q03093-825	WASHER
	46	PU49485-4	WIRE CLAMP, ×2

M 7 M M

⚠	REF No.	PART No.	PART NAME, DESCRIPTION
4	47	PU49485-4	WIRE CLAMP
4	48	PRD43982	PLATE
4	49	PRD43984	SHEET
	50	SDSP2606Z	SCREW
	51	Q03093-833	WASHER
	52	PRD43487-01-01	CONNECTING PLATE
	53	PRD43486	PLATE
	54	PSE2516	SPRING PIN
	55	PGZ01623	SOLENOID
	56	SPSP2603Z	SCREW, ×2
	57	PRD43824	STOPPER
	58	SPSH2628Z	MINI SCREW, ×2
	59	PRD44006A	STOPPER ASSY
(60	Q03093-832	WASHER
	61	Q03093-831	WASHER

M 8 M M

		M[8]M]M]
A REF No.	PART No.	PART NAME, DESCRIPTION
	PGS20745C-08	CASSETTE HOUSING ASSY
1	PQ34092A-02	CASSETTE HOLDER ASSY
2	PQ11278-01-01	SIDE HOLDER(R)
3	PQ45459	LID OPENER
4	PQ43596A-5	LOCK LEVER(R) ASSY
4A	PQ43597-1-5	TENSION SPRING
5 6	PQ11279	SIDE HOLDER(L) LOCK LEVER(L)ASSY
6A	PQ45539A PQ43597-2	TENSION SPRING
7	PQ21327A-09	HOLDER STAY ASSY
8	PQ11281-01-04	HOUSING STAY(R)
9	PQ34096	DOOR SENSOR
10	PQ34097	LID GUIDE
11	PQ45477	FC CHENGE LEVER
12	PQ34098	SENSOR LEVER
13	PQ34099	C INSERT LEVER
14	PQ45478	TORSION SPRING HOUSING STAY(L)
15 16	PQ11282-01-05 PQ45479-01-01	DOOR STOPPER
17	PQ34100	DOOR OPENER
18	PQ11283-01-02	FRONT BRACKET
19	PQ45480A-02	DOOR LOCK(R)ASSY
19A	PQM30001-340	TENSION SPRING
20	PQ45481A-03	DOOR LOCK(L)ASSY
20A	PQM30001-340	TENSION SPRING
21	PQ45482	C DOOR LOCK
22	PQM30015-93	SHAFT
23	PQ45483-01-01	TORSION SPRING
24 24A	PQ34103A-03 PRD43806	MAIN ARM ASSY TORSION SPRING
24B	PQ43605	TORSION SPRING
25	PQ34107A-02	DRIVE UNIT ASSY
25A	PQ45489A	MOTOR ASSY
25B	PQ45474	WORM GEAR
25C	PQ34109	CONNECT GEAR
25D 25E	PQ34110-01-01 SPSP3003Z	IDLER CAM SCREW, ×2
26	PQ34111A-05	TOP FRAME ASSY
27	PQ34112A-01	HOLD PLATE ASSY
28	PQ45464	PIN
29	PQM30017-25	SLIT WASHER
30	PQ45493A	HOLD LEVER ASSY
31	PQ34128A-02	FC PLATE ASSY
31A	PQM30001-341	TENSION SPRING
32	PQ34114B-06	DOOR ASSY
32A	PQ45496-01-02 PRD44021	DOOR SHAFT TORSION SPRING
33 34	SDSA2606Z	SCREW, ×3
34 35	SDSA2606Z SDSF2608Z	SCREW, ^3
36	SDSF2612Z	SCREW
37	PRD43729	BASE BRACKET
38	PRD43730	GEAR BRACKET
40	SDSP2603Z	SCREW
41	PRD43776-01-01	TEPHRON SHEET
42	PRD43776-02-01	TEPHRON SHEET
43	PRD30030-34	PAD PAD
44 45	PRD30030-87 Q03093-828	WASHER
46	PRD30030-71	PAD
47	Q03093-826	WASHER
48	PRD30030-72	PAD
50	PRD30030-68	PAD, ×2

REF	DADT N	DART MAME DESCRIPTION	
A No.	PART No.	PART NAME, DESCRIPTION	
\triangle	PDV2273B	DRUM ASSY	
1 1	PGZ01630	SLIP RING ASSY	
1A	YFS2603B	SET SCREW	
2	PRD20380C-1	UPPER DRUM ASSY	
3 4	PDM4264A	DRUM SCREW ASSY, ×2	
4	PRD20382E-7	LOWER DRUM MOTOR ASSY	
5 6	PRD43986A	BRUSH ASSY(A)	
6	PRD43986B	BRUSH ASSY(B)	
7	BYS2605FS	S.BOLT, $\times 4$	
8	PRD43978	MOUNT PLATE, $\times 2$	
9	PRD30023-51	COMPRESSION SPRING, ×6	
10	BYS2606FS	S.BOLT, ×6	
11	PRD30921	BRUSH BASE	
12	PQM30017-25	SLIT WASHER, ×2	Not incl.
13	PRD30023-42	COMPRESSION SPRING(S),	Not incl.
14	PRD30023-43	COMPRESSION SPRING(T),	Not incl.
15	PRD43675	COLLAR, ×2	Not incl.
16	PGZ01667	INERTIA ROLLER ASSY(S),	Not incl.
17	PGZ01667-02	INERTIA ROLLER ASSY(T),	Not incl.
18	PRD43675-02	COLLAR(S),	Not incl.
19	PRD43675-03-01	COLLAR(T),	Not incl.
20	PU49485-3	WIRE CLAMP	
21	PRD30027-04	SPECIAL SCREW	
22	PDM4067	PART NO.LABEL	
23	PRD43979	STUD	
24	PRD30027-04	SPECIAL SCREW	

5.1.10 Front panel assembly

CASSETTE PANEL ASSEMBLY MA

B 4	AIRA	I R A I	11 11	11
HVII	AllM	HVIII	- 11 11	- 11 (

A REF	PART No.	PART NAME, DESCRIPTION
1	PRD10229G-01 PRD10229H-01	CASSETTE PANEL ASSY, BR-S822E CASSETTE PANEL ASSY, BR-S622E
2	PRD43427	VR BRACKET
3	SBSF2606Z	SCREW, ×15
4	PRD42927A	SLIDE KNOB ASSY
5	PU49485-4	WIRE CLAMP, $\times 2$
6	PRD43813	PAD
7	PRD30726-03	WINDOW

OPERATION PANEL ASSEMBLY MB

A REF	PART No.	PART NAME, DESCRIPTION
1	PRD10230B	OPERATION PANEL ASSY, BR-S822E
	PRD10259C	OPERATION PANEL ASSY, BR-S622E
2	PRD42830	SLIDE KNOB, ×5
2 3	PRD43146	KNOB PLATE, ×5
	PRD20379	OPERATION BRACKET
5 6 7 8	PRD30732A-01	SIDE BRACKET(L) ASSY
6	PRD43428	VR & JACK BRACKET
7	SBSF2606Z	SCREW, $\times 31$
8	LPSP3006Z	ASSY SCREW
9	PRD30733A-01	SIDE BRACKET(R) ASSY
10	PRD43194	SPECIAL SCREW, ×2
11	PGS20128H-02	SEARCH/JOG CONTROL ASSY
12	DPSP3010Z	SCREW, ×4
13	PRD30774-01-01	PROTECTOR(A)
14	PRD30775-01-02	PROTECTOR(B)
15	PRD43477-01-01	PROTECTOR(C)
16	PRD43478	INSULATOR
17	GBST3006Z	SCREW, $\times 2$
18	PU49485-4	WIRE CLAMP, ×2
19	PRD30850	OPERATION BRACKET
20	PRD30084	WASHER, ×3
21	SDSF2610Z	SCREW, ×4

SECTION 6 ELECTRICAL PARTS LIST

SAFETY PRECAUTION

Parts identified by the \triangle symbol are critical for safety. Replace only with specified part numbers.

		PART NAME, DESCRIPTION		lo. PART No.	
MOTHE	R 1 BOARD AS	SEMBLY<01>	CN1	PGZ00420-64	FEMALE CONNECTOR
			CN1	PGZ01297-64	FEMALE CONNECTOR
			CN3	PGZ01297-64	FEMALE CONNECTOR
PWBA	PRK10113A	MOTHER 1 BOARD ASSY	CN4	PGZ00420-64	FEMALE CONNECTOR
			CN5	PGZ00420-64	FEMALE CONNECTOR
			CN6	PGZ01297-64	FEMALE CONNECTOR
CL1	PEME0802	CLAMP, ×7	CN7	PGZ00420-64	FEMALE CONNECTOR
OLI	I FIAIFAGE	OLIMIT, WY	CN8	PGZ00420-64	FEMALE CONNECTOR
			CN9		
-	BATTO 444	CONNECTED		PGZ01297-64	FEMALE CONNECTOR
CN1	PGZ00420-44	CONNECTOR	CN10	PGZ01297-64	FEMALE CONNECTOR
CN2	PGZ00420-44	CONNECTOR			
CN3	PGZ00420-44	CONNECTOR	CN11	PU60329-120	CONNECTOR
CN4	PGZ00420-44	CONNECTOR	CN12	PU59513-2	CONNECTOR
CN5	PGZ01297-44	CONNECTOR	CN13	PU60329-120	CONNECTOR
CN6	PGZ01297-44	CONNECTOR	CN14	PU59513-2Y	CONNECTOR
CN7	PGZ01297-44	FEMALE CONNECTOR	CN15	PU59513-7	CONNECTOR
CN8	PGZ01297-44	FEMALE CONNECTOR	CN16	PU59513-4	CONNECTOR
CN9	PU59513-8	CONNECTOR	CN17	PU58844-6	CONNECTOR
CN10	PU59513-2	CONNECTOR	CN18	PU59513-3	CONNECTOR
			CN19	PU59513-2	CONNECTOR
CN11	PU59513-8	CONNECTOR	CN20	PU58844-10	CONNECTOR
CN12	PU59513-5	CONNECTOR			
CN13	PU59513-6	CONNECTOR	CN21	PU59513-8	CONNECTOR
CN14	PU59513-7	CONNECTOR	CN22	PU59513-2	CONNECTOR
CN15	PU59513-4Y	CONNECTOR	CN23	PU58844-9	CONNECTOR
CN16	PU59513-2Y	CONNECTOR	CN24	PU59513-2	CONNECTOR
CN17	PU59513-5	CONNECTOR	CN25	PU59513-2R	CONNECTOR
CN18	PU59513-8	CONNECTOR	CN26	PU59513-2Y	CONNECTOR
CN19	PU59513-7	CONNECTOR	CN27	PU59513-5	CONNECTOR
CN20	PU59513-2	CONNECTOR	CN28	PU59513-4	CONNECTOR
			CN29	PU59513-4	CONNECTOR
CN21	PU60329-120	CONNECTOR	CN30	PU59513-6	CONNECTOR
CN22	PU60329-120	CONNECTOR	V1100	, 530010.A	3011111101011
CN22 CN23	PU59513-2R	CONNECTOR	CN31	PU59513-4	CONNECTOR
					CONNECTOR
CN24	PU59513-6	CONNECTOR	CN32	PU59513-4R	CONNECTOR
CN25	PU59513-2Y	CONNECTOR	CN33	PU59513-4R	CONNECTOR
CN26	PU59513-2R	CONNECTOR	CN34	PU59513-4Y	CONNECTOR
CN27	PU59513-4	CONNECTOR	CN35	PU59513-2R	CONNECTOR
CN28	PU59513-2R	CONNECTOR	CN36	PU59513-7	CONNECTOR
CN29	PU59513-2	CONNECTOR	CN37	PU59513-5R	CONNECTOR
CN30	PU59513-4R	CONNECTOR	CN38	PU59513-8	CONNECTOR
Ç1 100	, 646616.411		CN39	PU59513-4	CONNECTOR
CN31	PU59513-2	CONNECTOR	CNI40	PU59513-6	
			. CN40	L 002012-0	CONNECTOR
CN32	PU59513-5	CONNECTOR		DI 150510 05	COMMITTOE
CN33	PU59513-2	CONNECTOR	CN41	PU59513-2R	CONNECTOR
CN34	PU59513-2R	CONNECTOR	CN42	PU59513-4Y	CONNECTOR
CN35	PU59513-5R	CONNECTOR	CN43	PU59513-3	CONNECTOR
CN36	PU59513-2	CONNECTOR	CN44	PU59513-4Y	CONNECTOR
CN37	PU59513-2R	CONNECTOR	CN45	PU59513-4Y	CONNECTOR
CN38	PU59513-2	CONNECTOR	CN46	PU59513-4	CONNECTOR
CN39	PU59513-2R	CONNECTOR	CN47	PU59513-5	CONNECTOR
CN40			CN48		
CINAU	PU59513-2Y	CONNECTOR		PU59513-3	CONNECTOR
			CN49	PU59513-3R	CONNECTOR
			CN50	PU59513-8	CONNECTOR
40711	D 0 D0450 40	CEMPI V / CO.	CN51	PU58844-5	CONNECTOR
NO I HE	R 2 BOARD AS	9FWRF1<05>	CN52	PU59513-6	CONNECTOR
			CN53	PU59513-4R	CONNECTOR
			CN54		
DIA/D 1	DDK101114	MOTHER & BOARD ACCV		PU59513-5R	CONNECTOR
PWBA	PRK10111A	MOTHER 2 BOARD ASSY	CN55	PU59513-5	CONNECTOR
			CN56	PU58844-4R	CONNECTOR
			CN57	PU58844-4Y	CONNECTOR
CL1	-PEME0802	CLAMP, ×8	CN58	PU58844-3	CONNECTOR
CL2	PGZ01377-03	STYLE PIN, ×3	CN59	PU58844-4	CONNECTOR
	1 02010/7-03	errate (m) no	CN60	PU58844-2	CONNECTOR
			CINDU	I 0J0044-Z	CONTRECTOR
CDC1	BDD40000	INCLIL ATOR	02104	DI IEGO 44 4	COMMECTOR
SPC1	PRD42222	INSULATOR	CN61	PU58844-4	CONNECTOR
SPC2	PRD30030-59	PAD	CN62	PU58844-4R	CONNECTOR
			CN63	PU58844-6	CONNECTOR
			CN64	PEMC0769-004	CONNECTOR
WR1	PGW0205-050200	FLAT WIRE	CN65	PEMC0769-002	CONNECTOR
WR2	PGW0201-050201		CN66	PU59513-2R	CONNECTOR
			. 51100		

REF No.	PART No.	PART NAME, DES	CRIPTION	#≜REF No	. PART No.	PART NAME, DESC	RIPTION
CN68 CN69 CN70	PU59513-4R PU59513-2 PU59513-6	CONNECTOR CONNECTOR CONNECTOR		C1 C2	QETA1EM-477 QETA1EM-477	E CAPACITOR E CAPACITOR	470 μ F,25 470 μ F,25
CN71	PU59513-5	CONNECTOR		C3	QETA1EM-478	E CAPACITOR	4700 μ F,25
CN72	PU59513-7	CONNECTOR		C4	QETA1EM-477	E CAPACITOR	470 μ F,25
CN73	PU59513-2	CONNECTOR		C5	QETA1EM-477	E CAPACITOR	470 μ F,25
CN74 CN76	PU60251-4 PU59513-2Y	CONNECTOR CONNECTOR		C6 C7	QETA1CM-478 QETA1EM-228	E CAPACITOR E CAPACITOR	4700 μ F,16 2200 μ F,25
CN77	PU59513-2	CONNECTOR		03 09	QETA1EM-477 QETA1EM-477	E CAPACITOR E CAPACITOR	470 μ F,25 470 μ F,25
LOT N	OTHER BOAR	RD ASSEMBLY<03>		∆ K1 ∆ K2	PGZ00354 PGZ00354	FERRATE BEADS FERRATE BEADS	
PWBA	PRK20091A-01	SLOT MOTHER BOAR		Δ K3 Δ K4 Δ K5	PGZ00354 PGZ00354 PGZ00354	FERRATE BEADS FERRATE BEADS FERRATE BEADS	
	,			Δ K6 Δ K7	PGZ00354 PGZ00354 PGZ00354	FERRATE BEADS FERRATE BEADS FERRATE BEADS	
Q1	DTC144EF	TRANSISTOR	4	∆ K8 ∆ K9	PGZ00354	FERRATE BEADS	
R1	QRD167J-103	RESISTOR	10kΩ.1/6W	EJ1	PGZ00582	EJECTOR, ×2	
CN1	PGZ00506-32	MALE CONNECTOR	1	6501	PP P00000 00	00 4 0 5 0	
CN2 CN3	PU58844-2 PU58844-7	CONNECTOR CONNECTOR		SPC1 SPC2	PRD30083-03 PRD30083-03	SPACER SPACER	
CN4	PU58844-4R	CONNECTOR		SPC3	PRD30083-03	SPACER	
				CN1	PGZ00421-64	MALE CONNECTOR	
				CITI	1 0200721 07		
SYSCON	MOTHER BO	ARD ASSEMBLY < 04					
SYSCON	MOTHER BO	OARD ASSEMBLY<04		∆ F11	PU51212	FUSE CLIP. ×6	T2.5
SYSCON	MOTHER BO	SYSCON MOTHER BOA	ARD ASSY				T1.0
			ARD ASSY	△ F11 △ F11 △ F12	PU51212 QMF51E2-2R5 QMF51E2-1R0	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED	T1.0
PWBA SCW1 SCW2	PGE20348A-01 SPSP2608Z NNS2600N	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU	ARD ASSY	△ F11 △ F11 △ F12 △ F13	PU51212 QMF51E2-2R5 QMF51E2-1R0	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED	T1.0
PWBA SCW1	PGE20348A-01 SPSP2608Z	SYSCON MOTHER BOA	ARD ASSY	△ F11 △ F11 △ F12 △ F13	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED	T1.0
PWBA SCW1 SCW2 SPC1 CN1	PGE20348A-01 SPSP2608Z NNS2600N	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU	ARD ASSY	△ F11 △ F11 △ F12 △ F13	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN2 CN3 CN4	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105R PU58844-105	SYSCON MOTHER BOAD SCREW, ×4 NOT INC. NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	△ F11 △ F11 △ F12 △ F13	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105R	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1	PU51212 OMF51E2-2R5 OMF51E2-1R0 OMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN2 CN3 CN4 CN5 CN6 CN7	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2	PU51212 OMF51E2-2R5 OMF51E2-1R0 OMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-106	SYSCON MOTHER BOA SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3	PU51212 OMF51E2-2R5 OMF51E2-1R0 OMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN2 CN3 CN4 CN5 CN6 CN7	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2	PU51212 OMF51E2-2R5 OMF51E2-1R0 OMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN7 CN8 CN9 CN10	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-106 PU58844-107 PU58844-107	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-106 PU58844-107 PU58844-107 PU58844-107 PU58844-107	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L05 M5278L12 M5278L05	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104 PU58844-107 PU58844-107 PU58844-107 PU58844-102 PU588844-102	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L05 M5278L05	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L05 M5278L12 M5278L05	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104 PU58844-107 PU58844-107 PU58844-107	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLUD SPACER, NOT INCLUD MALE CONNECTOR CONNECTOR	ARD ASSY	A F11 A F12 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10	PU51212 OMF51E2-2R5 OMF51E2-1R0 OMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L12 M5278L05 M5278L05 M5278L05 M5278L05 M5278L05 M5278L05 M5278L05 M5278L05	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9	PU51212 QMF51E2-2R5 QMF51E2-1R0 QMF51E2-3R15 BOARD ASSE PRK20120C PRD30072-53 M5278L12 M5278L12 M5278L12 M5278L05 M5278L12 M5278L05 M5278L05 M5278L05 M5278L05	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14 CN15	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-104 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107 PU58844-107	SYSCON MOTHER BOA SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC21	PU51212	FUSE CLIP, ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14 CN15	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-105 PU58844-104 PU58844-104 PU58844-106 PU58844-107 PU58844-102 PU58844-102 PU58844-102 PU58844-102 PU58844-104	SYSCON MOTHER BOA SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR	ARD ASSY	A F11 A F11 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC21	PU51212	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14 CN15	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-105 PU58844-104 PU58844-104 PU58844-106 PU58844-107 PU58844-102 PU58844-102 PU58844-102 PU58844-102 PU58844-104	SYSCON MOTHER BOA SCREW, ×4 NOT INC NUT, ×4 NOT INCLU SPACER, NOT INCLUD MALE CONNECTOR MALE CONNECTOR	ARD ASSY	A F11 A F12 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC21 IC12 IC13	PU51212	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC IC	T1.0
PWBA SCW1 SCW2 SPC1 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN14 CN15 FUSE B	PGE20348A-01 SPSP2608Z NNS2600N PRD30083-02 PGZ00506-44 PGZ00506-44 PU58844-105 PU58844-107 PU58844-104 PU58844-104 PU58844-107 PU58844-102 PU58844-102 PU58844-102 PU58844-102 PU58844-104 OARD ASSEMI	SYSCON MOTHER BOX SCREW, ×4 NOT INC NUT, ×4 NOT INCLUD MALE CONNECTOR MALE CONNECTOR	ARD ASSY	A F11 A F12 A F12 A F13 R/P Y PWBA STK1 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC21 IC12 IC13	PU51212	FUSE CLIP. ×6 FUSE, NOT INCLUDED FUSE, NOT INCLUDED FUSE, NOT INCLUDED EMBLY < 10 > R / P Y BOARD ASSY STICKER IC IC IC IC IC IC IC IC IC IC IC IC IC	T2.5 T1.0 T3.1

#AREF No. PART No.	PART NAME, DESCRIPTION	#∆REF No.	PART No.	PART NAME,	DESCRIPTION
IC26 AN1082S	IC	Q40	DTC144EK	TRANSISTOR	
IC27 8VT15 or HMC-229	IC IC	Q41	2SC2412K(RS)	TRANSISTOR	
IC28 JCL0007	IC	Q42	2SC2412K(RS) 2SA1037K(QR)	TRANSISTOR TRANSISTOR	
IC29 VC2076DP IC30 TA7347P	IC IC	Q43 Q44	2SA1037K(QR)	TRANSISTOR	
1775471		Q45	2SD601(Q)	TRANSISTOR	
IC31 8VT15	ic	Q46	2SA1037K(QR)	TRANSISTOR	
or HMC-229 IC32 TA7347P	IC IC	Q47 Q48	2SC2412K(RS) 2SK621	TRANSISTOR FE TRANSISTOR	
C33 AN6306S	IC	Q49	2SK621	FE TRANSISTOR	
IC34 TC74HC4053AF IC35 TC74HC4538AF	IC IC	Q50	2SK621	FE TRANSISTOR	
IC36 TC74HC4538AF	IC	Q51	DTC144EK	TRANSISTOR	
IC37 AN6393	IC	Q52	2SC2412K(RS)	TRANSISTOR	
1C38 TC74HC86AF 1C39 AN6308S	IC IC	Q53 Q54	2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
C40 MC10116L	ic	Q55	2SK621	FE TRANSISTOR	
IC41 MC10116L	IC	Q56 Q57	2SK621 2SC2412K(RS)	FE TRANSISTOR TRANSISTOR	
IC42 MC10107L	IC	Q58	DTC144EK	TRANSISTOR	
IC43 AN607P	IC	Q59	2SA1037K(QR)	TRANSISTOR	
IC44 8VT15 or HMC-229	IC IC	Q60	DTC144EK	TRANSISTOR	
IC45 AN607P	IC IC IC IC	Q61	DTC144EK	TRANSISTOR	
IC46 8VT15	IC	Q62 Q63	2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
or HMC-229 IC47 TA7347P	IC	Q64	2SC2412K(RS)	TRANSISTOR	
IC48 TA7347P	IC	Q65	2SK621	FE TRANSISTOR	
IC49 AN608P	IC	Q66 Q67	DTC144EK DTC144EK	TRANSISTOR TRANSISTOR	
		Q68	2SC2412K(RS)	TRANSISTOR	
Q1 2SC2412K(RS) Q2 2SC2412K(RS)	TRANSISTOR TRANSISTOR	Q69 Q70	2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
Q3 DTC144EK	TRANSISTOR	470	2502412K(N3)	THAMBISTON	
Q4 2SC2412K(RS)	TRANSISTOR	Q71	2SC2412K(RS)	TRANSISTOR	
Q5 2SC2412K(RS) Q6 2SA1037K(QR)	TRANSISTOR TRANSISTOR	Q72 Q73	2SC2412K(RS) 2SD601(Q)	TRANSISTOR TRANSISTOR	
Q7 2SA1037K(QR)	TRANSISTOR	Q74	2SC2412K(RS)	TRANSISTOR	
Q8 2SC2412K(RS) Q9 2SK621	TRANSISTOR FE TRANSISTOR	Q75 Q76	2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
Q10 25K621	FE TRANSISTOR	Q77	2SD601(Q)	TRANSISTOR	
Q11 2SK621	FE TRANSISTOR	Q78 Q79	2SC2412K(RS) 2SA1037K(QR)	TRANSISTOR TRANSISTOR	
Q11 2SK621 Q12 2SC2412K(RS)	TRANSISTOR	Q80	2SC2412K(RS)	TRANSISTOR	
Q13 2SC2412K(RS)	TRANSISTOR	001	20440271/(00)	TOANGICTOD	
Q14 2SA1037K(QR) Q15 2SC2412K(RS)	TRANSISTOR TRANSISTOR	Q81 Q82	2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
Q16 2SA1037K(QR)	TRANSISTOR	Q83	2SK621	FE TRANSISTOR	}
Q17 2SA1037K(QR) Q18 2SC2412K(RS)	TRANSISTOR TRANSISTOR	Q84 Q86	2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
Q19 2SC2412K(RS)	TRANSISTOR	Q87	2SC2412K(RS)	TRANSISTOR	
Q20 2SK621	FE TRANSISTOR	Q88 Q89	2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
Q21 2SK621	FE TRANSISTOR	269	20024121(110)	MANSION	
Q22 2SK621	FE TRANSISTOR	D1	100122	DIODE	
Q23 DTC144EK Q24 2SK621	TRANSISTOR FE TRANSISTOR	D1 D2	1SS133 1SS133	DIODE	
Q25 2SC2412K(RS)	TRANSISTOR	D3	1SS133	DIODE	
Q26 2SA1037K(QR) Q27 2SC2412K(RS)	TRANSISTOR TRANSISTOR	D4 D5	1SS133 1SS133	DIODE DIODE	
Q28 2SD601(Q)	TRANSISTOR	D6	1 S S133	DIODE	
Q29 DTC144EK	TRANSISTOR	D8 D9	1SS133 1SS133	DIODE DIODE	
Q30 2SA1037K(QR)	TRANSISTOR	D10	1\$\$133 1\$\$133	DIODE	
Q31 2SD601(Q) Q32 2SA1037K(QR)	TRANSISTOR TRANSISTOR	D13	1SS133	DIODE	
Q33 2SC2412K(RS)	TRANSISTOR				
Q34 2SC2412K(RS) Q35 2SA1037K(QR)	TRANSISTOR TRANSISTOR	D23 D24	1SS133 1SS133	DIODE DIODE	
Q36 2SC2412K(RS)	TRANSISTOR	J.4	100100	DIODE	
Q37 2SC2412K(RS)	TRANSISTOR		OV/79E40 200	V DECICTOR	0.01.0
Q38 2SA1037K(QR) Q39 2SC2412K(RS)	TRANSISTOR TRANSISTOR	R1 R2	QVZ3513-222 QVZ3513-102	V RESISTOR V RESISTOR	2.2kΩ 1kΩ
		1			

#AREF No.	PART No.	PART NAME,	DESCRIPTION	#∆REF No	o. PART No.	PART NAME,	DESCRIPTION
R3	QVZ3513-102	V RESISTOR	1kΩ	R156	QRSA08J-152YN	RESISTOR	1.5kΩ,1∕10W
R4	QVPB610-102	V RESISTOR	1kΩ	R157	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W
R5	QVZ3513-332	V RESISTOR	3.3kΩ	R158	QRSA08J-101YN		100Ω,1/10W
R6	QVZ3513-332	V RESISTOR	3.3kΩ	R159	QRSA08J-101YN		100Ω,1/10W
R7	QVZ3513-472	V RESISTOR	4.7kΩ	R160	QRSA08J-222YN		2.2kΩ,1/10W
R8	QVZ3513-472	V RESISTOR	4.7kΩ				2121022,17 1017
R9	QVZ3513-472	V RESISTOR	4.7kΩ	R161	QRSA08J-153YN	RESISTOR	15kΩ,1/10W
R10	QVZ3513-472	V RESISTOR	4.7kΩ	R162	QRSA08J-153YN		15kΩ,1/10W
				R163	QRSA08J-222YN		2.2kΩ ,1/10W
R11	QVZ3513-222	V RESISTOR	2.2kΩ	R164	QRSA08J-333YN	RESISTOR	33kΩ,1/10W
R12	QVPB610-202	V RESISTOR	2kΩ	R165	QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W
R13	QVZ3513-223	V RESISTOR	22kΩ	R166	QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W
R14	QVZ3513-223	V RESISTOR	22kΩ	R167	QR\$A08J-682YN	RESISTOR	6.8kΩ,1/10W
R15	QVZ3513-472	V RESISTOR	4.7kΩ	R168	QRSA08J-100YN	RESISTOR	10Ω,1/10W
				R169	QRSA08J-182YN		1.8kΩ ,1 ∕ 10W
R101	QRSA08J-153YN		15kΩ,1/10W	R170	QRV141F-1331A	Y RESISTOR	1.33kQ,1∕4W
R102	ORSA08J-123YN		12kΩ,1/10W				•
R103	ORSA08J-223YN		22kΩ,1/10W	R171	QRSA08J-472YN		4.7kΩ ,1 ∕ 10W
R104	ORSA08J-123YN		12kΩ,1/10W	R172	QRSA08J-272YN		$2.7k\Omega$,1/10W
R105	QRSA08J-392YN		3.9kΩ,1/10W	R173	QRSA08J-472YN		4.7kΩ,1/10W
R107	QRSA08J-391YN		390Ω,1/10W	R174	QRSA08J-103YN		10kΩ,1/10W
R108	QRSA08J-222YN		2.2kΩ,1/10W	R175	QRSA08J-333YN		33kΩ.1/10W
R109	QRSA08J-333YN		33kΩ,1/10W	R176	QRSA08J-223YN		22kΩ,1/10W
R110	QRSA08J-123YN	RESISTOR	12kQ,1∕10W	R177	QRSA08J-391YN		390Ω,1/10W
D111	QRSA08J-333YN	DECICTOR	221-0 1 /1014/	R178	NRVA62D-302N	CMF RESISTOR	3kΩ,1/16W
R111 R112	QRSA08J-123YN		33kΩ,1/10W 12kΩ,1/10W	R179 R180	QRSA08J-102YN QRSA08J-102YN		1kΩ,1/10W
R113	QRSA08J-392YN		3.9kΩ,1/10W	L/100	UNSAUGJ-1UZ I N	RESISTOR	$1k\Omega$, $1/10W$
R114	QRSA08J-182YN		1.8kΩ,1/10W	R181	QRSA08J-223YN	RESISTOR	221-0 1 /1014/
R115	NRVA62D-621N		620Ω,1/16W	R182	QRSA08J-101YN		22kΩ,1/10W
R116	QRSA08J-102YN		1kΩ,1/10W	R183	QR\$A08J-222YN		100Ω,1/10W
R117	QRSA08J-103YN		10kΩ,1/10W	R184	QRSA08J-101YN		2.2kΩ,1/10W 100Ω,1/10W
R118	ORSA08J-103YN		10kΩ,1/10W	R185	QRSA08J-102YN		1kΩ,1/10W
R119	QRSA08J-333YN		33kΩ,1/10W	R186	QRSA08J-471YN		470Ω,1/10W
R120	QRSA08J-333YN		33kΩ,1/10W	R187	QRSA08J-101YN		100Ω,1/10W
			001122717 1017	R188	QRSA08J-102YN		1kΩ,1/10W
R121	QRSA08J-181YN	RESISTOR	180Ω,1/10W	R189	QRSA08J-471YN		470Ω,1/10W
R122	QRSA08J-181YN		180Ω,1/10W	R190	QRSA08J-103YN		10kΩ,1/10W
R123	QRSA08J-332YN	RESISTOR	$3.3k\Omega$, $1/10W$				
R124	QRSA08J-332YN	RESISTOR	3.3kΩ,1∕10W	R191	QRSA08J-101YN	RESISTOR	100Ω,1/10W
R125	QRSA08J-102YN	RESISTOR	1kΩ,1/10W	R192	NRVA62D-331N	RESISTOR	330Ω,1/16W
R126	QRSA08J-273YN		27kΩ,1∕10W	R193	NRVA62D-302N	RESISTOR	$3k\Omega$, $1/16W$
R127	QRSA08J-473YN		47kΩ,1∕10W	R194	NRVA62D-152N	RESISTOR	$1.5k\Omega$, $1/16W$
R128	CRSA08J-333YN		33kΩ,1∕10W	R195	NRVA62D-162N	CMF RESISTOR	1.6kΩ,1∕16W
R129	QRSA08J-101YN		100Ω,1/10W	R196	NRVA62D-151N	CMF RESISTOR	150Ω , $1/16W$
R130	QRSA08J-682YN	RESISTOR	6.8kΩ,1/10W	R197	NRVA62D-332N	RESISTOR	3.3 k Ω , $1/16$ W
5404	00000011011/01	DEGIOTAD	4000 4 (40)44	R198	NRVA62D-102N	RESISTOR	1kΩ,1/16W
R131	QRSA08J-181YN		180Ω,1/10W	R199	NRVA62D-102N	RESISTOR	1kΩ,1/16W
R132	ORSA08J-153YN		15kΩ.1/10W	R200	NRVA62D-471N	RESISTOR	470Ω,1/16W
R133	ORSA08J-101YN		100Ω,1/10W	D004	NOVA COD COOM	DEGISTOR	0.01.0.4.44.0111
R134	QRSA08J-332YN		3.3kΩ,1/10W	R201	NRVA62D-332N	RESISTOR	3.3kΩ ,1 / 16W
R135 R136	QRSA08J-682YN QRSA08J-682YN		6.8kΩ,1/10W 6.8kΩ,1/10W	R202	NRVA62D-152N	RESISTOR	1.5kΩ,1/16W
R137	QRSA08J-682YN		6.8kΩ,1/10W	R203 R204	NRVA62D-332N QRSA08J-223YN	RESISTOR	3.3kΩ,1/16W
R138	QRSA08J-183YN		18kΩ,1/10W	R205	QRSA08J-333YN	RESISTOR RESISTOR	22kΩ,1/10W 33kΩ,1/10W
R139	QRSA08J-223YN		22kΩ,1/10W	R206	QRSA08J-222YN		
R140	QRSA08J-332YN		3.3kΩ,1/10W	R207	QRSA08J-391YN	RESISTOR	2.2kΩ,1/10W
11170	Q11071000 002 174	1120101011	0.014,1/ 1017	R209	NRVA62D-242N	RESISTOR	390Ω,1/10W 2.4kΩ,1/16W
R141	QRSA08J-183YN	RESISTOR	18kΩ,1/10W	R210	QRSA08J-391YN	RESISTOR	390Ω.1/10W
R142	QRSA08J-223YN		22kΩ,1/10W	11210	G1107000-031111	RESISTOR	39082,17 1044
R143	QRSA08J-332YN		3.3kΩ,1/10W	R211	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R144	QRSA08J-332YN		3.3kΩ,1/10W	R212	QR\$A08J-272YN		2.7kΩ,1/10W
R145	NRVA62D-202N	RESISTOR	2kΩ,1/16W	R213	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W
R146	ORSA08J-393YN		39kΩ,1/10W	R214	QRSA08J-182YN	RESISTOR	1.8kΩ.1/10W
R147	ORSA08J-332YN		3.3kΩ,1∕10W	R215	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R148	ORSA08J-273YN		27kΩ,1/10W	R216	QRSA08J-821YN		820Ω,1/10W
R149	QRSA08J-333YN		33kΩ,1∕10W	R217	QRSA08J-272YN	RESISTOR	2.7kΩ,1/10W
R150	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W	R218	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
				R219	QRSA08J-103YN	RESISTOR	$10k\Omega$, $1/10W$
R151	0RSA08J-102YN		1kΩ,1∕10W	R220	QRSA08J-223YN	RESISTOR	22kΩ,1/10W
R152	0RSA08J-332YN		3.3kΩ,1/10W				
R153	0RSA08J-122YN		1.2kΩ,1/10W	R221	QRSA08J-123YN	RESISTOR	$12k\Omega$, $1/10W$
R154	ORSA08J-332YN		3.3kΩ,1∕10W	R222	QRSA08J-223YN	RESISTOR	$22k\Omega$,1/10W
R155	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W	R223	QRSA08J-123YN	RESISTOR	$12k\Omega$, $1/10W$

				i				<10>
#△REF No.	PART No.	PART NAME,	DESCRIPTION	#∆REF No.	PART No.	PART	NAME,	DESCRIPTION
R224	QRSA08J-562YN	RESISTOR	5.6kΩ,1/10W	R292	QRSA08J-122YN	RESIST	ror	$1.2k\Omega$, $1/10W$
R225	QRSA08J-182YN	RESISTOR	1.8kΩ,1∕10W	R293	QRSA08J-122YN	RESIST	ror .	1.2kΩ,1∕10W
R226	QRSA08J-681YN		680Ω,1/10W	R294	QRSA08J-561YN	RESIST	ror .	560Ω,1/10W
R227	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W	R295	QRSA08J-561YN	RESIST	ror .	560Ω,1/10W
R228	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	R296	QRSA08J-391YN	RESIST	FOR	390Ω,1∕10W
R229	QRSA08J-471YN	RESISTOR	470Ω,1/10W	R297	QRSA08J-391YN	RESIST	TOR	390Ω,1/10W
R230	QRSA08J-102YN	RESISTOR	1kΩ,1∕10W	R298	QRSA08J-182YN	RESIST	TOR	1.8kΩ,1/10W
				R299	QRSA08J-472YN	RESIST	TOR .	4.7kΩ,1/10W
R231	QRSA08J-222YN		2.2kΩ,1/10W	R300	QRV141F-5230A	Y RESIST	TOR .	523Ω,1/4W
R232	QRSA08J-272YN	RESISTOR	2.7kΩ,1∕10W					
R233	NRVA62D-561N	RESISTOR	560Ω,1/16W	R301	QRV141F-7870A	RESIST	ror .	787Ω,1/4W
R234	NRVA62D-272N	RESISTOR	2.7kΩ,1∕16W	R302	QRSA08J-821YN	RESIST	ror .	820Ω,1∕10W
R235	NRVA62D-222N	RESISTOR	2.2kΩ,1/16W	R303	QRSA08J-821YN	RESIST	ror .	820Ω,1∕10W
R236	QRSA08J-564YN		560kΩ,1/10W	R304	QRSA08J-122YN			$1.2k\Omega$, $1/10W$
R237	QRSA08J-100YN		10Ω,1∕10W	R305	QRSA08J-122YN			$1.2k\Omega$, $1/10W$
R238	QRSA08J-332YN		3.3kΩ,1/10W	R306	QRSA08J-122YN			$1.2k\Omega$, $1/10W$
R239	QRSA08J-562YN		5.6kΩ,1/10W	R307	QRSA08J-122YN	RESIST		$1.2k\Omega$, $1/10W$
R240	QRSA08J-182YN	RESISTOR	1.8kΩ,1∕10W	R308	QRSA08J-562YN			5.6kΩ,1/10W
				R309	QRSA08J-122YN			$1.2k\Omega$, $1/10W$
R241	ORSA08J-103YN		10kΩ,1/10W	R310	QRSA08J-122YN	RESIST	OR	1.2kΩ,1∕10W
R242	QRSA08J-222YN		2.2kΩ,1/10W	D044	0004001404141	0.000		1001 0 4 440144
R243	QRSA08J-122YN		1.2kΩ,1/10W	R311	QRSA08J-104YN	RESIST		100kΩ ,1 / 10W
R244	QRSA08J-821YN		820Ω,1/10W	R312	QRSA08J-122YN			1.2kΩ,1/10W
R245	QRSA08J-101YN		100Ω,1/10W	R313	QRSA08J-122YN			1.2kΩ,1/10W
R246	QRSA08J-101YN		100Ω,1/10W	R314	QRSA08J-223YN			22kΩ,1/10W
R247	QRSA08J-101YN		100Ω,1/10W	R315	QRSA08J-333YN			33kΩ.1/10W
R248	NRVA62D-334N	RESISTOR	330kΩ,1/16W	R316	QRSA08J-151YN QRSA08J-221YN			150Ω,1/10W
R249	NRVA62D-432N	RESISTOR	4.3kΩ,1/16W	R317 R318		RESIST		220Ω,1/10W
R250	NRVA62D-104N	RESISTOR	100kΩ,1∕16W	R319	QRSA08J-222YN QRSA08J-333YN	RESIST RESIST		2.2kΩ,1/10W
R251	QRSA08J-101YN	RESISTOR	100Ω,1/10W	R320	QRSA08J-123YN			33kΩ,1/10W 12kΩ,1/10W
R252	QRSA08J-103YN		10kΩ,1/10W	N320	UNOM003-123 (N	TESIS!	ION	12832,1/ 1044
R253	QRSA08J-333YN		33kΩ,1/10W	R321	QRSA08J-222YN	RESIST	rop.	2.2kΩ,1/10W
R254	QRSA08J-102YN		1kΩ,1/10W	R322	QRSA08J-102YN			$1k\Omega$, $1/10W$
R255	QRSA08J-222YN		2.2kΩ,1/10W	R323	QRSA08J-272YN			2.7kΩ,1/10W
R256	QRSA08J-182YN		1.8kΩ,1/10W	R324	QRSA08J-101YN			100Ω,1/10W
R257	QRSA08J-561YN		560Ω,1/10W	R325	QRSA08J-223YN			22kΩ,1/10W
R258	QRSA08J-821YN		820Ω,1/10W	R326	QRSA08J-273YN			27kΩ,1/10W
R259	QRSA08J-103YN		10kΩ,1/10W	R327	QRSA08J-222YN			2.2kΩ,1/10W
R260	QRSA08J-103YN		10kΩ,1/10W	R328	QRSA08J-391YN			390Ω,1/10W
, ,200		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101(40)	R330	NRVA62D-242N	RESIST		2.4kΩ,1/16W
R261	QRSA08J-103YN	RESISTOR	10kΩ,1/10W					
R262	QRSA08J-223YN		22kΩ,1/10W	R331	QRSA08J-391YN	RESIST	TOR	390Ω,1/10W
R263	QR\$A08J-333YN		33kΩ,1/10W	R332	QRSA08J-182YN			1.8kΩ,1/10W
R264	QRSA08J-152YN		1.5kΩ,1/10W	R333	QRSA08J-821YN	RESIST	TOR	820Ω,1/10W
R265	QRSA08J-222YN	RESISTOR	$2.2k\Omega$, 1/10W	R334	QRSA08J-333YN	RESIST	ror .	33kΩ,1/10W
R266	QRSA08J-102YN	RESISTOR	1kΩ,1/10W	R335	QRSA08J-183YN	RESIST	ror .	18kΩ,1∕10W
R267	QRSA08J-561YN		560Ω,1/10W	R336	QRSA08J-333YN	RESIST		33kΩ,1∕10W
R268	QRSA08J-272YN		2.7kΩ,1/10W	R337	QRSA08J-183YN	RESIST		18kΩ,1/10W
R269	QRSA08J-103YN		10kΩ,1/10W	R338	QRSA08J-472YN	RESIST		4.7kΩ,1/10W
R270	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	R339	NRVA62D-182N	RESIST		1.8kΩ,1/16W
-	0001001100111	0500500	41.0 4 (40)44	R340	QRSA08J-102YN	RESIST	ror	1kΩ,1∕10W
R271	QRSA08J-102YN		1kΩ,1/10W	5044	0001001004101	D. E.O. I.O.		
R272	QRSA08J-102YN		1kΩ,1/10W	R341	QRSA08J-391YN	RESIST		390Ω.1∕10W
R273	QRSA08J-103YN		10kΩ,1/10W	R342	QRSA08J-821YN			820Ω,1/10W
R274	QRSA08J-103YN		10kΩ,1/10W	R344	QRSA08J-102YN	RESIST		1kΩ,1/10W
R275	QRSA08J-273YN		27kΩ,1/10W	R345	QRSA08J-222YN			2.2kΩ,1/10W
R276	QRSA08J-273YN		27kΩ,1/10W	R346	QRSA08J-272YN			2.7kΩ,1/10W
R277	QRSA08J-102YN		1kΩ,1/10W	R347	QRSA08J-222YN			2.2kΩ,1/10W
R278 R279	QRSA08J-561YN QRSA08J-152YN		560Ω,1/10W 1,5kΩ,1/10W	R348 R349	QRSA08J-102YN QRSA08J-102YN	RESIST		1kΩ,1/10W
R280	QRSA08J-154YN		150kΩ,1/10W	R350	QRSA08J-182YN			1kΩ,1/10W
1 1200	Q110A005*154111	TILDIO FOR	130164,17 1044	11330	C/10/1000-102 / 14	RESIST	UN	$1.8k\Omega.1/10W$
R281	QRSA08J-473YN	RESISTOR	47kΩ ,1/10W	R351	QRSA08J-821YN	RESIST	TOR .	820Ω.1/10W
R282	QRSA08J-152YN		1.5kΩ ,1/10W	R352	QRSA08J-333YN			33kΩ,1/10W
R283	QRSA08J-223YN		22kΩ.1/10W	R353	QRSA08J-183YN			18kΩ,1/10W
R284	QRSA08J-223YN		22kΩ,1/10W	R354	QRSA08J-333YN			33kΩ 1/10W
R285	QRSA08J-103YN		10kΩ.1/10W	R355	QRSA08J-183YN			18kΩ,1/10W
R286	QRSA08J-103YN		10kΩ,1/10W	R356	QRSA08J-562YN			5.6kΩ,1/10W
R287	QRSA08J-223YN		22kΩ,1/10W	R357	NRVA62D-563N	RESIST		56kΩ,1/16W
R288	QRSA08J-683YN		68kΩ,1/10W	R358	QRSA08J-471YN			470Ω,1/10W
R289	QRSA08J-223YN		22kΩ,1/10W	R359	QRSA08J-562YN			5.6kΩ,1/10W
				R360	QRSA08J-221YN	RESIST		220Ω,1/10W
R291	QRSA08J-103YN	RESISTOR	10kΩ,1∕10W					

#≜ REF No.	PART No.	PART NAME,	DESCRIPTION	#∆REF No	. PART No.	PART NAME, D	ESCRIPTION
R361	QRSA08J-821YN	RESISTOR	820Ω,1/10W				
R363	QRSA08J-102YN		1kΩ,1∕10W	C11	QCF11HP-103	CAPACITOR	$0.01 \mu\text{F,50V}$
R364	QRSA08J-182YN		1.8kΩ,1/10W	C12	QETC1AM-476	E CAPACITOR	47 μ F,10V
R365	QRSA08J-272YN	RESISTOR	2.7kΩ,1/10W	C13	QETC1AM-476	E CAPACITOR	47 μ F,10V
R366	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	C14	QETC1AM-476	E CAPACITOR	47 μ F,10V
R367	QRSA08J-273YN		27kΩ,1/10W	C15	QCF31HP-103	CAPACITOR	0.01 μ F,50V
R368	QRSA08J-333YN	RESISTOR	33kΩ,1∕10W	C16	QCC31CK-104	CAPACITOR	0.1 µ F,16V
R369	QRSA08J-102YN	RESISTOR	1kΩ,1/10W	C17	QETC1CM-476	E CAPACITOR	47 μ F,16V
R370	QRSA08J-681YN	RESISTOR	680Ω,1/10W	C18	QCZ0208-104	CAPACITOR	0.1 μ F
				C19	QETC1AM-476	E CAPACITOR	47 μ F,10V
R371	QRSA08J-391YN		390Ω,1/10W	C20	QCS31HJ-331	CAPACITOR	330pF,50V
R372	QRSA08J-332YN		$3.3k\Omega$, $1/10W$				
R373	QRSA08J-103YN		10kΩ,1/10W	C21	QCC31CK-104	CAPACITOR	$0.1 \mu\text{F,}16\text{V}$
R374	QRSA08J-101YN		100Ω,1/10W	C22	QFN31HJ-104	M CAPACITOR	0.1 μ F,50V
R375	QRSA08J-222YN		2.2kΩ,1/10W	C24	QFN31HJ-102	M CAPACITOR	0.001 μ F,50V
R376	QRSA08J-101YN		100Ω,1/10W	C25	QCC31CK-104	CAPACITOR	$0.1 \mu\text{F,}16\text{V}$
R377	QRSA08J-222YN		2.2kΩ,1/10W	C26	QETC1CM-476	E CAPACITOR	47 μ F,16V
R378	QRSA08J-271YN	RESISTOR	270Ω,1/10W	C27	QCC31EK-104	CAPACITOR	0.1 μ F,25V
R379	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	C28	QETC1CM-476	E CAPACITOR	47 μ F,16V
R380	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W	C29	QFN31HJ-223	M CAPACITOR	0.022 µ F,50V
D004	000400:4043/41	DECICTOR	400.0 4 (4014)	C30	QENC1AM-476	NP E CAPACITOR	47 μ F,10V
R381	QRSA08J-101YN		100Ω.1/10W	C04	OCE2111D 102	CARACITOR	0.04 5.00/
R382	QRSA08J-102YN		1kΩ,1/10W	C31	QCF31HP-103	CAPACITOR	0.01 μ F,50V
R384	QRSA08J-562YN	RESISTOR	5.6kΩ,1/10W	C32	QETC1 AM-476	E CAPACITOR	47 μ F,10V
R385	QRSA08J-101YN		100Ω.1/10W	C33 C34	QENC1AM-226	NP E CAPACITOR	22 μ F,10V
R386 R387	NRVA62D-562N QRSA08J-101YN	RESISTOR RESISTOR	5.6kΩ,1/16W 100Ω,1/10W	C35	QCF31HP-103 QETC1AM-476	CAPACITOR E CAPACITOR	$0.01 \mu\text{F,50V}$
R388	QRSA08J-391YN	RESISTOR	390Ω,1/10W	C36	QCF31HP-103	CAPACITOR	47 μ F,10V 0.01 μ F,50V
R390	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	C38	QCS31HJ-820	CAPACITOR	82pF,50V
USSU	QUOVO00-109 114	NESIS FOR	100.52,17 1044	C39	QCS31HJ-470	CAPACITOR	47pF,50V
R391	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W	C40	QETC1CM-107	E CAPACITOR	100 μ F,16V
R393	NRVA62D-393N	RESISTOR	39kΩ.1/16W	040	GETOTOW-107	E OA! AOITOR	100 11 ,10 4
R397	QRSA08J-471YN	RESISTOR	470Ω,1/10W	C41	QETC1EM-475	E CAPACITOR	4.7 μ F,25V
R399	QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W	C42	QCZ0208-104	CAPACITOR	0.1 μ F
1,000	210/100 102 111	1120101011	7.01(00,77)	C43	QETC1CM-476	E CAPACITOR	47 μ F,16V
R405	QRSA08J-152YN	RESISTOR	1.5kΩ.1∕10W	C44	QCC31EK-104	CAPACITOR	0.1 μ F,25V
R406	QRSA08J-392YN	RESISTOR	3.9kΩ,1/10W	C45	QETC1AM-476	E CAPACITOR	47 μ F,10V
R407	QRSA08J-102YN	RESISTOR	1kΩ,1/10W	C46	QETC1HM-225	E CAPACITOR	$2.2 \mu \text{F,50V}$
R408	ERS-A39J-102	THERMISTOR		C47	QETC1HM-225	E CAPACITOR	2.2 μ F,50V
R409	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	C48	QENC1AM-226	E CAPACITOR	$22 \mu F,10V$
R410	QRSA0BJ-221YN	RESISTOR	220Ω,1/10W	C49	QFP41HF-271	PP CAPACITOR	270pF,50V
				C50	QFP41HG-470	PP CAPACITOR	47pF,50V
R411	QRSA08J-102YN	RESISTOR	1kΩ,1∕10W				
R413	QRSA08J-125YN	RESISTOR	1.2MΩ,1/10W	C51	QFP41HG-181	PP CAPACITOR	180pF,50V
R414	QRSA08J-273YN	RESISTOR	27kΩ,1/10W	C52	QFP41HG-301	PP CAPACITOR	300pF,50V
R415	QRSA08J-183YN	RESISTOR	18kΩ,1/10W	C53	QFP41HG-820	PP CAPACITOR	82pF,50V
R416	QRSA08J-182YN	RESISTOR	1.8kΩ,1/10W	C54	QFP41HG-271	PP CAPACITOR	270pF,50V
R417	QRSA08J-182YN	RESISTOR	1.8kΩ,1/10W	C55	QFP41HG-301	PP CAPACITOR	300pF,50V
R418	QRSA08J-122YN	RESISTOR	1.2kΩ,1/10W	C56	QFP41HG-221	PP CAPACITOR	220pF,50V
R419	QRSA08J-272YN	RESISTOR	2.7kΩ.1/10W	C57	QFP41HG-301	PP CAPACITOR	300pF,50V
R420	QRSA08J-333YN	RESISTOR	33kΩ,1/10W	C58	QCC31CK-104	CAPACITOR	0.1 μ F,16V
D404	O004001100VN	DECICTOR	101-0 1 /10141	C59	QETC1AM-476	E CAPACITOR	47 μ F.10V
R421 R422	QRSA08J-183YN	RESISTOR RESISTOR	18kΩ,1/10W 820Ω,1/10W	C60	QCC31CK-104	CAPACITOR	0.1 μ F,16V
	QRSA08J-821YN	RESISTOR		CEI	OFTOLARA AZE	E CARACITOR	47 . 5 101/
R423 R424	QRSA08J-821YN QRSA08J-561YN	RESISTOR	820Ω,1/10W 560Ω,1/10W	C61 C62	OETC1 AM-476	E CAPACITOR	47 μ F,10V
R425	QRSA08J-272YN	RESISTOR	2.7kΩ,1/10W	C62 C63	QETC1AM-476 QETC1AM-476	E CAPACITOR E CAPACITOR	47 μ F,10V 47 μ F,10V
R428	QRD161J-102	RESISTOR	1kΩ,1/6W	C64	QETC1AM-476	E CAPACITOR	47 μ F,10V 47 μ F,10V
R429	QRD161J-220	RESISTOR	22Ω.1/6W	C65	QCF31HP-103	CAPACITOR	0.01 μ F,50V
R430	QRD161J-391	RESISTOR	390Ω.1/6W	C65	QCC31CK-104	CAPACITOR	0.01 μ F,16V
11700	QID IO IO IO I	112001011	000 80,17 044	C67	QETC1CM-476	E CAPACITOR	47 μ F,16V
R431	QRD161J-563	RESISTOR	56kΩ,1/6W	C68	QCC31EK-104	CAPACITOR	0.1 μ F,25V
R432	QRD161J-563	RESISTOR	56kΩ,1/6W	C69	QETC1AM-476	E CAPACITOR	47 μ F.10V
	G(III)		OOK 11,7 OK	C70	QETC1AM-476	E CAPACITOR	47 μ F,10V
				3			
C 1	QETC1 AM-107	E CAPACITOR	100 μ F,10V	C71	QCF31HP-103	CAPACITOR	0.01 μ F,50V
C2	QETC1AM-476	E CAPACITOR	47 μ F,10V	C73	QETC1AM-476	E CAPACITOR	47 μ F,10V
C3	QCF31HP-103	CAPACITOR	$0.01 \mu\text{F,50V}$	C74	QETC1AM-476	E CAPACITOR	47 μ F,10V
C4	OCS31HJ-470	CAPACITOR	47pF,50V	C75	QCF31HP-103	CAPACITOR	$0.01 \mu\text{F,50V}$
C5	QETC1AM-476	E CAPACITOR	47 μ F,10V	C76	QETC1CM-476	E CAPACITOR	47 μ F,16V
C6	QETC1AM-476	E CAPACITOR	47 μ F,10V	C77	QCC31EK-104	CAPACITOR	0.1 μ F,25V
C7	OCF31HP-103	CAPACITOR	0.01 μ F,50V	C78	QETC1CM-106	E CAPACITOR	10 μ F,16V
C9	QETC1AM-107	E CAPACITOR	100 μ F,10V	C79	QETC1CM-106	E CAPACITOR	10 μ F,16V
C10	QETA1AM-476	E CAPACITOR	47 μ F,10V	C80	QETC1AM-107	E CAPACITOR	100 μ F,10V
			•				

				l			<10>
#AREF No	. PART No.	PART NAME, DE	SCRIPTION		o. PART No.	PART NAME,	
C81 C82	QCF31HP-103 QCT25SH-470	CAPACITOR PP CAPACITOR	0.01 μ F,50V 47pF	C149 C150	QCS31HJ-331 QCT25CH-680	CAPACITOR CAPACITOR	330pF,50V 68pF
C83	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V	C151	QETC1CM-336	E CAPACITOR	33 μ F,16V
C84 C85	QFN31HJ-103 QCC31CK-104	M CAPACITOR CAPACITOR	0.01 μ F,50V 0.1 μ F,16V	C152 C153	QETC1CM-337 QCC31CK-104	E CAPACITOR CAPACITOR	330 μ F,16V 0.1 μ F,16V
C86	QETC1AM-476	E CAPACITOR	47 μ F,10V	C154	QETC1AM-476	E CAPACITOR	47 μ F,10V
C87 C88	QCC31CK-104	CAPACITOR NP E CAPACITOR	0.1 μ F,16V 1 μ F.50V	C155 C156	QETC1AM-107 QETC1AM-107	E CAPACITOR	100 μ F,10V
C90	QENC1HM-105 QFP41HG-391	PP CAPACITOR	390pF,50V	C156	QCF31HP-103	E CAPACITOR CAPACITOR	100 μ F,10V 0.01 μ F,50V
			•	C158	QCT25CH-560	CAPACITOR	56pF
C91 C92	QETC1HM-105 QETC1HM-105	E CAPACITOR E CAPACITOR	1 μ F,50V 1 μ F,50V	C159	QFN31HJ-332	CAPACITOR	0,0033 μ F,50V
C93	QETC1AM-226	E CAPACITOR	22 µ F,10V	C161	QETC1CM-107	E CAPACITOR	100 μ F,16V
C94 C95	QCS31HJ-390 QCS31HJ-121	CAPACITOR CAPACITOR	39pF,50V 120pF,50V	C162 C163	QETC1AM-476 QETC1AM-476	E CAPACITOR E CAPACITOR	47 μ F,10V 47 μ F,10V
C96	QENC1HM-105	M CAPACITOR	1 μ F,50V	C164	QCF31HP-103	CAPACITOR	0.01 μ F,50V
C97	QCS31HJ-121	CAPACITOR	120pF,50V	C165	QCC31CK-104	CAPACITOR	0.1 μ F,16V
C98 C99	QCF31HP-103 QCC31CK-104	CAPACITOR CAPACITOR	0.01 μ F,50V 0.1 μ F,16V	C166 C167	QETC1CM-476 QCC31EK-104	E CAPACITOR CAPACITOR	47 μ F,16V 0.1 μ F,25V
C100	QETC1AM-476	E CAPACITOR	47 μ F,10V	C168	QETC1AM-476	E CAPACITOR	47 μ F,10V
C101	QCC31CK-104	CAPACITOR	0.1 µ F,16V	C169 C170	QETC1AM-476 QCF31HP-103	E CAPACITOR CAPACITOR	47 μ F,10V 0.01 μ F,50V
C102	QETC1AM-226	E CAPACITOR	22 μ F,10V				
C103 C104	QCS31HJ-390 QCS31HJ-121	CAPACITOR CAPACITOR	39pF,50V 120pF,50V	C171 C172	QETC1AM-476 QCC31CK-104	E CAPACITOR CAPACITOR	47 μ F,10V 0.1 μ F,16V
C105	QENC1HM-105	NP E CAPACITOR	1 μ F,50V	C173	QETC1CM-476	E CAPACITOR	47 μ F,16V
C106	QCS31HJ-470	CAPACITOR	47pF,50V	C174	QCC31EK-104	CAPACITOR	0.1 μ F,25V
C107 C108	QCS31HJ-820 QCF31HP-103	CAPACITOR CAPACITOR	82pF,50V 0.01 μ F,50V	C175 C177	QETC1AM-476 QCTA1CH-101	E CAPACITOR CAPACITOR	47 µ F,10V 100pF,16V
C109	QFN31HJ-104	M CAPACITOR	0.1 μ F,50V	C178	QCTA1CH-680	CAPACITOR	68pF,16V
C110	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V	C180	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
C111 C112	QFN31HJ-223 QFN31HJ-104	M CAPACITOR M CAPACITOR	0.022 μ F,50V 0.1 μ F,50V	C181 C182	QFP41HG-390 QETC1CM-476	PP CAPACITOR E CAPACITOR	39pF,50V 47 μ F,16V
C113	QCS31HJ-150	CAPACITOR	15pF,50V	C183	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
C114 C115	QCS31HJ-5R0 QCF31HP-103	CAPACITOR CAPACITOR	5pF,50V 0,01 μ F,50V	C189	QETC1AM-476	E CAPACITOR	47 μ F,10V
C116	QFN31HJ-333	M CAPACITOR	$0.033 \mu\text{F,50V}$	C192	QCTA1CH-101	CAPACITOR	100pF,16V
C117 C118	QCS31HJ-471 QFN31HJ-682	CAPACITOR M CAPACITOR	470pF,50V 0.0068 μ F,50V	C193 C195	QETC1AM-476 QETC1AM-476	E CAPACITOR E CAPACITOR	47 μ F,10V 47 μ F,10V
C119	QCS31HJ-391	CAPACITOR	390pF,50V	C196	QCT25CH-220	CAPACITOR	22pF
C120	QCF31HP-103	CAPACITOR	0.01 μ F,50V	C197	QCS11HJ-181	CAPACITOR	180pF,50V
C121 C122	QFN31HJ-223 QFN31HJ-223	M CAPACITOR M CAPACITOR	0.022 μ F,50V 0.022 μ F,50V	L1	PU48530-221J	COIL	220 µ H
C123 C124	QCF31HP-103	CAPACITOR	0.01 μ F,50V	L2	PU48530-221J	COIL	220 µ H
C124 C125	QFN31HJ-223 QCC31CK-104	M CAPACITOR CAPACITOR	0.022 μ F,50V 0.1 μ F,16V	L5 L10	PU48530-470J PU48530-100J	COIL COIL	47 μ H 10 μ H
C126	QETC1CM-476	E CAPACITOR	47 μ F,16V	1.44			
C127 C128	QCC31CK-104 QCT25CH-2R0	CAPACITOR CAPACITOR	0.1 μ F,16V 2pF	L11 L12	PU48530-101J PU48530-100J	COIL	100 μ H 10 μ H
C129	QFN31HJ-104	M CAPACITOR	0.1 μ F,50V	L13	PU48530-220J	COIL	22 μ H
C130	QFP41HG-102	PP CAPACITOR	0.001 μ F,50V				
C131	QETC1 AM-476	E CAPACITOR	47 μ F,10V	LPF1	PELN0336-01-01	LOW PASS FILTE	
C132 C133	QETC1AM-337 QCC31CK-104	E CAPACITOR CAPACITOR	330 μ F,10V 0.1 μ F,16V	LPF2 LPF3	PU58021-3 PELN0336-01-01	LOW PASS FILTE LOW PASS FILTE	
C134	QETC1AM-108	E CAPACITOR	1000 μ F,10V	LPF4	PU58021-3	LOW PASS FILTE	
C135 C136	QCC31CK-104 QETC1CM-476	CAPACITOR E CAPACITOR	0.1 μ F,16V 47 μ F,16V				
C137	QCC31EK-104	CAPACITOR	0.1 μ F,25V	DL1	PGZ00130-002	DELAY LINE	
C138 C139	QCC31CK-104 QFN31HJ-103	CAPACITOR M CAPACITOR	0.1 μ F,16V 0.01 μ F,50V	DL2 DL3	PGZ00130-001 QRD161J-0R0	DELAY LINE DELAY LINE	
C140	QFN31HJ-223	M CAPACITOR	0.022 μ F,50V	DL3 DL4	PGZ01554	DELAY LINE	
C141	QETC1AM-476	E CAPACITOR	47 μ F,10V	DL5	PGZ01553	DELAY LINE	
C142	QETC1CM-337	E CAPACITOR	330 μ F,16V	04	DUEAAAO	CANTON	
C143 C144	QCC31CK-104 QETC1AM-476	CAPACITOR E CAPACITOR	0.1 μ F,16V 47 μ F,10V	S1 S2	PU54440 PU54440	SWITCH SWITCH	
C145	QETC1AM-107	E CAPACITOR	100 μ F,10V	-			
C146 C147	QETC1AM-107 QCF31HP-103	E CAPACITOR CAPACITOR	100 μ F,10V 0.01 μ F,50V	EJ1	PGZ00582	EJECTOR, ×2	
C148	QCT25CH-470	CAPACITOR	47pF	201	. 020002	101011, ~1	

