

Verwendung von Polymerisaten auf Basis von N-Vinylcaprolactam

Beschreibung

5

Die vorliegende Erfindung betrifft kosmetische Zubereitungen, insbesondere für haarkosmetische Anwendungen, die Copolymerisate auf der Basis von N-Vinyl-Lactamen und N-Vinyl-heterocyclischen Verbindungen enthalten.

10

Stand der Technik

N-Vinyl-Lactam enthaltende Copolymerisate wie Luviskol K, Luviskol VA, Luviquat Hold oder Luviskol Plus (BASF) werden

15 in kosmetischen, insbesondere haarkosmetischen Zubereitungen, insbesondere als Haarfestiger verwendet.

Für die Haarkosmetik werden in zunehmendem Maße Gelzubereitungen verwendet. Haarfestiger in solchen Gelzubereitungen sowie die

20 Gelzubereitung sollten die folgenden Anforderungen erfüllen. Nicht toxisch, klar, farblos, nicht klebrig, hohe Festigungs-wirkung, wenig hygrokopisch, gute Konsistenz.

Die hierbei verwendeten Copolymerisate zeigen noch teilweise
25 verbessерungsbedürftige Eigenschaften. Mit Ausnahme einiger nicht-ionischer Copolymeren wie Luviskol K 90, -K30, Luviskol VA 64 (BASF) oder Polyvinylformamid sind die meisten Gele trüb bis opak. Ebenso ist die Wasseraufnahmefähigkeit sowie die Klebrigkeits der mit diesen Copolymerisaten behandelten Haare
30 zu hoch. Ebenso ist der Festigungseffekt noch verbessungsfähig.

Die erfindungsgemäßen Polymere weisen obige Nachteile nicht auf. Es wurde gefunden, dass kationisierbare, bevorzugt N-haltige Monomere mit einem Anteil bis 5 Gew.-%, bevorzugt 2 bis 4 Gew.-%
35 besonders klare Gele mit guter Festigung ergeben. Überraschenderweise wurde gefunden, dass ein kleiner Anteil Monomer C zu wesentlich verbesserten Eigenschaften führt.

40

45

2

In der DE-C 12 61 822 werden Mischpolymerisate von N-Vinylcaprolactam mit beispielsweise N-Vinylimidazol und N-Vinylpyrrolidon beschrieben. Die Mischpolymerisate dienen als Mittel zur Verminderung der Pigmentwanderung beim Färben von Fasermaterial mit Pigmentfarbstoff-Flotten.

Die EP 0 455 081 beschreibt Mischpolymerisate von

35 bis 65 Gew. % N-Vinylcaprolactam,
10 35 bis 65 Gew. % einer Mischung aus 5 bis 50 Gew.-Teilen
N-Vinylimidazol und 10 bis 60 Gew.-Teilen
N-Vinylpyrrolidon (was einem VI : VP (VI/VP)
Verhältnis zwischen 1 : 12 (1/12) und 5 : 1
(5/1) entspricht)
15 0 bis 4 Gew. % weiterer radikalisch copolymerisierbarer
Monomere,

sowie die Anwendung solcher Mischpolymere als Haarfestigungs- und -haarpflegemittel.

20 Die WO 9831328 beschreibt wässrige Zubereitungen, enthaltend
(a) 0,1 bis 10 Gew.-% eines Copolymerisats auf Basis von N-Vinylcaprolactam, N-Vinylimidazol, N-Vinylpyrrolidon und (b) 0,1 bis 10 Gew.-% mindestens eines Polyoxyethylen-C₆-C₁₅-monoalkylethers,
25 sowie ihre Verwendung in kosmetischen Formulierungen.

Die EP 0709411 beschreibt lösliche Copolymerisate mit 15 bis 84,99 Gew.-% mindestens eines Monomeren aus der Gruppe von N-Vinylcaprolactam, N-Vinylimidazol, N-Vinylpyrrolidon in
30 alkoholischer Lösung.

Gefunden wurde die Verwendung von Polymerisaten aus

1 bis 98,9 Gew.-% Vinylcaprolactam (Monomer A)
35 1 bis 98,9 Gew.-% Vinylpyrrolidon (Monomer B)
0,1 bis 5 Gew.-% Vinylimidazol (Monomer C)
0 bis 10 Gew.-% Monomer D
0 bis 10 Gew.-% (bezogen auf die Gesamtmonomermenge)
Polymer E,

40 wobei das Gewichtverhältnis von Monomer C zu Monomer B (Monomer C/Monomer B) kleiner als 1:12 (1/12) ist,

bevorzugt

45

3

30 bis 59 Gew.-% Vinylcaprolactam (Monomer A)
 40 bis 69 Gew.-% Vinylpyrrolidon (Monomer B)
 1 bis 4 Gew.-% Vinylimidazol (Monomer C)
 0 bis 10 Gew.-% Monomer D
 5 0 bis 10 Gew.-% (bezogen auf die Gesamtmonomermenge)
 Polymer E,

wobei das Gewichtsverhältnis Monomer C zu Monomer B (Monomer C/Monomer B) kleiner als 1:13 ist, in der Haarkosmetik

10

Besonders bevorzugt werden Polymerisate aus

35 bis 50 Gew.-% Vinylcaprolactam (Monomer A)
 49 bis 62 Gew.-% Vinylpyrrolidon (Monomer B)
 15 1 bis 3 Gew.-% Vinylimidazol (Monomer C)
 0 bis 10 Gew.-% Monomer D
 0 bis 10 Gew.-% (bezogen auf die Gesamtmonomermenge)
 Polymer E,

20 wobei das Gewichtsverhältnis Monomer C zu Monomer B kleiner oder gleich 1:14 ist,

in der Haarkosmetik, insbesondere als Haarfestiger verwendet.

25 Besonders bevorzugt werden Polymere, bei den das Verhältnis von Monomer C zu Monomer B kleiner oder gleich 1:15, insbesondere 1:20, ganz besonders 1:23, beträgt.

Unter N-Vinylcaprolactam (Monomer A) ist N-vinyl- ϵ -Capro-
 30 lactam zu verstehen. Monomer A wird in einer Menge von 1 bis 98,9 Gew.-%, bevorzugt 30 bis 59 Gew.-%, insbesondere 35 bis 50 Gew.-%, verwendet.

Als Monomer B wird Vinylpyrrolidon eingesetzt.

35 Monomer B wird in einer Menge von

1 bis 98,9 Gew.-%, bevorzugt 40 bis 69 Gew.-%,
 insbesondere 49 bis 62 Gew.-% eingesetzt.

Als Monomer C wird ein Vinylimidazol der allgemeinen Formel XI
 40 eingesetzt, worin R⁴⁰ bis R⁴² unabhängig voneinander für Wasserstoff, C₁-C₄-Alkyl oder Phenyl steht. Bevorzugt steht R⁴⁰ bis R⁴² für Wasserstoff und Methyl

5

Monomer C wird in einer Menge von
 10 0,1 bis 5 Gew.-%, bevorzugt 1 bis 4 Gew.-%,
 insbesondere 1 bis 3 Gew.-%, eingesetzt.

Als Monomere D können folgende Monomere verwendet werden:

15 Die bevorzugten zusätzlich eingesetzten ethylenisch ungesättigten
 können durch die folgende allgemeine Formel beschrieben werden:

20 wobei

X ausgewählt ist aus der Gruppe der Reste -OH, -OM, -OR²¹, NH₂,
 -NHR²¹, N(R²¹)₂;

25 M ist ein Kation ausgewählt aus der Gruppe bestehend aus: Na⁺, K⁺,
 Mg⁺⁺, Ca⁺⁺, Zn⁺⁺, NH₄⁺, Alkylammonium, Dialkylammonium, Trialkyl-
 ammonium und Tetraalkylammonium;

die Reste R²¹ können identisch oder verschieden ausgewählt werden
 30 aus der Gruppe bestehend aus -H, C₁-C₄₀ linear- oder verzweigt-
 kettige Alkylreste, N,N-Dimethylaminoethyl, 2-Hydroxyethyl,
 2-Methoxyethyl, 2-Ethoxyethyl, Hydroxypropyl, Methoxypropyl oder
 Ethoxypropyl.

35 R²⁰ und R¹⁹ sind unabhängig voneinander ausgewählt aus der Gruppe
 bestehend aus: -H, C₁-C₈ linear- oder verzweigtkettige Alkyl-
 ketten, Methoxy, Ethoxy, 2-Hydroxyethoxy, 2-Methoxyethoxy und
 2-Ethoxyethyl.

40 Repräsentative aber nicht limitierende Beispiele von geeigneten
 Monomeren (D) sind zum Beispiel Acrylsäure oder Methacrylsäure
 und deren Salze, Ester und Amide. Die Salze können von jedem
 beliebigen nicht toxischen Metall, Ammonium oder substituierten
 Ammonium-Gegenionen abgeleitet sein.

5

Die Ester können abgeleitet sein von C₁-C₄₀ linearen, C₃-C₄₀ verzweigtkettigen oder C₃-C₄₀ carbocyclischen Alkoholen, von mehrfachfunktionellen Alkoholen mit 2 bis etwa 8 Hydroxylgruppen wie Ethylenglycol, Hexylen glycol, Glycerin und 1,2,6-Hexantriol, von Aminoalkoholen oder von Alkoholethern wie Methoxyethanol und Ethoxyethanol, (Alkyl)Polyethylenglykolen, (Alkyl)Polypropylen-glykolen oder ethoxylierten Fettalkoholen, beispielsweise C₁₂-C₂₄-Fettalkoholen umgesetzt mit 1 bis 200 Ethylenoxid-Einheiten.

10

Ferner eignen sich N,N-Dialkylaminoalkylacrylate- und -methacrylate und N-Dialkylaminoalkylacryl- und -methacrylamide der allgemeinen Formel (VII)

15

20 mit

R²² = H, Alkyl mit 1 bis 8 C-Atomen,

R²³ = H, Methyl,

R²⁴ = Alkylen mit 1 bis 24 C-Atomen, optional substituiert durch Alkyl,

R²⁵, R²⁶ = C₁-C₄₀ Alkylrest,

Z = Stickstoff für g = 1 oder Sauerstoff für g = 0

Die Amide können unsubstituiert, N-Alkyl oder N-Alkylamino monosubstituiert oder N,N-dialkylsubstituiert oder N,N-dialkylamino-disubstituiert vorliegen, worin die Alkyl- oder Alkylaminogruppen von C₁-C₄₀ linearen, C₃-C₄₀ verzweigtkettigen, oder C₃-C₄₀ carbocyclischen Einheiten abgeleitet sind. Zusätzlich können die Alkylaminogruppen quaternisiert werden.

Bevorzugte Comonomere der Formel VII sind N,N-Dimethylamino-methyl(meth)acrylat, N,N-Diethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl-(meth)acrylat, N-[3-(dimethylamino)propyl]methacrylamid und N-[3-(dimethylamino)propyl]acrylamid.

40

Ebenfalls verwendbare Monomere (D) sind substituierte Acrylsäuren sowie Salze, Ester und Amide davon, wobei die Substituenten an den Kohlenstoffatomen in der zwei oder drei Position der Acrylsäure stehen, und unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus C₁-C₄ Alkyl, -CN, COOH besonders bevorzugt Methacrylsäure, Ethacrylsäure und 3-Cyanoacrylsäure. Diese Salze, Ester und Amide dieser substituierten Acrylsäuren können wie oben

45

für die Salze, Ester und Amide der Acrylsäure beschrieben ausgewählt werden.

Andere geeignete Monomere (D) sind Allylester von C₁-C₄₀ linearen, 5 C₃-C₄₀ verzweigtkettigen oder C₃-C₄₀ carbocyclische Carbonsäuren, Vinyl- oder Allylhalogenide, bevorzugt Vinylchlorid und Allylchlorid, Vinylether, bevorzugt Methyl-, Ethyl-, Butyl- oder Dodecylvinylether, Vinyl- oder Allyl-substituierte heterocyclische Verbindungen, bevorzugt Vinylpyridin, Vinyloxazolin 10 und Allylpyridin.

Weiterhin sind N-Vinylimidazol-Derivate der allgemeinen Formel VIII geeignet, worin R²⁷ bis R²⁹ unabhängig voneinander für Wasserstoff, C₁-C₄-Alkyl oder Phenyl steht:

15

20

Weitere geeignete Monomere (D) sind Diallylamine der allgemeinen Formel (IX)

25

30

mit R³⁰ = C₁- bis C₂₄-Alkyl

Weitere geeignete Monomere (D) sind Vinylidenchlorid; und Kohlenwasserstoffe mit mindestens einer Kohlenstoff-Kohlenstoff Doppelbindung, bevorzugt Styrol, alpha-Methylstyrol, tert.-Butylstyrol, 35 Butadien, Isopren, Cyclohexadien, Ethylen, Propylen, 1-Buten, 2-Buten, Isobutylene, Vinyltoluol, sowie Mischungen dieser Monomere.

Besonders geeignete Comonomere (D) sind Acrylsäure, Methacrylsäure, Ethylacrylsäure, Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, iso-Butylacrylat, t-Butylacrylat, 40 2-Ethylhexylacrylat, Decylacrylat, Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat, n-Butylmethacrylat, iso-Butylmethacrylat, t-Butylmethacrylat, 2-Ethylhexylmethacrylat, Decylmethacrylat, Methylethacrylat, Ethylethacrylat, n-Butylethacrylat, 45 iso-Butylethacrylat, t-Butyl-ethacrylat, 2-Ethylhexylethacrylat, Decylethacrylat, Stearyl(meth)acrylat, 2,3-Dihydroxypropyl-

acrylat, 2,3-Dihydroxypropylmethacrylat, 2-Hydroxyethylacrylat, Hydroxypropylacrylate, 2-Hydroxyethylmethacrylat, 2-Hydroxyethyl-ethacrylat, 2-Methoxyethylacrylat, 2-Methoxyethylmethacrylat, 5 2-Methoxyethylmethacrylat, 2-Ethoxyethylmethacrylat, 2-Ethoxyethylethacrylat, Hydroxypropylmethacrylate, Glycerylmonoacrylat, Glycerylmonomethacrylat, Polyalkylenglykol(meth)acrylate, ungesättigte Sulfonsäuren wie zum Beispiel Acrylamidopropansulfon-säure;

10 Acrylamid, Methacrylamid, Ethacrylamid, N-Methylacrylamid, N,N-Dimethylacrylamid, N-Ethylacrylamid, N-Isopropylacrylamid, N-Butylacrylamid, N-t-Butylacrylamid, N-Octylacrylamid, N-t-Octylacrylamid, N-Octadecylacrylamid, N-Phenylacrylamid, N-Methylmethacrylamid, N-Ethylmethacrylamid, N-Dodecylmethacryl-15 amid, 1-Vinylimidazol, 1-Vinyl-2-methylvinylimidazol, N,N-Dimethylaminomethyl(meth)acrylat, N,N-Diethylaminomethyl(meth)-acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylamino-ethyl(meth)acrylat, N,N-Dimethylaminobutyl(meth)acrylat, N,N-Diethylaminobutyl(meth)acrylat, N,N-Dimethylaminohexyl(meth)-20 acrylat, N,N-Dimethylaminoctyl(meth)acrylat, N,N-Dimethylamino-dodecyl(meth)acrylat, N-[3-(dimethylamino)propyl]methacrylamid, N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)-butyl]methacrylamid, N-[8-(dimethylamino)octyl]methacrylamid, N-[12-(dimethylamino)dodecyl]methacrylamid, N-[3-(diethylamino)-25 propyl]methacrylamid, N-[3-(diethylamino)propyl]acrylamid;

Maleinsäure, Fumarsäure, Maleinsäureanhydrid und seine Halbester, Crotonsäure, Itaconsäure, Diallyldimethylammoniumchlorid, Vinyl-ether (zum Beispiel: Methyl-, Ethyl-, Butyl- oder Dodecylvinyl-ether), Methylvinylketon, Maleimid, Vinylpyridin, Vinylimidazol, 30 Vinylfuran, Styrol, Styrolsulfonat, Allylalkohol, und Mischungen daraus.

Von diesen sind besonders bevorzugt Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Maleinsäureanhydrid sowie dessen Halbester, Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, n-Butylacrylat, n-Butylmethacrylat, t-Butyl-acrylat, t-Butylmethacrylat, Isobutylacrylat, Isobutylmeth-acrylat, 2-Ethylhexylacrylat, Stearylacrylat, Stearylmethacrylat, N-t-Butylacrylamid, N-Octylacrylamid, 2-Hydroxyethylacrylat, 40 Hydroxypropylacrylate, 2-Hydroxyethylmethacrylat, Hydroxypropyl-methacrylate, Alkylenglykol(meth)acrylate, Styrol, ungesättigte Sulfonsäuren wie zum Beispiel Acrylamidopropansulfon-säure, Vinyl-ether (z.B.: Methyl-, Ethyl-, Butyl- oder Dodecylvinylether), 1-Vinyl-2-methylimidazol, N,N-Dimethylaminomethylmethacrylat und N-[3-(dimethylamino)propyl]methacrylamid; 3-Methyl-1-vinyl-imidazoliumchlorid, 3-Methyl-1-vinylimidazoliummethylsulfat, 45 N,N-Dimethylaminoethylmethacrylat, N-[3-(dimethylamino)propyl]-

methacrylamid quaternisiert mit Methylchlorid, Methylsulfat oder Diethylsulfat.

