Appendix of

"Proof search and countermodel construction for iCK4"

 $\begin{array}{c} \text{Mauro Ferrari}^{1[0000-0002-7904-1125]}, \, \text{Camillo Fiorentini}^{2[0000-0003-2152-7488]}, \\ \text{and Paolo Giardini}^{1[0009-0004-6857-9095]} \end{array}$

Dep. of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Italy mauro.ferrari@uninsubria.it, pcgiardini@uninsubria.it

This Appendix includes supplementary material for the paper:

M. Ferrari, C. Fiorentini, P. Giardini. Proof search and countermodel construction for iCK4, published in Proceedings of CILC 2025: 40th Italian Conference on Computational Logic, 2025.

A Proofs of Section 2

Lemma 2. Let $K = \langle W, \leq, R, r, V \rangle$ be a strong model and let $w \in W$.

- (i) If w is a reflexive world then, for every formula α , $w \Vdash \alpha \leftrightarrow \alpha^-$.
- (ii) If $w \nvDash \Box \alpha$, then there exists $w^* \in W$ such that wRw^* , $w^* \nvDash \alpha$ and either (a) $\forall w' \in W : w^*Rw'$, $w' \vdash \alpha$ or (b) w^* is reflexive.

Proof. Point (i). Note that $w \Vdash \varphi \leftrightarrow \Box \varphi$, for every formula φ . Indeed, $w \Vdash \varphi \to \Box \varphi$ follows by strongness of \mathcal{K} , $w \Vdash \Box \varphi \to \varphi$ by reflexivity of w. Since α^- is obtained from α by replacing every subformula $\Box \varphi$ with φ , we get , $w \Vdash \alpha \leftrightarrow \alpha^-$.

Point (ii). Since $w \nvDash \Box \alpha$, there exists $w_{\alpha} \in W$ such that wRw_{α} and $w_{\alpha} \nvDash \alpha$. We build a finite sequence S of pairwise distinct worlds w_0, \ldots, w_n of W such that $w_0Rw_1R\ldots Rw_n$ and $w_k \nvDash \alpha$ for every $0 \le k \le n$. We proceed as follows:

- We set $w_0 = w_\alpha$ (thus, wRw_0).
- Suppose that the last defined world of S is w_k ($k \ge 0$). If there exists w' such that $w' \notin \{w_0, \ldots, w_k\}$ and $w_k R w'$ and $w' \nvDash \alpha$, we set $w_{k+1} = w'$; otherwise, the construction of S halts and w_k is the last world of S.

Since the worlds in S are pairwise distinct and W is finite, the construction of S eventually halts. Let w^* be the last element of S. We have $w^* \not\vdash \alpha$ and $w_0 R w_1 R \dots R w^*$ hence, by transitivity of R, $w R w^*$. If w^* is reflexive, then w^* matches (b). Let us assume that w^* is not reflexive; we show that (a) holds. Let us assume, by contradiction, that there exists w' such that $w^* R w'$ and $w' \not\vdash \alpha$. Note that $w' \not\in S$, otherwise, by transitivity of R, we would get $w^* R w^*$, against

² Dep. of Computer Science, Università degli Studi di Milano, Italy fiorentini@di.unimi.it

the hypothesis that w^* is not reflexive. Since $w' \notin \mathcal{S}$ and $w' \nvDash \alpha$, we can extend S by adding w', a contradiction (w^* is the last element of S). This proves that, for every w' such that w^*Rw' , $w' \Vdash \alpha$; accordingly, w^* matches (a).

В **Proofs of Section 4**

To prove Lemma 19, we need the following lemma.

Lemma 20. Let \mathcal{T}^b be an \mathcal{R} -tree only containing b-antisequents having root $\Gamma^{\mathrm{at}}, \Gamma^{\to}, \Box \Delta \stackrel{\mathrm{b}}{\Rightarrow} \delta$; let $\mathcal{K} = \langle W, \leq, R, r, V \rangle$ and $w \in W$ such that:

- (I1) $w \nvDash \delta'$, for every leaf Γ^{at} , Γ^{\rightarrow} , $\Box \Delta \stackrel{b}{\Rightarrow} \delta'$ of \mathcal{T}^{b} ;
- (12) $w \Vdash (\Gamma^{\to} \cap \operatorname{Sf}^{-}(\delta)) \cup \Box \Delta$;
- (I3) $V(w) = \Gamma^{at}$.

