nlmixr²: data specifications and exploration

Matthew Fidler

On behalf of the nlmixr² development team:

Matt Fidler, Bill Denney, John Harrold, Richard Hooijmaijers, Rik Schoemaker, Max Taubert, Mirjam Trame, Theodoros Papathanasiou, Justin Wilkins, Yuan Xiong

Current nlmixr² team is composed of many companies collaborating for a common goal

Matthew Fidler, PhD

Bill Denney, PhD

John Harrold, PhD

Richard Hooijmaijers, BSc

Theo Papathanasiou, PhD

Rik Schoemaker, PhD

Max Taubert, PhD

Mirjam Trame, PhD

Justin Wilkins, PhD

Yuan Xiong , PhD

Vision of nlmixr²

To develop an R-based open-source nonlinear mixed-effects modeling software package that can compete with commercial pharmacometric tools and is suitable for regulatory submissions

nlmixr² or rxode² model data define both the observations and dosing events; the basics are described below

Observations

TIME

Independent Variable (sometimes called **x**), often TIME since pharmacometrics models describe drug concentrations and effects over time

DV

Dependent Variable (sometimes called **y**), which often describes the observed drug response or concentration

CMT

Compartment/Effect Location. The parsed nlmixr2 model describes this for a specific model

EVID

The event id, in this case EVID=0 for observations

DVID

Dependent Variable ID. The parsed nlmixr2 model describes this for a specific model

Dosing Events

AMT

Amount of Drug or Amount of Event at the time.

CMT

ODE compartment name or number where dosing occurs

EVID

Nlmixr2 event type (0: Observation, 1: Dose, 2: Other, 3: Reset, 4: Reset+Dose, 5: Replace; 6: Multiply; 7: Phantom/Transit compartment)

RATE or DUR

Rate (RATE) or Duration (DUR) of an infusion

Subject Identifier (ID) text/numeric

First step in any analysis is to make sure your data are correct (from xgx)

Some common checks are:

- Patient Information
 - Number of Patients per Treatment Arm? More or less than expected?
 - Number of Observations/Doses per Treatment Arm? More or less than expected?
- Dosing:
 - Patients that received a dose of 0?
 - Patients that never received a dose?
- Observations:
 - Duplicate, or missing times or observations?
 - Summary statistics of observations per time point?
- Demographics
 - Summary of key demographic covariates (Number in category or mean/sd/range median)

This includes graphical exploration of subject dosing/observation history (and perhaps missing values too)

Code available at http://opensource.nibr.com/xgx/Data_Checking.html

Assess the data before you start analysis (from PopSim Course)

- Classic data sets used by Nick Holford in his courses:
 - O'Reilly RA, Aggeler PM. Studies on coumarin anticoagulant drugs initiation of warfarin therapy without a loading dose. Circulation 1968;38:169-177
 - O'Reilly RA, Aggeler PM, Leong LS. Studies of the coumarin anticoagulant drugs: The pharmacodynamics of warfarin in man. Journal of Clinical Investigation 1963;42(10):1542-1551

- Some simple plots to get a feel of the data
- Additional xgxr functionality to improve and summarize the profiles

Our warfarin data file: a simple ggplot to provide an impression

Change the x-axis from hours to days and add a proper label using the xgx helper xgx_scale_x_time_units(units_dataset = "hours", units_plot = "days")

The data set has two types of profiles...

...but you can also group by rich day 1 and sparse later days...

Switch to semi-log scale using xgx helper xgx_scale_y_log10() Any clues to what model we should use?

xgx can also add nice summary information if data has nominal times: summaries of mean plus 95% CI

xgx_geom_ci(aes(x = TIME, color = NULL, group = NULL, shape = NULL), conf level = 0.95)

On linear scale this would result in a CI crossing zero because CIs are assumed symmetrical

...so perhaps a median and 95% of the data would be more suitable xgx geom pi(aes(x = TIME, color = NULL, group = NULL, shape = NULL)

There appears to be a delay in absorption...

One way to model delayed absorption is through ODE compartments that must be crossed first (transit compartment)

- Transit compartments take more time to enter the system because they have to go through n transit compartments before entering the blood
- Transit compartments and any arbitrary ODE can be fit with nlmixr2
- (Image from https://mlxtran.lixoft.com/examples/transit-compartments-weibull-absorption/)

