

Chemistry

Book Name: Selina Concise

# EXERCISE- 5 (A)

## **Solution 1:**

- (a) Gay-Lussac's law states that when gases react, they do so in volumes which bear a simple ratio to one another, and to the volume of the gaseous product, provided that all the volumes are measured at the same temperature and pressure.
- (b) Avogadro's law states that equal volumes of all gases under similar conditions of temperature and pressure contain the same number of molecules.

# **Solution 2:**

- a) The number of atoms in a molecule of an element is called its atomicity. Atomicity of Hydrogen is 2, phosphorus is 4 and Sulphur is 8.
- b) N<sub>2</sub> means 1 molecule of nitrogen and 2N means two atoms of nitrogen. N<sub>2</sub> can exist independently but 2N cannot exist independently.

#### **Solution 3:**

(a) This is due to Avogadros Law which states Equal volumes of all gases under similar conditions of temperature and pressure contain the same number of molecules.

Now volume of hydrogen gas = volume of helium gas n molecules of hydrogen = n molecules of helium gas

 $nH_2\!=nHe$ 

1 mol. of hydrogen has 2 atoms of hydrogen and I molecule of helium has 1 atom of helium

Therefore 2H = He

Therefore, atoms in hydrogen is double the atoms of helium.

- (b) For a given volume of gas under given temperature and pressure, a change in any one of the variable i.e., pressure or temperature changes the volume.
- (c) Inflating a balloon seems violating Boyles law as volume is increasing with increase in pressure. Since the mass of gas is also increasing.

## **Solution 4:**

 $2H_2 + O_2 \longrightarrow 2H_2O$ 

2 V 1V 2V

From the equation, 2V of hydrogen reacts with 1V of oxygen so  $200 \text{cm}^3$  of Hydrogen reacts with =  $200/2 = 100 \text{ cm}^3$ 

Hence, the unreacted oxygen is  $150 - 100 = 50 \text{cm}^3$  of oxygen.



# **Solution 5:**

CH<sub>4</sub> + 2O<sub>2</sub>  $\rightarrow$  CO<sub>2</sub> + 2H<sub>2</sub>O 1 V 2 V 1 V From equation,1V of CH<sub>4</sub> reacts with = 2 V of O<sub>2</sub> so, 80 cm<sup>3</sup> CH<sub>4</sub> reacts with = 80 2 = 160cm<sup>3</sup> O<sub>2</sub> Remaining O<sub>2</sub> is 200 –160 = 40cm<sup>3</sup> From equation, 1V of methane gives 1 V of CO<sub>2</sub> So, 80 cm<sup>3</sup> gives 80cm<sup>3</sup> CO<sub>2</sub> and H<sub>2</sub>O is negligible

#### **Solution 6:**

 $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$  (*l*) 2 V 5 V 4 VFrom equation, 2 V of  $C_2H_2$  requires = 5 V of  $O_2$ So, for 400ml  $C_2H_2$ ,  $O_2$  required =  $400 \times 5/2 = 1000$  ml Similarly, 2 V of  $C_2H_2$  gives = 4 V of  $CO_2$ So, 400ml of  $C_2H_2$  gives  $CO_2 = 400 \times 4/2 = 800$ ml

## **Solution 7:**

Balanced chemical equation:  $H_2S_{(g)} + CI_{2(g)} \longrightarrow 2HCI_{(g)} + S_{(g)}$ 1 mole 1 mole 2 moles 1 mole 112cm<sup>3</sup> 120cm<sup>3</sup>

- (i) At STP, 1 mole gas occupies 22.4 L.
   As 1 mole H<sub>2</sub>S gas produces 2 moles HCl gas,
   22.4 L H<sub>2</sub>S gas produces 22.4 × 2 = 44.8 L HCl gas.
   Hence, 112 cm<sup>3</sup> H<sub>2</sub>S gas will produce 112 × 2 = 224 cm<sup>3</sup> HCl gas.
- (ii) 1 mole H<sub>2</sub>S gas consumes 1 mole Cl<sub>2</sub> gas.
   This means 22.4 L H<sub>2</sub>S gas consumes 22.4 L Cl<sub>2</sub> gas at STP.
   Hence, 112 cm<sup>3</sup> H<sub>2</sub>S gas consumes 112 cm<sup>3</sup> Cl<sub>2</sub> gas.
   120 cm<sup>3</sup> 112 cm<sup>3</sup> = 8 cm<sup>3</sup> Cl<sub>2</sub> gas remains unreacted.

   Thus, the composition of the resulting mixture is 224 cm<sup>3</sup>HCl gas + 8 cm<sup>3</sup> Cl<sub>2</sub> gas

# **Solution 8:**

 $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$  2 V 7 V 4 VNow from equation, 2V of ethane reacts with = 7 V of oxygen So, 600cc of ethane reacts with =  $600 \times 7/2 = 2100cc$ Hence, unused  $O_2$  is = 2500 - 2100 = 400 cc From 2V of ethane = 4 V of  $CO_2$  is produced So, 600cc of ethane will produce = 4 600/2 = 1200cc  $CO_2$ 



#### **Solution 9:**

 $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ 1V 3V
11litre 33 litre  $\frac{p_1v_1}{T_1} = \frac{p_2v_2}{T_2}$   $V_2 = \frac{p_1v_1}{P_2T_1} = \frac{380 \times 33 \times 273}{549 \times 760} = 8.25 \text{ liters}$ 

## **Solution 10:**

 $CH_4 + 2Cl_2 \rightarrow CH_2Cl_2 + 2HCl$ 1 V 2 V 1 V 2 V From equation, 1V of  $CH_4$  gives = 2 V HCl so, 40 ml of methane gives = 80 ml HCl For 1V of methane = 2V of  $Cl_2$  required So, for 40ml of methane =  $40 \times 2 = 80$  ml of  $Cl_2$ 

#### **Solution 11:**

 $C_3H_8 + 5O_2 \rightarrow CO_2 + 4H_2O$ 1 V 5 V 3 V

From equation, 5 V of  $O_2$  required = 1V of propane so, 100 cm<sup>3</sup> of  $O_2$  will require = 20 cm<sup>3</sup> of propane

# **Solution 12:**

 $2NO + O_2 \rightarrow 2NO_2$  2 V 1 V 2 VFrom equation, 1V of  $O_2$  reacts with = 2 V of NO  $200 \text{cm}^3$  oxygen will react with  $= 200 \times 2 = 400 \text{ cm}^3 \text{ NO}$ Hence, remaining NO is  $450 - 400 = 50 \text{ cm}^3$   $NO_2$  produced  $= 400 \text{cm}^3$  because 1V oxygen gives  $2 V NO_2$ Total mixture  $= 400 + 50 = 450 \text{ cm}^3$ 

## **Solution 13:**

 $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$ 2 V 1 V 2 V 2 V of CO requires = 1V of O<sub>2</sub> so, 100 litres of CO requires = 50 litre of O<sub>2</sub>



## **Solution 14:**

 $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ 

4 V 5 V 4 V

9 litres of reactants gives 4 litres of NO

So, 27 litres of reactants will give =  $27 \times 4/9 = 12$  litres of NO

# **Solution 15:**

 $H_2 + Cl_2 \rightarrow 2HCl$ 

1V 1V 2 V

Since 1 V hydrogen requires 1 V of oxygen and 4cm<sup>3</sup> of H<sub>2</sub> remained behind so the mixture had com" >16 cm<sup>3</sup> hydrogen and 16 cm<sup>3</sup> chlorine.

Therefore, resulting mixture is  $H_2 = 4 \text{cm}^3$ ,  $HCl = 32 \text{cm}^3$ 

## **Solution 16:**

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ 

1 V 2 V 1 V

 $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$ 

2 V 5 V 4 V

From the equations, we can see that

 $1V CH_4$  requires oxygen =  $2 V O_2$ 

So,  $10\text{cm}^3$  CH<sub>4</sub> will require =  $20 \text{ cm}^3$  O<sub>2</sub>

Similarly 2 V  $C_2H_2$  requires = 5 V  $O_2$ 

So,  $10 \text{ cm}^3 \text{ C}_2\text{H}_2 \text{ will require} = 25 \text{ cm}^3 \text{ O}_2$ 

Now, 20 V O<sub>2</sub> will be present in 100 V air and 25 V O<sub>2</sub> will be present in 125 V air, so the volume of air required is 225cm<sup>3</sup>

# **Solution 17:**

 $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$ 

 $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$ 

60 ml of propane ( $C_3H_8$ ) gives  $3 \times 60 = 180$  ml  $CO_2$ 

40 ml of butane ( $C_4H_{10}$ ) gives = 8 40/2 = 160 ml of  $CO_2$ 

Total carbon dioxide produced = 340 ml

So, when 10 litres of the mixture is burnt = 34 litres of  $CO_2$  is produced.



#### **Solution 18:**

 $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$ 4 V CO<sub>2</sub> is collected with 2 V C<sub>2</sub>H<sub>2</sub> So, 200cm<sup>3</sup> CO<sub>2</sub> will be collected with = 100cm<sup>3</sup> C<sub>2</sub>H<sub>2</sub> Similarly, 4V of CO<sub>2</sub> is produced by 5 V of O<sub>2</sub> So, 200cm<sup>3</sup> CO<sub>2</sub> will be produced by = 250 ml of O<sub>2</sub>

# **Solution 19:**

This experiment supports Gay lussac's law of combining volumes. Since the unchanged or remaining  $O_2$  is 58 cc so, used oxygen 106 - 58 = 48cc According to Gay lussac's law, the volumes of gases reacting should be in a simple ratio.  $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ 

1 V 2 V

24 cc 48 cc

i.e. methane and oxygen react in a 1:2 ratio.

