28 сентября

Объёмные фигуры

Объёмные фигуры

Объёмные фигуры

Вектор или число

Если всё сделал

Задача 1. При каких λ вектора $\lambda \overrightarrow{a} + \overrightarrow{b}$ и $3\overrightarrow{a} + \lambda \overrightarrow{b}$ коллинеарны, если $\overrightarrow{a} \not\parallel \overrightarrow{b}$?

Задача 2. Найдите длину вектора $[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}]$, если длина вектора $[\overrightarrow{a}, \overrightarrow{b}]$ равна 6?

Особое расположение векторов

$$\overrightarrow{a} \perp \overrightarrow{b} \qquad \Leftrightarrow \qquad \overrightarrow{a} \cdot \overrightarrow{b} = 0$$

$$\overrightarrow{a} \parallel \overrightarrow{b} \qquad \Leftrightarrow \qquad \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$$

$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 компланарны $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = 0$

Если всё сделал

Задача 1. При каких λ вектора $\lambda \overrightarrow{a} + \overrightarrow{b}$ и $3\overrightarrow{a} + \lambda \overrightarrow{b}$ коллинеарны, если $\overrightarrow{a} \not\parallel \overrightarrow{b}$?

Otbet: $\pm\sqrt{3}$

Задача 2. Найдите длину вектора $[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}]$, если длина вектора $[\overrightarrow{a}, \overrightarrow{b}]$ равна 6?

Ответ: 12

Задачка

Проверить, что вектора $\overrightarrow{a} = (7, 6, -6), \overrightarrow{b} = (6, 2, 9)$ являются рёбрами куба. Найти третье ребро этого куба.

Otbet: $\pm (6, -9, -2)$

Задача (КР 2017)

Найти объём и высоту AH тетраэдра ABCD, вершины которого находятся в точках A(2, -4, 5), B(-1, -3, 4), C(5, 5, -1), D(1, -2, 2).

Ответ:
$$V_{ABCD} = \frac{15}{2}, AH = 3$$

Прямые и плоскости

Основные способы задания прямых и плоскостей. В таблице номера уравнений соответствуют названиям:

- общее уравнение;
- нормальное уравнение;
- параметрическое уравнение;
- уравнение по точкам.

Прямая		Плоскость
\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^3
(1) Ax + By + C = 0	$\begin{cases} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{cases}$	Ax + By + Cz + D = 0
$(2) (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$	$\begin{cases} (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0 \\ (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{m} = 0 \end{cases}$	$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$
(3) $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$	$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$	$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t + \mathbf{w}s$
$(4) \ \frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0}$	$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$	$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$
Обозначения:		
вектор нормали		
$\mathbf{n} = [A, B]$	$\mathbf{n} = [A, B, C],$ $\mathbf{m} = [A_1, B_1, C_1]$	$\mathbf{n} = [A, B, C]$
– заданная точка		
$\mathbf{r}_0 = [x_0, y_0]$	$\mathbf{r}_0 = [x_0, y_0, z_0],$	$\mathbf{r}_0 = [x_0, y_0, z_0]$
$\mathbf{r}_1 = [x_1, y_1]$	$\mathbf{r}_1 = [x_1, y_1, z_1],$	$\mathbf{r}_1 = [x_1, y_1, z_1]$
	$\mathbf{r}_2 = [x_2, y_2, z_2]$	
– произвольная точка		
$\mathbf{r} = [x, y]$	$\mathbf{r} = [x, y, z]$	$\mathbf{r} = [x, y, z]$
 направляющий вектор 		
v	v	\mathbf{v}, \mathbf{w}

Задача (КР 2020)

2. Составьте уравнение плоскости в любой изученной в нашем курсе форме, проходящей через точку пересечения прямых

$$\frac{x}{1} = \frac{y+1}{1} = \frac{z-1}{2}$$
 и $\begin{cases} 3x+y-z+2=0, \\ 5x+4y-2z+6=0, \end{cases}$

нормаль к которой – это биссектриса острого угла между указанными прямыми.

каноническое уравнение прямой

общее уравнение прямой

Otbet:
$$5x + 4y + 13x - 9 = 0$$

общее уравнение плоскости