# LLMs - Memory and Computational requirements

Aditya Chatterjee

Deploying Large Language Models (LLMs) efficiently requires a clear understanding of the memory and computational limits that affect inference performance. LLMs, due to their sheer size and complexity, introduce unique challenges, particularly during the inference process. Let's break down the two key stages of LLM inference—Prefill and Decode—and then explore how tools like the Roofline Model and LLM Viewer can help optimize performance. We'll also use real-world examples, "Alice and Bob", to illustrate how these concepts work in practice.

Paper used as reference - <a href="https://arxiv.org/abs/2402.16363">https://arxiv.org/abs/2402.16363</a>

LLM-Viewer - http://llm-viewer.com/

# **Introduction to Prefill Stage**

The Prefill Stage is the first phase in the inference process of Large Language Models (LLMs).

It processes the input sequence (prompt) and creates a key-value (KV) cache for each transformer layer.

The Prefill Stage is crucial as it sets up the cache needed to generate the next tokens in the Decode Stage.



#### Memory and Compute Impact in Prefill Stage

The Prefill Stage generates a key-value (KV) cache for each transformer layer.

Memory impact: The size of the KV cache increases with both input sequence length and batch size.

Compute impact: The multi-head attention mechanism performs complex matrix operations, making this stage compute-bound.



# **Optimization Strategies for Prefill Stage**

Reducing memory and compute load through:

- Quantization: Lower precision data types (e.g., FP16, INT8) reduce memory usage.
- Kernel fusion: Combines operations to reduce compute load.
- Batch size adjustment: Smaller batch sizes can manage memory better.

Example: Bob's legal services firm optimizes the Prefill Stage to handle many short queries by focusing on computational throughput.



Quantization

# **Introduction to Decode Stage**

The Decode Stage follows the Prefill Stage and is responsible for generating tokens one by one.

Each token depends on the previously generated tokens, making this stage sequential.

This stage is often the slowest and the most memory-intensive in the inference process of LLMs.



# **Memory-Bound Nature of Decode Stage**

The Decode Stage is heavily memory-bound, meaning performance is limited by memory bandwidth rather than computation power.

During token generation, the model frequently accesses the key-value (KV) cache stored in memory.

Long input sequences or larger batch sizes place additional strain on memory, leading to slower token generation.



# **Optimization Strategies for Decode Stage**

Improve memory bandwidth to enhance performance during token generation.

- Flash Attention: A technique that reduces memory access during attention computation, improving efficiency.
- Quantization: Using lower precision data types reduces memory usage.

Example: Alice's case—as a writer, Alice optimizes the Decode Stage for long sequences by improving memory bandwidth and applying quantization.



#### Introduction to the Roofline Model

The Roofline Model is a performance analysis tool that combines both computation and memory bandwidth into a single framework.

It helps to identify whether a process is compute-bound or memory-bound. The model provides insights into how to optimize LLM stages for better performance by visualizing these constraints.



#### **Applying the Roofline Model in LLMs**

The Roofline Model helps visualize the performance bottlenecks in both the Prefill Stage and the Decode Stage.

- Compute-bound processes, like the Prefill Stage, require optimizations focused on hardware computation efficiency.
- Memory-bound processes, like the Decode Stage, benefit from improvements in memory bandwidth.

Examples: Bob focuses on compute-bound optimizations, while Alice focuses on memory-bound improvements.

