Review Assignment 1

Nalet Meinen Machine Learning

October 5, 2019

1 Linear algebra review

1. $S = \{v_1, ..., v_n\}$ be an orthogonal set of non-zero vectors in \mathbb{R}^n . Prove that the vectors in S are linearly independent.

We assume a linear combination

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$$

We want to show that

$$c_1 = c_2 = \dots = 0$$

The dot product of v_i for each i = 1, 2, ..., k:

$$0 = v_i \cdot 0$$

= $v_i \cdot (c_1 v_1 + c_2 v_2 + \dots + c_k v_k)$
= $c_1 v_i \cdot v_1 + c_2 v_i \cdot v_2 + \dots + c_k v_i \cdot v_k$

S is an orthogonal set, we have $v_i \cdot v_j = 0$ if $i \neq j$, then we have:

$$0 = c_i v_i \cdot v_i = c_i ||v_i||^2$$

 v_i is nonzero and length $||v_i||$ is nonzero, following that $c_i = 0$ We conclude that $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$ for every i = 1, 2, ..., k, so S is **linearly independent**

2. Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$ show that $x^{\mathsf{T}}Ax = x^{\mathsf{T}}(\frac{1}{2}A + \frac{1}{2}A^{\mathsf{T}})x$.

We assume that:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} x = \begin{pmatrix} b_1 & b_2 & \dots & b_m \end{pmatrix} \quad \text{where } m = n$$

The transposed values are:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} x^{\mathsf{T}} = \begin{pmatrix} b_1 & b_2 & \dots & b_m \end{pmatrix}$$

We want to show that this equation is true:

$$x^{\mathsf{T}} A x = x^{\mathsf{T}} (\frac{1}{2} A + \frac{1}{2} A^{\mathsf{T}}) x$$

If we insert the matrices:

$$(b_1 \quad b_2 \quad \dots \quad b_m) \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} (b_1 \quad b_2 \quad \dots \quad b_m) = (b_1 \quad b_2 \quad \dots \quad b_m) \left(\frac{1}{2} \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots \end{bmatrix} \right)$$