Deep Active Learning from Multispectral Data Through Cross-Modality Prediction Inconsistency

Heng ZHANG^{1,3}

Elisa FROMONT 1,4

Sébastien LEFEVRE²

Bruno AVIGNON³

¹Univ Rennes, IRISA

²Univ Bretagne Sud, IRISA

³ATERMES Company

⁴ IUF, Inria

Abstract

Data from multiple sensors provide independent and complementary information, which may improve the robustness and reliability of scene analysis applications. While there exist many largescale labelled benchmarks acquired by a single sensor, collecting labelled multi-sensor data is more expensive and time-consuming. In this work, we explore the construction of an accurate multispectral (here, visible & thermal cameras) scene analysis system with minimal annotation efforts via an active learning strategy based on the cross-modality prediction inconsistency. Experiments on multispectral datasets and vision tasks demonstrate the effectiveness of our method. In particular, with only 10% of labelled data on KAIST multispectral pedestrian detection dataset, we obtain comparable performance as other fully supervised State-of-the-Art methods.

Introduction

- Multispectral systems use two types of camera sensors (RGB and Thermal) to provide complementary information under various illumination conditions.
- Collecting labelled multi-sensor data is expensive and time-consuming, therefore active learning is particularly appealing.
- Multi-sensor **redundancy**: detection results from the two modalities are similar in most cases (Figure 1 left).
- Multi-sensor **complementarity**: at least one modality is wrong when the detections are contradictory (Figure 1 right).
- We rely on the Cross-Modality prediction inconsistency to adaptively select the most informative multispectral samples for annotation.

Figure 1:Exemplary multispectral image pairs and their corresponding mono-spectral pedestrian detection results.

Active learning

Figure 2:Active learning loop diagram.

The active learning loop starts by pre-training a model on a small subset of the labelled dataset. Then, several active learning cycles are repeated:

- The model inference is performed on the unlabelled dataset to select the most informative samples (i.e., multispectral image pairs).
- These selected samples are then sent to an external oracle for annotation and appended to the labelled dataset.
- The model is consequently fine-tuned on the labelled dataset.

In general, the most important component of an active learning cycle is the **scoring function**, that ranks the informativeness of unlabelled samples.

Network architecture

Figure 3:Overview of the proposed model for deep active multispectral scene analysis.

At the selection stage of each active learning cycle, we measure the relevance of labelling a particular image pair by comparing predictions from visible and thermal cameras, and we select image pairs with the highest prediction difference.

Cross-modality prediction inconsistency For each prediction p, its inconsistency is defined as:

$$\mathcal{I} = \mathcal{H}\left(\overline{p}\right) - \frac{1}{2} \sum_{m \in \{v,t\}} \mathcal{H}\left(p_m\right)$$

where p_v and p_t denote the prediction from visible and thermal prediction branches; \bar{p} is the average of both predictions; \mathcal{H} is the 2-set entropy function calculated as:

$$\mathcal{H}(p) = -p \log p - (1-p) \log (1-p)$$

Figure 4: Cross-modality prediction inconsistency visualization.

Experiments

Multispectral datasets

- KAIST Dataset for pedestrian detection;
- FLIR Dataset for object detection;
- TOKYO Dataset for semantic segmentation.

Experimental results

(For more details, please refer to our paper.)

Conclusion

In this paper, we start from the observation of the **redundancy** and the **complementarity** of a multispectral system. We build upon these to suggest relying on the **cross-modality pre-diction inconsistency** as the criterion to select informative image pairs for labelling within active learning cycles.

Extensive experiments on three different multispectral scene analysis tasks demonstrate the effectiveness of the proposed method.