

CLAIMS

1. A compound of the formula I:

5

(I)

wherein:

Z is -NH-, -O- or -S-;

R¹ represents bromo or chloro;

10 R³ represents C₁₋₃alkoxy or hydrogen;

R² is selected from one of the following three groups:

(i) Q¹X¹-

wherein X¹ represents -O-, -S- or -NR⁴- wherein R⁴ is hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and Q¹ is selected from one of the following ten groups:

15 1) Q² (wherein Q² is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl and C₁₋₆fluoroalkylsulphonyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy

and a group $-(\text{O}-)(\text{C}_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from $\text{C}_{1-4}\text{alkyl}$),

- 5 or Q^2 bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q^1 is Q^2 and X^1 is $-\text{O}-$ then Q^2 must bear at least one substituent selected from $\text{C}_{2-5}\text{alkenyl}$, $\text{C}_{2-5}\text{salkynyl}$, $\text{C}_{1-4}\text{alkoxyC}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-4}\text{alkylcarbamoylC}_{1-6}\text{alkyl}$, and $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoylC}_{1-6}\text{alkyl}$ and optionally may bear a further 1 or 2 substituents as defined herein;
- 10 2) $\text{C}_{1-5}\text{salkylW}^1\text{Q}^2$ (wherein W^1 represents $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{C}(\text{O})-$, $-\text{OC}(\text{O})-$, $-\text{NQ}^3\text{C}(\text{O})-$, $-\text{C}(\text{O})\text{NQ}^4-$, $-\text{SO}_2\text{NQ}^5-$, $-\text{NQ}^6\text{SO}_2-$ or $-\text{NQ}^7-$ (wherein Q^3 , Q^4 , Q^5 , Q^6 and Q^7 each independently represents hydrogen, $\text{C}_{1-3}\text{alkyl}$, $\text{C}_{1-3}\text{alkoxyC}_{2-3}\text{alkyl}$, $\text{C}_{2-5}\text{alkenyl}$, $\text{C}_{2-5}\text{salkynyl}$ or $\text{C}_{1-4}\text{haloalkyl}$) and Q^2 is as defined herein;
- 15 3) $\text{C}_{1-5}\text{salkylQ}^2$ (wherein Q^2 is as defined herein);
- 15 4) $\text{C}_{2-5}\text{alkenylQ}^2$ (wherein Q^2 is as defined herein);
- 15 5) $\text{C}_{2-5}\text{salkynylQ}^2$ (wherein Q^2 is as defined herein);
- 15 6) $\text{C}_{1-4}\text{alkylW}^2\text{C}_{1-4}\text{alkylQ}^2$ (wherein W^2 represents $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{C}(\text{O})-$, $-\text{OC}(\text{O})-$, $-\text{NQ}^8\text{C}(\text{O})-$, $-\text{C}(\text{O})\text{NQ}^9-$, $-\text{SO}_2\text{NQ}^{10}-$, $-\text{NQ}^{11}\text{SO}_2-$ or $-\text{NQ}^{12}-$ (wherein Q^8 , Q^9 , Q^{10} , Q^{11} and Q^{12} each independently represents hydrogen, $\text{C}_{1-3}\text{alkyl}$, $\text{C}_{1-3}\text{alkoxyC}_{2-3}\text{alkyl}$, $\text{C}_{2-5}\text{alkenyl}$, $\text{C}_{2-5}\text{salkynyl}$ or $\text{C}_{1-4}\text{haloalkyl}$) and Q^2 is as defined herein);
- 20 7) $\text{C}_{2-5}\text{alkenylW}^2\text{C}_{1-4}\text{alkylQ}^2$ (wherein W^2 and Q^2 are as defined herein);
- 20 8) $\text{C}_{2-5}\text{salkynylW}^2\text{C}_{1-4}\text{alkylQ}^2$ (wherein W^2 and Q^2 are as defined herein);
- 20 9) $\text{C}_{1-4}\text{alkylQ}^{13}(\text{C}_{1-4}\text{alkyl})_j(\text{W}^2)_k\text{Q}^{14}$ (wherein W^2 is as defined herein, j is 0 or 1, k is 0 or 1, and Q^{13} and Q^{14} are each independently selected from hydrogen, $\text{C}_{1-3}\text{alkyl}$, cyclopentyl, cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which $\text{C}_{1-3}\text{alkyl}$ group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and $\text{C}_{1-4}\text{alkoxy}$ and which cyclic group may bear 1, 2 or 3 substituents selected from $\text{C}_{2-5}\text{alkenyl}$, $\text{C}_{2-5}\text{salkynyl}$, $\text{C}_{1-6}\text{fluoroalkyl}$, $\text{C}_{1-6}\text{salkanoyl}$, $\text{aminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{2-6}\text{alkanoyl}$,
- 25 10) $\text{C}_{1-4}\text{alkoxyC}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-6}\text{fluoroalkanoyl}$, carbamoyl , $\text{C}_{1-4}\text{alkylcarbamoyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoyl}$, $\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-4}\text{alkylcarbamoylC}_{1-6}\text{alkyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylsulphonyl}$, $\text{C}_{1-6}\text{fluoroalkylsulphonyl}$, oxo, hydroxy, halogeno, cyano, $\text{C}_{1-4}\text{cyanoalkyl}$, $\text{C}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{hydroxyalkyl}$, $\text{C}_{1-4}\text{alkoxy}$, $\text{C}_{1-4}\text{alkoxyC}_{1-6}\text{alkyl}$ and $\text{C}_{1-4}\text{alkoxyC}_{2-6}\text{alkyl}$);

