Patch modifications and separation axioms in point-free topology

Seminario de avance de tesis III 6 de diciembre de 2024

Juan Carlos Monter Cortés Luis Ángel Zaldívar Corichi

Universidad de Guadalajara

Lo que veremos hoy ©

Lo que si sabemos

Espacio de parches vs ensamble de parches

Los problemas que tenemos

La conjetura

Las alternativas que hemos pensado

Espacio de parches

Definición:

Un espacio topológico *S* es *empaquetado* si todo conjunto compacto saturado es cerrado.

Espacio de parches

Definición:

Un espacio topológico *S* es *empaquetado* si todo conjunto compacto saturado es cerrado.

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, \ Q \in \mathcal{Q}S\}.$$

Espacio de parches

Definición:

Un espacio topológico *S* es *empaquetado* si todo conjunto compacto saturado es cerrado.

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, \ Q \in \mathcal{Q}S\}.$$

Definición:

Para un espacio topológico S, sea pS (espacio de parches), el espacio con los mismos puntos que S y la topología $({}^pS$ generada por la pbase.

LO QUE SI SABEMOS

• $T_2 \Rightarrow T_0 + \text{empaqueta} \Rightarrow T_1$.

- $T_2 \Rightarrow T_0 + \text{empaqueta} \Rightarrow T_1$.
- Si S es $T_0 \Rightarrow {}^pS$ es T_1 y si S es $T_1 \Rightarrow {}^pS = {}^{pp}S$.

- $T_2 \Rightarrow T_0 + \text{empaqueta} \Rightarrow T_1$.
- Si S es $T_0 \Rightarrow {}^pS$ es T_1 y si S es $T_1 \Rightarrow {}^pS = {}^{pp}S$.
- Si S es $T_{\circ} \Rightarrow {}^{pp}S = {}^{ppp}S$.

- $T_2 \Rightarrow T_0 + \text{empaqueta} \Rightarrow T_1$.
- Si S es $T_0 \Rightarrow {}^pS$ es T_1 y si S es $T_1 \Rightarrow {}^pS = {}^{pp}S$.
- Si S es $T_0 \Rightarrow {}^{pp}S = {}^{ppp}S$.
- Si S es $T_2 \Rightarrow S = {}^pS$.

- $T_2 \Rightarrow T_0 + \text{empaqueta} \Rightarrow T_1$.
- Si S es $T_0 \Rightarrow {}^pS$ es T_1 y si S es $T_1 \Rightarrow {}^pS = {}^{pp}S$.
- Si S es $T_{\circ} \Rightarrow {}^{pp}S = {}^{ppp}S$.
- Si S es $T_2 \Rightarrow S = {}^pS$.
- S es empaquetado $\Leftrightarrow S = {}^{p}S$.

- $T_2 \Rightarrow T_0 + \text{empaqueta} \Rightarrow T_1$.
- Si S es $T_0 \Rightarrow {}^pS$ es T_1 y si S es $T_1 \Rightarrow {}^pS = {}^{pp}S$.
- Si S es $T_{\circ} \Rightarrow {}^{pp}S = {}^{ppp}S$.
- Si S es $T_2 \Rightarrow S = {}^pS$.
- S es empaquetado $\Leftrightarrow S = {}^{p}S$.

¿Cuál es el análogo de empaquetado en Frm?

Filtros, núcleos y el Teorema de H.-M.

Definition

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leq b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Filtros, núcleos y el Teorema de H.-M.

Definition

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leqslant b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Existen diferentes tipos de filtros:

- Propio
- Primo

- (Scott) abierto
- Admisible ($\nabla(j)$)

• Completamente primo

1.
$$a \leqslant b \Rightarrow j(a) \leqslant j(b)$$

- 1. $a \leq b \Rightarrow j(a) \leq j(b)$
- 2. $a \leq j(a)$

LO QUE SI SABEMOS

- 1. $a \leq b \Rightarrow j(a) \leq j(b)$
- 2. $a \leq j(a)$

LO QUE SI SABEMOS 000000000000

3. $j^2(a) = j(a)$

1.
$$a \leqslant b \Rightarrow j(a) \leqslant j(b)$$

2. $a \leq j(a)$

LO QUE SI SABEMOS 000000000000

- 3. $j^2(a) = j(a)$
- 4. $j(a \wedge b) = j(a) \wedge j(b)$

- 1. $a \leqslant b \Rightarrow j(a) \leqslant j(b)$
- $2. \ a \leqslant j(a)$
- 3. $j^2(a) = j(a)$
- 4. $j(a \wedge b) = j(a) \wedge j(b)$

