MATH2033 Mathematical Analysis Problem Set 5

Problem 0

Try the practice exercises #37-#48, #101-#106, #131, #136, #142, #143, #146, #150, #152. (*Note: The solution is available in canvas.)

Problem 1

Prove the following limits using the definition of limits

- (a) $\lim_{n\to\infty} \left(\sqrt{n+1} \sqrt{n}\right) = 0$
- (b) $\lim_{n\to\infty}\sqrt{x_n+y_n}=2$, where $\{x_n\}$ and $\{y_n\}$ are two sequences of positive real number with $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=2$.

Problem 2

We let $\{x_n\}$ and $\{y_n\}$ be two sequence of real number with $\lim_{n\to\infty}x_n=x$ and $\lim_{n\to\infty}y_n=y$. Suppose that xy>0, show that there exists $K\in\mathbb{N}$ such that x_n and y_n have the same sign (either both positive or both negative) when $n\geq K$.

Problem 3

- (a) Give an example of two divergent sequences $\{x_n\}$, $\{y_n\}$ such that the sequence $\{x_n+y_n\}$ converges.
- **(b)** Give an example of two divergent sequences $\{x_n\}$, $\{y_n\}$ such that the sequence $\{x_ny_n\}$ converges.

Problem 4

Show that the sequence $\{x_n\}$ defined by $x_n=n^2-n$ diverges to $+\infty$ using the definition.

Problem 5

We let $\{x_n\}$ be a sequence of positive real number which $\lim_{n\to\infty}x_n=+\infty$. Show that $\lim_{n\to\infty}\frac{1}{x_n}=0$.

Problem 6

Show that the sequence $\{x_n\}$ defined by $x_n = (-1)^n \left(2 + \frac{1}{n}\right)$ does not converge.

Problem 7

We let $x_1 > \sqrt{a}$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for $n \in \mathbb{N}$, where a > 0. Show that the sequence $\{x_n\}$ converges.

(\bigcirc Hint: Show that $\{x_n\}$ is decreasing by considering $x_{n+1}-x_n$.)

Problem 8

We let $\{x_n\}$ be a bounded sequence of real numbers. For any $n \in \mathbb{N}$, we define

$$y_n = \sup\{x_n, x_{n+1}, x_{n+2}, \dots\}.$$

Show that $\{y_n\}$ converges.

Problem 9

We let $\{x_n\}$ is a sequence of positive real numbers. For any $n \in \mathbb{N}$, we define

$$y_n = \max\{x_1, x_2, \dots, x_n\}.$$

- (a) If $\{x_n\}$ is bounded, show that $\{y_n\}$ converges.
- **(b)** If $\{x_n\}$ is unbounded, show that $\{y_n\}$ diverges to $+\infty$.

Problem 10

Show that a sequence $\{x_n\}$ defined by $x_n = (-1)^n$ is not Cauchy sequence.

Problem 11

Show that if $\{x_n\}$ and $\{y_n\}$ are both Cauchy sequence, then $\{x_n + y_n\}$ and $\{x_n y_n\}$ are both Cauchy sequence using the definition of Cauchy sequence.

Problem 12 (Harder)

We let $\{x_n\}$ be a sequence of real number with $\lim_{n \to \infty} x_n = x$. Show that

$$\lim_{n\to\infty}\frac{x_1+x_2+\cdots+x_n}{n}=x.$$

(\bigcirc Hint: Note that $\lim_{n\to\infty}x_n=x$. Then for any $\varepsilon>0$, there exists $K\in\mathbb{N}$ such that $|x_n-x|<\varepsilon$ for $n\geq K$.)

Problem 13 (Harder)

We let $\{x_n\}$ be a bounded sequence and let $s=\sup\{x_n|x\in\mathbb{N}\}$. Show that if $s\notin\{x_n|n\in\mathbb{N}\}$, then there exists a subsequence of $\{x_n\}$ which converges to s.

(\circlearrowleft Hint: You need to construct such subsequence. Using the property of supremum and the fact that $s \notin \{x_n | n \in \mathbb{N}\}$, argue that for any $\varepsilon > 0$, there exists infinitely many $x_n s$ such that $s > x_n > s - \varepsilon$. Construct the subsequence by taking $\varepsilon = \frac{1}{k}$ for $k \in \mathbb{N}$.)