ADA

Algoritmos voraces (Greedy)

Analisis y Diseño de Algoritmos

Juan Gutiérrez

October 19, 2022

ADA

Algoritmos voraces (Greedy)

Problema Max-Intervalos-Disjuntos. Dada una secuencia de intervalos cerrados en la recta, encontrar un subconjunto de intervalos compatibles dos a dos de tamaño máximo.

ADA

Figure 1: Tomada del libro Kleinberg, Algorithm Design

ADA

Figure 2: Tomada del libro Kleinberg, Algorithm Design

ADA

Figure 3: Tomada del libro Kleinberg, Algorithm Design

ADA

Figure 4: Tomada del libro Kleinberg, Algorithm Design

ADA

- 1. $Elección\ voraz$: debemos demostrar que siempre existe una solución óptima que contiene a la elección voraz
- Subestructura óptima: debemos demostrar que la subsolución dejada es óptima para el subproblema dejado por la elección voraz

ADA

Algoritmos voraces (Greedy)

 ${\bf Problema~Max-Intervalos-Disjuntos.}~{\bf Dada~una~secuencia~de~intervalos~cerrados~en~la~recta,~encontrar~un~subconjunto~de~intervalos~compatibles~dos~a~dos.$

ADA

Algoritmos voraces (Greedy)

```
Recibe: un conjunto \mathcal{I}=\{[s_1,f_1],[s_2,f_2],\ldots,[s_n,f_n]\} de intervalos, ordenados de manera creciente por punta final
```

Devuelve: un subconjunto de intervalos compatibles dos a dos

Max-Intervalos-Disj-Rec(\mathcal{I})

- if *I* = ∅
- 2: return ∅
- 3: $\mathcal{I}' = \mathcal{I} \setminus \{[s_i, f_i] : s_i \leq f_1\}$
- 4: **return** $\{[s_1, f_1]\} \cup MAX$ -INTERVALOS-DISJ-REC (\mathcal{I}')

ADA

Algoritmos voraces (Greedy)

Lema 3.1 (Elección voraz). Existe una solución óptima para el problema que contiene el intervalo $[s_1, f_1]$.

ADA

Algoritmos voraces (Greedy)

Lema 3.2 (Subestructura óptima). Si X es una solución óptima al problema que contiene a $[s_1, f_1]$ entonces $X \setminus \{[s_1, f_1]\}$ es una solución óptima al subproblema dejado por la elección voraz.

ADA

voraces (Greedy)

Gracias