

Statistical Machine Learning and Its Applications

Lecture 8: Support Vector Machines

KAIST Mark Mintae Kim

Department of Industrial & Systems Engineering KAIST

OUTLINE

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines
- Relationship to Logistic Regression

OUTLINE

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines
- Relationship to Logistic Regression

WHAT IS A HYPERPLANE?

- Assume a binary classification model has a linear decision boundary
- The points on the decision boundary are characterized by an equation of the form

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$$

The points on either side are characterized by

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$\begin{cases} > 0 & \text{one side} \\ < 0 & \text{other side} \end{cases}$$

WHAT IS A HYPERPLANE?

- A hyperplane in p dimensions is a flat affine subspace of dimension p-1
- In general, the equation for a hyperplane has the form

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p = 0$$

- In p=2 dimensions, a hyperplane is a line $(\beta_0+\beta_1X_1+\beta_2X_2=0)$
- If $\beta_0 = 0$, the hyperplane goes through the origin, otherwise not.
- A hyperplane divides the space to two sides
 - One in which the above equation is greater than zero and the other when less than zero.
- Given: Training set $\{(x_j, y_j)\}_{j=1}^n$, $x_j \in \mathbb{R}^p$, $y_i \in \{-1,1\}$
- Separating hyperplane

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} > 0 \text{ if } y_i = 1$$

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} < 0 \text{ if } y_i = -1$$

$$\mathbf{x}_1 = \begin{pmatrix} x_{11} \\ \cdots \\ x_{1p} \end{pmatrix}^T$$
, ..., $\mathbf{x}_n = \begin{pmatrix} x_{n1} \\ \cdots \\ x_{np} \end{pmatrix}^T$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$

OPTIMAL SEPARATING HYPERPLANE

There are infinite number of separating hyperplane.

Which one should we choose?

MAXIMAL MARGIN CLASSIFIER

Maximal margin hyperplane (or Optimal separating hyperplane)

Separating line (hyperplane) farthest from all training observations

Margin

- Minimal distance from this line to the closest observation
- Maximal margin hyperplane is the separating hyperplane for which the margin is largest

Support vectors

 The points that define the shortest distance to the maximal margin hyperplane

Maximal margin classifier

- The classifier based on the maximal margin hyperplane
- Although the maximal margin classifier is often successful, it can also lead to overfitting when p is large.

WHY MAXIMAL MARGIN HYPERPLANE?

- Future data can be assumed to be "close" to past data
- ullet Assume they will lie with a distance r of a past data point
- If M > r, the hyperplane will classify future data perfectly

COMPUTING MAXIMAL MARGIN CLASSIFIER

$$m{x}_1 = \begin{pmatrix} x_{11} \\ \cdots \\ x_{1p} \end{pmatrix}^T$$
 , ... , $m{x}_n = \begin{pmatrix} x_{n1} \\ \cdots \\ x_{np} \end{pmatrix}^T$

- Given: Training set $\{(x_j, y_j)\}_{j=1}^n$, $x_j \in \mathbb{R}^p$, $y_i \in \{-1,1\}$
- The maximal margin hyperplane is the solution to the following optimization problem

The perpendicular distance from the *i*th observation to the hyperplane

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M \ \forall \ i = 1, \ldots, n.$$

- *M*: The margin of the hyperplane
- There are efficient solutions to the above optimization problem
- These constraints ensure that each observation is on the correct side of the hyperplane and at least a distance M from the hyperplane
- However, the above problem has a solution only if the classes can be separated by a hyperplane

 $x\beta + \beta_0 = 0$

DETAILS (1)

