

CSE 473 Pattern Recognition

Non-Linear Classifier

Recall the AND or OR functions

X ₁	X ₂	AND	Class	OR	Class
0	0	0	В	0	В
0	1	0	В	7	Α
1	0	0	В	1	Α
1	1	1	A	1	Α

Now recall the XOR function

X ₁	X ₂	XOR	Class
0	0	0	В
0	1	1	Α
1	0	1	Α
1	1	0	В

Each of them is realized by a <u>perceptron</u>.

$$y_i = f(g_i(\underline{x})) = \begin{cases} 0 \\ 1 \end{cases} i = 1, 2$$

• Find the position of \underline{x} w.r.t. both lines, based on the values of y_1 , y_2 .

45	2 nd			
x ₁	X ₂	y ₁	y ₂	phase
0	0	O(-)	0(-)	B(0)
0	1	1(+)	0(-)	A(1)
1	0	1(+)	0(-)	A(1)
1	1	1(+)	1(+)	B(0)

• Equivalently: The computations of the first phase perform a mapping $\underline{x} \rightarrow \underline{y} = [y_1, y_2]^T$

The decision is now performed on the transformed \underline{y} data.

This can be performed via a second line, which can also be realized by a <u>perceptron</u>.

Two Layer Perceptron

hidden layer

output layer

nodes realizes hyper planes:

$$g_{1}(\underline{x}) = x_{1} + x_{2} - \frac{1}{2} = 0$$

$$g_{2}(\underline{x}) = x_{1} + x_{2} - \frac{3}{2} = 0$$

$$g(\underline{y}) = y_{1} - 2y_{2} - \frac{1}{2} = 0$$

Activation function:

$$f(.) = \begin{cases} 0 \\ 1 \end{cases}$$

 The mapping performed by the first layer neurons is onto the vertices of the unit side square, e.g., (0, 0), (0, 1), (1, 0), (1, 1).

Consider a more general case,

$$\underline{x} \in R^{l}$$

$$\underline{x} \rightarrow \underline{y} = [y_{1},...y_{p}]^{T}, y_{i} \in \{0,1\} \ i = 1, 2,...p$$

- maps a vector onto the vertices of the unit side hypercube,
 Hp
- mapping is through p neurons each realizing a hyper plane.
- The output of each of these neurons is 0 or 1

Intersections of hyperplanes form regions.

- Intersections of hyperplanes form regions.
- Each region corresponds to a vertex of the ${\cal H}_p$ unit hypercube.

For example, the 001 vertex corresponds to the region which is located

to the (-) side of $g_1(\underline{x})=0$ to the (-) side of $g_2(\underline{x})=0$ to the (+) side of $g_3(\underline{x})=0$

- A two-class problem
 - Class A patterns from regions marked as A
 - Class B patterns from regions marked as B

The output neuron

- realizes another hyperplane
- separates the hypercube.
- can classify vectors consisting of some unions of polyhedral regions.

- The output neuron, i.e., a 2 layer perceptron
 - cannot classify vectors consisting of arbitrary unions of polyhedral regions.

Solution: Three Layer Perceptron

- capable to classify vectors consisting of ANY union of polyhedral regions.
 - The idea is similar to the XOR problem.
 - Realizes more than one planes in the

$$\underline{y} \in R^p$$
 space.

How does The Three Layer Perceptron Do It?

- Let, any J polyhedral regions constitutes vectors of class A.
- Learn a neuron in the 2nd hidden layer for each of J regions

How does The Three Layer Perceptron Do It?

Learn a neuron in the 2nd hidden layer for each of J regions

How does The Three Layer Perceptron Do It?

- For training vectors of a particular region of class **A**, only one of the 2nd-layer neuron produces 1, the rest of neurons produce 0.
- Now realize the output neuron as an OR gate.

Training of a Multi Layer Perceptron (MLP)

 use rationale and develop a structure that classifies correctly all the training patterns.

