$$a) \ x^2 - x = 0$$

c)
$$-x^2 - 10x = 0$$

$$b$$
) $-x^2 + 9x = 0$

d)
$$2x^2 + 11x = 0$$

5. Resuelva las siguientes ecuaciones incompletas

a)
$$x^2 = 0$$

b)
$$3x^2 = 0$$

$$c) -x^2 = 0$$

$$d) -2x^2 =$$

6. Resuelva las siguientes ecuaciones completas

a)
$$x^2 + 7x + 12 = 0$$

$$x^2 + 2x - 15 = 0$$

$$b) \ x^2 - 7x - 18 = 0$$

$$d) 2x^2 + 11x + 5 = 0$$

7. Resuelva las siguientes ecuaciones:

a)
$$25x(x+1) = -4$$

a)
$$25x(x+1) = -4$$

b) $2x(x+3) = (3(x-1)$

c)
$$(2x-3)^2 = 8x$$

e)
$$1-5x\left(1-\frac{3}{2}\right) = \frac{x}{2}$$

f) $2x(3x-4) - (1-3x)(1+x) = -2$

- d) $\frac{x^2+2}{5} \frac{x^2+x}{2} = \frac{3x+1}{10}$
- 8. Exprese matemáticamente las siguientes afirmaciones indicando si son ciertas o
- a) Si al cuadrado de ocho le añado 8 unidades, obtengo setenta y seis
- b) La mitad del cuadrado de cuarenta y dos es ochocientos cuarenta
- c) Ciento cincuenta y dos disminuido en ocho unidades, da el cuadrado de doce
- d) El doble del cuadrado de 3 es 18
- 9. La mitad del cuadrado de un número es 242. Hállelo.
- 10. La suma de un número y su cuadrado es 20. Calcúlelo.
- 11. Si a un número le sumo la mitad de su cuadrado, el resultado es 3/2, ¿De qué número se trata?
- Si a un número le sumo su triple y le resto su cuadrado, el resultado es -5. Halle 12.
- 13. Solucione el problema del cohete planteado al iniciar esta guía.

Introducción a la ecuación de 2° Álgebra 9°

Germán Avendaño Ramírez *

Nombre:

Guía

Introducción

Si su rapidez inicial es de 120 pies/segundo a y la Un cohete de juguete es lanzado verticalmente hacia arriba desde el suelo, como se ilustra en el dibujo. entonces la altura del cohete después de t segundos única fuerza que se le opone es la fuerza de gravedad, está dada por la expresión

$$h = -16t^2 + 120t$$

Algunos valores de h para los primeros 7 segundos de vuelo se muestran en la siguiente tabla $^a\mathrm{Un}$ pie equivale a 12 pulgadas y una pulgada, a 2,54 cm aproximadamente

t	(sec)	0	\vdash	2	က	4	က	9	_
ے ا	(pies)	c	104	176	216	224	200	144	56

Podemos ver en la tabla que, al ascender el cohete, alcanza la altura de 180 pies sobre el piso en algún instante entre t=2 y t=3 segundos. Al descender, el cohete alcanza la altura de 180 pies sobre el piso en algún instante entre los 5 y 6 segundos. Para encontrar

^{*}Lic. Mat. U.D., M.Sc. U.N.

$$180 = -16t^2 + 120t$$

$$16t^2 - 120t + 180 = 0$$

una altura de 180 pies sobre el suelo cuadrática en t. Antes de aprender a resolver estas ecuaciones, debemos resolver el problema planteado y encontrar los instantes para los cuales el cohete se encuentra a Como se indica en el siguiente cuadro, una ecuación de esta clase se llama ecuación

$4x = x^2$	donde $a \neq 0$	
x(3+x) = 5,	ta de la forma $ax^2 + bx + c = 0$,	en x
$4x^2 = 8 - 11x,$	Una ecuación que puede ser escri-	Ecuación cuadrática
Ejemplos	Definición	Terminología

Para poder resolver ecuaciones de esta tipo, debemos hacer uso del siguiente teorema:

Si p y q son expresiones algebraicas, entonces:

$$pq = 0$$
 sí y solamente sí $p = 0$ o $q = 0$

Ejemplc

Solucione la ecuación $3x^2 = 10 - x$

0 en un lado de la ecuación. Luego procedemos así: Solución: Para usar el método de factorización, es necesario que solamente aparezca

$$3x^2 = 10 - x$$
 ecuación dada
$$3x^2 + x - 10 = 0$$
 sumando $x - 10$
$$(3x - 5)(x + 2) = 0$$
 Factorizando
$$3x - 5 = 0, \quad x + 2 = 0$$
 Teorema del factor cero
$$x = \frac{5}{3}, \quad x = -2$$
 Solucionando para x

Luego las soluciones de la ecuación dada son $\frac{5}{3}$ y -2

Ejercicios

Revisión de conceptos

En los puntos 1 y 2, llene los espacios en blanco

https://www.autistici.org/mathgerman 🗣gavendanor@colarborizadorabaja.edu.co

- 1. Una ecuación de la forma $ax^2 + bx + c = 0$, donde a, b y c son números reales y $a \neq 0$, es una _____ o una ecuación polinómica de segundo grado en x
- 2. La parte b^2-4ac de la fórmula general para solucionar una ecuación cuadrática se denomina _____ y determina el tipo de solución de la ecuación cuadrática.
- 3. Mencione cuatro métodos para solucionar una ecuación cuadrática.
- 4. ¿Qué representa la ecuación $S=-16t^2+v_0t+s_0$? ¿Qué significan v_0 y s_0 ?

Nivel I

1. Indica cuales de las siguientes igualdades son ecuaciones de 2° grado

a)
$$x^2 + 9 = 25$$
 f) $x(x - 2x) = x^2(x - 3) - 1$

b)
$$3x^2 = 0$$

c) $2x^2 - 7x = x^2 - 5 + 7x$

$$g) \frac{x}{3} + \frac{x^2}{6} = x^2$$

$$d) (x+1)^2 - x^2 = x+9$$

e) 3x(x+1) = 2x(x+1)

$$h) \ \frac{6x^2}{5} + x^2 = \frac{11x^2}{5} + 3$$

2. Comprueba si los valores dados a la incógnita son soluciones de la ecuación propuesta en cada caso:

a)
$$3x^2 - 10x + 3 = 0$$
; $x = 0, x = \frac{1}{3}$
b) $2x^2 - 3x = x + 2x^2$; $x = 0, x = 5$
c) $(2x + 1)\left(x - \frac{1}{2}\right) = 0$; $x = 1, x = 1$

)
$$2x^2 - 3x = x + 2x^2$$
; $x = 0, x = 5$

c)
$$(2x+1)\left(x-\frac{1}{3}\right)=0;$$
 $x=1, x=\frac{1}{3}$

d)
$$4(x^2+9) = x^2+144$$
; $x=6, x=-6, x=1$

e)
$$\left(x - \frac{1}{2}\right) \left(\frac{1}{2} - x\right) = 0;$$
 $x = \frac{1}{2}, x = -\frac{1}{2}$
f) $x(x - 2) = x^2 + 1;$ $x = 0, x = \frac{1}{2}$

Resuelva las siguientes ecuaciones incompletas

a)
$$x^2 - 9 = 0$$
 b) $x^2 - 1 = 0$ c) $x^2 - 16 = 0$ d) $-x^2 + 25 = 0$

4. Resuelve las siguientes ecuaciones incompletas: