Assignment # 04 15 Oct 2025

David Haberkorn

Problem 1

Result: The equation $x^5 + 2x - 5 = 0$ has a unique real number solution between x = 1 and x = 2.

Proof: Let $f(x) = x^5 + 2x - 5$. Notice that f(x) is continuous because it is a polynomial, meaning it is continuous in \mathbb{R} .

Assume, to the contary, that f(x) has two real number solutions. This implies that there are values $c, d \in (1, 2), c \neq d$ where f(c) = 0 and f(d) = 0. In other words,

$$f(c) = c^5 + 2c - 5 = 0$$
$$f(d) = d^5 + 2d - 5 = 0$$

Through algebraic manipulation, we get

$$c^{5} + 2c - 5 = d^{5} + 2d - 5$$

$$c^{5} + 2c = d^{5} + 2d$$

$$c^{5} - d^{5} = 2d - 2c$$

$$c^{5} - d^{5} = 2(d - c)$$

$$(c - d)(c^{4} + c^{3}d + c^{2}d^{2} + cd^{3} + d^{4}) = 2(d - c)$$

$$(c - d)(c^{4} + c^{3}d + c^{2}d^{2} + cd^{3} + d^{4}) = -2(c - d)$$

$$(c - d)(c^{4} + c^{3}d + c^{2}d^{2} + cd^{3} + d^{4}) + 2(c - d) = 0$$

$$(c - d)(c^{4} + c^{3}d + c^{2}d^{2} + cd^{3} + d^{4} + 2) = 0$$

In order for the product of the two terms above to equal zero, at least one of (c-d) or $(c^4+c^3d+c^2d^2+cd^3+d^4+2)$ must be equal to zero. For the first case, we get

$$c - d = 0$$
$$c = d.$$

For the second case, we get

$$c^{4} + c^{3}d + c^{2}d^{2} + cd^{3} + d^{4} + 2 = 0$$
$$c^{4} + c^{3}d + c^{2}d^{2} + cd^{3} + d^{4} = -2$$

Notice that since $c, d \in (1, 2)$, they are both positive numbers. Also notice that the sum of powers and products of positive numbers must also be a positive number. Since the sum totaling to -2 is not possible, the only real values are from before, where we found c = d.

However, this is a contradiction since we stated that c and d are unique. Therefore, the equation $x^5 + 2x - 5 = 0$ has only one unique real number solution between x = 1 and x = 2.

Result: For every positive integer $n \ge 2$, the equation $x^n + (x+1)^n = (x+2)^n$ is false.

Disproof (by counterexample): Let x = 3 and n = 2. Plugging these values into the anove equation, we arrive at

$$x^{n} + (x+1)^{n} = (x+2)^{n}$$
$$3^{2} + (3+1)^{2} = (3+2)^{2}$$
$$3^{2} + 4^{2} = 5^{2}$$
$$9 + 16 = 25$$
$$25 = 25$$

Thus, the statement has been disproven.

Result: If a and b are two distinct real numbers, then either $\frac{a+b}{2} > a$ or $\frac{a+b}{2} > b$.

Proof Strategy: We will use constrapositive. We will work to show that if $\frac{a+b}{2} \le a$ and $\frac{a+b}{2} \le b$, then a and b are not distinct, meaning a = b. We will work through two cases, then combine the two cases into one result. \blacklozenge

Proof, by contrapositive: There are two cases we must prove. Let case 1 be $\frac{a+b}{2} \le a$, and let case 2 be $\frac{a+b}{2} \le b$, for any two distinct real numbers a and b.

Case 1: Let $\frac{a+b}{2} \leq a$, for $a, b \in \mathbb{R}$. Therefore,

$$\frac{a+b}{2} \le a$$

$$a+b \le 2a$$

$$b \le a$$
(1)

Inequality (1) is our first result.

Case 2: Let $\frac{a+b}{2} \leq b$, for $a, b \in \mathbb{R}$. Therefore,

$$\frac{a+b}{2} \le b$$

$$a+b \le 2b$$

$$a \le b$$
(2)

Inequality (2) is our second result. Combining cases: Combining results (1) and (2), we get the dual inequalities

$$b \le a$$
 $a \le b$

For both to be true, then a must equal b, which is the result we have been attempting to prove.

Result: If xy and x + y are even and $x, y \in \mathbb{Z}$, then both x and y are even.

Proof Strategy: We will use constrapositive. We will work to show that if x or y is odd, then either xy or x + y is odd.

Proof, by contrapositive: Let $x, y \in \mathbb{Z}$, and let x or y be odd. By definition, there exists integers m and n such that x = 2m + 1 and y = 2n + 1. Without loss of generality, we assume that x is odd.

We work to show that xy or x + y is odd when x is odd. y can be even or odd, so we will prove two cases.