Monomere, mit einem basischen Stickstoffatom, können dabei auf 5 folgende Weise quaternisiert werden:

Zur Quaternisierung der Amine eignen sich beispielsweise Alkylhalogenide mit 1 bis 24 C-Atomen in der Alkylgruppe, z.B. 10 Methylchlorid, Methylbromid, Methyliodid, Ethylchlorid, Ethylbromid, Propylchlorid, Hexylchlorid, Dodecylchlorid, Laurylchlorid und Benzylhalogenide, insbesondere Benzylchlorid und Benzylbromid. Weitere geeignete Quaternierungsmittel sind Dialkylsulfate, insbesondere Dimethylsulfat oder Diethylsulfat. Die Quaternierung der basischen Amine kann auch mit Alkylenoxiden 15 wie Ethylenoxid oder Propylenoxid in Gegenwart von Säuren durchgeführt werden. Bevorzugte Quaternierungsmittel sind: Methylchlorid, Dimethylsulfat oder Diethylsulfat.

Die Quaternisierung kann vor der Polymerisation oder nach der 20 Polymerisation durchgeführt werden.

Außerdem können die Umsetzungsprodukte von ungesättigten Säuren, wie z.B. Acrylsäure oder Methacrylsäure, mit einem quaternisierten Epichlorhydrin der allgemeinen Formel (X) eingesetzt werden 25 ($R^{31} = C_1$ - bis C_{40} -Alkyl).

30

Beispiele hierfür sind zum Beispiel:

(Meth)acryloyloxyhydroxypropyltrimethylammoniumchlorid und

(Meth)acryloyloxyhydroxypropyltriethylammoniumchlorid.

35

Die basischen Monomere können auch kationisiert werden, indem sie mit Mineralsäuren, wie z.B. Schwefelsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, Iodwasserstoffsäure, Phosphorsäure oder Salpetersäure, oder mit organischen Säuren, wie z.B. Ameisensäure, Essigsäure, Milchsäure, oder Citronensäure, neutralisiert werden.

45

9

Weiterhin geeignet als Monomere (D) sind offenkettige N-Vinylamidverbindungen der allgemeinen Formel (I)

5

(I)

wobei R¹, R², R³ = H oder C₁- bis C₆-Alkyl bedeuten sowie

10

offenkettige N-Vinylamidverbindungen wie beispielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N-Vinylpropionamid, N-Vinyl-N-methylpropionamid und N-Vinyl-butyramid. Aus dieser

15 Gruppe von Monomeren verwendet man vorzugsweise N-Vinylformamid.

Weiterhin geeignet als Monomere (D) sind auch Polyetheracrylate, worunter im Rahmen dieser Erfindung allgemein Ester α,β-ethylenisch ungesättigter Mono- und Dicarbonsäuren mit Polyetherolen

20 verstanden werden. Geeignete Polyetherole sind lineare oder verzweigte, endständige Hydroxylgruppen aufweisende Substanzen, die Etherbindungen enthalten. Im Allgemeinen weisen sie ein Molekulargewicht im Bereich von etwa 150 bis 20 000 auf. Geeignete Polyetherole sind Polyalkylenglycole, wie Polyethylenglycole,

25 Polypropylenglycole, Polytetrahydrofurane und Alkylenoxidcopolymeren. Geeignete Alkylenoxide zur Herstellung von Alkylenoxid-copolymeren sind z.B. Ethylenoxid, Propylenoxid, Epichlorhydrin, 1,2- und 2,3-Butylenoxid. Die Alkylenoxidcopolymeren können die Alkylenoxideinheiten statistisch verteilt oder in Form von

30 Blöcken einpolymerisiert enthalten. Bevorzugt sind Ethylenoxid/Propylenoxid-Copolymeren. Bevorzugt als Monomer D sind Polyetheracrylate der allgemeinen Formel II

worin

die Reihenfolge der Alkylenoxideinheiten beliebig ist,

40

k und l unabhängig voneinander für eine ganze Zahl von 0 bis 500 stehen, wobei die Summe aus k und l mindestens 5 beträgt,

R⁵ für Wasserstoff oder C₁-C₈-Alkyl steht, und

R⁶ für Wasserstoff oder C₁-C₁₈-Alkyl steht,

45 Y für O oder NR⁷ steht, wobei R⁷ für Wasserstoff, C₁-C₈-Alkyl oder C₅-C₈-Cycloalkyl steht.

10

Bevorzugt steht k für eine ganze Zahl von 1 bis 500, insbesondere 3 bis 250. Bevorzugt steht l für eine ganze Zahl von 0 bis 100.

Bevorzugt steht R^5 für Wasserstoff, Methyl, Ethyl, n-Propyl, Iso-
5 propyl, n-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl oder n-Hexyl, insbesondere für Wasserstoff, Methyl oder Ethyl.

Vorzugsweise steht R^6 in der Formel II für Wasserstoff, Methyl,
Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, n-Pentyl,
10 n-Hexyl, Octyl, 2-Ethylhexyl, Decyl, Lauryl, Palmityl oder Stearyl.

Vorzugsweise steht Y in der Formel II für O oder NH.

15 Geeignete Polyetheracrylate sind z.B. die Polykondensationsprodukte der zuvor genannten α,β -ethylenisch ungesättigten Mono- und/oder Dicarbonsäuren und deren Säurechloriden, -amiden und Anhydriden mit Polyetherolen. Geeignete Polyetherole können leicht durch Umsetzung von Ethylenoxid, 1,2-Propylenoxid und/oder
20 Epi-chlorhydrin mit einem Startermolekül, wie Wasser oder einem kurzkettigen Alkohol R^6-OH hergestellt werden. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischung eingesetzt werden. Die Polyetheracrylate können allein oder in Mischungen zur Herstellung der erfindungsgemäß eingesetzten
25 Polymere verwendet werden.

Als vernetzende Monomere (D) können Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen eingesetzt werden, wie zum Beispiel Ester von ethylenisch ungesättigten Carbon-
30 säuren, wie Acrylsäure oder Methacrylsäure und mehrwertigen Alkoholen, Ether von mindestens zweiwertigen Alkoholen, wie zum Beispiel Vinylether oder Allylether.

Beispiele für die zugrundeliegenden Alkohole sind zweiwertige
35 Alkohole wie 1,2-Ethandiol, 1,2-Propandiol, 1,3-Propandiol, 1,2-Butandiol, 1,3-Butandiol, 2,3-Butandiol, 1,4-Butandiol, But-2-en-1,4-diol, 1,2-Pentandiol, 1,5-Pentandiol, 1,2-Hexandiol, 1,6-Hexandiol, 1,10-Decandiol, 1,2-Dodecandiol, 1,12-Dodecandiol, Neopentylglykol, 3-Methylpentan-1,5-diol, 2,5-Dimethyl-1,3-hexan-
40 diol, 2,2,4-Trimethyl-1,3-pentandiol, 1,2-Cyclohexandiol, 1,4-Cyclohexandiol, 1,4-Bis(hydroxymethyl)cyclohexan, Hydroxy-pivalinsäure-neopentylglycolmonoester, 2,2-Bis(4-hydroxyphenyl)-propan, 2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethylen-glykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol,
45 Tripropylenglykol, Tetrapropylenglykol, 3-Thio-pantan-1,5-diol, sowie Polyethylenglycole, Polypropylenglycole und Polytetrahydro-furane mit Molekulargewichten von jeweils 200 bis 10000. Außer

11

den Homopolymerisaten des Ethylenoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid oder Propylenoxid oder Copolymerisate, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden. Beispiele für zugrundeliegende

5 Alkohole mit mehr als zwei OH-Gruppen sind Trimethylolpropan, Glycerin, Pentaerythrit, 1,2,5-Pantantriol, 1,2,6-Hexantriol, Triethoxycyanursäure, Sorbitan, Zucker wie Saccharose, Glucose, Mannose. Selbstverständlich können die mehrwertigen Alkohole auch nach Umsetzung mit Ethylenoxid oder Propylenoxid als die entsprechenden Ethoxylate bzw. Propoxylate eingesetzt werden. Die mehrwertigen Alkohole können auch zunächst durch Umsetzung mit Epichlorhydrin in die entsprechenden Glycidylether überführt werden.

15 Weitere geeignete Vernetzer sind die Vinylester oder die Ester einwertiger, ungesättigter Alkohole mit ethylenisch ungesättigten C₃- bis C₆-Carbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure. Beispiele für solche Alkohole sind Allylalkohol, 1-Buten-3-ol, 5-Hexen-1-ol,

20 1-Octen-3-ol, 9-Decen-1-ol, Dicyclopentenylalkohol, 10-Undecen-1-ol, Zimtalkohol, Citronellol, Crotylalkohol oder cis-9-Octadecen-1-ol. Man kann aber auch die einwertigen, ungesättigten Alkohole mit mehrwertigen Carbonsäuren verestern, beispielsweise Malonsäure, Weinsäure, Trimellitsäure, Phthalsäure, Terephthal-

25 säure, Citronensäure oder Bernsteinsäure.

Weitere geeignete Vernetzer sind Ester ungesättigter Carbonsäuren mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise der Ölsäure, Crotonsäure, Zimtsäure oder 10-Undecensäure.

30 Außerdem geeignet sind geradkettige oder verzweigte, lineare oder cyclische aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen verfügen, welche bei den aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen,

35 z.B. Divinylbenzol, Divinyltoluol, 1,7-Octadien, 1,9-Decadien, 4-Vinyl-1-cyclohexen, Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20000.

Ferner geeignet sind Amide von ungesättigten Carbonsäuren,

40 wie z.B., Acryl- und Methacrylsäure, Itaconsäure, Maleinsäure, und N-Allylaminen von mindestens zweiwertigen Aminen, wie zum Beispiel 1,2-Diaminomethan, 1,2-Diaminoethan, 1,3-Diaminopropan, 1,4-Diaminobutan, 1,6-Diaminohexan, 1,12-Dodecanediamin, Piperazin, Diethylentriamin oder Isophorondiamin. Ebenfalls geeignet sind die Amide aus Allylamin und ungesättigten Carbonsäuren wie Acrylsäure, Methacrylsäure, Itaconsäure, Malein-

12

säure, oder mindestens zweiseitigen Carbonsäuren, wie sie oben beschrieben wurden.

Ferner sind Triallylamin oder entsprechende Ammoniumsalze, z.B. 5 Triallylmethylammoniumchlorid oder -methylsulfat, als Vernetzer geeignet.

Weiterhin können N-Vinylverbindungen von Harnstoffderivaten, mindestens zweiseitigen Amiden, Cyanuraten oder Urethanen, bei- 10 spielsweise von Harnstoff, Ethylenharnstoff, Propylenharnstoff oder Weinsäurediamid, z.B. N,N'-Divinylethylenharnstoff oder N,N'-Divinylpropylenharnstoff eingesetzt werden.

Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan 15 oder Tetravinylsilan.

Besonders bevorzugte Vernetzer sind beispielsweise Methylenbisacrylamid, Divinylbenzol, Triallylamin und Triallylammoniumsalze, Divinylimidazol, N,N'-Divinylethylenharnstoff, Umsetzungsprodukte 20 mehrwertiger Alkohole mit Acrylsäure oder Methacrylsäure, Methacrylsäureester und Acrylsäureester von Polyalkylenoxiden oder mehrwertigen Alkoholen, die mit Ethylenoxid und/oder Propylenoxid und/oder Epichlorhydrin umgesetzt worden sind, sowie Allyl- oder Vinylether von mehrwertigen Alkoholen, beispielsweise 1,2-Ethan- 25 diol, 1,4-Butandiol, Diethylen glykol, Trimethylolpropan, Glycerin, Pentaerythrit, Sorbitan und Zucker wie Saccharose, Glucose, Mannose.

Ganz besonders bevorzugt als Vernetzer sind Pentaerythrittria- 30 allylether, Allylether von Zuckern wie Saccharose, Glucose, Mannose, Divinylbenzol, Methylenbisacrylamid, N,N'-Divinylethylenharnstoff, und (Meth-)Acrylsäureester von Glykol, Butan- diol, Trimethylolpropan oder Glycerin oder (Meth)Acrylsäureester von mit Ethylenoxid und/oder Epichlorhydrin umgesetzten Glykol, 35 Butandiol, Trimethylolpropan oder Glycerin.

Der Anteil der Monomeren (D) beträgt 0 bis 10 Gew.-%, bevorzugt 0 bis 5 Gew.-%, ganz besonders bevorzugt 0 bis 2 Gew.-%.

40 Das Polymer (E) wird bevorzugt ausgewählt aus

- E1) polyetherhaltigen Verbindungen
- E2) Polymerisaten, die mindestens 5 Gew.-% an Vinylpyrrolidon-einheiten einpolymerisiert enthalten
- 45 E3) Polymerisaten, die mindestens 50 Gew.-% an Vinylalkohol-Einheiten enthalten
- E4) natürliche Substanzen E4), die Saccharid-Strukturen enthalten

13

Als polyetherhaltige Verbindung E1) können sowohl Polyalkylenoxide auf Basis von Ethylenoxid, Propylenoxid, Butylenoxid und weiteren Alkylenoxiden als auch Polyglycerin verwendet werden. Je nach Art der Monomerbausteine enthalten die Polymere folgende

5 Struktureinheiten.

$-(CH_2)_2-O-$, $-(CH_2)_3-O-$, $-(CH_2)_4-O-$, $-CH_2-CH(R^9)-O-$,
 $-CH_2-CHOR^{10}-CH_2-O-$

mit

10

R^9 C_1-C_{24} -Alkyl;

R^{10} Wasserstoff, C_1-C_{24} -Alkyl, $R^9-C(=O)-$, $R^9-NH-C(=O)-$.

15 Dabei kann es sich bei den Struktureinheiten sowohl um Homopolymeren als auch um statistische Copolymeren und Blockcopolymere handeln.

Bevorzugt werden als Polymer (E) Polymerisate der allgemeinen
20 Formel II verwendet, mit einem Molekulargewicht >300

25

(II)

in der die Variablen unabhängig voneinander folgende Bedeutung haben:

30

R^4 Wasserstoff, C_1-C_{24} -Alkyl, $R^9-C(=O)-$, $R^9-NH-C(=O)-$, Polyalkoholrest;

R^8 Wasserstoff, C_1-C_{24} -Alkyl, $R^9-C(=O)-$, $R^9-NH-C(=O)-$;

35

R^5 bis R^7

$-(CH_2)_2-$, $-(CH_2)_3-$, $-(CH_2)_4-$, $-CH_2-CH(R^9)-$, $-CH_2-CHOR^{10}-CH_2-$;

R^9 C_1-C_{24} -Alkyl;

40

R^{10} Wasserstoff, C_1-C_{24} -Alkyl, $R^9-C(=O)-$, $R^9-NH-C(=O)-$;

A $-C(=O)-O$, $-C(=O)-B-C(=O)-O$,
 $-C(=O)-NH-B-NH-C(=O)-O$;

45

B $-(CH_2)_t-$, Arylen, ggf. substituiert;

14

n 1 bis 1000;
s 0 bis 1000;
5 t 1 bis 12;
u 1 bis 5000;
v 0 bis 5000;
10 w 0 bis 5000:
x 0 bis 5000;
15 y 0 bis 5000;
z 0 bis 5000.

Die endständigen primären Hydroxylgruppen der auf Basis von Poly-
20 alkyleneoxiden hergestellten Polyether sowie die sekundären OH-
Gruppen von Polyglycerin können dabei sowohl in ungeschützter
Form frei vorliegen als auch mit Alkoholen einer Kettenlänge
C₁-C₂₄ bzw. mit Carbonsäuren einer Kettenlänge C₁-C₂₄ verethert
bzw. verestert werden oder mit Isocyanaten zu Urethanen umgesetzt
25 werden.

Als Alkylreste für R⁴ und R⁸ bis R¹⁰ seien verzweigte oder unver-
zweigte C₁-C₂₄-Alkylketten, bevorzugt Methyl, Ethyl, n-Propyl,
1-Methylethyl, n-Butyl, 1-Methylpropyl-, 2-Methylpropyl, 1,1-Di-
30 methylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methyl-
butyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethyl-
propyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl,
3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethyl-
butyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl,
35 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethyl-
propyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-
2-methylpropyl, n-Heptyl, 2-Ethylhexyl, n-Octyl, n-Nonyl,
n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Penta-
decyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl oder
40 n-Eicosyl genannt.

Als bevorzugte Vertreter der oben genannten Alkylreste seien
verzweigte oder unverzweigte C₁-C₁₂-, besonders bevorzugt
C₁-C₆-Alkylketten genannt.

