Write your name here Surname	Other nar	mes
Edexcel GCE	Centre Number	Candidate Number
Physics Advanced Level Unit 6B: Experime International Alter		nl Assessment
Wednesday 19 May 2010	– Morning	Paper Reference
Time: 1 hour 20 minute	S	6PH08/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.

1	A student is taking measurements from a piece of wire.
	(a) She measures the diameter d using a micrometer. She obtains the following readings.

d/mm 0.27, 0.29, 0.26, 0.77, 0.26

(i)	Explain how you would use her readings to obtain the most accurate mean value
	for the diameter of the wire.

(1)

(ii)	Use her readings to obtain the most accurate mean v	value for the	he diameter	of the
	wire.			

(1)

Wire diameter =

(iii) Estimate the percentage uncertainty in your value for the diameter of the wire.

(2)

.....

Percentage uncertainty =

	length of wire = mass of wire = 0			
(i)	Use her measure	ments to calculate the volu	ime of the wire.	(2)
(ji)	Calculate the der	Voluments Volume	ume =	
(11)	Carculate the der	isity of the material of the	wite.	(2)
) The	tables below are	De taken from a data book.	nsity =	
) The	tables below are		nsity =	
		taken from a data book.		Diameter/mm 0.234
	Material nc alloy	taken from a data book. Density/kg m ⁻³	Standard thickness	Diameter/mn
Zi	Material nc alloy	Density/kg m ⁻³ 7200	Standard thickness 34 swg	Diameter/mn 0.234
Zi Iro Ni	Material nc alloy	Density/kg m ⁻³ 7200 7900	Standard thickness 34 swg 32 swg	Diameter/mm 0.234 0.274
Zi Iro Ni Co	Material nc alloy on ichrome onstantan	Density/kg m ⁻³ 7200 7900 8300 8900	Standard thickness 34 swg 32 swg 30 swg	0.234 0.274 0.315 0.376
Zi Iro	Material nc alloy on ichrome onstantan the information inkness.	Density/kg m ⁻³ 7200 7900 8300 8900	Standard thickness 34 swg 32 swg 30 swg 28 swg material of the wire and its	0.234 0.274 0.315 0.376

2 A student is investigating kinetic energy. He sets up the apparatus as shown.

The trolley starts from rest with the weight close to the pulley and at a height h above the floor.

(a) Describe how you would measure the height h. You may add to the diagram if you wish.

(1)

(b) The student records the distance h and the time t it takes for the weight to fall to the floor. His measurements are shown below.

$$h = 885 \text{ mm}$$

t/s	2.94	2.76	3.28	3.15	3.02

The maximum velocity of the trolley is given by $\frac{2h}{t}$

(i) Estimate the uncertainty in the value for h. This should relate to your method in part (a).

(1)

		(1)
(iii)	Calculate the mean maximum velocity.	(1)
	The mass of the trolley is 0.930 kg and the falling weight has a mass of	
	0.030 kg. Calculate a value for the total maximum kinetic energy of the trolley and weight.	(1)
	Maximum kinetic energy =	
(v)	Estimate the percentage uncertainty in your calculated value for the kinetic energy. Assume the uncertainty in the values of both masses is negligible.	(2)
	Percentage uncertainty =(Total for Question 2 = 7 mai	

3	In 2006 astronomers determined a new value for the Hubble constant. They calculated
	the velocity of recession v for a number of stars at a distance d from the Earth. They
	used units of km s ⁻¹ for v and Mpc (Megaparsecs) for d .

	3371 4 1 1 4	4 11	4	1 1 4	1 6 0
a	wnat might an	astronomer actually	/ measure to	calculate a	value for v?

(1)

(b) The graph below is a plot of their data.

(i) Draw a line of best fit for this data.

(1)

(ii) Determine the gradient of your line.

