

Визуализация данных в Python

Олег Булыгин

Нетология

Булыгин Олег

- Преподаватель курсов по Python в Нетологии
- Начальник бюро планирования и управления в АО "НПО автоматики"

Цель занятия

- рассмотрим основные типы визуализаций и научимся выделять подходящую
- > рассмотрим основные инструменты python для создания графиков

План

- 1. Что такое визуализация и зачем она нужна?
- 2. Теория визуализации: visual encodings, типы графиков и задачи визуализации
- 3. Инструменты

Что такое визуализация данных

Визуализация данных — это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению.

Работа с данными

Роль визуализации

- > exploratory «разговор наедине с данными»
- > explanatory раскрыть и донести свою мысль

А нужна ли визуализация вообще?

Пример выборок

- все статистики 4х выборок одинаковы
 - > mean x = 9
 - > sample variance of x = 11
 - > mean y = 11.5
 - > sample variance of y = 4.125
 - correlation between x and y = 0.816

	I		I		III	IV		
X	у	X	у	X	у	X	у	
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	

Выборки одинаковые?

Квартет Энскомба

- пример был придуман статистиком Фрэнсисом Энскомбом в 1973 году
 - важность визуализаций для анализа данных
 - > влияние выбросов (outliers) на статистические показатели

И другие вариации...

Немного теории

Даные

- числовые
- > дискретные/непрерывные
- категориальные
 - > nominal/ordered

Формы выражения (Visual Encodings)

- данные -> отображение их на графике
 - > позиция
 - > размер
 - > цвет, оттенок цвета
 - > ориентация, наклон
 - > форма, текстура
 - > движение, анимация

Позиция

- > легко интерпретируется человеком
- > позволяет отследить корреляции
- > только 2D, максимум 3D с потерей точности

Размер (длина, площадь, объем)

длина

> хорошо считывается людьми, но позволяет отобразить не более 2D

площадь, объем

- > лучше всего подходит для ordered data
- > сложно понять точные отличия в переменных

Цвет (hue/saturation)

- hue подходит для категориальных признаков
- > saturation для ordered data

И другие

- > тип линии
- > текстура
- > форма markers

Average High and Low Temperatures in New York

Какие типы графиков вы знаете?

A PERIODIC TABLE OF VISUALIZATION METHODS

>>< E continuum		Data Visualization Visual representations of quantitative data in schematic form (either with or without axes)						The systems tions in the	Strategy Visualization The systematic use of complementary visual representations in the analysis, development, formulation, communication, and implementation of strategies in organizations.								graphic facilitation
>©< Tb table	> <a><a><a><a><a><a><a><a><a><a><a><a><a><	Information Visualization The use of interactive visual representations of data to amplify cognition. This means that the data is transformed into an image, it is mapped to screen space. The image can be changed by users as they proceed working with It						Metaphor Visualization Visual Metaphors position information graphically to or- ganize and structure information. They also convey an insight about the represented information through the key characteristics of the metaphor that is employed				> < < Me meeting trace	>\\	Time	<:>> St story template	>>< Tree	Et cartoon
>#< Pi pie chart	>#< L line chart		ept Visu elaborate (mos s, and analyses.		Compound Visualization The complementary use of different graphic representation formats in one single schema or frame				>	>☆< Fight plan	> < ES concept sceleton	Br bridge	>->->->->->->->->->-	Ri rich picture			
>:< B bar chart	>:>< AC area chart	>⊹< R radar chart cobweb	>©< Pa parallel coordinates	>©< Hy hyperbolic tree	>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>⊹< Ve venn. diagram	<⊚>> Mi mindmap	<-☆> Sq square of oppositions	>:>< GC concentric circles	>:>< AP argument slide	>©< SW swim lane diagram	> 🌣 < G C gantt chart	<⊚>> Pm perspectives diagram	>©< D dilemma diagram	<⇔> Pr parameter ruler	Kn knowledge map
>☆< Hi histogram	>:>< SC scatterplot	> \ < Sa sankey diagram	>©< In information lense	>¤< E entity relationship diagram	>☆< Pt petri net	>©< flow chart	<:>>> Clustering	>:\:\:\< LC layer chart	Py minto pyramid technique	>⊹< Ge cause-effect chains	>	>©< Dt decision tree	>¤< Cp cpm critical path method	<	>©< Concept map	IC iceberg	Lm learning map
>#< TK tukey box plot	>>< Sp spectogram	>☆< Da data map	>©< TP treemap	>©< En cone tree	>>> Sy system dyn./ simulation	>©< Df data flow diagram	<:>>> Se semantic network	>©< So soft system modeling	Sn synergy map	<⊹∴> Fo force field diagram	>¤< Ib ibis argumentation map	>>> Pir process event chains	Pe pert chart	<©>> EV evocative knowledge map	>©< V Vee diagram	<⇒> Hh heaven 'n' hell chart	infomural

