# Recommender Systems (and applications)

R. Gaudel

<sup>1</sup>ENSAI, CREST

October 2019



# Part II

# **Bandits Theory**





3/76

Oct. 2019

#### Last Time in a Nutshell

A Zoo of Recommender Systems







Focus on Collaborative Filtering





ENSAI

# Today Focus: Content-based recommendation

Example: News Recommendation



- Data
  - News' features x: text, date, category...
  - Log of previous recommendations: (x<sup>(1)</sup>, click), (x<sup>(2)</sup>, click), (x<sup>(3)</sup>, noClick), (x<sup>(4)</sup>, click)...
- Model
  - ▶ Logistic Regression...

\* 
$$\hat{z} = \mathbf{P}(z = 1|\mathbf{x}) \stackrel{def}{=} \hat{t}_{\mathbf{w}^T b}(\mathbf{x}) = \sigma(\mathbf{x}\mathbf{w}^T + b)$$

\* with 
$$\sigma(\dot{z}) = \frac{1}{1+\sigma^{-\dot{z}}}$$
 (sigmoid)



# Today Focus: Content-based recommendation

Example: News Recommendation



- Problem solved. What else ?
- Data not at all independent!
  - Data result from past recommendations
  - Past recommendations results from a model
  - Model learned from data
  - Data result from past recommendations
  - **>** ...
  - ► ⇒ Exploration / Exploitation trade-off

Model

Data

Nev

Log

 $(x^{(4)})$ 

- Logistic Regression...
  - \*  $\hat{z} = \mathbf{P}(z = 1 | \mathbf{x}) \stackrel{def}{=} \hat{t}_{\mathbf{w}^T b}(\mathbf{x}) = \sigma(\mathbf{x}\mathbf{w}^T + b)$
  - \* with  $\sigma(\dot{z}) = \frac{1}{1 + e^{-\dot{z}}}$  (sigmoid)

 $(\mathbf{x}^{(3)}, noClick),$ 



# Oversimplified Example: Facing 2 Options



blue brown option

nb +1: 3 60 nb 0: 7 40

Which arm to play?

30 remaining trials
Obj: maximize total gain



6/76

Oct. 2019

# Oversimplified Example: Facing 2 Options



nb +1: 3 60 nb 0: 7 40 true mean: 0.7 0.6

Which arm to play ?
Play right arm
(better empirical average & higher confidence)

Is it really the best option?

You should also explore (from time to time)



6 / 76

#### Outline

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



#### Stochastic Multi-Armed Bandit

Game

Learner (you, your program)



Environment (user, client)

- Parameters
  - K: nb arms (previously known as options)
  - ν<sub>i</sub>: reward distribution of arm i
  - $\blacktriangleright \mu_i \mathbb{E}[\nu_i]$
  - $\blacktriangleright \mu^*: \max_{i=1,\ldots,K} \mu_i$
  - $\blacktriangleright \Delta_i$ :  $\mu^* \mu_i$
- Setting
  - At each time-step t
    - ★ Choose arm i<sub>t</sub> (to draw)
    - ★ Get reward  $r_t \sim \nu_i$
- Objective
  - Find a strategy to choose  $i_1, \ldots, i_T$  in order to





unknown unknown unknown unknown

known

## Outline

- Why to Explore
  - Setting
  - A/B Testing
- - Regret
  - Anytime A/B Testing
  - UCB

  - Conclusion
- - Simple Regret

  - Adversarial Setting



# A/B Testing

- Context
  - ► Choose between option A and option B (K = 2 arms)
- Solution
  - Apply both options
    - ★ Up to time t / up to budget m
    - \* With random assignment
    - ★ Log efficiency of each assignment
  - Choose the best option
    - Given the logs
    - ★ Using statistical test
    - **★** Conclusion: A > B A < B A ? B
  - Apply the winning option
    - ★ Up to time T
- Aka. Explore Then Commit (ETC) in Bandit community



#### **Notations**

• Denote  $T_{i,t-1}$  the number of trial of option i from time-step 1 to t-1

$$T_{i,t-1} = \sum_{s=1}^{t-1} \mathbf{1}_{i_s=i}$$

• Denote  $\hat{\mu}_{i,t-1}$  the empirical mean reward when choosing option i from time-step 1 to t-1:

$$\hat{\mu}_{i,t-1} = \frac{1}{T_{i,t-1}} \sum_{s=1}^{t-1} 1_{i_s=i} r_s$$



# A/B Testing Strategy

- A/B testing strategy
  - ▶ Try each of the K = 2 available options m/K times
  - Go with the winner for the remaining rounds