-1	n	><1	۱1	>

↑REF No.	PART No.	PART NAME, DESCRIPTION	#≜REF No	PART No.	PART NAME,	DESCRIPTION
RV1	PU53276	PLASTIC RIVET, ×4	Q5 Q6 Q7 Q8	2SA1037K(QR) 2SC2412K(RS) DTC144EK 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
SLD1	PRD30781-01-03	SHIELD PLATE	Q10	2SC2412K(RS)	TRANSISTOR	
TP1	PU54983	TEST PIN, ×13(TP1-9, GND1-4)	Q11 Q12 Q13 Q14	2SA1037K(QR) 2SC2412K(RS) 2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
CN1 CN2	PGZ00421-44 PGZ00421-44	MALE CONNECTOR MALE CONNECTOR	Q15 Q16 Q17 Q18 Q19	2SC2412K(RS) 2SA1037K(QR) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
R/P CC	DLOR BOARD	ASSEMBLY<11>	Q20	2SC2412K(RS)	TRANSISTOR	
PWBA	PRK20126A-01	R/P COLOR 1 BOARD ASSY	Q21 Q22 Q23 Q24 Q25	2SC2412K(RS) 2SC2412K(RS) 2SK621 2SK621	TRANSISTOR TRANSISTOR FE TRANSISTOR FE TRANSISTOR	
STK1	PRD30072-52	STICKER	Q26 Q27 Q28	2SA1037K(QR) 2SC2412K(RS) 2SA1037K(QR) 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC1 IC2 IC3 IC4	M5278L12 M5278L05 M5278L12 M5278L12	IC IC IC IC	Q29 Q30 Q31	2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR	
IC5 IC6 IC7 IC8	M5278L05 M5278L09 M5278L05 M5278L05	IC IC IC	Q32 Q33 Q34 Q35 Q36	DTC144EK 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC11 IC12 IC13 IC14	TA7347P AN6366N TA7347P TA7347P	IC IC IC IC	Q37 Q38 Q39	2SA1037K(QR) DTC144EK 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC15 IC16 or IC17 IC18 IC20	AN608P 8VT15 HMC-229 TA7347P TC74HC00AF TA8644N	IC IC IC IC IC	Q41 Q42 Q43 Q44 Q45 Q46 Q48	DTC144EK 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC21 IC22 IC23	TA7347P VC2505C TA7347P	IC IC IC	Q49 Q50	DTC144EK DTC144EK	TRANSISTOR TRANSISTOR TRANSISTOR	
IC24 IC25 IC26 IC27 IC28 IC29 IC30	AN607P TC4051BP TC4013BF TC74HC151AF TC74HC04AF TC74HC4538AF TC74HC4538AF	IC IC IC IC IC	O51 O52 O53 O54 O55 O56 O57	2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC31 IC32 IC33	AN3916 TC74HC4538AF TC74HC4538AF	IC IC IC	Q59 Q62	2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR	
IC34 IC35 IC36 IC37 IC38	TC7W04F TC74HC393AP AN6041 AN607P AN608P	IC IC IC IC	Q63 Q67 Q68 Q69 Q70	2SA1037K(QR) 2SK621 2SK621 2SK621 2SK621	TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR	
IC39 IC40 IC41	LA7213 AN3296 . AN607P	IC IC	Q71 Q74	DTC144EK 2SK656	TRANSISTOR FE TRANSISTOR	
Q1 Q2	2SC2412K(RS)	TRANSISTOR	D1 D2	1SS133 1SS133	DIODE DIODE	
Q2 Q3 Q4	2SC2412K(RS) 2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR	D3 D6 D7	1SS133 1SS133 1SS133	DIODE DIODE DIODE	

# <u></u> ∱.F	REF No.	PART No.	PART NAME,	DESCRIPTION	# <u></u> REF No.	PART No.	PART NAME,	<11> DESCRIPTION
	D8 D9	1SS133 1SS133	DIODE DIODE		R130	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
į	D10 D11	1SS133	DIODE		R133 R134 R135	QRSA08J-392YN QRSA08J-821YN QRSA08J-102YN	RESISTOR	3.9kΩ,1/10W 820Ω,1/10W 1kΩ,1/10W
1	D12 D13	1SS133 1SS133	DIODE DIODE		R136 R137	QRSA08J-102YN QRSA08J-102YN	RESISTOR	1kΩ.1/10W 1kΩ.1/10W
1	D14	1SS133	DIODE		R138 R139	QRSA08J-101YN QRSA08J-222YN	RESISTOR	100Ω,1/10W 2.2kΩ,1/10W
1	D15 D16	1SS133 1SS133	DIODE		R140	QRSA08J-821YN		820Ω,1/10W
(D17 D18	1SS133 1SS133	DIODE DIODE		R141 R142	QRSA08J-102YN QRSA08J-102YN		1kΩ,1/10W 1kΩ,1/10W
	D19 D20	1SS133 1SS133	DIODE		R143 R144	QRSA08J-102YN QRSA08J-101YN	RESISTOR	$1k\Omega$,1/10W 100 Ω ,1/10W
ı	D21	188133	DIODE		R145	QRSA08J-222YN	RESISTOR	2.2 k Ω , $1/10$ W
		A. / B. B. C. C. C. C. C. C. C. C. C. C. C. C. C.	M DECISION	41.0	R146 R147	QRSA08J-181YN QRSA08J-223YN	RESISTOR	180Ω,1/10W 22kΩ,1/10W
-	R1 R2	QVPB610-102 QVPB610-202	V RESISTOR V RESISTOR	1kΩ 2kΩ	R148 R149	QRSA08J-472YN QRSA08J-471YN	RESISTOR	4.7kΩ,1/10W 470Ω,1/10W
1	R3 R4	QVZ3513-222 QVZ3513-222	V RESISTOR V RESISTOR	2.2kΩ 2.2kΩ	R150	QRSA08J-152YN		1.5kΩ,1/10W
1	₹5 ₹6	QVZ3513-471 QVZ3513-472	V RESISTOR V RESISTOR	470Ω 4.7kΩ	R151 R152	QRSA08J-101YN QRSA08J-332YN	RESISTOR	100Ω,1/10W 3.3kΩ,1/10W
1	₹7 ₹8	QVZ3513-472 QVZ3513-471	V RESISTOR V RESISTOR	4.7kΩ 470Ω	R153 R154	QRSA08J-222YN QRSA08J-152YN	RESISTOR	2.2kΩ,1/10W 1.5kΩ,1/10W
	₹9 ₹10	QVZ3513-103 QVZ3513-681	V RESISTOR V RESISTOR	10kΩ 680Ω	R155 R156	QRSA08J-181YN QRSA08J-223YN	RESISTOR	180Ω,1/10W 22kΩ,1/10W
	R11	QVZ3513-221	V RESISTOR	220Ω	R157 R158	QRSA08J-392YN QRSA08J-101YN		3.9kΩ,1/10W 100Ω,1/10W
1	R12 R13	QVZ3513-222 QVZ3513-222	V RESISTOR V RESISTOR	2.2kΩ 2.2kΩ	R159 R160	QRSA08J-562YN QRSA08J-391YN		5.6kΩ,1/10W 390Ω,1/10W
1	R14 R15	QVPB610-102 QRD161J-152	V RESISTOR RESISTOR	1kΩ 1.5kΩ,1∕6W	R161	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W
1	R16 R17	QRD161J-222 QRD161J-0R0	V RESISTOR V RESISTOR	2.2kΩ,1/6W 0Ω,1/6W	R162 R163	QRSA08J-391YN QRSA08J-223YN		390Ω,1/10W 22kΩ,1/10W
	R18 R19	QRD161J-184 QVZ3513-222	RESISTOR V RESISTOR	180kΩ,1/6W 2,2kΩ	R164 R165	QRSA08J-103YN QRSA08J-272YN	RESISTOR	10kΩ,1/10W 2.7kΩ,1/10W
	R20	QVPC405-222	V RESISTOR	2.2kΩ	R166 R167	QRSA08J-152YN QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W 1.5kΩ,1/10W
	R21 R22	QVZ3513-471 QVZ3513-472	V RESISTOR V RESISTOR	470Ω 4.7kΩ	R168 R170	QRSA08J-470YN QRSA08J-333YN	RESISTOR	47Ω,1/10W 33kΩ,1/10W
	R23	QVZ3513-472	V RESISTOR	4.7kΩ	R171	QRSA08J-223YN		22kΩ,1/10W
	R101 R102	QRSA08J-223YN QRSA08J-273YN	RESISTOR RESISTOR	22kΩ,1/10W 27kΩ,1/10W	R172 R173	QRSA08J-333YN QRSA08J-223YN	RESISTOR	33kΩ,1/10W 22kΩ,1/10W
	R103 R104	QRSA08J-152YN QRSA08J-391YN	RESISTOR RESISTOR	1.5kΩ,1/10W 390Ω,1/10W	R174 R175	QRSA08J-472YN QRSA08J-470YN	RESISTOR	4.7kΩ,1/10W 47Ω,1/10W
H	R105	QRSA08J-391YN QRSA08J-102YN	RESISTOR	390Ω,1/10W 1kΩ,1/10W	R176 R177	QRSA08J-102YN QRSA08J-102YN	RESISTOR	1kΩ,1∕10W
	R106 R107	QRSA08J-102YN	RESISTOR RESISTOR	$1k\Omega$,1/10W	R178	QRSA08J-102YN	RESISTOR	1kΩ,1/10W 1kΩ,1/10W
	R108 R109	QRSA08J-101YN QRSA08J-222YN	RESISTOR RESISTOR RESISTOR	100Ω,1/10W 2.2kΩ,1/10W 1kΩ,1/10W	R179 R180	QRSA08J-102YN QRSA08J-181YN		1kΩ,1/10W 180Ω,1/10W
	R110	QRSA08J-102YN QRSA08J-102YN		1kΩ,1/10W	R181 R182	QR\$A08J-223YN QR\$A08J-122YN		22kΩ,1/10W
	R111 R112	QRSA08J-102YN	RESISTOR RESISTOR	1kΩ,1/10W	R183	QRSA08J-822YN	RESISTOR	1.2kΩ,1/10W 8.2kΩ,1/10W
	R113 R114	QRSA08J-102YN QRSA08J-101YN	RESISTOR RESISTOR	1kΩ,1/10W 100Ω,1/10W	R184 R185	QRSA08J-103YN QRSA08J-102YN	RESISTOR	10kΩ,1/10W 1kΩ,1/10W
	R115 R116	QRSA08J-222YN QRSA08J-181YN	RESISTOR RESISTOR	2.2kΩ,1/10W 180Ω,1/10W	R186 R187	QRSA08J-332YN QRSA08J-472YN	RESISTOR	3.3kΩ,1/10W 4.7kΩ,1/10W
:	R117 R118	QRSA08J-223YN QRSA08J-472YN	RESISTOR RESISTOR	22kΩ,1/10W 4.7kΩ,1/10W	R188 R189	QRSA08J-472YN QRSA08J-333YN	RESISTOR	4.7kΩ,1/10W 33kΩ,1/10W
	R119 R120	QRSA08J-182YN QRSA08J-121YN	RESISTOR RESISTOR	1.8kΩ,1/10W 120Ω,1/10W	R190	QRSA08J-223YN		22kΩ,1/10W
	R121	QRSA08J-562YN	RESISTOR	5.6kΩ ,1/10W	R191 R192	QRSA08J-273YN QRSA08J-152YN	RESISTOR	27kΩ,1/10W 1.5kΩ,1/10W
	R122 R123	QRSA08J-472YN QRSA08J-822YN	RESISTOR RESISTOR	4.7kΩ,1/10W 8.2kΩ,1/10W	R193 R194	QRSA08J-102YN QRSA08J-102YN	RESISTOR	1kΩ,1/10W 1kΩ,1/10W
	R124 R126	QRSA08J-0R0Y QRSA08J-103YN	RESISTOR RESISTOR	0Ω,1/10W 10kΩ,1/10W	R195 R196	QRSA08J-102YN QRSA08J-102YN		1kΩ,1/10W 1kΩ,1/10W
	R127 R128	QRSA08J-223YN QRSA08J-472YN	RESISTOR	22kΩ,1/10W 4.7kΩ,1/10W	R197 R198	QRSA08J-102YN QRSA08J-681YN	RESISTOR	1kΩ,1/10W 680Ω,1/10W
	R 129	QRSA08J-102YN		1kΩ,1/10W	R199	QRSA08J-331YN		330Ω,1/10W

#AREF No.	. PART No.	PART NAME,	DESCRIPTION	#∆REF No.	PART No.	PART NAME,	DESCRIPTION
R200	QRSA08J-181YN	RESISTOR	180Ω,1∕10W	R274	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W
				R275	QRSA08J-392YN	RESISTOR	3.9 k Ω , $1/10$ W
R201	QRSA08J-223YN	RESISTOR	22kΩ,1/10W	R276	QRSA08J-221YN	RESISTOR	220Ω,1/10W
R202	QRSA08J-102YN	RESISTOR	1kΩ,1/10W	R277	QRSA08J-105YN	RESISTOR	$1M\Omega.1/10W$
R203	QRSA08J-221YN		220Ω,1/10W	R278	QRSA08J-181YN	RESISTOR	180Ω ,1/10W
R204	QRSA08J-102YN		1kΩ,1/10W	R279	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W
R205	ORSA08J-102YN	RESISTOR	$1k\Omega$, $1/10W$	R280	QRSA08J-223YN	RESISTOR	$22k\Omega$,1/10W
R206	QRSA08J-223YN	RESISTOR	22kΩ,1/10W		00010010701/11		671 0 4 (46)14
R207	QRSA08J-103YN		10kΩ,1/10W	R281	QRSA08J-273YN	RESISTOR	27kΩ,1/10W
R208	QRSA08J-152YN		1.5kΩ,1/10W	R282	QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W
R209	QRSA08J-102YN		1kΩ,1/10W	R283	QRSA08J-102YN QRSA08J-102YN	RESISTOR RESISTOR	1kΩ,1/10W 1kΩ,1/10W
R210	QRSA08J-332YN	RESISTOR	$3.3k\Omega$, $1/10W$	R284 R285	QRSA08J-472YN	RESISTOR	$4.7k\Omega$, $1/10W$
5011	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W	R286	QRSA08J-391YN	RESISTOR	390Ω,1/10W
R211 R212	QRSA08J-392YN		3.9kΩ,1/10W	R287	QRSA08J-391YN	RESISTOR	390Ω,1/10W
R213	QRSA08J-152YN		1.5kΩ,1/10W	R288	QR\$A08J-471YN		470Ω,1/10W
R214	QRSA08J-562YN		5.6kΩ,1/10W	R289	QRSA08J-223YN		22kΩ,1/10W
R215	QRSA08J-223YN		22kΩ,1/10W	R290	QRSA08J-273YN		27kΩ.1/10W
R216	QRSA08J-183YN		18kΩ,1/10W				
R217	QRSA08J-472YN		4.7kΩ,1/10W	R291	QRSA08J-152YN	RESISTOR	1.5kΩ,1∕10W
R218	QRSA08J-471YN		470Ω.1/10W	R292	QRSA08J-181YN		$180 \Omega , 1 / 10W$
R219	QRSA08J-332YN		3.3kΩ,1/10W	R293	QRSA08J-181YN	RESISTOR	180Ω,1∕10W
R220	QRSA08J-333YN		33kΩ,1/10W	R294	QRSA08J-102YN		1kΩ,1/10W
				R295	QRSA08J-102YN	RESISTOR	$1k\Omega .1 / 10W$
R224	QRSA08J-471YN		470Ω,1/10W	R296	QRSA08J-152YN		$1.5k\Omega$, $1/10W$
R226	QRSA08J-333YN		33kΩ,1/10W	R297	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R227	QRD161J-102	RESISTOR	1kΩ,1/6W	R298	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R228	QRSA08J-220YN		22Ω,1/10W	R299	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R229	QRSA08J-101YN		100Ω.1/10W	R300	QRSA08J-152YN	RESISTOR	1.5kΩ,1∕10W
R230	QRSA08J-101YN	RESISTOR	$100\Omega,1/10W$	R301	QRSA08J-392YN	RESISTOR	3.9kΩ,1∕10W
D221	QRSA08J-181YN	RESISTOR	180Ω,1/10W	R303	QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W
R231 R232	QRSA08J-223YN		22kΩ,1/10W	R304	QRSA08J-103YN		10kΩ,1/10W
R233	QRSA08J-472YN		4.7kΩ,1/10W	R305	QRSA08J-333YN		33kΩ,1/10W
R234	QRSA08J-223YN		22kΩ,1/10W	R306	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R235	QRSA08J-273YN		27kΩ,1/10W	R307	QRSA08J-222YN		2.2kΩ,1/10W
R236	QRSA08J-152YN		1.5kΩ,1/10W	R308	QRSA08J-681YN	RESISTOR	680Ω,1∕10W
R237	QRSA08J-221YN		220Ω,1/10W				
R238	QRSA08J-221YN		220Ω ,1/10W	R311	QRSA08J-103YN	RESISTOR	$10k\Omega .1 / 10W$
R239	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W	R312	QRSA08J-102YN		1kΩ ,1 / 10W
R240	QRSA08J-392YN	RESISTOR	$3.9k\Omega$,1/10W	R313	QRSA08J-473YN	RESISTOR	47kΩ,1/10W
2011	000000147000	DEGICTOR	471.0 4 /1014/	R314	QRSA08J-473YN	RESISTOR	47kΩ,1/10W
R241	QRSA08J-473YN		47kΩ,1/10W 18kΩ,1/10W	R315 R316	QRSA08J-473YN QRSA08J-473YN	RESISTOR RESISTOR	47kΩ,1/10W 47kΩ,1/10W
R242 R243	QRSA08J-183YN QRSA08J-152YN		$1.5k\Omega .1/10W$	R317	QRSA08J-473YN	RESISTOR	47kΩ,1/10W
R244	QRSA08J-152YN		1.5kΩ,1/10W	R318	QRSA08J-473YN		47kΩ,1/10W
R245	QRSA08J-471YN		470Ω,1/10W	R319	QRSA08J-473YN	RESISTOR	47kΩ,1/10W
R246	QRSA08J-152YN		1.5kΩ,1/10W	R320	QRSA08J-473YN		47kΩ,1/10W
R248	QRSA08J-223YN		22kΩ.1/10W				
R249	QRSA08J-273YN		$27k\Omega$, $1/10W$	R321	QRSA08J-122YN	RESISTOR	1.2kΩ,1∕10W
R250	QRSA08J-152YN	RESISTOR	1.5kΩ,1/10W	R322	QRSA08J-0R0Y	RESISTOR	0Ω.1∕10W
				R323	QRSA08J-152YN		1.5 k Ω , $1/10$ W
R253	QRSA08J-152YN		1.5kΩ,1/10W	R324	QRSA08J-223YN		$22k\Omega$,1/10W
R254	QRSA08J-103YN		10kΩ,1/10W	R325	QRSA08J-273YN		$27k\Omega$,1/10W
R255	QRSA08J-223YN		22kΩ.1/10W	R326	QRSA08J-223YN		22kΩ.1/10W
R256	QRSA08J-273YN		27kΩ.1/10W	R327	QRSA08J-273YN		27kΩ,1/10W
R257	QRSA08J-103YN		10kΩ,1/10W	R328	QRSA08J-222YN QRSA08J-102YN	RESISTOR RESISTOR	2.2kΩ,1/10W 1kΩ.1/10W
R258	QRSA08J-222YN QRSA08J-103YN		2,2kΩ,1/10W 10kΩ,1/10W	R329 R330	QRSA08J-681YN		680Ω.1/10W
R259 R260	QRSA08J-103YN		10kΩ,1/10W	N330	QN3A003-001114	RESISTOR	000 52 ,17 10 44
11200	Q110A000-103 1 11	TILOIO I OI I	10100,17 1011	R331	QRSA08J-473YN	RESISTOR	47kΩ,1/10W
R261	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	R332	QRSA08J-184YN	RESISTOR	180kΩ,1/10W
R262	QRSA08J-103YN		10kΩ,1/10W	R333	QRSA08J-104YN		100kΩ,1/10W
R263	QRSA08J-562YN		5.6kΩ,1/10W	R334	NRVA62D-473N	RESISTOR	$47k\Omega$,1/16W
R264	QRSA08J-103YN		10kΩ,1/10W	R335	NRVA62D-513N	RESISTOR	51kΩ,1/16W
R265	QRSA08J-392YN		3.9kΩ,1∕10W	R336	QRSA08J-684YN	RESISTOR	680kΩ,1/10W
R266	QRSA08J-473YN		47kΩ,1/10W	R337	QRSA08J-103YN		$10k\Omega$, $1/10W$
R267	QRSA08J-221YN	RESISTOR	220Ω.1/10W	R338	NRVA62D-753N	RESISTOR	75kΩ ,1 / 16W
R268	QRSA08J-102YN		1kΩ,1/10W	R339	QRSA08J-0R0Y	RESISTOR	0Ω,1∕10W
R269	QRSA08J-332YN		3.3kΩ,1/10W	Dote	ODD161 222	DECICTOR	2 21.0 1 /614
R270	QRSA08J-183YN	RESISTOR	18kΩ,1∕10W	R346	QRD161J-332	RESISTOR	3.3kΩ,1∕6W
R271	QRSA08J-333YN	RESISTOR	33kΩ .1/10W				
R273	QRSA08J-472YN		4.7kΩ,1/10W	C1	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
				4			

# <u></u> REF No	. PART No.	PART NAME, D	DESCRIPTION	#∆REF No.	PART No.	PART NAME,	<11> DESCRIPTION
C2	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V	C73	QFN31HK-104	E CAPACITOR	0.1 μ F,50V
C3	QETC1CM-476	E CAPACITOR	47 μ F,16V	C74	QFN31HJ-223	M CAPACITOR	$0.022\mu\text{F,50V}$
C4	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C75	QETC1HM-335	E CAPACITOR	3.3 μ F,50V
C5 C6	QCS31HJ-101	CAPACITOR CAPACITOR	100pF,50V 100pF,50V	C76 C77	QCS31HJ-330 QAT3001-017	CAPACITOR TRIMMER CAPA	33pF,50V ACITOR 010 μ F
C6 C7	QCS31HJ-101 QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C78	QETC1HM-105	E CAPACITOR	1μ F,50V
C8	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C79	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C 9	QETC1CM-476	E CAPACITOR	47 μ F,16V	C80	QCS31HJ-390	CAPACITOR	39pF,50V
C10	QCFA1HZ-223	CAPACITOR	$0.022 \mu\text{F,50V}$				
		01210707	0.4 5501/	C81	QCS31HJ-470	CAPACITOR	47pF,50V
C11 C12	QCFA1HZ-104 QCFA1HZ-104	CAPACITOR CAPACITOR	0.1 μ F,50V 0.1 μ F,50V	C82 C83	QETC1HM-105 QCFA1HZ-223	E CAPACITOR CAPACITOR	1 μ F,50V 0.022 μ F,50V
C12	QETC1AM-107	E CAPACITOR	100 μ F,10V	C84	QETC1AM-476	E CAPACITOR	47 μ F,10V
C14	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C85	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C15	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C86	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C16	QETC1AM-476	E CAPACITOR	47 μ F,10V	C87	QCS31HJ-101	CAPACITOR	100pF,50V
C17	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C88 C89	QCS31HJ-101 QETC1HM-475	CAPACITOR E CAPACITOR	100pF,50V
C18 C19	QCYA1EK-103 QCYA1EK-103	CAPACITOR CAPACITOR	0.01 μ F,25V 0.01 μ F,25V	C90	QCFA1HZ-104	CAPACITOR	4.7 μ F,50V 0.1 μ F,50V
C20	QEE81CM-106	TANTAL CAPACIT		030	QUI ATTIE-104	OAI ACITOR	υ.ι μ ι ,50 ν
GEO	GCESTOW TOO		10,21,101	C91	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
C21	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V	C92	QETC1CM-476	E CAPACITOR	47 μ F,16V
C22	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V	C93	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C23	QETC1CM-476	E CAPACITOR	47 μ F,16V	C94	QCFA1HZ-223 QETC1CM-476	CAPACITOR	0.022 μ F,50V
C24 C25	QCYA1HJ-102 QCYA1EK-103	CAPACITOR CAPACITOR	0.001 μ F,50V 0.01 μ F,25V	C95 C96	QCS31HJ-680	E CAPACITOR CAPACITOR	47 μ F,16V 68pF,50V
C25	QCS31HJ-101	CAPACITOR	100pF,50V	C97	QCS31HJ-560	CAPACITOR	56pF,50V
C27	QCS31HJ-101	CAPACITOR	100pF,50V	C98	QCS31HJ-560	CAPACITOR	56pF,50V
C28	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C99	QCS31HJ-151	CAPACITOR	150pF,50V
C29	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C100	QETC1AM-476	E CAPACITOR	47 μ F,10V
C30	QETC1CM-476	E CAPACITOR	47 μ F,16V	0104	05704014436	5.040401700	47 = 4014
C21	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V	C101 C102	QETC1CM-476 QCS31HJ-100	E CAPACITOR CAPACITOR	47 μ F,16V
C31 C32	QCFA1HZ-104	CAPACITOR	0.022 μ F,50 V 0.1 μ F,50 V	C102	QCS31HJ-101	CAPACITOR	10pF,50V 100pF,50V
C33	QCFA1HZ-104	CAPACITOR	0.1 μ F.50V	C104	QEE80JM-476	TANTAL CAPAC	
C34	QETC1CM-476	E CAPACITOR	47 μ F,16V	C105	QETC1CM-106	E CAPACITOR	10 μ F,16V
C35	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C106	QETC1CM-476	E CAPACITOR	47 μ F,16V
C36	QCYA1EK-103	CAPACITOR	0.01 μ F.25V	C107	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V
C37	QCYA1EK-103	CAPACITOR CAPACITOR	0.01 μ F,25V 0.01 μ F,25V	C108 C109	QCYA1EK-103 QETC1AM-476	CAPACITOR	0.01 μ F,25V
C38 C40	QCYA1EK-103 QCS31HJ-470	CAPACITOR	47pF,50V	C109 C110	QCFA1HZ-223	E CAPACITOR CAPACITOR	47 μ F,10V 0,022 μ F,50V
C40	20001110-470	ONINGTON	47 pt ,50 4	0110	QOI ATTIL-225	OAI AOITON	0.022 £ 1 ,50 ¥
C41	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C112	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C42	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C114	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C43	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C115	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C44	QETC1CM-476	E CAPACITOR CAPACITOR	47 μ F,16V	C116	QCYA1EK-103 QETC1HM-105	CAPACITOR	0.01 μ F,25V
C45 C46	QCFA1HZ-223 QCS31HJ-151	CAPACITOR	0.022 µ F,50V 150pF,50V	C117 C118	QCYA1EK-103	E CAPACITOR CAPACITOR	1 μ F,50V 0.01 μ F,25V
C49	QETC1HM-104	E CAPACITOR	0.1 μ F.50V	C119	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
C50	QFN31HJ-473	M CAPACITOR	0.047 μ F,50V	C120	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
	A#104414	** ***			00001111	- 41-1	
C51	QFN31HJ-473	M CAPACITOR	0.047 μ F,50V	C121	QETC1AM-476	E CAPACITOR	47 μ F,10V
C52 C53	QCFA1HZ-104 QCFA1HZ-104	CAPACITOR CAPACITOR	0.1 μ F,50V 0.1 μ F,50V	C122 C123	QCFA1HZ-104 QCFA1HZ-223	CAPACITOR CAPACITOR	0.1 μ F,50V 0.022 μ F,50V
C54	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C124	QETC1AM-476	E CAPACITOR	47 μ F,10V
C55	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C125	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
C56	QETC1HM-105	E CAPACITOR	1 μ F,50V	C126	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
C 57	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C127	QETC1AM-476	E CAPACITOR	47 μ F,10V
C59	QCYA1EK-103	CAPACITOR	$0.01 \mu\text{F,}25\text{V}$	C128	QCFA1HZ-223	CAPACITOR	0.022 µ F,50V
C 60	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V	C129	QCFA1HZ-104	CAPACITOR	0.1 \mu F,50V
C 61	QETC1AM-476	E CAPACITOR	47 μ F.10V	C130	QFN31HJ-102	M CAPACITOR	0.001 μ F,50V
C62	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C131	QFN31HJ-102	M CAPACITOR	0,001 µ F,50V
C63	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C132	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V
C64	QETC1HM-105	E CAPACITOR	1 μ F,50V	C133	QFLC1HJ-102Z	M CAPACITOR	0.001 µ F,50V
C 65	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C134	QCT05CH-221	M CAPACITOR	220pF
C 66	QCYA1EK-104	CAPACITOR	0.1 μ F,25V	C135	QETC1HM-475	E CAPACITOR	4.7 μ F,50V
C67	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C136	QFN31HJ-332	M CAPACITOR	0.0033 µ F.50V
C68	QCS31HJ-101	CAPACITOR	100pF,50V	C137	QFN31HJ-473	M CAPACITOR	0.047 µ F,50V
C 69 C 70	QCYA1EK-103 QCFA1HZ-104	CAPACITOR CAPACITOR	0.01 μ F,25V 0.1 μ F,50V	C138 C139	QETC1HM-475 QETC1HM-475	E CAPACITOR	4.7 μ F,50V
C/U	UÇEMIRZ-104	CALACITOR	υ. ι μ Γ,50 γ	C140	QCYA1EK-103	E CAPACITOR CAPACITOR	4.7 μ F,50V 0.01 μ F,25V
C 71	QCFA1HZ-104	CAPACITOR	0.1 μ F,50V	0.70	401V1FI/-102	OM MOLION	υ.υ ; <i>μ</i> Γ ,23 γ
C72	QETC1AM-476	E CAPACITOR	47 μ F,10V	C142	QETC1AM-476	E CAPACITOR	47 μ F,10V
Q12	~= 101/101-4/0	2 5/11/10/10/1	17 10 1 10 8	V172	22.01700770	- UNITOLION	47 μ. Γ.

#AREF No. PART No.	PART NAME, DES	CRIPTION	#≜REF No.	PART No.	PART NAME, DESC	RIPTION
C143 QCFA1HZ-223 C144 QCFA1HZ-104 C145 QFN31HJ-102	CAPACITOR CAPACITOR M CAPACITOR	0.022 μ F,50V 0.1 μ F,50V 0.001 μ F,50V	L10 L11	PU48530-390J PU48530-5R6J	COIL	39 μ H 5.6 μ H
C146 QCFA1HZ-104 C147 QFV71HJ-103 C148 QFN31HJ-102 C149 QCFA1HZ-104 C150 QCFA1HZ-104	CAPACITOR TF CAPACITOR M CAPACITOR CAPACITOR CAPACITOR	0.1 μ F,50V 0.01 μ F,50V 0.001 μ F,50V 0.1 μ F,50V 0.1 μ F,50V	L12 L13 L14 L15 L16 L17	PU48530-6R8J PU48530-6R8J PU48530-471J PU48530-471J PU48530-221J PU48530-221J	COIL COIL COIL COIL COIL COIL	6.8 μ H 6.8 μ H 470 μ H 470 μ H 220 μ H 220 μ H
C151 QETC1AM-476 C152 QCYA1EK-103 C153 QCFA1HZ-104 C154 QCFA1HZ-104	E CAPACITOR CAPACITOR CAPACITOR CAPACITOR	47 μ F,10V 0.01 μ F,25V 0.1 μ F,50V 0.1 μ F,50V	L19 LPF1	PU48530-100J PGZ01085	LOW PASS FILTER	10 µ H
C155 QCYA1EK-103 C156 QCFA1HZ-223 C157 QETC1AM-476	CAPACITOR CAPACITOR E CAPACITOR	0.01 μ F,25V 0.022 μ F,50V 47 μ F,10V	LPF2	PGZ00630	LOW PASS FILTER	
C158 QCYA1EK-103 C159 QCSA1HJ-221 C160 QETC1AM-476	CAPACITOR CAPACITOR E CAPACITOR	0.01 μ F,25V 220pF,50V 47 μ F,10V	BPF1 BPF2 BPF3	PGZ01739 PGZ01193 PU54410-2	BAND PASS FILTER BAND PASS FILTER BAND PASS FILTER	
C161 QCFA1HZ-223 C162 QCYA1EK-103 C163 QCYA1EK-103 C164 QETC1CM-476 C165 QCYA1EK-103 C166 QETC1AM-226	CAPACITOR CAPACITOR CAPACITOR E CAPACITOR CAPACITOR E CAPACITOR	0.022 \(\mu \) F,50V 0.01 \(\mu \) F,25V 0.01 \(\mu \) F,25V 47 \(\mu \) F,16V 0.01 \(\mu \) F,25V 22 \(\mu \) F,10V	DL1 DL2 DL5 DL7	PGZ01553 PGZ01797 PGZ01556 PGZ01554	DELAY LINE DELAY LINE DELAY LINE DELAY LINE	
C167 QCSA1HJ-390 C168 QCSA1HJ-121 C170 QCYA1EK-103	CAPACITOR CAPACITOR CAPACITOR	39pF,50V 120pF,50V 0.01 μ F,25V	∆ X1	PGZ01464	CRYSTAL RESONATOR	
C171 QCS31HJ-680 C172 QCYA1EK-103 C173 QCYA1EK-103	CAPACITOR CAPACITOR CAPACITOR	68pF,50V 0.01 μ F,25V 0.01 μ F,25V	EJ1	PGZ00582	EJECTOR, ×2	
C174 QCYA1EK-103 C175 QCYA1EK-103 C176 QCYA1EK-103 C177 QETC1CM-476	CAPACITOR CAPACITOR CAPACITOR E CAPACITOR	0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 47 μ F,16V	RV1 SCW1	PU53276 LPSP2616Z	PLASTIC RIVET, ×4 SCREW, ×2	
C178 QCYA1EK-103 C179 QCYA1EK-103 C180 QCYA1EK-103	CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V	SCW2 SCW3	WNS2600N NNS2600N	WASHER, ×2 NUT, ×2	
C181 QCSA1HJ-330 C182 QCYA1EK-103 C183 QETC1CM-476	CAPACITOR CAPACITOR E CAPACITOR	33pF,50V 0.01 μ F,25V 47 μ F,16V	SLD1	PRD30781-01-03	SHIELD PLATE	
C184 QFN31HJ-102 C185 QETC1HM-335 C186 QETC1CM-106 C187 QETC1CM-336	M CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR	0.001 \(\mu \) F,50V 3.3 \(\mu \) F,50V 10 \(\mu \) F,16V 33 \(\mu \) F,16V	TP1 CN1	PU54983 PGZ00421-44	TEST PIN, ×23 MALE CONNECTOR	
C188 QFLC1HJ-392Z C189 QCYA1HK-152 C190 QEE81VM-684	M CAPACITOR CAPACITOR TANTAL CAPACITOR	0.0039 μ F,50V 0.0015 μ F,50V 0.68 μ F,35V	CN2	PGZ00421-44	MALE CONNECTOR	
C191 QETC1HM-334 C192 QETC1AM-476 C193 QCYA1EK-103	E CAPACITOR E CAPACITOR CAPACITOR	0.33 μ F,50V 47 μ F,10V 0.01 μ F,25V	R/	P COLOR SUB	BOARD ASSEMBLY -	
C194 QCSA1HJ-151 C195 QCSA1HJ-471 C196 QCFA1EZ-683 C197 QCYA1EK-103	CAPACITOR CAPACITOR CAPACITOR CAPACITOR	150pF,50V 470pF,50V 0.068 μ F,25V 0.01 μ F,25V	PWBA	PRK20184A	R/P COLOR SUB BOAR	D ASSY
C200 QFN41HK-103 C205 QFN41HK-103	M CAPACITOR M CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	R341	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
C206 QFN41HK-103	M CAPACITOR	0.01 μ F,50V	C203	QCTA1CH-121	CAPACITOR	120pF,16V
L1 PU48530-471J L2 PU48530-8R2J L3 PU48530-8R2J L4 PU48530-471J	COIL COIL COIL COIL	470 μ H 8.2 μ H 8.2 μ H 470 μ H	- BU	FFER BOARD A	SSEMBLY -	
L5 PU48530-471J L6 PU48530-180J L7 PU48530-100J L8 PU48530-101J L9 PU48530-101J	COIL COIL COIL COIL COIL	470 µ H 18 µ H 10 µ H 100 µ H 100 µ H	PWBA	PRK20189A	BUFFER BOARD ASSY	

					l			<11><12>
#4	AREF No.	PART No.	PART NAME,	DESCRIPTION	#△REF No.	PART No.	PART NAME,	DESCRIPTION
	Q73 R343 R344 R345	2SC2412K(RS) QRSA08J-223YN QRSA08J-103YN QRSA08J-152YN	RESISTOR	22kΩ,1/10W 10kΩ,1/10W 1.5kΩ,1/10W	IC313 IC314 IC315 IC317 IC318 IC319 IC320	SN16913P UPC319C TC74HC04AP AN607P AN607P AN3480K BA7233	10 10 10 10 10 10	
	C204	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	IC322 IC323 or IC324 IC325	AN607P 8VT15 HMC-229 JCL0007 TA7348P	1C 1C 1C 1C	
	- BU	RST GATE BOA	ARD ASSEMBLY	-				
	PWBA	PRK20188A	BURST GATE BO	DARD ASSY	Q301 Q302 Q303 Q304 Q305	2SK656 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS)	FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	IC20	TC74HC4538AF	IC		Q306 Q307	2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR	
	IC21	NJM567M	IC		Q308 Q309 Q310	2SK656 2SC1740S(QRS) 2SC1740S(QRS)	FE TRANSISTOR TRANSISTOR TRANSISTOR	
	Q20	DTC144EK	TRANSISTOR		Q311	DTC144ES		
	Q21	DTC144EK	TRANSISTOR		Q312 Q313 Q314	2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	R20	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W	Q315 Q316	2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR	
	R21 R22 R23 R24 R25	QRSA08J-102YN QRSA08J-222YN QRSA08J-103YN QRSA08J-473YN QRSA08J-472YN	RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/10W 2.2kΩ,1/10W 10kΩ,1/10W 47kΩ,1/10W 4.7kΩ,1/10W	Q317 Q326 Q327 Q328	2SC1740S(QRS) 2SA933S 2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	R26 R27	QRSA08J-103YN NVP1415-502N	RESISTOR V RESISTOR	10kΩ,1/10W 5kΩ,1/4W	Q329 Q330	2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR	
	C20	QCYA1HK-182	CAPACITOR	0.0018 μ F,50V	Q331 Q332 Q333	2SA933S 2SC1740S(QRS) 2SA933S	TRANSISTOR TRANSISTOR TRANSISTOR	
	C21 C22 C23 C24 C25	QCYA1HJ-102 QCYA1HK-153 NEH11CM-476NF QCYA1EK-223 QFN41HK-103	CAPACITOR CAPACITOR E CAPACITOR CAPACITOR M CAPACITOR	0.001 μ F,50V 0.015 μ F,50V 47 μ F,16V 0.022 μ F,25V 0.01 μ F,50V	Q334 Q335 Q336	2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR	
	C26 C27 C28	NEH11HM-225NZ NEH11HM-105NZ QCYA1EK-104	E CAPACITOR	2.2 \(\mu \) F.50V 1 \(\mu \) F.50V 0.1 \(\mu \) F.25V	D301 D302 D304 D305	1SS133 1SS133 1SS133 1SS133	DIODE DIODE DIODE	
	TP201	PU56008	TEST-PIN, ×2		D306 D307	1SS133 1SS133	DIODE	
						4.1		
	B / P CC	N OR-2 BOAR	ASSEMBLY <	12>	R21 R22	QVZ3513-102 QVZ3513-472	V RESISTOR V RESISTOR	1kΩ 4.7kΩ
	11/100	CON-Z BOANL	ACCLINICITY	127	R23 R24	QVZ3513-102 QVZ3513-222	V RESISTOR V RESISTOR	1kΩ 2.2kΩ
	PWBA	PRK20127A-01	R/P COLOR 2	BOARD ASSY	R25 R26 R27	QVZ3513-102 QVZ3513-221 QVZ3513-471	V RESISTOR V RESISTOR V RESISTOR	1kΩ 220Ω 470Ω
	STK1	PRD30072-65	STICKER		R301 R302	QRD161J-152 QRD161J-103	RESISTOR	1.5kΩ,1/6W
	lCont.	, A4E0701.0E	10		R303	QRD161J-223	RESISTOR RESISTOR	10kΩ,1/6W 22kΩ,1/6W
	IC301 IC302	M5278L05 M5278L12	IC IC		R304 R305	QRD161J-152 QRD161J-273	RESISTOR RESISTOR	1.5kΩ,1/6W 27kΩ,1/6W
	IC303 IC304	M5278L05 M5278L12	IC IC		R306 R307	QRD161J-183 QRD161J-102	RESISTOR RESISTOR	18kΩ,1/6W 1kΩ,1/6W
	IC311 IC312	SN16913P AN607P	IC IC		R308 R309 R310	QRD161J-102 QRD161J-273 QRD161J-183	RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 27kΩ,1/6W 18kΩ,1/6W
					1	_	_	

_	1	2	
ς	1	4	,

#≜REF No.	PART No.	PART NAME,	DESCRIPTION	#∆REF No.	PART No.	PART NAME,	DESCRIPTION
				R403	QRD161J-102	RESISTOR	1kΩ,1∕6W
R311	QRD161J-102	RESISTOR	1kΩ,1/6W	R404	QRD161J-102	RESISTOR	$1k\Omega$, $1/6W$
R312	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R406	QRD161J-471	RESISTOR	470Ω ,1/6W
	QRD161J-102	RESISTOR	1kΩ,1/6W	R407	QRD161J-391	RESISTOR	390Ω,1/6W
R313		RESISTOR	10kΩ,1/6W	R408	QRD161J-152	RESISTOR	1.5kΩ,1/6W
R314	QRD161J-103			R409	QRD161J-392	RESISTOR	3.9kΩ,1/6W
R315	QRD161J-223	RESISTOR	22kΩ,1/6W			RESISTOR	
R316	QRD161J-472	RESISTOR	4.7kΩ,1/6W	R410	QRD161J-393	NESIS I UN	39kΩ,1∕6W
R317	QRD161J-223	RESISTOR	22kΩ,1/6W	Date	ODD101 1400	DECICEOD	101.0 1 /614/
R318	QRD161J-273	RESISTOR	27kΩ,1/6W	R411	QRD161J-103	RESISTOR	10kΩ,1/6W
R319	QRD161J-152	RESISTOR	1.5kΩ,1/6W	R412	QRD161J-392	RESISTOR	3.9kΩ ,1 /6W
R320	QRD161J-561	RESISTOR	560Ω,1/6W	R413	QRD161J-102	RESISTOR	1kΩ,1/6W
				R414	QRD161J-102	RESISTOR	1kΩ,1/6W
R321	QRD161J-561	RESISTOR	560Ω,1/6W	R415	QRD161J-682	RESISTOR	6.8kΩ,1/6W
R322	QRD161J-0R0	RESISTOR	0Ω,1/6W	R416	QRD161J-101	RESISTOR	100Ω,1/6W
R323	QRD161J-392	RESISTOR	3.9kΩ,1/6W	R417	QRD161J-182	RESISTOR	1.8kΩ,1/6W
R324	QRD161J-152	RESISTOR	1.5kΩ,1/6W	R418	QRD161J-272	RESISTOR	2.7kΩ,1/6W
R325	QRD161J-103	RESISTOR	10kΩ,1/6W	R419	QRD161J-472	RESISTOR	4.7kΩ,1/6W
R326	QRD161J-223	RESISTOR	22kΩ,1/6W	R420	QRD161J-472	RESISTOR	4.7kΩ,1∕6W
R327	QRD161J-152	RESISTOR	1.5kΩ,1∕6W				
R328	QRD161J-222	RESISTOR	2.2kQ,1/6W	R421		Y CMF RESISTOR	1.30kΩ,1/4W
R329	QRD161J-102	RESISTOR	1kΩ,1/6W	R422	QRD161J-103	RESISTOR	10kΩ,1∕6W
R330	QRD161J-333	RESISTOR	33kΩ,1∕6W	R423	QRD161J-332	RESISTOR	$3.3k\Omega$,1/6W
				R424	QRD161J-471	RESISTOR	470Ω.1/6W
R331	QRD161J-153	RESISTOR	15kΩ,1∕6W	R425	QRD161J-391	RESISTOR	390Ω,1/6W
R332	QRD161J-152	RESISTOR	1.5kΩ,1∕6W	R426	QRD161J-102	RESISTOR	1kΩ,1∕6W
R333	QRD161J-152	RESISTOR	1.5kΩ,1∕6W	R427	QRD161J-331	RESISTOR	330Ω,1∕6W
R334	QRD161J-102	RESISTOR	1kΩ,1/6W	R428	QRD161J-682	RESISTOR	6.8kΩ,1∕6W
R335	QRD161J-102	RESISTOR	1kΩ,1/6W	R429	QRD161J-222	RESISTOR	2.2kΩ ,1∕6W
R336	QRD161J-333	RESISTOR	33kΩ,1/6W	R430	QRD161J-223	RESISTOR	22kΩ,1∕6W
R337	QRD161J-153	RESISTOR	15kΩ,1/6W				
R338	QRD161J-152	RESISTOR	1.5kΩ,1/6W	R432	QRD161J-181	RESISTOR	180Ω,1∕6W
R339	QRD161J-152	RESISTOR	1.5kΩ,1/6W	R433	QRD161J-681	RESISTOR	680Ω,1∕6W
R340	QRD161J-333	RESISTOR	33kΩ,1/6W	R434	QRD161J-0R0	RESISTOR	0Ω,1/6W
,,,,,,,				R435	QRD161J-0R0	RESISTOR	0Ω.1/6W
R341	QRD161J-223	RESISTOR	22kΩ.1/6W	R436	QRD161J-181	RESISTOR	180Ω,1/6W
R342	QRD161J-273	RESISTOR	27kΩ,1/6W	R437	QRD161J-103	RESISTOR	10kΩ,1/6W
R343	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R438	QRD161J-680	RESISTOR	68Ω,1/6W
R344	QRD161J-181	RESISTOR	180Ω,1/6W	R439	QRD161J-222	RESISTOR	2.2kΩ .1 / 6W
R345	QRD161J-223	RESISTOR	22kΩ,1/6W	R440	QRD161J-222	RESISTOR	2.2kΩ ,1/6W
R346	QRD161J-222	RESISTOR	2.2kΩ,1/6W				
R347	QRD161J-222	RESISTOR	2.2kΩ.1/6W	R441	QRD161J-331	RESISTOR	330Ω,1∕6W
R348	QRD161J-391	RESISTOR	390Q,1/6W		G.1.2.10.10.001	***************************************	3332,1,
R349	QRD161J-391	RESISTOR	390Ω.1/6W				
R350	QRD161J-392	RESISTOR	3.9kΩ,1/6W	C301	QCZ0208-104	CAPACITOR	0.1 μ F
1,000	G11D1010 002	1120101011	0.01(22).7	C302	QCZ0208-104	CAPACITOR	0.1 µ F
R351	QRD161J-333	RESISTOR	33kΩ,1/6W	C303	QETC1AM-476	E CAPACITOR	47 μ F,10V
R352	QRD161J-103	RESISTOR	10kΩ,1/6W	C304	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R354	QRD161J-102	RESISTOR	1kΩ,1/6W	C305	QCF31HP-102	CAPACITOR	0.001 µ F,50V
R355	QRD161J-182	RESISTOR	1.8kΩ,1/6W	C306	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R356	QRD161J-391	RESISTOR	390Ω.1/6W	C307	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R357	QRD161J-391	RESISTOR	390Ω.1/6W	C308	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R358	QRD161J-392	RESISTOR	3.9kΩ,1/6W	C309	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R359	QRD161J-333	RESISTOR	33kΩ,1/6W	C310	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
	QRD161J-103	RESISTOR	10kΩ,1/6W	0010	Q1 1401110*100	W OA AOHOR	0.01 £ 1 ,00 ¥
R360	4UD1019-103	TEGISTOR	10KM/1/ 044	C311	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
Daea	OPIN181 1.103	RESISTOR	1kΩ,1/6W	C312	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R362	0RD161J-102 0RD161J-182	RESISTOR	1.8kΩ.1/6W	C312	QCS31HJ-101	CAPACITOR	100pF,50V
R363	QRD161J-182	RESISTOR	3.3kΩ,1/6W	C313	QCF31HP-223	CAPACITOR	0.022 μ F,50V
R364				C315	QETC1AM-476	E CAPACITOR	47 μ F,10V
R365	QRD161J-102	RESISTOR	1kΩ,1/6W 1kΩ,1/6W	C316	QCF31HP-102	CAPACITOR	0.001 μ F.50V
R366	0RD161J-102	RESISTOR		C317	QFN31HJ-103	M CAPACITOR	0.001 μ F,50V
R367	0RD161J-102	RESISTOR	1kΩ,1/6W			M CAPACITOR	0.01 μ F,50V
R368	QRV141F-1101A	r RESISTUR	1.10kΩ,1/4W	C318	QFN31HJ-103		
2020	000464 1 004	DEGICTOR	2000 4 /614	C319	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R373	QRD161J-391	RESISTOR	390Ω,1/6W	C320	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R374	QRD161J-0R0	RESISTOR	0Ω,1/6W	0004	OCC3111D 400	CADACITOD	0.004 = =0.4
R375	QRD161J-331	RESISTOR	330Ω,1/6W	C321	QCF31HP-102	CAPACITOR	0.001 µ F,50V
R376	QRD161J-223	RESISTOR	22kΩ,1/6W	C322	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
				C323	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R398	0RD161J-393	RESISTOR	39kΩ,1/6W	C324	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R399	ORD161J-103	RESISTOR	10kΩ,1/6W	C325	QFN31HJ-103	M CAPACITOR	$0.01 \mu\text{F,50V}$
R400	QRD161J-102	RESISTOR	1kΩ,1∕6W	C326	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
				C327	QCS31HJ-101	CAPACITOR	100pF,50V
R401	ORD161J-391	RESISTOR	390Ω,1/6W	C328	QCF31HP-223	CAPACITOR	$0.022 \mu\text{F,50V}$
R402	QRD161J-102	RESISTOR	1kΩ,1∕6W	C329	QETC1AM-476	E CAPACITOR	47 μ F,10V
				ı			

