

AMENDMENTS TO THE CLAIMS

1. (Original) A method of preparing a compound of general structure Va, Vb, VIIIa, VIIIb, XIVa, XIVb, XVIa, XVIb, or XX respectively,

wherein R₁ and R₂ are the same or different and represent hydrogen or a hydroxy protecting group, and wherein R₅ represents hydrogen or a hydroxy protecting group;

the method comprising reacting a compound of general structure IIIa, IIIb, VIa, VIb, XIIIa, XIIIb, XVa, or XVb, or IXX respectively,

XIIIa

XIIIb

XVa

XVb

IXX

wherein R₁, R₂, and R₅ are as defined above;

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

2. (Original) A method according to claim 1 of preparing a compound of general structure Va,

wherein R₁ and R₂ are the same or different and each represent hydrogen or a hydroxy protecting group,

the method comprising reacting a compound of general structure IIIa,

wherein R₁ and R₂ are as defined above,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

3. (Original) A method according to claim 1 of preparing a compound of general structure Vb,

wherein R₁ and R₂ are the same or different and each represent hydrogen or a hydroxy protecting group,

the method comprising reacting a compound of general structure IIIb,

wherein R₁ and R₂ are as defined above,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

4. (Original) A method according to claim 1 of preparing a compound of general structure VIIIa or VIIIb respectively,

wherein R₁ and R₂ are the same or different and each represent hydrogen or a hydroxy protecting group,

the method comprising reacting a compound of general structure VIa or VIb respectively,

wherein R₁ and R₂ are as defined above,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

5. (Original) A method according to claim 1 of preparing a compound of general structure XIVa,

wherein R₁ represents hydrogen or a hydroxy protecting group,

the method comprising reacting a compound of general structure XIIIa,

wherein R_1 is as defined above,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

6. (Original) A method according to claim 1 of preparing a compound of general structure XIVb,

wherein R₁ represents hydrogen or a hydroxy protecting group,

the method comprising reacting a compound of general structure XIIIb,

wherein R_1 is as defined above,

with a phosphonate of general structure VII,

wherein R_3 and R_4 are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

7. (Original) A method according to claim 1 of preparing a compound of general structure XVIa or XVIb respectively,

wherein R₁ represents hydrogen or a hydroxy protecting group,

the method comprising reacting a compound of general structure XVa or XVb respectively,

wherein R₁ is as defined above,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

8. (Original) A method according to claim 1 of preparing a compound of general structure XX,

wherein R₅ represents hydrogen or a hydroxy protecting group,
the method comprising reacting a compound of general structure IXX,

wherein R₅ is as defined above,
with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base.

9. (Currently Amended) A method of preparing calcipotriol or calcipotriol monohydrate, the method comprising the method according to ~~any one of claims 1, 2, 3, 4, 5, 6, 7, or 8~~ claim 1 or 2.

10. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

(i) reacting a compound of general structure IIIa,

wherein R_1 and R_2 are the same or different and represent hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

wherein R_3 and R_4 are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base,

to give a compound of general structure Va,

wherein R_1 and R_2 are as defined above;

(ii) reducing the compound of general structure Va with a suitable reducing agent, to give a compound of general structure IXa or a mixture of compounds of general structure IXa and IXb,

wherein R_1 and R_2 are as defined above;

(iii) optionally separating the compound of general structure IXa from the mixture of compounds of general structure IXa and IXb;

(iv) photoisomerising the compound of general structure IXa to the compound of general structure Xa,

wherein R₁ and R₂ are as defined above;

(v) when R₁ and/or R₂ are not hydrogen, removing the hydroxy protecting group(s) R₁ and/or R₂ of the compound of general structure Xa to generate calcipotriol; and
(vi) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

11. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

(i) reacting a compound of general structure IIIb,

wherein R_1 and R_2 are the same or different and represent hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

wherein R_3 and R_4 are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxy carbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base,

to give a compound of general structure Vb,

wherein R₁ and R₂ are as defined above;

(ii) reducing the compound of general structure Vb with a suitable reducing agent, to give a compound of general structure Xa or a mixture of compounds of general structure Xa and Xb,

wherein R₁ and R₂ are as defined above;

(iii) optionally separating the compound of general structure Xa from the mixture of compounds of general structure Xa and Xb;

(iv) when R_1 and/or R_2 are not hydrogen, removing the hydroxy protecting group(s) R_1 and/or R_2 of the compound of general structure Xa to generate calcipotriol; and

(v) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

12. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

(i) reacting a compound of general structure VIa and/or VIb,

wherein R_1 and R_2 are the same or different and represent hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base,

to give a compound of general structure VIIa and/or VIIb,

wherein R₁ and R₂ are as defined above;

(ii) heating the compounds of general structure VIIa and/or VIIb above 60°C in the presence of a base,

to give a compound of general structure Va,

wherein R_1 and R_2 are as defined above;

(iii) reducing the compound of general structure **Va** with a suitable reducing agent, to give a compound of general structure **IXa** or a mixture of compounds of general structure **IXa** and **IXb**,

wherein R_1 and R_2 are as defined above;

(iv) optionally separating the compound of general structure IXa from the mixture of compounds of general structure IXa and IXb;

(v) photoisomerising the compound of general structure IXa to the compound of general structure Xa,

wherein R₁ and R₂ are as defined above;

(vi) when R₁ and/or R₂ are not hydrogen, removing the hydroxy protecting group(s) R₁ and/or R₂ of the compound of general structure Xa to generate calcipotriol; and
(vii) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

13. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

(i) reacting a compound of general structure VIa and/or VIb,

wherein R₁ and R₂ are the same or different and represent hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base, to give a compound of general structure VIIIa and/or VIIIb,

wherein R₁ and R₂ are as defined above;

(ii) reducing the compounds of general structure VIIIa and/or VIIIb, with a suitable reducing agent in an inert solvent,

to give compounds of general structure XIaa and/or XIba, or a mixture of compounds of general structure XIaa and/or XIba and XIab and/or XIbb,

wherein R_1 and R_2 are as defined above;

(iii) optionally separating the compounds of general structure XIa and/or XIb from the reaction mixture;

(iv) heating the compounds of general structure XIa and/or XIb above 60°C in the presence of a base,

to give a compound of general structure IXa,

IXa

wherein R₁ and R₂ are as defined above;

- (v) optionally separating the compound of general IXa from the reaction mixture;
- (vi) photoisomerising the compound of general structure IXa to the compound of general structure Xa,

Xa

wherein R₁ and R₂ are as defined above;

- (vii) when R₁ and/or R₂ are not hydrogen, removing the hydroxy protecting group(s) R₁ and/or R₂ of the compound of general structure Xa to generate calcipotriol; and
- (viii) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate;

wherein steps (vi) and (vii) may be in reversed order.

14. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

(i) reacting a compound of general structure XIIIa,

XIIIa

wherein R₁ represents hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

VII

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl,

cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base, to give a compound of general structure XIVa,

wherein R_1 is as defined above;

(ii) hydroxylating the compound of general structure XIVa with suitable hydroxylating agent, to give a compound of general structure Va,

wherein R₁ represents hydrogen or a hydroxy protecting group and R₂ is hydrogen;

(iii) optionally reacting the compound of general structure Va, wherein R₁ represents hydrogen or a hydroxy protecting group and R₂ is hydrogen with a suitable protecting agent, to give a compound of general structure Va, wherein R₁ and R₂ are the same or different and represent a hydroxy protecting group;

(iv) reducing the compound of general structure Va with a suitable reducing agent, to give a compound of general structure IXa or a mixture of compounds of general structure IXa and IXb,

wherein R₁ and R₂ are as defined above;

(v) optionally separating the compound of general structure IXa from the mixture of compounds of general structure IXa and IXb;

