TD 3 Compléments sur les applications

1 Applications injectives, surjectives, bijectives

Exercice 1. Soit h l'application de \mathbb{N} dans \mathbb{N} définie par f(n) = 3n pour tout entier naturel n

- (1) f est-elle injective?
- (2) f est-elle surjective?
- (3) f est-elle bijective?

Exercice 2. Soient $n \in \mathbb{N} \setminus \{0\}$ et $f : \begin{cases} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \\ x \mapsto \overline{x} \end{cases}$.

- (1) f est-elle injective? Surjective? Bijective?
- (2) Donner un ensemble $A \subset \mathbb{Z}$ tel que la fonction $f_{|A}$: $\begin{cases} A \to \mathbb{Z}/n\mathbb{Z} \\ x \mapsto f(x) \end{cases}$ est injective.

Exercice 3. Soient $n \in \mathbb{N} \setminus \{0\}$ et $a \in \mathbb{Z}/n\mathbb{Z}^*$. Soit $f_a : \begin{cases} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \\ x \mapsto ax \end{cases}$

- (1) En étudiant les cas n = 3,4 montrer que f_a peut être injective ou non.
- (2) On suppose n premier. Montrer que f_a est injective et en déduire que f_a est bijective.
- (3) Soit n non premier. Donner un a tel que f_a n'est pas surjective.

Exercice 4. Soient $n \in \mathbb{N} \setminus \{0\}$ et $f : \begin{cases} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \\ x \mapsto x^2 \end{cases}$

- (1) f est-elle injective? Surjective? Bijective?
- (2) Décrire l'ensemble $\{f(x), x \in \mathbb{Z}/n\mathbb{Z}\}$ pour n = 9.

Soit $\Sigma = \{\overline{k}, 0 \le k \le n/2\} \subset \mathbb{Z}/n\mathbb{Z}$. On considère la fonction

$$f_{|\Sigma} \colon \begin{cases} \Sigma \to \mathbb{Z}/n\mathbb{Z} \\ x \mapsto f(x) \end{cases}$$

- (3) $f_{|\Sigma}$ est-elle injective pour n = 9?
- (4) Montrer que si n est premier, alors $f_{|\Sigma}$ est injective.
- (5) La réciproque est-elle vraie?

Exercice 5. Soient $n \in \mathbb{N} \setminus \{0\}$. Pour tout $a \in \mathbb{Z}$, on définit f_a : $\begin{cases} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \\ x \mapsto x + \overline{a} \end{cases}$.

- (1) Montrer que pour tout $a, b \in \mathbb{Z}$, $f_a \circ f_b = f_{a+b}$.
- (2) En déduire que f_a est bijective pour tout $a \in \mathbb{Z}$.

Exercice 6. Soient f et g les applications de \mathbb{R} dans \mathbb{R} définies par $f(x) = x^2$ et $g(x) = x^3$ pour tout nombre réel x.

- (1) f est-elle injective? g est-elle injective?
- (2) f est-elle surjective? q est-elle surjective?
- (3) f est-elle bijective? g est-elle bijective?

(1) Montrer que l'application f définie de \mathbb{R}^2 dans \mathbb{R}^2 par f(x,y)=(2x-3y,-7x+y) pour tout (x,y) dans \mathbb{R}^2 est bijective.

(2) Donner l'expression de f^{-1} .

Exercice 8.

(1) Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par

$$\forall x \in \mathbb{R}, \quad f(x) = 2\sin(x).$$

Déterminer l'image de l'application f. L'application f est-elle surjective?

(2) Soit $g: \mathbb{R} \to \mathbb{R}$ l'application définie par

$$\forall x \in \mathbb{R}, \quad g(x) = \frac{1}{x^2 + 1}.$$

Déterminer les antécédents de 1/2 par l'application q. L'application q est-elle injective?

(3) Montrer que l'application $h: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad h(x) = -2x + 3$$

est bijective. Donner l'expression de la bijection réciproque f^{-1} .

Exercice 9. Soient

- (1) Calculer $(g \circ f)(x)$ pour tout nombre réel x.
- (2) L'application $g \circ f$ est-elle bijective? Justifier la réponse.

