Curs Limbaje formale și compilatoare Automate finite

Universitatea *Transilvania* din Brașov Facultatea de Matematică și Informatică

2021/2022

Automate Finite

Limbajele regulate (de tip 3) pot fi reprezentate prin:

- Gramatici regulate (de tip 3)
- Automate finite (deterministe / nedeterministe)
- Expresii regulate

Gramatici de tip 3 - Recapitulare

Gramatica regulată: $G = (V_N, V_T, S, P)$ unde producțiile sunt de forma

Gramatici de tip 3 - Recapitulare

Gramatica regulată: $G = (V_N, V_T, S, P)$ unde producțiile sunt de forma

$$A, B \in V_N$$
, $a \in V_T$

Definiție Se numește automat finit determinist (AFD) o structură

$$M = (Q, \Sigma, \delta, q_0, F)$$

unde:

• Q = mulțime finită nevidă de elemente numite stări;

Definiție Se numește automat finit determinist (AFD) o structură

$$M = (Q, \Sigma, \delta, q_0, F)$$

unde:

- Q = multime finită nevidă de elemente numite stări;
- Σ = alfabet de intrare (mulțime finită nevidă);

Definiție Se numește automat finit determinist (AFD) o structură

$$M = (Q, \Sigma, \delta, q_0, F)$$

unde:

- Q = multime finită nevidă de elemente numite stări;
- Σ = alfabet de intrare (mulțime finită nevidă);
- $q_0 \in Q = \text{stare inițială};$

Definiție Se numește automat finit determinist (AFD) o structură

$$M = (Q, \Sigma, \delta, q_0, F)$$

unde:

- Q = multime finită nevidă de elemente numite stări;
- Σ = alfabet de intrare (mulțime finită nevidă);
- $q_0 \in Q = \text{stare inițială};$
- $F \subseteq Q = \text{mulțimea stărilor finale.}$

Definiție Se numește automat finit determinist (AFD) o structură

$$M = (Q, \Sigma, \delta, q_0, F)$$

unde:

- Q = multime finită nevidă de elemente numite stări;
- Σ = alfabet de intrare (mulțime finită nevidă);
- $q_0 \in Q = \text{stare inițială};$
- $F \subseteq Q = \text{mulţimea stărilor finale.}$
- $\delta =$ funcția de tranziție, prin care se atașază unei perechi $< q, a >, q \in Q, a \in \Sigma$, o stare $p \in Q$:

$$\delta: Q \times \Sigma \rightarrow Q$$

 $\delta(q, a)$ se numește **tranziție**.

Exemplu:
$$M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$
 cu $\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_1$, $\delta(q_1, a) = q_1$ și $\delta(q_1, b) = q_0$. Citim de pe bandă cuvântul $aabba$:

Exemplu:
$$M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$
 cu $\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_1$, $\delta(q_1, a) = q_1$ și $\delta(q_1, b) = q_0$. Citim de pe bandă cuvântul $aabba$:

S-a ajuns în final în starea q_0 , care NU este finală \Rightarrow cuvântul nu va fi acceptat!

Extinderea funcției de tranziție: Aplicația δ poate fi extinsă la $\widehat{\delta}: Q \times \Sigma^* \to Q$ astfel:

$$\widehat{\delta}(q, \lambda) = q$$
 $\widehat{\delta}(q, xa) = \delta(\widehat{\delta}(q, x), a), \forall x \in \Sigma^*, a \in \Sigma$

Adică: $\delta(q, x) = p \Rightarrow \dim q$, după ce s-a citit x se ajunge în p.

Automate Finite Deterministe - Reprezentare

Un AFD

Exemplu:
$$M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$
 cu $\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_1$, $\delta(q_1, a) = q_1$ și $\delta(q_1, b) = q_0$ poate fi reprezentat:

printr-o diagramă de tranziție

• prin tabelul funcției δ :

δ		Σ	
		а	b
	q_0	q_0	q_1
	q_1	q_1	q_0

Automate Finite Deterministe - Cuvânt acceptat - Limbaj acceptat

Cuvânt acceptat: $x \in \Sigma^*$ cu proprietatea că $\delta(q_0, x) = p$ și $p \in F$