#### **Solution 20:**

According to Avogadro's law, equal volumes of gases contain equal no. of molecules under similar conditions of temperature and pressure. This means more volume will contain more molecules and least volume will contain least molecules.

- (a) 5 litres of hydrogen has greatest no. of molecules with the maximum volume.
- (b) 1 litre of SO<sub>2</sub> contains the least number of molecules since it has the smallest volume.

# EXERCISE. 5 B

#### **Solution 1:**

- a) This statement means one atom of chlorine is 35.5 times heavier than 1/12 time of the mass of an atom C-12.
- b) The value of avogadro's number is  $6.023 \times 10^{23}$
- c) The molar volume of a gas at STP is 22.4 dm<sup>3</sup> at STP



Chemistry

## **Solution 2:**

- (a) The vapour density is the ratio between the masses of equal volumes of gas and hydrogen under the conditions of standard temperature and pressure.
- (b) Molar volume is the volume occupied by one mole of the gas at STP. It is equal to 22.4 dm<sup>3</sup>.
- (c) The relative atomic mass of an element is the number of times one atom of the element is heavier than 1/12 times of the mass of an atom of carbon-12.
- (d) The relative molecular mass of an compound is the number that represents how many times one molecule of the substance is heavier than 1/12 of the mass of an atom of carbon-12.
- (e) The number of atoms present in 12g (gram atomic mass) of C-12 isotope, i.e.  $6.023 \times 10^{23}$  atoms.
- (f) The quantity of the element which weighs equal to its gram atomic mass is called one gram atom of that element.
- (g) Mole is the amount of a substance containing elementary particles like atoms, molecules or ions in 12 g of carbon-12

#### **Solution 3:**

- (a) Applications of Avogadro's Law:
  - (1) It explains Gay-Lussac's law.
  - (2) It determines atomicity of the gases.
  - (3) It determines the molecular formula of a gas.
  - (4) It determines the relation between molecular mass and vapour density.
  - (5) It gives the relationship between gram molecular mass and gram molecular volume.
- (b) According to Avogadro's law under the same conditions of temperature and pressure, equal volumes of different gases have the same number of molecules.
  - Since substances react in simple ratio by number of molecules, volumes of the gaseous reactants and products will also bear a simple ratio to one another. This what Gay Lussac's Law says.

 $H_2 + Cl_2$ ? 2HCl

1V 1V 2V(By Gay – Lussacs law)

n molecules n molecules 2n molecules (By Avogadros law)

Chemistry

# **Solution 4:**

- (a)  $(2N)28 + (8H)8 + (Pt)195 + (6C1)35.5 \times 6 = 444$
- (b)  $KClO_3 = (K)39 + (Cl)35.5 + (3O)48 = 122.5$
- (c)  $(Cu)63.5 + (S)32 + (4O)64 + (5H<sub>2</sub>O)5 \times 18 = 249.5$
- (d) (2N)28 + (8H)8 + (S)32 + (4O)64 = 132
- (e) (C)12 + (3H)3 + (C)12 + (2O)32 + (Na)23 = 82
- (f)  $(C)12 + (H)1 + (3C1)3 \times 35.5 = 119.5$
- (g)  $(2N)28 + (8H)8 + (2Cr)2 \times 51.9 + (7O)7 \times 16 = 252$

## **Solution 5:**

- (a) No. of molecules in 73 g HCl =  $6.023 \times 10^{23} \times 73/36.5$ (mol. mass of HCl) =  $12.04 \times 10^{23}$
- (b) Weight of 0.5 mole of  $O_2$  is = 32(mol. Mass of  $O_2$ ) × 0.5=16 g
- (c) No. of molecules in 1.8 g  $H_2O = 6.023 \times 10^{23} \times 1.8/18$ =  $6.023 \times 10^{22}$
- (d) No. of moles in 10g of  $CaCO_3 = 10/100$ (mol. Mass  $CaCO_3$ ) = 0.1 mole
- (e) Weight of 0.2 mole  $H_2$  gas = 2(Mol. Mass)  $\times$  0.2 = 0.4 g
- (f) No. of molecules in 3.2 g of  $SO_2 = 6.023 \times 10^{23} \times 3.2/64$ =  $3.023 \times 10^{22}$

## **Solution 6:**

Molecular mass of H<sub>2</sub>O is 18, CO<sub>2</sub> is 44, NH<sub>3</sub> is 17 and CO is 28 So, the weight of 1 mole of CO<sub>2</sub> is more than the other three.

#### **Solution 7:**

4g of NH<sub>3</sub> having minimum molecular mass contain maximum molecules.

## **Solution 8:**

- a) No. of particles in s1 mole =  $6.023 \times 10^{23}$ So, particles in 0.1 mole =  $6.023 \times 10^{23} \times 0.1 = 6.023 \times 10^{22}$
- b) 1 mole of  $H_2SO_4$  contains = 2 x 6.023 ×  $10^{23}$ So, 0.1 mole of  $H_2SO_4$  contains = 2 × 6.023 ×  $10^{23}$  × 0.1 =  $1.2 \times 10^{23}$  atoms of hydrogen
- c)  $111g \text{ CaCl}_2 \text{ contains} = 6.023 \times 10^{23} \text{ molecules}$ So,  $1000 \text{ g contains} = 5.42 \times 10^{24} \text{ molecules}$

# **Solution 9:**

- (a) 1 mole of aluminium has mass = 27 gSo, 0.2 mole of aluminium has mass =  $0.2 \times 27 = 5.4$  g
- (b) 0.1 mole of HCl has mass =  $0.1 \times 36.5$  (mass of 1 mole) = 3.65 g
- (c) 0.2 mole of H<sub>2</sub>O has mass =  $0.2 \times 18 = 3.6$  g
- (d) 0.1 mole of CO<sub>2</sub> has mass =  $0.1 \times 44 = 4.4$  g

# **Solution 10:**

- (a) 5.6 litres of gas at STP has mass = 12 gSo, 22.4 litre (molar volume) has mass =  $12 \times 22.4/5.6$ = 48g(molar mass)
- (b) 1 mole of  $SO_2$  has volume = 22.4 litres So, 2 moles will have =  $22.4 \times 2 = 44.8$  litre

# **Solution 11:**

- (a) 1 mole of  $CO_2$  contains  $O_2 = 32g$ So, CO<sub>2</sub> having 8 gm of O<sub>2</sub> has no. of moles = 8/32 = 0.25 moles
- (b) 16 g of methane has no. of moles = 1
- So, 0.80 g of methane has no. of moles = 0.8/16 = 0.05 moles

# **Solution 12:**

- (a)  $6.023 \times 10^{23}$  atoms of oxygen has mass = 16 g So, 1 atom has mass =  $16/6.023 \times 10^{23} = 2.656 \times 10^{-23} \text{ g}$
- (b) 1 atom of Hydrogen has mass =  $1/6.023 \times 10^{23} = 1.666 \times 10^{-24}$
- (c) 1 molecule of NH<sub>3</sub> has mass =  $17/6.023 \times 10^{23} = 2.82 \times 10^{-23}$  g
- (d) 1 atom of silver has mass =  $108/6.023 \times 10^{23} = 1.701 \times 10^{-22}$
- (e) 1 molecule of  $O_2$  has mass =  $32/6.023 \times 10^{23} = 5.314 \times 10^{-23}$  g
- (f) 0.25 gram atom of calcium has mass =  $0.25 \times 40 = 10g$

## **Solution 13:**

- (a) 0.1 mole of CaCO<sub>3</sub> has mass = 100(molar mass)  $\times$  0.1 = 10 g
- (b) 0.1 mole of Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O has mass =  $322 \times 0.1 = 32.2$  g
- (c) 0.1 mole of CaCl<sub>2</sub> has mass =  $111 \times 0.1 = 11.1g$
- (d) 0.1 mole of Mg has mass =  $24 \times 0.1 = 2.4$  g



## **Solution 14:**

1molecule of Na<sub>2</sub>CO<sub>3</sub>.10H<sub>2</sub>O contains oxygen atoms = 13 So,  $6.023 \times 10^{23}$  molecules (1mole) has atoms=13 x  $6.023 \times 10^{23}$ So, 0.1 mole will have atoms =  $0.1 \times 13 \times 6.023 \times 10^{23} = 7.8 \times 10^{23}$ 

## **Solution 15:**

```
3.2 g of S has number of atoms = 6.023 \times 10^{23} \times 3.2 /32 = 0.6023 \times 10^{23} So, 0.6023 \times 10^{23} atoms of Ca has mass = 40 \times 0.6023 \times 10^{23}/6.023 \times 10^{23} = 4g
```

#### **Solution 16:**

- (a) No. of atoms =  $52 \times 6.023 \times 10^{23} = 3.131 \times 10^{25}$
- (b) 4 amu = 1 atom of He so, 52 amu = 13 atoms of He
- (c) 4 g of He has atoms =  $6.023 \times 10^{23}$

So, 52 g will have =  $6.023 \times 10^{23} \times 52/4 = 7.828 \times 10^{24}$  atoms

# **Solution 17:**

```
Molecular mass of Na<sub>2</sub>CO<sub>3</sub> = 106 g 
106 g has 2 \times 6.023 \times 10^{23} atoms of Na So, 5.3g will have = 2 \times 6.023 \times 10^{23} \times 5.3/106 = 6.022 \times 10^{22} atoms Number of atoms of C = 6.023 \times 10^{23} x 5.3/106 = 3.01 \times 10^{22} atoms And atoms of O = 3 \times 6.023 \times 10^{23} \times 5.3/106 = 9.03 \times 10^{22} atoms
```

# **Solution 18:**

- (a) 60 g urea has mass of nitrogen( $N_2$ ) = 28 g So, 5000 g urea will have mass =  $28 \times 5000/60 = 2.33$  kg
- (b) 64 g has volume = 22.4 litre So, 320 g will have volume =  $22.4 \times 320/64 = 112$  litres

# **Solution 19:**

- (a) Vapour density of carbon dioxide is 22, it means that 1 molecule of carbon dioxide is 22 heavier than 1 molecule of hydrogen.
- (b) Vapour density of Chlorine atom is 35.5.



