Package 'BSPADATA'

February 16, 2022

Type Package	
Title Bayesian Proposal to Fit Spatial Econometric Models	
Version 1.1.0	
Author Jorge Sicacha-Parada and Edilberto Cepeda-Cuervo	
Maintainer Jorge Sicacha-Parada <jasicachap@unal.edu.co></jasicachap@unal.edu.co>	
Depends R (>= 4.0.0), stats, mvtnorm, spdep, pscl, pbapply, coda	
Description The purpose of this package is to fit the three Spatial Econometric Models proposed in Anselin (1988, ISBN:9024737354) in the homoscedastic and the heteroscedatic case. The fit is made through MCMC algorithms and observational working variables approach.	
License GPL (>= 2)	
Encoding UTF-8	
RoxygenNote 7.1.1	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2022-02-16 14:20:02 UTC	
R topics documented:	
hetero_general	2
hetero_sar	4
hetero_sem	6
hom_general	8
	11
hom_sem	13
Index	16

2 hetero_general

hetero_general	Bayesian fitting of Spatial General Model with heteroscedastic normal error term.

Description

Performs the Bayesian fitting of Heterocedastic Spatial General Model with normal error term

Usage

```
hetero_general(formulamean,formulavar,data,W1,W2=NULL,nsim,burn,step,prior,initial, kernel="normal",mateq=TRUE,seed=0,impacts=TRUE)
```

Arguments

formulamean	Object of class formula with the description of the model to be fitted for the mean.
formulavar	Object of class formula with the description of the model to be fitted for the variance.
data	Data frame object with covariates of model
W1	Object of class matrix, nb or listw related to Spatial Contiguity Matrix for response variable, Anselin(1988)
W2	Object of class matrix, nb or listw related to Spatial Contiguity Matrix for disturbance terms, Anselin(1988)
nsim	A number that indicates the amount of iterations
burn	A number that indicates the amount of iterations to be burn at the beginning of the chain
step	A number that indicates the length between samples in chain that generate the point estimates for each parameter.
prior	List with prior distributions of the parameters in the hom_sem model
initial	List with the initial values for the chains of each the parameters of the hom_sem model
kernel	Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal"
mateq	Logical variable indicating whether W1=w2 or not.
impacts	If impacts=TRUE then impacts for the model are computed, as suggested in Le Sage and Pace (2009).
seed	Random seed for generating the samples of the posterior distributions.

Details

hetero_general is a function made in order to fit Spatial General Model with a normal heteroscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial lag parameters, rho and lambda, and aided by working variables approach to get samples of conditional posterior distribution of gamma vector.

hetero_general 3

Value

List with the following:

summary Data frame with summary statistics of the marginal posterior distributions of the

parameters of the model

Acceptance_Rate

Acceptance rate for the samples of rho, lambda and gamma.

Criteria List with values of both the Bayesian Information Criterion (BIC) and the De-

viance Information Criterion (DIC)

chains Object of class meme with the samples of the marginal posterior distribution of

each of the parameters of the model

impacts Summary of the impacts for each explanatory variable of the model

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

- 1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro.
- 2.Cepeda, E. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.
- 3. Cepeda C., E. and Gamerman D. (2001). Bayesian Modeling of Variance Heterogeneity in Normal Regression Models. Brazilian Journal of Probability and Statistics. 14, 207-221.
- 4.Luc Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic, Boston, 1988.
- 5. D. Gamerman, Markov Chains Monte Carlo: Stochastic Simulation for bayesian Inference, Chapman and Hall, 1997.
- 6. James Le Sage and Kelley Pace, Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton, 2009.

```
data(oldcol)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
x3=runif(n,0,10)
X=cbind(x0,x1,x2)
Z=cbind(x0,x1,x3)
gammas=c(-8,0.026,-0.4)
Sigma=diag(c(exp(Z%*%gammas)))
W1=COL.nb
matstand=nb2mat(W1)
A=diag(n)-0.70*matstand
B=diag(n)-0.20*matstand
```

hetero_sar

hetero_sar Bayesian fitting of Spatial AutoRegressive (SAR) model with heteroscedastic normal error term.

