日本国特許庁 JAPAN PATENT OFFICE

10.5.2004

·別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 3月27日

出 願 番 号 Application Number:

特願2003-087789

[ST. 10/C]:

[JP2003-087789]

REC'D **0 8 JUL 2004**WIPO PCT

出 願 人
Applicant(s):

独立行政法人物質・材料研究機構

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月18日

今井康

【書類名】

特許願

【整理番号】

02-MS-274

【提出日】

平成15年 3月27日

【あて先】

特許庁長官 殿

【国際特許分類】

C23C 14/06

【発明の名称】

垂直磁気異方性を有するFePt磁性薄膜

とその製造方法

【請求項の数】

8

【発明者】

【住所又は居所】

宮城県仙台市青葉区片平1-2-1

東北大学金属材料研究

所内

【氏名】

関 剛斎

【発明者】

【住所又は居所】

宫城県仙台市青葉区片平1-2-1

東北大学金属材料研究

所内

【氏名】

嶋 敏之

【発明者】

【住所又は居所】

宫城県仙台市青葉区片平1-2-1

東北大学金属材料研究

所内

【氏名】

高梨 弘毅

【発明者】

【住所又は居所】

茨城県つくば市千現一丁目2番1号

独立行政法人物質・材

料研究機構内

【氏名】

宝野 和博

【特許出願人】

【識別番号】 301023238

【氏名又は名称】 独立行政法人物質・材料研究機構

【代表者】 岸 輝雄

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

. 【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 垂直磁気異方性を有するFePt磁性薄膜とその製造方法

【特許請求の範囲】

【請求項1】 原子組成が、次式

FexPt_{1-x}

(0.19 < x < 0.52)

で表わされることを特徴とするFePt磁性薄膜。

【請求項2】 100nm未満の膜厚でL10構造を有することを特徴とする請求項1のFePt磁性薄膜。

【請求項3】 単結晶基板またはその表面の酸化物下地層の上に成膜されていることを特徴とする請求項1または2のFePt磁性薄膜。

【請求項4】 遷移金属および貴金属のうちの1種または2種以上による薄層を介して成膜されている請求項3のFePt磁性薄膜。

【請求項5】 薄層が、単層または多層であることを特徴とする請求項4の FePt磁性薄膜。

【請求項6】 薄層が、Fe、Ag、Ni、CoおよびCrのうちの1種または2種以上からなる層と、Au、Pt、およびCuのうちの1種または2種以上からなる層とにより構成されていることを特徴とする請求項5のFePt磁性薄膜

【請求項7】 請求項1ないし6のいずれかのFePt磁性薄膜の製造方法であって、基板表面に下地層を設けた基板、あるいは遷移金属および貴金属のうちの1種または2種以上を表面上もしくは下地層上に設けた基板の温度を240℃~500℃の範囲としてスパッタ成膜することを特徴とするFePt磁性薄膜の製造方法。

【請求項8】 基板の温度を300℃以下としてスパッタ成膜することを特徴とする請求項7のFePt磁性薄膜の製造方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

この出願の発明は、垂直磁気異方性を有するFePt磁性薄膜とその製造方法に関するものである。

[0002]

【従来の技術】

近年の高度情報化社会の発展に伴い、大量の情報を処理・記憶することのできる超高密度磁気記録媒体の開発が切望されている。磁気記録媒体に必要とされる特性には、磁気的に孤立した微粒子構造であること、この微粒子が熱擾乱に打ち勝つこと、一方向に配向していることが挙げられる。特に、磁気記録媒体の高密度化には、強磁性粒子のサイズを低減化する必要がある。しかしながら、強磁性微粒子のサイズを低減させると、室温において熱擾乱が支配的になる臨界粒径が存在するため、磁気記録が不安定になる。このような観点から、巨大な一軸結晶磁気異方性(Ku=7.0×10⁷erg/cc)を有するL10構造FePt規則合金は、ナノサイズの超微細粒子であっても強磁性を維持でき、このため次世代の超高密度磁気記録媒体用材料として多くの注目を集めている。

[0003]

