Compression of jazz chord sequences

Romain VERSAEVEL

Tutored by Pr. David MEREDITH

13 août 2015

Contents

Motivation, definitions

Compression algorithms

Similarity measures

Results

Contents

Motivation, definitions

Chords

Definition

Motivation, definitions •00

A chord is a set of at least three notes.

Chords

Definition

•00

A chord is a set of at least three notes.

My data

A Child Is Born:

 $B \triangleright M7$; $E \triangleright m$; $B \triangleright M7$; $E \triangleright m6$; $B \triangleright M9$; $E \triangleright m$; A halfdim 7; $D7 \# 9 \dots$

My data

A Child Is Born:

 $B \triangleright M7$; $E \triangleright m$; $B \triangleright M7$; $E \triangleright m6$; $B \triangleright M9$; $E \triangleright m$; A halfdim 7; $D7 \# 9 \dots$

Mathematical chords

Notes are numbers.

Motivation, definitions 000

Mathematical chords

Notes are numbers.

Α	A #	В	C	<i>C</i> #	D	D#	E	F	F#	G	G#
0	1	2	3	4	5	6	7	8	9	10	11

Mathematical chords

Notes are numbers.

000

Α	A #	В	С	<i>C</i> #	D	D#	E	F	F #	G	G#
0	1	2	3	4	5	6	7	8	9	10	11

$$\underbrace{B}_{1} \underbrace{M7}_{+} \underbrace{M7}_{\{0;4;7;10\}}$$

6/25

Contents

Compression algorithms

Lempel-Ziv 77

LZ77: example

Input

I = ABCABCABD

Output

LZ77: example

Input

I = ABCABCABD

Step	Buffer						Input (« preview »)											
0										Α	В	С	Α	В	С	Α	В	D

Output

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

9/25

LZ77: example

Input

I = ABCABCABD

Step	Buffer							Input (« preview »)									
0									Α	В	С	Α	В	С	Α	В	D
1								Α	В	С	Α	В	С	Α	В	D	

Output

LZ77 : example

Input

I = ABCABCABD

Step	Buffer							Input (« preview »)										
0										Α	В	С	Α	В	С	Α	В	D
1									Α	В	С	Α	В	С	Α	В	D	
2								Α	В	С	Α	В	С	Α	В	D		

Output

LZ77 : example

Input

I = ABCABCABD

Step	Buffer								Input (« preview »)									
0										Α	В	С	Α	В	С	Α	В	D
1									Α	В	С	Α	В	С	Α	В	D	
2								Α	В	С	Α	В	С	Α	В	D		
3							Α	В	С	Α	В	С	Α	В	D			

Output

I = ABCABCABD

Decompression Output

(0, 0, A)

000

(0, 0, B)

(0, 0, C)

(3, 5, D)

I = ABCABCABD

Decompression Output

(0,0,A)

000

(0, 0, B)

(0, 0, C)

(3, 5, D)

I = ABCABCABD

Decompression Output (0,0,A)Α (0, 0, B)(0, 0, C)

(3, 5, D)

イロナイ部ナイミナイミナ

Input

I = ABCABCABD

Decompression Output (0, 0, A)Α (0,0,B)(0, 0, C)(3, 5, D)

Input

Decompression	Output
Α	(0,0,A)
В	(0,0,B)
	(0, 0, C)
	(3.5, D)

Input

Decompression	Output
Α	(0,0,A)
В	(0,0,B)
	(0,0,C)
	(3, 5, D)

Input

Decompression	Output
Α	(0,0,A)
В	(0, 0, B)
C	(0,0,C)
	(3, 5, D)

Decompression A	Output (0, 0, <i>A</i>)
B	,
_	(0,0,B)
C	(0, 0, C)
	(3.5.D)

Decompression	Output
Α	(0,0,A)
В	(0,0,B)
C	(0,0,C)
Α	(3,5,D)
В	
C	

Decompression	Output
Α	(0, 0, A)
В	(0, 0, B)
C	(0, 0, C)
Α	(3,5,D)
В	
\boldsymbol{C}	
Α	
В	

I = ABCABCABD

Decompression A B C A	Output (0, 0, A) (0, 0, B) (0, 0, C) (3,5,D)
В	
C	
Α	
В	

D

11/25

Step 1 Identify the patterns Step 2 Find a (small) cover

Input

I = B; D7; G; Bb7; Eb; Am7; D7; G; Bb7; Eb; F#7; B; Fm7; Bb7; Eb

Input

I = B; D7; G; Bb7; Eb; Am7; D7; G; Bb7; Eb; F#7; B; Fm7; Bb7; Eb

Patterns

- $\triangleright B \{0; 11\};$
- \triangleright $B \triangleright 7$; $E \triangleright \{3; 8; 13\}$;
- D7; G; B♭7; E♭ {1;6};

Input

I = B; D7; G; B \flat 7; E \flat ; Am7; D7; G; B \flat 7; E \flat ; F#7; B; Fm7; B \flat 7; E \flat

Patterns

- $\triangleright B \{0; 11\};$
- $\triangleright B \triangleright 7; E \triangleright \{3; 8; 13\};$
- \triangleright D7; G; B \triangleright 7; E \triangleright {1; 6};
- $\triangleright D7 \{1; 6\}, G \{2; 7\}...$

13/25

Input

I = B; D7; G; B \flat 7; E \flat ; Am7; D7; G; B \flat 7; E \flat ; F#7; B; Fm7; B \flat 7; E \flat

Patterns

 $\triangleright B - \{0; 11\};$ \triangleright *B* \triangleright 7; *E* \triangleright — {3; 8; 13}; \triangleright D7; G; B \triangleright 7; E \triangleright — {1; 6}; \triangleright D7 — {1; 6}, G — {2; 7}...

Output

- $\triangleright B \{0; 11\};$
- \triangleright *B* \triangleright 7; *E* \triangleright {13};
- \triangleright D7; G; B \triangleright 7; E \triangleright {1; 6};
- \triangleright Am7 {5}, F#7 {10}, Fm7 {12}

Diagonal patterns (4)

Diagonal patterns (4)

14/25

Contents

Similarity measures

The magical ingredient

$$C = C'$$

The magical ingredient

$$C = C'$$
 \downarrow
 $C \sim C'$

All measures

- root note equivalence;
- transposition equivalence;
- PCS-Prime equivalence;
- the F1-score:
- Isaacson's similarity index;
- Lewin's measure:
- Morris' measure :
- Rahn's measure;
- Teitelbaum's measure.

Thresholds

Contents

Motivation, definitions

Compression algorithms

Similarity measures

Results

Evaluation

Compression factor

Recovery factor

Evaluation

Compression factor

```
|Input|
|Output|
```

Recovery factor

```
\frac{|\{i \mid \mathsf{DECOMPRESS}(\mathsf{COMPRESS}(\mathsf{Input}))[i] = \mathsf{Input}[i]\}|}{|\mathsf{Input}|}
```

Comparison between measures (1)

« Similarity measures are similar. »

Comparison between measures (1)

« Similarity measures are similar. »

Comparison between measures (2)

Comparison between measures (2)

Comparison between measures (2)

Comparison between algorithms (1)

23/25

Comparison between algorithms (1)

23/25

Comparison between algorithms (1)

Comparison between algorithms (2)

Comparison between algorithms (2)

Comparison between algorithms (2)

24/25