Description

Performs the Bayesian fitting of Heterocedastic Spatial AutoRegressive (SAR) model with normal error term

Usage

Arguments

formulamean	Object of class formula with the description of the model to be fitted for the mean.
formulavar	Object of class formula with the description of the model to be fitted for the variance.
data	Data frame object with covariates of model
W	Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
nsim	A number that indicates the amount of iterations
burn	A number that indicates the amount of iterations to be burn at the beginning of the chain
step	A number that indicates the length between samples in chain that generate the point estimates for each parameter.
prior	List with prior distributions of the parameters in the hom_sem model
initial	List with the initial values for the chains of each the parameters of the hom_sem model

hetero_sar 5

kernel Distribution used in transition kernel to get samples of lambda, it can be "uni-

form" or "normal"

impacts If impacts=TRUE then impacts for the model are computed, as suggested in Le

Sage and Pace (2009).

seed Random seed for generating the samples of the posterior distributions.

Details

hetero_sar is a function made in order to fit Spatial AutoRegressive (SAR) model with a normal heteroscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial lag parameter, rho and aided by working variables approach to get samples of conditional posterior distribution of gamma vector.

Value

List with the following:

summary Data frame with summary statistics of the marginal posterior distributions of the

parameters of the model

Acceptance_Rate

List with the acceptance rate for the samples of gamma and rho

Criteria List with values of both the Bayesian Information Criterion (BIC) and the De-

viance Information Criterion (DIC)

chains Object of class meme with the samples of the marginal posterior distribution of

each of the parameters of the model

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

- 1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro.
- 2.Cepeda, E. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.
- 3. Cepeda C., E. and Gamerman D. (2001). Bayesian Modeling of Variance Heterogeneity in Normal Regression Models. Brazilian Journal of Probability and Statistics. 14, 207-221.
- 4.Luc Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic, Boston, 1988.
- 5. D. Gamerman, Markov Chains Monte Carlo: Stochastic Simulation for bayesian Inference, Chapman and Hall, 1997.
- 6. James Le Sage and Kelley Pace, Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton, 2009.

hetero_sem

Examples

```
set.seed(0)
data(oldcol)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
x3=runif(n,0,10)
X=cbind(x0,x1,x2)
Z=cbind(x0,x1,x3)
gammas=c(-8,0.026,-0.4)
Sigma=diag(c(exp(Z%*%gammas)))
W=COL.nb
matstand=nb2mat(W)
A=diag(n)-0.75*matstand
mu = solve(A) % * % (-35 + 0.35 * x1 - 1.7 * x2)
Sigma2=t(solve(A))%*%Sigma%*%solve(A)
y=t(rmvnorm(1,mu,Sigma2))
data = data.frame(y=y, x0=x0, x1=x1, x2=x2, x3=x3)
formulamean <- y \sim x0+x1+x2
formulavar \leftarrow \sim x0 + x1 + x3
prior = list(b_pri=rep(0,3),B_pri=diag(rep(1000,3)),g_pri=rep(0,3),G_pri=diag(rep(1000,3)))
initial = list(beta_0=rep(0,3),gamma_0=rep(0,3),rho_0=0.5)
hetero_sar(formulamean,formulavar,data,W=W,nsim=500,burn=25,step=5,prior=prior,
           initial=initial,kernel="normal",seed=0,impacts=TRUE)
```

hetero_sem

Bayesian fitting of Spatial Error Model (SEM) model with heteroscedastic normal error term.

Description

Performs the Bayesian fitting of Heterocedastic Spatial Error Model (SEM) model with normal error term

Usage

Arguments

formulamean	Object of class formula with the description of the model to be fitted for the mean.
formulavar	Object of class formula with the description of the model to be fitted for the variance.
data	Data frame object with covariates of model

hetero_sem 7

W	Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
nsim	A number that indicates the amount of iterations
burn	A number that indicates the amount of iterations to be burn at the beginning of the chain
step	A number that indicates the length between samples in chain that generate the point estimates for each parameter.
prior	List with prior distributions of the parameters in the hom_sem model
initial	List with the initial values for the chains of each the parameters of the hom_sem model
kernel	Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal"
seed	Random seed for generating the samples of the posterior distributions.

Details

hetero_sem is a function made in order to fit Spatial Error Model (SEM) with a normal heteroscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial lag parameter, lambda, and aided by working variables approach to get samples of conditional posterior distribution of gamma vector.

