Lesson Plan

Theory of Computation Session: September'2021 - January'2022

1. Course Number and Name:

CSE 3031, Theory of Computation

2. Credits and Course Format:

Grading Pattern = 1

Credits = 4

3 Classes/week, 1hr/Class,

1 Problem Solving Session/Week, 2hr/Problem Solving Session

3. Target Students:

Programme: B.Tech. (5th Semester)

Branch: CSE, CS&IT

4. Instructor's Names:

- (1) **Dr. Niranjan panda**, Assistant Professor (CSE), ITER niranjanpanda@soa.ac.in
- (2) Dr. Bhupendra Kumar Gupta, Assistant Professor (CSE), ITER bhupendragupta@soa.ac.in
- (3) Dr. Barnali Sahu, Assistant Professor (CSE), ITER barnalisahu@soa.ac.in
- (4) Dr. Deepak Patel, Assistant Professor (CSIT), ITER deepakpatel@soa.ac.in
- (5) Mr. Pravas Ranjan Bal, Assistant Professor (CSE), ITER pravasbal@soa.ac.in
- (6) Mr. Soumen Nayak, Assistant Professor (CSE), ITER soumennayak@soa.ac.in
- (7) Dr. Jitesh Pradhan, Assistant Professor (CSE), ITER jiteshpradhan@soa.ac.in
- (8) Ms. Samuka Mohanty, Assistant Professor (CSE), ITER samukamohanty@soa.ac.in
- (9) Mr. Brijendra Pratap Singh, Assistant Professor (CSE), ITER brijendrasingh@soa.ac.in
- (10) Ms. Trushna Parida, Assistant Professor (CSE), ITER trushnaparida@soa.ac.in
- (11) Mr. Arka Chakraborty, Assistant Professor (CAMC), ITER arkabratochakraborty@soa.ac.in

(12) Mr. Naveen Kumar Maddu, Assistant Professor (CAMC), ITER maddunaveenkumar@soa.ac.in

5. Text Book and References:

(1) Michael Sipser, *Introduction to the Theory of Computation*, 3rd Edition, CENGAGE learning.

6. Specific Course Information:

- (a) Course Description: This course will focus on fundamental mathematical models of computation. We will be interested in both the inherent capabilities and limitations of these computational models as well as their relationships with formal languages. Rigorous arguments and proofs of correctness will be emphasized. Enhance/develop students' ability to understand and conduct mathematical proofs for computation and algorithms. Particular topics to be covered include:
 - * Finite automata, regular languages, and regular grammars.
 - * Deterministic and nondeterministic computations on various automata.
 - * Context free grammars, languages, and pushdown-automata
 - * Turing machines, Church's thesis, and undecidable problems

(b) Prerequisites and/or Co-requisites:

SE 2031 Introduction to Number Theory.

7. Course Learning Outcomes:

By the end of course through lectures, readings, homeworks, assignments and exams, students will be able to:

- 1. enhance/develop ability to understand and conduct mathematical proofs for computation and algorithms.
- 2. design and analyze finite automata, and regular expression for describing regular languages.
- 3. design and analyze pushdown automata, and context-free grammars.
- 4. design and analyze Turing machines.
- 5. design, implement, and evaluate computational models to meet desired needs of the languages, and formulate computational models for real-life problems.
- 6. demonstrate the understanding of key notions, such as algorithm, computability, decidability, and complexity through problem solving.

8. Brief List of Topics to Be Covered: (L: Lecture, PSS: Problem Solving Session)

(1) Automata and Language Theory

Finite automata, regular expressions, push-down automata, context free grammars, pumping lemmas.

(2) Computability Theory

Turing machines, Church-Turing thesis, decidability, halting problem, reducibility.

Contact Hour	Topics Covered	Remarks			
		(if any)			
Week #1:					
L-0	Introduce the grading pattern, credit, classes and problem solving session of the course. Motivation behind the course. Introduction to automata, computability and complexity theory.	(Class: w.e.f from 07-10- 2021) Aca- demic regulation 2019/2020, Sipser page 1-3			
L-1	Mathematical Notions and Terminology: Set, Sequences and tuples, Functions and Relations, Graphs, Strings and Languages, Boolean logic	Sipser page 3-16			
L-2	Definitions, Theorems, and proofs: Finding Proofs, Types of Proof: Proof by construction, proof by contradiction, proof by induction. Specifically proof $\sqrt{2}$ is an irrational number in different ways(i.e. by contradiction, by geometry etc.)	Sipser page 17- 24			
PSS-1	Solve as much as problems from exercise with new kind of problems related to this section	Sipser page 25···			
Week #2:					
L-3	Regular Languages: Finite Automata: Formal definition of a finite automaton, Examples of finite automata, formal definition of computation	Sipser page 31- 37			
L-4	Designing finite automata	Sipser page 37-41			
L-5	Designing finite automata contd···	Sipser page 37-41···			
PSS-2	Problems on Deterministic finite automata(Design, transition diagram, transition table, acceptance/rejection(Book Exercise: 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6)				
Week #3:					
L-6	Regular operations (union, concatenation, star). The class of regular languages is closed under the union operation, and concatenation operation.	Sipser page 44			
L-7	NonDeterminism: Formal definition of a nondeterministic finite automaton, NFA examples and sample design	Sipser page 44			
L-8	Equivalence of NFAs and DFAs	Sipser page 54			

PSS-3	Problems on regular operations(Exercise-1.4), NFAs(Exercise-1.7), NFA-DFA conversion							
Week #4:								
L-9	NFA and regular operations and introduction to regular expressions	Sipser page 63- 66						
L-10	Equivalence of regular expression and finite automata	Sipser page 66						
L-11	Equivalence of regular expression and finite automata $\operatorname{contd} \cdots$	Sipser page 66						
PSS-4	problems: Conversion of regular expression to nondeterministic finite automata, finite automata to regular expression							
Week #5:								
L-12	Non-regular languages: The pumping lemma for regular languages, proof, pigeonhoe principle	Sipser page 77						
L-13	Examples on pumping lemma	Sipser page 77						
L-14	Examples on pumping lemma contd··· & more discussion on closure properties of regular sets	Sipser page 77						
PSS-5	Discuss problems related to pumping lemma(Exercise- 1.29, 1.49, 1.51 etc)							
Week #6:								
L-15	Context-Free Languages: Context-Free Grammars: Formal Definition of a context-free grammars, Examples of context-free grammars, Designing context-free grammars	Sipser section 2.1 (page 101-106)						
L-16	Ambiguity, and Chomsky normal form	Sipser (page 107-108)						
L-17	Introduction to pushdown automata(PDA): formal definition of a pushdown automata, Examples on pushdown automata	Sipser (page(111-113)						
PSS-6	Problems context-free grammar, pushdown automata, Chomsky normal form	Sipser (page 154-156)						
Week #7:								
L-18	Pushdown automata and Equivalence with context-free languages	Sipser page 117						
L-19	Non context-free languages: The pumping lemma for context-free languages	Sipser page 125						

	N			
L-20	Non context-free languages: The pumping lemma for context-free languages · · ·	Sipser page 125		
PSS-7	Problems on equivalence between context-free languages and pushdown automata, pumping lemma for context-free languages			
Week #8:				
L-21	Deterministic context-free languages(DCFL): Properties of DCFLs	Sipser page 130- 133		
L-22	Deterministic context-free grammars, Relationship of DeterministicPDAs and DCFGs	Sipser page 135- 146		
L-23	Deterministic context-free grammars, Relationship of DPDAs and DCFGs \cdots , Parsing and LR(k) grammars	Sipser page 146- 151		
PSS-8	Problems on DPDA, DCFL			
Week #9:				
L-24	Computability Theory: Turing Machines: Formal definition of a Turing machine, Examples of Turing machine	Sipser page 165- 167-170		
L-25	Examples of Turing machine contd···	Sipser page 167- 170		
L-26	Variants of Turing machines: Multitape Turing machines, Nondeterministic Turing machine	Sipser page 176- 178		
PSS-9	Problems and discussion on multitape Turing machine			
Week #10:				
L-27	Enumerators, equivalence with other models	Sipser page 180- 181		
L-28	Variants of Turing machines cdots	Sipser page 176- 181		
L-29	The Definition of Algorithm: Hilbert's Problem	Sipser Sec 3.3 page 182		
PSS-10	Problems to be discussed related to Sipser Sec 3.2, and 3.3			
Week #11:				
L-30	Decidability: Decidable Languages, decidable problems concerning regular languages	Sipser Chapter 4 page 193-194		
L-31	Decidable problems concerning context-free languages	Sipser page 194- 198		

		G. 104						
L-32	Decidable problems···	Sipser page 194- 198						
PSS-11	Problems and Discussions related to decidability	Sipser page 210						
Week #12:								
L-33	Undecidability: The diagonalization method	Sipser page 201- 202						
L-34	An undecidable language	Sipser page 207						
L-35	A Turing-unrecognizable language	Sipser page 207- 209						
PSS-12	Problems and Discussions on undicidability	Sipser page $210\cdots$						
Week #13:								
L-36	Reducibility: undecidable problems from language theory	Sipser page 215- 216						
L-37	Reduction via computation histories	Sipser page 216- 220						
L-38	Reduction via computation histories···	Sipser page 216- 220						
PSS-13	A Simple reduction problems, Problems related to reductions	Sipser page 220- 227						
Week #14:								
L-39	Mapping reducibility	Sipser page 234						
L-40	Computable functions	Sipser page 234						
L-41	Formal definition of mapping reducibility	Sipser page 235						
PSS-14	Problems and discussions on reducibility	Sipser page 239						

9. Evaluation scheme (under Grading Pattern-1):

10. Program Outcomes & Program Specific Outcomes:

There are twelve program outcomes (1-12) for the Computer science & Engineering B. Tech program:

Program Outcomes (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specifis Outcomes (PSOs)

PSO 1. The ability to understand, analyze and develop computer programs in the areas related to business intelligence, web design and networking for efficient design of computer-based systems of varying complexities.

Department of Computer Science and Engineering

Institute of Technical Education & Research, SOA University

- PSO 2. The ability to apply standard practices and strategies in software development using open-ended programming environments to deliver a quality product for business success.
- 11. Correlation between the Course Outcomes(COs), the Program Outcomes(POs), and the Program Specific Outcomes(PSOs)

Course Articulation Matrix:

Theory of Computation (CSE 3031) Session: 2021-2022										2				
ANUS TO BE UNDER	POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	x													
CO 2			X											X
CO 3			X											
CO 4			X										X	
CO 5				X									X	
CO 6		X												X
Average	X	X	X	X									X	X