Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

11 сентября 2025 г.

Содержание

1 Линейные разностные уравнения с постоянными коэффициентами (ЛОС)

 $\mathbf{2}$

by werserk 1

1 Линейные разностные уравнения с постоянными коэффициентами (ЛОС)

1. Пример задачи из экзамена

Найдите общее решение:

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9.$$

2. Универсальный алгоритм

Пусть задано ЛОС порядка n:

$$\sum_{k=0}^{n} a_k y_{t+k} = f(t), \quad a_n \neq 0.$$

Шаг 0. Привести к канонической форме (ведущий коэффициент = 1), если нужно.

Шаг 1. Построить характеристический многочлен.

$$P(r) = r^n + b_{n-1}r^{n-1} + \dots + b_0.$$

Найти корни r_i с кратностями m_i .

Шаг 2. Записать общее решение однородного уравнения.

Для корня r кратности s включаем в базис

$$t^0 r^t, \ t^1 r^t, \dots, t^{s-1} r^t.$$

Комплексные пары дают реальные базисы $r^t \cos(\theta t)$, $r^t \sin(\theta t)$.

Шаг 3. Выбрать пробную форму для частного решения $y^{(p)}$ по типу f(t).

Правило: для каждого атома f(t) взять стандартную пробную форму (см. таблицу ниже) и умножить на t^m , где m — кратность корня характеристического многочлена, соответствующего этому атому.

Шаг 4. Определить коэффициенты в $y^{(p)}$.

Подставить $y^{(p)}$ в уравнение, приравнять по независимым типам и решить линейную систему для неизвестных.

Шаг 5. Общий ответ и начальные условия.

 $y_t = y_t^{(h)} + y_t^{(p)}$. При наличии начальных данных решить систему для констант C_i .

3. Таблицы и шпаргалки

Таблица 1. Атом $f(t)\mapsto$ пробная форма (без учёта резонанса)

Атом	Π робная форма $y^{(p)}$ (до умножения на t^s)
α^t	$Alpha^t$
t^d	$\sum_{k=0}^d c_k t^k$
$\alpha^t P(t)$	$\alpha^t \sum_{k=0}^d c_k t^k$
$\alpha^t \cos(\beta t)$ or $\alpha^t \sin(\beta t)$	$\alpha^t (A\cos(\beta t) + B\sin(\beta t))$
Сумма атомов	Сумма соответствующих пробных форм

Таблица 2. Правило резонанса Если атом соответствует корню $r = \alpha e^{i\theta}$ характеристического многочлена и этот корень имеет кратность m, умножаем пробную форму на t^m .

Таблица 3. Комплексные корни Корень $re^{\pm i\theta}$ даёт реальные базисы $r^t\cos(\theta t),\ r^t\sin(\theta t).$

4. Применение алгоритма к задаче

Шаг 0. Каноническая форма уже задана:

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9.$$

Шаг 1. Характеристический многочлен:

$$P(r) = r^3 - r^2 + 4r - 4 = (r - 1)(r^2 + 4).$$

Корни: r = 1 (кратность 1), $r = \pm 2i$ (кратности 1).

Шаг 2. Общее решение однородного:

$$y_t^{(h)} = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right).$$

Шаг 3. Правая часть разбивается:

$$26 \cdot 3^t$$
 (атом α^t с $\alpha = 3$); $10t + 9$ (полином степени 1, эквивалент 1^t).

— Для 3^t : пробуем $A3^t$. Корень 3 не соответствует корням характеристического многочлена \Rightarrow множитель t^0 . — Для 10t+9: базовая пробная форма — полином степени 1 (at+b), но т.к. r=1 — корень характеристики кратности 1, умножаем на t^1 . Итак пробная форма:

$$y_t^{(p)} = A \cdot 3^t + at^2 + bt.$$

Шаг 4. Подставляем $y^{(p)}$ в левую часть, получаем:

$$L[y^{(p)}] = 26A \cdot 3^t + 10at + (9a + 5b).$$

Равняем с $26 \cdot 3^t + 10t + 9$, получаем:

$$26A = 26 \Rightarrow A = 1$$
; $10a = 10 \Rightarrow a = 1$; $9a + 5b = 9 \Rightarrow b = 0$.

Значит $y_t^{(p)} = 3^t + t^2$.

Шаг 5. Общее решение:

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right) + 3^t + t^2$$

Если заданы начальные условия y_0, y_1, y_2 , подставляем их и решаем систему для C_1, C_2, C_3 .

5. Советы

- Всегда факторизуйте характеристический многочлен в начале.
- Не забывайте правило резонанса (умножение на t^m).
- Для тригонометрических членов используйте форму с cos и sin.
- При равенстве по типам (α^t , полином по t и т.д.) приравнивайте коэффициенты это даёт линейную систему.

by werserk 3