

PED

Projeto Educação Dav

Aula 02 - Números Racionais

Índice

Numeros Racionais (Q)	03
Representação dos números racionais	04
Dízimas periódicas simples	05
Dízimas periódicas compostas	06
Operações com números racionais	08
Adição e subtração	08
Multiplicação de frações	10
Divisão de frações	10
Redução de frações	11
Questões	12

Números Racionais (Q)

Os números racionais são uma ampliação do conjunto dos números inteiros, então, além dos números inteiros, foram acrescentadas todas as frações. O conjunto dos números racionais é representado por:

$$\mathbb{Q} = \{ \frac{a}{b} | a \in \mathbb{Z}, \ e \ b \in \mathbb{Z}^* \}$$

O que essa representação diz é que um número é racional se ele pode ser representado como a fração a sobre b, tal que a é um número inteiro e b é um número inteiro diferente de zero. Mas se formos definir os números racionais com menos rigor, podemos dizer o seguinte:

Números racionais são todos os números que podem ser representados como uma fração.

Exemplos de números Racionais:

- Os **números inteiros**, por exemplo: -10, 7, 0;
- Os **números decimais exatos**, por exemplo: 1,25; 0,1; 3,1415;
- As dízimas periódicas simples, por exemplo: 1,424242...;
- As dízimas periódicas compostas, por exemplo: 1,0288888...

Não são números racionais:

- As dízimas não periódicas, por exemplo: 4,1239489201...;
- As raízes não exatas, por exemplo: √2;
- A raiz quadrada de números negativos, por exemplo: √-25.

Observação: A existência de números não racionais faz com que surjam outros conjuntos, como o dos números irracionais e o dos números complexos.

Representação dos números Racionais

Sabendo que, os números racionais são representados através da divisão de dois números inteiros, então, podemos representa-los através de uma fração, ou seja, todos os exemplos de números racionais citados anteriormente (os números inteiros, números decimais exatos, dízimas periódicas simples e dízimas periódicas compostas) podem ser representados através de fração.

Números inteiros:

$$2 = \frac{4}{2} = \frac{6}{3} = \frac{12}{6} = \frac{20}{10}$$

Decimais exatos:

Nos números decimais exatos é importante observar que chamamos de parte decimal a parte que vem depois da vírgula, ou seja, no número **2,5** a parte decimal é o 5, assim como no número **0,2** a parte decimal é o 2. Quando há apenas um número na parte decimal escrevemos esse número sobre **10** em forma de fração, quando há dois números na parte decimal escrevemos esses números sobre **100**, ou seja, a quantidade de números na parte decimal influencia diretamente no denominador que aumenta seus zeros conforme a parte decimal possui mais números.

$$0.2 = \frac{2}{10} \qquad 0.5 = \frac{5}{10} \qquad 0.52 = \frac{52}{100}$$

Dízimas periódicas:

São dois os tipos de dízimas periódicas, a simples e a composta. O processo para encontrar suas representações em forma de fração não é simples mas apresenta um padrão que torna possível essa transformação, essa representação em forma de fração de uma dízima periódica é chamada de Fração geratriz. Nas dízimas periódicas o primeiro passo a se tomar é identificar a parte inteira e o período, que é a parte decimal que se repete.

Dízimas periódicas simples:

Na dízima periódica simples na sua parte decimal existe **apenas** a parte que se repete que é o que chamamos de período.

Ex: 9,25252525...

Parte inteira é o 9, o período é igual 25.

6,37373737...

Parte inteira é o 6, o período é igual 37.

1,278278278278...

Parte inteira é o 1, o período é igual 278.

A regra para encontrar fração geratriz de uma dízima periódica simples é feita em três passos:

1º passo: juntar sua parte inteira com seu período sem a vírgula

2º passo: subtrair o valor encontrado no 1º passo pela parte inteira

3º passo: dividir o valor encontrado no 2º passo 99..., a quantidade de noves é igual a quantidade de números presentes no período, ou seja, se o período apresenta dois números divide por 99, se o período tem três números divide por 999

e assim sucessivamente.

Exemplo 1: Vamos fazer com a dízima periódica 9,2525252525...

