Table S1. Initial concentrations of molecules in a cell

Molecules	cellular concentration	References/Remarks	
Activator	1 μM	arbitrary	
GEF	0.31 μM	[Aoki, 2007]	
Active GEF	0 μΜ		
GDP-Rho*	0 μΜ		
GTP-Rho*	$0\mu\mathrm{M}$		
free GDI**	$0.7~\mu\mathrm{M}$	[Michaelson, 2001]	
GDI • GDP-Rho***	$1.3 \mu\mathrm{M}$	[Michaelson, 2001]	
GDI • GTP-Rho***	$0\mu\mathrm{M}$		
GAP	$0.1 \mu M$	arbitrary	
Effector	$1 \mu\mathrm{M}$	arbitrary	
GTP-Rho • Effector	$0\mu\mathrm{M}$		

Aoki K, Nakamura T, Inoue T, Meyer T, Matsuda M (2007) J Cell Biol 177: 817-827. Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, Philips MR (2001) J Cell Biol 152:111-126. Chuang TH, Bohl BP, Bokoch GM (1993) J Biol Chem 268:26206-26211.

** Michaelson et al. [Michaelson, 2001] reported the cellular concentration of each molecule as follows,

RhoGDI $\alpha = 283 \pm 27 \text{ ng}/10^6 \text{ cells}$

RhoA = $56 \pm 14 \text{ ng}/10^6 \text{ cells}$

 $Rac1 = 124 \pm 27 \text{ ng}/10^6 \text{ cells}$

 $Cdc42 = 53 \pm 18 \text{ ng}/10^6 \text{ cells}$

Assuming cellular volume as 2 pl, we calculated the molar concentration of these molecules as follows,

RhoGDI $\alpha = 6.1 \mu M$

RhoA = $1.3 \mu M$

 $Rac1 = 2.9 \, \mu M$

 $Cdc42 = 1.2 \,\mu M$

We assumed that RhoA, Rac1, and Cdc42 were entirely complexed with RhoGDI α and calculated the concentration of free RhoGDI α as follows,

$$6.1 - (1.3 + 2.9 + 1.2) = 0.7 \mu M$$

***To analyze one species of Rho GTPase we choosed RhoA as an example. Therefore, we assumed the concentration of Rho GTPase as $1.3~\mu\text{M}$. We also assumed that all RhoA was GDP-bound form before stimulation, therefore, the initial concentration of GDI/GDP-Rho and GDI/GTP-Rho complex was estimated as $1.3~\text{and}~0~\mu\text{M}$, respectively.

^{*} The molar amount of RhoGDI is roughly equal to the total levels of the RhoA, Rac1 and Cdc42 GTPases in several types of cultured cell [Michaelson, 2001] and the majority of GDP-bound Rac in cells is present in a complex with RhoGDI [Chuang, 1993], therefore, we estimated that the initial concentrations of GDP- and GTP-Rho that are not bound GDI are 0.

