Common Regression Methods

Name	Formula	Definition	Significance
Ordinary Least Squares (OLS)	$\min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2$	Minimizes the sum of squared residuals be- tween observed and predicted values	Provides unbiased, efficient estimates under classical assumptions; foundation for many statistical models. Closed-form: Yes $(\beta=(X^TX)^{-1}X^Ty)$; Cost: $O(nd^2+d^3)$
Ridge Regression	$\min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \ \beta\ _2^2$	OLS with ℓ_2 penalty on coefficients	Shrinks coefficients to reduce variance; useful for multicollinearity and high-dimensional data. Closed-form: Yes $(\beta = (X^TX + \lambda I)^{-1}X^Ty)$; Cost: $O(nd^2 + d^3)$
Lasso Regression	$\min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \ \beta\ _1$	OLS with ℓ_1 penalty on coefficients	Promotes sparsity; performs variable selection and regularization. Closed-form: No; solved by coordinate descent or convex optimization; Cost: iterative, $O(ndk)$ for k iterations
Elastic Net	$ \min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda_1 \ \beta\ _1 + \lambda_2 \ \beta\ _2^2 $	Combines ℓ_1 and ℓ_2 penalties	Balances sparsity and shrinkage; effective when predictors are correlated. Closed-form: No; solved by coordinate descent or convex optimization; Cost: iterative, $O(ndk)$ for k iterations
Least Absolute Deviations (LAD)	$\min_{\beta} \sum_{i=1}^{n} y_i - X_i \beta $	Minimizes the sum of absolute residuals	Robust to outliers; estimates the conditional median. Closed-form: No; solved by linear programming or iterative methods; Cost: iterative, $O(ndk)$
Huber Regression		Hybrid loss: quadratic for small residuals, linear for large	Robust to outliers while retaining efficiency for small errors. Closed-form: No; solved by iterative reweighted least squares (IRLS); Cost: iterative, $O(ndk)$
Quantile Regression	$\min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(y_i - X_i \beta)$ $\rho_{\tau}(r) = r(\tau - \mathbb{I}\{r < 0\})$	Estimates conditional quantiles (e.g., median)	Useful for modeling heterogeneous effects and non- normal errors. Closed-form: No; solved by linear programming; Cost: iterative, $O(ndk)$
Principal Component Regression (PCR)	OLS on principal components of X	Projects predictors onto principal components before regression	Reduces dimensionality and multicollinearity; interpretable in terms of variance explained. Closed-form: Yes (after PCA); Cost: $O(nd^2 + d^3)$ for PCA and OLS
Partial Least Squares (PLS)	OLS on latent variables maximizing covariance between \boldsymbol{X} and \boldsymbol{y}	Finds components that explain both pre- dictors and response	Useful when predictors are highly collinear and $p>n$. Closed-form: No; solved by iterative algorithms (NIPALS, SIMPLS); Cost: iterative, $O(ndk)$
LOWESS/LOESS	$\hat{y}_i = \sum_{j=1}^n w_{ij} y_j$ w_{ij} : local weights from kernel	Locally weighted scat- terplot smoothing; fits simple models to local neighborhoods	Captures nonlinear trends without a global parametric form. Closed-form: No; local weighted least squares at each point; Cost: $O(n^2)$ for n points
Kernel Regres- sion (Nadaraya- Watson)	$\hat{y}(x) = \frac{\sum_{i=1}^{n} K(x, x_i) y_i}{\sum_{i=1}^{n} K(x, x_i)}$	Weighted average using a kernel function centered at \boldsymbol{x}	Flexible, smooths data without assuming a parametric form. Closed-form: No; direct computation for each x ; Cost: $O(n)$ per prediction

Continued on next page

			Table continued from previous page
Name	Formula	Definition	Significance
Spline Regression	$\min_{f \in \mathcal{S}} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(x))^2 dx$	Fits piecewise polyno- mials joined at knots; penalizes roughness	Models complex nonlinear relationships with smoothness control. Closed-form: Yes (for smoothing splines); Cost: $O(n)$ to $O(n^3)$ depending on method
k-Nearest Neigh- bors Regression	$\hat{y}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$	Averages the k nearest neighbors' responses for prediction	Non-parametric, adapts to local data structure. Closed-form: No; requires distance computation for each query; Cost: $O(n)$ per prediction