General Parametric Splines in carEx

2019-03-31

Introduction

The parametric polynomial splines implemented in the 'carEx' package are piecewise polynomial functions on k+1 intervals formed by k knots partitioning the real line:

$$(-\infty, t_1], (t_1, t_2], ..., (t_{i-1}, t_i], ..., (t_k, \infty)$$

with degree d_i on the *i*th interval $(t_{i-1}, t_i]$, i = 1, ..., k + 1, and order of continuity c_i at the *i*th knot, i = 1, ..., k.

The order of continuity refers to the highest order for which the derivatives of the polynomial on the interval to the left and to the right of a knot, t_i , have the same limits at t_i . For all orders above c_i , derivatives, if any, are not constained to have the same limit.

Such a spline is parametrized by three vectors: a vector of knots, $t_1 < t_2 < ... < t_k$, of length k > 0, a vector of polynomial degrees, $d_1, d_2, ..., d_{k+1}$, of length k + 1, and a vector of orders of continuity or 'smoothness', $c_1, c_2, ..., c_k$, of length k.

Theory

We first describe the general principles that underly the implemention of splines in this package.

Let X_f be a $n \times q$ matrix for a model whose coefficients are subject to c linearly independent constraints given by a $c \times q$ matrix C. That is, the linear space for the model is:

$$\mathcal{M} = \{ \eta = X_f \phi : \phi \in \mathbb{R}^q, C\phi = 0 \}$$

We wish to construct a $n \times p$ design matrix X with p = q - c so that

$$\mathcal{M} = \{ \eta = X\beta : \beta \in \mathbb{R}^p \}$$

Suppose further that we want the parameters β to provide p specified linearly independent function of ϕ represented by the rows of the $p \times q$ matrix E whose rows are linearly independent of the rows of C to ensure that they are not equal to 0 on \mathcal{M} .

Consider the $q \times q$ partitioned matrix $\left[\begin{array}{c} C \\ E \end{array} \right]$. Since its rows are linearly independent, it is invertible and has a conformably partitioned inverse:

$$\left[\begin{array}{cc} F & G \end{array}\right] = \left[\begin{array}{c} C \\ E \end{array}\right]^{-1}$$

Thus FC + GE = I, CF = I, etc.

Consider the model matrix $X = X_f G$. We show that $\mathcal{M} = \{X\beta : \beta \in \mathbb{R}^p\}$ and that for any $\phi \in \mathbb{R}^q$, such that $C\phi = 0$, $\beta = E\phi$.

Suppose $C\phi = 0$. Then

$$\phi = \left[\begin{array}{cc} F & G \end{array} \right] \left[\begin{array}{c} C \\ E \end{array} \right] \phi = \left[\begin{array}{cc} F & G \end{array} \right] \left[\begin{array}{c} 0 \\ E \phi \end{array} \right] = GE\phi$$

Thus, with $\beta = E\phi$, we have

$$X_f \phi = X_f G E \phi = X \beta$$

We therefore have a 1-1 correspondence between $\beta \in \mathbb{R}^p$ and $\{\phi \in \mathbb{R}^q : C\phi = 0\}$ given by $\beta = E\phi$ and $\phi = G\beta$.

If X is of full rank, we can obtain the least-squares estimator $\hat{\beta} = (X'X)^{-1}X'Y$. We can then estimate any linear function $\psi = L\phi$ of ϕ under the constraint $C\phi = 0$ with the estimator $\hat{\psi} = A\hat{\beta}$ with

$$A = LG$$

Thus, the matrix G serves as a post-multiplier to transform X_f into a model matrix $X = X_f G$ that can be used in a linear model. The matrix G also serves as a post-multiplier to transform any general linear hypothesis matrix expressed in terms of ϕ into a general linear hypothesis matrix in terms of β .

Application to Splines

Our goal is to generate model matrices for splines in a way that produces interpretable coefficients and lends itself to easily estimating and testing properties of the spline that are linear functions of parameters: slope, curvature, discontinuities, etc.

Given k knots, $-\infty = t_0 < t_1 < \dots < t_k < t_{k+1} = \infty$, the spline in the ith interval, $(t_{i-1}, t_i]$, is a polynomial of degree d_i , a non-negative integer with the value 0 signifying a constant over the corresponding interval.

The order of smoothness c_i at t_i is either a non-negative integer or -1 to allow a discontinuity. (TODO: control direction of discontinuity)

Generating a model matrix for some piecewise polynomial functions is simple. For example, if the degrees, d_i , are non-decreasing and the order of continuity is a constant c less than $\min(d_i)$, one can add terms using 'plus' functions at each knot. For example, a quadratic spline (degree 2, continuity 1) with one knot at 1 can be generated with a model matrix with three columns, in addition to the intercept term:

$$x, x^2, (x-1)^2_+$$

where

$$(y)_{+} = \begin{cases} 0 & \text{if } y < 0 \\ y & \text{otherwise} \end{cases}$$

A spline that is quadratic on the interval $(-\infty, 1]$ and cubic on $(1, \infty)$ with continuity of order 1, $c_1 = 1$, at $t_1 = 1$, can be generated by the columns:

$$x, x^2, (x-1)^2_+, (x-1)^3_+$$

However, if one allows the degree of the polynomial or the order of smoothness to vary in different parts of the spline, the approach above works only in special cases.

Generating model matrices in more general situations, for example with degrees that are not monotone, nor monotone increasing as the index radiates from a central value, is more challenging. The approach described here works for any pattern of degrees, d_i and smoothness constraints, c_i .

We start by constructing a matrix, X_f , for a spline in which the polynomial degree in each interval is the maximal value, $\max(d_i)$. We then construct constraints for the coefficients of this model to produce the desired spline.

As an example, consider a spline, S, with knots at 3 and 7, polynomial degrees, (2,3,2), and smoothness, (1,2), meaning that S is smooth of order 1 at x=3, and smooth of order 2 at x=7. Columns of the full matrix X_f contain the intercept, linear and quadratic and cubic terms in each interval of the spline.

