Introducción a la teledetección SAR

Nivel 2

Francisco Nemiña* Tomás Zajc**

- * Unidad de Educación y Formación Masiva, Comisión Nacional de Actividades Espaciales
- ** Misión SAOCOM, Comisión Nacional de Actividades Espaciales

Introducción al radar: Espectro electromagnético

Figura 1 – Espectro electromagnético en longitud de onda (abajo) y frecuencia (arriba).

Figura 2 – RAdio Detection And Ranging. Funcionamiento esquemático.

Figura 3 – Ecos detectados por un radar en función del tiempo

Figura 4 – Geometría de observación de un radar en dos dimensiones viso en un corte transversal.

Figura 5 – Generación de una imagen radar a partir de datos en el terreno.

Figura 6 – Geometría de observación de un radar completa en la direcciones perpendiculares y paralelas al movimiento (accross track y along track)

Óptico

- Rango de trabajo en los micrometros $(0.3\mu \text{ m a } 2.5\mu m)$.
- Detecta luz solar reflejada por la tierra.
- Bloqueado por las nubes.
- Detecta luz incoherente.
- Depende de una fuente de iluminación externa.

Radar

- Rango de trabajo en los microondas (1cm m a 100cm).
- Emite una señal y mide la intesidad del eco.
- Independiente de las condiciones atmosféricas.
- Emite y detecta una onda coherente.
- Cuenta con su propia fuente de iluminación.

Figura 7 – Modo de adquisición STRIPMAP.

Propiedades STRIPMAP

- El RADAR toma datos de un solo Swadth
- Es el método de adquisición por defecto de la mayoría de los satélites.
- Resolución intermedia.

 $\textbf{Figura 8} - \mathsf{Modo} \ \mathsf{de} \ \mathsf{adquisici\'{o}n} \ \mathsf{SPOTLIGHT}.$

Propiedades SPOTLIGHT

- El RADAR enfoca la toma de datos en una región específica.
- Alta resolución espacial en la tema de datos.
- Tiene menor cobertura espacial y necesita reorientar la antena para realizar la toma de datos.

Figura 9 – Modo de adquisición SCANSAR.

Propiedades SCANSAR

- El RADAR Va distribuyendo pulsos de a bursts entre varios swaths.
- Gran swath.
- Baja resolución.
- Mala relación señal ruido en algunas partes y buena en otras.
- Mala distribución de potencia generando scalloping.
- Hace falta reapuntar la antena en elevación entre burst.

Figura 10 – Modo de adquisición TOPSAR.

TOPSAR

- El RADAR Va distribuyendo pulsos entre varios swaths y variando el apuntamiento en acimut para iluminar la pisada de manera mas homogénea.
- Gran swath.
- Baja resolución.
- Aceptable relación señal ruido y uniforme en la imagen.
- Buena distribución de potencia. No hay scalloping.