FePt規則合金はその高い一軸磁気異方性より磁石としての用途もある。FePtは NdやSm系などの希土類磁石と比較して、耐食性および耐酸化性に優れている。希 土類磁石では耐食性や耐酸化性の向上のために元素を添加するが、この添加元素 により磁気特性が劣化する。しかしFePtでは添加元素の必要が無く、FePtそのも のの磁気特性が磁石特性に反映されるため、非常に有利である。このような耐食 性に優れた薄膜磁石が実現されれば、超小型電磁気部品、マイクロマシン用超小型磁石、歯科用アタッチメント、神経等に局部的に磁界を印加する医科療法や体 内へ微小量の薬品を投与するドラッグデリバリーシステム用のポンプなどへの応用が期待される。

[0004]

だが、L10構造は室温において熱力学的に安定であるが、スパッタ法により作製したFePt薄膜は、その作製過程において高温に存在する規則一不規則変態点を経ていないため規則構造に変態する(規則化する)ことができない。このため、L10規則構造を得るためには加熱した基板上に成膜をおこなう、または成膜後の

不規則合金薄膜を熱処理するなど、通常500℃を超える高温プロセスが必要となる。しかしながら、現在ハードディスク装置に使用されている材料はそのような高温に対する耐性を有しておらず、高温プロセスは実用的な観点から大きな障害となっている。

[0005]

近年、そのプロセス温度を低減されるための合成法が多く報告されているが、これらの低温合成法は、第三元素添加による磁気特性の低下、結晶配向制御、プロセスの複雑化などの問題が生じる。また、これらの合成法の多くが主に化学量論組成のFe50Pt50、またはFe-richの組成でおこなわれており(M. Watanabe, M. Homma and T. Masumoto, Trans. J. Magn. Magn. Mater. 177, 1231 (1998))。

[0006]

また最近、高橋らは300℃に加熱した基板にスパッタ成膜をおこなうことによりL10構造を持つFePt薄膜を低温合成することに成功しているが(Y. K. Takahas hi, M. Ohnuma, and K. Hono, Jpn. J. Appl. Phys. 40, L367(2001), FePt磁性薄膜の製造方法 高橋有紀子、大沼正人、宝野和博 特願2001-288171(H13.9.21付出願))、その後の研究により、この高温合成には膜厚依存性があり、膜厚が100 nm以上でなければ規則化が進みにくいことがわかってきた(Y. K. Taka hashi, M. Ohnuma, and K. Hono, Ordering process of sputtered FePt films, J. Appl. Phys. in press.)。

[0007]

【発明が解決しようとする課題】

そこでこの出願の発明は、以上のとおりの従来技術の問題点を解消し、より低い温度での成膜が可能とされ、しかも垂直磁気異方性を有する新しいFePt磁性薄膜とその製造方法を提供することを課題としている。

[0008]

【課題を解決するための手段】

この出願の発明は、上記の課題を解決するものとして、第 1 には、原子組成が 、次式

 Fe_XPt_{1-X}

(0.19 < x < 0.52)

で表わされることを特徴とするFePt磁性薄膜を提供する。

[0009]

また、この出願の発明は、第2には、100nm未満の膜厚でL10構造を有することを特徴とする上記のFePt磁性薄膜を提供する。

[0010]

第3には、単結晶基板またはその表面の酸化物下地層の上に成膜されていることを特徴とするFePt磁性薄膜を、第4には、遷移金属および貴金属のうちの1種または2種以上による薄層を介して成膜されているFePt磁性薄膜を、第5には、薄層が、単層または多層であることを特徴とするFePt磁性薄膜を、第6には、薄層が、Fe、Ag、Ni、CoおよびCrのうちの1種または2種以上からなる層と、Au、Pt、およびCuのうちの1種または2種以上からなる層とにより構成されていることを特徴とするFePt磁性薄膜を提供する。

[0011]

そして、この出願の発明は、第7には、以上のFePt磁性薄膜の製造方法であって、基板表面に下地層を設けた基板、あるいは遷移金属および貴金属のうちの1種または2種以上を表面上もしくは下地層上に設けた基板の温度を240℃~500℃の範囲としてスパッタ成膜することを特徴とするFePt磁性薄膜の製造方法を、第8には、基板の温度を300℃以下としてスパッタ成膜することを特徴とするFePt磁性薄膜の製造方法を提供する。

[0012]

