16

Cálculo Vetorial

Reescrevemos o Teorema de Green na versão vetorial

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \operatorname{div} \mathbf{F}(x, y) \, dA$$

onde C é a fronteira positivamente orientada da região do plano D. Se quisermos estender esse teorema para campos de vetores em \mathbb{R}^3 , podemos fazer uma suposição de que

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{E} \operatorname{div} \mathbf{F}(x, y, z) \, dV$$

onde S é a superfície limite da região sólida E.

A Equação 1 é verdadeira sob hipóteses apropriadas e é chamada Teorema do Divergente. Observe sua semelhança com os Teoremas de Green e de Stokes, pois ele relaciona a integral da derivada de uma função (div **F**, nesse caso) sobre uma região com a integral da função original **F** sobre a fronteira da região.

Enunciaremos e demonstraremos o Teorema do Divergente para regiões *E* que são, simultaneamente, dos tipos 1, 2 e 3 e que chamamos de **regiões regiões sólidas simples**. (Por exemplo, as regiões delimitadas por elipsoides ou caixas retangulares são simples regiões sólidas.)

A fronteira de *E* é uma superfície fechada e usaremos a convenção, de que a orientação positiva é para for a, ou seja, o vetor normal unitário **n** apontará para fora de *E*.

O Teorema do Divergente Seja E uma região sólida simples e seja S a superfície fronteira de E, orientada positivamente (para fora). Seja F um campo vetorial cujas funções componentes tenham derivadas parciais contínuas em uma região aberta que contenha E. Então

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{F} \operatorname{div} \mathbf{F} \, dV$$

Portanto, o Teorema do Divergente afirma que, sob as condições dadas, o fluxo de **F** pela fronteira de *E* é igual à integral tripla da divergência de **F** em *E*.

Exemplo 1

Determine o fluxo do campo vetorial $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ sobre a unidade esférica $x^2 + y^2 + z^2 = 1$.

SOLUÇÃO: Primeiro calcularemos a divergente de F:

$$\operatorname{div} \mathbf{F} = \frac{\partial}{\partial x} (z) + \frac{\partial}{\partial y} (y) + \frac{\partial}{\partial z} (x) = 1$$

A esfera unitária S é a fronteira da bola unitária B dada por $x^2 + y^2 + z^2 \le 1$. Então, o Teorema do Divergente dá o fluxo como

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{B} \operatorname{div} \mathbf{F} \, dV = \iiint\limits_{B} 1 \, dV = V(B) = \frac{4}{3}\pi(1)^{3} = \frac{4\pi}{3}$$

Vamos considerar a região E que está entre as superfícies fechadas S_1 e S_2 , onde S_1 está dentro de S_2 . Sejam \mathbf{n}_1 e \mathbf{n}_2 as normais apontando para for a de S_1 e S_2 . Então, a fronteira de E é $S = S_1$ U S_2 e a sua normal \mathbf{n} é dada por \mathbf{n} = $-\mathbf{n}_1$ em S_1 e \mathbf{n} = \mathbf{n}_2 em S_2 (veja a Figura 3.)

Figura 3

Aplicando o Teorema do Divergente a S, obtemos

$$\iiint_{E} \operatorname{div} \mathbf{F} \, dV = \iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

$$= \iint_{S_{1}} \mathbf{F} \cdot (-\mathbf{n}_{1}) \, dS + \iint_{S_{2}} \mathbf{F} \cdot \mathbf{n}_{2} \, dS$$

$$= -\iint_{S_{1}} \mathbf{F} \cdot d\mathbf{S} + \iint_{S_{2}} \mathbf{F} \cdot d\mathbf{S}$$

Exemplo 3

Consideramos o campo elétrico

$$\mathbf{E}(\mathbf{x}) = \frac{\varepsilon Q}{|\mathbf{x}|^3} \mathbf{x}$$

onde a carga elétrica Q está localizada na origem e $\mathbf{x} = \langle x, y, z \rangle$ é um vetor posição. Use a Teorema do Divergente para mostrar que o fluxo elétrico de \mathbf{E} através de qualquer superfície fechada S_2 que inclui a origem é

$$\iint_{S_2} \mathbf{E} \cdot d\mathbf{S} = 4\pi\varepsilon Q$$

Exemplo 3 – Solução

A dificuldade é que não termos uma equação explícita para S_2 porque S_2 é *qualquer* superfície fechada envolvendo a origem. O exemplo mais simples de tal superfície seria uma esfera. Seja então S_1 uma pequena esfera de raio a e centrada à origem. Você pode verificar que div E = 0. Portanto, a Equação 7 dá

$$\iint_{S_2} \mathbf{E} \cdot d\mathbf{S} = \iint_{S_1} \mathbf{E} \cdot d\mathbf{S} + \iiint_E \operatorname{div} \mathbf{E} \, dV = \iint_{S_1} \mathbf{E} \cdot d\mathbf{S} = \iint_{S_1} \mathbf{E} \cdot \mathbf{n} \, dS$$