15

Das Molekulargewicht der Polyether liegt im Bereich größer 300 (nach Zahlenmittel), bevorzugt im Bereich von 300 bis 100000, besonders bevorzugt im Bereich von 500 bis 50000, ganz besonders bevorzugt im Bereich von 800 bis 40000.

5

Vorteilhafterweise verwendet man Homopolymerisate des Ethylenoxids oder Copolymerisate, mit einem Ethylenoxidanteil von 40 bis 99 Gew.-%. Für die bevorzugt einzusetzenden Ethylenoxidpolymerisate beträgt somit der Anteil an einpolymerisiertem Ethylenoxid 40 bis 100 mol-%. Als Comonomer für diese Copolymerisate kommen Propylenoxid, Butylenoxid und/oder Isobutyleneoxid in Betracht. Geeignet sind beispielsweise Copolymerisate aus Ethylenoxid und Propylenoxid, Copolymerisate aus Ethylenoxid und Butylenoxid sowie Copolymerisate aus Ethylenoxid, Propylenoxid und mindestens einem Butylenoxid. Der Ethylenoxidanteil der Copolymerisate beträgt vorzugsweise 40 bis 99 mol-%, der Propylenoxidanteil 1 bis 60 mol-% und der Anteil an Butylenoxid in den Copolymerisaten 1 bis 30 mol-%. Neben geradkettigen können auch verzweigte Homo- oder Copolymerisate verwendet werden.

10 Verzweigte Polymerisate können hergestellt werden, indem man beispielsweise an Polyalkoholresten, z.B. an Pentaerythrit, Glycerin oder an Zuckeralkoholen wie D-Sorbit und D-Mannit aber auch an Polysaccharide wie Cellulose und Stärke, Ethylenoxid und gegebenenfalls noch Propylenoxid und/oder Butylenoxide anlagert.

15 20 Die Alkylenoxid-Einheiten können im Polymerisat statistisch verteilt sein oder in Form von Blöcken vorliegen.

25 Es ist aber auch möglich, Polyester von Polyalkylenoxiden und aliphatischen oder aromatischen Dicarbonsäuren, z.B. Oxalsäure, Bernsteinsäure, Adipinsäure und Terephthalsäure mit Molmassen von 1500 bis 25000, wie z.B. beschrieben in EP-A-0 743 962, als polyetherhaltige Verbindung zu verwenden. Des weiteren können auch Polycarbonate durch Umsetzung von Polyalkylenoxiden mit Phosgen oder Carbonaten wie z.B. Diphenylcarbonat, sowie Polyurethane durch Umsetzung von Polyalkylenoxiden mit aliphatischen und aromatischen Diisocyanaten verwendet werden.

30 Besonders bevorzugt werden als Polyether (E) Polymerisate der allgemeinen Formel II mit einem mittleren Molekulargewicht von 40 300 bis 100.000 (nach dem Zahlenmittel), in der die Variablen

16

unabhängig voneinander folgende Bedeutung haben:

4 R⁴ Wasserstoff, C₁-C₁₂-Alkyl, R⁹-C(=O)-, R⁹-NH-C(=O)-, Poly-alkoholrest;

5

R⁸ Wasserstoff, C₁-C₁₂-Alkyl, R⁹-C(=O)-, R⁹-NH-C(=O)-;

R⁵ bis R⁷

-(CH₂)₂-, -(CH₂)₃-, -(CH₂)₄-, -CH₂-CH(R⁹)-, -CH₂-CHOR¹⁰-CH₂-;

10

R⁹ C₁-C₁₂-Alkyl;

R¹⁰ Wasserstoff, C₁-C₁₂-Alkyl, R⁹-C(=O)-, R⁹-NH-C(=O)-;

15 n 1 bis 8;

s 0;

u 2 bis 2000;

20

v 0 bis 2000;

w 0 bis 2000.

25 Ganz besonders bevorzugt werden als Polyether Polymerisate der allgemeinen Formel II mit einem mittleren Molekulargewicht von 500 bis 50000 (nach dem Zahlenmittel), in der die Variablen unabhängig voneinander folgende Bedeutung haben:

30 R⁴ Wasserstoff, C₁-C₆-Alkyl, R⁹-C(=O)-, R⁹-NH-C(=O)-;

R⁸ Wasserstoff, C₁-C₆-Alkyl, R⁹-C(=O)-, R⁹-NH-C(=O)-;

R⁵ bis R⁷

35 -(CH₂)₂-, -(CH₂)₃-, -(CH₂)₄-, -CH₂-CH(R⁹)-, -CH₂-CHOR¹⁰-CH₂-;

R⁹ C₁-C₆-Alkyl;

R¹⁰ Wasserstoff, C₁-C₆-Alkyl, R⁹-C(=O)-, R⁹-NH-C(=O)-;

40

n 1;

s 0;

45 u 5 bis 500;

v 0 bis 500;

w 0 bis 500.

5 Des weiteren können als Polyether (E1) auch Homo- und Copolymerisate aus polyalkylenoxidhaltigen ethylenisch ungesättigten Monomeren wie beispielsweise Polyalkylenoxid(meth)acrylate, Polyalkylenoxidvinylether, Polyalkylenoxid(meth)acrylamide, Polyalkylenoxidallyamide oder Polyalkylenoxidvinylamide verwendet werden. Selbstverständlich können auch Copolymerisate solcher Monomere mit anderen ethylenisch ungesättigten Monomeren eingesetzt werden.

Als polyetherhaltige Verbindungen (E1) können aber auch 15 Umsetzungsprodukte von Polyethyleniminen mit Alkylenoxiden eingesetzt werden. Als Alkylenoxide werden in diesem Fall bevorzugt Ethylenoxid, Propylenoxid, Butylenoxid und Mischungen aus diesen, besonders bevorzugt Ethylenoxid verwendet. Als Polyethylenimine können Polymere mit zahlenmittleren Molekulargewichten von 300 20 bis 20000, bevorzugt 500 bis 10000, ganz besonders bevorzugt 500 bis 5000, eingesetzt werden. Das Gewichtsverhältnis zwischen eingesetztem Alkylenoxid und Polyethylenimin liegt im Bereich von 100 : 1 bis 0,1 : 1, bevorzugt im Bereich 50 : 1 bis 0,5 : 1, ganz besonders bevorzugt im Bereich 20 : 1 bis 0,5 : 1.

25 Als Polymer (E) können jedoch auch Polymerisate E2), die mindestens 5 Gew.-% an Vinylpyrrolidon-Einheiten enthalten, eingesetzt werden. Bevorzugt enthalten diese Polymerisate einen Vinylpyrrolidon-Anteil von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 30 Gew.-%.

Als Comonomere des Vinylpyrrolidons zur Synthese der Polymer (E2) kommen beispielsweise N-Vinylcaprolactam, N-Vinylimidazol, N-Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, 3-Methyl-35 1-vinylimidazoliumchlorid, 3-Methyl-1-vinylimidazoliummethylsulfat, Diallylammoniumchlorid, Styrol, Alkylstyrole in Frage.

Weitere geeignete Comonomere zur Herstellung der Polymere (E3) sind beispielsweise sind monoethylenisch ungesättigten C₃-C₆-40 Carbonsäuren wie z.B. Acrylsäure, Methacrylsäure, Crotonsäure, Fumarsäure, sowie deren Ester, Amide und Nitrile wie z.B. Acrylsäuremethylester, Acrylsäureethylester, Methacrylsäuremethylester, Methacrylsäureethylester, Methacrylsäurestearylester, Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, 45 Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Hydroxyisobutylmethacrylat, Maleinsäuremonomethyl-ester, Maleinsäuredimethylester, Maleinsäuremonoethylester,

18

Maleinsäureiethylester, 2-Ethylhexylacrylat, 2-Ethylhexylmethacrylat, Maleinsäureanhydrid sowie dessen Halbester, Alkylen-glykol(meth)acrylate, Acrylamid, Methacrylamid, N-Dimethylacrylamid, N-tert.-butylacrylamid, Acrylnitril, Methacrylnitril,
5 Vinylether wie z.B. Methyl-, Ethyl-, Butyl oder Dodecylvinyl-ether, kationische Monomere wie Dialkylaminoalkyl(meth)acrylate und Dialkylaminoalkyl(meth)acrylamide wie Dimethylaminothyl-acrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, sowie die Salze der zuletzt genannten Monomeren mit Carbonsäuren
10 oder Mineralsäuren sowie die quarternierten Produkte.

Die Herstellung der Polymere (E) erfolgt nach bekannten Verfahren, zum Beispiel der Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation unter Verwendung von Verbindungen, die
15 unter den Polymerisationsbedingungen Radikale bilden. Die Polymerisationstemperaturen liegen üblicherweise in dem Bereich von 30 bis 200, vorzugsweise 40 bis 110°C. Geeignete Initiatoren sind beispielsweise Azo- und Peroxyverbindungen sowie die üblichen Redoxinitiator-systeme, wie Kombinationen aus Wasserstoffperoxid
20 und reduzierend wirkenden Verbindungen, zum Beispiel Natrium-sulfit, Natriumbisulfit, Natriumformaldehydsulfoxilat und Hydrazin. Diese Systeme können gegebenenfalls zusätzlich noch geringe Mengen eines Schwermetallsalzes enthalten.

25 Die Homo- und Copolymeren (Polymere E2) besitzen K-Werte von mindestens 7, vorzugsweise 10 bis 250. Die Polymeren können jedoch K-Werte bis zu 300 haben. Die K-Werte werden bestimmt nach H. Fikentscher, Cellulose-Chemie, Band 13, 58 bis 64 und 71 bis 74 (1932) in wässriger Lösung bei 25°C, bei Konzentrationen, die
30 je nach K-Wert-Bereich zwischen 0,1 % und 5 % liegen.

Als Polymer (E) können jedoch auch Polymerivate (E3), die mindestens 50 Gew.-% an Vinylalkoholeinheiten besitzen. Bevorzugt enthalten diese Polymerivate mindestens 70 Gew.-%, ganz besonders
35 bevorzugt 80 Gew.-% Polyvinylalkoholeinheiten. Solche Polymerivate werden überlicherweise durch Polymerisation eines Vinylesters und anschließender zumindest teilweiser Alkoholyse, Aminolyse oder Hydrolyse hergestellt. Bevorzugt sind Vinylester linearer und verzweigter C₁-C₁₂-Carbonsäuren, ganz besonders
40 bevorzugt ist Vinylacetat. Die Vinylester können selbstverständlich auch im Gemisch eingesetzt werden.

Als Comonomere des Vinylesters zur Synthese der Polymere (E3) kommen beispielsweise N-Vinylcaprolactam, N-Vinylpyrrolidon,
45 N-Vinylimidazol, N-Vinyl-2-methylimidazol, N-Vinyl-4-methyl-imidazol, 3-Methyl-1-vinylimidazoliumchlorid, 3-Methyl-1-vinyl-

imidazoliummethysulfat, Diallylammoniumchlorid, Styrol, Alkylstyrole in Frage.

Weitere geeignete Comonomere zur Herstellung der Polymere (E3) sind beispielsweise sind monoethylenisch ungesättigten C₃-C₆-Carbonsäuren wie z.B. Acrylsäure, Methacrylsäure, Crotonsäure, Fumarsäure, sowie deren Ester, Amide und Nitrile wie z.B. Acrylsäuremethylester, Acrylsäureethylester, Methacrylsäuremethyl-ester, Methacrylsäureethylester, Methacrylsäurestearyl-ester, Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Hydroxyisobutylacrylat, Hydroxyisobutylmethacrylat, Maleinsäuremonomethyl-ester, Maleinsäuredimethylester, Maleinsäuremonoethylester, Maleinsäureiethylester, 2-Ethylhexylacrylat, 2-Ethylhexylmeth-15 acrylat, Maleinsäureanhydrid sowie dessen Halbester, Alken-glykol(meth)acrylate, Acrylamid, Methacrylamid, N-Dimethylacryl-amid, N-tert.-butylacrylamid, Acrylnitril, Methacrylnitril, Vinylether wie z.B. Methyl-, Ethyl-, Butyl oder Dodecylvinyl-ether, kationische Monomere wie Dialkylaminoalkyl(meth)acrylate 20 und Dialkylaminoalkyl(meth)acrylamide wie Dimethylaminoethyl-acrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, sowie die Salze der zuletzt genannten Monomeren mit Carbonsäuren oder Mineralsäuren sowie die quarternierten Produkte.

25 Bevorzugt Polymere (E3) sind Polymerisate, die durch Homopolymerisation von Vinylacetat und anschließender zumindest teilweiser Hydrolyse, Alkoholyse oder Aminolyse hergestellt werden.

Die Herstellung der Polymere (E3) erfolgt nach bekannten Verfahren, zum Beispiel der Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation unter Verwendung von Verbindungen, die unter den Polymerisationsbedingungen Radikale bilden. Die Polymerisationstemperaturen liegen üblicherweise in dem Bereich von 30 bis 200, vorzugsweise 40 bis 110°C. Geeignete Initiatoren sind beispielsweise Azo- und Peroxyverbindungen sowie die üblichen Redoxinitiatorsysteme, wie Kombinationen aus Wasserstoffperoxid und reduzierend wirkenden Verbindungen, zum Beispiel Natriumsulfit, Natriumbisulfit, Natriumformaldehydsulfoxilat und Hydrazin. Diese Systeme können gegebenenfalls zusätzlich noch 40 geringe Mengen eines Schwermetallsalzes enthalten.

Zur Herstellung der Polymere (E3) werden die Estergruppen der ursprünglichen Monomere und gegebenenfalls weiterer Monomere nach der Polymerisation durch Hydrolyse, Alkoholyse oder Aminolyse 45 zumindest teilweise gespalten. Im nachfolgenden wird dieser Verfahrensschritt allgemein als Verseifung bezeichnet. Die Verseifung erfolgt in an sich bekannter Weise durch Zugabe einer

20

Base oder Säure, bevorzugt durch Zugabe einer Natrium- oder Kaliumhydroxidlösung in Wasser und/oder Alkohol. Besonders bevorzugt werden methanolische Natrium- oder Kaliumhydroxidlösungen eingesetzt. Die Verseifung wird bei Temperaturen im Bereich von 5 10 bis 80°C, bevorzugt im Bereich von 20 bis 60°C, durchgeführt. Der Verseifungsgrad hängt ab von der Menge der eingesetzten Base bzw. Säure, von der Verseifungstemperatur, der Verseifungszeit und dem Wassergehalt der Lösung.

10 Besonders bevorzugte Polymere (E3) sind Polymerisate, die durch Homopolymerisation von Vinylacetat und anschließender zumindest teilweiser Verseifung hergestellt werden. Solche Polyvinylalkoholeinheiten enthaltenden Polymere sind unter dem Namen Mowiol® erhältlich. Als Polymer (E) können aber auch natürliche 15 Substanzen (E4), die Saccharid-Strukturen enthalten, eingesetzt werden. Solche natürlichen Substanzen sind beispielsweise Saccharide pflanzlicher oder tierischer Herkunft oder Produkte, die durch Metabolisierung durch Mikroorganismen entstanden sind, sowie deren Abbauprodukte. Geeignete Polymere (E4) sind 20 beispielsweise Oligosaccharide, Polysaccharide, oxidativ, enzymatisch oder hydrolytisch abgebaut Polysaccharide, oxidativ hydrolytisch abgebaut oder oxidativ enzymatisch abgebaut Polysaccharide, chemisch modifizierte Oligo- oder Polysaccharide und Mischungen davon.

25

Bevorzugte Produkte sind die in US 5,334,287 auf Spalte 4 Zeile. 20 bis Spalte 5 Zeile 45 genannten Verbindungen.

Bevorzugt werden als Monomere E und D wasserlösliche oder wasser- 30 dispergierbare Monomere eingesetzt, bevorzugt sind wasserlösliche Monomere.

Unter wasserlöslich wird verstanden, dass die Monomere bei 25°C zu mindestens 2 Gew.-% in Wasser löslich sind.

35 Die Polymerisate werden durch radikalische Polymerisation der Monomeren A bis D gegebenenfalls in Gegenwart der Polymeren E hergestellt. Hierbei arbeitet man unter den üblichen Polymerisationsbedingungen, zum Beispiel nach den Methoden der Fällungs-, Suspensions-, Emulsions-, Lösungs- oder Dispersions- 40 polymerisation sowie die Polymerisation in Substanz. Als besonders zweckmäßig hat sich die Lösungspolymerisation in Wasser oder einem organischen Lösungsmittel, in der Regel ein Alkohol oder in einem Wasser/Alkohol-Gemisch herausgestellt. Man arbeitet hierbei üblicherweise bei Temperaturen von 60 bis 45 130°C, wobei die Umsetzung bei Normaldruck, Eigendruck oder verminderter Druck durchgeführt werden kann.

