BUNDESREPUBLIK DEUTSCHLAND

<u>62</u>

Deutsche Kl.:

45 1, 9/02

(1) (1)	Offenlegu	ingsschrift	2218 097	
②		Aktenzeichen	P 22 18 097.8	
2		Anmeldetag:	14. April 1972	
43		Offenlegungst	ag: 2. November 1972	
	Ausstellungspriorität:			
30	Unionspriorität	·		
3 2	Datum:	16. April 1971	9. Dezember 1971	
33	Land:	V. St. v. Amerika		
3)	Aktenzeichen:	134868	208041	
<u> </u>	Bezeichnung:	Herbizides Mittel und sein	e Verwendung	
61	Zusatz zu:	_		
©	Ausscheidung aus:			
10	Anmelder:	Stauffer Chemical Co., Ne	w York, N.Y. (V. St. A.)	
	Vertreter gem. § 16 PatG:	Beil, W., DiplChem. Dr. Wolff, H. J., DiplChem. Rechtsanwälte, 6230 Fran	Dr. jur.; Beil, H. Chr., Dr. jur.;	
@	Als Erfinder benannt:	Pallos, Ferenc Marcus, Wa Brokke, Mervin Edward, N		

Arnekley, Duane Randall, Sunnyvale; Calif. (V. St. A.)

RECHTSANWALTE
DR. JUR. DIPL.-CHEM. WALTER BEIL
ALFRED HOEPPENER
DR. JUR. DIFL.-CHEM. H.-J. WOLFP
DR. JUR. HANS CHR. BEIL

13. April 1972

623 FRANKFURT AM MAIN-HUCHST ADELONSTRASSE 58

Unsere Nr. 17 782

Stauffer Chemical Company New York, N.Y., V.St.A.

Herbizides Mittel und seine Verwendung

Die Erfindung betrifft ein herbizides Mittel, bestehend aus einem herbiziden Wirkstoff und einem Gegenmittel, sowie ein Verfahren zur Verwendung dieses herbiziden Mittels. Das Gegenmittel entspricht der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamyl-alkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkin-oxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkyoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxy-halogenalkyloxyalkyl-, Hydroxyalkylcarboalkyoxyalkyl-, Hydroxyalkyl-, Thienyl-, Alkyl-dithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen

durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyloder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-, Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R₁ und R₂ gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptoalkyl-, Alkylaminoalkyl-, Alkyoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen-, Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-, 4,5-Polyalkylen-thienyl-, α-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, a-Halogenalkylacetamidohalogenphenylalkyl-,

- 3 -

oder Cyanoalkenylreste bedeuten können oder auch R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Morpholyl-, Alkylmorpholyl-, Azo-bicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylminoalkenylrest bilden können, wobei R₂ kein Wasserstoffatom oder Halogenphenylrest ist, wenn R₁ ein Wasserstoffatom darstellt.

Aus der Vielzahl der handelsüblichen Herbizide haben die Thiolcarbamate als solche oder im Gemisch mit anderen Herbi ziden, wie den Triazinen, eine relativ hohe, industrielle Erfolgsquote erreicht. Bei unterschiedlicher Konzentration, die je nach der Resistenz der Unkrautarten schwankt, wirken diese Herbizide auf eine große Zahl derselben sofort toxisch. Einige Beispiele dieser Verbindungen werden in den USA-Patentschriften Nr. 2 913 327, 3 037 853, 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben. Die Praxis erwies jedoch, daß die Verwendung dieser Thiolearbamate als Herbizide in Getreidefeldern (crops) bisweilen starke Schädigungen der Getreidepflanzen zur Folge hat. Erfolgt die Verwendung im Boden in den empfohlenen Mengen mit dem Ziel, eine Vielzahl von breitblättrigen Unkrautarten und Gräsern zu bekämpfen, so kommt es zu schweren Mißbildungen und Verkümmerungen der Getrei lepflanzen. Dieses anomale Wachstum führt zu Ertragsschmälerungen. Bei früheren Versuchen, dieses Problem zu überwinden, wurde der Getreidesamen vor dem Pflanzen mit bestimmten Gegenmitteln behandelt; vgl. USA-Patentschrift 3 131 509 Diese Gerenmittel waren nicht besonders wirksam.

Es wurde nun gefunden, daß die Pflanzen dadurch vor Schädinungen durch die Thiolearbamate als solche oder im Gemisch mit anderen Verbindungen geschützt und/oder gegen die Wirkstoffe der vorstehend genannten Patentschriften erheblich widerstandsfähiger gemacht werden können, daß man dem Boden eine Verbindung der Formel

$$\underset{R-C-N}{\overset{O}{\parallel}} \underset{R_{0}}{\overset{C}{\parallel}}$$

in der R, R_1 und R_2 die vorstehend genannten Bedeutungen besitzen, zuführt.

Die Irfindungsgemäßen Verbindungen können durch Vermischen eines geeigneten Säurechlorids mit einem entsprechenden Amin syrthetisiert werden. Gegebenenfalls kann ein Lösungsmittel wie Benzel eingesetzt werden. Die Reaktion wird vorzugsweise bei verminderten Temperaturen durchgeführt. Nach Abschluß der Reaktion wird das Endprodukt auf Raumtemperatur gebracht und kann leicht abgetrennt werden.

Die nachstehenden Beispiele dienen der Erläuterung der Erfindung.

<u>Beispiel 1</u>

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{CHCl}_2 - \text{CH} = \text{CH}_2 \\ \\ \text{CH}_2 - \text{CH} = \text{CH}_2 \end{array} \end{array}$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 5 $^{\circ}$ C abgekühlt wurde. Dann wurden 4,9 g (0,05 Mol) Diallylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 4,0 g; $n_{\rm D}^{30}$ = 1,4990.

Beispiel 2

$$CHC1_2 - C-N$$
 $C_3H_7 - n$
 $C_3H_7 - n$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-chlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 $^{\circ}$ C abgekühlt wurde. Dann wurden 5,1 g (0,05 Mol) Di-n-propylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 3,6 g; $n_{\rm D}^{30}$ = 1,4778.

Beispiel 3

$$CHCl_2-C-N$$

$$CH(CH_3)-C = CH$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-

chlorid und 80 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 °C abgekühlt wurde. Dann wurden 4,2 g (0,05 Mol) N-Methyl-N-1-methyl-3-propinylamin in 20 ml Methylendichlorid tropfenweise zugesetzt, wobei die Temperatur bei etwa 10 °C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 2,9 g; $n_{\rm D}^{30}$ = 1,4980.

Beispiel 4

Es wurde eine Lösung aus 100 ml Aceton und 5,05 g (0,1 Mol) Furfurylamin hergestellt und dann unter Zusatz von 7 ml Triäthylamin bei 15 °C gerührt. Diese Lösung wurde dann mit 5,7 g Monochloracetylchlorid versetzt und weitere 15 Minuten gerührt, während 500 ml Wasser zugesetzt wurden. Die Reaktionsmasse wurde filtriert, mit verdünnter Salzsäure in zusätzlichem Wasser gewaschen und dann auf ein konstantes Gewicht getrocknet.

Beispiel 5

Es wurde eine Lösung aus 5,7 g (0,05 Mol) Aminomethylthiazol in 100 ml Benzol und 7 ml Triäthylamin hergestellt. Diese Lösung wurde bei 10 - 15 °C gerührt und dann mit 5,2 ml (0,05 Mol) Dichloracetylchlorid tropfenweise versetzt. Das Reaktionsgemisch wurde 10 Minuten lang bei Raumtemperatur gerührt. Dann wurden 100 ml Wasser zugesetzt, und die Lösung wurde anschließend mit Benzol gewaschen, über Magnesiumsulfat getrocknet und dann zur Entfernung des Lösungsmittels filtriert.

Es wurde eine Lösung aus 200 ml Aceton, 17,5 g (0,05 Mol) 2-Amino-6-brombenzothiazol und 7 ml Triäthylamin hergestellt. Die Lösung wurde unter Kühlen bei 15 °C gerührt. Dann wurden langsam 5,2 ml (0,05 Mol) Dichloracetylchlorid zugesetzt. Diese Lösung wurde 10 Minuten lang bei Raumtemperatur gerührt. Der Feststoff wurde abfiltriert, mit Äther und dann mit kaltem Wasser gewaschen und anschließend nochmals filtriert und bei 40 - 50 °C getrocknet.

Beispiel 7

$$n-C_9H_{19}-C-N$$
 $C(CH_3)_2-C=CH$

e,4 g 3-Methyl-3-butinylamin wurden in 50 ml Methylenchlorid aclöst; diese Lösung wurde mit 4,5 g Triäthylamin und anschließend unter Rühren und Kühlen in einem Wasserbad tropfenweise mit 7,6 g Decanoylchlorid versetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 7,1 g des Produktes erhalten wurden.

Beispiel 8

Es wurde eine Lösung aus 5,9 g Diallylamin in 15 ml Methylenchlorid und 6,5 g Triäthylamin hergestellt. Dann wurden unter

Rühren und Kühlen in einem Wasserbad 6,3 g Cyclopropancarbonylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,2 g des Produktes erhalten wurden.

Beispiel 9

$$\begin{array}{c|c} & \text{CH}_2\text{-CH}=\text{CH}_2 \\ & \text{CH}_2\text{-CH}=\text{CH}_2 \\ & \text{CH}_2\text{-CH}=\text{CH}_2 \\ \end{array}$$

Es wurde eine Lösung aus 4,5 g Diallylamin in 15 ml Methylenchlorid und 5,0 g Triäthylamin hergestellt. Dann wurden 7,1 g o-Fluorbenzoylchlorid unter Rühren und Kühlen in einem Wasserbad tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,5 g des Produktes erhalten wurden.

Beispiel 10

Zur Herstellung von N,N-Bis(2-hydroxyäthyl)-dichloracetamid wurden 26,3 g Diäthanolamin in Gegenwart von 25,5 g Triäthylamin in 100 ml Aceton mit 37 g Dichloracetylchlorid umgesetzt. Dunn wurden 6,5 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid in 50 ml Aceton gelöst und anschließend mit 4 g Methylisocyanat in Gegenwart von Dibutylzinndilaurat und Triäthylamin als Katalysatoren umgesetzt. Das Reaktionspredukt wurde unter Vakuum abgestreift, wobei 8,4 g des Produktes erhalten wurden.

7,8 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 5,6 g Malonylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 12

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - CH_2 - CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 - CH = CH_2$

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,7 g des Produktes erhalten wurden.

Beispiel 13

$$CH = C - CH - N - C - CH_2 - CH_2 - C - N$$

$$CH_3 O CH_3 O CH_3$$

$$CH_3 O CH_3 O CH_3$$

$$CH - C = CH$$

$$CH_3 O CH_3 O CH_3$$

6,7 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 14

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 8,1 g o-Phthaloylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 10,9 g des Produktes erhalten wurden.

Paispiel 15

3,3 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 4,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 9,2 g Diphenylacetylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Wach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,9 g des Produktes erhalten wurden.

$$\begin{array}{c}
0 \\
\text{CH}_2 - \text{CH} = \text{CH}_2 \\
\text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

$$\begin{array}{c}
\text{CH}_2 - \text{CH} = \text{CH}_2 \\
\text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

Fithelsäureanhydrid portionsweise unter Rühren zugesetzt wurden. Das Lösungsmittel wurde unter Vakuum abgestreift, wobei 13,0 g des Produktes erhalten wurden.

Budepiel 17

3,2 g N(1,1-Dimethyl-3-propinyl)O-phthalamidsäure wurden in 50 ml Methanol gelöst und mit 9,6 g Natriummethylat in Form einer 25 %igen Lösung in Methanol unter Rühren und Kühlen portionsweise versetzt. Das Lösungsmittel wurde unter Vakuum absestraift oder entfernt, wobei 9,0 g des Produktes erhalter wurden. Das Zwischenprodukt N(1,1-Dimethyl-3-propinyl)O-phthalamat wurde aus 29,6 g Phthalsäureanhydrid und 16,6 g 3-Amino-3-methylbutin in 150 ml Aceton hergestellt. Das Zwischenprodukt wurde mit Petroläther in Form eines weißen Feststoffes ausgefällt und ohne weitere Reinigung verwandt.

Beispiel 18

$$CIICl_2 - C - N C_2^{H_5}$$

Din 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,7 g Diäthylamin (0,105

Mol), 4,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt und in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylehlorid portions-weise zugesetzt. Das Gemisch wurde eine weitere Stunde gerührt und in ein Eisbad getaucht. Es wurde dann einer Phasentrennung unterworfen, und die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum konzentriert, wobei 16,8 g des Produktes erhalten wurden.

Baispiel 19

$$CH_3-C = C-CH_2-O-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

50 ml Methylendichlorid wurden mit 4,0 g (0,025 Mol) N,N-Diallylcarbamoylchlorid versetzt. Dann wurden 1,8 g (0,025 Mol) 2-Butin-1-ol zusammen mit 2,6 g Triäthylamin in 10 ml Methylenchlorid tropfenweise zugesetzt. Das Reaktionsprodukt wurde über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet, wobei 4,0 g des Produktes erhalten wurden.

Beispiel 20

$$N = C-S-CH_2-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

9,7 g (0,1 Mol) Kaliumthiocyanat wurden in 100 ml Aceton gelöst. Dann wurden 8,7 g (0,05 Mol) N,N-Diallylchloracetamid. zusammen mit 10 ml Dimethylformamid bei Raumtemperatur zugesetzt. Das Reaktionsprodukt wurde über Nacht gerührt. Das Reaktionsprodukt wurde teilweise abgestreift. Dann wurde Was-

ser zusammen mit zwei Portionen von 100 ml Äther zugesetzt. Der Äther wurde abgetrennt, getrocknet und abgestreift, wobei 7,2 g des Produktes erhalten wurden.

Beispiel 21

Es wurde eine Lösung von 50 ml Benzol, die 7,4 g (0,05 Mol) Dichloracetylchlorid enthielt, hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,0 g (0,05 Mol) Cyclopropylamin und 5,2 g Triäthylamin in 2ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 50 - 55 °C gerührt. Das Produkt wurde wie in den vorstehenden Beispielen aufgearbeitet, wobei 5,7 g des Produktes erhalten wurden.

Beispiel 22

4,7 g (0,032 Mol) Piperonylamin und 1,2 g Natriumhydroxid in 30 ml Methylenchlorid und 12 ml Wasser wurden bei -5° bis 0°C mit 4,4 g (0,03 Mol) Dichloracetylchlorid in 15 ml Methylenchlorid versetzt. Man rührte das Gemisch weitere 10 Minuten bei etwa 0°C und ließ es sich dann unter Rühren auf Raumtemperatur erwärmen. Die Schichten wurden abgetrennt, und die organische Schicht wurde mit verdünnter Salzsäure, einer 10 %igen Natriumcarbonatlösung und mit Wasser gewaschen und getrocknet, wobei 5,9 g des Produktes erhalten wurden.

Eine Lösung von 75 ml Benzol, die 5,7 g m-Chloreinnamylchlorid enthielt, wurde hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,2 g Diallylamin und 3,3 g Triäthylamin in 2 ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 55 °C gerührt. Das Produkt wurde gewaschen und aufgearbeitet, wobei 5,8 g des Produktes erhalten wurden.

Beispiel 24

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 11,9 g 2,4-Dimethylpiperidin, 4,0 g Natronlauge und 100 ml Methylenchloril in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine Stunde lang gerührt und in das Eisbad getaucht. Dann wurde es einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und in einem Retationsverdampfer unter einem mit einer Wasserstrahlpumpe erzeugten Vakuum konzentriert wurde. Dabei wurden 10,3 g des Produktes erhalten.

Tropftrichter versehen. Dann wurden 14,6 g (0,105 NoI)

cis-trans-Decahydrochinolin und 4,0 g Natronlauge zusammen

mit 160 ml Methylenchlorid zugesetzt. Dann wurden 14,7 g.

Pichloracetylchlorid portionsweise zugesetzt. Das Reaktions
comisch wurde aufgearbeitet, wobei es etwa eine Stunde lang

gerührt, in ein Eisbad getaucht und dann einer Phasentrennung

untervorfen wurde; dann wurde die untere organische Phase

mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei

Fortionen von je 100 ml 5 %igem Natriumcarbonat geweschen,

über Magnesiumsulfat getrocknet und konzentriert, wobei 22,3 g

des Produktes erhalten wurden.

asispic1 25

Tin 500 ml-4-Halskolben wurde mit Rührer, Thermometer und Trepftrichter versehen. Dann wurden 13,6 g (0,104 Mol) 3,3'-Iminobis-propylamin zusammen mit 12,0 g Natronlauge und 150 ml Methylenchlorid zugesetzt. Anschließend wurde das Gemisch in einem Trockeneis-Accton-Bad gekühlt, und 44,4 g (0,300 Mol) Dichloracetylchlorid wurden portions-weise zugesetzt. Dabei bildete sich ein öliges Produkt, das in Methylenchlorid nicht löslich war; dieses Produkt vurde abgetrennt, mit zwei Portionen von 100 ml verdünnter Selzsäure gewaschen und über Nacht stehen gelassen. Am nächsten Morgen wurde das Produkt mit zwei Portionen von je 100 12 5 bigem Natriumcarbonat gewaschen, und das Produkt wurde

in 100 ml Äthanol aufgenommen, über Magnesiumsulfat getrocknet und konzentriert, wobei 21,0 g des Produktes erhalten wurden.

Boispiel 27

Eld 500 ml-4-Halskolben wurde mit Rührer, Thermometer und Trepftrichter versehen. Dann wurden 7,5 g (0,0525 Mol)
Tetrebydrefurfuryl-n-propylamin, 2,0 g Natronlauge und 100 ml Mathylenchlorid zugesetzt. Anschließend wurden 7,4 g (0,05 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine weitere Stunde in einem Eisbad gerührt und dann einer Fnasentrennung unterworfen; danach wurde die untere erganische Phase mit zwei Portionen von 100 ml versühnter Salzsäure und zwei Fortionen von 100 ml einer 5 %igen Harriumearbonatlösung gewaschen, über Magnesiumsulfat gettricknet und konzentriert, wobei 12,7 g des Produktes erhalten wurden.

