Solutions to Exercise sheet 1: Propositional Logic

Exercise 1

1. Cats chase mice or birds, but not at the same time. This can be represented as: $(M \vee B) \wedge \neg (M \wedge B)$

where M: Cats chase mice

B: Cats chase birds

M	B	$M \vee B$	$\neg (M \land B)$	$(M \vee B) \wedge \neg (M \wedge B)$
t	t	t	f	f
t	f	t	t	$\mid t$
f	$\mid t \mid$	t	t	$\mid t \mid$
f	f	f	t	$\mid f \mid$

2. If it rains the beach will be empty.

This can be represented as: $R \longrightarrow E$

where

R: It rains

E: Beach is empty

R	E	$R \longrightarrow E$
t	t	t
t	f	$\mid f \mid$
$\int f$	t	$\mid t \mid$
f	f	$\mid t \mid$

3. If Jane bought a piano today, she either sold her old one or took out a bank loan.

This can be represented as: $P \longrightarrow S \vee B$

where P: Jane bought a piano today

B: Jane took out a bank loan

S: Jane sold her old piano

P	S	L	$P \longrightarrow S \vee B$
t	t	t	t
t	$\mid t \mid$	f	$\mid t \mid$
t	$\int f$	$\mid t \mid$	$\mid t$
t	$\int f$	$\int f$	$\mid f \mid$
f	$\mid t \mid$	$\mid t \mid$	$\mid t$
f	$\mid t \mid$	$\int f$	$\mid t$
f	$\int f$	$\mid t \mid$	$\mid t$
f	$\int f$	$\int f$	$\mid t \mid$

Exercise 2

The proposition $P \wedge (P \longrightarrow Q)$ is satisfiable if there is some interpretation which evaluates to true. It is valid if all interpretations evaluate to true

$$\begin{split} P \wedge (P \longrightarrow Q) \\ &= P \wedge (\neg P \vee Q) \\ &= (P \wedge \neg P) \vee (P \wedge Q) \\ &= \bot \vee (P \wedge Q) \\ &= P \wedge Q \end{split}$$

 $P \wedge Q$ is satisfiable, since it evaluates to *true* when P is *true* and Q is *true*. Thus $P \wedge (P \longrightarrow Q)$ is satisfiable.

 $P \wedge Q$ is not valid, since it evaluates to *false* when P is *false* and Q is *false*. Thus $P \wedge (P \longrightarrow Q)$ is not valid.

Exercise 3

CONNECTIVE	EXPRESSION WITH ALONE
	$p \mid p$
\land	(p q) (p q)
V	$ (p \mid p) (q \mid q)$
\longrightarrow	$\mid p \mid (q \mid q)$

Some notes:

- $p \wedge q$ is the same as $\neg (p \mid q)$
- $p \vee q$ is the same as $\neg(\neg p \land \neg q)$
- $p \longrightarrow q$ is the same as $\neg p \lor q$