A Machine Learning Approach to End-to-End RTT Estimation

Presented by:

A.H.M.Osama Haque

ID: 1805002

References

- Paper Link: https://ieeexplore.ieee.org/abstract/document/6006098
- Author: Nunes, Bruno AA, et al.
- Conference: 20th International Conference on Computer Communications and Networks (ICCCN)
- Year: 2011
- **Cited by:** 34
- Recent citation: 2020

Core Modification

Current:

TCP's estimate of the RTT employs a widely used technique: the "Exponential Weighted Moving Average (EWMA)".

Proposed:

A machine-learning based approach called the "Fixed-Share Experts Framework"

Motivation

- To help us generate a suitable value for Retransmission Time Out (RTO) and thus prevent serious network stalls.
- To inspect network latency and act accordingly.
- To help us improve overall quality of network

Methodology

- A number of "experts" make **predictions**, which is compared to the actual value.
- The predictions are used to estimate RTT with initial constant weights.
- Using the prediction error, we **refine the weights** of the predictions
- The updated weights are used in the **next iteration** of the algorithm.

Proposed Algorithm

Parameters: $\eta > 0$ and $0 \le \alpha \le 1$ **Initialization:** $w_{1,1} = ... = w_{1,N} = \frac{1}{N}$ 1) Prediction: 2) Computing the Loss: $\forall i:1,...,N$ $L_{i,t}(x_i, y_t) = \begin{cases} (x_i - y_t)^2 &, x_i \ge y_t \\ 2 \cdot y_t &, x_i < y_t \end{cases}$ 3) Exponential updates: $\forall i:1,...,N$ $w'_{t,i} = w_{t,i} \cdot e^{-\eta L_{i,t}(y_t, x_i)}$ 4) Sharing weights: $\forall i: 1, ..., N$ pool = $\sum_{i=1}^{N} \alpha \cdot w'_{t,i}$ $w_{t+1,i} = (1-\alpha) \cdot w'_{t,i} + \frac{1}{N} \cdot \mathsf{pool}$

Table I

THE FIXED-SHARE EXPERTS ALGORITHM.

Expectation

- A reduction in the number of retransmitted packets.
- Yield higher RTT estimation accuracy