#### WILDFIRE DETECTION SYSTEM

Mevin Ansa, Michael Zebe, Josh Hornsey, Kelli Templeton

#### SYSTEM AND SUBSYSTEM VALIDATION

### WILDFIRE DETECTION SYSTEM

Mevin Ansa, Michael Zebe, Josh Hornsey, Kelli Templeton

#### FULL SYSTEM VALIDATION

### **FULL SYSTEM VALIDATION**

**Method of Validation:** We tested the full system by having it loop multiple times, checking the output string created by the microcontroller, ensuring that the sensor values are as expected, and checking that the values displayed by the website match.

| Trial | Time | Output String from Microcontroller                       | Values as Expected | Display on Website |
|-------|------|----------------------------------------------------------|--------------------|--------------------|
| 1     | 2:01 | 4000;1;23.4;1;42.2;1;0;1;0;1;0;1;63.9;30.6;-96.7;0;0;0;0 | Yes                | Correct            |
| 2     | 2:06 | 4000;1;23.6;1;42.8;1;0;1;0;1;0;1;53.2;30.6;-96.7;0;2;0;0 | Yes                | Correct            |
| 3     | 2:11 | 4000;1;24.1;1;43.4;1;1;1;0;1;0;1;40.1;30.6;-96.7;0;0;0;0 | Yes                | Correct            |
| 4     | 2:16 | 4000;1;23.6;1;42.7;1;0;1;1;1;0;1;0.00;30.6;-96.7;1;0;0;0 | Yes                | Correct            |
| 5     | 2:21 | 4000;1;23.4;1;44.1;1;0;1;0;1;1;1;0.00;30.6;-96.7;0;0;0;1 | Yes                | Correct            |
| 6     | 2:26 | 4000;1;23.4;1;43.2;1;1;1;1;1;1;1;99.9;30.6;-96.7;0;2;0;0 | Yes                | Correct            |
| 7     | 2:31 | 4000;1;23.7;1;42.7;1;0;1;0;1;0;1;99.9;30.6;-96.7;0;0;0;1 | Yes                | Correct            |
| 8     | 2:36 | 4000;1;24.2;1;41.3;1;0;1;0;1;1;1;99.9;30.6;-96.7;0;0;1;0 | Yes                | Correct            |

### **FULL SYSTEM TIMING VALIDATION**

**Method of Validation:** We tested the timing of the full system by measuring the process from start to finish, i.e. from the microcontroller reading values off the sensors to the data being displayed on the web application

| Trial | Time (min:sec) |
|-------|----------------|
| 1     | 3:32           |
| 2     | 4:13           |
| 3     | 3:28           |
| 4     | 4:22           |
| 5     | 3:17           |
| 6     | 4:23           |
| 7     | 3:21           |
| 8     | 3:41           |

# FULL SYSTEM START ON BOOT VALIDATION

**Method of Validation:** We tested the reboot functionality by restarting the ODROID, making sure that the script started successfully, looped successfully, and that the GSM module reset immediately upon reboot.

| Trial | Main Script Start on Boot | GSM Reset at Start on Boot | Loop After Initial Run |
|-------|---------------------------|----------------------------|------------------------|
| 1     | Successful                | Successful                 | Successful             |
| 2     | Successful                | Successful                 | Successful             |
| 3     | Successful                | Successful                 | Successful             |
| 4     | Successful                | Successful                 | Successful             |
| 5     | Successful                | Successful                 | Successful             |
| 6     | Successful                | Successful                 | Successful             |
| 7     | Successful                | Successful                 | Successful             |
| 8     | Successful                | Successful                 | Successful             |

## WILDFIRE DETECTION SYSTEM Michael Zebe

#### **SENSOR SUBSYSTEM VALIDATION**

### RAIN SENSOR VALIDATION

**Method of Validation:** Incrementally added .10 ml of water to the surface of the rain sensor and checked the sensor output.

