$12a_{0905} (K12a_{0905})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^9 - u^8 - 5u^7 - 4u^6 - 8u^5 - 5u^4 - 4u^3 - u^2 + b - u + 1, \ -u^{14} - 3u^{13} + \dots + 3a + 9, \\ u^{15} + 3u^{14} + \dots - 6u - 3 \rangle \\ I_2^u &= \langle -562052542293u^{41} - 4221685298499u^{40} + \dots + 1614846925093b + 7465820808608, \\ 7465820808608u^{41} + 62536829180329u^{40} + \dots + 8074234625465a + 154585802344000, \\ u^{42} + 8u^{41} + \dots + 40u + 5 \rangle \\ I_3^u &= \langle 3u^{23} - 17u^{22} + \dots + b + 4, \ 4u^{23}a - 5u^{23} + \dots + 9a - 20, \ u^{24} - 5u^{23} + \dots + 4u + 1 \rangle \\ I_4^u &= \langle 2u^{21} - 14u^{20} + \dots + b - 3, \ 3u^{21} - 19u^{20} + \dots + a - 4, \ u^{22} - 7u^{21} + \dots - 8u + 1 \rangle \\ I_5^u &= \langle -u^3 - au + u^2 + b - 2u + 1, \ u^3a + u^3 + a^2 + 2au + 2u + 1, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle \\ I_6^u &= \langle u^3 - u^2 + b + 2u - 1, \ u^3 + a + 2u, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle \\ I_7^u &= \langle -au - u^2 + b + u - 1, \ u^2a + a^2 - u^2 + a - 1, \ u^3 - u^2 + 2u - 1 \rangle \\ I_1^v &= \langle a, \ b + 1, \ v - 1 \rangle \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 146 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^9 - u^8 + \dots + b + 1, -u^{14} - 3u^{13} + \dots + 3a + 9, u^{15} + 3u^{14} + \dots - 6u - 3 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{3}u^{14} + u^{13} + \dots - \frac{8}{3}u - 3 \\ u^{9} + u^{8} + 5u^{7} + 4u^{6} + 8u^{5} + 5u^{4} + 4u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{3}u^{14} + u^{13} + \dots + \frac{1}{3}u - 1 \\ u^{13} + 2u^{12} + \dots - 2u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{3}u^{14} + u^{13} + \dots - \frac{11}{3}u - 2 \\ u^{9} + u^{8} + 5u^{7} + 4u^{6} + 8u^{5} + 5u^{4} + 4u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{2}{3}u^{14} - u^{13} + \dots - \frac{5}{3}u - 2 \\ -u^{13} - 3u^{12} + \dots + 4u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{2}{3}u^{14} - 3u^{13} + \dots + \frac{13}{3}u^{2} + \frac{7}{3}u \\ u^{14} + 3u^{13} + \dots - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{3}u^{14} + u^{13} + \dots - \frac{5}{3}u - 1 \\ u^{9} + u^{8} + 5u^{7} + 4u^{6} + 8u^{5} + 5u^{4} + 4u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{3}u^{14} - \frac{1}{3}u^{12} + \dots - \frac{1}{3}u^{2} - \frac{7}{3}u \\ -u^{13} - 2u^{12} + \dots + u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-2u^{12} - 6u^{11} - 22u^{10} - 44u^9 - 84u^8 - 120u^7 - 142u^6 - 144u^5 - 102u^4 - 64u^3 - 20u^2 + 6$$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$u^{15} - 3u^{14} + \dots - 6u + 3$
c_2, c_5, c_8 c_{11}	$u^{15} + u^{14} + \dots - 7u^2 + 1$
c_{3}, c_{9}	$u^{15} - 6u^{14} + \dots - 24u + 8$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$y^{15} + 17y^{14} + \dots + 6y - 9$
c_2, c_5, c_8 c_{11}	$y^{15} - 11y^{14} + \dots + 14y - 1$
c_3, c_9	$y^{15} - 6y^{14} + \dots + 224y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.795561 + 0.469588I		
a = 0.66756 + 1.38872I	1.22894 + 9.98581I	-2.50504 - 9.39516I
b = 1.18321 + 0.79133I		
u = -0.795561 - 0.469588I		
a = 0.66756 - 1.38872I	1.22894 - 9.98581I	-2.50504 + 9.39516I
b = 1.18321 - 0.79133I		
u = 0.025319 + 0.816586I		
a = -0.509860 - 0.477335I	1.65484 - 1.30957I	1.85503 + 5.43942I
b = -0.376877 + 0.428430I		
u = 0.025319 - 0.816586I		
a = -0.509860 + 0.477335I	1.65484 + 1.30957I	1.85503 - 5.43942I
