Eq 205 - Machine Learning for Signal Processing
Home work 1

1) To Prove: The variance of M+1 dimensional projection $y_{m+1} = W_{m+1}^T \times is$ maximised by choosing $W_{m+1} = [W_m \ u_{m+1}]$, where $W_m = [u, u_2, u_m]$ and $u_1, \dots u_m, u_{m+1}$ are the orthonormal eigen vectors of S corresponding to the M+1 rangest eigen values.

Proof by Induction:

Base case: [When M=1]

The variance of y, = u, x is maximised by choosing u,, the eigen vector of 5 corresponding to the largest eigen value.

Proved in the lecture.

Induction Hypothesis:

Let us assume that the variance of M dimensional projection $y_{M} = w_{M} \times is$ maximised by $w_{M} = Eu, u_{2}, u_{M} J$ where u_{1}, u_{M} are the orthonormal eigen vectors of s corresponding to the M largest eigen values $\lambda_{1}, \dots \lambda_{M} \to 0$

To prove , for M+1

To find a vector up, such that the variance given by $u_{M+1}^T S_x u_{M+1}$ is maximised, where, $S_x = Sample$ covariance matrix of the data

max unti Sxum+1 -> 2

such that

1) umti is a unit vector [: only the direction is important, not the magnitude of the vector]

2) um+, is oxthogonal to the previously choosen M vectors u... um

=) UM+, U; = 0 -> A: +i=1 to M

Constrained Maximization Using Lagrangian Optimization

The constraints are given using the lagrangian multipliers λ_{M+1} , λ'_{1} ... λ'_{M}

Lagrangian = UT Sxum+, + >m+(1-UTUm+)
L(Um+1, >m+1, x', ... x'm)
+ \(\Sigma \chi' \text{ um+1} \cdot \chi' \text{ um+1} \cdot \chi' \cdot \cdot

max L

it to 0.

8L =0 -> 6

 $\Rightarrow \frac{\partial L}{\partial u_{M+1}} = (S_X + S_X) u_{M+1} + \lambda_0 - (I + I^T) \lambda u_{M+1}$ $+ \sum_{i=1}^{M} \lambda_i' u_i$

 $[X \times X] = (A + A^T) \times \text{ and}$

YUM+1 UM+1 = YUM+1 I UM+1]

=) &L = 25x um+1 - 2 \unimer, +\frac{M}{1=1} \lambda'; \uni = 0 -> 7

[: S_X is symmetric =) $S_X = S_X^T$: $S_X + S_X^T = S_X + S_X = 2S_X$]

Left multiply (7) with u, fox any autitrary

=> 2 2 uj Sum+1 - 2 x uj um+1 + uj \(\su \) i=1

=) AS uj. ui = 0 + 1 \(\) i, i \(\) M+1, j\(\) i and uj. uj = 1 . \(\) \(

= 2 uj sum+1 - 2 hio + h'; = 0

= $2u_{M+1}S_{x}u_{j} + \lambda'j = 0$ [: Sx is symmetric $u_{j}^{T}S_{x}u_{M+1} = u_{M+1}S_{x}u_{j}$]

From the Induction Hypothesis () Sxuj = xjuj

= = 2 UM+1 xjuj + x'j = 0

=) 2 \(\lambda\) \(\text{Um}_{+1} \text{U}\) + \(\lambda'\) = 0

=) 2 / j . 0 + / j = 0

=) \(\lambda'; = 0 \) for any j= 1 to M

 $\frac{\partial L}{\partial u_{M+1}} = 2 S \times u_{M+1} - 2 \lambda_{M+1} u_{M+1} = 0 \quad [On substituting value of \lambda'; on Eq(7)]$

=) 25x UM+1 = 2 > UM+1

=) Sx UM+1 = >M+1 UM+1

: um+1 is an eigen vector of Sx corresponding to eigen value λ_{M+1}

we have to find um, such that

max unti Sx unti = max unti Antiunti

= max \mu, um+, um+, um+,

= max >M+1

in Find the eigen vector upper, such that it has the langest eigen value among those not yet choosen (i.e. the M+1 th langest eigen value of Sx)

Hence proved

the other

10 Maries 11A

the was Att

a promotos

with this proof, we have PCA solution for any M & D.

(1010101010

At pools

an in to ressers to some

prokregatari acco a jo designes notro la ca

fish acris

61. 493.71

Water Sycomore II

Question (2) To prove

Px009:

Symmetric

claim:

$$\delta IAI = \int adj_{ii}$$
 if $i=j$ where,
 $\delta Aij = \int adj_{ii}$ if $i \neq j$ Aij = entry of ith row, jth column of A

Px00f:

case () : When i=j

Let A be a nxn matrix.

Expanding the determinant along the ith row

where cij = cofactor of Aij in A

As all other entries of A are independent of Aii other than itself

As A is a symmetric motrix,

adj A = C

where,

adj A = Adjoint of matrix A

c = cofactor matrix of A

=> Cii = adjii

i. diai = adjii -

dAii Case 2: When i #j

Expanding the determinant along the ith sow

= & (Ai, Ci, +Ai, Ci, +Ai, Ci, + Ai, Ci, + Ai, Ci, + Ai, Cin)

daij

Here, both Aij and Aji are dependent on Aij and all other entries are independent

Expanding all cofactors along jth row

= d(Air \(\frac{\text{Air}}{2} \) Air \(\frac{\text{Air}}{2} \) K=2

Air \(\frac{\text{Air}}{2} \) Air \(\frac{\

where where cofactor of Ajk of matrix A after removing ith row and methodology in column

Rewriting, by taking out Aji term

$$\frac{\partial (A_{ii} [A_{ji} C_{ji}]^{i} + \sum_{i} A_{jk} C_{jk}]}{A_{ii}} + A_{ii} \sum_{i} A_{jk} C_{jk} + A_{ii}}$$
 $\frac{\partial (A_{ii} [A_{ji} C_{ji}]^{i} + \sum_{i} A_{jk} C_{jk}]}{A_{ik}} + A_{ii} \sum_{i} A_{jk} C_{jk}$
 $+ A_{ij} [A_{ji} C_{ji}]^{i} + \sum_{i} A_{jk} C_{jk}$
 $+ A_{in} [A_{ji} C_{ji}]^{i} + \sum_{i} A_{jk} C_{jk}$
 $+ A_{in} [A_{ji} C_{ji}]^{i} + \sum_{i} A_{jk} C_{jk}$
 $+ A_{in} [A_{ji} C_{ji}]^{i} + \sum_{i} A_{jk} C_{jk}$

Differentiating with sespecting to Aij

$$= Aii \begin{bmatrix} A_{ii}^{ii} + O \end{bmatrix} + ... + O + ... + \begin{bmatrix} 2A_{ij} C_{ji}^{ii} + \sum A_{jk} C_{jk} \end{bmatrix}$$

$$+ Ain \begin{bmatrix} C_{ji}^{ii} + O \end{bmatrix}$$

$$= Aii C_{ji}^{ii} + ... + Aij C_{ji}^{ii} + ... + Ain C_{ji}^{ii} + Aji C_{ji}^{ii} + \sum A_{jk} C_{jk}$$

$$= \begin{bmatrix} A_{ii} C_{ji}^{ii} + ... + A_{ij} C_{ji}^{ij} + ... + A_{in} C_{ji}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{jk}^{ii} C_{jk}^{ik}$$

$$= \begin{bmatrix} A_{ik} C_{ji}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{jk}^{ii} C_{jk}^{ik}$$

$$= \begin{bmatrix} A_{ik} C_{ji}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{jk}^{ii} C_{jk}^{ii}$$

$$= \begin{bmatrix} A_{ik} C_{ji}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{jk}^{ii} C_{jk}^{ii}$$

$$+ Ain \begin{bmatrix} C_{ii}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{ik}^{ii} C_{jk}^{ii}$$

$$= \begin{bmatrix} A_{ik} C_{ji}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{ik}^{ii} C_{jk}^{ii}$$

$$+ Ain \begin{bmatrix} C_{ii}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{ik}^{ii} C_{jk}^{ii}$$

$$= \begin{bmatrix} A_{ik} C_{ji}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{ik}^{ii} C_{jk}^{ii}$$

$$+ Ain \begin{bmatrix} C_{ii}^{ii} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + \sum_{k=1}^{N} A_{ik}^{ii} C_{jk}^{ii}$$

$$= \begin{bmatrix} A_{ik} C_{ji} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + A_{ik} C_{jk}^{ii}$$

$$= \begin{bmatrix} A_{ik} C_{ji} + ... + A_{ik} C_{jk}^{ii} \end{bmatrix} + A_{ik} C_{jk}^{ii}$$

$$+ Ain C_{ji}^{ii} + ... + A_{ik} C_{ji}^{ii} + ... + A_{ik} C_{jk}^{ii} + ... + A_{ik} C_{jk}$$

Hence proved that

$$\frac{\forall AI}{\forall Aij} = \int adj_{ii} \quad \text{if } i=j$$

$$\begin{cases} 2adj_{ij} \quad \text{if } i\neq j \end{cases}$$

$$\frac{\partial |A|}{\partial A} = \begin{bmatrix} \frac{\partial |A|}{\partial A_{11}} & \frac{\partial |A|}{\partial A_{10}} \\ \vdots & \vdots & \vdots \\ \frac{\partial |A|}{\partial A_{01}} & \frac{\partial |A|}{\partial A_{00}} \end{bmatrix}$$

substracting and adding adjii at entry A at position (i,i), $\forall i=1$ to n

$$= \begin{bmatrix} 2adj_{11} - adj_{11} & 2adj_{1n} \\ 2adj_{1n} & 2adj_{1n} - adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{1n} \\ 2adj_{1n} & 2adj_{1n} \end{bmatrix} - \begin{bmatrix} adj_{11} & 0 \\ 0 & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{1n} \\ adj_{1n} & adj_{1n} \end{bmatrix} - \begin{bmatrix} adj_{11} & 0 \\ 0 & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ adj_{11} & adj_{1n} \end{bmatrix} - \begin{bmatrix} adj_{11} & 0 \\ 0 & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 2adj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 2adj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 2adj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 2adj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 2adj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 2adj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

$$= \begin{bmatrix} 2adj_{11} & 2adj_{11} \\ 1alj_{11} & adj_{1n} \end{bmatrix}$$

Hence Proved

AK

Question 2 (ii) To prove

where A,B are Square Symmetric matrices

Let A.B be matrices of size nxn

$$AB = \begin{bmatrix} \sum_{k=1}^{n} A_{1k} \cdot B_{k1} & \dots & \sum_{k=1}^{n} A_{1k} \cdot B_{kn} \\ \vdots & \ddots & \ddots & \vdots \\ \sum_{k=1}^{n} A_{nk} \cdot B_{k1} & \dots & \sum_{k=1}^{n} A_{nk} \cdot B_{kn} \end{bmatrix}$$

claim

$$\frac{\delta t \times (AB)}{8Aij} = \begin{cases} Bii & \text{if } i=j \\ 2Bij & \text{if } i\neq j \end{cases}$$

Proof:

case () when i=j

other than Aii, all other entries are independent of Aii.

Taking out Aii team

=> 8 (\(\Sigma Aik.Bki + ... + Aii.Bii + \Sigma Aik.Bki + ... + \Sigma Aik.Bki + ... + \Sigma Ank.Bki

NAII

NAII

K#I

K#I

Differentiating w. v.t Ali

= Bii

case 2 when i + j

other than Aij and Aji, all other entries are independent of Aij.