Table S2. Kinetic reactions, equations, and parameteres in the models

Reaction	Models**	Reactions	Equations	Parameters	
number*	IMOUEIS.	Reactions	Equations	Values	References/Remarks
re1	A, B, C, D	k_I [GEF] + [Activator] \rightarrow [Active GEF]	$\frac{\text{d[Active GEF]}}{\text{dt}} = k_J[\text{GEF}][\text{Activator}]$	$k_I = 1 \mu\text{M}^{-1}\text{min}^{-1}$	arbitrary
re2	A, B, C, D	k_2 [Active GEF] \rightarrow [GEF]	$\frac{\text{d[Active GEF]}}{\text{dt}} = -k_2[\text{Active GEF}]$	$k_2 = 0.1 \text{ min}^{-1}$	arbitrary
re3	A, B, C, D	k_3 [Activator] \rightarrow [degrade Activator]	$\frac{d[Activator]}{dt} = -k_3[Activator]$	$k_3 = 0.5 \text{ min}^{-1}$	arbitrary
re4	A, C	$Km_{\text{GEF/Rho}} \qquad \qquad kcat_{GEF}$ $[\text{GDP-Rho}] + [\text{Active GEF}] \qquad \rightleftarrows \qquad [\text{GDP-Rho} \cdot \text{Active GEF}] \qquad \to \qquad [\text{GTP-Rho}] \qquad + \qquad [\text{Active GEF}]$	$\frac{\text{d[GTP-Rho]}}{\text{dt}} = \frac{kcat_{GEF}[\text{GDP-Rho}][\text{Active GEF}]}{Km_{GEF/Rho} + [\text{GDP-Rho}]}$	$Km_{\text{GEF/Rho}} = 24.5 \mu\text{M}$ $kcat_{GEF} = 5.64 \text{min}^{-1}$	[Zhang, 2000] [Zhang, 2000]
	B, D	$Km_{\text{GEF/Rho}} \qquad kcat_{\text{GEF}}$ [Active GEF] + [GDP-Rho] \Rightarrow [Active GEF-GDP-Rho] \rightarrow [Active GEF] + [GTP-Rho] + [GDI] [GDI] [GDI] $Km_{\text{GEF/GDI}} \qquad Km_{\text{GEF/Rho}} \qquad \uparrow Km_{\text{GEF/GDI}}$ [GDI-Active GEF] + [GDP-Rho] \Rightarrow [GDI-Active GEF-GDP-Rho]	$\frac{\text{d[GTP-Rho]}}{\text{dt}} = \frac{kcat_{GEF}[\text{Active GEF}][\text{GDP-Rho}]}{Km_{\text{GEF/Rho}}(1 + \frac{[\text{GDI}]}{Km_{\text{GEF/GDI}}}) + [\text{GDP-Rho}](1 + \frac{[\text{GDI}]}{Km_{\text{GEF/GDI}}})}$	$Km_{\text{GEF/Rho}} = 24.5 \mu\text{M}$ $kcat_{GEF} = 5.64 \text{min}^{-1}$ $Km_{\text{GEF/GDI}} = 1 \mu\text{M}$	[Zhang, 2000] [Zhang, 2000] arbitrary
re5	A, D	$Km_{\text{GAP:Rho}} \qquad \qquad kcat_{\text{GAP}}$ [GTP-Rho] + [GAP] $\qquad \rightleftharpoons \qquad$ [GDP-Rho] + [GAP]	$\frac{\text{d[GDP-Rho]}}{\text{dt}} = \frac{kcat_{GAP}[\text{GTP-Rho}][\text{GAP}]}{Km_{\text{GAP/Rho}} + [\text{GTP-Rho}]}$	$Km_{\text{GAP/Rho}} = 4.48 \ \mu\text{M}$ $kcat_{GAP} = 95.9 \ \text{min}^{-1}$	[Zhang, 2000] [Zhang, 2000]
	В, С	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\text{d[GDP-Rho]}}{\text{dt}} = \frac{kcat_{GAP}[\text{GAP}][\text{GTP-Rho}]}{Km_{\text{GAP/Rho}}(1 + \frac{[\text{GDI}]}{Km_{\text{GAP/GDI}}}) + [\text{GTP-Rho}](1 + \frac{[\text{GDI}]}{Km_{\text{GAP/GDI}}})}$	$Km_{\text{GAP/Rho}} = 4.48 \mu\text{M}$ $kcat_{\text{GAP}} = 95.9 \text{min}^{-1}$ $Km_{\text{GAP/GDI}} = 0.1 \mu\text{M}$	[Zhang, 2000] [Zhang, 2000] arbitrary
re6	A, B, C, D	$ [GDP-Rho] + [GDI] \rightleftharpoons [GDP-Rho\cdot GDI] $ $ k_5 $	$\frac{d[GDP-Rho\cdot GDI]}{dt} = k_4[GDP-Rho][GDI] - k_5[GDP-Rho\cdot GDI]$	$k_4 = 0.5 \ \mu \text{M}^{-1} \text{min}^{-1}$ $k_5 = 0.05 \ \text{min}^{-1}$	[Lipshtat, 2010] [Lipshtat, 2010]
re7	A, B, C, D	$ [\text{GTP-Rho}] + [\text{GDI}] \rightleftharpoons [\text{GTP-Rho} \cdot \text{GDI}] $ $ k_7 $	$\frac{d[GTP-Rho\cdot GDI]}{dt} = k_6[GTP-Rho][GDI] - k_7[GTP-Rho\cdot GDI]$	$k_6 = 0.5 \ \mu \text{M}^{-1} \text{min}^{-1}$ $k_7 = 0.05 \ \text{min}^{-1}$	[Lipshtat, 2010] [Lipshtat, 2010]
re8	A, B, C, D	$ \begin{array}{c} k_8 \\ \text{[GTP-Rho]} + \text{[Effector]} & \rightleftarrows & \text{[GTP-Rho-Effector]} \\ k_9 \end{array} $	$\frac{\text{d}[\text{GTP-Rho}\cdot\text{Effector}]}{\text{dt}} = k_8[\text{GTP-Rho}][\text{ Effector}] - k_9[\text{GTP-Rho}\cdot\text{Effector}]$	$k_8 = 28.2 \ \mu \text{M}^{-1} \text{min}^{-1}$ $k_9 = 0.18 \ \text{min}^{-1}$	[Rose, 2005] [Rose, 2005]

Zhang B, Zhang Y, Wang Z, Zheng Y (2000) J Biol Chem 275: 25299-25307.

Lipshtat A, Jayaraman G, He JC, Iyengar R (2010) Proceedings of the National Academy of Sciences 107: 1247-1252.

Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A (2005) Nature 435: 513-518.

^{*} corresponding to the reaction numbers in Figure 1.

^{**} corresponding to the models in Figure 1.