Problem A

Play with Floor and Ceil

Input: standard input
Output: standard output
Time Limit: 1 second

Theorem

For any two integers \mathbf{x} and \mathbf{k} there exists two more integers \mathbf{p} and \mathbf{q} such that:

$$x = p \left\lfloor \frac{x}{k} \right\rfloor + q \left\lceil \frac{x}{k} \right\rceil$$

It's a fairly easy task to prove this theorem, so we'd not ask you to do that. We'd ask for something even easier! Given the values of \mathbf{x} and \mathbf{k} , you'd only need to find integers \mathbf{p} and \mathbf{q} that satisfies the given equation.

Input

The first line of the input contains an integer, T ($1 \le T \le 1000$) that gives you the number of test cases. In each of the following T lines you'd be given two positive integers x and k. You can safely assume that x and k will always be less than 10^8 .

Output

For each of the test cases print two integers: \mathbf{p} and \mathbf{q} in one line. These two integers are to be separated by a single space. If there are multiple pairs of \mathbf{p} and \mathbf{q} that satisfy the equation, any

one would do. But to help us keep our task simple, please make sure that the values, $p \left\lfloor \frac{x}{k} \right\rfloor$ and

$$q \left\lceil \frac{x}{k} \right\rceil$$
 fit in a **64** bit signed integer.

Sample Input

Output for Sample Input

3	1 1
5 2	1 1
40 2	0 6
24444 6	
	•

Problem setter: Monirul Hasan, Member of Elite Problemsetters' Panel Special Thanks: Shahriar Manzoor, Member of Elite Problemsetters' Panel