#### A/B testing at time-step t

• 
$$T_{i,t-1} = \sum_{s=1}^{t-1} 1_{i_s=i}$$

$$\bullet \ \hat{\mu}_{i,t-1} = \frac{\sum_{s=1}^{t-1} 1_{i_s=i} r_s}{T_{i,t-1}}$$

Choose option

$$i_t = \begin{cases} \mathsf{A}, & \text{if } t \leqslant m \text{ and } (t \bmod 2 = 0) \\ \mathsf{B}, & \text{if } t \leqslant m \text{ and } (t \bmod 2 = 1) \\ \underset{i \in \{\mathsf{A}, \, \mathsf{B}\}}{\operatorname{argmax}} \; \hat{\mu}_{i, \mathbf{m}} & \text{if } t > m \end{cases}$$

13 / 76

# **Empirical Analysis**

#### Specific environment

```
► r_t | i_t = A \sim \mathcal{N}(0.5, 1)

► r_t | i_t = B \sim \mathcal{N}(0.2, 1)  (\Delta_B = 0.3)

► T = 300

► 1,000 "games"
```

#### Questions

- ► Sum of rewards  $\sum_{t=1}^{T} r_t$  (mean value, distribution)
- ► T<sub>A,T</sub> (mean value, distribution)



#### Mean value

► Oracle: 150

► A/B (m = 40): 143



Histogram of Sum of rewards at time-step T = 300



# Number of Trials of Best Option

#### Mean value

Oracle: 300

► A/B (m = 40): 276



Histogram of number of trials of best option at time-step T = 300





On 40 first trials



On remaining trials



#### $r_t | i_t = A \sim \mathcal{N}(0.5, 1)$ T = 300 $r_t | i_t = B \sim \mathcal{N}(0.2, 1)$ 1, 000 games

## Question

- Consequence if *m* is small?
- Consequence if m is big ?



Histogram of Sum of rewards at time-step T = 300



On 40 first trials



On remaining trials



17 / 76

#### Sum of Rewards





Best value for m?

Averaged sum of rewards from time-step T = 0 to T = 300



- Specific environment
  - $ightharpoonup r_t | i_t = A \sim \mathcal{N}(\mu, 1)$
  - $ightharpoonup r_t | i_t = B \sim \mathcal{N}(\mu \Delta, 1), \Delta > 0$
  - ▶ T trials
  - Each option tried m/2 times
- Questions
  - Sum of rewards  $\sum_{t=1}^{T} r_t$  (mean value, distribution)
  - $ightharpoonup \implies T_{A,T} \text{ distribution}$

\* 
$$\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\right] = T\mu - \mathbb{E}[T_{B,T}]\Delta$$
  
from  $\sum_{t=1}^{T} (r_{t}.1_{i_{t}=A} + r_{t}.1_{i_{t}=B})$  and  $\mathbb{E}\left[r_{t}.1_{i_{t}=A}|i_{t}=i\right] = 1_{i_{t}=i}\mathbb{E}\left[r_{t}|i_{t}=i\right]$   
\*  $T_{A,T}$  has only two possible outcomes:  $m/2$  or  $m/2 + (T-m)$ 

\*  $T_{A,T}$  has only two possible outcomes: m/2 or  $m/2 + (\bar{T} - m)$ 

#### Questions

- Lemma
  - Upper-bound of the probability to identify option B as the best after m trials
- "Theorem"
  - Lower-Bound on expected sum of rewards at time T
- Corollary
  - Optimal value for m

- Specific environment
  - $ightharpoonup r_t | i_t = A \sim \mathcal{N}(\mu, 1)$
  - $r_t|i_t = B \sim \mathcal{N}(\mu \Delta, 1), \Delta > 0$
  - ► T trials
  - Each option tried m/2 times

#### Usefull

• Let  $z \sim \mathcal{N}(\mu, \sigma)$ 

$$\mathbb{P}\left(\frac{z}{\sigma} > s\right) \leqslant \exp\left(\frac{s^2}{2}\right)$$

#### Lemma

Probability to identify option B as the best after m trials

$$\begin{split} & \mathbb{P}\left(\underset{i \in \{\mathsf{A},\,\mathsf{B}\}}{\operatorname{argmax}} \ \hat{\mu}_{i,m} = B\right) = \mathbb{P}\left(\hat{\mu}_{B,m} > \hat{\mu}_{A,m}\right) \\ & = \mathbb{P}\left(\frac{2}{m}\sum_{t=1}^{m/2}(x_t + \mu - \Delta) > \frac{2}{m}\sum_{t=1}^{m/2}(y_t + \mu)\right) \\ & = \mathbb{P}\left(\frac{\sum_{t=1}^{m/2}x_t - \sum_{t=1}^{m/2}y_t}{\sqrt{m}} > \frac{\sqrt{m}}{2}\Delta\right) \leqslant \exp\left(-\frac{m\Delta^2}{8}\right) \end{split}$$

