

AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

- 1. (CURRENTLY AMENDED) A digital camera comprising:
- (a) a housing provided with a plurality of lens groups movable along an optical axis in accordance with an instructed magnification;
- (b) an image sensor disposed for receiving light through the lens groups and producing an electronic information in accordance therewith;
- (c) a <u>non-volatile</u> memory connected to the image sensor for receiving and storing data in accordance with the electronic information received from the image sensor; and
- (d) a controller electronically controlling the <u>non-volatile</u> memory and movement of the lens groups, the controller having program logic defining a plurality of operation modes, the logic upon power initiation determining an operation mode, and if the mode is determined to be an image recording mode, the logic causing the controller to commence moving the lens groups to initialization positions and perform initialization processing for enabling image recording, and after completion of the initialization processing for enabling image processing, upon receipt of a command for photographing generated by a shutter being pressed <u>during a movement of the lens group to the initialization positions</u>, control the <u>non-volatile</u> memory to store data in accordance with the electronic information presently available from the image sensor before prior to

the lens group have arrived at completed the movement to the initialization

positions.

2. (CURRENTLY AMENDED) The digital camera according to claim 1,

wherein the program logic causes the controller to initialize the image sensor

and the non-volatile memory for image recording.

3. (ORIGINAL) The digital camera according to claim 2, further

comprising a display device controlled by the controller, the program logic upon

initialization, initializing the display device for displaying information.

4. (PREVIOUSLY PRESENTED) The digital camera according to claim

3, wherein the display device is a display or an LED.

5. (PREVIOUSLY PRESENTED) The digital camera according to claim

1, wherein the lens groups comprise a zoom lens group which moves in

accordance with an instructed magnification and a focus lens group for

focusing, the controller controlling the focus lens group to follow movement of

the zoom lens group to an initialization position.

MRC/JRS/khm

Docket No.: 1982-0163P

6. (PREVIOUSLY PRESENTED) The digital camera according to claim

5, further comprising a detector in electronic communication with the

controller, the detector detecting a movement amount of the zoom lens group,

and the controller controlling movement of the focus lens group in accordance

with the movement amount detected by said detector.

7. (PREVIOUSLY PRESENTED) The digital camera according to claim

6, wherein the detector is formed by a cord plate and a terminal.

8. (PREVIOUSLY PRESENTED) The digital camera according to claim

6, wherein the detector detects step movement, each step corresponding to a

movement range of the zoom lens group from a retracted position to the

initialization position divided into a substantially equal number of intervals,

with step movement information being provided to the controller for movement

of the focus lens group in accordance therewith.

9. (CURRENTLY AMENDED) A method for activating a digital camera

having a plurality of lens groups which move in accordance with an instructed

magnification, and an image sensing system disposed for receiving an image

from the lens groups and producing an electronic information representing the

image, the method comprising:

MRC/JRS/khm

Docket No.: 1982-0163P

(a) determining an operation mode upon power initiation; and

(b) if the operation mode is an image recording mode, then:

(i) initializing the image sensing system for receiving the image

from the lens groups and producing the electronic information

representing the image;

(ii) moving the lens groups to initialization positions; and

(iii) after completion of initializing the image sensing system, upon

receipt of a command for photographing generated by a shutter being

pressed during the movements of the lens groups to the initialization

positions, recording an producing the electronic information representing

the image presently available from the image sensing system prior to the

lens groups arriving at having completed their movements to the

initialization positions for recording the electronic information

representing the image into a non-volatile memory.

(CANCELED) 10.

(PREVIOUSLY PRESENTED) The method of claim 9, wherein 11.

recording the electronic information representing the image includes displaying

the image in accordance with the electronic information on a display device.

Docket No.: 1982-0163P

12. (PREVIOUSLY PRESENTED) The method of claim 9, wherein the

lens groups comprise a zoom lens group which moves in accordance with the

instructed magnification and a focus lens group for focusing, wherein moving

the lens groups to the initialization positions include moving the focus lens

group to follow movement of the zoom lens group during the movement of the

zoom lens group to the initialization position.

13. (PREVIOUSLY PRESENTED) The method of claim 12, wherein

moving the focus lens group to follow the movement of the zoom lens group

includes detecting a movement amount of the zoom lens group using a

detector.

