Ayrık Matematik

Cebirsel Yapılar

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2010

Lisans

©2001-2010 T. Uyar, A. Yayımlı, E. Harmancı

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
- Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Konular

- 1 Cebir Aileleri
 - Giriş
 - Yarıgruplar
 - Gruplar
 - Halkalar
- 2 Kafesler
 - Kısmi Sıralı Kümeler
 - Kafesler
 - Boole Cebirleri

Cebirsel Yapı

Tanım

cebirsel yapı:

- taşıyıcı küme
- işlemler
- sabitler
- *imza*: <küme, işlemler, sabitler>

İşlem

■ ikili işlem:

$$\circ: S \times S \rightarrow T$$

tekli işlem:

$$\Delta:S\to T$$

• her işlem bir fonksiyon olarak görülebilir:

a ∘ b işlemi: ∘ a b fonksiyonu

Kapalılık

Tanım

kapalılık: $T \subseteq S$

görüntü kümesi tanım kümesinin altkümesi

Kapalılık

Örnek

- \blacksquare $\mathbb Z$ kümesi çıkarma işlemine göre kapalı
- lacksquare kümesi çıkarma işlemine göre kapalı değil

İkili İşlem Özellikleri

Tanım

değişme:

$$\forall a, b \in S \ a \circ b = b \circ a$$

Tanım

birleşme:

$$\forall a, b, c \in S (a \circ b) \circ c = a \circ (b \circ c)$$

İkili İşlem Örneği

Örnek

$$\circ: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
$$a \circ b = a + b - 3ab$$

değişme:

$$a \circ b = a + b - 3ab = b + a - 3ba = b \circ a$$

■ birleşme:

$$(a \circ b) \circ c = (a + b - 3ab) + c - 3(a + b - 3ab)c$$

$$= a + b - 3ab + c - 3ac - 3bc + 9abc$$

$$= a + b + c - 3ab - 3ac - 3bc + 9abc$$

$$= a + (b + c - 3bc) - 3a(b + c - 3bc)$$

$$= a \circ (b \circ c)$$

Sabitler

Tanım

etkisiz eleman:

$$x \circ 1 = 1 \circ x = x$$

- soldan etkisiz: $1_i \circ x = x$
- sağdan etkisiz: $x \circ 1_r = x$

Tanım

yutucu eleman:

$$x \circ 0 = 0 \circ x = 0$$

- soldan yutucu: $0_I \circ x = 0$
- sağdan yutucu: $x \circ 0_r = 0$

Sabit Örnekleri

Örnek

- \blacksquare < \mathbb{N} , max > için etkisiz eleman 0
- \blacksquare < \mathbb{N} , min > için yutucu eleman 0

Örnek

0	a	b	С
а	а	b	b
b	а	b	С
С	а	b	а

- b soldan etkisiz
- a ve b sağdan yutucu

Sabitler

Teorem

 $\exists 1_I \land \exists 1_r \Rightarrow 1_I = 1_r$

Teorem

 $\exists 0_I \wedge \exists 0_r \Rightarrow 0_I = 0_r$

Tanıt.

 $1_{l} \circ 1_{r} = 1_{l} = 1_{r}$

 $0_I \circ 0_r = 0_I = 0_r$

Evrik

Tanım

 $x \circ y = 1$ ise:

- x elemanı y elemanının sol evriği
- y elemanı x elemanının sağ evriği
- $x \circ y = y \circ x = 1$ ise x ile y evrik

Evrik

Teorem

o işlemi birleşme özelliği taşıyorsa:

$$w \circ x = x \circ y = 1 \Rightarrow w = y$$

Tanıt.

$$w = w \circ 1$$

$$= w \circ (x \circ y)$$

$$= (w \circ x) \circ y$$

$$= 1 \circ y$$

$$= y$$

Evrik

Teorem

o işlemi birleşme özelliği taşıyorsa evrik varsa tektir.

