Konvergenz von Folgen

Def Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen und $a\in\mathbb{R}$. Wir sagen, die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert (strebt) gegen a, falls zu jedem $\varepsilon>0$ ein $N=N(\varepsilon)\in\mathbb{N}$ existiert mit $|a_n-a|<\varepsilon$ für alle $n\geq N$. In diesem Fall heißt a der Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$ und man schreibt $\lim_{n\to\infty}a_n=a$ oder $a_n\stackrel{n\to\infty}{\longrightarrow}a$. Kurz zusammengefasst:

$$a_n \xrightarrow{n \to \infty} a : \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \varepsilon$$

Eine Folge heißt konvergent, falls sie gegen ein $a \in \mathbb{R}$ konvergiert. Sonst heißt sie divergent.

Eine Folge mit Grenzwert a = 0 nennt man auch Nullfolge.

Satz 2.1 Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt: Konvergiert eine Folge gegen a und b, so ist a = b.

Def Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt nach oben (bzw. nach unten) beschränkt, wenn es eine Konstante $K \in \mathbb{R}$ gibt, sodass

$$a_n \leq K$$
 für alle $n \in \mathbb{N}$ (bzw. $a_n \geq K$ für alle $n \in \mathbb{N}$).

Die Folge $(a_n)_{n\in\mathbb{N}}$ heißt beschränkt, wenn es eine Konstante $M\in\mathbb{R}$ gibt, sodass

$$|a_n| \leq M$$
 für alle $n \in \mathbb{N}$.

Satz 2.2 Jede konvergente Folge ist beschränkt.

- Satz 2.3 (Rechenregeln für konvergente Folgen) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen reeller Zahlen. Dann konvergieren auch die Summenfolge $(a_n + b_n)_{n\in\mathbb{N}}$, die Produktfolge $(a_n b_n)_{n\in\mathbb{N}}$ und die Quotientenfolge $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$ (falls $\lim_{n\to\infty} b_n \neq 0$ und $b_n \neq 0$) und es gilt
- 1) $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$,
- 2) $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$,
- 3) $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$, falls $\lim_{n\to\infty} b_n \neq 0$ und $b_n \neq 0$.

Satz 2.4 (Verträglichkeit der Konvergenz mit Ungleichungen) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen reeller Zahlen mit $a_n \leq b_n$ für alle natürlichen Zahlen $n \geq n_0$, $n_0 \in \mathbb{N}$. Dann gilt auch

$$\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n.$$

Satz 2.5 (Einschnürungssatz) Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ Folgen reeller Zahlen, $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} c_n = a$ und $a_n \leq b_n \leq c_n$ für alle natürlichen Zahlen $n \geq n_0$, $n_0 \in \mathbb{N}$. Dann konvergiert auch $(b_n)_{n\in\mathbb{N}}$ und

$$\lim_{n \to \infty} b_n = a.$$