# Language Independent End-to-End Architecture For Joint Language and Speech Recognition (2017)

Watanabe, S.; Hori, T.; Hershey, J.R.

## Motivation / Goal

#### Recognize multiple languages at the same time

- Two tasks: identify language AND recognize speech (simultaneously)
- ▶ Use a single model for 10 languages (EN, JP, CH, DE, ES, FR, IT, NL, PT, RU)
- Find out if transfer learning between languages work
- ► End to end: Directly train sequence to sequence, no lexicon, phoneme pronounciation maps, or manual alignment

#### **Problems**

- ► How to input audio?
  - ightarrow Spectral features of audio frames (e.g. in 20ms segments)

#### **Problems**

- How to input audio?
  - $\rightarrow$  Spectral features of audio frames (e.g. in 20ms segments)
- ► How to output text?
  - (a) word embeddings (word2vec) (would need fixed dictionary)
  - (b) characters (one-hot)
    - ▶ Different char sets for languages (abc, äàąå, 漢字, , ひらがな)
    - ▶ Just unify all character sets (5500 total)

#### **Problems**

- ► How to input audio?
  - $\rightarrow$  Spectral features of audio frames (e.g. in 20ms segments)
- How to output text?
  - (a) word embeddings (word2vec) (would need fixed dictionary)
  - (b) characters (one-hot)
    - ▶ Different char sets for languages (abc, äàąå, 漢字, , ひらがな)
    - Just unify all character sets (5500 total)
- How to output language id?
  - (a) separate one-hot output
  - (b) as a special character: "[EN] Hello" or "[CH] 你好"

## Model overview

#### Model overview



Figure 1: Model overview (from the paper)

#### Model overview



Figure 2: Model overview (from the paper)

## Simple Model overview

- 1. Input: Basically a spectrogram as a 2D image
- 2. Encoder (CNN + LSTM)
- 3. Decoder (Attention + one directional LSTM)
  - 3.1 Soft Attention for each input frame to each output character
  - 3.2 LSTM Layer
- 4. Output
  - ▶ N characters from union of all languages (one-hot / softmax)

#### Input

(Ab)use of image processing pipeline - input formatted like a RGB image x=time, y=feature index

- ▶ first channel: spectral features
- > second channel: delta spectral features
- third channel: deltadelta spectral features

#### Encoder - VGG Net Architecture



## Encoder - VGG Net Architecture - First six layers



Figure 4: VGG Net - first 6 layers

### Encoder - Bidirectional LSTM layer

320 cells for each direction ightarrow 640 outputs per time step ( $\mathbf{h}_t$ )



Figure 5: Bidirectional LSTM

## Decoder (Attention-based)

```
Input: \mathbf{x}_1, \dots, \mathbf{x}_t
Output: c_1, \dots, c_t
```

- 1. Encode whole sequence to  $\mathbf{h}_1, \dots, \mathbf{h}_t$  (via VGG+BLSTM)
- 2. Calculate soft attention weights  $a_{lt}$ , based on
  - (a)  $a_{(l-1)t}$  (attention on same input for previous output)
  - (b) current encoded state  $\mathbf{h}_t$
  - (c) previous hidden decoder state  $\mathbf{q}_{l-1}$

## Decoder (Attention-based)

```
Input: \mathbf{x}_1, \dots, \mathbf{x}_t
Output: c_1, \dots, c_t
```

- 1. Encode whole sequence to  $\mathbf{h}_1, \dots, \mathbf{h}_t$  (via VGG+BLSTM)
- 2. Calculate soft attention weights  $a_{lt}$ , based on
  - (a)  $a_{(l-1)t}$  (attention on same input for previous output)
  - (b) current encoded state  $\mathbf{h}_t$
  - (c) previous hidden decoder state  $\mathbf{q}_{l-1}$
- 3. Sum encoded state with soft alignment:  $\mathbf{r}_l = \sum_t a_{lt} \mathbf{h}_t$
- 4.  $\mathsf{Decoder} = \mathsf{Softmax}(\mathsf{FC}(\mathsf{LSTM}(\mathbf{r}_l, \mathbf{q}_{l-1}, c_{l-1})))$

## Problems with this simple model

- ▶ Pure temporal attention too flexible, allows nonsensical alignments
  - ▶ Intuition: In MT word order can change, in ASR it can not
- ► Languages must be implicitly modeled

