Работа 3.1.3

Измерение магнитного поля Земли

Балдин Виктор

1 Аннотация

В работе исследуются свойства постоянных неодимовых магнитов и с их помощью находится горизонтальная и вертикальная составляющие индукции магнитного поля Земли, а так же магнитное наклонение.

2 Теоретические сведения

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент m тонкого витка площадью S с током I равен $\mathbf{m} = \frac{I\mathbf{S}}{c}$,где $\mathbf{S} = S\mathbf{n}$ - вектор площади контура, образующий с направлением тока правовинтовую систему, \mathbf{n} - единичный вектор нормали к площадке. Если размеры контура с током или магнитной стрелки малы по сравнению с расстоянием до диполя, то соответствующий магнитный диполь называют элементарным, или точечным.

Магнитное поле точечного диполя определяется по формуле, анологичной формуле для поля элементарного электрического диполя:

$$\mathbf{B} = \frac{3(\mathbf{m} \cdot \mathbf{r})}{r^5} - \frac{\mathbf{m}}{r^3}$$

Во внешнем магнитном поле с индукцией **B** на точеный магнитный диполь \mathfrak{m} действует механический момент сил $\mathbf{M} = [\mathfrak{m}, \mathbf{B}]$ При этом потенциальная энергия которой обладает диполь с постоянным \mathfrak{m} , равна $W = -(\mathfrak{m} \cdot \mathbf{B})$ Когда диполь ориентирован вдоль внешнего поля, он находится в состоянии равновесия.

В *неоднородном* внешнем поле выражение для энергии постоянного диполя сохраняется. При этом кроме момента сил на диполь действует ещё и сила

$$\mathbf{F} = -\nabla W = (\mathbf{m} \cdot \nabla)\mathbf{B}$$

Таким образом из вышесказанного следует, что *свободный* магнитный диполь в неоднородном магнитном поле ориентируется вдоль силовых линий магнитного поля и втягивается в область более сильного поля, поскольку это ведёт к уменьшению энергии диполя.

Выражения выше, позволяют рассчитать силу взаимодействия магнитов с моментами \mathfrak{m}_1 и \mathfrak{m}_2 . Когда моменты двух небольших магнитов направлены вдоль соединяющей их прямой: $\mathfrak{m}_{1,2} \| \mathbf{r}$, где \mathbf{r} - радиус-вектор между ними, они взаимодействуют с силой

$$F_{12} = \mathfrak{m}_1 \frac{\partial B_2}{\partial r} = \mathfrak{m}_1 \frac{\partial (2\mathfrak{m}_2/r^3)}{\partial r} = -\frac{6\mathfrak{m}_1\mathfrak{m}_2}{r^4} \ (.)$$

Если магнитные моменты направлены перпендикулярно соединяющей их прямой: $\mathfrak{m}_{1,2} \perp \mathbf{r}$, то нетрудно показать, что сила их взаимодействия окажется в два раза меньшей и будет иметь противоположный знак:

$$F_{12} = \frac{3\mathfrak{m}_1\mathfrak{m}_2}{r^4} \ (.\)$$

•

3 Оборудование и инструментальные погрешности

В работе используются: неодимовые магниты; тонкая нить для изготовления крутильного маятника; медная проволока; электронные весы; секундомер; измеритель магнитной индукции; штангенциркуль; брусок, линейка и штатив из немагнитных материалов; набор гирь и разновесов.

- 1.Весы 0.005 г
- 2.Секундомер 0.2 с
- 3. Штангенциркуль 0.01 см
- 4.Измеритель магнитной индукции 5% ед. СГС

3.1 Экспериментальная установка

В работе используются неодимовые магниты шарообразной формы. Важно, чтобы вещество из которого они изготовлены, было магнитожеёстким материалом и чтобы шары были намагничены однородно.

Магнитное поле однородного намагниченного шара радиусом R может быть вычислено точно. На расстояниях $r \geq R$ от центра шара оно совпадает с полем *точечного* магнитного диполя, расположенного в центре, магнитный момент $\mathfrak m$ которого совпадает с полным моментом шара. Внутри шара магнитное поле однородно. Нетрудно получить, что при r < R

$$\mathbf{B}_0 = \frac{2\mathfrak{m}}{R^3}$$

В качестве ещё одной характеристики материала магнита используют остаточную на-магниченность \mathbf{M} . По определению, намагниченность равна объёмной плотности магнитного момента, поэтому для однородного намагниченного шара $\mathbf{m} = \mathbf{M}V$, где $V = \frac{4\pi}{3}R^3$ - объём магнита. Величину $B_r = 4\pi\mathbf{M}$ называют остаточной индукцией материала.

Из сказанного выше нетрудно видеть, что индукция \mathbf{B}_p на полсюсах однородно намагниченного шара направлена по нормали к поверхности и совпадает поэтому с индукцией внутри шара $\mathbf{B}_p = \mathbf{B}_0$. Величина B_p связана с остаточной индукцией B_r соотношением

$$B_p = B_o = \frac{2}{3}B_r$$

4 Результаты измерений и обработка данных

4.1 Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

Диаметр шариков измеряется с помощью штангенциркуля: $d=0,585\pm0,005$ см. Масса шариков измеряется на весах, но для того, чтобы магнитное поле шариков не влияло на показания весов, сделаем толстую подложку из легкого материала – бумаги. $m=0,85\pm0,1$ г.