(2)

Gradient =

(c) (i) Hubble's law states that ν is directly proportional to d . Explain whether the plotted data supports Hubble's law. (ii) The value of the gradient is the Hubble constant. Until 2006, the accepted value of the Hubble constant was 71 km s ⁻¹ Mpc ⁻¹ . Calculate the percentage difference between this accepted value and your value. (1) Percentage difference =	plotted data supports Hubble's law. (ii) The value of the gradient is the Hubble constant. Until 2006, the accepted value of the Hubble constant was 71 km s ⁻¹ Mpc ⁻¹ . Calculate the percentage difference between this accepted value and your value. (1) Percentage difference =			
Until 2006, the accepted value of the Hubble constant was 71 km s ⁻¹ Mpc ⁻¹ . Calculate the percentage difference between this accepted value and your value. (1) Percentage difference =	Until 2006, the accepted value of the Hubble constant was 71 km s ⁻¹ Mpc ⁻¹ . Calculate the percentage difference between this accepted value and your value. (1) Percentage difference =	(c) (i)		(1)
		(ii)	Until 2006, the accepted value of the Hubble constant was 71 km s ⁻¹ Mpc ⁻¹ .	
	(Total for Question 3 – 6 marks)			
			(Total for Question 3 = 6 ma	rks)

You have a source of rad experiment to confirm th	liation and a detector and co at the source emits gamma	ounter. Describe brief radiation.	ly a simple
enperment to commit a	are the source entits gamma	140141170111	(3)

(b) You are provided with sheets of lead and apparatus to support them safely betwee the source and the detector.	en
The thickness of lead affects the count rate. Describe the measurements you wo make to investigate this.	uld
Your description should include:	
• a variable you will control to make it a fair investigation	
 how you will make your results as accurate as possible 	
• one safety precaution.	
	(6)

	-							
(c)	For gamma	POUC POCCIE	a through	Lland of	thickness v	the count r	ata A ic	GIVAN h
101	TOI gaiiiiia	Tavs Dassii	ւջ սուժաջո	i icau oi	α	. me count i	aic A is	SIACH D

$$A = A_0 e^{-\mu x}$$

where A_0 is the count rate when there is no lead between source and detector, and μ is a constant.

Explain why a graph of ln A against x should be a straight line.

(1)

(d) The following data were obtained in such an investigation.

The background count was 40 minute⁻¹.

x/mm	Measured Count Rate / minute ⁻¹	
0	1002	
6.30	739	
12.74	553	
19.04	394	
25.44	304	
31.74	232	

Use the column(s) provided for your processed data, and then plot a suitable graph on the grid opposite to show that these data are consistent with $A = A_0 e^{-\mu x}$.

(5)

(e) Use your graph to determine a value for the constant	μ . (2)
μ	
	(Total for Question 4 = 17 marks)
TV	OTAL EOD DADED 40 MADIZO

TOTAL FOR PAPER = 40 MARKS

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Coulomb's law constant $k = 1/4\pi\epsilon_0$

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^{-2} \text{ kg}^{-2}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \ F \ m^{-1}$

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

Proton mass $m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \ W \ m^{-2} \ K^{-4}$

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/mW = mg

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2}mv^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young's modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_1\mu_2 = \sin i/\sin r = v_1/v_2$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VI efficiency $P = I^2R$

 $P = V^2/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T=2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_2/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E = kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BIl \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

Unit 5

Energy and matter

Heating $\Delta E = mc\Delta\theta$

Molecular kinetic theory $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$

Ideal gas equation pV = NkT

Nuclear Physics

Radioactive decay $dN/dt = -\lambda N$

 $\lambda = \ln 2/t_{1/2}$

 $N = N_0 e^{-\lambda t}$

Mechanics

Simple harmonic motion $a = -\omega^2 x$

 $a = -A\omega^2 \cos \omega t$ $v = -A\omega \sin \omega t$ $x = A \cos \omega t$ $T = 1/f = 2\pi/\omega$

Gravitational force $F = Gm_1m_2/r^2$

Observing the universe

Radiant energy flux $F = L/4\pi d^2$

Stefan-Boltzmann law $L = \sigma T^4 A$

 $L = 4\pi r^2 \sigma T^4$

Wien's Law $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$

Redshift of electromagnetic

radiation $z = \Delta \lambda / \lambda \approx \Delta f / f \approx v / c$

Cosmological expansion $v = H_0 d$