Cluster and Grid Superservers: The Dawning Experiences in China

Zhiwei Xu, Ninghui Sun, Dan Meng, Wei Li

Institute of Computing Technology

Chinese Academy of Sciences

P.O. Box 2704

Beijing 100080, China

{zxu, snh, md}@ncic.ac.cn, liwei@ict.ac.cn

China IT Market

China is an expanding market for IT and high-performance computers:

- Double-digit growth rates observed for several years
- Still a small percentage of the world market

Year	1997	1998	1999	2000
PCs Sold	3.50 million	4.08 million	4.94 million	7.17 million
Computers Connected	0.299 million	0.747 million	3.50 million	8.92 million
to the Internet				
Internet Users	0.062 million	2.10 million	8.90 million	22.5 million
"www" Web sites	1,500	5,300	15,153	265,405
Mobil Phones Sold			43.29 million	85.26 million
Telephones Sold			163 million	260 million

A Country-Wide ASP Platform in China

E-Government Project of Beijing City

Introduction to ICT

Institute of Computing Technology (ICT)

- Established in 1956 as the first computing institute in China
- 50 professors, 150 research associates, 360 graduate students
- Research areas
 - CPU micro-architecture (Godson microprocessor)
 - High-performance computers (Dawning Superservers and Vega Grid)
 - Internet devices, computer network
 - Operating systems, compilers (Intel IA-64/Linux, open source)
 - Middleware, application software
 - Information security
 - Intelligent information processing

Superserver Trends

Application Trend:

High-performance computers are increasingly used for applications other than technical computing

Value Trend:

The performance concept will be augmented to total performance of ownership (TPO), while the cost concept will be augmented to total cost of ownership (TCO)

Architecture Trend:

The I/O subsystem will become a focus point for the highperformance computer research

Networking Trend:

A trend towards a pervasive/grid architecture, where the client side consists of many ubiquitous Internet devices, while the server side consists of all servers on the Internet organized as a single logical grid

Dawning High-Performance Computers

Name — Year	Architecture	Memory Disk	Gflop/s Peak, MM, Linpack
Dawning 1	SMP, Unix, 8 CPUs,	1 GB,	0.06,
(1993)	Motorola 88100 25 MHz	4 GB	0.035,
			N/A
Dawning 1000	MPP, Unix, 36 CPUs,	1 GB,	2.5,
(1995)	Intel i860 40 MHz	5 GB	1.6,
			1.2
Dawning	Cluster, AIX, 34 CPUs,	8 GB,	20,
2000-I	PowerPC 300 MHz	152 GB	N/A,
(1998)			5.59
Dawning-	SMP Cluster, AIX, 160 CPUs,	50 GB,	110.4,
2000-II	PowerPC 333 MHz,	662 GB	46.3,
(1999)	Power 3 200 MHz		39
Dawning 3000	SMP Cluster, AIX, 280 CPUs,	168 GB,	403.2,
(2000)	PPC RS-64 400 MHz,	3630 GB	279.6,
	Power 3 375 MHz		233.6

Dawning 3000 Design Principles

- The Superserver Principle
- The Commodity Principle
- The SUMA Principle
 - Scalability
 - Usability
 - Manageability
 - Availability

Dawning 3000 Architecture

Utilizing an SMP cluster architecture

- 70 nodes with 280 microprocessors, 168 GB memory, 630 GB internal disks, 3 TB external disks
- 64 computing nodes, 6 I/O service nodes, each node is a 4-CPU SMP system running IBM AIX 4.3.3
- Interconnected by five networks
- System area network (SAN)
 - Three Options: Myrinet by Mricom, a NCIC-designed 2-D mesh, or a Gigabit Ethernet
- Parallel programming software
 - Supports C, Fortran, Java, and open source software such as GNU C, perl, tcl/tk, etc
 - BCL3, ADI 2 (Abstract Device Interface), PVM, MPI, JIAJIA, OpenMP, Autopar, DCDB(Dawning Cluster DeBugger)
- © Cluster file system COSMOS
 - A single image distributed file system
- Management software
 - RMS, JOSS, CSMS, MONITOR, DSC, SEPS, PowerRouter

Dawning 3000 Architecture

Dawning 3000 Performance

Standard Benchmarks

- Communications benchmarks
- Matrix multiplication
- Linpack
- SPECWeb99
- Lotus NotesBench
- TPC-C
- Andrew file system benchmark.

