Задачи по линейна алгебра

Задача 1. Намерете тригонометричния вид на комплексното число $\frac{(\sqrt{3}-i)^{15}}{(1+i)^8}$.

Задача 2. Решете уравнението $z^4 = \frac{1-i}{1+i\sqrt{3}}$.

Задача 3. * Нека $x \in (0; 2\pi)$. Докажете, че:

$$a)\cos x + \cos 2x + \ldots + \cos nx = \frac{\sin \frac{nx}{2}\cos \frac{(n+1)x}{2}}{\sin \frac{x}{2}};$$

b)
$$\sin x + \sin 2x + \ldots + \sin nx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$
.

Задача 4. Решете системата:

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 + x_4 = 2\\ 2x_1 + 3x_2 - x_3 + 3x_4 = 8\\ 6x_1 + 9x_2 - 7x_3 + 7x_4 = 18\\ 4x_1 + 6x_2 - 12x_3 + x_4 = 1 \end{cases}$$

Задача 5. Решете системата в зависимост от стойностите на параметъра λ :

$$\begin{cases} x + y - 2z &= 1\\ 2x + y - (\lambda + 4)z &= 3\\ 3x + (1 - \lambda)y - 6z &= 2\lambda + 7 \end{cases}$$

Задача 6. За кои стойности на λ и μ системата

$$\begin{cases} 4x_1 + 3x_2 + 3x_3 - 2x_4 & = \lambda \\ -x_1 - x_2 - x_3 + x_4 & = 2 \\ -19x_1 - 19x_2 - 20x_3 + (11 + \mu)x_4 & = 6 - 2\lambda \\ 4x_1 + 7x_2 + 8x_3 + x_4 & = 2 \end{cases}$$

е несъвместима?

Задача 7. Да се провери, че следните множества образуват линейни пространства над \mathbb{R} относно обичайните операции:

a)
$$U = \{(x, y, z) \in \mathbb{R} \mid x - y = y - 2z = 0\};$$

b)
$$V = \{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \mid a_{12} = a_{21}, \ a_{13} = a_{31}, \ a_{23} = a_{32} \};$$

cst) безкрайните редици, които са аритметични прогресии.

Задача 8. За кои $\lambda \in \mathbb{R}$, векторът $b = (2, \lambda, 5, 5)$ е линейна комбинация на векторите $a_1 = (1, 2, 3, 4), a_2 = (7, 14, 20, 27)$ и $a_3 = (5, 10, 16, 19)$?

Задача 9. Да се намери ранга на системата вектори $v_1 = (1-a,1,1,1)$, $v_2 = (1,1-a,-1,-1)$, $v_3 = (1,-1,1-a,-1)$ и $v_4 = (1,-1,-1,1-a)$ в зависимост от стойностите на параметъра a.

Задача 10. * Намерете ранга на множеството вектори от \mathbb{R}^n , където b е параметър:

$$v_1 = (b+1, b, b, \dots, b)$$

$$v_2 = (b, b + \frac{1}{2}, b, \dots, b)$$

$$v_3 = (b, b, b + \frac{1}{3}, \dots, b)$$

$$v_n = (b, b, b, \dots, b + \frac{1}{n})$$

Задача 11. Векторите $a_1 = (3, 1, -4)$, $a_2 = (2, 5, 6)$ и $a_3 = (1, 4, 8)$ образуват ли базис на линейното пространство \mathbb{R}^3 ?

Задача 12. Допълнете до базис на \mathbb{R}^4 множеството $v_1=(1,2,-1,3),\ v_2=(-1,-2,1,1).$

Задача 13. Намерете размерността и фундаментална система решения на хомогенната система

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_3 + x_4 = 0 \\ 3x_1 - x_3 + 2x_4 = 0 \end{cases}$$

Задача 14. Докажете, че $a_1=(1,2,3),\ a_2=(2,5,7),\ a_3=(3,7,11)$ образуват базис на \mathbb{R}^3 и намерете координатите на (1,1,1) спрямо този базис.

Задача 15. Нека $U = \mathbf{l}(v_1, v_2, v_3)$, където $v_1 = (1, 1, -3, 1)$, $v_2 = (2, -1, 0, -1)$, $v_3 = (1, -1, 1, -1)$. Представате U като множеството от решения на хомогенна система.

Задача 16. Нека $F = \{(x, y, z) \in \mathbb{Q}^3 \mid x + y = z\}$ и $G = \{(a - b, a + b, a - 3b) \mid a, b \in \mathbb{Q}\}$. Докажете, че F и G са подпространства на \mathbb{Q}^3 и намерете базис на сечението $F \cap G$.

