Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-227. Вариант 24

- 1. Пусть $z=\frac{1}{2}-\frac{\sqrt{3}i}{2}$. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{1-\sqrt{3}i}$ имеет аргумент $-\frac{19\pi}{21}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-4-12i) + y(5+i) = -70 \\ x(1-15i) + y(-4-4i) = 22 + 124i \end{cases}$$

- 3. Найти корни многочлена $-4x^6-4x^5+72x^4+248x^3-132x^2-3844x-3536$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=4-i, \, x_2=-2-3i, \, x_3=-1.$
- 4. Даны 3 комплексных числа: 17-22i, 8-8i, 3-26i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{3\sqrt{2}}{2} \frac{3\sqrt{2}i}{2}, z_2 = -\frac{3\sqrt{2}}{4} + \frac{3\sqrt{6}}{4} + 3i\left(-\frac{\sqrt{6}}{4} \frac{\sqrt{2}}{4}\right)$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1+i| < 2\\ |arg(z+5)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, -11, -8), b = (5, 7, 1), c = (4, 0, -3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-7, -14, -13) и плоскость P: -36x 54y 24z + 1074 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-12,7,-11), $M_1(1,-4,-14)$, $M_2(5,0,-14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -26y + 12z + 210 = 0 \\ -13x - 10y + z - 16 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 16y + 11z - 1412 = 0 \\ 15x - 10y + 7z - 1100 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .