1 Ohniska kuželoseček

1.1 Konstrukce s imaginárními elementy

Poznámka

Všimněme si, že projektivita dvou soumístných soustav určuje jednoznačně pár samodružných elementů, ale opačně ne. Pokud však vezmeme involuci, tak ta už má jednoznačnou korespondenci involuce s párem samodružných elementů.

Příklad (Konstrukce)

Je-li dána projektivita soumístných bodových soustav na přímce, určete involuci, která má tytéž samodružné body. (Totéž duálně.)

Řešení (Duální)

Zvolíme pomocnou kružnici procházející daným bodem. Převedeme soustavy na bodové soustavy na kružnici. Vezmeme direkční přímku za poláru a najdeme k ní (přes tečny) pól. Nyní uvažujme involuci se středem v tomto bodě. Obraz v hledané involuci najdeme tak, že vzor převedeme na kružnici, zobrazíme v této involuci, a vrátíme zpět.

Poznámka

Pokud direkční přímka vyjde mimo kružnici, budou samodružné body komplexní a pól najdeme tak, že leží na polárách k bodům (pólům) ležícím na dané poláře.

$m V\check{e}ta~1.1$

Pro eliptickou involuci (bodových soustav na přímce) existují právě dva body v rovině, z nichž se tato involuce promítá absolutní involucí (to znamená involucí kolmic).

 $D\mathring{u}kaz$

Pro eliptickou involuci se její páry rozdělují. Tedy nad úsečkami vzor – obraz si uděláme Thaletovy kružnice a hledané body budou jejich průsečíky.

Definice 1.1

Body z předchozí věty se nazývají pomocné body eliptické involuce.

Poznámka (Platí)

Absolutní involuce je eliptická involuce, jejíž samodružné přímky jsou imaginární. Nazývají se izotropické přímky a jejich směry jsou [0:1:i] a [0:1:-1].

Poznámka

Izotropické body leží na každé kružnici v rovině. Každé izotropická přímka je kolmá sama na sebe (v reálném skalárním součinu, z definice absolutní involuce)

1.2 Ohnisko středových kuželoseček

Důsledek

Pokud kuželosečka není kružnice, pak izotropické body na ní neleží, tedy z každého izotropického bodu k takové kuželosečce existují 2 tečny (? 4 imaginární přímky). Lze ukázat, že ze 6 průsečíků těchto 4 přímek jsou vždy dva reálné.

Definice 1.2 (Ohnisko)

Těmto dvěma bodům budeme říkat ohniska dané kuželosečky.

Věta 1.2

Bod je ohniskem kuželosečky ⇔ involuce sdružených polár indukovaná v tomto bodě kuželosečkou je involuce absolutní.

 $D\mathring{u}kaz$

Samodružné přímky involuce sdružených polár jsou právě tečny z tohoto bodu.

Věta 1.3

- 1. Kuželosečka má 2 ohniska (E, F) (pro kružnici splývající), jsou umístěna symetricky podle středu na jedné z os kuželosečky. Ohniska jsou samodružné body involuce bodů na této ose, jejíž páry jsou vyťaty sdruženými kolmými polárami. A tedy i páry tečna+jejich normála (kolmice v bodě dotyku = pól tečny).
- 2. Každé z ohnisek je pomocným bodem eliptické involuce, kterou na druhé ose vytínají sdružené kolmé poláry (a tedy i dvojice tečna+normála).
- 3. Každá kružnice opsaná trojúhelníku danému druhou osou a sdruženými kolmými polárami protíná původní osu v ohniscích. (Vyplývá z předchozí části.)

 $D\mathring{u}kaz$

Bez důkazu.

Definice 1.3 (Hlavní osa, vedlejší osa)

Ose z předchozí věty se říká hlavní osa, druhé pak vedlejší.

```
Příklad (Konstrukce)
Dány osy elipsy s vrcholy, najděte ohniska.
```

Řešení (Podobné hledání hyperoskulační kružnice.)

K spojnici hlavního a vedlejšího vrcholu umíme najít pól (průsečík tečen = kolmic na osy). Z tohoto pólu vedeme kolmici, čímž jsme získali dvojici kolmých sdružených polár, tedy použijeme předchozí větu, bod 3.

Totéž pro hyperbolu: na hlavní ose máme zadané vrcholy, na vedlejší náhradní body.

Řešení

Polára bude tentokrát průsečík "těch druhých dvou kolmic v hlavním a vedlejším vrchole", neboť pomocné body jsou takové, že přesně tento bod leží na asymptotě (tečně v nevlastním bodě).

1.3 Ohnisko paraboly

Definice 1.4 (Ohnisko)

(Stejná.) Ohnisko paraboly je reálný průsečík izotropických tečen.

Tuto definici splňují 2 body: vlastní ohnisko F a nevlastní ohnisko = střed = směr průměrů = směr osy.

Poznámka

Polára vlastního ohniska = řídící přímka.

Věta 1.4

- 1. Bod je ohniskem paraboly ⇔ involuce sdružených polár v tomto bodě je involuce absolutní. (Tj. sdružené poláry v F jsou vzájemně kolmé.)
- 2. Spojnice vlastního a nevlastního ohniska = osa paraboly, vlastní ohnisko půlí každou úsečku vyťatou na ose sdruženými kolmými polárami (speciálně tečnou a její normálou).

Příklad (Konstrukce)

Zkonstruujte ohnisko paraboly zadané 4 tečnami.

Řešení

Najdeme osu a bod dotyku na libovolné nevrcholové tečně. Z něj vedeme kolmici a použijeme předchozí větu bod 2.

Věta 1.5

Ohnisko jsou pro kuželosečku 2 podmínky.

 $\ulcorner D \mathring{u} kaz$

Ohnisko zadává 2 izotropické tečny, tedy 2 podmínky.

Pozn'amka

2ohniska + 1 bod (mimo osu = jejich spojnice) nezadávají jednoznačně kuželosečku, zadávají však jednoznačně elipsu a hyperbolu. A tyto dvě kuželosečky se v daném bodu protínají kolmo (úhel mezi tečnami).