《基础物理实验》实验报告

实验名称	实验五	气轨上弹簧振子的	的简谐振动	及瞬时速度的测定	指导教师_	侯懂杰
姓名		学号		分班分组及座号 _	号	(例: 1-04-5号)
实验日期] <u>2023</u> 年 <u>10</u> 月	<u>19</u> 日实验地点_	716	调课/补课_□是_	成绩评定_	

【实验目的】

- 1. 观察简谐振动现象,测定简谐振动的周期;
- 2. 求弹簧的倔强系数 k 和有效质量mo;
- 3. 观察简谐振动的运动学特征;
- 4. 验证机械能守恒定律;
- 5. 用极限法测定瞬时速度;
- 6. 深入了解平均速度和瞬时速度的关系。

【实验内容】

1. 试验仪器的调试

通过测量任意两点的速度变化, 验证气垫导轨是否处于水平状态。

2. 测量弹簧振子的振动周期并考察振动周期和振幅的关系

滑块的振幅 A 分别取 10.0、20.0、30.0、40.0 cm 时,测量其相应振动周期。

3. 研究振动周期和振子质量之间的关系

对一个确定的振幅(如取 A=40.0 cm)在滑块上加骑码(铁片)。每增加一个骑码测量一组T。(骑码不能加太多,以阻尼不明显为限)绘制 T^2-m 曲线,用最小二乘法做直线拟合,求出k和m0。

4. 研究速度和位移的关系

在滑块上安装U型挡光片,测量速度。作 v^2-x^2 曲线,进行直线拟合,检验斜率、截距。

5. 研究振动系统的机械能是否守恒

固定振幅,测出不同 x 处的滑块速度,得到每个 x 处的动能和势能。对各处机械能进行比较,得出结论。

6. 改变弹簧振子的振幅 A, 测相应的 V_{max} , 由 V_{max}^2 - A^2 关系求 k, 与实验内容 3 的结果进行比较

【实验原理】

1. 弹簧振子的简谐运动

如图,滑块与砝码的质量为 m_1 ,弹簧的有效质量为 m_0 ,弹簧的倔强系数均为 k_1 。平衡位置时,两弹簧的伸长量均为 k_0 。现令滑块距平衡点 k_0 ,记 k_0 ,现根据牛顿第二定律有

$$-k_1(x+x_0) - [-k_1(x-x_0)] = m\ddot{x} \tag{1}$$

记 k=2k1,则方程(1)的解为

$$x = A\sin(\omega_0 t + \varphi_0) \tag{2}$$

可见, 滑块做简谐振动。其中, A 为振幅, φ_0 为初相位, ω_0 为振动系统的固有频率。 ω_0 满足:

$$\omega_0 = \sqrt{\frac{k}{m}} \tag{3}$$

可见, ω_0 由振动系统本身的性质决定。根据振动周期T与 ω_0 的关系可得

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m_1 + m_0}{k}} \tag{4}$$

(4) 式两边同时平方可得

$$T^2 = \frac{4\pi^2(m_1 + m_0)}{k} \tag{5}$$

可见, T^2 与 m_1 具有线性关系,实验中可通过改变 m_1 的值,绘制出 T^2 - m_1 曲线,通过直线的斜率求出k,通过截距求出 m_0 。

也可以利用逐差法求k与mo的值。

2. 简谐运动的运动学特征描述

对(2) 式关于时间 t 求导可得

$$v = \frac{dx}{dt} = A\omega_0 \cos(\omega_0 t + \varphi_0) \tag{6}$$

可见, v 随 t 的变化关系为简谐振动, 角频率为 ω_0 , 振幅为 $A\omega_0$, 相位比 x 超前 $\pi/2$ 。

联立(2)和(6)消去t,可以得到v与x的关系式为

$$v^2 = \omega_0^2 (A^2 - x^2) \tag{7}$$

当 x=A 时, v=0; 当 x=0 时, $v_{max}=\pm A\omega_0$ 。

3. 简谐振动的机械能

系统的振动动能为

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}(m_1 + m_0)v^2 \tag{8}$$

系统的弹性势能为 (以 m1 位于平衡位置时系统的势能为 0)

$$E_p = \frac{1}{2}kx^2\tag{9}$$

系统的机械能为

$$E = E_p + E_k = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$$
 (10)