OR

 choose a structure and compute the synaptic weights to optimize a cost function.

 computes the weights iteratively, subject to a cost function is optimized

Assume:

- Multiple layers
- more than one neurons in each layer
- any number of classes

Iterative update of Synaptic weights: The Backpropagation Algorithm

Let:

4 classes

Training Sample#	Class#
Sample#1	1
Sample#2	3
Sample#3	2
Sample#4	4
Sample#5	2

Iterative update of Synaptic weights: The Backpropagation Algorithm

Let:

4 classes

Training Sample#	Class#	Class Vector
Sample#1	1	1000
Sample#2	3	0010
Sample#3	2	0100
Sample#4	4	0001
Sample#5	2	0100

- Recall the perceptron algorithm:
 - We update with this

$$\underline{w}(\text{new}) = \underline{w}(\text{old}) + \Delta \underline{w}$$

- Recall the perceptron algorithm:
 - We update with this w(

$$\underline{w}(\text{new}) = \underline{w}(\text{old}) + \Delta \underline{w}$$

 Backpropagation updates multiple nodes for a number of layers:

$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) + \Delta \mathbf{w}_{j}^{r}$$

- Recall the perceptron algorithm:
 - We update with this

$$\underline{w}(\text{new}) = \underline{w}(\text{old}) + \Delta \underline{w}$$

 Backpropagation updates multiple nodes for a number of layers:

- Another difference is the activation function:
- Perceptron algorithm uses unit activation function:

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

This function is not differentiable at x=0.

- Another difference is the activation function:
- Perceptron algorithm uses unit activation function:

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

- This function is not differentiable at x=0.
- Backpropagation uses logistic function:

$$f(x) = \frac{1}{1 + \exp(-ax)}$$

Logistic function

The Logistic function

$$f(x) = \frac{1}{1 + \exp(-ax)}$$

 Similar to perceptron algorithm: Backpropagation also iteratively updates weights

$$m{w}_j^r(\text{new}) = m{w}_j^r(\text{old}) + \Delta m{w}_j^r$$
 where, $\Delta m{w}_j^r = -\mu \frac{\partial J}{\partial m{w}_j^r}$ and $J = \sum_{i=1}^N \mathcal{E}(i)$

- L layers of neurons
- k_r neurons in r^{th} layer
- k_0 nodes in the input layer = input feature dimension = l
- k_L nodes in the output layer = output class dimension

- Remember: The number of classes is more than 2, it is K_L
- Class value of a sample is no longer a single variable, rather it is a vector of k_L dimension.

- N training samples: (x(i), y(i)), for i = 1, 2, 3, ..., N
- Features of *i*th training sample: $x(i) = [x_1(i), \dots, x_{k_0}(i)]^T$.
- Class of *i*th training sample: $\mathbf{y}(i) = [y_1(i), \dots, y_{k_L}(i)]^T$

• During training, apply i^{th} training vector x(i), and output is $\hat{y}(i)$, instead of y(i))

During training, apply ith training vector x(i), and output is ŷ(i), instead of y(i))

During training, apply ith training vector x(i), and output is ŷ(i), instead of y(i))

During training, apply ith training vector x(i), and output is ŷ(i), instead of y(i))

- During training, apply ith training vector x(i), and output is ŷ(i), instead of y(i))
- Error for ith vector:

$$\mathcal{E}(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (y_m(i) - \hat{y}_m(i))^2, \quad i = 1, 2, \dots, N$$

Total Error:

$$J = \sum_{i=1}^{N} \mathcal{E}(i)$$

• We need to calculate $\Delta \mathbf{w}_{j}^{r} = -\mu \frac{\partial J}{\partial \mathbf{w}_{j}^{r}} = -\mu \sum_{i=1}^{N} \frac{\partial E(i)}{\partial \mathbf{w}_{j}^{r}(i)}$

