PRINTABLE VERSION

Quiz 20

Question 1

Use differentials to estimate the value $\sqrt[3]{25}$.

- a) $\bigcirc \frac{185}{54}$
- **b)** 01
- c) $\bigcirc \frac{83}{27}$
- **d)** $\bigcirc \frac{79}{27}$
- **e)** $\bigcirc \frac{131}{54}$

Question 2

Use differentials to estimate the value $\,(15.5)^{1/4}.\,$

- a) $\bigcirc \frac{127}{64}$
- **b)** $\bigcirc \frac{3}{2}$
- c) $\bigcirc \frac{159}{64}$

- **d)** $\bigcirc \frac{95}{64}$
- **e)** $\bigcirc \frac{129}{64}$

Question 3

Use differentials to estimate the value $\cos(62^{\circ})$.

a)
$$\bigcirc \frac{\sqrt{3}}{2} + \frac{1}{180} \pi$$

b)
$$\bigcirc \frac{1}{2} - \frac{\sqrt{3}}{180} \pi$$

c)
$$0 \frac{1}{2} - \frac{\sqrt{3}}{90} \pi$$

d)
$$\bigcirc \frac{\sqrt{3}}{2} + \frac{1}{90} \pi$$

e)
$$\bigcirc \frac{1}{2} + \frac{\sqrt{3}}{180} \pi$$

Question 4

Taking $\ln(2) \approx 0.69$, use differentials to estimate $\ln(2.1)$.

- a) 0.740
- **b)** 0.860
- **c)** 0.820
- **d)** 0.790

e) 0.660

Question 5

Find the differential dy for $y=3\,\mathrm{e}^x\cos(x)$ (use $h=\Delta x$).

a)
$$\bigcirc dy = (3e^x \sin(x) - e^x \cos(x))\Delta x$$

b)
$$\bigcirc dy = (-3 e^x \sin(x)) \Delta x$$

c)
$$\bigcirc dy = (3 e^x \cos(x)) \Delta x$$

d)
$$\bigcirc dy = (3 e^x \cos(x) - 3 e^x \sin(x)) \Delta x$$

e)
$$\bigcirc dy = (-3e^x\sin(x) - 3e^x\cos(x))\Delta x$$

Question 6

Consider the function $f(x)=x^{3/4}$. Approximate the change in f as x changes from 80 to 81.

a)
$$0 \frac{109}{4}$$

b)
$$\bigcirc -\frac{3}{4}$$

c)
$$\bigcirc \frac{1}{4}$$

d)
$$\bigcirc \frac{107}{4}$$

e)
$$\bigcirc \frac{5}{4}$$

Question 7

A spherical ball bearing will be coated by 0.06 cm of protective coating. If the radius of this ball bearing is 10 cm, approximately how much coating will be required? (use $\pi \approx 3.14$)

- a) $0.4262.026 \text{ cm}^3$
- **b)** \bigcirc 75.360 cm³
- **c)** 4111.306 cm^3
- **d)** \bigcirc 74.360 cm³
- **e)** 0.360 cm^3

Question 8

Give the derivative of $f(x) = e^{\arcsin(2x)}$ at the point where $x = \frac{1}{4}$.

a)
$$\bigcirc \frac{\sqrt{3}}{3} \mathrm{e}^{\pi/3}$$

- **b**) 01
- c) 04
- d) $\bigcirc \frac{4\sqrt{3}}{3} e^{\pi/6}$
- e) $\bigcirc \frac{2\sqrt{3}}{3} \, \mathrm{e}^{\pi/6}$

Question 9

Find the derivative of $(3x+4)^{5x}$.

a)
$$0.15x(3x+4)^{5x-1}$$

b)
$$\bigcirc (3x+4)^{5x} \left(5\ln(3x+4) + \frac{15x}{3x+4} \right)$$

c)
$$(3x+4)^{5x} \left(5\ln(3x+4) - \frac{5}{3x+4}\right)$$

d)
$$\bigcirc \left(5 \ln(3x+4) + \frac{15 x}{3 x + 4} \right)$$

e)
$$0.5x(3x+4)^{5x-1}$$

Question 10

Given $f(x) = 3x^3 + x - 7$ verify that f(x) is invertible and, if so, find the equation of the tangent line to $f^{-1}(x)$ at the point where x = -33. Note that f(-2) = -33.

a) $\bigcirc f(x)$ is not invertible.

b)
$$y + 33 = -\frac{1}{37}(x-2)$$

c)
$$y + 2 = \frac{1}{37}(x + 33)$$

d)
$$y + 33 = \frac{1}{37}(x+2)$$

e)
$$y-2=-\frac{1}{37}(x+33)$$