1. Berechne die ersten Partialsummen der Reihe mit Gliedern $s_n = \frac{9}{10^n}$ und bestimme deren kleinste obere Schranke.

Lösung:

(a)

2. Gib eine Bedingung an die Reihenglieder s_k an, wann eine Reihe $f_n = \sum s_k$ streng monoton wachsend bzw. fallend ist (im Fall einer Reihe beziehen sich Attribute wie "monoton wachsend" auf die Partialsummen, nicht auf die Reihenglieder).

Lösung:

(a)

3. Zeige für 0 < x < 1 ist die geometrische Reihe

$$f_n := \sum_{k=0}^n x^k$$

beschränkt und monoton, mithin konvergent. Was ist der Grenzwert der Reihe? (Tipp: Die Summe kennen wir schon...)

Lösung:

(a)

4. Zeige, dass die harmonische Reihe mit Reihengliedern $s_n := \frac{1}{n}$ keine obere Schranke besitzt (die Partialsummen also beliebig groß werden).

Lösung:

(a)

5. Zeige, dass eine Folge höchstens einen Grenzwert besitzen kann! Nimm dazu an, es gebe $y_1 \neq y_2$, die beide die Grenzwertbedingung erfüllen und führe das zum Widerspruch durch Angabe eines ϵ , mit dem die weitere Bedingung unmöglich erfüllt sein kann.

Lösung:

(a)

6. Ein Mann spaziert mit seinem Hund von seinem Haus zu einer Kneipe. Die Entfernung zwischen Haus und Kneipe sei s. Der Mann gehe dabei mit der Geschwindigkeit v. Dies ist dem Hund jedoch zu langweilig. Er läuft deswegen doppelt so schnell zwischen der Kneipe und seinem Herrchen hin und her. Das heißt, er startet am Haus zusammen mit seinem Herrchen, dreht um, sobald er das Ziel erreicht, stoppt, wenn er wieder auf sein Herrchen trifft, läuft dann wieder zur Kneipe,...

Berechne, welchen Weg der Hund zurücklegt, bis Herrchen und Hund gemeinsam die Kneipe erreichen. Es gibt einen so genannten "Mathematiker-Weg" und einen so genannten "Physiker-Weg". Versuche, beide zu finden.

Lösung:

(a)

7. In Aufgabe 2.7 haben wir die Länge der Kochkurve zu berechnet, was uns auf eine Folge (l_n) von Zahlen führt. Ebenso kann man die Fläche (a_n) unter der Kochkurve berechnen, indem man die Flächen der Dreiecke aufaddiert, die Schritt fur Schritt auf die Kurve "draufgesetzt" werden. Sind diese Folgen jeweils beschränkt und/oder monoton?

Lösung:

(a)

- 8. Gib Folgen (a_n) , (b_n) an mit $\lim_{n\to\infty}(a_n)=\infty$, $\lim_{n\to\infty}(b_n)=\infty$ sowie:
 - (a) $\lim (a_n b_n) = 0$
 - (b) $\lim(a_n b_n) = +\infty$
 - (c) $\lim \left(\frac{a_n}{b_n}\right) = 0$

Lösung:

(a)

- 9. O- Notation: zeig, dass gilt:
 - (a) $6n^4 \in O(3n^4)$
 - (b) $16n^3 \in O(2^n)$
 - (c) $n^2 \notin O(n)$

Gib im Fall von "
 " ein entsprechendes n_0 an, so dass Bedingung (8.1) erfüllt ist.

Lösung:

(a)

10. Bestmme alle Häufungspunkte und den größten Häufungspunkt von

$$a_n = \sin\left(\frac{\pi}{4}n\right)$$

(Benutze dabei die Gleichheit $\sin(\pi/4)=\sqrt{2}/2).$

Lösung:

(a)

11. Prüfe jeweils auf Konvergenz und bestimme ggf. den Grenzwert.

Hinweis: Wenn $\lim_{n\to\infty} a_n = \alpha$ und $\lim_{n\to\infty} b_n = \beta$ dann ist $\lim_{n\to\infty} (a_n + b_n) = \alpha + \beta$.

Ebenfalls gilt: $\lim_{n\to\infty}(a_n\cdot b_n)=\alpha\cdot\beta$ und - wenn β und alle $b_n\neq 0$ sind - $\lim_{n\to\infty}(a_n/b_n)=\alpha/\beta$

(a)
$$a_n = \frac{3n+2(-1)^n}{n}$$

(b)
$$b_n = \frac{nx^n}{nx^n+1} \ x \in \mathbb{R}, x > 1$$

Lösung:

(a)