Vilniaus Gedimino technikos universitetas

Elektronikos fakultetas

Kompiuterijos ir ryšių technologijų katedra

Duomenų centrų ugniasienės

Modulis ELKRM17303

Laboratorinio darbo nr. 6 ataskaita

Atliko: TETfm-20 grupės magistrantas

Saulius Krasuckas

Tikrino: lekt. dr. Liudas Duoba

Laboratorinis darbas nr. 6

Duomenų centrų ugniasienės

Darbo tikslas

Susipažinti su duomenų centrų (DC) ugniasienėmis.

Užduotis

- 1. Parinkti ir apžvelgti ugniasienes.
 - Internete raskite bent dviejų skirtingų gamintojų naujos kartos DC ugniasienes (NGFW, angl. *Next-Generation Firewall*) ir jų specifikaciją (angl. *Data sheet*) pagal savo reikalavimus:

Studentas	Threat Protections,	SSL/TLS	New Session rate
	Gbps	Inspections, Gbps	(per second)
Saulius Krasuckas	≥ 3	≥ 4	≥ 250.000

- Atlikite tyrimą ir atsakykite, kas yra mikrosegmentavimas.
- 2. Parenkite trumpą ataskaitą, kurioje:
 - Bus pateikta medžiaga (ir specifikacijos) ne mažiau nei apie dvi ugniasienes.
 - o Laikysitės principo: Less is more; svarbu kokybė.
 - Išlaikykite vienodą stilių.
- 3. Parengtą ataskaitą .pdf formatu įkelkite į *Moodle* sistemą.

Darbo eiga

Pasirenku ugniasienes.

Pirmoji ugniasienė, atitinkanti duotus LD reikalavimus: Juniper vSRX Virtual Firewall
 (https://www.juniper.net/content/dam/www/assets/datasheets/us/en/security/vsrx-virtual-firewall-datasheet.pdf)
 Pasirinkau virtualią šio gamintojo NGFW implementaciją, t.y. Virtual Appliance:

Table 1. vSRX Virtual Firewall sparta

Spartos / pajėgumo rodiklis	VMware hipervizorius	KVM hipervizorius
vCPU skaičius	9	9
Atminties kiekis	16 GiB	16 GiB
Ugniasienės pralaidumas (dideliems paketams, 1514 B)	73 Gbps	79 Gbps
Ugniasienės pralaidumas (IMIX * srautui)	17 Gbps	22 Gbps
Aplikacijų matomumas ir valdymas**	21 Gbps	20.7 Gbps
IPS sparta su rekomenduotinomis signatūromis	18 Gbps	20.8 Gbps
Naujų TCP sesijų augimo sparta (vnt. / s)	351.250	360.000

Spartos / pajėgumo rodiklis	VMware hipervizorius	KVM hipervizorius
Didžiausias vienu metu palaikomų sesijų sk.	4M	4M

^{*} IMIX — "Internet MIX traffic": tai įprastinis internetinis srautas, keliaujantis per tinklo įrenginius.

Table 2. PA-5250 sparta

Rodiklis	PA-5250
Ugniasienės pralaidumas (HTTP srautui)	35.7 Gbps
Ugniasienės pralaidumas (<i>appmix</i> srautui)	37.3 Gbps
Threat Prevention sparta (HTTP srautui)	18.3 Gbps
Threat Prevention sparta (appmix srautui)	23.0 Gbps
Naujų TCP sesijų augimo sparta (vnt. / s)	392.000
Didžiausias vienu metu palaikomų sesijų sk.	8M

 $^{^{**}}$ Matuota naudojant HTTP srautą ir 44 kiB dydžio tranzakcijas.

Antroji ugniasienė, atitinkanti duotus LD reikalavimus: Palo Alto PA-5250
 (https://www.paloaltonetworks.com/apps/pan/public/downloadResource?
 pagePath=/content/pan/en_US/resources/datasheets/pa-5200-series-specsheet)

Mikrosegmentavimo apžvalga

Remiuosi šia apžvalga:

https://www.paloaltonetworks.com/cyberpedia/what-is-microsegmentation

Mikrosegmentacija — būdas atskirti darbinius duomenų srautus vieną nuo kito ir kiekvieną iš jų apsaugoti atskirai.

Šis būdas padeda įgyvendinti taip vadinamą (angl.) Zero Trust strategiją.

Būdas įgalina:

- · sumažinti tinklinių atakų perimetrą,
- · padidinti įsilaužimų suvaldymą,
- · sustiprinti reglamentinės politikos atitiktį
- ir lengvesnį filtravimo politikų valdymą.

Žiūrint techniškiau, veikia trys pagrindiniai principai:

1. Matomumas

Mikrosegmentuojant stebimas ne tik srautas Šiaurės-Pietų kryptimi, bet ir srautas Rytų-Vakarų kryptimis. Efektyviam mikrosegmentavimui reikalingas viso tinklo srauto stebėjimas:

2. Kvantuotas saugumas

Kvantuotas saugumas atsiranda, kai tinklo administratoriai įgalinami identifikuoti itin jautrius duomenų srautus (laike ir tarp sistemų) ir sukurti jiems specifines saugos politikas. Būtent taip, naudojant preciziškumą yra sustabdomas netiesioginiai, slapti kenkėjiški srautai.

3. Dinaminė adaptacija

Gi dinaminė adaptacija užtikrina, kad minimi principai veikia net itin sparčiai besikeičiančiose šiuolaikinėse skaitmenininėse aplinkose. Mikrosegmentavimo atveju saugumo politikos aprašomos gana abstrakčiomis sąvokomis (pvz. aplikacijų pakopomis, angl. *Tiers*) vietoj žemo lygmens konstruktų (pvz. IP adresų ar transportinių porto numerių). Aplikacijos ar infrastruktūros pokyčiai taikant mikrosegmentavimą įjungia automatinį saugumo politikų revizavimą realiu laiku, ir (tariamai) nebereikalauja žmogiško įsikišimo.