| RAIN SENSOR VALIDATION |                |  |
|------------------------|----------------|--|
| Water Amount (ml)      | Sensor Reading |  |
| 0.10                   | 0              |  |
| 0.20                   | 0              |  |
| 0.30                   | 0              |  |
| 0.40                   | 0              |  |
| 0.50                   | 0              |  |
| 0.60                   | 0              |  |
| 0.70                   | 0              |  |
| 0.80                   | 0              |  |
| 0.90                   | 1              |  |
| 1.00                   | 1              |  |
| 1.10                   | 1              |  |
| 1.20                   | 1              |  |

## REMOTE MODULE VALIDATION

**Method of Validation:** Set RF transmitter to transmit a high signal and checked to see if the RF receiver signal matched at increasing distances. The RF receiver signal was reset to low in between each trial.

| REMOTE MODULE VALIDATION |                       |                    |                       |  |
|--------------------------|-----------------------|--------------------|-----------------------|--|
| Distance (m)             | RF Transmitter Signal | RF Receiver Signal | Accurate Transmission |  |
| 2                        | 1                     | 1                  | Yes                   |  |
| 4                        | 1                     | 1                  | Yes                   |  |
| 6                        | 1                     | 1                  | Yes                   |  |
| 8                        | 1                     | 1                  | Yes                   |  |
| 10                       | 1                     | 1                  | Yes                   |  |
| 12                       | 1                     | 1                  | Yes                   |  |
| 14                       | 1                     | 1                  | Yes                   |  |
| 16                       | 1                     | 1                  | Yes                   |  |
| 18                       | 1                     | 1                  | Yes                   |  |
| 20                       | 1                     | 0                  | No                    |  |

### FIRE SENSOR VALIDATION

**Method of Validation:** Incrementally increased the distance of the sensor from the large fire source by one meter and checked the sensor's output.

| FIRE SENSOR                         |                |
|-------------------------------------|----------------|
| Distance from Large Fire Source (m) | Sensor Reading |
| 1                                   | 1              |
| 2                                   | 1              |
| 3                                   | 1              |
| 4                                   | 1              |
| 5                                   | 0              |
| 6                                   | 0              |
| 7                                   | 0              |
| 8                                   | 0              |
| 9                                   | 0              |
| 10                                  | 0              |

### **SMOKE SENSOR VALIDATION**

**Method of Validation:** Incrementally increased the distance of the sensor from the large smoke source by 0.25 meter and checked the sensor's output.

| SMOKE SENSOR VALIDATION              |                |
|--------------------------------------|----------------|
| Distance from Large Smoke Source (m) | Sensor Reading |
| 0.25                                 | 1              |
| 0.50                                 | 1              |
| 0.75                                 | 1              |
| 1.00                                 | 1              |
| 1.25                                 | 0              |
| 1.50                                 | 0              |
| 1.75                                 | 0              |
| 2.00                                 | 0              |

# TEMPERATURE AND HUMIDITY SENSOR VALIDATION

**Method of Validation:** Placed the sensor in areas where the temperature and humidity were relatively controlled. Identified the expected temperature and humidity and compared it to the reading from the sensor.

| TEMPERATURE AND HUMIDITY SENSOR VALIDATION |                  |              |              |              |            |
|--------------------------------------------|------------------|--------------|--------------|--------------|------------|
| Expected                                   | Measured         | Temperature  | Expected     | Measured     | Humidity % |
| Temperature (°C)                           | Temperature (°C) | % Difference | Humidity (%) | Humidity (%) | Difference |
| 6.0                                        | 7.3              | 9.2          | 50.0         | 48.3         | 3.5        |
| 15.0                                       | 16.4             | 8.9          | 45.0         | 47.2         | 4.8        |
| 24.0                                       | 24.7             | 2.9          | 40.0         | 41.7         | 4.2        |
| 24.0                                       | 22.39            | 6.9          | 40.0         | 44.1         | 9.8        |
| 24.0                                       | 23.2             | 3.4          | 40.0         | 45.4         | 12.6       |
| 38.0                                       | 35.4             | 7.1          | 35.0         | 36.2         | 3.4        |