To create an instance of X_f we need to specify the values over which the matrix is evaluated. Evaluating X_f at x = 0, 1, ...9, we obtain the following matrix, which happens here to be block diagonal because of the ordering of the x values:

```
Xf(0:9, knots = c(3,7), degree = 3)
```

```
X0 X1 X2 X3 X0 X1 X2
                                  X3 X0 X1
                                             X2
                                                   ХЗ
           0
               0
                                           0
f(0)
                   0
                       0
                          0
                              0
                                   0
                                       0
f(1)
       1
           1
               1
                   1
                       0
                          0
                              0
                                   0
                                       0
                                           0
                                                    0
f(2)
       1
           2
               4
                   8
                       0
                          0
                              0
                                   0
                                       0
                                           0
                                                    0
f(3)
       1
           3
              9
                 27
                       0
                          0
                                   0
                                           0
                                                    0
                              0
                                       0
f(4)
       0
           0
               0
                   0
                       1
                          4 16
                          5 25
f(5)
       0
           0
               0
                   0
                       1
                                125
                                       0
f(6)
       0
               0
                   0
                       1
                          6
                             36
                                 216
f(7)
       0
           0
               0
                   0
                       1
                             49
                                343
                                       0
                                           0
                                               0
               0
                   0
                      0
f(8)
                          0
                          0
                                   0
                                       1
                                           9 81 729
f(9)
       0
           0
               0
                   0
                      0
                              0
```

The model for the unconstrained maximal polynomial is $X_f \phi : \phi \in \mathbb{R}^{12}$.

We impose three types of constraints on ϕ .

- 1. $X_f \phi$ should evaluate to 0 at x=0 so an intercept term in the model will have the correct interpretation,
- 2. the limits of the value and of the first derivative of the spline must be the same when approaching the first knot from the right or from the left, and the limits of the value, the first and second derivatives should be the same when approaching the second knot from the right or from the left, and
- 3. the degree of the polynomial in the first and third intervals must be reduced to 2.

The constraint marix, C is created by the 'Cmat' function:

```
Cmat(knots = c(3, 7), degree = c(2, 3, 2), smooth = c(1, 2))
```

```
X3 X0 X1 X2
        X0 X1 X2
                   X3 X0 X1
                               X2
f(0)
            0
                0
                                0
                                      0
                                          0
         1
                     0
                        0
                            0
                                                 0
C(3).0 -1 -3 -9
                            3
                                9
                                     27
                                          0
                                             0
                                                 0
                                                     0
                  -27
                        1
                                     27
C(3).1
         0 -1 -6
                  -27
                        0
                            1
                                6
                                          0
C(7).0
            0
         0
                0
                     0
                       -1
                          -7 -49
                                   -343
                                          1
C(7).1
         0
            0
                0
                    0
                        0
                              -14
                                   -147
                                          0
                                                   147
                          -1
                               -2
                                    -42
C(7).2
         0
            0
                0
                     0
                                          0
                                                    42
I.1.3
         0
            0
                0
                     1
                        0
                            0
                                0
                                      0
                                         0
                                             0
                                                 0
                                                     0
                                0
                                      0
                                         0
I.3.3
         0
            0
                0
                        0
                                                     1
attr(,"ranks")
  npar.full
                       C.n
                                  C.rank spline.rank
          12
                         8
                                       8
attr(,"d")
[1] 536.66701452
                    48.80391245
                                    10.85308819
                                                    3.18591258
                                                                   0.97504352
[6]
       0.81688866
                      0.35905212
                                     0.08458296
```

The row labels of the constraint matrix show the role of each row. For example, "f(0)" is the value of the spline when x = 0 which is constrained to 0 so that an intercept term in a linear model can have its usual interpretation, "C(3).0" ensures continuity at x = 3, "C(7).2" forces continuity of the second derivative at x = 7, "I.1.3" constrains the cubic term to be 0 in the first interval, etc.

Attributes give the length of the ϕ vector as 'npar.full', the number of constraints as 'C.n', the rank of the constraint matrix as 'C.rank' and the rank of the spline, omitting the intercept term, as 'spline.rank'.

The 'd' attribute contains the vector of singular values of the constraint matrix.

The following is the matrix E of estimable functions created by the 'Emat' function:

```
Emat(knots = c(3, 7), degree = c(2, 3, 2), smooth = c(1, 2))
```

XO X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3

```
D1(0)
            1
                0
                     0
                                0
                                       0
D2(0)
            0
                2
                     0
                                                 0
         0
                        0
                            0
                                0
                                   0
                                       0
                                          0
                                              0
C(3).2
         0
            0
               -2 -18
                        0
                            0
                                2 18
                                       0
                                          0
C(3).3
         0
            0
                0
                        0
                                   6
                                       0
                                          0
                    -6
                            0
                                0
                                              0
```

The row labels signify the first derivative at x = 0, 'D1(0)', the second derivative at x = 0, 'D2(0)', the saltus in the second derivative at x = 3 and the saltus in the third derivative at x = 3.

The full rank model for the spline is generated by a matrix $X = X_f G$ as described in the previous section.

The spline modelling function is a closure generated by the gspline function.

```
sp \leftarrow gspline(knots = c(3, 7), degree = c(2, 3, 2), smoothness = c(1, 2))
 sp(0:9)
```

```
D1(0) D2(0)
                       C(3).2
                                     C(3).3
f(0)
         0
             0.0 0.000000e+00
                               0.000000e+00
f(1)
             0.5 9.621933e-16 7.031412e-16
             2.0 1.813364e-15 -2.238950e-15
f(2)
f(3)
         3
             4.5 2.664535e-15 -1.243450e-14
         4
f(4)
            8.0 5.000000e-01
                              1.666667e-01
f(5)
           12.5 2.000000e+00
                               1.333333e+00
         6 18.0 4.500000e+00 4.500000e+00
f(6)
f(7)
         7
           24.5 8.000000e+00
                              1.066667e+01
f(8)
         8
           32.0 1.250000e+01 2.066667e+01
f(9)
           40.5 1.800000e+01 3.466667e+01
```

produce a matrix $X = X_f G$ that will generate the desired spline parametrized by linear estimable coefficients.