$\text{C}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{alkylsulphonylC}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{alkoxycarbonyl}$, $\text{C}_{1-4}\text{aminoalkyl}$, $\text{C}_{1-4}\text{alkylamino}$,
 $\text{di}(\text{C}_{1-4}\text{alkyl})\text{amino}$, $\text{C}_{1-4}\text{alkylaminoC}_{1-4}\text{alkyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{alkylaminoC}_{1-4}\text{alkoxy}$,
 $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{1-4}\text{alkoxy}$ and a group $-(\text{O}-)_f(\text{C}_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic

5 group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from $\text{C}_{1-4}\text{alkyl}$), with the provisos that Q^{13} cannot be hydrogen and one or both of Q^{13} and Q^{14} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from $\text{C}_{2-5}\text{alkenyl}$, $\text{C}_{2-5}\text{salkynyl}$, $\text{C}_{1-6}\text{fluoroalkyl}$, $\text{C}_{1-6}\text{alkanoyl}$,

10 $\text{aminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-4}\text{alkoxyC}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-6}\text{fluoroalkanoyl}$, carbamoyl , $\text{C}_{1-4}\text{alkylcarbamoyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoyl}$, $\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-4}\text{alkylcarbamoylC}_{1-6}\text{alkyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylsulphonyl}$ and $\text{C}_{1-6}\text{fluoroalkylsulphonyl}$ and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

15 10) $\text{C}_{1-4}\text{alkylQ}^{13}-\text{C}(\text{O})-\text{C}_{1-4}\text{alkylQ}^{14n}$ wherein Q^{13} is as defined herein and is not hydrogen and Q^{14n} is a 5-6-membered saturated or partially unsaturated heterocyclic group containing at least one nitrogen atom and optionally containing a further heteroatom selected from N and O wherein Q^{14n} is linked to $\text{C}_{1-6}\text{alkyl}$ via a nitrogen atom or a carbon atom and wherein Q^{14n}

20 optionally bears 1, 2 or 3 substituents selected from $\text{C}_{2-5}\text{alkenyl}$, $\text{C}_{2-5}\text{salkynyl}$, $\text{C}_{1-6}\text{fluoroalkyl}$, $\text{C}_{1-6}\text{alkanoyl}$, $\text{aminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-4}\text{alkoxyC}_{1-4}\text{alkylaminoC}_{2-6}\text{alkanoyl}$, $\text{C}_{1-6}\text{fluoroalkanoyl}$, carbamoyl , $\text{C}_{1-4}\text{alkylcarbamoyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoyl}$, $\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-4}\text{alkylcarbamoylC}_{1-6}\text{alkyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{carbamoylC}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylsulphonyl}$, $\text{C}_{1-6}\text{fluoroalkylsulphonyl}$, oxo , hydroxy ,

25 halogeno, cyano, $\text{C}_{1-4}\text{cyanoalkyl}$, $\text{C}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{hydroxyalkyl}$, $\text{C}_{1-4}\text{alkoxy}$, $\text{C}_{1-4}\text{alkoxyC}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{alkylsulphonylC}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{alkoxycarbonyl}$, $\text{C}_{1-4}\text{aminoalkyl}$, $\text{C}_{1-4}\text{alkylamino}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{amino}$, $\text{C}_{1-4}\text{alkylaminoC}_{1-4}\text{alkyl}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{1-4}\text{alkyl}$, $\text{C}_{1-4}\text{alkylaminoC}_{1-4}\text{alkoxy}$, $\text{di}(\text{C}_{1-4}\text{alkyl})\text{aminoC}_{1-4}\text{alkoxy}$ and a group $-(\text{O}-)_f(\text{C}_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic

30 group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from $\text{C}_{1-4}\text{alkyl}$) or Q^{14n} bears a single substituent selected from methylenedioxy and ethylenedioxy);

(ii) Q^{15}W^3-

wherein W^3 represents $-NQ^{16}C(O)-$, $-C(O)NQ^{17}-$, $-SO_2NQ^{18}-$, $-NQ^{19}SO_2-$ or $-NQ^{20}-$ (wherein Q^{16} , Q^{17} , Q^{18} , Q^{19} and Q^{20} each independently represents C_{2-5} alkenyl, C_{2-5} salkynyl, C_{1-4} haloalkyl), and Q^{15} is C_{1-6} haloalkyl, C_{2-5} alkenyl or C_{2-5} salkynyl; and

(iii) $Q^{21}W^4C_{1-5}$ salkyl X^1 wherein X^1 is as defined herein, W^4 represents $-NQ^{22}C(O)-$, $-$

5 $C(O)NQ^{23}-$, $-SO_2NQ^{24}-$, $-NQ^{25}SO_2-$ or $-NQ^{26}-$ (wherein Q^{22} , Q^{23} , Q^{24} , Q^{25} and Q^{26} each independently represents hydrogen, C_{1-3} alkyl, C_{1-3} alkoxy C_{2-3} alkyl, C_{2-5} alkenyl, C_{2-5} salkynyl or C_{1-4} haloalkyl), and Q^{21} represents C_{1-6} haloalkyl, C_{2-5} alkenyl or C_{2-5} salkynyl; or a salt thereof.

