Projet 3 : Anticipez les besoins en consommation d'un bâtiments

Antoine Maby - 25/08/2021

Problématique

- Prédire les émissions de CO2 et la consommation totale d'énergi	aies	d'éner	totale	consommation	O2 et la	de	émissions	Prédire les	-
---	------	--------	--------	--------------	----------	----	-----------	-------------	---

- Des relevés ont été effectué en 2015-2016 mais ils sont coûteux

- Objectif: Prédire en fonction des données déclaratives du permis d'exploitation commerciale

Evaluer l'intérêt de l'ENERGIE STAR Score

Nettoyage et Feature Engineering

- Fusion des deux databases par année et moyenne sur les bâtiments

- Suppression des outliers répertorier

- Suppression des données moyennées sur le climat

- Création de nouvelles variables (Age bâtiment, Ratio des surfaces)

Passage au logarithme pour obtenir distribution normale

Passage au logarithme pour obtenir distribution normale

Régression Ridge

Hyperparamètres:

- alpha

Cross validation pour l'énergie

```
Fitting 5 folds for each of 200 candidates, totalling 1000 fits

Best R2: [0.56523004]

Best MAE: [-0.65049045]

Temps moyen [0.01060333] s

Best Params: {'Ridge_alpha': 178.34308769319094}

Fitting 5 folds for each of 200 candidates, totalling 1000 fits

Best R2: [0.42514713]

Best MAE: [-0.87870694]

Temps moyen [0.00880232] s

Best Params: {'Ridge_alpha': 246.5811075822604}
```

Régression Lasso

Hyperparamètres:

- alpha

Cross validation pour l'énergie

```
Fitting 5 folds for each of 200 candidates, totalling 1000 fits

Best R2: [0.57311699]

Best MAE: [-0.64302703]

Temps moyen [0.01801257] s

Best Params: {'Lasso_alpha': 0.01762914118095948}

Fitting 5 folds for each of 200 candidates, totalling 1000 fits

Best R2: [0.43203837]

Best MAE: [-0.87051355]

Temps moyen [0.02160492] s

Best Params: {'Lasso_alpha': 0.02354286414322418}
```

Elastic Net

Hyperparamètres:

- alpha
- l1_ratio

Cross validation pour l'énergie

```
Fitting 5 folds for each of 625 candidates, totalling 3125 fits

Best R2: [0.57311657]

Best MAE: [-0.64304808]

Temps moyen [0.01540456] s

Best Params: {'Elastic_alpha': 0.01778279410038923, 'Elastic_l1_ratio': 1.0}
```

Elastic Net

Hyperparamètres:

- alpha
- l1_ratio

```
Fitting 5 folds for each of 625 candidates, totalling 3125 fits

Best R2: [0.4320347]

Best MAE: [-0.87054647]

Temps moyen [0.02320571] s

Best Params: {'Elastic_alpha': 0.023713737056616554, 'Elastic_l1_ratio': 1.0}
```

SVR

Hyperparamètres:

- C
- Epsilon

Cross validation pour l'énergie

```
Fitting 5 folds for each of 625 candidates, totalling 3125 fits

Best R2: [0.55278879]

Best MAE: [-0.65138984]

Temps moyen [0.52911696] s

Best Params: {'svr_C': 2.8729848333536645, 'svr_epsilon': 0.3831186849557287}
```

SVR

Hyperparamètres:

- C
- Epsilon

```
Fitting 5 folds for each of 625 candidates, totalling 3125 fits

Best R2: [0.40556503]

Best MAE: [-0.88557567]

Temps moyen [0.07601595] s

Best Params: {'svr_C': 0.11006941712522095, 'svr_epsilon': 0.5623413251903491}
```

Random Forest

Hyperparamètres:

- n_estimator
- max_depth
- min_samples_leaf
- min_samples_split

Cross validation pour l'énergie

```
Fitting 5 folds for each of 192 candidates, totalling 960 fits

Best R2: [0.71108208]

Best MAE: [-0.51963341]

Temps moyen [1.60067663] s

Best Params: {'rfr_max_depth': 30, 'rfr_min_samples_leaf': 1, 'rfr_min_samples_split': 20, 'rfr_n_estimators': 250}
```

Random Forest

Hyperparamètres:

