

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Facultad de Matemáticas

MAT1620 — Cálculo II

Profesor: Maria Gloria Schwarze

Ayudante: Matias Suau (misuau@uc.cl)

Ayudantía 12

Problema 1

Calcule las siguientes integrales:

a)
$$\int_{-3}^{3} \int_{0}^{\pi/2} (y + y^2 \cos x) dx dy$$

b)
$$\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x} \right) dy dx$$

c)
$$\int_0^2 \int_0^{\pi} (r \sin^2 \theta) d\theta dr$$

d)
$$\int_0^1 \int_{-3}^3 \left(\frac{xy^2}{x^2 + 1} \right) dy dx$$

Problema 2

a) Encuentre el volúmen del sólido bajo de la superficie z = xy y arriba del triángulo con vertices (1,1), (4,1) y (1,2).

b) Encuentre el volúmen del sólido acotado por los cilindros $z=x^2,\,y=x^2$ y los planos $z=0,\,y=4$.

c) Encuentre el volúmen del sólido acotado por el cilindro $y^2 + z^2 = 4$ y los planos x = 2y, x = 0, z = 0 en el primer octante.

d)
$$\int_0^8 \int_{3/\overline{y}}^2 \left(e^{x^4} \right) \, dx \, dy$$

Problema 3

Evalúe $\iint_S \sin(y^3) dA$, siendo S la región acotada por $y = \sqrt{x}$; y = 2 y x = 0.

Problema 4

Calcule el volumen del sólido bajo el plano x-2y+z=1 y arriba de la región acotada por x+y=1 y $x^2+y=1$.

1