In [1]:

```
import pandas as pd
   import numpy as np
 3 from matplotlib import pyplot as plt
 4 import seaborn as sns
 5 from IPython.display import display
 6 from collections import Counter
7 from imblearn.over_sampling import SMOTE
8 from sklearn.model_selection import train_test_split
   from sklearn.metrics import accuracy_score, classification_report,roc_curve, roc_auc_sc
9
10 from sklearn.ensemble import ExtraTreesClassifier
11 from sklearn.linear_model import LogisticRegression
12 from sklearn.ensemble import GradientBoostingClassifier
   from sklearn.ensemble import RandomForestClassifier
13
14 import matplotlib.pyplot as plt
15 import scikitplot as skplt
16 from IPython.display import display
17 #from pycaret .classification import *
```

In [2]:

```
1
  dtypes = { 'Regiao': 'object',
2
                'UF': 'object',
3
                'CNAE': 'object'
4
                'Atendida': 'bool',
5
                'CodAssunto': 'object',
                'SexoConsumidor': 'object',
6
7
                'FaixaEtaria': 'object',
8
                'CEP': 'object',
9
                'InscritoDAU':'bool'}
```

In [3]:

```
1 df_ml1 = pd.read_csv(r'C:\Users\73594253368\Desktop\Curso\Datasets\Procon\dataset_trata
```

In [4]:

```
1 df_ml1 = df_ml1[['Regiao','UF','CNAE','Atendida','CodAssunto','SexoConsumidor','FaixaEt
```

In [5]:

```
# Este df_ml1 foi a primeira tentativa. Manteremos esse data frame para testes demonstr
# Para o ML "oficial", copiaremos esse df_ml1 para o df_ml
df_ml = df_ml1
```

```
In [6]:
```

```
1 df_ml
```

Out[6]:

	Regiao	UF	CNAE	Atendida	CodAssunto	SexoConsumidor	FaixaEtaria	CE
0	Norte	RO	6120501.0	False	187.0	M	5	76824042
1	Norte	RO	3514000.0	False	185.0	M	4	76824322
2	Norte	RO	8599604.0	True	236.0	M	3	78932000
3	Norte	RO	6120501.0	True	187.0	M	5	78932000
4	Norte	RO	6493000.0	False	57.0	M	6	76821331
10514	Sudeste	SP	6110801.0	True	187.0	F	4	9617000
10515	Norte	RO	6143400.0	True	259.0	M	2	76940000
10516	Norte	RO	6422100.0	False	63.0	F	6	76990000
10517	Norte	RO	3514000.0	False	185.0	F	4	76807400
10518	Norte	RO	6423900.0	True	53.0	F	3	76806420
10519 rows × 9 columns								

In [7]:

```
# Demonstração do desbalanceamento na variável "target"
df_ml['Atendida'].value_counts()
```

Out[7]:

True 6306 False 4213

Name: Atendida, dtype: int64

Aplicando SMOTE

Data Preparation

As variáveis preditoras mais importantes do nosso dataset são as categóricas. Assim, como etapa preparatória do SMOTE, temos que criar variáveis dummies. Testamos, antes, com SMOTE e sem dummies e, também, o tradicional dummies sem SMOTE. Igualmente testamos LabelEncoder + dummies + SMOTE. Os melhores resultados de acurária e recall foram com o procedimento a seguir.

```
In [8]:
 1 df_ml.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10519 entries, 0 to 10518
Data columns (total 9 columns):
     Column
                     Non-Null Count Dtype
     ----
                     10519 non-null
 0
     Regiao
                                     object
 1
     UF
                     10519 non-null object
 2
     CNAE
                     10519 non-null object
 3
     Atendida
                     10519 non-null bool
 4
     CodAssunto
                     10519 non-null object
 5
     SexoConsumidor
                     10519 non-null object
 6
     FaixaEtaria
                     10519 non-null
                                     object
 7
     CEP
                     10519 non-null
                                     object
 8
     InscritoDAU
                     10519 non-null
dtypes: bool(2), object(7)
memory usage: 595.9+ KB
In [9]:
    df_ml = pd.get_dummies(df_ml[['Regiao',
                               'UF',
 2
 3
                               'CNAE',
 4
                               'Atendida',
                               'CodAssunto',
 5
 6
                               'SexoConsumidor',
 7
                               'FaixaEtaria',
                               'CEP','InscritoDAU']])
 8
In [10]:
   df_ml.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10519 entries, 0 to 10518
Columns: 6928 entries, Atendida to CEP 9990244.0
dtypes: bool(2), uint8(6926)
memory usage: 69.5 MB
In [11]:
 1 df ml.shape
```