The closure created by the gspline function can be used in a linear model formulas. We illustrate its use with a small example. Note that the spline function can be used in any linear model formula. It can, for example, be modelled as interacting with other predictors.

```
df <- data.frame(x = 0:10)
set.seed(123)
df <- within(df, y <- -2* (x-5) + .1 * (x-5)^3 + rnorm(x))
df <- rbind(df, data.frame(x = seq(0,10,.1), y = NA))
df <- sortdf(df, ~ x)
plot(y~x, df, pch = 16)
fit <- lm(y ~ sp(x), data = df)
summary(fit)</pre>
```

Call:

```
lm(formula = y \sim sp(x), data = df)
```

Residuals:

```
Min 1Q Median 3Q Max
-1.1476 -0.5748 -0.1091 0.6914 1.2704
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -2.9513
                         1.0165
                                 -2.903 0.02721 *
sp(x)D1(0)
              5.2685
                         1.3117
                                  4.017 0.00699 **
sp(x)D2(0)
             -1.8747
                         0.6726
                                 -2.787 0.03169 *
sp(x)C(3).2
             -0.5129
                         1.3846
                                 -0.370 0.72381
sp(x)C(3).3
                         0.2749
                                  4.127 0.00616 **
              1.1346
```

4

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.064 on 6 degrees of freedom
  (101 observations deleted due to missingness)

Multiple R-squared: 0.9372, Adjusted R-squared: 0.8954

F-statistic: 22.4 on 4 and 6 DF, p-value: 0.0009419

lines(df$x , predict(fit, df))
```


Linear hypotheses

Linear hypotheses about a spline may be easy to formulate in terms of its 'full' parameter vector ϕ but challenging in terms of the 'working' parameters, β . For example, the derivative or curvature of the spline over a range of values is easily expressed in terms of ϕ . To do this We use the relationship between linear hypotheses in terms of ϕ with those in terms of β to generate linear hypotheses based on $\hat{\beta}$. Namely the least-squares estimator of $\psi = L\phi$ under the contraint $C\phi = 0$ is $\hat{\psi} = A\hat{\beta}$ where A = LG.

Given a spline function sp created by the gspline function:

```
sp \leftarrow gspline(knots = c(3,7), degree = c(2,3,2), smoothness = c(1,2))
 sp(0:9)
```

```
D1(0) D2(0) C(3).2 C(3).3 f(0) 0 0.0 0.000000e+00 0.0000000e+00 f(1) 1 0.5 9.621933e-16 7.031412e-16 f(2) 2 2.0 1.813364e-15 -2.238950e-15 f(3) 3 4.5 2.664535e-15 -1.243450e-14
```

```
f(4) 4 8.0 5.000000e-01 1.666667e-01
f(5) 5 12.5 2.000000e+00 1.333333e+00
f(6) 6 18.0 4.500000e+00 4.500000e+00
f(7) 7 24.5 8.000000e+00 1.066667e+01
f(8) 8 32.0 1.250000e+01 2.066667e+01
f(9) 9 40.5 1.800000e+01 3.466667e+01
```

The sp function will generate a hypothesis matrix to query values and derivatives of the spline.

```
sp(c(2, 3, 7), D = 1)
```

Denoting the matrix above by A, $A\hat{\beta}$ will estimate the first derivative of the spline at x=2 and its limit from the right at the knots x=3,7. The limit parameter to the spline function is used to select whether the value estimated is a limit from the right, from the left, or the saltus (jump) in value if discontinuous. For example, at x=3 where the spline has a discontinuous second derivatives:

```
sp(c(3, 3, 3), D = 2, limit = c(-1,0,1))
```

Using the 'wald' function it is possible to graph these estimates as a function of of x.

```
# xpred <- seq(0,10, .05)
\# A.1 \leftarrow cbind(0, sp(xpred, D = 1))
# ww.1 <- as.data.frame(wald(fit, A.1))
\# A.2 \leftarrow cbind(0, sp(xpred, D = 2))
# ww.2 <- as.data.frame(wald(fit, A.2))
# plot(xpred, ww.1$coef, type = 'l')
# plot(xpred, ww.2$coef, type = 'l')
# library(latticeExtra)
# ww.1$x <- xpred
# xyplot(coef ~ x, ww.1, type = 'l',
#
       lower = ww.1$L2, upper = ww.1$U2,
       ylab = 'first derivative',
#
#
       subscripts = TRUE) +
#
    layer(qpanel.fit(...))
# head(ww.1)
```

Periodic splines

We show how periodic splines can be used to fit periodic patterns such as seasonal patterns. We use the monthly U.S. unemployment rates from January 1995 to February 2019.

The 'crash' in November 2008 creates a discontinuity in the series which we can use to illustrate how to a discontinuity at an a priori value of time. We model the series as consisting of two components, a long-term secular component and a periodic annual component. We also illustrate how to use a parsimonious secular spline to model secular interactions with the seasonal spline.

```
unemp <- as.data.frame(spida2::Unemp) # TODO: change to 'carData::Unemp'??
head(unemp)</pre>
```



```
toyear <- function(x) {
    # number of years from January 1, 2000
    (as.numeric(x) - as.numeric(as.Date('2000-01-01')))/365.25
}
unemp <- within(
    unemp,
    {
        year <- toyear(date)
        month <- as.numeric(format(date, '%m'))
    })
summary(unemp)</pre>
```

```
date
                      unemployment
                                                            month
Min.
       :1995-01-01
                           : 5.200
                                                               : 1.000
                     Min.
                                       Min.
                                              : 1.00
                                                        Min.
1st Qu.:2001-01-08
                     1st Qu.: 6.600
                                       1st Qu.: 73.25
                                                        1st Qu.: 3.000
Median :2007-01-16
                                       Median :145.50
                                                        Median : 6.000
                     Median : 7.300
Mean :2007-01-15
                     Mean : 7.448
                                       Mean
                                              :145.50
                                                        Mean : 6.466
3rd Qu.:2013-01-24
                                                        3rd Qu.: 9.000
                     3rd Qu.: 8.100
                                       3rd Qu.:217.75
Max.
       :2019-02-01
                     Max.
                             :10.700
                                       Max.
                                              :290.00
                                                        Max.
                                                               :12.000
     year
```

```
Min. :-4.999
 1st Qu.: 1.023
Median : 7.043
Mean : 7.041
 3rd Qu.:13.066
Max.
       :19.086
quintiles <- quantile(unemp$year, 1:4/5)
sp2 <- gspline(quintiles, 2, 1) # quadratic spline
sp3 <- gspline(quintiles, 3, 2) # cubic spline</pre>
quintiles_with_crash <- sort(c(quintiles, toyear(as.Date('2008-12-15'))))
sp2d <- gspline(quintiles_with_crash, 2, c(1,1,-1,1,1))</pre>
sp3d \leftarrow gspline(quintiles_with_crash, 3, c(2,2,-1,2,2))
fit2 <- lm(unemployment ~ sp2(year), unemp)</pre>
summary(fit2)
Call:
lm(formula = unemployment ~ sp2(year), data = unemp)
Residuals:
              1Q Median
                                3Q
-1.51604 -0.49821 -0.01906 0.47250 1.90185
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     7.82474 0.09008 86.868 < 2e-16 ***
sp2(year)D1(0)
                    -0.17468
                                0.06700 -2.607 0.00961 **
sp2(year)D2(0)
                    -0.01409
                                0.02529 -0.557 0.57785
sp2(year)C(-0.184).2 -0.17031
                                0.06748 -2.524 0.01216 *
sp2(year)C(4.63).2 0.14677
                                0.04567
                                         3.214 0.00146 **
                                0.04569 -6.324 9.9e-10 ***
sp2(year)C(9.45).2 -0.28896
sp2(year)C(14.3).2
                     0.17277
                                0.06750 2.560 0.01100 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7104 on 283 degrees of freedom
Multiple R-squared: 0.6344,
                              Adjusted R-squared: 0.6266
F-statistic: 81.84 on 6 and 283 DF, p-value: < 2.2e-16
unemp$fit2 <- predict(fit2)</pre>
fit3 <- lm(unemployment ~ sp3(year), unemp)</pre>
summary(fit3)
Call:
lm(formula = unemployment ~ sp3(year), data = unemp)
Residuals:
    Min
                  Median
                                 3Q
               1Q
                                        Max
-1.65225 -0.53935 0.01539 0.51200 1.94448
```

