CSE 101 - Nov 22, 2019 (Week 8)

Notes provided by Ben Sihota bsihota@ucsc.edu

Find a topological sort of a DAG

- 1. Run DFS(G)
- 2. As vertices finish, push them onto a stack (equivalent: sort by decreasing finish time)
- 3. When complete, the stack is a topological sort

Theorem

Last bullet point is true. Proof in book.

Exercise: Figure out how to sort an array using topological sort

Strongly connected components

Let G = (V, E) be a digraph. Recall a S.C.C. of G is a subset $U \subseteq V$ satisfying

- 1. U is strongly connected
- 2. U is maximal W.R.T (1)

DFS can used to find SCCs of G

- 1. Call DFS(G), as vertices, push them onto a stack
- 2. Compute the transpose: G^T . (Reverse all directed edges). Note: $A(G^T) = A(G)^T$
- 3. Call DFS(G^T), process main loop of DFS by popping vertices off the stack

Theorem

Trees? 2nd DFS are the SCCs of G

Component Graph: G^{SCC}

$$\begin{split} V(G^{SCC}) &= \{ \text{ SCC's of } G \} \\ E(G^{SCC}) &= \{ (c_i, c_j) : \exists x, y, x \in C, y \in C \text{ s.t. } (x, y) \in E(G) \} \end{split}$$