

# প্লাষিং অ্যান্ড পাইপ ফিটিং-১

এসএসসি ও দাখিল (ভোকেশনাল)

নবম-দশম শ্রেণি



জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক প্রকাশিত

বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক প্রণীত



বাংলাদেশ কারিগরি শিক্ষাবোর্ড কর্তৃক ২০১৭ শিক্ষাবর্ষ থেকে এসএসসি (ভোকেশনাল) ও  
দাখিল (ভোকেশনাল) শিক্ষাক্রমের নবম ও দশম শ্রেণির পাঠ্যপুস্তকজগতে নির্ধারিত

---

# প্লান্সিং অ্যান্ড পাইপ ফিটিং-১

## প্রথম ও দ্বিতীয় পত্র

## নবম-দশম শ্রেণি

### লেখক

ইঞ্জ. ড. মোঃ সিরাজুল ইসলাম  
বি এসসি ইঞ্জিনিয়ারিং, বুয়েট, পিএইচডি

### সম্পাদক

ড. মোঃ আবু সাঈম

# জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

৬৯-৭০, মতিবিল বাণিজ্যিক এলাকা, ঢাকা-১০০০

কর্তৃক প্রকাশিত।

[ প্রকাশক কর্তৃক সর্বস্বত্ত্ব সংরক্ষিত ]

## পরীক্ষামূলক সংস্করণ

প্রথম প্রকাশ : নভেম্বর, ২০১৬

পুনর্মুদ্রণ : আগস্ট, ২০১৭

ডিজাইন

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য

মুদ্রণে:

## প্রসঙ্গ-কথা

শিক্ষা জাতীয় জীবনের সর্বতোমুখী উন্নয়নের পূর্বশর্ত। দ্রুত পরিবর্তনশীল বিশ্বের চ্যালেঞ্জ মোকাবেলা করে বাংলাদেশকে উন্নয়ন ও সমৃদ্ধির দিকে নিয়ে যাওয়ার জন্য প্রয়োজন সুশিক্ষিত-দক্ষ মানব সম্পদ। কারিগারি ও বৃত্তিমূলক শিক্ষা দক্ষ মানব সম্পদ উন্নয়ন, দারিদ্র্য বিমোচন, কর্মসংস্থান এবং আত্মনির্ভরশীল হয়ে বেকার সমস্যা সমাধানে গুরুত্বপূর্ণ অবদান রাখছে। বাংলাদেশের মতো উন্নয়নশীল দেশে কারিগরি ও বৃত্তিমূলক শিক্ষার ব্যাপক প্রসারের কোনো বিকল্প নেই। তাই ক্রমপরিবর্তনশীল অর্থনীতির সঙ্গে দেশে ও বিদেশে কারিগরি শিক্ষায় শিক্ষিত দক্ষ জনশক্তির চাহিদা দিন দিন বৃদ্ধি পাচ্ছে। এ কারণে বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) স্তরের শিক্ষাক্রম ইতোমধ্যে পরিমার্জন করে যুগোপযোগী করা হয়েছে।

শিক্ষাক্রম উন্নয়ন একটি ধারাবাহিক প্রক্রিয়া। পরিমার্জিত শিক্ষাক্রমের আলোকে প্রণীত পাঠ্যপুস্তকসমূহ পরিবর্তনশীল চাহিদার পরিপ্রেক্ষিতে এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) পর্যায়ে অধ্যয়নরত শিক্ষার্থীদের থথাযথভাবে কারিগরি শিক্ষায় দক্ষ করে গড়ে তুলতে সক্ষম হবে। অভ্যন্তরীণ ও বহির্বিশ্বে কর্মসংস্থানের সুযোগ সৃষ্টি এবং আত্মকর্মসংস্থানে উদ্যোগী হওয়াসহ উচ্চশিক্ষার পথ সুগম হবে। ফলে রূপকল্প-২০২১ অনুযায়ী জাতিকে বিজ্ঞানমনস্ক ও প্রশিক্ষিত করে ডিজিটাল বাংলাদেশ নির্মাণে আমরা উজ্জীবিত।

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার ২০০৯ শিক্ষাবর্ষ হতে সকলন্তরের পাঠ্যপুস্তক বিনামূল্যে শিক্ষার্থীদের মধ্যে বিতরণ করার যুগান্তকারী সিদ্ধান্ত গ্রহণ করেছে। কোমলমতি শিক্ষার্থীদের আরও আগ্রহী, কৌতুহলী ও মনোযোগী করার জন্য মাননীয় প্রধানমন্ত্রী শেখ হাসিনার নেতৃত্বে আওয়ামী লীগ সরকার প্রাক-প্রাথমিক, প্রাথমিক, মাধ্যমিকস্তর থেকে শুরু করে ইবতেদায়ি, দাখিল, দাখিল ভোকেশনাল ও এসএসসি ভোকেশনালস্তরের পাঠ্যপুস্তকসমূহ চার রঙে উন্নীত করে আকর্ষণীয়, টেকসই ও বিনামূল্যে বিতরণ করার মহৎ উদ্যোগ গ্রহণ করেছে; যা একটি ব্যতিক্রমী প্রয়াস। বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক রচিত ভোকেশনালস্তরের ট্রেড পাঠ্যপুস্তকসমূহ সরকারি সিদ্ধান্তের প্রেক্ষিতে জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড ২০১৭ শিক্ষাবর্ষ থেকে সংশোধন ও পরিমার্জন করে মুদ্রণের দায়িত্ব গ্রহণ করে। এ বছর উন্নতমানের কাগজ ও চার রঙের প্রচল্দ ব্যবহার করে অতি অল্প সময়ে পাঠ্যপুস্তকটি মুদ্রণ করে প্রকাশ করা হলো।

বানানের ক্ষেত্রে সমতা বিধানের জন্য অনুসৃত হয়েছে বাংলা একাডেমি কর্তৃক প্রণীত বানান রীতি। পাঠ্যপুস্তকটির আরও উন্নয়নের জন্য যে কোনো গঠনমূলক ও যুক্তিসংগত পরামর্শ গুরুত্বের সাথে বিবেচিত হবে। শিক্ষার্থীদের হাতে সময়মত বই পৌছে দেওয়ার জন্য মুদ্রণের কাজ দ্রুত করতে গিয়ে কিছু ক্রটি-বিচ্যুতি থেকে যেতে পারে। পরবর্তী সংস্করণে বইটি আরও সুন্দর, প্রাঞ্জল ও ক্রটিমুক্ত করার চেষ্টা করা হবে। যাঁরা বইটি রচনা, সম্পাদনা, প্রকাশনার কাজে আন্তরিকভাবে মেধা ও শ্রম দিয়ে সহযোগিতা করেছেন তাঁদের জানাই আন্তরিক ধন্যবাদ। পাঠ্যপুস্তকটি শিক্ষার্থীরা আনন্দের সঙ্গে পাঠ করবে এবং তাদের মেধা ও দক্ষতা বৃদ্ধি পাবে বলে আশা করি।

প্রফেসর নারায়ণ চন্দ্র সাহা  
চেয়ারম্যান  
জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ

## সূচিপত্র

| প্রথম পত্র |                                                |        | দ্বিতীয় পত্র |                                                 |         |
|------------|------------------------------------------------|--------|---------------|-------------------------------------------------|---------|
| অধ্যায়    | অধ্যায়ের শিরোনাম                              | পৃষ্ঠা | অধ্যায়       | অধ্যায়ের শিরোনাম                               | পৃষ্ঠা  |
| প্রথম      | প্লাষিং ট্রেড                                  | ১-৫    | প্রথম         | পরিমাপক যন্ত্র                                  | ১১৬-১২৪ |
| দ্বিতীয়   | প্লাষিং যন্ত্রপাতি                             | ৬-১৪   | দ্বিতীয়      | ম্যাশনরি কাজে ব্যবহৃত যন্ত্রপাতি<br>ও উপকরণসমূহ | ১২৫-১৩৭ |
| তৃতীয়     | প্লাষিং ও পাইপ ফিটিং কাজে<br>ব্যবহৃত মেশিন     | ১৫-২১  | তৃতীয়        | ইট                                              | ১৩৮-১৪২ |
| চতুর্থ     | প্লাষিং ও পাইপ ফিটিং কাজে<br>ব্যবহৃত নিরাপত্তা | ২২-২৪  | চতুর্থ        | বালি                                            | ১৪৩-১৪৫ |
| পঞ্চম      | পরিমাপ যন্ত্র                                  | ২৫-৩৫  | পঞ্চম         | চুন                                             | ১৪৬-১৪৮ |
| ষষ্ঠ       | হ্যান্ড টুলস                                   | ৩৬-৪৫  | ষষ্ঠ          | সিমেন্ট                                         | ১৪৯-১৫৪ |
| সপ্তম      | ড্রিল মেশিন                                    | ৪৬-৫০  | সপ্তম         | ইটের বন্ড                                       | ১৫৫-১৬০ |
| অষ্টম      | রেঞ্জ                                          | ৫১-৫৩  | অষ্টম         | মশলা                                            | ১৬১-১৬৩ |
| নবম        | রিমার                                          | ৫৪-৫৭  | নবম           | কংক্রিট                                         | ১৬৪-১৭৭ |
| দশম        | হ্যাক'স                                        | ৫৮-৬১  | দশম           | ইঙ্গেকশন পিট                                    | ১৭৮-১৭৯ |
| একাদশ      | ভাইস                                           | ৬২-৬৯  | একাদশ         | সেপাটিক ট্যাঙ্ক                                 | ১৮০-১৮৩ |
| দ্বাদশ     | চেইন পাইপ টং                                   | ৭০-৭১  | দ্বাদশ        | সোকপিট                                          | ১৮৪-১৮৫ |
| অয়োদশ     | প্লাষ বব                                       | ৭২-৭৪  | অয়োদশ        | ম্যানহোল                                        | ১৮৬-১৮৮ |
| চতুর্দশ    | স্প্রিট লেভেল                                  | ৭৫-১৬  | চতুর্দশ       | হাউজ ড্রেন                                      | ১৮৯-১৯৪ |
| পঞ্চদশ     | পাইপ কাটার                                     | ৭৭-৭৮  | পঞ্চদশ        | ল্যাম্প হোল                                     | ১৯৫-১৯৬ |
| ষড়দশ      | অটোমেটিক পাইপ স্ট্রেইডিং মেশিন                 | ৭৯-৮০  |               | ব্যবহারিক                                       | ১৯৭-২২৩ |
| সপ্তদশ     | ডাইস্টক                                        | ৮১-৮৪  |               |                                                 |         |
| অষ্টদশ     | ট্যাপ                                          | ৮৫-৮৯  |               |                                                 |         |
| উনবিংশ     | ড্রো-ল্যাম্প                                   | ৯০-৯১  |               |                                                 |         |
|            | ব্যবহারিক                                      | ৯২-১১৫ |               |                                                 |         |

অধ্যায় : ১

## প্লাবিং ট্রেড (Plumbing Trade)

**জুমিকা :** আধুনিক বিজ্ঞান ও স্বাস্থ্যসম্মত বিধি অনুযায়ী বসবাস করতে হলে আবাসিক, বাণিজ্যিক ভবনে পানি সরবরাহ করার জন্য এবং ব্যবহৃত ময়লা পানি ও অন্যান্য তরল বর্জ্য নিষ্কাশনের জন্য দালানের/ গৃহের পাইপ সাজ-সরঞ্জাম, ফিটিংস এবং অন্যান্য বস্তুপাতি স্থাপনের কলা কৌশলের নাম প্লাবিং। নিয়মিত পানি প্রবাহের সুব্যবস্থা এবং ব্যবহৃত ময়লা পানি নিষ্কাশন না করা হলে সামাজিক জীবন হয়ে উঠবে দুর্বিষহ। তাই এ সকল অসুবিধা থেকে প্লাবিং এর মাধ্যমে পরিদ্রাঘ পাওয়া যাবে।



চিত্র ১.১: প্লাবিং ট্রেড

**১.১ প্লাবিং :** প্লাবিং বলতে কোনো ভবনে, গৃহে, পাইপ, ফিকচার, ফিটিংস এবং অন্যান্য সাজ-সরঞ্জামের সাহায্যে পানি বা অন্য কোনো তরল প্রবাহী সরবরাহে ব্যবহৃত করা। এক কথায় বলতে গেলে প্লাবিং বলতে বোঝার পানি বা তরল পদার্থ প্রবাহিত হওয়ার জন্য এবং ব্যবহৃত ময়লা পানি ও অন্যান্য তরল বর্জ্য পদার্থ নিষ্কাশনের জন্য ভবনে/আবাসনে পাইপ, ফিকচার, ফিটিংস ও অন্যান্য সাজ-সরঞ্জাম স্থাপনের কলা কৌশলই প্লাবিং।



চিত্র ১.২ : প্লাম্বিং

১.২

**প্লাম্বিং এভ পাইপ ফিটিংস এর ব্যবহার :**

বিজ্ঞানসম্ভবাবে স্বাস্থ্যবিধি অনুযায়ী উন্নত জীবন ধারনের জন্য পানির গুরুত্ব অপরিসীম। বিশুদ্ধ পানি স্বল্প সময়ে অঙ্গ ব্যয়ে জনসাধারণের নিকট সরবরাহ দেখন আবশ্যিক তেমনি ময়লা পানি ও তরল বর্জ্য নিষ্কাশন জনজীবনের জন্য তেমনিই প্রয়োজন। সরবরাহ পাইপ (Supply Pipe) পানি সরবরাহ করে এবং নির্গমণ পাইপ (Drainage Pipe) ব্যবহৃত ময়লা পানি নিষ্কাশিত করে।



চিত্র ১.৩ : পাইপ ফিটিংস এর ব্যবহার

গোসলখানা, রান্নাখানা, কলতলা, হাতখোড়া বেসিন ও কাগড় ধোয়ায় সকল ক্ষেত্রেই পানি ব্যবহৃত হয়। আর ব্যবহৃত হওয়ার পর নির্গত পানিকে সালেজ বলে। গোসলখানা, প্রস্তাবখানা ও গোসলখানা হতে যে ময়লা তরল আবর্জনা নির্গত হয় তাকেই সিউয়েজ বলে।

১.৩

**প্রাথিং সংস্থাপন :**

পানি সরবরাহ ও ব্যবহৃত পানি অন্যান্য তরল বর্জ্য পদার্থ নিষ্কাশনের জন্য দালানে/গৃহে বা অন্যান্য ভবনাদিতে যে সমস্ত পাইপ ফিটিংস ও অন্যান্য সাজ-সরঞ্জামাদি ব্যবহৃত হয়ে সেগুলোকে ঘৰায়থভাবে স্থাপন কৱাকে প্রাথিং সংস্থাপন বলে।



চিত্র ১.৪ : প্রাথিং সংস্থাপন

১.৪

**প্রাথার :**

প্রাথিং যন্ত্রপাতির সাহায্যে সে ব্যক্তি প্রাথিং সিস্টেমের যাবতীয় কাজ ঘেমন- বিভিন্ন পানি সরবরাহ, তরল ময়লা পানি ও মলমূত্র নিষ্কাশন, পাইপ ফিটিংস ফিকচার স্থাপনসহ ইত্যাদি কাজ সুষ্ঠুভাবে কৱতে গারে তাকে প্রাথার বলে।



চিত্র ১.৫ : প্রাথার

**প্রাথিং সংস্থাপনকে তিন ভাগে ভাগ কৱা হয়।**

- (ক) সরবরাহ পদ্ধতি (Supply system).
- (খ) ফিকচার পদ্ধতি (Fixture system).
- (গ) নিষ্কাশন পদ্ধতি (Drainage system).
- (ক) সরবরাহ পদ্ধতি (Supply system)

সব রকমের যোগান পাইপ এর অঙ্গৰূপ। রাস্তার প্রধান পাইপ হতে পানি সংগ্রহ কৱে গৃহে বা দালানে নেওয়া হয় এবং ব্যবহারের বিভিন্ন ক্ষেত্ৰে অৰ্ধাং টয়লেট, রান্নাঘৰ, গোসলখানা, শুয়াস বেসিন প্ৰভৃতি জাগৰণয় সংযোগ দেওয়া হয়।



চিত্র ১.৬ : সরবরাহ পদ্ধতি

#### (খ) ফিকচার পদ্ধতি (Fixture system)

পানি ব্যবহারকারীদের সুবিধার্থে এবং সুষ্ঠু ব্যবহারের জন্য পানির পাইপের সাথে ওয়াস বেসিন, ওয়াটার ক্লোসেট সিংক, বাথটাব, লাঞ্জ ট্রে, ইউরিনাল ইত্যাদি ফিকচারে ব্যবহার করা হয়।



চিত্র ১.৭ : ফিকচার পদ্ধতি

#### (গ) নিষ্কাশন পদ্ধতি (Drainage system)

বিভিন্ন ফিকচার হতে ব্যবহৃত যত্নলা পানি, মলমৃত্ত, রান্নাঘর ও গোসলধানায় ব্যবহৃত পানি নিষ্কাশন পাইপের মাধ্যমে সিউয়ার পাইপে পৌছানোর পদ্ধতিকে নিষ্কাশন বা ড্রেনেজ সিস্টেম বলে। সর্বেল স্ট্যাক, ওয়েস্ট পাইপ এবং ড্রেন পাইপের সাহায্যে ড্রেনেজ সিস্টেম তরল বর্জ্য ও যত্নলা পানি নিষ্কাশন হয়।



চিত্র ১.৮ : ড্রেনেজ সিস্টেম

## প্রশ্নমালা-১

### **অতি সংক্ষিপ্ত প্রশ্ন**

১. প্রার্থিৎ কী ?
২. প্রার্থির কাকে বলে ?
৩. নির্গমণ পাইপের কাজ কী ?
৪. সিউয়েজ কাকে বলে ?
৫. সালেজ কাকে বলে ?
৬. তরল বর্জ্য ও ময়লা পানি কীভাবে নিষ্কাশন হয়?

### **সংক্ষিপ্ত প্রশ্ন**

১. প্রার্থিৎ বলতে কী বোঝায়?
২. প্রার্থির বলতে কী বোঝায়?
৩. পাইপ ফিটিং বলতে কী বোঝায়?
৪. প্রার্থিৎ সংস্থাপন বলতে কী বোঝায়?
৫. ড্রেনেজ সিস্টেম বলতে কী বোঝায়?
৬. প্রার্থিৎ সংস্থাপনকে কী কী ভাগে ভাগ করা হয়?

### **রচনামূলক প্রশ্ন**

১. প্রার্থিৎ সিস্টেমে ফিটিংস-এর প্রয়োজনীয়তা উল্লেখ কর।
২. প্রার্থিৎ ফিটিংস-এর ব্যবহারিক ক্ষেত্রগুলো উল্লেখ কর।
৩. প্রার্থিৎ ফিটিংস-এর কার্যপ্রণালি উল্লেখ কর।
৪. প্রার্থিৎ ড্রেনেজ সিস্টেম-এর সংক্ষিপ্ত বর্ণনা দাও।
৫. প্রার্থিৎ সংস্থাপন-এর শ্রেণিবিভাগ বিবৃত কর।
৬. প্রার্থির-এর কার্যপদ্ধতি উল্লেখ কর।

## অধ্যায় : ২

# প্লাবিং যন্ত্রপাতি (Plumbing Tools)

**কালিকা :** প্লাবিং যন্ত্রপাতির সাহায্যে যে বৃক্ষ সুষ্ঠুভাবে প্লাবিং সিস্টেমের যাবতীয় সংস্থাপন, মেরামত কাজ সম্পাদন করতে পারে তাকে প্লাবার বা পাইপ নিয়ন্ত্রণ বলে। বিকল্প পানি সদরদরাহু, কল্পন মরলা পানি ও মঙ্গলমুদ্রা নিষ্কাশনের নিয়ন্ত্রণ যাবতীয় পাইপ কিটিল, ফিকচার স্লাগন ও মেরামত প্লাবিং কাজের অতিরুচি। প্লাবিং সহজে ব্যবহৃত সচল চার্খা, ব্রেক্যাবেক্যেক্যা ও থেরোলজীর মেরামত করা একজন প্লাবারের দায়িত্ব।

### ২.১ যন্ত্রপাতির মৌল :

প্লাবিং কাজের অন্য প্লাবারগুলি বেসকল যন্ত্রপাতি ব্যবহার করে থাকেন তাদেরকে প্লাবিং টুলস বলে।

প্লাবিং টুলস এর একটি তালিকা নিম্নে দেওয়া হলো।

#### ১. পরিমাপক যন্ত্রপাতি (Measuring Tools)

বেসব যন্ত্র বা ডিভাইস কোন বস্তু বা যন্ত্রাংশের মাপ এবং ঘনে ব্যবহার হয়, তাদেরকে পরিমাপক যন্ত্র বা মেজারিং টুলস বা ইন্কুন্সট বলে। যেমন স্টিল রুল, ভার্নিয়ার ক্যালিপার, বিকেল প্রটেক্টর, মাইক্রোমিটার, স্লাইড ক্যালিপার ইত্যাদি।

পরিমাপক যন্ত্র প্রাথমিকভাবে দুই প্রকারের হয়ে থাকে। যেমন-

##### ১. অভ্যন্তর পরিমাপক যন্ত্র (Direct Measuring Tool)

##### ২. পরোক্ষ পরিমাপক যন্ত্র (Indirect Measuring Tool)

#### অভ্যন্তর পরিমাপক যন্ত্র (Direct Measuring Tool)

বেস পরিমাপক যন্ত্রের সাহায্যে কোন বস্তু, যন্ত্রাংশের পরিমাণ সরাসরি অঙ্ক করা হয়ে তাকে অভ্যন্তর পরিমাপক যন্ত্র বলে। যেমন- স্টিল রুল, ভার্নিয়ার ক্যালিপার, মাইক্রোমিটার ইত্যাদি।



চিত্র: ২.১ অভ্যন্তর পরিমাপক যন্ত্র

#### পরোক্ষ পরিমাপক যন্ত্র (Indirect Measuring Tool) :

বেস পরিমাপক যন্ত্রের সাহায্যে বস্তুর মাপ সরাসরি ধর্ষণকৰা সম্ভব হয় না, উপর অন্য একটি অভ্যন্তর পরিমাপক যন্ত্রের সাহায্যে নিষেক হয়, তাকে পরোক্ষ পরিমাপক যন্ত্র বলে। যেমন- ক্যালিপার, ডিভাইস, ট্রামেল, ইত্যাদি। এখানে আউট সাইড ক্যালিপার নিয়ে কোন বস্তুর বাইরের মাপ নিয়ে মাপাটির পাঁচ স্টিল রুলে স্থানান্তরিত করে বলা যাবে। এখানে স্টিল রুল প্রত্যক্ষ পরিমাপক যন্ত্রের কাজ করে।



চিত্র: ২.২ পরোক্ষ পরিমাণক যন্ত্র

প্রাথারের সচরাচর ব্যবহৃত সাধারণ টুলস: নিম্নে প্রাথিং কার্যে একজন প্রাথারের সচরাচর ব্যবহৃত সাধারণ টুলসমূহের নাম চিহ্নিত আছে-

#### (ক) ফুট রুল (Foot Rule)



চিত্র ২.১ : ফুট রুল

#### (খ) মেটাল টেপ (Metallic Tape)



চিত্র ২.২ : মেটাল টেপ

#### (গ) ক্যালিপার-আউট সাইট, ইনসাইট (Calliper)



ইনসাইট



আউট সাইট

চিত্র ২.৩ : ক্যালিপার

## ২. লেভেলিং যন্ত্রগতি (Levelling Tools)

যেসব যন্ত্র বা ডিভাইস কোন বস্তু বা যন্ত্রাংশের লেভেল পরিষ্কার এবং স্থিতিশীল রয়, তাদেরকে লেভেল পরিষ্কার যন্ত্র বা লেভেলিং টুলস বলে। যেমন স্প্রিট লেভেল, প্লাম্ব বব ইত্যাদি।

নিচে প্রাথমিক কার্যে একজন প্রাথমিক সচরাচর ব্যবহৃত লেভেলিং টুলসমূহের নাম চিহ্নিত হলো-

### (ক) স্প্রিট লেভেল (Spirit Level)



চিত্র ২.৪ : স্প্রিট লেভেল

### (খ) প্লাম্ব বব (Plumb Bob)



চিত্র ২.৫ : প্লাম্ব বব

### (গ) ট্রাইকোরাউন (Try Square)



চিত্র ২.৬ : ট্রাইকোরাউন

### ৩. কাটার বস্তুগাঁথি বা কাটিং টুলস (Cutting Tools)

ধাতব পাইপ বা শিল্পে যে সকল হস্তচালিত যন্ত্রের সাহায্যে কেটে খণ্ডিত করাসহ বিভিন্ন আকৃতিতে কাটা হয় তাদেরকে কাটিং টুলস (Cutting tools) বা কর্তৃত বস্তু বলে। যেমন পাইপ কাটার, হ্যাকস ইত্যাদি।

কাটিং টুলস প্রধানত দুই ধরার - যথা-

১. সিঙেল পয়েন্ট কাটিং টুল (Single Point Cutting Tool)
২. মাল্টি পয়েন্ট কাটিং টুল (Multi Point Cutting Tool)

নিম্নে প্রাথমিক কার্যে একজন প্রাথমিকের সচরাচর ব্যবহৃত কাটিং টুলসমূহের নাম চিহ্নিত কৃত হলো-

(ক) পাইপ কাটার (Pipe Cutter)



চিত্র ২.৭ : পাইপ কাটার

(খ) হ্যাকস (Hack Saw)



চিত্র ২.৮ : হ্যাকস

(গ) চিজেল (Chisel)



চিত্র ২.৯ : চিজেল

## (ঘ) প্যাড 'স' (Pad Saw)



চিত্র ২.১০ : প্যাড 'স'

## (ঙ) হ্যান্ড ডাই স্টক (Hand die Stock)



চিত্র ২.১১ : হ্যান্ড ডাই স্টক

## ৪. ছিদ্র করার যন্ত্রপাতি বা বোরিং টুল (Boring Tools)

যেসব যন্ত্র বা ডিভাইস কোন বস্তু বা যত্নাংশের বোরিং কার্যে ব্যবহার হয়, তাদেরকে ছিদ্র করার যন্ত্রপাতি বা বোরিং টুল বলে। যেমন পাঞ্চ, হ্যান্ড ড্রিল ইত্যাদি।

নিম্নে প্রার্থিৎ কার্যে একজন গোমারের সচরাচর ব্যবহার্য বোরিং টুলসমূহের নাম চিত্রসহ প্রদত্ত হলো-

## (ক) পাঞ্চ (Punch)



চিত্র ২.১২ : পাঞ্চ

## (খ) হ্যান্ড ড্রিল (Hand drill)



চিত্র ২.১৩ : হ্যান্ড রেঞ্জিল

(গ) র্যাচেট ব্রেস (Ratchet Brace)



চিত্র ২.১৪ : র্যাচেট ব্রেস

#### ৫. সাহায্যকারী যন্ত্রপাতি (Helping Tools)

যেসব যন্ত্র বা ডিভাইস কোন বস্তু বা যন্ত্রাংশের নানাবিধি কার্যে সহায়ক যন্ত্রপাতি হিসেবে ব্যবহার করা হয়, তাদেরকে সাহায্যকারী যন্ত্রপাতি বা হেল্পিং টুলস বলে। যেমন পাইপ ভাইস, পাইপ রেঞ্চ ইত্যাদি।

নিম্নে প্রাথমিক কার্যে একজন প্রামাণের সচরাচর ব্যবহৃত বোরিং টুলসসমূহের নাম চিত্রসহ প্রদত্ত হলো-

(ক) পাইপ ভাইস (Pipe vice)



চিত্র ২.১৫ : পাইপ ভাইস

(খ) পাইপ রেঞ্চ (Pipe wrench)



চিত্র ২.১৬ : পাইপ রেঞ্জ

(গ) স্প্যানার (Spanner)



চিত্র ২.১৭ : স্প্যানার

(ঘ) সি ক্ল্যাম্প (C-Clamp)



চিত্র ২.১৮ : সি ক্ল্যাম্প

(ঙ) ট্যাপ (Tape)



চিত্র ২.১৯ : ট্যাপ

## (চ) হাতুড়ি (Hammer)



চিত্র ২.১৯ : হাতুড়ি

## (ছ) ফ্লাইভার (Screw driver)



চিত্র ২.২০ : ফ্লাইভার

## (ঢ) রিমার (Reamer)



চিত্র ২.২১ : রিমার

## (ৰ) এলেন কী (Allen key)



চিত্র ২.২২ : এলেন কী

## ২.৭ পরিয়াপ্তির ব্যবহার :

পরিয়াপ্তির ব্যবহার পরিয়াপ্ত করা হয়। ছেটিখাটি সোজা আপ মেজেরা। সোলকার বস্তুর তেতুরে ও বাইরের বাস পরিয়াপ্ত করার জন্য লেজেলিং বস্তুর সাহায্যে কেবল নিচু সমাতৃপালকরণ, সমকোণ ঝাপন, পোধুনীর কাজের অনুমুদিত পরীক্ষাকরণ।

কাটার যন্ত্র ঘরা নিদৃষ্ট পরিমাপে পাইপ কাটা, গাঁথুনিতে গর্ত করার জন্য কাটার যন্ত্র ব্যবহার করা হয়। বিভিন্ন প্রকারের বস্তুকে ছিন্দ করার জন্য, বিন্দু নির্ণয়ের এবং পাইপ লাইন ছিন্দ করার কাজে সাধারণত ছিন্দকারী যন্ত্রপাতি ব্যবহার করা হয়। এছাড়া বিভিন্ন প্রকার সাহায্যকারী যন্ত্র পাইপ আটকানোর, প্যাচ কাটা, পেরেক, নাটকে খোলা ও লাগানো কাজে যন্ত্র ব্যবহার করা হয়।

### প্রশ্নমালা-২

#### অতি সংক্ষিপ্ত প্রশ্ন

১. পাইপ মিঞ্চি কাকে বলে?
২. প্রাঘারের দায়িত্ব কী?
৩. পরিমাপক টুলস কাকে বলে?
৪. পরিমাপক যন্ত্র কী কী ভাগে ভাগ করা যায়?
৫. তিনটি কাটিং টুলসের নাম লেখ।

#### সংক্ষিপ্ত প্রশ্ন

১. প্লান্সিং যন্ত্রপাতি বলতে কী বোঝায়।
২. পাঁচটি প্লান্সিং যন্ত্রপাতির নাম লেখ।
৩. পরিমাপক যন্ত্র বলতে কী বোঝায়?
৪. কাটিং যন্ত্র বলতে কী বোঝায়?
৫. বোরিং যন্ত্র বলতে কী বোঝায়?
৬. লেডেলিং যন্ত্র বলতে কী বোঝায়?
৭. হেলপিং যন্ত্র বলতে কী বোঝায়?

#### রচনামূলক প্রশ্ন

১. দশটি প্লান্সিং যন্ত্রের নাম লেখ।
২. যেকোন একটি পরিমাপক যন্ত্রের চিত্রসহ বর্ণনা দাও।
৩. যেকোন একটি বোরিং যন্ত্রের চিত্রসহ বর্ণনা দাও।
৪. যেকোন একটি লেডেলিং যন্ত্রের চিত্রসহ বর্ণনা দাও।
৫. যেকোন একটি হেলপিং যন্ত্রের চিত্রসহ বর্ণনা দাও।

অধ্যায় : ৩

## প্লাবিং ও পাইপ ফিটিং কাজে ব্যবহৃত মেশিন (Useable Machine of Plumbing & Pipe Fitting Works)

### ৩.১ মেশিনের তালিকা প্রস্তুতি

| নং | বিভিন্ন মেশিন-এর নাম            | নং | বিভিন্ন প্রকার যন্ত্রপাতির নাম |
|----|---------------------------------|----|--------------------------------|
| ০১ | পিলার ড্রিল মেশিন               | ০১ | ফুট/স্টিল রুল                  |
| ০২ | বেস ড্রিল মেশিন                 | ০২ | ক্রাইবার                       |
| ০৩ | হাইড্রোলিক পাইপ বেঙ্গিং মেশিন   | ০৩ | ট্রাইক্সয়ার                   |
| ০৪ | ইউনিভার্সেল পাইপ বেঙ্গিং মেশিন  | ০৪ | হ্যাক্স                        |
| ০৫ | গ্রাভিং মেশিন                   | ০৫ | ফাইল                           |
| ০৬ | অটোমেটিক পাইপ থ্রেডিং মেশিন     | ০৬ | চিজেল                          |
| ০৭ | শিট কাটার মেশিন                 | ০৭ | হ্যামার                        |
| ০৮ | ইলেকট্রিক আর্ক ওয়েল্ডিং মেশিন  | ০৮ | পাইপ রেঞ্জ                     |
| ০৯ | গ্যাস ওয়েল্ডিং মেশিন           | ০৯ | মাধ্যিক রেঞ্জ                  |
| ১০ | স্পট ওয়েল্ডিং সেট              | ১০ | স্লাইড রেঞ্জ                   |
| ১১ | ইলেকট্রিক হ্যান্ড ড্রিল মেশিন   | ১১ | চেইন পাইপ টং                   |
| ১২ | ড্রেন ক্লিনার মেশিন             | ১২ | ডাই স্টক                       |
| ১৩ | বেস্ট ড্রিল মেশিন               | ১৩ | পাইপ রিমার                     |
| ১৪ | ইলেকট্রিক হ্যান্ড থ্রাভিং মেশিন | ১৪ | পাইপ কাটার                     |
| ১৫ | অটো পাইপ বেঙ্গিং মেশিন          | ১৫ | ক্লু ড্রাইভার                  |
| ১৬ | ওয়াটার প্রেসার মেশিন           | ১৬ | ওয়েল ক্যান                    |
| ১৭ | মিগ ওয়েল্ডিং মেশিন             | ১৭ | সেফটি গগলস                     |
| ১৮ | সিমলেস ওয়েল্ডিং মেশিন          | ১৮ | সোল্ডারিং আয়রন                |
| ১৯ | বয়লার                          | ১৯ | ড্রো-ল্যাম্প                   |
| ২০ | টিগ ওয়েল্ডিং মেশিন             | ২০ | স্পিরিট লেভেল                  |
| ২১ | ওয়াটার হিটার (গ্যাস ও বিদ্যুৎ) | ২১ | প্লাষার ওলন                    |

| বিভিন্ন ভাইস |                    | বিভিন্ন থকার যন্ত্রপাতির নাম |                    |
|--------------|--------------------|------------------------------|--------------------|
| ০১           | বেঁক ভাইস          | ২২                           | ছেলি               |
| ০২           | পাইপ ভাইস          | ২৩                           | আয়ার ব্রাস        |
| ০৩           | চেইন পাইপ ভাইস     | ২৪                           | ড্রিল বিট          |
| ০৪           | পোর্টেবল পাইপ ভাইস | ২৫                           | কার্বাইট ড্রিল বিট |
| ০৫           | মেশিন ভাইস         | ২৬                           | স্লাইড ক্যালিপার্স |
| ০৬           | হ্যান্ড ভাইস       | ২৭                           | ক্লু গেজ           |
|              |                    | ২৮                           | ডাই ও ট্যাপ        |
|              |                    | ২৯                           | সিল টেপ            |
|              |                    | ৩০                           | ফিল্ড টেপ          |

নিম্ন প্রাথিং ও পাইপ ফিটিং কাজে ব্যবহৃত প্রধান কয়েকটি মেশিন টুলস ও যন্ত্রপাতির সংক্ষিপ্ত পরিচয় উল্লেখ করা হলো-

#### ড্রিল মেশিন (Drill Machine) :

ড্রিল করতে যে মেশিন ব্যবহৃত হয় তাকে ড্রিলিং মেশিন বা ড্রিল মেশিন অথবা ড্রিল প্রেস বলা হয়। ড্রিলিং করার সময় বিভিন্ন বস্তুর উপর বিভিন্ন মূর্শন হার (আর.পি.এম) প্রয়োগ করতে হয় এবং ড্রিলিং কার্য সম্পর্ক করতে ফিল্ড ছাইলকে আন্তে আন্তে নিচের দিকে নামাতে হয়। ফলে অল্প অল্প করে ধাতু কেটে ড্রিল বিট ড্রিলিং কার্য সম্পর্ক করে। ড্রিলিং প্রক্রিয়ায় ধাতুর মধ্যে গর্ত বা ছিদ্র তৈরি হয়। ড্রিলিং এর সময় ড্রিলকে ঠাণ্ডা রাখতে কুল্যান্ট ব্যবহারের প্রয়োজন হয়।

এসব মেশিনের উৎপাদন ক্ষমতা বেশি অর্ধাং অতি সহজেই কম পরিশ্রমে নিশ্চুল ভাবে অঙ্গসময়ে বেশি ছিদ্র বা গর্ত করা সম্ভব হয়। বিভিন্ন বিষয় বিবেচনা করে অনেক প্রকারের ড্রিলিং মেশিন তৈরি করা হয়ে থাকে।

প্রাথিং ও পাইপ ফিটিং কাজে নিম্নলিখিত ড্রিলিং মেশিনগুলো ব্যবহৃত হয়ে থাকে-

- (১) হ্যান্ড ড্রিলিং মেশিন (Hand drilling machine)
- (২) ব্ৰেস্ট ড্রিলিং মেশিন (Breast drilling machine)
- (৩) রাচেট ব্ৰেস ড্রিলিং মেশিন (Rachet brace drilling machine)
- (৪) পোর্টেবল ড্রিলিং মেশিন (Portable drilling machine)

উল্লিখিত ড্রিলিং মেশিনসমূহের মধ্যে ১ খেকে ৩ ক্রমিক নম্বরের মেশিনগুলোতে মানুষের শারীরিক শক্তির সাহায্যে ড্রিল বিটকে ঘূরাতে হয় এবং অবশিষ্ট মেশিনটি বাহ্যিক শক্তি দ্বারা চালিত হয়।

#### (১) হ্যান্ড ড্রিলিং মেশিন (Hand drilling machine) :

এগুলো সাধারণ রিপেয়ার বা মেরামতের কাজে বেশি ব্যবহৃত হয়।

শিট জাতীয় পাতলা বস্তুর মধ্যে ছিদ্র করতে এটি বিশেষ উপযোগী। এই মেশিনে সাধারণত ৬ মি.মি. ব্যাস পর্যন্ত মাপের ড্রিল বিট ব্যবহৃত হয়ে থাকে। এই ড্রিলিং মেশিন হাতে ঘূরান হয় এবং স্থানান্তরে নিয়ে গিয়ে ব্যবহার করা চলে। এর উপরের দিকে কাঠের হাতল থাকে। হাতলকে এক হাতে ধরে অন্য হাতে ‘বিভেল গিয়ার’ কে ঘূরালে পিনিয়নটি ঘূরে। পিনিয়ন সংযুক্ত স্পিন্ডলটি ঘূরায়। স্পিন্ডলটির নিচে দিকে ‘ড্রিল চাক’ মুক্ত থাকে। এর মধ্যে ‘মেটাইট শ্যাক’ বিশিষ্ট ড্রিল বিট আটকে ছিদ্র করা হয়ে থাকে।



চিত্র : ৩.১ হ্যান্ড ড্রিলিং মেশিন

### (২) ব্রেস্ট ড্রিলিং মেশিন (Breast drilling machine) :

এটাকেও হাতে ঘুরান এবং যে কোন স্থানে নিয়ে গিয়ে ব্যবহার করা চলে। এর গঠন এবং চালন ব্যবস্থা মূলত: 'হ্যান্ড ড্রিল' এর ন্যায়। যাত্র প্রভেদ এই যে, এর উপরের দিকে কাঠের হাতলের পরিবর্তে একটা প্রেট আছে, যাকে বলে ব্রেস্ট প্রেট। ড্রিল করার সময় ব্রেস্ট প্রেট এর উপর বুক দিয়ে চাপ দিতে হয় এবং বিস্তৈ শিয়াবেটিকে ঘুরালে ড্রিল ঘুরে এবং ছিদ্র বা গর্ত হয়। হ্যান্ড ড্রিলিং মেশিনের তুলনায় ব্রেস্ট ড্রিলিং মেশিন অপেক্ষাকৃত ভারী এবং বড় হয়। এটাও হালকা জাতীয় কাজে অর্ধাংশি শিট জাতীয় পাতলা ধাতু বা নরম ধাতু ছিদ্র করতে ব্যবহৃত হয়। তবে তুলামূলকভাবে এর স্বারা বড় ছিদ্র করা সম্ভব হয়।



চিত্র : ৩.২ ব্রেস্ট ড্রিলিং মেশিন

### (৩) র্যাচেট ব্রেস ড্রিলিং মেশিন (Rachet brace drilling machine) :

এটাকে সহজে এক স্থান থেকে অন্যস্থানে নেওয়া যায় এবং ঘুরানোর জন্য বাহ্যিক শক্তির প্রয়োজন হয় না। নাট, বোল্ট, ক্ল্যাম্প ইত্যাদির সাহায্যে এই মেশিনকে সহজেই যে কোন স্থানে অস্থায়ীভাবে আবক্ষ করে যে কোন অবস্থাতে এর দ্বারা ছিদ্র করা সম্ভব হয়। তবে প্রধান অস্বিধা এই যে, এই মেশিনে ড্রিলকে বেশি বেগে ঘুরানো যায় না বলে ছিদ্র করতে সময় বেশি লাগে। ছিদ্র করার জন্য র্যাচেট ব্রেসকে এমনভাবে আটকাতে হয় যাতে 'ফিড স্লু' এর শীর্ষ 'প্রেসার আর্ম' এর তলদেশে অবস্থিত গোলকার ছিদ্রের মধ্যে এবং ড্রিল বিটের মুখ করণীয় ছিদ্রের কেন্দ্রের ঠিক উপরে থাকে। 'প্রেসার আর্ম' কে প্রয়োজনীয় উচ্চতায় 'সেট স্লু'র সাহায্যে আটকানো যায়।



চিত্র : ৩.৩ র্যাচেট ব্রেস ড্রিলিং মেশিন

র্যাচেটের সঙ্গে সাগানো হাতলটা ক্রমাগত সামনে ও পিছনে ড্রিলটা আন্তে আন্তে ঘুরে এবং মাল কাটে। ড্রিলে ফিড দিতে হলে ফিড স্লু-কে আন্তে আন্তে ধোরাতে হয়।

### (৪) পোর্টেবল ড্রিলিং মেশিন (Portable drilling machine) :

পোর্টেবল বলতে হাত দ্বারা বহন যোগ্য বুবায়। যে ড্রিলিং মেশিন হাত দিয়ে একস্থান থেকে অন্যস্থানে বহন করা যায় এবং বৈদ্যুতিক শক্তি দ্বারা চালিত হয় তাকে পোর্টেবল ড্রিলিং মেশিন বলে। এই মেশিন সর্বোচ্চ, ১৩ মি.মি. ব্যাস মাপের ড্রিল বিট ধারণ করতে পারে। যে সমস্ত কাজ সুবিধাজনকভাবে স্ট্যান্ডার্ড ড্রিলিং মেশিনে ড্রিল করা যায় না তা ড্রিল করতে পোর্টেবল ড্রিলিং মেশিন ব্যবহৃত হয়। ইলেক্ট্রিশিয়ান কার্পেন্টার, শিট মেটাল ওয়ার্কার ও জেলারেল মেকানিকরা পোর্টেবল ড্রিলিং মেশিন ব্যবহার করে থাকে।



চিত্র : ৩.৪ পোর্টেবল ড্রিলিং মেশিন

### গ্রাইডিং মেশিন (Grinding Machine) :

গ্রাইডিং মেশিন হলো বৈদ্যুতিক শক্তি চালিত এক প্রকার গ্রাইডার, যা বিভিন্ন ওয়ার্কশপে একটা জনপ্রিয় বেসিনের উপর স্থাপন করা থাকে। এটা ফ্রোর বা টেবিল মাউন্টেড অথবা ক্যাস্টের এটা হাইল সহ প্যাডেজ্টাল ফ্যানের মতো একটি বেইজ এ মাউন্টেড করা থাকে। ক্যাস্টেরের সাহায্যে এক স্থান হতে অন্য স্থানে নেওয়া রায়।

### বিভিন্ন ধর্মাবল গ্রাইডিং মেশিন (Differenet Types of Grinding Machine) :

প্রাথিং ও পাইপ কিটিং কাজে ব্যবহৃত গ্রাইডিং মেশিন এর নাম নিম্নে ধর্মস্থ হলো-

- ১। পোর্টেবল গ্রাইডার
- ২। বেসিন গ্রাইডার



চিত্র : ৩.৫ পোর্টেবল গ্রাইডার



চিত্র : ৩.৬ গ্রাইডিং মেশিন

এছাড়াও বড় বড় ওয়ার্কশপ বা কারখানায় নিম্নলিখিত গ্রাইডিং মেশিনও ব্যবহৃত হতে দেখা যাব-

**সারফেস গ্রাইডার:** সারফেস গ্রাইডিং মেশিন উচ্চ পঞ্জিতে মূরার কলে গ্রাইডিং হাইল দ্বারা উপরিতল গ্রাইডিং হয়। মিলিং মেশিন, শেপিং মেশিন ও প্রেলার দ্বারা সমতল কিনিশিং করা আগেক্ষা সহজভাবে ও উচ্চ নিম্নলভাবে ও উচ্চ নিম্নলভাবে সমতল উৎপন্ন করা যাব। এই কারণে মিলিং মেশিন, শেপিং ও প্রেলার দ্বারা মাঝ কাট সম্পর্ক তল সারফেস গ্রাইডিং মেশিন দ্বারা কিনিশিং কর হয়। সারফেস গ্রাইডারের গঠন মিলিং মেশিনের ন্যায় থাকায় মিলিং কাটারের পরিবর্তে গ্রাইডিং হাইল ব্যবহার করা হয়।

### পাইপ বেন্ডিং মেশিন :

পাইপকে বেন্ড করার কাজে ব্যবহৃত হয়।



চিত্র : ৩.৭ পাইপ বেন্ডিং মেশিন

### পাইপ রেঞ্জ (Pipe Wrench):

পাইপকে সংযোজন করা বা খোলার সময় এ রেঞ্জটো ব্যবহার করা হয় বলে এদেরক পাইপ রেঞ্জ বলে। নিম্নে কয়েকটি পাইপ রেঞ্জের বর্ণনা দেওয়া হলো-



চিত্র : ৩.৮ পাইপ রেঞ্জ

#### ১) স্টিলসন প্যাটার্ন পাইপ রেঞ্জ :

স্টাইড রেঞ্জ নীতিতে তৈরি। এর দুইটি জি-তেই দাঁত কাটা থাকে। এ দাঁত থাকার জন্য সিলিঙ্ক্রিক্যাল কোন বস্তুকে দৃঢ়ভাবে ধরে রাখতে পারে। পাইপের উপরিষ্ঠ ইউনিয়ন, সকেট খোলার জন্য এ রেঞ্জ খুব উপযোগী। পাইপ থেকে সকেট বা ইউনিয়ন খোলার জন্য দুইটি রেঞ্জ এক সঙ্গে ব্যবহার করতে হয়।

#### ২) এ্যাডজাস্টেবল পাইপ রেঞ্জ:

এটিও স্টাইড রেঞ্জের নীতিতে তৈরি। তবে একে স্টাইড করার জন্য কোন প্রকার নাট ব্যবহার করা হয় না। জি দুইটি একটি পিন দিয়ে সংযুক্ত করা থাকে। একটি জি এর মাঝে অংশে স্লট কাটা থাকে। এ স্লটের মধ্যে দিয়ে সংযুক্তকারী পিন সহজেই ঘাতাঘাত করতে পারে এবং জি দুইটিকে যে কোন দূরত্বে এ্যাডজাস্ট করা যায়।

#### ৩) চেইন পাইপ রেঞ্জ:

বড় ব্যাসের পাইপকে দৃঢ়ভাবে ধারণ করার জন্য এ রেঞ্জ ব্যবহার করা হয়। নিম্নে একটি চেইন পাইপ রেঞ্জকে দেখানো হলো।

A= হাতল

B= অ আকৃতির বিশিষ্ট এবং উপরিভাগে দোত কাটা থাকে ।  
 C= শিকল ধারণ করার জন্য কাঁকা অংশ  
 D= শিকল এর একটি পাত পিন দিয়ে অ এর সঙ্গে সংযুক্ত থাকে ।

#### ব্যবহার পদ্ধতি:

প্রথমে অ কে পাইপের উপর ঝাপন করে শিকল দিয়ে পাইপকে অঙ্গিয়ে শিকলের খোলাথাও C অংশের যথে আবক্ষ করে নিতে হয় । পোরে অ এর দোত ঘাতে পাইপের উপরিভাগকে কাঁকড়িয়ে ধরতে পারে এর জন্য হাতলকে একটু উপরে উত্তোলন করে তামাপর তাঙ্গের চাপ দিয়ে পাইপকে সুস্থানে রাখ ।



চিত্র: ৩.৯ টেইল পাইপ রেফ

#### শ্রেত সিলিং ম্রব্যাদি (Thread Sealing materials):

পাইপকে সংযোজন করার জন্য বিভিন্ন একার জোড়া ব্যবহার করা হয় । এ সব জোড়া দিয়ে ঘাতে ঘৰাহ লিক করতে না পারে এ জন্যে জোড়া হালে প্যাকিং মেওরার ব্যবহা রাখা হয় । যেসব ম্রব্য দিয়ে এ প্যাকিং মেওরা হয় তাদেরকে সিলিং ম্রব্য বলে । বিভিন্ন জোড়ার জন্য বিভিন্ন একার সিলিং ম্রব্য ব্যবহার করা হয়ে থাকে । যেসব ক্ষেত্রে পাইপসমূহকে ছু শ্রেত দিয়ে সংযুক্ত করা হয় সেসব ক্ষেত্রে সূতা বা পাটি বা সিলিং টেপ ইত্যাদি জড়িয়ে সিলিং কার্ড সম্পাদন করা হয়ে থাকে ।



চিত্র: ৩.১০ শ্রেত সিলিং ম্রব্যাদি

#### ৩.২ প্রাথিং ও পাইপ ফিল্ট কাজে মেশিনের ব্যবহার

প্রাথিং ও পাইপ ফিল্ট কাজে পাইপকে বিশিষ্ট কোণে বীকাসো, জোড়া মেওরা এবং শ্রেত কাটাৰ কাজে মেশিন ব্যবহার করা হয় ।



চিত্র: ৩.১১ প্লাষিং ও পাইপ ফিটিং কাজে মেশিনের ব্যবহার

### ৩.৩ মেশিনসমূহের যত্ন ও রক্ষণাবেক্ষণ

মেশিন চালুর পূর্বে মেশিন সম্পর্কে বিস্তারিত জেনে নিতে হবে এবং জরুরি প্রয়োজনে মেশিনটি কীভাবে বন্ধ করা যায় তাও জানা প্রয়োজন। নির্মাতা প্রতিষ্ঠানের নির্দেশ মোতাবেক মেশিনটিকে কার্যক্ষম পরিষ্কার ও পরিচ্ছন্ন রাখতে হবে। মেশিনে কাজ করার সময় নিরাপত্তা পোশাক অবশ্যই পরিধান করে নিতে হবে। ডাই সেট ঠিক মতো বসাতে হবে এবং প্রেতিং এর সময় যাতে পাইপ দৃঢ়ভাবে আটকানো থাকে সেজন্য ব্যবস্থা নিতে হবে। চালু অবস্থায় মেশিন পরিষ্কার বা ওয়েলিং করা উচিত নয়।

নিয়মিত মেশিন পরিষ্কার ও তেল দেওয়ার উপরও মেশিনের কার্যকারীতা ও স্থায়ীভুত্ত সম্পূর্ণভাবে নির্ভর করে। মেশিন নিয়মিত চালানো ও ওয়েলিং করা প্রয়োজন। এ ব্যাপারে নির্মাতা প্রতিষ্ঠানের নির্দেশমতো কাজ করতে হবে।

### প্রশ্নমালা-৩

#### অতি সংক্ষিঙ্গ প্রশ্ন

১. মেশিন চালুর পূর্বে কী জানতে হয়?
২. মেশিনের কার্যকারীতা ও স্থায়ীভুত্ত কী কী বিষয়ের উপর নির্ভর করে?
৩. মেশিনকে কিরূপে কার্যক্ষম ও পরিষ্কার-পরিচ্ছন্ন রাখতে হয়?
৪. কিরূপ অবস্থায় মেশিন পরিষ্কার বা ওয়েলিং করা উচিত নয়?

#### সংক্ষিঙ্গ প্রশ্ন

১. প্লাষিং ও পাইপ ফিটিং কাজে মেশিনের ব্যবহার দেখাও।
২. মেশিন চালনার ক্ষেত্রে জরুরি প্রয়োজনে কী কী বিষয় জানা প্রয়োজন।
৩. ওয়েলিং-এর কাজ কী?
৪. মেশিনে কাজ করার সময় কী কী সতর্কতা অবলম্বন করা উচিত?

#### রচনামূলক প্রশ্ন

১. প্লাষিং এবং পাইপ ফিটিং কাজে ব্যবহৃত মেশিনের তালিকা তৈরি কর।
২. ড্রিল মেশিন-এর কার্যক্রম বর্ণনা কর।
৩. পাইপ বেন্ডিং-এর কার্যক্রম বর্ণনা কর।
৪. ওয়েলিং-এর কার্যক্রম বর্ণনা কর।
৫. মেশিন-এর যত্ন ও রক্ষণাবেক্ষনবর্ণনা কর।

## অধ্যায় : ৪

# প্লাম্বিং ও পাইপ ফিটিং কাজে ব্যবহৃত নিরাপত্তা (Safety Precaution of Plumbing & Pipe Fitting Work)

### নিরাপত্তা বিধিসমূহ

যে বিধিগুলো পালনে দুর্ঘটনা হার অনেকাংশে কমিয়ে আনা যাব তাকে নিরাপত্তা বিধি বলে। শিল্প কারখানা, শপে বা ল্যাবরেটরিতে কাজের সময় প্রায়ই নানা রকম দুর্ঘটনা ঘটে থাকে। এসব দুর্ঘটনা বিভিন্ন কারণে ঘটে। যন্ত্রপাতি বা মেশিন সম্পর্কে শিক্ষার্থী বা কর্মীর সাঠিক জ্ঞানের অভাব, সাঠিক পক্ষতাত্ত্বিক কাজ না করা, ছুটিপূর্ণ যন্ত্রপাতি বা মেশিন ব্যবহার করা, কাজে অবনোয়োগী হওয়া, ব্যক্তিগত তুল সিদ্ধান্ত ইত্যাদি কারণে নানা রকম দুর্ঘটনা ঘটে থাকে।

এ সব দুর্ঘটনায় কর্মরত শিক্ষার্থী বা কর্মসহ যন্ত্রপাতির ও মেশিনের অনেক ক্ষতি হয়। এতে যন্ত্রপাতি বা মেশিন বিকল হওয়া বা শিক্ষার্থীর অজ্ঞানি হওয়া, পচুত্ব এবং অনেক সময় জীবনাশের ঘটনাও ঘটে থাকে। এরপে দুর্ঘটনা থেকে রেহাই গেতে হলে প্রতিটি শিক্ষার্থী বা কর্মীকে শপে বা কারখানায় কাজের সময় নিরাপত্তামূলক সতর্কতা অবলম্বন করা একান্ত প্রয়োজন। অতএব কার্যক্রিয় উৎপাদন বা লক্ষ্যে পৌছতে হলে নিরাপত্তা বিধিসমূহ অনুসীলন ও অনুকরণ করা উচিত।



চিত্র: ৪.১ নিরাপত্তামূলক সতর্কতা

### ৪.১ নিরাপত্তার প্রয়োজনীয়তা

শিল্প কারখানা বা শপে কাজ করার সময় অসাবধানতাবশত বা ছুটিপূর্ণ যন্ত্রপাতির কারণে প্রায়ই দুর্ঘটনা ঘটে থাকে। আর এ সকল দুর্ঘটনা হতে রেহাই গেতে নিরাপত্তা বিধির প্রয়োজন আছে। নিরাপত্তামূলক বিধি মেনে চললে অধিকাংশ দুর্ঘটনা এড়ানো যাব। এসব বিধি বা নিয়মকে সেফটি রুলস (Safety Rules) বা নিরাপত্তা বিধি বলে। নিরাপত্তা বিধি জানা ধাকলে দুর্ঘটনা প্রতিরোধ করা যাব এবং নিরাপদে ও নির্বিমে মেশিন বা যন্ত্রপাতি ব্যবহার করা যাব। সর্বোপরি উৎপাদনের লক্ষ্যমাত্রা অর্জনে পথ সুগম হয়।

### ৪.২ যন্ত্রপাতির বিপদজনক অবস্থাদি শনাক্তকরণ

কারখানায় কাজের সময় সাবধানতার সাথে যন্ত্রপাতি ব্যবহার করলে দুর্ঘটনা ঘটার সম্ভাবনা কম থাকে। সেজন্য কাজ শুরুর পূর্বে নিয়ন্ত্রিত ব্যবহৃদাদি প্রণয় করা উচিত-

১. যন্ত্রপাতি ব্যবহারের পূর্বেই এর ব্যবহার বিধি জানা প্রয়োজন।
২. ব্যবহার করার পূর্বে যন্ত্রপাতি ঠিক আছে কীনা দেখতে হবে।
৩. ডেঙ্গা, ভাঙ্গা, হাতলবিহীন বা টিলা হাতলযুক্ত যন্ত্রপাতি দিয়ে কাজ করা উচিত নয়।
৪. জব ভাইস ক্লাম্পে দৃঢ়ভাবে বেঁধে কাজ করা উচিত।
৫. যন্ত্রের হাতলে যেন তেলাঙ্গ দ্রব্য না লাগে সেদিকে লক্ষ রাখা উচিত।
৬. যন্ত্রপাতি কখনও এলামেলোভাবে রেখে কাজ করা উচিত নয়।

৭. যে বন্দের ব্যবহার প্রণালি জানা নেই সে যন্ত্র ব্যবহার করা উচিত নয়।
৮. টিলা পোশাক পরিধান করে এবং খালি পায়ে কাজ করা উচিত নয়।
৯. কাজের সময় কখনও অঘনোষোগী হওয়া উচিত নয়।
১০. কম আলো বা অক্ষকারে কাজ করা উচিত নয়।
১১. কাজের পথে প্রতিটি মেশিন ও যন্ত্রগাতি সঠিকভাবে পরিষ্কার করতে হবে।
১২. মাথাকে রক্ষার জন্য শক্ত প্লাস্টিক হেলমেট ব্যবহার করতে হবে।
১৩. চোখকে রক্ষার জন্য গগলস পরিধান করা উচিত।



চিত্র: ৪.২ বিগদজনক অবস্থাদি

#### ৪.৩ যন্ত্রগাতির বিগদযুক্ত অবস্থা শনাক্তকরণ

কারখানায় কাজের সময় উপর্যুক্ত যন্ত্রগাতি ব্যবহার করলে দুর্ঘটনা ঘটার সম্ভাবনা কম থাকে। সেজন্য কাজ শুরুর পূর্বে নিয়ন্ত্রিত বিগদযুক্ত অবস্থা শনাক্তকরণ করা উচিত-

১. কারখানায় কাজের জন্য যে মেশিন বা যন্ত্র উপর্যুক্ত সেই নির্দিষ্ট মেশিন বা যন্ত্র ব্যবহার করতে হবে।
২. অতিযুক্ত মেশিন বা যন্ত্রকে কার্ডোগার্ডী করে ব্যবহার করতে হবে।
৩. বিদ্যুৎ চালিত যন্ত্র বা মেশিন চালানার পূর্বে অবশ্যই বৈদ্যুতিক লাইন সঠিক আছে কৌনা বাচাই করতে হবে এবং এর পরিচালনার সঠিক পদ্ধতিগতে জানা আবশ্যিক।
৪. মূর্ণায়নশীল যন্ত্রের সাথে টুলস বা সরঞ্জাম সংযুক্ত থাকলে উহা সরিয়ে কাজ করতে হবে।



চিত্র: ৪.২ বিপদমুক্ত অবস্থা

### প্রশ্নমালা-৪

#### অতি সংক্ষিপ্ত প্রশ্ন

১. নিরাপত্তা বিধি কী?
২. চোখকে রক্ষার জন্য কী ব্যবস্থা গ্রহণ করা উচিত?
৩. মাথাকে রক্ষার জন্য কী ব্যবস্থা গ্রহণ করা উচিত?
৪. যত্নগাতি ব্যবহারে পূর্বে কী কী বিষয় জানা প্রয়োজন?

#### সংক্ষিপ্ত প্রশ্ন

১. নিরাপত্তা বলতে কী বোঝায়?
২. নিরাপত্তা বিধি কী?
৩. কী কী কারণে শপে দুর্ঘটনা ঘটে।
৪. দুর্ঘটনার সম্ভাব্য ক্ষতিগ্রস্ত কী কী?