21

Als Initiatoren für die radikalische Polymerisation können die hierfür üblichen wasserlöslichen und wasserunlöslichen Peroxo- und/oder Azo-Verbindungen eingesetzt werden, beispielsweise Alkali- oder Ammoniumperoxidisulfate, Dibenzoylperoxid, tert.-
5 Butylperpivalat, tert.-Butyl-per-2-ethylhexanoat, Di-tert.-butylperoxid, tert.-Butylhydroperoxid, Azo-bis-isobutyronitril, Azo-bis-(2-amidinopropan)dihydrochlorid oder 2,2'-Azo-bis-(2-methylbutyronitril). Geeignet sind auch Initiatormischungen oder Redox-Initiator Systeme, wie z.B. Ascorbinsäure/Eisen(II)sulfat /
10 Natriumperoxidisulfat, tert.-Butylhydroperoxid /Natriumdisulfit, tert.-Butylhydroperoxid/ Natriumhydroxymethansulfat. Die Initiatoren können in den üblichen Mengen eingesetzt werden, beispielsweise 0,05 bis 5 Gew.-%, bezogen auf die Menge der zu polymerisierenden Monomeren.

15

Das Molekulargewicht und der K-Wert der Polymerivate lässt sich in an sich bekannter Weise durch die Wahl der Polymerisationsbedingungen, beispielsweise Polymerisationsdauer, Polymerisationstemperatur oder Initiatorkonzentration, und durch den
20 Gehalt an Vernetzer, und Regler in einem breiten Bereich variieren.

Die K-Werte der Polymerivate liegen in einem Bereich zwischen 10 bis 350, vorzugsweise 20 bis 200 und besonders bevorzugt
25 35 bis 110, ganz besonders zwischen 40 und 80. Die K-Werte werden nach Fikentscher, Cellulosechemie, Bd. 13, S. 58-64 (1932) bei 25°C 1 %ig in wässriger Lösung gemessen.

Man wählt die Menge an Monomeren und Lösungsmittel zweckmäßiger-
30 weise so, dass man 20 bis 80 gew.-%ige Lösungen der Copolymerate erhält. Das Polymere E wird dabei vor Monomerzugabe im Reaktionsgefäß in Wasser gelöst, gequollen oder dispergiert vorgelegt, bevorzugt wird eine 3 bis 70 gew.-%ige, insbesondere 3 bis 50 gew.-%ige Mischung verwendet.

35

Die Polymermischung kann gegebenenfalls einer zusätzlichen Nachpolymerisation sowie gegebenenfalls einer Nachbehandlung durch Wasserdampfdestillation, Behandlung mit Säuren/Laugen oder Oxidations- oder Reduktionsmitteln unterzogen werden. In einer
40 bevorzugten Ausführungsform wird das Polymerisat einer Wasserdampfdestillation unterzogen.

Zur Stabilisierung wird die Polymerlösung mit Euxyl® K 100 (Schülke & Mayr) mit Phenonip® (Clariant) oder mit einem alternativen Stabilisator versetzt.
45

22

Pulverförmig Produkte können durch Fällung, Sprühtrocknung aus geeigneten Lösungsmittelsystemen oder Gefriertrocknung erhalten werden.

5 Die mit den beschriebenen Filmbildnern formulierten Gele zeichnen sich durch verbesserte Eigenschaften gegenüber dem Stand der Technik aus.

Die erfindungsgemäßen Polymere können vorteilhaft in kosmetischen 10 Zubereitungen verwendet werden, insbesondere haarkosmetischen Zubereitungen.

Der Begriff der kosmetischen Zubereitungen ist breit zu verstehen und meint all solche Zubereitungen, die sich zum Auftragen auf 15 Haut und/oder Haare und/oder Nägel eignen und einen anderen als einen ausschließlich medizinisch-therapeutischen Zweck verfolgen.

Die erfindungsgemäßen Polymere können in hautkosmetischen Zubereitungen eingesetzt werden.

20 Beispielsweise werden die erfindungsgemäßen Polymere in kosmetischen Mitteln zur Reinigung der Haut verwendet. Solche kosmetischen Reinigungsmittel sind ausgewählt aus Stückseifen, wie Toilettenseifen, Kernseifen, Transparentseifen, Luxusseifen, 25 Deoseifen, Cremeseifen, Babyseifen, Hautschutzseifen, Abrasiveseifen und Syndets, flüssigen Seifen, wie pastöse Seifen, Schmierseifen und Waschpasten, und flüssigen Wasch-, Dusch- und Badepräparaten, wie Waschlotionen, Duschbödern und -gelen, Schaumbädern, Ölbadern und Scrub-Präparaten.

30 Bevorzugt werden die erfindungsgemäßen Polymere in kosmetischen Mitteln zur Pflege und zum Schutz der Haut, in Nagelpflegemitteln sowie in Zubereitungen für die dekorative Kosmetik angewendet.

35 Besonders bevorzugt ist die Verwendung in Hautpflegemitteln, Intimpflegemitteln, Fußpflegemitteln, Deodorantien, Lichtschutzmitteln, Repellents, Rasiermitteln, Haarentfernungsmitteln, Anti-aknemitteln, Make-up, Maskara, Lippenstifte, Lidschatten, Kajalstiften, Eyelinern, Rouges, Pudern und Augenbrauenstiften.

40 Die Hautpflegemittel liegen insbesondere als W/O- oder O/W-Hautcremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Anti-faltencremes, Feuchthaltecremes, Bleichcremes, Vitamincremes, Hautlotionen, Pflegelotionen und Feuchthalotelotionen vor.

45

In den kosmetischen Zubereitungen können die erfindungsgemäßen Polymere besondere Wirkungen entfalten. Die Polymere können unter anderem zur Feuchthaltung und Konditionierung der Haut und zur Verbesserung des Hautgefühls beitragen. Die Polymere können auch 5 als Verdicker in den Formulierungen wirken. Durch Zusatz der erfindungsgemäßen Polymere kann in bestimmten Formulierungen eine erhebliche Verbesserung der Hautverträglichkeit erreicht werden.

Die erfindungsgemäßen Copolymere sind in den hautkosmetischen 10 Zubereitungen in einem Anteil von etwa 0,001 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, ganz besonders bevorzugt 0,1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des Mittels, enthalten.

Je nach Anwendungsgebiet können die erfindungsgemäßen Mittel in 15 einer zur Hautpflege geeigneten Form, wie z.B. als Creme, Schaum, Gel, Stift, Pulver, Mousse, Milch oder Lotion appliziert werden.

Die hautkosmetischen Zubereitungen können neben den erfindungsgemäßen Polymeren und geeigneten Lösungsmitteln noch in der 20 Kosmetik übliche Zusätze, wie Emulgatoren, Konservierungsmittel, Parfümöl, kosmetische Wirkstoffe wie Phytantriol, Vitamin A, E und C, Retinol, Bisabolol, Panthenol, Lichtschutzmittel, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel (z.B. Dihydroxyaceton), Collagen, Eiweißhydrolysate, Stabilisatoren, 25 pH-Wert-Regulatoren, Farbstoffe, Salze, Verdicker, Gelbildner, Konsistenzgeber, Silikone, Feuchthaltemittel, Rückfetter und weitere übliche Additive enthalten.

Als geeignete Lösungsmittel sind insbesondere zu nennen Wasser 30 und niedrige Monoalkohole oder Polyole mit 1 bis 6 Kohlenstoff- atomen oder Mischungen davon; bevorzugte Monoalkohole oder Polyole sind Ethanol, i-Propanol, Propylenglycol, Glycerin und Sorbit.

35 Als weitere übliche Zusätze können enthalten sein Fettkörper, wie mineralische und synthetische Öle, wie z.B. Paraffine, Siliconöle und aliphatische Kohlenwasserstoffe mit mehr als 8 Kohlenstoff- atomen, tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl, Lanolin, oder Wachse, Fettsäuren, 40 Fettsäureester, wie z.B. Triglyceride von C₆-C₃₀-Fettsäuren, Wachsester, wie z.B. Jojobaöl, Fettalkohole, Vaseline, hydriertes Lanolin und azetyliertes Lanolin. Selbstverständlich können auch Mischungen derselben verwendet werden.

24

Übliche Verdickungsmittel in derartigen Formulierungen sind vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide wie Xanthan-Gum, Agar-Agar, Alginat oder Tylosen, Carboxymethylcellulose oder Hydroxycarboxymethylcellulose, Fettalkohole,

5 Monoglyceride und Fettsäuren, Polyvinylalkohol und Polyvinylpyrrolidon.

Man kann die erfindungsgemäßen Polymere auch mit herkömmlichen Polymeren abmischen, falls spezielle Eigenschaften eingestellt
10 werden sollen.

Als herkömmliche Polymere eignen sich beispielsweise anionische, kationische, amphotere und neutrale Polymere.

15 Beispiele für anionische Polymere sind Homo- und Copolymerisate von Acrylsäure und Methacrylsäure oder deren Salze, Copolymeren von Acrylsäure und Acrylamid und deren Salze; Natriumsalze von Polyhydroxycarbonsäuren, wasserlösliche oder wasserdispergierbare Polyester, Polyurethane und Polyharnstoffe. Besonders geeignete
20 Polymere sind Copolymeren aus t-Butylacrylat, Ethylacrylat, Methacrylsäure (z.B. Luvimer® 100P), Copolymeren aus Ethylacrylat und Methacrylsäure (z.B. Luvimer® MAE), Copolymeren aus N-tert.-Butylacrylamid, Ethylacrylat, Acrylsäure (Ultrahold® 8, strong), Copolymeren aus Vinylacetat, Crotonsäure und gegebenenfalls
25 weitere Vinylester (z.B. Luviset® Marken), Maleinsäureanhydrid-copolymeren, ggf. mit Alkoholen umgesetzt, anionische Polysiloxane, z.B. carboxyfunktionelle, Copolymeren aus Vinylpyrrolidon, t-Butylacrylat, Methacrylsäure (z.B. Luviskol® VBM), Copolymeren von Acrylsäure und Methacrylsäure mit hydrophoben
30 Monomeren, wie z.B. C₄-C₃₀-Alkylester der Meth(acrylsäure), C₄-C₃₀-Alkylvinylester, C₄-C₃₀-Alkylvinylether und Hyaluronsäure.

Weitere geeignete Polymere sind kationische Polymere mit der Bezeichnung Polyquaternium nach INCI, z.B. Copolymeren aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® FC, Luviquat® HM, Luviquat® MS, Luviquat® Care), Copolymeren aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat® PQ 11), Copolymeren aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® Hold); kationische
40 Cellulosederivate (Polyquaternium-4 und -10), Acrylamidcopolymeren (Polyquaternium-7) und Chitosan.

Als weitere Polymere sind auch neutrale Polymere geeignet wie Polyvinylpyrrolidone, Copolymeren aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat, Polysiloxane, Polyvinylcaprolactam und Copolymeren mit N-Vinylpyrrolidon, Polyethylenimine und

deren Salze, Polyvinylamine und deren Salze; Cellulosederivate, Polyasparaginsäuresalze und Derivate.

Zur Einstellung bestimmter Eigenschaften können die Zubereitungen
5 zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyaryl-alkylsiloxane, Polyethersiloxane oder Silikonharze.

10 Die erfindungsgemäßen Copolymerisate werden in kosmetischen Zubereitungen eingesetzt, deren Herstellung nach den üblichen dem Fachmann geläufigen Regeln erfolgt.

Solche Formulierungen liegen vorteilhafterweise in Form von
15 Emulsionen bevorzugt als Wasser-in-Öl-(W/O)- oder Öl-in-Wasser-(O/W)-Emulsionen vor. Es ist aber auch erfindungsgemäß möglich und gegebenenfalls vorteilhaft andere Formulierungsarten zu wählen, beispielsweise Hydrodispersionen, Gele, Öle, Oleogele, multiple Emulsionen, beispielsweise in Form von W/O/W- oder
20 O/W/O-Emulsionen, wasserfreie Salben bzw. Salbengrundlagen usw.

Die Herstellung erfindungsgemäß brauchbarer Emulsionen erfolgt nach bekannten Methoden.

25 Die Emulsionen enthalten neben dem erfindungsgemäßen Copolymer übliche Bestandteile, wie Fettalkohole, Fettsäureester und insbesondere Fettsäuretriglyceride, Fettsäuren, Lanolin und Derivate davon, natürliche oder synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser.

30 Die Auswahl der Emulsionstyp-spezifischen Zusätze und die Herstellung geeigneter Emulsionen ist beispielsweise beschrieben in Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Buch Verlag, Heidelberg, 2. Auflage, 1989, Dritter Teil, worauf hier-
35 mit ausdrücklich Bezug genommen wird.

So kann eine erfindungsgemäß brauchbare Hautcreme z.B. als W/O-Emulsion vorliegen. Eine derartige Emulsion enthält eine wässrige Phase, die mittels eines geeigneten Emulgatorsystems in einer Öl-
40 oder Fettphase emulgiert ist.

Die Konzentration des Emulgatorsystems beträgt in diesem Emulsions-Typ etwa 4 und 35 Gew.-%, bezogen auf das Gesamtgewicht der Emulsion; die Fettphase macht etwa 20 und 60 Gew.-% aus und
45 die wässrige Phasen etwa 20 und 70 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Emulsion. Bei den Emulgatoren handelt es sich um diejenigen, welche in diesem Emulsionstyp üblicher-

weise verwendet werden. Sie werden z.B. ausgewählt unter: C₁₂-C₁₈-Sorbitan-Fettsäureestern; Estern von Hydroxystearinsäure und C₁₂-C₃₀-Fettalkoholen; Mono- und Diestern von C₁₂-C₁₈-Fettsäuren und Glyzerin oder Polyglyzerin; Kondensaten von Ethylenoxid und Propylenglycolen; oxypropylenierten/oxyethylenierten C₁₂-C₂₀-Fettalkoholen; polycyclischen Alkoholen, wie Sterolen; aliphatischen Alkoholen mit einem hohen Molekulargewicht, wie Lanolin; Mischungen von oxypropylenierten/polyglycerinierten Alkoholen und Magnesiumisostearat; Succinestern von polyoxyethylenierten oder polyoxypropylenierten Fettalkoholen; und Mischungen von Magnesium-, Calcium-, Lithium-, Zink- oder Aluminiumlanolat und hydriertem Lanolin oder Lanolin-alkohol.

Zu geeigneten Fettkomponenten, welche in der Fettphase der Emulsionen enthalten sein können, zählen Kohlenwasserstofföle, wie Paraffinöl, Purcellinöl, Perhydrosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen; tierische oder pflanzliche Öle, wie Süßmandelöl, Avocadoöl, Calophylumöl, Lanolin und Derivate davon, Ricinusöl, Sesamöl, Olivenöl, Jojobaöl, Karitéöl, Hoplostethus-Öl; mineralische Öle, deren Destillationsbeginn unter Atmosphärendruck bei ca. 250°C und deren Destillationsendpunkt bei 410°C liegt, wie z.B. Vaselinöl; Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmyristate, z.B. i-Propyl-, Butyl- oder Cetylmyristat, Hexadecylstearat, Ethyl- oder 25 i-Propylpalmitat, Octan- oder Decansäuretriglyceride und Cetylricinoleat.

Die Fettphase kann auch in anderen Ölen lösliche Siliconöle, wie Dimethylpolysiloxan, Methylphenylpolysiloxan und das Silikonglycol-Copolymer, Fettsäuren und Fettalkohole enthalten.

Um die Retention von Ölen zu begünstigen, kann man auch Wachse verwenden, wie z.B. Carnauba-Wachs, Candellilawachs, Bienenwachs, mikrokristallines Wachs, Ozokeritwachs und Ca-, Mg- und 35 Al-Oleate, -Myristate, -Linoleate und -Stearate.

Im allgemeinen werden diese Wasser-in-Öl-Emulsionen so hergestellt, dass die Fettphase und der Emulgator in den Ansatzbehälter gegeben werden. Man erwärmt diesen bei einer Temperatur von 70 bis 75°C, gibt dann die in Öl löslichen Ingredienzen zu und fügt unter Rühren Wasser hinzu, welches vorher auf die gleiche Temperatur erwärmt wurde und worin man die wasserlöslichen Ingredienzen vorher gelöst hat; man röhrt, bis man eine Emulsion der gewünschten Feinheit hat, lässt sie dann auf Raumtemperatur abkühlen, wobei gegebenenfalls weniger gerührt wird.

Weiterhin kann eine erfindungsgemäße Pflegeemulsion als O/W-Emulsion vorliegen. Eine derartige Emulsion enthält üblicherweise eine Ölphase, Emulgatoren, die die Ölphase in der Wasserphase stabilisieren, und eine wässrige Phase, die üblicherweise 5 verdickt vorliegt.

Die wässrige Phase der O/W-Emulsion der erfindungsgemäßen Zubereitungen enthält gegebenenfalls

10 - Alkohole, Diole oder Polyole sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglycol, Glycerin, Ethylenglycolmonoethylether;

15 - übliche Verdickungsmittel bzw. Gelbildner, wie z.B. vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide wie Xanthan Gum oder Alginat, Carboxymethylcellulose oder Hydroxycarboxymethylcellulose, Fettalkohole, Polyvinylalkohol und Polyvinylpyrrolidon.