Beispiel 28

Das Beispiel 27 wurde vollständig wiederholt, mit der Ausnahme, daß 8,9 g Piperidin als Amin verwandt wurden.

beispiel 29

Das Beispiel 28 wurde im w sentlichen vollständig wied mittlt; mit der Ausnahm, daß 9,1 g Morpholin als Amin verwandt word den.

209845/1180

BAD ORIGINAL

3,2 g Benzaldehyd und 7,7 g Dichloracetamid wurden mit 100 ml Benzol und etwa 0,05 g Paratoluolsulfonsäure vereint. Das Gemisch wurde solange unter Rückfluß erhitzt, bis kein Wasser mehr überging. Beim Abkühlen kristallisierte das Produkt aus Benzol, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 31

$$\begin{array}{c|c} CH_2 & CH_3 \\ \hline CH_2 & C-NH-C-C = CH_3 \\ \hline CH_3 & CH_3 \\ \hline \end{array}$$

2,5 3-Amino-3-methylbutin wurden in 50 ml Aceton gelöst, und dann wurden 3,5 g Triäthylamin zugesetzt. Anschließend wurden 6,0 g Adamantan-1-carbonylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und der feste Stoff wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 6,5 g des Produktes erhalten wurden.

Beispiel 32

$$N = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH -$$

5,1 g 2-Cyanoisopropylamin wurden in 50 ml Aceton gelöst,

und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 5,3 g Benzol-1,3,5-tricarbonsäurechlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und das feste Produkt wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 7,6 g des Produktes erhalten wurden.

Beispiel 33

6,0 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 6,6 g 3,6-Endomethylen-1,2,3,6-tetrahydrophthaloylchlorid unter Rühren und Kühlen tropfenweise zugesetzt.

Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,3 g des Produktes erhalten wurden.

$$\begin{array}{c}
 & \text{CH}_2 - \text{CH} = \text{CH}_2 \\
 & \text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

und dann wurden 4,5 g Triäthylamin zugesetzt. Anschließend wurden 7,2 g trans-2-Phenylcyclopropanearbonylchlorid unter Künlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vokuum abgestreift, wobei 9,2 g des Froduktes erhalten wurden.

Es wurde eine Lösung aus 4,0 g (0,03 Mol) 2-Methylindolin, 7,0 ml Triäthylamin und 100 ml Methylenchlorid hergestellt. Dann wurden 2,9 ml Dichloracetylchlorid im Verlauf von et einer Minute zugesetzt, wobei die Temperatur durch Kühlung mit Trockeneis unter 0 °C gehalten wurde. Nachdem sich die Lösung auf Raumtemperatur erwärmt hatte, wurde sie eine Stunde lang stehen gelassen; anschließend wurde sie mit Wasser und dann mit verdünnter Salzsäure gewaschen, über Magnesiumsulfat getrocknet und eingedampft, wobei ein Feststoff erhalten wurde, der mit n-Pentan gewaschen wurde. Dabei wurden 5,0 g des Produktes erhalten.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 8,9 g Cyclooctyl-n-propylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen. Die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 9,5 g des Produktes erhalten wurden.

$$\mathsf{CH_2^{C1-C-N}} \underbrace{\mathsf{C}_2^{H_5}}_{\mathsf{CH}_2} \underbrace{\mathsf{C}_{\mathsf{CH}_3}}_{\mathsf{CH}_3}$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,8 g (0,0525 Mol) p-Methylbenzyläthylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt. Das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g (0,05 Mol) Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und anschließend mit zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert wurde. Dabei wurden 9,5 g des Produktes erhalten.

4,7 g Aminopyridin wurden zusammen mit 100 ml Aceton in ein Reaktionsgefäß gefüllt und bei 10 - 15 °C gerührt.

Dann wurden 7,0 ml Triäthylamin tropfenweise zugesetzt.

Danach wurde das Reaktionsgemisch im Verlauf von fünf Aceton
Minuten mit 5,25 ml Dichloracetylchlorid in 10 ml/versetzt und bei Raumtemperatur gerührt. Die Feststoffe wurden abfiltriert und mit Aceton gewaschen, wobei 10,0 g des Produktes erhalten wurden.

Beispiel 39

Eine Lösung von 8,1 g (0,05 Mol) 4-Aminophthalimid in 100 ml Dimethylfuran wurde im Verlauf von 5 Minuten bei 0 - 10 °C unter Rühren mit 5,0 g Dichloracetylchlorid versetzt. Dann wurden 7,0 ml Triäthylamin zugesetzt. Die Reaktionsmasse wurde eine halbe Stunde lang bei Raumtemperatur gerührt, und dann wurde ein Liter Wasser zugesetzt. Anschließend wurde sie mit Wasser filtriert und getrocknet, wobei 12,0 g des Produktes erhalten wurden.

Zur Herstellung der Verbindung dieses Beispiels wurden 5,4 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid mit 4,3 g Isopropylisocyanat in 50 ml Aceton in Gegenwart von Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren umgesetzt. Dabei wurden 8,2 g des Produktes erhalten.

Beispiel 41

Zur Herstellung der Verbindung dieses Beispiels wurden 3,6 g N,N-Bis(2-hydroxyäthyl)-chloracetamid in Gegenwart von 50 ml Aceton und Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren mit 5,0 g Cyclohexylisocyanat umgesetzt. Die Reaktionsmasse wurde auf Rückflußtemperatur erhitzt und unter Vakuum abgestreift. Dabei wurden 6,9 g des Produktes erhalten.

15 g Aceton und 12,2 g Äthanolamin wurden in 150 ml Benzol vereint und solange unter Rückfluß erhitzt, bis kein weiteres Wasser mehr überging. Bei der Untersuchung der so entstandenen Lösung ergab sich, daß sie 2,2-Dimethyl-1,3-oxazolidin enthielt. Ein Viertel der Benzollösung (0,05 Mol) wurde mit 7,4 g Dichloracetylchlorid und 5,5 g Triäthylamin umgesetzt, mit Wasser gewaschen, getrocknet und unter Vakuum abgestreift, wobei ein leicht dunkelgelber Feststoff erhalten wurde. Ein Teil dieses Feststoffes wurde aus Äther umkristallisiert, wobei ein weißes Produkt erhalten wurde.

Analog hierzu wurden weitere Verbindungen unter Verwendung der entsprechenden Ausgangsmaterialien wie vorstehend aufgeführt hergestellt. In nachstehender Tabelle werden Beispiele erfindungsgemäßer Verbindungen zusammengestellt. Die den Verbindungen zugeordneten Nummern werden im folgenden beibehalten.

: # :

	E	Tabelle I: O R-C-N R2	
Verbindung Nr.	떠	<u>"</u> "	R.
г.	-ch(ch ₃)Br	-CH2-CH=CH2	-CH2-CH=CH2
. 8	-c(cH ₃) ₂ Br	-cH2-CH=CH2	-CH2-CH-CH2
2	-ccl ₂ -cH ₃	-CH2-CH=CH2	-CH ₂ -CH=CH ₂
4	-ccl=ccl ₂	-ch-ch-ch2	-CH2-CH=CH2
ر ک	-CF2-C2F5	-CH2-CH-CH2	-CH2-CH=CH2
9	-chc1 ₂	-CH2-CH-CH2	-CH2-CH=CH2
7	-cH2cl	-CH2-CH=CH2	$-cH_2-cH=cH_2$
σ	-chc1 ₂	-CH ₂ -C = N	-CH2-C=N
6	-chc1 ₂	-CH2-CH=CH2	щ
10	-chc1 ₂	-c ₃ H ₇	-C3H7
11	-CBC12	$-c(cH_3)_2-c-c$; म
12	-ch2cl	-c(cH ₃) ₂ -c::c	#
13	-cc ₁₃	-0H ₂ -CH=CH ₂	щ

	н 22	-сн(сн ₃)-с≡сн	-CH ₂ -CH=CH ₂	$-c(cH_3)_2-c=cH$	-CH2-CH=CH2	$-CH(CH_3)-C=CH$	$-C(CH_3)_2-C=N$	-CH2-CH=CH2	-он(сн ₃)-с - сн	-c(cH ₃) ₂ -c:=cH	-сн(сн₂)с - : сн
Tabelle I (Fortsetzung:	R.	-¢H ₃	-C_H2-CH=CH2	ш	-CH2-CH=CH2	-cn ²	ш	-CH2-CH=CH2	-0H ₂	щ	ch2-
Tabelle I	ed	- C-C ₂ H ₅	-C-C-C ₂ H ₅	-CH2-CH(CH3)-CH2-t-C4H9	-c(cH ₃) ₂ -c ₃ H ₇	-CH2-t-C4H9	-0H2-t-C4H9	-сн(сн ₃)-с ₃ н ₇	-сн(сн ₃)-с ₃ н ₇	-сн(сн ₃)-с ₃ н ₇	1-C3H7
	Verbindung Nr.	o	30	31	32	33.	.34	35	36	37	, do

	Tabelle I	Tabelle I (Fortsetzung:	
Verbindung Nr.	æ	H.	. B.
39	-c ₁₃ H27	CH2-CH=CH2	-CH2CH=CH2
40	$-c_{11}H_{23}$	CH2-CH=CH2	-CH2CH=CH2
41 .	-c ₁₁ H ₂₃	щ	$-c(cH_3)_2-c \equiv cH$
42	-c ₉ H ₁₉	-cH2-CH=CH2	-ch-ch-ch-
43	-c ₉ H ₁₉	щ	$-c(cH_3)_2-c = cH$
44	-c6H13	-CH2-CH-CH2	-CH2-CH=CH3
45	$-c_{6}H_{13}$	-cH ₃	-сн(сн ₃)-с == сн
46	-c6H13	Ħ	-c(cH ₃) ₂ -c == cH
47	-C4H9	щ	$-c(cH_3)_2-c \equiv cH$
48	-C ₂ H ₇	-CH2-CH=CH2	-CH2-CH-CH2
49	-C3H7	-cH ₃	-сн(он ²)-с = сн
50.	-C3H7	m	$-c(cH_3)_2c\equiv cH$
51	-CH ₃	-GH2-CH=CH2	-CH ₂ -CH=CH ₂

20
Fortsetzung
т.
\smile
H
- 1
0
7
¬ 1
O)
읽
abe

erbindung Nr.	æ	er l	R2
. 52	-CH ₂	¨ , ¤	$-c(c_{H_2})_2-c \Longrightarrow c_H$
53	-c(cH ₃)-cH ₂	щ	$-c(cH_3)_2-c = cH$
54	-CH-CH-CH ₃	-CH2-CH=CH2	-CH2-CH=CH2
55	-CH-CH-CH ₂	#	$-c(cH_3)_2-c=cH$
95	-cH-C(CH ₃) ₂	-0H ₃	$-cH(cH_3)-c=cH$
57	-cn-c(cH ₃) ₂	¤	$-c(cH_3)_2-c=cH$
. 28	-CH-CH-CH-CH-CH3	-chchch-	-CH2-CH-CH2
	-CH=CH-CH=CH-CH3	щ	$c(cH_3)_2^{c} \equiv cH$
09	-CH CH2	-сн ₂ -сн=сн ₂	-сн ₂ -сн=сн ₂
61	сн ₂ — сн ₂ — сн ₂ — сн ₂ — сн ₃ — сн ₄ — сн ₃ — сн ₄	-cH3-	-сн(сн₂)-с ≡ сн

209845/1180

	R 2	-CH ₂ -CH=CH ₂	-сн(сн ²)-с сн	-с(он ₃) ₂ -с тон	-ch2-ch=ch2	-OH(CH2)-C -CH	-0(сн ²) ² -с — сн	-CH2-CH=CH2
Tabelle I (Fortsetzung:	R	-CH ₂ -CH=CH ₂	-сн ₃	Ħ	-ch2-ch=ch2	-cH ₃	ш	-сн ₂ -сн=сн ₂
Tabelle I	ద	1		T ga		-CH=CH ₂	-сн. «сн.	-CH ₂ - S
	Verbindung Nr.	89	69	70	1.1	72	73	74

Werbindung Nr.
$$\frac{R}{1}$$
 $\frac{R_1}{1}$ $\frac{R_2}{1}$ $\frac{R$

	Verbindung Nr. R	el -CBr ₃	82 - CBr ₃	93 -CBr ₃	34 -0Br ₃	85 -OBr ₃	36 -CC1-CEC1	87 -(CH ₂)	88 -(CH ₂)	68	%
Tabelle I (Fortsetzung:			Įn,	K	<u>ان</u>	į. į	нсі	-(CH ₂) ₄ -CH ₂ -Br -C		Ö	Ö
etzung:	R ₁	-CH2-CH=CH2	-OH3	耳	ш	缸	-CH ₃	-сн ₂ сн-сн ₂	-cH ₃	-ch ₂ -ch=ch ₂	-сн ₃
	R ₂	-cH2-CH=CH2	-сн (сн ₃)-с сн	-c(cH ₃) ₂ -c CH	-c(cH ₃) ₂ -c - N	-CH2-CH=CH2	-CH(CH ₃)C := CH	-ch2ck+ch2	то == o-([£] но) по-	-CH2-CH=CH2	-сн(сн ₂)-с · · · сн

	R ₂	-сн(сн ²)-ссн	-CH2CH=CH2	-сн(сн2)-с - сн	-с(сн ₃) ₂ -с сн	-CH2-CH=CH2	-c(cH ₃) ₂ -c CH	-сн(сн ₃)-с == сн
Tabelle I (Fortsetzung:	П	-c _{H2}	-CH2CH=CH2	-cH ₃	щ	-сн ₂ -сн=сн ₂	· ¤	-CH ₃
Tabelle I	œ l		10 - 01	10 - 27	19 >>	√ \.o-cH ₃		o o or
	Verbindung Nr.	91	92	. 93	94	95	. 96 .	

209845/1180

JAMONES DES

BAD ORIGINAL

| Tabelle I (Fortsetzung): |
$$\frac{R_1}{103}$$
 | $\frac{R_2}{103}$ | $\frac{R_2}{103}$ | $\frac{R_2}{104}$ |

	R ₂	-с(сн ₃) ₂ -с сн	-сн(сн ³)-с сн	-CH ₂ -CH=CE ₂	-сн(сн ³)-с - сн	-CH2-CH=CH2	-0(cH ₃) ₂ -c ch	-CH2-CH=CH2
Tabelle I (Fortsetzung):	H.	. ш	-cH ₃	-ch ₂ -ch=ch ₂	- CH ₂	-CH2-CH=CH2	æ	-ch-ch-ch2
Tabel	æ	01	20 00	Br	Br	= -		\s
	Verbindung Nr.	109	110	111	112	113	114	115

	R2	-с(сн ₃) ₂ -с ;= сн	-с ₂ н ₄ он о	-CH2-CH2-O-CHC12	-сн ₂ -сн-0-s0 ₂ -сн ₃	-сн(сн ²)-с — сн	-сн(сн ₃)-с — сн	$-c \pi (c \pi_3) - c \equiv c \pi$	-с(сн ₃) ₂ -с == сн
Tabelle I (Fortsetzung):	$\frac{R_1}{}$	щ	-с ₂ н ₄ ов о	-ch2-ch2-0-c-chc12	$-c_{\rm H_2}-c_{\rm H_2}-0-s_{\rm O_2}-c_{\rm H_3}$	-cH ₃	CH ₃	-CH ₃	щ
Tabelle	æ		-GHC12	-CHC1 ₂	-CBC1 ₂	<u>.</u>		-CHBr-CH ₃	-CHBr-CH ₃
	Verbindung Nr.	911	711	118	911	120	121	122	123

209845/1180

Fortsetzung)
H
Tabelle

R2	-CH2-CH=CH2	$-cH(cH_3)-c=cH$	$-c(cH_3)_2-c = cH$	$-c(cH_3)_2-c=cH$	-CH2-CH=CH2	-он(сн ₃)-с этсн	$C(CH_3)_2-C\equiv CH$	-CH2-CH2CI	о сн ₃ -сн ₂ -сн ₂ -о-с-ин-сн ₃	о п ₃ —сп ₂ -сп-0-с-сп ₃
E L	-CH2-CH=CH2	-CH ₃	#	p#	-CH2-CH=CH2	+cH ₃	pri	-CH2-CH2C1	0 " -CH ₂ -CH ₂ -O-C-NH-CH ₃	0 "" -CH2-CH2-CH3
pet	-cH2-CH2C1	-CH2-CH2CI	-cH2-cH2c1	-CBr(CH ₅) ₂	-cH2I	-CH2I	-CH2I	-CHC12	-CHC12	-GEGI ₂
Verbindung Nr.	124	125	126	121	128	129	130	131	132	133

Tabelle I (Fortsetzung):	R ₁	c_{1} c_{1} c_{2} c_{2} c_{2} c_{2} c_{2} c_{1} c_{2} c_{2} c_{2} c_{2} c_{2} c_{2}	"-CH2-CH2-C-S-C2H2-CH2-CH2-C-S-C2H5	-CH ₂ -CH=CH ₂ -CH=CH ₂	-CH(CH ₃)-C CH	$-c(cH_3)_2-c=cH$	-CH ₂ -CH ₂ -CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	$H_2 \leftarrow$ -cH ₃ -cH(CH ₃)-c \equiv CH
·	е	-CHC1 ₂	-CHC12	-CH2-	-0H2	-OH2	-CH2-C	-0H2-QH2-
	Verbindung Nr.	134	135	136	137	138	139	140

	R 2	-CH ₂ -CH=CH ₂	-сн(сн³)-с ≡сн	-ch ₂ -ch=ch ₂	но <u>е</u> о-(сно)но-	-с(сн ₃) ₂ -с : т он	-CH ₂ -CH=CH ₂	-сн(сн₃)-с — сн
Tabelle I (Fortsetzung):	R	-ch ₂ -ch=ch ₂	-cH ₃	-GH2-GH=CH2	- cH ₃	ш	-CH2-CH=CH2	-CH ₂
Tabelle I (I	pet			-CH ₂ -C-N(CH ₂ -CH=CH ₂) ₂	O CH ₃ -CH ₂ -C-N-CH-C == CH CH ₃	о -сн ₂ -с-мн-с(сн ₃) ₂ с сн о	$-c-N(cH_2-cH=cH_2)_2$	$-c-N(cH_3)-cH(cH_3)-c== cH$
	Verbindung Nr.	141	142	143	144	145	146	147

"我子一个人的复数数数

Tabelle I (Fortsetzung):

R2	C(CH ₂) ₂ -C··CH	-CH2-CH=CH2	-сн(сн ³)-с сн	-GH2-CH=CH2	но ≡ 0-([€] но)но-	-CH ₂ -CH=CH ₂
B.	н	-cH ₂ -cH=cH ₂	CH ₃	-ch2-ch=ch2	- CH ₂	-ch2-ch=ch2
# l	0 " $-c-NH-c(cH_3)_2-c \equiv cH$	-сн ₂ -сн ₂ -с-м(сн ₂ -сн-сн ₂) ₂	". -сн ₂ -сн ₂ -с-м(сн ₃)-сн(сн ₃)-с сн о		$-(cH_2)_3-c-N(cH_3)-cH(cH_5)-c := CH$	$-(cH_2)_4-c-N(cH_2-cH=cH_2)_2$
erbindung Nr.	148	149	150	151	152	153

setzung
(Fort
Tabelle

			-
ferbindung Nr.	α l	R ₁	r S
154	$-(cH_2)_4-c-N(cH_3)-cH(cH_3)-c=cH$	-сн ₃	-сн(сн ₃)-с == сн
155	$-c(cH_3)_2-c-N(cH_3)-cH(cH_3)-c=cH$	-сн ₃	-сн(сн³)-с ≔ сн
156	$=(cH_2-c(cH_3)_2-cH_2-c-NH-c(cH_3)_3-c=cH_2$	н но	-с(сн ₃) ₂ -с — сн
157	о -сн ₂ -о-сн ₂ -с-м(сн ₂ -сн=сн ₂) ₂ о	-ch2-ch+ch2	-CH2-CH≈CH2
158	$-cH_2-0-cH_2-c-N(cH_3)-cH(cH_3)-c \equiv cH$	- CH3	-сн(сн₂)-с≔ сн
159	0.00	-CH2-CH=CH2	-ch2-ch-ch2
	N(CH2-CH=CH2)2		

Tabelle I (Fortsetzung):

Verbindung Nr.