#### SOIL MOISTURE SENSOR VALIDATION

**Method of Validation:** Incrementally increased the amount of water in the cup of dirt that the sensor was placed in and checked the sensor's output

| SOIL MOISTURE SENSOR VALIDATION |                |  |
|---------------------------------|----------------|--|
| Dirt : Water Ratio              | Sensor Reading |  |
| 30:0                            | 0.00%          |  |
| 30:1                            | 13.20%         |  |
| 30:2                            | 23.10%         |  |
| 30:3                            | 25.10%         |  |
| 30:4                            | 25.90%         |  |
| 30:5                            | 38.60%         |  |
| 30:6                            | 62.90%         |  |
| 30:7                            | 67.90%         |  |
| 30:8                            | 80.60%         |  |
| 30:9                            | 85.14%         |  |
| 30:10                           | 88.50%         |  |
| 30:11                           | 93.05%         |  |
| 30:12                           | 93.70%         |  |
| 30:13                           | 95.89%         |  |
| 30:14                           | 97.90%         |  |
| 30:15                           | 99.90%         |  |
| 30:16                           | 99.90%         |  |
| 30:17                           | 99.90%         |  |



# COMPONENT INPUT VOLTAGE VALIDATION

**Method of Validation:** Measuring the input voltage of the system's components and comparing it to the expected voltage.

| COMPONENT INPUT VOLTAGE VALIDATION |                            |                          |  |  |
|------------------------------------|----------------------------|--------------------------|--|--|
| Component                          | Expected Input Voltage (V) | Actual Input Voltage (V) |  |  |
| Rain Sensor                        | 5                          | 5.04                     |  |  |
| Fire Sensor                        | 5                          | 5.04                     |  |  |
| Smoke Sensor                       | 5                          | 5.04                     |  |  |
| Temperature / Humidity Sensor      | 5                          | 5.04                     |  |  |
| Soil Moisture Sensor               | 3.3                        | 3.28                     |  |  |
| RF Receiver                        | 5                          | 5.04                     |  |  |
| GSM Module                         | 5                          | 4.75                     |  |  |

#### ADDITIONAL SUBSYSTEM VALIDATION

#### **GPS VALIDATION:**

- Highly dependent on satellite view count (maximum 7.8 meters)
- During testing, measured latitude and longitude matched expectation based on Google Maps dropped pin

#### POWER SUPPLY VALIDATION:

- Remote fire sensor powered via 4 AA batteries
  - o Initial Voltage Level → 6.04 V
  - Partially Drained Voltage Level → 5.85 V
  - Fully Drained Voltage Level → 4.8 V

#### **DC-DC CONVERTER VALIDATION:**

- Input Range 4.5 V − 6 V
- Measured Output Voltage 3.33 V

## WILDFIRE DETECTION SYSTEM Mevin Ansa

# POWER AND MICROCONTROLLER SUBSYSTEM VALIDATION

# SOLAR PANEL VOLTAGE OUTPUT VALIDATION

**Method of Validation:** Measured the voltage output of the charge controller every 5 minutes for an hour while the solar panel was charging the battery. The solar panel was set in direct sunlight at a 20° angle. The voltage was measured in parallel with the battery terminals.

| Time (MIN) | Voltage (V) |
|------------|-------------|
| 0          | 12.36       |
| 5          | 12.62       |
| 10         | 12.7        |
| 15         | 12.7        |
| 20         | 12.73       |
| 25         | 12.69       |
| 30         | 12.77       |
| 35         | 12.79       |
| 40         | 12.76       |
| 45         | 12.84       |
| 50         | 12.8        |
| 55         | 12.82       |
| 60         | 12.83       |



