MDT2005

1. General Description

This EPROM-Based 8-bit micro-controller uses a fully static CMOS design technology combines higher speeds and smaller size with the low power and high noise immunity of CMOS.

On chip memory system includes 0.5 K(for MDT2005) bytes of ROM, and 32 bytes of static RAM.

2. Features

The followings are some of the features on the hardware and software:

- Fully COMS static design
- 8-bit data bus
- ◆ On chip ROM size : 512 words for MDT2005
- Internal RAM size : 32 bytes

(25 general purpose registers, 7 special registers)

- ◆ 36 single word instructions
- ◆ 14-bit instructions
- 2-level stacks
- ◆ Operating voltage : 2.3V ~ 6.3 V
- ◆ Operating frequency : 0 ~ 20 MHz
- ◆ The most fast execution time is 200 ns under 20 MHz in all single cycle instructions except the branch instruction
- Addressing modes include direct, indirect and relative addressing modes
- Power-on Reset
- Power edge-detector Reset
- Sleep Mode for power saving
- ◆ 8-bit real time clock/counter(RTCC) with 8-bit programmable prescaler
- ◆ 4 types of oscillator can be selected by programming option:
 - RC Low cost RC oscillator
 - LFXT Low frequency crystal oscillator
 - XTAL Standard crystal oscillator
 - HFXT High frequency crystal oscillator
- 4 oscillator start-up time can be selected by programming option:
 150 μs, 20 ms, 40 ms, 80 ms

P. 1 VER1.1

- On-chip RC oscillator based Watchdog Timer(WDT) can be operated freely
- ◆ 12 I/O pins with their own independent direction control

3. Applications

The application areas of this MDT2005 range from appliance motor control and high speed automotive to low power remote transmitters/receivers, pointing devices, and telecommunications processors, such as Remote controller, small instruments, chargers, toy, automobile and PC peripheral ..etc.

4. Pin Assignment

PA2	1	18	PA1
PA3	2	17	PA0
RTCC	3	16	OSC1
/MCLR	4	15	OSC2
V_{ss}	5	14	V_{dd}
PB0	6	13	PB7
PB1	7	12	PB6
PB2	8	11	PB5
PB3	9	10	PB4

5. Pin Function Description

Pin Name	I/O	Function Description
PA0~PA3	I/O	Port A, TTL input level
PB0~PB7	I/O	Port B, TTL input level
RTCC	ı	Real Time Clock/Counter, Schmitt Trigger input levels
/MCLR	ı	Master Clear, Schmitt Trigger input levels
OSC1	ı	Oscillator Input
OSC2	0	Oscillator Output
V_{dd}		Power supply
V_{ss}		Ground

P. 2 VER1.1

6. Memory Map

(A) Register Map

Address	Description
00	Indirect Addressing Register
01	RTCC
02	PC
03	STATUS
04	MSR
05	Port A
06	Port B
07~1F	Internal RAM, General Purpose Register

- (1) IAR (Indirect Address Register): R0
- (2) RTCC (Real Time Counter/Counter Register): R1
- (3) PC (Program Counter): R2

P. 3 VER1.1

(4) STATUS (Status register) : R3

Bit	Symbol	Function
0	С	Carry bit
1	HC	Half Carry bit
2	Z	Zero bit
3	PF	Power loss Flag bit
4	TF	Time overflow Flag bit
5-7		General purpose bit

(5) MSR (Memory Select Register) : R4

(6) PORT A: R5

PA3~PA0, I/O Register

(7) PORT B: R6

PB7~PB0, I/O Register

(8) TMR (Time Mode Register)

Bit	Symbol		Function	
		Prescaler Value	RTCC rate	WDT rate
		0 0 0	1:2	1:1
		0 0 1	1:4	1:2
		0 1 0	1:8	1:4
		0 1 1	1 : 16	1:8
2—0	PS2—0	1 0 0	1 : 32	1 : 16
		1 0 1	1 : 64	1:32
		1 1 0	1 : 128	1 : 64
		1 1 1	1 : 256	1 : 128
	DOO	Prescaler assignm	ent bit :	
3	PSC	0 — RTCC		
		1 — Watchdog Timer		
1	TCE	RTCC signal Edge :		
4 TCE 0 — Increment on low-to-high transition of				•
1 — Increment on high-to-low transition on RTCC p RTCC signal set: 5 TCS 0 — Internal instruction cycle clock			TOTT TOO PIII	
		1 — Transition on RTCC pin		

P. 4 VER1.1

(9) CPIO A, CPIO B (Control Port I/O Mode Register)

The CPIO register is "write-only"

- = "0", I/O pin in output mode;
- = "1", I/O pin in input mode.

