Big Data Computing

Master's Degree in Computer Science 2019-2020

Gabriele Tolomei

Department of Computer Science Sapienza Università di Roma

tolomei@di.uniroma1.it

Recap from Last Lectures

- We described linear regression as a powerful technique to predict realvalued function
- Linear regression tries to fit a straight hyperplane between features (i.e., independent variables) and the target (i.e., dependent variable)
- OLS method to easily estimate the parameters of the model
- More advanced techniques may be applied if the relationship between features and the target is not linear (e.g., polynomial regression)

• Very often, the response variable to predict is qualitative (categorical)

- Very often, the response variable to predict is qualitative (categorical)
- Classification (as opposed to regression) deals with predicting categorical responses

- Very often, the response variable to predict is qualitative (categorical)
- Classification (as opposed to regression) deals with predicting categorical responses
- Examples:
 - spam vs. non-spam emails
 - click vs. non-click on a web page or an advertisement

- Very often, the response variable to predict is qualitative (categorical)
- Classification (as opposed to regression) deals with predicting categorical responses
- Examples:
 - spam vs. non-spam emails
 - click vs. non-click on a web page or an advertisement
- Classification methods may first predict the probability of each category of a qualitative response to make in turn a decision

• Suppose we want to predict the health condition of a patient arriving in the ER on the basis of her symptoms

- Suppose we want to predict the health condition of a patient arriving in the ER on the basis of her symptoms
- Imagine there are only the following 3 possible diagnoses: stroke, drug overdose, and epileptic seizure

- Suppose we want to predict the health condition of a patient arriving in the ER on the basis of her symptoms
- Imagine there are only the following 3 possible diagnoses: stroke, drug overdose, and epileptic seizure
- We may encode the above values as a categorical response variable Y

$$Y = egin{cases} 1 & ext{if stroke;} \ 2 & ext{if drug overdose;} \ 3 & ext{if epileptic seizure.} \end{cases}$$

• With the previous encoding we can fit a linear regression model using OLS from a set of n features $x_1, ..., x_n$

- With the previous encoding we can fit a linear regression model using OLS from a set of n features $x_1, ..., x_n$
- Unfortunately, this coding implies an ordering on the outcomes
 - drug overdose is in between stroke and epileptic seizure
 - the difference between stroke and drug overdose is the same as the difference between drug overdose and epileptic seizure

- With the previous encoding we can fit a linear regression model using OLS from a set of n features $x_1, ..., x_n$
- Unfortunately, this coding implies an ordering on the outcomes
 - drug overdose is in between stroke and epileptic seizure
 - the difference between stroke and drug overdose is the same as the difference between drug overdose and epileptic seizure
- In practice, there is no particular reason to choose the encoding above!

- With the previous encoding we can fit a linear regression model using OLS from a set of n features $x_1, ..., x_n$
- Unfortunately, this coding implies an ordering on the outcomes
 - drug overdose is in between stroke and epileptic seizure
 - the difference between stroke and drug overdose is the same as the difference between drug overdose and epileptic seizure
- In practice, there is no particular reason to choose the encoding above!
- Different (and still legitimate) encodings will produce different models

• The encoding above would work if the response variable values take on an equally-spaced natural ordering (e.g., mild, moderate, and severe)

- The encoding above would work if the response variable values take on an equally-spaced natural ordering (e.g., mild, moderate, and severe)
- In general, there is no natural way to convert a K-ary (K > 2) response into a quantitative response that is ready for linear regression

- The encoding above would work if the response variable values take on an equally-spaced natural ordering (e.g., mild, moderate, and severe)
- In general, there is no natural way to convert a K-ary (K > 2) response into a quantitative response that is ready for linear regression
- For a binary response with a 0/1 encoding, linear regression by OLS does anyway make sense
 - Predict I if the outcome is > 0.5, 0 otherwise

- The encoding above would work if the response variable values take on an equally-spaced natural ordering (e.g., mild, moderate, and severe)
- In general, there is no natural way to convert a K-ary (K > 2) response into a quantitative response that is ready for linear regression
- For a binary response with a 0/1 encoding, linear regression by OLS does anyway make sense
 - Predict I if the outcome is > 0.5, 0 otherwise
- Still, it is preferable to use a classification method which works by design

LOGISTIC REGRESSION

Consider a binary response Default(Y) taking on two values: Yes or No

Consider a binary response Default(Y) taking on two values: Yes or No

Suppose we want to predict the value of Y from the value of Balance(X)

Consider a binary response Default(Y) taking on two values: Yes or No

Suppose we want to predict the value of Y from the value of Balance(X)

We can model it directly via linear regression (i.e., predicting its value)

Consider a binary response Default(Y) taking on two values: Yes or No

Suppose we want to predict the value of Y from the value of Balance(X)

We can model it directly via linear regression (i.e., predicting its value)

Logistic Regression instead models the **probability** that Y belongs to one of the two possible outcome values

Predicted probability using linear regression (some estimated probabilities are negative!)

Linear Regression

Predicted probability using linear regression (some estimated probabilities are negative!)

Linear Regression

Predicted probability using logistic regression (all probabilities lie between 0 and 1)

Logistic Regression

3 components need to be specified

3 components need to be specified

Model

Defines the space of representable hypotheses

3 components need to be specified

Model

Defines the space of representable hypotheses

Error Measure

(Cost Function)

Measures the price of misclassification errors

Learning Algorithm

Picks the best hypothesis exploring search space

MODEL

• Let $\mathbf{x} = (x_0, x_1, ..., x_n)$ be the (d+1)-dimensional input

- Let $\mathbf{x} = (x_0, x_1, ..., x_d)$ be the (d+1)-dimensional input
- Let F be the family of real-valued functions parametrized by θ so that

$$\boldsymbol{\theta^T} = (\theta_0, \theta_1, ..., \theta_d)$$
 set of functions

$$\mathcal{F} = \{ f_{\boldsymbol{\theta}} : \mathbb{R}^{d+1} \longmapsto \mathbb{R} \mid f_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x} = \sum_{i=0}^d \theta_i x_i \}$$

31

- Let $\mathbf{x} = (x_0, x_1, ..., x_d)$ be the (d+1)-dimensional input
- Let F be the family of real-valued functions parametrized by θ so that $\theta^{T} = (\theta_0, \theta_1, ..., \theta_d)$

$$\mathcal{F} = \{ f_{\boldsymbol{\theta}} : \mathbb{R}^{d+1} \longmapsto \mathbb{R} \mid f_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x} = \sum_{i=0}^d \theta_i x_i \}$$

• Each function in F outputs a real number (i.e., a scalar) as a linear combination of the input \mathbf{x} with the parameters $\boldsymbol{\theta}$