- 1. $a \leqslant b \Rightarrow j(a) \leqslant j(b)$
- $2. \ a \leqslant j(a)$
- 3. $j^2(a) = j(a)$
- 4. $j(a \wedge b) = j(a) \wedge j(b)$

Observaciones:

• $NA = \text{conjunto de todos los núcleos en } A \text{ y } NA \in \mathbf{Frm}.$

- 1. $a \leqslant b \Rightarrow j(a) \leqslant j(b)$
- 2. $a \leqslant j(a)$
- 3. $j^2(a) = j(a)$
- 4. $j(a \wedge b) = j(a) \wedge j(b)$

- $NA = \text{conjunto de todos los núcleos en } A \text{ y } NA \in \mathbf{Frm}.$
- $u_a(x) = a \lor x$, $v_a(x) = (a \succ x)$, $w_a = ((x \succ a) \succ a) \in NA$.

1.
$$a \leqslant b \Rightarrow j(a) \leqslant j(b)$$

- 2. $a \leqslant j(a)$
- 3. $j^2(a) = j(a)$
- 4. $j(a \wedge b) = j(a) \wedge j(b)$

- $NA = \text{conjunto de todos los núcleos en } A \text{ y } NA \in \mathbf{Frm}.$
- $u_a(x) = a \lor x$, $v_a(x) = (a \succ x)$, $w_a = ((x \succ a) \succ a) \in NA$.
- $\eta_A: A \to NA$, $a \mapsto u_a$.

- 1. $a \leqslant b \Rightarrow j(a) \leqslant j(b)$
- 2. $a \leqslant j(a)$
- 3. $j^2(a) = j(a)$
- 4. $j(a \wedge b) = j(a) \wedge j(b)$

- $NA = \text{conjunto de todos los núcleos en } A \text{ y } NA \in \mathbf{Frm}.$
- $u_a(x) = a \lor x$, $v_a(x) = (a \succ x)$, $w_a = ((x \succ a) \succ a) \in NA$.
- $\eta_A: A \to NA$, $a \mapsto u_a$.
- Si $f = f^* \in \mathbf{Frm} \Rightarrow k = f_* f^* \in NA$.

- 1. $a \leqslant b \Rightarrow j(a) \leqslant j(b)$
- 2. $a \leq j(a)$
- 3. $j^2(a) = j(a)$
- $4. \ j(a \wedge b) = j(a) \wedge j(b)$

- $NA = \text{conjunto de todos los núcleos en } A \text{ y } NA \in \mathbf{Frm}.$
- $u_a(x) = a \lor x$, $v_a(x) = (a \succ x)$, $w_a = ((x \succ a) \succ a) \in NA$.
- $\eta_A: A \to NA$, $a \mapsto u_a$.
- Si $f = f^* \in \mathbf{Frm} \Rightarrow k = f_*f^* \in NA$.
- Para $U_A^*: A \to \mathcal{O}S$, $sp = (U_A)_* U_A^* \in NA$.

Definición:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{a \in A \mid j(a) = 1\}.$$

Definición:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Definición:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{a \in A \mid j(a) = 1\}.$$

Observaciones:

• $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.

Definición:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.

Definición:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.

Definición:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.
- $F \in A^{\wedge} \Rightarrow [v_F, w_F]$.

Teorema (Hoffman-Mislove):

Sean $A \in \mathbf{Frm}$ y $S = \mathsf{pt}(A)$, entonces existe una correspondencia biyectiva entre:

- 1. QS = compactos saturados en S
- 2. A^{\wedge} = filtros abiertos en A

Teorema (Hoffman-Mislove extendido):

Sean $A \in \mathbf{Frm}$ y $S = \mathsf{pt}(A)$, entonces existe una correspondencia biyectiva entre:

- 1. QS = compactos saturados en S
- 2. A^{\wedge} = filtros abiertos en A
- 3. $v_F = \text{núcleos ajustados}$