# **Solution 20:**

22400 cm<sup>3</sup> of CO has mass = 28 g So, 56 cm<sup>3</sup> will have mass =  $56 \times 28/22400 = 0.07$  g

# **Solution 21:**

18 g of water has number of molecules =  $6.023 \times 10^{23}$ So, 0.09 g of water will have no. of molecules =  $6.023 \times 10^{23} \times 0.09/18 = 3.01 \times 10^{21}$  molecules

# **Solution 22:**

- (a) No. of moles in 256 g  $S_8 = 1$  mole So, no. of moles in 5.12 g = 5.12/256 = 0.02 moles
- (b) No. of molecules =  $0.02 \times 6.023 \times 10^{23} = 1.2 \times 10^{22}$  molecules No. of atoms in 1 molecule of S = 8 So, no. of atoms in  $1.2 \times 10^{22}$  molecules =  $1.2 \times 10^{22} \times 8$ =  $9.635 \times 10^{22}$  molecules

# **Solution 23:**

Atomic mass of phosphorus P = 30.97 g Hence, molar mass of  $P_4 = 123.88$  g If phosphorus is considered as  $P_4$  molecules, then 1 mole  $P_4 = 123.88$  g Therefore, 100 g of  $P_4 = 0.807$  g

#### **Solution 24:**

- (a)  $308 \text{ cm}^3 \text{ of chlorine weighs} = 0.979 \text{ g}$ So,  $22400 \text{ cm}^3 \text{ will weigh} = \text{gram molecular mass}$ =  $0.979 \times 22400/308 = 71.2 \text{ g}$
- (b) 2 g(molar mass)  $H_2$  at 1 atm has volume = 22.4 litres So, 4 g  $H_2$  at 1 atm will have volume = 44.8 litres Now, at 1 atm( $P_1$ ) 4 g  $H_2$  has volume ( $V_1$ ) = 44.8 litres So, at 4 atm( $P_2$ ) the volume( $V_2$ ) will be =  $\frac{P_1V_1}{P_2} = \frac{1 \times 44.8}{4} = 11.2$  litres
- (c) Mass of oxygen in 22.4 litres = 32 g(molar mass) So, mass of oxygen in 2.2 litres =  $2.2 \times 32/22.4 = 3.14$  g



# **Solution 25:**

```
No. of atoms in 12 g C = 6.023 \times 10^{23}
So, no. of carbon atoms in 10^{-12} g = 10^{-12} \times 6.023 \times 10^{23}/12 = 5.019 \times 10^{10} atoms
```

#### **Solution 26:**

Given:

P = 1140 mm Hg Density = D = 2.4 g / L T = 273 °C = 273 + 273 = 546 K M =?

We know that, at STP, the volume of one mole of any gas is 22.4 L Hence, we have to find out the volume of the unknown gas at STP.

First apply Charle's law.

We have to find out the volume of one liter of unknown gas at standard temperature 273 K.

$$V_1 = 1 L \quad T_1 = 546 K$$

$$V_2 = ? \quad T_2 = 273 K$$

$$V_1/T_1 = V_2/T_2$$

$$V_2 = (V_1 \times T_2)/T_1$$

$$= (1 L \times 273 K)/546 K$$

$$= 0.5 L$$

We have found out the volume at standard temperature. Now we have to find out the volume at standard pressure.

Apply Boyle's law.

$$\begin{split} P_1 &= 1140 \text{ mm Hg} \quad V_1 = 0.5 \text{ L} \\ P_2 &= 760 \text{ mm Hg} \quad V_2 = ? \\ P_1 \times V_1 &= P_2 \times V_2 \\ V_2 &= (P_1 \times V_1)/P_2 \\ &= (1140 \text{ mm Hg} \times 0.5 \text{ L})/760 \text{ mm Hg} \\ &= 0.75 \text{ L} \end{split}$$

Now, 22.4 L is the volume of 1 mole of any gas at STP, then 0.75 L is the volume of X moles at STP

X moles = 0.75 L / 22.4 L= 0.0335 moles The original mass is 2.4 g

The original mass is 2.4 p = m / M

n = m / M

0.0335 moles = 2.4 g/M

M = 2.4 g / 0.0335 molesM = 71.6 g / mole

Hence, the gram molecular mass of the unknown gas is 71.6 g



## **Solution 27:**

1000 g of sugar costs = Rs. 40 So, 342g(molar mass) of sugar will cost =  $342 \times 40/1000 = Rs.13.68$ 

# **Solution 28:**

- (a) Weight of 1 g atom N = 14 g So, weight of 2 g atom of N = 28 g
- (b)  $6.023 \times 10^{23}$  atoms of C weigh = 12 gSo,  $3 \times 10^{25}$  atoms will weigh =  $\frac{12 \times 3 \times 10^{25}}{6.023 \times 10^{23}} = 59.7.7 \text{ g}$
- (c) 1 mole of sulphur weighs = 32 g
- (d) 7 g of silver
  So, 7 grams of silver weighs least.

# **Solution 29:**

40 g of NaOH contains  $6.023 \times 10^{23}$  molecules So, 4 g of NaOH contains =  $6.02 \times 10^{23} \times 4/40$  =  $6.02 \times 10^{22}$  molecules

# **Solution 30:**

The number of molecules in 18 g of ammonia=  $6.02 \times 10^{23}$  So, no. of molecules in 4.25 g of ammonia =  $6.02 \times 10^{23} \times 4.25/18$  =  $1.5 \times 10^{23}$ 

## **Solution 31:**

- (a) One mole of chlorine contains  $6.023 \times 10^{23}$  atoms of chlorine.
- (b) Under similar conditions of temperature and pressure, two volumes of hydrogen combined with one volume of oxygen will give two volumes of water vapour.
- (c) Relative atomic mass of an element is the number of times one atom of an element is heavier than 1/12 the mass of an atom of carbon-12.
- (d) Under similar conditions of temperature and pressure, equal volumes of all gases contain the same number of molecules.



# EXERCISE 5 (C)

## **Solution 1:**

Information conveyed by H<sub>2</sub>O

- (1) That H<sub>2</sub>O contains 2 volumes of hydrogen and 1 volume of oxygen.
- (2) That ratio by weight of hydrogen and oxygen is 1:8.
- (3) That molecular weight of H<sub>2</sub>O is 18g.

# **Solution 2:**

The empirical formula is the simplest formula, which gives the simplest ratio in whole numbers of atoms of different elements present in one molecule of the compound. The molecular formula of a compound denotes the actual number of atoms of different elements present in one molecule of a compound

### **Solution 3:**

(a) CH (b) CH<sub>2</sub>O (c) CH (d) CH<sub>2</sub>O

# **Solution 4:**

Relative mol. mass of  $CuSO_4.5H_2O = 63.5 + 32 + (16 \times 4) + 5(1 \times 2 + 16)$ = 249.5 g 249.5 g of  $CuSO_4.5H_2O$  contains water of crystallization = 90 g

So, 100 g will contain = 
$$\frac{90 \times 100}{249.5}$$
 = 36.07 g  
So, % of H<sub>2</sub>O = 36.07 × 100 = 36.07 %

## **Solution 5:**

- (a) Molecular mass of  $Ca(H_2PO_4)_2 = 234$ So, % of  $P = 2 \times 31 \times 100/234 = 26.5\%$
- (b) Molecular mass of  $Ca_3(PO_4)_2 = 310$ % of  $P = 2 \times 31 \times 100/310 = 20\%$



# **Solution 6:**

Molecular mass of  $KClO_3 = 122.5 g$ 

% of 
$$K = 39/122.5 = 31.8\%$$

% of 
$$Cl = 35.5/122.5 = 28.98\%$$

% of 
$$O = 3 \times 16/122.5 = 39.18\%$$

## **Solution 7:**

Element % At. mass Atomic ratio Simple ratio

Pb 62.5 207 
$$\frac{62.5}{207} = 0.3019^{1}$$

N 8.514 
$$^{8.5}_{14}$$
 = 0.60712

N 8.514 
$${}^{8.5}_{14} = 0.60712$$
  
O 29.0 16  ${}^{29.0}_{16} = 1.816$ 

So, Pb (NO<sub>3</sub>)<sub>2</sub> is the empirical formula.