b = -0.376877 - 0.428430I		
u = -0.538585 + 0.452447I		
a = -1.298690 - 0.499892I	2.11810 - 0.75734I	1.216337 - 0.256399I
b = -0.925630 + 0.318355I		
u = -0.538585 - 0.452447I		
a = -1.298690 + 0.499892I	2.11810 + 0.75734I	1.216337 + 0.256399I
b = -0.925630 - 0.318355I		
u = 0.05955 + 1.44554I		
a = -0.511356 + 0.845268I	12.18430 - 0.89198I	5.76532 - 1.13067I
b = 1.25232 + 0.68885I		
u = 0.05955 - 1.44554I		
a = -0.511356 - 0.845268I	12.18430 + 0.89198I	5.76532 + 1.13067I
b = 1.25232 - 0.68885I		
u = 0.17394 + 1.44037I		
a = 0.383006 - 0.328634I	8.82530 - 4.42382I	1.11143 + 2.80902I
b = -0.539974 - 0.494505I		
u = 0.17394 - 1.44037I		
a = 0.383006 + 0.328634I	8.82530 + 4.42382I	1.11143 - 2.80902I
b = -0.539974 + 0.494505I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.34009 + 1.46037I		
a = 0.223627 + 0.790180I	13.5931 + 6.4489I	7.27407 - 4.21866I
b = 1.230010 - 0.057843I		
u = -0.34009 - 1.46037I		
a = 0.223627 - 0.790180I	13.5931 - 6.4489I	7.27407 + 4.21866I
b = 1.230010 + 0.057843I		
u = 0.436338		
a = -0.713570	-0.991071	-10.5830
b = 0.311358		
u = -0.30274 + 1.53981I		
a = 0.402502 - 1.039480I	14.3514 + 18.1469I	3.57429 - 8.51279I
b = -1.47873 - 0.93447I		
u = -0.30274 - 1.53981I		
a = 0.402502 + 1.039480I	14.3514 - 18.1469I	3.57429 + 8.51279I
b = -1.47873 + 0.93447I		

II.
$$I_2^u = \langle -5.62 \times 10^{11} u^{41} - 4.22 \times 10^{12} u^{40} + \dots + 1.61 \times 10^{12} b + 7.47 \times 10^{12}, \ 7.47 \times 10^{12} u^{41} + 6.25 \times 10^{13} u^{40} + \dots + 8.07 \times 10^{12} a + 1.55 \times 10^{14}, \ u^{42} + 8 u^{41} + \dots + 40 u + 5 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.924647u^{41} - 7.74523u^{40} + \dots - 92.0620u - 19.1456 \\ 0.348053u^{41} + 2.61429u^{40} + \dots - 17.8403u - 4.62324 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0122164u^{41} - 0.389943u^{40} + \dots - 63.7656u - 7.49795 \\ 0.487674u^{41} + 5.20588u^{40} + \dots + 8.98661u + 0.0610821 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.27270u^{41} - 10.3595u^{40} + \dots - 74.2216u - 14.5223 \\ 0.348053u^{41} + 2.61429u^{40} + \dots - 17.8403u - 4.62324 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.836271u^{41} - 5.05200u^{40} + \dots - 65.6783u - 14.8968 \\ -1.14490u^{41} - 9.64683u^{40} + \dots - 56.7466u - 9.60670 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.528605u^{41} + 3.36723u^{40} + \dots - 8.24064u - 1.10136 \\ -0.314496u^{41} - 1.57614u^{40} + \dots - 7.98768u - 1.64323 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.261345u^{41} + 2.30222u^{40} + \dots + 0.106070u + 1.77076 \\ -0.347361u^{41} - 2.64299u^{40} + \dots - 3.78133u - 0.430082 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.00701951u^{41} + 0.906686u^{40} + \dots + 16.1301u + 2.32016 \\ -0.615275u^{41} - 4.95154u^{40} + \dots - 14.9001u - 1.83426 \end{pmatrix}$$

(ii) Obstruction class = -1

$$= \frac{11300023370492}{1614846925093}u^{41} + \frac{83794710538956}{1614846925093}u^{40} + \dots + \frac{592947538978880}{1614846925093}u + \frac{103946797867048}{1614846925093}u^{40} + \dots + \frac{592947538978880}{1614846925093}u^{40} + \dots + \frac{59294753897880}{1614846925093}u^{40} + \dots + \frac{592947538978880}{1614846925093}u^{40} + \dots + \frac{59294753897880}{1614846925093}u^{40} + \dots + \frac{5929475389780}{1614846925093}u^{40} + \dots + \frac{5929475380}{1614846925093}u^{40} + \dots + \frac{5929475380}{1614846925093}u^{4$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	$u^{42} - 8u^{41} + \dots - 40u + 5$
