```
handle = open(filename, encoding='utf-8') # Maybe OSError
try:
    print('* Reading data')
    return handle.read() # Maybe UnicodeDecodeError
finally:
    print('* Calling close()')
    handle.close() # Always runs after try block
```

Any exception raised by the read method will always propagate up to the calling code, but the close method of handle in the finally block will run first:

```
filename = 'random_data.txt'
with open(filename, 'wb') as f:
    f.write(b'\xf1\xf2\xf3\xf4\xf5') # Invalid utf-8

data = try_finally_example(filename)
>>>
* Opening file
* Reading data
* Calling close()
Traceback ...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf1 in
\(\infty\)position 0: invalid continuation byte
```

You must call open before the try block because exceptions that occur when opening the file (like OSError if the file does not exist) should skip the finally block entirely:

```
try_finally_example('does_not_exist.txt')
>>>
* Opening file
Traceback ...
FileNotFoundError: [Errno 2] No such file or directory:

'does_not_exist.txt'
```

else Blocks

Use try/except/else to make it clear which exceptions will be handled by your code and which exceptions will propagate up. When the try block doesn't raise an exception, the else block runs. The else block helps you minimize the amount of code in the try block, which is good for isolating potential exception causes and improves

readability. For example, say that I want to load JSON dictionary data from a string and return the value of a key it contains:

```
import json

def load_json_key(data, key):
    try:
        print('* Loading JSON data')
        result_dict = json.loads(data) # May raise ValueError
    except ValueError as e:
        print('* Handling ValueError')
        raise KeyError(key) from e
    else:
        print('* Looking up key')
        return result_dict[key] # May raise KeyError
```

In the successful case, the JSON data is decoded in the try block, and then the key lookup occurs in the else block:

```
assert load_json_key('{"foo": "bar"}', 'foo') == 'bar'
>>>
* Loading JSON data
* Looking up key
```

If the input data isn't valid JSON, then decoding with json.loads raises a ValueError. The exception is caught by the except block and handled:

```
load_json_key('{"foo": bad payload', 'foo')
>>>
* Loading JSON data
* Handling ValueError
Traceback ...
JSONDecodeError: Expecting value: line 1 column 9 (char 8)
```

The above exception was the direct cause of the following ⇒exception:

```
Traceback ...
KeyError: 'foo'
```

If the key lookup raises any exceptions, they propagate up to the caller because they are outside the try block. The else clause ensures that what follows the try/except is visually distinguished from the except block. This makes the exception propagation behavior clear:

```
load_json_key('{"foo": "bar"}', 'does not exist')
```

```
>>>
* Loading JSON data
* Looking up key
Traceback ...
KeyError: 'does not exist'
```

Everything Together

Use try/except/else/finally when you want to do it all in one compound statement. For example, say that I want to read a description of work to do from a file, process it, and then update the file in-place. Here, the try block is used to read the file and process it; the except block is used to handle exceptions from the try block that are expected; the else block is used to update the file in place and allow related exceptions to propagate up; and the finally block cleans up the file handle:

```
UNDEFINED = object()
def divide_json(path):
    print('* Opening file')
    handle = open(path, 'r+') # May raise OSError
    try:
        print('* Reading data')
        data = handle.read()
                                # May raise UnicodeDecodeError
        print('* Loading JSON data')
        op = ison.loads(data)
                                # May raise ValueError
        print('* Performing calculation')
        value = (
            op['numerator'] /
            op['denominator']) # May raise ZeroDivisionError
    except ZeroDivisionError as e:
        print('* Handling ZeroDivisionError')
        return UNDEFINED
    else:
        print('* Writing calculation')
        op['result'] = value
        result = json.dumps(op)
                                # May raise OSError
        handle.seek(0)
        handle.write(result) # May raise OSError
        return value
    finally:
        print('* Calling close()')
        handle.close()
                                # Always runs
```

```
In the successful case, the try, else, and finally blocks run:
```

```
temp_path = 'random_data.json'
with open(temp_path, 'w') as f:
    f.write('{"numerator": 1, "denominator": 10}')
assert divide_json(temp_path) == 0.1
>>>
* Opening file
* Reading data
* Loading JSON data
* Performing calculation
* Writing calculation
* Calling close()
If the calculation is invalid, the try, except, and final
```

If the calculation is invalid, the try, except, and finally blocks run, but the else block does not:

```
with open(temp_path, 'w') as f:
    f.write('{"numerator": 1, "denominator": 0}')
assert divide_json(temp_path) is UNDEFINED
>>>
* Opening file
* Reading data
* Loading JSON data
* Performing calculation
* Handling ZeroDivisionError
* Calling close()
```

If the JSON data was invalid, the try block runs and raises an exception, the finally block runs, and then the exception is propagated up to the caller. The except and else blocks do not run:

This layout is especially useful because all of the blocks work together in intuitive ways. For example, here I simulate this by running the divide_json function at the same time that my hard drive runs out of disk space:

```
with open(temp_path, 'w') as f:
    f.write('{"numerator": 1, "denominator": 10}')

divide_json(temp_path)

>>>
    Opening file
    Reading data
    Loading JSON data
    Performing calculation
    Writing calculation
    * Calling close()
Traceback ...
OSError: [Errno 28] No space left on device
```

When the exception was raised in the else block while rewriting the result data, the finally block still ran and closed the file handle as expected.

Things to Remember

- ◆ The try/finally compound statement lets you run cleanup code regardless of whether exceptions were raised in the try block.
- ◆ The else block helps you minimize the amount of code in try blocks and visually distinguish the success case from the try/except blocks.
- ◆ An else block can be used to perform additional actions after a successful try block but before common cleanup in a finally block.

Item 66: Consider contextlib and with Statements for Reusable try/finally Behavior

The with statement in Python is used to indicate when code is running in a special context. For example, mutual-exclusion locks (see Item 54: "Use Lock to Prevent Data Races in Threads") can be used in with statements to indicate that the indented code block runs only while the lock is held:

```
from threading import Lock
lock = Lock()
```

```
with lock:
    # Do something while maintaining an invariant
...
```

The example above is equivalent to this try/finally construction because the Lock class properly enables the with statement (see Item 65: "Take Advantage of Each Block in try/except/else/finally" for more about try/finally):

```
lock.acquire()
try:
    # Do something while maintaining an invariant
    ...
finally:
    lock.release()
```

The with statement version of this is better because it eliminates the need to write the repetitive code of the try/finally construction, and it ensures that you don't forget to have a corresponding release call for every acquire call.

It's easy to make your objects and functions work in with statements by using the contextlib built-in module. This module contains the contextmanager decorator (see Item 26: "Define Function Decorators with functools.wraps" for background), which lets a simple function be used in with statements. This is much easier than defining a new class with the special methods __enter__ and __exit__ (the standard way).

For example, say that I want a region of code to have more debug logging sometimes. Here, I define a function that does logging at two severity levels:

```
import logging

def my_function():
    logging.debug('Some debug data')
    logging.error('Error log here')
    logging.debug('More debug data')
```

The default log level for my program is WARNING, so only the error message will print to screen when I run the function:

```
my_function()
>>>
Error log here
```

I can elevate the log level of this function temporarily by defining a context manager. This helper function boosts the logging severity level before running the code in the with block and reduces the logging severity level afterward:

```
from contextlib import contextmanager

@contextmanager
def debug_logging(level):
    logger = logging.getLogger()
    old_level = logger.getEffectiveLevel()
    logger.setLevel(level)
    try:
        yield
    finally:
        logger.setLevel(old_level)
```

The yield expression is the point at which the with block's contents will execute (see Item 30: "Consider Generators Instead of Returning Lists" for background). Any exceptions that happen in the with block will be re-raised by the yield expression for you to catch in the helper function (see Item 35: "Avoid Causing State Transitions in Generators with throw" for how that works).

Now, I can call the same logging function again but in the debug_logging context. This time, all of the debug messages are printed to the screen during the with block. The same function running outside the with block won't print debug messages:

```
with debug_logging(logging.DEBUG):
    print('* Inside:')
    my_function()

print('* After:')
my_function()

>>>
* Inside:
Some debug data
Error log here
More debug data
* After:
Error log here
```

Using with Targets

The context manager passed to a with statement may also return an object. This object is assigned to a local variable in the as part of the

compound statement. This gives the code running in the with block the ability to directly interact with its context.

For example, say I want to write a file and ensure that it's always closed correctly. I can do this by passing open to the with statement. open returns a file handle for the as target of with, and it closes the handle when the with block exits:

```
with open('my_output.txt', 'w') as handle:
    handle.write('This is some data!')
```

This approach is more Pythonic than manually opening and closing the file handle every time. It gives you confidence that the file is eventually closed when execution leaves the with statement. By highlighting the critical section, it also encourages you to reduce the amount of code that executes while the file handle is open, which is good practice in general.

