Highway Preferential Attachment Models for Geographic Routing

Ofek Gila, Evrim Ozel, and Michael Goodrich

University of California, Irvine

COCOA, 2023

 Kansas and Nebraska → Massachusetts

- Kansas and Nebraska \rightarrow Massachusetts
- Forward package only to acquaintances

- Kansas and Nebraska \rightarrow Massachusetts
- Forward package only to acquaintances
- How many 'hops'?

- ullet Kansas and Nebraska o Massachusetts
- Forward package only to acquaintances
- How many 'hops'? ~6!

- Kansas and Nebraska \rightarrow Massachusetts
- Forward package only to acquaintances
- How many 'hops'? ~6!
- Popularized "six degrees of separation"

- ullet Kansas and Nebraska o Massachusetts
- Forward package only to acquaintances
- How many 'hops'? ~6!
- Popularized "six degrees of separation"
- How to model?

Preferential Attachment Models

- Rich get richer
- $P(u \rightarrow v) \propto d_v$

Preferential Attachment Models

- Rich get richer
- $P(u \rightarrow v) \propto d_v$
- ✓ Low $(\mathcal{O}(\log n))$ diameter

Preferential Attachment Models

- Rich get richer
- $P(u \rightarrow v) \propto d_v$
- ✓ Low $(\mathcal{O}(\log n))$ diameter

Kleinberg's Model $\mathcal{K}(n,p,q)$

• 2-D $n \times n$ square

Figure 2: Kleinberg's Model $K^*(6,0,0)$

Kleinberg's Model $\mathcal{K}(n, p, q)$

- 2-D $n \times n$ square
- Local connections p
- Wrap-around

Figure 2: Kleinberg's Model $\mathcal{K}^*(6, \frac{1}{1}, 0)$

Kleinberg's Model $\mathcal{K}(n, p, q)$

- 2-D $n \times n$ square
- Local connections p
- Wrap-around
- Long-range connections q

Figure 2: Kleinberg's Model $\mathcal{K}^*(6,1,1)$

Kleinberg's Model $\mathcal{K}(n,p,q)$

- 2-D $n \times n$ square
- Local connections p
- Wrap-around
- Long-range connections q
- $P(u \rightarrow v) \propto \delta^{-s}(u, v)$

Figure 2: Kleinberg's Model $\mathcal{K}^*(6,1,1)$

Kleinberg's Results

• $\mathcal{O}(\log^2 n)$ greedy routing when s=2

Kleinberg's Results

• $\mathcal{O}(\log^2 n)$ greedy routing when s=2

• Big impact, but...

Kleinberg's Results

• $\mathcal{O}(\log^2 n)$ greedy routing when s=2

• Big impact, but... not 6!

Neighborhood Preferential Attachment (NPA)

- Idea: Combine Kleinberg w/ Preferential Attachment
 - Preferential Attachment: $P(u \rightarrow v) \propto d_v$
 - Kleinberg: $P(u o v) \propto \delta^{-s}(u,v)$

Neighborhood Preferential Attachment (NPA)

- Idea: Combine Kleinberg w/ Preferential Attachment
 - Preferential Attachment: $P(u o v) \propto d_v$
 - Kleinberg: $P(u \to v) \propto \delta^{-s}(u, v)$
- What if $P(u \rightarrow v) \propto d_v/\delta^s(u, v)$?

Neighborhood Preferential Attachment (NPA)

- Idea: Combine Kleinberg w/ Preferential Attachment
 - Preferential Attachment: $P(u o v) \propto d_v$
 - Kleinberg: $P(u \rightarrow v) \propto \delta^{-s}(u, v)$
- What if $P(u \to v) \propto d_v/\delta^s(u, v)$?
- Experimentally good, but no theory

• Kleinberg's model: all nodes equal

Figure 4: Kleinberg Highway Graph n = 9

- Kleinberg's model: all nodes equal
- Reality:

Figure 4: Kleinberg Highway Graph n = 9

- Kleinberg's model: all nodes equal
- Reality: not that

Figure 4: Kleinberg Highway Graph n = 9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'

Figure 4: Kleinberg Highway Graph n = 9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes
- Want: constant average degree

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes
- Want: constant average degree
- What degree?