Teorema (Hoffman-Mislove extendido):

Sean $A \in \mathbf{Frm}$ y $S = \mathsf{pt}(A)$, entonces existe una correspondencia biyectiva entre:

- 1. QS = compactos saturados en S
- 2. A^{\wedge} = filtros abiertos en A
- 3. $v_F = \text{núcleos ajustados}$

El Teorema de H.-M. nos proporciona $(F, Q, \nabla(Q))$

$$F \in A^{\wedge} \leftrightarrow Q \in \Omega S \leftrightarrow \nabla(Q) \in \mathcal{O}S^{\wedge}$$

$$x \in F \Leftrightarrow Q \subseteq U_A(x) \Leftrightarrow U_A(x) \in \nabla(Q)$$

El ensamble parches

Basados en el Teorema de H.-M. se introduce el ensamble de parches.

$$p\text{-base}(A) = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

El ensamble parches

Basados en el Teorema de H.-M. se introduce el ensamble de parches.

$$p-base(A) = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

Sea $PA = \langle p\text{-base}(A) \rangle$, es decir, tomamos supremos arbitrarios de elementos en p-base(A)

$$A \xrightarrow{i} PA \xrightarrow{\iota} NA$$

El ensamble parches

Basados en el Teorema de H.-M. se introduce el ensamble de parches.

$$p-base(A) = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

Sea $PA = \langle p\text{-base}(A) \rangle$, es decir, tomamos supremos arbitrarios de elementos en p-base(A)

$$A \xrightarrow{i} PA \xrightarrow{\iota} NA$$

$${\mathcal E}$$
Cuándo $A \cong PA$?

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

Observaciones:

• $S = {}^{p}S \leftrightarrow A \cong PA$.

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

- $S = {}^{p}S \leftrightarrow A \cong PA$.
- Si $j \in NA$, $j = \bigvee \{v_x \land u_{j(x)} \mid x \in A\}$.

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

- $S = {}^{p}S \leftrightarrow A \cong PA$.
- Si $j \in NA$, $j = \bigvee \{v_x \land u_{j(x)} \mid x \in A\}$.
- Si $j \in PA$, $j = \bigvee \{v_F \land u_d \mid F \in A^{\land} \text{ y } d \in A\}$.

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

- $S = {}^{p}S \leftrightarrow A \cong PA$.
- Si $j \in NA$, $j = \bigvee \{v_x \land u_{j(x)} \mid x \in A\}$.
- Si $j \in PA$, $j = \bigvee \{v_F \land u_d \mid F \in A^{\land} \text{ y } d \in A\}$.
- *A* es parche trivial $\Leftrightarrow v_F = u_d$.

Definición:

 $A \in \mathbf{Frm}$ es parche trivial si $i: A \to P(A)$ es un isomorfismo.

¿Bajo qué circunstancias es el marco A parche trivial?

- $S = {}^{p}S \leftrightarrow A \cong PA$.
- Si $j \in NA$, $j = \bigvee \{v_x \land u_{j(x)} \mid x \in A\}$.
- Si $j \in PA$, $j = \bigvee \{v_F \land u_d \mid F \in A^{\land} \text{ y } d \in A\}$.
- *A* es parche trivial $\Leftrightarrow v_F = u_d$.
- $\forall a \in A$, $u_a \leq v_a \vee v_a \leq j \Leftrightarrow j(a) = 1$.

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $i = u_d$, donde d = i(0)

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $j = u_d$, donde d = j(0)

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $j = u_d$, donde d = j(0)

Demostración

1. A es regular $\Rightarrow A$ es ajustado.

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $j = u_d$, donde d = j(0)

- 1. A es regular $\Rightarrow A$ es ajustado.
- 2. $x = \bigvee \{y \in A \mid (\exists z)[z \land y = o \ y \ z \lor x = 1]\}$ es dirigido.

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $j = u_d$, donde d = j(0)

- 1. A es regular $\Rightarrow A$ es ajustado.
- 2. $x = \bigvee \{y \in A \mid (\exists z)[z \land y = 0 \text{ y } z \lor x = 1]\}$ es dirigido.
- 3. $\nabla(u_d) = \nabla(j) \Rightarrow j \sim u_d$.

