Grupo ARCOS

uc3m | Universidad Carlos III de Madrid

Tema 6: E/S y dispositivos periféricos Estructura de Computadores

Grado en Ingeniería Informática Grado en Matemática aplicada y Computación Doble Grado en Ingeniería Informática y Administración de Empresas

Contenidos

- I. Introducción
- 2. Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- 3. Periféricos
 - Concepto y tipos de periféricos
 - Estructura general de un periférico
 - Módulos de E/S
- 4. Interacción E/S: técnicas de E/S
- 5. Caso de estudio: disco duro y discos de estado sólido

Contenidos

I. Introducción

- 2. Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- 3. Periféricos
 - Concepto y tipos de periféricos
 - Estructura general de un periférico
 - Módulos de E/S
- 4. Interacción E/S: técnicas de E/S
- 5. Caso de estudio: disco duro y discos de estado sólido

Introducción

Introducción

 Qué es un bus de interconexión

Introducción

- Qué es un periférico
- Qué es un módulo de entrada/salida
- Cómo se acceden a los datos de los periféricos

Contenidos

- I. Introducción
- 2. Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- 3. Periféricos
 - Concepto y tipos de periféricos
 - Estructura general de un periférico
 - Módulos de E/S
- 4. Interacción E/S: técnicas de E/S
- 5. Caso de estudio: disco duro y discos de estado sólido

Bus

- Un bus es un camino de comunicación entre dos o más dispositivos.
- Constituido por varias líneas de transmisión de bit.
- Medio compartido, unívoco.
- Permite transmitir varios bits entre dos elementos conectados a él

Bus del sistema

Bus del sistema

- Conecta los principales componentes del computador
- Representa la unión de tres buses:
 - Control
 - Direcciones
 - Datos

Buses

Bus de datos

- Transmite datos
- Su anchura y velocidad influye mucho en las prestaciones
- Bus de direcciones
 - Direcciones de memoria y dispositivos de E/S
 - Su anchura determina la máxima capacidad de memoria
- Bus de control
 - Señales de control y temporización

Características de un bus

 Ancho del bus: determina el número de bits que pueden transmitirse simultáneamente

- Frecuencia: frecuencia de reloj con la que puede operar
- Velocidad de transferencia: número de bytes por ciclo de reloj
- Ancho de banda (tasa de transferencia): bytes transmitidos por segundo
 - Velocidad de transferencia X frecuencia

Ejercicio

 Calcular el ancho de banda en MBps de un bus de 32 bits y una frecuencia de 66 MHz

Ejercicio (solución)

 Calcular el ancho de banda en MBps de un bus de 32 bits y una frecuencia de 66 MHz

Ancho de banda =
$$\frac{32 \ bits \times 66 \ MHz}{8 \ bits \ por \ byte} = \frac{32 \times 66 \cdot 10^6}{8} = 264 \ MBps$$

Método de arbitraje (protocolo del bus)

- Determina qué elemento de los que están conectados al bus puede acceder al bus
 - Esquema centralizado: un controlador del bus concede el uso del bus
 - Cuando un elemento quiere acceder al bus solicita permiso al controlador a través de las líneas de control (BUSRQ)
 - Cuando el bus está libre el controlador concede el uso (BUSACK)
 - Esquema distribuido: cada elemento conectado al bus incluye una lógica de control de acceso que permite usar de forma conjunta el bus (protocolo de acceso)

Buses síncronos y asíncronos

- Un bus síncrono está gobernado por una señal de reloj y un protocolo de comunicación ajustado al funcionamiento del reloj
 - Rápido
 - Todos los dispositivos conectados a él deben operar a la misma frecuencia de reloj
- Un bus asíncrono no utiliza un reloj, la comunicación se realiza mediante el envío de ordenes a través de las líneas de control del bus

Jerarquias de buses

Problema:

- A más dispositivos conectados al bus, mayor es el retardo de propagación.
- A medida que aumenta el número de peticiones de transferencia, se puede producir un cuello de botella.

Soluciones:

- Aumentar la velocidad de transmisión de datos con buses más anchos.
- Utilizar más buses de datos, organizados jerárquicamente.

