microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224

© like 281 Follow Microsoft 10.5k

BiomedCLIP-PubMedBERT_256-vit_base_patch16_224

BiomedCLIP is a biomedical vision-language foundation model that is pretrained on PMC-15M, a dataset of 15 million figure-caption pairs extracted from biomedical research articles in PubMed Central, using contrastive learning. It uses PubMedBERT as the text encoder and Vision Transformer as the image encoder, with domain-specific adaptations. It can perform various vision-language processing (VLP) tasks such as cross-modal retrieval, image classification, and visual question answering. BiomedCLIP establishes new state of the art in a wide range of standard datasets, and substantially outperforms prior VLP approaches:

Zero-Shot Image Classification | OpenCLIP | @ English | clip | biology | medical | 🏛 License: mit

Contents

- <u>Training Data</u>
- Model Use
- <u>Reference</u>

• <u>Limitations</u>

• <u>Further Information</u>

Training Data We have released BiomedCLIP Data Pipeline at

https://github.com/microsoft/BiomedCLIP data pipeline, which automatically downloads and processes a set of articles from the PubMed Central Open Access dataset. BiomedCLIP builds upon

conda create -n biomedclip python=3.10 -y

the PMC-15M dataset, which is a large-scale parallel image-text dataset generated by this data pipeline for biomedical vision-language processing. It contains 15 million figure-caption pairs extracted from biomedical research articles in PubMed Central and covers a diverse range of biomedical image types, such as microscopy, radiography, histology, and more. Model Use

1. Environment

```
conda activate biomedclip
  pip install open_clip_torch==2.23.0 transformers==4.35.2 matplotlib
2.1 Load from HF hub
```

```
import torch
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
# Load the model and config files from the Hugging Face Hub
model, preprocess = create_model_from_pretrained('hf-hub:microsoft/BiomedCLIP-Publ
tokenizer = get_tokenizer('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_pa
# Zero-shot image classification
template = 'this is a photo of '
labels = [
    'adenocarcinoma histopathology',
    'brain MRI',
    'covid line chart',
    'squamous cell carcinoma histopathology',
    'immunohistochemistry histopathology',
    'bone X-ray',
    'chest X-ray',
    'pie chart',
    'hematoxylin and eosin histopathology'
dataset_url = 'https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base
test_imgs = [
    'squamous_cell_carcinoma_histopathology.jpeg',
    'H_and_E_histopathology.jpg',
    'bone_X-ray.jpg',
```

model.*eval*() context_length = 256 images = torch.stack([preprocess(Image.open(urlopen(dataset_url + img))) for img texts = tokenizer([template + 1 for 1 in labels], context_length=context_length).

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu

logits = (logit_scale * image_features @ text_features.t()).detach().softmax(sorted_indices = torch.argsort(logits, dim=-1, descending=True) logits = logits.cpu().numpy() sorted_indices = sorted_indices.cpu().numpy()

 $top_k = -1$ for i, img in enumerate(test_imgs):

image_features, text_features, logit_scale = model(images, texts)

pred = labels[sorted_indices[i][0]] top_k = *len*(labels) *if* top_k == -1 *else* top_k print(img.split('/')[-1] + ':')

for j in range(top_k):

'adenocarcinoma_histopathology.jpg',

'covid_line_chart.png',

'chest_X-ray.jpg',

'brain_MRI.jpg',

'pie_chart.png'

model.to(device)

with torch.no_grad():

'IHC_histopathology.jpg',

jth_index = sorted_indices[i][j] print(f'{labels[jth_index]}: {logits[i][jth_index]}') print('\n') 2.2 Load from local files

from urllib.request import urlopen from PIL import Image import torch from huggingface_hub import hf_hub_download

import json

```
from open_clip import create_model_and_transforms, get_tokenizer
from open_clip.factory import HF_HUB_PREFIX, _MODEL_CONFIGS
# Download the model and config files
hf_hub_download(
   repo_id="microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
   filename="open_clip_pytorch_model.bin",
   local_dir="checkpoints"
hf_hub_download(
   repo_id="microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
   filename="open_clip_config.json",
   local_dir="checkpoints"
# Load the model and config files
model_name = "biomedclip_local"
with open("checkpoints/open_clip_config.json", "r") as f:
   config = json.load(f)
   model_cfg = config["model_cfg"]
```

and model_name not in _MODEL_CONFIGS and config is not None): _MODEL_CONFIGS[model_name] = model_cfg tokenizer = get_tokenizer(model_name) model, _, preprocess = create_model_and_transforms(model_name=model_name, pretrained="checkpoints/open_clip_pytorch_model.bin", **{f"image_{k}}": v for k, v in preprocess_cfg.items()},

preprocess_cfg = config["preprocess_cfg"]

if (not model_name.startswith(HF_HUB_PREFIX)

