

SKYLINE INSTITUTE OF ENGINEERING & TECHNOLOGY, G.NOIDA

A Project on

HUMANOID ROBOT

Submitted for partial fulfillment of award of

BACHELOR OF TECHNOLOGY

in

Mechanical Engineering

By

Aditya Vikram Singh (1315340012) Govind Singh (1315340066) Mohd Monish (1315340121) Mayank Rai (1315340091) Mohd Atiqur Rahaman (1315340095) Vineet Jaiswal (1315340189)

under the able guidance of Mr. Ankit Mani Tripathi Assistant Professor

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, UTTAR PRADESH LUCKNOW, INDIA

May 2017

Certificate

Certified that Mohd Monish, Govind Singh, Mohd Atiqur Rahaman, Mayank

Rai, AdityaVikram Singh, Vineet Jaiswal has carried out the work presented in

this project report entitled "HUMANOID ROBOT" for the award of Bachelor of

Technology from Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh,

Lucknow under my supervision.

Mr. Ankit Mani Tripathi

(Assistant professor)

Department of ME

SIET GR.NOIDA

(Prof. J.M.Giri/Prof. Mahip Singh)

Project Coordinators

(Dr. S.K. Singh)

Head, M.E. Department

Date:

ABSTRACT

A Humanoid Robot is a Robot with its body shaped design & assembled to resemble the human body. Its design maybe intended for functional purposes, such as interacting with human tools & environments, for experimental purposes, such as the study of bi-pedal locomotion or for other purposes.

When it comes to the design of the humanoid robot in general humanoid robot has a torso, a head, 2 arms & 2 legs, though some forms of humanoid robot may model only part of the body, for example, for the waste up. Some humanoid robot also have head design to replicate human facial features such as eyes & mouth. Androids are humanoid robot built to aesthetically resemble humans.

The purposes of humanoid robot are vast & amazing, humanoid robot are now used as a research tool in several scientific areas.

Although the initial aim of humanoid research was to build better orthosis & prosthesis for human beings, knowledge has been transferred between both disciplines.

Besides the research, humanoid robot are being developed to perform human task like personal assistant.

In this project we have design & assembled a humanoid robot with aluminum sheet as the main structural material or the thickness of the sheet used is 2.5mm. We have programmed this robot for the purpose of personal assistance.

As this robot performs it functions on the basis of commands given by us.

Our project is a very significant step in the field of robotics world as we will explore the amazing functions of a humanoid robot.

ACKNOWLEDGEMENT

Words are inadequate and out of place at times particularly in the context of expressing sincere feelings in the contribution of this work and it is no more than a mere ritual. It is our privilege to acknowledge with respect & gratitude, the keen, valuable and ever-available guidance rendered to us by Mr. ANKIT MANI TRIPATHI (Asst. Professor) without whose wise counsel and able guidance, it would have been impossible to complete the project in this manner. We express gratitude to other faculty members of Mechanical Engineering

Department, SIET GR. Noida, for their intellectual support throughout the course of this work.

Also I would like to express my heartfelt gratitude to **Mr. RAVI KALRA (Asst. Professor)** for his continuous support & dedication towards this project.

Last and certainly not the least a special shout out of thanks & gratitude goes to Mr. MAHIP SINGH (Asst. professor) for his unparalleled guidance & supervision without whom this project would not have touched that height of perfection.

Above all we are thankful to the almighty god for giving us strength to carry out the present work.

ADITYA VIKRAM SINGH (1315340012)

GOVIND SINGH (1315340066)

MOHD MONISH (1315340121)

MAYANK RAI (1315340091)

MOHD ATIQUR RAHAMAN (1315340095)

VINEET JAISWAL (1315340189)