#≜REF No.	PART No.	PART NAME,	DESCRIPTION	#∆REF No.	PART No.	PART NAME,	DESCRIPTION
C330	QFN31HJ-104	M CAPACITOR	0.1 μ F,50V	1.040	D1140500 000 l	0011	00 11
C331 C332 C333 C334	QFN31HJ-104 QETC1CM-476 QCZ0208-104 QCZ0208-104	M CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	0.1 μ F,50V 47 μ F,16V 0.1 μ F 0.1 μ F	L312 L313 L315 L316	PU48530-680J PU48530-680J PU48530-471J PU48530-390J	COIL COIL COIL	68 μ Η 68 μ Η 470 μ Η 39 μ Η
C335 C336 C337 C338	QETC1CM-476 QFN31HJ-103 QFN31HJ-103 QFN31HJ-103	E CAPACITOR M CAPACITOR M CAPACITOR M CAPACITOR	47 \(\mu \) F,16V 0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V	EQ301	PGZ01196	EQUALIZE	
C339 C340	QFN31HJ-103 QFN31HJ-103	M CAPACITOR M CAPACITOR M CAPACITOR	0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V	DL301 DL302 DL304 DL305	PGZ01558 PGZ01559 PGZ00974-02 PGZ00487	DELAY LINE DELAY LINE DELAY LINE DELAY LINE	
C341 C342 C343 C344 C345 C346 C347	QFN31HJ-103 QFN31HJ-103 QFN31HJ-103 QFN31HJ-103 QCF31HP-223 QCZ0208-104 QCZ0208-104	M CAPACITOR M CAPACITOR M CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V 0.022 μ F,50V 0.1 μ F 0.1 μ F	SW301 SW302 SW303	YU40137 YU40137 YU40137 YU40137	SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	
C348 C349 C350	QETC1AM-476 QFN31HJ-103 QFN31HJ-103	E CAPACITOR M CAPACITOR M CAPACITOR	47 μ F,10V 0.01 μ F,50V 0.01 μ F,50V	TH301 TH302 TH303	ERT-D2FGL601S ERT-D2FGL601S ERT-D2FGL301S	THERMISTOR	
C351 C352 C353 C354	QFN31HJ-103 QFN31HJ-103 QFN31HJ-103 QFN31HJ-103	M CAPACITOR M CAPACITOR M CAPACITOR M CAPACITOR	0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V	EJ1	PGZ00582	EJECTOR, ×2	
C355 C357 C358	QFN31HJ-103 QFN31HJ-103 QFN31HJ-103	M CAPACITOR M CAPACITOR M CAPACITOR M CAPACITOR	0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V	RV1	PU53276	PLASTIC RIVET,	× 4
C359 C360	QFN31HJ-103 QCS31HJ-101	CAPACITOR	100pF,50V	SLD1	PRD30781-01-03	SHIELD PLATE	
C361 C362 C363 C364	QFN31HJ-103 QFN31HJ-223 QETC1CM-476 QCS31HJ-271	M CAPACITOR M CAPACITOR E CAPACITOR CAPACITOR	0.01 μ F,50V 0.022 μ F,50V 47 μ F,16V 270pF,50V	TP31	PU54983	TEST PIN, ×22	
C365 C366 C367 C368 C369	QCZ0208-104 QETC1HM-105 QCZ0208-104 QCZ0208-104 QETC1CM-476	CAPACITOR CAPACITOR CAPACITOR CAPACITOR E CAPACITOR	0.1 μ F 1 μ F,50V 0.1 μ F 0.1 μ F 47 μ F,16V	CN1 CN2	PGZ00421-44 PGZ00421-44	MALE CONNECT	
C379 C380	QETC1CM-476 QCS31HJ-681	E CAPACITOR CAPACITOR	47 μ F,16V 680pF,50V	- BL	JRST SWITCH B	OARD ASSEMBL	Y -
C381 C382 C383 C384	QETC1CM-476 QCS31HJ-471 QETC1CM-476 QCF31HP-223	E CAPACITOR CAPACITOR E CAPACITOR CAPACITOR	47 μ F,16V 470pF,50V 47 μ F,16V 0.022 μ F,50V	PWBA	PRK20187A	BURST SWITCH	BOAR D ASSY
C385 C386 C387 C388	QETC1CM-476 QFN31HJ-103 QFN31HJ-103 QFN31HJ-103	E CAPACITOR M CAPACITOR M CAPACITOR M CAPACITOR	47 μ F.16V 0.01 μ F.50V 0.01 μ F.50V 0.01 μ F.50V	IC1 IC2	TA7347P TA7347P	IC IC	
C389 C390	QFN31HJ-332 QFN31HJ-332 QFN31HJ-104	M CAPACITOR M CAPACITOR M CAPACITOR	0.0033 μ F,50V 0.0033 μ F,50V 0.1 μ F,50V	Q1 Q2 Q3 Q4	DTC144EK 2SC2412K(RS) 2SA1037K(QR) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
C392 C393 C394 C395	QCS31HJ-151 QFN31HJ-103 QFN31HJ-103 QFN31HJ-103	CAPACITOR M CAPACITOR M CAPACITOR M CAPACITOR	150pF,50V 0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V	Q5 R1	2SC2412K(RS) ORSA08J-103YN	TRANSISTOR RESISTOR	10kQ,1/10W
C396	QFN31HJ-103 PU48530-100J	M CAPACITOR	0.01 μ F,50V 10 μ H	R2 R3 R4 R5	QRSA08J-181YN QRSA08J-152YN QRSA08J-152YN QRSA08J-102YN	RESISTOR RESISTOR RESISTOR	180Ω,1/10W 1.5kΩ,1/10W 1.5kΩ,1/10W 1kΩ,1/10W
L302 L304 L305 L306	PU48530-100J PU48530-8R2J PGZ00973 PU48530-8R2J	COIL COIL COIL COIL	10 μ H 8.2 μ H 8.2 μ H	R6 R7 R8 R9	QRSA08J-102YN QRSA08J-183YN QRSA08J-103YN QRSA08J-102YN	RESISTOR RESISTOR RESISTOR RESISTOR	1kQ,1/10W 18kQ,1/10W 10kQ,1/10W 1kQ,1/10W
L307 L308 L309	PGZ00973 PGZ00973 PU48530-8R2J	COIL COIL	8.2 <i>μ</i> H	R10 R11	QRSA08J-271YN QRSA08J-183YN		270Ω,1/10W 18kΩ,1/10W

			_
-1	2-1	15521	6 >

#∆	REF No.	PART No.	PART NAME, DE	SCRIPTION	#∆REF	No. PART No.	PART NAME, DESC	RIPTION
	R12 R13 R14	QRSA08J-103YN QVZ3513-102 QVZ3513-102	V RESISTOR V RESISTOR	10kΩ,1/10W 1kΩ 1kΩ	C13 C14 C15 C16 C17	QCYA1HK-222 QEF81EM-474 QEF81EM-474 QRSA08J-0R0Y QRSA08J-0R0Y	TANTAL CAPACITOR TANTAL CAPACITOR CAPACITOR CAPACITOR	0.0022 μ F,50V 0.47 μ F,25V 0.47 μ F,25V 0pF 0pF
	C1 C2 C3 C4	QCYA1EK-103 QCYA1EK-103 QCTA1CH-101 QCYA1EK-103	CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,25V 0.01 μ F,25V 100pF,16V 0.01 μ F,25V	C18 C19 C20	QEF81EM-474 QCFA1EZ-104 QCFA1EZ-104	TANTAL CAPACITOR CAPACITOR CAPACITOR	0.47 μ F,25V 0.1 μ F,25V 0.1 μ F,25V
	C5 C6 C7	QCFA1HZ-104 QCFA1HZ-104 QCYA1EK-103	CAPACITOR CAPACITOR CAPACITOR	0.1 μ F,50V 0.1 μ F,50V 0.01 μ F,25V	C21 C22	QEF80JM-106 QEF81CM-225	TANTAL CAPACITOR TANTAL CAPACITOR	10 μ F,6.3V 2.2 μ F,16V
	L1 L2	PU48530-471K PU48530-471K	COIL COIL	470 μ H 470 μ H	L1	YU41135-221K	COIL	220 μ H
	SW1	PU54440 .	SWITCH		R/P	ADJUST BOARD	ASSEMBLY<16>	
	CN1	QMV5001-007	HOUSING		PWB/	PGE20351C-02	R/P ADJ BOARD ASSY	,
	DDE /DE	O BOARD ACC	SEMBLY<15>		STK1	PRD30072-56	STICKER	
	PWBA	PRK30072A-03	PRE/REC BOARD A	SSY	IC1 IC2 IC3	M5278L12 M5278L09 M5278L05	!C !C !C	
	IC1 IC2	M5278L05M UPC2320GS	IC IC		IC4 IC5 IC6 IC7 IC8 IC9	M5278L05 M5278L12 M5278L12 M5278L05 M5278L09 M5278L12	IC IC IC IC IC	
	Q1 Q2 Q3	IMD2 IMH5 2SD601(Q)	TRANSISTOR TRANSISTOR TRANSISTOR		IC11 IC12 IC13 IC14	8VT15 8VT15 TC4053BP TC74HC04AP	IC IC IC	
	R1 R2 R3 R4 R5 R6	QRSA08J-103YN QRSA08J-102YN QRSA08J-103YN QRSA08J-221YN QRSA08J-102YN QRSA08J-331YN	RESISTOR RESISTOR RESISTOR RESISTOR	10kΩ,1/10W 1kΩ,1/10W 10kΩ,1/10W 220Ω,1/10W 1kΩ,1/10W 330Ω,1/10W	IC15 IC16 IC17 IC18 IC20	TC4013BP TC4073BP AN6393 TC4052BP AN607P		
	R7 R8 R9 R10	CRSA08J-3111V CRSA08J-220YN CRSA08J-3R9YN CRSA08J-3R9YN	RESISTOR RESISTOR RESISTOR	100Ω,1/10W 22Ω,1/10W 3.9Ω,1/10W 3.9Ω,1/10W	IC21 IC22 IC23 IC24 IC25	TA7347P TC4053BP AN3398 TC74HC00AP AN3370K	IC IC IC IC	
	R11 R12 R13 R14 R15	QRSA08J-220YN QRSA08J-220YN QRSA08J-3R9YN QRSA08J-3R9YN QRSA08J-220YN	RESISTOR RESISTOR RESISTOR RESISTOR	22 \text{\Omega},\text{\OW} 22 \text{\Omega},\text{\OW} 3.9 \text{\Omega},\text{\OM} 3.9 \text{\Omega},\text{\OM} 22 \text{\Omega},\text{\OM}	IC26 IC27 IC28 IC29	AN3370K AN607P AN607P AN607P	IC IC IC IC	
	R16 R17	QRSA08J-688YN QRSA08J-680YN	RESISTOR	6.8Ω,1/10W 68Ω,1/10W	Q1 Q2 Q3	2SC1740S(QRS) 2SC1740S(QRS) 2SK656	TRANSISTOR TRANSISTOR FE TRANSISTOR	
	C1 C2 C3 C4 C5 C6 C7	QEF81AM-336 QCFA1EZ-104 QCFA1EZ-104 QCYA1EK-104 QCFA1EZ-104 QCFA1EZ-104 QCFA1EZ-104 QCFA1EZ-104 QEF81EM-474	TANTAL CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR TANTAL CAPACITOR	0.1 μ F.25V 0.1 μ F.25V 0.1 μ F.25V 0.1 μ F.25V 0.1 μ F.25V 0.1 μ F.25V	Q4 Q5 Q6 Q7 Q8 Q9 Q10	2SK656 DTC144EF 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS)	FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	C9 C10 C11 C12	OCYA1HK-473 OCFA1EZ-104 OEF81EM-474 OCYA1HK-222	CAPACITOR CAPACITOR TANTAL CAPACITOR CAPACITOR	0.047 μ F,50V 0.1 μ F,25V 0.47 μ F,25V 0.0022 μ F,50V	Q11 Q12 Q13 Q14 Q15	2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC656	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR	

#AREF No. PART No.	PART NAME, DESCRIPTION	#A REE N	o. PART No.	PART NAME	<16> DESCRIPTION
O16 2SC1740S(QRS) O17 2SA933S(RS) O18 DTA144EF O19 DTC144EF O20 DTC144EF	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	D21 D23 D24	1SS133 GL-3PR8 1SS133	DIODE LE DIODE DIODE	DECOMMENTAL STATES
O21 DTC144EF O22 DTC144EF O23 DTC144ES O24 DTC144ES O27 DTC144EF O28 2SB641Q,R O29 2SC1740S(QRS) O30 2SA933S(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R1 R2 R3 R4 R5 R6 R7 R8 R9	QVPB610-102 QVPB610-102 QVPB610-102 QVPB610-102 QVZ3513-102 QVZ3513-102 QVZ3513-102 QVZ3513-102 QVZ3513-222	V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR	1kΩ 1kΩ 1kΩ 1kΩ 1kΩ 1kΩ 1kΩ 2.2kΩ
O31 25K656 O32 25C1740S(QRS) O33 25C1740S(QRS) O34 25C1740S(QRS) O36 25C1740S(QRS) O37 25C1740S(QRS) O38 25C1740S(QRS) O40 25C1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R10 R11 R12 R13 R14 R15 R16 R17	QVZ3513-222 QVZ3513-222 QVZ3513-222 QVPB610-202 QVPB610-202 QVPB610-202 QVPB610-202 QVZ3513-473	V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR	2.2kΩ 2.2kΩ 2.2kΩ 2kΩ 2kΩ 2kΩ 2kΩ 47kΩ
Q41 2SC1740S(QRS) Q42 2SC1740S(QRS) Q43 2SC1740S(QRS) Q44 2SC1740S(QRS) Q45 2SC1740S(QRS) Q46 2SC1740S(QRS) Q47 2SC1740S(QRS) Q48 2SC1740S(QRS) Q49 2SC1740S(QRS) Q50 2SK656	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R101 R102 R103 R104 R105 R107 R108 R109 R110	QRD161J-181 QRD161J-333 QRD161J-333 QRD161J-332 QRD161J-102 QRD161J-102 QRD161J-333 QRD161J-123 QRD161J-821	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$\begin{array}{c} 180\Omega,1/6W \\ 33k\Omega,1/6W \\ 33k\Omega,1/6W \\ 3.3k\Omega,1/6W \\ 1k\Omega,1/6W \\ 1k\Omega,1/6W \\ 33k\Omega,1/6W \\ 12k\Omega,1/6W \\ 820\Omega,1/6W \\ \end{array}$
Q51 2SK656 Q52 2SK656 Q53 2SK656 Q54 2SK656 Q55 2SK656 Q56 2SK656 Q57 2SK656 Q58 2SK656 Q59 2SK656 Q69 2SC1740S(QRS)	FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FT TRANSISTOR FT TRANSISTOR	R111 R112 R113 R114 R115 R116 R117 R118 R120	QRD161J-331 QRD161J-102 QRD161J-123 QRD161J-822 QRD161J-123 QRD161J-123 QRD161J-123 QRD161J-123 QRD161J-333	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	330Ω , 1/6W $1k\Omega$, 1/6W $12k\Omega$, 1/6W $8.2k\Omega$, 1/6W $1.2k\Omega$, 1/6W $12k\Omega$, 1/6W $8.2k\Omega$, 1/6W $12k\Omega$, 1/6W $12k\Omega$, 1/6W $12k\Omega$, 1/6W $12k\Omega$, 1/6W
Q61 DTC144EF Q62 2SD637(QR) Q63 2SK656 Q64 2SK656 Q65 2SK656 Q66 2SK656	TRANSISTOR TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR FE TRANSISTOR DIODE	R121 R122 R123 R124 R125 R126 R127 R128 R129 R130	QRD161J-183 QRD161J-102 QRD161J-272 QRD161J-562 QRD161J-332 QRD161J-181 QRD161J-333 QRD161J-333 QRD161J-333	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$18k\Omega$, $1/6W$ $1k\Omega$, $1/6W$ $1k\Omega$, $1/6W$ $2.7k\Omega$, $1/6W$ $5.6k\Omega$, $1/6W$ $3.3k\Omega$, $1/6W$ 180Ω , $1/6W$ $33k\Omega$, $1/6W$ $33k\Omega$, $1/6W$ $33k\Omega$, $1/6W$ $33k\Omega$, $1/6W$
D2 1SS133 D4 1SS133 D5 1SS133 D6 1SS133 D7 1SS133 D8 1SS133 D9 1SS133 D10 1SS133	DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE	R131 R132 R133 R134 R135 R136 R137 R138	QRD161J-561 QRD161J-221 QRD161J-471 QRD161J-221 QRD161J-102 QRD161J-333 QRD161J-123 QRD161J-182	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	560 Ω ,1 /6W 220 Ω ,1 /6W 470 Ω ,1 /6W 220 Ω ,1 /6W 1kΩ ,1 /6W 33kΩ ,1 /6W 12kΩ ,1 /6W 1.8kΩ ,1 /6W
D11 1SS133 D12 1SS133 D13 1SS133 D14 1SS133 D15 1SS133 D16 1SS133 D17 1SS133 D18 1SS133 D19 1SS133 D20 1SS133	DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE DIODE	R139 R140 R141 R142 R143 R144 R145 R146 R147	QRD161J-102 QRD161J-333 QRD161J-183 QRD161J-102 QRD161J-222 QRD161J-392 QRD161J-562 QRD161J-332	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$\begin{array}{c} 1k\Omega ,1 \\ 6W \\ 1k\Omega ,1 \\ 6W \\ \end{array}$ $\begin{array}{c} 33k\Omega ,1 \\ 6W \\ 18k\Omega ,1 \\ 6W \\ 1k\Omega ,1 \\ 6W \\ 2.2k\Omega ,1 \\ 6W \\ 3.9k\Omega ,1 \\ 6W \\ 5.6k\Omega ,1 \\ 6W \\ 3.3k\Omega ,1 \\ 6W \\ \end{array}$

<16> # <u></u> REF No.	PART No.	PART NAME,	DESCRIPTION	#≜REF No.	. PART No.	PART NAME,	DESCRIPTION
R148 R149 R150	QRD161J-333 QRD161J-183 QRD161J-333	RESISTOR RESISTOR RESISTOR	33kΩ,1/6W 18kΩ,1/6W 33kΩ,1/6W	R218 R219 R220	ORD161J-222 ORD161J-561 ORD161J-102	RESISTOR RESISTOR RESISTOR	2.2kΩ,1/6W 560Ω,1/6W 1kΩ,1/6W
R151 R152 R153 R154 R155 R156 R157 R158 R159 R160	QRD161J-183 QRD161J-332 QRD161J-332 QRD161J-332 QRD161J-153 QRD161J-123 QRD161J-153 QRD161J-682 QRD161J-103 QRD161J-271	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	18k\(\Omega\),1/6W 3.3k\(\Omega\),1/6W 3.3k\(\Omega\),1/6W 15k\(\Omega\),1/6W 12k\(\Omega\),1/6W 15k\(\Omega\),1/6W 15k\(\Omega\),1/6W 10k\(\Omega\),1/6W 270\(\Omega\),1/6W	R221 R222 R223 R225 R226 R227 R228 R229 R230	ORD161J-332 ORD161J-222 ORD161J-122 ORD161J-332 ORD161J-102 ORD161J-102 ORD161J-123 ORD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	3.3k\(\Omega\),1/6W 2.2k\(\Omega\),1/6W 1.2k\(\Omega\),1/6W 3.3k\(\Omega\),1/6W 1k\(\Omega\),1/6W 33k\(\Omega\),1/6W 12k\(\Omega\),1/6W 1k\(\Omega\),1/6W
R161 R162 R163 R164 R165 R166 R167 R168 R169 R170	QRD161J-102 QRD161J-680 QRD161J-682 QRD161J-102 QRD161J-104 QRD161J-103 QRD161J-103 QRD161J-102 QRD161J-472 QRD161J-472	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 68Ω,1/6W 6.8kΩ,1/6W 1kΩ,1/6W 100kΩ,1/6W 10kΩ,1/6W 1kΩ,1/6W 4.7kΩ,1/6W 4.7kΩ,1/6W	R231 R232 R233 R234 R235 R236 R237 R238 R239 R240	QRD161J-102 QRD161J-561 QRD161J-52 QRD161J-561 QRD161J-102 QRD161J-332 QRD161J-122 QRD161J-332 QRD161J-681	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$\begin{array}{c} 1k\Omega,1/6W \\ 560\Omega,1/6W \\ 1.5k\Omega,1/6W \\ 560\Omega,1/6W \\ 1k\Omega,1/6W \\ 3.3k\Omega,1/6W \\ 1.2k\Omega,1/6W \\ 3.3k\Omega,1/6W \\ 3.3k\Omega,1/6W \\ 680\Omega,1/6W \\ \end{array}$
R171 R172 R173 R174 R175 R176 R177 R178 R179 R180	QRD161J-333 QRD161J-0R0 QRD161J-0R0 QRD161J-0R0 QRD161J-333 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	33kQ.1/6W 33kQ.1/6W 0Q.1/6W 33kQ.1/6W 33kQ.1/6W 10kQ.1/6W 10kQ.1/6W	R241 R242 R243 R244 R245 R246 R247 R248 R249 R250	QRD161J-332 QRD161J-332 QRD161J-332 QRD161J-332 QRD161J-332 QRD161J-332 QRD161J-182 QRD161J-182 QRD161J-563	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$3.3k\Omega$, $1/6W$ $3.3k\Omega$, $1/6W$ $3.3k\Omega$, $1/6W$ $1k\Omega$, $1/6W$ $3.3k\Omega$, $1/6W$ $3.3k\Omega$, $1/6W$ $2.2k\Omega$, $1/6W$ $1.8k\Omega$, $1/6W$ 75Ω , $1/6W$ $56k\Omega$, $1/6W$
R182 R183 R184 R185 R186 R187 R188 R189	QRD161J-272 QRD161J-562 QRD161J-332 QRD161J-103 QRD161J-103 QRD161J-102 QRD161J-333 QRD161J-183 QRD161J-181	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$\begin{array}{c} 2.7k\Omega,1/6W \\ 5.6k\Omega,1/6W \\ 3.3k\Omega,1/6W \\ 10k\Omega,1/6W \\ 10k\Omega,1/6W \\ 1k\Omega,1/6W \\ 33k\Omega,1/6W \\ 18k\Omega,1/6W \\ 180\Omega,1/6W \end{array}$	R251 R252 R253 R254 R255 R256 R257 R258 R259 R260	ORD161J-103 ORD161J-103 ORD161J-103 ORD161J-103 ORD161J-103 ORD161J-103 ORD161J-103 ORD161J-102 ORD161J-102 ORD161J-153	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 15kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W
R192 R193 R194 R195 R196 R197 R198 R199 R200	QRD161J-102 QRD161J-472 QRD161J-152 QRD161J-332 QRD161J-102 QRD161J-123 QRD161J-822 QRD161J-123 QRD161J-333	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 4.7kΩ,1/6W 1.5kΩ,1/6W 3.3kΩ,1/6W 1kΩ,1/6W 12kΩ,1/6W 12kΩ,1/6W 33kΩ,1/6W	R261 R262 R263 R264 R265 R267 R268 R269 R270	QRD161J-123 QRD161J-153 QRD161J-123 QRD161J-153 QRD161J-153 QRD161J-122 QRD161J-103 QRD161J-392	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$12k\Omega$, $1/6W$ $15k\Omega$, $1/6W$ $12k\Omega$, $1/6W$ $15k\Omega$, $1/6W$ $12k\Omega$, $1/6W$ $15k\Omega$, $1/6W$ $1.2k\Omega$, $1/6W$ $1.0k\Omega$, $1/6W$ $3.9k\Omega$, $1/6W$
R201 R202 R203 R204 R206 R207 R208 R209 R210	ORD161J-392 ORD161J-332 ORD161J-331 ORD161J-332 ORD161J-322 ORD161J-122 ORD161J-122 ORD161J-122 ORD161J-122	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$3.9k\Omega.1/6W$ $3.3k\Omega.1/6W$ $330\Omega.1/6W$ $3.3k\Omega.1/6W$ $1.2k\Omega.1/6W$ $1.2k\Omega.1/6W$ $1.2k\Omega.1/6W$ $1.2k\Omega.1/6W$	R271 R272 R273 R274 R275 R276 R277 R278 R279 R280	QRD161J-332 QRV141F-5101A QRD161J-182 QRD161J-103 QRD161J-123 QRD161J-123 QRV141F-5101A QRD161J-182 QRD161J-103 QRD161J-123	RESISTOR RESISTOR RESISTOR RESISTOR	$3.3k\Omega$, $1/6W$ $5.10k\Omega$, $1/4W$ $1.8k\Omega$, $1/6W$ $10k\Omega$, $1/6W$ $12k\Omega$, $1/6W$ $8.2k\Omega$, $1/6W$ $5.10k\Omega$, $1/4W$ $1.8k\Omega$, $1/6W$ $10k\Omega$, $1/6W$ $12k\Omega$, $1/6W$
R211 R212 R213 R214 R215 R216 R217	QRD161J-822 QRD161J-123 QRD161J-333 QRD161J-123 QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	8.2kΩ,1/6W 12kΩ,1/6W 33kΩ,1/6W 12kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W	R281 R282 R283 R284 R285 R286	QRD161J-822 QRD161J-100 QRD161J-681 QRD161J-332 QRD161J-103 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	8.2kΩ,1/6W 10Ω,1/6W 680Ω,1/6W 3.3kΩ,1/6W 10kΩ,1/6W

							<16>
#A REF No.	PART No.	PART NAME,	DESCRIPTION	#AREF	No. PART No.	PART NAME,	DESCRIPTION
R287 R288	QRD161J-102 QRD161J-181	RESISTOR RESISTOR	1kΩ,1/6W 180Ω,1/6W	C60	QFN31HK-682	M CAPACITOR	0.0068 μ F,50V
R289 R290	QRD161J-392 QRD161J-392	RESISTOR RESISTOR	3.9kΩ,1∕6W 3.9kΩ,1∕6W	C61 C62	QFN31HK-223 QCS31HJ-561	M CAPACITOR CAPACITOR	0.022 μ F,50V 560pF,50V
				C63	QFN31HK-102	M CAPACITOR	$0.001\mu\text{F,50V}$
R291	QRD161J-123	RESISTOR	12kΩ,1/6W	C64	QCS31HJ-390	CAPACITOR	39pF,50V
R292 R294	QRD161J-153 QRD161J-821	RESISTOR RESISTOR	15kΩ,1/6W 820Ω,1/6W	C65 C66	QFN31HK-103 QCS31HJ-271	M CAPACITOR CAPACITOR	0.01 μ F,50V 270pF,50V
R295	QRD161J-821	RESISTOR	220Ω.1/6W	C67	QFN31HJ-102	M CAPACITOR	0.001 μ F,50V
R298	QRD161J-182	RESISTOR	$1.8k\Omega$, $1/6W$	C68	QCS31HJ-220	CAPACITOR	22pF,50V
R300	QRD161J-101	RESISTOR	100Ω,1/6W	C69	QFN31HK-103	M CAPACITOR	0.01μ F,50V
				C70	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C1	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C71	QCC31CK-104	CAPACITOR	0.1μ F,16V
C2 C4	QFN31HK-103 QCS31HJ-151	M CAPACITOR CAPACITOR	0.01 μ F,50V 150pF,50V	C72 C73	QCS11HJ-330 QCS31HJ-100	CAPACITOR CAPACITOR	33pF,50V
C6	QCS31HJ-180	CAPACITOR	18pF,50V	C74	QFN31HK-473	M CAPACITOR	10pF,50V 0.047 μ F,50V
C 7	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C75	QCS31HJ-101	CAPACITOR	100pF,50V
C8	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C76	QCS31HJ-101	CAPACITOR	100pF,50V
C9	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C77	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C10	QCS31HJ-331	CAPACITOR	330pF,50V	C78 C79	QCC31CK-104 QCS11HJ-470	CAPACITOR CAPACITOR	0.1 μ F,16V 47pF,50V
C11	QCS31HJ-151	CAPACITOR	150pF,50V	C80	QCS31HJ-220	CAPACITOR	22pF,50V
C12	QCS31HJ-471	CAPACITOR	470pF,50V				2201,001
C14	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C81	QFN31HK-473	M CAPACITOR	0.047 μ F,50V
C15 C16	QCS11HJ-680 QFN31HK-103	CAPACITOR M CAPACITOR	68pF,50V 0.01 μ F,50V	C82 C83	QCC31CK-104 QCS31HJ-120	CAPACITOR	0.1 μ F,16V
C17	QCC31CK-104	CAPACITOR	0.01 μ F,16V	C84	QCS31HJ-470	CAPACITOR CAPACITOR	12pF,50V 47pF,50V
C18	QCS31HJ-470	CAPACITOR	47pF,50V	C85	QCC31CK-104	CAPACITOR	0.1 μ F,16V
C19	QFN31HK-473	M CAPACITOR	0.047μ F,50V	C86	QETC1CM-476	E CAPACITOR	47 μ F,16V
C20	QCS31HJ-221	CAPACITOR	220pF,50V	C87	QCC31EK-104	CAPACITOR	0.1 μ F,25V
C21	QFN31HK-473	M CAPACITOR	0.047 μ F,50V	C88 C89	QFN31HK-103 QCS31HJ-7R0	M CAPACITOR CAPACITOR	0.01 μ F,50V 7pF,50V
C22	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C90	QFN31HK-103	M CAPACITOR	0,01 μ F,50V
C23	QCC31CK-104	CAPACITOR	0.1 μ F,16V				, ,
C24	QETC1CM-476	E CAPACITOR	47 μ F,16V	C91	QCC31CK-104	CAPACITOR	0.1 μ F,16V
C25 C26	QCC31EK-104 QCC31EK-104	CAPACITOR CAPACITOR	0.1 μ F,25V 0.1 μ F,25V	C92 C93	QCC31CK-104 QETC1AM-476	CAPACITOR E CAPACITOR	0.1 μ F,16V 47 μ F,10V
C27	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C94	QETC1HM-474	E CAPACITOR	0.47 μ F,50V
C28	QETC1CM-476	E CAPACITOR	47 μ F,16V	C95	QETC1HM-475	E CAPACITOR	4.7 μ F,50V
C29 C30	QCF31HP-103 QCS31HJ-181	CAPACITOR CAPACITOR	0.01 µ F,50V 180pF,50V	C96 C97	QENC1HM-475	NP E CAPACITOR	
C30	QC331HJ-181	CAPACITOR	100PC,30 V	C98	QETC1HM-225 QCC31CK-104	E CAPACITOR CAPACITOR	2.2 μ F,50V 0.1 μ F,16V
C31	QCS31HJ-181	CAPACITOR	180pF,50V	Ç99	QETC1CM-476	E CAPACITOR	47 μ F,16V
C32	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C100	QCC31EK-104	CAPACITOR	0.1 μ F,25V
C33 C34	QETC1AM-476 QCC31CK-104	E CAPACITOR CAPACITOR	47 μ F,10V 0.1 μ F,16V	C101	00031111.000	CARACITOR	60 50\/
C35	QCC31CK-104	CAPACITOR	0.1 μ F,16V 0.1 μ F,16V	C101 C102	QCS31HJ-680 QCS31HJ-680	CAPACITOR CAPACITOR	68pF,50V 68pF,50V
C36	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C103	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C37	QETC1AM-476	E CAPACITOR	4 7 μ F,10V	C104	QCC31CK-104	CAPACITOR	0.1 μ F,16V
C38	QFN31HK-103	M CAPACITOR	0.01 μ F.50V	C105	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C39 C40	QFN31HK-103 QFN31HK-103	M CAPACITOR M CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	C106 C107	QCS31HJ-820 QCS31HJ-560	CAPACITOR CAPACITOR	82pF,50V 56pF,50V
0-10			0.01,000	C108	QCS31HJ-680	CAPACITOR	68pF,50V
C41	QCS31HJ-560	CAPACITOR	56pF,50V	C109	QCS31HJ-680	CAPACITOR	68pF,50V
C42	QETC1HM-105	E CAPACITOR	1 μ F,50V	C110	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C43 C44	QETC1HM-105 QCS31HJ-471	E CAPACITOR CAPACITOR	1 \(\mathcal{F},50\rangle \) 470pF,50\rangle	C111	QCC31CK-104	CAPACITOR	0.1 μ F.16V
C45	QFN31HK-473	M CAPACITOR	0.047 μ F,50V	C112	QFN31HK-103	M CAPACITOR	0.01 µ F,50V
C46	QFN31HK-223	M CAPACITOR	0.022 μ F,50V	C113	QCS31HJ-820	CAPACITOR	82pF,50V
C47	QFN31HK-473	M CAPACITOR	0.047 μ F,50V	C114	QCS31HJ-560	CAPACITOR	56pF,50V
C48 C49	QFN31HK-103 QFN31HK-103	M CAPACITOR M CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	C115 C116	QCC31CK-104 QETC1CM-476	CAPACITOR E CAPACITOR	0.1 μ F,16V 47 μ F,16V
C50	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C117	QCC31EK-104	CAPACITOR	0.1 μ F,25V
				C118	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C51	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C119	QFN31HK-103	M CAPACITOR	0.01 μ F,50V
C52 C53	QETC1CM-476 QCC31EK-104	E CAPACITOR CAPACITOR	47 μ F,16V 1 0.1 μ F,25V	C120	QETC1AM-107	E CAPACITOR	100 μ F,10V
C54	QETC1HM-105	E CAPACITOR	1 μ F,50V	C121	QFN31HK-103	M CAPACITOR	0.01 µ F,50V
C55	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C124	QCS11HJ-220	CAPACITOR	22pF,50V
C56	QCC31CK-104	CAPACITOR	0.1 μ F,16V	C125	QFN41HK-103	M CAPACITOR	0.01 μ F,50V
C57 C58	QCS31HJ-220 QFN31HK-103	CAPACITOR M CAPACITOR	22pF,50V 0.01 μ F,50V	C126 C127	QCS11HJ-470 QCS11HJ-470	CAPACITOR CAPACITOR	47pF,50V 47pF,50V
C 59	QFN31HK-103	M CAPACITOR	0.01 μ F,50V	C129	QFN41HJ-223	M CAPACITOR	0.022 μ F,50V

-1	6>	-1	7
< I	112	< 1	12

6><17>								
△REF No	PART No.	PART NA	ME, DESCI	RIPTION	#▲REF No.	PART No.	PART NAME,	DESCRIPTION
C132	QCS11HJ-120	CAPACITOR	3	12pF,50V	C128	QCZ0208-104	CAPACITOR	0.1 μ F
C133 C136	QCS11HJ-121 QCS11HJ-470	CAPACITOR CAPACITOR		120pF,50V 47pF,50V	CN2	PGZ00190-009	CONNECTOR	
L2	PU48530-331J	COIL		330 μ H				
L4	PU48530-181J	COIL		180 μ H 180 μ H	- R/	P ADJUST SU	B-2 BOARD ASS	EMBLY -
L5 L6	PU48530-181J PU48530-390J	COIL		39 μ H		·· ········		
L7 L8	PU48530-390J PU48530-471J	COIL		39 μ H 470 μ H	PWBA	PRK30086A2	R/P ADJ SUB-2	BOARD ASSY
L9 L10	PGZ00917-822 PU48530-821J	COIL		820 µ H	D101	ODD161 I 102	DECICTOR	140 1 /614
L11	PU48530-101J	COIL		100 μ H	R191	QRD161J-102	RESISTOR	1kΩ,1/6W
L12 L13	PU48530-680J PU48530-221J PU48530-330J	COIL COIL		68 μ Η 220 μ Η 33 μ Η	R297	QRD161J-122	RESISTOR	1.2kΩ,1/6W
L14 L15 L16	PU48530-100J PU48530-101J	COIL		10	C131	QCS31HJ-121	CAPACITOR	120pF,50V
L17 L18 L19	PU48530-330J PU48530-330J PU48530-330J	COIL COIL		33 μ H 33 μ H 33 μ H	L 2 5	PU53223-471J	COIL	4 70 μ H
L20	PU48530-150J	COIL		15 μ H 6.8 μ H	CN3	PGZ00190-003	CONNECTOR	
L21 L22	PU48530-6R8J PU48530-6R8J	COIL		6.8 μ H				
L23 L27	PU48530-100J PU48530-100J	COIL COIL		10 μ H 10 μ H			4 DD 400FMDLV	
L28 L29	PU48530-220J PU48530-330J	COIL		22 μ H 33 μ H	- AL	DIOST SOR BO	ARD ASSEMBLY	-
LPF	PGZ00630	LOW PASS	FILTER		PWBA	PRK20185A	ADJ SUB BOAR	D ASSY
S1	PU54440	SWITCH			Q25	2SC2412K(RS)	TRANSISTOR	
, K1	PGZ00354	FERRATE	DE A DC		R181	QRSA08J-332YN	RESISTOR	3.3kΩ,1∕10W
. K1	FG200354	FERNATE	BEADS		R302 R303	QRSA08J-181YN QRSA08J-471YN		180Ω,1/10W 470Ω,1/10W
EJ1	PGZ00582	EJECTOR,	×2		2424	00714014014	04.04.017.00	000 5 400
RV1	PU53276	PLASTIC R	RIVET, ×4		C134	QCTA1CH-221	CAPACITOR	220pF,16V
SLD1	PRD30781-02-03	SHIELD PL	ATE		Y COM	B BOARD ASS	EMBLY<17>	
TP1	PU54983	TEST PIN,	× 19		PWBA	PRK20125A-02	Y COMB BOARI	O ASSY
CN1	PGZ00421-64	MALE CON	NNECTOR					
					STK1	PRD30072-55	STICKER	
- R	/P ADJUST SL	JB-1 BOARD	ASSEMBLY	-	IC1 IC2	M5278L12 M5278L05	IC IC	
					IC3 IC4	M5278L12 M5278L05	IC IC	
PWBA	PRK30086A1	R/P ADJ	SUB-1 BOARD	ASSY	IC5 IC6	M5278L12 M5278L05	IC IC	
IC19	TA7348P	IC			IC7 IC8	M5278L05 M5278L05	IC IC	
IC30	AN607P .	IC			IC9 IC10	M5278L05 M5278L12	IC IC	
R296	QRD161J-272	RESISTOR		2.7kΩ,1/6W	IC11 IC12	M5278L05 M5278L05	IC IC	
					IC13 IC14	M5278L05 M5278L05	IC IC	
					•			

#A DEF No DART No	PART NAME, DESCRIPTION	#AREF No.	DADT No	PART NAME,	<1/> CECCRIPTION
# <u>A REF No. PART No.</u> IC15 M5278L05	IC	Q45	2SA1037K(QR)	TRANSISTOR	DESCRIPTION
IC21 TA7348P IC22 8VT15 or HMC-229 IC23 AN3916 IC24 TA7347P	IC IC IC IC	Q46 Q47 Q48 Q49 Q50 Q51	DTC144EK 2SC2412K(RS) 2SC2412K(RS) 2SA1037K(QR) 2SC2412K(RS) 2SK656	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR	
IC25 TA7347P IC26 8VT15 or HMC-229 IC27 LA7222 IC28 JCL0009 IC29 M51957BL IC30 TC7W04F	1C 1C 1C 1C 1C 1C	Q52 Q53 Q55 Q56	2SC2412K(RS) 2SC2412K(RS) 2SK656 2SC2412K(RS)	TRANSISTOR TRANSISTOR FE TRANSISTOR TRANSISTOR	
IC31 JCL0012 IC32 8VT15 or HMC-229 IC33 TA7347P IC34 TA7347P IC35 AN3916 IC36 TC74HC4538AP IC37 AN607P IC38 SN16913P IC39 UPC319C	IC IC IC IC IC IC IC	D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	1SS133 1SS133 1SS93 1SS93 1SS93 1SS93 RD3.3EB2 1SS133 1SS133	DIODE DIODE DIODE DIODE DIODE DIODE ZENER DIODE DIODE DIODE DIODE DIODE	
IC41 AN608P	ic ic	D11 D12 D13 D14	1SS133 1SS133 1SS133 1SS133	DIODE DIODE DIODE	
Q1 DTC144WK Q2 2SC2412K(RS) Q4 2SC2412K(RS) Q5 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	D15 D16 D17 D18	1\$\$133 1\$\$133 1\$\$133 1\$\$133	DIODE DIODE DIODE DIODE	
Q6 2SC2412K(RS) Q7 2SK656 Q8 DTC144EK Q9 2SC2412K(RS) Q10 2SA1037K(QR)	TRANSISTOR FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R1 R2 R3 R4 R6	QVZ3513-102 QVZ3513-473 QVZ3513-102 QVZ3513-103 QVZ3513-222	V RESISTOR V RESISTOR V RESISTOR V RESISTOR V RESISTOR	1kΩ 47kΩ 1kΩ 10kΩ 2.2kΩ
Q11 2SC2412K(RS) Q12 2SA1037K(QR) Q13 2SC2412K(RS) Q14 2SC2412K(RS) Q15 2SA1037K(QR) Q16 2SC2412K(RS) Q17 2SK656 Q18 2SK656 Q19 2SA1037K(QR) Q20 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R101 R102 R103 R104 R105 R106 R107 R108 R109 R110	QRSA08J-471YN QRSA08J-471YN QRSA08J-471YN QRSA08J-103YN QRSA08J-103YN QRSA08J-151YN QRSA08J-151YN QRSA08J-153YN QRSA08J-223YN	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	470 Ω .1 / 10 W 470 Ω .1 / 10 W 470 Ω .1 / 10 W 470 Ω .1 / 10 W 10 kΩ .1 / 10 W 150 Ω .1 / 10 W 150 Ω .1 / 10 W 15kΩ .1 / 10 W 2kΩ .1 / 10 W
Q21 2SC2412K(RS) Q22 2SA1037K(QR) Q23 2SK656 Q24 2SC2412K(RS) Q25 2SC2412K(RS) Q26 2SK656 Q27 2SK656 Q28 2SC2412K(RS) Q29 2SA1037K(QR) Q30 DTA144EK	TRANSISTOR TRANSISTOR FE TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R111 R112 R113 R114 R115 R116 R117	QRSA08J-153YN QRSA08J-183YN NRVA62D-242N QRSA08J-0R0Y QRSA08J-151YN QRSA08J-102YN QRSA08J-333YN QRSA08J-102YN	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	15kΩ,1/10W 18kΩ,1/10W 2.4kΩ,1/16W 0Ω,1/10W 150Ω,1/10W 1kΩ,1/10W 33kΩ,1/10W
Q31 2SC2412K(RS) Q32 2SA1037K(QR) Q33 2SA1037K(QR) Q34 2SC2412K(RS) Q35 2SA1037K(QR) Q36 2SC2412K(RS) Q37 2SA1037K(QR) Q38 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	R122 R123 R124 R125 R126 R127 R128 R129 R130	CRSA08J-103YN ORSA08J-331YN ORSA08J-151YN ORSA08J-123YN ORSA08J-822YN ORSA08J-183YN ORSA08J-223YN ORSA08J-102YN ORSA08J-222YN	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$\begin{array}{c} 10k\Omega.1/10W \\ 330\Omega.1/10W \\ 150\Omega.1/10W \\ 12k\Omega.1/10W \\ 8.2k\Omega.1/10W \\ 18k\Omega.1/10W \\ 22k\Omega.1/10W \\ 22k\Omega.1/10W \\ 1k\Omega.1/10W \\ 2.2k\Omega.1/10W \\ 1.00$
Q39 2SA1037K(QR) Q40 2SC2412K(RS) Q44 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR	R131 R132 R133	QRSA08J-102YN QRSA08J-103YN QRSA08J-560YN	RESISTOR	$1k\Omega$,1/10W $10k\Omega$,1/10W 56Ω ,1/10W

<17> # <u>^</u> REF No.	PART No.	PART	NAME.	DESCRIPTION	#AREF	No.	PART No.	PART	NAME.	DESCRIPTION
R134	QRSA08J-680YN			68Ω,1/10W	R204		QRSA08J-222YN			2.2kΩ,1/10W
R135	QRSA08J-103YN			10kΩ,1/10W	R208		QRSA08J-101YN			100Ω,1/10W
R136	QRSA08J-103YN			10kΩ,1/10W	R209		QRSA08J-221YN			220Ω,1/10W
R137	QRSA08J-221YN			220Ω,1/10W	R210		QRSA08J-221YN	RESIST	TOR	220Ω ,1/10W
R138	QRSA08J-223YN			22kΩ,1/10W						
R139	QRSA08J-273YN			27kΩ,1/10W	R211		QRSA08J-103YN			$10k\Omega$, $1/10W$
R140	QRSA08J-272YN	RESIS	TOR	$2.7k\Omega$, $1/10W$	R212		QRSA08J-223YN			22kΩ,1/10W
				0.01.0.4.740344	R213		QRSA08J-103YN			10kΩ,1/10W
R141	QRSA08J-222YN			2.2kΩ,1/10W 56Ω,1/10W	R214 R215		QRSA08J-750YN QRSA08J-152YN			75Ω,1/10W
R142 R143	QRSA08J-560YN QRSA08J-331YN			330Q,1/10W	R216		QRSA08J-183YN			1.5kΩ,1/10W 18kΩ,1/10W
R144	QRSA08J-152YN			1.5kΩ,1/10W	R217		QR\$A08J-124YN			120kΩ,1/10W
R145	QRSA08J-272YN			2.7kΩ,1/10W	R218		QRSA08J-223YN			22kΩ,1/10W
R146	QRSA08J-562YN			5.6kΩ,1/10W	R219		QRSA08J-273YN			27kΩ,1/10W
R147	QRSA08J-393YN		TOR	39kΩ,1∕10W	R220		QRSA08J-472YN	RESIS'	TOR	$4.7k\Omega$, $1/10W$
R148	QRSA08J-153YN			15kΩ,1/10W						
R149	QRSA08J-393YN			39kΩ,1/10W	R221		QRSA08J-332YN			3.3kΩ,1/10W
R150	QRSA08J-153YN	RESIS	TOR	15kΩ,1/10W	R222		QRSA08J-270YN			27Ω,1/10W
Diff	ODCARO LOGOVNI	DECIC:	TOD	2.01-0.1./4014/	R223 R224		QRSA08J-181YN NRVA62D-201N			180Ω,1/10W
R151 R152	QRSA08J-392YN QRSA08J-392YN			3.9kΩ,1/10W 3.9kΩ,1/10W	R225		QRSA08J-562YN			200Ω,1/16W 5.6kΩ,1/10W
R153	QRSA08J-471YN			470Ω,1/10W	R226		QRSA08J-393YN			39kΩ,1/10W
R154	NRVA62D-112N	RESIS		1.1kΩ,1/16W	R227		QRSA08J-153YN			15kΩ,1/10W
R155	QRSA08J-562YN			5.6kΩ,1/10W	R228		QRSA08J-393YN			39kΩ,1/10W
R156	QRSA08J-103YN			10kΩ,1/10W	R229		QRSA08J-153YN			15kΩ,1/10W
R157	QRSA08J-333YN	RESIS'	TOR	33kΩ,1∕10W	R230		QRSA08J-392YN	RESIS"	TOR	3.9 k Ω , $1/10$ W
R158	QRSA08J-102YN			1kΩ,1∕10W						
R159	QRSA08J-222YN			2.2kΩ,1/10W	R232		QRSA08J-271YN			270Ω,1/10W
R160	QRSA08J-182YN	RESIS'	TOR	1.8kΩ,1∕10W	R233		NRVA62D-112N			1.1kΩ,1/16W
D161	ODCARG LEGIVA	DECIC:	TOR	ECO 1 /10W	R234 R235		QRSA08J-562YN QRSA08J-272YN			5.6kΩ,1/10W
R161 R162	QRSA08J-561YN QRSA08J-272YN			560Ω,1/10W 2.7kΩ,1/10W	R235		QRSA08J-561YN			2.7kΩ,1/10W 560Ω,1/10W
R163	QRSA08J-223YN			22kΩ,1/10W	R237		QRSA08J-272YN			2.7kΩ,1/10W
R164	QRSA08J-123YN			12kΩ,1/10W	R238		QRSA08J-223YN			22kΩ,1/10W
R165	QRSA08J-472YN			4.7kΩ,1/10W	R239		QRSA08J-273YN			$27k\Omega$, $1/10W$
R166	QRSA08J-332YN	RESIS'	TOR	3.3kΩ,1/10W	R240		QRSA08J-472YN	RESIS'	TOR	$4.7k\Omega_{\star}1/10W$
R167	ORSA08J-270YN			27Ω,1/10W						
R168	QRSA08J-181YN			180Ω,1/10W	R241		QRSA08J-332YN			3.3kΩ,1/10W
R169	NRVA62D-201N QRSA08J-102YN	RESIS'		200Ω,1/16W 1kΩ,1/10W	R242 R243		QRSA08J-270YN QRSA08J-181YN			27Ω,1/10W
R170	UNSAUGJ-102 TIV	NESIS	IUN	1882,1/ 1044	R244		NRVA62D-201N			180Ω,1/10W 200Ω,1/16W
R171	QRSA08J-221YN	RESIS"	TOR	220Ω.1/10W	R249		QRSA08J-392YN			3.9kΩ,1/10W
R173	QRSA08J-103YN			10kΩ,1/10W	R250		QRSA08J-152YN			1.5kΩ,1/10W
R174	QRSA08J-332YN		TOR	3.3kΩ,1/10W						
R175	QRSA08J-682YN	RESIS'		6.8kΩ,1/10W	R251		QRSA08J-104YN			100kΩ,1∕10W
R176	QRSA08J-102YN	RESIS		1kΩ,1/10W	R252		QRSA08J-104YN			100kΩ,1/10W
R177	QRSA08J-102YN			1kΩ,1/10W	R253		QRSA08J-272YN			2.7kΩ,1/10W
R178	QRSA08J-101YN			100Ω,1/10W	R254		QRSA08J-222YN			2.2kΩ,1/10W
R179	QRSA08J-101YN			100Ω,1/10W 100kΩ,1/10W	R255 R256		QRSA08J-272YN QRSA08J-272YN			2.7kΩ,1/10W
R180	QRSA08J-104YN	NE3I3	IUN	1001(\$2,1/1044	R257		QRSA08J-103YN			2.7kΩ,1/10W 10kΩ,1/10W
R181	QRSA08J-103YN	RESIST	TOR	10kΩ,1/10W	R258		QRSA08J-151YN			150Ω.1/10W
R182	QRSA08J-103YN			10kΩ,1/10W	R259		QRSA08J-151YN			150Ω,1/10W
R183	QRSA08J-561YN		TOR	560Ω,1/10W	R260		QRSA08J-103YN			10kΩ,1/10W
R184	QRSA08J-182YN			1.8kΩ,1/10W						
R185	ORSA08J-103YN			10kΩ,1∕10W	R261		ORSA08J-223YN			$22k\Omega$,1/10W
R186	QRSA08J-333YN			33kΩ,1/10W	R262		QRSA08J-273YN			$27k\Omega$,1/10W
R187	QRSA08J-103YN			10kΩ,1/10W	R265		QRSA08J-392YN			3.9kΩ,1/10W
R188 R189	QRSA08J-103YN QRSA08J-103YN			10kΩ,1/10W 10kΩ,1/10W	R266 R267		QRSA08J-472YN QRSA08J-103YN			4.7kΩ,1/10W
R190	QRSA08J-103YN			10kΩ,1/10W	R268		QRSA08J-103YN			10kΩ,1/10W 10kΩ,1/10W
11130	G110/1000-100111	, LOIO	7011	1014	R269		QRSA08J-152YN			1.5kΩ,1/10W
R191	QRSA08J-103YN	RESIST	TOR	10kΩ,1/10W	R270		QRSA08J-102YN			1kΩ,1/10W
R192	QRSA08J-103YN			10kΩ,1∕10W						
R193	ORSA08J-103YN		_	10kΩ,1/10W	R271		QRSA08J-102YN			$1k\Omega$,1/10W
R194	ORSA08J-103YN			10kΩ,1/10W	R272		QRSA08J-333YN			$33k\Omega$,1/10W
R195	QRSA08J-103YN			10kΩ,1/10W	R273		QRSA08J-183YN			18kΩ,1/10W
R196	QRSA08J-103YN			10kΩ,1/10W	R274		ORSA08J-222YN			2.2kΩ,1/10W
R199 R200	QRD161J-181 QRSA08J-103YN	RESIST RESIST		180Ω,1/6W 10kΩ,1/10W	R275 R276		QRSA08J-122YN QRSA08J-332YN			1.2kΩ,1/10W 3.3kΩ,1/10W
FIZUU	UNDANDU-IVA I IV	RESIS	IUN	IOKM'I\ IOAA	R277		QRSA08J-181YN			3.3KΩ,1/10W 180Ω,1/10W
R201	QRSA08J-333YN	RESIS	TOR	33kΩ,1/10W	R278		QRSA08J-152YN			1.5kΩ,1/10W
R202	QRSA08J-102YN			1kΩ,1/10W	R279		QRSA08J-561YN			560Ω,1/10W
R203	QRSA08J-681YN			680Ω,1/10W	R280		QRSA08J-561YN			560Ω,1∕10W
					t					

#≜REF No.	PART No.	PART NAME,	DESCRIPTION	# <u>∧</u> REF	No. PART No.	PART NAME,	DESCRIPTION
R282	QRSA08J-392YN QRSA08J-152YN QRSA08J-103YN	RESISTOR RESISTOR RESISTOR	3.9k\O,1/10W 1.5k\O,1/10W 10k\O,1/10W	C48 C49 C50	QCSA1HJ-390 QCSA1HJ-121 QENC1HM-105	CAPACITOR CAPACITOR NP E CAPACITOR	39pF,50V 120pF,50V 1 μ F,50V
R284 R285 R286	QRSA08J-223YN QRSA08J-152YN QRSA08J-222YN	RESISTOR RESISTOR RESISTOR	22kΩ,1/10W 1.5kΩ,1/10W 2.2kΩ,1/10W	C51 C52 C53	QCFA1HZ-103 QCFA1HZ-104 QCFA1HZ-104	CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,50V 0.1 μ F,50V 0.1 μ F,50V
R288 R289	ORSA08J-102YN ORSA08J-333YN ORSA08J-153YN	RESISTOR RESISTOR RESISTOR	1kΩ,1/10W 33kΩ,1/10W 15kΩ,1/10W	C54 C55 C56 C58	QETC1CM-476 QCYA1EK-223 QETC0JM-227 QCFA1HZ-104	E CAPACITOR CAPACITOR E CAPACITOR CAPACITOR	47 μ F.16V 0.022 μ F.25V 220 μ F.6.3V 0.1 μ F.50V
	QRSA08J-152YN QRSA08J-152YN QRSA08J-102YN	RESISTOR RESISTOR RESISTOR	1.5kΩ,1/10W 1.5kΩ,1/10W 1kΩ,1/10W	C59 C60	QCFA1HZ-104 QCFA1HZ-104 QETC1AM-476	CAPACITOR E CAPACITOR	0.1 μ F,50V 0.1 μ F,50V 47 μ F,10V
R293 R294 R295 R296 R297	QRSA08J-101YN QRSA08J-103YN QRSA08J-332YN QRSA08J-102YN QRSA08J-152YN	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	100Q,1/10W 10kQ,1/10W 3,3kQ,1/10W 1kQ,1/10W 1.5kQ,1/10W	C61 C62 C63 C64 C65	QCFA1HZ-104 QCFA1HZ-104 QENC1HM-105 QETC1AM-226 QCFA1HZ-104	CAPACITOR CAPACITOR NP E CAPACITOR E CAPACITOR CAPACITOR	0.1 μ F.50V 0.1 μ F.50V 1 μ F.50V 22 μ F.10V 0.1 μ F.50V
R298 R299 R300	QRD161J-471 QRD161J-103 QRD161J-471	RESISTOR RESISTOR RESISTOR	470Q,1/6W 10kQ,1/6W 470Q,1/6W	C66 C67 C69 C70	QCFA1HZ-104 QETC1CM-476 QCYA1EK-223 QCTA1CH-100	CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	0.1μ F.50V 47μ F.16V 0.022μ F.25V 10μ F.16V
C1 C2 C3 C4	QCFA1HZ-104 QCFA1HZ-104 QETC1CM-476 QETC1CM-337	CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F.50V 0.1 μ F.50V 47 μ F.16V 330 μ F.16V 47 μ F.10V	C71 C72 C73 C75 C76	QCTA1CH-330 QCYA1EK-223 QETC1AM-476 QCFA1HZ-103 QCFA1HZ-104	CAPACITOR CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	33pF,16V 0.022 μ F,25V 47 μ F,10V 0.01 μ F,50V 0.1 μ F,50V
C5 C6 C7 C8 C9	QETC1AM-476 QETC1AM-476 QCFA1HZ-103 QETC1AM-476 QETC1AM-476	E CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR	47 μ F.10V 0.01 μ F.50V 47 μ F.10V 47 μ F.10V	C77 C78 C79 C80	QCFA1HZ-104 QETC1AM-476 QCFA1HZ-104 QCFA1HZ-104	CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	0.1 μ F,50V 47 μ F,10V 0.1 μ F,50V 0.1 μ F,50V
C10 C11 C12	QCSA1HJ-271 QETC1CM-227 QCFA1HZ-103	E CAPACITOR CAPACITOR	270pF.50V 220 μ F,16V 0.01 μ F,50V	C81 C82 C83	QETC1AM-476 QCFA1HZ-103 QETC1HM-105	E CAPACITOR CAPACITOR E CAPACITOR	47 μ F,10V 0.01 μ F,50V 1 μ F,50V
C13 C14 C15 C16	QCFA1HZ-104 QCFA1HZ-104 QETC1AM-476 QCYA1HK-332	CAPACITOR CAPACITOR E CAPACITOR CAPACITOR	0.1μ F,50V 0.1μ F,50V 47μ F,10V 0.0033μ F,50V	C84 C85 C86 C87	QCFA1HZ-104 QCFA1HZ-104 QETC1AM-476 QCFA1HZ-104	CAPACITOR CAPACITOR E CAPACITOR CAPACITOR	0.1 μ F,50V 0.1 μ F,50V 47 μ F,10V 0.1 μ F,50V
C17 C18 C19 C20	QCYA1EK-473 QETC1EM-475 QETC1EM-475 QCYA1EK-103	CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR	0.047 μ F,25V 4.7 μ F,25V 4.7 μ F,25V 0.01 μ F,25V	C88 C89 C90	QCFA1HZ-104 QETC1AM-476 QETC1EM-475	CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F,50V 47 μ F,10V 4.7 μ F,25V
C21 C22 C23	QETC1AM-227 QETC1CM-227 QCFA1HZ-103	E CAPACITOR E CAPACITOR CAPACITOR	220 μ F,10V 220 μ F,16V 0.01 μ F.50V	C91 C92 C93 C94	QCFA1HZ-104 QCFA1HZ-104 QETC1AM-476 QCYA1EK-103	CAPACITOR CAPACITOR E-CAPACITOR CAPACITOR	0.1 μ F,50V 0.1 μ F,50V 47 μ F,10V 0.01 μ F,25V
C24 C25 C26 C27	QETC1AM-476 QETC1AM-476 QETC1AM-107 QCFA1HZ-103	E CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR	47 μ F.10V 47 μ F.10V 100 μ F.10V 0.01 μ F.50V	C95 C96 C97 C98	QCYA1EK-103 QCYA1EK-103 QCSA1HK-101 QCFA1HZ-104	CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,25V 0.01 μ F,25V 100pF,50V 0.1 μ F,50V
C28 C29 C30	QCFA1HZ-103 QCYA1EK-223 QETC1CM-476	CAPACITOR CAPACITOR E CAPACITOR	0.01 μ F,50V 0.022 μ F,25V 47 μ F,16V	C99 C100	QCFA1HZ-104 QETC1AM-476	CAPACITOR E CAPACITOR	0.1 μ F,50V 47 μ F,10V
C31 C32 C33	QCYA1HJ-333 QETC0JM-476 QETC1HM-225	CAPACITOR E CAPACITOR E CAPACITOR	0.033 μ F,50V 47 μ F,6.3V 2.2 μ F,50V	C101 C102 C103 C104	QCFA1HZ-104 QETC1AM-476 QETC1CM-107	CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F,50V 0.1 μ F,50V 47 μ F,10V 100 μ F,16V
C34 C35 C36 C37	QCFA1HZ-104 QCFA1HZ-104 QETC1CM-476 QETC1AM-107	CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F,50V 0.1 μ F,50V 47 μ F,16V 100 μ F,10V	C105 C106 C107 C109	QCYA1EK-223 QETC0JM-227 QETC1AM-476	E CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR	47 μ F,16V 0,022 μ F,25V 220 μ F,6.3V 47 μ F,10V
C38 C39 C40	QETC0JM-227 QCSA1HJ-390 QETC1AM-107	E CAPACITOR CAPACITOR E CAPACITOR	220 μ F,6.3V 39pF,50V 100 μ F,10V	C110 C112 C113	QCFA1HZ-103	E CAPACITOR CAPACITOR CAPACITOR	47 μ F,16V 0.01 μ F,50V 0.022 μ F,25V
C41 C43 C44	QETC1AM-476 QCFA1HZ-103 QCFA1HZ-104	E CAPACITOR CAPACITOR CAPACITOR	47 μ F,10V 0.01 μ F,50V 0.1 μ F,50V	C114 C115 C116	QETC1CM-476 QCSA1HJ-680 QCSA1HJ-681	E CAPACITOR CAPACITOR CAPACITOR	47 μ F,16V 68pF,50V 680pF,50V
C45 C46 C47	QCFA1HZ-104 QETC1AM-476 QETC1AM-226	CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F,50V 47 μ F,10V 22 μ F,10V	C118		E CAPACITOR E CAPACITOR	100 μ F,10V 220 μ F,6.3V

