- Mi a konvex függvény definíciója?
- Mi a konkáv függvény definíciója?

Definíció. A.m.h. $az f: I \to \mathbb{R}$ függvény konvex az I intervallumon, ha

$$\forall a, b \in I, a < b \ eset\'{e}n$$

$$(*) f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) (\forall x \in (a, b)).$$

 $Ha\ (*)$ -ban $\leq helyett < áll, akkor <math>f$ -et I-n szigorúan kon-vexnek, $ha \geq$, illetve > áll, akkor <math>f-et I-n konkávnak, illetve szigorúan konkávnak nevezzük.

- Jellemezze egy függvény konvexitását az első deriváltfüggvény segítségével!
- Jellemezze egy függvény konkávitását az első deriváltfüggvény segítségével!

Tétel. T.f.h. $I \subset \mathbb{R}$ nyîlt intervallum és $f \in D(I)$. Ekkor f konvex I- $n \iff f' \nearrow I$ -n.

Megjegyzés. " \nearrow " helyett szigorúan konvex esetben " \uparrow ", konkáv esetben " \searrow " és szigorúan konkáv esetben pedig " \downarrow " áll.

- Jellemezze egy függvény konvexitását a második deriváltfüggvény segítségével!
- Jellemezze egy függvény konkávitását a második deriváltfüggvény segítségével!

Tétel. T.f.h. $I \subset \mathbb{R}$ nyîlt intervallum és $f \in D^2(I)$. Ekkor

$$1^{o} f konvex I-n \iff f'' \ge 0 I-n.$$

$$f konkáv I-n \iff f'' \le 0 I-n.$$

2º Ha
$$f'' > 0$$
 I - $n \implies f$ szigorúan konvex I - n .
Ha $f'' < 0$ I - $n \implies f$ szigorúan konkáv I - n .

Mikor mondja, hogy valamely f ∈ R → R függvénynek inflexiója van az a ∈ Df pontban?

VÁLASZ: Legyen $I \subset \mathbb{R}$ nyílt intervallum, $f: I \to \mathbb{R}$, és tegyük fel, hogy valamely $a \in I$ pontban $f \in \mathfrak{D}[a]$. Azt monjuk, hogy f-nek inflexiója van a-ban, ha az $f - e_a f$ függvénynek jelváltása van az a pontban, ahol

$$e_{\alpha}f(x) := f(\alpha) + f'(\alpha)(x - \alpha) \qquad (x \in \mathbb{R}).$$

- Mondja ki a konvexitás és az érintő kapcsolatára vonatkozó tételt!
- Mondja ki a konkávitás és az érintő kapcsolatára vonatkozó tételt!

Tétel.
$$T.f.h.$$
 $I \subset \mathbb{R}$ $nyilt$ $intervallum$ és $f \in D(I)$. $Ekkor$ f $konvex$ $[konkáv]$ $I-n$ \iff

$$\forall a \in I: f(x) \geq e_{f,a}(x), \quad [f(x) \leq e_{f,a}(x)] \quad (x \in I),$$
 vagyis f grafikonja egy tetszőleges pontjában húzott érintője felett [alatt] halad.

Mikor mondjuk, hogy egy függvénynek aszimptotája van a +∞ben?

Definíció. Legyen $a \in \mathbb{R}$ és $f: (a, +\infty) \to \mathbb{R}$. A.m.h. f-nek $van \ aszimptotája \ (+\infty)$ -ben, ha

$$\exists \ l(x) = Ax + B \ (x \in \mathbb{R})$$

elsőfokú függvény, amelyre

$$\lim_{x \to +\infty} (f(x) - l(x)) = 0$$

 $\lim_{x\to +\infty} \bigl(f(x)-l(x)\bigr)=0.$ Ekkor az l(x) $(x\in\mathbb{R})$ egyenes az f **aszimptotája** $(+\infty)$ -**ben**. **Megjegyzés.** A $(-\infty)$ -beli aszimptota def-ja hasonló.

Hogyan szól a +∞-beli aszimptota létezésére vonatkozó feltétel?

Tétel. $Az \ f:(a,+\infty)\to \mathbb{R}$ függvénynek akkor és csak akkor $van \ aszimptotája \ (+\infty)-ben, \ ha \ léteznek és végesek az alábbi$ határértékek:

$$\lim_{x \to +\infty} \frac{f(x)}{x} =: A \in \mathbb{R}, \quad \lim_{x \to +\infty} (f(x) - Ax) =: B \in \mathbb{R}.$$

 $Ekkor\ az$

$$l(x) = Ax + B \quad (x \in \mathbb{R})$$

egyenes az f függvény aszimptotája $(+\infty)$ -ben.

Megjegyzés. Hasonló állítás érvényes a $(-\infty)$ -beli aszimptoták meghatározására.