- We need to calculate $\Delta \mathbf{w}_{j}^{r} = -\mu \frac{\partial J}{\partial \mathbf{w}_{j}^{r}} = -\mu \sum_{i=1}^{N} \frac{\partial E(i)}{\partial \mathbf{w}_{j}^{r}(i)}$
- J depends on w_j^r and passes through v_j^r

$$\upsilon_{j}^{r}(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1}(i) + w_{jo}^{r} \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1}(i)$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

$$\begin{split} \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} &= \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}} \\ \text{Recall, } \boldsymbol{v}_{j}^{r}(i) &= \sum_{k=1}^{k_{r-1}} \boldsymbol{w}_{jk}^{r} \boldsymbol{y}_{k}^{r-1}(i) + \boldsymbol{w}_{jo}^{r} \equiv \sum_{k=0}^{k_{r-1}} \boldsymbol{w}_{jk}^{r} \boldsymbol{y}_{k}^{r-1}(i) \end{split}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial v_{j}^{r}(i)} \frac{\partial v_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

Recall,
$$v_j^r(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i) + w_{jo}^r \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i)$$

Therefore,
$$\frac{\partial}{\partial \boldsymbol{w}_{j}^{r}} \upsilon_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial w_{j0}^{r}} \upsilon_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial w_{jk_{r-1}^{r}}} \upsilon_{j}^{r}(i) \end{bmatrix}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

Recall,
$$v_j^r(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i) + w_{jo}^r \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i)$$

$$\text{Therefore,} \frac{\partial}{\partial \textbf{\textit{w}}_{j}^{r}} \upsilon_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial w_{j0}^{r}} \upsilon_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial w_{jk_{r-1}}^{r}} \upsilon_{j}^{r}(i) \end{bmatrix} = \begin{bmatrix} +1 \\ y_{1}^{r-1}(i) \\ \vdots \\ y_{k_{r-1}}^{r-1}(i) \end{bmatrix}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

Recall,
$$v_j^r(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i) + w_{jo}^r \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i)$$

Therefore,
$$\frac{\partial}{\partial \boldsymbol{w}_{j}^{r}} \upsilon_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial w_{j0}^{r}} \upsilon_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial w_{jk_{r-1}}^{r}} \upsilon_{j}^{r}(i) \end{bmatrix} = \boldsymbol{y}^{r-1}(i)$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \equiv \delta_{j}^{r}(i) \quad \frac{\partial}{\partial \boldsymbol{w}_{j}^{r}} \boldsymbol{v}_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial \boldsymbol{w}_{j0}^{r}} \boldsymbol{v}_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial \boldsymbol{w}_{jk_{r-1}}^{r}} \boldsymbol{v}_{j}^{r}(i) \end{bmatrix} = \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_{j}^{r} = -\mu \sum_{i=1}^{N} \frac{\partial E(i)}{\partial \mathbf{w}_{i}^{r}(i)}$$

$$\Delta \mathbf{w}_{j}^{r} = -\mu \sum_{i=1}^{N} \frac{\partial E(i)}{\partial \mathbf{w}_{j}^{r}(i)} \qquad \Delta \mathbf{w}_{j}^{r} = -\mu \sum_{i=1}^{N} \delta_{j}^{r}(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

• Calculate
$$\delta_j^r(i) = \frac{\partial E(i)}{\partial v_j^r(i)}$$

• Calculate
$$\delta_j^r(i) = \frac{\partial E(i)}{\partial v_j^r(i)}$$

• For $r = L$

$$\mathcal{S}_{j}^{L}(i) = \frac{\partial \mathbf{E}(i)}{\partial v_{j}^{L}(i)}$$

• Calculate
$$\delta_j^r(i) = \frac{\partial E(i)}{\partial v_j^r(i)}$$

• For $r = L$

$$\mathcal{S}_{j}^{L}(i) = \frac{\partial \mathbf{E}(i)}{\partial v_{j}^{L}(i)}$$

$$E(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (f(v_m^L(i)) - y_m(i))^2$$