#△REF No.	PART No.	PART NAME,	DESCRIPTION	#_	REF No	. PART No.	PART	NAME, DE	SCRIPTION
C121 C122 C123 C124 C125 C126 C127 C128 C129	QETC1CM-476 QCYA1EK-223 QENC1AM-226 QETC1CM-106 QETC1AM-476 QETC1AM-476 QCFA1HZ-103 QCYA1EK-103 QETC1AM-476	E CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR CAPACITOR CAPACITOR	47 μ F.16V 0.022 μ F.25V 22 μ F.10V 10 μ F.16V 47 μ F.10V 0.01 μ F.50V 0.01 μ F.25V 47 μ F.10V		BPF1 DL1 SW1 SW2	PELN0396 PGZ01558 OSS1K81-L01 PU54440			
C130 C131 C132 C133 C134 C135 C136 C137 C138 C139 C140	QCFA1HZ-103 QCFA1HZ-104 QCFA1HZ-104 QETC1AM-476 QCYA1HK-332 QCFA1EZ-473 QETC1EM-475 QETC1EM-475 QCFA1HZ-103 QCFA1HZ-103 QCYA1HK-102	CAPACITOR CAPACITOR CAPACITOR E CAPACITOR CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,50V 0.1 μ F,50V 0.1 μ F,50V 47 μ F,10V 0.0033 μ F,50V 0.047 μ F,25V 4.7 μ F,25V 0.01 μ F,50V 0.01 μ F,50V 0.001 μ F,50V	444444444	K1 K2 K3 K4 K5 K6 K7 K8 K9	PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001	FERRA FERRA FERRA FERRA FERRA FERRA FERRA	ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS	
C141 C142 C143 C144 C145 C146 C147 C148 C149 C150	OCYA1HK-102 OETC1CM-106 OCYA1EK-223 OCYA1EK-103 OCYA1EK-103 OCYA1EK-103 OCYA1EK-103 OCYA1EK-103 OCYA1EK-103 OCYA1EK-103 OCYA1EK-103	CAPACITOR E CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.001 μ F,50V 10 μ F,16V 0.022 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V 0.01 μ F,25V	444444	K11 K12 K13 K14 K15 K16 K17	PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001 PGZ01222-001	FERRA FERRA FERRA FERRA FERRA	ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS ATE BEADS	
C151 C152 C153 C154 C155 C156 C157 C158 C159 C160	OCYA1EK-103 OCYA1EK-103 OCSA1HK-101 OCFA1HZ-104 OETC1AM-476 OETC1AM-476 OETC1CM-227 OETC1CM-227 OETC1EM-475 OCSA1HJ-560	CAPACITOR CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	0.01 μ F.25V 0.01 μ F.25V 100pF.50V 0.1 μ F.50V 47 μ F.10V 47 μ F.10V 220 μ F.16V 220 μ F.16V 4.7 μ F.25V 56pF.50V		EJ1 RV1 SLD1 SLD2 SLD3	PGZ00582 PU53276 PRD30781-02-03 PGZ00660-05 PGZ00660-10	PLAST SHIELI M/BU	OR, ×2 CIC RIVET, × D PLATE US, ×2 US, ×2	4
C161 C162 C163 C164 C165 C166 C167 C168 C169	QENC1CM-476 QCFA1HZ-103 QCSA1HJ-121 QETA1CM-476 QCT05CH-271 QFN41HK-223 QCS11HJ-101 QCF11HP-102 QCS11HJ-101	NP E CAPACITOR CAPACITOR E CAPACITOR CAPACITOR M CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	3 47 μ F.16V 0.01 μ F.50V 120pF.50V 47 μ F.16V 270pF 0.022 μ F.50V 100pF.50V 0.001 μ F.50V 100pF.50V		TP1 CN1 - 4F	PU54983 PGZ00421-64 FSC BOARD ASS	MALE	PIN, ×7 CONNECTOR C <39> -	
L1 L3 L5 L8 L9 L10	PU48530-221J PU48530-150J PU48530-820J PU48530-100J PU48530-100J PU48530-471J	COIL COIL COIL COIL COIL COIL	220 µ H 15 µ H 82 µ H 10 µ H 10 µ H 470 µ H		PWBA	PRK30102B NJM2240D TC7S04F	4FSC I	BOARD ASSY	
L11	PU48530-100J	COIL	10 μ H		Q1	2SC2412K(QR)	TRAN	SISTOR	
LPF1 LPF2 LPF4 LPF5 LPF6 LPF7 LPF8	PGZ01321 PELN0320 PELN0321 PGZ01321 PELN0321 PGZ01321 PELN0321	LOW PASS FILTE LOW PASS FILTE LOW PASS FILTE LOW PASS FILTE LOW PASS FILTE LOW PASS FILTE	R R R R R		R1 R10 R11 R12 R13 R14 R15	NVP1415-202N QRSA08J-223YN QRSA08J-333YN QRSA08J-102YN QRSA08J-361YN QRSA08J-222YN QRSA08J-105YN	RESIST RESIST RESIST	FOR FOR FOR FOR FOR	$2k\Omega$, $1/4W$ $22k\Omega$, $1/10W$ $33k\Omega$, $1/10W$ $1k\Omega$, $1/10W$ 360Ω , $1/10W$ $2.2k\Omega$, $1/10W$ $1M\Omega$, $1/10W$

			1				<39><19>
#AREF No. P	ART No.	PART NAME,	DESCRIPTION	#≜REF No.	PART No.	PART NAME,	DESCRIPTION
	CFA1HZ-103	CAPACITOR	0.01 μ F.50V	Q7 Q9 Q10	2SC2412K(RS) 2SC2412K(RS) 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR	
C11 C12 C13 C14 C15 C16 N C17 C17	DCFA1HZ-103 DEF81AM-475 DCFA1HZ-103 DCTA1CH-5R0 DCFA1HZ-103 DCFA1HZ-103 DCFA1HZ-103 DCFA1HZ-103	CAPACITOR TANTAL CAPACI CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,50V	Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20	2SD1383K(B) 2SD1383K(B) 2SA1037K(QR) 2SA1037K(QR) 2SA1037K(QR) DTC144EK DTA144EK 2SK621 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR TRANSISTOR	3
PJ1 P	PGZ00835-01	CONNECTOR, >	<4	Q21 Q22 Q23	2SC2412K(RS) DTA144EK DTC144EK	TRANSISTOR TRANSISTOR TRANSISTOR	
TP1 F	PGZ01015	TEST PIN		Q25 Q25 Q26	2SA1037K(QR) 2SC2412K(RS) DTC144EK	TRANSISTOR TRANSISTOR TRANSISTOR	
CN1 F	PGZ01091-01	CONNECTOR, >	< 4	O27 O28 O29 O30	DTC144EK DTC144EK DTC144EK DTC144EK	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
OUTPUT	BOARD ASSE	MBLY<19>		Q31	DTC144EK	TRANSISTOR	
	PRK20124B-01	OUTPUT BOARD) ASSY	Q32 Q33 Q34 Q35 Q36 Q37	2SC2412K(RS) 2SA1037K(QR) 2SA1037K(QR) DTA144EK 2SK208 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOI TRANSISTOR	3
	M5278L12	IC		Q38 Q39 Q40	2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR	
IC2 N IC3 N IC4 N IC5 N	M5278L12 M5278L12 M5278L12 M5278L12 M5278L05	IC IC IC IC		Q41 Q42 Q43 Q44	2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SD601(Q)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC12 S IC13 T IC14 E IC15 E	3VT15 SN16913P TA7348P 3VT15 3A4558F TC4066BF	IC IC IC IC IC		Q45 Q46 Q47 Q48 Q49 Q50	DTC144EK 2SD601(Q) 2SA1037K(QR) 2SC2412K(RS) 2SD601A(QR) 2SA1037K(QR)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC17 IC18 IC19 IC20 8	UPC4082G2 UPC311C TC4538BF BVT15	IC IC IC		Q51 Q52 Q53 Q55 Q56	2SC2412K(RS) 2SA1037K(QR) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
1C22 1C23 1C24 1C25 1C26 1C27 1C28 1C28 1	TC74HC4538AF LVA523SA TA7347P LM6361N TA7347P TA7347P LM6361N LM6361N VC2520	IC IC IC IC IC IC IC		Q61 Q62 Q63 Q64 Q65 Q66 Q67	DTC144EK 2SC2412K(RS) 2SK621 2SK621 2SD601(R) 2SD601(R) 2SK621	TRANSISTOR TRANSISTOR FE TRANSISTO FE TRANSISTO TRANSISTOR TRANSISTOR FE TRANSISTO	R
IC32 IC33 IC34	AN607P TC4011BF M5278L12 M5278L12	IC IC IC IC		D1 D2 D5 D6 D7 D8 D9	1SS133 MA27TB GL-3PR8 1SS133 1SS133 RD7.5ES-T1B1 1SS133	DIODE DIODE LE DIODE DIODE DIODE ZENER DIODE DIODE	
Q2 Q3 Q4 Q5	2SA1037K(QR) 2SA1037K(QR) 2SC2412K(RS) DTA144EK 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		D10 D11 D12 D13	1SS133 1SS133 1SS133 1SS133	DIODE DIODE DIODE DIODE	

		_	
_	1	q	`

#AREF No.	PART No.	PART NAME,	DESCRIPTION	#≜REF No.	PART No.	PART NAME,	DESCRIPTION
D14	188133	DIODE		R156	QRD161J-0R0	RESISTOR	0Ω,1/6W
D15	1SS99	DIODE		R157 '	QRD161J-562	RESISTOR	5.6kΩ,1/6W
D16	18899	DIODE		R158	QRD161J-103	RESISTOR	$10k\Omega$,1/6W
5.0		_,		R159	QRD161J-474	RESISTOR	470kΩ,1/6W
D21	1SS133	DIODE		R160	QRD161J-222	RESISTOR	$2.2k\Omega$, $1/6W$
D22	1SS133	DIODE					
D23	1SS133	DIODE		R161	QRD161J-103	RESISTOR	10kΩ,1∕6W
D24	188133	DIODE		R162	QRD161J-472	RESISTOR	$4.7k\Omega$, $1/6W$
D25	1SS133	DIODE		R163	QRD161J-681	RESISTOR	680Ω,1/6W
				R164	QRD161J-123	RESISTOR	12kΩ,1/6W
			41.0	R165	QRD161J-472	RESISTOR	4.7kΩ,1/6W
R2	QVPB610-102	V RESISTOR	1kΩ	R166	QRD161J-103	RESISTOR	10kΩ,1/6W
R4	QVZ3513-104	V RESISTOR	100kΩ	R167	QRD161J-103	RESISTOR RESISTOR	10kΩ,1/6W
R5	QVZ3513-104	V RESISTOR	100kΩ 5kΩ	R168 R169	QRD161J-472 QRD161J-472	RESISTOR	4.7kΩ ,1/6W 4.7kΩ ,1/6W
R7	QVPB610-502	V RESISTOR V RESISTOR	3.3kΩ	R170	QRD161J-103	RESISTOR	10kΩ,1/6W
R8	QVZ3514-332	A MESISTON	3.388	1170	Q(\D\0\0\0\0\0	1120101011	100,02,17 044
R101	QRD161J-223	RESISTOR	22kΩ,1/6W	R171	QRD161J-102	RESISTOR	1kΩ,1/6W
R102	QRD161J-333	RESISTOR	33kΩ,1/6W	R172	QRD161J-472	RESISTOR	4.7kΩ,1/6W
R103	QRD161J-471	RESISTOR	470Ω,1/6W	R173	QRD161J-472	RESISTOR	$4.7k\Omega$,1/6W
R104	QRD161J-391	RESISTOR	390Ω,1/6W	R174	QRD161J-103	RESISTOR	10kΩ,1∕6W
R105	QRD161J-391	RESISTOR	390Ω,1/6W	R175	QRD161J-472	RESISTOR	4.7kΩ .1 / 6W
R106	QRD161J-391	RESISTOR	390 Q.1 ∕ 6W	R176	QRD161J-103	RESISTOR	$10k\Omega.1/6W$
R107	QRD161J-332	RESISTOR	$3.3k\Omega$, $1/6W$	R177	QRD161J-123	RESISTOR	12kΩ,1∕6W
R108	QRD161J-332	RESISTOR	3.3kΩ.1/6W	R178	QRD161J-473	RESISTOR	47kΩ.1/6W
R109	QRD161J-562	RESISTOR	5.6kΩ,1/6W	R179	QRD161J-473	RESISTOR	47kΩ,1/6W
R110	QRD161J-103	RESISTOR	10kΩ,1/6W	R180	QRD161J-332	RESISTOR	3.3kΩ,1∕6W
R111	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R181	QRD161J-333	RESISTOR	33kΩ,1∕6W
R112	QRD161J-102	RESISTOR	1kΩ,1/6W	R182	QRD161J-393	RESISTOR	39kΩ,1/6W
R113	QRD161J-222	RESISTOR	2.2kΩ .1/6W	R183	QRV141F-3600AY		360Ω,1/4W
R114	QRD161J-123	RESISTOR	12kΩ,1/6W	R184	QRD161J-391	RESISTOR	390Ω,1∕6W
R115	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R185	QRD161J-102	RESISTOR	1kΩ,1/6W
R116	QRD161J-472	RESISTOR	4.7kΩ,1/6W	R187	QRD161J-222	RESISTOR	2.2kΩ,1/6W
R117	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R188	QRD161J-222	RESISTOR	2.2kΩ ,1/6W
R118	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R189	QRD161J-562	RESISTOR	5.6kΩ,1/6W
R119	QRD161J-681	RESISTOR	680Ω,1∕6W	R190	QRD161J-471	RESISTOR	470Ω,1/6W
D122	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R191	QRD161J-105	RESISTOR	1MΩ,1/6W
R123 R124	QRD161J-102	RESISTOR	1kΩ,1/6W	R192	QRD161J-821	RESISTOR	820Ω,1/6W
R125	QRD161J-101	RESISTOR	100Ω,1/6W	R193	QRD161J-222	RESISTOR	2.2kΩ,1/6W
R126	QRD161J-561	RESISTOR	560Ω,1/6W	R194	QRD161J-122	RESISTOR	1.2kΩ,1/6W
R127	QRD161J-472	RESISTOR	4.7kΩ,1/6W	R195	QRD161J-222	RESISTOR	2.2kΩ .1/6W
R128	QRD161J-102	RESISTOR	1kΩ,1/6W	R196	QRD161J-181	RESISTOR	180Ω,1/6W
R129	QRD161J-181	RESISTOR	180Ω,1∕6W	R197	QRD161J-182	RESISTOR	1.8kΩ,1∕6W
R130	QRD161J-821	RESISTOR	820Ω,1∕6W	R198	QRD161J-471	RESISTOR	470Ω,1/6W
				R199	QRD161J-391	RESISTOR	390Ω.1/6W
R131	QRD161J-102	RESISTOR	1kΩ,1/6W	R200	QRD161J-391	RESISTOR	390Ω,1∕6W
R132	QRD161J-562	RESISTOR	5.6kΩ,1/6W	D204	QRD161J-563	DECICTOR	56kΩ,1/6W
R133	QRD161J-562	RESISTOR	5.6kΩ,1/6W 33kΩ,1/6W	R201 R202	QRD161J-103	RESISTOR RESISTOR	10kΩ,1/6W
R134 R135	QRD161J-333 QRD161J-103	RESISTOR RESISTOR	10kΩ,1/6W	R203	QRD161J-122	RESISTOR	1.2kΩ,1/6W
R136	QRD161J-333	RESISTOR	33kΩ,1/6W	R204	QRD161J-271	RESISTOR	270Ω.1/6W
R137	QRD161J-103	RESISTOR	10kΩ,1/6W	R205	QRD161J-471	RESISTOR	470Ω.1/6W
R138	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R206	QRD161J-391	RESISTOR	390Ω,1/6W
R139	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R207	QRD161J-391	RESISTOR	390Ω,1/6W
R140	QRD161J-562	RESISTOR	5.6kΩ,1/6W	R210	QRD161J-471	RESISTOR	470Ω.1/6W
- 444		********		2011	0004041074	0.000000	020 0 4 /014
R141	ORD161J-101	RESISTOR	100Ω,1/6W	R211	QRD161J-271 QRD161J-222	RESISTOR	270Ω,1/6W
R142	QRD161J-472	RESISTOR	4.7kΩ,1/6W	R212		RESISTOR	2.2kΩ,1/6W
R143 R144	QRD161J-472	RESISTOR RESISTOR	4.7kΩ,1/6W 1kΩ,1/6W	R213 R214	QRD161J-103 QRD161J-562	RESISTOR RESISTOR	10kΩ,1/6W 5.6kΩ,1/6W
R145	QRD161J-102 QRD161J-102	RESISTOR	1kΩ,1/6W	R215	QRD161J-472	RESISTOR	4.7kΩ,1/6W
R145	QRD161J-102	RESISTOR	2.2kΩ,1/6W	R216	QRD161J-223	RESISTOR	22kΩ,1/6W
R147	QRD161J-123	RESISTOR	12kΩ,1/6W	R217	QRD161J-223	RESISTOR	22kΩ,1/6W
R148	QRD161J-561	RESISTOR	560Ω,1/6W	R218	QRD161J-562	RESISTOR	5.6kΩ.1/6W
R149	QRD161J-682	RESISTOR	6.8kΩ,1/6W	R219	QRD161J-224	RESISTOR	220kΩ,1/6W
R150	QRD161J-562	RESISTOR	5.6kΩ,1/6W	R220	QRD161J-224	RESISTOR	220kΩ.1/6W
545 :		DECIGE	41 6 4 /000	2004	ODD444 : 500	DEGICTOR	E 61 O 4 /61**
R151	QRD161J-102	RESISTOR	1kΩ,1/6W	R221	QRD161J-562	RESISTOR	5.6kΩ,1/6W
R152 R153	QRD161J-102 QRD161J-222	RESISTOR RESISTOR	1kΩ,1/6W 2,2kΩ,1/6W	R222 R225	QRD161J-103 QRD161J-105	RESISTOR RESISTOR	10kΩ,1/6W 1MΩ,1/6W
R154	QRD161J-222	RESISTOR	2.2kΩ,1/6W	R229	QRD161J-102	RESISTOR	1kΩ.1/6W
R155	QRD161J-0R0	RESISTOR	0Ω,1/6W	R230	QRD161J-562	RESISTOR	5.6kΩ,1/6W
, , , , ,	2,121010010		Vac,:/ VVV				0.0002,17 011

			ı				<19>
#≜REF No.	PART No.	PART NAME,	DESCRIPTION	#≜REF No.	PART No.	PART NAME,	DESCRIPTION
R231 R232	QRV141F-1101AY QRV141F-1001AY		1.10kΩ,1/4W 1kΩ,1/4W	R307 R308	QRD161J-683 QRD161J-103	RESISTOR RESISTOR	68kΩ.1/6W 10kΩ.1/6W
R233 R234 R235	QRD161J-332 QRD161J-181 QRD161J-181	RESISTOR RESISTOR RESISTOR	3.3kΩ,1/6W 180Ω,1/6W 180Ω,1/6W	R311 R312	QRD161J-103 QRD161J-103	RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W
R236	QRD161J-391	RESISTOR RESISTOR	390Ω.1/6W 470Ω,1/6W	R321 R322	QRD161J-183 QRD161J-332	RESISTOR RESISTOR	18kΩ,1/6W 3.3kΩ,1/6W
R237 R238 R240	QRD161J-471 QRD161J-103 QRD161J-102	RESISTOR RESISTOR	10kΩ,1/6W 1kΩ,1/6W	R323 R324	QRD161J-103 QRD161J-103	RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W
R241	QRD161J-562	RESISTOR	5.6kΩ.1/6W	R325 R326	QRD161J-181 QRD161J-333	RESISTOR RESISTOR	180Ω,1/6W 33kΩ,1/6W
R242 R243	QRD161J-102 QRD161J-562	RESISTOR RESISTOR	1kΩ,1/6W 5.6kΩ,1/6W	R327 R328		RESISTOR CMF RESISTOR	15kΩ,1/6W 390Ω,1/4W
R244 R245 R246	QRV141F-9100A QRV141F-1001AY QRD161J-102	CMF RESISTOR CMF RESISTOR RESISTOR	910Ω,1/4W 1kΩ,1/4W 1kΩ,1/6W	R329 R330	QRV141F-3000AY QRD161J-472	CMF RESISTOR RESISTOR	300Ω,1/4W 4.7kΩ,1/6W
R247	QRD161J-181	RESISTOR RESISTOR	180Ω,1/6W 180Ω,1/6W	R331 R332	QRD161J-103 QRD161J-0R0	RESISTOR RESISTOR	10kΩ,1/6W 0Ω,1/6W
R248 R249 R250	QRD161J-181 QRD161J-391 QRD161J-471	RESISTOR RESISTOR	390Ω.1/6W 470Ω.1/6W	R333 R334	QRSA08J-392YN QRSA08J-472YN	RESISTOR RESISTOR	3.9kΩ,1/10W 4.7kΩ,1/10W
R251	QRD161J-223	RESISTOR	22kΩ,1/6W	R336 R337	QRD161J-224 QRD161J-102	RESISTOR RESISTOR	220kΩ,1/6W 1kΩ,1/6W
R253 R256 R257		RESISTOR CMF RESISTOR CMF RESISTOR	1kΩ,1/6W 3.30kΩ,1/4W 1kΩ,1/4W	R338 R339 R340		RESISTOR CMF RESISTOR CMF RESISTOR	1kΩ,1/6W 2.20kΩ,1/4W 2.20kΩ,1/4W
R258 R259 R260	QRD161J-181 QRD161J-181 QRD161J-332	RESISTOR RESISTOR RESISTOR	180Ω,1/6W 180Ω,1/6W 3.3kΩ,1/6W	R347 R348	QRSA08J-103YN QRD161J-271	RESISTOR RESISTOR	10kΩ,1/10W 270Ω,1/6W
R261	QRD161J-221	RESISTOR	220Ω,1/6W	R350	QRD161J-221	RESISTOR	220Ω,1/6W
R262 R263	QRD161J-221 QRD161J-103	RESISTOR RESISTOR	220Ω,1/6W 10kΩ,1/6W	C1	QETC1AM-107	E CAPACITOR	100 μ F,10V
R264 R265	QRD161J-750 QRD161J-750	RESISTOR RESISTOR	75Ω,1/6W 75Ω,1/6W	C2 C3	QCFA1HZ-223 QCFA1HZ-223	CAPACITOR CAPACITOR	0.022 μ F,50V 0.022 μ F,50V
R266 R269	QRD161J-102 QRD161J-103	RESISTOR RESISTOR	1kΩ,1/6W 10kΩ,1/6W	C4 C5	QCFA1HZ-223 QCFA1EZ-333	CAPACITOR CAPACITOR	0.022 μ F,50V 0.033 μ F,25V
R270	QRD161J-392	RESISTOR	3.9kΩ,1/6W	C6 C7	QETC1CM-107 QCFA1EZ-333	E CAPACITOR CAPACITOR	100 μ F,16V 0.033 μ F,25V
R271 R272 R273	QRD161J-182 QRD161J-0R0 QRD161J-122	RESISTOR RESISTOR RESISTOR	1.8kΩ,1/6W 0Ω,1/6W 1.2kΩ,1/6W	C9 C10	QCS31HJ-220 QCS31HJ-181	CAPACITOR CAPACITOR	22pF,50V 180pF,50V
R274 R275	QRD161J-183 QRD161J-123	RESISTOR RESISTOR	18kΩ.1/6W 12kΩ.1/6W	C11 C12	QCS31HJ-220 QCFA1HZ-223	CAPACITOR CAPACITOR	22pF,50V 0.022 μ F,50V
R276 R277	QRD161J-562 QRD161J-562	RESISTOR RESISTOR	5.6kΩ,1/6W 5.6kΩ,1/6W	C13 C14	QCS31HJ-221 QCS31HJ-681	CAPACITOR CAPACITOR	220pF,50V 680pF,50V
R278 R280	ORD161J-393 ORD161J-102	RESISTOR RESISTOR	39kΩ,1/6W 1kΩ,1/6W	C15 C16	QCS31HJ-221 QCFA1HZ-223	CAPACITOR CAPACITOR	220pF,50V 0.022 μ F,50V
R281	QRD161J-222	RESISTOR	2.2kΩ,1/6W	C17 C18	QCFA1HZ-103 QCSA1HJ-101	CAPACITOR CAPACITOR	0.01 μ F,50V 100pF,50V
R282 R283	QRD161J-392 QRD161J-681	RESISTOR RESISTOR	3.9kΩ,1/6W 680Ω,1/6W	C19 C20	QCFA1HZ-223 QCFA1EZ-333	CAPACITOR CAPACITOR	0.022 μ F,50V 0.033 μ F,25V
R284 R285	QRD161J-151 QRD161J-0R0	RESISTOR RESISTOR	150Ω,1/6W 0Ω,1/6W	C21	QENC1CM-106	NP E CAPACIT	DR 10 μ F,16V
R286 R287	QRD161J-333 QRD161J-681	RESISTOR RESISTOR	33kΩ,1/6W 680Ω,1/6W	C22 C23	QCS31HJ-221 QCS31HJ-221	CAPACITOR CAPACITOR	220pF,50V 220pF,50V
R289 R290	QRD161J-123 QRD161J-183	RESISTOR RESISTOR	12kΩ,1/6W 18kΩ,1/6W	C24 C25	QCS31HJ-271 QCS31HJ-151	CAPACITOR CAPACITOR	270pF,50V 150pF,50V
R291	QRD161J-151	RESISTOR	150Ω,1/6W	C26 C27	QCFA1EZ-104 QETC1CM-106	CAPACITOR E CAPACITOR	0.1 µ F,25V 10 µ F,16V
R292 R293	QRD161J-123 QRD161J-223	RESISTOR RESISTOR	12kΩ,1/6W 22kΩ,1/6W	C28 C29	QETC1CM-337 QCFA1EZ-104	E CAPACITOR CAPACITOR	330 μ F,16V 0.1 μ F,25V
R294 R295	QRD161J-681 QRD161J-151	RESISTOR RESISTOR	680Ω,1/6W 150Ω,1/6W	C30	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
R296 R297	QRD161J-103 QRD161J-103	RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W	C31 C32	QCYA1HJ-102 QCYA1HJ-102	CAPACITOR CAPACITOR	0.001 μ F.50V 0.001 μ F.50V
R298	QRD161J-102	RESISTOR	1kΩ,1/6W	C33 C34	QETC1CM-226 QETC1HM-105	E CAPACITOR E CAPACITOR	22 μ F.16V 1 μ F.50V
R301 R302	QRD161J-182 QRD161J-102	RESISTOR RESISTOR	1.8kΩ,1/6W 1kΩ,1/6W	C35 C36	QETC1AM-226 QETC1AM-226	E CAPACITOR E CAPACITOR	22 μ F,10V 22 μ F,10V
R303 R304	QRD161J-123 QRD161J-105	RESISTOR RESISTOR	12kΩ,1/6W 1MΩ,1/6W	C37	QETC1CM-476 QCFA1EZ-104	E CAPACITOR CAPACITOR	47 μ F,16V 0.1 μ F,25V
R305 R306	QRD161J-102 QRD161J-271	RESISTOR RESISTOR	1kΩ,1/6W 270Ω,1/6W	C39	QCFA1EZ-104 QETC1AM-107	CAPACITOR E CAPACITOR	0.1 µ F,25V 100 µ F,10V
- **				I	_	_	

<19> #△REF No.	PART No.	PART NAME	DESCRIPTION	#∆REF No	. PART No.	PART NAME,	DESCRIPTION
C41	QCFA1EZ-333	CAPACITOR	0.033 μ F,25V	C129 C130	QCFA1HZ-103 QCFA1HZ-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V
C42	QCFA1EZ-333	CAPACITOR	0.033 μ F,25V	C130	QOI A1112-103	CALACITOR	0.01 μ Γ,30 γ
C43	QCS31HJ-151	CAPACITOR	150pF,50V	C131	QCTA1CH-150	CAPACITOR	15pF,16V
C44	QCFA1EZ-333	CAPACITOR	0.033 μ F,25V	C132	QCTA1CH-150	CAPACITOR	15pF,16V
C45	QETC1AM-107	E CAPACITOR	100 μ F,10V	C133	QCTA1CH-150	CAPACITOR	15pF,16V
C47	QETC1AM-107	E CAPACITOR	100 μ F,10V	C134	QCTA1CH-6R0	CAPACITOR	6pF,16V
C50	QETC1CM-476	E CAPACITOR	47 μ F,16V	C135	QCTA1CH-3R0	CAPACITOR	3pF,16V
030	QE 1010IVI-470	L CAI ACITOR	Ψ/μ1,10Ψ	C138	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C51	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C139	QETC1CM-107	E CAPACITOR	100 μ F,16V
C52	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C140	QCFA1EZ-104	CAPACITOR	0.1 μ F.25V
C54	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	0.40	GOT THE TOT		0.1 µ 1 ,20 ¥
C55	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C141	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
C56	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C142	QETC1CM-476	E CAPACITOR	47 μ F,16V
C57	QCYA1EK-103	CAPACITOR	0.01 μ F,25V	C143	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
C58	QETC1HM-225	E CAPACITOR	2.2 μ F,50V	C144	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
C60	QETC1HM-225	E CAPACITOR	2.2 μ F,50V	C145	QETC1CM-476	E CAPACITOR	47 μ F,16V
-			2,0,000	C146	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C62	QETC1CM-106	E CAPACITOR	10 μ F,16V	C147	QCYA1HJ-103	CAPACITOR	$0.01 \mu\text{F,50V}$
C63	QETC1CM-106	E CAPACITOR	10 μ F,16V	C148	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C64	QETC1AM-477	E CAPACITOR	470 μ F,10V	C149	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C65	QETC0JM-107	E CAPACITOR	100 μ F,6.3V	C150	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C66	QETC1CM-337	E CAPACITOR	330 μ F,16V				,
C67	QETC1CM-336	E CAPACITOR	33 μ F,16V	C151	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C68	QETC1CM-337	E CAPACITOR	330 μ F,16V	C152	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C69	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C153	QCYA1EK-103	CAPACITOR	0.01 μ F,25V
C70	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C154	QCTA1CH-6R0	CAPACITOR	6pF,16V
				C155	QCTA1CH-6R0	CAPACITOR	6pF,16V
C71	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V				
C72	QCSA1HJ-330	CAPACITOR	33pF,50V				
C73	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V	L1	PU48530-820J	COIL	82 μ H
C74	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V	L2	PU48530-100J	COIL	10 μ H
C75	QETC1AM-226	E CAPACITOR	22 μ F,10V	L3	PU48530-820J	COIL	82 μ H
C76	QETC0JM-226	E CAPACITOR	22 μ F,6.3V	L4	PU48530-331J	COIL	330 μ H
C77	QETC1AM-226	E CAPACITOR	22 μ F,10V	L5	PU48530-101J	COIL	100 μ H
C78	QETC1CM-106	E CAPACITOR	10 μ F,16V	L6	PU48530-331J	COIL	330 μ H
C80	QETC1AM-477	E CAPACITOR	470 μ F,10V	L7	PU48530-471J	COIL	470 μ H
				L8	PU48530-221J	COIL	220 μ H
C81	QETCOJM-107	E CAPACITOR	100 μ F,6.3V	L9	PU48530-101J	COIL	100 μ H
C82	QETC1CM-337	E CAPACITOR	330 μ F,16V	L10	PU48530-680J	COIL	68 μ H
C83	QEE81AM-156	E CAPACITOR	15 μ F,10V				
C84	QETC1CM-476	E CAPACITOR	47 μ F,16V	L11	PU48530-680J	COIL	68 μ H
C85	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	L13	PU58201-8R2K	COIL	8.2 µ H
C86	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	L14	QRD161J-0R0	COIL	
C87	QCSA1HJ-151	CAPACITOR	150pF,50V	L15	PU58201-8R2K	COIL	8.2 μ H
C88	QCFA1EZ-333	CAPACITOR	0.033 μ F,25V	L16	PU48530-4R7J	COIL	4.7 μ H
C89	QCFA1HZ-103	CAPACITOR	0.01 μ F,50V				
C90	QCSA1HJ-100	CAPACITOR	10pF,50V	1			
				EQ1	PGZ01587	EQUALIZER	
C91	QCSA1HJ-150	CAPACITOR	15pF,50V	EQ2	PGZ01588	EQUALIZER	
C92	QCSA1HJ-151	CAPACITOR	150pF,50V	EQ3	PGZ01588	EQUALIZER	
C93	QCFA1EZ-333	CAPACITOR	0.033 μ F,25V				
C94	QETCOJM-107	E CAPACITOR	100 μ F,6.3V				
C95	QCSA1HJ-331	CAPACITOR	330pF,50V	DL1	PGZ01551	DELAY LINE	
C96	QETC1HM-104	E CAPACITOR	0.1 μ F,50V	DL3	PGZ01552	DELAY LINE	
C97	0CS31HJ-221	CAPACITOR	220pF,50V	DL4	PGZ00131-015	DELAY LINE	
C98	QCFA1HZ-103	CAPACITOR	0.01 μ F,50V	DL5	PGZ00131-015	DELAY LINE	
C99	QCSA1HJ-7R0	CAPACITOR	7pF,50V				
C100	QETC1CM-106	E CAPACITOR	10 μ F,16V				
				SW1	PU54440	SWITCH	
C101	QCFA1HZ-103	CAPACITOR	0.01 μ F,50V				
C102	QCSA1HJ-7R0	CAPACITOR	7pF,50V				
C103	QCFA1HZ-103	CAPACITOR	0.01 μ F,50V	EJ1	PGZ00582	EJECTOR, ×2	
C104	0CFA1HZ-103	CAPACITOR	0.01 μ F,50V			•	
C105	0CSA1HJ-7R0	CAPACITOR	7pF,50V				
C106	QCFA1HZ-1Q3	CAPACITOR	0.01 μ F,50V	RV1	PU53276	PLASTIC RIVET,	×4
C107	QETC0JM-476	E CAPACITOR	47 μ F,6.3V				
C108	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V				
C109	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	SLD1	PRD30781-02-03	SHIELD PLATE	
C110	QETC1CM-106	E CAPACITOR	10 μ F,16V				
C121	QCFA1HZ-103	CAPACITOR	0.01 μ F,50V	TP1	PU54983	TEST PIN, ×14	
C127	0CYA1EK-103	CAPACITOR	0.01 μ F,25V			•	
C128	QCFA1HZ-223	CAPACITOR	0.022 μ F,50V				
				I			

							(19><20><21>
REF No	PART No.	PART NAME,	DESCRIPTION	#AREF No	. PART No.	PART NAME, DES	CRIPTION
CN1	PGZ00421-64	MALE CONNEC		C5 C6 C7 C8 C9 C10	QEE81CM-476 QCYA1HK-103 QEE81EM-105 QEE81EM-105 QCYA1HK-103 QEK61HM-104	TANTAL CAPACITOR CAPACITOR TANTAL CAPACITOR TANTAL CAPACITOR CAPACITOR E CAPACITOR	47 μ F,16V 0.01 μ F,50V 1 μ F,25V 1 μ F,25V 0.01 μ F,50V 0.1 μ F,50V
						CAPACITOR	0.01 μ F,50V
PWBA	PRK30064C	FM A PRE AM	P BOARD ASSY	C11 C12 C13 C14	QCYA1HK-103 QEK61HM-225 QCYA1HK-103 QCYA1HK-103	E CAPACITOR CAPACITOR CAPACITOR	2.2 μ F,50V 0.01 μ F,50V 0.01 μ F,50V
IC1 IC2	TA7742P AN3920S	IC IC		C15 C16 C17 C18	QCTA1CH-5R0 QCTA1CH-221 QCTA1CH-331 QFN31HJ-682	CAPACITOR CAPACITOR CAPACITOR M CAPACITOR	5pF,16V 220pF,16V 330pF,16V 0,0068 μ F,50V
Q1 Q2 Q4	2SC2412K(S) 2SC2412K(S) DTC124EK	TRANSISTOR TRANSISTOR TRANSISTOR		C19 C20	QEK61AM-476 QCYA1HK-103	E CAPACITOR CAPACITOR	47 μ F,10V 0.01 μ F,50V
Q5 Q8 Q9 Q10	2SC2412K(S) 2SC2412K(S) 2SC2412K(S) 2SC2412K(S)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		C21 C22 C23 C24 C25	QCYA1HK-103 QCYA1HK-103 QCYA1HK-103 QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V
Q11 R1	2SC2412K(S) QRSA08J-100YN	TRANSISTOR RESISTOR	10Ω.1/10W	C26 C27 C28 C29	QCYA1HK-103 QCYA1HK-103 QCYA1HK-103 QEK61AM-476	CAPACITOR CAPACITOR CAPACITOR E CAPACITOR	0.01 μ F,50V 0.01 μ F,50V 0.01 μ F,50V 47 μ F,10V
R2 R3	QRSA08J-100YN QRSA08J-152YN	RESISTOR RESISTOR	10Ω,1/10W 1.5kΩ,1/10W	C30	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
R4 R5 R6 R8	QRSA08J-152YN QRSA08J-151YN QRSA08J-151YN QRSA08J-0R0Y	RESISTOR RESISTOR RESISTOR RESISTOR	1.5kΩ,1/10W 150Ω,1/10W 150Ω,1/10W 0Ω,1/10W	C31 C32 C33	QCYA1HK-103 QCTA1CH-121 QCTA1CH-121	CAPACITOR CAPACITOR CAPACITOR	0.01 µ F,50V 120pF,16V 120pF,16V
R9	QRSA08J-473YN	RESISTOR	47kΩ,1/10W	L1	PU53607-152	COIL	1.5mH
R11 R12 R13 R14	QVZ3521-473 QRSA08J-102YN QRSA08J-105YN QRSA08J-124YN	RESISTOR RESISTOR RESISTOR RESISTER	47kΩ 1kΩ,1/10W 1MΩ,1/10W	L2 L3	PU48530-101J PU48530-101J	COIL	100 μ H 100 μ H
R15 R16 R17 R18	QRSA08J-473YN QRSA08J-273YN QRSA08J-332YN QRSA08J-102YN	RESISTOR RESISTOR RESISTOR RESISTOR	47kΩ,1/10W 27kΩ,1/10W 3.3kΩ,1/10W 1kΩ,1/10W	BPF1 BPF2 BPF3	PELN0374 PU60610 PU60611	BAND PASS FILTER BAND PASS FILTER(BAND PASS FILTER(
R19 R20	QRSA08J-122YN QRSA08J-123YN	RESISTOR	1.2kΩ,1/10W 12kΩ,1/10W	T1 T2	PU56175 PU56175	S.TRANS S.TRANS	
R21 R22 R27 R28 R29	QRSA08J-561YN QRSA08J-123YN QRSA08J-222YN QRSA08J-222YN QRSA08J-272YN	RESISTOR RESISTOR RESISTOR	560Ω,1/10W 12kΩ,1/10W 2.2kΩ,1/10W 2.2kΩ,1/10W 2.7kΩ,1/10W	TP1	PU54983	TEST PIN, ×3	
R30	QRSA08J-272YN		2.7kΩ,1/10W	CN1 CN2	PU58844-6 PU58844-5	CONNECTOR CONNECTOR	
R31 R32 R33 R34 R35	QRSA08J-273YN QRSA08J-273YN QRSA08J-273YN QRSA08J-273YN QRSA08J-561YN	RESISTOR RESISTOR RESISTOR	27kΩ,1/10W 27kΩ,1/10W 27kΩ,1/10W 27kΩ,1/10W 560Ω,1/10W	CN3 CN4	PU58844-10 PU58844-3	CONNECTOR CONNECTOR	
R36 R37 R38 R39	QRSA08J-561YN QRSA08J-102YN QRSA08J-561YN QRSA08J-750YN	RESISTOR RESISTOR RESISTOR	560Ω,1/10W 1kΩ,1/10W 560Ω,1/10W 75Ω,1/10W			SEMBLY<21> AUDIO 1 BOARD ASS	×
R40	QRSA08J-103YN		10kΩ,1/10W	PWBA	PRK10060C-06	MODIO I BOMID AS) i
R41 R42 R44 R46	QRSA08J-332YN QRSA08J-332YN QRSA08J-222YN QRSA08J-0R0Y	RESISTOR	3.3kΩ,1/10W 3.3kΩ,1/10W 2.2kΩ,1/10W 0Ω,1/10W	1C1 1C2 1C3 1C4	AN6394 AN6394 TA7629P TA7629P	IC IC IC IC IC	
C1 C2 C3 C4	QCTA1CH-221 QCTA1CH-221 QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR CAPACITOR CAPACITOR	220pF,16V 220pF,16V 0.01 μ F,50V 0.01 μ F,50V	1C5 1C6 1C7 1C8 1C9	M50253P M50253P DT5A124E DT5A124E TA78L009AP	IC IC TRANSISTOR TRANSISTOR IC	

-21	١.

MEF NO.	PART No.	PART NAME,	DESCRIPTION	#A REF No.	PART No.	PART NAME,	DESCRIPTION
IC12	TA78L009AP M5220P M5278D12 M5279L12 M5278D12	IC IC IC IC		Q423 Q424 Q425 Q426 Q427 Q428 Q429	2SC2878A,B 2SC2878A,B 2SB1030R,S 2SD1423(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC301 IC401	M5218AP M5278D12	IC IC		Q431 Q432	DTC124EK DTC124EK	TRANSISTOR TRANSISTOR	
IC402	M5218AP TC4066BF	ic IC		Q601 Q602	DTC323TK DTA124EK	TRANSISTOR TRANSISTOR	
IC603 IC604 IC605 IC607 IC608 IC609 IC610	M5218AP M5218AP M50255P M5218AP TC4053BF TC4053BF UPC393C	00 00 00 00 00 00 00		Q603 Q604 Q605 Q606 Q608 Q609 Q610	DTC323TK DTA124EK DTC323TK DTA124EK DTC323TK DTA124EK DTA124EK 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
IC611	M5218AP	IC		Q611 Q612 Q613	2SC2412K(RS) 2SC2412K(RS) DTC124EK	TRANSISTOR TRANSISTOR TRANSISTOR	
Q7 Q8 Q9 Q10	2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS) 2SC2412K(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		Q614 Q615	2SB1030R,S DTA124EK	TRANSISTOR TRANSISTOR	
Q11 Q12 Q17 Q18 Q19	2SC2412K(RS) 2SC2412K(RS) DTC124EK DTC124EK DTC124EK DTC124EK	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		D1 D2 D3 D4 D5 D6	1\$\$133 1\$\$133 1\$\$133 1\$\$133 1\$\$133 1\$\$133	DIODE DIODE DIODE DIODE DIODE DIODE	
O20 O21 O22 O25	2SB1030R,S 2SB1030R,S 2SB1030R,S	TRANSISTOR TRANSISTOR TRANSISTOR		DA601 DA602 DA603	DA204K DA204K DA204K	DIODE DIODE DIODE	
Q26 Q27 Q28 Q29 Q30	2SB1030R,S DTA124EK DTA124EK DTA124EK DTA124EK	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		R7 R8 R9 R10	QVZ3513-332 QVZ3513-332 QRSA08J-102YN QRSA08J-102YN		3.3 3.3 1kΩ, 1 /1 1kΩ, 1 /1
Q34 Q35 Q36 Q37 Q38 Q39 Q40	2SD973AR 2SB793AR 2SB1030R,S 2SK146(BV) 2SK146(BV) DTC323TK DTC323TK	TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		R11 R12 R13 R14 R15 R16 R17	QRSA08J-682YN QRSA08J-682YN QRSA08J-183YN QRSA08J-183YN QRSA08J-562YN QRSA08J-562YN QRSA08J-332YN QRSA08J-332YN	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	6.8kΩ,1/1 6.8kΩ,1/1 18kΩ,1/1 5.6kΩ,1/1 5.6kΩ,1/1 3.3kΩ,1/1 3.3kΩ,1/1
Q41 Q42	DTA124EK DTA124EK	TRANSISTOR TRANSISTOR		R21	QRSA08J-562YN	RESISTOR	5.6kΩ, 1 /1
Q407 Q408 Q409 Q410	2SD973AR 2SD973AR 2SD973AR 2SD973AR	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		R22 R23 R24 R25 R26 R27	QRSA08J-562YN QRSA08J-332YN QRSA08J-332YN QVZ3513-103 QVZ3513-103 QRSA08J-471YN	RESISTOR RESISTOR V RESISTOR V RESISTOR	5.6kΩ, 1 /1 3.3kΩ, 1 /1 3.3kΩ, 1 /1 10 10 470Ω, 1 /1
Q411 Q412 Q413 Q414	2SD1423(RS) 2SD1423(RS) 2SD973AR 2SD973AR	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR		R28 R29 R30	QRSA08J-471YN QRSA08J-152YN QRSA08J-152YN	RESISTOR RESISTOR RESISTOR	470Ω, 1/ 1 1.5kΩ, 1/ 1 1.5kΩ, 1/ 1
Q415 Q416 Q417	2SC1846(R). 2SC1846(R) 2SC1846(R)	TRANSISTOR TRANSISTOR TRANSISTOR		R31 R32	QRSA08J-103YN QRSA08J-103YN	RESISTOR	10kΩ,1/1 10kΩ,1/1
Q418 Q419 Q420	2SC1846(R) 2SD1423(RS) 2SD1423(RS)	TRANSISTOR TRANSISTOR TRANSISTOR		R41 R42 R43 R44	QRSA08J-681YN QRSA08J-681YN QRSA08J-332YN QRSA08J-332YN	RESISTOR RESISTOR	680Ω,1/1 680Ω,1/1 3.3kΩ,1/1 3.3kΩ,1/1
Q421	2SC2878A,B 2SC2878A,B	TRANSISTOR TRANSISTOR		R45 R46	QRSA08J-103YN QRSA08J-103YN	RESISTOR	10kΩ1/1 10kΩ1/1

# <u></u> REF No.	PART No.	PART NAME.	DESCRIPTION	#∧REF	No. PART No.	PART NAME,	<21> DESCRIPTION
R47	QRSA08J-103YN		10kΩ,1/10W	R127			10kΩ,1/10W
R48	QRSA08J-103YN		10kΩ,1/10W	R128			10kΩ,1/10W
R49	QRSA08J-470YN		47Ω,1/10W	R129	QRSA08J-102YN	RESISTOR	$1k\Omega$, $1/10W$
R50	QRSA08J-470YN	RESISTOR	47Ω,1/10W	R130	QRSA08J-102YN	RESISTOR	$1k\Omega$,1/10W
R51	QRSA08J-183YN		18kΩ,1/10W	R131	QRSA08J-102YN		1kΩ,1/10W
R52	QRSA08J-183YN		18kΩ,1/10W	R132			1kΩ.1/10W
R53	QRSA08J-103YN QRSA08J-103YN		10kΩ,1/10W 10kΩ,1/10W	R133 R134			10kΩ,1/10W 10kΩ,1/10W
R54 R55	QRSA08J-103 YN		10kΩ,1/10W	R136			1.5kΩ,1/10W
R56	QRSA08J-103YN		10kΩ,1/10W	R137			1.5kΩ,1/10W
R63	QRSA08J-103YN	RESISTOR	10kΩ,1/10W	R301	QVZ3513-103	V RESISTOR	10kΩ
R64	QRSA08J-103YN		10kΩ,1/10W	R302		V RESISTOR	10kΩ
R67	QRSA08J-332YN		3.3kΩ,1/10W	R303			10kΩ,1/10W
R68	QRSA08J-332YN	RESISTOR	$3.3k\Omega$, $1/10W$	R304 R305	QRSA08J-103YN QRSA08J-332YN		10kΩ,1/10W 3.3kΩ,1/10W
R71	QRSA08F-332YN	RESISTOR	3.3kΩ,1/10W	R306			3.3kΩ,1/10W
R72	QRSA08F-332YN		3.3kΩ,1/10W	R307	QRSA08J-123YN		12kΩ,1/10W
R73	QRSA08J-104YN		100kΩ,1/10W	R308			$12k\Omega$, $1/10W$
R74	QRSA08J-104YN		$100k\Omega$, $1/10W$	R309			$18k\Omega$,1/10W
R75	QRSA08J-473YN		47kΩ,1/10W	R310	QRSA08J-183YN	RESISTOR	18kΩ ,1∕10W
R76	QRSA08J-473YN QRSA08J-181YN		47kΩ,1/10W	R311	QRSA08J-0R0Y	DECISTOR	00 1 /10W
R77 R78	QRSA08J-181YN		180Ω,1/10W 180Ω,1/10W	R312		RESISTOR RESISTOR	0Ω,1/10W 0Ω,1/10W
n/9	UNDAUDU-101111	NEOIO I ON	100 22 , 1 / 10 44	R313			$10k\Omega$, $1/10W$
R83	QRSA08J-154YN	RESISTOR	150kΩ.1/10W	R314			10kΩ,1/10W
R84	QRSA08J-154YN		150kΩ,1/10W	R315		RESISTOR	0Ω,1/10W
R85	QRSA08J-274YN		$270k\Omega$,1/10W	R316			12kΩ,1/10W
R86	QRSA08J-274YN		270kΩ,1/10W	R317			330Ω,1∕10W
R87	QRSA08J-273YN		27kΩ,1/10W 27kΩ,1/10W	R319		V RESISTOR	330 Ω
R88 R89	QRSA08J-273YN QRSA08J-103YN		$10k\Omega$, $1/10W$	R320	QVZ3513-331	V RESISTOR	330 Ω
R90	QRSA08J-103YN		10kΩ,1/10W	R423	QRSA08J-224YN	RESISTOR	220kΩ,1/10W
				R424	QRSA08J-224YN		220kΩ,1/10W
R91	QRSA08J-103YN		10kΩ,1/10W	R425		V RESISTOR	100kΩ
R92	QRSA08J-103YN		10kΩ,1/10W	R426		V RESISTOR	100kΩ
R93	QRSA08J-103YN		10kΩ,1/10W 10kΩ,1/10W	△ R427 △ R428		FUSIBLE RESISTO	
R94 R95	QRSA08J-103YN QRSA08J-103YN		10kΩ,1/10W	△ R428 R429		FUSIBLE RESISTOR	12kΩ,1/10W
R96	QRSA08J-103YN		10kΩ,1/10W	R430			12kΩ,1/10W
R97	QRSA08J-103YN		10kΩ,1/10W				
R98	QRSA08J-103YN		10kΩ,1/10W	R431	QRSA08J-391YN		390Ω ,1 / 10W
R99	QRD161J-152	RESISTOR	1.5kΩ,1/6W	R432			390Ω,1/10W
R100	QRD161J-152	RESISTOR	$1.5k\Omega$, $1/6W$	R433 R434			680Ω,1/10W 680Ω,1/10W
R101	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W	R435			5.6kΩ,1/10W
R102	QRSA08J-222YN		2.2kΩ,1/10W	R436			5.6kΩ ,1/10W
R103	QRSA08J-222YN	RESISTOR	$2.2k\Omega$, $1/10W$	R437		RESISTOR	10kΩ,1/10W
R104	QRSA08J-222YN		2.2kΩ,1/10W	R438			$10k\Omega$, $1/10W$
R105	ORSA08J-222YN		2.2kΩ,1/10W 2.2kΩ,1/10W	R439			10kΩ,1/10W
R106 R107	QRSA08J-222YN QRSA08J-223YN		$2.2k\Omega$, $1/10W$	R440	QRSA08J-103YN	RESISTOR	10kΩ,1∕10W
R108	QRSA08J-223YN		22kΩ,1/10W	R441	QRSA08J-562YN	RESISTOR	5.6kΩ .1 / 10W
R109	QRSA08J-820YN		82Ω,1/10W	R442			5.6kΩ,1/10W
R110	QRSA08J-820YN		82Ω,1/10W	R443		RESISTOR	$10k\Omega.1/10W$
5 444	00010014004	D-010T-0-0	401.0.4./40144	R444			$10k\Omega$, $1/10W$
R111	QRSA08J-103YN		10kΩ,1/10W	R445			220Ω,1/10W
R112 R113	QRSA08J-103YN QRSA08J-105YN		10kΩ,1/10W 1MΩ,1/10W	R446 R447			220Ω,1/10W 1.2kΩ,1/10W
R114	QRSA08J-105YN		1MΩ,1/10W	R448			$1.2k\Omega.1 / 10W$
R115	QRSA08J-105YN		1MΩ,1/10W	R449		RESISTOR	1kΩ,1/6W
R116	QRSA08J-105YN		1MΩ,1/10W	R450	QRD161J-102	RESISTOR	1kΩ,1/6W
R117	QRSA08J-124YN		120kΩ,1/10W	F.45.	000444 : 400	DEDICTOR	
R118	QRSA08J-124YN		120kΩ,1/10W	R451	QRD161J-102	RESISTOR	1kΩ,1/6W
R119 R120	QRSA08J-432YN QRSA08J-432YN		4.3kΩ,1/10W 4.3kΩ,1/10W	R452 R453		RESISTOR RESISTOR	1kΩ,1/6W 330Ω,1/10W
MIZU	CI TOPIODO POZ I IV	ALGIGION	7.000,1/ 1044	R454			330Ω , $1 \times 10W$
R121	QRSA08J-101YN	RESISTOR	100Ω,1/10W	R455		V RESISTOR	3.3kΩ
R122	QRSA08J-101YN		100Ω,1∕10W	R456		V RESISTOR	3.3k Ω
R123	QRSA08J-470YN		47Ω,1/10W	R457			$1M\Omega$, $1/10W$
R124	QRSA08J-470YN QVZ3513-102	RESISTOR V RESISTOR	47Ω,1/10W 1kΩ	R458 R459			$1M\Omega , 1 / 10W$
R125 R126	QVZ3513-102 QVZ3513-102	V RESISTOR	1kΩ	R459 R460			12kΩ,1/10W 12kΩ,1/10W
			- 1 - 0.0		101 1000 120 1 14		1044