10 2. A compound according to claim 1 wherein Z is $-NH-$.

3. A compound according to claim 1 or claim 2 wherein R^3 is methoxy.

4. A compound according to any one of claims 1, 2 and 3 wherein X^1 is $-O-$.

15

5. A compound according to any one of the preceding claims wherein R^2 is selected from group (ii) of the groups (i), (ii) and (iii) defined in claim 1.

6. A compound according to any one of the preceding claims wherein R^2 is selected from 20 group (iii) of the groups (i), (ii) and (iii) defined in claim 1.

7. A compound according to any one of the preceding claims wherein R^2 is selected from group (i) of the groups (i), (ii) and (iii) defined in claim 1.

25 8. A compound according to claim 7 wherein R^2 is Q^1X^1- wherein X^1 is as defined in claim 1 and Q^1 is selected from one of the following ten groups:

1) Q^2 (wherein Q^2 is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C_{2-5} alkenyl, C_{2-5} salkynyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl and C_{1-6} fluoroalkylsulphonyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C_{2-5} alkenyl,

30 C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl and C_{1-6} fluoroalkylsulphonyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C_{2-5} alkenyl,

C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl), or Q² bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q¹ is Q² and X¹ is -O- then Q² must bear at least one substituent

5) selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and optionally may bear a further 1 or 2 substituents as defined herein;

2) C₁₋₅alkylW¹Q² (wherein W¹ represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)-, -NQ³C(O)-, -C(O)NQ⁴-, -SO₂NQ⁵-, -NQ⁶SO₂- or -NQ⁷- (wherein Q³, Q⁴, Q⁵, Q⁶ and Q⁷ each independently represents hydrogen, C₁₋₃alkyl, C₁₋₃alkoxyC₂₋₃alkyl, C₂₋₅alkenyl, C₂₋₅alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein;

3) C₁₋₅alkylQ² (wherein Q² is as defined herein);

4) C₂₋₅alkenylQ² (wherein Q² is as defined herein);

5) C₂₋₅alkynylQ² (wherein Q² is as defined herein);

25) 6) C₁₋₄alkylW²C₁₋₄alkylQ² (wherein W² represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)-, -NQ⁸C(O)-, -C(O)NQ⁹-, -SO₂NQ¹⁰-, -NQ¹¹SO₂- or -NQ¹²- (wherein Q⁸, Q⁹, Q¹⁰, Q¹¹ and Q¹² each independently represents hydrogen, C₁₋₃alkyl, C₁₋₃alkoxyC₂₋₃alkyl, C₂₋₅alkenyl, C₂₋₅alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein);

7) C₂₋₅alkenylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined herein);

30) 8) C₂₋₅alkynylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined herein);

9) C₁₋₄alkylQ¹³(C₁₋₄alkyl)_j(W²)_kQ¹⁴ (wherein W² is as defined herein, j is 0 or 1, k is 0 or 1, and Q¹³ and Q¹⁴ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2

heteroatoms, selected independently from O, S and N, which C_{1-3} alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1-4} alkoxy and which cyclic group may bear 1, 2 or 3 substituents selected from C_{2-5} alkenyl, C_{2-5} alkynyl, C_{1-6} fluoroalkyl, C_{1-6} alkanoyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl,

5 C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl, di(C_{1-4} alkyl)carbamoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl, C_{1-6} fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino,

10 di(C_{1-4} alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, di(C_{1-4} alkyl)amino C_{1-4} alkyl, C_{1-4} alkylamino C_{1-4} alkoxy, di(C_{1-4} alkyl)amino C_{1-4} alkoxy and a group $-(O)_f(C_{1-4}$ alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C_{1-4} alkyl), with the provisos that Q^{13}

15 cannot be hydrogen and one or both of Q^{13} and Q^{14} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from C_{2-5} alkenyl, C_{2-5} alkynyl, C_{1-6} alkanoyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl, di(C_{1-4} alkyl)carbamoyl,

20 carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl and C_{1-6} fluoroalkylsulphonyl and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

10) C_{1-4} alkyl Q^{13} -C(O)- C_{1-4} alkyl Q^{14n} wherein Q^{13} is as defined herein and is not hydrogen and Q^{14n} is a 5-6-membered saturated or partially unsaturated heterocyclic group containing at least one nitrogen atom and optionally containing a further heteroatom selected from N and O wherein Q^{14n} is linked to C_{1-6} alkyl via a nitrogen atom and wherein Q^{14n} optionally bears 1, 2 or 3 substituents selected from C_{2-5} alkenyl, C_{2-5} alkynyl, C_{1-6} fluoroalkyl, C_{1-6} alkanoyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl,

25 20 di(C_{1-4} alkyl)carbamoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl, C_{1-6} fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino,

di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic

5 group may bear one or more substituents selected from C₁₋₄alkyl)

or Q¹⁴ⁿ bears a single substituent selected from methylenedioxy and ethylenedioxy).