To enable your own functions to supply values for as targets, all you need to do is yield a value from your context manager. For example, here I define a context manager to fetch a Logger instance, set its level, and then yield it as the target:

```
@contextmanager
def log_level(level, name):
    logger = logging.getLogger(name)
    old_level = logger.getEffectiveLevel()
    logger.setLevel(level)
    try:
        yield logger
    finally:
        logger.setLevel(old_level)
```

Calling logging methods like debug on the as target produces output because the logging severity level is set low enough in the with block on that specific Logger instance. Using the logging module directly won't print anything because the default logging severity level for the default program logger is WARNING:

```
with log_level(logging.DEBUG, 'my-log') as logger:
    logger.debug(f'This is a message for {logger.name}!')
    logging.debug('This will not print')
>>>
This is a message for my-log!
```

After the with statement exits, calling debug logging methods on the Logger named 'my-log' will not print anything because the default

logging severity level has been restored. Error log messages will always print:

```
logger = logging.getLogger('my-log')
logger.debug('Debug will not print')
logger.error('Error will print')
>>>
Error will print
```

Later, I can change the name of the logger I want to use by simply updating the with statement. This will point the Logger that's the as target in the with block to a different instance, but I won't have to update any of my other code to match:

```
with log_level(logging.DEBUG, 'other-log') as logger:
    logger.debug(f'This is a message for {logger.name}!')
    logging.debug('This will not print')
>>>
This is a message for other-log!
```

This isolation of state and decoupling between creating a context and acting within that context is another benefit of the with statement.

Things to Remember

- ◆ The with statement allows you to reuse logic from try/finally blocks and reduce visual noise.
- ◆ The contextlib built-in module provides a contextmanager decorator that makes it easy to use your own functions in with statements.
- ◆ The value yielded by context managers is supplied to the as part of the with statement. It's useful for letting your code directly access the cause of a special context.

Item 67: Use datetime Instead of time for Local Clocks

Coordinated Universal Time (UTC) is the standard, time-zone-independent representation of time. UTC works great for computers that represent time as seconds since the UNIX epoch. But UTC isn't ideal for humans. Humans reference time relative to where they're currently located. People say "noon" or "8 am" instead of "UTC 15:00 minus 7 hours." If your program handles time, you'll probably find yourself converting time between UTC and local clocks for the sake of human understanding.

Python provides two ways of accomplishing time zone conversions. The old way, using the time built-in module, is terribly error prone. The new way, using the datetime built-in module, works great with some help from the community-built package named pytz.

You should be acquainted with both time and datetime to thoroughly understand why datetime is the best choice and time should be avoided.

The time Module

The localtime function from the time built-in module lets you convert a UNIX timestamp (seconds since the UNIX epoch in UTC) to a local time that matches the host computer's time zone (Pacific Daylight Time in my case). This local time can be printed in human-readable format using the strftime function:

```
import time

now = 1552774475
local_tuple = time.localtime(now)
time_format = '%Y-%m-%d %H:%M:%S'
time_str = time.strftime(time_format, local_tuple)
print(time_str)
>>>
2019-03-16 15:14:35
```

You'll often need to go the other way as well, starting with user input in human-readable local time and converting it to UTC time. You can do this by using the strptime function to parse the time string, and then calling mktime to convert local time to a UNIX timestamp:

```
time_tuple = time.strptime(time_str, time_format)
utc_now = time.mktime(time_tuple)
print(utc_now)
>>>
1552774475.0
```

How do you convert local time in one time zone to local time in another time zone? For example, say that I'm taking a flight between San Francisco and New York, and I want to know what time it will be in San Francisco when I've arrived in New York.

I might initially assume that I can directly manipulate the return values from the time, localtime, and strptime functions to do time zone conversions. But this is a very bad idea. Time zones change all the time due to local laws. It's too complicated to manage yourself, especially if you want to handle every global city for flight departures and arrivals.

Many operating systems have configuration files that keep up with the time zone changes automatically. Python lets you use these time zones through the time module if your platform supports it. On other platforms, such as Windows, some time zone functionality isn't available from time at all. For example, here I parse a departure time from the San Francisco time zone, Pacific Daylight Time (PDT):

```
import os

if os.name == 'nt':
    print("This example doesn't work on Windows")

else:
    parse_format = '%Y-%m-%d %H:%M:%S %Z'
    depart_sfo = '2019-03-16 15:45:16 PDT'
    time_tuple = time.strptime(depart_sfo, parse_format)
    time_str = time.strftime(time_format, time_tuple)
    print(time_str)

>>>
2019-03-16 15:45:16
```

After seeing that 'PDT' works with the strptime function, I might also assume that other time zones known to my computer will work. Unfortunately, this isn't the case. strptime raises an exception when it sees Eastern Daylight Time (EDT), which is the time zone for New York:

```
arrival_nyc = '2019-03-16 23:33:24 EDT'
time_tuple = time.strptime(arrival_nyc, time_format)
>>>
Traceback ...
ValueError: unconverted data remains: EDT
```

The problem here is the platform-dependent nature of the time module. Its behavior is determined by how the underlying C functions work with the host operating system. This makes the functionality of the time module unreliable in Python. The time module fails to consistently work properly for multiple local times. Thus, you should avoid using the time module for this purpose. If you must use time, use it only to convert between UTC and the host computer's local time. For all other types of conversions, use the datetime module.

The datetime Module

The second option for representing times in Python is the datetime class from the datetime built-in module. Like the time module, datetime can be used to convert from the current time in UTC to local time.

Here, I convert the present time in UTC to my computer's local time, PDT:

```
from datetime import datetime, timezone

now = datetime(2019, 3, 16, 22, 14, 35)
now_utc = now.replace(tzinfo=timezone.utc)
now_local = now_utc.astimezone()
print(now_local)
>>>
2019-03-16 15:14:35-07:00
```

The datetime module can also easily convert a local time back to a UNIX timestamp in UTC:

```
time_str = '2019-03-16 15:14:35'
now = datetime.strptime(time_str, time_format)
time_tuple = now.timetuple()
utc_now = time.mktime(time_tuple)
print(utc_now)
>>>
1552774475.0
```

Unlike the time module, the datetime module has facilities for reliably converting from one local time to another local time. However, datetime only provides the machinery for time zone operations with its tzinfo class and related methods. The Python default installation is missing time zone definitions besides UTC.

Luckily, the Python community has addressed this gap with the pytz module that's available for download from the Python Package Index (see Item 82: "Know Where to Find Community-Built Modules" for how to install it). pytz contains a full database of every time zone definition you might need.

To use pytz effectively, you should always convert local times to UTC first. Perform any datetime operations you need on the UTC values (such as offsetting). Then, convert to local times as a final step.

For example, here I convert a New York City flight arrival time to a UTC datetime. Although some of these calls seem redundant, all of them are necessary when using pytz:

```
import pytz
arrival_nyc = '2019-03-16 23:33:24'
nyc_dt_naive = datetime.strptime(arrival_nyc, time_format)
```

```
eastern = pytz.timezone('US/Eastern')
nyc_dt = eastern.localize(nyc_dt_naive)
utc_dt = pytz.utc.normalize(nyc_dt.astimezone(pytz.utc))
print(utc_dt)
2019-03-17 03:33:24+00:00
Once I have a UTC datetime, I can convert it to San Francisco local
time:
pacific = pytz.timezone('US/Pacific')
sf_dt = pacific.normalize(utc_dt.astimezone(pacific))
print(sf_dt)
>>>
2019-03-16 20:33:24-07:00
Just as easily, I can convert it to the local time in Nepal:
nepal = pytz.timezone('Asia/Katmandu')
nepal_dt = nepal.normalize(utc_dt.astimezone(nepal))
print(nepal_dt)
2019-03-17 09:18:24+05:45
```

With datetime and pytz, these conversions are consistent across all environments, regardless of what operating system the host computer is running.

Things to Remember

- Avoid using the time module for translating between different time zones.
- ◆ Use the datetime built-in module along with the pytz community module to reliably convert between times in different time zones.
- ◆ Always represent time in UTC and do conversions to local time as the very final step before presentation.

Item 68: Make pickle Reliable with copyreg

The pickle built-in module can serialize Python objects into a stream of bytes and deserialize bytes back into objects. Pickled byte streams shouldn't be used to communicate between untrusted parties. The purpose of pickle is to let you pass Python objects between programs that you control over binary channels.

Note

The pickle module's serialization format is unsafe by design. The serialized data contains what is essentially a program that describes how to reconstruct the original Python object. This means a malicious pickle payload could be used to compromise any part of a Python program that attempts to deserialize it.

In contrast, the json module is safe by design. Serialized JSON data contains a simple description of an object hierarchy. Deserializing JSON data does not expose a Python program to additional risk. Formats like JSON should be used for communication between programs or people who don't trust each other.