## **Solution 8:**

In Fe<sub>2</sub>O<sub>3</sub>, Fe = 56 and O = 16

Molecular mass of Fe<sub>2</sub>O<sub>3</sub> =  $2 \times 56 + 3 \times 16 = 160$  g

Iron present in 80% of Fe<sub>2</sub>O<sub>3</sub> =  $\frac{112}{160}$  ×80 = 56 g

So, mass of iron in 100 g of ore = 56 g

: mass of Fe in 10000 g of ore =  $56 \times 10000/100$ 

= 5.6 kg

#### **Solution 9:**

For acetylene, molecular mass =  $2 \times V.D = 2 \times 13 = 26 \text{ g}$ 

The empirical mass = 12(C) + 1(H) = 13 g

$$n = \frac{\textit{Molecular formula mass}}{\textit{Empirical formula weight}} = \frac{26}{13} = 2$$

Molecular formula of acetylene =  $2 \times \text{Empirical formula} = C_2H_2$ 

Similarly, for benzene molecular mass=  $2 \times V.D = 2 \times 39 = 78$ 

$$n = 78/13 = 6$$

So, the molecular formula =  $C_6H_6$ 

## **Solution 10:**

Element % At. Mass Atomic ratio simple ratio

H 17.71 
$$\frac{17.7}{1}$$
 = 17.7  $\frac{17.7}{5.87}$  = 3

N 82. 
$$314 \frac{82.3}{14} = 5.87 \frac{5.87}{5.87} = 1$$

So, the empirical formula =  $NH_3$ 

Class X

Chemistry

# **Solution 11:**

Element % at. mass atomic ratio simple ratio

C 54.54 12 
$$\frac{54.54}{12}$$
 = 4.55  $^2$   
H9.9.091  $\frac{9.09}{1}$  = 9.09  $^4$ 

$$H9.9.091 \frac{9.09}{1} = 9.09$$

O 36.36 
$$16^{\frac{36.36}{16}} = 2.27^{1}$$

- (a) So, its empirical formula =  $C_2H_4O$
- (b) empirical formula mass = 44

Since, vapour density = 44

So, molecular mass =  $2 \times V.D = 88$ 

Or n = 2

so, molecular formula =  $(C_2H_4O)_2 = C_4H_8O_2$ 

# **Solution 12:**

Element % at. mass atomic ratio simple ratio

$$C 26.59 12^{26.59} = 2.21^{11}$$

$$H 2 221^{2.22} = 2 22^{1}$$

C 26.59 12 
$$\frac{26.59}{12}$$
 = 2.21  $\frac{1}{12}$  H 2.221  $\frac{2.22}{12}$  = 2.22  $\frac{1}{12}$  O71.1916  $\frac{71.19}{16}$  = 4.44  $\frac{2}{12}$ 

- (a) its empirical formula =  $CHO_2$
- (b) empirical formula mass = 45

Vapour density = 45

So, molecular mass =  $V.D \times 2 = 90$ 

so, molecular formula =  $C_2H_2O_4$ 

# **Solution 13:**

Element % at. mass atomic ratio simple ratio

Cl 71.65 35.5 
$$\frac{71.65}{35.5}$$
 = 2.01 <sup>1</sup>

H 
$$4.071 \frac{4.07}{1} = 4.07^2$$

C 24.28 
$$12^{\frac{1}{24.28}} = 2.02^{1}$$

- (a) its empirical formula =  $CH_2Cl$
- (b) empirical formula mass = 49.5

Since, molecular mass = 98.96

so, molecular formula =  $(CH_2Cl)_2 = C_2H_4Cl_2$ 



# **Solution 14:**

- (a) The g atom of carbon = 4.8/12 = 0.4 and g atom of hydrogen = 1/1=1
- (b) Element Given mass At. mass Gram atom Ratio C 4.8 12 0.4 1 2 H 1 1 1 2.5 5

So, the empirical formula =  $C_2H_5$ 

(c) Empirical formula mass = 29

Molecular mass =  $V.D \times 2 = 29 \times 2 = 58$ 

So, molecular formula =  $C_4H_{10}$ 

# **Solution 15:**

Since, g atom of Si = given mass/mol. Mass so, given mass =  $0.2 \times 28 = 5.6$  g Element mass At. mass Gram atom Ratio Si 5.6 28 0.2 1

Cl 21.3 35.5 
$$\frac{21.3}{35.5} = 0.63$$

Empirical formula = SiCl<sub>3</sub>

# **Solution 16:**

Element % at. mass atomic ratio simple ratio

C 92.3 12 
$$\frac{92.3}{12}$$
 = 7.7<sup>1</sup>  
H7.71  $\frac{7.7}{1}$  = 7.7<sup>1</sup>

So, empirical formula is CH Empirical formula mass = 13

Since molecular mass = 78

So, n = 6

∴ molecular formula is C<sub>6</sub>H<sub>6</sub>

# **Solution 17:**

- (a) G atoms of magnesium = 18/24 = 0.75 or g- atom of Mg
- (b) G atoms of nitrogen = 7/14 = 0.5 or 1/2 g- atoms of N
- (c) Ratio of gram-atoms of N and Mg = 1:1.5 or 2:3 So, the formula is  $Mg_3 N_2$



# **Solution 18:**

```
Barium chloride = BaCl_2. × H_2O
Ba + 2Cl + \times [H_2 + O]
= 137 + 235.5 + \times [2 + 16]
= [208 + 18x] contains water = 14.8\% water in BaCl<sub>2</sub>. × H<sub>2</sub>O
= [208 + 18 x] 14.8/100 = 18x
= [104 + 9x] 2148 = 18000x
= [104 + 9x] 37 = 250x
=3848 + 333x = 2250x
  1917x = 3848
  x = 2 molecules of water
```

# **Solution 19:**

```
Molar mass of urea; CON_2H_4 = 60 g
So, % of Nitrogen = 28 \times 100/60 = 46.66\%
```

# **Solution 20:**

Element % At. mass Atomic ratio Simple ratio C 42.1 12 3.5 1 H 6.48 1 6.48 2 O 51.42 16 3.2 1 The empirical formula is CH<sub>2</sub>O Since the compound has 12 atoms of carbon, so the formula is C<sub>12</sub> H<sub>24</sub> O<sub>12</sub>.

## **Solution 21:**

- (a) Now since the empirical formula is equal to vapour density and we know that vapour density is half of the molecular mass i.e. we have n=2 so, molecular formula is A<sub>2</sub>B<sub>4</sub>.
- (b) Since molecular mass is 2 times the vapour density, so Mol. Mass = 2 V.D Empirical formula weight = V.D/3So, n = molecular mass/ Empirical formula weight = 6

Hence, the molecular formula is A<sub>6</sub>B<sub>6</sub>



#### **Solution 22:**

Atomic ratio of N = 87.5/14 = 6.25Atomic ratio of H = 12.5/1 = 12.5This gives us the simplest ratio as 1:2 So, the molecular formula is  $NH_2$ 

# **Solution 23:**

Element % at. mass atomic ratio simple ratio Zn 22.65 65 0.348 1 H 4.88 1 4.88 14 S 11.15 32 0.348 1 O 61.32 16 3.83 11 Empirical formula of the given compound =  $ZnSH_{14}O_{11}$  Empirical formula mass = 65.37 + 32 + 141 + 11 + 16 = 287.37 Molecular mass = 287 n = Molecular mass/Empirical formula mass = 287/287 = 1 Molecular formula =  $ZnSO_{11}H_{14}$  =  $ZnSO_4.7H_2O$ 

# EXERCISE. 5 (D)

#### **Solution 1:**

- (a) Moles: 1 mole + 2 mole  $\rightarrow$  1 mole + 2 mole
- (b) Grams:  $42g + 36g \rightarrow 74g + 4g$
- (c) Molecules =  $6.02 \times 10^{23} + 12.046 \times 10^{23} \rightarrow 6.02 \times 10^{23} + 12.046 \times 10^{23}$

## **Solution 2:**

- (a) 100 g of CaCO<sub>3</sub> produces = 164 g of Ca(NO<sub>3</sub>)<sub>2</sub> So, 15 g CaCO<sub>3</sub> will produce =  $164 \times 15/100 = 24.6$  g Ca (NO<sub>3</sub>)<sub>2</sub>
- (b) 1 V of CaCO<sub>3</sub> produces 1 V of CO<sub>2</sub> 100 g of CaCO<sub>3</sub> has volume = 22.4 litres So, 15 g will have volume = 22.4 × 15/100 = 3.36 litres CO<sub>2</sub>



# **Solution 3:**

$$\begin{split} 2NH_3 + H_2SO_4 &\longrightarrow (NH_4)_2SO_4 \\ 66 \ g \\ 2NH_3 + H_2SO_4 &\longrightarrow (NH_4)_2SO_4 \\ 34 \ g98 \ g132 \ g \\ For \ 132 \ g \ (NH_4)_2SO_4 &= 34 \ g \ of \ NH_3 \ is \ required \\ So, \ for \ 66 \ g \ (NH_4)_2SO_4 &= 66 \times 32/132 = 17 \ g \ of \ NH_3 \ is \ required \end{split}$$

- (a) 17g of NH<sub>3</sub> requires volume = 22.4 litres
- (b) Mass of acid required, for producing  $132g (NH_4)_2SO_4 = 98g$ So, Mass of acid required, for  $66g (NH_4)_2SO_4 = 66 \times 98/132 = 49g$

# **Solution 4:**

(a) Molecular mass of  $Pb_3O_4 = 3 \times 207.2 + 4 \times 16 = 685 \text{ g}$  685 g of  $Pb_3O_4 \text{ gives} = 834 \text{ g}$  of  $PbCl_2$ Hence, 6.85 g of  $Pb_3O_4 \text{ will give} = 6.85 \times 834/685 = 8.34 \text{ g}$ 

