Where we are

- Supervised Learning
- Rules/Trees
- Overfitting
- Ensembles
- Ex: Random Forests
- k Nearest Neighbors
- Next
 - Optimization with Gradient Descent
 - Quick Intuition for Logistic Regression
 - Quick Intuition for Support Vector Machines
 - Regularization

Learning = Three Core Components

- Representation
- Evaluation
- Optimization
 - Gradient Descent

Gradient Descent in a nutshell

- Express your learning problem in terms of a cost function that should be minimized
- Starting at initial point, step "downhill" until you reach a minimum
- Some situations offer a guarantee that the minimum is the global minimum; others don't

input variable		response variable	
	X	У	
	3.1	84.2	
	19.6	175.8	
	45.9	448.3	
	6.8	50.4	
	3.5	81.9	
	•••		