For example, say that I want to use a Python object to represent the state of a player's progress in a game. The game state includes the level the player is on and the number of lives they have remaining:

```
class GameState:
    def __init__(self):
        self.level = 0
        self.lives = 4
```

The program modifies this object as the game runs:

```
state = GameState()
state.level += 1  # Player beat a level
state.lives -= 1  # Player had to try again
print(state.__dict__)
>>>
{'level': 1, 'lives': 3}
```

When the user quits playing, the program can save the state of the game to a file so it can be resumed at a later time. The pickle module makes it easy to do this. Here, I use the dump function to write the GameState object to a file:

```
import pickle

state_path = 'game_state.bin'
with open(state_path, 'wb') as f:
    pickle.dump(state, f)
```

Later, I can call the load function with the file and get back the GameState object as if it had never been serialized:

```
with open(state_path, 'rb') as f:
    state_after = pickle.load(f)
print(state_after.__dict__)
```

```
>>> {'level': 1, 'lives': 3}
```

The problem with this approach is what happens as the game's features expand over time. Imagine that I want the player to earn points toward a high score. To track the player's points, I'd add a new field to the GameState class

```
class GameState:
    def __init__(self):
        self.level = 0
        self.lives = 4
        self.points = 0 # New field
```

Serializing the new version of the GameState class using pickle will work exactly as before. Here, I simulate the round-trip through a file by serializing to a string with dumps and back to an object with loads:

```
state = GameState()
serialized = pickle.dumps(state)
state_after = pickle.loads(serialized)
print(state_after.__dict__)
>>>
{'level': 0, 'lives': 4, 'points': 0}
```

But what happens to older saved GameState objects that the user may want to resume? Here, I unpickle an old game file by using a program with the new definition of the GameState class:

```
with open(state_path, 'rb') as f:
    state_after = pickle.load(f)

print(state_after.__dict__)
>>>
{'level': 1, 'lives': 3}
```

The points attribute is missing! This is especially confusing because the returned object is an instance of the new GameState class:

```
assert isinstance(state_after, GameState)
```

This behavior is a byproduct of the way the pickle module works. Its primary use case is making object serialization easy. As soon as your use of pickle moves beyond trivial usage, the module's functionality starts to break down in surprising ways.

Fixing these problems is straightforward using the copyreg built-in module. The copyreg module lets you register the functions responsible

for serializing and deserializing Python objects, allowing you to control the behavior of pickle and make it more reliable.

Default Attribute Values

In the simplest case, you can use a constructor with default arguments (see Item 23: "Provide Optional Behavior with Keyword Arguments" for background) to ensure that GameState objects will always have all attributes after unpickling. Here, I redefine the constructor this way:

```
class GameState:
    def __init__(self, level=0, lives=4, points=0):
        self.level = level
        self.lives = lives
        self.points = points
```

To use this constructor for pickling, I define a helper function that takes a GameState object and turns it into a tuple of parameters for the copyreg module. The returned tuple contains the function to use for unpickling and the parameters to pass to the unpickling function:

```
def pickle_game_state(game_state):
    kwargs = game_state.__dict__
    return unpickle_game_state, (kwargs,)
```

Now, I need to define the unpickle_game_state helper. This function takes serialized data and parameters from pickle_game_state and returns the corresponding GameState object. It's a tiny wrapper around the constructor:

```
def unpickle_game_state(kwargs):
    return GameState(**kwargs)
```

Now, I register these functions with the copyreg built-in module:

```
import copyreg
copyreg.pickle(GameState, pickle_game_state)
```

After registration, serializing and deserializing works as before:

```
state = GameState()
state.points += 1000
serialized = pickle.dumps(state)
state_after = pickle.loads(serialized)
print(state_after.__dict__)
>>>
{'level': 0, 'lives': 4, 'points': 1000}
```

With this registration done, now I'll change the definition of GameState again to give the player a count of magic spells to use. This change is similar to when I added the points field to GameState:

```
class GameState:
    def __init__(self, level=0, lives=4, points=0, magic=5):
        self.level = level
        self.lives = lives
        self.points = points
        self.magic = magic # New field
```

But unlike before, deserializing an old GameState object will result in valid game data instead of missing attributes. This works because unpickle_game_state calls the GameState constructor directly instead of using the pickle module's default behavior of saving and restoring only the attributes that belong to an object. The GameState constructor's keyword arguments have default values that will be used for any parameters that are missing. This causes old game state files to receive the default value for the new magic field when they are deserialized:

```
print('Before:', state.__dict__)
state_after = pickle.loads(serialized)
print('After: ', state_after.__dict__)
>>>
Before: {'level': 0, 'lives': 4, 'points': 1000}
After: {'level': 0, 'lives': 4, 'points': 1000, 'magic': 5}
```

Versioning Classes

Sometimes you need to make backward-incompatible changes to your Python objects by removing fields. Doing so prevents the default argument approach above from working.

For example, say I realize that a limited number of lives is a bad idea, and I want to remove the concept of lives from the game. Here, I redefine the GameState class to no longer have a lives field:

```
class GameState:
    def __init__(self, level=0, points=0, magic=5):
        self.level = level
        self.points = points
        self.magic = magic
```

The problem is that this breaks describlization of old game data. All fields from the old data, even ones removed from the class, will be passed to the GameState constructor by the unpickle_game_state function:

```
pickle.loads(serialized)
```

```
Traceback ...
TypeError: __init__() got an unexpected keyword argument
\[
\]'lives'
```

I can fix this by adding a version parameter to the functions supplied to copyreg. New serialized data will have a version of 2 specified when pickling a new GameState object:

```
def pickle_game_state(game_state):
    kwargs = game_state.__dict__
    kwargs['version'] = 2
    return unpickle_game_state, (kwargs,)
```

Old versions of the data will not have a version argument present, which means I can manipulate the arguments passed to the GameState constructor accordingly:

```
def unpickle_game_state(kwargs):
    version = kwargs.pop('version', 1)
    if version == 1:
        del kwargs['lives']
    return GameState(**kwargs)
```

Now, deserializing an old object works properly:

```
copyreg.pickle(GameState, pickle_game_state)
print('Before:', state.__dict__)
state_after = pickle.loads(serialized)
print('After: ', state_after.__dict__)
>>>
Before: {'level': 0, 'lives': 4, 'points': 1000}
After: {'level': 0, 'points': 1000, 'magic': 5}
```

I can continue using this approach to handle changes between future versions of the same class. Any logic I need to adapt an old version of the class to a new version of the class can go in the unpickle_game_state function.

Stable Import Paths

One other issue you may encounter with pickle is breakage from renaming a class. Often over the life cycle of a program, you'll refactor your code by renaming classes and moving them to other modules. Unfortunately, doing so breaks the pickle module unless you're careful.

Here, I rename the GameState class to BetterGameState and remove the old class from the program entirely:

```
class BetterGameState:
    def __init__(self, level=0, points=0, magic=5):
        self.level = level
        self.points = points
        self.magic = magic
```

Attempting to descrialize an old GameState object now fails because the class can't be found:

```
pickle.loads(serialized)
>>>
Traceback ...
AttributeError: Can't get attribute 'GameState' on <module
\(\sim'\)_main__' from 'my_code.py'>
```

The cause of this exception is that the import path of the serialized object's class is encoded in the pickled data:

 \Rightarrow \x94K\x00\x8c\x06points\x94K\x00\x8c\x05magic\x94K\x05ub.'

The solution is to use copyreg again. I can specify a stable identifier for the function to use for unpickling an object. This allows me to transition pickled data to different classes with different names when it's describilized. It gives me a level of indirection:

```
copyreq.pickle(BetterGameState, pickle_game_state)
```

After I use copyreg, you can see that the import path to unpickle_game_state is encoded in the serialized data instead of BetterGameState:

```
state = BetterGameState()
serialized = pickle.dumps(state)
print(serialized)
>>>
b'\x80\x04\x95\wx00\x00\x00\x00\x00\x00\x00\x8c\x08__main__
\x94\x8c\x13unpickle_game_state\x94\x93\x94\\x8c
\x05\revel\x94\K\x00\x8c\x06points\x94\K\x00\x8c\x05magic\x94\K
\x05\x8c\x07version\x94\K\x02u\x85\x94R\x94.'
```

The only gotcha is that I can't change the path of the module in which the unpickle_game_state function is present. Once I serialize data with a function, it must remain available on that import path for description in the future.

Things to Remember

- ◆ The pickle built-in module is useful only for serializing and deserializing objects between trusted programs.
- Deserializing previously pickled objects may break if the classes involved have changed over time (e.g., attributes have been added or removed).
- Use the copyreg built-in module with pickle to ensure backward compatibility for serialized objects.

Item 69: Use decimal When Precision Is Paramount

Python is an excellent language for writing code that interacts with numerical data. Python's integer type can represent values of any practical size. Its double-precision floating point type complies with the IEEE 754 standard. The language also provides a standard complex number type for imaginary values. However, these aren't enough for every situation.

For example, say that I want to compute the amount to charge a customer for an international phone call. I know the time in minutes and seconds that the customer was on the phone (say, 3 minutes 42 seconds). I also have a set rate for the cost of calling Antarctica from the United States (\$1.45/minute). What should the charge be?

