Тактовый сигнал, тактовая частота и разрядность

Луцив Дмитрий Вадимович

Кафедра системного программирования СПбГУ

Содержание

- Характеристики ЭВМ в целом
- Тактовый сигнал
 - Тактовые частоты
 - Распространение тактового сигнала
 - Виды синхронизации по тактовому сигналу
 - Бестактовые процессоры
- Разрядность
 - Разрядность процессора
 - Разрядность ОЗУ

Характеристики ЭВМ в целом

Характеристики ЭВМ в целом

- Характеристики процессора
- Объём оперативной памяти
- Объём и скорость устройств хранения данных
- Состав и характеристики интерфейсных устройств

Характеристики ЭВМ в целом 4/28

Характеристики процессора

- Качественная: система команд и архитектура в целом об этом позже
- Количественная: тактовая частота
- Количественная и качественная: разрядность

Тактовый сигнал

- Тактовые частоты
- Распространение тактового сигнала
- Виды синхронизации по тактовому сигналу
- Бестактовые процессоры

Тактовый сигнал

- Тактовый сигнал периодический электрический сигнал, служащий для синхронизации электронных схем
- Такт промежуток времени между тактовыми сигналами
- Тактовая частота частота тактовых сигналов (1/длину такта)
- Тактовый генератор электронная схема, генерирующая тактовый сигнал

Зачем нужен тактовый сигнал? (1)

- Для многих электронных компонент (например, сумматоров) задано максимальное время на операцию
- Время задаётся в тактах, например
 - Для Zilog Z80:
 - push RR (положить значение 16-битного регистра на стек) 11 тактов
 - рор RR (снять со стека и сохранить в 16-битном регистре) 10 тактов
 - add a,R (прибавить 8-битное значение в регистре R к a) 4 такта
 - Для Intel 80386
 - ullet add eax, DWORD PTR [ebp-0x8] (прибавить к 32-битному eax значение из памяти по адресу ebp-8) 7 тактов
- Можно быть уверенным в том, когда операция завершена, а не проверять прогресс

Зачем нужен тактовый сигнал? (1)

- Для многих электронных компонент (например, сумматоров) задано максимальное время на операцию
- Время задаётся в тактах, например
 - Для Zilog Z80:
 - push RR (положить значение 16-битного регистра на стек) 11 тактов
 - рор RR (снять со стека и сохранить в 16-битном регистре) 10 тактов
 - add a, R (прибавить 8-битное значение в регистре R к a) 4 такта
 - Для Intel 80386
 - ullet add eax, DWORD PTR [ebp-0x8] (прибавить к 32-битному eax значение из памяти по адресу ebp-8) 7 тактов
- Можно быть уверенным в том, когда операция завершена, а не проверять прогресс
- На самом деле даже для Intel i80386 это не всегда так, а для более новых и подавно

Зачем нужен тактовый сигнал? (2)

- Ясно, в какой момент можно начинать выполнять следующую команду
- Ясно, как синхронизировать разные стадии выполнения одной и той же команды
- Ясно, как синхронизировать различные узлы ЭВМ

При этом

- В ЭВМ обычно много тактовых генераторов и тактовых частот несколько для ЦП, для ОЗУ (пониже), для шин чем дальше от ядра процессора, тем ниже
- Тактовый сигнал не привязан к реальному времени: частота высокая, но может «плавать» или понижаться для экономии энергии

Примеры значений тактовой частоты

1 Гц — (c $^{-1}$), единица частоты периодических событий, 1 событие в секунду У ЭВМ первого поколения типичное значение тактовой частоты было в пределах $100\,$ КГц

Процессор	Год выпуска	Тактовая частота
Intel 4004	1971	740 КГц
Motorola 6800	1974	2 МГц
Zilog Z80	1976	2,5 МГц
Intel 80186	1982	6 МГц
Intel 80486 DX	1989	20 МГц
Intel 80486 DX4	1994	100 МГц
Pentium 4	2000	1,6 ГГц
Intel Xeon Westmere	2010	3,6 ГГц

