

Overview

Owen Boberg, Postdoc Research Associate, University of Washington

My introduction

Chances are I am a new face...

- Relatively new to the project (~ 1 year at UW)
- Main duties
 - Work on scheduler and MAF development
 - Run OpSim simulations testing new observing strategies
 - Currently preparing runs for the call for white papers
 - Help communicate the results of new simulations to the project team and community
 - Help community use MAF to analyze and critique the simulations
 - Eventually run hundreds of survey simulations
 - Maintain docker images and documentation for MAF and OpSim
 - Please feel free to talk to me about Dockerizing other parts of LSST stack or any other software

What is MAF?

Python framework for understanding how telescope scheduling effects survey performance

- Developed to be used with Operations Simulator (OpSim) simulated surveys
 - minion_1016 is an OpSim survey
 - baseline2018a will soon be the official replacement
- MAF can be applied to a range of datasets
 - Just a matter of correctly formatting the data
- Comes with a large number of built in Metrics
 - Easily to write custom metrics using python Classes
 - Group similar metrics into batches
 - See Writing A New Metric.ipynb in tutorial notebooks
- Used to determine if a simulated survey meets the Science Requirements Document (SRD)
 - https://www.lsst.org/scientists/publications/science-requirements-document
 - Important when developing white papers
- Originally development by Lynne Jones et al.
 - https://spie.org/Publications/Proceedings/Paper/10.1117/12.2056835

OpSim database contents

sqlite3 baseline2018a.db

- List of tables in OpSim sqlite databases
 - Config, Field, ObsExposures, ObsHistory,
 ObsProposalHistory, Proposal, ProposalField,
 ScheduledDowntime, SessionSlewActivities, SlewFinalState,
 SlewHistory, SlewInitialState, SlewMaxSpeeds,
 TargetExposures, TargetHistory, TargetProposalHistory,
 UnscheduledDowntime, SummaryAllProps
 - MAF can access all of these for various metrics
- SummaryAllProps will likely be the most useful when creating new metrics

SummaryAllProps

Columns

observationId

night

observationStartTime

observationStartMJD

observationStartLST

numExposures

visitTime

visit Exposure Time

proposalld

fieldId

fieldRA

fieldDec

altitude

azimuth

filter

airmass

skyBrightness

cloud

seeingFwhm500

seeingFwhmGeom

seeingFwhmEff

fiveSigmaDepth

slewTime

slewDistance

paraAngle

rotTelPos

rotSkyPos

moonRA

moonDec

moonAlt

moonAz

moonDistance

moonPhase

sunAlt

sunAz

solarElong

New columns can be added when running metrics using MAF Stackers

- Hour Angle, NormAirmassStacker, etc.
- See Stackers.ipynb in tutorital notebooks

What is MAF?

List of all Opsim Runs

	_						
Run List	Opsim Configuration Me		etrics List	All Results	Multi Color	Summary St	ats
	OpsimRun	OpsimGroup	MafComment	OpsimComment	SQLite File	ResultsDb	MafDir
	astro-lsst- 01 2013	V4 features	Cadence	10 yr, HAbonus 0.5, HAmax 3, all props	astro-lsst-01 2013.db.gz	ResultsDb	/local/lsst/opsim/baselines/astro-lsst-01_2013/ca
	astro-lsst- 01 2013	V4 features	SRD	10 yr, HAbonus 0.5, HAmax 3, all props	astro-lsst-01 2013.db.gz	<u>ResultsDb</u>	/local/lsst/opsim/baselines/astro-lsst-01_2013/sr
	astro-lsst- 01 2013	V4 features	Standard	10 yr, HAbonus 0.5, HAmax 3, all props	astro-lsst-01 2013.db.gz	ResultsDb	/local/lsst/opsim/baselines/astro-lsst-01_2013/al
	astro-lsst- 01 2016	V4 features	Cadence	All defaults again	astro-lsst-01 2016.db.gz	ResultsDb	/local/lsst/opsim/baselines/astro-lsst-01_2016/ca
	astro-lsst- 01 2016	V4 features	SRD	All defaults again	astro-lsst-01 2016.db.gz	<u>ResultsDb</u>	/local/lsst/opsim/baselines/astro-lsst-01_2016/sr
	astro-lsst- 01 2016	V4 features	Standard	All defaults again	astro-lsst-01 2016.db.gz	Results Db	/local/lsst/opsim/baselines/astro-lsst-01_2016/al
	astro-lsst- 01 2020	V3-ish	Cadence	Turn off all new features	astro-lsst-01 2020.db.gz	Results Db	/local/lsst/opsim/baselines/astro-lsst-01_2020/ca
	astro-lsst- 01 2020	V3-ish	SRD	Turn off all new features	astro-lsst-01 2020.db.gz	<u>ResultsDb</u>	/local/lsst/opsim/baselines/astro-lsst-01_2020/sr
	astro-lsst- 01 2020	V3-ish	Sched (old)	Turn off all new features	astro-lsst-01 2020.db.gz	<u>ResultsDb</u>	/local/lsst/opsim/baselines/astro-lsst-01_2020/sc
	astro-lsst- 01 2020	V3-ish	Sci (old)	Turn off all new features	astro-lsst-01 2020.db.gz	<u>ResultsDb</u>	/local/lsst/opsim/baselines/astro-lsst-01_2020/sc
	astro-lsst-	V3-ish	Standard	Turn off all new features	astro-lsst-01, 2020 db oz	ResultsDh	/local/lsst/opsim/baselines/astro-lsst-01_2020/al

- http://astro-lsst-01.astro.washington.edu:8081/
- Just a tool in MAF

01 2020

What is MAF?

