Data255 Deep Learning Breast Tumor Classification on PCam

Mavis Wang, Xiaocen Xie, Coco Yu, Matthew Guzman, Siying Wu

Team 1

Intro

- Motivation
- Data Collection
- General Approach
- Preprocessing
- Training 3 models
- Compare the results
- Discussion

Motivation

- Breast cancer is the second leading cause of cancer-related death among women with a one-in-39 probability.
- Relying solely on doctors to determine disease characteristics takes time and has a certain error rate.
- Proposed Solution: Compare 3 models MobileNetV2,
 DenseNet and ResNet to find the best model has detection accuracy

Data Collection

PatchCamelyon (PCam)

- Images extracted from histopathologic scans of lymph node sections
- 327,680 color images with sizes 96 pixels *96 pixels
- Each image has a binary label that indicates the existence of metastatic tissue.

Green boxes indicate tumor tissue in center region, which dictates a positive label.

General Approach

- Use the partition of the PCam validation set as our main training dataset for the experiment due to the computational limit
- Train image classifiers by using convolutional neural network with transfer learning
- Evaluate the performance of each classifier

Preprocessing

Load using Keras' TDFS module to import pre-made Patch Camelyon dataset

One-hot encode images from int8 to float 32

No **resizing** necessary as imported models accepted 96x96x3 shape.

Different models had different train/validation/test sizes

Odd DenseNet

MobileNetV2

03 ResNet-50

DenseNet 121 & DenseNet 201

Layers	Output Siz	DenseNet-121	DenseNet-169	DenseNet-201	
Convolution	112 × 112		7 × 7 cm	nv, stride 2	
Pooling	56 × 56	2:11	3 × 3 max	pool, stride 2	
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	
Transition Layer	56 × 56		1 ×	1 conv	
(1)	28 × 28		2 × 2 averag	e pool, stride 2	
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 13$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 1$	
Transition Layer	28 × 28	100	1 ×	1 conv	
(2)	14 × 14		2 × 2 average	e pool, stride 2	
Dense Block (3)	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 4$	
Transition Layer	14 × 14		1 ×	1 conv	
(3)	7 × 7		2 × 2 average	e pool, stride 2	
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 3$	
Classification	1 × 1		7 × 7 global	l average pool	
Layer			1000D fully-connected, softmax		

DenseNet Result

Optimizer: SGD

LR: 0.01

Loss: Binary Cross Entropy

Metric: Accuracy

Activation: Sigmoid

	DenseNet 121	DenseNet 201	S-Densenet w/ Equivariance (Worrall & Welling 2019)
Total Parameters	7,627,522	19,428,098	N/A
Run Time per Epoch	122.2s	160.5s	N/A
Num Epochs	25	25	100
Test Accuracy	79.78%	<mark>81.67%</mark>	88.1%

DenseNet Result

MobileNetV2

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	0.790	0.945	22,910,480	126	109.42	8.06
VGG16	528	0.713	0.901	138,357,544	23	69.50	4.16
VGG19	549	0.713	0.900	143,667,240	26	84.75	4.38
ResNet50	98	0.749	0.921	25,636,712	-	58.20	4.55
ResNet101	171	0.764	0.928	44,707,176	-	89.59	5.19
ResNet152	232	0.766	0.931	60,419,944	-	127.43	6.54
ResNet50V2	98	0.760	0.930	25,613,800	-	45.63	4.42
ResNet101V2	171	0.772	0.938	44,675,560	-	72.73	5.43
ResNet152V2	232	0.780	0.942	60,380,648	-	107.50	6.64
InceptionV3	92	0.779	0.937	23,851,784	159	42.25	6.86
InceptionResNetV2	215	0.803	0.953	55,873,736	572	130.19	10.02
MobileNet	16	0.704	0.895	4,253,864	88	22.60	3.44
MobileNetV2	14	0.713	0.901	3,538,984	88	25.90	3.83

MobileNetV2 Tricks

MobileNetV2 Architecture

Input	Operator	$\mid t \mid$	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 imes 24$	bottleneck	6	32	3	2
$28^2 \times 32$	bottleneck	6	64	4	2
$14^2 \times 64$	bottleneck	6	96	3	1
$14^2 \times 96$	bottleneck	6	160	3	2
$7^2 imes 160$	bottleneck	6	320	1	1
$7^2 imes 320$	conv2d 1x1	_	1280	1	1
$7^2 \times 1280$	avgpool 7x7	_	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Bottleneck Residual Block

MobileNetV2 Training Setup

Data Generator = 32,768

Split: 80% train, 20% test, reserve 6,500 from training set as validation set

Distribution: 9,774 negative, 9940 positive (tumor)

Batch size = 64

Data augmentation: {sheer, zoom, flip, rotation, contrast}

Framework: Tensorflow Keras

Environment: Google Colab w/ GPU

Training Epochs = 20

Opt = Adam (Ir=0.0001)

Act = elu

Loss = binary_crossentropy

Evaluation = accuracy

MobileNetV2 Train From Scratch

Exp: use MobileNetV2 architecture only

NN: added additional 2 dense layers

Model: "mobileNet2NN"

Layer (type)	Output Shape	Param #
input_37 (InputLayer)	[(None, 96, 96, 3)]	0
<pre>mobilenetv2_1.00_96 (Functi onal)</pre>	(None, 3, 3, 1280)	2257984
<pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>	(None, 1280)	0
flatten_5 (Flatten)	(None, 1280)	0
dense (Dense)	(None, 1024)	1311744
dense_1 (Dense)	(None, 512)	524800
predictions (Dense)	(None, 2)	1026

Total params: 4,095,554
Trainable params: 4,061,442
Non-trainable params: 34,112

MobileNetV2 Extract Features

Exp 1: train with the pre-trained 'imagenet' weights.