Sua parte inteira é igual 9 e seu período é igual 25

1º passo: juntar sua parte inteira com seu período sem a vírgula = 925

2º passo: subtrair pela parte inteira = 925 - 9 = 916

3º passo: dividir por 99 = $\frac{916}{99}$, então: $\frac{9,25252525...}{99}$

Exemplo 2: Vamos fazer com a dízima periódica 6,373737373737...

Sua parte inteira é igual 6 e seu período é igual 37

1º passo: juntar sua parte inteira com seu período sem a vírgula = 637

2º passo: subtrair pela parte inteira = 637 - 6 = 631

3º passo: dividir por 99 = $\frac{631}{99}$, então: $\frac{6,3737373737...}{99}$

Exemplo 3: Vamos fazer com a dízima periódica 1,278278278...

Sua parte inteira é igual 1 e seu período é igual 278

1º passo: juntar sua parte inteira com seu período sem a vírgula = 1278

2º passo: subtrair pela parte inteira = 1278 - 1 = 1277

3º passo: dividir por 999 = $\frac{1277}{999}$, então: $\frac{1,278278278...}{999}$

Dízimas periódicas composta:

Na dízima periódica composta em sua parte decimal existe uma parte que não se repete que é a parte não periódica e também a parte que se repete que é o período.

Ex: 5,126262626...

A parte inteira é igual a 5, a parte não periódica é igual a 1 e o período e igual a 26.

Ex: **8,735353535...**

A parte inteira é igual a 8, a parte não periódica é igual a 7 e o período e igual a 35.

A regra para encontrar fração geratriz de uma dízima periódica composta é feita em três passos:

1º passo: juntar sua parte inteira com sua parte não periódica e seu período sem a vírgula;

2º passo: subtrair o valor encontrado no 1º passo pela parte inteira com sua parte não periódica

3º passo: dividir o valor encontrado no 2º passo 990..., a quantidade de noves é igual a quantidade de números presentes no período e acrescenta a esses noves um número zero para cada número presente na parte não periódica, ou seja, se o período apresenta dois números divide por 99, se o período tem três números divide por 999 e assim sucessivamente e se a parte não periódica apresenta um número acrescenta um zero, 0, junto aos noves no denominador se apresenta dois números acrescenta dois zeros, 00, junto aos noves no denominador.

Exemplo 1: Vamos fazer com a dízima periódica 5,1262626262626...

Sua parte inteira é igual 5, sua parte não periódica é igual a 1 e seu período é igual 26

1º passo: juntar sua parte inteira com sua parte não periódica e seu período sem a vírgula = 5126

2º passo: subtrair o valor encontrado no 1º passo pela junção da parte inteira com a parte não periódica = **5126 - 51 = 5075**

3º passo: dividir o valor encontrado no 2º passo por 990 = $\frac{5075}{990}$, então:

$$5,12626262626... = \frac{5075}{990}$$

Exemplo 2: Vamos fazer com a dízima periódica 2,415252525252...

Sua parte inteira é igual 2, sua parte não periódica é igual a 41 e seu período é igual 52

1º passo: juntar sua parte inteira com sua parte não periódica e seu período sem a vírgula = 24152

2º passo: subtrair o valor encontrado no 1º passo pela junção da parte inteira com a parte não periódica = **24152 - 241 = 23911**

3º passo: dividir o valor encontrado no 2º passo por 9900 = $\frac{23911}{9900}$, então:

$$2,415252525252... = \frac{5075}{990}$$

Exercício

Encontre a fração geratriz da dízima periódica 4,27272727...?

- a) $\frac{427}{100}$
- b) $\frac{423}{99}$
- c) $\frac{423}{100}$
- d) $\frac{427}{99}$

Gabarito: b

Exercício

Qual a fração geratriz da dízima periódica 5,1364646464...?

