Example

Use the bisection method...

$$\int (x) = x^3 - 2x - 1 = 0$$

$$x_1 = 1.5 \longrightarrow 5(1.5) = -0.625 \quad 7 \quad 5(x) \cdot 5(x+1) \cdot 60$$

$$x_2 = 2 \longrightarrow 5(2) = 3$$

$$x_{c} = \frac{1.6 + 2}{2} = 1.75$$

$$f(x_i) = f(1.75) = 0.859375$$

 $f(x_i) f(x_r) (0 => X_0 = X_r = 1.75)$
 $f(x_i) = 1.5 + 1.75 = 1.625$

$$f(1.625) = 0.041056$$

 $f(x_{L}) f(x_{r}) < 0$
 $f(x_{L}) f(x_{r}) < 0$

	(ower	upper			
n	XL	Xu	Χr	1 2(x1)	[[Ea(1.)]
1	1.5	a	1.75	0 - 859375	
2	1.6	1.75	1.625	0.041056	7.69%
3	1.6	1.625	11.5625	-0.8103027	
4	1.5625	1.625	,1.5939	-0.1393127	
5	r. 5937 F	1.625	1.669375	-0.0503273	l
6	l				

Example: Use the bisection method:

$$X = 4\sqrt{18}$$

$$S(x) = X - 4\sqrt{18} = 0 \quad (not the most bosic form)$$

$$[2, 2.5] = Domain \quad (picked because one side is -ve, one is positive)$$

$$S(2) = -2 \quad S(x_1)S(x_1) < 0$$

$$S(2.5) = 21.0621$$

Where
$$f(2) = (2) - \sqrt[4]{18} = -2$$

but $f(2.5) = (2.5) - \sqrt[4]{18} \neq 21.0621$

$$x'' = 18$$
 (most basic Form) $x'' = 18 = 0$

where
$$f(2) = (2)^4 - 18 = -2$$

$$f(2.5) = (2.5)^4 - 18 = 21.0621$$

$$f(2.5) = 2.25$$

$$2 + 2.5 = 2.25$$

$$f(x_r) = f(2.25) = (2.25)^4 - 18 = 7.6289$$

$$X_{c} = X_{c} = 2.25$$

$$X_{c} = \frac{2+2.25}{2} = 2.125 \rightarrow \mathcal{F}(2.125) = 2.3909$$

$$X_a = X_r = 2.125$$

$$X_r = \frac{2+2.125}{2} = 1.0625 \rightarrow 5(2.0625) = 0.0957$$

Example Use bisection method:

$$V = \frac{mg}{c} (1 - e^{(\frac{c}{m})t})$$
 (from earlier notes)

$$\begin{cases}
M = 68.1 \text{ fg} \\
V = 40 \text{ m/s} \\
t = 10 \text{ sec} \\
9 = 9.81 \text{ m/s}^2
\end{cases}$$

=)
$$(40) = \frac{(68.1)(9.21)}{c} (1 - e^{-(\frac{c}{68.1})(0)})$$

$$f(c) = \frac{(68.1)(9.81)}{c} \left(1 - e^{-\left(\frac{c}{68.1}\right)(0)}\right)$$

For guesses:

$$S(12) = 6.11$$
 7 root exists $S(16) = -12.2$

$$\hat{\mathbb{T}} \quad \chi_r = \frac{14 + 16}{2} = 15$$

$$f(x_i) = f(15) = -0.384$$

$$X_r = 14 + 15 = 14.5$$

Example	_	oisectic		d Faise	Positi	ion to locate
	f(x) =	x10 -1			ϵ_{ϵ}	$\frac{2}{2} = \frac{0.65 - 1}{0.65} \times 100\%$
	betwee	n X=	o/x=	1.3	~	0.66
Iteration	<u>x.</u>	Yu	χ_r	Ea (40)	ELC")	/
1	Ø	1.3	0.65	100	35	F = 0.975 - 0.65 x100%
2	0.65	1.3	0.975	33.3	25	$\mathcal{E}_{a} = \left \frac{0.975 - 0.65}{0.975} \right _{x = 0.0\%}$
3	0.475	1.3	1.1375	14.3	13.8	
4	0.975	1.375	1.0565	7.7	5.6	
.5	0,975	1.0565	1.01525	4	1.6	(2°/. good enough