

LHCb week CALO software meeting CERN 20.05.2003

Sergey Barsuk CERN/ITEP, Moscow

γ/π° SEPARATION AT HIGH E_T

- Motivation
- Method description and results
- > Application to B→V γ
- Summary

Motivation

- \checkmark π° s dominate the remaining background in $B \rightarrow V \gamma$ analyses
- √ => Make use of shower shape difference

Energies treated

E > 9 GeV; $E_T > 2 \text{ GeV}$

Software used

- √ Vanya v*
- ✓ CaloEx v5r0
- ✓ Brunel v17r1
- ✓ Raw data, database v253r0
- \checkmark Selection of merged π° by Vanya

Variables used (calculated for each cluster)

$$\checkmark f_{r^2}(\langle r^2 \rangle), \langle r^2 \rangle = s_{xx} + s_{yy} = \frac{\sum_i \epsilon_i \cdot ((x_i - x_c)^2 + (y_i - y_c)^2)}{\sum_i \epsilon_i}$$

$$\checkmark f_{r^2r^4} \left(\frac{\langle r^4 \rangle - \langle r^2 \rangle^2}{\langle r^4 \rangle} \right), \quad \langle r^4 \rangle = \frac{\sum_i \epsilon_i \cdot ((x_i - x_c)^2 + (y_i - y_c)^2)^2}{\sum_i \epsilon_i}$$

$$\checkmark$$
 f_{asym} (asym), asym = $s_{xy}/(s_{xx}\cdot s_{yy})^{1/2} \sim \sin 2\theta$

$$\checkmark f_{\kappa}(\kappa)$$
, $\kappa = \sqrt{1-4 \cdot \frac{s_{xx} \cdot s_{yy} - s_{xy}^2}{(s_{xx} + s_{yy})^2}} \sim I/L$

$f_{\epsilon}(\epsilon)$ (<r2>, ϵ) - plane, inner section

 γ/π° @ high E_{T}

LHCb week / CALO software meeting, CERN 20.05.2003

(asym, ϵ) - plane, inner section

$f_{\epsilon}(\epsilon)$ (κ , ϵ) - plane, inner section

Combined γ/π° separation, as applied to γ 's from B->K* γ , and π° 's from B->K* π°

SUMMARY

- > The γ/π° separation for high ET clusters could be very helpful
- The γ/π° separation by analyzing cluster shape looks promising
- $ightharpoonup \Delta_{LL}$ variable was constructed and applied to B->V γ
- > All the shapes will perhaps improve by using the new software, the results could be affected significantly