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes
- Want: constant average degree
- What degree? $\Theta(k)$

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes
- Want: constant average degree
- What degree? $\Theta(k)$ Qk

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg's model: all nodes equal
- Reality: not that
- Idea: 'highway'
- Select n^2/k 'highway' nodes
- Want: constant average degree
- What degree? $\Theta(k)$ Qk
- Only to other highway nodes!

Figure 4: Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Reach highway
- Traverse highway
- Reach destination

Figure 5: Kleinberg Highway Graph

- 1 Reach highway $\mathcal{O}(\sqrt{k})$
- Traverse highway
- Reach destination

Figure 5: Kleinberg Highway Graph

- **1** Reach highway $\mathcal{O}(\sqrt{k})$
- Traverse highway
- **3** Reach destination $\mathcal{O}(\sqrt{k})$

Figure 5: Kleinberg Highway Graph

- **1** Reach highway $\mathcal{O}(\sqrt{k})$
- 2 Traverse highway $\mathcal{O}(\log^2(n))$?
- **3** Reach destination $\mathcal{O}(\sqrt{k})$

Figure 5: Kleinberg Highway Graph

- Reach highway $\mathcal{O}(\sqrt{k})$
- 2 Traverse highway $\mathcal{O}(\log^2(n)/k)$
- **3** Reach destination $\mathcal{O}(\sqrt{k})$

Figure 5: Kleinberg Highway Graph

Kleinberg Highway – Result

Theorem

The expected decentralized routing time in a Kleinberg highway network is $\mathcal{O}(\sqrt{k} + \log^2(n)/k + \log n)$ for $1 \le k \le n^2$ when each node knows the positioning of the highway grid, and $\mathcal{O}(k + \log^2(n)/k)$ otherwise.

Figure 6: Kleinberg Highway Graph

• Kleinberg Highway: unrealistic

Figure 7: Kleinberg Highway Graph $n = 9 \ k = 9 \ Q = 1/9$

- Kleinberg Highway: unrealistic
- Let's randomize!

Figure 7: Kleinberg Highway Graph $n = 9 \ k = 9 \ Q = 1/9$

- Kleinberg Highway: unrealistic
- Let's randomize!
- Each node is in highway w/ probability 1/k

Figure 7: Randomized Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Kleinberg Highway: unrealistic
- Let's randomize!
- Each node is in highway w/ probability 1/k
- How to analyze?

Figure 7: Randomized Kleinberg Highway Graph n = 9 k = 9 Q = 1/9

- Reach highway
- Traverse highway
- Reach destination

Figure 8: Randomized Kleinberg Highway Graph

- Reach highway $\mathcal{O}(k)$
- Traverse highway
- Reach destination

Figure 8: Randomized Kleinberg Highway Graph

- Reach highway $\mathcal{O}(k)$
- Traverse highway ?
- Reach destination

Figure 8: Randomized Kleinberg Highway Graph

Nested lattices w/ radius r

- Nested lattices w/ radius r
- $\Theta(r^2)$ nodes in ball

- Nested lattices w/ radius r
- $\Theta(r^2)$ nodes in ball
- Expected $\Theta(r^2/k)$ highway

- Nested lattices w/ radius r
- $\Theta(r^2)$ nodes in ball
- Expected $\Theta(r^2/k)$ highway
- Chernoff bounds!

- Nested lattices w/ radius r
- $\Theta(r^2)$ nodes in ball
- Expected $\Theta(r^2/k)$ highway

Radius <i>r</i>	Lower	Upper
$3\sqrt{k\log n}$	9 log <i>n</i>	41 log <i>n</i>
$3\sqrt{k\log\log n}$		41 log log <i>n</i>
$2\sqrt{k}$		18

Chernoff bounds!

- Nested lattices w/ radius r
- $\Theta(r^2)$ nodes in ball
- Expected $\Theta(r^2/k)$ highway
- Chernoff bounds!