## Additions to the simple model

## Problem 1: "Pure temporal attention too flexible"

Add a second, Parallel Decoder with CTC

- 1. Input (same as before)
- 2. Encoder (same as before)
- 3. Decoder

softmax layer per time stemp (converts 640 outputs from BLSTM  $\rightarrow$  N characters)

4.  $\rightarrow$  One output character per input frame, using CTC Loss

Problem: output sequence shorter than input sequence

 $\blacktriangleright$  First, add blank character "-" to set. e.g. HELLO  $\rightarrow \{H, E, L, O, -\}$ 

Problem: output sequence shorter than input sequence

- lacktriangle First, add blank character "-" to set. e.g. HELLO  $ightarrow \{H, E, L, O, -\}$
- ▶ Inference: Remove duplicates: HHHH-EEEEEEEE-LL-LLL----000000  $\rightarrow$  H-E-L-D  $\rightarrow$  HELLO

Problem: output sequence shorter than input sequence

- lacktriangle First, add blank character "-" to set. e.g. HELLO  $ightarrow \{H,E,L,O,-\}$
- Inference: Remove duplicates: HHHH-EEEEEEEE-LL-LLL----000000  $\to$  H-E-L-O  $\to$  HELLO
- ightharpoonup Training: HELLO ightharpoonup H-E-L-L-O ightharpoonup all combinations of char duplications are ok

Problem: output sequence shorter than input sequence

- lacktriangle First, add blank character "-" to set. e.g. HELLO  $ightarrow \{H, E, L, O, -\}$
- ▶ Inference: Remove duplicates: HHHH-EEEEEEEE-LL-LLL----000000  $\rightarrow$  H-E-L-0  $\rightarrow$  HELL0
- lacktriangle Training: HELLO ightarrow H-E-L-L-O ightarrow all combinations of char duplications are ok
- Efficient computation using Viterbi / forward-backward algorithm
- Loss = log of GT probability
- → Enforces monotonic alignment

https://towards datascience.com/intuitively-understanding-connection ist-temporal classification-3797e43a86c

## Problem 2: "Languages must be implicitly modeled"

#### Add a RNN-I M

- ▶ Model distribution of character sequences in languages (ignores input speech)
- ► Trained seperately

## Combine both decoders + RNN-LM



Figure 6: Hybrid CTC/attention-based end-to-end architecture (RNN-LM not shown)

## Final loss function

$$\mathcal{L}_{\mathsf{MTL}} = \lambda \log p_{\mathsf{ctc}}(C|X) + (1-\lambda) \log p_{\mathsf{att}}(C|X) + \gamma \log p_{\mathsf{rnnlm}}(C)$$

$$\lambda = 0.5, \gamma = 0.1$$

## Training / Inference

- AdaDelta optimization, 15 epochs
- ▶ Inference via beam search on attention output weighted by loss function

## Results

#### Results

|              | Language-dependent<br>4BLSTM | <b>7lang</b><br>4BLSTM | <b>7lang</b><br>CNN-7BLSTM | <b>7lang</b><br>CNN-7BLSTM<br>RNN-LM | 10lang<br>CNN-7BLSTM<br>RNN-LM |
|--------------|------------------------------|------------------------|----------------------------|--------------------------------------|--------------------------------|
| Avg. 7 langs | 22.7                         | 20.3                   | 18.9                       | 18.3                                 | 16.6                           |

Figure 7: Character Error Rates (abbrev.)

- ► VGG-CNN improves it (by 7%)
- ► RNN-LM improves it (by 3%)
- ▶ Adding data in other languages improves it (by 9%)