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $j = u_d$, donde d = j(0)

- 1. A es regular $\Rightarrow A$ es ajustado.
- 2. $x = \bigvee \{y \in A \mid (\exists z)[z \land y = 0 \text{ y } z \lor x = 1]\}$ es dirigido.
- 3. $\nabla(u_d) = \nabla(j) \Rightarrow j \sim u_d$.
- 4. A es ajustado $\Rightarrow u_d$ es el único en su bloque.

Teorema:

Supongamos que A es un marco regular y sea $j \in NA$ tal que $\nabla(j)$ es abierto. Entonces $j = u_d$, donde d = j(0)

- 1. A es regular $\Rightarrow A$ es ajustado.
- 2. $x = \bigvee \{y \in A \mid (\exists z)[z \land y = 0 \text{ y } z \lor x = 1]\}$ es dirigido.
- 3. $\nabla(u_d) = \nabla(j) \Rightarrow j \sim u_d$.
- 4. A es ajustado $\Rightarrow u_d$ es el único en su bloque.
- 5. $j = u_d$.

Marcos arreglados

Definición:

Sea $A \in \mathbf{Frm}$ y α un ordinal, un filtro abierto F en A es α -arreglado si

$$x \in F \Rightarrow u_{d(\alpha)}(x) = d(\alpha) \lor x = 1$$
,

donde
$$d(\alpha) = f^{\alpha}(0)$$
 y $f = \bigvee \{v_a \mid a \in F\}$.

Marcos arreglados

Definición:

Sea $A \in \mathbf{Frm}$ y α un ordinal, un filtro abierto F en A es α -arreglado si

$$x \in F \Rightarrow u_{d(\alpha)}(x) = d(\alpha) \lor x = 1$$
,

donde
$$d(\alpha) = f^{\alpha}(0) \text{ y } f = \dot{\bigvee} \{v_a \mid a \in F\}.$$

• Un marco A es α -arreglado si $\forall F \in A^{\wedge} \Rightarrow F$ es α -arreglado.

Marcos arreglados

Definición:

Sea $A \in \mathbf{Frm}$ y α un ordinal, un filtro abierto F en A es α -arreglado si

$$x \in F \Rightarrow u_{d(\alpha)}(x) = d(\alpha) \lor x = 1$$
,

donde
$$d(\alpha) = f^{\alpha}(0) \text{ y } f = \dot{\bigvee} \{v_a \mid a \in F\}.$$

- Un marco A es α -arreglado si \forall $F \in A^{\wedge} \Rightarrow F$ es α -arreglado.
- Parche trivial ⇔ Arreglado

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Arreglado es una noción que caracteriza marcos por medio de propiedades espaciales.

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Arreglado es una noción que caracteriza marcos por medio de propiedades espaciales.

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Arreglado es una noción que caracteriza marcos por medio de propiedades espaciales.

Observaciones:

• Arreglado $\Rightarrow T_1$.

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Arreglado es una noción que caracteriza marcos por medio de propiedades espaciales.

- Arreglado $\Rightarrow T_1$.
- Arreglado ⇒ empaquetado y Empaquetado ⇒ Arreglado.

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Arreglado es una noción que caracteriza marcos por medio de propiedades espaciales.

- Arreglado $\Rightarrow T_1$.
- Arreglado \Rightarrow empaquetado y Empaquetado \Rightarrow Arreglado.
- Arreglado \Leftrightarrow Empaquetado + Apilado.

Sea S un espacio T_0 , éste tiene marco de abiertos 1-arreglado si y solo si S es T_2 .

Arreglado es una noción que caracteriza marcos por medio de propiedades espaciales.

- Arreglado $\Rightarrow T_1$.
- Arreglado \Rightarrow empaquetado y Empaquetado \Rightarrow Arreglado.
- Arreglado ⇔ Empaquetado + Apilado.

Definición:

1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .

Definición:

- 1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .
- 2. Decimos que una propiedad en marcos *P* es suficientemente *Hausdorff* si y solo si *P* implica la propiedad Hausdorff espacial.

Definición:

- 1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .
- 2. Decimos que una propiedad en marcos *P* es suficientemente *Hausdorff* si y solo si *P* implica la propiedad Hausdorff espacial.
- 3. Decimos que una propiedad en marcos *P* es de 1° *orden* si y solo si *P* es enunciada como una fórmula para elementos del marco.