#### রচনামূলক প্রশ্ন

১. নিরাপত্তার প্রয়োজনীয়তা বর্ণনা কর।
২. শপে কাজ করার সময় গৃহীত নিরাপত্তা ব্যবস্থা বর্ণনা কর।
৩. কী কী সতর্কতা অবলম্বন করলে দুর্ঘটনা থেকে বেঁচে থাকে পাওয়া যায়?
৪. কারখানার বিপদমুক্ত অবস্থাদি শনাক্ত কর।

## অধ্যায় : ৫

# পরিমাপক যন্ত্র

## (Measuring Tools)

প্রকৌশল কাজে সঠিক পরিমাপের গুরুত্ব ও প্রয়োজনীয়তা অপরিসীম। কারণ কোন জিনিস সঠিক মাপে তৈরি করা না হলে এই জিনিস কোন কাজে লাগেনা, ফলে প্রচুর আর্থিক ক্ষতির সম্ভাবনা দেখা দেয়। কোন জিনিস তৈরি করতে হলে প্রথমেই প্রয়োজন হয় মাপের এবং নকশা অনুসারে চিহ্নিত করা। মাপের কাজটা যত্নসহকারে নির্ভুলভাবে নেওয়া হলে পরবর্তী কাজটাও সুষ্ঠুভাবে সম্পন্ন করা যাবে। ফলে আর্থিক কোন অপচয় ঘটে না। পরিশ্রম করে লাগবে এবং তৈরি বস্তুটি সুন্দর ও মান সম্মত হবে। তাই পরিমাপের ব্যাপারে বিশেষভাবে সতর্ক থাকা বাঞ্ছনীয়।

### ৫.১ পরিমাপ যন্ত্রের শ্রেণিবিন্যাস

যেসব ডিভাইস কোন বন্ত বা যন্ত্রাংশের মাপ গ্রহণ বা মাপ পাঠ করার কাজে ব্যবহৃত হয় তাদেরকে পরিমাপক যন্ত্রপাতি বা মেজারিং টুলস বা ইনস্ট্রুমেন্ট বলে। যেমন : স্টিল রুল, ক্যালিপার্স, কমিনেশন সেট, মাইক্রোমিটার ইত্যাদি।

কোন বন্তের দৈর্ঘ্য পরিমাপ করার জন্য যে সকল পরিমাপ যন্ত্র ব্যবহার করা হয় তাদেরকে রেখিক পরিমাপক যন্ত্র (Linear Measuring Instrument) এবং কোন বন্তের কৈণিক পরিমাপ গ্রহণ করতে যেসব যন্ত্রপাতি ব্যবহৃত হয় তাদেরকে কৈণিক পরিমাপক যন্ত্র (Angular Measuring Instrument) বলে। রেখিক ও কৈণিক এবং উভয় প্রকার মাপের যন্ত্রপাতিগুলোকে সূক্ষ্মতার উপর ভিত্তি করে দুইভাগে ভাগ করা যায়। যেমন :

- (১) অসূক্ষ্ম পরিমাপক যন্ত্রপাতি (Non-Precision Measuring Instrument)
- (২) সূক্ষ্ম পরিমাপক যন্ত্রপাতি (Precision Measuring Instrument)

#### ১. অসূক্ষ্ম পরিমাপক যন্ত্রপাতি :

যেসব পরিমাপক যন্ত্রপাতির সাহায্যে সর্বনিম্ন রেখিক মাপ ০.৫ মিমি. এবং সর্বনিম্ন কৈণিক মাপ ১ ডিগ্রি সূক্ষ্মতায় গ্রহণ করা বা নিরূপণ করা যায় তাদেরকে অসূক্ষ্ম পরিমাপক যন্ত্রপাতি বা নন প্রিসিশন মেজারিং ইনস্ট্রুমেন্ট বলে। যেমন: স্টিল রুল, ক্যালিপার, ডিভাইডার, কমিনেশন সেট, ট্রাই ক্ষয়ার ইত্যাদি।

#### ২. সূক্ষ্ম পরিমাপক যন্ত্রপাতি :

যেসব পরিমাপক যন্ত্রপাতির সাহায্যে রেখিক মাপ ০.০১ মিমি. বা কম এবং কৈণিক মাপ ৫ মিনিট বা তদপেক্ষা অধিক সূক্ষ্মতা মাপ গ্রহণ করা সম্ভব হয়, তাদেরকে সূক্ষ্ম পরিমাপক যন্ত্রপাতি বা প্রিসিশন মেজারিং ইনস্ট্রুমেন্ট বলে। যেমন: মাইক্রোমিটার, ভার্নিয়ার ক্যালিপার্স, ভার্নিয়ার হাইট গেজ, সাইনবার, ভার্নিয়ার বিভেল প্রদ্রেষ্টের ইত্যাদি।

**মেজারিং টুলস এবং ইনস্ট্রুমেন্ট এর মধ্যকার তুলনা (Difference between Measuring Tools and Instruments) :**

| মেজারিং টুলস                                                                    | মেজারিং ইনস্ট্রুমেন্ট                                                                       |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| ১। নন প্রিসিশন মেজারিং ডিভাইসগুলোকে সাধারণত মেজারিং টুলস (Measuring Tools) বলে। | ১। প্রিসিশন মেজারিং ডিভাইসগুলোকে প্রধানত মেজারিং ইনস্ট্রুমেন্ট (Measuring Instruments) বলে। |
| ২। মেজারিং টুলসের মধ্যে স্টিল রুল, ট্রামেল ,                                    | ২। মেজারিং ইনস্ট্রুমেন্ট এর মধ্যে মাইক্রোমিটার,                                             |

|                                                 |                                                                              |
|-------------------------------------------------|------------------------------------------------------------------------------|
| কমিনেশন সেট, সারফেস গেজ ইত্যাদি প্রধান।         | ভার্নিয়ার ক্যালিপার্স, হাইট গেজ, ভার্নিয়ার বিভেদ প্রোট্রেট ইত্যাদি প্রধান। |
| ৩। সাধারণ মাপের পরিদর্শন কাজে ব্যবহৃত হয়।      | ৩। অধিকতর সূক্ষ্ম পরিমাপের ক্ষেত্রে ব্যবহৃত হয়।                             |
| ৪। বহুল উৎপাদনে পরিদর্শন কাজে ব্যবহৃত হয় না।   | ৪। বহুল উৎপাদনে পরিদর্শন কাজে ব্যবহৃত হয়।                                   |
| ৫। অধিকাংশগুলোর উৎপাদন খুবই সহজ।                | ৫। অধিকাংশগুলোর উৎপাদন খুবই জটিল।                                            |
| ৬। মেজারিং টুলস এর ব্যবহার সহজ।                 | ৬। মেজারিং ইনস্ট্রুমেন্ট এর ব্যবহার তুলনামূলক কঠিন।                          |
| ৭। সাধারণ শ্রমিকই এ টুলস থেকে পার্শ নিতে সক্ষম। | ৭। পার্শ নেওয়ার জন্য দক্ষ এবং অভিজ্ঞ কারিগর আয়োজন।                         |

প্রিসিশন ও নন প্রিসিশন ইনস্ট্রুমেন্টের মধ্যেকার তুলনা (Difference between the precision and non-precision Instruments) :

| নন প্রিসিশন ইনস্ট্রুমেন্ট                                                                                                         | প্রিসিশন ইনস্ট্রুমেন্ট                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ১। এই ইনস্ট্রুমেন্ট এর সাহায্যে সর্বনিম্ন রৈখিক মাপ ০.৫ মিমি. বা 64/1 ইঞ্চি এবং কৌণিক মাপ ১ ডিগ্রি পর্যন্ত সূক্ষ্মতায় মাপা যায়। | ১। এই ইনস্ট্রুমেন্ট এর সাহায্যে রৈখিক মাপ 0.01 মিমি. বা 0.001 ইঞ্চি এবং কৌণিক মাপ 5 মিনিট বা তার চেয়ে সূক্ষ্মতায় মাপা যায়। |
| ২। এই ইনস্ট্রুমেন্ট এর গঠন প্রগালি সহজ হওয়ায় উৎপাদন ব্যয় কম। ফলে দামে সন্তো।                                                   | ২। এ ইনস্ট্রুমেন্ট এর গঠন প্রগালি জটিল হওয়ায় উৎপাদন ব্যয় তুলনামূলক বেশি। ফলে দামও বেশি।                                    |
| ৩। ওয়ার্কিং টুলস হিসেবে ব্যবহৃত হয়।                                                                                             | ৩। ইস্পেকশন বা মাস্টার গেজ হিসেবে ব্যবহৃত হয়।                                                                                |
| ৪। রাফ কাজে ব্যবহার করা হয়।                                                                                                      | ৪। ফিনিস কাজে ব্যবহার করা হয়।                                                                                                |
| ৫। নন প্রিসিশন ইনস্ট্রুমেন্ট মোটাযুটি শিক্ষিত ব্যক্তি মাত্রই ব্যবহার এবং মাপ গ্রহণ করতে পারে।                                     | ৫। প্রিসিশন ইনস্ট্রুমেন্ট ব্যবহারে অধিক শিক্ষিত এবং দক্ষ কারিগরই কেবল ব্যবহার এবং মাপ গ্রহণ করতে পারে।                        |
| ৬। ইনস্ট্রুমেন্ট এর ব্যবহার বহুল উৎপাদনের পরিমাপের ক্ষেত্রে ব্যবহৃত হয় না।                                                       | ৬। এই ইনস্ট্রুমেন্ট প্রধানত বহুল উৎপাদনের পরিমাপের ক্ষেত্রে ব্যবহৃত হয়।                                                      |

প্রিসিশন ও নন প্রিসিশন ইনস্ট্রুমেন্ট এর মধ্যে মূল প্রার্থক্য (The difference between precision and non Precision Instrument) :

নন-প্রিসিশন ইনস্ট্রুমেন্ট এর সাহায্যে সর্বনিম্ন 0.5 মিমি. বা 64/1 ইঞ্চি এবং কৌণিক মাপ ১ ডিগ্রি পর্যন্ত সূক্ষ্মতায় মাপ গ্রহণ করা যায়।

অন্যদিকে প্রিসিশন মেজারিং ইনস্ট্রুমেন্ট এর সাহায্যে রৈখিক মাপ 0.01 মিমি. বা 0.001 ইঞ্চি এবং কৌণিক মাপ 5' মিনিটি বা তার চেয়ে অধিক সূক্ষ্মতায় মাপ গ্রহণ করা সম্ভব হয়।

নিম্নলিখিত যন্ত্রপাতিগুলো বৈধিক পরিমাপক যন্ত্র হিসেবে ব্যবহৃত হয়। যেমন :

- ১) ফিতা/লিলেন টেপ (Linen Tape)
- ২) স্টিল টেপ (Steel Tape)
- ৩) স্টিল রুল (Steel Rules)
- ৪) মাইক্রোমিটার (Micromiter)
- ৫) ভার্নিয়ার ক্যালিপার (Vernier Calliper)
- ৬) ডিভাইডার (Divider)

নিম্নলিখিত যন্ত্রপাতিগুলো কৌণিক পরিমাপক যন্ত্র হিসেবে ব্যবহৃত হয়। যেমন -

- ১) ভার্নিয়ার বেভেল প্রট্র্যাক্টর
- ২) এঙ্গেল গেজ ব্লক
- ৩) সাইন বার
- ৪) অ্যাডজাস্টেবল বেভেল প্রট্র্যাক্টর
- ৫) কম্বিনেশন সেট।

## ৫.২ পরিমাপক যন্ত্রের ব্যবহার

### ১। মেটাল কোটেজ লিলেন টেপ

দূরত্ব মাপার জন্য ফিতা ব্যবহৃত হয়। লিলেন কাপড়, চামড়া, স্টেনলেস সিল ইত্যাদি দ্বারা ফিতা তৈরি করা হয়। এটি একটা কাঠামোর উপর গোলাকার স্টিল বা প্লাস্টিক বাক্সে জড়ানো থাকে। বাক্সের বাইরে একটা ছোট হাতল থাকে। হাতল দিয়ে ফিতা গুটানো হয়। আজকাল ফিতা বোতাম টিপে বের করা এবং গুটানো যায়। ফিতার উপরে এক পাশে ইঞ্জি, ফুট এবং অন্য পাশে মিলিমিটার, সেন্টিমিটার, মিটার ইত্যাদির দাগ কাটা থাকে। বিভিন্ন দৈর্ঘ্যের ফিতা পাওয়া যায়। যেমন- ১, ২, ৩, ১০ মিটার (৩, ৬, ১০, ৩০ ফুট) স্টিলের ফিতায় মরিচা ধরে। সেজন্য ফিতায় গ্রিজ বা ঐ জাতীয় তৈল মাঝে মাঝে ব্যবহার করা উচিত। লিলেন কাপড়ের ফিতা জোরে টানলে লম্বা হয়ে যেতে পারে।



চিত্র: ৫.১ লিলেন টেপ

### ২। স্টিল টেপ (Steel Tape)

দূরত্ব মাপার জন্য স্টিল টেপ ব্যবহৃত হয়। এটি ইস্পাতের পাত দ্বারা তৈরি করা হয়। সেজন্য একে স্টিল টেপ বলে। এটি ইস্পাতের বা প্লাস্টিকের বাক্সের মধ্যে স্প্রিং দ্বারা আটকানো থাকে। বোতাম টিপে ফিতা প্রয়োজন মতো বের করা যায় এবং ঢুকানো যায়। স্টির টেপের দৈর্ঘ্য ১ মিটার বা ২ মিটার বা ৩০ মিটার পর্যন্ত হয়ে থাকে। এ টেপ মরিচামুক্ত রাখার জন্য মাঝে মাঝে গ্রিজ বা তৈল জাতীয় পদার্থ ব্যবহার করা উচিত।



চিত্র: ৫.২ স্টিল টেপ

### ৩। স্টিল রুল (Steel Rules)

এটি একটি বহুল ব্যবহৃত সাধারণ রৈখিক পরিমাপক যন্ত্র। উন্নতমানের ইস্পাত দ্বারা এটি তৈরি করা হয়। এটি টেম্পারড, অতি মসৃণ, সূক্ষ্ম ও নির্ভুল কাটা দাগ বিশিষ্ট হয়ে থাকে। দাগ ইঞ্জিও ও মিলিমিটারে উভয় প্রাণ্তে এবং উভয় পৃষ্ঠায় কাটা থাকে। ১৫০ মি.মি. থেকে এক মিটার দৈর্ঘ্য স্টিল রুল পাওয়া যায়। শিট মেটাল শপে লম্বা এবং খাট উভয় প্রকার স্টিল রুল ব্যবহার করা হয়। কিন্তু মেশিন শপে ৬ ইঞ্চি (১৫০ মি.মি.) এবং ১২ ইঞ্চি (৩০০ মি.মি.) আকারের স্টিল রুল বেশি ব্যবহার করা হয়। স্টেইনলেস স্টিলের তৈরি স্টিল রুল সর্বাপেক্ষা উত্তম। কারণ এতে কখনও মরিচা ধরে না এবং সহজে ক্ষয়ও হয় না। স্টিল রুলের কাটা দাগের পরিমাপ অনেক রকম হয়ে থাকে। বিভিন্ন কাজে ক্ষুদ্র মাপের প্রয়োজন হয় বলে রুলটি প্রতি সেন্টিমিটারকে ১০ ভাগে বিভক্ত করা হয়েছে। প্রতি ক্ষুদ্র ভাগের মান এক মিলিমিটার। মাপ নেওয়ার স্বিধার জন্য প্রতি অর্ধ সেন্টিমিটারে লম্বা দাগ কাটা থাকে। আরও ক্ষুদ্র মাপ নেওয়ার জন্য প্রতি মিলিমিটার বিভাগগুলোকে আবার দুইভাগে বিভক্ত করা হয়েছে। ফলে স্টিল রুলটি দ্বারা সর্বনিম্ন ০.৫ মিলিমিটার মাপ নেওয়া যায়।



চিত্র: ৫.৩ স্টিল রুল

### ৪। মাইক্রোমিটার (Micrometer)

মাইক্রোমিটারের সাহায্যে খুব ছোট দৈর্ঘ্য যেমন— সরু তারের ব্যাস, সরু নলের ব্যাস এবং পাতলা পাতের পুরুষ অতি সূক্ষ্মভাবে মাপা যায়। এ যন্ত্রে একটি সম ব্যাসার্থের মাইক্রোমিটার ছুঁ আছে বলে একে ছু-গজ বলে। এতে প্রত্যক্ষভাবে মাপ জানতে পারা যায়। এছাড়া এ যন্ত্র দ্বারা অতি সহজে ও অপেক্ষাকৃত নির্ভুলভাবে মাপ নেওয়া সম্ভব। এর যান্ত্রিক ক্রিটি নিক্রমণ ও দূরীকরণ খুবই সহজ। ফলে এ যন্ত্র বহুদিন ব্যবহার করা যায়। এ যন্ত্র দ্বারা

শিট মেটালের পুরুষ অধিক সূক্ষ্মতায় মাপা যায়।



চিত্র: ৫.৪ মাইক্রোমিটার

#### ৫। ভার্নিয়ার ক্যালিপার (Vernier Calliper)

এটি একটি সূক্ষ্ম পরিমাপক যন্ত্র। ভার্নিয়ার ক্যালিপারকে স্লাইড ক্যালিপারও বলা হয়। ১৬০০ প্রিটার্ডে ফরাসি গণিতবিদ ফিয়েরে ভার্নিয়ার এ ক্ষেত্রটি আবিক্ষার করেন।

ভার্নিয়ার ক্যালিপারের সাহায্যে কোন দণ্ডের দৈর্ঘ্য ও ব্যাস, গোলকের ব্যাস, কোন ফাঁপা টিউবের ভেতরের ও বাইরের ব্যাস ও গভীরতা মাপা যায়। এ পরিমাপক যন্ত্রটি সাহায্যে ০.১ মিলিমিটার পর্যন্ত নির্দূল ও সূক্ষ্ম পাঠ পরিমাপ করা সম্ভব।



চিত্র: ৫.৫ ভার্নিয়ার ক্যালিপার

#### ৬। ডিভাইডার (Divider)

এটি সম্পূর্ণ ইস্পাতের তৈরি। ডিভাইডারের দুটো সূচালো পা আছে। পায়ের উপরের ভাগ চেপ্টা এবং চেপ্টা অংশের শেষ প্রান্তে ইস্পাতের রিভেট বা ক্লিপ থাকা আটকানো থাকে যাতে পা দুটোকে সহজে দুইপাশে সরানো যায়। গোলবৃত্ত আঁকার জন্যে অথবা সরল বা বক্র রেখাকে সমান দুইভাগে ভাগ করার জন্য ডিভাইডার ব্যবহার করা হয়। এ ছাড়া ক্ষেত্র হতে দূরবৰ্তের মাপ নিয়ে ড্রেইং-এ বসাতে অথবা ড্রেইং-এর এক অংশ হতে মাপ নিয়ে অপর অংশে স্থাপন করতে ডিভাইডার ব্যবহার করা হয়।



চিত্র: ৫.৬ ডিভাইডার

#### কৌণিক পরিমাপ বৈদেশ যন্ত্রবহুল

##### ১। অর্নিয়ার বেভেল এট্রাইট (Vernier bavel protractor)

অর্নিয়ার বেভেল এট্রাইটের ঘাসা কোন কৃতির এ্যালেস বা কোনের পরিমাপ নেওয়া হব। তা ছাড়া শিল্প কারখানায় এর ব্যবহার পরিলক্ষিত হয়। সাধারণ বেভেল এট্রাইটের সাথে অর্নিয়ার কেল সঙ্গীকৃত থাকে বলে একে অর্নিয়ার বেভেল এট্রাইট বলে। সাধারণ বেভেল এট্রাইটের ঘাসা ১ ডিগ্রির কম কোণ কোণ (Angle) পরিমাপ করা যায় না। কিন্তু অর্নিয়ার বেভেল এট্রাইটের ঘাসা ১ ডিগ্রির  $\frac{1}{12}$  অপ অর্থাৎ ৫ মিনিট পর্যন্ত সূক্ষ্ম যাপ নেওয়া সক্ষম।



চিত্র: ৫.৭ অর্নিয়ার বেভেল এট্রাইট

##### ২। এ্যালেস পেজ বুক

এ্যালেস পেজ বুক ঘাসা সূক্ষ্ম ও সুবিধাজনক উপায়ে কোণ পরিমাপ করা যায়। এর সাহায্যে নির্মাণকাবে কোণ যাপা যায়। এটি হ্যার্ডেনিং পদ্ধতিকে সম্পর্ক করা এবং স্টিলের তৈরি। হাতজলো মসৃণ, সমতল বিভিন্ন কোণে অসমল: ঢালু ধাতু খণ্ড। এদের স্থায়ির দৈর্ঘ্য ১০০ মিলিমিটার এবং বেথ ১৬ মিলিমিটার।



চিত্র: ৫.৮ এ্যালেস পেজ বুক

### ৩। সাইন বার

সাইন বার হাতা কোন সূক্ষ্ম কোণ পরিমাপ করতে হলে ক্লিকেটিমিটিক সুন্দর সাহায্য হিসেব নিকাশ করার অঙ্গীকৃত হয় । এ ছাড়া পিপ পেজ ব্যবহার করার প্রয়োজন হয় । সোঁটি কথা সাইন বার হাতা ১ ডিগ্রির কম কোণের পরিমাপ এবং করা যাব না । একে ধূলি যন্ত্রণা হতে দূরে রাখতে হবে । ব্যবহার পেজে তৈলে মেখে বদ্দের সাথে বাজে রাখতে হবে । ব্যবহারের পূর্বে ফ্লাসেল জাতীয় কাপড় হাতা মুছে ব্যবহার করতে হবে ।



চিত্র: ৫.৯ সাইন বার

### ৪। অ্যাজুলেটেবল বেঙ্গল প্র্যাটার

এ যন্ত্র হাতা কোন নিসিটিপ্র্যাজেল নিরীক্ষা, পরিমাপ ও হালকার করার কাজে ব্যবহার করা হয় । এ ছাড়া লে-আউট কাজেও ব্যবহার করা যাব । এ যন্ত্রটি দুইটি ব্রেক দিয়ে পঠিত যা যে কোন অবস্থায়ে সেট ফ্ল-এর মাধ্যমে আবক্ষ করা যায় । এ যন্ত্র দিয়ে সরাসরি কোনো যাপ এবং করা যাব না ।



চিত্র: ৫.১০ অ্যাজুলেটেবল বেঙ্গল প্র্যাটার

### ৫। কথিনেশন সেট

এটি একটি অসূক্ষ্ম কোণ পরিমাপক যন্ত্র । সেটার হেড, ক্ষয়ার হেড, ব্রেক এবং প্র্যাটার হেড এ ক্রসটিকে একত্রে কথিনেশন সেট বলা হয় । কথিনেশন করারের সাথে প্র্যাটার অংশ বোল করলে কথিনেশন সেট হয় । প্র্যাটার অংশ থাকার এটি দিয়ে যে কোন পরিমাপ প্যাজেল যাপ যাব । ক্ষয়ার হেড থাকা কথিনেশন সেটকে ট্রাই-করার হিসেবে ব্যবহার করা যাব । ক্ষয়ার হেডের সাথে একটি ছোট স্পিনিট লেঙ্গেল সাপানো থাকে । কেবল্য এ যন্ত্র দিয়ে সমতলভা পরীক্ষা করা যায় । সেটার হেড দিয়ে কোন সিলিঙ্ক্রিক্যাল বন্ধন সেটার নিখারণ করা যাব । ব্রেকটি সেটার হেডের ঠিক যাবখালে অবহৃত করবে । পোলাকার বন্ধনকে সেন্টার হেডের সঙ্গে ধরে ব্রেকের পা দিয়ে আঁচড় টাললে সেটার দিয়ে দাগটি চলে যাব । জবাটি পুরুরে অশৰ একটি রেখা টাললে দুইটি রেখার ছেদ বিন্দু হবে জবের সেটার । সিল কুলের মতোই ব্রেকের পায়ে দাগ কাটা থাকে । এর দৈর্ঘ্য ২৫ ইঞ্চি পর্যন্ত হয়ে থাকে । কেলের দৈর্ঘ্য বরাবর অন্ত বা স্লট কাটা থাকে । কলে অংশগুলো এর মধ্যে দিয়ে স্লাইড করতে পারে । প্রত্যেকটি অংশ ব্রেকের যে কোন অংশে আটিকাসো যাব । লে-আউট কাজে কিটিং শলে এর ব্যবহার যাচাক ।



চিত্র: ৫.১১ কমিনেশন সেট

### ৫.৩ পরিমাপক যত্ন ব্যবহারে সাবধানতা

#### ১। মাইক্রোমিটার

এটি সূচক পরিমাপক যত্ন এবং মূল্যবান। কাজেই ব্যবহার করার সময় এবং ব্যবহার শেষে নিম্নে বর্ণিত সাবধানতা অবস্থন করা উচিত।

য্যাচেট বিহীন মাইক্রোমিটারের ক্ষেত্রে ধিমলটি খুব সাবধানতার সাথে স্থানে হবে যাতে করে স্পিন্ডলের মুখটি বন্ধের উপরিভাগকে স্পর্শ করে। বেশি চাপ দিলে স্পিন্ডলটি বেঁকে যেতে পারে, কিন্বা মুখটি বিকৃত হওয়ার অধিবা তেজেরের সূচক ঝুঁ-গ্রেডগুলো ক্ষতিগ্রস্ত হওয়ার আশঙ্কা থাকে।

চলত অবস্থায় কোন বন্ধের মাপ নেওয়া ঠিক নয়। বন্ধটি সম্পূর্ণ ছির হলে মাপ নেওয়া উচিত।

ব্যবহারের সময় মাইক্রোমিটার যাতে হাত থেকে পড়ে না যায় এবং এর এ্যানডিল ও স্পিন্ডলের মুখে যাতে কোন প্রকার আঘাত না পায় বা বিকৃত না হয় এ বিষয়ে সর্বদা বিশেষ সতর্ক থাকতে হবে।

মাইক্রোমিটার কখনও চলত মেশিনের বেত (Bed) বা বডি (Body) ইত্যাদির উপরে বা কোন উচ্চ স্থানে যাখা ঠিক নয়। কারণ এতে পড়ে যাবার বা চাপে ক্ষতিগ্রস্ত হতে পারে।

ব্যবহার শেষে মাইক্রোমিটারকে খোলা অবস্থায় না রেখে নির্দিষ্টবাস্তুর মধ্যে বন্ধ করে রাখা উচিত। কলে কোন ময়লা পড়তে পারে না।

ধিমলকে ছির রেখে ক্রেম স্থানে এ্যানডিল এবং স্পিন্ডল কেন্দ্রায়িত হয়। কলে মাইক্রোমিটার ব্যবহারের অযোগ্য হয়ে পড়ে।

মাইক্রোমিটারকে কখনও চুবকের নিকট আনা উচিত নয়। এতে মাইক্রোমিটার ক্ষতিগ্রস্ত হতে পারে।

যে স্থানে যন্ত্রপাতির ধার দেওয়া হয় সেখানে মাইক্রোমিটার স্বারা মাপ নেওয়া উচিত নয়।

#### ২। ভার্নিয়ার ক্যালিপার

(ক) কোন বন্ধের মাপ নেওয়ার সময় ভার্নিয়ার ক্যালিপারের 'জ' দুইটিকে বন্ধের উপরিভাগে অধিবা ছিদ্র বা নালীর মধ্যে কখনও বল পূর্বক প্রবেশ করাবে না।

(খ) চলত মাপ নেবে না। বন্ধটি সম্পূর্ণ ছির হলে মাপ নেবে।

(গ) যন্ত্রটিকে কখনও চুবকের নিকট আনবে না, আনলে ভুল মাপ দেখাবে।

(ঘ) সচল 'জ' টিকে সরিয়ে পূর্বে সক্রিয় ক্লিপকে ডিলা করতে হবে। এ যন্ত্র বন্ধ অবস্থায় ধাকলে বলপূর্বক একে সরাতে চেষ্টা করবে না।

### ৩। কমিনেশন সেট

এ যন্ত্রের ব্রেড ও অন্যান্য অংশে চাপ দিলে সুস্থিতা নষ্ট হয়। সেজন্য ব্যবহারের পর একটা কাঠের বাক্সে সংরক্ষণ করা উচিত।

এ যন্ত্রে ভেজিটেবল অয়েল প্রয়োগ করা উচিত তা না হলে মরিচা ধরে ক্ষয় প্রাপ্ত হবে।

#### ৫.৪ পরিমাপক যন্ত্রের রক্ষণাবেক্ষণ

##### ১। মাইক্রোমিটার রক্ষণাবেক্ষণ

(ক) মাইক্রোমিটারকে সাবধানে এবং যত্ন সহকারে ব্যবহার করা উচিত। এ্যানভিল এবং স্পিন্ডলের প্রান্তে বা মুখে যাতে কোন ধূলিকণা বা ময়লা না জমে সে বিষয়ে সর্বদা লক্ষ রাখা উচিত। ব্যবহারের পূর্বে ও পরে এর এ্যানভিল ও স্পিন্ডলের মুখ দুটোকে উন্মুক্তপে পরিষ্কার করা প্রয়োজন। ব্যবহার শেষে একে খোলা অবস্থায় টেবিলের উপর বা পকেটের মধ্যে না রেখে নির্দিষ্ট আধারের (Case) মধ্যে রাখা উচিত।

(খ) মাইক্রোমিটারের কোন অংশে যাতে মরিচা না পড়ে এবং ভেতরের ক্লু খ্রেডের চলাচল যাতে সহজ হয় এ জন্য এর উপরিভাগে এবং ভেতরের বিভিন্ন অংশে কিছুদিন অন্তর মসৃণকারক তেল প্রয়োগ করা প্রয়োজন।

(গ) দীর্ঘদিন ব্যবহার করার পর মাইক্রোমিটারের ভেতরের অংশে, স্পিন্ডল এবং এ্যানভিলের মুখ ইত্যাদির ক্ষয় হয়ে যাব বলে মাইক্রোমিটারে যে “জিরো এরর” এবং অন্য কোন দোষ ঘটে তার সংশোধন কেবল সুদৃঢ় কারিগর দ্বারা করা উচিত।

##### ২। ভার্নিয়ার ক্যালিপার রক্ষণাবেক্ষণ

ভার্নিয়ার একটা সুস্থ পরিমাপক যন্ত্র। কাজেই যথাযথভাবে এর ব্যবহার এবং সংরক্ষণ করা প্রয়োজন। নিম্নে বর্ণিত বিষয়গুলো মেনে চললে এ যন্ত্র দীর্ঘস্থায়ী হয় এবং এতে নির্ভুল মাপ পাওয়া যায়।

ভার্নিয়ার ক্যালিপারের কোন অংশে যাতে মরিচা না পড়ে এবং সচল অংশটি যাতে সহজে চলাচল করতে পারে সেজন্য বিম ক্ষেত্রে উপরিভাগে এবং ক্লু-খ্রেড বিশিষ্ট স্থানে কিছুদিন অন্তর মসৃণকারক তেল প্রয়োগ করা উচিত।

ক্যালিপারটি কোন অংশে বিশেষত: ‘জ’-এর মুখে যাতে কোন ধূলিকণা বা ময়লা না জমে এর প্রতি লক্ষ রাখা প্রয়োজন। ব্যবহারের পূর্বে-এর ‘জ’-দুইটিকে উন্মুক্তপে মুছে নেওয়া উচিত।

ব্যবহারে সময় যদি কখনও একে সাময়িকভাবে রাখার প্রয়োজন হয় তবে টেবিলের উপর না রেখে কোন কাগজের উপরে অথবা এর জন্য নির্দিষ্ট বাক্সে রাখবে।

একে খোলা অবস্থায় অন্য যন্ত্রের সাথে একত্রে রাখা ঠিক নয়। সর্বদা স্বতন্ত্রভাবে রাখাই ভালো।

ব্যবহারের শেষে ক্যালিপারটিকে নির্দিষ্ট বাক্সের মধ্যে রাখা উচিত।

### ৩। কমিনেশন রক্ষণাবেক্ষণ

কমিনেশন সেট যেহেতু একটা অসুস্থ যন্ত্র সেহেতু এর খুব বেশি যত্ন নেওয়ার প্রয়োজন হয় না শুধু যাতে এর গায়ে মরিচা না পড়ে সেজন্য ব্যবহারের পর ছিঁজ মেখে রাখা উচিত।

#### ৫.৫ পরিমাপের এক পি এস ও এম কে এস এর তারতম্য

কোন বস্তুর পরিমাপ গ্রহণ করা হয় তার দৈর্ঘ্য, প্রস্থ, উচ্চতা, ঢালুতা, কোণ সমতলতা, মসৃণতা ইত্যাদি। এক্ষেত্রে দৈর্ঘ্য, প্রস্থ, উচ্চতা, ঢালুতা ইত্যাদি মাপসমূহকে বলা হয় রৈখিক মাপ। রৈখিক মাপ গ্রহণের জন্য যে পরিমাপক

যন্ত্রটি ব্যবহৃত হয় তা হলো একটি কুল বা কুলার। পরিমাপ শুভের কাজে ব্যবহার করা হয় বলে এদের বলে মেজারিং কুল। এগুলো বিভিন্ন মাপের ও আকৃতির হয়ে থাকে, তিনি ভিন্ন দ্রব্যের ভিন্নতর অবস্থানের মাপ শুভের জন্য ও কাজের জন্য এদের নামকরণও ভিন্ন হয়ে থাকে। এ সব ক্ষেত্রের গায়ে ভল্লাঙ্ঘ বা দশমিকের মাপ অনুসারে দাগ কাটা থাকে। উভয় দিকে বা এক দিকে মেট্রিক পদ্ধতিতে মিলিমিটার ও ব্রিটিশ পদ্ধতিতে ইঞ্চিং মাপের দাগাক্ষিত মেজারিং কুল ব্যবহৃত হয়।

এফ. পি. এস হলো ব্রিটিশ পদ্ধতিতে মাপের একক যার এফ-ফুট, পি- পাউন্ড এবং এস- সেকেন্ড বুরায়। আর এম. কে. এস হলো মেট্রিক পদ্ধতিতে মাপের একক যার এম- মিটার, কে- কিলোগ্রাম এবং এস- সেকেন্ড বুরায়।

এক পি এস এবং এম কে এস এই উভয় পদ্ধতির কুলগুলো কাঠ, প্লাস্টিক, এবোনাইট, সিল, কার্ডবোর্ডের ও ক্যানভাসের তৈরি হয়ে থাকে।

| System | Length     | Mass     | Time   |
|--------|------------|----------|--------|
| F.P.S. | foot       | pound    | second |
| C.G.S. | centimetre | gram     | second |
| M.K.S. | metre      | kilogram | second |

চিত্র: ৫.১২ এক পি এস ও এম কে এস এর ভারতম্য

| Length         | Weight         | Capacity        | Time           |
|----------------|----------------|-----------------|----------------|
| 12in = 1ft     | 16oz = 1lb     | 16 fl oz = 1gal | 60 sec = 1 min |
| 3ft = 1yrd     | 2000lb = 1 ton | 2 pt = 1 qt     | 60 min = 1 hr  |
| 5,280 ft = 1mi |                | 8pt = 1gal      | 24 hr = 1 day  |
| 1,760yrd = 1mi |                | 4 qt = 1gal     | 7 days = 1 wk  |

চিত্র: ৫.১৩ এক পি এস ও এম কে এস এর ভারতম্য

### ধন্বমালা-৫

#### **অতি সংক্ষিপ্ত প্রশ্ন**

১. পরিমাপক যন্ত্র কী ?
২. ভার্নিয়ার ক্যালিপার কী ধরনের পারমাপক যন্ত্র ?
৩. ভার্নিয়ার ক্যালিপারের কোন অংশে যাতে মরিচা না পড়ে উহার জন্য কী ব্যবস্থা নেওয়া হয় ?
৪. মাইক্রোমিটারকে কী উপায়ে ব্যবহার করা উচিত ?
৫. কমিনেশন সেট কাঠের বাত্তে সংরক্ষণ করা উচিত কেন ?

#### **সংক্ষিপ্ত প্রশ্ন**

১. পরিমাপক যন্ত্র বলতে কী বোঝায় ?
২. পরিমাপক যন্ত্রের প্রকারভেদ লেখ ।
৩. রৈখিক পরিমাপক যন্ত্রের নাম লেখ ।
৪. কৌণিক পরিমাপক যন্ত্রের নাম লেখ ।
৫. এফ. পি. এস এবং এম. কে. এস বলতে কী বুঝায় ?

#### **রচনামূলক প্রশ্ন**

১. পরিমাপক যন্ত্রের প্রয়োজনীয়তা উল্লেখ কর ।
২. যে-কোন তিন প্রকার পরিমাপক যন্ত্রের চিত্রসহ বর্ণনা দাও ।
৩. যে-কোন দুইপ্রকার কৌণিক পরিমাপক যন্ত্রের চিত্রসহ বর্ণনা দাও ।
৪. মাইক্রোমিটার ব্যবহারের কী কী সাবধানতা অবলম্বন করতে হয় ?
৫. ভার্নিয়ার ক্যালিপার ব্যবহারের কী কী সাবধানতা অবলম্বন করতে হয় ?
৬. মাইক্রোমিটার কীভাবে রক্ষণাবেক্ষণ করা হয় ?
৭. ভার্নিয়ার ক্যালিপার কীভাবে রক্ষণাবেক্ষণ করা হয় ?

## হ্যান্ড টুলস (Hand Tools)

---



---

একজন কারিগর যে সমস্ত যন্ত্রপাতি হাতে চালনা করে সেগুলি হলো একজন কারিগরের হ্যান্ড টুলস। কারিগর প্লাষিং এবং পাইপ ফিটিং কাজের জন্য কার্যস্থল চিহ্নিত করে, ধাতু কেটে ক্ষয় করে, মাপ নেয়, জোড়া দেয়, পিটিয়ে ধাতুর আকৃতি পরিবর্তন করে এবং বিভিন্ন রকমের কাজ করে। এই কাজগুলি করার জন্য যে হ্যান্ড টুলসগুলি ব্যবহৃত হয় সেগুলি হলো :

- (১) হ্যাক'স (Hack Saw)
- (২) ফাইল (File)
- (৩) চিজেল (Chisel)
- (৪) বলপিন হ্যামার (Ball pin Hammer)
- (৫) চিপিং হ্যামার (Chipping Hammer)
- (৬) সেন্টার পাঞ্চ (Centre Punch)
- (৭) স্ক্রাইবার (Scriber)
- (৮) পাইপ কাটার (Pipe Cutter)
- (৯) পাইপ রেঞ্চ (Pipe wrench)
- (১০) ওয়্যার ব্রাস (Wire Brush)
- (১১) সি ক্ল্যাম্প (C Clamp)
- (১২) পোর্টেবল হ্যান্ড গ্রাইন্ডার (Portable Hand Grinder)
- (১৩) প্যাড 'স' (Pad Saw)
- (১৪) স্প্যানার (Spanner)
- (১৫) হ্যান্ড ড্রিল (Hand drill)
- (১৬) ট্যাপ (Tape)
- (১৭) স্ক্রু ড্রাইভার (Screw driver)

কারিগর মাত্রই তাকে তার বিভাগে যে সব টুলস ব্যবহৃত হয় সে সব টুলসের সঙ্গে ভালোভাবে পরিচিত হতে হবে এবং সঠিক কাজের জন্য সঠিক টুলস নির্বাচন ও তার সঠিক ব্যবহার সম্পর্কে নিশ্চিত হতে হবে। কাজের পূর্বে টুলস ঠিক আছে কীনা তা দেখা অত্যন্ত প্রয়োজন।

সাধারণত যে সব টুলস হাত দিয়ে পরিচালনা করে কাজ সম্পাদন করা হয়ে থাকে সে সব টুলসকে হ্যান্ড টুলস বলা হয়। যেমন— করাত, হ্যাক'স, ফাইল, চিজেল, হাতুড়ি, স্ক্রু-ড্রাইভার, রেঞ্চ বা স্প্যানার, প্লায়ার্স, স্ক্রাইবার, সেন্টার পাঞ্চ, হাইটগেজ, বেঞ্চ, ভাইস, রেঞ্জ, গ্রাইন্ডার ইত্যাদি।

### ৬.১ হ্যান্ড টুলস এর শ্রেণিবিন্যাস :

হ্যান্ড টুলসকে নিম্নলিখিত ভাগে ভাগ করা যায়। যথা-

#### ১) সাধারণ হ্যান্ড টুলস :

সাধারণ কাজে বা অন্য যন্ত্রের সাহায্যকারী রূপে যেসব টুলস ব্যবহৃত হয় তাদেরকে সাধারণ হ্যান্ড টুলস বলে। যেমন হাতুড়ি, স্ক্রু-ড্রাইভার, প্লায়ার্স, স্প্যানার ইত্যাদি।

**২) লে-আউট বা মাকিং হ্যান্ড টুলস :**

লে-আউট বা চিহ্নিতকরণ কাজে এসব টুলস ব্যবহৃত হয়। যেমন- স্কাইবার, হাইটগেজ, সেন্টার পাঞ্চ ইত্যাদি।

**৩) বেঝ টুলস :**

বেঝের উপর উচু মধ্যে স্থাপন করে ব্যবহার করা হয় বলে এদেরকে বেঝ টুলস বলে। যেমন- বেঝ ভাইস, বেঝ ড্রিল, বেঝ প্রাইভার ইত্যাদি।

## ৬.২ হ্যান্ড টুলস এর ব্যবহার

**১) হাতুড়ি (Hammer)**

কোন বস্তুকে পেটাতে বা আঘাত করার জন্য যে যন্ত্রের ব্যবহার করা হয় তাকে হাতুড়ি বলে। তারকাঁটা কাঠের মধ্যে প্রবেশ করানোর কাজে এবং বেঁকে যাওয়া তারকাঁটা উটানোর কাজে হাতুড়ি ব্যবহৃত হয়। এছাড়া শিট কাটার জন্য অথবা পাঞ্জিং, চিঙ্গেল, বেঙ্গি, স্টেইটেনিং, স্ট্রিচিং ইত্যাদি কাজেও বস্তুর উপর সরাসরি আঘাত করার জন্য হাতুড়ি ব্যবহৃত হয়। হাতুড়ি বিভিন্ন প্রকারের হয়ে থাকে। সাধারণ কাজে ক্রোলা, বলশিল, ক্রসশিল ও ম্যালেট ব্যবহার হয়ে থাকে।



চিত্র : ৬.১ বিভিন্ন প্রকার হ্যামার বা হাতুড়ি

**২) স্ক্রু-ড্রাইভার (Screw Driver)**

কাঠের বা অন্য ধাতুর মধ্যে স্ক্রু ঢুকাতে বা বের করতে যে যন্ত্র ব্যবহার করা হয় তাকে স্ক্রু-ড্রাইভার বলে। কাজের সমাপ্তিতে এর দারা স্ক্রু, বোল্ট, ফিস্টে প্রভৃতি দৃঢ়ত্বাবে আটকানো হয়।



চিত্র : ৬.২ ব্র্যাচেট ক্লু-ড্রাইভার



চিত্র : ৬.৩ ফিলিপস ক্লু-ড্রাইভার



চিত্র : ৬.৪ স্পাইরাল ব্র্যাচেট ক্লু-ড্রাইভার



চিত্র : ৬.৫ ইলেক্ট্রনিক্স প্যাটার্ন ক্লু-ড্রাইভার



চিত্র : ৬.৬ অনানুকৰণ ক্লু-ড্রাইভার



চিত্র : ৬.৭ কেবিনেট প্যাটার্ন ক্লু-ড্রাইভার



চিত্র : ৬.৮ শভ্য প্যাটার্ন ক্লু-ড্রাইভার

### ৩) রেঞ্চ (Wrench)

পাইপ খোলা বা সংযোজন করার জন্য অথবা নটি-বোলটি খোলা বা মজবুত করে সাগানোর কাজে রেঞ্চ ব্যবহার করা হয়। পাইপ লাইনে ব্যবহৃত প্রাথিং কিটিস লাগানো বা খোলার জন্যও রেঞ্চ ব্যবহৃত হয়।



চিত্র : ৬.৯ প্রাইভ পাইপ রেঞ্চ



চিত্র : ৬.১০ এ্যাজডজেস্টেবল রেঞ্চ

### ৪) স্প্যানার (Spanner)

বোল্ট, নট ইত্যাদি সাগাতে বা খুলতে যে যত্ন ব্যবহার করা হয় তাকে স্প্যানার বলে।



চিত্র : ৬.১১ স্প্যানার

### ৫) প্লাইয়ার্স (Pliers)

প্লাইয়ার্স-এর বাইলা নাম সৌজাপি। সাধারণত ক্ষুদ্র কোম বন্ধকে বা একাধিক শিটকে দৃঢ়ভাবেধারণ করতে অথবা তারকে বিখণ্ড করতে বা মুড়তে এ যত্ন ব্যবহার করা হয়।



চিত্র : ৬.১২ গ্যাস প্লাইয়ার্স



চিত্র : ৬.১৩ রাউন্ড নোজ প্লায়ার্স



চিত্র : ৬.১৪ স্নেইট 'জ' প্লায়ার্স

#### ৬) স্কাইবার (Scriber)

স্কাইবার একটা তীক্ষ্ণ ও সূচায় ইলিমেন্টের টুল বা ধাতব বস্তুর উপর রেখা টানার জন্য ব্যবহৃত হয়।



চিত্র : ৬.১৫ স্কাইবার

#### ৭) সেন্টার পাঞ্চ (Center Punch)

বস্তুর উপর বিশেষ করে শিট মেটাল ও চায়ড়ার উপর কোন নির্দিষ্ট বিন্দুকে চিহ্নিত করার ও ছিদ্র করার কাজে পাঞ্চ ব্যবহার করা হয়। সেন্টার পাঞ্চ-এর পয়েন্ট এক সমকোণ সূচালো করা হয়। প্রাথমিকভাবে কোন বিন্দুকে চিহ্নিত ও ছিদ্র করার পূর্বে কেন্দ্র চিহ্নিত করার কাজে সেন্টার পাঞ্চ ব্যবহার করা হয়।



চিত্র : ৬.১৬ সেন্টার পাঞ্চ

#### ৮) হাইট গেজ (Height Gauge)

হাইট গেজের বিম অংশটি একটা সমতল ভিত্তির উপর লম্বভাবে স্থাপিত সারফেস প্লেটের উপরে রেখে ব্যবহার করার জন্য এর ভিত্তির তল উন্নয়নগুলো সমতল এবং মসৃণ করা থাকে। এর পরিমাপক পদ্ধতি সম্পূর্ণরূপে ভার্নিন্সের ক্যালিপারের অনুরূপ। হাইট গেজের ভিত্তি ঘাতে সর্বদা পরিষ্কার ও খুলিকণা মুক্ত থাকে তার প্রতি লক্ষ রাখতে হবে। কাঁচ, শক্ত ইলিমেন্ট অথবা অন্য কোন শক্ত বস্তুর উপর নজর আঙুল করতে হাইট গেজ ব্যবহার করা হয়।

### ৯) বেঁক ভাইস (Bench Vice)

শৃঙ্খলাবে কার্যবস্তুকে ধরে রাখার জন্য যে যন্ত্র ব্যবহার করা হয় তাকে ভাইস বলে। যে ভাইসে নটি ও বোল্টের সাহায্যে টেবিলের উপর আটকানো থাকে তাকে বেঁক ভাইস বলে। ভাইস ঢালাই লোহা বা ঢালাই ইস্পাতের তৈরি হয়ে থাকে। কর্মশালায় রেত দিয়ে, ছেনি দিয়ে ধাতু খণ্ড করতে কিংবা কাটতে কোন বস্তুকে ছিন্ন করতে, মেশিন দিয়ে কাটতে ইত্যাদি বিভিন্ন প্রকার কাজ করার পূর্বে কার্যবস্তুকে দৃঢ়ভাবে ধরে রাখার জন্য বেঁক ভাইস ব্যবহৃত হয়।



চিত্র : ৬.১৭ বেঁক ভাইস

### ১০) বেঁক ড্রিলিং মেশিন (Bench Drilling Machine)

যে যন্ত্রের সাহায্যে কোন বস্তুর মধ্যে ছিন্ন তৈরির কাণ্ডি সম্পন্ন করা হয় তাকেই ড্রিল মেশিন বলে। কখনও কখনও একে ড্রিল প্রেসও বলা হয়। ড্রিল মেশিন বহু প্রকার বেঁকের উপর ড্রিল মেশিন বসানো হলে তাকে বেঁক ড্রিল মেশিন বলে। শিট মেটাল কাজে বেঁক ড্রিল মেশিন ব্যবহার করা হয়। সর্বোচ্চ ১২.৫ মি: মি: ব্যাসের ছিন্ন এ মেশিন দিয়ে করা সম্ভব।

এ মেশিনে যে কাটিং টুলস ব্যবহার করা হয় তাকে ড্রিল বিট বলে। এ ড্রিল বিটকে ড্রিল মেশিনের সাথে সংযুক্ত করে কার্য বস্তুতে ছিন্ন করা হয়। বিভিন্ন আকৃতির ছিন্ন করার জন্য বিভিন্ন ব্যাসের ড্রিল বিট থাকে। ড্রিল বিট হাই কার্বন স্টিলের তৈরি।



চিত্র : ৬.১৮ বেঁক ডিলিং মেশিন

### ১১) বেঁক গ্রাইভিং মেশিন (Bench Grinding Machine)

যে মেশিনের সঙ্গে শান পাথর সংযোজন করে শান কার্য সম্পাদন করা হয় তাকে গ্রাইভিং মেশিন বা গ্রাইভার বলা হয়। বেঁকের উপর গ্রাইভিং মেশিন বসানো হলে তাকে বেঁক গ্রাইভিং মেশিন বলে। শক্তি চালিত বেঁক গ্রাইভিং

মেশিন শিপ্ট মেটাল কাজে ব্যবহার করা হয়। কোন বস্তুর তল মসৃণ করা ইত্যাদি কাজে বেঁক আইডি মেশিন ব্যবহার করা হয়ে থাকে।



চিত্র : ৬.১৯ বেঁক আইডি মেশিন

#### ১২) করাত (Saw)

গাছ কাটা, চেরাই করে তলা করা, বিভিন্ন ধরনের বোর্ড, কাঠের আসবাবপত্র তৈরি করার সময় কাঠকে খন্দ খন্দ করে কাটার জন্য যে যত্ন ব্যবহৃত হয় তাকে করাত বলে।



চিত্র : ৬.২০ করাত

#### ১৩) হ্যাক'স (Hack Saw)

বখন হাতল ও ফ্রেম সময়ের তৈরি এ যত্নের সাথে ডেড সংযুক্ত অবস্থায় থাকে তখন একে হ্যাক'স বলে। হ্যাক'স ফ্রেমের দৈর্ঘ্য প্রয়োজন অনুসারে কম বা বেশি করা যায় এবং বিভিন্ন দৈর্ঘ্যের ডেড ব্যবহার করা যায়। ধাতুর তৈরি পাইপ, রাড, টিউব ও প্রেট ইত্যাদি কাটার জন্য হ্যাক'স ব্যবহার করা হয়।



চিত্র : ৬.২১ হ্যাক'স

#### ১৪) ফাইল (File)

করাত এবং ছিদ্র করার যত্ন ইত্যাদি ধার দেওয়ার জন্য ফাইল ব্যবহৃত হয়। ইহা ছাড়া ধাতব পাতের উপরিভাগে বা ছিদ্রের ভেতরে প্রয়োজনের অভিযন্ত অল্প পরিমাণ ধাতু থাকলে তা ঘষে করা করার জন্য ফাইল ব্যবহার করা হয়। এটি হাই কার্বন স্টিল বা কাস্ট স্টিলের তৈরি হয়। ফাইলের পৃষ্ঠদেশে সারিবজ্জ্বাবে সমান্তরাল করে দাঁত কাটা থাকে। এ দাঁতগুলো দিয়ে স্টিলকে ঘষে সহজে করা যায়।



### ১৫) চিজেল (Chisel)

কাঠকে সঁয়িং করার পর কাঠের খোদাই কাজ, খোজ কাটা, জোড় কাটা ইত্যাদি করার জন্য বিভিন্ন প্রকার চিজেল ব্যবহার করা হয়। এছাড়া শিট মেটাল শপে মোটা ধাতুপাত কাটার জন্যও চিজেল ব্যবহৃত হয়। এর এক প্রাণ্তে ক্রমশঃ ঢালু করে কাটার জন্য ধারাল করা হয় এবং অপর প্রাণ্তে হাতুড়ির দ্বারা আঘাত করার জন্য তোঁতা সমতল করা হয়।



চিত্র : ৬.২৩ চিজেল

### ৬.৩ হ্যাঙ্ট টুলস ব্যবহারে সাবধানতা

- ১) হাতুড়ির হাতল যেন টিল না থাকে। টিলা হাতল দুর্ঘটনার কারণ হতে পারে।
- ২) টুল বক্স হতে কাটিং টুল বের করার সময় এর ধারাল অংশ ধরে টান দেওয়া উচিত নয়।
- ৩) কাটিং টুলের ধার কখনও হাত দিয়ে পরীক্ষা করা উচিত নয়।
- ৪) কাটিং টুলকে কখনও নিজের দেহের দিকে মুখ করে ঢালনা করা উচিত নয়।
- ৫) তৈলাক্ত হাতুড়ি বা চিজেল ব্যবহার করা উচিত নয়। হাতুড়ি তৈলাক্ত হলে পিছলে দুর্ঘটনা ঘটতে পারে।
- ৬) চিজেল দিয়ে কাটার সময় চিজেলের “কাটিং এজ”-এর প্রতি দৃষ্টি রাখতে হবে।
- ৭) ভাঙ্গা মাথা বিশিষ্ট চিজেল ব্যবহার করা উচিত নয়। এতে দুর্ঘটনা ঘটতে পারে।
- ৮) চিজেল দিয়ে কাটার সময় একবারে বেশি পরিমাণ ধাতু কাটা উচিত নয়। তোঁতা চিজেল দ্বারা গ্রান্ড কাটা উচিত নয়।
- ৯) হ্যাক'স ব্যবহার করার সময় কাজের প্রতি সতর্ক দৃষ্টি রাখতে হবে। তা না হলে হ্যাক'স ব্লেড ভেঙ্গে দুর্ঘটনা ঘটতে পারে।
- ১০) হ্যাক'স ফ্রেমের সাথে ব্লেড টিলাভাবে লাগালে দুর্ঘটনা ঘটতে পারে।
- ১১) হ্যাক'স ফ্রেম চালাবার সময় প্রয়োজনের বেশি চাপ দেওয়া উচিত নয়। তা না হলে ব্লেড ভেঙ্গে দুর্ঘটনা ঘটতে পারে।
- ১২) আইভিং ড্রিলিং মেশিনে কাজ করার সময় অবশ্যই আয়ানোন, গগলস এবং বুট জুতা পরিধান করা উচিত।
- ১৩) কোন মেশিনের বা যন্ত্রের ব্যবহার না জেনে ঢালনা করা উচিত নয়। তা না হলে দুর্ঘটনা ঘটে পারে বা মেশিন/যন্ত্র নষ্ট হতে পারে।
- ১৪) ধারাল পরিমাপক যন্ত্র পাকেটে রেখে বহন করা উচিত নয়।
- ১৫) পরিমাপক যন্ত্র বহনের সময় বিশেষ সতর্কতা অবলম্বন করা উচিত।
- ১৬) সূচৰ পরিমাপক যন্ত্র ব্যবহারের পূর্বে অবশ্যই প্রণালি জেনে নিতে হবে।
- ১৭) সূচৰ পরিমাপক যন্ত্র ক্রিটিয়ুক্ত কীনা ব্যবহারের পূর্বে তা অবশ্যই পরীক্ষা করে দেখতে হবে।

১৮) কাজ আরম্ভ করার পূর্বে যন্ত্রের বা মেশিনের ক্লু, নাট-বোল্ট ইত্যাদি যথাযথভাবে লাগান আছে কী না তা পরীক্ষা করে দেখতে হবে ।

১৯) ধারাল যন্ত্র ভোঁতা হয়ে গেলে তা শান দিয়ে ব্যবহার করা উচিত ।

### ৬.৪ হ্যান্ড টুলস-এর রক্ষণাবেক্ষণ

- ১) হাতড়ির হাতল টিলা হয়ে বের হয়ে আসলে আঘাত করে ভেতরে চুকানো ব্যবস্থা করে নিতে হবে বা নতুন হাতল প্রতিস্থাপন করতে হবে ।
- ২) হাতড়ি দিয়ে কাজ করার পর একে ভালোভাবে পরিষ্কার করে দেয়ালে ঝুলায়ে রাখতে হবে ।
- ৩) দীর্ঘদিন অব্যবহার্য থাকার সম্ভাবনা থাকলে ধাতব অংশে তেল মাখিয়ে রাখা দরকার ।
- ৪) কাজের পূর্বে ক্লু-ড্রাইভারের টিপ ভালোভাবে পরিষ্কার করে নেওয়া উচিত এবং ব্যবহারের পর পরিষ্কার করে তেল বা গ্রিজ দিয়ে রাখতে হবে ।
- ৫) পাঞ্চ ব্যবহার করার পর ভালোভাবে পরিষ্কার করে তেল বা গ্রিজ দিয়ে রাখতে হবে ।
- ৬) পাঞ্চের মাঝে ভোঁতা হয়ে গেলে গ্রাইভিং করে পরিষ্কার করে নেওয়ার পর পুনরায় ব্যবহার করতে হবে ।
- ৭) কাজ করার পর চিজেলকে পরিষ্কার করে মুছে যথাস্থানে রাখতে হবে ।
- ৮) দীর্ঘদিন চিজেল অব্যবহৃত থাকার সম্ভাবনা থাকলে মরিচা রোধক কম্পাউন্ড দিয়ে রাখতে হবে ।
- ৯) নতুন ফাইল দিয়ে প্রথমে কোন শক্ত স্টিলের উপর ফাইলিং করা উচিত নয় ।
- ১০) ব্যবহারের সময় বা ব্যবহারের পর ফাইলের উপর যাতে কোন প্রকার তেল বা গ্রিজ না লাগে সেদিকে লক্ষ রাখতে হবে ।
- ১১) হ্যাক'স দিয়ে কোন বন্ধ কাটার সময় মাঝে মধ্যে পরিমাণ মতো পানি প্রয়োগ করা উচিত ।
- ১২) হ্যাক'স ক্রেমে মরিচা রোধক পদার্থ দিয়ে দেয়ালে ঝুলিয়ে রাখা উচিত ।
- ১৩) 'স'-এর দাঁতে বা বডিতে যাতে মরিচা না ধরে সেজন্য কাজের পর তেল বা গ্রিজ দিয়ে রাখা উচিত এবং ব্যবহারের সময় এগুলো মুছে নিতে হবে ।
- ১৪) প্লায়ার্সের চোয়ালের দাঁত ক্ষয় বা নষ্ট হয়ে গেলে অবশ্যই মেরামত করতে হবে ।
- ১৫) ব্যবহারের সময় প্লায়ার্সের গায়ে তেল বা গ্রিজ লাগাতে দেবে না ।
- ১৬) কাজের শেষে হালকা তেল মাখিয়ে প্লায়ার্স যন্ত্রের সাথে বাঁকে রেখে দেবে ।
- ১৭) ড্রিল মেশিনের গার্ডগুলো সঠিক অবস্থানে থাকতে হবে ।
- ১৮) ড্রিল মেশিন দিয়ে কাজ করার সময় কার্য-বন্ধকে ভাইসে শক্তভাবে আবদ্ধ করতে হবে ।
- ১৯) কাজ শেষে পরিষ্কার করে যেসব স্থানে তেল বা গ্রিজ দেওয়া দরকার সে সব স্থানে তেল বা গ্যাজি দিয়ে মোট কাপড় দিয়ে ড্রিল মেশিন ঢেকে রাখতে হবে ।
- ২০) গ্রাইভিং মেশিনের ছাইল মাঝে মধ্যে ড্রেসিং করা দরকার ।
- ২১) গ্রাইভিং মেশিনের আবর্তিত স্থানে গ্রিজ দেওয়া উচিত ।

### প্রশ্নমালা-৬

#### **অতি সংক্ষিপ্ত প্রশ্ন**

১. হ্যাভ টুলস কাকে বলে?
২. কোন কোন কাজে ফাইল ব্যবহৃত হয়?
৩. হ্যাক'স কাকে বলে?

#### **সংক্ষিপ্ত প্রশ্ন**

১. হ্যাভ টুলস বলতে কী বোঝায়?
২. হ্যাভ টুলসকে কত ভাগে ভাগ করা যায়।
৩. মিটি (গাঁচ) হ্যাভ টুলস-এর নাম লেখ।

#### **রচনামূলক প্রশ্ন**

১. বিভিন্ন প্রকার হ্যাভ টুলস-এর নাম লেখ এদের যে কোন একটির বর্ণনা দাও।
২. হ্যাভ টুলস-এর ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয়।
৩. হ্যাভ টুলস-এর রক্ষণাবেক্ষণ সংক্ষেপে বর্ণনা কর।
৪. হ্যাভ টুলস-এর যত্ন সংক্ষেপে বর্ণনা কর।

## অধ্যাব : ৭

# ড্রিল মেশিন

যে বাহ্যিক সাধারণে কোন বস্তুর মধ্যে ছিদ্র তৈরির কাণ্ডটি সম্পর্ক করা হল তাকেই ড্রিল মেশিন বলে। কখনও  
কখনও একে ড্রিল ট্রেনও বলা হল এ মেশিনে বে কাটিং টুলস ব্যবহার করা হল তাকে ড্রিল বিট বলে। এ ড্রিল  
বিটকে ড্রিল মেশিনের সাথে সংযুক্ত করে কার্ব বস্তুতে ছিদ্র করা হল। ড্রিল সাধারণত হাই কার্বন স্টিল, হাইস্পিচ  
স্টিল ইত্যাদি কঠিন ও শক্ত ধাতু দিয়ে তৈরি হয়ে থাকে। এটা পূর্ব স্ফুরণ পদ্ধতিতে স্ফুরতে নিয়মুচী চাপের  
সাহার্যে ধাতব পদ্ধতি ছিদ্র তৈরি করে।



চিত্র ৭.১ : ড্রিল মেশিন

ড্রিলকে ধৰামত: জুইটি প্রোপেলে বিভক্ত করা হল। যথা-

(১) ট্রেইস্ট ড্রিল এবং (২) ফ্ল্যাট ড্রিল।



চিত্র ৭.২ : ড্রিল মেশিনের প্রেসিডেন্স

### ৭.১ ড্রিল মেশিনের ধৰামতের

ড্রিলকে চালনা করার জন্য যে মেশিন ব্যবহৃত হল তাকে ড্রিল মেশিন বলে। ড্রিল মেশিন আনেক ধৰামতের হল।

থাকে। তবে যে সব ড্রিল মেশিন বেশি ব্যবহৃত হয় তা হলো-

- ১) হ্যান্ড ড্রিল (Hand Drill)
- ২) ব্ৰেস্ট ড্রিল (Breast Drill)
- ৩) ইলেক্ট্ৰিক হ্যান্ড ড্রিল (Electric Hand Drill)
- ৪) বেঞ্চ ড্রিল মেশিন (Bench Drill Machine)

## ৭.২ প্রকারভেদ অনুষাগী ড্রিল মেশিনের ব্যবহার

### ১) হ্যান্ড ড্রিল মেশিন (Hand Drill Machine)

এ প্রকার ড্রিল মেশিন হাতের শক্তিতে ঘোরানো যায় এবং কাজের জন্য এক হান থেকে অন্য হানে খুব সহজে বহন করে নিয়ে ব্যবহার করা যায়। এ মেশিনে একটা ফ্রেম থাকে। ফ্রেমের সাথে একটা বিভেদ গিয়ার ও পিনিয়ন সংযুক্ত থাকে। ফ্রেমের উপরের দিকে একটা কাঠের হাতল থাকে। পিনিয়নের সাথে স্পিন্ডল অংশ যুক্ত থাকে এবং স্পিন্ডলের শেষ প্রান্তে ড্রিল চাক (Drill Chuck) সাগানো থাকে।

এ চাকের সাথে ড্রিল চাবি দিয়ে শক্তভাবে আটকানো হয়। বিভেদ গিয়ারকে ঘোরানোর জন্য এর সাথে অপর একটা হ্যান্ডেল থাকে। উপরের কাঠের হ্যান্ডেল বাম হাতে ধরে ড্রিলকে কার্য বস্তুর উপর স্থাপন করে বিভেদ গিয়ারকে ঘোরালে ঘোরে এবং ড্রিলিং কাজ এভাবে সম্পন্ন করা হয়ে থাকে। খুব হালকা কাজ বিশেষ করে পাতলা শিট কিংবা নরম বস্তু ছিদ্র করার জন্য এটি ব্যবহার করা হয়ে থাকে।



চিত্র ৭.৩ : হ্যান্ড ড্রিল

### ২) ব্ৰেস্ট ড্রিল মেশিন (Breast Drill Machine)

এটি এক বিশেষ ধরনের হ্যান্ড ড্রিল মেশিন। এ মেশিনকেও হাতে ঘোরানো যায় এবং যে কোন হানে খুব সহজে নিয়ে ব্যবহার করা যায়। এর গঠন প্রণালি ও ব্যবহার বিধি হ্যান্ড ড্রিল মেশিনের মতোই। শুধু উপরের কাঠের হাতলের পরিবর্তে আয় অর্ধ গোলাকার একটা স্টিলের পাত বৰ্তমান। এ পাতটির উপর বুক দিয়ে চাপ প্রয়োগ করে ড্রিলের উপর প্রয়োজনীয় বল প্রদান করা হয়ে থাকে। এ ড্রিলের মধ্য ভাগে যে কাঠের হাতলটি আছে তা বাম হাত দিয়ে ধরে গোলাকার পাতটিকে বুকের উপর চেপে রেখে বিভেদ গিয়ারকে ঘোরাবে কাজ সম্পন্ন করা হয়। সাধারণ হ্যান্ড ড্রিলের চেয়ে অপেক্ষাকৃত কিছু বড় ধরনের ছিদ্র ব্ৰেস্ট ড্রিল মেশিন দিয়ে করা সম্ভব।



চিত্র ৭.৪ : হ্রেস্ট ড্রিল মেশিন

### ৩) ইলেক্ট্রিক হাত ড্রিল মেশিন (Electric Hand Drill Machine)

এমন অনেক প্রকার ছিদ্রের কাজ আছে যা সাধারণ হাত ড্রিল মেশিন দিয়ে ছিদ্র করা সম্ভব হয় না। এমতাবধায় বহুযোগ্য ইলেক্ট্রিক হাত ড্রিল মেশিন বেশি উপযোগী। এ মেশিনে হাত দিয়ে চাপ ওরোগ করা হলেও ড্রিলকে ঘোরানো হয় বৈদ্যুতিক শক্তির সাহার্যে। হাতের চাপ যতক্ষণ থাকে ততক্ষণ ড্রিলটি ঘুরতে থাকে এবং হাতের চাপ বজ্য হওয়া মাঝে ড্রিলটিও ঘূর্ণন বজ্য হয়ে যায়।

পাতলা শিট এবং সর্বোচ্চ ১০ মি: মি: ব্যাস বিশিষ্ট ছিদ্র এ মেশিন দিয়ে করা সম্ভব।



চিত্র ৭.৫ : ইলেক্ট্রিক হাত ড্রিল মেশিন

### ৪) বেঞ্চ ড্রিল মেশিন (Bench Drill Machine)

বেঞ্চের উপর ড্রিল মেশিন বসানো হলে তাকে বেঞ্চ ড্রিল মেশিন বলে। এ মেশিনকে কখনো কখনো ড্রিল প্রেস বলা হয়। হালকা কাজের জন্য শিট মেটাল শপে এ মেশিন ব্যবহার করা হয়। সর্বোচ্চ ১২.৫ মি:মি: ব্যাসের ছিদ্র এ মেশিন দিয়ে করা সম্ভব।



চিত্র ৭.৬ : ড্রিলিং মেশিনের বিভিন্ন অংশ

### ৭.৩ ড্রিল মেশিন ব্যবহারের সাধারণতা

- ১) মেশিন গার্ডগুলো সঠিক অবস্থানে রাখতে হবে।
- ২) কার্যবস্তুকে ভাইস বা অন্য কোন দৃঢ় অবস্থানে শক্ত করে আবক্ষ করতে হবে।
- ৩) চিলা কাপড় পড়ে ড্রিলিং কাজ করা উচিত নয়।
- ৪) ঘূর্ণায়মান ড্রিলের নিকট ছাতের আঙুল নেওয়া উচিত নয়।
- ৫) ড্রিলচাকে ড্রিলের শক্ত এবং সুস্থরভাবে আটকাতে হবে।
- ৬) ঘূর্ণন গতি পরিবর্তনের জন্য মেশিন বক্স করে তা করতে হবে।
- ৭) কাজ শেষে পরিকার করে যে সব হানে তেল বা শিজ দেওয়া দরকার সেখানে তা দিতে হবে। দীর্ঘ সময়
- ৮) অব্যবহার্য থাকা সস্থাবনা থাকলে মোটা কাপড় দিয়ে ঢেকে রাখতে হবে।

### প্রশ্নমালা-৭

#### **অতি সংক্ষিপ্ত প্রশ্ন**

১. ড্রিল মেশিন কী?
২. ড্রিলকে প্রধানত: কী কী শ্রেণিতে বিভক্ত করা হয়?
৩. বেঞ্চ ড্রিল মেশিন কাকে বলে?

#### **সংক্ষিপ্ত প্রশ্ন**

১. বেঞ্চ ড্রিল মেশিন দিয়ে সর্বোচ্চ কত ব্যাসের ছিদ্র করা যায়?
২. ড্রিল মেশিন কত প্রকার ও কী কী?
৩. ড্রিল মেশিন কী কাজে ব্যবহার করা হয়?

#### **রচনামূলক প্রশ্ন**

১. প্রকার তেদ অনুযায়ী ড্রিল মেশিন-এর ব্যবহার ক্ষেত্র বর্ণনা কর।
২. একটি ড্রিল মেশিন-এর পরিচ্ছন্ন চিত্র অঙ্কন কর।
৩. ইলেক্ট্রিক ড্রিল মেশিন-এর ব্যবহারের সাবধানতার বর্ণনা দাও।
৪. ড্রিল মেশিন-এর প্রয়োজনীয়তা বর্ণনা কর।

অধ্যায় : ৮

## রেঞ্চ (Wrench)

যে কোন কর্মশালায় রেঞ্চ একটা প্রয়োজনীয় হ্যান্ড টুলস। এর অপর নাম স্প্যানার। শক্ত ইস্পাত দ্বারা ফোর্জিং করে রেঞ্চ তৈরি করা হয়। রেঞ্চের মুখের মধ্যে দুইটি অংশ কার্যবন্ধনকে ধরে রাখে তাকে “জ” (Jaw) বলে। রেঞ্চের হাতলের দৈর্ঘ্য যত বড় হবে তা দিয়ে কাজ করতে শক্তির প্রয়োজন তত কম লাগবে।

পাইপকে খোলা বা সংযোজন করার সময় পাইপকে শক্তভাবে ধরার জন্য অথবা না-বোল্ট খোলা বা মজবুত ও শক্ত করে শাগানোর কাজে রেঞ্চ ব্যবহার করা হয়।

### ৮.১ রেঞ্চের প্রকারভেদ

রেঞ্চ সাধারণত দুইধরনের হয়। যথা-

- ১) নিয়ন্ত্রণযোগ্য রেঞ্চ (Adjustable Wrench)
- ২) অনিয়ন্ত্রণযোগ্য রেঞ্চ (Non-Adjustable Wrench)

নিয়ন্ত্রণযোগ্য রেঞ্চের মুখ (Jaw) বাড়ানো বা কমানো যায় অন্যদিকে অনিয়ন্ত্রণযোগ্য রেঞ্চের মুখ (Jaw) বাড়ানো বা কমানো যায় না।



নিয়ন্ত্রণযোগ্য

চিত্র ৮.১ : রেঞ্চ

অনিয়ন্ত্রণযোগ্য

নিয়ন্ত্রণযোগ্য রেঞ্চের মধ্যে পাইপ রেঞ্চ অন্যতম। পাইপকে সংযোজন বা খোলার সময় শক্ত করে ধরার কাজে পাইপ রেঞ্চ ব্যবহার করা হয় বলে এদেরকে পাইপ রেঞ্চ বলে। এ রেঞ্চ দিয়ে ৭.৬ সি.মি. ব্যাস পর্যন্ত পাইপের জোড়ের পাইপ শাগানো ও খোলা যায়।

পাইপ রেঞ্চ প্রকারভেদ : তিনি প্রকার : যথা-

- ১) স্টিলসন প্যাটার্ন পাইপ রেঞ্চ (Stillson Pattern Pipe Wrench)
- ২) অ্যাজডজাস্টেবল পাইপ রেঞ্চ (Adjustable Pipe Wrench)
- ৩) চেইন পাইপ রেঞ্চ (Chain Pipe Wrench)

### ৮.২ অ্যাজডজাস্টেবল অনুযায়ী রেঞ্চের ব্যবহার

#### (১) স্টিলসন প্যাটার্ন পাইপ রেঞ্চ (Stillson Pattern Pipe Wrench)

এটি স্ট্রাইড রেঞ্চ নীতিতে তৈরি। এর দুইটি চোয়াল (Jaw) আছে এবং প্রতিটি চোয়ালে দাঁত কাঁটা থাকে। এ দাঁত থাকার কারণে কোন সিলিঙ্ক্রিয়াল বন্ধনকে শক্তভাবে ধরে রাখতে পারে। পাইপ লাইনে ব্যবহৃত সকেট, এলবো, টি, ইউনিয়ন ইত্যাদি খোলার জন্য এ প্রকারের রেঞ্চ ব্যবহার করা হয়। পাইপ লাইনে সকেট বা ইউনিয়ন খোলার জন্য দুইটি রেঞ্চ একত্রে ব্যবহার করতে হয়। একটা দিয়ে সকেট বা ইউনিয়ন স্বুরানো হয় এবং অন্যটি দিয়ে পাইপকে ছিঁড়াভাবে ধরে রাখা হয়।



চিত্র ৮.২ : স্টিলসন প্যাটার্ন পাইপ রেঞ্জ

### (২) অ্যাডজাস্টেবল পাইপ রেঞ্জ (Adjustable Pipe Wrench)

এটাও স্লাইড রেঞ্জের নীতিতে তৈরি। একে স্লাইড করার জন্য কোন নাট ব্যবহার করা হয় না। তবে চোয়াল দুইটি একটা পিন দ্বারা সংযুক্ত করা থাকে। একটা চোয়াল-এর মাঝে অংশে স্লট কাটা থাকে। স্লটের মধ্য দিয়ে সংযুক্তকারী পিন সহজেই বাতাসাত করতে পারে এবং চোয়াল দুইটিকে যে কোন দূরত্বে অ্যাডজাস্ট করা যায়। এর চোয়াল দুইটিতেও দাঁত কাটা থাকে। সে জন্য এ ধরনের রেঞ্জ গোলাকার বস্তুকে শক্তভাবে ধরে রাখতে সক্ষম। এ রেঞ্জ দিয়ে ট্যাপ ও যে কোন নাট-বোল্ট লাগাতে বা খুলতে পারা যায়।



চিত্র ৮.৩ : অ্যাডজাস্টেবল পাইপ রেঞ্জ

### (৩) চেইন পাইপ রেঞ্জ (Chain Pipe Wrench)

বড় ব্যাসের পাইপকে দৃঢ়ভাবে ধরে রেখে মুরানো জন্য এ ধরনের রেঞ্জ ব্যবহার করা হয়। প্রথমে চোয়ালকে (Jaw) পাইপের উপর স্থাপন করে চেইন দ্বারা পাইপকে জড়িয়ে চেইনের খোলা প্রান্ত অংশের মধ্যে আবক্ষ করে দিতে হয়। শেষে চোয়ালের দাঁত যাতে পাইপের উপরিভাগে কামড়ে ধরতে পারে সে জন্য হাতলকে একটু উপর উঠিয়ে তারপর হাতলের উপর চাপ দিয়ে পাইপকে মুরানো হয়।



চিত্র ৮.৪ : চেইন পাইপ রেঞ্জ

## প্রশ্নমালা-৮

## অতি সংক্ষিপ্ত প্রশ্ন

১. রেঞ্জ কী?
২. চেইন পাইপ রেঞ্জ কোথায় ব্যবহার করা হয়?
৩. সিলিন্ড্রিক্যাল বন্ধকে শক্তভাবে ধরে রাখতে কোন রেঞ্জ ব্যবহার করা হয়?

## সংক্ষিপ্ত প্রশ্ন

১. রেঞ্জ কেন ব্যবহার করা হয়।
২. পাইপ রেঞ্জ বলতে কী বোঝায়?
৩. পাইপ রেঞ্জ কত প্রকার ও কী কী?

## ব্রচনামূলক প্রশ্ন

১. রেঞ্জের ব্যবহার সম্পর্কে বর্ণনা দাও।
২. রেঞ্জের পচিম চিত্র অঙ্কন কর।
৩. পাইপ রেঞ্জের ব্যবহার বর্ণনা কর।

অধ্যায় : ৯

## রিমার

কোন ধাতব বস্তুকে ড্রিল দিয়ে ছিন্ন করার পর এর ভেতরের গোলাকার তল বা সারফেসকে নির্মুক্তভাবে মসৃণ ও ব্যাসকে নির্ভুল মাপে তৈরি করার কাজে যে যন্ত্র ব্যবহার করা হয় তাকে রিমার বলে।

### ৯.১ রিমার এর কাজ :

কোন গোলাকার ছিন্নকে অতিসূচ্চভাবে বড় করা এবং সঠিক মাপে নির্মুক্তভাবে মসৃণ করার প্রক্রিয়াকে রিমিং বলা হয়। ড্রিল মেশিন দিয়ে যে সব ছিন্ন করা হয় তা সব সময় সঠিক মাপের নাও হতে পারে। অনেক সময় দেখা যায় ছিন্নের মাপ ছিন্নের মুখে ও ভেতরের শেষ প্রান্তে এক হয় না। এ সব ছিন্নের মাপ সঠিক রাখার এবং সঠিক মানের করার জন্য ড্রিলিং-এর পর রিমিং করা হয়ে থাকে।

রিমারের প্রকারভেদ

রিমার প্রধানত দুই প্রকার। যথা-

- ১) হাতে রিমার (Hand Reamer)
- ২) মেশিন রিমার (Machine Reamer)



চিত্র ৯.১ : হাতে রিমার



চিত্র ৯.২ : মেশিন রিমার

আকৃতি অনুসারে রিমারকে দুই প্রকার। যথা-

- ১) স্ট্রেইট রিমার (Straight Reamer)
- ২) টেপার রিমার (Taper Reamer)

ফ্লটের গঠন অনুসারে রিমারকে দুই ভাগে ভাগ করা যায়, যথা-

- ১) স্ট্রেইট ফ্লট রিমার (Straight Flute Reamer)
- ২) ট্রাইস্ট ফ্লট রিমার (Twist Flute Reamer)

গঠন অনুসারে রিমারকে আবার দুইভাগে ভাগ করা যায়, যথা-

সলিড রিমার (Solid Reamer)

**অ্যাজেন্টেবল রিমার (Adjustable Reamer)**



চিত্র ৯.৩ : সলিড রিমার



চিত্র ৯.৪ : অ্যাজেন্টেবল রিমার



চিত্র ৯.৫ : সোজা ফ্লট রিমার



চিত্র ৯.৬ : টেপার রিমার



চিত্র ৯.৭ : সমান্তরাল রিমার



চিত্র ৯.৮ : পেচানো ফ্লট রিমার



চিত্র ৯.৯ : নিয়ন্ত্রণশীল রিমার



চিত্র ১.১০ : টুইস্ট ফ্লট রিমার



চিত্র ১.১১ : স্পাইডার রিমার

### রিমারের ব্যবহার

নিচ্ছলিষ্ঠিত কালে রিমার ব্যবহার করা হয়।

- ১) কোন ধাতব বক্তুর গোলাকার ছিদ্রকে অতি সূক্ষ্মভাবে বক্ত করার জন্য।
- ২) ছিল মেলিস দিয়ে ছিল করা কোন ধাতব বক্তুর ছিল গহকে মস্ত করার জন্য।
- ৩) ধাতব বক্তুর পায়ে ছিলকৃত ছিদ্রের ব্যাসকে নিরুৎ ও নির্ভুল মাপে তৈরি করার জন্য।



চিত্র ১.১২ : রিমারের ব্যবহার

### ১.২ রিমার ব্যবহারের সাধানতা

- ১) রিমির করার সময় কালের উপরূপ এবং সঠিক রিমার নির্বাচন করতে হবে।
- ২) রিমির করার সময় রিমারকে ছিদ্রের অক্ষের সাথে সঠিকভাবে পিণ্ডের কালে হবে।
- ৩) রিমারকে সব সময় ক্রমক শুরাইজ দুরিতে রিমির করতে হবে এবং দের করতে হবে।
- ৪) ট্যাপার রিমার চালানোর সময় অক্ষিক্রিয় ঢাগ প্রয়োগ করা উচিত নয়।
- ৫) রিমির অপ্লারেশন কালে যাবে যাবে রিমার দের করে ধাতু কাটাৰ পরিত্যক্ত টুকুৰা দেৱ কৰে দিতে হবে।
- ৬) রিমির কালে একবারে বেলি ধাতু কাটা উচিত নয় এবং প্রয়োজনে কাটিং ফ্লাইজ ব্যবহার কৰতে হবে।

### প্রশ্নমালা-৯

#### **অতি সংক্ষিপ্ত প্রশ্ন**

১. রিমার কী?
২. রিমিৎ কখন করা হয়ে থাকে?
৩. রিমারকে সব সময় কোন দিকে ঘুরিয়ে রিমিৎ করতে হয়?

