

Ayudantía 3 - Repaso I1

30 de agosto de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

1. Meme del día

Se viene la I1. No hay meme. Modo serio.

2. Inducción Estructural

Sea S el conjunto de palabras formadas por a's y b's recursivamente de la siguiente manera:

- $a \in S, b \in S$
- Si $\mu \in S$ y $\nu \in S$, entonces $\mu \nu \in S$.
- Solo los elementos generados mediante las reglas 1 y 2 pertenecen a S.

También se define la función reverso $R:S\longrightarrow S$ de la siguiente manera:

- R(a) = a, R(b) = b.
- Si $\mu \in S$, entonces $R(a\mu) = R(\mu)a$, y $R(b\mu) = R(\mu)b$.

Considerando las definiciones inductivas de S y R:

1. Demuestre que para todo par de palabras $\mu, \nu \in S$ se tiene que

$$R(\mu\nu) = R(\nu)R(\mu)$$

2. Demuestre que para toda palabra $\mu \in S$ se cumple que

$$R(R(\mu)) = \mu$$

3. Incompletitud funcional

Demuestre que el conjunto $\{\wedge,\vee,\rightarrow,\leftrightarrow\}$ no es funcionalmente completo.

4. DNF y CNF

Encuentre fórmulas en DNF y CNF que sean lógicamente equivalentes a $(p \land q) \rightarrow (r \land \neg q)$.

5. Modelamiento

El problema de las n reinas consiste en poner n reinas en un tablero de ajedrez de $n \times n$ sin que se amenacen. Dos reinas se amenazan si están en la misma fila, columna o diagonal.

Dado un conjunto C de coordenadas (i,j) tal que $1 \le i,j \le n$ y $(i,j) \in C$ si y solo si hay una reina en la posición (i,j) del tablero, construya una fórmula φ tal que

 φ es satisfacible si y solo si C es una asignación válida para el problema de las n reinas

Incompletitud funcional

Demuestre que el conjunto $\{\land,\lor,\rightarrow,\leftrightarrow\}$ no es funcionalmente completo.

$$P = \{p\} \rightarrow (C(P)) = 2^{2^{1}} = 4$$

$$2^{2^{2}} = 2^{4} = 16$$

Propiedad: Toda fórmula φ construida concenectivos de C $P = \{p\}$ es tol que $\varphi = p$ a $\varphi = T$

BI: Con 4 = p, se time que trivialmente

HI: Supergames que se comple poura 4,4 EL(P)

TI: PD: $\theta = 404$, con 0EC, estal que $\theta = po\theta = 7$

Caso 1: A = 4,4: Por HI hay 4 casos

a)
$$\Psi \equiv \Psi \equiv \rho$$
: $A = \rho \rho = \rho \sqrt{\rho}$

c)
$$\Psi = T$$
 y $\Psi = p$: $\theta = \overline{1} \wedge p = p$ $\sqrt{}$

En todos los easos su comple la pro piedord

Caso 2:
$$\theta = \Psi \vee \Psi$$
:

a) $\Psi = p = \Psi \rightarrow A = p \vee p = p$

b, c, d) $\theta = T$

a)
$$\Psi = \Psi = \rho: \quad \theta = \rho \Rightarrow \rho = T$$

c)
$$\Psi = T \quad \forall \quad \Psi = p : \quad \Theta = T \Rightarrow p = p$$

Caso 4:
$$\theta = \varphi \leftrightarrow \psi = (\varphi \leftrightarrow \psi)_{\Lambda}(\psi \rightarrow \varphi)$$

b)
$$\Psi = \rho$$
 φ $\Psi = T$: $\theta = \rho \Leftrightarrow T = \rho$

c)
$$\Psi \equiv T \ y \ \Psi \equiv p : \text{omat lego}$$

Concluínos que toda formula un L(A) construida con convertivos de C es $\equiv p$ $\Rightarrow \equiv T$.

Con allo, no existe una fórmula Ψ on L(P) construida en C fal que $\Psi \equiv L$ P^{1-p} :. C no es funcionalmente completa.

$$\begin{cases} \{7, \sqrt{7} \\ \{7, \sqrt{7} \} \end{cases} \qquad \begin{cases} \{7, \sqrt{7} \} \end{cases}$$

5. Modelamiento

El problema de las n reinas consiste en poner n reinas en un tablero de ajedrez de $n \times n$ sin que se amenacen. Dos reinas se amenazan si están en la misma fila, columna o diagonal.

