Dimostrazioni e ricorsione

- Proprietà
 - Funzioni ricorsive e non Nota bene
 - Insiemi di proposizioni
 - $\ast\,$ Principio di induzione su PROP Nota bene
 - * Dimostrazione
 - Funzioni notevoli
 - * Insieme delle sottoproposizioni Nota bene
 - * Rango di una proposizione
 - Teorema di ricorsione primitiva

Proprietà

Sia A un insieme e P un suo sottoinsieme: l'elemento $a \in A$ soddisfa la proprietà P se e solamente se $a \in P$. In altre parole una proprietà è l'insieme degli elementi che rispettano una determinata condizione.

Per esempio, una proprietà su $\mathbb N$ potrebbe essere: $P=\{n\,|\,n\in\mathbb N,n>0\}$ dove $P\subseteq\mathbb N,$ infatti:

- P(1) vale perché $1 \in P$
- P(0) non vale perché $0 \notin P$

Per dimostrare una proprietà su tutte le proposizioni, necessitiamo di una definizione dell'insieme che le contiene.

Funzioni ricorsive e non

Siano A, B due insiemi e $f \subseteq A \times B$, f viene chiamata funzione se e solamente se per ogni elemento del dominio A, esiste ed è unico un elemento del codominio B, tale che la coppia (a,b) appartenga ad f, cioè:

$$\forall a \in A, \exists! \, b \in B, \, (a, b) \in f \tag{1}$$

Per cui si scrive:

- f(a) = b quando $(a, b) \in f$
- $f: A \to B$ quando $f \subseteq A \times B$

 $Nota\ bene$

Una funzione è definita in modo ricorsivo se è definita dal valore sui propri elementi.

Per esempio una funzione ricorsiva può essere quella che ad ogni proposizione, assegna il numero delle sue parentesi, definita come

$$\pi: PROP \to \mathbb{N}$$

I valori che assume sono:

•
$$\pi(\alpha) = 0 \text{ per } \alpha \in AT$$

•
$$\pi(\neg \alpha) = 2 + \pi(\alpha)$$

$$\left. \begin{array}{c} \pi(\alpha \wedge \beta) \\ \bullet & \pi(\alpha \vee \beta) \\ \pi(\alpha \to \beta) \end{array} \right\} = 2 + \pi(\alpha) + \pi(\beta)$$

Insiemi di proposizioni

Viene chiamato PROP il più piccolo insieme X di stringhe, tale che:

- 1. $\perp \in PROP$
- 2. $p \in PROP$ per p simbolo proposizionale

3. Se
$$\alpha, \beta \in PROP$$
 allora:
$$\begin{cases} (\alpha \wedge \beta) \\ (\alpha \vee \beta) \\ (\neg \alpha) \\ (\alpha \to \beta) \end{cases} \in PROP$$

Viene invece chiamato AT l'insieme delle proposizioni atomiche, cioè quelle che non possono essere semplificate ulteriormente. Per questo possiamo affermare che $AT \subset PROP$.

Principio di induzione su PROP

Per poter determinare se una proprietà vale per tutte le proposizioni, si utilizza il seguente principio di induzione sull'insieme PROP. Siano $P \subseteq PROP$ e α, β due proposizioni qualsiasi, possiamo affermare che $\forall \phi \in PROP$ vale $P(\phi)$ se e solamente se:

- 1. Vale $P(\alpha)$ per $\alpha \in AT$
- 2. Ipotizzando valga $P(\alpha)$, allora vale anche $P(\neg \alpha)$

3. Ipotizzando valgano
$$P(\alpha), P(\beta)$$
, allora valgono anche
$$\begin{cases} (\alpha \wedge \beta) \\ (\alpha \vee \beta) \\ (\alpha \to \beta) \end{cases}$$

 $Nota\ bene$

Se la proprietà $P \subseteq PROP$ vale **per ogni** elemento di PROP, allora significa che P è PROP stesso.

Dimostrazione

Vogliamo dimostrare che ogni proposizione, possiede un numero pari di parentesi, in altre parole $\forall \alpha \in PROP, P(\alpha) \iff \pi(\alpha)$ è pari.

Utilizzando il principio di induzione, applicato all'insieme PROP:

1. $P(\alpha)$ vale per $\alpha \in AT$?

$$\alpha \in AT \implies \pi(\alpha) = 0$$

2. Ipotizzando che valga $P(\alpha)$, allora vale anche $P(\neg \alpha)$?

$$\pi(\neg \alpha) = 2 + \pi(\alpha) = 2$$

3. Ipotizzando che valgano $P(\alpha), P(\beta)$, allora valgono anche $P(\alpha \land \beta), P(\alpha \lor \beta)$ e $P(\alpha \to \beta)$?

$$\left. \begin{array}{l} P(\alpha \wedge \beta) \\ P(\alpha \vee \beta) \\ P(\alpha \rightarrow \beta) \end{array} \right\} = 2 + \pi(\alpha) + \pi(\beta) = 2$$

Conclusione: $\forall \phi \in PROP, \pi(\phi)$ è pari quindi $\forall \phi \in PROP, P(\phi)$ è verificata.

Funzioni notevoli

Insieme delle sottoproposizioni

La funzione ricorsiva Sub associa ad ogni proposizione, l'insieme delle proposizioni che la compongono, cioè $Sub: PROP \rightarrow 2^{PROP}$. I valori che assume Sub sono:

• $Sub(\phi) = {\phi} \text{ per } \phi \in AT$

• $Sub(\neg \phi) = \{(\neg \phi)\} \cup Sub(\phi)$

$$\left. \begin{array}{c} Sub(\alpha \wedge \beta) \\ \bullet \quad Sub(\alpha \vee \beta) \\ Sub(\alpha \rightarrow \beta) \end{array} \right\} = \left\{ \phi * \psi \right\} \, \cup \, Sub(\phi) \, \cup \, Sub(\psi)$$

dove * è un connettivo tra $\{\land, \lor, \rightarrow\}$.

 $Nota\ bene$

L'insieme 2^A si chiama Insieme potenza o delle parti di A.

Rango di una proposizione

La funzione ricorsiva r associa ad ogni proposizione il proprio rango o complessità, cioè $r:PROP\to\mathbb{N}.$ I valori che assume sono:

•
$$r(\phi) = 0 \text{ per } \phi \in AT$$

•
$$r(\neg \phi) = 1 + r(\phi)$$

$$\left. \begin{array}{c} r(\alpha \wedge \beta) \\ \bullet & r(\alpha \vee \beta) \\ r(\alpha \to \beta) \end{array} \right\} = 1 + \max(r(\phi), r(\psi))$$

Teorema di ricorsione primitiva

Siano $A \subseteq PROP$ un insieme e * un connettivo tra $\{\land, \lor, \rightarrow\}$. Supponendo di avere delle funzioni come le seguenti:

$$\begin{split} H_{at}: AT &\to A \\ H_{\neg}: A &\to A \\ H_{*}: A \times A &\to A \end{split} \tag{2}$$

Esiste ed è unica una funzione $F: PROP \rightarrow A$ tale che:

$$F(\phi) = H_{at}(\phi) \text{ per } \phi \in AT$$

$$F(\neg \phi) = H_{\neg}(F(\phi))$$

$$F(\phi * \psi) = H_{*}(F(\phi), F(\psi))$$
(3)