Algebra Review: Exponents and Logarithms

Week of 1/25/10

I. Exponents

Intro to Exponents:

1) Recall that $a^n = a \cdot a \cdot a \cdot a \dots (n \text{ times})$

 \rightarrow Example: $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

2) For a^0 , we define it as $a^0 = 1$.

 \rightarrow Examples: $5^0 = 1$, $(\frac{1}{5})^0 = 1$, $e^0 = 1$

3) For a^{-b} , we define it as $(1/a^{b})$

 \rightarrow Example: $5^{-3} = (1/5^3)$

Operations of Exponents:

- 1) Multiplication : $a^m \cdot a^n = a^{m+n}$
 - -To multiply two exponential terms that have the same base, add their exponents.

⇒Example: $3^2 \cdot 3^3 = 3^{3+2} = 3^5$

-Do not add the exponents of terms with unlike bases.

 \rightarrow Example: $2^2 \cdot 3^3 \neq 6^{3+2} \neq 6^5$

2) Division: $\frac{a^m}{a^n} = a^{m-n}$

-To divide two exponential terms that have the same base, subtract their exponents.

→ Example: $\frac{7^6}{7^8} = 7^{6-3} = 7^3$

-Do not subtract the exponents of terms with unlike bases

- 3) Exponents of Exponential Terms: $(a^m)^n = a^{mn}$
 - -To raise an exponential term to another exponent, multiply the two exponents.

$$\rightarrow$$
Example: $(2^3)^2 = 2^{2 \cdot 3} = 2^6$

- 4) Products/quotients raised to exponents: $(ab)^m = (a^m b^m); (\frac{a}{b})^m = \frac{a^m}{b^m}$
 - To raise a product or a quotient to an exponent, apply the exponent to each individual part

⇒Examples:
$$(2x)^4 = 2^4x^4 = 16x^4$$
; $(\frac{3}{x})^3 = \frac{3^3}{x^3} = \frac{27}{x^3}$

- 5) The FOIL method of multiplication
 - -To expand a binomial raised to a power, use the FOIL method (First, Outside, Inside, Last)

⇒Example:
$$(x + 2)^2 = (x + 2)(x + 2) = x^2 + 2x + 2x + 4 = x^2 + 4x + 4$$

Radicals:

Radicals are another form of exponents. Here's a helpful way to think about them:

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
;

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

It's often helpful in calculus to re-write radicals in exponential form. All exponent rules apply to radicals.

⇒Example:
$$(\sqrt{x+1})^2 = ((x+1)^{1/2})^2 = (x+1)^1 = x+1$$

Special Cases:

$$-\sin^2 x = (\sin x)^2 NOT \sin x^2$$

-
$$\sin^{-1} x = \arcsin x \ NOT \ \sin x^{-1}$$

- this applies to the other trig functions as well

II. The Logarithm

If
$$b^c = a$$
, then $\log_b a = c$

A logarithm is just another way to write an exponent. If you want to find out what 5^2 is, you multiply two fives together to get 25. But if you want to find out which power you have to raise 5 to in order to get 25, you use a logarithm.

$$log_5 25 = ?$$

The question you ask yourself when you look at this log is: To what power should I raise 5 in order to get 25? The answer is 2.

$$log_5 25 = 2$$

Here's the general form of a logarithm:

$$\log_b a = c$$

The Common Log and the Natural Log

- Logarithms can have any base (b), but the 2 most common bases are 10 and e.
- Logs with bases of 10 are called common logs, and often the 10 is left out when a common log is written.
- →Example: log₁₀ 100 is the same as log 100
- Logs with bases of e are known as natural logs. The shortened version of $\log_e x$ is $\ln x$.
- *e* is a constant with an approximate value of 2.71828. Don't let it scare you... it's just a number.

Simplifying Logarithms

The following rules for simplifying logarithms will be illustrated using the natural log, *In*, but these rules apply to all logarithms.

1) Adding logarithms (with the same base)

$$\ln a + \ln b = \ln(a \cdot b)$$

Two logs of the same base that are added together can be consolidated into one log by *multiplying* the inside numbers.

 \rightarrow Example: $\ln 5 + \ln 4 = \ln(5 \cdot 4) = \ln 20$

2) **Subtracting logarithms** (with the same base)

$$\ln a - \ln b = \ln(a/b)$$

Similarly, two logs of the same base being substracted can be consolidated into one log by *dividing* the inside numbers.

⇒Example: $\ln 14 - \ln 2 = \ln(14/2) = \ln 7$

3) Exponents of logarithms

$$\ln a^b = b \ln a$$

If the inside number of the logarithm is raised to a power, you bring down the exponent as a coefficient.

⇒Example: $\ln 3^2 = 2 \ln 3$

- 4) Things that cancel
 - $\ln e = 1$
 - $-\log_a a = 1$
 - $-\ln 1 = 0$
 - $-\log_a 1 = 0$
 - $-e^{\ln x}=x$
 - $\ln e^x = x$