Przestrzenna symulacja iterowanego dylematu więźnia rozgrywanego między sztucznymi sieciami neuronowymi w paradygmacie uczenia ze wzmocnieniem

Bartosz Swędrowski

23 kwietnia 2021

Plan prezentacji

- 1 Dlaczego?
- 2 Co?
- 3 Podstawy teoretyczne
- 4 Co? c.d.
- 5 Jak?
- 6 Wstępne wyniki

Co?

Podstawy teoretyczne

Co? c.d.

Jak?

Wstępne wyniki

SERG

Projekt dodatkowy z przedmiotu Sztuczna inteligencja - SERG (Symulator Ewolucyjnej Rywalizacji Genów), realizowany pod opieką dr. Andrzeja Gajdy.

Dlaczego nie SERG?

Wycinek planszy SERGa

- plansza
- agenci z parametrami i rolami
- potencjał na licencjat
- niestety brak miejsca na sieci neuronowe

Co?

•0000

Przykładowa tabela nagród w dylemacie więźnia

Gracz1	Gracz2	Nagroda [G1, G2]
0	0	[3, 3]
0	1 1	[-1, 4]
1	0	[4, -1]
1	1	[0, 0]

Co? c.d.

0 - próba współpracy 1 - próba oszustwa

Schemat interakcji między agentami (jeden epizod)

Gracz1 C

Schemat interakcji między agentami (jeden epizod)

Gracz1 0 1 **Gracz2** 0 0

Gracz1 0 1 1 Gracz2 0 0 1

Schemat interakcji między agentami (jeden epizod)

Gracz1 0 1 1 0 **Gracz2** 0 0 1 1

Gracz1 0 1 1 0 1 1 1 1 1 1 **Gracz2** 0 0 1 1 1 1 1 1 1 1

Przykładowe taktyki

- 1 Always Cooperate
- 2 Always Defect
- 3 Tit For Tat
- 4 GRIM
- S Random

1 plansza

- 2 agenci w grupach (hives roje)
- 3 interagują na zasadach iterowanego dylematu więźnia
- 4 otrzymują decyzje o akcjach od sieci neuronowej ich grupy
- 5 ale przepuszczają ją przez "filtr" swojego parametru

Paradygmaty uczenia maszynowego

• uczenie nadzorowane (supervised learning)

Paradygmaty uczenia maszynowego

- uczenie nadzorowane (supervised learning)
- uczenie nienadzorowane (unsupervised learning)

Paradygmaty uczenia maszynowego

- uczenie nadzorowane (supervised learning)
- uczenie nienadzorowane (unsupervised learning)
- uczenie ze wzmocnieniem (reinforcement learning)

- uczenie nadzorowane (supervised learning)
- uczenie nienadzorowane (unsupervised learning)
- uczenie ze wzmocnieniem (reinforcement learning)
 - głębokie uczenie ze wzmocnieniem (deep reinforcement learning)

Paradygmaty uczenia maszynowego

- uczenie nadzorowane (supervised learning)
- uczenie nienadzorowane (unsupervised learning)
- uczenie ze wzmocnieniem (reinforcement learning)
 - głębokie uczenie ze wzmocnieniem (deep reinforcement learning)
 - algorytm DQN (Deep Q-Network) w rozszerzonym wariancie DDDQN (Dueling Double Deep Q-Network)

Q-learning

	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7
s_0	490	490	490	700	490	490	490	490
s_1	490	490	700	490	490	490	490	490
s_2	490	490	490	700	700	490	490	490
s_3	490	490	700	1000	700	700	490	490
s_4	490	490	490	700	700	700	490	490
s_5	490	490	700	700	1000	700	700	490
s_6	490	490	490	490	700	700	490	490
87	490	490	490	490	700	1000	700	490
88	700	490	490	490	700	700	1000	700
s_9	700	490	490	490	490	700	700	1000
s_{10}	700	490	490	490	490	490	490	490
s_{11}	490	490	490	490	490	700	490	490
s_{12}	490	490	490	490	490	700	700	490
s_{13}	490	490	490	490	490	700	700	700
s_{14}	490	490	490	490	490	490	700	700
s_{15}	490	490	490	490	490	490	490	700

Rysunek: Q-table

Discount Rate

DQN

Dlaczego?

