Positive Collaborative Representation for Subspace Clustering

June 10, 2017

Abstract

1 Introduction

2 Motivation

- Positive collaborative representation could achieve sparse representation since similar points are sparse while dissimilar points are dense.
- Positive supports are positive to self-representation while negative supports are negative to self-representation.
- Better performance. Faster?

3 LSR Model

The least squares regression (LSR) model [1] is proposed by Lu et al. can be formulated as follows:

$$\min_{\boldsymbol{A}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{A}\|_F^2 \text{ s.t. } \operatorname{diag}(\boldsymbol{A}) = \boldsymbol{0}. \quad (1)$$

According to [1], the above problem has the optimal solution as

$$\hat{A} = -Z(\operatorname{diag}(Z)) \text{ s.t. } \operatorname{diag}(\hat{A}) = 0,$$
 (2)

where $\boldsymbol{Z} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1}$.

The constraint of diag(A) = 0 in (1) could be removed and the LSR model achieves similar performance.

4 Collaborative Representation based Clustering with Constraint diag(A) = 0

The LSR model can be reformulated as a collaborative representation model [2] for subspace clustering with an additional constraint of $\operatorname{diag}(A) = 0$. The constraint of $\operatorname{diag}(A) = 0$ is used to avoid the samples to be self-represented.

Then the model above can be

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_{p}^{p} + \lambda \|\mathbf{A}\|_{F}^{2}$$
 s.t. $\operatorname{diag}(\mathbf{A}) = \mathbf{0}$. (3)

By introducing auxiliary variables into the optimization program, we can set E = X - XA and A = 0. The program (32) can be transformed into

$$\min_{\pmb{A},\pmb{E}} \|\pmb{E}\|_p^p + \lambda \|\pmb{A}\|_F^2$$
 s.t. $\pmb{E} = \pmb{X} - \pmb{X}\pmb{A}$, $\operatorname{diag}(\pmb{A}) = \pmb{0}$.

Besides, we can further introduce an auxiliary matrix variable \boldsymbol{C} and consider the following program

$$\min_{\boldsymbol{A},\boldsymbol{C},\boldsymbol{E}} \|\boldsymbol{E}\|_p^p + \lambda \|\boldsymbol{A}\|_F^2$$
s.t. $\boldsymbol{E} = \boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}, \boldsymbol{C} = \boldsymbol{A} - \operatorname{diag}(\boldsymbol{A})$ (5)

whose solution for (A, E) coincides with the solution of Eq. (33). By introducing two Lagrangian multipliers Δ, δ , the Lagrangian function of the Eq. (5) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{E}, \boldsymbol{\Delta}, \boldsymbol{\delta}, \rho) = \|\boldsymbol{E}\|_{p}^{p} + \lambda \|\boldsymbol{A}\|_{F}^{2}$$

$$+ \frac{\rho}{2} \|\boldsymbol{E} - \boldsymbol{X} + \boldsymbol{X}\boldsymbol{C} + \rho^{-1}\boldsymbol{\Delta}\|_{F}^{2}$$

$$+ \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A} + \operatorname{diag}(\boldsymbol{A}) + \rho^{-1}\boldsymbol{\delta}\|_{F}^{2}$$
(6)

Denote by (C_k, A_k, E_k) the optimization variables at iteration k, by (Δ_k, δ_k) the Lagrangian multipliers at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of \mathcal{L} with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing $(C_k, E_k, \Delta_k, \delta_k)$. This is equivalent to solve the following problem:

$$\mathbf{A}_{k+1} = \mathbf{J} - \operatorname{diag}(\mathbf{J}),$$

$$\mathbf{J} = (\rho_k + 2\lambda)^{-1}(\rho_k \mathbf{C}_k + \boldsymbol{\delta}_k)$$
 (7)

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing $(A_{k+1}, E_k, \Delta_k, \delta_k)$. This is equivalent to solve the following problem:

$$C_{k+1} = \arg\min_{C} \frac{\rho_k}{2} \| E_k - X + XC + \rho_k^{-1} \Delta_k \|_F^2 + \frac{\rho_k}{2} \| C - A_{k+1} + \rho_k^{-1} \delta_k \|_F^2$$
(8)

This is a least squares regression problem which has a closed-form solution as

$$C_{k+1} = H - \operatorname{diag}(H),$$

$$(X^{\top}X + I)H = X^{\top}P_k + Q_k,$$
(9)

where $P_k = X - E_k - \rho_k^{-1} \Delta_k$ and $Q_k = A_{k+1} - \rho_k^{-1} \delta_k$. (3) Obtain E_{k+1} by minimizing \mathcal{L} with respect to E,

while fixing $(C_{k+1}, A_{k+1}, \Delta_k, \delta_k)$. This is equivalent to solve the following problem:

$$\min_{E} \frac{1}{2} \| (\boldsymbol{X} - \boldsymbol{X} \boldsymbol{C}_{k+1} - \rho_k^{-1} \boldsymbol{\Delta}_k) - \boldsymbol{E} \|_F^2 + \rho_k^{-1} \| \boldsymbol{E} \|_1.$$
(10)

The solution of E can be computed in closed-form as

$$E_{k+1} = S_{\rho_k^{-1}}(X - XC_{k+1} - \rho_k^{-1}\Delta_k),$$
 (11)

where $S_{\tau}(x) = \text{sign}(x) * \max(|x| - \tau, 0)$ is the softthresholding operator.