20 Die Ölphase enthält in der Kosmetik übliche Ölkomponenten, wie beispielsweise:

25 - Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C₃-C₃₀-Alkancarbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C₃-C₃₀-Alkoholen, aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C₃-C₃₀-Alkoholen, beispielhaft Isopropylmyristat, Isopropylstearat, Hexyldecylstearat, Oleyloleat; 30 außerdem synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie Jojobaöl;

35 - verzweigte und/oder unverzweigte Kohlenwasserstoffe und -wachse;

40 - Silikonöle wie Cyclomethicon, Dimethylpolysiloxan, Diethylpolysiloxan, Octamethylcyclotetrasiloxan sowie Mischungen daraus;

45 - Dialkylether;

- Mineralöle und Mineralwachse;

- Triglyceride gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter C₈-C₂₄-Alkancarbonsäuren; sie können ausgewählt werden aus synthetischen, halbsynthetischen oder

natürlichen Ölen, wie Olivenöl, Palmöl, Mandelöl oder Mischungen.

Als Emulgatoren kommen vorzugsweise O/W-Emulgatoren, wie Polyglycerinester, Sorbitanester oder teilveresterte Glyceride, in Betracht.

Die Herstellung kann durch Aufschmelzen der Ölphase bei ca. 80°C erfolgen; die wasserlöslichen Bestandteile werden in heißem Wasser gelöst, langsam und unter Rühren zur Ölphase zugegeben; homogenisiert und kaltgerührt.

Die erfindungsgemäßen Polymere eignen sich auch zur Verwendung in Wasch- und Duschgel-Formulierungen sowie Badepräparaten.

Solche Formulierungen enthalten neben den erfindungsgemäßen Polymeren üblicherweise anionische Tenside als Basistenside und amphotere und nichtionische Tenside als Cotenside, sowie Lipide, Parfümöl, Farbstoffe, organische Säuren, Konservierungsstoffe und Antioxidantien sowie Verdicker/Gelbildner, Hautkonditioniermittel und Feuchthaltemittel.

In den Wasch-, Dusch- und Badepräparaten können alle in Körperreinigungsmitteln üblicherweise eingesetzte anionische, neutrale, amphotere oder kationische Tenside verwendet werden.

Die Formulierungen enthalten 2 bis 50 Gew.-% Tenside, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew-%.

Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxideinheiten im Molekül aufweisen.

Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurylsulfat, Natriumlaurylethersulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamin-dodecylbenzolsulfonat.

Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropylbetaine, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate- oder -propionate, Alkylamphodiacetate, oder -dipropionate.

5

Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropylbetain oder Natriumcocamphopropionat eingesetzt werden.

10 Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol.

15 Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fett-säure-ester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglykoside oder Sorbitanetherester geeignet.

Außerdem können die Wasch-, Dusch- und Badepräparate übliche
20 kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammoniumchlorid.

Zusätzlich können auch weitere übliche kationische Polymere eingesetzt werden, so z.B. Copolymeren aus Acrylamid und Dimethyl-
25 diallylammoniumchlorid (Polyquaternium-7), kationische Cellulose-derivate (Polyquaternium-4, -10), Guar-hydroxypropyltrimethylammoniumchlorid (INCI: Hydroxypropyl Guar Hydroxypropyltrimonium Chloride), Copolymeren aus N-Vinylpyrrolidon und quaternisiertem
30 N-Vinylimidazol (Polyquaternium-16, -44, -46), Copolymeren aus N-Vinylpyrrolidon/Dimethylaminoethyl-methacrylat, quaternisiert mit Diethylsulfat (Polyquaternium-11) und andere.

Weiterhin können die Wasch- und Duschgel-Formulierungen und Badepräparate Verdicker, wie z.B. Kochsalz, PEG-55, Propylene
35 Glycol Oleate, PEG-120 Methyl Glucose Dioleate und andere, sowie Konservierungsmittel, weitere Wirk- und Hilfsstoffe und Wasser enthalten.

Haarkosmetische Zubereitungen umfassen insbesondere Stylingmittel
40 und/oder Konditionermittel in haarkosmetischen Zubereitungen wie Haarkuren, Haarschäume (engl. Mousses), (Haar)gelen oder Haarsprays, Haarlotionen, Haarspülungen, Haarshampoos, Haaremulsionen, Spitzenfluids, Egalisierungsmittel für Dauerwellen, Haarfärbe- und -bleichmittel, "Hot-Oil-Treatment"-
45 Präparate, Conditioner, Festigerlotionen oder Haarsprays. Je nach Anwendungsgebiet können die haarkosmetischen Zubereitungen

30

als (Aerosol-) Spray, (Aerosol-) Schaum, Gel, Gelspray, Creme, Lotion oder Wachs appliziert werden.

Die erfindungsgemäßen haarkosmetischen Formulierungen enthalten
5 in einer bevorzugten Ausführungsform

a) 0,05 bis 20 Gew.-% des erfindungsgemäßen Polymers

b) 20 bis 99,95 Gew.-% Wasser und/oder Alkohol

10

c) 0 bis 79,5 Gew.-% weitere Bestandteile

Unter Alkohol sind alle in der Kosmetik üblichen Alkohole zu verstehen, z.B. Ethanol, Isopropanol, n-Propanol.

15

Unter weiteren Bestandteilen sind die in der Kosmetik üblichen Zusätze zu verstehen, beispielsweise Treibmittel, Entschäumer, grenzflächenaktive Verbindungen, d.h. Tenside, Emulgatoren, Schaumbildner und Solubilisatoren. Die eingesetzten grenzflächen-
20 aktiven Verbindungen können anionisch, kationisch, amphoter oder neutral sein. Weitere übliche Bestandteile können ferner sein z.B. Konservierungsmittel, Parfümöl, Trübungsmittel, Wirkstoffe, UV-Filter, Pflegestoffe wie Panthenol, Collagen, Vitamine, Ei-weißhydrolysat, Alpha- und Beta-Hydroxycarbonsäuren, Eiweiß-
25 hydrolysat, Stabilisatoren, pH-Wert-Regulatoren, Farbstoffe, Viskositätsregulierer, Gelbildner, Farbstoffe, Salze, Feucht- haltemittel, Rückfetter, Komplexbildner und weitere übliche Additive.

30

Als Gelbildner können alle in der Kosmetik üblichen Gelbildner eingesetzt werden. Hierzu zählen leicht vernetzte Polyacrylsäure, beispielsweise Carbomer (INCI) oder Acrylates/C10-30 Alkyl Acrylate Crosspolymer (INCI), Acrylates/Beheneth-25 Methacrylate Copolymer (INCI), PVM/MA Decadiene Crosspolymer, Cellulose-

35

derivate, z.B. Hydroxypropylcellulose, Hydroxyethylcellulose, kationisch modifizierte Cellulosen, Polysaccharide, z.B. Xanthum Gummi, Hydroxypropyl Starch Phosphate, Potato Starch Modified, Caprylic/Capric Triglyceride, Sodium acrylates Copolymer, Poly- quaternium-32 (and) Paraffinum Liquidum (INCI), Sodium Acrylates

40

Copolymer (and) Paraffinum Liquidum (and) PPG-1 Trideceth-6, Acrylamidopropyl Trimonium Chloride/Acrylamide Copolymer, Stea- reth-10 Allyl Ether Acrylates Copolymer, Polyquaternium-37 (and) Paraffinum Liquidum (and) PPG-1 Trideceth-6, Polyacrylamide and C13-14 Isoparaffin and Laureth-7, C13-14 Isoparaffin and Mineral

45

Oil and Sodium Polyacrylate and Polyacrylamide and Polysor- bate 85, C13-14 Isoparaffin and Isostearyl Isostearate and Sodium Polyacrylate and Polyacrylamide and Polysorbate 60, Acrylates/

31

Aminoacrylates/C10-30 Alkyl PEG-20 Itaconate Copolymer,
Acrylates/Steareth-20 Itaconate Copolymer, Acrylates/Ceteth-20
Itaconate Copolymer, Polyquaternium 37 (and) Propylene Glycole
Dicaprate Dicaprylate (and) PPG-1 Trideceth-6, Polyquaternium-7,
5 Polyquaternium-44.

Weiterhin zählen hierzu alle in der Kosmetik bekannten Styling- und Conditionerpolymere, die in Kombination mit den erfindungsgemäßen Polymerisaten eingesetzt werden können, falls ganz
10 spezielle Eigenschaften eingestellt werden sollen.

Als herkömmliche Haarkosmetik-Polymere eignen sich beispielsweise anionische Polymere. Solche anionischen Polymere sind Homopolymerisate von Acrylsäure und Methacrylsäure oder deren
15 Salze, Copolymeren von Acrylsäure und Acrylamid und deren Salze; Natriumsalze von Polyhydroxycarbonsäuren, wasserlösliche oder wasserdispersierbare Polyester, Polyurethane (Luviset® P.U.R.) und Polyharnstoffe. Besonders geeignete Polymere sind Copolymeren aus t-Butylacrylat, Ethylacrylat, Methacrylsäure (z.B. Luvimer®
20 100P), Copolymeren aus N-tert.-Butylacrylamid, Ethylacrylat, Acrylsäure (Ultrahold® 8, Strong), Copolymeren aus Vinylacetat, Crotonsäure und gegebenenfalls weiteren Vinylestern (z.B. Luviset® Marken), Maleinsäureanhydridcopolymeren, ggf. mit Alkoholen umgesetzt, anionische Polysiloxane, z.B. carboxyfunktionelle,
25 Copolymeren aus Vinylpyrrolidon, t-Butylacrylat, Methacrylsäure (z.B. Luviskol® VBM).

Weiterhin umfasst die Gruppe der zur Kombination mit den erfindungsgemäßen Polymerisaten geeigneten Polymere beispielhaft
30 Balancer CR (National Starch; Acrylatcopolymer), Balancer 0/55 (National Starch; Acrylatcopolymer), Balancer 47 (National Starch; Octylacrylamid/Acrylat/Butylaminoethylmethacrylate-Copolymer), Aquaflex® FX 64 (ISP; Isobutylen/Ethylmaleimid/Hydroxyethyl-maleimid-Copolymer), Aquaflex® SF-40 (ISP / National Starch;
35 VP/Vinyl Caprolactam/DMAPA Acrylatcopolymer), Allianz® LT-120 (ISP / Rohm & Haas; Acrylat/C1-2 Succinat/Hydroxyacrylat-Copolymer), Aquarez® HS (Eastman; Polyester-1), Diaformer® Z-400 (Clariant; Methacryloyl ethylbetain/Methacrylat-Copolymer), Diaformer® Z-711 (Clariant; Methacryloyl ethyl N-oxid/Methacrylat-
40 Copolymer), Diaformer® Z-712 (Clariant; Methacryloyl ethyl N-oxide/Methacrylat-Copolymer), Omnidrez® 2000 (ISP; Monoethyl-ester von Poly(Methylvinylether/Maleinsäure in Ethanol), Amphomer® HC (National Starch; Acrylat/ Octylacrylamid-Copolymer), Amphomer® 28-4910 (National Starch; Octyl-acrylamid/Acrylat/Butylaminoethylmethacrylat-Copolymer), Advantage® HC 37 (ISP; Terpolymer aus Vinylcaprolactam/Vinylpyrrolidon/Dimethyl-aminoethylmethacrylat), Acudyne 258 (Rohm & Haas; Acrylat/

Hydroxyesteracrylat-Copolymer), Luviset® PUR (BASF, Polyurethane-1), Luviflex® Silk (BASF), Eastman® AQ48 (Eastman).

Ganz besonders bevorzugt werden als anionische Polymere Acrylate mit einer Säurezahl größer gleich 120 und Copolymeren aus t-Butylacrylat, Ethylacrylat, Methacrylsäure.

Weitere geeignete Haarkosmetik-Polymeren sind kationische Polymere mit der Bezeichnung Polyquaternium nach INCI, z.B. Copolymeren 10 aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® FC, Luviquat® HM, Luviquat® MS, Luviquat® Care), Copolymeren aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat® PQ 11), Copolymeren aus N-Vinylcaprolactam N-Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® 15 Hold); kationische Cellulosederivate (Polyquaternium-4 und -10), Acrylamidcopolymere (Polyquaternium-7).

Ferner können kationische Guarderivate wie Guarhydroxypropyl-trimoniumchlorid (INCI) verwendet werden.

Als weitere Haarkosmetik-Polymeren sind auch neutrale Polymere geeignet wie Polyvinylpyrrolidone, Copolymeren aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat, Polysiloxane, Polyvinylcaprolactam und Copolymeren mit N-Vinylpyrrolidon, Polyethylenimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Polyasparaginsäuresalze und Derivate.

Zur Einstellung bestimmter Eigenschaften können die Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise: Polyalkylsiloxane, Polyarylsiloxane, Polyarylkalkylsiloxane, Polyethersiloxane, Silikonharze oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA).

Die erfindungsgemäßen Polymerisate eignen sich insbesondere als Festigungsmittel in Haarstyling-Zubereitungen, insbesondere Haarsprays (Aerosolsprays und Pumpsprays ohne Treibgas) und Haarschäume (Aerosolschäume und Pumpschäume ohne Treibgas).

40 Beispiele

Die Herstellung der Polymerisate erfolgte nach den üblichen Methoden der radikalischen Polymerisation in Wasser. Stellvertretend für alle übrigen Herstellvorschriften sei nachfolgend die Synthese der Polymerisate I, II, III, IV beschrieben.

33

I: Copolymer aus Monomer A,B,C polymerisiert in Gegenwart von Polymer E

Herstellung eines Polymerisates aus 56,5 Gew.-% N-Vinylpyrrolidon, 40 Gew.-% Vinylcaprolactam und 3,5 Gew.-% Vinylimidazol in Gegenwart von 5 Gew.-% (bezogen auf die Gesamtmonomermenge) Mowiol® 4-88.

Eine Lösung von 10 g Mowiol® 4-88 in 50 g Wasser wird vorgelegt und auf 75°C erwärmt. Eine Lösung von 113 g Vinylpyrrolidon, 7 g Vinylimidazol und 80 g Vinylcaprolactam in 300 g Wasser wird innerhalb von 3 Stunden sowie gleichzeitig mit dem Monomerzulauf beginnend eine Lösung von 1 g Wako V 50 in 100 g Wasser innerhalb von 4 Stunden zugegeben. Anschließend wird 2 h bei einer Innentemperatur von 75°C nachpolymerisiert.

II: Copolymer aus Monomer A,B,C,D

Herstellung eines Polymerisates aus 55,0 Gew.-% N-Vinylpyrrolidon, 40 Gew.-% Vinylcaprolactam, 2,5 Gew.-% Vinylimidazol und 2,5 Gew.-% Bisomer® S10W (Fa. Laport).

200 g Wasser wird vorgelegt und auf 75°C erwärmt. Eine Lösung von 110 g Vinylpyrrolidon, 5 g Vinylimidazol, 5 g Bisomer S10W und 80 g Vinylcaprolactam in 195 g Wasser wird innerhalb von 2 Stunden sowie gleichzeitig mit dem Monomerzulauf beginnend eine Lösung von 1 g Wako V 50 in 20 g Wasser innerhalb von 2,5 Stunden zugegeben.

Anschließend wird 1 h bei einer Innentemperatur von 75°C nachpolymerisiert.

III: Copolymer aus Monomer A,B,C,D polymerisiert in Gegenwart von Polymer E

Herstellung eines Polymerisates aus 55 Gew.-% N-Vinylpyrrolidon, 35 Gew.-% Vinylcaprolactam, 2 Gew.-% Vinylimidazol und 8 % Vinylformamid, in Gegenwart von 5 Gew.-% Pluriol® E 4000 (bezogen auf die Gesamtmonomermenge).

10 g Pluriol® E 4000 wird in 200 g Wasser vorgelegt und auf 75°C erwärmt. Eine Lösung von 110 g Vinylpyrrolidon, 4 g Vinylimidazol, 16 g Vinylformamid und 70 g Vinylcaprolactam in 195 g Wasser wird innerhalb von 2 Stunden sowie gleichzeitig mit dem Monomerzulauf beginnend eine Lösung von 1 g Wako V 50 in 20 g Wasser innerhalb von 2,5 Stunden zugegeben. Anschließend wird 1 h bei einer Innentemperatur von 75°C nachpolymerisiert.

34

IV: Copolymer aus Monomer A,B,C

5 Herstellung eines Polymerisates aus 51,5 Gew.-% N-Vinylpyrrolidon, 45 Gew.-% Vinylcaprolactam und 3,5 Gew.-% Vinylimidazol.

10 50 g Wasser wird vorgelegt und auf 75°C erwärmt. Eine Lösung von 103 g Vinylpyrrolidon, 7 g Vinylimidazol und 90 g Vinylcaprolactam in 300 g Wasser wird innerhalb von 3 Stunden sowie gleichzeitig mit dem Monomerzulauf beginnend eine Lösung von 1 g Wako V 50 in 100 g Wasser innerhalb von 4 Stunden zugegeben. Anschließend wird 2 h bei einer Innentemperatur von 75°C nachpolymerisiert.

