

Faculty of Science & Technology Programme Structure & Syllabus

For

Third Year

Bachelor of Technology Computer Engineering

Programme Code: BTECCE

Pattern 2022

< With Effect from Academic Year 2024-25>

	Authority	Date			
Proposed by	Proposed by Board of Studies in Computer Engineering				
Approved by	Academic Council, Vishwakarma University, Pune				

Issued by

Chairman – BoS

Dean of Faculty

Director, IQAC

Form No: IQAC-101

Title: Programme Structure and Syllabus

Vision of the University					
ge as a Premier University Recognized Intern	ationally for Excellence in Education, Research and				
Innov	vation				
Mission of the	ne University				
To impart contemporary transformative edu	cation through research and innovation				
To develop competent leaders-professionals	s for life and livelihood				
VU-M3 To co-create human and socio-economic capital par excellence					
To inculcate life skills and holistic culture a	ppreciating morals and ethics				
1					
Values of the	e University				
Excellence	Transparency				
Innovation Sustainability					
Diversity Responsibility					
Adaptability	Compassion				
	Mission of the To impart contemporary transformative educe To develop competent leaders-professionals To co-create human and socio-economic care To inculcate life skills and holistic culture as Values of the Excellence Innovation Diversity				

	Vision of the Department of Computer Engineering						
To cr	eate an intellectual and academically rich environ	ment for careers in Computing Education and Research					
	to fulfill global needs.						
	Mission of the Departmen	t of Computer Engineering					
M1	M1 To impart modern computing education through novel methods and research.						
M2 To prepare the students for life-long learning in pursuit of excellence.							
M3	To create technically competent human in socio	-economic domain.					
M4	To promote aspiring ethically conscious engineer	ers demonstrating sustainable entrepreneurship and					
	professional maturity in social context.						
	Values of the Department	t of Computer Engineering					
Pursui	ing Excellence	Ethics & Social Responsibility					
Nurtu	ring Talent	Collaborative Approach					
Career	r Architect	Sustainable Growth Transparency & Accountability					
Innova	ative Outlook	Freedom of Expression					

Mapping of Mission Statement of Department to University Mission Statement

Mission Statement	VU-M1	VU-M2	VU-M3	VU-M4
M1	3	3	2	2
M2	1	2	2	3
M3	2	3	2	2
M4	1	1	2	3

Programme Educational Objectives (PEOs)

PEO No.	Statement						
PEO1	To prepare the students to evolve into a professional and committed technology workforce, by						
	providing them with a global educational platform with innovative practices.						
PEO2	To provide a sufficient mathematical and computing theory knowledge base, leading to practical						
	and long lasting computer engineering solutions.						
PEO3	To ingrain problem solving skills and sound engineering principles in students with the help of						
	modern tools and techniques.						
PEO4	To impart in the students professional and ethical practices based on standard guidelines to acquire						
	the right attitude and aptitude for the benefit of society.						
PEO5	To guide ambitious students for higher education and lead them to avenues of entrepreneurship in						
	emerging areas of computing.						

Mapping of Mission Statement of Department to PEOs

Mission Statement	PEO1	PEO2	PEO3	PEO4	PEO5
M1	3	3	3	1	2
M2	2	2	3	3	2
M3	3	3	2	2	1
M4	2	1	2	3	2

Programme Outcomes (POs)

PO No.	Statement
PO1	Apply the knowledge of engineering and science fundamentals to the solution of complex engineering problems.
PO2	Identify, formulate and analyze complex engineering problems to create solutions using the First principles of engineering sciences and mathematics.
PO3	Design solutions for design system components that meet the specified needs for the benefit of society.
PO4	Apply research methods including design of experiments, analysis and interpretation of data, And synthesis of the information to provide valid conclusions.
PO5	Create appropriate techniques and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	Apply reasoning using contextual knowledge to assess the needs of society and understand The responsibilities relevant to the professional engineering practice.
PO7	Understand the impact of professional engineering solutions as applied to the environment, And demonstrate the knowledge for sustainable development.
PO8	Adopt ethical practices as applied to the professional world to execute responsibilities and adhere to norms of the engineering profession.
PO9	Execute professional functions effectively as an individual, as well as a leader or member in Diverse multidisciplinary teams.
PO10	Communicate effectively with the engineering community and with society in solving complex problems in terms of being able to comprehend and write effective reports, make Effective presentations, as well as execute and receive clear instructions.
PO11	Demonstrate an ability to lead projects and build cost models in an interdisciplinary professional Setting
PO12	Develop learning mechanisms and inculcate the ability to prepare for lifelong learning in the context of technological change.

Mapping of PEOs to POs

PEO Number	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	2	3	2	3	1	2	3	1	1	-	-	2
PEO2	3	3	2	3	1	1	2	1	-	1	1	1
PEO3	2	2	2	2	3	1	3	1	-	1	-	2
PEO4	1	1	1	1	1	1	1	3	3	2	2	-
PEO5	2	2	2	2	1	1	1	1	1	-	2	1

Programme Specific Outcomes (PSOs)

PSO No.	Statement
PSO1	Imbibe foundational knowledge of computing theory, algorithms and programming paradigms to
	create innovative, scientific solutions for complex computing challenges.
PSO2	Prepare for the latest trends in industry by adapting to various computing platforms, architectures and
	changing software paradigms.
PSO3	Evolve new design ideas for real world problems using appropriate mechanisms, design patterns,
	modeling methods and modern tools.
PSO4	Inculcate research attitude and aptitude in students using techniques and standards as applied to
	technology migration and evolution.