Taking out terms with Aij and Aji

= & (\sum_{AikBki} + \cdots + AijBji + \sum_{AikBki} + \cdots + AjiBji + \sum_{K=1} \cdots + \cdots + AjiBji + \cdots +

2Bn. . - . 2Bnn-Bnn-

$$= \begin{bmatrix} 28n & 28n \\ 28n & 28n \end{bmatrix} - \begin{bmatrix} 811 & 0 \\ 0 & -8nn \end{bmatrix}$$

$$= 2\begin{bmatrix} 811 & 81n \\ 8n1 & 8nn \end{bmatrix} - \begin{bmatrix} 811 & 0 \\ 0 & 8nn \end{bmatrix}$$

$$= 28 - diag(8)$$

1. 8tx (AB) = 2B-diag(B) AG n lesopoid o d'alla en

Hence proved

(のではは「(日火の)((4と)でかりましょう

STAW (Tur-seers) = TWO 1

all the state of the state of the

Question (3) (a)

To show: 37 = I, where I is dxd Identity

Given
$$y = \Lambda^{-1/2} W^{T} (x - \mu)$$

$$SY = \frac{1}{N} \sum_{n=1}^{N} y_n y_n^{T}$$

Substituting value of yn

AS N-1/2 is a diagonal matrix,

$$S_{T}^{9} = \frac{1}{N} \sum_{n=1}^{N} (N^{-1/2} W^{T} (x-\mu)) ((x \mu)^{T} W N^{-1/2})$$

$$= \frac{1}{N} \Lambda^{-1/2} W \left(\sum_{n=1}^{N} (x-\mu)(x-\mu)^{T} \right) W \Lambda^{-1/2}$$

W.K.t SxW=NW where , w is the eigen vectors of Sx with eigen values 1

=) N-1/2 WTN WN-1/2

= N-1/2 N WTW N-1/2

= N-1/2 N1/2 N1/2 I N-1/2

= N-1/2 N1/2 I N1/2 N-1/2

= NO I NO

ST = T

Hence proved

3 - 50 - 60

Office edolo assured to

7 18 French

62-3 - 32 (2

sales repis municom

E - 18 - 18 + 110.

The Attents (Le) to rosson rapis toil house ages municipas

1 W 63 10 4215 1 ASP 3 3 4 30 10 5

(We will the state of the state of

Question (3)6)

To show the first LDA projection vector with 1s given by the eigenvector of Sw with minimum magnitude of eigen value.

P8005:

The first LDA projection vector w is given by the eigen vector of sw. so with maximum eigen value,

where,

Sw = Within - class scatter matrix of

SB = Between - class Scatter data points

matrix

y... yn

W.K. + SB = ST - SX

AS ST = I

=) SB = I -SW

emaximum eigen value. (I-sw) with

Let Si. w' = > w'

i.e let w' be the eigen vector of sw with eigen value x.

Then (50) (I-50)

$$= (S_{\omega}^{3})^{-1} - (S_{\omega}^{3})^{-1} (S_{\omega}^{3})$$

$$= (S_{\omega}^{3})^{-1} - I$$

As λ is the eigen value of Si Jos the eigen vector ω'

$$((S_{M}^{M})^{-1}-I)\omega'=\left(\frac{1}{\lambda}-1\right)\omega'$$

To maximize 1 -1

$$=) \max_{\omega'} \left(\frac{1}{\lambda} - 1 \right)$$

$$=) \max_{\omega'} \left(\frac{1-\lambda}{\lambda} \right)$$

$$=$$
) min $\left(\frac{\lambda}{(\lambda-1)}\right)$

As $s\omega$ is a positive Semi-definite matrix $\lambda \geq 0$.

$$\frac{1}{\omega'} = \min_{\lambda} \lambda$$

Hence shown, that the first LDA projection vector w' is given by the eigenvector w' of sw with minimum magnitude of eigenvalue \lambda.