Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Artem Gorodilov Naměřeno: 19. října 2023

Obor: Astrofyzika Skupina: Čt 8:00 Testováno:

Úloha č. 5: Magnetické pole

 $T = 21.8 \, {}^{\circ}\text{C}$

p = 976 hPa

 $\varphi = 35 \%$

1. Zadání

Zaměřit horizontální složky intenzity magnetického pole Země Gaussovým magnetometrem. Změřit magnetickou odezvu feromagnetického materiálu (hysterezní smyčka).

2. Teorie

2.1. Geomagnetické pole

Vlastnosti magnetického pole můžeme charakterizovat prostřednictvím intenzity magnetického pole, která je označována jako H. Tato vektorová veličina může být v každém bodě rozložena do dvou komponent. Jedna z těchto komponent směřuje horizontálně a druhá vertikálně. V našem měření se budeme zaměřovat na horizontální komponentu H_z .

Horizontální složku magnetického pole Země lze měřit pomocí Gaussova magnetometru. Tento postup zahrnuje porovnání intenzity magnetického pole Země s intenzitou permanentního magnetu za použití magnetické střelky (kompasu), která ukazuje místní směr magnetického pole Země. Vzhledem k tomu, že pro reálný případ nemůžeme zanedbat rozměry permanentního magnetu, použijeme místo jednoho tyčového magnetu dva monopóly s magnetickým nábojem +p a -p umístěné ve vzdálenosti l od sebe. Magnetická intenzita se poté dá vypočítat podle následujícího vztahu. Je však třeba zdůraznit, že magnetické monopóly jsou pouze myšlenkovými objekty a v reálném světě neexistují.

K měření horizontální složky magnetického pole Země pomocí Gaussova magnetometru se využívají dvě Gaussovy polohy, které určují polohu permanentního magnetu vzhledem k střelce kompasu. Tyto Gaussovy polohy jsou znázorněny na obrázku (1).

Obrázek (1) Schéma experimentálního uspořádání. Magnetické pole v Gaussových polohách (P_1 první Gaussova poloha, P_2 druhá, a) resp. b)) v okolí permanentního tyčového magnetu a jeho skládání s magnetickým polem Země v místech magnetické střelky. Permanentní magnet je vždy orientován kolmo ke směru magnetického pole Země podél osy x. Úhlové výchylky magnetické střelky od jiho-severního směru v první a druhé poloze jsou označeny φ_1 resp. φ_2 .

Poměr magnetického momentu magnetu k horizontální složce magnetického pole Země je roven:

$$A = \frac{M}{H_z} = \frac{4\pi r^3}{7} \left(\frac{3tan\varphi_1}{2} + 4tan\varphi_2 \right) \tag{1}$$

kde r je vzdálenost mezi osou magnetické střelky a středem (těžištěm) tyčového magnetu, φ_1 je výchylka magnetky v první Gaussově poloze z jejího původního směru k magnetickému pólu Země, φ_2 je výchylka magnetky v druhé Gaussově poloze z jejího původního směru k magnetickému pólu Země a μ_0 je permeabilita vakua.

Vyjádřením frekvence pomocí doby kmitů dostaneme rovnici:

$$B = MH_z = \frac{\pi^2 J}{\tau^2} \tag{2}$$

kde Jje moment setrvačnosti magnetu a τ je doba kyvu magnetu.

$$\tau = \frac{T}{2} \tag{3}$$

kde T je perioda kmitů

$$J = \frac{m}{4} \left(R^2 + \frac{l^2}{3} \right) \tag{4}$$

kde m je hmotnost magnetu, R je jeho poloměr a l je jeho délka.

Horizontální složka zemského magnetického pole pak bude rovna:

$$H_z = \sqrt{\frac{B}{A}} \tag{5}$$

Magnetický moment magnetu se bude rovnat:

$$M = \sqrt{AB} \tag{6}$$

2.2. Magnetická odezva feromagnetického materiálu

Materiály můžeme klasifikovat do tří kategorií: diamagnetické, paramagnetické a feromagnetické. Feromagnetické materiály se výrazně liší od ostatních tím, že jsou schopny vykazovat magnetizaci i bez vnějšího magnetického pole. Tato magnetizace dosahuje své maximální hodnoty, když jsou všechny magnetické momenty v materiálu orientovány ve stejném směru, a tento stav nazýváme saturační (nasycená) magnetizace M_s .