With floating point math, the computed charge seems reasonable

The result is 0.0001 short of the correct value (5.365) due to how IEEE 754 floating point numbers are represented. I might want to round up this value to 5.37 to properly cover all costs incurred by the customer. However, due to floating point error, rounding to the nearest whole cent actually reduces the final charge (from 5.364 to 5.36) instead of increasing it (from 5.365 to 5.37):

```
print(round(cost, 2))
```

```
>>>
5.36
```

The solution is to use the Decimal class from the decimal built-in module. The Decimal class provides fixed point math of 28 decimal places by default. It can go even higher, if required. This works around the precision issues in IEEE 754 floating point numbers. The class also gives you more control over rounding behaviors.

For example, redoing the Antarctica calculation with Decimal results in the exact expected charge instead of an approximation:

```
from decimal import Decimal

rate = Decimal('1.45')
seconds = Decimal(3*60 + 42)
cost = rate * seconds / Decimal(60)
print(cost)
>>>
5.365
```

Decimal instances can be given starting values in two different ways. The first way is by passing a str containing the number to the Decimal constructor. This ensures that there is no loss of precision due to the inherent nature of Python floating point numbers. The second way is by directly passing a float or an int instance to the constructor. Here, you can see that the two construction methods result in different behavior.

```
print(Decimal('1.45'))
print(Decimal(1.45))
>>>
1.45
1.4499999999999999555910790149937383830547332763671875
```

The same problem doesn't happen if I supply integers to the Decimal constructor:

```
print('456')
print(456)
>>>
456
456
```

If you care about exact answers, err on the side of caution and use the str constructor for the Decimal type. Getting back to the phone call example, say that I also want to support very short phone calls between places that are much cheaper to connect (like Toledo and Detroit). Here, I compute the charge for a phone call that was 5 seconds long with a rate of \$0.05/minute:

The result is so low that it is decreased to zero when I try to round it to the nearest whole cent. This won't do!

```
print(round(small_cost, 2))
>>>
0.00
```

Luckily, the Decimal class has a built-in function for rounding to exactly the decimal place needed with the desired rounding behavior. This works for the higher cost case from earlier:

```
from decimal import ROUND_UP

rounded = cost.quantize(Decimal('0.01'), rounding=ROUND_UP)
print(f'Rounded {cost} to {rounded}')
>>>
Rounded 5.365 to 5.37
```

Using the quantize method this way also properly handles the small usage case for short, cheap phone calls:.

While Decimal works great for fixed point numbers, it still has limitations in its precision (e.g., 1/3 will be an approximation). For representing rational numbers with no limit to precision, consider using the Fraction class from the fractions built-in module.

Things to Remember

- ◆ Python has built-in types and classes in modules that can represent practically every type of numerical value.
- ◆ The Decimal class is ideal for situations that require high precision and control over rounding behavior, such as computations of monetary values.
- ◆ Pass str instances to the Decimal constructor instead of float instances if it's important to compute exact answers and not floating point approximations.

Item 70: Profile Before Optimizing

The dynamic nature of Python causes surprising behaviors in its runtime performance. Operations you might assume would be slow are actually very fast (e.g., string manipulation, generators). Language features you might assume would be fast are actually very slow (e.g., attribute accesses, function calls). The true source of slowdowns in a Python program can be obscure.

The best approach is to ignore your intuition and directly measure the performance of a program before you try to optimize it. Python provides a built-in *profiler* for determining which parts of a program are responsible for its execution time. This means you can focus your optimization efforts on the biggest sources of trouble and ignore parts of the program that don't impact speed (i.e., follow Amdahl's law).

For example, say that I want to determine why an algorithm in a program is slow. Here, I define a function that sorts a list of data using an insertion sort:

```
def insertion_sort(data):
    result = []
    for value in data:
        insert_value(result, value)
    return result
```

The core mechanism of the insertion sort is the function that finds the insertion point for each piece of data. Here, I define an extremely inefficient version of the insert_value function that does a linear scan over the input array:

```
def insert_value(array, value):
    for i, existing in enumerate(array):
        if existing > value:
            array.insert(i, value)
```

```
return
array.append(value)
```

To profile insertion_sort and insert_value, I create a data set of random numbers and define a test function to pass to the profiler:

```
from random import randint

max_size = 10**4
data = [randint(0, max_size) for _ in range(max_size)]
test = lambda: insertion_sort(data)
```

Python provides two built-in profilers: one that is pure Python (profile) and another that is a C-extension module (cProfile). The cProfile built-in module is better because of its minimal impact on the performance of your program while it's being profiled. The pure-Python alternative imposes a high overhead that skews the results.

Note

When profiling a Python program, be sure that what you're measuring is the code itself and not external systems. Beware of functions that access the network or resources on disk. These may appear to have a large impact on your program's execution time because of the slowness of the underlying systems. If your program uses a cache to mask the latency of slow resources like these, you should ensure that it's properly warmed up before you start profiling.

Here, I instantiate a Profile object from the cProfile module and run the test function through it using the runcall method:

```
from cProfile import Profile
profiler = Profile()
profiler.runcall(test)
```

When the test function has finished running, I can extract statistics about its performance by using the pstats built-in module and its Stats class. Various methods on a Stats object adjust how to select and sort the profiling information to show only the things I care about:

```
from pstats import Stats

stats = Stats(profiler)
stats.strip_dirs()
stats.sort_stats('cumulative')
stats.print_stats()
```

The output is a table of information organized by function. The data sample is taken only from the time the profiler was active, during the runcall method above:

20003 function calls in 1.320 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 1.320 1.320 main.py:35(<lambda>)
 1 0.003 0.003 1.320 1.320 main.py:10(insertion_sort)

10000 1.306 0.000 1.317 0.000 main.py:20(insert_value)

9992 0.011 0.000 0.011 0.000 {method 'insert' of 'list' objects}
 8 0.000 0.000 0.000 {method 'append' of 'list' objects}

Here's a quick guide to what the profiler statistics columns mean:

- ncalls: The number of calls to the function during the profiling period.
- tottime: The number of seconds spent executing the function, excluding time spent executing other functions it calls.
- tottime percall: The average number of seconds spent in the function each time it is called, excluding time spent executing other functions it calls. This is tottime divided by ncalls.
- cumtime: The cumulative number of seconds spent executing the function, including time spent in all other functions it calls.
- cumtime percall: The average number of seconds spent in the function each time it is called, including time spent in all other functions it calls. This is cumtime divided by ncalls.

Looking at the profiler statistics table above, I can see that the biggest use of CPU in my test is the cumulative time spent in the insert_value function. Here, I redefine that function to use the bisect built-in module (see Item 72: "Consider Searching Sorted Sequences with bisect"):

```
from bisect import bisect_left

def insert_value(array, value):
    i = bisect_left(array, value)
    array.insert(i, value)
```

I can run the profiler again and generate a new table of profiler statistics. The new function is much faster, with a cumulative time spent that is nearly 100 times smaller than with the previous insert_value function:

```
>>>
        30003 function calls in 0.017 seconds
  Ordered by: cumulative time
   ncalls tottime percall cumtime percall filename:lineno(function)
            0.000
                     0.000
                             0.017
                                      0.017 main.py:35(<lambda>)
       1
            0.002
                     0.002
                              0.017
                                      0.017 main.py:10(insertion_sort)
    10000
            0.003
                     0.000
                              0.015
                                      0.000 main.py:110(insert_value)
    10000
            0.008
                     0.000
                              0.008
                                      0.000 {method 'insert' of 'list' objects}
                             0.004
                                      0.000 {built-in method _bisect.bisect_left}
    10000
            0.004
                     0.000
```

Sometimes when you're profiling an entire program, you might find that a common utility function is responsible for the majority of execution time. The default output from the profiler makes such a situation difficult to understand because it doesn't show that the utility function is called by many different parts of your program.

For example, here the my_utility function is called repeatedly by two different functions in the program:

```
def my_utility(a, b):
    c = 1
    for i in range(100):
        c += a * b

def first_func():
    for _ in range(1000):
        my_utility(4, 5)

def second_func():
    for _ in range(10):
        my_utility(1, 3)

def my_program():
    for _ in range(20):
        first_func()
        second_func()
```

Profiling this code and using the default print_stats output generates statistics that are confusing:

```
>>>
        20242 function calls in 0.118 seconds
  Ordered by: cumulative time
  ncalls tottime percall cumtime percall filename:lineno(function)
       1
           0.000
                    0.000
                             0.118 0.118 main.py:176(my_program)
      20
            0.003
                    0.000
                             0.117
                                     0.006 main.py:168(first_func)
                    0.000
   20200
            0.115
                             0.115 0.000 main.py:161(my_utility)
            0.000
                    0.000
                             0.001
                                     0.000 main.py:172(second_func)
      20
```

The my_utility function is clearly the source of most execution time, but it's not immediately obvious why that function is called so much. If you search through the program's code, you'll find multiple call sites for my_utility and still be confused.