Tanıt.

$$a \circ x = x \circ a = 1 \land b \circ x = x \circ b = 1$$
 olsun
 $a = a \circ 1$
 $= a \circ (x \circ b)$
 $= (a \circ x) \circ b$
 $= 1 \circ b$
 $= b$

Cebir Aileleri

■ *cebir ailesi*: imza + aksiyomlar

Cebir Ailesi Örnekleri

Örnek

- aksiyomlar:
 - $x \circ y = y \circ x$
 - $(x \circ y) \circ z = x \circ (y \circ z)$
 - $x \circ 1 = x$
- bu aksiyomları sağlayan yapılar:
 - < \mathbb{Z} , +, 0 >
 - lacksquare < $\mathbb{Z},\cdot,1>$
 - \blacksquare < $\mathcal{P}(S)$, \cup , \emptyset >

Altcebir

Tanım

altcebir:

$$\textit{A} = <\textit{S}, \circ, \Delta, \textit{k} > \ \land \ \textit{A'} = <\textit{S'}, \circ', \Delta', \textit{k'} > \mathsf{olsun}$$

- \blacksquare A' cebrinin A cebrinin bir altcebri olması için:
 - S' ⊆ S
 - \blacksquare $\forall a, b \in S'$ $a \circ' b = a \circ b \in S'$

 - k' = k

Altcebir Örneği

Örnek

 $<\mathbb{Z},+,0>$ cebri $<\mathbb{R},+,0>$ cebrinin bir altcebridir

Yarıgruplar

Tanım

yarıgrup: $< S, \circ >$

Yarıgrup Örnekleri

Örnek

$$<\Sigma^+, \&>$$

- Σ : alfabe, Σ^+ : en az 1 uzunluklu katarlar
- &: katar bitiştirme işlemi

Monoidler

Tanım

monoid: $\langle S, \circ, 1 \rangle$

- $\forall a, b, c \in S (a \circ b) \circ c = a \circ (b \circ c)$

Monoid Örnekleri

Örnek

$$<\Sigma^*, \&, \epsilon>$$

- lacksquare Σ : alfabe, Σ^* : herhangi uzunluklu katarlar
- &: katar bitiştirme işlemi
- lacksquare ϵ : boş katar

Grup

Tanım

grup: $\langle S, \circ, 1 \rangle$

- $\forall a, b, c \in S \ (a \circ b) \circ c = a \circ (b \circ c)$
- $\forall a \in S \ \exists a^{-1} \in S \ a \circ a^{-1} = a^{-1} \circ a = 1$
- Abel grubu: $\forall a, b \in S \ a \circ b = b \circ a$

Grup Örnekleri

Örnek

$$<\mathbb{Z},+,0>$$

$$x^{-1} = -x$$

Örnek

$$<\mathbb{Q}-\{0\},\cdot,1>$$

$$x^{-1} = \frac{1}{x}$$

Grup Örnekleri

Örnek (permutasyon bileşkesi)

Α	1_A	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>P</i> 5	<i>P</i> 6	p 7	<i>p</i> ₈	p 9	P10	P11
1	1	1	1	1	1	1	2	2	2	2	2	2
2	2	2	3	3	4	4	1	1	3	3	4	4
3	3	4	2	4	2	3	3	4	1	4	1	3
4	4	3	4	2	3	2	4	3	4	1	3	1

$$p_8 \diamond p_{12} = 1_A \Rightarrow p_{12} = p_8^{-1}$$

 $p_{14} \diamond p_{14} = 1_A \Rightarrow p_{14} = p_{14}^{-1}$

$$<\{1_{A},p_{1},\ldots,p_{23}\},\diamond,\Delta^{-1},1_{A}>$$

Altgrup Örnekleri

Örnek (permutasyon bileşkesi)