Тактовый сигнал Тактовые частоты 10 / 28

Примеры значений тактовой частоты

1 Гц — (с $^{-1}$), единица частоты периодических событий, 1 событие в секунду У ЭВМ первого поколения типичное значение тактовой частоты было в пределах 100 КГц

Процессор	Год выпуска	Тактовая частота
Intel 4004	1971	740 КГц
Motorola 6800	1974	2 МГц
Zilog Z80	1976	2,5 МГц
Intel 80186	1982	6 МГц
Intel 80486 DX	1989	20 МГц
Intel 80486 DX4	1994	100 МГц
Pentium 4	2000	1,6 ГГц
Intel Xeon Westmere	2010	3,6 ГГц

По идее, чем выше, тем «лучше», но у современного сложного процессора сигнал за 1 такт не успевает пройти даже от одной части кристалла к другой. Одно из косвенных решений — конвейеризация — позже

Тактовый сигнал Тактовые частоты 10 / 28

Одновременная доставка тактового сигнала

Желательно доставить тактовый сигнал во все блоки процессора одновременно

Тактовая сеть

Одновременная доставка тактового сигнала

Желательно доставить тактовый сигнал во все блоки процессора одновременно

Тактовая сеть

Часть блоков могут быть отключены для экономии тактового сигнала (до 30% мощности процессора!) и потребляемой ими самими энергии

11 / 28

Компоненты с состоянием и без

Компоненты с состоянием и без

Примеры компонент:

- С состоянием триггер, регистр
- Без состояния сумматор, арифметико-логическое устройство (простое)

Простой пример: сложение (1)

Что здесь «плохо»?

Простой пример: сложение (1)

Что здесь «плохо»?

Активный сигнал записи заставит данные «бегать по кругу» с неопределённой скоростью неопределённое число раз. Для корректной работы асинхронной схемы (сумматора) определённая скорость критична.

Простой пример: сложение (2)

В ранних компьютерах тактовый сигнал был двухфазный: для данного примера фаза $m{\varphi}_1$ — чтение из синхронных компонент, $m{\varphi}_2$ — запись в синхронные компоненты, эти сигналы не пересекались по времени

Простой пример: сложение (2)

В ранних компьютерах тактовый сигнал был двухфазный: для данного примера фаза $oldsymbol{arphi}_1$ — чтение из синхронных компонент, $oldsymbol{arphi}_2$ – запись в синхронные компоненты, эти сигналы не пересекались по времени

Напоминает поочерёдную работу предсердий и желудочков сердца

Современные компьютеры

Однофазный тактовый сигнал, компоненты синхронизируются по:

- Активному (высокому) значению
- Неактивному (низкому) значению
- Фронту импульса
- Спаду импульса

Альтернатива

Асинхронные ЭВМ

- Блок процессора / узел внутри ЭВМ подаёт сигнал по мере готовности результата
- Позволяют добиться большей производительности, но сложнее в проектировании и устройстве
- Соединённые компоненты либо работают за предсказуемое время, либо генерируют сигналы готовности друг для друга (очень упрощённо)

Примеры (не экзотические)!

- ILLIAC I и II, GA144 (стековый, дла Forth)
- Длинные асинхронные операции на современных процессорах, например, деление на RISC-процессорах

Тактовый сигнал Бестактовые процессоры 16 / 28

Альтернатива

Асинхронные ЭВМ

- Блок процессора / узел внутри ЭВМ подаёт сигнал по мере готовности результата
- Позволяют добиться большей производительности, но сложнее в проектировании и устройстве
- Соединённые компоненты либо работают за предсказуемое время, либо генерируют сигналы готовности друг для друга (очень упрощённо)

Примеры (не экзотические)!

