M-Estimation, I: Introduction and Asymptotic Properties

Jesper Riis-Vestergaard Sørensen

University of Copenhagen, Department of Economics

Outline

Introduction

Nonlinear Regression Identification Estimation

M-Estimation

Asymptotic Properties of M-Estimators

Consistency

Normality

Introduction

Nonlinear Estimation Chapters

- ▶ W. Chapters 12–13: Abstract and technical.
- ▶ But generality can be useful!
- ▶ Unified framework for estimation.
 - **Ex:** OLS, Nonlinear LS, Maximum likelihood...
- ▶ There will be no exam questions in Ch. 12–13 specifically.
- ▶ But important—and required—background knowledge.

Steps in Econometric Analysis

1. Identification: Given distribution of observables, (how) can we uniquely recover parameters?

2. Estimation: Given sample, how to construct parameter estimates?

(onition, rates of unegote

3. Inference: Confidence intervals, prediction intervals, hypothesis testing, etc.

Steps in Econometrics Analysis

- ▶ Identification: Has nothing to do with sample.
- **Estimation**: What formula(e)/algorithm to follow?
- ▶ Inference: Requires (asymptotic) distribution theory.

Steps highly interdependent.

- ▶ Identification method may suggest estimator.
- ▶ Inference method hinges on estimation method.

Nonlinear Regression

Nonlinear Regression Model

- \triangleright y: scalar outcome.
- **x**: *K*-vector of explanatory variables.

candidate estimators

- $ightharpoonup m(\mathbf{x}, \boldsymbol{\theta})$ parametric model for $E(y|\mathbf{x})$.
- ▶ $\Theta \subseteq \mathbb{R}^P$ parameter space. Fixed dim P.
- ► Mean model correctly specified if

expected value of y given x is exactly given by our model thereof at $\text{theta}_{0} \rightarrow \text{for all past realisations of x}$ $E\left(y \mid \mathbf{x}\right) = m\left(\mathbf{x}, \boldsymbol{\theta}_{o}\right) \tag{1}$

ındidate paramteter

holds for some $\theta_o \in \Theta$.

 \triangleright θ_o often called "true value of theta."

Examples of Functional Form Ex. $n(x, 0) = x\theta$

Ex. If y nonnegative, may take

like income

$$m(\mathbf{x}, \boldsymbol{\theta}) = \exp(\mathbf{x}\boldsymbol{\theta}).$$
 (exponential regression)

 \triangleright Ex. If $y \in \{0, 1\}$, may take

$$m(\mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-\mathbf{x}\boldsymbol{\theta})}.$$
 (logistic regression)

▶ Here: K = P. But $K \ge P$ allowed.

no of explanatory variables (K) = no of candidate parameters (P)

Error Formulation

- ► Assume correct specification (NLS.1).
- ▶ Defining $u := y m(\mathbf{x}, \theta_o)$, may write

$$y = m(\mathbf{x}, \boldsymbol{\theta}_o) + u, \quad E(u|\mathbf{x}) = 0.$$

- $ightharpoonup E(u|\mathbf{x}) = 0$ a consequence of model.
 - ▶ Not an additional assumption.
- ► Error formulation useful for abbreviations.

Discussion

- $ightharpoonup E(u|\mathbf{x}) = 0$ does *not* imply u and \mathbf{x} independent.
- ▶ ... only cond'l *mean* independence.

heteroskedasticity

- ▶ May have var (u|x) nonconstant (in x).
- ▶ If $y \ge 0$, must have $u \ge -m(\mathbf{x}, \theta_0)$...
- \triangleright Error formulation yields *semi*parametric model for $y|\mathbf{x}$.
 - ▶ Parametric model for $E(y|\mathbf{x})$.
 - ▶ But haven't specified parametric distribution for $u|\mathbf{x}$.

We'll show: θ_o solves population problem (PP)

$$\min_{\boldsymbol{\theta} \in \Theta} E\{ [y - m(\mathbf{x}, \boldsymbol{\theta})]^2 \}.$$

▶ Model m + parameter space Θ known quantities.

ightharpoonup Hence, **IF** given distribution of (y, x), PP problem known.

