Spectral theorem A Kernitran natrix "A" is unitarity diagonalizable, i.e.,

Junilary U s.t. U*AU = D-> diagonal matrix
with real numbers.

$$T^* = U^* A^* U = U^* A U = T$$

$$A = A^*$$

T = upper triangulor metrix, T* = lower triangular natrix

So, U* AU = T, where Tixa diagonal matrix

$$T = T^* >$$
 $T_{ij} = T^*_{ij} = T_{ij}$

=> T. is a real number.

So, U* AU= T, with T denoting a diagonal natrix with real entries

Example:

$$A = \begin{pmatrix} 2 & 1-i \\ 1+i & 3 \end{pmatrix} \qquad A^* = A$$

$$\rho(\lambda) = (\lambda - 1) (\lambda - 4)$$

Ergenvelus $\lambda_1 = 1$, $\lambda_2 = 4$

Signvectors
$$2_1 = \begin{bmatrix} -1+i \\ 1 \end{bmatrix}$$
, $2_2 = \begin{bmatrix} 1-i \\ 2 \end{bmatrix}$
 $2_1 \cdot 2_2 = \overline{2}_1^T 2_2 = 0$

Normalize 2,,22 to obtain

$$U_1 = \begin{pmatrix} -1+i \\ \frac{1}{\sqrt{3}} \end{pmatrix} \qquad U_2 = \begin{pmatrix} \frac{1-i}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}$$

Lx U= (d, d2) $V^*AV = D = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ Then, Important wordlong to the diagonalization result is the following: A real tymmetric motrix A is "orthogonally diagonalizable", i.e., there exists a matrix Q s.t. dAQ=D, QTQ=I dragond redrix who red cuties Proof: From the claim for Hermitian natives, we have

U* AU = D Columns of U are the eigenvectors of A A is red Symmetric =) ergenvalue of A are real $(A - \lambda I)_{1} = 0$ Solving leads to a real vector oc U na real matrix 0 + 0 = 0 = 0 - 1 Hence, UTAU=D with UTU=D Mermitian =) unitarily dragonalizable

Remorte!

Consider
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 $A^* \neq A$

Eigenvalue $\lambda_1 = i$, $\lambda_2 = -i$ \Rightarrow A is diagonalizable Symmetry $Z_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ $Z_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}$

Pornalizing $U_1 = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$ $U_2 = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$
 $U_2 = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$
 $U_3 = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$
 $U_4 = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$
 $U_5 = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$