Pigeonhole Principle in Combinatorial Geometry

Nghia Doan

September 28, 2022

In this article, we show two examples that can be solved with the Pigeonhole Principle.

Definition (Pigeonhole Principle). The Pigeonhole Principle (also known as the Dirichlet box principle, Dirichlet principle or box principle) states that if n+1 or more holes are placed in n pigeons, then one pigeon must contain two or more holes. Another definition could be phrased as among any n integers, there are two with the same modulo-n-1 residue.

The extended version of the Pigeonhole Principle states that if k objects are placed in n boxes then at least one box must hold at least $\lceil \frac{k}{n} \rceil$ objects. Here $\lceil \cdot \rceil$ denotes the ceiling function.

Example (One)

There are 101 points in a unit square. Prove that five of them can be covered by a circle radius $\frac{1}{7}$.

Remark. The idea: the idea comes from the given number of points 101 is just one more than 4×25 , which means that if we divide the square into 25 holes, then among 101 points, or pigeons, there are 5 of them should be in a hole. The easiest way to divide a square into 25 pieces is to divide it into 5×5 grid.

One. Lets divide the unit square into $5 \times 5 = 25$ squares as shown below.

According to the Piegonhole Principle, there exists a square where at least $\lceil \frac{101}{25} \rceil = 5$ points reside. The circle centered at the center of the square radius $\frac{1}{7}$ cover the whole square since,

half of the diagonal of the square,
$$\frac{1}{2} \cdot \frac{\sqrt{2}}{5} < \boxed{\frac{1}{7}}$$
.

Example (Two)

For $n \ge 1$, on a $2n \times 2n$ board, 3n squares are marked. Prove that n rows and n columns can be selected so that they contain all marked squares.

Remark. First, we *get our hand dirty* by drawing some examples and see how it works. In the example below, where n = 4, in a 8×8 board we choose rows 2, 5, 7 and 8; then columns d, f, g and h to cover all marked squares. Note that rows 2, 5, 7, and 8 cover $8 = 2 \times 4$ marked squares.

Is it possible that n rows can be chosen such that they cover some 2n marked squares?

How about trying to select n rows so that they cover as many unmarked squares as possible?

This is called a *greedy* approach. A **greedy algorithm** is an algorithm that follows the problem-solving heuristic of making the locally optimal choice at some stage. A greedy strategy might not produce an optimal solution, but it can help to find a solution.

	a	b	\mathbf{c}	d	e	f	g	h
8	X							
7		X						X
6 5							X	
5			х		X			
4 3 2						X		
3				X				
2			X	X		X		
1								x

Two. We first prove the claim we have noted in the remark.

Claim — Lets choose n rows such that each of them cover as many squares as possible. Then these rows cover at least 2n marked squares.

Proof. Assume that the number of marked squares covered by these square is less than 2n, then there are more than 3n - 2n = n squares not covered by them, therefore the non-selected n rows cover at least n + 1 squares.

According to the Piegonhole Principle, there is one *non-selected* row that contains at least two marked squares. But by choice as above, **each of the selected rows should have at least as many markered squares as a non-selected rows**, thus the selected ones should cover at least 2n squares.

Then the number of marked squares covered by all square is at least 2n + (n+1) = 3n + 1. This exceeds the number of marked squares, which is 3n, thus it is impossible.

Hence, at least 2n marked squares are covered by n selected rows. For at most n remaining uncovered squares, it is easy to choose n columns.