Mapping of PEOs to PSOs

PEO Number	PSO1	PSO2	PSO3	PSO4
PEO1	2	3	1	2
PEO2	3	2	1	3
PEO3	3	2	3	2
PEO4	2	2	1	1
PEO5	2	2	1	2

Programme Structure

Faculty	Science and Technology	Pattern	2022
Department	Computer Engineering	Date (w.e.f.)	01/07/2024
Programme	Programme B.Tech. Computer Engineering		

		Semester -V												
Course Type	Course Code	Course Name	Teaching Scheme(Ho urs/Week)		Scheme(Ho			Scheme(Ho Cre			Credit		aminat ne and	tion Marks
			L	Т	P	С	CIE	ESE	Total					
PCC	BTECCE22501	Design and Analysis of Algorithms	3	0	0	3	50	50	100					
PCC	BTECCE22502	Operating Systems	3	0	0	3	50	50	100					
PCC	BTECCE22503	Computer Networks	3	0	0	3	50	50	100					
PCC	BTECCE22504	System Programming	3	0	0	3	50	50	100					
LC	BTECCE22505	Operating Systems - Lab	0	0	2	1	25	25	50					
LC	BTECCE22506	Computer Networks - Lab	0	0	2	1	25	25	50					
LC	BTECCE22507	System Programming Lab	0	0	2	1	25	25	50					
PCC	BTECCE22508	Data Warehouse and Data Mining	3	0	0	3	50	50	100					
LC	BTECCE22509	Data Warehouse and Data Mining Lab	0	0	2	1	25	25	50					
HSMC	***	Humanities Elective	2	0	0	2	50	0	50					
GIC	VUGIC510	Aptitude Development-1	0	0	0	0	0	0	0					
		TOTAL	17	0	8	21	400	350	750					
Instruction	ons, if any: 1 The	ory/Tutorial Hour = 1 Credit, 2 Pract	ical ho	ours	= 1 (Credit								

*** Humanities Elective				
BTECCE22510	Economics			
BTECCE22511	Project Management			

		Semester -VI											
Course Type	Course Code	Course Name	Teaching Scheme(Ho urs/Week)		Scheme(Ho		ne Scher		Scheme(Ho		Examination Scheme and Marks		
			L	T	P	С	CIE	ESE	Total				
PCC	BTECCE22601	Software Engineering	3	0	0	3	50	50	100				
PCC	BTECCE22602	Artificial Intelligence	3	0	0	3	50	50	100				
PCC	BTECCE22603	Compiler Design	3	0	0	3	50	50	100				
LC	BTECCE22604	Software Engineering Lab	0	0	2	1	25	25	50				
LC	BTECCE22605	Artificial Intelligence Lab	0	0	2	1	25	25	50				
LC	BTECCE22606	Compiler Design Lab	0	0	2	1	25	25	50				
PCC	BTECCE22607	Business Intelligence	3	0	0	3	50	50	100				
LC	BTECCE22608	Business Intelligence Lab	0	0	2	1	25	25	50				
PCC	BTECCE22609	*# Network and cloud security	3	0	0	3	50	50	100				
LC	BTECCE22610	*# Network and cloud security Lab	0	0	2	1	25	25	50				
PROJ	BTECCE22620	Project Stage 1	0	0	0	4	50	50	100				
GIC	VUGIC511	Aptitude Development-2	0	0	0	0	0	0	0				
		TOTAL	15	0	10	24	425	425	850				
Instructi	ons, if any: 1 The	ory/Tutorial Hour = 1 Credit, 2 Pra	ctical ho	ours	= 1 (redit							

Name of Head of Department	Name of Dean
Sign:	Sign:
Date:	Date:

SEM V

BTECCE22501::Design and Analysis of Algorithms

Course Type	PCC	Semester	5
-------------	-----	----------	---

Teaching	g Scheme	Cre	edits	Examination Scheme		
Lecture	3 Hr./Week	Lecture	3	CIE Marks	50	
Tutorial	Hr./Week	Tutorial	-	ESE Marks	50	
Practical/Studio	Hr./Week	Practical/Studio	-	Total Marks	100	
Total	3Hr./Week	Total	3			

Course Description

This course will help students to understand and apply the algorithm analysis techniques and efficiency of alternative algorithmic solutions for the same problem. It will also identify different algorithm design techniques and algorithm analysis techniques.

Course Outcomes

CO No.	Statement
1	Analyze the performance of algorithms.
2	Choose appropriate algorithm design techniques for solving problems.
3	Understand how the choice of data structures and the algorithm design methods impact the
	performance of programs along with the principle of optimality.
4	Illustrate various problems using backtracking.
5	Compare different methods of branch and bound strategy.

Mapping of COs to POs and PSOs

CO				POs								PSOs				BTL	
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	
										0	1	2					
CO1	3																AP
CO2		3															AP
CO3					2												AN
CO4						3											AN
CO5															3		AN

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1	Unit No 1 Basic introduction, time complexity analysis Hours 10				
Basic introduction, time complexity analysis, Asymptotic notations (Big Oh, small oh, Big					
Omega, Theta notations). Best case, average case, and worst case time and space complexity of					
algorithms. Overview of searching, sorting algorithms. Adversary lower bounds (for comparison					
based sorting).					

Recurrence relati	ons: Substitution method, Recursion Tree method, Master's	theorem and		
applications.				
Mathematical Indu	ction to get asymptotic bounds on time complexity. Proving	correctness of		
algorithms.				
Unit No 2	Divide and Conquer	Hours 9	2	AP
Analyzing Quick so	ort, Randomized Quick sort, Merge sort, Counting Inversions, Fin	nding majority		
element, Finding M	edian, Efficient algorithms for Integer arithmetic - Euclid's algo	rithm, Finding		
closest pair of point	s in plane, Computing convex hull of points in plane, Graham's	scan algorithm		
Unit No 3	Greedy Technique and Dynamic Programming	Hours 10	3	AP
Greedy method: (General method, Applications: Fractional Knapsack problem,	0/1 Knapsack		
problem, Coin cha	nging problem, Container loading problem, Job sequencing v	with deadlines.		
Minimum cost spar	nning trees: Prim's algorithm and Kruskal's Algorithm, Single s	source shortest		
path problem: Dijks	stra's algorithm & Bellman Ford Algorithm, Optimal Merge pat	tern, Huffman		
Trees.				
Dynamic program	nming: Principle of optimality, Stassen's method for Matrix	multiplication,		
Floyd's algorithm,	Multi stage graph, Optimal Binary Search Trees, Knapsack Pro	blem.		
Unit No 4	Backtracking Strategy	Hours 7	4	AN
Backtracking: Ge	neral strategy, N-queens problem, graph coloring, subset	sum problem,		
Knapsack problem,	Hamiltonian cycle.			
Unit No 5	Branch and Bound	Hours 9	5	AN
Branch and Bou	nd: General Method, applications - 0/1 Knapsack problem	n, LC Branch		
and Bound solution	, FIFO Branch and Bound solution, Travelling sales person pro	blem.		
NP-Hard and NP-	Complete problems: Basic concepts, Non-deterministic algorit	hms, NP-Hard		
and NP-Complete of	classes, Cook's theorem.			