with  $x_t \sim \mathcal{N}(0, 1), y_t \sim \mathcal{N}(0, 1)$ 

### Usefull

Specific environment

$$ightharpoonup r_t | i_t = A \sim \mathcal{N}(\mu, 1)$$

• 
$$r_t|i_t = B \sim \mathcal{N}(\mu - \Delta, 1), \Delta$$

- T trials
- ▶ Each option tried m/2 tim

$$\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\right] = T\mu - \mathbb{E}[T_{B,T}]\Delta$$

► 
$$r_t | i_t = A \sim \mathcal{N}(\mu, 1)$$
  
►  $r_t | i_t = B \sim \mathcal{N}(\mu - \Delta, 1), \ \angle$ 
►  $T \text{ trials}$ 

$$\mathbb{P}\left(\underset{i \in \{A, B\}}{\operatorname{argmax}} \ \hat{\mu}_{i,m} = B\right) \leqslant \exp\left(-\frac{m\Delta^2}{8}\right)$$

#### heorem

Expected cumulative reward (to lower-bound)

$$\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\right] = T\mu - \frac{m}{2}\Delta - (T - m)\Delta\mathbb{P}\left(\underset{i \in \{A, B\}}{\operatorname{argmax}} \ \hat{\mu}_{i,m} = B\right)$$
$$\geqslant T\mu - \frac{m}{2}\Delta - (T - m)\Delta\exp\left(-\frac{m\Delta^{2}}{8}\right)$$



- Specific environment
  - $ightharpoonup r_t | i_t = A \sim \mathcal{N}(\mu, 1)$
  - $ightharpoonup r_t | i_t = B \sim \mathcal{N}(\mu \Delta, 1), \Delta > 0$
  - ► T trials
  - ► Each option tried m/2 times

#### Corollary

Recall

$$\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\right] \geqslant T\mu - \frac{m}{2}\Delta - (T - m)\Delta \exp\left(-\frac{m\Delta^{2}}{8}\right)$$

Best value for m (with T large enough)

$$m = \frac{8}{\Delta^2} \log \left( \frac{T \Delta^2}{4} \right) \quad \longrightarrow \quad \mathbb{E} \left[ \sum_{t=1}^T r_t \right] \geqslant T \mu - \Delta - \frac{4}{\Delta} \left( 1 + \log \left( \frac{T \Delta^2}{4} \right) \right)$$

## Take-Home Message





#### Recap

- Explore then Commit (to te good or to the bad)
- ▶ Optimal *m* of the order  $\frac{1}{\Delta^2} \log (T.\Delta)$

#### Remarks

- ▶ Optimal m depends on △
  - ★ Do you know △?
  - ★ What about more than 2 options?
- Optimal m increases with T
  - Consequence if T unknown?



## Outline

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



## Regret

• Bandit true objective: find a strategy to choose  $i_1, \ldots, i_T$  in order to

minimize 
$$R_T \stackrel{\text{def}}{=} T.\mu^* - \mathbb{E}\left[\sum_{t=1}^T r_t\right] = \sum_{i=1}^K \Delta_i \mathbb{E}\left[T_{i,T}\right]$$
 (a.k.a (pseudo-)regret)

as a replacement for maximize  $\sum_{t=0}^{\infty} r_{t}$ 

- Any "interesting" algorithm "converges":  $\frac{1}{T} \sum_{t=1}^{T} r_t \xrightarrow{T} \mu^*$ 
  - ► Equivalent to  $\frac{R_T}{T} \xrightarrow[T \to \infty]{} 0$ ,  $R_T = o(T)$
  - aka. Zero-regret learner / vanishing regret / sublinear regret
- Remaining question: at which speed?
- Standard settings

$$P_T = O(\sqrt{T}) \frac{R_T}{T} = O(\frac{1}{\sqrt{T}})$$

$$P_T = O(\sqrt{T}) \qquad \frac{R_T}{T} = O(\frac{1}{\sqrt{T}})$$

$$P_T = O(\log(T)) \qquad \frac{R_T}{T} = O(\frac{\log(T)}{T})$$





25 / 76

# A/B Testing Regret Bounds

- Specific environment
  - K = 2
  - $\triangleright$   $\nu_0 = \mathcal{N}(\mu, 1)$
  - $\triangleright$   $\nu_1 = \mathcal{N}(\mu \Delta, 1), \Delta > 0$
  - ► Horizon: *T*
  - ► Each option tried *m* times
- (Cheating) instance-dependent bound  $(m = \frac{8}{\Delta^2} \log \left( \frac{T\Delta}{4\sqrt{\pi}} \right))$