• Calculate
$$\delta_j^r(i) = \frac{\partial E(i)}{\partial v_j^r(i)}$$

• For $r = L$

$$\delta_j^L(i) = \frac{\partial \mathbf{E}(i)}{\partial v_j^L(i)}$$

$$E(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (f(v_m^L(i)) - y_m(i))^2$$

$$\delta_j^L(i) = e_j(i) f'(v_j^L(i))$$

- For *r* < *L*
- Calculate $\delta_j^{r-1}(i)$ from $\delta_j^r(i)$

- For *r* < *L*
- Calculate $\delta_j^{r-1}(i)$ from $\delta_j^r(i)$

We know,

$$\delta_j^{r-1}(i) = \frac{\partial \mathbf{E}(i)}{\partial v_j^{r-1}(i)}$$

We need to calculate,

$$\delta_j^{r-1}(i) = \frac{\partial \mathbf{E}(i)}{\partial v_j^{r-1}(i)}$$

• However, $v_j^{r-1}(i)$ influences all $v_k^r(i)$, for $k = 1, 2, 3, ..., k_r$

We need to calculate,

$$\delta_j^{r-1}(i) = \frac{\partial \mathbf{E}(i)}{\partial v_j^{r-1}(i)}$$

- However, $v_j^{r-1}(i)$ influences all $v_k^r(i)$ for $k = 1, 2, 3, ..., k_r$
- Therefore,

$$\frac{\partial \mathbf{E}(i)}{\partial v_j^{r-1}(i)} = \sum_{k=1}^{k_r} \frac{\partial \mathbf{E}(i)}{\partial v_k^r(i)} \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

- For *r* < *L*

• For
$$r < L$$

• Calculate $\delta_j^{r-1}(i) = \frac{\partial E(i)}{\partial v_j^{r-1}(i)}$

$$\frac{\partial \mathbf{E}(i)}{\partial v_j^{r-1}(i)} = \sum_{k=1}^{k_r} \frac{\partial \mathbf{E}(i)}{\partial v_k^r(i)} \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

- For *r* < *L*

• For
$$r < L$$

• Calculate $\delta_j^{r-1}(i) = \frac{\partial E(i)}{\partial v_j^{r-1}(i)}$

$$\frac{\partial \mathbf{E}(i)}{\partial v_j^{r-1}(i)} = \sum_{k=1}^{k_r} \frac{\partial \mathbf{E}(i)}{\partial v_k^r(i)} \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\delta_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\mathcal{S}_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = \frac{\partial \left[\sum_{m=0}^{k_{r-1}} w_{km}^r y_m^{r-1}(i)\right]}{\partial v_j^{r-1}(i)}$$

where,
$$y_m^{r-1}(i) = f(v_m^{r-1}(i))$$

$$\delta_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = \frac{\partial \left[\sum_{m=0}^{k_{r-1}} w_{km}^r y_m^{r-1}(i)\right]}{\partial v_j^{r-1}(i)} \text{ where, } y_m^{r-1}(i) = f(v_m^{r-1}(i))$$

then,

$$\frac{\partial v_k^r(i)}{\partial v_i^{r-1}(i)} = w_{kj}^r f'(v_j^{r-1}(i))$$

$$\delta_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = w_{kj}^r f'(v_j^{r-1}(i))$$

$$\mathcal{S}_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$
$$\frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)} = w_{kj}^{r} f'(v_{j}^{r-1}(i))$$

$$\mathcal{S}_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

$$\frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)} = w_{kj}^{r} f'(v_{j}^{r-1}(i))$$

$$\mathcal{S}_{j}^{r-1}(i) = \left[\sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) w_{kj}^{r}\right] f'(v_{j}^{r-1}(i))$$

$$\mathcal{S}_j^{r-1}(i) = \left[\sum_{k=1}^{k_r} \mathcal{S}_k^r(i) w_{kj}^r\right] f'(v_j^{r-1}(i))$$

