

$$\lim_{\vec{x} \to \vec{x}_0} \vec{f} (\vec{x}) = \vec{L} \quad \stackrel{si \ y \ solo \ si}{\longleftrightarrow} \quad \forall \varepsilon > 0, \exists \delta > 0 \mid \underbrace{\forall \vec{x} \in B_{\delta}'(\vec{x}_o) \cap D_{\vec{f}}}_{0 < ||\vec{x} - \vec{x}_o|| < \delta \land \vec{x} \in D_{\vec{f}}} \Rightarrow \underbrace{\vec{f} (\vec{x}) \in B_{\varepsilon}(\vec{L})}_{||\vec{f}(\vec{x}) - \vec{L}|| < \varepsilon}$$

$$\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x}) = \vec{L}$$

significa que $\forall B_{\varepsilon}(\vec{L})$ que se tome siempre es posible conseguir un $B_{\delta}'(\vec{x}_{o})$ tal que $\vec{f}(S) \subset B_{\varepsilon}(\vec{L})$.

TEOREMA "FUNDAMENTAL" DE LÍMITE

Sea

$$* \vec{f} : D_{\vec{f}} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$\vec{f}(\vec{x}) = (f_1(\vec{x}), \cdots, f_m(\vec{x}))$$

donde f_i : $D_{f_i} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, $i = 1, \dots, m$

$$*\vec{L} \in \mathbb{R}^m$$

$$\vec{L}=(L_1,\cdots,L_m)$$

Entonces

$$\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x}) = \vec{L} \iff \lim_{\vec{x} \to \vec{x}_0} f_i(\vec{x}) = L_i \text{ para cada } i = 1, \cdots, m$$

$$\begin{cases} \lim_{\vec{x} \to \vec{x}_0} f_1(\vec{x}) = L_1 \\ \vdots \end{cases}$$

$$\lim_{\vec{x} \to \vec{x}_0} f_m(\vec{x}) = L_m$$

Por el teorema "fundamental" de límite, el análisis de límites de funciones

$$\vec{f} \colon D_{\vec{f}} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

se reduce al análisis de los límites de sus funciones coordenadas que son campos escalares:

$$f_i:D_{f_i}\subset\mathbb{R}^n\longrightarrow\mathbb{R},\ i=1,\cdots,m$$

$$f \colon D_f \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

principalmente de 2 y 3 variables, es decir con n = 2 y 3.

Por ejemplo, para demostrar que:

$$\lim_{\substack{(x,y)\\ \overrightarrow{x}}} \underbrace{\lim_{(x_0,y_0)}}_{\overrightarrow{x}_0} f(x,y) = L$$

se utiliza la definición ε - δ de límite.

Y para realizar las demostraciones se emplean algunas relaciones tales como las

siguientes:

 \mathbb{R}^3

$$\vec{x} = (x, y)$$

$$\|\vec{x}\| = \sqrt{x^2 + y^2}$$
; $\|\vec{x}\|^2 = x^2 + y^2$
 $|x| = \sqrt{x^2} \le \|\vec{x}\|$; $|x|^2 = x^2 \le \|\vec{x}\|^2$

$$|y| = \sqrt{y^2} \le ||\vec{x}|| \; ; \; |y|^2 = y^2 \le ||\vec{x}||^2$$

$$\vec{x} = (x, y, z)$$

$$\vec{x} = (x, y, z)$$

n=3

$$\vec{x} = (x, y, z)$$

$$\|\vec{x}\| = \sqrt{x^2 + y^2 + z^2}$$
; $\|\vec{x}\|^2 = x^2 + y^2 + z^2$

$$|x| = \sqrt{x^2} \le ||\vec{x}|| \; ; \qquad |x|^2 = x^2 \le ||\vec{x}||^2 |y| = \sqrt{y^2} \le ||\vec{x}|| \; ; \qquad |y|^2 = y^2 \le ||\vec{x}||^2 |z| = \sqrt{z^2} \le ||\vec{x}|| \; ; \qquad |z|^2 = z^2 \le ||\vec{x}||^2$$

$$|y| = \sqrt{y^2} \le ||\vec{x}||$$
; $|y|^2 = y^2 \le ||\vec{x}||^2$

$$|z| = \sqrt{z^2} \le ||\vec{x}||$$
 ; $|z|^2 = z^2 \le ||\vec{x}||^2$

Otra relación útil es la desigualdad triangular:

$$\left\| \vec{a} + \vec{b} \right\| \le \left\| \vec{a} \right\| + \left\| \vec{b} \right\| \; ; \; \vec{a}, \vec{b} \; \in \mathbb{R}^n$$

