Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 3

Clase 3

Halt y máquina universal La clase ${f P}$ La clase ${f NP}$

Halt y máquina universal

Clase 3

Halt y máquina universal

La clase \mathbf{P}

La clase NP

El problema de la detención (halting problem)

Definimos $halt:\{0,1\}^* \rightarrow \{0,1\}$ como

$$halt(x) = \begin{cases} 1 & \text{si la máquina } x \text{ con entrada } x \text{ termina} \\ 0 & \text{si no} \end{cases}$$

Teorema (Turing 1936)

halt no es computable.

4

El problema de la detención (halting problem)

Definimos $halt: \{0,1\}^* \to \{0,1\}$ como

$$halt(x) = \begin{cases} 1 & \text{si la máquina } x \text{ con entrada } x \text{ termina} \\ 0 & \text{si no} \end{cases}$$

Teorema (Turing 1936)

halt no es computable.

Demostración.

Supongamos que halt es computable. Definimos una máquina M tal que M(x) termina sii halt(x)=0. Sea $y=\langle M\rangle$.

M(y) termina sii la máquina y con entrada y no termina sii M(y) no termina

Absurdo.

La máquina universal

Llamemos M_i a la máquina tal que $\langle M \rangle = i$. Definimos

$$u: \subseteq \{0,1\}^* \to \{0,1\}^*$$
$$u(\langle i, x \rangle) = M_i(x)$$

La función u es parcial. En particular $u(\langle i, x \rangle) \downarrow \sin M_i(x) \downarrow$.

5

La máquina universal

Llamemos M_i a la máquina tal que $\langle M \rangle = i$. Definimos

$$u: \subseteq \{0,1\}^* \to \{0,1\}^*$$
$$u(\langle i, x \rangle) = M_i(x)$$

La función u es parcial. En particular $u(\langle i, x \rangle) \downarrow \sin M_i(x) \downarrow$.

Teorema

Existe una máquina U que computa la función $u(\langle i, x \rangle) = M_i(x)$. Más aún, si M_i con entrada x termina en t pasos, entonces U con entrada $\langle i, x \rangle$ termina en $c \cdot t \cdot \log t$ pasos, donde c depende solo de i.

5

Idea de la prueba (un caso simple).

U tiene 3 cintas de trabajo.

Supongamos $M = (\Sigma, Q, \delta)$ con una sola cinta de trabajo.

- U recibe como entrada $\langle \langle M \rangle, x \rangle$. Objetivo: copiar M(x)
- $\langle M \rangle$ tiene la información sobre el comportamiento de M
- U copia x en la cinta de trabajo #1
- U escribe $[q_0]$ en la cinta de trabajo #3
- mientras que lo que esté escrito en en la cinta #3 no sea $[q_f]$, busca en la cinta de entrada la información sobre δ que necesita y actualiza las cintas #2 y #3 de manera acorde

Si $M=(\Sigma,Q,\delta)$ con entrada x termina en t pasos, esta simulación usa $c\cdot t$ pasos, donde c depende de M pero no de x

• U tiene que buscar la definición de δ en la cinta de entrada por cada instrucción que simula de M

Pero esto es una simplificación del caso general:

- \bullet U está simulando una M con 1 sola cinta de trabajo
- si M tiene más cintas de trabajo, se puede transformar en una M' que usa $una\ sola$ cinta con el mismo comportamiento de M
- si M llegaba al resultado en tiempo t, M' lo hace en tiempo $O(t^2)$. Esto es demasiado para la cota $O(t \log t)$ del teorema.
- la demostración del caso general es más técnica

╝

La máquina universal con tiempo acotado

Llamemos M_i a la máquina tal que $\langle M \rangle = i$.

$$\tilde{u}:\{0,1\}^* \to \{0,1\}^*$$

$$\tilde{u}(\langle i,t,x\rangle) = \begin{cases} 1 \ M_i(x) & \text{si } M_i(x) \text{ termina en } \leq t \text{ pasos} \\ 0 & \text{si no} \end{cases}$$

La función \tilde{u} es total.

