

IP Addressing, Subnets, DHCP

application

transport

network

link

physical

IP (v4) Addressing: Introduction

- **IP address**: 32-bit identifier for host, router *interfaces*
- interface: connection between host/router and physical link
 - routers typically have multiple interfaces
 - hosts typically have one or two interfaces
 - IP addresses are associated with each interface

Dotted-decimal notation

223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1

Suppose there are three routers between a source host and a destination host.

- Ignoring fragmentation, an IP datagram sent from the source host to the destination host will travel over how many interfaces?
- How many forwarding tables will be indexed to move the datagram from the source to the destination?

Subnets

- IP address:
 - subnet part (high order bits)
 - host part (low order bits)
- What is a subnet?
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router (e.g. can be connected by an Ethernet switch).

network consisting of 3 subnets

Note: <u>High order</u> = leftmost = most significant bits in an address!

Subnets

Recipe:

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks (disconnected graphs).
- Each isolated network is called a subnet.

Leftmost (most significant) X bits out of 32 bit defines the subnet address:

Subnets

223.1.2.1

Question:

How many subnets are shown in the diagram?

Hint: consider subnet mask /24 (i.e. fix first three bytes)

IP Addressing: CIDR

CIDR: Classless InterDomain Routing (cider)

- flexible subnet addressing: subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion (leftmost bits) of the address

IP Addressing

- Classful addressing: Class A, B, C networks with (8, 16, 24 bit prefixes) – historical, inflexible...
- Broadcast address: 255.255.255.255, all datagrams are delivered to all hosts on the same subnet.
- Subnet (network) mask designates a subnetwork.

For example:

192.168.0.0 with netmask 255.255.255.0 corresponds to:

192.168.0.0/24 in CIDR notation, i.e. leftmost 24 bits determine the specific subnetwork which can have up to 256 hosts.

Q: How does a *host* get its IP address?

- Manual entry (rare but possible via config or control panel of operating system)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from a DHCP server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to *dynamically* obtain its IP address from a network server when it joins network

- Can renew its lease on address in use
- Allows reuse of addresses (only hold address while connection is "on")
- Support for mobile users who want to join network

DHCP overview:

- host broadcasts "DHCP discover" msg
- DHCP server responds with "DHCP offer" msg
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP: Dynamic Host Configuration Protocol

Questions:

- 1. Why use broadcast in the DHCP protocol?
- 2. What if the DHCP server is not in the subnet?

yiaddr: your internet addr