Auktionen und Märkte

Unvollständige Information - Das SIPV Model

Groh/von Wangenheim

Universität Bonn, Wintersemester 2024/2025

Das SIPV-Setting mit risikoneutralen Bietern

Hauptannahmen:

- (A1) Private Wertschätzungen (PV: Private Values)
- (A2) Unabhängige Information (I: Independent Values)
- (A3) Symmetrie (S: Symmetric Distributions)
- (A4) Risikoneutralität

Private Wertschätzungen

Private Wertschätzungen (PV):

- Jeder Bieter i kennt seine eigene Wertschätzung (WS) v_i .
- Die Wertschätzung jedes anderen Bieters j wird als eine Zufallsvariable \tilde{v}_i betrachtet.
- Die Verteilungen der Zufallsvariablen der Wertschätzungen sind allgemein bekannt.
- Common Knowledge: Ich weiß, dass die anderen die Verteilung kennen, usw.

Entscheidender Punkt: Eigene WS würde sich nicht ändern, wenn man die WS der anderen lernen würde.

 Mich interessiert die WS der anderen nur indirekt, dadurch dass sie die erwarteten Gebote der anderen (und somit meine Gewinnwahrscheinlichkeit) beeinflussen.

Unabhängige Information

Unabhängige Information (I):

- $\tilde{v}_1, \dots, \tilde{v}_n$ sind stochastisch unabhängig voneinander verteilt.
- Wir bezeichnen üblicherweise mit $F_i(v_i)$ die Verteilungsfunktionen (Randverteilungen) von \tilde{v}_i .
- Unabhängigkeit impliziert, dass für die gemeinsame Verteilungsfunktion $F(v_1, ..., v_n)$ gilt:

$$F(v_1,\ldots,v_n)=F_1(v_1)\cdot\ldots\cdot F_n(v_n)$$

Entscheidender Punkt: Wenn ich meine eigene WS kenne, sagt mir das nichts über die WS der anderen aus.

- Das ist wichtig, denn auch wenn ich mich nicht direkt für die WS der anderen interessiere, so doch indirekt dadurch, dass deren WS deren Gebote beeinflusst.
- Impliziert: Zwei unterschiedliche Bieter haben die gleichen Erwartungen über die WS (und das Verhalten) eines dritten Bieters.

Symmetrie

Symmetrie (S):

- Die WS aller Bieter wird aus der gleichen Verteilung gezogen \rightarrow die Verteilungsfunktionen F_i sind für alle Bieter gleich.
- Implikation: Alle gegnerischen Bieter sind f
 ür mich gleich.
- Für gegebene WS sieht das Problem für jeden Bieter gleich aus (n – 1 andere Bieter mit WS verteilt jeweils unabh. bzgl. F).

Häufige zusätzliche Annahmen:

- Realisierungen von \tilde{v}_i sind aus einem Intervall.
- Wenn nicht anders festgelegt: [0, 1] (Normierung, vereinfacht die Rechnungen).
- Die Randverteilung $F(v_i)$ besitzt eine stetige Dichtefunktion $f(v_i)$, die auf dem betrachteten Intervall strikt positiv ist.

Risikoneutralität

Risikoneutralität:

- (Erwartungs)Nutzen eines Bieters ist $U_i = Pr(i \text{ gewinnt})v_i \mathbb{E}[p_i]$.
- Implikation: Einem Bieter ist nur wichtig, wieviel Geld er im Durchschnitt zahlt.
- Wertschätzung für das Gut und gezahlter Preis sind unabhängig voneinander.

Exkurs: Allgemeinere Formulierung

Wichtig: Durch die Annahmen der Unabhängigen Information und Privaten Wertschätzungen werden interessante Fälle ausgeschlossen!

Allgemeinere Formulierung:

- 2 Bieter und 2 Zufallsvariablen \tilde{x}_1 und \tilde{x}_2 , mit Verteilung $F(x_1, x_2)$.
- Wertschätzung von Bieter 1: $v_1(x_1, x_2)$.
- Wertschätzung von Bieter 2: $v_2(x_1, x_2)$.