9. A compound according to claim 7 wherein R² is Q¹X¹- wherein X¹ is as defined in claim 1 and Q¹ is selected from one of the following ten groups:

10 1) Q² (wherein Q² is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and which heterocyclic

15 group may optionally bear a further 1 or 2 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-

25 membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl),

or Q² bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q¹ is Q² and X¹ is -O- then Q² must bear at least one substituent

30 selected from C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and optionally may bear a further 1 or 2 substituents as defined herein;

2) $C_{1-5}alkylW^1Q^2$ (wherein W^1 represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)-, -NQ³C(O)-, -C(O)NQ⁴-, -SO₂NQ⁵-, -NQ⁶SO₂- or -NQ⁷- (wherein Q³, Q⁴, Q⁵, Q⁶ and Q⁷ each independently represents hydrogen, $C_{1-3}alkyl$, $C_{1-3}alkoxyC_{2-3}alkyl$, $C_{2-5}alkenyl$, $C_{2-5}alkynyl$ or $C_{1-4}haloalkyl$) and Q² is as defined herein;

5 3) $C_{1-5}alkylQ^2$ (wherein Q² is as defined herein);

4) $C_{2-5}alkenylQ^2$ (wherein Q² is as defined herein);

5) $C_{2-5}alkynylQ^2$ (wherein Q² is as defined herein);

6) $C_{1-4}alkylW^2C_{1-4}alkylQ^2$ (wherein W^2 represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)- - NQ⁸C(O)-, -C(O)NQ⁹-, -SO₂NQ¹⁰-, -NQ¹¹SO₂- or -NQ¹²- (wherein Q⁸, Q⁹, Q¹⁰, Q¹¹ and Q¹²

10 each independently represents hydrogen, $C_{1-3}alkyl$, $C_{1-3}alkoxyC_{2-3}alkyl$, $C_{2-5}alkenyl$, $C_{2-5}alkynyl$ or $C_{1-4}haloalkyl$) and Q² is as defined herein);

7) $C_{2-5}alkenylW^2C_{1-4}alkylQ^2$ (wherein W^2 and Q² are as defined herein);

8) $C_{2-5}alkynylW^2C_{1-4}alkylQ^2$ (wherein W^2 and Q² are as defined herein);

9) $C_{1-4}alkylQ^{13}(C_{1-4}alkyl)_j(W^2)_kQ^{14}$ (wherein W^2 is as defined herein, j is 0 or 1, k is 0 or 1,

15 and Q¹³ and Q¹⁴ are each independently a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1, 2 or 3 substituents selected from $C_{2-5}alkenyl$, $C_{2-5}alkynyl$, $C_{1-6}fluoroalkyl$, $C_{1-6}alkanoyl$, $aminoC_{2-6}alkanoyl$, $C_{1-4}alkylaminoC_{2-6}alkanoyl$, $di(C_{1-4}alkyl)aminoC_{2-6}alkanoyl$, $C_{1-4}alkoxyC_{1-4}alkylaminoC_{2-6}alkanoyl$, $C_{1-6}fluoroalkanoyl$,

20 carbamoyl, $C_{1-4}alkylcarbamoyl$, $di(C_{1-4}alkyl)carbamoyl$, carbamoyl $C_{1-6}alkyl$, $C_{1-4}alkylcarbamoylC_{1-6}alkyl$, $di(C_{1-4}alkyl)carbamoylC_{1-6}alkyl$, $C_{1-6}alkylsulphonyl$, $C_{1-6}fluoroalkylsulphonyl$, oxo, hydroxy, halogeno, cyano, $C_{1-4}cyanoalkyl$, $C_{1-4}alkyl$, $C_{1-4}hydroxyalkyl$, $C_{1-4}alkoxy$, $C_{1-4}alkoxyC_{1-4}alkyl$, $C_{1-4}alkylsulphonylC_{1-4}alkyl$, $C_{1-4}alkoxycarbonyl$, $C_{1-4}aminoalkyl$, $C_{1-4}alkylamino$, $di(C_{1-4}alkyl)amino$, $C_{1-4}alkylaminoC_{1-4}alkyl$, $di(C_{1-4}alkyl)aminoC_{1-4}alkyl$, $C_{1-4}alkylaminoC_{1-4}alkoxy$, $di(C_{1-4}alkyl)aminoC_{1-4}alkoxy$ and a group $-(O)_f(C_{1-4}alkyl)_g$ ringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from $C_{1-4}alkyl$), with the proviso that one or both of Q¹³ and Q¹⁴ bears at least one

25 substituent selected from $aminoC_{2-6}alkanoyl$, $C_{1-4}alkylaminoC_{2-6}alkanoyl$, $di(C_{1-4}alkyl)aminoC_{2-6}alkanoyl$, $C_{1-4}alkylcarbamoylC_{1-6}alkyl$ and $di(C_{1-4}alkyl)carbamoylC_{1-6}alkyl$, and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

30 substituent selected from $aminoC_{2-6}alkanoyl$, $C_{1-4}alkylaminoC_{2-6}alkanoyl$, $di(C_{1-4}alkyl)aminoC_{2-6}alkanoyl$, $C_{1-4}alkylcarbamoylC_{1-6}alkyl$ and $di(C_{1-4}alkyl)carbamoylC_{1-6}alkyl$, and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