TABLE OF CONTENTS

CHA	APTER 1	NO. TITLE	PAGE NO
ABS	STRACT		iii
ACF	KNOWL	EDEGEMENT	iv
LIST	Γ OF TA	ABLES	ix
LIST	Γ OF FI	GURES	X
LIST	Γ OF SY	MBOLS, ABBREVIATIONS	xii
1.	INTE	INTRODUCTION	
	1.1	GENERAL	1
	1.2	PURPOSE	2
	1.3	INTRODUCTION OF ALUMINA	4
	1.4	LITERATURE OVERVIEW	5
	1.5	LAWS OF ROBOTICS	5
	1.6	DEMAND FOR EFFICIENT DESIGN OF HUMANOID ROBOT	6
	1.7	DESIGN PROCESS FOR HUMANOID ROBOT MODULES	7
	1.8	REQUIREMENTS	7
	1.9	SUB DIVISION OF THE TOTAL SYSTEM	8
	1.10	SELECTION & DATABASE	8
	1.11	DEVELOPMENT SEQUENCE	9
	1.12	DEVELOPMENT OF A SHOULDER JOINT	9
2.	PAR	TS OF HUMANOID ROBOT (ALUMINA)	11-32
	2.1	ARDUINO UNO R3 BASED BLUETOOTH + USB 18	12
		SERVO CONTROLLER	
	2.2	SPECIFICATIONS OF ARDUINO CIRCUIT	13
	23	ELEMENTS OF ARDLING CIRCUIT	1.4

	2.3.1 POWER (USB/BARREL JACK)	14
	2.3.2 PINS (ANALOG, DIGITAL, PWM, AREF & 5V)	14
	2.3.3 RESET BUTTON	15
	2.3.4 POWER LED INDICATOR	15
	2.3.5 TX RX LEDs	15
	2.3.6 MAIN IC	16
	2.3.7 VOLTAGE REGULATOR	16
2.4	SPECIFICATIONS OF MICROCONTROLLER USED IN	16
	ARDUINO CIRCUIT	
2.5	PROPERTIES & SPECIFICATIONS OF PINS USED IN	17
	ARDUINO CIRCUIT	
	2.5.1 DIGITAL PINS	17
	2.5.2 SERIAL (RX & TX)	17
	2.5.3 EXTERNAL INTERRUPTS	17
	2.5.4 PWM	18
	2.5.5 BT RESET	18
	2.5.6 SPI	18
	2.5.7 LED	18
	2.5.8 ANALOG PINS	18
	2.5.9 POWER PINS	18
2.6	CONNECTING SERVOS TO CONTROLLER THROUGH ARDUINO	19
	2.6.1 ARDUINO UNO	19
2.7	LITHIUM PLOYMER (Li-Po) RECHARGABLE BATTERY	19
	7.4V 1500mAH 20C	
	2.7.1 PRECAUTIONS	19
	2.7.2 SPECIFICATIONS	20
	2.7.3 COMPATIBLE CHARGERS	20
2.8	METAL GEAR STANDARD	21
	2.8.1 SERVOMOTOR	21
	2.8.2 SERVO MECHANISM	21
	2.8.3 WORKING PRINCIPLE OF SERVO MOTOR	22

		2.8.4 CONTROLLING SERVO MOTOR	23
		2.8.5 SERVO SPECIFICATIONS OF ALUMINA	24
		2.8.6 SERVO CONTROLLING FEATURES OF ALUMINA	25
	2.9	MULTIPURPOSE ALUMINIUM STANDARD SERVO	26
		BRACKET	
	2.10	SHORT U SHAPE ALUMINIUM SERVO BRACKET	26
	2.11	LONG U ALUMINIUM SERVO BRACKET	27
	2.12	OBLIQUE U SHAPE ALUMINIUM SERVO BRACKET	27
	2.13	INTERCONNECTED ALUMINIUM SERVO BRACKET	28
	2.14	L SHAPED INTERCONNECTED ALUMINIUM SERVO	28
		BRACKET	
	2.15	LARGE U BEAM ALUMINIUM SERVO BRACKET	29
	2.16	ROBOT FEET ALUMINIUM SERVO BRACKET	29
	2.17	METAL HORN FOR SERVO 25T	30
	2.18	ULTRASONIC SENSOR	30
		2.18.1 DIFFERENCE B/W IR & ULTRASONIC	32
3.	MATERIALS & TOOLS USED IN FORMATION OF ALUMINA		33-40
	3.1	MATERIAL USED	33
		3.1.1 ALUMINUM SHEET	33
		3.1.2 CHARACTERSTICS	33
	3.2	TOOLS USED IN MANUFACTURING OF ALUMINA	35
		3.2.1 SCRIBER	35
		3.2.2 CENTER PUNCH	36
		3.2.3 DRILL BIT	36
		3.2.4 CIRCULAR & HALF ROUND FILE	37
		3.2.5 SCREW DRIVER	37
		3.2.6 ALLEN KEY	38
		3.2.7 PLIER PLASS	39
		3.2.8 MALLET	40

