ASP.NET and ASP.NET Ajax: introduction, creating and running a simple web form example, relationship, generating XHTML code, web controls, sessions tracking.

JavaServer Faces Web Applications:

Java Web technologies, creating and running a simple application in Netbeans, examining a JSP file, event processing life cycle, JSF components, Text vs. graphics components, validation, session cookies, web services

Guidelines for Project work:

Exercises based on these technologies

REFERENCE BOOKS

- 1. Deitel and Deitel: Internet and Worldwide Web programming, Pearson
- 2. Frank Barbier: Reactive Internet programming, ACM Books
- 3. Tara Calishain: Google hacks, O'Reilly Media
- 4. Sergei DunaevAdvanced Internet Programming, IT Master

B.Tech. <u>Computer Engineering</u> -SEMESTER III												
Course Code	Туре	Subject	L	Т	Р	Credits	CA	MS	ES	CA	ES	Pre- requisites
CECSC05	сс	Database Management Systems	3	0	2	4	15	15	40	15	15	

COURSE OUTCOMES

At the end of the course students will be able to

- CO1: understand fundamentals of database management systems.
- CO 2: design database models and learn database languages to write queries to extract information from databases.
- CO 3: Identify database anomalies and improve the design of database management system
- CO 4: understand transaction management and concurrency control.
- CO 5: understand storage organization and database recovery.

COURSE CONTENT

UNIT 1

Introduction: Database management system Characteristics of the Database, Database Systems and Architecture, Data Models, Schemes & Instances, DBMS Architecture & Data Independence, Database administrator & Database Users, Database Languages & Interfaces, DDL, DML, DCL, Overview Relational Data Base Management Systems

UNIT 2

Data Modeling: Data modeling using The Entity-Relationship Model – Entities, Attributes and Relationships, Cardinality of Relationships, Strong and Weak Entity Sets, Generalization, Specialization, and Aggregation, Translating your ER Model into Relational Model, Relationships of higher degree.

UNIT 3

Relational Model, Languages & Systems: Relational Data Model concepts, Relational Model Constraints, integrity constraints ,Keys domain constraints, referential integrity, assertions triggers, foreign key

Relational Algebra and calculus, SQL. Database security.

Relational Data Base Design: Functional Dependencies & Normalization for Relational Databases, Functional Dependencies, Normal Forms Based on Primary Keys, (1NF, 2NF, 3NF & BCNF), Lossless Join and Dependency Preserving Decomposition, Functional dependencies and its closure, covers and equivalence.

UNIT 4

Transaction Management: Transaction Concept and State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability: Testing of serializability, Serializability of schedules, conflict & view serializable schedule.

Concurrency Control Techniques: Lock-Based Protocols, Timestamp-based Protocols, validation based protocol. Deadlock Handling

UNIT 5

Recovery System

Recoverability: Failure Classification, Storage Structure, Recovery and Atomicity, Log-based Recovery, Shadow Paging, Recovery with Concurrent Transactions

Storage organization: Indexing, Hashing ,file storage.

List of Experiments:

Following is only a suggestive list of experiments. For better coverage faculty may increase the list of experiments.

Q 1: Consider the following relational schema

SAILORS (<u>sid</u>, sname, rating, date_of_birth)

BOATS (bid, bname, color)

RESERVES (sid, bid, date, time slot)

Write the following queries in SQL and relational algebra

- a) Find sailors who've reserved at least one boat
- b) Find names of sailors who've reserved a red or a green boat in the month of March.
- c) Find names of sailors who've reserved a red and a green boat
- d) Find sid of sailors who have not reserved a boat after Jan 2018.
- e) Find sailors whose rating is greater than that of all the sailors named "John"
- f) Find sailors who've reserved all boats
- g) Find name and age of the oldest sailor(s)
- h) Find the age of the youngest sailor for each rating with at least 2 such sailors

Q2. Consider the following relational schema:

CUSTOMER (cust_num, cust_lname, cust_fname, cust_balance);

PRODUCT (prod_num, prod_name, price)

INVOICE (<u>inv_num, prod_num, cust_num, inv_date</u>, unit_sold, inv_amount);

Write SQL queries and relational algebraic expression for the following

- a) Find the names of the customer who have purchased no item. Set default value of Cust_balance as 0 for such customers.
- b) Write the trigger to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered for the customer.
- c) Find the customers who have purchased more than three units of a product on a day.
- d) Write a query to illustrate Left Outer, Right Outer and Full Outer Join.
- e) Count number of products sold on each date.
- f) As soon as customer balance becomes greater than Rs. 100,000, copy the customer_num in new table called "GOLD CUSTOMER"
- g) Add a new attribute CUST_DOB in customer table

Q 3: Consider the following relational schema

DEPARTMENT(Department_ID, Name, Location_ID)

JOB (Job_ID , Function)

EMPLOYEE (<u>Employee_ID</u>, name, DOB, Job_ID, Manager_ID, Hire_Date, Salary, department_id)

Answer the following queries using SQL and relational algebra:

- a) Write a query to count number of employees who joined in March 2015
- b) Display the Nth highest salary drawing employee details.

- c) Find the budget (total salary) of each department.
- d) Find the department with maximum budget.
- e) Create a view to show number of employees working in Delhi and update it automatically when the database is modified.
- f) Write a trigger to ensure that no employee of age less than 25 can be inserted in the database.

04: PROJECT

Students are required to develop a DBMS for the applications assigned to them. Following items are required to be submitted for the project

- a) Problem Statement
- b) ER model/Relational Model
- c) Integrity Constraints implemented
- d) Suitable Queries to create and manage database

Note: Students have to make sure that they have defined proper integrity constraints to ensure consistency of database used in assignments as well as project.

SUGGESTED READINGS:

Text book:

1. Korth ,Silbertz, Sudarshan, "Data base concepts", McGraw-Hill, 2013

Reference books

1.Elmasri, Navathe, "Fundamentals of Database systems", Addison Wesley, 2010 2.Date C.J., "An Introduction to Database systems", Addison-Wesley Longman, Inc.,2004

			B.Te	ch. <u>(</u>	<u>Com</u> p	outer Eng	<u>ineer</u>	<u>ing</u> - S	EMES	TER III		
Course Code	Туре	rpe Subject	L	Т	P	Credits	Evaluation Scheme (Percentage weights)					Pre- requisites
							Theory		Practical			
							CA	MS	ES	CA	ES	
CECSC06	сс	Design and Analysi s of Algorit hms	3	0	2	4	15	15	40	15	15	Programming Data Structures