#### **সংক্ষিপ্ত প্রশ্ন**

১. রিমিৎ বলতে কী বুবায় ?
২. রিমার কী কাজে ব্যবহার করা হয় ।
৩. রিমারের শ্রেণি বিভাগ উল্লেখ কর ।

#### **গ্রচনাযুক্ত প্রশ্ন**

১. রিমারের ব্যবহার ক্ষেত্র বর্ণনা কর ।
২. একটি রিমারের পরিচ্ছন্ন চিত্র অঙ্কন কর ।
৩. রিমার ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয় ।

## হ্যাক'স

যখন হাতল ও ক্রেম সমষ্টিতে তৈরি এ যন্ত্রের সাথে ড্রেড সংযুক্ত অবস্থার ধাকে তখন একে হ্যাক'স বলে। হ্যাক'স ক্রেমের দৈর্ঘ্য প্রয়োজন অনুসারে কম বেশি করা যায় এবং বিভিন্ন দৈর্ঘ্যের ড্রেড ব্যবহার করা যায়। ধাতুর তৈরি পাইপ, রড, প্রেট, বার, টিউব ইত্যাদি মালামাল কাটা ও সেরাই এর কাজে হ্যাক'স বহুভাবে ব্যবহৃত হয়ে থাকে। এটি হ্যাঙ্গ টুলস-এর অন্তর্গত। বাঁকানো ইস্পাতের কাঠামোর দুই প্রান্তের ধাতব আঞ্চাটার সাথে কাটিং ড্রেড আঞ্চাটানো থাকে। কাঠামোর এক পাশে হ্যাক'স এর হাতল এবং উল্টা পাশের আঞ্চাটাতে গাঁচ করে উইং নাট লাগানো থাকে। উইং নাট-এর সাহায্যে কাটিং ড্রেড লাগানো বা খোলা যায়।

**হ্যাক'স-এর প্রধানত দুইটি অংশ থাকে। যথা-**

- (১) ক্রেম ও
- (২) ড্রেড

হ্যাক'স ক্রেম আবার দুই রকম হয়। যথা-

- (১) অ্যাজাস্টেবল ক্রেম (Adjustable Frame)
- (২) সলিড ক্রেম (Solid Frame)

### (১) অ্যাজাস্টেবল ক্রেম (Adjustable Frame)

কাটিং ড্রেডের দৈর্ঘ্যের সাথে সঙ্গতি রেখে ক্রেমের দৈর্ঘ্যকে অঞ্চলসমতো কয়ানো বা বাড়ানো যায়। ফলে ক্রেমের দৈর্ঘ্যকে কম বেশি করে যে কোন দৈর্ঘ্যের ড্রেড পরানো যায়।



চিত্র ১০.১ : অ্যাজাস্টেবল হ্যাক'স ক্রেম

### (২) সলিড ক্রেম (Solid Frame)

এ ধরনের হ্যাক'স ক্রেমের কোন পরিবর্তন করা যায় না। ফলে নির্দিষ্ট মাপের কাটিং ড্রেড ব্যতিত অন্য কোন ড্রেড ব্যবহার করা যায় না।



চিত্র ১০.২ : সঙ্গত হ্যাক'স ফ্রেম

### ১০.১ হ্যাক'স ফ্রেম

হ্যাক'স ফ্রেমের বিভিন্ন অংশগুলো নিম্নরূপ

- ১) হাতল
- ২) ফ্রেম
- ৩) ফিঙ্গিং পিন
- ৪) উইঁ নাট বা ক্লাম্প নাট
- ৫) টেনশন ড্রু



চিত্র ১০.৩ : হ্যাক'স ফ্রেমের বিভিন্ন অংশ

### (১) হাতল

হ্যাক'স ফ্রেমের হাতল বিভিন্ন প্রকার হতে পারে। যথা-

- ক) ধাতব হাতল ও
- খ) কাঠের হাতল

### (২) ফ্রেম

হ্যাক'স ফ্রেম সরু পাইপ বা ইস্পাতের রেড দিয়ে তৈরি করা হয়। হ্যাক'স ফ্রেম দুই রকম হয়। যথা-অ্যাডজাস্টেবল এবং ফিঙ্গিড।

### (৩) ফিল্ডিং পিন

এ পিন ফ্রেমের দুইপাণ্ডি লাগানো থাকে। এ পিন দিয়ে হ্যাক'স ব্রেডের দুইপাণ্ডি যে দুইটি ছিদ্র থাকে তার মাধ্যমে ফ্রেমের সাথে ব্রেডকে আটকানো হয়।

### (৪) উইং নাট

দুইটা ফিল্ডিং পিনের একটা উইং নাটের সাথে আটকানো থাকে। উইং নাটের গায়ে পঁঢ়চ কাটা থাকায় এর সাহায্যে ব্রেডকে ফ্রেমের সাথে মজবুত করে আটকানো যায়।

### (৫) টেলশন স্ক্রু

এক পাশের ফিল্ডিং পিনের মাথায় স্ক্রুর ন্যায় পঁঢ়চ কাটা থাকে। এ স্ক্রুতে উইং নাট পরানো হয় এবং তা স্ক্রিয়ে ব্রেডের টেলশন ঠিক করা হয়।

## ১০.২ হ্যাক'স ব্রেড

হ্যাক'স ব্রেড সাধারণত ট্যাংস্টেন স্টিল কিংবা হাইস্পিড স্টিল দ্বারা তৈরি করা হয় এবং টেল্পার দিয়ে অত্যন্ত শক্ত করা হয়। টেল্পার দেওয়ার পর ব্রেড শক্ত হয় আবার ভঙ্গুর হয়। হ্যাক'স ব্রেড সাধারণত ২০.৩ সে.মি. হতে ৩০.৪৮ সে.মি. পর্যন্ত লম্বা হয়। ব্রেডের দুইপাণ্ডির দুইটি ছিদ্রের কেন্দ্রের দূরত্বই ব্রেডের দৈর্ঘ্য ব্রেডের প্রস্থ প্রায় ১.২৭ সে.মি. এবং পুরুত্ব ০.০৬৯ সে.মি. হয়ে থাকে। ব্রেডের প্রস্থ কম বেশি হতে পারে। বিভিন্ন রকম ধাতু কাটার জন্য বিভিন্ন প্রকার হ্যাক'স ব্রেড তৈরি করা হয়। এর মাধ্যে কয়েকটির নাম নিম্নে দেওয়া হলো। যথা-

- ১) ঘন দাঁত বিশিষ্ট ব্রেড
- ২) মধ্যম ঘন দাঁতের ব্রেড
- ৩) পাতলা দাঁত বিশিষ্ট ব্রেড
- ৪) নরম ধাতুর ব্রেড এবং
- ৫) শক্ত ধাতুর ব্রেড

## ১০.৩ হ্যাক'স-এর ব্যবহার

ধাতুর তৈরি পাইপ, রড, বার, প্লেট, টিউব ইত্যাদি মালামাল মাপ অনুযায়ী কাটা ও চেরাই-এর কাজে হস্তচালিত হ্যাক'স বহুলভাবে ব্যবহৃত হয়। এরপ কাজে হ্যাক'স-ব্যবহারে নিম্নরূপ সাবধানতা অবলম্বন করতে হয়-

## ১০.৪ হ্যাক'স-ব্যবহারে সাবধানতা

ধাতুর তৈরি পাইপ, রড, বার, প্লেট, টিউব ইত্যাদি মালামাল মাপ অনুযায়ী কাটা ও চেরাই-এর কাজে হস্তচালিত হ্যাক'স বহুলভাবে ব্যবহৃত হয়। এরপ কাজে হ্যাক'স-ব্যবহারে নিম্নরূপ সাবধানতা অবলম্বন করতে হয়-

- ১) ফ্রেমের সহিত ব্রেডের টান খুব বেশি কিংবা খুব কম হলে চলবে না।
- ২) ভাইসের সাথে মেটাল পিস খুব শক্ত করে বাঁধতে হতে।
- ৩) কাটিং মেটাল বিবেচনা করে সঠিক ব্রেড নির্বাচন করতে হবে।
- ৪) শক্ত ও পুরু ধাতব পদার্থ কাটার জন্য পাতলা দাঁত বিশিষ্ট ব্রেড এবং পাতলা ও সরু ধাতব পদার্থ কাটার জন্য ঘন দাঁত ওয়ালা ব্রেড তদব্যবহার করতে হবে।
- ৫) কাটার সময় ব্রেড যাতে বেশি গরম হতে না পারে সেজন্য পানি অথবা কাটিং ফুইড ব্যবহার করতে হবে।
- ৬) হ্যাক'স চালনা করার সময় কখনো পিচিলকারক পদার্থ ব্যবহার করা উচিত নয়।
- ৭) কাটার শেষ পর্যায়ে হ্যাক'স আন্তে আন্তে ঝুলিয়ে রাখা উচিত।
- ৮) ফ্রেম অংশে মরিচারোধক পদার্থ দিয়ে যথাস্থানে ঝুলিয়ে রাখা উচিত।
- ৯) হ্যাক'স ব্রেডের বা বিডিতে যাতে মরিচা না ধরে সেজন্য কাজের পর তেল বা ত্রিজ দিয়ে রাখা উচিত।

### প্রশ্নমালা-১০

#### **অতি সংক্ষিপ্ত প্রশ্ন**

১. হ্যাক'স কী ?
২. হ্যাক'স ব্লেড কী ?
৩. উইঁ মাট কোথায় পরানো হয় ?
৪. ব্লেড নির্বাচনে বিবেচ্য বিষয় কী ?

#### **সংক্ষিপ্ত প্রশ্ন**

১. হ্যাক সয়িৎ বলতে কী বুঝায় ?
২. হ্যাক'স এর কাজ কী ?
৩. কাটার সময় ব্লেড যাতে বেশি গরম না হয় তার জন্য কী কী ব্যবস্থা গ্রহণ করা হয় ?

#### **রচনামূলক প্রশ্ন**

১. হ্যাক'স ফ্রেম-এর পরিচ্ছন্ন চিত্র অঙ্কন করে বর্ণনা দেখ ।
২. হ্যাক'স ব্লেড-এর সচিত্র বর্ণনা দাও ।
৩. হ্যাক'স ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয় ।

## ভাইস (VICE)

কর্মশালায় বিভিন্ন ধরনের কাজ করার পূর্বে কার্যবস্তুকে দৃঢ়ভাবেধরে রাখার জন্য যে যন্ত্র ব্যবহার করা হয় তাকে ভাইস (Vice) বলে।

### ১১.১ ভাইসের প্রয়োজনীয়তা

কার্যবস্তুকে দৃঢ়ভাবে ধরে রাখার জন্য ভাইস অত্যন্ত প্রয়োজনীয় যন্ত্র। নিম্নোক্ত কাজে ভাইস এর প্রয়োজন।

- ১) কর্মশালায় ফাইল দিয়ে ধাতু ক্ষয় করতে ভাইস এর প্রয়োজন
- ২) কর্মশালায় চিজেল দ্বারা ধাতুখণ্ড ক্ষয় করতে কিংবা কাটতে
- ৩) কর্মশালায় হাক'স ব্রেড দ্বারা পাইপ কাটতে
- ৪) কর্মশালায় কোন বস্তুকে ছিদ্র করতে
- ৫) কর্মশালায় কোন বস্তুকে মেশিন দিয়ে কাটতে, ক্ষয় করতে কিংবা ছিদ্র করতে
- ৬) কর্মশালায় পাইপ কাটার দিয়ে পাইপ কাটতে বা পাইপে পাঁচ কাটতে।

### ১১.২ ভাইসের প্রকারভেদ

ভাইস সাধারণত পাঁচ প্রকারের হয়ে থাকে। যথা—

- ১) বেঝ ভাইস (Bench Vice)
- ২) মেশিন ভাইস (Machine Vice)
- ৩) হাত ভাইস (Hand Vice)
- ৪) পিন ভাইস (Pin Vice)
- ৫) টুল মেকার্স ভাইস (Tool Makers Vice)



চিত্র ১১.১ : বেঝ ভাইস



চিত্র ১১.২ : মেশিন ভাইস



চিত্র ১১.৩ : হ্যাড ভাইস



চিত্র ১১.৪ : পিন ভাইস



চিত্র ১১.৫ : টুল মেকার্স ভাইস

### ১১.৩ ভাইসে কার্বোন আটকানোর পদ্ধতি

ভাইসের মধ্যে দুটো 'জ' থাকে। ভারমধ্যে একটা 'জ' (Jaw) ছির এবং অন্যটা গতিশীল থাকে। ছির 'জ' (Jaw) টি নাট বোল্ট দিয়ে বেঞ্চের দেহের সাথে আটকানো থাকে। আর গতিশীল 'জ' (Jaw) এর মধ্যে একটা

ক্ষুণ্ণ ও একটা ছোট হাতল থাকে। যখন এই হাতলটিকে বামদিকে ঘূরানো হয় তখন 'জ' (Jaw) দুটো ফাঁক হতে থাকে। এ ফাঁকের মধ্যে কার্যবস্তুটা রেখে হাতলটা ডানদিকে ঘূরালে কার্যবস্তু দৃঢ়ভাবে আবদ্ধ হতে থাকে।



চিত্র ১১.৬ : ভাইসে কার্যবস্তু আটকানো

#### ১১.৪ বেঝ ভাইস

একে সাধারণভাবে 'প্যারালাল জ' (Parallel Jaw) বা সমান্তরাল 'জ' বিশিষ্ট ভাইসও বলে। এই প্রকার ভাইসকে নাট এবং বোল্টের সাহায্যে টেবিলের উপর আবদ্ধ করে ব্যবহার করা হয়ে থাকে। সাধারণত এটি কাস্ট আয়রন দ্বারা এবং উচ্চ শ্রেণির ভাইস কাস্ট স্টিল দ্বারা তৈরি করা হয়।

বেঝ ভাইসকে প্রধানত চারটি শ্রেণিতে বিভক্ত করা যায়-

- ১) ফিটার্স বেঝ ভাইস (Fitters Bench Vice)- ইহা ফিটিং বিভাগে ব্যবহৃত হয়।
- ২) কারপেন্টার্স বেঝ ভাসি (Carpenters Bench Vice)- এটি কাঠের কাজে ব্যবহৃত হয়।
- ৩) লেগ ভাইস (Leg Vice)- এটি কামারশালায় ব্যবহৃত হয়।
- ৪) পাইপ ভাইস (Pipe Vice)- এর দ্বারা পাইপ জাতীয় বিভিন্ন গোলাকার বস্তুকে ধারণ করা হয়ে থাকে।

কাজের রকম অনুযায়ী এই সকল ভাইস আবার বিভিন্ন প্রকার হয়ে থাকে। নিচে এদের সম্পর্কে স্বতন্ত্রভাবে আলোচনা করা হলো:

১. ফিটার্স বেঝ ভাইস (Fitters Bench Vice)- চিত্রে এই প্রকার একটি ভাইসকে পূর্ণ অবস্থায় উপরে এবং একে ছেদ (Section) করে এর ভিতরের গঠন নিচে দেখানো হলো। ভাইসটির বিভিন্ন অংশের নাম-

১. বডি (Body)
২. নাট (Nut)
৩. বোল্ট (Bolt) এবং
৪. ওয়াশার (Washer) এর সাহায্যে একে টেবিল ইত্যাদির সাথে আবদ্ধ করে রাখা হয়।

স্লাইড' (Slide)- এর ভিতরে স্পিন্ডল (Spindle) বর্তমান। স্পিন্ডলটি ঘূরালে এটা চলাচল করে।



চিত্র ১১.৭ : ফিটোর্ন বেক ভাইস

'জ' (Jaw) – সংরক্ষণ দুইটি। এই 'জ'ই প্রত্যক্ষভাবে বন্ধন উপরিভাগে ঢাপ দিয়ে একে সূচভাবে ধারণ করে রাখে। এটা কাস্ট স্টিল ধারা তৈরি হয়। এবং 'টেশ্চার' দেওয়া থাকে। উপরিভাগে দাঁত কাটা থাকায় এটি বন্ধকে কামড়ে ধরতে সামর্থ হয় এবং শিল্পে যায় না। 'কাউটোর-সার্ক-হেক্স' হ্র – এর সাহায্যে এসের একটিকে 'বিডি' সাথে এবং অপরটিকে 'প্রাইড' এর সাথে সংযুক্ত করে রাখা হয়। দুইটি 'জ'ই সমাকৃতভাবে সূচ করা থাকে। ভাইসের 'বিডি' অংশ ছিল থাকে বলে এর সাথে সূচ জাঁটি সর্বদা ছিল থাকে। কিন্তু 'প্রাইড' এর সহিত সূচ 'জ'টি 'প্রাইড' এর চলাচলের সাথে চলাচল করে।

**হাতল** (Handle) – এর সাহায্যে স্পিন্ডলকে সূচানো হয় ফলে, 'প্রাইড' অংশটি সরে।

**স্পিন্ডল** (Spindle) – এর টেপের 'করার শ্রেণি' (Square thread) করা। কিন্তু মা, 'ক্লাইক রিলিজ' (Quick Release) ব্যবহা বিশিষ্ট, এর টেপের 'বাটিলেস' (Buttress) রকমের শ্রেণি করা থাকে।

**বক্স নট** (Box Nut) – হ্র – এর সাহায্যে এটি 'বিডি'র সাথে সূচ করা থাকে। এর মধ্যেও স্পিন্ডলের অনুজগ্ন হ্র-শ্রেণি করা। ফলে, স্পিন্ডলকে সূচালো 'প্রাইড' অংশটি সরে থাকে।

**নব** (Knob) – এর হিসেব ঘণ্টা দিয়ে হাতলাটি সরে।

**২. কারপেন্টার্স বেক ভাইস (Carpenters Bench Vice) :** কাঠের কাজে যে সকল কাঠ ব্যবহার করা হয় সাধারণত এসের আস্তন বেশি থাকে। উপরজু, লৌহ অপেক্ষা কাঠ অনেক নরম বলে কাঠের কাজের পক্ষে 'কারপেন্টার বেক ভাইস' উপযোগী হয় না। এর জন্য দাঁতবিহীন এবং প্রশস্ত 'জ' বিশিষ্ট এক বিলোৰ থাকার ভাইস ব্যবহৃত হয়ে থাকে।



চিত্র ১১.৮ : কারপেন্টার্স বেক ভাইস

### ৩. লেগ ভাইস (Leg Vice) :

এটি অধ্যানক কার্যালয়শালীয় (Blacksmith Shop) ব্যবহৃত হব বলে ধাকে কেহ কেহ 'ক্লাকশিপ ভাইস'ও বলে। এর অন্তর নাম 'স্টেবল ভাইস' (Stable Vice)। এর নিচের দিকে পুঁজের ন্যায় যে দীর্ঘ অল্পটি বর্তমান উজ্জ্বল ভাইসের 'লেগ' (Leg) বা 'পা' বলা হয়। সরোর মেঝে বা মাটির মধ্যে কাঠের খণ্ডি বসিয়ে উজ্জ্বল উপর একে স্থাপন করা হয়ে থাকে। যে 'জটি চলাচল করে উজ্জ্বল একটি পাত স্প্রিং' এর সহিত সহজে করা। এই প্রকার ভাইসের অস্তুরিয়া এই যে, ইহার 'জ' স্প্রিংটি কেবল একটি অবস্থানেই সমান্তরাল থাকে এবং কেবল তখনই এটি বস্তকে দৃঢ়ভাবে ধারণ করতে সক্ষম হয়। অন্য প্রকার অবস্থানে এ ধারণ অধিক দৃঢ় হয় না। নিচে চিত্রতে এর উদাহরণ দেওয়া হলো। এই কারণে ব্যবহারের সময় এ প্রকার ভাইসে 'জ' স্প্রিংটির ব্যবহার থাকে অধিক না হয় তার অতি সক্ষ ব্যাখ্যা প্রযোজন।



চিত্র ১১.৯ : লেগ ভাইস

বস্তকে বাঁকাতে বা এর উপর আঁকাত নিতে এ প্রকার ভাইস উপযোগী হয়ে থাকে।

### ৪. পাইপ ভাইস (Pipe Vice) :

এর সাহায্যে পাইপ (Pipe), রড (Rod) ইত্যাদি বিভিন্ন গোলকার বস্তকে দৃঢ়ভাবে ধারণ করতে সক্ষম। এর 'জ' – এর ন্যায় কোণ বিশিষ্ট।

পাইপ ভাইস-এর সাহায্যে পাইপ বা বে কোন গোলকার বস্তকে দৃঢ়ভাবে আটকে পাইপ কাটা থাকে বা পাইপ পাঁচ তৈরি করা থাকে।



চিত্র ১১.১০ : পাইপ ভাইস

### ৫. মেশিন ভাইস (Machine Vice) :

এটি ড্রিলিং (Drilling), শেপিং (Shaping), ইত্যাদি বিভিন্ন মেশিনে বস্তকে দৃঢ়ভাবে ধারণ করে রাখতে

ব্যবহৃত হয়ে থাকে ।



চিত্র ১১.১২ : মেশিন ভাইস

‘বেঁক ভাইস’ এবং ‘মেশিন ভাইস’-র মধ্যে প্রভেদ :

‘বেঁক ভাইস’-কে কাজের বেঁক বা টেবিলের উপর ইচ্ছামতো উচ্চতায় এবং তলে (Plane) অতি দৃঢ়ভাবে আবক্ষ করা যায় । ফলে, শিক্ষার্থী কাজের বন্ডিটির উপর হাতের সাহায্যে অত্যক্ষভাবে কাজ করতে সক্ষম হয়ে থাকে ।

‘মেশিন ভাইস’-কে শেপিং, ড্রিলিং, মিলিং, স্ট্রিট ইত্যাদি মেশিনের টেবিলের উপর বা কার্যকারি অংশের সাথে আবক্ষ করে বিভিন্ন অবস্থানে ধারণা হয় । এটি কাজের বন্ডিটিকে দৃঢ়ভাবে ধারণ করে । তবে মেশিনের কাজের পক্ষেই এ প্রকার ভাইস বিশেষভাবে উপযোগী হয়ে থাকে ।

**ইউনিভার্সাল ভাইস (Universal Vice) :**

এ প্রকার ভাইসকে কাজের টেবিল বা মেশিনের উপর সহজে আবক্ষ করে কাজের বন্ডিটিকে যে কোন কোণে ধারণ করার উদ্দেশ্যে ভাইসকে প্রয়োজনীয় কোণে অবস্থান করানো যায় । এর ফলে উপরিভাগের সমান্তরাল এবং আনুভূমিক তলের সাথে যে কোনো কোণে বন্ডিটিকে গরীব্য করতে সুবিধা হয় । অধিক সংখ্যক বন্ড উৎপাদন ক্ষেত্রে সহজের অপচয় কর্মাবার জন্য এটি বিশেষ উপযোগী হয়ে থাকে ।



চিত্র ১১.১৩ : ইউনিভার্সাল ভাইস

### হ্যান্ড ভাইস (Hand Vice) :

এর দৈর্ঘ্য সাধারণত ১২৫ মি.মি. হতে ১৫০ মি.মি. পর্যন্ত হয়। হ্যান্ড ভাইসের সাহায্যে ক্ষুদ্র বস্তুকে হাতে দৃঢ়ভাবে ধারণ করে কাজ করতে সুবিধা হয়। হাতে ব্যবহৃত দুই প্রকার ‘হ্যান্ড ভাইস’ দেখানো হলো।



চিত্র ১১.১৪ : হ্যান্ড ভাইস

### পিন ভাইস (Pin Vice) :

এর সাহায্যে ক্ষুদ্র ফাইল, (File) ফাইবার (Scriber) ইত্যাদির ট্যাঙ (Tang) অংশকে অথবা অধিক সরু গোল বস্তুকে ধারণ করতে সুবিধা হয়। এর মূল অংশটিকে সুরালে ‘জ’-এর মুখ সঙ্কুচিত হয়ে যায় এবং এটি বস্তুটিকে দৃঢ়ভাবে ধারণ করে।



চিত্র ১১.১৫: পিন ভাইস

### টুলস মেকার্স ভাইস (Tools Makers Vice)

এর অপর নাম ‘টুল মেকার্স ক্লাম্প’ (Tool Makers Clamp) বা ‘প্যারালাল ক্লাম্প’ (Parallel Clamp)। যে দুই প্রকার টুল মেকার্স ভাইস’ দেখানো হয়েছে। উভয়ই সমান্তরাল পার্শ্বভাগ বিশিষ্ট একাধিক বস্তুকে একত্রে দৃঢ়ভাবে ধারণ করার জন্য ব্যবহৃত হয়ে থাকে।



চিত্র ১১.১৬ : টুলস মেকার্স ভাইস

### প্রশ্নমালা-১১

#### অতি সংক্ষিপ্ত প্রশ্ন

১. ভাইস কী?
২. টুলস মেকার্স ভাইস এর অপর নাম কী ?
৩. হ্যান্ড ভাইস এর দৈর্ঘ্য কত?

#### সংক্ষিপ্ত প্রশ্ন

১. পিন ভাইস এর সুবিধা কী ?
২. ভাইস কেন ব্যবহার করা হয়?
৩. ভাইস কত প্রকার ও কী কী?

#### স্থানান্তরিক প্রশ্ন

১. ভাইস-এর প্রয়োজনীয়তা বর্ণনা কর।
২. ভাইস-এ জব আটকানোর পদ্ধতি বর্ণনা কর।
৩. একটি ভাইসের পরিচ্ছম চিত্র অঙ্কন করে তার বর্ণনা কর।

## চেইন পাইপ ট্ৰ

কৰ্মশালায় ৱেষ্ট একটা অতি অৱোজনীয় বস্তু। শক্ত ইল্পাত দিয়ে ফোর্জ কৰে ৱেষ্ট তৈয়া হয়ে থাকে। ৱেষ্ট বিভিন্ন সাইজের নাট বোল্ট শক্তভাবে ধৰতে বা সুৱাতে এবং বিশেষ ধৰনের ৱেষ্ট ঘাৰা বড় ব্যাসের গোলাকাৰ রড বা পাইপ দৃঢ়ভাবে ধৰতে বা সুৱাতে ব্যবহৃত হয়। এ ধৰনের ৱেষ্টকে চেইন পাইপ ট্ৰ বলে।

### ১২.১ চেইন পাইপ ট্ৰ-এৰ অৱোজনীয়তা

বড় ব্যাসের পাইপকে শক্তভাবে ধৰে ৱাখতে বা সুৱাতে চেইন পাইপ ট্ৰ-এৰ অৱোজন হয়।

### ১২.২ চেইন পাইপ ট্ৰ- এৰ ব্যবহাৰ

চেইন পাইপ ট্ৰ বেশি ব্যাসমুক্ত পাইপ সাইনেৰ কাজে ব্যবহাৰ কৰা হয়। ৭৫ মিমি: অশেকা বড় ব্যাসেৰ পাইপকে দৃঢ়ভাবে থাৰণ কৰে আটকাতে বা খুলতে এ বস্তু ব্যবহাৰ কৰা হয়। এ বস্তু লব্ধি থাকে। চেইন ঘাৰা পাইপকে শক্তভাবে ট্ৰ-এৰ সাথে আটকাণোৰ জন্য চেইন পাইপ ট্ৰ ব্যবহাৰ কৰা হয়।

চেইন পাইপ ট্ৰ এ দুই ধৰনেৰ চেইন থাকে। যেমন-

১. ফ্লাট লিঙ্ক চেইন

২. ক্যাবল চেইন



With Flat Link Chain



With Cable Chain

### চিত্র ১২.১ : চেইন পাইপ ট্ৰ

#### ১২.৩ চেইন পাইপ ট্ৰ-এৰ ব্যবহাৰে সাৰ্বধানতা

- ১) কাজেৰ প্ৰকৃতি অনুসাৰে উপযোগী চেইন পাইপ ট্ৰ ব্যবহাৰ কৰা উচিত।
- ২) নাট বোল্ট সুৱালো কাজে এ বস্তু ব্যবহাৰ কৰা উচিত নহ।
- ৩) এ বস্তুকে হাতুড়ি হিসেবে ব্যবহাৰ কৰা উচিত নহ।
- ৪) পাইপকে দৃঢ়ভাবে চেইন দিয়ে আটকাণো উচিত।

### প্রশ্নমালা-১২

#### অতি সংক্ষিপ্ত প্রশ্ন

১. চেইন পাইপ টৎ এ কী কী ধরনের চেইন থাকে?
২. চেইন পাইপ টৎ কিরূপ ব্যাসের পাইপ ধরতে ব্যবহৃত হয়?

#### সংক্ষিপ্ত প্রশ্ন

১. চেইন পাইপ টৎ কী?
২. চেইন পাইপ টৎ কী কাজে ব্যবহার করা হয়?

#### রচনামূলক প্রশ্ন

১. চেইন পাইপ টৎ-এর প্রয়োজনীয়তা বর্ণনা কর।
২. চেইন পাইপ টৎ-এর ব্যবহার ক্ষেত্র বর্ণনা কর।
৩. চেইন পাইপ টৎ-এর ব্যবহারে সাবধানতাঙ্গলো বর্ণনা কর।

## প্লাম্ব বব (Plumb Bob)

প্লাম্ব বব পিতল, ইস্পাত বা সীসার তৈরি গোজ আকৃতির ওজন বিশেষ। এটা দেখতে অনেকটা লাটিম-এর মতো। এর অগভাগ সূচালো থাকে এবং পেছনের ভাগে একটা আঞ্চটার মতো থাকে যাতে সুতো বাধা হয়। এর ওজন ১১৩ হতে ১৭০ গ্রাম পর্যন্ত হয়। কাঠের ছেট টুকরার মাঝখানে ছিদ্র করে তার ভেতর সুতা ধারা ওজন ঝুলিয়ে ব্যবহার করা হয়। প্লাম্ব ববের ব্যাসের সমান দৈর্ঘ্যের একটা কাঠের টুকরার ঠিক মাঝখানে ছিদ্র করে প্লাম্ব বব ঝুলানো হয়।



চিত্র ১৩.১ : প্লাম্ব বব

### ১৩.১ প্লাম্ব ববের প্রয়োজনীয়তা

ইমারত নির্মাণের সময় দেয়াল ঠিক খাড়া (Vertical) উঠছে কীনা তা পরীক্ষা করার প্রয়োজনে প্লাম্ব বব ব্যবহার করা দরকার।



চিত্র ১৩.২ : প্লাম্ব বব ব্যবহার

### ১৩.২ প্লাম্ব ববের ব্যবহার

ইমারত নির্মাণের সময় দেয়াল মাটি থেকে ঠিক খাড়াভাবে উঠছে কীনা তা পরীক্ষা করা হয় প্লাম্ব ববের সাহায্যে। একখানা ছেট কাঠের টুকরার মাঝখানে ছিদ্র করে তার ভেতর সুতা ঝুলিয়ে দেওয়া হয়। সুতার নিচের প্রান্তে বাঁধা থাকে ভারী গোজ আকারের ধাতব বল এবং উপরের প্রান্তে আটকানো থাকে একটা কাঠের টুকরা। ছিদ্র থেকে কাঠের টুকরার

কিনারা যত মিলিমিটার দূরে নিচের ধাতব বলাটির ব্যাসার্ধও ঠিক তত মিলিমিটার ।

কাঠের টুকরাখানি দেখাতের গায়ে শাগিয়ে যদি দেখা যায় ধাতব বলাটির ঠিক দেয়াল স্পর্শ করছে, তা হলে বুঝতে হবে দেয়াল ঠিক খাড়া উঠেছে ।



চিত্র ১৩.৩ : প্লাম ববের ব্যবহার

### গ্রন্থমালা-১৩

#### **অতি সংক্ষিঙ্গ প্রশ্ন**

১. প্রাথ বব কী?
২. প্রাথ বরের সাহায্যে কী পরীক্ষা করা হয়?

#### **সংক্ষিঙ্গ প্রশ্ন**

১. প্রাথ বব কী কাজে ব্যবহার হয়?
২. কী করে বুবা যায় দেয়াল ঠিক খাড়া উঠেছে?

#### **রচনামূলক প্রশ্ন**

১. প্রাথ ববের প্রয়োজনীয়তা বর্ণনা কর।
২. প্রাথ ববের ব্যবহার পদ্ধতি বর্ণনা কর।

অধ্যাব : ১৪

## স্পিরিট লেভেল (Spirit Level)

কাঠ বা ধাতব তৈরি শব্দা মডেল মাঝে নল বুনবুন শাপিঙে স্পিরিট লেভেল তৈরি করা হয়। এটি সাধারণত ৬৫ সেমিটিমিটার লম্বা, ৭.৫ সেমিটিমিটার চওড়া এবং ২ সেমিটিমিটার পুরু হয়ে থাকে। কাঠের বা ধাতব লেভেল মডেল মাঝখালে একটা গুর্ণ করা থাকে। সেখালে মেঘিলেটেজ স্পিরিট জর্ণি একটা কাঁচ নল এমনভাবে আটিকালো থাকে বা সহজে পড়ে না। এটি একটা ভজুয় বজ্র যা সহজে নষ্ট হয়ে যেতে পারে। সেজল্য ব্যবহার খেবে যদ্ব সহকারে রেখে দিতে হবে।



চিত্র ১৪.১ : স্পিরিট লেভেল

### ১৪.১ স্পিরিট লেভেলের অর্থোডোক্সি

স্পিরিট লেভেল হারা মেঝে বা দেয়ালের গৌরুনির তর আনন্দমিক আছে কৈনা তা পরীক্ষা করা সরকার। ইটের দেয়ালের প্রতিটি জ্বর জুমির সাথে সমান্তরাল হবে।



চিত্র ১৪.২ : স্পিরিট লেভেল হারা পরীক্ষা

### ১৪.২ স্পিরিট লেভেলের ব্যবহার

স্পিরিট লেভেল হারা মেঝে বা গৌরুনির লেভেল পরীক্ষা করা হয়। গৌরুনির উপরে পাটাখালি রেখে তার উপর

স্পিরিট লেভেল ব্যবহার করে স্পিরিট লেভেলের বুদবুদও টিউবের ঠিক কেন্দ্রে থাকবে। বুদবুদ যদি ঠিক মাঝখানে না থাকে যেদিকে সরে যাবে, সেদিকে গাঁথুনি উঁচু হয়েছে নির্দেশ করবে। এভাবে যে লেভেল পর্যন্ত গাঁথুনি ভূল গাঁথা হয়েছে বলে ধৰা পড়বে, সে স্তৱ পর্যন্ত ভেঙে কেলে স্পিরিট লেভেলের সহায়তায় নতুন করে গাঁথুনি তৈরি করতে হবে।



চিত্র ১৪.৩ : স্পিরিট লেভেলের ব্যবহার

#### প্রশ্নমালা-১৪

##### সংক্ষিপ্ত উত্তর

১. স্পিরিট লেভেল কী?
২. স্পিরিট লেভেল দ্বারা কী পরীক্ষা করা হয়?

##### সংক্ষিপ্ত উত্তর

১. স্পিরিট লেভেল কী কাজে ব্যবহার হয়?
২. স্পিরিট লেভেলের প্রয়োজনীয়তা কী?

##### রচনামূলক উত্তর

১. স্পিরিট লেভেল-এর প্রয়োজনীয়তা বর্ণনা কর।
২. স্পিরিট লেভেল-এর ব্যবহার পদ্ধতি বর্ণনা কর।

অধ্যায় : ১৫

## পাইপ কাটার (Pipe Cutter)

সাধারণত বড় ব্যাসের পাইপকে অল্প সময়ে ও কম পরিশ্রমে উভমুখে কাটার জন্য যে যন্ত্র ব্যবহৃত হয় তাকে পাইপ কাটার বলে। এটি হাই কার্বন স্টিলের তৈরি। পাইপ কাটার দিয়ে ইস্পাত, তামা, পিতল, পেটা লোহা এবং সীসার পাইপ কাটা যায়।



চিত্র ১৫.১ : পাইপ কাটার

### ১৫.১ পাইপ কাটারের প্রয়োজনীয়তা

সাধারণ সরু পাইপ হ্যাক'স দিয়ে সহজেই কাটা যায়। কিন্তু বড় আকারের পাইপ হ্যাক'স দিয়ে কাটতে যেমন পরিশ্রম হয় তেমনি সময় লাগে অনেক বেশি। সেজন্য বড় ব্যাসের পাইপকে কাটার জন্য “পাইপ কাটার” ব্যবহার করা হয়ে থাকে। এটি দিয়ে পাইপকে স্বল্প সময়ে ও কম পরিশ্রমে সুন্দরভাবে কাটা যায়।

### ১৫.২ পাইপ কাটারের প্রকারভেদ

পাইপ কাটার প্রধানত পাঁচ প্রকারের হয়ে থাকে। যথা-

- (ক) লিংক পাইপ কাটার
- (খ) সিঙেল হাইল পাইপ কাটার
- (গ) ড্রি-হাইল পাইপ কাটার
- (ঘ) রোলার টাইপ পাইপ কাটার
- (ঙ) এ্যাকশন অফ লিংক পাইপ কাটার

### ১৫.৩ পাইপ কাটারের ব্যবহার :

সাধারণ ব্যাসের পাইপ কাটার জন্য দুইটি গাইড রোলার বিশিষ্ট পাইপ কাটার ব্যবহার করা হয়ে থাকে। তবে বড়

ব্যাসের পাইপ কাটার জন্য চারটি গাইড রোলার বিশিষ্ট পাইপ কাটার ব্যবহার করা হয়ে থাকে।

#### ১৫.৪ পাইপ কাটারের ব্যবহারে সাবধানতা

- ১) হাতলকে ঘুরিয়ে স্লাইডকে অগ্র-পশ্চাত চালনা করা যায় কীনা তা দেখা উচিত।
- ২) স্লাইড-এর উপরের দিকে একটা কাটার সংযোজন করা উচিত।
- ৩) ফ্রেম-এর সাথে গাইড রোলারসহ পাইপ কাটারের অন্যান্য অংশ সঠিকভাবে সংযোজন করা উচিত।
- ৪) পাইপকে কাটার ছাইলের বিরুদ্ধে ধরে রাখার জন্য গাইড রোলার ব্যবহার করা উচিত।
- ৫) যে পাইপ কাটতে হবে তাকে পাইপ ভাইসে শক্তভাবে আবদ্ধ করা উচিত।
- ৬) হাতলের চলাচলকে নিয়ন্ত্রণ করার জন্য সেট ক্লু ব্যবহার করা উচিত।
- ৭) পাইপকে কাটার জন্য ছাইল ব্যবহার করা উচিত।

## প্রশ্নমালা-১৫

### সংক্ষিপ্ত প্রশ্ন

১. সরু পাইপ কী দিয়ে সহজেই কাটা যায়?
২. হাতলের চলাচলকে নিয়ন্ত্রণ করার জন্য কি ব্যবহার করা উচিত?
৩. বড় ব্যাসের পাইপ কাটার জন্য কয়টি গাইড রোলার ব্যবহার করা হয়ে থাকে?

### সংক্ষিপ্ত প্রশ্ন

১. পাইপ কাটার কী?
২. পাইপ কাটার কী কাজে ব্যবহার হয়?
৩. পাইপ কাটার কত প্রকার ও কী কী?

### রচনামূলক প্রশ্ন

১. পাইপ কাটারের প্রয়োজনীয়তা বর্ণনা কর।
২. পাইপ কাটারের ব্যবহার পদ্ধতি বর্ণনা কর।
৩. পাইপ কাটার ব্যবহারের সাবধানতা বর্ণনা কর।
৪. একটি পাইপ কাটারের পরিচয় চিত্র অঙ্কন করে তার অংশ দেখাও।

## অটোমেটিক পাইপ প্রেডিং মেশিন

যে যন্ত্রের সাহায্যে সংক্রিয়ভাবে কোন ধাতু খণ্ডের গোলাকার ছিদ্রের মধ্যে অথবা ছিদ্রের বাইরে প্রেড উৎপন্ন করা তাকে অটোমেটিক পাইপ প্রেডিং মেশিন এবং উক্ত প্রেডিং প্রক্রিয়াকে অটোমেটিক পাইপ প্রেডিং বলে।

### ১৬.১ অটোমেটিক পাইপ প্রেডিং মেশিন এবং প্রয়োজনীয়তা

সাধারণত পাইপের সংযোগ অথবা পাইপের সাথে ফিটিংস সংযোগ করার জন্য প্রেড কাটা আবশ্যিক। সঠিক মাপে পাইপে প্যাঁচ কাটতে হলে নিয়ম মেনে চলতে হয়। যেমন “একপ্রাণ্ত হতে অন্য প্রাণ্ত”(End to End Motion) নিয়ম “একপ্রাণ্ত হতে কেন্দ্র প্রাণ্ত” (End to Centre) নিয়ম এবং “কেন্দ্র হতে কেন্দ্র” (Centre to Centre) নিয়ম। প্যাচের অনুমতি দৈর্ঘ্য  $\frac{1}{2}$ " থেকে  $\frac{1}{8}$ " ব্যাসের পাইপের প্যাঁচ কাটতে হবে  $\frac{1}{8}$ ",  $\frac{1}{4}$ " থেকে  $\frac{1}{2}$ " ব্যাসের প্যাঁচ কাটতে হবে  $\frac{1}{2}$ " এবং  $1\frac{1}{2}$ " (ইঞ্জিনিয়ারিং পর্যন্ত ব্যাসের পাইপের  $1\frac{1}{2}" - 1\frac{1}{8}"$  পর্যন্ত প্যাঁচ কাটতে হবে।

### ১৬.২ ব্যবহারিক ক্ষেত্র :

অটোমেটিক প্রেডিং মেশিনে সাধারণত যে কোনো ব্যাসের পাইপে সংক্রিয়ভাবে প্রেড কাটা হয়। এর সাথে আনুষঙ্গিক ফিটিংস থাকে। যেমন-

ক) অটোমেটিক চাক মাস্টিস্পিড ট্রাঙ্কিমিশন,

খ) অর্পেল বিল্ডার,

গ) পাইপ ধরে বাঁকার পর্যান্ত জায়গা।

সাধারণত পিলু কারখানায় বাণিজ্যিক ভাবে প্যাঁচ কাটার প্রয়োজন হলে এ মেশিনে কাজ করা হয়।

### ১৬.৩ সাবধানতা

প্রাপ্তির বা কারিগরকে মেশিন চালুর পূর্বে মেশিন সম্পর্কে বিস্তারিত জেনে নিতে হবে এবং জরুরি প্রয়োজনে মেশিনটি কীভাবে বন্ধ করা যায় তাও জানা প্রয়োজন। নির্মাতা প্রতিষ্ঠানে নির্দেশ মোতাবেক মেশিনটিতে কার্যক্রম পরিকার ও পরিচ্ছন্ন রাখতে হবে। মেশিনে কাজ করার সময় নিরাপত্তা সরঞ্জাম অবশ্যই পরিধান করে নিতে হবে। ডাই সেট ঠিক মতো বসাতে হবে এবং প্রেডিং-এর সময় যাতে পাইপ দৃঢ়ভাবে আটকানো থাকে সে জন্য ব্যবস্থা নিতে হবে। চালু অবস্থায় মেশিন পরিকার বা ওয়েলিং করা উচিত নয়।



চিত্র ১৬.১ : অটোমেটিক পাইপ প্রেডিং মেশিন

### ১৬.৪ ব্রক্ষণাবেক্ষন

নিয়মিত মেশিন পরিকার ও তেল দেওয়ার উপরই মেশিনের কাজের নির্ভুততা ও আয়ু সম্পূর্ণভাবে নির্ভর করে। মেশিন নিয়মিত চালানো, ওয়েলিং করা প্রয়োজন। এ ব্যাপারে নির্মাতা প্রতিষ্ঠানের নির্দেশ মতো কাজ করতে হবে।

### প্রশ্নমালা-১৬

#### **অতি সংক্ষিপ্ত প্রশ্ন**

১. প্লাষার বা কারিগরকে মেশিন চালুর পূর্বে কী জানতে হয়?
২. মেশিন নিয়মিত চালানো প্রয়োজন কেন?
৩. কোন প্রতিষ্ঠানের নির্দেশ মতো কাজ করতে হবে?

#### **সংক্ষিপ্ত প্রশ্ন**

১. অটো পাইপ প্রেডিং মেশিন কী?
২. অটো পাইপ প্রেডিং মেশিন কী কাজে ব্যবহার হয়?
৩. সাধারণত শিল্প কারখানায় বাণিজ্যিক ভাবে প্র্যাচ কাটার জন্য কোন মেশিন ব্যবহার করা হয়?

#### **রচনামূলক প্রশ্ন**

১. অটো পাইপ প্রেডিং-এর প্রয়োজনীয়তা বর্ণনা কর।
২. অটো পাইপ প্রেডিং-এর ব্যবহার পদ্ধতি বর্ণনা কর।
৩. অটো পাইপ প্রেডিং মেশিন ব্যবহারে সাবধানতা বর্ণনা কর।
৪. অটো পাইপ প্রেডিং-এর রক্ষণাবেক্ষনবর্ণনা কর।

## ডাইস্টক (Dic Stock)

---



---

ডাই দিয়ে পাইপের বাইরের দিকে পঁচ বা থ্রেড কাটার জন্য লম্বা হাতল বিশিষ্ট যে যন্ত্রের মাঝখানে ডাই স্থাপন করে থ্রেড কাটা হয় তাকেই ডাইস্টক বলে। এটি হাই কার্বন স্টিলের তৈরি। এর দুই প্রান্তে ২টি হাতল থাকে। হাতল ২টি দ্বারা ডাইস্টককে ঢানে বা বাঁয়ে সুরানো যায়। বিভিন্ন ব্যাসের পাইপে পঁচ কাটার জন্য বিভিন্ন ব্যাসের ডাই, ডাইস্টকের সাথে যুক্ত করা হয়।

### ১৭.১ ডাইস্টকের প্রয়োজনীয়তা

পাইপের বাইরের দিকে পঁচ কাটার সময় ডাই স্থাপন ও সুরানোর হাতল হিসেবে ডাইস্টক ব্যবহৃত হয়।

### ১৭.২ ডাইস্টকের বিভিন্ন অংশের নাম

ডাইস্টকের বিভিন্ন অংশের নাম নিম্নে অদ্বিতীয় হলো। যথা-

- ১) ডাইস্টক
- ২) হাতল
- ৩) ডাই এবং
- ৪) ক্লু

### ১৭.৩ ডাইস্টকের প্রকারভেদ

ডাই-এর আকার আকৃতি ও ব্যবহারের উপর ভিত্তি করে বিভিন্ন প্রকার ডাইস্টক তৈরি করা হয়। ডাই এর প্রকারভেদ অনুযায়ী বিভিন্ন প্রকার ডাইস্টক হতে পারে। ডাইস্টক প্রধানত দুই প্রকারের। যথা-

- ক) রাউন্ড স্পিলিট ডাই ব্যবহার উপযোগী ডাইস্টক।
- খ) আয়তাকার লুজ ডাই ব্যবহার উপযোগী ডাইস্টক।

#### (ক) রাউন্ড স্পিলিট ডাই ব্যবহার উপযোগী ডাইস্টক

ডাইস্টকের মাঝে স্পিলিট ডাই স্থাপন করে তিনটি ক্লু দিয়ে আটকানো হয়। মাঝের ক্লু টাইট দিয়ে ডাই-এর মুখ খোলা হয় এবং দুই পাশের দুইটি ক্লু টাইট দিয়ে ডাইকে ডাইস্টকের সাথে শক্তভাবে আটকানো হয়।

#### (খ) আয়তাকার লুজ ডাই ব্যবহার উপযোগী ডাইস্টক

লুজ ডাই স্পিলিট ডাই এর মতোই ডাইস্টকে আটকিয়ে ব্যবহার করা হয়। এ ডাইস্টকের ক্লুর সাহায্যে ডাই এর ব্যাস ঠিক করা হয় এবং ডাই স্টকের সাথে দৃঢ়ভাবে আটকানো হয়।



ডাই-স্টক (লুজ ডাই এর জন্য)



পাইপে প্যাঁচ কাটার জন্য



ডাই-স্টক (লুজ ডাই এর জন্য)



চিত্র ১৭.১ : বিভিন্ন ধরনের ডাই স্টক

#### ১৭.৪ ডাই ভাঙ্গার কারণ

পাইপের বাইরের দিকে ডাই দিয়ে খ্রেড কাটার সময় বিভিন্ন কারণে ডাই ভঙ্গে যেতে পারে। নিম্নে ডাই ভাঙ্গার কারণসমূহ উল্লেখ করা হলো।

- ১) ওয়ার্কপিসের সাথে ডাই সঠিক লম্বভাবে বা ক্ষয়ার করে না বসালে প্রবল পার্শ্চাপের কারণে ডাই ভঙ্গে যেতে পারে।
- ২) ডাইস্টকের হাতলের যে কোনো এক প্রান্তে নিম্নমুখী চাপ বেশি পড়লে ডাই ভঙ্গে যেতে পারে।
- ৩) কাটিং ফ্লাইড ব্যবহার না করলে ডাই ওয়ার্কপিসের গায়ে শক্তভাবে এঁটে বসে ডাই ভঙ্গে যেতে পারে।
- ৪) খ্রেডিং-এর সময় মাঝে মাঝে ডাই উষ্টো দিকে ঘূরিয়ে মেটল চিপস ভঙ্গে বের করে না দিলে ডাই জ্যাম হয়ে ভঙ্গে যেতে পারে।

#### ১৭.৫ প্যাঁচের ক্রটির কারণ

প্যাঁচের ক্রটির কারণগুলো নিম্নে উল্লেখ করা হলো:

- ১) ডাই দিয়ে পাইপের বাইরের দিকে প্যাঁচ কাটার সময় ওয়ার্কপিসের ঠিক খাড়াভাবে না আটকালে প্যাঁচ একদিকে বাঁকা হয়ে যেতে পারে।

- ২) ডাইস্টককে সঠিকভাবে ভূমির সমান্তরাল না রেখে প্যাচ কাটা হলে প্যাচ একদিকে হেলে যেতে পারে ।
- ৩) প্যাচ কাটার সময় কাটিং ফ্লাইড ব্যবহার না করা হলে প্যাচ মসৃণ হবে না ।
- ৪) প্যাচ কাটার সময় একসাথে বেশি ফিল্ট দেওয়া হলে প্যাচ খারাপ হবে ।
- ৫) ওয়ার্কপিসের ব্যাস ডাই এর ব্যাসের চেয়ে খুব বেশি বা কম হলো প্যাচ খারাপ হতে পারে ।
- ৬) ডাই এর দাঁত ধারালো না হলে প্যাচের মান খারাপ হবে ।

### **ডাই দিয়ে প্যাচ কাটার পদ্ধতি**

পাইপের বাইরের দিকে প্যাচ বা থ্রেড কাটার জন্য ডাই ব্যবহৃত হয় অর্থাৎ ডাই দিয়ে প্যাচ বা থ্রেড কাটা হয় । কিন্তু সঠিকভাবে প্যাচ কাটতে হলে কীভাবে ডাই ব্যবহার করতে হবে এবং কীভাবে প্যাচ কাটতে হবে তা জানা দরকার । পাইপের বাইরের দিকে ডাই দিয়ে প্যাচ কাটার পদ্ধতি নিম্নে বর্ণনা করা হলো:

- ১) ওয়ার্কপিসের যে প্রান্তে প্যাচ কাটতে হবে সে দিকটা প্রথমে গ্রাইভিং করে বা ফাইল দিয়ে ঘষে কিছুটা সরু করে নিতে হবে ।
- ২) এরপর ওয়ার্কপিসকে টেবিল ভাইসে শক্তভাবে (সরু প্রান্ত উপর দিকে রেখে) আটকাতে হবে ।
- ৩) ওয়ার্কপিসের মাপে উপযুক্ত ও সঠিক ডাই ও ডাইস্টক নির্বাচন করতে হবে ।
- ৪) ডাইস্টকে ডাই স্থাপন করে সমাধয়কারী ক্রুর সাহায্যে ডাইকে শক্তভাবে আটকাতে হবে ।
- ৫) ওয়ার্কপিসের সরু করা অংশে কাটিং ফ্লাইড বা লুব্রিকেন্ট মাখাতে হবে ।
- ৬) ডাইকে ওয়ার্কপিসের সরু মাখার উপর স্থাপন করে দু-তিন বার আলতোভাবে আবর্তন করতে হবে ।
- ৭) ডাইস্টকের হাতল ভূমির সমান্তরাল থাকতে হবে ।
- ৮) ডাইটি ওয়ার্কপিসের সাথে লম্বভাবে বসেছে কীনা তা দ্রাই ক্ষয়ারের সাহায্যে পরীক্ষা করে দেখতে হবে ।
- ৯) দুই হাতে ডাইস্টকের দুইটি হাতল শক্তভাবে ধরে দু এক প্যাচ ঘড়ির কাটার ন্যায় নিম্নপাচসহ ঘুরাতে হবে ।
- ১০) ডাইস্টক চালনাকালে প্রতিবার স্বূর্ণনের পর অর্ধেকবার বিপরীত দিকে ঘুরিয়ে আবার সম্মুখ দিকে পরিচালনা করতে হবে ।
- ১১) অগ্র-পশ্চাত আবর্তনের মাধ্যমে ধীরে ধীরে প্যাচ কর্তন করতে হবে ।
- ১২) প্যাচ কর্তন শেষ হলে ডাইস্টককে বিপরীত দিকে আবর্তন করে তুলে নিতে হবে ।
- ১৩) কর্তনের পর প্যাচের আকৃতি ও পিচ নিরীক্ষণ করে দেখতে হবে প্যাচ নির্ধারিত গভীরতায় তৈরি হয়েছে কীনা ।
- ১৪) কার্যান্তে ডাইস্টক হতে ডাইকে অপসারণ ও পরিষ্কার করে নির্ধারিত স্থানে সংরক্ষণ করতে হবে ।

### **ডাই তৈলাভকরণ**

ডাইয়ের দাঁতগুলো প্রচঙ্গ শক্তিতে ধাতু প্যাচ তৈরি করে । ফলে দুর্বল ও চাপের কারণে যথেষ্ট উত্তাপের সৃষ্টি হয় । তাতে ডাইয়ের দাঁতগুলোর টেম্পার নষ্ট হয়ে যেতে পারে এবং দাঁত ক্ষয় হয়ে ভোঁতা হতে পারে । এ সব অসুবিধা দূর করার জন্য কাটিং ফ্লাইড বা লুব্রিকেন্ট ব্যবহার করা হয় । কাটিং ফ্লাইড বা লুব্রিক্যান্ট ডাই এর দাঁত ধাতুর মাঝে ঘর্ষণজনিত বাঁধা দূর করে উত্তাপ হতে দেয় না । ফলে সহজে প্যাচ কাটা যায় ।

### ১৭.৬ ডাইস্টক ব্যবহারে সাবধানতা

- ১) পাইপে থ্রেড কাটার সময় নিরাপত্তা পোশাক (অ্যাপ্রোন, হ্যান্ড গ্রোভস, নিরাপত্তা গগলস ইত্যাদি) পরিধান করা উচিত।
- ২) ওয়ার্কপিসকে টেবিল ভাইসে শক্তভাবে আটকাতে হবে যাতে কোনভাবেই নড়াচড়া করতে না পারে।
- ৩) ওয়ার্কপিসকে ভূমির সাথে লম্বভাবে রেখে ভাইসে বাঁধতে হবে।
- ৪) ডাইকেও ওয়ার্কপিসের সাথে লম্বভাবে স্থাপন করে প্যাচ কাটতে হবে।
- ৫) প্যাচ কাটার সময় ডাইস্টকের উভয় প্রান্তে সমান চাপ দেওয়া উচিত।
- ৬) প্যাচ কাটার সময় উন্নাপ হতে ডাইকে রক্ষার জন্য কাটিং ফুইড বা লুব্রিক্যান্ট ব্যবহার করা উচিত।
- ৭) দুই এক পাক ঘুরানোর পর ডাইকে উল্টাদিকে আধা পাক ঘুরিয়ে মেটাল চিপস ভেঙে বের করে দিতে হয়।

### প্রশ্নমালা-১৭

#### সংক্ষিপ্ত প্রশ্ন

১. ডাই স্টক কী?
২. ডাইকে দুই এক পাক ঘুরানোর পর কী করতে হবে ?

#### সংক্ষিপ্ত প্রশ্ন

১. ডাই স্টক কত প্রকার ও কী কী?
২. ডাই স্টক কী কাজে ব্যবহার হয়?

#### রচনামূলক প্রশ্ন

১. ডাই স্টক-এর প্রয়োজনীয়তা বর্ণনা কর।
২. ডাই স্টক অঙ্কন করে এর বিভিন্ন অংশের নাম লেখ।
৩. ডাই ভাঙ্গার কারণগুলো বর্ণনা কর।
৪. ডাই স্টক দিয়ে প্যাচ কাটার পদ্ধতি ধারাবাহিকভাবে বর্ণনা কর।
৫. ডাই স্টক ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয় বর্ণনা কর।
৬. প্যাচ কাটার সময় প্যাচের মান খারাপ হওয়ার কারণ বর্ণনা কর।

## ট্যাপ

গোল দণ্ডকার দাঁতযুক্ত বে বজ্জের সাহায্যে পাইপের কাঁচা বা ছিপাখে তিনিরের অবশে প্র্যাচ বা প্রেত কাটা হয়, ভাকে ট্যাপ বাতে। ট্যাপ কঠিন ও শক্ত ধাতু সিরে তৈরি। ট্যাপ বেজের সাহায্যে ট্যাপকে আলিকে পাইপের অভ্যন্তরীণ তলে (Internal Surface) প্র্যাচ কাটা হয়।

### ১৪.১ ট্যাপের একান্তরে

ট্যাপ অধ্যানত তিনি একান্তরে বজ্জে থাকে। বধা-

- ১) ট্যাপার ট্যাপ (Taper Tap)
- ২) প্লাগ ট্যাপ (Plug Tap)
- ৩) বটমিং ট্যাপ (Bottoming Tap)

#### ১) ট্যাপার ট্যাপ (Taper Tap)

পাইপের ছিপাখে তিনিরের অবশে প্র্যাচ কাটার জন্য প্রথমে এ ট্যাপ ব্যবহৃত হয়। এ ট্যাপের অগ্রভাগ সঙ্গ বা ট্যাপার। সে জন্য যে কোন ছিপাখে প্র্যাচ কাটার জন্য এটি সহজেই মুকে প্র্যাচ করকে পারে।

#### ২) প্লাগ ট্যাপ (Plug Tap)

ট্যাপার ট্যাপের সাহায্যে পাইপের ছিপাখে প্রাথমিক প্র্যাচ কাটার পর এ ছিপাখে প্লাগ ট্যাপ ব্যবহৃত করা হয়। এর সাহায্যে পূর্বের প্র্যাচকে আরও বর্ধিত ব্যাস বিশিষ্ট করে পূর্ণস্বরূপ দেখারা হয়।

#### ৩) বটমিং ট্যাপ (Bottoming Tap)

বটমিং ট্যাপ আগা-গোড়া একই ব্যাস বিশিষ্ট এবং দীক্ষানুসূত সমানভাবে কাটা থাকে। কেবল মাইল হেল বা এক শাখা বৰ ছিপাখের তলসেশে পর্যন্ত সূচনাভাবে প্র্যাচ কাটার জন্য বটমিং ট্যাপ ব্যবহৃত হয়।



চিত্র ১৪.১ : ট্যাপার ট্যাপ



চিত্র ১৪.২ : প্লাগ ট্যাপ



চিত্র ১৪.৩ : বটমিং ট্যাপ

## ১৮.২ ট্যাপ রেঞ্চ (Tap Wrench)

ট্যাপকে বে রেখে আটকে ট্যাপ পরিচালনা করে পাইপের ছিদ্রের ভিতরে প্যাচ কাটা হয়, তাকে ট্যাপ রেঞ্চ বলে।

### ১৮.৩ ট্যাপ রেঞ্চের প্রকারভেদ:

ট্যাপ রেঞ্চ প্রধানত দুই প্রকারের হয়ে থাকে। যথা-

- ১) টি আকৃতি (T-Shape) ট্যাপ রেঞ্চ (Tap Wrench) এবং
- ২) বার টাইপ (Bar Type) ট্যাপ রেঞ্চ (Tap Wrench)।

#### ১) টি আকৃতি (T-Shape) ট্যাপ রেঞ্চ (Tap Wrench)

এটি দেখতে ইংরেজি অক্ষর T এর মতো। T এর মাঝায় দুই পাশে দুই হাত দিয়ে ধরার জন্য হাতল থাকে। ট্যাপকে সঠিক সমত্বে পাইপের ছিদ্রে চুকানোর পর ট্যাপের মাঝায় টি আকৃতির ট্যাপ রেঞ্চ বসিয়ে দুই হাতে হাতলের দুই প্রান্ত ধরে ক্রুক-গুয়াইজ নিম্নমুখী চাপসহ ঘূরিয়ে প্যাচ কাটা হয়। ছোট সাইজের ছিদ্রে প্যাচ কাটতে হলে টি-আকৃতি ট্যাপ রেঞ্চ ব্যবহৃত হয়।



চিত্র ১৮.৪ : টি-আকৃতি ট্যাপ রেঞ্চ

#### ২) বার টাইপ (Bar Type) ট্যাপ রেঞ্চ (Tap Wrench)

বড় সাইজের ছিদ্রে প্যাচ কাটতে হলে বার টাইপ ট্যাপ রেঞ্চ ব্যবহার করা হয়। এ দুই পাশে দুইটি হাতল এবং মাঝাখানে ট্যাপ আটকানোর অ্যাটকাস্টেবল চাকের মতো ব্যবহৃত আছে। দুই পাশের হাতল ঘূরিয়ে এ রেঞ্চের মাঝের ফাঁক (Gap) ছোট করা হয়। এ ফাঁকের মাঝাখানে ট্যাপের শ্যাঙ্কের পিছনের চৌকোনা প্রান্ত আটকানো হয়। তারপর ছিদ্রে ট্যাপ বসিয়ে হাতল ঘূরিয়ে প্যাচ কাটা হয়।



চিত্র ১৮.৫ : পাইপ ট্যাপ রেঞ্চ

#### ১৮.৪ পাইপের ভেতরে প্যাচ বা প্রেত কাটার পদ্ধতি

ধাতব পদার্থের পাইপের ভিতরের দিকে প্যাচ কাটার বিভিন্ন রকম পদ্ধতি আছে। হ্যান্ড ট্যাপের সাহায্যে পাইপের ভিতরের দিকে প্যাচ কাটার পদ্ধতি নিম্নে বর্ণনা করা হলো:

যে মাপের প্যাচ কাটা হবে সে মাপের ট্যাপ ড্রিল সাইজ নির্ণয় করতে হয়। নির্ণিত ট্যাপ ড্রিল সাইজ অনুসারে ড্রিলিং মেশিন দিয়ে ছিপ্প করতে হয়। ছিপ্প ও প্যাচের উপযোগী ট্যাপ সেট বাছাই করতে হয়। প্রথমে ট্যাপার ট্যাপ ছিপ্প খাড়ভাবে বসাতে হয়। ধাতব পদাৰ্থকে/ পাইকে অবশ্যই পাইপ ভাইসে শক্তভাবে আঠকে নিতে হয়। ছিপ্পে বসালো ট্যাপের চৌকোণা মাঝায় ট্যাপ রেঞ্চ বসাতে হয়। ট্যাপ রেঞ্চের সংযোগস্থলে ডান হাতে শক্ত মুঠিতে ধরে ক্লক-ওয়াইজ কয়েক পাক দুরিয়ে ট্যাপকে ছিপ্পের মধ্যে শক্ত করে খাড়ভাবে বসাতে হয়। ট্যাপকে সঠিক স্থানে পাইপের ছিপ্পে ছুকানোর পর ট্যাপের মাঝায় ট্যাপ রেঞ্চ বসিয়ে দুই হাতে হাতলের দুই প্রান্তখরে ক্লক-ওয়াইজ নিম্নমুখী চাপসহ সুরাতে হয়। এভাবে ছিপ্পের শেষ পর্যন্ত অথবা যে মাপের প্যাচ কাটা হবে সে পর্যন্ত বা প্যাচ কাটা হওয়া পর্যন্ত ট্যাপিং প্রক্রিয়া চালিয়ে যেতে হয়। ট্যাপিং এর সময় মাঝে মাঝে কাটিং ফুইড প্রয়োগ করতে হয়।

ট্যাপার ট্যাপ দিয়ে প্যাচ কাটার পর একই নিয়মে গ্রাগ ট্যাপ দিয়ে এবং পরে বটমিং ট্যাপ দিয়ে ট্যাপিং করে প্যাচ কাটা সম্পন্ন করতে হয়।



চিত্র ১৮.৬ : পাইপে প্যাচ কাটা

#### ১৮.৫ ট্যাপ এর প্রয়োজনীয়তা

গোলাকার ছিপ্পের ভিতরে প্যাচ কাটার জন্য ট্যাপ ব্যবহার করার প্রয়োজনীয়তা দেখা দেয়। প্যাচ এর প্রয়োগক্ষেত্র নিম্নে উল্লেখ করা হলো।

- ১) পাইপ জোড়া দেওয়ার ক্ষেত্রে।
- ২) নাট বোল্ট সহযোগে কোন যত্রাংশ সংযোজনের ক্ষেত্রে।
- ৩) ধাতব শিট, পাত, বা বার জোড়া দেওয়ার ক্ষেত্রে।
- ৪) পুরাতন নষ্ট প্যাচকে সঠিকভাবে ব্যবহার উপযোগী করার ক্ষেত্রে।

### ১৮.৬ ট্যাপ ভাঙ্গার কারণ

হ্যান্ড ট্যাপের দ্বারা পঁয়াচ কাটার সময় সঠিক নিয়ম কানুন অনুসারে কাজ না করলে ট্যাপ ভেঙ্গে যেতে পারে। ট্যাপ ভাঙ্গার কারণসমূহ নিম্নে বর্ণনা করা হলো।

- ১) ট্যাপিং-এর সাবধানতার নিয়মগুলো পালন না করলে।
- ২) ট্যাপ রেঞ্চ, ছিদ্র সমান্তরালভাবে চালনা করতে ব্যর্থ হলে।
- ৩) অবিরাম একদিকে ঘূরিয়ে পঁয়াচ কাটতে থাকলে।
- ৪) পঁয়াচ কাটার সময় ট্যাপে কাটিং ফ্লাইড ব্যবহার না করলে।
- ৫) ক্রমানুসারে ট্যাপ ব্যবহার না করে অথবেই সেকেন্ড বা থার্ড ট্যাপ ব্যবহার করলে।
- ৬) ট্যাপ হোলের ব্যাস অপেক্ষা কম ব্যাসের ছিদ্রের মধ্যে বলপূর্বক ট্যাপ চালনা করলে।
- ৭) ভোঁতা ট্যাপ দিয়ে বলপূর্বক পঁয়াচ কাটার চেস্টা করলে।

### ১৮.৭ পঁয়াচের ঝটিল কারণ

ট্যাপ দ্বারা প্রস্তুতকৃত পঁয়াচের দোষ-ঝটিল অনেক কারণ থাকতে পারে। এসব কারণ নিম্নে প্রদত্ত হলো:

- ১) সঠিক ট্যাপ ড্রিল সাইজ নির্ণয় না করে ট্যাপ ড্রিল করা হলে ভালো পঁয়াচ কাটা যায় না।
- ২) ট্যাপ দিয়ে পঁয়াচ কাটার সময় কাটিং ফ্লাইড ব্যবহার না করলে পঁয়াচ মসৃণ ও সুন্দর হয় না।
- ৩) ট্যাপের দাঁত ভোঁতা থাকলে পঁয়াচ থায়াথ মসৃণ হয় না।
- ৪) ট্যাপ সেট ক্রমানুসারে ব্যবহার না হলে পঁয়াচ খারাপ হয়ে থাকে।
- ৫) ট্যাপকে সঠিকভাবে খাড়া অবস্থায় বসাতে না পারলে পঁয়াচ ভালো হয় না।
- ৬) ট্যাপ চালানোর সময় প্রয়োজনের চেয়ে অতিরিক্ত চাপ প্রয়োগ করলে পঁয়াচ নষ্ট হয়ে যেতে পারে।

### ১৮.৮ ট্যাপ তৈলাভকরণ

ট্যাপের দাঁতগুলো প্রচন্ড শক্তি ধাতু কেটে পঁয়াচ তৈরি করে। ফলে ঘর্ষণ ও চাপের কারণে যথেষ্ট উত্তাপের সৃষ্টি হয়। তাতে ট্যাপের দাঁতগুলোর টেম্পার নষ্ট হয়ে যেতে পারে এবং দাঁত ক্ষয় হয়ে ভোঁতা হতে পারে। এসব অসুবিধা দূর করার জন্য কাটিং ফ্লাইড বা লুভিক্যান্ড ব্যবহার করা হয়। কাটিং ফ্লাইড বা লুভিক্যান্ড ট্যাপ-এর দাঁত ও ধাতুর মাঝে ঘর্ষণ জনিত বাধা দূর করে এবং উত্তাপ সৃষ্টি হতে দেয় না। ফলে সহজে পঁয়াচ কাটা যায়।

### ১৮.৯ ট্যাপ ব্যবহারে সাবধানতা

ট্যাপ খুব শক্ত ধাতু এবং টেম্পার দিয়ে তৈরি করা হয় বলে অন্ন চাপেই ট্যাপ ভেঙ্গে যেতে পারে। সেজন্য সঠিক পদ্ধতিতে এবং সাবধানে খ্রেডিং না করলে পঁয়াচের মান ভালো হয় না। এ ছাড়া অসাবধানতার কারণে যে কোন দুর্ঘটনা ঘটতে পারে। কাজেই খ্রেডিং-এ সাবধানতা অবলম্বন করা একান্ত প্রয়োজন।

#### খ্রেডিং-এর কিছু সাবধানতা নিম্নে উল্লেখ করা হলো

- ১) নিরাপত্তা পোশাক (অ্যাপ্রোন, গগলস এবং হ্যান্ড গ্রোভস) পড়ে ট্যাপিং করতে হয়।
- ২) ওয়ার্কপিসকে টেবিল ভাইসে খুব শক্তভাবে বাধতে হয়, যাতে নড়াচড়া করতে না পারে।
- ৩) সঠিক ও নির্ভুলভাবে ট্যাপ ড্রিল সাইজ নির্ণয় করতে হয়।
- ৪) ছিদ্রের মধ্যে ট্যাপকে সঠিক লম্বভাবে বসাতে হয়।
- ৫) খ্রেডিং-এর সময় অবশ্য কাটিং ফ্লাইড ব্যবহার করতে হয়।
- ৬) ফ্লটের মধ্যে মেটাল চিপস জমে যাতে ট্যাপ আটকে না যায় সেজন্য মাঝে মাঝে ট্যাপকে উল্টো দিকে ঘূরিয়ে চিপসকে ভেঙ্গে দিতে হয়।
- ৭) ছিদ্রের মধ্যে ট্যাপ বেশি শক্তভাবে আটকে গেলে অতিরিক্ত চাপ প্রয়োগ করে ঘূরানো উচিত নয়। এতে ট্যাপ ভেঙ্গে যেতে পারে।

## প্রশ্নমালা-১৮

### সংক্ষিপ্ত প্রশ্ন

১. ট্যাপ কী?
২. ট্যাপ কত প্রকার ও কী কী?
৩. ট্যাপ কী কাজে ব্যবহার করা হয়?