Textbooks

1	"Fundamentals of Data Structures in C", E. Horowitz, S. Sahni, Anderson-Freed, Second Edition,				
	Universities Press.				
2	"Data structures using C and C++", Y. Langsam, M.J. Augenstein, A.M.Tanenbaum, Pearson Education,				
	Second Edition				

Reference Books / Journal Articles / Weblink

1	"An Introduction to Data Structures with applications", J. Tremblay, P. Sorenson, TMH Publication, 2nd
	Edition.2.
2	"C and Data Structures", E. Balaguruswamy, TMH Publication, 2003.
3	"Data Structures and Algorithm Analysis in C++", M. Weiss, Pearson Education, Second Edition, 2002.
4	"Data Structures using C", ReemaThareja, Second Edition, Oxford Publications
5	"Data Structures with C", Schaum's online series, SaymourLipschutz, McGraw Hill Publications.
7	"Data Structures and analysis in C", Mark Allen Weiss, second Edition, Pearson Publication

BTECCE22502:: Operating Systems

Course Type	PCC	Semester	5
-------------	-----	----------	---

Teaching	g Scheme	Cre	dits	Examination Scheme			
Lecture	3Hr./Week	Lecture 3		CIE Marks	50		
Tutorial	Hr./Week	Tutorial	-	ESE Marks	50		
Practical/Studio	0Hr./Week	Practical/Studio	0	Total Marks	100		
Total	Total 3Hr./Week		3				

Course Description

This course helps the student to identify the role of operating systems and explain the different structures of operating systems. It highlights the OS support for processes and threads, depicts scheduling algorithms and deadlock mechanisms. It also identifies virtual memory requirement of an operating system and illustrates the importance of I/O and file systems.

Course Outcomes

CO No.	Statement
1	Examine the functions of a contemporary Operating system with respect to convenience, efficiency
	and the ability to evolve.
2	Demonstrate knowledge in applying system software and tools available in modern operating
	system, such as threads, system calls, semaphores for software development.
3	Apply various CPU scheduling algorithms and identify deadlock mechanisms to construct solutions
	to real world problems.
4	Understand the organization of memory and memory management hardware.
5	Analyze I/O and file management techniques for better utilization of secondary memory.

Mapping of COs to POs and PSOs

CO				POs										BTL			
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	
										0	1	2					
CO1	2																UN
CO2		2															AN
CO3						3											AP
CO4							3										AN
CO5															3		AP

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1 Introduction	Hours 9	CO	BTL
Introduction to OS: What is OS, Interaction of OS and hardware, Goals of	of OS, Basic	1	UN
functions of OS, OS Services, System Calls.			
Types of OS : Batch, Multiprogramming, Time sharing, Parallel, Distributed & R			
Shell: Linux commands and shells, shell programming, AWK programming.			
Introduction to Mobile OS : Architecture & Overview of Android OS.			
Unit No 2 Process Management	Hours 9	2	AN
Processes: Process Concept, Process State Model, Process Description, Process	Control		
Threads: Multithreading models, Symmetric Multiprocessing, User level and	kernel level		
threads, Microkernels.			
Concurrency: Issues with concurrency, Principles of Concurrency			
Mutual Exclusion: H/W approaches, S/W approach, OS/Programming Langu	age support:		
Semaphores, Mutex, Message passing, Monitors.			
Classical Problems of Synchronization: Readers-Writers problem, Producer C	Consumer		
problem, Dining Philosopher problem.			
Unit No 3 CPU Scheduling and Deadlock	Hours 9	3	AP
Uniprocessor Scheduling: Types of Scheduling - Preemptive, Non-preemptive	,		
Long-term, Medium-term, Short-term, Scheduling Criteria.			
Scheduling Algorithms: FCFS, SJF, RR, Virtual Round Robin, Priority			
Multiprocessor Scheduling: Granularity, Design Issues, Process Scheduling			
Deadlock: Principles of deadlock, Deadlock Prevention, Deadlock Avoidance	e, Deadlock		
Detection, Deadlock Recovery.			
Unit No 4 Memory Management	Hours 9	4	AN
Memory Management concepts: Memory Management requirements			
Memory Partitioning: Fixed, Dynamic Partitioning, Buddy Systems.			
Placement Strategies: First Fit, Best Fit, and Worst Fit.			
Fragmentation, Swapping, Thrashing.			
Virtual Memory: Concepts, Address translation, VM with Paging, Page Tab	le Structure,		
Translation Look-aside Buffer, VM with Segmentation, Working Set			
Page Replacement Policies: FIFO, LRU, Optimal.			
Unit No 5 I/O & Device Management	5	AP	
	daviage OS		
I/O management: I/O Devices - Types, Characteristics of Serial and Parallel	devices, OS		
I/O management: I/O Devices - Types, Characteristics of Serial and Parallel design issues for I/O management, I/O Buffering.	devices, OS		
	devices, OS		
design issues for I/O management, I/O Buffering.	ŕ		
design issues for I/O management, I/O Buffering. Disk Scheduling : FCFS, SCAN, C-SCAN, SSTF.	ŕ		

Textbooks

1	"Operating Systems", Stalling William, Pearson Education, ISBN: 0-13-031999-6, 5th Edition.
2	"Operating System Concepts", Silberschatz A., Galvin P., Gagne G., John Wiley and Sons, ISBN: 9971-
	51-388-9, 6 th Edition.