- ILLIAC I и II, GA144 (стековый, дла Forth)
- Длинные асинхронные операции на современных процессорах, например, деление на RISC-процессорах
- Устройства расширения в «обычных» ЭВМ выполняют длительные операции (например, с участием DMA), сообщают о выполнении команд и получают следующие по мере готовности

Тактовый сигнал Бестактовые процессоры 16 / 28

Разрядность

- Разрядность процессора
- Разрядность ОЗУ

Разрядность 17 / 28

Понятие разрядности

- Разрядность обычно количество бит в шине данных и в машинном слове
- Машинное слово минимальная единица обмена данными между процессором и 03У

Разрядность 18 / 28

Понятие разрядности

- Разрядность обычно количество бит в шине данных и в машинном слове
- Машинное слово минимальная единица обмена данными между процессором и 03У

А ещё обычно

- Количество бит в шине данных
- Количество бит в арифметических регистрах
- Размер целого числа, над которым аппаратно производится операция (машинное слово)

Разрядность 18 / 28

Понятие разрядности

- Разрядность обычно количество бит в шине данных и в машинном слове
- Машинное слово минимальная единица обмена данными между процессором и 03У

А ещё обычно

- Количество бит в шине данных
- Количество бит в арифметических регистрах
- Размер целого числа, над которым аппаратно производится операция (машинное слово)

И иногда

- Количество бит в шине адреса и в адресных регистрах
- размер стандартного типа int в С (совсем не всегда, может зависеть от архитектуры, ОС и транслятора)

Разрядность 18 / 28

Внутренняя и внешняя разрядность

- Внутренняя разрядность количество бит, из которых состоят регистры и шины между блоками процессора
- Внешняя разрядность количество бит, из которых состоят шины компьютера

Обычно речь идёт об арифметических регистрах и шине данных, но понятия внутренней и внешней разрядности также применяются и к адресным регистрам и шине адреса

Разрядность Разрядность процессора 19 / 28

Примеры, подтверждения и исключения (1): Intel 8086

- Шина данных 16 бит
- Арифметические регистры и операции по 16 бит
 - Ho mul ax, R/M считает 32-битный результат DX: AX ← AX * R/M
- Адресные регистры 16 бит (адресуют по 64 КиБ)
- Шина адреса 20 бит (16-битный адрес складывается с адресом сегмента, это позволяет адресовать до 1 МиБ, об этом позже)

Разрядность Разрядность процессора 20 / 28

Примеры, подтверждения и исключения (1): Intel 8086

- Шина данных 16 бит
- Арифметические регистры и операции по 16 бит
 - Ho mul ax, R/M считает 32-битный результат DX: AX ← AX * R/M
- Адресные регистры 16 бит (адресуют по 64 КиБ)
- Шина адреса 20 бит (16-битный адрес складывается с адресом сегмента, это позволяет адресовать до 1 МиБ, об этом позже)
- Intel 8088 (сделан позже 8086, первый процессор IBM PC)
 - Всё то же самое, но шина данных 8 бит

Разрядность Разрядность процессора 20 / 28

Примеры, подтверждения и исключения (2): Zilog Z80

- Шина адреса 16 бит
- Шина данных 8 бит
- Арифметические регистры и операции по 8 бит
 - Ho add hl, bc считает 16-битный результат над парами регистров

Разрядность Разрядность процессора 21 / 28

Примеры, подтверждения и исключения (3)

√ 27 c	м1	Α0	30
10	MREQ	A1 A2	31 32 33
22 21	IORQ WR RD	A3 A4 A5	34 35 36
•	REFSH	A6 A7 A8	37
◆ ¹⁸ ○	HALT	A9	39 40
<u>24</u>	WAIT	A10 A11	1 2
17	INT	A12 A13 A14	3 4 5
▶ 26 c	RESET	A15	14
25	BUSRQ BUSAK	D0 D1 D2	15 12 8
▶ 6	> CLK	D3 D4	7
11 29	Vcc GND	D5 D6 D7	10 13

«Распиновка» Intel 8086 🗗

Разрядность ОЗУ (1): зачем сделали Intel 8088?

Сделали позже 8086, а разрядность шины данных меньше.

 Разрядность
 Разрядность 03У
 23 / 28

Разрядность ОЗУ (1): зачем сделали Intel 8088?

Сделали позже 8086, а разрядность шины данных меньше.