- Let $\mathbf{x} = (x_0, x_1, ..., x_d)$ be the (d+1)-dimensional input
- Let F be the family of real-valued functions parametrized by $\boldsymbol{\theta}$ so that

$$\boldsymbol{\theta^T} = (\theta_0, \theta_1, ..., \theta_d)$$
 signal goes from input to output

$$\mathcal{F} = \{ f_{\theta} : \mathbb{R}^{d+1} \longmapsto \mathbb{R} \mid f_{\theta}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x} = \sum_{i=0}^d \theta_i x_i \}$$

- Each function in F outputs a real number (i.e., a scalar) as a linear combination of the input \mathbf{x} with the parameters $\mathbf{\theta}$
- $f_{\theta}(\mathbf{x})$ is referred to as (linear) signal each f of theta

Hypothesis Space (Revisited)

• The signal alone is not enough to define the hypothesis space H

Hypothesis Space (Revisited)

- The signal alone is not enough to define the hypothesis space H
- Usually the signal is passed through a "filter", i.e. another real-valued function g

Hypothesis Space (Revisited)

- The signal alone is not enough to define the hypothesis space H
- Usually the signal is passed through a "filter", i.e. another real-valued function g
 fis called the linear signal function
- $h_{\theta}(\mathbf{x}) = g(f_{\theta}(\mathbf{x}))$ defines the hypothesis space:

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : \mathbb{R}^{d+1} \longmapsto \mathbb{R} \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = g(f_{\boldsymbol{\theta}}(\mathbf{x})) = g(\boldsymbol{\theta}^T \mathbf{x}) = g(\sum_{i=0}^d \theta_i x_i) \}$$

Hypothesis Space (Revisited)

- The signal alone is not enough to define the hypothesis space H
- Usually the signal is passed through a "filter", i.e. another real-valued function g
- $h_{\theta}(\mathbf{x}) = g(f_{\theta}(\mathbf{x}))$ defines the hypothesis space:

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : \mathbb{R}^{d+1} \longmapsto \mathbb{R} \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = g(f_{\boldsymbol{\theta}}(\mathbf{x})) = g(\boldsymbol{\theta}^T \mathbf{x}) = g(\sum_{i=0}^d \theta_i x_i) \}$$

The set of possible hypotheses H changes depending on the parametric model (f_{θ}) and on the **thresholding function** (g)

 $h_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(f_{\boldsymbol{\theta}}(\mathbf{x})) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$

$$\ell(z) = \frac{e^z}{1 + e^z}$$

$$\ell(z) = \frac{e^z}{1 + e^z}$$

• Also known as sigmoid function do to its "S" shape or soft threshold (compared to hard threshold imposed by sign)

$$\ell(z) = \frac{e^z}{1 + e^z}$$

- Also known as sigmoid function do to its "S" shape or soft threshold (compared to hard threshold imposed by sign)
- When $z = \theta^T x$ we are applying a non-linear transformation to our linear signal

$$\ell(z) = \frac{e^z}{1 + e^z}$$

- Also known as sigmoid function do to its "S" shape or soft threshold (compared to hard threshold imposed by sign)
- When $z = \theta^T x$ we are applying a non-linear transformation to our linear signal
- Output can be genuinely interpreted as a probability value

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

04/15/2020

47

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

• Describing the set of hypotheses using the **logistic function** is not enough to state that the output can be interpreted as a probability

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

- Describing the set of hypotheses using the **logistic function** is not enough to state that the output can be interpreted as a probability
- All we know is that the logistic function always produce a real value between 0 and 1

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

- Describing the set of hypotheses using the **logistic function** is not enough to state that the output can be interpreted as a probability
- All we know is that the logistic function always produce a real value between 0 and I
- Other functions may have the same property [e.g., $I/\pi \arctan(x) + I/2$]

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

• The key points here are:

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

- The key points here are:
 - the output of the logistic function can be interpreted as a probability even during learning

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(f_{\boldsymbol{\theta}}(\mathbf{x})) = \ell(\boldsymbol{\theta}^T \mathbf{x}) = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1 + e^{(\boldsymbol{\theta}^T \mathbf{x})}}$$

- The key points here are:
 - the output of the logistic function can be interpreted as a probability even during learning
 - the logistic function is mathematically convenient!

• Let p (resp., q = l - p) be the probability of success (resp., failure) of an event

• Let p (resp., q = 1-p) be the probability of success (resp., failure) of an event

• odds(success) = p/q = p/(1-p) ratio between two probabilities

• Let p (resp., q = 1-p) be the probability of success (resp., failure) of an event

- odds(success) = p/q = p/(1-p)
- odds(failure) = q/p = 1/p/q = 1/odds(success)

• Let p (resp., q = 1-p) be the probability of success (resp., failure) of an event

- odds(success) = p/q = p/(1-p)
- odds(failure) = q/p = 1/p/q = 1/odds(success)
- logit(p) = ln(odds(success)) = ln(p/q) = ln(p/1-p) = ln(p) ln(1-p)

Logistic Regression is in fact an ordinary linear regression where the logit is the response variable!

our signal models the natural log of the odds

$$logit(p) = ln(\frac{p}{1-p}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

The coefficients of logistic regression are expressed in terms of the natural logarithm of odds

Odds are defined on the range [0, +inf]

Odds are defined on the range [0, +inf]

Logit (i.e., natural log of odds) are defined on the range [-inf, +inf]

Odds are defined on the range [0, +inf]

Logit (i.e., natural log of odds) are defined on the range [-inf, +inf]

Therefore we can use "standard" regression equation:

$$logit(p) = ln(\frac{p}{1-p}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

Odds are defined on the range [0, +inf]

Logit (i.e., natural log of odds) are defined on the range [-inf, +inf]

Therefore we can use "standard" regression equation:

$$logit(p) = ln(\frac{p}{1-p}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

For any value of the regression coefficients and features a valid value for the odds are predicted

Odds are defined on the range [0, +inf]

Logit (i.e., natural log of odds) are defined on the range [-inf, +inf]

Therefore we can use "standard" regression equation:

$$logit(p) = ln(\frac{p}{1-p}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

For any value of the regression coefficients and features a valid value for the odds are predicted

Probabilities are only defined on the range [0, 1]

It would need very complicated constraints on the regression coefficients to work with probability

From Odds to Probability

$$logit(p) = ln(\frac{p}{1-p}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

From Odds to Probability

$$\log \operatorname{it}(p) = \ln\left(\frac{p}{1-p}\right) = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

$$e^{\operatorname{logit}(p)} = e^{\operatorname{ln}\left(\frac{p}{1-p}\right)} = \frac{p}{1-p} = e^{(\boldsymbol{\theta}^T \mathbf{x})}$$

$$p = e^{(\boldsymbol{\theta}^T \mathbf{x})} (1-p) = e^{(\boldsymbol{\theta}^T \mathbf{x})} - e^{(\boldsymbol{\theta}^T \mathbf{x})} p$$

$$p + e^{(\boldsymbol{\theta}^T \mathbf{x})} p = e^{(\boldsymbol{\theta}^T \mathbf{x})}$$

$$p(1+e^{(\boldsymbol{\theta}^T \mathbf{x})}) = e^{(\boldsymbol{\theta}^T \mathbf{x})}$$

$$p = \frac{e^{(\boldsymbol{\theta}^T \mathbf{x})}}{1+e^{(\boldsymbol{\theta}^T \mathbf{x})}} = \frac{1}{e^{-(\boldsymbol{\theta}^T \mathbf{x})+1}}$$