Reference Books / Journal Articles / Weblink

1	"Modern Operating Systems", Tanenbaum Andrew S., Prentice Hall India, ISBN: 81-7808-447-3, 2 nd
	Edition.
2	"Unix Concepts and Applications", Das Sumitabha, Tata McGraw Hill, ISBN: <u>0-07-053475-6</u> , 3 rd Edition.
3	"Unix Shell Programming", Yashavant Kanetkar, BPB Publications, ISBN: 81-7029-753-2, 1stEdition.
4	"Computer Architecture and Organization", John Hayes, Tata McGraw Hill, ISBN: 0-07-027355-3, 3rd
	Edition.

BTECCE22505:: Operating Systems Lab

Teaching	Scheme	Credit	S	Examination Scheme			
Lecture	0Hr./Week	Lecture	0	CIE Marks	25		
Tutorial	Hr./Week	Tutorial	-	ESE Marks	25		
Practical/Studio	2Hr./Week	Practical/Studio	1	Total Marks	50		
Total	2Hr./Week	Total	1				

List of Experiments

1	Execution of basic and advanced Unix commands											
2	Implement following shell programs											
	a. To find out if a given string is a palindrome or not.											
	b. To sort numbers of a given array using bubble sort											
3	Generate a student report using Awk programming											
4	Solve the Readers-Writers problem											
	a. using threads and semaphores b. using threads and mutex											
5	Solve the Producers-Consumers problem											
	a. using threads and semaphores b. using threads and mutex											
6	Implement the Dining Philosopher's problem using Multithreading											
7	Implement Banker's Safety algorithm for Deadlock Avoidance											
8	Simulate the following CPU scheduling algorithms:											
	a. First come First serve b. Shortest Job First (Non-preemptive) c. Shortest Job First (Preemptive)											
	d. Round Robin e. Priority (Non-preemptive) f. Priority (Non-preemptive)											
	(Draw the Gantt charts and display the finish time, turnaround time, waiting time for each process)											
9	Simulate the following page replacement algorithms											
	a. FIFO b. LRU c. OPT											
10	Write a program to simulate the following disk scheduling algorithms:											
	a. SSTF b. SCAN c. C-SCAN d. FCFS											

BTECCE22503: Computer Networks

Course Type	PCC	Semester	5
-------------	-----	----------	---

Teaching	g Scheme	Cre	dits	Examination Scheme			
Lecture	3 Hr./Week	Lecture	3	CIE Marks	50		
Tutorial	Hr./Week	Tutorial	-	ESE Marks	50		
Practical/Studio	0 Hr./Week	Practical/Studio	0	Total Marks	100		
Total	Total 3 Hr./Week		3				

Course Description

This course will help students to understand characteristics and suitability of various communication protocols. It will also highlight the basics of transport protocols programming for different applications and help students to gain insight into design and deployment of Computer Networks.

Course Outcomes

CO No.	Statement
1	Analyze the design issues of data link layer.
2	Evaluate the different aspects of media access control protocol.
3	Learn and understand various Network layer Protocols.
4	Implement socket programming suitable for connection oriented and connection less protocols.
5	Understand application level protocol.

Mapping of COs to POs and PSOs

CO				POs										BTL			
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	[
										0	1	2					
CO1	2																AP
CO2		2															AP
CO3						3											AN
CO4							3										AN
CO5															3		AP

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1	nit No 1 Introduction to Physical Layer and Data Link Layer Hours 9						
Transmissi	1	AP					
Ethernet.							
Overview o							
Data Link	Layer: Design Issues, Error Detection and correction, Examples on G	Checksum,					

Stop-and-Wait protocol, Sliding Window protocols, HDLC.			
Point-to-Point-Access (PPP): Frame format, Transition states, PPP Stack: LCP,	NCP.		
Unit No 2 Medium Access Control	Hours 9	2	AP
Channel allocation: Static and Dynamic allocation, Multiple Access Protocols:	ALOHA,		
CSMA, Collision-free and limited-contention protocols, WDMA.			
Ethernet: Cabling, MAC sub-layer protocol, Logical link control, Wireless La	AN, Broad		
band wireless, Bluetooth.			
Unit No 3 Network Layer	Hours 9	3	AN
Design Issues, Packet switching, Connectionless and Connection-oriented Service	es, Virtual		
Circuit and Datagram Subnets. Autonomous system.			
Routing Algorithms: Optimality principle, shortest path routing, flooding	, Distance		
Vector routing, link state routing, hierarchical routing.			
Congestion Control and QOS: General Principles, Congestion prevention poli	cies, Load		
shading, Jitter Control, Quality of Service, Internetworking.			
Network layer Protocols: ARP, RARP, IP protocol, IPV6, ICMP, Unicas	st Routing		
Algorithms: RIP, OSPF, BGP, Multicast Routing: IGMP, Mobile IP.			
Unit No 4 Transport Layer	Hours 9	4	AN
Services and service primitives, Elements of Transport protocol: Addressing, C	Connection		
establishment and release, flow control and buffering, Multiplexing, Crash reco	very.		
UDP: Introduction, TCP: Introduction, Model, protocol, header, connection esta			
and release, connection management, Transmission policy, congestion con-	trol, timer		
management, RPC, Transport layer in Mobile network, Socket Programming.			
Unit No 5 Application Layer	Hours 9	5	AP
Domain Name System (DNS) and DNS servers, MIME, SMTP, Mail Gateway	s, Remote		
login, File Transfer Protocol, SNMP, DHCP, HTTP, Telnet.			

Textbooks

1	Kurose, Ross, "Computer Networking-a top down approach featuring the internet", Pearson Education.
2	Andrew S. Tanenbaum, "Computer Networks", 4th Edition, PHI, ISBN 81-203-2175-8.