(b) 685g of  $Pb_3O_4$  gives = 71g of  $Cl_2$ Hence, 6.85 g of  $Pb_3O_4$  will give =  $6.85 \times 71/685 = 0.71$  g  $Cl_2$ 

(c) 1 V Pb<sub>3</sub>O<sub>4</sub>produces 1 V Cl<sub>2</sub> 685g of Pb<sub>3</sub>O<sub>4</sub>has volume = 22.4 litres = volume of Cl<sub>2</sub> produced So, 6.85 Pb<sub>3</sub>O<sub>4</sub> will produce =  $6.85 \times 22.4/685 = 0.224$  litres of Cl<sub>2</sub>

# **Solution 5:**

Molecular mass of  $KNO_3 = 101$  g 63 g of  $HNO_3$  is formed by = 101 g of  $KNO_3$ So, 126000 g of  $HNO_3$  is formed by = 126000 × 101/63 = 202 kg Similarly,126 g of  $HNO_3$  is formed by 170 kg of  $NaNO_3$ So, smaller mass of  $NaNO_3$  is required

# **Solution 6:**

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$ 100g73g22.4L

(a)  $V_1 = 2 \text{ litres } V_2 = ?$   $T_1 = (273 + 27) = 300 \text{KT}_2 = 273 \text{K}$   $V_1/T_1 = V_2/T_2$   $V_2 = V_1T_2/T_1 = \left[\frac{2 \times 273}{300}\right] L$ Now at STP 22.4 litres of CO<sub>2</sub> are produced using CaCO<sub>3</sub> = 100g So,  $\left[\frac{2 \times 273}{300}\right]$  litres are produced by =100/22.4 2274/300 =.125g

(b) 22.4 litres are CO<sub>2</sub> are prepared from acid = 73g  $\left[\frac{2 \times 273}{300}\right]$  litres are prepared from = 73/22.4 2273/300 = 5.9g



## **Solution 7:**

 $2H_2O \rightarrow 2H_2 + O_2$   $2 \ V2 \ V1 \ V$   $2 \ moles of \ H_2O \ gives = 1 \ mole of \ O_2$ So, 1 mole of  $H_2O$  will give = 0.5 moles of  $O_2$ so, mass of  $O_2$  = no. of moles x molecular mass  $= 0.5 \times 32 = 16 \ g$  of  $O_2$ and 1 mole of  $O_2$  occupies volume = 22.4 litre so, 0.5 moles will occupy =  $22.4 \times 0.5 = 11.2$  litres at S.T.P.

# **Solution 8:**

 $2Na_2O_2 + 2H_2O \rightarrow 4NaOH + O_2$ 2 V4 V1 V

- (a) Mol. Mass of  $Na_2O_2 = 2 \times 23 + 2 \times 16 = 78$  g Mass of  $2Na_2O_2 = 156$  g 156 g  $Na_2O_2$  gives = 160 g of NaOH ( $4 \times 40$  g) So, 1.56  $Na_2O_2$  will give  $= 160 \times 1.56/156 = 1.6$  g
- (b)  $156 \text{ g Na}_2\text{O}_2 \text{ gives} = 22.4 \text{ litres of oxygen}$ So,  $1.56 \text{ g will give} = 22.4 \times 1.56/156 = 0.224 \text{ litres}$ =  $224 \text{ cm}^3$
- (c)  $156 \text{ g Na}_2\text{O}_2 \text{ gives} = 32 \text{ g O}_2$ So,  $1.56 \text{ g Na}_2\text{O}_2 \text{ will give} = 32 \times 1.56/156$ = 32/100 = 0.32 g

## **Solution 9:**

 $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O + 2NH_3$ 2 V1 V1 V2 V Mol. Mass of  $2NH_4Cl = 2[14 + (1 \times 4) + 35.5] = 2[53.5] = 107 g$ 

- (a)  $107 \text{ g NH}_4\text{Cl gives} = 34 \text{ g NH}_3$ So,  $21.4 \text{ g NH}_4\text{Cl will give} = 21.4 \times 34/107 = 6.8 \text{ g NH}_3$
- (b) The volume of 17 g NH<sub>3</sub> is 22.4 litre So, volume of 6.8 g will be  $= 6.8 \times 22.4/17 = 8.96$  litre



#### **Solution 10:**

Al<sub>4</sub>C<sub>3</sub> + 12 H<sub>2</sub>O  $\rightarrow$  3CH<sub>4</sub> + 4Al(OH)<sub>3</sub> 1 V3 V4 V 144g3 × 22.4 l volume Now, since 144 g of Al<sub>4</sub>C<sub>3</sub> gives = 3 × 22.4 litre of CH<sub>4</sub> So, 14.4 g of Al<sub>4</sub>C<sub>3</sub> will give = 3 × 22.4 × 14.4 /144 = 6.72 litres CH<sub>4</sub>

## **Solution 11:**

 $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2 1$ V4 V1 V1 V

- (a) 1 mole of  $MnO_2$  weighs = 87 g (mol. Mass) So, 0.02 mole will weigh =  $87 \times 0.02 = 1.74$  g  $MnO_2$
- (b) 1 mole MnO<sub>2</sub> gives = 1 mole of MnCl<sub>2</sub> So, 0.02 mole MnO<sub>2</sub> will give = 0.02 mole of MnCl<sub>2</sub>
- (c) 1 mole MnCl<sub>2</sub> weighs = 126 g(mol mass) So, 0.02 mole MnCl<sub>2</sub> will weigh =  $126 \times 0.02$  g = 2.52 g
- (d) 0.02 mole MnO<sub>2</sub> will form = 0.02 mole of Cl<sub>2</sub>
- (e) 1 mole of  $Cl_2$  weighs = 35.5 g So, 0.02 mole will weigh =  $71 \times 0.02 = 1.42$  g of  $Cl_2$
- (f) 1 mole of chlorine gas has volume = 22.4 litres So, 0.02 mole will have volume =  $22.4 \times 0.02 = 0.448$  litre
- (g) 1 mole  $MnO_2$  requires HCl = 4 mole So, 0.02 mole  $MnO_2$  will require =  $4 \times 0.02 = 0.08$  mole
- (h) For 1 mole MnO<sub>2</sub>, acid required = 4 mole of HCl So, for 0.02 mole, acid required =  $4 \times 0.02 = 0.08$  mole Mass of HCl =  $0.08 \times 36.5 = 2.92$  g

# Vedan

# **Solution 12:**

 $N_2 + 3H_2 \rightarrow 2NH_3$   $28g \ 6g \ 34g$   $28g \ of nitrogen requires hydrogen = 6g$   $2000g \ of nitrogen requires hydrogen = 6/28 \times 2000 = 3000/7g$ So mass of hydrogen left unreacted =  $1000 - 3000/7 = 571.4g \ of \ H_2$ 

(b) 28g of nitrogen forms NH<sub>3</sub> = 34g 2000g of N<sub>2</sub> forms NH<sub>3</sub> = 34/28 × 2000 = 2428.6g

# **MISCELLANEOUS EXERCISES:**

#### **Solution 1:**

From equation:  $2H_2 + O_2 \rightarrow 2H_2O$ 1 mole of Oxygen gives = 2 moles of steam so, 0.5 mole oxygen will give =  $2 \times 0.5 = 1$ mole of steam

# **Solution 2:**

 $3\text{Cu} + 8\text{HNO}_3 \rightarrow 3\text{Cu} (\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NO}_3 +$ 

- (a) For 504g HNO<sub>3</sub>, Cu required is = 192 g So, for 63g HNO<sub>3</sub> Cu required = 192 × 63/504 = 24g
- (b) 504 g of HNO<sub>3</sub> gives =  $2 \times 22.4$  litre volume of NO So, 63g of HNO<sub>3</sub> gives =  $2 \times 22.4 \times 63/504 = 5.6$  litre of NO

#### **Solution 3:**

- (a) 28g of nitrogen = 1mole So, 7g of nitrogen =  $1/28 \times 7 = 0.25$  moles
- (b) Volume of 71 g of Cl2 at STP = 22.4 litres Volume of 7.1 g chlorine = $22.4 \times 7.1/71 = 2.24$  litre
- (c)  $22400 \text{cm}^3$  volume have mass = 28 g of CO(molar mass) So,  $56 \text{cm}^3$  volume will have mass =  $28 \times 56/22400 = 0.07 \text{ g}$

Chemistry

# **Solution 4:**

% of N in NaNO<sub>3</sub> = 
$$\frac{14}{85}$$
 ×100 = 16.47%  
% of N in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> =  $\frac{14}{132}$  ×100 = 21.21%  
% of N in CO(NH<sub>2</sub>)<sub>2</sub> =  $\frac{14}{60}$  ×100 = 46.66%  
So, highest percentage of N is in urea.

# **Solution 5:**

$$2H2O \longrightarrow H2 + O2$$

$$2 V 2 V 1 V$$

(a) From equation, 2 V of water gives 2 V of H<sub>2</sub> and 1 V of O<sub>2</sub> where 2 V = 2500 cm<sup>3</sup> so, volume of O<sub>2</sub> liberated = 2V/V = 1250 cm<sup>3</sup>

(b) 
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
$$\frac{P_1V_1}{T_1} = \frac{7P_1 \times V_2}{2 \times T_1}$$
$$V_2 = \frac{2500 \times 2}{7}$$
$$V_2 = \frac{5000}{7} \text{ cm}^3$$

(c) 
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
  
 $\frac{5000}{7 \times 2500} = \frac{T_1}{T_2}$   
 $T_2 = 3.5 T_1$ 

i.e. temperature should be increased by 3.5 times.