To deal with this, the Python profiler provides the print_callers method to show which callers contributed to the profiling information of each function:

```
stats.print_callers()
```

This profiler statistics table shows functions called on the left and which function was responsible for making the call on the right. Here, it's clear that my_utility is most used by first_func:

```
Ordered by: cumulative time

Function

was called by...

ncalls tottime cumtime

main.py:176(my_program)

main.py:168(first_func)

main.py:161(my_utility)

c- 2000 0.014 0.114 main.py:176(my_program)

main.py:161(my_utility)

c- 2000 0.001 0.001 main.py:172(second_func)

Profiling.md:172(second_func)

c- 20 0.000 0.001 main.py:176(my_program)
```

Things to Remember

- → It's important to profile Python programs before optimizing because the sources of slowdowns are often obscure.
- Use the cProfile module instead of the profile module because it provides more accurate profiling information.
- ◆ The Profile object's runcall method provides everything you need to profile a tree of function calls in isolation.
- ◆ The Stats object lets you select and print the subset of profiling information you need to see to understand your program's performance.

Item 71: Prefer deque for Producer-Consumer Queues

A common need in writing programs is a first-in, first-out (FIFO) queue, which is also known as a producer-consumer queue. A FIFO queue is used when one function gathers values to process and another function handles them in the order in which they were received. Often, programmers use Python's built-in list type as a FIFO queue.

For example, say that I have a program that's processing incoming emails for long-term archival, and it's using a list for a producer-consumer queue. Here, I define a class to represent the messages:

```
class Email:
    def __init__(self, sender, receiver, message):
        self.sender = sender
        self.receiver = receiver
        self.message = message
```

I also define a placeholder function for receiving a single email, presumably from a socket, the file system, or some other type of I/O system. The implementation of this function doesn't matter; what's important is its interface: It will either return an Email instance or raise a NoEmailError exception:

```
class NoEmailError(Exception):
    pass

def try_receive_email():
    # Returns an Email instance or raises NoEmailError
```

The producing function receives emails and enqueues them to be consumed at a later time. This function uses the append method on the list to add new messages to the end of the queue so they are processed after all messages that were previously received:

```
def produce_emails(queue):
    while True:
        try:
        email = try_receive_email()
    except NoEmailError:
        return
    else:
        queue.append(email) # Producer
```

The consuming function does something useful with the emails. This function calls pop(0) on the queue, which removes the very first item from the list and returns it to the caller. By always processing items from the beginning of the queue, the consumer ensures that the items are processed in the order in which they were received:

```
def consume_one_email(queue):
    if not queue:
        return
    email = queue.pop(0) # Consumer
```

```
# Index the message for long-term archival
...
```

Finally, I need a looping function that connects the pieces together. This function alternates between producing and consuming until the keep_running function returns False (see Item 60: "Achieve Highly Concurrent I/O with Coroutines" on how to do this concurrently):

```
def loop(queue, keep_running):
    while keep_running():
        produce_emails(queue)
        consume_one_email(queue)

def my_end_func():
    ...
loop([], my_end_func)
```

Why not process each Email message in produce_emails as it's returned by try_receive_email? It comes down to the trade-off between latency and throughput. When using producer-consumer queues, you often want to minimize the latency of accepting new items so they can be collected as fast as possible. The consumer can then process through the backlog of items at a consistent pace—one item per loop in this case—which provides a stable performance profile and consistent throughput at the cost of end-to-end latency (see Item 55: "Use Queue to Coordinate Work Between Threads" for related best practices).

Using a list for a producer-consumer queue like this works fine up to a point, but as the *cardinality*—the number of items in the list—increases, the list type's performance can degrade superlinearly. To analyze the performance of using list as a FIFO queue, I can run some micro-benchmarks using the timeit built-in module. Here, I define a benchmark for the performance of adding new items to the queue using the append method of list (matching the producer function's usage):

```
import timeit

def print_results(count, tests):
    avg_iteration = sum(tests) / len(tests)
    print(f'Count {count:>5,} takes {avg_iteration:.6f}s')
    return count, avg_iteration

def list_append_benchmark(count):
    def run(queue):
```

for i in range(count):

```
queue.append(i)
    tests = timeit.repeat(
        setup='queue = []',
        stmt='run(queue)',
        globals=locals(),
        repeat=1000,
        number=1)
    return print_results(count, tests)
Running this benchmark function with different levels of cardinality
lets me compare its performance in relationship to data size:
def print_delta(before, after):
    before_count, before_time = before
    after_count, after_time = after
    growth = 1 + (after_count - before_count) / before_count
    slowdown = 1 + (after_time - before_time) / before_time
    print(f'{growth:>4.1f}x data size, {slowdown:>4.1f}x time')
baseline = list_append_benchmark(500)
for count in (1_000, 2_000, 3_000, 4_000, 5_000):
    comparison = list_append_benchmark(count)
    print_delta(baseline, comparison)
>>>
Count
        500 takes 0.000039s
Count 1,000 takes 0.000073s
 2.0x data size, 1.9x time
Count 2,000 takes 0.000121s
 4.0x data size, 3.1x time
Count 3,000 takes 0.000172s
 6.0x data size, 4.5x time
Count 4,000 takes 0.000240s
 8.0x data size, 6.2x time
Count 5,000 takes 0.000304s
10.0x data size, 7.9x time
```

This shows that the append method takes roughly constant time for the list type, and the total time for enqueueing scales linearly as the data size increases. There is overhead for the list type to increase its capacity under the covers as new items are added, but it's reasonably low and is amortized across repeated calls to append.

Here, I define a similar benchmark for the pop(0) call that removes items from the beginning of the queue (matching the consumer function's usage):

```
def list_pop_benchmark(count):
    def prepare():
        return list(range(count))

def run(queue):
    while queue:
        queue.pop(0)

tests = timeit.repeat(
    setup='queue = prepare()',
    stmt='run(queue)',
    globals=locals(),
    repeat=1000,
    number=1)

return print_results(count, tests)
```

I can similarly run this benchmark for queues of different sizes to see how performance is affected by cardinality:

```
baseline = list_pop_benchmark(500)
for count in (1_000, 2_000, 3_000, 4_000, 5_000):
    comparison = list_pop_benchmark(count)
    print_delta(baseline, comparison)
>>>
Count 500 takes 0.000050s

Count 1,000 takes 0.000133s
    2.0x data size, 2.7x time

Count 2,000 takes 0.000347s
    4.0x data size, 6.9x time

Count 3,000 takes 0.000663s
    6.0x data size, 13.2x time
```

```
Count 4,000 takes 0.000943s
8.0x data size, 18.8x time
Count 5,000 takes 0.001481s
10.0x data size, 29.5x time
```

Surprisingly, this shows that the total time for dequeuing items from a list with pop(0) scales quadratically as the length of the queue increases. The cause is that pop(0) needs to move every item in the list back an index, effectively reassigning the entire list's contents. I need to call pop(0) for every item in the list, and thus I end up doing roughly len(queue) * len(queue) operations to consume the queue. This doesn't scale.

Python provides the deque class from the collections built-in module to solve this problem. deque is a *double-ended queue* implementation. It provides constant time operations for inserting or removing items from its beginning or end. This makes it ideal for FIFO queues.

To use the deque class, the call to append in produce_emails can stay the same as it was when using a list for the queue. The list.pop method call in consume_one_email must change to call the deque.popleft method with no arguments instead. And the loop method must be called with a deque instance instead of a list. Everything else stays the same. Here, I redefine the one function affected to use the new method and run loop again:

```
import collections

def consume_one_email(queue):
    if not queue:
        return
    email = queue.popleft() # Consumer
    # Process the email message
    ...

def my_end_func():
    ...

loop(collections.deque(), my_end_func)
```

I can run another version of the benchmark to verify that append performance (matching the producer function's usage) has stayed roughly the same (modulo a constant factor):

```
def deque_append_benchmark(count):
    def prepare():
        return collections.deque()
```

```
def run(queue):
        for i in range(count):
            queue.append(i)
    tests = timeit.repeat(
        setup='queue = prepare()',
        stmt='run(queue)',
        globals=locals(),
        repeat=1000,
        number=1)
    return print_results(count, tests)
baseline = deque_append_benchmark(500)
for count in (1_000, 2_000, 3_000, 4_000, 5_000):
    comparison = deque_append_benchmark(count)
    print_delta(baseline, comparison)
>>>
        500 takes 0.000029s
Count
Count 1,000 takes 0.000059s
 2.0x data size, 2.1x time
Count 2,000 takes 0.000121s
 4.0x data size, 4.2x time
Count 3,000 takes 0.000171s
 6.0x data size, 6.0x time
Count 4,000 takes 0.000243s
 8.0x data size, 8.5x time
Count 5,000 takes 0.000295s
10.0x data size, 10.3x time
And I can benchmark the performance of calling popleft to mimic
the consumer function's usage of deque:
def dequeue_popleft_benchmark(count):
    def prepare():
        return collections.deque(range(count))
    def run(queue):
        while queue:
            queue.popleft()
    tests = timeit.repeat(
```

```
setup='queue = prepare()',
        stmt='run(queue)',
        globals=locals(),
        repeat=1000,
        number=1)
    return print_results(count, tests)
baseline = dequeue_popleft_benchmark(500)
for count in (1_000, 2_000, 3_000, 4_000, 5_000):
    comparison = dequeue_popleft_benchmark(count)
    print_delta(baseline, comparison)
>>>
Count
        500 takes 0.000024s
Count 1,000 takes 0.000050s
 2.0x data size, 2.1x time
Count 2,000 takes 0.000100s
 4.0x data size, 4.2x time
Count 3,000 takes 0.000152s
 6.0x data size, 6.3x time
Count 4,000 takes 0.000207s
 8.0x data size, 8.6x time
Count 5,000 takes 0.000265s
10.0x data size, 11.0x time
```

The popleft usage scales linearly instead of displaying the superlinear behavior of pop(0) that I measured before—hooray! If you know that the performance of a program critically depends on the speed of producer–consumer queues, then deque is a great choice. If you're not sure, then you should instrument your program to find out (see Item 70: "Profile Before Optimizing").

