Meteorology & Climatology RefCard

Physics and Thermodynamics **Basic Thermodynamics**

Ideal gas Eq. $p = \rho r T$, $r = \frac{R}{M}$ Heat Capacity $Q = mc\Delta T$ First Princ. $\Delta U = Q - W$ Idem., diff. $c_p dT = \frac{dp}{\rho}, \, c_v dT = -p dV$ Latent Heat Q = mLL Dependence with T $L = L_0 + (c_{pw} - c)T(^{\circ}C)$ Poisson Eqs. $\gamma = \frac{c_p}{c_n} \simeq 1.4$, $\kappa = \frac{\tilde{r}}{c_n} \simeq 0.286$,

$$pV^{\gamma}={\rm constant}$$
 , $Tp^{\kappa-1}={\rm constant}$

Constant values and units

Universal Gas Constant $R=8.314\,472\,\mathrm{J\,mol^{-1}\,K^{-1}}$ Equivalent Temperature Dry Air Gas Constant $r_d = 287 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ Water Gas Constant $r_w = 461 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ Dry air heat capacity $c_{pd}=1006\,\mathrm{J\,mol^{-1}\,K^{-1}}$ Water vapor heat capac. $c_{pw} = 1846 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$

Radiation Heat Transfer

 $\lambda_M T = 2.898 \times 10^{-3} \,\mathrm{m\,K}$ Wien's Law Stefan-Boltzmann Law $M_e = arepsilon \sigma T^4$

Constant values and units

Boltzmann Constant $\sigma = 5.6704 \times 10^{-8} \, {\rm W \, m^{-2} \, K^{-4}}$

Water Vapor and Humidity

Moist air r constant $\bar{r} = qr_w + (1-q)r_d$. Relative Humidity $h=100\frac{e}{E}\simeq 100\frac{a}{A}\simeq 100\frac{m}{M}$ Mixing Ratio Specific Humidity Absolute Humidity Useful Relations

Clausius-Clapeyron Equation

$$\begin{split} \frac{dE}{dT} &= \frac{LE}{r_w T^2} \ \, \text{(differential form)} \\ \ln \frac{E}{E_0} &= \frac{L}{r_w} \left(\frac{1}{T_0} - \frac{1}{T} \right) \\ \ln \frac{h}{h_0} &= \frac{L}{r_w} \left(\frac{1}{T} - \frac{1}{T_0} \right) \ \, \text{(only isobaric)} \end{split}$$

Magnus formula

$$E(T) = 6.1 \times 10^{\frac{7.45T(^{\circ}C)}{234.07 + T(^{\circ}C)}} \text{ (hPa)}$$

Virtual Temperature

$$\overline{r}T = rT_v \Rightarrow T_v = T\left(1 + \frac{3}{5}q\right) .$$

$$T_e = T + \frac{mL}{c_p} \simeq T + 2a \left(\text{g m}^{-3} \right) .$$

Wet-bulb Temperature

$$(c_{pd} + mc_{pw})(T - T_w) = L[M(T_w) - m]$$
$$T_e \simeq T_w + \frac{M(T_w)L}{c_{pd}} \simeq T_h + 2A(T_h)$$

Constant values and units

Molecular mass ratio $\epsilon = \frac{M_w}{M_d} = \frac{r_d}{r_w} = 0.622$ Water Gas Constant $r_w = 461 \,\mathrm{J\,kg^{-1}\,K^{-1}}$

Atmospheric Processes

Potential Temperature $\theta = \left(\frac{1000}{P}\right)^{r/c_p} T$ Adiab. Elevation(linear) $T(z) = T_0 \left(1 - \frac{\Gamma z}{T_0'}\right)$ $m = \frac{e}{P} = \frac{m}{\epsilon + m}$ $q = \frac{m}{m+1}$ $e = ar_wT$ $\frac{de}{e} = \frac{dm}{m} + \frac{dP}{P} \text{ and } \frac{dh}{h} = \text{Equilibrium Height } z_e \text{ such that } T'(z_e) = T(z_e).$ Stability Index $\eta = g \frac{\Gamma - \alpha}{T'}$

dh/dT in an adiabatic ascent

$$\frac{dh}{dT} = \frac{h}{T} \left(\frac{\bar{c}_p}{\bar{r}_d} - \frac{L}{r_w T} \right) .$$

Exact h(T) in an adiabatic ascent

$$\ln \frac{h}{h_0} = \frac{\overline{c}_p}{\overline{r}} \ln \frac{T}{T_0} + \frac{\epsilon L}{r}_d \left(\frac{1}{T} - \frac{1}{T_0} \right) .$$

Pseudoadiab. Ascent Lapse Rate -LdM $c_n dT - V dP$

$$\Gamma_{pseud} = \Gamma \frac{P + \epsilon \frac{LE}{RT}}{P + \epsilon \frac{L}{c_p} \frac{dE}{dT}}$$

Approximate h(T) in an adiabatic ascent

$$\frac{h}{h_0} = \left(\frac{T}{T_0}\right)^{\frac{\overline{c}_p}{\overline{r}}} - \frac{\epsilon L}{r_d T_0} \ .$$

Ferrel Formula $z_s=122(T_0- au_0)~(\mathrm{m})$ Väisälä Formula $z_s = 188 \left(T(^\circ\mathrm{C}) + 105\right) \frac{\log_{10} \frac{100}{h_0}}{\log_{10} \frac{100}{h_0} + 5.1}$

Constant values and units

Adiabatic Lapse Rate $\Gamma = \frac{g}{c_{rd}} = 9.8 \,\mathrm{K \, km^{-1}}$

Polytropic Processes

Polyt. Heat Capacity $\left\{ egin{array}{l} c_p
ightarrow c_p - c \ c_v
ightarrow c_v - c \end{array}
ight.$ Polyt. Heat Capacity $\delta q = cdT$ First Principle Polyt. $(\bar{c}_p - c)dT + \frac{T}{T'}gdz = 0$

Gradient Pressure Accel. $\vec{a}_p=-\frac{1}{\rho}\vec{\nabla}P\to-\frac{1}{\rho}\frac{dP}{dx}$ Coriolis Accel. $a_c=2v\Omega\sin\phi$ where $\phi=$ latitude and $\Omega = 2\pi/T_{rot}$ angular velocity. Geostrophic Vel. $v_g = \frac{1}{af} \frac{dP}{dx}$ where $f = 2\Omega \sin \phi$.

Copyright © 2015-2016 Curro Pérez Bernal