```
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    7.728274
                               0.115711 66.789 < 2e-16 ***
sp3(year)D1(0)
                    sp3(year)D2(0)
                    0.104451 0.055240
                                         1.891
                                                 0.0597
sp3(year)D3(0)
                    -0.011672 0.019865 -0.588
                                                 0.5573
sp3(year)C(-0.184).3 -0.057021
                               0.071984 -0.792
                                                 0.4289
                                        0.078
                                                 0.9378
sp3(year)C(4.63).3
                    0.002714
                               0.034758
                               0.034765 -0.545
sp3(year)C(9.45).3 -0.018936
                                                 0.5864
sp3(year)C(14.3).3
                    0.058433
                               0.071957 0.812
                                                 0.4174
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7385 on 282 degrees of freedom
Multiple R-squared: 0.6062,
                              Adjusted R-squared: 0.5965
F-statistic: 62.02 on 7 and 282 DF, p-value: < 2.2e-16
unemp$fit3 <- predict(fit3)</pre>
fit2d <- lm(unemployment ~ sp2d(year), unemp)</pre>
summary(fit2d)
Call:
lm(formula = unemployment ~ sp2d(year), data = unemp)
Residuals:
    Min
              1Q
                 Median
                               30
                                       Max
-1.50968 -0.44994 0.05091 0.45359 1.41990
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                0.07585 102.815 < 2e-16 ***
(Intercept)
                     7.79826
sp2d(year)D1(0)
                     -0.20751
                                0.05896 -3.520 0.000504 ***
sp2d(year)D2(0)
                      0.01405
                                0.02526 0.556 0.578491
sp2d(year)C(-0.184).2 -0.12543
                                0.06087 -2.061 0.040267 *
sp2d(year)C(4.63).2 -0.07886
                                0.07068 -1.116 0.265540
                                        3.604 0.000371 ***
                                0.61367
sp2d(year)C(8.96).0
                      2.21150
                                2.67733 1.614 0.107719
sp2d(year)C(8.96).1
                     4.32041
                                5.55410 -1.676 0.094813 .
sp2d(year)C(8.96).2 -9.30985
sp2d(year)C(9.45).2
                     9.53430
                                5.57228
                                        1.711 0.088184 .
sp2d(year)C(14.3).2
                   -0.31857
                                0.07899 -4.033 7.11e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5864 on 280 degrees of freedom
Multiple R-squared: 0.7535,
                              Adjusted R-squared: 0.7455
F-statistic: 95.08 on 9 and 280 DF, p-value: < 2.2e-16
unemp$fit2d <- predict(fit2d)</pre>
fit3d <- lm(unemployment ~ sp3d(year), unemp)</pre>
summary(fit3d)
```

Call:

```
lm(formula = unemployment ~ sp3d(year), data = unemp)
Residuals:
    Min
              1Q
                  Median
                                3Q
                                        Max
-1.46661 -0.43416 0.04281 0.39201 1.46187
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       7.35489
                                  0.08890 82.736 < 2e-16 ***
sp3d(year)D1(0)
                                  0.03501 -9.079 < 2e-16 ***
                      -0.31782
sp3d(year)D2(0)
                       0.43791
                                  0.04935 8.874 < 2e-16 ***
sp3d(year)D3(0)
                      -0.19288
                                  0.02219 -8.692 3.13e-16 ***
sp3d(year)C(-0.184).3 -0.46972
                                  0.06367 -7.377 1.87e-12 ***
                                  0.07847 7.164 7.03e-12 ***
sp3d(year)C(4.63).3
                       0.56217
sp3d(year)C(8.96).0
                       1.12727
                                  0.68856
                                          1.637
                                                    0.1027
                                                    0.1228
sp3d(year)C(8.96).1
                       7.17553
                                  4.63633 1.548
sp3d(year)C(8.96).2
                     -38.30263
                                 19.38613 -1.976
                                                   0.0492 *
sp3d(year)C(8.96).3
                     75.58355
                                 39.50921
                                          1.913
                                                    0.0568 .
sp3d(year)C(9.45).3
                     -76.00194
                                 39.53243 -1.923
                                                    0.0556 .
sp3d(year)C(14.3).3
                      -0.04238
                                  0.10074 - 0.421
                                                    0.6743
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5308 on 278 degrees of freedom
Multiple R-squared: 0.7995,
                               Adjusted R-squared: 0.7916
F-statistic: 100.8 on 11 and 278 DF, p-value: < 2.2e-16
unemp$fit3d <- predict(fit3d)</pre>
pp <- xyplot(unemployment ~ date, unemp, type = 'b',
            col = 'gray',
            key = list(
              corner = c(1,1),
              text = list(lab = c('quadratic','cubic','quadratic disc.','cubic disc.')),
              lines = list(col= c('red', 'blue', 'red', 'blue'),
                           lty = c(1,1,3,3))
              )) +
 layer(panel.lines(x, unemp$fit3, col = 'blue')) +
 layer(panel.lines(x, unemp$fit2, col = 'red')) +
 layer(panel.lines(x, unemp$fit3d, col = 'blue', lty = 3)) +
 layer(panel.lines(x, unemp$fit2d, col = 'red', lty = 3))
pp
```


Periodic spline

We add a periodic spline component as a function of months using a cubic spline with period 12 and four internal knot at $12 \times (1/52/53/54/5)$.