8

La máquina universal con tiempo acotado

Llamemos M_i a la máquina tal que $\langle M \rangle = i$.

$$\tilde{u}: \{0,1\}^* \to \{0,1\}^*$$

$$\tilde{u}(\langle i,t,x\rangle) = \begin{cases} 1 \ M_i(x) & \text{si } M_i(x) \text{ termina en } \leq t \text{ pasos} \\ 0 & \text{si no} \end{cases}$$

La función \tilde{u} es total.

Teorema

Existe una máquina \tilde{U} que computa la función $\tilde{u}(\langle i, t, x \rangle)$ en tiempo $c \cdot t \cdot \log t$, donde c depende solo de i.

8

Idea de la prueba.

Como antes, pero ahora \tilde{U} tiene una cinta de trabajo más, que usa para llevar cuenta de la cantidad de pasos en la simulación

Clase 3 Halt y máquina universal La clase P La clase NP

Sea $\mathcal{L} \subseteq \{0,1\}^*$ un lenguaje (o problema) y sea Σ el alfabeto estándar.

Definición

Una máquina $M = (Q, \Sigma, \delta)$ decide \mathcal{L} [en tiempo T(n)] si M computa $\chi_{\mathcal{L}}$ [en tiempo T(n)]. Decimos que M acepta x cuando M(x) = 1 y que M rechaza x cuando M(x) = 0.

Sea $\mathcal{L} \subseteq \{0,1\}^*$ un lenguaje (o problema) y sea Σ el alfabeto estándar.

Definición

Una máquina $M = (Q, \Sigma, \delta)$ decide \mathcal{L} [en tiempo T(n)] si M computa $\chi_{\mathcal{L}}$ [en tiempo T(n)]. Decimos que M acepta x cuando M(x) = 1 y que M rechaza x cuando M(x) = 0.

Notación: $\mathcal{L}(M)$

El lenguaje decidido por M es $\mathcal{L}(M)$.

Sea $\mathcal{L}\subseteq\{0,1\}^*$ un lenguaje (o problema) y sea Σ el alfabeto estándar.

Definición

Una máquina $M = (Q, \Sigma, \delta)$ decide \mathcal{L} [en tiempo T(n)] si M computa $\chi_{\mathcal{L}}$ [en tiempo T(n)]. Decimos que M acepta x cuando M(x) = 1 y que M rechaza x cuando M(x) = 0.

Notación: $\mathcal{L}(M)$

El lenguaje decidido por M es $\mathcal{L}(M)$.

Una **clase de complejidad** es un conjunto de problemas que son decidibles por máquinas con ciertos recursos acotados. Por ahora, nos centramos en el recurso *tiempo de cómputo*.

Sea $\mathcal{L}\subseteq\{0,1\}^*$ un lenguaje (o problema) y sea Σ el alfabeto estándar.

Definición

Una máquina $M = (Q, \Sigma, \delta)$ decide \mathcal{L} [en tiempo T(n)] si M computa $\chi_{\mathcal{L}}$ [en tiempo T(n)]. Decimos que M acepta x cuando M(x) = 1 y que M rechaza x cuando M(x) = 0.

Notación: $\mathcal{L}(M)$

El lenguaje decidido por M es $\mathcal{L}(M)$.

Una clase de complejidad es un conjunto de problemas que son decidibles por máquinas con ciertos recursos acotados. Por ahora, nos centramos en el recurso tiempo de cómputo.

Clase de complejidad: $\mathbf{DTIME}(T(n))$

 $\mathbf{DTime}(T(n))$ es la clase de lenguajes $\mathcal L$ tal que existe una máquina M que decide $\mathcal L$ en tiempo O(T(n)).

Clase de complejidad: P

$$\mathbf{P} = \bigcup_{c>0} \mathbf{DTIME}(n^c)$$

Son los problemas que se resuelven por una máquina en tiempo polinomial respecto al tamaño de su entada.