Limabj acceptat:

$$T(M) = \{x \in \Sigma^* | \delta(q_0, x) \in F\}$$

Automate Finite Deterministe - Cuvânt acceptat - Limbaj acceptat

Cuvânt acceptat: $x \in \Sigma^*$ cu proprietatea că $\delta(q_0, x) = p$ și $p \in F$

Limabj acceptat:

$$T(M) = \{x \in \Sigma^* | \delta(q_0, x) \in F\}$$

 $T(M) = \{x \in \{a, b\}^* | x \text{ are număr impar de } b\}$

Automate Finite Deterministe - Blocaj - Exemplu

- $\delta(q_0,a)$ și $\delta(q_1,b)$ nu sunt definite \Rightarrow în aceste cazuri automatul se blochează.
- există două stări finale!
- T(M) = ?

Automate Finite Deterministe - Blocaj - Exemplu

- $\delta(q_0, a)$ și $\delta(q_1, b)$ nu sunt definite \Rightarrow în aceste cazuri automatul se blochează.
- există două stări finale!
- $T(M) = \{w \in \{a, b\}^* | w \text{ începe cu } ba \text{ și conține doi de } a \text{ sau doi de } b\}$

Configurație instantanee: (q, x) cu $q \in Q$ și $x \in \Sigma^*$ - configurația în care se află automatul la momentul curent.

Adică:

- Automatul se află în starea q
- Automatul mai are de citit x de pe bandă

Iterarea prin automat pe baza configurațiilor instantanee:

$$(q, ax) \rightarrow (p, x) \Leftrightarrow \delta(q, a) = p$$

$$q, p \in Q$$
, $a \in \Sigma$, $x \in \Sigma^*$

Pornim din q₀ cu cuvântul baababb:

 $(q_0, baababb)$

Pornim din q₀ cu cuvântul baababb:

$$(q_0, baababb) \rightarrow (q_1, aababb)$$

$$(q_0, baababb)
ightarrow (q_1, aababb)
ightarrow (q_2, ababb)$$

$$(q_0, baababb)
ightarrow (q_1, aababb)
ightarrow (q_2, ababb)
ightarrow (q_3, babb)$$

$$(q_0, baababb)
ightarrow (q_1, aababb)
ightarrow (q_2, ababb)
ightarrow (q_3, babb)
ightarrow (q_4, abb)$$

$$(q_0, baababb)
ightarrow (q_1, aababb)
ightarrow (q_2, ababb)
ightarrow (q_3, babb)
ightarrow (q_4, abb)
ightarrow (q_3, bb)$$

$$egin{aligned} (q_0, baababb) &
ightarrow (q_1, aababb)
ightarrow (q_2, ababb)
ightarrow (q_3, babb)
ightarrow (q_4, abb)
ightarrow (q_4, b) \end{aligned}$$

Pornim din q_0 cu cuvântul baababb:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

S-a terminat trecerea prin automat, $q_6 \in F \Rightarrow$ cuvântul este acceptat.

- Ce înseamnă faptul că starea inițială e și stare finală?
- T(M) = ?

Automate Finite Deterministe - Exercițiu

- Ce înseamnă faptul că starea inițială e și stare finală? **Răspuns**: $\lambda \in T(M)$
- $T(M) = \{w \in \{0,1\}^* | w \text{ conține număr par de } 1 \text{ și număr par de } 0\}$

Cum modificăm automaul din figură astfel încât $T(M) = \{w \in \{0,1\}^* | w \text{ conține număr par de } 1 \text{ și număr impar de } 0\}$?

 $T(M) = \{w \in \{0,1\}^* | w \text{ conține număr par de 1 și număr impar de 0}\}$

Am schimbat starea finală!