- For any two points x_1 and x_2 lying in H, $(x_1 x_2)\beta = 0$
 - Hence, $\beta^* = \frac{\beta}{\|\beta\|}$ is the vector normal to the surface of H
- Let $x_0 \in H$. The signed distance of any point x to H is,

$$\cos \theta = \frac{d_{S}(x, H)}{\|x - x_{0}\|} \qquad \|x - x_{0}\| \cos \theta = d_{S}(x, H)$$

$$\|\beta\| \|x - x_{0}\| \cos \theta = \|\beta\| d_{S}(x, H)$$

$$(x - x_{0})\beta = \|\beta\| d_{S}(x, H)$$

$$(\beta_{0} + x_{0}\beta = 0)$$

$$d_{S}(x, H) = \frac{(x - x_{0})\beta}{\|\beta\|} = \frac{x\beta - x_{0}\beta}{\|\beta\|}$$

$$= \frac{x\beta + \beta_{0}}{\|\beta\|} = \frac{f(x)}{\|\beta\|}$$

DETAILS (2)

• Let H be a separating hyperplane. The distance between H and an observation x_i is

$$d(\boldsymbol{x}_i, H) = \frac{y_i f(\boldsymbol{x}_i)}{\|\beta\|} = \frac{y_i (\boldsymbol{x}_i \beta + \beta_0)}{\|\beta\|}$$

• The margin of H is the smallest distance between H and an observation x_i

$$M = \min_{i} d(\mathbf{x}_{i}, H)$$

- The maximal margin hyperplane (MMH) is the hyperplane with the largest margin
- The observations x_i such that $d(x_i, H) = M$ are called support vectors of H
- The maximal margin hyperplane can be found by solving the following optimization problem

$$\max_{\beta,\beta_0} M$$
 subject to
$$\frac{y_i(\boldsymbol{x}_i\boldsymbol{\beta}+\beta_0)}{\|\boldsymbol{\beta}\|} \geq M \ , \ i=1,\dots,n$$

• Multiplying eta and eta_0 by a constant c does not change $d(\pmb{x}_i, H)$

• Hence, we can fix
$$\|\beta\| = \frac{1}{M}$$

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2$$
 subject to $y_i(x_i\beta+\beta_0) \geq 1$, $i=1,\dots,n$

DETAILS (3)

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2$$

subject to $y_i(x_i\beta + \beta_0) \ge 1$, i = 1, ..., n

Lagrange formulation

$$L(\beta, \beta_0, \alpha) = \left\{ \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^{N} \alpha_i (y_i (x_i \beta + \beta_0) - 1) \right\}$$

 $\alpha_i \ge 0 , i = 1, ..., n$

Minimize $L(\beta, \beta_0, \boldsymbol{\alpha})$ w.r.t. β, β_0 Maximize $L(\beta, \beta_0, \boldsymbol{\alpha})$ w.r.t. each α_i

How can we solve this?

(To be continued in Slide 25 ...)

OUTLINE

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines
- Relationship to Logistic Regression

THE NON-SEPARABLE CASE

- In general, the two classes are usually not separable by any hyperplane
 - This is often the case, unless n < p
- Even if they are, the max margin may not be desirable because of its high variance
 - Maximal margin hyperplane is sensitive to small changes in the data
 - Possible overfit

- The generalization of the maximal margin classifier to the non-separable case is known as the support vector classifier
 - Use a **soft-margin (slack)** in place of the max margin
 - The hyperplane is chosen to correctly separate most of the training observations, but may misclassify a few
 - A more robust classifier than maximal margin classifier

SOFT MARGIN

Allow some violation of the margin

Case 1: Wrong side of the margin

Case 2: Wrong side of the hyperplane

COMPUTING THE SUPPORT VECTOR CLASSIFIER

• Idea: Allow some observations to be on the incorrect side of the margin

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^{n} \epsilon_i \le C,$$

- ϵ_i : Slack variable
 - $\epsilon_i = 0$: x_i is on the correct side of the margin
 - $\epsilon_i > 0$: x_i is on the wrong side of the margin
 - $\epsilon_i > 1$: x_i is on the wrong side of the hyperplane
- C: A budget for the amount that the margin can be violated by the n observations
 - C = 0: No budget $\rightarrow \epsilon_i = 0$ for all i
 - Equivalent to maximal margin classifier which exists only if the two classes are separable by hyperplanes.
 - For C > 0, no more than or equal to C observations can be on the wrong side of the hyperplane
 - As C gets large, the margin widens, and more tolerance of margin violation
 - C controls the bias-variance trade-off (Large C? small variance, large bias.)
 - *C* is chosen by cross-validation

