DESIGN and ANALYSIS OF ALGORITHMS Gammangi ASSIGNMENT - 1 (TCS-505) B. Tech - CSE Section E 1) What do you undoustand by Asymptothe 5th Seen. notation? Define définent depuistoire notations with enaughly. Asymptotle Métations am languages that allow us to analyze an algorithm's sunning the by Edentifying its behandonn as the input lite foul the algorithm Encuases i.e. There are used to tell the complexity of an algorithms There are mathematical tools to Superesent the Fine complicity of algorithms for asymptothe analysis. There alse 15 types of asymptotic notations: Blg O Notation: | f(n) = O(g(n)) g(n) & "tight" uppen bound of f(n).

Not tells us that a vertain function will never enced a speriffed time for any value of supert 'n'. · It grues the moust-case complexity of an algorithm. · Ex : T(n) = O(1); T(n) = O(n); T(n) = O(n2) lete. Blg Omega(12): [fn) = 12(g(n))
g(n) & "tight" lower bound of f(n). At expresselves the lower bound of the running time of · It grue the best case complexity of an algorithm. an algorithm. · Ext y a sunning Time & \(\sum \(\(\gamma \) , then four large enough in', the sunning of time & at least \(\mu \, \gamma (n) \) four source constant \(\mu \, \chi' \).

aughph.

(x) Thua (0): | f(n) = O(g(n)) · tet grues "tight" uppen and lower bound of f(n).
· tet & used four analyzing average-case complexity
of an algorithm. of an algorithm. · ex: For all algorithm having T(n)=3n3+6n2+6000 will have $O(n^3)$. Demall & Notation: · It is used to describe an upper bound that commot be f(n) = o(g(n)) --- f(n) < cg(n) + n > no and Demall Onega (w): · It gives leven bound that cannot be Fight. f(n) = w(g(n)) - + f(n) > c.g(n) + n > no and c70 Que what should be the time complexity of 5 -2) fou (î=1 to n) {î=î*2] l=1,2,4,8....n. Rs a GP, where, a=1; ~=2 $S_n = \frac{\alpha(r^n - 1)}{1}$ and $T_k = \alpha r^{k-1}$ $n = 1.(2^{k-1}) = \frac{2^k}{2} \longrightarrow n = \frac{2^k}{2} \implies 2^k = 2n$ Taling log -> k log 2 = log 2 + log n k = log n +1 [T(n) = O(log n) 3) T(n) = 3T(m-1) — (1) putting n = n-1 fu eq. (1) T(n-1) = 3T(n-2) - 2putting value of T(n-1) juon eq. 2) En eq. 1 T(n) = 3(3T(n-1)) = 3[3T(n-1)] - 3

putting value of n=n-2 fu eq. 0 1 T(N-2) = 3T(N-2) - (A) putting the value of T(n-2) Jesou eq. (2) in eq. (3) T(n) = 9[3T(n-3)] - 5 $T(n) = 3^{k} T(n-k) - 6$ T(1) = 1n-k=1h = n-1 $T(n) = 3^{n+1} T[n-(n-1)] - \Theta$ $T(n) = 3^{n-1}T(1)$ $T(n) = 3^{n+1}$ $T(n) = 3^n$ · /T(n) = 0(3m) / 3T(n) = 3~ 4) T(n) = 2T(n-1)-1 T(i) = 1; T(N) = 2T(N-1) - 1put n=n-1 Su eq. 0; T(n-1) = 27 (n-2) -1 -0 putting value of t(n+1) from eq. 0 for eq. 0: t(n) = 2[27(n-2)-1]-1 - (3)put n=n-2 fn eq. (1); T(n-2) = 2 + (n-3) - 1 - @putting value of TCn-2) from eq. 4 In eq. 3 T(n) = 2[2(2T(n-3)-1)-1]-1T(n) = 4[2T(n-3)-1]-2-1() T(N)= 8T(N-3)-4-2-1 - (1) 1. $T(u) = 2^{k} T(n-u) - 2^{k-1} - 2^{k-2} - \dots + 2^{2} - 2^{1} - \dots$ mily h n-k=1 L= N-1