Graphical Perception, 1984

- > Позиция на графике (scatter plot)
- > Несколько одинаковых графиков рядом (несколько scatter plots)
- > Длина (bar chart)
- > Угол и наклон (pie chart)
- > Площадь (bubbles)
- > Объем, плотность, насыщенность цвета (heatmap)
- > Цвет

Выбираем график

- > Простое сравнение (Nominal comparison)
- > Динамика во времени (Time series)
- > Ранжирование (Ranking)
- > Часть от целого (Part-to-hole)
- > Отклонение (Deviation)
- > Частотное распределение (Frequency distribution)
- > Kopeляция (Correlation)

Данные о продажах и оценках игр

	Name	Platform	Year_of_Release	Genre	Global_Sales	Critic_Score	Critic_Count	User_Score	User_Count	Rating
0	Wii Sports	Wii	2006	Sports	82.53	76.0	51	8.0	322	E
2	Mario Kart Wii	Wii	2008	Racing	35.52	82.0	73	8.3	709	E
3	Wii Sports Resort	Wii	2009	Sports	32.77	80.0	73	8.0	192	E
6	New Super Mario Bros.	DS	2006	Platform	29.80	89.0	65	8.5	431	E
7	Wii Play	Wii	2006	Misc	28.92	58.0	41	6.6	129	E
8	New Super Mario Bros. Wii	Wii	2009	Platform	28.32	87.0	80	8.4	594	E
11	Mario Kart DS	DS	2005	Racing	23.21	91.0	64	8.6	464	E
13	Wii Fit	Wii	2007	Sports	22.70	80.0	63	7.7	146	E
14	Kinect Adventures!	X360	2010	Misc	21.81	61.0	45	6.3	106	E
15	Wii Fit Plus	Wii	2009	Sports	21.79	80.0	33	7.4	52	E

Обычное сравнение (Nominal comparison)

- Nominal comparison простое сравнение одной или нескольких метрик по категориям без определенного порядка
- Задача сравнить игровые платформы по числу выпущенных и проданных игр

Обычное сравнение (Nominal comparison)

Nominal comparison - простое сравнение одной или нескольких метрик по категориям без определенного порядка

> Горизонтальный или вертикальный bar chart

Platforms share

Запросы по дням недели

Time Series

- Time Series изменение одной или нескольких метрик во времени
- Задача отобразить динамику числа проданных компьютерных игр в мире

Time Series

- Time Series изменение одной или нескольких метрик во времени
 - > Line chart, чтобы подчеркнуть тренд
 - > Bar chart, чтобы выделить отдельные значение
 - Временная переменная должна располагаться на оси X

Оценки фильмов

Фильмы на Кинопоиске

Ranking

- Ranking значения метрики для категорий, упорядоченные по размеру
- Пример показать, на каких платформах было выпущено большего всего игр

Ranking

- Ranking значения метрики для категорий, упорядоченные по размеру
 - > вертикальный или горизонтальный bar chart
 - чтобы выделить большие значения - нужно сортировать по убывания и наоборот

Part-to-hole

- Part-to-hole доли отдельных категорий от целого
- Пример показать, какие доходы у разных игровых компаний и как они распределяются по рынкам (США, Европа и т.д.)

