U.T.N. F.R.B.A. ANALISIS MATEMATICO II 2do PARCIAL

Fecha:

Apellido y Nombre:

Legajo:

E1	E2	E3	E4	T1	T2

T1) a) Enuncie el teorema de Green .Siendo C de ecuación $x^2 + y^2 = r^2$ con r > 0 , resulta $\oint \overline{f} . d\overline{s} = \pi r^3$; calcule r sabiendo que f(x, y) = (4 - 2y, y + 4x).

b) Sea
$$\overline{f} = \nabla \Phi / \overline{f}(x,y) = (yg(x) - xy, y + g(x))$$
 con $\overline{f}(0,1) = (1,2)$, calcule $\int_{AB} \overline{f}.\overline{ds}$ si $\overline{A} = (0,0)$, $\overline{B} = (2,2)$

T2) a) Enuncie el teorema de la divergencia. Calcule el flujo de

 $\overline{f}(x,y,z) = (yg(z-x),3y+zg(z-x),yg(z-x))$ a través de la frontera del cuerpo definido por $x^2+y^2 \le z \le 9$, suponga g^l continua

b) Calcule el área de la región plana limitada por las líneas de nivel 1 del campo $f(x,y)=(y-x^2)(x-y^2)+1$

P1) Calcule el área de la región plana definida por $g(x) \le y \le 5$, cuando y = g(x) es la solución particular de la ecuación diferencial y'' + y' = 2x que en $(0, y_0)$ tiene recta tangente de ecuación y + 2x = 2

P2) Halle la masa del cuerpo cuyo volumen esta definido por $z \le 4 + x^2 + y^2$, $z \ge 2x^2 + 2y^2$ si su densidad es proporcional a la distancia desde el punto al eje z

P3) Sea $\overline{f}(x,y,z)=(xz,xy,z^2)$ definido en R^3 , calcule el flujo de \overline{f} a través de la superficie Σ de ecuación $x^2+z^2=9$ con $x+y\leq 3$ en el 1^{er} octante. Indique gráficamente que orientación adopto para Σ

P4) Dado $\overline{f}:R^3\to R^3/\overline{f}(x,y,z)=(yz,xz,\varphi(x,z))$ con $\overline{f}\in C^1(R^3)$, calcule la circulación de \overline{f} a lo largo de la curva borde de la superficie de ecuación x=4 con $y+z\leq 2, z\geq 0, y\geq 0$. Indique gráficamente con que orientación ha decidido realizar la circulación