(10) EPROM Option by writer programming:

Oscillator Type	Oscillator Start-up Time	
RC Oscillator	150 μs,20ms,40ms,80ms	
HFXT Oscillator	20 ms,40ms,80ms	
XTAL Oscillator	20ms,40 ms,80ms	
LFXT Oscillator	40 ms,80 ms	

Watchdog Timer control		
Watchdog timer disable all the time		
Watchdog timer enable all the time		

Power Edge Detect				
PED Disable				
PED	Enable			

Security bit		
Security weak Disable		
Security Disable		
Security Enable		

The default EPROM security is weak disable. Once the IC was set in enable or disable, it's forbidden to set in disable or enable again.

(B) Program Memory

Address	Description
000-1FF	Program memory for MDT2005
1FF	The starting address of the power on, external reset
	or WDT for MDT2005

P. 5 VER1.1

7. Reset Condition for all Registers

Register	Address	Power-On Reset	/MCLR or WDT Reset
IAR	00h	1	-
RTCC	01h	xxxx xxxx	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	000# #uuu
MSR	04h	111x xxxx	111u uuuu
PORT A	05h	XXXX	uuuu
PORT B	06h	xxxx xxxx	uuuu uuuu

Note: u = unchanged, x = unknown, - = unimplemented, read as "0" # = value depends on the condition of the following table

Condition	Status: bit 4	Status: bit 3
/MCLR reset (not during SLEEP)	u	u
/MCLR reset during SLEEP	1	0
WDT reset (not during SLEEP)	0	1
WDT reset during SLEEP	0	0

8. Instruction Set

Instruction Code	Mnemonic Operands	Function	Operating	Status
010000 00000000	NOP	No operation	None	
010000 00000001	CLRWT	Clear Watchdog timer	0 WT	TF, PF
010000 00000010	SLEEP	Sleep mode	0 WT, stop OSC	TF, PF
010000 00000011	TMODE	Load W to TMODE register	W TMODE	None
010000 00000100	RET	Return	Stack PC	None
010000 00000rrr	CPIO R	Control I/O port register	W CPIO r	None
010001 1rrrrrrr	STWR R	Store W to register	W R	None
011000 trrrrrr	LDR R, t	Load register	R t	Z
111010 iiiiiiiii	LDWI I	Load immediate to W	I W	None
010111 trrrrrr	SWAPR R, t	Swap halves register	[R(0~3) ↔	None
			R(4~7)] t	
011001 trrrrrr	INCR R, t	Increment register	R + 1 t	Z

P. 6 VER1.1

Instruction Code	Mnemonic Operands	Function	Operating	Status
011010 trrrrrrr	INCRSZ R, t	Increment register, skip if zero	R+1 t	None
011011 trrrrrrr	ADDWR R, t	Add W and register	W+R t	C, HC, Z
011100 trrrrrrr	SUBWR R, t	Subtract W from register	R - W t (R+/W+1 t)	C, HC, Z
011101 trrrrrrr	DECR R, t	Decrement register	R -1 t	Z
011110 trrrrrrr	DECRSZ R, t	Decrement register, skip if zero	R -1 t	None
010010 trrrrrrr	ANDWR R, t	AND W and register	R W t	Z
110100 iiiiiiii	ANDWI i	AND W and immediate	i W W	Z
010011 trrrrrrr	IORWR R, t	Inclu. OR W and register	R W t	Z
110101 iiiiiiiii	IORWI i	Inclu. OR W and immediate	i W W	Z
010100 trrrrrrr	XORWR R, t	Exclu. OR W and register	R W t	Z
110110 iiiiiiiii	XORWI i	Exclu. OR W and immediate	i W W	Z
011111 trrrrrrr	COMR R, t	Complement register	/R t	Z
010110 trrrrrrr	RRR R, t	Rotate right register	R(n) R(n-1), C R(7), R(0) C	С
010101 trrrrrrr	RLR R, t	Rotate left register	R(n) r(n+1),C R(0), R(7) C	С
010000 1xxxxxxx	CLRW	Clear working register	0 W	Z
010001 Orrrrrrr	CLRR R	Clear register	0 R	Z
0000bb brrrrrr	BCR R, b	Bit clear	0 R(b)	None
0010bb brrrrrr	BSR R, b	Bit set	1 R(b)	None
0001bb brrrrrr	BTSC R, b	Bit Test, skip if clear	Skip if R(b)=0	None
0011bb brrrrrr	BTSS R, b	Bit Test, skip if set	Skip if R(b)=1	None
1000nn nnnnnnnn	LCALL n	Long CALL subroutine	n PC, PC+1 Stack	None
1010nn nnnnnnnn	LJUMP n	Long JUMP to address	n PC	None
110000 nnnnnnn	CALL n	Call subroutine	n PC, PC+1 Stack	None
110001 iiiiiiii	RTIW i	Return, place immediate to W	Stack PC, i W	None
11001n nnnnnnnn	JUMP n	JUMP to address	n PC	None