Automate Finite Deterministe - Exerciții

Dați un exemplu de automat care:

- acceptă toate cuvintele peste {0,1} care se termină cu secvența 01
- ullet acceptă toate cuvintele peste $\{a,b\}$ care conțin secvența aaa
- acceptă toate cuvintele pes te {0,1} care NU se termină în 01

Definiție Se numește automat finit nedeterminist (AFN) o structură

$$M = (Q, \Sigma, \delta, q_0, F)$$

unde:

Q = mulțime finită nevidă de elemente numite stări;

 Σ = alfabet de intrare (mulțime finită nevidă);

 $q_0 \in Q = \text{stare inițială};$

 $F \subseteq Q = \text{mulțimea stărilor finale.}$

 $\delta = \text{funcția de tranziție:}$

$$\delta: Q \times \Sigma \to \mathcal{P}(Q)$$

 $\mathcal{P}(Q)$ - mulţimea părţilor lui Q.

$$\delta(q,a) = \{p_1, p_2, \ldots, p_k\}, p_i \in Q, i = \overline{1, k}$$

Extinderea funției δ :

Funcția δ poate fi extinsă la $Q \times \Sigma^*$ astfel:

$$\begin{cases} \delta(q,\lambda) = \{q\} \\ \delta(q,xa) = \bigcup_{p \in \delta(q,x)} \delta(p,a), \forall x \in \Sigma^*, a \in \Sigma \end{cases}$$

De asemenea, se poate extinde δ la $\mathcal{P}(Q) \times \Sigma^*$ astfel:

$$\delta(\{p_1, p_2, \ldots, p_k\}, x) = \bigcup_{i=1}^k \delta(p_i, x)$$

Automate Finite Nedeterministe - Cuvânt acceptat - Limbaj acceptat

Definiție: Spunem că un cuvânt $x \in \Sigma^*$ este **acceptat** de către un AFN M, dacă $\delta(q_0, x) \cap F \neq \emptyset$, adică pornind din M și analizând cuvântul x se poate ajunge într-o stare finală.

Limbajul acceptat

$$T(M) = \{ w \in \Sigma^* | \delta(q_0, w) \bigcap F \neq \emptyset \}$$

.

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q ₂	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

Verificarea cuvântului 1010: $(q_0, 1010) \rightarrow (q_0, 010)$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0, 1010)
ightarrow \ (q_0, 010)
ightarrow \ (q_0, 10)$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q 0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q ₂	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0,1010)
ightarrow \ (q_0,010)
ightarrow \ (q_0,10)
ightarrow \ (q_0,0)$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q 0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q ₂	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0,1010)
ightarrow \hspace{0.1cm} (q_0,010)
ightarrow \hspace{0.1cm} (q_0,10)
ightarrow \hspace{0.1cm} (q_0,0)
ightarrow \hspace{0.1cm} (q_0,\lambda) \hspace{0.3cm} q_0
otin F$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

Verificarea cuvântului 1010: $(q_0,1010) \rightarrow \quad (q_0,010) \rightarrow \quad (q_0,10) \rightarrow \quad (q_0,0) \rightarrow \quad (q_0,\lambda) \quad q_0 \notin F \\ \rightarrow \quad (q_1,0) \rightarrow \quad \mathsf{blocaj}$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

Verificarea cuvântului 1010:

$$egin{array}{lll} (q_0,1010)
ightarrow & (q_0,010)
ightarrow & (q_0,0)
ightarrow & (q_0,\lambda) & q_0
otin F \
ightarrow & (q_1,0)
ightarrow & {\sf blocaj} \
ightarrow & (q_1,010)
ightarrow & {\sf blocaj} \end{array}$$

Deci cuvântul 1010 nu este acceptat de către automat.

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0,1110)
ightarrow (q_0,110)$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0,1110)
ightarrow \ (q_0,110)
ightarrow \ (q_0,10)$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0,1110)
ightarrow \ (q_0,110)
ightarrow \ (q_0,10)
ightarrow \ (q_0,0)$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

$$(q_0,1110)
ightarrow \hspace{0.1cm} (q_0,110)
ightarrow \hspace{0.1cm} (q_0,10)
ightarrow \hspace{0.1cm} (q_0,0)
ightarrow \hspace{0.1cm} (q_0,\lambda) \hspace{0.3cm} q_0
otin F$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	$\{q_2\}$	$\{q_1,q_2\}$

Verificarea cuvântului 1110: $(q_0,1110) \rightarrow \quad (q_0,110) \rightarrow \quad (q_0,10) \rightarrow \quad (q_0,0) \rightarrow \quad (q_0,\lambda) \quad q_0 \notin F \\ \rightarrow \quad (q_1,0) \rightarrow \quad \mathsf{blocaj}$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q 0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q ₃	$\{q_2\}$	$\{q_1,q_2\}$