 \triangleright θ_0 identified if PP solution unique.

there is one and only one solution to the population
-> there cannot be another set of parameters that solves the population problem

 $\pm m(\mathbf{x}, \boldsymbol{\theta}_o)$ and expanding square,

$$[y - m(\mathbf{x}, \boldsymbol{\theta})]^{2} = \{[y - m(\mathbf{x}, \boldsymbol{\theta}_{o})] - [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_{o})]\}^{2}$$

$$= [y - m(\mathbf{x}, \boldsymbol{\theta}_{o})]^{2} + [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_{o})]^{2}$$

$$- 2u[m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_{o})].$$
Taking expectations,

♦€ ®

Taking expectations

$$E\{[y - m(\mathbf{x}, \boldsymbol{\theta})]^2\} = E\{[y - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2\}$$

 $+ E\{ [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2 \}.$

Have shown

"Population criterion function"
$$E\{[y-m(\mathbf{x},\boldsymbol{\theta})]^2\} = E\{[y-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\} + E\{[m(\mathbf{x},\boldsymbol{\theta})-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\}.$$

It follows that

$$E\{[y-m(\mathbf{x},\boldsymbol{\theta})]^2\} \geqslant E\{[y-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\} \text{ for all } \boldsymbol{\theta} \in \Theta.$$

 $\Rightarrow \theta_0$ solves PP.

Bo eargin they-nexally

does not yield uniqueness Q: Uniqueness?

Identification Condition

Have shown

shown
$$E\{[y-m(\mathbf{x},\boldsymbol{\theta})]^2\} = E\{[y-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\} + E\{[m(\mathbf{x},\boldsymbol{\theta}_o)-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\}.$$

expected square distance between our two models for the conditional mean (no 1 is cond.mean for candidate regressors, no 2 is the 'true' cond.mean)

 θ_{0} uniquely solves PP if and only if

$$E\{[m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2\} > 0 \text{ for all } \boldsymbol{\theta} \in \Theta \setminus \{\boldsymbol{\theta}_o\}.$$

Q: When will identification fail?

Whenever we have multiple solutions to the population problem

Identification Failures / (wccuses

Example: Linear regression, $m(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{x}\boldsymbol{\theta}$ with $\boldsymbol{\Theta} = \mathbb{R}^K$.

Here

$$E\{ [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2 \} = E\{ [\mathbf{x}(\boldsymbol{\theta} - \boldsymbol{\theta}_o)]^2 \}$$

$$= (\boldsymbol{\theta} - \boldsymbol{\theta}_o)' E(\mathbf{x}'\mathbf{x})(\boldsymbol{\theta} - \boldsymbol{\theta}_o) .$$
for all \text{\text{theta} diff than \text{\text{theta}_0}}

- \gt > 0 if $E(\mathbf{x}'\mathbf{x})$ positive definite.
 - umns must be linearly independent
- ► Just usual (population) rank condition.

If
$$E(x,x)$$
 singular = 0. $\theta = \theta_0 + t$
 $\exists v \neq 0$ sh $= (x,x)v = 0$.

Identification Failures

= multiple solution to the population problem!

Example: Nonlinear regression with

$$m(\mathbf{x},\boldsymbol{\theta}) = \theta_1 + \theta_2 x_2 + \theta_3 x_3^{\theta_4}.$$

- ▶ Suppose $\theta_{o3} = 0$. (Truth linear.)
- ▶ At θ with $\theta_3 = 0$ (= θ_{o3})...
- ightharpoonup ... criterion function independent of θ_4 .
- For this θ_o , identification fails.
- ► Example of poorly identified model.

"\theta_4 disappears"

Estimation

 θ_o solves PP,

$$\theta_o \in \underset{\theta \in \Theta}{\operatorname{argmin}} E\{[y - m(\mathbf{x}, \theta)]^2\}.$$

Analogy principle suggests,

$$\widehat{\mathbf{b}} = \widehat{\theta}_{\mathbf{N}} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \left[y_i - m(\mathbf{x}_i, \boldsymbol{\theta}) \right]^2.$$

Nonlinear least squares (NLS) estimator.

For now, assume existence (but not uniqueness) of solution.

Consistency? 2,400.

Q: Does NLS consistently estimate θ_o ?

