INTERNAT. KL. H 05 g

AUSLEGESCHRIFT 1149832

S 72719 VIII c/21g

ANMELDETAG: 25. FEBRUAR 1961

BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER AUSLEGESCHRIFT:

6. JUNI 1963

1

Die Erfindung bezieht sich auf einen Hochfrequenz-Chirurgieapparat, der mit Anschlüssen für mindestens eine Operationselektrode und eine neutrale Elektrode versehen ist.

Bei Operationen mit solchen Apparaten treten mitunter Verbrennungen an verschiedenen, nicht im Operationsfeld liegenden und auch von der neutralen Elektrode freien Körperstellen des Patienten auf, ohne daß es bislang möglich gewesen ist, die Ursache dieser Schädigungen zu klären.

Der Erfindung liegen umfangreiche Überlegungen und Meßreihen zugrunde, die zur Erkenntnis der Ursache für die genannten Verbrennungen geführt haben. Die Erfindung stellt sich die Aufgabe, an Hand dieser Erkenntnis einen Hochfrequenz-Chirurgie- 15 apparat anzugeben, der mit Mitteln versehen ist, die derartige Verbrennungen vermeiden.

An Hand der Fig. 1 soll zunächst die Ursache für die Verbrennungen und danach in Verbindung mit den übrigen Figuren die Erfindung an Hand von Aus- 20 führungsbeispielen erläutert werden.

Fig. 1 zeigt das Ersatzschaltbild eines üblichen Hochfrequenz-Chirurgieapparates in Verbindung mit dem Operationstisch und dem Patienten.

Von den übrigen Figuren veranschaulicht

Fig. 2 das Ersatzschaltbild eines Hochfrequenz-Chirurgieapparates mit Mitteln zur Verhütung der vorgenannten Verbrennungen,

Fig. 3 die Ansicht eines Hochfrequenz-Chirurgieapparates in schematisierter Darstellung, der mit den 30 Mitteln nach Fig. 2 zur Verbrennungsverhütung ausgerüstet ist,

Fig. 4 das Ersatzschaltbild eines Hochfrequenz-Chirurgieapparates mit einer anderen Anordnung der Mittel zur Verbrennungsverhütung.

Die in den Figuren miteinander übereinstimmenden Teile sind dabei mit dem gleichen Bezugszeichen ver-

Gemäß Fig. 1 bestehen zwischen dem Chirurgieapparat 1 mit dem Hochfrequenzgenerator 2 und dem 40 schematisch angedeuteten Patienten 3 drei verschiedene elektrische Verbindungswege. Der erste Verbindungsweg setzt sich aus der an den aktiven Pol 4 des Generators angeschlossenen Zuleitung 5 mit der Zuleitungsinduktivität 6 und der aktiven Chirurgieelek- 45 trode 7 zusammen. Der zweite Verbindungsweg wird aus der an den inaktiven Pol 8 des Hochfrequenzgenerators bzw. die Masse des Gerätes angeschlossenen Verbindungsleitung 9 mit der Zuleitungsinduktivität 10 sowie der neutralen Elektrode 11 gebildet. 50 Der dritte Verbindungsweg schließlich besteht aus der Kapazität 12, die sich aus allen Einzelkapazitäten

Hochfrequenz-Chirurgieapparat

Anmelder:

Siemens-Reiniger-Werke Aktiengesellschaft, Erlangen, Luitpoldstr. 45-47

> Dipl.-Ing. Walter Krause, Erlangen, ist als Erfinder genannt worden

zwischen dem Patienten, dem Operationstisch und dem übrigen Operationsraum zusammensetzt, der Erde 13 und der Induktivität 14. Letztere ist in der Praxis durch die Selbstinduktionen der einzelnen Leitungen im Netzanschlußkabel gegeben. Diese Selbstinduktionen sind netzseitig über die Installationskapazitäten mit der Erde und an ihren geräteseitigen Enden über die inneren Kapazitäten der Netzanschlußbauteile, beispielsweise über die Wicklungskapazitäten des Netztransformators, hochfrequenzmäßig einander parallel geschaltet, so daß sie als gemeinsame Induktivität 14 wirksam sind. Die in Fig. 1 noch eingezeichnete Kapazität 15 bezeichnet die Kapazität des Apparategehäuses 1 gegen Erde und kann zunächst außer Betracht bleiben.