EJERCICIOS

1. Para las siguientes funciones demuestre que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

a)
$$f(x,y) = \frac{x^2y^3}{\sqrt{x^2+y^2}}$$

Solución:

$$f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$$

$$D_f = \{(x, y) \in \mathbb{R}^2 | (x, y) \neq (0, 0) \}$$

$$\vec{x} = (x, y)$$

$$\vec{x}_0 = (0,0) = \vec{0}$$
 punto de acumulación del D_f

$$L = 0$$

Aplicando la definición de límite

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < ||\vec{x} - \vec{x}_o|| < \delta \land \vec{x} \in D_f \Rightarrow |f(\vec{x}) - L| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \|\vec{x} - \vec{0}\| < \delta \land \vec{x} \in D_f \Rightarrow \left| \frac{x^2 y^3}{\sqrt{x^2 + y^2}} - 0 \right| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \|\vec{x}\| < \delta \Rightarrow \left| \frac{x^2 y^3}{\sqrt{x^2 + y^2}} \right| = \frac{x^2 |y^3|}{\sqrt{x^2 + y^2}} = \frac{x^2 |y|^3}{\sqrt{x^2 + y^2}} \le \frac{\|\vec{x}\|^2 \|\vec{x}\|^3}{\|\vec{x}\|} = \|\vec{x}\|^4 < \delta^4 < \varepsilon$$

Basta con tomar $\delta < \sqrt[4]{\varepsilon}$ para que se cumpla la definición de límite, por lo tanto queda demostrado que:

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

b)
$$f(x, y) = \frac{3x^2y}{x^2+y^2}$$

Solución:

$$D_f = \{(x, y) \in \mathbb{R}^2 | (x, y) \neq (0, 0) \}$$

$$\vec{x} = (x, y)$$

$$\vec{x}_0 = (0,0) = \vec{0}$$
 punto de acumulación del D_f

$$L = 0$$

Aplicando la definición de límite

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \|\vec{x} - \vec{0}\| < \delta \land \vec{x} \in D_f \Rightarrow \left| \frac{3x^2y}{x^2 + y^2} - 0 \right| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \|\vec{x}\| < \delta \Rightarrow \left| \frac{3x^2y}{x^2 + y^2} \right| = \frac{3x^2|y|}{x^2 + y^2} \le \frac{3\|\vec{x}\|^2 \|\vec{x}\|}{\|\vec{x}\|^2} = 3\|\vec{x}\| < 3\delta < \varepsilon$$

Basta con tomar $\delta < \frac{\varepsilon}{3}$ para que se cumpla la definición de límite, por lo tanto queda demostrado que:

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

$$c) f(x,y) = \frac{|x|y}{\sqrt{x^2 + y^2}}$$

Solución:

$$D_f = \{(x,y) \in \mathbb{R}^2 | (x,y) \neq (0,0) \}$$

$$\vec{x} = (x, y)$$

$$\vec{x}_0 = (0,0) = \vec{0}$$
 punto de acumulación del D_f

$$L = 0$$

Aplicando la definición de límite

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \|\vec{x} - \vec{0}\| < \delta \land \vec{x} \in D_f \Rightarrow \left| \frac{|x|y}{\sqrt{x^2 + y^2}} - 0 \right| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \|\vec{x}\| < \delta \Rightarrow \left| \frac{|x|y|}{\sqrt{x^2 + y^2}} \right| = \frac{|x||y|}{\sqrt{x^2 + y^2}} \le \frac{\|\vec{x}\| \|\vec{x}\|}{\|\vec{x}\|} = \|\vec{x}\| < \delta < \varepsilon$$

Basta con tomar $\delta < \varepsilon$ para que se cumpla la definición de límite, por lo tanto queda demostrado que:

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

d)
$$f(x,y) = \frac{x^2y^2}{x^2+y^2}$$

e) $f(x,y) = \frac{y^4}{x^2+y^2}$

e)
$$f(x,y) = \frac{y^4}{x^2 + y^2}$$

TEOREMA UNICIDAD DEL LÍMITE

Sea

$$\ast\,\vec{f}\!:\!D_{\vec{f}}\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$$

 $*\vec{x}_0$ punto de acumulación del $D_{\vec{f}}$

Si
$$\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x}) = \vec{L}_1$$
 Λ $\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x}) = \vec{L}_2$ entonces $\vec{L}_1 = \vec{L}_2$

Por el teorema de unicidad del límite, dada una función $\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m$, se tiene que si existe el $\lim_{\vec{x} \to \vec{x}_0} \vec{f}$ entonces éste es único.

Esto significa que si

$$\lim_{\substack{\vec{x} \to \vec{x}_0 \\ \text{limite irrestricto} \\ \text{o simult áneo}}} \vec{f}(\vec{x}) = \vec{L}$$

entonces independientemente de la manera en que nos acerquemos a \vec{x}_0 sobre un conjunto $S \mid S \cap D_{\vec{f}}$ admita a \vec{x}_0 como punto de acumulación, el límite llamado

restringido: $\lim_{\substack{\vec{x} \to \vec{x}_0 \\ \vec{x} \in S}} \vec{f}(\vec{x}) = \vec{L}.$

Es decir:

todos los restringidos

deben dar
$$\vec{L}$$

$$\overrightarrow{\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x})} = \vec{L}$$

$$\vec{x} \in S_i$$

 $S_i \mid S_i \cap D_{\vec{f}}$ admita a \vec{x}_0 como punto de acumulación

Este hecho permite utilizar un mecanismo simple que sirve en algunos casos para demostrar la no existencia de un límite dado.

Este mecanismo es el siguiente:

* Con sólo conseguir 2 trayectorias diferentes de acercamiento a \vec{x}_0 (sobre 2 conjuntos S_1 y S_2 tales que tanto $S_1 \cap D_{\vec{f}} \wedge S_2 \cap D_{\vec{f}}$ admitan a \vec{x}_0 como punto de acumulación) para las cuales:

$$\lim_{\substack{\vec{x} \to \vec{x}_0 \\ \vec{x} \in S_1 \\ restringido}} \vec{f}(\vec{x}) = \vec{L}_1 \quad \text{y} \quad \lim_{\substack{\vec{x} \to \vec{x}_0 \\ restringido}} \vec{f}(\vec{x}) = \vec{L}_2$$

Entonces, si

$$\vec{L}_1 \neq \vec{L}_2$$
 = los límites restringidos tienen diferentes valores

$$\exists \lim_{\substack{\vec{x} \to \vec{x}_0 \\ \text{simult áneo}}} \vec{f}(\vec{x}) .$$

Pero si $\vec{L}_1 = \vec{L}_2 \not \Rightarrow \exists \underbrace{\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x})}_{simult \ \'{a}neo}$. No es suficiente para asegurar que el límite irrestricto

o simultáneo exista.

* 0 bien, consiguiendo una trayectoria de acercamiento a \vec{x}_0 sobre un conjunto $S \mid S \cap D_{\vec{f}}$ admita a \vec{x}_0 como punto de acumulación para el cual:

Observación

Por ejemplo, considerando una función con el siguiente dominio y los 3 conjuntos S_1, S_2 y S_3 , se tiene que:

- $S_1 \cap D_{\vec{f}}$ no admite a \vec{x}_0 como punto de acumulación.
- $S_2 \cap D_{\vec{f}}$ y $S_3 \cap D_{\vec{f}}$ admiten a \vec{x}_0 como punto de acumulación.