Jerarquías de buses

Esquema de buses en un sistema informático típico

Controladores de disco

Memory Systems Cache, DRAM, Disk Bruce Jacob, Spencer Ng, David Wang Elsevier

Curiosidades: Familia USB

	Transfer (por seg.)	Aparición
USB4	40 Gbps	2019
USB 3.2	20 Gbps	2017
USB 3.0	600 MB/s	2010
USB 2.0	60 MB/s	2000
USB 1.0	1.5 MB/s and 187 KB/s	1996

	Song / Pic 4 MB	256 Flash 256 MB	USB Flash 1 GB	SD-Movie 6 GB	USB Flash 16 GB	HD-Movie 25 GB
. 1						
USB 1.0	5.3 sec	5.7 min	22 min	2.2 hr	5.9 hr	9.3 hr
USB 2.0	0.1 sec	8.5 sec	33 sec	3.3 min	8.9 min	13.9 min
USB 3.0	0.01 sec	0.8 sec	3.3 sec	20 sec	53.3 sec	70 sec

http://www.unp.co.in/f140/comparison-of-usb-3-0-port-with-usb-2-0-and-usb-1-0-a-70063/

Contenidos

- I. Introducción
- 2. Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- 3. Periféricos
 - Concepto y tipos de periféricos
 - Estructura general de un periférico
 - Módulos de E/S
- 4. Interacción E/S: técnicas de E/S
- 5. Caso de estudio: disco duro y discos de estado sólido

Concepto de periférico

Periférico:

- Todo aquel dispositivo externo que se conecta a un procesador a través de la unidades o módulos de entrada/salida (E/S).
- Permiten almacenar información o comunicar el computador con el mundo exterior.

Clasificación de periféricos (por uso)

Comunicación:

- ▶ Hombre-máquina
 - □ (Terminal) teclado, ratón, ...
 - □ (Impresa) plotter, escáner, ...
- ▶ Máquina-máquina (Módem, ...)
- Medio físico
 - ☐ (Lectura/accionamiento) x (analógico/digital)

Almacenamiento:

- Acceso "directo" (Discos, DVD, ...)
- Acceso secuencial (Cintas)

Estructura general de un periférico

Compuesto de:

- Dispositivo
 - Hardware que interactúa con el entorno
- Módulo de Entrada/Salida
 - También denominado controlador
 - Interfaz entre dispositivo y el procesador, que le oculta las particularidades de éste

Módulo de E/S

Las unidades o módulos de E/S realizan la conexión del procesador con los dispositivos periféricos.

Necesidad de los módulo de E/S

- Gran variedad de periféricos.
 - Los periféricos son 'raros'
- La velocidad de transferencia de datos de los periféricos es mucho menor que la de la memoria o el procesador.
 - Los periféricos son 'muy lentos'
- Formatos y tamaños de palabra de los periféricos distintos a los del computador al que se conectan.

Módulos de E/S: posibles tareas

▶ Tareas comunes:

- Control y temporización
- Comunicación con CPU o memoria
- Buffering o almacenamiento intermedio
- Detección de errores
- Etc.
- Tipos de módulos por complejidad:
 - Controladores E/S:
 módulo simple que requiere de CPU
 para el control del dispositivo.
 - Canales de E/S o procesador E/S: realiza casi todo el control de E/S

Módulo de E/S: funciones

Atender al procesador:

- Decodificación de órdenes
- Información de estado
- Control y temporización
 - Ej.: datos a memoria ppal.

Controlar periférico(s):

- Comunicación con dispositivos
- Detección de errores
- Almacenamiento temporal de datos
 - periférico->procesador

Modelo simplificado de módulo de E/S

Modelo simplificado de módulo de E/S

- Interacción entre procesador y Unidad de E/S a través de 3 registros:
 - Registro de control
 - Ordenes para el periférico
 - Registro de estado
 - Estado desde de la última orden
 - Registro de datos
 - Datos intercambiados Procesador/Perif.

Modelo simplificado de módulo de E/S

- Interacción periférico/unidad de E/S:
 - Líneas de datos: transferencia de información
 - Señales de estado: diagnóstico del periférico
 - Ejemplos:

 - Nuevo dato disponible
 Periférico encendido/apagado
 Periférico ocupado
 Periférico operativo o no
 Error de operación
 - Señales de control: accionamiento del periférico
 - Ejemplos:

 - Encender o apagar
 Saltar página en impresoras
 Posicionar el brazo de un disco

Módulo de E/S: características

- Unidad de transferencia
 - Bloque
 - Caracter
- Direccionamiento
 - Mapeado a memoria
 - Mapeado a puerto
- Técnicas de Entrada/Salida
 - E/S programada
 - Por interrupciones
 - Por DMA

Características (1/3)

Unidad de transferencia:

Dispositivos de bloque:

- Unidad: bloque de bytes
- Acceso secuencial o directo a bloques
- Operaciones: leer, escribir, situarse, ...
- Ejemplos: discos y "cintas"

Dispositivos de carácter:

- Unidad: caracteres (ASCII, Unicode, etc)
- Acceso secuencial a caracteres
- ▶ Operaciones: get, put,....
- Ejemplo: terminales, impresoras, tarjetas de red

Unidad transferencia

- Bloque
- Caracter

Direccionamiento

- Mapeado memoria Mapeado a perto
- Técnicas de E/S
 - Programad
 - Intermada
 - DMA

Características (2/3)

