

MATHS ASSIGNMENTS

LEVEL:- High School

Solve:

$$1\frac{1}{13} - 2\frac{2}{13} =$$

$$-2\frac{2}{13}+1\frac{1}{13}=$$

$$-1\frac{1}{13} + 2\frac{2}{13} =$$

$$-1\frac{1}{13}-2\frac{2}{13}=$$

$$-2\frac{2}{13}-1\frac{1}{13}=$$

$$2\frac{2}{13} + 1\frac{1}{13} =$$

$$\frac{1}{5}$$
 - 2 =

$$-\frac{1}{5}-2=$$

Date.....

Time.....To.....

◆ Calculate.

$$(1)$$
 $6^3 \div 2^3 \div 4^2 = \frac{6 \cdot 6 \cdot 6}{2 \cdot 2 \cdot 2 \cdot 4 \cdot 4} =$

$$(2)$$
 $6^5 \div 4^3 \div 3^3 =$

$$(3) 10^2 \div 2^4 \div 5^3 =$$

$$(4) \quad 9^4 \div 6^2 \div 3^2 \times 4^2 =$$

Date......To.....

Simplify

1)
$$4x - 10 = 2x + 2$$

2)
$$4(3-x)=8$$

3)
$$3x - (x - 5) = 9$$

4)
$$7-(4x-5)=22$$

3)
$$8 - (3x - 4) = 21$$

1)
$$\frac{x}{4} - \frac{2x - 10}{5} = 3$$

$$2) \frac{2x}{5} + \frac{5x+3}{2} = \frac{3x+7}{4}$$

3)
$$\frac{x-3}{3} + \frac{4x}{4} = \frac{3x}{4} + \frac{x}{5}$$

Name.																					
ranic.	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	

Solve the following equations.

1.
$$x = y - 3$$

 $x + 4y = 7$

Solve the following equation

1.
$$\frac{1}{x} + \frac{1}{y} - \frac{1}{z} = 3$$
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 5$$
$$-\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 7$$

2.
$$x + y - z + w = 10$$

 $x + 3y - 4z + 5w = 26$
 $x + 4y - 7z + 7w = 37$
 $x + 2y - 3z + 6w = 22$

Form three equations with x eliminated.

Date......To.....

Factorize:

$$4 x^2 + 4 x + 1$$

$$25 x^2 - (x + 2y + 4z)^2 =$$

$$(3x - y)^2 - (5x - 3y)^2 =$$

$$x^2 - y^2 - x - y$$

$$4a^2 + 12 ab + 9b^2 - 25 x^2$$

$$81 (x + y)^2 - 16 (x - y)^2$$

1.
$$\frac{3\sqrt{2}}{2\sqrt{3}}$$
 - $2\sqrt{6}$ =

2.
$$\frac{5}{2\sqrt{3}} - \sqrt{3} =$$

3.
$$\frac{2\sqrt{3}}{3\sqrt{8}} + \frac{\sqrt{6}}{3} =$$

4.
$$\sqrt{\frac{1}{20}} + \frac{\sqrt{5}}{5} =$$

5.
$$\sqrt{\frac{3}{5}} - \sqrt{\frac{3}{20}} =$$

Date......To.....

Solve the following equations:

$$x^2 - 7x + 10 = 0$$

$$x^2 + 4x + 3 = 0$$

$$x^2 + 5x - 6 = 0$$

$$x^2 + 2x - 15 = 0$$

$$x^2 + 2x - 8 = 0$$

$$x^2 - 6x = 0$$

Date......To.....

Factorize the following exercise.