(4) Obtain the Lagrangian multipliers $(\Delta_{k+1}, \delta_{k+1})$ while fixing $(C_{k+1}, A_{k+1}, E_{k+1})$:

$$\Delta_{k+1} = \Delta_k + \tau \rho_k (\boldsymbol{E}_{k+1} - \boldsymbol{X} + \boldsymbol{X} \boldsymbol{C}_{k+1}),$$

$$\delta_{k+1} = \delta_k + \tau \rho_k (\boldsymbol{C}_{k+1} - \boldsymbol{A}_{k+1}),$$
 (12)

where $\tau \in (0, \frac{\sqrt{5}+1}{2})$ is the dual step size and is usually

(5) Update the penalty parameter ρ as $\rho_{k+1} = \mu \rho_k$, where $\mu > 1$.

5 Large Scale Subset Selection Via **Woodbury Identity**

The Woodbury Identity is

$$(A+UCV)^{-1} = A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}.$$
(13)

We can also restrict that diag(A) = 0 to avoid the samples to be self-represented. However, I want to mention that the proposed model solved by ADMM algorithm with three variables and does not have convergence results.

Then the model above can be

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_{p,1}. \tag{14}$$

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{A,C} \|X - XA\|_F^2 + \lambda \|C\|_{p,1} \text{ s.t. } C = A,$$
 (15)

whose solution for A coincides with the solution of Eq. (33). By introducing two Lagrangian multipliers Δ , the Lagrangian function of the Eq. (33) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{C}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - \boldsymbol{A} \rangle + \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A}\|_F^2$$
(16)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of \mathcal{L} with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the fol-

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \frac{\rho}{2} \|\mathbf{A} - (\mathbf{C}_k + \rho_k^{-1} \mathbf{\Delta}_k)\|_F^2,$$
 (17)

which is equalivalently to solve the following problem

$$\boldsymbol{A} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \frac{\rho_k}{2} \boldsymbol{I})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X} + \frac{\rho_k}{2} \boldsymbol{C}_k + \frac{1}{2} \boldsymbol{\Delta}_k)$$
(18)

Since the matrices X^TX is of $N \times N$ dimension. It is computational expensive when N is very large. By employing the Woodburry Identity mentioned above, we can have

$$(\frac{\rho_k}{2}\boldsymbol{I} + \boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \frac{2}{\rho_k}\boldsymbol{I} - (\frac{2}{\rho_k})^2 \boldsymbol{X}^{\top} (\boldsymbol{I} + \frac{2}{\rho_k} \boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{X}.$$
(19)

and transform this problem as

$$\mathbf{A} = \left(\frac{2}{\rho_k}\mathbf{I} - \left(\frac{2}{\rho_k}\right)^2 \mathbf{X}^\top \left(\mathbf{I} + \frac{2}{\rho_k} \mathbf{X} \mathbf{X}^\top\right)^{-1} \mathbf{X}\right) \\ * \left(\mathbf{X}^\top \mathbf{X} + \frac{\rho_k}{2} \mathbf{C}_k + \frac{1}{2} \mathbf{\Delta}_k\right)$$
(20)

which will save a lot of computational costs.

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \frac{1}{2} \| (\boldsymbol{A}_{k+1} - \rho_k^{-1} \boldsymbol{\Delta} k) - C \|_F^2 + \frac{\lambda}{\rho_k} \| C \|_{p,1}. \quad (21)$$

Since the $\ell_{p,1}$ norm is separable with respect to each row, we can write the above problem as

$$\min_{C} \sum_{i=1}^{M} \frac{1}{2} \| (\boldsymbol{A}_{k+1})_{i*} - \rho_{k}^{-1} (\boldsymbol{\Delta}_{k})_{i*} - \boldsymbol{C}_{i*} \|_{2}^{2} + \frac{\lambda}{\rho_{k}} \| \boldsymbol{C}_{i*} \|_{p},$$
(22)

where F_{i*} is the *i*th row of the matrix F. Since this step is separable w.r.t. each row, we can employ parallel processing resources and reduce its computational time.

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\boldsymbol{\Delta}_{k+1} = \boldsymbol{\Delta}_k + \rho_k (\boldsymbol{C}_{k+1} - \boldsymbol{A}_{k+1}). \tag{23}$$

(5) Update the penalty parameter ρ as $\rho_{k+1}=\mu\rho_k$, where $\mu>1$.

6 Robust Large Scale Subset Selection via Dissimilarity based Outlier Detection

We can also introduce a dissimiarlity based matrix D to replace the ℓ_p or $\ell_{2,1}$ norms to ensure robustness. This can also remore the additional term Z on modeling the outliers with the restriction of ℓ_1 norm. The matrix D should better be diagonal matrix. How to design the matrix D is another problem need to be solved.

