# Automatic System Verification Exercices

Cominato Enrico 137396
Department of Computer Science
University of Udine

October 20, 2020

# 1 Exercices on the automata's notes

# Esercizio 2.3

Sia  $\mathcal{A}$  l'automa dell'Esempio 2.2. Si consideri l'automa  $\mathcal{A}'$  ottenuto da  $\mathcal{A}$  rimuovendo lo stato  $q_0$ , e le transizioni in esso entranti e da esso uscenti, e facendo diventare  $q_1$  il nuovo stato iniziale. Si stabilisca se  $\mathcal{A}$  e  $\mathcal{A}'$  riconoscono o meno lo stesso linguaggio Riporto di seguito i due grafi.



I due linguaggi non sono uguali. Per esempio la  $\omega$  – parola babcabca... appartiene al primo dei due automi, ma non al secondo (da  $q_1$  andiamo in  $q_2$  ma da li possiamo leggere solo una b oppure una c)

### Esercizio 2.4

Si costruisca l'automa  $\mathcal{A}'$  che riconosce la variante finita (linguaggio di parole finite) dell'Esempio 2.2

Il linguaggio richiesto è il seguente:

L'insieme delle parole finite su  $A = \{a, b, c\}$  tali che tra ogni coppia di occorrenze consecutive di a esiste un numero pari di occorrenze di simboli diversi da a.

Osservazione: una parola con una sola occorrenza di a deve essere sempre accettata.

L'automa risultante quindi è lo stesso dell'esempio 2.2, solo che le run su questo automa sono finite.



### Esercizio 2.5

Sia W il linguaggio riconosciuto dall'automa  $\mathcal{A}$ ' dell'Esercizio 2.4. Si caratterizzi il linguaggio  $\overline{W}$ .

Riprendo la definizione di  $\overrightarrow{W}$ :

$$\overrightarrow{W} = \{ \alpha \in A^{\omega} \ t.c. \ \exists^{\omega} n \ \alpha(0, n) \in W \}$$

Sono quindi tutte quelle  $\omega$ -parole di cui ogni prefisso finito appartiene a W. Analizziamo per casi:

- la parola non ha neppure una a: in questo caso ogni suo prefisso appartiene a W perchè le parole  $(b|c), (b|c)^2, (b|c)^3, \ldots, (b|c)^n, \ldots \in W$
- la parola ha una sola occorrenza di a: anche in questo caso ogni suo prefisso appartiene a W perchè:
  - -come visto nel punto precedente, fino a che non si incontra la lettera a le parole appartengono a  ${\cal W}$
  - dopo l'occorrenza di a, ancora tutti i prefissi appartengono a W, dato che tutte le parole finite con una sola occorrenza di a appartengono a W

• infine tutti gli altri casi sono parole con un più di una occorrenza di a: dove abbiamo che ogni prefisso, o ricade in uno dei precedenti casi, oppure è una parola che tra ogni coppia di occorrenze consecutive di a esiste un numero pari di occorrenze di simboli diversi da a e che quindi appartiene a W.

In questo caso abbiamo che  $W^{\omega} = \overrightarrow{W}$ .

### Esercizio 2.7

#### Teorema 2.6

- 1. Se  $V \subseteq A^*$  è regolare, allora  $V^{\omega}$  è  $\omega regolare$
- 2. Se  $V \subseteq A^*$  è regolare e  $L \subseteq A^\omega$  è  $\omega$ -regolare, allora  $V \cdot L$  è  $\omega$ -regolare
- 3. Se  $L_1, L_2 \subseteq A^*$  sono  $\omega regolari$ , allora  $L_1 \cup L_2$  e  $L_1 \cap L_2$ sono  $\omega regolari$

Dimostrare le proprietà (2) e (3) del teorema

# Esercizio 2.13

Fornire un esempio di parola non definitivamente periodica Un esempio è:

 $ababbab^3ab^4ab^5...$ 

## Esercizio 2.16

Dimostrare che una congruenza è una relazione di equivalenza invariante destra

Invariante a destra significa che  $\forall x, y, z \in A$ , se  $x \sim y$  allora  $xz \sim yz$ . Questo è sempre vero perchè, concatenando la stessa parola ad x, y finiremo in un'unica classe di equivalenza.