SMOTE após dummies

Out[11]:

(10519, 6928)

In [12]:

```
1  X = df_ml.drop(['Atendida'],axis=1)
2  y = df_ml.Atendida
3  smt = SMOTE()
4  X_os,y_os = smt.fit_sample(X,y) #os de oversampled
5  counter = Counter(y_os)
6  print(counter)
```

Counter({False: 6306, True: 6306})

In [13]:

```
#grafico da nova distribuição de classes
fig, ax = plt.subplots()
sns.countplot(y_os, ax=ax)
ax.set_title('Distribuição das Classes')
plt.xlabel('Classe')
plt.ylabel('Quantidade')
plt.tight_layout();

#print do balanceamento
print(pd.Series(y_os).value_counts())
```

D:\ANACONDA\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vali d positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

True 6306 False 6306

Name: Atendida, dtype: int64

In [14]:

```
#Train_test_split nessa oversampled
#Especificamos o tamanho do test_size = 0.3 pq assim as True/False do ytreinamento e as
xtreinamento, xteste, ytreinamento, yteste = train_test_split(X_os, y_os, test_size = 6
```

In [15]:

1 xtreinamento

Out[15]:

	InscritoDAU	Regiao_Centro- oeste	Regiao_Nordeste	Regiao_Norte	Regiao_Sudeste	Regiao_S
11454	False	1	0	0	0	
8765	False	0	0	0	1	
3191	False	0	0	0	1	
2792	False	0	0	0	1	
9375	True	0	0	0	1	
12177	True	0	1	0	0	
8964	True	0	0	0	1	
4682	False	0	0	0	1	
5278	False	1	0	0	0	
7598	False	0	0	0	1	

8828 rows × 6927 columns

In [16]:

4

1 xteste

Out[16]:

	InscritoDAU	Regiao_Centro- oeste	Regiao_Nordeste	Regiao_Norte	Regiao_Sudeste	Regiao_Su
6594	False	0	0	0	0	
6068	False	0	0	0	1	t
3782	False	0	0	1	0	(
1772	False	0	0	0	0	
289	False	0	0	0	1	t
9219	True	0	0	1	0	t
43	False	0	0	0	1	t
4719	False	0	0	0	1	t
225	False	0	0	0	1	t
9295	False	0	1	0	0	t

3784 rows × 6927 columns

In [17]:

```
1 ytreinamento.value_counts()
```

Out[17]:

True 4414 False 4414

Name: Atendida, dtype: int64

In [18]:

```
fig, ax = plt.subplots()
sns.countplot(ytreinamento, ax=ax)
ax.set_title('Distribuição das Classes')
plt.xlabel('Classe')
plt.ylabel('Quantidade')
plt.tight_layout();

#print do balanceamento
print(pd.Series(ytreinamento).value_counts())
```

True 4414 False 4414

Name: Atendida, dtype: int64

D:\ANACONDA\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vali d positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [19]:

```
1 yteste.value_counts()
```

Out[19]:

True 1892 False 1892

Name: Atendida, dtype: int64

In [20]:

```
fig, ax = plt.subplots()
sns.countplot(yteste, ax=ax)
ax.set_title('Distribuição das Classes')
plt.xlabel('Classe')
plt.ylabel('Quantidade')
plt.tight_layout();

#print do balanceamento
print(pd.Series(ytreinamento).value_counts())
```

D:\ANACONDA\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vali d positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

True 4414 False 4414

Name: Atendida, dtype: int64

In [21]:

1 #Neste ponto do notebook, as bases do "df_ml" estão balanceadas pelo SMOTE e separadas

PyCaret preparatório

Temos as bases balanceadas e já separadas no train_test_split. Todavia, não sabemos qual modelo de machine learning aplicar. Utilizaremos a ferramenta de automação de machine learning Pycaret apenas como guia para escolher os melhores algoritmos para implementação manual.