14. (PREVIOUSLY PRESENTED) The method of claim 13, wherein

detecting the movement amount includes:

dividing a range of the zoom lens group into a plurality of steps, said

range being from a retracted position to the initialization position, and storing

movement amounts of the focus lens group corresponding to respective steps;

and

reading the movement amounts of the focus lens group corresponding to

the step detected by the detector and moving the focus lens group.

15. (CURRENTLY AMENDED) A method for use in a digital camera

having a plurality of lens groups movable in accordance with an instructed

magnification, and an image sensing system disposed for receiving an image

from the lens groups and producing an electronic information representing the

image, the method comprising:

(a) determining if an operation mode has changed; and

(b) if the operation mode has changed to an image recording mode, then:

(i) initializing the image sensing system for receiving the image

from the lens groups and producing the electronic information

representing the image;

(ii) moving the lens groups to initialization positions; and

(iii) after completion of initializing the image sensing system, upon

receipt of a command for photographing generated by a shutter being

pressed during the movements of the lens groups to the initialization

positions, recording an producing the electronic information representing

the image presently available from the image sensing system prior to the

lens groups arriving at having completed their movements to the

initialization positions for recording the electronic information

representing the image into a non-volatile memory.

MRC/JRS/khm

16. (CURRENTLY AMENDED) The method of claim 15, wherein the

camera includes a memory and initializing the image sensing system includes

initializing the non-volatile memory for storing data in accordance with the

electronic information from the image sensing system.

17. (PREVIOUSLY PRESENTED) The method of claim 16, wherein the

camera includes a display device, and wherein recording electronic information

representing the image includes enabling display of the image in accordance

with the electronic information from the image sensing system.

18. (PREVIOUSLY PRESENTED) The method of claim 15, wherein the

lens groups include a zoom lens group which moves in accordance with the

instructed magnification and a focus lens group

which moves to follow the movement of the zoom lens group during the

movement of the zoom lens group to the initialization positions.

19. (PREVIOUSLY PRESENTED) The method of claim 18, wherein

moving the focus lens group to follow movement of the zoom lens group

includes detecting a movement amount of the zoom lens group using a

detector.

20. (PREVIOUSLY PRESENTED) The method of claim 19 wherein

detecting the movement amount of the zoom lens group includes:

dividing a range of said zoom lens group into a plurality of steps, said

range being from a retracted position to the initialization position, and storing

movement amounts of the focus lens group corresponding to respective steps;

and

reading the movement amounts of the focus lens group corresponding to

the step detected by the detector and moving the focus lens group.

21. (PREVIOUSLY PRESENTED) A camera, comprising:

a plurality of lens groups;

an image sensor for sensing an image from light received through the

plurality of lens groups; and

a controller for controlling movements of the plurality of lens groups, for

controlling the image sensor, and for controlling a storage of the image data

into a non-volatile memory accessible by the camera,

wherein when the controller receives instructions for photographing

generated by a shutter being pressed during a movement of the plurality of lens

groups from a first predetermined position to a second predetermined lens

position, the controller controls the image sensor to sense the image prior to

the plurality of lens groups have completed their movements to the second

predetermined lens position for recording the image data into the non-volatile

memory.

22. (PREVIOUSLY PRESENTED) The camera of claim 21, wherein the

first predetermined position of the plurality of lens groups is one of a tele

position and a wide position and the second predetermined position of the

plurality of lens groups is the other of the tele position and the wide position.

23. (PREVIOUSLY PRESENTED) The camera of claim 21, wherein the

controller controls the plurality of lens groups such that the image is focused

during the movement between the first and second predetermined positions.

24. (PREVIOUSLY PRESENTED) The camera of claim 21, further

comprising a display, wherein the image is displayed on the display during the

movement between the first and second predetermined positions.

25. (PREVIOUSLY PRESENTED) The camera of claim 21, wherein the

10

plurality of lens groups include:

a zoom lens; and

a focus lens,

MRC/JRS/khm

Docket No.: 1982-0163P

wherein the controller controls a movement of the zoom lens to control an image magnification and the controller controls the movement of the focus lens to control image focus.