# SOLAR PANEL CURRENT OUTPUT VALIDATION

**Method of Validation:** Measured the current output of the charge controller every 5 minutes for an hour while the solar panel was charging the battery. The solar panel was set in direct sunlight at a 20° angle. The current was measured in series in the charging circuit.

| Time (MIN) | Current (A) |
|------------|-------------|
| 0          | 1.3         |
| 5          | 1.13        |
| 10         | 1.07        |
| 15         | 1.05        |
| 20         | 1.003       |
| 25         | 0.955       |
| 30         | 0.917       |
| 35         | 0.864       |
| 40         | 0.699       |
| 45         | 0.644       |
| 50         | 0.678       |
| 55         | 0.627       |
| 60         | 0.573       |



#### ADDITIONAL SUBSYSTEM VALIDATION

#### **BATTERY VALIDATION:**

• Fully Charged Battery Voltage Output: 13 V

• Dead Battery Voltage Output: 11.4 V

#### **DC-DC CONVERTER VALIDATION:**

• Expected Voltage Input Range: 11.4 – 13 V

Voltage Output for Expected Range: 5 V ± 25 mV

## WILDFIRE DETECTION SYSTEM Joshua Hornsey

# IMAGE PROCESSING SUBSYSTEM VALIDATION

### MODEL ACCURACY VALIDATION

**Method of Validation:** In order to validate the object detection model's accuracy, I took 400 images and put each one through the model and calculated the percent difference and took the cumulative average.

print(acc)

0.7903707513922598

# ANIMAL CLASSIFICATION AND DETECTION VALIDATION

**Method of Validation:** For further validation, I found four good images for each of the four classes and ran these images through the model in order to demonstrate that it can classify bears, deer, lynx, and wolves and it can do multi-object detection.









# IMAGE PROCESSING MODEL IMPLEMENTATION VALIDATION

**Method of Validation:** To validate the image processing model implemented on the microcontroller with the camera, I ran the model on the ODROID for multiple trials and recorded the processing time.

| Trial # | Image Processing Time (s) |
|---------|---------------------------|
| 1       | 42.3                      |
| 2       | 41.6                      |
| 3       | 45.4                      |
| 4       | 38.9                      |
| 5       | 40.6                      |
| 6       | 46.6                      |
| 7       | 39.9                      |
| 8       | 47.1                      |
| 9       | 43.4                      |
| 10      | 44.2                      |

### **CAMERA VALIDATION**

**Method of Validation:** To validate the camera to the extent that I was able to, I placed the camera at different angles and distances away from a picture that I knew the model could identify accurately.

| VERIFICATION OF IMAGE PROCESSING MODEL BASED ON CAMERA ANGLE |                                    |          |  |  |  |
|--------------------------------------------------------------|------------------------------------|----------|--|--|--|
| Vertical Angle from Image Normal                             | Horizontal Angle from Image Normal | Accuracy |  |  |  |
| 0°                                                           | 0°                                 | 100%     |  |  |  |
| 30°                                                          | 0°                                 | 50%      |  |  |  |
| 0°                                                           | 30°                                | 50%      |  |  |  |
| 30°                                                          | 30°                                | 50%      |  |  |  |
| 60°                                                          | 0°                                 | 50%      |  |  |  |
| 0°                                                           | 60°                                | 50%      |  |  |  |

| VERIFICATION OF IMAGE PROCESSING MODEL BASED ON DISTANCE |                  |  |  |  |
|----------------------------------------------------------|------------------|--|--|--|
| Distance from Image (in)                                 | Accurate Reading |  |  |  |
| 1                                                        | No               |  |  |  |
| 2                                                        | No               |  |  |  |
| 3                                                        | Yes              |  |  |  |
| 4                                                        | Yes              |  |  |  |
| 5                                                        | Yes              |  |  |  |
| 6                                                        | Yes              |  |  |  |
| 7                                                        | Yes              |  |  |  |
| 8                                                        | No               |  |  |  |
| 9                                                        | No               |  |  |  |
| 10                                                       | No               |  |  |  |