♦	$ 1_A $	<i>p</i> ₂	<i>p</i> ₆	<i>p</i> ₈	<i>p</i> ₁₂	<i>p</i> ₁₄
1_A	1 _A	p_2	<i>p</i> ₆	<i>p</i> ₈	<i>p</i> ₁₂	p ₁₄
<i>p</i> ₂	<i>p</i> ₂	1_A	<i>p</i> ₈	<i>p</i> ₆	p ₁₄	<i>p</i> ₁₂
<i>p</i> ₆	<i>p</i> ₆	<i>p</i> ₁₂	1_A	<i>p</i> ₁₄	<i>p</i> ₂	<i>p</i> ₈
p 8	<i>p</i> ₈	<i>p</i> ₁₄	<i>p</i> ₂	<i>p</i> ₁₂	1_A	<i>p</i> ₆
<i>p</i> ₁₂	<i>p</i> ₁₂	<i>p</i> ₆	<i>p</i> ₁₄	1_A	<i>p</i> ₈	p_2
p_{14}	p ₁₄	<i>p</i> ₈	p_{12}	p_2	<i>p</i> ₆	1_A

Sağdan ve Soldan Kaldırma

Teorem

$$a \circ c = b \circ c \Rightarrow a = b$$

 $c \circ a = c \circ b \Rightarrow a = b$

Tanıt.

$$\begin{array}{rcl} a \circ c & = & b \circ c \\ \Rightarrow & (a \circ c) \circ c^{-1} & = & (b \circ c) \circ c^{-1} \\ \Rightarrow & a \circ (c \circ c^{-1}) & = & b \circ (c \circ c^{-1}) \\ \Rightarrow & a \circ 1 & = & b \circ 1 \\ \Rightarrow & a & = & b \end{array}$$

Grupların Temel Teoremi

Teorem

 $a \circ x = b$ denkleminin tek çözümü: $x = a^{-1} \circ b$

Tanıt.

- I $x = a^{-1} \circ b$ bir çözümdür: $a \circ x = a \circ (a^{-1} \circ b) = (a \circ a^{-1}) \circ b = 1 \circ b = b$
- 2 diğer bir çözüm *c* olsun:

$$\begin{array}{rcl}
a \circ c & = & b \\
\Rightarrow & a^{-1} \circ (a \circ c) & = & a^{-1} \circ b \\
\Rightarrow & 1 \circ c & = & a^{-1} \circ b \\
\Rightarrow & c & = & a^{-1} \circ b
\end{array}$$

Halka

Tanım

halka: $< S, +, \cdot, 0 >$

$$\forall a, b, c \in S (a+b) + c = a + (b+c)$$

$$\forall a \in S \ a + 0 = 0 + a = a$$

$$\forall a \in S \ \exists (-a) \in S \ a + (-a) = (-a) + a = 0$$

$$\blacksquare \forall a, b \in S \ a + b = b + a$$

$$\forall a, b, c \in S (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$\forall a, b, c \in S$$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

$$(b+c) \cdot a = b \cdot a + c \cdot a$$

Alan

Tanım

alan:
$$< S, +, \cdot, 0, 1 >$$

- bütün halka özellikleri
- $\forall a, b \in S \ a \cdot b = b \cdot a$
- $\forall a \in S \ \exists a^{-1} \in S \ a \cdot a^{-1} = a^{-1} \cdot a = 1$

Kaynaklar

Grimaldi

- Chapter 5: Relations and Functions
 - 5.4. Special Functions
- Chapter 16: Groups, Coding Theory, and Polya's Method of Enumeration
 - 16.1. Definitions, Examples, and Elementary Properties
- Chapter 14: Rings and Modular Arithmetic
 - 14.1. The Ring Structure: Definition and Examples

Kısmi Sıralı Küme

Tanım

kısmi sıra bağıntısı:

- yansımalı
- ters bakışlı
- geçişli
- kısmi sıralı küme: elemanlar üzerinde kısmi sıra bağıntısı

Kısmi Sıralı Küme Örnekleri

Örnek (kümeler kümesi, ⊆)

- $A \subseteq A$
- $\blacksquare A \subseteq B \land B \subseteq A \Rightarrow A = B$
- $\blacksquare \ A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$

Kısmi Sıralı Küme Örnekleri

$\ddot{\mathsf{O}}\mathsf{rnek}\ (\mathbb{Z},\ \leq)$

- x ≤ x
- $x \le y \land y \le x \Rightarrow x = y$
- $\blacksquare \ \ x \le y \land y \le z \Rightarrow x \le z$