Die Ursache für die unerwünschten Verbrennungen liegt im letztgenannten Verbindungsweg, und zwar besteht folgender Zusammenhang: Die Teile 9, 10 und 11 des zweiten Verbindungsweges sowie der Patient 3 bilden zusammen mit den Teilen 12, 13 und 14 des dritten Verbindungsweges einen geschlossenen Schwingkreis, der nach Maßgabe der elektrischen Werte der einzelnen genannten Teile eine bestimmte Eigenfrequenz besitzt. Bei bestimmten räumlichen Anordnungen der einzelnen Teile dieses Kreises zueinander und gegenüber der Netzerde tritt der Fall ein, daß die Eigenfrequenz dieses Schwingkreises im Bereich der Arbeitsfrequenz des Generators liegt. In einem solchen Fall wird während des Operationsvorganges durch die dem genannten Schwingkreis und dem eigentlichen Arbeitskreis 5, 6, 7 gemeisame Induktivität 10 der Zuleitung 9 zur neutralen Elektrode 11 in den Schwingkreis 9, 10, 11, 12, 13 und 14 mit dem Patienten 3 Hochfrequenzenergie eingekoppelt. Dabei entstehen in diesem Schwingkreis Spannungen und Blindströme, die beträchtliche Werte annehmen

können und mitunter wesentlich höher sind als die Spannungen und Ströme, die vom Generator 2 geliefert werden. Damit ist aber die Gefahr von unbeabsichtigten Verbrennungen an praktisch beliebigen Körperstellen des Patienten, zumeist aber an vorstehenden Körperteilen wie etwa Hüftknochen- und Steißbein gegeben.

Zur Vermeidung dieser Verbrennungen ist erfindungsgemäß, vorzugsweise an der Einführungsstelle des Netzanschlußkabels in den Apparat, in jeden 10 Stromversorgungsleiter zum Generator und in den etwaigen Schutzleiter 18 je eine so bemessene Induktionsspule 26, 27, 28 eingeschaltet, daß die Gesamtinduktivität der Parallelschaltung aller Spulen die maximal zwischen dem Schutzgehäuse und Erde vor- 15 handene Kapazität 15 in der Größenordnung von etwa 50 bis 500 pF zu einem als Sperrkreis dienenden Schwingungskreis ergänzt, der zumindest angenähert auf die Arbeitsfrequenz des Apparates abgestimmt ist. Der gleiche Erfolg wird auch durch eine Abwand- 20 lung dieses Gerätes erzielt, die dadurch gekennzeichnet ist, daß statt dessen mindestens eine der beiden Ausgangsklemmen des Hochfrequenzgenerators, vorzugsweise die Ausgangsklemme 8 für die inaktive Elektrode 11, mit dem Metallgehäuse des 25 Apparates bzw. einem Erdungsanschluß des Apparates verbunden ist über eine Induktionsspule 54 bzw. 57 solcher Induktivität, daß diese die zwischen dieser Ausgangsbuchse 8 bzw. 4 und dem Gerätegehäuse vorhandene Kapazität 55 bzw. 56 in der Größenord- 30 nung von etwa 5 bis 50 pF zu einem Schwingungskreis ergänzt, der zumindest angenähert auf die Arbeitsfrequenz des Apparates abgestimmt ist, während die Stromversorgungsleitungen zum Generator unbeschaltet sind (Fig. 4). Durch die erfindungs- 35 gemäße Ausbildung des Gerätes werden die erwähnten Verbrennungen dadurch vermieden, daß infolge der gebildeten Schwingungskreise der Verbindungsweg über die Teile 12, 13, 14 und den Patienten 3 für die Arbeitsfrequenz des Gerätes hochohmig gemacht 40

