

Road lighting design by means of genetic algorithm

Rudolf Bayer Michal Brejcha Zuzana Pelánová Jan Zálešák

Project goals

- Road lighting design for lighting situation
 C1 and lighting class S4
- Meeting requirements of standards:
 - Maintained average horizontal illuminance

$$\bar{E}_{M} \geq 5 lx$$

Minimum maintained illuminance

$$E_{min,M} \ge 1 lx$$

Uniformity – given by maximal illumiance

$$E_{max,M} = 7.5 lx$$

Input variables

- Dx distance between pillars
- · Dy sidewalk lamp overlap
- · Z pillar high
- $\cdot \alpha$ lamp tilt
- · Single-side vs. two-side lamp placement

Situational overview

Dimensions: total sidewalk length 200 m sidewalk width 3 m control area length 80 m unwanted lighting area width 2 m

Used luminaires Schréder Atos types A1 – A4, B1 – B4, C1 - C4 Power consumption 50 W to 150 W Designed for pedestrian zones, cycleways, emergency lanes, etc.

Optimalization method

- A genetic algorithm has been used using Matlab
- Output data validity has been confirmed by comparison with Dialux output

Genetic algorithm settings

- Amount of generations: 60
- · Population elements: 200
- Crossover probability: 80 %
- Mutation probability: 5 %
- · Parent selection: roulette

Fitness function

$$fitness = w_1 \cdot w_2 \cdot w_3 \cdot w_4$$

$$w_1(E_{min}) = \begin{cases} e^{10 \cdot (E_{min} - E_{mT})} &, \langle 0, E_{mT} \rangle \\ e^{\frac{E_{mT} - E_{min}}{10}} &, (E_{mT}, \infty) \end{cases}$$

$$w_{2}(\overline{E}) = \begin{cases} e^{\overline{E} - \overline{E}_{T}} &, \langle 0, \overline{E}_{T} \rangle \\ e^{\overline{E}_{T} - \overline{E}} &, (\overline{E}_{T}, \infty) \end{cases}$$

$$w_3\left(\overline{E}_o\right) = e^{\frac{\overline{E}_o}{100}}$$
 $w_4\left(D_X\right) = \left(\frac{D_X}{D_{XM}}\right)^2$

Fitness function curve during optimization

Optimization results

Type	D_X	D_Y	Z	α	\overline{E}	E_{min}	\overline{E}_o
	(m)	(m)	(m)	(°)	(lx)	(lx)	(lx)
ATOS 70W A1	39.8	0.67	6.22	3.15	8.14	1.31	7.40
ATOS 70W A2	41.8	-0.73		2.43	8.13	1.42	7.25
ATOS 70W A3	44.9	-1.69		3.34	8.15	1.36	6.86

Туре	D_X	D_Y	Z	α	\overline{E}	E_{min}	
	(m)	(m)	(m)	(°)	(lx)	(lx)	
ATOS 70W A1	39.8	0.67	6.22	3.1	8.52	1.36	

ATOS 70W B4	49.5	-1.59	7.69	2.54	8.13	1.72	6.76
ATOS 70W C1	37.6	-0.60	6.23	6.57	8.13	1.38	7.65
ATOS 70W C2	41.14	-0.59	6.72	1.86	8.14	1.50	7.30
ATOS 70W C3	45.1	-0.75	6.56	5.49	8.14	1.31	6.91
ATOS 70W C4	48.0	0.03	6.85	6.70	8.14	1.36	6.92

Conclusions

- After a few generations an optimal solution could be found (60 generations).
- All GA end results were close to results calculated by DIALux and are satisfactory in terms of the required standards.
- The given requirements can be met by multiple solutions. Finding specific solutions can be accomplished by adjusting the fitness function.

Thank you for your attention