## **Solution 6:**

Molecular mass of urea = 12 + 16 + 2(14 + 2) = 60g60g of urea contains nitrogen = 28gSo, in 50g of urea, nitrogen present = 23.33 g50 kg of urea contains nitrogen = 23.33 kg



# **Solution 7:**

(a) 80% C and 20% H

So, atomic ratio of C and H are:  $C = \frac{80}{12} = 6.66$ ;  $H = \frac{20}{1} = 20$ 

Simple ratio of C:H = 1:3

So, empirical formula is CH<sub>3</sub>

(b) Empirical formula mass =  $12 + (3 \times 1) = 15$  g

Vapour density = 15

So, the molecular mass =  $15(V.D) \times 2 = 30 g$ 

Hence, n = 2 so the molecular formula is  $C_2H_6$ 

# **Solution 8:**

 $22400 \text{cm}^3 \text{ CO}_2 \text{ has mass} = 44 \text{g}$ 

so,  $224 \text{ cm}^3 \text{ CO}_2 \text{ will have mass} = 0.44 \text{ g}$ 

Now since CO<sub>2</sub> is being formed and X is a hydrocarbon so it contains C and H.

In 0.44g CO<sub>2</sub>, mass of carbon = 0.44 - 0.32 = 0.12g = 0.01g atom

So, mass of Hydrogen in X = 0.145 - 0.12 = 0.025g

= 0.025g atom

Now the ratio of C:H is C = 1: H = 2.5 or C = 2: H = 5

i.e. the formula of hydrocarbon is C<sub>2</sub>H<sub>5</sub>

- (a) C and H
- (b) Copper (II) oxide was used for reduction of the hydrocarbon.
- (c)
- (i) no. of moles of  $CO_2 = 0.44/44 = 0.01$  moles
- (ii) ss of C = 0.12 g
- (iii) ma H = 0.025 g
- (iv) The empirical formula of  $X = C_2H_5$

#### **Solution 9:**

Mass of X in the given compound = 24g

Mass of oxygen in the given compound = 64g

So total mass of the compound = 24 + 64 = 88g

% of X in the compound =  $24/88 \ 100 = 27.3\%$ 

% of oxygen in the compound =  $64/88 \ 100 = 72.7\%$ 

Element % At. Mass Atomic ratio Simplest ratio

X 27.3 12 27.3/12 = 2.27 1

O 72.7 16 72.2/16 = 4.54 2

So simplest formula =  $XO_2$ 

Vedanti

# **Solution 10:**

(a) V.D = 
$$\frac{mass\ of\ gas\ at\ STP}{mass\ of\ equal\ volume\ of\ H_2} = \frac{85}{5} = 17$$

(b) Molecular mass =  $17(V.D) \times 2 = 34g$ 

# **Solution 11:**

- (a)  $CO_2 + C \rightarrow 2CO$ 1 V 1 V 2 V 12 g of C gives = 44.8 litre volume of CO So, 3 g of C will give = 11.2 litre of CO
- (b)  $2CO + O_2 \rightarrow 2CO_2$ 2 V 1 V 2 V
- (i) 2 V CO requires oxygen = 1 V so, 24 cm<sup>3</sup> CO will require = 24/2 = 12 cm<sup>3</sup>
- (ii)  $2 \times 22400 \text{ cm}^3 \text{ CO gives} = 2 \times 22400 \text{ cm}^3 \text{ CO}_2$ so,  $24\text{cm}^3 \text{ CO will give} = 24 \text{ cm}^3 \text{ CO}_2$

# **Solution 12:**

$$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$$
  
2 V 2 V 4 V 1 V

- (a) 56 g of CaO is obtained with  $NO_2 = 2 \times 22.4$  litre of  $NO_2$  So, 5.6g of CaO is obtained with  $NO_2 = 2 \times 22.4 \times 5.6/56$  = 4.48 litre
- (b) 56 g of CaO is obtained by = 164 g Ca(NO<sub>3</sub>)<sub>2</sub> So, 5.6 g CaO is obtained by =  $5.6 \times 56/164$  g Ca(NO<sub>3</sub>)<sub>2</sub> = 16.4 g of Ca(NO<sub>3</sub>)<sub>2</sub> is heated.



# **Solution 13:**

(a) Number of molecules in 100cm<sub>3</sub> of oxygen = Y

According to Avogadros law, Equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules. Therefore ,number of molecules in 100 cm<sup>3</sup> of nitrogen under the same conditions of temperature and pressure = Y

So, number of molecules in 50 cm3 of nitrogen under the same conditions of temperature and pressure =  $Y/100 \times 50 = Y/2$ 

(b)

- (i) Empirical formula is the formula which tells about the simplest ratio of combining capacity of elements present in a compound.
- (ii) The empirical formula is CH<sub>3</sub>
- (iii) The empirical formula mass for  $CH_2O = 30$

$$V.D = 30$$

Molecular formula mass =  $V.D \times 2 = 60$ 

Hence, n = mol. Formula mass/empirical formula mass = 2

So, molecular formula =  $(CH_2O)_2 = C_2H_4O_2$ 

## **Solution 14:**

The relative atomic mass of Cl =  $(35 \times 3 + 1 \times 37)/4 = 35.5$  amu

## **Solution 15:**

Mass of silicon in the given compound = 5.6g

Mass of the chlorine in the given compound = 21.3g

Total mass of the compound = 5.6g + 21.3g = 26.9g

% of silicon in the compound =  $56/26.9 \times 100 = 20.82\%$ 

% of chlorine in the compound =  $21.2/26.9 \times 100 = 79.18\%$ 

Element % At. Mass At. Ratio Simplest ratio

Si 20.82 28 20.82/28 = 0.74 1

C179.1835.579.18/35.5 = 2.233

So the empirical formula of the given compound = SiCl<sub>3</sub>



## **Solution 16:**

% composition Atomic ratio Simple ratio

$$P = 38.27\% 38.27/31 = 1.231$$

$$H = 2.47\% \ 2.47/1 = 2.47 \ 2$$

$$O = 59.26\% 59.26/16 = 3.703$$

So, empirical formula is PH<sub>2</sub>O<sub>3</sub> or H<sub>2</sub>PO<sub>3</sub>

Empirical formula mass =  $31 + 2 \times 1 + 3 \times 16 = 81$ 

The molecular formula is =  $H_4P_2O_6$ , because n = 162/81 = 2

# **Solution 17:**

 $V_1 = 10 \text{ litres } V_2 = ?$ 

$$T_1 = 27 + 273 = 300 \text{K}$$
  $T_2 = 273 \text{K}$ 

 $P_1 = 700 \text{ mm } P_2 = 760 \text{ mm}$ 

Using the gas equation

$$\begin{aligned} & \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \\ & V_2 = \frac{P_1 V_1 T_1}{T_1 P_2} = \frac{700 \times 10 \times 273}{300 \times 760} \end{aligned}$$

Molecular weight A = 60

So, weight of 22.4 liters of A at STP = 60g

Weight of = 
$$\frac{700 \times 10 \times 273}{300 \times 760}$$
 litres of A at STP  
=  $\frac{60}{22.4} \times \frac{700 \times 10 \times 273}{300 \times 760}$  g or 22.45g

# **Solution 18:**

(a) Molecular mass of  $CO_2 = 12 + 2x16 = 44$  g So, vapour density (V.D) = mol. Mass/2 = 44/2 = 22 V.D =  $\frac{mass\ of\ certain\ amount\ of\ CO_2}{mass\ of\ equal\ volume\ of\ hydrogen} = \frac{m}{1}$  $22 = \frac{m}{1}$ 

So, mass of  $CO_2 = 22 \text{ kg}$ 

(b) According to Avogadros law, equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules.

So, number of molecules of carbon dioxide in the cylinder =number of molecules of hydrogen in the cylinder=X



# **Solution 19:**

- (a) The volume occupied by 1 mole of chlorine = 22.4 litre
- (b) Since PV=constant so, if pressure is doubled; the volume will become half i.e. 11.2 litres.
- (c)  $V_1/V_2 = T_1/T_2$   $22.4/V_2 = 273/546$  $V_2 = 44.8$  litres
- (d) Mass of 1 mole  $Cl_2$  gas =35.5 x 2 =71 g

# **Solution 20:**

- (a) Total molar mass of hydrated CaSO<sub>4</sub>. × H<sub>2</sub>O = 136 + 18x Since 21% is water of crystallization, so  $\frac{18x}{136 + 18x} = \frac{21}{100}$ So, x = 2 i.e. water of crystallization is 2.
- (b) For 18 g water, vol. of hydrogen needed = 22.4 litre So, for 1.8 g, vol. of H<sub>2</sub> needed =  $1.8 \times 22.4/18 = 2.24$  litre Now 2 vols. of water = 1 vol. of oxygen 1 vol. of water = 1/2 vol. of O<sub>2</sub> = 22.4/2 = 11.2 lit. 18 g of water = 11.2 lit. of O<sub>2</sub> 1.8 g of water = 11.2/18 18/10 = 1.12 lit.
- (c) 32g of dry oxygen at STP = 22400cc 2g will occupy = 224002/32 = 1400cc  $P_1 = 760 \text{mm} P_2 = 740 \text{mm}$   $V_1 = 1400 \text{cc} V_2 = ?$   $T_1 = 273 \text{ K}, T_2 = 27 + 73 = 300 \text{K}$   $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$   $V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{760 \times 1400 \times 300}{273 \times 740} = 1580 \text{ cc}$  = 1580/1000 = 1.581(d)  $P_1 = 750 \text{mm} P_2 = 760 \text{mm}$

$$\begin{split} V_1 &= 44 \text{lit. } V_2 = ? \\ T_1 &= 298 \text{K } T_2 = 273 \text{K} \\ \frac{P_1 V_1}{T_1} &= \frac{P_2 V_2}{T_2} \\ V_2 &= \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{750 \times 44 \times 273}{298 \times 760} = 39.78 \text{ lit} \\ 22.4 \text{ lit. of CO2 at STP has mass} &= 44g \\ 39.78 \text{ lit. of CO2 at STP has mass} &= \frac{44 \times 39.78}{22.4} \\ &= 78.14g \end{split}$$

