Lecture 2 - Image Fundamentals

This lecture will cover:

- Image acquisition
- Sampling and Quantization
- Pixels
- Image operation
- Color space

Image Operations

- Array and Matrix Operation
- Vector and Matrix Operation
- Linear and Nonlinear Operation
- > Set and Logical Operation
- Arithmetic Operation
- Spatial Operation
- Image Transformation
- Probabilistic Methods

Image Operations

- Array and Matrix Operation
- Vector and Matrix Operation
- Linear and Nonlinear Operation
- > Set and Logical Operation
- Arithmetic Operation
- Spatial Operation
- > Image Transformation
- Probabilistic Methods

Array and Matrix Operation

Consider two 2 x 2 image

$$\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
 and $\begin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$

> Array product

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{11} \\ a_{21}b_{21} & a_{22}b_{22} \end{bmatrix}$$

Matrix product

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Vector and Matrix Operation

Multispectral image processing

A pixel in a n-dimensional space can be expressed as a column vector

 $Z = [z_1, z_2, z_n]^T$, then a vector norm between two pixels Z and A

$$||Z - A|| = [(Z - A)^{T} (Z - A)]^{\frac{1}{2}}$$
$$= [(z_{1} - a_{1})^{2} + (z_{2} - a_{2})^{2} + \dots + (zn - an)^{2}]^{\frac{1}{2}}$$

Linear transformations

$$g = Hf + n$$

Linear and Nonlinear Operation

An operator

$$H[f(x,y)] = g(x,y)$$

is linear if

$$H[a_i f_i(x, y) + aj f_j(x, y)] = a_i H[f_i(x, y)] + aj H[f_j(x, y)]$$

= $a_i g_i(x, y) + a_j g_j(x, y)$

- Additivity
- **Homogeneity**

Set Operation (Coordinates)

Set Operation (Intensity)

Logical Operation

Arithmetic Operation

Addition

$$s(x,y) = f(x,y) + g(x,y)$$

Subtraction

$$d(x,y) = f(x,y) - g(x,y)$$

Multiplication

$$p(x,y) = f(x,y) \times g(x,y)$$

Division

$$v(x,y) = f(x,y) \div g(x,y)$$

Image Addition

Image Addition

If $f(x, y) + g(x, y) > L_{max}$, s(x, y) can be calculated as

Average

$$s(x,y) = \frac{f(x,y) + g(x,y)}{2}$$

> Scale

$$\{\min[s(x,y)], \max[s(x,y)]\} = \{0, L_{\max}\}\$$

Max intensity value

If
$$s(x, y) > L_{\text{max}}$$
, $s(x, y) = L_{\text{max}}$

Image Subtraction

Image Multiplication

Image Division

$$g(x, y) = f(x, y) h(x, y)$$

h(x, y)

f(x, y)

$$f(x, y) = g(x, y)/h(x, y)$$

Spatial Operation

Performed directly on the pixels of the image

- Single-pixel operations
- Neighborhood operations
- > Image geometry

Scale, Rotate, Translate, Mirror, Transpose, Shear, etc.

> Interpolation

Single-pixel Operation

Region operation

 S_{xy} is a region with center (x, y), $g(x, y) = \frac{1}{mn} \sum_{(r,c) \in Sx_y} f(r,c)$

Image geometry

- Modify spatial relationship between pixels rubber-sheet
 - Forward mapping: (x y) = T(v w)
 - Inverse mapping: $(v w) = T^{-1}(x y)$
- > Affine transform

$$[x \ y \ 1] = [v \ w \ 1]T = [v \ w \ 1] \begin{bmatrix} t_1 & t_4 & 0 \\ t_2 & t_5 & 0 \\ t_3 & t_6 & 1 \end{bmatrix}$$

or

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = T \begin{bmatrix} v \\ w \\ 1 \end{bmatrix} = \begin{bmatrix} t_1 & t_2 & t_3 \\ t_4 & t_5 & t_6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Affine Transform

> Translation

$$\begin{cases} x = v + \Delta v \\ y = w + \Delta w \end{cases} \implies \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta v \\ 0 & 1 & \Delta w \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

> Rotation

$$\begin{cases} x = v\cos\beta - w\sin\beta \\ y = v\sin\beta + w\cos\beta \end{cases} \implies \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\beta & -\sin\beta & 0 \\ \sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Scaling

$$\begin{cases} x = c_{x}v \\ y = c_{y}w \end{cases} \implies \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Affine Transform

> Mirror

Horizontal:
$$\begin{cases} x = W - v \\ y = w \end{cases} \implies \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & W \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Vertical:
$$\begin{cases} x = v \\ y = H - w \end{cases} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & H \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

> Transpose

$$\begin{cases} x = w \\ y = v \end{cases} \implies \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Affine Transform

> Shear

Horizontal:
$$\begin{cases} x = v + c_y w \\ y = w \end{cases} \implies \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & c_y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Vertical:
$$\begin{cases} x = v \\ y = c_x v + w \end{cases} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ c_x & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ 1 \end{bmatrix}$$

Registration

- > To align two or more images of the same scene
- ➤ Given input and output images, to estimate the transformation functions and then use it to register the two images

Interpolation

Bilinear interpolation

Interpolation