R.

R.

R.

R.

R.

R.

-CH (CH₃)-C = CH

$$\dot{\dot{a}}$$
 (OH₃)-CH (OH₃)-C = CH

 $\dot{\dot{a}}$ (OH₃)-CH (OH₃)-C = CH

209845/1130

in the same

	Tabelle I (Fo	(Fortsetzung):	
Verbindung Nr.	2	ᄯ	н²
164	-c(cH ₅) ₂ -c-N(cH ₂ -cH=cH ₂) ₂ o	-CH2-CH=CH2	-CH2-CH=CH2
165	-c(ch ₃) ₂ -c-nh-c(ch ₃) ₂ -c ch	щ	-0(CH ₃) ₂ -0=CH
166	No.	-сн ₂ -сн=сн ₂	-сн2-сн-сн2
167		щ	но .o-²(^с но)o-
168	NO ₂	-ch ₂ -ch=ch ₂	-ch-ch-ch2
169	NO ₂	c _H)-	-сн(сн ₃)-с ≡сн

	Tabelle	Tabelle I (Fortsetzung):	
Verbindung Nr.	ρci	er er	
176	HO-0=0	Ħ	-с(сн ³) ² с сн
177	O=C-ONa		-6(сн ₃) ₂ с÷ - сн
178	$(C_{-1})^{-1}$ $O = C - O^{-1}NH_{3} + C(CH_{3}) - C = CH$	Ħ	-с(сн ₃) ₂ с - св
179.	-снс1 ₂ -снс1 ₂	-c ₂ H ₅ i-c ₃ H ₇	-c ₂ H ₅ -ch ₂ -ch=ch ₂

<u></u>
Fortsetzung
ٺ
Н
തി
ᆲ
-11
രി
ام
Tai

Verbindung Mr.	pet	r r	R2
181	-chcl2	-c ₃ H ₇	-CH2-CH=CH2
182	-CHC12	n-C4H9	-ch-ch-ch ₂
163	-CHC1 ₂	-ch2-ch=ch2	-cH2-ccl=cH2
184	-CHC12	-c ₃ H ₇	-cH2-ccl-cH2
185	-cHC12	i-C4H9	-CH ₂ -CH=CH ₂
786	-cecl2	-cH2-c(CH3)=CH2	-CH2-CH-CH2
167	-chc1 ₂	n-c4H9	sec-C4H9
188	-chc1 ₂	п-с4н9	1-C4H9
189	-CHC12	n-c4H9	i-c ₃ H ₇
190	-chc1 ₂	i-c4H9	$i-c_3H_7$
191	-CHC12	1-C4H9	n-C3H7
192	- CHC12	8ec-C4H9	n-c ₂ H ₇

••
б р
ďn
tz
t se
OH
(H)
н
e
e11
abel
Еď

Verbindung Nr.	re	R1	R2
193	-cHc1 ₂	n-C4H9	n-C ₂ H ₇
194	-CHC1 ₂	-c ₂ H ₅	i-C4H9
195	-cHC1 ₂	щ	
961	-cec1 ₂	-сн ₃	-NH ₂
197	Cl	$-cH_2-cH=cH_2$	-CH2-CH=CH2
.98	-chc1 ₂) <u>N</u> Zo=	$-c/\overline{M}(CH_3)_2.7_2$
199	-cH ₂ cl) <u>N</u> /o=	$=c\sqrt{N}(cH_3)_2\sqrt{2}$
. 500	$-0-c_{\rm H_2}-c = c-c_{\rm H_3}$	-CH ₂ -CH=CH ₂	-CH2-CH-CH2

	Tabe	Tabelle I (Fortsetzung:)	
Verbindung Nr.	H.	R	R2
201	-0-c ₂ H ₄ c1	-CH ₂ -CH=CH ₂	-CH2-CH=CH2
202	-0-CH2-CHC12	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂
203	-0-	-ch2-cH=ch2	-¢H2-cH=cH2
204	-CH ₂ -S-C = N	-CH2-CH=CH2	-ch2-ch=ch2
205	$-c_{H_2}-N(c_{H_2}-c_{H=cH_2})_2$	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂
206	-CHC1 ₂		о -и(сн ₃)-с-снс1 ₂
207	-CHC1 ₂	-cH ₃	0 " -N(C-CHC1 ₂) ₂
208	-сн ₂ -с-сн ₃	-CH ₂ -CH=CH ₂	-CH2CH=CH2

	ВZ	-ch ₂ ch=ch ₂ -ch ₂ ch=ch ₂ o	-сн ₂ -сн ₂ -о-с-снс1 ₂	-ch2-ch-c == N		C,H ₅	CH ₃
Tabelle I (Fortsetzung):	R _J	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-02 ^H 5	$-cH_2-cH_2-c = N$	щ	m	Ħ
ម ុ	#	-ch ₂ -c ≡ n -ch ₂ -0-c ≡ n	-cHC1 ₂	-CHC12	-0HC1 ₂	-cec1 ₂	-chc1 ₂
	Verbindung Nr.	209	. 211	2t2	213	214	215

220 - CH ₂ C1	ы ы ы ы	-CH2-CH(CH3)2 -CH CH2 -CH CH2 1-C4B9 t-C4B9

9-74**6**00000

BAD ORIGINAL

	. R2	-CH2-CH=CH2	$-\mathrm{CH}_2-\mathrm{CH}=\mathrm{CH}_2$	-CH2-CH=CH2	-ch2-ch=ch2	-CH=CH-CH2-CH3	-CH=CH=CH2-CH3	c CH2-CH3	-сн=сн-сн ₂ -сн ₃
Tabelle I (Fortsetzung):	. B	-CH ₂ -CH=CH ₂	-CH2-CH=CH2	-CH2-CH=CH2		-t-C4H9	-c(cH ₃) ₂ -c -cH	-c ₂ H ₅	n-C ₄ H ₉ .
	H.	-CH=CH-(- CH ₃	-CH-CH-/	-CH=CH -	-GHC1 ₂	-CHC1 ₂	-CHC1 ₂	-chc1 ₂	-CHC1 ₂
	Verbindung Nr.	229	230	231	232	233	234	235	236

209845/1180

Fortsetzung
124
Tabelle I (

R 2	^{L-С} ² H ²	n-C ₂ H ₇	-CH2-CH=CH2	-CH2-CH=CH2	-N=C(CH ₃) ₂	-GH2-CH=CH2	-ch2-ch=cH2	-c ₂ H ₅
H.	\Diamond	-c(cH ₃)=cH-cH ₂ -cH ₃	-ch ₂ -ch=ch ₂	-ch2-ch-ch2	-CH ₃	-CH2-CH=CH2	-ch2-ch=ch2	sec-C ₄ H ₉
æ	-cHC1 ₂	-сно12	$-cH_2-sO_2-N(cH_2-cH=cH_2)$	-cH(S-C ₂ H ₅) ₂	-CHC1 ₂	-6H2-0-C-CHC12	-CH(0-(-) 01)2	-chc1 ₂
Verbindung Nr.	237	238	239	240	241	242	243	244

	R2	-62 ^H 5	-c ₂ _E 5	-c ₂ H ₅	S	s	-CH2-()	sec-C _{5H11}	sec-C ₅ H ₁₁
Tabelle I (Fortsetzung):	e E	t-c ₄ H ₉	sec-C ₅ H ₁₁	i-c ₃ H ₇	-cH ₃	-C2H5	n-C ₃ H ₇	CH ₂	n-6 ₃ H ₇
	æ	-cHC1 ₂	-chc1 ₂	-cHC1 ₂	-cBc1 ₂	-chc1 ₂	-chcl ₂	-cec1 ₂	-cHC1 ₂
	Verbindung Nr.	245	246	247	248	249	250	251	252

Tabelle 1 (Fortsutzung):	R ₁	$-n-C_{5}H_{7}$ $n-C_{5}H_{11}$ $i-C_{4}H_{9}$ sec- $C_{4}H_{9}$	3 i-G ₂ H ₇	$-cH(cH_3)-cH(cH_3)-cH_5$	$H_{\mathcal{S}}$	H ₅ (S')	H ₅ - S - CH ₃	5 sec-C4H9
Tabelle 1 (н	-cHCl ₂ -n-	-cHC12 -CH3	-chcl ₂	-снс1 ₂	-CHC1 ₂	-chc1 ₂ -c ₂ H ₅	-chc1 ₂ -ch
	Verbindung Nr.	253 254	255	256	257	258	259	2.60

209845/1180

	. R2	2,4 n-c	t-C4H9	-сн(сн ₃)-сн(сн ₃)-сн ₃	Ÿ	$-cH_2$ \leftarrow \rightarrow \rightarrow cH_3	-CH ₂ (T) CH ₃	-CH2 / C1	CH ₂ CH ₂ CH ₂
Tabelle I (Fortsetzung):	H ₁	-c ² H ⁵	n-C ₃ H ₇	n-C ₂ B ₇	n-C ₃ H ₇	n-C ₂ H ₇	n-C ₂ H ₇	л-с ₃ н ₇	-C ₂ H ₅
	es .	-chc1 ₂	-CHC1 ₂	-chc1 ₂	-снс1 ₂	-CHC1 ₂	-снс12	-chc1 ₂	-CHC1 ₂
÷	Verbindung Nr.	261	262	263	264	265	566	267	. 568

209845/1180

tzung):	я2 п-с ₃ н ₇			n-C6H13	-c ₂ н ₄ -о-сн ₃	-c ₂ H ₄ -0-c ₂ H ₅	-CH ₂ -	-сн2-	-CH2-
Tabelle I (Fortsetzung):	RJ		n-C ₃ H ₇	n-C ₃ H ₇	-c ₂ H ₄ -0-cH ₃	-c ₂ H ₄ -0-c ₂ H ₅	-C2 ^H 5	n-C3H7	$i-c_3H_7$
	œ	-CHC1 ₂	-сно12	-cHC12	-cecl ₂	-cH¢1 ₂	-chc1 ₂	-cHC1 ₂	-chc1 ₂
	Verbindung Nr.	296	297	298	299	300	301	302	303

209845/1180

: (Su	. R2						-сн ₂ -сн ₂ он	-CH2-CH2-C N	
Tabelle I (Fortsetzung):	H.	 -02 ^H 5	n-C ₃ H ₇	i-C ₃ H ₇	n-C4H9	sec-C ₄ H ₉	t-C4H9	-CH ₃	
	x	-CHC1 ₂	-cHC1 ₂	-cac1 ₂	-снст	-cHC1 ₂	-CHC1 ₂	-cHC1 ₂	-CHC1 ₂
	Verbindung Nr.	310	311	312	513.	514	315	316	517

	R2	n-C6 ^H 13	-сн2-сн2он		-0H2	-c(c ₂ H ₅) ₂ -c∈ ·N	$-c(c_2H_5)_2-c=N$	5	
le I (Fortsetzung):	H.	n-C6H13	-ch ₃ ch ₃	C E	-сн ₂ -сн ₂ -sh	щ	щ	Ħ	̤
Tabelle I	æ	-CHC1 ₂	-снс1 ₂	-chc1 ₂	-GHC1 ₂	-chc1 ₂	-GH ₂ C1	-снс1 ₂	-CHC1 ₂
	Verbindung Nr.	318	519	320	321	322	323	324	325

и и и и

Tabelle I (Fortsetzung:)

Verbindung Nr.

326
-CHG1₂
327
-CHC1₂
329
-CHG1₂
329
-CHG1₂

-cecl₂

332

-chc12

331

Verbindung Nr.

334

-chcl₂

-CHC12

335

-cH₂Cl

356.

337

	R2	CH_2 $\left\langle \operatorname{s} \right\rangle$	-CH ₂ -CH ₂ -N(C ₂ H ₅) ₂	-cH ₂ -CH(0CH ₃) ₂	o -ch ₂ -ch ₂ -nhc-chc1 ₂	-CH2-CH=CH2	о "-сн(ин-с-снс1 ₂)-()	-CH(NH-C-CHCl ₂)-(-\ NO ₂
Tabelle I (Fortsetzung:)	R ₁	Ħ	ш	#1	н	-CH ₂ -CH*CH ₂	` щ	щ
	æ	-chc1 ₂	-снс12	-CHC12	-CHC1 ₂	(N = 0H − HO −	-CHC1 ₂	-CH01 ₂
	Verbindung Mr.	338	339	340	341	342	343	344

Tabelle I (Fortsetzung)

-сн₂-сн-сн₂ $-cH_2-cH=cH_2$ -сн₂-сн=сн₂ -CH2-CH=CH2 $-cH_2-cH=cH_2$ Tabelle I (Fortsetzung): $-cH_2-cH=cH_2$ -CH2-CH=CH2 -CH2-CH-CH2 $^{\mathrm{R}}$ 0 |- c-N(CH₂-CH=CH₂)₂ $HC = C - C(CH_3)_2 - NH - C$ 咁 Verbindung Nr. 357 358 359 360 361

	R2	-ch2-ch(ch3)2	-сн ² -сн(сн ³) ₂	-c(cH ₃) ₃	-c(cH ₃) ₃	-c(cH ₃) ₂ -c ≡ cH	-сн(сн ₃)-с - сн	$-c(cH_3)_2-c = N$
Tabelle I (Fortsetzung):	L _H	-c-cH ₂	OHO-	ш	::1	. ⊯	OH 3	н
	H H	CHC12	CHC12	25	-CH=CH			Et
	Verbindung Nr.	368	569	370	371	372	373	374

	R 2	-c(cH ₃) ₂ -c N	$-c(cH_3)_2-c = N$	$-c(cH_3)_2-c=cH$	-c(сн ₃) ₂ -с = сн	$-c(cH_3)_2-c = cH$	$-c(cH_3)_2-c \Longrightarrow N$
e I (Fortsetzung):	F.	ш	ш	ш	ш	Ħ	щ
Tabelle	ж	-0H ₂ s	-0H ₂ -c(cH ₃) ₃	-он(c ₂ н ₅) —	-ch-ch-ch	-CH=CH (-CH ₃)	- CH=CH
	Verbindung Nr.	375	. 376	377	378	379	380

209845/1180

-сн(сн³)-с = сн $-\mathrm{CH}_2\mathrm{-CH=CH}_2$ Tabelle I (Fortsetzung): -CH2-CH-CH2 $-cH_2-0-c-ccl=ccl-ccl=ccl_2$ /— ED=HD--cec12 щ Verbindung Nr. 382 383 381 384

386

Verbindung Nr.	et	R_{1}	H ₂
			0 61
387	-сн2сл	. щ	$-cH_2-NH-G-CH_2-O$
388	-6613	ш	" -CH ₂ -NH-C-CH ₂ Cl
389	-chc1 ₂	ш	O= 1
390	-0HG1 ₂	Н	0-C-NH-C ₂ H ₅
591	-cHC1 ₂	Ħ	0-C-NH-CH ₂ -CH=CH
392	-снс12	ш	。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

Tabelle I (Fortsetzung):

. ••	
etzung)	
(Forts	
ΗI	
11e	
Tabe	

	Tabelle J	Tabelle I (Fortsetzung):	
Verbindung Nr.	æ	R ₁	R2
393	-CHC1 ₂		0 "-c-o-c ₂ H ₄ cl
394	СНЗ	щ	-с(с _{F3}) ₂ -он
395	-chcl ₂	# -	NH-C-CHC12
396	-CHC1 ₂	д	MA-C-C2H5
397	-сн ₂ -о-с(снс1 ₂) ₂ -он	сн ₂ -сн=сн ₂	-CH2-CH=CH2
598	$-cH_2-0-c(cHcl_2)(ccl_3)-OH$	-ch ₂ -ch=ch ₂	-cH2-CH-CH2

209845/1180

	ЯZ	n-c6H13	<u> </u>	-CH2	-CH2	-CH2	$-cH_2 + \cdots -c1$	-CH2/-
Tabelle I (Fortsetzung):	L R	n-C6H ₁₃	-c ₂ H ₅	n-6 ₃ H ₇	1-63H7	-ch ₃	-CH ₂	-C2H5
	#	-0H2C1	-сн ₂ сл	-cH ₂ c1	-GH2Cl	-OH2C1	-cH2cl	-cH ₂ Gl
	lerbindung Nr.	405	406	407	408	409	410	411

				:		· ·		(3)-cH ₃
	R2	∇		ر.			1-c ₂ H ₇	-сн(сн ₃)-сн(сн ₃)-сн ₃
tsetzung);		L		C2H5	C2H5	C) #		
Tabelle I (Fortsetzung);	H. H.	n-C ₂ H ₇					-0H3	-CH3
	·		e		-			
	er	-CH ₂ C1	-0H2C1	-CH2Cl		-CH ₂ C1	-cH ₂ C1	-CH2C1
	H H							.·
	Verbindung Nr.	412	413	414		415	416	417

ng):	H2	CH2	i-C4H9	sec-C ₅ H ₁₁	t-C4H9	sec-C4H9	sec-C4H9	1-03H7	1-C ₂ H ₇	i-c4H9	-CH ₂ -CH ₂ -O-CH ₃
Tabelle I (Fortsetzung):	. L	-C2H5	n-C ₃ H ₇	$n-C_3H_7$	n-C ₃ H ₇	1-C4H9	-C2 ^H 5	i-C4H9	n-C4H9	n-C4H9	-сн ₂ -сн ₂ -о-сн ₃
	#	-cH ₂ Cl	-cH2C1	-cH2cl	-cH2cl	-cH2c1	-0H2C1	-ch2cl	-cH2cl	-cH2cl	-cH ₂ c1
	Terbindung Wr.	418	419	420	421	422	423	424	425	426	427

	. R2	-cH ₂	-CH2 CH3	-cH ₂	-CH2-()- CH3	-CH ₂
Tabelle I (Fortsetzung):	. B	-C2H5	-C2H5	n-C ₃ H ₇	-C2H5	-ch3
	ces	сн ₂ с1	сн ₂ с1	сн ₂ с1	CH ₂ C1	сн2с1
	Verbindung Nr.	434	435 ·	436	437	438

	^н 2	-0H2	-CH2-/ CH2	-CH ₂	-CH2-(-) -CH3	-CH ₂	n-C ₄ H ₉
Tabelle I (Fortsetzung):	L.	-CH ₃	-c ₂ H ₅	n-C3H7	-c ₂ H ₅	-c ₂ H ₅	-сн ₃
	ца	-chc1 ₂	-снс1 ₂	-снс1 ₂	-chc1 ₂	-сист	-chci ₂
	Verbindung Nr.	439	440	441	442	443	444

	ĥ ₂	n-C4H9	sec-C4H9	sec-C4H9	$n-c_{5}^{H_{7}}$	$n-c_{j}H_{\gamma}$	t-C4H9	sec-C4H9	sec-C4H9	n-C ₅ H ₁₁	n-c ₅ H ₁₁	sec-C ₅ H11
Tabelle I (Fortsetzung):	R	-cH ₂	-CH ₂	-cH ₂	cH ₅	-cH ₃	-n-C4H9	i-c ₃ H ₇	1-63H7	1-C3H7	1-C3H7	i-C3H7
	et	-CH ₂ Cl	-cHCl ₂	-ch2cl	-chc1 ₂	-сн2с1	-chc1 ₂	-CHG1 ₂	-сн2с1	-снс12	-cH ₂ cl	-chc1 ₂
	Jerbindung Nr.	445	446	447	448	449	450	451	452	. 453	454	455

		Tabelle I (Fortsetzung):	* (an
rbindung Nr.	æ	R ₁	R2
461	-CHC1 ₂	-CH2-0-CH3	62H5
462	-CHC12	¤ 4 .	0 -c(cH ₃)=cH-c-o-c ₂ H ₅ 0
463	-CHC1 ₂	H	"-NH-C-CHC1 ₂
464	-CHC12	- СНО	10 - C1
465	-chc1 ₂	$-cH_2-cH(cH_3)_2$	-c-chc1 ₂
466	-cHC1 ₂	Щ	$-(cH_2)_3-0-cH(cH_3)_2$

PAD ORIGINAL

Verbindung Nr. R R₁ R₂ O1

467 -CHC1₂ H -CH2₂
$$(C_2H_2)(CH_3)_2$$

468 -CHC1₂ H -CHC₃ $(C_2H_3)(CH_3)_2$

470 -CH2₀1 H -CH₂1 $(C_2H_3)(CH_3)_2$

471 -CH2₀1 H -CC₂H₄-0-CH₃

472 -CH₂C1 H -CC₂H₄-0-CH₃

473 -CH₂C1 H -CH₂C H $(C_2H_3)(CH_3)_2$

		Tabelle I (Fortsetzung):	
erbindung Nr.	#	P.	R ₂
474	O " NH-C-CH ₂ C1	C1 H O	$-c(cH_3)_2-c = CH$
475	-CHC12	$-cH_2-cH_2-0-c-N(cH_3)_2$	-cH ₂ -cH ₂ -o-c-N(cH ₃) ₂
476	-cHc1 ₂	-CH ₂ -CH ₂ -O-C-NH-C ₂ H ₅	-CH ₂ -CH ₂ -O-C-NH-C ₂ H ₅
477	-CHC1 ₂	-CH ₂ -CH ₂ -O-C-NH-CH ₂ -CH-CH ₂	о -сн ₂ -сн ₂ -с-с-ин-сн ₂ -сн-сн ₂ -сн ₂ -сн ₂ -о-с-ин-сн ₂ -сн
478	-cHC12	O "-CH ₂ -CH ₂ -O-C-NH-1-C ₃ H ₇	-CH ₂ -CH ₂ -O-C-NH-i-C ₃ H ₇
479	-снс1 ₂	-CH ₂ -CH ₂ -O-C-NH-C ₄ H ₉	-cH ₂ -cH ₂ -o-c-NH-c ₄ H ₉
480	-GH2C1	-CH ₂ -CH ₂ -O-C-NH-CH ₃	-CH ₂ -CH ₂ -O-C-NH-CH ₃
481	-CH ₂ Cl -(оне -сн ₂ -сн ₂ -о-с-ин-сн ₂ -сн ₂ -сн ₂ -	-CH ₂ -CH ₂ -O-C-NH-CH ₂ -CH=CH ₂

209845/1180

AMERICA GAR

	Tabe	Tabelle I (Fortsetzung):	·
rbindung Nr.	æ	R ₁	R2
490	-CH ₂ OH	-c ₂ H ₅	-c ₂ H ₅
491	-cH ₃		-so ₂
492	-cH2-s ()_c1	ш	-сн ₂ -сн(сн ₃) ₂
493	-cH2-SO2-0-CH3	-62H5	-c ₂ H ₅
494	-c ₂ H ₆ Br	H CH3	-so ₂ c1
495	-chc1 ₂		
496	-cc1 ₃	-c ₅ H ₇	-c ₂ H ₇
497	-0013	نر	

	В 2			-c♯>	-c2H4Br	-c2H4Br	-C2H4Br	-n-C4H9	-1-C ₂ H ₇
Tabelle I (Fortsetzung):	R ₁ CH ₂	CH. CH.	CHO CHI	-cn ²	¤	щ	¤	-C2 ^H 5	$-1-C_3H_7$
	es	-001 ₃	-CH2 C1	-001 ₃	-0H2C1	-0013	-cHC12	-CHC12	-CHC12
	Verbindung Nr.	498	499	500	501	502	503	504	505

	Tabe	Tabelle I (Fortsetzung):	
Verbindung Nr.	EH	R	R ₂
909	-CHC1 ₂	-n-c ₄ ^H 9	-n-c4H9
507	-cc1 ₅ -	-c ₂ H ₅	-n-C4H9
508	-cc1 ₃ -	-i-c ₃ H ₇	-1-C3H7
509	-cc1 ₅ -	-i-c4H9	-i-C4H9
510	-CHC1 ₂	щ	C2H5
511	-6613	ш	$-c(c_{\rm H_3})(c_{\rm 2H_5})-c \equiv N$
515	-cH2cl	н	$-c(cH_3)(c_2H_5)-c = N$
513	-chc1 ₂	#	$-c(cH_3)(c_2H_5)-c = N$

Die erfindungsgemäßen Mittel wurden wie folgt getestet.

Versuch 1: Verwendung im Boden

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Herbizid und Herbizid-Gegenmittel wurden getrennt oder zusammen in den Boden eingearbeitet, während dieser in einem 19-Liter-Zementmischer gemischt wurde. Für die getrennte Verwendung von Herbizid und Gegenmittel wurden von jeder Verbindung folgende Vorratslösungen hergestellt: Vorratslösungen des Herbizids wurden durch Verdünnen von etwa 1g eines Wirkstoffkonzentrats mit 100 ml Wasser erhalten. Für das Gegenmittel wurden 700 mg technisches Material mit 100 ml Aceton verdünnt. 1 ml dieser Vorratslösungen entsprach 7 mg Wirkstoff oder 0,112 g/m², wenn der damit behandelte Boden in die 20,32 x 30,48 x 7,62 cm großen Kästen gefüllt wurde. Nach Behandlung des Bodens: mit dem Herbizid und dem Gegenmittel in dem gewünschten Verhältnis wurde die Erde von Zementmischer in die 20,32 x 30,48 x 7,62 cm großen Kästen gebracht, um die Einsaat durchzuführen. Zuvor wurde von jedem Kasten etwa ein halber Liter Boden (1 Pinte) zum späteren Abdecken der Samenkörner weggenommen. Die Erde in den Kästen wurde eingeebnet, und es wurden in jedem Kasten 12,7 mm tiefe Rillen angelegt. Die Samenkörner wurden jeweils in ausreichender Menge für guten Stand ausgesät. Anschließend bedeckte man die Samenkörner mit dem etwa halben Liter Boden, der kurz vor dem Einsäen entnommen wurde.

100

Die Kästen wurden dann auf Bänke bei 21 - 32°C ins Gewächshaus gestellt. Bis zur Auswertung wurden sie so besprengt, daß gutes Pflanzenwachstum sichergestellt war. Die Ertragstoleranz wurde nach 3 bis 6 Wochen ermittelt. Die Ergebnisse sind in der Tabelle II zusammengestellt. - 100 -

		Gegenmittel	ttel .		Schädig	Schädigung der Pflanzen in % nach	lanzen	
Anwendung verhältni g/m ²	80 11	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
0,672			0,007	Mais	0	0	. •	
0,672		9	0,014	Mais	0		· o	
0,672		9	0,056	Mais	0	0	0	
0,672		9	0,112	Mais	o	0	0	
0,672		· •9	0,224	Mais	0	0	0	
0,672		'9	0,560	Mais	0	o	0	
		9	0,560	Mais	0	0	. 0	
0,672	0.1	연.	0,014	Mais	20 M	•:		
0,672	01	. 11	0,014	Mais	O			
0,672	٥,	12	0,014	Mais	M OT	<u>.</u> -		
0,672	OI.	13	0,014	Mais	M 09			
0,672	QI.	15	0,014	Mais			-	
0,672		91	0,014	Mais	10 M			
0,672		1:8	0,014	Mais	0			
0,672		00	950.0	Mais		. 20 M		
0,672	0.	6 0	0,224	Mais		0		
0,672	01	7	0,224	Mais		45 M		

		Gegenmittel	ttel		Schädi	Schädigung der P	der Pflanzen
	Anwendungs-	Verbin-	Anwendungs-	Getreide-		in % nach	
Herbizid	g/m ²	nr.	$e_{f/m}^2$	art	% vochen	4 Wochen	6 Wochen
EPTC	0,336	7	0,448	Mais	. O		
EPTC	0,672	1	ı	Mais	94 M	м 16	M 86
S-Äthyldiiso- butyl-thio- carbamat 0	-0,896	<i>L</i> .	0,224	Mais			
S-Athyldiiso- butyl-thio- carbamet	Ļ	! -	0,448	Mais			
S-Athyldiiso- butyl-thio- carbamat	6	÷ ı	ı	Mais	75 M		
S-2,3,3-fri- chlorallyl- disopropyl- thiolcarba- mat	i- 1- 0,112	9	0,448	i e i se	20 4		
S-2,5,3-Tri- chlorallyl- difsopropyl- thiolecha- mat	10,132	. •		Weizen	. ≱ 06		

	•			•				•			
der Pflanzen nach	en 6 Wochen							٠			
Schädigung der . in % nach	4 We		0		o . · .		95 M		. (o	(
Schä	3 wochen										
	Getreide- art		Mais		Mais		Mais		1 1 1 2	S T WW	,
ttel	Anwendungs- verhältnis g/m ²	•	0,014		0,224		•			410.0	000
Gegenmittel	Verbin- dung Nr.		vo	,	ن	•	ı		V	· .	. u
	Anwendungs- verhältnis g/m ²	0,672 +	- 0,112 0,672 +		0,112		0,112	0,672 +	פנר ס פרר	0,672 +	٥٢
	Herbizid	DPTC + 2-Chlor-4-ëthyl-	amino-6-isopropyl- amino-s-triazin EPTC +	2-Chior-4-äthyl- amino-6-isopro- pylamino-s-tria-	zin EPTC	2-Chlor-4-äthyl- amino-6-isopro-	pyt-amino-s-tri- azin	EPTC +	2-Chlor-4,6-bis- (äthylamino)-s- triszin	EPTC +	2-Chlor-4,6-bis- (äthylamino)-s-

- 103 -

					-	1 03 -					
	anzen	6 Wochen						·			
	Schädigung der Pflanzen in % nach	4 Wochen		90 A		0		80 M		0	
	Schädigu	3 Jochen		·						·	
(Fortsetzung):		Getreide- art		Mais		Mais		Kais		Mais	
Tabelle II	tel	Anwendungs- verhältnis g/m ²				0,014		· · ·		0,014	
	Gegenmittel	Verbin- dung Nr.				9		1		v	
		Anwendungs- verhältnis g/m ²	0,672 +	0,112		.hyl- 0,112	0,672 +	 .hyl- 0,112	0,672 +	•	
		Herbizid	EPTC +	2-Chlor-4,6-bis- (athylamino)-s- triazin EPTC +	2(4-6h]or-6-#+	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril 0,	EPTC +	2(4-Chlor-6-äthyl-amino-s-triazin-2-yl-amino)-2-methyl-propionitril	BPTC	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	

AU	5	
304		

		٠			· -	104	-					٠.
	lanzen	6 Wochen									•	- · · ·
	ung der Pflanzen in % nach	4 Wochen	٠.		90 M. V	0	10 V	50 M		3 M		
	Schädigung in ?	3 Wochen				٠.	•		· .		• · · .	
(Fortsetzung):		Getreide- art			Mais	Mais	Mais	Mais	: .	· Mais		Mais
Tabelle II		Anwendungs- verhältnis g/m^2			, .	0,014	0,224	· ·		0,014		0,224
٠.	Gegenmittel	Verbin- dung Nr.			ſ.	9	9	1		9	. : ·	9
	ව	Anwendungs- verhältnis g/m ²	0,672 +		0,112	0,672 + 0,112	9,672 0,112	0,672 + 0,112	0,672 +	0,112	0,672 +	0,112
		Herbizid	EPTC +	2-Chlor-4-cyclo- propylamino-6-	isopropylamino-s- triazin	EPTC + 2*4-D	EPTC + 2,4-D	EPTC + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-Ethyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolographmet +	Z-Chlor-4-athyl- amino-6-isopropyl- amino-s-triazin

105 -

				- 1 0 5 -	•		
	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen	0	0	NO N	₩ 06	N N
(Fortsetzung):		Getreide- art	Mais	Mais	Mais	Meis	Mais
Tabelle II (Anwendungs-verhältnis g/π^2	0,014	0,014	1	. 1	0,014
	Gegenmittel	Verbin- dung Nr.	φ	9		1	vo
	9 1	Anwendungs- verhältnis g/m ²	0,672 +	0,336 +	0,336 +	0,672	0,672 +
		Herbizid v	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiologrhemat + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolearbamat + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolographemst + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propylitipropylthiolearbanat 2-Chlor-4,6-bis- (äthylamino)-s- triazin

Tabelle II (Fortsetzung):

50 mm

S-Propyldipropyl-

	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen		M 26		0	м , и оэ
ortsetzung:		Getreide- art	Mais	Mais	Mais	Mais	Meis
Tabelle II (Fortsetzung:	.e.]	Anwendungs- verhältnis g/m^2	0,014	ı	0,014	0,224	1
E-1	Gegenmittel	Verbin- dung Nr.		1	9	9	ı
		Anwendungs- verhältnis g/m ²	0,672 +	0,672	0,672 + 0,112	.0,672 + 0,112	0,672 + 0,112
		Anw Herbizid ver	S-Propyldipropyl- thiolcarbamat + 2-chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D

Rabelle II (Fortsetzung);

		Gegenmittel	tel	z	Schädigung	gung der E	der Pflanzen % nach
Herbizid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen
S-Propyldipropyl- thiolcarbamat	0,672	۰.۰۰	0,014	Mais	•	0	· .
S-Propyldipropyl- thiolcarbamat	0,672	9	0,224	Mais		 O	•
S-Propyldipropyl- thioloarbamat	0,672	t		Mais	- 15 ²²	M 06	
S-Athyldiisobutyl- thiologramst +	+ 968.0			· :	· .		
z-calor-4-e ayş- amino-6-isopropyl- amino-s-triazin	0,112	9	0,014	Mais		Ö	
S-Athyldisobutyl- thiolearbamet +	+ 963.0						
amino-6-isopropyl- amino-s-triazin	0,112	9;	0,224	Mais		0	· · ·
S-Athyldiisobutyl-thiolcarbamat +	+ 968.0			,	5		
balor-4-a myı- amino-6-isopropyl- amino-s-triazin	- 0,112	· .) }	Mais			