(vi) photoisomerising the compound of general structure IXa to a compound of general structure Xa,

wherein R₁ and R₂ are as defined above;

- (vii) when R₁ and/or R₂ are not hydrogen, removing the hydroxy protecting group(s) R₁ and/or R₂ of the compound of general structure Xa to generate calcipotriol; and
- (viii) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

15. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

- (i) reacting a compound of general structure XIIIb,

wherein R_1 represents hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

wherein R_3 and R_4 are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, in the presence of a base,

to give a compound of general structure XIVb,

wherein R_1 is as defined above;

(ii) photoisomerising the compound of general structure XIVb to a compound of general structure XIVa,

wherein R₁ is as defined above;

(iii) hydroxylating the compound of general structure XIVa with suitable hydroxylating agent, to give a compound of general structure Va,

wherein R₁ represents hydrogen or a hydroxy protecting group and R₂ is hydrogen;

(iv) optionally reacting the compound of general structure Va, wherein R₁ represents hydrogen or a hydroxy protecting group and R₂ is hydrogen with a suitable protecting agent to give a

compound of general structure Va, wherein R₁ and R₂ are the same or different and represent a hydroxy protecting group;

(v) reducing the compound of general structure **Va** with a suitable reducing agent, to give a compound of general structure **IXa** or a mixture of compounds of general structure **IXa** and **IXb**,

wherein R_1 and R_2 are as defined above;

(vi) optionally separating the compound of general structure IXa from the mixture of compounds of general structure IXa and IXb;

(vii) photoisomerising the compound of general structure **IXa** to the compound of general structure **Xa**,

wherein R₁ and R₂ are as defined above;

- (viii) when R₁ and/or R₂ are not hydrogen, removing the hydroxy protecting group(s) R₁ and/or R₂ of the compound of general structure **Xa** to generate calcipotriol; and
- (ix) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

16. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

- (i) reacting a compound of general structure **XVa** and/or **XVb**,

wherein R₁ represents a hydrogen or a hydroxy protecting group,
with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy,
in the presence of a base,
to give a compound of general structure XVIa and/or XVIb,

wherein R₁ is as defined above;

(ii) heating the compounds of general structure XVIa and/or XVIb above 60°C in the presence of a base,

to give a compound of general structure XIVa,

wherein R₁ is as defined above;

(iii) hydroxylating the compound of general structure XIVa with suitable hydroxylating agent, to give a compound of general structure Va,

wherein R₁ represents hydrogen or a hydroxy protecting group and R₂ is hydrogen;

(iv) optionally reacting the compound of general structure Va, wherein R₁ represents hydrogen or a hydroxy protecting group and R₂ is hydrogen with a suitable protecting agent,

to give a compound of general structure Va, wherein R₁ and R₂ are the same or different and represent a hydroxy protecting group;

(v) reducing the compound of general structure Va with a suitable reducing agent,

to give a compound of general structure IXa or a mixture of compounds of general structure IXa and IXb,

wherein R₁ and R₂ are as defined above;

- (vi) optionally separating the compound of general structure IXa from the mixture of compounds of general structure IXa and IXb;
- (vii) photoisomerising the compound of general structure IXa to the compound of general structure Xa,

wherein R₁ and R₂ are as defined above;

- (viii) when R₁ and/or R₂ are not hydrogen, removing the hydroxy protecting group(s) R₁ and/or R₂ of the compound of general structure Xa to generate calcipotriol; and
- (ix) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

17. (Original) A method for producing calcipotriol or calcipotriol monohydrate according to claim 9, the method comprising the steps of:

- (i) reacting a compound of general structure IXX,

wherein R₅ represents hydrogen or a hydroxy protecting group,

with a phosphonate of general structure VII,

wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy,

in the presence of a base,

to give a compound of general structure XX,

wherein R₅ is as defined above;

