This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

1. A front light, comprising:

- a light source;
- a light guide plate; and

a plurality of prism-shaped lenses each being contact with a lower surface of the light guide plate,

wherein a cross-section of each of the prism-shaped lenses, in a plane perpendicular to the side surfaces thereof, has a shape of equally-sided trapezoid;

a plane defined by an upper base of the equally-sided trapezoidal cross-section of each of the prism-shaped lenses comes into contact with the lower surface of the light guide plate; and

an obtuse angle φ of the equally-sided trapezoidal cross-section and a critical angle θ for the total reflection of the prism-shaped lenses satisfy the relationship of $90^\circ < \varphi \le 90^\circ + \theta$.

2. A front light, comprising:

- a light source;
- a light guide plate; and

a plurality of prism-shaped lenses each being in contact with a lower surface of the light guide plate,

wherein a cross-section of each of the prism-shaped lenses,

in a plane perpendicular to the side surfaces thereof, has a shape of an axially-symmetric figure that is enclosed with a pair of opposing parallel straight lines and a pair of opposing curved lines and is axially symmetric with respect to a straight line connecting middle points of the respective opposing parallel straight lines;

each of the prism-shaped lenses is in contact with the light guide plate in a plane including a shorter one in the pair of opposing parallel straight lines; and

in the axially-symmetric figure, an angle defined between a normal at a certain point on one of the opposing curved lines and a straight line connecting a crossing point between the other opposing curved line and the shorter one in the pair of opposing parallel straight lines to the certain point, is in the range of $\pm 3^{\circ}$ from a critical angle for the total reflection of each of the prism-shaped lenses.

- 3. A front light according to claim 1 er-2, wherein a refractive index of each of the prism-shaped lenses is equal to that of the light guide plate.
- 4. A front light according to claim 1 er 2, wherein each of the prism-shaped lenses is made of the same material as the light guide plate.

5 A front light, comprising:

A light source;

a light guide plate; and

a plurality of rotational-body lenses each being in contact with a lower surface of the light guide plate,

wherein each of the rotational-body lenses has a shape of solid of revolution obtained by rotating an axially-symmetric figure, that is enclosed with a pair of opposing parallel straight lines and a pair of opposing curved lines and is axially symmetric with respect to a straight line connecting middle points of the respective opposing parallel straight lines, around said straight line;

in the axially-symmetric figure, an angle defined between a normal at a certain point on one of the opposing curved lines and a straight line connecting a crossing point between the other opposing curved line and a shorter one in the pair of opposing parallel straight lines to the certain point, is in the range of $\pm 3^{\circ}$ from a critical angle for the total reflection of each of the rotational-body lenses; and

each of the rotational-body lenses is in contact with the light guide plate in a plane including the shorter one in the pair of opposing parallel straight lines.

6. A front light according to claim 5, wherein a refractive index of each of the prism-shaped lenses is equal to that of the

light guide plate.

7. A front light according to claim 5, wherein each of the prism-shaped lenses is made of the same material as the light guide plate.

An electronic device, comprising:

- a liquid crystal panel; and
- a front light for illuminating the liquid crystal panel,

wherein the front light comprises: a light source; a light guide plate; and a plurality of prism-shaped lenses each being contact with a lower surface of the light guide plate, wherein a cross-section of each of the prism-shaped lenses, in a plane perpendicular to the side surfaces thereof, has a shape of equally-sided trapezoid;

a plane defined by an upper base of the equally-sided trapezoidal cross-section of each of the prism-shaped lenses comes into contact with the lower surface of the light guide plate; and

an obtuse angle φ of the equally-sided trapezoidal cross-section and a critical angle θ for the total reflection of the light guide plate satisfy the relationship of 90° < φ \leq 90° + θ .

An electronic device, comprising: an optical sensor; and a front light for illuminating an object to be read by the optical sensor,

wherein the front light comprises: a light source; a light guide plate; and a plurality of prism-shaped lenses each being in contact with a lower surface of the light guide plate,

wherein a cross-section of each of the prism-shaped lenses,
in a plane perpendicular to the side surfaces thereof, has
a shape of equally-sided trapezoid;

a plane defined by an upper base of the equally-sided trapezoidal cross-section of each of the prism-shaped lenses comes into contact with the lower surface of the light guide plate; and

an obtuse angle ϕ of the equally-sided trapezoidal cross-section and a critical angle θ for the total reflection of the light guide plate the relationship of 90° $< \phi \le 90^\circ + \theta$.