c_2, c_5, c_8 c_{11}	$u^{42} - 13u^{40} + \dots - u + 1$
c_3,c_9	$(u^{21} + 3u^{20} + \dots - u - 5)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$y^{42} + 40y^{41} + \dots + 100y + 25$
c_2, c_5, c_8 c_{11}	$y^{42} - 26y^{41} + \dots - 127y + 1$
c_3, c_9	$(y^{21} + 9y^{20} + \dots - 319y - 25)^2$

Solutions to I_2^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.853330 + 0.522684I		
a = -0.59606 - 1.28608I	7.6520 + 13.9242I	0 8.90479I
b = -1.18084 - 0.78590I		
u = -0.853330 - 0.522684I		
a = -0.59606 + 1.28608I	7.6520 - 13.9242I	0. + 8.90479I
b = -1.18084 + 0.78590I		
u = -0.712897 + 0.659919I		
a = 1.002160 + 0.322440I	1.79638 - 4.88565I	0. + 5.93325I
b = 0.927217 - 0.431475I		
u = -0.712897 - 0.659919I		
a = 1.002160 - 0.322440I	1.79638 + 4.88565I	0 5.93325I
b = 0.927217 + 0.431475I		
u = 0.593838 + 0.841447I	0 80801 0 018404	0
a = -0.112224 + 0.107302I	-0.50781 - 2.31740I	0
$\frac{b = 0.156931 + 0.030710I}{u = 0.593838 - 0.841447I}$		
	0.50701 + 0.217407	0
a = -0.112224 - 0.107302I	-0.50781 + 2.31740I	0
b = 0.156931 - 0.030710I $u = -0.839691 + 0.678343I$		
a = -0.943185 - 0.221439I $a = -0.943185 - 0.221439I$	8.04725 - 8.28146I	0
a = -0.945183 - 0.221439I $b = -0.942195 + 0.453863I$	0.04725 - 0.201407	U
u = -0.839691 - 0.678343I		
a = -0.943185 + 0.221439I	8.04725 + 8.28146I	0
b = -0.942195 - 0.453863I	0.04720 0.201401	O
u = 0.731574 + 0.444637I		
a = 0.267734 - 0.175635I	2.78697 - 1.47830I	-3.32231 + 0.64878I
b = -0.273961 + 0.009446I	2000	3.32231 0.010701
u = 0.731574 - 0.444637I		
a = 0.267734 + 0.175635I	2.78697 + 1.47830I	-3.32231 - 0.64878I
b = -0.273961 - 0.009446I		30- 0.0-0.04
0.2,0001 0.0001101		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.775939 + 0.274659I		
a = 1.401210 - 0.008524I	8.03896 + 2.27731I	3.60405 - 1.97458I
b = 1.084910 - 0.391468I		
u = -0.775939 - 0.274659I		
a = 1.401210 + 0.008524I	8.03896 - 2.27731I	3.60405 + 1.97458I
b = 1.084910 + 0.391468I		
u = -0.682700 + 0.436541I		
a = -0.67403 - 1.62063I	1.79638 + 4.88565I	-0.60467 - 5.93325I
b = -1.16763 - 0.81216I		
u = -0.682700 - 0.436541I		
a = -0.67403 + 1.62063I	1.79638 - 4.88565I	-0.60467 + 5.93325I
b = -1.16763 + 0.81216I		
u = -0.518391 + 0.574589I		
a = 0.25967 + 1.72822I	9.22998 + 1.82910I	4.46798 - 3.91898I
b = 1.127630 + 0.746695I		
u = -0.518391 - 0.574589I		
a = 0.25967 - 1.72822I	9.22998 - 1.82910I	4.46798 + 3.91898I
b = 1.127630 - 0.746695I		
u = 0.682538 + 1.019720I		
a = 0.179954 - 0.091678I	4.29895 - 3.75943I	0
b = -0.216311 - 0.120929I		
u = 0.682538 - 1.019720I		
a = 0.179954 + 0.091678I	4.29895 + 3.75943I	0
b = -0.216311 + 0.120929I		
u = -0.052768 + 1.314890I		
a = -0.355444 + 0.977726I	10.2049	0
b = 1.266840 + 0.518962I		
u = -0.052768 - 1.314890I		
a = -0.355444 - 0.977726I	10.2049	0
b = 1.266840 - 0.518962I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.027560 + 1.319270I		
a = -0.706441 + 0.342428I	2.78697 - 1.47830I	0
b = 0.471226 + 0.922552I		
u = 0.027560 - 1.319270I		
a = -0.706441 - 0.342428I	2.78697 + 1.47830I	0
b = 0.471226 - 0.922552I		
u = -0.082150 + 1.381150I		
a = 0.871679 - 0.724775I	4.29895 + 3.75943I	0
b = -0.92941 - 1.26346I		
u = -0.082150 - 1.381150I		
a = 0.871679 + 0.724775I	4.29895 - 3.75943I	0
b = -0.92941 + 1.26346I		
u = 0.014975 + 1.414050I		
a = 0.451593 - 0.837497I	6.62865 - 0.11622I	0
b = -1.191030 - 0.626035I		
u = 0.014975 - 1.414050I		