Clase de complejidad: P

$$\mathbf{P} = \bigcup_{c>0} \mathbf{DTIME}(n^c)$$

Son los problemas que se resuelven por una máquina en tiempo polinomial respecto al tamaño de su entada.

Observación

Por ahora, una 'máquina' $M = (\Sigma, Q, \delta)$ es un dispositivo determinístico. De ahí la 'D' en **DTIME**. Más adelante veremos máquinas no-determinísticas.

Clase de complejidad: P

$$\mathbf{P} = \bigcup_{c>0} \mathbf{DTIME}(n^c)$$

Son los problemas que se resuelven por una máquina en tiempo polinomial respecto al tamaño de su entada.

Observación

Por ahora, una 'máquina' $M=(\Sigma,Q,\delta)$ es un dispositivo determinístico. De ahí la 'D' en **DTIME**. Más adelante veremos máquinas no-determinísticas.

Decimos "el problema X está en ${\bf P}$ " o "el problema X se resuelve en tiempo polinomial" para referirnos a que el lenguaje de decisión que corresponde a X está en ${\bf P}$.

P es considerada la clase de problemas "factibles".

Ejemplo de problema en ${\bf P}$

Un grafo G=(V,E) es conexo si todo par de nodos de G está unido por un camino.

Problema: Conectividad de un grafo

 $CON = \{ \langle G \rangle \colon G \text{ es un grafo conexo} \}$

Ejemplo de problema en ${\bf P}$

Un grafo G=(V,E) es conexo si todo par de nodos de G está unido por un camino.

Problema: Conectividad de un grafo

$$CON = \{ \langle G \rangle \colon G \text{ es un grafo conexo} \}$$

- Representamos G = (V, E) con su matriz de adyacencia
- Suponemos $V = \{0, ..., k-1\}$
- Hay una máquina M que hace esto:

Explora G usando depth first search desde u y marca los nodos visitados. Si quedó un nodo sin visitar, escribe 0 en la salida; si no, escribe un 1. Luego termina (que quiere decir pasar a q_f).

• Si $n = |\langle G \rangle|$ (siempre n va a representar el tamaño de la entrada), M llega al resultado en tiempo $O(n^2)$, entonces $\mathsf{CON} \in \mathbf{P}$.

Simplificación de máquinas para problemas de decisión

Para calcular funciones valuadas en $\{0,1\}$, no hace falta una cinta de salida (porque solo hay que devolver un 0 o un 1). Podemos trabajar con máquinas que solo tienen una cinta de entrada, una trabajo y

- dejar la salida (0 o 1) en la celda en la que termina la cabeza de trabajo cuando entra a q_f , o bien
- reemplazar q_f por un q_{si} (que significa que devuelve 1) y un q_{no} (que significa que devuelve 0); el estado de la configuración final es ahora q_{si} o bien q_{no} .

Llamemos a cualquiera de estas variantes una **máquina sin** cinta de salida.

Simplificación de máquinas para problemas de decisión

Para calcular funciones valuadas en $\{0,1\}$, no hace falta una cinta de salida (porque solo hay que devolver un 0 o un 1). Podemos trabajar con máquinas que solo tienen una cinta de entrada, una trabajo y

- dejar la salida (0 o 1) en la celda en la que termina la cabeza de trabajo cuando entra a q_f , o bien
- reemplazar q_f por un q_{si} (que significa que devuelve 1) y un q_{no} (que significa que devuelve 0); el estado de la configuración final es ahora q_{si} o bien q_{no} .

Llamemos a cualquiera de estas variantes una **máquina sin** cinta de salida.

Proposición

Si \mathcal{L} es decidible en tiempo T(n) por una máquina estándar de 3 cintas (entrada, trabajo y salida), entonces \mathcal{L} es decidible en tiempo O(T(n)) por una máquina sin cinta de salida.