DETAILS

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2$$

subject to $y_i(x_i\beta + \beta_0) \ge 1$, i = 1, ..., n

Soft margin

$$\min_{\pmb{\beta},\beta_0} \left\{ \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^N \epsilon_i \right\}$$
 subject to $y_i(x_i\beta + \beta_0) \ge 1 - \epsilon_i$, $i = 1, \dots, n, \epsilon_i \ge 0$

We can even further simplify this!

(To be continued in Slide 34 ...)

SUPPORT VECTORS IN SUPPORT VECTOR CLASSIFIER

Support vectors

• Observations that lie directly on the margin, or on the wrong side of the margin (or hyperplane)

Only the support vectors affect the support vector classifier

Those strictly on the correct side of the margin do not (analogous to median)

Relations to C

• Larger $C \rightarrow$ Larger margin \rightarrow More violations \rightarrow More support vectors \rightarrow Smaller variance and more robust classifier

OUTLINE

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines
- Relationship to Logistic Regression

THE NON-LINEAR CASE

- In practice, we are sometimes faced with non-linear class boundaries
 - Linear classifier could perform poorly
 - Non-linear methods that we learned so far
 - Polynomial regression
 - Spline methods
 - Tree-based methods

- How did we extend linear regression to polynomial regression?
 - Linear function: $f(x) = \beta_0 + \beta_1 x$
 - Quadratic function: $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$
 - ...
 - Degree-d polynomial: $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots + \beta_d x^d$

Can we apply this technique to extend support vector classifier?

ENLARGE THE FEATURE SPACE

ullet Rather than constructing the support vector classifier using p features, we use 2p features

Features
$$[x_{i1},x_{i2},...,x_{ip}]$$

Hyperplane $\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\cdots+\beta_px_{ip}=0$

$$\begin{split} &[x_{i1}, x_{i1}^2, x_{i2}, x_{i2}^2, \dots, x_{ip}, x_{ip}^2] \\ &\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i1}^2 + \beta_3 x_{i2} + \beta_4 x_{i2}^2 + \dots + \beta_{2p} x_{ip}^2 = 0 \end{split}$$

- Treat them as 2p original inputs, and fit the support vector classifier
 - In the enlarges space \mathbb{R}^{2p} , the decision boundary is still linear. But non-linear in the original space \mathbb{R}^p

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \max_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_1,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \min_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,$$

Support vector classifier

Support vector classifier for non-linear decision boundary

EXAMPLE: CUBIC POLYNOMIAL

Basis expansion of cubic polynomials

$$[x_{i1}, x_{i2}] \qquad [x_{i1}, x_{i2}, x_{i1}^2, x_{i2}^2, x_{i1}x_{i2}, x_{i1}^3, x_{i2}^3, x_{i1}x_{i2}^2, x_{i1}^2x_{i2},]$$

•
$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1}^2 + \beta_4 x_{i2}^2 + \beta_5 x_{i1} x_{i2} + \beta_6 x_{i1}^3 + \beta_7 x_{i2}^3 + \beta_8 x_{i1} x_{i2}^2 + \beta_9 x_{i1}^2 x_{i2} = 0$$

The support-vector classifier in the enlarged space solves the problem in the lower-dimensional space

Issue?