		_
_	109	_

		Tab	Tabelle II (Fort	(Fortsetzung):				
		Gegenmittel	ittel		Schädig	Schädigung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis- (Ethylamino)-s-	+ 968'0							
triazin	0,112	9	0,014	Mais		0		
S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	+ 968.0	·			-			- 109 -
(ëthylamino)-e- triazin	0,112	9	0,224	Mais		0		•
S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	+ 968.0							
(äthylamino)-s- triazin	0,112	i	ı	Mais	•	0		
S-Athyldiisobutyl- thiolcarbamat + 0, 2(4-chlor-6-äthyl-	+ 968.0		•					
amino-s-triazin- 2-yl-amino)-2-meth; propionitril	y1- 0,112	· • •	0,014	Mais		0		

ortsetzung):
II (Fo
Tabelle

Anwendungs-	Verbin- Anw	Anwendungs-	Getreide-	Schädigung of in % in	ng der Filanzen % nach	anzen K Wochen
verhältnis g/m	dung Nr.	verhältnis g/m^2	art	папрон С	4 woonen	uencon o
+ 968	· · ·		•			•.
,112	, , i	• '	Mais	·	20 M	
, 896 +						MA
112	· •	0,014	Mais		0	
+ 968 +		· ·	•	•		
,112	1 3 % 4 4	•	Mais		10 M	
896 + 112	9	0,014	Mais	**	0	

		•	•	•	•-
-	1		Ľ	1	_

				-	111	-				
	lanzen	6 Wochen			٠					
*	Schädigung der Pflanzen in % nach	4 Wochen	0	0	0	0	20 V	10 V	30 V	70
	Schädig	3 Wochen								
(Fortsetzung):		Getreide- art	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Weizen
Tabelle II (For	tel	Anwendungs- verhältnis g/m ²	0,224	1	0,014	0,224		0,014		0,560
Ta	Gegenmittel	Verbin- dung Nr.	9	ı	9	9	1	9	1	9
		Anwendungs- verhältnis g/m ²	0,896 +	0,896 + 0,112	968.0	968,0	968,0	968,0	968*0	.0,536
		Herbizid	S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-Athyldiisobutyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat

Herbizid S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat C-Chlor-2',6'-di- äthyl-W-(methoxy- methyl)-acetanilid Z-Chlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid S-Kthylhexahydro- lH-azepin-l-carbo- thioat	Anwendungs-verhältnis g/m ² 0,336 0,336 0,336 0,336	Gegenmittel Verbin- An dung Nr. 6 0 6	wendungs rhältnis g/m ² g/m ² 560	Wohrenhirse Mohrenhirse Mohrenhirse Mohrenhirse Mohrenhirse Mehrenhirse Mehrenhirse	Schädie in in wochen	der coche	Pflanzen n 6 Wochen
S-Äthylhexahydro- 1H-azepin-l-carbo- thioat	0,336			Reis		20	

	•	۱ ہے			-	H) -			
	lanzen	6 Wochen							÷
	Schädigung der Pflanzen in % nach	4 Wochen	0	40	20	70	50	30	96
sung):	Schädigu	ide- 3 Wochen	ផ	ue	Mohrenhirse	Mohrenhi rse			
(Fortsetzung):		Getreide- art	Weizen	Weizen	Mohre	Mohr	Reis	Reis	Keis
Tabelle II (1	tel	Anwendungs- verhältnis g/m ²	0,560	1	0,560	ı	ı	0,560	
	Gegenmittel	Verbin- dung Nr.	9		9	•	ı	9	
		Anwendungs- verhältnis g/m ²	0,336	0,336	0,448	0,448	0,672	0,672	1,344
	. •	Herbizid	2-Chlor-W-iso- propylacetanilid	2-Chlor-N-iso- propylacetanilid	N,N-Diallyl-2- chloracetamid	N,N-Diallyl-2- chloracetamid	S-4-chlorbenzyl- diäthylthiol- cerbamat	S-4-chlorbenzyl- diäthylthiol- carbamat	S-4-chlorbenzyl- diäthylthiol- carbamat

<u>:</u>
Fortsetzung
디
Tabelle
터

			Tabelle II (Fo	(Fortsetzung):			
		Gegenmittel	tel		Schädie	Schädigung der Pflanzen in %nach	anzen
Herbizid	Anvendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m	Getreide- art	3 Wochen	4 Wochen 6	6 Wochen
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	· vo	0,560	Reis		30	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	•		Mais		40	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	9	095,00	Mais	•		-
S-Athylcyclohexyl- äthylthiocarbamat	0,672	9	0,011	Wais	•	,	· · .
S-Athyloyclohexyl- äthylthiocarbamat	.0,672		1	Meis		80 M	
	•				•		

EPTC = S-Athyl-N,N-dipropylthiocarbamat

- Verkümmerung ; - Mißbildung;

2,4-Dichlorphenoxyessigsäure.

116

Versuch 2: Behandlung des Getreidesaatguts

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Zu diesem Zeitpunkt wurde das Herbizid in den Boden eingebracht. Die Erde eines jeden Kastens wurde in einen 19-Liter-Zementmischer gefüllt und darin gemischt, während das Herbizid in Form einer Vorratslösung, die durch Verdünnen von etwa 1 g eines Wirkstoffkonzentrats mit 100 ml Wasser hergestellt worden war, eingearbeitet wurde. Dabei wurde jeweils 1 ml Vorratslösung in einer Vollpipette pro gewünschte 0,112 g Herbizid pro m² in die Erde eingebracht. 1 ml Vorratslösung enthielt 7 mg Herbizid, was bei der Anwendung auf den Boden in den 20,32 x 30,48 x 7,62 cm großen Kästen 0,112 g/m² entsprach. Nach Einarbeitung des Herbizids wurde der Boden in die Kästen zurückgebracht.

Kästen mit durch das Herbizid vorbehandelter Erde und mit unbehandelter Erde standen nun bereit für die Einsaat. Zuvor wurde jedem Kasten etwa ein halber Liter Boden etnommen und zur späteren Verwendung zum Abdecken der Samenkörner neben den Kasten gelegt. Dann ebnete man die Erde ein und legte 12,7 mm tiefe Rillen an. Abwechselnd wurden die Rillen mit behandeltem und mit unbehandeltem Getreidesaatgut eingesät. Bei jedem Versuch wurden 6 oder mehr Samenkörner in jede Reihe gelegt. Im Kasten betrug der Reihenabstand etwa 3,8 cm. Zur Behandlung des Saatguts mit dem Gegenmittel bzw. Saatschutzmittel füllte man 50 mg dafür vorgesehenen Verbindung und 10 g Saat in einen geeigneten Behälter und schüttelte, bis die Körner gleichmäßig damit bedeckt waren. Die Verbindungen (Saatschutz-

mittel) zur Saatgutbehandlung wurden als flüssige Aufschlämmungen und als Pulver- oder Staubgut aufgebracht. Manchmal wurde Aceton verwandt, um pulverisierte oder feste Verbindungen zu lösen, so daß sie wirksamer auf das Saatmaterial aufgebracht werden konnten.

Nach der Einsaat wurden die Kästen mit der kurz zuvor entnommenen und auf die Seite gelegten Erde bedeckt. Sie wurden auf Bänke ins Gewächshaus bei 21 - 32°C gestellt und so besprengt, wie es gutes Pflanzenwachstum erforderte. Die prozentualen Auswertungen der Schädigung erfolgten zwei bis vier Wochen nach den Behandlungen.

Bei jedem Versuch wurde einmal das Herbizid allein, einmal das Herbizid in Verbindung mit dem Saatschutzmittel und schließlich das Saatschutzmittel allein angewandt, um die Phytotoxizität feststellen zu können. Die Ergebnisse dieser Versuche sind in Tabelle III zusammengestellt.

- 117 ·	_
---------	---

		Gegenmittel	tel	Sch	Schädigung in %	8			
Herbizid	Anwendungs- verhältnis g/π^2	Verbin- dung Nr.	Behand- lungsver- hältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	es Saat-	Unbehandeltes Saatg in der benachbarten Reihe	tes Saatgut achbarten	4
					2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	н	0,5	Mais	20 🗷	60 V, M			
EPTC	0,672	8	0,5	Mais	10 V	40 V, M			
EPTC	0,672	8	0,5	Mais	0	60 V, M			
EPTC	0,672	4	0,5	Mais	10 V	70 V, M			
EPTC	0,672	7	0,5	Mais	0	30 V, M			
EPTC	0,672	9	0,5	Mais	0	0	0	0	14 8
EPIC	0,672	2	0,5	Mais		30 V			?
EPTC	0,672	80	0,05	Mais		0			
EPIC	0,672	9	0,5	Mais	10 V		30 M		
SPTC	0,672	9	0,5	Mais	10 V		ς A		
EPTC	0,672	11	0,5	Mais	10 V	•	N OI		
EPTC	0,672	12	0,5	Mais	100 K		5		
EPTC	0,672	13	0,5	Mais	100 K		15 M		
EPTC	0,672	14	0,5	Mais	10 V		50 №		
EPTC	0,672	15	0,5	Mais	100 K		5 V		
EPTC	0,672	16	0,5	Mais	TO T		5 4		

Tabelle III (Fortsetzung):

		Gegenmittel	tel	U)	Schädigung in	g.in %			1
Herbi- zid	Anwendungs- verhältnis g/m ²	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei- deart	Behandeltes gut	ideltes Saat- gut	Unbehandeltes in der benach Reihe	ochandeltes Saatgut der benachbarten he	ا د
	- /0	-	% сеж./сеж.		2 Wochen	4 nochen	2 Wochen	4 Wochen	
EPTC	0,672	17	. 540	Mais	20 V	•	35 M		
EPTC	0,672	18	0,5	Mais	0		≥ 4		
BPTC	0,672	19	5.0	Mais	0		50 M		
EPTC	0,672	20	0,5	Mais	10 V	10 Φ	30 站	M 59	
EPTC	0,672	21	0,5	Mais	0		10 M	55 M	
EPTC	0,672	22	0,5	Mais	₩ 09	M OL	85 M	₩ 08	
EPTC	0,672	23	0,5	Mais	20 M	40 M	85 M	80 M	
EPTC.	0,672	24	0,5	Mais	io v	10 V	75 M ·	. 80 M	
EPTC	0,672	25	0,5	Mais		30 M	M 09	м 09	
EPTC	0,672	56	0,5	Mais		70 M	83 M	M 08	
EPTC	0,672	27	0,5	Mais	70 K		M 09		
EPTC	0,672	28	0,5	Mais	30 V, 1	M	75 班		
EPTC	0,672	59	0,5	Mais	₩ 09		M OL		
EPTC	0,672	.30	0,5	Mais	₩ 09		YO M		
EPTC	0,672	31	0,5	Mais	对 0/2		₩ Ó8		
EPTC	0,672	32	0,5	Mais	₩ 09		75 M	-	

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Schädigung in %	ng in %		
Herbi-	Anwendungs- verhältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei-	Behandeltes 	eltes Saat- t		Unbehandeltes Saatgut in der benachbarten Reihe
	m/9		% Сем./Сем.	7	2 Wochen	4 Wochen	2 Wochen	4 Wochen
BPTC	0,672	33	0,5	Mais	50 V, M		75 M	
BPTC	0,672	34	0,5	Meis	₩ 09		80 M	
EPTC	0,672	35	0,5	Mais	50 M		75 M.	
EPTC	0,672	36	0,5	Mais	₩ 09		85 M	
BPTC	0,672	37	0,5	Mais	40 V, M		85 M	
BPTC	0,672	38	0,5	Mais	₩ 09		80 M	
EPTC	0,672	39	0,5	Mais	₩ 09		70 M	
EPTC	0,672	40	0,5	Mais	50 x		80 M	
EPTC	0,672	41	0,5	Mais	10 V,M	50 萬	75 M	65 M
EPTC	0,672	42	0,5	Mais	M 09		M 08 .	
EPTC	0,672	43	0,5	Mais	M, V OL	50 №	85 M	80 M
EPTC	0,672	44	0,5	Mais	40 M		70 M	
EPTC	0,672	45	.0,5	Mais	M 09		85 M	
EPTC	0,672	46	ر 2 0	Mais	40 V,M		85 萬	
EPTC	0,672	.47	0,5	Mais	M 09		80 M	
EPTC	0,672	48	0,5	Mais	Me V 0€		80 M	

- 120 -

	J ,	Gegenmittel	e1		Schädigung in %	gung i	n %		
Herbi- zid	. 4 Þ	Ver- bindung	Behand- lungsver-	Getrei	Behan	Behandel tes gut	Saat-	Unbehandeltes Saat- gut in der benachbar ten Reihe	es Saat- benachbar-
	g/m ^c	• • • •	% Gew./Gew.	a reen	2 Wochen		4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	49	0,5	Mais	м 09			70 M	
EPTC	0,672	20	0,5	Mais	₩ 09			₩ 06	•
EPTC	0,672	. 51	0,5	Mais	₩ 09	•		70 M	
BPTC	0,672	52	0,5	Mais	60 V,1	M		₩ 08	
EPTC	0,672	. 23	0,5	Mais	50 M			70 M	•.
EPTC	0,672	54	0,5	Kais	₩ 09			₩ 0 <i>L</i>	
EPTC	0,672	55	0,5	Mais	¤ 09	•		₩ 08	
BPTC	0,672	56	0,5	Mais	对 09			80 M.	
EPTC	0,672	57	0,5	Mais	₩ 09		-	₩ 59	
EPTC	0,672	58	0,5	Mais	20 ⋈		-	75 M	
EPTC	0,672	59	0,5	Mais	60 V,1			₩ 08	
EPTC	0,672	09	0,5	Mais	M. V 09			75 M	
EPTC	0,672	. 19	0,5	Mais	FO 34			85 M	٠
EPTC	0,672	62	5,0	Mais	40 V,	ø	₩ 09	80 M	™ 07
EPTC	0,672	63	0,5	Mais	30 V,1		. M 09	70 M	™ 07
EPTC	0,672	. 49	0,5	Mais	30 V,™	3	50 M	65 M	70 M

Tabelle III (Fortsetzung:

	· 5	Gegenmittel	e1.		Schädigung	g in %			
Herbi- zid	Anwendungs- verbältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehande gut in de barten Re	Unbehandeltes Saat- gut in der benach- barten Reihe	
EPTC	0.672	65	u C	Media	120-1		1551		٠
EPTC	0,672	99	0 0	Mais	50 V V V	a	7.0 a a	M O R	
EPTC	0,672	29	. O	Mais			80 M	٠	
EPTC	0,672	68	0,5	Mais	M 09		80 M		
EPTC	0,672	69	0,5	Mais	20 V,M	50 M	70 M	对 02	
EPTC	0,672	70	.0,5	Mais	40 V.W	50 V.M	80 M	80 M	
EPTC	0,672	17	0,5	Meis	40 V,M		¥ 08		
EPTC	0,672	72	0,5	Mais	M 09		65 M		
BPTC	0,672	73	0,5	Mais	M 09		80 M		
EPTC	0,672	74	0,5	Mais	M 09		80 M		
EPTC	0,672	75	0,5	Mais	№ 4 09		80 M		
EPTC	0,672	16	0,5	Mais	M. V 0€		75 M		
EPTC	0,672	77	0,5	Mais	M 09		75 M		
EPTC	0,672	78	0,5	Mais	м. Ф О9		75 M		
DLAS	0,672	79	0,5	Mais	50 V,M		75 M		
EPTC	0,672	80	0,5	Mais	M 09	M 09	65. M	70	
DLAH	0,672	81	0,5	Mais	TO A	20 M	50 M	50 M	
EPTC	0,672	82	0,5	Mais	30 V	30 S	50 M	50 M	

Tabelle III (Fortsetzung):

		•															
	ideltes Saat- der benach- Reihe	4 Wochen	25 M	20 K	45 M		•	-		90 M		•	75 M) [*]	·. ·		
	Unbehandeltes gut in der bei barten Reihe	2 Wochen	20 M	15 M	35 M	75 M	75 M	70 M	₩ 08	80 M	80 M	80 M	75 M	80 M	₽ 06	80 M	75 哑
ng in %	tes Sast-	4 Wochen	20 S	10 V	10 V	-				30. V.M.	٠.	•	20 V	·	· ·	÷.	
Schädigung in	Behandel tes gut	2 Wochen	20 V	10 V	30 A	50 V,M	30 V,M	M, V O≷	M 09	20 V,M	M. V 04	50 V,M	Δ. 09	M. V O€	100 K	30 V,M	20 4,™
	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mede	Mais	Mais	Male	Mais	Mais
1	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	540	6.0	0,5	0,5	0,5	0,5	6,5	ار ان ان	0,5
egenmittel	Verbin- dung Nr.		83	84	8 5	98	87	88	. 68	8	16	35	93	46	95	96	16
9	Anwendungs- verbältnis g/m ²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
-	Herbi- zia		EPTC	五 下 工 C	EPEC	EPTO	BPTC	EPTC	EPTC	田戸中で	田戸中の	EPTC	BPTC	BPTO	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung);

