Inciso 3
$$(a + b)*ab(a + b)* + b*a*$$

Vamos a transformar la expresión regular a un AFN-E

Primero vemos que tiene un "+" expresión así que vamos a empezar usando la regla R=S+T del Teorema de Kleene

Vamos a desarrollar la parte de arriba que es una concatenación de la forma R= S T W

Podemos ahora proceder con la estrella de Kleene de los que tenemos por debajo R = S*

Ahora procedemos a ver la cadena de arriba tenemos 2 (a+b)* primero haremos la estrella de Kleene

Y después usamos la regla R= S + T para terminar de descomponerla.

Repetimos el ultimo paso del otro lado para así, tener el siguiente Autómata Finito no determinista con transiciones epsilon.

Ahora vamos a quitar las transiciones epsilon. Cerradura

q0	q0,q1,q2,q4,q5,q6,q8,q9,q10,q11,q12,q14,q17	F
q1	q1,q2,q4,q5,q6,q8,q9	F
q2	q2	
q3	q3,q1,q2,q4,q5,q6,q8,q9	F
q4	1,q2,q4,q5,q6,q8,q9	F
q5	q5,q6,q8,q9	F
q6	q6	
q 7	q7,q5,q6,q8,q9	F
q8	q7,q5,q6,q8,q9	F
q9	q9	F
q10	q10,q11,q12,q14,q17	
q11	q12,q14	
q12	q12	
q13	q13,q16q,q10,q11,q12,q14,q17	
q14	q14	
q15	q15,q16,q10,q11,q12,q14,q17	
q16	q16,q10,q11,q12,q14,q17	
q17	q10,q11,q12,q14,q17	
q18	q18,q19	
q19	q19	
q20	q20,q21,q22,q23,q25,q28,q9	F
q21	q21,q22,q23,q25,q28,q9	F
q22	q22,q23,q25	
q23	q23	
q24	q24,q27,q21,q22,q23,q25,q28,q9	F
q25	q25	
q26	q26,q27,q21,q22,q23,q25,q28,q9	F
q27	q27,q21,q22,q23,q25,q28,q9	F
q28	q21,q22,q23,q25,q28,q9	F

Estado	a	Estado	b
(q0,a)	q7,q13,q18	(q0,b)	q3,q15
(q1,a)	q 7	(q1,b)	q3
(q2,a)	-	(q2,b)	q3
(q3,a)	q7	(q3,b)	q3
(q4,a)	q 7	(q4,b)	q3
(q5,a)	q 7	(q5,b)	-
(q6,a)	q 7	(q6,b)	-
(q7,a)	q 7	(q7,b)	-
(q8,a)	q 7	(q8,b)	-
(q9,a)	-	(q9,b)	-
(q10,a)	q13,q18	(q10,b)	q15
(q11,a)	q13	(q11,b)	q15
(q12,a)	q13	(q12,b)	-
(q13,a)	q13,q18	(q13,b)	q15
(q14,a)	-	(q14,b)	q15
(q15,a)	q13,q18	(q15,b)	q15
(q16,a)	q13,q18	(q16,b)	q15
(q17,a)	q13,q18	(q17,b)	q15
(q18,a)	-	(q18,b)	q20
(q19,a)	-	(q19,b)	q20
(q20,a)	q24	(q20,b)	q26
(q21,a)	q24	(q21,b)	q26
(q22,a)	q24	(q22,b)	q26
(q23,a)	q24	(q23,b)	-
(q24,a)	q24	(q24,b)	q26
(q25,a)	-	(q25,b)	q26
(q26,a)	q24	(q26,b)	q26
(q27,a)	q24	(q27,b)	q26
(q28,a)	q24	(q28,b)	q26

De lo anterior se genero el siguiente autómata no determinista, pasaremos ahora a hacerlo determinista.

Transición	a	b
q0	q7,q18,q13 = q1	q3,q15 = q2
q3	q 7	q3
q 7	q 7	-
q13	q13,q18 = q4	q15
q15	q13,q18 = q4	q15
q18	-	q20
q20	q24	q26
q24	q24	q26
q26	q24	q26
q7,q18,q13= q1 F	q7,q18,q13 = q1	q20,q15 = q5
q3,q15 = q2 F	q7,q18,q13 = q1	q3,q15 = q2
q13,q18 = q4	q13,q18 = q4	q20,15 = q5
q20,q15 =q5 F	q13,q18,q24 = q6	q15,q26 = q8
q13,q18,q24 = q6 F	q13,q18,q24 =q6	q15,q20,q26 = q9
q15,q26 = q8 F	q13,q18,q24 = q6	q15,q26 = q8
q15,q20,q26 = q9 F	q13,q18,q24 = q6	q15,q26 = q8

De esta forma logramos conseguir el siguiente AFD

Ahora vamos a intentar minimizarlo

1						
	2					
		3				
			4			
				5		
					6	
						7

Como todos sus estados son finales no podemos aplicar el algoritmo por tanto ya no se puede minimizar.

Solo falta revisar que da como resultado JFLAP al trasformar este Autómata a expresión regular:

```
\lambda + aa^* + bb^*(\lambda + aa^*) + aa^*b + bb^*aa^*b + (aa^*b + bb^*aa^*b)aa^* + (aa^*b + bb^*aa^*b)bb^*(\lambda + aa^*) + ((aa^*b + bb^*aa^*b)aa^*b + (aa^*b + bb^*aa^*b)bb^*aa^*b)(aa^*b + bb^*aa^*b)^*(\lambda + aa^* + bb^*(\lambda + aa^*))
= (a + b)^*ab(a + b)^* + b^*a^*
```

Se puede demostrar que (a+b)*ab(a+b)*+b*a*=(a+b)*, ya que pese a que tiene la condición de que halla una cadena "ab" si existen sus demás combinaciones ya que esta en medio de dos (a+b)* que representan a todas las cadenas de as' y bs' y con b* a obtienes las que faltan, ademas de que la equivalencia que nos dio como resultado JFLAP son todas las popsibles combinaciones que puede tener nuestro alfabeto.