Things to Remember

◆ The list type can be used as a FIFO queue by having the producer call append to add items and the consumer call pop(0) to receive items. However, this may cause problems because the performance of pop(0) degrades superlinearly as the queue length increases.

◆ The deque class from the collections built-in module takes constant time—regardless of length—for append and popleft, making it ideal for FIFO queues.

Item 72: Consider Searching Sorted Sequences with bisect

It's common to find yourself with a large amount of data in memory as a sorted list that you then want to search. For example, you may have loaded an English language dictionary to use for spell checking, or perhaps a list of dated financial transactions to audit for correctness.

Regardless of the data your specific program needs to process, searching for a specific value in a list takes linear time proportional to the list's length when you call the index method:

```
data = list(range(10**5))
index = data.index(91234)
assert index == 91234
```

If you're not sure whether the exact value you're searching for is in the list, then you may want to search for the closest index that is equal to or exceeds your goal value. The simplest way to do this is to linearly scan the list and compare each item to your goal value:

```
def find_closest(sequence, goal):
    for index, value in enumerate(sequence):
        if goal < value:
            return index
        raise ValueError(f'{goal} is out of bounds')

index = find_closest(data, 91234.56)
assert index == 91235</pre>
```

Python's built-in bisect module provides better ways to accomplish these types of searches through ordered lists. You can use the bisect_left function to do an efficient binary search through any sequence of sorted items. The index it returns will either be where the item is already present in the list or where you'd want to insert the item in the list to keep it in sorted order:

```
from bisect import bisect_left
index = bisect_left(data, 91234)  # Exact match
assert index == 91234
```

```
index = bisect_left(data, 91234.56) # Closest match
assert index == 91235
```

The complexity of the binary search algorithm used by the bisect module is logarithmic. This means searching in a list of length 1 million takes roughly the same amount of time with bisect as linearly searching a list of length 20 using the list.index method (math.log2(10**6) == 19.93...). It's way faster!

I can verify this speed improvement for the example from above by using the timeit built-in module to run a micro-benchmark:

```
import random
import timeit
size = 10**5
iterations = 1000
data = list(range(size))
to_lookup = [random.randint(0, size)
             for _ in range(iterations)]
def run_linear(data, to_lookup):
    for index in to_lookup:
        data.index(index)
def run_bisect(data, to_lookup):
    for index in to_lookup:
        bisect_left(data, index)
baseline = timeit.timeit(
    stmt='run_linear(data, to_lookup)',
    globals=globals(),
    number=10)
print(f'Linear search takes {baseline:.6f}s')
comparison = timeit.timeit(
    stmt='run_bisect(data, to_lookup)',
    globals=globals(),
    number=10)
print(f'Bisect search takes {comparison:.6f}s')
slowdown = 1 + ((baseline - comparison) / comparison)
print(f'{slowdown:.1f}x time')
```

```
>>>
Linear search takes 5.370117s
Bisect search takes 0.005220s
1028.7x time
```

The best part about bisect is that it's not limited to the list type; you can use it with any Python object that acts like a sequence (see Item 43: "Inherit from collections.abc for Custom Container Types" for how to do that). The module also provides additional features for more advanced situations (see help(bisect)).

Things to Remember

- ◆ Searching sorted data contained in a list takes linear time using the index method or a for loop with simple comparisons.
- ◆ The bisect built-in module's bisect_left function takes logarithmic time to search for values in sorted lists, which can be orders of magnitude faster than other approaches.

Item 73: Know How to Use heapq for Priority Queues

One of the limitations of Python's other queue implementations (see Item 71: "Prefer deque for Producer-Consumer Queues" and Item 55: "Use Queue to Coordinate Work Between Threads") is that they are first-in, first-out (FIFO) queues: Their contents are sorted by the order in which they were received. Often, you need a program to process items in order of relative importance instead. To accomplish this, a *priority queue* is the right tool for the job.

For example, say that I'm writing a program to manage books borrowed from a library. There are people constantly borrowing new books. There are people returning their borrowed books on time. And there are people who need to be reminded to return their overdue books. Here, I define a class to represent a book that's been borrowed:

```
class Book:
    def __init__(self, title, due_date):
        self.title = title
        self.due date = due date
```

I need a system that will send reminder messages when each book passes its due date. Unfortunately, I can't use a FIFO queue for this because the amount of time each book is allowed to be borrowed varies based on its recency, popularity, and other factors. For example, a book that is borrowed today may be due back later than a book that's

borrowed tomorrow. Here, I achieve this behavior by using a standard list and sorting it by due_date each time a new Book is added:

```
def add_book(queue, book):
    queue.append(book)
    queue.sort(key=lambda x: x.due_date, reverse=True)

queue = []
add_book(queue, Book('Don Quixote', '2019-06-07'))
add_book(queue, Book('Frankenstein', '2019-06-05'))
add_book(queue, Book('Les Misérables', '2019-06-08'))
add_book(queue, Book('War and Peace', '2019-06-03'))
```

If I can assume that the queue of borrowed books is always in sorted order, then all I need to do to check for overdue books is to inspect the final element in the list. Here, I define a function to return the next overdue book, if any, and remove it from the queue:

```
class NoOverdueBooks(Exception):
    pass

def next_overdue_book(queue, now):
    if queue:
        book = queue[-1]
        if book.due_date < now:
            queue.pop()
            return book

    raise NoOverdueBooks</pre>
```

I can call this function repeatedly to get overdue books to remind people about in the order of most overdue to least overdue:

```
now = '2019-06-10'
found = next_overdue_book(queue, now)
print(found.title)
found = next_overdue_book(queue, now)
print(found.title)
>>>
War and Peace
Frankenstein
```

If a book is returned before the due date, I can remove the scheduled reminder message by removing the Book from the list:

```
def return_book(queue, book):
    queue.remove(book)

queue = []
book = Book('Treasure Island', '2019-06-04')

add_book(queue, book)
print('Before return:', [x.title for x in queue])

return_book(queue, book)
print('After return: ', [x.title for x in queue])

>>>
Before return: ['Treasure Island']
After return: []
```

And I can confirm that when all books are returned, the return_book function will raise the right exception (see Item 20: "Prefer Raising Exceptions to Returning None"):

```
try:
    next_overdue_book(queue, now)
except NoOverdueBooks:
    pass  # Expected
else:
    assert False # Doesn't happen
```

However, the computational complexity of this solution isn't ideal. Although checking for and removing an overdue book has a constant cost, every time I add a book, I pay the cost of sorting the whole list again. If I have len(queue) books to add, and the cost of sorting them is roughly len(queue) * math.log(len(queue)), the time it takes to add books will grow superlinearly (len(queue) * len(queue) * math.log(len(queue))).

