UNIT-2:

K-Map

SOP-POS

Boolean function is an algebraic form of Boolean expression

Sum-of-Products (SOP) - variables are operated by AND (product) are OR(sum) together Product-of-sums (POS) - variables are operated by OR (sum) are AND (product) together

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

SOP Expression

Write AND term for each input combination produces HIGH Write the input variables for 1 and compliment for 0. OR the AND terms to obtain the output function.

$$F(SOP) = A'BC + AB'C + ABC' + ABC$$

POS Expression

Write OR term for each input combination produces LOW Write the input variables for 0 and complement for 1 AND the OR terms to obtain the output function

$$F(POS) = F = (A + B + C) (A + B + C') (A + B' + C) (A' + B + C)$$

POS is compliment of SOP

Min Term –Max Term

	Variables		Min terms	Max terms	
A	В	C	m _i	\mathbf{M}_{i}	
0	0	0	A' B' C' = m 0	A + B + C = M 0	
0	0	1	A' B' C = m 1	A + B + C' = M 1	
0	1	0	A' B C' = m 2	A + B' + C = M 2	
0	1	1	A' B C = m 3	A + B' + C' = M 3	
1	0	0	A B' C' = m 4	A' + B + C = M 4	
1	0	1	A B' C = m 5	A' + B + C' = M 5	
1	1	0	A B C' = m 6	A' + B' + C = M 6	
1	1	1	A B C = m 7	A' + B' + C' = M 7	

Write SOP expression for min term $F(A, B, C) = \sum m(1, 2, 3)$

In binary 01 10 11
$$= \overline{A}B + A\overline{B} + AB$$

Write POS expression for min term $F(A, B, C) = \pi M(1, 2, 3)$

In binary = 01 10 11
$$(A + \overline{B}).(\overline{A} + B).(\overline{A} + \overline{B})$$

Write SOP expression for min term
$$F(A, B) = \sum m(1, 2, 3)$$

Inbinary 01 10 11
$$= \overline{A}B + A\overline{B} + AB$$

Write SOP expression for
$$F(A, B, C) = \sum m(2, 4, 6, 7)$$

In binary 010 100 110 111 $\overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$

Write SOP expression for
$$F(A, B, C) = \sum m(0, 1, 3, 5)$$

Write SOP expression for $F(A, B, C, D) = \sum m(2, 4, 5, 7, 8, 9, 10, 13, 15)$

SOP-POS Conversion

Convert the SOP expression to an equivalent POS expression:

$$\overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

The evaluation is as follows:

$$000+010+011+101+111$$

There are 8 possible combinations. The SOP expression contains five of these, so the POS must contain the other 3 which are: 001, 100, and 110.

$$(A+B+\overline{C})(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

K-MAP

Karnaugh map is a tool for simplification of Boolean algebra.

K-Map diagram is made up of squares.

K-map is a graphical representation of SOP (Minterm).

K-Map extensively reduce the calculation and provides best minimized solution.

K-map solve the expression with grouping of neighbor cells.

Example on Mapping

- Mapping a standard SOP expression
- Mapping a non standard SOP expression

Kmap Simplification Rule

- 1) Construct kmap and place 1's in the squares according to the truth table.
- 2) Groupings can contain only 1s
- 3) Groups can be formed only at right angles; diagonal groups are not allowed.
- 4) The number of 1's in a group must be a power of 2
- 5) The groups must be made as large as possible.
- 6) Groups can overlap and wrap around the sides of the Kmap.
- 7) Every group puts a term in the solution

Optimized Solution

Minimum number of group

Each group covers maximum possible squares

Example on K-map

Out= $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B$

Out= $\overline{AB}CD + \overline{AB}CD + \overline{AB}CD + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD}$

Out= $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$

Out= $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}\overline{B}CD$

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D}$$
 + $\overline{A}\overline{B}\overline{C}D$ + $\overline{A}\overline{B}CD$
+ $\overline{A}B\overline{C}\overline{D}$ + $\overline{A}B\overline{C}D$ + $\overline{A}BCD$
+ $\overline{A}B\overline{C}\overline{D}$ + $\overline{A}B\overline{C}D$ + $\overline{A}BCD$

$$f(A, B, C, D) = \sum_{m(0,1,3,4,5,7,12,13,15)}$$

$$f(A,B,C,D) = \prod_{M(2,6,8,9,10,11,14)}$$

$$f(A,B,C,D) = (\overline{A}+B)(\overline{C}+D)$$

Example of simplification of POS expression using K-map

Kmap with Don't Care

In a Kmap, a don't care condition is identified by an X in the cell of the minterm(s)

In simplification, we are free to include or ignore the X's when creating our groups.

WX	z 00	01	11	10
00	(X	1	1	×)
01		×	1	
11	×		1	
10			1	

F(W,X,Y,Z) = WY + YZ

$$F(w, x, y, z) = \sum (0, 1, 2, 3, 7, 8, 10)$$
$$d(w, x, y, z) = \sum (5, 6, 11, 15)$$

$$\overline{X}\overline{Z} + \overline{W}Z$$

$$F(ABCD)=\pi(0,1,3) \cdot d(5,7)$$

How many cells in a 5 variable k-map.

- (a) 8
- (b) 16
- (c) 32
- (d) 64

Which grouping possible in 4-variable k-map.

- (a) 3
- (b) 5
- (c) 8
- (d) 10

For a 3-variable k-map, two cell group yield a...

- (a) 1- variable product
- (b) 2- variable product
- (c) 3- variable product
- (d) value 1

What will be out expression using K-map if $F(A,B,C)=\prod (1,3,5,7)$

- (a) 1
- (b) A'
- (c) B'
- (d) C'

What will be out expression using K-map if $F(A,B,C) = \prod M(0,1,2,3,4,5,6,7)$

- (a)0
- (b) 1
- (c)C'
- (d) AB