#_^	REF No.	PART No.	PART NAME,	DESCRIPTION	#∆ REF No	PART No.	PART NAME,	DESCRIPTION
				4.01.0.4./4034/	R620	QRSA08J-473YN	RESISTOR	$47k\Omega$,1/10W
	R461	QRSA08J-182YN		1.8kΩ,1/10W	DCO4	ODC 4 00 1 000VA	DECICEAD	001 0 4 (4014)
	R462	QRSA08J-182YN		1.8kΩ,1/10W	R621	QRSA08J-333YN		33kΩ,1/10W
	R465	QRSA08J-562YN		5.6kΩ,1/10W	R622	QRSA08J-473YN		47kΩ,1/10W
	R466	ORSA08J-562YN		5.6kΩ,1/10W	R623	QRSA08J-102YN		1kΩ.1/10W
	R467	QRSA08J-122YN		1.2kΩ,1/10W	R624	QRSA08J-683YN		68kΩ,1/10W
	R468	QRSA08J-122YN		1.2kΩ,1/10W	R625	QRSA08J-0R0Y	RESISTOR	0Ω.1/10W
	R469	QRSA08J-122YN		1.2kΩ,1/10W	R627	QRSA08J-103YN		$10k\Omega$, $1/10W$
	R470	QRSA08J-122YN	RESISTOR	1.2kΩ,1∕10W	R628	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W
					R629	QRSA08J-103YN		10kΩ,1/10W
	R471	QRSA08J-562YN		5.6kΩ,1/10W	R630	QRSA08J-473YN	RESISTOR	47kΩ,1∕10W
	R472	QRSA08J-562YN		5.6kΩ,1/10W				
Δ	R473	QRZ0054-180	RESISTOR	18Ω	R631	QRSA08J-473YN		47kΩ,1/10W
Δ	R474	QRZ0054-180	RESISTOR	18Ω	R632	QRSA08J-103YN		$10k\Omega.1/10W$
	R475	QRSA08J-222YN		2.2kΩ,1/10W	R633	QRSA08J-473YN		$47k\Omega .1/10W$
	R476	QRSA08J-222YN		$2.2k\Omega$, $1/10W$	R634	QRSA08J-473YN		$47k\Omega.1/10W$
	R477	QRSA08J-470YN		47Ω,1/10W	R635	QRSA08J-472YN		$4.7k\Omega_{\star}1/10W$
	R478	QRSA08J-470YN		47Ω,1/10W	R636	QRSA08J-472YN	RESISTOR	4.7kΩ_1∕10W
	R479	ORSA08J-271YN	RESISTOR	270Ω,1/10W				
	R480	QRSA08J-271YN	RESISTOR	270Ω,1/10W	R643	QRSA08J-153YN	RESISTOR	15kΩ,1/10W
					R644	QRSA08J-153YN		15kΩ,1/10W
	R481	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W	R645	QRSA08J-225YN		$2.2M\Omega_{\star}1/10W$
	R482	QRSA08J-222YN		2.2kΩ,1/10W	R646	QRSA08J-225YN		$2.2M\Omega,1/10W$
	R483	QRSA08J-222YN		2.2kΩ,1/10W	R647	QRSA08J-474YN		470kΩ,1/10W
	R484	QRSA08J-222YN		2.2kΩ,1/10W	R648	QRSA08J-103YN		10kΩ,1/10W
	R485	QRSA08J-2R2YN		2.2Ω,1/10W	R649	QRSA08J-392YN		3.9kΩ,1/10W
	R486	QRSA08J-2R2YN		2.2Ω,1/10W	R650	QRSA08J-153YN		15kΩ.1/10W
	R487	QRSA08J-2R2YN		2.2Ω,1/10W	1,000	G. 107 1000 100 171	1120101011	10100,17 1011
	R488	QRSA08J-2R2YN		2.2Ω,1/10W	R651	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W
	R489	QRSA08J-223YN		22kΩ,1/10W	R652	QRSA08J-472YN		4.7kΩ,1/10W
	R490	QRD161J-6R8	RESISTOR	6.8Ω.1/6W	R653	QRSA08J-104YN		100kΩ,1/10W
	N430	מחטיטוטיטחט	nesis fon	0.022,17 044	R654	QRSA08J-223YN		22kΩ,1/10W
	D404	ODCA00 470VN	DECICTOR	47kΩ,1/10W	R655	QRSA08J-223YN		
	R491	QRSA08J-473YN						22kΩ,1/10W
	R492	QRSA08J-472YN		4.7kΩ,1/10W	R656 R657	QRSA08J-474YN		470kΩ,1/10W
	R493	QRSA08J-182YN		1.8kΩ,1/10W		QRSA08J-103YN		10kΩ,1/10W
	R494	QRSA08J-273YN		27kΩ,1/10W	R658	QRSA08J-392YN		3.9kΩ,1/10W
	R495	QRSA08J-123YN		12kΩ,1/10W	R659	QRSA08J-222YN		2.2kΩ,1/10W
	R496	QRSA08J-222YN		2.2kΩ,1/10W	R660	QRSA08J-105YN	RESISTOR	$1M\Omega,1/10W$
	R497	QRSA08J-333YN		33kΩ,1/10W				
	R498	QRSA08J-683YN		68kΩ,1/10W	R661	QRSA08J-333YN		33kΩ,1/10W
	R499	QRSA08J-683YN		68kΩ,1/10W	R662	QRSA08J-333YN		$33k\Omega,1/10W$
	R500	QRSA08J-223YN	RESISTOR	$22k\Omega$,1/10W	R663	QRSA08J-333YN		33kΩ,1∕10W
					R664	QRSA08J-472YN		$4.7k\Omega$, $1/10W$
	R501	QRSA08J-473YN		47kΩ,1/10W	R665	QRSA08J-472YN		$4.7k\Omega$, $1/10W$
	R502	QRSA08J-473YN		47kΩ,1/10W	R666	QRSA08J-473YN		47kΩ,1/10W
	R503	QRSA08J-223YN		$22k\Omega$, $1/10W$	R668	QR\$A08J-0R0Y	RESISTOR	0Ω,1∕10W
	R504	QRSA08J-102YN		1kΩ,1/10W				
	R505	QRSA08J-102YN		$1k\Omega$,1/10W	R671	QRSA08J-331YN		330Ω,1∕10W
	R506	QRSA08J-102YN		$1k\Omega$,1/10W	R672	QRSA08J-563YN	RESISTOR	56kΩ,1/10W
Δ	R507	QRSA08J-102YN		1kΩ,1/10W	R673	QRSA08J-182YN		$1.8k\Omega$, $1/10W$
	R508	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W	R674	QRSA08J-104YN		100kΩ,1/10W
					R675	QRSA08J-104YN	RESISTOR	100kΩ, 1/10W
	R512	QRD161J-151	RESISTOR	150Ω.1/6W	R676	QRSA08J-223YN		22kΩ, 1/10W
					R677	QRSA08J-223YN		22kΩ, 1/10W
	R601	QRSA08J-184YN	RESISTOR	180kQ,1/10W				, .
	R602	QRSA08J-563YN		56kΩ,1/10W	R682	QRD161J-750	RESISTOR	75Ω .1∕6W
	R603	QRSA08J-333YN		33kΩ,1/10W	R683	QRD161J-750	RESISTOR	75 Q .1 / 6W
	R604	QRSA08J-681YN		680Ω,1/10W	R684	QRSA08J-103YN		10kΩ.1/10W
	R605	QRSA08J-101YN		100Ω,1/10W	R685	QRSA08J-103YN		10kΩ,1/10W
	R606	QRSA08J-102YN		1kΩ,1/10W	R686	QRSA08J-104YN		100kΩ,1/10W
	R607	QRSA08J-472YN		4.7kΩ,1/10W	R687	QRSA08J-104YN		100kΩ, 1/10W
	R608	QRSA08J-472YN		4.7kΩ,1/10W	R688	QRSA08J-103YN		10kΩ, 1/10W
	R609	QRSA08J-823YN		82kΩ,1/10W	R689	QRSA08J-103YN		10kΩ, 1/10W
	R610	QRSA08J-102YN		1kΩ,1/10W	R690	QRSA08J-103YN		10kΩ, 1/10W
	R611	QRSA08J-683YN		68kΩ,1/10W	R691	QRSA08J-103YN		10kΩ,1/10W
	R612	QRSA08J-472YN		4.7kΩ,1/10W	R692	QRSA08J-103YN	RESISTOR	10kΩ, 1/10W
	R613	QRSA08J-472YN		4.7kΩ,1/10W	R693	QRSA08J-103YN		10kΩ,1/10W
	R614	QRSA08J-823YN		82kΩ,1/10W	R694	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	R615	QRSA08J-823YN		82kΩ,1/10W	R695	QRSA08J-103YN		10kΩ 1/10W
	R616	QRSA08J-561YN		560Ω,1/10W	R696	QRSA08J-334YN	RESISTOR	330kΩ 1/10W
	R617	QRSA08J-472YN		4.7kΩ,1/10W	R697	QRSA08J-334YN	RESISTOR	330kΩ 1/10W
	R618	QRSA08J-472YN		4.7kΩ,1/10W	R698	QRSA08J-334YN	RESISTOR	330kΩ 1/10W
	R619	QRSA08J-473YN		47kΩ,1/10W	R699	QRSA08J-334YN		330kΩ 1/10W
		5			1			2001(00, 17 1011

R700 GRA08-197YN RESISTOR 140.1/16W C64 GETCICHA-26 C67AGTOR 22 # 15W C65 GETCICHA-26 C67AGTOR 22 # 15W C65 GETCICHA-26 C67AGTOR 22 # 15W C65 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 22 # 15W C67 GETCICHA-26 C67AGTOR 23 # 15W C70 GETCICHA-26 C67AGT	#2	REF No.	PART No.	PART	NAME,	DESCRIPTION	# <u></u> AREF No.	PART No.	PART	NAME,	DESCRIPTION
R797 GRS08B-1197N RESSTOR 100,11-10W C89 GESCHM-334 CAPACITOR 0.32 # F.50V C87 GRSCH-1197N RESSTOR 100,11-10W C89 GESCHM-348 CAPACITOR 0.1 # F.50V C87 GRSCH-1197N RESSTOR 100,11-10W C70 GESCHM-348 CAPACITOR 0.1 # F.50V C71 GRSCH-1197N C70 GRSCH-1197N							C65	QETC1CM-226	E CAP	ACITOR	$22 \mu F,16V$
R736 GRASB-LIGYN RESISTOR 100,11/10W C89 GESCH-MI-10B CAPACITOR 0.1 # F.50V		R701 R707									
R710 ORSAGBJUSTYN RESISTOR 10kD_1.1/10W C70 CERCIMH-10B E CAPACITOR 1.1		R708	QRSA08J-103YN	RESIST	FOR	10kΩ,1/10W	C68				
C1 OETCICM385 E CAPACITOR 33 # F18V C72 OENCICM-108 NP E CAPACITOR 10 # F18V C73 OENCICM-108 NP E CAPACITOR 10 # F18V C73 OENCICM-108 NP E CAPACITOR 10 # F18V C74 OFMSIH-1473 M CAPACITOR 10 # F18V C75 OFMSIH-1473 M CAPACITOR 10 # F18V C75 OENCICM-108 E CAPACITOR 10 # F18V C75 OENCICM-108 OEN											
C2 OETCICM-398 E CAPACITOR 33 # F.5V C3 OF SIRLH-473 M CAPACITOR 0.047 # F.5V C4 OETCIEM-358 E CAPACITOR 13.4 # F.5V C7 OF SIRLH-473 M CAPACITOR 0.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C7 OETCICM-358 E CAPACITOR 10.047 # F.5V C8		C1	QETC1CM-336	E CAP	ACITOR		C72	QENC1CM-106	NP E	CAPACITO	
C4 GETCIEM-388 E CAPACITOR 10 p 1 s 1 s 2 c C C C GFR31H-122 M CAPACITOR 2007 p 1 s 1 s 2 c C C C GETCICM-168 E CAPACITOR 10 p 1 s 1 s 2 c C C C GETCICM-168 E CAPACITOR 10 p 1 s 1 s 2 c C C C C C C C C C C C C C C C C C C		C2	QETC1CM-336								
C6 ΘΕΤΙCICH-168 E CAPACITOR 10p F18V C7 GETICICH-168 E CAPACITOR 10p F18V C8 OCTAICH-101 CAPACITOR 10p F18V C8 OCTAICH-101 CAPACITOR 10p F18V C80 OCTAICH-101 CAPACITOR 10p F18V C80 OCTAICH-101 E CAPACITOR 10p F18V C80 OCTAICH-101 E CAPACITOR 10p F18V C80 OCTAICH-101 E CAPACITOR 40p F18V C81 OCTAICH-1018 E CAPACITOR 40p F18V C81 OCTAICH-108 E CAPACITOR 10p F18V C83 GENICIO-108 E CAPACITOR 10p F18V C93 CENICIO-108 E CAPACITOR 10p F18V C93 CASAIL-122 CAPACITOR 10p F18V C93 CASAIL-122 CAPACITOR 10p F18V C93 CASAIL-122 CAPACITOR 10p F18V C93 CASAIL-122 CAPACITOR 10p F18V C93 CASAIL-122 CAPACITOR 10p F18V C93 CAPACITOR 10p F18V C93 CAPACITOR 10p F18V C93 CAPACITOR 10p F18V C93 CAPACITOR		C4	QETC1EM-335	E CAF	ACITOR	$3.3 \mu F,25V$	C75	QFN31HJ-122	M CAI	PACITOR	$0.0012 \mu F,50V$
G7 CATACH-101 CAPACITOR 100pF;18V C78 GETCICM-106 CAPACITOR 10 pF;18V C9 GETCIHM-105 E CAPACITOR 1 uF 50V C9 CETCIHM-105 E CAPACITOR 1 uF 50V C81 GETCICM-106 E CAPACITOR 1 uF 50V C81 GETCICM-106 M P E CAPACITOR 10 uF 10V C81 GETCICM-107 M P E CAPACITOR 10 uF 10V C91 GETCICM-108 E CAPACITOR 10 uF 10V C91 GETCICM-108 E CAPACITOR 10 uF 10V C91 GETCICM-108 E CAPACITOR 10 uF 10V C91 GETCICM-108 E CAPACITOR 10 uF 10V C91 GETCICM-108 E CAPACITOR 10 uF 10V C91 GETCICM-108 E CAPACITOR 10 uF 10V C91 GETCICM-109 CAPACITOR 10 uF 10V C91 GETCICM-109 CAPACITOR 10 uF 10V C91 GETCICM-109 CAPACITOR 10 uF 10V C91 GETCICM-109 CAPACITOR 10 uF 10V C91 GETCICM-109 CAPACITOR 10 uF 10V C91 GETCICM-109 CAPACITOR 10 uF 10V C91		C5 C6									
C9 GÉTCHIM-105 E CAPACITOR 1 μ F 50V C81 GETCHIM-105 E CAPACITOR 1 μ F 50V C83 GETCHIM-105 PE CAPACITOR 1 μ F 50V C83 GENCIGM-106 PE CAPACITOR 1 μ F 50V C93 GENCIGM-106 PE CAPACITOR 1 μ F 16V C92 GENCIGM-106 PE CAPACITOR 1 μ F 16V C92 C93 C100-104-106 PE CAPACITOR 1 μ F 16V C92 C93 C114-112-12 CAPACITOR 0.0012 μ F 50V C10 C10-104-105 E CAPACITOR 10 μ F 16V C92 C93-114-112-12 CAPACITOR 0.0012 μ F 50V C11-104-104-114-114-114-114-114-114-114-1		C7	QCTA1CH-101	CAPA	CITOR	100pF,16V	C78	QETC1CM-106	E CAP	ACITOR	10 μ F,16V
C10 QETC1EM-105 E CAPACITOR 1							C80	QCYATHK-223	CAPAC	LITOR	0.022 μ F,50V
C11											
G13 ĞETĞCM-106 E CAPACITOR 10 μ F.18V G91 QCSA1H-122 CAPACITOR 0.0012 μ F.50V C14 GETĞCM-108 E CAPACITOR 10 μ F.18V G92 QSA1H-122 CAPACITOR 0.012 μ F.50V C15 GETĞCM-108 E CAPACITOR 10 μ F.18V G93 GFY1H-124* TE CAPACITOR 0.027 μ F.50V C16 GETĞCM-108 E CAPACITOR 10 μ F.18V C94 GFY1H-124* TE CAPACITOR 10 μ F.18V C18 GETĞCM-108 E CAPACITOR 10 μ F.53V C95 GEBĞCM-106 E CAPACITOR 10 μ F.18V C19 GPN3H-1-103 M CAPACITOR 0.01 μ F.50V G90 GERĞCM-103 M CAPACITOR 10 μ F.18V C20 GPN3H-1-108 M CAPACITOR 0.08 μ F.50V G90 GETÄICH-101 CAPACITOR 10 μ F.18V C21 GEVİH-1884 T CAPACITOR 0.88 μ F.50V C100 GERSIJ-101 CAPACITOR 10 μ F.18V C22 GEYİH-1884 T CAPACITOR 0.88 μ F.50V C101 GERSIJ-101 CA		C11	QETC1EM-335								
C14 ĞETCIĞM-108 E CAPACITOR 10 μ F,18V G22 QCSA1H-1/12 CAPACITOR 0.0012 μ F,50V C15 GETCIĞM-108 E CAPACITOR 10 μ F,18V G94 GPT/11H-1/274 TF CAPACITOR 2.77 μ F,50V C17 GETCIĞM-109 E CAPACITOR 10 μ F,63V Q96 GESICIM-109 E CAPACITOR 10 μ F,63V Q96 GESICIM-108 E CAPACITOR 10 μ F,63V Q96 GESICIM-108 E CAPACITOR 10 μ F,63V Q97 GH31H-1273 M CAPACITOR 0.027 μ F,50V Q97 GP13H-1473 M CAPACITOR 0.027 μ F,50V Q98 GP13H-1473 M CAPACITOR 0.027 μ F,50V Q99 GP13H-1473 M CAPACITOR 0.027 μ F,50V Q99 QCTAICH-110 CAPACITOR 100μ F,63V Q99 QCTAICH-110 CAPACITOR 100μ F,63V Q99 QCTAICH-110 CAPACITOR 100μ F,63V Q90 QCTAICH-110 CAPACITOR 100μ F,63V Q90 QCTAICH-110 CAPACITOR 100μ F,63V Q10μ F,63V Q10μ F,63V Q10μ F,63V Q10μ F,63V Q10μ F,63V Q10μ F,63V							C91	OCSA1HJ-122	CAPAC	CITOR	0.0012 // E 50V
C16 GETCICM-108 E CAPACITOR 10 μ F, 15 V C95 GESCICM-108 CAPACITOR 10 μ F, 15 V C18 GETCIJM-107 E CAPACITOR 10 μ F, 15 V C95 GESCICM-108 E CAPACITOR 10 μ F, 15 V C19 GETCIJM-103 M CAPACITOR 0.01 μ F, 50 V C97 GPTS11H-J273 M CAPACITOR 0.027 μ F, 50 V C97 GPTS11H-J273 M CAPACITOR 0.027 μ F, 50 V C97 GPTS11H-J273 M CAPACITOR 0.027 μ F, 50 V C97 GPTS11H-J273 M CAPACITOR 0.027 μ F, 50 V C97 GPTS11H-J273 M CAPACITOR 0.027 μ F, 50 V C99 GCTAICH-101 CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C97 GPTS11H-J273 M CAPACITOR 100pF, 15 V C10 GPTS11H-J273 M CAPACITOR 100pF, 15 V C10 GPTS11H-J273 M CAPACITOR 100pF, 15 V C10 GPTS11H-J273 M CAPACITOR 100pF, 15 V C10 GPTS11H-J273 M CAPACITOR 100pF, 15 V C10 GPTS11H-J273 M CAPACITOR 100pF, 15 V C10 GPTS11H-J273 M CAPACITOR 330pF, 15 V C10 GPTS11H-J273 M CAPACITOR 330pF, 15 V C10 GPTS11H-J273 M CAPACITOR 330pF, 15 V C10 GPTS11H-J273 M CAPACITOR 330pF, 15 V C10 GPTS11H-J273 M CAPACITOR 0.018 pF, 50 V C10 GPTS11H-J273 M CAPACITOR 0.018 pF, 50 V C10 GPTS11H-J273 M CAPACITOR 0.018 pF, 50 V C10 GPTS11H-J273 M CAPACITOR 0.018 pF, 50 V C10		C14	QETC1CM-106	E CAF	PACITOR	10 μ F,16V	C92	QCSA1HJ-122	CAPAC	CITOR	$0.0012 \mu\text{F,}50\text{V}$
C17 GETGUM-107 E CAPACITOR 100 μ F 6.3V C96 GEBCIGM-106 E CAPACITOR 10 μ F 16.3V C96 GEBCIGM-106 E CAPACITOR 10 μ F 16.3V C96 GEBCIGM-106 E CAPACITOR 10 μ F 16.9V C97 OFN31HJ-123 M CAPACITOR 0.027 μ F 50V C97 OFN31HJ-123 M CAPACITOR 0.027 μ F 50V C98 OFN31HJ-123 M CAPACITOR 0.027 μ F 50V C99 OCTAICH-101 CAPACITOR 10 μ F 16V C02 OCTAICH-101 CAPACITOR 100 μ F 16V C02 OCTAICH-101 CAPACITOR 100 μ F 16V C02 OCTAICH-101 CAPACITOR 100 μ F 16V C02 OCTAICH-101 CAPACITOR 100 μ F 16V C02 COTAICH-101 CAPACITOR 100 μ F 16V <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
C19 OFNS1HJ-103 M CAPACITOR D.01 μ F.50V C98 OFNS1HJ-273 M CAPACITOR D.027 μ F.50V C98 OFNS1HJ-273 M CAPACITOR D.027 μ F.50V C99 OCTAICH-101 CAPACITOR D.027 μ F.50V C99 OCTAICH-101 CAPACITOR D.00F, 15V C22 OFV71HJ-884 TF CAPACITOR D.88 μ F.50V C100 OCTAICH-101 CAPACITOR D.00F, 15V C22 OFTS1HJ-272 M CAPACITOR D.98 μ F.50V C102 OCTAICH-101 T CAPACITOR D.00 μ F.5.3V C23 OFTS1HJ-272 M CAPACITOR D.047 μ F.50V C102 OEES0JM-107 T CAPACITOR D.00 μ F.5.3V C25 OFNS1HJ-172 M CAPACITOR D.0047 μ F.50V C102 OEES0JM-107 T CAPACITOR D.00 μ F.5.3V C25 OFNS1HJ-172 M CAPACITOR D.0047 μ F.50V C102 OEES0JM-107 T CAPACITOR D.00 μ F.5.3V C26 OFNS1HJ-183 M CAPACITOR D.0047 μ F.50V C104 OETCICM-337 E CAPACITOR 330 μ F.16V C27 OETCICM-106 E CAPACITOR D.018 μ F.50V C106 OETCICM-337 E CAPACITOR 330 μ F.16V C29 OETSIGH-183 M CAPACITOR D.018 μ F.50V C106 OETSIGH-183 M CAPACITOR D.018 μ F.50V C106 OETSIGH-183 M CAPACITOR D.018 μ F.50V C106 OETSIGH-183 M CAPACITOR D.018 μ F.50V C106 OETSIGH-183 M CAPACITOR D.018 μ F.50V C107 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITOR D.018 μ F.50V C108 OETSIGH-183 M CAPACITO		C17	QETC0JM-107	E CAF	PACITOR	100 μ F,6.3V	C95	QEBC1CM-106	E CAP	ACITOR	10 μ F,16V
C20 GFN31HJ-103 M CAPACITOR 0.01 μ F,50V C98 GFN31HJ-273 M CAPACITOR 100pF,16V C92 OFV71HJ-884 TF CAPACITOR 0.88 μ F,50V C100 OCTA1CH-101 CAPACITOR 100pF,16V C22 OFTC1CM-106 E CAPACITOR 10 μ F,16V C101 OEEB0,M-107 T CAPACITOR 100μ F,6.3V C25 GFN31HJ-472 M CAPACITOR 0.004 μ F,50V C103 OETC1CM-373 E CAPACITOR 330 μ F,16V C25 OFN31HJ-472 M CAPACITOR 0.004 μ F,50V C104 OEEB0,M-107 T CAPACITOR 100μ F,6.3V C26 OFN31HJ-183 M CAPACITOR 0.004 μ F,50V C104 OETC1CM-373 E CAPACITOR 330 μ F,16V C27 OETC1CM-106 E CAPACITOR 0.01 μ F,16V C105 OETC1CM-373 E CAPACITOR 330 μ F,16V C27 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F,50V C107 OETC1CM-330 μ F,50V C107 OETC											
C21 CF/11HJ884 TF CAPACITOR 0.88 μ ≠ 50V CI00 QCTAICH-101 CAPACITOR 100 p f.16V C22 GETCICM-108 TE CAPACITOR 10 μ ≠ 18V CI01 QEE80JM-107 TC APACITOR 10 μ ≠ 18V C24 GETCICM-108 E CAPACITOR 10 μ ≠ 18V CI02 QEE80JM-107 TC APACITOR 10 μ ≠ 18V C25 GH31HJ-412 M CAPACITOR 0.0047 μ ≠ 50V CI03 QETCICM-337 E CAPACITOR 330 μ ≠ 18V C27 QETCICM-108 E CAPACITOR 10 μ ≠ 18V CI05 QETCICM-337 E CAPACITOR 330 μ ≠ 18V C28 QETCICM-108 E CAPACITOR 10 μ ≠ 18V C105 QETCICM-337 E CAPACITOR 330 μ ≠ 18V C29 GR31HJ-183 M CAPACITOR 0.018 μ ≠ 50V C108 QETCICM-337 E CAPACITOR 330 μ ≠ 18V C29 GR31HJ-103 M CAPACITOR 0.018 μ ≠ 50V C108 QETCICM-337 E CAPACITOR 0.018 μ ≠ 50V C31 QFN31HJ-103 M CAPACITOR 0.018 μ ≠ 50V C113 Q			QFN31HJ-103	M CA	PACITOR						
C223 OETCICM-106 E CAPACITOR 10 μ F, 15V C101 OEEB0, M-107 T CAPACITOR 100 μ F, 5.3V C25 OETCICM-106 E CAPACITOR 0.047 μ F, 50V C103 OETCICM-337 E CAPACITOR 330 μ F, 15V C28 OFN31H, J-472 M CAPACITOR 0.047 μ F, 50V C103 OETCICM-337 E CAPACITOR 330 μ F, 15V C28 OETCICM-106 E CAPACITOR 0.047 μ F, 50V C104 OETCICM-337 E CAPACITOR 330 μ F, 15V C28 OETCICM-106 E CAPACITOR 10 μ F, 16V C105 OETCICM-337 E CAPACITOR 330 μ F, 16V C29 OETCICM-106 E CAPACITOR 10 μ F, 16V C106 OETCICM-337 E CAPACITOR 330 μ F, 16V C29 OFN31H, J-183 M CAPACITOR 0.018 μ F, 50V C107 OEN31H, J-183 M CAPACITOR 0.018 μ F, 50V C109 OEN31H, J-183 M CAPACITOR 0.018 μ F, 50V C109 OEN31H, J-183 M CAPACITOR 0.018 μ F, 50V C109 OEN31H, J-183 M CAPACITOR 0.018 μ F, 50V C114 OETCICM-337 CAPACITOR 0.018 μ F, 50V C32 OEN31H, J-103 M CAPACITOR 0.01 μ F, 50V C114 OETCICM-337 CAPACITOR 0.01 μ F, 50V C33 OETCICM-105 E CAPACITOR 0.01 μ F, 50V C114 OETCICM-337 E CAPACITOR 0.01 μ F, 50V C33 OETCICM-105 E CAPACITOR 0.01 μ F, 50V C115 OETCICM-337 E CAPACITOR 0.01 μ F, 50V C33 OETCICM-26 E CAPACITOR 22 μ F, 16V C117 OETCICM-337 E CAPACITOR 0.01 μ F, 50V C33 OETCICM-26 E CAPACITOR 22 μ F, 16V C119 OETCICM-337 E CAPACITOR 0.01 μ F, 50V C33 OETCICM-106 E CAPACITOR 0.04 μ F, 16V C34 OETCICM-337 OETCICM											
C24 GETCICION-106 E CAPACITOR 10 μ F 18V C102 GEBSUJM-107 T CAPACITOR 100 μ F 18V C25 GRN31HJ-472 M CAPACITOR 0.0047 μ F 50V C103 QETCICM-337 E CAPACITOR 330 μ F 18V C26 GRN31HJ-472 M CAPACITOR 0.0047 μ F 50V C104 QETCICM-337 E CAPACITOR 330 μ F 18V C28 GETCICM-106 E CAPACITOR 10 μ F 18V C106 QETCICM-337 E CAPACITOR 330 μ F 18V C29 GRN31HJ-183 M CAPACITOR 0.018 μ F 50V C107 QRN31HJ-183 M CAPACITOR 0.018 μ F 50V C31 GRN31HJ-183 M CAPACITOR 0.01 μ F 50V C113 QCYA1HJ-103 CAPACITOR 0.01 μ F 50V C32 GRN31HJ-103 M CAPACITOR 0.01 μ F 50V C114 QETCICM-107 CAPACITOR 0.01 μ F 50V C32 GRN31HJ-103 M CAPACITOR 0.01 μ F 50V C114 QETCICM-337 E CAPACITOR 0.01 μ F 50V C32 GRN31HJ-105 M CAPACITOR 0.01 μ F 50V C114							C101	QEE80JM-107	T CAP	ACITOR	100 μ F.6.3V
C28 GPN3HJ-472 M. CAPACITOR 0.0047 μ F,50V C104 OETCICM-337 E CAPACITOR 330 μ F,16V C28 QETCICM-106 E CAPACITOR 10 μ F,16V C105 QETCICM-337 E CAPACITOR 330 μ F,16V C29 QFN31H-J183 M CAPACITOR 0.018 μ F,50V C107 QFN31H-J183 M CAPACITOR 0.018 μ F,50V C30 QFN31H-J183 M CAPACITOR 0.018 μ F,50V C108 QFN31H-J183 M CAPACITOR 0.018 μ F,50V C31 QFN31H-J183 M CAPACITOR 0.01 μ F,50V C113 QCYA1H-J103 CAPACITOR 0.01 μ F,50V C32 QFN31H-J103 M CAPACITOR 0.01 μ F,50V C114 QETCICM-009 E CAPACITOR 1.01 μ F,50V C32 QFN31H-J103 M CAPACITOR 1.01 μ F,50V C116 QETCICM-009 E CAPACITOR 1.01 μ F,50V C33 QETCICM-105 E CAPACITOR 1.01 μ F,50V C116 QETCICM-007 E CAPACITOR 0.01 μ F,50V C33 QETCICM-106 E CAPACITOR 1.02 μ F,16V C17		C24	QETC1CM-106	E CAF	PACITOR	10 µ F,16V					
C28 □ ETCICM-106 E CAPACITOR 10 μ F, 16V C106 OFTCICM-337 E CAPACITOR 330 μ F, 16V C29 GFN31HJ-183 M CAPACITOR 0.018 μ F, 50V C107 OFN31HJ-183 M CAPACITOR 0.018 μ F, 50V C108 QFN31HJ-183 M CAPACITOR 0.018 μ F, 50V C113 QCYA1HJ-103 CAPACITOR 100 μ F, 50V C114 QETCIGM-107 E CAPACITOR 100 μ F, 50V C114 QETCIGM-107 E CAPACITOR 100 μ F, 25V C115 QETCIGM-337 E CAPACITOR 100 μ F, 25V C116 QCYA1HK-103 CAPACITOR 100 μ F, 25V C117 QCYA1HK-103 CAPACITOR 0.01 μ F, 50V C116 QCYA1HK-103 CAPACITOR 0.01 μ F, 50V C117 QCYA1HK-103 CAPACITOR 0.01 μ F, 50V C119 QETCICM-337 E CAPACITOR 0.01 μ F, 50V C119 QETCICM-337 E CAPACITOR 0.01 μ F, 50V C119 QETCICM-337 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C104</td> <td>QETC1CM-337</td> <td>E CAP</td> <td>ACITOR</td> <td>330 μ F,16V</td>							C104	QETC1CM-337	E CAP	ACITOR	330 μ F,16V
C29											330 µ F,16V
C31 OFN31HJ-103 M CAPACITOR $0.01 \mu F.50V$ C113 OCYA1HJ-103 CAPACITOR $10.01 \mu F.50V$ C32 QFN31HJ-103 M CAPACITOR $0.01 \mu F.50V$ C114 QETC1EM-107 E CAPACITOR $10.0 \mu F.50V$ C33 QETC1HM-105 E CAPACITOR $1. \mu F.50V$ C115 QETC1CM-337 E CAPACITOR $3.00 \mu F.50V$ C34 QETC1HM-105 E CAPACITOR $1. \mu F.50V$ C116 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C36 QETC1CM-226 E CAPACITOR $2. \mu F.50V$ C116 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C37 QETC1CM-226 E CAPACITOR $2. \mu F.50V$ C117 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C38 QETC1CM-106 E CAPACITOR $0.01 \mu F.50V$ C120 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C39 QETC1CM-106 E CAPACITOR $0.01 \mu F.50V$ C120 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C40 QETC1CM-106 E CAPACITOR $0.01 \mu F.50V$ C120 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C41 QETC1CM-106 E CAPACITOR $0.033 \mu F.50V$ C120 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C42 QFN31HJ-333 M CAPACITOR $0.033 \mu F.50V$ C122 QCYA1HK-103 CAPACITOR $0.01 \mu F.50V$ C43 QF92AJ-112 PP CAPACITOR $0.033 \mu F.50V$ C122 QCYA1HK-103 CAPACITOR $0.011 \mu F.50V$ C43 QF92AJ-112 PP CAPACITOR $0.0011 \mu F.50V$ C122 QCYA1HK-103 CAPACITOR $0.011 \mu F.50V$ C44 QETC1HM-225 E CAPACITOR $0.0011 \mu F.50V$ C122 QCYA1HK-103 CAPACITOR $0.0015 \mu F.50V$ C46 QETC1HM-225 E CAPACITOR $0.0011 \mu F.50V$ C124 QFN31HJ-152 M CAPACITOR $0.0015 \mu F.50V$ C48 QETC1HM-225 E CAPACITOR $0.0011 \mu F.50V$ C126 QCTA1CH-271 CAPACITOR $0.0015 \mu F.50V$ C49 QETC1CM-337 E CAPACITOR $0.0011 \mu F.50V$ C126 QCTA1CH-271 CAPACITOR $0.0015 \mu F.50V$ C50 QETC1CM-337 E CAPACITOR $0.0011 \mu F.50V$ C30 QCTA1CH-101 CAPACITOR $0.0015 \mu F.50V$ C51 QETC1CM-337 E CAPACITOR $0.0011 \mu F.50V$ C30 QCTA1CH-101 CAPACITOR $0.0021 \mu F.50V$ C52 QETC1CM-337 E CAPACITOR $0.0011 \mu F.50V$ C30 QCTA1CH-101 CAPACITOR $0.0021 \mu F.50V$ C53 QETC1CM-337 E CAPACITOR $0.0011 \mu F.50V$ C30 QETC1CM-337 E CAPACITOR $0.0021 \mu F.50V$ C53 QETC1CM-337 E CAPACITOR $0.0021 \mu F.50V$ C30 QETC1CM-33		C29	QFN31HJ-183	M CA	PACITOR	0.018 µ F,50V	C107	QFN31HJ-183	M CA	PACITOR	$0.018 \mu\text{F,50V}$
C32 QFN31HJ-103 M CAPACITOR 1.μ F.50V C116 QETC1EM-107 E CAPACITOR 330 μ F.16V C34 QETC1HM-105 E CAPACITOR 1.μ F.50V C116 QCYA1HK-103 CAPACITOR 0.01 μ F.50V C37 QETC1CM-226 E CAPACITOR 22 μ F.16V C119 QETC1CM-337 E CAPACITOR 0.01 μ F.50V C38 QETC1CM-226 E CAPACITOR 22 μ F.16V C119 QETC1CM-337 E CAPACITOR 0.01 μ F.50V C39 QETC1CM-106 E CAPACITOR 10 μ F.16V C120 QCYA1HK-103 CAPACITOR 330 μ F.16V C39 QETC1CM-106 E CAPACITOR 10 μ F.16V C120 QCYA1HK-103 CAPACITOR 0.01 μ F.50V C40 QETC1CM-106 E CAPACITOR 10 μ F.16V C120 QCYA1HK-103 CAPACITOR 0.01 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F.50V C120 QCYA1HK-103 CAPACITOR 0.001											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
C37 QETC1CM-226 E CAPACITOR 22 μ F,16V C117 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C139 QETC1CM-106 E CAPACITOR 10 μ F,16V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C40 QETC1CM-106 E CAPACITOR 10 μ F,16V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.001 μ F,50V C120 QCYA1HK-103 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C120 QCTA1CH-101 CAPACITOR 0.0082 μ F											
C39 QETCICM-106 E CAPACITOR 10 μ F,16V C120 QCYA1HK-103 CAPACITOR 0.01 μ F,50V C41 QETCICM-106 E CAPACITOR 10 μ F,16V C121 QETCICM-337 E CAPACITOR 0.01 μ F,50V C121 QETCICM-337 E CAPACITOR 0.01 μ F,50V C42 QFN31HJ-333 M CAPACITOR 0.033 μ F,50V C122 QCYA1HK-103 CAPACITOR 0.011 μ F,50V C43 QFN31HJ-333 M CAPACITOR 0.031 μ F,100V C124 QFN31HJ-152 M CAPACITOR 0.0015 μ F,50V C44 QFP32AJ-112 PP CAPACITOR 0.0011 μ F,100V C124 QFN31HJ-152 M CAPACITOR 0.0015 μ F,50V C44 QFP32AJ-112 PP CAPACITOR 0.0011 μ F,100V C125 QCTA1CH-271 CAPACITOR 270pF,16V C47 QETCIHM-225 E CAPACITOR 2.2 μ F,50V C48 QETCICM-337 E CAPACITOR 330 μ F,16V C50 QETCICM-337 E CAPACITOR 330 μ F,16V C50 QETCICM-337 E CAPACITOR 330 μ F,16V C50 QETCICM-337 E CAPACITOR 330 μ F,16V C50 QETCICM-337 E CAPACITOR 330 μ F,16V C50 QETCICM-337 E CAPACITOR 330 μ F,16V C50 QETCICM-337 E CAPACITOR 320 μ F,16V C50 QETCICM-337 E CAPACITOR 320 μ F,16V C50 QETCICM-337 E CAPACITOR 320 μ F,16V C50 QETCICM-337 E CAPACITOR 320 μ F,16V C50 QETCICM-337 E CAPACITOR 320 μ F,16V C50 QETCICM-272 E CAPACITOR 320 μ F,16V C50 QETCICM-272 E CAPACITOR 220 μ F,16V C50 QETCICM-272 E CAPACITOR 220 μ F,16V C50 QETCICM-272 E CAPACITOR 220 μ F,16V C50 QETCICM-272 E CAPACITOR 0.007 μ F,100V C55 QETCICM-335 E CAPACITOR 0.027 μ F,100V C55 QETCICM-335 E CAPACITOR 0.027 μ F,100V C55 QETCICM-335 E CAPACITOR 0.027 μ F,100V C55 QETCICM-335 E CAPACITOR 0.027 μ F,100V C56 QET32AF-273M PP CAPACITOR 0.027 μ F,100V C56 QET32AF-273M PP CAPACITOR 0.027 μ F,100V C56 QETCICM-335 E CAPACITOR 0.027 μ F,100V C56 QET32AF-472M PP CAPACITOR 0.007 μ F,100V C410 QEN31HJ-882 M CAPACITOR 0.0086 μ F,50V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C410 QEN31HJ-882 M CAPACITOR 0.0086 μ F,50V C60 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C410 QEN31HJ-882 M CAPACITOR 0.0068 μ F,50V C60 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C410 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAP		C37	QETC1CM-226	E CAP	PACITOR	22 μ F,16V	C117	QCYA1HK-103	CAPA	CITOR	0.01 μ F,50V
C40 QETCICM-106 E CAPACITOR $10 \mu F, 16 V$ C41 QFN31HJ-333 M CAPACITOR $0.033 \mu F, 50 V$ C42 QFN31HJ-333 M CAPACITOR $0.033 \mu F, 50 V$ C43 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C44 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C47 QETCICM-327 E CAPACITOR $0.0011 \mu F, 100 V$ C48 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C49 QETCICM-325 E CAPACITOR $0.0011 \mu F, 100 V$ C40 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C41 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C42 QFN31HJ-152 M CAPACITOR $0.0015 \mu F, 50 V$ C43 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C44 QFP32AJ-112 PP CAPACITOR $0.0011 \mu F, 100 V$ C45 QETCICM-325 E CAPACITOR $0.0011 \mu F, 100 V$ C46 QETCICM-327 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCICM-337 E CAPACITOR $0.0011 \mu F, 100 V$ C51 QETCICM-337 E CAPACITOR $0.0011 \mu F, 100 V$ C52 QETCICM-337 E CAPACITOR $0.0011 \mu F, 100 V$ C53 QETCICM-337 E CAPACITOR $0.0011 \mu F, 100 V$ C54 QETCICM-337 E CAPACITOR $0.0011 \mu F, 100 V$ C55 QETCICM-347 E CAPACITOR $0.0011 \mu F, 100 V$ C54 QETCICM-227 E CAPACITOR $0.0011 \mu F, 100 V$ C55 QETCICM-227 E CAPACITOR $0.0011 \mu F, 100 V$ C56 QFP32AF-273M PP CAPACITOR $0.0011 \mu F, 100 V$ C57 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C58 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C59 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C59 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C59 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIEM-335 E CAPACITOR $0.0011 \mu F, 100 V$ C50 QETCIE											
C42 QFN31HJ-333 M CAPACITOR 0.033 μ F.50V C123 QFN31HJ-152 M CAPACITOR 0.0015 μ F.50V C43 QFP32AJ-112 PP CAPACITOR 0.0011 μ F.100V C124 QFN31HJ-152 M CAPACITOR 0.0015 μ F.50V C126 QCTA1CH-271 CAPACITOR 2.70pF.16V C47 QETC1HM-225 E CAPACITOR 2.2 μ F.50V C126 QCTA1CH-271 CAPACITOR 2.70pF.16V C48 QETC1HM-225 E CAPACITOR 2.2 μ F.50V C126 QCTA1CH-271 CAPACITOR 2.70pF.16V C49 QETC1CM-337 E CAPACITOR 330 μ F.16V C302 QCTA1CH-101 CAPACITOR 100pF.16V C302 QCTA1CH-101 CAPACITOR 100pF.16V C303 QFN31HJ-822 M CAPACITOR 100pF.16V C303 QFN31HJ-822 M CAPACITOR 0.0082 μ F.50V C52 QETC1CM-337 E CAPACITOR 330 μ F.16V C304 QFN31HJ-822 M CAPACITOR 0.0082 μ F.50V C52 QETC1CM-337 E CAPACITOR 330 μ F.16V C304 QFN31HJ-822 M CAPACITOR 0.0082 μ F.50V C53 QETC1CM-237 E CAPACITOR 220 μ F.16V C303 QFN31HJ-473 M CAPACITOR 0.047 μ F.50V C54 QETC1CM-227 E CAPACITOR 220 μ F.16V C309 QENC1CM-106 NP E CAPACITOR 0.047 μ F.50V C55 QFP32AF-273M PP CAPACITOR 0.027 μ F.100V C310 QENC1CM-106 NP E CAPACITOR 10 μ F.16V C56 QFP32AF-273M PP CAPACITOR 0.027 μ F.100V C310 QENC1CM-106 NP E CAPACITOR 10 μ F.16V C59 QFP32AF-273M PP CAPACITOR 0.027 μ F.100V C310 QENC1CM-106 NP E CAPACITOR 10 μ F.16V C59 QFP32AF-273M PP CAPACITOR 0.0047 μ F.50V C311 QFN31HJ-104 M CAPACITOR 0.1 μ F.50V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F.100V C417 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F.100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C61 QFP32AF-562M PP CAPACITOR 0.0056 μ F.100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F.100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F.50V C420 QFN31HJ-682 M CAPACITOR 0.0068		C40		E CAF	PACITOR		C121				330 µ F,16V
C43											
C47 QETC1HM-225 E CAPACITOR 2.2 μ F,50V C48 QETC1HM-225 E CAPACITOR 2.2 μ F,50V C49 QETC1CM-337 E CAPACITOR 330 μ F,16V C50 QETC1CM-337 E CAPACITOR 330 μ F,16V C302 QCTA1CH-101 CAPACITOR 100pF,16V C50 QETC1CM-337 E CAPACITOR 330 μ F,16V C302 QCTA1CH-101 CAPACITOR 100pF,16V C51 QETC1CM-337 E CAPACITOR 330 μ F,16V C302 QCTA1CH-101 CAPACITOR 0.0082 μ F,50V C52 QETC1CM-337 E CAPACITOR 330 μ F,16V C304 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C53 QETC1CM-337 E CAPACITOR 330 μ F,16V C307 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C53 QETC1CM-227 E CAPACITOR 220 μ F,16V C308 QFN31HJ-473 M CAPACITOR 0.047 μ F,50V C54 QETC1CM-227 E CAPACITOR 220 μ F,16V C309 QENC1CM-106 NP E CAPACITOR 0.047 μ F,50V C55 QFP32AF-273M PP CAPACITOR 0.027 μ F,100V C56 QFP32AF-273M PP CAPACITOR 0.027 μ F,100V C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C311 QFN31HJ-104 M CAPACITOR 0.1 μ F,16V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C56 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C61 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITO		C43	QFP32AJ-112	PP CA	APACITOR	0.0011 μ F,100V	C124	QFN31HJ-152	M CA	PACITOR	0.0015 μ F.50V
C48 QETC1HM-225 E CAPACITOR 2.2 μ F,50V C49 QETC1CM-337 E CAPACITOR 330 μ F,16V C50 QETC1CM-337 E CAPACITOR 330 μ F,16V C301 QCTA1CH-101 CAPACITOR 100pF,16V C302 QCTA1CH-101 CAPACITOR 100pF,16V C303 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C51 QETC1CM-337 E CAPACITOR 330 μ F,16V C304 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C52 QETC1CM-337 E CAPACITOR 330 μ F,16V C304 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C53 QETC1CM-227 E CAPACITOR 220 μ F,16V C307 QFN31HJ-473 M CAPACITOR 0.047 μ F,50V C54 QETC1CM-227 E CAPACITOR 220 μ F,16V C308 QFN31HJ-473 M CAPACITOR 0.047 μ F,50V C55 QF932AF-273M PP CAPACITOR 0.027 μ F,100V C56 QF932AF-273M PP CAPACITOR 0.027 μ F,100V C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C310 QENC1CM-106 NP E CAPACITOR 0.1 μ F,16V C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-562M PP CAPACITOR 0.0047 μ F,100V C417 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-6											
C50 QETC1CM-337 E CAPACITOR 330 μ F,16V C302 QCTA1CH-101 CAPACITOR 100pF,16V C303 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C51 QETC1CM-337 E CAPACITOR 330 μ F,16V C304 QFN31HJ-822 M CAPACITOR 0.0082 μ F,50V C52 QETC1CM-337 E CAPACITOR 330 μ F,16V C307 QFN31HJ-473 M CAPACITOR 0.047 μ F,50V C53 QETC1CM-227 E CAPACITOR 220 μ F,16V C308 QFN31HJ-473 M CAPACITOR 0.047 μ F,50V C54 QETC1CM-227 E CAPACITOR 220 μ F,16V C309 QENC1CM-106 NP E CAPACITOR 10 μ F,16V C55 QFP32AF-273M PP CAPACITOR 0.027 μ F,100V C56 QFP32AF-273M PP CAPACITOR 0.027 μ F,100V C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C311 QFN31HJ-104 M CAPACITOR 0.1 μ F,16V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C61 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62		C48		E CA	PACITOR	2.2μ F,50V	C201	OCTA1CH.101	CAPA	CITOR	
C51 QETC1CM-337 E CAPACITOR 330 μ F,16V C52 QETC1CM-337 E CAPACITOR 330 μ F,16V C52 QETC1CM-337 E CAPACITOR 330 μ F,16V C53 QETC1CM-227 E CAPACITOR 220 μ F,16V C54 QETC1CM-227 E CAPACITOR 220 μ F,16V C55 QFP32AF-273M PP CAPACITOR 0.027 μ F,10V C56 QETC1EM-335 E CAPACITOR 0.027 μ F,10V C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C58 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C61 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0							C302	QCTA1CH-101	CAPA	CITOR	100pF,16V
C52 QETC1CM-337 E CAPACITOR 330 μ F,16V C53 QETC1CM-227 E CAPACITOR 220 μ F,16V C54 QETC1CM-227 E CAPACITOR 220 μ F,16V C55 QF932AF-273M PP CAPACITOR 0.027 μ F,100V C56 QETC1EM-335 E CAPACITOR 0.027 μ F,100V C58 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C61 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V		C51	OFTC1CM-337	E CA!	PACITOR	330 μ F.16V					
C54 QETC1CM-227 E CAPACITOR 220 μ F,16V C55 QF932AF-273M PP CAPACITOR 0.027 μ F,16V C56 QF932AF-273M PP CAPACITOR 0.027 μ F,100V C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C58 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C61 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V		C52	QETC1CM-337	E CA	PACITOR	330 μ F,16V	C307	QFN31HJ-473	M CA	PACITOR	$0.047 \mu F,50V$
C56 QF932AF-273M PP CAPACITOR 0.027 μ F,100V C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C311 QFN31HJ-104 M CAPACITOR 0.1 μ F,50V C58 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C312 QEBC1CM-106 E CAPACITOR 10 μ F,16V C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C417 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C418 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C61 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V											
C57 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C311 QFN31HJ-104 M CAPACITOR 0.1 μ F,50V C58 QETC1EM-335 E CAPACITOR 3.3 μ F,25V C59 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C417 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C418 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C61 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C420 QFN31HJ-682 M CAPAC		C55					C310	QENC1CM-106	NP E	CAPACITO	R 10 μ F,16V
C59 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C60 QF932AF-472M PP CAPACITOR 0.0047 μ F,100V C417 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C418 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C61 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QF932AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V		C57	QETC1EM-335	E CA	PACITOR	3.3 μ F,25V					
C60 QFP32AF-472M PP CAPACITOR 0.0047 μ F,100V C417 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C418 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C61 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V		C59				0.0047 μ F,100V					
C61 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C419 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V C62 QFP32AF-562M PP CAPACITOR 0.0056 μ F,100V C420 QFN31HJ-682 M CAPACITOR 0.0068 μ F,50V			QFP32AF-472M	PP CA	APACITOR	0.0047 μ F,100V					
							C419	QFN31HJ-682	M CA	PACITOR	0.0068 µ F,50∨
							C420	QFN31HJ-682	M CA	PACITÓR	0.0068μF,50V

#∧REF N	lo. PART No.	PART NAME,	DESCRIPTION	#∆REF No	. PART No.	PART NAME,	DESCRIPTION
C421	QETC1CM-476	E CAPACITOR	47 μ F,16V	C614	QETC1CM-226	E CAPACITOR	22 μ F,16V
C422	QETC1CM-476	E CAPACITOR	47 μ F,16V	C615	QETC1CM-106	E CAPACITOR	10 μ F,16V
C423	QETC1CM-476	E CAPACITOR	47 μ F,16V	C617	QETC1CM-226	E CAPACITOR	22 μ F,16V
C424	QETC1CM-476	E CAPACITOR	47 μ F,16V	C620	QETC1CM-226	E CAPACITOR	$22 \mu F.16V$
C425	QETC1CM-476	E CAPACITOR	47 μ F,16V				
C426	QETC1CM-476	E CAPACITOR	47 μ F,16V	C621	QETC1CM-226	E CAPACITOR	$22 \mu F,16V$
C427	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C622	QETC1CM-107	E CAPACITOR	100 μ F,16V
C428 C429	QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	C626 C627	QENC1 AM-226 QENC1 AM-226	E CAPACITOR E CAPACITOR	22 μ F,10V 22 μ F,10V
C429	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C628	QENC1AM-226	E CAPACITOR	22 μ F,10V
Q 100	45 (7111111111111111111111111111111111111		0,01,01,001	C629	QETC1CM-336	E CAPACITOR	33 μ F,16V
C433	QCTA1CH-121	CAPACITOR	120pF,16V	C630	QETC1CM-336	E CAPACITOR	$33 \mu F, 16V$
C434	QCTA1CH-121	CAPACITOR	120pF,16V				
C435	QFP32AJ-561	PP CAPACITOR	560pF,100V	C631	QETC1CM-336	E CAPACITOR	33 μ F,16V
C436 C437	QFP32AJ-561 QFN31HJ-682	PP CAPACITOR M CAPACITOR	560pF,100V 0,0068 μ F,50V	C632 C633	QETC1CM-336 QCTA1CH-120	E CAPACITOR CAPACITOR	33 µ F,16V · 12pF,16V
C438	QFN31HJ-682	M CAPACITOR	0.0068 μ F,50V	C635	QETC1CM-227	E CAPACITOR	220 μ F,16V
C439	QFN31HJ-682	M CAPACITOR	0.0068 μ F,50V	C636	QETC1CM-227	E CAPACITOR	220 µ F,16V
C440	QFN31HJ-682	M CAPACITOR	0.0068 μ F,50V	C639	QETC1CM-107	E CAPACITOR	100 μ F,16V
			400 = 0.014	0044	0570/01/407	5 04040/700	400 7 4014
C441	QETCOJM-107	E CAPACITOR	100 μ F,6.3V	C641	QETC1CM-107	E CAPACITOR	100 μ F,16V
C442 C443	QETC0JM-107 QFP32AJ-223M	E CAPACITOR PP CAPACITOR	100 μ F,6.3V 0.022 μ F,100V	C642 C643	QETC1CM-476 QETC1CM-476	E CAPACITOR E CAPACITOR	47 μ F,16V 47 μ F,16V
C444	QFP32AJ-223M	PP CAPACITOR	0.022 μ F,100V	C644	QETC1CM-107	E CAPACITOR	100 μ F,16V
C445	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C645	QETC1CM-107	E CAPACITOR	100 μ F,16V
C446	QETC1CM-476	E CAPACITOR	47 μ F,16V	C646	QETC1EM-335	E CAPACITOR	$3.3 \mu F,25 V$
C447	QETC1CM-476	E CAPACITOR	47 μ F,16V	C647	QETC1CM-106	E CAPACITOR	10 μ F,16V
C448	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C648	QETC1CM-336	E CAPACITOR	33 µ F,16V
C449 C450	QFN31HJ-102 QFN31HJ-332	M CAPACITOR M CAPACITOR	0.001 μ F,50V 0.0033 μ F,50V	C649 C650	QCYA1HK-103 QETC1CM-476	CAPACITOR E CAPACITOR	0.01 μ F,50V 47 μ F,16V
C450	QEN3110-332	MI CALACITOR	υ.υυσμ ι ,συ ν	0050	QL TOTOWN-70	L OAI AOITOIT	77 £1,10¥
C451	QETC1CM-226	E CAPACITOR	22 μ F,16V	C651	QETC1CM-107	E CAPACITOR	100 μ F,16V
C452	QFP32AJ-333	PP CAPACITOR	0.033 μ F,100V	C652	QETC1CM-107	E CAPACITOR	100 μ F,16V
C453	OCYA1HK-103	CAPACITOR	0.01 μ F,50V	C653	QCTA1CH-100	CAPACITOR	10pF,16V
C454 C455	QETC1CM-107 QETC1CM-107	E CAPACITOR E CAPACITOR	100 μ F,16V 100 μ F,16V	C654 C655	QETC1CM-107 QCTA1CH-221	E CAPACITOR CAPACITOR	100 µ F,16V 220pF,16V
C456	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	0000	GOTATOTT 221	OAI AOI TOIT	22001,104
C457	QFP32AJ-222	PP CAPACITOR	0.0022 μ F,100V				
C458	QFP32AJ-392	PP CAPACITOR	0.0039 µ F,100V	L3	PGZ00917-822	COIL	
C459	QETC1CM-227	E CAPACITOR	220 μ F,16V	L4	PGZ00917-822	COIL	
C460	QFN31HJ-682	M CAPACITOR	0.0068 μ F,50V	L5 L6	PGZ00121-472 PGZ00121-472	COIL	
C461	QFN31HJ-682	M CAPACITOR	0.0068 μ F,50V	L7	PGZ00917-472	COIL	
C463	QETC1CM-476	E CAPACITOR	47 μ F,16V	L8	PGZ00917-472	COIL	
C464	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	L9	PU30771-2	COIL	
C465	QETC1CM-476	E CAPACITOR	47 μ F,16V	L10	PU30771-2	COIL	
C466	0CYA1HK-103	CAPACITOR	0.01 μ F,50V	1.004	01100334.0	0011	
C467 C468	QCYA1HK-103 QETC1CM-476	CAPACITOR E CAPACITOR	0.01 μ F,50V 47 μ F,16V	L301 L302	PU30771-9 PU30771-9	COIL	
C469	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	ال ال	FU30//1-9	COIL	
C470	QEE81EM-105	T CAPACITOR	1 μ F,25V	L402	PU53607-152	COIL	1.5mH
				L403	PU53607-152	COIL	1.5mH
C471	QETC1CM-107	E CAPACITOR	100 μ F,16V	L404	PU53607-152	COIL	1.5mH
C472	0CYA1HK-103	CAPACITOR	0.01 μ F,50V	L405	PU30771-9	COIL	
C473 C474	QETC1CM-476 QETC1CM-476	E CAPACITOR E CAPACITOR	47 μ F,16V 47 μ F,16V	L601	PU30771-2	COIL	
C474	QFN31HJ-473	M CAPACITOR	0.047 μ F,50V	LOUI	F U3U/ / 1-2	COIL	
C476	QFN31HJ-473	M CAPACITOR	0.047 μ F.50V				
C477	QFN31HJ-473	M CAPACITOR	$0.047 \mu\text{F,}50\text{V}$	LPF1	PGZ01056	LOW PASS FILTE	R
C478	QFN31HJ-473	M CAPACITOR	0.047 μ F,50V	LPF2	PGZ01056	LOW PASS FILTE	R
C479	QETC1CM-476	E CAPACITOR	47 μ F,16V				
C480	QETC1CM-476	E CAPACITOR	47 μ F,16V	RY1	PU55259	RELAY	
C601	QCTA1CH-271	CAPACITOR	270pF,16V	RY2	PU55259	RELAY	
C602	QFN31HJ-153	M CAPACITOR	0.015 µ F,50V	RY3	PU55260	RELAY	
C604	QEBC1EM-475	E CAPACITOR	4.7 μ F,25V	RY4	PU55260	RELAY	
C605	QETC1CM-107	E CAPACITOR	100 μ F,16V				
C606 C608	0ETC1CM-227 0ETC1CM-226	E CAPACITOR E CAPACITOR	220 μ F,16V 22 μ F,16V	TH401	ERT-D2FHL102S	THERMISTOR	
C609	QETC1CM-226	E CAPACITOR	22 μ F,16V 22 μ F,16V	TH401		THERMISTOR	
	Q2 . 0 . 0			TH403	ERT-D2FGL301S		
C611	QETC1CM-107	E CAPACITOR	100 μ F,16V	TH404	ERT-D2FGL301S		
C612	0ETC1CM-476	E CAPACITOR	47 μ F,16V			•	
C613	QETC1CM-107	E CAPACITOR	100 μ F,16V				