## WILDFIRE DETECTION SYSTEM Kelli Templeton

# USER COMMUNICATION SUBSYSTEM VALIDATION

# GSM MODULE – USER'S CELLPHONE CONNECTION VALIDATION

**Method of Validation:** In order to validate this connection, I tested it with respect to distance by traveling various distances away from the GSM Module while ensuring that I had consistently good LTE signal (-76 to -90dBm) to only measure the effect of distance. I had the GSM module receive data indicating that there was a fire in order for my web application to send an alert message to my phone. I then checked the GSM logs and my SMS message logs in order to calculate the time elapsed.

| Distance (mi) | Location             | Power Level (dB) | Time to Receive (ms) |
|---------------|----------------------|------------------|----------------------|
| 0             | 1811 George Bush Dr. | -81              | 1094                 |
| 0.5           | 112 Redmond Dr.      | -83              | 1103                 |
| 1.0           | 1600 Glade St.       | -77              | 1208                 |
| 1.5           | Commons              | -88              | 1068                 |
| 2.0           | Evans Library        | -78              | 1206                 |
| 2.5           | MSC                  | -76              | 1208                 |
| 3.0           | PEAP                 | -77              | 1189                 |
| 3.5           | Start-Up Aggieland   | -83              | 1204                 |
| 4.0           | Gibb Gilchrist Bldg. | -86              | 1203                 |
| 4.5           | Easterwood Airport   | -77              | 1443                 |
| 5.0           | Aggie Field of Honor | -85              | 1415                 |
| 10            | HEB North Texas Ave. | -84              | 1719                 |

## GSM MODULE – USER'S CELLPHONE CONNECTION VALIDATION

**Method of Validation:** In order to further validate this connection, I tested it with respect to signal strength. I did this by finding locations with different levels of cell strength, all 2 miles away from the GSM Module. I had the GSM module receive data indicating that there was a fire in order for my web application to send an alert message to my phone. I then checked the GSM logs and my SMS message logs in order to calculate the time elapsed.

| Power Level (dBm) | Signal Strength | Time to Receive (ms) |
|-------------------|-----------------|----------------------|
| -56               | Excellent       | 1534                 |
| -64               | Very Good       | 1774                 |
| -72               | Good            | 1783                 |
| -94               | Fair            | 1938                 |
| -102              | Poor            | 2167                 |
| -118              | No Signal       | No Connection        |

#### DATABASE STORAGE VALIDATION

**Method of Validation:** I programmed the GSM Module to send a wide array of inputs to the MQTT Client to store in the database. I checked the Client's logs to see if it was able to store the information in the database. I then checked the database to see if the information was stored correctly.

