Claim Amendments and Complete Listing of the Claims

1. – 4. (Canceled)

- 5. (Currently amended) A 3-[(indole-3-yl) methylene]-2-indolinone compound having a substituent at the 1' position of the indole, where the substituent at the 1' position is selected from the group consisting of,
- (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (c) an aldehyde or ketone of formula - $CO-R_{12}$, where R_{12} is selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (d) a carboxylic acid of formula - (R_{13}) n-COOH or ester of formula - (R_{14}) m-COO- R_{15} , where R_{13} , R_{14} , and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (e) a sulfone of formula $\underline{-(SO_2)-R_{16}}$, $\underline{-(SO_2)-R_{16}}$, where R_{16} is selected from the group consisting of alkyl and a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- (f) $-(R^{17})_n$ -(indo1e-1-yl) or $-(R_{18})$ m-CHOH- $-(R_{19})$ p-(indole-1-yl), where the indol moiety is optionally substituted with an aldehyde and R_{17} , R_{18} , and R_{19} are alkyl and m, n, and p are independently 0 or 1; and
- (g) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring or a salt, isomer, ester, amide, or prodrug thereof.

6. (Currently amended) The compound, salt, isomer, metabolite, ester, amide, or prodrug of claim 5, wherein said compound has the formula,

$$R_{6}$$
 R_{7}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

where (a) R₁ is selected from the group consisting of,

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) an aldehyde or ketone of formula -CO- R_{12} , where R_{11} is selected from the group consisting of hydrogen, alkyl, or and a five or six membered heterocyclic ring;

- (iv) a carboxylic acid of formula $(R_{13})_n$ -COOH or ester of formula - $(R_{14})_m$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) a sulfone of formula (SO_2) - R_{16} , where R_{16} is selected from the group consisting of alkyl or a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- (vi) $-(R_{17})_n$ (indole-1-yl) or $-(R_{18})_m$ -CHOH- $-(R_{19})_p$ -(indole-1-yl), $-(R_{18})_m$ -CHOH- $-(R_{19})_p$ -(indole-1-yl), where the indol moiety is optionally substituted with an aldehyde and R_{17} , R_{18} , and R_{19} are alkyl and n, m, and p are independently 0 or 1;
- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;
 - (b) R_2 , R_3 , R_4 , R_5 , and R_6 are selected from the group consisting of,
- (i) hydrogen or alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) an aldehyde or ketone of formula -CO-R₂₀, where R₂₀ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $\frac{-(R_{21})_n COOH}{-(R_{21})_n COOH}$ or ester of formula (R_{22}) -COO- R_{23} , where R_{21} , R_{22} , and R_{23} and are independently selected from the group

consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

- (v) halogen or an alcohol of formula $\underline{-(R24)_m-OH}$, $\underline{(R24)m-OH}$ or an ether of formula $\underline{-(R_{24})_n-O-R_{25}}$, where R_{24} and R_{25} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vi) $-NR_{26}R_{27}$, where R_{26} and R_{27} are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring; or $-NHCOR_{28}$, where R_{28} is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (vii) $-SO_2NR_{29}R_{30}$, $-SO_2NR_{29}R_{30}$, where R_{29} and R_{30} are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (viii) any two of R₃, R₄, R₅, or R₆ taken together form a bicyclic or tricyclic hetercyclic hetercyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
 - (c) R₇, R₈, R₉, and R₁₀ are independently selected from the group consisting of,
- (i) hydrogen or alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the, ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;

- (iii) an aldehyde or ketone of formula -CO-R₃₁, where R₃₁ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $\underline{-(R_{32})_n\text{-COOH}}$ $\underline{-(R_{32})n\text{-COOH}}$ or ester of formula $\underline{-(R_{32})_m\text{-COO-R}_{34}}$, where R_{32} , R_{33} , and $\underline{R_{34}}$ R34 and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) halogen or an alcohol of formula $\underline{-(R_{35})_{m}}$ -OH (R_{35})m-OH or an ether of formula $\underline{-(R_{35})_{n}}$ -O- R_{362} (R_{35})n-O- R_{362} where R_{35} and R_{36} are independently chosen from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vi) -NR₃₇R₃₈, where R₃₇ and R₃₈ are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring; or -NHCOR₃₉, where R₃₉ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (vii) $-SO_2NR_{29}R_{30}$, $-SO_2NR_{29}R_{30}$, where R_{40} and R_{41} are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (viii) any two of R₇, R₈, R₉, or R₁₀ taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and
 - (d) R₁₁ is hydrogen or alkyl;

provided that at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , or R_{10} is alkyl or provided that at least four of R_1 , R_2 , R_3 , R_4 , R_5 , or R_6 are not hydrogen.