### রচনামূলক প্রশ্ন

১. ট্যাপ ব্যবহারের প্রয়োজনীয়তা বর্ণনা কর।
২. ট্যাপ দিয়ে পাঁচ কাটার পদ্ধতি বর্ণনা কর।
৩. ট্যাপ ভাঙ্গার কারণগুলো উল্লেখ কর।
৪. ট্যাপ দিয়ে পাঁচ কাটার সময় কী কী কারণে পাঁচের মান খারাপ হয়?
৫. ট্যাপ ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয় বর্ণনা কর।

অধ্যায় : ১৯

## ঝো-ল্যাম্প

### ১৯.১ প্রয়োজনীয়তা

এটি এক প্রকারে কম্প্রেশন পাম্প। এর সাহায্যে কেরোসিন দাহ্য তেলকে বাস্পে পরিণত করে জ্বালিয়ে তাপ উৎপাদন করে থাকে। ঝো-ল্যাম্পটির পাস্পের খোলের মুখে ধাতু পাত দ্বারা তৈরি এবং স্প্রিং ন্যায় ক্রিয়াশীল একটি ভালভ বিদ্যমান পিষ্টনকে ভিতরের দিকে চালনা করলে এই ভালভ খুলে এবং পাতটি ফাঁক হয় তখন বায়ু ভিতরে প্রবেশ করে। পাত্র মধ্যস্থিত বায়ুর চাপে পাতটি ঠেলে রাখে ফলে বায়ু বের হতে পারে না। একমাত্র তেল পাত্রের উপরের দিকে চাবিটি ঘুরায়ে বায়ু বের করা যায়।

### ১৯.২ কার্যক্ষমকরণ

তেল পাত্রটিকে কেরোসিন তেল দিয়ে এমনভাবে পূর্ণ করতে হবে যাতে পাত্রের কিছু অংশ খালি থাকে। নির্গমণ পথকে চাবি দ্বারা বন্ধ করে পাম্পকে ভেতরের দিকে চালনা করলে বাইর হতে বায়ু তেলপাত্রের মধ্যে প্রবেশ করে। ফলে তেলের উপর বায়ুর চাপ বর্ধিত হয় এবং তেল যথাক্রমে তেল নল দিয়ে সরু তারের জালে এবং ক্ষুদ্র জেট টিউবের মধ্যে উপরের দিকে বেরিয়ে এসে বার্নারের উপর প্রতিক্রিণ্ণ হয়ে বাস্পে পরিণত হয়। এই বাস্পস্তুত তেলের সাথে অগ্নি স্পর্শ করলেই ফানেলের মধ্যে জ্বলে উঠে। তেল পাত্রের বায়ুর চাপ তেলকে ঠেলে বের করে দেয়। এ সময় উচ্চণ্ড বার্ণার ক্রমাগত জ্বলতে থাকে।

### ১৯.৩ ব্যবহার

কোন নির্দিষ্টস্থানকে উচ্চণ্ড করার প্রয়োজন হলে ঝো-ল্যাম্পের শিখাকে তার উপর প্রত্যক্ষ প্রয়োগ করা হয়ে থাকে সলডারিং, প্লাস্টিক কাজে, বৈদ্যুতিক তারের জোড়া দেওয়ার কাজে, ঝো-ল্যাম্প ব্যবহার হয়ে থাকে।

### ১৯.৪ সারবধানতা

কাজের পূর্বে নিরাপত্তা পোশাক পরিধান করতে হবে। শিখা জ্বলাতে কোন ত্রুটি স্পার্ক লাইটার ব্যতীত দেয়াশলাই ব্যবহার করা উচিত নয়। নির্দিষ্ট পরিমাণ পাম্প করে নিতে হবে। বার্নার পরিষ্কার রাখতে হবে এবং সরু ছিদ্রকে মাঝে মধ্যে পিন দিয়ে পরিষ্কার করে নিতে হবে। কাজ শেষে বাতাস বের করে বন্ধ করে দিতে হবে।



চিত্র : ঝো-ল্যাম্প

## প্রশ্নমালা-১৯

### সংক্ষিপ্ত প্রশ্ন

১. ব্রো-ল্যাম্প বলতে কী বোঝায়?
২. ব্রো-ল্যাম্প কেন ব্যবহার করা হয়?

### রচনামূলক প্রশ্ন

১. ব্রো-ল্যাম্প-এর প্রয়োজনীয়তা বর্ণনা কর।
২. ব্রো-ল্যাম্পের ব্যবহার বর্ণনা কর।
৩. ব্রো-ল্যাম্প জ্বালানোর পদ্ধতি বর্ণনা কর।

প্রাথমিক অ্যান্ড পাইপ ফিটিং-১  
(ব্যবহারিক)

## ব্যবহারিক

### **ভূমিকা (Introduction)**

প্রাথিং অ্যাভ পাইপ ফিটিং-১-এর পাঠ্যসূচিতে তত্ত্বীয় (Theoretical) এবং ব্যবহারিক (Practical) পাঠ অন্তর্ভুক্ত। একদিকে যেমন শুধু তাত্ত্বিক জ্ঞান লাভ করলেই পূর্ণ জ্ঞান লাভ হয় না তেমনি কেবল বাস্তব জ্ঞান অর্জনেই পূর্ণ জ্ঞান লাভ হয় না। সুতরাং তাত্ত্বিক ও বাস্তব জ্ঞান লাভই হলো আদর্শ জ্ঞান লাভ।

কোন বিষয়ে সঠিকভাবে জ্ঞানার পদ্ধতিকে মোটামুটি তিন ভাগে ভাগ করা যায়, যথা:

- ১) পরীক্ষা (Experiment) : নিজ হাতে যা করবে তাই হলো পরীক্ষা।
- ২) নিরীক্ষা বা পর্যবেক্ষণ (Observation) : পরীক্ষা করার সময় যা ঘটেছে, নির্ভুলভাবে তা লক্ষ করার নামই নিরীক্ষা বা পর্যবেক্ষণ।
- ৩) সিদ্ধান্ত (Conclusion): পর্যক্ষেপের ফলে যে মতামত গ্রহণযোগ্য বলে বিবেচনা করা হয় তা হলো সিদ্ধান্ত।

একটি তারের এক প্রাণ্তে ভার চাপানো হলো। এ একটি পরীক্ষা। দেখা যাবে, তারটির দৈর্ঘ্য বেড়েছে। এ হলো নিরীক্ষা বা পর্যবেক্ষণ। ভার বেশি হলে দৈর্ঘ্য প্রসারণ বেশি হবে। এ হলো সিদ্ধান্ত। তত্ত্বগত সত্যকে শিক্ষার্থী যখন হাতে কলমে বাস্তব পরীক্ষার মাধ্যমে নিজেই সত্য বলে জানতে পারে তখন সে যথেষ্ট আনন্দ ও উৎপাদ লাভ করে এবং এটি একদিন তাকে সুনিপুণ কর্মদক্ষ করে তোলে।

### **ক) শিক্ষার্থীদের প্রতি সাধারণ নির্দেশনা (General Instructions to the Student)**

- ১) পরীক্ষা কার্য সম্পর্কে বিস্তারিত জ্ঞান অর্জন করতে হবে।
- ২) সর্বদাই পরিক্ষার পরিচ্ছন্ন যন্ত্রপাতি ও কার্য টেবিল ব্যবহার করতে হবে।
- ৩) পরীক্ষাগারে/ওয়ার্কশপে ঢিলে-ঢালা পোশাক ব্যবহার করা যাবে না। সর্বদা অ্যাপ্রোন ব্যবহার করতে হবে।
- ৪) সঠিক সময়ে পরীক্ষা কার্য সম্পন্ন করতে হবে।
- ৫) পরীক্ষা কার্যে কর্তব্যরত শিক্ষকের সহায়তা নিতে হবে।
- ৬) পরীক্ষাগারে/ওয়ার্কশপের দরজা-জানালা খোলা রেখে বায়ু চলাচলের ব্যবস্থা রাখতে হবে।
- ৭) একটি সাধারণ খাতায় (Rough Note Book) পরীক্ষা কার্যের সংক্ষিপ্ত বিবরণ, পর্যবেক্ষণ ও সিদ্ধান্ত সাথে সাথে লিখে রেখে পরে চূড়ান্ত খাতায় (Fair Note Book) নির্দেশমতো সুন্দর করে লিখে প্রতিদিন শ্রেণি শিক্ষককে দেখাবে ও তার মতামত সম্বলিত স্বাক্ষর নিয়ে রাখতে হবে।
- ৮) পরীক্ষা কার্য শেষ হলে, ব্যবহৃত যন্ত্রপাতি ও কার্য টেবিল পরিক্ষার পরিচ্ছন্ন করে যথাস্থানে রেখে দিতে হবে এবং সাবান দিয়ে হাত মুখ ধূয়ে নিতে হবে।
- ৯) পরীক্ষাকালে সংঘটিত যে কোন দুর্ঘটনার সংবাদ দ্রুত সংশ্লিষ্ট শ্রেণি শিক্ষককে জানাতে হবে।

### **(খ) প্রাথিং কাজে ব্যবহৃত যন্ত্রপাতি বা টুলস**

প্রাথিং সংস্থাপন, মেরামত ও রক্ষণাবেক্ষণের কাজের জন্য বিভিন্ন ধরনের যন্ত্রপাতির প্রয়োজন হয়। এ সকল যন্ত্রপাতিকে প্রাথিং যন্ত্রপাতি বা টুলস বলে।

যে সকল যন্ত্রপাতি সচরাচর ব্যবহৃত হয় তাদের তালিকা নিচে দেওয়া হলো:

- ১। পাইপ ভাইস (Pipe Vice)
- ২। পাইপ কাটার (Pipe Cutter)
- ৩। হ্যাক্স (Hack Saw)
- ৪। ট্যাপ (Tap) এবং ট্যাপ রেঞ্চ (Tap Wrench)
- ৫। ডাই (Die)
- ৬। ডাই স্টক (Die Stock)
- ৭। পাইপ বাঁকানো মেশিন (Pipe Bending Machine)
- ৮। পাইপ রেঞ্চ (Pipe Wrench)
- ৯। চেইন পাইপ রেঞ্চ (Chain Pipe Wrench)
- ১০। অ্যাডজাস্টেবল রেঞ্চ (Adjustable Wrench)
- ১১। শুয়াটার পাম্প প্লায়ার্স (Water Pump Pliers)
- ১২। স্প্যানারস (Spanners)
- ১৩। হামার (Hammers)
- ১৪। স্কু-ড্রাইভার (Screw Driver)
- ১৫। ফাইল (File)
- ১৬। হ্যান্ড ড্রিল (Hand Drill)
- ১৭। টেপ (Tape)
- ১৮। বাটলি (Chiesel)
- ১৯। ট্রাই স্কয়ার (Tri Square)
- ২০। স্ক্রাইবার (Scriber)

## কাজ বা জব নং - ১ : পরিমাপ ঘন্টের ব্যবহার সম্পর্কে দক্ষতা অর্জন

**মূল তত্ত্ব :** পরিমাপ ঘন্ট সম্পর্কে জানা ও পরিমাপ ঘন্টের দক্ষতা অর্জন।

**মালামাল :**

কাগজ, পেনসিল, ইরেজার, ইত্যাদি

**যত্নপাতি :** ক্ষেল/স্টিল রুল, ফিতা, কটার ক্যাম্পাস।

**কার্য়পথাণ্ডি:**

স্টিলরুল/ফিতা-এর এক পার্শ্বে সেচিমিটার এবং অপর পার্শ্বে ইঞ্জিনে দাগ কাটা থাকে। ক্ষেল ১৫ সে: মি: এবং ৩০ সেমি দৈর্ঘ্য হয়ে থাকে এবং ফিতা ২ মি:, ৫মি:, ১০ মি: ও ৩০ মি: লম্বা হয়ে থাকে।

**ক্ষেল দ্বারা পরিমাপ ঘণ্ট**

একটি ক্ষেলকে বন্ধ সমতলে বা খাড়াভাবে স্থাপন করে মাপ ঘণ্ট করতে হবে। পরিমাপ ঘণ্টকালে ক্ষেলে প্রাণ হতে প্রহণ করা অপরিহার্য। যদি পুরাতন ক্ষেল হয় তবে প্রাণ হতে পরিমাপ ঘণ্ট না করে কিছু অংশ বাদ দিয়ে পরিমাপ নিতে হবে। এ ক্ষেত্রে সর্তকতার সাথে পাঠ করতে হবে।

**টেপের সাহায্যে পরিমাপ ঘণ্ট করা**

টেপের সাহায্যে পরিমাপ ঘন্টের টেপকে বন্ধ সমতল বা খাড়াভাবে টান টান করে ধরে পাঠ নিতে হবে। প্রাণের ধেকে পরিমাপ নেওয়াই উচ্চম। অনেক ক্ষেত্রে পুরাতন টেপ হলে কিছু অংশ বাদ দিয়ে পরিমাপ করা হয় তবে পাঠ নেওয়ার সময় ঐ পরিমাপ অংশ বাদ দিতে হবে।

**পাঠ নেওয়ার আপে ও পরে নিরীক্ষা:**

ক্ষেল/ফিতা দিয়ে পরিমাপ করা সময় সঠিক পক্ষতি অনুসরণ না করলে ভূল হওয়ার সম্ভাবনা থাকে। পরিমাপে নির্ভুলতা পাওয়ার লক্ষ্যে ক্ষেল বা ফিতার মাল ঘন্টে কী কী জটি পরিলক্ষিত হয় তা পূর্বেই অবগত থাকা এবং আগাম সর্তকতার সাথে ঘণ্ট করতে হবে।



চিত্র : ডিভাইডার



চিত্র : ফিতা

## কাজ বা জব নং-২ : হ্যাক'স ধারা ফ্লাটবার কাটা

**মূলতন্ত্র:** হ্যাক'স দিয়ে ফ্লাটবার কাটতে হবে।

**যালামাল :** ফ্লাটবার।

**ব্যবহৃতগতি :**

|                  |                  |            |                         |
|------------------|------------------|------------|-------------------------|
| ১। ব্যাশ         | ৩। ট্রাই স্ফয়ার | ৫। পাখণ    | ৭। টেবিল ভাইস           |
| ২। কাগড়ের টুকরা | ৪। ফ্লাইবার      | ৬। হাতুড়ি | ৮। হ্যাক'স ফ্রেম ও রেড। |

**কার্যপ্রণালী:**

- ১) হ্যাক'স রেড এবং হ্যাক'স ফ্রেম লও। নির্বাচিত রেডের দৈর্ঘ্য অনুসারে হ্যাক'স ফ্রেমের দৈর্ঘ্য সমন্বয়/অ্যাডজাষ্ট কর। রেডের এক মাথা ব্যাক পিনের সাথে এবং অন্য মাথা সামনের দিকের পিনের সাথে আটকাও। উইঞ্জিট ডানদিক ঘুরিয়ে টাইট দাও।
- ২) ফ্লাটবার ভালোভাবে পরিষ্কার কর।
- ৩) একটা সিল রুল ব্যবহার করে ফ্লাটবারে কাটার দাগ দাও।
- ৪) ফ্লাইবার দিয়ে উক্ত মাপে দাগ দিয়ে চিহ্নিত কর।
- ৫) ফ্লাটবারকে ভাইসে এমনভাবে আটকাও যাতে চিহ্নিত দাগ ভাইসের ডান পাণ্ডের  $\frac{1}{4}$  ইঞ্চি বাইরে থাকে ফ্লাটবারকে ভাইসে শক্তভাবে আটকাতে হবে।
- ৬) ডান হাত দিয়ে হ্যাক'স-এর হ্যান্ডেল এবং বাম হাত দিয়ে ফ্রেমের অগ্রভাগ ধরতে হবে।
- ৭) হ্যাক'স রেডকে ফ্লাটবারের চিহ্নিত দাগ ঘেষে বসাও এবং কাটতে শুরু কর।
- ৮) নিচের দিকে দুই হাতের চাপ রেখে হ্যাক'স সামনের দিকে চালাও এবং পিছন দিকে টেনে আনার কালে চাপ কয়াও।
- ৯) কাট যখন আয়োজিত হবে তখন চাপ হালকা কর এবং চালানোর গতি কয়াও।
- ১০) কাটার সময় শীতলকারক তরল পদার্থ ব্যবহার কর।
- ১১) ফ্লাটবার কাটার পর লক্ষ কর কাটা প্রান্তগুলো খাড়া কীনা এবং কোগগুলো  $90^{\circ}$  হয়েছে কীনা।
- ১২) কাজের পর রেড পরীক্ষা করে দেখতে হবে কোন দাঁত ভেঙ্গে কীনা।
- ১৩) কাজের মাঝে উইঞ্জিট ঘুরিয়ে রেডের টান/টেনশন ঠিক করবে।



চিত্র নং-: হ্যাক'স ধারা ফ্লাটবার কাটা

## কাজ বা জব নং-৩ : ফাইল দ্বারা জবের উপরিতল সমতলকরণ

**মূলতন্ত্র:** ফাইল দ্বারা ধাতব বস্তুর উপরিতল সমতলকরণ

**মালামাল :** ধাতব বস্তু।

**যন্ত্রগাতি :**

|               |                  |              |                      |
|---------------|------------------|--------------|----------------------|
| ১। ফাইল       | ৩। ট্রাই স্কয়ার | ৫। স্টিল রুল | ৭। ওয়ার্কিং ভাইস    |
| ২। ফাইল ব্রাশ | ৪। মিজারিং টেপ   | ৬। হাতুড়ি   | ৮। ক্লাইবার ইত্যাদি। |

**কার্যপদ্ধতি:**

- ১) জবের বে অংশ ফাইলিং করবে সে অংশ স্টিলরুল ও ক্লাইবারের সাহায্যে মার্ক কর।
- ২) জবকে ভাইসে ভূমির সমান্তরালভাবে শক্ত করে আটকাও।
- ৩) ডান হাতে ফাইলের হাতল ধর এবং বাঁহাত দিয়ে ফাইলের অগ্রভাগ ধরে জবের উপর ভূমির সমান্তরালভাবে ছাঁপন কর।
- ৪) নিচের দিকে চাপ রেখে ফাইল সামনের দিকে চালাও।
- ৫) চাপ হালকা করে ফাইল পিছন দিকে টেনে আন এবং আবার আগের মতো সামনে চালাও।
- ৬) এভাবে অনবরত সামনে পিছনে ফাইল চালিয়ে ধাতব বস্তুর উপরিতল মসৃণ কর।
- ৭) ফিলিশিং দেওয়ার সময় ক্রশ ফাইলিং অর্থাৎ একবার ডান দিকে বাঁকা করে পরে বাম দিকে বাঁকা করে আঢ়াআঢ়িভাবে ফাইলিং কর।
- ৮) কাজের সময় মাঝে মাঝে জবের তল সমতল হয়েছে কীনা তা দ্বারা পরীক্ষা কর। সুষ্ঠু কার্যকরীভাব জন্য নিয়মিতভাবে ফাইলের খাঁজে জমে থাকা ধাতু কণা ফাইল কার্ড দ্বারা পরিক্ষার করা।
- ৯) কাজের শেষে জবের উপরিতল সমতল হয়েছে কীনা তা ট্রাই-স্কয়ারের সাহায্যে পরীক্ষা কর।
- ১০) কাজের শেষে ফাইল কার্ড দিয়ে ফাইল পরিকার কর এবং ফাইলের গা চক দিয়ে ঘৰে টুল বজ্জে সংরক্ষণ কর।



চিত্র নং- ফাইল দ্বারা জবের উপরিতল সমতলকরণ

## কাজ বা জব নং-৪: গোলাকার ছিদ্র মসৃণকরণ

**মূলতন্ত্র :** ফাইল দ্বারা গোলাকার ছিদ্র মসৃণকরণ।

**মালামাল :** গোলাকার ছিদ্রযুক্ত ধাতব বস্তু।

**ষষ্ঠগাতি :**

|          |                  |             |                  |
|----------|------------------|-------------|------------------|
| ১) ফাইল  | ৩) ডাস্টার ক্লথ  | ৫) ক্রাইবার | ৭) ভাইস ইত্যাদি। |
| ২) ব্রাশ | ৪) ট্রাই স্কয়ার | ৬) হাতুড়ি  |                  |

**কার্যপ্রণালী:**

- ১) অভ্যন্তরীণ গোলাকার তলের জন্য হাফ রাউণ্ড ফাইল ব্যবহার কর।
- ২) জবকে ভাইসে ভূমির সমান্তরালভাবে শক্ত করে আটকাও।
- ৩) ফাইলের হ্যান্ডেল ডান হাতে ধর ও বৃক্ষাঙ্কুল উপরে রেখে অন্যান্য আঙ্গুল নিচের দিকে রাখ এবং বাম হাতে ফাইলের অগ্রভাগ ধর।
- ৪) রাফ ফাইল দিয়ে গোলাকার ছিদ্র মসৃণ করার পূর্বে কিছু দূর পর পর কর্ণারে ছোট ছোট সমতল অংশ তৈরি কর। পরে স্মৃথ ফাইলের সাহায্যে গোলাকার ছিদ্রের তল মসৃণ কর।
- ৫) মাঝে মাঝে ফাইল কার্ড দিয়ে ফাইলের খাঁজে জমে থাকা ধাতু কণা পরিষ্কার কর।
- ৬) ফাইলিং সম্পন্ন কর।
- ৭) ফাইলিং কাজ সমাপ্ত হবার পর সম্পূর্ণ গোলাকার ছিদ্র মসৃণ হয়েছে কীনা পরীক্ষা করে দেখ।
- ৮) কাজের শেষে ফাইল কার্ড দিয়ে ফাইল পরিষ্কার কর এবং ফাইলের গা চক দিয়ে ঘষে টুল বক্সে সংরক্ষণ কর।



ফাইল দ্বারা গোলাকার ছিদ্র মসৃণকরণ

## কাজ বা জব নং-৫: পাইপ ভাইসে পাইপ বাঁধা ও কাটা

**মূলতন্ত্র :** পাইপ ভাইসে পাইপ আটকে কাটা।

**যান্ত্রিক যন্ত্র :** একখণ্ড জিআই পাইপ।

**যন্ত্রপাতি :**

|                                    |                |
|------------------------------------|----------------|
| ১) পাইপ ভাইস                       | ৩) মেজারিং টেপ |
| ২) হ্যাক'স ব্লেডসহ অথবা পাইপ কাটার | ৪) ক্রাইবার    |

**কার্যপদ্ধতি:**

- ১) নির্বিচিত ব্লেডের দাঁতগুলোর মুখ সামনের দিকে রেখে হ্যাক'স ফ্রেমের সাথে ব্লেড আটকাও। উইন্ডট ঘূরিয়ে ব্লেড সঠিক টানে হ্যাক'স ফ্রেমে আটকাও।
- ২) জিআই পাইপের প্রান্ত হতে যত দূরে কাটা হবে তা মেজারিং টেপ দিয়ে মাপ এবং ক্রাইবার বা পেপ্সিল দিয়ে দাগ দাও। চিহ্নিত স্থান  $1/2$  ইঞ্চি বাইরে রেখে পাইপ ভাইসে ভূমির সমান্তরাল করে পাইপ শক্তভাবে আটকাও।
- ৩) চিহ্নিত স্থানে হ্যাক'স ব্লেড স্থাপন করে ফ্রেমকে সামান্য কাত করে এবং সামনের দিকে কিছুটা ঢালু ( $30^{\circ}$ ) করে ধরে তিন চার বার সামনের দিকে চালাও। এরপর ডান হাতে হ্যাক'স ফ্রেমের হাতল এবং বাঁহাতে হ্যাক'স ফ্রেমের অগ্রভাগ ধরে তৈরি দাগের উপর দিয়ে মিনিটে  $80-90$  বার হ্যাক'স চালাতে থাক। কাটা শেষ হবার সময় ধীরে ধীরে হ্যাক'স চালাও।
- ৪) পাইপ কাটার সময় মাঝে মাঝে কাটিং ফ্লাইড প্রয়োগ করবে। হ্যাক'স সামনের দিকে চালানোর সময় নিম্নমুখী চাপ রাখবে এবং পিছন দিকে টানার সময় চাপ হালকা রাখবে। পাইপ কাটা শেষ হলে পরীক্ষা করে দেখ কাটা সঠিক হয়েছে কীনা?



পাইপ ভাইসে পাইপ বাঁধা ও কাটা

## কাজ বা জব নং-৬: ডাই স্টক-এর সাহায্যে পাইপের উপরিভাগে প্যাচ কর্তন

**মূলতন্ত্র :** জিআই পাইপের উপরিভাগে প্যাচ কাটতে হবে।

**মালামাল :** একখণ্ড জিআই পাইপ, জুট, সাদা চক, লুভিকেট ইত্যাদি।

**ব্যবস্থাপাতি :**

|              |             |                        |
|--------------|-------------|------------------------|
| ১) ডাই স্টক  | ৩) স্টিলরুপ | ৫) কাটিং ফ্রাইড        |
| ২) পাইপ ভাইস | ৪) ক্লাইবার | ৬) অয়ার ব্রাশ ইত্যাদি |

**কার্যঘণ্টাণি:**

- ১) ডাই স্টকের হাতেল ক্লু বা নাট ছিলা দাও। ডাই স্টকে নির্বাচিত ডাই টুকিয়ে সময়স্থানীয় ক্লুর সাহায্যে শক্ত করে আটকাও। অ্যাডজাস্টিং ক্লু বা লিভারের সাহায্যে ডাই নির্দিষ্ট মাপের চেয়ে একটু উভার সাইজে সেট কর।
- ২) পাইপের মাথায় যতটুকু অগ্রে প্যাচ কাটবে তা ক্লাইবার দিয়ে চিহ্নিত কর। পাইপ ভাইসে পাই ভূমি সমান্তরাল করে শক্তভাবে আটকাও বেল পাইপের দাগ দেওয়া মাথা ভাইসের বাইরে ৩-৪ ইঞ্চি বেরিয়ে থাকে।
- ৩) পাইপের মাথায় কাটিং ফ্রাইড লাগাও। পাইপের মাথায় সামান্য চাপ দিয়ে ডাই স্টক সেট কর এবং পাইপের সাথে লুভিকেট রাখ। পাইপের দিক চাপ রেখে হাতলের দুই প্রান্ত দুই হাতে দৃঢ়ভাবে ধরে ডাই স্টক ডান দিকে করেক প্যাচ স্থারাও। এখন দুই হাতে ডাই স্টকের হাতল ধরে ডান দিকে দু এক প্যাচ স্থারানোর পর উল্টা দিকে আধা প্যাচ স্থারাও। এভাবে পাইপের চিহ্নিত উপরিভাগের নির্দিষ্ট অংশে প্যাচ কাটা সম্পন্ন কর।
- ৪) পাইপের প্যাচ কাটা মাথার একটা সকেট লাগিয়ে পরীক্ষা করে দেখ সঠিক মাপে প্যাচ কাটা হয়েছে কী না?



পাইপে প্যাচ কাটা

## কাজ বা জব নং-৭: ট্যাপ দ্বারা জি আই পাইপের ভিতরে প্যাচ কর্তন

**মূলতন্ত্র :** ট্যাপ দিয়ে জি আই পাইপের ভিতরে প্যাচ কর্তন করা।

**মালামাল :** একখণ্ড জিআই পাইপ, জুট, সাদা চক, লুট্রিকেন্ট ইত্যাদি।

**ষঙ্গপাতি :**

|                |                  |
|----------------|------------------|
| ১) পাইপ ভাইস   | ৫) মার্কিং টুলস  |
| ২) ট্যাপ রেঞ্চ | ৬) ওয়্যার ব্রাশ |
| ৩) ট্যাপ সেট   | ৭) ফাইল ইত্যাদি  |
| ৪) মেজরিং টেপ  |                  |

**কার্যপদ্ধতি:**

- ১) প্রদত্ত মাপ অনুযায়ী জিআই পাইপ কেটে লও।
- ২) জিআই পাইপকে ভাইসে দৃঢ়ভাবে আটকাও।
- ৩) যে মাপের প্যাচ বা খ্রেড কাটা হবে প্রথমে সে মাপের ট্যাপ ড্রিল সাইজ নির্বাচন কর।
- ৪) নির্বাচিত ট্যাপ সেট হতে প্রথমে ট্যাপার ট্যাপ নিয়ে পাইপের ছিদ্রে খাড়াভাবে বসাও।
- ৫) পাইপের ছিদ্রে বসানো ট্যাপের উপরের চৌকোগা মাথায় ট্যাপ রেঞ্চ বসাও।
- ৬) এখন ট্যাপ ও ট্যাপ রেঞ্চের সংযোগস্থল ডান হাতে শক্ত মুঠিতে ধরে ক্লক ওয়াইজ কয়েক পাক ঘুরিয়ে ট্যাপকে পাইপের ছিদ্রের মধ্যে শক্ত করে খাড়াভাবে বসাও।
- ৭) ট্যাপকে সঠিক লম্বভাবে পাইপের ছিদ্রে ঢুকানোর পর ট্যাপের মাথায় বসানো ট্যাপ রেঞ্চের দুইমাথা দুই হাতে ধরে ক্লক ওয়াইজ নিম্নমুখী চাপসহ ডানদিকে ঘুরাও। এতে মেটাল চিপসগুলো ভেঙে যাবে।
- ৮) প্রতি দু-তিন প্যাচ ঘুরানোর পর আধা প্যাচ উল্টাদিকে ঘুরাও। এতে মেটাল চিপসগুলো ভেঙে যাবে।
- ৯) এভাবে প্রয়োজনীয় মাপ অনুযায়ী প্যাচ কাটা না হওয়া পর্যন্ত ট্যাপিং প্রক্রিয়া চালিয়ে যেতে হবে এবং মাঝে মাঝে কাটিং ফ্রাইড প্রয়োগ করতে হবে।
- ১০) পাইপের ছিদ্রে পরিমাপ মতো প্যাচ কাটা হয়ে গেলে উল্টা দিকে ঘুরিয়ে ট্যাপ বের করে আনতে হবে।
- ১১) ট্যাপার ট্যাপ দিয়ে প্যাচ কাটার পর একই নিয়মে প্লাগ ট্যাপ দিয়ে এবং পরে বটমিং ট্যাপ দিয়ে ট্যাপিং করে চূড়ান্ত প্যাচ কাটা সম্পন্ন করতে হবে।



জিআই পাইপের ভেতর পঁয়াচ কর্তন

## কাজ বা জব নং-৮ : নিপল তৈরিকরণ

**মূলতন্ত্র :** জিআই পাইপ দিয়ে নিপল তৈরি করতে হবে। কোন পাইপ লাইনকে ছেট আকারে নির্দিষ্ট পরিমাণ লম্বা করতে নিপল ব্যবহার করা হয়। নিপল সাধারণত যেখানে পাইপ ফিটিংস কাছাকাছি থাকে তার মাঝে বসানো হয়।

**যাত্রামাল :**

- ১) জিআই পাইপ
- ২) কাটিং ফুইড
- ৩) ওয়্যার ব্যাস

**যত্রগাতি :**

|               |                          |
|---------------|--------------------------|
| ১) হ্যাক'স    | ৪) ক্রাইবার              |
| ২) পাইপ কাটার | ৫) স্টিল রুল             |
| ৩) পাইপ ভাইস  | ৬) ডাই ও ডাইস্টক ইত্যাদি |

**কার্যপ্রণালী:**

- ১) প্রদর্শিত চিত্র অনুযায়ী একটি নিপল তৈরি করতে হবে।
- ২) প্রয়োজনযোগ্য জিআই পাইপ কাট যার এক প্রান্তে ভেতরের দিকে প্যাচ কাটা।
- ৩) পাইপ ভাইসে উক্ত জিআই পাইপটি ভূমির সমান্তরাল করে শক্তভাবে আটকাও যাতে প্যাচ বিহীন প্রান্তটি বাইরের দিকে থাকে।
- ৪) মুক্ত প্রান্তে বাহ্যিক প্যাচ কাটার জন্য প্রয়োজনীয় মাপ নিয়ে ক্রাইবারের সাহায্যে চিহ্নিত কর।
- ৫) পাইপের মুক্ত প্রান্তে কাটিং ফুইড লাগাও।
- ৬) ডাই স্টকে নির্বাচিত ডাই সেট কর।
- ৭) এখন পাইপের মাথায় সামান্য চাপ দিয়ে ডাই স্টক সেট কর এবং পাইপের সাথে লম্বভাবে রাখ। পাইপের দিকে চাপ রেখে হাতলের দুই প্রান্ত দুই হাতে দৃঢ়ভাবে ধরে ডাই স্টক ডান দিকে কয়েক প্যাচ ঘূরাও। এখন দুই হাতে ডাই স্টকের হাতল ধরে ডান দিকে দু-এক প্যাচ ঘূরানোর পর উল্টাদিকে আধা প্যাচ ঘূরাও। এভাবে পাইপের চিহ্নিত উপরিভাগের নির্দিষ্ট অংশে প্যাচ কাটা সম্পন্ন কর।
- ৮) অতঃপর চিত্রে প্রদর্শিত নিপলের দৈর্ঘ্যের সমান দৈর্ঘ্য পাইপের মুক্ত প্রান্তের দিক থেকে কেটে নাও।
- ৯) ভাইস থেকে পাইপের বাকী অংশ বের করে কর্তিত অংশ উক্ত পাইপের ভিতরের প্যাচের সাথে সংযোজন কর।
- ১০) সংযোজিত অংশ বাইরের দিকে রেখে এবং ভূমির সমান্তরাল করে পাইপ আবার পাইপ ভাইসে শক্তভাবে আটকাও।
- ১১) সংযোজিত অংশের মাথায় আবার ডাই স্টক একই নিয়মে সেট কর এবং বাহ্যিক প্যাচ কর্তন সম্পন্ন কর।
- ১২) প্যাচ কর্তন শেষ হলে ডাই স্টককে বিপরীত দিকে আবর্তন করে পাইপ থেকে তুলে নিতে হবে।
- ১৩) ছেট পাইপের উভয় প্রান্তে বাহ্যিক প্যাচ কাটার পর মধ্য খানের অংশকে ফাইল দিয়ে ঘষে ঘড়ভূজ নাটে রূপান্তরিত কর।
- ১৪) পাইপের মাথায় লাগানো স্কুদ্র পাইপটি যার উভয় প্রান্ত বাহ্যিকভাবে প্যাচ কাটা তাকে নিপল বলে।
- ১৫) এখন পাইপ থেকে নিপল বের করে নাও।



নিম্ন তৈরিকরণ

## কাজ বা জব নং-৯: আয়তাকার বন্ধ বর্তনীতে বিভিন্ন ফিটিংস সংযোজনকরণ

**মূলতত্ত্ব :** চিত্রে প্রদর্শিত আয়তাকার বন্ধ বর্তনীতে বিভিন্ন ফিটিংস-এর সংযোগ দাও।

**যাত্রামাল :**

|                |                 |
|----------------|-----------------|
| ১) জিআই পাইপ   | ৫) সকেট ১টি     |
| ২) এলবো ২টি    | ৬) রিডিউসার ১টি |
| ৩) ইউনিয়ন ১টি | ৭) ক্রশ ১টি     |
| ৪) টি ১টি      | ৮) স্টপ কক ১টি  |

**যন্ত্রপাতি :**

|                        |                         |
|------------------------|-------------------------|
| ১) ট্যাপ ও ট্যাপ রেঞ্চ | ৫) অ্যাডজাস্টেবল রেঞ্চ  |
| ২) পাইপ ভাইস           | ৬) মার্কিং টুলস ইত্যাদি |
| ৩) মেজারিং টেপ         | ৭) হ্যাক্স              |
| ৪) ফাইল                | ৮) পাইপ কাটার           |

**কার্যপ্রণালী :**

- চিত্রে প্রদর্শিত পরিমাপ অনুযায়ী পাইপ কেটে প্রয়োজনীয় বাহ্যিক প্যাচ কাটা সম্পন্ন কর।
- প্রয়োজনীয় ফিটিংস-এর সংযোগ দিয়ে চিত্রে প্রদর্শিত আয়তকার বন্ধ বর্তনীটি তৈরি কর।



আয়তকার বন্ধ বর্তনীতে বিভিন্ন ফিটিংস সংযোগকরণ

## কাজ বা জব নং-১০ : শাওয়ার রোজ ও বিবকক স্থাপনকরণ

**মূলত্ব :** প্রয়োজনীয় ফিটিংস-এর সাহায্যে শাওয়ার রোজ ও বিবকক স্থাপন কর।

**যাতায়াল :**

|                                     |                         |                        |                       |
|-------------------------------------|-------------------------|------------------------|-----------------------|
| ১) জিআই পাইপ                        | ৩) বিবকক                |                        |                       |
| ২) জি আই সকেট, এলবো, টি এবং স্টপ কক | ৪) শাওয়ার রোজ ইত্যাদি। |                        |                       |
| <b>যত্নপাতি :</b>                   |                         |                        |                       |
| ১) পাইপ ভাইস                        | ৩) মেজারিং টেপ          | ৫) ফাইল                | ৭) হ্যাকস             |
| ২) ডাই ও ডাই স্টক                   | ৪) মার্কিং টুলস         | ৬) অ্যাডজাস্টেবল রেঞ্চ | ৮) পাইপ কাটার ইত্যাদি |

**কার্যপদ্ধতি :**

- চিত্র অনুযায়ী দেয়ালে শাওয়ার রোজ ও বিবকক বসানোর জন্য স্থান নির্বাচন কর।
- প্রয়োজনীয় মাপের জি আই পাইপ নিয়ে নির্দিষ্ট উচ্চতায় এলবো ও টি সংযোজনের কাজ সম্পন্ন কর।
- এলবোতে শাওয়ার রোজের এবং “টি” তে বিবকক-এর সংযোগ দাও।
- শাওয়ার রোজ এবং বিবককের মাঝে স্টপ কক বসাও। স্টপ ককের সাহায্যে শাওয়ার রোজে পানি সরবরাহ ও বন্ধ করা হয়।



G.P. — গ্লুব লেন্স  
F.T. — ফ্লামে ট্রায়াপ  
W.H.B. — স্যান্ডেল ট্রায়াপ  
T.S. — প্রক্রিয়া ট্রায়াপ

F.T. — ফ্লামে ট্রায়াপ  
W.H.B. — স্যান্ডেল ট্রায়াপ  
S. — প্রক্রিয়া স্যান্ডেল ট্রায়াপ  
T. — ট্রায়াপ যা অক্ষত করবে পুরুষ

W.C. — জেল-ক্লিপসট  
F.N. — প্রান্দার্ট  
D.R. — প্রেস্যালেন স্ক্রু  
P. — প্রেস্যালেন প্রস্তুতি প্রান্দার্ট অফ

**শাওয়ার রোজ ও বিবকক বিবকক স্থাপনকরণ**

## কাজ বা জব নং-১১ : ছাদের রিজার্ভ ট্যাঙ্ক হতে সরবরাহ লাইনে পানির সংযোগকরণ

**মূলতত্ত্ব :** চিত্র প্রদর্শিত ছাদের রিজার্ভ ট্যাঙ্ক হতে সরবরাহ লাইনে পানির সংযোগকরণ। এখানে উল্লেখ্য যে সিটি সাপ্লাইয়ের পানিকে গ্রাউন্ড লেভেলের স্টোরেজ ট্যাঙ্কে সঞ্চয় করে রাখা হয় এবং পরে প্রয়োজন মতো নিজস্ব পাস্সের সাহায্যে ছাদের উপরে স্থাপিত রিজার্ভ ট্যাঙ্কে পানি উঠানো হয় এবং সেখান থেকে সরবরাহ পাইপ দিয়ে অভিকর্ষীয় পদ্ধতিতে বাড়ির সর্বত্র পানি সরবরাহ করা হয়।

### মালামাল :

- ১) জিআই পাইপ
- ২) জিআই ফিটিংস

### যত্নপাতি :

|                        |                |               |                       |
|------------------------|----------------|---------------|-----------------------|
| ১) ট্যাপ ও ট্যাপ রেঞ্চ | ৩) পাইপ ভাইস   | ৫) মাকিং টুলস | ৭) হ্যাক'স            |
| ২) ডাই ও ডাই স্টক      | ৪) মেজারিং টেপ | ৬) ফাইল       | ৮) পাইপ কাটার ইত্যাদি |

### কার্যপ্রণালি :

- ১) সাপ্লাই পাইপ লাইন হতে বাড়ির ভূ-জলাধারে সংযোগ দাও।
- ২) ভূ-জলাধার হতে ইনলেট পাইপের সাহায্যে ছাদের রিজার্ভ ট্যাঙ্কের উপরিভাগে সংযোগ দাও এবং ফ্লোট ভালভ সংযোজন কর।
- ৩) এখন ছাদের ট্যাঙ্ক হতে আউটলেট পাইপের সংযোগ দাও।
- ৪) তারপর আউটলেট পাইপ থেকে বাথরুম, কিচেন, ইউরিনাল, কমোড, প্যান, বেসিন, সিংক, বাথটাব এবং ফ্লাশিং সিস্টার্নে সংযোগ দাও। প্রয়োজন মতো বিভিন্ন ধরনের পাইপ ফিটিংস ও ফিকচার ব্যবহার কর। পানির গতি প্রবাহ নিয়ন্ত্রণ করতে ভালভ ব্যবহার কর।
- ৫) ছাদের রিজার্ভ ট্যাঙ্ক হতে সরবরাহ লাইনে পানির সংযোগকরণ।



AP - এন্টি সাইফোনিক পাইপ

RWP - রেইন ওয়াটার পাইপ

S - শাওয়ার

## কাজ বা জব নং-১২ : ওয়াশ হ্যান্ড বেসিন স্থাপনকরণ

**মূলতন্ত্র :** ওয়াশ হ্যান্ড বেসিন স্থাপন করতে হবে।

**মালামাল :**

|                                                       |                                |
|-------------------------------------------------------|--------------------------------|
| ১) লিড                                                | ৮) রং                          |
| ২) পিলার কক/মিকচার (গরম ও ঠাণ্ডা পানি প্রাপ্তির জন্য) | ৯) পুটিং                       |
| ৩) স্টপ কক                                            | ১০) ব্রাকেট                    |
| ৪) রাবার গ্যাসকেট                                     | ১১) বালু                       |
| ৫) প্লাস্টিক পাইপ                                     | ১২) সিমেন্ট                    |
| ৬) ওয়াশ বেসিন                                        | ১৩) পানি নিরোধক প্লাস্টিক টেপ। |
| ৭) সিল টেপ                                            |                                |

**বন্ধপাতি :**

|                        |                           |
|------------------------|---------------------------|
| ১) চিজেল               | ৭) ক্লু-ড্রাইভার          |
| ২) হামার               | ৮) কর্নি                  |
| ৩) মেজারিং টেপ         | ৯) ম্যাশনরি ট্রেই ইত্যাদি |
| ৪) মার্কিং টুলস        | ১০) বেসিন রেঞ্চ           |
| ৫) অ্যাডজাস্টেবল রেঞ্চ | ১১) শোতেল                 |
| ৬) স্প্রিট লেভেল       | ১২) ব্রাকেট ইত্যাদি।      |

**কার্যপ্রণালী :**

- ১) নিম্নের চিত্র অনুযায়ী দেয়ালের পাশে পছন্দমতো স্থানে ওয়াশ হ্যান্ড বেসিন বসানোর জন্য স্থান নির্বাচন কর।
- ২) মেঝে হতে প্রায় ৭১ সেমি উচ্চতায় বেসিনের উভয় পাশে দুইটি ব্রাকেট বসবে তা চিহ্নিত কর।
- ৩) চিজেলের সাহায্যে দেয়ালে মাপমতো ছিদ্র করে ব্রাকেট বসাও এবং লেভেল যাচাই কর।
- ৪) কনক্রিট ঢারা ব্রাকেটসহকে দেয়ালের সাথে আবদ্ধ কর।
- ৫) কনক্রিট সেট হবার পর বেসিনকে ব্রাকেটের উপর স্থাপন কর।
- ৬) বেসিনের সাথে স্টেইনলার ট্র্যাপ এবং ওয়েস্ট ওয়াটার পাইপের সংযোগ দাও।
- ৭) এখন বেসিনের উপর পিলার কক-এর সংযোগ দাও।
- ৮) পরিশেষে লিড পাইপ ঢারা স্টপ কক-এর সাথে পিলার ককের সংযোগ দাও।
- ৯) পানি সরবরাহ করে কাজটি সঠিক হয়েছে কীনা যাচাই কর।



গুয়াশ হ্যাঙ বেসিন স্টাপনকরণ

## কাজ বা জব নং-১৩ : প্যান স্থাপনকরণ

**মূলতন্ত্র :** চীনামাটি বা পোর্সেলিনের তৈরি প্যান যার নিচের দিকের বাহ্যিক পাঁচ কাটা নিষ্কাশন মুখটি ট্র্যাপের খাড়া পাইপের ভিতর ঢুকিয়ে পায়খানা ঘরের মেঝের তলের সাথে সমান করে বসাতে হবে।

**মালামাল :**

- ১) প্যান
- ২) সিল টেপ
- ৩) পুটিৎ
- ৪) বালি সিমেন্ট ইত্যাদি

**ব্যবহারিত :**

- ১) মেজরিং টেপ
- ২) মার্কিং টুলস
- ৩) চিঙেল
- ৪) হ্যামার
- ৫) স্পিরিট লেভেল ইত্যাদি

**কার্যপদ্ধতি :**

- ১) প্যানের নিচের দিকের নিষ্কাশন মুখটি ট্র্যাপের খাড়া পাইপের ভিতর ঢুকিয়ে পায়খানা ঘরের মেঝের তলের সাথে সমান করে বসাও।
- ২) সিমেন্ট মসলা ধারা প্যানকে পায়খানা ঘরের মেঝের সাথে লেভেল ঠিক করে আবদ্ধ কর।
- ৩) সিমেন্ট মসলা সেট হবার পর প্যানের পিছন দিকের ছিদ্রটি ফ্লাশ পাইপের সাহায্যে ফ্লাশিং ট্যাঙ্ক এর সাথে সংযোগ কর।
- ৪) এখন পানি সরবরাহ করে ফ্লাশিং ট্যাঙ্ক এর লিভার আর্ম টেনে সাথে সাথে ছেড়ে দিলে পানি সবেগে ফ্লাশ পাইপ দিয়ে প্যানে গিয়ে পড়ে এবং ময়লা ধুয়ে মল-নলে বয়ে নিয়ে যাও।



প্যান স্থাপনকরণ

## কাজ বা জব নং-১৪ : কমোড স্থাপনকরণ

**মূলতন্ত্র :** ফ্লাশিং ট্যাংকসহ কমোড স্থাপনকরণ।

**মালামাল :**

|                            |                       |
|----------------------------|-----------------------|
| ১) কমোড সেট ফ্লাশিং ট্যাংক | ৪) বালি               |
| ২) সিল টেপ                 | ৫) সিমেন্ট ইভ্যান্ডি। |
| ৩) পুটিৎ                   |                       |

**যত্নপাতি :**

|                        |                  |
|------------------------|------------------|
| ১) মেজারিং টেপ         | ৮) কাটিং টুলস    |
| ২) মার্কিং টুলস        | ৯) বোরিং টুলস    |
| ৩) ঝু-ড্রাইভার         | ১০) কর্ণি        |
| ৪) অ্যাডজাস্টেবল রেঞ্চ | ১১) উষা          |
| ৫) স্প্রিট লেভেল       | ১২) মেশানরি ট্রে |
| ৬) চিঙেল               | ১৩) বাকেট        |
| ৭) হ্যামার             |                  |

**কার্য়গুলি :**

- ১) ট্র্যাপের খাড়া পাইপের অবস্থান অনুসারে কমোড বসাও এবং উভয় পাশ নাট-বোল্ট লাগাবার স্থান চিহ্নিত করে কমোড উঠিয়ে রাখ।
- ২) কমোড সরানোর পর নাট-বোল্ট-এর মাপ অনুযায়ী ডিল দ্বারা মেবোর চিহ্নিত স্থান ছিদ্র করে বোল্ট লাগাও।
- ৩) কমোড পূর্বের মতো সঠিক জায়গায় বসাও এবং স্প্রিট লেভেল দিয়ে আনুভূমিক হয়েছে কীনা যাচাই করি।
- ৪) এখন নাট-বোল্ট-এর সাহায্যে কমোডকে মেবোর সাথে আটকাও।
- ৫) স্টেপ কক হতে সিড পাইপের সাহায্যে ফ্লাশিং ট্যাংকের সংযোগ দাও।
- ৬) কমোডে সিট কভার লাগাও।
- ৭) ফ্লাশিং ট্যাংকের চাপ দিয়ে কমোডে পানি সরবরাহ করে কার্যকারিতা যাচাই কর।



কমোড স্থাপনকরণ

## কাজ বা জব নং-১৫: কিচেন সিংক স্থাপনকরণ

**মূলতত্ত্ব :** কিচেন সিংক স্থাপন করতে হবে।

**মালামাল :**

|                                                       |                               |
|-------------------------------------------------------|-------------------------------|
| ১) লিড পাইপ                                           | ৭) পুটি                       |
| ২) পিলার কক/মিকচার (গরম ও ঠাণ্ডা পানি প্রাপ্তির জন্য) | ৮) ব্রাকেট                    |
| ৩) রাবার গ্যাসকেট                                     | ৯) বালু                       |
| ৪) সিংক                                               | ১০) সিমেন্ট                   |
| ৫) সিল টেপ                                            | ১১) পনি নিরোধক প্লাস্টিক টেপ। |
| ৬) রং                                                 |                               |

**ষষ্ঠপাতি :**

|                        |                          |
|------------------------|--------------------------|
| ১) চিজেল               | ৬) স্প্রিট লেভেল         |
| ২) হ্যামার             | ৭) ক্লু-ড্রাইভার         |
| ৩) মেজারিং টেপ         | ৮) কর্নি                 |
| ৪) মার্কিং টুলস        | ৯) ম্যাশনরি ট্রে ইত্যাদি |
| ৫) অ্যাডজাস্টেবল রেঞ্জ |                          |

**কার্যপদ্ধতি :**

- ১) নিম্নের চিত্র অনুযায়ী দেয়ালের পাশে পছন্দমতো স্থানে কিচেন সিংক বসানোর জন্য স্থান নির্বাচন কর।
- ২) মেঝে হতে প্রায় ৭১ সেমি উচ্চতায় বেসিনের উভয় পাশে দুইটি ব্রাকেট বসবে তা চিহ্নিত কর।
- ৩) চিজেলের সাহায্যে দেয়ালে মাপমতো ছিদ্র করে ব্রাকেট বসাও এবং লেভেল যাচাই কর।
- ৪) কন্ট্রিট দ্বারা ব্রাকেটের দেয়ালের সাথে আবক্ষ কর।
- ৫) কন্ট্রিট সেট হবার পর সিংককে ব্রাকেটের উপর স্থাপন কর।
- ৬) সিংকের সাথে স্টেইনলেস ট্র্যাপ এবং ওয়েস্ট ওয়াটার পাইপের সংযোগ দাও।
- ৭) এখন সিংকের উপর সিংক কক-এর সংযোগ দাও।
- ৮) পানি সরবরাহ করে কাজটি সঠিক হয়েছে কীনা যাচাই কর।



প্রাথমিক

প্লান্সিং এন্ড পাইপ ফিটিং  
দ্বিতীয় পত্র  
(তত্ত্বীয়)

## অধ্যায় : ১

# পরিমাপক যন্ত্র

প্রাপ্তিৎ এত পাইপ ফিটিংস এ ব্যবহৃত বিভিন্ন পরিমাপ যন্ত্রের পরিমাপ পদ্ধতি :-

### ১.১ ভার্নিয়ার ক্যালিপার্স (Vernier Callipers)

ভার্নিয়ার ক্যালিপার্সকে স্লাইড ক্যালিপার্সও বলা হয়। এটি একটি সূক্ষ্ম পরিমাপক যন্ত্র। ১৬০০ খ্রিষ্টাব্দে ফরাসি গণিতবিদ পিয়েরে ভার্নিয়ার এই ভার্নিয়ার ক্ষেলটি আবিষ্কার করেন।

ভার্নিয়ার ক্যালিপার্সের কোন দঙ্গের দৈর্ঘ্য ও ব্যাস, গোলকের ব্যাস, কোন ফাঁপা টিউবের ভিতরে ও বাইরের ব্যাস এবং গভীরতা মাপা যায়। এই পরিমাপক যন্ত্রটির সাহায্যে ০.১ মিলি মিটার পর্যন্ত নির্দল ও সূক্ষ্ম পাঠ পরিমাপ করা সম্ভব।

ভার্নিয়ার ক্যালিপার্স এর প্রধান ক্ষেলটি একটি ইস্পাতের ফ্রেমের উপর দাগাক্ষিত থাকে। ফ্রেমের এক প্রান্তে একটি (AA) চোয়াল আড়াআড়িভাবে সংযুক্ত থাকে। অপর একটি চোয়াল (BB) ভার্নিয়ার ক্ষেলের সাথে লাগানো থাকে। এই চোয়াল সংলগ্ন ভার্নিয়ারে একটি ক্লু (D) থাকে। উক্ত ক্লুটি ছিল করে চোয়ালটিকে প্রধান ফ্রেমের যে কোন অবস্থানে স্থাপন করা যায়। চোয়ালটির সাথে একটি ফলক (F) সংযুক্ত আছে। চোয়ালটি প্রধান ক্ষেল বরাবর পিছানো হলে ফলকটি ফ্রেম থেকে বের হয়ে আসে। এই ফলকের সাহায্যেই গভীরতা মাপা হয়। প্রধান ক্ষেলের এক ধার সেন্টিমিটারে ও অপর ধার ইঞ্জিনে দাগাক্ষিত। ভার্নিয়ারের দুই ধারও অনুরূপভাবে দাগাক্ষিত। ভার্নিয়ার ক্যালিপার্সের সাহায্যে যে দণ্ড বা গোলকের ব্যাস নির্ণয় করতে হবে, সে বন্তিটিকে স্থির চোয়াল ও চলমান চোয়াল এর মাঝে স্থাপন করে চলমান চোয়ালটিকে ঠেলে বন্তিটির গায়ে এমন আলতোভাবে লাগাতে হবে যেন বন্তিটির গায়ে খুব বেশি চাপ না পড়ে। অতঃপর ভার্নিয়ারের নিয়মে প্রধান ক্ষেলের পাঠের মান ও ভার্নিয়ার ক্ষেলের পাঠ সংখ্যা পড়তে হয়। ভার্নিয়ার; ক্ষেলের প্রথম দাগটি ভার্নিয়ার ক্ষেলের ০ (শূন্য) নামে পরিচিত। প্রধান ক্ষেলের চোয়াল ও ভার্নিয়ার ক্ষেলের চোয়ালকে পাশাপাশি একত্রিত করলে দেখা যাবে প্রধান ক্ষেলের ০ (শূন্য) দাগ ও ভার্নিয়ার ক্ষেলের ০ (শূন্য) দাগ একটি সরলরেখা বরাবর অবস্থান করে। যদি তা না হয়, তখন বুঝতে হবে যান্ত্রিক ত্রুটি রয়েছে এবং এর জন্য পাঠ সংশোধন করে নিতে হবে। ভার্নিয়ারে ০ (শূন্য) দাগ প্রধান ক্ষেলের ০ (শূন্য) দাগের ডান পাশে থাকলে ত্রুটি ধনাত্মক হবে এবং ভার্নিয়ারে ০ (শূন্য) দাগ প্রধান ক্ষেলের ০ (শূন্য) দাগের বাম পাশে থাকলে ত্রুটি খণ্ডাত্মক হবে। আপাত দৈর্ঘ্যের পাঠ থেকে সব সময় যান্ত্রিক ত্রুটি বিয়োগ করে বন্তিটির প্রকৃত দৈর্ঘ্য বের করতে হবে। পরিমাপের সময় ভার্নিয়ার ক্ষেলের শূন্যটি প্রধান ক্ষেলের শূন্য হতে যতদূর সরে যায় তাহাই বন্তিটির দৈর্ঘ্যের অখণ্ড পাঠ, যা সরাসরি ক্যালিপার্সের প্রধান ক্ষেল হতে নেওয়া যায়। কিন্তু ভগ্নাংশের পাঠ ভার্নিয়ার পাঠ সংখ্যার উপর নিভর করে।

সুতরাং দঙ্গের প্রকৃত দৈর্ঘ্য = প্রধান ক্ষেলে পাঠ + (ভার্নিয়ার ক্ষেলে পাঠ  $\times$  ভার্নিয়ার ত্রুটক) - ( $\pm$  যান্ত্রিক ত্রুটি)

### ভার্নিয়ার ত্রুটক (Vernier Constant) :

প্রধান ক্ষেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার ক্ষেলের এক ভাগ কতটুকু ছোট তার পরিমাণকে বলা হয় ভার্নিয়ার ত্রুটক (Vernier Constant)। ভার্নিয়ার ক্যালিপার্সের স্থির ও চলমান চোয়াল দুইটি পাশাপাশি রেখে একত্রিত করলে দেখা যাবে প্রধান ক্ষেলের শূন্য ও ভার্নিয়ার ক্ষেলের শূন্য একই সরল রেখা বরাবর অবস্থান করে। এমতাবস্থায় ভার্নিয়ারের ১০ ভাগ প্রধান ক্ষেলের ৯ ভাগের সমান। অর্থাৎ ভার্নিয়ারের ১০ ভাগ = প্রধান ক্ষেলের ৯ ভাগ = ৯ মিলিমিটার।

$$\therefore \text{ভার্নিয়ারের } 1 \text{ ভাগ} = \frac{9}{10} \text{ মিমি} = 0.9 \text{ মিমি}.$$

সুতরাং ভার্নিয়ার ত্রুটক = প্রধান ক্ষেলের স্থুন্দতম ১ ভাগ - ভার্নিয়ার ক্ষেলের স্থুন্দতম ১ ভাগ  
 = ১ মিমি - ০.৯ মিমি.  
 = ০.১ মিমি.।



চিত্র ১.১ : ভার্নিয়ার ক্যালিপার্স

#### ভার্নিয়ার ক্যালিপার্স সংরক্ষণ :

ভার্নিয়ার ক্যালিপার্স একটি সূক্ষ্ম মাপক যন্ত্র। কাজেই ইহাকে যথাযথরূপে ব্যবহার ও সংরক্ষণ করা দরকার।  
 ভার্নিয়ার ক্যালিপার্স সংরক্ষণের জন্য নিম্নলিখিত বিষয় কয়টি মেনে চলা উচিত :

- (ক) ভার্নিয়ার ক্যালিপার্সের কোন অংশে যাতে মরিচা (Rust) না পড়ে সেদিকে খেয়াল রাখতে হবে এবং ইহার বিভিন্ন অংশে কিছুদিন অন্তর মসৃণকারক তেল প্রয়োগ করতে হবে।
- (খ) ভার্নিয়ার ক্যালিপার্সের কোন অংশে যাতে কোন ধূলিকণা বা যয়লা না জমে সেদিকে লক্ষ রাখতে হবে এবং ব্যবহারের আগে ভালোভাবে মুছে নিতে হবে।
- (গ) ভার্নিয়ার ক্যালিপার্সকে খোলা অবস্থায় অপর যন্ত্রের সাথে রাখা উচিত নয়। সব সময় ইহাকে আলাদাভাবে রাখতে হবে।
- (ঘ) ব্যবহার শেষে ভার্নিয়ার ক্যালিপার্সটিকে নির্দিষ্ট আধার (Case) এর ভিতর রাখতে হবে।

#### ভার্নিয়ার ক্যালিপার্সের ত্রুটি :

দীর্ঘদিন ব্যবহার করার ফলে স্বাভাবিক ক্ষয়হেতু বা বিধি বহির্ভূতভাবে ব্যবহারে ভার্নিয়ার ক্যালিপার্সে প্রায়ই ত্রুটি ঘটে।  
 ত্রুটিযুক্ত ভার্নিয়ার ক্যালিপার্স দিয়ে মাপ নিলে গৃহীত মাপ ভুল হতে বাধ্য। তাই ভার্নিয়ার ক্যালিপার্স ব্যবহার করার আগে দেখতে হবে যে ঢোয়াল দুইটি যখন পরস্পরের সাথে বিনা চাপে মিলিত হয়, তখন প্রধান ক্ষেলের এবং ভার্নিয়ার ক্ষেলের রেখা দুইটি পরস্পর মিলেছে কীনা। যদি না মিলে, তা হলে বুঝতে হবে এতে ত্রুটি আছে। এক্ষেত্রে নির্ভুল বা প্রকৃত মাপ পেতে হলে ভার্নিয়ার ক্যালিপার্সকে সংশোধন করা প্রয়োজন।

ভার্নিয়ার ক্ষেলের ‘০’ চিহ্নিত রেখাটি যদি প্রধান ক্ষেলের ‘০’ চিহ্নিত রেখার ডান দিকে সরে থাকে, তা হলে ইহা “ধনাত্ত্বাক ত্রুটি” হিসেবে ভার্নিয়ার ক্ষেলের যে কয়টি রেখা ডানদিকে সরেছে উহা দ্বারা সূচিত মাপাটি ভার্নিয়ার ক্যালিপার্সে দেখানো মাপ হতে বিয়োগ হয়ে প্রকৃত মাপ বের হবে। আর যদি ভার্নিয়ার ক্ষেলের ‘০’ চিহ্নিত রেখাটি প্রধান ক্ষেলের ‘০’ চিহ্নিত রেখার বাম দিকে সরে থাকে, তাহলে ইহা “ঝণাত্ত্বাক ত্রুটি” হিসেবে ভার্নিয়ার ক্ষেলের যে কয়টি রেখা বাম দিকে সরেছে তা দ্বারা সূচিত মাপাটি ভার্নিয়ার ক্যালিপার্সে দেখানো মাপের সহিত যোগ হয়ে প্রকৃত মাপ বের হবে।

যান্ত্রিক ত্রুটি “ধনাত্ত্বাক” বা ঝণাত্ত্বাক যা হোক না কেন, সব সময়ই আপাত পাঠ থেকে তা বিয়োগ করতে হয়। কোন দণ্ডের আপাত পাঠ যদি  $L$  এবং যান্ত্রিক যদি  $e$  হয়, তাহলে প্রকৃত পাঠ অর্থাৎ দৈর্ঘ্য হবে  $L=L'-(\pm e)$  “ধনাত্ত্বাক ত্রুটি” ক্ষেত্রে,  $L=L'-(+e)=L-e$  এখানে ধনাত্ত্বাক ত্রুটি পরিশেষে “বিয়োগ” হয় আবার, “ঝণাত্ত্বাক ত্রুটি” ক্ষেত্রে,  $L=L'-(+e)=L-e$  এখানে ঝণাত্ত্বাক ত্রুটি পরিশেষে “যোগ” হয়।

### ভার্নিয়ার ক্যালিপার্স ব্যবহারে সাবধানতা:

- (ক) কোন বস্তুর মাপ নিতে ভার্নিয়ার ক্যালিপার্সের চোয়াল দুটোকে বস্তুর উপরিভাগে অথবা ছিন্দি বা নালীর মধ্যে কখনও বলপূর্বক প্রবেশ করাতে নেই।
- (খ) কোন বস্তু চলন্ত অবস্থায় থাকলে এ দিয়ে মাপ নেওয়া ঠিক নয়। বস্তুটি হিসেবে অবস্থায় থাকলেই কেবল মাপ নেওয়া উচিত।
- (গ) ভার্নিয়ার ক্যালিপার্সকে কখনও চুম্বকের নিকটে আনা ঠিক নয়। চুম্বকের নিকট রাখলে ইহা ভুল মাপ দেখাবে।
- (ঘ) চলমান চোয়লটিকে সরাবার পূর্বে লকিং-ক্লু টিকে টিলা করে নেওয়া উচিত। তা না হলে যন্ত্রটির ক্ষতি হতে পারে।

### ১.২ মাইক্রোমিটার (Micrometer)

মাইক্রোমিটারের সাহায্যে খুব ছোট দৈর্ঘ্য যেমন সরু তারের ব্যাস, সরু চোঙ বা নলের ব্যাস এবং পাতলা পাতের পুরুত্ব অতি সূক্ষ্মভাবে মাপা যায়। এয়ের একটি সমব্যাসার্দের মাইক্রোমিটারের উপর ক্লু আছে বলে একে ক্লু-গজও বলে। এতে প্রত্যক্ষভাবে মাপ জানতে পারা যায়। এ ছাড়া এ যন্ত্র দিয়ে অতি সহজে ও অপেক্ষাকৃত নির্ভুলভাবে মাপ নেওয়া সম্ভব। এর যান্ত্রিক ক্রটি নিরূপণ ও দূরীকরণ খুবই সহজ। ফলে, এ যন্ত্র বহুদিন ব্যবহার করা যায়। ইহা দ্বারা শিট মেটালের পুরুত্ব অধিক সূক্ষ্মভাবে মাপা যায়।

যন্ত্রটি দেখতে ইংরেজী U এর আকৃতি বিশিষ্ট একটি ইস্পাত খণ্ডের ক্ষেম। U-এর এক বাহুর মাথায় সমতল প্রান্তবিশিষ্ট একটি ছেট দণ্ড (A) স্থানীয়ভাবে সংযুক্ত আছে। একে এনভিল বলে। U-এর অপর বাহুর মাথায় একটি ফাঁপা নল (C) শক্তভাবে লাগানো আছে। একে স্লিড বলে। স্লিডের মধ্যদিয়ে একটি ক্লু (B) প্যাচের সাহায্যে প্রবেশ করানো হয়। ক্লু অত্যাবশ্যক সমতল। একে স্পিন্ডল বলে। ক্লুটিকে ঘূরিয়ে ঘূরিয়ে এনভিলের সাথে মিশানো হয় এবং পাঠ গ্রহণ করা হয়। স্লিডটির কিছু অংশ অপর একটি ফাঁপা নল (D) তে ঢুকানো থাকে। এই নলটিকে থিম্বল বলে। থিম্বলটি সরাসরি স্পিন্ডলের সাথে সংযুক্ত আছে। থিম্বলের অগ্রভাগে এর পরিধি রেখায় একটি বৃত্তাকার ক্ষেল রয়েছে। এ যন্ত্রে রৈখিক ক্ষেলের মিলিমিটারে দাগাঙ্কিত থাকে, আর বৃত্তাকার ক্ষেলটি সাধারণত ১০০ ভাগে বিভক্ত। স্পিন্ডলটিকে সূক্ষ্মভাবে চালনা করার জন্য থিম্বলটির মাথায় একটি রেচেড (T) লাগানো আছে। থিম্বলটি ঘূরিয়ে তা রৈখিক ক্ষেলের উপর দিয়ে চালনা করা যায়। এনভিল ও স্পিন্ডল এক সাথে মিশে থাকলে রৈখিক ক্ষেলের শূন্য দাগ ও বৃত্তাকার ক্ষেলের শূন্য দাগ এক স্থানে অবস্থান করে। এর ব্যতিক্রম হলে বুঝতে হবে যান্ত্রিক ক্রটি রয়েছে। যদি বৃত্তাকার ক্ষেলের দাগ রৈখিক ক্ষেলের পিছনে অর্ধাং নিচে থাকে তবে যান্ত্রিক ক্রটি ধনাত্মক হবে এবং বৃত্তাকার ক্ষেলের শূন্য দাগ যদি রৈখিক ক্ষেলের শূন্য দাগ অতিক্রম করে সামনে অর্ধাং উপরে থাকে তবে যন্ত্রটি ঋগাত্মক হবে।