Exkurs: Allgemeinere Formulierung (Wertschätzungen)

Private Wertschätzungen:

$$v_1(x_1, x_2) = v_1(x_1) \stackrel{ZB}{=} x_1$$

 $v_2(x_1, x_2) = v_2(x_2) \stackrel{ZB}{=} x_2$

Gemeinsame Wertschätzungen:

$$v_1(x_1, x_2) = v(x_1, x_2) \stackrel{ZB}{=} \frac{x_1 + x_2}{2}$$

 $v_2(x_1, x_2) = v(x_1, x_2) \stackrel{ZB}{=} \frac{x_1 + x_2}{2}$

Interdependente Wertschätzungen:

$$v_1(x_1, x_2) \stackrel{ZB}{=} 3x_1 + x_2$$

 $v_2(x_1, x_2) \stackrel{ZB}{=} 2x_2 + x_1$

Exkurs: Allgemeinere Formulierung (Information)

Unabhängige Information: Für alle x_1 , x_2 gilt

$$F(x_1, x_2) = F_1(x_1)F_2(x_2).$$

Abhängige Information: Es gibt x_1 , x_2 , so dass gilt

$$F(x_1, x_2) \neq F_1(x_1)F_2(x_2)$$
.

Beispiel: Ölfeld

Formulierung des Beispiels:

- Zwei Bieter für das Ölfeld, die jeweils eine Probebohrung machen.
- Die Bieter kennen den Zustand nicht.
- Ergebnis der Probebohrung von Bieter $i: x_i \in \{0, 1\} \to \text{wurde \"Ol}$ gefunden oder nicht?

Frage: Welche Annahmen bzgl. Wertschätzungen und Information machen hier Sinn?

Beispiel: Ölfeld

Positive Korrelation von \tilde{x}_1 und \tilde{x}_2 .

• Zustand der Welt ist L oder $H \to \text{wenn}$ ich Öl gefunden habe, ist es wahrscheinlicher, dass mein Gegner auch Öl gefunden hat.

Gemeinsame Wertschätzungen.

• Der Wert des Ölfelds wird (ungefähr) der gleiche sein für beide Bieter $\rightarrow v_1(x_1, x_2) = v_2(x_1, x_2) = v(x_1, x_2)$.

Positive Beziehung zwischen x_i und $v(x_1, x_2)$.

• Die Wahrscheinlichkeit, dass Zustand H vorliegt, erhöht sich mit jedem Ölfund \rightarrow Wert des Ölfeldes $v(x_1, x_2)$ steigt in x_1 und x_2 .

Strategien

Definition einer Strategie:

- Allgemein: Eine Strategie ist eine Abbildung von Information(smengen) in Aktionen.
- In Auktionsformen mit geschlossenen Geboten: Wie viel biete ich, in Abhängigkeit von meiner Wertschätzung?

Definition: Symmetrisches Gleichgewicht

- Symmetrisches Gleichgewicht: Ein Gleichgewicht, in dem alle Spieler die gleiche Strategie spielen.
- Da wir ein symmetrisches Setting betrachten, interessieren wir uns nur für symmetrische Gleichgewichte.

Intuitive Definition der Gleichgewichtskonzepte

Das Bietverhalten b(v) charakterisiert ein ...

... symmetrisches GG in schwach dominanten Strategien, wenn für jeden Bieter i und für jede WS v_i das Gebot $b_i = b(v_i)$ schwach optimal ist, egal wie die anderen Bieter sich verhalten.

... symmetrisches Bayesianisches Nash-GG (BNGG), wenn für jeden Bieter i und für jede WS v_i das Gebot $b_i = b(v_i)$ "im Durchschnitt" optimal ist, wenn sich die anderen Bieter bzgl. der Bietfunktion b(v) verhalten.

Zusammenhang: Jedes symmetrisches GG in schwach dominanten Strategien ist auch ein symmetrisches BNGG.