

IJCAI 2020, Yokohama, Japan

Measuring the Discrepancy between Conditional Distributions: Methods, Properties and Applications

Shujian Yu¹, Ammar Shaker¹, Francesco Alesiani¹, Jose C. Principe²

¹NEC Laboratories Europe GmbH

²University of Florida

Contact: Shujian.Yu@neclab.eu

Motivation

Compare distributions with only samples

- Transfer Learning / Multi-Task Learning
- Deep Generative Models
- ...

Divergence and Conditional Divergence in Machine Learning

- Kullback-Leibler (KL) divergence
 - $D_{\text{KL}}(p_1(x)||p_2(x)) = \int p_1(x) \log \frac{p_1(x)}{p_2(x)} dx$
- Maximum Mean Discrepancy (MMD)

•
$$D_{\text{MMD}}(p_1||p_2) = \left\| \mathbb{E}_{x \sim p_1}[\varphi(x)] - \mathbb{E}_{x' \sim p_2}[\varphi(x')] \right\|_{\mathcal{H}'} \varphi \colon \mathcal{X} \to \mathcal{H}$$

Wasserstein distance or optimal transport

•
$$W_2^2(p_1||p_2) = \inf_{P \in \Pi[p_1, p_2]} \int ||x_2 - x_1||^2 dP(x_1, x_2)$$

But ...

Our Target

- A novel sample estimator to the divergence $D(p_1(x)||p_2(x)), x \in \mathbb{R}^p$
- Extension to conditional divergence $D(p_1(y|x)||p_2(y|x))$, $x \in \mathbb{R}^p$, $y \in \mathbb{R}^q$
- Easy to estimate (e.g., avoid density estimation)

Our General Idea

- Divergence on Matrix M_1 and M_2 , $M \in \mathbb{S}_+^{p \times p}$
 - M_1 is a characterization of $p_1(x)$
 - M_2 is a characterization of $p_2(x)$
- Quantify divergence on $p_1(x)$ and $p_2(x)$ as the divergence on M_1 and M_2

Open problems

- ullet How to construct M_1 and M_2 from P_1 and P_2 ?
- How to measure $D_{\mathcal{M}}(M_1||M_2)$?

Open problems

- How to construct M_1 and M_2 from P_1 and P_2 ?
- Covariance matrix

$$\Sigma_{x} = \begin{bmatrix} \operatorname{var}(x_{1}) & \cdots & \operatorname{cov}(x_{1}, x_{p}) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(x_{p}, x_{1}) & \cdots & \operatorname{var}(x_{p}) \end{bmatrix} \in \mathbb{S}_{+}^{p \times p}$$

 $(\Sigma_x)_{ij} = \operatorname{cov}(x_i, x_i) = \mathbb{E}(x_i x_i) - \mathbb{E}(x_i)\mathbb{E}(x_i)$

covariance: only <u>linear</u> relationship; **2nd-order** statistics

Correntropy matrix

$$C_{x} = \begin{bmatrix} U(x_{1}) & \cdots & U(x_{1}, x_{p}) \\ \vdots & \ddots & \vdots \\ U(x_{p}, x_{1}) & \cdots & U(x_{p}) \end{bmatrix} \in \mathbb{S}_{+}^{p \times p}$$

$$(C_x)_{ij} = U(x_i, x_j) = \mathbb{E}[\kappa(x_i, x_j)] - \mathbb{E}_{x_i} \mathbb{E}_{x_j} [\kappa(x_i, x_j)]$$

 κ : a kernel function

 κ : a kernel function

centered correntropy^{1,2}:

- 1. <u>nonlinear</u> counterpart of covariance in kernel space
- 2. contains all <u>higher-order</u> information (depends on kernel)
- 1. Rao, Murali, Sohan Seth, Jianwu Xu, Yunmei Chen, Hemant Tagare, and Jose C. Principe. "A test of independence based on a generalized correlation function." Signal Processing, vol. 91, no. 1, pp. 15-27, 2011.
- 2. Santamaría, Ignacio, Puskal P. Pokharel, and Jose C. Principe. "Generalized correlation function: definition, properties, and application to blind equalization." *IEEE Transactions on Signal Processing*, vol. 54, no. 6, pp. 2187-2197, 2006.

Open problems

- Given $\{C_1, C_2\}$ or $\{\Sigma_1, \Sigma_2\}$, how to measure $D_{\mathcal{M}}(M_1||M_2)$?
- Bregman matrix divergence³ $D_{\varphi,B}$
 - $\varphi: \mathbb{S}_+ \to \mathbb{R}$ is a strictly convex, differentiable function
 - $D_{\omega,B}(M_1||M_2) = \varphi(M_1) \varphi(M_2) \operatorname{tr}((\nabla_{\omega}(M_2))^T(M_1 M_2))$
- If $\varphi(M) = \operatorname{tr}(M \log M M)$,
 - $D_{\omega,B}(M_1||M_2) = \operatorname{tr}(M_1 \log M_1 M_1 \log M_2 M_1 + M_2)$
 - von Neumann divergence (D_{nN})
- If $\varphi(M) = -\log |M|$,
 - $D_{\varphi,B}(M_1||M_2) = \operatorname{tr}(M_1M_2^{-1}) \log|M_1M_2^{-1}| p$
 - Log-Determinant divergence (D_{ID})

^{3.} Kulis, Brian, Mátyás A. Sustik, and Inderjit S. Dhillon. "Low-Rank Kernel Learning with Bregman Matrix Divergences." Journal of Machine Learning Research, vol. 10, no. 2, 2009.