- Too many possible ways to enlarge the feature space
 - We could end up with too many features, too large feature space
 - Eventually leading to overfitting and high computational burden

SUPPORT VECTOR MACHINES

- Enlarging the feature space in this way quickly makes the computations unmanageable.
- Details of solving the previous optimization problem involve inner product of observations rather than observation themselves

$$\langle \boldsymbol{x}_i, \boldsymbol{x}_{i'} \rangle = \sum_{j=1}^{p} x_{ij} x_{i'j}$$

We can show that linear support vector classifier can be represented as

$$f(\mathbf{x}_j) = \beta_0 + \beta_1 x_{j1} + \beta_2 x_{j2} + \dots + \beta_p x_{jp}$$

$$f(\mathbf{x}_j) = \beta_0 + \sum_{i=1}^n \alpha_i \langle \mathbf{x}_j, \mathbf{x}_i \rangle$$

- where there are n parameters $\{\alpha_i\}_{i=1}^n$ (one per training observation)
- Only the inner product of the feature space is relevant in computing the linear support vector classifier

SUPPORT VECTOR MACHINES

• It turns out that $\alpha_i \neq 0$ only for support vectors. Hence,

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle$$

 $f(\mathbf{x}) = \beta_0 + \sum_{i \in S} \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle$

- *S*: The collection of indices of the support points
 - This typically involves far fewer points
- Summary: Computation and evaluation of linear classifier relies on evaluating inner products of point in feature space
- Replace inner products $\langle x, x_i \rangle$ with a generalization of the inner product referred to as **kernel**. i.e., $K(x, x_i)$

$$f(\mathbf{x}) = \beta_0 + \sum_{i \in S} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

DETAILS (CONTINUED FROM SLIDE 12 ...)

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2$$

subject to $y_i(x_i\beta + \beta_0) \ge 1$, i = 1, ..., n

Lagrange formulation
$$L(\beta, \beta_0, \boldsymbol{\alpha}) = \left\{ \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^{N} \alpha_i (y_i (\boldsymbol{x}_i \beta + \beta_0) - 1) \right\}$$

$$\alpha_i \geq 0$$
 , $i = 1, ..., n$

Minimize $L(\beta, \beta_0, \boldsymbol{\alpha})$ w.r.t. β, β_0

Maximize $L(\beta, \beta_0, \boldsymbol{\alpha})$ w.r.t. each α_i

$$\nabla_{\beta} L = \beta - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \qquad \qquad \beta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial \beta_0} = -\sum_{i=1}^N \alpha_i y_i = 0$$

$$\sum_{i=1}^N \alpha_i y_i = 0$$

$$f(\mathbf{x}) = \mathbf{x}\boldsymbol{\beta} + \beta_0 = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \mathbf{x}^T + \beta_0 = \sum_{i=1}^{N} \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + \beta_0$$

$$L(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \boldsymbol{x}_n \boldsymbol{x}_m^T$$

Maximize $L(\alpha)$ w.r.t. each α_i , and $\sum_{i=1}^{n} \alpha_i y_i = 0$

$$\alpha_i \geq 0$$
 , $i = 1, ..., n$

$$L(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m K(\boldsymbol{x}_n, \boldsymbol{x}_m)$$

KERNELS $K(x_i, x_{i'})$

- Kernels quantify the degree of similarity or strength of relationship between two points x_i and $x_{i'}$
- Efficient dot-product of polynomials
- Given: $u = (u_1, u_2), v = (v_1, v_2)$

• Degree 1
$$(u \cdot v) = u_1 v_1 + u_2 v_2 = \binom{u_1}{u_2} \cdot \binom{v_1}{v_2} = \Phi(u) \cdot \Phi(v)$$
 $\Phi(x_i) = \binom{x_{i1}}{x_{i2}}$

