Методы оптимизации, Лабораторная работа №1

Кирилл Кадомцев и Андрей Крюков

Апрель 2025

Содержание

1.	Описание методов	1
2.	Тестирование	1
3.	Графики	3

1. Описание методов

Для градиентного спуска были реализованы следующие методы выбора шага:

- Постоянный
- Кусочно-постоянный
- Наискорейший спуск (используется золотое сечение)

Для удобства и расширяемости, методы реализовывались так, чтоб можно было в дальнейшем использовать их для любых размерностей (исходя из предположения, что это может стать объектом исследования в дальнейших лабораторных работах). Для стратегий был создан специальный интерфейс с методом step, позволяющий в дальнейшем расширить список реализованных методов.

2. Тестирование

Для тестирования были выбраны несколько функций с различными точками минимума. Также, была использованна функция Химмельблау, поскольку она мультимодальная.

1. Параболоид

•
$$f(x,y) = x^2 + y^2$$

•
$$\nabla f(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

2. Эллипс

$$\bullet \ f(x,y) = 4x + y$$

•
$$\nabla f(x,y) = \begin{pmatrix} 8x \\ 2y \end{pmatrix}$$

3. Функция Розенброка

•
$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

•
$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

• $\nabla f(x,y) = \begin{pmatrix} -2(1-x) - 400x(y-x^2) \\ 200(y-x^2) \end{pmatrix}$

4. Квадратичная форма (3, -2)

•
$$f(x,y) = (x-3)^2 + (y+2)^2$$

•
$$\nabla f(x,y) = \begin{pmatrix} 2(x-3) \\ 2(y+2) \end{pmatrix}$$

5. Квадратичная форма (2, -1)

$$\bullet \ f(x,y) = x + y$$

•
$$\nabla f(x,y) = \begin{pmatrix} 10(x-2) \\ 6(y+1) \end{pmatrix}$$

6. Функция Химмельблау

•
$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

•
$$\nabla f(x,y) = \begin{pmatrix} 4x(x^2+y-11) + 2(x+y^2-7) \\ 2(x^2+y-11) + 4y(x+y^2-7) \end{pmatrix}$$

• глобальные минимумы:
$$\begin{cases} (3.0,\ 2.0) \\ (-2.805118,\ 3.131312) \\ (-3.779310,\ -3.283186) \\ (3.584428,\ -1.848126) \end{cases}$$

Ниже приведены результаты оптимизации в зависимости от стратегии выбора шага. В данном случае (пап, пап) является результатом переполнения, то есть провалом поиска минимума.

Функция	Ожидаемый минимум	Пост. шаг	Кусочно-пост. шаг	Наискор. спуск
paraboloid	$(0, \ 0)$	(0, 0)	$(0, \ 0)$	(0, 0)
ellipse	$(0, \ 0)$	(0, 0)	$(0, \ 0)$	(0, 0)
rosenbrock	(1, 1)	(nan, nan)	(nan, nan)	(0.9991, 0.9982)
min3m2	(3, -2)	(2.9996, -1.9997)	(2.9996, -1.9997)	(3.0000, -2.0000)
min2m1	(2, -1)	(2.0000, -0.9999)	(2.0000, -0.9999)	(0.5932, -0.1903)
himmelblau	приведены в списке	(nan, nan)	(nan, nan)	(3.5844, -1.8481)

Таблица 1: Сравнение точек минимума для разных стратегий шага

3. Графики

Не будем приводить все графики ввиду избыточности. Графики для эллипса демонстрируют, что точка минимума (0,0) находится за 1 итерацию. Графики для функции Химмельблау показывают несовершенство постоянного и кусочно-постоянного методов для мультимодальной функции. Для квадратичной функции графики приведены для демонстрации работы корректности работы в случае, если минимум отличен от нуля.

Рис. 1: Enter Caption