$$R_T \leqslant \frac{4}{\Delta} \left( 1 + \log \left( \frac{T\Delta}{4\sqrt{\pi}} \right) \right)$$

$$R_T = O\left(\frac{1}{\Delta}\log(T)\right)$$

Worst-case bound

$$R_T = O\left(\sqrt{T}\right)$$





# **Experimental Analysis**

$$K = 2$$
  $\nu_0 = \mathcal{N}(0, 1)$   
10,000 games  $\nu_1 = \mathcal{N}(-\Delta, 1)$ 

$$\nu_0 = \mathcal{N}(0, 1)$$

$$\nu_1 = \mathcal{N}(-\Delta, 1)$$



blue: some upper-bound given m "optimal" green / yellow: m given by theoretical analysis



 $T = 2,000, \Delta = 0.1$ 



# Lower Bound on the Regret

### Lower Bound on the Regret

For any policy that has sub-polynomial regret for all 1-subgaussian distribution (i.e.,  $R_T = o(T^p)$  for all p > 0 and all  $\nu_1, \ldots, \nu_K$ ), for any set of distributions  $\nu_1, \ldots, \nu_K$ ,

$$\liminf_{T\to+\infty}\frac{R_T}{\log(T)}\geq \sum_{i:\Delta_i>0}\frac{2}{\Delta_i}$$

- Corollary
  - ►  $R_T = \Omega(\log(T))$   $\implies$  Standard algorithms are optimal (up to a constant)
  - Explore at least  $\frac{2 \log(T)}{\Delta_i}$  times arm  $i \implies$  Never-ending exploration



#### **Outline**

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCE
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



# $\varepsilon_n$ -greedy

- Spread A/B Testing exploration along time
- K arms

### $\varepsilon_n$ -greedy at time-step t

- $\bullet \ T_{i,t-1} = \sum_{s=1}^{t-1} 1_{i_s=i}$
- $\bullet \ \hat{\mu}_{i,t-1} = \frac{\sum_{s=1}^{t-1} 1_{i_s=i} r_s}{T_{i,t-1}}$
- $\varepsilon_t = cK/d^2t$ , with c and d two parameters
- Pull the arm

$$i_t = \begin{cases} \operatorname{argmax}_i \ \hat{\mu}_{i,t-1}, & \text{with prob. } (1 - \varepsilon_t) \\ i, & \text{with prob. } \varepsilon_t / K \end{cases}$$



## $\varepsilon_n$ -greedy Regret

$$i_t = \begin{cases} \operatorname{argmax}_i \ \hat{\mu}_{i,t-1}, & \text{with prob. } (1 - \varepsilon_t) \\ i, & \text{with prob. } \varepsilon_t / K \end{cases}$$

#### Question

• Expected number of time arm i is drawn due to exploration rule?

## Bound on the regret of $\varepsilon_n$ -greedy

If  $0 < d < min\{\Delta_i : \Delta_i \neq 0, i \in 1, ..., K\}$ ,  $\nu_i$  support is included in [0, 1], and c > 5, and arms  $i_1, ..., i_T$  are chosen by  $\varepsilon_n$ -greedy strategy,

$$R_T \leq \frac{K}{d^2} \ln T + o(\ln T)$$



# **Experimental Analysis**

$$K = 2$$
  
 $T = 10,000$ 

--- epsilon n-greedy 1

$$\nu_0 = Ber(0.9)\nu_1 = Ber(0.9\Delta)$$
1000 replications





- $c/d^2$  to be tuned ...
- ...application per application



#### **Outline**

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



### UCB<sub>1</sub>

Upper Confidence Bound (Auer et. al, 2002)

#### UCB1 at time-step t

• 
$$T_{i,t-1} = \sum_{s=1}^{t-1} \mathbf{1}_{i_s=i}$$

$$\bullet \ \hat{\mu}_{i,t-1} = \frac{\sum_{s=1}^{t-1} 1_{i_s=i} r_s}{T_{i,t-1}}$$

Pull the arm

$$i_t = \underset{i}{\operatorname{argmax}} \ \hat{\mu}_{i,t-1} + \sqrt{\frac{2 \ln t}{T_{i,t-1}}}$$