Using (log) odds rather than actual probabilities provides an easier interpretation of the model's coefficients learned

$$\ln\left(\frac{p}{1-p}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

$$\left(\frac{p}{1-p}\right) = e^{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d} = e^{\boldsymbol{\theta}^T \mathbf{x}}$$

Using (log) odds rather than actual probabilities provides an easier interpretation of the model's coefficients learned

$$\ln\left(\frac{p}{1-p}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d = \boldsymbol{\theta}^T \mathbf{x}$$

$$\left(\frac{p}{1-p}\right) = e^{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d} = e^{\boldsymbol{\theta}^T \mathbf{x}}$$

Suppose we want to measure the effect of a unit increase in one of the predictors to the output response

Let's measure the ratio between the odds computed at a certain input **x** and the odds computed at a different point **x**'

odds thereself is a ratio

Let's measure the ratio between the odds computed at a certain input **x** and the odds computed at a different point **x**'

$$\mathbf{x} = x_1 + \dots + x_i + \dots + x_d$$

 $\mathbf{x}' = x_1 + \dots + (x_i + 1) + \dots + x_d$

x' is just the same as x where the i-th predictor/feature is increased by I unit

Let's measure the ratio between the odds computed at a certain input **x** and the odds computed at a different point **x**'

$$\mathbf{x} = x_1 + \dots + x_i + \dots + x_d$$

 $\mathbf{x}' = x_1 + \dots + (x_i + 1) + \dots + x_d$

x' is just the same as x where the i-th predictor/feature is increased by I unit

odds compute on x'

odds compute on x

$$\frac{e^{\boldsymbol{\theta}^T \mathbf{x}'}}{e^{\boldsymbol{\theta}^T \mathbf{x}}} =$$

$$\frac{e^{\boldsymbol{\theta}^T \mathbf{x}'}}{e^{\boldsymbol{\theta}^T \mathbf{x}}} =$$

$$\frac{e^{\theta_0+\theta_1x_1+\ldots+\theta_i(x_i+1)+\ldots+\theta_dx_d}}{e^{\theta_0+\theta_1x_1+\ldots+\theta_ix_i+\ldots+\theta_dx_d}}$$

$$\frac{e^{\boldsymbol{\theta}^T \mathbf{x}'}}{e^{\boldsymbol{\theta}^T \mathbf{x}}} =$$

$$\frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i (x_i + 1) + \dots + \theta_d x_d}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}} = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d} + e^{\theta_i}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}}$$

$$\frac{e^{\boldsymbol{\theta}^T \mathbf{x}'}}{e^{\boldsymbol{\theta}^T \mathbf{x}}} =$$

$$\frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i (x_i + 1) + \dots + \theta_d x_d}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}} = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d} + e^{\theta_i}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}}$$

$$\frac{e^{\boldsymbol{\theta}^T \mathbf{x}'}}{e^{\boldsymbol{\theta}^T \mathbf{x}}} =$$

$$\frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i (x_i + 1) + \dots + \theta_d x_d}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}} = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}} = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}}$$

$$=e^{\theta_{\theta}}$$

it's the amount of the change

The ratio of the odds for I-unit increase in x_i

$$\frac{e^{\boldsymbol{\theta}^T \mathbf{x}'}}{e^{\boldsymbol{\theta}^T \mathbf{x}}} =$$

$$\frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i (x_i + 1) + \dots + \theta_d x_d}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}} = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d} + e^{\theta_i}}{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_d x_d}}$$

$$=e^{\theta}$$

The ratio of the odds for I-unit increase in x_i

or

 θ_i is the ratio of the natural log(odds) for I-unit increase in x_i

This ratio is constant: it does not change according to the value of the other x_i because they cancel out in the calculation

This ratio is **constant**: it does not change according to the value of the other x_j because they cancel out in the calculation

If we used probability rather than odds this wouldn't be constant!

no matter the size of the feature, the odds ratio is costant

This ratio is **constant**: it does not change according to the value of the other x_j because they cancel out in the calculation

If we used probability rather than odds this wouldn't be constant!

The effect of x_i on the probability of success p is different depending on the value of x_i

This ratio is **constant**: it does not change according to the value of the other x_j because they cancel out in the calculation

If we used probability rather than odds this wouldn't be constant!

The effect of x_i on the probability of success p is different depending on the value of x_i

Example

An odds ratio of 1.08 will give an 8% increase in the odds at any value of x_i

doesn't depend on the x_i feature

Probabilistically-Generated Data

As with any other supervised learning problem we are given a finite set D of m i.i.d. labelled examples which we can try to learn from

$$\mathcal{D} = \{(\mathbf{x_1}, y_1)\}, \dots, (\mathbf{x_m}, y_m)\}$$

where each y_i is a binary variable taking on two values (e.g., $\{-1,+1\}$)

Probabilistically-Generated Data

That means we **do not** have access to the individual probability associated with each training sample!

Probabilistically-Generated Data

That means we **do not** have access to the individual probability associated with each training sample!

The data we observe from D is actually generated by an underlying and unknown probability function (noisy target) which we want to estimate

$$P(y|\mathbf{x}) = \begin{cases} \phi(\mathbf{x}) & \text{if } y = +1\\ 1 - \phi(\mathbf{x}) & \text{if } y = -1 \end{cases}$$

Deterministic vs. Noisy Target

• Deterministic function: given x as input it always outputs either y = +1 or y = -1 (mutually exclusive)

Deterministic vs. Noisy Target

- Deterministic function: given x as input it always outputs either y = +1 or y = -1 (mutually exclusive)
- Noisy target function: given x as input it always outputs both y = +1 and y = -1, each with a "degree of certainty" associated associated with some probability

Deterministic vs. Noisy Target

- Deterministic function: given x as input it always outputs either y = +1 or y = -1 (mutually exclusive)
- Noisy target function: given x as input it always outputs both y = +1 and y = -1, each with a "degree of certainty" associated

Goal

 $\phi: \mathbb{R}^{d+1} \to [0,1]$ is the unknown noisy target which generates our examples, our aim is to find an estimate ϕ^* which best approximates ϕ

Estimating Noisy Target

$$P(y|\mathbf{x}) = \begin{cases} \phi^*(\mathbf{x}) & \text{if } y = +1\\ 1 - \phi^*(\mathbf{x}) & \text{if } y = -1 \end{cases}$$

Estimating Noisy Target

$$P(y|\mathbf{x}) = \begin{cases} \phi^*(\mathbf{x}) & \text{if } y = +1\\ 1 - \phi^*(\mathbf{x}) & \text{if } y = -1 \end{cases}$$

We claim that the best estimate ϕ^* of ϕ is $h^*_{\theta}(\mathbf{x})$ which in turn is picked from the set of hypotheses defined by logistic function

$$\phi^*(\mathbf{x}) = h_{\boldsymbol{\theta}}^*(\mathbf{x}) = \ell(\boldsymbol{\theta}^T \mathbf{x}) \approx \phi(\mathbf{x})$$

sigmoid apply to the linear signal

• How do we estimate $h_{\theta}^*(\mathbf{x})$?