Оперативная память 30-контактные ♂ single in-line memory module — 8-битный

А тогда зачем сделали 16-битный 8086? Точнее, как он пользовался 8-битной памятью?

 Разрядность
 Разрядность ОЗУ
 23 / 28

Разрядность ОЗУ (1): зачем сделали Intel 8088?

Сделали позже 8086, а разрядность шины данных меньше.

Оперативная память 30-контактные 🗗 single in-line memory module — 8-битный А тогда зачем сделали 16-битный 8086? Точнее, как он пользовался 8-битной памятью?

- Один 16-битный модуль можно собрать из двух 8-битных. С 16-битными процессорами семейства х86 так и делали.
- В итоге «память вообще» получает номер «слова памяти», но слово может быть 8 или 16-битным, в зависимости от исполнения компьютера

Разрядность ОЗУ 23 / 28

Процессоры даны с внутренней / внешней разрядностью

- SIMM 30-контактный □ 8 бит
 - $X1 i8088 \ 16/8$
 - X2 i8086 16/16, i80186 16/16 , i80286 16/16, i386SX 32/16
- SIMM 72-контактный [2] 32 бит
 - \bullet X1 i386 32/32, i486 32/32, i586 Overdrive 32/32 (специально на место 80486)
 - $X2 i586 \ 32/64$
- DIMM (Dual in-line memory module)
 ¹ 100-контактный 64 бит
 - X1 i586 $_32/64$

Разрядность Разрядность ОЗУ 24 / 28

Экономия и повышение производительности

Способы экономии

- Если есть старая память или системная плата можно поставить «урезанный» по внешней разрядности процессор 8088, 386SX, 586 Overdrive
- Если есть старая память, на новую системную плату можно ставить старые модули меньшей разрядности парами (DIMM — 2xSIMM)

Разрядность Разрядность ОЗУ 25 / 28

Экономия и повышение производительности

Способы экономии

- Если есть старая память или системная плата можно поставить «урезанный» по внешней разрядности процессор 8088, 386SX, 586 Overdrive
- Если есть старая память, на новую системную плату можно ставить старые модули меньшей разрядности парами (DIMM — 2xSIMM)

Способ повышения производительности

У некоторых процессоров (i586) внешняя разрядность выше внутренней для более производительного обмена данными с памятью. Про это позже в лекции про кэш.

Разрядность Разрядность ОЗУ 25 / 28

Параллельная ли шина адреса ОЗУ?

Или нет?..

Разрядность Разрядность ОЗУ 26 / 28

Параллельная ли шина адреса ОЗУ?

Или нет?..

Смешанная!

- DRAM (SIMM 30) □ память организована, как квадратная таблица 2¹² × 2¹².
 Шина адреса 12 бит, адрес передаётся в два захода со вспомогательными сигналами Row Address Strobe и Column Address Strobe. Это позволяло упростить внутреннюю структуры микросхем и уменьшить количество выводов (а значить уменьшить корпуса)
- **.**..
- EDO (SIMM 72) □ зачатки конвейера, при чтении из памяти на шину данных выдаётся предыдущее значение, пока шина адреса передаёт номера строки и столбца. Несколько сигналов RAS и CAS, и возможность на разные биты шины данных одновременно выдавать данные с разных адресов □
- SDRAM (DIMM) ☐ уже целый несложный «протокол»: пока системная плата передаёт команды, память их исполняет
- .
- DDR 5 🗗 сложный протокол, внутренний конвейер команд

Разрядность Разрядность ОЗУ 26 / 28

Упражнения и вопросы

Упражнения

- Найдите документацию по системной плате своего ПК, выясните, какие виды памяти и в каких сочетаниях в неё можно устанавливать
- Выясните разрядность шины адреса своего ПК внутреннюю и внешнюю

Вопросы

- Что такое тактовый сигнал, тактовая частота и тактовый генератор?
- Приведите примеры асинхронных операций, не управляемых тактами
- Что такое внутренняя и внешняя разрядность?
- Зачем Intel выпускали версии процессоров с пониженной внешней разрядностью?

Вопросы

EDU.DLUCIV.NAME ☐