Value

List with the following:

summary	Data frame with summary	statistics of the marginal	posterior distributions of the
---------	-------------------------	----------------------------	--------------------------------

parameters of the model

Acceptance_Rate

List with the acceptance rate for the samples of gamma and lambda

Criteria List with values of both the Bayesian Information Criterion (BIC) and the De-

viance Information Criterion (DIC)

chains Object of class meme with the samples of the marginal posterior distribution of

each of the parameters of the model

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

- 1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro.
- 2.Cepeda, E. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.
- 3. Cepeda C., E. and Gamerman D. (2001). Bayesian Modeling of Variance Heterogeneity in Normal Regression Models. Brazilian Journal of Probability and Statistics. 14, 207-221.
- 4.Luc Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic, Boston, 1988.

8 hom_general

5. D. Gamerman, Markov Chains Monte Carlo: Stochastic Simulation for bayesian Inference, Chapman and Hall, 1997.

6. James Le Sage and Kelley Pace, Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton, 2009.

Examples

```
data(oldcol)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
x3=runif(n,0,10)
X=cbind(x0,x1,x2)
Z=cbind(x0,x1,x3)
gammas=c(-8,0.026,-0.4)
Sigma=diag(c(exp(Z%*%gammas)))
W=COL.nb
matstand=nb2mat(W)
A=diag(n)-0.75*matstand
mu = -35 + 0.35 \times x1 - 1.7 \times x2
Sigma2=t(solve(A))%*%Sigma%*%solve(A)
y=t(rmvnorm(1,mu,Sigma2))
formulamean \leftarrow y \sim x0 + x1 + x2
formulavar \leftarrow \sim x0 + x1 +x3
data <- data.frame(y=y,x0=x0,x1=x1,x2=x2,x3=x3)
prior = list(b_pri=rep(0,3),B_pri=diag(rep(1000,3)),g_pri=rep(0,3),
              G_pri=diag(rep(1000,3)))
initial = list(beta_0=rep(0,3),gamma_0=c(0,0,0),lambda_0=0.5)
hetero_sem(formulamean,formulavar,data,W=W,nsim=500,burn=25,step=5,prior = prior,
            initial = initial,kernel="normal")
```

hom_general

Bayesian fitting of Spatial General Model with homoscedastic normal error term.

Description

Performs the Bayesian fitting of Homoscedastic General Model with normal error term

Usage

hom_general 9

Arguments

formula	Object of class formula with the description of the model to be fitted.
data	Data frame object with covariates of model
W1	Object of class matrix, nb or listw related to Spatial Contiguity Matrix for response variable, Anselin(1988)
W2	Object of class matrix, nb or listw related to Spatial Contiguity Matrix for disturbance terms, $Anselin(1988)$
nsim	A number that indicates the amount of iterations
burn	A number that indicates the amount of iterations to be burn at the beginning of the chain
step	A number that indicates the length between samples in chain that generate the point estimates for each parameter.
prior	List with prior distributions of the parameters in the hom_sem model
initial	List with the initial values for the chains of each the parameters of the hom_sem model
kernel	Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal" $$
mateq	Logical variable indicating whether W1=w2 or not.
impacts	If impacts=TRUE then impacts for the model are computed, as suggested in Le Sage and Pace (2009).
seed	Random seed for generating the samples of the posterior distributions.

Details

hom_general is a function made in order to fit Spatial General Model with a normal homoscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial responde and error lag parameters, rho and lambda, respectively.

Value

List with the following:

summary Data frame with summary statistics of the marginal posterior distributions of the

parameters of the model

Acceptance_Rate

Acceptance rate for the samples of rho and lambda

Criteria List with values of both the Bayesian Information Criterion (BIC) and the De-

viance Information Criterion (DIC)

chains Object of class meme with the samples of the marginal posterior distribution of