		Gegenmittel	ttel	1	Schädigung in %	ng in %		
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes Saat gut in der benach- barten Reihe	deltes Saat- der benach- Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	98	0,5	Mais	м' А 09		75 M	
EPTC	0,672	66	0,5	Mais	30 V	30 V,M	85 M	80 M
EPTC	0,672	100	0,5	Mais	40 V,M		65 站	
EPTC	0,672	101	0,5	Mais	50 V,M		75 M	
EPTC	0,672	102	0,5	Mais	M. V O€	. M 03	85 M	80 №
EPTC	0,672	103	0,5	Mais	50 kg		₩ 08	
EPTC	0,672	104	0,5	Kais	40 V,M		85 M	
EPTC	0,672	105	0,5	Mais	M, V O∂		85 M	
EPTC	0,672	106	0,5	Mais	40 V,M		₩ 08	
EPTC	0,672	107	0,5	Mais	30 V	20 V,M	85 M	80 M
EPTC	0,672	108	0,5	Mais	40 V,M		M 06	
EPTC .	0,672	109	0,5	Mais	30 V,M		м 06	
EPTC	0,672	110	0,5	Mais	40 V,M		85 M	
EPTC	0,672	111	0,5	Mais	40 V,M		75 M	
EPTC	0,672	112	0,5	Mais	χ, V 09	30 M	85 M	80 M
ЕРТС	0,672	113	5.0	Mais	30 V,M		₩ 08	
EPTC.	0,672	114	0,5	Mais	30 V,M		₩ 08	

125 - 124 -

Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis deart. 6/m² 0,672 115 0,5 Mais 20 V,M 0,672 118 0,5 Mais 30 V,M 0,672 120 0,5 Mais 30 V,M 0,672 122 0,5 Mais 20 V,M 0,672 124 0,5 Mais 20 V,M 0,672 124 0,5 Mais 20 V,M 0,672 125 0,5 Mais 20 V,M 0,672 126 0,5 Mais 30 V,M 0,672 127 0,5 Mais 20 V,M 0,672 128 0,5 Mais 50 V,M 0,672 128 0,5 Mais 50 V,M 0,672 127 0,5 Mais 50 V,M 0,672 128 0,5 Mais 50 W,M 0,672 128 0,5 Mais 128 0,5 M,M 0,672 128 0,5 Mais 128 0,5			Gegenmittel	ttel		S	chädigu	Schädigung in %		
0,672 115 0,5 Mais 40 V,M 90 M 0,672 116 0,5 Mais 30 V 75 M 80 0,672 116 0,5 Mais 30 V,M 70 M 90 M 0,672 118 0,5 Mais 30 V,M 70 M 70 M 0,672 120 0,5 Mais 30 V,M 70 M 70 M 0,672 121 0,5 Mais 40 V,M 75 M 70 M 0,672 121 0,5 Mais 40 V,M 75 M 70 M 0,672 122 0,5 Mais 20 V,M 75 M 75 M 0,672 122 0,5 Mais 40 V,M 75 M 75 M 0,672 124 0,5 Mais 40 V,M 75 M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 90 M 0,672 127 0,5 Mais 50 M 80 M <t< th=""><th>Herbi-</th><th>Anwendungs- verhältnis 8/m²</th><th>Verbin- dung Nr.</th><th></th><th>Getrei- deart</th><th>PA I</th><th>ebandel gut</th><th></th><th></th><th>ltes Saat- r benach- ihe</th></t<>	Herbi-	Anwendungs- verhältnis 8/m ²	Verbin- dung Nr.		Getrei- deart	PA I	ebandel gut			ltes Saat- r benach- ihe
0,672 115 0,5 Mais 40 V,M 90 M 0,672 116 0,5 Mais 20 V,M 75 M 80 0,672 117 0,5 Mais 20 V,M 70 M 70 M 0,672 119 0,5 Mais 30 V,M 75 M 75 M 0,672 120 0,5 Mais 20 V,M 75 M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 20 V 0,672 123 0,5 Mais 20 V,M 75 M 20 V 0,672 124 0,5 Mais 40 V,M 75 M 80 M 0,672 124 0,5 Mais 40 V,M 80 M 80 M 0,672 125 0,5 Mais 40 V,M 80 M 80 M 0,672 127 0,5 Mais 50 M 50 M 50		-					Wochen			
0,672 116 0,5 Mais 30 V 30 V 75 M 80 O,672 117 0,5 Mais 20 V,M 70 M 70	EPTC	0,672	115	0,5	Mais		¾. ∇			
0,672 117 0,5 Mais 20 V,M 70 M 0,672 118 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 40 V,M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 0,672 123 0,5 Mais 20 V,M 75 M 0,672 124 0,5 Mais 30 V,M 75 M 0,672 124 0,5 Mais 40 V,M 75 M 0,672 125 0,5 Mais 40 V,M 75 M 0,672 126 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 126 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 W 80 M 0,672 128 0,5 Mais	EPTC	0,672	116	0,5	Mais		A			
0,672 118 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 40 V,M 75 M 0,672 122 0,5 Mais 20 V 75 M 0,672 122 0,5 Mais 20 V 75 M 0,672 123 0,5 Mais 30 V,M 75 M 0,672 124 0,5 Mais 40 V,M 75 M 0,672 125 0,5 Mais 40 V,M 75 M 0,672 126 0,5 Mais 40 V,M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 50 M 0,672 128 0,5 Mais 50 M 50 M	EPTC	0,672	711	. iv.o	Mais		M. V			
0,672 119 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 40 V,M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V 10 M 20 0,672 124 0,5 Mais 30 V,M 75 M 20 0,672 124 0,5 Mais 40 V,M 75 M 20 0,672 125 0,5 Mais 40 V,M 80 M 80 M 0,672 126 0,5 Mais 60 M 80 M 80 M 0,672 126 0,5 Mais 50 M 80 M 80 M 0,672 128 0,5 Mais 50 M 80 M 80 M 0,672 128 0,5 Mais 50 M 55 M 60 M	EPTC	0,672	118	0,5	Mais	30	W. V			
0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V 75 M 0,672 123 0,5 Mais 20 V 10 M 20 0,672 124 0,5 Mais 40 V,M 75 M 80 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 129 0,5 Mais 50 M 80 M 0,672 129 0,5 Mais 50 W 55 M	EPTC	0,672	119	0,5	Mais		M. V			
0,672 121 0,5 Mais 40 V,M 75 M 0,672 122 0,5 Mais 20 V,M 55 M 0,672 123 0,5 Mais 20 V 10 M 20 0,672 124 0,5 Mais 40 V,M 75 M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 55 M 0,672 128 0,5 Mais 50 M 55 M	EPTC	0,672	120	0,5	Mais	30	M, V			
0,672 122 0,5 Mais 20 V,M 55 M 0,672 124 0,5 Mais 20 V 0,672 124 0,5 Mais 30 V,M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 0,672 127 0,5 Mais 50 M 0,672 128 0,5 Mais 50 W 0,672 129 0,5 Mais 50 W,B 50 W 0,672 129 0,5 Mais 50 W,B 50 W	SPTC	0,672	121	0,5	Mais		м. л	٠		
0,672 123 0,5 Mais 20 V 20 V 10 M 20 V 0,672 124 0,5 Mais 30 V,M 75 M 80 M 80 M 80,672 126 0,5 Mais 40 V,M 80 M 80 M 80 M 80,672 127 0,5 Mais 60 M 80 M 80 M 80,672 128 0,5 Mais 50 M 55 M 60 M 80,672 129 0,5 Mais 50 V,B 30 V,B 50 M 60	SPTC	0,672	122	0,5	Mais		≱ , ∨		•	}
0,672 124 0,5 Mais 30 V,M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 127 0,5 Mais 60 M 80 M 0,672 128 0,5 Mais 50 M 55 M 0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	E PTC	0,672	123	0,5	Mais	20				
0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 40 V,M 80 M 0,672 127 0,5 Mais 60 M 80 M 0,672 128 0,5 Mais 50 M 55 M 0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	SPTC	0,672	124	0,5	Mais	•	, д. A	• .		
0,672 126 0,5 Mais 40 V,M 80 M 0,672 127 0,5 Mais 60 M 80 M 0,672 128 0,5 Mais 50 M 55 M 0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	SPIC	0,672	125	0,5	Kais		Þ, Þ	•		
0,672 127 0,5 Mais 60 M 80 M 0,672 128 0,5 Mais 50 M 55 M 0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	DIATE	0,672	126	5.0	Mais		M. D			
0,672 128 0,5 Mais 50 M 55 M 60 0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	BPTC	0,672	127	0,5	Mais		J			
0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	SPTC	0,672	128	0,5	Mais		5 4			
	EPTC	0,672	129	0,5	Meis	. 30		30 V,B		

Tabelle III (Fortsetzung):

d	<u> </u>	en																٠	•
	tes Saat- benach- he	4 Wochen	P 09	55 W										80 M	70 №	80 M			70 M
	Unbehandeltes Saa gut in der benach barten Reihe	2 Wochen	40 M	25 M	45 M	₩ 65 ₩	70 M	70 M	80 M	. 85 M	75 M	M 08	75 M	80 M	75 №	85 K	85 M	80 M	65 Mi
g in %	Saat-	4 Wochen	30. A	. 0	0						_	-		30 V,M	50 H	50 M			20 V,M
Schädigung in %	Behandeltes gut	2 Wochen	30 V	10 V	.0	40 M	30 ₹	M, V 04	M. V O?	30 7 班	M. V 0€	50 V.M	M. V 0≷	20 V,M	20 V,M	N. V OI	50 V, M	20 V,M	20 V,M
	Getrei- deart		Kais	Mais	Mais	Mets	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Maje	Mais	Mais	Mais	Mais	Mais
tel	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	5,0	0,5	0,5	0,5	0,5	0,5	0,5	. 500	0,5
Gegenmit	Verbin-Beh dung ver Nr. % G		130	131	132	133	134	135	. 136	157	138	139	140	141	142	143	144	145	146
	Anwendungs-verhältnis g/m ²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		DIAB	BPTC	EPIC	BPTC	EPIC	EPTC	BPTC	EPTC	EPTC	BPTC	BPEC	BPTC	BPTC	BPTC	EPTC	EPTC	EPTC

3-0-6

		Gegenmittel	tel		Schädigung in %		
Herbi-	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes gut in der be barten Reihe	ideltes Saat- der benach- Reihe
מלא	EI / SO		-		2 Wochen 4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	147	0,5	Mais	10 V 01	75 M	₩ 08
EPTC	0,672	148	0,5	Mais	₩ 09	₩ 5L	•
BPTG	0,672	149	5,0	Mais	40 V,M	75 M	
EPEC.	0,672	150	0 5 5	Mete	M, V 0€	70 M	
BPTO	0,672	151	0,5	Mais	50 K	70 M	
BPTC	0,672	152	0°5	Mais	40 M	₩ 08	٠
BPTC	0,672	153	0,5	Mais	50 M	85 M	
EPTC	0,672	154	0,5	Mais	M, V 0€	75 M	
BPTC	0,672	155	0,5	Mais	20 V,M 40 M	85 M	80 M
EPTC	0,672	156	0,5	Mais	₩ 09	85 M	•
BPTC	0,672	157	ر رو	Mais	M, V 0€	M 08	
BPTC	0,672	158	5,0	Mais	20 V,™	₩ 02	
EPTC	0;672	159	6,0	Mais	30 V,M	75 M	
EPTC	0,672	160	0,5	Mais	M, V 0€	75 M	
EPTC	0,672	191	0,5	Mais	M. V 02	70 M	· :
EPTC	0,672.	162	0,5	Mais	30 V,M	65 M	· · ·
EPTC	0,672	163	0,5	Mais	м. и 09	M 09	
	•						•

- 127 -

		Gegenmittel	te]		ני יכ גי ני ני ני ני ני ני ני ני ני ני ני ני ני	South things to a second		
Herbi- zid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	ltes Saat-	Unbehandeltes Saatgut in de nachbarten Re	iltes n der be- n Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	164	0,5	Mais	M 09		70 M	
EPTC	0,672	165	0,5	Mais	M 09	-	75 M	
EPTC	0,672	166	0,5	Mais	40 V,M	80 PR	75 M	м 09
EPTC	0,672	167	0,5	Mais	50 V,M		75 區	·
EPTC	0,672	168	0,5	Mais	M. V O9		₩ 08	
EPTC	0,672	169	0,5	Mais	30 V	30 Ф	80 M	80 M
EPTC	0,672	170	0,5	Mais	30 V, M		80 M	
EPTC	0,672	171	0,5	Mais	M 09		75 M	
EPTC	0,672	172	0,5	Mais	40 M		75 M	
EPTC	0,672	173	0,5	Mais	30 V,M	50 M	80 M	80 M
EPTC	0,672	174	0,5	Mais	M, V 09		· 斯 08	
EPTC	0,672	. 175	0,5	Mais	30 V,M		85 M	
EPTC	0,672	921	0,5	Mais	40 V,M		м 58	
EPTC	0,672	¥77	0,5	Mais	30 V,M		85 M	
EPTC	0,672	178	0,5	Mais	50 V,M		₩ 08	

Tabelle III (Fortsetzung):

			٠						•								• •		
	deltes Saat- der benach- Reihe	4 Wochen	5 M			0	0	15 函	30 M	0	45 M	45 M	35 ™	15 M	50 M	40 M	35 萬	25 M	
	Unbehandeltes gut in der ber barten Reihe	2 Wochen	0	0	0	0	0	5 14	3 14	0	S M	1,3	5 🗷	0	3 M	S A	10 M	0	
ung in %	tes Saat-	4 Wochen	0			0	0	· 0	0	0	0	0	•	0	0	0	· .	0	
Schädigung in	Behandeltes gut	2 Wochen		0	0	0	0	0	·. •	0	0	0	0	0			0		
	Getreide-		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais							
tel	Behandlungs-verhältnis % Gew./Gew.		0,5	0,5	. 6.0	. 0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	5,0	0,5	0,5	0,5	
Gegenmittel	Verbin- dung Nr.		179	180	181	182	183	184	185	186	187	188	189	190	161	192	193	194	
	Anwendungs- verhältnis	8/四	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	
	Herbi-	בזם	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC							

430

Unbehandeltes Saatgut in der benach-4 Wochen 80 14 50 kg 40 M barten Reihe 22 2 Wochen 55 M 55 K 75 K 88 65 ≥ 9 Behandeltes Saat-Schädigung in % 2 Wochen 4 Wochen 20 V,K 当 20 に 10 V 0 gut 30 V M 50 V,M 20 V 1 30 V,M 30 A P 40 V,M M, V 00 100 K 100 K ₩ 09 ₩ 60 20 20 対 20 20 20 ₹ Getreideart Mais Mete Mais Mais Mais Mais Behandlungs % Сеж./Сеж. verhäl tnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,0 0,0 0,5 0,5 Gegenmittel Verbindung 195 196 198 199 200 197 201 202 203 204 205 206 208 209 207 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-BPTC EPTC EPTC EPTC EPTC EPTC EPTC **EPTC** EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid

Unbehandeltes Saatgut in der benach-2 Wochen 4 Wochen 50 kg barten Reihe 95 K M, V OL Behandeltes Sast-4 Wochen 100 K 10 A Sohädigung in % 2 Wochen 100 K 100 K 100 K 10.4 10 V 30 · 4 10 4 10 V 50. 4 . წ Getrei-%. Gew. /Gew. deart Mais Mais Mais Mais Mais Mais Mais Mais Mais Meis Mais Mais Mais Mais Mais Mais Behandlungs verhältnis Gegenmittel Verbingunp 219 217 218 220 212 223 211 213 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC BPTC EPTC EPTC BPTC EPTC EPIC BPTC EPTC BPTC DPTC EPTC EPTC EPTC

Tabelle III (Fortsetzung);

	-1	Gegenmittel	-1		Schädigung in %	ng in %		
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Saat- Unbehandeltes gut in der ber barten Reihe	ideltes Saat- der benach- Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	226	0,5	Mais	20 V	10 V	м 26	. Ж 08
EPTC	0,672	227	0,5	Mais	20 V	20 V	85 M	
EPTC	0,672	228	0,5	Mais	40 V,M		M 26	
EPTC	0,672	229	0,5	Mais	40 V,M		M 06	
EPTC	0,672	230	0,5	Mais	40 V,M		95 M	
EPTC	0,672	231	0,5	Meis	40 V,M		88 M	
EPTC	0,672	232	0,5	Mais	0	0	55 M	₩ 09
EPTC	0,672	233	0,5	Mais	30 V,M		70 尾	
EPTC	0,672	234	0,5	Mais	0	TO T	55 M	M 09
EPTC	0,672	. 235	0,5	Mais	10 V	10 V	70 M	65 M
EPTC	0,672	236	0,5	Mais	0	0	30 M	45 M
EPTC	0,672	237	0,5	Mais	0	10 V	м 29	65 M
EPTC	0,672	238	0,5	Mais	30 V,M		75 M	
EPTC	0,672	239	0,5	Mais	50 V,M		80 M	
EPTC	0,672	. 240	0,5	Mais	0	10 M	25 M	55 M
EPTC	0,672	241	0,5	Mais	0	0	45 M	45 M

Tabelle III (Fortsetzung):

	,																		-
	deltes Saat- der benach- Reihe	4 Wochen		₩ 02														· -	• .
	Unbehandeltes Saat gut in der benach- barten Reihe	2 Wochen	50 M	75 M	20 M	28 M	M 8	. M 6	₩ 02	™ 07	€5 M	20 M	15 M	M 8	50 M	5 屋	15 M	¥ 0.7	NO M
18 in %	es Saat-	4 Wochen		30 M							•	,			:			•	
Schädigung in %	Behandeltes gut	2 Wochen	30 V,M	No V.	0	TO V	0	. Δ ΟΤ	20 V	10 V	0	ο.		0	5 M		0	0	a
1	Getrei- deart	a.	Mais	Mais	Mais	Mais	Mais	Meis	Mais										
tel	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	5,0	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		242	243	244	245	246	247	248	249	250 .	251	252	253	254	255	256	257	258
-	Anwendungs- verhältnis. / 2	B/B	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi-	zıq	EPTC	EPIC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

- 333 -

Unbehandeltes Saatgut in der benach-4 Wochen barten Reihe 2 Wochen Schädigung in % Behandeltes Saat-2 Wochen 4 Wochen Tabelle III (Fortsetzung): Getreide-Mais Mais Verbin- Behandlungs-dung verhältnis % сем./сем. 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 20,2 0,2 0,5 0,5 o, 0 0,5 Gegenmittel 260 265 266 268 269 270 272 261 262 263 264 267 271 Anwendungs-verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPTC BPTC EPTC BPTC EPTC EPTC EPTC EPIC ELIC EPIC EPTC