Kısmi Sıralı Küme Örnekleri

Örnek (\mathbb{Z}, \mid)

- | x| x
- $x|y \wedge y|x \Rightarrow x = y$
- $|x|y \wedge y|z \Rightarrow x|z$

Karşılaştırılabilirlik

- a ≼ b: a b'nin önündedir
- lacksquare $a \leq b \lor b \leq a$: a ile b karşılaştırılabilir
- *çizgisel sıra*: her eleman çifti karşılaştırılabiliyor

Karşılaştırılabilirlik Örnekleri

Örnek

- \blacksquare \mathbb{Z} , |: 3 ile 5 karşılaştırılamaz
- \blacksquare \mathbb{Z}, \leq : çizgisel sıra

Hasse Çizenekleri

- $a \ll b$: $a \ b'$ nin hemen önündedir $\neg \exists x \ a \preceq x \preceq b$
- Hasse çizeneği:
 - lacksquare $a \ll b$ ise a ile b arasına çizgi
 - önde olan eleman aşağıya

Hasse Çizeneği Örnekleri

Örnek

 $\{1,2,3,4,6,8,9,12,18,24\}$ | bağıntısı

Tutarlı Sayılama

Tanım

tutarlı sayılama:

$$f:S\to\mathbb{N}$$

$$a \leq b \Rightarrow f(a) \leq f(b)$$

birden fazla tutarlı sayılama olabilir

Tutarlı Sayılama Örnekleri

Örnek

- f(d) = 1, f(e) = 2, f(b) = 3, f(c) = 4, f(a) = 5
- f(e) = 1, f(d) = 2, f(c) = 3, f(b) = 4, f(a) = 5

En Büyük - En Küçük Eleman

Tanım

en büyük eleman: max

 $\forall x \in S \ max \leq x \Rightarrow x = max$

Tanım

en küçük eleman: min

 $\forall x \in S \ x \leq min \Rightarrow x = min$

En Büyük - En Küçük Eleman Örnekleri

En Küçük Üstsınır

Tanım

 $A \subseteq S$

A'nın üstsınırı M:

 $\forall x \in A \ x \leq M$

Tanım

M(A): A'nın üstsınırları kümesi

A'nın en küçük üstsınırı sup(A):

 $\forall M \in M(A) \ sup(A) \leq M$

En Büyük Altsınır

Tanım

 $A \subseteq S$

A'nın altsınırı m:

 $\forall x \in S \ m \leq x$

Tanım

m(A): A'nın altsınırları kümesi

A'nın en büyük altsınırı inf(A):

 $\forall m \in m(A) \ m \leq inf(A)$

Sınır Örneği

Örnek (36'nın bölenleri)

 $\inf = obeb$ $\sup = okek$

Kafes

Tanım

kafes: $\langle L, \wedge, \vee \rangle$

∧: karşılaşma, ∨: bütünleşme

- $a \wedge b = b \wedge a$ $a \vee b = b \vee a$
- $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ $(a \vee b) \vee c = a \vee (b \vee c)$
- $a \wedge (a \vee b) = a$ $a \vee (a \wedge b) = a$

Kısmi Sıralı Küme - Kafes İlişkisi

- P bir kısmi sıralı küme ise < P, inf, sup > bir kafestir.
 - $a \wedge b = inf(a, b)$
 - $a \lor b = sup(a, b)$
- Her kafes bu tanımların geçerli olduğu bir kısmi sıralı kümedir.

Dualite

Tanım

dual:

 \land yerine \lor , \lor yerine \land

Teorem (Dualite Teoremi)

Kafeslerde her teoremin duali de teoremdir.

Kafes Teoremleri

Teorem

$$a \wedge a = a$$

Tanıt.

$$a \wedge a = a \wedge (a \vee (a \wedge b))$$

Kafes Teoremleri

Teorem

$$a \leq b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b = b$$

Kafes Örnekleri

Örnek

Sınırlı Kafesler

Tanım

L kafesinin altsınırı: 0

 $\forall x \in L \ 0 \leq x$

Tanım

L kafesinin üstsınırı: I

 $\forall x \in L \ x \leq I$

Sınırlı Kafesler

Teorem

Sonlu her kafes sınırlıdır.