থিম্বল সংযুক্ত ক্লুতে প্রতি সেন্টিমিটারের নির্দিষ্ট সংখ্যক প্যাচ রয়েছে। সুতরাং থিম্বলটিকে একবার ঘূরাতে স্পিন্ডলটি এক প্যাচ পরিমাণ দৈর্ঘ্য সরে যাবে। থিম্বলটি পুরাপুরি এক পাঁক ঘূরালে রৈখিক ক্ষেলে যে দূরত্ব অতিক্রম করে, তাকে এ যন্ত্রের পিচ (Pitch) বলা হয়। ক্লুটিকে বৃত্তাকার ক্ষেলের একভাগ ঘূরালে রৈখিক ক্ষেলে যে দূরত্ব অতিক্রম করে তাই সবচেয়ে সূক্ষ্ম মাপ, যা এ যন্ত্রের সাহায্যে নির্ণয় করা যায়। একে ন্যূনাঙ্ক বা লবিষ্ঠ গণন (Least Count) বলা হয়।

$$\text{ন্যূনাঙ্ক বা লবিষ্ঠ গণন} = \frac{\text{পিচ}}{\text{বৃত্তাকার ক্ষেলের ভাগের সংখ্যা}}$$

বৃত্তাকার ক্ষেলে সাধারণত ১০০ ভাগ থাকে এবং এই যন্ত্রে পিচ (Pitch) থাকে মিমি।

$$\therefore \text{লবিষ্ঠ গণন} = \frac{1}{100} \text{ মিমি.} = 0.01 \text{ মিমি.}$$

### মাইক্রোমিটারের ব্যবহার:

কোন বস্তুর দৈর্ঘ্য, ব্যাস বা পুরুত্ব মাপাতে বস্তুটিকে A ও B এর মাঝে ঝুঁকিয়ে বস্তুটিকে A ও B এর মধ্যে আটকাতে হবে। এখন দেখতে হবে বৈধিক ক্ষেলের গায়ে পূর্ণ কর্ত ভাগ অঙ্গসর হয়েছে এবং বৃত্তাকার ক্ষেলের কর্ত ভাগ অঙ্গভাগ করেছে তা পাঠ করতে হবে।

এখন বস্তুটির দৈর্ঘ্য, ব্যাস বা পুরুত্ব = বৈধিক ক্ষেল পাঠ + বৃত্তাকার ক্ষেল পাঠ × ঘনিষ্ঠ গনন - ( $\pm$  ষাণ্টিক ত্রুটি)

### মাইক্রোমিটারের মূলনীতি:

একটি ছীর নাটের ডিগ্রির বোল্ট চুকিয়ে যদি এক পাক মুরানো হুর, তাহলে বোল্টটি একটি পিচের দৈর্ঘ্য অনুযায়ী অপসর হবে। এই নীতি প্রয়োগ করে মাইক্রোমিটারের সাহায্যে পরিমাপ গ্রহণ করা হয়।

মাইক্রোমিটারের স্পিন্ডল নটিটি পিচের ডিগ্রে একটি ছীর নাটকে অবস্থান করে এবং একটি চলমান বোল্টজপে কাজ করে। মেট্রিক পদ্ধতির মাইক্রোমিটারের স্পিন্ডল নাটের ডিগ্রির মেট্রিক প্রেত (প্যাট্চ) কাটা থাকে। স্পিন্ডল এর উপরও অনুক্রম প্যাট্চ কাটা থাকে। সাধারণত: এই প্যাট্চ এক পক্ষ (Single start) এবং ইহার পিচ 0.5 মিমি হয়ে থাকে। অর্থাৎ ধিমলকে একবার মুরানো হলে স্পিন্ডলটি 0.5 মিমি অঙ্গসর হবে বা পিছাবে। ধিমলের বৃত্তাকার ক্ষেলে মোট 50 টি সহান ভাগে দাগ কাটা থাকে। অর্থাৎ ধিমলকে একবার মুরানে বৃত্তাকার ক্ষেলটি একবার শুরুবে।

সূতরাং ধিমলে 50 টি ভাগ মুরালে স্পিন তল 0.5 মিমি এপিয়ে থাকে।

অতএব, ধিমলের 1 টি ভাগ মুরালে স্পিন্ডল  $\frac{0.5}{50}$  মিমি। এপিয়ে থাক = 0.01 মিমি।

এটাই সাধারণত মাইক্রোমিটারের নূনাঙ্ক বা সর্বিষ্ঠ গনন (Least count)



চিত্র ১.২ : মাইক্রোমিটার

### ১.৩ সঠিক মাপ ও ব্যবহারের কথা :

মাইক্রোমিটার একটি সূচনা ও নজুক (delicate) পরিমাপক যন্ত্র। এটা সাধারণে এবং যত্ন সহকারে ব্যবহার করতে হবে। এর এনভিল এবং স্পিন্ডলের প্রান্তে বা মুখে যাকে কোন প্রকার খুশিকলা বা মুরলা না জড়ে, সে বিষয়ে সর্বদা লক রাখতে হবে। ব্যবহার করার পূর্বে এবং পরে এনভিল ও স্পিন্ডলের মুখ দুইটিকে উত্তমরূপে পরিষ্কার করে নিতে হবে। ব্যবহার শেষে এটা খোলা অবস্থায় টেবিলে উপর না রেখে নিদিষ্ট বাক্সের ডিগ্রে রাখতে হবে। মাইক্রোমিটারের কোন অংশে যাকে মুরিচা না ধরে এবং ডিগ্রের বিভিন্ন অংশে কিছুমিন পর পর মসৃণ জেল প্রয়োগ করতে হবে। সীর্বিদিন ব্যবহারের ফলে এ ঘন্টের ডিগ্রের অংশে, স্পিন্ডল এবং এনভিলের মুখ ইত্যাদি ক্ষয় হয়ে থাক বলে মাইক্রোমিটারে

“শূন্য ক্রটি” (Zero error) ব্যাকল্যাশ ক্রটি বা পিছট ক্রটি (Backlash Error) এবং অন্য প্রকার দোষও দেখা দেয়। ইহা সংশোধনের জন্য সুদৃঢ় কারিগর প্রয়োজন।

**মাইক্রোমিটার দিয়ে নেওয়া মাপে ভুলের কারণসমূহ :**

- (ক) মাপ নেওয়ার সময় স্পিন্ডলের প্রান্তটি বন্তর উপরিভাগকে যথাযথভাবে স্পর্শ না করলে বা এর উপর অতিরিক্ত চাপ দিলে।
- (খ) মাইক্রোমিটারকে চুম্বকের নিকট আনার ফলে এনভিল ও স্পিন্ডলের প্রান্তে বা অন্য অংশে লৌহকণা আকর্ষিত হয়ে থাকলে।
- (গ) বন্তটির উপরিভাগে অথবা এনভিল ও স্পিন্ডলের প্রান্তে ধূলিকণা বা ময়লা জমে থাকলে।
- (ঘ) মাইক্রোমিটারে ‘শূন্য ক্রটি’ (Zero error)।
- (ঙ) মাপ নেওয়ার সময় মাইক্রোমিটারকে বাঁকা করে ধরলে।
- (চ) কোন কারণে স্পিন্ডলটি বেঁকে গেলে বা কেন্দ্রুচ্যুত হলে।
- (ছ) দীর্ঘদিন ব্যবহার করায় বা অন্য কোন কারণে স্পিন্ডল ও স্লিপের ঝুঁ-খ্রেড ক্ষয় হয়ে গিয়ে স্পিন্ডলটি চিলা হলে।

**মাইক্রোমিটার ব্যবহারে সাধারণতা :**

মাইক্রোমিটার সূক্ষ্ম পরিমাপক যন্ত্র এবং মূল্যবান। সুতরাং ইহা ব্যবহার করার সময় এবং ব্যবহার শেষে নিম্নলিখিত সাধারণতা অবলম্বন করা উচিত:

- (ক) র্যাচেড বিহীন মাইক্রোমিটারের ক্ষেত্রে থিবলকে ঘুরানোর সময় এমন যত্নের সাথে ঘুরানো উচিত যাতে স্পিন্ডলের মুখটি বন্তর উপরিভাগকে কেবল আলতোভাবে স্পর্শ করে এবং বেশি চাপ না দেয়। বেশি চাপ দিলে স্পিন্ডলটি বেঁকে যাওয়া বা মুখটি বিকৃত হওয়ার অথবা ভিতরে সূক্ষ্ম ঝুঁ-খ্রেডগুলো ক্ষতিগ্রস্ত হওয়ার আশংকা থাকে।
- (খ) চলন্ত অবস্থায় বা ঘুরতে থাকা অবস্থায় কোন বন্তর মাপ মাইক্রোমিটারের সাহায্যে নেওয়া উচিত নয়।
- (গ) ব্যবহারের সময় মাইক্রোমিটার যাতে পড়ে না যায় এবং ইহার এনভিল ও স্পিন্ডলের মুখে যাতে কোন প্রকার আঘাত না লাগে বা বিকৃত না হয়, এ বিষয়ে সর্বদা বিশেষ সর্তক হতে হবে।
- (ঘ) মাইক্রোমিটারকে কখনও চলন্ত মেশিনের বেড (Bed) ও (Body) ইত্যাদির উপর বা অন্য কোন উচুন্মানে রাখা যাবে না। কারণ, এতে পড়ে গিয়ে বা চাপের দ্বারা ক্ষতিগ্রস্ত হতে পারে।
- (ঙ) ব্যবহার শেষে, মাইক্রোমিটারকে খোলা অবস্থায় না রেখে এটা নির্দিষ্ট আধার (Case) এর ভিতর বক্ষ রাখা উচিত। যাতে কোন ময়লা পরতে না পারে।
- (চ) মাইক্রোমিটারের সিস্বল ছির রেখে ফ্রেম অংশকে দ্রুত ঘুরানো অনুচিত। কারণ, ফ্রেমকে এভাবে ঘুরালে এনভিল এবং স্পিন্ডল কেন্দ্রুচ্যুত হয় এবং এর ফলে মাইক্রোমিটারটি ব্যবহার অযোগ্য হয়ে পড়ে।
- (ছ) মাইক্রোমিটারকে কখনও চুম্বকের নিকটে আনা উচিত নয়। আনলে এর গুরুত্বপূর্ণ অংশগুলো চুম্বকত্ত লাভ করে। ফলে, এনভিল ও স্পিন্ডলের মুখে এবং অন্যান্য অংশে লৌহকণা আকর্ষিত হয়। এতে মাইক্রোমিটার ক্ষতিগ্রস্ত হওয়ার আশংকা থাকে।
- (জ) যেখানে যন্ত্রপাতি ধার দেওয়া হয়, তার নিকটে মাইক্রোমিটার দিয়ে কখনও মাপ নেওয়া উচিত নয়। কারণ, একেত্রে ধাতুকণাগুলো মাইক্রোমিটারের ভিতর প্রবেশ করে একে ক্ষতিগ্রস্ত করতে পারে।

### ১.৮ FPS ও MKS এর পরিমাপের তারতম্য (Conversion)

বর্তমানে প্রচলিত বিভিন্ন এককের তালিকা নিচে প্রদান করা হলো:

|               |   |                    |                    |   |                    |
|---------------|---|--------------------|--------------------|---|--------------------|
| ১০ মি.মি      | = | ১ সে.মি.           | ১২ ইঞ্চি           | = | ১ ফুট              |
| ১০ সে.মি      | = | ১ ডেসি.মি          | ৩ ফুট              | = | ১ গজ               |
| ১০ ডেসি.মি.   | = | ১ মিটার            | ৭.৯২ ইঞ্চি         | = | ১ লিংক (গান্টারস)  |
| ১০০০ মিটার    | = | ১ কি.মি            | ২২০ গজ             | = | ১ ফার্লং           |
| ১০০০০০০ মিটার | = | ১ মেঘা মিটার       | ৪ ফার্লং           | = | ১ মাইল             |
| ১৮৫২ মিটার    | = | ১ ন্যাটিক্যাল মাইল | ৬০৮০ ফুট           | = | ১ ন্যাটিক্যাল মাইল |
| ১৬০৯ মিটার    | = | ১ মাইল             | ১০০ ফুট            | = | ১ প্রকৌশল শিকল     |
| ৩০ মিটার      | = | ১ মেট্রিক শিকল     | ১০ গ্যান্টারস শিকল | = | ১ গ্যান্টার শিকল   |
| ২০ মিটার      | = | ১ মেট্রিক শিকল     | ১০ গ্যান্টারস শিকল | = | ১ ফার্লং           |
|               |   |                    | ৮০ গ্যান্টারস শিকল | = | ১ মাইল             |

- দুইপদ্ধতির এককের মধ্যে পার্থক্য

মেট্রিক এক হতে ব্রিটিশ একক :

$$1 \text{ সে.মি} = 0.3937 \text{ ইঞ্চি}$$

$$1 \text{ মি.} = 39.37 \text{ ইঞ্চি}$$

$$1 \text{ কি.মি} = 1093.61 \text{ গজ} = 0.62137 \text{ মাইল}$$

- ব্রিটিশ একক হতে মেট্রিক একক :

$$1 \text{ ইঞ্চি} = 2.54 \text{ সে.মি}$$

$$1 \text{ ফুট} = 30.48 \text{ সে.মি} = 0.3048 \text{ মি.}$$

$$1 \text{ গজ} = 91.44 \text{ সে.মি} = 0.9144 \text{ মি.}$$

$$1 \text{ শিকল (গান্টারস)} = 20.12 \text{ মি. (২০ মি.)}$$

$$1 \text{ শিকল (প্রকৌশল)} = 30.88 \text{ মি. (৩০ মি.)}$$

$$1 \text{ মাইল} = 1.61 \text{ কি.মি}$$

$$1 \text{ ন্যাটিক্যাল মাইল} = 1.852 \text{ কি.মি}$$

- ক্ষেত্রফলের একক :

| মেট্রিক পদ্ধতি                  | ব্রিটিশ পদ্ধতি                 |
|---------------------------------|--------------------------------|
| ১০০ বর্গ মিমি = ১ বর্গ সেমি.    | ১৪৪ বর্গ ইঞ্চি = ১ বর্গফুট     |
| ১০০ বর্গ সেমি. = ১ বর্গ ডেসিমি. | ৯ বর্গফুট = ১ বর্গগজ           |
| ১০০ বর্গডেসিমি. = ১ বর্গ মি.    | ৪৩৫.৬ বর্গ = ১ শতাংশ           |
| ১০০ বর্গমিটার = ১ এয়ার         | ৭২০ বর্গফুট = ১ কাঠা           |
| ১০০ এয়ার = ১ হেক্টের           | ৪৮৪০ বর্গগজ = ১ একর            |
| ১০০ হেক্টের = ১ বর্গকিমি.       | ৬৪০ একক = ১ বর্গমাইল           |
|                                 | ১০ বর্গশিকল (গান্টারস) = ১ একর |

● দুইপদ্ধতির এককের মধ্যে সম্পর্ক :

| মেট্রিক একক হতে ব্রিটিশ একক    | ব্রিটিশ একক হতে মেট্রিক একক                |
|--------------------------------|--------------------------------------------|
| ১ বর্গসেমি. = ০.১৫৫ বর্গইঞ্চি  | ১ বর্গইঞ্চি = ৬.৪৫১৬ বর্গসেমি              |
| ১ বর্গসেমি = ১০.৭৬৪ বর্গফুট    | ১ বর্গফুট = ৯২৯.০৩ বর্গসেমি                |
| ১ বর্গকিমি = ১১৯৫৯৮২.৮৩ বর্গগজ | ১ বর্গগজ = ০.৮৩৬১২৭ বর্গমি                 |
| ১ হেক্টের = ২.৪৭১ একর          | ১ বর্গমাইল = ২.৫৯ বর্গকিমি                 |
|                                | ১ একর = ৪০৪৬.৮৫৬ বর্গমি<br>= ০.৪০৫ হেক্টের |

● আয়তনের একক :

| মেট্রিক পদ্ধতি        | ব্রিটিশ পদ্ধতি         |
|-----------------------|------------------------|
| ১০০ ঘনমিমি = ১ ঘনসেমি | ১৭২৮ ঘনইঞ্চি = ১ ঘনফুট |
| ১০০ ঘনসেমি = ১ ঘনসেমি | ২৭ ঘনফুট = ১ ঘনগজ      |
| ১০০ ঘনডেসিমি = ১ ঘনমি |                        |

● দুইপদ্ধতির এককের মধ্যে পার্শ্বক্ষেত্র :

| মেট্রিক পদ্ধতি                           | ব্রিটিশ পদ্ধতি            |
|------------------------------------------|---------------------------|
| ১ ঘনসেমি = ০.০৬১ ঘনইঞ্চি                 | ১ ঘনইঞ্চি = ১৬.৩৮৭ ঘনসেমি |
| ১ ঘনমিটার = ৩৫.৩১৫ ঘনফুট<br>= ১.৩০৮ ঘনগজ | ১ ঘনফুট = ০.২৮ ঘনমি       |

## প্রশ্নমালা-১

### **সংক্ষিপ্ত প্রশ্ন:**

- ১) ভার্নিয়ার ক্রুবক কী?
- ২) ভার্নিয়ার ক্যালিপার্স এর মাধ্যমে সর্বনিম্ন কত মিমি মাপ নেওয়া যায় লেখ।
- ৩) মাইক্রোমিটার স্ক্লু-গজের সাহায্যে সর্বনিম্ন কত মিমি মাপ নেওয়া যায় লেখ।
- ৪) ভার্নিয়ার ক্যালিপার্স কে আবিষ্কার করেন।
- ৫) ভার্নিয়ার ক্যালিপার্স এর সাহায্যে কোন বস্তুর দৈর্ঘ্য কীভাবে নির্ণয় করা যায়?
- ৬) মাইক্রোমিটার স্ক্লু-গজের ন্যূনাঙ্ক বা লিষ্ট গণন এর সংজ্ঞা দাও।
- ৭) মাইক্রোমিটার স্ক্লু-গজ দিয়ে মাপ গ্রহণ পদ্ধতি লেখ।
- ৮) যান্ত্রিক ত্রুটি বলত কী বোঝায়? ধনাত্মক ও ঋণাত্মক যান্ত্রিক ত্রুটি কী এবং কীভাবে পরিমাপে প্রভাব বিস্তার করে।

### **রচনামূলক প্রশ্ন :**

- ১) একটি ভার্নিয়ার ক্যালিপার্স এর চিত্র অঙ্কন করে এর বিভিন্ন অংশগুলো দেখাও।
- ২) একটি মাইক্রোমিটার স্ক্লু-গজের চিত্র অঙ্কন করে এর বিভিন্ন অংশগুলো দেখাও।
- ৩) ভার্নিয়ার ক্যালিপার্স দিয়ে মাপ গ্রহণ পদ্ধতিগুলো লেখ।
- ৪) মাইক্রোমিটার স্ক্লু-গজের সাহায্যে মাপ গ্রহণ পদ্ধতিগুলো লেখ।
- ৫) ভার্নিয়ার ক্যালিপার্স কীভাবে সংরক্ষণ করা হয়?
- ৬) ভার্নিয়ার ক্যালিপার্স ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয়?
- ৭) মাইক্রোমিটার স্ক্লু-গজ কীভাবে সংরক্ষণ করা যায়?
- ৮) মাইক্রোমিটার ব্যবহারে কী কী সাবধানতা অবলম্বন করতে হয়?

## অধ্যায় : ২

# ম্যাশনরি কাজে ব্যবহৃত যন্ত্রপাতি ও উপকরণসমূহ

### ২.১ যন্ত্রপাতির তালিকা

ম্যাশনরি কাজে রাজমিণ্ড্রিয়া যে সকল যন্ত্রপাতি ব্যবহার করেন তা হলো নিম্নরূপ:

- (ক) কর্নি (Trowel) ।
- (খ) বাঞ্ছলী (Brick hammer) ।
- (গ) স্পিরিট লেভেল (Spirit level) ।
- (ঘ) ওলব (Plumb bob) ।
- (ঙ) মাটাম বা গুনিয়া (Mason's square) ।
- (চ) পিন ও সুতলি (Line and pins) ।
- (ছ) দাগযন্ত্র (Scutch) ।
- (জ) বোলস্টার (Bolster) ।
- (ঝ) জয়েন্টার (Jointer) ।
- (ঝঃ) মিটার রুল ও কাঠের রুল (Metre rule & Wooden rule) ।
- (ট) গাতি, কোদাল ও বেলচা ।
- (ঠ) কড়াই, বালতি ও মগ ।
- (ড) ছাইল ব্যারো (Wheel barrow) ।

### ২.২ যন্ত্রপাতি ব্যবহারের ক্ষেত্র :

কর্নি বা কর্নিক (Trowel) ও উষা :

স্টিলের ব্রেড দিয়ে বিশেষ আকারের শ্যাঙ্কসহ তৈরি করে ফেরুল দিয়ে কাঠের হাতলের সাথে লাগিয়ে কর্নি বা কর্নিক তৈরি করা হয়। বাজারে ছোট বড় বিভিন্ন সাইজের কর্নি পাওয়া যায়। কর্নির সাহায্যে কড়াই হতে মসলা উঠিয়ে ইটের উপর রাখা হয় এবং বিছানো হয়। ইহা সাধারণত দেয়াল গাঁথুনি, প্লাস্টার করা হয়, কংক্রিট ঢালাই ইত্যাদি কাজে ব্যবহৃত হয়। কর্নির সাহায্যে ইটও কাটা যায়।

**বাঞ্ছলী (Brick hammer) :**

বাঞ্ছলী ইট ও ভাঙার কাজে ব্যবহৃত হয়। ইহা ইটের কেজার তৈরির জন্য বিশেষ উপযোগী। ইহা দেখতে কাঠের হাতলযুক্ত লোহার হাতুড়ির মতো, তবে একদিকের মাথা বাটালের মতো পাতলা।

**স্টিল ছেনি (Bold chisel) :**

স্টিল ছেনি দেয়াল ভাঙা ও দেয়াল গর্ত করার কাজে ব্যবহৃত হয়। এছাড়া ইহা কাটা ও ভাঙা।

**স্পিরিট লেভেল (Siprit level) :**

কাঠের লম্বা দণ্ডের মাঝে নল বুদবুদ লাগিয়ে স্পিরিট লেভেল তৈরি হয়। ইহা দ্বারা গাঁথুনির স্তর অনুভূমিক আছে কীনা পরীক্ষা করা হয়। ইটের দেয়ালের প্রতিটি স্তর ভূমির সাথে সমান্তরাল হবে। গাঁথুনি যদি ভূমির সমান্তরাল হয় অর্থাৎ গাঁথুনির মাথা যদি সব জায়গায় একই লেভেলে থাকে, তাহলে দেখা যাবে ব্যবহৃত স্পিরিট লেভেলের

বুদবুদটাও ঠিক নলের কেন্দ্রবিন্দুতে থাকবে। বুদবুদ যদি ঠিক মাঝখানে না থেকে যেদিকে সরে যাবে, সেদিকে গাঁথুনি উচু হয়েছে নির্দেশ করবে। এভাবে যে লেভেল পর্যন্ত গাঁথুনি ভুল গাঁথা হয়েছে বলে ধরা পড়বে, সে স্তর পর্যন্ত ভেঙে ফেলে স্পিরিট লেভেলের সহায়তায় নতুন করে তৈরি করতে হবে।

### ওজন (Plumb bob) :

দেয়াল খাড়া (Vertical) হচ্ছে কীনা তা পরীক্ষা করার জন্য ওলন ব্যবহার করা হয়। দেয়াল মাটি থেকে খাড়া উঠবে, ডানে বা বামে হেলে যাবে না। এটি ওলনের সাহায্যে পরীক্ষা করা হয়। একখানা ছেট চৌকা কাঠের মাঝখানে ফুটো করে তার ডেতের সুতা ঝুলিয়ে দেওয়া হয়। সুতার নিচের প্রান্তে আটকানো থাকে একটা পিতলের বা লোহার বা সীসার ভারী গোঁজ আকারের বল এবং উপরের প্রান্তে আটকানো থাকে একটি কাঠি। ফুটো থেকে চৌকা কাঠের কিনারা যত মিলিমিটার দূরে, নিচের ধাতব বলটি ব্যাসার্ধও ঠিক তত মিলি মিটার। চৌকা কাঠখানি দেয়ালের গায়ে লাগিয়ে যদি দেখা যায় ওলনের বলটিও ঠিক দেয়াল স্পর্শ করছে, তা হলে বুঝতে হবে দেয়াল ঠিক খাড়া উঠেছে।

### মাটাম বা শুনিয়া (Mason's square) :

স্টিলের পাত দিয়ে সমকোণ করে তৈরি দাগ কাটা ক্ষেলই হলো মাটাম বা শুনিয়া। ইহার সাহায্যে দেয়ালের সমকোণীতা পরীক্ষা করা হয়। লে-আউট দেওয়ার সময় কোণগুলো সমকোণে আছে কীনা, তা মাটাম বা শুনিয়ার সাহায্যে পরীক্ষা করা হয়। গাঁথুনির কাজে প্রত্যেক স্তরেই শুনিয়ার সাহায্যে ইহা পরীক্ষা করে নেওয়া উচিত। যেখানে দুইটি দেয়াল সমকোণে মিশবে, সেখানে ইহা ব্যবহার করলেই বোঝা যাবে, গাঁথুনি সমকোণ হচ্ছে কীনা। যদি দেয়াল দুইটি সমকোণে থাকে, তাহলে শুনিয়ার দুইটি ধারাই দেয়ালকে সব বিন্দুতে স্পর্শ করবে।

### পাটা বা পাট্টা :

সাধারণত : ১৫০ সেমি লম্বা, ৭৫ মিমি. চওড়া ও ৫০ মিমি. পুরু মাপের এক খণ্ড সোজা শক্ত কাঠকে পাঠা বা পাটা বলে। দেয়ারে গাঁথুনির স্তরগুলো অনুভূমিকভাবে তৈরি বা স্থাপনের কাজে ইহা ব্যবহৃত হয়। অনুভূমিক স্তর পরীক্ষার জন্য পাটাটি দেয়ালের উপর রেখে তার উপর স্টিরিট লেভেল বসালে যদি বুদবুদ ঠিক কেন্দ্রে অবস্থান করে, তাহলেই বুঝা যাবে স্তরটি অনুভূমিক হয়েছে। এছাড়া গাঁথুনির একটি স্তরে প্রতিটি ইটের বাইরের পাশ (Face) একই অনুভূমিক সরলরেখায় স্থাপন করতে পাটা সাহায্য করে। আবার দেয়ালটি সঠিক খাড়া ভাবে তৈরি হচ্ছে কীনা, তা পাটাকে দেয়ালের গায়ে খাড়াভাবে পরীক্ষা করা হয়।

### পিন ও সূতলি (Line & Pins) :

পিন ও সূতলি দিয়ে ইটের গাঁথুনির প্রতি কোর্স বা স্তরের প্রতিটি ইট সম উচ্চতায় আছে কীনা তা পরীক্ষা করা হয়। এক কথায় ইহার সাহায্যে কোর্স বা স্তরের এলাইনমেন্ট ঠিক করা হয়।

### দাগযন্ত্র (Scutch) ও বোলস্টার (Bolster) :

দাগযন্ত্রের সাহায্যে নরম ইট কাটা এবং পৃষ্ঠাদেশ ড্রেসিং করা হয়। বোলস্টারের ইট সঠিকভাবে (Accurately) কাটা হয়।

### জয়েন্টার (Jointer) :

ইটের গাঁথুনির কাজে দেয়ালে প্লাস্টারের পরিবর্তে সৌন্দর্যবর্ধক পয়েন্টিং করতে ইটের জোড়াগুলোতে বিশেষ কাজ অর্ধাং পয়েন্টিং করতে জয়েন্টার ব্যবহার করা হয়। ইহা স্টিল বা পিতলে তৈরি একটি হাতযন্ত্র (Hand tool) বিশেষ।

### **মিটার রুল (Meter Rule) ও কাঠের রুল (Wooden Rule) :**

মিটার রুলে মাপ নেওয়া হয়। ইহা সেন্টিমিটার ও মিলিমিটারের দাগ কাটা থাকে। এছাড়া ছোটখাট মাপের কাজে কাঠের পুল ব্যবহার হয়। চার ভাঁজ কাঠের বিভিন্ন ধরনের রুল বাজারে পাওয়া যায়।

### **গাঁতি, কোদাল ও বেলচা :**

কাঠের হাতলযুক্ত দুইমুখ সরু ধারালো ধাতব হাতযন্ত্রকে গাঁতি বলে। ইহা শক্ত মাটি, কংক্রিট ও পিচের রাস্তা কাটা এবং দেয়াল, মেঝে ইত্যাদি ভঙ্গার কাজে ব্যবহৃত হয়। কোদাল ও বেলচা বলতে লোহার পাতের তৈরি বিশেষ ভাবে হাতল লাগানো হাতলযন্ত্রকে বুঝায়। মাটি কাটা ও ভরাট এবং মশলা মিশানো ও উঠানো কাজে কোদাল ও বেলচা ব্যবহৃত হয়।

### **কড়াই, বালতি ও মগ :**

ইট, ইটের খোয়া, বালি, পাথর কণা, খোলা সিমেন্ট, তৈরিকৃত (মেশানো) মসলা ও কংক্রিট ইতাদি বহন করার কাজে ব্যবহৃত লোহার তৈরি হাতলযুক্ত বিশেষ পাত্রটিই কড়াই। তাছাড়া মসলা মিশানোর সময় উপাদানগুলো মাপতেও কড়াই ব্যবহৃত হয়। এক ব্যাগ সিমেন্ট প্রায় দুই কড়াই হয়।

গাঁথুনি, প্লাস্টার ইত্যাদির মসলা তৈরি এবং কংক্রিট মিশনকালে পানি রাখা, আনা ও তোলার কাজে জিআই শিট বা প্লাস্টিকের তৈরি বালতি ও মগ ব্যবহৃত হয়।

### **হাইল ব্যারো (Wheel Barrow) :**

নির্মাণ কাজে সাইটে ব্যবহৃত এক চাকা লাগানো ট্রলি হাইল ব্যারো বলা হয়। ইহা সাধারণত : স্টিলের শিট দিয়ে তৈরি। নির্মাণ সাইটে পরিমিত মালামাল এক জায়গা থেকে অপর জায়গায় আনা নেওয়ার কাজে ইহা ব্যবহৃত হয়।



চিত্র ১ : ম্যশনরি কাজে ব্যবহৃত যন্ত্রপাতি



চিত্র ২.১ : গৃহ নির্মাণ কাজে ব্যবহৃত যন্ত্রপাতি উপকরণ

## লেদ মেশিন

ধাতু বস্তু কাটিৎ ও মেশিনিং-এর জন্য যত প্রকার মেশিন টুল রয়েছে (Metal working machine tools) তন্মধ্যে লেদ মেশিন সংকেপে শুধু ‘লেদ’ প্রধান। কেবলমা, লেদে এত বেশি ও ব্যাপক কার্যক্রম সম্পন্ন করা যায়, যা অন্য কোন মেশিনে সম্ভব হয় না।

লেদ প্রথম উদ্ঘাবিত হয় প্রধানত : শ্যাফত, বোল্ট, পিন, ডিসক, গিয়ার ব্রাক্ষ ইত্যাদি সিলিন্ড্রিক্যাল ও সামান্য কোনিক্যাল দ্রব্য (cylindrical) উৎপাদন করার উদ্দেশ্যে। তবে এর উন্নতি সাধন করে এবং প্রয়োজনমতো কিছু অতিরিক্ত যন্ত্রকৌশল সংযোজন করে অনেক বেশি ও ব্যাপক কার্যক্রম সম্ভব হয়। যেমন, পুলি, থ্রেড-কাটিৎ, ড্রিলিং-বোরিং, রিমিৎ, ট্যাপিং, অভ্যন্তরীণ থ্রেড কাটিৎ, নালিং, গ্রাইডিং, ফিলিং এবং বেশ কিছু মিলিং অপারেশন। বস্তুত: লেদ এমন একটি মেশিন যা অপর একটি লেদ-মেশিন তৈরি করতে যতক্ষণি অপারেশন প্রয়োজন, সবই করতে পারে। এজন্য লেদকে সকল মেশিনের উৎস বা father of all machines বলা হয়।



চিত্র ২.২ : লেদ মেশিন

আজ একদিকে অসংখ্য হস্তচালিত (manually operated) লেদ বহুবিধ শিল্প কারখানায় ব্যবহৃত হচ্ছে, অপরদিকে অতি-সূচৰ, নির্ভুল ও অতি-দ্রুত কাজ সম্পন্ন করার জন্য সৈমি-অটোমেটিক, অটোমেটিক এবং অধূনা কম্পিউটার- কন্ট্রোলড বা নিউমেরিক্যালি-কন্ট্রোলড (N.G) লেদের ব্যবহার দিন দিন বৃদ্ধি পাচ্ছে।

### লেদ মেশিনের মূল কাজ ও কর্মপদ্ধতি :

লেদ মেশিনে জব বা ওয়ার্কিংপিসকে একটি ঢাকে বাঁধা হয়। জবটি লব্ধ হলে অপর প্রান্ত একটি সেন্টার ধরা হয় এবং ছোট হলে শুধু ঢাকে বেঁয়েই সুরান হয় আর কাটার বা টুল-বিটকে অধ্যাখানে, লেদ-বেডের উপর টুলপোস্টে বেঁধে, দুর্গায়মান জবের পার্শ্বে ধরা হয় এবং আন্তে আন্তে বাঁয়ে অথবা ডানে সরান হয়। এভাবে টুল-বিট জবকে এক বিন্দুতে ও একটি রেখায় কাটাতে কাটাতে অগ্রসর হয়। ফলে জবপৃষ্ঠের উপর একটি স্তর কেটে যায় ও গোলাকার হয়ে যায়।



চিত্র ২.৩ : লেদ মেশিনে টার্নিং

এভাবে যতবার কাটা হবে জব বা শ্যাফটের ব্যাস তত কমতে থাকবে। আবার, টুল-বিটকে ডানে-বাঁয়ে অর্থাৎ লম্বালম্বিতে না সরিয়ে আড়ে বা ক্রসে সরালে ও ক্রমে টার্নিং এবং আড়ে কেটে দ্বিখণ্ডিত করে ফেলাকে ‘পাটিং’ বলা হয়।

### লেদ মেশিনের পরিচয় ও বিভিন্ন অংশের নাম :

লেদ মেশিনের বিভিন্ন অংশের নাম ও পরিচয় চিত্রে দেখান হলো :

| পার্টসের নাম                           | অবস্থান         | কাজ                                                                   |
|----------------------------------------|-----------------|-----------------------------------------------------------------------|
| ১। হেডস্টক                             | বাঁ দিকে        | মোটর, গিয়ার, পুলি-বেল্ট, স্পিন্ডল তথা মূল ড্রাইভিং ধারণ করে।         |
| ২। লেদ বেড                             | মধ্যখানে        | মূল বডি। ক্যারেজ ও কাটিং টুল ধারণ করে।                                |
| ৩। টেলস্টক                             | ডানদিকে         | লম্বা ওয়ার্কপিস ধারণ করে। ড্রিলিং অপারেশনের সময় ড্রিল বিট ধারণ করে। |
| ৩ ক। টেলস্টক হ্যান্ডহেল                |                 | টেলস্টক সেন্টার নিয়ন্ত্রণ করে।                                       |
| ৩ খ। টেলস্টক লকিং লিভার                | টেলস্টকের পিছনে | টেলস্টককে মেশিন-বেডে লক করে।                                          |
| ৪। ক্যারেজ, স্যাডল, ক্রস সাইড, কম্পটুট | লেদ বেডের উপর   | টুলধারণ, স্লাইডিং ও কাটিং নিয়ন্ত্রণ করে, টুল ধারণ করে।               |



চিত্র ২.৪ : লেদ মেশিনের বিভিন্ন অংশ

| পার্টসের নাম   | অবস্থান           | কাজ                          |
|----------------|-------------------|------------------------------|
| ৪-ক। টুল পোস্ট | ক্রস স্লাইডের উপর | টুল ধারণ করবে।               |
| ৪-খ। স্যাডল লক | স্যাডল এর উপর     | স্যাডলকে মেশিন-বেডে লক করে।  |
| ৫। মেইন সুইচ   | বাঁ দিকে          | মেশিন চালনা তথা অন ও অফ করে। |

|                             |                 |                                           |
|-----------------------------|-----------------|-------------------------------------------|
| ৬। স্টার্টিং সিভার          | হেডস্টকে, সামনে | যেইন স্পিন্ডল চালনা করে বা বন্ধ করে।      |
| ৭। মোটর রিভার্স সিভার       | হেডস্টকে, সামনে | যেইন স্পিন্ডল এর ঘূর্ণন বিপরীতমুখী করে।   |
| ৮-ক। স্পিন্ডল সিলেকশন সিভার | হেডস্টকে, উপরে  | স্পিন্ডল স্পিন্ডল সিলেকশন করে।            |
| ৯। চাক অথবা ফেস প্রেট       | হেডস্টকে        | ওয়ার্ক ধারণ করে।                         |
| ১০। ফিড সিলেকশন             | হেডস্টকে        | ফিড সিলেকশন করে।                          |
| ১১। চার্ট                   | হেডস্টক কভারে   | স্পিন্ডল ও ফিড চার্ট                      |
| ১২। মোটর ও কেবিটেন          | বামে, নিচে      | মোটর ধারণ করে                             |
| ১৩। ফিড রড                  | ক্যারেজের নিচে  | অটোমেটিক ফিড মিবার সমন্বয় এনগেজ করা হয়। |
| ১৪। লিড রু                  | ক্যারেজের নিচে  | শ্রেড কাটিং এর সময় এনগেজ করা হয়।        |

লেদ মেশিনে কী কী কাজ করা যায় :

লেদ মেশিনে শিল্পাত্মিক কাজগুলো করা যায় :

১. টার্নিং বা প্যারালাল টার্নিং (Turning or Parallel) : জব বা ওয়ার্কপিস লেদের দুই সেন্টারের উপর ভর করে ঘূরে আর কাটার স্যাঙ্গল সহকারে বেডের উপর লম্বালম্বিতে কাটিতে কাটিতে সরে। কলে জব (শ্যাফট বা রড) এর ব্যাস সর্বত্র সমান হয়।



চিত্র ২.৫ : টার্নিং

২. টেপার টার্নিং (Taper Turning) : জব দুই সেন্টারের উপর ঘূরে আর কাটার কম্পাউন্ড রেস্টের উপর কোণাকুণিতে সরে অথবা টেলস্টক সেন্টারকে অফসেট করে জবকে কোণাকুণিতে ধরে কাটারকে বেডেরে উপর সমান্তরাল সরান হয়। কলে শ্যাফট 'টেপার' কাটে অর্ধাং ব্যাস এক দিকে বড় ও অন্য দিকে ছোট হয়।



চিত্র ২.৬ : টেপার টার্নিং

৩. **ফেসিং (Facing) :** জব ঘূরে আর কাটার আড়ে বা ক্রসে সামনে (জব-কেন্দ্রের দিকে) সরে। এভাবে জব-প্রান্ত সমান হয়। চিত্রে প্রদর্শিত টেলস্টক সাইডে 'হাফ-সেন্টার' ব্যবহার করা হলে জব-পার্শের সবটুকুই ফেসিং করা যায়।



চিত্র ২.৭ : ফেসিং ও পাটিং

৪. **পাটিং (Parting) :** জব ঘূরে আর কাটিং টুল আড়ে (ফেসিং এর ন্যায়) সরতে থাকে। এভাবে শেষে জবটি কেটে বিখ্যাত হয়ে যায়।

৫. **থ্রেডিং (Threading) :** জব ঘূরে আর টুল বিটকে থ্রেডের অনুকূলে কেটে (যেমন V করে) লিড-ক্লুর মাধ্যমে খেডের পিচ অনুসারে সরান হয়। ফলে শ্যাফট (জব) এর গায়ে ঝুঁ থ্রেড কাটা হয়। থ্রেড কাটিং সম্পূর্ণ করতে একই 'কাট' অনুসরণে কয়েকবার কাটিং করতে হয়।



চিত্র ২.৮ : থ্রেডিং

৬. **ড্রিলিং (Drilling) :** ওয়ার্কপিসকে যথারীতি চাকে বেঁধে ও ড্রিল-বিটকে টেলস্টক বেঁধে ড্রিলিং করা হয়।



চিত্র ২.৯ : ড্রিলিং

৭. **বোরিং (Boring)** : ওয়ার্কপিচকে চাকে বেঁধে এবং বোরিং টুলকে টুল-গোস্টে বেঁধে অথবা টেলস্টকে বেঁধে বোরিং করতে হয়। [বোরিং অর্থ ছিল করা হোল বা ছিদ্র (hole-dia)-কে বড় করা।]



চিত্র ২.১০ : বোরিং

৮. **নার্লিং (Knurling)** : কিট টুলের পরিবর্তে টুল-হোলডারে নার্লিং টুল ফিট করে টার্নিং এর ন্যায় চেপে ধরে সাধারণ অপারেশনে নার্লিং করা হয়। ওয়ার্কপিসের যতটা দৈর্ঘ্য নার্লিং দরকার নার্লিং টুলকে ততটুকু দৈর্ঘ্য পর্যন্ত সাবধানে পার্শ্বে সরাতে হয়। নার্লিং পদ্ধতিতে শ্যাফট বা রেডের গায়ে এক বা দুই সারিতে ছোট ছোট দাগ কেটে দেওয়া হয়। ফলে শ্যাফট (বা হ্যান্ডেল ইত্যাদি) সহজে হাতে ধরা যায়। দাগগুলো কোণাকুণিতে হতে পারে, সোজা সমান্তরালেও হতে পারে।



চিত্র ২.১১ : নার্লিং

৯. **ফিনিশিং অপারেশন (ফাইলিং ও স্যান্ডিং)** : ঘূর্ণত জবের উপর দুই হাতে ধরে ফাইল চালাতে হয়। ফাইলকে সর্বদা সমান চাপে ধরে সাবধানে আগে পিছে করতে হয়। অতঃপর পলিশিং এর জন্য ফাইলের গায়ে স্যান্ড পপার ধরে দুই হাতে একইভাবে সামনে পিছে এবং ক্রমে ডাইনে অথবা বাঁয়ে সরাতে হয়। ফাইল অথবা স্যান্ড পেপার মাঝে মাঝে সরিয়ে এনে পরিষ্কার করতে হয়।



চিত্র ২.১২ : কাইলিং ও ফিনিশিং

১০. ট্যাপিং (Tapping) : ড্রিল-করা হিসেবে ট্যাপ চালিবে ইন্টার্নাল থ্রেড (Internal thread) কাটির পদ্ধতি। অবকে যথাযীতি লেদ চাকে ধরে প্রথমে ছিলিং ও পরে এই ছিলিগতে ট্যাপ বালিবে ও ট্যাপ রেখের পিছনে টেলস্টক সেন্টার ধরে ট্রে বা কঢ়াও করতে হব। ট্যাপিং অপারেশন যেশিলের সুইচ অব ফরে দিয়ে হাতেই সম্পন্ন করতে হয়।



চিত্র ২.১৩ : ট্যাপিং

১১. ডাইস্টক সহযোগে কাটি (Screw cutting using die-stock) : ডাইস্টক দিয়ে শ্যাফট বা বোল্টের গায়ে এক্সটেন্শন থ্রেড (external thread) কাটি হয়। এই অপারেশন পূর্বে উদ্বিধিত ট্যাপিং এবং অনুজ্ঞণ। অবকে লেদের চাকে ধরে টেলস্টকের সাহায্য নিয়ে ডাইস্টক চালাতে হয়।



চিত্র ২.১৪ : ডাইস্টক সহযোগে কাটি

১২. রিমিং (Reaming) : ড্রিল করা (অথবা বোর করা) ছিলিগতের ব্যাসকে সামান্য বড় করা এবং সঠিক শাপ দেওয়ার জন্য রিমাৰ চালানো হয়। শুয়ার্কপিসকে চাকে ধরে ও রিমাৰকে টেলস্টকে ধরে সাবধানে কম স্পিডে চালাতে হয়। রিমাৰ চালনা ও খোলা উভয় অবস্থাতেই একই দিকে (Cutting direction) চালাতে হয়। খোলা বা বেৱে কৰাৰ সময় উল্টা শুয়ালে রিমাৰের ক্ল্যাট বা ধার নষ্ট হয়।

রিমিং কালে কাটিং ফ্লাইড ব্যবহার করতে হয়। রিমিং করার পর ছিদ্র-পথ (dia) সর্বত্র একই মাপের হয় এবং ফিলিশিং সুন্দর হয়।



চিত্র ২.১৫ : রিমিং

### ২.৩ যন্ত্রপাতি ব্যবহারের বিভিন্ন পদ্ধতি :

১. শপের ভিতর চলাচল করার ও মালামাল এক স্থান থেকে অন্য স্থানে নেওয়ার পর্যাপ্ত পথ থাকা, পথ পরিষ্কার ও নিষ্কটক থাকা এবং আপদকালীন বের হয়ে যাবার প্রস্তুত দরজা থাকে।
২. প্রাথমিক চিকিৎসা ব্যবস্থা প্রস্তুত রাখা এবং ডাঙ্কার ছাড়াও একাধিক ব্যক্তিকে ব্যবহার সম্পর্কে শিক্ষা দান করে রাখা।
৩. শপে প্রয়োজনীয় সংখ্যক অগ্নিনির্বাপক ব্যবস্থা রাখা এবং ঐসব ভালো আছে কী-না, মাঝে মাঝে পরীক্ষা করে দেখা এবং একাধিক ব্যক্তিকে চালনা শিখিয়ে রাখা। এছাড়াও পানি এবং বালি ভরতি বালতি শপের ভিতর বিভিন্ন স্থানে প্রস্তুত রাখা।
৪. নিরাপত্তা ও সতর্কতামূলক শ্লোগান লিখে, দৃষ্টি আকর্ষণ করে, এমন স্থানে প্রদর্শন করলে ভালো ফল পাওয়া যায়।

### ২.৪ যন্ত্রপাতি ব্যবহারের সাবধানতা :

১. মেশিন সম্পর্কে পর্যাপ্ত জ্ঞান ও সুস্পষ্ট ধারণা না হওয়া পর্যন্ত কোন মেশিন না চালানো। সামান্য সন্দেহ থাকলেও ইলেক্ট্রিস্টরকে জিজ্ঞেস করা ও সন্দেহ দূর করা।
২. মেশিন স্টার্ট করা এবং বন্ধ করা ভালো করে শিখে নেওয়া।
৩. মেশিন, হ্যান্ড টুল ও যন্ত্রপাতি এবং মেশিনের চতুর্দিকে ফ্রেরসহ পরিষ্কার-পরিচ্ছন্ন রাখা।
৪. ক্লোরে মেশিনের আশপাশে তেল-গ্রিজ পড়ে থাকলে তা অবশ্যই পরিষ্কার করা এবং ভিজা থাকলে বা পানি পড়লে তা-ও পরিষ্কার করে শুকিয়ে নেওয়া।
৫. মেশিনের যেখানে বা যে অংশে প্রয়োজন, সেখানে পরিমাণমত তেল বা গ্রিজ দেওয়া।
৬. মেশিনের সকল পার্টস, ওয়ার্ক ও ওয়ার্ক-হোলডার, টুল ও টুল-হোলডার চিলা নাই, এ বিষয়ে নিচিত না হওয়া পর্যন্ত মেশিন স্টার্ট না করা।
৭. ড্রেইং দেখে ও কী করতে হবে, সে সম্পর্কে সুস্পষ্ট ধারণা নিয়ে কাজ আরম্ভ করা।
৮. ওয়ার্ক ম্যাটেরিয়াল কী এবং কী ধরনের কাটিং বা মেশিনিং হবে তা বিবেচণা করে সঠিক বাটিং-টুল বাঁধা।

৯. মেশিন স্টার্ট করার আগে উপর থেকে রেঞ্চ, হাতিয়ার ও অন্যান্য যাবতীয় জিনিসপত্র সরিয়ে প্রয়োজনমতো হাতের কাছে অথচ নিরাপদ স্থানে রাখা ।
১০. কাটিং স্পিড, ফিড ও ডেপথ অব কাট ঠিক করে মেশিন স্টার্ট দেওয়া ।
১১. প্রথমেই দেখা, মেশিন ঠিক চলচে কী-না এবং টুল বা ওয়ার্কের ঘূর্ণন ঠিক আছে কী-না ।
১২. মেশিনের সকল ঘূর্ণন অংশ যেমন, শ্যাফট, কাপলিং, গিয়ার, পুলি ও বেল্ট ইত্যাদির কভার ঠিকমতো বসানো ।
১৩. সন্দেহ হলে বা কোন সমস্যা দেখা দিলে প্রথমেই সুইচ অফ করা ও মেশিন বন্ধ করা অতঃপর সমস্যার সমাধান করা ।
১৪. মেশিন চলাকালীন সর্বদা চোখ কান সজাগ রাখা । অস্বাভাবিক কিছু দেখা গেলে বা অস্বাভাবিক শব্দ শোনা গেলেই সতর্ক হওয়া ও প্রয়োজনে মেশিন বন্ধ করা, কারণ অনুসন্ধান করা ।
১৫. ক্লান্তি বা মানসিক অবসন্ন অবস্থায় কখনো মেশিন না চালান ।
১৬. স্পিড বাড়াতে বা কমাতে হলে মেশিন বন্ধ করে নিয়ম অনুযায়ী তা করা ।
১৭. কাটিং টুল ভোঁতা হয়ে গেলে মেশিন বন্ধ করে টুল খুলে ভালো করে গ্রাইভিং করে পুনরায় বসানো ।
১৮. কাজ সুন্দর বা দ্রুত না হলে মেশিন বা ওয়ার্কপিসের উপর বিরক্ত না হওয়া, বরং যথাযথ কারণ অনুসন্ধান করা ও ধৈর্য ধরা এবং সমস্যা সমাধানের সম্ভাব্য কৌশল বের করতে চেষ্টা করা ।
১৯. মেশিন চলাকালীন অথবা কথাবার্তা না বলা, হাসাহাসি না করা ।
২০. চলন্ত মেশিন ছেড়ে কখনো দূরে যাওয়া উচিত নয় ।
২১. মেশিনিং চলাকালীন মাপজোক নিতে হলে মেশিন বন্ধ করে ঠিক ঠিক মাপ নেওয়া ও অবস্থা দেখা ।
২২. কাজ শেষ হলে মেশিন বন্ধ করে মাপজোক ও ফিনিশিং সম্পর্কে নিশ্চিত হওয়া এবং ওয়ার্ক কাটার প্রত্বতি খুলে পরিষ্কার করা ।
২৩. রেঞ্চ, টুল, অন্যান্য যাবতীয় জিনিস পরিষ্কার-পরিচ্ছন্ন করে বাত্র বা শেলফে ঠিকঠিকমতো রাখা ।
২৪. মেশিন ও আশপাশ আগের মতোই আবার পরিষ্কার-পরিচ্ছন্ন করে রাখা ।

## প্রশ্নমালা-২

### সংক্ষিপ্ত প্রশ্ন :

- ১) একটি কর্ণির চিত্র অঙ্কন কর ।
- ২) কর্ণি কি কাজের জন্য ব্যবহৃত হয় ?
- ৩) চিত্রসহ ওলনের ব্যবহার লেখ ।
- ৪) একটি বাঞ্ছলীর চিত্র অঙ্কন কর ।
- ৫) স্পিরিট লেভেল কী কাজে ব্যবহৃত হয় ?
- ৬) লেদ কী ?
- ৭) লেদ মেকীনের কাজ কী ?
- ৮) প্যারালাল কাট কী ?
- ৯) টেপার কাট কী ?
- ১০) নিরাপত্তা বলতে কী বোঝায় ?

### রচনামূলক প্রশ্ন :

- ১) ম্যাশনরি কাজে ব্যবহৃত প্রয়োজনীয় যন্ত্রপাতিশুলির নাম লেখ । এদের মধ্যে কর্ণি, ওলন ও বাঞ্ছলীর চিত্র অঙ্কন কর ।
- ২) ম্যাশনরি কাজে ব্যবহৃত উল্লেখযোগ্য যন্ত্রপাতিশুলোর ব্যবহার ক্ষেত্র বর্ণনা কর ।
- ৩) লেদ মেশিন কে সকল মেশিনের উৎস বলা হয় কেন ?
- ৪) লেদ মেশিনের মূল কাজ সম্পর্কে বিস্তারিত লেখ ?
- ৫) লেদ মেশিনের বিভিন্ন অংশের নাম লেখ ।
- ৬) মেশিন চালনা সম্পর্কে কি কি জ্ঞান থাকা প্রয়োজন ?
- ৭) শপের নিরাপত্তা সম্পর্কে বিস্তারিত লেখ ।

## অধ্যায় : ৩

# ইট (Brick)

ইট হলো মানুষ নির্মিত কৃত্রিম পাথর। ইমরাত নির্মাণের প্রাচীন সামগ্রী পাথর। পলিগঠিত সমভূমিতে পাথর সহজলভ্য ছিল না। তাই আবাসগৃহ ও অন্যান্য নির্মাণ কাজে পাথরের বিকল্প হিসেবে ইটের প্রচলন শুরু হয়। প্রাচীন অসিরীয় ও ব্যাবিলনীয় সভ্যতায় রৌদ্রে শুকান ইটের প্রচলন ছিল। সিঙ্গু সভ্যতায় পোড়ান ইট ব্যবহারের প্রচলন ছিল। বস্তুত: সভ্যতার শুভলগ্ন হতে পৃথিবীর সর্বত্র ইট নির্মাণ সামগ্রীরূপে হয়ে আসছে। ইট মাটি দিয়ে প্রস্তুত আয়তাকার ঘন আকৃতির এক প্রকার কৃত্রিম পাথর বিশেষ। ইহা কাঁচা অবস্থায় নমনীয় থাকে, কিন্তু উচ্চ তাপমাত্রায় পোড়ানোর পরে অনেকটা পাথরের মতো শক্ত হয়। ইটের উৎকৃষ্টতা নির্ভর করে (১) ব্যবহৃত মাটির রাসায়নিক ধর্ম, (২) ইটের প্রস্তুতি, (৩) শুকানোর কৌশল এবং (৪) সর্বোপরি পোড়ানোর ধরন ও মাত্রার উপর।

ইট তৈরির মাটির প্রধান উপকরণ হলো সিলিকা ও এলুমিনা। ইহাতে সামান্য পরিমাণ চুন, জৈব পদার্থ, আয়রন অক্সাইড ও ম্যাগনেসিয়াম অক্সাইড এর উপস্থিতি লক্ষ করা যায়। ইট তৈরির আদর্শ মাটির রাসায়নিক গঠন :

উন্নত ইটের মাটির রাসায়নিক উপাদানসমূহ শতকরা হারসহ নিম্নরূপ:

|                                               |     |
|-----------------------------------------------|-----|
| (ক) সিলিকা ( $\text{SiO}_2$ )                 | ৫৫% |
| (খ) এলুমিনা ( $\text{Al}_2\text{O}_3$ )       | ৩০% |
| (গ) আয়রন অক্সাইড ( $\text{Fe}_2\text{O}_3$ ) | ৮%  |
| (ঘ) ম্যাগনেসিয়াম অক্সাইড ( $\text{MgO}$ )    | ৫%  |
| (ঙ) চুন ( $\text{CaO}$ )                      | ১%  |
| (চ) জৈব পদার্থ (Organic matter)               | ১%  |
| <hr/> মোট = ১০০%                              |     |

### ৩.১ ইটের শ্রেণিবিভাগ :

উপাদানের ভিত্তিতে ইটের মাটিকে তিন শ্রেণিতে ভাগ করা যায়, যথা- (ক) ঝঁটেল মাটি, (খ) দো-আশ মাটি (গ) চুনামাটি। চুনাটিই তৈরির জন্য বিশেষ উপযোগী।

### ইট প্রস্তুতকরণ বা উপাদান (Production of Bricks):

ইট প্রস্তুত প্রণালি ছয়টি ধাপে বিভক্ত, যথা-

- (ক) মাটি আহরণ এবং আবহাওয়া সহন (Procurement of earth and Weathering)
- (খ) ইটের কাদা প্রস্তুতকরণ (Preparation of brick clay)
- (গ) ছাঁচে ইট কাটা (Moulding of bricks)
- (ঘ) কাঁচা ইট শুকানো (Drying of bricks)
- (ঙ) ইট পোড়ান (Buring of bricks)
- (চ) তাপ মুক্তকরণ, বাছাই এবং থাকে সাজানো (Cooling, Sorting and Stacking of bricks)

### প্রথম শ্রেণির ইট:

উত্তমরূপে পোড়ানো, সুবম আকার ও সমবর্ণ বিশিষ্ট ইটকে প্রথম শ্রেণির ইট বলে। ইহার ধারগুলো তীক্ষ্ণ সোজা ও তলগুলো সমান্তরাল বাহুবিশিষ্ট আয়তাকার সমতল, কিন্তু মসৃণ নয়। এছাড়া প্রতিটি তল পরস্পর সমকোণ। প্রথম শ্রেণির ইট কোন প্রকার বাঁকা-তেরা, ফাটা ও মোচড়ানো নয়। আবাত করলে ধাতব বাজনার শব্দ হয়। ইহাতে নথের আঁচড়ে দাগ পড়ে না। প্রায় এক মিটার উপর থেকে ফেললে ভেঙ্গে যায় না। ২৪ ঘন্টা পানিতে ডুবিয়ে রাখলে ইহার নিজ ওজনের এক ষষ্ঠাংশের অধিক পানি শোষণ করে না। গুরুত্বপূর্ণ ও স্থায়ী কাজে প্রথম শ্রেণির ইট ব্যবহৃত হয়ে থাকে।

### দ্বিতীয় শ্রেণির ইট :

ইহা প্রথম শ্রেণির ন্যায় কঠিন ও সমবর্ণ বিশিষ্ট হলেও রংয়ের গাঢ়তা সামান্য হালকা হয়। আকৃতির দিক দিয়ে কিছুটা বিকৃত, নথের আঁচড়ে দাগ কাটে, তলগুলো তেমন আয়তকার, সমতল ও সমকোণে নয় এবং এটির গায়ে সামান্য দাগ দেখা যায়। এক মিটার উপর হতে ফেলে দিয়ে ভেঙ্গে যায় এবং পানি শোষণ করে নিজ ওজনের প্রায় ২২%। এ ধরনের ইটকে দ্বিতীয় শ্রেণির ইট বলে এবং ইহা অপেক্ষাকৃত নিম্নমানের কাজে ব্যবহৃত হয়।

### তৃতীয় শ্রেণির ইট :

এ সকল ইট ভালোভাবে পোড়ানো নয়, নরম ও হালকা হলদে রংয়ের হয়, নথের আঁচড়ে সহজে দাগ কাটে এবং অল্প আঘাতে বা চাপে ভেঙ্গে যায়, এমনকি গুড়ে হয়ে যায়। সবচেয়ে বেশি পানি শোষণ করে, বাতাস হতে দ্রুত জলীয়বাস্প গ্রহণ করে লবণ ঘারা আক্রান্ত হয়, দ্রুত ক্ষয় সাধিত হয় এবং বেশিরভাগ ক্ষেত্রে আকার-আকৃতি ঠিক থাকে না। এ ধরনের ইট সাময়িক ও অন্যান্য গুরুত্ববিহীন হালকা কাজে ব্যবহৃত হয়। এছাড়া তৃতীয় শ্রেণির ইট দিয়ে সুরক্ষি তৈরি করা হয়।

### পিকড় ঝামা ইট :

প্রয়োজনের সামান্য অতিরিক্ত পোড়া ইটকে পিকড় ঝামা ইট বলে। এদের আকৃতি প্রথম শ্রেণির ইটের মতো ঠিক থাকে না, রং লালচে-কালো হয়ে যায়, বেশ শক্ত এবং প্রথম শ্রেণির ইটের চেয়ে মজবুত হয়। অতিরিক্ত উত্তাপে কতগুলো গলে ও জমে একত্রিত হয়ে শক্ত পাথরের মতো হয়ে যায়। এগুলো উৎকৃষ্ট ঝামা। আর যেগুলো স্পষ্টের মতো ঝাঁঝরা হয়ে যায় এবং পানিতে ভেসে থাকে, সেগুলো ব্যবহার করা আদৌ ঠিক নয়। রাস্তা, ইমারতের বুনিয়াদ ও অন্যান্য কাজে পিকড় ঝামা ইট ব্যবহৃত হয়। ইহাকে ভেঙ্গে সড়ক-খোঝা ও কংক্রিটের পূরক হিসেবে খোঝা তৈরি করা হয়। ইহা কঠিন ও ভঙ্গুর।

**৩.২ ইটের আকার ও পরিমাপ :** ইটের আকার ছোট হলে জোড়ের সংখ্যা অধিক হয়, ফলে মশলা (Mortar) অধিক লাগে। আবার ইটের আকার বড় হলে রাজমিঞ্চির পক্ষে গাঁথুনির কাজ করা কষ্টকর, যেহেতু রাজমিঞ্চিকে ভিজানো ইট এক হাতে উঠিয়ে গাঁথুনি করতে হয়। বাস্তব অভীক্ষতায় দেখা যায়, উৎকৃষ্ট গাঁথুনির জন্য ইটের দৈর্ঘ্য উহার প্রস্ত্রের দ্বিগুণ ও এক দিকের মশলার সমান হওয়া সমীচীন। স্থানভেদে ইটের আকারের তারতম্য দেখা গেলেও উহা নির্ধারিত মানের (Standardized) করা হয়েছে। সেমতে বাংলাদেশে এফ,পি, এস পদ্ধতিতে একটি ভালো মানের প্রমাণ আকার ইটের পরিমাপ মশলাবাদে

(৯.৫"×২.৭৫") এবং মশলাসহ (১০"×৫"×৩") মেট্রিক পদ্ধতিতে উক্ত প্রমাণ আকার ইটের পরিমাপ মশলাবাদে (২৪০মিমি × ১১৫ মিমি × ৭০ মিমি) এবং মশলাসহ (২৫০ মিমি × ১২৫ মিমি × ৭৫ মিমি)। এছাড়া বিভিন্ন সংস্থা কর্তৃক প্রস্তুত মেট্রিক পদ্ধতিতে প্রস্তুতকৃত ইটের পরিমাপ মশলাবাদে (১৯০মিমি × ৯০ মিমি × ৯০ মিমি) এবং মশলাসহ (২০০ মিমি × ১০০ মিমি × ১০০ মিমি)।



চিত্র ৩.১ : বিভিন্ন প্রকার ইটের অংশ

### মাঠে ইটের মান পরীক্ষা :

মাঠে ইটের মান পরীক্ষার কয়েকটি পদ্ধতি নিচে দেওয়া হলো :

- (১) একটি ইট নিয়ে এর গায়ে হাতের নখের সাহায্যে আঁচড় কাটতে চেষ্টা কর। যদি আঁচড় কাটা যায়, তবে ইটটি ভালো নয়। আর যদি আঁচড় কাটা না যায়, তবে ইটটি ভালো।
- (২) একটি ইট নিয়ে একে অপর একটি ইট বা হাতুড়ি দিয়ে আঘাত কর। যদি ধাতব আঘাতের শব্দ অর্ধাং ঠন ঠন আওয়াজ হয়, তবে ইটটি ভালো।
- (৩) দুইটি ইট নিয়ে এদেরকে ইংরেজি অক্ষর “T” এর মতো গঠন করে ১.২ খেকে ১.৫ মিটার উপর থেকে সমতল ও শক্ত ভূমির উপর স্বাভাবিক অবস্থায় ছেড়ে দাও। যদি ভেঙ্গে যায় তবে ভালো ইট নয়। আর যদি না ভাঙ্গে, তবে ভালো ইট। “T” গঠনের সময় লক্ষ্য রাখতে হবে যেন ইটের গায়ের পরিচিতি চিহ্ন (Frog Mark) একই দিকে থাকে।

### ৩.৩ ইট তৈরির উপকরণ:

১. মোন্টিং মাটি
২. বিভিন্ন প্রকার বড়
৩. ছাঁচ
৪. কয়লা ইত্যাদি

### ৩.৪ উৎকৃষ্ট ইটের বৈশিষ্ট্য (Characteristics of good bricks) :

#### (ক) আকার ও আয়তন (Shape and size) :

উৎকৃষ্ট বা প্রথম শ্ৰেণিৰ ইটেৰ গঠন ও আকাৰ সুষম হবে। উৎকৃষ্ট ইটেৰ তলাঙ্গলি সমান, কিনাৰ ও কোণাঙ্গলো তীক্ষ্ণ এবং পাশাঙ্গলো সমান্তৰাল। ইটেৰ তলাঙ্গলো বেশি মসৃণ হলে উহাতে ঘশলা ধৰতে চায় না। আয়তনে সকল ইট সমৰূপ হবে এবং আকাৰ বা আয়তনেৰ তাৱতম্য ৩ মিলি মিটাৱেৰ বেশি হবে না।

#### (খ) কঠিন্য ও বৰ্ণ (Hardness and Colour) :

উৎকৃষ্ট ইটেৰ বৈশিষ্ট্য এমন হবে যে নথে আঁচড় দিলে ইটেৰ গায়ে দাগ কাটবে না। হাতুড়ি দিয়ে ইটে বা পৱন্স্পৰ দুটো ইটে আঘাত কৰালে উহা হতে পৱিকাৰ ঠন ঠন বা ধাতব বাজনাৰ শব্দ হয়। দুইটি ইট সহযোগে ইংৰেজি “T” অক্ষৰ তৈরি কৰে প্ৰায় ১.৫ মিটাৰ উচু হতে শক্ত মাটিতে ফেলে দিলে উহারা ভাঙবে না। বৰ্ণেৰ সাম্যতা ইটেৰ পোড়ানো ও রাসায়নিক গঠনেৰ সমৰূপতাৰ পৱিচায়ক। সাধাৱণভাৱে উৎকৃষ্ট ইট লাল বৰ্ণেৰ, তবে তা সব সময় উত্তমভাৱে পোড়ানো (Well-burnt) ইটেৰ পৱিচয় বহন কৰে না।

#### (গ) গঠন-ৱীতি ও খুতুহীনতা (Texture and Soundness) :

উৎকৃষ্ট ইটেৰ গঠন-ৱীতি সমৰূপ ও সূক্ষ্ম। ভাঙা ইটেৰ ভগ্নতলে কোন প্রকাৰ চিঢ়, স্পীতি ও চুনেৰ কণাৰ চিহ্ন থাকবে না। ইট পোড়ানো সমৰূপ ও সমভাৱে হবে। ইটেৰ বাইৱেৰ তলে এসব গুণাবলি ধৰা পড়ে না নমুনা ইট ভেঙ্গে যত্নসহকাৰে পৱীক্ষা কৰতে হয়।

#### (ঘ) শক্তি ও ওজন (Strength and weight) :

ইট সাধাৱণত চাপ বা সংকোচন পীড়ন (Compressive Strength) বহন কৰে। ইহা কখনও টান বা সম্প্ৰসাৱণ পীড়ন প্ৰতিৱেদ্য ব্যবহৃত হয় না।

উৎকৃষ্ট ইটেৰ বিচূৰ্ণ শক্তি (Crushing Strength) সাধাৱণত প্ৰতি বৰ্গ মিটাৰে ৪৩৬-৬৫৪ টন। প্ৰতিটি ইটেৰ ওজন প্ৰায় ৩.৫ থেকে ৪ কেজি এবং প্ৰতি ঘন মিটাৰ ইটেৰ গাঁথুনিৰ ওজন প্ৰায় ১.৯২৪ টন।

#### (ঙ) পানি শোষণ (Water absorption) :

চৰিষ ঘন্টা পানিতে ডুবিয়ে রাখলে ইট যে পৱিমাণ পানি শোষণ কৰে, তা ইটেৰ পানি শোষণ কৰাৰ ক্ষমতা। উৎকৃষ্ট ইটেৰ পানি শোষণ ক্ষমতা তাৰ নিজস্ব ওজনেৰ ১/৬ অংশেৰ অধিক না হওয়া ভালো। ইটেৰ পানি শোষণ ক্ষমতা ইহাৰ মাটিৰ রাসায়নিক সংগঠনেৰ উপৰ ভিত্তি কৰে তাৱতম্য হয়। শক্তিশালী ইট অতি অল্প পানি শোষণ কৰে।

(চ) তাপ পরিবাহিতা ও শব্দরোধিতা (Thermal conductivity and sound insulation) :  
ইটের তৈরি দালান গ্রীষ্মে শীতল এবং শীতে উষ্ণ হওয়া দরকার। এ কারণে প্রথম শ্রেণির ইটের তাপ পরিবাহিতা খুব কম হওয়া শ্রেয়। ইটে জলীয় কণা বৃদ্ধির সাথে সাথে উহার পরিবাহিতা বাঢ়ে। উৎকৃষ্ট ইটের শব্দরোধিতা বেশি। ভারী ইট অপেক্ষা হালকা ও ফাঁপা ইট শব্দের সুঅন্তরক।

(ছ) অগ্নিরোধিতা (Fire Resistance) :

সঠিক অনুপাতের মশলায় উৎকৃষ্ট ইটের গাঁথুনি সন্তোষজনকভাবে অগ্নিরোধ করে। সিলিকায়ুক্ত ইট তুলনামূলকভাবে বেশি অগ্নিরোধী।

(জ) দ্রাব্য লবণের উপস্থিতি (Presence of Soluble Salt) :

উৎকৃষ্ট ইটে লবনের পরিমাণ  $\frac{2}{1}$  শতাংশের অধিক না হওয়া শ্রেয়। এখানে দ্রাব্য লবণ বলতে পটাশিয়াম, সোডিয়াম, ক্যালসিয়াম ও ম্যাগনেশিয়াম সালফেটকে বুবায়। দ্রাব্য লবণ পরিমাণে বেশি থাকলে গাঁথুনিকে কদাকার উদত্ত্যাগ (Efflorescence) এর সূষ্টি হয়। লবণজনিত এই উদত্ত্যাগ গাঁথুনিকে হায়ীভাবে আর্দ্র ও স্যাতসেতে রাখে।

### প্রশ্নমালা-৩

সংক্ষিপ্ত প্রশ্ন :

