令和6年度卒業論文

伸縮する単リンクブラキエーションロボットの 自在移動の実現

指導教員印

指導教員 水内 郁夫 教授

東京農工大学 工学部 機械システム工学科

> 令和3年度入学 21265014 大澤 蒼人

目 次

目 次 5

第1章	序論	7
1.1	研究の背景と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.2	本論文の構成	10
第2章	本研究におけるブラキエーション動作と実機構成	11
2.1	はじめに	13
2.2	プラキエーションの流れ	13
2.3	伸縮による励振	13
2.4	伸縮する単リンクブラキエーションロボットのシステムと実機構成	14
2.5		14
2.6	自在移動のためのリリース条件と励振制御	14
第3章	最適なバーリリース条件の導出	15
3.1	はじめに	17
3.2	最適なバーリリース条件の導出	17
	$3.2.1$ 空中過程における目標バーとグリッパーの距離と相対速度 \dots	17
	3.2.2 最適化のための評価関数	18
3.3	最適なバーリリース条件に基づくリリース実験	18
	3.3.1 実験条件と最適なバーリリース条件	18
	3.3.2 実機実験	19
第4章	リリース条件到達のための励振制御	21
4.1	はじめに	23
4.2	伸縮による励振	23
4.3	振子過程での運動方程式	23
第5章	最適なバーリリース条件に基づく励振とブラキエーション動作の実験	25
5.1	はじめに	27
5.2	考察	27
第6章	結論および今後の展望	29
6.1	はじめに	31

6	目	次
6.2 考察		31
謝辞		32
参考文献		36

第1章

序論

1.1 研究の背景と目的

プラキエーションは,上肢で枝を掴んでぶら下がりながら移動する方法であり,重力を利用することで高所を効率的に移動できる.この移動方法をロボットに応用することで [1] ,送電線の点検などの高所作業への適用が期待される.テナガザルを模倣した多リンク型のロボットの研究例として,福田らの 2 リンク型 [2][3][4][5][6][7][8][9] や 5 リンク型 [10] ,6 リンク型 [1] ,7 リンク型 [11] ,13 リンク型 [12] などがある.また,把持機構に電磁石を用いた 2 リンク型 [13][14] や,パッシブグリッパーを用いた 2 リンク型 [15] ,3 リンク型 [16] などがある.しかし,多リンク型は構造が複雑であるとともに,カオス現象 [17] が生じることで制御が難しくなるという問題がある.赤羽らはロボットの形状を棒状,すなわち単リンク型にすることで構造を単純化し,これらの問題を解決した [18].また,おもりを動かす [19]、伸縮することで [20] モデル予測制御 [21]

異なる高さ、位置

励振の調整は行っていなかった。

さらに伸縮

空中過程(空中相にしないように)

本研究では,バーの位置に基づいた最適なバーリリース条件を導出し,その条件による空中過程を含む移動により,伸縮する単リンクブラキエーションロボットの自在移動を実現することを目的とする.伸縮する機構を活かした最適なバーリリース条件の導出と励振制御を実験的に得た時刻を基に再計画は行っているが、相対速度を考慮していないためロバストではない

伸縮することでバーの位置によってリリース時の長さを変え、

時刻ではなく角度角速度にすることで、リアルタイムに計測していることにより励振プログラムが実行された後に不具合が生じてその時刻に適切な状態になくても

空中過程(跳躍 飛ぶ動作 次のバーを掴む前に支持していたグリッパーもバーから離す) 跳躍ブラキエーション通常のブラキエーションよりも高速かつ遠くの目標物まで到達可能 バーとの相対速度が大きいことで、衝突により把持するタイミングがずれることや部品破 損といったことが生じる可能性がある。

伸縮調整により、以前はその時間になるまで待っていたけどより速く到達できる(早くの評価はいまいちかも)

1.2 本論文の構成

本論文は,全XXX章から構成させる.以下に各章の概要を述べる.

- 第1章(本章)では、研究の背景と目的について述べた.
- 第2章「本研究におけるブラキエーション動作と実機構成」では,
- 第3章「最適なバーリリース条件の導出」ではバーの位置に基づく最適なバーリリース条件を導出する.
- 第4章「励振制御」ではXXX.
- 第5章「空中過程を含むブラキエーション実験」では XXX.
- 第6章「結論および今後の展望」では XXX.

第2章

本研究におけるブラキエーション動作と実機 構成

2.1 はじめに

本章では,目的とするブラキエーション動作と伸縮による励振,そして本研究で用いるロボットの実機構成について述べる.

2.2 ブラキエーションの流れ

図 2.1 に本研究で目的とする空中過程を含んだブラキエーション動作を示す.ロボットの両端のグリッパーがバーを掴んだ状態 (図 2.1(1)) から,片方のバーを離して振子過程 (図 2.1(2)) に移る.その後,適切なタイミングでもう一方のバーも離し (図 2.1(3)),空中過程を経て,最後に目標のバーを掴む (図 2.1(4)).これらの動きを繰り返すことで連続したブラキエーションを行う.

2.3 伸縮による励振

目標とするバーの位置が、把持していたバー (図 2.1 における bar1) と同じ、もしくはそれよりも高い場合、振子過程においてロボットの振幅を大きくしなければ空気抵抗や摩擦などの影響により目標のバーへ到達することができない、そのため、振子過程において外部からのエネルギー投入による振動の拡大が望まれる。本研究ではロボットを伸縮することにより、ブランコのように重心位置をロボットの長手方向に変化させることで励振を行う。この励振方法は先行研究があり、実機で実現されている [20].

Fig. 2.1: Brachiation motions

2.4 伸縮する単リンクブラキエーションロボットのシステムと実機 構成

本研究で用いた実機は[20]

- 2.5
- 2.6 自在移動のためのリリース条件と励振制御

実験的にバーを離すタイミングを決めることもできるが、バーの座標が変わった時に実用 的ではない

第3章 最適なバーリリース条件の導出

3.1 はじめに

空中過程を含むブラキエーション動作は、目標とするバーを把持することができなかった場合に落下してしまうという危険性がある。確実なバー把持のための条件には、バーとグリッパーの距離に加え、バーとの衝突を考慮することも望まれる。そこで、本研究では目標バーとロボットのグリッパー間の距離と、バー把持時のバーに対するグリッパーの相対速度に基づく評価関数を用いてバーリリース条件を最適化することを提案する。本章では、任意のバーの位置に基づくリリース条件最適化と、最適条件を基に行ったリリース実験について述べる。

3.2 最適なバーリリース条件の導出

3.2.1 空中過程における目標バーとグリッパーの距離と相対速度

$$x_{\rm c} = \frac{1}{2} l_{\rm r} \dot{\varphi} \cos(\varphi) t + \frac{1}{2} l_{\rm r} \sin(\varphi)$$
 (3.1)

$$z_{\rm c} = \frac{1}{2} l_{\rm r} \dot{\varphi} \sin(\varphi) t - \frac{1}{2} g t^2 - \frac{1}{2} l_{\rm r} \cos(\varphi)$$
 (3.2)

$$x_{\rm e} = x_{\rm c} + \frac{1}{2} l_{\rm r} \sin \left(\varphi + \dot{\varphi} t \right) \tag{3.3}$$

$$z_{\rm e} = z_{\rm c} - \frac{1}{2} l_{\rm r} \cos \left(\varphi + \dot{\varphi} t \right) \tag{3.4}$$

$$J_{\rm d}(\varphi, \dot{\varphi}, t, l_{\rm r}) = \sqrt{(l_{\rm bx} - x_{\rm e})^2 + (l_{\rm bz} - z_{\rm e})^2}$$
 (3.5)

$$J_{\rm r}(\varphi, \dot{\varphi}, t, l_{\rm r}) = \sqrt{\dot{x_{\rm e}}^2 + \dot{z_{\rm e}}^2}$$
 (3.6)

Fig. 3.1: Schematic Diagram

3.2.2 最適化のための評価関数

バーリリース条件の最適化のために,目標バーとグリッパーの距離と相対速度に基づく評価関数が最小となる条件を求める.評価関数 J を式 (3.5),式 (3.6) で示した距離 $J_{\rm d}$ と相対速度 $J_{\rm r}$ を用いて式 (3.7) とした.ここで, α は重み係数を表し,確実な把持のためにバーとグリッパーの距離に重みづけを行う.

$$J(\varphi, \dot{\varphi}, t, l_{\rm r}) = \alpha \times J_{\rm d} + J_{\rm r} \tag{3.7}$$

評価関数 J が最小になるとき,目標とするバーとグリッパーの距離と相対速度がともに小さくなる条件である.