Here, I define a micro-benchmark to measure this performance behavior experimentally by using the timeit built-in module (see Item 71: "Prefer deque for Producer-Consumer Queues" for the implementation of print_results and print_delta):

```
import random
import timeit

def print_results(count, tests):
    ...
```

```
def print_delta(before, after):
def list_overdue_benchmark(count):
    def prepare():
        to_add = list(range(count))
        random.shuffle(to_add)
        return [], to_add
    def run(queue, to_add):
        for i in to_add:
            queue.append(i)
            queue.sort(reverse=True)
        while queue:
            queue.pop()
    tests = timeit.repeat(
        setup='queue, to_add = prepare()',
        stmt=f'run(queue, to_add)',
        globals=locals(),
        repeat=100.
        number=1)
    return print_results(count, tests)
```

I can verify that the runtime of adding and removing books from the queue scales superlinearly as the number of books being borrowed increases:

```
baseline = list_overdue_benchmark(500)
for count in (1_000, 1_500, 2_000):
    comparison = list_overdue_benchmark(count)
    print_delta(baseline, comparison)
>>>
Count 500 takes 0.001138s

Count 1,000 takes 0.003317s
2.0x data size, 2.9x time

Count 1,500 takes 0.007744s
3.0x data size, 6.8x time

Count 2,000 takes 0.014739s
4.0x data size, 13.0x time
```

When a book is returned before the due date, I need to do a linear scan in order to find the book in the queue and remove it. Removing a book causes all subsequent items in the list to be shifted back an index, which has a high cost that also scales superlinearly. Here, I define another micro-benchmark to test the performance of returning a book using this function:

```
def list_return_benchmark(count):
   def prepare():
        queue = list(range(count))
        random.shuffle(queue)
        to_return = list(range(count))
        random.shuffle(to_return)
        return queue, to_return
   def run(queue, to_return):
        for i in to return:
            queue.remove(i)
   tests = timeit.repeat(
        setup='queue, to_return = prepare()',
        stmt=f'run(queue, to_return)',
        globals=locals(),
        repeat=100,
        number=1)
    return print_results(count, tests)
```

And again, I can verify that indeed the performance degrades superlinearly as the number of books increases:

```
baseline = list_return_benchmark(500)
for count in (1_000, 1_500, 2_000):
    comparison = list_return_benchmark(count)
    print_delta(baseline, comparison)
>>>
Count 500 takes 0.000898s

Count 1,000 takes 0.003331s
2.0x data size, 3.7x time

Count 1,500 takes 0.007674s
3.0x data size, 8.5x time
```

```
Count 2,000 takes 0.013721s 4.0x data size, 15.3x time
```

Using the methods of list may work for a tiny library, but it certainly won't scale to the size of the Great Library of Alexandria, as I want it to!

Fortunately, Python has the built-in heapq module that solves this problem by implementing priority queues efficiently. A *heap* is a data structure that allows for a list of items to be maintained where the computational complexity of adding a new item or removing the smallest item has logarithmic computational complexity (i.e., even better than linear scaling). In this library example, smallest means the book with the earliest due date. The best part about this module is that you don't have to understand how heaps are implemented in order to use its functions correctly.

Here, I reimplement the add_book function using the heapq module. The queue is still a plain list. The heappush function replaces the list.append call from before. And I no longer have to call list.sort on the queue:

```
from heapq import heappush

def add_book(queue, book):
   heappush(queue, book)
```

If I try to use this with the Book class as previously defined, I get this somewhat cryptic error:

```
queue = []
add_book(queue, Book('Little Women', '2019-06-05'))
add_book(queue, Book('The Time Machine', '2019-05-30'))
>>>
Traceback ...
TypeError: '<' not supported between instances of 'Book' and
\(\infty\) Book'</pre>
```

The heapq module requires items in the priority queue to be comparable and have a natural sort order (see Item 14: "Sort by Complex Criteria Using the key Parameter" for details). You can quickly give the Book class this behavior by using the total_ordering class decorator from the functools built-in module (see Item 51: "Prefer Class Decorators Over Metaclasses for Composable Class Extensions" for background) and implementing the __lt__ special method (see Item 43: "Inherit from collections.abc for Custom Container Types" for

background). Here, I redefine the class with a less-than method that simply compares the due_date fields between two Book instances:

```
import functools

@functools.total_ordering
class Book:
    def __init__(self, title, due_date):
        self.title = title
        self.due_date = due_date

def __lt__(self, other):
    return self.due_date < other.due_date</pre>
```

Now, I can add books to the priority queue by using the heapq.heappush function without issues:

```
queue = []
add_book(queue, Book('Pride and Prejudice', '2019-06-01'))
add_book(queue, Book('The Time Machine', '2019-05-30'))
add_book(queue, Book('Crime and Punishment', '2019-06-06'))
add_book(queue, Book('Wuthering Heights', '2019-06-12'))
```

Alternatively, I can create a list with all of the books in any order and then use the sort method of list to produce the heap:

```
queue = [
    Book('Pride and Prejudice', '2019-06-01'),
    Book('The Time Machine', '2019-05-30'),
    Book('Crime and Punishment', '2019-06-06'),
    Book('Wuthering Heights', '2019-06-12'),
]
queue.sort()
```

Or I can use the heapq.heapify function to create a heap in linear time (as opposed to the sort method's len(queue) *log(len(queue)) complexity):

```
from heapq import heapify

queue = [
    Book('Pride and Prejudice', '2019-06-01'),
    Book('The Time Machine', '2019-05-30'),
    Book('Crime and Punishment', '2019-06-06'),
    Book('Wuthering Heights', '2019-06-12'),
]
heapify(queue)
```

To check for overdue books, I inspect the first element in the list instead of the last, and then I use the heapq.heappop function instead of the list.pop function:

Now, I can find and remove overdue books in order until there are none left for the current time:

I can write another micro-benchmark to test the performance of this implementation that uses the heapq module:

```
def heap_overdue_benchmark(count):
    def prepare():
        to_add = list(range(count))
        random.shuffle(to_add)
        return [], to_add

def run(queue, to_add):
        for i in to add:
```

```
heappush(queue, i)
while queue:
    heappop(queue)

tests = timeit.repeat(
    setup='queue, to_add = prepare()',
    stmt=f'run(queue, to_add)',
    globals=locals(),
    repeat=100,
    number=1)

return print_results(count, tests)
```

This benchmark experimentally verifies that the heap-based priority queue implementation scales much better (roughly len(queue) * math.log(len(queue))), without superlinearly degrading performance:

```
baseline = heap_overdue_benchmark(500)
for count in (1_000, 1_500, 2_000):
    comparison = heap_overdue_benchmark(count)
    print_delta(baseline, comparison)
>>>
Count 500 takes 0.000150s

Count 1,000 takes 0.000325s
2.0x data size, 2.2x time

Count 1,500 takes 0.000528s
3.0x data size, 3.5x time

Count 2,000 takes 0.000658s
4.0x data size, 4.4x time
```

With the heapq implementation, one question remains: How should I handle returns that are on time? The solution is to never remove a book from the priority queue until its due date. At that time, it will be the first item in the list, and I can simply ignore the book if it's already been returned. Here, I implement this behavior by adding a new field to track the book's return status:

```
@functools.total_ordering
class Book:
    def __init__(self, title, due_date):
        self.title = title
        self.due date = due date
```

```
self.returned = False # New field
```

Then, I change the next_overdue_book function to repeatedly ignore any book that's already been returned:

```
def next_overdue_book(queue, now):
    while queue:
        book = queue[0]
        if book.returned:
            heappop(queue)
            continue

    if book.due_date < now:
            heappop(queue)
            return book

    break</pre>
```

raise NoOverdueBooks

. . .

This approach makes the return_book function extremely fast because it makes no modifications to the priority queue:

```
def return_book(queue, book):
   book.returned = True
```

The downside of this solution for returns is that the priority queue may grow to the maximum size it would have needed if all books from the library were checked out and went overdue. Although the queue operations will be fast thanks to heapq, this storage overhead may take significant memory (see Item 81: "Use tracemalloc to Understand Memory Usage and Leaks" for how to debug such usage).

That said, if you're trying to build a robust system, you need to plan for the worst-case scenario; thus, you should expect that it's possible for every library book to go overdue for some reason (e.g., a natural disaster closes the road to the library). This memory cost is a design consideration that you should have already planned for and mitigated through additional constraints (e.g., imposing a maximum number of simultaneously lent books).

Beyond the priority queue primitives that I've used in this example, the heapq module provides additional functionality for advanced use cases (see help(heapq)). The module is a great choice when its functionality matches the problem you're facing (see the queue.PriorityQueue class for another thread-safe option).

Things to Remember

- ◆ Priority queues allow you to process items in order of importance instead of in first-in, first-out order.
- If you try to use list operations to implement a priority queue, your program's performance will degrade superlinearly as the queue grows.
- ◆ The heapq built-in module provides all of the functions you need to implement a priority queue that scales efficiently.
- ◆ To use heapq, the items being prioritized must have a natural sort order, which requires special methods like __lt__ to be defined for classes.

Item 74: Consider memoryview and bytearray for Zero-Copy Interactions with bytes

Although Python isn't able to parallelize CPU-bound computation without extra effort (see Item 64: "Consider concurrent.futures for True Parallelism"), it is able to support high-throughput, parallel I/O in a variety of ways (see Item 53: "Use Threads for Blocking I/O, Avoid for Parallelism" and Item 60: "Achieve Highly Concurrent I/O with Coroutines"). That said, it's surprisingly easy to use these I/O tools the wrong way and reach the conclusion that the language is too slow for even I/O-bound workloads.