# Esercizio 2.19

Dato un automa di Buchi  $\mathcal{A} = (\mathcal{Q}, A, \Delta, q_0, F)$ , dimostrare che, per ogni  $s, s' \in \mathcal{Q}, W_{ss'}^F$  è regolare

Un linguaggio è regolare se esiste un'automa in grado di accettarlo. Per poterlo accettare deve avere almeno uno stato finale. Quindi se eliminiamo dall'automa  $\mathcal{A}$ , tutti gli stati e le relazioni non interessate dai possibili cammini tra s e s' otteniamo un automa in grado di leggere solo  $W^F_{ss'}$ , e questo fa di lui un linguaggio regolare.

# Esercizio 2.23

Dimostrare che la relazione  $\approx_A$  è una congruenza di indice finito

Perchè  $\approx_A$  sia una congruenza deve valere che  $\forall u, u', v, v' \in A^*$  se  $u \approx_A v$  e  $u' \approx_A v'$  allora  $uu' \approx_A vv'$ . Questo è vero perchè avendo  $u \approx_A v$  e  $u' \approx_A v'$ , allora  $\exists t$  tale che:

- $s \to_u t \Leftrightarrow s \to_v t$
- $s \to_u^F t \Leftrightarrow s \to_v^F t$
- $t \rightarrow_{u'} s' \Leftrightarrow t \rightarrow_{v'} s'$
- $t \to_{v'}^F s' \Leftrightarrow t \to_{v'}^F s'$

Quindi abbiamo che  $\forall s, s' \in Q$ :

- $s \rightarrow_{uu'} s' \Leftrightarrow s \rightarrow_{vv'} s'$
- $s \to_{uu'}^F s' \Leftrightarrow s \to_{uv'}^F s'$

e quindi $uu'\approx_A vv'.$  Il resto della dimostrazione è già stata svolta negli appunti.

### Esercizio 2.25

Si dimostri che la relazione  $\cong_{\alpha}$  è una relazione di equivalenza sui naturali di indice finito

Riprendo la definizione di  $\cong_{\alpha}$ . Sia  $\sim$  una congruenza su  $A^*$  di indice finito. Sia  $\alpha \in A^{\omega}$  e siano k, k' posizioni. Diciamo che  $k \cong_{\alpha}^{m} k'$  (k, k') si riuniscono in m > k, k' se  $\alpha(k, m) \sim \alpha(k', m)$ . Diciamo che  $k \cong_{\alpha} k'$  se esiste m per cui  $k \cong_{\alpha}^{m} k'$ .

Dimostro che è una relazione di equivalenza:

- Riflessività:  $\forall k \in \mathbb{N}$  è sempre vero che  $k \cong_{\alpha} k$  perchè  $k \cong_{\alpha} k \Leftrightarrow \exists m \ t.c. \ \alpha(k,m) \sim \alpha(k,m)$  e questo è vero  $\forall k$  perchè  $\sim$  è una relazione di equivalenza
- Simmetria:  $\forall k, k' \in \mathbb{N}$  è sempre vero che  $k \cong_{\alpha} k' \Rightarrow k' \cong_{\alpha} k$  perchè  $k \cong_{\alpha} k' \Leftrightarrow \exists m \ t.c. \ \alpha(k, m) \sim \alpha(k', m)$ . Dato che  $\sim$  è una relazione di equivalenza allora vale che  $\exists m \ t.c. \ \alpha(k', m) \sim \alpha(k, m)$ , il che significa che  $k' \cong_{\alpha} k$ .
- Transitività:  $\forall i, j, k \in \mathbb{N}$  è sempre vero che  $i \cong_{\alpha} j$  e  $j \cong_{\alpha} k \Rightarrow i \cong_{\alpha} k$ , perchè  $i \cong_{\alpha} j \Leftrightarrow \exists m \ t.c. \ \alpha(i,m) \sim \alpha(j,m)$  e  $j \cong_{\alpha} k \Leftrightarrow \exists n \ t.c. \ \alpha(j,n) \sim \alpha(k,n)$ . Senza perdere di generalità pongo n > m, quindi abbiamo che  $\exists m \ t.c. \ \alpha(i,m) \sim \alpha(j,m)$  e  $\alpha(j,m) \sim \alpha(k,m)$ . Dato che  $\sim$  è una relazione di equivalenza allora vale che  $\exists m \ tale$  che  $\alpha(i,m) \sim \alpha(j,m)$  e  $\alpha(j,m) \sim \alpha(k,m)$   $\Rightarrow \alpha(i,m) \sim \alpha(k,m)$ , il che significa che  $i \cong_{\alpha} k$ .

