Introductory Seminar Advanced Numerical Analysis

Exercise sheet 1, due date: 07.03.2022

Exercise 1 (Gauss Algorithm and LU-decomposition).

Let matrices $A, L_1 \in \mathbb{R}^{4 \times 4}$ be defined as

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ x & 1 & 0 & 0 \\ y & 0 & 1 & 0 \\ z & 0 & 0 & 1 \end{pmatrix},$$

where $x, y, z \in \mathbb{R}$.

- (a) Show that A is invertible.
- (b) Determine $x, y, z \in \mathbb{R}$ such that

$$L_1 A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix}$$

where "*" stand for some real number. Further, calculate the inverse

(c) Define analogous matrices $L_2, L_3 \in \mathbb{R}^{4\times 4}$ in such a way that

$$L_3L_2L_1A = U$$

and U is upper triangular.

(d) A consequence of exercise (c) is that we have performed the LUdecomposition of the matrix A. Describe how to solve the linear system Ax = b with a given right-hand side $b \in \mathbb{R}^4$ based on the LU-decomposition of A.

Exercise 2 (Pivoting and condition number).

Let $\varepsilon > 0$ and let $A_{\varepsilon} \in \mathbb{R}^{2 \times 2}$ be the matrix

$$A_{\varepsilon} \coloneqq \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix}$$

- (a) Calculate the inverse A_{ε}^{-1} of A_{ε} . (b) Let $\|x\|_{\infty} = \max\{|x_1|, |x_2|\}$ be the maximum norm of a vector $x = (x_1, x_2) \in \mathbb{R}^2$. Further, let $\|A_{\varepsilon}\|_{\infty}$ be the induced matrix norm of A_{ε} . Show that

$$\lim_{\varepsilon \to 0} K(A_{\varepsilon}) = 4$$

where $K(A_{\varepsilon}) = ||A_{\varepsilon}||_{\infty} ||A_{\varepsilon}^{-1}||_{\infty}$ is the condition number of A_{ε} .

(c) Suppose we perform a standard LU-decomposition of A (as described in Exercise 1), i.e. we multiply A from the left by a matrix L to obtain an upper triangular matrix U_{ε} of the form

$$LA_{\varepsilon} = U_{\varepsilon} = \begin{pmatrix} \varepsilon & 1\\ 0 & * \end{pmatrix}$$

and "*" is a real number (depending on ε). Show that the condition number of the resulting matrix U_{ε} satisfies

$$\lim_{\varepsilon \to 0} K(U_{\varepsilon}) = \infty.$$

(d) Suppose we perform the LU-decomposition of A_{ε} with a pivoting step: we interchange the first with the second row of A_{ε} to obtain the matrix

$$A'_{\varepsilon} \coloneqq \begin{pmatrix} 1 & 1 \\ \varepsilon & 1 \end{pmatrix}.$$

As in part (c), perform the standard LU-decomposition with the new matrix A'_{ε} to obtain an upper triangular matrix U'_{ε} . Show that in this case we have

$$\lim_{\varepsilon \to 0} K(U_\varepsilon') = 4$$

Exercise 3 (Orthogonality).

Let $v \in \mathbb{R}^n, n \in \mathbb{N}$, and $v \neq 0$. Further, define the Householder matrix associated with v by

$$H = \operatorname{Id} - \frac{2}{\langle v, v \rangle} v v^T.$$

- (a) Show that H is an orthogonal matrix.
- (b) Show that for a vector $x \in \mathbb{R}^n$, the vector Hx is the reflection of x at the line spanned by v.
- (c) Let $||x||_2$ be the Euclidean norm of a vector $x \in \mathbb{R}^n$ and let $||A||_2$ be the induced matrix norm $(A \in \mathbb{R}^{n \times n})$. Show that if A is orthogonal then K(A) = 1 where $K(A) = ||A||_2 ||A^{-1}||_2$ is the condition number of A.