3.3 最適なバーリリース条件に基づくリリース実験

3.3.1 実験条件と最適なバーリリース条件

3.2.2 節に基づいて最適なバーリリース条件を求め,実機を用いてリリース実験を行った. 実験条件を表 3.3.1 に示す.また,その実験条件を基に求めた最適なバーリリース条件と, 評価値を表 3.3.1 に示す.

Table 3.1: Experiment conditions

Variables	Values
$l_{\rm bx}~{ m [m]}$	0.79
$l_{\rm bz}~[{ m m}]$	0.00
α [-]	10
$g [\mathrm{m/s^2}]$	9.81

Table 3.2: Optimized conditions values

Variables	Values
φ [deg]	56
$\dot{\varphi} \ [\mathrm{deg/s}]$	260
t [s]	0.261
$l_{ m r} \ [{ m m}]$	0.680
J [-]	0.0144
$J_{ m d} \ [{ m m}]$	0.00115
$J_{ m r} \ [{ m m/s}]$	0.00292

3.3.2 実機実験

第4章

リリース条件到達のための励振制御

4.1 はじめに

第3章において導出した最適なバーリリース条件を,振子過程において実現させる.

- 4.2 伸縮による励振
- 4.3 振子過程での運動方程式

第5章

最適なバーリリース条件に基づく 励振とブラキエーション動作の実験

- 5.1 はじめに
- 5.2 考察

第6章 結論および今後の展望

- 6.1 はじめに
- 6.2 考察

謝辞

謝辞 35

卒業論文を執筆するに当たり,水内郁夫教授より多大なるご指導,ご鞭撻を賜りました.多くの技術,知識をこの一年間で学ばせていただきました.深く感謝申し上げます.また,森下克幸助教にも論文執筆や発表技術に関するアドバイスをいただき,Professor Tomáš Vyhlídal,Mr. Juraj Lieskovskýをはじめ,Czech Technical University in Prague の皆様には留学時に多くのアドバイスをいただき,英語が不安な私をサポートしてくださいました.感謝申し上げます.さらに,研究室の先輩,同期には研究の面,そして研究以外の面でも支えていただきました.本当にありがとうございました.

参考文献 39

[1] 福田敏男, 細貝英実, 近藤裕二. ブラキエーション形移動ロボットの研究: 第 1 報, 動特性の解析とシミュレーション. 日本機械学会論文集 C 編, Vol. 56, No. 527, pp. 1839–1846, 1990.