以上のとおりのこの出願の発明は、発明者による検討の結果得られた全く新しい知見に基づいて完成されている。すなわち、スパッタ法によりFePt薄膜を作製する際に、組成を $Fe_{50}Pt_{50}$ (at.%)の化学量論組成から Pt_{1} に th 側にずらすことにより、膜面垂直方向に配向し、かつ結晶磁気異方性が大きい Fe_{1} と対しるである。

[0013]

この出願の発明では、低温におけるFePtの規則化の組成依存性に着目し、スパッタ法を用いて300℃という実用的な基板温度において広範囲な組成領域のFe

Pt薄膜の成膜を可能とし、FePt薄膜の膜厚依存性がなく、10nm以下の超薄膜においてもL10構造のFePtを成膜可能としている。さらに基板とエピタキシャル成長させることにより、膜面垂直方向に一軸磁気異方性を有するL10構造FePt薄膜を創製することにより成功している。従来の低温製造法と比して、FePt相の組成を変化させるだけの簡便な手法により、配向制御されたL10構造FePt規則合金薄膜が低温で作製できることが大きな違いである。また、この簡便な手法により非常に大きな結晶磁気異方性を実現している。

[0014]

【発明の実施の形態】

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の 形態について説明する。

[0015]

まず、この出願の発明におけるFePt磁性薄膜については、高い一軸磁気異方性をしめす組成領域が必要である。そのため、FePt相の合金組成(原子比)を $Fexpertext{RPt}_{1-x}$ で0.19<0.52とすることが必要である。

[0016]

また、超小型電子部品などへの工業的な応用を考慮すると、膜厚をできるだけ 薄くすることが望ましい。この出願の発明によれば、従来法と異なり、100 n mの膜厚を必要とせず、2 n m から100 n m の範囲でL10構造の薄膜を成膜 することができる。

[0017]

FePt薄膜に磁気異方性を付与するためには、結晶方向が制御されることになるが、これは単結晶基板を選択することで容易に可能となり、磁化容易軸を垂直に配向させるにはMgO(001)のほかにNaCl(001)、GaAs(001) などが好適な単結晶基板として挙げられる。また、ガラス基板を用いた場合においても、MgOまたはZnO等の酸化物下地層の使用により配向制御が容易となる。

[0018]

規則相が得られるFePt相に対する下地層の選択については、FePt相の配向制御

および規則化の促進の観点も考慮される。この出願の発明においては、このような観点から、遷移金属または貴金属のうちの1種または2種以上による薄層を介してFePt磁性薄膜を成膜することが考慮される。

[0019]

この場合の薄層は単層または多層でよいが、薄層が、Fe、Ag、Ni、Co およびCrのうちの1種または2種以上からなる層(これをシード層と呼ぶことができる)と、Au、Pt、およびCuのうちの1種または2種以上からなる層(バッファー層と呼ぶことができる)とにより構成されていることがより好適な形態として考慮される。シード層については、O. 2から2nmの膜厚が、また、バッファー層については、 $5\sim5$ 0nmの膜厚が好適なものとして考慮される

[0020]

この出願の発明のFePt磁性薄膜は、従来に比べてより低い温度でのスパッタ法により製造されるが、FePt成膜時において、規則相および大きな一軸磁気異方性を実現するためにはある程度の基板温度が必要となる。一方、実用的な観点からはプロセス温度は低温である必要がある。そのためには基板温度を 240 $\mathbb C$ から 500 $\mathbb C$ の範囲として成膜する必要があるが、 300 $\mathbb C$ 以下での低温合成が可能なことがこの出願の発明の最大の特徴である。

[0021]

そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例によって発明が限定されることはない。

[0022]

【実施例】

<実施例1>

図1にMgO(001) 単結晶基板上にFeシード層を1nm、Ptバッファー層を40nm室温で成膜し、その後基板温度300 C として18nmの膜厚で成膜したFePt薄膜のX線回折パターンを示す。 Fe_x Pt $_{100-x}$ 相は、x=68 (a), 62 (b), 52 (c), 45 (d), 38 (e), 34 (f), 30 (g), 19 (h)の組成となっている。(00n)の回折ピークのみを観測できることから、MgO(001) 基板上にFePt層がMgO(001)//FePt(001)の方位関係を持

