GEL-17979 / GEL-64500 Commande multivariable

Examen #1

Jeudi 26 février 2004, 8h30-10h20

Document permis: une feuille 8.5 X 11 pouces

Professeur: André Desbiens, Département de génie électrique et de génie informatique

Note: Une bonne réponse sans justification ne vaut aucun point

 u_i : $i^{\text{ème}}$ entrée du procédé y_i : $i^{\text{ème}}$ sortie du procédé r_i : $i^{\text{ème}}$ consigne Nomenclature:

Question 1 (15%)

Avec la configuration u_1 - y_1 et u_2 - y_2 , peut-on utiliser des découpleurs inversés pour le procédé illustré à la Figure 1?

Figure 1

Question 2 (15%)

Le procédé étudié est:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{-4}{1+20s} & \frac{-4}{1+21s} \\ \frac{-7}{1+19s} & \frac{3}{1+20s} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

On désire concevoir une commande décentralisée en visant les spécifications $\frac{y_1}{r_1} = \frac{y_2}{r_2} = \frac{1}{1+10s}$. Quels couples entrée-sortie devriez-vous utiliser?

Question 3 (20%)

En prenant les couples u_1 - y_1 et u_2 - y_2 , concevez une commande décentralisée pour le procédé suivant:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{4e^{-10s}}{1+2s} & \frac{2e^{-10s}}{1+4s} \\ \frac{2}{1+2s} & \frac{4}{1+4s} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Les constantes de temps de $\frac{y_1}{r_1}$ et de $\frac{y_2}{r_2}$ doivent être égales à 2. Dessinez le diagramme fonctionnel du procédé et du régulateur.

[Note: On utilisait alors uniquement l'approximation basses fréquences pour le calcul des 2 régulateurs.]

Comment pouvez-vous améliorer les réglages si les spécifications ne sont pas respectées avec votre design initial?

Question 4 (20%)

Concevez un découpleur simplifié pour le procédé suivant:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{4(1-2s)}{(1+5s)^2} & \frac{2}{1+4s} \\ \frac{2}{(1+2s)^2} & \frac{3}{1+3s} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Dessinez le diagramme fonctionnel du procédé et du découpleur.

Question 5 (30%)

Le procédé étudié est illustré à la Figure 2. Les perturbations p_1 et p_2 sont mesurées. Les perturbations p_3 et p_4 ne le sont pas. Concevez un régulateur pour tenter de maintenir y_1 à sa consigne r_1 en autant que u demeure entre -5 et 5 et que $-10 \le y_2 \le 10$. Dessinez le diagramme fonctionnel du procédé et du régulateur.

Figure 2

Bonne chance!

Méthode des contours

Régulateur PI:
$$G_C(s) = \frac{K_C(1 + T_i s)}{T_i s}$$

1 - Procédé:
$$G_P(s) = \frac{K_P(1 - T_0 s)e^{-\theta s}}{(1 + T_1 s)(1 + T_2 s)}$$
 $T_1 \ge T_2 \ge 0, T_0 \ge 0$

Dans les formules qui suivent, les angles sont en radians et M_r en dB.

$$M_r = 0.25$$

[équ. 6.23]
$$T_i = \begin{cases} [1 + 0.175(\theta/T_1) + 0.3(T_2/T_1)^2 + 0.2(T_2/T_1)]T_1 & \theta/T_1 \le 2\\ [0.65 + 0.35(\theta/T_1) + 0.3(T_2/T_1)^2 + 0.2(T_2/T_1)]T_1 & \theta/T_1 > 2 \end{cases}$$

[équ. 6.24]
$$\phi_m = \cos^{-1}[1 - 0.5 \cdot 10^{-0.1M_r}] = 1.015$$

[équ. 6.25]
$$\phi_{m} = [-\pi/2 + \tan^{-1}\omega_{co}T_{i} - \tan^{-1}\omega_{co}T_{0} - \tan^{-1}\omega_{co}T_{1} - \tan^{-1}\omega_{co}T_{2} - \omega_{co}\theta] + \pi$$
 (permet de trouver ω_{co})

[équ. 6.26]
$$K_C = \frac{T_i}{K_P} \left\{ \frac{(T_1 T_2)^2 \omega_{co}^6 + (T_1^2 + T_2^2) \omega_{co}^4 + \omega_{co}^2}{(T_i T_0)^2 \omega_{co}^4 + (T_i^2 + T_0^2) \omega_{co}^2 + 1} \right\}^{1/2}$$

2 - Procédé:
$$G_P(s) = \frac{K_P e^{-\theta s}}{s(1 + T_1 s)}$$
 $T_1 > 0$

Dans les formules qui suivent, les angles sont en radians, M_r en dB et A_{max} n'est pas en dB.