Definición:

- 1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .
- 2. Decimos que una propiedad en marcos *P* es suficientemente *Hausdorff* si y solo si *P* implica la propiedad Hausdorff espacial.
- 3. Decimos que una propiedad en marcos *P* es de 1° *orden* si y solo si *P* es enunciada como una fórmula para elementos del marco.
- 4. Decimos que una propiedad en marcos *P* es de 2° *orden* si y solo si *P* es enunciada como una caracterización de sublocales.

(**dH**)
$$a \lor b = 1$$
 y $a, b \ne 1$, $\exists u, v$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.

- (**dH**) $a \lor b = 1$ y $a, b \ne 1$, $\exists u, v$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.
- (**H**) $1 \neq a \nleq b \in L$, $\exists u, v \in L$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.

- (**dH**) $a \lor b = 1$ y $a, b \ne 1$, $\exists u, v$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.
- (**H**) $1 \neq a \nleq b \in L$, $\exists u, v \in L$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.
- (**Hp**) Cada elemento semiprimo en *L* es máximo.

- (**dH**) $a \lor b = 1$ y $a, b \ne 1$, $\exists u, v$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.
- (**H**) $1 \neq a \nleq b \in L$, $\exists u, v \in L$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.
- (**Hp**) Cada elemento semiprimo en *L* es máximo.

 $[(\mathbf{fH})]$ El sublocal diagonal $\Delta[L]$ es cerrado en $L \oplus L$.

$$\Leftrightarrow \Delta[L] = \uparrow d_L$$

donde d_L es el menor elemento de $\Delta[L]$, es decir,

$$d_L = \Delta(o) = \{(x, y) \mid x \land y \leqslant o\} = \downarrow \{(x, x^*) \mid x \in L\}.$$

El razonamiento

Definición:

Decimos que un marco A es espacial si $A = \mathfrak{O}S$, para S un espacio topológico.

El razonamiento

Definición:

Decimos que un marco A es espacial si $A = \mathfrak{O}S$, para S un espacio topológico.

Teorema:

Si A es un marco espacial entonces

A es 1-arreglado si y solo si S es T2

• Si S es $T_2 \Rightarrow OS$ es parche trivial

- Si S es $T_2 \Rightarrow OS$ es parche trivial
- Un marco A es arreglado \Leftrightarrow A parche trivial.

- Si S es $T_2 \Rightarrow OS$ es parche trivial
- Un marco A es arreglado \Leftrightarrow A parche trivial.
- **(H)** es conservativa

- Si S es $T_2 \Rightarrow OS$ es parche trivial
- Un marco A es arreglado \Leftrightarrow A parche trivial.
- **(H)** es conservativa

 $OS \text{ es } (\mathbf{H}) \Leftrightarrow S \text{ es } T_2 \Rightarrow OS \text{ parche trivial } \Leftrightarrow OS \text{ arreglado}$

- Si S es $T_2 \Rightarrow OS$ es parche trivial
- Un marco A es arreglado \Leftrightarrow A parche trivial.
- **(H)** es conservativa

OS es $(\mathbf{H}) \Leftrightarrow S$ es $T_2 \Rightarrow OS$ parche trivial $\Leftrightarrow OS$ arreglado

Conjetura

Todo marco Hausdorff es 1-arreglado.

Teorema:

Para A un marco espacial, $\bigcirc S$ es un marco Hausdorff si y solo si A es 1—arreglado.

Teorema:

Todo marco fuertemente Hausdorff es arreglado.

 $Si A \in \mathbf{Frm} \ y j \in NA \Rightarrow A_j \in \mathbf{Frm}.$

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

Observaciones:

• A_j es un cociente de A.

 $Si A \in \mathbf{Frm} \ y j \in NA \Rightarrow A_i \in \mathbf{Frm}.$

- A_j es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.

 $Si A \in \mathbf{Frm} \ y j \in NA \Rightarrow A_i \in \mathbf{Frm}.$

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- *A* es arreglado si todo cociente compacto es cerrado.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

Observaciones:

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- A es arreglado si todo cociente compacto es cerrado.

¿Existen ejemplos de marcos (locales) Hausdorff y compactos que sean cerrados?