$$\delta_j^{r-1}(i) = e_j^{r-1}(i) f'(v_j^{r-1}(i))$$

where,
$$e_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) w_{kj}^r$$

Only remaining is the derivative of the logistic function:

$$f'(x) = \alpha f(x)(1 - f(x))$$

The Algorithm

- Initialization:
 - Start with small random weights
- Forward Computations: $v_j^r(i)$, $y_j^r(i) = f(v_j^r(i))$,
- Backward Computation: $\delta_j^L(i)$ and $\delta_j^{r-1}(i)$
- Update weight:

$$\boldsymbol{w}_{j}^{r}(\text{new}) = \boldsymbol{w}_{j}^{r}(\text{old}) + \Delta \boldsymbol{w}_{j}^{r}$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

Some Nonlinear Classifiers

- Decision Tree
- Non-linear SVM

Transform data into higher dimensional space

Another Example

Another Example

Decision boundary:

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

Decision boundary:

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

 2 classes are defined as

$$y(x_1, x_2) = \begin{cases} 1, & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1, & \text{otherwise} \end{cases}$$

Decision boundary:

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

can be written as

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

Decision boundary:

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

can be written as

$$\underbrace{x_1^2 - x_1 + x_2^2 - x_2}_{y_1} = -0.46$$

Decision boundary:

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

can be written as

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

$$y_1 \qquad y_2$$

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

OR,
$$y_1 + y_2 = -0.46$$

We need a transformation like this

$$\Phi:(x_1,x_2) \to (x_1^2 - x_1, x_2^2 - x_2)$$

We need a transformation like this

$$\Phi:(x_1,x_2) \to (x_1^2 - x_1, x_2^2 - x_2)$$

OR,

$$\Phi:(x_1,x_2)\to(y_1,y_2)$$

We need a transformation like this

$$Φ:(x_1, x_2) \to (x_1^2 - x_1, x_2^2 - x_2)$$

OR,
$$Φ:(x_1, x_2) \to (y_1, y_2)$$

OR,
$$Φ: \mathbf{x} \to \mathbf{y}$$

We need a transformation like this

$$\Phi:(x_1,x_2) \to (x_1^2 - x_1, x_2^2 - x_2)$$

OR, more generally:

$$\Phi: (x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1, x_2, 1)$$

With the transform

$$\Phi:(x_1,x_2) \to (x_1^2,x_2^2,\sqrt{2}x_1,\sqrt{2}x_2,\sqrt{2}x_1x_2,1)$$

The equation of the classifier will be of the form:

$$w_5 x_1^2 + w_4 x_2^2 + w_3 \sqrt{2} x_1 + w_2 \sqrt{2} x_2 + w_1 \sqrt{2} x_1 x_2 + w_0 1 = 0$$

With the transform

$$\Phi:(x_1,x_2) \to (x_1^2,x_2^2,\sqrt{2}x_1,\sqrt{2}x_2,\sqrt{2}x_1,x_2,1)$$

The equation of the classifier will be of the form:

$$w_5 x_1^2 + w_4 x_2^2 + w_3 \sqrt{2} x_1 + w_2 \sqrt{2} x_2 + w_1 \sqrt{2} x_1 x_2 + w_0 1 = 0$$

$$w_5 y_5 + w_4 y_4 + w_3 y_3 + w_2 y_2 + w_1 y_1 + w_0 1 = 0$$

$$\Phi: (x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1) \to (y_1, y_2, \dots, y_5)$$

$$w_5 x_1^2 + w_4 x_2^2 + w_3 \sqrt{2}x_1 + w_2 \sqrt{2}x_2 w_1 \sqrt{2}x_1 x_2 + w_0 1)$$

 The main idea: linearly separability increases as the feature dimension increases

Formulation of a Nonlinear SVM

• With the new feature vectors $\Phi(\vec{x})$, replace all \mathbf{x} with $\Phi(\vec{x})$ in linear SVM:

- Minimize
$$L(w) = \frac{\|\vec{w}\|^2}{2}$$

- Subject to $y_i(\vec{w} \cdot \Phi(\vec{x}_i) + b) \ge 1$
- The Dual function is:

$$L_D = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j})$$

• Once we get the solution of λ 's, find w and b using following equations:

$$\vec{w} = \sum_{i=1}^{N} \lambda_i y_i \Phi(\vec{x}_i)$$

$$\lambda_i \{ y_i (\sum_j \lambda_j y_j \Phi(\vec{x}_j) \cdot \Phi(\vec{x}_i) + b) - 1 \} = 0$$

• The new object **z** is classified as:

$$f(\vec{z}) = sign(\vec{w} \cdot \Phi(\vec{z}) + b)$$
$$= sign(\sum_{i} \lambda_{i} y_{i} \Phi(\vec{x}_{i}) \cdot \Phi(\vec{z}) + b)$$

- The mapping function is often unclear
- The dimensionality increases, leading to high computation

- The mapping function is often unclear
- The dimensionality increases, leading to high computation

Solution?

Note the equations:

$$L_D = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j})$$

$$\lambda_i \{ y_i (\sum_j \lambda_j y_j \Phi(\vec{x}_j) \cdot \Phi(\vec{x}_i) + b) - 1 \} = 0$$

$$f(\vec{z}) = sign(\sum_{i} \lambda_{i} y_{i} \Phi(\vec{x}_{i}) \cdot \Phi(\vec{z}) + b)$$

Note the equations:

$$L_{D} = \sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\lambda_{i} \{ y_{i} (\sum_{j} \lambda_{j} y_{j} \Phi(\vec{x}_{j}) \cdot \Phi(\vec{x}_{i}) + b) - 1 \} = 0$$

$$f(\vec{z}) = sign(\sum_{i} \lambda_{i} y_{i} \Phi(\vec{x}_{i}) \cdot \Phi(\vec{z}) + b)$$

• The dot product $\Phi(\vec{x}_j) \cdot \Phi(\vec{x}_i)$ is a similarity measurement

Similarity/Distance Measurement

Similarity/Distance Measurement

distance =
$$[(2-4)^2 + (3-5)^2]^{1/2}$$

Cosine Simmilarit y = $\frac{2.4 + 3.5}{\sqrt{(2^2 + 3^2)}\sqrt{(4^2 + 5^2)}}$

• We can calculate the term $\Phi(\vec{x}_j) \cdot \Phi(\vec{x}_i)$ in the original space using Kernel trick

• We can calculate the term $\Phi(\vec{x}_j) \cdot \Phi(\vec{x}_i)$ in the original space using Kernel trick

Example:

$$\Phi(\vec{u}) \cdot \Phi(\vec{v}) = (u_1^2, u_2^2, \sqrt{2}u_1, \sqrt{2}u_2, \sqrt{2}u_1u_2, 1)$$
$$\cdot (v_1^2, v_2^2, \sqrt{2}v_1, \sqrt{2}v_2, \sqrt{2}v_1v_2, 1)$$

•

•

$$= (\vec{u} \cdot \vec{v} + 1)^2$$

Kernel trick

$$\Phi(\vec{u}) \cdot \Phi(\vec{v}) = (\vec{u} \cdot \vec{v} + 1)^2$$

Kernel trick

$$\Phi(\vec{u}) \cdot \Phi(\vec{v}) = (\vec{u} \cdot \vec{v} + 1)^2$$

$$K(\vec{u}, \vec{v}) = (\vec{u} \cdot \vec{v} + 1)^2$$

Some Kernel Functions are:

$$K(\vec{u}, \vec{v}) = (\vec{u} \cdot \vec{v} + 1)^p$$

$$K(\vec{u}, \vec{v}) = e^{-\|\vec{u} - \vec{v}\|^2/(2\sigma^2)}$$