It turns out answer is "yes," provided (roughly)

- 1. θ_0 is identified.
- 2. Criterion function convergence

$$\frac{1}{N} \sum_{i=1}^{N} \left[y_i - m(\mathbf{x}_i, \boldsymbol{\theta}) \right]^2 \xrightarrow{"} E \left\{ \left[y - m(\mathbf{x}, \boldsymbol{\theta}) \right]^2 \right\}$$

... in suitable sense.

'a heuristic convergence' = in a calculated-quess kind of sense

Next: More detail in general setting.

M-Estimation

M-Estimand "Target estimation"

We now consider more abstract setting.

Let $q(\mathbf{w}, \boldsymbol{\theta})$ denote function of

- 1. random vector \mathbf{w} [observables, e.g. $\mathbf{w} = (\mathbf{y}, \mathbf{x})$],
- 2. parameters θ .

True parameter θ_o assumed unique solution to PP

$$\theta_o = \underset{\theta \in \Theta}{\operatorname{argmin}} E\left[q\left(\mathbf{w}, \theta\right)\right].$$

"M" short for "minimization."

- ► Or "maximization" (sign change).
- q sometimes called loss function.

M-Estimator

Given random (as in i.i.d.) sample $\{\mathbf{w}_i\}_1^N$.

Analogy principle suggests sample problem (SP)

$$\min_{\boldsymbol{\theta}\in\Theta}\frac{1}{N}\sum_{i=1}^{N}q\left(\mathbf{w}_{i},\boldsymbol{\theta}\right).$$

Definition: Any SP solution is an M-estimator of θ_o .

Example M-Estimators

- $NLS: q(\mathbf{w}, \boldsymbol{\theta}) = [y m(\mathbf{x}, \boldsymbol{\theta})]^2.$
- ► Maximum likelihood: $q(\mathbf{w}, \boldsymbol{\theta}) = -\ln f(y|\mathbf{x}; \boldsymbol{\theta})$.
- ▶ Least absolute deviations (LAD): $q(\mathbf{w}, \theta) = |y \mathbf{x}\theta|$.
- ...and many, many more.

Scope of Framework

Observables \mathbf{w}_i allow scalar/vector outcome.

- ▶ One equation, one cross section \Rightarrow scalar y_i .
- ▶ Multiple equations, one cross section \Rightarrow vector \mathbf{y}_i .
 - **Ex:** Joint labor supply decision (wife/husband),

$$y_i^{\text{w}} = \text{labor supply, wife, family } i,$$

 $y_i^{\text{h}} = \text{labor supply, husband, family } i.$

- ▶ One equation, panel data \Rightarrow vector $\mathbf{y}_i = (y_{i1}, \dots, y_{iT})'$.
 - FE: $q(\mathbf{w}_i, \theta) = \sum_{t=1}^{T} (\ddot{y}_{it} \ddot{\mathbf{x}}_{it}\theta)^2$

Formulation very general!

Asymptotic Properties of M-Estimators

Recap: Setting

M-estimand solves population problem (PP),

$$\theta_{o} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} E\left[q\left(\mathbf{w}, \boldsymbol{\theta}\right)\right].$$

M-estimator solves sample problem (SP),

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \frac{1}{N} \sum_{i=1}^{N} q\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right).$$

Q: Properties?

Consistency

Criterion functions (minimands) and minimizers:

$$N^{-1}\sum_{i=1}^N q(\mathbf{w}_i, \boldsymbol{\theta})$$

$$E[q(\mathbf{w}, \boldsymbol{\theta})]$$

$$\widehat{m{ heta}}$$

$$heta_o$$

Q: Relationships?

By definition of M-estimand and M-estimator:

By (weak) law of large numbers,

$$N^{-1}\sum_{i=1}^N q(\mathbf{w}_i, \boldsymbol{\theta}) \stackrel{P}{\longrightarrow} E\left[q(\mathbf{w}, \boldsymbol{\theta})\right]$$

$$\vdots \\ \vdots \\ \vdots \\ \widehat{\boldsymbol{\theta}} \\ \boldsymbol{\theta}_o$$

Seems reasonable...

Q: When does minimand convergence imply minimizer convergence (in prob).

Q: When is $\widehat{\boldsymbol{\theta}}$ consistent for $\boldsymbol{\theta}_o$?