A documentação do PyCaret dispõe que, ao utilizar o parâmetro fix_imbalance=True, a biblioteca aplica, automaticamente, a técnica SMOTE. Dessa forma, não há necessidade de aplicar as bases balanceadas por SMOTE, às quais preparamos para o ML manual. Assim, utilizaremos, no PyCaret, a base "df_ml1". Como haverá SMOTE automático, a ml1 será semelhante à "df_ml" submetida ao SMOTE

In [22]:

- 1 #PyCaret no automático mas com fix_imbalance=True
- 2 #pycaret_df_ml = setup(data = ml1, target='Atendida',fix_imbalance=True)
- 3 #modelsml1 = compare_models()
- 4 #resultsml1 = pull()

#Resultado do PyCaret:

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
ridge	Ridge Classifier	0.7333	0.0000	0.7642	0.7873	0.7754	0.4471	0.4477	16.6980
et	Extra Trees Classifier	0.7308	0.7868	0.7998	0.7648	0.7816	0.4311	0.4325	33.3220
rf	Random Forest Classifier	0.7291	0.7867	0.8129	0.7560	0.7833	0.4231	0.4253	23.5580
Ir	Logistic Regression	0.7250	0.7892	0.7380	0.7918	0.7638	0.4355	0.4374	31.5750
svm	SVM - Linear Kernel	0.7229	0.0000	0.7315	0.7974	0.7593	0.4327	0.4393	16.7670
dt	Decision Tree Classifier	0.7206	0.7016	0.7967	0.7538	0.7745	0.4081	0.4094	15.5360
lightgbm	Light Gradient Boosting Machine	0.7201	0.7718	0.7649	0.7696	0.7671	0.4163	0.4166	16.7510
gbc	Gradient Boosting Classifier	0.7027	0.7645	0.7344	0.7637	0.7486	0.3852	0.3859	27.2430
ada	Ada Boost Classifier	0.6925	0.7554	0.7000	0.7692	0.7327	0.3726	0.3752	17.9490
knn	K Neighbors Classifier	0.6345	0.7270	0.5246	0.7999	0.6333	0.2993	0.3262	32.0240
nb	Naive Bayes	0.5263	0.5962	0.2563	0.8570	0.3943	0.1625	0.2440	14.8830
lda	Linear Discriminant Analysis	0.4105	0.4492	0.4043	0.4638	0.4320	0.2171	0.2199	181.5890
qda	Quadratic Discriminant Analysis	0.3917	0.4549	0.1470	0.6861	0.2419	0.0912	0.1603	110.5300

ML manual a partir dos melhores modelos que prospectamos com o PyCaret: et, rf e Ir. Privilegiando o recall e, também, para variar dos modelos de árvore, colocamos, também, o lightgbm. Plotamos Matriz de Confusão e grafico de ROC e AUC.

In [23]:

1 #Retomamos os train_test_split a partir do oversample ("_os") que já tínhamos feito

In [29]:

```
# Modelo Extra Trees Classifier
et = ExtraTreesClassifier(random_state=0)
et = et.fit(xtreinamento, ytreinamento)
Train_predict_et = et.predict(xteste)
print("Accuracy Score:", accuracy_score(yteste, Train_predict_et))
print(classification_report(yteste, Train_predict_et))
```

Accuracy Score: 0.7457716701902748

•	precision	recall	f1-score	support
False	0.70	0.86	0.77	1892
True	0.82	0.63	0.71	1892
accuracy			0.75	3784
macro avg	0.76	0.75	0.74	3784
weighted avg	0.76	0.75	0.74	3784

In [30]:

- 1 #Matriz de Confusão
- 2 skplt.metrics.plot_confusion_matrix(yteste, Train_predict_et, normalize=True)
- 3 plt.show()