Dado un conjunto C de coordenadas (i, j) tal que $1 \le i, j \le n$ y $(i, j) \in C$ si y solo si hay una reina en la posición (i, j) del tablero, construya una fórmula φ tal que

 φ es satisfacible si y solo si C es una asignación válida para el problema de las n reinas

$$\varphi_{n-r\cdot r\cdot r\cdot nas} = \bigwedge_{i=1}^{n} \bigvee_{j=1}^{n} \bigvee_{j=1}^{n} \bigvee_{j=1}^{n} \bigvee_{k=1}^{n} \bigvee_{k\neq j}^{n} \bigvee_{k\neq j}^{n}$$

$$\varphi_{a = i} = \bigwedge_{i=1}^{N} \bigwedge_{j=1}^{N} p_{i,j} \rightarrow \left(\bigwedge_{i'=1}^{N} \bigwedge_{j'=1}^{N} \neg p_{i',j'} \right)$$

$$\vdots = i - j' = i' - j'$$

$$\varphi_{ad} = \bigwedge_{i=1}^{N} \bigwedge_{j=1}^{N} \varphi_{ij} \longrightarrow \left(\bigwedge_{i=1}^{N} \bigwedge_{j=1}^{N} \varphi_{i}^{N} \right)$$

$$= \left(\bigwedge_{i=1}^{N} \bigcap_{j=1}^{N} \varphi_{i}^{N} \right)$$

$$= \left(\bigwedge_{i=1}^{N} \bigcap_{j=1}^{N} \varphi_{i}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$= \left(\bigcap_{i\neq j} \bigcap_{j \in C} \varphi_{ij}^{N} \right)$$

$$\varphi = \varphi_{ini} + ^{1} \varphi_{fila} ^{1} \varphi_{columna} ^{1} \varphi_{ad} ^{1} \varphi_{a}$$

4. DNF y CNF

Encuentre fórmulas en DNF y CNF que sean lógicamente equivalentes a $(p \land q) \rightarrow (r \land \neg q)$.

4. DNF y CNF

Encuentre fórmulas en DNF y CNF que sean lógicamente equivalentes a $(p \land q) \rightarrow (r \land \neg q)$.

P	9	r	P19	117g	(png) - (rn-q)	
0	0	c	o	c	1 0	
0	o	1	a	١	1 0	
0	l	o	0	o	ı <mark>O</mark>	
O	ι	'	٥	O	ı <u>c</u>	
(Ø	G	o	v	ı <mark>o</mark>	
ſ	0	,	O	ı	1 0	
\	ı	1	ı	ø	O I	7
ι	ı	0	J ,	0	o l	

$$= \neg (p \land q \land \neg r)$$

$$\land \neg (p \land q \land r)$$

$$= (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$$

$$CNF$$

2. Inducción Estructural

Sea S el conjunto de palabras formadas por a's y b's recursivamente de la siguiente manera:

- $a \in S, b \in S$
- Si $\mu \in S$ y $\nu \in S$, entonces $\mu \nu \in S$.
- Solo los elementos generados mediante las reglas 1 y 2 pertenecen a S.

También se define la función reverso $R:S\longrightarrow S$ de la siguiente manera:

- R(a) = a, R(b) = b.
- Si $\mu \in S$, entonces $R(a\mu) = R(\mu)a$, y $R(b\mu) = R(\mu)b$.

Considerando las definiciones inductivas de S y R:

1. Demuestre que para todo par de palabras $\mu, \nu \in S$ se tiene que

$$R(\mu\nu) = R(\nu)R(\mu)$$

2. Demuestre que para toda palabra $\mu \in S$ se cumple que

$$R(R(\mu)) = \mu$$

1) BI: Coundo
$$p=a$$
, $R(p)=R(a)=a=p$
 $p=b$ es orrálego

HI. Supongounce que la propiedad se comple
por
$$\alpha, \beta \in S$$
. $R(\alpha \gamma) = R(\gamma) R(\alpha)$, $\forall \gamma$

$$TI: PD: R(\alpha \beta_{\gamma}) = R(\gamma)R(\alpha \beta)$$
 $Por HI:$
 $R(\alpha(\beta_{\gamma})) = R(\alpha_{\gamma}) \stackrel{HI}{=} R(\gamma)R(\alpha)$

$$= R(\beta_{\chi}) R(\alpha) = R(\gamma) R(\beta) R(\alpha)$$

$$= R(\gamma) R(\gamma\beta)$$

z. Propiedad: R(R(µ)) = µ

BI: p=a: R(R(p)) = R(R(a)) = R(a) = a = pp=b: omailago

HI: Supongamos que se cumple pon a a, B & S

 $TT:PD: R(R(\alpha\beta)) = \alpha\beta$

Por (1): $R(R(\beta)R(\alpha))$ Por (1): $R'(\alpha')R(\beta')$ = $R(R(\alpha))R(\beta')$ = $R(R(\alpha))R(\beta)$