OpSim Run: baseline2018a

- http://astro-lsst-01.astro.washington.edu:8081/
- Just a tool in MAF

What does MAF do?

High level summary:

Connect to OpSim survey simulation databases

- OpSim = Operations Simulator
 - Combination of sims_ocs (simulated observatory control system) and ts_scheduler (scheduling algorithm deciding what to observe)
- Databases are sqlite

SQL query and slice the database once it is read into memory

- Query chooses the data (e.g filter is z)
- Slicing groups the queried data (e.g by night or position on the sky)

Calculate metrics and summary statistics on the selected and sliced data

- Use an empty sql query to select all data
- Slice the data based position in the sky (Healpix)
- Count the total number of visits at each HealPix over 10 year survey

What does MAF do?

3 main slicers

- The Unislicer simply clumps all visits into one group.
 - All the way down the index of the database
 - Count total number of visits
- The OneDSlicer groups visits into subsets based on the value of a single parameter from the OpSim data.
 - Example: night
 - Can also set a bin size, for example bins of 10 nights.
 - Count number of visits per night bin
- The HealpixSlicer groups visits into subsets based on whether or not they overlap a given healpixel.
 - Can set the resolution of the healpixels
 - Count number of visits per healpix on sky
- See Slicers.ipynb in tutorial notebooks

Let's walk through the building blocks of the MAF grammar (See Introduction Notebooks.ipynb)

The building blocks of MAF

Metric Bundle (Nvisits)

MetricBundle(metric1, slicer1, sqlconstraint)

metric1

CountMetric(observationStartMJD)

slicer1

HealpixSlicer(nside=64)

sqlcontstraint

sqlconstraint = 'filter = "r"'

opsdb connection

opsdb = OpsimDatabase(`baseline2018a.db)

The building blocks of MAF

Metric Bundle Group

Group = MetricBundleGroup({`nvisits`:Nvisits}, opsdb)

Group.runAll() Group.plotAll()

The building blocks of MAF **Metric Bundle Group**

bundleDict = {'nvisits':Nvisits,'maxchi':maxairmass} Group = MetricBundleGroup(bundleDict, opsdb)

The building blocks of MAF **Metric Bundle Group**

bundleDict = {'nvisits':Nvisits,'nvisitsnight':NvisitsNight} Group = MetricBundleGroup(bundleDict, opsdb)

MAF batches

- We have recently put together batches of metric bundles to run small and/or large sets of related metrics.
 - https://github.com/lsst/sims_maf/tree/master/python/lsst/sims/maf/
 batches
 - https://github.com/lsst/sims_maf/tree/master/bin.src
- These batches calculate just about everything you would want to know about a simulated survey.
 - Produce the output seen on the OpSim webpages
- The batches still need a tutorial notebook

Batch output

OpSim Run: baseline2018a

• http://astro-lsst-01.astro.washington.edu:8081/

Why not just use something like pandas?

- Pandas can read sqlite
- Can use groupby and filtering to get similar functionality to slicers
- Separate from the LSST stack....
- MAF provides a high level of provenance and reproducibility
 - Slice once, measure multiple metrics
 - Metric results are saved as numpy npz files
 - Save info about the metric data, slicer used, and slice points
 - Can be read from disk for re-plotting and examining summary statistics
 - Easily compare different OpSim runs (tutorial notebook coming soon)
 - A results databased is produced when running the metrics
 - Store metric names, plots created, and summary statistics
- Trying to recreate MAF output with pandas can be a useful exercise

Useful links

We are currently improving and compiling documentation

MAF

- Installation: https://confluence.lsstcorp.org/display/SIM/Catalogs+and+MAF
- Help: https://github.com/LSST-nonproject/sims_maf_contrib/
 tree/master/tutorials
- Github: https://github.com/lsst/sims_maf
- Docker: https://hub.docker.com/r/oboberg/maf/
- **Results webpages :** http://astro-lsst-01.astro.washington.edu:8081/, http://astro-lsst-01.astro.washington.edu:8080/

OpSim

- Installation: https://lsst-sims.github.io/sims_ocs/
- **Help:** https://lsst-sims.github.io/sims_ocs/
- **Github :** https://github.com/lsst-sims/sims_ocs, https://github.com/lsst-ts/ts_scheduler
- Docker: https://github.com/oboberg/opsim4_fbs_py3/, https://github.com/oboberg/opsim4_docker/README.md

Thanks!

Thank you Federica and Rachel for organizing and the invite

- I am here to help people get up to speed with MAF through Wednesday.
- Looking forward to getting feedback on what other metrics need to be developed.
- I am also happy to give help with Docker for MAF and OpSim