- n_estimator
- max_depth
- min_samples_leaf
- min_samples_split

```
Fitting 5 folds for each of 144 candidates, totalling 720 fits

Best R2: [0.53101241]

Best MAE: [-0.79977567]

Temps moyen [1.64377007] s

Best Params: {'rfr_max_depth': 30, 'rfr_min_samples_leaf': 1, 'rfr_min_samples_split': 15, 'rfr_n_estimators': 250}
```

Gradient Boosting

Hyperparamètres:

- n_estimator
- max_depth
- min_samples_leaf
- min_samples_split
- Learning rate

Cross validation pour l'énergie

```
Fitting 5 folds for each of 432 candidates, totalling 2160 fits

Best R2: [0.72203752]

Best MAE: [-0.51290138]

Temps moyen [0.71427555] s

Best Params: {'gbr_learning_rate': 0.1, 'gbr_max_depth': 1, 'gbr_min_samples_leaf': 1, 'gbr_min_samples_split': 6, 'gbr_n_estimators': 500}
```

Gradient Boosting

Hyperparamètres:

- n_estimator
- max_depth
- min_samples_leaf
- min_samples_split
- Learning rate

```
Fitting 5 folds for each of 576 candidates, totalling 2880 fits

Best R2: [0.5426816]

Best MAE: [-0.79631872]

Temps moyen [0.79732223] s

Best Params: {'gbr_learning_rate': 0.2, 'gbr__max_depth': 1, 'gbr__min_samples_leaf': 5, 'gbr__min_samples_split': 2, 'gbr__n _estimators': 500}
```

Modèle pour la consommation énergétique

level_0	mean_fit_time	mean_score_time	mean_test_neg_mean_absolute_error	mean_train_neg_mean_absolute_error	mean_test_r2	mean_train_r2
RandomForest	1.600677	0.026206	-0.519633	-0.368704	0.711082	0.860362
XGBoost	0.714276	0.001601	-0.512901	-0.460724	0.722038	0.777682
LinearSVR	0.529117	0.002402	-0.651390	-0.591132	0.552789	0.631904
ElasticNet	0.015405	0.001801	-0.643048	-0.599357	0.573117	0.636991
Ridge	0.010603	0.002000	-0.650490	-0.594795	0.565230	0.638732
Lasso	0.018013	0.001600	-0.643027	-0.599161	0.573117	0.637166

Modèle pour la consommation énergétique

Sans Transformation inverse r2 test: 0.7131305666343533

Avec Transformation inverse r2 test: 0.70739557891258

Modèle pour les émissions de CO2

level_0	mean_fit_time	mean_score_time	mean_test_neg_mean_absolute_error	mean_train_neg_mean_absolute_error	mean_test_r2	mean_train_r2
RandomForest	1.643770	0.027607	-0.799776	-0.536476	0.531012	0.790141
XGBoost	0.797322	0.002801	-0.796319	-0.713765	0.542682	0.635263
LinearSVR	0.076016	0.001600	-0.885576	-0.808275	0.405565	0.514011
ElasticNet	0.023206	0.001799	-0.870546	-0.818243	0.432035	0.505321
Ridge	0.008802	0.001601	-0.878707	-0.811984	0.425147	0.508202
Lasso	0.021605	0.001801	-0.870514	-0.818058	0.432038	0.505520

Modèle pour les émissions de CO2

Sans Transformation inverse r2 test: 0.5221212849918768

Avec Transformation inverse r2 test: 0.52988631091429

Ajout de la variable Energy Star Score

Ce score permet de réaliser plusieurs actions

- Évaluer les données énergétiques réelles facturées
- Normaliser pour l'activité commerciale
- Comparer les bâtiments à la population
- Indiquer le niveau de performance énergétique

Modèle pour la consommation énergétique

Sans Transformation inverse r2 test: 0.8672808422775804

Avec Transformation inverse r2 test: 0.8970965554970651

Modèle pour les émission de CO2

Sans Transformation inverse r2 test: 0.6888315999991013

Avec Transformation inverse r2 test: 0.6960562323176634

- Tests des modèles avec outliers : pas d'améliorations

- Création d'un pickle avec tous les modèles

- Création d'une classe pour prédire les émissions pour un nouveau bâtiment

Merci pour votre attention