In [31]:

```
# Curva ROC e área abaixo da curva (AUC)
y_pred_et = et.predict_proba(xteste)
et_fpr,et_tpr,thereshold = roc_curve(yteste,y_pred_et[:,1])
auc_et = auc(et_fpr,et_tpr)
plt.figure(figsize=(5, 5), dpi=100)
plt.plot(et_fpr,et_tpr, marker='.', label='Extra Trees Classifier (auc = %0.3f)' % auc_plt.xlabel('False Positive Rate -->')
plt.ylabel('True Positive Rate -->')
plt.legend()
plt.show()
```


In [32]:

```
# ModeLo Logistic Regression
lr = LogisticRegression(random_state=0)
lr = lr.fit(xtreinamento, ytreinamento)
Train_predict_lr = lr.predict(xteste)
print("Accuracy Score:", accuracy_score(yteste, Train_predict_lr))
print(classification_report(yteste, Train_predict_lr))
```

D:\ANACONDA\lib\site-packages\sklearn\linear_model_logistic.py:762: Converg enceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re

gression)
 n_iter_i = _check_optimize_result(

Accuracy Score: 0.7618921775898521

	precision	recall	f1-score	support
False	0.76	0.77	0.76	1892
True	0.76	0.76	0.76	1892
accuracy			0.76	3784
macro avg	0.76	0.76	0.76	3784
weighted avg	0.76	0.76	0.76	3784

In [33]:

skplt.metrics.plot_confusion_matrix(yteste, Train_predict_lr, normalize=True) plt.show()

In [34]:

```
1 Y_pred_lr=lr.decision_function(xteste)
2 logistic_fpr,logistic_tpr,thereshold = roc_curve(yteste,Y_pred_lr) # Y_pred_lr do decis
3 auc_logistic = auc(logistic_fpr, logistic_tpr)
4 plt.figure(figsize=(5, 5), dpi=100)
5 plt.plot(logistic_fpr, logistic_tpr, marker='.', label='Logistic (auc = %0.3f)' % auc_l
6 plt.xlabel('False Positive Rate -->')
7 plt.ylabel('True Positive Rate -->')
8 plt.legend()
9 plt.show()
```


In [35]:

```
# Modelo Light Gradient Boosting Machine
import lightgbm
from lightgbm import LGBMClassifier
lightgbm = LGBMClassifier(random_state=0)
lightgbm = lightgbm.fit(xtreinamento, ytreinamento)
Train_predict_lightgbm = lightgbm.predict(xteste)
print("Accuracy Score:", accuracy_score(yteste, Train_predict_lightgbm))
print(classification_report(yteste, Train_predict_lightgbm))
```

Accuracy Score: 0.7418076109936576

-	precision	recall	f1-score	support
False	0.74	0.75	0.74	1892
True	0.75	0.73	0.74	1892
accuracy			0.74	3784
macro avg	0.74	0.74	0.74	3784
weighted avg	0.74	0.74	0.74	3784

In [36]:

skplt.metrics.plot_confusion_matrix(yteste, Train_predict_lightgbm, normalize=True)
plt.show()

In [37]:

```
1  y_pred_lightgbm = lightgbm.predict_proba(xteste)
2  lightgbm_fpr,lightgbm_tpr,thereshold = roc_curve(yteste,y_pred_et[:,1])
3  auc_lightgbm = auc(lightgbm_fpr,lightgbm_tpr)
4  plt.figure(figsize=(5, 5), dpi=100)
5  plt.plot(lightgbm_fpr,lightgbm_tpr, marker='.', label='Light GBM (auc = %0.3f)' % auc_l
6  plt.xlabel('False Positive Rate -->')
7  plt.ylabel('True Positive Rate -->')
8  plt.legend()
9  plt.show()
```


In [43]:

```
# Comparativo dos três modelos
print("EXTRA TREES CLASSIFIER:")
print("Accuracy Score:", accuracy_score(yteste, Train_predict_et))
print(classification_report(yteste, Train_predict_et))
print("REGRESSÃO LOGÍSTICA:")
print("Accuracy Score:", accuracy_score(yteste, Train_predict_lr))
print(classification_report(yteste, Train_predict_lr))
print("LIGHTGBM:")
print("Accuracy Score:", accuracy_score(yteste, Train_predict_lightgbm))
print(classification_report(yteste, Train_predict_lightgbm))
```