- Direccionamiento de E/S:
 - Espacio de memoria conjunto o común:
 - Los registros del 'controlador' se proyectan en memoria y usando un conjunto de direcciones de memoria se acceden a dichos registros.
 - ▶ Ej: sw a0 etiqueta discoA
 - Espacio de memoria separado (puertos):
 - Con instrucciones ensamblador especiales (in/out) se acceden a las direcciones de E/S (denominadas puertos) que representan los registros del 'controlador'.
 - ▶ Ej: out a0 0×105A

Caracter

Direccionamiento

- Mapeado memoria Mapeado a perto
- Técnicas de E/S

 - Interrupciones

Reg., add. lw Reg., add. out Reg., add. sw Reg., add. E/S Mem.

Linux

Windows

36

Características (3/3)

- Unidad transferencia

- Direccionamiento
 - Mapeado memoria Mapeado a perto
- Técnicas de E/S
- ▶ Técnicas de E/S: Interacción Procesador-Controlador
 - E/S programada
 - **E/S** por interrupciones
 - E/S por DMA (acceso directo a memoria)
- A continuación...

Contenidos

- I. Introducción
- 2. Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- 3. Periféricos
 - Concepto y tipos de periféricos
 - Estructura general de un periférico
 - Módulos de E/S
- 4. Interacción E/S: técnicas de E/S
- 5. Caso de estudio: disco duro y discos de estado sólido

Características (3/3)

Técnicas de E/S: Interacción CPU-Controlador

- Unidad transferencia
- Direccionamiento
 - Mapeado memoria Mapeado a perto
- Técnicas de E/S

- ► E/S programada
 - ▶ CPU hace la E/S: espera activa → transferencia

🖈 'polling/sondeo'

- **► E/S** por interrupciones
 - CPU no espera, solo transfiere datos
- ► E/S por DMA (acceso directo a memoria)
 - ▶ CPU ni espera ni transfiere, se notifica al final

Características (3/3)

Técnicas de E/S: Interacción CPU-Controlador

► E/S programada

► E/S por interrupciones

► E/S por DMA

E/S programada

E/S programada: in/out vs lw/sw

La transferencia entre el procesador (o memoria) y la unidad de E/S se realiza bajo el control del procesador con instrucciones máquinas especiales privilegiadas: instrucciones máquina de E/S

Mapa memoria conjunto o común (ej. RISC-V):

- Los registros del 'controlador' se proyectan en memoria y usando un conjunto de direcciones de memoria se acceden a dichos registros.
 - ☐ Escribir en controlador: sw a0 etiqueta discoA
 - ☐ Leer de controlador: **Iw** a0 etiqueta_discoA

- Con instrucciones ensamblador especiales se acceden a las direcciones de E/S (denominadas puertos) que representan los registros del 'controlador'.
 - ☐ Escribir en controlador: out a0 0×105A
 - ☐ Leer de controlador: in a0 0×1050

in Reg., add. Iw Reg., add. out Reg., add. sw Reg., add.

Ejemplo

- Información de control
 - ▶ 0: leer
 - ▶ I: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Iw y sw de RISC-V

¿Instrucciones para escribir un I en el registro 0x0508 (de datos)?

E/S programada: interacción

Ejemplo

- Información de control
 - ▶ 0: leer
 - ▶ l:escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Iw y sw del RISC-V

¿Operaciones para leer un dato?

1. Enviar la orden

2. Leer el estado

b1: la t1,
$$0x0504$$
 lw t0, $0(t1)$

3. Comprobar el estado

4. Leer el dato

la t1,
$$0x0508$$
 lw t0, $0(t1)$

Ejemplo

- Información de control
 - 0: leer
 - ▶ l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - ▶ I: dispositivo (dato) listo
- Mapa de E/S común
 - Iw y sw del RISC-V

¿Operaciones para escribir un dato?

1. Enviar el dato

2. Enviar la orden

3. Leer estado

4. Comprobar estado

Lectura de un bloque de datos

Ejercicio

- Información de control
 - ▶ 0: leer
 - ▶ l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

Codifique un programa en ensamblador que lee 100 datos usando la unidad de E/S descrita, y los almacena en la dirección de memoria principal dada por la etiqueta 'datos'.