# Be Optimist in the Face of Uncertainty

- From where comes  $UCB(i, t) = \hat{\mu}_{i, t-1} + \sqrt{\frac{2 \ln t}{T_{i, t-1}}}$  ?
- Remark: if  $X_1, X_2, \ldots, X_n$  are independent and  $\sigma$ -subgaussian with mean  $\mu$  and  $\hat{\mu} = \frac{\sum_{s=1}^n X_s}{n}$ , then for any  $\varepsilon \geqslant 0$

$$\mathbb{P}\left(\hat{\mu} \leqslant \mu - \varepsilon\right) \leqslant \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right)$$

▶ What is UCB(i, t)?

$$\mathbb{P}\left(\mu\geqslant \textit{UCB}(i,t)\right)\leqslant \frac{\exp\left(-1/\sigma^2\right)}{t}$$

- Graphics / Demo
- Remark:  $T_{i,t-1}$  depends on values  $r_t$ , so the analysis is (partially) wrong

# **Application**

- Recall:  $UCB(i, t) = \hat{\mu}_{i, t-1} + \sqrt{\frac{2 \ln t}{T_{i, t-1}}}$
- For following situations (nb of wins / nb of trials)
  - Which arm a "greedy" strategy would pull?
  - Which arm would you pull?
  - Which arm UCB1 would pull? arm 1 arm 2 arm 3 3/13 60/160 6/20 9/10 8/10 7/10 18/20 8/10 7/10
- An arm has been pulled T times with empirical mean  $\hat{\mu}$ . At which iteration, its UCB1 value will be greater than  $\hat{\mu} + \delta$ ?



# Regret

#### Problem-Dependent Bound for UCB1

If  $\nu_i$  support is included in [0, 1] and arms  $i_1, \ldots, i_T$  are chosen by UCB1 strategy,

$$R_T \leq \sum_{i:\Delta_i>0} \frac{8}{\Delta_i} \ln T + O(1)$$

#### Worst-Case Bound for UCB1

If  $\nu_i$  support is included in [0, 1] and arms  $i_1, \ldots, i_T$  are chosen by UCB1 strategy,

$$R_T \leq 8\sqrt{TK \ln T} + O(1)$$



37 / 76

R. Gaudel (ENSAI, CREST) Bandits Theory Oct. 2019

# **Experimental Analysis**

$$K = 2$$
  
 $T = 10,000$ 

UCB1 1

--- UCB1 10

$$\nu_0 = Ber(0.9)\nu_1 = Ber(0.9\Delta)$$
1000 replications





- Good behavior . . .
- ...with standard parameters



# Experimental Analysis

$$K = 2$$
  $\nu_0 = \mathcal{N}(0, 1)$   
 $T = 1,000$   $\nu_1 = \mathcal{N}(-\Delta, 1)$ 



- UCB almost the best while no parameter to tune
- Results similar with  $\varepsilon_n$ -greedy
- (So simple to implement)



# UCB: a Huge Family

- UCB2
- UCB-V (learn the variance)
- KL-UCB (almost optimal for Bernouilli distributions)
- AO-UCB (asymptotically optimal on 1-subgaussian distributions)

• ...



### **Outline**

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



# Thompson Sampling (for Bernoulli distributions)

a.k.a. Probability Matching, Bayesian Bandits

• Assumption:  $\nu_i$  are Bernoulli distributions

#### Thompson Sampling at time-step *t*

- Let  $\tilde{\mu}_i$  be a sample from  $Beta(S_{i,t}+1,F_{i,t}+1)$  for each arm i
- Pull the arm

$$i_t = \underset{i}{\operatorname{argmax}} \ \tilde{\mu}_i$$

- Get reward r<sub>t</sub>
- $(\tilde{r} \sim Bernouilli(r_t))$
- If r == 1,  $S_{i,t} \leftarrow S_{i,t} + 1$  else  $F_{i,t} \leftarrow F_{i,t} + 1$
- Exercise:  $\nu$  is Bernoulli distribution of parameter  $\mu$ , with a uniform prior on  $\mu$ . After T trials, you did collect S successes and F fails. What's the posterior distribution for  $\mu$ ?

### Apply Bayesian Framework

Generative model

$$\mu_i \sim \textit{Uniform}([0,1]) \qquad \forall i \qquad (1)$$

$$r_t \mid i_t \sim \textit{Bernouilli}\left(\mu_{i_t}\right)$$
 (2)

• A posteriori distribution on  $\mu_i$  (after T trials: S successes and F fails)

$$\mathsf{Pr}(\mu_i \mid \mathcal{S}, \mathcal{F}) \propto \mu_i^{\mathcal{S}} (1 - \mu_i)^{\mathcal{F}}$$

Corresponds to distribution Beta(S+1, F+1)



# Regret

### Bound on the regret of Thompson Sampling

If  $\nu_i$  support is included in [0, 1], and arms  $i_1, \ldots, i_T$  are chosen by Thompson Sampling strategy,

$$R_T \le O\left(\left(\sum_{i:\Delta_i>0} \frac{1}{\Delta_i^2}\right)^2 \ln T\right)$$



