BME Gépészmérnöki Kar	SZILÁRDSÁGTAN	Név:		
Műszaki Mechanikai Tanszék	1. HÁZI FELADAT	Neptun kód: MQHJ0H		
2024/25 II.	Határidő: lásd Moodle	Késedelmes beadás: □ Javítás: □		
Nyilatkozat: Aláírásommal igazolom, hogy szítettem el, az abban leírtak saját megértése	Aláírás:			

Csak a formai követelményeknek megfelelő feladatokat értékeljük! http://www.mm.bme.hu/targyak/bsc/sziltan

Feladatkitűzés

Az ábrán vázolt szerkezet mindhárom rúdja csuklósan kapcsolódik, anyaguk homogén, izotrop, lineárisan rugalmas. Az (1)-es rúd keresztmetszete az ábrán látható táglalap alakú zárt szelvény, a negyedkörív alakú (2)-es rúdé kör, míg a (3)-as rúdé háromszög. Az (1)-es rúd anyagára megengedett feszültség σ_{meg} .

Adatok

R [m]	<i>L</i> [m]	d [mm]	c [mm]	F_1 [kN]	F_2 [kN]	p [kN/m]	$\sigma_{ m meg} [{ m MPa}]$
0.3	0.35	50	30	3	3	4.50	100

(Rész)eredmények

A [kN]	B [kN]	$M_{ m h,max}^{(1)}$ [kNm]	$K_{y,\min}$ [cm ³]	<i>b</i> [mm]	Szelv.sorszám
$\sigma_{\max}^{(1)}$ [MPa]	$V_{\mathrm{max}}^{(1)}\left[\mathrm{kN}\right]$	$ au_{ m max}^{(1)} $ [MPa]	$\sigma_{K,\mathrm{max}}^{(2)}$ [MPa]	$\sigma_{C,\mathrm{max}}^{(3)}$ [MPa]	β_{zerus} [°]

Pontozás

Minimumfeladat			Felac	datok			- Dokumentáció	Összesen	
Willimumreladat	4.	5.	6.	7.	8.	9.	Dokumentacio	OSSZESCII	
	/4	/2	/3	/4	/3	/4	/5	/25	

Feladatok

Az 1-3. feladatok minimumfeladatok, helyes megoldásuk előfeltétele a házi feladat elfogadásának!

- 1. Készítsen léptékhelyes ábrát a szerkezetről és számítsa ki az A és B kényszerekben ébredő reakció komponenseket! **Minimumfeladat**
- 2. Rajzolja meg a csuklók és a rudak szabadtest ábráit, majd ezek alapján határozza meg az egyes rudak terhelését! **Minimumfeladat**
- 3. Írja fel az (1)-es rúd igénybevételi függvényeit az x koordináta segítségével és rajzolja fel az igénybevételi ábrákat! **Minimumfeladat**
- 4. Méretezze az (1)-es rudat tiszta hajlításra az ábrán jelölt zárt szelvényt alkalmazva:
 - Keresse meg a veszélyes keresztmetszetet és határozza meg az ott fellépő abszolút értékben maximális $M_{\rm h,max}^{(1)}$ hajlítónyomatékot!
 - Határozza meg a szükséges minimális keresztmetszeti tényezőt és az annak megfelelő b méret egész mm-re felfelé kerekített értékét!
- 5. A tárgy honlapján található szelvény táblázatból válassza ki azt a legkisebb keresztmetszeti tényezőjű U-szelvényt, amellyel az (1)-es rúdnál alkalmazott zárt szelvény tiszta hajlítás esetén az ábrán jelölt módon helyettesíthető!
- 6. Ellenőrizze, hogy a vizsgált veszélyes keresztmetszetben a normálerő hatását is figyelembe véve megfelel-e a tartó a választott *b* méretű zárt szelvénnyel!
 - Amennyiben szükséges, adja meg a keresztmetszet új b^* méretét egész mm-re felfelé kerekítve, hogy a normálerőt is figyelembe véve megfeleljen a tartó!
 - A jellegzetes értékek feltüntetésével ábrázolja a normálfeszültség eloszlását veszélyes keresztmetszetben a módosított b^* mérettel! Adja meg a legnagyobb abszolút értékű $\sigma_{\rm max}^{(1)}$ feszültséget előjelhelyesen!
- 7. Az (1)-es rúd nyírás szempontjából legveszélyesebb keresztmetszetében írja fel a nyírásból adódó csúsztató feszültség eloszlást leíró függvényt, és ábrázolja a jellegzetes értékek feltüntetésével! Adja meg a legnagyobb abszolút értékű $|\tau_{\max}^{(1)}|$ feszültséget! Használja az eredeti b méretű zárt szelvényt!
- 8. Számítsa ki a (2)-es rúd $\varphi=30^\circ$ -nál elhelyezkedő K keresztmetszetében fellépő igénybevételeket és a jellegzetes értékek feltüntetésével rajzolja meg a normálfeszültség eloszlását! Adja meg a legnagyobb abszolút értékű $\sigma^{(2)}_{K,\max}$ feszültséget előjelhelyesen!
- 9. Számítsa ki a (3)-as rúd C keresztmetszetében a hajlításból ébredő legnagyobb abszolút értékű $\sigma_{C,\max}^{(3)}$ normálfeszültséget, valamint adja meg a zérustengely és az y_3 tengely által bezárt β_{zerus} szöget! (A rudak C pontbeli összeszereléséhez szükséges furatok hatásától eltekintünk.)