Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»		
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»		

ОТЧЕТ по лабораторной работе №1

Название:	Расстояние Л	Іевенштейна и Дамерау – Левенц	штейна
Дисциплина:		Анализ алгоритмов	
Студент	<u>ИУ7-56Б</u> Группа	—————————————————————————————————————	Ковель А.Д. И.О.Фамилия
Преподаватель	1 pymw	Подпись, дата	Волкова Л.Л. И. О. Фамилия

Оглавление

		Страни	ща
1	Введ	дение	2
2	Ана	литический раздел	3
	2.1	Расстояние Левенштейна	3
	2.2	Матрица расстояний	4
	2.3	Расстояние Дамерау – Левенштейна	4
	2.4	Рекурсивная формула	5
	2.5	Рекурсивный алгоритм расстояния Левенштейна с мемоиза-	
		цией	6
	2.6	Вывод	6

1 | Введение

Нахождение редакционного расстояния — одна из задач компьютерной лингвистики, которая находит применение в огромном количестве областей, начиная от предиктивных систем набора текста и заканчивая разработкой искусственного интеллекта. Впервые задачу поставил советский ученый В. И. Левенштейн [Lev1965], впоследствии её связали с его именем. В данной работе будут рассмотрены алгоритмы редакционного расстояния Левенштейна и расстояние Дамерау — Левенштейна.

Расстояния Левенштейна — метрика, измеряющая разность двух строк символов, определяемая в количестве редакторских операций (а именно удаления, вставки и замены), требуемых для преобразования одной последовательности в другую. Расстояние Дамерау — Левенштейна — модификация, добавляющая к редакторским операциям транспозицию, или обмен двух соседних символов местами.

Алгоритмы находят применение не только в компьютерной лингвистике (например, при реализации предиктивных систем при вводе текста), но и, например, при работе с утилитой diff и ей подобными. Также у алгоритма существуют более неочевидные применения, где операции проводятся не над буквами в естественном языке. Алгоритм применяется для распознавания текста на нечетких фотографиях. В этом случае сравниваются последовательности черных и белых пикселей на каждой строке изображения. Нередко алгоритм используется в биоинформатике для определения схожести разных участков ДНК или РНК.

Алгоритмы имеют некоторое количество модификаций, позволяющих эффективнее решать поставленную задачу. В данной работе будут предложены реализации алгоритмов, использующие парадигмы динамического программирования.

Цель лабораторной работы – получить навыки динамического программирования. Задачами лабораторной работы являются изучение и реализация алгоритмов Левенштейна и Дамерау — Левенштейна, применение парадигм динамического программирования при реализации алгоритмов и сравнительный анализ алгоритмов на основе экспериментальных данных.

2 Аналитический раздел

2.1 Расстояние Левенштейна

Редакторское расстояние (расстояние Левенштейна) – это минимальное количество операций вставки, удаления и замены, необходимых для превращения одной строки в другую. Каждая редакторская операция имеет цену (штраф). В общем случае, имея на входе строку $X = x_1x_2...x_n$ и $Y = y_1y_2...y_n$, расстояние между ними можно вычислить с помощью операций:

- delete $(u, \varepsilon) = \delta$
- $insert(\varepsilon, v) = \delta$
- replace $(u, v) = \alpha(u, v) \le 0$ (здесь, $\alpha(u, u) = 0$ для всех u).

Необходимо найти последовательность замен с минимальным суммарным штрафом. Далее, цена вставки и удаления будет считаться равной 1. Пусть даны строки s1 = s1[1..L1], s2 = s2[1..L2], s1[1..i] - подстрока s1 длинной і, начиная с 1-го символа, s2[1..j] - подстрока s2 длинной ј, начиная с 1-го символа. Расстояние Левентштейна посчитывается следующей формулой:

$$D(s1[1..i], s2[1..j]) = \begin{cases} 0 & i = 0, j = 0 \\ i & i > 0, j = 0 \\ j, & j > 0, i = 0 \end{cases}$$

$$D(s1[1..i], s2[1..j]) + 1$$

$$min(D(s1[1..i-1], s2[1..j]) + 1,$$

$$min(D(s1[1..i-1], s2[1..j]) + 1$$

$$+ \begin{bmatrix} 0, & s1[i] = s2[j] \\ 1 \end{cases}$$

$$(2.1)$$

2.2 Матрица расстояний

В 2001 году был предложен подход, использующий динамическое программирование. Этот алгоритм, несмотря на низкую эффективность, один из самых гибких и может быть изменен в соответствии с функцией нахождения расстояния, по которой производится расчет[Navarro2001].

