CMSC417 Spring 2016 Lecture # 5 2/10/2016

Agendal

= quick review of spaning tree

- · scope: small, local area networks
- · limited bandwidth, still falls back to broad cost
- · broadcast lets you not know where people are
- · some exact details of STP?
- => routing (us. forwarding)
 - · distance vector runting
 - · link state routing
 - · convergence

D today we'll start with routing, after that we'll move on to the slobal Internet, IP, 86P, etc.

CMSC417 Spring 2016 Lecture #5 2/10/2016

Routing

> Until now, ve've talked about forwarding taking a frame/packet and using local state to send it out a given port/interface

=> the assumption has been no help is needed for a given device to build it's state

· can learn all locations of addresses by snooping

oif you're missing state, just flood

=> routing is the proceess of populating that state in the absence of cheap flooding / broadcast

Distance Vector

=> all ronters track all known other routers
and the distance and next hoperonter to reach them
=> start with distance o to them selves

D'(y,z) = distance to reach y through
z from x, where z is a
direct neighbor of x

 $D^{\times}(y,z) = \min_{w} D^{z}(y,w)$

CMSC417 Spring 2016 Lecture # 5 2/10/2016

Distance Vector contid) =) Start with $D^{\times}(x,x) = 0$ $D^{\times}(y,z) = \infty \quad \forall y,z$

=> Send your information to all neighbors

Hy send "I can reach y with dist

min Dx(y,z)"

- · send periodically on a timer (seconds minutes)
- your minimum cost to reach a dest
 - · send immediately on topology changes
 - D link socs down
 - neigh bor becomes unreachable

 (no updates from them for a while)

 Dlink coming up and new neighbors
 - Dlink coming up and new neighbours

 are handled on reciept of a routing

 message resulting in an update

 to min costs to reach destinations

 Dlink changing cost is also handled

 by minimum distance updates

Don receiving an applicate from z at x

for each $D^2(y, *)$ $D^{\times}(y, z) = D^2(y, *) + link-cost(x, z)$ if the minimum cost to reach any dest

changed, send a new routing message

to all neighbors

CMSC417 Spring 2016 Lecture #5 2/10/2016

Distance Vector Frample)	
(B)	assume ell
	links have
(A) (C)	unit cost
	à.
(E)	0)
(F)	

A+ A (mitielly)			after updates from F, C			
dest	exext hup	distance	dest	next hop	distance	
A	A	0	A	A	0	
B	8	1	В	В		
C	C	1	C	5		
D		00	D	(12)	
E	E	1	E	E	1	
F	F	(F	-	1	
6	-	∞	61	F	2	
		1			The second secon	

F=6 link fails

DF(G,G) = 00 => DF(G,*) = 00

DA(G, *) = 3

Send update to A, DA(G,F) = 00 => DA(G, *) = 3

Via (=> D=6

depends if A is keeping the full

routing table, e.g., DA(y,z) + y,z

or just min DA(y,z) and z minimizing

it as shown above.

full routing table takes more space, or but allows for faster convergence

CMSC 417 Spring 2016 Lecture #5 2/10/2016 Count to influity => Link A => E fails (see prev page for network) => before recieiving A's update, C sends that $D^{c}(E, *) = 2$ > A decides DA(E, C) = 3, sends update => C decides D'(E,A)=4, sends update keeps going adding I to cost until cost hits 00 "count to infinity" problem good news travels faut 4 (4) 50 >1 alink-cost (Y, 2) drops to 1 > Y tells X => X updates done in 2 messages bad news travels slowly => link-cost(X,Y) rises to 60 => X tells W; but W thinks it has a shafter route lia z (cost 30) Dy tell Z, but Z thinks it has a better route I through W => counts up until somebody sets to 61

CMSC 417 Spring 2016 Lecture# 5 2/10/2016

Split horizon

- Don't tell people about your paths that use them as them as the next hop
- D in the example with the A-E link failing this solves the problem where & tells A it can get to E
 - => still fails if C tells B who tells A count to op

Poison Reverse

Dadvortise of back to people when you use them as the next hop for that destination

Neither fixes all problems)

=> loops >2 nodes have ways to count to 00 even with split-horizon wipoison rev

Other Solutions

> use a small version of ∞ , e.g., 16 > wait for a timer to expire so that

Emergent properties of Distance Vector) => good news travels fast => bad news travels slowly

- \$ sound to a
- => split horizon (w/poison reverse)
 => timers to converge before re-annotancing