20. An electronic device, comprising:

a liquid crystal panel; and

a front light for illuminating the liquid crystal panel from a display screen side thereof,

wherein the front light comprises: a light source; a light guide plate; and a plurality of prism-shaped lenses each being in contact with a lower surface of the light guide plate,

wherein a cross-section of each of the prism-shaped lenses, in a plane perpendicular to the side surfaces thereof, has a shape

lenses.

of an axially-symmetric figure that is enclosed with a pair of opposing parallel straight lines and a pair of opposing curved lines and is axially symmetric with respect to a straight line connecting middle points of the respective opposing parallel straight lines;

each of the prism-shaped lenses is in contact with the light guide plate in a plane including a shorter one in the pair of opposing parallel straight lines; and

in the axially-symmetric figure, an angle defined between a normal at a certain point on one of the opposing curved lines and a straight line connecting a crossing point between the other opposing curved line and the shorter one in the pair of opposing parallel straight lines to the certain point, is in the range of $\pm 3^{\circ}$ from a critical angle for the total reflection of each of the prism-shaped

an optical sensor; and

a front light for illuminating an object to be read by the optical sensor,

wherein the front light comprises: a light source; a light guide plate; and a plurality of prism-shaped lenses each being in contact with a lower surface of the light guide plate,

wherein a cross-section of each of the prism-shaped lenses, in a plane perpendicular to the side surfaces thereof, has a shape

of an axially-symmetric figure that is enclosed with a pair of opposing parallel straight lines and a pair of opposing curved lines and is axially symmetric with respect to a straight line connecting middle points of the respective opposing parallel straight lines;

each of the prism-shaped lenses is in contact with the light guide plate in a plane including a shorter one in the pair of opposing parallel straight lines; and

in the axially-symmetric figure, an angle defined between a normal at a certain point on one of the opposing curved lines and a straight line connecting a crossing point between the other opposing curved line and the shorter one in the pair of opposing parallel straight lines to the certain point, is in the range of $\pm 3^{\circ}$ from a critical angle for the total reflection of each of the prism-shaped lenses.

12. An electronic device according to any one of claims 8 to 11, wherein a refractive index of each of the prism-shaped lenses is equal to that of the light guide plate.

13. An electronic device according to any one of claims 8 to

11, wherein each of the prism-shaped lenses is made of the same

material as the light guide plate.

14. An electronic device, comprising:

a liquid crystal panel; and a front light for illuminating the liquid crystal panel from a side of a display screen thereof, wherein the front light comprises: a light source; a light guide plate; and a plurality of rotational-body lenses each being in contact with a lower surface of the light guide plate,

wherein each of the rotational-body lenses has a shape of solid of revolution obtained by rotating an axially-symmetric figure, that is enclosed with a pair of opposing parallel straight lines and a pair of opposing curved lines and is axially symmetric with respect to a straight line connecting middle points of the respective opposing parallel straight lines, around said straight line;

each of the rotational-body lenses is in contact with the light guide plate in a plane including a shorter one in the pair of opposing parallel straight lines; and

in the axially-symmetric figure, an angle defined between a normal at a certain point on one of the opposing curved lines and a straight line connecting a crossing point between the other opposing curved line and the shorter one in the pair of opposing parallel straight lines to the certain point, is in the range of $\pm 3^{\circ}$ from a critical angle for the total reflection of each of the rotational-body lenses.

17. An electronic device, comprising: an optical sensor; and

a front light for illuminating an object to be read by the optical sensor,

wherein the front light comprises: a light source; a light guide plate; and a plurality of rotational-body lenses each being in contact with a lower surface of the light guide plate,

wherein each of the rotational-body lenses has a shape of solid of revolution obtained by rotating an axially-symmetric figure, that is enclosed with a pair of opposing parallel straight lines and a pair of opposing curved lines and is axially symmetric with respect to a straight line connecting middle points of the respective opposing parallel straight lines, around said straight line;

each of the rotational-body lenses is in contact with the light guide plate in a plane including a shorter one in the pair of opposing parallel straight lines; and

in the axially-symmetric figure, an angle defined between a normal at a certain point on one of the opposing curved lines and a straight line connecting a crossing point between the other opposing curved line and the shorter one in the pair of opposing parallel straight lines to the certain point, is in the range of ±3° from a critical angle for the total reflection of each of the rotational-body lenses.

16. An electronic device according to claim 14 or 15, wherein a refractive index of each of the rotational-body lenses is equal

to that of the light guide plate.

17. An electronic device according to claim 14 or 15, wherein each of the rotational-body lenses is made of the same material as the light guide plate.

ad C