Эрмитовский оператор

Содержание

§1	Эрмитовски сопряженный оператор	1
§2	Смосопряженный и эрмитовский операторы	1
§3	Спектральные свойства эрмитова оператора	2

§1. Эрмитовски сопряженный оператор

Определение 1.1. Оператор φ^{\dagger} называется **эрмитовски сопряженным** к оператору φ , если он обладает следующим свойством:

$$\langle x, \varphi y \rangle = \langle \varphi^{\dagger} x, y \rangle.$$

Замечание 1.1. Свойства операции эрмитовского сопряжения теже, что и свойства операции сопряжения.

Лемма 1.1. Пусть $\{e_j\}_{j=1}^n$ - базис евклидова пространства $X_E(\Bbbk)$ и G - его матрица Грама. Тогда если A_φ - матрица оператора φ в этом базисе, то матрица φ^\dagger будет имеет вид

$$A_{\omega^{\dagger}} = G^{-1}A^{\dagger}G, \quad A^{\dagger} = \overline{A}^{T}.$$

Доказательство. По определению скалярного произведения:

$$\langle x,\varphi y\rangle=\xi^{\dagger}G(A_{\varphi}\eta)=(\xi^{\dagger}GA_{\varphi}G^{-1})G\eta=(G^{-1}A_{\varphi}^{\dagger}G\xi)^{\dagger}G\eta=\langle \varphi^{\dagger}x,y\rangle.$$

§2. Смосопряженный и эрмитовский операторы

Определение 2.1. Оператор, обладающий свойством $\varphi^{\dagger} = \varphi$ называется самосопряженным, если $\Bbbk = \mathbb{R}$ и эрмитовским, если $\Bbbk = \mathbb{C}$.

Замечание 2.1. Матрицы самосопряженного φ и эрмитовского ψ операторов обладают соответственно свойствами:

$$A_{\varphi}^T = A_{\varphi}, \quad B_{\psi}^{\dagger} = B_{\psi}.$$

Пример 2.1. Примеры матрицы A самосопряженного оператора и матрицы B эрмитовского оператора:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 2i \\ -2i & 5 \end{pmatrix}.$$

Замечание 2.2. В случае вещественного поля $\mathbb R$ операции \dagger и T совпадают.

§3. Спектральные свойства эрмитова оператора

Лемма 3.1. Все собственные значения эрмитова оператора φ вещественны.

Доказательство. Пусть λ - собственное значение φ и x - соответствующий собственный вектор. Тогда

$$\langle \varphi x, x \rangle = \overline{\lambda} \langle x, x \rangle, \quad \langle x, \varphi x \rangle = \lambda \langle x, x \rangle \quad \Rightarrow \quad \overline{\lambda} = \lambda$$

Пемма 3.2. Собственные векторы эрмитова оператора, отвечающие различным собственным значениям, ортогональны:

$$\varphi x_1 = \lambda_1 x_1, \quad \varphi x_2 = \lambda_2 x_2, \quad \lambda_1 \neq \lambda_2 \quad \Rightarrow \quad x_1 \perp x_2.$$

Доказательство. Действительно,

$$\begin{split} \langle \varphi x_1, x_2 \rangle &= \langle x_1, \varphi x_2 \rangle \quad \Rightarrow \quad \langle \lambda_1 x_1, x_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle \\ \lambda_1 \langle x_1, x_2 \rangle &= \lambda_2 \langle x_1, x_2 \rangle, \quad \overline{\lambda}_2 = \lambda_2, \quad \Rightarrow \\ (\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle &= 0 \quad \Rightarrow \quad \langle x_1, x_2 \rangle = 0. \end{split}$$

Лемма 3.3. Если L - инвариантное подпространство эрмитова оператора φ , тогда L^{\perp} - также инвариантное подпространство.

Доказательство. Пусть $x \in L$ и $y \in L^{\perp}$, тогда

$$0 = \langle \varphi x, y \rangle = \langle x, \varphi y \rangle = 0 \quad \Rightarrow \quad \varphi y \in L^{\perp}.$$

Теорема 3.1. Эрмитов оператор φ явяется оператором скалярнего типа.

Доказательство. Покажем, что собсвенные векторы φ образуют базис $X_E(\mathbb{C})$. Проведем доказательство от противного: пусть $\{x_j\}_{j=1}^m$ - максимальный ЛНЗ набор:

$$\varphi x_j = \lambda_j x_j, \quad j = 1 \dots m \quad m < n = \dim_{\mathbb{C}} X_E.$$

Пусть далее

$$L = \langle x_1, x_2, \dots, x_m \rangle_{\mathbb{C}}, \quad M = L^{\perp}, \quad \varphi_M : M \to M$$

Так как M -инвариантное подпространство φ , существует по крайней мере один вектор $\widetilde{x} \in M$, такой что

$$\varphi_M \widetilde{x} = \widetilde{\lambda} \widetilde{x}.$$

Но $\widetilde{x} \perp L$ и значит $\{x_1, x_2, \dots, x_m, \widetilde{x}\}$ - ЛНЗ. Противоречие.

Теорема 3.2. (Спектральная теорема для эрмитова оператора) Пусть $\varphi: X_E \to X_E$ - эрмитов оператор и $\{e_j\}_{j=1}^n$ - ОНБ X_E , состоящий из собственных векторов φ , тогда:

$$\varphi(*) = \sum_{i=1}^{n} \lambda_i \langle *, e_i \rangle e_i, \quad \lambda_i \in \mathbb{R}.$$