Задача 17. Нека $U = l(a_1, a_2, a_3)$, където $a_1 = (1, 2, 3, 4)$, $a_2 = (4, 3, 2, 1)$, $a_3 = (3, 1, -1, -3)$. Нека W е пространството от решенията на хомогенната система

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0 \\ x_1 - x_2 - x_3 + x_4 = 0 \end{cases}$$

Намерете базиси на пространствата $U, W, U \cap W$ и U + W.

Задача 18. * Нека $\mathcal{F} = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ е линейното пространство от всички реални функции относно поточковите операции. Нека $V = \{f \in \mathcal{F} \mid \forall x : f(x) = f(0)\}$ е множеството от константните функции, а $U = \{f \in \mathcal{F} \mid f(0) = 0\}$ е множеството от функциите, анулиращи се за x = 0. Да се докаже, че V и U са линейни пространства и $\mathcal{F} = V \oplus U$.

Задача 19. Нека $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ и $B = \begin{pmatrix} -2 & -1 \\ 3 & 0 \end{pmatrix}$. Разглеждаме $\varphi : M_2(\mathbb{Q}) \to M_2(\mathbb{Q})$, определено с равенството $\varphi(X) = AX + XB$. Покажете, че φ е линеен оператор и намерете матрицата му спрямо стандартния базис E_{11} , E_{12} , E_{21} и E_{22} .

Задача 20. Линейният оператор φ има матрица $A=\begin{pmatrix} -1 & -2 & -3 & -2\\ 1 & 2 & 3 & 2\\ -1 & -2 & -2 & 1\\ 1 & 2 & 2 & 1 \end{pmatrix}$ спрямо

стандартния базис на \mathbb{R}^4 . Намерете базиси на пространствата $\ker \varphi$, $Im \varphi$, $\ker \varphi \cap Im \varphi$ $u \ker \varphi + Im \varphi$.

Задача 21. * Нека V е линейно пространство над \mathbb{R} и π – линеен оператор във V. Докажете, че $\pi^2 = \pi$ тогава и само тогава когато има подпространства V_1 и V_2 на V, такива че: $V = V_1 \oplus V_2$; $\pi \upharpoonright_{V_1} = \varepsilon_{V_1}$ и $\pi \upharpoonright_{V_2} = \mathbf{0}_{V_2}$.

Задача 22. Пресметнете степента $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^n$, $n \in \mathbb{N}$.

Задача 23. $Hamepeme \begin{pmatrix} -3 & 2 & 2 \\ 2 & -1 & 1 \\ 1 & 0 & 3 \end{pmatrix}^{-1}$.

Задача 24. Решете уравнението $X \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{pmatrix}.$

Задача 25. Нека U е линейно пространство c базис e_1, e_2, e_3, V - линейно пространство c базис f_1, f_2 .

Hека $\varphi: U \to V$ изпълнява $\varphi(x_1e_1 + x_2e_2 + x_3e_3) = (x_1 + x_2 + 3x_3)f_1 + (x_1 - 2x_2 + x_3)f_2$.

Heκa $e'_1 = e_1 + 2e_2 + e_3$, $e'_2 = -e_1 + e_2$, $e'_3 = e_1 + e_2 + e_3$.

 $He \kappa a f_1' = 5f_1 + 4f_2 \ u \ f_2' = 4f_1 + 3f_2.$

Покажете, че $e_1', e_2'e_3'$ - базис на U, f_1', f_2' - базис на V и намерете матрицата на φ спрямо тези базиси на U и V.

Задача 26. Нека e_1, e_2, e_3 образуват базис на линейно пространство V.

 $He \kappa a \ a_1 = 5e_1 + e_2 - 5e_3, \ a_2 = 3e_1 - 3e_2 + 2e_3, \ a_3 = e_1 - 2e_2 + e_3.$

Нека $b_1 = -8e_1 - 5e_2 - 2e_3$, $b_2 = 3e_1 + 9e_2 + 15e_3$, $b_3 = 0$.

Покажете, че a_1, a_2, a_3 образуват базис на V и намерете матрицата на линейния оператор φ определен с $\varphi(a_i) = b_i, i = 1, 2, 3$ спрямо базиса e_1, e_2, e_3 .

Задача 27. Нека $a_1=(1,0,-1)$, $a_2=(1,1,1)$ и $a_3=(2,2,0)$. Докажете, че a_1,a_2,a_3 образуват базис на \mathbb{R}^3 . Намерете дуален базис на a_1,a_2,a_3 .

