1 Monads and Comonads

1.1 Definition of Monads and Comonads

Definition 1.1 (Monad). A *Monad* (T, μ, η) in a Category X consists of

- an endofunctor $T: X \to X$
- a natural transformation η : $id_X \Rightarrow T$
- a natural transformation $\mu \colon T^2 \Rightarrow T$

such that the following diagrams commute:

(a)
$$T^{3} \longrightarrow T^{2} \qquad \qquad T \xrightarrow{\eta T} T^{2} \xleftarrow{T\eta} T$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \mu \qquad \downarrow \text{id}_{T}$$

$$T^{2} \longrightarrow T$$

Example 1 (preorder). Recall: A *preorder* (\mathcal{P}, \leq) is a category with \mathcal{P} as objects and a morphism between X and Y iff $X \leq Y$. A functor $T \colon \mathcal{P} \to \mathcal{P}$ is thus a monotonic function $\mathcal{P} \to \mathcal{P}$ $(x \leq y \implies Tx \leq Ty)$. The existence of the natural transformations η is equivalent to

$$x \le Tx \ \forall x \in \mathcal{P}$$

and the existence of μ is equivalent to

$$T(Tx) \le Tx \ \forall x \in \mathcal{P}$$

because there is at most one morphism $x \to y$, so the neccessary diagrams commute trivially. Now suppose $\mathcal P$ is a *partial order*, i.e. $x \le y \le x \implies x = y \ \forall x,y \in \mathcal P$. Then:

$$x \le Tx \implies Tx \le T(Tx)$$

 $T(Tx) \le Tx \implies Tx = T(Tx)$

so a Monad T in a partial order \mathcal{P} is a *closure operation* in \mathcal{P} , i.e. a monotonic function $T \colon \mathcal{P} \to \mathcal{P}$ with $x \leq Tx$ and $T(Tx) = Tx \ \forall x \in \mathcal{P}$.

Now every topological space X induces a partial order $\mathcal{P}=(\mathcal{P}(X),\subseteq)$. Here an example for a closure operation is taking the topological closure $A\mapsto \overline{A}$, since it holds for all $A\subseteq X$ that $A\subseteq \overline{A}$ and $\overline{\overline{A}}=\overline{A}$.

Definition 1.2 (Comonad). A *Comonad* (L, ε, ω) in a Category \mathcal{A} consists of

- an endofunctor $L \colon \mathcal{A} \to \mathcal{A}$
- a natural transformation $\varepsilon \colon L \Rightarrow \mathrm{id}_{\mathcal{A}}$
- a natural transformation $\omega \colon L \Rightarrow L^2$

such that the following diagrams commute:

(a)
$$L \xrightarrow{L\omega} L^{2}$$

$$\omega L \downarrow \qquad \downarrow L\omega \qquad \text{and} \qquad L \xleftarrow{\varepsilon L} L^{2} \xrightarrow{L\varepsilon} L$$

$$L^{2} \xrightarrow{\omega L} L^{3}$$

diagram umdrehen

Definition 1.3 (Morphism of monads). Let X be a category, let (T, η, μ) and (T', η', μ') be monads in X. We say that a natural transformation $\delta \colon T \Rightarrow T'$ is a *morphism of monads* if it preserves the unit and the multiplication, i.e. the following diagrams commute:

$$\operatorname{id}_{x} \xrightarrow{\eta_{x}} Tx \\ \downarrow \delta_{x} \\ T'x$$

$$T^{2}x \xrightarrow{\mu_{x}} Tx$$

$$\delta T' \circ T\delta \downarrow \qquad \qquad \downarrow \delta_{x}$$

$$T'^{2} \xrightarrow{\mu'_{x}} T'x$$

show that the other composition is the same(siehe iPad)

definition

Definition 1.4 (Morphism of comonads).