| Layer Name | OPs  | Memory<br>Access | Arithmetic<br>Intensity | Max<br>Performance | Bound   |
|------------|------|------------------|-------------------------|--------------------|---------|
|            |      |                  | Prefill                 |                    |         |
| q_proj     | 69G  | 67M              | 1024                    | 155T               | compute |
| k_proj     | 69G  | 67 M             | 1024                    | 155T               | compute |
| v_proj     | 69G  | 67 M             | 1024                    | 155T               | compute |
| o_proj     | 69G  | 67 M             | 1024                    | 155T               | compute |
| gate_proj  | 185G | 152M             | 1215                    | 155T               | compute |
| up_proj    | 185G | 152M             | 1215                    | 155T               | compute |
| down_proj  | 185G | 152M             | 1215                    | 155T               | compute |
| qk_matmul  | 34G  | 302M             | 114                     | 87T                | memory  |
| sv_matmul  | 34G  | 302M             | 114                     | 87T                | memory  |
| softmax    | 671M | 537M             | 1.25                    | 960G               | memory  |
| norm       | 59M  | 34M              | 1.75                    | 1T                 | memory  |
| add        | 8M   | 34M              | 0.25                    | 192G               | memory  |
|            |      | I                | Decode                  |                    |         |
| q_proj     | 34M  | 34M              | I                       | 768G               | memory  |
| k_proj     | 34M  | 34M              | 1                       | 768G               | memory  |
| v_proj     | 34M  | 34M              | 1                       | 768G               | memory  |
| o_proj     | 34M  | 34M              | 1                       | 768G               | memory  |
| gate_proj  | 90M  | 90M              | 1                       | 768G               | memory  |
| up_proj    | 90M  | 90M              | 1                       | 768G               | memory  |
| down_proj  | 90M  | 90M              | 1                       | 768G               | memory  |
| qk_matmul  | 17M  | 17M              | 0.99                    | 762G               | memory  |
| sv_matmul  | 17M  | 17M              | 0.99                    | 762G               | memory  |
| softmax    | 328K | 262K             | 1.25                    | 960G               | memory  |
| norm       | 29K  | 16K              | 1.75                    | 1T                 | memory  |
| add        | 4K   | 16K              | 0.25                    | 192G               | memory  |

#### Introduction to the LLM Viewer

The LLM Viewer is a tool designed to help users optimize their LLM inference processes layer by layer.

It provides detailed insights into the performance of each transformer layer, showing whether they are compute-bound or memory-bound.

The tool helps suggest optimizations, such as quantization or batch size adjustments, to improve overall performance.



#### **LLM Viewer Real-World Applications**

Bob can use the LLM Viewer to optimize batch size for multiple short queries in his legal services.

Alice can test different configurations to optimize long-sequence generation for her novel writing.

The LLM Viewer helps identify bottlenecks and provides actionable insights to improve memory and compute efficiency.

| refill                            |  |
|-----------------------------------|--|
| DPs: 13.8T                        |  |
| nference_time: 102.4ms            |  |
| oad_act: 8.5G                     |  |
| oad_kv_cache: 537M                |  |
| oad_weight: 13.2G                 |  |
| nemory_access: 30.9G              |  |
| nemory_consumption: 13.7G         |  |
| nemory_consumption_kv_cache: 537M |  |
| memory_consumption_tmp_act: 255M  |  |
| nemory_consumption_weight: 13.0G  |  |
| tore_act: 8.2G                    |  |
| tore_kv_cache: 537M               |  |

| decode                       |        |
|------------------------------|--------|
| OPs: 13.6G                   |        |
| inference_time: 17.9ms       |        |
| load_act: 8.3M               |        |
| load_kv_cache: 537M          |        |
| load_weight: 13.2G           |        |
| memory_access: 13.8G         |        |
| memory_consumption: 13.5G    |        |
| memory_consumption_kv_cache  | : 537M |
| memory_consumption_tmp_act:  | 249K   |
| memory_consumption_weight: 1 | 3.0G   |
| store_act: 8.0M              |        |
| store_kv_cache: 524K         |        |

# **Combining Tools for Optimal LLM Deployment**

Efficient LLM deployment requires balancing memory and computation limits.

The Prefill Stage is often compute-bound, while the Decode Stage is typically memory-bound.

Tools like the Roofline Model and LLM Viewer provide valuable insights to optimize both stages for better performance.