Part-to-hole

- Part-to-hole доли отдельных категорий от целого
 - > вертикальный или горизонтальный bar chart
 - > stacked bar chart, только если нужно отобразить суммарное значение

Deviation

- Deviation сравнение показателей для категорий с baseline
- Задача посмотреть, как отличаются средние прожажи для разных жанров

Deviation

- Deviation сравнение показателей для категорий с baseline
 - > bar chart, чтобы подчеркнуть отдельные значение

Frequency Distribution

- Frequency Distribution pаспределение величины (может быть нормированным)
- Задача показать распределение пользовательских оценок игр

Frequency Distribution

- Frequency Distribution pаспределение величины (может быть нормированным)
 - > vertical bar chart, чтобы выделить отдельные величины (histogram)
 - > line chart, чтобы показать общий pattern (frequency polygon)

Correlation

- Correlation кореляция между двумя численными величинами
- Задача показать, как связаны между собой оценки пользователей и критиков

Correlation

- Correlation кореляция между двумя численными величинами
 - > scatter plot и линия тренда

Chart Suggestions—A Thought-Starter

Есть и другие визуализации...

Table

Region	Actual Sales (mn)		% to Goal	(12 Month)	Gross Profit (mn)	Profit Trend (12 Month)
Alabama	\$4,916	~~~	107%		\$1,172	
Alaska	\$3,110	~~~	65%		\$791	
Arizona	\$5,198	~~~	103%		-\$282	
ldaho	\$5,280	VVV-	101%		\$410	
Illonois	\$4,956	$\sim\sim$	93%		-\$22	
Indiana	\$5,032	$\sim\sim\sim$	91%		-\$516	
Ohio	\$5,566	~~~	112%		\$524	
Oklahoma	\$4,246	7//	85%		\$787	
Oregon	\$6,408	$\sim\sim$	102%		-\$932	
Vermonut	\$4,244	\sim	73%		\$1,495	
Virginia	\$7,664	$\sim \sim$	161%		\$325	
Washington	\$4,558	_^	88%		\$1,829	

Box plot

Оценки фильмов

Box plot uncovered

- > линия медиана
- > коробка IQR
- > усы [Q1 1.5IQR, Q3 + 1.5IQR]
- > точки outliers

Heatmap

		4	THOTO								
	BCEL	ln_	DYMEHT	Pack	Can Can	70.	C	To TYPH	ž., .	V6	
ABTOS	BCEAR	CTPOUTO		" 060py	WHOLE MATE	KHHKA 4	THE H STA	OBADAI An	CHOPT 4	ODKA 4 K	
ABTOTO	BCE ANS	Cada	IbCTBa 4	Pack H OGODYAO	Can DAHNE MATEL	Texhuka 4 K	CBET H 3NEK	TOBAPHI ANS	AOMA CHOPT H	VOODKA 4 KN	HHHH
Уборка и клининг	0.6	1.7	3.1	1.4	1.1	1.6	0.8	1.0	1.1	0.9	
Туризм, спорт и отдых	0.7	0.8	1.9	0.8	0.4	0.6	0.3	0.7	0.9		0.6
Товары для дома	3.5	4.3	8.5	6.5	3.7	4.5	4.0	5.1		8.4	7.4
Свет и электрика	4.4	5.9	11.3	4.9	4.4	6.3	5.2		5.1	6.2	6.5
Сантехника и климат	2.9	4.6	7.1	2.7	3.5	4.3		5.5	4.2	3.0	5.5
Расходные материалы	6.8	14.4	33.0	14.5	18.6		5.8	9.1	6.4	7.4	15.3
Инструменты и оборудование	14.2	16.6	47.3	18.6		43.0	11.1	14.6	12.3	12.7	23.8
Другое	0.8	0.9	2.0		0.9	1.7	0.4	0.8	1.1	1.2	1.6
Всё для строительства	1.6	3.5		2.4	2.9	4.7	1.4	2.4	1.8	3.5	4.2
Всё для сада	3.0		9.6	3.0	2.8	5.6	2.5	3.3	2.4	4.1	6.2
Автотовары		3.3	4.9	3.0	2.7	2.9	1.7	2.7	2.2	3.9	2.5

Bubble chart

И даже такие...