209845/1180

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Schädigung in %	
Herbi-	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut 2 Wochen 4 Wochen	Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen
EPTC	0,672	275	0,5	Mais	0	40 M
EPTC	0,672	276	0,5	Mais		40 M
BPTC	0,672	277	0,5	Mais	10 Λ	35 M
EPTC	0,672	278	. 0,5	Mais	0	40 M
BPTC	0,672	279	0,5	Mais	0	33 M
DEAG	0,672	280	0,5	Mais	0	50 M
BPTC	0,672	281		Kais	0	M 59
EPTC	0,672	282	0,5	Mais	10 B	38 M
EPTC	0,672	283	0,5	Mais	0	80 M
EPTC	0,672	284	0,5	Meis	0	35 M
EPTC	0,672	285	0,5	Mais	0	75 M
EPTC	0,672	. 582	0,5	Mais	10 V	70 M
EPTC	0,672	287	0,5	Meis	10 Δ	75 M
EPTC	0,672	.288	0,5	Mais	10 Φ	35 班
EPTC	0,672	289	0,5	Mais	0	35 M
EPTC	0,672	290	0,5	Mais	0	50 M
EPTC	0,672	291	0,5	Mais	O	50 kg
			•			

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Schädigung in %	%
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
					2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	292	0,5	Mais	0	30 M
EPTC	0,672	293	0,5	Mais	0	55 M
EPTC	0,672	294	0,5	Mais	0	ж 09
EPTC	0,672	295	0,5	Mais	0	25 M
EPTC	0,672	296	0,5	Mais	0	15 M
EPTC	0,672	297	0,5	Mais	0	10 M
EPTC	0,672	298	0,5	Mais	0	. M S
EPTC	0,672	299	0,5	Meis	0	20 M
EPTC	0,672	300	0,5	Mais	0	0
EPTC	0,672	301	0,5	Mais	0	23 M
EPIC	0,672	302	0,5	Mais	0	25 政
EPIC	0,672	303	0,5	Mais	0	15 站
EPTC	0,672	304	0,5	Mais	0	40 M
EPTC	0,672	305	0,5	Mais	0	35 M
EPTC	0,672	306	0,5	Mais	0	15 M
EPTC	0,672	307	0,5	Mais		15 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	%
Herbi- zid	Anvendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der benachbarten Reihe
					2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	308	. 50	Mais	.0	M 80
SPIC	0,672	309	0,5	Mais	0	25 M
PPC	0,672	310	0,5	Mais	0	45 M
SPTC	0,672	115	0,5	Mais	O	30 M
PLC	0,672	312	0,5	Mais		₩ OL
SPTC	0,672	313	. 0,5	Kais	0	₩ 5 9
SPTC	0,672	314	0,5	Mais	у м. ч об	. ₩ 09
EPTC .	0,672	315	0,5	Kais	50 M	70 M
EPIC	0,672	316	0,5	Mais	0	•
TPIC	0,672	317	0,5	Kais	0	₩ OL .
SPTC	0,672	318	0,5	Kais	30 A,M	₩ 09
EPTC	0,672	319	0,5	Mais	30 V,™	ж 09
SPTC	0,672	320	0,5	Mais	0	0
SPTC .	0,672	321	0,5	Mais	0	M 59
SPTC	0,672	322	0,0	Mais	10 V	10 M
RPTC	0,672	323	0,5	Mais	10 V	40 M
					•	

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	
Herbi- zid	Anwendungs- · verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut	Unbehandeltes Saatgut in der benachbarten Reibe
	m/9				2 Wochen 4 Wochen	2 Wochen 4 Wochen
BPTC	0,672	324	0,5	Mais	ж 09	75 M
EPTC	0,672	325	0,5	Mais	ж 09	. M 08
EPTC	0,672	326	0,5	Mais	20 V	70 M
EPTC	0,672	327	0,5	Mais	30 V,M	75 M
EPIC	0,672	328	0,5	Mais	ж. Ф 09	ж 52 ⋅
EPTC	0,672	. 329	0,5	Mais	0	ж 09
EPTC	0,672	330	0,5	Kais	№ 4 О€	M 59
EPTC	0,672	331	0,5	Mais	10 V	70 M
EPTC	0,672	332	0,5	Mais	0	2 1
EPTC	0,672	333	0,5	Mais	0	15 M
DPTG	0,672	334	0,5	Mais	0	23 M
EPTC	0,672	335	0,5	Kais	20 V,B	35 M
EPTC	0,672	336	6,0	Mais	95 V	30 M
EPIC	0,672	337	0,5	Kais	0	
EPIC	0,672	338	0,5	Meis	0	M 09
EPTC	0,672	339	0,5	Mais	30 M	75 M

Tabelle III (Fortsetzung):

750-088

		Gegenmittel	tel		Schädigung in %	
Herbi-	4 Þ.	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	n/8				2 Wochen 4 Woohen	2 Wochen 4 Wochen
BPTC	0,672	340	N. 0	Mais	. 0	25 M
BPTC	0,672	341	0,5	Mais		30 M
EPTC	0,672	542	. 940 .	Mais	60 M	M. 08
EPTC	0,672	343	0,5	Mais	0	M 24
EPTC	0,672	344	0,5	Meds	TO V	75 M
EPTC	0,672	345	0,5	Mais		75 M
EPTC	0,672	346	0,5	Mais	10 V	£ 5 ¥
EPTC	0,672	347	0,5	Mais	50 V,M	80 M
EPTC	0,672	. 348	0,5	Mais	0	65 M
EPTC	0,672	349	. 5.0	Mais	м. Ф 09	75 M
EPTC	0,672	350	0,5	Mais	₩ 09	80 M
EPTC	0,672	351	0,5	Mais	M. V 09	75 M
EPTC	0,672	352	0,5	Mais	M. v 09	₩ 08
EPTC	0,672	353	5,0	Mais	M, V 08	75 M
EPTC	0,672	354	0,5	Mais	M. V O?	м 08
BPTC	0,672	355	6,0	Mais	Т, Т 09	м о7

Tabelle III (Fortsetzung):

		•
Л	м	л
		٠.

									: .					·	٠.		1	•
	ndeltes Saat- der benach- Reihe	4 Wochen	: № 08	• . . ·		80 M					80 M	80 M		80 M	80 M			
	Unbehandeltes gut in der ber barten Reihe	2 Wochen	₩ 08	M_27	85 M	₩ 06	M 06	M 07		85 M.	到 06	85 M	80 M	对 06	™ 07	85 M	75 M	80 M
7 in %	se Saat-	4 Wochen	40 V,M			30 №	: · · ·	· .			20 M	40 M		30 V	10. Δ		30 函	•
Schädigung in %	Behandeltes gut	2 Wochen	30 V	30 V, M, B	™ 09 ·	50 V,B	50 M	40 V,™	80 M	50 №	10 V	30 V	50 м	50 V,B	20 V	M 09	10 Φ	₩ 09
:	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tte]	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	ر,0	٥ , ٥	0,5	0,5	. O .	0,5	5,0	5,0	0,5	0,5	0,5	0,5	0,0	0,5
Gegenmittel	Verbin- dung Nr.		. 372	373.	374	375	376	377	.378	379	380	381	382	383	384	385	386	387
	Anwendungs- verbältnis	65/E	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi-		EPIC	EPTC	EPTC	EPTC	EPTC.	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC .	म्सम्	EPTC

142

			•														
	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen	55 M			M 08	75 M	₩ 08	80 M	65 M	75 M	. W 09	图 14	80 M	75. M	M 08	75 M	₩ 08
% ii %	tes Saat-		0		0				10 M	0	20 M						
Schädigung in %	Behandeltes gut	100 K	10 V	15 V,M	10 V	М. Ф ОЭ	M 09	M, V 0€	10 V	10 V	10 V	PE 09	¥ 09	м 09	M 09	40 V,M	м. Т 09
	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403
	Anwendungs-verhältnis g/m ²	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid	EPTC	EPTC.	EPIC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPIC

	Unbehandeltes Saatgut in der be- nachbarten Reihe	2 Wochen 4 Wochen	80 M	80 K	80 M	80 M	. 80 M	80 M	80 M	80 M	м ов	280 対	80 M	M 08	80 M				
Schädigung in %	ttes Saat-	4 Wochen	·:						: .									-	
	m l	2 Wochen	70 M	м о7	₩ 02	№ 02	M, 02	M 07.	₩ 0L	м 09	70 M	70 M	70 M	™ oY	70 区	™ 09	70 M	70 M	70 M
	Getrei-		Mais	Mais	Mais	Mais	Mais.	Mais	Mais	Mais	Mais	Mais							
Gegenmittel	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0.95	0,5	0,5	0,5	0,5
	Verbin- dung Nr.		404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
	Anwendungs- verhältnis · g/m		0,672	0,672	0,672	0,672	0,672	0,672	0,672	. 0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	SPTC	EPTC	FPTC							

- 143-

144

			RI	DETTE TT	rabelle ill (Fortsetzung):	
		Gegenmittel	nittel	1	Schädigung in %	
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbir dung Nr.	Verbin- Behandlungs. dung verhältnis Nr. % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut 2 Wochen 4 Wochen	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen
EPTC	0,672	421	.0,5	Mais	70 M	80 M
EPTC	0,672	422	0,5	Meis	У О М	80 M
EPTC	0,672	423	. 5,0	Mais	70 м	80 M
EPTC	0,672	424	0,5	Mais	70 班	80 M
BPTC	0,672	425	0,5	Mais	ж о2	80 M
EPTC	0,672	426	0,5	Mais	M. V 09	75 M
EPTC	0,672	427	0,5	Wais	70 M	75 巫
EPTC	0,672	428	0,5	Mais	₩ 0 <i>L</i>	75 M
EPTC	0,672	429	0,5	Mais	М, ∨ 07	M 08
EPTC	0,672	430	0,5	Mais	M, V O7	75 班
EPTC	0,672	431	0,5	Mais	M. V O7	80 M
EPTC	0,672	432	0,5	Mais	70 V,M	. M. 08
EPTC	0,672	433	.0,5	Mais	70 M	₩ 08
EPTC	0,672	434	0,5	Mais	м, ч о7	80 M
EPTC	0,672	435	0,5	Mais	70 M	.75 M
EPTC	0,672	436	0,5	Mais	м. Ф 09	75. M

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	<i>1</i> %		
Herbi- zid	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei	Behandeltes Se gut	Saat-	Unbehandeltes Saat- gut in der benach- barten Reihe	
	8/m			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Wochen 4 Woo	Wochen	2 Wochen 4 Wochen	
EPTC	0,672	437	0,5	Mais	. M. v o o o o o o o o o o o o o o o o o o	·	75 M	
EPTC	0,672	438	.0,5	Mais	™, v or		80 M	
EPTC	0,672	439	0,5	Mais	20 V		75 M 7	
EPTC	0,672	440	0,5	Mais	TO A OT		65 M	
EPTC	0,672	441	0,5	Mais	30 V		15 M	
БРТС	0,672	442	0,5	Mais	10 V		Т 0 №	
EPTC	0,672	443	0,5	Mais	10 V		20 元	
EPTC	0,672	444	0,5	Mais	TO A		· it 59	
EPTC	0,672	445	0,5	Mais	₩ 0 <i>L</i>		75 M	
EPTIC	0,672	446	0,5	Mais	20 V		65 M	
EPTC	0,672	447	0,5	Mais	₩ 09	•	80 M	
EPTC	0,672	448	0,5	Mais	№ Д 05		№ 02	
EPTC	0,672	449	0,5	Mais	70 M		图 08	
EPTC	0,672	450	0,5	Mais	м € 0 09		N 08	
EPTC	0,672	451	ις. 6	Mais	20 V		₩ о⁄	

- 149 -

	G	Gegenmittel	tel		Schädigung in %	
Herbi- zid	Anwendungs- verhältnis g/m^2	Verbin- dung . Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saat- gut in der benach- barten Reihe
					z wocnen 4 wocnen	wocnen 4 wocnen
EPTC	0,672	452	0,5	Mais	и, ∨ оγ	80 M
EPTC	0,672	453	0,5	Mais	20 V	M 09
EPTC	0,672	454	0,5	Mais	70 M	75 M
EPTC	0,672	455	0,5	Mais	20 V	65 M
EPTC	.0,672	456	0,5	Mais	M, V O∂	и 51
EPTC	0,672	457	0,5	Mais	M,V OY	80 M
EPTC	0,672	458	. 0,5	Mais	№ 4 05	70 M
EPTC	0,672	459	0,5	Mais	40 V,M	80 M
EPTC	0,672	460	0,5	Mais	м. и 09	80 M
EPTC	0,672	461	0,5	Mais	10 V	80 M
EPTC	0,672	462	0,5	Mais	30 V,M	75 M
EPTC	0,672	463	0,5	Mais	70 M	80 M
EPTC	0,672	464	0,5	Mais	70 M	80 M
EPTC	0,672	465	0,5	Mais	50 V,M	80 M
EPTC	0,673	466	. 5.0	Mais	ZO V. M	70 M

- 146 -

147

	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen																
	Unbehand gut in d barten R 2 Wochen	75 M	₩ 08	80 M	75 M	65 №	25 M	80 IX	80 M	70 M	15 M	.80 M	图 08	80 M	₩ 08	80 M	80 M
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen	0	м 6 л 09	10 V	M 09	50 V,M	20 V,M	70 M	. M 07	20 V,M	10 V	30 V M	20 V,M	М. Ф. ОЭ	To V,M	70 M	м € л 09
	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais.	Mais	Mais	Mais	Mais
tel	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	5,0	0,5	. 5.0.	0,5	5.0.	0,5	0,5	6,5	. 0,5	0,5	0,5	5.0	0,5
Gegenmittel	Verbin- dung Nr.	467	468	469	470	471	472	473	474	475	476	477	478	479.	480	481	482
	Anwendungs-verhältnis g/m^2	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zíd	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädig	Schädigung in %		
Herbi-	Anwendungs- verhältnis g/m^2		Verbin- Behandlungs. dung verhältnis Nr. % Gew./Gew.	Getrei- deart	Behandeltes gut 2 Wochen 4 W	tes Saat-	Unbehandeltes Saa gut in der benach barten Reihe 2 Wochen 4 Wochen	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen
EPTC	0,672	483	6,0	Mais	70 V,M		80 M	-
EPTC	0,672	484	0,5	Mais	M 09		7.5 M	
EPTC	0,672	485	0,5	Mais	™ 0 <i>T</i>		80 M	
EPTC	0,672	486	0,5	Mais	10 V		25 M	
EPTC	0,672	487	0,5	Mais	10 V		40 M	
EPTC	0,672	488	0,5	Mais	50 V,M		55 M	
EPTC	0,672	489	0,5	Mais	0		0	
EPTC	0,672	490	0,5	Meis	TO U	30 V	70	To M
EPTC	0,672	491	0,5	Mais	20	50 V,M	70	и о7
EPTC	0,672	492	0,5	Mais	50	75 V,M	M 08	
EPTC	0,672	493	. 5.0	Mais	. M. V O4		80 V,M	
EPTC	0,672	494	0,5	Mais	0	50 V,™	75 站	85 M
EPTC	0,672	495	6,0	Mais	10 Φ		77 M	75 M
EPTC	0,672	496	0,5	Mais	№ 4 об	М, V ОЭ	95 並	м 86
EPTC	0,672	497	0,5	Mais	50 M		₩ 86	
EPTC	0,672	498	0,5	Mais	30 V,™		M 76	

Tabelle III (Fortsetzung):

٠.		Gegenmittel	ttel	:	Schädigung in %	ng in %			
Herbi- zid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut Wochen 4	tes Saat-	Unbehandeltes gut in der be barten Reihe 2 Wochen 4 W	deltes Saat- der benach- Reihe en 4 Wochen	
EPTC	0,672	499	0,5	Mais	M 09		₩ 86		
EPTC	0,672	500	0,5	Mais	10 V	20 V	78 M	. m 16	
EPTC	0,672	501	. 6,0	Mais	10 V	20 V	20 班	04.	
EPTC	0,672	505	0,5	Mais	100 K	100 K	55 城	見 09	
EPTC	0,672	503	0,5	Mais	100 K	100 K	30 M	40 №	
EPTC	0,672	504	0,5	Mais		0	万 国	30 M	
EPTC	0,672	505	0,5	Mais	30 Т	30 V	0	0	-
EPTC	0,672	506	0,5	Mais	10 V	. 25 M	. № 85	•	
EPTC	0,672	507	0,5	Mais	20 V,M		M 59		
BPTC	0,672	508	0,5	Mais	A OI.		™ 8 L		
EPTC	0,672	509	0,5	Mais	40 V,M		M.68	•	
EPTC	0,672	510	0,5	Mais	0	0	84 M	94	
EPTC	0,672	511	0,5	Mais	100 K	100 K	45 M	50 M	
EPTC	0,672	515	0,5	Mais	100 K	100 K	0	0	
EPTC	0,672	513	0,5	Mais	100 K	100 K	· .	o _.	