(e) Since 143.5g of AgCl is produced from = 58.5 g of NaCl so, 1.435 g of AgCl is formed by = 0.585 g of NaCl % of NaCl = 0.585 × 100 = 58.5%



# **Solution 21:**

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{P_1 \times 22.4}{273} = \frac{2P_2V_2}{546}$$

$$V_2 = 22.4 \text{ litre}$$

# **Solution 22:**

- (a) The molecular mass of  $(Mg(NO_3)_2.6H_2O = 256.4 g$ % of Oxygen =  $12 \times 16/256$ = 75%
- (b) The molecular mass of boron in  $Na_2B_4O_7.10H_2O = 382$  g % of  $B = 4 \times 11/382 = 11.5\%$

# **Solution 23:**

$$V \times \frac{760}{273} = \frac{360 \times 380}{360}$$

$$V = \frac{360 \times 380 \times 273}{760 \ 360} = 136.5 \text{ cm}^3$$

$$136.5 \text{ cm}^3 \text{ of the gas weigh} = 0.546$$

$$22400 \text{ cm}^3 \text{ of the gas weight} = \frac{0.546 \times 22400}{136.5} = 89.6 \text{ a.m.u}$$
Relative molecular mass = 89.6 a.m.u

# **Solution 24:**

- (a) 252 g of solid ammonium dichromate decomposes to give 152 g of solid chromium oxide, so the loss in mass in terms of solid formed = 100 g Now, if 63 g ammonium dichromate is decomposed, the loss in mass would be =  $100 \times 63/252 = 25$  g
- (b) If 252 g of ammonium dichromate produces  $Cr_2O_3 = 152$  g So, 63 g ammonium dichromate will produce  $= 63 \times 152/252 = 38$  g



## **Solution 25:**

 $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$  2 V 3 V 2 V  $128 g \text{ of } SO_2 \text{ gives} = 2 \times 22.4 \text{ litres volume}$ So,  $12.8 g \text{ of } SO_2 \text{ gives} = 2 \times 22.4 \times 12.8/128$  = 4.48 litre volumeOr one can say 4.48 litres of hydrogen sulphide.  $2 \times 22.4 \text{ litre } H_2S \text{ requires oxygen} = 3 \times 22.4 \text{ litre}$ So,  $4.48 \text{ litres } H_2S \text{ will require} = 6.72 \text{ litre of oxygen}$ 

# **Solution 26:**

From equation,  $2NH_3 + 2 O_2 \rightarrow 2NO + 3H_2O$ When 60 g NO is formed, mass of steam produced = 54 g So, 1.5 g NO is formed, mass of steam produced =  $54 \times 1.5/60 = 1.35$  g

# **Solution 27:**

In 1 hectare of soil,  $N_2$  removed = 20 kg So, in 10 hectare  $N_2$  removed = 200 kg The molecular mass of  $Ca(NO_3)_2 = 164$ Now, 28 g  $N_2$  present in fertilizer = 164 g  $Ca(NO_3)_2$ So, 200000 g of  $N_2$  is present in =  $164 \times 200000/28$ = 1171.42 kg

# **Solution 28:**

- (a) 1 mole of phosphorus atom = 31 g of phosphorus 31 g of P = 1 mole of P 6.2g of P =  $\frac{6.2 \times 1}{31}$  = 0.2 mole of P
- (b) 31 g P reacts with  $HNO_3 = 315$  g so, 6.2 g P will react with  $HNO_3 = 315 \times 6.2/31 = 63$  g

Moles of steam formed from 31g phosphorus = 18g/18g = 1mol
Moles of steam formed from 6.2 g phosphorus = 1mol/31g6.2 = 0.2 mol
Volume of steam produced at STP = 0.2 × 22.4 l/MOL = 4.48 litre
Since the pressure (760 mm) remains constant, but the temperature (273 + 273) = 546 is double, the volume of the steam also gets doubled

So, Volume of steam produced at 760mm Hg and  $273^{\circ}$ C =  $4.48 \times 2 = 8.96$ litre





# **Solution 29:**

- (a) 1 mole of gas occupies volume = 22.4 litre
- (b)  $112 \text{cm}^3$  of gaseous fluoride has mass = 0.63 gso,  $22400 \text{cm}^3$  will have mass =  $0.63 \quad 22400/112$ = 126 gThe molecular mass = At mass P + At. mass of F

126 = 31 + At. Mass of F

So, At. Mass of F = 95 g

But, at. mass of F = 19 so 95/19 = 5

Hence, there are 5 atoms of F so the molecular formula =  $PF_5$ 

# **Solution 30:**

 $Na_2CO_3.10H_2O \rightarrow Na_2CO_3 + 10H_2O$ 286 g 106 g So, for 57.2 g Na<sub>2</sub>CO<sub>3</sub>.10H<sub>2</sub>O =  $106 \times 57.2/286 = 21.2$  g Na<sub>2</sub>CO<sub>3</sub>

# **Solution 31:**

- (a) The molecular mass of  $Ca(H_2PO_4)_2 = 234$ The % of P = 2 31/234 = 26.49 %
- (b) Simple ratio of M = 34.5/56 = 0.616 = 1Simple ratio of Cl = 65.5/35.5 = 1.845 = 3

Empirical formula = MCl<sub>3</sub>

Empirical formula mass = 162.5, Molecular mass =  $2 \times V.D = 325$ 

So, n = 2

So, molecular formula =  $M_2Cl_6$ 

# **Solution 32:**

 $V_1/V_2 = n_1/n_2$ 

So, no. of moles of Cl = x/2 (since V is directly proportional to n)

No. of moles of  $NH_3 = x$ 

No. of moles of  $SO_2 = x/4$ 

#### Class X



This is because of Avogadros law which states Equal volumes of all gases, under similar conditions of temperature and pressure, contain equal number of molecules.

So, 20 litre nitrogen contains x molecules

So, 10 litre of chlorine will contain =  $x \times 10/20 = x/2$  mols.

And 20 litre of ammonia will also contain =x molecules

And 5 litre of sulphur dioxide will contain =  $x \times 5/20 = x/4$  mols.

# **Solution 33:**

 $4N_2O + CH_4 \longrightarrow CO_2 + 2H_2O + 4N_2$   $4 \ V \ 1 \ V \ 1 \ V \ 2 \ V \ 4 \ V$   $2 \ x \ 22400 \ litre \ steam \ is \ produced \ by \ N_2O = 4 \times 22400 \ cm^3$   $So, \ 150 \ cm^3 \ steam \ will \ be \ produced \ by= 4 \times 22400 \times 150/2 \times 22400$   $= 300 \ cm^3 \ N_2O$ 

# **Solution 34:**

- (a) Volume of  $O_2 = V$ Since  $O_2$  and  $N_2$  have same no. of molecules = x so, the volume of  $N_2 = V$
- (b) 3x molecules means 3V volume of CO
- (c) 32 g oxygen is contained in = 44 g of CO<sub>2</sub> So, 8 g oxygen is contained in = 44 × 8/32 = 11 g
- (d) Avogadro's law is used in the above questions.

## **Solution 35:**

- (a) 444 g is the molecular formula of  $(NH_4)_2$  PtCl<sub>6</sub> % of Pt =  $(195/444) \times 100 = 43.91\%$  or 44%
- (b) simple ratio of Na = 42.1/23 = 1.83 = 3simple ratio of P = 18.9/31 = 0.609 = 1simple ratio of O = 39/16 = 2.43 = 4So, the empirical formula is Na<sub>3</sub>PO<sub>4</sub>



# **Solution 36:**

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ 

1 V 2 V 1 V 2 V

From equation:

22.4 litres of methane requires oxygen = 44.8 litres  $O_2$ 

 $2H_2 + O_2 \rightarrow 2H_2O$ 

2 V 1 V 2 V

From equation,

44.8 litres hydrogen requires oxygen = 22.4 litres  $O_2$ 

So, 11.2 litres will require =  $22.4 \times 11.2/44.8 = 5.6$  litres

Total volume = 44.8 + 5.6 = 50.4 litres

## **Solution 37:**

According to Avogadros law:

Equal volumes of all gases, under similar conditions of temperature and pressure, contain equal number of molecules.