Reference Books / Journal Articles / Weblink

1	Forouzan B, "Data communication and Computer Networks", Tata McGraw Hill)
2	Olifer&Olifer,"Computer Networks-principles, technologies & protocols for network design", Wiley
3	Comer D, "Computer networks and internet", Pearson Education

BTECCE22506: Computer Networks Laboratory

Teaching	Scheme	Credit	S	Examination Scheme		
Lecture	0Hr./Week	Lecture 0		CIE Marks	25	
Tutorial	Hr./Week	Tutorial	-	ESE Marks	25	
Practical/Studio	2Hr./Week	Practical/Studio	1	Total Marks	50	
Total	2Hr./Week	Total	1			

List of Experiments

1	Set up a small network of 2 to 4 computers using Switch. It includes installation of LAN Cards, Preparation
	of Cables, Assigning IP addresses and sharing C drive.
2	Studying Linux and Windows network commands. [ping, pathping, ipconfig/ifconfig, arp, netstat, nbtstat,
	nslookup, route, traceroute/tracert, nmap, etc]
3	Using a Network Simulator (e.g. packet tracer) Configure subnetting and supernetting
4	Configuration of router by using router commands and implement static routing
5	Configuration of router for implementation of RIP protocol
6	Configuration of router for implementation of OSPF protocol
7	Configuration of Wireless access point/Router with static IP addressing and DHCP with MAC security and
	filters.
8	Installing and configuring DHCP server for Linux/Windows.
9	Socket Programming for TCP Client and TCP Server.
10	Socket Programming for UDP Client, UDP Server.
11	Configuration of FTP server on windows

BTECCE22504:: Systems Programming

Course Type PCC Semester 5

Teaching	g Scheme	Cre	edits	Examination Scheme			
Lecture	3 Hr./Week	Lecture	3	CIE Marks	50		
Tutorial	Hr./Week	Tutorial	-	ESE Marks	50		
Practical/Studio	0 Hr./Week	Practical/Studio	0	Total Marks	100		
Total	3 Hr./Week	Total	3				

Course Description

This course will help students to identify the roles of different system software such as Assembler, Macroprocessor, Loaders/Linkers and Compilers.It will also illustrate the working of Device drivers and TSR.Highlights on design and develop useful system software.

Course Outcomes

CO No.	Statement
1	Discriminate among different System software and their functionalities.
2	Design language translators like Macro processor and Assembler.
3	Develop approaches and methods for implementing compiler, linker and loader.
4	Use LEX tool for lexical analysis.
5	Interpret the techniques of implementing utility software.

Mapping of COs to POs and PSOs

CO				POs							PSOs				BTL		
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	
										0	1	2					
CO1	2																UN
CO2		2															AP
CO3						3											AN
CO4							3										AP
CO5															3		AN

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1 Introduction to System Software	Hours 10	CO	BTL
System Software: Need of System Software, Software types, software	1	UN	
Components of System Software, Programming languages and Language			
activities, Machine structure, Interfaces, address space, Levels of system so	ftware, Data		
structures for language processing.			
Assembler: Elements of assembly language programming, Design of the			
simple Assembly Scheme, Types of assemblers, Pass structure of Assembler	s, Variants of		
Intermediate code, Design of Two Pass Assembler and Single pass assemble	er. Multi-pass		
assemblers.			
Unit No 2 Macro Processor	Hours 8	2	AP
Macros: Macro definition and call, macro expansion, Nested Macro calls, De	sign of macro		
processor, Design issues of macro processors, Design of two-pass macro	o processors,		
Advanced Macro Facilities, Conditional expansion, Nested macro calls , Mac	cro expansion		
records.			
Unit No 3 Linkers and Loaders	Hours 9	3	AN
Linkers: Relocation and linking concepts, static and dynamic linker, Subrouti	ne linkages,		
Self-relocating Self-relocating	programs.		
Loaders: Loader schemes: Compile and Go General loader scheme, Abs	olute loaders,		
Relocating loaders, Direct linking loaders, Overlay Structure. Dynamically Lin	nked libraries.		
Unit No 4 Compilers	Hours 9	4	AP
Compiler vs. Interpreter, Phase structure of Compiler and Compilation pro	cess, Tokens,		
Lexemes and Patterns, Types of Compilers. Lexical Errors, Regular defin	itions for the		
language constructs & strings, sequences.			
Programming Language Grammars, Classification of Grammar, Ambiguity	n Grammatic		
Specification, and Overview of parsing, types of parsers. Case Study of LEX	specifications		
and features.			
Unit No 5 Device drivers and TSR Programming	Hours 9	5	AN
Device drivers – concepts, design and developing, Types of Drivers, Driver H	istory, Device		
driver design Issues, Kernel Level Device drivers, Virtual device drivers (
Driver Stack, Static Device drivers, Dynamic Device drivers.			
Text editor – types of editors, types of files, features and examples.			
Debugger – functions of a debugger, hardware support for debugging, example			
TSRs : Types, Structure, details of TSR loading, writing TSRs.			

Textbooks

1	"Systems Programming and Operating Systems", M. Dhamdhere, Tata McGraw-Hill, ISBN 13:978-0-07-
	463579-7, Second Revised Edition.
2	"Systems Programming", J. J. Donovan, McGraw-Hill, ISBN 13:978-0-07-460482-3, Indian Edition.

- 3 "Compilers Principles, Techniques and Tools", Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Addison Wesley, ISBN: 981–235–885 4, Low Price Edition.
- 4 "Advanced MSDOS programming";, Ray Duncan, Microsoft press.

Reference Books / Journal Articles / Weblink

1	"System Software An introduction to Systems Programming", Leland L. Beck, Pearson Education,
	ISBN13: 9788177585551
2	" Linux System Programming ", Robert Love; O'Reilly, ISBN 978-0-596-00958-8
3	"Easy Linux Device Driver ", Mahesh Jadhav; High Tech Easy publishing, Second edition.

