Giảng viên ra đề:	20/07/2020	Người phê duyệt:	
	Nguyễn Phước Bảo Duy		TS. HOÀNG MINH TRÍ

	THI CUỐI KỲ		Học kỳ/năm học	2	2019-2020		
BK			Ngày thi	26/07/2020			
TRƯỜNG ĐH BÁCH KHOA – ĐHQG-HCM	Môn học	Tín hiệu và Hệ thống					
KHOA ĐIỆN - ĐIỆN TỬ	Mã môn học	EE2005					
1.1.0/1.2.i.i.	Thời lượng	100 phút	Mã đề				
Ghi chú: - Không được sử dụng tài liệu - Đề thi gồm 06 câu.							

- Một số công thức cơ bản có in ở mặt sau của đề thi

Câu hỏi 1 (L.O.2.6): Trình bày các bước thiết kế và vẽ mạch OPAMP thực hiện hệ thống có hàm truyền

$$H(s) = \frac{s^2 + 5s + 6}{s^2 + 9s + 20}$$

Câu hỏi 2 (L.O.2.8): Vẽ đồ thị Bode biên độ và pha của hệ thống có hàm truyền

$$H(s) = \frac{20s(s+10)}{(s+20)(s+100)}$$

Câu hỏi 3 (L.O.3.0): Thiết kế bộ lọc thông thấp thõa mãn các yêu cầu sau: Dãi thông trong khoảng (0, 10rad/s); dãi chắn trong khoảng (60rad/s, ∞), độ lợi dãi thông không nhỏ hơn -1dB, độ lợi dãi chắn không lớn hơn -40dB.

<u>Câu hỏi 4</u> (L.O.2.7): Cho $f(t) = 10\cos(5t) + 10\cos(80t)$ là ngõ vào của bộ lọc đã thiết kể ở câu hỏi 3, tìm ngõ ra y(t) của bộ lọc.

Câu hỏi 5 (L.O.2.2): Cho tín hiệu f(t) có phổ là $F(\omega) = \Delta(\omega/4)$, được điều chế bằng cách nhân với sóng mang $2\sin(4t)$, tạo ra tín hiệu $v_{AM}(t)$. Xác định $Y_{AM}(\omega)$ và thiết kế bộ khôi phục f(t) từ $y_{AM}(t)$.

Câu hỏi 6 (L.O.2.3) Cho tín hiệu f(t) được lấy mẫu bằng cách nhân với chuỗi xung p(t), phổ $F(\omega)$ và chuỗi xung p(t) cho ở H5.

- a. Với $T_S < \pi/2$, xác định và vẽ phổ của tín hiệu sau lấy mẫu y(t) = f(t).p(t).
- b. Tìm giá trị lớn nhất của T_S để có thể khôi phục f(t) từ y(t).

--- Hết ---

MSSV: Ho và tên SV: Trang 1/1

Câu 1: (2đ)

 $Luu\ \acute{y}$: Nếu sinh viên chọn dạng nối tiếp hoặc song song, sử dụng các mạch OPAMP bậc 1 thì vẫn được trọn điểm (nếu làm đúng).

<u>Câu 2:</u> (2đ)

Câu 3: (1.5đ)

$$w_p = 10$$
, $w_s = 60$, $G_p = -1 dB$, $G_s = -40 dB$
 $v_p = 10$, $v_s = 60$, $v_s = 10$, $v_s = -40 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -40 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -40 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -40 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -40 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = 10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = -10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = -10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = -10$, $v_s = 60$, $v_s = -10 dB$, $v_s = -10 dB$
 $v_s = -10$, $v_s = 60$, $v_s = -10 dB$
 $v_s = -10$, $v_s = 60$, $v_s = -10 dB$
 $v_s = -10$, $v_s = -10$

Câu 4: (1đ)

Ngo vao
$$f(t) = 10\cos(5t) + 10\cos(80t)$$

 $\rightarrow ngo$ ra $y(t) = 10H, \cos(5t + 41) + 10H_2\cos(80t + 42)$
 $vol(fH, 241) = H(jw)|_{w=5} = 0.9981/-46.9^{\circ}$
 $H_2/42 = H(jw)|_{w=80} = 0.0039/108^{\circ}$
 $\Rightarrow y(t) = 9.981\cos(5t - 46.9^{\circ}) + 0.039\cos(80t + 108^{\circ})$

Câu 5: (1.5đ)

<u>Câu 6:</u> (2đ)

A Xac dinh
$$P(\omega)$$
: $p(t) = \sum_{n=-\infty}^{\infty} \int_{n} \int_{n}^{\infty} \int_{n}^{\infty}$

(=) $T_s \leq \frac{2}{2} = T$ =) $T_{smax} = T$.