Задача 9-1 «Подобие и размерность.»

Пункт	Содержание	Баллы	Баллы
задачи			участника
Задача 1		9	
	Увеличение площади поперечного сечения	3	
	Увеличение объема (массы) грузов	3	
	Ответ	3	
Задача 2		11	
	Уменьшение сопротивления (изменение длины	4	
	и площади поперечного сечения)		
	Увеличение мощности тепловых потерь	4	
	(увеличение поверхности)		
	Ответ	3	
Задача З		13	
	Увеличение массы шарика.	3	
	Увеличение силы натяжения	4	
	Связь «абсолютного» и «относительного»	4	
	провисания		
	Ответ	3	
	Всего	33	

Задача 9-2 «Напряжения и токи»

	Пункт задачи	Всего за	Баллы	Оценки
Част	፲ ጜ 1.	пункт		
1.1	Направления токов через резисторы;	4	2	
	Направления токов через амперметры;		2	
1.2	Силы токов через резисторы;	4	2	
	Сила тока через амперметр A_5 ;		2	
1.3	Использование закона Ома;	5	1	
	Напряжения на резисторах;		2 2	
	Суммарное напряжение на вольтметре;		2	
Част	ть 2.			
2.1	Направления токов через резисторы;	4	2	
	Направления токов через амперметры;		2	
2.2	Токи через амперметры A_2, A_3, A_4 не идут;	4	2	
	Силы токов через крайние амперметры;		2	
2.3	Напряжение на вольтметре;	2	2	
Част	ть 3			
3.1	Направления токов через резисторы;	4	2	
	Направления токов через амперметры;		2	
3.2	Токи через амперметры A_2 , A_4 не идут;	4	2	
	Силы токов через остальные амперметры;		2	
3.3	Напряжение на вольтметре	2	2	
	ИТОГО	33		

Задача 9-3. Гук против Архимеда!

	Пункт задачи	Всего за	Баллы	Оценки
Цоот	ъ 1. Вспомним закон Гука.	пункт		
1.1		5	1	
1.1	Условия равновесия (1);	3	-	
	Сумма удлинений (2);		$\frac{2}{2}$	
1.0	Относительное удлинение составной пружины	_		
1.2	Условие равновесия (4);	5	2	
	Удлинения одинаковы;		1	
	Относительное удлинение составной пружины		2	
Част	ъ 2. Вспомним закон Архимеда.			
2.1	Условия равновесия (1)	5	2	
	Условие равновесия (2)		1	
	Относительное погружение (3)		2	
2.2	Относительное погружение такое же;	4	4	
Част	ъ 3. Гук против Архимеда.			
3.1	Условия равновесия (1)	8	3	
	(альтернатива: равновесия с учетом силы			
	тяжести, силы Архимеда, силы упругости);			
	Условие плавания (2);		1	
	Равновесие на пружине (3);		1	
	Конечная формула (4);		3	
3.2	Численные значения относительного	6		
	погружения;		3	
	Деформации пружины (растянута, не			
	деформирована, сжата)		3	
	ИТОГО	33		

Задача 10-1 «Подобие и размерность»

Пункт задачи	Содержание	Баллы	Баллы участника
Задача 1		10	
	Ускорение свободного падения также является определяющей величиной	3	
	Безразмерная комбинация	5	
	Ответ	2	
Задача 2		13	
	Гравитационная постоянная также является определяющей величиной	4	
	Безразмерная комбинация	6	
	Ответ	3	
Задача З		14	
	Ускорение свободного падения также является определяющей величиной	3	
	Безразмерная комбинация	8	
	Ответ	3	
	Всего	37	

Задача 10-2 «Полетели?»

	Пункт задачи	Всего за	Баллы	Оценки
		пункт		
1.1	Сила тяги равна силе тяжести;	3	2	
	Численное значение;		1	
1.2	Использование закона сохранения импульса	5	2	
	Импульс ракеты и импульс порции топлива		1	
	Сила, как скорость изменения импульса		2	
1.3	Расход топлива: формула,	2	1	
	Численное значение		1	
1.4	Мощность, как работа по выбросу топлива в	5		
	единицу времени;		2	
	Формула (3);		2	
	Численное значение.		1	
1.5	Уравнение 2 закона Ньютона	5	2	
	Формула для ускорения (4)		3	
1.6	Время работы двигателя: формула,	5	1	
	численное значение;		1	
	численные расчет значений ускорения (10			
	точек)		3	
1.7	Формула для расчета скоростей	9		
	с усреднением (без усреднения);		2 (1)	
	численные значения скоростей (10 точек –			
	погрешность не более 20%);		4	
	график зависимости скорости от времени			

	(оси подписаны и оцифрованы, нанесены			
	точки в соответствии с таблицей, проведена			
	линия графика)		3	
1.8	Формула для расчета высоты	9		
	с усреднением (без усреднения);		2 (1)	
	численные значения скоростей (10 точек –			
	погрешность не более 20%);		4	
	график зависимости скорости от времени			
	(оси подписаны и оцифрованы, нанесены			
	точки в соответствии с таблицей, проведена			
	линия графика)		3	
1.9	Численное значение максимальной высоты:	2		
	С погрешностью менее 10%		2	
	Менее 20%		(1)	
	Погрешность больше 20%		0	
	ИТОГО	45		

Задача 10-3 Сначала думать, а потом делать!