1 DQN (Deep Q-network)

- 1 DQN (Deep Q-network)
- 2 Double DQN DQN w podstawowej wersji ma tendencję do przeszacowywania wartości stanów. W Double DQN online network generuje akcje, podczas gdy target network estymuje Q value.

- DQN (Deep Q-network)
- Double DQN DQN w podstawowej wersji ma tendencję do przeszacowywania wartości stanów. W Double DQN online network generuje akcje, podczas gdy target network estymuje Q value.

Co? c.d.

3 Dueling DQN - Dueling DQN rozdziela sieć w przedostatniej warstwie na dwie części: jedną estymującą *q-value* i jedną generującą akcję. Następnie znów łączy sieć w całość. Podobnie jak wyżej, powodem jest to, że DQN jest "nazbyt optymistyczne" jeśli chodzi o estymację q-values.

DQN

- DQN (Deep Q-network)
- 2 Double DQN DQN w podstawowej wersji ma tendencję do przeszacowywania wartości stanów. W Double DQN online network generuje akcje, podczas gdy target network estymuje Q value.
- 3 Dueling DQN Dueling DQN rozdziela sieć w przedostatniej warstwie na dwie części: jedną estymującą *q-value* i jedną generującą akcję. Następnie znów łączy sieć w całość. Podobnie jak wyżej, powodem jest to, że DQN jest "nazbyt optymistyczne" jeśli chodzi o estymację q-values.
- 4 Double Dueling DQN (DDDQN) połączenie obu wariantów wymienionych wyżej.

Właściwości algorytmu DQN i HIVE

1 Jest to uczenie ze wzmocnieniem typu model-free środowisko jest dla agenta czarną skrzynką. Nie ma on do niego dostępu, a wiedza jaką o nim posiądzie pochodzi z działania metodą prób i błędów.

- 1 Jest to uczenie ze wzmocnieniem typu model-free środowisko jest dla agenta czarną skrzynką. Nie ma on do niego dostępu, a wiedza jaką o nim posiądzie pochodzi z działania metodą prób i błędów.
- dyskretna przestrzeń akcji liczba możliwych do wykonania akcji jest dyskretna i skończona,

- 1 Jest to uczenie ze wzmocnieniem typu model-free środowisko jest dla agenta czarną skrzynką. Nie ma on do niego dostępu, a wiedza jaką o nim posiądzie pochodzi z działania metoda prób i błedów.
- 2 dyskretna przestrzeń akcji liczba możliwych do wykonania akcji jest dyskretna i skończona,
- 3 polityka typu *epsilon greedy* stochastyczna polityka działania agenta - mapuje ona stany na rozkład prawdopodobieństwa,

Jak?

- 1 Jest to uczenie ze wzmocnieniem typu model-free środowisko jest dla agenta czarną skrzynką. Nie ma on do niego dostępu, a wiedza jaką o nim posiądzie pochodzi z działania metoda prób i błedów.
- 2 dyskretna przestrzeń akcji liczba możliwych do wykonania akcji jest dyskretna i skończona,
- 3 polityka typu *epsilon greedy* stochastyczna polityka działania agenta - mapuje ona stany na rozkład prawdopodobieństwa,
- 4 metoda off-policy algorytm ocenia i ulepsza inną politykę, niż ta, która jest wykorzystywana do generowania akcji,

- 1 Jest to uczenie ze wzmocnieniem typu model-free środowisko jest dla agenta czarną skrzynką. Nie ma on do niego dostępu, a wiedza jaką o nim posiądzie pochodzi z działania metodą prób i błędów.
- dyskretna przestrzeń akcji liczba możliwych do wykonania akcji jest dyskretna i skończona,
- 3 polityka typu *epsilon greedy* stochastyczna polityka działania agenta mapuje ona stany na rozkład prawdopodobieństwa,
- 4 metoda off-policy algorytm ocenia i ulepsza inną politykę, niż ta, która jest wykorzystywana do generowania akcji,
- 5 częściowo obserwowalne środowisko algorytm nie ma dostępu do kompletnej wiedzy o stanie środowiska, w danym momencie jest dla niego dostępna tylko jego część.