EXTRA TREES CLASSIFIER:

Accuracy Score: 0.7457716701902748

	precision	recall	f1-score	support
False	0.70	0.86	0.77	1892
True	0.82	0.63	0.71	1892
accuracy			0.75	3784
macro avg	0.76	0.75	0.74	3784
weighted avg	0.76	0.75	0.74	3784

REGRESSÃO LOGÍSTICA:

Accuracy Score: 0.7618921775898521

	precision	recall	f1-score	support
False	0.76	0.77	0.76	1892
True	0.76	0.76	0.76	1892
accuracy			0.76	3784
macro avg	0.76	0.76	0.76	3784
weighted avg	0.76	0.76	0.76	3784

LIGHTGBM:

Accuracy Score: 0.7418076109936576

	precision	recall	f1-score	support
False True	0.74 0.75	0.75 0.73	0.74 0.74	1892 1892
accuracy macro avg weighted avg	0.74 0.74	0.74 0.74	0.74 0.74 0.74	3784 3784 3784

In [44]:

```
# Comparando AUC dos modelos ExtraTrees, LogisticRegression e LightGBM
plt.figure(figsize=(5, 5), dpi=100)
plt.plot(logistic_fpr, logistic_tpr, marker='.', label='Logistic (auc = %0.3f)' % auc_]
plt.plot(et_fpr,et_tpr, marker='.', label='Extra Trees Classifier (auc = %0.3f)' % auc_]
plt.plot(lightgbm_fpr,lightgbm_tpr, marker='.', label='Light GBM (auc = %0.3f)' % auc_]
plt.xlabel('False Positive Rate -->')
plt.ylabel('True Positive Rate -->')
plt.legend()
plt.show()
```


A exigência da PUC Minas é de, no mínimo, três modelos de ML. Conforme demonstramos abaixo, o RandomForest gera basicamente o mesmo resultado do ExtraTrees. Dessa forma, utilizaremos, na versão a ser apresentada, os modelos ExtraTrees, LogisticRegression e LightGBM.

In [40]:

```
#Modelo RandomForest
rfm = RandomForestClassifier()
rfm = rfm.fit(xtreinamento, ytreinamento)
tp_rfm = rfm.predict(xteste)
print("Accuracy Score:", accuracy_score(yteste, tp_rfm))
print(classification_report(yteste, tp_rfm))
```

Accuracy Score: 0.7370507399577167

•	precision	recall	f1-score	support
False	0.69	0.88	0.77	1892
True	0.83	0.60	0.69	1892
accuracy			0.74	3784
macro avg	0.76	0.74	0.73	3784
weighted avg	0.76	0.74	0.73	3784

In [41]:

```
skplt.metrics.plot_confusion_matrix(yteste, tp_rfm, normalize=True)
plt.show()
```


In [42]:

Apêndice: testes mostrando variações que não foram aproveitadas no ML acima

1) Tentativa sem a coluna CEP

```
In [ ]:
 1 df_sem_cep = df_ml1[['Regiao','UF','CNAE','Atendida','CodAssunto','SexoConsumidor','Fai
In [ ]:
 1 df_sem_cep
In [ ]:
    df_sem_cep = pd.get_dummies(df_sem_cep[['Regiao',
                                'UF',
 2
                                'CNAE',
 3
 4
                                'Atendida',
                                'CodAssunto',
 5
 6
                                'SexoConsumidor',
 7
                                'FaixaEtaria','InscritoDAU']])
In [ ]:
 1 df_sem_cep.shape # a do ml1 tinha 6922 colunas
In [ ]:
```

```
1 Xdf_sem_cep = df_sem_cep.drop(['Atendida'],axis=1)
2 ydf_sem_cep = df_sem_cep.Atendida
  smt = SMOTE()
  Xdf_sem_cep_os,ydf_sem_cep_os = smt.fit_sample(Xdf_sem_cep,ydf_sem_cep) #os de oversame
  counter = Counter(ydf_sem_cep_os)
  print(counter)
```