Die Gelformulierungen wurden nach den folgenden Kriterien
15 beurteilt:

Aussehen:

Die Klarheit der Gele wurde im Vergleich zu bekannten Standards beurteilt

20 1 Klar vergleichbar zu Luviskol K 30
2 fast klar vergleichbar zu Luviskol K 90
3 leicht trüb schlechter als Luviskol K 90
4 trüb
5 milchig

25

Klebrigkeiit:

Die Klebrigkeiit wurde nach Kempf bei 75 und 90 % relativer Luftfeuchte bei Umgebungstemperatur direkt an getrockneten Filmen der Gelformulierung bestimmt.

30 1 nicht klebrig
2 leicht klebrig
3 mäßig klebrig
4 stark klebrig

35 Biegesteifigkeit:

Die Biegesteifigkeit wurde an mit Gel behandelten Haarsträhnen bestimmt. Wie

1 > 180 cN
2 > 150 cN
40 3 > 120 cN
4 > 90 cN
5 > 60 cN

Curl Retention aus Lösung:

Die Curl Retention wurde an mit einer 3 % wässrigen Polymerlösung (Wasser) behandelten Haarsträhnen bestimmt.

	1	> 50 %
5	2	> 40 %
	3	> 30 %
	4	> 20 %

Curl Retention aus dem Gel

10	Die Curl Retention wurde an mit Gel behandelten Haarsträhnen bestimmt.
	1 > 80 %
	2 > 70 %
	3 > 60 %
15	4 > 50 %

Vergleichsbeispiele:

	Zusammensetzung	Aussehen	Klebrigkeits (Kempf) 25°C,75% r.F.	Klebrigkeits (Kempf) 25°C,90% r.F.	Bt [cN]	CR[%] Lsg. 3 % Ws 25°C 90% r.F.	CR[%] Gel 25°C 90% r.F.
20	Luvitec VPC	3	—	—	—	—	—
	Luviskol Plus	4	—	—	—	—	—
25	Luviskol K30	1	2	3	5	4	4
	Luviskol K90	2	3	3	2	4	3
	Luviskol VA 64	2	1	5	5	4	4

Luvitec VPC: Copolymer aus VP/Vcap 1:1

Luviskol Plus: Homopolymer aus Vcap

30 Luviskol K 30: Homopolymer aus VP

Luvskol K 90: Homopolymer aus VP

Luviskol VA 64: Copolymer aus VP/Vac 3:2

Beispiele 1
VP-Vcap-VI Copolymersysteme

	Zusammen-setzung	Verhältnis	Aussehen	Klebrig-keit (Kempf) 25°C,75% r.F.	Klebrig-keit (Kempf) 25°C,90% r.F.	Bt[cN]	CR[%] Lsg. 3 % Ws 25°C 90%r.F.	CR[%] 25°C 90%r.F.
a)	VP/VI/Vcap	60/10/30	4-5	-	-	-	-	-
b)	VP/VI/Vcap	37/3/60	4-5	-	-	-	-	-
c)	VP/VCap	60/40	1	1	1-2	4	3	1
d)	VP/VI/Vcap	65/5/30	4	0	2	1	2	1
e)	VP/VI/Vcap	50/5/45	4	0	1-2	1	2	1
f)	VP/VI/VCap	56,5/3,5/40	2	1	3	1	3	1
g)	VP/VI/VCap	57/3/40	1	1	2	1	3	1
h)	VP/VI/VCap	57,5/2,5/40	1	1	2	1	3	1
i)	VP/VI/Vcap	62,5/2,5/35	1	1	1-2	1	4	2
j)	VP/VI/VCap	58,5/1,5/40	1	1	1-2	2	3	1
k)	VP/VI/VCap	52,5/2,5/45	1	1	1-2	1	3	1
l)	VP/VI/VCap	53/2/45	1	1	1-2	1	3	1
m)	VP/VI/VCap	51,5/3,5/45	2-3	1	2	1	3	1

20 Beispiele 2:

VP-Vcap-VI Copolymersysteme, enthaltend ein weiteres Monomer D (Bsp. 2d) oder polymerisiert in Gegenwart eines Polymeren E (Bsp. 2a) + 2b) oder enthaltend weiteres Monomer D und polymerisiert in Gegenwart eines Polymeren E (Bsp 2c)

25

	Zusammen-setzung	Verhältnis	Aus-sehen	Klebrig-keit (Kempf) 25°C,75% r.F.	Klebrig-keit (Kempf) 25°C,90% r.F.	Bt[cN]	CR[%] Lsg. 3 % Ws 25°C 90%r.F.	CR[%] 25°C 90%r.F.
a)	VP/VI/Vcap + Mowiol 4-88	56,5/3,5/40 5 Gew.-%	1-2	1	1-2	1	3	
b)	VP/VI/Vcap + Tylose H 4000 G	60/2,5/37,5 5 Gew.-%	1	1	2	1	3	
c)	VP/VI/Vcap/VFA + Pluriol E 4000	55/2/35/8 5 Gew.-%	1-2	1-2	3	2	3	
d)	VP/VI/VCap/Bisomeric S10W	55/2,5/40/2,5	1	2	4	1	3	

40

45

Anwendung**Herstellvorschriften:****Carbopolgel (200 g)****5****3 % Polymer in 0,5 % Carbopol (940 oder Ultrez 21)****Ansatz a): 98,68 g Carbopol Stammlösung (1 %ig mit Euxyl K 100 konserviert)****10****1,32 g Triethanolamin in 250 ml Becherglas**

Das TEA wird mit einem Rührer (ca. 90 U/min.) bis zur Klarheit in die Stammlösung eingearbeitet (ca. 15 Min.).

15**Ansatz b) 6,00 g Polymer (Feststoff)****ad 100 g Wasser dest. in 250 ml Erlenmeier**

Ist Ansatz b) vollständig gelöst, wird dieser langsam mittels Tropftrichter (ca. 1 Tropfen/sec) in Ansatz a) mit gleicher Rührgeschwindigkeit eingearbeitet. Ist nach dem Zutropfen der Lösung das fertige Gel entstanden, wird dieses noch ca. 30 Minuten nachgerührt.

Shampoo**25 Herstellung:**

Alle Komponenten in Wasser lösen, pH-Wert einstellen und anschließend Verdickungsmittel zugeben.

Aerosolspray**30 Herstellung:**

Alle Komponenten einwiegen. Den pH-Wert einstellen, und klare Lösung in Druckgefäß mit Treibgas abfüllen.

Wachs**35 Herstellung:**

Die Komponenten der Phase einwiegen, aufschmelzen und gleichmäßig verrühren.

Aerosolschaum**40 Herstellung:**

Parfumölphase mischen. Die Komponenten der wässrig-ethanolischen Phase nacheinander zugeben und mischen. Falls angegeben: Verdicker zugeben und rühren bis gleichmäßig verteilt. Den pH-Wert einstellen. Mit Treibgas in ein Druckgefäß abfüllen.

Pumpspray

Herstellung:

Wässrige Phase anrühren. Die Komponenten der ethanolischen Phase nacheinander zugeben und gleichmäßig verteilen. Dann alles in

5 Pumpsprühflasche abfüllen.

Pumpschaum

Herstellung:

Aus den Komponenten eine gleichmäßige Mischung herstellen und in
10 eine Pumpschaumflasche abfüllen.

Emulsionen Typ O/W (Haarspülungen, ect.)

Herstellung:

Ölige Phase mit Emulgatoren mischen (eventuell bei erhöhter
15 Temperatur) und wässrige Phase (mit evtl. Verdicker, eventuell
bei erhöhter Temperatur) beim Rühren zugeben und homogenisieren.

Rezepturen:

20 Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Luviskol K30

	%	Rohstoff	Lieferant	INCI
25	0,50	Carbopol 940	(6)	Carbomer
	87,60	Wasser dem.		Aqua dem.
	0,70	Triethanolamin Care	(1)	Triethanolamine
	6,00	Polymer 1g) bis 11)	(1)	
	5,00	Luviskol K30 Lösung	(1)	PVP
	q.s.	Parfümöl		
30	q.s.	Cremophor RH 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10	Euxyl K100	(42)	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazolinone
	35	0,10 Vitamin-E-Aacetat		Tocopheryl Acetate

Lieferanten

- (1) BASF Aktiengesellschaft
- (6) B.F. Goodrich Company Chemical Division
- 40 (42) Schülke & Mayr GmbH

39

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Luviskol VA64

	% Rohstoff	Lieferant	INCI
5	0,50 Carbopol 980	(6)	Carbomer
	87,60 Wasser dem.		Aqua dem.
	0,90 Neutrol TE	(1)	Tetrahydroxypropyl Ethylenediamine
	7,00 Polymer 1g) bis 11)	(1)	
10	4,00 Luviskol VA64 W	(1)	VP/VA Copolymer
	q.s. Parfümöl		
	q.s. Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10 Euxyl K100	(42)	Benzyl Alcohol, Methyl- chloroisothiazolinone, Methylisothiazolinone
15			Propylene Glycol
	0,10 1,2 Propylenglykol Care	(1)	

Lieferanten

20 (1) BASF Aktiengesellschaft
 (6) B.F. Goodrich Company Chemical Division
 (42) Schülke & Mayr GmbH

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Luviskol K90

	% Rohstoff	Lieferant	INCI
	0,50 Carbopol ETD 2001	(6)	Carbomer
	87,60 Wasser dem.		Aqua dem.
30	0,70 Triethanolamin Care	(1)	Triethanolamin
	6,00 Polymer 1g) bis 11)	(1)	
	5,00 Luviskol K90	(1)	PVP
	q.s. Parfümöl		
	q.s. Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
35	0,10 Nipagin M	(34)	Methylparaben
	0,10 Isopropylmyristat	(27)	Isopropyl Myristate

Lieferanten

40 (1) BASF Aktiengesellschaft
 (6) B.F. Goodrich Company Chemical Division
 (34) Nipa Laboratories Ltd.
 (27) Cognis Deutschland GmbH

40

Haargel mit Polymer gemäß Bsp. 1 g) bis 11) und Luviquat Hold

	% Rohstoff	Lieferant	INCI
	10,00 Polymer 1g) bis 11)	(1)	
5	2,50 Luviquat Hold.	(1)	Polyquaternium-46
	15,00 Ethanol 96 %		Alcohol
	70,30 Wasser dem.		Aqua dem
	5,00 Luviskol K90	(1)	PVP
	0,10 Parfümöl		
10	0,10 Glycerin	(20)	Glycerin
	2,00 Natrosol 250 HR	(4)	Hydroxyethylcellulose

Lieferanten

- (1) BASF Aktiengesellschaft
- 15 (6) B.F. Goodrich Company Chemical Division
- (20) Merck KGaA
- (4) Aqualon GmbH

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Amaze

20

	% Rohstoff	Lieferant	INCI
	6,00 Polymer 1g) bis 11)	(1)	
	2,00 Amaze	(72)	Corn Starch Modified
25	0,50 Hydagen HCMF	(27)	Chitosan
	q.s. Parfümöl.		
	q.s. Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10 Abil 8843	(44)	PEG-14 Dimethicone
30	0,10 Euxyl K100	(42)	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazolinone
	91,40 Wasser dem.		Aqua dem.

35 Lieferanten

- (1) BASF Aktiengesellschaft
- (6) B.F. Goodrich Company Chemical Division
- (27) Cognis Deutschland GmbH
- (42) Schülke & Mayr GmbH
- 40 (44) Th. Goldschmidt AG
- (72) National Starch & Chemical Limited

41

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Styleze CC-10

	% Rohstoff	Lieferant	INCI
5	8,00 Polymer 1g) bis 11)	(1)	
	5,00 Styleze CC-10	(65)	VP/DMAPA Acrylates Copolymer
	0,05 AMP	(56)	Aminomethyl Propanol
	84,85 Wasser dem.		Aqua dem
10	q.s. Parfümöl		
	q.s. Cremophor RH 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10 Dow Corning 190	(16)	Dimethicone Copolyol
	0,10 Euxyl K100	(42)	
15	2,00 Klucel	(4)	Hydroxypropylcellulose

Lieferanten

- (1) BASF Aktiengesellschaft
- (4) Aqualon GmbH
- 20 (16) Dow Corning Corporation
- (42) Schülke & Mayr GmbH
- (56) Angus Chemical Company
- (65) ISP Global Technologies Deutschland GmbH

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Styleze 2000

	% Rohstoff	Lieferant	INCI
	6,00 Polymer 1g) bis 11)	(1)	
	1,00 Styleze 2000	(65)	VP/Acrylates/Lauryl Methacrylate Copolymer
30	0,26 AMP	(56)	Aminomethyl Propanol
	90,64 Wasser dem.		Aqua dem
	q.s. Parfümöl		
	q.s. Cremophor RH 40	(1)	PEG-40 Hydrogenated Castor Oil
35	0,10 Karion F Liquid	(20)	Sorbitol
	0,10 Euxyl K100	(42)	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazolinone
40	2,00 Hydroxypropylguar	-	Hydroxypropylguar

Lieferanten

- (1) BASF Aktiengesellschaft
- (20) Merck KGaA
- 45 (42) Schülke & Mayr GmbH
- (56) Angus Chemical Company

(65) ISP Global Technologies Deutschland GmbH

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Allianz LT-120

		Rohstoff	Lieferant	INCI
5	%			
	0,50	Ultrez 10	(6)	Carbomer
	90,01	Wasser dem.		Aqua dem.
	0,70	Triethanolamin Care	(1)	Triethanolamine
10	6,00	Polymer 1g) bis 11)	(1)	
	2,00	Allianz LT-120	(61)	Acrylates/C1-2 Succinates/Hydroxy- acrylates Copolymer Aminomethyl Propanol
	0,19	AMP	(56)	
15	q.s.	Parfümöl		
	q.s.	Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10	Pluracare E400	(1)	PEG-8
	0,10	Euxyl K100	(42)	
20	0,50	Natrosol 250 HR	(4)	Hydroxyethylcellulose

Lieferanten

(1)	BASF Aktiengesellschaft
(4)	Aqualon GmbH
25 (6)	B.F. Goodrich Company Chemical Division
(42)	Schülke & Mayr GmbH
(56)	Angus Chemical Company
(61)	Röhm & Haas GmbH

30 Haargel mit Polymer gemäß Bsp. 1g) bis 11) und Fixomer A30

		Rohstoff	Lieferant	INCI
	%			
35	7,00	Polymer 1g) bis 11)	(1)	
	7,00	Fixomer A30	-	
	0,70	Triethanolamin Care	(1)	Triethanolamine
	q.s.	Parfümöl		
	q.s.	Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
40	0,10	D-Panthenol USP	(1)	Panthenol
	0,10	Euxyl K100	(42)	Benzyl Alcohol, Methyl- chloroisothiazolinone, Methylisothiazolinone Aqua dem.
	84,90	Wasser dem.		
45	1,00	Sepigel 305	(175)	

Lieferanten

(1) BASF Aktiengesellschaft
 (42) Schülke & Mayr GmbH
 (175) Seppic

5

Haargel mit Polymer gemäß Bsp. 1g) bis 11) und PVF

	%	Rohstoff	Lieferant	INCI
10	0,50	Carbopol 940	(6)	Carbomer
	90,50	Wasser dem.		Aqua dem.
	0,70	Triethanolamin Care	(1)	Triethanolamine
	7,00	Polymer 1g) bis 11)	(1)	
	1,00	PVF	(72)	Polyvinylformamide
15	q.s.	Parfümöl		
	q.s.	Cremophor RH 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10	Euxyl K100	(42)	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazolinone
20	0,10	Uvinul MC 80	(1)	Ethyhexyl Methoxy-cinnamate
	0,10	Abil 8843	(44)	PEG-14 Dimethicone

25 Lieferanten

(1) BASF Aktiengesellschaft
 (6) B.F. Goodrich Company Chemical Division
 (42) Schülke & Mayr GmbH
 (44) Th. Goldschmidt AG
 30 (72) National Starch & Chemical Limited

Haargel mit Polymer gemäß Bsp. 1g) bis 11)

	%	Rohstoff	Lieferant	INCI
35	0,50	Carbopol 940	(6)	Carbomer
	88,50	Wasser dem.		Aqua dem.
	0,70	Triethanolamin Care	(1)	Triethanolamine
				Ethylenediamine
40	10,00	Polymer 1g) bis 11)	(1)	
	q.s.	Parfümöl		
	q.s.	Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10	Euxyl K100	(42)	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazolinone
45	0,10	1,2 Propylenglykol Care	(1)	Propylene Glycol

44

0,10 Isopropylmyristat (27) Isopropyl Myristat

Lieferanten

- (1) BASF Aktiengesellschaft
- 5 (6) B.F. Goodrich Company Chemical Division
- (27) Cognis Deutschland GmbH
- (42) Schülke & Mayr GmbH

Haargel mit Polymer gemäß Bsp. 1g) bis 11)

10

	% Rohstoff	Lieferant	INCI
10,00	Polymer 1g) bis 11)	(1)	
15,00	Ethanol 96 %		
15 72,70	Wasser dem.	Aqua dem	
0,10	Parfümöl		
0,10	Glycerin	(20)	Glycerin
0,10	D-Panthenol USP	(1)	Panthenol
2,00	Natrosol 250 HR	(4)	Hydroxyethylcellulose