26. (PREVIOUSLY PRESENTED) The camera of claim 25, wherein

the zoom lens has a plurality of magnification ranges,

the zoom lens goes through the plurality of magnification ranges during the movement of the plurality of lens groups between a retracted position and the first predetermined position, and

upon camera power up, the controller controls the movement of the plurality of lens groups between the retracted and the first predetermined positions.

- 27. (PREVIOUSLY PRESENTED) The camera of claim 26, wherein the first predetermined position of the plurality of lens groups is one of a tele position and a wide position and the second predetermined position of the plurality of lens groups is the other of the tele position and the wide position.
- 28. (CURRENTLY AMENDED) A method for controlling a camera, comprising:

moving a plurality of lens groups from a first predetermined position to a

second predetermined position;

determining if an instruction to record an image by a shutter being

pressed is received before-during the movement of the plurality of lens groups

from the first predetermined position to the second predetermined position-is

completed; and

sensing the image prior to the plurality of lens groups have completed

the movement to the second predetermined position and storing the image to a

non-volatile memory accessible by the camera before the movement of the

plurality of lens groups from the first predetermined position to the second

predetermined position is completed when it is determined that the instruction

for photographing generated by a-the shutter being pressed is received.

29. (PREVIOUSLY PRESENTED) The method of claim 28, wherein the

first predetermined position of the plurality of lens groups is one of a tele

position and a wide position and the second predetermined position of the

plurality of lens groups is the other of the tele position and the wide position.

30. (PREVIOUSLY PRESENTED) The method of claim 28, wherein

further comprising maintaining a focus of the image during the movement of

the plurality of lens group between the first and second predetermined

positions.

31. (PREVIOUSLY PRESENTED) The method of claim 28, further

comprising displaying the image on a display during the movement of the

plurality of lens group between the first and second predetermined positions.

32. (PREVIOUSLY PRESENTED) The method of claim 28, wherein the

plurality of lens groups include a zoom lens and a focus lens, the method

further comprising:

controlling a movement of the zoom lens to control an image

magnification; and

controlling the movement of the focus lens to control image focus.

33. (PREVIOUSLY PRESENTED) The method of claim 32, wherein the

zoom lens has a plurality of magnification ranges and the zoom lens goes

through the plurality of magnification ranges during the movement of the

plurality of lens groups between a retracted position and the first

predetermined position, the method further comprising controlling the

movement of the plurality of lens groups between the retracted and the first

predetermined positions upon camera power up.

Docket No.: 1982-0163P

Docket No.: 1982-0163P

34. (PREVIOUSLY PRESENTED) The method of claim 33, wherein the

first predetermined position of the plurality of lens groups is one of a tele

position and a wide position and the second predetermined position of the

plurality of lens groups is the other of the tele position and the wide position.

35-37. (CANCELED)

38. (PREVIOUSLY PRESENTED) The digital camera of claim 1, wherein

the receipt of the command for image recording occurs when a shutter button

of the digital image camera is fully depressed to start a photographing

operation.

39. (PREVIOUSLY PRESENTED) The method of claim 9, wherein the

receipt of the command for image recording occurs when a shutter button of

the digital image camera is fully depressed to start a photographing operation.

40. (PREVIOUSLY PRESENTED) The method of claim 15, wherein the

receipt of the command for image recording occurs when a shutter button of

the digital image camera is fully depressed to start a photographing operation.

MRC/JRS/khm

•

Docket No.: 1982-0163P

41. (PREVIOUSLY PRESENTED) The camera of claim 21, wherein the

controller receives the instructions to record the image when a shutter button

of the camera is fully depressed to start a photographing operation.

42. (PREVIOUSLY PRESENTED) The method of claim 28, wherein the

receipt of the instructions to record the image occurs when a shutter button of

the camera is fully depressed to start a photographing operation.

43. (PREVIOUSLY PRESENTED) The camera of claim 21, wherein the

first predetermined position is the position of the plurality of lens groups when

the digital camera is turned off and the second predetermined position is the

initialization position when the camera is turned on.

44. (PREVIOUSLY PRESENTED) The method of claim 28, wherein the

first predetermined position is the position of the plurality of lens groups when

the digital camera is turned off and the second predetermined position is the

initialization position when the camera is turned on.

MRC/JRS/khm