IMS doc

Adam Dzurilla, Martin Mores November 2022

Obsah

1	Úvod			3
	1.1	Autori	·	3
2	Fotovoltaika			3
	2.1	Prieme	erná ročná produkcia	3
	2.2	Prieme	erná denná spotreba	3
	2.3		et reálnych dát podľa internetového protokolu	4
	2.4		aktný model	4
			Petriho sieť pre generovanie elektrickej energie za pomoci	
			fotovoltaických panelov	5
3	Tepelné čerpadlá			
		3.0.1	Výpočet dát	6
		3.0.2	Abstrakný model	6
4	Kor	ıcepcia		7
		4.0.1	Spustenie programu	7
		4.0.2	Petriho sieť	8
5	Tes	tovanie	;	8
6	Záv	er		8

1 Úvod

Pri skúmaní našej práce sme sa zamerali predovšetkým na získavanie tepelnej energie pomocou fotovoltaiky a tepelného čerpadla. Prácu sme si rozdelili rovnomerne štýlom, kde jeden študent vytváral výskum o získavaní energie z fotovoltaických panelov a druhý člen tímu skúmal tepelné čerpadlá. Získané vedomosti sme potom každý osobitne abstrahovali a snažili sme sa z nich tvoriť simulačné modely.

Cieľom nášho projektu bolo vytvoriť simulačný model ktorý najskôr získa energiu z fotovoltaických panelov, ktorú následne využije pre výrobu tepla za pomoci tepelného čerpadla. Pri našom výskume sme sa zamerali na oblasti Slovenskej a Českej republiky. Naša práca zahŕňa simulácie pre rôzne počty fotovoltaických panelov, rôznu výkonnosť, rôzne veľké budovy či rôzne druhy tepelných čerpadiel.

1.1 Autori

- xdzuri00 Fotovoltaika
- xmores02 Tepelné čerpadlá

2 Fotovoltaika

Výkon panelov vo fotovolta
ike sa udáva vo Wp, čo je špičkový výkon. Tento údaj znamená, koľko elektrickej energie fotovolta
ické panely vyprodukujú pri štandardných testovacích podmienkach - intenzite dopadajúce
ho žiarenia 1 000 W/m^2 a teplote okolia 25°C. [1]

2.1 Priemerná ročná produkcia

Priemerná ročná produkcia v naších podmienkách pre fotovoltaické panely je približne 1kWp výkonu čo zodpovedá 1 100 až 1 300 kWh, podľa orientácie, sklonu, lokality. Výkon panelov úmerne zvyšuje aj vyprodukovanú energiu. Teda panel s výkonom 8kWp ročne vyprodukuje 8 800 až 10 400 kWh.

2.2 Priemerná denná spotreba

Priemerná denná spotreba veľmi závysi od konkrétného obdobia, doby slnečného svetla za deň či od počasia v konkrétny deň. Meranie dennej spotreby sa rozdeľuje medzi zimný a letný polrok. Počas letného polroka výkon dosahuje 5 až 6 násobok toho zimného. Okrem výkonú budú logicky aj v závislosti na lokalite, orientácii a sklone panelov, nebudú to však veľké odchýlky [1].

Tento graf bol vygenerovaný pomocou internetovej stránky¹ ktorá slúži pre generovanie približnej výroby elektrickej energie za pomoci fotovoltaických panelov na predom určenej lokalite, generátor ponúka rôzne možnosti ako napríklad:

- Určiť z akej databázy sa majú brať dáta o slnečnej energii
- Technológia fotovoltaických panelov
- Nainštalovaný výkon v kWp
- Približná strata vyrobenej energie v %
- Sklon panelov
- A rôzne d'alšie parametre

Podľa priloženého grafu možno vidieť že v lokalite ktorá bola náhode vybratá v okolí môjho bydliska (približne na túto oblasť sa naša simulácia zameriava) je výkon fotovoltaických panelov najvyšší v mesiacoch od apríla do augusta, práve tieto mesiace disponujú najdlhším denným slnečným svetlom, a pre tieto mesiace nie sú typické prírodne pokrývky povrchu panelov ako sneh alebo lístie.

