Физика Вариант 6

При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$
Постоянная Авогадро $N_A = 6.02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$
Электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{Д} ж}{\text{моль} \cdot K}$	Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot M^2}{\kappa z^2}$
$1 \text{ эВ} = 1,6 \cdot 10^{-19} \text{ Дж}$ $\pi = 3,14;$ $\sqrt{2} = 1,41;$ $\sqrt{3} = 1,73;$ $\sqrt{5} = 2,24$	Постоянная Планка $h = 6.63 \cdot 10^{-34} \text{Дж} \cdot \text{с}$

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	МК	Н	П

A8	Камень бросили с балкона вертикально вверх. Если сопротивление воздуха не	1) А2 Б2 В2;
	учитывать, что произойдёт со скоростью, ускорением и полной механической	2) A2 Б3 В3; 3) A2 Б2 В3;
	энергией камня при его полёте вверх? Установите соответствие между физической величиной и её изменением	4) A3 B2 B2;
	ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ИХ ИЗМЕНЕНИЕ	5) А3 Б1 В2.
	А) Скорость камня 1) увеличится	
	Б) Ускорение камня 2) уменьшится	
	В) Полная механическая энергия камня 3) не изменится	
A9	При температуре $t = 27$ °C средняя кинетическая энергия хаотичного	1) 6,2·10 ⁻²¹ Дж;
	поступательного движения молекул идеального газа E , равна:	2) 4,1·10 ⁻²¹ Дж; 3) 2,8·10 ⁻²¹ Дж;
		3) 2,8·10 Дж, 4) 0,6·10 ⁻²¹ Дж;
		$5) 0,4\cdot 10^{-21}$ Дж.
A10	На рисунке показан график изменения	1) 0,2 m ³ ;
	давления $v = 32$ моль газа при изохорном	$2) 0.3 \text{ m}^3;$
	нагревании. Объём газа V равен:	$(3) 0.4 \text{ m}^3;$
	2,4	$(4) 0.5 \text{ m}^3;$
		5) 0,6 m ³ .
	2,0	
	1,6	
	280 300 320 340 360 T, K	
A11	Идеальный одноатомный газ, количество вещества $\frac{p}{p_0}$	1) $U_C > U_A > U_B$;
	которого постояние, переводит из состояния и в	2) $U_C > U_B > U_A$;
	состояние С (см. рис.). Значения внутренней энергии U 5	3) $U_B > U_C > U_A$;
	газа в состояниях А, В, С связаны соотношением:	4) $U_C = U_B > U_A$;
	3	5) $U_C > U_B = U_A$.
	$\frac{2}{1}$	
	$0 \frac{1}{1} \frac{2}{2} \frac{3}{3} \frac{4}{4} \frac{V}{V}$	
A12	Два точечных заряда $q_1 = +6.4 \cdot 10^{-9}$ Кл и $q_2 = -6.4 \cdot 10^{-9}$ Кл находятся на расстоянии	1) 4 кВ/м;
	r = 12 см. Напряженность поля E в точке, находящейся посередине между зарядами	
	равна:	3) 16 кВ/м;
		4) 32 кВ/м;
		5) 64 кВ/м;
A13	Плоский воздушный конденсатор электроёмкостью С = 3 мкФ соединили с	1) 1 кВ/м;
	источником напряжения, в результате чего он приобрёл заряд q = 24 мкКл. Если	2) 2 кВ/м;
	расстояние между пластинами конденсатора d = 4 мм, то напряжённость поля	3) 8 кВ/м;
	внутри конденсатора Е, равна:	4) 16 кВ/м;
		5) 64 кВ/м;
A14	Условное обозначение устройства, представленного на рисунке, указано буквой:	1) A;
		2) b ;
	А) Б) В) Г) Д) 📆	3) B; 4) Γ;
		5) Д.
	A ◆ ◆ ★ #	<i>о)</i> д.
A15	Две одинаковые лампы и резистор сопротивлением $R_{\rm p} = 3$ Ом соединены	1) 20 A;
AIS	последовательно и включены в сеть с постоянным напряжением $U = 110 \text{ B}$. Если	2) 15 A;
	напряжение на каждой лампе $U_{\pi} = 40$ B, то сила тока I в цепи:	3) 12 A;
	* / / · · · · · · · · · · · · · · · · ·	4) 10 A;
A16	По прум уругорым ритуам опинаковым раниулом танат тоу размен раничиму. Вижем	5) 5 A. 1) 4 мТл;
AIU	По двум круговым виткам одинаковым радиусом течёт ток разной величины. Витки имеют общий центр, а их плоскости перпендикулярны друг другу. Индукция	1) 4 м1л; 2) 8 мТл;
	магнитного поля в центре витка от первого тока $B_1 = 12$ мТл, от второго	2) 8 мтл, 3) 16 мТл;
	$B_2 = 16 \text{ мТл.}$ Индукция B результирующего магнитного поля в центре витков равна:	4) 20 мТл;
1		
		5) 28 мТл.