Note:

W : Working register b : Bit position WT : Watchdog timer t : Target

TMODE: TMODE mode register 0: Working register CPIO: Control I/O port register 1: General register

TF: Timer overflow flag R: General register address

P. 7 VER1.1

Inclu. : Inclusive ' ' / : Complement Exclu. : Exclusive ' ' x : Don't care

AND : Logic AND ' ' i : Immediate data (8 bits)

n : Immediate address

9. Electrical Characteristics

(A) Operating Voltage & Frequency

 $V_{dd}~:~2.3V \sim 6.3~V$

Frequency: 0 Hz ~ 20 MHz

(B) Input Voltage

 $@V_{dd} = 5.0 V$, Temperature = 25

	Port	Min.	Max.
\/	PA, PB	V_{ss}	1.0 V
V_{il}	RTCC, /MCLR	V_{ss}	1.5V
N/	PA, PB	2.0 V	V_{dd}
V_{ih}	RTCC, /MCLR	3.5 V	$V_{\sf dd}$

* Threshold Voltage :

Port A, Port B $V_{th} = 1.5V$

RTCC, /MCLR V_{il} = 1.8 V, V_{ih} = 3.4 V (Schmitt Trigger)

(C) Output Voltage:

@ V_{dd} = 5.0 V, Temperature = 25 , the typical value as followings :

PA, PB Port			
$I_{oh} = -20.0 \text{ mA}$	$V_{oh} = 4.0 \text{ V}$		
I _{ol} = 20.0 mA	$V_{ol} = 0.5 V$		
$I_{oh} = -5.0 \text{ mA}$	$V_{oh} = 4.7 V$		
l _{ol} = 5.0 mA	$V_{ol} = 0.2 V$		

P. 8 VER1.1

(D) Leakage Current

@ V_{dd} = 5.0 V, Temperature = 25 , the typical value as followings :

l _{il}	- 0.1μA (Max.)
l _{ih}	+ 0.1μA (Max.)

(E) Sleep Current

@WDT - Disable, Temperature = 25 , the typical value as followings :

$V_{dd} = 2.3 V$	I _{dd} < 1.0 μA
$V_{dd} = 3.0 V$	$I_{dd} < 1.0 \mu A$
$V_{dd} = 4.0 V$	l _{dd} =2.0 μA
$V_{dd} = 5.0 \text{ V}$	l _{dd} =6.0 μA
$V_{dd} = 6.3V$	l _{dd} =10.0 μA

@WDT - Enable, Temperature = 25 , the typical value as followings:

$V_{dd} = 2.3 \text{ V}$	l _{dd} < 1.0 μA
$V_{dd} = 3.0 V$	$I_{dd} = 3.0 \mu A$
V _{dd} = 4.0 V	$I_{dd} = 8.0 \mu A$
V _{dd} = 5.0 V	$I_{dd} = 16.0 \mu A$
$V_{dd} = 6.3 \text{ V}$	$I_{dd} = 34.0 \mu A$

(F) Operating Current

Temperature = 25 , the typical value as followings :

(i) OSC Type = RC ; WDT - Enable; @ V_{dd} = 5.0 V

Cext. (F)	Rext. (Ohm)	Frequency (Hz)	Current (A)
	4.7 K	12.3M	2.1 mA
	10.0 K	6.3 M	1.2 mA
3P	47.0 K	1.5 M	508 μΑ
	100.0 K	710 K	385 μΑ
	300.0 K	240 K	320 μΑ
	470.0 K	155 K	310 μΑ

