

Lesson 10 Artificial Neural Networks

Mathematics and Statistics for Data Science
Tapanan Yeophantong
Vincent Mary School of Science and Technology
Assumption University

Content

- Perceptrons
- Stochastic gradient descent algorithm
- Backpropagation & multi-layered networks
- Deep learning architectures & applications

Perceptrons

Representational Power

Decision surfaces represented by a two-input perceptron

 Perceptron outputs a 1 for instances on one side of hyperplane and outputs a –1 for instances on other side.

Non-separability Problem

 Some sets of positive and negative examples cannot be separated by a perceptron.

 Those that can be separated by a hyperplane are linearly separable examples.

Multilayer Perceptrons

- Multilayer perceptron can compute all boolean functions.
- In fact, every Boolean function can be represented by a network of interconnected units.
- Only two-level depth is sufficient.

Training a Perceptron

- Learning the weights of a single perceptron.
- Produce correct +1 output given each training example
- Two algorithms:
 - Perceptron Rule
 - Delta Rule
- Guaranteed to converge to different hypotheses.

Perceptron Training Rule

- Begin with random weights.
- Iteratively apply the perceptron to each training example.
- Modify the weights whenever it misclassifies a sample.
- Iterate as many times as needed until all training samples are correctly classified.

Perceptron Training Rule

- Training involves changing weight wi associated with xi
 - Weight is revised by

$$w_i \leftarrow w_i + \Delta w_i$$

- where $\Delta w_i = \eta(t-o)x_i$
- Learning rate η is a positive constant that moderates the degree to which weights are changed at each step. It is set to some small value and sometimes decays as the number of iterations increases.
- t is the target output.
- o is the output generated by the perceptron.

Perceptron Rule Convergence

- Suppose training example is correctly classified
 - (t o) = O so no weights updated
- But if perceptron outputs –1 when target output is +1
 - weights must be altered to increase value of w.x
 - for all i, if xi > O (all attributes are positive), increasing wi will bring perceptron closer to correctly classifying the example.
 - training rule increases wi because (t o), η and xi are all positive.

Perceptron Convergence

- Perceptron learning procedure is guarantee to converge provided that:
 - · The training samples are linearly separable, and
 - A sufficiently small η is used.

Exercise 1

- Goal: Try a perceptron on scikit-learn.
- Instructions:
 - Create datasets corresponding to ADD, OR and XOR.
 - Train a perceptron with each dataset.
 - Check your results.

Content

- Perceptrons
- Stochastic gradient descent algorithm
- Backpropagation & multi-layered networks
- Deep learning architectures & applications

Delta Rule

- Perceptron rule fails to converge if examples are not linearly separable.
- Delta rule is designed to overcome this difficulty.
- If samples are not linearly separable, Delta rule converges toward a best-fit approximation of target concept.
- The key idea is to use gradient descent to search hypothesis space of possible weight vectors.

Overview of the Delta Rule

- Unthresholded perceptron: o(x) = w . x
- Training error of a hypothesis weight vectors:

$$\vec{E(w)} \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- where D is the set of training samples
- td is target output for training sample d
- od is output for training sample d

Visualising Hypothesis Space

Gradient Descent

- Gradient descent determines a weight vector that minimises E
 - Starting with an arbitrary initial weight vector.
 - Repeatedly modifying it in small steps.
 - At each step, weight vector is modified in the direction that produces the steepest descent along the error surface.

Weight Update Rule

- Pick an initial random weight vector.
- Apply the linear unit to all training examples, then compute for each weight according to

$$\Delta w_i = \eta \sum_{d} (t_d - o_d) x_{id}$$

• Update each w_i by adding Δw_i then repeat process.

Gradient-Descent Algorithm

- Initialize each w_i to some small random value.
- Until the termination condition is met, do
 - Initialize each Δw_i to zero.
 - For each $\langle x, t \rangle$ in training_examples, do
 - Input the instance x to the unit and compute the output o
 - For each linear unit weight w_i, do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$

For each linear unit weight w_i, do

$$w_i \leftarrow w_i + \Delta w_i$$

Learning Rate

- Converges to a weight vector with minimum error
 - Since error surface contains a single global minimum
 - Training examples are linearly separable
 - Given a sufficiently small learning rate η
- Large η runs the risk of overstepping the minimum in the error surface (i.e. not converging).
- We can also gradually reduce the value of η as the number of gradient descent steps grows.

Stochastic Gradient Descent

- Stochastic gradient descent updates w_i for each training sample, normally randomly selected.
- Update weight as each sample is processed

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$

Called Delta rule, LMS rule, Adaline rule, Widrow-Hoff rule.

