Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica – Canale 1 - Meneghesso

Simulazione d'esame n. 1

COGNOME: NOME: MATRICOLA:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome su questo testo sui fogli protocollo
- 2) Bisogna consegnare entrambi il testo del compito anche in caso di ritiro
- 3) Le risposte sbagliate <u>saranno penalizzate</u>
- 4) Saranno considerate solo le risposte riportate nella tabella soprastante (Scrivere in maniera chiara e ordinata)
- 5) Il tempo a disposizione è di 35 minuti
- 1) Un semiconduttore di tipo n è ricco di:
 - a) Lacune
 - b) Elettroni
 - c) Drogante di tipo accettore
- 2) La corrente di deriva ha verso:
 - a) sempre opposto al verso del campo elettrico
 - b) sempre uguale al verso del campo elettrico
 - c) opposto o uguale al campo elettrico a seconda del segno della carica del portatore
- 3) L'Energy gap (o intervallo di energia proibita) nei semiconduttori:
 - a) E' l'energia media degli elettroni
 - b) E' l'energia che deve avere un elettrone per rompere il legame covalente
 - c) Varia con la tensione applicata
- 4) Nella Giunzione pn all'equilibrio:
 - a) Non esistono correnti alla giunzione (corrente di diffusione =0A e corrente di Deriva =0A)
 - b) Esiste solo la componente di corrente di diffusione (visto che non cé nessuna tensione applicata)
 - c) Alla giunzione le correnti di deriva sono eguagliate dalla corrente di diffusione
- 5) Nella giunzione pn all'equilibrio il potenziale di giunzione:
 - a) Aumenta all'aumentare del drogaggio delle due giunzioni
 - b) Diminuisce all'aumentare del drogaggio delle due giunzioni
 - c) Dipende solo dal tipo di semiconduttore e non dal drogaggio delle due regioni
- 6) Una Giunzione pn, con regioni "p"e "n" pesantemente drogate, rispetto ad una con regioni poco drogate:
 - a) Ha una RCS è più grande;
 - b) Ha una RCS è più piccola
 - c) Ha una RCS uguale;
- 7) La curva mostrata in figura è:
 - a) La transcaratteristica di un PMOS a svuotamento
 - b) La caratteristica di uscita di un PMOS ad arricchimento
 - c) La transcaratteristica di un PMOS ad arricchimento

- 8) Con modulazione della lunghezza di canale ci si riferisce:
 - a) Al fatto che la densità di carica nel canale di un MOSFET cambia al variare di V_{DS}

Simulazione d'esame n.1

- b) Al fatto che in saturazione il punto di strozzamento del canale cambia posizione al variare di V_{DS}
- c) Alla formazione di un canale conduttivo sotto l'ossido di gate
- 9) In un E-pMOSFET, con $V_S=0V$, $V_G=0V$ e con una piccola $V_D>0$, si ha:
 - a) Il MOSFET sarà sicuramente acceso;
 - b) Si osserva una corrente nulla al terminale di drain (ID=0)
 - c) Si osserva una corrente I_D entrante al drain
- 10) Dato il circuito in figura in cui il diodo ha tensione di accensione $V_{ON} = 1V$. In che regione funziona il diodo?
 - a) diretta
 - b) inversa
 - c) zener
- 11) Dato il circuito in figura, quanto vale la tensione V₂?
 - a) 1V
 - b) 2V
 - c) 4V

 $4k\Omega$

- 12) Dato il circuito in figura con V_S =10V, R₁=2k Ω , R₂=2k Ω , V_{ON} = 1V e una tensione zener V_Z = 4V. Quanto vale la corrente I_2 ?
 - a) 2mA
 - b) 4mA
 - c) 2,5mA

- 13) Dato il MOSFET in figura quale delle seguenti affermazioni è vera
 - a) Il MOSFET, se acceso, funziona sicuramente in zona lineare
 - b) Il MOSFET è sicuramente spento
 - c) Il MOSFET, se acceso, funziona sicuramente in zona di saturazione

- 14) Dato il circuito in figura con $V_S=9V$, R=1k Ω , $V_{ON}=1V$ e una tensione $V_Z=4V$. Quale è lo stato del diodo
 - a) ON
 - b) OFF
 - c) Breakdown Zener

- 15) Dato il circuito in figura con $R_1=R_2=1k\Omega$, $g_m=1mS$; Quanto vale la resistenza di uscita R_{OUT} ?
 - a) $1 k\Omega$
 - b) $2 k\Omega$
 - c) $0.5 \text{ k}\Omega$