44 / 76

R. Gaudel (ENSAI, CREST) Bandits Theory

# **Experimental Analysis**

$$K = 2$$
  
 $T = 10,000$ 

$$\nu_0 = Ber(0.9)\nu_1 = Ber(0.9\Delta)$$
1000 replications





- Good behavior . . .
- ...with a large range of parameters



### **Outline**

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



# **Experimental Analysis**

$$K = 2$$
  
 $T = 10,000$ 

$$\nu_0 = Ber(0.9)\nu_1 = Ber(0.9\Delta)$$
1000 replications



• GG to Thompson Sampling!



 $\Delta = 0.1$ 



# (Some) Known regret Bounds

|                          | bound on the regret                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------|
| lower bound              | $\liminf_{T\to+\infty} \frac{R_T}{\ln T} \ge \sum_{i:\Delta_i>0} \frac{\Delta_i}{kl(\mu_i,\mu*)}$ |
| $\varepsilon_n$ -greedy  | $\frac{\kappa}{\sigma^2} \ln T + o(\ln T)$                                                        |
| UCB1                     | $\sum_{i:\Delta_i>0} \frac{8}{\Delta_i} \ln T + O(1)$                                             |
| Thompson Sampling        | $O\left(\left(\sum_{i:\Delta_i>0}\frac{1}{\Delta_i^2}\right)^2\ln T\right)$                       |
| KL-UCB (Bernouilli arms) | $\alpha \sum_{i:\Delta_i>0} \frac{\Delta_i}{kl(\mu_i,\mu_*)} \ln T + O(1)$                        |



### Respective Strengths

- $\varepsilon_n$ -greedy
  - Easy to apply to more tricky learning systems
  - Random
  - ▶  $\mathbb{P}$ (pull arm *i* at time-step *t*) > 0
- UCB1
  - Easy to tune
- Thompson Sampling
  - Easy to apply to more tricky learning systems (if you're Bayesian)
  - Random
  - ▶  $\mathbb{P}(\text{pull arm } i \text{ at time-step } t) > 0$



# **Applications**

- MCTS (search in trees)
  - Go-playing Artificial Intelligences (up to AlphaGo)
  - General game (artificial) players
- A/B Testing
- Big names (Google and Co.), at least  $\varepsilon_n$ -greedy



### Outline

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCE
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



### A/B Testing vs. Anytime Bandits

- Drawback of anytime approaches: maintain all he options
  - ► Code choosing the arm
  - Data Storage
  - Clients affectation
  - · ...

A/B Testing may be less expensive

⇒ use dedicated bandits (simple regret)



# Simple Regret

#### Rational

- Focus on minimizing / controlling  $p_e = \mathbb{P}(\text{selected arm} \neq \text{best arm})$
- ...with m as small as possible
- Typically: fix p<sub>e</sub> and adapt m to data

#### Adaptive Approaches

- Spread exploration budget non-uniformly
- Examples:
  - Successive Reject: stop exploration as soon as possible ... arm by arm
  - k-best arms identification<sup>a</sup>

<sup>a</sup>Emilie Kaufmann, Olivier Cappé, Aurélien Garivier. On the complexity of best-arm identification in multi-armed bandit models. The Journal of Machine Learning Research, Volume 17 Issue 1, 2016



53 / 76

# Example: Successive Reject

### Successive Reject Algorithm

- $A = \{1, ..., K\}$
- $n_0 = 0$
- $\forall k \in \{1, \dots, K-1\}, n_k = \frac{\alpha}{K+1-k}$ // Exploration Phase
- For k in 1, ..., K-1
  - ▶ Select  $n_k n_{k-1}$  times each arm in A
  - ▶ Identify the worst arm i in A
  - ▶ Remove i:  $A \leftarrow A \setminus \{i\}$
  - // Explotation Phase
- For remaining t
  - Select the only remaining arm



### Theoretical Analysis of Successive Reject

### Probability of Failure of Successive Reject

For some constant c,

$$\mathbb{P}(\mathsf{selected}\;\mathsf{arm} \neq \mathsf{best}\;\mathsf{arm}) \leq \mathit{K}^2 \exp\left(-c \frac{n}{\log(\mathit{K}) \sum_{i: \Delta_i > 0} \frac{1}{\Delta_i^2}}\right)$$



55 / 76

Oct. 2019

### Outline

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB

  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



#### Context

- A huge/infinite number of arms
  - How to manage it ?
- Examples
  - News
  - Advertisement
  - Songs
  - Youtube videos
- Put arms in a metric space
  - Neighbor arms have similar reward distribution



