### Debugging a learning algorithm

You've implemented regularized linear regression on housing prices

$$J(\vec{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{2}{2m} \sum_{i=1}^{n} w_i^2$$

But it makes unacceptably large errors in predictions. What do you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features  $(x_1^2, x_2^2, x_1x_2, etc)$
- Try decreasing λ
- Try increand some of these things not fruitful.

1

© DeepLearning.AI

Stanford ONLINE



### Bias/variance examples

high variance

high high bias bias high variance

although hopefully this won't happen

@DeepLearning.AI

Stanford ONLINE

**Andrew Ng** 



if a learning algorithm suffers from high bias, getting more training data will not (by itself) help much.





high bias, because if it does,

Deeplearning Al Stanford ONLINE

Andrew Na



$$f_{\vec{w},b}(x) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$
(with small  $\lambda$ )







If a learning algorithm suffers from high variance, getting more training data is likely to help. then you can just get

a better fourth order



Andrew Ng

# Debugging a learning algorithm

You've implemented regularized linear regression on housing prices

$$J(\overrightarrow{w},b) = \underbrace{\frac{1}{2m}\sum_{i=1}^{m} \bigl(f_{\overrightarrow{w},b}\bigl(\overrightarrow{x}^{(i)}\bigr) - y^{(i)}\bigr)^2}_{i=1} + \underbrace{\frac{1}{2m}\sum_{j=1}^{n} w_j^2}_{j=1}$$
 But it makes unacceptably large errors in predictions. What do you

try next?

- → Get more training examples
- → Try smaller sets of features x, x², x′, x′, x′, x′...
- → Try getting additional features
- $\rightarrow$  Try adding polynomial features  $(x_1^2, x_2^2, x_1x_2, etc)$
- → Try decreasing λ
- $\rightarrow$  Try increasing  $\lambda$

If that's the case, the main fixes

fixes high variance fixes high variance fixes high bias fixes high bias fixes high bias fixes high variance

#### The bias variance tradeoff



@DeepLearning.AI

Stanford ONLINE

**Andrew Ng** 

#### Neural networks and bias variance

Large neural networks are low bias machines



DeepLearning.Al

Stanford ONLINE

## Neural networks and regularization



A large neural network will usually do as well or better than a smaller one so long as regularization is chosen appropriately. So the main way it hurts,

it will slow down your training and

@DeepLearning.AI

Stanford ONLINE

**Andrew Ng** 

### Neural network regularization

$$J(\mathbf{W}, \mathbf{B}) = \frac{1}{m} \sum_{i=1}^{m} L(f(\vec{\mathbf{x}}^{(i)}), y^{(i)}) + \frac{\lambda}{2m} \sum_{all \ weights \ \mathbf{W}} (w^2)$$

#### Unregularized MNIST model

layer\_1 = Dense(units=25, activation="relu")

layer\_2 = Dense(units=15, activation="relu")

layer 3 = Dense(units=1, activation="sigmoid")

model = Sequential([layer\_1, layer\_2, layer\_3])

#### Regularized MNIST model



layer 2 = Dense(units=15, activation="relu", kernel regularizer=L2(0.01))

layer 3 = Dense(units=1, activation="sigmoid", kernel regularizer=L2(0.01))

model = Sequential lets you choose different values of

lambda for different layers although for

© DeepLearning.AI Stanford ONLINE

### Iterative loop of ML development



and it will often take multiple iterations through

© DeepLearning.AI Stanford ONLINE

error analysis)

**Andrew Ng** 

## Building a spam classifier

Supervised learning:  $\vec{x}$  = features of email

y = spam (1) or not spam (0)

Features: list the top 10,000 words to compute  $x_1, x_2, \dots, x_{10,000}$ 

$$\vec{x} = \begin{bmatrix} 0 \\ 1 \\ 2 & 1 \\ 1 \\ 0 \\ \vdots \end{bmatrix} \begin{bmatrix} a \\ andrew \\ buy \\ deal \\ discount \\ \vdots \end{bmatrix}$$

From: cheapsales@buystufffromme.com To: Andrew Ng

Subject: Buy now!

Deal of the week! Buy now! Rolex w4tchs - \$100 Medlcine (any kind) - £50

Also low cost M0rgages available.

predict y given

these features x



#### Data augmentation by introducing distortions



examples then has turned one image





#### Data augmentation for speech

Speech recognition example



+ Noisy background: Crowd

+ Noisy background: Car

+ Audio on bad cellphone connection

And it turns out that if you take these two audio clips,

DeepLearning.AI Stanford ONLINE

**Andrew Ng** 

#### Data augmentation by introducing distortions

Distortion introduced should be representation of the type of noise/distortions in the test set.



Audio:

Background noise, bad cellphone connection

Usually does not help to add purely random/meaningless noise to your data.



 $x_i$ =intensity (brightness) of pixel i $x_i \leftarrow x_i + \text{random noise}$ 

the test set because you don't often

get images like this in the test

@DeepLearning.AI

[Adam Coates and Tao Wang]

Stanford ONLINE



## Transfer learning summary

- Download neural network parameters pretrained on a large dataset with same input type (e.g., images, audio, text) as your application (or train your own).
- 2. Further train (fine tune) the network on your own data.



any single person by themselves can

© DeepLearning.AI Stanford ONLINE

### Full cycle of a machine learning project



### Guidelines

Get a diverse team to brainstorm things that might go wrong, with emphasis on possible harm to vulnerable groups.

Carry out literature search on standards/guidelines for your industry.

Audit systems against possible harm prior to deployment.



Develop mitigation plan (if applicable) and after deployment, monitor for possible to figure out what to do.

Deeplearning Al Stanford ONLINE

# Precision/recall

y = 1 in presence of rare class we want to detect.



Precision: (of all patients where we predicted y = 1, what fraction actually have the rare disease?)

$$\frac{\text{True positives}}{\text{#predicted positive}} = \frac{\text{True positives}}{\text{True pos} + \text{False pos}} = \frac{15}{15 + 5} = 0.75$$

#### Recall:

reassure you that

(of all patients that actually have the rare disease, what fraction did we correctly detect as having it?)







Trading off precision and recall



true positives precision total predicted positive true positives recall total actual positive

Suppose we want to predict y = 1 (rare disease) only if very confident.

Suppose we want to avoid missing too many case of rare disease (when in doubt predict y = 1)

lower precision, higher recall More generally predict 1 if:  $f_{\vec{w}h}(\vec{x}) \ge (\text{threshold})$ 



cross-validation because it's up





#### How to compare precision/recall numbers?