• Degree 2
$$(u \cdot v)^2 = (u_1 v_1 + u_2 v_2)^2$$

$$= u_1^2 v_1^2 + 2u_1 v_1 u_2 v_2 + u_2^2 v_2^2 = \begin{pmatrix} u_1^2 \\ u_1 u_2 \\ u_2 u_1 \\ u_2^2 \end{pmatrix} \cdot \begin{pmatrix} v_1^2 \\ v_1 v_2 \\ v_2 v_1 \\ v_2^2 \end{pmatrix} = \Phi(u) \cdot \Phi(v) \qquad \Longrightarrow \qquad \Phi(\mathbf{x}_i) = \begin{pmatrix} \mathbf{x}_{i1}^2 \\ \mathbf{x}_{i1} \mathbf{x}_{i2} \\ \mathbf{x}_{i2} \mathbf{x}_{i1} \\ \mathbf{x}_{i2}^2 \end{pmatrix}$$
• For any degree d

$$(u \cdot v)^d = \Phi(u) \cdot \Phi(v)$$

Taking a dot product and exponentiating gives the same results as mapping into high-dimensional space and then taking the dot product.

KERNEL METHODS

- Support vector machine: Support vector classifier (SVC) with non-linear kernel
- Common kernels
 - Linear kernel
 - Recovers support vector classifier
 - i.e., SVC = SVM with a linear kernel
 - Polynomial kernel of degree d
 - Leads to a **non-linear decision boundary** for support vector classifier
 - Radial kernel (Gaussian kernel)
 - Leads to non-linear decision boundary for support vector classifier

$$K(\boldsymbol{x}_i, \boldsymbol{x}_{i'}) = \sum_{j=1}^{p} x_{ij} x_{i'j}$$

$$K(\boldsymbol{x}_i, \boldsymbol{x}_{i'}) = \left(1 + \sum_{j=1}^p x_{ij} x_{i'j}\right)^d$$

$$K(\mathbf{x}_i, \mathbf{x}_{i'}) = \exp\left(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2\right)$$
$$= \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_i'\|^2}{2\sigma^2}\right)$$

- In actual fitting of the SVM, we only need to compute the $K(x_i, x_j)$ for all x_i and x_j in training data
 - Very efficient

RADIAL KERNEL

Infinite dimensional kernel

$$\exp(-(x - x')^{2}) = \exp(-(x)^{2}) \exp(-(x')^{2}) \exp(2xx')$$

$$= \exp(-(x)^{2}) \exp(-(x')^{2}) \sum_{i=0}^{\infty} \frac{(2xx')^{i}}{i!}$$
Taylor expansion
$$= \sum_{i=0}^{\infty} \left(\exp(-(x)^{2}) \exp(-(x')^{2}) \sqrt{\frac{2^{i}}{i!}} \sqrt{\frac{2^{i}}{i!}} (x)^{i} (x')^{i} \right)$$

$$= \Phi(x)^{T} \Phi(x')$$

$$\Phi(x) = \exp(-x^{2}) \cdot \left(\sqrt{\frac{2}{1!}} x \sqrt{\frac{2^{2}}{2!}} x^{2} \right)$$

28

EXAMPLE

$$f(\mathbf{x}) = \beta_0 + \sum_{i \in S} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

Polynomial kernel of degree 1

$$K(\mathbf{x}_{i}, \mathbf{x}_{i'}) = 1 + \sum_{j=1}^{p} x_{ij} x_{i'j}$$

Polynomial kernel of degree 3

$$K(\mathbf{x}_{i}, \mathbf{x}_{i'}) = 1 + \sum_{j=1}^{p} x_{ij} x_{i'j} \qquad K(\mathbf{x}_{i}, \mathbf{x}_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^{3} \qquad K(\mathbf{x}_{i}, \mathbf{x}_{i'}) = \exp\left(-\frac{\|\mathbf{x}_{i} - \mathbf{x}_{i}'\|^{2}}{2\sigma^{2}}\right)$$

Radial kernel of degree 3

$$K(\mathbf{x}_i, \mathbf{x}_{i'}) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_i'\|^2}{2\sigma^2})$$