Then the proposed model can be formulated as

$$\min_{\mathbf{A}} \| (\mathbf{X} - \mathbf{X}\mathbf{A})\mathbf{D} \|_F^2 + \lambda \|\mathbf{A}\|_{p,1}.$$
 (24)

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{A,C} \|(X - XA)D\|_F^2 + \lambda \|C\|_{p,1} \text{ s.t. } C = A.$$
 (25)

By introducing a Lagrangian multiplier Δ , the Lagrangian function of the Eq. (33) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|(\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A})\boldsymbol{D}\|_F^2 + \lambda \|\boldsymbol{C}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - \boldsymbol{A} \rangle + \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A}\|_F^2$$
(26)

Denote by (A_k, C_k) the optimization variables at iteration k, by Δ_k the Lagrangian multiplier at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of \mathcal{L} with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$\min_{\mathbf{A}} \| (\mathbf{X} - \mathbf{X}\mathbf{A})\mathbf{D} \|_F^2 + \frac{\rho}{2} \| \mathbf{A} - (C_k - \rho_k^{-1} \mathbf{\Delta}_k) \|_F^2,$$
(27)

which is equalivalently to solve the following problem

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{A} \boldsymbol{D} \boldsymbol{D}^{\top} + \frac{\rho_k}{2} \boldsymbol{A} = \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{D} \boldsymbol{D}^{\top} + \frac{\rho_k}{2} (\boldsymbol{C}_k - \rho_k^{-1} \boldsymbol{\Delta}_k)$$
(28)

Since the matrices $X^{T}X$ and $D^{T}D$ are positive semidefinite and positive definite, respectively. The above equation is a standard Sylvester equation which has a unique solution.

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \frac{1}{2} \| (\boldsymbol{A}_{k+1} + \rho_k^{-1} \boldsymbol{\Delta} k) - C \|_F^2 + \frac{\lambda}{\rho_k} \| C \|_{p,1}.$$
 (29)

Since the $\ell_{p,1}$ norm is separable with respect to each row, we can write the above problem as

$$\min_{C} \sum_{i=1}^{M} \frac{1}{2} \| (\boldsymbol{A}_{k+1})_{i*} + \rho_{k}^{-1} (\boldsymbol{\Delta}_{k})_{i*} - \boldsymbol{C}_{i*} \|_{2}^{2} + \frac{\lambda}{\rho_{k}} \| \boldsymbol{C}_{i*} \|_{p}$$
(30)

where F_{i*} is the *i*th row of the matrix F. Since this step is separable w.r.t. each row, we can employ parallel processing resources and reduce its computational time.

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho_k (C_{k+1} - A_{k+1}). \tag{31}$$

(5) Update the penalty parameter ρ as $\rho_{k+1} = \mu \rho_k$, where $\mu > 1$.

7 Large Scale Subset Selection Via Row-Column Separation

We can also restrict that diag(A) = 0 to avoid the samples to be self-represented. However, I want to mention that the proposed model solved by ADMM algorithm with three variables and does not have convergence results.

Then the model above can be

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_{p,1}$$
 s.t. $\operatorname{diag}(\mathbf{A}) = \mathbf{0}$. (32)

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{\boldsymbol{A},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1}$$
s.t. $\boldsymbol{C} = \boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}),$ (33)

whose solution for A coincides with the solution of Eq. (33). By introducing two Lagrangian multipliers Δ , the Lagrangian function of the Eq. (33) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1}$$
$$+ \langle \boldsymbol{\Delta}, \boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A})) \rangle + \frac{\rho}{2} \|\boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\|_F^2$$
(34)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of \mathcal{L} with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$A_{k+1} = J - \operatorname{diag}(J),$$

$$J = \arg \min_{J} \frac{1}{2} \|C_k + \rho_k^{-1} \Delta_k - J\|_F^2 + \frac{\lambda}{\rho_k} \|J\|_{p,1}.$$
(35)

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \|X - XC\|_F^2 + \frac{\rho_k}{2} \|C - A_{k+1} + \frac{1}{\rho_k} \Delta_k\|_F^2$$
 (36)

This is a least squares regression problem which has a closed-form solution as

$$C_{k+1} = (X^{\top}X + \frac{\rho_k}{2}I)^{-1}(X^{\top}X + \frac{\rho_k}{2}A_{k+1} - \frac{1}{2}\Delta_k).$$
(37)

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho_k (C_{k+1} - A_{k+1}). \tag{38}$$

(5) Update the penalty parameter ρ as $\rho_{k+1} = \mu \rho_k$, where $\mu > 1$.

References

[1] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. Robust and efficient subspace

- segmentation via least squares regression. ECCV, pages 347–360, 2012. \blacksquare
- [2] Lei Zhang, Meng Yang, and Xiangchu Feng. Sparse representation or collaborative representation: Which helps face recognition? *ICCV*, pages 471–478, 2011.