A Table of Commutation Relations

Nathaniel Beaver

August 30, 2013

- 1 A table of commutation relations for operators of a single particle.
- 1.1 Operators to use.
 - Observables (Hermitian): $x, p_x, H = \frac{p_x^2}{2m}, N = a^{\dagger}a, J_x, J_y, J_z, J, \Pi$
 - Non-observables: a, a^{\dagger}, T ,
- 1.2 The table.

† † † † † †

[row, column]	x	p_x	Н	N	J	J_x	J_y	J_z	П	a	a^{\dagger}
\overline{x}	0	$i\hbar$									
p_x	$-i\hbar$	0	0								
Н		0	0								
N				0						-a	$-a^{\dagger}$
J					0						
J_x						0					
J_y							0				
J_z°								0			
П									0		
a										0	1
a^{\dagger}										-1	0
T											
[row, column]	S_x		S_y		S_z						
$\overline{S_x}$	0		$i\hbar S_z$	_	$-i\hbar S$	 y					
$S_y \ S_z$	$-i\hbar S$	S_z	0		$i\hbar S_x$						
S_z	$i\hbar S_y$, -	$-i\hbar S_{i}$	x	0						

1.3 Operator definitions.

- $p_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$ in the x-basis. Townsend p.158.
- $\Pi |x\rangle = |-x\rangle$ Townsend p.213.
- $H = \frac{p^2}{2m} + V(x)$ Sakurai p.97, (2.4.2).

1.4 References.

- 0 Any operator commutes with itself.
- $-i\hbar$ See Townsend eq. 6.31, p. 155 or Griffiths eq. 2.51, p.55. This leads to the uncertainty principle $\Delta x \Delta p_x \geq \frac{\hbar}{2}$.
- $-a\,$ See Sakurai p.90, (2.3.10).
- $-a^{\dagger}$ See Sakurai p.90, (2.3.11).
 - 0 H and p_x commute since $H = \frac{p_x^2}{2m}$.
- 2 A table of commutation relations for operators of two particles.