|         | Device   |        | Temp     |        | Humidity |        | Rainfall |        | Smoke    |        | Correct |
|---------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|---------|
| Trial # | Expected | Actual |         |
| 1       | 4444     | 4444   | 15.5     | 15.5   | 20.2     | 20.2   | 0        | 0      | 0        | 0      | Yes     |
| 2       | 4000     | 4000   | 15.5     | 15.5   | 20.2     | 20.2   | 0        | 0      | 0        | 0      | Yes     |
| 3       | 67       | 67     | 15.5     | 15.5   | 20.2     | 20.2   | 0        | 0      | 0        | 0      | Yes     |
| 4       | 67       | 67     | 0.0      | 0.0    | 20.2     | 20.2   | 0        | 0      | 0        | 0      | Yes     |
| 5       | 67       | 67     | 1.3      | 1.3    | 20.2     | 20.2   | 0        | 0      | 0        | 0      | Yes     |
| 6       | 67       | 67     | M        | M      | 20.2     | 20.2   | 0        | 0      | 0        | 0      | Yes     |
| 7       | 67       | 67     | 1.3      | 1.3    | 0.0      | 0.0    | 0        | 0      | 0        | 0      | Yes     |
| 8       | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 9       | 67       | 67     | 1.3      | 1.3    | Р        | Р      | 0        | 0      | 0        | 0      | Yes     |
| 10      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 11      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 1        | 1      | 0        | 0      | Yes     |
| 12      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 1        | 1      | Yes     |
| 13      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 14      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 1        | 1      | 1        | 1      | Yes     |
| 15      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | M        | ERROR  | M        | ERROR  | No      |
| 16      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 17      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 18      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 19      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 20      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 21      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 0        | 0      | 0        | 0      | Yes     |
| 22      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 1        | 1      | 1        | 1      | Yes     |
| 23      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 1        | 1      | 1        | 1      | Yes     |
| 24      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 1        | 1      | 1        | 1      | Yes     |
| 25      | 67       | 67     | 1.3      | 1.3    | 2.4      | 2.4    | 1        | 1      | 1        | 1      | No      |

|         | Fire     |        | Lat      |        | Long     |        | Animals  |         | Correct |
|---------|----------|--------|----------|--------|----------|--------|----------|---------|---------|
| Trial # | Expected | Actual | Expected | Actual | Expected | Actual | Expected | Actual  |         |
| 1       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 2       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 3       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 4       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 5       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 6       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 7       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 8       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 9       | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 10      | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 11      | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 12      | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 13      | 1        | 1      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 14      | 1        | 1      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 15      | M        | ERROR  | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | No      |
| 16      | 0        | 0      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 17      | 0        | 0      | M        | M      | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 18      | 0        | 0      | 0.00     | 0.00   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 19      | 0        | 0      | 1.2      | 1.2    | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 20      | 0        | 0      | 36.3     | 36.3   | M        | М      | 4,4,4,4  | 4,4,4,4 | Yes     |
| 21      | 0        | 0      | 36.3     | 36.3   | 0.00     | 0.00   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 22      | 1        | 1      | 36.3     | 36.3   | 21.3     | 21.3   | 4,4,4,4  | 4,4,4,4 | Yes     |
| 23      | 1        | 1      | 36.3     | 36.3   | 21.3     | 21.3   | 0,0,0,0  | 0,0,0,0 | Yes     |
| 24      | 1        | 1      | 36.3     | 36.3   | 21.3     | 21.3   | 1,2,3,4  | 1,2,3,4 | Yes     |
| 25      | 1        | 1      | 36.3     | 36.3   | 21.3     | 21.3   | M,N,O,P  | ERROR   | No      |

### WEB APPLICATION VALIDATION

**Method of Validation:** I imitated all of the actions that a user could potentially perform and recorded my web application's response.