Exp 2: train with 'relu', 'elu', 'selu'

NN: + applied Batch Norm after each dense layers.

dense_10 (Dense)	(None, 1024)	1311744
<pre>batch_normalization_13 (Bat chNormalization)</pre>	(None, 1024)	4096
dense_11 (Dense)	(None, 512)	524800
<pre>batch_normalization_14 (Bat chNormalization)</pre>	(None, 512)	2048
predictions (Dense)	(None, 2)	1026

Total params: 4,106,818
Trainable params: 4,067,074
Non-trainable params: 39,744

MobileNetV2 CNN-LSTM

Exp: add lstm after Conv blocks

NN: pre-trained mobileNetV2 + 2 Conv layers + Istm

conv2d_7 (Conv2D)	(None, 94, 94, 64)	1216
conv2d_8 (Conv2D)	(None, 92, 92, 64)	36928
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 46, 46, 64)	0
reshape_7 (Reshape)	(None, 2116, 64)	0
lstm_3 (LSTM)	(None, 32)	12416
flatten_3 (Flatten)	(None, 32)	0
pred (Dense)	(None, 2)	66

Total params: 4,146,180
Trainable params: 4,112,068
Non-trainable params: 34,112

MobileNetV2 Result

Model

ResNet-50

- ResNet: Residual Networks
- First introduced skip connection
- ResNet-50: Pre-trained model in Keras

ResNet-50 V1 & V2

	Version 1	Version 2
Total Parameters	23,718,978	23,696,066
Run Time per Epoch	~270s	~275s
Test Accuracy	76.70%	81.65%

Layer (type)	Output	Shape	Param #
resnet50 (Model)	(None,	2048)	23587712
flatten (Flatten)	(None,	2048)	0
dropout (Dropout)	(None,	2048)	0
dense (Dense)	(None,	64)	131136
dropout_1 (Dropout)	(None,	64)	0
dense_1 (Dense)	(None,	2)	130
Total params: 23,718,978 Trainable params: 22,215,874 Non-trainable params: 1,503			

Layer (type)	Output Shape	Param #
resnet50v2 (Model)	(None, 2048)	23564800
flatten (Flatten)	(None, 2048)	0
dropout (Dropout)	(None, 2048)	0
dense (Dense)	(None, 64)	131136
dropout_1 (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 2)	130

Total params: 23,696,066
Trainable params: 22,204,610
Non-trainable params: 1,491,456

ResNet-50 Result

ResNet-50 Version 1

Discussion

Data: partition, start with small patches

Training: try to tune one hyperparameter at one time

(Activation, number of hidden layers, etc)

Future work: Fine-tune

Increase data for training

Reference

- A. G. Howard et al., "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," arXiv [cs.CV], 2017.
- 2. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "MobileNetV2: Inverted residuals and linear bottlenecks," *arXiv [cs.CV]*, 2018.
- 3. S. S. Yadav and S. M. Jadhav, "Deep convolutional neural network based medical image classification for disease diagnosis," *J. Big Data*, vol. 6, no. 1, 2019.
- 4. B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, "Rotation Equivariant CNNs for Digital Pathology," *arXiv* [cs.CV], 2018.
- 5. M. Z. Islam, M. M. Islam, and A. Asraf, "A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images," *Inform. Med. Unlocked*, vol. 20, no. 100412, p. 100412, 2020.
- 6. https://cv-tricks.com/keras/understand-implement-resnets/
- 7. https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
- 8. https://www.kaggle.com/drscarlat/melanoma-resnet50-fine-tune
- 9. S. Dabeer, M. M. Khan, and S. Islam, "Cancer diagnosis in histopathological image: CNN based approach," Inform. Med. Unlocked, vol. 16, no. 100231, p. 100231, 2019.
- 10. https://github.com/basveeling/pcam/blob/master/README.md

Contribution

Team 1: Mavis Wang, Xiaocen Xie, Coco Yu, Matthew Guzman, Siying Wu

Breast Tumor Classification on PCam

Dataset Source

Tasks	Intro	Data Collection	Data Preprocing	DenseNet	MobileNetV2	ResNet- 50	Discussion
Presentation	Xiaocen Xie	Xiaocen Xie	Matthew Guzman	Matthew Guzman	Mavis Wang	Siying Wu	Coco
Project	All	Mavis Wang	Matthew Guzman	Matthew Guzman	Mavis Wang	Siying Wu	All
IEEE Paper	Coco Yu, Siying Wu	Mavis Wang	Matthew Guzman	Matthew Guzman	Mavis Wang, Xiaucen Xie	Siying Wu	Coco

https://github.com/SJSUMS/PCam