- How do we estimate $h^*_{\theta}(\mathbf{x})$?
- We will use the same general framework introduced for the supervised learning problem!

- How do we estimate $h^*_{\theta}(\mathbf{x})$?
- We will use the same general framework introduced for the supervised learning problem!
- We already fixed the set of hypothesis function to select from

- How do we estimate $h^*_{\theta}(\mathbf{x})$?
- We will use the same general framework introduced for the supervised learning problem!
- We already fixed the set of hypothesis function to select from
- We still need:
 - A training set D
 - An error measure (cost function) to minimize

COST FUNCTION

Finding The Best Hypothesis

If the hypothesis space H is made of a family of parametric models, $h^*_{\theta}(\mathbf{x})$ can be picked as:

$$h_{\boldsymbol{\theta}}^* = \operatorname{argmax}_{h_{\boldsymbol{\theta}} \in \mathcal{H}} P(h_{\boldsymbol{\theta}} \mid \mathcal{D})$$

Finding The Best Hypothesis

If the hypothesis space H is made of a family of parametric models, $h^*_{\theta}(\mathbf{x})$ can be picked as:

$$h_{\boldsymbol{\theta}}^* = \operatorname{argmax}_{h_{\boldsymbol{\theta}} \in \mathcal{H}} P(h_{\boldsymbol{\theta}} \mid \mathcal{D})$$

That is, we want to maximize the probability of the chosen hypothesis given the data D we observed

Flipping the Coin: The Likelihood Function

We measure the error we are making by assuming that $h^*_{\theta}(\mathbf{x})$ approximates the true noisy target ϕ

Flipping the Coin: The Likelihood Function

We measure the error we are making by assuming that $h^*_{\theta}(\mathbf{x})$ approximates the true noisy target ϕ

How likely is that the observed data D have been generated by our selected hypothesis $h^*_{\theta}(\mathbf{x})$?

Flipping the Coin: The Likelihood Function

We measure the error we are making by assuming that $h^*_{\theta}(\mathbf{x})$ approximates the true noisy target ϕ

How likely is that the observed data D have been generated by our selected hypothesis $h^*_{\theta}(\mathbf{x})$?

Find the hypothesis which maximizes the probability of the observed data D given a particular hypothesis

$$h_{\pmb{\theta}}^* = \operatorname{argmax}_{h_{\pmb{\theta}} \in \mathcal{H}} \ P(\ \mathcal{D}\ | h_{\pmb{\theta}})$$

Given the generic training example (\mathbf{x}, y) and assuming it has been generated by a hypothesis $h_{\theta}(\mathbf{x})$ the likelihood function is:

$$P(y|\mathbf{x}) = \begin{cases} h_{\theta}(\mathbf{x}) & \text{if } y = +1\\ 1 - h_{\theta}(\mathbf{x}) & \text{if } y = -1 \end{cases}$$

where φ has been replaced with our hypothesis

If we assume the hypothesis is the logistic function

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(\boldsymbol{\theta}^T \mathbf{x})$$

If we assume the hypothesis is the logistic function

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \ell(\boldsymbol{\theta}^T \mathbf{x})$$

And by noticing that logistic function is symmetric, i.e. $\ell(-z) = I - \ell(z)$, the likelihood for a single example is:

$$P(y \mid \mathbf{x}) = \ell(y oldsymbol{ heta}^T \mathbf{x})$$
 equals to *

Having access to a full set of m i.i.d. training examples D

$$\mathcal{D} = \{(\mathbf{x_1}, y_1)\}, \dots, (\mathbf{x_m}, y_m)\}$$

The overall likelihood function is computed as:

$$\prod_{i=1}^m P(y_i \mid \mathbf{x_i}) = \prod_{i=1}^m \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i})$$

Why Does Likelihood Make Sense?

How does the likelihood $\ell(y_i \theta^T \mathbf{x_i})$ changes w.r.t. the sign of y_i and $\theta^T \mathbf{x_i}$?

	$\mathbf{\theta}^{T}\mathbf{x}_{i} > 0$	$\theta^{T}\mathbf{x}_{i} < 0$
y _i > 0	~	≈ 0
y _i < 0	≈ 0	≈

Why Does Likelihood Make Sense?

How does the likelihood $\ell(y_i \theta^T x_i)$ changes w.r.t. the sign of y_i and $\theta^T x_i$?

	$\mathbf{\theta}^{T}\mathbf{x}_{i} > 0$	$\mathbf{\theta}^{T}\mathbf{x}_{i} < 0$
y _i > 0	≈	≈ 0
y _i < 0	≈ 0	≈

If the label is **concordant** with the signal (either positively or negatively) then $\ell(y_i \mathbf{\theta}^T \mathbf{x_i})$ approaches to I

prediction agrees with the true label

if y =1 and theta transpose x_i applied to logistic functions give us a values close to $\frac{1}{104}$ if the signal is very large, the logstic ouput is closer and closer to 1

Why Does Likelihood Make Sense?

How does the likelihood $\ell(y_i \theta^T x_i)$ changes w.r.t. the sign of y_i and $\theta^T x_i$?

	$\mathbf{\theta}^{T}\mathbf{x}_{i} > 0$	$\mathbf{\theta}^{T}\mathbf{x}_{i} < 0$
y _i > 0	≈	≈ 0
y _i < 0	≈ 0	≈

If the label is **disoncordant** with the signal then $\ell(y_i \theta^T x_i)$ approaches to 0

prediction disagrees with the true label

Maximum Likelihood Estimate (MLE)

Find the vector of parameters $\boldsymbol{\theta}$ such that the likelihood function is maximum

$$\mathrm{argmax}_{\pmb{\theta}} \bigg(\prod_{i=1}^m P(y_i \,|\, \mathbf{x_i}) \bigg) = \mathrm{argmax}_{\pmb{\theta}} \bigg(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \bigg)$$

From MLE to In-Sample Error

Given a hypothesis h_{θ} and a training set D of m labelled samples we are interested in measuring the "in-sample" (i.e. training) error

From MLE to In-Sample Error

Given a hypothesis h_{θ} and a training set D of m labelled samples we are interested in measuring the "in-sample" (i.e. training) error

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} e(h_{\boldsymbol{\theta}}(\mathbf{x_i}), y_i)$$

where e() measures how "far" the chosen hypothesis is from the true observed value