Our Measure on $p_1(x)$ and $p_2(x)$

- ullet \mathcal{C}_{x_1} and \mathcal{C}_{x_2} : correntropy matrix evaluated at $P_1(x)$ and $P_2(x)$
- $D(P_1(x)||P_2(x)) = D_{\varphi,B}(C_{x_1}||C_{x_2})$

Our Measure on $p_1(y|x)$ and $p_2(y|x)$

- C_{x_1} and C_{x_2} : correntropy matrix evaluated at $P_1(x)$ and $P_2(x)$
- $C_{x_1y_1}$ and $C_{x_2y_2}$: joint correntropy matrix evaluated at $P_1(x,y)$ and $P_2(x,y)$
- $D(P_1(y|x)||P_2(y|x)) = D_{\varphi,B}(C_{x_1y_1}||C_{x_2y_2}) D_{\varphi,B}(C_{x_1}||C_{x_2})$

Bregman-Correntropy (Conditional) Divergence

- Properties of Bregman-Correntropy (Conditional) Divergence
 - Non-negative: $D_{\varphi,B}(C_{x_1y_1}||C_{x_2y_2}) D_{\varphi,B}(C_{x_1}||C_{x_2}) \ge 0$
 - Definiteness: suppose $y = W^T x$, $D_{\varphi,B}(C_{x_1,y_1}||C_{x_2,y_2}) D_{\varphi,B}(C_{x_1}||C_{x_2}) = 0$, iff $W_1 = W_2$
 - Reduce to KL divergence on Gaussian data as a baseline, if
 - $\varphi(X) = -\log |X|$
 - Replace C (correntropy matrix) with Σ (covariance matrix)

Applications

- Task Similarity in Multi-Task Learning
- Concept Drift Detection
- Feature Selection

Application: Task Similarity in Multi-Task Learning

Joint learning of multiple related tasks, e.g., T_1 , T_2 , ... Learn from each task a $f: x \to y$, usually $f \to p(y|x)$

Application: Task Similarity in Multi-Task Learning

Ground Truth: 29 tasks, tasks **1-15** are different from Tasks **16-29**

Application: Concept Drift Detection

- Objective: identify the change of $p_t(y|x)$ in a data stream
- Traditional methods (DDM⁴, PERM⁵, etc.)
 - Train a classifier $f: x \to y$
 - monitoring the distributional change of prediction error e = y f(x)
- Our method
 - Classifier-free
 - Explicitly monitoring the change of $p_t(y|x)$ by $D_{\varphi,B}(P_t(y|x)||P_{t'}(y|x))$

Method	Precision	Recall	Delay	Accuracy (%)
DDM	0.49	0.50	50	89.22
EDDM	0.69	0.82	230	92.60
HDDM	1	0.83	133	97.47
PERM	0.81	0.88	99	97.81
$vN(\Sigma)$	0.77	1	43	92.82
$LD(\Sigma)$	0.83	1	113	93.43
vN(C)	0.80	1	60	90.07
LD(C)	0.77	1	53	92.23

^{4.} Gama, Joao, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. "Learning with drift detection." In *Brazilian symposium on artificial intelligence*, pp. 286-295. Springer, Berlin, Heidelberg, 2004.

^{5.} Harel, Maayan, Shie Mannor, Ran El-Yaniv, and Koby Crammer. "Concept drift detection through resampling." In *International Conference on Machine Learning*, pp. 1009-1017. 2014.

Application: Feature Selection

- Objective: Given a set of features $S = \{x_1, x_2, ..., x_M\}$ and class label y, select a subset of features $S^* \subset S$ ($|S^*| \ll |S|$) to maximize classification accuracy.
- Traditional methods (from an information-theoretic perspective)
 - Maximize mutual information $I(y; S^*)$
- Our method
 - Maximize conditional divergence $D_{\varphi,B}\left(p(y|S^{\star})||p(y|\tilde{S})\right)$
 - \tilde{S} is "useless" feature set that has no predictive power to y.

$$\mathbf{I}(y; S^{\star}) = \iint P(y, S^{\star}) \log \frac{P(y, S^{\star})}{P(y)P(S^{\star})}$$

$$= \iint \left(P(y|S^{\star}) \log \frac{P(y|S^{\star})}{P(y)} \right) P(S^{\star})$$

$$= \mathbb{E}_{S}[D_{KL}(P(y|S^{\star})||P(y))]$$

$$= \mathbb{E}_{S}[D_{KL}(P(y|S^{\star})||P(y|\tilde{S}))],$$

Theoretical guarantee: the equivalence between our objective and maximizing mutual information $I(y; S^*)$.

Practical performance: vN(C) refers to our D_{vN} on correntropy matrix.

Conclusions

New Estimators on Divergence and Conditional Divergence

- Easy to estimate (avoid density estimation)
- Statistically more powerful than most of existing ones (e.g., KL)
- Applicable to numerous real-world applications
- Automatically differentiable

Deep Generative Autoencoder

$$L_{ours}(\theta, \phi) = \frac{1}{2} \mathbb{E}_{\hat{p}(x)} \left[\left\| x - D_{\theta} \left(E_{\phi}(x) \right) \right\|_{2}^{2} \right] + D_{\phi, B} \left(C_{q_{\phi}(z)} || C_{p(z)} \right)$$

Conclusions

New Estimators on Divergence and Conditional Divergence

- Easy to estimate (avoid density estimation)
- Statistically more powerful than most of existing ones (e.g., KL)
- Applicable to numerous real-world applications
- Automatically differentiable

Gaussian prior p(z)

Laplacian prior p(z)

Conclusions

- New Estimators on Divergence and Conditional Divergence
 - Easy to estimate (avoid density estimation)
 - Statistically more powerful than most of existing ones (e.g., KL)
 - Applicable to numerous real-world applications
 - Automatically differentiable
 - More notes in arXiv: https://arxiv.org/abs/2005.02196

Orchestrating a brighter world