10) $C_{1-4}\text{alkyl}Q^{13}\text{-C(O)-}C_{1-4}\text{alkyl}Q^{14n}$ wherein Q^{13} is as defined herein and Q^{14n} is a 5-6-membered saturated or partially unsaturated heterocyclic group containing at least one nitrogen atom and optionally containing a further heteroatom selected from N and O wherein Q^{14n} is linked to $C_{1-6}\text{alkyl}$ via a nitrogen atom or a carbon atom and wherein Q^{14n} optionally bears 1, 2 or 3 substituents selected from $C_{2-5}\text{alkenyl}$, $C_{2-5}\text{alkynyl}$, $C_{1-6}\text{fluoroalkyl}$, $C_{1-6}\text{alkanoyl}$, $\text{amino}C_{2-6}\text{alkanoyl}$, $C_{1-4}\text{alkylamino}C_{2-6}\text{alkanoyl}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}C_{2-6}\text{alkanoyl}$, $C_{1-4}\text{alkoxy}C_{1-4}\text{alkylamino}C_{2-6}\text{alkanoyl}$, $C_{1-6}\text{fluoroalkanoyl}$, carbamoyl , $C_{1-4}\text{alkylcarbamoyl}$, $\text{di}(C_{1-4}\text{alkyl})\text{carbamoyl}$, $\text{carbamoyl}C_{1-6}\text{alkyl}$, $C_{1-4}\text{alkylcarbamoyl}C_{1-6}\text{alkyl}$, $\text{di}(C_{1-4}\text{alkyl})\text{carbamoyl}C_{1-6}\text{alkyl}$, $C_{1-6}\text{alkylsulphonyl}$, $C_{1-6}\text{fluoroalkylsulphonyl}$, oxo , hydroxy , halogeno , cyano , $C_{1-4}\text{cyanoalkyl}$, $C_{1-4}\text{alkyl}$, $C_{1-4}\text{hydroxyalkyl}$, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{alkoxy}C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkylsulphonyl}C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkoxycarbonyl}$, $C_{1-4}\text{aminoalkyl}$, $C_{1-4}\text{alkylamino}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}$, $C_{1-4}\text{alkylamino}C_{1-4}\text{alkyl}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkylamino}C_{1-4}\text{alkoxy}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}C_{1-4}\text{alkoxy}$ and a group $-(O)_f(C_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from $C_{1-4}\text{alkyl}$) or Q^{14n} bears a single substituent selected from methylenedioxy and ethylenedioxy).

10. A compound according to claim 1 of the formula Ia:

20

(Ia)

wherein:

Za is $-\text{NH-}$, $-\text{O-}$ or $-\text{S-}$;

25 R^{1a} represents bromo or chloro;

R^{3a} represents $C_{1-3}\text{alkoxy}$ or hydrogen;

X^{1a} represents $-\text{O-}$, $-\text{S-}$ or $-\text{NR}^{4a}$ where R^{4a} is hydrogen, $C_{1-3}\text{alkyl}$ or $C_{1-3}\text{alkoxy}C_{2-3}\text{alkyl}$;

R^{2a} is selected from one of the following groups:

1) $C_{1-5}alkylR^{5a}$ (wherein R^{5a} is a 5- or 6-membered heterocyclic ring selected from morpholine, pyrrolidine, piperidine and piperazine which heterocyclic ring bears at least one substituent selected from amino $C_{2-4}alkanoyl$, $C_{1-4}alkylaminoC_{2-4}alkanoyl$, di($C_{1-4}alkyl$)amino $C_{2-4}alkanoyl$, $C_{1-4}alkoxyC_{1-4}alkylaminoC_{2-4}alkanoyl$, methylenedioxy and ethylenedioxy);

2) $C_{2-5}alkenylR^{5a}$ (wherein R^{5a} is as defined herein);

3) $C_{2-5}alkynylR^{5a}$ (wherein R^{5a} is as defined herein);

4) $C_{1-5}alkylR^{6a}C(O)(CH_2)_{ma}R^{7a}$ (wherein ma is 1 or 2, R^{6a} is a 5- or 6-membered heterocyclic ring selected from morpholine, pyrrolidine, piperidine and piperazine which heterocyclic ring 10 may bear one or two substituents selected from fluoro, hydroxy and methyl, and R^{7a} is a 5- or 6-membered heterocyclic ring selected from pyrrolidine, piperidine, piperazine and morpholine which heterocyclic ring is linked to $(CH_2)_{ma}$ via a nitrogen atom or a carbon atom and which heterocyclic ring may bear one or more substituents selected from hydroxy, halogeno, $C_{1-4}alkanoyl$, methylenedioxy and ethylenedioxy); and

15 5) $C_{1-5}alkylR^{6a}(CH_2)_{ma}C(O)R^{8a}$ (wherein ma and R^{6a} are as defined herein and R^{8a} is a 5- or 6-membered heterocyclic ring selected from pyrrolidine, piperidine, piperazine and morpholine which heterocyclic ring is linked to $C(O)$ via a nitrogen atom or a carbon atom and which heterocyclic ring may bear one or more substituents selected from hydroxy, halogeno, $C_{1-4}alkanoyl$, methylenedioxy and ethylenedioxy)

20 or a salt thereof.

