Analysing Factors Contributing to Type II Diabetes Risk Status

Sean Mulherin and Ramiro Lobo

STATS 411 Multivariate Statistical Analysis

Dr. Maria Cha

Winter 2025

Introduction

Background

- Diabetes is a chronic disease that describes the body's inability to properly regulate insulin levels
- Our bodies use insulin to break down glucose obtained from the foods/drinks we consume
- There are two main types
 - Type I: not preventable typically inherited genetically or triggered via viral infection
 - Type II: preventable typically a result of lifestyle habits

Introduction

Motivation

- Abnormal glucose levels can lead to many health issues, including:
 - Heart Disease
 - Kidney Disease
 - Cataracts
 - Nerve Damage
- As of 2021, 38 million people have diabetes 11.6% of population (American Diabetes Association)
- Diabetes is the 8th leading cause of death in the U.S.
- Total costs span \$412.9 billion (Emily et al., 2022)

Introduction

Objective

The goal is to help prevent the onset of type II diabetes.

- To accomplish this, we leverage rigorous statistical analysis to identify factors that affect the development of type II diabetes, including:
 - Logistic Regression Analysis
 - Principal Component Analysis
 - Factor Analysis

Data

- Every year, the Center for Disease Control (CDC) conducts a behavioral survey of Americans
 - Behavioral Risk Factor Support Survey (BRFSS) collects health-related information via telephone surveys of over 400,000 Americans from each state
- Predictors
 - 21 variables of class numeric, ordinal, and categorical
 - Biological factors: blood pressure, cholesterol, BMI
 - Lifestyle factors: age, sex, smoker, diet, exercise, alcohol consumption
 - Social factors: income, education, mental health
- Response
 - Binary: low or medium-high risk of developing type II diabetes
- 253,680 total observations

Data

EDA

Diabetes Risk Counts

Risk of Developing Type 2 Diabetes

Data

EDA

Highest Positive Correlations with Diabetes Risk Status (> 0.2)

- GenHlth
- HighBP
- BMI
- DiffWalk
- HighChol

Highest Negative Correlations with Diabetes Risk Status (< -0.12)

- Income
- Education
- PhysActivity

Methodology - Regression

Notable Factor Coefficients

- CholCheck = 1.21
- HighBP = 0.71
- HvyAlcoholConsump = 0.66
- HighChol = 0.60
- GenHlth = 0.51
- Sex = 0.24

n Predictors vs R Square

Methodology - Regression Cont.

Utilized the Youden Index to find the optimal cut-off threshold. (Ruopp et. al, 2008)

Optimal Threshold = 0.133

Methodology - Regression Cont.

We want to confidently capture medium-high risk patients, so we prioritize Recall

Accuracy = 69).5	;%
---------------------------------	-----	----

- Precision = 31.8%
- Recall = 81.2%
- F1 Score = 45.7%

0
Ø
7
\equiv
0
2
Ω

Observed

	Low Risk	Medium-High Risk
Low Risk	28745	1508
Medium-High Risk	13969	6514

Methodology - PCA

Top 10 PC's explain 66% of variance

Top 14 PC's explain 80% of variance

Methodology - Factor Analysis

Two factors are identified as the ideal amount to explain the variance.

Factor 1 is likely to represent the general health of a person.

Factor 2 is likely to represent biological factors, predominantly cholesterol health.

Parallel Analysis Scree Plots

Conclusion

- Biological Factors:
 - High Cholesterol has the strongest adverse effect
 - High Blood Pressure has the second strongest adverse effect
 - Males are more likely to develop type II diabetes than females
 - As Age increases, the risk increases
- Lifestyle Factors:
 - Heavy Alcohol Consumption has the strongest adverse effect
 - Males > 14 drinks/week
 - Females > 7 drinks/week
 - Marginal negative effects:
 - Income, Education, Physical Activity, Diet, and Smoking

Conclusion

- American Diabetes Association. (Nov, 2023). *Diabetes facts and statistics*. Diabetes.org. Retrieved March 1, 2025, from https://diabetes.org/about-diabetes/statistics/about-diabetes
- Emily D. Parker, Janice Lin, Troy Mahoney, Nwanneamaka Ume, Grace Yang, Robert A. Gabbay, Nuha A. ElSayed, Raveendhara R. Bannuru; Economic Costs of Diabetes in the U.S. in 2022. Diabetes Care 2 January 2024; 47 (1): 26–43. https://doi.org/10.2337/dci23-0085
- Centers for Disease Control and Prevention. (2025, February). 2023 BRFSS survey data and documentation. https://www.cdc.gov/brfss/annual_data/annual_2023.html
- Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008 Jun;50(3):419-30. doi: 10.1002/bimj.200710415. PMID: 18435502; PMCID: PMC2515362.

