PODSTAWY

Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo w stanie przewodzenia. Z możliwości opisu stanów jako poziomów napięcia lub poziomów prądu zwykle wybiera się to pierwsze rozwiązanie. Mówi się wtedy o poziomie napięcia odpowiadającym stanowi wysokiemu, oznaczanemu symbolem H (ang. high), oraz o poziomie napięcia odpowiadającym stanowi niskiemu, oznaczanemu symbolem L (ang. low).

Te dwa stany mogą reprezentować wiele różnych "bitów" (cyfr dwójkowych) informacji, jak na przykład: czy przełącznik jest otwarty czy zamknięty? czy sygnał jest obecny czy nieobecny? czy zaszło już pewne wydarzenie czy nie? itd.

Stan wysoki (H) i stan niski (L)

Można zdefiniować odpowiedniość między stanami: wysokim (H) i niskim (L) układu cyfrowego a elementami algebry Boole'a, określanymi jako "prawda" i "fałsz". Jeśli pojawiającemu się w pewnej linii układu stanowi H przypiszemy "prawdę", wówczas tę linię nazywamy aktywną stanem wysokim (lub aktywną w stanie wysokim), a przyjętą konwencję nazywamy logiką dodatnią.

jednostka - standard stosowany do zliczania oddzielnych elementów

wielkość - bezwzględna lub fizyczna ilość jednostek liczba - symboliczny zapis przedstawiający wielkość system liczbowy - sposób przedstawienia wielkości za pomocą zbioru znaków lub liczb; zero wskazuje brak jednostek, a inne symbole wskazują wielkości.

podstawa systemu - ilość symboli używanych w systemie np. reprezentacja stałoprzecinkowa Liczby całkowitej bez znaku:

$$Liczba = a_k * p^k + a_{k-1} * p^{k-1} + ... + a_1 * p^1 + a_0 * p^0 = \sum_{i=0}^k a_i * p^i$$

p - podstawa systemu, p = 2, 10, 16, ...

 a_k - wartości kolejnych pozycji, $a_k = 0, ..., p-1$

k - numery kolejnych pozycji, k = 0, 1, 2, ...

reprezentacja stałoprzecinkowa

- liczba pozycji przeznaczonych dla zakodowania części całkowitej i ułamkowej jest ustalona; bezwzględna dokładność reprezentacji liczb jest stała; między innymi:
- *system stałobazowy (fixed-base system) system pozycyjny, każdej pozycji przypisana jest waga (mnożnik), a zbiór dozwolonych cyfr i znaków jest identyczny dla każdej pozycji
- *system uzupełnieniowy (radix-complement system) modyfikacja systemu stałobazowego, w którym waga najbardziej znaczącej pozycji jest ujemna, w stosunku do wag pozostałych pozycji; reprezentacja liczb znakowych

reprezentacja zmiennoprzecinkowa

- -osobno kodowane są:
- *znacznik S (Significand) znak liczby (sign); np. S=0 dla liczb dodatnich, S=1 dla liczb ujemnych
- •część ułamkowa M (fraction), dawniej mantysa (Mantissa); zwykle w kodzie uzupełnienia do 2 z przesunięciem o 127
- •wykładnik E (Exponent) określający relację między liczbą i jej znacznikiem w postaci potęgi bazy (radix) użytego systemu liczbowego; MSB=1 i nie jest pamiętany

Wybrane systemy liczbowe

system	podstawa systemu	symbole
dziesiętny (decimal)	p = 10	a _k = 0, 1, 8, 9
dwójkowy (binary)	p = 2	a _k = 0, 1 1100 0001b
szesnastkowy (hexadecimal)	p = 16	a _k = 0, 1, 8, 9, A, B, C, D, E, F 0C1h

BINARNY SYSTEM CYFROWY

Zamiast pojęcia cyfr i miejsc znaczących, w systemie binarnym używane jest pojęcie bitu zapożyczone z teorii informacji. Poszczególnym bitom odpowiadają różne wagi, zależnie od położenia bitu.

Bit położony najbardziej w prawo jest najmniej znaczący (LSB Least Signifiant Bit) i ma wagę 2° = 1 (przy liczbie całkowitej).

Bit najbardziej z lewej MSB (Most sign. Bit) i ma wagę 2ⁿ⁻¹, przy czym n – ilość bitów w liczbie.

Odczyt – sumowanie bitów, oznaczonych wartością 1:

$$(11001)_2 = 2^4 + 2^3 + 2^0 = (25)_{10}$$

Maksymalna liczba dziesiętną, jaką można zapisać przy n-bitach, jest równa 2^n-1 .

Przekształcenie zapisu dziesiętnego w zapis binarny wymaga przedstawienia danej liczby w postaci sumy potęg liczny 2:

$$a_{n-1}2^{n-1} + ... + a_22^2 + a_12^1 + a_02^0 + a_{-1}2^{-1} + ... + a_{-m}2^{-m}$$

n – liczba bitów wyrażająca część całkowitą liczby,

m – liczba bitów wyrażająca część ułamkową,

a_i – współczynniki rozkładu (0 lub 1)

Aby określić współczynniki rozkładu można stosować kolejne dzielenie części całkowitej przez 2 i mnożenia części ułamkowej przez 2.

Współczynniki części całkowitej są równe resztom z kolejnych operacji dzielenia, które kończą się po osiągnięciu wyniku równego 0.