	Пункт задачи	Всего за пункт	Баллы	Оценки
Yac	гь 1. Термодинамика тепловой машины.			
1.1	Объем газа;	3	1	
	Количество вещества:			
	- формула;		1	
	- численное значение;		1	
1.2	Давление воды;	2	1	
	Давление поршня		1	
1.3	Цикл Р-z:	17		
	- Участок 1-2:			
	- изобара;		1	
	- указано давление;		1	
	- указаны пределы изменения объема;		1	
	- Участок 2-3:		_	
	- линейная зависимость;		1	
	- приведено уравнение процесса;		2	
	- указаны пределы изменения объема;		1	
	участок 3-4:		1	
	- изобара;		1	
	- указано давление;		1	
	- указаны пределы изменения объема;		1	
	указаны пределы изменения объема,		1	
	- линейная зависимость;		1	
	- приведено уравнение процесса;		2	
	- приведено уравнение процесса, - указаны пределы изменения объема;		1	
	- указаны пределы изменения объема, Построение графика:		1	
	- оси подписаны и оцифрованы;		1	
	оси подписаны и оцифрованы;правильно нанесены узловые точки;		1	
			1	
1.4	- точки соединены отрезками прямых; Цикл <i>T-z:</i>	17	1	
1.4	' .	17	1	
	- формула для расчета температуры;		1	
	- рассчитаны значения температур в		2	
	узловых точках; - процессы 1-2 и 3-4 отрезки прямых;		2 2	
	- процессы 1-2 и 3-4 отрезки прямых, - процесс 2-3:		2	
	_		2	
	- получено уравнение процесса;- найден экстремум, показано, что он на		2	
	1		3	
	конце участка;		3	
	- график — парабола;		1	
	- процесс 4-1:		2	
	- получено уравнение процесса;		2	
	- график – парабола;		1	
	Построение графика:		1	
	- оси подписаны и оцифрованы;		1 1	
	- правильно нанесены узловые точки;		l I	
1.5	- точки соединены правильно		1	
1.5	Формула для расчета КПД;	9	1	
	Формула для расчета изменения внутренней		1	
	энергии;	1	1	

	Формано над розното топноти:		1	
	Формула для расчета теплоты;		1	
	Рассчитана совершенная работа;		2	
	Рассчитано количество полученной теплоты;		2	
	Рассчитан КПД (численное значение)		2	
Част	ъ 2. Кинематика тепловой машины.			
2.1	Зависимость координаты поршня от времени:	15		
	- промежутки времени при нагревании;		2	
	- промежутки времени при остывании;		2	
	- рассчитаны времена в узловых точках;		4	
	- участки 1-2 и 3-4 отрезки прямых;		2	
	- участки 2-3 и 4-1 криволинейные;		2	
	Построение графика:			
	- оси подписаны и оцифрованы;		1	
	- правильно нанесены узловые точки;		1	
	- точки соединены правильно		1	
2.2	Формула для средней мощности	2	1	
	Численное значение;		1	
2.3	Средняя мощность, потребляемая	5		
	нагревателем;		1	
	Отношение мощностей;		1	
	Причина различия – потери теплоты при			
	нагревании.		3	
	ИТОГО	70		

Задача 11-1 Подобие и размерность.

Пункт задачи	Содержание	Баллы	Баллы участника
Задача 1		10	
	Ускорение свободного падения также является определяющей величиной	3	
	Безразмерная комбинация	5	
	Ответ	2	
Задача 2		13	
	Гравитационная постоянная также является определяющей величиной	4	
	Безразмерная комбинация	6	
	Ответ	3	
Задача 3		14	
	Ускорение свободного падения также является определяющей величиной	3	
	Безразмерная комбинация	8	
	Ответ	3	
	Всего	37	

Задача 11-2 Электромагнитная сила Кориолиса.

	Пункт задачи	Всего за пункт	Баллы	Оценки
Част	ъ 1. Электростатическая сила.			
1.1	Силовые линии поля	2		
1.2	Вывод формулы:	5		
	вариант 1 (принцип суперпозиции):			
	- разбиение на малые участки;		1	
	- поле от малого участка;		1	
	- разложение по малому параметру;		2	
	- суммирование;		1	
	Вариант 2 (теорема Гаусса):			
	- формулировка теоремы;		1	
	- поле на оси на малом расстоянии;		2	
	- выбор замкнутой поверхности;		1	
	- выражение для потока через выбранную			
	поверхность;		1	
1.3	Уравнение движения шарика (8);	10	2	
	Указано, что уравнение гармонических			
	колебаний;		1	
	Формула для периода (10);		2	
	Условие существования колебаний (12);		1	
	Схематический график:			
	- есть граница (12), при которой период			
	стремиться к бесконечности;		2	