P. 9 VER1.1

Cext. (F)	Rext. (Ohm)	Frequency (Hz)	Current (A)
	4.7 K	6.2M	1.2 mA
	10.0 K	3.1 M	740 μΑ
20P	47.0 K	740 K	385 μΑ
	100.0 K	340 K	320 μΑ
	300.0 K	115 K	300 μΑ
	470.0 K	74 K	290 μΑ
	4.7 K	1.9 M	560 μΑ
	10.0 K	960 K	420 μΑ
100P	47.0 K	215 K	310 μΑ
	100.0 K	100 K	300 μΑ
	300.0 K	35 K	285 μΑ
	470.0 K	22 K	280 μΑ
	4.7 K	765 K	400 μΑ
	10.0 K	380 K	330 μΑ
300P	47.0 K	85 K	285 μΑ
	100.0 K	40 K	280 μΑ
	300.0 K	13.5 K	275 μΑ
	470.0 K	8.5 K	270 μΑ

(ii) OSC Type = LF (C=20 p); WDT - Disable

Voltage/Frequency	32 K	455 K	1 M	Sleep
2.3 V	45 μΑ	70 μΑ	Х	< 1.0 μA
3.0 V	78 μΑ	115 μΑ	176 μΑ	< 1.0 μΑ
4.0 V	135 μΑ	120 μΑ	265 μΑ	2 μΑ
5.0 V	210 μΑ	275 μΑ	375 μΑ	6 μΑ
6.3 V	350 μΑ	420 μΑ	570 μΑ	10 μΑ

P. 10 VER1.1

(iii) OSC Type = XT (C=10 p); WDT - Enable

Voltage/Frequency	1 M	4 M	10 M	Sleep
2.1 V	126 μΑ	255 μΑ	535 μΑ	< 1.0 μA
3.0 V	240 μΑ	430 μΑ	845 μΑ	2 μΑ
4.0 V	420 μΑ	670 μΑ	1.3 mA	8 μΑ
5.0 V	705 μΑ	945 μΑ	1.78 mA	16 μΑ
6.3 V	935 μΑ	1.45 mA	2.55 mA	32 μΑ

(iv) OSC Type = HF (C=10 p); WDT - Enable

Voltage/Frequency	4 M	10 M	20 M	Sleep
2.1 V	270μΑ	555μΑ	998μΑ	< 1.0 μΑ
3.0 V	470 μΑ	895μΑ	1.64 mA	2 μΑ
4.0 V	740 μΑ	1.42 mA	2.45 mA	8 μΑ
5.0 V	1.1 mA	1.96 mA	3.3 mA	16 μΑ
6.3 V	1.7 mA	2.82 mA	4.7 mA	32 μΑ

(G) Power Edge-detector Reset Voltage (Not in Sleep Mode), @ V_{dd} = 5.0 V

$$V_{pr}$$
 1.1~1.3 V V_{pr} : V_{dd} (Power Supply)

(H) The basic WDT time-out cycle time

@ V_{dd=}5.0v ,Temperature = 25 , the typical value as followings :

Voltage (V)	Basic WDT time-out cycle time (ms)		
2.3	26.4		
3.0	22.7		
4.0	20.1		
5.0	18.1		
6.3	16.4		

(I) MCLRB Filter: @ Vdd=5.0v

 $\label{eq:wm} \mbox{Wm : Filter pulse width (low) in /MCLR pin.}$

P. 11 VER1.1

10. Port A and Port B Equivalent Circuit

P. 12 VER1.1

11. MCLRB and RTCC Input Equivalent Circuit

P. 13 VER1.1

12. Block Diagram

P. 14 VER1.1

13. External Capacitor Selection For Crystal Oscillator

@
$$V_{dd} = 3.0V \sim 5.0 V$$

Osc. Type	Resonator Freq.	C1	C2
HF	20 MHz	5 pF ~10 pF	10 pF~20 pF
	10 MHz	10 pF ~50 pF	20 pF ~100 pF
	4 MHz	10 pF ~30 pF	20 pF ~100 pF
ХТ	10 MHz	10 pF ~30 pF	10 pF ~50 pF
	4 MHz	10 pF ~50 pF	10 pF ~100 pF
	1 MHz	10 pF ~30 pF	10 pF ~50 pF
LF	1 MHz	5 pF ~10 pF	5 pF ~10 pF
	455 K	10 pF ~50 pF	10 pF ~50 pF
	32 K	10 pF ~30 pF	20 pF ~50 pF

To increase the stability of oscillator and the ability of anti-noise, the above values of the external capacitor range can be recommended for reference, but the higher capacitance also increases the start-up time.

P. 15 VER1.1