In dem Ausführungsbeispiel nach Fig. 2 sind die Leitungen des Netzanschlußkabels einzeln eingezeichnet und mit 16, 17 und 18 bezeichnet. Die gemeinsame Kabelumhtillung ist mit 19 bezeichnet. 45 Hierbei stellen die Leitungen 16 und 17 die stromführenden Leitungen und die Leitung 18 die sogenannte Schutzleitung für die Schutzerdung des Gerätegehäuses dar. Die Leitungen 16 und 17 sind mit den Steckern 20 und 21, die Schutzleitung mit 50 dem Erdstecker 23 versehen, welcher mit dem Schutzkontakt 25 in Steckverbindung steht, während die Stecker 20 und 21 an den aus Vereinfachungsgründen nicht mit gezeichneten Anschlußbuchsen des Stromversorgungsnetzes oder auch einer Batterieanlage 55 (z. B. bei Fahrzeuganlagen) in Steckverbindung stehen. Die in Fig. 1 mit 14 bezeichnete gemeinsame Induktivität ist in Fig. 2 in die Teilinduktivitäten 14a, 14b und 14c aufgeteilt. In Serie zu diesen sind bei dem erfindungsgemäßen Gerät zusätzlich die Induk- 60 tionsspulen 26, 27 und 28 eingeschaltet, deren Induktivität wesentlich größer ist als der Wert der Induktivitäten 14a bis 14c. Durch den Hochfrequenzwiderstand dieser Induktivitäten läßt sich der Widerstand des Verbindungsweges 12 bis 14 so weit 65 erhöhen, daß unbeabsichtigte Hochfrequenzverbrennungen unwahrscheinlich sind. Ein größerer Effekt wird jedoch erzielt, wenn die Induktionsspulen 26 bis

28 im Sinne der Erfindung in ihrem Selbstinduktionswert so bemessen sind, daß ihre Parallelschaltung mit der Kapazität 15 des Gerätegehäuses 1 gegen Erde etwa einen Parallelschwingkreis bildet, der auf die Arbeitsfrequenz des Apparates abgestimmt ist. Hierdurch wird ein Sperrkreis gebildet, der den Gesamtwiderstand des Verbindungsweges 12 bis 14 gegenüber dem Wert bei Weglassung der Spulen 26 bis 28 wesentlich (mehrere Zehnerpotenzen) erhöht. Es ist offensichtlich, daß unter derartigen Bedingungen kein für eine Verbrennung hinreichender Stromfluß über die Kapazität 12 bzw. keine zu Überschlägen Anlaß gebende Spannung über die Kapazität 12 entstehen kann. Um unerwünschte Eigenresonanzen der Spulen 26, 27 und 28 zu verhindern, sind ihre Anfänge oder ihre Enden oder auch beides durch die Kapazitäten 29, 30 und/oder 31, 32 hochfrequenzmäßig miteinander verbunden.

Besonders zweckmäßige Verhältnisse werden geschaffen, wenn man die Spulen 26 bis 28 so groß wählt, daß ihre Parallelschaltung zusammen mit dem größten in der Praxis vorkommenden Wert der Kapazität 15 eine Eigenfrequenz ergibt, die etwas unterhalb der Arbeitsfrequenz des Generators liegt. Hierdurch wird erreicht, daß auf jeden Fall der Widerstand der Parallelschaltung: Netzzuleitung und Kapazität 15 kapazitiv bleibt, so daß unter keiner der in der Praxis vorkommenden Bedingungen ein frequenzmäßig in die Nähe der Arbeitsfrequenz kommender Schwingungskreis über die Erde 13 entstehen kann.