each of the parameters of the model

impacts Summary of the impacts for each explanatory variable of the model

10 hom_general

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

- 1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro.
- 2.Cepeda, E. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.
- 3. Cepeda C., E. and Gamerman D. (2001). Bayesian Modeling of Variance Heterogeneity in Normal Regression Models. Brazilian Journal of Probability and Statistics. 14, 207-221.
- 4.Luc Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic, Boston, 1988.
- 5. D. Gamerman, Markov Chains Monte Carlo: Stochastic Simulation for bayesian Inference, Chapman and Hall, 1997.
- 6. James Le Sage and Kelley Pace, Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton, 2009.

```
data(oldcol)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
X=cbind(x0,x1,x2)
sigma2=rep(45,n)
Sigma=diag(sigma2)
W1=COL.nb
matstand=nb2mat(W1)
A=diag(n)-0.75*matstand
B=diag(n)-0.20*matstand
miu=solve(A)%*%(18+0.026*x1-0.4*x2)
Sigma2=t(solve(A)%*%solve(B))%*%Sigma%*%solve(A)%*%solve(B)
y=t(rmvnorm(1,miu,Sigma2))
formula \leftarrow y \sim x0 + x1 + x2
data <- data.frame(y=y,x0=x0,x1=x1,x2=x2)</pre>
prior <- list(b_pri=rep(0,3),B_pri=diag(rep(1000,3)),</pre>
              r_pri=0.01,lambda_pri=0.01)
initial <- list(beta_0=rep(0,3),</pre>
                sigma2_0=90,rho_0=0.5,lambda_0=0.5)
hom_general(formula=formula,data=data,W1=COL.nb,nsim=500,burn=25,step=5,
              prior=prior,initial=initial,kernel="normal",mateq=TRUE)
```

hom_sar

moscedastic normal error term.

Description

Performs the Bayesian fitting of Homoscedastic Spatial AutoRegressive (SAR) model with normal error term

Usage

Arguments

formula	Object of class formula with the description of the model to be fitted.
data	Data frame object with covariates of model
W	Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
nsim	A number that indicates the amount of iterations
burn	A number that indicates the amount of iterations to be burn at the beginning of the chain
step	A number that indicates the length between samples in chain that generate the point estimates for each parameter.
prior	List with prior distributions of the parameters in the hom_sem model
initial	List with the initial values for the chains of each the parameters of the hom_sem model
kernel	Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal"
impacts	If impacts=TRUE then impacts for the model are computed, as suggested in Le Sage and Pace (2009).
seed	Random seed for generating the samples of the posterior distributions.

Details

hom_sar is a function made in order to fit Spatial AutoRegressive (SAR) model with a normal homoscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial lag parameter, rho.

12 hom_sar

Value

List with the following:

summary Data frame with summary statistics of the marginal posterior distributions of the

parameters of the model

Acceptance_Rate

Acceptance rate for the samples of rho

Criteria List with values of both the Bayesian Information Criterion (BIC) and the De-

viance Information Criterion (DIC)

chains Object of class meme with the samples of the marginal posterior distribution of

each of the parameters of the model

impacts Summary of the impacts for each explanatory variable of the model

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

- 1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro.
- 2.Cepeda, E. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.
- 3. Cepeda C., E. and Gamerman D. (2001). Bayesian Modeling of Variance Heterogeneity in Normal Regression Models. Brazilian Journal of Probability and Statistics. 14, 207-221.
- 4.Luc Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic, Boston, 1988.
- 5. D. Gamerman, Markov Chains Monte Carlo: Stochastic Simulation for bayesian Inference, Chapman and Hall, 1997.
- 6. James Le Sage and Kelley Pace, Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton, 2009.

```
library(BSPADATA)

## Generate data ##

data(oldcol)

n=49

x0=rep(1,n)

x1=runif(n,0,400)

x2=runif(n,10,23)

X=data.frame(x0=x0,x1=x1,x2=x2)

sigma2=rep(45,n)

Sigma=diag(sigma2)

W=COL.nb

matstand=nb2mat(W)

A=diag(n)-0.90*matstand

mu=solve(A)%*%(18+0.478*x1-1.3*x2)
```

hom_sem 13

```
Sigma2=t(solve(A))%*%Sigma%*%solve(A)
y=t(rmvnorm(1,mu,Sigma2))
data = data.frame(y=y,x0=x0,x1=x1,x2=x2)

## Fit the model ##
formula <- y ~ x0+x1+x2
prior = list(b_pri=rep(0,3),B_pri=diag(rep(1000,3)),r_pri=0.01,
lambda_pri=0.01)
initial = list(beta_0=rep(0,3),sigma2_0=90,rho_0=0.5)
model <- hom_sar(formula=formula,data=data,W,nsim=500,burn=25,step=5,prior=prior,initial=initial,kernel="normal")</pre>
```

hom_sem Bayesian fitting of Spatial Error Model (SEM) with homoscedastic normal error term.

