GRAPH THEORY

Question Bank

Helping Others Have Special taste

Questions

-	e maximum n ices is	umber of edges	s possible in	a simple graph with n
	a) n (n-1)/2	b) n (n-1) c)	n(n+1)/2 d)	n(n+1)
2) The	maximum nu a) 2	umber of edges b) 3	-	ual d) none
3) The		imple graph po b) 2 ^{n(n+1)/2}		
4) The	maximum nu	umber of simple	e graph with	n =3 equal
	a)4	b) 8	c) 16	d) 32
5)		pair of vertices	-	_
6) If th		b) weighted		,
6) II tii	•	b) multiple		graph called
	a)Simple	b) multiple	c) complete	d) connected
7) In the complete graph the number of edges =				
	a) n (n-1)/2	b) n (n-1)	c) n(n+1)/2	d) n(n+1)
8) In a graph you can draw a path from one vertex to any other vertex				
	a) Complete	b) connected	c) simple	d) tree
9) In the graph number of vertices equal to the number of edges				
J		b) connected	c) cycle	d) tree

10)	A graph n	ot containing a	ny cycle i	in it is called	as an
	a) regular	b) connected	c) cycle	d) acyclic	
11)	A graph a	all edges forms	a cycle is	s called	graph
	a) regular	b) connected	c) cycle	d) acyclic	
12)	A graph	whose edges fo	orms a pa	th is called	graph
,	•	b) connected	-		9
		ained from a cyco) is called		by joining a	single new
	a) Complete	e b) wheel	c) connecte	ed d) tree	
14)	The wheel	graph with n v	ertices co	ontain	edges
	a) n-1	b) 2(n+1) c)	<mark>2(n-1)</mark> d) n(n-1)/2
15\	A graph in	which the set o	of vortices	s can ho nart	itioned into
•	• •	d N Is called a		•	itioned into
	a)Complete	b) wheel	c) connected	d <mark>d) bipar</mark>	tite
16\	Every verte	ex of M is adjac	ent to eve	ary vertey of	N is called
-	graph	on with aujac		ny vertex or	it is called
	a)Complete	b) complete b	pipartite	c) connected	d) bipartite

•	Agraph h other	that we can o	Iraw and no two	edges of it cross
	a)planner	b) simple	c) regular d	l) bipartite
18)	whose ve	ertex set and	edge set are su	bset of graph
	a)multiple	b) simple	c) subgraph	d) bipartite
19)	If the graph is	a part of anot	her graph it cal	led
	a)planner	b) simple	c) subgraph	d) bipartite
20) Graph is called that cannot be drawn without at least on pair of Its crossing edges				
	a)planner	b) non planner	c) subgraph	d) multiple
21) For any two graph If number of vertices is equal, number of edges are equal and degree is same				
	a) <mark>Isomorphism</mark>	b) planne	er c) complet	e d) connected
22) sequence of vertices and edges of a graph, edge and vertices can repeated				
	a) <mark>walk</mark>	b) path	c) cycle	d) trail
23) If the starting and ending vertices are different the walk called				
••••				
	a) close	b) o <mark>pen</mark>	c) cycle	d) simple

24) If the sta	rting and ending ve	rtices are identica	al the walk called
a) <mark>clos</mark> e	b) open	c) cycle	d) simple
25) Is an ope	n walk which no ed	ge is repeated , ve	ertex can repeat
a) walk	b) path	c) cycle	d) <mark>trail</mark>
26) is	a closed trail		
a) walk	b) path	c) <mark>circuit</mark>	d) cycle
27) In circuit	can repeat	can not repeat	
a) vertices	<mark>s,edges</mark> b) edges,\	vertices c) both,	none d) none, both
28)is a t	rail which neither v	ertices nor edges	are repeated
a) walk	b) path	c) cycle	d) trail
•	a graph start and en and end point only o	•	•
a) walk	b) path	c) circuit	d) cycle
, ,	cy matrix an fo Number of edges fro	•	
a) n*n	b) n*m c) n	n*m d) e*n	

31) matrix is (n * m) matrix

- a) adjacency
- b) incidence
- c) both
- d) none

32) Which of the following ways can be used to represent a graph?

