

2. Let G be a finite group, $H, K \leq G$. Prove: $|HK| = \frac{|H|K|}{|H \cap K|}$. (Hint: HK may not be a group).

3. Let N, H be two different maximal normal subgroup of G, then $N \cap H$ is a maximal normal subgroup of H(also N).

4. Let G be a finite group, $\varphi \in Aut(G)$, let

$$I = \left\{ g \in G \mid \varphi(g) = g^{-1} \right\}$$

- (1). Suppose $|I| > \frac{3}{4}|G|$, prove: G is abelian; (2). Suppose $|I| = \frac{3}{4}|G|$, prove: $\exists H \leq G$ s.t. H is abelian and [G:H] = 2.

5. Prove that Aut $(Z_2 \oplus Z_2) \simeq S_3$.

6. Let $H, K \subseteq G, G/H, G/K$ are all soluble groups. Prove: $G/H \cap K$ is also a soluble group. (Hint: you can use the lemma from the last lesson.)