Билет 10. Центр масс. Теорема о движении центра масс и ее следствие.

Центр масс системы — точка, радиус-вектор которой определяется в заданной системе координат следующим уравнением:

$$\vec{r_{uu}} = \frac{\sum_{i=1}^{n} m_i \vec{r}_i}{\sum_{i=1}^{n} m_i}$$

Это равносильно

$$x_{ij...} = \frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}$$

$$y_{ij...} = \frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}}$$

$$z_{ij...} = \frac{\sum_{i=1}^{n} m_{i} z_{i}}{\sum_{i=1}^{n} m_{i}}$$

Если начало координат совместить с центром масс, то $\vec{r}_{u.m.} = \vec{0}$

$$\vec{r}_{uM} = \frac{\sum_{i=1}^{n} m_{i} \vec{r}_{i}}{\sum_{i=1}^{n} m_{i}} = \vec{0} \Rightarrow \sum_{i=1}^{n} m_{i} \vec{r}_{i} = \vec{0}$$

Положение центра масс для двух материальных точек 1 и 2 массами $\ m_1 \$ и $\ m_2 \$ соответственно, расположенных на расстояии $\,l\,$.

 l_1 Выберем начало координат в точке 1 и ось Ох - 12. Тогда координаты на оси Оу и Оz равны о.

$$x_{y...} = l_1 = \frac{m_1 \cdot 0 + m_2 \cdot l}{m_1 + m_2}$$
 $l_2 = l - l_1 = \frac{m_1 \cdot l}{m_1 + m_2} \Rightarrow \frac{l_1}{l_2} = \frac{m_2}{m_1}$

Центр масс системы из двух тел делит расстояние между этими точками на отрезки, длины которых обратно пропорциональны их массам.

$$\begin{split} \lim_{\Delta t \to 0} \frac{\Delta \vec{r_{ijM}}}{\Delta t} &= \frac{1}{M_c} \lim_{\Delta t \to 0} \sum_{i=1}^n \left(m_i \frac{\Delta \vec{r_i}}{\Delta t} \right) \\ \vec{v}_{ij...} &= \frac{1}{M_c} \sum_{i=1}^n m_i \lim_{\Delta t \to 0} \frac{\Delta \vec{r_i}}{\Delta t} \\ \vec{v}_{ij...} &= \frac{1}{M_c} \sum_{i=1}^n m_i \vec{v_i} \\ M_c \vec{v}_{ij...} &= \vec{p}_{ij...} = \vec{p}_c \end{split}$$

Пусть тела в системе перемещаются.
Тогда
$$\Delta \vec{r_{u\!\scriptscriptstyle M}} = \frac{1}{M_c} \cdot \sum_{i=1}^n \left(m_i \Delta \vec{r_i} \right) \quad M_c = \sum_{i=1}^n m_i \quad \frac{\Delta \vec{r_{u\!\scriptscriptstyle M}}}{\Delta t} = \frac{1}{M_c} \cdot \sum_{i=1}^n \left(m_i \frac{\Delta \vec{r_i}}{\Delta t} \right)$$

Центр масс системы тел — точка, масса которой равна массе системы и импульс равен импульсу системы.

Изменение импульса центра масс является изменением импульса системы. $\Delta \vec{p}_{u.m.} = \Delta \vec{p}_c$

Пусть за промежуток времени Δt скорость тел меняется.

$$\begin{split} M_c \cdot \Delta \vec{v}_{_{\!\mathcal{U},\!M}} &= \Delta \vec{p}_c \\ M_c \frac{\Delta \vec{v}_{_{\!\mathcal{U},\!M}}}{\Delta t} &= \frac{\Delta \vec{p}_c}{\Delta t} \\ M_c \lim_{\Delta \to 0} \frac{\Delta \vec{v}_{_{\!\mathcal{U},\!M}}}{\Delta t} &= \vec{a}_{_{\!\mathcal{U},\!M}} M_c = \lim_{\Delta \to 0} \frac{\Delta \vec{p}_c}{\Delta t} \\ \lim_{\Delta \to 0} \frac{\vec{p}_c}{\Delta t} &= \sum_{i=1}^n \vec{F}_i \\ M_c \vec{a}_{_{\!\mathcal{U},\!M}} &= \sum_{i=1}^n \vec{F}_i - \text{сумма внешних сил} \end{split}$$

Теорема о движении центра масс

При движении системы материальных точек ее центр масс движется так, как двигалось бы материальная точка, помещенная в центр масс и имеющая массу равную сумме всех масс системы, и к ней были бы приложены все внешние силы, действующие на точки системы.

Следствие

Если система замкнута, то ее центр масс движется равномерно.

Решим задачу

Найти центр масс тела, если масса одного квадратика $m_0 = 0.5 \, \kappa \mathcal{E}$.

Раздели тело на три части: красную, зеленую и синюю.

Найдем центры масс каждой части, а далее найдем центр масс этих трех центров масс. Красная часть

Центр масс (0,5;2,5)

Macca $m_{\kappa} = 2.5 \, \kappa z$

Зеленая часть

Центр масс (2,5;0,5)

Macca $m_{\kappa} = 1.5 \, \kappa z$

Синяя часть

Центр масс (3,5;1,5)

Macca $m_{\kappa} = 0.5 \, \kappa z$

Все тело

Центр масс
$$(\frac{0,5\cdot 2,5+2,5\cdot 1,5+3,5\cdot 0,5}{2,5+1,5+0,5};\frac{2,5\cdot 2,5+0,5\cdot 1,5+1,5\cdot 0,5}{2,5+1,5+0,5})=(1,5;1,72)$$

Macca $m=4.5 \kappa z$