SGD Algorithm

- Initialize each w_i to some small random value.
- Until the termination condition is met, do
 - Initialize each Δw_i to zero.
 - For each $\langle x, t \rangle$ in training examples, do
 - Input the instance x to the unit and compute the output o
 - For each linear unit weight w_i, do

$$w_i \leftarrow w_i + \eta(t - o)x_i$$

Exercise 2

- Goal: Try stochastic gradient on scikit-learn.
- Instructions:
 - Create datasets corresponding to ADD, OR and XOR.
 - Train linear_model.SGDClassifier with each dataset.
 - Check your results.
 - Extra: Try fitting a kernel before training (e.g. RBFSampler).

Content

- Perceptrons
- Stochastic gradient descent algorithm
- Backpropagation & multi-layered networks
- Deep learning architectures & applications

Multi-layered Neural Networks

Decision Regions

Differentiable Threshold Unit

 Highly non-linear multiple layer functions require functions that output a non-linear function whose output is a differentiable function; for example, a sigmoid.

Sigmoid Function

A logistic function:
 y = 1/(1+e-x)

Backpropagation Algorithm

- Until the termination condition is met, do
 - For each $\langle x, t \rangle$ in training_example, do
 - 1. Propagate the errors backwards through the network.
 - 2. For each network output unit k, calculate its error term δ_{k}

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

• 3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight w_{ii} where

$$\Delta w_{ij} = \eta \delta_j x_{ji}$$

Momentum

- Most common variation of BACKPROPAGATION is one that adds "momentum" to Δw_{ji} .
- Weight update on nth iteration depends upon update that occurred in (n-1)th iteration

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n-1)$$

• where α is the momentum.

Multi-layered Networks

- Algorithm generalises to feedforward networks of arbitrary depth.
- For unit r in layer m, δ_{r} is computed from the values at next deeper layer m + 1

$$\delta_r \leftarrow o_r (1 - o_r) \sum_{s \in layer \ m+1} w_{sr} \delta_s$$

When to Terminate?

- Termination condition for backpropagation is not specified.
- Possible choice:
 - Continue training until error E falls below a pre-determined threshold.
 - This is a poor strategy because it can overfit.

Generalisation vs Overfitting

Stopping Criteria

- Termination conditions:
 - Fixed number of iterations through loop.
 - Once error on training examples fall below a threshold.
 - Error on a separate validation set meets a criterion.
- Choice of termination criterion important:
 - Too few iterations can fail to reduce error sufficiently.
 - Too many can can lead to overfitting the training data.

Exercise 3

- Goal: Train an iris classifier using MLPClassifier.
- Instructions:
 - Load iris dataset.
 - Build an MLPClassifier for iris classification.
 - Evaluate the performance of your neural network.

Exercise 4

- Goal: Train digit classifier using MLPClassifier.
- Instructions:
 - Load digit dataset.
 - Build an MLPClassifier for handwritten digit recognition.
 - Evaluate the performance of your neural network.

Exercise 5

- Goal: Train a sentiment analyser using MLPClassifier.
- Instructions:
 - Read data from provided text files for sentiment analysis problem.
 - Build an MLPClassifier for sentiment classification.
 - Evaluate the performance of your neural network.

Content

- Perceptrons
- Stochastic gradient descent algorithm
- Backpropagation & multi-layered networks
- Deep learning architectures & applications

Overview of Deep Learning

- Related to the way the brain processes and communicates information and patterns, to define relationships between stimuli and responses.
- More feature learning than task-specific learning.
- Feature Learning
 - Also called representation learning.
 - Allows systems to automatically discover representations needed for feature detection or classification from raw data.

Common Architectures

- Deep Neural Networks
 - Artificial neural networks with many hidden layers.
- Deep Belief Networks
 - Bayesian networks with many layers representing hidden variables.
- Deep Recurrent Networks
 - Allow capture temporal behaviour (i.e. time sequence).
- Convolutional Neural Networks
 - Have a feedforward, convolutional layer as the key building block.

Deep Neural Networks

Deep Belief Networks

- Similar to deep neural networks, but connections are made between layers, NOT units within each layer.
- This allows a fast, layer-by-layer unsupervised training.
- Also can train a layer at a time.

Long Short-term Memory (LSTM)

Convolutional Neural Networks

Components of a CNN

Convolutional Layers

- The core building block of CNN.
- This layer is composed of a set of kernels (filters).

Pooling Layers

- A component for sampling to reduce the size of representation.
- For example: MaxPooling.

Activation Layers

- A component for applying an activation function, like standard ANN.
- For example: ReLU units.

Convolutional Layer

- Performs a convolution on the input data (e.g. an image).
- This is just like any convolution done in image processing to apply filters.
- The challenge is the choice of learnable filters, or kernels.

Pooling Layers

- Performs down-sampling on the extracted features.
- We do not need the exact location of the feature, but only that relative to other features.
- Example: MaxPooling, where only the maximum is selected.

Activation Layer

- The activation layer is analogous to the activation function used in backpropagation neural networks.
- It increases the non-linear properties of decision function.
- Common activation functions:
 - ReLU (Rectified Linear Units): max(O, x)
 - Logistic function, e.g. sigmoid(x)
 - Other hyperbolic functions, e.g. tanh(x)