I po odstranění vnějšího magnetického pole zůstává v materiálu remanentní (zbytková) magnetizace M_r . Dále můžeme určit velikost vnějšího pole, při kterém se celková magnetická indukce stane nulovou, a tuto hodnotu nazýváme koercitivní síla (nebo pole) H_C . Na základě této charakteristiky rozdělujeme materiály na magneticky měkké a magneticky tvrdé.

Hysterezní smyčka je vidět na obrázku (2).

Obrázek (2) Typický průběh magnetické hysterezní smyčky.

Testy provádíme na jádře s feromagnetickými vlastnostmi, které slouží jako společný prvek pro dvě cívky s odlišným počtem závitů (jde o transformátor). Transformátor je napájen střídavým elektrickým proudem a jeho zapojení odpovídá obrázku (3).

Obrázek (3) Schéma obvodu pro měření magnetického pole ve feromagnetu.

Hodnota magnetické intenzity v toroidu se bude rovnat:

$$H(t) = \frac{N_1}{2\pi r R_1} U_1(t)$$
 (7)

kde N_1 je počet závitů primárního vinutí, r je poloměr jádra cívky, R_1 odpor rezistoru R_1 na obrázku (3) a U_1 je napětí na rezistoru R_1 .

Pokud je rozdíl vnitřního a vnějšího poloměru dostatečně malý:

$$r = \frac{r_{min} + r_{max}}{2}$$

kde r_{min} vnitřní poloměr jádra a r_{min} je vnější poloměr jádra.

Vztah pro magnetickou indukci:

$$B(t) = \frac{RC}{N_2 S_2} U_C(t) \tag{8}$$

kde R odpor rezistoru R_2 , C je kapacita kondenzátoru, N_2 je počet závitů sekundárního vinutí, S_2 je ploha průřezu jádra cívky a U_C je napětí na cívce.

Plocha průřezu jádra cívky se rovná:

$$S_2 = h(r_{min} - r_{max})^2 \tag{9}$$

kde h je ýška magnetu.

Magnetizaci M poté můžeme spočítat pomocí vztahu:

$$M = \frac{B}{\mu_0} - H \tag{10}$$

3. Měření

3.1. Geomagnetické pole

Gaussův magnetometr inicializujeme v prvním Gaussově postavení, což znamená, že šipka směřující na sever je kolmá k pravítku, na němž je připevněn kompas. Poté umístíme tyčový magnet na kolejnici rovnoběžně s pravítkem a měříme změny úhlů v různých vzdálenostech od kompasu. Jakmile zaznamenáme odchylku kompasové střelky v jedné pozici, otočíme magnet o 180 stupňů a opět změříme změnu úhlu. Tento proces opakujeme pro tři různé pozice na jedné straně magnetometru a tři pozice na druhé straně. Tím získáme celkem 12 hodnot pro změny úhlů magnetické střelky.

Následně magnet zavěsíme a vybočíme z rovnovážného stavu, abychom mohli měřit frekvenci harmonického pohybu.

Změříme hodnoty úhlů pro dvě Gaussovy polohy a vypočítáme tečny těchto úhlů:

r [cm]	φ_{1zakl} [o]	$\varphi_{1oto\check{c}} [^o]$	$tan\varphi_1$
20	78	82	6(1)
30	57	61	1.6(1)
40	42	40	0.86(3)
-20	80	75	5(1)
-30	62	55	1.6(2)
-40	41	39	0.84(3)

Tabulka (1) Naměřené úhly pro první Gaussovu polohu.

r [cm]	φ_{2zakl} [o]	$\varphi_{2oto\check{c}} [^o]$	$tan\varphi_2$
20	74	77	3.9(4)
30	51	51	1
40	33	34	0.66(1)
-20	73	79	4(1)
-30	53	54	1.35(3)
-40	35	33	0.68(3)

Tabulka (2) Naměřené úhly pro druhou Gaussovu polohu.

