Министерство образования Республики Беларусь Учреждение образования «Брестский Государственный технический университет» Кафедра ИИТ

Лабораторная работа №2

По дисциплине «ОИвИС»
Тема: «Конструирование моделей на базе предобученных нейронных сетей»

Выполнила:

Студентка 4 курса Группы ИИ-23 Новицкая В. Д. **Проверила:** Андренко К. В.

Цель работы: осуществлять обучение HC, сконструированных на базе предобученных архитектур HC.

Общее задание

- 1. Для заданной выборки и архитектуры предобученной нейронной организовать процесс обучения НС, предварительно изменив структуру слоев, в соответствии с предложенной выборкой. Использовать тот же оптимизатор, что и в ЛР №1. Построить график изменения ошибки и оценить эффективность обучения на тестовой выборке;
- 2. Сравнить полученные результаты с результатами, полученными на кастомных архитектурах из ЛР №1;
- 3. Ознакомиться с state-of-the-art результатами для предлагаемых выборок (по материалам в сети Интернет). Сделать выводы о результатах обучения НС из п. 1 и 2;
- 4. Реализовать визуализацию работы предобученной СНС и кастомной (из ЛР 1). Визуализация осуществляется посредством выбора и подачи на сеть произвольного изображения (например, из сети Интернет) с отображением результата классификации;
- 5. Оформить отчет по выполненной работе, залить исходный код и отчет в соответствующий репозиторий на github.

Задание по вариантам

В-т	Выборка	Оптимизатор	Предобученная архитектура	
6	MNIST	Adam	ResNet18	

Результат программы:

Модель	Кол-во параметров	Диапазон точности	Особенности
AlexNet адаптированная (MNIST)	~3.5M	99.3-99.4%	Простая структура, меньше параметров
ResNet-18 адаптированная (MNIST)	~11M	94.5–95.2%	Skip-connections, устойчивая к деградации
DenseNet-121 адаптированная	~8M	99.7%	Плотные связи, глубокие CNN
Vision Transformer (ViT- Small)	~22M	98.8-99.8%	Требует больше данных
CapsuleNet (Hinton)	~9M	99.75%	Специализированная под цифры

Адаптированная ResNet-18 демонстрирует хорошее качество распознавания цифр на MNIST, обеспечивая баланс между глубиной, устойчивостью и скоростью обучения.

Хотя точность уступает более лёгким или специализированным архитектурам, ResNet-18 выгодно выделяется своей универсальностью и возможностью легко дообучаться под другие задачи компьютерного зрения.

Вывод: научилась конструировать нейросетевые классификаторы и выполнять их обучение на известных выборках компьютерного зрения.