

Deep Learning Project American Sign Language Recognition Using Hand Tacking

Elyas Maghrabi

Outline

DEMO

CONCLUSION

Motivation

- Deaf and speaking impaired people cannot use speaking to communicate with others.
- Number of Deaf and hearing among the world, It is estimated that will be by 2050 over 700 million people according to world health organization.

Dataset contains

The data set is a collection of images of alphabets from the American Sign Language, separated in 26 folders which represent the various classes.

Libraries

The problem

Preprocessing

- How to deal with large Dataset
- Limited time(12 hours)
- Labeling

What features?

- Real time (ASL)
 detection based on
 gesture made by user.
- Customized gesture generation.

Prediction Model

 Try to build a model to predict ASL detection based. (image and realtime)

Modelling

Model: MobileNetV2

Two layers

activation= relu

Loss=categorical_crossentropy

Output

activation=softmax

Optimizer: adam

Modeling Result

Test Loss: 0.19315 Test Accuracy: 94.14%

	precision	recall	f1-score	support
Α	0.96	0.96	0.96	26
В	0.94	0.97	0.95	32
С	0.90	0.96	0.93	27
D	0.86	1.00	0.93	25
E	0.93	0.93	0.93	29
F	0.96	0.93	0.95	28
G	0.83	1.00	0.91	29
Н	1.00	0.86	0.93	36
I	1.00	0.88	0.94	33
J	0.96	0.86	0.91	29
K	0.97	0.97	0.97	33
L	1.00	1.00	1.00	39
М	0.85	0.92	0.88	37
N	0.93	0.84	0.88	31
0	0.97	1.00	0.99	34
Р	1.00	1.00	1.00	22
Q	1.00	1.00	1.00	36
R	0.96	0.96	0.96	23
S	1.00	0.71	0.83	31
T	0.89	0.92	0.91	26
U	0.97	0.92	0.95	38
V	0.84	0.88	0.86	24
W	1.00	0.95	0.97	19
X	0.87	0.96	0.91	27
Y	0.88	0.96	0.92	23
Z	0.93	1.00	0.96	26
del	1.00	1.00	1.00	35
nothing	0.93	1.00	0.96	37
space	1.00	0.97	0.99	35
accuracy			0.94	870
macro avg	0.94	0.94	0.94	870
weighted avg	0.95	0.94	0.94	870

Result

Demo

Future Work

- I planning to achieve higher accuracy real time even in case of complex backgrounds by trying out various background subtraction algorithms.
- Word and sentence formation.
- Better hand tacking.

Conclusion

Thank You