So, 1 mole of each gas contains =  $6.02 \times 10^{23}$  molecules Mol. Mass of H<sub>2</sub> (2),O<sub>2</sub>(32) ,CO<sub>2</sub>(44),SO<sub>2</sub>(64),Cl<sub>2</sub>(71)

- 1) Now 2 g of hydrogen contains molecules =  $6.02 \times 10^{23}$ So, 8g of hydrogen contains molecules =  $8/2 \times 6.02 \times 10^{23}$ =  $4 \times 6.02 \times 10^{23} = 4$ M molecules
- 2) 32g of oxygen contains molecules = 8/32 6.02  $10^{23}$  = M/4
- 3) 44g of carbon dioxide contains molecules =  $8/44 6.02 \cdot 10^{23} = 2M/11$
- 4) 64g of sulphur dioxide contains molecules = $6.02 \times 10^{23}$  So, 8g of sulphur dioxide molecules =  $8/64 \times 6.02 \times 10^{23}$  = M/8
- 5) 71 g of chlorine contains molecules =  $6.02 \times 10^{23}$ So, 8g of chlorine molecules =  $8/72 \times 6.02 \times 10^{23} = 8M/71$ Since 8M/71 < M/8 < 2M/11 < M/4 < 4MThus  $Cl_2 < SO_2 < CO_2 < O_2 < H_2$
- 6)
- (i) Least number of molecules in Cl<sub>2</sub>
- (ii) Most number of molecules in H<sub>2</sub>



#### **Solution 38:**

```
Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2NaCl

Molecular mass of BaSO_4 = 233 g

Now, 233 g of BaSO_4 is produced by Na_2SO_4 = 142 g

So, 6.99 g BaSO_4 will be produced by = 6.99 \times 142/233 = 4.26

The percentage of Na_2SO_4 in original mixture = 4.26 \times 100/10 = 42.6\%
```

# **Solution 39:**

- (a) 1 litre of oxygen has mass = 1.32 g So, 24 litres (molar vol. at room temp.) will have mass =  $1.32 \times 24$ = 31.6 or 32 g
- (b)  $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$ 316 g of  $KMnO_4$  gives oxygen = 24 litres So, 15.8 g of  $KMnO_4$  will give =  $24 \times 316/15.8 = 1.2$  litres

# **Solution 40:**

(a)

- (i) The no. of moles of  $SO_2 = 3.2/64 = 0.05$  moles
- (ii) In 1 mole of SO<sub>2</sub>, no. of molecules present =  $6.02 \times 10^{23}$  So, in 0.05 moles, no. of molecules =  $6.02 \times 10^{23} \times 0.05$  =  $3.0 \times 10^{22}$
- (iii) The volume occupied by 64 g of  $SO_2 = 22.4 \text{ dm}^3$ 3.2 g of  $SO_2$  will be occupied by volume =  $22.4 \times 3.2/64 = 1.12 \text{ dm}^3$
- (b) Gram atoms of Pb = 6.21/207=0.03 = 1Gram atoms of C1 = 4.26/35.5 = 0.12 = 4

So, the empirical formula = PbCl<sub>4</sub>

# **Solution 41:**

- (i) D contains the maximum number of molecules because volume is directly proportional to the number of molecules.
- (ii) The volume will become double because volume is directly proportional to the no. of molecules at constant temperature and pressure.

```
V_1/V_2 = n_1/n_2

V_1/V_2 = n_1/2n_1

So, V_2 = 2V_1
```

- (iii) Gay lussac's law of combining volume is being observed.
- (iv) The volume of D =  $5.6 \times 4 = 22.4$  dm<sup>3</sup>, so the number of molecules =  $6 \times 10^{23}$  because according to mole concept 22.4 litre volume at STP has =  $6 \times 10^{23}$  molecules
- (v) No. of moles of D = 1 because volume is 22.4 litre so, mass of  $N_2O = 1 \times 44 = 44$  g



#### **Solution 42:**

The formula of aluminium nitride is AlN.

The molecular mass = 41

So, the percentage of  $N = 14 \times 100/41 = 34.146 \%$ 

# **Solution 43:**

(a) NaCl + NH<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O  $\rightarrow$  NaHCO<sub>3</sub> + NH<sub>4</sub>Cl 2NaHCO<sub>3</sub>  $\rightarrow$  Na<sub>2</sub>CO<sub>3</sub> + H<sub>2</sub>O + CO<sub>2</sub>

From equation:

106 g of Na<sub>2</sub>CO<sub>3</sub> is produced by = 168 g of NaHCO<sub>3</sub>

So, 21.2 g of  $Na_2CO_3$  will be produced by =  $168 \times 21.2/106$ 

= 33.6 g of NaHCO<sub>3</sub>

(b) For 84 g of NaHCO<sub>3</sub>, required volume of  $CO_2 = 22.4$  litre

So, for 33.6 g of NaHCO<sub>3</sub>, required volume of  $CO_2 = 22.4 \times 33.6/84$ 

= 8.96 litre

# **Solution 44:**

(a) Element % Atomic mass Atomic ratio Simple ratio

K 47.9 39 1.22 2

Be 5.5 9 0.6 1

F 46.6 19 2.45 4

so, empirical formula is K<sub>2</sub>BeF<sub>4</sub>

(b)  $3\text{CuO} + 2\text{NH}_3 \rightarrow 3\text{Cu} + 3\text{H}_2\text{O} + \text{N}_2$ 

3 V 2 V 3 V 1V

 $3 \times 80$  g of CuO reacts with =  $2 \times 22.4$  litre of NH<sub>3</sub>

so, 120 g of CuO will react with =  $2 \times 22.4 \times 120/80 \times 3 =$ 

22.4 litres

# **Solution 45:**

(a) The molecular mass of ethylene(C<sub>2</sub>H<sub>4</sub>) is 28 g

No. of moles = 1.4/28 = 0.05 moles

No. of molecules =  $6.023 \times 10^{23} \times 0.05 = 3 \times 10^{22}$  molecules

Volume =  $22.4 \times 0.05 = 1.12$  litres

(b) Molecular mass =  $2 \times V.D$ 

S0, V.D = 28/2 = 14



Vedantu LIVE ONLINE TUTORING

# **Solution 46:**

(a) Molecular mass of  $Na_3AlF_6 = 210$ So, Percentage of  $Na = 3 \times 23 \times 100/210 = 32.85\%$ 

(b)  $2CO + O_2 \rightarrow 2CO_2$ 2 V 1 V 2 V

1 mole of  $O_2$  has volume = 22400 ml

Volume of oxygen used by  $2 \times 22400$  ml CO = 22400 ml

So, Vol. of O<sub>2</sub> used by 560 ml CO =  $22400 \times 560/(2 \times 22400)$ 

 $= 280 \, \text{ml}$ 

So, Volume of CO<sub>2</sub> formed is 560 ml.

# **Solution 47:**

(a)  $NH_4NO_3 \rightarrow N_2O + 2H_2O$ 

1mole 1mole 2mole

1 V 1 V 2 V

44.8 litres of water produced by = 22.4 litres of NH<sub>4</sub>NO<sub>3</sub>

So, 8.96 litres will be produced by =  $22.4 \times 8.96/44.8$ 

= 4.48 litres of NH<sub>4</sub>NO<sub>3</sub>

So, 4.48 litres of N<sub>2</sub>O is produced.

- (i) 44.8 litre  $H_2O$  is produced by = 80 g of  $NH_4NO_3$ So, 8.96 litre  $H_2O$  will be produced by =  $80 \times 8.96/44.8$ =  $16g NH_4NO_3$
- (ii) % of O in NH<sub>4</sub>NO<sub>3</sub> =  $3 \times 16/80 = 60\%$

## **Solution 48:**

(i) Element % atomic mass atomic ratio simple ratio

C 4.8 
$$12\frac{4.8}{12} = 0.4^{1}$$

Br 95.2 80 
$$\frac{95.2}{80}$$
 = 1.2<sup>3</sup>

So, empirical formula is CBr<sub>3</sub>

Chemistry

- (ii) Empirical formula mass =  $12 + 3 \times 80 = 252$  g molecular formula mass =  $2 \times 252$ (V.D) = 504 g n = 504/252 = 2
- so, molecular formula =  $C_2Br_6$

# **Solution 49:**

 $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$ 2 V 25 V 16 V 18 V

- (i) 2 moles of octane gives = 16 moles of  $CO_2$  so, 1 mole octane will give = 8 moles of  $CO_2$
- (ii) 1 mole  $CO_2$  occupies volume = 22.4 litre so, 8 moles will occupy volume =  $8 \times 22.4 = 179.2$  litre
- (iii) 1 mole  $CO_2$  has mass = 44 g so, 16 moles will have mass =  $44 \times 16 = 704$  g
- (iv) Empirical formula is C<sub>4</sub>H<sub>9</sub>.

# **Solution 50:**

- (a) (i) element % atomic mass at. ratio simple ratio C 14.4 12 1.2 1
  H 1.2 1 1.2 1
  Cl 84.5 35.5 2.38 2
  Empirical formula = CHCl<sub>2</sub>
  (ii) Empirical formula mass = 12 + 1 + 71 = 84 g
  - Since molecular mass = 168 so, n = 2 so, molecular formula =  $(CHCl_2)_2 = C_2H_2Cl_4$
- (b) (i)  $C + 2H_2SO_4 \rightarrow CO_2 + 2H_2O + 2SO_2$ 1 V 2 V 1 V 2 V 196 g of  $H_2SO_4$  is required to oxidized = 12 g C So, 49 g will be required to oxidise =  $49 \times 12/196 = 3$  g
- (ii) 196 g of  $H_2SO_4$  occupies volume =  $2 \times 22.4$  litres So, 49 g  $H_2SO_4$  will occupy =  $2 \times 22.4 \times 49/196 = 11.2$  litre i.e. volume of  $SO_2 = 11.2$  litre