Tabelle III (Fortsetzung):

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
EPTC	0,672	1	1	Mais	90 M	Wochen 4 wochen 2 wochen 4 wochen 90 M
S-2,5,5-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	9	0,25	Weizen	2 A	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	9	6,0	Weizen	20 V	·
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	. 1	ı	Weizen	м 06	
EPTC +	0,672 +	·				•
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	•	9	1,0	Wai s	0	. 0
EPTC +	0,672 +					
2-Chlor-4-äthyl- emino-6-isopropyl- amino-s-triazin	0,112	9	0,01	Mais	0	

Tabelle III (Fortsetzung):

		Gegermittel	tel		Schädigung in %	ng in %		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes Saatgut in de nachbarten Re	deltes in der be- ten Reihe
+ 000000	0.672 +					Н		rł ·
2-Chlor-4,6-bis (Athylamino)-s-	0.112	.	1.0	Mais			0	. 0
EPTC +	0,672 +							
2-Chlor-4,6-bis äthylamino)-s- triazin	0,112	9	0,01	Mais	. 0	0	· . ·	
EPTC +	0,672 +							
2(4-Chlor-6- äthylamino-s- triazin-2-yl- 'amino)-2-methyl- bropionitril	0.112	9	1,0	Mais	0	0		0
EPTC +			• -					
2(4-chlor-6- äthylamino-s- triazin-2-yl-	· : ·		· · · · · · · · · · · · · · · · · · ·					
amino)-2-methyl- propionitril	0,112	. 9	0,01	Mais	0			•

Tabelle III (Fortsetzung):

	Unbehandeltes Saat- gut in der benach- barten Reihe	Wochen 4 Wochen	0						O	
18 in %	Saati	4 Wochen 2 F			0) C) o		0	
. Schädigung in %	Behandeltes gut	2 Wochen	0		0	a	, ,		.	м 06
1	- Getrei- deart		Mais		Mais	Mais	Mais		Mais	Mais
tel	Behandlungs. verhältnis % Gew./Gew.		1,0	·	0,01	1,0	0,01		1,0	ı
Gegenmittel	Verbin- dung Nr.		. 9		9	9	9		9	t
	Anwendungs- verhältnis g/m ²	0,672 +	0,112	0,672 +	0,112	0,672 + 0,112	0,672 + 0,112	+ 0,9672 +	0,112	0,672
	Herbizid	EPTC +	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-	triazin	EPTC + 2,4-D	EPTC + 2,4-D	S-Propyldipro- pylthiol-carbamat + 0,672 2-Chlor-4-äthyl- amino-6-isopropyl-	amino-s-triazin	S-Propyldipropyl- thiolcarbamat

Tabelle III (Fortsetzung):

0 0
0
0
0
Mais
0,1
vo
- hyl- 0,112
2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2-methyl- propionitril

Tabelle III (Fortsetzung):

			- 	-			
	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen			0			0
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen			0		0	0
Schä	Beh	0		0		0	0
	Getrei- deart	Mais		Mais		Mais	Mais
	Behandlungs- verhältnis % Gew./Gew.	0,01		1,0		. 10,0	1,0
Gegenmittel	Verbin- dung Nr.	. 9		. 9		.9	۰
වී	Anwendungs- verhältnis <u>B/m</u> 2	0,672 +	0,672 +	0,112.	0,672 +	0,112	0,672 + 0,112
	Herbizid v	S-Propyldipropyl- thiolcarbamat + 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2- methylpropioni- tril	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-	sopropramino- s-triazin	S-Propyldipropyl- thioloarbamat + 2-Chlor-4-cyclo- propylamino-6-iso-	propytamino-s- triazin	S-Propyldipropyl- thioloarbamat + 2,4-D

Tabelle III (Fortsetzung):

·	Ge	Gegenmittel			Schädigung in %	g in %		. 1
Herbizid	Anwendungs- Verbin- verhältnis dung g/m ² Nr.	Verbin- dung Mr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes Saatzut in der nachbarten keil 2 Jochen 4 pop	der be- neine
S-Propyldipro- pylthiol- carbamat + 2,4 D	0,672 +	9	0,01	Mais		0		
S-Propyldipro- pylthiol- carbamat +	0,672	. •	1,0	Mais	. 0	0	0	
S-Propyldipro- pylthiol- carbamat	0,672	. 9	0,01	Mais	. 0	0	•	155
S-Athyldiiso- butylthiol- carbamat + 2-Chlor-4-	+ 968,0	•		· .·				
athylamino-6- isopropylamino- s-triazin	0,112	9	1,0	Mais	. 0	0	0	
S-Äthyldiiso- butylthiol- carbamat + 2-Chlor-4-	+ 968*0							•
äthylamino-6- isopropylamino- s-triazin	0,112	•	0,01	Mais	0	o .		

belle III (Fortsetzung):

				- 255 - 15(•				
	Unbehandeltes Saatgut in der be- nachbarten Reihe		0				0		
Schädigung in %	Behandeltes Saat-gut		0 0		0		0		0
	Getrei- åeart		Mais		Mais		Mais		Mais
Gegenmittel	Behandlungs- verhältnis % Gew./Gew.		1,0		0,01		1,0		0,01
	Verbin- dung Nr.		9		9		9		9
	Anwendungs-verhältnis g/m^2	+ 968.0	0,112	0,896+	0,112	i- 0,896 + 1-	ril 0,112	1- 0;896+ 1-	-yi- pro- 0,112
	A Herbizid v	S-Athyldiisobu- tylthiol- carbamat + 2-Chlor-4,6-bis (äthylamino)-s-	triazin	S-Äthyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis (äthylamino)-s-	triazin	S-Äthyldiisobutyl- thiolcarbamat + 2(4-Chlor-6-äthyl- amino-s-triazin-	methyl-propionitril 0,112	S-Athyldiisobutyl- thiolcarbamat + 0 2(4-Chlor-6-Athyl-	amino)-2-mathyl-pro- pionitril

Tabelle III (Fortsetzung):

	a g	Gegenmittel		ŭ	Schädigung in	'n %			
Herbizid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	Sagati Sagati	Unbehandeltes Saatgut in der benachbarten Reihe	eltes in der rten	
					2 Wochen	4 Wochen		4 Wochen	
S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4-cyclo-	+ 968'0	· ·			·			÷	
propylamino-6-iso-	1.4				<i>:</i>	. •		·· .	
azin	0,112	9	1,0	Mais	0	0	0	0	_
S-Athyldiisobutyl- thiol-carbamat + 2-Chlor-4-cyclo-	+ 968*0	,		· .				•)
propylamino-6-iso- propylamino-s- triazin	0,112	· · v o	0,01	Mais	•			· .	•
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	L- 0,896 + 0,112		1,0	Mais	0	0	.0	0	
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	0,896 + 0,112		0,01	Majs	0	0			
S-Athyldiisobutyl- thiolcarbamat	968'0	9 .	1,0	Mais	. •		0	. 0	

Tabelle III (Fortsetzung):

indeltes it in der ibarten	en 4 Wochen	o	•			0				•	
Unbehs Saatgu benach Reibe	2 Woch	0		.0		0					
ltes Saat- ut	1 4 Wochen	0		0		0					
Behande 87	2 Wocher	0		0		0		20 14		30 V	
Getrei- deart		Mais		Mais		Mais		Mais		Mais	
Behandlungs- verhältnis % Gew./Gew.		0,01		1,0		0,01		ı		ı	ocarbamat;
Verbin- dung Nr.		9		9	,	9		ı		ı	ropylthi
nwendungs- rerhältnis g/m ²	·	Ø		ω		ထ		ω		ω	hyl-N,N-di
Herbizid 4	S-Athyldiiso-	carbamet	S-2,3,3-Tri- chlorallyl-di-	isopropyl-thiol- carbamat	S-2,3,3-Trichlor- allyldiisopropyl-	talolcarbamat	S-Athyldiiso- butylthiol -	carbamat	S-2, 3, 5-Trichlor- allyl-diisopro-	pyl-thiolcarbamat	EPTC = S-Athyl-N, N-dipropylthiocarbamat
	Anwendungs- Verbin- Behandlungs- Behandeltes Saat- verhältnis dung verhältnis Getrei- gut g/m % Gew./Gew. deart	Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis Getrei- g/m² Nr. % Gew./Gew. deart 2 Wochen 4 Woohen 2 Wochen 4	Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis Getrei- g/m² Nr. % Gew./Gew. deart iiso- 8 6 0.01 Mais 0 0 0 0 0 0	Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis dung verhältnis Getreigen gut Saatgut in Benachbarte gut Saatgut in Benachbarte Reihe Reihe 2 Wochen 4 Wochen 4 Wochen 4 Wochen 4 Wochen 4 O C C	Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis Getrei- gut gut Saatgut in benandelte saat- Verbin- Behandlungs- saat- Verbin- Saatgut in benachbarte saat saat saat saat saat saat saat sa	Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis Getrei- gut Saatgut in benandelte Saat- Unbehandelte Saat- Verbin- Behandlungs- gut gut Saatgut in benachbarte Reihe Reihe Reihe 2 Wochen 4 Wochen 4 O C C C C C C C C C C C C C C C C C C	erhältnis dung verhältnis Getrel- gut Behandeltes Saat- erhältnis dung verhältnis Getrel- gut Saatgut in benachbarte 8 6 0,01 Mais 0 0 0 0 0 0 8 6 0,01 Mais 0 0 0 0 0 0 0	erhältnis dung verhältnis Getrei- g/m² Nr. % Gew./Gew. deart 8 6 0,01 Mais 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mwendungs- Verbin- Behandlungs- graft and gut saat- saatut in serhältnis dung verhältnis Getrei- gut Saatut in benachbarte and mr. % Gew./Gew. deart 2 Wochen 4 Wochen 2 Wochen 4 Seihe 2 Wochen 4 Seihe 2 Wochen 4 Ochen 4 Oc	### Behandlungs-Verbin-Behandlungs- ### Behandlungs- Perhandlungs- Perhandlungs-	### Satural Composition of Satural Compositio

Verkümmerung; Misbildung; Keimhemmung; Blattverbrennung (leaf burn).

医耳肌丸

Die erfindungsgemäß eingesetzten Gegenmittel können in jeder geeigneten Form angewandt werden. So können sie beispielsweise zu emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, zu einer Flüssigkeit, zu einem benetzbaren Pulver, zu Staubmitteln, zu einem Granulat oder zu einer anderen zweckmäßigen Form verarbeitet werden. Vorzugsweise die Gegenmittel den Thiolcarbamaten beigemischt und vor oder nach dem Einsäen der Saat in den Boden eingearbeitet. Doch kann natürlich auch zuerst das Thiolcarbamat-Herbizid und danach das Gegenmittel in den Boden eingearbeitet werden. Des weiteren kann das Saatgut mit dem Gegenmittel behandelt und im Boden eingesät werden, der entweder bereits mit Herbizid versehen oder nicht damit behandelt wurde und anschließend einer Herbizid-Behandlung unterzogen wird. Durch die Art und Weise, wie das Gegenmittel zugesetzt wird, wird die herbizide Wirksamkeit der Carbamat-Verbindungen nicht beeinträchtigt.

Die Menge des Gegenmittels kann zwischen etwa 0,0001 und etwa 30 GeY-Teilen Gew.-Teil Thiolcarbamat-Herbizid schwanken, wird jedoch gewöhnlich exakt danach ermittelt, welches Verhältnis sich im Hinblick auf die wirksamste Quantität als wirtschaftlich erweist.

In den Ansprüchen der vorliegenden Anmeldung soll der Ausdruck "wirksame herbizide Verbindung" die wirksamen Thiol-carbamate als solche oder die Thiolcarbamate umfassen, die mit anderen wirksamen Verbindungen, wie z.B. den s-Triazinen und der 2,4-Dichlorphenoxyessigsäure oder den wirksamen Acetaniliden und dergl. vermischt sind. Außerdem ist die wirksame herbizide Verbindung von der als Gegenmittel eingesetzten Verbindung verschieden.

Die Klassen der vorliegend beschriebenen und erläuterten herbiziden Mittel sind als wirksame, solche Wirkung aufweisende Herbizide charakterisiert. Der Grad dieser herbiziden Wirkung ist bei den spezifischen Verbindungen und Kombinationen spezifischer Verbindungen innerhalb der Klassen unterschiedlich. Der Wirkungsgrad ist auch bei den einzelnen Pflanzensorten, für die eine spezifische herbizide Verbindung oder Kombination verwandt werden kann, bis zu einem gewissen Grade unterschiedlich. Eine spezifische herbizide Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzensorten läßt sich also leicht auswählen. Erfindungsgemäß läßt sich die Schädigung einer gewünschten Nutzpflanze (crop species) in Gegenwart einer spezifischen herbiziden Verbindung oder Kombination verhindern. Durch die spezifischen, in den Beispielen verwandten Nutzpflanzen sollen die Nutzpflanzen, die mit diesem Verfahren geschützt werden können, nicht beschränkt werden.

Die im erfindungsgemäßen Verfahren verwädten herbiziden Verbindungen sind wirksame Herbizide allgemeiner Art. D.h. die Mittel dieser Klasse weisen gegenüber einem großen Bereich von Phanzensorten eine herbizide Wirksamkeit auf, ohne daß ein Unterschied zwischen erwünschten oder unerwünschten Pflanzensorten gemacht wird. Zur Bekämpfung des Pflanzenwuchses wird eine herbizid wirksame Menge der hier beschriebenen herbiziden Verbindungen auf die Fläche oder dort, wo eine Bekämpfung von Pflanzen erwünscht ist, aufgebracht.

Unter "Herbizid" versteht man vorliegend eine Verbindung,

mit der Pflanzenwachstum bekämpft oder modifiziert wird. Zu solchen Formen der Bekämpfung oder Modifizierung gehören alle Abweichungen von der natürlichen Entwicklung, z.B. Vernichtung, Entwicklungsverzögerung, Entblätterung, Austrocknung, Regulierung, Verkümmerung, Bestockung (tillering), Stimulierung, Zwergwuchs und dergl. Unter "Pflanzen" versteht man keimende Samen, auflaufende Sämlinge und vorhandenen Pflanzenwuchs einschließlich der Wurzeln und der über dem Boden befindlichen Teile.

Die in den Tabellen genannten Herbizide wurden in solchen Mengen verwandt, mit denen der unerwünschte Pflanzen-wuchs wirksam bekämpft wird. Die Mengen liegen innerhalb des vom Hersteller empfohlenen Bereichs. Die Unkrautbekämpfung ist aus diesem Grunde innerhalb der gewünschten Menge in jedem Fall kommerziell annehmbar.

In der vorstehenden Beschreibung der als Gegenmittel eingesetzten Verbindungen gilt folgendes für die verschiedenen Substituentengruppen: Zu den Alkylresten gehören, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen Reste mit 1 bis 20 Kohlenstoffatomen, zu den Alkenylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine olefinische Doppelbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12, Kohlenstoffatomen, und zu den Alkinylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine acetylenische Dreifachbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenstoffatomen.

Patentansprüche:

1. Herbizides Mittel, gekennzeichnet durch einen Gehalt an einem herbiziden Wirkstoff und einem Gegenmittel der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-Nalkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkinoxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxyhalogenalkyloxyalkyl-, Hydroxyalkylcarboalkoxyalkyl-, Hydroxyalkyl-, Alkoxysulfonoalkyl-, Furyl-, Thienyl-, Alkyldithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyl- oder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-,

> geändert gemäß Eingabe eingegangen am 18.5.72 4 16, 14 209845/1180

Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptealkyl-, Alkylaminoalkyl-, Alkoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Alkylthiazolyl-, Benzothiaselyl-, Halogenbensethiasolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-4,5-polyalkylen-thienyl-, \alpha-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, α-Halogenalkylacetamidohalogenphenylalkyl-, oder Cyano-

alkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azobicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

- 2. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R ein Wasserstoffatom, ein Halogenatom, einen Alkyl-, Halogenalkyl-, Cycloalkyl-, Cycloalkylalkyl-, Alkenyl-, Halogenalkenyl-, Halogenalkoxy-, Alkinoxy-, Hydroxyalkyl-, Alkylthioalkyl- oder einen Hydroxyhalogenalkoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Hydroxy-alkyl-, Hydroxyhalogenalkyl-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl- oder Cycloalkenylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 3. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest bedeutet und R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azabicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl oder einen Alkylaminoalkenylrest bilden können.

- 4. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy- oder Nitroreste, Carbonsäuren und deren Salze oder Carbamyl- oder Halogenalkyl-carbamylreste substituierten Phenylrest, einen Phenylalkenylrest oder einen durch Halogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl- oder einen Halogenphenoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₄ ein Wasserstoffatom darstellt.
- 5. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 6. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest oder ein Wasserstoffatom bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils

Alkyl- oder Alkenylreste, Wasserstoffatome, Alkoxyalkyloder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Pthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylalkumylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxy-alkylamidoalkylreste substituierte Phenylalkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.

- 7. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkyl-, Alkyl-, Cyanoalkyl-, Thiocyanatoalkyl-, Cyanatoalkyl-, Cycloalkyl-, Bicycloalkyl-, Halogenphenyl-, Phenylalkenyl- oder einen Halogenphenyl-alkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Cyanoalkylreste, Wasserstoffatome, Alkenyl- oder Alkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 8. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es als herbiziden Wirkstoff S-Äthyl-N,N-dipropylthiolcarbamat, S-Äthyldiisobutylthiol-carbamat, S-Propyldipropylthiolcarbamat, S-Z,3,3-Trichlor-allyl-diisopropylthiolcarbamat, S-Äthylcyclohexyläthylthio-carbamat, 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acet-anilid, S-Äthylhexahydro-1H-azepin-1-carbothioat, 2-Chlor-N-isopropylacetanilid, N,N-Diallyl-2-chloracetamid, S-4-Chlorbenzyldiäthylthiolcarbamat, 2-Chlor-4-äthylamino-6-isopropylamino-s-triazin, 2-Chlor-4,6-bis-(äthylamino)-s-triazin, 2(4-Chlor-6-äthylamino-s-triazin-2-yl-amino)-2-methylpropionitril, 2-Chlor-4-cyclopropylamino-6-isopropyl-

amino-s-triazin, 2,4-Dichlorphenoxyessigsäure oder deren Gemische enthält.

- 9. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gegenmittel in einer Menge im Bereich von etwa 0,0001 bis etwa 30 Gew.-Teile pro Gew.-Teil des herbiziden Wirkstoffs vorliegt.
- 10. Verfahren zur Bekämpfung von Unkrautarten, dadurch gekennzeichnet, daß man dem Boden, in dem sich die Unkrautarten befinden, eine herbizid wirksame Menge des herbiziden Mittels nach einem der Ansprüche 1 bis 9 zusetzt.

Filr: Stauffer Chemical Company New York, N.Y., V.St.A.

(Dr.H.J.Wolff)
Rechtsanwalt

9.8

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

LINES	OR MA	RKS ON	ORIGINAL	DOCUMENT

GRAY SCALE DOCUMENTS

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:	
--------	--

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.