Application No.: 09/437,726

Page 15

CLEAN COPY OF AMENDED PARAGRAPHS

Paragraph on page 28, lines 6-20:

"Physiological conditions" as used herein refers to temperature, pH, ionic strength, viscosity, and like biochemical parameters that are compatible with a viable plant organism or agricultural microorganism (e.g., Rhizobium, Agrobacterium, etc.), and/or that typically exist intracellularly in a viable cultured plant cell, particularly conditions existing in the nucleus of said cell. In general, in vitro physiological conditions can comprise 50-200 mM NaCl or KCl, pH 6.5-8.5, 20-45°C and 0.001-10 mM divalent cation (e.g., Mg⁺⁺, Ca⁺⁺); preferably about 150 mM NaCl or KCl, pH 7.2-7.6, 5 mM divalent cation, and often include 0.01-1.0 percent nonspecific protein (e.g., BSA). A non-ionic detergent (TWEEN, NONIDET-40, TRITON X-100) can often be present, usually at about 0.001 to 2%, typically 0.05-0.2% (v/v). Particular aqueous conditions may be selected by the practitioner according to conventional methods. For general guidance, the following buffered aqueous conditions may be applicable: 10-250 mM NaCl, 5-50 mM Tris HCl, pH 5-8, with optional addition of divalent cation(s), metal chelators, nonionic detergents, membrane fractions, antifoam agents, and/or scintillants.

Paragraph on page 37, lines 9-26:

A variety of Rubisco gene and gene homologue sources are known and can be used in the recombination processes herein. For example, as noted, a variety of references herein describe such genes. For example, Croy, (ed.) (1993) Plant Molecular Biology Bios Scientific Publishers, Oxford, U.K. describe several Rubisco genes and sequence sources in public databases. Examples of public databases that include Rubisco sources include: Genbank; EMBL; as well as, e.g., the protein databank, Brookhaven Laboratories; the University of Wisconsin Biothechology Center, the DNA databank of Japan, Laboratory of genetic Information Research, Misuina, Shizuda, Japan. As noted, over 1,000 different Rubisco homologues are available in Genbank alone.

Application No.: 09/437,726

Page 16

Paragraph bridging pages 72-73:

State-of-the-art commercial cyanofarming (aimed primarily on spirulina production for food) provides invaluable information and validated practical experience in such technology components as hardware and process design/engineering, biomass separation and drying, as well as in-depth insights into many other related technical problems (managing weed species, maintenance continuous year around cultivation). Sources describing cyanofarming include: Microalgae of Economic Potential by A. Richmond in CRC Handbook of Microalgal Mass Culture, 1986, CRC Press, Boca Raton, Florida; Microalgae: Organic Factories of the Future. Cyanotech Corp. 1998. and other information from Cyanotech; Spirulina: Environmental Advantages; Earthrise Farms, California; Jeeji Bai N (Poster Abstract, 1995) "Decentralized Arthrospira ("Spirulina") culture facility for income generation in rural areas" 1992 data. Shrii A.M.M Mudragappa Chettiar Research Centre, Tharamani, Madras 600113, India; Alkalophilic cyanobacteria: digests of Curds et al, 1986 and Finlay et al, 1987; Spirulina - Production and Potential by Ripley D. Fox 1996. Pub. by Editions Edisud, La Calade, R.N.7 !3090 Aix-en-provice, France.