Groups and Rings - SF2729

Homework 1

Jim Holmström - 890503-7571

March 7, 2012

Exercise 1. Give a table for binary operation on the set $\{e, a, b\}$ of three elements satisfying axioms \mathcal{G}_2 (existence of a unit) and \mathcal{G}_3 (existence of inverses) but not the axiom \mathcal{G}_1 (associativity)

Solution. e (identity element) in each row/colon of the table $\Rightarrow \mathcal{G}_2 \wedge \mathcal{G}_3$ Then we just make the same element appear twice \Rightarrow table unable to represent a group, that together with $\mathcal{G}_{1:3} = \text{Group} \Rightarrow \neg \mathcal{G}_1$

Table 1: Example of a $\mathcal{G}_2 \wedge \mathcal{G}_3 \wedge \neg \mathcal{G}_1$

Exercise 2. Let G be a group with a finit number of elements. Show that $\forall a \in G \exists n \in \mathbb{Z}_+ : a^n = e$ where the symbol a^n denotes the multiplication of a n-times.

Solution. Since $|G| < \infty$ not all a^n can be different for all positive n. Thus $\exists n_1 > n_2 : a^{n_1} = a^{n_2}$. Using the group axioms one gets, $a^{n_1 - n_2} = e$ which shows that it exists a $n = n_1 - n_2 > 0$ which satisfies this $\forall a$ in the finite group.

Exercise 3. $a, b \in G$ (where G is a group) Show $(a * b)^2 = a^2 * b^2 \Rightarrow a * b = b * a$ Solution.

$$(a*b)^2 = a^2 * b^2$$

$$(a*b)*(a*b) = (a*a)*(b*b)$$

$$a*((b*a)*b) = a*((a*b)*b)$$

$$b*a = a*b$$
(Associativity of groups)
(Cancel out a then b)

Exercise 4. Let G be a group and let g be one fixed element of G. Show that the map $i_g: G \to G$ such that $i_g(x) = gxg^{-1}$ for $x \in G$ is an isomorphism.

Solution. Let $a,b \in G$ $i_g(a) = i_g(b) \Rightarrow g*a*g^{-1} = g*b*g^{-1}$ cancelate (since $g,g^{-1} \in G$) $\Rightarrow a = b$ and thus i_g is one-to-one. $i_g(g^{-1}*a*g) = g*g^{-1}*a*g*g^{-1} = a\;i_g$ maps G onto G. $i_g(a*b) = g*a*b*g^{-1} = g*a*(g^{-1}*g)*b*g^{-1} = (g*a*g^{-1})*(g*b*g^{-1}) = i_g(a)*i_g(b)$ and thereby satisfies the homomorphism. $\therefore i_g$ is an homomorphism, it's one-to-one and onto and are therefore a isomorphism. \Box