- How does radial kernel work?
 - Given
 - x = test observation
 - $x_i = i$ -th training observation
 - If x is far from x_i , then $K(x, x_i)$ is small
 - $\rightarrow x_i$ will have almost no influence on f(x)
- Since the sign of f(x) determines class label, this implies that observations far away from \boldsymbol{x} have little influence in class prediction for $x \rightarrow$ radial kernel has very local behavior

Using different ways of measuring "similarity" allows you to partition the feature space in different ways

SUMMARY

Support vector classifier

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^{n} \epsilon_i \le C,$$

Support vector machine

$$\max_{\beta_0, \beta_1, \dots, \beta_p, \epsilon_1, \dots, \epsilon_n, M} \max_{\beta_0, \beta_1, \dots, \beta_p, \epsilon_1, \dots, \epsilon_n, M} \sup_{\text{subject to}} \sum_{j=1}^p \beta_j^2 = 1,
y_i \left(\beta_0 + \sum_{i \in S} \alpha_i K(\mathbf{x}_i, \mathbf{x}_{i'}) \right) \ge M(1 - \epsilon_i),
\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

OUTLINE

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines
- Relationship to Logistic Regression

RELATIONSHIP TO LOGISTIC REGRESSION

$$\underset{\beta_0,\beta_1,...,\beta_p}{\text{minimize}} \{L(X, y, \beta) + \lambda P(\beta)\}$$
Loss Penalty

• The following optimization problem for fitting support vector classifier $f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$ can be reformulated as

SVC

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^{n} \epsilon_i \le C,$$

Logistic regression

minimize
$$\left\{ -\sum_{i=1}^{n} \left[y_i \log \sigma(\mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{x}_i)) \right] \right\}$$
$$= \sum_{i=1}^{n} \log(1 + \exp(-y_i(\mathbf{x}_i \boldsymbol{\beta}))) , \quad \sigma(X_i) = \frac{1}{1 + e^{-x_i \boldsymbol{\beta}}}$$

Hinge loss $\min_{\beta_0,\beta_1,...,\beta_p} \left\{ \sum_{i=1}^n \max[0,1-y_i f(\boldsymbol{x}_i)] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$ Loss Penalty

Logistic regression loss

RELATIONSHIP TO LOGISTIC REGRESSION

$$\max[0,1-y_i(\mathbf{x}^T\boldsymbol{\beta}+\boldsymbol{\beta}_0)]$$

$$\exp(-y_i(\mathbf{x}^T\boldsymbol{\beta} + \boldsymbol{\beta}_0))$$

- When $y_i(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) > 1$, SVM loss= 0
 - An observation on the correct side of the margin
- Logistic regression loss is not exactly zero anywhere
 - But it is very small for observations that are far from the decision boundary
- Due to the similarities between their loss functions, logistic regression and the support vector classifier often give very similar results
- Which one is better?
 - SVM: Better for well-separated classes
 - Logistic regression: Better when classes overlap

DETAILS (CONTINUED FROM SLIDE 17 ...)

$$\min_{\beta,\beta_0}\left\{\frac{1}{2}\|\beta\|^2+C\sum_{i=1}^N\epsilon_i\right\}$$
 subject to $y_i(x_i\beta+\beta_0)\geq 1-\epsilon_i$, $i=1,\ldots,n,$ $\epsilon_i\geq 0$

If
$$y_i(x_i\beta+\beta_0)>1$$
, then $\epsilon_i=0$
If $y_i(x_i\beta+\beta_0)<1$, then $\epsilon_i=1-y_i(\beta^Tx_i+\beta_0)$
$$\min_{\beta,\beta_0}\frac{1}{2}\|\beta\|^2+C\sum_{i=1}^N\max(0,1-y_i(x_i\beta+\beta_0))$$

$$\epsilon_i=\max(0,1-y_i(x_i\beta+\beta_0))$$
 Loss

CONCLUSION

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines
 - Kernels
- Relationship to Logistic Regression

Coming up next: Unsupervised Learning