```
per3 <- gspline(12 * 1:5/5, 3, 2, periodic = TRUE)
per3</pre>
```

Spline function created by gspline \$A

```
Х1
                                                                                Х2
                     X1
                            X2
                                     X3 X0
                                                     X2
                                                               X3 X0
                                                                        Х1
C(2.4).0
                  -2.4 -5.76 -13.824
                                            2.4
                                                   5.76
                                                           13.824
                                                                    0
                                                                       0.0
                                                                              0.00
                                         1
C(2.4).1
                   -1.0 -4.80 -17.280
                                         0
                                            1.0
                                                   4.80
                                                           17.280
                                                                    0
                                                                       0.0
                                                                              0.00
C(2.4).2
                    0.0 -2.00 -14.400
                                         0
                                            0.0
                                                   2.00
                                                           14.400
                                                                    0
                                                                       0.0
                                                                              0.00
C(4.8).0
                    0.0
                         0.00
                                           -4.8
                                                 -23.04
                                                                       4.8
                                                                             23.04
                                 0.000
                                        -1
                                                          110.592
C(4.8).1
                    0.0
                                                                       1.0
                                                                              9.60
                         0.00
                                 0.000
                                         0 -1.0
                                                  -9.60
                                                          -69.120
                                                                    0
C(4.8).2
                0
                    0.0
                         0.00
                                 0.000
                                         0
                                            0.0
                                                  -2.00
                                                          -28.800
                                                                    0
                                                                       0.0
                                                                              2.00
                                                                           -51.84
C(7.2).0
                    0.0
                         0.00
                                 0.000
                                            0.0
                                                   0.00
                                                            0.000 -1 -7.2
C(7.2).1
                0
                    0.0
                         0.00
                                 0.000
                                         0
                                            0.0
                                                   0.00
                                                            0.000
                                                                    0
                                                                            -14.40
                                                                      -1.0
C(7.2).2
                0
                    0.0
                         0.00
                                 0.000
                                            0.0
                                                   0.00
                                                            0.000
                                                                       0.0
                                                                             -2.00
                                         0
                                                                    0
C(9.6).0
                    0.0
                         0.00
                                 0.000
                                         0
                                            0.0
                                                   0.00
                                                            0.000
                                                                    0
                                                                       0.0
                                                                              0.00
C(9.6).1
                    0.0
                         0.00
                                 0.000
                                            0.0
                                                   0.00
                                                            0.000
                                                                       0.0
                                                                              0.00
C(9.6).2
                0
                    0.0
                         0.00
                                 0.000
                                         0
                                            0.0
                                                   0.00
                                                                    0
                                                                       0.0
                                                                              0.00
                                                            0.000
                                                                              0.00
C(0 \mod 12).0
                1
                    0.0
                         0.00
                                 0.000
                                         0
                                            0.0
                                                   0.00
                                                            0.000
                                                                    0
                                                                       0.0
                                            0.0
C(0 mod 12).1
                0
                    1.0
                         0.00
                                 0.000
                                         0
                                                   0.00
                                                            0.000
                                                                    0
                                                                       0.0
                                                                              0.00
```

C(0 mod 12).2	0	0.0	2.0	0 0	.000	0	0.0	0	.00	0.	.000	0	0.0	0.00
f(12 mod 12)	0	0.0	0.0	0 0	.000	0	0.0	0	.00	0.	.000	0	0.0	0.00
D1(12 mod 12)	0	0.0	0.0	0 0	.000	0	0.0	0	.00	0.	.000	0	0.0	0.00
D2(12 mod 12)	0	0.0	0.0	0 0	.000	0	0.0	0	.00	0.	.000	0	0.0	0.00
D3(12 mod 12)	0	0.0	0.0	0 0	.000	0	0.0	0	.00	0.	.000	0	0.0	0.00
C(2.4).3	0	0.0	0.0	00 -6	.000	0	0.0	0	.00	6.	.000	0	0.0	0.00
		ХЗ	ΧO	X1		X2		ХЗ 2	ΧO	X1		Х2		ХЗ
C(2.4).0		0.000	0	0.0	0.0	00	0.	000	0	0.0	(0.00		0.000
C(2.4).1		0.000	0	0.0	0.0	00	0.	000	0	0.0	(0.00		0.000
C(2.4).2		0.000	0	0.0	0.0	00	0.	000	0	0.0	(0.00		0.000
C(4.8).0	11	10.592	0	0.0	0.0	00	0.	000	0	0.0	(0.00		0.000
C(4.8).1		59.120	0	0.0	0.0		0.	000	0	0.0		0.00		0.000
C(4.8).2		28.800	0	0.0	0.0		0.	000	0	0.0		0.00		0.000
C(7.2).0		73.248	1	7.2	51.8		373.		0	0.0		0.00		0.000
C(7.2).1		55.520	0	1.0	14.		155.		0	0.0		0.00		0.000
C(7.2).2		13.200	0	0.0	2.		43.		0	0.0		0.00		0.000
C(9.6).0		0.000	-1				-884.		1	9.6		2.16		34.736
C(9.6).1		0.000		-1.0					0	1.0		9.20		76.480
C(9.6).2		0.000	0	0.0	-2.		-57.		0	0.0		2.00		57.600
C(0 mod 12).0		0.000	0	0.0	0.0									28.000
C(0 mod 12).1		0.000	0	0.0	0.0			000	0	-1.0		1.00		32.000
C(0 mod 12).2		0.000	0	0.0	0.0			000	0	0.0		2.00		72.000
f(12 mod 12)		0.000	0	0.0	0.0			000	1	12.0		1.00		28.000
D1(12 mod 12)		0.000	0	0.0	0.0			000	0	1.0		1.00		32.000
D2(12 mod 12)		0.000	0	0.0	0.0			000	0	0.0		2.00		72.000
D3(12 mod 12)		0.000	0	0.0	0.0			000	0	0.0		0.00		6.000
C(2.4).3		0.000	0	0.0	0.0			000	0	0.0		0.00		0.000
0(2.1).0		0.000	•	0.0	•	00	٠.	000	•	0.0	•			0.000
\$Cm2+														
\$Cmat	V۸	V 1	,	7 0	νo	V۸	V 1		٧o		٧ɔ	VΩ	V 1	VΩ
	X0 _1	X1		(2 76 –12		X0	X1		X2	12	X3		X1	X2
C(2.4).0	-1	-2.4	-5.7	76 -13	.824	1	2.4	5	.76		824	0	0.0	0.00
C(2.4).0 C(2.4).1	-1 0	-2.4 -1.0	-5.7 -4.8	76 -13 80 -17	.824 .280	1 0	2.4 1.0	5 4	.76 .80	17.	. 824 . 280	0	0.0	0.00