Dimostro che  $\cong_{\alpha}$  ha indice finito. Dato che  $\sim$  ha indice finito, per un m fisso, ci troviamo in una situazione del genere:



Dove il numero di classi di equivalenza è limitato dal numero di classi di equivalenza di  $\sim$ .

#### Esercizio 2.44

Dimostrare la chiusura della classe dei linguaggi riconosciuti dagli automi di Buchi deterministici rispetto alle operazioni di unione e intersezione Siano  $\mathcal{A} = (\mathcal{Q}_{\mathcal{A}}, A, \Delta_A, q_{0A}, F_A)$  e  $\mathcal{B} = (\mathcal{Q}_{\mathcal{B}}, A, \Delta_B, q_{0B}, F_B)$ 

**Unione**: Se assumiamo che  $\mathcal{Q}_{\mathcal{A}} \cap \mathcal{Q}_{\mathcal{B}} = \emptyset$  allora possiamo costruire l'automa unione  $\mathcal{C}$  come segue:

- $\mathcal{Q}_{\mathcal{C}} = \mathcal{Q}_{\mathcal{A}} \cup \mathcal{Q}_{\mathcal{B}} \cup \{q_{0C}\}$
- A rimane invariato
- $\Delta_C = \Delta_A \cup \Delta_B$
- $q_{0C}$  come nuovo stato iniziale, con le stesse relazioni di  $q_{0A}$  e  $q_{0B}$ , finale nel caso che almeno uno tra  $q_{0A}$  e  $q_{0B}$  sia uno stato finale
- $F_C = F_A \cup F_B$

**Intersezione**: Costruiamo l'automa intersezione C, partendo dal prodotto cartesiano degli stati:

- $Q_{\mathcal{C}} = Q_{\mathcal{A}} \times Q_{\mathcal{B}} \times \{1, 2\}$
- A rimane invariato
- $\Delta_C = \Delta_1 \cup \Delta_2$  dove
  - $\Delta_1 = \{ ((q_A, q_B, 1), a, (q'_A, q'_B, i)) \mid (q_A, a, q'_A) \in \Delta_A \ e \ (q_B, a, q'_B) \in \Delta_B \ e \ se \ q_A \in F_A \ allora \ i = 2 \ altrimenti \ i = 1 \}$
  - $\begin{array}{l} \ \Delta_2 = \{ ((q_A, q_B, 2), a, (q_A', q_B', i)) \mid (q_A, a, q_A') \in \Delta_A \ e \ (q_B, a, q_B') \in \\ \Delta_B \ e \ se \ q_B \in F_B \ allora \ i = 1 \ altrimenti \ i = 2 \} \end{array}$
- $q_{0C} = (q_{0A}, q_{0B}, 1)$
- $F_C = \{(q_a, q_b, 2) \mid q_B \in F_B\}$

Per costruzione,  $r_C=(q_A^0,q_B^0,i^0),(q_A^1,q_B^1,i^1),\ldots$  è un'esecuzione su  $\mathcal C$  per la parola w se:

- $r_A = q_A^0, q_A^1, \dots$  è un'esecuzione su  $\mathcal{A}$  per w
- $r_B = q_B^0, q_B^1, \dots$ è un'esecuzione su  ${\mathcal B}$  per w

 $r_A$  e  $r_B$  sono accettate se  $r_C$  è la concatenazione di una serie infinita di segmenti finiti di stati 1 (stati con terza componente 1) e stati 2 (stati con terza componente 2) alternativamente. Questa sequenza esiste se  $r_C$  è accettato da A

# Esercizio 2.46

Sia  $A = \{a, b\}$  e  $L = \{\alpha \in A^{\omega}. \exists^{<\omega} \ n \ \alpha(n) = a\}$ . Si costruisca un automa di Buchi non deterministico che riconosca il linguaggio L



# Esercizio 2.48

Sia  $A = \{a, b\}$  e  $L = \{b^*a^*\}$ . Si costruisca un automa di Buchi non deterministico che riconosca il linguaggio L



# Esercizio 2.50

Dimostrare che la classe degli  $\omega$ -linguaggi  $\omega$ -regolari coincide con la classe degli  $\omega$ -linguaggi riconosciuti dagli automi di Muller non deterministici

# Esercizio 2.57

Dimostrare che l'insieme  $W_v \subseteq A^*$  dei V-testimoni, con V classe di congruenza  $\approx_{\mathcal{A}}$  è regolare

# 2 Exercices of chapter 0 of Temporal Verification of Reactive Systems

# 3 Additional exercices

#### Esercizio1

Dato un linguaggio  $L \subseteq A^*$ , dimostrare se che L è un linguaggio star-free, allora L è definibile nel frammento al prim'ordine di  $S1S_A$ , con la relazione di ordinamento < e i predicati unari  $Q_a$ , con  $a \in A$ .

#### Esercizio2

Dimostrare che l'insieme dei linguaggi riconosciuti da automi di Büchi su alberi infiniti con insieme degli stati finali singoletto è strettamente contenuto nell'insieme dei linguaggi riconosciuti da automi di Büchi su alberi infiniti

### Esercizio3

Sia  $A = \{a,b\}$  e  $T_1 = \{t \in T_A^{\omega} : tutti \ i \ cammini \ di \ t \ contengono \ un \ numero finito di occorrenze di <math>a\}$ .  $T_1$  contiene l'insieme di tutti gli alberi  $t_i$ , con  $i \geqslant 0$ , tali che  $t_i$  ha un'occorrenza di a nelle posizioni  $\epsilon, 1^{m_1}0, \ldots, 1^{m_1}01^{m_2}0 \ldots 1^{m_i}0$ , con  $m_1, m_2, \ldots, m_i > 0$ . Immaginiamo che esista un automa di Büchi  $A = (Q, A, \Delta, q_0, F)$  con n + 1 stati, con  $n \geqslant 1$ , incluso lo stato iniziale  $q_0$  che occorre solo in posizione  $\epsilon$  tale che  $L(A) = T_1$  e sia r un run di successo di A su  $t_n$ . Mostrare che deve esistere un cammino in  $t_n$  contenente 3 nodi u,v e w, con u < v < w, tali che  $r(u) = r(w) = s \in Fet_n(v) = a$ .

#### Esercizio4

Siano 
$$C = \{c_1, \ldots, c_m\}$$
 e  $\bar{c} = (c_1, \ldots, c_m)$ . Sia dato  $T \subseteq T_A^{\omega}$  tale che  $T = T_0 \cdot \bar{c}(T_1, \ldots, T_m)^{\omega}$ 

#### Esercizio5

Dimostrare la (correttezza e completezza della) caratterizzazione di uno degli operatori di CTL (diverso da AF) quale minimo punto fisso di un'opportuna trasformazione di predicato.

# Esercizio6

Dimostrare la (correttezza e completezza della) caratterizzazione di uno degli operatori di CTL (diverso da EG) quale massimo punto fisso di un'opportuna trasformazione di predicato.