- a) Adjacency List and Adjacency Matrix
- b) Incidence Matrix
- c) Adjacency List, Adjacency Matrix as well as Incidence Matrix
- d) No way to represent

33) What is the maximum number of edges in a bipartite graph having 10 vertices?

a) 24

b)21

c)25

d)16

34) The number of elements in the adjacency matrix of a graph having 7 vertices is

- a) 7
- b) 14
- c) 36
- d) 49

35) What would be the number of zeros in the adjacency matrix of the given graph?

a) 10

b) 6

c) 16

d) 0

- 36) Adjacency matrix of all graphs are symmetric.
- a) False
- b) True
- 37) For the adjacency matrix of a directed graph the row sum is the _____ degree and the column sum is the _____ degree.
- a) in, out
- b) out, in
- c) in, total
- d) total, out
- 38) What is the maximum number of possible non zero values in an adjacency matrix of a simple graph with n vertices?
- a) (n*(n-1))/2
- b) (n*(n+1))/2
- c) n*(n-1)
- d) n*(n+1)
- 39) Which of these adjacency matrices represents a simple graph?
- a) [[1, 0, 0], [0, 1, 0], [0, 1, 1]]
- b) [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
- c) [[0, 0, 1], [0, 0, 0], [0, 0, 1]]
- d) [[0, 0, 1], [1, 0, 1], [1, 0, 0]]

40) Given the following adjacency matrix of a graph(G) determine the number of components in the G.

```
[0 1 1 0 0 0],
[1 0 1 0 0 0],
[1 1 0 0 0 0],
[0 0 0 0 1 0],
[0 0 0 1 0 0],
[0 0 0 0 0 0].
```

- a) 1
- b) 2
- c) 3
- d) 4

41) If A[x+3][y+5] represents an adjacency matrix, which of these could be the value of x and y.

- a) x=5, y=3
- b) x=3, y=5
- c) x=3, y=3
- d) x=5, y=5

42) Incidence matrix and Adjacency matrix of a graph will always have same dimensions?

- a) True
- b) False

43) What are the dimensions of an incidence matrix?

- a) Number of edges*number of edges
- b) Number of edges*number of vertices
- c) Number of vertices*number of vertices
- d) Number of edges * (½ * number of vertices)

44) If a connected Graph (G) contains n vertices what would be the rank of its incidence matrix?

- a) n-1
- b) values greater than n are possible
- c) values less than n-1 are possible
- d) insufficient Information is given
- 45) The column sum in an incidence matrix for a directed graph having no self loop is _____
- a) 0
- b) 1
- c) 2
- d) equal to the number of edges

46) Which of the following graphs are isomorphic to each other?

- a) fig 1 and fig 2
- b) fig 2 and fig 3
- c) fig 1 and fig 3
- d) fig 1, fig 2 and fig 3

47) All paths and (a) True b) False	cyclic graphs are bi	ipartite graphs	•
i) All cyclic graphs are ii) All complete graphs iii) All paths are bipartit iv) All cyclic graphs are v) There are cyclic graph	are cyclic graphs. te. e bipartite. phs which are complete).	
a) 1	b) 2	c) 3	d) 4
•	ximum number of e h 7 vertices if there b) 7	•	•
50) What is the ma	ximum possible nu	mber of edges	in a directed
•	loops having 8 vert	_	, iii a aii ootoa
a) 28	b) 64	c) 256	d) 56
51) All Graphs hav a) True b) False	ve unique represen	tation on pape	r.

Answers

Question	Answer
1	Α
2	В
3	A
4	В
5	С
6	С
7	Α
8	В
9	С
10	D
11	С
12	Α
13	В
14	С
15	D
16	В
17	Α
18	С
19	С
20	В
21	A
22	A
23	В

24	A
25	D
26	С
27	A
28	В
29	D
30	A
31	В
32	С
33	С
34	D
35	A
36	A
37	В
38	С
39	D
40	С
41	A
42	В
43	В
44	A
45	A
46	D
47	В
48	В
49	С
50	D
51	В

We Hope we could Help You

Please leave us your feedback

Your Feedback Here Feedback