Case 1: Let y be odd. By definition, y = 2k + 1 for some $k \in \mathbb{Z}$. Therefore,

$$xy = (2m+1)(2k+1) = 4mk + 2m + 2k + 1 = 2(2mk+m+k) + 1$$

By definition, since $2mk + m + k \in \mathbb{Z}$, xy is odd.

Case 2: Let y be even. By definition, y = 2l for some $l \in \mathbb{Z}$. Therefore,

$$x + y = (2m + 1) + (2l) = 2m + 2l + 1 = 2(m + l) + 1$$

By definition, since $m + l \in \mathbb{Z}$, x + y is odd.

Both cases have been proven.

Result: For any integer x, 3x + 1 is even if and only if 5x - 2 is odd.

Proof Strategy: We will use two cases, one where x is even, and one where x is odd. We will then prove the biconditional for both cases.

Proof: Let x be an integer. We will prove the biconditional with two cases.

Case 1: Let x be an even integer. By definition, x = 2a for some integer a. Therefore,

$$3x + 1 = 3(2a) + 1 = 6a + 1 = 2(3a) + 1$$

 $5x - 2 = 5(2a) - 2 = 10a - 2 = 2(5a)$

By definition, since $3a, 5a \in \mathbb{Z}$, then 3x + 1 is odd and 5x - 2 is even.

Since neither 3x + 1 is even, nor 5x - 2 is odd when x is even, we can mark this case irrelevant.

Case 2: Let x be an odd integer. By definition, x = 2b + 1 for some integer b. Therefore,

$$3x + 1 = 3(2b + 1) + 1 = 6b + 3 + 1 = 6b + 4 = 2(3b + 2)$$
$$5x - 2 = 5(2b + 1) - 2 = 10b + 5 - 2 = 10b + 2 + 1 = 2(5b + 1) + 1$$

Since 3b + 2, $5b + 1 \in \mathbb{Z}$, 3x + 1 is even and 5x - 2 is odd.

Since both implications of the biconditional are met when x is odd, and neither implication is met when x is even, the biconditional is satisfied.

Result: For any integer n, $5|n^2$ if and only if 5|n

.

Proof: We must prove both implications, so we begin by proving that for any integer n, $5|n^2$ if 5|n.

Left to Right: We will prove this implication using contrapositive.

Let $n \in \mathbb{Z}$, and assume that $5 \nmid n$. By definition, there does not exist an integer a such that n = 5a, or in other words, $n \neq 5a$.

$$n \neq 5a$$

$$n^{2} \neq (5a)^{2}$$

$$n^{2} \neq 25a^{2}$$

$$n^{2} \neq 5(5a^{2})$$

Since n^2 cannot be written as the product of two integers, $5a^2$ and 5, $5 \nmid n^2$.

Right to left: We will prove this implication directly.

Let $n \in \mathbb{Z}$, and assume that 5|n. By definition, there exists an integer a such that n = 5a. Therefore,

$$n = 5a$$

 $n^{2} = (5a)^{2}$
 $n^{2} = 25a^{2}$
 $n^{2} = 5(5a^{2})$ (3)

Since n^2 can be expressed as the product of two integers, 5 and $5a^2$, $5|n^2$

Result: If $a, b \in \mathbb{R}$, then $ab \leq \sqrt{a^2}\sqrt{b^2}$.

Proof: Let $a, b \in \mathbb{R}$. Therefore,

$$ab \le \sqrt{a^2}\sqrt{b^2}$$

$$ab \le (a)(b)$$

$$ab \le ab$$
(4)

The proof has been satisfied. It should be noted that for the cases where $a,b \leq 0$, we square the values before taking the square root, meaning the expression is still valid for all $a,b,\in\mathbb{R}$.

Result: Let $a, b \in \mathbb{R}$. If a > 0 and b > 0, then $\frac{a}{b} + \frac{b}{a} \ge 2$.

Proof: Let $a, b \in \mathbb{R}$. Therefore,

$$\frac{a}{b} + \frac{b}{a} \ge 2$$

$$a + \frac{b^2}{a} \ge 2b$$

$$a^2 + b^2 \ge 2ab$$

$$a^2 + b^2 - 2ab \ge 0$$

Now recognize that this inequality is very similar to that outlined in the Law of Cosines, which is pictured in inequality (5).

$$a^{2} + b^{2} - 2ab\cos(\theta) = c^{2} \tag{5}$$

Observe that when the angle, θ , is zero degrees, then the opposite side (length c) has a length of zero units. Also observe that cos(0) = 1. Therefore,

$$a^{2} + b^{2} - 2ab\cos(\theta) \ge c^{2}$$

$$a^{2} + b^{2} - 2ab\cos(0) \ge 0$$

$$a^{2} + b^{2} - 2ab \ge 0$$

$$a^{2} + b^{2} \ge 2ab$$

The proof has been completed.