Lecture 2: Aug 20

Last time

- Introduction
- Introduce yourself
- Course logistics

Today

- Continue self-introduction
- Change Midterm 1 time (conflict with Jewish High Holiday Yom Kippur)?
- Set theory (1.1)
- Axiomatic Foundations (1.2)
- Calculus of Probabilities (1.2)
- Conditional Probability (1.3)

Set Theory

One of the main objectives of a statistician is to draw conclusions about a population of objects by conducting an experiment. The first step in this endeavor is to identify the possible outcomes or, in statistical terminology, the *sample space*.

Definition The set, S, of all possible outcomes of a particular experiment is called the *sample* space for the experiment.

Example The sample space of

• tossing a coin just once, contains two outcomes, heads and tails

$$S = \{H, T\}$$

- observing reported SAT scores of randomly selected students at a certain university
- $\bullet\,$ an experiment where the observation is reaction time to a certain stimulus

Definition An *event* is any collection of possible outcomes of an experiment, that is, any subset of S (including S itself).

Let A be an event,

- A is a subset of S,
- event A occurs if the outcome of the experiment is in the set A,

• we generally speak of the probability of an event, rather than a set.

Set operations:

• Containment:

$$A \subset B \iff x \in A \implies x \in B$$

• Equality:

$$A = B \iff A \subset B \text{ and } B \subset A$$

• Union: the union of A and B, written as $A \cup B$, is the set of elements that belong to either A or B or both

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

• Intersection: the intersection of A and B, written $A \cap B$, is the set of elements that belong to both A and B:

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

• Complementation: the complement of A, written A^c , is the set of all elements that are not in A:

$$A^c = \{x : x \notin A\}.$$

Theorem For any three events, A, B, and C, defined on a sample space S,

1. Commutativity

$$A \cup B = B \cup A,$$

 $A \cap B = B \cap A;$

2. Associativity

$$A \cup (B \cup C) = (A \cup B) \cup C,$$

$$A \cap (B \cap C) = (A \cap B) \cap C;$$

3. Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

4. DeMorgan's Laws

$$(A \cup B)^c = A^c \cap B^c,$$

$$(A \cap B)^c = A^c \cup B^c;$$

We show the proof of $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ in the distributive laws. Caution: Venn diagrams are helpful in visualization, but they do not constitute a formal proof. To prove that two sets are equal, we need to show that each set contains the other. *proof*:

- $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$: Let $x \in (A \cap (B \cup C))$. By definition of intersection, $x \in (B \cup C)$ that is, either $x \in B$ or $x \in C$. Since x also must be in A, we have that either $x \in (A \cap B)$ or $x \in (A \cap C)$; therefore, $x \in ((A \cap B) \cup (A \cap C))$.
- $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$: Let $x \in ((A \cap B) \cup (A \cap C))$. This implies that $x \in (A \cap B)$ or $x \in (A \cap C)$. If $x \in (A \cap B)$, then x is in both A and B. Since $x \in B$, then $x \in (B \cup C)$ and thus $x \in (A \cap (B \cup C))$. It follows the same argument when $x \in (A \cap C)$, we still have $x \in (A \cap (B \cup C))$.

Definition Two events A and B are disjoint (or mutually exclusive) if $A \cap B = \emptyset$. The events A_1, A_2, \ldots are pairwise disjoint (or mutually exclusive) if $A_i \cap A_j = \emptyset$ for all $i \neq j$.

Definition If A_1, A_2, \ldots are pairwise disjoint and $\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots = S$, then the collection of A_1, A_2, \ldots forms a partition of S.

Example The sets $A_i = [i, i+1), i = 0, 1, 2, ...$ form a partition of $[0, \infty)$.