- 7. (Original) An optionally substituted 3-[(tetrahydroindole-2-yl) methylene] -2-indolinone or 3- [(cyclopentano-b-pyrrol-2-yl) methylene) -2-indolinone compound.
- 8. (Currently amended) The indolinone compound of claim 7 of formula XIX or XX,

XIX

$$R_{10}$$

XX

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$R_{10}$$

or a pharmaceutically acceptable salt, isomer, metabolite, ester, amide, or prodrug thereof where (a) R_1 is selected from the group consisting of,

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) ketone of formula -CO- R_{12} , where R_{12} R_{44} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})_m$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) a sulfone of formula -(SO₂)-R₁₆, where R₁₆ is selected from the group consisting of alkyl or a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- (vi) $-(R_{17})_n$ -(indole-1-yl) or $-(R_{18})_m$ -CHOH- $-(R_{19})_p$ -(indole-1-yl), where the indolemoiety is optionally substituted with an aldehyde and R_{17} , R_{18} , and R_{19} are alkyl and n, m, and p are independently 0 or 1;
- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;

- (b) R_2 , R_3 , R_3 , R_4 , R_4 , R_5 , R_5 , R_6 and R_6 are selected from the group consisting of,
- (i) hydrogen;
- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iv) ketone of formula -CO- R_{20} , where R_{20} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{21})_n$ -COOH or ester of formula $-(R_{22})$ -COO- R_{23} , where R_{21} , R_{22} , and R_{23} and are independently selected from the group consisting of alkyl or-a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (vi) halogen;
- (vii) an alcohol of formula $\underline{-(R_{24})_m}$ -OH $(R_{24})_m$ -OH or an ether of formula $-(R_{24})_n$ -O-R₂₅, where R₂₄ and R₂₅ are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (viii) $-NR_{26}R_{27}$, where R_{26} and R_{27} are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (ix) -NHCOR₂₈, where R₂₈ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;

- (x) $-SO_2NR_{29}R_{30}$, $-SO2NR_{29}R_{305}$, where R_{29} and R_{30} are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (xi) any two of R₃, R_{3'}, R₄, R_{4'}, R₅, R_{5'}, R₆, or R_{6'} taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
 - (c) R₇, R₈, R₉, and R₁₀ are independently selected from the group consisting of,
 - (i) hydrogen;
- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iv) ketone of formula -CO-R₃₁, where R₃₁, is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{32})_n$ -COOH or ester of formula $-(R_{33})_m$ -COO- R_{34} , where R_{32} , R_{33} , and R_{34} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
 - (vi) halogen;
- (vii) an alcohol of formula $(R_{35})_m$ -OH or an ether of formula $-(R_{35})_n$ -O- R_{36} , where R_{35} and R_{36} are independently chosen from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

- (viii) -NR₃₇R₃₈, where R₃₇ and R₃₈ are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (ix) -NHCOR₃₉, where R₃₉ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (x) $-SO_2NR_{40}R_{41}$, $-SO_2NR_{40}R_{41}$, where R_{40} and R_{41} are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (xi) any two of R₇, R₈, R₉, or R₁₀ taken together form a bicyclic or tricyclic heterocyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and
 - (d) R₁₁ is hydrogen or alkyl.
- 9. (Currently amended) An indolinone compound having a substituent at the 5 position of the oxindole ring, where the substituent at the 5 position of the oxindole ring is selected from the group consisting of
- (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (c) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (d) a carboxylic acid of formula $-(R_{11})_n$ -COOH $-(R_{14})$ n-COOH or ester of formula (R_{12}) -COO- R_{13} , where R_{11} , R_{12} , and R_{13} and are independently selected from the group

consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

- (e) halogen;
- (f) an alcohol of formula $\underline{-(R_{14})_{m}}$ -OH (R_{14}) -OH or an ether of formula $\underline{-(R_{14})_{m}}$ -OH or
- (g) $-NR_{16}R_{17}$, where R_{16} and R_{17} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (h) -NHCOR₁₈, where R₁₈ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (i) $-SO_2NR_{19}R_{20}$, $-SO2NR_{19}R_{207}$, where R_{19} and R_{20} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (j) any two of R₄, R₅, R₆, or R₇ taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring.
 - 10. (Currently amended) The compound of claim 9 of the following formula,

$$R_{4}$$
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{7}
 R_{1}
 R_{1}
 R_{1}
 R_{1}

where (a) R₅ is selected from the group consisting of,

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $\underline{-(R_{11})_n}$ -COOH $\underline{-(R_{11})_n}$ -COOH or ester of formula (R_{12}) -COO- R_{13} , where R_{11} , R_{12} , and R_{13} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;
- (vi) an alcohol of formula $\underline{-(R_{14})_m}$ -OH (R₁₄)m-OH or an ether of formula (R₁₄)n-O-R₁₅, where R₁₄ and R₁₅ are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) $-NR_{16}R_{17}$, where R_{16} and R_{17} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₁₈, where R₁₈ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;