১. ইট কী?
২. ইটের পরিচিতি চিহ্ন কী?
৩. বাংলাদেশে একটি আদর্শ ইটের মাপ কত?
৪. ইট পোড়ানো হয় কেন?
৫. পিকড় ঝামা ইট বলতে কী বুবায়?
৬. ইট কত প্রকার ও কী কী?
৭. ভালো মানের একটি ইটের ওজন কত?
৮. ভালো মানের একটি ইট ছবিশ ঘন্টা পানিতে ডুবিয়ে রাখলে উহা নিজের ওজনের কত ভাগ পানি শোষণ করে?
৯. মাশলাবাদে একটি আদর্শমানের ইটের আকার কত? মিলিমিটারে লেখ।
১০. মাশলাসহ একটি ভালোমানের ইটের আকার কত? মিলিমিটারে লেখ।
১১. ইটের কাদায় এলুমিনার পরিমাণ কত? লেখ।
১২. ইটের কাদায় আয়রন অক্সাইডের পরিমাণ কত, লেখ।
১৩. উভয় ইটের কাদায় বালির পরিমাণ কত? লেখ।

রচণামূলক প্রশ্ন :

১. ইটের কাদার উপাদানসমূহের নাম ও এদের শতকরা হারসহ একটি তালিকা প্রস্তুত কর। ]
২. ইট কত প্রকার ও কী কী? প্রত্যেক প্রকার ইটের বর্ণনা দাও এবং ব্যবহারক্ষেত্র উল্লেখ কর।
৩. উভয় ইটের বৈশিষ্ট্যগুলো বুবিয়ে লেখ।
৪. মাঠে ইট পরীক্ষার প্রক্রিয়াগুলো বুবিয়ে লেখ।

## অধ্যায় : ৪

# বালি (Sand)

### ৪.১ বালির উৎস:

কারিগরি বিদ্যায় বালিকে মিহি এগ্রিগেট (Fine aggregate) বলা হয়। উৎকৃষ্ট বালি একটি গুরুত্বপূর্ণ নির্মাণ সামগ্রী উহা প্রকৃতপক্ষে শিলাকণ। কোয়ার্টজ এর ক্ষুদ্র ক্ষুদ্র কণাই বালি হিসেবে পাওয়া যায়। ইহার আবার সিলিকা (Silicav) নামে পরিচিত। গর্ত, নদীবক্ষ ও সমুদ্র সৈকত হতে প্রাকৃতিক বালি সংগ্রহ করা হয়। উৎস অনুসারে ইহাকে যথাক্রমে গর্তের বালি (Pit Sand), সমুদ্র বালি (Sea Sand) এবং নদী বিধৌত বালি (River Sand) বলা হয়। সবচেয়ে নিকৃষ্ট বালি হলো সামুদ্রিক বালি, কারণ এতে প্রচুর পরিমাণে লবণ থাকে, আর এ লবণ জলীয় বাস্প আকর্ষণ করে। গর্তের বালি, নদীর বালি থেকে উত্তম। কারণ উহা লবণ, ক্ষার ইত্যাদি থেকে মুক্ত। সামুদ্রিক বালি নির্মাণ কাজের অনুপযোগী। বিভিন্ন গ্রেড ও সাইজের বালি দেখতে পাওয়া যায়। ইহা কোয়ার্টজ জাতীয়, চুনা পাথর জাতীয় ও মৃত্তিকা জাতীয় পাথর থেকে পাওয়া যায়। এই ক্ষুদ্র ক্ষুদ্র বালিকণাগুলি কোণাকৃতি (Angular) গোলাকৃতির (Rounded) কিংবা সুস্কার্প (Sharpend) হতে পারে।

ইহা স্বাভাবিক অবস্থায় অন্য কোন পদার্থে রূপান্তরিত বা বিয়োজিত হয় না, আবার পানি বা কোন তরল পদার্থে গলে না। কণাগুলো আকারে  $0.0075$  মিমি থেকে  $8.75$  মিমি পর্যন্ত হয়।

অতি প্রাচীনকাল থেকেই মানুষ বালির ব্যবহার জানত। নির্দিষ্ট অনুপাতে মাটির সাথে বালি মিশিয়ে নানা ধরনের প্রযোজনীয় দ্রব্যাদি তৈরি করা হয়।

### ৪.২ বালির শ্রেণিবিভাগ (Classification of Sand) :

বালিকে প্রাথমিকভাবে দুই শ্রেণিতে ভাগ করা যায়। যেমন :-

#### (ক) উৎসের ভিত্তিতে এবং (খ) আকৃতির ভিত্তিতে।

#### (ক) উৎসের ভিত্তিতে বালির শ্রেণিবিভাগ (Classification of sand according to sources) :

প্রধানত তিনটি উৎস হতে বালি পাওয়া যায়। তাই উৎস অনুসারে বালিকে তিন শ্রেণিতে ভাগ করা যায়। যথা:

- (১) গর্তের বালি (Pit Sand)
- (২) নদীর বালি (River Sand)
- (৩) সামুদ্রিক বালি (Sea Sand)

#### (১) গর্তের বালি (Pit Sand)

গর্ত হতে যে বালি পাওয়া যায় তার রং অনেকটা হালকা বাদামি বা হলুদাভ। গর্তের বালি সূক্ষ্মাগ কোণাকার বিশিষ্ট এবং লবণমুক্ত। ইহাতে সামান্য কাদা ও অন্যান্য অপদ্রব্য থাকতে পারে। তাই ব্যবহারের পূর্বে চালনিতে চেলে এবং ভালোভাবে পানি নিয়ে ধুয়ে ব্যবহার করতে হয়। এ জাতীয় বালি ফাইন এগ্রিগেট হিসেবে মশলা ও কংক্রিট তৈরিতে ব্যবহৃত হয়। এই বালি মশলার জন্য বিশেষ উপযোগী।

#### (২) নদীর বালি (River Sand)

এ জাতীয় বালির রং অনেকটা সাদা, আকারে অপেক্ষাকৃত ছোট এবং গোলাকৃতি এবং বালির পিঠ মসৃণ। ইহাতে সামান্য পরিমাণ কাদাজাত অপদ্রব্য ও গ্রানুল মিশ্রিত অবস্থায় পাওয়া যায়। নদীর বালি ব্যবহারের পূর্বে চালনিতে ছেলে এবং উত্তমরূপে ধূয়ে নির্মাণ কাজে ব্যবহার করা হয়। এই বালি অপেক্ষাকৃত সূক্ষ্ম বিধায় আস্তরের কাজের জন্য বেশি ব্যবহার করা হয়। তবে অপেক্ষাকৃত বড় আকারের নদীর বালি মশলা ও কঢ়িক্রিটের কাজেও ব্যবহার করা যায়।

### (৩) সামুদ্রিক বালি (Sea Sand)

সমুদ্রের বালি সাদা রং এর এবং আকৃতিতে গোল ও বেশ মসৃণ হয়। এ জাতীয় বালিতে জীবাশ্ম ও লবণ মিশ্রিত অবস্থায় থাকে। নির্মাণ কাজে সামুদ্রিক বালি ব্যবহার করলে ইহা বায়ুমণ্ডল হতে পানি শোষণ করে নেয় এবং নির্মাণ কাজ লোনাক্রান্ত হয়ে ধীরে ধীরে ক্ষয় প্রাপ্ত হয়। এই বালি নির্মাণ কাজে ব্যবহার না করাই শ্রেয়।

### (৪) আকৃতি অনুসারে বালির শ্রেণিবিভাগ (Classification of Sand according to size)

আকৃতি অনুসারে বালিকে তিনিটি প্রধান ভাগে ভাগ করা যায়। যথা :

- (১) মিহি বালি (Finde Sand)
- (২) মধ্যম বালি (Medium Sand)
- (৩) মোটা দানাদার বালি (Course Sand)

#### (১) মিহি বালি (Finde Sand)

যে বালি ১৬ নং আমেরিকান চালনি দিয়ে চাললে কোন অবশেষ থাকে না, তাকেই ছোট দানার বা মিহি বালি বলে। এ বালি সাধারণত আস্তরের কাজে ব্যবহৃত হয়। ১.২ হতে ১.৪ বিশিষ্ট বালিকে মাধ্যম দানাদার বালি হিসেবে বিবেচনা করা হয়।

#### (২) মধ্যম বালি (Medium Sand)

যে বালি ৮নং আমেরিকান চালনি দিয়ে চাললে অবশেষ থাকে না, তাকেই মধ্যম বালি বলে। এ বালি কঢ়িক্রিট তৈরির কাজে বেশ উপযোগী। ১.৫ হতে ১.৮ সূক্ষ্মতাঙ্ক (F.M) বিশিষ্ট দানাদার বালিকে মধ্যম বালি হিসেবে বিবেচনা করা হয়।

#### (৩) মোটা দানাদার বালি (Course Sand)

যে বালি ৪নং আমেরিকান চালনি দিয়ে চাললে কান অবশেষ থাকে না, তাকেই মোটা দানার বালি বলে। এ বালি কঢ়িক্রিট তৈরির কাজে বেশ উপযোগী। ২ হতে ২.৫ সূক্ষ্মতাঙ্ক (F.M) বিশিষ্ট দানাদার বালিকে মোটা দানাদার বালি হিসেবে বিবেচনা করা হয়।

### ৪.৩ বালির ব্যবহার (Use of Sand)

নির্মাণ সামগ্রী হিসেবে বালির প্রয়োজনীয়তা অপরিসীম। প্রায় সব রকম নির্মাণ কাজে বালি ব্যবহৃত হয়। মশলা ও কঢ়িক্রিটের ফাইন এগ্রিগেট (Fine Aggregate) হিসেবে প্রধানত বালি ব্যবহৃত হয়। সুবিন্যস্ত বালি মশলা ও কঢ়িক্রিটের ঘনত্ব বাড়ায়। নির্মাণ কাজে বালুর অনুপ্রাপ্তে তাঁরতম্য করে লাভজনকভাবে বিভিন্ন শক্তির মশলা ও কঢ়িক্রিট প্রস্তুত করা যায়। কাঁচ শিল্পের কাঁচামাল হিসেবে প্রচুর পরিমাণে বালির ব্যবহার

হয়। ইহা ছাড়া কংক্রিট তৈরি, রাস্তায় ইটের ফাঁক পূরণে, মেঝে ভিটি ভরাটে, পাইলিং ইটখোলায় ইত্যাদি বহুবিধি কাজে বালি ব্যবহৃত হয়। ফাউন্ডিং শিল্পে প্রচুর পরিমাণে বালির ব্যবহার হয়। ব্যবহারকালে বালি বেশ ভালো করে চেলে নিতে হয়। পলিমাটি, উক্তিজ বা লোনা থাকলে বালিকে ভালোভাবে ধূঘে নিতে হবে। সিমেন্টের সাথে মিশানোর সময়ও ওতপ্রোতভাবে মিশাতে হবে, তা না হলে শক্তি যোগাবে কম এবং দালানে লোনা ধরে যাবে। বাংলাদেশের সব অঞ্চলেই বালি পাওয়া যায়। কিন্তু সব অঞ্চলের বালি একইমানের হয় না। সিলেটের বালি সর্বোৎকৃষ্ট।

## প্রশ্নমালা-৪

### **সংক্ষিপ্ত প্রশ্ন :**

১. বালি কী? উহা কোথায় পাওয়া যায়?
২. ভালো বালির ধর্ম কী কী?
৩. বালির সূক্ষ্মতাঙ্ক বলতে কী বোঝায়?
৪. বালি কী কাজে ব্যবহার করা হয়?
৫. আকার ও উৎস অনুসারে বালির শ্রেণিবিন্যাস কর।

### **রচনামূলক প্রশ্ন :**

১. বালির প্রধান উৎসসমূহ কী কী? সবচেয়ে উত্তম বালি কোনটি? সিমেন্টের সাথে বালি মিশানো হয় কেন?
২. বালির গ্রেডিং (Grading) কীভাবে করা হয়? ইহার প্রয়োজনীয়তা বর্ণনা কর।
৩. বালি কত প্রকার ও কী কী? ব্যবহার ক্ষেত্র উল্লেখ করে প্রতিটির বর্ণনা দাও।
৪. বালির মান মাঠে কীভাবে পরীক্ষা করা হয়, বিস্তারিত লেখ।

## অধ্যায় : ৫

# চুন (Lime)

চুন নির্মাণ কাজে ব্যবহৃত এক প্রকার জোড়ক বা বাঁধুনী গুণ সম্পদ পদার্থ। ইহা মূলত চুনাপাথর, সামুদ্রিক প্রাণী যেমন শামুক, বিনুক প্রভৃতির খোলাস, জীবজন্তুর হাড় ইত্যাদি হতে পাওয়া যায়। বেশিভাগ চুনই চুনাপাথর হতে সংগ্রহ করা হয়। রাসায়নিক গঠনে চুন হলো ক্যালসিয়াম অক্সাইড (Cao)। চুন শ্বেত বর্ণের হয়। মার্টাৰ ও সিমেন্টের প্রধান উপাদান হিসেবে চুন ব্যবহৃত হয়।

### চুনের উৎপত্তি :

খড়ি মাটি (Chalk) বা চুনাপাথর ( $\text{CaCO}_3$ ) অথবা সামুদ্রিক প্রাণীর খোলস পোড়ালে তা থেকে জলীয় বাস্প ও কার্বন-ডাই অক্সাইড দূরীভূত হয় প্রায় বিশুদ্ধ চুন পাওয়া যায়। এই প্রকার চুনকে ধনিক চুন (Fat lime) বলে। কিন্তু চুনাপাথরে চুন ও মৃত্তিকা মিশ্রিত অবস্থায় প্রকৃতিতে পাওয়া যায়। এই প্রকার চুনাপাথর হতে প্রাণী চুন বিশুদ্ধ নয় এবং এ চুনকে ওদক চুন (Hydraulic Lime) বলা হয়।

### ৫.১ চুনের ব্যবহার (Use of Lime) :

প্রকৌশল কাজে জোড়ক পদার্থ হিসেবে এবং অন্যান্য কাজে চুন ব্যবহৃত হয়।

#### বিভিন্ন কাজে চুনের ব্যবহার নিম্নরূপ :

- (ক) দালান কোঠার গাঁথুনির মশলা ও কংক্রিট তৈরি করতে।
- (খ) দেয়ালে চুনকাম (White Wash) এবং রং (Colour Wash) এর কাজ করতে।
- (গ) দেয়ালে চুন পানিং (Lime Punning) এর কাজ করতে।
- (ঘ) বিভিন্ন শিল্পের কাঁচামাল হিসেবে যথা :

- (১) সিমেন্ট উৎপাদনে
- (২) কাঁচ উৎপাদনে
- (৩) লোহা উৎপাদনে
- (৪) কস্টিক সোডা উৎপাদনে
- (৫) রিচিং পাউডার তৈরিতে
- (৬) সোনা-লাইম তৈরিতে
- (৭) বিভিন্ন ঔষধ তৈরিতে

### ৫.২ চুনের শ্রেণিবিভাগ (Classification of Lime) চুনকে প্রধানতঃ দুই শ্রেণিতে ভাগ করা যায়, যথা-

(ক) স্তুল, ধনিক বা বিশুদ্ধ চুন (Fat, Rich or Pure Lime)

(খ) ওদক চুন (Hydraulic Lime)

### ৫.৩ চুন ব্যবহার পদ্ধতি :

#### (ক) বিশুদ্ধ চুন (Pure Lime)

এই জাতীয় চুনে ক্যালসিয়ামের পরিমাণ বেশি থাকে। কলিকরণে (Slaking) এই চুন আয়তনে ২-৩ গুণ বৃদ্ধি পায় বলে এই চুনকে স্তুল চুন বলা হয়ে থাকে। চুনাপাথর, সাদা খড়িমাটি, সামুদ্রিক প্রাণী যেমন শামুক, বিনুক ইত্যাদির খোলস পুড়িয়ে ছাইকরণের মাধ্যমে বিশুদ্ধ চুন প্রস্তুত করা হয়। ইহার রং ধৰ্মে

সাদা হয়। চুন পানিতে বিগলনীয় এবং পানির নিচে জমাটবদ্ধ হতে পারে না। উহা পানির উপস্থিতিতে নমনীয় পেস্টে পরিণত হয়ে ক্যালসিয়াম হাইড্রো-অক্সাইড তৈরি করে  $\text{CaO} + \text{H}_2\text{O} = \text{Ca(OH)}_2$  এই  $\text{Ca(OH)}_2$  বাতাস থেকে  $\text{CO}_2$  এহণ করে  $\text{CaCO}_3$  তে রূপান্তরিত হয় জমাটবদ্ধ হয় এবং পানি বাঞ্চাকারে বাতাসে মিশে যায়। বিশুদ্ধ চুনের জমাটবদ্ধতার জন্য  $\text{CO}_2$  এর উপস্থিতি অপরিহার্য। মোটা দেয়ালে উহা ব্যবহার করা হয় না।

আন্তরের উপরিতলে, চুনকামে ও লাইম পানিং এর কাজে উহা ব্যবহার করা হয়। উহার সংকোচন প্রবণতা অধিক বিধায় মশলায় ব্যবহার করার সময় ২-৩ গুণ বালি মিশাতে হয়। এই প্রকার চুন বাতাসে খোলা অবস্থায় রাখলে পাউডারে পরিণত হয়।

#### (খ) ঔদক চুন (Hydraulic Lime)

এই জাতীয় চুনে ১৫%-৩০% অপদ্রব্য মেশানো থাকে। উহা পানির নিচে, এমন কী বায়ু অপ্রবেশ্য স্থানে শক্ত হয়ে জমাটবদ্ধ হতে পারে। মৃত্তিকা, ম্যাগনেশিয়া ও সিলিকা মিশ্রিত চুনাপাথরকে উন্নত করে এই প্রকার চুন তৈরি করা হয়। উহাতে সিলিকা, এ্যালুমিনিয়াম থাকায় পানি যোজিত কারণের ফলে উহা  $\text{Ca}$  ও  $\text{Mg}$  এর হাইড্রোঅক্সাইডে পরিণত হয়। বালির সংমিশ্রণে উহার মশলা তৈরি করলে ক্যালসিয়াম সিলিকেট ও ক্যালসিয়াম এ্যালুমিনেট লবণ  $\text{Ca(OH)}_2$  এ রূপান্তরিত হয়। উহাতে আরও অধিকজ পরিমাণে পানি মেশালে জটিল রাসায়নিক বিক্রিয়ায় উহা বাঁধ নির্মাণে পুরু দেয়ালে পানির নিচের কাজে এবং জলছাদে ব্যবহার করা হয়।

#### ঔদক চুন প্রস্তুতকরণ :

ঔদক চুন নিম্নবর্ণিত উপায়ে তৈরি করা যায় :-

- (১) বিশুদ্ধ চুন এর সাথে মাটি মিশিয়ে মিশ্রণকে মাঝারি তাপমাত্রায় পুড়িয়ে ঔদক চুন তৈরি করা যায়।
- (২) বিশুদ্ধ চুনের সাথে সুরক্ষি মিশিয়ে মিশ্রণকে যান্ত্রিক উপায়ে প্রেৰণ করে কৃত্রিম ঔদক চুন তৈরি করা যায়।

#### উৎকৃষ্ট চুনের বৈশিষ্ট্য (Characteristics of good lime) :

উৎকৃষ্ট চুনের বৈশিষ্ট্য নিম্নে উল্লেখ করা হলো :

- চুনকে অবশ্যই জ্বালানী ছাইমুক্ত হতে হবে।
- চুনাপাথরের চুনে অপদ্রব্য ৫% এর বেশি থাকবে না।
- চুনা পাথরগুলিকে কম পোড়াতে হবে।
- ইহা শক্ত পিণ্ডকারে থাকবে।
- ইহা সহজে পানি যোজিত করবে।
- ইহা যদু পানিতে দ্রবণীয় হবে।
- ইহা দুর্গঞ্জমুক্ত হবে।
- উৎকৃষ্ট চুন ৬৪ নং চালনি দিয়ে চালা যাবে।

### চুন শনাক্তকরণের উপায় (Indentification of types of lime) :

নিম্নলিখিত উপায়ে চুনের ধরন শনাক্ত করা যায় :

- রং দেখে (বিশুদ্ধ চুন ধৰ্ববে সাদা হয়, আর ঔদক চুন মেটে রং এর হয়)
- রাসায়নিক পরীক্ষার মাধ্যমে ।
- কলিকরণ (Slaking) প্রত্যক্ষ করে (বিশুদ্ধ চুনের দ্রুত হয়, অপরদিকে ঔদক চুনের কলিকরণ ধীরে ধীরে হয়) ।
- আয়তন বৃদ্ধি প্রত্যক্ষ করে (কলিকরণের সময় বিশুদ্ধ চুন বেশি বৃদ্ধি পায় এবং চুন কম বৃদ্ধি পায়) ।
- এসিডের রাসায়নিক বিক্রিয়া প্রত্যক্ষ করে (চুনে হাইড্রোকোরিক এসিড এর উপস্থিতিতে যে রাসায়নিক বিক্রিয়া ঘটে তাতে বিশুদ্ধ চুনের তলানি কম হবে, অপর দিকে ঔদক চুনের তলানি বেশি হবে) ।
- জমাটবন্ধতা প্রত্যক্ষ করে (গানির নিচে বিশুদ্ধ চুন জমাটবন্ধ হয় না, কিন্তু ঔদক চুন জমাটবন্ধ হয়) ।
- ওজন প্রত্যক্ষ করে (বিশুদ্ধ চুনের ওজন কম, অপর দিকে উত্তপ্ত করলে চুনাপাথর এর ওজন কমে) ।

### চুন শুদ্ধামজাতকরণ (Storing of Lime)

চুন শুদ্ধামজাতকরণে বিশেষ সতর্কতা অবলম্বন করতে হয় । কারণ চুন বাতাসের সংস্পর্শে আসলে বাতাস থেকে জলীয় বাষ্প ও কার্বনডাইঅক্সাইড গ্রহণ করে এবং পানির সংস্পর্শে এসে প্রচণ্ড তাপ সৃষ্টি করে আয়তনে বৃদ্ধি পায় । চুন অধিক সময়ের জন্য শুদ্ধামজাত করা উচিত নয় । চুন বাতাস থেকে  $\text{CO}_2$  ও পানি শোষণ করে পুনরায়  $\text{CaCO}_3$  এর পিণ্ডে পরিণত হতে পারে । চুন অসতর্কভাবে শুদ্ধামজাত করলে মারাত্মক দুর্বর্তন ঘটতে পারে । তাই শুদ্ধামজাত বেশ ভুঁতু ও শুকনো জায়গায় কঠিনিট বা কাঠের ভিটের উপর হতে হবে । শুদ্ধামের দেয়াল ও দরজা-জানালা আবহাওয়াবোধক হতে হবে । মাঝে মাঝে দেখতে হবে শুদ্ধামের ভিতরটা যেন অস্থান্তরিক গরম হয়ে না যায় ।

### ৫.৪ চুনের উপকরণাদি :

১. চুনাপাথর
২. সাদা খড়ি মাটি
৩. সামুদ্রিক প্রাণীর খোলস

### প্রশ্নমালা-৫

#### সংক্ষিপ্ত প্রশ্ন :

১. চুন কী? কোন কোন সামগ্রী হতে চুন পাওয়া যায়?
২. চুনকে কয়ভাবে ভাগ করা যায় ও কী কী?
৩. চুনের ব্যবহার ক্ষেত্র উল্লেখ কর?

#### রচনামূলক প্রশ্ন :

১. চুন বলতে কী বুঝায়? কোন কোন সামগ্রী হাতে চুন পাওয়া যায়? বিভিন্ন প্রকার চুনের নাম লেখ ও সংক্ষিপ্ত বিবরণ দাও ।
২. উৎকৃষ্ট চুনের বৈশিষ্ট্যগুলো লেখ ।
৩. চুন কোথায় ও কীভাবে শুদ্ধামজাত করবে, বিস্তারিত লেখ ।
৪. চুন শনাক্তকরণের উপায়সমূহ বর্ণনা কর ।

## অধ্যায় : ৬

# সিমেন্ট (Cement)

কাঠামো নির্মাণের প্রধান বাঁধনি গুণসম্পন্ন উপাদান সিমেন্ট। ইহা কয়েকটি যৌগিক পদার্থের মিশ্রণ। চুনজাত দ্রব্য ( $\text{CaCO}_3$ ) এবং কাদাজাত দ্রব্য ( $\text{SiO}_2$ ) এর মিশ্রণ খুব বেশি তাপমাত্রায় পুড়িয়ে কাঁকরের মতো ক্লিংকারে পরিণত করে খুব মিহিভাবে গুড়ো করে পরিমাণযতো জিপসাম গুড়া মিশিয়ে সিমেন্ট তৈরি করা হয়।

সিমেন্ট প্রকৃতপক্ষে একটি উন্নতমানের জোড়ক। উহার সাথে ওদক চুনের সাদৃশ্যতা আছে। তবে উহা ওদক চুন অপেক্ষা অধিক বাঁধনি গুণসম্পন্ন।

### ৬.১ সিমেন্টের শ্রেণিবিভাগ (Classification of Cement) :

সিমেন্ট দুই ভাগে বিভক্ত, যথা :

- (ক) প্রাকৃতিক সিমেন্ট (Nurural Cement)
- (খ) কৃত্রিম সিমেন্ট (Aftificial Cement)

#### (ক) প্রাকৃতিক সিমেন্ট (Nurural Cement)

২৫%-৪০% মৃত্তিকা মিশ্রিত চুনা পাথর অথবা বিশুল্দ চুনের সাথে ২৫%-৪০% মৃত্তিকা মিশিয়ে মিশ্রণকে পুড়িয়ে  $\text{CO}_2$  দূরীভূত করা হয় এবং পরে মিহি পাউডারে পরিণত করে প্রাকৃতিক সিমেন্ট তৈরি করা হয়। উহার রং বাদামি এবং পানির সংস্করে আসলে দ্রুত জমে যায়। উহা কৃত্রিম সিমেন্টের মতো শক্তিসম্পন্ন নয়। তবে সাধারণ গাঁথুনির মশলার জন্য বিশেষ উপযোগী হলেও আমাদের দেশে এ ধরনের সিমেন্টের ব্যবহার নাই। প্রাকৃতিক সিমেন্ট তিনি প্রকার পাওয়া যায়, যেমন : (১) রোমান সিমেন্ট, (২) পাজোলান সিমেন্ট (৩) মেদিনা সিমেন্ট। প্রাকৃতিক সিমেন্টের মাঝে রোমান সিমেন্টই উত্তম।

#### (খ) কৃত্রিম সিমেন্ট (Aftificial Cement)

ধনিক চুনাপাথরের সাথে সঠিক অনুপাতে কাদামাটি (Clay) মিশিয়ে মিশ্রণটিকে অতি মাত্রায় উত্তাপ দিয়ে পুড়িয়ে ক্লিংকার তৈরি করা হয়। এভাবে প্রাপ্ত ক্লিংকার প্রেষণ করে মিহি পাউডারে রূপান্তরিত করে কৃত্রিম সিমেন্ট তৈরি করা হয়।

কৃত্রিম সিমেন্ট অনেক রকমের হয়; যথা-

১. সাধারণ পোর্টল্যান্ড সিমেন্ট (Ordinary portland cement)
২. সাদা পোর্টল্যান্ড সিমেন্ট (White portland cement)
৩. দ্রুত জমাটবাঁধা সিমেন্ট (Quick hardening cement)
৪. দ্রুত শক্ত হওয়া সিমেন্ট (Rapid hardening cement)
৫. বায়ু বুদবুদ গঠনকারী সিমেন্ট (Air entraining cement)
৬. সম্প্রসারিত বা বিকশিত সিমেন্ট (Expanding cement)
৭. গন্ধকজাত লবণ নিরোধক সিমেন্ট (Sulphate resisting cement)
৮. স্বল্পোত্তাপ সিমেন্ট (Low heat cement)

৯. উচ্চ এ্যালুমিনা সিমেন্ট (High alumina cement)
১০. ব্লাস্ট ফর্নেস সিমেন্ট (Blast furnace cement)
১১. রঙিন সিমেন্ট (Coloured cement)

## ৬.২ সিমেন্টের ব্যবহার পদ্ধতি :

### (১) লাইম বা চুন (CaO)

সিমেন্ট সাধারণত: ৬০%-৭০% চুন থাকে। ক্যালসিয়াম সিলিকেট ও ক্যালসিয়াম এ্যালুমিনেট তৈরির জন্য পর্যাপ্ত থাকা দরকার। প্রয়োজনের তুলনায় কম হলে সিমেন্টের শক্তি কমে যায় এবং জমাটবদ্ধতার সময় দ্রুত করে। এবং চুনের পরিমাণ অধিক হলে নিম্ন মানের সিমেন্ট তৈরি হয়। কারণ এতে প্রসারণ ও বিয়োজন ঘটে।

### (২) সিলিকা ( $\text{SiO}_2$ )

সিমেন্টে সাধারণত ২০%-২৫% সিলিকা থাকে। ইহার উপস্থিতি চুনের ডাই-ক্যালসিয়াম সিলিকেট ও ট্রাই-ক্যালসিয়াম সিলিকেট রূপান্তর করে। ইহা সিমেন্টের শক্তি বৃদ্ধিতে সহায়ক।

### (৩) এ্যালুমিনা ( $\text{Al}_2\text{O}_3$ )

সিমেন্ট সাধারণত ৩%-৮% এ্যালুমিনা থাকে। ইহা সিমেন্টের অন্যান্য যৌগিক পানির সাথে সংযুক্ত করে ও ক্লিংকার গঠনের তাপমাত্রা কমিয়ে ইহার পরিমাণ অধিক হলে দুর্বল সিমেন্ট তৈরি হয়।

### (৪) আয়রন অক্সাইড ( $\text{Fe}_2\text{O}_3$ )

সিমেন্টে সাধারণত ২%-৪% আয়রন অক্সাইড থাক। ইহা উচ্চতাপ ক্যালসিয়াম ও এ্যালুমিনার সাথে রাসায়নিক বিক্রিয়া করে ট্রাই ক্যালসিয়াম এলুমিনোফেরাসাইট গঠনে করে। সিমেন্টের রং শক্তি ও কঠিন্য ইহার উপর নির্ভর করে।

### (৫) সালফার ট্রাই-অক্সাইড ( $\text{MgO}$ )

সিমেন্ট ইহার পরিমাণ সাধারণত ০.১%-২% হয়। ইহার পরিমাণ প্রয়োজনের তুলনায় বেশি হলে দুর্বল ও ক্রটিপূর্ণ সিমেন্ট তৈরি হয়।

### (৬) ম্যাগনেসিয়াম অক্সাইড ( $\text{SO}_3$ )

সিমেন্টে ইহার পরিমাণ সাধারণত ০.১%-৩% হয়। ইহার আধিক্য সিমেন্টাকে খুত্যুক্ত করে।

### (৭) ক্ষারীয় পদার্থ ( $\text{Na}_2\text{O}_3\text{K}_2\text{O}$ )

সিমেন্টে ইহার পরিমাণ সাধারণত ০.৫%-১.৩% হয়। সিমেন্টের কাঁচামালে সোডা, পটাশ ইত্যাদি যে ক্ষারকীয় দ্রব্য থাকে, পোড়ানোর সময় তা দূরীভূত হয়। বেশি হলে উদ্যাপনের সৃষ্টি হয় অর্থাৎ লোনাক্রান্ত করে।

## সিমেন্ট প্রস্তুতকরণ (Manufacture of Cement) :

সিমেন্ট তৈরির পদ্ধতি দুইটি, যথা-

ক) ডেজা বা সিক্ত পদ্ধতি (Wet Precess)  
খ) শুকনো বা শুক পদ্ধতি (Dry Process)

**ক) ডেজা বা সিক্ত পদ্ধতি :**

এ পদ্ধতিতে তিনটি ধাপ সিমেন্ট তৈরি করা হয় যথা :

১. কাঁচামালসমূহ আনুপাতিক হারে মিশিয়ে চূর্ণ করে শুয়াশ মিলে (Wash mill) পরিমাণমতো পানি মিশিয়ে প্রোস্রণ করে চালনিতে চেলে স্লারি (Slurry) তৈরিকরণ।
২. স্লারিকে শুরুত চুলায় পিণ্ডে (Clinker) পরিণতকরণ।
৩. তৈরি পিণ্ডে (Clinker) সাথে পরিমিত জিপসাম মিশিয়ে বল মিলে (Ball Mill) বা টিউব মিলে (Tube Mill) চূর্ণ করে মিহি পাউডারে পরিণত করে সিমেন্ট তৈরিকরণ।

**খ) শুকনো বা শুক পদ্ধতি :**

১. চূর্ণ জাতীয় ও কাঁদা জাতীয় বিভিন্ন কাঁচামাল সঠিক অনুপাতে শুকনো অবস্থায় মিশিয়ে ভালোভাবে চূর্ণকরণ।
২. চূর্ণকৃত কাঁচ মিশ্রণ ঘূর্ণত চুলাতে (Roratory Kiln) পুড়িয়ে পিণ্ড (Clinker) তৈরি করণ।
৩. তৈরিকৃত পিণ্ড (Clinker) এর সাথে প্রয়োজনীয় পরিমাণ জিপসাম (Gypsum) মিশিয়ে বলমিলে বা টিউব মিলে (Ball Mill or Tube Mill) চূর্ণ করে মিহি পাউডারে পরিণত করে সিমেন্ট তৈরিকরণ।

**৬.৩ সিমেন্টের ব্যবহার (Use of Cement) :**

বর্তমান বিশ্বে সিমেন্টের ব্যবহার ব্যাপক ও অপরিহার্য। সকল রকম প্রকৌশল কাজেই সিমেন্ট ব্যবহৃত হয়। কয়েকটি ব্যবহার ক্ষেত্র নিচে বর্ণিত হলো:

- বড় বড় ইমারত নির্মাণে এবং ইমারতে ভিত্তি নির্মাণে।
- যে সকল ভিত্তি পানির সংস্পর্শে আসে, ঐ সকল ভিত্তি নির্মাণে যেমন- জলাধার, ডেন, ডকইয়ার্ড, পানি অপ্রবেশ্য মেৰো, ভিজা বুনিয়াদ, নর্দমার দেয়াল ইত্যাদি।
- গুরুত্বপূর্ণ শক্তিশালী নির্মাণ কাজে যেমন- ব্রিজ পিয়ার, সাইট হাউস, সুউচ টাওয়ার ইত্যাদি।
- নির্মাণের খোলা অংশে যেমন- চিমনির ঢালা, দেয়ালের কপিং, ব্রিজ ইত্যাদিতে।
- সিমেন্টের মশলা, কংক্রিট, রিঃইন-ফোর্সড, কংক্রিট, রিঃআইন-ফোর্স ব্রিক ওয়ার্ক, কৃত্রিম পাথর ইত্যাদি তৈরিতে।
- পয়নিষ্ঠাশন ও পানি সরবরাহের কাজে।
- উন্নতমানের রং এর কাজে।
- নির্মাণের বাইরের খোলা পাশকে আবহাওয়ার বিরুদ্ধতা থেকে রক্ষার জন্য।
- কম পুরুত্বের দেয়ালে প্রয়োজনীয় অতিরিক্ত শক্তি বাড়াতে।
- পর্যন্তিং এর কাজে।
- ইমারতের সৌন্দর্য বাড়াতে।

### ৬.৪ সিমেন্টের উপকরণাদি :

সিমেন্টের উপাদান প্রধানত : দুই ধরনের, যেমন:-

(ক) চুন জাতীয় পদার্থ-ক্যালসিয়াম ও ম্যাগনেসিয়াম ঘোগ (চুনাপাথর, চক, মার্ল ইত্যাদি)।

(খ) মৃত্তিকা জাতীয় পদার্থ- মৃত্তিকা ও শেল, প্রেট ইত্যাদি।

**পোর্টল্যান্ড সিমেন্টের খনিজ উপাদানগুলির পরিমাণ শতকরা হারে নিচে দেওয়া হলো :**

|                                         |     |
|-----------------------------------------|-----|
| (১)ট্রাই-ক্যালসিয়াম সিলিকেট            | ৫০% |
| (২) ডাই-ক্যালসিয়াম সিলিকেট             | ২৫% |
| (৩)ট্রাই-ক্যালসিয়াম এ্যালুমিনেট        | ১০% |
| (৪)ট্রাই-ক্যালসিয়াম এ্যালুমিনেট ফেরাইট | ১০% |
| (৫)ক্যালসিয়াম                          | ৩%  |
| (৬)অন্যান্য ঘোগ                         | ২%  |
| <b>মোট = ১০০%</b>                       |     |

**পোর্টল্যান্ড সিমেন্টের রাসায়নিক গঠনের উপাদানগুলির ওজন শতকরা হারে নিচে দেওয়া হলো :**

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| (১) লাইম বা চুন ( $\text{CaO}$ )                                  | ৬৩% |
| (২) সিলিকা ( $\text{SiO}_2$ )                                     | ২২% |
| (৩) এ্যালুমিনা ( $\text{Al}_2\text{O}_3$ )                        | ৭%  |
| (৪) আয়রন অক্সাইড ( $\text{Fe}_2\text{O}_3$ )                     | ৩%  |
| (৫) সালফার ট্রাই-অক্সাইড ( $\text{MgO}$ )                         | ২%  |
| (৬) ম্যাগনেসিয়াম অক্সাইড ( $\text{SO}_3$ )                       | ২%  |
| (৭) ক্ষারীয় পদার্থ ( $\text{Na}_2\text{O}_3\text{K}_2\text{O}$ ) | ১%  |

**মোট = ১০০%**

### ৬.৫ সিমেন্ট সংরক্ষণ(Storage of Cement)

সিমেন্ট গুদামজাতকরণের সময় নিচের বিষয়গুলোর প্রতি লক্ষ রাখতে হবে:-

- গুদামটি জলবায়ু প্রতিরোধে সক্ষম হতে হবে।
- কখনও স্যাতস্যাতে গুদামে সিমেন্ট রাখতে নেই।
- সিমেন্টের বস্তা দেয়ালের গাঁয়ে লাগিয়ে রাখতে নেই। দেয়াল থেকে ৩০০ মি.মি. দূরে রাখতে হবে।
- বেশিদিন গুদামজাত করে রাখতে নেই।
- বর্ষাকালে গুদামজাত করতে নেই।
- শুকনো উচু প্লাটফর্মের উপর সিমেন্ট রাখতে হবে।
- সিমেন্টের বস্তা পাশাপাশি রাখতে এবং তেরপাল দিয়ে ঢেকে দিতে হবে যেন বায়ুর মুক্ত প্রবাহ হতে রক্ষা পায়।
- উচ্চতায় পরপর ১০ বস্তার অধিক সিমেন্ট রাখা যাবে না।
- খালি মেঝেতে সিমেন্ট রাখতে নেই।

- সিনথেটিক বস্তায় সিমেন্ট রাখতে হবে ।
- বস্তার দুই লাইনের মাঝে লোক চলাচলের পরিমিত জায়গা রাখতে হবে যাতে আগে সিমেন্ট আগে এবং পরের সিমেন্ট পরে ব্যবহার করা যায় ।

### **যাঠে সিমেন্ট পরীক্ষা (Filed Test of Cement) :**

কার্যক্ষেত্রে সিমেন্টের গুণগুণ যাচাই করার কয়েকটি পরীক্ষা নিচে দেওয়া হলো:-

- সিমেন্টের বস্তার ভিতর হাত দিয়ে দুই আঙুলের সাহায্যে সিমেন্ট ঘষলে যদি ঠাণ্ডা ও মোলায়েম অনুভূত হয় তবে ইহা ভালো সিমেন্ট ।
- এক গ্লাস পানিতে এক মুঠো সিমেন্ট ছেড়ে দিলে যদি সহসা ঢুবে যায়, তবে ইহা ভালো সিমেন্ট ।
- এক মুঠো সিমেন্ট হাতে নিয়ে পানির ভিতর ধরলে অঙ্গ সময়ের মধ্যেই যদি গরম অনুভূত হয় তবে ইহা ভালো সিমেন্ট ।
- এক মুঠো সিমেন্ট হাতে নিয়ে জড়ো করে পিণ্ড বানাবার চেস্টা করলে যদি পিণ্ড বানানো সম্ভব হয় এবং ভেঙ্গে না যায়, তবে ইহা ভালো সিমেন্ট ।

### **সিমেন্টের ধর্ম (Properties of Cement) :**

সিমেন্টের অন্যতম ধর্মগুলি হলো:

- ১। পানিযোজন (Hydration)
- ২। জমাটবদ্ধতা (Setting of Cement)
- ৩। সূক্ষ্মতা (Fineness of Cement)
- ৪। নিখুততা (Soundness of Cement)
- ৫। শক্তি (Strength of Cement)

### **সিমেন্টের ধর্মগুলোর সংক্ষিপ্ত বিবরণ :**

১. সিমেন্টের পানিযোজন (Hydration of Cement) : সিমেন্টের সাথে পানির সকল প্রকার বিক্রিয়াই সিমেন্টের পানিযোজন ।
২. সিমেন্টের জমাটবদ্ধতা (Setting of Cement) : সিমেন্টের পেস্ট তরল অবস্থা থেকে কঠিন অবস্থায় পরিবর্তন হওয়াকে জমাটবদ্ধতা বলা হয় ।
৩. সিমেন্টের সূক্ষ্মতা (Fineness of Cement) : সিমেন্টের সূক্ষ্মতা অতীব প্রয়োজন । সিমেন্টের সূক্ষ্মকণা পানি যোজনের কাজ সহজতর করে । সিমেন্টের সূক্ষ্মতা যত বেশি হবে, পানি যোজিতকরণ তত বেশি সহজতর হবে এবং দ্রুত সিমেন্টের শক্তি বৃদ্ধি করবে ।
৪. সিমেন্টের অকাট্যতা বা নিখুততা (Soundness of Cement) : সিমেন্ট পেস্ট একবার জমাটবদ্ধ হয়ে গেলে উহার আয়তন আর বাড়ে না । কিন্তু যে সকল সিমেন্টের পানিযোজন ক্ষমতা মন্ত্র (অর্থাৎ যে সমস্ত সিমেন্ট চুন, ম্যাগনেসিয়া (MgO) এবং কালসিয়াম সালফেট মুক্ত অবস্থায় অবস্থা করে ) তাদের ক্ষেত্রে আয়তন বৃদ্ধি পায় । ফলে ফাটল সৃষ্টি হতে পারে । কাজেই সিমেন্টের কাঁচামালে মন্ত্র পানি যোজনীয় উপাদান এর মাত্রা নির্ধারণে যথেষ্ট সতর্ক হওয়া আবশ্যিক ।

৫. সিমেন্টের শক্তি (Strength of Cement) : সিমেন্টকে কখনই সরাসরি নির্মাণ কাজে ব্যবহার করা হয় না। নির্মাণ কাজে মশলা বা কংক্রিটেই ব্যবহার করা হয়। কাজেই মশলা বা কংক্রিটের শক্তি সিমেন্টের শক্তি হিসেবে বিবেচিত হয়। মশলা বা কংক্রিটের শক্তি নির্ভর করে (ক) সিমেন্টের সাথে এগিগেটের মিশ্রণের পরিমাণ এবং (খ) এগিগেটের শক্তির উপর। ব্যবহারিক ক্ষেত্রে প্রয়োজনে সিমেন্টের সঙ্কোচন বা চাপ শক্তি (Compressive strength) পরীক্ষা করা হয়।

## প্রশ্নমালা-৬

### সংক্ষিপ্ত প্রশ্ন :

১. সিমেন্ট কী?
২. সিমেন্টের উপাদানগুলির নাম লেখ।
৩. সিমেন্টকে কত শ্রেণিতে ভাগ করা হয়? উহাদের নাম লেখ।
৪. কৃত্রিম সিমেন্ট কত প্রকার ও কী কী?
৫. সিমেন্ট তৈরি করার পদ্ধতি কয়টি ও কী কী?
৬. বাংলাদেশ কোথায় সিমেন্ট উৎপন্ন হয়। ইহার কাঁচামাল কোথায় থেকে সংগ্রহ করা হয়?

### রচনামূলক প্রশ্ন :

১. সিমেন্টকে কত শ্রেণিতে ভাগ করা যায়? উহাদের সংক্ষিপ্ত বিবরণ দাও।
২. সিমেন্টের উপাদান কী কী? এই সমস্ত উপাদানগুলির কাজের সংক্ষিপ্ত বিবরণ দাও।
৩. সিমেন্ট তৈরির পদ্ধতিসমূহ সংক্ষেপে আলোচনা কর।
৪. সিমেন্টের ধর্মগুলো সংক্ষেপে আলোচনা কর।
৫. সিমেন্ট গুদামজাতকরণের সময় কী কী বিষয় লক্ষ রাখতে হয়?
৬. মাঠে সিমেন্টের গুণগুণ কীভাবে যাচাই করবে, আলোচনা কর।
৭. সিমেন্টের ব্যবহার ক্ষেত্রগুলি লেখ।

## অধ্যায় : ৭

# ইটের বন্ড (Bond in Brick)

ইটের গাঁথুনির কাজে নির্ধারিত নিয়মনীতি অনুসরণ করে ইট ও ইটের অংশ বিশেষ (Closer) গুলোকে মশলা (Mortar) সহকারে একের পর এক স্তরে স্তরে এমনভাবে সাজিয়ে বসাতে হয়, যাতে পর পর দুইটি স্তরে কোন অবিচ্ছিন্ন (Continous) খাড়া বা উলম্ব জোড় (Vertical Joint) না পড়ে এবং এ ব্যবস্থাপনাই ইটের কাজে বন্ড (Bond) নামে পরিচিত। সংক্ষেপে বলা যায়, একটি ইটের সাথে অপর একটি ইটের নিয়মাধিক জোড় দেয়ার কৌশলকেই বন্ড বলে।

### বন্ডিং বা ইট সাজানোর নিয়মাবলি :

সঠিক বন্ডের জন্য নিম্নলিখিত বিষয়গুলোর প্রতি বিশেষভাবে লক্ষ রাখতে হবে।

- (ক) ইটের আকার ও আয়তন সুষম হবে। ইটের দৈর্ঘ্য  $2 \times$  ইটের প্রস্থ + মশলার জয়েন্টের পুরুত্ব, অর্থাৎ দৈর্ঘ্য ২৪০ মিমি =  $(2 \times 115 \text{ মিমি} + 10 \text{ মিমি})$  ফলে সুষম ল্যাপ পাওয়া যাবে।
- (খ) কমপক্ষে ইটের এক চতুর্থাংশ ল্যাপ হবে।
- (গ) কম সংখ্যক আধলা ইট (Brick Bat) ব্যবহার করতে হবে।
- (ঘ) অলটারনেট কোর্সের খাড়া জয়েন্টগুলো একই খাড়া লাইনে হবে।
- (ঙ) অলটারনেট কোর্সে হেডারের সেন্টার লাইন এবং স্ট্রেচারের সেন্টার লাইন একই উলম্ব রেখায় ছেদ করবে।

### ৭.১ গাঁথুনির কাজে বন্ডের প্রয়োজনীয়তা :

নিম্নলিখিত প্রয়োজনে গাঁথুনির কাজে বন্ড করা হয় :-

- (ক) কাঠামোর শক্তি এবং স্থায়ীত্ব বৃদ্ধি করতে।
- (খ) খাড়া জোড়া পরিহার করতে।
- (গ) দেয়ালের উপর আপত্তি ও জনকে সুষমভাবে বন্টন করতে।
- (ঘ) শিয়ার ফোর্সকে প্রতিরোধ করতে।
- (ঙ) ইটের পারস্পরিক সংযোগ বা ইন্টারলকিং সৃষ্টি করতে।
- (চ) সৌন্দর বাড়াতে এবং নির্মাণ কাজ দ্রুততর করতে।

### ৭.২ ইটের বন্ডের শ্রেণিবিন্যাস (Classification of Bond) :

গাঁথুনি ও মেঝে বা রাস্তায় ইটের কাজে ব্যবহৃত বন্ডের শ্রেণিবিন্যাস নিম্নরূপ :

- (ক) ইংলিশ বন্ড (English bond)
- (খ) ফেমিশ বন্ড (Flemish bond)
- (গ) স্ট্রেচার বন্ড (Stretcher)
- (ঘ) হেডার বন্ড (Header bond)
- (ঙ) রেকিং বন্ড (Raking bond)
- (১) হেরিং বোন বন্ড (Herring bone bond)

(২) ডায়াগোনাল বন্ড (Diagonal bond)

(চ) ডাচ বন্ড (Dutch bond)

(ছ) জিগ-জ্যাগ বন্ড (Zig-Zag bond)

(জ) ইংলিশ ক্রস বন্ড (English Cross bond)

(ঝ) ফেসিং বন্ড (Facing bond)

(ঝঃ) গার্ডেন ওয়াল বন্ড (Grden Wall bond)

(১) ইংলিশ গার্ডেন ওয়াল বন্ড (English Garden Wall bond)

(২) ফ্রেমিশ গার্ডেন ওয়াল বন্ড (Flemish Garden Wall bond)

(ট) সিলভার লক বন্ড (Silver lock bond)

### ৭.৩ বন্ড তৈরির কৌশল

সচরাচর ব্যবহৃত বন্ডের বিবরণ :

#### (ক) ইংলিশ বন্ড (English Bond) :

যে বন্ড অলটারনেট কার্সে স্টেচার এবং হেড দিয়ে গঠিত হয়, তাক ইংলিশ বন্ড বলে। ইহাতে এক কোর্স হেডারের উপর এক কোর্স স্টেচার গাঁথুনি হবে অর্থাৎ ১য়, ৩য়, ৫ মের স্তরে হেডার বসলে ২য়, ৪য় ও ৬ষ্ঠ স্টেচার বসবে। কোন কোর্সে বা স্তরে স্টেচার ও হেডার পাশাপাশি বসবেন। অলটারনেট স্টেচার কোর্সে স্টেচারের খাড়া জোড়গুলো একই লাইনে বসবে। একইভাব অলটারনেট হেডার কোর্সে হেডারের খাড়া জোড়গুলো একই লাইনে বসবে। আবার হেডারের স্তরের ঠিক উপরের স্টেচারের স্তরের খাড়া জোড়গুলো যাতে একই রেখায় না পড়ে সেজন্য হেডার কোর্সের প্রথম হেডারের পরে একটি কুইন ক্লোজার বসাতে হয়। প্রায় সব ধরনের নির্মাণ কাজেই ইংলিশ বন্ড ব্যবহৃত হয়। ইহা যেমন গাঁথুনি শক্ত বাঁন তৈরি করে, তেমনি দেয়ালের বাইরের দিকে পয়েন্টিং ব্যবহার হলে দেয়ালের সৌন্দর্যও বাড়ায়।



চিত্র ৭.১ : ইংলিশ বন্ড

নিম্নে বর্ণিত কৌশল অবলম্বন করে ইংলিশ বন্ড গাঁথুনির কাজ করা হয় :-

- কুইন ক্লোজার দিয়ে কখনও হেডার কোর্স আরম্ভ না করা।
- প্রত্যেক অলটারনেট হেডার, স্টেচারের কেন্দ্র বরাবর হবে।
- শেষ প্রান্ত ব্যতীত অবিরাম খাড়া জোড় হবে না।

- যেহেতু হেডার কোর্সের জয়েন্ট সংখ্যা, স্ট্রাচার কোর্সের জয়েন্ট সংখ্যার বিগড়, তাই হেডার কোর্সের জয়েন্ট, স্ট্রাচার কোর্সের চেয়ে পুরু হবে ।
- অলটারনেট কোর্স স্ট্রাচার অথবা হেডার হবে ।
- আধ ইটের জোড় সংখ্যক শৃঙ্গিতক বিশিষ্ট চওড়া দেয়ালের (১, ২, ৩ ---- ইটের দৈর্ঘ্যের সমপরিমাণ অর্থাৎ ১০", ২০", ৩০" চওড়া দেয়াল) ক্ষেত্রে দেয়ালের সামনে ও পিছনে উভয় দিকে একই কোর্সে হেডার অথবা স্ট্রাচার দেখা যাবে ।
- আধ ইটের বিজোড় সংখ্যক শৃঙ্গিতক বিশিষ্ট চওড়া দেয়ালে ( $\frac{1}{2}$ ,  $\frac{2}{2}$ ,  $\frac{3}{2}$  ইটের দৈর্ঘ্যের সমপরিমাণ অর্থাৎ ১৫", ২৫", ৩৫" চওড়া দেয়াল) ক্ষেত্রে একই কোর্স দেয়ালের সামনের দিকে যদি হেডার দেখা যায়, তবে পিছনের দিকে স্ট্রাচার দেখা যাবে ।

#### (খ) ফ্রেমিশ বন্ড (Flemish bond) :

যে বন্ডে একই কোর্সে স্ট্রাচার ও হেডার পর্যায়ক্রমে পাশাপাশি বসে, তাকে ফ্রেমিশ বন্ড বলে । প্রতিটি কোর্সের হেডার পরবর্তী কোর্সের স্ট্রাচার ইটের কেন্দ্রে থাকবে । ইহাতে অধিক সংখ্যক ব্যবহার করা যায় বলে খরচ কম হয় ।



চিত্র ৭.২ : ফ্রেমিশ বন্ড

#### ইংলিশ বন্ড এবং ফ্রেমিশ বন্ডের মধ্যে তুলনা :

- ১.৫ ইটের বা ততোধিক চওড়া দেয়ালের ক্ষেত্রে ইংলিশ বন্ড, ফ্রেমিশ বন্ডের চেয়ে অধিকতর শক্তিশালী ।
- ইংলিশ বন্ড চেয়ে ফ্রেমিশ বন্ড বাহ্যিক চেহারা বা দৃশ্য (Facing) সর্বদা আকর্ষণীয় ।
- ইংলিশ বন্ডের চেয়ে ফ্রেমিশ বন্ড সূলভ বা সস্তা । কিন্তু ব্যাটস ব্যবহারের ফলে অতিরিক্ত জোড়া দিতে হয় বলে বেশি মশলার প্রয়োজন হয় ।

- ক্রমিশ বন্ড নির্মাণে দক্ষ কারিগর এবং সুরু তদারকির প্রয়োজন। তাছাড়া অল্টারনেট কোর্সের খাড়া জয়েন্টগুলো একই সাইনে আনতে বিশেষ যত্ন ও সাবধানতা নিতে হয়।

#### (গ) স্টেচার বন্ড (Stretcher Bond) :

যে বন্ডের প্রতি কোর্স অর্থাৎ স্তরে স্টেচার ইট বসাতে হয় তাকে স্টেচার বলে। দেয়ালের দৈর্ঘ্যের দিকে ইট লম্বালভি হয়ে বসবে। কেবলমাত্র আখা ইট চওড়া বিশিষ্ট (৫" বা ১২.৫ সেমি পুরু) দেয়ালের ক্ষেত্রে ইহা ব্যবহৃত হয়। বেশি পুরুত্ব বিশিষ্ট দেয়ালে ইহার ব্যবহার নাই। করণ দেয়ালের আড়াআড়ি কোনও বন্ড হয় না।



চিত্র ৭.৩

#### (ঘ) হেডার বন্ড (Header Bond) :

যে বন্ডে প্রতি স্তরে ইটকে হেডার হিসেবে বসাতে হয় তাকে বলে হেডার বন্ড। দেয়ালের দৈর্ঘ্যের দিকে ইট আড়াআড়ি হয়ে বসবে। এক ইটের দৈর্ঘ্যের সমান চওড়াবিশিষ্ট (১০" বা ২৫ সেমি. পুরু) দেয়াল এবং বাঁকা দেয়াল তৈরি করতে হেডার বন্ড ব্যবহার করা হয়। আড়াআড়ি ভার (Transverse Load) বন্টনের জন্য ভিত্তির ফুটিং-এ হেডার বন্ড ব্যবহার করা হয়।



চিত্র ৭.৪

#### (ঙ) হেরিং-বোন বন্ড (Herring Bone Bond) :

খুব বেশি চওড়া (পুরু) দেয়ালের ক্ষেত্রে এবং যেবে অথবা রাস্তার সেলিং-এ হেরিং বোন বন্ড খুবই উপযোগী। হেরিং বোন বন্ড দেয়ালের কেন্দ্র রেখা হতে উভয় দিকে  $45^{\circ}$  কোণ করে ইটগুলোকে বিশেষ পদ্ধতিতে স্থাপন করা হয়। প্রান্তের ছোট ত্রিভুজকার ছানগুলো ত্রিভুজকার বা প্রয়োজনীয় আকারে কাটা ইট বাসিয়ে পূরণ করা হয়।

**(চ) ডায়াগনাল বন্ড (Diagonal Bond) :**

দুই খেকে চার ইটের সমান চওড়া (পুরু) দেয়ালের এবং মেঝে অথবা রাস্তার সেলিংয়ে ডায়াগনাল বন্ড খুবই উপযোগী। ইটগুলি কোণাকোণি এমনভাবে সাজান হয়, যেন একই দিকে  $45^{\circ}$  কোণ উৎপন্ন করে। প্রতি পাঁচ অথবা সাত কোর্স ইট গাঁথার পর এক কোর্সে এই ধরনের বন্ড ব্যবহার করা হয়। ফেসিং এবং ব্যাকিং-এ ইট বসানোর পর অভ্যন্তরীন ইটগুলো নির্দিষ্ট দিকে একই কোণে বসানো হয়। সাধারণত রাস্তার ভিতে এই প্রকার বন্ডে ইট সাজানো হয়।



চিত্র ৭.৫ : বন্ডের ধর্কারভেদ

## প্রশ্নমালা-৭

### **সংক্ষিপ্ত প্রশ্ন :**

১. ইটের বড় বলতে কী বুবায়?
২. ইটের বড়ের প্রয়োজনীয়তা কী?
৩. বড় কত প্রকার ও কী কী?
৪. স্টেচার বড় বলতে কী বুবায়?
৫. হেডার বড় বলতে কী বুবায়?
৬. ইংলিশ বড় বলতে কী বুবায়?
৭. ফ্রেমিশ বড় বলতে কী বুবায়?
৮. হেরিং বোন বড় কোথায় ব্যবহৃত হয়?
৯. ডায়াগনাল বড় কোথায় ব্যবহৃত হয়।

### **রচনামূলক প্রশ্ন :**

১. ইটের গাঁথুনির কাজে বড় কত প্রকার ও কী কী? ইটের কাজে বড়ের প্রয়োজনীয়তা কী? কোথায় কোন প্রকার বড় ব্যবহৃত হয়?
২. চিত্রসহ ইংলিশ বড়ের সংজ্ঞা দাও। ইংলিশ বড়ে গাঁথুনির কাজ করতে কী কী কৌশল অবলম্বন করা হয়?
৩. চিত্রসহ ফ্রেমিশ বড়ের সংজ্ঞা দাও।
৪. স্টেচার ও হেডার বড়ের সংজ্ঞা দাও এবং পরিচ্ছন্ন চিত্র অঙ্কন কর।
৫. হেরিং বোন বড় এর সংজ্ঞা দাও এবং পরিচ্ছন্ন চিত্র অঙ্কন কর। রাস্তায় হেরিং বোন বড় ব্যবহার করা হয় কেন?
৬. ডায়াগনাল বড় এর সংজ্ঞা দাও এবং পরিচ্ছন্ন চিত্র অঙ্কন কর।
৭. ইটের দেয়ালের কাজে ইংলিশ বড় এর সাথে ফ্রেমিশ বড়ের তুলনামূলক আলোচনা কর।

## অধ্যায় : ৮

# মশলা (Mortar)

বাঁধনি গুণসম্পন্ন পদার্থ যেমন- চুন বা সিমেন্টের সাথে বালি বা সুরকি মিশিয়ে পরিমিত পানি সহযোগে যে নরম মিশ্রণ বা পেস্ট তৈরি করা হয়, তাকে মশলা (Mortar) বলে।

### ৮.১ মশলার কাজ (Functions of Mortar) :

নির্মাণ কাজে মশলার ব্যবহার অপরিহার্য। মশলা নিম্নলিখিত কাজ করে-

- (ক) গাঁথুনিতে ব্যবহৃত ইট বা পাথরের জোড় পূরণ করে তাদেরকে শক্ত করে ধরে রাখে।
- (খ) ইট বা পাথরের মধ্যে কোন অসমতা থাকলে মশলা তার সামঞ্জস্য বিধানে সহায়তা করে।
- (গ) কংক্রিট, আস্তর, পয়ন্তিৎ ইত্যাদি কাজে মশলা ব্যবহার করা হয়।
- (ঘ) দেয়ালের পৃষ্ঠদেশের মসৃণতা ও সৌন্দর্য বর্ধন করে।
- (ঙ) দেয়ালকে শক্ত ও মজবুত করে।
- (চ) কংক্রিটের পূরক উপাদানগুলোর ফাঁকা অংশ (Viod) পূরণ করে জমাট বেঁধে আস্ত একটা পাথরে পরিণত করে।
- (ছ) দেয়ালের মাঝে যত ফাঁক-ফোকর থাকে, তা পূরণ করে। দেয়ালকে পানিরোধী ও চাপ নিরোধক করে।

### ৮.২ মশলার উপকরণাদি :

মশলার শ্রেণিবিভাগ (Classification of Mortar) :

- (ক) চুন মশলা (Lime Mortar) : ইহা চুন, বালি ও পানির সংমিশ্রণে গঠিত।
- (খ) সিমেন্ট মশলা (Cement Mortar) : ইহা সিমেন্ট, বালি ও পানির সংমিশ্রণে গঠিত।
- (গ) সুরকি মশলা (Surki Mortar) : ইহা সুরকি, চুন ও পানির সংমিশ্রণে গঠিত।
- (ঘ) কাদা মশলা (Mud Mortar) : ইহা মথিত মাটি ও পানির সংমিশ্রণে গঠিত।

### মশলার উপাদান ও অনুপাত (Ingredients of mortar and its proportions) :

মশলার উপাদান ও তাদের অনুপাত নির্ভর করে মশলার ব্যবহারক্ষেত্রের উপর। খুব গুরুত্বপূর্ণ কাজে সিমেন্ট মর্টার অথবা হাইড্রোলিক লাইম মর্টার ব্যবহার করা উচিত। বাঁধনি গুণসম্পন্ন দ্রব্যের রকম ও কাজের প্রকৃতির উপর মশলায় বালুর অনুপাত নির্ভর করে। চুনের মশলায় চুন ও বালির অনুপাত ১ : ২ এবং সিমেন্ট মশলায় সিমেন্ট ও বালির অনুপাত ১ : ২ থেকে ১ : ৬ পর্যন্ত। বর্তমানে সকল নির্মাণ কাজে সিমেন্ট মশলাই ব্যবহৃত হয় এবং কাজের প্রকৃতি অনুযায়ী সিমেন্ট মশলায় সিমেন্ট বালির অনুপাত নিম্নরূপে অনুমোদিত।

| কাজের প্রকৃতি                                                                                          | সিমেন্ট-বালির<br>অনুমোদিত অনুপাত |
|--------------------------------------------------------------------------------------------------------|----------------------------------|
| (ক) মাটির উপরিতল পর্যন্ত সেতু, কালভার্ট, পায়ার, এবাটিমেন্ট ইত্যাদির ভিত্তে<br>১ম শ্রেণির ইটের কাজ।    | ১ : ৩                            |
| (খ) মাটির উপরিতলে সেতু কালভার্ট, পায়ার, এবাটিমেন্ট ইত্যাদির সুপার<br>স্ট্রাকচারে ১ম শ্রেণির ইটের কাজ। | ১ : ৪                            |
| (গ) পানি নিরোধক আধার বা কুয়া নির্মাণের জন্য ১ম শ্রেণির ইটের কাজ।                                      | ১ : ৪                            |
| (ঘ) ৬ মিমিস আস্তর (Plaster) এর কাজে।                                                                   | ১ : ৪                            |
| (ঙ) দেয়ালের পৃষ্ঠদেশের পয়েন্টিং (Pointing) এর কাজে।                                                  | ১ : ২                            |
| (চ) দালানের ভিত্তে প্লিনথ লেভেল পর্যন্ত ১ম শ্রেণির ইটের কাজ।                                           | ১ : ৬                            |
| (ছ) বিশেষ পরিস্থিতিতে দালানের ভিত্তে প্লিনথ লেভেল পর্যন্ত ১ম শ্রেণির ইটের<br>কাজ।                      | ১ : ৪                            |
| (জ) দালানের সুপার স্ট্রাকচার ইত্যাদিতে ১ম শ্রেণির ইটের কাজ।                                            | ১ : ৬                            |

৮.৩ মশলা তৈরির পদ্ধতি : সিমেন্ট মশলা তৈরির প্রক্রিয়া (Preparation of Cement) সিমেন্ট মশলা নিচে বর্ণিত তিনি পর্যায়ে করা হয়।

(ক) প্রথম পর্যায় : শুকনো সিমেন্ট ও বালি মেপে নিশ্চিন্ত্র প্লাটফরমের উপর সমান পুরু করে বিছানো হয়। প্রথমে চালনিতে চালা বালি বিছিয়ে তার উপর সিমেন্ট চালা হয়। উপাদানগুলো কোদাল বা বেলচা দিয়ে উল্টিয়ে পাল্টিয়ে শুকনো মিশ্রণ তৈরি করা হয়। মিশানো সময় লক্ষ রাখতে হবে যেন সিমেন্ট কোথাও পিণ্ড আকারে পৃথক না থাকে। বালি ও সিমেন্ট মিশে একাকার হয়ে যাবে।

(খ) দ্বিতীয় পর্যায় : নির্দিষ্ট ব্যাচের জন্য প্রয়োজনীয় পানি হিসাব করে অর্ধেক পরিমাণ পানি শুকনো মিশ্রণে ছিটিয়ে দেওয়া হয়। উপাদানগুলো পুনরায় ২-৩ বার ভালোভাবে উল্টিয়ে পাল্টিয়ে আধ-ভেজা মিশ্রণ তৈরি করা হয়। বিকল্প পদ্ধতিতে প্রথম পর্যায়ে তৈরি শুকনো মিশ্রণে হিসেব করা প্রয়োজনীয় পুরো পানিই শুকনো মিশ্রণের মাঝখানে কোদাল দিয়ে গর্তের মতো ফাঁকা জায়গা তৈরি করে আস্তে আস্তে ঢেলে দিতে হয়। পানি ঢালার সময় লক্ষ্য রাখতে হয় যেন পানি গর্ত থেকে গড়িয়ে উপচিয়ে বা লিক করে বের হয়ে না যায়। তারপর আস্তে আস্তে গর্তের বাইরের শুকনো মিশ্রণ কোদাল বা কর্নি দিয়ে গর্তের ভিতর জয়া করা পানিতে ফেলতে হয় যাতে শুকনো মিশ্রণ পানি শোষণ করতে থাকে। এভাবে বাইরের মিশ্রণ গর্তের মাঝে ছাড়িয়ে দিতে দেখা যাবে গর্তের পানি শুকনো মিশ্রণ দিয়ে ঢেকে যাবে। তখন শুকনো মিশ্রণকে পানি শোষণের জন্য সেভাবে কিছুক্ষণ বিনা স্পর্শে স্থির রেখে দিতে হবে।

(গ) তৃতীয় পর্যায় : প্রস্তুতকৃত অর্ধসিক্ত মিশ্রণে এখন অবশিষ্ট পানি যোগ করে পুনরায় ২-৩ বার উল্টিয়ে পাল্টিয়ে প্রয়োজনীয় তরলতার সিমেন্ট মশলা তৈরি করা হয়। দ্বিতীয় পর্যায়ে যদি বিকল্প পদ্ধতি ব্যবহার করা হয়, তাহলে শুকনো মিশ্রণ দিয়ে ধীরে ধীরে ঢেকে দেওয়া গর্তের শোষণকৃত পানি-ভেজা মিশ্রণের

স্তুপটি কোদাল বা বেলচার সহায়তায় অতি দ্রুত কেটে ২-৩ বার উল্টিয়ে পাল্টিয়ে প্রয়োজনীয় তরলতার সিমেন্ট মিশ্রণ তৈরি করা হয়। বিকল্প পদ্ধতিতে এ পর্যায়ে বিশেষ লক্ষ রাখতে হবে যেন গর্তের পানি শুকনো মিশ্রণ দিয়ে বিলা শোষণে কোনদিকে গড়িয়ে না যায়। গড়িয়ে গেলে পানির সাথে শুকনো মিশ্রণের সিমেন্টের অংশ ভেসে চলে যাবে। ফলে দুর্বল সিমেন্ট মশলা তৈরি হয়।

### প্রশ্নমালা-৮

#### সংক্ষিপ্ত প্রশ্ন :

১. মশলা (Mortar) বলতে কী বুঝায়?
২. মশলা বা মর্টার কত প্রকার ও কী কী?
৩. মর্টার মিশ্রণে বালি ব্যবহার হয় কেন?
৪. মর্টারের উপকরণাদির নাম লেখ।
৫. মর্টারের উপকরণাদির অনুপাত বর্ণনা কর।
৬. চুন মশলা (Lime Mortar) এ চুনের কাজ কী?
৭. মর্টারের কোথায় কোথায় ব্যবহার করা হয়?
৮. বালি-সিমেন্ট মর্টারে উপাদানগুলোর অনুপাত কিসের উপর নির্ভর করবে?
৯. মর্টার ব্যবহারের সময় সতর্কতা অবলম্বনের প্রয়োজনীয় আছে কী?
১০. মর্টার ব্যবহারে সতর্কতা অবলম্বন না করলে কী কী অসুবিধা হতে পারে?
১১. মর্টার দিয়ে ইটের কাজ করার পর কিউরিং কেন করা হয়?
১২. নির্মাণ কাজে ব্যবহৃত সিমেন্ট মশলায় সিমেন্ট ও বালির অনুপাত কোন কাজে কত?