C(2.4).0 C(2.4).1 C(2.4).2	-1 0 0	-2.4 -1.0 0.0	-5.7 -4.8 -2.0	76 -13 30 -17 00 -14	.824 .280 .400	1 0 0	2.4 1.0 0.0	5 4 2	.76 .80 .00	17 . 14 .	.824 .280 .400	0 0 0	0.0 0.0 0.0	0.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0	-1 0 0 0	-2.4 -1.0 0.0 0.0	-5.7 -4.8 -2.0	76 -13 80 -17 00 -14 00 0	.824 .280 .400	1 0 0 -1	2.4 1.0 0.0 -4.8	5 4 2 -23	.76 .80 .00	17 . 14 . -110 .	.824 .280 .400 .592	0 0 0 1	0.0 0.0 0.0 4.8	0.00 0.00 0.00 23.04
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1	-1 0 0 0	-2.4 -1.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0	76 -13 30 -17 00 -14 00 0	.824 .280 .400 .000	1 0 0 -1 0	2.4 1.0 0.0 -4.8 -1.0	5 4 2 -23 -9	.76 .80 .00 .04	17 . 14 . -110 . -69 .	. 824 . 280 . 400 . 592 . 120	0 0 0 1 0	0.0 0.0 0.0 4.8 1.0	0.00 0.00 0.00 23.04 9.60
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2	-1 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0	.824 .280 .400 .000 .000	1 0 0 -1 0	2.4 1.0 0.0 -4.8 -1.0 0.0	5 4 2 -23 -9 -2	.76 .80 .00 .04 .60	17. 14. -110. -69. -28.	. 824 . 280 . 400 . 592 . 120 . 800	0 0 0 1 0	0.0 0.0 0.0 4.8 1.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0	-1 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0	.824 .280 .400 .000 .000	1 0 0 -1 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0	5 4 2 -23 -9 -2 0	.76 .80 .00 .04 .60 .00	17. 14. -110. -69. -28.	.824 .280 .400 .592 .120 .800	0 0 0 1 0 0 -1	0.0 0.0 0.0 4.8 1.0 0.0 -7.2	0.00 0.00 0.00 23.04 9.60 2.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1	-1 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0	.824 .280 .400 .000 .000 .000	1 0 0 -1 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0	5 4 2 -23 -9 -2 0	.76 .80 .00 .04 .60 .00	17. 14. -110. -69. -28. 0.	.824 .280 .400 .592 .120 .800 .000	0 0 0 1 0 0 -1 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2	-1 0 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0	.824 .280 .400 .000 .000 .000 .000	1 0 0 -1 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0	5 4 2 -23 -9 -2 0 0	.76 .80 .00 .04 .60 .00	17. 14. -110. -69. -28. 0. 0.	.824 .280 .400 .592 .120 .800 .000	0 0 1 0 0 -1 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0	-1 0 0 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0	.824 .280 .400 .000 .000 .000 .000	1 0 0 -1 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0	.76 .80 .00 .04 .60 .00 .00	17. 14. -110. -69. -28. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000	0 0 1 0 0 -1 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1	-1 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0	.824 .280 .400 .000 .000 .000 .000 .000	1 0 0 -1 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0	.76 .80 .00 .04 .60 .00 .00	17. 14. -110. -69. -28. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000	0 0 0 1 0 0 -1 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2	-1 0 0 0 0 0 0 0 0	-2.4 · 1.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0	.824 .280 .400 .000 .000 .000 .000 .000 .000	1 0 0 -1 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00	17. 14. -110. -69. -28. 0. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000 .000	0 0 0 1 0 0 -1 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0	-1 0 0 0 0 0 0 0 0 0 0 0	-2.4 · 1.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0	.824 .280 .400 .000 .000 .000 .000 .000 .000	1 0 0 -1 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00	17. 14. -110. -69. -28. 0. 0. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000 .000 .000	0 0 0 1 0 0 -1 0 0 0 0	0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1	-1 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 30 -17 30 -14 30 0 0 30 0 0	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 -1 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00	17. 14. -110. -69. -28. 0. 0. 0. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000 .000 .000 .000	0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1 C(0 mod 12).2	-1 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 30 -17 30 -14 30 0 0 30 0 0	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00	17. 14. -110. -69. -28. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000 .000 .000 .000 .000	0 0 1 0 0 0 -1 0 0 0 0 0 0 0	0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1	-1 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.824 .280 .400 .592 .120 .800 .000 .000 .000 .000 .000	0 0 1 0 0 -1 0 0 0 0 0 0 0 0	0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12)	-1 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 70 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. X1	824 280 400 592 120 800 000 000 000 000 000 000 000 000	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12)	-1 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. X1 0.0	824 280 592 120 800 000 000 000 000 000 000 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12) C(2.4).0 C(2.4).1	-1 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. X11 0.0 0.0	824 280 592 120 800 000 000 000 000 000 000 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12) C(2.4).0 C(2.4).1 C(2.4).2	-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. 0. 0. X11 0.0 0.0	824 280 400 592 120 800 000 000 000 000 000 000 000 000 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).0 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12) C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0	-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	824 280 400 592 120 800 000 000 000 000 000 000 000 000	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12) C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1	-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. 0. 0. X11 0.0 0.0	824 280 400 592 120 800 000 000 000 000 000 000 000 000 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12) C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2	-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	824 280 400 592 120 800 000 000 000 000 000 000 000 000 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1 C(4.8).2 C(7.2).0 C(7.2).1 C(7.2).2 C(9.6).0 C(9.6).1 C(9.6).2 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).1 C(0 mod 12).2 f(12 mod 12) C(2.4).0 C(2.4).1 C(2.4).2 C(4.8).0 C(4.8).1	-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.4 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-5.7 -4.8 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76 -13 80 -17 90 -14 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90	.824 .280 .400 .000 .000 .000 .000 .000 .000 .0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 1.0 0.0 -4.8 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 4 2 -23 -9 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.76 .80 .00 .04 .60 .00 .00 .00 .00 .00 .00 .00 .00 .00	17. 141106928. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	824 280 400 592 120 800 000 000 000 000 000 000 000 000 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 4.8 1.0 0.0 -7.2 -1.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 23.04 9.60 2.00 -51.84 -14.40 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

C(7.2).1	-15	55.520	0	1.0	14.4	40	155.	520	0	0.0	C	0.00		0.000
C(7.2).2		13.200	0	0.0	2.0			200	0	0.0		0.00		0.000
C(9.6).0		0.000		-9.6					1	9.6		2.16	88	34.736
C(9.6).1		0.000		-1.0					0	1.0		20		6.480
C(9.6).2		0.000	0	0.0	-2.0		-57.		0	0.0		2.00		57.600
C(0 mod 12).0		0.000	0	0.0	0.0			000		-12.0	-144			28.000
C(0 mod 12).1		0.000	0	0.0	0.0			000	0	-1.0		1.00		32.000
C(0 mod 12).1 C(0 mod 12).2		0.000	0	0.0	0.0			000	0	0.0		2.00		2.000
f(12 mod 12).2			0											
I(12 mod 12)		0.000	U	0.0	0.0	00	0.	000	1	12.0	144	.00	1/2	28.000
<pre>\$constraint_mat</pre>														
	ΧO	X1	Х	2	ХЗ	XΟ	X1		Х2		ХЗ	ΧO	X1	X2
C(2.4).0	-1	-2.4	-5.7	6 -13	8.824	1	2.4		5.76	13	. 824	0	0.0	0.00
C(2.4).1	0	-1.0	-4.8	0 -17	.280	0	1.0	. 4	1.80	17	. 280	0	0.0	0.00
C(2.4).2	0	0.0	-2.0	0 -14	.400	0	0.0	1	2.00	14	.400	0	0.0	0.00
C(4.8).0	0	0.0	0.0			-1	-4.8			-110		1	4.8	23.04
C(4.8).1	0	0.0	0.0		0.000		-1.0		9.60		. 120	0	1.0	9.60
C(4.8).2	0	0.0	0.0		.000	0			2.00		.800	0	0.0	2.00
C(7.2).0	0	0.0	0.0		.000	0			0.00					-51.84
C(7.2).1	0	0.0	0.0		.000	0			0.00		.000			-14.40
C(7.2).2	0	0.0	0.0		.000	0			0.00		.000	0	0.0	-2.00
C(9.6).0	0	0.0	0.0		.000	0			0.00		.000	0	0.0	0.00
C(9.6).1	0	0.0	0.0		.000	0			0.00		.000	0	0.0	0.00
C(9.6).2	0	0.0	0.0		0.000	0			0.00		.000	0	0.0	0.00
C(0 mod 12).0	1	0.0	0.0		0.000	0			0.00		.000	0	0.0	0.00
C(0 mod 12).1	0	1.0	0.0		0.000	0			0.00		.000	0	0.0	0.00
C(0 mod 12).1	0	0.0	2.0		0.000	0			0.00		.000	0	0.0	0.00
f(12 mod 12)	0	0.0	0.0		0.000	0			0.00		.000	0	0.0	0.00
1(12 mod 12)	O		ХО	X1		X2	0.0		X0	X1	.000	X2	0.0	ХЗ
C(2.4).0		0.000	0	0.0	0.0		0	000	0	0.0	C	0.00		0.000
C(2.4).1		0.000	0	0.0	0.0			000	0	0.0		0.00		0.000
C(2.4).1 $C(2.4).2$		0.000	0	0.0	0.0			000	0	0.0		0.00		0.000
C(2.4).2 $C(4.8).0$	1 1	10.592	0	0.0	0.0			000	0	0.0		0.00		0.000
C(4.8).1		39.120	0	0.0	0.0			000	0	0.0		0.00		0.000
C(4.8).1			0	0.0	0.0				0	0.0		0.00		0.000
C(4.8).2 $C(7.2).0$		28.800	1	7.2	51.8		373.	000	0	0.0				
C(7.2).0 C(7.2).1		73.248	0						0			00.0		0.000
		55.520		1.0	14.4		155.			0.0		00.0		0.000
C(7.2).2	-4	13.200	0	0.0	2.0			200	0	0.0		0.00	00	0.000
C(9.6).0		0.000							1	9.6		2.16		34.736
C(9.6).1		0.000		-1.0					0	1.0		20		76.480
C(9.6).2		0.000	0	0.0	-2.0		-57.		0	0.0		2.00		7.600
C(0 mod 12).0		0.000	0	0.0	0.0			000						28.000
C(0 mod 12).1		0.000	0	0.0	0.0			000	0	-1.0		.00		32.000
C(0 mod 12).2		0.000	0	0.0	0.0			000	0	0.0		2.00		2.000
f(12 mod 12)		0.000	0	0.0	0.0	UÜ	0.	000	1	12.0	144	.00	172	28.000

\$constraints
NULL

\$debug

[1] FALSE

\$degree

[1] 3 3 3 3 3 3

