CS4495/6495 Introduction to Computer Vision

3B-L3 Stereo correspondence

For now assume parallel image planes

- Assume parallel (co-planar) image planes...
- Assume same focal lengths...
- Assume epipolar lines are horizontal...
- Assume epipolar lines are at the same y location in the image...

 That's a lot of assuming, but it allows us to move to the correspondence problem – which you will be solving!

Multiple match hypotheses satisfy epipolar constraint, but which is correct?

Figure from Gee & Cipolla 1999

Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points

- Similarity
- Uniqueness
- Ordering
- Disparity gradient is limited

Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points

- Similarity
- Uniqueness
- Ordering
- Disparity gradient is limited

To find matches in the image pair, we will assume

- Most scene points visible from both views
- Image regions for the matches are similar in appearance

Dense correspondence search

For each pixel / window in the left image

- Compare with every pixel / window on same epipolar line in right image
- Pick position with minimum match cost (e.g., SSD, normalized correlation)

Correspondence search: (dis)similarity constraint Left Right

Correspondence search: (dis)similarity constraint Left Right

scanline 88 88 SSD

Correspondence search: similarity constraint

Left Right

scanline

Normalized correlation

epipolar line

Intensity profiles

Neighborhoods of corresponding points are similar in intensity patterns.

Source: Andrew Zisserman

Effect of window size

Effect of window size

 $W = 3 \qquad \qquad W = 20$

Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points

- Similarity
- Uniqueness
- Ordering
- Disparity gradient is limited

Uniqueness constraint

No more than one match in right image for every point in left image

Figure from Gee & Cipolla 1999

Problem: Occlusion

Ordering constraint

Figure from Gee & Cipolla 1999

Ordering constraint

Won't always hold, e.g. consider transparent object...

Figures from Forsyth & Ponce

Ordering constraint

...or a narrow occluding surface

Figures from Forsyth & Ponce

Stereo results

Image data from University of Tsukuba

Scene

Ground truth

Results with window search

Window-based matching (best window size)

Ground truth

Better solutions

Beyond individual correspondences to estimate disparities:

- Optimize correspondence assignments jointly
 - Scanline at a time (DP)
 - Full 2D grid (graph cuts)

Scanline stereo

intensity

Coherently match pixels on the entire scanline

"Shortest paths" for scan-line stereo

Can be implemented with dynamic programming
Ohta & Kanade '85, Cox et al. '96, Intille & Bobick, '01

Slide: Y. Boykov

Coherent stereo on 2D grid

Scanline stereo generates streaking artifacts

Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

Stereo as energy minimization

What defines a good stereo correspondence?

- 1. Match quality Want each pixel to find a good appearance match in the other image
- 2. Smoothness of two pixels are adjacent, they should (usually) move about the same amount

Stereo matching as energy minimization

Data term:

$$E_{ ext{data}} = \sum_{i} \left(W_{_{1}}(i) - W_{_{2}}(i+D(i)) \right)^{2}$$

Source: Steve Seitz

Stereo matching as energy minimization

Smoothness term:

$$E_{ ext{smooth}} = \sum_{ ext{neighbors } i,j}
ho\left(D(i) - D(j)\right)$$

Source: Steve Seitz

Stereo matching as energy minimization

Total energy:

$$E = \alpha E_{\text{\tiny data}}(I_{1}, I_{2}, D) + \beta E_{\text{\tiny smooth}}(D)$$

Better results...

- Energy functions of this form can be minimized using graph cuts
- Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Better results...

State of the art method

Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo

Challenges

- Low-contrast; textureless image regions
- Occlusions
- Violations of brightness constancy (e.g., specular reflections)
- Really large baselines (foreshortening and appearance change)
- Camera calibration errors