2.4 Abstraktný model

Na základe údajov získaných z grafu vieme rozlíšiť približne vyrobenú energiu do štyroch rôznych skupín:

- $\bullet\,$ Január, November, December priemerná výroba za mesiac je okolo 35,87 kWh
- Február, Okróber priemerná výroba za mesiac je okolo 62,42 kWh
- Marec, September priemerná výroba za mesiac je okolo 93,44 kWh
- Apríl, Máj, Jún, Júl, August priemerná výroba za mesiac je okolo 119,12 kWh

https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html

2.4.1 Petriho sieť pre generovanie elektrickej energie za pomoci fotovoltaických panelov

Tento generátor rozdeľuje o aký mesiac sa v prípade simulácie jedná, a na jeho základe posunie ďalej počet energie v Wh, ktorá sa ďalej bude používať ako pohon pre tepelné čerpadlo.

$$n = p * pp$$

Kde konštanta p označuje počet fotovoltaických panelov, a konštanta pp označuje výkon jedného panelu v kWp.

3 Tepelné čerpadlá

Dokážu previesť teplo z okolia (o teplote napr. 2°C) na vyššiu telesnú hladinu napr. 80°C ale na to potrebujú dodať elektrickú energiu. Kompresor odoberá zo siete výkon 1kWh a do vykurovania dostava 3kWh tepla . Čim vačši je rozdiel tepla vonku a vnútri, tým vačšia je delta a tým je menšia učinosť. Idealna delta v našich podmienkach je 41°C.

3.0.1 Výpočet dát

Týmto grafom sme sa inšpirovali pri nasej problematike z internetovej stranky 2 , kde sme to pozorovali na čerpadle typu Panasonic Aquarea. Na grafe môžme vidieť, že v rodinnom dome o rozlohe $130\mathrm{m}2$, koľko bolo za jednotlivé mesiace spotrebovaná elektricka enrgia v kWh za vykúrenie domu.

3.0.2 Abstrakný model

Na lepšiu pracu s udajmi, rozdelíme údaje z grafu do štyroch skupín.

- Január, November, December priemerna spotreba elektrickej energie za mesiac je 824,33 kWh
- $\bullet\,$ Február, Okróber priemerna spotreba elektrickej energie za mesiac je 820 kWh
- \bullet Marec, September priemerna spotreba elektrickej energie za mesiac je 313,5 kWh
- Apríl, Máj, Jún, Júl, August priemerna spotreba elektrickej energie za mesiac je 118,2 kWh

 $^{^2}$ https://vytapeni.tzb-info.cz/tepelna-cerpadla/9367-tepelne-cerpadlo-panasonic-aquarea-skutecna-spotreba-elek

4 Koncepcia

Program sme implementovali v knhovne simlib. Program spočíva v tom že uživateľ zadá rozlohu simulovaného objketu(-a), ročnú priemrnú spotrebu elektrickej energie na vykurovanie(-hc), počet panelov(-p), ktore má nainštalované, optimálny výkon tepelného čerpadla(-hpc), produkciu solárneho panelu za rok(-pp), ak dané hodnty nezadá program pracuje s defaultne nastavenými hodnotami, ktrore sme ziskali primárne z internetových stranok³ a výsledkom pozorovania by malo byť či dané tepelné čerpadlo vydržala energia na dané mesiace alebo ak nevydržala, tak na koľko percent mu energia zo solárnych panelov pokrila výdrž.

4.0.1 Spustenie programu

Program najskôr treba preložiť príkazom make, potom ak neprídu žiadne chyby príkazom ./run, s argumentmi ./run [-p || --panels cislo][-pp || --panelProduction cislo][-a || --areaSpace cislo][-hc || --heatConsumption cislo][-hpc || --heatPumpConsumption cislo]

³https://www.sse.sk/kalkulacky/vypocet-uspory-s-tepelnym-cerpadlom?page_id= 8600

4.0.2 Petriho sieť

- 5 Testovanie
- 6 Záver

Referencie

[1] QUEST elements. *Časté otázky k fotovoltaike*. online. URL: https://www.quest.sk/fotovoltaicke-panely/caste-otazky/.