11. A compound according to claim 1 of the formula Ib:

25

(Ib)

wherein:

Z , R^1 and R^3 are as defined in claim 1 and

R^{2b} is selected from one of the following three groups:

(i) $Q^{1b}X^{1-}$

wherein X^1 is as defined in claim 1 and Q^{1b} is selected from one of the following ten groups:

- 1) Q^{2b} (wherein Q^{2b} is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C_{2-5} alkenyl, C_{2-5} salkynyl, C_{1-6} fluoroalkyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl and C_{1-6} fluoroalkylsulphonyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C_{2-5} alkenyl, C_{2-5} salkynyl, C_{1-6} fluoroalkyl, C_{1-6} alkanoyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl, di(C_{1-4} alkyl)carbamoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl, C_{1-6} fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, di(C_{1-4} alkyl)amino C_{1-4} alkyl, C_{1-4} alkylamino C_{1-4} alkoxy, di(C_{1-4} alkyl)amino C_{1-4} alkoxy and a group $-(-O-)_f(C_{1-4}$ alkyl) $_g$ ringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C_{1-4} alkyl), or Q^{2b} bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q^{1b} is Q^{2b} and X^1 is -O- then Q^{2b} must bear at least one substituent selected from C_{2-5} alkenyl, C_{2-5} salkynyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, and di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl and optionally may bear a further 1 or 2 substituents as defined herein;
- 2) C_{1-5} alkyl W^1Q^2 (wherein W^1 and Q^2 are as defined in claim 1);
- 3) C_{1-5} alkyl Q^{2b} (wherein Q^{2b} is as defined herein);
- 4) C_{2-5} alkenyl Q^2 (wherein Q^2 is as defined in claim 1);
- 5) C_{2-5} salkynyl Q^2 (wherein Q^2 is as defined in claim 1);
- 6) C_{1-4} alkyl W^2C_{1-4} alkyl Q^2 (wherein W^2 and Q^2 are as defined in claim 1);
- 7) C_{2-5} alkenyl W^2C_{1-4} alkyl Q^2 (wherein W^2 and Q^2 are as defined in claim 1);
- 8) C_{2-5} salkynyl W^2C_{1-4} alkyl Q^2 (wherein W^2 and Q^2 are as defined in claim 1);

9) $C_{1-4}alkylQ^{13b}(C_{1-4}alkyl)_j(W^2)_kQ^{14b}$ (wherein W^2 is as defined in claim 1, j is 0 or 1, k is 0 or 1, and Q^{13b} and Q^{14b} are each independently selected from hydrogen, $C_{1-3}alkyl$, cyclopentyl, cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which $C_{1-3}alkyl$ group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and $C_{1-4}alkoxy$ and which cyclic group may bear 1, 2 or 3 substituents selected from $C_{2-5}alkenyl$, $C_{2-5}alkynyl$, $C_{1-6}fluoroalkyl$, $C_{1-6}alkanoyl$, $aminoC_{2-6}alkanoyl$, $C_{1-4}alkylaminoC_{2-6}alkanoyl$, $di(C_{1-4}alkyl)aminoC_{2-6}alkanoyl$, $C_{1-4}alkoxyC_{1-4}alkylaminoC_{2-6}alkanoyl$, $C_{1-6}fluoroalkanoyl$, carbamoyl, $C_{1-4}alkylcarbamoyl$, $di(C_{1-4}alkyl)carbamoyl$, carbamoyl $C_{1-6}alkyl$, $C_{1-4}alkylcarbamoylC_{1-6}alkyl$, $di(C_{1-4}alkyl)carbamoylC_{1-6}alkyl$, $C_{1-6}fluoroalkylsulphonyl$, oxo, hydroxy, halogeno, cyano, $C_{1-4}cyanoalkyl$, $C_{1-4}alkyl$, $C_{1-4}hydroxyalkyl$, $C_{1-4}alkoxy$, $C_{1-4}alkoxyC_{1-4}alkyl$, $C_{1-4}alkylsulphonylC_{1-4}alkyl$, $C_{1-4}alkoxycarbonyl$, $C_{1-4}aminoalkyl$, $C_{1-4}alkylamino$, $di(C_{1-4}alkyl)amino$, $C_{1-4}alkylaminoC_{1-4}alkyl$, $di(C_{1-4}alkyl)aminoC_{1-4}alkyl$, $C_{1-4}alkylaminoC_{1-4}alkoxy$, $di(C_{1-4}alkyl)aminoC_{1-4}alkoxy$ and a group $-(-O-)_f(C_{1-4}alkyl)_g$ ring D (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from $C_{1-4}alkyl$), with the provisos that Q^{13b} cannot be hydrogen and one or both of Q^{13b} and Q^{14b} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from $C_{2-5}alkenyl$, $C_{2-5}alkynyl$, $C_{1-6}fluoroalkyl$, $aminoC_{2-6}alkanoyl$, $C_{1-4}alkylaminoC_{2-6}alkanoyl$, $di(C_{1-4}alkyl)aminoC_{2-6}alkanoyl$, $C_{1-4}alkoxyC_{1-4}alkylaminoC_{2-6}alkanoyl$, $C_{1-6}fluoroalkanoyl$, carbamoyl, $C_{1-4}alkylcarbamoyl$, $di(C_{1-4}alkyl)carbamoyl$, carbamoyl $C_{1-6}alkyl$, $C_{1-4}alkylcarbamoylC_{1-6}alkyl$, $di(C_{1-4}alkyl)carbamoylC_{1-6}alkyl$ and $C_{1-6}fluoroalkylsulphonyl$ and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

10) $C_{1-4}alkylQ^{13-C(O)-C_{1-4}alkyl}Q^{14n}$ (wherein Q^{13} and Q^{14n} are as defined in claim 1);

(ii) $Q^{15}W^3-$ (wherein W^3 and Q^{15} are defined in claim 1); and

(iii) $Q^{21}W^4C_{1-5}alkylX^1$ (wherein X^1 , W^4 and Q^{21} are as defined in claim 1); or a salt thereof.

