CV 510% Modeling, Uncertainty, and Data for Engineers

(July - Nov 2025)

Dr. Prakash S Badal

1

Flow

- Extreme value analysis
- · Return period
- Design life
- Prob. of failure

Selection of GEV distribution type

Tail type	Extreme value type	Parent distribution
Medium-/baseline tailed	Gumbel	Normal
Heavy-/fat-tailed	Fréchet	t-distribution
Light-/thin-tailed	Reversed Weibull	Uniform, beta

9

Extreme value analysis

Magnitude of extremes

Generalized extreme value (GEV) distributions

- Smallest/largest values?
- Look out for the tails? Thin/thick? Bounded?
- Estimate excess Kurtosis
- · Pick one of the GEV models
- Frequency of extremes

Poisson process

- Count of extremes \rightarrow Estimate event rate (λ)
- Independent or clustered?
 - Proceed with Poisson models
 - Decluster using peak-over-threshold/block maxima

Return period

Four key concepts

```
• Prob. of exceedance in 1 year: p_{f,1y}
```

• Return period:
$$T_r = 1/p_{f,1y}$$

• Design life:
$$T_d$$
, lifetime of an infrastructure i

• Prob. of exceedance in
$$T_d$$
: $p_{f,Td}$

Poisson distribution

Probability of observing x extreme events in T period,

$$\Pr(x, \lambda, T) = \frac{(\lambda T)^x e^{-\lambda T}}{x!} \quad \text{where } x = 0, 1, 2, \dots \text{ and } \lambda > 0$$

$$E[x] = Var[x] = \lambda T$$

Assumptions: Independent trials; large number of trials; small \ensuremath{p}

11

Return period

• A design event has 10% probability of exceedance in 50 years ($p_{f,50y}=0.10$). What is the annual expected number of events λ and the return period T_r in years?

$$\Pr(x, \lambda, T) = \frac{(\lambda T)^x e^{-\lambda T}}{x!}$$

Pr(exceedance) = 1 - Pr(Non - exceedance)
Pr(exceedance in *T* years) =
$$1 - e^{-\lambda T}$$

$$p = 1 - e^{-\lambda T} \Rightarrow \lambda = -\frac{\ln(1-p)}{T}$$

$$\lambda \Rightarrow \lambda = -\frac{\ln(1-0.1)}{50} \approx 0.00211$$
 per year

Return period,
$$T_r = \frac{1}{\lambda} \approx 475$$
 years

Return period

• Given a design life of $T_d=50$ years and a design event with annual probability ($p_{f,1y}=1/475$), what is the probability of failure during the design life, $p_{f,Td}$?

$$\Pr(x, \lambda, T) = \frac{(\lambda T)^{x} e^{-\lambda T}}{x!}$$

$$\Pr(\text{failure in } T_d) = 1 - \Pr(\text{Nonfailure in } T_d)$$

$$\Pr(\text{failure in } T_d) = 1 - \left(1 - p_{f,1y}\right)^{T_d}$$

$$\Rightarrow p_{f,Td} = 1 - \left(1 - \frac{1}{475}\right)^{T_d} \approx 10\%$$

13

Return period

 What is the probability of a 475-year return period event occurring at least once in 475 years?

$$Pr(x, \lambda, T) = \frac{(\lambda T)^x e^{-\lambda T}}{x!}$$

$$\lambda = \frac{1}{475}$$
; $T = 475$ years

Pr(no occurrence) = Pr($x = 0$) = $e^{-1} \approx 0.368$

Pr(at least once) = $1 - Pr(x = 0) \approx 0.632 = 63.2\%$

Questions, comments, or concerns?

15