Fitzhugh-Nagumo model

Weronika Skowrońska & Szymon Komosiński

Adam Mickiewicz University

June 22, 2020

Neuron

▶ Basic component of nervous tissue in almost all animals.

Neuron

- ▶ Basic component of nervous tissue in almost all animals.
- Consists of a cell body (soma), dendrites, and a single axon.

Neuron

- Basic component of nervous tissue in almost all animals.
- Consists of a cell body (soma), dendrites, and a single axon.
- It can transmit electrical signals, called impulses, which travel in one direction.

Membrane

Composed of a lipid bilayer with proteins embedded in it.

Resting potential

Threshold

Action potential

Depolarization

Repolarization

Hyperpolarization

Neuron spike

Slope fields

"Tiny little tangent lines"

Isoclines

Phase diagrams

Phase diagrams are a way to visualise solutions to **autonomous** ODE

autonomous: slope doesn't change from left to right

Let g(x,t)=dx/dt

$$g(t,x) = x(2-x)(4-x)$$

Phase diagrams

Phase portrait

Bifurcation

A bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior.

Bifurcation

► FutzHugh-Nagumo model is a simplification of Hodgkin-Huxley model of spike generations in aquid giant axions;

- ► FutzHugh-Nagumo model is a simplification of Hodgkin-Huxley model of spike generations in aquid giant axions;
- ▶ The equations:

- FutzHugh-Nagumo model is a simplification of Hodgkin-Huxley model of spike generations in aquid giant axions;
- ► The equations:

$$C_m \frac{dV_m}{dt} + g_K(V_m - V_K) + g_N a(V_m - V_N a) + g_I(V_m - V_I)$$

- FutzHugh-Nagumo model is a simplification of Hodgkin-Huxley model of spike generations in aquid giant axions;
- ► The equations:

$$egin{split} C_m rac{dV_m}{dt} + g_K ig(V_m - V_Kig) + g_N a ig(V_m - V_N aig) + g_I ig(V_m - V_Iig) \ & rac{dn}{dt} = lpha_n (V_m) (1-n) - eta_n (V_m) n \ & rac{dm}{dt} = lpha_m (V_m) (1-m) - eta_m (V_m) m \ & rac{dh}{dt} = lpha_h (V_m) (1-h) - eta_h (V_m) h \end{split}$$

Fitzhugh-Nagumo model

Based on Van der Pol oscillator:

$$\frac{d^2x}{dt^2} + c(x^2 - 1)\frac{dx}{dt} + x = 0$$

► The Two Equations:

$$\frac{dV}{dt} = V - \frac{V^3}{3} - W + I$$

$$\frac{dW}{dt} = \frac{1}{c}(V + a - bW)$$

FitzHugh-Nagumo model: nullclines

FitzHugh-Nagumo: weak pulse

FitzHugh-Nagumo: strong pulse

FitzHugh-Nagumo: spike response

FitzHugh-Nagumo: spike response

FutzHugh-Nagumo model: Physiological state diagram

FitzHugh-Nagumo: all-or-none spikes

See Yourself

Sources:

▶ Neuron ▶ Math 2 ▶ FitzHugh-Nagumo model → Slope field Graphic