MathStatClub PROBLEM OF THE MONTH

November 2011

Rational Point: Show that in the xy-plane, for odd integers A, B and C, the line Ax + By + C = 0 does not intersect the parabola $y = x^2$ in a rational point.

- ♣ Please **Submit** your solution to
 - o <u>Dr. Erol Akbas</u>, <u>eakbas@gsu.edu</u> or
 - o Dr. Tirtha Timsina, ttimsina@gsu.edu

before the deadline: Wednesday, November 30th, 7:00PM.

♣ The WINNER will be awarded with a \$25 gift certificate and will be announced in the NEXT issue.

Problem of the last month:

Product: Find the following product. $\sqrt{72 + \sqrt{72 + \sqrt{...}}} \cdot \sqrt{56 - \sqrt{56 - \sqrt{...}}} = ?$

Solution: Let $a_1 = \sqrt{72}$ and $a_{n+1} = \sqrt{72 + a_n}$ for $n \ge 1$. Notice that $\lim_{n \to \infty} a_{n+1} = \sqrt{72 + \sqrt{72 + \sqrt{\dots}}}$. It is clear that $8 < a_1 < a_2 < \dots < a_n < a_{n+1} < \dots$.

Claim: $a_n < 9$ for $n \ge 1$.

Proof of Claim: By induction, for n = 1, $a_1 = \sqrt{72} = \sqrt{9(9-1)} < 9$. Assume that for n = k, $a_k < 9$.

Then $a_{k+1} = \sqrt{72 + a_k} = \sqrt{9(9-1) + a_k} = \sqrt{9^2 + a_k - 9} < 9$ since $a_k - 9 < 0$.

So by induction, $8 < a_1 < a_2 < ... < a_n < a_{n+1} < ... < 9$. Since $\{a_n\}$ is a monotone, increasing, bounded

sequence, $\lim_{n\to\infty} a_n = L$ for some $L \le 9$ \Rightarrow $L = \lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} \sqrt{72 + a_n} = \sqrt{72 + L}$ \Rightarrow

 $L = \sqrt{72 + L}$ \Rightarrow $L^2 - L - 72 = 0$ \Rightarrow L = 9. By a similar argument, $\sqrt{56 - \sqrt{56 - \sqrt{...}}} = 7$ $\Rightarrow \sqrt{72 + \sqrt{72 + \sqrt{...}}} \cdot \sqrt{56 - \sqrt{56 - \sqrt{...}}} = 9 \cdot 7 = 63$.

Winner: Thomas Polstra

Participants with correct solutions: Thomas Polstra, Max Suica, Wenyan Zhou, Shadi Renno, John Hull, David Lim, Joshua Tomy, Ajene Ennis, Daniel Balena.