20

Lieferanten

- (1) BASF Aktiengesellschaft
- (6) B.F. Goodrich Company Chemical Division
- (20) Merck KGaA
- 25 (4) Aqualon GmbH

Haargel mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
30	0,50 Carbopol ETD 2001	(6)	Carbomer
	88,50 Wasser dem.		Aqua dem.
	0,70 Triethanolamin Care	(1)	Triethanolamine
	10,00 Polymer 1g) bis 11)	(1)	
35	q.s. Parfümöl		
	q.s. Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
	0,10 Nipagin M	(34)	Methylparaben
	0,10 Uvinul MC 80	(1)	Ethylhexyl Methoxy-
40	0,10 Abil 8843		cinnamate
			(44) PEG-14 Dimethicone

Lieferanten

- (1) BASF Aktiengesellschaft
- 45 (6) B.F. Goodrich Company Chemical Division
- (34) Nipa Laboratories Ltd.
- (44) Th. Goldschmidt AG

45

Haargel mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
5	10,00 Polymer 1g) bis 11)	(1)	
	q.s. Parfümöl		
	q.s. Cremophor CO 40	(1)	PEG-40 Hydrogenated Castor Oil
10	0,10 Palatinol A	(1)	Diethyl Phthalate
	0,10 Luvitol EHO	(1)	Cetearyl Ethylhexanoate
	0,10 Cetiol HE	(27)	PEG-7 Glyceryl Cocoate
	0,10 Euxyl K100	(42)	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazolinone
15	87,70 Wasser dem.		Aqua dem.
	2,00 Luvigel EM	(1)	Caprylic/Capric Tri-glyceryde, Acrylates Copolymer

20 Lieferanten

- (1) BASF Aktiengesellschaft
- (27) Cognis Deutschland GmbH
- (42) Schülke & Mayr GmbH

25 Festigerlösung mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
	62,60 Ethanol 96 %.		Alcohol
30	30,00 Wasser dem.		Aqua dem.
	0,10 Dow Corning 190 Polyether (16)		Dimethicone Copolyol
	0,10 Parfümöl		
	0,10 Uvinul MC 80	(1)	Ethylhexyl, Methoxy-cinnamate
35	0,10 D-Panthenol USP	(1)	Panthenol
	7,00 Polymer 1g) bis 11)	(1)	

Lieferanten

- (1) BASF Aktiengesellschaft
- 40 (16) Dow Corning Corporation

46

Festigerlösung mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
5	0,10 Dow Corning 190 Polyether (16)		Dimethicone Copolyol
	0,05 Dow Corning 344 fluid (16)		Cyclomethicone
	q.s. Parfümöl		
	53,85 Ethanol 96 %		Alcohol
	40,00 Wasser dem.		Aqua dem.
10	6,00 Polymer 1g) bis 11)	(1)	

Lieferanten

(1) BASF Aktiengesellschaft
 (16) Dow Corning Corporation

15

Festigerlösung mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
20	0,10 D-Panthenol USP	(1)	Panthenol
	0,10 Nutrilan Keratin W		
	0,10 Elastin PG 2000		Hydrolyzed Elastin
	0,40 Uvinul M 40	(1)	Benzophenone-3
	10,00 Wasser dem.		Aqua dem.
25	84,30 Ethanol 96 %		Alcohol
	q.s. Parfümöl		
	5,00 Polymer 1g) bis 11)	(1)	

Lieferanten

30 (1) BASF Aktiengesellschaft

Festigerlösung mit Polymer gemäß Bsp. 1g) bis 11) und Luviquat FC 550

	% Rohstoff	Lieferant	INCI
35	4,00 Polymer 1g) bis 11)	(1)	Polyvinylcaprolactam
	3,50 Luviquat FC 550	(1)	Polyquaternium-16
	72,20 Ethanol 96 %		Alcohol
40	20,00 Wasser dem. Aqua dem.		
	q.s. Parfümöl		

Lieferanten

(1) BASF Aktiengesellschaft

45

47

Festigerlösung mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
5	4,00 Polymer 1g) bis 11)	(1)	
	0,20 Pluracare E 400	(1)	PEG-8
	0,10 Parfümöl		
	10,00 Wasser dem.		
	85,70 Ethanol 96 %		Alcohol

10

Lieferanten

(1) BASF Aktiengesellschaft

Pumpspray mit Polymer gemäß Bsp. 1g) bis 11)

15

	% Rohstoff	Lieferant	INCI
	26,00 Polymer 1g) bis 11)	(1)	
	73,70 Ethanol 96 %		Alcohol
20	0,10 Parfümöl		
	0,10 Uvinul MC 80	(1)	Ethylhexyl Methoxy-cinnamate
	0,10 Dow Corning 190	(16)	PEG/PPG-18/18 Dimethicone

25

Lieferanten

(1) BASF Aktiengesellschaft

(16) Dow Corning Corporation

30 Pumpspray mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
	26,00 Polymer 1g) bis 11)	(1)	
35	4,00 Luviskol Plus	(1)	Polyvinylcaprolactam
	69,60 Ethanol 96 %		Alcohol
	0,10 Uvinul MC 80	(1)	Ethylhexyl Methoxy-cinnamate
	0,10 Dow Corning 344	(16)	Cyclomethicone
40	0,10 Dow Corning 556	(16)	Phenyl Trimethicone

Lieferanten

(1) BASF Aktiengesellschaft

(16) Dow Corning Corporation

45

48

Aerosolspray NON VOC mit Polymer gemäß Bsp. 1g) bis 11)

	% Rohstoff	Lieferant	INCI
5	13,00 Polymer 1g) bis 11)	(1)	
	0,10 Parfümöl		
	0,10 1,2 Propylenglykol Care	(1)	Propylene Glykol
	0,10 Citroflex 2	(53)	Triethyl Citrate
	46,70 Wasser dem.		Aqua dem
10	40,00 HFC 152A	-	Hydrofluorocarbon 152a

Lieferanten

(1) BASF Aktiengesellschaft
 (53) Pfizer Chemie

15

Aerosolspray NON VOC mit Polymer gemäß Bsp. 1g) bis 11) und Luviset CAN

	% Rohstoff	Lieferant	INCI
20	10,00 Polymer 1g) bis 11)	(1)	
	2,00 Luviset CAN	(1)	VA/Crotonates/Vinyl Neodecanoate Copolymer
	0,16 AMP	(56)	Aminomethyl Propanol
25	0,10 Parfümöl		
	0,10 Phytantriol	(1)	Phytantriol
	52,64 Wasser dem.		Aqua dem.
	35,00 HFC 152A	-	Hydrofluorocarbon 152a

30 Lieferanten

(1) BASF Aktiengesellschaft
 (56) Angus Chemical Company

Aerosolspray VOC 55 mit Polymer gemäß Bsp. 1g) bis 11) und Luviset P.U.R.

	% Rohstoff	Lieferant	INCI
40	7,00 Polymer 1g) bis 11)	(1)	
	7,00 Luviset P.U.R.	(1)	Polyurethane-1 Neodecanoate Copolymer
	14,30 Ethanol absolut		Alcohol
	36,50 Wasser dem.		Aqua dem.
	0,10 1,2 Propylenglykol Care	(1)	Propylene Glycol
45	0,10 Parfümöl		
	40,00 DME	-	Dimethylether

49

Lieferanten

(1) BASF Aktiengesellschaft

Aerosolspray VOC 55 mit Polymer gemäß Bsp. 1g) bis 11) und Luviskol Plus

5

	% Rohstoff	Lieferant	INCI
	10,00 Polymer 1g) bis 11)	(1)	
	5,00 Luviskol Plus.	(1)	Polyvinylcaprolactam
10	17,00 Ethanol absolut		Alcohol
	32,80 Wasser dem.		Aqua dem.
	0,10 Niacinamide	-	Niacinamide
	0,10 Parfümöl	-	
	35,00 DME	-	Dimethylether

15

Lieferanten

(1) BASF Aktiengesellschaft

Aerosolspray VOC 80 mit Polymer gemäß Bsp. 1g) bis 11) und

20 Luvimer 100P

	% Rohstoff	Lieferant	INCI
	10,00 Polymer 1g) bis 11)	(1)	
25	1,00 Luvimer 100P	(1)	Acrylates Copolymer
	0,24 AMP	(56)	Aminomethyl Propanol
	35,00 Ethanol absolut		Alcohol
	8,56 Wasser dem.		Aqua dem.
	0,10 Belsil CM040	(156)	Cyclopentasiloxane
30	0,10 Parfümöl		
	10,00 n-Butan	-	Butane
	35,00 DME	-	Dimethylether

Lieferanten

35 (1) BASF Aktiengesellschaft

(56) Angus Chemical Company

(156) Wacker Chemie GmbH

40

45

50

Aerosolspray VOC 80 mit Polymer gemäß Bsp. 1g) bis 11) und Luviskol VA37

	% Rohstoff	Lieferant	INCI
5			
	10,00 Polymer 1g) bis 11)	(1)	
	4,00 Luviskol VA37	(1)	VP/VA Copolymer
	38,00 Ethanol absolut		Alcohol
	7,70 Wasser dem.		Aqua dem.
10	0,10 D-Panthenol USP	(1)	Panthenol
	0,10 Dow Corning 556	(16)	Phenyl Trimethicone
	0,10 Parfümöl		
	40,00 DME	-	Dimethylether

15 Lieferanten

- (1) BASF Aktiengesellschaft
- (16) Dow Corning Corporation

Aerosolspray ohne Wasserzusatz mit Polymer gemäß Bsp. 1g) bis 11)
20 und Luviflex Silk

	% Rohstoff	Lieferant	INCI
	7,00 Polymer 1g) bis 11)	(1)	
25	4,00 Luviflex Silk.	(1)	PEG/PPG-25/25 Dimethicone/Acrylates Copolymer
	0,47 AMP	(56)	Aminomethyl Propanol
	48,23 Ethanol absolut		Alcohol
	0,10 Palatinol A	(1)	Diethyl Phthalate
30	0,10 D-Panthenol USP	(1)	Panthenol
	0,10 Parfümöl		
	10,00 Propan/Butan	-	Propane/Butane
	30,00 DME	-	Dimethylether

35 Lieferanten

- (1) BASF Aktiengesellschaft
- (56) Angus Chemical Company

40

45

51

Aerosolspray ohne Wasserzusatz mit Polymer gemäß Bsp. 1g) bis 11) und Amphomer

	% Rohstoff	Lieferant	INCI
5			
	10,00 Polymer 1g) bis 11)	(1)	
	1,00 Amphomer 28-4910	(72)	Acrylates Copolymer
	0,17 AMP	(56)	Aminomethyl Propanol
	43,53 Ethanol absolut		Alcohol
10	0,10 Dow Corning 193	(16)	PEG-12 Dimethicone
	0,10 Dow Corning 556	(16)	Phenyl Trimethicone
	0,10 Parfümöl		
	45,00 DME		-Dimethylether

15 Lieferanten

- (1) BASF Aktiengesellschaft
- (16) Dow Corning Corporation
- (56) Angus Chemical Company
- (72) National Starch & Chemical Limited

20

Mischvorschriften

PUMP SCHAUMHAARFESTIGER

25	3,00 Polymer 1g)		
	1,00 Luviquat Mono CP		Hydroxyethyl Cetyl-dimonium Phosphate
	0,20 Cremophor A 25		Ceteareth-25
	0,40 Parfümöl PC 910.781/Cremophor		
30	95,40 Wasser dem.		Aqua dem.
	q.s. Konservierungsmittel		

Herstellung:

Aus den Komponenten eine gleichmäßige Mischung herstellen und
35 in eine Pumpschaumflasche abfüllen.

PUMP-SPRAY

A	q.s. Cremophor CO 40	PEG-40 Hydrogenated Castor Oil
40	q.s. Parfümöl	
	75,50 Wasser dem.	Aqua dem.
	7,30 Polymer 1h)	
B	1,00 1,2-Propylenglykol Care	Propylene Glycol
45	0,20 Uvinul P 25	PEG-25 PABA
	1,00 Luviquat HM 552	Polyquaternium-16

15,00 Ethanol 96 %

Alcohol

Herstellung:

Phase A anrühren. Die Komponenten der Phase B nacheinander 5 zugeben und gleichmäßig verteilen. Dann alles abfüllen.

STYLING WATER

A	0,70	Cremophor CO 40	PEG-40 Hydrogenated Castor Oil
10	0,20	Parfümöl	
	75,10	Wasser dem.	Aqua dem.
	7,30	Polymer 1i)	
B	1,00	1,2-Propylenglykol Care	Propylene Glycol
15	0,50	Luviquat Care	Polyquaternium-44
	0,20	Uvinul P 25	PEG-25 PABA
	15,00	Ethanol 96 %	Alcohol

Herstellung:

20 Phase A anrühren. Die Komponenten der Phase B nacheinander zugeben und gleichmäßig verteilen. Dann alles abfüllen.

HAARSCHAUM

A	0,70	Cremophor CO 40	PEG-40 Hydrogenated Castor Oil
25	0,20	Parfümöl	
	78,50	Wasser dem.	Aqua dem.
B	0,50	Luviquat Mono LS	Cocotrimonium Methosulfate
30	6,70	Polymer 1g)	
	2,50	Luviquat Hold	Polyquaternium-46
	0,20	Uvinul P 25	PEG-25 PABA
	0,50	Pluracare E 400	PEG-8
	0,20	Cremophor A 25	Ceteareth-25
35	q.s.	Konservierungsmittel	
C	10,00	Propan/Butan 3,5 bar (20°C)	Propane/Butane

Herstellung:

40 Phase A anrühren. Die Komponenten der Phase B nacheinander zugeben und gleichmäßig verteilen. Mit Phase C abfüllen.

STYLING MOUSSE

A	2,00	Luviquat Mono LS q.s. Parfümöl	Cocotrimonium Methosulfate
5 B	62,85	Wasser dem. 7,00 Polymer 1h)	Aqua dem.
	2,00	Luviquat PQ 11	Polyquaternium-11
	0,20	Cremophor A 25	Ceteareth-25
	0,50	D-Panthenol USP	Panthenol
10	0,05	Uvinul MS 40	Benzophenone-4
	0,20	Dow Corning 949 Cationic	Alcohol
	15,00	Ethanol 96 %	Hydroxyethylcellulose
C	0,20	Natrosol 250 HR	
D	10,00	Propan/Butan 3,5 bar (20°C)	Propane/Butane

15

Herstellung:

Phase A mischen. Die Komponenten der Phase B nacheinander zugeben und mischen. Phase C zugeben und rühren bis gleichmäßig verteilt. Den pH-Wert auf 6-7 einstellen. Mit Phase D abfüllen.

20

SCHAUMFESTIGER

A	2,00	Luviquat Mono LS q.s. Parfümöl	Cocotrimonium Methosulfate
25 B	83,13	Wasser dem. 0,47 AMP	Aqua dem. Aminomethyl Propanol
	0,20	Konservierungsmittel	
	0,20	Abil B 8843	Dimethicone Copolyol
C	4,00	Polymer 11)	
30 D	10,00	Propan/Butan 3,5 bar (20°C)	Propane/Butane

Herstellung:

Phase A mischen. Phase B einwiegen und klar lösen. Phase B in Phase A einrühren.

35 Phase C zugeben und rühren. Mit Phase D abfüllen.

WETLOOK-SCHAUMFESTIGER

A	3,00	Luviquat Mono LS	Cocotrimonium Methosulfate
40	0,20	Parfümöl	
B	78,80	Wasser dem.	Aqua dem.
C	5,00	Glycerin 87 % q.s. Konservierungsmittel	Glycerin
	3,00	Polymer 11)	
45 D	10,00	Propan/Butan 3,5 bar (20°C)	Propane/Butane

Herstellung:

Phase A mischen. Phase B in Phase A einröhren. Phase C zugeben.
Mit Phase D abfüllen.

5 SCHAUMCONDITIONER

5,00	Luviquat PQ 11	Polyquaternium-11
5,00	Polymer 1f)	
0,50	Luviquat Mono CP	Hydroxyethyl Cetyl-
10		dimonium Phosphate
10,00	Ethanol abs.	Alcohol
0,40	Parfümöl "Carina"/Cremophor RH	
q.s.	Konservierungsmittel	
69,10	Wasser dem.	Aqua dem.
15 10,00	Propan/Butan	Propane/Butane

Herstellung:

Alles zusammenwiegen, rühren bis homogen verteilt, abfüllen.