Suffices (essentially) following two conditions hold:

- 1. Identification: θ_o is identified.
- 2. Uniform Law of Large Numbers: S minimand converges to P equivalent uniformly in probability,

$$\max_{\boldsymbol{\theta} \in \Theta} \left| \frac{1}{N} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}) - E[q(\mathbf{w}, \boldsymbol{\theta})] \right| \stackrel{p}{\to} 0.$$

Identification Assumption

At this level of abstractness, assume identification, i.e.

any theta different than the true one

$$E\left[q\left(\mathbf{w},\boldsymbol{\theta}\right)\right] > E\left[q\left(\mathbf{w},\boldsymbol{\theta}_{o}\right)\right] \text{ for all } \boldsymbol{\theta} \in \Theta \backslash \left\{\boldsymbol{\theta}_{o}\right\}.$$

In words: θ_o unique solution to PP.

▶ May make less abstract in applications (later).

Uniform Law of Large Numbers

May deduce minimand convergence using:

Theorem (W. Theorem 12.1)

If

- 1. $\Theta \subseteq \mathbb{R}^P$ compact (i.e. closed + bounded),
- 2. $q(\mathbf{w}, \cdot)$ continuous (in $\boldsymbol{\theta}$),

and additional technical conditions hold, then

$$\max_{\boldsymbol{\theta} \in \Theta} \left| \frac{1}{N} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}) - E[q(\mathbf{w}, \boldsymbol{\theta})] \right| \stackrel{p}{\rightarrow} 0.$$

sample criterion function converges in probability to its population equivalent

Uniform law of large numbers (ULLN).

Consistency Theorem

Theorem (W. Theorem 12.2)

Under the assumptions of W. Theorem 12.1 (ULLN) and assuming identification of θ_o ,

- 1. $\widehat{\boldsymbol{\theta}}$ solves SP, and
- 2. $\widehat{\boldsymbol{\theta}}$ is consistent for $\boldsymbol{\theta}_o$, $\widehat{\boldsymbol{\theta}} \to_{\rho} \boldsymbol{\theta}_o$.

More Formal Consistency Argument

Proof Sketch:

- 1. Compact $\Theta + q(\mathbf{w}, \cdot)$ continuous \Rightarrow SP solution exists.
 - Why? Cont's fetn actived on compact space attains its
- 2. ULLN \Rightarrow in limit, S/P minimands coincide (in prob).
- 3. Identification implies unique PP solution, so must have $\widehat{\boldsymbol{\theta}} \rightarrow_{n} \boldsymbol{\theta}_{o}$.

Graphical Illustration of Consistency

Graphical Illustration of Consistency

When minimand difference $\leq \varepsilon$, S minimand in "sleeve"

Graphical Illustration of Consistency

Role of Uniform Convergence

Consider (deterministic) functions

$$f_n(\theta) := egin{cases} rac{1}{2}, & \theta = 0, \\ 0, & \theta = n, \\ 1, & ext{otherwise.} \end{cases} \implies \operatorname{argmin} f_n = \underline{\qquad \qquad \qquad }$$

For each θ , $f_n(\theta) \to f(\theta)$ where

$$f(\theta) := \begin{cases} \frac{1}{2}, & \theta = 0, \\ 1, & \theta \neq 0. \end{cases} \implies \operatorname{argmin} f = \underline{\hspace{1cm}}$$

▶ Minimizer?____escaping to the horizon. The sequence of minimizers grows without bound

Role of Uniform Convergence

Problem? why don't we see minimzer convergence? Convergence is not sufficiently uniform.

$$\max_{\theta \in \mathbb{R}} |f_n(\theta) - f(\theta)| = \underbrace{\int_{\mathbf{h}} (\mathbf{h}) - f(\mathbf{h})}_{\text{they coincide at every point, except at a single point}} = \mathbf{1}$$

the difference being 1 for all n as n grows without bound

▶ Similar problem with f_n stochastic.

A) O

Example ruled out by compactness.

compact = closed and bounded (?)

 \triangleright $\Theta = \mathbb{R}$ unbounded.

since it is unbounded, it is not compact in other words, it is not continous?