Radius <i>r</i>	Lower	Upper
$3\sqrt{k\log n}$	9 log <i>n</i>	41 log <i>n</i>
$3\sqrt{k\log\log n}$		41 log log <i>n</i>
$2\sqrt{k}$		18

Not all w.h.p.

Lemma

Lemma

In the randomized highway model, the probability that highway node u has a long-range connection to highway node v that halves its distance to the destination is proportional to at most $k/\log n$ for $k \in \mathcal{O}(\log n)$ and is constant for $k \in \Omega(\log n)$.

• If can halve the distance, take it

Lemma

- If can halve the distance, take it
- If not, take local connection and try again

Lemma

- If can halve the distance, take it
- If not, take local connection and try again
- $\mathcal{O}(\log^2(n)/k)$

Lemma

- If can halve the distance, take it
- If not, take local connection and try again
- $\mathcal{O}(\log^2(n)/k)$
- No 'local connections'!

• Easy way out?

- Easy way out?
- Consider lattice w/ $r = 3\sqrt{k \log n}$

- Easy way out?
- Consider lattice w/ $r = 3\sqrt{k \log n}$
- At least 1 highway node in each ball w.h.p.

- Easy way out?
- Consider lattice w/ $r = 3\sqrt{k \log n}$
- At least 1 highway node in each ball w.h.p.
- Connect to random highway in each adjacent ball

- Easy way out?
- Consider lattice w/ $r = 3\sqrt{k \log n}$
- At least 1 highway node in each ball w.h.p.
- Connect to random highway in each adjacent ball
- Not elegant

No distance-halving local contact

- No distance-halving local contact
- Any closer contact at all?

- No distance-halving local contact
- Any closer contact at all?
- Do some math...

$$\lim_{n\to\infty} \frac{\log n^{\frac{Q}{9w\log\log\log n}}}{f(\log\log\log n)^2\log\log n} = \infty?$$

- No distance-halving local contact
- Any closer contact at all?
- Do some math...

$$\lim_{n\to\infty} \frac{\log n^{\frac{Q}{9w\log\log\log n}}}{f(\log\log\log\log n)^2\log\log n} = \infty?$$

Lemma

When $k \in \Omega\left(\frac{\log n}{\log\log\log n}\right)$, yes, there are closer local contacts to get within distance $c(k + \log n)$ for some large enough constant c w.h.p.

- No distance-halving local contact
- Any closer contact at all?
- Do some math...

$$\lim_{n\to\infty}\frac{\log n^{\frac{Q}{9w\log\log\log n}}}{f(\log\log\log\log n)^2\log\log n}=\infty?$$

Lemma

When $k \in \Omega\left(\frac{\log n}{\log\log\log n}\right)$, yes, there are closer local contacts to get within distance $c(k + \log n)$ for some large enough constant c w.h.p.

• For small k, may need to take local connections

- No distance-halving local contact
- Any closer contact at all?
- Do some math...

$$\lim_{n\to\infty} \frac{\log n^{\frac{Q}{9w\log\log\log n}}}{f(\log\log\log n)^2\log\log n} = \infty?$$

Lemma

When $k \in \Omega\left(\frac{\log n}{\log\log\log n}\right)$, yes, there are closer local contacts to get within distance $c(k + \log n)$ for some large enough constant c w.h.p.

• For small k, may need to take local connections - not ideal

Kleinberg Highway – Result

Theorem

For $k \in o\left(\frac{\log n}{\log\log\log n}\right)$, the expected decentralized greedy routing path length is $\mathcal{O}(\log^2 n)$ w.h.p., while for $\Theta\left(\frac{\log n}{\log\log\log n}\right) \leq k < \Theta(\log n)$, it is $\mathcal{O}(\log^2(n)/k)$ w.h.p., for $\Theta(\log n) \leq k \leq \Theta(n)$, it is $\mathcal{O}(k)$ and finally, for $k \in \Omega(n)$, it is $\mathcal{O}(n)$.

ullet Recall, NPA: $P(u o v) \propto d_v/\delta^s(u,v)$

- Recall, NPA: $P(u o v) \propto d_v/\delta^s(u,v)$
- Each node picks 'popularity' k from power law
 - $\Pr(k) \propto 1/k^{2+\epsilon}$

- Recall, NPA: $P(u o v) \propto d_v/\delta^s(u,v)$
- Each node picks 'popularity' k from power law
 - $\Pr(k) \propto 1/k^{2+\epsilon}$
- Would someone cool get to know a nobody?

