Lecture 19, Oct. 17

Midterm today 7:00-8:50

RCH 207 Sec 2

RCH 211 Sec 1 A-O

RCH 309 Sec 1 P-Z

19.1 Definition. A **ring** (with identity) is a set R with two distinct elements $0, 1 \in R$ and two binary operations $+: R^2 \to R$ and $\times: R^2 \to R$ where for $a, b \in R$ we write +(a, b) as a + b, $\times(a, b)$ as $a \times b$ or $a \cdot b$ or ab, such that

1. + is associative

$$\forall a, b, c \in R \ (a+b) + c = a + (b+c)$$

2. + is commutative

$$\forall a, b \in R \ a + b = b + a$$

3. 0 is an identity under +

$$\forall a \in R \ a + 0 = a$$

4. every $a \in R$ has an inverse under +

$$\forall a \in R \,\exists b \in R \,\, a+b=0$$

 $5. \times is$ associative

$$\forall a, b, c \in R \ (ab)c = a(bc)$$

6. 1 is an identity under \times

$$\forall a \in R \ a \cdot 1 = a \ \text{and} \ 1 \cdot a = a$$

7. \times is distributive over +

$$\forall a, b, c \in R \ a(b+c) = ab + ac \ and \ (a+b)c = ac + bc$$

A ring *R* is **commutative** when

8. \times is commutative

$$\forall a, b \in R \ ab = ba$$

A **field** is commutative ring R such that

9. every nonzero $a \in R$ has an inverse under \times .

$$\forall 0 \neq a \in R \exists b \in R \ ab = 1$$

19.2 Theorem. \mathbb{Z} is commutative Ring. \mathbb{Q} and \mathbb{R} are fields.

19.3 Example. N is not a ring (Axiom 4 does not hold)

 \mathbb{Z} is not a field (Axiom 9 does not work)

19.4 Example. The set of **integers modulo n**, denoted by \mathbb{Z}_n , is a ring for $n \in \mathbb{Z}$ with $n \ge 2$. Informally,

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$$

and addition and multiplication modulo n are denoted as follows:

for $a, b \in \mathbb{Z}_n$

 $a+b\in\mathbb{Z}_n$ is the remainder when $a+b\in\mathbb{Z}$ is divided by n $ab\in\mathbb{Z}_n$ is the remainder when $ab\in\mathbb{Z}$ is divided by n

In \mathbb{Z}_6 :

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4
×	0	1	2	3	4	5
× 0	0	1 0	0	3	4	5
0		0				
0 1 2	0	0	0	0	0	0
0	0	0	0	0	0	0 5
0 1 2	0 0	0 1 2	0 2 4	0 3 0	0 4 2	0 5 4

We shall see that \mathbb{Z}_n is a field if and only if n is prime

19.5 Example. The field of complex numbers is the set

$$\mathbb{C} = \mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}\$$

and for $x, y \in \mathbb{R}$ we write

$$0 = (0,0), 1 = (1,0), i = (0,1), x = (x,0), iy = yi = (0,y), x + iy = (x,y)$$

and we define + and \times as follows

for $a, b, c, d \in R$

$$(a+ib) + (c+id) = (a,b) + (c,d) = (a+c,b+d) = (a+c) + i(b+d)$$
$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

Remark. Check that when $(a, b) \neq (0, 0)$, a + ib has an inverse.

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$$

is a ring.

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$$

is a field.

$$\mathbb{Z}[\sqrt{3}i] = \{a + b\sqrt{3}i \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$$

is a ring.

$$\mathbb{Q}[\sqrt{3}i] = \{a + b\sqrt{3}i \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$$

is a field.

19.7 Example. If R is a ring (usually commutative), the set of polynomials

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

with coefficients $c_k \in R$ is a ring (under addition and multiplication of polynomials) which we denote by R[x]

19.8 Example. If
$$R$$
 is a ring, the set of all $n \times n$ matrices
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 with entries $A_{kl} = a_{kl} \in R$

is a ring, which we denote by $M_n(R)$ (or $M_{n\times n}(R)$) (under addition and multiplication of matrices.)

Remark. Matrices