Kurssin tarkoitus: tutustua Lien teoriaan 119.1. hautautumatta esitietoihin (diff. geometria, topologia, ...)

Lien teoria: (Sophus Lie, 1842-1899, Norsa) Jatkuvien Symmetria perheiden tarkastelua algebrallisia ja geometrisia menetelmia yhdistäen.

Esim

Kuution vs. Pallon kierrot

Kysymys: 8 Onko jokainen kierto kierto akselin suhteen?

kierto A = 90° y-abselin suhteen

kierto B = 90° Z-akselin schteen

kierto BoA = 120° (x+y+z)-akseln suhteen

Kuution kiertoja on äärellinen määrä (24=#S4)

⇒ Kysymykseen voi vastata pelkällä laskuteholla.

Pallon kiertoja on ääretön määrä, Kuitenkin
matriisiryhmien avulla saadaan näppärästi vastaus.

I Matriisiryhmat (Lien ryhmina)

- tarkeita esimerkkeja (kiertoryhmat une) Paljon käytetyistä matriisiryhmistä

II Matrisie Esponentiaali ja -logaritmi

- Lien algebra 25 ryhmā vastak vuuteen konkrecttinen ilmentyma

III Lien algebrass Lien ryhma vastaavus

- mitan jatkuvuus ja derivoituvuus auttavat ryhmän tarkastelua
- epalineaaristen ongelmien muuttaminen lineaarisiksi menettamatta lainkaan juurikaan informaatiota

I. 1 Matriisiavaruudet

Kurssilla tarkastellaan seka reaalisia etta kompleksisia avaruuksia. Suurin osa vaittamista ei valita onko kyseessä R vai C, jolloin käytetään merkintää K.

$$M_{n\times m}(lk) = \begin{cases} a_{11} & \dots & a_{1m} \\ \vdots & \vdots & \vdots \\ a_{n_1} & \dots & a_{n_m} \end{cases} : a_{jk} \in lk \end{cases}$$

On Kaikkien n-rivisten, m-sarakkeisten, K-kertoimisten matriisien avaruus.

Matriisin AcMnxm (IK) rivin r sarakkeen s alkiota merkitaan Ars tai ars.

Taman kurssin kannalta 2 tarkeaa nakokulmaa: Mnxm(K):n.

- (1) Mnxm(1K) on 1K-vektoriavarus ja dim Mnxm(1K) = n.m
- (2) Kun n=m, Mnxn(1K)=Mn(1K) on rengas kertolaskella $AB = [A_{rs}]_{rs} \cdot [B_{rs}]_{rs} = [A_{rk}B_{ks}]_{rs}$

homomorfismi Ydin ja kuvajoukto (normagli) aliryhma toiminto

Matrissen tulkinta lineaari kwauksina

Merkitaan $e_j = (0, -0, 1, 0, -0)$

Standardikannan alkivita ja samaistetaan

vektori

Vekton X= X,e,+-+Xmem = Km Ja

Sarakemotrisi $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{M}_{m \times 1}(\mathbb{K})$

Matriisi
$$A \in M_{n \times m}$$
 (IK) antaa lineaari kuvauksen
$$A : |K^{m} \rightarrow |K^{n} \qquad A(x) = LA(x) = Ax = \begin{bmatrix} a_{11} - a_{1m} \\ a_{n1} - a_{nn} \end{bmatrix} |X_{m}$$

$$= \begin{bmatrix} \sum_{k=1}^{m} a_{1k} x_{k} \\ \sum_{k=1}^{m} a_{1k} x_{k} \end{bmatrix} = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{jk} x_{k} e_{j}$$

$$= \begin{bmatrix} \sum_{k=1}^{m} a_{jk} x_{k} \\ \sum_{k=1}^{m} a_{nk} x_{k} \end{bmatrix} = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{jk} x_{k} e_{j}$$

$$= \begin{bmatrix} \sum_{k=1}^{m} a_{jk} x_{k} \\ \sum_{k=1}^{m} a_{nk} x_{k} \end{bmatrix} = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{jk} x_{k} e_{j}$$

$$= \begin{bmatrix} \sum_{k=1}^{m} a_{jk} x_{k} \\ \sum_{k=1}^{m} a_{jk} x_{k} \end{bmatrix}$$

Matrissen tolo vastaa

AGMnxm(K)

A: Km ->Kn

kuvausten yhdistämistä

BEMKXM(K) BAEMKXM(K)

13: Kn -> IKK BOA: Km-> IKK

5

Maar 2.1 (topologinen ryhma)

Joukko G varustettuna laskutoimituksella G×G→G
on Tyhmä Jos

- (i) lasketoimites on assosiatiivinen: x(yz) = (xy)z
- (ii) I neutraaliallo esG: xe=x=ex
- (ii) VxeG I kaanteisalkio xteG: xx-1= e=x-1x

6 on topologinen ryhme, jos lisaksi

- (iv) lasketoimtes (x,y) >> xy on vattera
- (V) kaanteiskuvaus X N X on jatkuva

Huom

Joukolle jatkuvudesta puhuminen ei ole jarkevaa, tarvitaan topologia. Talla kurssilla topologia (eli entyisesti jatkuvuden käsite) periytyy inkluusiosta Mn(IK) C IK

Maar 2.2 Yleinen lineaarinen ryhmä
on matriisiavaruuten Osajoukko
GL(n, K) = {A \in M_n(lk): \frac{1}{3}}
Varustettuna matriisien kertolaskulla.

