

Uczenie Maszynowe.
O co chodzi?

Dawid Paluchowski

Uczenie maszynowe (Machine Learning) to dziedzina **sztucznej inteligencji** zajmująca się rozwijaniem procesów tworzenia zautomatyzowanych systemów, rozwiązujących problemy przy pomocy nabytego doświadczenia.

- Dlaczego uczenie?
- Dlaczego maszynowe?
- Czy maszyny mogą myśleć?

Sztuczna Inteligencja?!

Jak uczy się komputer?

Tak samo jak człowiek!

Inteligencja według R. Sternberga

Inteligencja powiązana jest z szybkim automatyzowaniem procesów poznawczych. Czynność wielokrotnie wykonywana automatyzuje się, co w języku psychologii poznawczej oznacza, że jej sterowanie przechodzi z poziomu globalnego, to jest wymagającego świadomej kontroli przebiegu czynności, na poziom lokalny, niekontrolowany i niewymagający wysiłku. (1985r)

Osoby inteligentne szybciej automatyzują procesy poznawcze, dzięki czemu wykonują wiele czynności w sposób płynny, szybki, bez wysiłku i bez konieczności sprawowania nad nimi świadomej kontroli.

Siła intelektu - analogia

Przykład
nawiązujący do
uczenia
maszynowego w
problemach
związanych z
obrazami

Kogo my tu mamy?

Dane uczące

Gawial

Aligator

Predykcja

Teraz odpowiedź nie powinna wam sprawić trudności

Cechy

- Potrzebne do opracowania analogii
- Wspierane sprzętowo (np. część mózgu człowieka odpowiedzialna za detekcję twarzy)
- Im więcej ich znamy, tym lepiej radzimy sobie np. z klasyfikacją

Inny kształt i długość pyska

Model

```
y train = keras.utils.to categorical(y train, num classes)
y test = keras.utils.to categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel size=(3, 3),
                 input shape=input shape))
model.add(Conv2D(64, (3, 3), activation='relu')),
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add (Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num classes, activation='softmax'))
model.compile(loss=keras.losses.categorical crossentropy,
              optimizer=keras.optimizers.Adadelta(),
model.fit(x train, y train,
          batch size=batch size,
          epochs=epochs,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
```


Mózg naszego systemu, może to być sieć neuronowa, algorytm decyzyjny, funkcja probablilistyczna itp.

Sieć neuronowa

Analogia do mózgu człowieka. Sieć połączonych neuronów realizujących podstawowe operacje.

Uczenie maszynowe

Rozwój uczenia maszynowego

Wielki wybuch (1951) - Marvin Minsky i Dean Edmonds tworzą pierwsze urządzenie wyposażone w uczącą się sieć neuronową (SNARC).

A wcześniej? Czekaliśmy na statystykę, matematykę i Alana Turinga...

Bunt maszyn: Wygrana w Tryptyka

Rok 1992. Program TD-Gammon stworzony przez Geralda Tesauro w IBM Thomas J. Watson Research Center.

Gra na poziomie mistrzowskim

Własna ocena ryzyka ruchu

Eksploracja nowych strategii – znalezione ruchy początkowe były tak dobre, że przeszły do standardu gry

Świetnie radził sobie z zarządzaniem ryzykiem, gorzej natomiast na końcu gry, gdy trzeba było podejść do rozgrywki w sposobó analityczny

Bunt maszyn 2: Teleturniej

Rok 2011. Używając kombinacji uczenia maszynowego, przetwarzania języka naturalnego oraz technik wydobywania informacji, komputer IBM Watson pokonuje dwóch mistrzów teleturnieju Jeopardy! (w Polsce znany jako Va banque)

Zasady gry:

- ~ Jest najlepszym wydziałem na Politechnice Gdańskiej
- ~ Czym jest ETI?

Bunt maszyn 3: Zemsta kotków

Rok 2012. Google Brain team, pod przewodnictwem Andrew Ng oraz Jeffa Deana, tworzy sieć neuronową, która uczy się rozpoznawać koty na wyselekcjonowanych, nieopisanych klatkach z filmików na YouTube.

Bunt maszyn 4: Powrót mistrza gry

Rok 2016. Google AlphaGo jako pierwszy program komputerowy do gry w Go zwycięża w grze na równych zasadach z profesjonalnym ludzkim graczem za pomocą kombinacji uczenia maszynowego oraz technik przeszukiwania drzew gry.

Cele uczenia maszynowego

Dlaczego warto zainteresować się ML?

Programowanie!

Kreatywna praca!

Młoda dziedzina, w której można wiele osiągnąć!

Dziękuję za uwagę!