- [2] 福田敏男, 齋藤史倫, 新井史人, 小菅一弘. ブラキエーション形移動ロボットの研究: 第3報, ヒューリスティックな駆動力波形の生成と制御. 日本機械学会論文集 C編, Vol. 57, No. 541, pp. 2930–2937, 1991.
- [3] 福田敏男, 齊藤史倫, 新井史人. ブラキエーション形移動ロボットの研究: 第 4 報, 小脳モデル神経回路を用いた移動制御. 日本機械学会論文集 C 編, Vol. 58, No. 549, pp. 1450-1457, 1992.
- [4] 齋藤史倫, 福田敏男, 新井史人, 松浦英雄. ブラキエーション形移動ロボットの研究: 第5 報, 2 リンクロボットによる励振と移動制御実験. 日本機械学会論文集 C 編, Vol. 59, No. 557, pp. 171–178, 1993.
- [5] 齋藤史倫, 福田敏男. 学習とロボット 強化学習による実ロボットの運動制御. 日本ロボット学会誌, Vol. 13, No. 1, pp. 82-88, 1995.
- [6] 福田敏男, 長谷川泰久, 下島康嗣, 斎藤史倫. 強化学習法を用いたファジィコントローラの生成. 日本機械学会論文集 C 編, Vol. 62, No. 601, pp. 3565-3571, 1996.
- [7] 中西淳, 福田敏男. 解析的手法による 2 リンクブラキエーションロボットの制御. 日本ロボット学会誌, Vol. 16, No. 3, pp. 361-368, 1998.
- [8] 中西淳, 福田敏男. 2 リンクブラキエーションロボットの制御目標ダイナミクス法の実ロボットへの適用. 日本ロボット学会誌, Vol. 17, No. 1, pp. 110-117, 1999.
- [9] 中西淳, 福田敏男. ハイブリッドコントローラによる 2 リンクブラキエーションロボットの振幅制御. 日本ロボット学会誌, Vol. 19, No. 5, pp. 652-659, 2001.
- [10] 福田敏男, 細貝英実, 近藤裕二. ブラキエーション形移動ロボットの研究: 第 2 報, 励振シミュレーションおよび実験結果. 日本機械学会論文集 C 編, Vol. 57, No. 537, pp. 1639–1644, 1991.

40 参考文献

[11] 齋藤史倫, 福田敏男. ブラキエーション形移動ロボットの研究 第 6 報, 7 リンクロボットのモデル化と初期コントローラによる動作シミュレーション. 日本機械学会論文集 C編, Vol. 60, No. 578, pp. 3468-3475, 1994.

- [12] 長谷川泰久, 伊藤芳邦, 福田敏男. ブラキエーション形移動ロボットの研究: 第7報 階層形行動制御における行動学習. 日本機械学会論文集 C 編, Vol. 67, No. 662, pp. 3204-3211, 2001.
- [13] 山川雄司, 安宅佑樹, 石川正俊. ブラキエーションロボットの開発と運動生成 (第 1 報) 把持機構に電磁石を用いた動作手法 . ロボティクス・メカトロニクス講演会講演概 要集 2016, pp. 2A2-08a4. 一般社団法人 日本機械学会, 2016.
- [14] 山川雄司, 古山佳和, 石川正俊. ブラキエーションロボットの開発と運動生成 (第 2 報) 把持機構にフックを用いた動作手法 . ロボティクス・メカトロニクス講演会講演概要集 2016, pp. 2A2-08a3. 一般社団法人 日本機械学会, 2016.
- [15] Mahdi Javadi, Daniel Harnack, Paula Stocco, Shivesh Kumar, Shubham Vyas, Daniel Pizzutilo, and Frank Kirchner. Acromonk: A minimalist underactuated brachiating robot. *IEEE Robotics and Automation Letters*, Vol. 8, No. 6, pp. 3637–3644, 2023.
- [16] Shourie S Grama, Mahdi Javadi, Shivesh Kumar, Hossein Zamani Boroujeni, and Frank Kirchner. Ricmonk: A three-link brachiation robot with passive grippers for energy-efficient brachiation. arXiv preprint arXiv:2403.15762, 2024.
- [17] 鈴木三男、増田健二. 二重振り子におけるカオス的振舞. 物理教育, Vol. 48, No. 1, pp. 1-5, 2000.
- [18] Hijiri Akahane and Ikuo Mizuuchi. Single-rod brachiation robot. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 451–456. IEEE, 2022.
- [19] Juraj Lieskovskỳ, Hijiri Akahane, Jaroslav Bušek, Ikuo Mizuuchi, and Tomáš Vyhlídal. Optimal swing motion control for single-rod brachiation robot. IFAC-PapersOnLine, Vol. 56, No. 2, pp. 6320–6325, 2023.

参考文献 41

[20] 赤羽聖, 水内郁夫. 伸縮する棒状ロボットのブラキエーション. Proceedings of JSME Conference on Robotics and Mechatronics, No. 2P1-M07, 2024.

[21] 赤羽聖, 水内郁夫. モデル予測制御による棒状ロボットのブラキエーション. Proceedings of JSME Conference on Robotics and Mechatronics, No. 2A1-N07, 2024.