Todistus

(i) OIK A,B,CEGL(n, IK).

Assosiatiivisuden voi tarkistaa suoraan matriisitulon määritelmän kautta pienellä indeksipuljauksella, mutta Lineaarikuvaus tulkinta on tässä nappärä:

$$\forall x \in \mathbb{K}^n \cong M_{n \times i} \cup \mathbb{K}$$
 (AB) $(x = (A \circ B) \circ C(x))$
= $A(B(C(x)))$
= $A \circ (B \circ C)(x)$
= $A(BC) \times$

 $\Rightarrow (AB)C = A(BC)$ (ii) $\forall A \in GL(n,K): AI = A = IA$

(iii) VAEGL(n,K) JA' joulon GL(n,K) maar perusteella

(iv) Jatkuvuustarkasteluja varten huom

f=(f, fn): |Km > |Kn jva = jokainen fj: |Km > |K jva

Matriisikertolasku on jatkuvuustarkastelu kannalta kuvaus

mult:
$$1K^{2n^2} \rightarrow K^{n^2}$$
, mult($a_{11}, -a_{11}, b_{11}, -b_{11}$)
$$= \left(\sum_{k=1}^{n} a_{1k} b_{k1}, -\sum_{k=1}^{n} a_{nk} b_{kn}\right)$$

Jokainen komponenttikuvaus multrs: 1K2n2 > 1K on siis polynomi, Ja siten jva => mult jva.

(V) Käänteiskuvauksen jatkuvuus saadaan vastaavasti käyttäen käänteismatriisin lähtonatriisi esitystä:

$$A^{-1} = \frac{adj(A)}{det(A)}$$

missa liittomatriisin adj(A) rivin r sarakkeens	T19.1
komponentt on $adj(A)_{rs} = (-1)^{r+s} det$	7
adj (A) rs = (-1) det ast / fost / flys	
an an	
No la lacateich vauken inthe xuus Seuge	

Nan ollen kaanteiskuvauksen jatkuvus seuraa determinantin jatkuvudesta. (det: Mn(IK) -> IK Dn polynomi) [

Determinantin jatkurus kertoo enemmänkin GL(n, lK):n rakenteesta:

Lause 2.4 GL(n,K) < Mn(lK) on avoin.

Todistus

Kaanteismatriisi on olemassa & det #0, eli (L(n,1K) = det (1K1503) ja 1K1503 clk on avoin, ja avoimen joukon alkukuva on avoin,

Lause 2.5 GL(n, R) on epayhtenainen.

Māār 2.6 Joukko Xc Kⁿ on epayhtenāinen jos JU, Vc IKⁿ s.e.

(i) ** X=U 0 V

(ii) U, V a voimia X:n subteen (iii) $U, V \neq \emptyset$

Asetetaan

$$U = det^{-1}(\{x \in \mathbb{R}: x < 0\})$$
 ua
 $V = det^{-1}(\{x \in \mathbb{R}: x > 0\})$

(1i) U ja V ovat avoinia koska (-00,0) ja (0,00) ovatavoinia.

Huom

C1503 on yhtenainen joten determinantin tarkastelu ei kerro mitaan GLIn, ():n yhtenaisyydestä.

Toisaalta ei myöskään tiedetä edellisen perusteella Vielä mitään GLln, R):n yhtenäisyys komponenttien määrästä kuin että niitä on vähintään 2.

Yhtenaisyyskysymyksiin palataan myöhemmin kurssilla.

Maar 2.7 (matris symma)

Mika tahansa yleisen lineaarisen ryhmän GL(n,1K) suljettu aliryhmä on matnisiryhmä. 1 T19,1

Oletus etta G<GLln, IK) on suljettu rajad pois fiettyja "huonosti kaxtaytxina" tapauksia, joissa haluttu algebran ja geometrian yhteys hajoaa.

Esim 2.8

Olkoon
$$\tilde{J}^{At}$$

$$G = \left\{ \begin{array}{l} e^{it} & 0 \\ 0 & e^{int} \end{array} \right\} : teR_{S}^{2} \subset GL(2,C).$$

$$it is i(t+s)$$

Tāmā on aliryhmā, sillā eit.eis=ei(t+s), joten

At. As = At+s & G V At, As & G Ja

I = Ao & G

Vaikka finktio R>C; theit on periodinen, eli entissest ei ole injektivinen, finktio R>G: the Action injektivinen.

$$A_t = A_s \iff \begin{cases} e^{it} = e^{is} \iff t = s + 2\pi k, k \in \mathbb{Z} \end{cases} \Leftrightarrow t = s + 2\pi k, k \in \mathbb{Z} \rbrace \Leftrightarrow t = s + 2\pi k, k \in \mathbb{Z} \rbrace \Leftrightarrow t = s + 2\pi k, k \in \mathbb{Z} \rbrace \Leftrightarrow t = s + 2\pi k, k \in \mathbb{Z} \rbrace \Leftrightarrow t = s + 2\pi k,$$

Erityisesti ryhmana G ~ (R,+).

Topologisesti G ei kuitenkaan kayttäydy kuten R;

 $A_{2k+1} = \begin{bmatrix} e^{i(2k+1)} & 0 \\ 0 & e^{i\pi(2k+1)} \end{bmatrix} = \begin{bmatrix} e^{i(2k+1)} & 0 \\ 0 & -1 \end{bmatrix} \in G$

Sopivalle osagonolle elizival) >1 mitta -I&G => -I&G G => G el subette