- a) $\frac{50851}{9900}$
- b) $\frac{5146}{99}$
- c) $\frac{5136}{100}$
- d) $\frac{5095}{999}$

Gabarito: a

Operações com números racionais

As operações de adição, subtração, multiplicação e divisão de frações apresentam algumas regras que precisam ser memorizadas, pois são de suma importância na resolução das questões de diversos temas da matemática, as duas primeiras operações citadas (adição e subtração) necessitam de um pouco mais de atenção pois são operações que variam de acordo com as características dos denominadores.

Adição e subtração

A operação de adição e subtração de frações e feita de duas formas, que são: quando possuem **denominadores iguais** ou quando possuem **denominadores diferentes**.

Quando possuem **denominadores iguais** o processo é simples, é só **conservar os denominadores e somar ou subtrair os numeradores**.

Ex:
$$\frac{4}{5} + \frac{6}{5} = \frac{4+6}{5} = \frac{10}{5} = 2$$

Ex:
$$\frac{8}{7} - \frac{6}{7} = \frac{8-6}{7} = \frac{2}{7}$$

Quando possuem denominadores diferentes o processo é mais complexo, é necessário achar um denominador comum através do mmc dos denominadores, depois dividir esse denominador comum pelo antigo denominador e multiplicar pelo numerador.

$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} = \frac{6+9+10}{12} = \frac{25}{12}$$

$$\frac{2}{1,2,3}$$

$$\frac{3}{1,1,3}$$

$$\frac{3}{2x2x3=12}$$

Ex:
$$\frac{4}{5} + \frac{1}{6}$$

1º passo: Achar um denominador comum através do mmc dos denominadores

2º passo: Dividir esse denominador comum, 30, pelos antigos denominadores
(5 e 6) e multiplicar pelos seus respectivos numeradores.

$$30:5=6x4=\frac{20}{30}$$
 $30:6=5x1=\frac{5}{30}$

Assim teremos a seguinte fração:

$$\frac{20}{30} + \frac{5}{30} = \frac{25}{30}$$

Multiplicação de Frações

A multiplicação de frações talvez seja a operação mais simples entre as outras operações com frações pois consiste apenas em multiplicar numerador com numerador e multiplicar denominador com denominador.

$$a)\frac{2}{3}x\frac{5}{7} = \frac{2x5}{3x7} = \frac{10}{21}$$

$$b)\frac{6}{11}x\frac{9}{5} = \frac{6x9}{11x5} = \frac{54}{55}$$

$$c)\frac{13}{5}x\frac{7}{2} = \frac{13x7}{5x2} = \frac{91}{10}$$

Divisão de Frações

A divisão de frações é um processo simples, porém, exige bastante atenção e precisa ser memorizado pois é um processo que ocorre somente na divisão. A regra é basicamente a seguinte: quando houver a divisão entre duas frações, conserva-se a primeira fração e multiplica pelo inverso da segunda fração.

$$\frac{2}{3} \div \frac{7}{5} = \frac{2 \times 5}{3 \times 7} = \frac{10}{21}$$

Exemplos:

a)
$$\frac{9}{2} \div \frac{7}{3} = \frac{9}{2}x\frac{3}{7} = \frac{27}{14}$$

$$b)\frac{8}{3}:\frac{5}{9}=\frac{8}{3}x\frac{9}{5}=\frac{72}{15}$$

$$c)\frac{12}{5} \div \frac{6}{7} = \frac{12}{5}x\frac{7}{6} = \frac{84}{30}$$

Redução de Frações

Em algumas frações não é possível fazer a divisão exata do numerador pelo denominador, porém essas frações podem ser reduzidas, é o que chamamos de frações redutíveis, essa redução ocorre até não haver mais a possibilidade de redução, é quando chegamos a uma fração irredutível.