#### Contextual Bandit

- Parameters
  - $ightharpoonup \mathcal{X} \subseteq \mathbb{R}^d$ : set of arms
  - $\theta^* \in \mathbb{R}^d$ : parameters
- Setting
  - ► At each time-step t
    - ★ choose arm x<sub>t</sub> (to draw)
    - \* get reward  $r_t \sim \nu_{x_t}$  s.t.  $\mathbb{E}[r_t] = \langle x_t, \theta^* \rangle$
- Objective
  - Find a strategy to choose  $x_1, \ldots, x_T$  in order to

minimize 
$$R_T = T \cdot \max_{x \in \mathcal{X}} \langle x, \theta^* \rangle - \mathbb{E} \left[ \sum_{t=1}^T r_t \right]$$
 (a.k.a (pseudo-)regret)

• Question: estimator of  $\theta$ ?



known

unknown

#### **OFUL**

Optimism in the Face of Uncertainty Linear Bandit Algorithm (Abbasi-Yadkori et. al, 2011)

• Optimism in face of uncertainty strategy on the estimator of  $\theta^*$ 



### OFUL at time-step

- Let  $\mathbf{V}_t = \lambda.I + \sum_{s=1}^t x_s.x_s^T$
- Denote  $\hat{\theta}$  the (regularized) least square estimator of  $\theta$

• Let 
$$C_t = \left\{ \tilde{\theta} \in \mathbb{R}^d : \|\hat{\theta} - \tilde{\theta}\|_{\mathbf{V}_t} \le R\sqrt{d\ln\left(\frac{1+tL^2/\lambda}{\delta}\right)} + \sqrt{\lambda}s \right\}$$

Pull the arm

$$x_t = \underset{(x,\tilde{\theta}) \in (\mathcal{X}, C_t)}{\operatorname{argmax}} \langle x, \tilde{\theta} \rangle$$

# Regret Bound

#### Bound on the regret of OFUL

Under conditions on distributions and bounds on expected rewards, if arms  $x_1, \dots, x_T$  are chosen by OFUL strategy, with probability at least  $1 - \delta$ 

$$R_T \le O\left(\sqrt{dT \ln T} \sqrt{\ln \frac{1}{\delta} + \ln T}\right)$$



#### **GLM-UCB**

- Extension to Generalized Linear Model (includes Logistic Regression)
  - Sarah Filippi, Olivier Cappé, Aurélien Garivier, Csaba Szepesvári .
     Parametric Bandits: The Generalized Linear Case. NIPS'10.



61 / 76

### **Outline**

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



#### Context

- Recommend based on the identity of the object
  - Done: Multi-Armed Bandits
- Recommend based on the features of the object
  - Done: GLM-Bandit
- Recommend based on the identity of the object and the user
  - ▶ To be done now



# Collaborative Filtering in the Bandit Setting

MC: matrix completion

R+F: recommendation + feedback



# Collaborative Filtering in the Bandit Setting

#### A sequence of recommendations

MC : mati

⇒ Exploration-Exploitation dilemma

R+F: rec



# Approach 1: SeALS

(F. Guillou & R. Gaudel & P. Preux, 2016)

Matrix Completion ALS-WR





Items

$$\underset{\mathbf{U},\mathbf{V}}{\operatorname{argmin}} \sum_{(i,j) \in \mathcal{S}} \left( \mathbf{R}_{i,j} - \mathbf{U}_i \mathbf{V}_j^T \right)^2 + \lambda \left( \sum_i \# \mathcal{J}(i) ||\mathbf{U}_i||^2 + \sum_j \# \mathcal{I}(j) ||\mathbf{V}_j||^2 \right)$$

#### Algorithm: alternate

- Fix U and solve remaining least square problem
- Fix V and solve remaining least square problem



### Approach 1: SeALS

(F. Guillou & R. Gaudel & P. Preux, 2016)

#### Matrix Completion ALS-WR







# Approach 2: BeWARE

(J. Mary & R. Gaudel & P. Preux, 2015)



Matrix Completion ALS-WR



Recommendation LinUCB (two flavors)



Confidence interval on users



Confidence interval on items



#### **PTS**

(Jaya Kawale, Hung Bui, Branislav Kveton, Long Tran Thanh, Sanjay Chawla. Efficient Thompson Sampling for Online Matrix-Factorization Recommendation. NIPS'2015)

Apply Thompson Sampling strategy to model

$$\begin{aligned} \mathbf{U}_i &\overset{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_u^2 I_K) \\ \mathbf{V}_j &\overset{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_v^2 I_K) \\ r_{i,j} | U, V &\overset{iid}{\sim} \mathcal{N}(\mathbf{U}_i \mathbf{V}_j^T, \sigma^2) \end{aligned}$$



### Experimental Results on MovieLens-1M



- MovieLens 1M
  - ▶ 6,040 × 3,706
- Setting
  - Start with empty matrix
    - Perform 10<sup>6</sup> recom. 1 by 1
    - Store cumulative regret

#### Conclusion

Exploration helps!