				1				<21><22>
#_^	REF No	. PART No.	PART NAME, DESCRIPTION	#∆REF I	No. PART No.	PART	NAME,	DESCRIPTION
∆	T401 T402	PGZ00699 PGZ00699 PGZ00804	TRANS TRANS TRANS	Q19 Q20	DTC323TS DTC323TS		SISTOR SISTOR	
⚠	T403 T404	PGZ00804	TRANS	Q21	DTA114ES	TRAN	SISTOR	
Δ	T405	PU60321	OSC TRANSFORMER	022	DTA114ES		SISTOR	
كنبه	1 700	1 000021		Q23	DTA114ES		SISTOR	
	 .		em () F mill	Q24	DTA114ES	TRAN	SISTOR	
	CL1	PGZ01377-03	STYLE PIN, ×5					
		D1 15 4000	TEOT DIN 9 40	D1 D2	1SS133 1SS133	DIODI		
	TP1	PU54983	TEST PIN, ×13	D3	1SS133	DIODI		
	CN1	PU58844-4	CONNECTOR					
	CN2	PU58844-2	CONNECTOR	R1	QRD161J-472	RESIS		4.7kΩ,1∕6W
	CN3	PU58844-2Y	CONNECTOR	R2	QRD161J-472	RESIS		4.7kΩ.1/6W
	CN4	PU58844-4R	CONNECTOR	R3 R4	QRD161J-472 QRD161J-472	RESIS RESIS		4.7kΩ ,1 ∕ 6W 4.7kΩ ,1 ∕ 6W
	CN5 CN6	PU58844-3 PU58844-3R	CONNECTOR	R5	QRD161J-472	RESIS		4.7kΩ,1/6W
	CN7	PU58844-3R	CONNECTOR	R6	QRD161J-472	RESIS		4.7kΩ,1/6W
	CN8	PU58844-5	CONNECTOR	R7	QRD161J-472	RESIS		4.7kΩ ,1∕6W
	CN9	PU58844-4	CONNECTOR	R8	QRD161J-472	RESIS		$4.7k\Omega.1/6W$
	CN10	PU58844-5	CONNECTOR	R9	QRD161J-104	RESIS		100kΩ ,1 /6W
	ONIC	DUI50044.0	CONNECTOR	R10	QRD161J-104	RESIS	TOR	100kΩ,1∕6W
	CN11 CN12	PU58844-2 PU58844-8	CONNECTOR CONNECTOR	R11	QRD161J-104	RESIS	TOR	100kΩ,1∕6W
	CITIZ	1 030077-0	COMMEDICAL	R12	QRD161J-104	RESIS		100kΩ ,1∕6W
				R13	QRD161J-104	RESIS	TOR	100kΩ,1∕6W
				R14	QRD161J-104	RESIS		100kΩ,1/6W
	ALIDIO	2 BOARD ASS	SEMBLY<22>	R15	QRD161J-104	RESIS		100kΩ,1/6W
	700.0	Z BOAILD AUG		R16 R17	QRD161J-104 QRD161J-102	RESIS RESIS		100kΩ,1/6W 1kΩ,1/6W
				R18	QRD161J-102	RESIS		1kΩ,1/6W
	PWBA	PRK10061A-02	AUDIO 2 BOARD ASSY	R19	QRD161J-102	RESIS		1kΩ,1/6W
	1 110/	1111100017102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	R20	QRD161J-102	RESIS		$1k\Omega.1/6W$
	STK1	PRD30072-59	STICKER	R21	QRD161J-683	RESIS		68kΩ,1∕6W
				R22	QRD161J-683	RESIS		68kΩ,1∕6W
				R23	QRD161J-683	RESIS		68kΩ.1/6W
	IC1	M5201L	IC IC	R24 R25	QRD161J-683 QRD161J-472	RESIS RESIS		68kΩ,1/6W 4.7kΩ,1/6W
	IC2 IC3	M5201 L M5201 L	iC	R26	QRD161J-472	RESIS		4.7kΩ,1/6W
	IC4	M5201L	ic	R27	QRD161J-472	RESIS		4.7kΩ,1/6W
	IC5	M5201L	IC	R28	QRD161J-472	RESIS		4.7kΩ,1/6W
	IC6	M5201L	IC	R29	QRD161J-472	RESIS		4.7kΩ ,1 /6W
	IC7	M5201L	IC	R30	QRD161J-472	RESIS	TOR	4.7kΩ ,1 ∕ 6W
	IC8 IC9	M5201L M5218AL	IC IC	R31	QRD161J-472	RESIS	TOR	4.7kΩ ,1 /6W
	IC10	M5218AL	iC	R32	QRD161J-472	RESIS		4.7kΩ,1/6W
	10.0			R33	QRD161J-104	RESIS	TOR	100kΩ.1∕6W
	IC11	M50253P	IC	R34	QRD161J-104	RESIS		100kΩ,1/6W
	IC12	M5278L12	IC	R35	QRD161J-104	RESIS		100kΩ,1/6W
	IC13	M5278L05	IC	R36 R37	QRD161J-104 QRD161J-104	RESIS RESIS		100kΩ,1/6W 100kΩ,1/6W
				R38	QRD161J-104	RESIS		100kΩ,1/6W
	Q1	DTC323TS	TRANSISTOR	R39	QRD161J-104	RESIS		100kΩ,1/6W
	Q2	DTC323TS	TRANSISTOR	R40	QRD161J-104	RESIS		100kΩ,1/6W
	Q3	DTC323TS	TRANSISTOR		0.0004.04.1.470	5.5016		121.0.4.70141
	Q4	DTC323TS	TRANSISTOR	R41	QRD161J-473	RESIS		47kΩ.1/6W
	Q5	DTC323TS DTC323TS	TRANSISTOR TRANSISTOR	R42 R43	QRD161J-473 QRD161J-473	RESIS RESIS		47kΩ,1/6W 47kΩ,1/6W
	Q6 Q7	DTC323TS	TRANSISTOR	R44	QRD161J-473	RESIS		47kΩ,1/6W
	Q8	DTC323TS	TRANSISTOR	R45	QRD161J-473	RESIS		47kΩ,1/6W
	Q9	DTC323TS	TRANSISTOR	R46	QRD161J-473	RESIS	TOR	$47k\Omega$, $1/6W$
	Q10	DTC124ES	TRANSISTOR	R47	QRD161J-473	RESIS		47kΩ,1/6W
		DT 446	TRANSISTOR	R48	QRD161J-473	RESIS		47kΩ,1/6W
	Q11	DTA124ES	TRANSISTOR	R49 R50	QRD161J-473 QRD161J-473	RESIS RESIS		47kΩ,1/6W 47kΩ,1/6W
	Q12 Q13	2SB1030R,S 2SC1740S(RS)	TRANSISTOR TRANSISTOR	מסט	UND 1013-4/3	n E SIS	TOR	4/K22,1/ 044
	Q14	2SC1740S(RS)	TRANSISTOR	R51	QRD161J-331	RESIS	STOR	330Ω.1 ∕ 6W
	Q15	DTC323TS	TRANSISTOR	R52	QRD161J-331	RESIS		330Ω,1∕6W
	Q 16	DTC323TS	TRANSISTOR	R53	QRD161J-683	RESIS		68kΩ,1/6W
	Q17	DTC323TS	TRANSISTOR	R54	QRD161J-683	RESIS		68kΩ,1/6W
	Q 18	DTC323TS	TRANSISTOR	R55	QRD161J-683	RESIS	TUK	68kΩ,1∕6W

#≜REF No.	PART No.	PART NAME,	DESCRIPTION	#≜REF No.	PART No.	PART NAME,	DESCRIPTION
R56	QRD161J-683	RESISTOR	68kΩ,1∕6W	C15	QETC1EM-475ZE	E CAPACITOR	4.7 μ F,25V
R57	QRD161J-333	RESISTOR	33kΩ,1/6W	C16	QETC1EM-475ZE		4.7 μ F,25V
R58	QRD161J-333	RESISTOR	33kΩ,1/6W	C17	QETC1CM-226ZE		22 μ F,16V
R59	QRD161J-333	RESISTOR	33kΩ,1/6W	C18	QETC1CM-226ZE		22 μ F,16V
R60	QRD161J-333	RESISTOR	33kΩ.1/6W	C19	QETC1CM-226ZE		22 μ F,16V
				C20	QETC1CM-226ZE		22 μ F,16V
R61	QRD161J-333	RESISTOR	33kΩ,1/6W	004	000010111000		
R62	QRD161J-333	RESISTOR	33kΩ,1/6W	C21	QETC1CM-107ZE		100 μ F,16V
R63	QRD161J-333	RESISTOR	33kΩ,1/6W	C22	QETC1CM-107ZE		100 μ F,16V
R64	QRD161J-333	RESISTOR	33kΩ,1/6W	C23	QETC1CM-107ZE		$100 \mu F, 16V$
R65	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C24	QETC1CM-107ZE		100 μ F,16V
R66	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C25	QETC1CM-107ZE		$100 \mu\text{F,}16\text{V}$
R67	QRD161J-104	RESISTOR	100kΩ,1/6W	C26	QETC1CM-107ZE		100μ F,16V
R68	QRD161J-104	RESISTOR	100kΩ,1/6W	C27	QETC1CM-107ZE		100 µ F,16V
R69	QRD161J-104	RESISTOR	100kΩ,1/6W	C28	QETC1CM-107ZE		100 μ F,16V
R70	QRD161J-104	RESISTOR	100kΩ,1∕6W	C29	QETC1EM-475ZE		$4.7 \mu F,25 V$
R71	QRD161J-104	RESISTOR	100kΩ,1/6W	C30	QETC1EM-475ZE	E CAPACITOR	4.7 μ F,25V
R72	QRD161J-104	RESISTOR	100kΩ,1/6W	C31	QETC1EM-475ZE	E CARACITOR	47 = 25\/
R73	QRD161J-331	RESISTOR	330Ω,1/6W	C32	QETC1EM-475ZE		4.7 μ F,25V 4.7 μ F,25V
R74	QRD161J-331	RESISTOR	330Ω,1/6W	C33	QETC1EM-475ZE		
R75	QRD161J-683	RESISTOR	68kΩ,1/6W	C34	QETC1EM-475ZE		4.7 μ F,25V
R76	QRD161J-683	RESISTOR	68kΩ,1/6W	C35	QETC1EM-475ZE	E CAPACITOR	4.7 μ F,25V
R77	QRD161J-152	RESISTOR	1.5kΩ.1/6W	C36			4.7 μ F,25 V
R78		RESISTOR	1.5kΩ,1/6W	C37	QETC1EM-475ZE		4.7 μ F,25V
	QRD161J-152		1.5kΩ,1/6W		QENC1CM-106	NP E CAPACITOR	
R79 R80	QRD161J-103	RESISTOR		C38 C39	QENC1CM-106	NP E CAPACITOR	
Nov	QRD161J-103	RESISTOR	10kΩ,1/6W	C40	QENC1CM-106 QETC1CM-226ZE	NP E CAPACITOR E CAPACITOR	
R81	QRD161J-223	RESISTOR	22kΩ,1/6W	040	GL TOTOW-2202E	E CAPACITOR	22 µ F,16V
R82	QRD161J-223	RESISTOR	22kΩ,1/6W	C41	QETC1CM-107ZE	E CAPACITOR	100µ F,16V
R83	QRD161J-821	RESISTOR	820Ω,1/6W	C42	QETC1CM-107ZE		100 £ F,16V
R84	QRD161J-821	RESISTOR	820Ω,1/6W	C43	QETC1CM-107ZE	E CAPACITOR	100 µ F,16V
R85	QRD161J-181	RESISTOR	180Ω,1∕6W	C44	QETC1CM-107ZE	E CAPACITOR	100 µ F,16V
R86	QRD161J-181	RESISTOR	180Ω,1/6W	C45	QETC1EM-475ZE		4.7 µ F,25V
R87	QVZ3521-681	V RESISTOR	680Ω	C46	QETC1EM-475ZE		4.7 µ F,25V
R88	QVZ3521-681	V RESISTOR	680Ω	C47	QETC1EM-475ZE		4.7 µ F,25V
R89	QRD161J-102	RESISTOR	1kΩ,1/6W	C48	QETC1EM-475ZE		4.7 µ F,25V
R90	QRD161J-102	RESISTOR	1kΩ,1/6W	C49	QETC1CM-226ZE	E CAPACITOR	22 µ F,16V
, ,,,,	G. 15 10 10 10 10 1			C50	QETC1CM-226ZE	E CAPACITOR	22 µ F,16V
R91	QRD161J-561	RESISTOR	560Ω,1∕6W		•		
R92	QRD161J-561	RESISTOR	560Ω,1/6W	C51	QETC1CM-107ZE	E CAPACITOR	100 & F.16V
R93	QRD161J-471	RESISTOR	470Ω,1/6W	C53	QETC1CM-226ZE		22 µ F,16V
R94	QRD161J-471	RESISTOR	470Ω,1/6W	C54	QETC1CM-226ZE	E CAPACITOR	22 × F.16V
R95	QRD161J-682	RESISTOR	6.8kΩ,1∕6W	C55	QETC1EM-475ZE		4.7 \(\mu\) F,25V
R96	QRD161J-682	RESISTOR	6.8kΩ,1∕6W	C56	QETC1EM-475ZE	E CAPACITOR	4.7 \(\mu\) F,25V
R97	QRD161J-153	RESISTOR	15kΩ,1∕6W	C57	QETC1CM-226ZE	E CAPACITOR	22 µ F,16V
R98	QRD161J-153	RESISTOR	15kΩ,1∕6W	C58	QETC1CM-226ZE		22 Le F,16V
R99	QRD161J-103	RESISTOR	10kΩ,1/6W	C59	QETC1CM-476ZE		47 µ F,16V
D101	0001011101	DEGISTOR	1001.0 4 (014)	C60	QETC1CM-337ZE	E CAPACITOR	330 🕰 F,16V
R101	QRD161J-104	RESISTOR	100kΩ,1/6W	004	OFTO4 F14 4363F	E CARACITOR	47 = 6614
R102	QRD161J-104	RESISTOR	100kΩ,1/6W	C61	QETC1EM-476ZE		47 \(\overline{F},25 \text{V}
R103	ORD161J-102	RESISTOR	1kΩ,1/6W	C62	QCF31HP-103	CAPACITOR	0.01 \(\mathbb{F},50\mathbb{V}
R104	QRD161J-102	RESISTOR RESISTOR	1kΩ,1/6W 4.7kΩ.1/6W	C63	QCF31HP-103	CAPACITOR	0.01 \(\overline{F},50\text{V}
R105 R106	QRD161J-472 QRD161J-472	RESISTOR		C64	QETC1CM-107ZE		100 \(F.16 \)
R107	QRD161J-683	RESISTOR	4.7kΩ,1/6W 68kΩ,1/6W	C65	OCF31HP-103	CAPACITOR	0.01 p F.50V
				C66	QETC1CM-476ZE		47 pe F.16V
R108	QRD161J-102	RESISTOR	1kΩ,1∕6W	C67	QETC1CM-476ZE		47 \(\mathbb{F} \),16V
				C68	QCF31HP-103	CAPACITOR	0.01 \(F,50 \)
C 1	QETC1CM-107ZE	E CAPACITOR	100 μ F,16V	C69 C70	QETC1CM-226ZE QETC1CM-226ZE		22 µ F,16V 22 µ F,16V
C2	QETC1CM-107ZE		100 μ F,16V	670	QE I CI CIVI-2202E	ECAPACITOR	22/2 F,10V
C3	QETC1CM-107ZE		100 µ F.16V	C71	QCS31HJ-220	CAPACITOR	22pF,50V
C4	QETC1CM-107ZE		100 μ F,16V	C72	QCS31HJ-100	CAPACITOR	10pF,50V
C5	QETC1CM-107ZE		100 μ F,16V	C73	QCS31HJ-4R0	CAPACITOR	4pF,50V
C6	QETC1CM-107ZE		100 μ F,16V	C74	QCS31HJ-4R0	CAPACITOR	4pF,50V
C7	QETC1CM-107ZE		100 μ F,16V				, go. , co. r
C8	QETC1CM-107ZE		100 μ F,16V				
C9	QETC1EM-475ZE	E CAPACITOR	4.7 μ F,25V	EJ1	PGZ00582	EJECTOR, ×2	
C10	QETC1EM-475ZE	E CAPACITOR	4.7 µ F,25V				
C11	QETC1EM-475ZE	E CARACITOR	47, 5351	CNII	DC700491 64	MALE CONVICE	ND
C12	QETC1EM-475ZE		4.7 μ F,25V 4.7 μ F,25V	CN1	PGZ00421-64	MALE CONNECTO	'n
C12	QETC1EM-475ZE		4.7 μ F,25V 4.7 μ F,25V				
C14	QETC1EM-475ZE		4.7 μ F,25V				
- , .	Q31010H111110EE						

AUDIO PWBA STK1	3 BOARD ASS PRK10062A-02		R2 R3 R4 R5	QRSA08J-471YN QVZ3513-332 QVZ3513-332	RESISTOR V RESISTOR V RESISTOR	470 Ω ,1 ∕ 10W 3.3kΩ 3.3kΩ
	PRK10062A-02		R4	QVZ3513-332		
	PRK10062A-02				A LIFORDIOI	
	PRK10062A-02		I K5	QRSA08J-122YN	RESISTOR	1.2kΩ,1/10W
		AUDIO 3 BOARD ASSY	R6	QRSA08J-122YN		1.2kΩ,1/10W
			R7	NRVA62D-622N		6.2kΩ,1/16W
			R8	NRVA62D-622N	RESISTOR	6.2kΩ,1/16W
	PRD30072-58	STICKER	R9	QRSA08J-681YN	RESISTOR	680Ω,1/10W
			R10	QRSA08J-681YN		680Ω,1/10W
	AN6298NS	IC	R11	NRVA62D-242N	RESISTOR	2.4kΩ ,1 / 16W
	AN6298NS	IC	R12	NRVA62D-242N	RESISTOR	$2.4k\Omega .1/16W$
	AN3922NS	IC	R13	NRVA62D-183N	RESISTOR	18kΩ,1/16W
	AN3922NS	IC IC	R14	NRVA62D-183N	RESISTOR	18kΩ,1/16W
	JCP0020	IC	R15	NRVA62D-562N	RESISTOR	5.6kΩ,1/16W
	AN3931NC-A	IC	R16	NRVA62D-562N	RESISTOR	5.6kΩ,1/16W
	NJM2068MD NJM2068MD	IC IC	R17	QRSA08J-223YN		22kΩ,1/10W
	IANIAISODDIAID	IV	R18 R19	ORSA08J-223YN NRVA62D-163N	RESISTOR RESISTOR	22kΩ,1/10W
	NJM2068MD	IC	R20	NRVA62D-163N	RESISTOR	16kΩ,1/16W
	NJM2068MD	IC	1720	1411 A VOS D-10914	INLUID I UN	16kΩ,1∕16W
	M5278D12	IC	R21	NRVA62D-912N	RESISTOR	9.1kΩ,1/16W
	M5278D05	IC	R22	NRVA62D-912N	RESISTOR	9.1kΩ,1/16W 9.1kΩ,1/16W
	M5278L05	iC	R25	NRVA62D-332N	RESISTOR	3.3kΩ,1/16W
	DT5C124E	TRANSISTOR	R26	NRVA62D-332N	RESISTOR	3.3kΩ,1/16W
	M5278L05	IC	R27	NRVA62D-562N	RESISTOR	5.6kΩ,1/16W
	M5278D09	IC	R28	NRVA62D-562N	RESISTOR	5.6kΩ,1/16W
	AN6041	IC	R29	NRVA62D-112N	RESISTOR	1.1kΩ,1/16W
,	AN607P	IC	R30	NRVA62D-112N	RESISTOR	1.1 k Ω , $1/16$ W
AN6		IC IC	R31	NRVA62D-103N	RESISTOR	1000 1 /18141
,	11700/1	IV	R32	NRVA62D-103N	RESISTOR	10kΩ,1/16W 10kΩ,1/16W
			R39	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
DTA	124EK	TRANSISTOR	R40		RESISTOR	1kΩ,1/10W
	C124TK	TRANSISTOR				1000,17 1044
2	SB1030R,S	TRANSISTOR	R45	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	2SB1030R,S	TRANSISTOR	R46	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	2SB1030R,S	TRANSISTOR	R47	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	TC124TK SB1030R,S	TRANSISTOR TRANSISTOR	R48	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
23011	POLIO S	INMROBIUN	R51	QRSA08J-124YN	RESISTOR	120kΩ,1/10W
	A124ES	TRANSISTOR	R52	QRSA08J-124YN	RESISTOR	120kΩ,1/10W
	DTA124ES	TRANSISTOR	R53	QRSA08J-392YN	RESISTOR	3.9kΩ,1/10W
	2SB1030R,S	TRANSISTOR	R54	QRSA08J-392YN	RESISTOR	3.9kΩ,1/10W
	DTC144WK	TRANSISTOR	R55	QVZ3513-681	V RESISTOR	680 Ω
	DTC144WK	TRANSISTOR	R56	QVZ3513-681	V RESISTOR	680 Ω
	2SC2412K	TRANSISTOR	R60	QRSA08J-124YN	RESISTOR	120kΩ,1∕10W
	2SC2412K	TRANSISTOR	504	ODC 400 Lecover	DEGIGTOR	
	2SC2412K 2SC2412K	TRANSISTOR	R61	QRSA08J-392YN	RESISTOR	3.9kΩ.1/10W
	2002412N	TRANSISTOR	R62 R63	QRSA08J-272YN QVZ3513-332	RESISTOR	2.7kΩ,1/10W
	2SC2412K	TRANSISTOR	R64	QVZ3513-332 QVZ3513-222	V RESISTOR V RESISTOR	3.3kΩ
	2SA1037K	TRANSISTOR	R65	QRSA08J-103YN	RESISTOR	2.2kΩ 10kΩ,1∕10W
	DTA124EK	TRANSISTOR	R66	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	DTC323TK	TRANSISTOR	R67	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	2SC2412K(S)	TRANSISTOR	R68	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
	5B793AR	TRANSISTOR	R69	QRSA08J-224YN	RESISTOR	220kΩ,1/10W
	2SD973AR	TRANSISTOR	R70	QRSA08J-224YN	RESISTOR	220kΩ,1/10W
	2SA1037K	TRANSISTOR				
	2SA1037K	TRANSISTOR	R71 R72	QRSA08J-472YN QRSA08J-472YN	RESISTOR RESISTOR	4.7kΩ,1/10W 4.7kΩ,1/10W
	2SA1037K	TRANSISTOR	R73	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W
			R74	QRSA08J-472YN	RESISTOR	$4.7k\Omega_{1}/10W$
			R75	QRSA08J-223YN	RESISTOR	22kΩ,1/10W
	1SS133	DIODE	R76	QRSA08J-223YN	RESISTOR	22kΩ,1/10W
	188133.	DIODE	R77	QRSA08J-472YN	RESISTOR	4.7kΩ,1 ∕ 10W
	100100	DIODE	R78	QRSA08J-472YN	RESISTOR	4.7kΩ,1 ∕ 10W
			1 570	ODO4001 (-01		
	1SS133	DIODE	R79	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W
		DIODE DIODE	R80	QRSA08J-472YN QRSA08J-472YN	RESISTOR RESISTOR	4.7kΩ,1/10W 4.7kΩ,1/10W
	1SS133				RESISTOR	4.7kΩ,1/10W
1SS133 1SS133 1SS133 1SS133		DIODE	R80 R81 R82	QRSA08J-472YN QRSA08J-153YN QRSA08J-153YN		4.7kΩ,1/10W 15kΩ,1/10W 15kΩ,1/10W
199133 199133 199133 199133	3	DIODE	R80 R81	QRSA08J-472YN QRSA08J-153YN	RESISTOR RESISTOR	4.7kΩ,1/10W 15kΩ,1/10W

#≜REF No.	PART No.	PART NAME,	DESCRIPTION	#/	<u> REF No.</u>	PART No.	PART NAME,	DESCRIPTION
					R166	QRSA08J-102YN	RESISTOR	1kΩ,1∕10W
R95	QRSA08J-223YN	RESISTOR	22kΩ.1/10W	1	R167	QRSA08J-332YN		$3.3k\Omega$,1/10W
R96	QRSA08J-223YN		22kΩ,1/10W		R168	QRSA08J-152YN		$1.5k\Omega$, $1/10W$
R97	QRSA08J-472YN		4.7kΩ,1/10W		R169	QRSA08J-332YN		$3.3k\Omega$, $1/10W$
R98	QRSA08J-472YN		4.7kΩ,1/10W		R170	QRSA08J-273YN		27kΩ.1/10W
R99	QRSA08J-472YN		4.7kΩ,1/10W		11170	Q113/1003-273 14	nesis i un	2/852,1/ 1044
R100	QRSA08J-472YN		4.7kΩ,1/10W		D171	ODCA00 LOZOVNI	DECICTOD	071.0 4 (4014)
Riou	UNDAUBJ-4/2114	RESISTOR	4./K\$2,1/ 1UVV		R171	QRSA08J-273YN		$27k\Omega$,1/10W
D404	0004001470141	DECIOTAD	47104 (4014)		R172	QRSA08J-152YN		$1.5k\Omega$, $1/10W$
R101	QRSA08J-472YN		4.7kΩ,1/10W		R173	QRSA08J-332YN		$3.3k\Omega$, $1/10W$
R102	QRSA08J-472YN		4.7kΩ,1/10W		R174	QRSA08J-332YN		3.3 k Ω , $1/10$ W
R103	QRSA08J-223YN		22kΩ,1/10W		R175	QRSA08J-152YN		$1.5k\Omega$, $1/10W$
R104	QRSA08J-223YN		22kΩ,1/10W		R176	QRSA08J-100YN		10Ω,1∕10W
R105	QRSA08J-473YN		$47k\Omega$,1/10W		R177	QRSA08J-100YN	RESISTOR	10Ω,1∕10W
R106	QRSA08J-473YN		47kΩ,1/10W					
R107	QRSA08J-472YN		4.7kΩ,1/10W		R181	QRSA08J-153YN	RESISTOR	15kΩ,1∕10W
R108	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W		R183	QRSA08J-473YN	RESISTOR	$47k\Omega$,1/10W
R109	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W		R184	QRSA08J-472YN	RESISTOR	$4.7k\Omega$, $1/10W$
R110	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W		R186	QRSA08J-103YN	RESISTOR	10kΩ,1/10W
				1	R187	QRSA08J-103YN		10kΩ,1/10W
R111	QRSA08J-153YN	RESISTOR	15kΩ,1/10W	l	R188	QRSA08J-473YN		47kΩ,1/10W
R112	ORSA08J-153YN		15kΩ,1/10W		R189	QRSA08J-472YN		4.7kΩ.1/10W
R113	QRSA08J-473YN	RESISTOR	47kΩ,1/10W			G11071000 172711	1160101011	4.7 Kaa,17 1044
R114	QRSA08J-473YN		47kΩ,1/10W		R192	QRSA08J-333YN	RESISTOR	2240 1 /104/
R115	QRSA08J-153YN	RESISTOR	15kΩ,1/10W		R193	QRSA08J-123YN		33kΩ,1/10W
R116	QRSA08J-273YN		27kΩ,1/10W		R194			12kΩ,1/10W
R117	QRSA08J-104YN					QRSA08J-102YN		1kΩ,1∕10W
		RESISTOR	100kΩ,1/10W		R195	QRSA08J-911YN		910Ω,1/10W
R118	QRSA08J-104YN	RESISTOR	$100k\Omega,1/10W$		R196	QRSA08J-561YN		560Ω,1/10W
D466	0004001450141	DEGISTOR	451 0 4 (4014		R197	QRSA08J-102YN		$1k\Omega,1/10W$
R123	QRSA08J-153YN		15kΩ,1/10W		R199	QRSA08J-152YN	RESISTOR	$1.5k\Omega$, $1/10W$
R124	QRSA08J-153YN		15kΩ,1∕10W		R200	QRSA08J-152YN	RESISTOR	1.5kΩ,1∕10W
R125	QRSA08J-562YN	RESISTOR	5.6kΩ,1/10W					
R126	QRSA08J-562YN	RESISTOR	5.6kΩ,1/10W		R201	QRSA08J-273YN	RESISTOR	27kΩ ,1 / 10W
R127	QRSA08J-392YN	RESISTOR	3.9kΩ,1∕10W		R202	QRSA08J-273YN	RESISTOR	27kΩ ,1 / 10W
R128	QRSA08J-392YN	RESISTOR	3.9kΩ,1∕10W	Δ	R208	PU52108-2R2K	POSITIVE THERM	
R129	ORSA08J-472YN	RESISTOR	4.7kΩ,1/10W					
R130	QRSA08J-822YN	RESISTOR	8.2kΩ,1∕10W		R211	QRSA08J-472YN	RESISTOR	$4.7k\Omega$, $1/10W$
					R212	QRSA08J-472YN		4.7kΩ,1/10W
R131	QRSA08J-222YN	RESISTOR	2.2kΩ,1/10W		R215	QRSA08J-332YN		3.3kΩ,1/10W
R132	QRSA08J-153YN	RESISTOR	15kΩ,1/10W		R216	QRSA08J-332YN	RESISTOR	3.3kΩ,1/10W
R133	QRSA08J-223YN	RESISTOR	22kΩ,1/10W		R217	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R134	QRSA08J-202YN	RESISTOR	2kΩ,1/10W		R218	QRSA08J-102YN	RESISTOR	1kΩ,1/10W
R135	QRSA08J-103YN	RESISTOR	10kΩ.1/10W		R219	QRD161J-183	RESISTOR	18kΩ_1/6W
R136	QRSA08J-124YN	RESISTOR	120kΩ,1/10W		R220	QRD161J-183	RESISTOR	18kΩ_1/6W
R137	QRSA08J-823YN	RESISTOR	82kΩ 1/10W		11220	GND1013-163	NESIS I ON	10K77"1\ 0AA
R138	ORSA08J-273YN	RESISTOR	27kΩ,1/10W					
R139	QRSA08J-823YN	RESISTOR	82kΩ,1/10W		C1	OENC1 ANA 226	E CARACITOR	00 5401/
	QRSA08J-222YN					QENC1AM-226	E CAPACITOR	22 µ F,10V
R140	UNDAUDJ-ZZZ TIN	RESISTOR	2.2kΩ,1/10W		C2	QENC1AM-226	E CAPACITOR	22 µ F,10V
D141	ODCA00 074VN	DECICTOR	0700 4 (40)4		C3	QFN31HJ-102	M CAPACITOR	0.001 ⊭ F,50V
R141	QRSA08J-271YN	RESISTOR	270Ω.1/10W		C4	QFN31HJ-102	M CAPACITOR	0.001 ⊭ F,50V
R142	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W		C5	QFN31HJ-222	M CAPACITOR	0.0022 ⊭ F,50V
R143	QRSA08J-103YN	RESISTOR	10kΩ,1/10W		C6	QFN31HJ-222	M CAPACITOR	0.0022 ⊭ F,50V
R144	ORSA08J-103YN	RESISTOR	10kΩ,1/10W		C7	QFN31HJ-102	M CAPACITOR	0.001 ⊭ F,50V
R146	QRSA08J-124YN	RESISTOR	$120k\Omega$, $1/10W$		C8	QFN31HJ-102	M CAPACITOR	0.001 <u>⊭</u> F,50V
R147	QRSA08J-103YN	RESISTOR	10kΩ,1/10W		C9	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R148	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W		C10	QFN31HJ-103	M CAPACITOR	0.01 ⊭ F,50V
R149	QRSA08J-273YN	RESISTOR	27kΩ,1/10W					
R150	QRSA08J-273YN	RESISTOR	27kΩ,1∕10W		C11	QFP32AF-103M	PP CAPACITOR	0.01 µF,100V
					C12	QFP32AF-103M	PP CAPACITOR	0.01 μF,100V
R151	QRSA08J-273YN	RESISTOR	27kΩ,1/10W		C13	QENC1CM-106	NP E CAPACITO	
R152	QRSA08J-273YN	RESISTOR	27kΩ,1/10W			QENC1CM-106	NP E CAPACITO	
R153	QRSA08J-102YN	RESISTOR	1kΩ,1/10W			QENC1CM-476	NP E CAPACITO	•= • • •
R154	QRSA08J-102YN	RESISTOR	1kΩ,1/10W			QENC1CM-476	NP E CAPACITO	
R155	QRSA08J-102YN	RESISTOR	1kΩ,1/10W			QEBA1EM-475	E CAPACITOR	4.7 μ F,25V
R156	QRSA08J-102YN	RESISTOR	1kΩ,1/10W			QEBA1EM-475	E CAPACITOR	4.7 μ F,25V
R157	QRSA08J-0R0Y	RESISTOR	0Ω,1/10W		C19	QFP32AF-222M	PP CAPACITOR	0.0022 μF,100V
R158	QRSA08J-0R0Y	RESISTOR	0Ω.1/10W		C20			
R159	QVZ3513-102	V RESISTOR	1kΩ		U 2U	QFP32AF-222M	PP CAPACITOR	0.0022 µF,100V
R160	QVZ3513-102	V RESISTOR			C22	OEN2111100	M CARACITOR	0.004
חושט	U12013-102	* DESIGNOR	1kΩ		C23	QFN31HJ-102	M CAPACITOR	0.001 μ F,50V
P161	ODCADO LOZOVNI	DECICTOR	276/0 4 /4004			QFN31HJ-102	M CAPACITOR	0.001 µ F,50V
R161	QRSA08J-273YN	RESISTOR	27kΩ,1/10W		C25	QFN31HJ-222	M CAPACITOR	0.0022 μ F,50V
R162	QR\$A08J-273YN	RESISTOR	27kΩ,1/10W			QFN31HJ-222	M CAPACITOR	0.0022 μ F,50V
R163	QRSA08J-273YN	RESISTOR	27kΩ,1/10W			QENC1EM-475	NP E CAPACITO	
R164	QRSA08J-273YN	RESISTOR	27kΩ,1/10W		C28	QENC1EM-475	NP E CAPACITO	
R165	QRSA08J-102YN	RESISTOR	1kΩ,1∕10W		C29	QFP32AF-223M	PP CAPACITOR	0.022 µ ₱,100 V

# <u></u> AREF	No. PART No.	PART NAME,	DESCRIPTION	#∆REF No.	PART No.	PART NAME,	DESCRIPTION
C30	QFP32AF-223M	PP CAPACITOR	0.022 μ F,100V	C119 C120	QETC1CM-226E QETC1CM-226E	E CAPACITOR E CAPACITOR	22 μ F,16V 22 μ F,16V
C31 C32 C33	QETC1CM-476E QETC1CM-476E QETC1CM-476E	E CAPACITOR E CAPACITOR E CAPACITOR	47 μ F,16V 47 μ F,16V 47 μ F,16V	C121 C122	QENC1CM-106 QENC1CM-106	NP E CAPACITOR	
C34	QETC1CM-476E	E CAPACITOR	47 μ F,16V	C123	QETC1CM-107ZE	E CAPACITOR	100 μ F,16V
C35 C36	QENC1HM-225	NP E CAPACITOR NP E CAPACITOR		C124 C125	QETC1CM-107E QETC1CM-226E	E CAPACITOR E CAPACITOR	100 μ F,16V 22 μ F,16V
C36	QENC1HM-225 QETC1CM-476E	E CAPACITOR	47 μ F,16V	C126	QETC1CM-226ZE	E CAPACITOR	22 μ F,16V
C38	QETC1CM-476E	E CAPACITOR	47 μ F.16V	C127	QCTA1CH-100	CAPACITOR	10pF,16V
C39 C40	QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	C128 C129 C130	QCTA1CH-100 QETC1CM-336E QETC1CM-336E	CAPACITOR E CAPACITOR E CAPACITOR	10pF.16V 33 μ F.16V 33 μ F.16V
C41	QETC1CM-226E	E CAPACITOR	22 μ F,16V 22 μ F,16V	C131	QETC1CM-476ZE	E CAPACITOR	47 μ F,16V
C42 C49	QETC1CM-226E QETC1HM-105ZE	E CAPACITOR E CAPACITOR	1 μ F,50V	C132	QCYA1HK-103	CAPACITOR	0.01 µ F,50V
C50	QETC1HM-105ZE		1 μ F,50V	C138 C139	QCYA1HK-103 QENC1HM-105	CAPACITOR NP E CAPACITOR	0.01 μ F,50V R 1 μ F,50V
C53	QETC0JM-476ZE	E CAPACITOR	47 μ F,6.3V	C140	QENC1HM-105	NP E CAPACITO	
C54	QETCOJM-476ZE		47 μ F,6.3V	C141	QCTA1CH-331	CAPACITOR	330pF.16V
C59 C60	QETC1CM-226E QETC1CM-2267F	E CAPACITOR E CAPACITOR	22 μ F,16V 22 μ F,16V	C141 C142	QCTA1CH-331	CAPACITOR	330pF,16V
000	Q21010W 22022		•	C143	QFN31HJ-102	M CAPACITOR	0.001 μ F,50V
C61	QCYA1HK-102	CAPACITOR CAPACITOR	0.001 µ F,50V 0.001 µ F,50V	C144 C145	QFN31HJ-102 QENA1AM-476	M CAPACITOR E CAPACITOR	0.001 μ F,50V 47 μ F,10V
C62 C63	QCYA1HK-102 QETC0JM-107ZE		100 μ F,6.3V	C145	QENA1AM-476	E CAPACITOR	47 µ F,10V
C64	QETC0JM-107ZE	E CAPACITOR	$100 \mu\text{F,6.3V}$	C147	QENC1CM-106	NP E CAPACITO	
C65 C66	QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	C148 C149	QENC1CM-106 QCTA1CH-560	NP E CAPACITOS CAPACITOR	R 10 μ F,16V 56pF,16V
C67	QCTA1CH-101	CAPACITOR	100pF,16V	C150	QETC0JM-227E	E CAPACITOR	220 μ F,6.3V
C68	QCTA1CH-101	CAPACITOR	100pF,16V 0.01 μ F,50V	C151	QETC1CM-106E	E CAPACITOR	10 μ F,16V
C69 C70	QFN31HJ-103 QFN31HJ-103	M CAPACITOR M CAPACITOR	0.01 μ F,50V	C152	QETC1CM-106E	E CAPACITOR	10 μ F,16V
			00 5401/	C153	QENC1CM-106	NP E CAPACITO	
C71 C72	QENA1AM-226 QENA1AM-226	NP E CAPACITO		C154 C155	QENC1CM-106 QFN31HJ-392	NP E CAPACITOR	R 10 μ F,16V 0.0039 μ F,50V
C73	QCTA1CH-820	CAPACITOR	82pF,16V	C156	QFN31HJ-392	M CAPACITOR	0.0039 μ F,50V
C74 C75	QCTA1CH-820 QFN31HJ-103	CAPACITOR M CAPACITOR	82pF,16V 0.01 μ F,50V	C157 C158	QETC1AM-226ZE QETC1AM-226E	E CAPACITOR E CAPACITOR	22 μ F,10V 22 μ F,10V
C76	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V	C159	QFN31HJ-222	M CAPACITOR	0.0022μ F,50V
C77	QENA1CM-226	NP E CAPACITOI		C160	QFN31HJ-222	M CAPACITOR	0.0022 μ F,50V
C78 C79	QENA1CM-226 QCTA1CH-820	CAPACITOR	82pF,16V	C161	QFV71HJ-104	TF CAPACITOR	0.1 μ F,50V
C 80	QCTA1CH-820	CAPACITOR	82pF,16V	C162	QFV71HJ-104	TF CAPACITOR	0.1 μ F,50V 0.0082 μ F,50V
C 81	QCTA1CH-820	CAPACITOR	82pF,16V	C163 C164	QFN31HJ-822 QFN31HJ-822	M CAPACITOR M CAPACITOR	0.0082 μ F,50V
C82	QCTA1CH-820	CAPACITOR	82pF,16V	C165	QCTA1CH-471	CAPACITOR	470pF,16V
C83 C84	QCTA1CH-820 QCTA1CH-820	CAPACITOR CAPACITOR	82pF,16V 82pF,16V	C166 C167	QCTA1CH-471 QETC0JM-227E	CAPACITOR E CAPACITOR	470pF,16V 220 μ F,6.3V
C85	QETC1CM-107E	E CAPACITOR	100 μ F.16V	C168	QFN31HJ-471	M CAPACITOR	470pF,50V
C86	QETC1CM-107E	E CAPACITOR	100 μ F,16V	C169 C170	QFN31HJ-103 QETC0JM-107E	M CAPACITOR E CAPACITOR	0.01 μ F,50V 100 μ F,6.3V
C89 C90	QETC1CM-107E QETC1CM-107ZE	E CAPACITOR E E CAPACITOR	100 μ F,16V 100 μ F,16V	C170	QE 10031VI-107E	ECAPACITOR	100 # 1 ,0.5 4
			40 5401	C171 C172	QFN31HJ-473 QCTA1CH-561	M CAPACITOR CAPACITOR	0.047 μ F,50V 560pF,16V
C91 C92	QETC1CM-106E QETC1CM-106ZE		10 μ F,16V 10 μ F,16V	C174	QETC1HM-225E	E CAPACITOR	2.2 μ F,50V
C 93	QCTA1CH-8R0	CAPACITOR	8pF,16V	C175	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
C94 C95	QCTA1CH-8R0 QETC1CM-476ZI	CAPACITOR E E CAPACITOR	8pF,16V 47 μ F,16V	C176 C177	QETA1EM-337E QETC1CM-337ZE	E CAPACITOR E CAPACITOR	330 μ F,25V 330 μ F,16V
C95	QETC1CM-476ZI		47 μ F,16V	C178	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
C97	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C179 C180	QETC1CM-227ZE QCYA1HK-103	E CAPACITOR CAPACITOR	220 μ F,16V 0.01 μ F,50V
C98	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	Ciao	QCTAINK-103	CAFACITOR	
C109		NP E CAPACITO		C181 C182	QCYA1HK-103 QETC1CM-107ZE	CAPACITOR E CAPACITOR	0.01 μ F,50V 100 μ F,16V
C110	QENC1CM-106	NP E CAPACITO	n 10 μ Γ,10 V	C183	QETC1CM-476ZE	E CAPACITOR	47 μ F,16V
C111			100 μ F,16V	C184	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
C112 C113			100 μ F,16V 33 μ F,16V	C185 C186	QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V
C114	QETC1CM-336Z	E E CAPACITOR	33 µ F.16V	C187	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
C115 C116		CAPACITOR CAPACITOR	10pF,16V 10pF,16V	C188 C189	QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V
C117			47 μ F.16V	C190	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
C118		CAPACITOR	0.01 μ F,50V				

-つ	つ・	-7	1	

#≜REF No.	PART No.	PART NAME, DES	CRIPTION	#≜REF No.	PART No.	PART NA	ME, DESCRIPTION
C191	QCTA1CH-151	CAPACITOR	150pF,16V				
C192	QCTA1CH-121	CAPACITOR	120pF,16V				
C193	QCTA1CH-151	CAPACITOR	150pF,16V	IC1	NJM2068MD	IC	
C194	QCTA1CH-121	CAPACITOR	120pF,16V	IC2	NJM2068MD	IC	
C195	QCYA1HK-103	CAPACITOR	$0.01 \mu\text{F,50V}$	IC3	NJM2068MD	IC	
C196	QCYA1HK-103	CAPACITOR	$0.01 \mu\text{F,50V}$	IC4	NJM2068MD	IC	
C197	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	IC5	NJM2068MD	IC	
C198	QCYA1HK-103	CAPACITOR	0.01 µ F,50V	IC6	NJM2068MD	IC	
C199			47 μ F,16V 47 μ F,16V				
C200	QETC1CM-476ZE	ECAPACITOR	41 µ 17,100	D2	RD5.1ES-T1B2	ZENER DIO	DE
C201	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	D3	RD5.1ES-T1B2	ZENER DIO	
C202	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	D4	RD5.1ES-T1B2	ZENER DIO	
C203	QCYA1HK-222	CAPACITOR	$0.0022 \mu F,50V$	D5	RD5.1ES-T1B2	ZENER DIO	
C204	OCYA1HK-222	CAPACITOR	$0.0022 \mu\text{F,50V}$				
C205	QCYA1HK-222	CAPACITOR	$0.0022 \mu\text{F,50V}$				
C206	QCYA1HK-222	CAPACITOR	0.0022 μ F,50V	R1	QRSA08J-122YN		1.2kΩ,1/10W
C207		E CAPACITOR	47 μ F,16V	R2	QRSA08J-122YN		1.2kΩ,1/10W
C208	OETC1CM-476ZE		47 μ F,16V	R3 R4	QRSA08J-122YN QRSA08J-122YN		1.2kΩ,1/10W 1.2kΩ,1/10W
C209	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	R5	QRSA08J-132YN		1.3kΩ,1/10W
C211	QCYA1HK-223	CAPACITOR	0.022 μ F,50V	R6	QRSA08J-132YN		1.3kΩ,1/10W
C212	OCTA1CH-220	CAPACITOR	22pF,16V	R7	QRSA08J-132YN		1.3kΩ,1/10W
C213	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	R8	QRSA08J-132YN		1.3kΩ,1/10W
C215	QCYA1HK-103	CAPACITOR	0.01 µ F,50V	R9	NRVA02D-8251A	AYRESISTOR	8.25kΩ,1/10W
C216	QCYA1HK-103	CAPACITOR	$0.01 \mu\text{F,}50\text{V}$	R10	NRVA02D-8251A	YRESISTOR	8.25kΩ,1/10W
C217	QCYA1HK-103	CAPACITOR	0.01 μ F,50V				
C219	QFV71HJ-104	TF CAPACITOR	$0.1 \mu\text{F,50V}$	R11	NRVA02D-8251		8.25kΩ,1/10W
C220	QETC1CM-476ZE	E CAPACITOR	47 μ F,16V	R12	NRVA02D-8251		8.25kΩ,1/10W
0004	001/4411//400	CARACITOR	0.04	R13	NRVA02D-8251A		8.25kΩ,1/10W
C221 C222	QCYA1HK-103	CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V	R14 R15	NRVA02D-8251A NRVA02D-8251A		8.25kΩ,1/10W
C223	QCYA1HK-103 QEE81EM-105	TANTAL CAPACITOR	1 μ F,25V	R16	NRVA02D-8251A		8.25kΩ,1/10W 8.25kΩ,1/10W
C224	QETC1CM-107ZE	E CAPACITOR	100 μ F.16V	R17	NRVA62D-152N		1.5kΩ,1/16W
C225	QCYA1HK-103	CAPACITOR	0.01 µ F,50V	R18	NRVA62D-152N		1.5kΩ,1/16W
C226	QCYA1HK-103	CAPACITOR	0.01 µ F.50V	R19	NRVA62D-152N	RESISTOR	1.5kΩ,1/16W
C227	QETC1CM-476ZE	E CAPACITOR	47 μ F,16V	R20	NRVA62D-152N	RESISTOR	1.5kΩ,1/16W
C228	QETC1CM-106ZE		10 μ F,16V				
C229	QFN31HJ-682	M CAPACITOR	0.0068 μ F,50V	R21	NRVA02D-3161/		3.16kΩ,1/10W
C230	QETC1CM-476ZE	E CAPACITOR	47 μ F,16V	R22	NRVA02D-3161A		3.16kΩ,1/10W
C221	00VA1HV 103	CARACITOR	0.01 = 50\/	R23 R24	NRVA02D-3161A NRVA02D-3161A		3.16kΩ,1/10W
C231 C233	QCYA1HK-103 QETC1CM-476ZE	CAPACITOR E CAPACITOR	0.01 μ F,50V 47 μ F,16V	R25	NRVA02D-31612		3.16kΩ,1/10W 84.5kΩ,1/10W
C234	QCYA1HK-103	CAPACITOR	0.01 μ F.50V	R26	NRVA02D-8452A		84.5kΩ,1/10W
0201	00171111111100		0.0. µ.,000	R27	NRVA02D-8452A		84.5kΩ,1/10W
				R28	NRVA02D-8452A		84.5kΩ,1/10W
L3	PU30284-1R	COIL	1. µH	R29	NRVA02D-2211A	YRESISTOR	2.21kΩ,1/10W
L4	PU30284-1R	COIL	1. μH	R30	NRVA02D-2211A	YRESISTOR	2.21kΩ,1/10W
L5	PU48530-271J	COIL	270 μ H				
L6	PU48530-271J	COIL	270 µ H	R31	NRVA02D-2211A		2.21kΩ,1/10W
L9	PU48530-271J	COIL	270 µ H	R32	NRVA02D-2211A		2.21kΩ,1/10W
L10	PU48530-271J	COIL	270 μ H	R33 R34	NRVA02D-2211A NRVA02D-2211A		2.21kΩ,1/10W 2.21kΩ,1/10W
L11	PU48530-271J	COIL	270 μ H	R35	NRVA02D-2211A		2.21kΩ,1/10W
L12	PU48530-271J	COIL	270 µ H	R36	NRVA02D-2211A		2.21kΩ,1/10W
L13	PU48530-101J	COIL	100 μ H	R37	QRSA08J-104YN		100kΩ,1/10W
L14	PU48530-820J	COIL	82 μ H	R38	QRSA08J-104YN		100kΩ.1/10W
				R39	QRSA08J-104YN		100kΩ,1/10W
				R40	QRSA08J-104YN	RESISTOR	100kΩ,1/10W
EJ1	PGZ00582	EJECTOR, ×2					
				R41	QRSA08J-104YN		100kΩ,1/10W
TD1	DITEACOO	TECT DIAL V 10	-	R42	QRSA08J-104YN		100kΩ,1/10W
TP1	PU54983	TEST PIN, ×10		R43 R44	QRSA08J-104YN QRSA08J-104YN		100kΩ,1/10W 100kΩ,1/10W
				R45	QRSA08J-472YN		4.7kΩ,1/10W
CN1	PGZ00421-64-	MALE CONNECTOR		R46	QRSA08J-472YN		4.7kΩ,1/10W
				R47	QRSA08J-472YN		4.7kΩ,1/10W
				R48	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W
				R49	QRSA08J-472YN		4.7kΩ,1/10W
AUDIO	4 BOARD ASSI	EMBLY<24>		R50	QRSA08J-472YN	RESISTOR	4.7kΩ,1/10W
	,			DE1	ODCA00 I 470VN	DECICTOR	471-0 4 /4014
				R51 R52	QR\$A08J-472YN QR\$A08J-472YN		4.7kΩ,1∕10W 4.7kΩ,1∕10W
PWBA	PRK10063A1-03	AUDIO 4 BOARD ASSY	,	R53	QRSA08J-104YN		100kΩ,1/10W
			1				

							<24><25>
#≜REF No.	PART No.	PART NAME,	DESCRIPTION	#≜REF No.	PART No.	PART NAME, DI	ESCRIPTION
R54 R55	QRSA08J-104YN QRSA08J-104YN	RESISTOR RESISTOR	100kΩ,1/10W 100kΩ,1/10W	C28	QCTA1CH-101	CAPACITOR	100pF,16V
R56	QRSA08J-104YN	RESISTOR	100kΩ,1/10W	C33	QEPC1CM-226	NP E CAPACITOR	22 μ F,16V
R57	NRVA62D-472N NRVA62D-472N	RESISTOR RESISTOR	4.7kΩ,1/16W 4.7kΩ,1/16W	C34 C35	QEPC1CM-226 QEPC1CM-226	NP E CAPACITOR NP E CAPACITOR	22 μ F,16V 22 μ F,16V
R58 R59	NRVA62D-472N	RESISTOR	4.7kΩ,1/16W	C36	QEPC1CM-226	NP E CAPACITOR	22 μ F,16V
R60	NRVA62D-472N	RESISTOR	4.7kΩ,1/16W				
R61	NRVA62D-472N	RESISTOR	4.7kΩ,1/16W	SW1	PGZ01210 PGZ01210	SLIDE SWITCH	
R62 R63	NRVA62D-472N NRVA62D-472N	RESISTOR RESISTOR	4.7kΩ,1/16W 4.7kΩ,1/16W	SW2 SW3	PGZ01210 PGZ00470-02	SLIDE SWITCH SLIDE SWITCH	
R64	NRVA62D-472N	RESISTOR	4.7kΩ,1/16W	SW4	PGZ00470-02	SLIDE SWITCH	
R65	NRVA62D-472N	RESISTOR	4.7kΩ,1/16W	SW5 SW6	PGZ00742-02 PGZ00742-02	SLIDE SWITCH SLIDE SWITCH	
R66 R67	NRVA62D-472N NRVA62D-472N	RESISTOR RESISTOR	4.7kΩ,1/16W 4.7kΩ,1/16W	2440	FG200742-02	SLIDE SWITCH	
R68	NRVA62D-472N	RESISTOR	4.7kΩ,1∕16W	0004	DI # 0040 004	11/1 00//11/0 00 100	
R69 R70	NRVA62D-472N NRVA62D-472N	RESISTOR RESISTOR	4.7kΩ,1/16W 4.7kΩ,1/16W	SPC1	PU59210-001	W.LOCKING SPACER	₹, ×4
R71	NRVA62D-472N	RESISTOR	4.7kΩ.1/16W	TP1	PU54983	TEST PIN, ×4 (S82	22E/\$622E)
R72 R73	NRVA62D-472N QRD162J-0R0	RESISTOR V RESISTOR	4.7kΩ,1/16W 0Ω,1/6W				
R74	QRD162J-0R0	V RESISTOR	0Ω,1/6W	CN1	PU58844-3	CONNECTOR	
R75	QRD162J-0R0	V RESISTOR	0Ω.1/6W	CN2	PU58844-3R	CONNECTOR	
R76 R77	QRD162J-0R0 QRSA08J-105YN	V RESISTOR RESISTOR	0Ω,1/6W 1MΩ,1/10W	CN3 CN4	PU58844-3Y PU58844-3	CONNECTOR CONNECTOR	
R78	QRSA08J-105YN	RESISTOR	1MΩ,1/10W	CN5	PU58844-104	CONNECTOR	
R79 R80	QRSA08J-105YN QRSA08J-105YN	RESISTOR RESISTOR	1MΩ,1/10W 1MΩ,1/10W	CN6	PU58844-104Y	CONNECTOR	
R81	QRSA08J-105YN	RESISTOR	1MΩ,1/10W				
R82 R83	QRSA08J-105YN QRSA08J-105YN	RESISTOR RESISTOR	1MΩ,1/10W 1MΩ,1/10W	AUDIO	5 BOARD ASS	EMBLY<25>	
R84	QRSA08J-105YN	RESISTOR	1MΩ,1/10W				
R89 R90	NRVA02D-3651A` NRVA02D-3651A`		3.65kΩ,1/10W 3.65kΩ,1/10W	IC101	UPC78N12H	IC	
				IC102	UPC79N12H	IC	
R91 R92	NRVA02D-3651A` NRVA02D-3651A`		3.65kΩ,1/10W 3.65kΩ,1/10W	IC103 IC104	UPC78N12H UPC79N12H	IC IC	
R93	NRVA02D-7681A		7.68kΩ,1/10W	IC105	M5218AL	IC	
R94 R95	NRVA02D-7681A` NRVA02D-7681A`		7.68kΩ,1/10W 7.68kΩ,1/10W	IC106 IC107	M5218AL NJM4556S	IC IC	
R96	NRVA02D-7681A		7.68kΩ,1/10W	IC108	NJM4556S	IC	
R97	NRVA62D-224N	RESISTOR	220kΩ,1/16W	IC109	NJM4556S	IC	
R98 R99	NRVA62D-224N NRVA62D-224N	RESISTOR	220kΩ,1/16W 220kΩ,1/16W	IC110	NJM4556S	IC	
R100	NRVA62D-224N	RESISTOR	220kΩ,1/16W	Q1	DTC323TS	TRANSISTOR	
				Q2	DTC323TS	TRANSISTOR	
C1	QEPC1EM-475	NP E CAPACITOR		Q3	DTC323TS	TRANSISTOR	
C2 C3	QEPC1EM-475 QEPC1EM-475	NP E CAPACITOR		Q4 Q5	DTC323TS DTC323TS	TRANSISTOR TRANSISTOR	
C4	QEPC1EM-475	NP E CAPACITOR	4.7 μ F,25V	Q6	DTC323TS	TRANSISTOR	
C5 C6	QEPC1EM-475 QEPC1EM-475	NP E CAPACITOR NP E CAPACITOR		Q7 Q8	DTC323TS DTC323TS	TRANSISTOR TRANSISTOR	
C 7	QEPC1EM-475	NP E CAPACITOR	4.7 μ F,25V	Q9	DTC124ES	TRANSISTOR	
C8 C9	QEPC1EM-475 QCTA1CH-101	NP E CAPACITOR CAPACITOR	4.7 μ F,25V 100pF,16V	Q10	DTA114ES	TRANSISTOR	
C10	QCTA1CH-101	CAPACITOR	100pF,16V	Q11	2SB1030RS	TRANSISTOR	
C11	QCTA1CH-101 QCTA1CH-101	CAPACITOR CAPACITOR	100pF,16V 100pF,16V	D1	188133	DIODE	
C12 C13	QCTA1CH-101	CAPACITOR	100pF,16V	Ui	100100	DIODE	
C14	QCTA1CH-101	CAPACITOR	100pF,16V	D101	ODD161 1 430	DECICEO	471.0 4 7000
C15 C16	QCTA1CH-101 QCTA1CH-101	CAPACITOR CAPACITOR	100pF,16V 100pF,16V	R101 R102	QRD161J-473 QRD161J-473	RESISTOR RESISTOR	47kΩ,1/6W 47kΩ,1/6W
C17	QEK61CM-107	E CAPACITOR	100 μ F,16V	R103	QRD161J-473	RESISTOR	47kΩ,1/6W
C19	QEK61CM-107	E CAPACITOR	100 μ F,16V	R104 R105	QRD161J-473 QRV141F-8251AY	RESISTOR CMF RESISTOR	47kΩ,1∕6W 8.25kΩ,1∕4W
C21	QEK61CM-107	E CAPACITOR	100 μ F,16V	R106	QRV141F-8251AY	CMF RESISTOR	8.25kΩ,1/4W
C23 C25	QEK61CM-107 QCTA1CH-101	E CAPACITOR CAPACITOR	100 μ F,16V 100pF,16V	R107 R108	QRV141F-8251A1	CMF RESISTOR	8.25kΩ,1/4W 8.25kΩ,1/4W
C26	QCTA1CH-101	CAPACITOR	100pF,16V	R109	QRD161J-473	RESISTOR	47kΩ,1/6W
C27	QCTA1CH-101	CAPACITOR	100pF,16V	R110	QRD161J-473	RESISTOR	47kΩ,1∕6W