## Language Confusion Matrix

|    |             | CH    | EN    | JP    | DE   | ES   | FR   | IT   | NL   | RU   | PT   |
|----|-------------|-------|-------|-------|------|------|------|------|------|------|------|
|    | train_dev   | 100.0 | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| CH | dev         | 100.0 | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|    | test_eval92 | 0.0   | 100.0 | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| EN | test_dev93  | 0.0   | 100.0 | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|    | eval1_jpn   | 0.0   | 0.0   | 100.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|    | eval2_jpn   | 0.0   | 0.0   | 100.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| JP | eval3_jpn   | 0.0   | 0.0   | 99.9  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  |
|    | et_de       | 0.0   | 0.0   | 0.0   | 99.7 | 0.0  | 0.0  | 0.0  | 0.3  | 0.0  | 0.0  |
| DE | dt_de       | 0.0   | 0.0   | 0.0   | 99.7 | 0.0  | 0.0  | 0.0  | 0.3  | 0.0  | 0.0  |
|    | dt_es       | 0.0   | 0.0   | 0.0   | 0.0  | 67.9 | 0.0  | 31.9 | 0.0  | 0.0  | 0.2  |
| ES | et_es       | 0.0   | 0.0   | 0.0   | 0.1  | 91.1 | 0.0  | 8.4  | 0.1  | 0.0  | 0.2  |
|    | dt_fr       | 0.0   | 0.0   | 0.0   | 0.1  | 0.0  | 99.4 | 0.0  | 0.2  | 0.0  | 0.3  |
| FR | et_fr       | 0.0   | 0.0   | 0.0   | 0.1  | 0.0  | 99.5 | 0.0  | 0.1  | 0.0  | 0.3  |
|    | dt_it       | 0.0   | 0.0   | 0.0   | 0.0  | 0.3  | 0.4  | 99.1 | 0.0  | 0.0  | 0.3  |
| IT | et_it       | 0.0   | 0.0   | 0.0   | 0.0  | 0.4  | 0.4  | 98.3 | 0.2  | 0.1  | 0.7  |
|    | dt_nl       | 0.0   | 0.0   | 0.0   | 1.3  | 0.0  | 0.1  | 0.1  | 97.2 | 0.0  | 1.3  |
| NL | et_nl       | 0.0   | 0.0   | 0.0   | 1.0  | 0.0  | 0.2  | 0.2  | 97.6 | 0.0  | 0.9  |
|    | dt_ru       | 0.2   | 0.0   | 0.0   | 0.0  | 0.2  | 0.6  | 0.5  | 0.0  | 97.9 | 0.8  |
| RU | et_ru       | 0.0   | 0.0   | 0.0   | 0.2  | 0.2  | 0.3  | 4.3  | 0.0  | 94.7 | 0.3  |
|    | dt_pt       | 0.0   | 0.0   | 0.0   | 0.3  | 0.3  | 2.6  | 1.7  | 3.4  | 0.6  | 91.2 |
| PT | et_pt       | 0.0   | 0.3   | 0.0   | 0.3  | 0.0  | 0.0  | 3.9  | 3.6  | 0.3  | 91.5 |

Figure 8: Language identification (LID) accuracies/error rates (%). The diagonal elements correspond to the LID accuracies while the offdiagonal elements correspond to the LID error rates

- ▶ Only fed with a single language utterance at a time
  - ▶ maybe we want to allow switching? (append utterances from different languages)

- ▶ Only fed with a single language utterance at a time
  - maybe we want to allow switching? (append utterances from different languages)
- ▶ Uniform random parameter initialization with [-0.1, 0.1] seems statistically unsound? (use Xavier / Hu)

- Only fed with a single language utterance at a time
  - maybe we want to allow switching? (append utterances from different languages)
- Uniform random parameter initialization with [-0.1, 0.1] seems statistically unsound? (use Xavier / Hu)
- Input feature convolution is weird
  - ▶ [...] we used 40-dimensional filterbank features with 3-dimensional pitch features
  - redundancy (delta, deltadelta)

- Only fed with a single language utterance at a time
  - maybe we want to allow switching? (append utterances from different languages)
- ▶ Uniform random parameter initialization with [-0.1, 0.1] seems statistically unsound? (use Xavier / Hu)
- Input feature convolution is weird
  - ▶ [...] we used 40-dimensional filterbank features with 3-dimensional pitch features
  - redundancy (delta, deltadelta)
- ▶ Unbalanced language sets (500h CH, 2.9h PR)
- Same latin characters are used for multiple languages, while others (RU, CH, JP) get their own character set
  - ► Try transliterating them to Latin?