Czym więc jest HIVE?

HIVE

Dlaczego?

Model środowiska, w którym agenci o częściowo ograniczonej racjonalności funkcjonują w grupach i wchodzą ze sobą w interakcję bazowaną na iterowanym dylemacie więźnia, podejmując decyzję na podstawie obliczeń sieci neuronowej ich grupy zmodyfikowanych przez wartość parametru poszczególnych agentów.

Dlaczego?

Co? c.d.

00000 • 00000000000000000

Główna pętla programu

Dlaczego?

Ruch agentów na planszy

GŁÓWNA PĘTLA PROGRAMU

Główna pętla programu

Główna pętla programu

Główna pętla programu

Główna pętla programu

Pętla epizodu z perspektywy jednego z graczy

Środowisko

PĘTLA **POJEDYNCZEGO EPIZODU**

Pętla epizodu z perspektywy jednego z graczy

Co? c.d.

Pętla epizodu z perspektywy jednego z graczy

Pętla epizodu z perspektywy jednego z graczy

Na jakiej podstawie sieć generuje akcję? Input sieci

- 1 numer aktualnej wymiany (1-20)
- 2 własna akcja z poprzedniej wymiany
- 3 akcja przeciwnika z poprzedniej wymiany
- własny numer roju
- 5 numer roju przeciwnika
- 6 moja nagroda z poprzedniej wymiany
- 7 własny indeks agenta
- 8 indeks agenta przeciwnika
- 9 + te same informacje dla poprzednich dwóch wymian

Dlaczego?

1 Sequential memory o pojemności z przedziału 2000-32000,

- 1 Sequential memory o pojemności z przedziału 2000-32000,
- 2 optimizer typu Adam (Adaptive Moment Estimation),

- 1 Sequential memory o pojemności z przedziału 2000-32000,
- 2 optimizer typu Adam (Adaptive Moment Estimation),
- $\mathbf{3}$ współczynnik uczenia = 1e-3,

- 1 Sequential memory o pojemności z przedziału 2000-32000,
- 2 optimizer typu Adam (Adaptive Moment Estimation),
- 3 współczynnik uczenia = 1e-3,
- 4 gamma = 0.9,

- 1 Sequential memory o pojemności z przedziału 2000-32000,
- 2 optimizer typu Adam (Adaptive Moment Estimation),
- 3 współczynnik uczenia = 1e-3,
- **4** gamma = 0.9,
- **5** wielkość "okna" obserwacji (window length) = 3,

Jak?

Hiperparametry

- 1 Sequential memory o pojemności z przedziału 2000-32000,
- optimizer typu Adam (Adaptive Moment Estimation),
- 3 współczynnik uczenia = 1e-3.
- **4** gamma = 0.9,
- **5** wielkość "okna" obserwacji (window length) = 3,
- 6 architektura sieci: (24, input), (128, ReLu), (96, ReLu), (64, ReLu), (32, ReLu), (16, ReLu), (2, Sigmoid) lub (10, Sigmoid).

Tech stack: struktura programu

Tech stack: struktura programu

Tech stack: struktura programu

Jak?

000000

Dlaczego?

1 Dwie sieci vs stałe taktyki. Pamięci sieci: {1: 8000, 2: 32000}

Dlaczego?

Dwie sieci vs stałe taktyki.

Pamięci sieci: {1: 8000, 2: 32000}

2 Dwie sieci vs stałe taktyki + parametr.

Pamięci sieci: {1: 8000, 2: 32000}

Dlaczego?

Dwie sieci vs stałe taktyki.

Pamięci sieci: {1: 8000, 2: 32000}

2 Dwie sieci vs stałe taktyki + parametr.

Pamięci sieci: {1: 8000, 2: 32000}

3 Sześć sieci, rozgrywki między sobą.

Pamięci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

Dlaczego?