Пусть $C_{0..|X|,0..|Y|}$ – матрица расстояний, где $C_{i,j}$ – минимальное количество редакторских операций, необходимое для преобразования подстроки $x_1...x_i$ в подстроку $y_1...y_j$. Матрица заполняется следующим образом:

$$Ci, j = \begin{cases} i & j = 0 \\ j & i = 0 \end{cases}$$

$$Ci, j = \begin{cases} C_{i-1,j-1} + \alpha(x_i, y_i), & \\ C_{i-1,j} + 1, & \text{иначе.} \end{cases}$$

$$C_{i,j-1} + 1)$$

При решении данной задачи используется ключевая идея динамического программирования — чтобы решить поставленную задачу, требуется разбить на отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Здесь небольшие подзадачи — это заполнение ячеек таблицы с индексами i < |X|, j < |Y|. После заполнения всех ячеек матрицы в ячейке $C_{|X|,|Y|}$ будет записано искомое расстояние.

2.3 Расстояние Дамерау – Левенштейна

Расстояние Дамерау – Левенштейна – модификация расстояния Левенштейна, добавляющая транспозицию к редакторским операциям, предложенными Левенштейном (см. 2.1). изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал[damerau], что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау-Левенштейна часто используется

в редакторских программах для проверки правописания).

Используя условные обозначения, описанные в разделе 2.1, рекурсивная формула для нахождения расстояния Дамерау – Левенштейна f(i,j) между подстроками $x_1...x_i$ и $y_1...y_j$ имеет следующий вид:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i & j = 0 \\ \delta_j & i = 0 \end{cases}$$

$$min \begin{cases} \alpha(x_i, y_i) + f_{X,Y}(i-1, j-1) \\ \delta + f_{X,Y}(i-1, j) \\ \delta + f_{X,Y}(i, j-1) & \text{иначе.} \end{cases}$$

$$\begin{bmatrix} \delta + f_{X,Y}(i-2, j-2) & i, j > 1x_i = y_{j-1}x_{i-1} = y_j \\ \infty & \text{иначе.} \end{cases}$$

$$(2.3)$$

2.4 Рекурсивная формула

Используя условные обозначения, описанные в разделе 2.3, рекурсивная формула для нахождения расстояния Дамерау- Левенштейна f(i,j) между подстроками $x_1...x_i$ и $y_1...y_j$ имеет следующий вид:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i & j = 0 \\ \delta_j & i = 0 \end{cases}$$

$$min \begin{cases} \alpha(x_i, y_i) + f_{X,Y}(i-1, j-1) & \\ \delta + f_{X,Y}(i-1, j) & \\ \delta + f_{X,Y}(i, j-1) & \end{cases}$$
(2.4)

 $f_{X,Y}$ — редакционное расстояние между двумя подстроками — первыми i символами строки X и первыми j символами строки Y. Очевидны следующие утверждения:

• Если редакционное расстояние нулевое, то строки равны: $f_{XY} = 0 \Rightarrow X = Y$

• Редакционное расстояние симметрично: $f_{X,Y} = f_{Y,X}$

- Максимальное значение $f_{X,Y}$ размерность более длинной строки: $f_{X,Y} \leq max(|X|,|Y|)$
- Минимальное значение $f_{X,Y}$ разность длин обрабатываемых строк: $f_{X,Y} \geq abs(|X|-|Y|)$
- Аналогично свойству треугольника, редакционное расстояние между двумя строками не может быть больше чем редакционные расстояния каждой из этих строк с третьей:

$$f_{X,Y} \le f_{X,Z} + f_{Z,Y}$$

2.5 Рекурсивный алгоритм расстояния Левенштейна с мемоизацией

При реализации рекурсивного алгоритма используется мемоизация — сохранение результатов выполнения функций для предотвращения повторных вычислений. Отличие от формулы 2.2 состоит лишь в начальной инициализации матрицы флагом ∞ , котрый сигнализирует о том, была ли обработана ячейка. В случае если ячейка была обработана, алгоритм переходит к следующему шагу.

2.6 Вывод

Обе вариации алгоритма редакторского расстояния могут быть реализованы как рекурсивно, так и итеративно. Итеративная реализация может быть осуществлена с помощью парадигм динамического программирования, используя матрицу расстояний. [damerau]

Contents

2.1	Расстояние Левенштейна	3
2.2	Матрица расстояний	4
2.3	Расстояние Дамерау – Левенштейна	4
2.4	Рекурсивная формула	5
2.5	Рекурсивный алгоритм расстояния Левенштейна с ме-	
	моизацией	6
2.6	Вывод	6