Funnel chart

Funnel Chart

Sankey diagram

Area Chart + Line Chart

Опубликованные посты на Хабрахабре

Гео-данные (Choropleth)

TreeMap

Network Visualization

Gantt Chart

Идаже word cloud

The greatest value of a picture is when it forces us to notice what we never expected to see.

John Tukey

Excellence in statistical graphics consists of complex ideas communicated with clarity, precision and efficiency.

Edward Tufty

Edward Tufty «The Visual Display of Quantitative Information»

- Visualization should...
 - > show the data
 - > avoid distorting what the data has to say
 - > present many numbers in a small space
 - encourage the eye to compare different pieces of data
 - reveal the data at several levels of detail, from a broad overview to the fine structure

Инструменты визуализации

Python библиотеки

- matplotlib
- seaborn
- > plotly
- ggplot
- bokeh
- pygal
- и т.д.

bokeh Pygal

matplotlib

- > первая библиотека на python для визуализации
- очень гибкая, но и монструозная при этом
- > стили родом из 90х
- > wrappers pandas, seaborn

seaborn

- > на основе matplotlib
- сложные графики за пару строк кода
- > симпатичные default стили
- > для изменения мелочей нужно лезть в дебри matplotlib

plot.ly + dash

- > интерактивные графики
- > простой API, но есть возможность настройки (тоже придется покопаться в документации)
- > удачные default'ы
- > dash для полноценных web apps

ggplot

- > на базе ggplot2 в R
- > идеология The Grammar of Graphics: слои компонент (точки, линии, оси)
- > проще matplotlib, но менее гибкий

The Grammar of Graphics

> Leland Wilkinson, 1999

Принципы

- > Отделяем данные data от представления aesthetic
- > Определяем основные элементы и графики
- > Комбинируем их

bokeh

- > идеология The Grammar of Graphics
- > интерактивные графики
- > 3 уровня сложности АРІ

pygal

- > интерактивные графики
- > графики в формате SVGs (не подходит для больших датасетов)
- симпатичные графики и простой API

Что еще

- > Excel:)
- > javascript frameworks (самый популярный d3.js, более простой dimple.js, leaflet.js для геоданных)
- > online-сервисы (RAWGraphs, Datawrapper)
- > Bl системы (Tableau, Power Bl)

dimple.js

Dashboard на «коленке»

- http server (python SimpleHttpServer, nginx, etc.) + static html
- > Flask или Django для более сложных задач, требующих интерактивности

Practice makes perfect:)

Выбор библиотеки визуализации

- > для быстрых графиков matplotlib
- > для красивых и интерактивных графиков для менеджеров <u>plot.ly</u>
- > seaborn pairplot всегда и галлерея для вдохновения
- > если вы скучаете по R ggplot

Wrapping it up

Сегодня мы

- > познакомились с основными типами визуализаций
- разобрались, какие есть инструменты и на практике построили графики с помощью библиотек matplotlib, seaborn и plotly

What's next?

Designing Data Visualizations

- > основные типы визуализаций
- выбор средств выражения для донесения своих мыслей

Storytelling with Data

как сделать из графиков историю

Interactive Data Visualization

- > основы HTML, JS, SVG, DOM
- > использование D3.js

Blogs on Data Visualizations

- http:// www.storytellingwithdata.com/
- > http://junkcharts.typepad.com/
- http:// www.informationisbeautiful.net/ blog/

Open Data Science

> крупнейшее русско-язычное сообщество Data Scientist'ов