- (ix) $-SO_2NR_{19}R_{20}$, where R_{19} and R_{20} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (x) any two of R₄, R₅, R₆, or R₇ taken together form a bicyclic or tricyclic <u>heterocyclic</u> heterocyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (b) R_1 is selected from the group consisting of a five, six, eight, nine, and ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more substituents selected from the group consisting of
- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO-R₂₁, where R₂₁ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $\underline{-(R_{22})_n}$ -COOH $\underline{-(R_{22})n}$ -COOH or ester of formula (R_{23}) -COO- R_{24} , where R_{22} , R_{23} , and R_{24} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;

- (vi) an alcohol of formula $\underline{-(R_{25})_m}$ -OH (R₂₅)m-OH or an ether of formula $\underline{-(R_{25})_n}$ -O- $\underline{R_{265}}$ where R_{25} and R_{26} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) -NR₂₇R₂₈, where R₂₇ and R₂₈ are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₂₉, where R₂₉ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (ix) $-SO_2NR_{30}R_{31}$, where R_{30} and R_{31} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
 - (c) R_4 , R_6 , and R_7 are independently selected from the group consisting of,
- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO-R₃₂, where R₃₂ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $\underline{-(R_{33})_n}$ -COOH $\underline{-(R_{33})_n}$ -COOH or ester of formula (R_{34}) -COO- R_{35} , where R_{33} R_{34} and R_{35} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;

- (vi) an alcohol of formula $\underline{-(R_{36})_{m}}$ -OH (R₃₆)m-OH or an ether of formula $\underline{-(R_{36})_{m}}$ -OH or a
- (vii) -NR₃₈R₃₉, where R₃₈ and R₃₉ are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₄₀, where R₄₀ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (ix) $-SO_2NR_{41}R_{42}$, where R_{41} and R_{42} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring; and
 - (d) R_2 is hydrogen or alkyl.
 - 11. (Original) A compound having formula XXI, wherein:

$$(OR_1)_m$$

$$R_3$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_7$$

$$R_8$$

$$R_8$$

XXI

- (a) A is a five or six membered ring comprised of atoms selected from the group consisting of oxygen, carbon, sulfer and nitrogen;
 - (b) m is zero, 1, or 2;
 - (c) R_1 is hydrogen, C_1 - C_6 alkyl or C_2 - C_6 alkanoyl;
- (d) one of R_2 and R_3 independently is hydrogen and the other is a substituent selected from:
 - (1) a C_1 - C_6 alkyl group substituted by 1, 2 or 3 hydroxy groups;
- (2) SO_3R_4 in which R_4 is hydrogen or C_1 - C_6 alkyl unsubstituted or substituted by 1, 2 or 3 hydroxy groups;
- (3) SO_2NHR_5 in which R_5 is as R_4 defined above or a -(CH₂)_n-N(C₁-C₆ alkyl)₂ group in which n is 2 or 3;
- (4) COOR₆ in which R₆ is C₁-C₆ alkyl unsubstituted or substituted by phenyl or by 1, 2 or 3 hydroxy groups or phenyl;
- (5) CONHR.₇ in which R_7 is hydrogen, phenyl or C_1 - C_6 alkyl substituted by 1, 2 or 3 hydroxy groups or by phenyl;
- (6) NHSO₂R₈ in which R₈ is C_1 - C_6 alkyl or phenyl unsubstituted or substituted by halogen or by C_1 - C_4 alkyl;
- (7) $N(R_9)_2$, NHR_9 or OR_9 wherein R_9 is C_2 - C_6 alkyl substituted by 1, 2 or 3 hydroxy groups;
- (8) NHCOR₁₀, OOCR₁₀ or CH_2OOCR_{10} in which R_{10} is C_1 - C_6 alkyl substituted by 1, 2 or 3 hydroxy groups;

(9) NHCONH₂; NH-C(NH₂)=NH; C(NH₂)=NH; CH₂NHC(NH₂)=NH; CH₂NH₂; OPO(OH)₂; CH₂OPO(OH)₂; PO(OH)₂; or a

wherein X is selected from the group consisting of CH_2 , SO_2 , CO, or $NHCO(CH_2)_p$ in which p is 1, 2, or 3 and Z is CH_2 , O or $N-R_{11}$ in which R_{11} is hydrogen or is as R_9 defined above.

- 12. (Withdrawn) A method of making an indolinone compound of any one of claims
 5-11 comprising the steps of reaching an appropriate aldehyde and oxindol and separating the indolinone from the aldehyde and oxindol reactants.
- 13. (Original) A pharmaceutical composition comprising (i) a pharmaceutically acceptable carrier or excipient and (ii) a compound according to any one of claims 5-11.
 - 14. 17. (Canceled)