From MLE to In-Sample Error

Given a hypothesis h_{θ} and a training set D of m labelled samples we are interested in measuring the "in-sample" (i.e. training) error

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} e(h_{\boldsymbol{\theta}}(\mathbf{x_i}), y_i)$$

where e() measures how "far" the chosen hypothesis is from the true observed value

How we can "transform" MLE to the "in-sample" error above?

$$\text{argmax}_{\boldsymbol{\theta}} \bigg(\prod_{i=1}^m \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \bigg)$$

$$\mathrm{argmax}_{\pmb{\theta}} \Bigg(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \Bigg) \qquad \qquad \mathrm{argmax}_{\pmb{\theta}} \Bigg(\frac{1}{m} \ln \Big(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \Big) \Bigg)$$

the log is monotic and then we can apply it, does't change the theta values that

$$\begin{split} \operatorname{argmax}_{\pmb{\theta}} \bigg(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \bigg) & \operatorname{argmax}_{\pmb{\theta}} \bigg(\frac{1}{m} \ln \left(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \right) \bigg) \\ \operatorname{argmax}_{\pmb{\theta}} \bigg(\frac{1}{m} \ln \left(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \right) \bigg) &= \operatorname{argmin}_{\pmb{\theta}} \bigg(-\frac{1}{m} \ln \left(\prod_{i=1}^m \ell(y_i \pmb{\theta}^T \mathbf{x_i}) \right) \bigg) \end{split}$$

$$\begin{split} \operatorname{argmax}_{\boldsymbol{\theta}} \bigg(\prod_{i=1}^m \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \bigg) & \operatorname{argmax}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \ln \big(\prod_{i=1}^m \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) \\ \operatorname{argmax}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \ln \big(\prod_{i=1}^m \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) &= \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(-\frac{1}{m} \ln \big(\prod_{i=1}^m \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) \\ &= \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(-\frac{1}{m} \ln \big(\ell(y_1 \boldsymbol{\theta}^T \mathbf{x_1}) \big) - \ldots - \frac{1}{m} \ln \big(\ell(y_m \boldsymbol{\theta}^T \mathbf{x_m}) \big) \bigg) \\ \operatorname{as} k \ln(a \cdot b) &= k \left(\ln(a) + \ln(b) \right) = k \ln(a) + k \ln(b). \end{split}$$

$$\begin{split} \operatorname{argmax}_{\boldsymbol{\theta}} \bigg(\prod_{i=1}^{m} \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \bigg) & \operatorname{argmax}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \ln \big(\prod_{i=1}^{m} \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) \\ \operatorname{argmax}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \ln \big(\prod_{i=1}^{m} \ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) &= \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(-\frac{1}{m} \ln \big(\ell(y_1 \boldsymbol{\theta}^T \mathbf{x_i}) \big) - \dots - \frac{1}{m} \ln \big(\ell(y_m \boldsymbol{\theta}^T \mathbf{x_m}) \big) \bigg) \\ = \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(-\frac{1}{m} \ln \big(\ell(y_1 \boldsymbol{\theta}^T \mathbf{x_1}) \big) - \dots - \frac{1}{m} \ln \big(\ell(y_m \boldsymbol{\theta}^T \mathbf{x_m}) \big) \bigg) \\ = \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \sum_{i=1}^{m} - \ln \big(\ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) \\ = \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \sum_{i=1}^{m} - \ln \big(\ell(y_i \boldsymbol{\theta}^T \mathbf{x_i}) \big) \bigg) \\ = \operatorname{argmin}_{\boldsymbol{\theta}} \bigg(\frac{1}{m} \sum_{i=1}^{m} \ln \bigg(\frac{1}{\ell(y_i \boldsymbol{\theta}^T \mathbf{x_i})} \bigg) \bigg) \end{split}$$

Cross-Entropy Error

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} \ln \left(\frac{1}{\ell(y_i \boldsymbol{\theta}^T \mathbf{x_i})} \right) \right)$$

Cross-Entropy Error

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} \ln \left(\frac{1}{\ell(y_i \boldsymbol{\theta}^T \mathbf{x_i})} \right) \right)$$

By noticing that logistic function can be rewritten as follows:

$$\ell(z) = \frac{e^z}{1 + e^z} = \frac{1}{e^{-z} + 1}$$

We can finally write the "in-sample" error to be minimized:

$$E_{\rm in}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

Cross-Entropy Error

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} \ln \left(\frac{1}{\ell(y_i \boldsymbol{\theta}^T \mathbf{x_i})} \right) \right)$$

By noticing that logistic function can be rewritten as follows:

$$\ell(z) = \frac{e^z}{1 + e^z} = \frac{1}{e^{-z} + 1}$$

We can finally write the "in-sample" error to be minimized:

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

Cross-Entropy Error

2 formulations of cross-entropy can be found depending on the labeling chosen for the (binary) response y

2 formulations of cross-entropy can be found depending on the labeling chosen for the (binary) response y

$$\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)$$

$$y = \{-1, +1\}$$

2 formulations of cross-entropy can be found depending on the labeling chosen for the (binary) response y

$$\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)$$

$$\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \theta^T \mathbf{x}_i} + 1) - \frac{1}{m} \sum_{i=1}^{m} y_i \ln(p) + (1 - y_i) \ln(1 - p)$$
$$p = \frac{e^{\theta^T \mathbf{x}}}{e^{\theta^T \mathbf{x}} + 1} = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

$$y = \{-1, +1\}$$

$$y = \{0, 1\}$$

Probability density function of a Bernoulli-distributed random variable with known parameter p

Likelihood of an observed Bernoullidistributed random variable (parameter p is unknown)

Likelihood Function

Likelihood function of m i.i.d. observations of Y

$$L_Y(p; y_1 \dots y_m) = \prod_{i=1}^m p^{y_i} (1-p)^{(1-y_i)}$$

Likelihood Function

Likelihood function of m i.i.d. observations of Y

$$L_Y(p; y_1 \dots y_m) = \prod_{i=1}^m p^{y_i} (1-p)^{(1-y_i)}$$

Here the unknown is the parameter p and we use the observations $y_1, ..., y_m$ to find p so as to maximize the likelihood

$$p^* = \operatorname{argmax}_p \left\{ \prod_{i=1}^m p^{y_i} (1-p)^{(1-y_i)} \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\ln \left[\prod_{i=1}^m p^{y_i} (1-p)^{(1-y_i)} \right] \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\ln \left[\prod_{i=1}^m p^{y_i} (1-p)^{(1-y_i)} \right] \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m \ln \left[p^{y_i} (1-p)^{(1-y_i)} \right] \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\ln \left[\prod_{i=1}^m p^{y_i} (1-p)^{(1-y_i)} \right] \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m \ln \left[p^{y_i} (1-p)^{(1-y_i)} \right] \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m \ln(p^{y_i}) + \ln((1-p)^{(1-y_i)}) \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m \ln(p^{y_i}) + \ln((1-p)^{(1-y_i)}) \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m \ln(p^{y_i}) + \ln((1-p)^{(1-y_i)}) \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m y_i \ln(p) + (1 - y_i) \ln(1 - p) \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m \ln(p^{y_i}) + \ln((1-p)^{(1-y_i)}) \right\}$$

$$p^* = \operatorname{argmin}_p \left\{ -\sum_{i=1}^m y_i \ln(p) + (1 - y_i) \ln(1 - p) \right\}$$