BTECCE22507::Systems Programming Lab

Teaching	Scheme	Credit	S	Examination Scheme		
Lecture	0Hr./Week	Lecture	0	CIE Marks	25	
Tutorial	Hr./Week	Tutorial	1	ESE Marks	25	
Practical/Studio	2Hr./Week	Practical/Studio	1	Total Marks	50	
Total	2Hr./Week	Total	1			

List of Experiments

- Design suitable data structures and implement Pass-1 of a two-pass assembler for hypothetical machine.

 Generate symbol table and Intermediate code file. Implementation should consider
 - 1. Sample instructions from each category and few assembler directives.
 - **2.** Forward references
 - 3. Error handling: symbol used but not defined, invalid instruction/register etc
- Design suitable data structures and implement Pass- 1 of a two-pass assembler for hypothetical machine. Generate Literal table, Pool table and Intermediate code file. Implementation should consider sample instructions from each category and few assembler directives and error handling.
- 3 Design suitable data structures and implement Pass-2 of a two-pass assembler for hypothetical machine. Consider the output of Assignment-1 (intermediate code file and symbol table) as input for this assignment.
- 4 Design suitable data structures and implement simple Macro definition processing for hypothetical machine.

 Generate different Parameter Tablesand MDT, MNT.
- 5 Implement simple Macro expansion based on Assignment 4. Assume input as macro call to macros defined in Assignment 5.
- **6** Design a lexical analyzer for 'C' language.

BTECCE22508:: Data Warehouse and Data Mining

Course Type	PCC	Semester	5
J I			_

Teaching	Scheme	Cre	dits	Examination Scheme		
Lecture	3Hr./Week	Lecture	3	CIE Marks	50	
Tutorial	Hr./Week	Tutorial	-	ESE Marks	50	
Practical/Studio	0Hr./Week	Practical/Studio	0	Total Marks	100	
Total	3Hr./Week	Total	3			

Course Description

This course will introduce the concepts of data warehouse and data mining, which gives a complete description of the principles, used, architectures, applications, design, and implementation of data mining and data warehousing concepts.

Course Outcomes

CO No.	Statement
1	Understand the fundamental concepts of data warehousing.
2	Develop a model for data warehousing.
3	Learn multidimensional modelling techniques.
4	Evaluate the performance using data mining and association rules.
5	Analyze performance using classification and clustering.

Mapping of COs to POs and PSOs

CO							P	Os						PS	SOs		BTL
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	
										0	1	2					
CO1		3															UN
CO2				3													AP
CO3					2												AN
CO4							2										AP
CO5																3	AN

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1 Introduction to Data Warehousing	Hours 9	CO	BTL
What is a Data Warehouse, Need of Data Warehouse, why warehouse is	separated from	1	UN
operational databases, Data Warehouse Features, Types of Data Warehouse	house (Virtual		
Warehouse, Data mart, and Enterprise Warehouse), Data Warehouse Architecture	cture, Inmon &		
Kimball architecture? What is ETL, Process of ETL, Need of ETL, and Cha	llenges in ETL		
system A perspective on decision support applications.			
Unit No 2 Data Warehousing and Modelling	Hours 9	2	AP
Introduction to Data Warehouse Modelling, Differentiating the Warehousing	model from the		
OLTP model, Warehouse Modelling Approaches, E-R v/s dimensional d	ata Modelling,		
Dimension tables, Types of dimensions- Small, Conformed, junk, role-playing	ng, degenerate,		
slowly changing dimension table, Fact tables, Load plan for Fact tables,	types of facts.		
Transaction, periodic snapshot fact table, Accumulating fact tables, factles	s fact table &		
Conformed fact tables.	T		
Unit No 3 Multi-Dimensional Modeling-Methodology	Hours 9	3	AN
OLAP - Online Analytical Processing, differentiate between OLAP and O			
OLAP servers, Basic OLAP Operations (Roll-up, Drill-down, Slice and Dice			
Data warehouse schemas, Multi-Dimensional Model Structures, Soluti	ion Validation		
Techniques, Detailed Dimension Modelling, R-OLAP, M-OLAP	T		
Unit No 4 Data Mining with Association Rule	Hours 9	4	AP
Introduction to Data Mining: Introduction, what is Data Mining, Definition,	KDD,		
Challenges, Data Mining Tasks, Data Preprocessing- Data Cleaning, Missing I	Data,		
Dimensionality Reduction, Feature Subset Selection, Discretization and Bin	arization, Data		
Transformation; Measures of similarity and dissimilarity-Basics, Text Mining.			
Association Rules: Problem Definition, Frequent Item Set Generation,	The APRIORI		
Principle, Support and Confidence Measures, Association Rule Generation	ion, APRIORI		
Algorithm, The Partition Algorithms, FP-Growth Algorithms, Compact Re	presentation of		
Frequent Item Set-Maximal Frequent Item Set, Closed Frequent Item Set.			
Unit No 5 Classification and Clustering	Hours 9	5	AN
Classification: Problem definition, General Approaches to solving a classific	-		
Evaluation of Classifiers, Classification techniques, Decision Trees-l			
Construction, Methods for expressing attribute test conditions, Measures for Se	_		
split, Algorithm for Decision tree Induction, Naïve-Bayes Classifier, B	ayesian Belief		
Networks; K-nearest neighbor classification-Algorithm and characteristics.			
Clustering: Problem Definition, Clustering overview, Evaluation of clustering	0 0		
Partitioning clustering K-Means Algorithm, K-Means Additional Issues, PA	_		
Hierarchical Clustering-Algorithm- Agglomerative Methods and Divisive N			
Agglomerative Hierarchical Clustering Algorithm, Specific techniques,	Key Issues in		
Hierarchical Clustering, Strengths and weakness, Outlier Detection			

Textbooks

	1	Sam Anahory, Dennis Murray, "Data Warehousing in the Real World – A Practical
		Guide for Building Decision Support Systems", Pearson Education, 2006.
F	2	Jiawei Han, Micheline Kamber, and Jian Pei "Data Mining Concepts and Techniques", Third Edition, Elsevier,
		2011.
Ī	3	Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, "Introduction to Data Mining", Pearson Education.