#≜REF No. PART No.	PART NAME,	DESCRIPTION	#≜REF I	No. PART No.	PART NAME, I	DESCRIPTION
R114 QRV141F-1212A\ R115 QRV141F-1212A\ R116 QRV141F-1212A\	RESISTOR RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR	47kΩ,1/6W 47kΩ,1/6W 12.1kΩ,1/4W 12.1kΩ,1/4W 12.1kΩ,1/4W	C115 C116 C117 C118 C119 C120	OCYA1HK-103 OCYA1HK-103 OETC1CM-107ZE OETC1CM-107ZE OETC1CM-107ZE OETC1CM-107ZE	E CAPACITOR E CAPACITOR E CAPACITOR	0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V 100 \(\mu \) F,16V 100 \(\mu \) F,16V 100 \(\mu \) F,16V 100 \(\mu \) F,16V
R118 QRV141F-1212AY R119 QRV141F-1212AY	CMF RESISTOR CMF RESISTOR CMF RESISTOR	12.1kΩ,1/4W 12.1kΩ,1/4W 12.1kΩ,1/4W 12.1kΩ,1/4W	C121 C122 C123 C124 C125	QCSB1HJ-560 QCSB1HJ-560 QCSB1HJ-560 QCSB1HJ-560	CAPACITOR CAPACITOR CAPACITOR CAPACITOR E CAPACITOR	56pF,50V 56pF,50V 56pF,50V 56pF,50V
R122 QRV141F-1332AY R123 QRV141F-1332AY R124 QRV141F-1332AY R125 QRV141F-1212AY R126 QRV141F-1212AY	CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR	13.3kQ,1/4W 13.3kQ,1/4W 13.3kQ,1/4W 13.3kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W	C125 C126 C127 C128 C129 C130	QETC1CM-107ZE	E CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR	100 \(\mu \) F,16V 100 \(\mu \) F,16V 100 \(\mu \) F,16V 100 \(\mu \) F,16V 100 \(\mu \) F,16V 100 \(\mu \) F,16V
R128 QRV141F-1212AY R129 QRV141F-1212AY R130 QRV141F-1212AY	CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR	12.1kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W	C131 C132 C133 C134 C135	QETC1CM-107ZE QETC1CM-107ZE QENC1EM-107 QENC1EM-107 QENC1EM-107	E CAPACITOR NP E CAPACITOR NP E CAPACITOR NP E CAPACITOR	100 µ F,16V 100 µ F,16V 100 µ F,25V 100 µ F,25V 100 µ F,25V
R132 QRV141F-1212AY R133 QRV141F-1212AY R134 QRV141F-1212AY R135 QRV141F-1212AY	CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR	12.1kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W 12.1kQ,1/4W	C136 C137 C138 C139 C140	QENC1EM-107 QENC1EM-107 QENC1EM-107 QENC1EM-107 QENC1EM-107	NP E CAPACITOR NP E CAPACITOR NP E CAPACITOR NP E CAPACITOR NP E CAPACITOR	100 μ F,25V 100 μ F,25V 100 μ F,25V 100 μ F,25V 100 μ F,25V
R137 QRV141F-1212AY R138 QRV141F-1212AY R139 QRV141F-1212AY	CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR	12.1kΩ,1/4W 12.1kΩ,1/4W 12.1kΩ,1/4W 12.1kΩ,1/4W	C145 C146 C149 C150	QETC1CM-476 QETC1CM-337 QCTA1CH-180 QCTA1CH-180	E CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	47 μ F,16V 330 μ F,16V 18pF,16V 18pF,16V
R142 QRV141F-1332AY R143 QRV141F-1332AY R144 QRV141F-1332AY R145 QRV141F-1101A R146 QRV141F-1101A R147 QRV141F-1101A R148 QRV141F-1101A	V RESISTOR V RESISTOR V RESISTOR	13.3kQ,1/4W 13.3kQ,1/4W 13.3kQ,1/4W 13.3kQ,1/4W 1.10kQ,1/4W 1.10kQ,1/4W 1.10kQ,1/4W 1.10kQ,1/4W	C151 C152 C153 C154 C155 C156	OCTA1CH-180 OCTA1CH-180 OCTA1CH-180 OCTA1CH-180 OCTA1CH-180 OCTA1CH-180	CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	18pF.16V 18pF.16V 18pF.16V 18pF.16V 18pF.16V
	CMF RESISTOR	1.74kΩ,1/4W 1.74kΩ,1/4W	CN10 CN11	PU58844-3 PU58844-3	CONNECTOR	
R151 QRV141F-1741AY R152 QRV141F-1741AY R153 QRV141F-47R5AY R154 QRV141F-47R5AY R155 QRV141F-47R5AY R156 QRV141F-47R5AY R157 QRV141F-47R5AY R158 QRV141F-47R5AY R159 QRV141F-47R5AY R160 QRV141F-47R5AY	CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR CMF RESISTOR	1.74kQ.1/4W 1.74kQ.1/4W 1./4W 1./4W 1./4W 1./4W 1./4W 1./4W 1./4W	CN12 CN13 CN14 CN15 CN16 CN17 CN18 CN19	PU58844-3R PU58844-3Y PU58844-3 PU58844-4Y PU58844-4R PU58844-3 PU58844-3R PU58844-3Y	CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	
R161 QRD161J-103 R162 QRD161J-103 R163 QRD161J-103 R164 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W	△ CP1 △ CP2	ICP-F10 ICP-F10	CIRCUIT PROTECTO	
R165 QRD161J-103 R166 QRD161J-103 R167 QRD161J-103 R168 QRD161J-103 R169 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W	AUDIO PWBA	PRK30066A1	EMBLY<26> AUDIO 6 BOARD A	ASSY
C109 QETC1CM-107ZE C110 QETC1CM-107ZE		100 μ F,16V 100 μ F,16V	IC1 IC2	M5201FP M5201FP	IC IC	
C111 QETC1CM-107ZE C112 QETC1CM-107ZE C113 QCYA1HK-103 C114 QCYA1HK-103	E CAPACITOR E CAPACITOR CAPACITOR CAPACITOR	100 μ F,16V 100 μ F,16V 0.01 μ F,50V 0.01 μ F,50V	IC3 IC4 IC5 IC6 IC7	M5201FP M5201FP NJM2068MD NJM2068MD NJM2068MD	IC IC IC IC	

				DECODIBEION	44 BEE	AL. DADT No.	DADT		DECO	<26>
#≜REF No.			NAME,	DESCRIPTION	#AREF	No. PART No.	PARI	NAME,	DESC	RIPTION
1C8 1C9	M5216FP M5278L12M	IC IC			C1	QEF81AM-475	TANTAL	CAPACI	TOR	4.7 μ F.10V
IC10	M5278L12M	iC			C2	QEF81AM-475	TANTAL	CAPACI	TOR	4.7 μ F,10V
					C3	QEF81AM-475	TANTAL			$4.7 \mu F,10V$
				471.0 4 /4014	C4	QEF81AM-475	TANTAL			4.7 μ F,10V
R1	QRSA08J-472YN			4.7kΩ,1/10W 4.7kΩ,1/10W	C5 C6	QEF81AM-336 QEF81AM-336	TANTAL TANTAL			33 μ F,10V 33 μ F,10V
R2 R3	QRSA08J-472YN QRSA08J-472YN			4.7kΩ,1/10W	C7	QCTA1CH-8R0	CAPACIT		TON	8pF,16V
R4	QRSA08J-472YN			4.7kΩ,1/10W	C8	QCTA1CH-8R0	CAPACIT			8pF,16V
R5	QRSA08J-124YN			120kΩ,1/10W	C9	QEF81AM-475	TANTAL	. CAPACI		4.7 μ F,10V
R6	ORSA08J-124YN			120kΩ,1/10W	C10	QEF81AM-475	TANTAL	. CAPAC	TOR	4.7 μ F,10V
R7	QRSA08J-124YN			120kΩ,1/10W		OFF01 A34 475	TANTAL	CARAC	TOP	4.7 μ F.10V
R8 R9	QRSA08J-124YN QRSA08J-472YN			120kΩ,1/10W 4.7kΩ,1/10W	C11 C12	QEF81AM-475 QEF81AM-475	TANTAL TANTAL			4.7 μ F,10 V
R10	QRSA08J-472YN			4.7kΩ,1/10W	C13	QEF81AM-475	TANTAL			4.7 μ F,10V
*****					C14	QEF81AM-475	TANTAL			4.7 μ F,10V
Rff	QRSA08J-472YN			4.7kΩ,1/10W	C15	QEF81AM-336	TANTAL			33 μ F,10V
R12	QRSA08J-472YN			4.7kΩ,1/10W	C16 C17	QEF81AM-336 QEF81CM-226	TANTAL TANTAL			33 μ F,10V 22 μ F,16V
R13 R14	QRSA08J-124YN QRSA08J-124YN			120kΩ,1/10W 120kΩ,1/10W	C18	QEF81CM-226	TANTAL			22 μ F,16V
R15	QRSA08J-124YN			120kΩ,1/10W	C19	QEF81CM-226		CAPAC		22 μ F,16V
R16	QRSA08J-124YN	RESIST	TOR	120kΩ,1/10W	C20	QEF81CM-226	TANTAL	. CAPAC	ITOR	22 μ F,16V
R17	QRSA08J-563YN			56kΩ,1/10W	074	05504014000	TANTAL	CARAC	TOD	00 . E 46\/
R18	QRSA08J-563YN QRSA08J-153YN			56kΩ,1/10W 15kΩ,1/10W	C21 C22	QEF81CM-226 QEF81CM-226		. CAPAC . CAPAC		22 μ F,16V 22 μ F,16V
R19 R20	QRSA08J-153YN			15kΩ,1/10W	C23	QEF81AM-475	TANTAL	CAPAC	TOR	4.7 μ F,10V
1120	Q110A000-100111	112010		701144717	C24	QEF81AM-475	TANTAL	CAPAC	TOR	4.7 μ F,10V
R21	QRSA08J-473YN			47kΩ,1/10W	C25	QEF81CM-226		CAPAC		22 μ F,16V
R22	QRSA08J-473YN			47kΩ,1/10W	C26	QEF81CM-226		. CAPAC	ITOR	22 μ F,16V
R23	QRSA08J-473YN QRSA08J-473YN			47kΩ,1/10W 47kΩ,1/10W	C27 C28	QCTA1CH-8R0 QCTA1CH-8R0	CAPACI*			8pF,16V 8pF,16V
R24 R25	QRSA08J-472YN			4.7kΩ.1/10W	C29	QEF81CM-226		CAPAC	ITOR	22 µ F.16V
R26	QRSA08J-472YN			4.7kΩ,1/10W	C30	QEF81AM-336		CAPAC		33 μ F,10V
R27	QRSA08J-124YN			120kΩ,1/10W						00 = 101/
R28	ORSA08J-124YN			120kΩ,1/10W	C31 C32	QEF81AM-336 QEF81AM-336		CAPAC		33 µ F,10V 33 µ F,10V
R29 R30	QRSA08J-153YN QRSA08J-153YN			15kΩ,1/10W 15kΩ,1/10W	C33	QCTA1CH-3R0	CAPACI		HON	3pF,16V
1100	Q110A000*155111	112010	1011	101000,17	C34	QCTA1CH-3R0	CAPACI			3pF,16V
R31	QRSA08J-563YN			56kΩ,1/10W	C35	QEF81CM-226		CAPAC		22 μ F,16V
R32	QRSA08J-563YN			56kΩ,1/10W	C36 C37	QEF81CM-226 QEF81CM-226	TANTAL	CAPAC	ITOR	22 μ F,16V 22 μ F,16V
R33 R34	QRSA08J-472YN QRSA08J-472YN			4.7kΩ,1/10W 4.7kΩ,1/10W	C38	QEF81AM-336		CAPAC		33 µ F,10V
R35	QRSA08J-124YN			120kΩ,1/10W		221 017 1111 000	***************************************			,
R36	QRSA08J-124YN	RESIS		120kΩ,1/10W	C41	QEF81CM-226		CAPAC		22 μ F,16V
R37	QRSA08J-563YN			56kΩ,1/10W	C42	QEF81CM-226		CAPAC	ITOR	22 μ F,16V 82pF,16V
R38 R39	QRSA08J-563YN QRSA08J-221YN			56kΩ,1/10W 220Ω,1/10W	C43	QCTA1CH-820 QCTA1CH-820	CAPACI			82pF,16V
R40	QRSA08J-221YN			220Ω,1/10W	C45	QEF81AM-336		CAPAC	ITOR	33 μ F,10V
					C46	QEF81AM-336		CAPAC		33 µ F,10V
R41	QRSA08J-270YN			27Ω.1/10W	C47	QEF81AM-336		- CAPAC		33 μ F,10V
R42	QRSA08J-270YN QRSA08J-472YN			27Ω,1/10W 4.7kΩ,1/10W	C48 C49	QEF81AM-336 QCYA1EK-104	CAPACI	CAPAC	HUR	33 μ F,10V 0.1 μ F,25V
R45 R46	QR\$A08J-472YN			4.7kΩ,1/10W	C50	QCYA1EK-104	CAPACI			0.1 μ F,25V
R47	QRSA08J-124YN			120kΩ,1/10W						
R48	QRSA08J-124YN			120kΩ,1/10W	C51	QEF81CM-226		_ CAPAC	_	22 µ F,16V
R49	QRSA08J-103YN			10kΩ,1/10W 10kΩ,1/10W	C52 C53	QEF81CM-226 QEF81AM-336		_ CAPAC _ CAPAC		22 μ F,16V 33 μ F,10V
R50	QRSA08J-103YN	I RESIS	IUN	10K22,17 1044	C58	QCYA1HK-103	CAPACI		HON	0.01 μ F,50V
R51	QRSA08J-223YN	RESIS	TOR	22kΩ,1/10W	C59	QEF81CM-226		CAPAC	ITOR	22 μ F,16V
R52	QRSA08J-223YN			22kΩ,1/10W	C60	QCYA1HK-103	CAPACI	TOR		0.01 μ F,50V
R55	NRS016J-151NZI			150Ω,1W 150Ω,1W	CG1	QEF81CM-226	TANTA	CAPAC	ITOP	22 μ F,16V
R56 R57	NRS016J-151NZI QRSA08J-330YN			33Ω,1/10W	C61 C62	QCYA1HK-103	CAPACI		HON	0.01 μ F,50V
R58	QRSA08J-330YN			33Ω,1/10W	C63	QEF81AM-336		CAPAC	ITOR	33 μ F,10V
R59	QRSA08J-103YN	RESIS	TOR	10kΩ,1/10W	C64	QEF81CM-226		_ CAPAC		22 μ F,16V
R60	QRSA08J-103YN	RESIS	TOR	10kΩ,1∕10W	C65	QEF81AM-475		- CAPAC		4.7 μ F,10V
R65	QRSA08J-472YN	N RESIS	TOR	4.7kΩ,1/16W	C66	QEF81AM-475	IANTAL	_ CAPAC	HUK	4.7 μ F,10V
R66	QRSA08J-472YN			4.7kΩ,1/10W						
R67	QRSA08J-124YN	RESIS	TOR	120kΩ,1/10W	CN1	PU58844-104	CONNEC			
R68	QRSA08J-124YN	RESIS	IOR	120kΩ,1/10W	CN2 CN3	PU58844-104Y PU58844-104	CONNEC			
R101	QRSA08J-0R0Y	RESIS	TOR	0Ω,1/10W	CN4	PU58844-104R	CONNEC			
, ,,,,,					CN8	PU58844-106	CONNEC			

CN10	PU58844-106	CONNECTOR				
				CN1	PU58844-111	CONNECTOR
JACK E	BOARD ASSEME	BLY<27>		D/C	PEDVO BOADD	ASSEMBLY<30>
				<i>D/</i> C 3	ENVO BOAND	ASSEMBLI \ 30 /
PWBA	PRK30066A2	JACK BOARD ASSY		PWBA	PRK10058B	D/C SERVO BOARD ASSY
Q1 Q2	DTC323TK DTC323TK	TRANSISTOR TRANSISTOR		IC1 IC2	UPD74HC04G UPD4053BG	IC IC
VR5	PGZ01525	V RESISTOR		1C3 1C4 1C5	UPD4053BG BA10393F SM6430C	IC IC IC
R43 R44	QRSA08J-123YN QRSA08J-123YN		12kQ,1/10W 12kQ,1/10W	IC7 IC8 IC9	TC4W53F NJM2068MD NJM2068MD	IC IC IC
R53 R54	QRSA08J-470YN QRSA08J-470YN		47Ω,1/10W 47Ω,1/10W	IC10 IC11	BA10393F TC4572BP	IC
				IC12 IC13	UPD4053BG M5278L12	IC IC
C39 C40	QEF81AM-475 QEF81AM-475	TANTAL CAPACITOR TANTAL CAPACITOR	4.7 μ F,10V 4.7 μ F,10V	IC14 IC15 IC16	NJM2068MD BA10393F M5278L05	IC IC IC
C55 C56	QEF81AM-475 QEF81AM-475	TANTAL CAPACITOR TANTAL CAPACITOR	4.7 μ F,10V 4.7 μ F,10V	IC17 IC18 IC19	UPD4001BG TC4S30F UPD4013BG UPD78P138GF-I	IC IC IC
J1	PGZ00595-02	MIC JACK		IC20		
J2 J3	PGZ00595-02 PGZ00725	MIC JACK JACK		IC22 IC23 IC24	M51957BL M5278L05 BA10324F	IC IC IC
CN6	PU58844-4Y	CONNECTOR		0	r BA10324AF	IC
				Q1 Q2	2SB643R 2SA933S(RS)	TRANSISTOR TRANSISTOR
VR BO	ARD ASSEMBLY	/ <28>		Q3 Q4	2SC1740S(RS) 2SA933S(RS)	TRANSISTOR TRANSISTOR
				Q5 Q6	2SC1740S(RS) 2SC1740S(RS)	TRANSISTOR TRANSISTOR
PWBA	PRK30066A3	VR BOARD ASSY		Q7 Q8 Q9	2SK656 2SC1740S(RS) DTC144ES	FE TRANSISTOR TRANSISTOR TRANSISTOR
VR1 VR2 VR3	PGZ01525 PGZ01525 PGZ01524	V RESISTOR V RESISTOR V RESISTOR		Q10 Q11	2SC1740S(RS) DTC144ES	TRANSISTOR TRANSISTOR
VR4	PGZ01524	V RESISTOR		Q12 Q13	DTC144ES 2SA933S(RS)	TRANSISTOR TRANSISTOR
R61 R62	QRSA08J-102YN QRSA08J-102YN		1kΩ,1/10W 1kΩ,1/10W	Q14 Q15 Q16	2SC1740S(RS) 2SC1740S(RS) DTC144ES	TRANSISTOR TRANSISTOR TRANSISTOR
R63 R64	ORSA08J-332YN ORSA08J-332YN		3.3kΩ,1/10W 3.3kΩ,1/10W	Q17 Q18 Q19	2SC1740S(RS) 2SC1740S(RS) DTC144ES	TRANSISTOR TRANSISTOR TRANSISTOR
C67 C68	QEF81AM-475 QEF81AM-475	TANTAL CAPACITOR TANTAL CAPACITOR	4.7 μ F,10V 4.7 μ F,10V	Q20 Q22 Q23	DTC144ES DTC144ES 2SC1740S(RS)	TRANSISTOR TRANSISTOR TRANSISTOR
CN1	PGZ01081-05	CONNECTOR, ×3		Q24 Q25 Q26 Q28 Q29 Q30	25C1740S(RS) 2SA933S(RS) 2SC1740S(RS) 2SD1691(K) 2SK656 2SC1740S(RS) 2SC1740S(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR FE TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR
A/C F	IEAD BOARD A	ASSEMBLY < 29 >	ĺ		2SA933S(RS)	
PWB	PGE40328-01-02	A/C HEAD BOARD		Q31 Q32 Q33	DTC144ES DTC144ES	TRANSISTOR TRANSISTOR TRANSISTOR

#AREF No. PART No.	PART NAME, DE	SCRIPTION	# <u>∧</u> REF No	. PART No.	PART NAME,	DESCRIPTION
D1 1SS133 D2 1SS99 D3 1SS133 D4 1SS133 D5 1SS133	DIODE DIODE DIODE DIODE DIODE		R55 R57 R58 R59 R60	QRD161J-393 QRD161J-105 QRD161J-393 QRD161J-103 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR	$39k\Omega.1/6W$ $1M\Omega.1/6W$ $39k\Omega.1/6W$ $10k\Omega.1/6W$ $10k\Omega.1/6W$
D6 1SS133 D7 HZ5CLL D8 HZ5CLL D9 1SS133 D10 1SS133	DIODE ZENER DIODE ZENER DIODE DIODE DIODE		R61 R62 R63 R64 R65 R66	ORD161J-102 ORD161J-183 ORD161J-100 ORD161J-222 ORD161J-152 ORD161J-683	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 18kΩ,1/6W 10Ω,1/6W 2.2kΩ,1/6W 1.5kΩ,1/6W 68kΩ,1/6W
D13 1SS133 D14 1SS133 D15 1SS133	DIODE DIODE DIODE		R67 R68 R69 R70	QRD161J-473 QRD161J-103 QRD161J-182 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR	47kΩ.1./6W 10kΩ.1./6W 1.8kΩ.1./6W 1.8kΩ.1./6W
R1 QRD161J-104 R2 QRD161J-272 R3 QRD161J-272 R4 QRD161J-222 R5 QRD161J-272 R6 QRD161J-183 R7 QRD161J-222 R8 QRD161J-103 R9 QRD161J-222 R10 QRD161J-101	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	100kΩ,1/6W 2.7kΩ,1/6W 2.7kΩ,1/6W 2.2kΩ,1/6W 2.7kΩ,1/6W 18kΩ,1/6W 2.2kΩ,1/6W 10kΩ,1/6W 2.2kΩ,1/6W 100Ω,1/6W	R71 R72 R73 R74 R75 R76 R77 R78 R79 R80	QRD161J-103 QRD161J-472 QRD161J-472 QRD161J-103 QRD161J-104 QRD161J-104 QRD161J-472 QRD161J-473 QRD161J-103 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$10k\Omega.1/6W$ $4.7k\Omega.1/6W$ $4.7k\Omega.1/6W$ $10k\Omega.1/6W$ $100k\Omega.1/6W$ $100k\Omega.1/6W$ $4.7k\Omega.1/6W$ $4.7k\Omega.1/6W$ $10k\Omega.1/6W$ $10k\Omega.1/6W$
R18 QRV141F-3403A R19 QRV141F-3403A	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR Y CMF RESISTOR Y CMF RESISTOR Y CMF RESISTOR Y CMF RESISTOR Y CMF RESISTOR	2.2kΩ,1/6W 2.2kΩ,1/6W 2.7kΩ,1/6W 1kΩ,1/6W 560Ω,1/6W 10kΩ,1/6W 18.2kΩ,1/4W 340kΩ,1/4W 340kΩ,1/4W	R81 R82 R83 R84 R85 R86 R87 R88 R89	QRD161J-222 QRV141F-2211AY QVZ3521-101 QRV141F-2211AY QRD161J-152 QRD161J-684 QRD161J-333 QRD161J-222 QRD161J-104 QRD161J-222	V RESISTOR	$2.2k\Omega$, $1/6W$ $2.21k\Omega$, $1/4W$ 100Ω $2.21k\Omega$, $1/4W$ $1.5k\Omega$, $1/6W$ $680k\Omega$, $1/6W$ $33k\Omega$, $1/6W$ $2.2k\Omega$, $1/6W$ $100k\Omega$, $1/6W$ $2.2k\Omega$, $1/6W$
R21 QRV141F-2211A R22 QRD161J-224 R23 QRD161J-222 R24 QRD161J-222 R25 QRD161J-224 R26 QRD161J-222 R27 QRD161J-223 R28 QRD161J-102 R29 QRD161J-473 R30 QRD161J-684	Y CMF RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	2.21kQ.1/4W 220kQ.1/6W 2.2kQ.1/6W 2.2kQ.1/6W 220kQ.1/6W 2.2kQ.1/6W 22kQ.1/6W 1kQ.1/6W 47kQ.1/6W 680kQ.1/6W	R91 R92 R93 R94 R95 R96 R97 R98 R99	QRD161J-222 QRV141F-2211AY QVZ3521-101 QRV141F-2211AY QRD161J-562 QRD161J-684 QRD161J-103 QRD161J-222 QRD161J-222 QRD161J-104	V RESISTOR	$2.2k\Omega,1/6W$ $2.21k\Omega,1/4W$ 100Ω $2.21k\Omega,1/4W$ $5.6k\Omega,1/6W$ $680k\Omega,1/6W$ $10k\Omega,1/6W$ $2.2k\Omega,1/6W$ $2.2k\Omega,1/6W$
	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR Y CMF RESISTOR	22kΩ,1/6W 1kΩ,1/6W 220kΩ,1/6W 2.2kΩ,1/6W 10Ω,1/6W 4.7MΩ,1/6W 150kΩ,1/6W 340kΩ,1/4W 18.2kΩ,1/4W	R101 R102 R103 R104 R105 R106 R107 R108 R109	QRD161J-222 QRD161J-473 QRD161J-103 QRD161J-473 QRD161J-472 QRD161J-222 QRD161J-105 QRD161J-103 QRD161J-104 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	2.2kΩ.1/6W 47kΩ.1/6W 10kΩ.1/6W 47kΩ.1/6W 4.7kΩ.1/6W 2.2kΩ.1/6W 1MΩ.1/6W 10kΩ.1/6W 10kΩ.1/6W 10kΩ.1/6W
R42 QRV141F-3403A	Y CMF RESISTOR Y CMF RESISTOR Y CMF RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	340kΩ.1/4W 340kΩ.1/4W 2.21kΩ.1/4W 1kΩ.1/6W 1kΩ.1/6W 22kΩ.1/6W 560Ω.1/6W 1kΩ.1/6W 820kΩ.1/6W	R112 R113 R114 R115 R116 R117 R118 R119	QRD161J-102 QRD161J-222 QRD161J-222 QRD161J-224 QRD161J-224 QRD161J-100 QRD161J-102 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 2.2kΩ,1/6W 2.2kΩ,1/6W 220kΩ,1/6W 220kΩ,1/6W 10Ω,1/6W 1kΩ,1/6W
R51 QRD161J-185 R52 QRD161J-102 R53 QRD161J-123 R54 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR	1.8MΩ,1/6W 1kΩ,1/6W 12kΩ,1/6W 1kΩ,1/6W	R120 R121 R122 R123	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W

<30>							
#≜REF No	. PART No.	PART NAME,		#AREF	No. PART No.	PART NAME,	DESCRIPTION
R124	QRD161J-272 QRD161J-103	RESISTOR RESISTOR	2.7kΩ,1/6W 10kΩ,1/6W	C8 C9	QFN31HJ-102 QETC1HM-105	M CAPACITOR E CAPACITOR	0.001 μ F.50V
R125 R126	QRD161J-103	RESISTOR	10kΩ,1/6W	C10	QETC1HM-225	E CAPACITOR	1 μ F,50V 2.2 μ F,50V
R127	QRD161J-222 QRD161J-153	RESISTOR RESISTOR	2,2kΩ,1/6W	C11	OETCIUM 10E	E CARACITOR	
R128 R129	QRD161J-153	RESISTOR	15kΩ,1/6W 4.7kΩ,1/6W	C12	QETC1HM-105 QETC1HM-225	E CAPACITOR E CAPACITOR	1 μ F,50V 2.2 μ F,50V
R130	QRD161J-153	RESISTOR	15kΩ,1/6W	C13	QCTA1CH-390	CAPACITOR	39pF,16V
R131	QRD161J-222	RESISTOR	2.2kΩ ,1/6W	C14 C15	QCTA1CH-390 QFP42AF-102M	CAPACITOR PP CAPACITOR	39pF,16V 0.001 μ F,100V
R132	QRD161J-273	RESISTOR	27kΩ,1/6W	C16	QCYA1HK-102	CAPACITOR	$0.001\mu\text{F,50V}$
R133 R134	QRD161J-183 QRD161J-681	RESISTOR RESISTOR	18kΩ,1/6W 680Ω,1/6W	C17 C18	QCS31HJ-271 QFN31HJ-102	CAPACITOR M CAPACITOR	270pF,50V 0.001 μ F,50V
R135	QRD161J-271	RESISTOR	270Ω,1/6W	C19	QCTA1CH-331	CAPACITOR	330pF,16V
R136 R137	QRD161J-271 QRD161J-271	RESISTOR RESISTOR	270Ω,1/6W 270Ω,1/6W	C21	QENC1CM-336	NP E CAPACITO	R 33 µ F,16V
R138	QRD161J-102	RESISTOR	1kΩ,1/6W	C22	QETC1CM-227	E CAPACITOR	220 µ F,16V
R139 R140	QRD161J-271 QRD161J-102	RESISTOR RESISTOR	270Ω,1/6W 1kΩ,1/6W	C23 C24	QFN31HJ-104 QCYA1HK-223	M CAPACITOR CAPACITOR	0.1 μ F,50V 0.022 μ F,50V
				C25	QETC1EM-476	E CAPACITOR	47 μ F,25V
R141 R142	QRD161J-102 QRD161J-102	RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W	C26 C27	QETC1CM-476 QCYA1HK-223	E CAPACITOR CAPACITOR	47 µ F,16V
R143	QRD161J-224	RESISTOR	220kΩ,1/6W	C28	QFN31HJ-103	M CAPACITOR	0.022 \(\alpha \) F,50V 0.01 \(\alpha \) F,50V
R144	QRD161J-224	RESISTOR	220kΩ,1/6W	C29	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
R145 R146	QRD161J-103 QVZ3521-223	RESISTOR V RESISTOR	10kΩ,1/6W 22kΩ	C30	QCTA1CH-100	CAPACITOR	10pF,16V
R147	QVZ3521-223	V RESISTOR	22kΩ	C32	QETC0JM-476	E CAPACITOR	47 μ F,6.3V
R148 R149	QRD161J-222 QRD161J-822	RESISTOR RESISTOR	2.2kΩ,1/6W 8.2kΩ,1/6W	C33 C34	QCYA1HK-223 QETC1CM-476	CAPACITOR E CAPACITOR	0.022 µ F,50V 47 µ F,16V
R150	QRD161J-103	RESISTOR	10kΩ,1/6W	C35	QCYA1HK-223	CAPACITOR	0.022 μ F,50V
R151	QRD161J-104	RESISTOR	100kΩ,1/6W	C36 C37	QCTA1CH-100 QFN31HJ-104	CAPACITOR M CAPACITOR	10pF,16V 0.1 \(\mu\) F,50V
R152	QRD161J-154	RESISTOR	150kΩ,1/6W	C38	QCTA1CH-100	CAPACITOR	10pF,16V
R154 R155	QRD161J-104 QRD161J-103	RESISTOR RESISTOR	100kΩ,1/6W 10kΩ,1/6W	C40	QCTA1CH-101	CAPACITOR	100pF,16V
R156	QRD161J-103	RESISTOR	10kΩ,1/6W	C41	QETC1CM-106	E CAPACITOR	10 μ F,16V
R157 R158	QRD161J-472 QRD161J-222	RESISTOR RESISTOR	4.7kΩ,1/6W 2.2kΩ,1/6W	C42 C43	QFN31HJ-103 QCYA1HK-103	M CAPACITOR CAPACITOR	0.01 μ F,50V 0.01 μ F,50V
R159	QRD161J-104	RESISTOR	100kΩ,1∕6W	C44	QCYA1HK-223	CAPACITOR	0.022 µ F,50V
R160	QRD161J-473	RESISTOR	47kΩ,1/6W	C45 C46	QCTA1CH-270 QCTA1CH-470	CAPACITOR CAPACITOR	27pF,16V 47pF,16V
R161	ORD161J-473	RESISTOR	47kΩ,1/6W	C47	QETC1HM-104	E CAPACITOR	0.1 µ F,50V
R162 R163	QRD161J-184 QRD161J-103	RESISTOR RESISTOR	180kΩ,1/6W 10kΩ,1/6W	C48 C49	QCYA1HK-103 QCYA1HK-103	CAPACITOR CAPACITOR	0.01 \(\mu \) F,50V 0.01 \(\mu \) F,50V
R164	QRD161J-103	RESISTOR	10kΩ,1/6W	C50	QCYA1HK-103	CAPACITOR	0.01 µ F,50 V
R165 R166	QRD161J-221 QRD161J-272	RESISTOR RESISTOR	220Ω,1/6W 2,7kΩ,1/6W	C51	QCYA1HK-223	CAPACITOR	0.022 ⊭ F,50V
R167	QRD161J-103	RESISTOR	10kΩ,1/6W	C52	QETC0JM-476	E CAPACITOR	47 μ F,6.3V
R173	QRD161J-102	RESISTOR	1kΩ.1/6W	C53 C54	QETC1CM-476 QCYA1HK-223	E CAPACITOR CAPACITOR	47 ⊭ F,16V 0.022 ⊭ F,50V
R174	QRD161J-104	RESISTOR	100kΩ,1/6W	C55	QCYA1HK-223	CAPACITOR	0.022 ≠ F,50V
R175 R176	QRD161J-152 QRD161J-224	RESISTOR RESISTOR	1.5kΩ,1/6W 220kΩ,1/6W	C56 C57	QCYA1HK-223 QCYA1HK-223	CAPACITOR CAPACITOR	0.022 ⊭ F,50V 0.022 ⊭ F,50V
R178	QRD161J-104	RESISTOR	100kΩ,1/6W	C58	QFN31HJ-473	M CAPACITOR	0.022 ½ 1,50 V 0.047 ⊭ F,50 V
R179 R180	ORD161J-104 ORD161J-824	RESISTOR RESISTOR	100kΩ,1/6W 820kΩ,1/6W	C59	QFN31HJ-273	M CAPACITOR	0.027 µ F,50V
				C61	QETC1HM-105	E CAPACITOR	1 ≠ F,50V
R181 R182	QRD161J-104 QRD161J-272	RESISTOR RESISTOR	100kΩ,1/6W 2,7kΩ,1/6W	C62 C63	QFN31HJ-472 QFN31HJ-472	M CAPACITOR M CAPACITOR	0.0047 /z F,50V 0.0047 /z F,50V
R183	QRD161J-123	RESISTOR	12kΩ,1/6W	C64	QETC1CM-476	E CAPACITOR	47 µ F,16V
R184 R185	QRD161J-561 QVZ3521-103	RESISTOR V RESISTOR	560Ω,1/6W 10kΩ	C65 C66	QCYA1HK-223 QCTA1CH-101	CAPACITOR CAPACITOR	0.022⊭ F,50V 100pF,16V
R186	QRD161J-102	RESISTOR	1kΩ,1/6W	C67	QETC1HM-105	E CAPACITOR	1 _{/2} F,50V
R301	QRD167J-0R0	RESISTOR	0Ω,1/6W	C68 C69	QCYA1HK-223 QCYA1HK-223	CAPACITOR CAPACITOR	0.022⊭ F,50V 0.022⊭ F,50V
R302	QRD167J-0R0	RESISTOR	0Ω,1/6W	C70	QCYA1HK-223	CAPACITOR	0.022 p F,50V
	•			C71	QCYA1HK-223	CAPACITOR	0.022 _⊯ F,50V
C1	QENC1CM-226	NP E CAPACITOR		C72	QCYA1HK-223	CAPACITOR	0.022 g F,50V
C2 C3	0ETC1CM-106 0ETC1CM-476	E CAPACITOR E CAPACITOR	10 μ F,16V 47 μ F,16V	C73 C74	QCYA1HK-223 QCYA1HK-223	CAPACITOR CAPACITOR	0.022 /r F,50V 0.022 /r F,50V
C4	OCTA1CH-390	CAPACITOR	39pF,16V	C75	QCYA1HK-223	CAPACITOR	0.022 F,50V
C5 C6	QCTA1CH-121 QFN31HJ-154	CAPACITOR M CAPACITOR	120pF,16V 0.15 µ F,50V	C76 C77	QCYA1HK-223 QCYA1HK-223	CAPACITOR CAPACITOR	0.022 p F.50V
C7	QFP42AF-102M	PP CAPACITOR	0.001 μ F,100V	C78	QCYA1HK-223	CAPACITOR	0.022 ⊭ F,50V 0.022 ⊭ F,50V

4 A DEF	No DADT M-	PART NAME,	DESCRIPTION	#∧REF No.	PART No.	PART	NAME.	<30><31 DESCRIPTION
7/1 KE F C79	No. PART No. QCYA1HK-223	CAPACITOR	0.022 μ F,50V	IC5	TMP82C255AN-2	IC		
C80	QCYA1HK-223	CAPACITOR	0.022 μ F,50V	IC6 IC7	TA79L012P M5278D05	IC IC		
C81	QCYA1HK-223	CAPACITOR	0.022 μ F,50V	IC8	TA78L012AP	IC		
C82	QCYA1HK-223	CAPACITOR	0.022 μ F,50V 0.022 μ F,50V	IC9 IC10	TA8405S BA10358F	IC IC		
C83 C84	QCYA1HK-223 QCYA1HK-223	CAPACITOR CAPACITOR	0.022 μ F,50V	1010				
C85	QCYA1HK-223	CAPACITOR	0.022 μ F,50V	IC11 IC12	BA10358F BA10358F	IC IC		
C86 C87	QCYA1HK-223 QCYA1HK-223	CAPACITOR CAPACITOR	0.022 μ F,50V 0.022 μ F,50V	IC13	NJM2068MD	IC		
C88	QCYA1HK-223	CAPACITOR	0.022 μ F,50V	IC17	TC4066BF	IC IC		
C89	QCYA1HK-223	CAPACITOR	0.022 μ F,50V	IC18 IC19	BA10358F TC4526BF	IC		
			470 11	IC20	TC4526BF	IC		
L1 L2	PU48530-471J PU48530-221J	COIL	470 μ H 220 μ H	IC21	TC4013BF	IC		
	1 040330-2210	COIL		IC22	BA6993F	IC		
. V1	PU47220	CRYSTAL RESON	MATOR	IC23 IC24	BA6993F NJM2068MD	IC IC		
X1 X2	PEVB0335	CRYSTAL RESOI		IC25	NJM2068MD	IC		
				IC26 IC27	NJM2068MD NJM2068MD	IC IC		
HS1	PRD43027	HEAT SINK		IC28	BA6993F	IC		
				IC29 IC30	AN3834K AN3834K	IC IC		
SCW	spsp3008Z	SCREW						
SCW		SCREW, ×2		IC31 IC33	BA222 M51957BL	IC IC		
				IC34	M51957BL	ic		
SPC1	PGZ00150	TR SPACER						
				Q1	2SB907		NSISTOR	
TP1	PU54983	TEST PIN, ×17		02	2SA1020(Y)		NSISTOR	
				Q3 Q4	2SD1468S(SE) 2SA1020(Y)		NSISTOR NSISTOR	
CN1	PU58844-2	CONNECTOR		Q5	DTC124ES		NSISTOR	
CN2 CN3	PU58844-2R PU58844-5	CONNECTOR CONNECTOR		Q6 Q7	2SB1151(K) 2SD1468S(SE)		NSISTOR NSISTOR	
CN4	PU58844-2R	CONNECTOR		Q8	2SB1151(K)		NSISTOR	
CN5	PU58844-3Y PU58844-4	CONNECTOR CONNECTOR		Q9 Q10	2SD1468S(SE) 2SD1468S(SE)		NSISTOR NSISTOR	
CN6 CN7	PU58844-2	CONNECTOR						
CNB	PU58844-2Y	CONNECTOR		Q11 Q12	2SD1276(PQ) DTA124ES		NSISTOR NSISTOR	
CN9 CN10	PU58844-4 PU58844-2Y	CONNECTOR CONNECTOR		Q13	DTC124ES		NSISTOR	
				Q14	DTC124ES		NSISTOR	
CN1 CN1		CONNECTOR CONNECTOR		Q15 Q16	DTC124ES 2SA1020(Y)		NSISTOR NSISTOR	
CNI	3 PU58844-6	CONNECTOR		Q17	DTA124ES		NSISTOR	
CN14 CN1		CONNECTOR CONNECTOR		Q18 Q19	DTA124ES DTA124ES		NSISTOR NSISTOR	
CN1	7 PU58844-8	CONNECTOR						
CN1 CN1		CONNECTOR CONNECTOR		Q21 Q22	DTC124ES DTC124ES		NSISTOR NSISTOR	
CN2		CONNECTOR		Q23	2SB907	TRAI	NSISTOR	
				Q24	2SA1020(Y)	TRAI	NSISTOR	
				D2	1SS133	DIOD	ne .	
M.C	TL/R.SERVO BO	ARD ASSEMBLY	′<31>	D3	1SS133	DIOD	E	
				D4 D5	RK14LF-B2 1SS133	DIOD		
PW	3A PRK10059B	M.CTL/R.SERV	O BOARD ASSY	D6	1SS133	DIOE		
. +**	-,			70	1\$\$133	DIOD		
∆ STK	1 PRD30072-31	STICKER		D8.	1SS133 1SS133	DIOE		
STK		STICKER			188133	DIOE		
				D11	1 S S133	DIOE	DE	
IC1	PGD30241-10-4			D12	1SS133	DIOE	DE	
IC2	or PGD30241C-10- CXP80116-7060			D13	1SS133 11ES2	DIOE		
IC3	TC74HC00AF	IC		D15	RK14LF-B2	DIOE	DE	
IC4	M6M80011AP	IC		D16	RK14LF-B2	DIOE	DE	

<31>				1					
#AREF No.	PART No.	PART NAME,	DESCRIPTION	#4	AREF No.	PART No.	PART	NAME,	DESCRIPTION
D17 D19 D20	1SS133 1SS133 1SS133	DIODE DIODE DIODE			R58 R59 R60	QRD161J-472 QRD161J-472 QRD161J-102	RESIST RESIST	OR	4.7kΩ,1/6W 4.7kΩ,1/6W 1kΩ,1/6W
D21 D22 D23 D24 D25 D26 D27 D28	1SS133 1SS133 1SS133 1SS133 RD5.1EB1 RD5.1EB1 RD5.1EB1 V03C	DIODE DIODE DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE DIODE		Δ	R61 R63 R64 R65 R66 R67 R68 R69 R70	ORG019J-561S QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-105 QRD161J-104 QRD161J-104	OMF I RESIST RESIST RESIST RESIST RESIST RESIST	OR OR OR OR OR OR	560Ω ,1W $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $10k\Omega$,1 $/6W$ $100k\Omega$,1 $/6W$
R1 R2 R3 R4 R5 R6 R7 R8 R9	QRD161J-102 QRD161J-104 QRD161J-104 QRD161J-104 QRD161J-563 QRD161J-563 QRD161J-104 QRD161J-104	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	$1k\Omega.1/6W$ $100k\Omega.1./6W$ $100k\Omega.1./6W$ $100k\Omega.1./6W$ $100k\Omega.1./6W$ $56k\Omega.1./6W$ $56k\Omega.1./6W$ $100k\Omega.1./6W$ $100k\Omega.1./6W$		R71 R72 R73 R74 R75 R76 R77 R78 R79 R80	QRD161J-105 QRD161J-105 QRD161J-103 QRV141F-1003AY QRV141F-1002AY QRV141F-2213AY QRD161J-080 QRD161J-103 QRV141F-2213AY QRV141F-1002AY	CMF F CMF F RESIST RESIST CMF F	TOR TOR RESISTOR RESISTOR RESISTOR TOR TOR RESISTOR	$1M\Omega,1/6W$ $1M\Omega,1/6W$ $1M\Omega,1/6W$ $10k\Omega,1/6W$ $100k\Omega,1/4W$ $10.0k\Omega,1/4W$ $221k\Omega,1/4W$ $0\Omega,1/6W$ $10k\Omega,1/6W$ $221k\Omega,1/4W$ $10.0k\Omega,1/4W$
R11 R12 R13 R14 R15 R16 R17 R18 R19	QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-472 QRD161J-472 QRD161J-472 QRD161J-121	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	120Ω.1/6W 120Ω.1/6W 120Ω.1/6W 120Ω.1/6W 120Ω.1/6W 120Ω.1/6W 4.7kΩ.1/6W 4.7kΩ.1/6W 120Ω.1/6W		R81 R93 R94 R95 R96 R97 R98 R99 R100	QRV141F-1501AY QRD161J-563 QRD161J-104 QRD161J-104 QRD161J-103 QRD161J-103 PU52108-330K PU52108-220K	RESIST RESIST RESIST RESIST RESIST RESIST POSITI	RESISTOR FOR FOR FOR FOR FOR	1.50kΩ ,1/4W 56kΩ ,1/6W 56kΩ ,1/6W 100kΩ ,1/6W 100kΩ ,1/6W 10kΩ ,1/6W 10kΩ ,1/6W
R21 R22 R23 R24 R25 R26 R27 R28 R29	QRD161J-154 QRD161J-0R0 QRD161J-0R0 QRD161J-0R0 QRD161J-121 QRD161J-121 QRD161J-0R0 QRD161J-121 QRD161J-0R0 QRD161J-0R0 QRD161J-0R0	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	150kΩ,1/6W 0Ω,1/6W 0Ω,1/6W 120Ω,1/6W 120Ω,1/6W 120Ω,1/6W 120Ω,1/6W 0Ω,1/6W 0Ω,1/6W		R101 R102 R103 R104 R105 R106 R107 R108 R109 R110	QRD161J-222 QRD161J-222 QRD161J-222 QRD161J-222 QRD161J-223 QRD161J-223 QRD161J-223 QRD161J-102 QRD161J-102	RESIST RESIST RESIST RESIST RESIST RESIST RESIST RESIST RESIST RESIST	OR OR OR OR OR OR OR OR OR	2.2kΩ ,1/6W 2.2kΩ ,1/6W 2.2kΩ ,1/6W 2.2kΩ ,1/6W 22kΩ ,1/6W 22kΩ ,1/6W 22kΩ ,1/6W 22kΩ ,1/6W 1kΩ ,1/6W 1kΩ ,1/6W
R31 R32 R33 R35 R36 R37 R38 R39 R40	QRD161J-0R0 QRD161J-0R0 QRD161J-0R0 QRD161J-0R0 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	0Ω,1/6W 0Ω,1/6W 0Ω,1/6W 0Ω,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W		R111 R112 R113 R114 R115 R116 R117 R118 R119	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-333 QRD161J-474 QRD161J-333	RESIST RESIST RESIST RESIST RESIST RESIST RESIST RESIST RESIST	OR OR OR OR OR OR OR	1kΩ .1/6W 1kΩ .1/6W 1kΩ .1/6W 1kΩ .1/6W 1kΩ .1/6W 1kΩ .1/6W 33kΩ .1/6W 470kΩ .1/6W 33kΩ .1/6W
R41 R42 R43 R44 R45 R46 R47 R48 R49	QRD161J-103 QRD161J-104 QRD161J-104 QRD161J-104 QRD161J-104 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103 QRD161J-103	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	10kΩ,1/6W 10kΩ,1/6W 100kΩ,1/6W 100kΩ,1/6W 100kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W 10kΩ,1/6W	Δ	R120 R121 R122 R123 R124 R125 R126 R127 R128 R129	QRD161J-474 QRD161J-473 QRD161J-473 QRD161J-473 QRD161J-103 QRD161J-103 QRV141F-4301AY QRD161J-223 QRX029J-R56A	RESIST	OR OR OR OR OR OR OR	1kQ .1/6W 1kQ .1/6W 47kQ .1/6W 1kQ .1/6W 10kQ .1/6W 10kQ .1/6W 10kQ .1/6W 22kQ .1/6W
R51 R52 R53 R54 R55 R56 R57	QRD161J-103 QRD161J-472 QRD161J-472 QRD161J-472 QRD161J-472 QRD161J-472 QRD161J-104	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	10kΩ,1/6W 4.7kΩ,1/6W 4.7kΩ,1/6W 4.7kΩ,1/6W 4.7kΩ,1/6W 4.7kΩ,1/6W 100kΩ,1/6W	Δ	R130 R131 R132 R133 R134 R135	QRD161J-221 QRD161J-221 QRV141F-4301AY QRD161J-223 QRX029J-R56A QRD161J-221	RESIST RESIST RESIST	OR OR OR OR SISTOR	0.5 6Ω, 2W 220Ω, 1/6W 220Ω, 1/6W 4.30kΩ, 1/4W 22kΩ, 1/6W 0.5 6Ω, 2W 220Ω, 1/6W

#_^	REF No.	PART No.	PART NAME,	DESCRIPTION	# <u></u> REF	No. PART No.	PART NAME,	DESCRIPTION
	R136	QRD161J-221	RESISTOR	220Ω,1/6W	C11	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
	R137	QRD161J-331	RESISTOR	330Ω,1/6W	C12	QCYA1HK-103	CAPACITOR	0.01 µ F.50V
	R138	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C13	QCYA1HK-103	CAPACITOR	0.01 μ F,50V
	R139	QRD161J-102	RESISTOR	1kΩ,1/6W	C14	QCFA1EZ-104	CAPACITOR	0.1 μ F.25V
	R140	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C15	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	F 140	URD 1013-472	NESISTON	4.7822,17 044	C15	QCFA1EZ-104	CAPACITOR	0.1 μ F,25 V
	5144	000101 1 430	DECICEOD	471-0 1 /614/	C17	QETC1EM-476	E CAPACITOR	47 μ F,25V
	R141	QRD161J-472	RESISTOR	4.7kΩ,1/6W				
	R142	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C18	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
Δ	R143	QRG029J-560A	OMF RESISTOR	56Ω,2W	C19	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R144	QRD161J-221	RESISTOR	220Ω.1/6W	C20	QETC1EM-107	E CAPACITOR	100 μ F,25V
	R145	ORD161J-221	RESISTOR	220Ω,1/6W		00704514407		400 5 0514
Δ	R146	QRG019J-561S	OMF RESISTOR	560Ω,1W	C21	QETC1EM-107	E CAPACITOR	100 μ F,25V
Δ	R147	QRG019J-561\$	OMF RESISTOR	560Ω,1W	C22	QCFA1EZ-104	CAPACITOR	$0.1 \mu\text{F,}25\text{V}$
	R148	QRD161J-102	RESISTOR	1kΩ,1/6W	C23	QCFA1EZ-104	CAPACITOR	$0.1 \mu\text{F,}25\text{V}$
	R149	QRD161J-102	RESISTOR	1kΩ,1/6W	C24	QETC1AM-227	E CAPACITOR	220μ F,10V
	R150	QRD161J-104	RESISTOR	100kΩ,1/6W	C25	QETC1EM-476	E CAPACITOR	47 μ F,25V
					C26	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R151	QRD161J-104	RESISTOR	100kΩ,1∕6W	C27	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R152	QRD161J-102	RESISTOR	1kΩ,1/6W	C28	QETC1EM-107	E CAPACITOR	100 μ F,25V
	R153	QRD161J-102	RESISTOR	1kΩ,1/6W	C29	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R154	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C30	QETC1EM-227	E CAPACITOR	220 μ F,25V
	R155	QRD161J-121	RESISTOR	120Ω.1/6W				
	R156	QRD161J-103	RESISTOR	10kΩ,1/6W	C31	QETC1HM-106	E CAPACITOR	10 μ F,50V
	R157	QRD161J-222	RESISTOR	2.2kΩ,1/6W	C32	QETC1EM-227	E CAPACITOR	220 μ F,25V
	R158	QRD161J-473	RESISTOR	47kΩ,1/6W	C33	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R159	QRD161J-223	RESISTOR	22kΩ,1/6W	C34	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R160	QRD161J-104	RESISTOR	100kΩ.1/6W	C35	QEZ0138-108	E CAPACITOR	1000 μ F
	11.00	CITOTOTO TO	1120101011		C37	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R161	QRD161J-103	RESISTOR	10kΩ,1/6W	C38	QETC1HM-106	E CAPACITOR	10 µ F.50V
	R164	QRD161J-103	RESISTOR	10kΩ,1/6W	C39	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R165	QRD161J-104	RESISTOR	100kΩ,1/6W	000	COI MILL 104	ON NOTON	0.1 / 1.20 4
	R166	QRD161J-103	RESISTOR	10kΩ,1/6W	C42	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R167		RESISTOR	10kΩ,1/6W	C43	QETC1EM-476	E CAPACITOR	47 μ F,25V
		QRD161J-103	RESISTOR	10kΩ,1/6W	C44	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R168	QRD161J-103				QETC1EM-476	E CAPACITOR	
	R169	QRD161J-103	RESISTOR	10kΩ,1/6W	C45	QCFA1EZ-104	CAPACITOR	47 μ F,25V
	R170	QRD161J-104	RESISTOR	100kΩ,1/6W	C46			0.1 μ F,25V
	D434	000444444	DECICEOD	1001-0 1 (0)41	C47	QCFA1EZ-104	CAPACITOR	0.1 µ F,25V
	R171	QRD161J-104	RESISTOR	100kΩ,1/6W	C48	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R172	QRD161J-104	RESISTOR	100kΩ,1/6W	C49	QFN31HJ-104	M CAPACITOR	0.1 μ F,50V
	R173	QRD161J-104	RESISTOR	100kΩ.1/6W	C50	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R174	QRD161J-104	RESISTOR	100kΩ,1/6W	~~~	0054457404	CARACITOR	0.4 5.051/
	R175	QRD161J-103	RESISTOR	10kΩ,1∕6W	C58	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	D404	0004441000	DECICTOR	00 4 (6)4/	C59	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R181	QRD161J-0R0	RESISTOR	0Ω,1/6W	C60	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R182	QRD161J-472	RESISTOR	4.7kΩ ,1 /6W	004	000/44111450	CARACITOR	0.045 = 501/
	R183	QRD161J-472	RESISTOR	4.7kΩ ,1 /6W	C61	QCYA1HJ-153	CAPACITOR	0.015 μ F,50V
	R184	QRD161J-472	RESISTOR	4.7kΩ ,1/6W	C62	QCYA1HJ-153	CAPACITOR	0.015 μ F,50V
	R185	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C63	QCYA1HJ-473	CAPACITOR	0.047 μ F,50V
	R186	QRD161J-472	RESISTOR	4.7kΩ,1/6W	C64	QCYA1HJ-473	CAPACITOR	0.047 μ F,50V
	R187	QRD161J-104	RESISTOR	100kΩ,1/6W	C65	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R189	QRD161J-104	RESISTOR	100kΩ,1/6W	C66	QETC1EM-227	E CAPACITOR	220 μ F,25V
	R190	QRD161J-104	RESISTOR	100kΩ,1/6W	C67	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
					C68	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R191	QRD161J-103	RESISTOR	10kΩ,1/6W	C69 C70	QCFA1EZ-104 QETC1HM-106	CAPACITOR E CAPACITOR	0.1μ F,25V 10μ F,50V
	R201	PU55509-472	V RESISTOR					E : F *
	R202	PU55509-472	V RESISTOR		C71	QCFA1EZ-104	CAPACITOR	0.1 µ F.25V
	R203	PU55509-472	V RESISTOR		C72	QCFA1EZ-104	CAPACITOR	0.1 µ F.25V
	R204	PU55509-472	V RESISTOR		C73	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	R206	PU55509-102	V RESISTOR		C74	QCTA1CH-680	CAPACITOR	68pF,16V
	R207	PU55509-223	V RESISTOR		C75	QCTA1CH-7R0	CAPACITOR	7pF,16V
	1 (20)	, 000000 ===0			C76	QCTA1CH-680	CAPACITOR	68pF,16V
					C77	QCTA1CH-7R0	CAPACITOR	7pF,16V
	C1	QETC1AM-107	E CAPACITOR	100 μ F,10V	C78	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	C2	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C79	QCFA1EZ-104	CAPACITOR	0.1 μ F,25 V 0.1 μ F,25 V
	C3	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C80	QCFA1EZ-104	CAPACITOR	0.1 μ F,25 V 0.1 μ F,25 V
	C4	QETC1HM-106	E CAPACITOR	10 μ F,50V	L C00	COLATEZ-104	ON ACITOR	V.(μ Γ,23V
		QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C81	QCFA1EZ-104	CAPACITOR	0.1 = 0EV
	C5	QCTA1CH-120	CAPACITOR	12pF,16V	C82	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	C6							0.1 μ F,25V
	C7	QCTA1CH-120	CAPACITOR	12pF,16V	C83	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	C8	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C84	QCFA1EZ-104	CAPACITOR	0.1μ F,25V
	C9	QCYA1HK-103	CAPACITOR	0.01 μ F,50V	C85	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V
	C10	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V	C86	QETC1EM-107	E CAPACITOR	100 μ F,25V
					C87	QCFA1EZ-104	CAPACITOR	0.1 μ F,25V