Магнитометр показал значение $B_{p_1}=380\pm 5(.)$ на одном из полюсов, и значение $B_{p_2}=330\pm 5(.)$ на другом полюсе.

Проложим между двумя магнитными шариками брусок из немагнитного материала как на рисунке сверху и, подкладывая между бруском и верхним магнитиком листы бумаги, определим, на каком максимальном расстоянии r_{max} шарики удерживают друг друга в поле тяжести Земли.

$$r_{max} = 2.18 \pm 0.05$$

Величина магнитного момента магнитика **m**:

$$\mathfrak{m} = \sqrt{\frac{mgr_{max}^4}{6}}$$

$$\mathfrak{m} = 71.3 \pm 3.4 \; (. \;)$$

Составим цепочку из 25 шариков, с помощью неодимовых магнитов в форме параллелепипедов, подсоединим цепочку к гире и разновесам так, чтобы общая масса системы составила приблизительно 500. Далее подберём минимальный вес системы цепочки с гирей, при котором она отрывается от верхнего шарика. Взвесим оторвавшуюся цепочку с гирей.

$$m_{min} = 466.95 \pm 0.05$$

Рассчитаем силу сцепления двух шаров и по ней определим магнитный момент шарика \mathfrak{m} .

$$F_0 = \frac{6\mathfrak{m}^2}{d^4}$$

$$F = m_{min}g = F_0(1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots) \approx 1.08F_0$$

$$\mathfrak{m} = \sqrt{\frac{d^4 m_{min}g}{6 \cdot 1.08}}$$

$$\mathfrak{m} = 88.5 \pm 1.8 \; (. \;).$$

Полученные значения магнитных моментов отличаются. Это может быть связано с большой погрешностью методики эксперимента, а так же неточным взаимным расположением магнитных моментов из-за силы трения.

Величину намагниченности материала шариков рассчитаем по формуле $M=\frac{\mathfrak{m}}{\frac{\pi}{6}d^3},$ остаточную индукцию магнитного поля $B_r=\frac{3}{2}B_0.$

$$M = 875.1 (.), B_r = 11000 \pm 550 (.)$$

Табличное значение B_r для соединения $Nd_2Fe_{14}B$: $B_r=12200$ (.),. Мы получили

достаточно близкую величину к табличной. Из-за примесей и погрешности отличия допустимы.

Теоретическое значение индукции B_p у полюсов шарика с помощью формулы должно равняться: $B_p = 7300$ (.), однако прибор показал значение на порядок меньше, что, вероятно связано с резким убыванием магнитного поля вблизи полюсов.

4.2 Горизонтальная составляющая магнитного поля Земли

Оценим влияние упругости нити на период колебаний, возбудив крутильные колебания свёрнутой в кольцо "стрелки" (магнитный момент такого кольцеобразного маятника равен 0).

Соберём крутильный маятник в виде кольца из 12 магнитных шариков и подвесим его на немагнитном штативе. Используя Λ - образный подвес, установим "магнитную стрелку"в горизонтальное положение, далее свернем её в кольцо и измерим коэффициент упругости нити

N	t, c
1	6.67
2	13.34
3	21.94
4	29.56
5	37.53
6	45.59
7	53.37
8	61.11
9	69.46
10	77.32

Зависимость времени колебаний от числа колебаний кольца из магнитов.

Из эксперимента получаем, что для кольца T=7.73 . Запишем уравнение вращательного движения и формулу для периода колебаний:

$$I\ddot{\alpha} + f\alpha = 0, \ T = 2\pi\sqrt{\frac{I}{f}}, f = \left(\frac{2\pi}{T}\right)^2 I.$$

Момент инерции относительно нити колечка можно оценить как $I=\frac{12mR^2}{2}=(2.5\pm0.1)\cdot 10^{-6}$ $\frac{.^2}{c^2}\Rightarrow f=(1.7\pm0.1)\cdot 10^{-6}$ $\frac{.^2}{c^2}$.

Соберём крутильный маятник из 12 магнитных шариков и подвесим его на немагнитном штативе. Используя Λ - образный подвес, установим "магнитную стрелку" в горизонтальное положение. Возбудим крутильные колебания маятника вокруг вертикальной оси и определим их период. Исследуем зависимость периода T крутильных колебаний "стрелки" от количества магнитных шариков n, составляющих "стрелку".

n	3	4	5	6	7	8	9	10	11	12
N	t, c	t, c	t, c	t, c						
10	6.35	9.33	11.18	13.33	16.56	17.70	20.20	23.50	23.89	27.60
20	18.67	18.51	22.00	26.66	32.79	35.40	40.40	44.17	47.61	51.26
30	24.91	27.68	33.45	39.70	43.35	52.83	61.93	66.29	70.33	77.85
40	31.21	36.77	44.01	53.00	65.91	70.00	82.03	88.09	93.91	104.5
50	37.45	46.01	56.11	67.00	82.47	87.58	102.10	109.4	117.2	130.3
Т, с	0.749	0.920	1.122	1.340	1.649	1.752	2.042	2.188	2.344	2.606