30

12. A compound according to claim 11 wherein R^{2b} is $Q^{1b}X^1-$ wherein X^1 is as defined in claim 1 and Q^{1b} is selected from one of the following ten groups:

1) Q^{2b} (wherein Q^{2b} is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl and di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl and which heterocyclic group 5 may optionally bear a further 1 or 2 substituents selected from C_{2-5} alkenyl, C_{2-5} alkynyl, C_{1-6} fluoroalkyl, C_{1-6} alkanoyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, di(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl, di(C_{1-4} alkyl)carbamoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl, C_{1-6} fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C_{1-4} cynoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, di(C_{1-4} alkyl)amino C_{1-4} alkyl, C_{1-4} alkylamino C_{1-4} alkoxy, di(C_{1-4} alkyl)amino C_{1-4} alkoxy and a group $-(-O-)_f(C_{1-4}$ alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6- 10 membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C_{1-4} alkyl), or Q^{2b} bears a single substituent selected from methylenedioxy and ethylenedioxy);

2) C_{1-5} alkyl W^1 Q^{2b} (wherein W^1 is as defined in claim 1 and Q^{2b} is as defined herein);

20 3) C_{1-5} alkyl Q^{2b} (wherein Q^{2b} is as defined herein);

4) C_{2-5} alkenyl Q^{2b} (wherein Q^{2b} is as defined herein);

5) C_{2-5} alkynyl Q^{2b} (wherein Q^{2b} is as defined herein);

6) C_{1-4} alkyl W^2 C_{1-4} alkyl Q^{2b} (wherein W^2 is as defined in claim 1 and Q^{2b} is as defined herein);

7) C_{2-5} alkenyl W^2 C_{1-4} alkyl Q^{2b} (wherein W^2 is as defined in claim 1 and Q^{2b} is as defined 25 herein);

8) C_{2-5} alkynyl W^2 C_{1-4} alkyl Q^{2b} (wherein W^2 is as defined in claim 1 and Q^{2b} is as defined herein);

9) C_{1-4} alkyl Q^{13b} (C_{1-4} alkyl)_j(W^2)_k Q^{14b} (wherein W^2 is as defined in claim 1, j is 0 or 1, k is 0 or 1, and Q^{13b} and Q^{14b} are each independently selected from hydrogen, C_{1-3} alkyl, cyclopentyl, 30 cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1-3} alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1-4} alkoxy and which cyclic group may bear 1, 2 or 3 substituents selected from C_{2-5} alkenyl, C_{2-5} alkynyl, C_{1-6} fluoroalkyl, C_{1-6}

6 alkanoyl, aminoC₂₋₆ alkanoyl, C₁₋₄ alkylaminoC₂₋₆ alkanoyl, di(C₁₋₄ alkyl)aminoC₂₋₆ alkanoyl, C₁₋₄ alkoxyC₁₋₄ alkylaminoC₂₋₆ alkanoyl, C₁₋₆ fluoroalkanoyl, carbamoyl, C₁₋₄ alkylcarbamoyl, di(C₁₋₄ alkyl)carbamoyl, carbamoylC₁₋₆ alkyl, C₁₋₄ alkylcarbamoylC₁₋₆ alkyl, di(C₁₋₄ alkyl)carbamoylC₁₋₆ alkyl, C₁₋₆ alkylsulphonyl, C₁₋₆ fluoroalkylsulphonyl, oxo, hydroxy,

5 halogeno, cyano, C₁₋₄ cyanoalkyl, C₁₋₄ alkyl, C₁₋₄ hydroxyalkyl, C₁₋₄ alkoxy, C₁₋₄ alkoxyC₁₋₄ alkyl, C₁₋₄ alkylsulphonylC₁₋₄ alkyl, C₁₋₄ alkoxy carbonyl, C₁₋₄ aminoalkyl, C₁₋₄ alkylamino, di(C₁₋₄ alkyl)amino, C₁₋₄ alkylaminoC₁₋₄ alkyl, di(C₁₋₄ alkyl)aminoC₁₋₄ alkyl, C₁₋₄ alkylaminoC₁₋₄ alkoxy, di(C₁₋₄ alkyl)aminoC₁₋₄ alkoxy and a group -(-O-)_f(C₁₋₄ alkyl)_g ringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic

10 group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄ alkyl), with the provisos that Q^{13b} cannot be hydrogen and one or both of Q^{13b} and Q^{14b} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from C₁₋₄ alkoxyC₁₋₄ alkylaminoC₂₋₆ alkanoyl, C₁₋₄ alkylcarbamoylC₁₋₆ alkyl and di(C₁₋₄ alkyl)carbamoylC₁₋₆ alkyl and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

15 10) C₁₋₄ alkylQ^{13b}-C(O)-C₁₋₄ alkylQ^{14b} (wherein Q^{13b} and Q^{14b} are as defined herein and with the provisos that Q^{13b} cannot be hydrogen and one or both of Q^{13b} and Q^{14b} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which

20 heterocyclic group bears at least one substituent selected from C₁₋₄ alkoxyC₁₋₄ alkylaminoC₂₋₆ alkanoyl, C₁₋₄ alkylcarbamoylC₁₋₆ alkyl and di(C₁₋₄ alkyl)carbamoylC₁₋₆ alkyl and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein).