¿Qué significa apilado en marcos?

$$extstyle extstyle ex$$

Definición:

Sea $S \in \textbf{Top}$ y $Q \in \mathcal{Q}S$. Decimos que $X \in \mathcal{C}S$ es Q-irreducible (denotado por " $Q \ltimes X$ "), si

$$Q\subseteq U\Rightarrow X\subseteq \overline{(X\cap U)}$$

Equivalentemente $Q \subseteq U \Rightarrow X = \overline{(X \cap U)}$, para cada $U \in \mathfrak{O}S$.

Definición:

• $S \in \mathbf{Top}$ es apilado si

$$Q \ltimes X \Rightarrow X \subseteq \overline{Q}$$

se cumple para cada $Q \in QS$ y $X \in CS$.

Definición:

• $S \in \mathbf{Top}$ es apilado si

$$Q \ltimes X \Rightarrow X \subseteq \overline{Q}$$

se cumple para cada $Q \in QS$ y $X \in CS$.

• $S \in \textbf{Top}$ es fuertemente apilado si

$$Q \ltimes X \Rightarrow X \subseteq \overline{X \cap Q}$$

se cumple para cada $Q \in QS$ y $X \in CS$.

Definición:

• $S \in \mathbf{Top}$ es apilado si

$$Q \ltimes X \Rightarrow X \subseteq \overline{Q}$$

se cumple para cada $Q \in QS$ y $X \in CS$.

• $S \in \textbf{Top}$ es fuertemente apilado si

$$Q \ltimes X \Rightarrow X \subseteq \overline{X \cap Q}$$

se cumple para cada $Q \in QS$ y $X \in CS$.

¿Qué relación tiene esta noción espacial con las nociones en marcos?

EL Q-cuadrado

Ingredientes:

- U_A : OS
- $F \in A^{\wedge} \to v_F$
- $\bullet \ A_F = A_{\nu_F}$

- $\nabla \in \mathfrak{O}S \to \nu_{\nabla}$
- $OS_{\nabla} = OS_{\nu_{\nabla}}$
 - $G = \nabla U_A$

- \bullet $Q = \operatorname{pt} A_F$
- $ullet g = G_{|A_F}$
- $?: \mathcal{O}S_{\nabla} \to A_F$

• El Q—cuadrado está definido para cada $F \in A^{\wedge}$.

- El Q—cuadrado está definido para cada $F \in A^{\wedge}$.
- Si A es espacial $\Rightarrow A \rightarrow A_F \rightarrow \mathcal{O}Q$.

- El Q—cuadrado está definido para cada $F \in A^{\wedge}$.
- Si A es espacial $\Rightarrow A \rightarrow A_F \rightarrow \mathcal{O}Q$.
- Si? = g_* y $g_*g = sp \Rightarrow A \rightarrow A_F \rightarrow OQ$.

- El Q—cuadrado está definido para cada $F \in A^{\wedge}$.
- Si A es espacial $\Rightarrow A \rightarrow A_F \rightarrow \mathcal{O}Q$.
- Si? = g_* y $g_*g = sp \Rightarrow A \rightarrow A_F \rightarrow OQ$.
- En general, ¿quién es "?"?

- El Q—cuadrado está definido para cada $F \in A^{\wedge}$.
- Si A es espacial $\Rightarrow A \rightarrow A_F \rightarrow \mathcal{O}Q$.
- Si? = g_* y $g_*g = sp \Rightarrow A \rightarrow A_F \rightarrow OQ$.
- En general, ¿quién es "?"?
- Si conocemos todos los $F \in A^{\wedge}$, conocemos todos los Q—cuadrados.

- El Q—cuadrado está definido para cada $F \in A^{\wedge}$.
- Si A es espacial $\Rightarrow A \rightarrow A_F \rightarrow \mathcal{O}Q$.
- Si? = g_* y $g_*g = sp \Rightarrow A \rightarrow A_F \rightarrow OQ$.
- En general, ¿quién es "?"?
- Si conocemos todos los $F \in A^{\wedge}$, conocemos todos los Q—cuadrados.
- Existen ejemplos donde se conocen todos los $F \in A^{\wedge}$

References I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.

References II

- Rosemary A Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- Harold Simmons, *The assembly of a frame*, University of Manchester (2006).
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.
- A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2024. Universidad de Guadalajara.