Omeration

used function (but n) fut 1, count=0; fut g, k; fou(i = n/2; ?<=n; ?++) foul j=1, j<=n; j= j+2) for(u=1; k<=n; k= k*2) went + + 'i' loop = O(n)

'j' loop = O(log n) Complexity of complexity of complexity of it loop = O(logn) :. T(n) = O(n) * O(log n) * O(log n) T(n)=0(nlog2n) 8) Junetion (int n) complexity of 'i' loop = O(N) $\int_{0}^{\infty} \left(N = = 1 \right)$ complexity of 'g' loop = O(n) fou (i=1 to n)} T(n) = O(n) * O(n)for (1=1 to 1) } $[T(n) = O(n^2)$ function (n-3); 9) vald function (lut n) fou (i=1 to n)

fou (j=1; j<=n; j=j+i)

print (" *");

lught di

10) for the function no and an, what & the asymptotic sulationship b/w these functions?
Assume K7=1 and a71 are constants. Find out the value of c and no four which relation holds. $f(n) = n^{\kappa}$; $g(n) = a^{\kappa}$ g(n) & tight uppen bound of f(n). f(n) = O(f(n)) $M^{k} = O(a^{m})$ iff. f(n) < c.g(n) ny < c.an + n>no and c70 f(n) = O(q(u)) $n^{u} = O(a^{n})$ 11) Find time complexity: uoid fun(fut 'n) =1, 2,3,4--- n fut j=1, l=0; $T_h=\frac{h(h+1)}{2}$ while ((< n) $n > \frac{u(u+1)}{2} \Rightarrow 2n > u^2 + k$ (=(+); 3++; 12) Muite menemen sulation fon the menustre function that prints Fiboracii such. Selve the menuseure melation to get time complicity of the buogram. What will be space complixity of this budgham. int fib (fut ") $\int_{0}^{\infty} \left(N = -1 \right)$ entuen ; entuem f(b(n-1)) + f(b(n-2))

Recuertine Kelation : -T(N) = T(N-1) + T(N-2) + 1laluing this using tree method: n-2 n-3 n-3 n-4T(n)=1+2+4+ $= \frac{\alpha(r^{n}-1)}{r-1} = \frac{1(2^{n+1}-1)}{2^{-1}} = (2^{n+1}-1)$ a=1; r=2 $T(n) = O(2^{n+1}) = O(2^{n}.2) = O(2^{n})$ lune, the maximum dipth & purpositional to 'n', here, space complicity & o(n). 13) uluste periograms which have the following complication; -> for (fut "=1; "<=n; "*=2 a) n(log n) fou (Fut j=1; j <=n; j+=2) T(n)p =O(log n) T(n);=0(n) 3 q lum +=j; $T(n) = O(n) * O(\log n)$ (n galn)0=(N) b) n3 - fou(Ent i=1; (<=n; (++) fou (fut) = 1; j <= n; j++) foulfut K=1141; KZ=n; K++) sum + = h; $T(n) = O(n^3)$

 $\rightarrow \int_{S}^{S} \operatorname{ou}(\operatorname{fut} i=2; i <= n; i = \operatorname{pew}(i,i))$ $\int_{S}^{S} \operatorname{fou}(\operatorname{fut} j=n; j > i; j = \operatorname{fuu}(j))$ T(n) = Ollog(logn)) 14) Solve: T(n) = T(n/4) + T(n/2) + Cn2 using master is method : -Let T(N/2) 7/T(N/4) Tin) = aT(u/b) + ((u)) then, $T(n) = 2T(n/2) + Cn^2$ a=2; b=2 $c = \log_b a = \log_2 2 = 1$ $\longrightarrow J(n) > n^{c} \longrightarrow n^{2} > n$ -1 $|T(n) = O(n^2)$ $f(x) = \theta(f(x))$ 15) Flud complexity: Ent jun'(Fut ") fou (Put 1=1; 1<= n; 1++) foulfut j=1; j<=n;j+=i) complexity of iloop =0(n) complexity of i'lloop = o(log n) T(n) = 0(nlog n)

16) What should be the time complexity of:foul for i=2; i<=n; i=pow(i,k)) 10(1) enpuissons where 'h' is constant. Hum, 'i' take the nature 2, 24, (24) = 2K, 2k, 2k, $2^{n(\log(\log n))} = 2^{\log n} = n$ Therefore, un have log (log n) Herations and each Fertalion takes a constant time, to emente.