Die Spulen 26 bis 28 sind an sich in bekannter Weise aufgebaut. Wegen des Stromflusses in den Leitungen 16 und 17 sind die Spulen 26 und 27 als Luftspulen ausgeführt, die in der Schutzleitung 18 liegende Spule ist dagegen mit einem Hochfrequenzeisenkern versehen. Es ist daher zweckmäßig, den Spulen 26 bis 28 jeweils nicht die gleiche Induktivität zu geben, sondern die Spule 28 so zu bemessen, daß ihre Selbstinduktivität wesentlich größer ist als diejenige der Spulen 26 bzw. 27. Auf diese Weise lassen sich die stromführenden Spulen 26 und 27 wesentlich kleiner und daher mit geringerem ohmschem Widerstand aufbauen als bei gleicher Bemessung aller Spulen. In einem praktisch ausgeführten Beispiel wurde eine maximale Kapazität 15 des Gerätes 1 gegen Erde von 250 pF gemessen und dementsprechend die Spulen 26 und 27 zu je 80 µH und die Spule 28 zu 900 µH gewählt. Bei gleicher Dimension aller drei Spulen müßte jede Spule zu 120 µH gewählt werden.

Für eine sichere Funktionsweise sind die Spulen 26 bis 28 in unmittelbarer Nähe der Einführungsstelle des Netzkabels im Apparat anzubringen. Die Anbringung kann hierbei im Inneren des Gerätes oder auch außerhalb, beispielsweise auch nachträglich, z. B. in einem kleinen Anbaukasten, erfolgen. Perner soll das Netzanschlußkabel so in das Gerätegehäuse eingeführt sein, daß keine nennenswerten Kapazitäten zwischen seinen Leitungen und dem Gerätegehäuse bestehen.

Im Ausführungsbeispiel gemäß Fig. 3 wurde die Anordnung der Spulen 26 bis 28 innerhalb des Gerätegehäuses 33 mit den Laufrollen 34, 35, 36, dem Handgriff 37, dem Leistungsregler 38, dem Stromartwahlschalter 39, dem Anzeigeinstrument 40 und der Signallampe 41 gewählt. Die Netzzuleitung 19 ist durch ein in einer Aussparung der Geräterlickwand 42 eingesetztes Isolierstoffbrettchen 43 kapazitätsarm

9

6

in das Innere des Gerätes geführt. Die Spulen 26 bis 28, an welche die Leitungen 16, 17 und 18 des Netzkabels in nicht gezeichneter Weise angeschlossen sind, sind nahe bei der Einführungsstelle dieses Kabels mittels Isolierstoffbrettchen 44 und 45 sowie 5 Winkelmetallstücken 46 und 47 an einer senkrechten Trennwand 48 befestigt. Die anderen Enden der Spulen 26 bis 28 sind an Lötösen 49, 50 und 51 geführt, die in dem Isolierstoffbrettchen 45 sitzen und an die das zu den Netzanschlußbauteilen des Ge- 10 rätes führende Kabel 53 angeschlossen ist. Es ist selbstverständlich nicht erforderlich, daß die Spulen 26 bis 28, wie gezeichnet, als unterteilte Zylinderspulen aufgebaut sind; sie können vielmehr in jeder bekannten Art ausgeführt sein, beispielsweise als 15 Scheiben- oder als Kreuzwickelspulen.

Die Fig. 4 zeigt eine abgewandelte Ausführung der Erfindung, bei der die Netzanschlußleitungen ohne zusätzliche Beschaltung in das Geräteinnere und an die Netzanschlußbauteile geführt sind; die Selbst- 20 induktivitäten der Netzleitungen sind daher, analog zu Fig. 1, wieder als resultierende Induktivität 14 dargestellt. Im Unterschied zum Ausführungsbeispiel in Fig. 2 ist hier der Hochfrequenzgenerator 2 mit seinem für die neutrale Elektrode bestimmten An- 25 schluß nicht unmittelbar an das Gerätegehäuse angeschlossen. Vielmehr erfolgt dies unter Zwischenschaltung einer Selbstinduktionsspule 54. Diese soll mit der Kapazität 55 des der Buchse 8 zugeordneten Ausgangs des Hochfrequenzgenerators gegen das 30 Gerätegehäuse einen Schwingkreis bilden und ist im übrigen nach denselben Gesichtspunkten zu bemessen wie die resultierende Induktivität der Spulen 26 bis 28 bei der Ausführung nach Fig. 2. Bei der Ausführung nach Fig. 4 ist ferner die Leitung 9, wie ge- 35 zeichnet, isoliert in das Geräteinnere zu führen.