	- при больших зарядах стремится к нулю;		1	
			1	
1.4	- указано значение при нулевом заряде;	(1	
1.4	Численные оценки:	6	2	
	- оценка зарядов;		2	
	- масса шарика;		1	
	- оценка малого параметра β ;		1	
	- разложение формулы для периода;		1	
	- численное значение поправки (по порядку		1	
	величины);		1	
	гь 2. Магнитная сила.			
2.1	Силовые линии поля	2		
2.2	Вывод формулы:	3		
	- разбиение кольца на малые элементы;		1	
	- индукция поля малого элемента;		1	
	- суммирование;		1	
2.3	Точка максимума;	2	1	
	Вблизи максимума все поправки второго			
	порядка;		1	
2.4	Малая перпендикулярная сила Лоренца не	2		
	изменяет период колебаний			
2.5	Действует сила Лоренца;	5	1	
	Качественно рассмотрено изменение угловой			
	скорости поворота (от нуля до максимума и			
	затем до нуля)		2	
	Правильно указано направление вращения		2 2	
	(Возможен равноценный вариант, если			
	начать рассмотрение от крайней точки)			
2.6	Уравнения движения маятника на основании 2	12		
	закона Ньютона с учетом силы Лоренца;		2	
	- Закон движения маятника с поворотом			
	плоскости вращения (18);		2	
	- формулы для проекций скорости (20);		2	
	- формулы для проекций ускорения (21);		2	
	- приведение к виду, аналогичному			
	уравнениям движения маятника (22);		2	
	- выражение для угловой скорости и периода			
	вращения;		2	
2.7	оценка времени одного оборота (по порядку	2	2	
	величины)			
Част	гь З. Маятник Фуко.			
3.1	Плоскость колебаний сохраняется в	3		
	инерциальной системе отсчета;		2	
	- во вращающейся системе отсчета			
	направление вращения противоположное		2	
3.2	Траектория движения:	2		
	- «розочка»;		1	
	- все лепестки начинаются в начале координат;		1	
3.3	Если не оценено в п. 2.6!		(2)	
	- формулы (18);			
3.4	Рисунок, на котором указаны две	2		
	составляющих вектора скорости;		2	
	Если не оценено в п.2.6 формулы (20)		(2)	
		·	·	

3.4	Рисунок составляющих вектора ускорений	5		
	Указаны следующие компоненты:			
	- собственное ускорение;		1	
	- центробежное;		2	
	- две составляющих нормального ускорения(
	изменение модулю переносной скорости,			
	изменение ее величины);		2	
	Если не оценено в п.2.6			
	- формулы (21);		(2)	
	- приведение к виду (22);		(2)	
	ИТОГО	63		

Задача 11-3. Выпад против Эйнштейна?

	Пункт задачи	Всего за пункт	Баллы	Оценки
Част	гь 1. Два шарика.			
1.1	Гармонические колебания;	6	1	
	- найдена частота;		1	
	- новое положение равновесия;		1	
	- найдена амплитуда колебаний;		1	
	- получена функция (4);		2	
1.2	Найдено максимальное удлинение (5)	2		
1.3	Относительное удлинение (6)	1		
1.4	Относительное изменение силы упругости	1		
	гь 2. Цепочка.			
2.1	Условие равновесия для k нижних шариков;	5	1	
2.1	Удлинение k -той пружинки;		1	
	Сумма арифметической прогрессии (9);		2	
	Относительное удлинение (10)		1	
2.2	Относительное удлинение (12)	2	1	
2.3	Относительное изменение силы (13)	2		
		2		
3.1	гь 3 Сжатие воды. Разбиение на тонкие слои;	7	1	
3.1	· ·	/	1	
	Сжатие отдельного слоя;		1	
	Суммирование;		1	
	Конечная формула;		2	
	Численное значение (округленное до двух		2	
TT	значащих цифр);		<u> </u>	
	ть 4. Смещение поплавка.	2	1	
4.1	Формула для понижения уровня	2	1	
1.0	Численное значение	2	1	
4.2	Относительное изменение плотности:	3	1	
	-формула;		1	
	-численное значение;		1	
1.0	- в процентах		1	
4.3	Увеличение в два раза	1	1	
4.4	Изменение погружения из-за изменения	4		
	плотности;		1	
	Формула для величины всплытия;		2	
	Численное значение		1	
4.5	Сжатие, как высота подъема дна за время	5		
	распространения волны;		2	
	Формула для скорости волны;		2	
	Численное значение скорости волны		1	
4.6	Давление изменяется в каждой области по	3		
	линейному закону;		1	
	Коэффициенты наклона отличаются в два			
	раза;		1	
	Схематический график		1	
4.7	Сила давления жидкости действует на дно	9		
	пробирки;		1	
	Зависимость результирующей силы от			

времени;		2	
Импульс, приобретенный пробиркой;		2	
Формула для скорости;		2	
Численное значение (две значащие цифры).		2	
ИТОГО	53		