(ii) reducing the compound of general structure XX with a suitable reducing agent, to give a compound of general structure XXIa or a mixture of compounds of general structure XXIa and XXIb,

wherein R₅ is as defined above and R₆ is hydrogen;

(iii) optionally separating the compound of general structure XXIa from the mixture of compounds of general structure XXIa and XXIb;

(iv) protecting the allylic hydroxy group of the compound of general structure XXIa with a suitable hydroxy protecting reagent,

to give a compound of general structure XXIa, wherein R₆ is a hydroxy protecting group and R₅ is as defined above;

(v) when R₅ is not hydrogen, removing the hydroxy protecting group R₅ of the compound of general structure XXIa to give a compound of general structure XXIa, wherein R₅ is hydrogen;

(vi) oxidising the hydroxy group of the compound of general structure XXIa with a suitable oxidising agent to give a compound of general structure XXII,

wherein R₆ is as defined above;

(vii) coupling of the compound of general structure XXII with a Wittig reagent XXIIIa or a Wittig Horner reagent XXIIIb,

wherein R₁ and R₂ represent a hydrogen or a hydroxy protecting group, and wherein R₃ and R₄ are as defined above;

in the presence of a base,

to give a compound of general structure XXIVa,

wherein R_1 and R_2 are the same or different and represent hydrogen or a hydroxy protecting group, and wherein R_6 is as defined above;

(viii) when R_6 is not hydrogen, removing the hydroxy protecting group R_6 of the compound of general structure XXIVa;

(ix) optionally separating the compound of general structure XXIVa;

(x) when R_1 and R_2 are not hydrogen, removing the hydroxy protecting group(s) R_1 and R_2 of the compound of general structure XXIVa to generate calcipotriol;

and

(xi) optionally crystallising the calcipotriol from a mixture of an organic solvent and water to give calcipotriol monohydrate.

18. (Currently Amended) The method according to ~~any one of claims 1-17~~ claim 1, wherein R_3 and R_4 are ($\text{C}_1\text{-}\text{C}_6$)alkyl.

19. (Currently Amended) The method according to ~~any one of claims 1-17~~ claim 1 or 2, wherein R₃ and R₄ are methyl or ethyl.

20. (Currently Amended) The method according to ~~any one of claims 1-19~~ claim 1, wherein R₁ and R₂ represent hydrogen or alkylsilyl.

21. (Currently Amended) The method according to ~~any one of claims 1-19~~ claim 1 or 2, wherein R₁ and R₂ represent hydrogen or *tert*-butyldimethylsilyl.

22. (Original) The method according to claim 8 or 19, wherein R₅ represents triethylsilyl and R₃ and R₄ are methyl or ethyl.

23. (Currently Amended) The method according to ~~any one of claims 1-22~~ claim 1 or 2, wherein the reaction with the phosphonate of general structure VII is carried out under phase-transfer conditions.

24. (Currently Amended) The method according to ~~any one of claims 1-22~~ claim 1 or 2, wherein the reaction with the phosphonate of general structure VII is carried out under phase-transfer conditions in a mixture of toluene or xylene and water with a tetraalkylammonium halide or a tetraalkylammonium hydrogensulfate as the phase transfer catalyst and with an alkalinmetal hydroxide and/or a tetraalkylammoniumhydroxide as the base.

25. (Currently Amended) The method according to ~~any one of claims 1-24~~ claim 1, wherein the reaction with the phosphonate of general structure VII is carried out at a temperature between 10⁰C-50⁰C.

26. (Original) A compound of general structure Vb,

wherein R₁ and R₂ are the same or different and each represent a hydroxy protecting group, or R₁ represents hydrogen and R₂ represents a hydroxy protecting group, or R₂ represents hydrogen and R₁ represents a hydroxy protecting group.

27. (Original) Compound 20(R),1(S),3(R)-bis(*tert*-butyldimethylsilyloxy)-20-(3'-cyclopropyl-3'-oxoprop-1'(*E*)-enyl)-9,10-secopregna-5(*Z*),7(*E*),10(19)-triene according to claim 2.