In der Ausführung nach Fig. 4 kann es mitunter zweckmäßig sein, auch die Kapazität 56 des der Anschlußbuchse 4 zugeordneten Ausganges zu kompensieren. Dies erfolgt auf analoge Weise wie bei 40 dem der Buchse 8 zugeordneten Ausgang mit der Induktionsspule 57.

Der Vorteil der Ausführung nach Fig. 4 liegt im geringeren Aufwand, da einerseits weniger Induktionsspulen erforderlich sind und andererseits die 45 Spulen in ihren Abmessungen kleiner gewählt werden können, da keine Netzleistung durch sie fließt. Ferner kann diese Anordnung auch bei Chirurgiegeräten eingesetzt werden, bei denen die Stromversorgungseinrichtung im Gerät eingebaut ist (z. B. in Form einer 50 Akkumulatorenbatterie) und bei denen der hochfrequente Verbindungsweg des Generators über die

Kapazität 15 zur Erde besonders hochohmig gemacht werden soll.

PATENTANSPRÜCHE:

1. Hochfrequenz-Chirurgieapparat mit Anschlüssen für mindestens eine Operationselektrode und eine neutrale Elektrode und mit Stromversorgungsanschluß, dadurch gekennzeichnet, daß, vorzugsweise an der Einführungsstelle des Netzanschlußkabels in den Apparat, in jeden Stromversorgungsleiter zum Generator und in den etwaigen Schutzleiter (18) je eine so bemessene Induktionsspule (26, 27, 28) eingeschaltet ist, daß die Gesamtinduktivität der Parallelschaltung aller Spulen die maximal zwischen dem Schutzgehäuse und Erde vorhandene Kapazität (15) in der Grö-Benordnung von etwa 50 bis 500 pF zu einem als Sperrkreis dienenden Schwingungskreis ergänzt, der zumindest angenähert auf die Arbeitsfrequenz des Apparates abgestimmt ist.

2. Abwandlung eines Hochfrequenz-Chirurgieapparates nach Anspruch 1, dadurch gekennzeichnet, daß statt dessen mindestens eine der beiden Ausgangsklemmen des Hochfrequenzgenerators, vorzugsweise die Ausgangsklemme (8) für die inaktive Elektrode (11), mit dem Metallgehäuse des Apparates bzw. einem Erdungsanschluß des Apparates verbunden ist über eine Induktionsspule (54 bzw. 57) solcher Induktivität, daß diese die zwischen dieser Ausgangsbuchse (8 bzw. 4) und dem Gerätegehäuse vorhandene Kapazität (55 bzw. 56) in der Größenordnung von etwa 5 bis 50 pF zu einem Schwingungskreis ergänzt, der zumindest angenähert auf die Arbeitsfrequenz des Apparates abgestimmt ist, während die Stromversorgungsleitungen zum Generator unbeschaltet sind (Fig. 4).

3. Chirurgieapparat nach Anspruch 1, dadurch gekennzeichnet, daß die in die Schutzleitung des Netzanschlußkabels eingeschaltete Induktionsspule (28) eine wesentlich größere Induktivität besitzt als die Induktionsspulen (26, 27) in den stromführenden Leitungen des Netzanschlußkabels.

 Apparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Resonanzfrequenz des Schwingungskreises etwas unterhalb der Arbeitsfrequenz des Apparates liegt.

5. Apparat nach Anspruch 1, dadurch gekennzeichnet, daß zumindest die einen Enden der Induktionsspulen über Kondensatoren hochfrequenzmäßig miteinander verbunden sind.

Hierzu 1 Blatt Zeichnungen

309 599/200