Necessity of Uniform Convergence

- ▶ Uniform convergence sufficient but not necessary.
- ► Think: Linear model + squared loss

$$q(\mathbf{w},\boldsymbol{\theta}) = (y - \mathbf{x}\boldsymbol{\theta})^2.$$

- Natural parameter space entire \mathbb{R}^{P} .
- Estimator in closed form.
- ▶ Uniform convergence/compactness not needed.
- ▶ Here: We use it to *deduce* minimizer convergence.

Normality

Additional Assumptions

Have for consistency invoked:

- $m{ heta}_o$ identified unique solution/minimizer of the population objective function
- ➤ O compact

 A compact set is for example [0,1], but not (0,1) -> we have closed endpoints need to have finite amount of parameters in the parameter space
- $ightharpoonup q(\mathbf{w},\cdot)$ continuous
- ► (+ technical...)

Asymptotic normality requires stronger assumptions.

Additional Assumptions

For asymptotic normality, add:

- ▶ θ_o interior to Θ . [Draw]
- ▶ $q(\mathbf{w}, \cdot)$ twice continuously differentiable on int Θ

Remarks:

- ightharpoonup Interiority requires int Θ nonempty
- \triangleright ... used to expand around θ_o
- ► Twice cont' diff' facilitates second-order expansion.

Additional Assumptions

Abbreviate

Score:
$$\mathbf{s}(\mathbf{w}, \boldsymbol{\theta}) := \frac{\partial}{\partial \boldsymbol{\theta}} q(\mathbf{w}, \boldsymbol{\theta}),$$
 of $\mathbf{g}(P \times 1)$

Hessian: $\mathbf{H}(\mathbf{w}, \boldsymbol{\theta}) := \frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} q(\mathbf{w}, \boldsymbol{\theta}).$ $(P \times P)$

The add: $\mathbf{g}(\mathbf{w}, \boldsymbol{\theta}) := \mathbf{g}(\mathbf{w}, \boldsymbol{\theta})$

- Further add:
 - $E[s(\mathbf{w}, \mathbf{\theta_o})] = \mathbf{0},$
 - score func evaluated at the true value of \theta is zero
 - \triangleright $E[\mathbf{H}(\mathbf{w}, \frac{\boldsymbol{\theta}_o}{\boldsymbol{\theta}_o})]$ positive definite.

Full rank condition No linearly dependent columns -> all columns are linearly independent

Essentially follow from FOC/SOC of minimization.

Let **A** be an $(n \times K)$ matrix with $rank(\mathbf{A}) = K$:

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

implies we are looking at the transposed derivative

Asymptotic Normality of M-Estimators

Theorem (W. Thm 12.3)

Provided

- \blacktriangleright $(\theta_o identified + interior to \Theta compact,$
- ▶ $q(\mathbf{w}, \cdot)$ cont' + twice cont' diff' on int Θ ,
- $ightharpoonup E[s(w, \theta_o)] = 0$, and $E[H(w, \theta_o)]$ positive definite, ightharpoonup
 ighth
- ightharpoonup (+ technical),

$$\sqrt{N}(\widehat{\theta} - \theta_o) \stackrel{d}{\to} N\left(\mathbf{0}, \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1}\right),$$

$$\mathbf{A}_o := E\left[\mathbf{H}\left(\mathbf{w}, \theta_o\right)\right],$$

$$\mathbf{B}_o := E\left[\mathbf{s}\left(\mathbf{w}, \theta_o\right) \mathbf{s}\left(\mathbf{w}, \theta_o\right)'\right].$$

Mean Value Theorem

- ▶ Normality proof relies on mean value theorem.
- ▶ Consider scalar case (P = 1).

Mean Value Theorem (MVT):

- ▶ Let $f : [a, b] \to \mathbb{R}$ continuous + differentiable on (a, b).
- ▶ Then for some $c \in (a, b)$,

$$f(b) - f(a) = f'(c)(b - a)$$
.