		3.2.9 BENCH VISE	40
4.	MAN	NUFACTURING PROCESS USED IN THE FORMATION OF	41-53
	ALUMINA		
	4.1	CUTTING	42
	4.2	GRINDING	43
	4.3	DRILLING	44
	4.4	FILING	45
	4.5	MARKING	46
	4.6	PUNCHING	46
	4.7	HOLDING	47
	4.8	HAMMERING	48
	4.9	ASSEMBLING	49
5.	SEL	ECTION OF SERVO TORQUE & DESIGNING CRITERIAS	54-59
	5.1	TORQUE	54
	5.2	WEIGHT	55
	5.3	SELECTION CRITERIAS	55
6.	FUTURE SCOPE OF ALUMINA & ITS MODIFICATION		60-65
	6.1	GENERATION OF ROBOT	60
	6.2	ARTIFICIAL INTELLIGENCE IN UPCOMING ROBOTS	62
7.	CON	NLUSION	66
8.	REF	ERENCES	67
9.	APP	ENDIX I	68

LIST OF TABLES

TABLE NO.	DESCRIPTION	PAGE NO.	
2.1	General wire color description for servo	19	
2.18	Difference between IR & Ultrasonic Sensor	32	

LIST OF FIGURES

FIGURE NO.	DESCRIPTION	PAGE NO
Fig. 1.1	Alumina	4
Fig. 2.1	Arduino Circuit Board	13
Fig. 2.2	Lithium Polymer Battery	20
Fig. 2.3	Servomotor	22
Fig. 2.4	Servomotor Pulse	24
Fig. 2.5	Servo bracket	26
Fig. 2.6	Short U Aluminum Servo Bracket	26
Fig. 2.7	Long U Clamp	27
Fig. 2.8	Oblique Clamp	27
Fig. 2.9	Interconnected Aluminum Servo Bracket	28
Fig. 2.10	L Shaped Interconnected Servo Bracket	28
Fig. 2.11	Large U beam Aluminum Servo Bracket	29
Fig. 2.12	Robot Feet Aluminum Servo Bracket	29
Fig. 2.13	Metal Horn for Servo	30
Fig. 2.14	Working of Ultrasonic sensor	31
Fig. 2.15	Ultrasonic Sensor	31
Fig. 3.1	Scribers	35
Fig. 3.2	Center Punch	36
Fig. 3.3	Drill Bit	36
Fig. 3.4	Circular File	37
Fig. 3.5	Half Round File	37
Fig. 3.6	Screw Driver	37
Fig. 3.7	Allen Key	38

Fig. 3.8	Plier Plass	39
Fig. 3.9	Mallet	40
Fig. 3.10	Bench Vise	40
Fig. 4.1	Cutting Operation	42
Fig. 4.2	Grinding Operation	43
Fig. 4.3	Geared Head Drill Machine	44
Fig. 4.4	Filing Operation	45
Fig. 4.5	Bench Vise	47
Fig. 4.6	Vacuum Vise	47
Fig. 4.7	Pipe Vise	47
Fig. 4.8	Machine Vise	47
Fig. 4.9	Hammering Operation	48
Fig. 4.10	Assembling of Feet	49
Fig. 4.11	Assembling of Thighs of ALUMIA	50
Fig. 4.12	Belly Connected with servo brackets	51
Fig. 4.13	Formation of Hands of ALUMINA	52
Fig. 4.14	Complete Assembly of ALUMINA	53
Fig. 5.1	Defining Torque	54
Fig. 5.2	Radial & Tangential components of force	55
Fig. 5.3	Humanoid Dimensions	56
Fig. 6.1	Imaginable Artificial Circuitry	62
Fig. 6.2	Artificial Intelligence Characteristics	64
Fig. 6.3	Deep Phase of Artificial Intelligence	65

LIST OF SYMBOLS

Symbol Particulars

N Speed of rotation

KW Kilo watt

DC Direct Current

AC Alternate Current

T Torque

V Volt

cm centimeter

Kg kilogram

AD Anno Domini (In the year of lords)

BC Before Christ

mAH milli-ampere hour

mm millimeter

Hz Hertz

GND Ground

KB kilobyte

A Ampere

C Celsius

MPa Mega Pascal

W Weight

m Mass

F Force

FOS Factor of Safety