График экспериментальной зависимости T(n):

Зависимость периода колебаний от числа числа магнитов магнитной стрелки.

$$J_n \ddot{\theta} + (\mathfrak{m}_n B_{\parallel} + f)\theta = 0, J_n \approx \frac{1}{12} n^2 m d^2 \Rightarrow T_n = 2\pi \sqrt{\frac{m d^2 n^2}{12(\mathfrak{m} B_{\parallel} + f)}}$$

По значению углового коэффициента рассчитаем величину горизонтальной составляющей магнитного поля Земли.

$$\frac{T_n}{n} = 2\pi \sqrt{\frac{md^2n^2}{12(\mathfrak{m}B_{\parallel} + f)}} = 0.207 \ c, B_{\parallel} = \frac{\pi^2md^2n^2}{3T_n^2\mathfrak{m}} - \frac{f}{\mathfrak{m}} \approx 0.066 \pm 0.003 \ (.)$$

Изготовим магнитную "стрелку"из 10 шариков и подвесим её за середину с помощью нити на штативе. Определим механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную "стрелку". Для этого с помощью одного или нескольких кусочков проволоки, уравновесим "стрелку" в горизонтальном положении. С помощью весов определим массу уравновешивающего груза т. Из условия равновесия рассчитаем механический момент сил M=тальную трубительную трубительну трубительную трубительную трубительную трубительную трубительну трубительную трубительную трубительную трубительную трубительну "стрелку"со стороны поля Земли. Измерения сил проведём для чётных значений n = 4, 6, 8, 10, 12.

n	m, г	х, см	$M, \frac{2}{2}$
4	0.215	0.585	123.4
6	0.196	1.170	224.9
8	0.149	1.755	256.5
10	0.154	2.340	354.6
12	0.165	2.925	472.8

Зависимость момента сил, уравновешивающего стрелку от числа числа магнитов в ней.

Коэффициент наклона $a=36\pm 5$ $\frac{2}{2}$. Из линейности видно, что приближение аддитивности магнитных моментов для используемых в работе магнитов применимо. По значению углового коэффициента аппроксимирующей прямой рассчитаем величину вертикальной составляющей B_{\perp} магнитного поля Земли.

$$M_n = n \mathfrak{m} B_{\perp} \Rightarrow B_{\perp} = \frac{a}{\mathfrak{m}} \approx 0.40 \pm 0.06 \; (.)$$

5 Выводы и рассчет погрешностей

5.1 Погрешности

$$\begin{split} \varepsilon_{\mathfrak{m}_{1}} &= \sqrt{\left(\frac{\Delta m}{m}\right)^{2} + 4\left(\frac{\Delta r_{max}}{r_{max}}\right)^{2}} \approx 6\% \\ \varepsilon_{\mathfrak{m}_{2}} &= \sqrt{\left(\frac{\Delta d}{d}\right)^{2} + 4\left(\frac{\Delta r_{min}}{r_{min}}\right)^{2}} \approx 2\% \\ \varepsilon_{B_{\parallel}} &= \sqrt{\left(\frac{\Delta m}{m}\right)^{2} + \left(\frac{\Delta d}{d}\right)^{2} + \left(\frac{\Delta \mathfrak{m}}{\mathfrak{m}}\right)^{2} + \left(\frac{\Delta \frac{T_{n}}{n}}{T_{n}}\right)^{2}} \approx 5\% \\ \varepsilon_{B_{\perp}} &= \sqrt{\left(\frac{\Delta a}{a}\right)^{2} + \left(\frac{\Delta \mathfrak{m}}{\mathfrak{m}}\right)^{2}} \approx 6\% \end{split}$$

5.2 Вывод

Поскольку установка находится в железобетонном здании, магнитное поле в нём сильно отличается от поля Земли. Так же на показания влияет наличие электронных приспособлений связи. Магнитное поле Земли в нашем районе около 0.05 - 0.1 ед. СГС. Полученное значение не сильно отличается действительного.

Используя результаты измерений B_{\perp}] и B_{\parallel} , магнитное наклонение β и полная величина индукции магнитного поля Земли в кабинете выполнения лабораторной работы равны.

$$\beta = \arctan \frac{B_{\perp}}{B_{\parallel}} \approx 80^{\circ}$$

Теоретически (α - угол наклона Земли, ϕ - широта Москвы),

$$\beta = \frac{B_{\perp}}{B_{\parallel}} = \frac{\frac{-2\mathfrak{m}_3 sin(\phi - \alpha)}{r^3}}{\frac{-\mathfrak{m}_3 cos(\phi - \alpha)}{r^3}} = arctg(2tg(\phi - \alpha)) \approx 53^{\circ}$$

Полный магнитный момент \mathfrak{m} Земли равен около $7,72\cdot 10^{25}$ ед. СГС. По данным эксперимента он равен $9,20\cdot 10^{25}$ ед. СГС.