| User Action                                          | Website Response                                                                                  | Action Handled<br>Correctly |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|
| User Logs in with Correct Password                   | User Routed to Home Page                                                                          | Yes                         |
| User Logs in with Incorrect Password                 | User Receives "Invalid Password or ID" Message                                                    | Yes                         |
| User Logs in with Incorrect Username                 | User Receives "Invalid Password or ID" Message                                                    | Yes                         |
| User Registers with Correct Information              | User Routed to Log In Page with Access to Log In                                                  | Yes                         |
| User Registers with an Email in Non-Email Format     | User Receives "Invalid Email" Flag                                                                | Yes                         |
| User Registers with a Phone Number that is too Short | User Receives "Invalid Phone Number" Flag                                                         | Yes                         |
| User Registers with a Phone Number that is too Long  | User Receives "Invalid Phone Number" Flag                                                         | Yes                         |
| User's Passwords Do Not Match                        | User Receives "Unequal Password" Flag                                                             | Yes                         |
| User Enters in Correct Device Number                 | User Routed to Entered Device Page                                                                | Yes                         |
| User Enters in Device Number that Does not Exist     | User Receives "Invalid Device ID" Message                                                         | Yes                         |
| User Enters in Device of Another User                | User Receives "Invalid Device ID" Message                                                         | Yes                         |
| User Enters in Number of New Device                  | User Routed to Entered Device Page                                                                | Yes                         |
| User Logs Out from Device Page                       | User Logged Out and Routed to Login Page                                                          | Yes                         |
| User Logs Out from Home Page                         | User Logged Out and Routed to Login Page                                                          | Yes                         |
| User Navigates to Home Page from Device Page         | User Routed to Home Page                                                                          | Yes                         |
| User Tries to Access Home Page without Logging In    | User Routed to Login Page with "Please Access Page Flag"                                          | Yes                         |
| User Clicks "Remember Me"                            | User Routed to Home Page when Accessing Website and Able to Access Device Data Without Logging In | Yes                         |
| User Navigates to User Help Page                     | User Routed to User Help Page where a User<br>Manual PDF is Displayed                             | Yes                         |
| User Navigates to Home Page from User Help Page      | User Routed to Home Page                                                                          | Yes                         |
| User Logs Out from User Help Page                    | User Logged Out and Routed to Login Page                                                          | Yes                         |

# FIRE BEHAVIOR AND DANGER LEVEL PREDICTION VALIDATION

**Method of Validation:** In order to validate the correctness of the prediction models, I entered in varying values for all of the fields that the models use as inputs and viewed the output. I calculated the expected output and ensured that they matched

| Trial # | Temp | Humidity | Wind Speed | Rate of Spi | read   | CBI      |        | Fire Dange | r Level  | Correct |
|---------|------|----------|------------|-------------|--------|----------|--------|------------|----------|---------|
|         |      |          |            | Expected    | Actual | Expected | Actual | Expected   | Actual   |         |
| 1       | 0.00 | 0.00     | 0.00       | 1           | 1      | 215.5    | 215.5  | Extreme    | Extreme  | Yes     |
| 2       | 10.5 | 40.3     | 5.21       | 2           | 2      | 30.4     | 30.4   | Low        | Low      | Yes     |
| 3       | 15.4 | 31.6     | 11.5       | 3           | 3      | 51.1     | 51.1   | Moderate   | Moderate | Yes     |
| 4       | 20.2 | 21.2     | 16.8       | 5           | 5      | 89.17    | 89.17  | High       | High     | Yes     |
| 5       | 25.4 | 10.3     | 25.5       | 8           | 8      | 153.57   | 153.57 | Extreme    | Extreme  | Yes     |
| 6       | 1.2  | 0.3      | 0.1        | 1           | 1      | 214.3    | 214.3  | Extreme    | Extreme  | Yes     |
| 7       | 40.4 | 20.5     | 6.68       | 2           | 2      | 103.8    | 103.8  | Extreme    | Extreme  | Yes     |
| 8       | 30.3 | 51.6     | 12.2       | 2           | 2      | 19.1     | 19.1   | Low        | Low      | Yes     |
| 9       | 11.6 | 80.1     | 55.4       | 12          | 12     | 0.12     | 0.12   | Low        | Low      | Yes     |
| 10      | 23.2 | 24.1     | 33.3       | 11          | 11     | 78.8     | 78.8   | Extreme    | High     | Yes     |

#### WEB SERVER VALIDATION

**Method of Validation:** In order to validate that the public web server consistently hosts my webpage, I logged onto my web application at least a few days a week for the past month and checked its functionality. For a few of the checks, I restarted the server to ensure that it would continue to display my app if the server crashed and restarted.