In []:

```
1 #Train test split nessa oversampled
2 | # especificamos o tamanho do test_size = 0.3 pq assim as True/False do ytreinamento e 1
  xtreinamentodf_sem_cep, xtestedf_sem_cep, ytreinamentodf_sem_cep, ytestedf_sem_cep = tr
```

ML do df_sem_cep

```
In [ ]:
```

```
1 #Retomamos os train test split a partir do oversample (" os") que já tínhamos feito
2
  #xtreinamentodf_sem_cep, xtestedf_sem_cep, ytreinamentodf_sem_cep, ytestedf_sem_cep= tr
```

```
In [ ]:
```

```
# Modelo Extra Trees Classifier
etdf_sem_cep = ExtraTreesClassifier(random_state=0)
etdf_sem_cep = etdf_sem_cep.fit(xtreinamentodf_sem_cep, ytreinamentodf_sem_cep)
print("Acurácia de treinamento: ", etdf_sem_cep.score(xtreinamentodf_sem_cep, ytreinamentodf_sem_cep, ytreinamentodf_sem_cep)
Train_predict_etdf_sem_cep = etdf_sem_cep.predict(xtestedf_sem_cep)
print("Acurácia de previsão: ", accuracy_score(ytestedf_sem_cep, Train_predict_etdf_sem_cep)
print(classification_report(ytestedf_sem_cep, Train_predict_etdf_sem_cep))
```

In []:

```
# Modelo Logistic Regression
| Irdf_sem_cep = LogisticRegression(random_state=0)
| Irdf_sem_cep = Irdf_sem_cep.fit(xtreinamentodf_sem_cep, ytreinamentodf_sem_cep)
| print("Acurácia de treinamento: ", Irdf_sem_cep.score(xtreinamentodf_sem_cep, ytreinamentodf_sem_cep, ytreinamentodf_sem_cep)
| Train_predict_Irdf_sem_cep = Irdf_sem_cep.predict(xtestedf_sem_cep)
| print("Acurácia de previsão: ", accuracy_score(ytestedf_sem_cep, Train_predict_Irdf_sem_cep))
| Train_predict_Irdf_sem_cep)
```

In []:

```
# Modelo Light Gradient Boosting Machine
import lightgbm
from lightgbm import LGBMClassifier
lightgbmdf_sem_cep = LGBMClassifier(random_state=0)
lightgbmdf_sem_cep = lightgbmdf_sem_cep.fit(xtreinamentodf_sem_cep, ytreinamentodf_sem_print("Acurácia de treinamento: ", lightgbmdf_sem_cep.score(xtreinamentodf_sem_cep, ytr Train_predict_lightgbmdf_sem_cep = lightgbmdf_sem_cep.predict(xtestedf_sem_cep)
print("Acurácia de previsão: ", accuracy_score(ytestedf_sem_cep, Train_predict_lightgbmdf_sem_cep))
print(classification_report(ytestedf_sem_cep, Train_predict_lightgbmdf_sem_cep))
```

2) Tentativa com LabelEncoder para as de alta cardinalidade

A melhor técnica dispõe que devemos criar label enconders para as variáveis de alta cardinalidade. Não obstante, as nossas variáveis categóricas não podem sofrer o enviesamento: um CNAE 8630502 não é 8630502 vezes melhor ou pior do que o CNAE 0000001. Adotar os label encoders para as varáveis verdadeiramente explicativas - CNAE e CodAssunto - implicaria em um descolamento com a realidade dos problemas dessa natureza.

```
In [ ]:
```

```
1 df_le = df_ml1 #leia-se "dataframe label encoder"
```

In []:

1 from sklearn.preprocessing import LabelEncoder

In []:

```
1 df_le.nunique()
```

```
In [ ]:
 1 | colunascategoricas = df_le.select_dtypes('object').columns
 2 colunascategoricas
In [ ]:
 1 for col in colunascategoricas:
        df_le[col+'_encoded'] = LabelEncoder().fit_transform(df_le[col])
In [ ]:
 1 df_le
In [ ]:
 1 | # Para definir as colunas que permanecerem no nosso nosso dataframe selecionaremos:
 2 # para de alta cardinalidade, mantemos LabelEncoder;
 3 | # para as de baixa e média, criaremos dummies
In [ ]:
 1 df_le = df_le[['Regiao','UF','CNAE_encoded','Atendida','CodAssunto_encoded','SexoConsur
In [ ]:
 1 df_le
In [ ]:
 1 # Pois bem, vamos agora criar dummies para 'Regiao' (5 unique), 'UF' (15), SexoConsumio
In [ ]:
 1
    df_le_du = pd.get_dummies(df_le,
                              columns = ['Regiao',
 2
 3
 4
                                          'SexoConsumidor',
 5
                                         'FaixaEtaria'],
                               prefix = ['Regiao',
 6
                                          'UF',
 7
                                         'SexoConsumidor',
 8
                                         'FaixaEtaria'],
 9
                               prefix_sep = '_' )
10
11
In [ ]:
 1 df le du.info()
In [ ]:
 1 df le du # leia-se df label encoder com dummies
In [ ]:
   df_le_du.info()
```

Agora, então, temos dummies para as de baixa e média cardinalidade: 'Regiao' (5 unique), 'UF' (15 unique), SexoConsumidor' (2 unique) e 'FaixaEtaria' (7); e label encoder para as de alta cardinalidade 'CNAE_encoded' (368 unique), 'CodAssunto_encoded' (175 unique) e CEP (6354 unique)

In []:

```
Xdf_le_du = df_le_du.drop(['Atendida'],axis=1)
ydf_le_du = df_le_du.Atendida
smt = SMOTE()

Xdf_le_du_os,ydf_le_du_os = smt.fit_sample(Xdf_le_du,ydf_le_du) #os de oversampled
counter = Counter(ydf_le_du_os)
print(counter)
```

In []:

In []:

```
#Retomamos os train_test_split a partir do oversample ("_os") que já tínhamos feito
#xtreinamentodf_le_du, xtestedf_le_du, ytreinamentodf_le_du, ytestedf_le_du = train_tes
```

ML do df_le_du ("df label encoder dummies")

In []:

```
# Modelo Extra Trees Classifier
etdf_le_du = ExtraTreesClassifier(random_state=0)
etdf_le_du = etdf_le_du.fit(xtreinamentodf_le_du, ytreinamentodf_le_du)
print("Acurácia de treinamento: ", etdf_le_du.score(xtreinamentodf_le_du, ytreinamentodf_le_du)
Train_predict_etdf_le_du = etdf_le_du.predict(xtestedf_le_du)
print("Acurácia de previsão: ", accuracy_score(ytestedf_le_du, Train_predict_etdf_le_du, print(classification_report(ytestedf_le_du, Train_predict_etdf_le_du))
```

In []:

```
# Modelo Logistic Regression
lrdf_le_du = LogisticRegression(random_state=0)
lrdf_le_du = lrdf_le_du.fit(xtreinamentodf_le_du, ytreinamentodf_le_du)
print("Acurácia de treinamento: ", lrdf_le_du.score(xtreinamentodf_le_du, ytreinamentod
Train_predict_lrdf_le_du = lrdf_le_du.predict(xtestedf_le_du)
print("Acurácia de previsão: ", accuracy_score(ytestedf_le_du, Train_predict_lrdf_le_du)
print(classification_report(ytestedf_le_du, Train_predict_lrdf_le_du))
```

In []:

```
#Modelo Light Gradient Boosting Machine
import lightgbm
from lightgbm import LGBMClassifier
lightgbmdf_le_du = LGBMClassifier(random_state=0)
lightgbmdf_le_du = lightgbmdf_le_du.fit(xtreinamentodf_le_du, ytreinamentodf_le_du)
print("Acurácia de treinamento: ", lightgbmdf_le_du.score(xtreinamentodf_le_du, ytreinamentodf_le_du)
Train_predict_lightgbmdf_le_du = lightgbmdf_le_du.predict(xtestedf_le_du)
print("Acurácia de previsão: ", accuracy_score(ytestedf_le_du, Train_predict_lightgbmdf_le_du)
print(classification_report(ytestedf_le_du, Train_predict_lightgbmdf_le_du))
```

Não obstante melhorar o desempenho dos modelos Extra Trees e LightGBM, houve piora no modelo escolhido, o de Regressão Logística.