Pak vypočítáme poměr magnetického momentu magnetu k horizontální složce magnetického pole Země A:

r [cm]	$A [\mathrm{m}^3]$
20	0.34(4)
30	0.36(1)
40	0.45(1)
-20	0.33(6)
-30	0.38(2)
-40	0.46(1)

Tabulka (3) Poměr magnetického momentu magnetu k horizontální složce magnetického pole Země.

Měření průměru, délky a hmotnosti magnetu:

$$d = 21.5(4)$$
 [mm] $l = 123.6(2)$ [mm] $m = 298.55(1)$ [g]

Z tabulek:

$$\mu_0 = 4\pi \ 10^{-7} \ \left[\frac{N}{A^2}\right]$$

Odtud zjistíme hodnotu A podle vzorce (1):

$$A = 0.39(6) [m^3]$$

Najděme moment setrvačnosti magnetu J podle vzorce (4):

$$J=3.89(1)\ 10^{-4}\ [kg\ m^2]$$

Z měření:

$$\tau=6.4(2)~[\mathrm{s}]$$

Pak zjistíme hodnotu B podle vzorce (2):

$$B = 9.3(6) \ 10^{-5} \left[\frac{kg \ m^2}{s^2} \right]$$

Teď můžeme vypočítat horizontální složku magnetického pole Země H_z podle vzorce (5) a magnetický moment magnetu M podle vzorce (6):

$$H_z = 16(1) \left[\frac{A}{m} \right]$$

 $M = 6.0(5) \ 10^{-6} \left[A \ m^2 \right]$

3.2. Magnetická odezva feromagnetického materiálu

Z měření rozměrů jádra cívky vyplynuly následující hodnoty:

$$r_{min} = 9.75(2) \text{ [mm]}$$

 $r_{max} = 14.50(2) \text{ [mm]}$
 $h = 7.00(2) \text{ [mm]}$

Z tabulek:

$$R_1 = 83 [\Omega]$$

$$R_2 = 120 [k\Omega]$$

$$C = 1.0 [\mu F]$$

Křivku hystereze jsme získali z měření osciloskopem. Je vidět na obrázku (4).

Obrázek (4) Hysterezní křivka obvodu.

Z grafu zjistíme hodnoty U_1 , U_{Cr} a U_{Cs} :

$$U_1 = 0.92 \text{ [V]}$$

$$U_{Cr} = 0.053 \text{ [V]}$$

$$U_{Cs} = 0.11 \text{ [V]}, U_1 = 10.48 \text{ [V]}$$

Plocha průřezu jádra cívky S se zjistí ze vzorce (9):

$$S = 33.3(2) \, [\text{mm}^2]$$

Odtud zjistíme hodnotu magnetické intenzity H_C v cívce podle vzorce (7):

$$H_C = 37.83(4) \left[\frac{A}{m} \right]$$

Ze vzorce (8) zjistíme hodnoty magnetické injekce B pro napětí U_{Cr} a U_{Cs} :

$$B_r = 0.211(1)$$
 [T]
 $B_s = 0.426(3)$ [T]

Dále zjistíme hodnoty remagnetizace a saturace podle vzorce (10):

$$M_r = (1.68 \pm 0.01) \times 10^5 \text{ [T]}$$

 $M_s = (3.39 \pm 0.02) \times 10^5 \text{ [T]}$

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Kód je přiložen k protokolu.

4. Závěr

4.1. Geomagnetické pole

Měření horizontální složky intenzity magnetického pole Země bylo provedeno pomocí Gaussova magnetometru. Vypočtená hodnota $H_Z=16(1)$ $\left[\frac{A}{m}\right]$. Podle: NOAA Magnetic Field Calculator, by tato hodnota měla být přibližně $H_Z=16.1$ $\left[\frac{A}{m}\right]$.

Dále byla získána hodnota magnetického momentu zkoumaného magnetu, která je $M=6.0(5)\ 10^{-6}$ [A m^2].

4.2. Magnetická odezva feromagnetického materiálu

Koercitivní pole, reziduální magnetizace a saturační magnetizace byly určeny analýzou hysterezní křivky, z níž byly odečteny hodnoty napětí U_1 , U_{Cr} a U_{Cs} . Tak byly získány následující výsledky: $H_C = 37.83(4) \left[\frac{A}{m}\right], \ B_r = 0.211(1) \ [T]$ a $B_c = 0.426(3) \ [T]$.