| Date  | After Restart | Web App is Up | Web App is Functional |
|-------|---------------|---------------|-----------------------|
| 10/25 | Yes           | Yes           | Yes                   |
| 10/27 | No            | Yes           | Yes                   |
| 11/1  | Yes           | Yes           | Yes                   |
| 11/4  | No            | Yes           | Yes                   |
| 11/6  | Yes           | Yes           | Yes                   |
| 11/11 | Yes           | Yes           | Yes                   |
| 11/12 | No            | Yes           | Yes                   |
| 11/16 | No            | Yes           | Yes                   |
| 11/19 | No            | Yes           | Yes                   |
| 11/20 | Yes           | Yes           | Yes                   |

## MICROCONTROLLER – GSM MODULE INTEGRATION VALIDATION

**Method of Validation:** In order to validate the serial connection between the microcontroller and GSM module, I wrote a script to send the GSM module a new string of expected values every 5 minutes and observed the string received by the GSM module. I also validated the new parsing script run by the GSM module by ensuring that the MQTT Client stored the values in the database correctly,

| Trial | Time  | String Sent from ODROID       | String Received by GSM        | Received by MQTT Client | Stored in Database Correctly |
|-------|-------|-------------------------------|-------------------------------|-------------------------|------------------------------|
| 1     | 11:53 | 4000;1;26.7;1;75.4;1;0;1;0;1  | 4000;1;26.7;1;75.4;1;0;1;0;1  | Yes                     | Yes                          |
|       |       | ;0;1;77.7;33.3;-96.7;0;0;0;0  | ;0;1;77.7;33.3;-96.7;0;0;0;0  |                         |                              |
| 2     | 11:58 | 4000;1;26.7;1;75.4;1;1;1;1    | 4000;1;26.7;1;75.4;1;1;1;1    | Yes                     | Yes                          |
|       |       | ;1;1;77.7;33.3;-96.7;0;0;0;0  | ;1;1;77.7;33.3;-96.7;0;0;0;0  |                         |                              |
| 3     | 12:03 | 4000;1;26.7;1;75.4;1;1;1;1    | 4000;1;26.7;1;75.4;1;1;1;1    | Yes                     | Yes                          |
|       |       | ;1;1;77.7;33.3;-96.7;5;5;5;5  | ;1;1;77.7;33.3;-96.7;5;5;5;5  |                         |                              |
| 4     | 12:08 | 4000;1;26.7;1;75.4;1;1;1;1    | 4000;1;26.7;1;75.4;1;1;1;1    | Yes                     | Yes                          |
|       |       | ;1;1;77.7;-12.2;44.4;5;5;5;5  | ;1;1;77.7;-12.2;44.4;5;5;5;5  |                         |                              |
| 5     | 12:13 | 5;1;40.3;1;20.2;1;1;1;1;1;1   | 5;1;40.3;1;20.2;1;1;1;1;1;1   | Yes                     | Yes                          |
|       |       | ;77.7;-12.2;44.4;5;5;5;5      | ;77.7;-12.2;44.4;5;5;5;5      |                         |                              |
| 6     | 12:18 | 0;0;00.0;0;00.0;0;0;0;0;0;0;0 | 0;0;00.0;0;00.0;0;0;0;0;0;0;0 | Yes                     | Yes                          |
|       |       | ;00.0;00.0;00.0;0;0;0         | ;00.0;00.0;00.0;0;0;0         |                         |                              |
| 7     | 12:23 | 0;0;00.0;0;00.0;0;0;1;1;1;1;1 | 0;0;00.0;0;00.0;0;0;1;1;1;1;1 | Yes                     | Yes                          |
|       |       | ;00.0;00.0;00.0;0;0;0         | ;00.0;00.0;00.0;0;0;0         |                         |                              |
| 8     | 12:28 | 0;0;00.0;0;00.0;0;0;1;1;1;1;1 | 0;0;00.0;0;00.0;0;0;1;1;1;1;1 | Yes                     | Yes                          |
|       |       | ;00.0;00.0;00.0;1;1;1;1       | ;00.0;00.0;00.0;1;1;1;1       |                         |                              |