 M_r quelconque (souvent choisi égal à 4.4 dB)

[équ. 6.36]
$$A_{\text{max}} = \frac{10^{0.05M_r}}{\sqrt{10^{0.1M_r} - 1}}$$

[équ. 6.37]
$$\phi_{\text{max}} = \cos^{-1}[A_{\text{max}}^{-1}] - \pi$$

[équ. 6.45]
$$T_i = \frac{16(T_1 + \theta)}{(2\phi_{\text{max}} + \pi)^2}$$

[équ. 6.43]
$$\omega_{\text{max}} = \frac{1}{\sqrt{T_i(T_1 + \theta)}}$$

[équ. 6.46]
$$K_C = \frac{T_i A_{\text{max}}}{K_P} \left[\frac{T_1^2 \omega_{\text{max}}^6 + \omega_{\text{max}}^4}{T_i^2 \omega_{\text{max}}^2 + 1} \right]^{1/2}$$

Méthode approximative (intuitive)

Régulateur PI ou PIF:
$$G_C(s) = \frac{K_C(1 + T_i s)}{T_i s}$$
 ou $G_C(s) = \frac{K_C(1 + T_i s)}{T_i s (1 + T_f s)}$

Model	Diagram	Step response	Parameters	PI Settings
First order	K _p , T ₁ K _P 1+T, S	Δυ Δυ Δν ξ _{63%}	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$	$K_c = \frac{1}{K_p}$ $T_i = T_1$
First order with delay	K _p , θ, T ₁ K _e z ⁻⁰⁵ + T ₁ S	$ \begin{array}{c c} & & & & \Delta y \\ \hline & & & & \Delta u \\ \hline & & & & \Delta u \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$	$K_c = \frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$ $T_i = T_1$
Second order	κ _p , Τ ₁ , Τ ₁ κ _γ (1+Τ ₁ 5) ²	Δυ Δν Δυ Δν	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$	$K_c = \frac{1}{K_p}$ $T_i = 1.5T_1$
Second order with delay	$\begin{array}{c c} & K_p, \theta, T_1, T_1 \\ \hline & K_p e^{-\theta S} \\ \hline & (1+T_1 S)^2 \end{array}$	$ \begin{array}{c c} \theta & \Delta y \\ \hline t_{73\%} & \Delta y \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$	$K_c = \frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$ $T_i = 1.5T_1$
Second order with an unstable zero	$ \begin{array}{c} $	$\begin{array}{c c} & & & \Delta y \\ \hline & & \Delta y \\ \hline & & \Delta y_{min} \\ \hline & & t_{min} \end{array}$	$K_p = \frac{\Delta y}{\Delta u}$ See table 2 to evaluate T_{0i} and T_1	$K_c = \frac{1}{K_p} \cdot \frac{T_1}{T_1 + T_{0i}}$ $T_i = 1.5T_1$
Second order with an unstable zero and a delay	$\frac{K_{p},\theta,T_{0i}T_{1},T_{1}}{K_{p}\left(1-T_{0};S\right)e^{-\theta S}}$ $\overline{\left(1+T,S\right)^{2}}$	Δy Δy _{min}	$K_p = \frac{\Delta y}{\Delta u}$ See table 2 to evaluate T_{0i} and T_1	$K_c = \frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta + T_{0i}}$ $T_i = 1.5T_1$
Second order with a stable zero	$ \begin{array}{c} $	$ \begin{array}{c c} & \Delta y_{max} & \Delta u \\ \hline & I_{max} \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ See table 3 to evaluate T_{0s} and T_1	$K_c = \frac{1}{K_p}$ $T_i = 1.5T_1$ $T_f = T_{0s}$
Second order with a stable zero and a delay	$\frac{\left(K_{p}, \theta, T_{0s}, T_{1}, T_{1}\right)}{\left(1 + T_{1} \leq 5\right)e^{-\theta S}}$	$ \begin{array}{c c} \hline $	$K_p = \frac{\Delta y}{\Delta u}$ See table 3 to evaluate T_{0s} and T_1	$K_c = \frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$ $T_i = 1.5T_1$ $T_f = T_{0s}$
Integrator	Ke S	Δ <i>y</i>	$K_p = \frac{\Delta y}{\Delta t \Delta u}$	$K_c = \pm \frac{\Delta u_{\text{max}}}{\Delta r}$ $T_i = \frac{3}{K_c K_p}$ $T_{sp} = T_i$