EJERCICIOS (continuación)

2. Para las siguientes funciones, demuestre usando límites iterados que no existe $\lim_{(x,y) \to (0,0)} f(x,y)$.

a)
$$f(x,y) = \frac{x-y}{x+y}$$

b)
$$f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$$

c)
$$f(x,y) = \frac{y^4}{x^4 + y^4}$$

3. Para las siguientes funciones demuestre que no existe $\lim_{(x,y)\to(0,0)} f(x,y)$.

a)
$$f(x,y) = \frac{x}{x+y}$$

Solución:

$$\lim_{x \to 0} \left[\lim_{y \to 0} \left(\frac{x}{x+y} \right) \right] = \lim_{x \to 0} \left[\frac{x}{x} \right] = \lim_{x \to 0} (1) = 1 = L_1$$

$$\lim_{y \to 0} \left[\lim_{x \to 0} \left(\frac{x}{x+y} \right) \right] = \lim_{y \to 0} \left[\frac{0}{y} \right] = 0 = L_2$$

Como
$$L_1 \neq L_2 \Rightarrow \nexists \lim_{(x,y) \to (0,0)} f(x,y).$$

b)
$$f(x,y) = \frac{x^2}{x+y}$$

Solución:

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid y \neq -x \}$$

$$S_k = \{(x, y) \in \mathbb{R}^2 | y = kx^2 - x, k \neq 0 \}$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S}} \left(\frac{x^2}{x+y}\right) = \lim_{x\to 0} \left(\frac{x^2}{x+kx^2-x}\right) = \lim_{x\to 0} \left(\frac{x^2}{kx^2}\right) = \frac{1}{k}$$

Como depende del parámetro k, su valor no es único $\Rightarrow \nexists \lim_{(x,y)\to(0,0)} f(x,y)$, es decir por ejemplo si tomamos primero

$$k = 1 \Rightarrow L_1 = \frac{1}{k}\Big|_{k=1} = 1$$
, y luego $k = 2 \Rightarrow L_2 = \frac{1}{k}\Big|_{k=2} = \frac{1}{2}$

Como
$$L_1 \neq L_2 \Rightarrow \nexists \lim_{(x,y)\to(0,0)} f(x,y).$$

c)
$$f(x,y) = \frac{x}{|x|+|y|}$$

Solución:

$$D_f = \mathbb{R}^2 - \{(0,0)\}$$

Dado que $\lim_{x \to 0} \left[\lim_{y \to 0} \left(\frac{x}{|x| + |y|} \right) \right] = \lim_{x \to 0} \left[\frac{x}{|x|} \right]$ y como $\nexists \lim_{x \to 0} \left[\frac{x}{|x|} \right] \Rightarrow \nexists \lim_{(x,y) \to (0,0)} f(x,y)$

$$y = \frac{x}{|x|} \qquad 1$$

$$\lim_{x \to 0^{+}} \left[\frac{x}{|x|} \right] = 1$$

$$\lim_{x \to 0^{-}} \left[\frac{x}{|x|} \right] = -1$$

d) $f(x,y) = \frac{x^2}{x^2+y^2}$

Solución:

$$D_f = \mathbb{R}^2 - \{(0,0)\}$$

$$\lim_{x \to 0} \left[\lim_{y \to 0} \left(\frac{x^2}{x^2 + y^2} \right) \right] = \lim_{x \to 0} \left[\frac{x^2}{x^2} \right] = 1 = L_1$$

$$\lim_{y \to 0} \left[\lim_{x \to 0} \left(\frac{x^2}{x^2 + y^2} \right) \right] = \lim_{y \to 0} \left[\frac{0}{y^2} \right] = 0 = L_2$$

Como $L_1 \neq L_2 \Rightarrow \nexists \lim_{(x,y)\to(0,0)} f(x,y).$

e)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

Solución:

$$D_f = \mathbb{R}^2 - \{(0,0)\}$$

$$S = \{(x, y) \in \mathbb{R}^2 | y = mx \}$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S}} \left(\frac{xmx}{x^2+m^2x^2}\right) = \lim_{x\to 0} \left(\frac{mx^2}{x^2(1+m^2)}\right) = \frac{m}{1+m^2}$$

Como depende del parámetro m, su valor no es único $\Rightarrow \nexists \lim_{(x,y)\to(0,0)} f(x,y)$.

$$f(x,y) = \frac{y^2}{y^2 + x^4}$$

Solución:

$$D_f = \mathbb{R}^2 - \{(0,0)\}$$

$$\lim_{x \to 0} \left[\lim_{y \to 0} \left(\frac{y^2}{y^2 + x^4} \right) \right] = \lim_{x \to 0} \left[\frac{0}{x^4} \right] = 0 = L_1$$

$$\lim_{y \to 0} \left[\lim_{x \to 0} \left(\frac{y^2}{y^2 + x^4} \right) \right] = \lim_{y \to 0} \left[\frac{y^2}{y^2} \right] = 1 = L_2$$

Como
$$L_1 \neq L_2 \Rightarrow \nexists \lim_{(x,y)\to(0,0)} f(x,y).$$

$$g) f(x,y) = \frac{xy^2}{x^2 + y^4}$$

Solución:

$$D_f = \mathbb{R}^2 - \{(0,0)\}$$

$$S = \{(x, y) \in \mathbb{R}^2 | x = k y^2 \}$$

Como depende del parámetro k, su valor no es único $\Rightarrow \nexists \lim_{(x,y)\to(0,0)} f(x,y)$.

CONTINUIDAD

DEFINICIÓN

Sea $\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m$, decimos que \vec{f} es continua en $\vec{x}_0 \in D_{\vec{f}}$ si y sólo si \vec{x}_0 es punto (frontera) aislado del $D_{\vec{f}}$ ó $\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x}) = \vec{f}(\vec{x}_0)$.

EJERCICIOS

1. Determine el conjunto de puntos en que f es continua cuando:

a)
$$f(x, y, z) = \frac{2xyz}{x-y}$$

Solución:

Por ser un cociente de polinomios, se cumple que $\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = f(\vec{x}_0)$ para cualquier $\vec{x}_0 \in D_f = \{(x, y, z) \in \mathbb{R}^3 \mid y \neq x\}$, es decir, es continua en todo su dominio.

b)
$$f(x, y) = tan(xy)$$

Solución:

Es continua en todo su dominio, ya que se cumple que $\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = f(\vec{x}_0)$ para cualquier $\vec{x}_0 \in D_f = \left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, xy \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\}$

c)
$$f(x,y) = \frac{1}{x^2 + 2x + y^2}$$

Solución:

Por ser un cociente de polinomios, se cumple que $\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = f(\vec{x}_0)$ para cualquier $\vec{x}_0 \in D_f = \{(x,y) \in \mathbb{R}^2 \mid x^2 + 2x + y^2 \neq 0\}$, es decir, es continua en todo su dominio.

d)
$$f(x,y) = e^{x+y}$$

Solución:

Se cumple que $\lim_{\vec{x}\to\vec{x}_0} f(\vec{x}) = f(\vec{x}_0)$ para cualquier $\vec{x}_0 \in D_f = \mathbb{R}^2$. Es continua en \mathbb{R}^2 .

2. ¿Es continua en (0,0) la función f definida por

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & \text{; } si(x,y) \neq (0,0) \\ 0 & \text{; } si(x,y) = (0,0) \end{cases}$$

Solución:

$$D_f = \mathbb{R}^2$$

Aplicando la definición de límite con $\vec{x}_0 = (0,0) = \vec{0}$ y L = f(0,0) = 0

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < \left\| \vec{x} - \vec{0} \right\| < \delta \land \vec{x} \in D_f \Rightarrow \left| \frac{y^3}{x^2 + y^2} - 0 \right| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta > 0 \mid 0 < ||\vec{x}|| < \delta \Rightarrow \left| \frac{y^3}{x^2 + y^2} \right| = \frac{|y|^3}{x^2 + y^2} \le \frac{||\vec{x}||^3}{||\vec{x}||^2} = ||\vec{x}|| < \delta < \varepsilon$$

Basta con tomar $\delta < \varepsilon$ para que se cumpla la definición de límite, por lo tanto queda demostrado que:

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0 \implies f \text{ es continua en } (0,0)$$

3. ¿Es continua en (0,0) la función f definida por

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & ; \ si(x,y) \neq (0,0) \\ 0 & ; \ si(x,y) = (0,0) \end{cases}$$

Solución:

$$D_f = \mathbb{R}^2$$

Haciendo
$$\lim_{y\to 0} \left[\lim_{x\to 0} \left(\frac{y^2}{x^2+y^2}\right)\right] = \lim_{y\to 0} \left[\frac{y^2}{y^2}\right] = 1 \neq f(0,0) = 0 \Rightarrow f \text{ no es continua en } (0,0).$$

