SIMC Section C: Busy footbridge

Definitions: P(i,j) denote the probability that person A_i will meet person B_j .

Question 1:
$$p_{1,n} = \frac{1}{2}$$
, $p_{2,n} = \frac{3}{8}$, $q_1 = \frac{1}{2}$, $q_2 = \frac{3}{8}$, $q_3 = \frac{5}{16}$

 $p_{1,n}$) Based on simulation result, $P(1,n)=\frac{1}{2}\ \forall n$. This is intuitive. If A_1 is stubborn, then whether he meets B_n depends on whether he is in the same lane as B_n initially, with a probability of $\frac{1}{2}$. If A_1 is polite, then whether he meets B_n depends on whether B_{n-1} and B_n are on the same lane, with a probability of $\frac{1}{2}$ because we can take B_n to be independently generated as B_{n-1} . If n=1, it will still be a probability of $\frac{1}{2}$. Hence, $P(1,n)=\frac{1}{2}$.

 $p_{2,n}$) From the simulation results, it seems that $P(2,1)=\frac{1}{2}$ and $P(2,n)=\frac{3}{8}$ for n>1. The first part is intuitive. We can treat the spawning of A_2 to be independent from A_1 . Therefore, whether A_2 will meet B_1 depends on whether A_2 is spawned in the same row as B_1 after A_1 passed the row of B_1 . Hence, $P(2,1)=\frac{1}{2}$.

For the latter result, we consider a more general case. We calculate P(m, n) where n > 1. We observe that a polite person among A will not change the order of B, while a stubborn person in A will push all the B to one side.

Before A_m , there are m-1 other As. If none of them are stubborn, then the order of B will be the same. Hence, we can treat A_m as A_1 . This gives a probability of $\left(\frac{1}{2}\right)^{m-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^m$, where the first $\left(\frac{1}{2}\right)^{m-1}$ comes from everyone before A_m being polite. Otherwise, if at least one of $[A_1,A_2,\ldots,A_{m-1}]$ is stubborn, then the Bs will fall into one row. Hence, if A_m is polite, then it has no chance of meeting B_n . Otherwise, if it is stubborn, then A_m will only meet B_n if they are in the same row initially, which has a probability of $\frac{1}{2}$. Hence, the probability here is $\left(1-\left(\frac{1}{2}\right)^{m-1}\right)\cdot\frac{1}{2}\cdot\frac{1}{2}$.

Hence,

$$P(m,n) = \left(\frac{1}{2}\right)^m + \left(1 - \left(\frac{1}{2}\right)^{m-1}\right) \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1}$$
$$p_{2,n} = P(2,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

Note that the probability P(m, n) is independent of n.

- q_1) From the answer and derivation in $p_{1,n}$, we have $q_1 = \frac{1}{2}$.
- q_2) Based on simulation result, $P(2,10000)\approx 0.37510\approx \frac{3}{8}$. From the answer and derivation in $p_{2,n}$, we can see $P(2,\infty)=\frac{3}{8}$.

 q_3) Based on simulation result, $P(3,10000)\approx 0.311820$. This is close to the value of $\frac{5}{16}\approx 0.3125$. From the answer and derivation in $p_{2,n}$, we can see that $P(3,\infty)=\frac{1}{4}+\left(\frac{1}{2}\right)^4=\frac{5}{16}$.

Further analysis: We see that for large m, $P(m,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1} \to \frac{1}{4}$. This makes sense for large m, there is a high probability that there is a stubborn A before the A we are considering; hence the Bs will be in the same row. Therefore, the only way for A and B to meet is when A is stubborn and in the same row as B as well, each with a probability of $\frac{1}{2}$.

Question 2:
$$p_{1,n} = \frac{1}{2}$$
, $p_{2,n} = \frac{3}{8}$, $q_1 = \frac{1}{3}$, $q_2 = \frac{1}{6}$ $q_3 = \frac{1}{6}$

 $p_{1,n}$) Based on simulation result, $P(1,n)=\frac{1}{2}\ \forall n$. This is intuitive. If A_1 is stubborn, then whether he meets B_n depends on whether he is in the same lane as B_n initially, with a probability of $\frac{1}{2}$. If A_1 is polite, then whether he meets B_n depends on whether B_{n-1} and B_n are on the same lane, with a probability of $\frac{1}{2}$ because we can take B_n to be independently generated as B_{n-1} . If n=1, it will still be a probability of $\frac{1}{2}$. Hence, $P(1,n)=\frac{1}{2}$.

 $p_{2,n}$) From the simulation results, it seems that $P(2,1)=\frac{1}{2}$ and $P(2,n)=\frac{3}{8}$ for n>1. The first part is intuitive. We can treat the spawning of A_2 to be independent from A_1 . Therefore, whether A_2 will meet B_1 depends on whether A_2 is spawned in the same row as B_1 after A_1 passed the row of Bs. Hence, $P(2,1)=\frac{1}{2}$.

For the latter result, we consider a more general case. We calculate P(m, n) where n > 1. We observe that a polite person among A will not change the order of B, while a stubborn person in A will push all the B to one side.

Before A_m , there are m-1 other As. If none of them are stubborn, then the order of B will be the same. Hence, we can treat A_m as A_1 . This gives a probability of $\left(\frac{1}{2}\right)^{m-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^m$, where the first $\left(\frac{1}{2}\right)^{m-1}$ comes from everyone before A_m being polite. Otherwise, if at least one of $[A_1,A_2,\ldots,A_{m-1}]$ is stubborn, then the Bs will fall into one row. Hence, if A_m is polite, then it has no chance of meeting B_n . Otherwise, if it is stubborn, then A_m will only meet B_n if they are in the same row initially, which has a probability of $\frac{1}{2}$. Hence, the probability here is $\left(1-\left(\frac{1}{2}\right)^{m-1}\right)\cdot\frac{1}{2}\cdot\frac{1}{2}$.

Hence.

$$P(m,n) = \left(\frac{1}{2}\right)^m + \left(1 - \left(\frac{1}{2}\right)^{m-1}\right) \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1}$$
$$p_{2,n} = P(2,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

Note that the probability P(m, n) is independent of n.

- q_1) From the answer and derivation in $p_{1,n}$, we have $q_1 = \frac{1}{2}$.
- q_2) Based on simulation result, $P(2,10000)\approx 0.37510\approx \frac{3}{8}$. From the answer and derivation in $p_{2,n}$, we can see $P(2,\infty)=\frac{3}{8}$.
- q_3) Based on simulation result, $P(3,10000)\approx 0.311820$. This is close to the value of $\frac{5}{16}\approx 0.3125$. From the answer and derivation in $p_{2,n}$, we can see that $P(3,\infty)=\frac{1}{4}+\left(\frac{1}{2}\right)^4=\frac{5}{16}$.

Further analysis: We see that for large m, $P(m,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1} \to \frac{1}{4}$. This makes sense for large m, there is a high probability that there is a stubborn A before the A we are considering; hence the Bs will be in the same row. Therefore, the only way for A and B to meet is when A is stubborn and in the same row as B as well, each with a probability of $\frac{1}{2}$.

References:

NUSH Champion Award Report:

https://www.nushigh.edu.sg/qql/slot/u90/file/simc/mathmodel/SIMC2018ChampionAwardReport.pdf