Zero-shot image classification

template = 'this is a photo of '

'adenocarcinoma histopathology',

labels = [

'brain MRI',

'covid line chart',

'squamous cell carcinoma histopathology', 'immunohistochemistry histopathology', 'bone X-ray', 'chest X-ray', 'pie chart', 'hematoxylin and eosin histopathology' dataset_url = 'https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base test_imgs = ['squamous_cell_carcinoma_histopathology.jpeg', 'H_and_E_histopathology.jpg', 'bone_X-ray.jpg', 'adenocarcinoma_histopathology.jpg', 'covid_line_chart.png', 'IHC_histopathology.jpg', 'chest_X-ray.jpg', 'brain_MRI.jpg',

'pie_chart.png' device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu model.to(device) model.eval() context_length = 256 images = torch.stack([preprocess(Image.open(urlopen(dataset_url + img))) for img texts = tokenizer([template + 1 for 1 in labels], context_length=context_length).

image_features, text_features, logit_scale = model(images, texts)

sorted_indices = torch.argsort(logits, dim=-1, descending=True) logits = logits.cpu().numpy() sorted_indices = sorted_indices.cpu().numpy() $top_k = -1$ for i, img in enumerate(test_imgs): pred = labels[sorted_indices[i][0]] top_k = len(labels) if top_k == -1 else top_k

print(f'{labels[jth_index]}: {logits[i][jth_index]}')

logits = (logit_scale * image_features @ text_features.t()).detach().softmax(

print('\n')

with torch.no_grad():

Use in Jupyter Notebook

print(img.split('/')[-1] + ':')

jth_index = sorted_indices[i][j]

for j in range(top_k):

Please refer to this <u>example notebook</u>. **Intended Use**

This model is intended to be used solely for (I) future research on visual-language processing and (II) reproducibility of the experimental results reported in the reference paper.

its associated models should be helpful for exploring various biomedical VLP research questions, especially in the radiology domain.

Out-of-Scope Use

Primary Intended Use

Any deployed use case of the model --- commercial or otherwise --- is currently out of scope. Although we evaluated the models using a broad set of publicly-available research benchmarks, the

The primary intended use is to support AI researchers building on top of this work. BiomedCLIP and

models and evaluations are not intended for deployed use cases. Please refer to the associated

<u>paper</u> for more details.

Reference @article{zhang2024biomedclip, title={A Multimodal Biomedical Foundation Model Trained from Fifteen Million Image

author={Sheng Zhang and Yanbo Xu and Naoto Usuyama and Hanwen Xu and Jaspreet B journal={NEJM AI}, year={2024}, volume={2}, $number={1},$ doi={10.1056/AIoa2400640}, url={https://ai.nejm.org/doi/full/10.1056/AIoa2400640}

Limitations

■ System theme

This model was developed using English corpora, and thus can be considered English-only. **Further information**

Please refer to the corresponding paper, "Large-Scale Domain-Specific Pretraining for Biomedical

Privacy

About

Jobs

Models

Datasets

Pricing

Docs

Spaces

<u>Vision-Language Processing"</u> for additional details on the model training and evaluation.

TOS

% Deploy ∨

🖵 Use this model 🗸

<u>1 model</u>

Drag image file here or click to browse from your device Possible class names (comma-separated) Possible class names...

Downloads last month

Finetunes

/ Inference Providers NEW

☑ Zero-Shot Image Classification

70,841

Compute </> View Code Maximize

Baron-GG/LLAUSmMonika/Medical_bot

□ Spaces using microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_2... 24

► Model tree for microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_2... ①

zenitsu55/microsoft-BiomedCLIP-PubMedBERT_256-vit_base_patch16_224

charlestonX/microsoft-BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 Rajat456/microsoft-BiomedCLIP-PubMedBERT_256-vit_base_patch16_224

Harshdhi/microsoft-BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 + 12 Spaces

■ Collection including microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch1... **Biomedical Sollection**

Models for biomedical research applicati... • 10 items • Updated 3 days ago • △ 10