Отчет о выполненой лабораторной работе 1.3.1

Антон Хмельницкий, Б01-306

November 28, 2023

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

1 Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией для двух простейших напряженных состояний упругих тел: одностороннего сжатия и чистого изгиба; по результатам эксперимента вычислить модул Юнга.

В работе используются: в первой части - прибор Лермантова, проволока из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величин прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Определение модуля Юнга по измерению изгиба балки

2.1 Теоретические сведения

Модуль Юнга материала стержня E связан со стрелой прогиба y_{max} как:

$$E = \frac{Pl^3}{4ab^3 y_{max}} \tag{1}$$

где P - нагрузка на стержень, l - расстояние меду точками опоры, a - ширина балки ,b - высота балки

2.2 Экспериментальная установка

Рисунок 1: Установка для измерения модуля Юнга

Экспериментальная установка состоит из прочной стойки с опорными призмами А и Б (рис. 2). На ребра призм опирается исследуемый стержень (балка) В. В середине стержня на призме Д подвешена площадка П с грузами. Измерять стрелу прогиба можно с помощью индикатора И, укрепляемого на отдельной штанге. Полный оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

2.3 Расчет всех данных

В данной уставновке $l=50,2~{\rm cm}$

Ширина, a , см	Толщина, b, см
1,98	1,1
1,99	1,075
2	1,05
1,99	1,07
2	1,03
2	1,06
1,8	1,085
1,6	1,73
2	1,078
1,99	1,065

Таблица 1: Измерение средней ширины и толцины балки

Для измеренных значений среднее будет $\overline{a}=1,934$ см и $\overline{b}=1,064$ см. Для a:

- Среднее значение: $\langle a \rangle = \frac{1}{n} \sum_{i=1}^n a_i = 1,934$ см.
- Стандартное отклонение: $\sigma_a = \sqrt{\frac{1}{n} \sum_{i=1}^n (a_i \langle a \rangle)^2} = 0.126$ см.
- Стандартная погрешность опыта: $\sigma_{\rm cp} = \frac{\sigma_{\rm a}}{\sqrt{n}} = 0,04$ см.
- Полная погрешность: $\sigma_{\text{полн}} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_a^2} = 0.041$ мм.

Для b:

- Среднее значение: $\langle b \rangle = \frac{1}{n} \sum_{i=1}^{n} b_i = 1,064$ см.
- Стандартное отклонение: $\sigma_b = \sqrt{\frac{1}{n}\sum_{i=1}^n (b_i \langle b \rangle)^2} = 0.021$ см.
- Стандартная погрешность опыта: $\sigma_{\rm cp} = \frac{\sigma_b}{\sqrt{n}} = 0,007$ см.
- Полная погрешность: $\sigma_{\text{полн}} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_b^2} = 0,012$ мм.

Итоговые результаты:

$$a = 1,934 \pm 0,041(\varepsilon_a = 2,1\%)$$

$$b = 1,064 \pm 0,012(\varepsilon_b = 1,1\%)$$

При измерении балка не возвращалась на прежнее положение

Если сместить центр на 5мм			
M, гр	y_{max} , MM		
503,1	0,56		
467,9	0,53		
482,5	0,54		

M, гр	P, H	y_{max} , MM
511	5,0078	0,629
482,5	4,7285	0,6
503,3	4,93234	0,61
467,9	4,58542	0,595
503,1	4,93038	0,62
971	9,5158	1,2
1014,3	9,94014	1,231
985,6	9,65888	1,235
1004,4	9,84312	1,205
1494,8	14,64904	1,815

Таблица 2: Данные для зависимости $P(y_{max})$ для деревянной балки с одной стороны

M, гр	P, H	y_{max} , MM
467,9	4,58542	0,719
503,1	4,93038	0,827
511	5,0078	0,871
466,7	4,57366	0,787
503,3	4,93234	0,9
482,5	4,7285	0,81
501,3	4,91274	0,93
478,2	4,68636	0,86
461,8	4,52564	0,87

Таблица 3: Данные для зависимости $P(y_{max})$ для деревянной балки с другой стороны

2.4 Обработка результатов

Расчет погрешность при аппроксимации по МНК:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$
$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$

Тогда для одной стороны $k_1=8.074\pm0,0736(\varepsilon_{k_1}\approx0,91\%).$ Для другой стороны $k_2=5,467\pm0,32(\varepsilon_{k_2}\approx6\%).$

Модуль Юнга:

$$E = \frac{Pl^3}{4\overline{a}(\overline{b})^3 y_{max}} = k \frac{l^3}{4\overline{a}(\overline{b})^3}$$
 (2)

Погрешность:

$$\varepsilon_E = \sqrt{(\varepsilon_k)^2 + (3\varepsilon_l)^2 + (\varepsilon_a)^2 + (3\varepsilon_b)^2}$$

Получаем $\varepsilon_E=4,1\%$ и E=10,96 ГПа.

σ_a	0,1 мм	a	1,934 см	ε_a	2,1%
σ_b	0,1 мм	b	1,06 см	ε_b	1,1%
σ_l	1 мм	l	50,2 см	ε_l	0,2%
σ_k	0,074	k	8,074 H/mm	ε_k	0,92%

Таблица 4: Погрешности

Рисунок 2: График для деревянной балки с одной стороны

Рисунок 3: График для деревянной балки с другой стороны

3 Выводы

В работе была исследована зависимость между напряжением и деформацией балки и измерен модуль Юнга для дерева.

Сравнивая полученное значение $E=10,96\pm0,45$ ГПа ($\varepsilon_E=4,1\%$) с табличным(E=10,2 ГПа) получаем, что оно лежит в пределах $2\sigma_E$.