For example, say that I'm building a media server to stream television or movies over a network to users so they can watch without having to download the video data in advance. One of the key features of such a system is the ability for users to move forward or backward in the video playback so they can skip or repeat parts. In the client program, I can implement this by requesting a chunk of data from the server corresponding to the new time index selected by the user:

```
size = 20 * 1024 * 1024
video_data = request_chunk(video_id, byte_offset, size)
```

How would you implement the server-side handler that receives the request_chunk request and returns the corresponding 20 MB chunk of video data? For the sake of this example, I assume that the command and control parts of the server have already been hooked up (see Item 61: "Know How to Port Threaded I/O to asyncio" for what that requires). I focus here on the last steps where the requested chunk is extracted from gigabytes of video data that's cached in memory and is then sent over a socket back to the client. Here's what the implementation would look like:

```
socket = ...  # socket connection to client
video_data = ...  # bytes containing data for video_id
byte_offset = ...  # Requested starting position
size = 20 * 1024 * 1024 # Requested chunk size

chunk = video_data[byte_offset:byte_offset + size]
socket.send(chunk)
```

The latency and throughput of this code will come down to two factors: how much time it takes to slice the 20 MB video chunk from video_data, and how much time the socket takes to transmit that data to the client. If I assume that the socket is infinitely fast, I can run a micro-benchmark by using the timeit built-in module to understand the performance characteristics of slicing bytes instances this way to create chunks (see Item 11: "Know How to Slice Sequences" for background):

```
import timeit

def run_test():
    chunk = video_data[byte_offset:byte_offset + size]
    # Call socket.send(chunk), but ignoring for benchmark

result = timeit.timeit(
    stmt='run_test()',
    globals=globals(),
    number=100) / 100

print(f'{result:0.9f} seconds')
>>>
0.004925669 seconds
```

It took roughly 5 milliseconds to extract the 20 MB slice of data to transmit to the client. That means the overall throughput of my server is limited to a theoretical maximum of 20 MB / 5 milliseconds = 7.3 GB / second, since that's the fastest I can extract the video data from memory. My server will also be limited to 1 CPU-second / 5 milliseconds = 200 clients requesting new chunks in parallel, which is tiny compared to the tens of thousands of simultaneous connections that tools like the asyncio built-in module can support. The problem is that slicing a bytes instance causes the underlying data to be copied, which takes CPU time.

A better way to write this code is by using Python's built-in memoryview type, which exposes CPython's high-performance *buffer protocol* to programs. The buffer protocol is a low-level C API that allows the Python runtime and C extensions to access the underlying data buffers that are behind objects like bytes instances. The best part about memoryview instances is that slicing them results in another memoryview instance without copying the underlying data. Here, I create a memoryview wrapping a bytes instance and inspect a slice of it:

By enabling *zero-copy* operations, memoryview can provide enormous speedups for code that needs to quickly process large amounts of memory, such as numerical C extensions like NumPy and I/O-bound programs like this one. Here, I replace the simple bytes slicing from above with memoryview slicing instead and repeat the same micro-benchmark:

```
video_view = memoryview(video_data)

def run_test():
    chunk = video_view[byte_offset:byte_offset + size]
    # Call socket.send(chunk), but ignoring for benchmark
```

```
result = timeit.timeit(
    stmt='run_test()',
    globals=globals(),
    number=100) / 100

print(f'{result:0.9f} seconds')
>>>
0.000000250 seconds
```

The result is 250 nanoseconds. Now the theoretical maximum throughput of my server is 20 MB / 250 nanoseconds = 164 TB / second. For parallel clients, I can theoretically support up to 1 CPU-second / 250 nanoseconds = 4 million. That's more like it! This means that now my program is entirely bound by the underlying performance of the socket connection to the client, not by CPU constraints.

Now, imagine that the data must flow in the other direction, where some clients are sending live video streams to the server in order to broadcast them to other users. In order to do this, I need to store the latest video data from the user in a cache that other clients can read from. Here's what the implementation of reading 1 MB of new data from the incoming client would look like:

```
socket = ... # socket connection to the client
video_cache = ... # Cache of incoming video stream
byte_offset = ... # Incoming buffer position
size = 1024 * 1024 # Incoming chunk size

chunk = socket.recv(size)
video_view = memoryview(video_cache)
before = video_view[:byte_offset]
after = video_view[byte_offset + size:]
new_cache = b''.join([before, chunk, after])
```

The socket.recv method returns a bytes instance. I can splice the new data with the existing cache at the current byte_offset by using simple slicing operations and the bytes.join method. To understand the performance of this, I can run another micro-benchmark. I'm using a dummy socket, so the performance test is only for the memory operations, not the I/O interaction:

```
def run_test():
    chunk = socket.recv(size)
    before = video_view[:byte_offset]
    after = video_view[byte_offset + size:]
    new_cache = b''.join([before, chunk, after])
```

```
result = timeit.timeit(
    stmt='run_test()',
    globals=globals(),
    number=100) / 100

print(f'{result:0.9f} seconds')
>>>
0.033520550 seconds
```

It takes 33 milliseconds to receive 1 MB and update the video cache. This means my maximum receive throughput is 1 MB / 33 milliseconds = 31 MB / second, and I'm limited to 31 MB / 1 MB = 31 simultaneous clients streaming in video data this way. This doesn't scale.

A better way to write this code is to use Python's built-in bytearray type in conjunction with memoryview. One limitation with bytes instances is that they are read-only and don't allow for individual indexes to be updated:

```
my_bytes = b'hello'
my_bytes[0] = b'\x79'
>>>
Traceback ...
TypeError: 'bytes' object does not support item assignment
```

The bytearray type is like a mutable version of bytes that allows for arbitrary positions to be overwritten. bytearray uses integers for its values instead of bytes:

```
my_array = bytearray(b'hello')
my_array[0] = 0x79
print(my_array)
>>>
bytearray(b'yello')
```

A memoryview can also be used to wrap a bytearray. When you slice such a memoryview, the resulting object can be used to assign data to a particular portion of the underlying buffer. This eliminates the copying costs from above that were required to splice the bytes instances back together after data was received from the client:

```
my_array = bytearray(b'row, row, row your boat')
my_view = memoryview(my_array)
write_view = my_view[3:13]
write_view[:] = b'-10 bytes-'
print(my_array)
```

```
>>>
bytearray(b'row-10 bytes- your boat')
```

Many library methods in Python, such as socket.recv_into and RawIOBase.readinto, use the buffer protocol to receive or read data quickly. The benefit of these methods is that they avoid allocating memory and creating another copy of the data; what's received goes straight into an existing buffer. Here, I use socket.recv_into along with a memoryview slice to receive data into an underlying bytearray without the need for splicing:

```
video_array = bytearray(video_cache)
write_view = memoryview(video_array)
chunk = write_view[byte_offset:byte_offset + size]
socket.recv_into(chunk)
```

I can run another micro-benchmark to compare the performance of this approach to the earlier example that used socket.recv:

```
def run_test():
    chunk = write_view[byte_offset:byte_offset + size]
    socket.recv_into(chunk)

result = timeit.timeit(
    stmt='run_test()',
    globals=globals(),
    number=100) / 100

print(f'{result:0.9f} seconds')
>>>
0.000033925 seconds
```

It took 33 microseconds to receive a 1 MB video transmission. This means my server can support 1 MB / 33 microseconds = 31 GB / second of max throughput, and 31 GB / 1 MB = 31,000 parallel streaming clients. That's the type of scalability that I'm looking for!

Things to Remember

- ◆ The memoryview built-in type provides a zero-copy interface for reading and writing slices of objects that support Python's high-performance buffer protocol.
- The bytearray built-in type provides a mutable bytes-like type that can be used for zero-copy data reads with functions like socket.recv_from.
- ◆ A memoryview can wrap a bytearray, allowing for received data to be spliced into an arbitrary buffer location without copying costs.

Testing and Debugging

Python doesn't have compile-time static type checking. There's nothing in the interpreter that will ensure that your program will work correctly when you run it. Python does support optional type annotations that can be used in static analysis to detect many kinds of bugs (see Item 90: "Consider Static Analysis via typing to Obviate Bugs" for details). However, it's still fundamentally a dynamic language, and anything is possible. With Python, you ultimately don't know if the functions your program calls will be defined at runtime, even when their existence is evident in the source code. This dynamic behavior is both a blessing and a curse.

The large numbers of Python programmers out there say it's worth going without compile-time static type checking because of the productivity gained from the resulting brevity and simplicity. But most people using Python have at least one horror story about a program encountering a boneheaded error at runtime. One of the worst examples I've heard of involved a SyntaxError being raised in production as a side effect of a dynamic import (see Item 88: "Know How to Break Circular Dependencies"), resulting in a crashed server process. The programmer I know who was hit by this surprising occurrence has since ruled out using Python ever again.

But I have to wonder, why wasn't the code more well tested before the program was deployed to production? Compile-time static type safety isn't everything. You should always test your code, regardless of what language it's written in. However, I'll admit that in Python it may be more important to write tests to verify correctness than in other languages. Luckily, the same dynamic features that create risks also make it extremely easy to write tests for your code and to debug malfunctioning programs. You can use Python's dynamic nature and easily overridable behaviors to implement tests and ensure that your programs work as expected.