#### রচনামূলক প্রশ্ন :

১. মর্টার বা মশলার বলতে কী বুঝায়? মর্টার কত প্রকার ও কী কী এবং এদের কার্যাবলি বর্ণনা কর?
২. উৎকৃষ্টমানের মশলার গুণাবলি কী কী? সিমেন্ট মর্টারের কাজ কী কী এবং প্রত্যেকটির কার্যাবলি সংক্ষেপে আলোচনা কর।
৩. মর্টারের উপাদানগুলোর অনুপাত এবং মিশ্রণ পদ্ধতি সম্বন্ধে বিস্তারিত আলোচনা কর।

## অধ্যায় : ৯

# কংক্রিট (Concrete)

কংক্রিট এক প্রকার কৃত্রিম পাথর বা অনুরূপ কঠিন পদার্থ বিশেষ। বিভিন্ন অনুপাতের কোর্স এগ্রিগেট (খেয়ায়া বা পাথরকুচি), ফাইল এগ্রিগেট (বালি বা সুরকি), বাইডিং ম্যাটেরিয়াল (সিমেন্ট বা নুচ) এবং পরিমাণগত পানি সহযোগে প্রস্তুত মিশ্রণ জমাট বেঁধে কংক্রিটে পরিণত হয়। মিশ্রণটি জমাট বাঁধার আগেই ঢালাই কাজ ব্যবহার করা হয়। কোর্স এগ্রিগেট ও ফাইল এগ্রিগেট উপাদান নিষ্ঠিয়, ইহাদের কোন রাসায়নিক বিক্রিয়া ঘটে না। পানির সংস্পর্শে আসলে জমাট বাঁধনকারী উপাদানের রাসায়নিক বিক্রিয়া ঘটে এবং জমাট বাঁধতে শুরু করে।

ফাইল এগ্রিগেট উপাদানগুলো কোর্স এগ্রিগেট উপাদানগুলোর মাঝের ফাঁকা জায়গাগুলো পূরণ করবে। অপরদিকে ফাইল এগ্রিগেট উপাদানের মধ্যে যে সূক্ষ্মতর ফাঁকা জায়গাগুলো আছে, তাহা পূরণ করবে বাঁধনকারী উপাদান পানির সংস্পর্শ আসার পর জমাটবাঁধনকারী উপাদান, সমস্ত উপাদানগুলোকে একত্রিত করে জমিয়ে শক্ত, নিষ্ঠিদ্র এবং নিরেট কৃত্রিম পাথরে পরিণত করে।

কোর্স এগ্রিগেট উপাদান হিসেবে পাথরের টুকরা বা গ্রাভেলই ব্যবহৃত হওয়া বাস্তুনীয়। অন্যথায় ১নং পিক্রড বামা ইট ভেঙ্গে খোয় তৈরি করে পাথরের টুকরার বিকল্প হিসেবে ব্যবহার করা উচিত।

ফাইল এগ্রিগেট হিসেবে পাথরের গুড়া বা বালি ব্যবহার করা হয়।

জমাট বাঁধনকারী উপাদান হিসেবে সিমেন্ট বা চুন ব্যবহার করা হয়। বর্তমানে জমাটবাঁধনকারী উপাদান হিসেবে কেবলমাত্র সিমেন্টই ব্যবহার করা হয়।

### ৯.১ কংক্রিটের অনুপাত :

কংক্রিটের উপাদানসমূহ, যথা:- সিমেন্ট, কোর্স এগ্রিগেট, ফাইল এগ্রিগেট ও পানির অনুপাতের তারতম্য করে প্রয়োজনমতো শক্তিশালী ও দীর্ঘস্থায়ী কংক্রিট তৈরি করা হয়। সিমেন্ট ফাইল এগ্রিগেট ও কোর্স এগ্রিগেটের অনুপাত এমন হতে হবে যে, কোর্স এগ্রিগেটের ভিতর ফাঁকা জায়গা থাকে তা ফাইল এগ্রিগেট দিয়ে পুরোপুরি ভরে যায় এবং ফাইল এগ্রিগেটের ভেতর যে সূক্ষ্মতর ফাঁকা জায়গা থাকে তা ফাইল এগ্রিগেট দিয়ে পুরোপুরি ভরে যায়।

কাঠামোর শক্তির প্রয়োজনীয়তার উপর নির্ভর করে কংক্রিটের উপাদানগুলো বিভিন্ন অনুপাতে মিশ্রণ করা হয়। বিভিন্ন কাজের সুপারিশকৃত কংক্রিটের উপাদানগুলো মিশ্রণের অনুপাত নিচে দেওয়া হলো :

কাজের নাম সিমেন্ট, বালি ও খোয়া/পাথরকুচি মিশ্রণের অনুপাত

|                                                         |               |
|---------------------------------------------------------|---------------|
| • ভিত্তির সিমেন্ট কংক্রিট .....                         | ১ : ৩ : ৬     |
| • কংক্রিট রুক .....                                     | ১ : ৪ : ৮     |
| • স্লাব, বিম, কলাম, লিটেল ইত্যাদি আর সিসি               |               |
| • কাজ, যেখানে সাধারণত ব্যবহার করা হয়                   | ১ : ২ : ৮     |
| • আর সি.সি কাজ, যেখানে সাধারণত পাথরকুচি ব্যবহার করা হয় | ১ : ১ : ৫ : ৩ |
| • বিশেষ শক্তিসম্পন্ন আর সি.সি কাজ                       | ১ : ১ : ২     |

## ৯.২ কংক্রিটের উপকরণাদি:

### কংক্রিটের উপাদানসমূহ (Ingredients of concrete) :

- (ক) কোর্স বা মোটা দানার এগিগেট (Coarse Aggregate), যথা- খোয়া বা পাথরকুচি ।
- (খ) ফাইন বা সূক্ষ্ম দানার এগিগেট (Fine Aggregate) যথা, বালি বা সুরকি ।
- (গ) জমাটবাঁধনকারী উপাদান (Binding Materials), যথা: সিমেন্ট বা চুন ।
- (ঘ) পানি (Water), যথা- বিশুদ্ধ পানীয় পানি ।
- (ঙ) অ্যাড-মিক্সারস (Admixtures), যথা-ক্যালসিয়াম ক্লোরাইড ।

### (ক) কোর্স বা মোটা দানার এগিগেট (Coarse Aggregate)

কংক্রিটের যে সকল পদার্থ পূরক (Filler) হিসেবে ব্যবহার করা হয়, তাদেরকে এগিগেট বলে । যে সকল পূরক পদার্থের ব্যাস (৪.৭৫ মিমি) থেকে বড়, তাদেরকে কোর্স এগিগেট বলে । বাংলাদেশে ৫ মিমি. থেকে ৫০ মিমি. আকারের ভাঙ্গা ইট, ভাঙ্গা পাথর, আভেল, ক্লিংকার ইত্যাদি কোর্স এগিগেট হিসেবে ব্যবহৃত হয় । আর.সি.সি কাজে ৫ মিমি. থেকে ২৫ মিমি আকারের কোর্স এগিগেট ব্যবহার করা হয় । এ প্রকারের দানা অবশ্যই পরিষ্কার, সকল রকম জৈব পদার্থমুক্ত, শক্ত ও যথাযথ আয়তনের হতো হবে । কংক্রিটের গোলাকার অপেক্ষা কোণাকৃতি দানা অধিক কার্যকরী ।

### (খ) ফাইন বা সূক্ষ্ম দানার এগিগেট (Fine Aggregate)

যে সকল পূরক পদার্থের ব্যাস (৪.৭৫ মিমি.) থেকে ছোট, তাদেরকে ফাইন এগিগেট বলে । সাধারণত: প্রাকৃতিক বালি, পাথরের গুড়া, সুরকি ইত্যাদি ফাইন এগিগেট হিসেবে ব্যবহৃত হয় । ফাইন এগিগেট তীক্ষ্ণ কোণাযুক্ত, শক্ত, টেকসই, পরিষ্কার ও আবর্জনা মুক্ত হওয়া উচিত । আর.সি.সি কাজে চিকন বালি অপেক্ষা মোটা বালি ব্যবহার করা উচিত । আদর্শ কংক্রিটের জন্য  $\frac{2}{3}$  অংশ মাধ্যম বালি (এফ.এম = ১.৫) এবং  $\frac{1}{3}$  অংশ মোটা বালি বা সিলেট বালি (এফ.এম = ২.৬) ব্যবহার করা উচিত ।  
এগিগেট সাধারণত কংক্রিটের আয়তন বাড়ায়, তবে কোনোকপ রাসায়নিক বিক্রিয়ায় অংশ নেয় না ।

### (গ) জমাটবাঁধনকারী উপাদান (Binding Materials)

কংক্রিট তৈরির কাজে জমাটবাঁধনকারী উপাদান নিষ্ঠিয় পদার্থগুলোকে জমাটবন্ধ করে শক্ত, নিশ্চিদ্র ও নিরেট কৃত্রিম পাথরে পরিণত করে । ইহা ফাইন এগিগেটের মাঝের সূক্ষ্মতর ফাঁকা জায়গাগুলো পূরণ করে ।  
পরে কোর্স এবং ফাইন এগিগেটের মাঝে উত্তম বাঁধন ঘটে । সিমেন্ট এবং চুন বাইডিং ম্যাট্রিয়াল হিসেবে ব্যবহৃত হয় । কংক্রিটের কাজে সাধারণ পোর্টল্যান্ড বেশি ব্যবহৃত হয় ।

### (ঘ) পানি (Water)

কংক্রিট কাজে পানির অবদান অপরিসীম । সময়মতো জমাটবাঁধা এবং কংক্রিটের শক্তি অর্জন পানির আয়তনের উপর নির্ভর করে । কংক্রিটে যে পানি ব্যবহৃত হয়, তা পরিষ্কার এবং মাত্রারিতরিক্ত অস্ফু, ক্ষার, তেল ও জৈব পদার্থমুক্ত হতে হবে । ইহা আয়রন জাতীয় পদার্থ, শেওলা এবং ক্ষতিকর পদার্থমুক্ত হতে হবে ।  
সাধারণভাবে পানীয় পানিকংক্রিটের ব্যবহার করা হয় । আর.সি.সি কাজে লবণাক্ত পানি ব্যবহার করা একেবারেই নিষিদ্ধ ।

### (ঙ) অ্যাড-মিক্সারস (Admixtures)

যে সকল পদার্থের ব্যবহার কংক্রিটের কর্মদক্ষতা বৃদ্ধি, অভেদ্যতা, তাড়াতাড়ি জমাটবন্ধ ও মুক্ত হওয়ার

সহায়ক, তাদেরকে এ্যাড-মিক্সার বলে। ঠাণ্ডা আবহাওয়ায় সিমেন্টের ওজনের ১.৫% ক্যালসিয়াম ক্লোরাইড ( $C_2Cl_2$ ) এ্যাড-মিক্সার হিসেবে ব্যবহৃত হয়।

### কংক্রিটের শ্রেণিবিভাগ (Classification of Concrete) :

কংক্রিটের মূলত : দুই প্রকার, যথা :

- (ক) প্লেন কংক্রিট বা সাধারণ কংক্রিট (Mass or plain concrete)
- (খ) রিঃইন-ফোর্সড সিমেন্ট কংক্রিট বা লোহা কংক্রিট (Reinforced cement concrete or R.C.C)

প্লেন কংক্রিটকে আবার দুইভাগে ভাগা করা হয়েছে যথা:

- (১) লাইম কংক্রিট (Lime Concrete)
- (২) সিমেন্ট কংক্রিট (Cement oncrete)

### (ক) প্লেন কংক্রিট (Mass or Plain Concrete) :

সিমেন্ট বা চুন, কোর্স এগিগেট, ফাইন এগিগেট এবং পরিমাণত পানির সংমিশ্রণে, যে কংক্রিট তৈরি হয় তাকে সাধারণ কংক্রিট বা প্লেন কংক্রিট বলে। এ জাতীয় কংক্রিটের চাপ সহন ক্ষমতা বেশি।

#### (১) লাইম কংক্রিট (Lime Concrete)

চুন, সুরকি বা বালি, খোয়া পমিগমতো পানি সংমিশ্রণে যে কংক্রিট তৈরি হয়, তাকে লাইম কংক্রিট বলে। খোয়া ব্যবহারের পূর্বে খুব ভালোভাবে ভিজিয়ে নিতে হবে। প্রথমে চুনের সাথে সুরকি বা বালি ভালোভাবে মিশিয়ে তার সাথে খোয়া মিশাতে হবে। তার এ শুকনো মিশ্রণে পরিমাণ মতো পানি মিশিয়ে কাজের উপযোগী একটি পেস্ট তৈরি করা হয়।

লাইম কংক্রিট সাধারণত ভিত্তি এবং জলছাদে ব্যবহার করা হয়। বঙ্গ ব্যবহৃত লাইম কংক্রিটে চুন, সুরকি বা বালি ও খোয়ার অনুপাত হচ্ছে ২৫২৫।

লাইম কংক্রিট = চুন + সুরকি বা বালি + খোয়া + পানি।

#### (২) সিমেন্ট কংক্রিট (Cement concretre) :

সিমেন্ট, বালি, খোয়া বা পাথরকুচি এবং পরিমাণ মতো পানি সংমিশ্রণে যে কংক্রিট তৈরি হয়, তাকে সিমেন্ট কংক্রিট বলে। বঙ্গ ব্যবহৃত সিমেন্ট কংক্রিটে সিমেন্ট, বালি ও খোয়ার অনুপাত হচ্ছে ১ : ৩ : ৬। শক্তিশালী সিমেন্ট কংক্রিট তৈরিতে ১ : ২ : ৪ অনুপাতও ব্যবহার হয়।

সিমেন্ট কংক্রিট = সিমেন্ট + বালি + খোয়া/পাথরকুচি + পানি।

### (খ) রিঃইন-ফোর্সড সিমেন্ট কংক্রিট (Reinforced Cement Concrete or R.C.C)

ছেদন বা শিয়ার ও টানা বল প্রতিহত করতে সিমেন্ট কংক্রিটে লোহার রড ব্যবহার করা হয়। এই কংক্রিটকে রিঃইন-ফোর্সড সিমেন্ট কংক্রিট বা সংক্ষেপে আর.সি.সি বলে। ইহাতে সিমেন্ট বালি ও খোয়ার অনুপাত ১:১, ৫:৩ বা ১:২:৪ এবং টান ও ছেদন (Tension and Shear) করতে প্রয়োজনীয় আকার ও পরিমাণের এম.এস.রড (M.S.Rod) যথাযথভাবে বিহিয়ে এই কংক্রিট ঢালাই করা হয়।

রিঃইন-ফোর্সড সিমেন্ট কংক্রিট = সিমেন্ট + বালি + খোয়া/পাথরকুচি + লোহার রড + পানি।

### সিমেন্ট কংক্রিটের সুবিধা ও অসুবিধাসমূহ :

- যে কোন আকারে ঢালাই করা যায় ।
- ইহা শক্ত, যজবুত এবং দীর্ঘস্থায়ী হয় ।
- সিমেন্ট কংক্রিটের চাপ সহন ক্ষমতা বেশি ।
- ইহা ঘর্ষণ প্রতিরোধ ক্ষমতা সম্পন্ন শক্ত তল প্রদান করে ।

### অসুবিধাসমূহ :

- টান বল বহন ক্ষমতা খুবই কম ।
- শিয়ার বা ছেদন প্রতিহত করতে তুলনামূলকভাবে খুবই দুর্বল ।
- লোহার রড ছাড়া সার্পোটের মধ্যবর্তী ফাঁকা জায়গায় এবং ঝুলন্ত কংক্রিট কাঠামো তৈরিতে ইহা ব্যবহার করা যায় না । কারণ, সাধারণ সিমেন্ট কংক্রিট টান ও কর্ণ বা ছেদন সহিতে পারে না ।

### কংক্রিটের ধর্ম (Properties of Concrete) :

কংক্রিটের মৌলিক প্রয়োজনীয় ধর্মগুলোর অন্যতম হলো :

- (ক) শক্তি (Strength)
- (খ) স্থিতিস্থাপকতা (Elasticity)
- (গ) অবস্থান্তা (Fatigue)
- (ঘ) দীর্ঘস্থায়ীত্ব (Durability)
- (ঙ) অভেদ্যতা (Impermeability)
- (চ) কর্মক্ষমতা (Workability)
- (ছ) অগ্নিরোধিতা (Fire Resistance)
- (জ) তাপরোধিতা (Thermal Insulation)
- (ঝ) শব্দ প্রতিরোধিতা (Sound Insulation)

### কংক্রিট উৎপাদন (Production of Concrete) :

কংক্রিট উৎপাদনে বিভিন্ন পদক্ষেপগুলো নিম্নরূপ :

- (ক) ব্যাটিং বা কংক্রিটের উপাদানসমূহের পরিমাণ নির্ণয় (Batching of Concrete)
- (খ) কংক্রিট মিশ্রণ (Mixing of Concrete)
- (গ) কংক্রিট স্থানাঞ্চল (Transportation of Concrete)
- (ঘ) কংক্রিট স্থাপন (Placing of Concrete)
- (ঙ) দৃঢ়ীভবন (Compaction of Concrete)
- (চ) ফিনিশিং (Finishing of Concrete)
- (ছ) কিউরিং (Curing of Concrete)

### (ক) ব্যাটিং বা কংক্রিটের উপাদানসমূহের পরিমাণ নিম্নরূপ :

কংক্রিট উৎপাদনের সময় উপকরণসমূহের আনুপাতিক পরিমাপকে ব্যাটিং বলে । ইহা উপাদানগুলো আয়তনে বা ওজনে উভয়ভাবেই করা যায় । কাজের সুবিধা বিধায় আমাদের দেশের আয়তনে ব্যাটিং

করা হয়। এ পদ্ধতিতে এক বন্দা সিমেন্টের আয়তনকে আদর্শ ধরে  $12'' \times 12'' \times 15''$  (৩০ সেমি.  $\times$  ৩০ সেমি.  $\times$  ৩৮ সেমি.) মাপের বাল্ব তৈরি করা হয়, যাকে “ফেরা” বলে। ইহাতে ১.২৫ ঘনফুট বা ০.৩৫ ঘন মিটার আয়তনের মাল ধরে।

#### (খ) কংক্রিট মিশ্রণ :

কংক্রিট উপাদান সমূহের উপরিতল সিমেন্ট পেস্ট দিয়ে ঢেকে সকল মালামালের সূষ্ম ও নিবিড় সম্পর্ক স্থাপন করাই কংক্রিট মিশ্রণের কাজ। মিশ্রণ হতে হবে একই ঘনত্ব, রং ও সমষ্টি বিশিষ্ট পিণ্ড। ২টি পদ্ধতিতে কংক্রিট মিশ্রণ করা হয় :

#### (১) হাত মিশ্রণ পদ্ধতি :

কাজের পরিমাণ কম হলে হাত মিশ্রণ পদ্ধতি ব্যবহার করা হয়। এ পদ্ধতিতে পুরোপুরি মিশ্রণ সম্ভব হয় না এবং ইহা সময়সাপেক্ষ। তুলনামূলক ভালো মিশ্রণ পেতে হলে প্রয়োজনের চেয়ে ১০% বেশি সিমেন্ট ব্যবহার করা উচিত। এ পদ্ধতিতে মিশ্রণের ধাপগুলো নিম্নরূপ :

##### ১ম ধাপ :

প্রয়োজন অনুসারে সিমেন্ট কংক্রিট অথবা ইট সিমেন্ট মশলা দিয়ে পানিরোধক প্লাটফর্ম তৈরি করতে হবে। প্রয়োজনীয় মালামালের হিসেব করে এক ব্যাচে কতটুকু মিশ্রণ কা সম্ভব সোনিকে খেয়াল রাখতে হবে।

##### ২য় ধাপ

নির্দিষ্ট অনুপাতে প্রয়োজনীয় পরিমাণ, বালি ফেরা দিয়ে মেপে প্লাটফর্মে সমপূর্ণভূতে সাজিয়ে উপরিতল সমান করে নিতে হবে। তাপের চিত্র অনুযায়ী প্রয়োজনীয় সিমেন্ট এই বালির উপর সমগ্রভূতে ছড়িয়ে দিতে হবে।



ফেরার সাহায্যে বালি-সিমেন্ট মেপে ফেলানোর পদ্ধতি

#### ৩য় ধাপ

এবার ২য় ধাপে সাজানা বালি ও সিমেন্টের স্তর কোদালের সহায়তায় এক কিনারা থেকে অপর কিনারা পর্যন্ত কয়েকাবার উল্টিয়ে পাল্টিয়ে এমনভাবে মেশাতে হবে যেন একই রং ও ঘনত্ব বিশিষ্ট একটি সমষ্টি মিশ্রণে পরিণত হয়। মিশ্রণটি প্লাটফর্মের এক জায়গায় স্তপ করে রাখতে হবে।



#### ৪র্থ ধাপ

প্রয়োজনীয় পরিমাপে খোয়া/পাথরকুচি প্লাটফর্মের খালি জায়গায় সাজিয়ে উপরিতল লেভেল করে নিতে হবে। তয় ধাপে মিশানো বালি সিমেন্ট এবার সমপূর্ণভূতে সাজানো খোয়া/পাথরকুচি উপর ছড়িয়ে দিতে হবে। দুইটি স্তরের উচ্চতা ৩০ সেমি এর বেশি না হওয়াই ভালো। এবার কোদালের সাহায্যে একপ্রান্ত থেকে অপর প্রান্ত পর্যন্ত মালামাল কয়েকবার মেশাতে হবে। মিশ্রণটি যখন একটি রং ও ঘনত্ব বিশিষ্ট সমষ্টি মিশ্রণে পরিণত হবে, তখন আর মেশানোর প্রয়োজন নেই। মিশ্রণটি এখন একই পুরুত্বে (সাধারণত : ৩০ সেমি.) মোটামুটি গোলাকার করে লেভেল করতে হবে।



#### ৫ম ধাপ

এবার ৪র্থ ধাপে তৈরি মিশ্রণের মাঝে আনুমানিকভাবে একটি গর্ত করে পানি-সিমেন্ট অনুপাত অনুসারে প্রয়োজনীয় পানি ঢেলে দিতে হবে। কোদালের সাহায্যে সাবধানে যত তাড়াতাড়ি সন্তুষ্ট বাইরের দিক থেকে শুকনো মিশ্রণ গর্তের পানিতে ফেলে গর্ত ঢেকে দিয়ে পানি মিশ্রিত মিশ্রণ শুলট পালট করে মেশাতে হবে। মিশ্রণটিকে একটি সম ঘনত্ব রং ও পানি বিশিষ্ট সমষ্টি মিশ্রণ তৈরি করতে হবে। মিশানো শেষ হলে তৈরি কর্তৃত ৪৫ মিনিটের মধ্যেই বহন, স্থাপন, দৃঢ়ীভবন ও ফিনিশিং অর্থাৎ চূড়ান্ত আকার প্রদান শেষ করতে হবে।



## (২) মেশিন মিশ্রণ পদ্ধতি :

মেশিন মিশ্রণ পদ্ধতিতে মিক্সার মেশিন দিয়ে মিশ্রণ করা হয়। কাজের পরিমাণ বেশি হলে দ্রুততা ও অর্থনৈতিক দিক দিয়েও মেশিন মিশ্রণ লাভজনক। এ পদ্ধতিতে নিম্নলিখিত নিয়মে সঠিক মিশ্রণ পাওয়া যায় :-

- সর্বপ্রথমে মিক্সার মেশিনের ধরন, ধারণ ক্ষমতা, ঘূর্ণন গতি জেনে নিতে হবে। প্রতি ব্যাচের জন্য সিমেন্ট ও পানি পরিমাণ হিসাব করে নিতে হবে।
- এক ব্যাচের জন্য প্রয়োজনীয় সর্বমোট পানির ২৫% পানি মিক্সার ড্রামে ঢেলে ড্রাম ঘোরাতে হবে। পানি দিয়ে ভিজিয়ে নিয়ে মালামাল রেড বা ড্রামের গায়ে লেগে থাকবে না।
- মিশ্রণ অনুপাতে এক ব্যাচে যতটুকু মালামাল প্রয়োজন, তার অর্ধেক পরিমাণ খোয়া বা পাথরকুচি ড্রামে দিয়ে সাথে সাথে অর্ধেক পরিমাণ বালি দিয়ে ঘোরাতে হবে।
- কয়েকবার ঘোরানোর পর প্রয়োজনীয় যতটুকু সিমেন্ট দিয়ে সাথে সাথে বাকী মালামাল যথা-খোয়া/পাথরকুচি ও বালি ড্রামে দিতে হবে, এতে সিমেন্ট বাতাসে উড়াবে না। এরপরেই বাকী ৭৫% পানি ড্রামে ঢেলে দিতে হবে। সব কাজই ড্রাম ঘোরানো অবস্থায় করতে হবে।
- ভালোভাবে মেশানোর জন্য ড্রামটি ২৫-৩০ বার ঘোরাতে হবে। সচরাচর মিক্সার মেশিনগুলোর অনুমোদিত স্পিড অনুযায়ী প্রায় দুই মিনিট ঘোরাতে হয়। খেয়াল রাখতে হবে যে ২৫-৩০ বার ড্রাম ঘোরানো হিসেবে করতে হবে ৭৫% পানি ঢালার পর থেকে।
- ঘোরানো শেষে মিশানো মালামাল শক্ত, পানিরোধক ও পরিষ্কার জায়গায় ঢালতে হবে।
- প্রয়োজনীয় Slump test করে পরবর্তী ব্যাচের পানি বাড়াতে, কমাতে বা ঠিক রাখতে হবে। মিশ্রণ শেষে কোন অবস্থাতেই নতুন করে পানি মেশানো ঠিক নয়।
- এবার মিশ্রণ যত তাড়াতাড়ি সম্ভব ঢালাই কাজে ব্যবহার করতে হবে।

## (গ) কংক্রিট স্থানান্তর :

কংক্রিট স্থানান্তর বলতে মিশ্রণের স্থান থেকে কংক্রিটকে নির্মাণের কাঠামো যথাযথ স্থানে বহন করাকে বুঝায়। কাজের শুরুত্ব ও অবস্থাভেদে বিভিন্ন পদ্ধতিতে কংক্রিট স্থানান্তর করা হয়। সাধারণ কাজে শ্রমিক দিয়ে কড়াই বা বালতির মাধ্যমে কংক্রিট স্থানান্তর করা হয়। আবার বড় কাজে দু-চাকাওয়ালা বগি বা ট্রলি ব্যবহৃত হয়। কংক্রিট স্থানান্তরে নিম্নলিখিত বিষয়গুলো বিশেষভাবে খেয়াল রাখতে হয় :-

- স্থানান্তর কাজে ব্যবহৃত কড়াই বা বালতি অবশ্যই পারিরোধক হতে হবে।
- মিশ্রণ প্রক্রিয়া শেষ হওয়ার সাথে সাথে কংক্রিট স্থানান্তর করতে হবে।
- লোকবল এমনভাবে নিয়োগ করতে হবে যাতে নতুন ব্যাচের মিশ্রণ মিক্সার ড্রাম থেকে ঢালার আগেই পূর্বের মিশ্রণ স্থানান্তর করা যায়।

## (ঘ) কংক্রিট স্থাপন :

ইহা একটি অতি গুরুত্বপূর্ণ বিষয়। সঠিক স্থাপনের মাধ্যমেই সর্বোত্তম কংক্রিট উৎপাদন সম্ভব। ফর্মওয়ার্কের মধ্যে সঠিক স্থাপনের মাধ্যমেই অবকাঠামোর প্রকৃত আকার ও আকৃতি পাওয়া সম্ভব। কংক্রিট স্থাপনকালে নিম্নলিখিত বিষয়গুলো বিশেষভাবে লক্ষ রাখা দরকার : -

- ভিত্তি, মেঝে ও ছাদে কংক্রিট স্থাপনের পূর্বে মাটি বা ফর্মওয়ার্কের উপর পলিথিন বিছিয়ে নিতে হবে, যাতে মাটি কংক্রিটের পানি শোষণ করতে না পারে এবং ফর্মওয়ার্ক থেকে পানি চোয়াতে না পারে ।
- বড় ধরনের কাজে কয়েক স্তরে কংক্রিট স্থাপন করতে হবে । সাধারণ লোহা কংক্রিটে ১৫-৩০ সেমি স্তরে এবং বড় কাজে ৩০-৪৫ সেমি স্তরে কংক্রিট স্থাপন করতে হবে ।
- কংক্রিট স্থানান্তর, স্থাপন, দূরীভবন ও ফিনিশিংসহ সকল কাজ অবশ্যই সিমেন্টের প্রাথমিক জমাট বাঁধার সময়কাল অর্থাৎ প্রায় ৪৫ মিনিটের মধ্যে শেষ করতে হবে ।
- কোন ভাবেই ১ মিটার এর বেশি উপর থেকে কংক্রিট ফেলানো উচিত নয় । অন্যথায় ভারি ও হালকা উপাদানগুলো আলাদা হয়ে গিয়ে দুর্বল কংক্রিট উৎপাদন হবে ।
- যথাসম্ভব পাতলা স্তরে কংক্রিট স্থাপন করতে হবে ।
- কংক্রিট স্থাপনের আগে ফর্মওয়ার্ক ও লোহার কাজ ভালোভাবে পরীক্ষা করে নিতে হবে ।
- কংক্রিট স্থাপনে সুবিধার জন্য রাজমিঞ্চিরা প্রায়ই প্রয়োজনের তুলনায় বেশি পানি মিশায় এটা যেন কোন অবস্থাতেই না করে ।
- কংক্রিট স্থাপন ও দূরীভবন একই সাথে করতে হবে ।



কংক্রিট স্থাপন এভাবে নয়

কংক্রিট স্থাপন এভাবে

#### (ঙ) দৃঢ়ীভবন:

কংক্রিট স্থাপনের সাথে সাথে দৃঢ়ীভবন করতে হয় । এর মাধ্যমে কংক্রিটের ভিতরের বায়ু অপসারিত করা হয় । শক্তিশালী কংক্রিট তৈরি করতে ১০০% দৃঢ়ীভবন করা অতি জরুরী । প্রাথমিক জমাট বাঁধার আগেই দৃঢ়ীভবন শেষ করতে হবে । দৃঢ়ীভবনের ফলে শক্ত, অপ্রবেশ্য ও স্থায়ী কংক্রিট তৈরি হয় । তবে ইহা সঠিকভাবে ও সঠিক সময়ে করতে হবে ।

- (১) হাতে দৃঢ়ীভবন
- (২) মেশিনে দৃঢ়ীভবন

#### (১) হাতে দৃঢ়ীভবন

অল্প পরিমাণের কম পুরুষ্ট্রের কাজে হাতে দৃঢ়ীভবন করা হয় । এ পদ্ধতিতে কংক্রিটের স্তর ১৫-২০ সেমি এর বেশি হওয়া উচিত নয় । অনেক সময় খুব ঘন লোহা ব্যবহৃত কংক্রিটে, যেখানে কোনভাবেই ভাইরেট ব্যবহার করা সম্ভব নয়, সেখানে হাতে দৃঢ়ীভবন পদ্ধতি ব্যবহৃত হয় । হাত দিয়ে সাধারণত তিন ভাবে দৃঢ়ীভবন করা হয়, যথা: রডিং (Roding), র্যামিং (Raming) এবং ট্যাপ্সিং (Temping) ।

রডিং পদ্ধতিতে ১৬ মিমি. ব্যাসের ২ মিটার লম্বা রাড দিয়ে কংক্রিট খুঁটিয়ে খুঁটিয়ে বায়ুমুক্তের মাধ্যমে দৃঢ়ীভবন করা হয় । বিগত কলাম ও দেয়ালের খাড়া অংশে এ পদ্ধতি ব্যবহৃত হয় । রডের পরিবর্তে শক্ত বাঁশও ব্যবহার করা হয় ।

র্যামিং পদ্ধতিতে সাধারণত কংক্রিট, লোহা বা কাঠ দিয়ে তৈরি দুরমুশ ব্যবহার করা হয়। সরাসরি মাটি উপর ঢালাই করা সিমেন্ট কংক্রিট কাজে এ পদ্ধতি ব্যবহৃত হয়।

ট্যাঙ্কিং পদ্ধতিতে সাধারণত মেঝে, রাস্তার পেভেমেন্ট এবং কম গুরুত্বের কাজে ব্যবহার করা হয় এ পদ্ধতিতে পাট্টা অর্থাৎ ১০ সেমি. সেকশনের ২.২৫ মিটারে লম্বা কাটের বিম দিয়ে কংক্রিট পিটিয়ে পিটিয়ে দৃঢ়ীভবন করা হয়। পাট্টার দুই প্রান্তে দুইটি হাতল লাগানো থাকে এবং দুইজন শ্রমিক তা ধরে ব্যবহার করতে পারে। এ পদ্ধতিতে কংক্রিটের উপরিতল সমান ও মসৃণ করতে সুবিধাজনক।



বিম, কলাম বা কোন খাড়া অংশ দৃঢ়ীভবনের পদ্ধতি

### (২) মেশিনে দৃঢ়ীভবন

ভাইন্টের মেশিন দিয়ে এ পদ্ধতিতে দৃঢ়ীভবন করা হয়। শক্তিশালী কংক্রিট এবং বড় ধরনের কাজে মেশিনে দৃঢ়ীভবন করে খরচ ও সময় উভয়ই বাঁচানো যায়। মোটরের সাহায্যে ভাইন্টের চালিয়ে নিউল (Needle) টি খাড়াভাবে বা বাঁকাভাবে কংক্রিটের মধ্যে ঢুকিয়ে রাখতে হয়। ভাইন্টের এক জায়গায় বেশি সময় না ধরে রেখে ৫-১০ সেকেন্ডে পর পর জায়গা বদল করে ভালো ফল পাওয়া যায়। কংক্রিটের কার্যপোগিতায় উপর নির্ভর করে ৩০-৯০ সেমি. দূরে দূরে ভাইন্টের ব্যবহার করতে হয়।



### (৩) ফিনিশিং :

দৃঢ়ীভবন শেষে কংক্রিটের প্রয়োজনীয় উচ্চতায় লেভেলিং করে নিতে হয়। প্রয়োজনে কোথাও নতুন কংক্রিট দিতে হবে, আবার কোথাও কমিয়ে ফেলতে হবে। দৃঢ়ীভবন ও ফিনিশিং কাজ একই সাথে করা উচিত।

### (ছ) কিউরিং :

চালাই কাজে শেষে যে পদ্ধতিতে কংক্রিটকে একটা নির্দিষ্ট সময় পর্যন্ত প্রয়োজনীয় শক্তি অর্জনের জন্য বিশেষ ভাবে পরিচর্যা করা হয়, তাকেই কিউরিং বলে। চলতি বা স্থায়ীভাবে কিউরিং বলতে কংক্রিটকে পানি খাওয়ানো বুঝায়।

কংক্রিটের আকার, আয়তন, উপাদান, আবহাওয়া এবং শক্তি অর্জনের প্রয়োজনীয়তার উপর নির্ভর করে বিভিন্নভাবে কিউরিং করা হয়। যথা: পানি দিয়ে, তাপ প্রদান করে ইত্যাদি। তবে সবচেয়ে সহজ ও প্রচলিত নিয়ম হলো পানি দিয়ে। তাই, আমাদের দেশে কিউরিং বলতে পানি খাওয়ানোকে বুঝায়।

**পানি দিয়ে কিউরিং করার বিভিন্ন পদ্ধতি নিচে দেওয়া হলো:**

**পুকুরের মতো পানি ধরে রেখে :**

- ঘরের মেঝে, ছাদ এবং রোড পেভেমেন্টে সাধারণত মাটি ও মার্টার এর বাঁধ পুকুরের মতো পানি ধরে রেখে এ পদ্ধতিতে কিউরিং করা হয়।
- পানিতে ডুবিয়ে :
 

এ পদ্ধতিতে অবকাঠামো বা অংশ বিশেষ সম্পূর্ণ পানিতে ডুবিয়ে রাখা হয়। প্রি কাস্ট কংক্রিট বিম, স্লাব ইত্যাদি এবং পরীক্ষার জন্য কংক্রিট সিলিন্ডার, কিউব, ব্রক ইত্যাদি পানিতে ডুবিয়ে রেখে কিউরিং করা হয়।
- ভেজা দ্রব্যাদি দিয়ে ঢেকে রেখে:
 

এ পদ্ধতিতে খাড়া ও গুরুত্বপূর্ণ অবকাঠামো ভেজা দ্রব্যাদি যেমন, ছালার ব্যাগ, চট দিয়ে ঢেকে রাখা হয় এবং মাঝে মাঝে পানি ছিটিয়ে ব্যাগ চট পুনরায় ভেজানো হয়। ফেলাম, বিম, সানসেড ইত্যাদি কিউরিং করতে এ পদ্ধতি ব্যবহার করা হয়।
- প্রতিনিয়ত ভিজিয়ে :
 

এ পদ্ধতিতে মগ দিয়ে ছিটিয়ে বা পাম্প দিয়ে অবকাঠামোর গা ভিজিয়ে দেওয়া হয়। সাধারণত খাড়া দেয়াল বা বড় কোন কাঠামো যেখানে পানি বেধে রেখে বা ছালা/চট দিয়ে ছড়ানো সম্ভব নয়, সেসব ক্ষেত্রে এ পদ্ধতি অবলম্বন করা হয়। যেমন— বড় দেয়াল, প্লাস্টারের কাজ ইত্যাদি।

**কিউরিং করার লক্ষ্যণীয় বিষয়সূমহ :**

- অবকাঠামো যেসব সময় ভেজা থাকে।
- কিউরিং কাজে ভালো পানি ব্যবহার করা।
- প্রয়োজনীয় নির্দিষ্ট সময় কমপক্ষে ৭ দিন এবং উর্ধ্বে ২৮ দিন পর্যন্ত কিউরিং প্রক্রিয়া চালানো।

চূড়ান্ত জমাট বাধার পর কিউরিং কাজ শুরু করা ভালো তাই সবচেয়ে সুবিধাজনক অবস্থান হলো কংক্রিটের তৈরির ২৪ ঘণ্টা পর কিউরিং কাজ শুরু করা।

**কংক্রিটের মান প্রভাবিত করার নিয়ামকসমূহ (Factors Affecting the Properties Concrete) :**

কংক্রিটের শক্তি, স্থায়ী, অভেদ্যতা এবং কর্মক্ষমতা নিম্নের নিয়ামকগুলোর উপর নির্ভর করে।

**(ক) খোয়াল বিন্যাস (Grading of Aggregates)**

(খ) খোয়াল জালীয় অংশ (Moisture content of Aggregates)  
 (গ) পানি-সিমেন্ট অনুপাত (Water cement Ratio)  
 (ঘ) কংক্রিটের বিবিধ উপাদানের মিশ্রণের অনুপাত (Proportioning for the various ingredients of concrete)  
 (ঙ) কংক্রিটের মিশ্রণ পদ্ধতি (Methods of Mixing)  
 (চ) কংক্রিট স্থাপন এবং দুঃঢ়ীভবন (Curing of concrete)  
 (ছ) কংক্রিটের কিউরিং (Other factors)  
 (জ) অন্যান্য নিয়ামক

**(ক) খোয়াল বিন্যাস :**

খোয়াল একটি নুমনায় বিভিন্ন আকৃতির খোয়া একটি নির্দিষ্ট ক্রমতারে সন্নিবেশিত করা হয়, যাকে বিন্যাস খোয়া বলে। বিভিন্ন আকৃতির খোয়া এই অনুপাত চালিন বিশ্লেষণের মাধ্যমে নির্ণয় করা হয়। বিভিন্ন চালনির ভিত্তি দিয়ে অতিক্রান্ত নমুনা শতকরা হারে প্রকাশ করা হয়। বিন্যাসকরণের মূলনীতি হলো বড় বড় কণার ফাকা স্থানগুলো ছোট ছোট কণা দিয়ে পূরণ করা।

**(খ) খোয়াল জলীয় অংশ :**

খোয়াল শুষ্ক আয়তনের ভিত্তিতে কংক্রিটের মিশ্রণ করা হয়। শুষ্ক খোয়া যে অনুপাতে ব্যবহার করা হয় তাকে প্রকৃত মিশ্রণ বলে। কিন্তু ব্যবহারিক ক্ষেত্রে খোয়াগুলো সচরাচর সিঙ্ক থাকে। বিশেষ করে যখন খোয়াগুলো ধূয়ে আয়তন পরিমাপে প্রয়োজনীয় ভর্তুকী দেওয়া হয়। সংশেধিত অনুপাতকে ব্যবহারিক মিশ্রণ অনুপাত বলে। জলীয় অংশের উপস্থিতিতে মোটা দানার খোয়ার চেয়ে আয়তনিক স্ফীতি বেশি ঘটে।

**৯.৩ পানি-সিমেন্টের অনুপাত :**

কংক্রিট মিশাতে পানি ও সিমেন্ট প্রয়োজন হয়। কংক্রিটে, পান সিমেন্টের অনুপাতকে “পানি সিমেন্ট” অনুপাত বলে। পানি প্রাথমিক ভাবে কংক্রিটে তিনটি কাজ করে। যেমন:

- খোয়ার সারফেসকে ভিজাতে সাহায্য করে।
- কর্মক্ষমতা বৃদ্ধি করে, সিমেন্ট জমাট বাঁধতে সাহায্য করে।

কংক্রিটের শক্তি এবং কার্যোপযোগিতা পানির পরিমাণের উপর পুরোপুরি নির্ভরশীল নির্দিষ্ট পরিমাণ পানির চেয়ে কম বা বেশি পানি ব্যবহার করলে কংক্রিট শক্তি কমে যায় এবং স্থাপনের সময় খোয়াগুলো সিমেন্ট থেকে আলাদা হয়ে যেতে পারে।

পানি-সিমেন্ট অনুপাত সাধারণত দশমিক ভগ্নাংশে প্রকাশ করা হয়ে থাকে। কিন্তু ব্যবহারিক ক্ষেত্রে প্রতি ব্যাগ সিমেন্টে কি পরিমাণ পানি ব্যবহার করা হয় বা দরকার তা দিয়ে বুঝানো হয়। বাংলাদেশে হাতে মিশানো কংক্রিট ও যন্ত্রে মিশানো কংক্রিটের সব চাইতে উপযোগী পানি সিমেন্টের অনুপাত যথাক্রমে ০.৫৫ এবং ০.৪০।

$$\text{সূতরাং, পানি-সিমেন্ট অনুপাত} = \frac{\text{পানির ওজন}}{\text{সিমেন্টের ওজন}}$$

$$\text{এক বন্তা সিমেন্ট পানির পরিমাণ নির্গম} = \frac{\text{পানির ওজন}}{৫০ \text{ কেজি}} = ০.৪ \text{ (পানি-সিমেন্ট অনুপাত } 0.৪ \text{ ধরে)}$$

$$\text{পানির ওজন} = (৫ \times ০.৪) \text{ কেজি} = ২০ \text{ কেজি}।$$

আবার, পানি সিমেন্ট অনুপাত  $0.৫৫$  হলে, এক বন্তা সিমেন্টে পানির পরিমাণ হবে  $(৫০ \times ০.৫৫)$  কেজি বা  $২৭.৫$  কেজি। পানি-সিমেন্ট অনুপাত কংক্রিটের কম্প্যাকশন পদ্ধতির উপরেও নির্ভরশীল। ভাইট্রেট দিয়ে কম্প্যাকশন করা হলে পানি-সিমেন্টের অনুপাত কম হয়।

### ৯.৪ কংক্রিট মিশ্রণ পদ্ধতি :

সর্বত্র সমগুণসম্পন্ন হওয়ার জন্য কংক্রিটের বিভিন্ন উপাদানগুলোর সূব্রহ মিশ্রণ হওয়া একান্ত বাঞ্ছনীয়। কংক্রিট মিশ্রণের উদ্দেশ্যে হলো এগ্রিগেট সারফেসে সিমেন্টের প্রলেপ তৈরি করা এবং এগ্রিগেটের সমন্ত কণাগুলো ওলটপালট করে একটি সমস্তু মিশ্রণ তৈরি করে থন কংক্রিট তৈরি করতে সহায়তা করা। তাই হাতে মিশ্রণ বা মেশিনে মিশ্রণ যে পদ্ধতিই ব্যবহার করা হোক, সব সময় লক্ষ রাখতে হবে যেন মিশ্রণ একই ঘনত্ব, রং ও সমস্তু বিশিষ্ট পিণ্ড তৈরি করে।

#### কংক্রিট স্থাপন এবং দৃঢ়ীকরণ:

কংক্রিট স্থাপনের পূর্বে ফর্মওয়ার্ক শক্ত এবং ঠিক অবস্থানে আছে কীনা তা পরীক্ষা করে দেখতে হবে। কংক্রিট মিশ্রণের স্থান যত তাড়াতাড়ি সম্ভব কংক্রিট বহন করে স্থাপনায় নিয়ে যেতে হবে। কংক্রিট স্থাপনের জন্য শ্রমিকগণ সারিবদ্ধভাবে দাঁড়িয়ে যত দ্রুত সম্ভব স্থাপন কাজ সম্পন্ন করবে। কংক্রিট উচু থেকে ফেলে দিলে সেগ্রিগেশন ঘটে। তাই অনুভূমিক স্তরে স্তরে কংক্রিট স্থাপন করতে হবে। শক্ত হওয়ার পূর্বেই কংক্রিট স্থাপনকার্য সমাপ্ত করতে হবে। কংক্রিট স্থাপনের সাথে সাথেই দৃঢ়ীকরণের কাজ আরম্ভ করতে হয়। এতে কংক্রিটটে ফাঁকে ফাঁকে আবক্ষ বাতাস বের করে দিতে হয়। লোহার রডের সাহায্যে সংস্থাপিত কংক্রিট গুতিয়ে দৃঢ়ীকরণ করতে হবে। স্নাবে এবং ফ্লোরে দৃঢ়ীকরণের জন্য পাটা ব্যবহার করে পিটিয়ে দৃঢ়ীকরণ করতে হবে। বর্তমানে ভাইট্রেটের সাহায্যে কংক্রিটের দৃঢ়ীকরণের কাজ সম্পন্ন করা হয়, যা কম খরচে ও কম সময়ে শক্তিশালী কংক্রিট উৎপাদনে সহায়ক।

#### কংক্রিটের কিউরিং :

কংক্রিটের কিউরিং অর্থাৎ কংক্রিটকে পানি খাওয়ানো একটা অত্যন্ত গুরুত্বপূর্ণ পর্যায়। তাই সঠিকভাবে নিয়ম মেনে সঠিক সময় পর্যন্ত অবশ্যই পানি খাওয়ানো প্রক্রিয়া চালিয়ে যেতে হবে। কংক্রিটের শক্তি ও দীর্ঘস্থায়িত্ব কিউরিং এর উপর সম্পূর্ণ নির্ভরশীল। কিউরিং কতদিন চলবে তা নির্ভর করে, তাপমাত্রা, আর্দ্রতা এবং বাতাসের বেগের উপর। উভয় কিউরিং কংক্রিটের আভেদ্যতা, প্রতিরোধী ক্ষমতা এবং স্থায়ীত্ব বৃদ্ধি করে এবং সংকোচন প্রবণতা হ্রাস করে। সাধারণত ৩ থেকে ২৮ দিন পর্যন্ত কিউরিং করা হয়।

#### অন্যান্য নিয়মক :

উপরে আলোচিত বিষয়গুলো ছাড়াও সঠিক ফর্মওয়ার্ক এবং তা সরানোর সময় সীমার উপর কংক্রিটের শক্তি ও স্থায়ীত্ব নির্ভর করে। ফর্মওয়ার্ক নির্দিষ্ট সময় সীমার পর সরানো উচিত।

কংক্রিটের ক্লিয়ার বিষয়গুলো ছাড়াও সঠিক ফর্মওয়ার্ক এবং তা সরানোর সময়সীমার উপর কংক্রিটের শক্তি ও স্থায়ীত্ব নির্ভর করে। ফর্মওয়ার্ক নির্দিষ্ট সময়সীমার পর সরানো উচিত।

কংক্রিটের ক্লিয়ার কভার সঠিকভাবে রাখতে সঠিক আকারের মর্টার ব্লক ব্যবহার করতে হয়। মর্টার ব্লক এর সিমেন্ট-বালির অনুপাত ১ : ২ হতে হবে। এ ব্লক ব্যবহার না করলে রড সঠিক স্থানে থাকে না এবং ফলে কম সময়ের মধ্যে বাতাসের সংস্পর্শে এসে রডে মরিচা ধরে ও কংক্রিটে ফাটল ধরে ভার বহন ক্ষমতা অনেক কমে যায়।

### প্রশ্নমালা-৯

#### সংক্ষিপ্ত প্রশ্ন :

১. কংক্রিট বলতে কী বুঝা?
২. সিমেন্ট কংক্রিটের উপাদানসমূহের নাম লেখ?
৩. সিমেন্ট কংক্রিটের উপাদানসমূহের আনুপাতি করণের উদ্দেশ্য কী কী?
৪. কংক্রিট কত প্রকার ও কী কী?
৫. পেকার্স বা মোটা দানার এগিগেট কাকে বলে?
৬. ফাইন বা সূক্ষ্ম দানার এগিগেট কাকে বলে?
৭. কংক্রিটে পানির অবদান কী?
৮. কংক্রিটে দীর্ঘ স্থায়ীভুক্ত নিয়ন্ত্রণকারী বিষয়সমূহের নাম লেখ?
৯. কংক্রিটের দীর্ঘস্থায়ীভুক্ত বিনষ্টকারী বিষয়সমূহের নাম লেখ?
১০. কিউরিং বলতে কী বুঝা?
১১. এ্যড মিক্সার কী? ইহা কংক্রিটে কেন ব্যবহৃত হয়?
১২. আর সি সি (R.C.C) বলতে কী বুঝায়?
১৩. কংক্রিটে ব্যবহৃত পানির বৈশিষ্ট্যগুলো লেখ?
১৪. পানি সিমেন্ট অনুপাত বলতে কী বুঝায়?
১৫. কংক্রিট উপাদান বা প্রস্তুতির ধাপসমূহ কী কী?
১৬. কংক্রিট উপাদান ব্যাচিং বলতে কী বুঝায়? আমাদের দেশে ব্যাচিং কী দিয়ে তৈরি করা হয়।
১৭. কী কী পদ্ধতিতে কংক্রিট মিশ্রণ করা হয়?
১৮. হাতে দৃঢ়ীভবন কর্যভাবে করা হয় এবং কী কী? এদের কোনটি কোন ক্ষেত্রে ব্যবহার করা হয়?

### **রচনামূলক প্রশ্ন :**

১. কংক্রিট বলতে কী বুঝায়? উহার উপাদানগুলোর নাম লেখ এবং প্রত্যেকটির কার্যাবলি সংক্ষেপে আলোচনা কর।
২. কংক্রিট কত প্রকার ও কী কী? প্রত্যেক প্রকারের সংজ্ঞা দাও। সিমেন্ট কংক্রিট ও আর সি সি এর মাঝে প্রার্থক্য কী?
৩. সিমেন্ট কংক্রিট এবং রিঃইনফোসড সিমেন্ট কংক্রিটের সুবিধা ও অসুবিধাগুলো লেখ।
৪. কংক্রিট উৎপাদনের বিভিন্ন ধাপসমূহ কী কী? কংক্রিটের উপাদানগুলো মিশ্রণের অনুমোদিত অনুপাত কোন কাজে কত?
৫. কী কী পদ্ধতিতে কংক্রিট উপাদান মিশ্রণ করা হয়, তাদের সংক্ষিপ্ত আলোচনা কর।
৬. কংক্রিটের মৌলিক ধর্মগুলো কী কী? কংক্রিটের প্রধান প্রধান ধর্মগুলো কোন কোন নিয়ামকের উপর নির্ভরশীল?
৭. কংক্রিট স্থাপনের সময় কোন কোন বিষয়গুলো লক্ষ রাখতে হয়, সংক্ষেপে আলোচনা কর।
৮. কংক্রিটের দৃঢ়ীভবন কী কী পদ্ধতিতে করা হয়? এদের সংক্ষিপ্ত বর্ণনা দাও।
৯. পানি-সিমেন্ট অনুপাত বলতে কী বুঝায়? কংক্রিট পদ্ধতিতে পানির কার্যাবলি বর্ণনা কর।
১০. কংক্রিটের কিউরিং পদ্ধতিগুলি সংক্ষেপে আলোচনা কর। কিউরিংকালে লক্ষণীয় বিষয়গুলো কী কী?

অধ্যায় : ১০

**ইন্সপেকশন পিট**

**(Inspection Pit or Chamber)**

---

**১০.১ ইন্সপেকশন পিটের প্রয়োজনীয়তা :** (১) বাকের মুখে সিউয়েজ অর্থাৎ তরল ময়লা প্রবহাকে বাধামুক্ত করা, (২) বাস্তুমল নলের পরিসংখ্যাকরণ, তত্ত্বাবধান ও পরীক্ষা নিরীক্ষা ইত্যাদি কাজে সাহায্য করা। তাই এ কক্ষ পর্যবেক্ষণ বা পরিদর্শন কক্ষ নামেও পরিচিতি।

**১০.২ ইন্সপেকশন পিটের (Inspection) অবস্থান :** পরিদর্শন কক্ষ বা কৃপ, যা মাটির নিচে যে কোন পাইপ লাইনের (পয়ঃ, পানি, টেলিফোন ইত্যাদি) সংযোগস্থলে চৌবাচ্ছ আকারে তৈরি করা হয়।

**১০.৩ ইন্সপেকশন পিটের আকার আকৃতি :** বস্তুতঃ সিউয়ার নর্দমা সোজা পথে এবং একই ঢালে গেলেও প্রতি ১০০ ফুট (৩০ : ৫ মি.) পর পর একটি করে ইন্সপেকশন পিট তৈরি করা উচিত। এই কক্ষের চারপাশের দেয়াল ১০ ইঞ্চি (২৫ সেমি.) ইটের গাঁথুনি দিয়ে তৈরি এবং পিটের ভিতরের দিকে সিমেন্ট বালির আস্তার করে দিতে হয়। পিটের মেঝেটি তৈরি হয় সিমেন্ট কংক্রিটের। সমস্ত মেঝেটা সিমেন্টের নিট ফিনিশিং করে দিতে হয়। মেঝের ঢাল এমনভাবে থাকে, যাতে মাঝখানে একটি নালার সৃষ্টি হয়। এই নালার ঢাল আগম প্রান্ত (Inlet end) থেকে নির্গমপ্রান্ত (Outlet end) এর দিকে ক্রমশ নিচু হবে। আয়তাকার বা বর্গাকার এই কক্ষের প্রত্যেক বাহুর দৈর্ঘ্য কমপক্ষে ২ ফুট (০.৬ মিটার) হবে এবং গভীরতা ভূ-গর্ভে বাস্তু মল-নলের অবস্থানের উপর নির্ভর করবে। চেম্বার বা পিটের উপর বায়ুরোধক বা একটি ঢালাই লোহার ঢাকনা বসানো থাকে। ইন্সপেকশন পিটের চার পাশের দেয়াল নির্দিষ্ট উচ্চতায় তৈরি করে প্রথমে তার উপর ১০ সেমি. পুরু আরসিসি স্লাব ঢালাই করে ঠিক মাঝখানে লোহার বিং বসিয়ে ঢাকনা সংযুক্ত করা হয়।

**১০.৪ সংরক্ষণ ও পরিষ্কার পদ্ধতি :** ময়লাবাহী ভূ-গর্ভস্থ পাইপ যখন বাঁক নেয়, অথবা ঢাল বদলায় কিংবা যেখানে একাধিক ড্রেন এসে মিশে, সেখানে সাধারণত ময়লা আটকে ডেন বন্ধ হয়ে যাবার উপক্রম হয়। এজন্য সে জায়গাটি উপর থেকে পরিদর্শন ও পর্যবেক্ষণের জন্য ঐ সকল পাইপ ও ড্রেনের সংযোগস্থলে একটি চৌবাচ্ছার আকারে কক্ষ তৈরি করা হয়।



## প্রশ্নমালা-১০

**সংক্ষিপ্ত প্রশ্ন :**

১. ইলপেকশন পিট বা চেবার বলতে কী বুঝায়?
২. ইলপেকশন চেবার কোথায় স্থাপন করা হয়?
৩. ইলপেকশন চেবারের দেয়াল কিসের তৈরি?
৪. ইলপেকশন চেবার কেন স্থাপন করা হয়?
৫. ইলপেকশন চেবারের মেঝে কিসের তৈরি?
৬. ইলপেকশন চেবারের উপরের ঢাকনা কিসের তৈরি?
৭. ইলপেকশন চেবারের আকার কিরূপ?

**রচনামূলক প্রশ্ন :**

১. ইলপেকশন চেবার কী? উহা কোথায় এবং কেন ব্যবহার করা হয়? বর্ণনা দাও?

## অধ্যায় : ১১

# সেপটিক ট্যাংক (Septic Tank)

সেপটিক ট্যাংক হলো একটি পানি নিরোধক ট্যাংক, যার দেয়ালগুলো ইটের অথবা কঠিন্টের তৈরি। ইহার ফ্লোর ও পানি অভেদ্য কঠিন্ট দিয়ে তৈরি। ইহার উপরে থাকে (C.C. Slab) সিমেন্ট কঠিন্ট স্লাব। তৈরি উপরে বসানো থাকে ঢালাই-লোহার ঢাকনা বা ম্যানহোল কভার। দেয়ালগুলোকেও ভেতরে সিমেন্ট প্লাস্টার করে যতদূর সম্ভব পানিরোধী করা হয়। পায়খানা থেকে সিউয়েজ, সয়েল পাইপ দিয়ে মারফৎ সেপটি ট্যাংক এসে পড়ে।

### ১১.১ সেপটিক ট্যাংকের প্রয়োজনীয়তা:

গ্রামীণ ও আধা পৌর এলাকায় যেখানে সিউয়েজ নিষ্কাশন ব্যবস্থা করা সম্ভব নয়, সেখানে বাস্তুজ সিউয়েজ (Domestic Sewage) স্বাস্থ্যসম্মত উপায়ে অপসারণের জন্য সেপটিক ট্যাংক ব্যবহৃত হয়।

ইহা পায়খানার ঠিক নিচেও তৈরি করা যেতে পারে অথবা পায়খানার অন্তিম মাটির নিচে তৈরি করা যেতে পারে। সেপটিক ট্যাংকটি প্রস্ত্রে যতখানি দৈর্ঘ্যে তার তিন চার গুণ লম্বা হওয়া উচিত এবং লম্বাদিকে দুই তিনটি পৃথক দিকে ভাগ করা হয়। ময়লা একদিকে পাইপের সাহায্যে প্রবেশ করে এবং অপর দিকে পানি বেরিয়ে যায় এবং সেপটিকে গিয়ে পড়ে। সেপটিক ট্যাংকের তলদেশটা সমতল থাকে বা প্রবেশ পথের দিকে ঢালু থাকে। বিভিন্ন ঘরের কী মাপ হবে, তা নির্ভর করবে কতজন লোক পায়খানাগুলো ব্যবহার করবে এবং কী পরিমাণ পানি ঢালা হবে তার উপর।

### ১১.২ সেপটিক ট্যাংকের আকার আকৃতি :

সেপটিক ট্যাংকের আকার আকৃতি : সেপটিক ট্যাংকের আকার সাধারণত আয়তকার হয়। ইহার দৈর্ঘ্য, প্রস্ত্রের ২-৫ গুণ হয়। তবে সাধারণত: ৩ গুণ ধরা হয়। সেপটিক ট্যাংকের প্রস্ত্রের মান সবচেয়ে কম ১ মিটার ধরা হয়। ট্যাকটি ২ অথবা ৩টি কক্ষে বিভক্ত থাকে। ইহার গভীরতা ট্যাংকে ধারণকৃত তরলের গভীরতা অপেক্ষায় বেশি হয়। ট্যাংকের তরলের গভীরতা সর্বনিম্ন ১ মিটার হওয়া উচিত। যেকোন প্রকার সেপটিক ট্যাংকের তরলের গভীরতা ১.২ মিটার হলে এর পুরো গভীরতা হবে ১.৫০ মিটার অথবা ১.৭০ মিটার। সেপটিক ট্যাংকে জমাকৃত স্লাজ ৬ মাস পর পর পরিষ্কার করা হলে প্রতি ১০০ জন ব্যবহারকারীর জন্য জায়গা লাগে ৩.৬-৪.০ ঘন মিটার। সেপটিক ট্যাংকে নির্গমন পাইপটি আগমন পাইপ থেকে ১.৫ ১৫ সেমি. নিচে বসাতে হয়। সেপটিক ট্যাংকের আকার ডিজাইন করতে আমাদের দেশে সিউয়েজের সব চেয়ে বেশি হার দৈনিক মাথাপিছু ৯০ লিটার থেকে ১৩৫ লিটার ধরা যায়।

১১.৩ সেপটিক ট্যাংকের নির্মাণ পদ্ধতি : পায়খানা থেকে সিউজকে সরাসরি সেপটিক ট্যাংকে না এনে ইঙ্গেকশন পিটের মধ্য দিয়ে নিয়ে আসা উচিত। সিউয়েজকে কার্যকরভাবে থিতানোর জন্য প্রবেশ পথ ও নির্গমন পথের মাঝে কোনরূপ স্ন্যাত পরিবর্তনকারী টি টাইপ অথবা অবরোধকারী দেওয়া (Baffle Wall) প্রবেশ ও নির্গমন পথের মুখে বা খুব কাছে স্থাপন করা হয়। ফলে তরলের মধ্যে কোন চেউ বা ঘূর্ণিপাক হতে পারে না। তাই তরলের উপরিভাগের পুরু ফেনার আন্তরণটি (Scum) অক্ষত থাকে। এই আন্তরণ তার নিচে তরলের দুর্গঞ্জকে বাইরে বেরোতে দেয় না এবং তরলের উপরে তাপ অন্তরক (Heat insulator) স্তর হিসেবে কাজ করে এবং তরলকে একই তাপমাত্রায় থাকতে সহায়তা করে। ফলে জীবাণু বিয়োজন ক্রিয়াটি সুষ্ঠুভাবে সম্পন্ন হবে। সেপটিক ট্যাংকের দৈর্ঘ্য সিউয়েজস্তু ভাসমান কণা থিতিয়ে পড়তে যথাযথ হলে এক কক্ষ বিশিষ্ট

ট্যাংকে যথেষ্ট এবং সম্ভা। ট্যাংকিকে খুব বেশি লম্বা না করে পার্টিশন দেয়াল দিয়ে দুটি বা তিনটি সমান কক্ষে ভাগ করে দিতে হয়। এতে ভাসমান কণা অতিক্রান্ত হওয়ার পথ তথা থিতিয়ে পড়ার সময় বেড়ে যায় এবং ঐ সকল কণা সমভাবে নিচে থিতিয়ে পড়ে। ট্যাংকের নির্গমন এলাকাটিতে বস্তুত কোন স্ন্যাত ও ভাসমান কণা থাকা উচিত নয়। নির্গমন পথটি প্রবেশপথ অপেক্ষা ৫-৭.৫ সেমি. নিচে থাকা উচিত। ট্যাংকে ভিতরের তরলের সংস্পর্শে থাকা তরলগুলো যথাসম্ভব পানিরোধী হওয়া উচিত। সেপটিক ট্যাংকের উপরিভাগ আর সি.সি স্লাব দিয়ে ঢেকে রাখা হয়। এতে দুর্গন্ধি বাইরে ছড়ায় না এবং ভিতরের তাপমাত্রার হেরেফের কম হয়। স্লাবটির আকৃতি বড় হলে পরিদর্শন পরিকারকরণ ইত্যাদি কাজের জন্য স্লাবের মাঝখানে প্রয়োজনীয় ম্যানহোল রাখা উচিত। ম্যানহোলগুলো অবশ্যই লোহার ঢাকনা দিয়ে বন্ধ রাখা হয়।

#### **১১.৪ সেপটিক ট্যাংকে ক্রিয়াত্মক (Theory of Action in Septic Tank) :**

সেপটিক ট্যাংকে সিউয়েজ এমন ধীর গতিতে প্রবাহিত হয়, যাতে শতকরা ৬০-৭০ ভাগ ভারী ভাসমান কণা ট্যাংকের তলদেশে স্লাজ (Sludge) আকারে থিতিয়ে পড়ে এবং অপেক্ষাকৃত হালকা পদার্থ উপরে ফেনার আকারে ভেসে উঠে। এই ফেনা সিউয়েজের উপরিভাগের পুরো তলটিকে একটি আবরণ দিয়ে ঢেকে দেয়। ইহাকে স্কাম (Scum) বলে।

সেপটিক ট্যাংকের সাথে বাইরের আলো বাতাসের কোন সংস্পর্শ থাকে না। এই অবস্থায় সেপটিক ট্যাংকের ভিতর এক জাতীয় জীবন্ত জন্মায়। এগুলো মলের কঠিন অংশকে ছেট ছেট টুকরায় এবং ত্রুটি গুড়ে করে ফেলে। ময়লার কঠিন ঘন অংশ ট্যাংকের নিচে থিতিয়ে পড়ে। জীবন্ত যখন এই ঘন অংশে কাজ করে তখন ঘন-ময়লার ভিতর গ্যাস উৎপন্ন হয়। আই ঘন ময়লার টুকরোটি হালকা হয়ে উপরে ভেসে উঠে গ্যাসের বুদবুদটি ফেটে যায়। তাই ময়লার টুকরোটি আবার ভারী হয়ে নিচে পড়ে যায়। এভাবে ময়লার টুকরোগুলো ক্রমাগত উপর নিচ করতে করতে সূক্ষ্ম কণিকায় পরিণত হয়। শেষ পর্যন্ত ঘন ময়লার অবশিষ্টাংশ (স্লাজ) নিচে পড়ে থাকে এবং জলীয় অংশটা নির্গমন পথ দিয়ে ট্যাংকের বাইরে চলে যায় এবং সোকপিটে গিয়ে পড়ে। ট্যাংকের সঞ্চিত গ্যাস ভেন্ট পাইপ দিয়ে বাইরে বেরিয়ে যায়।

**১১.৫ ফিটিংস সংযোগ :** সেপটিক ট্যাংকের ভেতরের গ্যাস বের করে দেওয়ার জন্য একটি গ্যাস নির্গমন ভেন্ট পাইপ (Vent Pipe) ট্যাংকের সাথে যুক্ত করে দেওয়া হয়। ভেন্ট পাইপটি অবশ্যই খাড়া ও যথেষ্ট উচু হওয়া উচিত এবং এর উচ্চতম প্রান্তে একটি বিশেষ ঢাকনা অর্থাৎ “কাউল” (Cow) লাগানো থাকে। প্রথমে ঢালু করার সময় সেপটিক ট্যাং পানিপূর্ণ করে এই পানিতে কিছু পরিমাণ বিয়োজিত স্লাজ নতুবা পুরনো পাঁচ মল বা গোবর ফেলে দিয়ে ট্যাংকের ভেতরে জৈব বিয়োজন ক্রিয়াটি ভুরান্বিত হয়।



**১১.৬ সেপটিক ট্যাংকের সংরক্ষণ ও পরিষ্কার পদ্ধতি:** সেপটিক ট্যাংকের তলদেশে বিয়োজিত (Degested) মাজ অন্ততঃ ৬ মাস পর অপসারণ করা উচিত। সেপটিক ট্যাংকের ভিতর মলের আধিক রূপান্তর ঘটে মাত্র। এখানে পূর্ণ শোধন বা রূপান্তরকরণ হয় না। এজন্য সেটিক ট্যাংক থেকে নির্গত তরলকে সরাসরি কোন নালা বা প্রাকৃতিক জলাশয়ে ফেলে না দিয়ে একটি সোকপিট (Sockpit) বা শোষক গর্তে নিয়ে ঘাওয়া হয়। সেখানে পরিস্থাবণ প্রক্রিয়া এবং আধিকভাবে বায়বীয় ক্রিয়ার এই তরলে চূড়ান্ত শোধন ঘটে।

## প্রশ্নমালা-১১

### সংক্ষিপ্ত প্রশ্ন :

১. সেপটিক ট্যাংক কী?
২. সেপটিক ট্যাংক কোথায় স্থাপন করা হয়?
৩. সেপটিক ট্যাংক কেন স্থাপন করা হয়?
৪. সেপটিক ট্যাংকে সঞ্চিত গ্যাস কী দিয়ে বাইরে বেরিয়ে যায়?
৫. পায়খান থেকে সিউয়েজকে সরাসরি সেপটিক ট্যাংকে নেওয়া হয় কী?
৬. সেপটিক ট্যাংকের মধ্যে সৃষ্টি ক্ষাম বলতে কী বুবায়?
৭. সেপটিক ট্যাংকের নির্গমন পথটি, প্রবেশ পথ অপেক্ষা কত সেমি নিচে থাকা উচিত?
৮. সেপটিক ট্যাংকের ভেতরের তরলের সংস্পর্শে থাকা তলগুলি জলরোধী (Water proof) হওয়া উচিত কী?
৯. সেপটিক ট্যাংকের উপরিভাগ কী দিয়ে ঢেকে রাখা হয়?
১০. সেপটিক ট্যাংকের উপরিভাগ ভালোভাবে ঢেকে রাখলে কী সুবিধা পাওয়া যাবে?
১১. সেপটিক ট্যাংক পরিদর্শন ও পরিষ্কারকরণ (Inspection and Cleaning) কাজের জন্য স্নাবের মাঝখানে প্রয়োজনীয় সংখ্যক কী থাকা উচিত?
১২. সেপটিক ট্যাংকের ভিতর মলের আংশিক শোধন, না পূর্ণ শোধন হয়?
১৩. সেপটিক ট্যাংক থেকে নির্গত তরলকে সরাসরি কোন প্রাকৃতিক জলাশয়ে, না কোন একটি শোষক গর্তে (Soakpit) নিয়ে যাওয়া হয়?