Verificarea cuvântului 1110: $(q_0,1110) \rightarrow \quad (q_0,110) \rightarrow \quad (q_0,10) \rightarrow \quad (q_0,0) \rightarrow \quad (q_0,\lambda) \quad q_0 \notin F \\ \rightarrow \quad (q_1,0) \rightarrow \quad \mathsf{blocaj}$

 $(q_1, 10)$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q 0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q ₃	$\{q_2\}$	$\{q_1,q_2\}$

Verificarea cuvântului 1110: $(q_0,1110) \rightarrow (q_0,110) \rightarrow (q_0,10) \rightarrow (q_0,0) \rightarrow (q_0,\lambda) \quad q_0 \notin F \\ \rightarrow (q_1,0) \rightarrow \text{blocaj} \\ \rightarrow (q_1,10) \rightarrow (q_3,0)$

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_2\})$$

δ		Σ	
		0	1
	q_0	$\{q_0\}$	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3\}$
Q	q_2	$\{q_2\}$	$\{q_3\}$
	q 3	{ q ₂ }	$\{q_1,q_2\}$

Verificarea cuvântului 1110:

$$\begin{array}{c} (q_0,1110) \rightarrow & (q_0,110) \rightarrow & (q_0,10) \rightarrow & (q_0,0) \rightarrow & (q_0,\lambda) & q_0 \notin F \\ & \rightarrow & (q_1,0) \rightarrow & \mathsf{blocaj} \\ & \rightarrow & (q_1,10) \rightarrow & (q_2,\lambda) & q_2 \in F \end{array}$$

Verificarea se încheie cu succes, cuvântul este acceptat.

Simularea funcționării deterministe a unui AFN

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Pentru cuvântul 1100101

Stări curente | Cuvânt rămas de citit $\{q_0\}$ 1100101

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Ståri curente	Cuvânt rămas de citit
$\{q_0\} \ \{q_0, q_1\}$	1100101 100101

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Stări curente	Cuvânt rămas de citit
$egin{array}{l} \{q_0\} \ \{q_0,q_1\} \ \{q_0,q_1,q_3\} \end{array}$	1100101 100101 00101

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Stari curente	Cuvant ramas de citit
$\{q_0\}$	1100101
$\{q_0,q_1\}$	100101
$\{q_0, q_1, q_3\}$	00101
$\{q_0, q_2\}$	0101

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Stări curente	Cuvânt rămas de citit
$\{q_0\}$	1100101
$\{q_0,q_1\}$	100101
$\{q_0, q_1, q_3\}$	00101
$\{q_0, q_2\}$	0101
$\{q_0, q_2\}$	101

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Stări curente	Cuvânt rămas de citit
$\{q_0\}$	1100101
$\{q_0, q_1\}$	100101
$\{q_0, q_1, q_3\}$	00101
$\{q_0,q_2\}$	0101
$\{q_0,q_2\}$	101
$\{q_0, q_1, q_3\}$	01

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Pentru cuvântul 1100101

Stări curente	Cuvânt rămas de citit
$\{q_0\}$	1100101
$\{q_0,q_1\}$	100101
$\{q_0,q_1,q_3\}$	00101
$\{q_0,q_2\}$	0101
$\{q_0,q_2\}$	101
$\{q_0,q_1,q_3\}$	01
$\{q_0,q_2\}$	1
$\{q_0, q_1, q_3\}$	λ

Mulțimea rezultată $\{q_0, q_1, q_3\}$ nu conține starea finală $q_2 \Rightarrow$ cuvantul nu este acceptat.

Simularea funcționării deterministe a unui AFN:

La fiecare moment, în loc sa aplic backtracking, consider toate stările în care se poate ajunge din starea curentă cu caracterul curent.

Exemplu:

Pentru cuvântul 110010

Stări curente	Cuvânt rămas de citit
$\{q_0\}$	110010
$\{q_0,q_1\}$	10010
$\{q_0, q_1, q_3\}$	0010
$\{q_0,q_2\}$	010
$\{q_0,q_2\}$	10
$\{q_0, q_1, q_3\}$	0
$\{q_0, q_2\}$	λ

Mulțimea rezultată $\{q_0, q_2, \}$ conține starea finală $q_2 \Rightarrow$ cuvantul este acceptat.