Cumulative regret vs. time-step



68 / 76

### **Outline**

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- Conclusion



#### Context

- The environment is adversarial (no more "random iid")
  - ► Why?
  - Which constraints remains ?
  - How to manage it ?
- Why ?
  - ▶ Why not ? Can we trust the "iid" assumption ?
  - What about shifting probabilities ?
  - Small regret, even in the worst case
- Which constraints remain ?
  - ▶ Potential values for  $r_t$  chosen in advance :  $X_1, ..., X_T \in \mathbb{R}^K$
  - At each time-step t
    - ★ Learner chose action i<sub>t</sub>
    - ★ Learner gets reward  $r_t = X_{t,i_t}$
  - Environment do not react to actions.



# Regret

Regret

$$R_T = \mathbb{E}\left[ max_{i=1,...,K} \sum_{t=1}^T X_{t,i} - \sum_{t=1}^T X_{t,i_t} \right]$$

Worst-case regret

$$R_T^* = \sup_{X_1,\ldots,X_T \in \mathbb{R}^K} R_T(X_1,\ldots,X_T)$$

- Some important questions
  - ▶ Does there exists a strategy s.t.  $R_T^* = o(n)$ ? (Yes)
  - ► How small can we make  $R_T^*$ ?  $(O(\sqrt{Kn}))$
  - Let see Exp3 which achieves that worst-case regret



# Exp3

Exponential-weight algorithm for Exploration and Exploitation

• Assumption:  $X_1, \dots, X_T \in [0, 1]^K$ 

### Exp3 t

$$\bullet \ \forall i, P_{ti} \leftarrow \frac{\exp(\eta S_{t-1,i})}{\sum_{j=1}^{K} \exp(\eta S_{t-1,j})}$$

- Sample i<sub>t</sub> ∼ P<sub>t</sub>
- Get reward r<sub>t</sub>
- $\bullet \ \forall i, S_{t,i} \leftarrow S_{t-1,i} + 1 \frac{1_{i_t=i}(1-r_t)}{P_{ti}}$
- Rational  $\mathbb{E}\left[1-\frac{1_{i_t=i}(1-r_t)}{P_{ti}}\right]=X_{ti}$



# Regret Bound

#### Bound on the regret of Exp3

Let  $X_1, \ldots, X_T \in [0, 1]^K$ ,  $\eta = \log(K)/(2TK)$ , the expected regret of Exp3 satisfies  $R_T \leqslant \sqrt{2TKlog(K)}$ .

Remark: back to worst-case bound of iid setting.



### Outline

- Context
- Why to Explore
  - Setting
  - A/B Testing
- Multi-Armed Bandits
  - Regret
  - Anytime A/B Testing
  - UCB
  - Thompson Sampling
  - Conclusion
- More Bandits
  - Simple Regret
  - Contextual Bandits
  - Explore-Exploit Collaborative Filtering
  - Adversarial Setting
- 6 Conclusion



#### Conclusion

- Context: choose the best option
- Optimality: requires to balance exploration and exploitation
- Strategies
  - ► A/B Testing (not anytime ⇒ not optimal)
  - Dozens of "better" solutions
- Do we care about optimality?
  - ► A/B Testing for strategies (with simple regret algorithms)
    - ★  $\Theta(T)$  loss (aka. regret)
  - Basic algorithms prediction models)
     for products, Movies, ads ... (when advanced
    - ★  $O(\sqrt{T})$  loss
    - \* Each option to maintain
  - "Advanced" algorithms prediction models)for products, Movies, ads ... (when simple
    - $\star$   $O(\log(T))$  loss
    - ★ Each option to maintain



#### **And More**

- Adapt bandit to specific setting
  - Time varying best arm
  - Restriction on what to serve
  - Cannot serve same arm twice (movie, song) ⇒ probabilistic algorithms
  - Adversarial context
  - Delayed feedback / update on nights
  - Baseline arm
  - **.** . . .

#### Take a look at

- Bandit algorithms for Website optimization. John Myles White. O'Reilly Media.
- Sebastien Bubeck's blog and tutorials
- Tor Lattimore and Csaba Szepesvári's online book and tutorials
- Bubeck and Cesa-Bianchi's book
- **.** . .

