

Linear and Discrete Optimization

The geometry of linear programming

Optimal vertices

Optimality of vertices

Theorem

If a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leqslant b\}$ is feasible and bounded and if $\operatorname{rank}(A)=n$, then the LP has an optimal solution that is a vertex.

Proof:
$$x \in P$$
, $Ax \in b$, $Ax \in b$, $Ax \times b$ in active at x^n and $Ax \times b$, $Ax \times b$ in active at x^n and $Ax \times b$.

Idua: construct $g^n \in P$ s. In 1.) $CT. g^n \geq CT. x^n$

2.) $Ax \in b$ $A_2 \times \leq b$ in active at g^n rank $(A_1) \geq von h(A_1) + 1$

This proce due can not be repeated more than n times

For any $x^n \in P$ 3 weeks $2^n \in P$ s.th $CT. 2^n \geq CT. x^n$
 $=$ $x^n \in P$ 3 weeks $x^n \in P$ s.th x

Optimality of vertices

Consequence: Restrict to vertices

Quiz

Consider

$$\begin{array}{rcl}
\max & x_1 + x_2 \\
 & x_1 + x_2 & \leqslant & 1 \\
 & x_1 & \leqslant & 1 \\
 & x_2 & \leqslant & 1
\end{array}$$

Which of the following statements are true?

- Each optimal solution is a vertex.
- There exists an optimal solution that is a vertex.
- There are infinitely many optimal solutions.

