Семинар 20

Общая информация:

• Пусть $\beta \colon V \times V \to \mathbb{R}$ – билинейная форма, а $U \subseteq V$ – подпространство. Тогда β задает билинейную форму на U (просто применяем β к векторам из U). Такую билинейную форму будем называть *ограничением* β на U и обозначать $\beta|_U$.

Задачи:

- 1. Задачник. §37, задача 37.10 (а).
- 2. Задачник. §37, задача 37.21.
- 3. Задачник. §37, задача 37.22.
- 4. Задачник. §37, задача 37.23.
- 5. Задачник. §37, задача 37.30 (a).
- 6. Определите, задают ли следующие матрицы одну и ту же билинейную форму в разных базисах:
 - (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ и $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ и $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & -3 \\ 2 & -3 & 7 \end{pmatrix}$ $\mathbb{M} \begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$
- 7. Пусть $\beta \colon V \times V \to \mathbb{R}$ билинейная форма и $U \subseteq V$ подпространство. Пусть либо β симметрическая либо кососимметрическая (в этом случае нет разницы между U^{\perp} и $^{\perp}U$). Покажите, что следующие условия эквивалентны
 - (a) $\beta|_U$ невырождена
 - (b) $U \cap U^{\perp} = 0$
- 8. Пусть $\beta \colon V \times V \to \mathbb{R}$ билинейная форма (симметрическая или кососимметрическая). Пусть $V = U \oplus W$ и U ортогонально W относительно β . Пусть матрица $\beta|_U$ есть A, а матрица $\beta|_W$ есть B, покажите, что матрица β есть $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.
- 9. Пусть $\beta \colon V \times V \to \mathbb{R}$ кососимметрическая форма.
 - (а) Если β не равна тождественно нулю, то найдется такая пара векторов $v, u \in V$, что $\beta|_{\langle v, u \rangle}$ имеет матрицу $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - (b) Покажите, что найдется такой базис в V, что матрица β является блочно диагональной с блоками 0 или $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - (c) Невырожденная кососимметрическая форма может существовать только в четномерном пространстве.
- 10. Задачник. §37, задача 37.36.