```
$Dmat_smoothness_indices
```

[1] 1 5 6 7 9 10 11 13 14 15 17 18 19 21 22 23

\$Emat

XO X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 D1(12 mod 12) D2(12 mod 12) 0 2 D3(12 mod 12) C(2.4).30 -6 Λ

\$estimate_mat

X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 D1(12 mod 12) 1 24 432 D2(12 mod 12) 0 2 D3(12 mod 12) C(2.4).30 -6 0 0 6 0 0 0 0

\$estimates

NULL

\$G

D1(12 mod 12) D2(12 mod 12) D3(12 mod 12) C(2.4).3X0 0.000000e+00 0.000000e+00 0.000000e+00 3.944305e-31 X1 1.000000e+00 -7.956598e-15 1.063224e-13 1.350771e-15 X2 -4.625929e-17 5.000000e-01 7.123931e-15 -2.312965e-17 X3 -3.616898e-02 -4.340278e-02 -4.166667e-02 -4.166667e-02 X0 3.552714e-15 -4.263256e-16 9.521273e-15 -2.304000e+00 X1 1.000000e+00 -1.101341e-14 1.315392e-13 2.880000e+00 X2 -1.261617e-15 5.000000e-01 -1.887379e-14 -1.200000e+00 X3 -3.616898e-02 -4.340278e-02 -4.166667e-02 1.250000e-01 X0 -2.400000e+01 9.600000e+00 -4.608000e+01 2.534400e+01 X1 1.600000e+01 -6.000000e+00 2.880000e+01 -1.440000e+01 X2 -3.125000e+00 1.750000e+00 -6.000000e+00 2.400000e+00 X3 1.808449e-01 -1.302083e-01 3.750000e-01 -1.250000e-01 X0 8.400000e+01 -1.200000e+02 2.649600e+02 -3.686400e+01 X1 -2.900000e+01 4.800000e+01 -1.008000e+02 1.152000e+01 X2 3.125000e+00 -5.750000e+00 1.200000e+01 -1.200000e+00 X3 -1.085069e-01 2.170139e-01 -4.583333e-01 4.166667e-02 X0 -1.200000e+01 7.200000e+01 -2.880000e+02 0.000000e+00 X1 1.000000e+00 -1.200000e+01 7.200000e+01 0.000000e+00 X2 0.000000e+00 5.000000e-01 -6.000000e+00 0.000000e+00 X3 0.000000e+00 0.000000e+00 1.666667e-01 0.000000e+00

\$intercept

[1] 0

\$knots

[1] 2.4 4.8 7.2 9.6 12.0

\$max_degree

[1] 3

\$periodic