Therefore, the total time complexity is O(log(log n)) TC = O(log(logn)) 17) white a encuerience relation when quick sout repeatedly divides the array in a parts of 99% & 1%. Double the Fine Promphraty on Mis case. Show the enquesion time of find heights of both the enterne paints. what do you understand by this analysis? The paintifioning scheme of 99%. I 1% is one of the most unbalanced paintifion I possible. Thue Complexity Remission Tree Time (n C(N-1) c (n-2) Total Tinu: Cn + C(n-1) + C(n-2) --- +2c = C(C(n+1)(M2)-1) Viring big theta, Egnou mula terme \mathcal{E} would case $TC = O(n^2)$

Mr & assumed that the outfinal call takes (n) fines (1) where 'c' & some constant. 12) Averange the following in increasing order of rote of quowth 12 a) n, nl, legn, leglegn, root (n), leg(n!), n(legn), 2ⁿ, 6) $1 < \log(\log(n)) < \log(n) < \log(n)$ e) 96 < log (n) < log (n) < n log (n) < n log (n) < n log (n) < 5n < 8n² < log(n) < 7n³ < n | < 82n 19) Wente pseudo coch to search an element fin souted auray with who compoutsons using Lineau Seauch.

Por Lineau (Fut * arr, but n, but hey) for ((< 0 to n-1) of (auer [i] = hey) entuen 1, 20) White pseudo code for Further of mention for solling why?

July 25

```
trenation duscution Sout: -
      uold duscution (fut any [], fut n)
         | ou i=1 to n
          for value - acuili]:
          Gut jei;
          while (j >0 & aur (j-1] < value)
             auti+1] - ausij]
            3 ] - - 5
         quufij ← value;
Recululture descrition Sout: -
   uoid durention (fut acut], fut i, fut n)
      fut value = aux [i]:
       fut j ← î;
while (j 70 $ aur [j-1] 7 value)
        E amili 8 amili-1]:
         1--5
        aur [i] - value;
        i) (1<=n)
          smentfon (aux, i+1, n);
ducention Sout & an online louring algorithm since it can
 Lout a list as 7 nueveues 7. Du Pall Vothen algoenthous,
 me med all elements to be peroueded to the l'algorithme
```

Juily 35

21) complexity of all the souting algorithms during during				
ALGORITHM	Time Complexity			Space Complexity
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the second secon		Wout	woust
Bubble Sout	$O(n^2)$	0(n2)	0(n ²)	0(1)
Selection Sout	0(n2)	0(n2)	0(n2)	0(1)
dusention sout	0(N)	0(12)	0(n2)	0(1)
Menge Sout	o(nlogn)	(n pal n)o	O(ulogn)	0(n)
Head Sout	O(ulogn)	O(nlogn)	o(n log n)	(0(1)
Chicalo Com	V	O(ulogn)		ollog n)
Radix Sout	dul)	o(nh)	olnu)	ollog n)
Dhuich au the southing algorithms hito in place/stable) online southing. Stable Dubine Bubble Lout Nunge Lout Subult Su				
enteum Branghanch (aver, 1, rubt-1, hey) and 25				

enteun Braugleanchlaur, nied +1, ~, hey) Isc = O(logn) TC = O(logn) decative Binaughamh (ann, l, r, 2) while (I <= 8) m= l+ (r-l)/2 ig (au [m] == x) TC = O(log n) SC = O(1)sutuun m of (auu[m] < n) u=m-1 suturu -1 241) Muite menemence mlation for binary remissive seauch. Seauch. $\tau(n) = 1 + .T(n/2) + 1$ = T(n/2) + C so, T(n) = T(n/2)+C TC = O(logn)

ming?