Exercice 10. Soient $f:[0,1] \to [1,e]$ et $g:[1,e] \to [1,e^2]$ les applications définies par

$$\forall x \in [0, 1], \quad f(x) = \exp(x) \quad \text{ et } \quad \forall x \in [1, e], \quad g(x) = x^2.$$

- (1) Quel est l'ensemble de départ et l'ensemble d'arrivée de $g \circ f$?
- (2) Calculer $(q \circ f)(x)$ pour tout x dans [0,1].
- (3) Montrer que $g \circ f$ est une bijection.
- (4) Déterminer sa bijection réciproque $(g \circ f)^{-1}$ (ensemble de départ, ensemble d'arrivée et formule).

Exercice 11. Soient $f: \mathbb{R} \to \mathbb{R}^2$ l'application définie par

$$\forall x \in \mathbb{R}, \quad f(x) = (-2x + 1; (x - 3)^2)$$

et $g: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par

$$\forall (y,z) \in \mathbb{R}^2, \quad q(y;z) = -y^2 + 4z.$$

- (1) Calculer f(1) et g(-1;0).
- (2) Déterminer le ou les antécédent(s) de (-9;4) par f.
- (3) Déterminer l'image réciproque par f de $A = \mathbb{R} \times]-\infty, 0[$. f est-elle surjective?
- (4) Montrer que f est injective.
- (5) Pour tout nombre réel z, calculer g(0;z) en fonction de z. En déduire que g est surjective.
- (6) g est-elle injective?
- (7) Déterminer $g \circ f$ (ensemble de départ, ensemble d'arrivée et $(g \circ f)(x)$).
- (8) $g \circ f$ est-elle bijective?

Exercice 12.

- (1) Soit N un entier naturel non-nul fixé, donner une bijection entre \mathbb{N} et $\mathbb{N} \setminus \{0, \dots, N\}$.
- (2) Trouver une bijection de \mathbb{N} sur l'ensemble des entiers pairs (respectivement l'ensemble des entiers impairs).
 - (3) Montrer que l'application f définie de \mathbb{Z} dans \mathbb{N} par

$$f(n) = \begin{cases} 2n & \text{si } n \ge 0\\ 2(-n) - 1 & \text{si } n < 0 \end{cases}$$

est une bijection de \mathbb{Z} sur \mathbb{N} .

Exercice 13. Considérons l'application suivante.

$$\begin{array}{cccc} f & : & \mathbb{N} \times \mathbb{N} & \to & \mathbb{N} \\ & & (p,q) & \mapsto & p + \frac{(p+q)(p+q+1)}{2}. \end{array}$$

- (1) Combien y a t-il de couples à coordonnées entières (p,q) tels que $p+q=n, p+q\leq n$? (2) Pour tout entier n, on note $E_n:=\mathbb{N}\cap[\frac{n(n+1)}{2},n+\frac{n(n+1)}{2}]$. Justifier que les ensembles E_n sont deux à deux disjoints et que $\mathbb{N} = \bigcup_{n \in \mathbb{N}} E_n$.
 - (3) Montrer que f est une bijection de $\mathbb{N} \times \mathbb{N}$ sur \mathbb{N} .

Exercice 14. On considère l'application suivante :

- (1) Si $E = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ et F = [0; 1], l'application g est-elle injective? surjective? (2) Si $E = \left[0; \frac{\pi}{2}\right]$ et $F = \left[-1; 1\right]$, l'application g est-elle injective? surjective?
- (3) Si $E = [0; \pi]$ et F = [-1; 1], l'application g est-elle injective? surjective? bijective?
- (4) On considère l'application suivante :

 $h: \quad E \quad \to \quad F$ $u \to r$, où E et F sont des intervalles de $\mathbb R$. Déterminer deux intervalles E et F pour lesquels h est bijective. Sont-ils uniques?

Exercice 15. Soit f l'application de \mathbb{Z} dans \mathbb{Z} définie par $f(k) = k^2 + k + 1$ pour tout entier relatif k.

- (1) f est-elle injective?
- (2) f est-elle surjective?
- (3) f est-elle bijective?

Exercice 16. Soient f et g les applications de \mathbb{N} dans \mathbb{N} définies par

$$f(n) = 2n,$$
 $g(n) = \left\lceil \frac{n}{2} \right\rceil$

pour tout entier naturel n où [x] désigne la partie entière de x pour tout nombre réel x.

- (1) Les applications f et g sont-elles bijectives?
- (2) Calculer $q \circ f$ puis $f \circ q$ (ensemble de départ, ensemble d'arrivée et formule).
- (3) Les applications $g \circ f$ et $f \circ g$ sont-elles bijectives?