組込みシステム概論

8章 現在のマイクロプロセッサ

現在のマイクロプロセッサ マイクロコンピュータM16C

- ハードウェアは2種類
 - コンピュータの必須ハードウェア
 - CPU, ROM, RAM, クロック発振回路
 - 外部回路の制御用ハードウェア
 - タイマ, A/D, D/A

組込みシステムの 小型化、高性能化に必要

学習のポイント

- マイクロプロセッサの仕組みは
 - 順序処理系:連続する命令を順次実行
 - データ転送処理系: データ転送と演算を繰り 返す
- ・プログラムは
 - 順序処理系によりデータ転送処理系の動きを 制御して各命令を実行

M16Cのファミリー展開

- 現在も組込みシステムに使用される
- M16Cロードマップ
- 機能比較表

https://www.renesas.com/ja-jp/products/microcontrollers-microprocessors/m16c.html

表 8.1 1 チップマイクロコンピュータ 性能概要(M16C,小マイクロプロセッサ)

	項目	内容 ; M16Cシングルチップマイクロコン ピュータ	小マイクロプロセッサ (7章)		
	電源電圧	2. 7 ~ 5. 5V	左項に準する		
	パッケージ(ピン数)	100ピンプラスチックモールドLQFP	28ピン		
	動作周波数	10MHz	100kHz		
	最短命令実行時間	100ns	10 μ s (全命令)		
	基本パスサイクル	内部メモリ:100ms	内部メモリ:10µs		
? <u> </u>	内部メモリ	ROM容量: 320Kパイト, RAM容量: 31K パイト	ROM:256パイト, RAM:64パイト		
マイクロコンピュ	動作モード	シングルチップモード, メモリ拡張モード,マイクロプロ セッサモード	1チップモード		
ž 🗌	外部アドレス空間	1Mパイト(リニア)/64Kパイト アドレスパス:20ピット /16ピット	無(対応無し)		
구 🗀	外部データパス幅	8ピット /16ピット	無(対応無し)		
ータ基本機能	パス仕様	セパレートパス/マルチプレクスパス(チップ	無(対応無し)		
₩		セレクト信号4本内蔵)			
能	クロック発生回路	2回路内蔵(セラミック共振子または水晶発振 子外付け)	無(外部クロック入力)		
	割込	内部17要因, 外部5要因, ソフトウェア4要因, 7レベル	外部1要因		
	プログラマブル入出力	87本	無(ただし、入力8本、出力8本)		
	入力ポート	1木 (1985 NAIT端子と参田)			
	多機能16ピットタイマ	タイマA 5本 + タイマB 3本	無無		
[シリアル I/0	2本(非同期 / 同期 切り替え可能)	無		
, , kg	A-D 変換器	10ピット, 8 + 2 チャネル入力(10 / 8ピット 切り替え可能)	無		
内 付 加 能 	D-A 変換器	8ピット, 2 チャネル出力	· 無		
10 F	DMAC	2チャネル, 15要因	無		
2	CRC演算回路	1 回路内蔵	無		
~ [監視タイマ	15ピットカウンタ	·無		

8.2 電源電圧

- M16C は2.7~5.5Vで広い動作電源電圧
- 動作電源電圧の範囲が広いメリットは?

時計や携帯機器用の1チップマイコン 最低電源電圧は0.9V,1.8V,2.0V,3.0V 最高電源電圧は3.6V,5.5V,6.4V

8.3 パッケージと端子

パッケージサイズ20mmx14mmx2.8mm(長辺,短辺,厚み)

図8.1M16Cの100ピンのフラットパッケージ(FP)

表 8.2 端子と機能

Pin No.		作は分かるサフ	ポート	9911123 7.487	5 / - 14 7	LIADT## 7	アナログ端子	・さつ 作用が同場 フ	
FP	GP	制御端子	W- F	割り込み端子	タイマ端子	UART端子	アテロク端子	バス制御端子	
1	99		P9_6			SOUT4	ANEX1		
2	100		P9_5			CLK4	ANEX0		
3	1		P9_4		TB4IN		DA1		
4	2		P9_3		TB3IN		DA0		
5	3		P9_2		TB2IN	SOUT3			
6	4		P9_1		TB1IN	SIN3			
7	5		P9_0		TB0IN	CLK3			
8	6	BYTE							
9	7	CNVSS							
10	8	XCIN	P8_7						
11	9	XCOUT	P8_6						
12	10	RESET							
13	11	XOUT							
14	12	VSS							
15	13	XIN							

電源は7端子(複数ある理由は?)

システム正電源:VCC1, VCC2システム負電源:VSS(2本)アナログ用電源:AVCC,AVSS,

アナログ比較電源: VREF

6

表8.3 M16Cマイクロコンピュータ 100ピン端子の兼用状況

端子兼用のメリットは?

