Aggregating Information Based on Geolocated Twitter Data

Brian Mitchell

April 30, 2016

University of Minnesota, Morris

Introduction

Introduction

Surveys

- Representative
- Accurate demographics
- Costly
- © Difficult to scale
- Eower response rate
- Infrequent
- © Active participation

Twitter

- Non-representative
- © Inaccurate demographics
- Inexpensive
- Easy to scale
- High-value
- © Real-time
- Unobtrusive

Outline

- 1. Introduction
- 2. Background

Twitter

Bias

3. Applications

Disaster Management

Migration Trends

Societal Happiness

4. Discussions & Conclusion

Background

Twitter

Twitter

- · Microblogging social network
- · 320 million monthly active users
- · 80% of users active on mobile
- 140 characters
- Mentions, retweets, location, timestamp, images, polls, and links

Twitter

Location in Twitter

- · Opt-in feature
- · 3-5% adoption
- · place_id
 - · Bounding box of coordinates
 - · Precise coordinate if given
 - Neighborhood, city, point of interest
- User defined location on profile
 - Not validated
 - String of text

Background

Bias

Bias

Twitter population does not match the general population

- Higher rates of usage in some demographic groups
 - · Young in age
 - · Urban and suburban
 - African-American
- 75% "local"
- Well-educated people in occupations of management, business, science, and arts are more likely to include location

Applications

Disaster Management

CrisisTracker

Tracking keywords and creating stories for social media curation

Figure 1: Rogstadius et al. and Ikawa et al.

CrisisTracker: Rogstadius et al.

- Collection of tweets inside bounding box
- · Some tweets filtered out (for example, "@username thanks!")
- New tweets compared as a weighted set of words
- · Fed through a similarity metric and locality-sensitive hashing
 - · Hashes documents into "buckets" to be made into stories
 - · Adapted by Petrović et al. for constant time searching
 - Adapted version can scale to huge numbers of documents (over 160 million)
- Stories
 - · Timestamps, keywords, and number of users
 - 5,000 users who tweet most frequently to omit jokes, opinions, and summary articles

CrisisTracker: Ikawa et al.

Adaptation by Ikawa et al. to infer locations from similar messages and classify messages based on the location

Four location types:

- 1. Locations in text
- 2. Focused locations
- 3. User's current location
- 4. User's location profile (home location)

CrisisTracker: Ikawa et al.

GeoNames: geographical database with over 8 million names and coordinates

Location Name Recognition for finding locations in the text Toponym Resolution assigns locations a coordinate

CrisisTracker: Ikawa et al.

Confidence score: location popularity \times region context

Location popularity: population of the location

Region context: focused locations included in the text

 $\textbf{Highest confidence score} \rightarrow \textbf{toponym resolution}$

CrisisTracker: Ikawa et al. Evaluation

Evaluating of Location Name Recognition and Toponym Resolution

- Subset of cities in Syria with a population over 15,000 from GeoNames
- Place names extracted by hand for a gold standard

CrisisTracker: Ikawa et al. Evaluation

	Country	State	City/	Village	Total
			Town		
#appearance	250	39	41	12	342
#unique	20	7	11	8	46
Precision	0.996	1.000	1.000	0.917	0.994
Recall	0.992	1.000	0.927	0.750	0.977

#appearance: the total number of locations

#unique: number of locations after the removal of duplicate elements Precision: how successful the technique is at finding known relevant data Recall: how completely the technique finds relevant data

CrisisTracker: Ikawa et al. Evaluation

- Accurate
- · Faster than finding by hand
- To imporve performace:
 - · Better geo-inferencing
 - · Additional data sources

Applications

Migration Trends

Migration Trends

Measuring migration flows

- Inconsistent
- Outdated
- Sometimes nonexistent
- · Often limited to census years
- · Needs to be normalized across data sources

Migration Trends: Data and Pre-Processing

- · Zagheni et al.
- Tweets from 500,000 users in OECD countries
- May 2011 to April 2013
- · Oversampling in countries with low mobility
- Undersampling in countries with high mobility
- Fraction of users with geolocated tweets outside of their home country
- · Users sampled with a probability inverse to the fraction
 - Country A: 50% of users posted tweets from a foreign country
 Country B: 5% of users posted tweets from a foreign country
 B would need a sample about 10 times larger than A
- Age and gender estimated with Face++

Migration Trends: Difference-in-Differences

 m_c^t : out-migration rate from country c to all other countries at time t m_{oecd}^t : average migration rate at time t for all considered OECD countries

Estimator allows for change in the Twitter users' population if it is similar to the population change in OECD countries:

$$\hat{\delta} = (m_c^t - m_{oecd}^t) - (m_c^{t-1} - m_{oecd}^{t-1})$$

Migration Trends: Results

Figure 2: Zagheni et al.

Migration Trends: Results

- · Estimating recent trends
- · Some randomness or noise
- No available official data for training

Applications

Societal Happiness

Societal Happiness

Measuring well-being

- · Satisfaction with life (SWL) score
- · Gross National Happiness (GNH)
- · World Happiness Report

Data from polls, surveys, and other self-reporting

Societal Happiness: Data

- · Abdullah et al.
- 9 million tweets from Twitter's "garden hose" from January 1, 2012 to April 30, 2013
- Tweets with images uploaded via Twitter's official photo-sharing service
- · Location is from the tweet, not photo

Societal Happiness: Smile Index Framework

Societal Happiness: Smile Index Framework

$$\mbox{Ratio} = \frac{\mbox{raw smile count at given location}}{\mbox{total number of images at given location}}$$

Societal Happiness: Results

Figure 3: Abdullah et al.

Societal Happiness: Results

Figure 4: Abdullah et al.

Societal Happiness: Results

- · Daily and hourly results in line with prior research
- Increased response for celebratory events and holidays
- Decreased response for tragedies and disasters
- · Cultural variance was not a significant hindrance

Future work

- Additional data sources
- Further investigation of using images for sentiment analysis

Discussions & Conclusion

Discussions & Conclusions

Twitter as a data source...

- · High volume
- Immediate
- Biased
- Assumptions for demographic information
- Bad for small scale
- Useful for large-scale patterns and trends

Questions?

- S. Abdullah, E. L. Murnane, J. M. Costa, and T. Choudhury. Collective smile: Measuring societal happiness from geolocated images. 2015.
- Y. Ikawa, M. Vukovic, J. Rogstadius, and A. Murakami. Location-based insights from the social web. 2013.
- J. Rogstadius, M. Vukovic, C. A. Teixeira, V. Kostakos, E. Karapanos, and J. A. Laredo. Crisistracker: Crowdsourced social media curation for disaster awareness. 2013.
- E. Zagheni, V. R. K. Garimella, I. Weber, and B. State. Inferring international and internal migration patterns from twitter data. 2014.

License

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This presentation is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

