Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Test 18

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{22 + \left(\sqrt{2}\right)^2}{4} - \frac{22 - \left(\sqrt{2}\right)^2}{5} = \frac{22 + 2}{4} - \frac{22 - 2}{5} = \frac{24}{4} - \frac{20}{5} =$	3p
	=6-4=2	2p
2.	$f(3x+1) \le f(x) \Leftrightarrow 2(3x+1) + 3 \le 2x + 3 \Leftrightarrow 4x + 2 \le 0$	2 p
	$x \le -\frac{1}{2}$, deci $x \in \left(-\infty, -\frac{1}{2}\right]$	3 p
3.	$x^2 = 3x - 2 \Rightarrow x^2 - 3x + 2 = 0$	3 p
	x=1 sau $x=2$, care convin	2 p
4.	$p - \frac{20}{100} \cdot p = 28$, unde p este prețul obiectului înainte de ieftinire	3 p
	p = 35 de lei	2p
5.	Panta dreptei paralele cu dreapta d este egală cu 2	2p
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 2x - 2$	3 p
6.	Înălțimea triunghiului este egală cu 4	3p
	$\mathcal{A}_{\Delta ABC} = \frac{4 \cdot 8}{2} = 16$	2p

SUBIECTUL al II-lea (30 de puncte)

1	2020 2020 2020 2020	
1.	$(-2020)*2020 = 6^{-2020} \cdot 6^{2020} = 6^{-2020+2020} =$	3 p
	$=6^{0}=1$	2p
2.	$x * y = 6^x \cdot 6^y = 6^y \cdot 6^x =$	3 p
	= y * x, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	2p
3.	$x*(-x) = 6^x \cdot 6^{-x} = 6^{x+(-x)} =$	3 p
	$=6^0=1$, pentru orice număr real x	2p
4.	$6^x \cdot 6^x = 36 \Leftrightarrow 6^{x+x} = 6^2 \Leftrightarrow 2x = 2$	3 p
	x = 1	2 p
5.	$6^{(x-6)+(6-x)} = 6^x \Leftrightarrow 6^0 = 6^x$	3 p
	x = 0	2 p
6.	$p * q = 6^p \cdot 6^q = 6^{p+q}$	2p
	De exemplu, pentru $p = \sqrt{2} \in \mathbb{R} - \mathbb{Q}$ și $q = -\sqrt{2} \in \mathbb{R} - \mathbb{Q}$, avem $p * q = 6^{\sqrt{2} - \sqrt{2}} = 6^0 = 1 \in \mathbb{Q}$	3 p

SUBIECTUL al III-lea (30 de puncte)

	(So the)	
1.	$\det A = \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot (-1) =$	3p
	=4+1=5	2 p
2.	$A \cdot A = \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}, \ 4A = \begin{pmatrix} 8 & -4 \\ 4 & 8 \end{pmatrix}, \ 5I_2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$	3p
	$A \cdot A - 4A + 5I_2 = \begin{pmatrix} 3 - 8 + 5 & -4 + 4 + 0 \\ 4 - 4 + 0 & 3 - 8 + 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
3.	$M(1) = \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}, M(-1) = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$	2p
	$M(1) \cdot M(-1) = \begin{pmatrix} -2 & 4 \\ -4 & -2 \end{pmatrix}$	3p
4.	$M(a-1)+M(a+1)=(a-1)A+I_2+(a+1)A+I_2=$	2p
	$=2aA+2I_2=2(aA+I_2)=2M(a)$, pentru orice număr real a	3р
5.	$M(a) \cdot M(a) = (aA + I_2)(aA + I_2) = a^2A^2 + 2aA + I_2 = \begin{pmatrix} 3a^2 + 4a + 1 & -4a^2 - 2a \\ 4a^2 + 2a & 3a^2 + 4a + 1 \end{pmatrix}$, pentru	2p
	orice număr real a	
	$M(0) = I_2$, deci $\begin{pmatrix} 3a^2 + 4a + 1 & -4a^2 - 2a \\ 4a^2 + 2a & 3a^2 + 4a + 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, de unde obținem $a = 0$	3p
6.	$\det(M(a)) = \begin{vmatrix} 2a+1 & -a \\ a & 2a+1 \end{vmatrix} = (2a+1)^2 + a^2, \text{ pentru orice număr real } a$	2p
	Cum $(2a+1)^2 + a^2 > 0$, obținem $det(M(a)) > 0$, pentru orice număr real a	3p