Листок 15

Семинарские задачи

Определение. Точки, в которых все частные производные равны нулю, называются стационарными.

Задача 15.1. Как было показано на лекции, для дифференцируемой функции необходимым условием экстремума в точке является её стационарность. Покажите, что стационарность не является достаточным условием экстремума.

Задача 15.2. Исследуйте на экстремум функцию двух переменных

$$u = x^3 + 3xy^2 - 39x - 36y + 26.$$

Задача 15.3. Исследуйте на экстремум функцию трёх переменных

$$u = 3x^3 + y^2 + z^2 + 6xy - 2z + 1.$$

Задача 15.4. Пусть $f(x,y) = \sqrt{1-x^2-y^2}$. Запишите разложение функции f по формуле Тейлора до 2-го порядка в точке (0,0).

Задача 15.5. Найдите все точки локальных экстремумов функции

a)
$$f(x,y) = -x^2 - xy - y^2 + x + y$$
:

a)
$$f(x,y) = -x^2 - xy - y^2 + x + y;$$
 6) $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2.$

Задача 15.6. Найдите в точке (1;1) частные производные функции u=f(x;y), заданной неявно уравнением $u^3 - 2u^2x + uxy - 2 = 0$.

Задача 15.7. а) Найдите $\frac{dy}{dx}$ и $\frac{dy}{dx}(4)$, если $y^3+3y=x$; б) Найдите $\frac{d^2y}{dx^2}$, если $x^2-xy+y^2=1$.

Задача 15.8. Найдите
$$\frac{dy}{dx}$$
 и $\frac{d^2y}{dx^2}$, если
$$\begin{cases} x=2t-t^2\\ y=3t-t^3 \end{cases}$$

Задача 15.9. Найдите $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y},$ если $x^2 + y^2 + z^2 = R^2$.

Задача 15.10. Найдите $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y},$ если $x = e^u \sin v, y = e^u \cos v, z = uv.$

Задача 15.11. Найдите du, dv, d^2u, d^2v , если xu + yv = 0, uv - xy = 5 в точке $(x_0, y_0) =$ (-1,1), если $(u_0,v_0)=(2,2)$.

Задача 15.12. Найдите d^2z в точке (1,0,1), если $xz^5 + y^3z - x^3 = 0$.

Домашние задачи

Задача 15.13 (ДЗ). Найдите точки локальных экстремумов функций

a)
$$f(x,y) = x^3 + y^3 - 3axy;$$

a)
$$f(x,y) = x^3 + y^3 - 3axy$$
; 6) $f(x,y) = e^{2x+3y} (8x^2 - 6xy + 3y^2)$.

Задача 15.14 (ДЗ). Найдите
$$\frac{dy}{dx}$$
 и $\frac{d^2y}{dx^2}$, если $x^3 + 4y^3 - 3yx^2 = 2$.

Задача 15.15 (ДЗ). Найдите
$$\frac{dy}{dx}$$
 и $\frac{d^2y}{dx^2}$, если
$$\begin{cases} x = \ln\left(t + \sqrt{1+t^2}\right) \\ y = \frac{1}{\sqrt{1+t^2}} \end{cases}$$

Задача 15.16 (ДЗ). Найдите $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}$, если а) $x + y + z = \cos(xyz);$ б) $x^y + y^z = 3;$ в) $x = u^2 - v^2, y = uv, z = u^2v.$

a)
$$x + y + z = \cos(xyz);$$

$$б) $x^y + y^z = 3$$$

B)
$$x = u^2 - v^2, y = uv, z = u^2v.$$

Задача 15.17 (ДЗ). Найдите первый и второй дифференциалы функции z(x,y), заданной неявно

a)
$$x^2 + zx + z^2 + y = 0$$
;

6)
$$x = e^{u+v}, y = e^{u-v}, z = u^2 + v^2$$

Задача 15.18 (ДЗ). Найдите первые и вторые дифференциалы функций u(x,y), v(x,y),если xu + yv = 1, x + y + u + v = 0.

Дополнительные задачи

Задача 15.19 (Доп.). Пусть F(x,y,z)=0. Докажите, что $\frac{\partial x}{\partial y}\cdot\frac{\partial y}{\partial z}\cdot\frac{\partial z}{\partial x}=-1$.

Задача 15.20 (Доп.). (Метод градиентного спуска). Пусть $f: \mathbb{R}^k \to \mathbb{R}^k$ дважды непрерывно дифференцируемое отображение, причем для некоторых M > m > 0 выполнено

$$m||h||^2 \le d^2f|_a(h) \le M||h||^2 \quad \forall a \in \mathbb{R}^k \forall h \in \mathbb{R}^k$$

Рассмотрим рекуррентную последовательность

$$x_{n+1} = x_n - \lambda \nabla f(x_n), x_0 \in \mathbb{R}^k$$

Докажите, что при $\lambda \in \left(0, \frac{2}{M}\right)$ последовательность x_n сходится к единственной точке минимума функции f (рассмотрите сначала случай k=1).