Description

Performs the Bayesian fitting of Homoscedastic Spatial Error Model (SEM) with normal error term

Usage

```
hom_sem(formula, data, W, nsim, burn, step,prior, initial, kernel = "normal", seed=0)
```

Arguments

formula	Object of class formula with the description of the model to be fitted.
data	Data frame object with covariates of model
W	Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
nsim	A number that indicates the amount of iterations
burn	A number that indicates the amount of iterations to be burn at the beginning of the chain
step	A number that indicates the length between samples in chain that generate the point estimates for each parameter.
prior	List with prior distributions of the parameters in the hom_sem model
initial	List with the initial values for the chains of each the parameters of the hom_sem model
kernel	Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal"
seed	Random seed for generating the samples of the posterior distributions.

Details

hom_sem is a function made in order to fit Spatial Error Model (SEM) with a normal homoscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial error lag parameter, lambda.

14 hom_sem

Value

List with the following:

summary Data frame with summary statistics of the marginal posterior distributions of the

parameters of the model

Acceptance_Rate

Acceptance rate for the samples of lambda

Criteria List with values of both the Bayesian Information Criterion (BIC) and the De-

viance Information Criterion (DIC)

chains Object of class meme with the samples of the marginal posterior distribution of

each of the parameters of the model

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

- 1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis, Instituto de Matematicas, Universidade Federal do Rio do Janeiro.
- 2.Cepeda, E. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.
- 3. Cepeda C., E. and Gamerman D. (2001). Bayesian Modeling of Variance Heterogeneity in Normal Regression Models. Brazilian Journal of Probability and Statistics. 14, 207-221.
- 4.Luc Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic, Boston, 1988.
- 5. D. Gamerman, Markov Chains Monte Carlo: Stochastic Simulation for bayesian Inference, Chapman and Hall, 1997.
- 6. James Le Sage and Kelley Pace, Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton, 2009.

```
data(oldcol)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
X=cbind(x0,x1,x2)
sigma2=rep(45,n)
Sigma=diag(sigma2)
W=COL.nb
matstand=nb2mat(W)
A=diag(n)-0.85*matstand
mu=(18+0.026*x1-0.4*x2)
Sigma2=t(solve(A))%*%Sigma%*%solve(A)
y=t(rmvnorm(1,mu,Sigma2))
formula <- y \sim x0+x1+x2
data <- data.frame(y=y,x0=x0,x1=x1,x2=x2)
```

hom_sem 15

```
prior <- list(b_pri=rep(0,3),B_pri=diag(rep(1000,3)),r_pri=0.01,lambda_pri=0.01)
initial <- list(beta_0=rep(0,3),sigma2_0=90,lambda_0=0.5)</pre>
```

Index

* Bayesian	hetero_sem, 6
hetero_general, 2	hom_general, 8
hetero_sar, 4	hom_sar, 11
hetero_sem, 6	hom_sem, 13
hom_general, 8	
hom_sar, 11	
hom_sem, 13	
* General Model	
hom_general, 8	
* Heteroscedastic Error Term	
hetero_general, 2	
hetero_sar, 4	
hetero_sem, 6	
* Heteroscedastic General Model	
$hetero_general, 2$	
* Heteroscedastic SAR Model	
hetero_sar, 4	
* Heteroscedastic SEM Model	
hetero_sem, 6	
* Metropolis Hastings	
hetero_general,2	
hetero_sar, 4	
hetero_sem, 6	
$hom_general, 8$	
hom_sar,11	
hom_sem, 13	
* SAR Model	
hom_sar, 11	
* SEM Model	
hom_sem, 13	
* Spatial Econometric Models	
$hetero_general, 2$	
hetero_sar, 4	
hetero_sem, 6	
hom_general, 8	
hom_sar, 11	
hom_sem, 13	
hetero_general, 2	
hetero_sar, 4	