Applications of Power-on-Reset Circuit

Sree Vishnu Varthini S

Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamilnadu, India sreevishnu.varthinis2022ece@sece.ac.in

Abstract—This paper presents an accurate low-power power-on-reset (POR) circuit utilizing SKY130 PDK technology, addressing the demand for efficient solutions in IoT applications. By implementing a current reference and comparator architecture, the design achieves configurable trip voltages with minimal power overhead, enhancing performance in low-voltage systems while effectively managing supply noise and brown-out events.

Keywords— Power-on-reset, low-voltage, low-power, high accuracy, area efficient, Brown-out detection

I. INTRODUCTION

The increasing demand for low-power integrated circuits in Internet of Things (IoT) applications necessitates efficient power-on-reset (POR) circuits. These circuits are essential for ensuring that memory elements maintain a known state during power-up, thus preventing erratic behaviour in digital systems. Traditional POR designs often rely on bandgap references, which, while robust, can consume significant power. In contrast, this paper presents an accurate low-power POR circuit utilizing SKY130 PDK technology. By implementing a current reference and comparator architecture, our design achieves configurable trip voltages with minimal power overhead, enhancing performance in low-voltage applications while addressing challenges like supply noise and brown-out events.

II. APPLICATIONS

Power-On Reset (POR) circuits are commonly used in various electronic systems to ensure that components start up in a defined, predictable state. Here are some circuits where POR is used, along with brief descriptions and the impact of POR on each circuit:

A. Digital Signal Processors (DSPs)

DSPs, which handle signal processing tasks, use POR to reset internal logic, registers, and memory upon powering up, setting the processor to a controlled state.

Impact of POR: Ensures the DSP begins processing data from a clean, consistent state, avoiding errors in signal computation and processing.

B. Analog-to-Digital Converters (ADCs)

ADCs use POR to reset internal calibration registers and start at a default setting, ensuring accurate conversions.

Impact of POR: Enhances accuracy by preventing erroneous data conversions due to uninitialized states, crucial for high-precision applications.

Fig 1. Block Diagram of ADC

C. Power Management ICs

Power management ICs, responsible for distributing power to various components, utilize POR to ensure that the power sequencing begins in a controlled state.

Impact of POR: Avoids power sequencing errors that could damage components or cause system instability by ensuring consistent power-up sequences.

D. Field Programmable Gate Arrays (FPGAs)

FPGAs use POR to initialize internal configuration memory, logic blocks, and registers before loading user-defined configurations.

Impact of POR: Ensures that the FPGA configuration is loaded reliably and the logic circuits operate as expected, preventing logic errors and configuration corruption.

E. Voltage Regulators

Voltage regulators often integrate POR circuits to ensure output voltage stabilization before the connected circuits begin operating.

Impact of POR: Protects downstream circuits from voltage fluctuations during power-up, reducing the risk of component damage or erratic behavior.

Fig 2. Block Diagram of Voltage Regulator

III. CONCLUSION

In conclusion, the proposed low-power power-on-reset circuit demonstrates significant advancements in reliability and efficiency for low-voltage applications. By employing a current reference and comparator architecture, the design ensures accurate trip voltage detection while minimizing power consumption.

REFERENCES

- [1] Xinxin Ren, xiaoyu hu, Shushan Qiao. "An Ultra-Low-Power Reconfigurable Power-On Reset for Multi-Supply Voltages Applications". *Authorea.* January 21, 2023.
- [2] H. You, J. Yuan, Z. Yu and S. Qiao, "An Accurate Low-Power Power-on-Reset Circuit in 55-nm CMOS Technology," in *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 69, no. 8, pp. 3361-3365, Aug. 2022.
- [3] H.-B. Le, X.-D. Do, S.-G. Lee and S.-T. Ryu, "A Long Reset-Time Power-On Reset Circuit With Brown-Out Detection Capability," in *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 58, no. 11, pp. 778-782, Nov. 2011