Math 4000/6000 - Homework #6

posted October 12, 2015; due at the start of class on October 19, 2015

"Art is fire plus algebra." – Jorge Luis Borges

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. 3.1.2(a), and then $f(x) = x^2 + 2x + 2$, $g(x) = x^2 + 1$, $F = \mathbb{Z}_3$
- 2. 3.1.6.
- 3. 3.1.8.
- 4. 3.1.10(a,c,e).
- 5. 3.1.15.

Hint: You may assume, without proof, that the product rule holds for derivatives of polynomials over an arbitrary field. That is, (fg)' = f'g + fg'.

6. Let A be a commutative ring. Given $a, b \in A$, define the common divisor set by

$$CD(a, b) = \{d \in A : d \mid a \text{ and } d \mid b\},\$$

and the linear combination set by

$$I(a,b) = \{ax + by : x, y \in A\}.$$

Show that if a = bq + r (with all of $a, b, q, r \in A$), then

$$CD(a,b) = CD(b,r)$$

and

$$I(a,b) = I(b,r).$$

7. (continuation) Suppose $a, b \in R$, and suppose there is a finite sequence of equations in R of the form

$$a = bq_1 + r_1$$

$$b = r_1q_2 + r_2$$

$$r_1 = r_2q_3 + r_3$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1}$$

$$r_{n-2} = r_{n-1}q_n + r_n, \text{ where } r_n = 0.$$

Let $d = r_{n-1}$ (the remainder at the next-to-last step). Show that d has all of the following properties:

(a) $d \mid a$ and $d \mid b$,

- (b) if $d' \mid a$ and $d' \mid b$, then $d' \mid d$.
- (c) d = ax + by for some $x, y \in A$,
- 8. Let A be an integral domain. Show that the following are all equivalent:
 - (a) $a \mid b$ and $b \mid a$,
 - (b) $a = b \cdot u$ for some unit u in A,
 - (c) $b = a \cdot u'$ for some unit u' in A.

Remark. Elements a and b that differ by a unit factor are called **associate elements**.

- 9. Recall the following definition: If A is a commutative ring, and $a, b \in A$, we say that $d \in A$ is a **greatest common divisor** (or **gcd**) of a and b if d is a common divisor divisible by every common divisor. (That is, d has properties (a) and (b) from problem 7.)
 - (a) Suppose now that A is an integral domain, and let $a, b \in A$. Prove that if d is a gcd of a and b, then d' is also a gcd of a and b if and only if $d' = u \cdot d$ for some unit u.
 - (b) Suppose A = F[x], where F is a field. Show that if a(x) and b(x) are elements of F[x], not both 0, then there is a unique gcd of a(x) and b(x) that has leading coefficient 1.
- 10. (More on $\mathbb{Z}[i]$) Look back at the definition of $\mathbb{Z}[i]$ from your last problem set. Recall that for $z \in \mathbb{Z}[i]$, we defined $N(z) = z\bar{z}$. In this exercise, we outline a proof of the following **division theorem for** $\mathbb{Z}[i]$:

Division theorem for $\mathbb{Z}[i]$: Let $a, b \in \mathbb{Z}[i]$, with $b \neq 0$. Then there exist $q, r \in \mathbb{Z}[i]$ with

$$a = bq + r$$
, and $N(r) < N(b)$. (\dagger)

Example: Let a = 10 + i and b = 2 - i. We have

$$10 + i = (2 - i) \underbrace{(4 + 2i)}_{q} + \underbrace{i}_{r},$$

where 1 = N(i) < N(2 - i) = 5.

(a) Explain (perhaps with a picture) why every complex number is within a distance $\frac{\sqrt{2}}{2}$ of some element of $\mathbb{Z}[i]$.

Hint: Think about the complex plane. Where are the elements of $\mathbb{Z}[i]$ located there?

(b) Given $a, b \in \mathbb{Z}[i]$ with $b \neq 0$, let Q = a/b. (Remember that \mathbb{C} is a field, so a/b exists in \mathbb{Q} .) From part (a), you can find a Gaussian integer q with $|a/b-q| \leq \frac{\sqrt{2}}{2}$. Prove that if we define r := a - bq, then (†) holds. In fact, prove the stronger statement that $N(r) \leq \frac{1}{2}N(b)$.

2

(c) Find q and r satisfying (†) if a = 5 + 7i and b = 3 - i.

11. (*) (An example of elements without a gcd) Let $\sqrt{-3}$ denote the complex number $i\sqrt{3}$. Define $\mathbb{Z}[\sqrt{-3}]$ as $\{a+b\sqrt{-3}: a,b\in\mathbb{Z}\}$. Then $\mathbb{Z}[\sqrt{-3}]$ is a subring of \mathbb{C} . (This is easy to check, but you are not asked to do so.) Prove that the elements a=4 and $b=2+2\sqrt{-3}$ do not have a gcd in $\mathbb{Z}[\sqrt{-3}]$.

Hint: Define a function N(z) on $\mathbb{Z}[\sqrt{-3}]$ by putting $N(z) = z\bar{z}$. You may use without proof that N(z) is nonnegative-integer valued, that N(z) = 0 iff z = 0, that N(z) = 1 iff z is a unit, and that N(zw) = N(z)N(w). (The proofs are the same as for $\mathbb{Z}[i]$.) It may help to first prove the lemma that if $a \mid b$ (in $\mathbb{Z}[\sqrt{-3}]$), then $N(a) \mid N(b)$ (in \mathbb{Z}).

12. (*) Exercise 3.1.24.