1.
$$(x + y)^2 + 3(x + y) - 18 =$$

2.
$$(x + y)^2 - 7(x + y) + 10 =$$

3.
$$(x+2)^2 - 9(x+2) + 20 =$$

Name	Date		
	Time	To	

.Read the example given below and find the vertex of the given quadratic functions and then plot its graph.

$$y = x^{2} + 6x + 13$$

$$y = (x + 3)^{2} - 9 + 13$$

$$y = (x + 3)^{2} + 4$$
Vertex (-3, 4)

$$y = x^2 + 4x + 6$$

x	y
1	
0	
-1	
-2	
-3	
-4	7.57
-5	

Jame	Date		
	Time	To	

1. Find the quadratic equation with the two given roots.

$$(1)$$
 $\frac{2+\sqrt{5}}{3}$, $\frac{2-\sqrt{5}}{3}$

$$(2) \quad \frac{-1+\sqrt{3}\,i}{2} \ , \ \frac{-1-\sqrt{3}\,i}{2}$$

2. Given that $x^2 + 5x - 1 = 0$ has 2 roots α and β , evaluate the following expressions.

(1)
$$\alpha^2 - \alpha\beta + \beta^2$$

$$(2)$$
 $(\alpha-2\beta)(2\alpha-\beta)$

Name

Time.....To.....

Find the axis of symmetry and the vertex for each parabola:

$$y = (x-2)^2$$

$$y = (x + 3)^2$$

Axis of Symmetry:

Axis of Symmetry: x =

Vertex:

Vertex:

The graph of $y = (x-2)^2$ is a a translation of $y = x^2$, 2 units along the x - axis the x - axis

The graph of $y = \underline{\hspace{1cm}}$ is translation of $y = \underline{\hspace{1cm}}$ units along

Name									

Time.....To.....

Read the example and solve the following equations. Mark each solution on the graph.

$$2^{x} = 16$$

Let = y = 2^{x}
 $16 = 2^{x}$
We know that $16 = 2^{4}$
 $2^{4} = 2^{x}$
Therefore, $x = 4$

1.
$$3^x = 27$$

Evaluate the following:

1.
$$\frac{\cos 80^{\circ}}{\sin 10^{\circ}} + \csc 31^{\circ} \cos 59^{\circ} =$$

2.
$$\frac{2 \tan 53^{\circ}}{\cot 37^{\circ}} - \frac{\cot 80^{\circ}}{\tan 10^{\circ}} =$$

Simplify the following identities:

1.
$$\tan^2 \theta - \tan^2 \theta \sin^2 \theta = \sin^2 \theta$$

2.
$$\sin^4 \theta - \cos^4 \theta = 2 \sin^2 \theta - 1 =$$

Time.....To.....

For each given angle θ , draw the diagram and find sin , cos and tan of θ and $\theta + 90^{\circ}$

$$\theta$$
 = 45°

$$\sin \theta = \sin (\theta + 90^\circ) =$$

$$\cos \theta = \cos (\theta + 90^{\circ}) =$$

$$\tan \theta = \tan (\theta + 90^{\circ}) =$$

$$\theta = 30^{\circ}$$

$$\sin \theta = \sin (\theta + 90^{\circ}) =$$

$$\cos \theta = \cos (\theta + 90^{\circ}) =$$

$$\tan \theta = \left| \tan (\theta + 90^{\circ}) \right| =$$

$$(3) \quad y = 2\cos\left(x - \frac{\pi}{4}\right) - 1$$

The graph of
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 1$$
 is a translation of $y = 2\cos x$,

-	1	
	unit(s) along the x-axis and	unit(s) along the y-axis
	<u></u>	

- 1. Find the equation of each given line.
 - (1) The line passing through point (-4, 3) with gradient 2.

(2) The line passing through points (-1, 3) and (5, -6).

Date.....

Time.....To.....

Logarithmic Functions

Given that $\log_2 3 = a$ and $\log_3 7 = b$, write the following in terms of a and b.

Read the example and solve

$$\log_6 21 = \frac{\log_3 21}{\log_3 6} = \frac{1 + \log_3 7}{\log_3 2 + 1} = \frac{1 + \log_3 7}{\frac{1}{\log_2 3} + 1} = \frac{1 + b}{\frac{1}{a} + 1} = \frac{a + ab}{1 + a}$$

$$(1) \log_7 2 =$$

$$(2) \log_{14} 56 =$$

$$(3) \log_{42} 28 =$$

Time.....To.....

Find y' of each given function.

$$(5) \quad y = \cos^3(1 - 2x^2)$$

$$(6) \quad y = \frac{\cos x}{x}$$

$$(7) \quad y = \frac{\cos x}{1 + \cos x}$$