Saturace při napětí $U_1 = 10.48$ [V] se rovná $U_{Cs} = 0.11$ [V]. Dále byla získána hodnota remagnetizace $M_r = (1.68 \pm 0.01) \times 10^5$ [T] a saturační magnetizace $M_s = (3.39 \pm 0.02) \times 10^5$ [T].

K výpočtu chyb byl použit následující kód:

```
#Importing the libraries
 import matplotlib.pyplot as plt
 import numpy as np
import pandas as pd
 from scipy import stats import uncertainties as u
 from uncertainties import ufloat
from uncertainties.umath import *
 from uncertainties import unumpy
 # Constants and values
\begin{array}{lll} {\rm d} = & {\rm ufloat}\,(21.5\;,\;\;0.4)*10**(-3)\;\#n \\ {\rm l} = & {\rm ufloat}\,(123.6\;,\;\;0.2)*10**(-3)\;\#n \\ {\rm m} = & {\rm ufloat}\,(298.55\;,\;\;0.01)*10**(-3)\;\#kg \\ {\rm T} = & {\rm ufloat}\,(6.409\;,\;\;0.21697158032025)\;\#s \\ {\rm mu.0} = & 4*{\rm np.\,pi}*10**(-7)\;\#N/A^2 \end{array}
 #Reading data
 data = pd.read_excel('data.xlsx')
hist_u1 = pd.read_csv('TEK0000.csv')
hist_uc = pd.read_csv('TEK0001.csv')
 #Geomagnetick pole
{\tt data['A']} = ((4*np.pi*data['r']**3 / 7) * (3*data['tan_1']/2 + 4*data['tan_2']))
 A_values = []
  A errors =
 for ii, ID in enumerate(data['A']):
    A_values.append(data['A'][ii].nominal_value)
    A_errors.append(data['A'][ii].std_dev)
 A = ufloat(np.mean(np.abs(A_values)), np.sqrt(np.std(np.abs(A_values)) **2 + np.mean(np.abs(A_errors)) **3 + np.mean(np.abs(
 **2))
print('A-=', A, 'm^3')
 \begin{array}{l} J = m/4 * ((d/2)**2 + (1**2/3)) \\ \textbf{print}('J-=', J*10**4, 'e-4 \cdot kg \cdot m^2 2') \end{array}
 B = (np.pi**2 * J) / (T**2)
 print(',B'=', B)
H_z = sqrt(B/A) *10**(3)
print('H_z=', H_z)
M = sqrt(A*B) * 10**(-3)
 print ('M'=', M)
 print (data)
 #Magnetick odezva feromagnetick ho materi lu
\begin{array}{lll} r\_{\min} &= & ufloat \, (9.75 \,,\, 0.02) *10 **(-3) \; \#\! n \\ r\_{\max} &= & ufloat \, (14.5 \,,\, 0.02) *10 **(-3) \; \#\! n \\ h &= & ufloat \, (7 \,,\, 0.02) *10 **(-3) \; \#\! n \end{array}
R.1 = 83 #Ohm
R.2 = 120*10**3 #Ohm
N.1 = 260
N.2 = 900
 C = 1 * 10**(-6) \#F
 U_{-1} = 0.92 \#V
 U_{\text{c-r}} = 0.0525 \text{ #V}

U_{\text{c-s}} = 0.0525 \text{ #V}

U_{\text{c-s}} = 0.1062 \text{ #V}
 r = (r_min + r_max)/2
\begin{array}{lll} H = N_{-1}/(2*np.\,pi*r*R_{-1}) & * & U_{-1} \\ \textbf{print}\,(\ 'H'='\ ,\ H) \end{array}
 S = (r_max - r_min)*h
print('S-=', S)
 B_r = R_2*C/(N_2*S) * U_c_r

print('B_r--', B_r)
 B_s = R_2*C/(N_2*S) * U_c_s
print('B_s-=', B_s)
 M_r = B_r / mu_0 - H
 print('M_r-=', M_r)
 M_s = B_s/mu_0 - H
 print('M_s-=', M_s)
```