25 13. A compound according to claim 1 selected from:

4-(4-bromo-2-fluoroanilino)-7-({1-[(N,N- dimethylamino)acetyl]piperidin-4-yl}methoxy)-6-methoxyquinazoline,

4-(4-chloro-2-fluoroanilino)-7-({1-[(N,N-dimethylamino)acetyl]piperidin-4-yl}methoxy)-6-methoxyquinazoline,

30 4-(4-chloro-2-fluoroanilino)-6-methoxy-7- {[1-(pyrrolidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,

4-(4-chloro-2-fluoroanilino)-6-methoxy-7- {[1-(piperidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,

4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{{1-(morpholin-4-ylacetyl)piperidin-4-yl]methoxy}quinazoline,

4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{{1-[(3a*R*,6a*S*)-tetrahydro-5*H*-[1,3]dioxolo[4,5-*c*]pyrrol-5-ylacetyl]piperidin-4-yl]methoxy}quinazoline,

5 7-{{1-[(4-acetylpiperazin-1-yl)acetyl]piperidin-4-yl]methoxy}-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline,

(3*S*)-4-(4-chloro-2-fluoroanilino)-7-{{1-[(3-hydroxypyrrolidin-1-yl)acetyl]piperidin-4-yl]methoxy}-6-methoxyquinazoline,

4-(4-chloro-2-fluoroanilino)-6-methoxy-7-[(1-{{[N-(2-methoxyethyl)amino]acetyl}piperidin-4-yl]methoxy}quinazoline,

10 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{{1-[(*N*-methylamino)acetyl]piperidin-4-yl]methoxy}quinazoline,

4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{{1-[(3,3-difluoropyrrolidin-1-yl)acetyl]piperidin-4-yl]methoxy}6-methoxyquinazoline,

15 4-(4-chloro-2-fluoroanilino)-7-(2-{{1-[(*N,N*-dimethylamino)acetyl]piperidin-4-yl}ethoxy)-6-methoxyquinazoline,

4-(4-bromo-2-fluoroanilino)-7-(2-{{1-[(*N,N*-dimethylamino)acetyl]piperidin-4-yl}ethoxy)-6-methoxyquinazoline,

4-(4-chloro-2-fluoroanilino)-7-{{(3*R*)-1-[(*N,N*-dimethylamino)acetyl]piperidin-3-yl}methoxy}-6-methoxyquinazoline,

20 4-(4-Chloro-2-fluoroanilino)-7-{{(3*S*)-1-[(*N,N*-dimethylamino)acetyl]piperidin-3-yl}methoxy}-6-methoxyquinazoline,

4-(4-bromo-2-fluoroanilino)-6-methoxy-7-{{3-[(3a*R*,6a*S*)-tetrahydro-5*H*-[1,3]dioxolo[4,5-*c*]pyrrol-5-yl]propoxy}quinazoline,

25 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-{{2-[(3a*R*,6a*S*)-tetrahydro-5*H*-[1,3]dioxolo[4,5-*c*]pyrrol-5-yl]ethoxy}quinazoline,

and salts thereof.

14. A compound according to any one of the preceding claims in the form of a
30 pharmaceutically acceptable salt.

15. A process for the preparation of a compound according to claim 1 of the formula I or
salt thereof which comprises:

5 (a) the reaction of a compound of the formula II:

(II)

10 wherein R^2 and R^3 are as defined in claim 1 and L^1 is a displaceable moiety, with a compound of the formula III:

(III)

15 20 wherein R^1 and Z are as defined in claim 1;

(b) the reaction of a compound of the formula IV:

(IV)

25 30 wherein Z , R^1 and R^3 are as defined in claim 1 with a compound of formula V:

R^5-L^1

(V)

wherein R^5 is Q^1 , Q^{15} or $Q^{21}W^4C_{1-5}alkyl$, X^2 is X^1 or W^3 and L^1 is as defined herein and wherein Q^1 , Q^{15} , Q^{21} , W^4 , X^1 and W^3 are as defined in claim 1;

(c) the reaction of a compound of the formula VI:

5

10

(VI)

with a compound of the formula VIIa-c:

15

(wherein L^1 is as defined herein and R^1 , R^3 , Z , Q^1 , Q^{15} , Q^{21} , W^3 , W^4 and X^1 are as defined in claim 1);

20 (d) the deprotection of a compound of the formula VIII:

25

(VIII)

wherein R^1 , R^3 and Z are all as defined in claim 1, and R^6 represents a protected R^2 group
 30 wherein R^2 is as defined in claim 1 but additionally bears one or more protecting groups P^2 ;

(e) the addition of a substituent to a compound of the formula IX:

5

wherein R¹, R³ and Z are as defined in claim 1, and R⁷ represents an R² group which has yet to be substituted with its final substituent;

10 and when a salt of a compound of formula I is required, reaction of the compound obtained with an acid or base whereby to obtain the desired salt.

16. A pharmaceutical composition which comprises a compound of the formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof, in association with a
 15 pharmaceutically acceptable excipient or carrier.

17. Use of a compound of the formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for use in the production of an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal.

20

18. A method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof.

25