CS 331: Theory of Computing

Problem Set 3

Iowa State University Computer Science Department February 7, 2013

Due by the midnight of February 14, 2013

Problem 1 (20 points)

If $\mathcal L$ is any language, let $\mathcal L_{\frac12-}$ be the set of all first halves of strings in $\mathcal L$ so that

$$L_{\frac{1}{2}-} = \{ w \mid \text{ for some } w', |w| = |w'| \& ww' \in L \}.$$

Prove that, if $\mathscr L$ is regular, then so is $\mathscr L_{\frac{1}{2}-}$.

Hint: Meet In The Middle. Let \mathcal{A} , \mathcal{B} be automata such that $\mathscr{L}(\mathcal{A})=\mathscr{L}$ and $\mathscr{L}(\mathcal{B})=\mathscr{L}^{\mathcal{R}}$ ($\mathscr{L}^{\mathcal{R}}$ is defined as in Problem 2 in HW2). Use \mathcal{A} and \mathcal{B} to construct an automaton \mathcal{C} that recognizes $\mathscr{L}_{\frac{1}{2}-}$.

Problem 2 (20 points)

A **universal** finite automaton (UFA) \mathcal{A} is a 5-tuple $\langle Q, \Sigma, Q_0, \delta, F \rangle$ (syntactically just like an NFA) that accepts a word w if **every** run of \mathcal{A} over w ends in F. Note that an NFA accepts a word if there **exists** a run of \mathcal{A} over w that ends in F.

Prove that UFAs recognize the class of regular languages, that is, a language $\mathscr L$ is recognized by a UFA if and only if $\mathscr L$ is regular.

Hint: Given a UFA \mathcal{A} , can you construct an NFA that recognizes $\mathscr{L}(\mathcal{A})$, the complement of $\mathscr{L}(\mathcal{A})$?

Problem 3 (20 points)

Let $\Sigma=\{0,1\}$. A palindrome is a word that reads the same forward and backward. For example, "ABLE WAS I ERE I SAW ELBA" is palindromic. Prove that the following language

$$\{ w \in \Sigma^* \mid w \text{ is not a palindrome} \}$$

is not regular.

Problem 4 (20 points)

Let k > 1 and $\mathcal{L}_k = \{\epsilon, a, aa, \dots, a^{k-2}\}$. Prove the following statements:

- \bullet \mathscr{L}_k can be recognized by a DFA with k states. (5 points)
- ② \mathcal{L}_k cannot be recognized by any DFA with k-1 states. (15 points)

Hint: Use the pigeonhole principle as in the proof of the Pumping Lemma to prove Part 2.

Problem 5 (20 points)

Let $\mathcal{L}_n = \{ w \in \{0, 1\}^* \mid \text{ the } n\text{-th letter of } w \text{ from the end is } 1 \}$ for $n \ge 1$. Prove that

- an NFA with n+1 recognizes \mathcal{L}_n (5 points).
- any DFA that recognizes \mathcal{L}_n needs at least 2^n states (15 points).

Hint: Let S_n be the set of all words of length n. Show that any DFA \mathcal{H} that recognizes \mathcal{L}_n should have a distinctive state q_w for each $w \in S_n$ such that whenever \mathcal{H} reaches q_w , w is the suffix of the word that has been read by \mathcal{H} .