機能	端子数	独立	A	兼用站 B	端子グ C	ルーブ D	, E
制御端子;電源、クロック、リセット	14	12	V	٧			
ポート;入力、出力	87	0	٧	٧	٧	٧	٧
割り込み端子	11	0			٧		
タイマ入出力	16	0			٧	٧	
シリアルポート; UART クロック同期	17	0				٧	
アナログ	29	0				٧	
バス制御	48	0					٧
습計	222	0					

図8.2 小マイクロプロセッサの機能ブロック

小マイクロプロセッサ機能ブラック

- M16C
 - レジスタ, ポートが多い
 - 内蔵付加機能が豊富
- 小マイクロプロセッサ
 - 最小限のコンピュータ機能のみ

図8.2 M16Cの機能ブロック図

DMAC(Direct Memory Access Controller) CRC(Cyclic Redundancy Checker)

表8.4 M16C,小マイクロプロセッサの命令セット

	M16C	M16C					
命令セット	命令種別	命令	小マイクロ プロセッサ				
データ 転送命令 14命令	・転送 ・ブッシュ、ポップ ・拡張データ領域転送 ・4ビット転送 ・データを接: レジスタ,メモリ ・条件ストア	MOV, MOVA PUSH, PUSHM, PUSHA,POP, POPM LDE,STE MOVDIr XCHG STZ, STNZ, STZX	TR1R2 OUT R IN R SR n				
演算命令 31命令	- 加算命令 延寶 - 東算命令 陸寶 10週加寶 - インクリメント デクリメント - 積和(漢章 - 上級 - 上級 - 上級 - 一の個(絶対値 2の 補数符号拡張) - 海県海算 - テスト・ファトノー・テート	ADD, ADC, ADCF. SUB, SBB MUL, MULU, DIV, DIVU, DIVX DADD, DADC INC / DEC RMPA CMP ABS, NEG, EXTS AND, OR, XOR, NOT TST, SHL, SHA / ROT, RORC, ROLC	4命令				
分岐命令 10命令	- 無条件分岐 - 条件付き分岐 - 高件付き分岐 - 同原シャンパーン分岐 - ウフルーデンコール - ウフルーデンコール - スペシャルページリブルーデンコール - リブルーデン 世界 - 加賀(薫賀)諸東接の条件分岐	JMF JCnd JMPI JMPI JMPI JMPS JMP JSRI JSRI JSRS RIS ADJNZ, SBJNZ	BR n BRA n CAL n RT 4命命				
ビット操作命令	・ビット操作 レジスタ、メモリ、IO	BCLR, BSET, BNOT, BTST, BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNOR, BMCBd, BTSTS, BTSTC					
ストリング 命令 3命令	・ストリング	SMOVF, SMOVB, SSTR					
その他の 命令 19命令	- 専用レジスタ操作 - フラグレジスタ操作 - OSサポート - 高級言語サポート - ディッグ装置サポート - 別り込み関連 - 外部割り込み関連 - ノーオペレーション	LDC, STC, LDINTB, LDIPL, PUSHC, POPC FSET, FCLR LDCTX, STCTX ENTER, EXITD BRK REIT, INT, INTO, UND WAIT, NOP					

表8.5 M16C, 小マイクロプロセッサのアドレシング空間

_	
M16	GCアドレシング空間 CPUとメモリの2アドレシング空間
A.	CPUアドレシング空間; 8 種類 20レジスタ
	プログラムカウンタ、データレジスタ、アドレスレジスタ、フレームレジスタ、
	割込みテーブルレジスタ、ユーザスタックポインタ、割込みスタックポインタ、
	スタテックベースレジスタ、フラグレジスタ
B.	メモリアドレシング空間
	B1. 00000H-00400H 1kバイト;各関連レジスタ(229バイト)
	ポート、クロック、シリアルインタフェース、タイマ・カウント、A/D、D/A、
	割込み、DMA、ウォッチドッグタイマ、プロセッサモードレジスタ、
	チップセレクト、アドレス一致、プロテクト、データバンク、フラッシュメモリ、
	三相モータ制御、CRC、
	B2. 00400H-07FFFH 31kバイト RAM
	B3. B0000H-FFFFFH 320kバイト ROM

小マイクロプロセッサアドレシング空間 CPUとメモリの2アドレシング空間
A. CPUアドレシング空間; 2種類 4レジスタ プログラムカウンタ、スタックレジスタ
B. レジスタアドレシング空間; 2 種類、7レジスタ(7バイト) レジスタ、ポート
C. プログラムメモリアドレシング空間: 00h-FFh 256バイト ROM
D. データメモリアドレシング空間: 00h-1Fh 32パイト RAM

図8.3 アドレスレジスタ相対アドレシング

図8.4 FB相対アドレシング

図8.5 スタックポインタ相対アドレシング

8.8 動作周波数, 最短命令実行時間, 基本バスサイクル

動作モード

- シングルチップモード
 - ほとんどの製品向け
- メモリ拡張モード
 - 内蔵メモリでは不足する製品向け
- マイクロプロセッサモード
 - 大容量の外部メモリを使用する製品向け
 - 内蔵メモリは使用しない

8.9 クロック発生回路

2回路を内蔵

- メインクロック
 - M16Cのシステムクロック, 16MHz
- サブクロック
 - 電子時計用 32768Hz (=2¹⁵ 発振)
 - システムクロックとしても利用可能
 - ・低速だが、その分、低消費電力にできる

17

8.10 アドレス空間

メモリと入出力が同一空間に配置 (メモリマップドI/O)

- プログラムメモリ
- データメモリ
- 各種制御レジスタ
- 入出力ポート

同一空間にあるメリットとデメリット

→ 演習問題 設問3,4

演習問題

教科書134ページの設問1,2,3,4に答えよ

設問1 1 チップマイクロコンピュータのもつハードウェアを2種類に分類して、その機能を説明せよ

設問2 1 チップマイクロコンピュータのもつ端子を2 種類に分類して、その機能を説明せよ

設問3 プログラムメモリ(ROM), データメモリ(RAM), 各種レジスタ, 入出力ポートなどに割り当てられるアドレス空間はM16Cでは全て同一である.この場合同一空間であるという. 同一空間であることによるメリットを説明せよ設問4 設問3において同一空間であることによるデメリットを説明せよ

18