深層学習を用いた Digitally Reconstructed Radiographsに 基づく変形性股関節症の多指標自動分類

〇桝田 修慎 §1 崇風 まあぜん §1 大竹 義人 §1 上村 圭亮 §2

高尾 正樹 §3 菅野 伸彦 §2 佐藤 嘉伸 §1

§ 1Nara Institute of Science and Technology, Division of Information Science § 2Osaka University, Graduate School of Medicine § 3 Ehime University Graduate School of Medicine

- 2
- 変形性股関節症(Hip OA)は現代の超高齢化社会において問題視されている疾患
 - 疾患進行の評価には整形外科医の臨床専門性が必要
- 評価にはKL(Kellgren&Lawrence)[*](Crowe分類[**])が用いられる
 - 疾患の重症度に応じたグレードが付与される
 - Hip OAの患者は筋力低下を経験する[***]

No OA

■近年, 畳み込みニューラルネットワーク(CNN)を用いた自動分類手法が報告された (B) Study CT data, CT-AP Images

■ Gebre et al. Osteoporosis International, 2021 X線やCT画像から作成した疑似X線画像(DRR)を用いた 結果 (DRR): 94症例, Accuracy: 83.3%

■ Xue Y, et al. PlosOne, 2017 事前学習済みのVGGを用いて, 両側の股関節を含めた X線画像に対してHOA

結果: 420症例, Accuracy: 92.0%

二値分類の問題点:臨床的に重要な形状や輝度値の 変化を評価することができません

- HOAを診断する指標としてOAの重症度を示すKLに加え, 脱臼度を示す指標であるCrowe分類を組み合わせ,疾患 の進行具合を正確に把握可能な自動分類器を開発する
- 不確実性を評価することで、アノテーションが施されていない数千症例の大規模なデータベースに対してのアクティブラーニングが可能か示す

手法

深層学習モデル

モデル

VisionTransformer_Base16 (Attention機構を用いたモデル) [*] VGG16 (畳み込みを用いたモデル) [**] DenseNet161 (畳み込みを用いたモデル) [***]

- 畳み込みニューラルネットワークの特徴
 - Kernelを移動して畳み込み演算を行う
 - 局所的な情報の参照に優れている
- Attentionを用いたネットワークの特徴
 - 畳み込みを用いずに複数回にわたって Attention(注目度)を計算する
 - 大域的な情報の参照に優れている

[*] A. Dosovitskiy, L. Beyer, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021 [**] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015 [***] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, "Densely Connected Convolutional Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 [****] A. Vaswani, N.Shazeer, et al. Attention Is All You Need, NIPS 2017

実験

データセット

■ DRRデータセット

Image Size	150×150 [pixels]
Number of Classes	7
Number of Images (Cases)	396 (198 cases)
Institution	Osaka University Hospital

パラメータ

Parameter	Value
Environment	Pytorch + Torchvision
Initialization	ImageNet database pre-training
Epochs	200
Cross-validation	Stratified group 4-fold (15 patterns)
Image Size	224×224 [pixels]

データ拡張

Resize:画像サイズを変更する

Rotate:画像を回転する

Blur: ぼかしを加える

Random Brightness/Contrast: ランダムでコントラストを変化する

Coarse Dropout:画像に不規則なマスクをかける

結果

不確実性の推定

テスト時Dropoutありの50回の推論で得られる
Softmax Probabilityの分散を不確実性の指標とする[*]

N: Number of Samples

P: Softmax Probability

 \widehat{P} : Average Softmax Probability

Softmax Probability Class Dropout samples max Predicted class 平均 予測結果 分散 Uncertainty 不確実性

[*] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: Representing model uncertainty in deep learning, ICML-16, 2015

低頻度

-0

評価指標

- Accuracy
 - 予測クラスと正解クラスが一致
 - 1クラス分間違いも許容
 - 上記以外

正解

予測

評価指標

- Accuracy
 - 予測クラスと正解クラスが一致 **⇒** Exact Class Accuracy
 - 1クラス分間違いも許容
 - 上記以外

□ Exact Class Accuracy 正解

評価指標

- Accuracy
 - 予測クラスと正解クラスが一致 → Exact Class Accuracy
 - 1クラス分間違いも許容
 - 上記以外

- □ Exact Class Accuracy 正解
- → □ 1-Neighbor Class Accuracy

-0

評価指標

- Accuracy
 - 予測クラスと正解クラスが一致 → Exact Class Accuracy
 - 1クラス分間違いも許容
 - 上記以外

- □ Exact Class Accuracy 正解
- ☐ + ☐ 1-Neighbor Class Accuracy

■ VisionTransformerが最も良い精度を得られた

** : p < .01 (Mann-Whitney U test)

: *p* < .05

: 2クラス以上予測を外したもの

Others

- 分散が大きいことは毎回の予測に確信を持っていないことを示す
- ViTが最も確信を持って予測している(青・オレンジと緑を区別できている)

結果: ViT 特徴ベクトルのUMAP解析 20

結果: ViT UMAP解析 (成功例)

(Exact Class Accuracy: 0.65; 1-Neighbor Class Accuracy: 0.93)

結果: ViT UMAP解析 (失敗例)

結論 & 今後の課題

結論・今後の予定

- 3つの深層学習モデルを用いてHip OAの自動分類を行った
 - 全てのモデルでExact Class Accuracyが60%以上1-Neighbor Class Accuracyは90%以上の分類精度が得られた
 - 396枚の画像から疾患の進行状況を高精度で予測できた
- アノテーションが施されていない数千症例の大規模なデータ セットに対するアクティブラーニングが可能
 - 予測に確信を持っていない症例を外れ値として、専門医にアノ テーションを検討してもらい、学習データに加える。
 - 大規模データベースのアノテーションに携わる医者の負担を減らすことができる
 - → 信頼性の高いデータベースの構築

ご清聴ありがとうございました!