Real-case Applications

- MM5 short-term forecast
- Oil reservoir simulation application called PRIS
- CPMD benchmark for drug design

Latency and Bandwidth of Point-to-Point Communication on Dawning 3000

	BCL3	MPI	PVM
Intra-node Latency(µs)	3.6	7.7	7.2
Intra-node Bandwidth(MB/s)	384.6	413.4	362.9
Inter-node Latency(µs)	24.3	32.3	31.2
Inter-node Bandwidth(MB/s)	130.5	124.9	112.9

MPI Collective Communications Performance on Dawning 3000

CPUs	4	8	16	32	64	128	256
Barrier(µs)	32.0	78.2	135.2	184.2	256.6	341.3	764.0
Broadcast(MB/s)	581.2	532.9	623.7	975.5	1549.0	2489.0	4387.0
Reduce(MB/s)	241.9	429.6	586.8	920.6	1425.0	2427.0	4159.0
Scatter(MB/s)	307.9	159.7	137.9	121.1	117.1	110.5	103.1
Gather(MB/s)	153.2	87.1	90.9	83.8	108.8	113.9	114.1
Shift(MB/s)	487.1	489.0	912.1	1816	4017	6814.0	14928
All-to-All(MB/s)	463.6	238.1	264.7	442.5	748.2	748.7	1585.0

Performance of Matrix Multiplication Benchmark on Dawning 3000

CPU s	4	8	16	32	64	128	256
Problem Size	10080	16000	23040	32256	46080	64768	109568
Performance(Gflops)	5.4	10.5	20.3	39.7	76.0	146.6	279.6
Utilization	90%	87%	85%	83%	79%	76%	73%

Performance of Linpack Benchmark on Dawning 3000

CPUs	4	8	16	32	64	128	256
Problem Size	20480	25600	36864	51200	71680	112640	163840
Performance(Gflops)	5.2	9.8	18.9	36.5	68.1	128.9	233.6
Utilization	86%	82%	79%	76%	71%	67%	61%

Performance of Weather Forecast Application

Program	Problem Size	CPU	Time(sec)	Speedup	SP Time(sec)
		16	4485	1	5278
		32	2605	1.72	
	12 hours	40	2393	1.87	2803
MM5		64	1616	2.77	
		128	1221	3.67	
	48 hours	128	5902	_	
		8	920	1	
		16	471	1.95	720
	6 hours	32	285	3.22	
T213		64	175	5.24	360
		128	133	6.89	
	10 days	64	6600	_	

Performance Comparison of CPMD

Grid-Related Research

Design goals:

- Design and implement Grid-level system software (Grid middleware)
- Build a national-scale infrastructure supporting high performance computing
- Develop applications running on the testbed

Grid-Oriented Superservers

The next generations of Dawning systems, Dawning 4000 and Dawning 5000, to be completed in 2002 and 2005, respectively, will not only provide higher performance than Dawning 3000, but also offer much more capable support for grid

Service Grid

We call our Grid framework a service grid, to emphasize that a grid is itself a superserver, providing various services to the users. The service types should include messaging, computation, contents, transactions, and even knowledge services

Stress Distribution of 3800TEU

500hPa Contours in Weather Forecasting

High-resolution Mesoscale Numerical Weather Prediction

Numerical Wind Tunnel: Train-Crossing Surface Pressure

The Vega Grid Project

Knowledge Grid

Information Grid

Computation Grid (Vega)

TBD	
GPI P	
GCP	
GSIP	

Grid Protocol Architecture based on Internet Protocol

Vega Grid Architecture

Global Batch Process System in Vega Grid

Traval - An online transaction example in Vega Grid (1)

Traval - An online transaction example in Vega Grid (2)