Except for the I/m factor this is exactly the second formulation we gave for the cross-entropy error

$$-\sum_{i=1}^{m} y_i \ln(p) + (1-y_i) \ln(1-p)$$

$$-\sum_{i=1}^{m} y_i \ln(p) + (1 - y_i) \ln(1 - p)$$

$$-\sum_{i=1}^{m} y_i \ln\left(\frac{e^{\boldsymbol{\theta}^T \mathbf{x}_i}}{e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1}\right) + (1 - y_i) \ln\left(1 - \frac{e^{\boldsymbol{\theta}^T \mathbf{x}_i}}{e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1}\right)$$

$$-\sum_{i=1}^{m} y_i \ln(p) + (1 - y_i) \ln(1 - p)$$

$$-\sum_{i=1}^{m} y_i \ln\left(\frac{e^{\boldsymbol{\theta}^T \mathbf{x}_i}}{e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1}\right) + (1 - y_i) \ln\left(1 - \frac{e^{\boldsymbol{\theta}^T \mathbf{x}_i}}{e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1}\right)$$

$$-\sum_{i=1}^{m} y_i \left[\ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i}) - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right] + (1 - y_i) \left[\ln(1) - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right]$$

$$-\sum_{i=1}^{m} y_{i} [\ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)] + (1 - y_{i}) [\ln(1) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)]$$

$$-\sum_{i=1}^{m} y_{i} \left[\ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)\right] + (1 - y_{i}) \left[\ln(1) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)\right]$$

$$-\sum_{i=1}^{m} y_{i} \boldsymbol{\theta}^{T} \mathbf{x}_{i} - y_{i} \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1) + y_{i} \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)$$

$$-\sum_{i=1}^{m} y_{i} \left[\ln(e^{\boldsymbol{\theta}^{T}\mathbf{x}_{i}}) - \ln(e^{\boldsymbol{\theta}^{T}\mathbf{x}_{i}} + 1)\right] + (1 - y_{i}) \left[\ln(1) - \ln(e^{\boldsymbol{\theta}^{T}\mathbf{x}_{i}} + 1)\right]$$

$$-\sum_{i=1}^{m} y_{i} \boldsymbol{\theta}^{T}\mathbf{x}_{i} - y_{i} \ln(e^{\boldsymbol{\theta}^{T}\mathbf{x}_{i}} + 1) - \ln(e^{\boldsymbol{\theta}^{T}\mathbf{x}_{i}} + 1) + y_{i} \ln(e^{\boldsymbol{\theta}^{T}\mathbf{x}_{i}} + 1)$$

$$-\sum_{i=1}^{m} y_{i} [\ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)] + (1 - y_{i}) [\ln(1) - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)]$$

$$-\sum_{i=1}^{m} y_i \boldsymbol{\theta}^T \mathbf{x}_i - y_i \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1) - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1) + y_i \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1)$$

$$-\sum_{i=1}^{m} y_i \boldsymbol{\theta}^T \mathbf{x}_i - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1)$$

We want to show the 2 formulations below lead to the same function to be minimized

$$\sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)$$

$$y = \{-1, +1\}$$

$$-\sum_{i=1}^{m} y_i \boldsymbol{\theta}^T \mathbf{x}_i - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i} + 1)$$

$$y = \{0, 1\}$$

We want to show the 2 formulations below lead to the same function to be minimized

$$\sum_{i=1}^{m} \ln(e^{\theta^T \mathbf{x}_i} + 1) = \sum_{i=1}^{m} \ln(e^{\theta^T \mathbf{x}_i} + 1)$$

$$\mathbf{y} = -\mathbf{I}$$

$$\mathbf{y} = \mathbf{0}$$

We want to show the 2 formulations below lead to the same function to be minimized

$$\sum_{i=1}^{m} \ln(e^{-\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1) \qquad \stackrel{?}{=} \qquad -\sum_{i=1}^{m} \boldsymbol{\theta}^{T} \mathbf{x}_{i} - \ln(e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1)$$

$$\mathbf{y} = \mathbf{I}$$

$$\mathbf{y} = \mathbf{I}$$

04/15/2020

139

$$\left| \sum_{i=1}^{m} \ln(e^{-\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1) \right| = \sum_{i=1}^{m} \ln\left(\frac{1}{e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}} + 1\right) = \sum_{i=1}^{m} \ln\left(\frac{1 + e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}}{e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}}\right)$$

$$\left| \sum_{i=1}^{m} \ln(e^{-\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1) \right| = \sum_{i=1}^{m} \ln\left(\frac{1}{e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}} + 1\right) = \sum_{i=1}^{m} \ln\left(\frac{1 + e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}}{e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}}\right)$$

$$= \sum_{i=1}^{m} \ln(1 + e^{\boldsymbol{\theta}^T \mathbf{x}_i}) - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i})$$

$$\left| \sum_{i=1}^{m} \ln(e^{-\boldsymbol{\theta}^{T} \mathbf{x}_{i}} + 1) \right| = \sum_{i=1}^{m} \ln\left(\frac{1}{e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}} + 1\right) = \sum_{i=1}^{m} \ln\left(\frac{1 + e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}}{e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}}\right)$$

$$= \sum_{i=1}^{m} \ln(1 + e^{\boldsymbol{\theta}^T \mathbf{x}_i}) - \ln(e^{\boldsymbol{\theta}^T \mathbf{x}_i})$$

$$= \left| -\sum_{i=1}^{m} \boldsymbol{\theta}^{T} \mathbf{x}_{i} - \ln(1 + e^{\boldsymbol{\theta}^{T} \mathbf{x}_{i}}) \right|$$

LEARNING ALGORITHM

Picking the Best Hypothesis

- So far, we have defined:
 - The model (logistic function)
 - The error measure (cross-entropy)

Picking the Best Hypothesis

- So far, we have defined:
 - The model (logistic function)
 - The error measure (cross-entropy)

To actually select the best hypothesis, we have to pick the vector of parameters $\boldsymbol{\theta}$ so that the error measure is minimized

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

In the case of linear regression we have a similar expression for the error measure, i.e. Mean Squared Error (MSE)

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \mathbf{x_i} - y_i)^2$$

In the case of linear regression we have a similar expression for the error measure, i.e. Mean Squared Error (MSE)

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \mathbf{x_i} - y_i)^2$$

Minimising MSE through Ordinary Least Squares (OLS) leads to a closed-form solution often referred to as the OLS estimator for θ

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

The problem is that using Cross-Entropy as error measure we cannot find a closed-form solution to the minimization problem

