Railway Engineering Mathematics Tutorial Sheet 20

1. Given the following complex numbers in Cartesian form:

$$z_1 = 7 - j3,$$

$$z_2 = -1 - i4$$

$$z_1 = 7 - j3$$
, $z_2 = -1 - j4$, $z_3 = -5 + j$, $z_4 = 9 + j6$

$$z_4 = 9 + j6$$

(i) Express in polar form:

(a)
$$z_1$$

(b)
$$z_2$$

(c)
$$z_3$$

(d)
$$z_4$$

(ii) Calculate the following in polar form:

(a)
$$z_3 z_1$$

(e)
$$\frac{z_1}{z_3}$$

(b)
$$z_2 z_4$$

(f)
$$z_3 z_2$$

(c)
$$\frac{z_3}{z_1}$$

(g)
$$\frac{1}{z_2}$$

(d)
$$\frac{z_4}{z_2}$$

(h)
$$\frac{1}{z_4}$$

 $2. \,$ Given the following complex numbers in Polar form:

 $z_5 = 2.5 \angle -2.9$, $z_6 = 4.1 \angle -5.1$, $z_7 = 0.3 \angle 1.7$, $z_8 = 7.9 \angle 6.1$

- (i) Express in rectangular/Cartesian form:
 - (a) z_5
 - (b) z_6
 - (c) z_7
 - (d) z_8
- (ii) Calculate the following in polar form, and then convert the result to Cartesian form:
 - (a) $z_5 z_6$

(d) $\frac{z_8}{z_5}$

(b) $z_7 z_8$

(e) $\frac{1}{z_7}$

(c) $\frac{z_6}{z_8}$

- (f) $\frac{1}{z_5}$
- 3. When multiple impedances in a electrical circuit are connected in series, the total impedance Z (ohms) is given by the sum of the individual impedances. This is related to the voltage V (volts) and current I (amps) using Ohm's Law, which states that V = IZ.

Two impedances $Z_1 = (3 + j6) \Omega$ and $Z_2 = (4 - j3) \Omega$ are connected in series to a supply voltage of 120 V. What is the magnitude of the current flowing through the circuit?

2