A 4 5	G 200 ² D 0.001 O	1) 10 D
A17	Контур площадью $S = 200 \text{ см}^2$ и сопротивлением $R = 0{,}001 \text{ Ом}$ находится в	1) 10 мВт;
	однородном магнитном поле, индукция которого равномерно возрастает на	2) 50 мВт;
	$\Delta B = 5$ Тл за время $\Delta t = 10$ с. Мощность P индукционного тока равна:	3) 100 мВт;
		4) 200 мВт;
		5) 400 мВт.
A18	Если груз подвешенный на пружине, совершает гармонические колебания по	1) 0,20 c;
	π	2) 0,30 c;
	закону $x(t) = A\sin(Bt + C)$, где $A = 0,1\pi$ м, $B = 5\pi$ рад/с, $C = \frac{\pi}{4}$ рад, то период T этих	3) 0,40 c;
	колебаний равен:	4) 4,0 c;
	колсоании равен.	5) 8,0 c.
A19	Человек ростом $h = 2$ м стоит на расстоянии $d_1 = 3$ м от фонаря, при этом длина	1) 2 м;
	тени составляет $l_1 = 1$ м. Затем человек переходит в другую точку, так что длина	2) 3 m;
	тени становится равной $l_2 = 2$ м. Расстояние d на которое человек удалился от	3) 4 м;
	фонаря равно:	4) 5 м;
		5) 6 м.
A20	Суммарный заряд всех нуклонов в ядре изотопа урана $^{235}_{92}U$ равен:	1) 1,47·10 ⁻¹⁹ Кл;
		2) 2,29·10 ⁻¹⁹ Кл;
		3) 1,47·10 ⁻¹⁷ Кл;
		4) 2,29·10 ⁻¹⁷ Кл;
		5) 3,76·10 ⁻¹⁷ Кл.

Часть В

B1.	Тело свободно падает с высоты $h=405$ м без начальной скорости. Последние $l=160$ м пути тело пролетит за время t равное с.
B2.	Телу толчком сообщили скорость υ_0 , направленную вверх вдоль наклонной плоскости, чтобы оно достигло её вершины. Высота наклонной плоскости $h=6$ м, её длина $l=10$ м. Если коэффициент трения между телом и плоскостью $\mu=0.5$, то минимальная величина начальной скорости υ_0 , равна м/с.
В3.	При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке с минимально возможной скоростью $\upsilon_{min}=12$ м/с. Если коэффициент трения $\mu=0,60,$ то радиус R окружности, по которой движется мотоциклист, равен дм.
B4.	Свинцовая пуля, летящая горизонтально со скоростью $\upsilon_0 = 350$ м/с, пробивает доску на высоте $h = 20$ см над поверхностью земли. При движении пули через доску, пуля нагрелась на $\Delta T = 200$ К, а направление её скорости не изменилось. Считая, что всё выделившееся при ударе тепло пошло на нагревание пули, то расстояние l от доски до места падения пули на землю равно м.
B5.	Если средняя квадратичная скорость молекул идеального газа возрастёт на 50 %, то при неизменной массе газа и его объёме давление газа возрастёт на %.
В6.	В цилиндре находится азот ($M=28$ г/моль) массой $m=56$ г при температуре $T=540$ К. Газ охлаждается изохорно так, что его давление падает в $n=3$ раза. Затем газ нагревается при постоянном давлении до тех пор, пока его температура не достигает первоначальной. В ходе этих процессов газ совершил работу А равную кДж.
B7.	Чайник с $V=1$ л воды ($\rho=1000~{\rm kr/m}^3$, с = 4,2 кДж/(кг °C), L = 2,29 МДж/кг) поставили на горелку мощностью $P=2,5~{\rm kBr}$ и КПД $\eta=45~\%$. Если начальная температура воды составляла $t_1=20~{\rm ^{\circ}C}$, а температура кипения воды $t_2=100~{\rm ^{\circ}C}$, то спустя $\tau=10~{\rm muh}$ в чайнике останется вода массой г.
B8.	Два плоских зеркала образуют двугранный угол $\alpha = 60^{\circ}$. Между ними расположен точечный источник света. Если расстояние от источника до одного из зеркал равно $l_1 = 10$ см, а до второго $l_2 = 6$ см, то расстояние между первыми изображениями источника в зеркалах равно см.
B9.	Если источник тока замкнуть на резистор сопротивлением $R_1 = 22$ Ом, то в цепи протекает ток силой $I_1 = 1,0$ А. При замыкании на сопротивление $R_2 = 46$ Ом этот же источник даёт силу тока $I_2 = 0,50$ А. Сила тока $I_{\kappa,3}$ короткого замыкания источника равна А.
B10.	Горизонтальный проводник массой $m=100$ г и длиной $l=50$ см расположен на горизонтальном столе, помещённом в вертикальное однородное магнитное поле индукцией $B=200$ мТл. Если коэффициент трения между проводником и столом $\mu=0.5$, то для того, чтобы проводник сдвинулся с места по нему необходимо пропустить ток силой I равной A .

B11	. Поток фотонов выбивает фотоэлектроны из металла с работой выхода $A_{\text{вых}} = \phi$ фотонов в $n=1,5$ раза больше максимальной кинетической энергии максимальная кинетическая энергия фотоэлектронов равна эВ.	•
B12	В электрической цепи, показанной на рисунке, ЭДС источника тока равен є, его внутреннее сопротивление г = 1 Ом, ёмкость конденсатора С = 2 мФ, индуктивность катушки L = 36 мГн и сопротивление лампы R = 5 Ом. В начальный момент времени ключ К замкнут. Сопротивлением катушки и проводов пренебречь. Если после размыкания ключа в лампе выделяется энергия W = 172 мДж, то ЭДС є источника тока равно В.	<u>г</u>

Физика подготовка к ЦТ Вариант 6

Ответы

Подготовка к ЦТ В – 6

2202201021111		_	•							
№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	5	1	1	5	5	1	4	2	1	3
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	1	4	2	3	4	4	3	3	2	3

№ задачи	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
ответ	2	14	86	53	125	6	852	28	12	5	8	12