Семинар 4

Общая информация:

- Пусть $A \in \mathrm{M}_n(\mathbb{R})$ матрица с коэффициентами a_{ij} . Тогда $\operatorname{tr} A = \sum_{k=1}^n a_{kk}$ называется след A.
- Пусть $A \in \mathrm{M}_n(\mathbb{R})$. Мы говорим, что A обратима, если найдется $C \in \mathrm{M}_n(\mathbb{R})$ такая, что $CA = \mathrm{I} = AC$, где I единичная матрица.
- Биномиальный коэффициент: $C_n^k = \frac{n!}{k!(n-k)!}$, где $n! = 1 \cdot 2 \cdot \ldots \cdot n$.

Задачи:

- 1. Задачник. §17, задача 17.4 (а, б).
- 2. Пусть $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ найти $A^2 \operatorname{tr}(A)A$.
- 3. Пусть

$$A = \begin{pmatrix} \lambda_1 \mathbf{I}_{n_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_k \mathbf{I}_{n_k} \end{pmatrix}$$

где $I_{n_i} \in M_{n_i}(\mathbb{R})$ – единичные матрицы, а $\lambda_i \in \mathbb{R}$. Найти $\{X \mid XA = AX\}$.

- 4. Пусть $A, B \in M_n(\mathbb{R})$.
 - (a) Если A и B коммутируют друг с другом, т.е. AB = BA, показать $(A + B)^n = \sum_{k=0}^n C_n^k A^k B^{n-k}$.
 - (b) Привести пример А и В, когда формула выше не верна.
- 5. Пусть $A \in M_{m\,n}(\mathbb{R})$ и пусть существуют такие матрицы $C_1, C_2 \in M_{n\,m}(\mathbb{R})$, что $C_1A = \mathbf{I}_n$ и $AC_2 = \mathbf{I}_m$, где $\mathbf{I}_n \in \mathbf{M}_n(\mathbb{R})$ единичная матрица. Покажите, что n=m.
- 6. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ такая, что $A^m = 0$ для некоторого m. Показать, что $\mathrm{I} + A$ и $\mathrm{I} A$ обратимы, где $\mathrm{I} \in \mathrm{M}_n(\mathbb{R})$ единичная матрица (указание: найти явный вид обратной матрицы).

 $^{^{1}}$ Смысл этой задачи в том, чтобы показать, что обратимыми могут быть только квадратные матрицы.