Reference Books / Journal Articles / Weblink

1	Data Warehousing and Mining: Concepts, Methodologies, Tools and Applications (Vol I to VI) by John Wang
2	The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition by Ralph Kimball
	and Margy Ross
3	Data Mining and Data Warehousing by Bharat Bhushan Agarwal and Sumit Prakash, Tayal Laxmi
	Publications
4	Alex Berson and Stephen J. Smith "Data Warehousing, Data Mining & OLAP", Tata McGraw – Hill Edition,
	Tenth Reprint 2007.

BTECCE22509:: Data Warehouse and Data Mining Lab

Teaching	Scheme	Credits		Examination Scheme		
Lecture	0Hr./Week	Lecture	0	CIE Marks	25	
Tutorial	Hr./Week	Tutorial	-	ESE Marks	25	
Practical/Studio	2Hr./Week	Practical/Studio	1	Total Marks	50	
Total	2Hr./Week	Total	1			

List of Experiments

1	Study a project for a chain of home entertainment rental stores and identify different analytical questions
	needed to be answered for the given case study.

Consider an order management operational database that tracks order numbers, dates, the requested ship dates, customers and their shipping and billing addresses, products and their quantity and gross dollar amount, sales representatives that take and process orders, the deals (promotions) and discounts proposed/offered to customers.

You have to design a data warehouse that will be updated from the above operational database and should support decision making by helping to answer analytical questions about the net order dollar amounts per customer, products, promotions or deals, and the performance of their sales representatives or agents.

Analysis of requested ship dates is important for analysis as well. It is also important to allow for performing order amount analysis in various currencies: dollars, dirhams, euros.

- 1) Draw the star schema(s) showing the main attributes, including primary keys, foreign keys, and facts.
- 2) Insert appropriate values in the database. Write one SQL statement that runs on your schema and returns the net order dollar amount per customer, products, promotions, and performance of sales representatives.
- 3) Make necessary assumptions to compute an approximate size (in MB) of your DW over 5 years.
- 3 Consider a book management operational database that tracks different book types, cost, quantity, profit, location, authors and their age and country, publication name and their country and year. You have to design a data warehouse that will be updated from the above operational database and should support

	decision-making by helping to answer analytical questions about the quantity and profit made per book type, location, author, and publication.
	1) Draw the star schema(s) showing the main attributes, including primary keys, foreign keys, and facts.
	2) Insert appropriate values in the database. Write SQL statements that runs on your schema and return the quantity and profit made per book type, location, author, and publication.
4	Gather Business Requirements for Banking enterprise and design it using any multi-dimensional data model namely Star, Snowflake, or Galaxy schema.
5	Gather Business Requirements for Healthcare enterprise and design it using any multi-dimensional data
	model namely Star, Snowflake, or Galaxy schema.
6	Implement the Apriori Algorithm.
7	Implement a k-means Clustering Algorithm.
8	Implement a Hierarchical Clustering Algorithm.
9	Implement a Naive Bayesian Classification Algorithm.
10	Implement Decision Tree Algorithm.

BTECCE22510:: Economics

Course Type HSMC Semester 5

Teaching	g Scheme	Cre	edits	Examination Scheme			
Lecture	2Hr./Week	Lecture	2	CIE Marks	50		
Tutorial	Hr./Week	Tutorial	-	ESE Marks	-		
Practical/Studio	Hr./Week	Practical/Studio	-	Total Marks	50		
Total	2Hr./Week	Total	2				

Course Description

This course helps the student to gain the knowledge of basic concepts of economics and microeconomics. It will also focus on concepts like demand and supply analysis in view of market analysis. It will identify consumer behavior and their relationships with consumer satisfaction.

Course Outcomes

CO No.	Statement
1	Understand the causes and consequences of market failure by analyzing basic concepts from
	economics.
2	Apply microeconomics terms to analyze market condition.
3	Analyze the correlation between demand and supply so as to analyze market conditions.
4	Apply the knowledge of consumer behavior to infer how useful or good or valuable a service to a
	consumer.
5	Understand the factors that directly affect on overall well-being of people in the economy.

Mapping of COs to POs and PSOs

СО							P	Os						PS	Os		BTL
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	Ī
										0	1	2					
CO1									2								UN
CO2										2							AP
CO3											2						AP
CO4												2					AP
CO5															1		AP

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1 Economic Concepts	Hours 6	CO	BTL			
Basic Economic problems, Economics and Decision Making. Circular flow of Economy,						
Objectives of a firm. Invisible hand, Types of Economy, Market failure and role of Government						
in Market Failure. Principal Agent problem						
Unit No 2 Microeconomics Concept	Hours 10	2	AP			
Demand and Determinants of Market Demand, Supply, Elasticity of Demand	- (Price and					
Income). Market equilibrium. Production - Production Function - Law of Variable	e Proportions					
- Law of Returns to Scale - Economies of Scale - Cost Analysis - Types of	Costs i) Total					
cost ii) Average Cost iii) Marginal Cost iv) Opportunity cost.Market Structures	: Perfect and					
Imperfect competitionPrice and output determination undera) Perfect C	Competitionb)					
Monopolistic Competitionc) Monopoly Competition (Government re-	gulated and					
unregulated)d) Oligopoly						
Unit No 3 Supply and Demand	Hours 5	3	AP			
Demand, Determinants of Demand, Supply, Determinants of Supply, Market	equilibrium,					
Elasticity of Demand (Income, Price and cross elasticity).						
Unit No 4 Consumer Behavior	Hours 5	4	AP			
a) Marginal Utility Approach - Limitations b) Indifference Curve Analysis - Concept -						
Characteristics - Consumer Equilibrium						
Unit No 5 Welfare Economics	Hours 5	5	AP			
Introduction to welfare Economics, Concept, Problems in measuring welfare						

Textbooks

1 Principles of Economics, Copyright Year: 2016 ISBN 13: 9781946135162, Publisher: University of Minnesota Libraries Publishing

BTECCE22511:: Project Management

Course Type	HSMC	Semester	5
-------------	------	----------	---

Teaching	g Scheme	Cre	edits	Examination Scheme			
Lecture	2Hr./Week	Lecture	2	CIE Marks	50		
Tutorial	Hr./Week	Tutorial	-	ESE Marks	0		
Practical/Studio	Hr./Week	Practical/Studio	-	Total Marks	50		
Total	2Hr./Week	Total	2				

Course Description

This course helps the student to understand the project planning, budgeting process. It will also focuses on risk analysis, creation of effective and deliverable project plans. It will also identify roles and work with cross functional teams.