-3	1	><40>	

#AREF No.	PART No.	PART NAME,	DESCRIPTION	#_^	REF No.	PART No.	PART	NAME,	DESCR	IPTION
C88 C89	QETC1EM-227 QCFA1EZ-104	E CAPACITOR CAPACITOR	220 μ F,25V 0.1 μ F,25V		L10	PU48530-271J	COIL			270 μ H
C90 C91 C92 C93 C94 C96 C97 C98 C99	QETC1 AM-107 QETC1 EM-476 QFV71 HJ-104 QCFA1 EZ-104 QFV71 HJ-154 QFV71 HJ-154 QFV71 HJ-154 QFV71 HJ-104	E CAPACITOR E CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR	0.1 μ F,50V		L13 L14 L15 L16 L17 L18 L19 L20	PU48530-271J PU48530-271J PU48530-271J PU50277 PU50277 PU50775 PU50755 PU50775	COIL COIL COIL COIL COIL COIL COIL COIL			270 μ H 270 μ H 270 μ H
C100	QETC1HM-475	E CAPACITOR	4.7 μ F.50V 4.7 μ F.50V	△	X 1	PGZ00067-02	CRYS	TAL RESO	NATOR	
C102 C103 C104 C105 C106 C107 C108	QETC1HM-475 QCYA1HK-472 QCYA1HK-472 QCYA1HK-472 QETC1AM-107 QCFA1EZ-104 QETC1EM-476	E CAPACITOR CAPACITOR CAPACITOR E CAPACITOR CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR	4.7 μ F.50V 0.0047 μ F.50V 0.0047 μ F.50V 0.0047 μ F.50V 100 μ F.10V 0.1 μ F.25V 47 μ F.25V	Δ	SW1 SW2	QSL0015-L04 PU57551 PGZ00354		W SWITCH ATE BEAD	s	
C109 C110	QFV71HJ-104 QCFA1EZ-104	TF CAPACITOR CAPACITOR	0.1 μ F,50V 0.1 μ F,25V	▲	K2	PGZ00354		ATE BEAD		
C111 C113 C114 C115	QFV71HJ-104 QFV71HJ-154 QFV71HJ-154 QFV71HJ-154	TF CAPACITOR TF CAPACITOR TF CAPACITOR TF CAPACITOR	0.1 μ F,50V 0.15 μ F,50V 0.15 μ F,50V 0.15 μ F,50V		TH1 TH2	QRD161J-0R0 QRD161J-0R0	RESIS RESIS			0Ω,1/6W 0Ω,1/6W
C116 C117 C118	QFV71HJ-104 QETC1HM-475 QETC1HM-475	TF CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F,50V 4.7 μ F,50V 4.7 μ F,50V		CL1	PGZ01377-03		E PIN, X		
C119 C120	QETC1HM-475 QCYA1HK-472	E CAPACITOR CAPACITOR	4.7 μ F,50V 0.0047 μ F,50V		HS1	PRD43592		SINK, ×	2	
C121 C122 C123	QCYA1HK-472 QCYA1HK-472 QCFA1EZ-104	CAPACITOR CAPACITOR CAPACITOR	0.0047 μ F,50V 0.0047 μ F,50V 0.1 μ F,25V		SCW1	SPSP3008Z	SCRE	W, ×4		
C124 C125 C126	QETC1EM-477 QETC1EM-477 QETC1EM-477	E CAPACITOR E CAPACITOR E CAPACITOR	470 μ F,25V 470 μ F,25V 470 μ F,25V		SKT1	PGZ00331-028	IC SO	CKET		
C127 C128 C129	QEZ0139-337 QEZ0139-337 QETC1HM-106	E CAPACITOR E CAPACITOR E CAPACITOR	330 μ F 330 μ F 10 μ F,50V		TP1	PU54983		PIN, ×7		
C130 C131	QETC1HM-106 QCFA1EZ-104	E CAPACITOR CAPACITOR	10 μ F,50V 0.1 μ F,25V		CN1 CN2 CN3	PU58844-8 PU58844-11 PU58844-7	CONN	ECTOR ECTOR ECTOR		
C132 C133 C134 C135 C139 C140	OCFA1EZ-104 OFN31HJ-103 OCFA1EZ-104 OCFA1EZ-104 OFN31HJ-104 OFN31HJ-104	CAPACITOR M CAPACITOR CAPACITOR CAPACITOR M CAPACITOR M CAPACITOR	0.1 μ F.25V 0.01 μ F.50V 0.1 μ F.25V 0.1 μ F.25V 0.1 μ F.50V 0.1 μ F.50V		CN4 CN5 CN6 CN7 CN8 CN9 CN10	PU58844-9 PU58844-10 PU58844-3 PU58844-10R PU58844-3R PU58844-5 PU58798-10	CONN CONN CONN CONN	ECTOR JECTOR JECTOR JECTOR JECTOR JECTOR JECTOR JECTOR		
C141 C142 C145 C146 C147 C148	OCYA1HK-102 OCYA1HK-102 QETC1HM-474 QETC1HM-474 QETC1HM-475 QCFA1EZ-104	CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR	0.001 μ F,50V 0.001 μ F,50V 0.47 μ F,50V 0.47 μ F,50V 4.7 μ F,50V 0.1 μ F,25V		CN11 CN12 CN13 CN14	PU58844-4 PU58844-4R PU58844-5 PU58844-3	CONN	ECTOR ECTOR ECTOR ECTOR		
C149 C150	QCFA1EZ-104 QCFA1EZ-104	CAPACITOR CAPACITOR	0.1 μ F,25V 0.1 μ F,25V	△	CP1 CP2	ICP-F10 ICP-F10		JIT PROTE		
C151 C152	QCFA1EZ-104 QCF11HP-103	CAPACITOR CAPACITOR	0.1 μ F,25V 0.01 μ F,50V							
L1 L2 L3	PU48530-271J PU48530-271J PU50277	COIL COIL COIL	270 μ H 270 μ H		SYSCON	PGE10152B-02		<40>	V22A	
L4 L5 L7	PU50277 PGZ00253-241 PU48530-271J	COIL COIL COIL	270 µ H					UN BUAKL	Y MOOY	
L9	PU48530-271J	COIL	270 μ H		IC1	HD64180ZF8	IC	_		

#∆	kef i	No.	PART No.	PART	NAME,	DESCRIPTION	# <u>∧</u> REF N	lo. PART No.	PART NAME,	DESCRIPTION
	IC2 IC3 IC5 IC6 IC7	or	PGD30620-2-2 PGD30620C-2-2 TC5564APL-15 TMPZ84C30AP-6 TMPZ84C30AP-6 TMPZ84C30AP-6				R34 R35 R36 R37 R38	QRD167J-102 QRD167J-101 QRD167J-333 QRD167J-333 QRD167J-100	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 100Ω,1/6W 33kΩ,1/6W 33kΩ,1/6W 10Ω,1/6W
	IC8 IC9 IC10		TMP82C55AF-2 TMP91C640N-238 VC2054	IC			RA1 RA2 RA3	QRB08AJ-103 QRB08AJ-103 EXB-P88103M	NETWORK RESIS NETWORK RESIS NETWORK RESIS	STOR 10kΩ,8W STOR
	IC11 IC12 IC13		TC74HC138AP TC74HC138AP TC74HC32AP	IC IC IC			RA4 RA5 RA6	EXB-P88103M QRB08AJ-103 EXB-P84223M	NETWORK RESIST RESISTOR ARRA	STOR 10kΩ,8W
	IC14 IC15 IC16 IC17 IC18		TC74HC32AP TC74HC08AP TC74HC11AP TC74HC245AP TC74HC541AP	IC IC IC IC			RA7 RA8 RA9 RA10	QRB08AJ-103 QRB08AJ-103 EXB-P88473M QRB08AJ-103	NETWORK RESIS NETWORK RESIS RESISTOR ARRA NETWORK RESIS	STOR 10k Ω ,8W STOR 10k Ω ,8W
	IC19 IC20		TC74HC541AP TC74HC244AP	IC IC			C1 C2	QETA1EM-476 QETA1EM-107	E CAPACITOR E CAPACITOR	47 μ F,25V 100 μ F,25V
	IC21 IC22 IC23 IC24 IC25 IC26 IC27 IC28 IC29		TC74HC74AP TC74HC74AP TC74HC126AP TC74HC14AP TC74HC4020AP TC74HC126AP MC34051P M51957BL M51957BL	IC IC IC IC IC IC			C3 C4 C5 C6 C7 C8 C9 C10	QETA1EM-107 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QETA1EM-476 QCC11CJ-104 QCS11HJ-220 QCS11HJ-220	E CAPACITOR CAPACITOR CAPACITOR CAPACITOR E CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	100 μ F,25 V 0.1 μ F,16 V 0.1 μ F,16 V 0.1 μ F,16 V 47 μ F,25 V 0.1 μ F,16 V 22 p F,50 V
	IC30		TC74HC74AP	ic ic			C11 C12 C13	QCS11HJ-180 QCS11HJ-180 QETA1HM-105	CAPACITOR CAPACITOR E CAPACITOR	18pF,50V 18pF,50V 1 μ F,50V
	IC31 IC32 IC33 IC34		M5278D05 M5278D05 TC74HC32AP TC7W08F	IC IC			C14 C15 C16 C17 C19	QETATHW-105 QCS11HJ-220 QCS11HJ-220 QCS11HJ-220 QCS11HJ-220	E CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	1 µ F,50V 22pF,50V 22pF,50V 22pF,50V 22pF,50V
	R1 R2 R3 R4 R5 R6 R7 R8 R9 R10		QRD167J-103 QRD167J-103 QRD167J-103 QRD167J-103 QRD167J-0R0 QRD167J-0R0 QRD167J-333 QRD167J-101 QRD167J-101	RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS'	TOR TOR TOR TOR TOR TOR TOR TOR TOR TOR	$\begin{array}{c} 10k\Omega,1/6W \\ 10k\Omega,1/6W \\ 10k\Omega,1/6W \\ 10k\Omega,1/6W \\ 0\Omega,1/6W \\ 0\Omega,1/6W \\ 33k\Omega,1/6W \\ 33k\Omega,1/6W \\ 100\Omega,1/6W \\ 100\Omega,1/6W \\ \end{array}$	C20 C21 C22 C23 C24 C25 C26 C27 C28 C29	QCS11HJ-220 QCS11HJ-220 QCS11HJ-220 QCC11CJ-104 QETA1EM-107 QETA1EM-107 QCC11CJ-104 QCF11HP-102 QCS11HJ-470 QCF11HP-103	CAPACITOR CAPACITOR CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	22pF,50V 22pF,50V 22pF,50V 0.1 μ F,16V 100 μ F,25V 100 μ F,25V 0.1 μ F,16V 0.001 μ F,50V 47pF,50V 0.01 μ F,50V
	R11 R12		QRD167J-101 QRD167J-101	RESIST RESIST	TOR	100Ω,1/6W 100Ω,1/6W	C30	QCF11HP-103	CAPACITOR	0.01 μ F,50V
	R13 R14 R15 R16 R17 R18 R19 R20		QRD167J-101 QRD167J-101 QRD167J-101 QRD167J-103 QRD167J-563 QRD167J-223 QRD167J-104 QRV147F-1103A	RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS'	TOR TOR TOR TOR TOR TOR	100Ω ,1/6W 100Ω ,1/6W 100Ω ,1/6W $10k\Omega$,1/6W $56k\Omega$,1/6W $22k\Omega$,1/6W $100k\Omega$,1/6W $110k\Omega$,1/4W	C51 C52 C53 C55 C56 C57 C58 C59 C60	QCZ0208-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104	CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.1 \(\mu\) F 0.1 \(\mu\) F,16V 0.1 \(\mu\) F,16V 0.1 \(\mu\) F,16V 0.1 \(\mu\) F,16V 0.1 \(\mu\) F,16V 0.1 \(\mu\) F,16V 0.1 \(\mu\) F,16V
	R21 R22 R23 R24 R25 R26 R27 R28 R29 R30		QRV147F-1002A QRD167J-104 QRD167J-102 QRD167J-102 QRD167J-102 QRD167J-103 QRD167J-103 QRD167J-102 QRD167J-102 QRD167J-101	RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS' RESIS'	TOR TOR TOR TOR TOR TOR TOR TOR	$10.0k\Omega,1/4W$ $100k\Omega,1/6W$ $1k\Omega,1/6W$ $1k\Omega,1/6W$ $1k\Omega,1/6W$ $10k\Omega,1/6W$ $10k\Omega,1/6W$ $1k\Omega,1/6W$ $1k\Omega,1/6W$	C61 C62 C63 C64 C65 C66 C67 C68 C69	QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104	CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V
	R31 R32		QRD167J-103 QRD167J-103	RESIS'	TOR	10kΩ,1/6W 10kΩ,1/6W	C70	QCC11CJ-104	CAPACITOR	0.1 μ F,16V 0.1 μ F,16V
	R33		QRD167J-102	RESIS		1kΩ,1/6W	C72	QCC11CJ-104	CAPACITOR	0.1 µ F,16V

<40	١,	-1	1	`
L	_	<+	- 1	_

#_^	REF No.	PART No.	PART NAME, DESC	RIPTION	#△REF No.	PART No.	PART NAME,	DESCRIPTION
	C73 C74 C75 C76 C77 C78 C79 C80	QCZ0208-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104 QCC11CJ-104	CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR	0.1 μ F 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V 0.1 μ F,16V	IC19 IC20 Q1 Q2 Q3 Q4	M5278L05 UPC78N05 2SC1740S(QRS) 2SA933S(RS) 2SA933S(RS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	C83	QCC11CJ-104	CAPACITOR	0.1 μ F,16V	Q5 Q6 Q7 Q8	2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	L1 L2	PGZ00617-221 PGZ00617-221	COIL		Q9 Q10	2SA933S(RS) 2SA933S(RS)	TRANSISTOR TRANSISTOR	
<u>∧</u>	X1 X2	PGZ00513 PGZ01561	CERAMIC FILTER CRYSTAL RESONATOR		Q12 Q13 Q14 Q15	2SC1740S(QRS) 2SC1740S(QRS) 2SA933S(RS) 2SA933S(RS) 2SA933S(RS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
Δ	K1 BKT1	PRD30766-01-02	FERRATE BEADS, ×4 SLOT COVER		Q16 Q17 Q18 Q19	2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
	EJ1	PGZ00582	EJECTOR, ×2		Q20 Q21	2SC1740S(QRS) 2SC1740S(QRS)	TRANSISTOR TRANSISTOR	
	RV1	PU53276	PLASTIC RIVET, ×4		Q22	2SC1740S(QRS)	TRANSISTOR	
	SKT1	PGZ00331-028	IC SOCKET		D1 D2 D3	1SS133 1SS133 1SS133	DIODE DIODE DIODE	
	SKT2 SLD1	PGZ01428-064 PRD30781-03-05	SHIELD PLATE		D5 D6 D7 D8 D9	MA27TB 1SS133 1SS133 1SS133	DIODE DIODE DIODE DIODE DIODE	
	TP1	PU54983	TEST PIN, ×19		D10 D11	1SS133 RD7,5EB2	DIODE ZENER DIODE	
	CN1 CN2 CN3	PGZ00421-44 PGZ00421-44 PGZ01518-100	MALE CONNECTOR MALE CONNECTOR HALF PITCH CONNECTOR	OR į	R2 R3 R4 R5 R6	QRD161J-333 QRD161J-123 QRD161J-181 QRV141F-5600AY QRV141F-3300AY	RESISTOR RESISTOR RESISTOR CMF RESISTOR CMF RESISTOR	33kΩ ,1/6W 12kΩ ,1/6W 180Ω ,1/6W 560Ω ,1/4W 330Ω ,1/4W
		S BOARD ASS			R7 R8 R9 R10		CMF RESISTOR CMF RESISTOR RESISTOR RESISTOR	300 \text{20.1/4W} \\ 442 \text{20.1/4W} \\ 1.8k \text{20.1/6W} \\ 2.2k \text{20.1/6W}
	PWBA STK1	PRK20089B PRD30072-57	AVM/ONSC BOARD AS	SSY	R11 R12 R13 R16	QRD161J-152 QRD161J-561 QRD161J-561 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR	1.5kΩ .1/6W 560Ω .1/6W 560Ω .1/6W 1kΩ .1/6W
	IC2 IC3 IC4 IC5	TC74HC4066AP NJM2233BD M50554-263SP M52684AP	IC IC IC		R17 R18 R19 R20	QRD161J-561 QRD161J-332 QRD161J-472 QRD161J-332	RESISTOR RESISTOR RESISTOR RESISTOR	560Ω .1/6W 3.3kΩ .1/6W 4.7kΩ .1/6W 3.3kΩ .1/6W
	IC6 IC7 IC9 IC10	NJM2233BD M52684AP UPC319C TC74HC00AP	IC IC IC		R21 R22 R23 R24	QRD161J-391 QRD161J-102 QRD161J-681 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR	390 Q .1 / 6W 1kQ .1 / 6W 680 Q .1 / 6W 1kQ .1 / 6W
	IC11 IC12 IC13 IC14 IC15 IC17 IC18	TC4013BP M51957BL UPD75P116CW-30 M54519P M54519P TC74HC00AP M5278D12	IC IC IC IC IC		R25 R26 R27 R28 R29 R30	QRD161J-103 QRD161J-221 QRD161J-103 QRD161J-102 QRD161J-681 QRD161J-471	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	10kQ .1/6W 220Q .1/6W 10kQ .1/6W 1kQ .1/6W 680Q .1/6W 470Q .1/6W

#≜ REF No.	PART No.	PART NAME,	DESCRIPTION	#_^	REF No.	PART No.	PART NAME,	DESCRIPTION
R32	QRD161J-472	RESISTOR	4.7kΩ,1/6W		R106	QRD161J-183	RESISTOR	18kΩ ,1 / 6W
R34	QRD161J-122	RESISTOR	1.2kΩ,1/6W	l	R107	QRD161J-103	RESISTOR	10kΩ,1/6W
R35	QRD161J-102	RESISTOR	1kΩ,1/6W		R108	QRD161J-472	RESISTOR	4.7kΩ.1/6W
R36	QRD161J-102	RESISTOR	1kΩ,1/6W		R109	QRD161J-472	RESISTOR	4.7kΩ,1/6W
R37	QRD161J-681	RESISTOR	680Ω,1/6W		R110	QRD161J-471	RESISTOR	
R38	QRD161J-561	RESISTOR	560Ω,1/6W		NIIU	UNDIDID-4/1	NESIS I UN	470Ω.1/6W
R39	QRD161J-393	RESISTOR	39kΩ,1/6W		D111	ODD161 L431	DECICTOR	4700 1 (6)41
R40	QRD161J-152	RESISTOR	1.5kΩ,1/6W		R111 R112	QRD161J-471 QRD161J-471	RESISTOR	470Ω,1/6W
N4U	UND1013-132	NESISTON	1.3822,17 044		R113		RESISTOR	470Ω,1/6W
D41	QRD161J-271	RESISTOR	2700 1 /6W			QRD161J-471	RESISTOR	470Ω.1/6W
R41		RESISTOR	270Ω,1/6W		R114	QRD161J-471	RESISTOR	470Ω.1/6W
R42	QRD161J-103		10kΩ,1/6W		R115	QRD161J-471	RESISTOR	470Ω,1/6W
R43	QRD161J-222	RESISTOR	2.2kΩ,1/6W		R116	QRD161J-471	RESISTOR	470Ω,1/6W
R44	QRD161J-223	RESISTOR	22kΩ,1/6W		R117	QRD161J-471	RESISTOR	470Ω,1/6W
R45	QRD161J-273	RESISTOR	27kΩ,1/6W		R118	QRD161J-121	RESISTOR	120Ω,1/6W
R46	QRD161J-222	RESISTOR	2.2kΩ,1/6W	ĺ	R119	QRD161J-121	RESISTOR	120Ω,1/6W
R47	QRD161J-222	RESISTOR	2.2kΩ,1/6W	1	R120	QRD161J-121	RESISTOR	120Ω,1∕6W
R48	QRD161J-222	RESISTOR	2.2kΩ,1/6W		D404	000464 (464	77010707	
R49	ORD161J-122	RESISTOR	1.2kΩ,1/6W		R121	QRD161J-121	RESISTOR	120Ω,1/6W
R50	QRD161J-122	RESISTOR	1.2kΩ,1/6W		R122	QRD161J-121	RESISTOR	$120\Omega.1/6W$
					R123	QRD161J-121	RESISTOR	$120\Omega.1/6W$
R51	QRD161J-101	RESISTOR	100Ω,1/6W		R124	QRD161J-121	RESISTOR	120Ω,1∕6W
R52	QRD161J-222	RESISTOR	2.2kΩ,1/6W		R125	QRD161J-121	RESISTOR	120Ω,1/6W
R53	QRD161J-183	RESISTOR	18kΩ,1∕6W		R126	QRD161J-181	RESISTOR	180Ω,1∕6W
R54	QRD161J-472	RESISTOR	4.7kΩ,1/6W		R127	QRD161J-473	RESISTOR	47kΩ,1/6W
R55	QRD161J-391	RESISTOR	390Ω,1∕6W					
R56	QRD161J-473	RESISTOR	47kΩ,1/6W		R135	QRD161J-103	RESISTOR	10kΩ,1∕6W
R57	QRD161J-0R0	RESISTOR	0Ω,1/6W		R136	QRD161J-181	RESISTOR	180Ω,1∕6W
R58	QRD161J-103	RESISTOR	10kΩ,1/6W		R138	QRD161J-103	RESISTOR	10kΩ,1/6W
R59	QRD161J-561	RESISTOR	560Ω,1/6W		R139	QRD161J-181	RESISTOR	180Ω,1/6W
R60	QRD161J-561	RESISTOR	560Ω,1/6W	Δ	R140	PU52108-2R2	POSITIVE THER	
		112001011	500 45 71 7 011		11110	1 002100 2112	TOOMITE THEM	WIIO IOI I
R61	QRD161J-181	RESISTOR	180Ω,1∕6W		R141	QRD161J-103	RESISTOR	10kΩ,1∕6W
R62	QRD161J-223	RESISTOR	22kΩ,1/6W		R142	QRD161J-103	RESISTOR	10kΩ,1∕6W
R63	QRD161J-223	RESISTOR	22kΩ,1∕6W		R143	QRD161J-154	RESISTOR	150kΩ,1/6W
R64	QRD161J-152	RESISTOR	1.5kΩ,1∕6W		R144	QRD161J-104	RESISTOR	100kΩ.1/6W
R66	QRD161J-152	RESISTOR	1.5kΩ,1∕6W					
R67	QRD161J-393	RESISTOR	39kΩ,1/6W		R1001	QVZ3513-102	V RESISTOR	1kΩ
R68	QRD161J-152	RESISTOR	1.5kΩ,1∕6W					
R69	QRD161J-271	RESISTOR	270Ω,1/6W					
R70	QRD161J-103	RESISTOR	$10k\Omega,1/6W$		RA1	EXB-P88103M	NETWORK RES!	STOR
D74	000161 470	DECOTOR	4.71.0.4.7014					
R71	QRD161J-472	RESISTOR	4.7kΩ,1/6W		00	0==0101110=		
R72	QRD161J-473	RESISTOR	47kΩ,1/6W		C2	QETC1CM-107	E CAPACITOR	100 μ F,16V
R73	QRD161J-104	RESISTOR	100kΩ,1/6W		C3	QETC1CM-106	E CAPACITOR	10 μ F,16V
R74	QRD161J-222	RESISTOR	2.2kΩ,1/6W		C4	QETC1AM-107	E CAPACITOR	100 μ F,10V
R77	QRD161J-122	RESISTOR	$1.2k\Omega_{\star}1/6W$		C6	QCC31CK-104	CAPACITOR	0.1 μ F,16V
R78	QRD161J-123	RESISTOR	12kΩ,1/6W		C7	QETC1AM-107	E CAPACITOR	100 µ F,10V
R79	QRD161J-123	RESISTOR	12kΩ,1∕6W		C8	QETC1AM-107	E CAPACITOR	100 μ F,10V
R80	QRD161J-102	RESISTOR	1kΩ,1/6W		C9	QCC31CK-104	CAPACITOR	0.1 μ F,16V
D01	ODD164 1 000	DECICTOR	001-0-4-7014		044	0.0004111.000	040401700	
R81	ORD161J-333	RESISTOR	33kΩ,1/6W		C11	QCS31HJ-220	CAPACITOR	22pF,50V
R82	QRD161J-273	RESISTOR	27kΩ,1/6W		C13	QCS31HJ-560	CAPACITOR	56pF,50V
R83	QRD161J-152	RESISTOR	1.5kΩ.1/6W		C14	QCS31HJ-150	CAPACITOR	15pF,50V
R84	QRD161J-102	RESISTOR	1kΩ,1/6W		C15	QETC1AM-107	E CAPACITOR	100 μ F,10V
R85	QRD161J-102	RESISTOR	1kΩ,1/6W		C16	QCF31HP-103	CAPACITOR	0.01 μ F,50V
R86	QRD161J-271	RESISTOR	270Ω,1/6W		C17	QFN31HJ-222	M CAPACITOR	0.0022 μ F,50V
R87	QRD161J-222	RESISTOR	2.2kΩ,1∕6W		C18	QETC1HM-105	E CAPACITOR	1 μ F.50V
R88	QRD161J-103	RESISTOR	10kΩ,1∕6W		C20	QCS31HJ-220	CAPACITOR	22pF,50V
R89	QRD161J-222	RESISTOR	2.2kΩ,1/6W					
R90	QRD161J-271	RESISTOR	270Ω,1/6W			QFN31HJ-103	M CAPACITOR	0.01 μ F,50V
					C22	QFN31HJ-152	M CAPACITOR	0.0015 μ F,50V
	QRD161J-222	RESISTOR	2.2kΩ,1/6W			QETC1EM-475	E CAPACITOR	4.7 μ F,25V
R92	QRD161J-102	RESISTOR	1kΩ,1/6W		C24	QCS31HJ-390	CAPACITOR	39pF,50V
	QRD161J-821	RESISTOR	820Ω,1/6W			QCS31HJ-121	CAPACITOR	120pF,50V
R94	QRD161J-331	RESISTOR	330Ω,1∕6W			QETC1CM-106	E CAPACITOR	10 μ F,16V
R95	QRD161J-681	RESISTOR	680Ω,1∕6W			QETC1HM-474	E CAPACITOR	0.47 μ F,50V
	QRD161J-182	RESISTOR	1.8kΩ,1/6W			QETC1AM-108	E CAPACITOR	1000 µ F,10V
	QRD161J-102	RESISTOR	1kΩ,1/6W			QETC1AM-108	E CAPACITOR	1000 μ F,10 V
	QRD161J-473	RESISTOR	47kΩ.1/6W			QETC1AM-107	E CAPACITOR	100 μ F,10 V
	QRD161J-681	RESISTOR	680Ω,1/6W				_ 0/11/10/10/1	100 μ 1 ,10 γ
					C31	QETC1AM-107	E CAPACITOR	100 μ F,10V
R103	QRD161J-104	RESISTOR	100kΩ,1∕6W		C32	QETC1AM-107	E CAPACITOR	100 μ F,10V
R104	QRD161J-104	RESISTOR	100kΩ,1/6W			QCC31CK-104	CAPACITOR	0.1 μ F,16V
R105	QRD161J-473	RESISTOR	47kΩ,1/6W		C35	QFN31HJ-222	M CAPACITOR	0.0022 μ F,50V
			ı					

#_^	REF No.	PART No.	PART NAME,	DESCRIPTION	#∆REF No	. PART No.	PART NAME,	DESCRIPTION
	C36 C37 C38	QCC31CK-104 QCS31HJ-220 QFN31HJ-103	CAPACITOR CAPACITOR M CAPACITOR	0.1 μ F.16V 22pF.50V 0.01 μ F.50V	RV1	PU53276	PLASTIC RIVET	, ×4
	C39 C40	QFN31HJ-152 QETC1HM-475	M CAPACITOR E CAPACITOR	0.0015 μ F,50V 4.7 μ F,50V	SKT1	PGZ01428-064	IC SOCKET	
	C43 C46 C47	QCC31CK-104 QETC1CM-107 QETC1AM-107	CAPACITOR E CAPACITOR E CAPACITOR	0.1 μ F.16V 100 μ F.16V 100 μ F.10V	SLD1	PRD30781-02-03	SHIELD PLATE	
	C48 C49 C50	QCS31HJ-101 QCS31HJ-101 QETC1AM-107	CAPACITOR CAPACITOR E CAPACITOR	100pF,50V 100pF,50V 100 \(\mu \) F,10V	TP1	PU54983	TEST PIN, ×2)
	C51	QETC1AM-476	E CAPACITOR	47 µ F.10V	CN1	PGZ00421-64	MALE CONNEC	TOR
	C52 C53 C54	QETC1HM-474 QETC1HM-474 QETC1AM-107	E CAPACITOR E CAPACITOR E CAPACITOR	0.47 μ F,50V 0.47 μ F,50V 100 μ F,10V				
	C56 C58 C59 C60	QCS31HJ-100 QETC1HM-104 QETC1CM-476 QCC31EK-104	CAPACITOR E CAPACITOR E CAPACITOR CAPACITOR	10pF,50V 0.1 μ F,50V 47 μ F,16V 0.1 μ F,25V			RD ASSEMBLY	
	C61 C62	QCC31CK-104 QETC1CM-107	CAPACITOR E CAPACITOR	0.1 μ F.16V 100 μ F.16V 47 μ F.10V	PWBA PWBA	PRK10117D1 PRK10117E1	OPE.CPU BOAR OPE.CPU BOAR	
	C63 C64 C65 C66	QETC1AM-476 QCC31CK-104 QCC31CK-104 QETC1AM-107	E CAPACITOR CAPACITOR CAPACITOR E CAPACITOR	0.1 μ F.16V 0.1 μ F.16V 0.1 μ F.16V 100 μ F.10V	FJ2	QMV5001-018	SIP HEADER	
	C67	QETC1AM-107	E CAPACITOR	100 μ F,10V	IC1	UPD78P214CW-0		
	C68 C69	QCC31CK-104 QCC31CK-104	CAPACITOR CAPACITOR	0.1 μ F,16V 0.1 μ F,16V	IC2 IC3	M6M80011AP M50255P	IC IC	
	C70	QETC1AM-476 QETC1HM-105	E CAPACITOR E CAPACITOR	47 μ F,10V 1 μ F,50V	IC4 IC6	M50255P M5278D05	IC IC	
	C72 C73	QCC31CK-104	CAPACITOR	0.1 μ F,16V		100100	21225	
	C74 C75	QCC31CK-104 QCC31CK-104	CAPACITOR CAPACITOR	0.1 μ F,16V 0.1 μ F,16V	D1 D2	1SS133 1SS133	DIODE	
	C76 C80	QCC31CK-104 QETC1HM-225	CAPACITOR E CAPACITOR	0.1 μ F,16V 2.2 μ F,50V	D3 D5	1SS133 1SS133	DIODE, S822E DIODE	
	C83 C84	QCC31CK-104 QETC1AM-107	CAPACITOR E CAPACITOR	0.1 μ F,16V 100 μ F,10V	R1	QRD161J-121	RESISTOR	120Ω,1/6W
	C86	QFN31HJ-103	M CAPACITOR	0.01 μ F,50V	R2	QRD161J-121	RESISTOR	120Ω .1/6W
	C89	QCS31HJ-220	CAPACITOR	22pF,50V	R3 R4	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	120Ω ,1/6W 120Ω ,1/6W
	C99	QCC31CK-104	CAPACITOR	0.1 μ F,16V	R5	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	120Ω .1/6W 120Ω .1/6W
	C100	QCS31HJ-180	CAPACITOR	18pF,50V	R6 R7	QRD161J-121	RESISTOR	120Ω ,1∕6W
	C101 C102	PU57672-200 PU57672-300	TRIMMER CAPA		R8 R9	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	120Ω .1/6W 120Ω .1/6W
	C105	QCF31HP-103	CAPACITOR	$0.01 \mu\text{F,50V}$	R10	QRD161J-121	RESISTOR	120Ω .1∕6W
	C107 C108	QCS31HJ-271 QCS31HJ-820	CAPACITOR CAPACITOR	270pF,50V 82pF,50V	R11	QRD161J-121	RESISTOR	120Ω .1∕6W
	C109	QETC1CM-107	E CAPACITOR	100 μ F,16V	R12 R13	QRD161J-121 QRD161J-102	RESISTOR RESISTOR	120Ω ,1/6W 1kΩ ,1/6W
				00 11	R14	QRD161J-102	RESISTOR	1kΩ .1∕6W
	L1 L2	PU48530-220J PU48530-471J	COIL COIL	22 μ H 470 μ H	R15 R16	QRD161J-102 QRD161J-102	RESISTOR RESISTOR	1kΩ ,1/6W 1kΩ ,1/6W
	L3 L6	PU48530-221J PU48530-680J	COIL	220 μ H 68 μ H	R17 R18	QRD161J-102 QRD161J-121	RESISTOR RESISTOR	1kQ .1/6W 120Q .1/6W
٨	X1	PGZ01700	CRYSTAL RESO!	NATOR	R22 R23	QRD161J-105 QRD161J-121	RESISTOR RESISTOR	1MQ ,1/6W 120Q ,1/6W
Δ	X2	PGZ00937	CERAMIC FILTE	R	R24	QRD161J-121	RESISTOR	120Q .1/6W
Δ	X3 X5	PGZ00937 PU60784	CERAMIC FILTE RESONATOR	К	R25 R26	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	1200 .1/6W 1200 .1/6W
					R27 R28	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	1200 .1/6W 1200 .1/6W
Δ	K1	PGZ00354	FERRATE BEAD	S, ×3	R29 R30	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	1200 .1/6W 1200 .1/6W
	EJ1	PGZ00582	EJECTOR, ×2		R31	QRD161J-121	RESISTOR	1200 ,1/6W
					R32 R33	QRD161J-121 QRD161J-121	RESISTOR RESISTOR	1200 1, 6W 1200 1, 6W
					•			

#∆	REF No.	PART No.	PART NAME, DE	SCRIPTION	#≜REF No.	PART No.	PART NAME, I	DESCRIPTION
	R34 R35 R36 R37 R38 R39 R40	QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W	CN1 CN2 CN3 CN4 CN5 CN6 CN7	PU58844-104 PU58844-109 PU58844-105 PU58844-108 PU58844-113 PU58844-108 PU58844-4Y PU58844-5R	CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	
	R41 R42 R43 R44 R45 R46 R47 R48 R49	QRD161J-121 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E	120Ω,1/6W 120Ω,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W	CN9 CN10 CN11	PU58844-4 PU58844-5 PU58844-4	CONNECTOR CONNECTOR CONNECTOR CONNECTOR	·<43>
	R50 R51 R52	QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W	PWBA PWBA	PRK10117A2 PRK1011782	OPE.KEY-1 BORAL OPE.KEY1 BOARD	
	R55 R56 R57 R58 R59	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ.1/6W 1kΩ.1/6W 1kΩ.1/6W 1kΩ.1/6W 1kΩ.1/6W 1kΩ.1/6W	FJ2	QMV5001-018 M50255P	SIP HEADER	
	R60 R61 R62	QRD161J-102 QRD161J-102	RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W	IC2 IC3 IC4	TC74HC4028AP BA618 TD62583AP	ic ic ic	
	R63 R64 R65 R66 R68	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-121	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 120Ω,1/6W	Q1	DTA124EF	TRANSISTOR	
	R69 R70	QRD161J-121 QRD161J-333 QRD161J-333	RESISTOR RESISTOR RESISTOR	120Ω,1/6W 33kΩ,1/6W 33kΩ,1/6W	D2 D3 D4 D5	GL-8PR21 GL-8PR21 GL-8PR21 GL-8PR21	LE DIODE, S822E LE DIODE, S822E LE DIODE, S822E LE DIODE	
	R72 R73 R74 R75	QRD161J-333 QRD161J-333 QRD161J-333 QRD161J-333	RESISTOR RESISTOR RESISTOR RESISTOR	33kΩ,1/6W 33kΩ,1/6W 33kΩ,1/6W 33kΩ,1/6W	D6 D7 D8 D9 D10	GL-8PR21 GL-8PR21 GL-8PR21 GL-8PR21 GL-8PR21	LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE	
	RA1 RA2	EXB-P85333M EXB-P86333M	RESISTOR ARRAY RESISTOR ARRAY		D11 D12 D13 D14	GL-8PR21 GL-8PR21 GL-8PR21 GL-8PR21	LE DIODE LE DIODE LE DIODE, \$822E LE DIODE, \$822E	
	C1 C2 C3 C4 C5 C6 C8	QCFB1EZ-223 QCSB1HJ-200 QCSB1HJ-200 QCFB1EZ-223 QCFB1EZ-223 QCFB1EZ-223 QER61CM-476	CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR E CAPACITOR	0.022 \(\mu\) F,25V 20pF,50V 20pF,50V 0.022 \(\mu\) F,25V 0.022 \(\mu\) F,25V 0.022 \(\mu\) F,25V 47 \(\mu\) F,16V	D15 D16 D17 D18 D19 D20	1SS133 1SS133 1SS133 1SS133 1SS133 1SS133	DIODE, S822E DIODE, S822E DIODE, S822E DIODE DIODE DIODE	
	C9 C10	QCFB1EZ-223 QER61CM-476	CAPACITOR E CAPACITOR	0.022 μ F,25V 47 μ F,16V	D21 D22 D23	1SS133 1SS133 1SS133	DIODE DIODE, \$822E DIODE, \$822E	
	C11 C12 C13 C14	QCFB1EZ-223 QCFB1EZ-223 QER61CM-476 QCS11HJ-101	CAPACITOR CAPACITOR E CAPACITOR CAPACITOR	0.022 μ F,25V 0.022 μ F,25V 47 μ F,16V 100pF,50V	D24 D25 D26 D27 D28 D29	188133 188133 188133 188133 188133 188133	DIODE, S822E DIODE, S822E DIODE DIODE DIODE DIODE DIODE	
	L1	PGZ00617-221	COIL		D30	1SS133	DIODE, \$822E	
Δ	CF1	PGZ00513	CERAMIC FILTER		D31	1SS133	DIODE	
	SKT1	PGZ01428-064	IC SOCKET		R1 R2 R3 R4	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E RESISTOR, S822E	1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W

<43	`	-1	LΔ	>

#≜REF No	. PART No.	PART NAME, DESC	RIPTION	#≜REF No	. PART No.	PART NAME, DE	SCRIPTION
R5 R6 R7 R8 R9 R10	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W	Q2 Q3 Q4 Q5	DTA124ES DTA124ES DTA124ES DTA124ES	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	
R11 R12 R13 R14 R15 R16 R17 R18	QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-102 QRD161J-121 QRD161J-121 QRD161J-333 QRD161J-333 QRD161J-121	RESISTOR RESISTOR, S822E RESISTOR, S822E RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 1kΩ,1/6W 120Q,1/6W 120Q,1/6W 33kΩ,1/6W 33kΩ,1/6W 120Q,1/6W	D1 D2 D3 D4 D5 D6 D7 D8 D9	GL-8PR21 GL-8EG21 GL-8EG21 GL-8PR21 GL-8PR21 GL-8PR21 1SS133 1SS133	LE DIODE, \$822E LE DIODE, \$822E LE DIODE, \$822E LE DIODE, \$822E LE DIODE, \$822E LE DIODE, \$822E LE DIODE, \$822E DIODE, \$822E DIODE, \$822E DIODE, \$822E	
R21 R22 R23 R24 R25 R26 R27 R28 R29 R30	QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-101 QRD161J-101 QRD161J-101	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 120Q.1/6W 100Q.1/6W 100Q.1/6W 100Q.1/6W	D11 D12 D13 D14 D15 D16 D17 D18 D19 D20	1SS133 1SS133 1SS133 1SS133 1SS133 1SS133 1SS133 1SS133 1SS133 1SS133	DIODE, S822E DIODE, S822E DIODE, S822E DIODE, S822E DIODE, S822E DIODE DIODE DIODE DIODE DIODE DIODE	
R31 R32 R33 R34 R35	QRD161J-101 QRD161J-101 QRD161J-101 QRD161J-101 QRD161J-101	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	100Ω,1/6W 100Ω,1/6W 100Ω,1/6W 100Ω,1/6W 100Ω,1/6W	D21 D22 D23 D24 D25	1\$\$133 1\$\$133 1\$\$133 1\$\$133 1\$\$133	DIODE DIODE DIODE DIODE DIODE	
C1 C2 C3	QCFB1EZ-223 QCFB1EZ-223 QCFB1EZ-223	CAPACITOR CAPACITOR CAPACITOR	0.022 μ F,25V 0.022 μ F,25V 0.022 μ F,25V	R1 R2 R3 R4 R5	QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121 QRD161J-121	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	120Ω,1/6W 120Ω,1/6W 120Ω,1/6W 120Ω,1/6W 120Ω,1/6W
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10	PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551	TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH TACT SWITCH TACT SWITCH TACT SWITCH TACT SWITCH TACT SWITCH TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E		SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9	PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551 PU57551	TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E TACT SWITCH, S822E	
SW11 SW12 SW13 SW14 SW15 SW16	PU57551 PU57551 PU57551 PU57551 PU57551 PU57551	TACT SWITCH, S822E TACT SWITCH TACT SWITCH TACT SWITCH TACT SWITCH TACT SWITCH, S822E		SW10 SW11 SW12 SW13 SW14 SW15 SW16	PU57551 PU57551 PU57551 PGZ00470-02 PGZ00470-02 PGZ00470-02 PGZ00469-02	TACT SWITCH TACT SWITCH TACT SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	
HD1 HD2	PRD43073 PQ40795-2-2	LED HOLDER, ×8(S6: LED HOLDER	22) ×14(\$822)	SW17	PGZ00470-02	SLIDE SWITCH	(00005)
				HD1 HD2	PRD43073 PQ40795-2-2	LED HOLDER, ×7 LED HOLDER, ×7	
		OBE KEY & BOARD AS		CN1 CN2 CN3	PU58844-13 PU58844-8 PU58844-5	CONNECTOR CONNECTOR CONNECTOR	
PWBA PWBA	PRK10117A3 PRK10117B3	OPE.KEY-2 BOARD ASS		CN4	PU58844-2	CONNECTOR	
Q1	DTA124ES	TRANSISTOR					

-15-	161	7><48>	J71.
<45><	40><4	/><48>	1</td

				l " ,			<46><47><48><71>
#AREF N	lo. PART No.	PART NAME, D	DESCRIPTION	#∆REF No.			DESCRIPTION
COUN	TER DISPLAY B	OARD ASSEMBLY	′<45>	D5	SLB-55MG3F	LE DIODE	
PWBA	PRK30074A	COUNTER DISPLAY	Y BOARD ASSY	SW1	PU57551	TACT SWITCH	
D1 D2 D3	GL8T040 GL8T040 GL8T040	LE DIODE LE DIODE LE DIODE		HD1 HD2 HD3	PU50633-4 PU50633-3 PQ40795-2-2	LED HOLDER, LED SPACER, LED HOLDER,	×3
D4 D5 D6 D7 D8	GL8T040 GL8T040 GL8T040 GL8T040 GL8T040	LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE		CN6	PU58844-8	CONNECTOR	
SW1	PU57550	TACT SWITCH		EJECT S	SW BOARD A	SSEMBLY<48>	•
SKT1	PGZ01597-18	IC SOCKET		PWBA	PRK20143A2	EJECT SW BOA	RD ASSY
SPC1	PRD30030-65	PAD. ×2		D1	GL-8PR21	LE DIODE	
5. 5.		,		SW1	PU57551	TACT SWITCH	
MAIN	LED BOARD AS	SSEMBLY<46>		CN1	PU58844-4Y	CONNECTOR	
PWBA	PRK20143A1-01	MAIN LED BOARD	ASSY				
				REAR 1	BOARD ASS	EMBLY<71>	
D1 D2 D3 D4 D5	GL-8EG21 GL-8EG21 AABG4307K GL-8EG21 GL-8EG21	LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE		PWBA	PRK10096A1	REAR 1 BOAR	D ASSY
D6 D7 D8 D9 D10	GL-8EG21 GL-8HY21 GL-8EG21 GL-8EG21 GL-8EG21	LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE		Q1 D1 D2	2SC1740S(RS) RD10ES-T1B1 RD10ES-T1B1	TRANSISTOR ZENER DIODE ZENER DIODE	
D11 D12 D13 D14 D15	GL-8EG21 GL-8PR21 GL-8EG21 GL-8EG21 GL-8EG21	LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE		D3 D4 D5 D6 D7 D8 D9	RD10ES-T181 RD10ES-T181 RD10ES-T181 RD10ES-T181 RD10ES-T181 RD10ES-T181 RD10ES-T181	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE	
R1 R2	QRD161J-152 QRD161J-152	RESISTOR RESISTOR	1.5kΩ,1/6W 1.5kΩ,1/6W	D10	RD10ES-T1B1	ZENER DIODE	
CN1 CN2 CN3 CN4	PU58844-5R PU58844-4R PU58844-5 PU58844-4	CONNECTOR CONNECTOR CONNECTOR CONNECTOR		D12 D13 D14 D15 D16 D17 D18 D19 D20	RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE	
DIREC	TION LED BOAT	RD ASSEMBLY < 4	7>	D21	RD10ES-T1B1	ZENER DIODE	
PWBA	PRK10117A5	DIRECTION BOARD	ASSY, S622E	D22 D23 D24 D25 D26	RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE	
D1 D2 D3 D4	GL-8PR21 GL-8PR21 SLB-55MG3F SLB-55VR3F	LE DIODE LE DIODE LE DIODE LE DIODE		D27 D28 D29 D30	RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE	

	_			
<71	><	72><	73>	<80>

#2	REF No.	PART No.	PART NAME, DE	SCRIPTION	#△REF No	PART No.	PART	NAME,	DESC	RIPTION
	D31 D32 D33 D34 D35	RD9.1EW RD9.1EW RD9.1EW RD9.1EW RD9.1EW	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE		CN1 CN2	PU58844-107 PU58844-104	CONNEC			
					REAR 3	BOARD ASSE	MBLY<	73>		
	R1 R2 R3 R4	QRD161J-750 QRD161J-750 QRD161J-750 QRD161J-750	RESISTOR RESISTOR RESISTOR	75Ω,1/6W 75Ω,1/6W 75Ω,1/6W 75Ω,1/6W	PWBA	PRK10096B3-01	REAR 3	BOARD	ASSY	
	R5 R6 R7 R8 R9 R10	QRD161J-750 QRD161J-750 QRD161J-750 QRD161J-750 QRD161J-104 QRD161J-224	RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR	75Ω,1/6W 75Ω,1/6W 75Ω,1/6W 75Ω,1/6W 100kΩ,1/6W 220kΩ,1/6W	D1 D2 D3 D4 D5 D6	RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2	ZENER ZENER ZENER ZENER ZENER ZENER	DIODE DIODE DIODE DIODE		
	R11	QRD161J-750	RESISTOR	75Ω,1∕6W	D7 D8 D9	RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2	ZENER ZENER ZENER	DIODE		
	C1 C8	QER41CM-106 QFN31HJ-103	E CAPACITOR M CAPACITOR	10 μ F.16V 0.01 μ F.50V	D10	RD27ES-T1B2 RD27ES-T1B2	ZENER	DIODE		
	SW1 SW2	QSS1F12-L01 QSS1F12-L01	SLIDE SWITCH SLIDE SWITCH		D12 D13 D14 D15 D16	RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2 RD27ES-T1B2	ZENER ZENER ZENER ZENER ZENER	DIODE DIODE DIODE DIODE		
	K1 K2 K3 K4 K5	PGZ00354 PGZ00354 PGZ00354 PGZ00354 PGZ00354	FERRATE BEADS FERRATE BEADS FERRATE BEADS FERRATE BEADS FERRATE BEADS		C1 C2 C3 C4	QFN31HJ-102 QFN31HJ-102 QFN31HJ-102 QFN31HJ-102	M CAPA M CAPA M CAPA	ACITOR ACITOR ACITOR		0.001 μ F,50V 0.001 μ F,50V 0.001 μ F,50V 0.001 μ F,50V
	CN1 CN2 CN3 CN4 CN5	PU58844-107 PU58844-110 PU58844-103 PU58844-105 PU58844-102	CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR		L1 L2 L3 L4 L5 L6 L7 L8	PU48530-8R2J PU48530-8R2J PU48530-8R2J PU48530-8R2J PU48530-8R2J PU48530-8R2J PU48530-8R2J PU48530-8R2J	COIL COIL COIL COIL COIL COIL COIL			8.2 \(\mu\) H 8.2 \(\mu\) H 8.2 \(\mu\) H 8.2 \(\mu\) H 8.2 \(\mu\) H 8.2 \(\mu\) H
-	REAR 2 BOARD ASSEMBLY<72>									
	PWBA	PRK10096A2-01	REAR 2 BOARD ASSY	,	VA1 VA2 VA3 VA4	PU49624-2 PU49624-2 PU49624-2 PU49624-2	VARISTO VARISTO VARISTO	OR OR		
	D1 D2 D3 D4	RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE		VA13 VA14 VA15 VA16	PU49624-2 PU49624-2 PU49624-2 PU49624-2	VARISTO VARISTO VARISTO	OR OR		
	SW1	PGZ01210	SLIDE SWITCH		CN5 CN6	PU58844-103 PU58844-103R	CONNEC	CTOR		
Δ	K1	PGZ00354	FERRATE BEADS		CN7 CN8	PU58844-103Y PU58844-103	CONNEC			
	VA1 PU49624-2 VA2 PU49624-2 VA3 PU49624-2 VA4 PU49624-2		VARISTOR VARISTOR VARISTOR VARISTOR		METER	BOARD ASSEM	/BLY<8	0>		
	VA5 VA6 VA7	PU49624-2 PU49624-2 PU49624-2	VARISTOR VARISTOR VARISTOR		PWBA	PRK20093A1	METER	BOARD A	ASSY	

<80><81><82><83><84>

				I		<80><	81><82><83><84>
#≜ REF No.	PART No.	PART NAME,	DESCRIPTION	#≜REF No.	PART No.	PART NAME,	DESCRIPTION
MET1 MET2	PGZ01336 PGZ01337	METER METER		R4 R5 R6 R7	QRD161J-272 PGZ01580 QRD161J-272 QRD161J-272	RESISTOR V RESISTOR RESISTOR RESISTOR	2.7kΩ,1/6W 2.7kΩ,1/6W 2.7kΩ,1/6W
D1 D2 D3 D4	SLV-56YC3F SLV-56YC3F SLV-56YC3F SLV-56YC3F	LE DIODE LE DIODE LE DIODE LE DIODE		R8 R9 R10	PGZ01580 QRD161J-272 QRD161J-272	V RESISTOR RESISTOR RESISTOR	2.7kΩ.1/6W 2.7kΩ.1/6W
D5 D6 D7 D8 D9 D10	SLV-56YC3F SLV-56YC3F SLV-56YC3F SLV-56YC3F SLV-56YC3F SLV-56YC3F	LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE LE DIODE		R11 R12 R13 R14 R15 R16	PGZ01580 QRD161J-272 QRD161J-682 QVPB701-103 QRD161J-473 QVPB701-103	V RESISTOR RESISTOR RESISTOR V RESISTOR RESISTOR V RESISTOR	2.7kΩ,1/6W 6.8kΩ,1/6W 10kΩ 47kΩ,1/6W 10kΩ
R1 R2	QRD167J-561 QRD167J-681	RESISTOR RESISTOR	560Ω,1/6W 680Ω,1/6W	R17 R18 R19 R20	ORD161J-222 OVPB701-103 ORD161J-153 PGZ01581	RESISTOR V RESISTOR RESISTOR V RESISTOR	2.2kΩ,1/6W 10kΩ 15kΩ,1/6W
R3 R4	QRD167J-561 QRD167J-681	RESISTOR RESISTOR	560Ω,1/6W 680Ω,1/6W	R21 R22	QRD161J-681 QRD161J-471	RESISTOR RESISTOR	680Ω,1/6W 470Ω,1/6W
HD1	PRD30597	SHADE, ×2		C1	QCF31HP-103	CAPACITOR	0.01 μ F,50V
CN1 CN2	PU59513-2R PU59513-4	CONNECTOR CONNECTOR		SW1 SW2 SW3 SW4 SW5	PU58486-1-1 PU58486-1-1 PU58486-1-1 PU58486-1-1 PU58486-1-1	SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	
METER PWBA	METER SW BOARD ASSEMBLY < 81 > PWBA PRK20093A2 METER SW BOARD ASSY		SW6 SW7 SW8 SW9 SW10	PU58486-1-1 PU58488-1-1 PU58486-1-1 PU58486-1-1 PU58486-1-1	SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH		
R1	QRD167J-101	RESISTOR	100Ω,1∕6W	SW11 SW12 SW13	PU58486-1-1 QSR0095-L04 QSR0095-L04	SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	
SW1 SW2	PGZ00469-02 PU57551	SLIDE SWITCH TACT SWITCH		CN1	PU58844-10 PU58844-2	CONNECTOR CONNECTOR	
CN1 CN2 CN3	PU59513-3 PU59513-2Y PU59513-2	CONNECTOR CONNECTOR CONNECTOR		CN2 CN3 CN4 CN5 CN6 CN7 CN8	PU58844-8 PU58844-2 PU58844-5 PU58844-3 PU58844-2 PU58844-2	CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR CONNECTOR	
TRACK	ING VR BOAF	RD ASSEMBLY	82>	CN9	PU58844-4	CONNECTOR	
PWBA	PWBA PRK20093A3 TRACKING VR BOARD ASSY		TP TERMINAL BOARD ASSEMBLY < 84 >				
R1	PGZ01582	V RESISTOR		PWBA	PRK10097A2	TP TERMINAL	BOARD ASSY
CN1	PU58844-3R	CONNECTOR		D1 D2 D3 D4	RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1 RD10ES-T1B1	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE	
SUB PA	SUB PANEL BOARD ASSEMBLY<83>		D5 D6	RD10ES-T1B1 RD10ES-T1B1	ZENER DIODE ZENER DIODE		
PWBA	PRK10097A1	SUB PANEL BO		TP1	PGZ00761	TERMINAL	
R1 R2 R3	QRD161J-272 PGZ01580 QRD161J-272	RESISTOR V RESISTOR RESISTOR	2.7kΩ ,1/6W 2.7kΩ ,1/6W	CN1	PU588 44 -106	CONNECTOR	

91><92><93>								
AREF No	. PART No.	PART NAME, D	ESCRIPTION	#≜REF No.	PART No.	PART NAME, DE	SCRIPTION	
				R113		CMF RESISTOR	10.0kΩ ,1/4W	
				R114 R115	QRV141F-1002A1 QRD161J-103	CMF RESISTOR RESISTOR	10.0kΩ,1/4W 10kΩ,1/6W	
DECK	TERNINAL BOA	RD ASSEMBLY <	91 >	R116	QRD161J-272	RESISTOR	2.7kΩ,1∕6W	
				R117 R118	QRD161J-103 QRD161J-273	RESISTOR RESISTOR	10kΩ,1/6W 27kΩ,1/6W	
PWBA	PRK20096A-05	D. TERM. BOARD	ASSY	niio	UND1013-273	NESISTON	2/K14,1/ 04V	
1 11-57	1111200001100	2				0.1.0.1.0.7.0.0		
				C101 C102	QCZ0208-104 QER41EM-106	CAPACITOR E CAPACITOR	0.1 μ F 10 μ F,25V	
0	ECV TEDMINAL	1 BOARD ASSY <	′01 > _	C103	QER41EM-106	E CAPACITOR	10 μ F,25V	
	ECV LEUMINAL	I BUARD AGGT	317 -	C104 C105	QCZ0208-104 QCZ0208-104	CAPACITOR CAPACITOR	0.1 μ F 0.1 μ F	
				C106	QCZ0208-104	CAPACITOR	$0.1 \mu F$	
Q1	2SA933S(QRS)	TRANSISTOR		C107	QCZ0208-104 QCZ0208-104	CAPACITOR	0.1 μ F 0.1 μ F	
Q2	DTC144ES	TRANSISTOR		C108 C109	QCZ0208-104 QCZ0208-104	CAPACITOR CAPACITOR	0.1 μ F 0.1 μ F	
				C110	QCZ0208-104	CAPACITOR	0.1 μ F	
D1 D2	1SS133 RD3.0ESB2	DIODE ZENER DIODE						
D2	1SS133	DIODE		S1	PU61319	REC SAFETY SWITC	н	
				S2	PU61321	TAPE SENSOR		
R1	QRD161J-103	RESISTOR	10kΩ,1/6W	83	YU40177-2	PUSH SWITCH		
R2	QRD161J-103	RESISTOR	10kΩ,1/6W					
R3	QRD161J-103	RESISTOR	10kΩ,1∕6W	CN102 CN103	PU58844-9 PU58844-3	CONNECTOR CONNECTOR		
				CN104	PU58844-3	CONNECTOR		
RY1	PGZ01585-06	RELAY						
CL1	PGZ01377-03	STYLE PIN		CASSET	TE HOUSING	BOARD ASSEMBLY	<93>	
							1007	
CN1	PU58844-11	CONNECTOR		A				
CN2 CN3	PU58844-12 PU58844-2	CONNECTOR CONNECTOR		PWBA	PRK30068A-01	HOUSING BOARD A	SSY	
CN4	PU59555-2	CONNECTOR						
CN6	PU58844-2	CONNECTOR		Q1	PN268VI	PHOTO TRANSISTOR	3	
CN7 CN8	PU58844-3 PU58844-2Y	CONNECTOR CONNECTOR						
CN10	PU58844-8	CONNECTOR		S1	PU60629	CASSETTE SENSOR		
CN11	PU58844-108	CONNECTOR		23 23	YU40177-2 YU40177-2	PUSH SWITCH PUSH SWITCH		
CNT	FU38044-100	CONNECTOR		33	1040177-2	1 03/1 34411011		
				014	DUE0044 400	CONNECTOR		
_				CN1	PU58844-108	CONNECTOR		
- D	ECK TERMINAL	2 BOARD ASSY <	92> -					
IC101	TL431CLP	IC						
IC102	NJM2068S-D	IC						
IC103 IC104	NJM2068S-D NJ M2068S -D	IC IC						
	110.11.20000							
D101	11 ES2	DIODE						
D102	11 ES2	DIODE			•			
R101	0RV141F-2200A	Y CMF RESISTOR	220Ω.1/4W					
R102	ORV141F-3302A	Y CMF RESISTOR	33.0kΩ,1/4W					
R103 R104		Y CMF RESISTOR Y CMF RESISTOR	10.0kΩ,1/4W 300Ω,1/4W					
R105	QRV141F-2000A	Y CMF RESISTOR	200Ω,1/4W					
R106 R107	0RV141F-3602A\ 0RD161J-0R0	Y CMF RESISTOR RESISTOR	36.0kΩ,1/4W 0Ω,1/6W					
R107		Y CMF RESISTOR	10.0kΩ,1/4W					
R109	QRV141F-1002A	Y CMF RESISTOR	10.0kΩ,1/4W					
R110	0KV141F-1501A	Y CMF RESISTOR	1.50kΩ,1/4W					
R111		Y CMF RESISTOR	10.0kΩ,1/4W					
R112	0RV141F-1002A	Y CMF RESISTOR	10.0kΩ,1/4W					