

## Quantum number, Electronic configuration and Shape of orbitals

## 1. Be's 4th electron quantum numbers

Beryllium (Be) has atomic number  $4 \rightarrow 4$  electrons.

Electron configuration: 1s<sup>2</sup> 2s<sup>2</sup>

1st electron → 1s

2nd electron → 1s

3rd electron  $\rightarrow$  2s

4th electron  $\rightarrow$  2s

For the 4th electron:

**n (principal quantum number)** = 2 (since it's in 2s)

I (azimuthal quantum number) = 0 (s-orbital)

 $m_1$  (magnetic quantum number) = 0 (s-orbital has only one orientation)

**s (spin quantum number)** = -1/2 (since the first electron in 2s is +1/2, the

second must be -1/2 by Pauli exclusion)

So, correct option: (c) 2, 0, 0, -1/2

#### 2. (a) Principal quantum number

Quantum number specifying location and energy of an electron n (principal quantum number) → determines energy level and approximate distance from nucleus

I (azimuthal quantum number) → determines shape of orbital

m₁ (magnetic quantum number) → determines orientation of orbital

s (spin quantum number)  $\rightarrow$  determines spin orientation

So, the quantum number that specifies location and energy:

- **3.** (b) The shape of an orbital is given by azimuthal quantum number 'l'.
- 4. (d) Pauli's exclusion principle

#### **Explanation:**



## **IIT-JEE CHEMISTRY**



Each electron in an atom is uniquely described by four quantum numbers:  $\mathbf{n}$ ,  $\mathbf{l}$ ,  $\mathbf{m}_{\mathbf{l}}$ ,  $\mathbf{s}$ .

No two electrons can have the exact same set of all four quantum numbers. Other options for clarity:

**Hund's rule** → electrons fill degenerate orbitals singly first, with parallel spins. **Aufbau principle** → electrons fill orbitals starting from lowest energy.

**Uncertainty principle**  $\rightarrow$  we cannot simultaneously know exact position and momentum of a particle.

- **5.** (c) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **6.** (c)  $1s^2$ ,  $2s^2$ ,  $2p^6$  represents a noble gas electronic configuration.
- **7.** (c) The electronic configuration of Ag in ground state is  $[Kr]4d^{10}5s^1$ .
- **8.** (a) n, l and m are related to size, shape and orientation respectively.
- **9.** (a) Electronic configuration of  $Rb_{(37)}$  is  $1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1$

So for the valence shell electron  $(5s^1)$ 

$$n = 5, l = 0, m = 0, s = +\frac{1}{2}$$

- **10.** (a) 3*d* subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4*s* electrons jumps into 3*d* subshell for more sability.
- **11.** (c) In 2p orbital, 2 denotes principal quantum number (n) and p denotes azimuthal quantum number (l=1).
- **12.** (c) Electronic configuration of  $H^-$  is  $1s^2$ . It has 2 electrons in extra nuclear space.



# **IIT-JEE CHEMISTRY**



- 13. (a) The electronic configuration must be  $1s^22s^1$ . Hence, the element is lithium (z=3).
- **14.** (a) Principal quantum no. tells about the size of the orbital.
- **15.** (d) An element has the electronic configuration  $1s^2$ ,  $2s^22p^6$ ,  $3s^23p^2$ , (Si). It's valency electrons are four.
- **16.** (c) The magnetic quantum number specifies orientation of orbitals.
- **17.** (c) If  $l = 2, m \neq -3 = (-e \text{ to } +e)$ .
- **18.** (d) If n = 3 then l = 0,1,2 but not 3.
- **20.** (c) Atomic number of Cu is  $29 = (Ar)4s^13d^{10}$ .
- **21.** (c) The shape of 2p orbital is dumb-bell.
- **22.** (a) When the value of n = 2, then l = 1 and the value of m = -1,0,+1 *i.e.* 3 values.
- **23.** (c)  $Cr_{24} = (Ar)3d^54s^1$  electronic configuration because half filled orbital are more stable than other orbitals.
- **24.** (d) *Kr* has zero valency because it contains 8 electrons in outermost shell.
- **25.** (c) 2 electron in the valence shell of calcium  $Ca_{20} = (2,8,8,2)$ .
- 26. (c) 4

**Carbon (C)** has atomic number  $6 \rightarrow 6$  electrons.

Electron configuration: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>

**Valence electrons** are the electrons in the **outermost shell** (highest principal quantum number, n).





For carbon, the outermost shell is n = 2, which contains 2 electrons in 2s + 2 electrons in 2p = 4 electrons.

- **27.** (b) Value of l = 1 means the orbital is p (dumb-bell shape).
- **28.** (d) Cr has  $[Ar]4s^13d^5$  electronic configuration because half filled orbital are more stable than other orbitals.
- 29. : (d) 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>0</sup>

Electronic configuration of calcium ion (Ca<sup>2+</sup>)

Calcium (Ca) has atomic number 20 → 20 electrons

Neutral Ca electron configuration: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup>

 $Ca^{2+} \rightarrow loses$  **2 electrons**  $\rightarrow$  these come from the outermost shell (4s<sup>2</sup>)

So, Ca<sup>2+</sup> configuration:

1s2 2s2 2p6 3s2 3p6 4s0

30. **(b)**  $s^2 p^6$ 

Structure of external most shell of inert gases

Inert gases (noble gases) have a completely filled outermost shell.

For main group inert gases, the outermost shell is:

**s**<sup>2</sup> **p**<sup>6</sup> (except helium, which is s<sup>2</sup>)

:

