Übungsblatt LA 9

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

- Sie kennen die Begriffe Axiom, Skalarkörper, Vektorraum, Linearkombination, lineare Hülle, linear abhängig, linear unabhängig, erzeugend, Basis, Dimension und deren wichtigste Eigenschaften.
- > Sie können beurteilen, ob gegebene Mengen eine Vektorraumstruktur bilden.
- Sie können beurteilen, ob die Vektoren einer Teilmenge von \mathbb{R}^n linear abhängig, linear unabhängig oder erzeugend sind und ob sie eine Basis bilden.

1. Aussagen über Vektorräume

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Der Vektorraum ist die fundamentale Struktur der linearen Algebra.	X	
b) Jeder Vektorraum basiert auf einem Skalarkörper.	Х	
c) In jedem Vektorraum ist eine Addition zwischen den Vektoren definiert.	Х	
d) In jedem Vektorraum ist eine Multiplikation zwischen den Vektoren definiert.		Х
e) In jedem Vektorraum ist eine Multiplikation zwischen den Vektoren und den reellen Zahlen definiert.		X

2. Vektorraumstrukturen

Welche der folgenden Strukturen bilden bezüglich der üblichen Addition und Multiplikation einen Vektorraum? Begründen Sie Ihre Antwort.

a)
$$(\mathbb{Z}; \mathbb{Q}; +;\cdot)$$

b) (
$$\mathbb{Z}$$
; \mathbb{R} ; +;·)

c)
$$(\mathbb{Q}^2; \mathbb{Q}; +;\cdot)$$

d) (
$$\mathbb{Q}^2$$
; \mathbb{R} ; +;·)

e) (
$$\mathbb{R}^3$$
; \mathbb{Q} ; +;·)

f) (
$$\mathbb{R}^3$$
; \mathbb{R} ; +;·)

g)
$$U \subset \mathbb{R}^3$$
 sei gegeben durch $U \coloneqq \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 | 2x_1 + 4x_2 = 1\}$.

a)

Wir betrachten das Quadrupel

$$(\mathbb{Z};\mathbb{Q};+;\cdot)$$
.

Wählen wir $a := 1/2 \in \mathbb{Q}$ und $v := 1 \in \mathbb{Z}$, dann gilt

$$a \cdot v = \frac{1}{2} \cdot 1 = \frac{1}{2} \notin \mathbb{Z}.$$

Es wird also kein Vektorraum gebildet.

b)

Wir betrachten das Quadrupel

$$(\mathbb{Z}; \mathbb{R}; +; \cdot)$$
.

Wählen wir $a := 1/2 \in \mathbb{R}$ und $v := 1 \in \mathbb{Z}$, dann gilt

$$a\cdot v=\frac{1}{2}\cdot 1=\frac{1}{2}\not\in\mathbb{Z}.$$

Es wird also kein Vektorraum gebildet.

c)

Wir betrachten das Quadrupel

$$(\mathbb{Q}^2;\mathbb{Q};+;\cdot)$$
.

Weil \mathbb{Q} ein Zahlen-Körper ist, gilt für alle $\mathbf{v}, \mathbf{w} \in \mathbb{Q}^2$ und alle $a, b \in \mathbb{Q}$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] + b \cdot \left[\begin{array}{c} w_1 \\ w_2 \end{array} \right] = \left[\begin{array}{c} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \end{array} \right] \in \mathbb{Q}^2.$$

Es liegt ein Vektorraum vor.

d)

Wir betrachten das Quadrupel

$$(\mathbb{Q}^2; \mathbb{R}; +; \cdot)$$
.

Zunächst wählen wir

$$\mathbf{v} := \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{Q}^2 \quad \text{und} \quad a := \sqrt{2} \in \mathbb{R}.$$

Wegen $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ gilt

$$a \cdot \mathbf{v} = \sqrt{2} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \notin \mathbb{Q}^2.$$

Es wird kein Vektorraum gebildet.

e)

Wir betrachten das Quadrupel

$$(\mathbb{R}^3;\mathbb{Q};+;\cdot)$$
.

Weil $\mathbb Q$ ein Zahlen-Teilkörper des Zahlen-Körpers $\mathbb R$ ist, gilt für alle $\mathbf v, \mathbf w \in \mathbb R^3$ und alle $a,b\in \mathbb Q$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \\ a \cdot v_3 + b \cdot w_3 \end{bmatrix} \in \mathbb{R}^3.$$

Es wird also ein Vektorraum gebildet.

 $\begin{tabular}{ll} \bf f) \\ \bf Wir \ betrachten \ das \ \it Quadrupel \end{tabular}$

$$(\mathbb{R}^3; \mathbb{R}; +; \cdot)$$
.

Weil \mathbb{R} ein Zahlen-Körper ist, gilt für alle $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ und alle $a, b \in \mathbb{R}$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \\ a \cdot v_3 + b \cdot w_3 \end{bmatrix} \in \mathbb{R}^3.$$

Es liegt ein Vektorraum vor.

g)

Sei $x \in U$, dann hat dieser Vektor z. B. die Darstellung

$$x = \left(\frac{1}{2} - 2x_2, x_2, x_3\right)^T$$
.

Ist $y = (\frac{1}{2} - 2y_2, y_2, y_3)^T$ ein weiterer Vektor aus U, dann erkennen Sie, dass

$$x + y = (1 - 2(x_2 + y_2), x_2 + y_2, x_3 + y_3)^T \notin U.$$

Somit liegt keine Vektorraumstruktur vor.

Als einfachere Begründung genügt auch die Feststellung, dass $0 \notin U$ ist.

3. Vektorraumstrukturen II

Sei V der Vektorraum aller 3x3 Matrizen über \mathbb{R} . Prüfen Sie, ob die Mengen

- a) $V_1 := \{ A \in V | A \text{ ist symmetrisch, d. h. } a_{ij} = a_{ji} \forall i \neq j \},$
- b) V_2 : = { $A \in V | a_{33} \neq 0$ },
- c) $V_3 := \{ A \in V | a_{ij} \in \mathbb{Q} \ \forall i, j = 1,2,3 \}$

eine Vektorraumstruktur haben.

a)

 V_1 hat eine Vektorraumstruktur, da für $A, B \in V_1$ und $\lambda \in \mathbb{R}$ gilt

$$\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array} \right) + \left(\begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{12} & b_{22} & b_{23} \\ b_{13} & b_{23} & b_{33} \end{array} \right) = \left(\begin{array}{ccc} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{array} \right).$$

Die Summe der Matrizen ist ebenfalls symmetrisch, liegt also auch in V_1 . Weiter gilt mit $\lambda \in \mathbb{R}$, dass

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \lambda a_{13} \\ \lambda a_{12} & \lambda a_{22} & \lambda a_{23} \\ \lambda a_{13} & \lambda a_{23} & \lambda a_{33} \end{pmatrix} \in V_1,$$

da auch hier die Symmetrie erhalten bleibt.

V₂ hat keine Vektorraumstruktur, da das Nullelement

$$0\cdot A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \notin V_2,$$

aber $A \in V_2$ ist.

Für $\lambda \in \mathbb{R} \setminus \mathbb{Q}$ und $a_{ij} \in \mathbb{Q}$ ist $\lambda a_{ij} \notin \mathbb{Q}$. Demnach gilt für $A \in V_3$, dass

$$\lambda A \notin V_3$$
.

Es liegt also keine Vektorraumstruktur vor.

4. Linear abhängig/unabhängig und erzeugend

Bestimmen Sie, ob die jeweiligen Vektoren linear unabhängig bzw. erzeugend sind. Bilden die gegebenen Vektoren eine Basis des jeweiligen \mathbb{R}^n ?

$$\mathsf{a})\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$

$$b)\left\{ \binom{2}{-6}, \binom{-1}{3} \right\}$$

$$c)\left\{ \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

$$\mathsf{d})\left\{\!\!\begin{pmatrix}1\\0\\0\end{pmatrix},\!\begin{pmatrix}1\\1\\0\end{pmatrix},\!\begin{pmatrix}1\\1\\1\end{pmatrix},\!\begin{pmatrix}0\\1\\0\end{pmatrix}\!\!\right\}$$

$$\mathbf{e})\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 5\\6\\7\\8 \end{pmatrix}, \begin{pmatrix} 2\\4\\6\\8 \end{pmatrix} \right\}$$

$$\mathrm{d})\left\{\!\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}1\\1\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\!\right\} \qquad \mathrm{e})\left\{\!\begin{pmatrix}1\\2\\3\\4\end{pmatrix},\begin{pmatrix}5\\6\\7\\8\end{pmatrix},\begin{pmatrix}2\\4\\6\\8\end{pmatrix}\!\right\} \qquad \mathrm{f})\left\{\!\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}1\\1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\1\end{pmatrix},\begin{pmatrix}0\\0\\1\\1\end{pmatrix}\right\}$$

a) Wir betrachten die *Teilmenge*

$$M = \left\{\mathbf{v}_1, \mathbf{v}_2\right\} = \left\{\left[\begin{array}{c}1\\1\end{array}\right], \left[\begin{array}{c}1\\-1\end{array}\right]\right\} \subset V = \mathbb{R}^2$$

aus m=2 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 = x_1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix}
[1] & 1 \\
1 & -1
\end{bmatrix} \Leftrightarrow \begin{bmatrix}
[1] & 1 \\
0 & -2
\end{bmatrix} \Leftrightarrow \begin{bmatrix}
[1] & 1 \\
0 & [1]
\end{bmatrix} \Leftrightarrow \begin{bmatrix}
[1] & 0 \\
0 & [1]
\end{bmatrix}$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 = m = n.$$

Demnach ist M linear unabhängig sowie erzeugend und bildet folglich eine <u>Basis</u> von V.

4

b)

Wir betrachten die Teilmenge

$$M = \{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 2 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\} \subset V = \mathbb{R}^2$$

aus m=2 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 = x_1 \cdot \begin{bmatrix} 2 \\ -6 \end{bmatrix} + x_2 \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 1 < 2 = m = n.$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

c)

Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \subset V = \mathbb{R}^3$$

aus m=3 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 = x_1 \cdot \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$-1 \begin{bmatrix} [1] & 3 & 1 \\ -1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & 4 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & [2] & 1 \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 < 3 = m = n.$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

d) Wir betrachten die *Teilmenge*

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \right\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \subset V = \mathbb{R}^3$$

aus m=4 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 + x_4 \cdot \mathbf{v}_4$$

$$= x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix}
[1] & 1 & 1 & 0 \\
0 & [1] & 1 & 1 \\
0 & 0 & [1] & 0
\end{bmatrix}$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 3 = n < 4 = m.$$

Demnach ist M linear abhängig sowie erzeugend und bildet folglich keine Basis von V.

e) Wir betrachten die *Teilmenge*

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}, \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix} \right\} \subset V = \mathbb{R}^4$$

aus m=3 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 = x_1 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} [1] & 5 & 2 \\ 2 & 6 & 4 \\ 3 & 3 & 7 & 6 \\ 4 & 4 & 8 & 8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & -4 & 0 \\ 0 & -8 & 0 \\ 0 & -12 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & [1] & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & [1] & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & [1] & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 < 3 = m < 4 = n.$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

f)

Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \right\} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\} \subset V = \mathbb{R}^4$$

aus m=4 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 + x_4 \cdot \mathbf{v}_4$$

$$= x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 3 < 4 = m = n$$
.

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

5. Basis

Für welche Werte von a bilden die folgenden Vektoren eine Basis des \mathbb{R}^3 ?

a)
$$\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ a \end{pmatrix}$ b) $\begin{pmatrix} 6 \\ a \\ 7 \end{pmatrix}$, $\begin{pmatrix} -a \\ -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ a \\ 4 \end{pmatrix}$

Anzahl der Basisvektoren im \mathbb{R}^3 ist 3, d. h. es muss die lineare Unabhängigkeit der gegebenen Vektoren überprüft werden.

7

a)

Linearkombination des Nullvektors:

$$\lambda_1 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ -1 \\ a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

In Koordinaten:

$$2\lambda_1 + \lambda_2 = 0 + \lambda_2 - \lambda_3 = 0 \lambda_1 + a\lambda_3 = 0$$

Matrizenschreibweise:

$$\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & a & 0
\end{pmatrix}
\leftarrow$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
2 & 1 & 0 & 0
\end{pmatrix}
\leftarrow
+$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & -2a & 0
\end{pmatrix}
\leftarrow
+$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & -2a & 0
\end{pmatrix}
\leftarrow
+$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -2a & 0
\end{pmatrix}$$

Das LGS ist also dann nur trivial lösbar, wenn

$$1 - 2a \neq 0$$
$$a \neq \frac{1}{2}.$$

Also bilden die 3 Vektoren für $a \neq \frac{1}{2}$ eine Basis des \mathbb{R}^3 .

b)

Linearkombination des Nullvektors:

$$\lambda_1 \begin{pmatrix} 6 \\ a \\ 7 \end{pmatrix} + \lambda_2 \begin{pmatrix} -a \\ -1 \\ 2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 3 \\ a \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

In Koordinaten:

$$6\lambda_1 - a\lambda_2 + 3\lambda_3 = 0$$

$$a\lambda_1 - \lambda_2 + a\lambda_3 = 0$$

$$7\lambda_1 + 2\lambda_2 + 4\lambda_3 = 0$$

Matrizenschreibweise:

$$\begin{pmatrix}
6 & -a & 3 & 0 \\
a & -1 & a & 0 \\
7 & 2 & 4 & 0
\end{pmatrix} | (-1)$$

$$\begin{pmatrix}
6 & -a & 3 & 0 \\
-a & 1 & -a & 0 \\
7 & 2 & 4 & 0
\end{pmatrix} \stackrel{+}{\longleftrightarrow} \stackrel{(a)}{\longleftrightarrow} \stackrel{(-2)}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \stackrel{(-1)}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \stackrel{(-1)}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow}$$

Für a = -1 gibt es offensichtlich eine nicht triviale Lösung. Ab jetzt sei $a \neq -1$:

$$\begin{pmatrix}
6 - a^2 & 0 & 3 - a^2 & 0 \\
-a & 1 & -a & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}
\leftarrow$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-a & 1 & -a & 0 \\
6 - a^2 & 0 & 3 - a^2 & 0
\end{pmatrix}
\leftarrow$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0
\end{pmatrix}$$

Dieses LGS ist nur noch trivial lösbar, d. h. die 3 Vektoren sind dann linear unabhängig. Also bilden die 3 Vektoren für $a \neq -1$ eine Basis des \mathbb{R}^3 .

6. Basis für lineare Hülle

Gegeben seien die Vektoren

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -2 \\ 3 \end{pmatrix}, \vec{u}_4 = \begin{pmatrix} 0 \\ 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}.$$

- a) Sind \vec{u}_1 , \vec{u}_2 , \vec{u}_3 , \vec{u}_4 linear unabhängig?
- b) Bestimmen Sie eine Basis der linearen Hülle $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$.

a) Test auf linear abhingig brus. unabhingig
$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3 + \lambda_4 \vec{v}_4 = 0$$

wenn \vec{v}_i linear unabhingig, dann mussen alle $\lambda_i = 0$ sein

$$\begin{pmatrix}
1 & 2 & 3 & 0 \\
2 & 1 & 1 & 1 \\
-1 & 0 & 1 & -2 \\
-1 & -1 & -2 & 1 \\
1 & 2 & 3 & 0
\end{pmatrix}
\begin{vmatrix}
| \cdot (-2) \\
\downarrow \\
\downarrow \\
0 & 0 & 0
\end{vmatrix}
\begin{vmatrix}
| \cdot (-1) \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{vmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 1 \\
0 & 2 & 4 & -2 \\
0 & -3 & -5 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & -4 \\
0 & 0 & -2 & 4 \\
0 & 0 & 0 & 0
\end{vmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 Die Vektoren sind linear abhängig, da sich das LGS nicht auf Stufenform bringen lässt. In der 4. Zeile stehen lauter 0, d. h. der Parameter $\lambda_{\mathbf{y}}$ lässt sich somit frei bestimmen.

b)

Wir schreiben die Vektoren \vec{u}_i zeilenweise in eine Matrix und bringen diese auf

$$\begin{pmatrix}
12 & -1 & -1 & 1 \\
21 & 0 & -1 & 2 \\
31 & 1 & -2 & 3 \\
01 & -2 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
12 & -1 & -1 & 1 \\
0 & -3 & 2 & 1 & 0 \\
0 & -5 & 4 & 1 & 0 \\
0 & 1 & -2 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & -5 & 4 & 1 & 0
\end{pmatrix}$$

$$\begin{vmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -6 & 6 & 0 \\
0 & 0 & -4 & 4 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -6 & 6 & 0 \\
0 & 0 & -4 & 4 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -6 & 6 & 0 \\
0 & 0 & -4 & 4 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -6 & 6 & 0 \\
0 & 0 & -4 & 4 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -6 & 6 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 0 & -6 & 6 & 0 \\
0 & 0 & -4 & 4 & 0
\end{vmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & -1 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Die ersten 3 Zeilenvektoren entsprechen 3 möglichen Basisvektoren der linearen Hülle.

$$\frac{-7}{V_1} = \begin{pmatrix} 1\\2\\-1\\-1\\1 \end{pmatrix} \qquad \frac{-7}{V_2} = \begin{pmatrix} 0\\1\\-2\\1\\0 \end{pmatrix} \qquad \frac{-7}{V_3} = \begin{pmatrix} 0\\0\\-1\\1\\0 \end{pmatrix}$$

7. Linearkombination und lineare Hülle

Gegeben seien die Vektoren

$$\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 3 \\ -5 \\ 8 \\ 4 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 5 \\ \alpha \\ \beta \\ 8 \end{pmatrix}.$$

- a) Für welche α, β ist \vec{w} eine Linearkombination der $\vec{v}_i, i = 1,2,3$? Bestimmen Sie die Koeffizienten der Linearkombination.
- b) Sind die \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linear unabhängig? Begründen Sie Ihre Antwort.
- c) Bestimmen Sie eine Basis für die lineare Hülle $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \}$.

Damit das LGS lösbar ist, müssen die Verträglichkeitsbedingungen in der 3. und 4. Zeile erfüllt werden.

4. Leile:
$$0 = 18 + 2\alpha \iff \alpha = -9$$

3. Leile: $0 = -5 + \alpha + \beta => 0 = -5 - 9 + \beta$
 $\beta = 14$

b) linear anabhängig:
$$\lambda_1 \vec{V}_1 + \lambda_2 \vec{V}_2 + \lambda_3 \vec{V}_3 = 0$$

Wir betrachten die linke Seite des LGS aus a) und zwar nach den Umformungen. Es entsteht keine Stufenform, stattdessen sind in der 3. und 4. Zeile nur 0 vorhanden. Daraus folgt, dass die Vektoren linear abhängig sind.

Wir schreiben die Vektoren \vec{v}_i wieder als Zeilenvektoren einer Matrix und bringen diese auf Stufenform.

$$\begin{pmatrix}
1 & -1 & 2 & 0 \\
0 & -1 & 1 & 2 \\
3 & -5 & 8 & 4
\end{pmatrix}$$

$$\begin{vmatrix}
1 & -1 & 2 & 0 \\
0 & -1 & 1 & 2 \\
0 & -2 & 2 & 4
\end{vmatrix}$$

$$\begin{vmatrix}
1 & -1 & 2 & 0 \\
0 & -1 & 1 & 2 \\
0 & -2 & 2 & 4
\end{vmatrix}$$

Basis:
$$\vec{V_1} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$\vec{v}_{z} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix}$$