Notes on Complex Measures, etc.

Nick Maxwell

Preliminaries

For \mathcal{A} a σ -algebra, $E \in \mathcal{A}$, define $\mathcal{P}^*(E, \mathcal{A}) := \{ \{ E_k \in \mathcal{A}; k \in \mathbb{N} \}; E = \cup_k E_k, E_i \cap E_j = \phi \ \forall i \neq j \}$. Always $\{ \phi, E \} \in \mathcal{P}^*(E, \mathcal{A})$, so $\mathcal{P}^*(E, \mathcal{A})$ is never empty, and also $\mathcal{P}^*(\phi, \mathcal{A}) = \{ \phi \}$.

For \mathcal{A} a σ -algebra, define

$$S^{\pm}(\mathcal{A}) := \{ \sum_{k=1}^{n} c_k \, \mathbf{1}_{E_k}; \{ c_k \in \mathbb{R}; c_i \neq c_j \, \forall i \neq j \}, \{ E_k \in \mathcal{A}; E_i \cap E_j = \phi \, \forall i \neq j \}, n \in \mathbb{N} \}$$
 (1)

$$S^{+}(\mathcal{A}) := \{ \sum_{k=1}^{n} c_{k} \, \mathbf{1}_{E_{k}}; \{ c_{k} \in [0, \infty], c_{i} \neq c_{j} \, \forall i \neq j \}, \{ E_{k} \in \mathcal{A}; E_{i} \cap E_{j} = \phi \, \forall i \neq j \}, n \in \mathbb{N} \}$$
 (2)

Main ideas