Aula 3

Lógica de Programação e Algoritmos

Prof. Vinicius Pozzobon Borin

Conversa Inicial

2

 O objetivo desta aula é construir algoritmos com estruturas de condição/decisão Aprenderemos:
 Condicional simples
 Condicional composta
 Condicionais aninhadas
 Condicional de múltipla escolha (elif)

3 4

Estrutura condicional

5 6

Descrição narrativa - Caminho da esquerda

- Início
 - 1. Seguir até a entrada da floresta
 - 2. Tomar o caminho da esquerda
 - 3. Seguir até as toras de madeira
 - 4. Cortar uma lenha
 - 5. Retornar ao seu acampamento
- □ Fim

Algoritmo sequencial

Início

1 Seguir até a centrada da floresta

2 Escolher a DIREITA

3 Enfrentar e lobo

Macrovector/Shutterstock

Nector/Shutterstock

Incomible/Shutterstock

Farbal/Shutterstock

7 8

Descrição narrativa - Caminho da esquerda

- Início
 - 1. Seguir até a entrada da floresta
 - 2. Tomar o caminho da direita
 - 3. Enfrentar o lobo
 - 4. Seguir até as toras de madeira
 - 5. Cortar uma lenha
 - 6. Retornar ao seu acampamento
- □ Fim

Ações	Esquerda	Direta
1	Seguir até a entrada da floresta	Seguir até a entrada da floresta
2	Tomar o caminho da esquerda	Tomar o caminho da direita
3	-	Enfrentar o lobo
4	Seguir até as toras de madeira	Seguir até as toras de madeira
5	Cortar uma lenha	Cortar uma lenha
6	Retornar ao seu acampamento	Retornar ao seu acampamento

9 10

Juntando os caminhos em um código

- Início
 - 1. se (caminho = esquerda)
 - a. Seguir até a entrada da floresta
 - ✓ b. Seguir até as toras de madeira
 - ✓ c. Cortar uma lenha
 - ✓ d. Retornar ao seu acampamento
 - **(...)**

• (...)

2. senão

- a. Seguir até a entrada da floresta
- b. Enfrentar o lobo
- ✓ c. Seguir até as toras de madeira
- d. Cortar uma lenha
- ✓ e. Retornar ao seu acampamento
- 3. fim-se
- Fim

11 12

)

■ Início
■ 1. se (caminho = esquerda)
■ a. Seguir até a entrada da floresta
■ b. Seguir até as toras de madeira
■ c. Cortar uma lenha
■ d. Retornar ao seu acampamento
■ (...)

2. senão
a. Seguir até a entrada da floresta
b. Enfrentar o lobo
c. Seguir até as toras de madeira
d. Cortar uma lenha
e. Retornar ao seu acampamento
3. fim-se
Repetido!
Podemos melhorar?

13 14

Início
Seguir até a entrada da floresta
1. se (caminho = esquerda)
b. Seguir até as toras de madeira
c. Cortar uma lenha
d. Retornar ao seu acampamento
(...)

(...)
2. senão
b. Enfrentar o lobo
c. Seguir até as toras de madeira
d. Cortar uma lenha
e. Retornar ao seu acampamento
3. fim-se

15 16

Início
Seguir até a entrada da floresta
1. se (caminho = esquerda)
b. Seguir até as toras de madeira
c. Cortar uma lenha
d. Retornar ao seu acampamento
(...)

(...)
2. senão
b. Enfrentar o lobo
c. Seguir até as toras de madeira
d. Cortar uma lenha
e. Retornar ao seu acampamento
3. fim-se
Repetido!
Podemos melhorar?

Início
Seguir até a entrada da floresta
1. se (caminho = esquerda)

2. senão
Podemos melhorar?

b. Enfrentar o lobo
fim-se
Seguir até as toras de madeira
Cortar uma lenha
Retornar ao seu acampamento

Início
 Seguir até a entrada da floresta
 1. se (caminho = direita)
 Enfrentar o lobo
 3. fim-se
 Seguir até as toras de madeira
 Cortar uma lenha
 Retornar ao seu acampamento
 Fim

19 20

Condicional simples e composta

21 22

23 24

Exercício

- Desenvolva um programa que lê dois valores numéricos inteiros e compara se o primeiro é maior do que o segundo, utilizando uma condicional simples
- Caso seja (resultado verdadeiro), ele imprime na tela a mensagem informando que o primeiro valor digitado é maior do que o segundo
- Vamos praticar no Python
- Atenção com a indentação!