▶ Slope of secant attained somewhere in between. [Draw]

▶ In scalar (P = 1) case,

$$s(\mathbf{w}, \theta) = \frac{\partial}{\partial \theta} q(\mathbf{w}, \theta), \quad H(\mathbf{w}, \theta) = \frac{\partial^2}{\partial^2 \theta} q(\mathbf{w}, \theta).$$

▶ Twice cont' diff' + MVT with f = score average,

$$\frac{1}{N}\sum_{i=1}^{N}s(\mathbf{w}_{i},\widehat{\theta})-\frac{1}{N}\sum_{i=1}^{N}s(\mathbf{w}_{i},\theta_{o})=\frac{1}{N}\sum_{i=1}^{N}H\left(\mathbf{w}_{i},\overline{\theta}\right)(\widehat{\theta}-\theta_{o}).$$

- $\widehat{\theta} \in \text{int } \Theta \text{ w.p.a.1. (consistency)}$
- ▶ solves SP, so LHS vanishes. (FOC.)

Have argued:

$$-\frac{1}{N}\sum_{i=1}^{N}s\left(\mathbf{w}_{i},\theta_{o}\right)=\frac{1}{N}\sum_{i=1}^{N}H\left(\mathbf{w}_{i},\overline{\theta}\right)(\widehat{\theta}-\theta_{o}).$$

Isolate $\widehat{\theta} - \theta_o$ and $\times \sqrt{N}$:

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \left[-\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right] / \left[\frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right].$$

Analyze each RHS factor in turn.

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \left[-\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right] / \left[\frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right].$$

- ▶ $\overline{\theta}$ trapped between $\widehat{\theta}$ and $\theta_o \Rightarrow \overline{\theta} \to_{\rho} \theta_o$.
- ▶ So $N^{-1} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \approx N^{-1} \sum_{i=1}^{N} H(\mathbf{w}_i, \theta_o)$ (ULLN).

$$\Rightarrow 1 / \frac{1}{N} \sum_{i=1}^{N} H\left(\mathbf{w}_{i}, \overline{\theta}\right) \stackrel{p}{\rightarrow} 1/A_{o}. \qquad (CMT/Slutsky)$$

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \left[-\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right] / \left[\frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right].$$

► Mean zero scores + CLT ensure

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}s(\mathbf{w}_{i},\theta_{o})\stackrel{d}{\to}\mathrm{N}\left(0,B_{o}\right),\quad B_{o}=E[s(\mathbf{w},\theta_{o})^{2}].$$

Harvesting our results,

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \underbrace{\left[-\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right]}_{\rightarrow_d N(0, B_o)} / \underbrace{\left[\frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right]}_{\rightarrow_\rho 1/A_o} \\
\stackrel{d}{\rightarrow} N(0, B_o) / A_o \qquad \text{(product rule/Slutsky)} \\
\stackrel{d}{=} N(0, B_o/A_o^2) .$$

- ► Vector-case proof follows similarly:
 - 1. Linear approximation (MVT)
 - 2. Convergence of inverse Hessian term (ULLN+CMT)
 - 3. CLT + Product rule.

Discussion

- ► Thm. gives conditions for *any* M-estimator to be asymptotically normal.
- ► Implies sandwich form

$$\operatorname{Avar}(\widehat{\boldsymbol{\theta}}) = \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1} / N.$$

- ▶ Akin to earlier results (with estimators in closed form).
- Note: Avar $(\widehat{\theta})$ depends on q.
- ► We prefer low variance.

Discussion

Q: A_0 must be invertible? How does this work in a HD-setting?

▶ $\mathbf{A}_o = E[\mathbf{H}(\mathbf{w}, \boldsymbol{\theta}_o)]$ assumed positive definite.

▶ Zero on diagonal \approx infinite variance (through \mathbf{A}_o^{-1})

▶ Failure of p.d ≈ P minimand flat around θ_o

 $\triangleright \approx$ Identification failure.

Role of Interiority

We used $\theta_o \in \operatorname{int} \Theta$ for differentiation

Q: What if θ_o on boundary of parameter space?

A: No reason to expect \sqrt{N} -asymptotic normality.

Example: Parameter on Boundary

Let $y_i \sim \text{i.i.d.}(\theta_o, 1)$ with $\theta_o \text{ known } \geqslant 0$.

Nonnegativity enforced

$$\widehat{\theta} = \underset{\theta \geqslant 0}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \theta)^2 = \max(0, \overline{y}),$$

If
$$\theta_o = 0$$
 (boundary case), then $\sqrt{N}(\hat{\theta} - 0) \ge 0$.

$$\sqrt{N}(\widehat{\theta}-0)$$
 does \rightarrow_d ... but not to normal. [Whiteboard]