实验中通过测量滑块在不同位置时的速度计算弹性势能和振动动能,验证二者的相互转换关系和机械 能守恒定律。

4. 瞬时速度的测定

瞬时速度的定义为极限表达,即 $v_{\text{FF}} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$ 。在实验中,通常利用极短时间(或极短距离)的平均速度代替。

设物体在经过 A 点起的一小段路程 Δs 所用的时间为 Δt ,则此段内平均速度为

$$\bar{v} = \frac{\Delta s}{\Delta t} \tag{11}$$

当 Δs 、 Δt 趋于0时,平均速度 \bar{v} 的极限值为物体在A的瞬时速度 v_0 。

实验中, 在倾斜的气轨上, A 处放置光电门, 在滑块上先后安装挡光距离不同的 U 型挡光片, 各个挡光

片的第一挡光边距 A 为 1。如图所示:

滑块每次自P由静止开始下滑,测出对应的挡光时间 Δt 和挡光距离 Δs 。设滑块由静止下滑距离I后的瞬时速度为 V_0 (即第一档光时滑块的速度),则有

$$\bar{v} = \frac{\Delta s}{\Delta t} = v_0 + \frac{a}{2} \Delta t \tag{12}$$

其中, a 为滑块的加速度。

实验可以通过改变挡光距离 Δs 观察平均速度和瞬时速度的关系,分别画出 $\bar{v}-t$ 和 $\bar{v}-\Delta s$ 的图像,利用外推法求得瞬时速度。

【实验仪器】

气垫导轨、滑块、附加砝码、弹簧、U型挡光片、平板挡光片、数字毫秒计、天平等。

图 1 数字毫秒计

图 2 光电门传感器

图 3 气垫导轨示意图及各部件

【实验数据、处理与结论】

1. 试验仪器的调试

表 1 试验仪器的调试

V1(cm/s)	V2(cm/s)	误差%
36.18	36.14	0.11
19.87	19.92	0.25
24.06	24.11	0.21

实验中,对滑块三次测速,每次误差小于0.5%,满足调为水平要求。

2. 测量弹簧振子的振动周期并考察振动周期和振幅的关系

滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时, 测量其相应的振动周期 表 2 弹簧振子振动周期与振幅的关系

	10cm	20cm	30cm	40cm
T1(ms)	1504.92	1504.39	1504	1503.66
T2(ms)	1504.84	1504.08	1503.89	1503.75
T3(ms)	1504.69	1504.6	1503.94	1503.72
T4(ms)	1504.64	1503.98	1503.99	1503.95
T5(ms)	1504.82	1504.41	1503.77	1503.84
T(ms)	1504.782	1504.292	1503.918	1503.784

从实验数据可见,弹簧振子的振动周期变化很小。经计算,四组周期数据的方差约为 0.15,可见实验数据较为稳定,可视为振动周期与振幅无关。

结论: 弹簧振子的振动周期与振幅无关。

3. 研究振动周期和振子质量之间的关系

滑块的振幅 A 取 40.0cm

表 3 弹簧振子振动周期与振子质量的关系

				*	
m(g)	218.45	230.73	243.34	255.62	268.31
T1(ms)	1503.75	1544.65	1585.45	1624.45	1663.61
T2(ms)	1503.77	1544.69	1585.52	1624.38	1663.64
T3(ms)	1503.78	1544.56	1585.61	1624.52	1663.95
T4(ms)	1503.76	1544.89	1585.60	1624.47	1663.91
T5(ms)	1503.87	1544.85	1585.70	1624.41	1663.79
T6(ms)	1503.91	1544.78	1585.84	1624.56	1664.04
T7(ms)	1504.06	1544.72	1585.85	1624.79	1664.08
T8(ms)	1503.87	1544.74	1585.75	1624.44	1664.11
T9(ms)	1504.06	1544.89	1585.80	1624.48	1663.89
T10(ms)	1504.00	1544.68	1586.05	1624.85	1663.89
T(ms)	1503.88	1544.75	1585.72	1624.54	1663.89
1-0 1-0 1	ローーチょうについか		人 归利于2 四海		

根据最小二乘法对振动周期与滑块质量进行拟合,得到 T2-m 图像如下:

拟合后的直线方程为 y = 10.165x + 0.041, 相关系数为 1, 拟合程度非常好。 可计算出 k=4 π^2 /10.165=3.8838N/m, m₀=0.041/10.165=4.0334g。由于 k=k₁+k₂, 且实验中两弹簧相同,故 k₁=k₂=k/2=1.9419N/m。

4. 研究速度和位移的关系

滑块的振幅 A 取 40.0cm

表 4 速度和位移的关系

	10cm	15cm	20cm	25cm	30cm
V1(cm/s)	155.28	148.81	138.50	121.80	103.09
V2(cm/s)	153.85	147.93	137.36	120.34	101.32
V3(cm/s)	152.90	146.20	135.68	118.48	99.30
V(cm/s)	154.01	147.65	137.18	120.21	101.24

根据数据作出 v²-x²图像:

根据实验原理可知拟合直线斜率即为 $-\omega_0^2$,截距为 $A^2\omega_0^2$ 的。由 2 部分可知,振动周期约为

1503. 784ms, 据此求得一 $\omega_0^2 = -\frac{4\pi^2}{T^2} = -17.46\text{s}^{-2}$, $A^2\omega_0^2 = 2.79\text{m}^2/\text{s}^2$ 。和拟合得到的曲线表达式相比较,斜率与截距均近似相等。速度与位移的表达式得以验证。

结论: 速度与位移间符合 $v^2 = \omega_0^2 (A^2 - x^2)$ 。

5. 研究振动系统的机械能是否守恒

滑块的振幅 A 取 40.0cm

表 5 探究机械能守恒

	10cm	15cm	20cm	25cm	30cm
V(cm/s)	154.01	147.65	137.18	120.21	101.24
Ek(J)	0.2704	0.2485	0.2145	0.1647	0.1168
Ep(J)	0.0194	0.0437	0.0777	0.1214	0.1748
E(J)	0.2898	0.2922	0.2922	0.2861	0.2916

根据前面各个实验得到的数据,k=3.8838N/m, 可从理论上计算出系统的总机械能 $E = \frac{1}{2}kA^2 = 0.3107$ J。

作出图像可以看出,振动系统的机械能在误差允许范围内保持稳定(计算得到方差仅为0.0000054),且与计算值相近。实际测量值比计算值小,可能是由于阻力的存在。

6. 改变弹簧振子的振幅 A,测相应的 Vmax,由 V_{max}^2 - A^2 关系求 k,与实验内容 3 的结果进行比较

表 6 振幅与速度

	10cm	15cm	20cm	25cm	30cm
Vmax1(cm/s)	40.47	58.86	81.17	99.50	120.92
Vmax2(cm/s)	40.18	58.21	80.71	98.91	120.34
Vmax3(cm/s)	39.89	57.74	79.94	97.94	119.05
Vmax(cm/s)	40.18	58.27	80.61	98.78	120.10

根据表中数据作出如下拟合曲线:

图像的斜率为 $\omega_0^2 = \frac{k}{m} = 16.012 \text{s}^{-2} \implies k = 3.498 \text{N/m}$,与 3 部分得到的结果相比,近似相等。

7. 实验中可能用到的其他相关参数

滑块的质量: 216.26g 条型挡光片的质量: 2.19g U型挡光片的质量: 11.72g

8. 测定瞬时速度,测量不同U挡光片通过光电门所用的时间 (AP 距离为 50cm),计算平均速度。

表7 不同挡光片通过光电门的时间

挡光片宽度(cm)	Δt1(ms)	Δt2(ms)	Δt3(ms)	Δt4(ms)	Δt5(ms)	Δt(ms)
1(cm)	29.99	30.34	30.12	30.03	29.92	30.08
3(cm)	90.27	90.66	90.06	90.75	90.51	90.45
5(cm)	147.72	148.13	147.77	147.09	147.25	147.59
10(cm)	289.08	290.79	290.15	289.05	289.94	289.80

根据表中数据作出 v-Δt与 v-x 图像,如下:

从图中可以看出, v₀=0.3295m/s。与 v-x 图像截距较为接近。

9. 测定瞬时速度,改变导轨倾斜角度,测量不同U挡光片通过光电门所用的时间 (AP 距离为 50cm), 计算平均速度。

表8改变倾角后,不同挡光片通过光电门的时间

挡光片宽度(cm)	Δt1(ms)	Δt2(ms)	Δt3(ms)	Δt4(ms)	Δt5(ms)	Δt(ms)
1(cm)	21.13	21.20	21.20	21.13	21.26	21.18
3(cm)	63.21	63.20	63.22	63.49	63.18	63.26
5(cm)	104.69	104.59	104.95	104.69	104.66	104.72
10(cm)	204.09	203.84	203.65	204.29	203.41	203.86

根据表中数据作出 v-Δt与 v-x 图像, 如下:

通过图像读出, v₀=0.4683m/s。在这里与 v-x 图像截距相差不多。同时,在本部分将气垫导轨的角度增大,加速度增大,在经过相同位移时,速度应大于第8部分中求得的0.3295m/s,符合物理规律。

10. 测定瞬时速度,改变 AP 距离为 60cm,测量不同 U 挡光片通过光电门所用的时间,计算平均速度。

表 9 改变 AP 距离后,不同挡光片通过光电门所用的时间

挡光片宽度(cm)	Δt1(ms)	Δt2(ms)	Δt3(ms)	Δt4(ms)	Δt5(ms)	Δt(ms)
1(cm)	27.32	27.24	27.35	27.41	27.52	27.37
3(cm)	82.53	82.25	81.79	82.52	82.60	82.34
5(cm)	135.12	134.65	134.30	134.84	134.98	134.78
10(cm)	267.50	267.35	267.48	266.54	268.29	267.43

根据表中数据作出 v-Δt与 v-x 图像, 如下:

从图中读出, v₀=0.3635m/s。在这里与 v-x 图像截距相差不多。同时,在本部分气垫导轨的夹角同第8部分,加速度相同,但位移更长,加速的时间更长,所以速度应大于第8部分中求得的0.3295m/s,符合物理规律。

【思考题】

1. 仔细观察,可以发现滑块的振幅是不断减小的,那么为什么还可以认为滑块是做简谐振动?实验中应如何尽量保证滑块做简谐振动?

由于气垫导轨上仍存在摩擦,以及空气阻力的存在,故滑块的振幅不断减小,但摩擦力的值很小,在误差允许范围内,可以将其忽略。对于测量周期的实验,这种衰减并不影响实验结果;对于测量速度的实验,采用多次测量释放后第一个周期内所求位置的速度,并求平均值的方法,也在一定程度上减小了阻尼对简谐振动的影响。

实验中通过将气垫导轨尽量调平的方式来保证滑块做简谐振动。

2. 试说明弹簧的等效质量的物理意义,如不考虑弹簧的等效质量,则对实验结果有什么影响? 弹簧本身具有质量,在振动时存在动能。弹簧的等效质量的物理意义在于其代表了弹簧在振动中的惯性质量。弹簧在不同位置具有不同的运动状态,通过计算可知,弹簧的等效质量应为弹簧质量的 1/3。

如果不考虑弹簧的等效质量,则计算出动能偏小;利用振幅和最大速度计算得到的倔强系数也会偏小。

- 3. 测量周期时,光电门是否必须在平衡位置上?如不在平衡位置会产生什么不同的效果? 理论上测量周期时并不需要光电门置于平衡位置上,因为在理想状态下,在任意位置固定后,两次测量对应的相位相同,测得的时间差均为一个周期。但在实际操作中,由于阻尼的存在,振幅将减小,同一位置对应的相位将改变,可能会造成振动周期的测量误差,以及挡光片无法挡光等问题。
- 4. 气垫导轨如果不水平,是否能进行该实验? 理论上气垫导轨不水平也可以进行该实验,但需要将重力的分量考虑进来。

【实验心得与体会】

总结本次实验,在第一大部分探究简谐振动部分的实验数据较为精准,误差相对较小,同时拟合出的曲线相关系数也较好,是一次比较理想的实验。相比之下,第二大部分测量瞬时速度部分实验数据误差较

大。我认为这与此部分的测量次数较少,不能很好地减小偶然误差的影响,因此实验数据并不是很理想。

从本次实验中, 我认为以下几点比较重要:

- 1. 实验前认真预习, 防止出错;
- 2. 实验中规范操作,减小误差;
- 3. 实验后处理数据,分析误差。

最后感谢老师和同学们的帮助, 让我顺利完成本次实验。