```
[1] TRUE
$smoothness
$smoothness[[1]]
[1] 0 1 2
$smoothness[[2]]
[1] 0 1 2
$smoothness[[3]]
[1] 0 1 2
$smoothness[[4]]
[1] 0 1 2
$smoothness[[5]]
[1] 0 1 2
$tolerance
[1] 1e-16
per3(1:12)
             D1(12 mod 12) D2(12 mod 12) D3(12 mod 12)
                                                           C(2.4).3
f(1 mod 12)
                 0.9638310
                               0.4565972
                                            -0.04166667 -0.04166667
f(2 mod 12)
                 1.7106481
                               1.6527778
                                            -0.33333333 -0.33333333
f(3 mod 12)
                 2.0234375
                               3.3281250
                                            -1.12500000 -1.08900000
f(4 mod 12)
                               5.222222
                                            -2.66666667 -1.98400000
                 1.6851852
                                            -5.20500000 -2.28100000
f(5 mod 12)
                 0.4806134
                               7.0739583
                -1.4375000
f(6 mod 12)
                               8.4750000
                                            -8.28000000 -1.65600000
f(7 mod 12)
                -3.0951968
                               8.6885417
                                            -9.85500000 -0.73100000
f(8 mod 12)
                -3.555556
                               7.1111111
                                            -8.10666667 -0.17066667
f(9 mod 12)
                -2.9765625
                               4.4531250
                                            -4.36500000 -0.00900000
f(10 mod 12)
                -2.000000
                               2.0000000
                                            -1.33333333 0.00000000
f(11 mod 12)
                -1.0000000
                               0.5000000
                                            -0.16666667 0.00000000
f(12 mod 12)
                 0.0000000
                               0.0000000
                                            0.0000000 0.0000000
per3(1:12, D= 0)
per3(1:12, D= 1)
sp3d(1:2)
     D1(0) D2(0)
                     D3(0) C(-0.184).3
                                          C(4.63).3
                                                        C(8.96).0
f(1)
             0.5 0.1666667
                                     0 2.357343e-15 2.115524e-17
f(2)
             2.0 1.3333333
                                     0 7.882137e-15 6.841940e-17
        C(8.96).1
                      C(8.96).2
                                   C(8.96).3
                                                  C(9.45).3
                                                                C(14.3).3
f(1) 1.221684e-16 -1.310206e-15 8.786959e-15 -1.117368e-15 -1.069473e-16
f(2) 6.185522e-16 -5.830978e-15 3.261454e-14 -6.036308e-15 -8.555785e-16
sp3d(1:2, D = 1)
fitper3 <- lm(unemployment ~ sp3d(year) + per3(month), unemp)</pre>
summary(fitper3)
```

```
Call:
lm(formula = unemployment ~ sp3d(year) + per3(month), data = unemp)
Residuals:
                   Median
                                3Q
    Min
              1Q
                                        Max
-1.01225 -0.23279 -0.00892 0.20521 1.18149
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           7.09603
                                      0.07537 94.143 < 2e-16 ***
sp3d(year)D1(0)
                                      0.02339 -14.091 < 2e-16 ***
                          -0.32959
sp3d(year)D2(0)
                           0.46948
                                      0.03300 14.225 < 2e-16 ***
sp3d(year)D3(0)
                          -0.20769
                                      0.01484 -13.994 < 2e-16 ***
sp3d(year)C(-0.184).3
                          -0.52094
                                      0.04262 -12.223 < 2e-16 ***
                                      0.05253 11.942 < 2e-16 ***
sp3d(year)C(4.63).3
                           0.62740
sp3d(year)C(8.96).0
                                      0.46534
                                               0.246 0.805973
                           0.11441
sp3d(year)C(8.96).1
                          11.37552
                                      3.12632
                                               3.639 0.000327 ***
sp3d(year)C(8.96).2
                         -56.50467
                                     13.07145 -4.323 2.16e-05 ***
                         112.04499
sp3d(year)C(8.96).3
                                     26.63734
                                               4.206 3.52e-05 ***
                                     26.65288 -4.221 3.31e-05 ***
sp3d(year)C(9.45).3
                        -112.50572
sp3d(year)C(14.3).3
                          -0.05644
                                     0.06728 -0.839 0.402317
per3(month)D1(12 mod 12)
                                      0.02659 17.290 < 2e-16 ***
                           0.45981
per3(month)D2(12 mod 12)
                           0.24369
                                      0.05616
                                               4.339 2.02e-05 ***
per3(month)D3(12 mod 12)
                                      0.04414 -0.818 0.414265
                          -0.03609
                                      0.08373 10.486 < 2e-16 ***
per3(month)C(2.4).3
                           0.87800
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3545 on 274 degrees of freedom
Multiple R-squared: 0.9119,
                               Adjusted R-squared: 0.907
F-statistic:
              189 on 15 and 274 DF, p-value: < 2.2e-16
unemp$fitper3 <- predict(fitper3)</pre>
pp <- xyplot(unemployment ~ date, unemp, type = 'b',
             col = 'gray') +
 layer(panel.lines(x, unemp$fitper3, col = 'blue'))
pp
```



```
str(sp3d(1:12))
num [1:12, 1:11] 1 2 3 4 5 ...
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:12] "f(1)" "f(2)" "f(3)" "f(4)" ...
  ..$ : chr [1:11] "D1(0)" "D2(0)" "D3(0)" "C(-0.184).3" ...
str(sp3d(1:12, D = 0))
chr [1:2] "gspline_matrix" "matrix"
str(sp3d(1:12, D = 1))
chr [1:2] "gspline_matrix" "matrix"
str(sp3d(1:12, D = 2))
 chr [1:2] "gspline_matrix" "matrix"
str(per3(1:12, D = 0))
chr [1:2] "gspline_matrix" "matrix"
str(per3(1:12, D = 1))
chr [1:2] "gspline_matrix" "matrix"
str(per3(1:12, D = 2))
chr [1:2] "gspline_matrix" "matrix"
```

knitr::knit_exit()