Suggested Exercises II

Definition 1 A collection of subsets of X, \mathcal{B} is a basis for some topology if it satisfies the following properties

1. For any
$$x \in X \exists B \in \mathcal{B} \text{ s.t. } x \in B$$

2. If
$$x \in B_1 \cap B_2$$
 then $\exists B_3$ s.t. $x \in B_3 \subseteq B_1 \cap B_2$

We then declare that the topology (i.e. the open sets) this generates is:

$$\tau = U \in \mathcal{P}(X) | \forall x \in U \exists B \subseteq U \text{ s.t. } x \in B \in \mathcal{B}$$

- 1. Prove that any open set, with the definition above, can be expressed as a union of some $B_i \in \mathcal{B}$
- 2. Prove that τ is indeed a topology.
- 3. Give an example of 2 bases that give 2 different topologies on \mathbb{R}
- 4. Give an example of 2 different bases that give the same topology on \mathbb{R}
- 5. Suppose you have some space X such that two topologies can be defined: τ_1 and τ_2 . Suppose for any open set $U \in \tau_1 \forall x \in U \exists V \subseteq U$, s.t. $x \in V \in \tau_2$ and for any open set $V \in \tau_2$ for any $x \in V$ exists an open set $U \subseteq V$, $x \in U \in \tau_1$. Show that these two topologies are indeed the same (i.e. if an open set is in τ_1 it must also be in τ_2).
- 6. Munkres, Exercise 5. Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} .

Written by Ivan Ovchinnikov & Sabek Germame, Summer 2024.