Clase 3

Halt y máquina universal La clase ${\bf P}$

La clase \mathbf{NP}

Clase de complejidad: NP

 \mathbf{NP} es la clase de lenguajes \mathcal{L} tal que existe un polinomio $p: \mathbb{N} \to \mathbb{N}$ y una máquina M tal que

- ullet M corre en tiempo polinomial
- para todo x:

$$x \in \mathcal{L}$$
 sii existe $u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x, u \rangle) = 1$

M se llama el verificador para \mathcal{L} ; u se llama certificado para x.

Clase de complejidad: \mathbf{NP}

NP es la clase de lenguajes \mathcal{L} tal que existe un polinomio $p: \mathbb{N} \to \mathbb{N}$ y una máquina M tal que

- ullet M corre en tiempo polinomial
- para todo x:

$$x \in \mathcal{L}$$
 sii existe $u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x, u \rangle) = 1$

M se llama el verificador para \mathcal{L} ; u se llama certificado para x.

Notar que la segunda condición es equivalente a

$$x \in \mathcal{L}$$
 sii existe $u \in \{0, 1\}^{p(|x|)}$ tal que $M(xu) = 1$

porque M(y) puede primero contar la cantidad m de celdas en la cinta de entrada hasta el primer blanco y luego buscar el primer n tal que m = n + p(n). Tenemos que

$$y(0), \dots, y(n-1) = x$$
 y $y(n), \dots, y(n+p(n)-1) = u$

Teorema

$P \subseteq NP$.

Teorema

$$P \subseteq NP$$
.

Demostración.

Supongamos que $\mathcal{L} \in \mathbf{P}$. Supongamos una máquina M tal que M decide \mathcal{L} en tiempo polinomial. Tomamos p(n) = 0. Definimos la máquina M' que, dado $\langle x, \epsilon \rangle$ como entrada, simula M con entrada x. Como M corre en tiempo polinomial, M' también.

$$\begin{array}{ll} x\in\mathcal{L} & \text{ sii } & M(x)=1\\ & \text{ sii } & M'(\langle x,\epsilon\rangle)=1\\ & \text{ sii } & \text{ existe } u\in\{0,1\}^0 \text{ tal que } M'(\langle x,u\rangle)=1 \end{array}$$

Ejemplo de problema en NP

Un conjunto X de nodos de un grafo G = (V, E) es **independiente** si no existen $u, v \in X$ tal que $(u, v) \in E$.

Problema: Conjunto independiente

$$\mathsf{INDSET} = \{ \langle G, k \rangle \mid \begin{matrix} G \text{ tiene un conjunto inde-} \\ \text{pendiente de} \geq k \text{ vértices} \end{matrix} \}$$

Ejemplo de problema en NP

Un conjunto X de nodos de un grafo G = (V, E) es **independiente** si no existen $u, v \in X$ tal que $(u, v) \in E$.

Problema: Conjunto independiente

```
\mathsf{INDSET} = \{ \langle G, k \rangle \mid \substack{G \text{ tiene un conjunto inde-} \\ \text{pendiente de} \ge k \text{ vértices}} \}
```

- suponemos que $V = \{[0], [1], \dots, [|V|-1]\}$
- $\bullet\,$ certificado: lista de k nodos distintos de V que forman un conjunto independiente
- podemos codificar ese certificado en una palabra u de tamaño $O(k\lceil \log |V| \rceil)$. Sea $n = |\langle \langle G \rangle, [k] \rangle|$. Como $k \leq |V|$, entonces $|u| = O(n \log n)$ (usar codificación de listas)
- |u| = p(n) para un polinomio cuadrático p (completar con 0s al final)
- M recibe como entrada x. Si x no es de la forma $\langle\langle G,k\rangle,u\rangle$ con |u|=p(n), escribe 0 en la salida. Si no: si u codifica un conjunto independiente de G de k nodos, escribe 1 en la salida; si no, escribe 0.
- M corre en tiempo polinomial.
- $x \in \mathsf{INDSET}$ sii existe $u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x,u\rangle) = 1$.