1 Dwie sieci vs stałe taktyki.

Pamięci sieci: {1: 8000, 2: 32000}

2 Dwie sieci vs stałe taktyki + parametr.

Pamieci sieci: {1: 8000, 2: 32000}

3 Sześć sieci, rozgrywki między sobą.

Pamieci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

Co? c.d.

6: 32000}

Sześć sieci, rozgrywki między sobą + parametr.

Pamieci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

Dlaczego?

Dwie sieci vs stałe taktyki.

Pamięci sieci: {1: 8000, 2: 32000}

2 Dwie sieci vs stałe taktyki + parametr.

Pamięci sieci: {1: 8000, 2: 32000}

3 Sześć sieci, rozgrywki między sobą.

Pamięci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

4 Sześć sieci, rozgrywki między sobą + parametr.

Pamięci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

1 Dwie sieci vs stałe taktyki.

Pamięci sieci: {1: 8000, 2: 32000}

2 Dwie sieci vs stałe taktyki + parametr.

Pamięci sieci: {1: 8000, 2: 32000}

3 Sześć sieci, rozgrywki między sobą.

Pamieci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

Sześć sieci, rozgrywki między sobą + parametr.

Pamieci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

Czynnikiem różnicującym sieci w testach jest pojemność pamięci.

Zaplanowane testy

- 1 Dwie sieci vs stałe taktyki.
 - Pamięci sieci: {1: 8000, 2: 32000}

Podstawy teoretyczne

- 2 Dwie sieci vs stałe taktyki + parametr.
 - Pamieci sieci: {1: 8000, 2: 32000}
- 3 Sześć sieci, rozgrywki między sobą. Pamieci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,
 - 6: 32000}
- Sześć sieci, rozgrywki między sobą + parametr.

Pamieci sieci: {1: 2000, 2: 8000, 3: 14000, 4: 20000, 5: 26000,

6: 32000}

Czynnikiem różnicującym sieci w testach jest pojemność pamięci.

Zakres parametru: [-3, 3]; wpływ parametru: (akcja + 9*(0.16 * parametr))

1 Sieci efektywnie grają przeciwko taktykom Always Cooperate, GRIM, Tit For Tat, Suspicious TFT, Imperfect TFT oraz Random, osiągając optymalne wyniki. Sieci przegrywają w rozgrywkach przeciwko taktyce Always Defect. Można podejrzewać faworyzowanie akcji współpracy - najprawdopodobniej rozwiązaniem jest zbalansowanie tabeli nagród w stronę większych korzyści z udanego oszustwa.

1 Sieci efektywnie grają przeciwko taktykom Always Cooperate, GRIM, Tit For Tat, Suspicious TFT, Imperfect TFT oraz Random, osiągając optymalne wyniki. Sieci przegrywają w rozgrywkach przeciwko taktyce Always Defect. Można podejrzewać faworyzowanie akcji współpracy - najprawdopodobniej rozwiązaniem jest zbalansowanie tabeli nagród w stronę większych korzyści z udanego oszustwa.

Dlaczego?

Pełna współpraca między agentami - średnia nagroda 60 w każdej interakcji.

Dlaczego?

Wykresy zbyt mało oczywiste do analizy bez testów statystycznych. Potrzeba większej ilości danych.

Planowane analizy i przyszłe prace

W planie: wykonanie finalnych obliczeń dla wyżej wymienionych eksperymentów oraz zbadanie ich jednoczynnikową analiza wariancji z powtarzanym pomiarem.

Co? c.d.

Przyszłe prace: zakodować cechy jakościowe danych wejściowych wg formatu "one-hot encoding".

Podsumowanie

HIVE

Przestrzenna symulacja iterowanego dylematu więźnia rozgrywanego między sztucznymi sieciami neuronowymi w paradygmacie uczenia ze wzmocnieniem.

Uznanie

- Wektory strzałek: https://www.freepik.com/Harryarts
- obrazek mózgu: Creative Commons