Then, $w \nvDash \delta$.

Proof. By induction on depth(\mathcal{T}^{b}). The case depth(\mathcal{T}^{b}) = 0 is trivial, since the root of \mathcal{T}^{b} is also a leaf. Let depth(\mathcal{T}^{b}) > 0; we only discuss the case where

$$\mathcal{T}^{\mathrm{b}} = \underbrace{\begin{array}{c} \mathcal{T}^{\mathrm{b}}_{0} \\ \sigma^{\mathrm{b}}_{0} = \Gamma \stackrel{\mathrm{b}}{\Rightarrow} \beta \\ \Gamma \stackrel{\mathrm{b}}{\Rightarrow} \alpha \to \beta \end{array}}_{\Gamma \stackrel{\mathrm{b}}{\Rightarrow} \alpha \to \beta} R \stackrel{\mathrm{b}}{\Rightarrow} \qquad \Gamma = \Gamma^{\mathrm{at}}, \Gamma^{\to}, \Box \Delta$$

By applying the induction hypothesis to the \mathcal{R} -tree \mathcal{T}_0^b , having root σ_0^b and the same leaves as \mathcal{T}^{b} , we get $w \nvDash \beta$. Let $\Gamma_{\alpha} = \Gamma \cap \mathrm{Sf}(\alpha)$; by Lemma 5(iii), $\Gamma_{\alpha} \triangleright \alpha$. Since $\mathrm{Sf}(\alpha) \subseteq \mathrm{Sf}(\alpha \to \beta)$, by hypotheses (I2)–(I3) we get $w \Vdash \Gamma_{\alpha}$, which implies $w \Vdash \alpha$ (Lemma 5(iv)). This proves $w \nvDash \alpha \to \beta$.

Lemma 19. Let \mathcal{D} be an \mathcal{R} -derivation of $\sigma^{\mathrm{u}} = \Gamma \stackrel{\mathrm{u}}{\Rightarrow} \delta$ having form (1) where $\Gamma = \Gamma^{\text{at}}, \Gamma^{\rightarrow}, \square \Delta; \text{ let } \mathcal{K} = \langle W, \leq, R, r, V \rangle \text{ and } w \in W \text{ such that:}$

- (J1) for every $w' \in W$ such that w < w', it holds that $w' \Vdash \Gamma^{\rightarrow}$.
- (J2) For every $w' \in W$ such that wRw', it holds that $w' \Vdash \Delta$.
- (J3) For every $\sigma' = \alpha$, $\Gamma \not= \beta$ such that $\sigma^{\mathbf{u}} \ll \sigma'$, there exists $w' \in W$ such that $w \leq w'$ and $w' \Vdash \alpha$ and $w' \not\Vdash \beta$.
- (J4) For every $\sigma' = \Box \alpha, \Gamma^{at}, \Gamma^{\rightarrow}, \Delta \stackrel{\mathrm{u}}{\Rightarrow} \alpha$ such that $\sigma^{u} \ll_{R} \sigma'$, there exists $w' \in W$ such that wRw' and $w' \not \Vdash \alpha$.
- (J5) For every $\sigma' = \Gamma^- \stackrel{\mathrm{u}}{\Rightarrow} \alpha^-$ such that $\sigma^{\mathrm{u}} \ll_R^* \sigma'$, there exists $w' \in W$ such that wRw', w' is reflexive and $w' \nvDash \alpha^-$.
- (J6) $V(w) = \Gamma^{at}$.

Then, $w \Vdash \Gamma$ and $w \nvDash \delta$.

Proof. We show that:

- (P1) $w \nvDash \chi$, for every premise $\sigma_{\chi}^{\rm b} = \Gamma \stackrel{\rm b}{\Rightarrow} \chi$ of Succ; (P2) $w \Vdash \alpha \to \beta$, for every $\alpha \to \beta \in \Gamma^{\to}$.

We introduce the following induction hypothesis:

- (IH1) to prove Point (P1) for a formula χ , we inductively assume that Point (P2) holds for every formula $\alpha \to \beta$ such that $|\alpha \to \beta| < |\chi|$;
- (IH2) to prove Point (P2) for a formula $\alpha \to \beta$, we inductively assume that Point (P1) holds for every formula χ such that $|\chi| < |\alpha \to \beta|$.

