Transformations

Short-answer problems about transformations.

rotation are the same **and** the angles sum to a multiple of 360°, the result is the identity transformation (two words).

Feedback(correct): The identity transformation can be thought of as a rotation by an of 0° .

Question 7 What kind of transformation is a reflection followed by another reflection? Explain. Be sure to consider any special cases.

Answer: If the reflection lines intersect, the result is a [rotation]. If the reflection lines are parallel, the result is a [translation]. If the reflection lines are the same line, the result is the [identity transformation].

Feedback(correct): If the lines intersect, the center of the resulting rotation is the intersection of the lines. If the lines are parallel, the resulting translation vector is perpendicular to the two lines.

Question 8 Will the letter F look like an F after a reflection? What about after a sequence of two reflections? What about after a sequence of 73 or 124 reflections? Explain your reasoning.

Free Response: Hint: Ignoring which side is up, after a reflection the F will look like a "backwards F". More generally, after an odd number of reflections, the F will look like a backwards F. After an even number of reflections, the F will look like a typical F.

Question 9 How will your answer to the previous problem change if you use a capital D? Explain.

Free Response: Hint: Ignoring which side is up, the D will always look like a D. Because of its line symmetry, a reflection doesn't appear to reverse its "orientation."

Question 10 Given a figure and its image after a translation, how do find the direction and distance of the translation? How many points and images do you need?

Free Response: Hint: Draw a vector from any point to its image. The vector provides both the direction and the distance. Any point and its image will do.

Question 11 Given a figure and its image after a reflection, how do you find the line of reflection? How many points and images do you need?

Free Response: Hint: Draw a segment from a point to its image. The perpendicular bisector of that segment is the line of reflection. Any point and its image will do—except a point that does not move under the reflection.

Question 12 Given a figure and its image after a rotation, how do you find the center and the angle of the rotation? How many points and images do you need?

Free Response: Hint: Draw a segment from a point P to its image P'. The center of rotation is somewhere on the perpendicular bisector of that segment. Draw a segment from a second point Q to its image Q'. The center of rotation is also somewhere on the perpendicular bisector of that segment. As long as the segments $\overline{PP'}$ and $\overline{QQ'}$ are not parallel, the two perpendicular bisectors will intersect at a point C, which is the unique center of the rotation.

To find the angle of rotation, measure $\angle PCP'$ or $\angle QCQ'$.

Two points and their images are enough, (as long as the segments $\overline{PP'}$ and $\overline{QQ'}$ are not parallel).