Kafeslerde Dağılma

- dağılma özellikli kafes:

 - $\forall a, b, c \in L \ a \lor (b \land c) = (a \lor b) \land (a \lor c)$

Karşı Örnekler

Örnek

$$a \lor (b \land c) = a \lor 0 = a$$

 $(a \lor b) \land (a \lor c) = I \land c = c$

Karşı Örnekler

$$a \lor (b \land c) = a \lor 0 = a$$

 $(a \lor b) \land (a \lor c) = I \land I = I$

Kafeslerde Dağılma

Teorem

Bir kafesin bu iki yapıdan birine izomorf bir altkafesi varsa dağılma özelliği göstermez.

Bütünleşmeyle İndirgeme

Tanım

bütünleşmeyle indirgenemez eleman:

$$a = x \lor y \Rightarrow a = x \text{ veya } a = y$$

 atom: altsınırın hemen ardından gelen, bütünleşmeyle indirgenemez eleman

Bütünleşmeyle İndirgeme Örneği

Örnek (Bölünebilirlik bağıntısı)

- asal sayılar ve 1 bütünleşmeyle indirgenemez: $p = a \cdot b \Rightarrow p = a \lor p = b$
- 1 altsınır, asal sayılar atom

Bütünleşmeyle İndirgeme

Teorem

Bütünleşmeyle indirgenebilir bütün elemanlar, bütünleşmeyle indirgenemez elemanların bütünleşmesi şeklinde yazılabilir.

Tümleyen

Tanım

a ile x tümleyen:

 $a \wedge x = 0$ ve $a \vee x = I$

Tümlemeli Kafesler

Teorem

Sınırlı, dağılma özellikli bir kafeste tümleyen varsa tektir.

Tanıt.

$$a \wedge x = 0$$
 ve $a \vee x = I$
 $a \wedge y = 0$ ve $a \vee y = I$
 $x = x \vee 0 = x \vee (a \wedge y) = (x \vee a) \wedge (x \vee y) = I \wedge (x \vee y) = x \vee y$
 $y = y \vee 0 = y \vee (a \wedge x) = (y \vee a) \wedge (y \vee x) = I \wedge (y \vee x) = y \vee x$

Boole Cebri

Tanım

Boole cebri:

 $\langle B, +, \cdot, \overline{x}, 1, 0 \rangle$

$$a+b=b+a$$
 $a\cdot b=b\cdot a$ $(a+b)+c=a+(b+c)$ $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ $a+0=a$ $a\cdot 1=a$ $a+\overline{a}=1$ $a\cdot \overline{a}=0$

Boole Cebri - Kafes İlişkisi

Tanım

Bir Boole cebri sonlu, dağılma özellikli, her elemanın tümleyeninin olduğu bir kafestir.

Dualite

Tanım

dual:

+ yerine \cdot , \cdot yerine + 0 yerine 1, 1 yerine 0

Örnek

$$(1+a) \cdot (b+0) = b$$
 teoreminin duali:

$$(0\cdot a)+(b\cdot 1)=b$$

Boole Cebri Örnekleri

Örnek

$$B=\{0,1\}, +=\vee, \cdot=\wedge$$

Örnek

$$B=70$$
'in bölenleri, $+=okek, \cdot=obeb$

Boole Cebri Teoremleri

$$a + a = a$$

$$a + 1 = 1$$

$$a + (a \cdot b) = a$$

$$(a + b) + c = a + (b + c)$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$\frac{\overline{a}}{a + b} = \overline{a} \cdot \overline{b}$$

$$a \cdot a = a$$

$$a \cdot (a + b) = a$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Kaynaklar

Okunacak: Grimaldi

- Chapter 7: Relations: The Second Time Around
 - 7.3. Partial Orders: Hasse Diagrams
- Chapter 15: Boolean Algebra and Switching Functions
 - 15.4. The Structure of a Boolean Algebra