

Nebeska šetnja

Kenan je nacrtao plan zgrada i nebeskih staza duž jedne strane glavne avenije grada Baku. Postoji ukupno n zgrada označenih brojevima od 0 do n-1 i m nebeskih staza označenih brojevima od 0 do m-1. Cijeli plan je nacrtan u dvodimenzionalnoj ravni, gdje su zgrade i nebeske staze vertikalni i horizontalni segmenti respektivno.

Osnova zgrade i $(0 \le i \le n-1)$ se nalazi u tački (x[i], 0), a zgrada ima visinu h[i]. Dakle, to je segment koji povezuje tačke (x[i], 0) i (x[i], h[i]).

Nebeska staza j $(0 \le j \le m-1)$ koja ima krajnje tačke na zgradama pod brojevima l[j] i r[j] i ima pozitivnu y-koordinatu y[j]. Dakle, to je segment koji povezuje tačke (x[l[j]], y[j]) i (x[r[j]], y[j]).

Nebeska staza i zgrada **se presijecaju** ako imaju zajedničku tačku. Dakle, jedna nebeska staza sigurno presijeca dvije zgrade na njene dvije krajnje tačke, a može presijecati i neke druge zgrade između njih.

Kenan bi želio pronaći dužinu najkraćeg mogućeg puta od osnove zgrade s do osnove zgrade g, pretpostavljajući da je moguće ići samo po zgradama i duž nebeskih staza, ili utvrditi da ne postoji jedan takav put. Imajte na umu da nije dopušteno hodati po zemlji, tj. duž horizontalne linije koja ima y-koordinatu 0.

Jednom nebeskom stazom se može ući i onda hodati po zgradi ili obrnuto, i to u svakoj tački gdje se zgrada i nebeska staza presjecaju. Ako su krajnje tačke dvije nebeske staze u istoj tački onda je moguće preći sa jedne nebeske staze na drugu.

Vaš zadatak je pomoći Kenanu da odgovori na njegovo pitanje.

Detalji implementacije

Trebali biste implementirati slijedeću proceduru. Grader će pozvati ovu procedure jednom za svaki testni slučaj.

- x i h: nizovi cijelih brojeva dužine n
- l, r i y: nizovi cijelih brojeva dužine m
- s i g: dva cijela broja

• Ova procedura treba vratiti dužinu najkraćeg puta između osnove zgrade s i osnove zgrade g, ako jedan takav put uopšte postoji. U suprotnom, treba vratiti -1.

Primjeri

Primjer 1

Posmatrajmo sljedeći poziv:

```
min_distance([0, 3, 5, 7, 10, 12, 14],
[8, 7, 9, 7, 6, 6, 9],
[0, 0, 0, 2, 2, 3, 4],
[1, 2, 6, 3, 6, 4, 6],
[1, 6, 8, 1, 7, 2, 5],
1, 5)
```

Tačan odgovor je 27 \$.

Donja slika odgovara Primjeru 1 :

Primjer 2

Tačan odgovor je 21.

Ograničenja

- $1 \le n, m \le 100000$
- $0 \le x[0] < x[1] < \ldots < x[n-1] \le 10^9$
- $1 \le h[i] \le 10^9$ (za sve $0 \le i \le n-1$)
- $0 \leq l[j] < r[j] \leq n-1$ (za sve $0 \leq j \leq m-1$)
- $1 \leq y[j] \leq min(h[l[j]], h[r[j]])$ (za sve $0 \leq j \leq m-1$)
- $0 \le s, g \le n 1$
- \bullet $s \neq g$
- Nikoje dvije nebeske staze nemaju zajedničku tačku, osim možda u svojim krajnjim tačkama.

Podzadaci

- 1. (10 bodova) $n, m \le 50$
- 2. (14 bodova) Svaka nebeska staza presijeca najviše 10 zgrada.
- 3. (15 bodova) s = 0, g = n 1, a sve zgrade su iste visine.
- 4. (18 bodova) s = 0, g = n 1
- 5. (43 bodova) Nema dodatnih ograničenja.

Grader

Grader čita input u sljedećem formatu:

- linija 1: n m
- linija 2 + i ($0 \le i \le n 1$): $x[i] \ h[i]$
- ullet linija n+2+j ($0\leq j\leq m-1$): l[j] r[j] y[j]
- linija n+m+2: s g

Grader ispisuje jednu liniju koja sadrži povratnu vrijednost "min distance".