Permanent Magnet Synchronous Machine in dq (EMPSMDQ301MSEREF) Documentation

July 30, 2021

Description

This is the electromagnetic model of a permanent magnet synchronous machine (PMSM) in (d)irect and (q)uadrature coordinates.

Features

- Linear magnetic effects assumed
- Saliency effects considered (assuming sinusoidal¹ rotor flux and inductances over rotor position.)
- Linear temperature effects are considered for the stator windings respectively for the rotor magnets
- Ohmic losses considered
- Simple cogging torque effects considered

¹german: Grundwellenmodell.

Application area

For more information about the application area, please consult the library documentation of the MSERef emachines library.

Model assumptions and limits

• No iron loss (neither eddy current nor magnetic hysteresis effects) considered

Solver settings

It is recommended to use a stiff solver if this model is connected to a drive (b6-bridge) where commutation effects are considered.

Model Equations

Note that the following equations hold for SI units. Since some inputs of this model are not in SI units a unit conversion is done before the calculation. The following conversions are performed:

$$\omega = n_{RPM} \cdot \frac{\pi}{30} \frac{min}{rev} \frac{rad}{s} \tag{1}$$

$$\varphi = \varphi_{In} \cdot \frac{\pi}{180} \frac{1^{\circ}}{rad} \tag{2}$$

The expression of the currents in the machine expressed in dq-coordinates is given by equations [3].

$$V_d = R_m \cdot I_d + L_d \cdot \frac{dI_d}{dt} - L_q \cdot I_q \cdot N \cdot \omega$$
(3a)

$$V_q = R_m \cdot I_q + L_q \cdot \frac{dI_q}{dt} + L_d \cdot I_d \cdot N \cdot \omega + K_m \cdot N \cdot \omega$$
(3b)

The expression of the ideal electromagnetic motor torque is given by equation [4].

$$T = \frac{3}{2} \cdot N \cdot [K_m I_q + (L_d - L_q) I_d I_q] + T_{cog}$$
(4)

Where

$$T_{cog} = A_{cog} \cdot \sin(N_{cog} \cdot \varphi). \tag{5a}$$

The expression of the winding losses is given by equation [6].

$$P_{loss} = \frac{3}{2} \cdot R_m \cdot (I_d^2 + I_q^2)$$

$$\tag{6}$$

Temperature effects are taken into account via the stator winding temperature dependent stator winding resistance:

$$R_m = R_{20} \cdot [1 + \alpha \cdot (\vartheta_s - 20)] \tag{7}$$

In addition, the reduction of the magnetic remanence caused by rotor temperature is taken into account:

$$K_m = K_{m20} \cdot [1 + \alpha_{mag} \cdot (\vartheta_r - 20)] \tag{8}$$

The derivation of the equations [3] and [4] is documented in the background documentation of the MSERef emachines library.

Model validation

This model has been validated for machines with sinusoidal rotor flux, please consult the *Validation* section in the overview documentation of the MSERef emachines library.

Code Generation

To inquire if it is principally possible to generate code from this block, please consult the related *Code generation* section in the overview documentation.

Parameter Transformations

There exists a dq - abc inductance transformation that makes it possible to parameterize the model of a three-phase permanent magnet synchronous machine described in abc coordinates with inductance values computed in dq coordinates and vice-versa. For more information about this transformation, please consult the Dq - abc inductance transformation section in the background documentation of the MSERef emachines library.

Permanent Magnet Synchronous Machine in dq (EMPSMDQ301MSEREF) Documentation

Parameters

Type ²	Name	Description	Symbol	Unit	Default	Values		
Initial values								
F	xIdinit	Initial stator current in d direction	$I_{d,0}$	A	0	$[-10^9, 10^9]$		
F	xIqinit	Initial stator current in q direction	$I_{q,0}$	A	0	$[-10^9, 10^9]$		
Parame	Parameters							
I	N	Number of pole pairs	N		2	[1, 1000]		
F	R20	Winding resistance at 20 °C	R_{20}	Ω	0.1	$[0, 10^9]$		
F	Ld	d axis inductance	$L_{ m d}$	Н	0.5^{-4}]0.0, 1.0]		
F	Lq	q axis inductance	$L_{\mathbf{q}}$	Н	10^{-4}]0.0, 1.0]		
F	Km20	Fundamental of flux at 20 $^{\circ}\mathrm{C}$	K_{m20}	Vs	0.005	$[0, 10^9]$		
F	Acog	Amplitude of cogging torque	A_{cog}	Nm	0	$[0, 10^9]$		
F	Ncog	Number of cogging positions	N_{cog}	-	0	$[0, 10^3]$		
F	alpha	Thermal coefficient of resistance	α	1/K	0	[-1, 1]		
F	alphamag	Thermal coefficient of remanence	$lpha_{mag}$	1/K	0	[-1, 1]		

Ports

Inputs

Direction	\mathbf{Type}	Name	Symbol	Description	Unit
input	Float	Vd	$V_{ m d}$	Stator voltage in d direction	V
input	Float	Vq	$V_{\mathbf{q}}$	Stator voltage in q direction	V
input	Float	phi	φ_{In}	Rotor position	deg
input	Float	nRPM	n_{RPM}	Rotor speed	$rev min^{-1}$
input	Float	$theta_s$	ϑ_s	Stator winding temperature	$^{\circ}\mathrm{C}$
input	Float	$theta_r$	ϑ_r	Rotor magnet temperature	$^{\circ}\mathrm{C}$

Outputs

Direction	\mathbf{Type}	Name	Symbol	Description	\mathbf{Unit}
output	Float	Id	$I_{ m d}$	Stator current in d direction	A
output	Float	Iq	$I_{ m q}$	Stator current in q direction	A
output	Float	T	T	Motor torque	N m
output	Float	Ploss	P_{loss}	Power loss	W
output	Vector/Bus	Internals		Internals output vector (more information)	

²I: Integer parameter, F: Float parameter

Permanent Magnet Synchronous Machine in dq (EMPSMDQ301MSEREF) Documentation

States

$Type^3$	Name	Symbol	Description	Unit	Initial Value
CS	xId	I_d	Stator current in d direction	A	xIdinit
CS	xIq	I_q	Stator current in q direction	A	xIqinit

Internal Variables

$\mathrm{Type^4}$	Name	Symbol	Description	Unit
IF	Km	K_m	Magnetic remanence	Vs
IF	Tcog	T_{cog}	Cogging torque	Nm
IF	Rm	R_m	Winding resistance	Ω

³CS: Continuous state ⁴IF: Internal float