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

we cannot find the the minimazer analiticaly

The problem is that using Cross-Entropy as error measure we cannot find a closed-form solution to the minimization problem

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

Yet, Cross-Entropy is convex w.r.t. the parameters θ

The problem is that using Cross-Entropy as error measure we cannot find a closed-form solution to the minimization problem

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

Yet, Cross-Entropy is convex w.r.t. the parameters θ

Iterative Solution

(Batch) Gradient Descent

General iterative method for any nonlinear optimization

(Batch) Gradient Descent

General iterative method for any nonlinear optimization

The method guarantees the convergence to a local minimum

(Under specific assumptions on the objective function and learning rate)

if oyu apply GD to a function to a convex function you get a global minimum, otherwise it is not garanteed that GD can find the best local minimum

(Batch) Gradient Descent

General iterative method for any nonlinear optimization

The method guarantees the convergence to a local minimum

(Under specific assumptions on the objective function and learning rate)

If the objective function is **convex** (like cross-entropy) then the local minimum is also the **global minimum**

I. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$

- I. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$
- 2. Repeat until convergence: until you take a global min.
 - a. Update the current vector of parameters $\theta(t)$ by taking a "step" along the "steepest" slope: $\theta(t+1) = \theta(t) + \eta v$
 - b. Return to 2.

- I. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$
- 2. Repeat until convergence:
 - a. Update the current vector of parameters $\theta(t)$ by taking a "step" along the "steepest" slope: $\theta(t+1) = \theta(t) + \eta v$
 - b. Return to 2.

Unit vector representing the direction of the steepest slope

$$m{ heta}(t+1) = m{ heta}(t) + \eta \mathbf{v}$$
 unit vector which models the direction

- I. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$
- 2. Repeat until convergence:
 - a. Update the current vector of parameters $\theta(t)$ by taking a "step" along the "steepest" slope: $\theta(t+1) = \theta(t) + \eta v$
 - b. Return to 2.

Unit vector representing the direction of the steepest slope

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$

How do we determine the direction **v**?

• We already intuitively said that the direction **v** should be that of the "steepest" slope

- We already intuitively said that the direction **v** should be that of the "steepest" slope
- Concretely, this means moving along the direction which mostly reduces the in-sample error function

$$\Delta E_{\rm in}(\boldsymbol{\theta},t) = E_{\rm in}(\boldsymbol{\theta}(t)) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

- We already intuitively said that the direction **v** should be that of the "steepest" slope

 difference of the error, if we have a less value in the time t this implies that the error is better than
- Concretely, this means moving along the direction which mostly reduces the in-sample error function

$$\Delta E_{\rm in}(\boldsymbol{\theta},t) = E_{\rm in}(\boldsymbol{\theta}(t)) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

We want ΔE_{in} to be as negative as possible, which means that we are actually reducing the error w.r.t. the previous iteration t-I

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\delta f = \Delta E_{\rm in} = f(x) - f(x_0)$$

$$\delta x = x - x_0 = \boldsymbol{\theta}(t) - \boldsymbol{\theta}(t-1) = \eta \mathbf{v}$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\delta f = \Delta E_{\rm in} = f(x) - f(x_0)$$

$$\delta x = x - x_0 = \boldsymbol{\theta}(t) - \boldsymbol{\theta}(t-1) = \eta \mathbf{v}$$

$$f'(x_0) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \approx \frac{\delta f}{\delta x}$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\delta f = \Delta E_{\rm in} = f(x) - f(x_0)$$

$$\delta x = x - x_0 = \boldsymbol{\theta}(t) - \boldsymbol{\theta}(t-1) = \eta \mathbf{v}$$

$$f'(x_0) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \approx \frac{\delta f}{\delta x}$$

$$\delta f = f(x) - f(x_0) \approx f'(x_0) \delta x = f'(x_0)(x - x_0)$$

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0) + O((x - x_0)^2)}_{}$$

First-order Taylor approximation Second-order error term

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{-} + O((x - x_0)^2)$$

First-order Taylor approximation Second-order error term

To summarize and generalize to the multivariate case of θ :

$$\delta f = f(x) - f(x_0) = \Delta E_{\text{in}} = \eta \nabla E_{\text{in}} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

The greek letter nabla indicates the gradient

$$\Delta E_{\rm in} = \eta \nabla E_{\rm in} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

$$\Delta E_{\rm in} = \eta \nabla E_{\rm in} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

The unit vector **v** only contributes to the **direction** and not to the magnitude of the iterative step

$$\Delta E_{\rm in} = \eta \nabla E_{\rm in} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

The unit vector **v** only contributes to the **direction** and not to the magnitude of the iterative step

The second-order approximation term is negligible (when the step size is small)

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} \cos(\alpha) = ||\mathbf{u}|| \cos(\alpha)$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{-1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha) \qquad -1 \le cos(\alpha) \le 1$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} \cos(\alpha) = ||\mathbf{u}|| \cos(\alpha) \qquad -1 \le \cos(\alpha) \le 1$$
$$-||\mathbf{u}|| \le \mathbf{u} \cdot \mathbf{v} \le ||\mathbf{u}||$$
$$-\eta||\mathbf{u}|| \le \underbrace{\eta \mathbf{u} \cdot \mathbf{v}}_{AE_{in}} \le \eta||\mathbf{u}||$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha) \qquad -1 \le cos(\alpha) \le 1$$

$$-||\mathbf{u}|| \le \mathbf{u} \cdot \mathbf{v} \le ||\mathbf{u}||$$
$$-\eta||\mathbf{u}|| \le \eta \mathbf{u} \cdot \mathbf{v} \le \eta||\mathbf{u}||$$
$$\Delta E_{in}$$

The most **positive** ΔE_{in} when $cos(\alpha) = I$ (i.e., $\alpha = 0^{\circ}$)

Both error and step vectors have the same direction

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha) \qquad -1 \le cos(\alpha) \le 1$$

$$\frac{-||\mathbf{u}|| \le \mathbf{u} \cdot \mathbf{v} \le ||\mathbf{u}||}{-\eta||\mathbf{u}|| \le \underline{\eta} \mathbf{u} \cdot \mathbf{v} \le \eta||\mathbf{u}||}$$

The most **negative** ΔE_{in} when $cos(\alpha) = -1$ (i.e., $\alpha = 180^{\circ}$)

The error and step vectors have opposite direction

At each iteration t, we want the unit vector \mathbf{v} which makes exactly **the most negative** ΔE_{in}

$$\eta \mathbf{u} \cdot \mathbf{v} = -\eta ||\mathbf{u}||$$

At each iteration t, we want the unit vector \mathbf{v} which makes exactly **the most negative** ΔE_{in}

$$\eta \mathbf{u} \cdot \mathbf{v} = -\eta ||\mathbf{u}||$$

$$\mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||$$

 $\mathbf{u}^T \cdot \mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||\mathbf{u}^T$

$$\mathbf{v} = -\frac{||\mathbf{u}||\mathbf{u}^T}{||\mathbf{u}||^2} = -\frac{\mathbf{u}^T}{||\mathbf{u}||} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t-1))}{\nabla ||E_{\text{in}}(\boldsymbol{\theta}(t-1))||}$$

At each iteration t, we want the unit vector \mathbf{v} which makes exactly **the most negative** ΔE_{in}

$$\eta \mathbf{u} \cdot \mathbf{v} = -\eta ||\mathbf{u}||$$

$$\mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||$$

 $\mathbf{u}^T \cdot \mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||\mathbf{u}^T$

$$\mathbf{v} = -\frac{||\mathbf{u}||\mathbf{u}^T}{||\mathbf{u}||^2} = -\frac{\mathbf{u}^T}{||\mathbf{u}||} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t-1))}{\nabla ||E_{\text{in}}(\boldsymbol{\theta}(t-1))||}$$

How the step magnitude η affects the convergence?