We prove Point (P1). Let $\sigma_{\chi}^{\rm b}$ be the premise of Succ displayed in schema (1). We show that the RbuSL $_{\square}$ -tree $\mathcal{T}_{X}^{\rm b}$ and w match the hypotheses (I1)–(I3) of Lemma 20, so that we can apply the lemma to infer $w \not\Vdash \chi$.

We prove (I1). Let $\sigma^{\mathbf{b}} = \Gamma \stackrel{\mathbf{b}}{\Rightarrow} \delta$ any leaf of $\mathcal{T}_{X}^{\mathbf{b}}$; we show that $w \nvDash \delta$. By definition of schema (1), one of the following cases holds.

- (a) $\sigma^{\rm b} = \Gamma \not\Rightarrow \alpha \to \beta$ and $\sigma^{\rm u} = \alpha, \Gamma \not\Rightarrow \beta$ and $\sigma^{\rm u} \ll \sigma^{\rm u}$;
- (b) $\sigma^{\rm b} = \Gamma^{\rm at}, \Gamma^{\rightarrow}, \Box \Delta \not\Rightarrow \Box \alpha$ and $\sigma^{\rm u} = \Box \alpha, \Gamma^{\rm at}, \Gamma^{\rightarrow}, \Delta \not\Rightarrow \alpha$ and $\sigma^{\rm u} \ll_R \sigma^{\rm u}$;
- (c) $\sigma^{\rm b} = \Gamma \stackrel{\rm b}{\Rightarrow} \Box \alpha$ and $\sigma^{\rm u} = \Gamma^{-} \stackrel{\rm u}{\Rightarrow} \alpha^{-}$ and $\sigma^{\rm u} \ll_R^* \sigma_i^{\rm u}$;
- (d) $\sigma^{\rm b} = \Gamma^{\rm at}, \Gamma^{\rightarrow}, \square \Delta \stackrel{\rm b}{\Rightarrow} \delta$ is irreducible.

In case (a), by hypothesis (J3) there is $w' \in W$ such that $w \leq w'$ and $w' \Vdash \alpha$ and $w' \nvDash \beta$, hence $w \nvDash \alpha \to \beta$. In case (b), by hypothesis (J4) there is w' such that wRw' and $w' \nvDash \alpha$, hence $w \nvDash \Box \alpha$. Let us consider case (c). By hypothesis (J5) there exists a reflexive world w' such that wRw' and $w' \nvDash \alpha^-$. By Lemma 2, $w' \Vdash \alpha \leftrightarrow \alpha^-$; it follows that $w' \nvDash \alpha$, hence $w \nvDash \Box \alpha$. In case (d), we have $\delta \in \mathcal{V} \cup \{\bot\}$ and $\delta \not\in \Gamma^{\operatorname{at}}$. Since $V(w) = \Gamma^{\operatorname{at}}$ (hypothesis (J6)), we get $w \nvDash \delta$. This proves that hypothesis (I1) holds.

We prove (I2). Let $\gamma \in \Gamma^{\to} \cap \operatorname{Sf}^-(\chi)$; since $|\gamma| < |\chi|$, by (IH1) we get $w \Vdash \gamma$. Moreover, $w \Vdash \Box \Delta$ by (J2), thus (I2) holds. Finally, (I3) coincides with (J6). We can apply Lemma 20 and conclude $w \nvDash \chi$, and this proves Point (P1).

We prove Point (P2). Let $\alpha \to \beta \in \Gamma^{\to}$, let $w' \in W$ be such that $w \leq w'$ and $w' \Vdash \alpha$; we show that $w' \Vdash \beta$. Note that $\sigma_{\alpha}^{b} = \Gamma \not \Rightarrow \alpha$ is a premise of Succ; since $|\alpha| < |\alpha \to \beta|$, by (IH2) we get $w \nvDash \alpha$. This implies that w < w'. By hypothesis (J1), $w' \Vdash \alpha \to \beta$, hence $w' \Vdash \beta$; this proves (P2).

We prove the assertion of the lemma. By (P2) and hypotheses (J2) and (J6), we get $w \Vdash \Gamma$. The proof that $w \nvDash \delta$ depends on the specific rule Succ at hand and follows from Point (P1) and hypothesis (J6).