28. (Original) A compound of general structure XIVa,

XIVa

wherein R₁ represents hydrogen or a hydroxy protecting group, with the proviso that R₁ cannot be *tert*-butyldimethylsilyl.

29. (Original) A compound of general structure XIVb,

XIVb

wherein R₁ represents hydrogen or a hydroxy protecting group.

30. (Original) A compound of general structure VII,

wherein R_3 and R_4 are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy, provided that that the compound is not (2-cyclopropyl-2-oxoethyl)phosphonic acid diethyl ester.

31. (Original) A compound of general structure IIIa,

wherein R_1 and R_2 are the same or different and represent hydrogen or a hydroxy protecting group, with the provisos that R_1 and R_2 cannot both be *tert*-butyldimethylsilyl, *tert*-

butyldiphenylsilyl, or triisopropylsilyl; with the further proviso that when R₂ is *tert*-butyldimethylsilyl, R₁ cannot be *tert*-butyldiphenylsilyl.

32. (Original) A compound of general structure IIIb,

wherein R₁ represents a hydroxy protecting group, and R₂ represents hydrogen or a hydroxy protecting group; or R₁ represents a hydrogen or a hydroxy protecting group, and R₂ represents a hydroxy protecting group, except acetyl; with the proviso that R₁ and R₂ cannot both be *tert*-butyldimethylsilyl.

33. (Original) A compound of general structure VIa or VIb,

wherein R₁ and R₂ are the same or different and represent hydrogen or a hydroxy protecting group, with the proviso that R₁ and R₂ cannot both be *tert*-butyldimethylsilyl.

34. (Original) A compound of general structure XIIIa,

wherein R₁ represents hydrogen or a hydroxy protecting group, except *tert*-butyldimethylsilyl.

35. (Original) A compound of general structure XIIIb,

wherein R₁ represents a hydroxy protecting group, except *tert*-butyldimethylsilyl.

36. (Original) A compound of general structure XVa or XVb,

wherein R₁ represents a hydroxy protecting group, except *tert*-butyldimethylsilyl, triisopropylsilyl, acetyl, or triethylsilyl.

37. (Original) A compound of general structure XX,

wherein R₅ represents hydrogen or a hydroxy protecting group.

38. (Original) A compound of general structure XXIa,

wherein R₅ and R₆ are the same or different and represent hydrogen or a hydroxy protecting group, with the provisos that when R₅ is hydrogen R₆ is not *tert*-butyldimethylsilyl, and when R₅ is benzoate, R₆ is not *tert*-butyldimethylsilyl or hydrogen.

39. (Original) A compound of general structure XXII,

wherein R₆ represents hydrogen or a hydroxy protecting group, except *tert*-butyldimethylsilyl.

40. (Original) A compound of general structure XXIIIb,

wherein R₁ and R₂ are the same or different and represent hydrogen or a hydroxy protecting group, and wherein R₃ and R₄ are the same or different and represent alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, or aryl, each being optionally substituted with one or more substituents selected from the group consisting of alkyl, aralkyl, cycloalkyl, cycloalkenyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, aralkyl, aralkenyl, aralkynyl, aryl, oxo, alkoxycarbonyl, alkylcarbonyloxy, halogen, alkoxy, carboxy, sulfo or hydroxy.

41. (Original) A compound of general structure XVIa or XVIb,

wherein R₁ represents hydrogen or a hydroxy protecting group.

42. (Currently Amended) Use of a compound according to ~~any one of claims 26-29 or 31-41~~
claim 37 as an intermediate in the manufacture of calcipotriol or calcipotriol monohydrate.

43. (Original) Use of (2-cyclopropyl-2-oxoethyl)phosphonic acid diethyl ester in the
manufacture of calcipotriol or calcipotriol monohydrate.

44. (Original) Use of a compound according to claim 30 in the manufacture of calcipotriol or
calcipotriol monohydrate.