

#### UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 3:

QUANTIFICADORES E FÓRMULAS

# Alfabeto da Lógica de Predicados

- ♦É constituído por:
  - Símbolos de pontuação: ( , );
  - Símbolos de verdade: true, false;
  - Conjunto enumerável de símbolos para variáveis: x, y, z, w, x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>,..;
  - Conjunto enumerável de símbolos para funções: f, g, h, f<sub>1</sub>, g<sub>1</sub>, h<sub>1</sub>, f<sub>2</sub>, g<sub>2</sub>...;
  - Conjunto enumerável de símbolos para predicados: p, q, r, s, p<sub>1</sub>, q<sub>1</sub>, r<sub>1</sub>, s<sub>1</sub>, p<sub>2</sub>, q<sub>2</sub>...;
  - Conjunto enumerável de símbolos para constantes: a, b, c, ....
  - Conectivos proposicionais:  $\neg$ , v,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\forall$ ,  $\exists$ .

### Predicados

- São utilizados para representar propriedades e relações entre objetos.
- ❖ Exemplo: ao dizer que Maria é bonita, temos que "bonita" é uma propriedade de Maria.
- ❖Tal fato pode ser representado, na Lógica de Predicados, por p(x). Nesse caso, de uma maneira informal, podemos dizer:
  - p(x) é verdadeiro se, e somente se, x é bonita.
- ❖O símbolo de predicado p é utilizado para representar a propriedade de ser bonita. E quando x é interpretado como sendo Maria, o resultado da interpretação da sentença é verdadeiro.

### Predicados

- Os símbolos para predicados também podem ser utilizados para expressar relações entre objetos.
- A relação "irmão", por exemplo, pode ser representada por q(x, y). Neste caso, de maneira informal, dizemos que:
  - q(x, y) é verdadeiro se, e somente se, a pessoa x é irmã de y.

# Funções

- Na Lógica, os símbolos para função têm utilização análoga àquela que ocorre na Aritmética.
- ❖ Isto é, não há diferença alguma entre as funções da Lógica e as da Aritmética.

## Quantificadores

- Quantificação Universal
  - $\circ$   $\forall x p(x)$
  - p(x) é um predicado.
  - p(x) é verdadeiro para todo x do universo.

#### **Exemplo:**

Todo numero natural par ao quadrado é par.

## Quantificadores

- Quantificação Existencial
  - $\circ \exists x p(x)$
  - ∘ *p*(x) é um predicado.
  - p(x) é verdadeiro para algum x do universo.

#### **Exemplo:**

• Existe um número natural que ao quadrado é igual a ele mesmo.

### Aridade

- Associado a cada símbolo de função ou predicado, temos uma aridade:
  - Número inteiro, não-negativo k;
  - Indica o número de argumentos da função ou predicado.
  - p(x) k = 1
  - p(x,y) k = 2
  - $\circ$  a k = 0

## Aridade

- Constantes e símbolos proposicionais:
  - Sempre tem k=0;
  - Funções → constantes;
  - Predicados → símbolos proposicionais.

# Notação

- Constantes (funções zero-árias; aridade nula)
  - a, b, c, a1, b1, c1, a2, b2, ...
- Quantificadores
  - Universal: ∀ (para todo...)
  - Existencial: ∃ (existe...)
- $\diamond$ Os conectivos  $\rightarrow$ ,  $\leftrightarrow$  e ^ são definidos em função do conjunto completo  $\{\neg, v\}$ .