Dla części ułamkowej współczynniki są równe części całkowitej kolejnego wyniku mnożenia. Przy każdorazowym wystąpieniu jedynki w części całkowitej jest ona odrzucana. (możliwe tylko w niektórych przypadkach w większości trzeba stosować przybliżenie – ograniczać ilość bitów po przecinku).

Przykład 37,625

Część całkowita

Część ułamkowa

Ostatecznie:
$$(37,625)_{10} = (100101.101)_2$$

DZIAŁANIA ARYTMETYCZNE

Liczba

1 • • •	1 •
dziesietna	binarna
aziosięnia	Omama

$$0+1=1$$
 $0+1=1$

Dodawanie (przykład):

$$(5)_{10} + (13)_{10}$$

Odejmowanie (przykład):

$$(12)_{10} - (7)_{10}$$

Mnożenie (przykład):

 $(7)_{10} \bullet (5)_{10}$

			1	1	1	
		x	1	0	1	
			1	1	1	_
	+	0	0	0		
	1	1	1			
1	0	0	0	1	1	$=(35)_{10}$
4	_ +	+				

TOŻSAMOŚCI LOGICZNE

$$0+a = a+0 = a$$

 $1+a = a+1 = 1$

Prawo łączności iloczynu $(a \bullet b) \bullet c = a \bullet (b \bullet c)$

Prawo łączności sumy
$$(a+b)+c = a+(b+c)$$

Prawo przemienności iloczynu $\mathbf{a} \bullet \mathbf{b} = \mathbf{b} \bullet \mathbf{a}$

Prawo przemienności sumy a+b = b+a

Prawo indempotentności iloczynu a•a = a

Prawo indempotentności sumy

$$a+a=a$$

Prawo rozdzielności iloczynu względem sumy

$$a \bullet (b+c) = (a \bullet b) + (a \bullet c)$$

Prawo rozdzielności sumy względem iloczynu

$$a+(b \bullet c) = (a+b) \bullet (a+c)$$

Prawa pochłaniania

$$a(b+a) = a$$

$$a + b \bullet a = a$$

wyprowadzenie przy użyciu powyższych wzorów:

$$a \bullet (b+a) = (0+a) \bullet (b+a) = 0 \bullet b + a = 0+a = a$$

$$a+b \bullet a = 1 \bullet a + b \bullet a = (1+b) \bullet a = 1 \bullet a = a$$

INTERPRETACJA GRAFICZNA TOŻSAMOŚCI LOGICZNYCH:

A+B+C

A•B•C

$$A+1=1$$

$$\mathbf{A} \bullet \mathbf{0} = \mathbf{0}$$

$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

$$/\mathbf{A} + \mathbf{A}\mathbf{B} = /\mathbf{A} + \mathbf{B}$$

Kod - zbiór symboli kodowych oraz reguła wzajemnego przyporządkowania informacji tym symbolom

Kod dwójkowo-dziesiętny (BCD - Binary Coded Decimal) - przyporządkowanie cyfrom dziesiętnym 4-bitowych kombinacji binarnych, najczęściej w systemie 8421, np.

1234 = 4D2 h = 0100 1101 0010 b = 0001 0010 0011 0100 BCD

Kod Gray-a - kod, którego słowa reprezentujące kolejne liczby różnią się wartością tylko jednego bitu (w kodzie binarnym w połowie zakresu zmieniane są wszystkie bity)

Reprezentacje liczb ujemnych:

kod znak-moduł (sign-magnitude) - znak liczby kodowany jest dwuwartościowo na najbardziej znaczącej pozycji: wartość_ujemna liczby obliczana przez negację najbardziej znaczącego bitu:

np. dla 8-bitowego zapisu binarnego liczbie +7 = 0000 0111b odpowiada liczba ujemna: - 7 = 1000 0111b

podwójna reprezentacja zera: +0 = 0000 0000b oraz - 0 = 1000 0000b

symetryczny zakres liczb, np. dla liczb 8-bitowych: - 127 = 1111 1111b .. +127 = 0111 1111b

kod uzupełnienia do 1 (1's complement) - kod uzupełnienia niepełny, oznaczany jako U1, najbardziej znacząca pozycja traktowana jest jako kod znaku;

wartość ujemna liczby obliczana jako: wartość_ujemna = not (wartość_dodatnia)

np. dla 8-bitowego zapisu binarnego liczbie +7 = 0000 0111b odpowiada liczba ujemna: - 7 = not 7 = 1111 1000b

podwójna reprezentacja zera: +0 = 0000 0000b oraz - 0 = 1111 1111b

symetryczny zakres liczb, np. dla liczb 8-bitowych: - 127 = 1000 0000b .. +127 = 0111 1111b

kod uzupełnienia do 2 (2's complement) - kod uzupełnienia pełny, oznaczany jako U2, najbardziej znacząca pozycja traktowana jest jako kod znaku

wartość ujemna liczby obliczana jako:

wartość_ujemna = Baza- wartość_dodatnia = not(wartość_dodatnia)
+1

np. dla 8-bitowego zapisu binarnego liczbie +7 = 0000 0111b odpowiada liczba ujemna: -7 = 28 - 7 = 249 = 1111 1001b

pojedyncza reprezentacja zera: 0 = 0000 0000b

niesymetryczny zakres liczb, np. dla liczb 8-bitowych: - 128 = 1000 0000b .. +127 = 0111 1111b