### রচনামূলক প্রশ্ন :

১. সেপটিক ট্যাংক কী, সিপটিক ট্যাংকের প্রয়োজনীয়তা উল্লেখ কর।
২. একটি সেপটিক ট্যাংকের লাইন ডায়াগ্রাম অঙ্কন করে উহার বিভিন্ন অংশগুলি দেখাও এবং নির্মাণ পদ্ধতি বর্ণনা কর।

## অধ্যায় : ১২

# সোকপিট (Soakpit)

**১২.১ সোকপিট এর প্রয়োজনীয়তা :** সেপটিক ট্যাংক থেকে নির্গমন পাইপ দিয়ে আগত তরলকে অক্ষতিকারক অবস্থায় রূপান্তরের জন্য সোকপিটের প্রয়োজন হয়। সেপটিক ট্যাংকের ভিতর সিউয়েজে গরম, অঙ্ককার ও আর্দ্র আবহাওয়ায় পচন ধারণ করে। ফলে সেপটিক ট্যাংক হতে যে তরল নির্গত হয় তা কালো বা ছাই রংয়ের। ইহা সম্পূর্ণ দুর্ঘন্যমুক্ত এবং ক্ষতিকারক। এই তরলকে অক্ষতিকারক অবস্থায় রূপান্তরিত করতে সোকপিটের প্রয়োজন হয়। সূতরাং সোকপিট ছাড়া সেপটিক ট্যাংক ব্যবহার করা অনুচিত।

**১২.২ আকার আকৃতি :** ইহার আকৃতি সাধারণত বৃত্তাকার হয়। সোকপিটের একেবারে তলায় কিছু পরিমাণবালি এবং তার উপর প্রায় ৫০.৭৫ মিমি. আকারের ইটের টুকরো বিছানো থাকে। পুনরায় এর উপর বালি ও উহার উপর আবার ছোট বড় ইটের কুরোর স্তর বিছানো থাকে। এভাবে কয়েকটি করে বালি ও খোয়া বিছানো থাকে সোকপিট বসতবাড়ি থেকে বিশেষত কুয়া, ইদরা বা পুকুর থেকে দূরে তৈরি করা উচিত।

**১২.৩ সোকপিট নির্মাণ পদ্ধতি :** সোকপিট বস্তুত: মাটির ভিতর কাটা একটি গর্ত বা রূপ বিশেষ, যেখানে সেপটিক ট্যাংক হতে নির্গত তরলকে নিষ্কেপ করা হয়। সাধারণত ইটের জাফরি গাঁথুনিযুক্ত দেয়াল ঘেরা মাটির নিচের জলতল পর্যন্ত প্রসারিত কমপক্ষে ৯০ সেমি. ব্যাসের গোলাকার কুয়ো আকারের চৌবাচাকে শোষকগর্ত বা সোকপিট হিসেবে ব্যবহার করা হয়।

**১২.৪ সোকপিট এর কার্যকারিতা :** গ্রীষ্মকালে ভূগর্ভস্থ জলতল যদি আরও উচুতে থাকে তবে গভীরতা অত বেশি করার কোন প্রয়োজন নাই। শহর এলকায় নিউয়ার নর্দমাটি ভূমির অন্তত ০৫ মিটার নিচে সোকপিটে ফেলতে হয় এবং উপরের একটি আরসিসি ঢাকনা দিয়ে ঢেকে দিতে হয়।

**১২.৫ ফিটিংস সংযোজন :** একটি মাঝারি আকারের সেপটিক ট্যাংকের জন্য ১ মিটার ব্যাসের প্রায় ২ মিটার গভীর সোকপিট হওয়া বাস্তুয়িয়া সোকপিটের গভীরতা আগত নলের নিচে অন্তত ১ মিটার হওয়া উচিত। সেপটিক ট্যাংক থেকে কমপক্ষে ২.৫ মি/ দূরে সোকপিট তৈরি করা উচিত। সোকপিটের সবচেয়ে কম ব্যাস ৯০ সেমি. ও গভীরতা ১০০ সেমি. ধরা হয়।

**১২.৬ সংরক্ষণ ও পরিষ্কার পদ্ধতি :** সোকপিট হতে ময়লা আবর্জনা ও দুর্গন্ধ পরিষ্কার করার জন্য ঢাকনা অপসারণ করে পাস্প চালিয়ে পরিষ্কার করা উচিত। পরিষ্কার করে ব্লিস্ট্রিং পাউডার ছিটিয়ে সংরক্ষণ করা হলে দীর্ঘদিন দুর্গন্ধমুক্ত থাকে।



চিত্রঃ সোকপিট

ପ୍ରଶ୍ନମାଳା-୧୨

## ସଂକଷିପ୍ତ ଧ୍ୟାନ :

১. সোকপিটের কাজ কী?
২. সোকপিটের ব্যাস কমপক্ষে কত হওয়া উচিত?
৩. সোকপিটের গভীরতা কত হওয়া উচিত?
৪. সোকপিটের দেয়াল কী দিয়ে তৈরি?
৫. সোকপিটটি কোন সাইজের ইটের টুকরো দিয়ে ভর্তি থাকে?

ରଚନାମୂଳକ ପ୍ରଶ୍ନ :

১. সোকপিট কী এবং কেন করা হয়? সোকপিটের পানি পরিশোধনের জন্য ব্যবহৃত দ্রব্যাদির নাম লেখ।
২. একটি সোকপিটের চিত্র অঙ্কন করে উহার বিভিন্ন অংশগুলি প্রয়োজনীয় মাপসহ দেখাও?

## অধ্যায় : ১৩

# ম্যানহোল (Manhole)

**১৩.১ ম্যানহোলের প্রয়োজনীয়তা :** ম্যানহোল (Sewer) সঞ্চিত হয়। তাই মাঝে মাঝে ম্যানহোল পরিদর্শন করে Sewage করতে হয়।

**১৩.২ ম্যানহোলের অবস্থান:** ম্যানহোল ঢাকার জন্য যে ঢাকনা ব্যবহৃত হয় তাকে ম্যানহোল ঢাকনা (Manhole Cover) বলে। ইহা সাধারণত বিশেষ ধরনের ঢালাই লোহার তৈরি। তবে আজকাল R.C.C এর তৈরি Manhole Cover ও ব্যবহৃত হচ্ছে। সাধারণত সেজন্য গোলাকার ঢালাই লোহার ফ্রেমের উপর Manhole Cover-টি বসানো হয়। তবে ফ্রেম, ঢাকনা ও ম্যানহোলের দেয়াল রাস্তার উপর দিয়ে চলাচলকারী ভারী যানবাহনের ভার সহ্য করার মতো মজবুত হতে হবে। ম্যানহোলের গভীরতা ১ মিটারের বেশি হলে নিচে নামার সিড়ি তৈরি করতে হবে। গভীরতা ২ মিটারের বেশি হলে Manhole 2-কঙ্কে তৈরি করা উচিত। যথা-নিম্নকক্ষ উদ্ধৃত কক্ষ। সোজা সিউয়ার পাইপ লাইনে ৬০-৯০ মিটার পর পর ম্যানহোল তৈরি হয়। দুই বা তার চেয়ে বেশি বড় আকারের Sewer pipe ম্যানহোলে সংযোগ হলে এর তলদেশে তৈরি নর্দমাণ্ডলো (Channels) দীর্ঘ ব্যাসার্ধবিশিষ্ট বাঁকা পথে নির্গমন পথ অভিযুক্ত করা হয়। এজন্য ম্যানহোলের তলদেশ বেশ প্রশস্ত হওয়া আবশ্যিক। এক্ষেত্রে আয়তাকার তহলদেশি সুবিধাজনক নয় ম্যানহোলের সাথে সংযোজিত পাইপ গুলো উপরে তল যথাসম্ভব একই তলে (Same level) অবস্থিত হওয়া উচিত। তা না হলে বড় আকারের পাইপ এ আগত প্রবাহ ম্যানহোলের মধ্যে গিয়ে অপক্ষাকৃত ছেট আকারের নলমুখে দুকে ঐ নলে বিপরীত মুখী প্রবাহ (Back-flow) সৃষ্টি করতে পারে এবং ফলে ছেট নলের আগত প্রবাহ ম্যানহোলে পড়তে বাধা পাবে। ম্যানহোলের মেঝে বা তলদেশে একটি অর্ধবৃত্তাকার খোলা মসৃণ নর্দমা (Open Channel) তৈরি করা হয়। ইহা সিউয়ার পাইপের ধারাবাহিক রক্ষা করে। ইহার মেঝে সাধারণত কংক্রিট দিয়ে তৈরি করা হয় এবং খোলা নর্দমার দিকে কিছুটা ঢালু থাকে। ম্যানহোল অবশ্যই পানিরোধী হতে হবে।

### **১৩.৩ ম্যানহোলের আকার আকৃতি: নিম্নকক্ষ (Lower Chamber)**

এই কক্ষটি কাজ করার জন্য ব্যবহৃত হয়। সেজন্য এ কক্ষটি প্রশস্ত হওয়া বাস্তুনীয়। এ কক্ষের মাপ কমপক্ষে ১.২৫ মি $\times$  ১ মি $\times$  ২ মি (উচ্চতা) হওয়া উচিত।

### **অর্ধকক্ষ (Upper Chamber)**

এই কক্ষটি কেবল নিম্নকক্ষে প্রবেশ করার প্রয়োজনে তৈরি হয়। সেজন্য ইহাকে প্রবেশ পথও (Access Shaft) বলে। ইহা অপেক্ষাকৃত সরু। প্রস্থচ্ছেদি মাপ ০.৭৫ মি.  $\times$  ০.৬ মি। উচ্চতা অবশ্যই ম্যানহোলের মোট গভীরতার উপর নির্ভরশীল। এই কক্ষটিকে নিম্নকক্ষের উপর মাঝামাঝি না করে এক পাশে করা উচিত।

**১৩.৪ ম্যানহোল নির্মাণ পদ্ধতি:** সিউয়াল এপার্টিন্যাসগুলোর মধ্যে ম্যানহোল একটি গুরুত্বপূর্ণ কাঠামো। ভিন্ন ভিন্ন উচ্চতায় বিভিন্ন দিক হতে আগত Sewer এর সংযোগ এর জন্য অথবা কোন স্থানে পাইপ এর আকারের হঠাত খুব কম বা বেশি পরিবর্তন হলে রাস্তার উপরিভাগ হতে অন্তত সর্বনিম্ন Sewer pipe পর্যন্ত গর্ত খনন করে ইটের দেয়াল গেঁথে আয়তাকার, বর্গাকার কিংবা গোলাকার তৈরি করা হয়।



চিত্রঃ

### ১৩.৫ ম্যানহোল সংরক্ষণ ও পরিষ্কারকরণে সাবধানতা :

ম্যানহোলের মধ্য বিশাক্ত, বিপজ্জনক, বিফোরক গ্যাস ও বাষ্প সঞ্চিত থাকে। সুতরাং ম্যানহোলের ঢাকনা খুলেই সাথে সাথে ভেতরে প্রবেশ নিষিদ্ধ। কোন ম্যানহোলে প্রবেশ করতে হলে প্রবেশ কালের অন্তত ১ ঘণ্টা আগে এই ম্যানহোল ও তার উভয়পাশে অবস্থিত অন্তত: ২টি ম্যানহোলের ঢাকনা খুলে দিতে হবে, যাতে এর ভেতরের সমস্ত বিশাক্ত গ্যাস বেরিয়ে যায় ও ম্যানহোলে মুক্ত বায়ু চলাচল করতে পারে।

ম্যানহোলে প্রবেশ করার পূর্বে ১টি নিরাপদ ল্যাম্প (Safety lamp) যেন ৫ মিনিট কাল ম্যানহোলের মধ্যে রাখা হয়। এই সময়ের মাঝে ল্যাম্পটি নিভে না গেলে ম্যানহোলের মাঝে প্রবেশ নিরাপদ বলে বিবেচিত হবে। ম্যানহোলে ডাইট্রোজেন সালফাইড ( $H_2S$ ) থাকলে ম্যানহোলে প্রবেশ করা উচিত নয়।

ম্যানহোলের ভিতর কোন জুলস্ত শিখা নিয়ে প্রবেশ করা বিপজ্জনক।

ম্যানহোলের সংরক্ষণ ও পরিষ্কার করার কাজ দিনের বেলায় করাই বাঞ্ছনীয়।

ম্যানহোলের ঢাকনা খোলা অবস্থায়, তার চার পাশের লাল পতাকা প্রদর্শনের ব্যবস্থা করতে হয় যানবাহন ও পথচারীদের সতর্ক করতে।

### প্রশ্নমালা-১৩

**সংক্ষিপ্ত প্রশ্ন :**

১. ম্যানহোল কাকে বলে?
২. ম্যানহোল এর কাজ কী?
৩. ম্যানহোলের গভীরতা ২ মিটারের বেশি হলে কয়টি কক্ষে ইহা তৈরি হয় ও কী কী?

**রচনামূলক প্রশ্ন :**

১. ম্যানহোল কী? ম্যানহোলের কাজ কী? ম্যানহোলের গর্তগুলো কী দিয়ে বন্ধ করা হয়?
২. একটি ম্যানহোলের চির অঙ্কন করে বিভিন্ন অংশগুলো দেখাও। ম্যানহোলের মধ্যে প্রবেশের পূর্বে কী কী সাবধানতা অবলম্বন করতে হয় ?

## অধ্যায় : ১৪

# হাউজ ড্রেন (House Drain)

**১৪.১ হাইজ ড্রেন এর প্রয়োজনীয়তা :** বাড়ি ঘরের সঙ্গে পাইপ বা মল নল হতে বৃষ্টির পানি, মল-মূত্র এবং রান্নাঘর, গোসলখানা ও বাসগৃহের অন্যান্য ধোত কার্যের স্থান থেকে নির্গত পরিত্যক্ত ময়লা পানি অপসারণের জন্য House Drain হাউজ ড্রেন প্রয়োজন ।

**১৪.২ আকার আকৃতি :** House Drain বা বাস্তু-মল পাইপ হতে মল-মূত্র ও ময়লা পানি রাস্তার পাইপে যায় । House Drain এর পাইপের ব্যাস সাধারণত: ১৫ সেমি. হয় । এই পাইপের সাথে সঙ্গে পাইপ, রেইন ওয়াটার পাইপ ও ল্যাট্ৰেল সিউয়ার পাইপ সংযুক্ত থাকে ।



একটি আদর্শ সিউয়ার পাইপ সজ্জা ব্যবস্থা

### ১৪.৩ হাউজ ড্রেনের কার্যকারিতা :

নিষ্কাশন ব্যবস্থার উদ্দেশ্য হলো যত তাড়াতাড়ি সম্ভব আর্জনা ও মলমূত্র দ্রুত অন্যত্র সরিয়ে ফেলা । গৃহস্থালীর শুকনো, আধাশুকনো, পচন, অপচনশীল ময়লা অর্থাৎ জঞ্জল, জাটাল (Garbage) ইত্যাদি থেকে দূরে কোন নিরিবিলি স্থানে বা রাস্তায় অবস্থিত ডাস্টবিনে (Dustbin) ফেলে দেওয়া হয় । শৌচাগার হতে আগত সিউয়েজ House Drain এর ভিতর দিয়ে Septic tank কিংবা পৌর সিউয়ার পাইপে নিয়ে যাওয়া হয় । বাড়ির ছাদের এবং উঠানের বৃষ্টির পানি এবং ধোয়ানি বাড়ি সংলগ্ন খোলা নর্দমা (Open Drain) দিয়ে মাঠে বা খানা খন্দকে অথবা রাস্তার পাশে নির্মিত পৌর নর্দমায় নিষ্কাশিত হয় ।

**১৪.৪ হাইজ ড্রেন নির্মান পদ্ধতি :** বহুতল বাড়িতে শৌচারগারগুলো প্রত্যেক তলে এমনভাবে সাজানো থাকে, যাতে ১টি মাত্র সয়েল পাইপ এবং ১টি মাত্র ভেট পাইপ এর সাহায্যে নিষ্কাশনের কাজটি সম্পূর্ণ করা যেতে পারে। মলাধার, মূত্রাধার প্রভৃতির ময়লা এবং রান্নাধার, গোলসখানা ইত্যাদির ধোয়ানি সিউয়েজ (Sewage) হিসেবে বাড়ির বাইরের দেয়ালে অটকানো খাড়া সয়েল পাইপ এর ভিতর দিয়ে হাউজ ড্রেন (House Drain) এ এসে পড়ে। হাউস ড্রেন থেকে এই নিউয়েজ পৌর সিউয়ার পাইপে চলে আসে। যে শহরে ভূ-গর্ভস্থ পৌর মল নিষ্কাশন ব্যবস্থা (Underground Sewerage System) নেই, এই শহরে সিউয়েজ (Sewage) বাস্তু মল নল (House Drin) হতে (Septic tank) এ কিংবা Soak Pit-এ নিয়ে আসা হয়। মলায় (W.C.Pan)-ও মূত্রাধায় (Urinal Basin) এর নিচ কিংবা ধোয়ানী নির্গমন পথে ১টি ট্র্যাপ বা গ্যাস ফাঁদ (Trap) জুড়ে দেওয়া থাকে। ফলে নির্গমন পাইপে সঞ্চিত গ্যাস বাড়ির ভিতর প্রবেশ করতে পারে না। মলাধায়ের সাথে যুক্ত (Trap) এর (Water Seal) টি যাত সাইফ ক্রিয়া করে না যায়, সে জন্য Trap এর উর্ধবর্মুখী বাকের সাথে ২টি পাইপ (৪ সেমি. ব্যাস) সংযোগ করে দেওয়া হয়। এ পাইপটিকে Ani-Syphonage Pipe বলে। Pipe এর অপর প্রান্তটি Vent Pipe (৬-৮ সেমি. ব্যাস) এর সাথে যুক্ত থাকে।

(Soil pipe) মল নল এর সাথে সমান্তরভাবে খাড়া করা (Vent pipe) (গ্যাস নির্গমন নল) এর ভিতর দিয়ে House Drain ও Soil Pipe-এ সঞ্চিত দুর্ঘন্যযুক্ত গ্যাস বেরিয়ে যায়। Soil Pipe টি নিচে ভূ-পৃষ্ঠের ইটের তৈরি (Inspectuion Chamber) অবেক্ষণ কক্ষ এ এসে পড়ে এবং এই কক্ষের মধ্য দিয়েই House Drain এর সাথে যুক্ত হয়। House Drain-এর প্রত্যেক বাকে কিংবা বিভিন্ন দিক থেকে আগত কয়েটি নল House Drain এর সংযোগস্থলে ১টি করে (Inspection Chamber) থাকে। Rain Water Pipe টি বাড়ির ছাদ থেকে বাইরের দেয়ালে উপর দিয়ে সোজা নিচে নেমে এসে ঢাকা কিংবা খোলা Drain এর সাথে যুক্ত হয়। এই সংযোগস্থলে ১টি বাঝারি (Gratings) বিশিষ্ট কক্ষ থেকে যার নিচে একটি ট্র্যাব (গ্যাস ফাঁদ) লাগানো থাকে। ট্র্যাব যুক্ত এই কক্ষকে বলা হয় Yard Gully or Gully Trap।

**১৪.৫ সংরক্ষণ ও পরিষ্কারকরণ:** House Drain লাইনের উপর অবস্থিত Inspection Chamber এর সাথে Gully Trap এর সরাসরি যোগাযোগ থাকার ফলে বাড়ির উঠনে ও ছাদ থেকে আগত বৃষ্টির পানি House Drain-এ এসে পড়ে। হাত মুখ ধোওয়া বেসিনের পানি কিংবা বাড়ি ঘরের ধোয়ানিকে নির্গমন পথে যুক্ত ট্র্যাপের মধ্য দিয়ে সরাসরি বৃষ্টির পানি নিকাশ পাইপের সাথে যুক্ত করে দেওয়া হয়।

বাস্তু জমির সীমানায় পৌর রাস্তার ধারে House Drain অবশেষে ১টি কক্ষ এস পড়ে যাকে বলা হয় Inspection Chamer, Intercepting Chamber হলো আসলে একটি Inspection Chamber যার সাহায্যে House Drain এর তত্ত্বাবধায়ন, পরিষ্কারকরণ, পরীক্ষা নিরীক্ষা, মেরামত ও সংরক্ষণের কাজ করা হয়। বাস্তু সিউয়েজ সবশেষে Intercepting Trap এর মধ্য দিয়ে পৌর রাস্তায় অবস্থিত Manhole দিয়ে পড়ে। পৌর সিউয়ার পাইপে থেকে যাতে দুর্ঘন্যযুক্ত গ্যাস (House Drain) এ আসতে না পারে সেজন্যই Intercepting Trap এর ব্যবস্থা করা হয়। একটি যুক্ত বায়ু প্রবেশিকা নল এই কক্ষের সাথে যুক্ত থাকে। এই যুক্ত প্রবেশিকা নলের প্রান্তদেশে ১টি একমুখী কপাটিকা (One way Valve) থাকে। এই Valve টি কেবল বাইরের যুক্ত বায়ুকে নলের ভিতরে যেতে দেয়, কিন্তু কখনও নলের ভিতরের গ্যাসকে বাইরে আসতে দেয় না। ফলে বাইরের বায়ু সময় নিষ্কাশন ব্যবস্থা স্বাস্থ্যকর পরিবেশ রক্ষা করে।



চিত্র: ডি-আর্কটিক ফ্রেন



স্টেন ওয়্যার পাইপ সিউয়ার



PLAN

|                                   |                            |                             |
|-----------------------------------|----------------------------|-----------------------------|
| O. H. T.—চাবের ট্যাপ              | I. C.—অবক্ষেপ কক্ষ         | S.—শাওয়ার বা ভুনা-সান-ব্যব |
| W. C.—গুরখানা                     | H. D.—চাতুর্মুখ মল-নল      | T. H. S.—ইত্তোয়ারী বেদিন   |
| U.—প্রস্তাবাগার                   | I. T.—ইন্টারমেডিয়েট ট্যাপ | F. C.—চার্নিল সিস্টেম       |
| S. P.—মল-নল                       | M. T.—মার্টীর ট্যাপ        | 'X'—ট্যাপ প্রেস্ট           |
| V. P.—গ্যাস নিগ' মল-নল            | F. A. I.—ম্যাট্-ব্যাচ      | F. T.—তল-ট্যাপ              |
| R. W. P.—বৃষ্টিদ্র কক্ষ-নিকাশী নল | প্রেস্টেকা                 |                             |
| A. P.—সাইফন রোধী নল               | M. H.—মান-হোল              |                             |
| G. T.—গ্যাস ট্যাপ                 | S. D.—ত্-প্রস্তুত খোলা     |                             |
|                                   |                            | কেন                         |

চিত্রঃ বাস্তুর ময়সা নির্মাণনের আদর্শ ব্যবস্থা

## প্রশ্নমালা-১৪

### **সংক্ষিপ্ত প্রশ্ন :**

১. হাউস ড্রেন কাকে বলে?
২. হাউস ড্রেনের কাজ কী?
৩. ট্র্যাপ (Trap) এর কাজ কী?
৪. Anti-Syphonage Pipe এর কাজ কী ও উহার ব্যাস কত?
৫. Intercepting Trap কেন ব্যবহার করা হয়?

### **রচনামূলক প্রশ্ন :**

১. হাউস ডেনেস সিস্টেম সংক্ষেপে আলোচনা কর।
২. ট্র্যাম্প কী? ট্র্যাম্প কত প্রকার ও কী কী? একটি ট্র্যাম্প এর চির অঙ্গন কর।
৩. প্রাথমিক কাজে ব্যবহৃত একটি সোকপিটে নির্মাণ পদ্ধতি চিত্রসহ বর্ণনা কর।

## অধ্যায় : ১৫

# ল্যাম্প হোল (Lamp Hole)

### ১৫.১ : সিউয়ার লাইনে ল্যাম্প হোল বসানোর প্রয়োজনীয়তা:

- (১) পরিদর্শন : সিউয়ার লাইন সচল আছে কীনা তা পরীক্ষা করার জন্য ল্যাম্প হোলের মাঝে বৈদ্যুতিক লাইট স্থাপন করা হয়। লাইট জুলিয়ে দিয়ে ল্যাম্প হোলের আলো পার্শ্ববর্তী ম্যানহোল থেকে পরিলক্ষিত হবে। এতে বুঝা যাবে সিউয়ার লাইনটি সচল।
- (২) ফ্লাসিং: কিছু কিছু ক্ষেত্রে ল্যাম্প হোল ফ্লাসিং ডিভাইস হিসেবে কাজ করে।
- (৩) ভেন্টিলেশন: ল্যাম্প হোলের কভারটি ছিদ্র ছিদ্র রাখা যাতে বায়ু চলাচল করতে পারে এবং ভিতরে কোন গ্যাস এর সৃষ্টি না হয়।

### ১৫.২ ল্যাম্প জোনের স্থাপন:

লোকেশন: নিম্নে বর্ণিত স্থানে ল্যাম্প হোল স্থাপন করা হয়-

- (ক) যেখানে ম্যান হোল স্থাপন করা সম্ভব নয় সেখানে ল্যাম্প হোল স্থাপন করা হয়।
- (খ) দুইটি ম্যান হোলের মাঝের দূরত্ব বেশি হলে মধ্যবর্তী স্থানে ল্যাম্প হোল স্থাপন করা হয়।
- (গ) যখন সিউয়ার লাইনের গতি ও ঢাল পরিবর্তন তখন ম্যান হোল কাছাকাছি থাকলে সে স্থানে ল্যাম্প হোল স্থাপন করা হয়।

ল্যাম্প হোল শুধু বিশেষ ক্ষেত্রে ব্যবহার করা হয় যতদূর সম্ভব ইহা পরিহার করা উচিত।

১৫.৩ ল্যাম্প হোলের সংরক্ষণ ও পরিষ্কারকরণ: সিউয়ার লাইনে দুইটি ম্যান হোলের মাঝে উচ্চা টি আকারে গর্ত বা পাইপ কনক্রিট বেষ্টনী আবদ্ধ করা হয় এবং এই পাইপের মধ্যে ল্যাম্প স্থাপন করা হয়। তাকেই ল্যাম্প হোল বলা হয়।

ল্যাম্প হোল হলো একটি খাড়া স্টোন ওয়ার বা কনক্রিট পাইপ যাহা সিউয়ার লাইনের সাথে টি জংশন দ্বারা যুক্ত থাকে। ইহা স্থির অবস্থায় রাখার জন্য চর্টুন্ডিকে কংক্রিট ঢালাই করা হয়। মাটির সমতলে ফ্রেমসহ ম্যান হোল কভার দ্বারা গর্তের বা পাইপের মুখে আটকানো থাকে। যাতে উপরের চাপ বহন করতে পারে এবং হোলের ভিতরের ল্যাম্প স্থাপন করা হয়।



চিত্রঃ ল্যাম্প হোল

## প্রশ্নমালা-১৫

## সংক্ষিপ্ত প্রশ্ন :

১. ল্যাম্প হোল বলতে কী বোঝায়?
২. ল্যাম্প হোল লাইট স্থাপন করা হয় কেন?
৩. ল্যাম্প হোলের উপরে কী দিয়ে ঢাকা হয়?

## রচনামূলক প্রশ্ন :

১. ল্যাম্প হোল প্রদানের উদ্দেশ্য বর্ণনা কর।
২. কোন কোন স্থানে ল্যাম্প হোল স্থাপন করা হয় লেখ।

ব্যবহারিক

## কাজ বা জব নং-১ : শুলন বা প্লাম্ব ববের (Plumb Bob) ব্যবহার

### মূলতত্ত্ব (Theory) :

প্লাম্ব বব বা শুলন দিয়ে দেয়াল বা অন্য কোন কাঠামোর খাড়াই (Vertical) পরীক্ষা করা হয়।

### যন্ত্রপাতি (Apparatus) : প্লাম্ব বব।

### কার্যপ্রণালি (Procedure) :

দেয়াল মাটি থেকে খাড়াভাবে উঠবে এবং ডাইনে বা বামে হেলে পড়বে না। একটি ছোট চৌকোণা কাঠের টুকরার মাঝ বরাবর ফুটো করে তার ভেতরে দিয়ে সূতা বুলিয়ে দেওয়া হয়। সূতোর নিচের প্রান্তে বাঁধা থাকে একটি লোহার বা সীসার ভারী ধাতব বল এবং উপরের প্রান্তে আটকানো থাকে একটি কাষ্টি। ফুটোর কেন্দ্র থেকে চৌকোণা কাঠের কিনারা যত মিলিমিটার দূরে, নিচের ধাতব বলটির ব্যাসার্ধও ঠিক ততখানি।

**কার্যফল (Result) :** চৌকোণা কাঠখানি দেয়ালের গায়ে লাগলে যদি দেখা যায়, প্লাম্ব ববের বলটিও ঠিক দেয়ালের গা আলতোভাবে স্পর্শ করছে, তাহলে বুঝতে হবে, দেয়াল ঠিক উলম্বভাবে অর্থাৎ খাড়াভাবে গাঁথা হয়েছে।

### সতর্কতা এবং পর্যালোচনা :

১. চৌকোণা কাঠটি সোজাভাবে দেয়ালের স্পর্শ করতে হবে।
২. প্লাম্ব ববের বলটির দোলন বন্ধ হবার পর লক্ষ করতে হবে, প্লাম্ব ববের বলটি আলতোভাবে স্পর্শ করছে কী না।
৩. দেয়ালের বিভিন্ন স্থানে একইভাবে প্লাম্ব ববের সাহায্যে ইহা খাড়াভাবে উঠেছে অর্থাৎ তৈরি হয়েছে কীনা যাচাই করতে হবে।



চিত্রঃ ৪ শুলন (Plumb Bob)

## কাজ বা জব নং-২ : স্পিরিট লেভেলের ব্যবহার

### **মূলতত্ত্ব (Theory) :**

ইটের দেয়ালের প্রতিটি স্তর (Layer), ভূমির সাথে সমান্তরাল হবে অর্থাৎ প্রতিটি স্তর গাঁথুনি একই লেভেলে থাকবে। ইহা স্পিরিট লেভেলের সহায়তা পরীক্ষা করা হয়।

### **যন্ত্রপাতি (Apparatus) :** স্পিরিট লেভেল।

### **কার্যপদ্ধতি (Procedure) :**

একটি সমতল কাঠ গাঁথুনির উপর রেখে তার উপর স্পিরিট লেভেলটি বসানো হয়। গাঁথুনি যদি ভূমির সমান্তরাল হয় অর্থাৎ গাঁথুনির মাথা যদি সব ছানে একই লেভেলে বা সমতলে থাকে, তাহলে স্পিরিট লেভেলের বুদবুদটাও টিউবের ঠিক মাঝখানে থাকবে। আর যদি বুদবুদটা ঠিক মাঝখানে না থেকে এদিক-ওদিক সরে যায়, তাহলে বুবতে হবে গাঁথুনির স্তরটি আনুভূমিক তলে নেই, বরং যে কোন এক দিকে ঢাল হয়ে আছে। বুদবুদটি যে দিকে সরে যায়, দেয়ালে সে দিকটা উচু হয়েছে। বস্তুত: যে লেভেল পর্যন্ত গাঁথুনি ভুল গাঁথা হয়েছে, সে স্তর (Layer) পর্যন্ত ভেঙ্গে ফেলে নতুন করে গাঁথুনি তৈরি করতে হবে।

### **কার্যফল (Result) :** গাঁথুনি যদি ভূমি সমান্তরাল হয়, তা হলে স্পিরি লেভেলের বুদবুদটাও ঠিক কেন্দ্র বিন্দুতে থাকবে।

### **সতর্কতা এবং পর্যালোচনা :**

১. যান্ত্রিক ক্রটি ভালোভাবে পর্যবেক্ষণ করতে হবে, যাতে ইহা ক্রটিহীন হয়।
২. পরীক্ষণীয় গাঁথুনির উপর স্পিরিট লেভেল বসাতে হবে।
৩. বসানোর পর দেখতে হবে স্পিরিট লেভেলের বুদবুদটা ঠিক মাঝখানে আছে কীনা।
৪. স্পিরিট লেভেলের বুদবুদটা ঠিক মধ্যখানে থাকলে বুবতে হবে গাঁথুনির ভূমির সমান্তরাল হয়েছে।



## কাজ বা জব নং-৩ : লুকাস্পিত বা আবরিত পাইপ (নল) সংযোগকরণ

---



---

### মালামাল :

১. পাইপ
২. পাইপ ফিটিংস
৩. ফিকচারস
৪. ব্রাকেট ইত্যাদি

### যন্ত্রপাতি (Apparatus) :

|                                    |                   |
|------------------------------------|-------------------|
| ১. গাঁতি                           | ২. শাবল           |
| ৩. কোদাল                           | ৪. মেজারিং টেপ    |
| ৫. ক্লাইবার                        | ৬. কাটিং ফুইড     |
| ৭. হ্যাক'স ও ব্রেড অথবা পাইপ কাটার | ৮. পাইপ ভাইস      |
| ৯. ট্যাপ ও ট্যাপ বেঞ্চ             | ১০. ডাই ও ডাইস্টক |
| ১১. পাইপ রেঞ্চ                     | ১২. চেইন রেঞ্চ    |

### কার্যপ্রণালি (Procedure) :

১. লুকায়িত বা আবরিত পাইপ সংস্থাপনের পূর্বে সংশ্লিষ্ট ইমারতের নকশা সংগ্রহ করতে হবে।
২. নকশা সংগ্রহের পর উক্ত নকশা অনুযায়ী যে যে স্থানে পাইপ সংস্থাপন করা প্রয়োজন, তার একটি খসড়া অঙ্কন করতে হবে।
৩. খসড়া নকশা অনুসারে একটি লে-আউট প্ল্যান অঙ্কন করতে হবে।
৪. লে-আউট প্ল্যান অনুসারে প্রয়োজনীয় পাইপ, ফিটিংস ও অন্যান্য সাজ-সরঞ্জামাদি সংগ্রহ করতে হবে।
৫. পাইপ সংস্থাপনের জন্য যে সকল যন্ত্রপাতির প্রয়োজন হবে, তা আগেই সংগ্রহ রাখতে হবে।
৬. প্রথমে দালানের এবং পরে দালানের বাইরের দেয়ালে পাইপ সংস্থাপন করতে হবে।
৭. সর্বশেষ দালানের বাইরে মাটি খনন করে পাইপ সংস্থাপনের কাজ সম্পন্ন করতে হবে।
৮. পাইপ লাইন সংস্থাপনের প্রয়োজনীয় ঢাল বজায় রাখতে হবে, নতুবা প্রবাহে বিম্ব ঘটবে।
৯. পাইপ জোড়া দেওয়া এবং ফিটিংস লাগানোর সময় বিশেষ সর্তকতা অবলম্বন করতে হবে, যাতে পানি না চোয়ায়।
১০. পাইপ নম্বুরী ঢালের বিপরীত থেকে ক্রমশ উপরের দিকে বসাতে হবে।
১১. পরিখার তলদেশের মাটি ইট বসিয়ে বা কংক্রিট দিয়ে দূর করে নিতে হবে।

## কাজ বা জব নং-৪ : সোকপিট নির্মাণকরণ

### **মূলতন্ত্র (Theory) :**

সেপটিক ট্যাংক হতে যে তরল নির্গত হয় তা সম্পূর্ণ দুগর্খর্ষুক এবং ক্ষতিকারক। এই দূষিত তরলকে অতিকারক অবসায় রূপান্তরিত করার জন্য যে প্রকোষ্ঠ ব্যবহৃত হয়, তাকে সোকপিট বলে। ইহার দেয়াল ইটের তৈরি জারফি করা। ইহার আকৃতি সাধারণত গোলাকার।

### **মালামাল :**

১. ইট
২. সিমেন্ট কথকিটের ঢালাইকৃত গোলাকার রিং
৩. ঝামা, আধলা ইট
৪. মোটা ও মধ্যম বালি এবং
৫. সিমেন্ট

### **যন্ত্রপাতি (Apparatus) :**

|                   |            |
|-------------------|------------|
| ১. কর্ণি          | ২. শুলন    |
| ৩. স্পিনিট        | ৪. শুনিয়া |
| ৫. বাঞ্চলী        | ৬. কড়াই   |
| ৭. সুতলি          | ৮. বালতি   |
| ৯. মগ             | ১০. কোদাল  |
| ১১. বেলচা ইত্যাদি |            |

### **কার্যপদ্ধতি (Procedure) :**

১. কাজ শুরু করার আগে প্রয়োজনীয় মালামাল ও যন্ত্রপাতি সংগ্রহ করতে হবে।
২. অতঃপর নকশা অনুযায়ী মাটিতে পরিখা খনন করতে হবে।
৩. মাটি কাটার পর ঘশলা তৈরি করে গোলাকার কুয়ার জাফরি (ছিদ্রময়) দেয়াল ইট দিয়ে গাঁথতে হবে।
৪. কুয়ার দেয়াল মাটির উপরে প্রায় ০.৬০ মিটার উচু রাখা হয়।
৫. সেপটিক ট্যাংক থেকে পাইপের সাথে সোকপিটের সংযুক্ত অংশের উপরিভাগের ইটের দেয়ালের ভিতরের দিক সিমেন্ট প্লাস্টার করে দিতে হবে।
৬. এবার প্রথমে মোটা বালির স্তর এবং তার উপর বড় আকারের ইটে টুকরার (আধলা ইটের) স্তর দিতে হবে।
৭. ইহার উপর আবার মোটা বালি এবং তার উপর বড় আকারের ইটের টুকরা কয়েকটি স্তরে বিছিয়ে সোকপিটের কুয়াটি পূর্ণ করতে হবে।
৮. সবশেষে সোকপিটটি সেপটিক ট্যাংকের সাথে সংযুক্ত করে ঢাকনা দিয়ে ঢেকে দিতে হবে।

## কাজ বা জব নং-৫ : ট্যাপ ও ডাই দিয়ে বড় ব্যাসের পাইপের সাথে ছোট ব্যাসের পাইপ সংযোগকরণ

### মালামাল :

১. বড় ব্যাসের পাইপ
২. ছোট ব্যাসের পাইপ এবং
৩. রিডিউসিং সকেট।

### যন্ত্রপাতি (Apparatus) :

|                                    |                                         |
|------------------------------------|-----------------------------------------|
| ১. হ্যাক'স ও ব্রেড অথবা পাইপ কাটার | ২. ট্যাপ                                |
| ৩. পাইপ ভাইস                       | ৪. ট্যাপ রেঞ্চ                          |
| ৫. মেজারিং টেপ বা ফিতা             | ৬. ডাই                                  |
| ৭. স্ক্রাইবার                      | ৮. ডাই স্টক                             |
| ৯. স্টিল রুল                       | ১০. পাইপ রেঞ্চ                          |
| ১১. কাটিং ফুইড                     | ১২. চেইন রেঞ্চ এবং অ্যাডজাস্টেবল রেঞ্চ। |
| ১৩. লোহার তারের ব্রাশ              |                                         |

### কার্যপদ্ধতি (Procedure) :

১. বড় ব্যাসের পাইপের প্রান্ত হতে যে দৈর্ঘ্য কাটা হবে, তা ফিতা বা মেজারিং টেপ দিয়ে মেপে স্ক্রাইবার দিয়ে দাগ দাও। দাগের স্থান ১২.৫ মিমি: (১/২ ইঞ্চি) বাইরে রেখে পাইপ ভাইসে সমান্তরালভাবে পাইপটি আটকাও।
২. চিহ্নিত স্থানে হ্যাক'স ব্রেড অথবা পাইপ কাটার স্থাপন করে ফ্রেমকে সামান্য কাত করে এবং সামনের দিকে কিছুটা ঢালু করে ধরে হ্যাক'স ব্রেড তিন চার বার সামনের দিকে ঢালাও। এবার ডান হাতে হ্যাক'স ফ্রেমের হাতল এবং বাঁহাতে ফ্রেমের মাথা ধরে দাগের উপর দিয়ে মিনিটে ৪০-৫০ বার হ্যাক'স চালাতে হবে। কাটা শেষ হবার পূর্বস্থ আস্তে আস্তে হ্যাক'স অথবা পাইপ কাটার চালাতে হবে।
৩. পাইপ কাটার সময় মাঝে মাঝে কাটিং ফুইড প্রয়োগ করতে হবে। হ্যাক'স বা পাইপ কাটার সামনে চালানোর সময় নিম্নমুখী চাপ দিবে এবং পিছনে টানার সময় হাঙ্কা চাপ দিবে। কাটা শেষ হলে দাগমত কাটা হয়েছে কীনা, তা পরীক্ষা করে দেখতে হবে।
৪. একই পদ্ধতিতে ছোট ব্যাসের পাইপটিও প্রয়োজনমতো কাটতে হবে।
৫. রিডিউসিং সকেটের ভিতরের অংশ উভয় দিকে পঁয়াচ কাটা থাকে। সেজন্য বড় এবং ছোট ব্যাসের পাইপের ভিতরের অংশে পঁয়াচ কাটতে হবে না।

৬. ডাইস্টকের ক্লুগলো ঘুরিয়ে ডাই ব্যাসের জায়গা ফাঁক করা। সঠিক মাপের নির্বাচিত ডাই এখন ডাইস্টকে বসিয়ে ক্লুগলো ঘুরিয়ে ডাই শক্ত করে আটকাও। এ্যাডজাস্টিং ক্লু বা লিভারের সাহায্যে ডাই নির্দিষ্ট মাপের চেয়ে এককু ওভার সাইজে সেট করা।
৭. বড় ব্যাসের পাইপের উপরিভাগের মাথা যতটুকু অংশে প্যাচ কাটবে তা ক্রাইবার দিয়ে চিহ্নিত কর। পাইপকে খাড়ভাবে রেখে পাইপ ভাইসে শক্ত করে আটকাও, যেন পাইপের দাগ দেওয়া মাথা ভাইসের বাইরে ৮-১০ সেমি. বেরিয়ে থাকে।
৮. পাইপের মাথায় কাটিং ফ্লাইড লাগাও। সামান্য চাপ দিয়ে পাইপের মাথায় ডাইস্টক বসিয়ে সেট কর এবং পাইপের সাথে লম্বভাবে রাখা ডাইস্টকের দু'মাথা দুই হাতে ধরে নিচের দিকে সমানভাবে চাপ দিয়ে দু-তিন প্যাচ ডান দিকে ঘুরাও। এবার দুই হাতে ডাইস্টকের হাতল ধরে ডান দিকে দু-এক প্যাচ ঘুরানোর পর উল্টা দিকে আধা প্যাচ ঘুরাও। এভাবে পাইপের চিহ্নিত অংশে প্যাচ কাটা সম্পন্ন কর এবং ঐ মাপের রিডিউসিং সকেট পরিয়ে প্যাচ কাটা সঠিকভাবে সম্পন্ন হয়েছে কীনা দেখ।
৯. একই পদ্ধতিতে ছেট ব্যাসের পাইবের উপরিভাগের মাথায় প্যাচ কাটা হবে।
১০. উভয় ব্যাসের পাইপের উপরিভাগে প্যাচ কাটার অংশ পরিষ্কার কর।
১১. পাইপ ভাইসে ভূমি সমান্তরাল করে বড় ব্যাসের পাইপ আটকাও।
১২. পাইপের মাথায় প্রথমে হাত দিয়ে একটি রিডিউসিং সকেট পরাও।
১৩. তারপর রিডিউসিং সকেটটি পাইপ রেখণ দিয়ে ডান প্যাচে ঘুরিয়ে ভালোভাবে টাইট দাও।
১৪. একইভাবে ছেট ব্যাসের পাইপ উপরিভাগে প্যাচ কাটার পর রিডিউসিং সকেটের অপর প্রান্ত এর ভিতর ঢুকিয়ে পাইপ রেখণ দিয়ে টাইট করে আটকাও।  
এভাবেই বড় ব্যাসের পাইপের সাথে ছেট ব্যাসের পাইপের সংযোগকরণ সম্পন্ন হয়।



বড় ব্যাসের পাইপের সাথে ছোট ব্যাসের পাইপ সংযোগ করণ।



ফ্রেজিং ডাই



অ্যাজাজেবল রেঞ্চ



পাইপে প্যাচ কাটা

## কাঞ্জ বা জব নং-৬ : এলবো তৈরিকরণ

**মালামাল :**

১. জি.আই পাইপ
২. কাটিং ফুইড
৩. অয়ার ব্রাস ইত্যাদি

**যন্ত্রপাতি (Apparatus) :**

১. হ্যাক'স
২. পাইপ কাটার
৩. পাইপ ভাইস
৪. স্কাইবার
৫. স্টিল রুল
৬. ট্যাপ ও ট্যাপ রেঞ্চ ইত্যাদি

**কার্যপ্রণালি (Procedure) :**

১. নিচের চিত্র অনুযায়ী একটি এলবো তৈরি করতে হবে।
২. প্রয়োজনমতো পাইপ কেটে পাইপের ভেতরের ছিদ্র পথে উভয়দিকে মাপ অনুযায়ী পাঁচ কাটতে হবে।
৩. ট্যাপ ও ট্যাপ রেঞ্চের সাহায্যে পাইপের ভিতরে পাঁচ কাটতে হবে।
৪. পরে পাইপ বাঁকানো মেশিন দিয়ে  $90^{\circ}$  কোণে এলবো তৈরি কর।
৫. টেম্পেলেট ব্যবহার করেও এলবো তৈরি করা যায়।
৬. এছাড়া পাঁচবিহান এলবো দোকান থেকে ক্রয় করে খ্রেড কেটেও ব্যবহারযোগ্য এলবো তৈরি করা যায়।



চিত্রঃ ১২৬ এলবো (Elbow)

## কাজ বা জব নং-৭ : “টি” (Tee) তৈরিকরণ

**মূলতত্ত্ব :** কোন পাইপ লাইন থেকে এক সমকোণে একটি শাখা লাইন সংযোগ করতে “টি” ব্যবহার করা হয়।

**মালামাল :**

১. হাক'স
২. পাইপ কাটার
৩. পাইপ ভাইস
৪. ক্লাইবার
৫. স্টিল রুল
৬. ট্যাপ ও ট্যাপ রেঞ্চ ইত্যাদি

**কার্যপদ্ধতি (Procedure) :**

১. নিচর চিত্র অনুযায়ী একটি “টি” তৈরি করতে হবে।
২. বাজার থেকে খ্রেড বিহীন “টি” ত্রন্য করে খ্রেড কেটে “টি” তৈরি কর।
৩. এছাড়া পাইপ কেটেও “টি” তৈরি করা যায়। ব্রেজিং করে  $90^{\circ}$  কোণে শাখা লাইন মেইন লাইনের সাথে সংযুক্ত।
৪. এবার “টি” এর খোলা মাথার ভিতরের দিকে ট্যাপ ও ট্যাপ রেঞ্চ দিয়ে মাপমতো পঁয়াচ কাট।



চিত্রঃ ১২৮ “টি” (Tee)

## কাঞ্জ বা জব নং-৮ : বাথটাব (Bath Tub) সংযোগকরণ

### মালামাল :

১. বাথটাব
২. ঠাণ্ডা পানি এবং গরম পানির টেলিফোন শাওয়ার
৩. ওয়েস্ট ওয়াটার পাইপ
৪. সকেট
৫. এলবো
৬. জি.আই. পাইপ

### যন্ত্রপাতি (Apparatus) :

১. হ্যাক'স ও ব্রেড অথবা পাইপ কাটার
২. পাইপ ভাইস
৩. মেজারিং টেপ
৪. স্কাইবার
৫. স্টিল রুল
৬. কাটিং ফুইড
৭. স্টিল তারের ব্রাস
৮. ট্যাপ ও ট্যাপ রেঞ্চ
৯. ডাই ও ডাই স্টক
১০. পাইপ রেঞ্চ
১১. চেইন রেঞ্চ
১২. এ্যাডজাস্টেবল রেঞ্চ

### কার্যপদ্ধতি (Procedure) :

১. নির্ধারিত বাথরুমে বসাবার জন্য স্থান নির্বাচন করতে হবে।
২. নির্ধারিত স্থানে বেইস বা ভিত্তি এমনভাবে তৈরি করতে হবে, যাতে ওয়েস্ট ওয়াটার পাইপ ছেট দেয়ালের পাশে থাকে।
৩. এবার বাথটাব বেইস এর উপর বসাতে হবে।
৪. বাথটাব বসানোর পর ঠাণ্ডা এবং গরম পানির জন্য টেলিফোন শাওয়ার এর সংযোগ দিতে হবে।
৫. বাথটাব থেকে ব্যবহৃত পানি নিষ্কাশনের জন্য ট্যাপসহ ওয়েস্ট ওয়াটার পাইপ সংযোগ করতে হবে।
৬. পানি দিয়ে ভর্তি করার পর এতে গোসল সম্পন্ন করতে হবে।
৭. গোসল শেষে ব্যবহৃত ময়লা পানি ওয়েস্ট ওয়াটার পাইপের সহায়তায় বাথটাব থেকে বের করে দিতে হবে।
৮. বাথটাব প্রায়ই লম্বা দেয়ালের সাথে গা ঘেষে দৈর্ঘ্য সমান্তরাল বসানো হয়।



## কাজ বা জব নং-৯ : মুদ্রাধার (Urinals)-এ স্বয়ংক্রিয় পানি প্রবাহ পদ্ধতির সংযোগকরণ

---



---

### মালামাল :

১. মুদ্রাধার (Bowl pattern)
২. স্বয়ংক্রিয় ফ্লাশিং সিস্টার্ন
৩. সকেট
৪. এলবো
৫. টি (Tee)
৬. ক্রশ
৭. পাইপ
৮. নিপল
৯. প্লাগ
১০. ব্রেকেট
১১. ওয়েস্ট ওয়াটার পাইপ ইত্যাদি

### যন্ত্রপাতি (Apparatus) :

১. হ্যাক স ও ব্রেড অথবা পাইপ কাটার
২. টিল তারের ব্রাস
৩. পাইপ ভাইস
৪. মেজারিং টেপ
৫. ক্রাইবার
৬. স্টিল রুল
৭. কাটিং ফ্লাইড
৮. ট্যাপ ও ট্যাপে বেঞ্চ
৯. ডাই ও ডাই স্টক
১০. পাইপ বেঞ্চ
১১. চেইন বেঞ্চ
১২. এ্যাডজাস্টেবল রেঞ্চ ইত্যাদি ।

### কার্য়পালি (Procedure) :

১. বাটি আকৃতির মুদ্রাধার দেয়ালের সাথে আটকাতে হবে, যাতে দাঁড়িয়ে প্রসাব করা যায় । ইহা ইউরোপীয়ান বা স্ট্যাভিং বা জেন্টস টাইপ ইউরিনাল নামেও পরিচিত ।
২. ইহাকে মেঝে থেকে ৬০ সেমি: উপরে স্থাপন করতে হবে ।
৩. ইহার আকার সাধারণত  $45 \text{ সেমি:} \times 60 \text{ সেমি:} \times 100 \text{ সেমি:}$  হয়ে থাকে ।
৪. ইহাকে পাইপ ও ফিটিংস এর সহায়তায় উপরে স্থাপিত স্বয়ংক্রিয় ফ্লাশিং সিস্টার্নের সাথে সংযোগ দিতে হবে ।
৫. ইহাকে নিচে ওয়েস্ট ওয়াটার পাইপের সাহায্যে উন্মুক্ত নালার সাথে সংযোগ দিতে হবে ।

৬. মেয়েদের ব্যবহারের জন্য বিশেষ ভাবে তৈরি ক্ষোয়াটিং ইউরিনাল দেয়ালে কাছাকাছি মেঝেতে বসানো হয়ে থাকে। ইহা দেখতে বেসিনের মতো প্যান যা দেয়ালে দিকে ত্রুমশ ঢালু। ইহার সর্ব নিম্নতল জালিকায় ঢাকা থাকে। ইহার সংযোগ পদ্ধতি পূর্বে বর্ণিত পদ্ধতির অনুরূপ।



চিত্র : বাটি- আকৃতির মূলাধর

## কাজ বা জব নং-১০ : মসলা তৈরিকরণ

---



---

**মূলতত্ত্ব :** সিমেন্ট মসলা তৈরির দক্ষতা অর্জন।

**যালায়াজ :**

১. সিমেন্ট
২. বালি
৩. পানি

**যন্ত্রগাতি (Apparatus) :**

১. কর্ণি
২. ওলন
৩. কড়াই বাশলী
৪. পট্টা
৫. কোদাল
৬. মগ
৭. বালতি

**কার্য়পালি (Procedure) :**

১. প্রথমে চালনিকৃত পরিষ্কার বালি একটি প্লাটফর্মে রেশিও অনুযায়ী পরিমাপ করে স্তপ করতে হবে।
২. বালির পরিমাণ অনুযায়ী সিমেন্ট পরিমাপ করে স্তপকৃত বালির উপর ছড়িয়ে দিতে হবে।
৩. এরপর শুকনা সিমেন্ট বালিকে কোদাল/বেলচা দিয়ে ভালোভাবে মিশাতে হবে। যাতে সিমেন্ট-বালির মিশ্রণের রং কই রূপ হয়।
৪. স্তপকৃত সিমেন্ট বালির মাঝখানে গর্ত করে পরিমাণমতো পানি দিতে হবে। পানি যাতে উপচিয়ে না যায় সেদিকে লক্ষ রাখতে হবে।
৫. পানি শোষণ করার পর প্রয়োজন অনুযায়ী একদিক থেকে কোদাল/বেলচা দিতে মিশায়ে কড়াই করে কার্যস্থানে নিতে হবে।

## কাজ বা জব নং-১১ : ইঞ্জিশ বডে ২৫ সেমি: x ২৫ সেমি: (১০"x১০") কর্ণার দেয়াল নির্মাণকরণ

### মূলতন্ত্র :

ইঞ্জিশ বড (বাঁধন) গাঁথুনিতে এক স্তরে শুধু হেডার ইট এবং তার পরের স্তরে শুধু স্টেচার ইট স্থাপন করা হয় এবং এভাবে পর্যায়ক্রমে স্তরের পর স্তর গাঁথা হয়।

### মালামাল :

১. প্রয়োজনীয় সংখ্যাক ভালো ইট
২. পরিমাণমতো সিমেন্ট
৩. পরিমাণমতো বালি
৪. পরিমাণমতো পানি

### যন্ত্রপাতি (Apparatus) :

|                     |                   |
|---------------------|-------------------|
| ১. কর্ণি            | ২. উলন            |
| ৩. স্পিরিট লেভেল    | ৪. কড়াই          |
| ৫. সুতলি            | ৬. বাশলী          |
| ৭. মাটাম বা গুনিয়া | ৮. হাতুড়ি        |
| ৯. ফিতা             | ১০. বালতি         |
| ১১. মগ              | ১২. কোদাল ইত্যাদি |

### কার্যপ্রণালী (Procedure) :

১. নির্মাণস্থলের নিকটে সিমেন্ট ও বালি ১ : ২ অনুপাতে, মিশিয়ে পরিমিত পানি সংযোগে সিমেন্ট মশলা তৈরি করতে হবে।
২. ইট বসানোর পূর্বে কর্ণির সাহায্যে ইটের নিচে মশলা বিছিয়ে দিতে হবে। তারপর ইটের স্টেচার চেহারা সামনের দিকে রেখে পাশাপাশি দুইটি করে ইট (২৫ সেমি: পুরু) দেয়ালের দৈর্ঘ্য বরাবর বসাতে হবে।
৩. উপরোক্ত গাঁথুনির প্রান্ত থেকে ২৫ সেমি: পুরু কর্ণার দেয়াল প্রথম স্তরে একটি “কুইন ক্লোজার” ব্যবহার করে চিত্র অনুযায়ী ইটের হেডার চেহারা সামনের দিকে রেখে একটি করে ইট (২৫ সেমি: পুরু) কর্ণার দেয়ালের দৈর্ঘ্যের আড়াআড়ি করে বসাতে হবে।
৪. দ্বিতীয় স্তরে একটি কুইন ক্লোজারসহ সবগুলো হেডার ইট সামনের (চিত্রের ডান দিকে) দেয়ালে বসাতে হবে এবং কর্ণার দেয়ারে সবগুলো স্টেচার ইট বসাতে হবে।
৫. প্রতিটি ইট বসাবার পূর্বে উলম্ব জোড়ার স্থানে ১২.৫ মিমি (১/২") পুরু মশলা দিতে হবে।
৬. প্রতিটি ইট মশলার উপর বসিয়ে তাতে কর্ণি দিয়ে আঘাত করতে হবে যেন ইট ও মশলার মাঝে কোন ফাঁক না থাকে এবং ইটের তলা মশলা আকড়িয়ে ধরে।
৭. ইটগুলোকে প্রতি স্তরে সোজা সরলরেখা বরাবর বসাতে প্রথমেই স্তরের দুইমাথায় দুটো ইটে একটি সুতা টান টান করে বেঁধে নিতে হবে।

৮. মাটাম বা শুনিয়া দিয়ে দুই দেয়ালে মধ্যবর্তী কোণ সমকোণ হচ্ছে কীনা এবং ওলনের সাহায্যে দেয়াল ঠিক খাড়াভাবে উঠছে কীনা, তা মাঝে মাঝে পরীক্ষা করতে হবে।

৯. পর্যায়ক্রমে প্রথম ও দ্বিতীয় স্তরের গাঁথুনি অনুসরণ করে পরবর্তী স্তরগুলো গাঁথুনী শেষ করতে হবে।

### সাবধানতা :

১. ইট ভালোভাবে পরিষ্কার করে নিতে হবে।
২. ইট ভালোভাবে পানিতে ভিজিয়ে নিয়ে ব্যবহার করতে হবে।
৩. মসলা কার্যোপযোগী করে তৈরি করতে হবে অর্থাৎ তা যেন বেশি নরম বা বেশি শক্ত না হয়।
৪. কুইন ক্লোজার সঠিকভাবে তৈরি করতে হবে।



১ম, ২য় ও ৩য় ইটবর্টির তল

ইঞ্জিলিশ বড়ে কর্ণার দেয়াল

## কাজ বা জব নং-১২ : ইঞ্জিনিয়ারিং বড়ে বিভাজন (পার্টিশন) দেয়াল নির্মাণকরণ

---



---

### মালামাল :

১. প্রয়োজনীয় সংখ্যক ভালো ইট
২. পরিমাণমতো সিমেন্ট
৩. পরিমাণমতো বালি
৪. পরিমাণমতো পানি

### যন্ত্রপাতি (Apparatus) :

১. কর্নি
২. ওলন
৩. স্প্রিট লেভেল
৪. কড়াই
৫. সুতলি
৬. বাশুলী
৭. মাটাম বা গুনিয়া
৮. হাতুড়ি
৯. ফিতা
১০. বালতি
১১. মগ
১২. কোদাল ইত্যাদি

### কার্যঞ্চালি (Procedure) :

১. প্রথম স্তরের চিত্রানুযায়ী ৩৭.৫ সেমি: পুরু প্রধান দেয়ালের দৈর্ঘ্য বরাবর এবং মাঝখানে ২৫ সেমি: পুরু পার্টিশন দেয়ালের জন্য ইট বসাতে হবে। ইট বসাবার পূর্ব কর্নির সাহায্যে ইটের নিচে সিমেন্ট মসলা বিছিয়ে দিতে হবে।
২. দ্বিতীয় স্তরের চিত্রানুযায়ী প্রথম স্তরের উপর ইট বসাতে হবে।
৩. প্রতিটি ইট বসাবার পর তাতে কর্নি দিয়ে আঘাত করতে হবে, যাতে ইট ও মসলার মাঝে কোন ফাঁক না থাকে।
৪. ইটগুলোকে এক লাইনে সোজা রাখতে প্রতি স্তর গাঁথার আগে দুইমাথায় দুটো ইটে সূতা বেঁধে নিতে হবে।
৫. মাটাম দিয়ে দুই দেয়ালের মধ্যবর্তী কোণ ঠিক এক সমকোণ হচ্ছে কীনা এবং ওলনের সাহায্যে দেয়াল ঠিক খাড়াভাবে উঠছে কীনা, পরীক্ষা করে দেখতে হবে।
৬. পর্যায়ক্রমে প্রথম ও দ্বিতীয় স্তরের গাঁথুনি অনুসরণ করে পরবর্তী স্তরগুলো গাঁথুনি করতে হবে।



ইঞ্জিনিয়ারিং বডে পার্টিশন দেয়াল

## কাজ বা জব নং-১৩ : ইন্সপেকশন পিট (Inspection Pit) নির্মাণকরণ

---

### **মূলতত্ত্ব :**

বাস্তু এলাকায় বিভিন্ন দিক থেকে আগত পাইপ এবং বাস্তু-মল পাইপের সংযোগস্থলে একটি কক্ষ তৈরি করা হয়। এই কক্ষের কাজ হলো (ক) বাঁকের মুখে সিউয়েজ প্রবাহকে বাধা-মুক্ত করা এবং (খ) বাস্তু-মল পাইপের পরিস্কারকরণ, তত্ত্বাবধান ও পরীক্ষা-নিরীক্ষা করণে সহায়তা করা। তাই এ কক্ষের নাম ইন্সপেকশন চেম্বার।

### **মালামাল :**

১. সিমেন্ট
২. ইট
৩. বালি
৪. খোয়া
৫. এমএসরড
৬. বাইশ গেজি তার
৭. সেন্টারিং অ্যান্ড সাটারিং ম্যাটেরিয়ালস
৮. বিশুদ্ধ পানি ইত্যাদি।

### **যন্ত্রপাতি (Apparatus) :**

১. কর্ণি
২. ওলন
৩. কড়াই
৪. বাশলী
৫. শুনিয়া
৬. স্পিনিট লেভেল
৭. সুতলি
৮. বালতি
৯. ঘগ
১০. কোদাল
১১. বেলচা ইত্যাদি।

### **কার্যপ্রণালী (Procedure) :**

১. কাজ শুরু করার আগে মালামাল ও যন্ত্রপাতি সংগ্রহ করতে হবে।
২. প্রথমে নকশা অনুযায়ী মাটিতে দাগ চিহ্নিত করে মাটি খনন করতে হবে।
৩. মাটি কাটার পর ভিত্তির তলদেশ দুরমুশের সাহায্যে দৃঢ়ীকরণ করতে হবে।
৪. মাটি দৃঢ়ীকরণের পর ইট বিছিয়ে সোলিং করতে হবে।

৫. ইটের সোলিং এর উপর কঢ়িক্রিট (১:৩ : ৬) এমনভাবে ঢালাই করতে হবে যেন ইলপেকশন পিটেটির মেঝের মাঝখালে একটি অর্ধ-বৃত্তাকার নালা তৈরি হয়। এ নালার চাল আগম প্রাণ্ত থেকে ক্রমশ নির্গম প্রাণ্তের দিকে নিচু হবে।
৬. এবার ইলপেকশন পিটের দেয়াল ইট ও সিমেন্ট মসলা (১ : ৪) দিয়ে তৈরি করতে হবে।
৭. ইলপেকশন পিটের দেয়ালে প্রথমে ভিতরের দিক সিমেন্ট আন্তর (১ : ৪) করে পরবর্তীতে নিট সিমেন্ট ফিলিং দিতে হবে।
৮. সবশেষে পিটের উপর আরনিসি বা লোহা-কঢ়িক্রিটের স্ন্যাব ঢালাই করে ম্যানহোল ঢাকনা স্থাপন করতে হবে।



ইলপেকশন পিট

## কাজ বা জব নং-১৪ : সেপটিক ট্যাঙ্ক (Septic Tank) নির্মাণকরণ

### মূলত্ব :

গ্রামীণ বা আধা-গ্রীষ্মের এলাকায় যেখানে সিউজে নিষ্কাশন ব্যবস্থা স্থাপন করা সম্ভবপর নয়, সেখানে বাস্তুজ সিউরেজ স্থান্ত্য সম্ভাবনে অপসারণের জন্য সেপটিক ট্যাঙ্ক নির্মাণ করা হয়।

ইহা ইট বা কংক্রিটের তৈরি একটি আয়তকার পানি নিরোধক ট্যাঙ্ক। ইহার তলা পানি অভেদ্য কংক্রিট দিয়ে তৈরি। সেপটিক ট্যাঙ্কের দেয়ালগুলির ভেতরে সিমেন্ট প্লাস্টার করে পানি অভেদ্য করা হয়। উপরে থাকে আরসিসি স্ল্যাব এবং লোহার তৈরি ঢাকনা। ট্যাঙ্কের দৈর্ঘ্য সীমিত রাখতে পার্টিশন দেয়াল দিয়ে দুই বা তিনটি সমান কক্ষ ভাগ করে দেওয়া হয়। পায়খানা থেকে সিউরেজ সংয়োগে পাইপের মাধ্যমে সেপটিক ট্যাঙ্কে এসে পড়ে।

### মালামাল :

১. সিমেন্ট
২. ইট
৩. বালি
৪. খোয়া
৫. এম এস রড
৬. বাইশ গেজি তার
৭. সেন্টারিং অ্যান্ড সাটারিং ম্যাটেরিয়ালস
৮. বিশুল্প পানি ইত্যাদি।

### যন্ত্রপাতি (Apparatus) :

১. কর্ণি
২. ওলন
৩. কড়াই
৪. বাস্তুজী
৫. শুনিয়া
৬. স্পিরিট লেভেল
৭. সূতলি
৮. বালতি
৯. ঘগ
১০. কোদাল
১১. বেলচা ইত্যাদি

### **কার্য়পালি (Procedure) :**

১. কাজ শুরু করার আগে মালামাল ও প্রয়োজনীয় বস্তুগাত্তি সংগ্রহ করতে হবে।
২. প্রথমে নকশা অনুযায়ী মাটিতে দাগ কেটে মাটি খনন করতে হবে।
৩. এবার দুরমূল দিয়ে ভিত্তির মাটিকে দূরীকরণ করতে হবে।
৪. তারপর ইট বিছিন্নে সোলিং করতে হবে।
৫. ইটের সোলিং এর উপর সিমেন্ট কঢ়িক্রিট (১৫৩৩৬) দিয়ে সেপটিক ট্যাংকের মেঝে ঢালাই করতে হবে।
৬. ঢালাই শক্ত হলে ইট দিয়ে চারদিকের দেয়াল এবং মাঝের পার্টিশন দেয়াল ১ : ৬ অনুপাতে সিমেন্ট অসলা দিয়ে তৈরি করতে হবে।
৭. দেয়ালগুলোর ভিতরের পাশ সিমেন্ট-প্লাস্টার (১ : ৪) করে পানি অভ্যন্তর করতে হবে।
৮. ট্যাংকে সিউরেজ প্রোবেল ও নির্গমনের জন্য দেয়ালে প্রয়োজনীয় উচ্চতার পথ রাখতে হবে।
৯. সেপটিক ট্যাংকের তরলকে সোকপিটে স্থানান্তর করার জন্য নির্গমন পাইপের সাথে সোকপিটের সংযোগ দিতে হবে।
১০. সেপটিক ট্যাংকের উপরিভাগ আরসিসি স্ল্যাব দিয়ে ঢেকে দিতে হবে।
১১. সেপটিক ট্যাংক পরিদর্শন ও পরিকার করনের শক্ত স্ল্যাবে প্রয়োজনীয় সংখ্যক যানহোশের ঢাকনা সংরোজনের ব্যবস্থা করতে হবে।
১২. সেপটিক ট্যাংকের ভেতরের দুষ্প্রিয় গ্যাস বের করে দিতে গ্যাস নির্গমন পাইপ স্থাপন করতে হবে।



সেপটিক ট্যাংক

## কাঞ্জ বা জব নং-১৫ : সার্ফেস ড্রেন (Surface Drain) নির্মাণকরণ

---



---

### **যুগ্মতত্ত্ব :**

বৃষ্টির পানি ও সালেজ যে পাকা নালায় পতিত হয়ে খালে প্রবাহিত হয় তাকে নর্দমা বলে। এই সার্ফেস ড্রেন খোলা বা ঢাকনাযুক্ত পাকা নালা বিশেষ। ইহাতে কখনো মল থাকে না। ইহা আয়তকার, অর্ধাবৃত্তকার, ভি-আকার, ইউ-আকার ইত্যাদি ধরনের হয়ে থাকে।

### **মালামাল :**

১. ইট
২. বালি
৩. সিমেন্ট
৪. খোয়া
৫. লোহার রড ইত্যাদি

### **যন্ত্রপাতি (Apparatus) :**

|                  |            |
|------------------|------------|
| ১. কর্ণি         | ২. ওলন     |
| ৩. স্প্রিট লেভেল | ৪. কড়াই   |
| ৫. সুতলি         | ৬. বাশলী   |
| ৭. হাতুড়ি       | ৮. গুনিয়া |
| ৯. ফিতা          | ১০. বালতি  |
| ১১. ঘগ           | ১২. কোদাল  |
| ১৩. বেলচা        |            |

### **কার্যপদ্ধতি (Procedure) :**

১. মালামাল ও যন্ত্রপাতি সংগ্রহ করার পর নকশা অনুযায়ী নির্দিষ্ট ঢাল বজায় রেখে মাটি কাটতে হবে।
২. মাটি কাটার পর মশলা তৈরি করে ইট গেঁথে আকার অনুযায়ী নালা নির্মাণ করতে হবে।
৩. নালা নির্মাণ শেষে নালার তলা ও উপরিভাগ সিমেন্ট আস্তর করতে হবে। এটাই খোলা ড্রেন।
৪. প্রয়োজনে ঢাকনা তৈরি করে ঢেকে দিতে হবে। এটাই হলো ঢাকনাযুক্ত নালা বা নর্দমা বা সার্ফেস ড্রেন।



বাস্তার প্রধান সিউয়ারের সাথে হাউজ ড্রেনের সংযোগ



বিভিন্ন আকৃতির ছেল

## কাজ বা জব নং-১৬ : রেইন ওয়াটার ডাউন পাইপ স্থাপন

### মালামাল :

১. কাস্ট আয়রন/পিভিসি পাইপ/বোল্ট
২. ফিটিংস
৩. ব্রাকেট
৪. প্লাগ/স্কু
৫. সিমেন্ট
৬. বালু
৭. পানি

### যন্ত্রপাতি (Apparatus) :

১. মেজারিং টেপ
২. হেক্স ক্রমসহ ব্রেড
৩. হ্যামার
৪. চিজেল
৫. প্লাম বব
৬. কর্ণি
৭. ড্রিল মেশিন
৮. ম্যাশনারি ইত্যাদি

### কার্যপ্রণালি (Procedure) :

১. ড্রয়িং অনুসারে নির্দিষ্ট স্থানে উলম্ব পরিমাপ নিয়ে পাইপ সেট করতে হবে।
২. পরিমাপ অনুসারে উপর থেকে পাইপ বিল্ডিং এর ওয়ালের সাথে আটকাতে হবে।
৩. পিভিসি পাইপের ক্ষেত্রে পাইপ জোড়া দেয়ার জন্য নির্দিষ্ট সলিউশন ব্যবহার করতে হবে। যাতে কোন লিকেজ না থাকে।
৪. ছাড় থেকে বেল্ড পাইপের উপর স্থাপন করতে হবে যাতে ছাদের পানি সহজেই পাইপের ভিতরে চলে আসতে পারে এবং সিমেন্ট মসলা ঘারা ছিদ্র বন্ধ করে দিতে হবে।

### সাবধানতা :

১. জয়েন্টগুলো চেক করতে হবে যাতে কোন লিকেজ না থাকে।
২. পাইপটি দেয়ালের সাথে শক্তভাবে আটকাতে হবে। যাতে হেলে না যায়।





**২০১৮ শিক্ষাবর্ষ**  
**প্রাথমিক অ্যাড পাইপ ফিটিং-১**

শিক্ষা নিয়ে গড়ব দেশ  
শেখ হাসিনার বাংলাদেশ

কারিগরি শিক্ষা আত্মনির্ভরশীলতার চাবিকাঠি

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারে  
১০৯ নম্বর-এ (টোল ফ্রি, ২৪ ঘণ্টা সার্ভিস) ফোন করুন

২০১০ শিক্ষাবর্ষ থেকে গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক  
বিনামূল্যে বিতরণের জন্য