Course Outcomes

CO No.	Statement
1	Understand the basics of Project Management and importance of knowledge areas
2	Estimate scope and time factor for project.
3	Implement Project Quality factors
4	Analyze Human Resource requirements
5	Predict risks associated with Project Management activities

Mapping of COs to POs and PSOs

CO							P	Os						PS	Os		BTL
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO4	
										0	1	2					
CO1									3								UN
CO2										3							AP
CO3											3						AP
CO4												2					AP
CO5															1		AP

Affinity Level: 1- Slight, 2- Moderate, 3-Substantial, BTL: Bloom's Taxonomy Level

Course Content

Unit No 1 Introduction to Project Management	Hours 6	CO	BTL
What Is a Project? Project Attributes, The Triple Constraint, Project Stakeholder	ers, Project	1	UN
Management Knowledge Areas, Project Management Tools and Techniques, Proje	ct Success,		
The Role of the Project Manager, Project Manager Job Description, Suggested Skills	for Project		
Managers, Importance of People and Leadership Skills, Project Integration M	anagement,		
Developing a Project Charter, developing a Project Management Plan, Performing	Integrated		
Change Control, Change Control on Information Technology Projects, Change Cont	rol System,		
Closing Projects, or Phases.			
Unit No 2 Project scope and time management	Hours 6	2	AP
What Is Project Scope Management? Collecting Requirements, Documenting Red	quirements,		
Defining Scope, Work Breakdown Structure, Approaches to Develop WBS, The WBS	Dictionary		
and Scope Baseline, Verifying Scope, Controlling Scope, The Importance of Project	Schedules,		
Defining Activities, Sequencing Activities, Dependencies, Network Diagrams,	Estimating		
Activity Resources, Estimating Activity Durations, Developing the Schedule, Ga	ntt Charts,		
Critical Path Method, Critical Chain Scheduling, Program Evaluation and Review	Technique		
(PERT)			
Unit No 3 Project cost and quality	Hours 6	3	AP
The Importance and Basic Principles of Cost Management, Types of Cost Estir	nates, Cost		
Estimation Tools and Techniques, Typical Problems with Information Techniques	ology Cost		
Estimates, Determining the Budget, The Importance of Project Quality Managemen	t, Planning		
Quality, Performing Quality Assurance, Performing Quality Control, Tools and Tec	hniques for		
Quality Control, Deming 14 Points, Juan principles, Crosby principles, Ishikawa mod	el, Taguchi		
and Robust Design Methods, Feigenbaum principles, ISO Standards, PDCA cycle, 7	The Cost of		
Quality, Maturity Models			
Unit No 4 Human resource & communication management	Hours 6	4	AP
Developing the Human Resource Plan, Project Organizational Charts, Responsibility	Assignment		
Matrices, Staffing Management Plans and Resource Histograms, Acquiring the Pro-	ject Team,		
Resource Assignment, Resource Loading, Resource Leveling, Developing the Pro-	ject Team,		
Training, Team-Building Activities, Managing the Project Team, Tools and Tecl	nniques for		
Managing Project Teams, Project Communications Management, Identifying St	akeholders,		
Planning Communications Distributing Information, Formal and Informal M	ethods for		
Distributing Information, Selecting the Appropriate Communications Medium,	Managing		
Stakeholders, Reporting Performance			
Unit No 5 Project risk management	Hours 6	5	AP
The Importance of Project Risk Management, Planning Risk Management, Common	Sources of		
Risk on Information Technology Projects, Identifying Risks, Suggestions for Identif	ying Risks,		
The Risk Register, Performing Qualitative Risk Analysis, Using Probability/Impact			
Calculate Risk Factors, Top Ten Risk Item Tracking, Performing Quantitative Risk	k Analysis,		
Decision Trees and Expected Monetary Value, Simulation, Sensitivity Analysis, Pla	nning Risk		
Responses, Monitoring and Controlling Risks			
RTFCH TV Comp. Pattern-2022		I.	1

Textbooks

1	Information Technology Project Management, Kathy Schwalbe, Sixth Edition, Course Technology, ISBN-
	13: 978-1-111-22175-1, ISBN-10: 1-111-22175-8
2	Software Project Management, A United Framework, Walker Royce
3	Essentials of Software Project Management, second edition, Richard Bechtold (Author) Publisher:
	Management Concepts; second edition (April 12, 2007) ISBN-10:1567261868 ISBN-13: 978-1567261868
4	Software Project Management, Bob Hughes, Mike Cotterill Publisher: McGraw-Hill Publishing Co.; 4Rev
	Ed edition (November 1, 2005) ISBN-10: 0077109899 ISBN-13-978-0077109899

Reference Books / Journal Articles / Weblink

1	Quality Software Project Management, Robert T. Futrell, Donald F. Shafer, Linda I. Shafer Publisher:
	Prentice Hall PTR; 1st edition (January 24, 2002ISBN-10: 0130912972 ISBN-13: 978-0130912978
2	Software Engineering Project Management, 2nd Edition, Edward Yourdon, Richard H. Thayer Publisher:
	Wiley-IEEE Computer Society Pr; 2 Sub edition (May 10, 2000) ISBN-10: 0818680008 ISBN-13: 978-
	0818680007
3	Software Engineering, Ian Sommerville, 8th Edition, Addison-Wesley, 2006, ISBN-10: 0321313798,
	ISBN-13: 9780321313799
4	Software Engineering: A Practitioner's Approach, 6/e, Roger S Pressman, McGraw Hill, 2005, ISBN:
	0072853182