- Recall, NPA: $P(u \rightarrow v) \propto d_v/\delta^s(u,v)$
- Each node picks 'popularity' k from power law
 - $\Pr(k) \propto 1/k^{2+\epsilon}$
- Would someone cool get to know a nobody? not likely!

- Recall, NPA: $P(u o v) \propto d_v/\delta^s(u,v)$
- Each node picks 'popularity' k from power law
 - $\Pr(k) \propto 1/k^{2+\epsilon}$
- Would someone cool get to know a nobody? not likely!
- Idea: People connect with people about as cool as them

- Recall, NPA: $P(u o v) \propto d_v/\delta^s(u,v)$
- Each node picks 'popularity' k from power law
 - $\Pr(k) \propto 1/k^{2+\epsilon}$
- Would someone cool get to know a nobody? not likely!
- Idea: People connect with people about as cool as them
- Node w/ popularity k only connects w/ nodes from: $[k_u/A, Ak_u]$

- Recall, NPA: $P(u o v) \propto d_v/\delta^s(u,v)$
- Each node picks 'popularity' k from power law
 - $\Pr(k) \propto 1/k^{2+\epsilon}$
- Would someone cool get to know a nobody? not likely!
- Idea: People connect with people about as cool as them
- Node w/ popularity k only connects w/ nodes from: $[k_u/A, Ak_u]$
- Each node u connects to k_u nodes

• Consider nodes w/ $k \in [\log n, A \log n]$ as 'highway'

• Consider nodes $w/k \in [\log n, A \log n]$ as 'highway'

Lemma

There are $\Theta(\log^{1+\epsilon}(n))$ highway nodes w.h.p.

• Consider nodes $w/k \in [\log n, A \log n]$ as 'highway'

Lemma

There are $\Theta(\log^{1+\epsilon}(n))$ highway nodes w.h.p.

Lemma

Each highway node has $\Theta(\log n)$ connections to other highway nodes w.h.p.

• Consider nodes $w/k \in [\log n, A \log n]$ as 'highway'

Lemma

There are $\Theta(\log^{1+\epsilon}(n))$ highway nodes w.h.p.

Lemma

Each highway node has $\Theta(\log n)$ connections to other highway nodes w.h.p.

• Can create instance of randomized Kleinberg highway!

• Consider nodes $w/k \in [\log n, A \log n]$ as 'highway'

Lemma

There are $\Theta(\log^{1+\epsilon}(n))$ highway nodes w.h.p.

Lemma

Each highway node has $\Theta(\log n)$ connections to other highway nodes w.h.p.

• Can create instance of randomized Kleinberg highway!

Theorem

The windowed NPA model has a decentralized greedy algorithm that routes in $\mathcal{O}(\log^{1+\epsilon}(n))$ hops w.h.p.

wNPA — Experiments I

Figure 9: Comparison of greedy routing times for Kleinberg's model and the windowed NPA model when $Q = 1, \epsilon = 0.5, A = 1.01$.

wNPA — Experiments II

Figure 10: The greedy routing times for the windowed NPA model on the 50 US states when Q=32, $\epsilon=0.5$, and A=1.01.

Open Problems

- Theory for original NPA model
- Tight greedy routing bounds for:
 - Kleinberg highway
 - Randomized Kleinberg highway
 - Windowed NPA
- Efficient (sequential) generation for:
 - Randomized Kleinberg highway
 - Windowed NPA
 - Original NPA
- Remove tight constraints from Windowed NPA
 - Each node u only connects to nodes within $[k_u/A, Ak_u]$
 - 0 probability for anyone else
 - What if decaying probability depending on k_u and k_v ?