- Información de control
 - 0: leer
 - ▶ l:escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

```
.data
   datos: .zero 400
.text
         li t3 0
main:
            t4 400
 bucle I: la t0 0x500
         sw x0 0(t0)
         mv t0 x0
 bucle2: la tl 0x504
         lw tl 0(tl)
         beq t1 x0 bucle2
         la t2 0x508
         lw t2 0(t2)
         sw t2 datos(t3)
         addi t3 t3 4
         bne t3 t4 bucle1
```


- Información de control
 - 0: leer
 - ▶ l:escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

```
.data
   datos: .zero 400
.text
         li t3 0
main:
             t4 400
 bucle I: la t0 0x500
         sw x0 0(t0)
         mv t0 x0
 bucle2: la tl 0x504
                                 Bucle de
         lw tl 0(tl)
                                 sincronización
         beq t1 x0 bucle2
         la t2 0x508
         lw t2 0(t2)
         sw t2 datos(t3)
         addi t3 t3 4
         bne t3 t4 bucle l
```


- Información de control
 - 0: leer
 - ▶ I: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

Ejercicio

- Sea un computador con la capacidad de ejecutar 200 millones de instrucciones por segundo (200 MIPS)
- Se conecta el módulo de E/S anteriormente descrito siendo el tiempo medio de espera de lectura de 5 ms
- Calcule cuantas instrucciones se ejecutan en el bucle de sincronización y en el bucle de transferencia para el programa mostrado

```
.data
   datos: .zero 400
.text
          li t3 0
main:
            t4 400
  bucle I: la t0 0 \times 500
          sw x0 0(t0)
          mv t0 x0
  bucle2: la tl 0x504
                                   Bucle de
          lw tl 0(tl)
                                   sincronización
                                      Bucle de
          beq t1 x0 bucle2
                                      transferencia
          la t2 0x508
          lw t2 0(t2)
          sw t2 datos(t3)
          addi t3 t3 4
          bne t3 t4 bucle l
```

- Bucle de sincronización:
 - ▶ En media dura 5 ms
 - Se ejecuta 200 MIPS en media
 - $I_{bs} = 200*10^6 * 5*10^{-3} = 10^6$
- Bucle de transferencia:
 - $\ge 2 (|i+|i|) + (|i-3|) * |i-3| + |i$
- Como puede comprobarse, en el bucle se ejecuta 1.000.802 instrucciones, de las cuales 1.000.000 corresponden al bucle de espera (el 99,9%)
 - Es un desperdicio de ciclos del procesador
 - El procesador no realiza trabajo útil

```
.data
   datos: .zero 400
.text
             t3 0
main:
              t4 400
 bucle I: la t0 0x500
          sw x0 0(t0)
          mv t0 x0
  bucle2: la tl 0x504
                                  Bucle de
          lw tl 0(tl)
                                   incronización
          beq t1 x0 bucle2
                                      Bucle de
                                     transferencia
          la t2 0x508
          lw t2 0(t2)
          sw t2 datos(t3)
         addi t3 t3 4
          bne t3 t4 bucle l
```

Problema de la E/S programada

E/S por DMA

E/S mediante DMA

- DMA (Direct Memory Access): Acceso directo a memoria
- La transferencia entre la unidad de E/S y la memoria:
 - Con interrupciones se evita el bucle de espera pero la transferencia la lleva a cabo el procesador
 - Con DMA toda la transferencia la realiza la unidad de E/S
 - El procesador no realiza la transferencia entre la unidad de E/S y la memoria
- Interrupciones generadas:
 - Con interrupciones para un bloque de N bytes se generan N interrupciones
 - Con DMA solo una interrupción al final

Transferencia de un bloque mediante DMA

→ MP

Transferencia de un bloque mediante DMA

• [v] una única interrupción

Estructura simplificada de un módulo de E/S para DMA

Unidad de E/S

- El procesador escribe en los registros (con instrucciones de E/S)
 - La operación (R. control)
 - ▶ Lectura, escritura
 - El número de bytes a transferir (R. contador)
 - La dirección de memoria principal donde
 - Se almacenan los datos (escritura al periférico)
 - Almacenar los datos (lectura del periférico)

La unidad de E/S transfiere todo el bloque de datos del periférico al buffer interno de la unidad de E/S (para lectura)

Acceso del módulo de E/S a MP

Hay que coordinar el acceso a memoria entre el procesador y el módulo de E/S -> BUSRQ + BUSACK

Acceso del módulo de E/S a MP:

Robo de ciclo

- Cuando la unidad de E/S está lista para transferir un dato:
 - Activa la señal BUSRQ para solicitar el acceso a los buses
 - Al final de cada fase de una instrucción el procesador comprueba la señal BUSRQ. Si está activa libera los buses y activa BUSACK
 - La unidad de E/S accede a MP y a continuación desactiva BUSRQ
 - El procesador continúa
 - La interrupción se genera al final

Curiosidad: Importancia de los controladores **Kernel de Linux**

▶ El 70% del código de Linux son los controladores de dispositivo (o drivers)

Grupo ARCOS

uc3m | Universidad Carlos III de Madrid

Tema 6: E/S y dispositivos periféricos Estructura de Computadores

Grado en Ingeniería Informática Grado en Matemática aplicada y Computación Doble Grado en Ingeniería Informática y Administración de Empresas

