LECTURE 8

SPRING 2021
APPLIED MACHINE LEARNING
CIHANG XIE

TODAY

- Review of Linear Classification
- Logistic Regression
 - Introduction
 - Maximum likelihood optimization
 - Softmax activation for multi-class classification

LINEAR CLASSIFIERS

- Inputs are feature values
- Each feature has a weight
- Weighted sum is the activation

- If the activation is:
 - Positive, output + I
 - Negative, output I

LEARNING: BINARY CLASSIFIER

- Start with weights = 0
- For each training instance:
 - Classify with current weights

SEPARABLE CASE: DETERMINISTIC DECISION

NON-SEPARABLE CASE: DETERMINISTIC DECISION

Even the best linear boundary makes at least one mistake

PROBABILISTIC DECISION

PROBABILISTIC CLASSIFICATION

FROM PROBABILITY TO ODDS

• Another way of thinking about probabilities is to transform them using the function:

$$odds = \frac{p}{1 - p}$$

- This is the probability of something happening divided by the probability of it not happening.
- Similarly, if we were told that the odds of an event E are x to y, then

$$odds(E) = \frac{x}{y}$$

Which means

$$p(E) = \frac{x}{x+y}$$

FROM PROBABILITY TO ODDS

- If odds in favor of X solving a problem are 4 to 3 and odds **against** Y solving the same problem are 2 to 6. Find probability for:
 - --- (i) X solving the problem
 - --- (ii) Y solving the problem
- What's the range of possible values for the odds ratio?

THE LOGIT FUNCTION

- With one more transformation we can get a value that is unbounded over the real numbers.
- This is the logit function, it takes a value between 0 to 1 and maps it to a value between $-\infty$ and $+\infty$:

$$z = \log(\frac{p}{1 - p})$$

LOGISTIC FUNCTION

• Logit function:

$$z = \log_{e} \left(\frac{p}{1 - p} \right)$$
$$e^{z} = \frac{p}{1 - p}$$

• Logistic function (inverse logit function):

$$p = \frac{1}{1 + e^{-z}}$$

• The logistic function takes a value between $-\infty$ and $+\infty$ and maps it to a value between 0 and 1.

DIFFERENT WAYS OF EXPRESSING PROBABILITY

• Consider a two-outcome probability space, where:

$$- p(O_1) = p$$

 $- p(O_2) = 1 - p = q$

• Can express probability O_1 as:

	notation	Range Equivalents		
Standard probability	p	0	0.5	1

LOGISTIC FUNCTION OR SIGMOID

LOGISTIC REGRESSION

PROBABILISTIC DECISION

LOGISTIC REGRESSION

• Name is somewhat misleading. Really a technique for classification, not regression

• Involves a more probabilistic view of classification.

USING A LOGISTIC REGRESSION MODEL

- Model consists of a vector θ in (d+1)-dimensional feature space
- For a point x in feature space, project it onto θ to convert it into a real number z in the range in the range $-\infty$ to $+\infty$

$$z = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$
$$z = \theta \cdot x = \theta^T x$$

• Map z to the range 0 to 1 using the logistic function (sigmoid function)

$$p = y(x) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

 Overall, logistic regression maps a point in d-dimensional space to a value in the range 0 to 1.

LOGISTIC FUNCTION

https://walkccc.github.io/CS/ML/5/

PROPERTIES OF LR

- One parameter per data dimension (feature) and a bias
- Features can be discrete or continuous
- Output of the model $y \in [0, 1]$
- Allows for gradient-based learning of parameters

SHAPE OF LOGISTIC FUNCTION

PROBABILISTIC INTERPRETATION

• If we have a value between 0 and 1, let's use it to model class probability:

$$p(C = 1|x) = \sigma(\theta^T x) \text{ with } \sigma(z) = \frac{1}{1 + e^{-z}}$$

Substituting we have

$$p(C = 1|x) = \frac{1}{1 + e^{-\theta^T x}}$$

- Suppose we have two classes, how can I compute p(C = 0|x)?
- Use the marginalization property of probability

$$p(C = 0|x) + p(C = 1|x) = 1$$

Thus

$$p(C = 0|x) = 1 - \frac{1}{1 + e^{-\theta^T x}} = \frac{e^{-\theta^T x}}{1 + e^{-\theta^T x}}$$

BEST θ ?

Maximum likelihood estimation:

$$\max_{\theta} \ ll(w) = \max_{\theta} \ \sum_{i} \log P(y^{(i)}|x^{(i)};\theta)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

$$P(y^{(i)} = -1|x^{(i)}; \theta) = 1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

SEPARABLE CASE: DETERMINISTIC DECISION - MANY OPTIONS

SEPARABLE CASE: PROBABILISTIC DECISION – CLEAR PREFERENCE

0.7 | 0.3

0.5 | 0.5

DECISION BOUNDARY FOR LR

- What is the decision boundary for logistic regression?
- $p(C = 1|x, \theta) = \frac{1}{1 + e^{-\theta^T x}} = 0.5$

•
$$p(C = 0|x, \theta) = \frac{e^{-\theta^T x}}{1 + e^{-\theta^T x}} = 0.5$$

- Decision boundary: $\theta^T x = 0$
- Logistic regression has a linear decision boundary

MULTICLASS PROBABILISTIC REGRESSION

Recall:

- A weight vector for each class: θ_c
- Score (activation) of a class c: $z_c = \theta_c \cdot \phi(x)$
- Prediction highest score wins

$$y = \operatorname*{argmax}_{c} \theta_{c}. \phi(x)$$

How to make the scores into probabilities?

$$Z_1, Z_2, Z_3 \rightarrow \frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3}}$$

 θ_{c_1} . $\phi(x)$ biggest

QUIZ 2 (DUE THURSDAY)

Quiz 2

Not available until Apr 22 at 3:00pm | Due Apr 22 at 11:59pm | 7 pts | 7 Questions

QUESTIONSP