って成長していることがわかる。すべての組成のFePt薄膜においてFePt相の基本 反射線である(002)および(004)回折ピークと、バッファー層のPt(002)と(004)回 折ピークが観測される。x<45のFePt薄膜において、FePtの超格子反射線である(001)および(003)回折ピークを観測することができ、L10構造のFePt規則合金が得られていることが確認される。x=38のFePt薄膜において超格子反射線の積分強度 が最も大きくなり、規則化が最も進行していることがわかる。化学量論組成であるFe50Pt50薄膜では超格子反射線が観測されず、化学量論組成のFePt薄膜においては300℃という基板温度は規則化をするには低い温度であることがわかる。しかしながらFePt薄膜の組成をPt-rich側にずらすことで規則化が進行し、300℃の 基板温度においてもL10規則構造が得られていることがわかる。低温では、0.19<x<0.52の組成領域でFePtの規則化が進行することが明らかとなった。

[0023]

<実施例2>

図2にMgO(001)単結晶基板上にFeシード層を1nm、Ptバッファー層を40nm室温で成膜し、その後基板温度300℃としてFePt層を18nmの膜厚成膜した試料の膜面内方向および膜面垂直方向に測定した磁化曲線を示す。Fe $_{x}$ Pt $_{100-x}$ 相は、 $_{x=52}$ (a), 45 (b), 38 (c), 34 (d), 30 (e), 19 (f)の組成となっている。 $_{x=52}$ のFePt薄膜は膜面内方向が磁化容易軸となっているが、 $_{x}$ を減少させるにつれて磁化容易軸が膜面垂直方向に変化していることがわかる。 $_{x=38}$ のFePt薄膜の膜面内方向と膜面垂直方向の磁化曲線によって囲まれた領域から算出した結晶磁気異方性定数 $_{x}$ Kuは、 $_{x}$ 1.8×10 $_{x}$ 100 にと非常に大きな値であった。 $_{x}$ 2.52の組成領域において、膜面垂直方向に一軸磁気異方性を有するFePt薄膜が合成可能であることを明らかにした。

[0024]

<実施例3>

図3にMgO(001)単結晶基板上にFeシード層を1nm、Ptバッファー層を40nm室温で成膜し、その後基板温度300 Cとして18nmの膜厚で成膜した Fe_x Pt $_{100-x}$ 相のa軸とc軸方向の面間隔、そのc軸とa軸の軸比c/a、規則度S、および結晶磁気異方性定数 K_u の組成依存性をしめす。xを38まで増加させることで、c面の面間隔は単調に

減少し、その後38 \leq x \leq 68の範囲では一定の値を保っている。一方、a面の面間隔は38 \leq xの範囲で一定値をとっており、x \geq 38においては減少している。c/aからは結晶格子の歪の程度を評価することができる。c/aの値はx=38において極小値である0.955を示し、そのときにS、 K_u 共に極大値をとっていることがわかる。

[0025]

<実施例4>

図4にMgO(001)単結晶基板上にFeシード層を1nm、数種の金属・合金のバッファー層を40nm室温で成膜し、その後基板温度300 $^{\circ}$ として18nmの膜厚で成膜したFe3 8Pt62 薄膜のX線回折パターンを示す。バッファー層はAu、AuPt、およびPtを選択した。いずれのバッファー層を用いても、他の面からの回折線は見えずFePt相の超格子反射線である(001)および(003)回折ピークを明瞭に観測することができる。このことより、FePtとの格子ミスフィットの小さなバッファー層を選択することで、L10構造を有するFePt規則合金薄膜の低温合成が可能であることを明らかにした。

[0026]

<実施例5>

図5にMgO(001)単結晶基板上にFeシード層を1nm、バッファー層を40nm室温で成膜し、その後基板温度300℃として18nmの膜厚で成膜したFePt薄膜の磁化曲線を示す。バッファー層はAu、AuPt、およびPtを選択した。FexPt100-xの組成はx=38または52とした。いずれのバッファー層を用いた場合において、Fe38Pt62薄膜の磁化容易軸が膜面垂直方向となっており、磁化曲線から算出される結晶磁気異方性定数は、Fe52Pt48薄膜のそれよりも大きな値となっていることがわかる。また、FePtとの格子ミスフィットがPtよりも大きいAuをバッファー層として選択した場合、下地層からの歪の影響により、Ptのバッファー層を用いた場合よりも大きな結晶磁気異方性を有していることがわかる。このことから、バッファー層の選択により異方性を制御することが可能であることがわかる。