25 26

27 28

Python se (condição) if (condição): # Instrução(ões) A # Instrução(ões) A else: # Instrução(ões) B # Instrução(ões) B fim-se

Exercício

Desenvolva um programa que lê um valor inteiro e descobre se ele é par ou impar

■ Vamos praticar no Python

31 32

Expressões lógicas e álgebra booleana

Operadores lógicos Pseudocódigo Operação não negação e conjunção

33 34

Operador not

- Serve para negar um resultado lógico ou o resultado de uma expressão booleana
- Na prática, isso significa que o resultado final de uma expressão será invertido

v	not V	
True	False	
False	True	

Operador and

Este operador irá prover um resultado verdadeiro se, e somente se, ambas as entradas forem verdadeiras

V ₁	V ₁	$V_{1 \text{ and }} V_{2}$
False	False	False
False	True	False
True	False	False
True	True	True

35 36

Operador or

Este operador irá prover um resultado verdadeiro se ao menos uma das entradas for verdadeira

V ₁	V ₁	V _{1 or} V ₂
False	False	False
False	True	True
True	False	True
True	True	True

Precedência dos operadores

- 1. Parênteses
- 2. Operadores aritméticos de potenciação ou raiz
- 3. Operadores aritméticos de multiplicação, divisão e módulo
- **-** (...)

37 38

- **-** (...)
- 4. Operadores aritméticos de adição e subtração
- 5. Operadores relacionais
- 6. Operadores lógicos not
- 7. Operadores lógicos and
- 8. Operadores lógicos or
- 9. Atribuições

Vamos praticar expressões lógicas no Python

39 40

Exercício

- Um aluno, para passar de ano, precisa ser aprovado em todas as matérias que está cursando
- Assuma que a média para aprovação é a partir de 7, e que o aluno cursa 3 matérias, somente. Escreva um algoritmo que leia a nota final do aluno em cada matéria e informe, na tela, se ele passou de ano ou não
 - Fonte: Menezes, Nilo, p. 60, adaptado

Voltamos ao Python

Condicionais aninhadas

- Podemos inserir condicionais dentro de outra condicional
- Não existe limite para quantas condicionais podemos colocar dentro da outra

43 44

Condicionais aninhadas com dois níveis

Exercício

- Escreva um algoritmo em Python em que o usuário escolhe se quer comprar maçãs, laranjas ou bananas. Deverá ser apresentado na tela um menu com as opções: 1 para maçã, 2 para laranja e 3 para banana
- **(...)**

45 46

- **-** (...)
- Após escolhida a fruta, deve-se digitar quantas unidades se quer comprar. O algoritmo deve calcular o preço total a pagar do produto escolhido e mostrá-lo na tela
- Considere que uma maçã custa R\$ 2,30, uma laranja, R\$ 3,60, e uma banana, R\$ 1,85

Vamos resolver no Python

Condicional de múltipla escolha (elif)

49

- Simplifica o uso de múltiplas condicionais em um programa
- Vamos refazer o exercício de condicionais aninhadas, mas agora com elif?

Exercício

- Escreva um algoritmo em Python em que o usuário escolhe se quer comprar maçãs, laranjas ou bananas. Deverá ser apresentado na tela um menu com as opções: 1 para maçã, 2 para laranja e 3 para banana
- **(...)**

51

52

50

- **-** (...)
- Após escolhida a fruta, deve-se digitar quantas unidades se quer comprar. O algoritmo deve calcular o preço total a pagar do produto escolhido e mostrá-lo na tela
- Considere que uma maçã custa R\$ 2,30, uma laranja, R\$ 3,60, e uma banana, R\$ 1,85

Vamos resolver no Python com elif

Exercício 2

- Escreva um algoritmo que lê um nome e uma idade
 - Caso o nome digitado seja Vinicius, escreva isso na tela
 - Caso o usuário digite qualquer outro nome, verifique sua idade. Se for menor que 18 anos, informe que é de menor. Se for maior que 100 anos, informe que esta pessoa possivelmente não existe

■ Vejamos no Python