

<u>Help</u>

sandipan_dey >

Next >

<u>Course Progress Dates Discussion Syllabus Outline laff routines Community</u>

★ Course / Week 4: Matrix-Vector to Matrix-Matrix M... / 4.4 Matrix-Matrix Multiplication ...

()

4.4.2 Linear Transformations to Matrix-Matrix Multiplication

□ Bookmark this page

Previous

■ Calculator

Week 4 due Oct 24, 2023 19:42 IST Completed

4.4.2 Linear Transformations to Matrix-Matrix Multiplication

Summary

Let $L_A:\mathbb{R}^k o \mathbb{R}^m$ and $L_B:\mathbb{R}^n o \mathbb{R}^k$ are linear transformations and define $L_C(x) = L_A(L_B(x))$. Then

- $ightharpoonup L_C: \mathbb{R}^n o \mathbb{R}^m$ is a linear transformation.
- ▶ There are $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$ that represent L_A and L_B , respectively.
- ▶ There is a matrix, $C \in \mathbb{R}^{m \times n}$ that represents $L_C(x) = L_A(L_B(x)) = A(Bx).$
- ightharpoonup The operation that computes C from A and B is called matrix-matrix multiplication.
- Notation: $\underline{C} = \underline{AB}$ and $\underline{Cx} = (\underline{AB})x = (\underline{A}(Bx)).$

▶ 6:16 / 6:16

▶ 2.0x

CC

Video

▲ Download video file

Transcripts

- ▲ Download Text (.txt) file

Reading Assignment

O points possible (ungraded) Read Unit 4.4.2 of the notes. [LINK]

Submit

✓ Correct

Discussion

Topic: Week 4 / 4.4.2

Hide Discussion

Show all posts 💙	by recent activity 🗸
There are no posts in this topic yet.	

Homework 4.4.2.1

1/1 point (graded)

Let $L_A: \mathbb{R}^k \to \mathbb{R}^m$ and $L_B: \mathbb{R}^n \to \mathbb{R}^k$ both be linear transformations and, for all $x \in \mathbb{R}^n$, define the function $L_C: \mathbb{R}^n \to \mathbb{R}^m$ by $L_C(x) = L_A(L_B(x))$.

 $oldsymbol{L_C}$ is a linear transformation.

Always 🗸 🗸 Answer: Always

Explanation

$$egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} L_C \left(lpha x
ight) &= L_A \left(L_B \left(lpha x
ight)
ight) \ &= lpha L_A \left(L_B \left(x
ight)
ight) \ &= lpha L_C \left(x
ight) \ &= L_A \left(L_B \left(x
ight)
ight) L_B \left(y
ight)
ight) \ &= L_A \left(L_B \left(x
ight)
ight) + L_A \left(L_B \left(y
ight)
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(y
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x
ight) \ &= L_C \left(x
ight) + L_C \left(x
ight) \ &= L_C \left(x$$

This proves that L_C is a linear transformation by showing that L_C has all the properties of a linear transformation. This proof simply states that the composition of two linear transformations is itself a linear transformation.

Submit

Answers are displayed within the problem

Homework 4.4.2.2

1/1 point (graded)

Let $A \in \mathbb{R}^{m \times n}$. A^TA is well-defined. (By well-defined we mean that A^TA makes sense. In this particular case this means that dimensions of A^T and A are such that A^TA can be computed.)

Always ✓ Answer: Always

Explanation

Answer: Always A^T is $n \times m$ and A is $m \times n$, and hence the column size of A^T matches the row size of A.

Submit

Answers are displayed within the problem

Homework 4.4.2.3

1/1 point (graded)

Let $A \in \mathbb{R}^{m \times n}$. AA^T is well-defined.

Alwavs 🗸 🗸 Answer: Alwavs

Explanation			
Answer: Alw	_	A = 1 AT	
Apply the resu	It in the last exercise, with A	A replaced by A^* .	
Submit			
200mii			
	displayed within the problem		
	displayed within the problem		

© All Rights Reserved

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>