EP2 - MAC236

Artur M. R. dos Santos IME-USP, São Paulo Nº USP: 10297734

1 Introdução

O EP2 foi documentado por meio de L^AT_EX, e cada seção seguinte irá representar a resolução de um exercício. Utilizei o TexMaker para edição.

2 Exercícios

2.1 Resposta:

Iremos modelar o problema com \mathcal{M} :

- $A = \acute{e}$ o domínio infinito.
- $\mathcal{F} = \{s\}$, onde \mathcal{F} representa o conjunto das funções do domínio, e s é um símbolo funcional binário.

A função $s^{\mathcal{M}}$ representa o "sucessor de".

• $\mathcal{P} = \{s(x,y) \in \mathcal{A} \mid y \text{ é sucessor de } x \}$, onde \mathcal{P} representa o conjunto dos predicados de \mathcal{A} .

A fórmula será da forma: $\forall x \exists y (s(x,y))$, para todo x, existe um y que é seu sucessor. Fica evidente que esta fórmula funciona apenas para um conjunto infinito, pois nele, sempre haverá um elemento sucessor, diferentemente de um conjunto finito, em que não é possível garantir que sempre haja um próximo elemento.

2.2 Resposta:

Irei utilizar a assinatura genérica $\Sigma = (\mathcal{P}, \mathcal{C}, \mathcal{F})$, com $\mathcal{P} = \{=_2\}$, o predicado de igualdade entre dois elementos, representando os predicados, \mathcal{C} representando as constantes e \mathcal{F} representando as funções.

a) A fórmula será :
$$\exists x_1, x_2 \Big[\forall y (\ x_1 = y \lor x_2 = y\) \land (\ x_1 \neq x_2\) \Big]$$

b) A fórmula será :
$$\exists x_1, x_2, x_3, x_4 \Big[\forall y (x_1 = y \lor x_2 = y \lor x_3 = y \lor x_4 = y) \land (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_1 \neq x_4) \land (x_2 \neq x_3) \land (x_2 \neq x_4) \land (x_3 \neq x_4) \Big]$$

2.3 Resposta:

Irei utilizar a assinatura $\Sigma = (\mathcal{P}, \mathcal{C}, \mathcal{F})$, com $\mathcal{P} = \{=_2\}$, o predicado de igualdade entre dois elementos, representando os predicados, \mathcal{C} representando as constantes e \mathcal{F} representando as funções. Nosso modelo \mathcal{M} possui 2n elementos, e teremos $x_1, x_2, \ldots, x_{2n} \in \mathcal{C}$:

1

$$\bigvee$$
 A fórmula será: $\exists x_1, x_2, \dots, x_{2n} \left[\forall y \left(\bigvee_{i=1}^{2n} x_i = y \right) \land \left(\bigwedge_{i=1}^{2n} \bigwedge_{j=i+1}^{2n-1} x_i \neq x_j \right) \right]$