A redução ocorre quando o numerador e o denominador podem ser ainda divididos por um mesmo valor, um divisor comum:

$$\frac{8}{20} = \frac{4}{10} = \frac{2}{5} \longrightarrow \frac{\text{FRAÇÃO}}{\text{IRREDUTÍVEL}}$$

No exemplo acima podemos observar a fração $\frac{8}{20}$ no qual não é possível dividir o numerador pelo denominador, porém, é possível reduzir essa fração dividindo os dois valores por um divisor comum, no caso o 2. O valor obtido foi a fração $\frac{4}{10}$ que também é redutível pelo mesmo divisor comum, com isso foi obtido a fração irredutível $\frac{2}{5}$.

$$\frac{12^{2}}{42} = \frac{6^{3}}{21} = \frac{2}{7}$$

$$\frac{24}{36} = \frac{24 : 2}{36 : 2} = \frac{12 : 2}{18 : 2} = \frac{6 : 3}{9 : 3} = \frac{2}{3}$$

QUESTÕES

- 1) O que é uma DÍZIMA PERIÓDICA?
 - a) É um número que, escrito na forma decimal, apresenta um número ou conjunto de números que se repetem infinitamente
 - b) É um número que, quando dividido por zero, resulta em outros números inteiros.
 - c) É qualquer número não inteiro que apresenta infinitas casas decimais.
 - d) É um número que pode ser escrito na forma de algarismos romanos, sem perda de significado ou alteração de quantidade
- 2) Juliana aprendeu com sua professora o procedimento para transformar uma dízima periódica em uma fração irredutível. Ao aplicar esse procedimento à dízima periódica $0,0\overline{63}$, a fração irredutível que Juliana encontrou foi:
 - a) 7/110
 - b) 63/110
 - c) 63/1000
 - d) 7/1000
- 3) Dentre as frações abaixo, qual corresponde ao número 1,2666...?
 - a) 63/50
 - b) 19/15
 - c) 17/12
 - d) 15/13
 - e) 19/17
- 4) A fração geratriz da dízima periódica 2,3444... é:
 - a) 211/90
 - b) 2/9
 - c) 197/41
 - d) Nenhuma das alternativas.

- 5) Considere a dízima periódica 3,2757575 ... e então indique nas alternativas sua fração geratriz correspondente.
 - a) 1081/330
 - b) 327,75/75
 - c) 10327/217
 - d) x cos 12/y sen 23
- 6) A representação decimal da fração 238/10000é:
 - a) 0,0238
 - b) 0,238
 - c) 2,38
 - d) 0,00238
 - e) 0,000238
- 7) Após se aposentar, um professor doou um quarto de seus livros para a biblioteca da cidade e doou 289 livros para cada uma das 3 escolas que ele lecionou, e ainda ficou com um número de livros igual a um sétimo do que ele tinha. O número de livros doados para a biblioteca foi
 - a) 182.
 - b) 224.
 - c) 294.
 - d) 315.
 - e) 357.
- 8) Um Professor de Matemática dividiu dois números inteiros positivos em sua calculadora e obteve como resultado a dízima periódica 0,151515.... Se a divisão tivesse sido feita na outra ordem, ou seja, o maior dos dois números dividido pelo menor deles, o resultado obtido por este professor seria:
 - a) 0,66
 - b) 0,666...
 - c) 6,66
 - d) 6,666...
 - e) 6,6

- 9) Cláudio está pintando o muro de uma determinada escola. No primeiro dia ele pintou ½ do muro e, no dia seguinte, pintou o dobro do dia anterior. Que parte do muro ainda falta para Cláudio pintar?
 - a) 1/5
 - b) 2/5
 - c) 3/5
 - d) 4/5
 - e) 5/5
- 10) Maria comprou 21 metros de corda. Depois comprou 33 metros do mesmo tipo de corda, pagando R\$ 9,60 a mais do que pagou na primeira compra. Se, nas duas compras, cada metro de corda custou a mesma quantia, quanto Maria pagou na primeira compra?
 - a) R\$6,10
 - b) R\$ 16,80
 - c) R\$ 19,20
 - d) R\$ 26,40
 - e) R\$ 36,40
- 11)Se a = 0,44444... e b = 5/9. Então 81 vezes o quadrado da diferença entre (a b) é igual a:
 - a) 0,81
 - b) 1
 - c) 8,1
 - d) 1
 - e) -81

Gabarito

1.a 2.a 3.b 4.a 5.a 6.a 7.e 8.e 9.b 10.b 11.b

REFERÊNCIAS

OLIVEIRA, Raul Rodrigues de. "Números racionais"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/numeros-racionais.htm. Acesso em 27 de dezembro de 2022.