Activity Recognition using Text Mining and Object Recognition

Niranjan A. Viladkar Under the guidance from

Dr. Subhashis Banerjee and Dr. Parag Singla
Department of Computer Science
IIT Delhi

M.Tech Minor Project Presentation – May 13, 2013

Problem Statement

What is Video Activity Recognition?

Problem Statement

What is Video Activity Recognition?

Dance

Problem Statement

What is Video Activity Recognition?

Approach

Improving Video Activity Recognition using Object Recognition and Text Mining

by Tanvi Motwani and Raymond J. Mooney, ECAI-2012

 Extract Labels - Use Natural Language descriptions of video clips.

 Extract STIP features – Represent a clip in HoG and HoF features.

Train a model

Natural Language Description of a video

Natural Language Description of a video

 Batsman is playing cricket

Natural Language Description of a video

 Mansoor Ali Khan Pataudi is playing cricket.

Natural Language Description of a video

Extracting Verbs from Description

Extracting STIP features

STIP HoG and HoF feature vector:

Take random samples of STIP feature descriptors

Clustering K-Means

• Describe a video clip in terms of these clusters

Activity Recognizer using Video Features

Object Detection

- Using Discriminatively Trained Deformable Part Models
 - Pre-trained object detector for 19 objects

Object Detection

Object Detection

Relation between Activity and Objects

- English Gigaword Corpus 15 GB of raw text
- Occurrence counts:
 - of an activity A_i : occurrence of the verbs
 - of an object O_j : occurrence of object noun O_j or its synonym.
- Co-occurrence of an Activity and an Object:
 - POS Tagging
 - Using Stanford tagger.
 - Occurrence of the object (tagged as noun) within a window of *w* or fewer words of an occurrence of the activity (tagged as verb).

Relation between Activity and Objects

Probability of each activity given each object

$$P(A_i|O_j) = (Count(A_i, O_j) + 1)/(Count(O_j) + |A|)$$

Integrated Activity Recogniser

• $P(A_i | F_v)$ – Calculated in 1st part.

Integrated Activity Recogniser

- P(A_i | F_v) Calculated in 1st part.
- P(A_i | F₀) -

$$P(A_i|F_o) = \sum_{j=1}^{|O|} P(A_i|O_j) * P(O_j|F_o)$$

Gigaword Object

Corpus Detector

Integrated Activity Recogniser

- P(A_i | F_v) Calculated in 1st part.
- P(A_i | F₀) -

$$P(A_i|F_o) = \sum_{j=1}^{|O|} P(A_i|O_j) * P(O_j|F_o)$$

• Consider only P ($A_i | F_v$) when no object is detected and P ($A_i | F_v$, F_v) when objects are recognized

 Verbs Extraction from Natural language description of clips done.

Clip Name	Natural Language Description
_0nX-El-ySo_83_93	A man is cutting a piece of paper.
_0nX-El-ySo_83_93	A man is cutting a paper by scissor.
_0nX-El-ySo_83_93	A man is cutting paper.
_0nX-El-ySo_83_93	A man is cutting a piece of paper.

 Verbs Extraction from Natural language description of clips done.

Clip Name	Most frequent verb identified
_0nX-El-ySo_83_93	cut
_1vy2HIN60A_32_40	jump
_6OTzzK7t9Y_158_170	play
_6OTzzK7t9Y_73_78	crash

 Classes Extraction from Natural language description of clips done.

Clip Name	Most frequent verb identified
_0nX-El-ySo_83_93	cut, slice
_O9kWD8nuRU_70_76	peel, remove
_JVxurtGlhl_32_42	sing, talk, bark
_WRC7HXBJpU_414_425	pour, stir, put

- Classes Extraction from Natural language description of clips done.
- STIP features extraction done.

- Classes Extraction from Natural language description of clips done.
- STIP features extraction done.
- Clustering done.

- Classes Extraction from Natural language description of clips done.
- STIP features extraction done.
- Clustering done.

Work To be Done

- Representation of each clip
- Learning a model

- Classes Extraction from Natural language description of clips done.
- STIP features extraction done.
- Clustering done.

Work To be Done

- Representation of each clip
- Learning a model
- Object Detection
- Learning Gigaword Corpus

Novel Idea

- Approach by Motwani et al. is only in forward direction.
- We plan to introduce notion of feedback
 - To improve accuracy of weak object detector and activity recogniser

References

 Improving Video Activity Recognition using Object Recognition and Text Mining by Tanvi Motwani and Raymond J. Mooney, ECAI-2012

WordNet – 3.0 from Princeton University

MIT Java Wordnet Interface from MIT

WordNet Similarity from Sussex university