How the step magnitude η affects the convergence?

How the step magnitude η affects the convergence?

How the step magnitude η affects the convergence?

How the step magnitude η affects the convergence?

Rule of thumb

Dynamically change η proportionally to the gradient!

Remember that at each iteration the update strategy is:

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$

$$\mathbf{v} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

Remember that at each iteration the update strategy is:

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$
$$\mathbf{v} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

At each iteration t, the step η is fixed

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Let's take:
$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta k \frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Let's take:
$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta k \frac{\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\|}$$

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\| \frac{\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\|}$$

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Let's take:
$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta k \frac{\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\|}$$

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|_{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}^{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}$$

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \nabla E_{\text{in}}(\boldsymbol{\theta}(t))$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right] = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} \nabla(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

chain rule of derivative

194

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right] = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} \nabla(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right]$$

chain rule of derivative

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{-y_i \mathbf{x}_i e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i}}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1}$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right] = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} \nabla(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right]$$

chain rule of derivative

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{-y_i \mathbf{x}_i e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i}}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}^T \mathbf{x}_i}}$$

I. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$

- I. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$
- 2. For t = 0, 1, 2, ... until stop:
 - Compute the gradient of the cross-entropy error $E_{\rm in}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln \left(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}}\right)$

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}(t)) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}(t)^T \mathbf{x}_i}}$$

- 1. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$
- 2. For t = 0, 1, 2, ... until stop:
 - Compute the gradient of the cross-entropy error $E_{\rm in}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln \left(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}}\right)$

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}(t)) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}(t)^T \mathbf{x}_i}}$$

- Update the vector of parameters: $\theta(t+1) = \theta(t) \eta \nabla E_{in}(\theta(t))$
- Return to 2.

- 1. At t=0 initialize the (guessed) vector of parameters θ to $\theta(0)$
- 2. For t = 0, 1, 2, ... until stop:
 - Compute the gradient of the cross-entropy error $E_{\rm in}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln \left(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}}\right)$

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}(t)) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}(t)^T \mathbf{x}_i}}$$

- Update the vector of parameters: $\theta(t+1) = \theta(t) \eta \nabla E_{in}(\theta(t))$
- Return to 2.
- 3. Return the final vector of parameters $\theta(\infty)$

• How do we choose the initial value of the parameters $\theta(0)$?

- How do we choose the initial value of the parameters $\theta(0)$?
- Typically, random initialization!

- How do we choose the initial value of the parameters $\theta(0)$?
- Typically, random initialization!
- If the function is convex we are guaranteed to reach the global minimum no matter what is the initial value of $\theta(0)$

- How do we choose the initial value of the parameters $\theta(0)$?
- Typically, random initialization!
- If the function is convex we are guaranteed to reach the global minimum no matter what is the initial value of $\theta(0)$
- In general, we may get to the local minimum nearest to $\theta(0)$

• GD can still be used to try to optimize non-convex objectives

- GD can still be used to try to optimize non-convex objectives
- Problem: non-convex functions may have several local minima

- GD can still be used to try to optimize non-convex objectives
- Problem: non-convex functions may have several local minima
- A bad initialization might cause GD to end up into a "bad" local minimum and miss "better" ones (or even the global if it exists)

- GD can still be used to try to optimize non-convex objectives
- Problem: non-convex functions may have several local minima
- A bad initialization might cause GD to end up into a "bad" local minimum and miss "better" ones (or even the global if it exists)
- Solution (heuristic): repeating GD 100÷1,000 times each time with a different $\theta(0)$ may reduce the chance the above issue occurs

Gradient Descent: Stopping Criterion

• If the function is convex GD reaches the global minimum when

$$\nabla \mathsf{E}_{\mathsf{in}}(\boldsymbol{\theta}(\mathsf{t})) = 0$$

Gradient Descent: Stopping Criterion

• If the function is convex GD reaches the global minimum when $\nabla E_{in}(\theta(t)) = 0$

- In general, we don't know if eventually the gradient gets to 0 therefore we can use several criteria of termination:
 - stop whenever the difference between two iterations is "small enough" → may converge "prematurely"
 - stop when the error equals to $\epsilon \rightarrow$ may not converge if the target error is not achievable
 - stop after T iterations
 - combinations of the above in practice works...

Gradient Descent: Advanced Topics

- Gradient Descent using second-order approximation
 - Better local approximation than first-order but each step requires computing the second derivative (Hessian matrix)

Gradient Descent: Advanced Topics

- Gradient Descent using second-order approximation
 - Better local approximation than first-order but each step requires computing the second derivative (Hessian matrix)
- Stochastic Gradient Descent (SGD)
 - At each iteration, compute the gradient only from one sample (not the full dataset)

Gradient Descent: Advanced Topics

- Gradient Descent using second-order approximation
 - Better local approximation than first-order but each step requires computing the second derivative (Hessian matrix)
- Stochastic Gradient Descent (SGD)
 - At each iteration, compute the gradient only from one sample (not the full dataset)
- Regularization

• Include the L1- or L2-norm of the vector of parameters $\boldsymbol{\theta}$ in the cross-entropy error to avoid overfitting

• Logistic Regression is a powerful tool for predicting binary variables through probability of each class

- Logistic Regression is a powerful tool for predicting binary variables through probability of each class
- It fits a regression line between input (features) and output (logarithm of the odds), assuming probability takes the form of a sigmoid function

- Logistic Regression is a powerful tool for predicting binary variables through probability of each class
- It fits a regression line between input (features) and output (logarithm of the odds), assuming probability takes the form of a sigmoid function
- Parameter estimation is typically done via MLE (i.e., by minimizing Cross-Entropy error)

- Logistic Regression is a powerful tool for predicting binary variables through probability of each class
- It fits a regression line between input (features) and output (logarithm of the odds), assuming probability takes the form of a sigmoid function
- Parameter estimation is typically done via MLE (i.e., by minimizing Cross-Entropy error)
- No closed-form solution \rightarrow iterative Gradient Descent