Math104Hw13

Trustin Nguyen

December 2, 2023

Exercise 1: Find the limit $\lim_{x\to 0} \frac{e^{3x} - \cos x}{x}$ if it exists.

Proof. Using L'Hopital's rule, we have that $\lim_{x\to 0}e^{3x}-\cos x=\lim_{x\to 0}x=0$ means that

$$\lim_{x \to 0} \frac{e^{3x} - \cos x}{x} = \lim_{x \to 0} \frac{3e^{3x} + \sin x}{1}$$

Then

$$\lim_{x \to 0} 3e^{3x} + \sin x = 3$$

is finite, so

$$\lim_{x \to 0} \frac{e^{3x} - \cos x}{x} = 3$$

Exercise 2: Find the limit $\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$ if it exists.

Proof. Using the Taylor Series of $(1 + 2x)^{\frac{1}{x}}$, we have:

$$(1+2x)^{\frac{1}{x}} = \sum_{k\geqslant 0}^{\infty} \frac{\frac{1}{x} \left(\frac{1}{x} - 1\right) \cdots \left(\frac{1}{x} - k + 1\right)}{k!} (2x)^{k}$$
$$= \sum_{k\geqslant 0} \frac{1(1-x)(1-2x)\cdots(1-(k-1)x)}{k!} (2^{k})$$

So

$$\lim_{x \to 0} (1 + 2x)^{\frac{1}{x}} = \sum_{k > 0} \frac{2^k}{k!}$$

But we have the Taylor Series of e^x as

$$e^{x} = \sum_{k \geqslant 0} \frac{x^{k}}{k!}$$

and therefore,

$$e^2 = \sum_{k > 0} \frac{2^k}{k!}$$

The limit is e^2 .

Exercise 3: Find the limit $\lim_{x\to 0} (\frac{1}{\sin x} - \frac{1}{x})$ if it exists.

Proof. By L'Hopital,

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x}$$
$$= \frac{0}{0}$$
$$= \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x}$$

and since

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x} = \frac{0}{0}$$

Check for $\lim_{x\to 0} \frac{f'}{g'}$:

$$\lim_{x \to 0} \frac{\sin x}{2\cos x - x\sin x} = 0$$

so

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = 0$$

Exercise 4: Find the Taylor series of $\cos x$ and show that it converges to $\cos x$ for all $x \in \mathbb{R}$.

Proof. The Taylor Series is defined as

$$f(x) = \sum_{k \ge 0} \frac{f^k(0)}{k!} x^k$$

Then

$$f(x) = \cos x$$
 $f(0) = 1$
 $f'(x) = -\sin x$ $f'(0) = 0$
 $f''(x) = -\cos x$ $f'''(0) = -1$
 $f''''(x) = \sin x$ $f''''(0) = 0$
 $f'''''(x) = \cos x$ $f'''''(0) = 1$

So for $f^{(k)}$, we have if k = 2j,

$$f^{(2j)}(0) = \begin{cases} 1 & \text{if } j = \text{ even} \\ -1 & \text{if } j = \text{ odd} \end{cases} = (-1)^{j}$$

and the Taylor series is

$$f(x) = \sum_{j>0} \frac{(-1)^j}{(2j)!} x^{2j}$$

Since $|f^{(n)}(x)| \le 1$, we have that $R_n(x) \to 0$. So the remainder converges to 0 and the Taylor series converges to the function $\cos x$.

Exercise 5: Repeat the Q4 for the function $\sinh x = (e^x - e^{-x})$ (this is the def).

Proof. As before, the Taylor Series is

$$f(x) = \sum_{k \ge 0} \frac{f^{(k)}(0)}{k!} x^k$$

2

Now:

$$f(x) = e^{x} - e^{-x}$$
 $f(0) = 0$
 $f'(x) = e^{x} + e^{-x}$ $f'(0) = 2$
 $f''(x) = e^{x} - e^{-x}$ $f''(0) = 0$
 $\vdots = \vdots$ $\vdots = \vdots$

Then we have that for

$$f^{k}(0) = \begin{cases} 0 & \text{if } k = \text{ even} \\ 2 & \text{if } k = \text{ odd} \end{cases}$$
$$= 1 + (-1)^{k+1}$$

So now we have

$$f(x) = \sum_{k>0} \frac{1 + (-1)^{k+1}}{k!} x^k$$

Again, since $f^{(n)}(0)$ is bounded, we have that $R_n(x) \to 0$, so the Taylor series converges to $\sinh x$.

Exercise 6: Repeat the Q4 for the function $\cosh x = (e^x + e^{-x})$ (this is the def).

Proof. As before, the Taylor Series is

$$f(x) = \sum_{k>0} \frac{f^{(k)}(0)}{k!} x^k$$

Now:

$$f(x) = e^{x} + e^{-x}$$
 $f(0) = 2$
 $f'(x) = e^{x} - e^{-x}$ $f'(0) = 0$
 $f''(x) = e^{x} + e^{-x}$ $f''(0) = 2$
 $\vdots = \vdots$ $\vdots = \vdots$

Then we have that for

$$f^{k}(0) = \begin{cases} 2 & \text{if } k = \text{ even} \\ 0 & \text{if } k = \text{ odd} \end{cases}$$
$$= 1 + (-1)^{k}$$

So now we have

$$f(x) = \sum_{k \ge 0} \frac{1 + (-1)^k}{k!} x^k$$

Again, since $f^{(n)}(0)$ is bounded, we have that $R_n(x) \to 0$, so the Taylor series converges to $\cosh x$.