3

Задача 28. Пресметнете $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{bmatrix}$

Задача 30. Нека $a \neq 0$. Намерете детерминатата от ред (n+1):

$$D_{n+1}(a,x) = \begin{vmatrix} x+1 & x & x & \dots & x \\ x & x+a & x & \dots & x \\ x & x & x+a^2 & \dots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & \dots & x+a^n \end{vmatrix}$$

Задача 31. Намерете детерминатите от ред n:

$$a) \ \Delta_n = \begin{vmatrix} 7 & 2 & 0 & \dots & 0 \\ 5 & 7 & 2 & \dots & 0 \\ 0 & 5 & 7 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 7 \end{vmatrix} \qquad 6) \ D_n = \begin{vmatrix} 1 + a_1b_1 & 1 + a_1b_2 & 1 + a_1b_3 & \dots & 1 + a_1b_n \\ 1 + a_2b_1 & 1 + a_2b_2 & 1 + a_2b_3 & \dots & 1 + a_2b_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 + a_nb_1 & 1 + a_nb_2 & 1 + a_nb_3 & \dots & 1 + a_nb_n \end{vmatrix}$$

Задача 32. Намерете ранга на матрицата A(p) в зависимост от стойностите на p:

$$A(p) = \begin{pmatrix} 1 & 1 & -7 & -13 & -6 \\ -1 & p & 0 & 0 & 0 \\ 0 & -1 & p & 0 & 0 \\ 0 & 0 & -1 & p & 0 \\ 0 & 0 & 0 & -1 & p \end{pmatrix}$$

Задача 33. Намерете матрицата:

- $A = \begin{pmatrix} 0 & 1 \\ ? & ? \end{pmatrix}$, ако собствените числа на A са 4 и 7.
- $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ ? & ? & ? \end{pmatrix}$, ако характеристичният полином на $B \ e \ 9x x^3$.

Задача 34. Нека линейният оператор $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ е дефиниран от равенството

$$\varphi(x_1, x_2, x_3) = (5x_1 - 6x_2 - 6x_3, -x_1 + 4x_2 + 2x_3, 3x_1 - 6x_2 - 4x_3)$$

Намерете базис на \mathbb{R}^3 , спрямо който матрицата D на φ е диагонална, както и матpuuama D.

Задача 35. Пресметнете $\begin{pmatrix} 4 & 7 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & -2 \end{pmatrix}^{2022}$.

Задача 36. Да се построи по метода на Грам-Шмид ортогонален базис на линейната обвивка на векторите $a_1 = (1, -2, 2, 2), a_2 = (-1, 9, -5, -5), a_3 = (1, 5, -1, -1)$ и $a_4 = (1, 12, -3, -5).$

Задача 37. $He \kappa a \ U = l(a_1, a_2, a_3), \ \kappa \sigma \partial e mo \ a_1 = (1, 2, -1, 0), \ a_2 = (-1, -5, 1, 1) \ u$ $a_3 = (0, 9, 0, 1)$. Да се намерят проекцията и перпендикуляра на v = (1, 1, 1, 1) към U.

Задача 38. Нека V е крайномерно евклидово пространство, а U_1 и U_2 са негови подпространства.

- а) Докажете, че $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- б) Ако $U_1=\boldsymbol{l}\{(1,-2,1,1); (1,-1,-1,1)\}$ и $U_2=\boldsymbol{l}\{(1,1,1,-1); (2,-5,-2,4)\}$, то намерете базис на пространството $U_1^\perp\cap U_2^\perp$.

Задача 39. Спрямо ортонормиран базис на евклидово пространство V симетричният оператор $arphi\in Hom\,V$ има матрица A. Намерете базис, спрямо който матрицата D на φ е диагонална, както и самата матрица D, ако:

Задача 40. * Нека $n \geq 3$ и а и в са вектори от евклидовото пространство \mathbb{R}^n , изпълняващи $|a| = |b| = 1, \ \langle a,b \rangle = 0$. Изображението $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ е определено от равенството $\varphi(v) = \langle a,v \rangle b + \langle b,v \rangle a$.

- a) Докажете, че φ e (линеен) симетричен оператор.
- b) Докажете, че $\varphi^3 = \varphi$.
- c) Пресметнете φ^{2022} и намерете собствените стойности на φ .

Източници:

- 1. Задачи по линейна алгебра Божилов, Кошлуков, Сидеров
- 2. Изпити по линейна алгебра https://store.fmi.uni-sofia.bg/fmi/algebra/