The Exponential Mechanism for Medians

April 28, 2020

1 The Exponential Mechanism

Sometimes, the global sensitivity of a function is too great, so the Laplace mechanism will not produce meaningful results. The median is one such function. In many cases, the *Exponential mechanism* is an alternate approach that gives reasonable utility. Introduced in 2007 by McSherry and Talwar, the exponential mechanism posits that for a given database, users prefer some outputs over others. That those preferences may be encapsulated with a utility score, where a high utility score indicates a higher preference for that output. The exponential mechanism releases outputs with probability proportional (in the exponent) to the utility score and the sensitivity of the utility function.

Definition 1. Let \mathcal{X} be a space of databases and let [m,M] be an arbitrary range. Let $u: \mathcal{X} \times [m,M] \to \mathbb{R}$ be a utility function, which maps pairs of databases and outputs to a utility score. Let Δu be the sensitivity of u with respect to the database argument. The exponential mechanism outputs $r \in [m,M]$ with probability proportional to $\exp\left(\frac{\varepsilon u(x,r)}{2\Delta u}\right)$ $[MT07, DR^+14]$.

Theorem 1. The exponential mechanism preserves $(\varepsilon, 0)$ -differential privacy [MT07, DR⁺14].

Note that the exponential mechanism may not be tractable in many cases, as it assumes the existence of a utility function, and even if one exists it may not be efficiently computable.

¹This is not the *only* advantage of the exponential mechanism. It is a way to compute differentially private queries on non-numeric data, unlike the Laplace mechanism it does not assume that the probability of outputting a response ought to be symmetric about the true response, etc.

²The original definition is from [MT07], but here we state the version rewritten in [DR⁺14] as it is slightly clearer.

³As written in [MT07], the mechanism actually preserves $(2\varepsilon\Delta u, 0)$ -differential privacy; the main difference in the [DR⁺14] version is that it has the extra factor of $2\Delta u$ to avoid these extra terms.

2 AN EXPONENTIAL MECHANISM FOR QUANTILES

2.1 Defining a sensible utility function

First, consider the case where the desired quantile is the median. Note that a user will prefer an output that is closer to the true median over one that is further away. Let x be an (ordered) data set, and let r be a possible median output by our mechanism. Note that if r is exactly the median, there should be the same number of points in x to the left and to the right of r. As r decreases or increases, then the distance between the number of points to the right of r and to the left of r will increase. So, the distance between the number of points to the left and the number of points to the right of r encapsulates how close the output is to the true median.

Slightly more formally, let #(x < r) denote the number of points to the left of r in database x and let #(x < r) denote the number of points to the right of r in database x. Define the utility function u as

$$u(x,r) \mid \#(x < R) - \#(x > R) \mid.$$
 (2.1)

To generalize this to an arbitrary quantile, let N be the size of x and let $\alpha \in (0,1)$ indicate the desired quantile. Then, we can modify our initial utility function as follows:

$$u(x,r) = \max(\alpha, (1-\alpha))N - |(1-\alpha)\#(x < r) - \alpha\#(x > r)|. \tag{2.2}$$

Say for example that $\alpha = 0.25$. Then, if r is exactly at the first quantile, #(x < r) will be the count of one fourth of the data and #(x > r) will be three fourths of the data;

2.2 Sensitivity of the utility function

2.2.1 Neighboring Definition: Change One

Theorem 2. Let u be defined as in Eq. 2.2. The ℓ_1 -sensitivity of u in the change-one model is bounded above by 1.

Proof. Say X and X' are neighboring databases which differ at some data point. Let Δu denote the ℓ_1 -sensitivity of $u(\cdot,\cdot)$ with respect to the space of databases.

Let $C_1 = \#(Z < x), C_2 = \#(Z > x)$. Worst case, C_1 increases by 1 and C_2 decreases by 1. Then

$$\Delta u = ||(1 - \alpha)(C_1 + 1) - \alpha(C_2 - 1)| - |(1 - \alpha)C_1 - \alpha C_2||$$

$$\leq |(1 - \alpha)(C_1 + 1) - \alpha(C_2 - 1) - (1 - \alpha)C_1 + \alpha C_2|$$

$$\leq |C_1 + 1 - \alpha C_1 - \alpha - \alpha C_2 + \alpha - C_1 + \alpha C_2 + \alpha C_2|$$

$$= 1$$

If instead C_2 increases by 1 and C_1 decreases by 1, the result is identical (negative sign falls out).

2.2.2 Neighboring Definition: Add/Drop One

Theorem 3. Let u be defined as in Eq. 2.2. The ℓ_1 -sensitivity of u in the add/drop one model is bounded above by $\max(\alpha, 1 - \alpha)$..

Proof. If we add 1, there are two worse-cases: C_2 increases by 1, nothing happens to C_2 .

$$\Delta u = |(1 - \alpha)(C_1 + 1) - \alpha(C_2)| - |(1 - \alpha)C_1 - \alpha C_2|$$

$$\leq |(1 - \alpha)(C_1 + 1) - \alpha(C_2) - (1 - \alpha)C_1 + \alpha C_2|$$

$$= |C_1 + 1 - \alpha C_1 - \alpha - \alpha C_2 - C_1 + \alpha C_1 + \alpha C_2|$$

$$= 1 - \alpha$$

b. nothing happens to C_1, C_2 increases by 1

$$\Delta u = |(1 - \alpha)(C_1) - \alpha(C_2 + 1)| - |(1 - \alpha)C_1 - \alpha C_2|$$

$$\leq |C_1 - \alpha C_1 - \alpha C_2 - \alpha - C_1 + \alpha C_1 + \alpha C_2|$$

$$= \alpha$$

Subtracting a point gives you same thing but with some negative signs inside the absolute values that come out in the wash. \Box

2.3 The Normalization Factor

REFERENCES

- [DFM⁺20] Wenxin Du, Canyon Foot, Monica Moniot, Andrew Bray, and Adam Groce. Differentially private confidence intervals. arXiv preprint arXiv:2001.02285, 2020.
- [DR⁺14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.
- [MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 94–103. IEEE, 2007.
- [Smi11] Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In *Proceedings of the forty-third annual ACM symposium on Theory of computing*, pages 813–822, 2011.