2015 Algebra Prelim September 14, 2015

INSTRUCTIONS: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in

- 1. Let \mathbb{Q}^{\times} be the nonzero elements of \mathbb{Q} , a group under multiplication.
- (a) Prove that the additive group of \mathbb{Q} has no maximal proper subgroups.
- (b) Is the same statement true for the multiplicative group \mathbb{Q}^{\times} ?
- 2. Let V be a finite-dimensional vector space over a field F of characteristic 0. Let $B: V \times V \to F$ be a non-degenerate, skew-symmetric bilinear form. (In particular, we have B(x,y) = B(y,x) for all $x,y \in V$.) If U is a subset of V, let

$$U^{\perp} = \{ v \in V \mid B(u, v) = 0 \text{ for all } u \in U \}.$$

(a) Let U be a subspace of V . Prove that U^{\perp} is a subspace of V and that

$$\dim_F(U) + \dim_F(U^{\perp}) = \dim_F(V).$$

- (b) Prove that there exists a subspace W of V such that $W^{\perp} = W$.
- 3. (a) Suppose that G is a finitely-generated group. Let n be a positive integer. Prove that G has only finitely many subgroups of index n.
- (b) Let p be a prime number. If G is any finitely-generated abelian group, let $t_p(G)$ denote the number of subgroups of G of index p. Determine the possible values of $t_p(G)$ as G varies over all finitely-generated abelian groups.
- 4. Suppose that G is a finite group of order 2013. Prove that G has a normal subgroup N of index 3 and that N is a cyclic group. Furthermore, prove that the center of G has order divisible by 11. (You will need the factorization $2013 = 3 \cdot 11 \cdot 61$.)

5. Let V be a finite dimensional vector space over \mathbb{C} . Let $n = \dim_{\mathbb{C}}(V)$. Let $T : V \to V$ be a linear map. Suppose that the following statement is true.

For every $c \in \mathbb{C}$, the subspace $\{v \in V \mid T(v) = cv\}$ of V has dimension 0 or 1.

Prove that there exists a vector $w \in V$ such that $\{w, T(w), \dots, T^{n-1}(w)\}$ is a linearly independent set.

Solution:

The condition on T implies that T has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ with associated eigenvectors v_1, \ldots, v_n which form a basis for V. We claim that choosing $w = v_1 + \cdots + v_n$ makes $\{w, T(w), \ldots, T^{n-1}(w)\}$ a linearly independent set. Note that

$$T^{i}(w) = \lambda_{1}^{i} v_{1} + \dots + \lambda_{n}^{i} v_{n}$$

and so to argue that $\{w, T(w), \dots, T^{n-1}(w)\}$ is linearly independent it suffices to argue that the matrix

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix}$$

has linearly independent rows, i.e. that it is invertible. This is a Vandermonde matrix, and its determinant is given by

$$\prod_{1 \le i < j \le n} (\lambda_j - \lambda_i).$$

Since $\lambda_j \neq \lambda_i$ when $j \neq i$, we see that this determinant is nonzero and so the matrix is invertible. Hence $\{w, T(w), \dots, T^{n-1}(w)\}$ forms a linearly independent set.

- 6. This question concerns an extension K of \mathbb{Q} such that $[K : \mathbb{Q}] = 8$. Assume that K/\mathbb{Q} is Galois and let $G = \operatorname{Gal}(K/\mathbb{Q})$. Furthermore, assume that G is nonabelian.
 - (a) Prove that K has a unique subfield F such that F/\mathbb{Q} is Galois and $[F:\mathbb{Q}]=4$.
 - (b) Prove that F has the form $F = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ where d_1 and d_2 are nonzero integers.
 - (c) Suppose that G is the quaternionic group. Prove that d_1 and d_2 are positive integers.
- 7. Let $R = \mathbb{C}[x_1, ..., x_n]$ be the polynomial ring over \mathbb{C} in n indeterminates $x_1, ..., x_n$. Let S_n be the n-th symmetric group. If $\sigma \in S_n$, then we can identify σ with the automorphism of R defined as follows: $\sigma(c) = c$ for all $c \in \mathbb{C}$, and $\sigma(x_i) = x_{\sigma(i)}$ for all $i, 1 \leq i \leq n$. Suppose that G is any subgroup of S_n . Let

$$S = R^G = \{ r \in R \mid \sigma(r) = r \text{ for all } \sigma \in G \}.$$

Prove that S is a finitely-generated \mathbb{C} -algebra.

- 8. This question concerns the polynomial ring $R = \mathbb{Z}[x,y]$ and the ideal $I = (5, x^2 + 2)$ in R.
- (a) Prove that I is a prime ideal of R and that R/I is a PID.
- (b) Give an explicit example of a maximal ideal of R which contains I. (Give a set of generators for such an ideal.)
 - (c) Show that there are infinitely many distinct maximal ideals in R which contain I.

Solution:

(a)

Note that

$$R/I = \mathbb{Z}[x, y]/(5, x^2 + 2) \cong (\mathbb{Z}/5\mathbb{Z})[x, y]/(x^2 + 2).$$

The polynomial $x^2 + 2$ is irreducible over $\mathbb{Z}/5\mathbb{Z}$ (having no roots) and so $\mathbb{Z}/5\mathbb{Z}[x]/(x^2 + 2)$ is a field. Let F denote this field and observe that

$$R/I \cong F[y].$$

This is a polynomial ring over a field, and so is a PID. Since R/I is an integral domain we conclude that I must be prime.

(b) The ideal $J = (5, x^2 + 2, y)$ is maximal since the quotient by this ideal is just $F[y]/(y) \cong F$, a field.

(c) For any prime $p \in \mathbb{Z}$ not equal to 5 let $J_p = (5, x^2 + 2, py)$. Clearly the various J_p are distinct since the smallest positive integer n for which $ny \in J_p$ is always p and the various p are distinct. Moreover, since $p \neq 5$ for J_p we have p and 5 relatively prime so that p is invertible mod 5. Thus (py) = (y) as ideals in F[y]. We then have that $R/J_p \cong F[y]/(yp) = F[y]/(y) \cong F$, so R/J_p is a field and J_p is maximal.