Exemplo 3 – Solução

O ponto importante nesse cálculo é que podemos calcular a integral de superfície sobre S_1 porque S_1 é uma esfera. O vetor normal em \mathbf{x} é $\mathbf{x}/|\mathbf{x}|$. Portanto,

$$\mathbf{E} \cdot \mathbf{n} = \frac{\varepsilon Q}{|\mathbf{x}|^3} \mathbf{x} \cdot \left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) = \frac{\varepsilon Q}{|\mathbf{x}|^4} \mathbf{x} \cdot \mathbf{x} = \frac{\varepsilon Q}{|\mathbf{x}|^2} = \frac{\varepsilon Q}{a^2}$$

uma vez que a equação de S_1 é $|\mathbf{x}| = a$. Assim temos

$$\iint_{S_2} \mathbf{E} \cdot d\mathbf{S} = \iint_{S_1} \mathbf{E} \cdot \mathbf{n} \, dS = \frac{\varepsilon Q}{a^2} \iint_{S_1} dS = \frac{\varepsilon Q}{a^2} A(S_1) = \frac{\varepsilon Q}{a^2} 4\pi a^2 = 4\pi\varepsilon Q$$

Exemplo 3 – Solução

Isso mostra que o fluxo elétrico de **E** é $4\pi\epsilon Q$ através de qualquer superfície fechada S_2 que contenha a origem. [Esse é um caso especial da Lei de Gauss para uma única carga. A relação entre ϵ e ϵ_0 é ϵ =1/($4\pi\epsilon_0$).]

Outra aplicação do Teorema do Divergente aparece no escoamento de fluidos. Seja $\mathbf{v}(x, y, z)$ o campo de velocidade de um líquido com densidade constante ρ . Então $\mathbf{F} = \rho \mathbf{v}$ é a taxa de vazão do fluido por unidade de área.

Se $P_0(x_0, y_0, z_0)$ é um ponto no fluido e B_a é uma bola com com centro em P_0 e raio muito pequeno a, então div $\mathbf{F}(P) \approx$ div $\mathbf{F}(P_0)$ para todos os pontos em B_a uma vez que div \mathbf{F} é contínuo. Aproximamos o fluxo sobre a fronteira esférica S_a como segue:

$$\iint\limits_{S_a} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{B_a} \operatorname{div} \mathbf{F} \, dV \approx \iiint\limits_{B_a} \operatorname{div} \mathbf{F}(P_0) \, dV = \operatorname{div} \mathbf{F}(P_0) V(B_a)$$

Essa aproximação se torna melhor à medida que $a \rightarrow 0$ e sugere que

$$\operatorname{div} \mathbf{F}(P_0) = \lim_{a \to 0} \frac{1}{V(B_a)} \iint_{S_a} \mathbf{F} \cdot d\mathbf{S}$$

A Equação 8 diz que div $\mathbf{F}(P_0)$ é a taxa líquida de fluxo para o exterior por unidade de volume em P_0 . (Esta é a razão para o nome *divergente*.) Se div $\mathbf{F}(P) > 0$, o fluxo líquido é exteriormente perto de P e P é chamado uma **fonte**. Se div $\mathbf{F}(P) > 0$, o escoamento total perto de P é para dentro e P e denominado **sorvedouro**.

Para o campo vetorial da Figura 4, parece que os vetores que terminam próximo de P_1 são menores que os vetores que iniciam perto do mesmo ponto P_1 .

Figura 4

Campo vetorial $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$

Então, o fluxo total é para for a perto de P_1 , assim div $\mathbf{F}(P_1) > 0$ e P_1 é uma fonte. Por outro lado, perto de P_2 , os vetores que chegam são maiores que os que saem. Aqui o fluxo total é para dentro, assim div $\mathbf{F}(P_2) < 0$ e P_2 é um sorvedouro. Podemos usar a fórmula para F para confirmar essa impressão. Uma vez que $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$, temos div $\mathbf{F} = 2x + 2y$, que é positivo quando y > -x. Assim, os pontos acima da linha y = -x são fontes e os que estão abaixo são sorvedouros.