## Future Work (Opinion)

- Does not work online (without complete input utterance)
  - ▶ Bidirectional LSTM in encoder
    - Could try one directional, but Language ID would completely break
    - aggregate limited number of future frames (e.g. add 500ms latency between input and output)
  - Attention does not work in realtime
  - CTC should work online

## Thank you for your attention

## Full Results Table

|          |          |           | Language-dependent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7lang  | 7lang      | 7lang                                                                                                     | 10lang     |
|----------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----------------------------------------------------------------------------------------------------------|------------|
|          |          |           | 4BLSTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4BLSTM | CNN-7BLSTM | CNN-7BLSTM                                                                                                | CNN-7BLSTN |
|          |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            | RNN-LM                                                                                                    | RNN-LM     |
| HKUST    | СН       | train_dev | 40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.9   | 40.5       | 40.2                                                                                                      | 32.0       |
| HKUSI    | СП       | dev       | 4BLSTM         4BLSTM CNN-7BLSTM RNN-L         CNN-7BLSTM RNN-L           40.1         43.9         40.5         40.2           40.4         43.6         40.5         40.0           9.4         9.6         7.7         7.0           7.4         7.3         5.6         5.1           13.5         14.3         12.4         11.9           10.8         10.8         9.0         8.5           23.2         24.9         22.0         21.4           6.6         7.4         5.7         5.4           5.2         7.4         5.8         5.5           50.9         28.1         31.9         31.5           50.8         29.6         34.7         34.4           27.7         25.0         22.0         21.0           26.5         23.5         21.2         20.3           14.3         14.3         11.8         11.1           14.3         14.4         12.0         11.2           27.0         25.5         47.8         49.4           49.4         49.4         49.4           56.9         52.2         22.7         20.3         18.9         18.3 </td <td>40.0</td> <td>31.0</td> | 40.0   | 31.0       |                                                                                                           |            |
| WSJ      | EN       | dev93     | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.6    | 7.7        | CNN-7BLSTM<br>RNN-LM  40.2  40.0  7.0  5.1  11.9  8.5  21.4  5.4  5.5  31.5  34.4  21.0  20.3  11.1  11.2 | 9.7        |
| W 33     | EN       | eval92    | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.3    | 5.6        | 5.1                                                                                                       | 7.4        |
|          |          | eval1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.3   |            |                                                                                                           | 10.2       |
| CSJ      | JP       | eval2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.8   |            | 8.5                                                                                                       | 7.2        |
|          |          | eval3     | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.9   | 22.0       | 21.4                                                                                                      | 8.7        |
|          | DE       | dev       | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.4    | 5.7        | 5.4                                                                                                       | 7.3        |
|          | DE       | eval      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.4    | 5.8        | 5.5                                                                                                       | 7.3        |
|          | ES       | dev       | 50.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.1   | 31.9       | 31.5                                                                                                      | 25.8       |
|          |          | eval      | 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.6   | 34.7       | 34.4                                                                                                      | 26.7       |
|          | FR       | dev       | 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.0   | 22.0       | 21.0                                                                                                      | 24.1       |
|          |          | eval      | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.5   | 21.2       | 20.3                                                                                                      | 23.2       |
| Voxforge | IT       | dev       | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.3   | 11.8       | 11.1                                                                                                      | 13.8       |
| voxioige |          | eval      | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.4   | 12.0       | 11.2                                                                                                      | 14.1       |
|          | NL       | dev       | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |            |                                                                                                           | 23.2       |
|          |          | eval      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            |                                                                                                           | 22.4       |
|          | RU       | dev       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            |                                                                                                           | 45.0       |
|          |          | eval      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            |                                                                                                           | 43.2       |
|          | PT -     | dev       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            |                                                                                                           | 35.5       |
|          |          | eval      | 52.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |            |                                                                                                           | 31.9       |
| Avg.     | 7 langs  |           | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.3   | 18.9       | 18.3                                                                                                      | 16.6       |
| Avg.     | 10 langs |           | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |            |                                                                                                           | 21.4       |

#### Related Work

- Multilingual Speech Recognition With A Single End-To-End Model (Shubham Toshniwal, Google)
  - separate output for language id
  - only on 9 indian languages, hard to compare
- ► Hybrid CTC/Attention Architecture for End-to-End Speech Recognition (Watanabe et al. 2017)
  - ▶ Same as this paper except only one language and more detailed

## WHO WOULD WIN?

decades of research on Feature extraction, Dynamic time warping, HMMs, Language modeling



## one deepy boi

Solving universal speech recognition

By Random Author, Big Company, Random other Guy

we literally just throw an LSTM at it.