[0027]

<実施例6>

図6にMgO(001)単結晶基板上にFeシード層を1nm、Ptバッファー層を40nm室温で

成膜し、その後基板温度300℃として膜厚tを変化させて成膜した $Fe_{38}Pt_{62}$ 薄膜のX線回折パターンを示す。FePt層の膜厚tは9nmから54nmと変化させた。いずれの膜厚においても、FePt相の超格子反射線である(001)および(003)回折ピークが観測されることから、L10構造を有するFePt規則合金薄膜が得られている。また膜厚の増加によりL10規則構造に起因するピーク強度が増加していることから、より規則度の高いFePt薄膜が得られていると考えられる。

[0028]

<実施例7>

図7にMgO(001)単結晶基板上にFeシード層を1nm、Ptバッファー層を40nm室温で成膜し、その後基板温度300℃として膜厚tを変化させて成膜したFe38Pt62薄膜の磁化曲線を示す。FePt層の膜厚tは9nmから54nmと変化させた。いずれのFePt層の膜厚においても、磁化容易軸が膜面垂直方向となっており一軸磁気異方性を持っていることが確認される。また膜厚の増加により困難軸方向(この場合、膜面内方向)の磁化の飽和性が悪くなっていることから結晶磁気異方性が増加していると考えられる。

[0029]

<実施例8>

図8にMgO(001)単結晶基板上にFeシード層を1nm、Auバッファー層を40nm室温で成膜し、その後基板温度240 \mathbb{C} と300 \mathbb{C} として18nmの膜厚で成膜した Fe_{38} Pt $_{62}$ 薄膜のX線回折パターンを示す。基板温度240 \mathbb{C} の Fe_{38} Pt $_{62}$ 薄膜のX線回折パターンから、FePt相の超格子反射線である(001) および(003) 回折ピークを観測することができる。このことから、成膜時の基板温度が240 \mathbb{C} 以上の条件において規則化が進行することが明らかとなった。

[0030]

【発明の効果】

以上詳しく説明したとおり、この出願の発明によって、簡便なプロセスであることに加え、より低温でのプロセスによって、大きな一軸磁気異方性を有するFe Pt薄膜が提供される。従来に比べて大変に有利な技術が提供されることになる。

[0031]

情報ストレージデバイスの中でもハードディスク装置は特に重要であり、大容 量磁気記録媒体を期待する市場が既に存在しているが、この市場に対するこの出 願の発明の寄与は大変に大きなものとなる。

【図面の簡単な説明】

【図1】

実施例1のFePt薄膜のX線回折パターンを示した図である。

【図2】

実施例2における磁化曲線を示した図である。

【図3】

実施例3におけるFePt薄膜の、a軸とc軸方向の面間隔、c/a (軸比)、規則度S、および結晶磁気異方性定数Kuの組成依存度を示した図である。

【図4】

実施例4におけるFe38Pt62薄膜のX線回折パターンを示した図である。

【図5】

実施例5におけるFePt薄膜の磁化曲線を示した図である。

【図6】

実施例6におけるFe38Pt62薄膜のX線回折パターンを示した図である。

【図7】

実施例7におけるFe38Pt62薄膜の磁化曲線を示した図である。

【図8】

実施例8におけるFe38Pt62薄膜のX線回折パターンを示した図である。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

 $Fe_{38}Pt_{62}$ (18nm) / Au (40nm) / Fe (1nm) / MgO(001)

【書類名】

要約書

【要約】

【課題】 より低い温度での成膜が可能とされ、しかも垂直磁気異方性を有する 新しいFePt磁性薄膜とその製造方法を提供する。

【解決手段】 原子組成比が、次式

 $Fe_{x}Pt_{1-x}$

(0.19 < x < 0.52)

で表わされるFePt磁性薄膜とする。

【選択図】 図2

特願2003-087789

出願人履歴情報

識別番号

[301023238]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所 名

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研究機構