20 GLANZ HAARWACHS

5,00	Luvitol EHO	Cetearyl Octanoate
5,00	Rizinusöl	Castor (Ricinus Communis) Oil
25 17,00	Vaseline	Petrolatum
7,00	TeCero-Wachs 1030 K	Microcrystalline Wax
6,00	Bienenwachs 3044 PH	Bees Wax
5,00	Polymer 1i) (wasserfrei)	4-Methylbenzylidene Camphor
3,00	Uvinul MBC 95	Butyl Methoxydibenzoyl-methane
30		Phytantriol
2,00	Uvinul BMBM	Phenoxyethanol
0,10	Phytantriol	Mineral Oil
0,50	Phenoxyethanol	Phenyl Trimethicone
35 48,40	Paraffinöl, dickflüssig	
,00	Dow Corning 556 fluid	
q.s.	Parfümöl	

Herstellung:

40 Die Komponenten der Phase A einwiegen und aufschmelzen.

FARB-BALSAM

A	1,50	Cremophor A 6	Ceteareth-6, Stearyl Alcohol
	1,50	Cremophor A 25	Ceteareth-25
5	3,00	Cetylstearylalkohol	Cetearyl Alcohol
	6,00	Luvitol EHO	Cetearyl Octanoate
	0,30	Phytantriol	Phytantriol
B	7,70	Luviquat Care	Polyquaternium-44
	6,00	Polymer 11)	
10	2,00	1,2-Propylenglykol Care	Propylene Glycol
	1,00	D-Panthenol USP	Panthenol
	q.s.	Konservierungsmittel	
	70,87	Wasser dem.	Aqua dem.
C	0,05	Basic Violet 14	C.I. 42510, Basic Violet 14
15	0,08	Basic Red 76	C.I. 12245, Basic Red 76
	q.s.	Parfümöl	
	q.s.	Citronensäure	Citric Acid

Herstellung:

20 Die Phasen A und B getrennt auf ca. 80°C erwärmen. Phase B unter Homogenisieren in Phase A einrühren, kurz nachhomogenisieren. Abkühlen auf ca. 40°C, Phase C hinzugeben und nochmals kurz homogenisieren. Den pH-Wert auf 6 bis 7 einstellen.

25 HAIR REPAIR TREATMENT

A	0,20	Luvitol EHO	Cetearyl Octanoate
	3,00	Polymer 1f)	
	0,10	Phytantriol	Phytantriol
30	2,00	Cremophor CO 40	PEG-40 Hydrogenated Castor Oil
B	q.s.	Parfümöl	
	2,00	Luviquat Mono LS	Cocotrimonium Methosulfate
C	79,70	Wasser dem.	Aqua dem.
35 D	2,00	Luviquat FC 905	Polyquaternium-16
	1,00	Silikonöl SF 1288	Dimethicone Copolyol
	q.s.	Konservierungsmittel	
	10,00	Ethanol 96 %	Alcohol
	q.s.	Citronensäure	Citric Acid

40

Herstellung:

Die Phasen A und B getrennt mischen. Phase C in Phase B einröhren. Die Lösung aus den Phasen B und C in die Phase A einröhren. Phase D zugeben und röhren bis zur Verdickung.

45 Den pH-Wert auf 4 bis 5 einstellen.

HAIR GUM

A	0,50	Glucamate SSE-20	PEG-20 Methyl Glucose
5	q.s.	Cremophor CO 40	Sesquistearate
	q.s.	Parfümöl	PEG-40 Hydrogenated
	30,00	Wasser dem.	Castor Oil
B	10,00	Luviquat Hold	Aqua dem.
10	2,00	Luviskol K 90	Polyquaternium-46
	6,00	Polymer 2a)	PVP
	0,30	Germall 115	Imidazolidinyl Urea
	0,10	Euxyl K 100	Benzyl Alcohol, Methyl-chloroisothiazolinone, Methylisothiazzone
15	0,50	D-Panthenol USP	Panthenol
	5,00	Pluracare E 6000	PEG 90
	3,00	1,2-Propylenglykol Care	Propylene Glycol
	40,10	Wasser dem.	Aqua dem.
20 C	2,50	Natrosol 250 HR	Hydroxyethylcellulose

Herstellung:

Phase A solubilisieren. Phase B lösen und in Phase A einröhren.
Phase C in die Lösung aus den Phasen A und B einröhren.

25

SILKY HAAR-COCKTAIL

A	3,00	Luvigel EM	Caprylic/Capric Triglyceride, Acrylates Copolymer
30	3,00	Polymer 2a). (wasserfrei)	Dimethicone Copolyol
	0,50	Wacker Belsil DMC 6031	Dimethicone
	2,00	Wacker Belsil DM 1000	Cyclomethicone, Dimethiconol
	3,00	Wacker Belsil CM 1000	Amodimethicone, Cetrimonium
	2,00	Wacker Belsil ADM 6057E	Chloride, Trideceth-10
35	2,00	Wacker Belsil PDM 200	Phenyl Trimethicone
	1,00	Macadamianußöl	Macadamia (Ternifolia) Nut Oil
	0,50	Vitamin E-Acetat	Tocopheryl Acetate
40	1,00	Cremophor CO 40	PEG-40 Hydrogenated
	q.s.	Parfümöl	Castor Oil
B	77,54	Wasser dem.	Aqua dem.
	0,46	AMP	Aminomethyl Propanol
45	4,00	Luviflex Silk	PEG/PPG-25/25 Dimethicone/ Acrylates Copolymer
	q.s.	Konservierungsmittel	

Herstellung:

Die Komponenten der Phase A mischen. Phase B lösen. Phase B unter Homogenisieren in Phase A einröhren.

5 OIL SHEEN MOISTURIZER

A	2,00	Cetylalkohol	Cetyl Alcohol
	1,00	Solan ELD	PEG-75 Lanolin
	4,00	Glycerinmonostearat	Glyceryl Stearate
10	1,00	Cremophor A 25	Ceteareth-25
	4,00	Luvitol EHO	Cetearyl Octanoate
B	10,00	Glycerin 87 %	Glycerin
	5,00	Polymer 2b)	
	2,00	1,2-Propylenglykol Care	Propylene Glycol
15	1,00	Luviquat Mono LS	Cocotrimonium Methosulfate
	1,50	Silicone Microemulsion	Trimethylsilylamodimethicone, SM 2115 Octoxynol-40, Isolaureth-6, Glycerin
	1,00	Cremophor PS 20	Polysorbate 20
20	67,00	Wasser dem.	Aqua dem.
C	0,50	D-Panthenol USP	Panthenol
	q.s.	Konservierungsmittel	
	q.s.	Parfümöl	
	q.s.	Citronensäure	Citric Acid

25

Herstellung:

Die Phasen A und B getrennt auf ca. 80°C erwärmen. Phase B in Phase A einröhren und homogenisieren. Abkühlen auf ca. 40°C, Phase C zugeben und nochmals gut homogenisieren.

30

SETTING CREAM HIGH GLOSS

A	5,00	Cetylalkohol	Cetyl Alcohol
	10,00	Tegin	Glyceryl Stearate SE
35	5,00	Isopropylmyristat	Isopropyl Myristate
	q.s.	Konservierungsmittel	
	1,00	Dow Corning 200 fluid	Dimethicone
B	5,00	Glycerin 87 %	Glycerin
	5,00	Polymer 2b)	
40	0,20	Edeta BD	Disodium EDTA
	2,00	Luviskol K 30	PVP
	66,80	Wasser dem.	Aqua dem.
C	q.s.	Parfümöl	

45

Herstellung:

Die Phasen A und B getrennt auf ca. 80°C erwärmen. Phase B in Phase A einröhren und homogenisieren. Abkühlen auf ca. 40°C, Phase C hinzugeben und nochmals kurz homogenisieren.

5

DAUERWELLE

A	70,95	Wasser dem. 3,00 Polymer 2c)	Aqua dem.
10	0,20	Tego Betain L 7 0,20 Cremophor PS 20 1,25 Luviquat FC 905 0,20 Ededa BD 0,20 Natrosol 250 HR	Cocamidopropyl Betaine Polysorbate 20 Polyquaternium-16 Disodium EDTA Hydroxyethylcellulose
15	8,00	Thioglykolsäure 80 %	Thioglycolic Acid
C	11,00	Ammoniaklösung 25 %	Ammonium Hydroxide
D	5,00	Ammoniumcarbonat	Ammonium Carbonate

Herstellung:

20 Die Komponenten der Phase A einwiegen und mischen. Phase B in Phase A einröhren.

FIXIERUNG FÜR DAUERWELLE

25	A	1,00 Cremophor CO 40 0,20 Parfümöl 2,00 Polymer 2c) 91,60 Wasser dem.	PEG-40 Hydrogenated Castor Oil Aqua dem.
30	B	0,20 Tego Betain L 7 0,20 Cremophor A 25 2,50 Luviquat FC 905 q.s. Konservierungsmittel	Cocamidopropyl Betaine Ceteareth-25 Polyquaternium-16
C	2,30	Wasserstoffperoxid 30 %	Hydrogen Peroxid
35	D	q.s. Phosphorsäure 85 %	Phosphoric Acid

Herstellung:

Phase A solubilisieren. Die Komponenten der Phase B nacheinander zugeben und mischen. Phase C zugeben und erneut röhren. Den pH-40 Wert auf 3,0 bis 3,5 einstellen.

Patentansprüche

1. Verwendung von Polymerisaten aus

5

1 bis 98,9 Gew.-% Vinylcaprolactam (Monomer A)
1 bis 98,9 Gew.-% Vinylpyrrolidon (Monomer B)
0,1 bis 5 Gew.-% Vinylimidazol (Monomer C)
0 bis 10 Gew.-% Monomer D
10 0 bis 10 Gew.-% (bezogen auf die Gesamtmonomermenge)
Polymer E,

wobei das Gewichtsverhältnis von Monomer C zu Monomer B kleiner als 1:12 ist,

15

in kosmetischen Zubereitungen.

2. Verwendung nach Anspruch 1, wobei das Polymerisat besteht aus

20 30 bis 59 Gew.-% Monomer A
40 bis 69 Gew.-% Monomer B
1 bis 4,9 Gew.-% Monomer C
0 bis 10 Gew.-% Monomer D
0 bis 10 Gew.-% (bezogen auf die Gesamtmonomermenge)
25 Polymer E

3. Verwendung nach Anspruch 1 bis 2 in haarkosmetischen Zubereitungen, insbesondere in Haarfestigungsmitteln und Haarshampoo.

30

4. Verwendung nach Anspruch 1 bis 2 in hautkosmetischen Zubereitungen.

5. Haarfestigende Zubereitungen, insbesondere in Form von Schäumen, Mousse, Spray oder Gel, wobei als wirksamer Bestandteil ein Polymerisat gemäß Anspruch 1 bis 2 verwendet wird.

40

45

This Page Blank (uspto)

INTERNATIONAL SEARCH REPORT

International Application No

EP 03/10373

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K7/11 A61K7/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 455 081 A (BASF AG) 6 November 1991 (1991-11-06) claims 1,10,11; examples 33-35,39; table 3 ---	1-5
X	US 6 191 188 B1 (SCHEHLMANN VOLKER ET AL) 20 February 2001 (2001-02-20) cited in the application claims 1,9,10 ---	1-5
X	DE 12 61 822 B (BASF AG) 29 February 1968 (1968-02-29) cited in the application column 1, line 7-20; claim 1; example 2 ---	1-5
X	US 5 869 032 A (RAUBENHEIMER HANS-JUERGEN ET AL) 9 February 1999 (1999-02-09) column 4, line 54-61; claims 1,5-11 ---	1-5
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

27 January 2004

04/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Yon, J-M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/10373

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 02 30368 A (COTY BV ; CERNASOV DOMINICA (US); KULKARNI RUPALI A (US); MACCHIO R) 18 April 2002 (2002-04-18) claim 1; examples 1-4 ---	1-5
X	EP 0 715 843 A (BASF AG) 12 June 1996 (1996-06-12) claim 1 ---	1-5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

EP 03/10373

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0455081	A	06-11-1991		DE 4013872 A1 CA 2040963 A1 DE 59102050 D1 EP 0455081 A1 ES 2056516 T3 JP 3442407 B2 JP 4225912 A JP 3469177 B2 JP 2001097832 A		31-10-1991 31-10-1991 04-08-1994 06-11-1991 01-10-1994 02-09-2003 14-08-1992 25-11-2003 10-04-2001
US 6191188	B1	20-02-2001		DE 19701018 A1 AT 206909 T AU 720400 B2 AU 5761698 A BR 9714279 A CN 1248905 A CZ 9902460 A3 DE 59705001 D1 WO 9831328 A1 EP 0939611 A1 ES 2165635 T3 HU 0000818 A2 JP 2001508456 T NO 993440 A RU 2197222 C2 TW 427915 B ZA 9800251 A		15-10-1998 15-11-2001 01-06-2000 07-08-1998 18-04-2000 29-03-2000 13-10-1999 22-11-2001 23-07-1998 08-09-1999 16-03-2002 28-08-2000 26-06-2001 13-09-1999 27-01-2003 01-04-2001 13-07-1999
DE 1261822	B	29-02-1968		GB 1080237 A JP 49008432 B		23-08-1967 26-02-1974
US 5869032	A	09-02-1999		DE 4443568 A1 CA 2164554 A1 DE 59507952 D1 EP 0715843 A1 ES 2144092 T3 JP 8259635 A		13-06-1996 08-06-1996 13-04-2000 12-06-1996 01-06-2000 08-10-1996
WO 0230368	A	18-04-2002		DE 10053052 A1 WO 0230368 A2 EP 1324738 A2		06-06-2002 18-04-2002 09-07-2003
EP 0715843	A	12-06-1996		DE 4443568 A1 CA 2164554 A1 DE 59507952 D1 EP 0715843 A1 ES 2144092 T3 JP 8259635 A US 5869032 A		13-06-1996 08-06-1996 13-04-2000 12-06-1996 01-06-2000 08-10-1996 09-02-1999

This Page Blank (uspto)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/10373

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 A61K7/11 A61K7/48

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A61K

Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BIOSIS

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 455 081 A (BASF AG) 6 November 1991 (1991-11-06) Ansprüche 1, 10, 11; Beispiele 33-35, 39; Tabelle 3	1-5
X	US 6 191 188 B1 (SCHEHLMANN VOLKER ET AL) 20 Februar 2001 (2001-02-20) genannt in der Ammeldung Ansprüche 1, 9, 10	1-5

 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen Siehe Anhang Patentfamilie

• Besondere Kategorien von angegebenen Veröffentlichungen:

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Telefaxnr.	Telefonnr.

INTERNATIONALER RECHERCHENBERICHT

Nationales Aktenzeichen
PCT/EP 03/10373

C (Fortsetzung). ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 12 61 822 B (BASF AG) 29 Februar 1968 (1968-02-29) genannt in der Ammeldung Kolonne 4, Linie 7-20; Anspruch 1; Beispiel 2 ---	1-5
X	US 5 869 032 A (RAUBENHEIMER HANS-JUERGEN ET AL) 9 Februar 1999 (1999-02-09) Kolonne 4, Linie 54-61 ; Anspruch 1, 5-11	1-5
X	WO 02 30368 A (COTY BV ; CERNASOV DOMINICA (US); KULKARNI RUPALI A (US); MACCHIO R) 18 April 2002 (2002-04-18) Anspruch 1; Beispiele 1-4 ---	1-5
X	EP 0 715 843 A (BASF AG) 12 Juni 1996 (1996-06-12) Anspruch 1	1-5

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/10373

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0455081	A	06-11-1991		DE 4013872 A1 CA 2040963 A1 DE 59102050 D1 EP 0455081 A1 ES 2056516 T3 JP 3442407 B2 JP 4225912 A JP 3469177 B2 JP 2001097832 A		31-10-1991 31-10-1991 04-08-1994 06-11-1991 01-10-1994 02-09-2003 14-08-1992 25-11-2003 10-04-2001
US 6191188	B1	20-02-2001		DE 19701018 A1 AT 206909 T AU 720400 B2 AU 5761698 A BR 9714279 A CN 1248905 A CZ 9902460 A3 DE 59705001 D1 WO 9831328 A1 EP 0939611 A1 ES 2165635 T3 HU 0000818 A2 JP 2001508456 T NO 993440 A RU 2197222 C2 TW 427915 B ZA 9800251 A		15-10-1998 15-11-2001 01-06-2000 07-08-1998 18-04-2000 29-03-2000 13-10-1999 22-11-2001 23-07-1998 08-09-1999 16-03-2002 28-08-2000 26-06-2001 13-09-1999 27-01-2003 01-04-2001 13-07-1999
DE 1261822	B	29-02-1968		GB 1080237 A JP 49008432 B		23-08-1967 26-02-1974
US 5869032	A	09-02-1999		DE 4443568 A1 CA 2164554 A1 DE 59507952 D1 EP 0715843 A1 ES 2144092 T3 JP 8259635 A		13-06-1996 08-06-1996 13-04-2000 12-06-1996 01-06-2000 08-10-1996
WO 0230368	A	18-04-2002		DE 10053052 A1 WO 0230368 A2 EP 1324738 A2		06-06-2002 18-04-2002 09-07-2003
EP 0715843	A	12-06-1996		DE 4443568 A1 CA 2164554 A1 DE 59507952 D1 EP 0715843 A1 ES 2144092 T3 JP 8259635 A US 5869032 A		13-06-1996 08-06-1996 13-04-2000 12-06-1996 01-06-2000 08-10-1996 09-02-1999

This Page Blank (uspto)