a = 0.451593 + 0.837497I	6.62865 + 0.11622I	0
b = -1.191030 + 0.626035I		
u = -0.25079 + 1.45386I		
a = -0.056197 - 0.851127I	8.03896 + 2.27731I	0
b = -1.251510 - 0.131755I		
u = -0.25079 - 1.45386I		
a = -0.056197 + 0.851127I	8.03896 - 2.27731I	0
b = -1.251510 + 0.131755I		
u = -0.24529 + 1.48742I		
a = 0.492155 - 1.095830I	8.04725 + 8.28146I	0
b = -1.50924 - 1.00084I		
u = -0.24529 - 1.48742I		
a = 0.492155 + 1.095830I	8.04725 - 8.28146I	0
b = -1.50924 + 1.00084I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.17608 + 1.50947I		
a = -0.565601 + 0.999475I	16.0135 + 4.3954I	0
b = 1.40909 + 1.02974I		
u = -0.17608 - 1.50947I		
a = -0.565601 - 0.999475I	16.0135 - 4.3954I	0
b = 1.40909 - 1.02974I		
u = -0.28548 + 1.51045I		
a = -0.425571 + 1.072440I	7.6520 + 13.9242I	0
b = 1.49838 + 0.94896I		
u = -0.28548 - 1.51045I		
a = -0.425571 - 1.072440I	7.6520 - 13.9242I	0
b = 1.49838 - 0.94896I		
u = -0.16988 + 1.54466I		
a = -0.058448 + 0.687065I	9.22998 - 1.82910I	0
b = 1.051350 + 0.207003I		
u = -0.16988 - 1.54466I		
a = -0.058448 - 0.687065I	9.22998 + 1.82910I	0
b = 1.051350 - 0.207003I		
u = -0.348258 + 0.115828I		
a = -0.24840 - 3.12015I	-0.50781 + 2.31740I	-1.63390 + 8.03476I
b = -0.447909 - 1.057840I		
u = -0.348258 - 0.115828I		
a = -0.24840 + 3.12015I	-0.50781 - 2.31740I	-1.63390 - 8.03476I
b = -0.447909 + 1.057840I		
u = -0.19258 + 1.63607I		
a = 0.008104 - 0.588711I	16.0135 - 4.3954I	0
b = -0.961610 - 0.126633I		
u = -0.19258 - 1.63607I		
a = 0.008104 + 0.588711I	16.0135 + 4.3954I	0
b = -0.961610 + 0.126633I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.135742 + 0.185761I		
a = -3.19264 + 3.47066I	6.62865 - 0.11622I	5.95241 - 0.33252I
b = 1.078090 + 0.121956I		
u = 0.135742 - 0.185761I		
a = -3.19264 - 3.47066I	6.62865 + 0.11622I	5.95241 + 0.33252I
b = 1.078090 - 0.121956I		

III.
$$I_3^u = \langle 3u^{23} - 17u^{22} + \dots + b + 4, \ 4u^{23}a - 5u^{23} + \dots + 9a - 20, \ u^{24} - 5u^{23} + \dots + 4u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 3u^{23} + 17u^{22} + \dots - 7u - 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3u^{23} - u^{23} + \dots + 4a - 5 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3u^{23} - 17u^{22} + \dots + a + 4 \\ -3u^{23} + 17u^{22} + \dots - 7u - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 3u^{23} - 17u^{22} + \dots + a + 6 \\ -2u^{23} + 11u^{22} + \dots - 4u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{23} + 2u^{23} + 11u^{22} + \dots + a + 6 \\ -2u^{23} + 11u^{22} + \dots + a + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{23} + 2u^{23} + 11u^{22} + \dots + a + a + b \\ -2u^{23} + 11u^{22} + \dots + a + a - b \\ -2u^{23} + 11u^{22} + \dots + a + a - b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{23} + 5u^{22} + \dots + a + b \\ -2u^{23} + 11u^{22} + \dots + a + a - b \\ -2u^{23} - u^{23} + \dots + a - b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{23} - u^{23} + \dots + a - b \\ -2u^{23} - u^{23} + \dots + a - b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{23} - u^{23} + \dots + a - b \\ u^{21} - 6u^{20} - u^{23} + \dots + a - b \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{23} - u^{23} + \dots + a - b \\ u^{21} - 6u^{20} - u^{23} + \dots + a - b \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{23} - u^{23} + \dots + a - b \\ u^{21} - 6u^{20} - u^{23} + \dots + a - b \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-8u^{23} + 48u^{22} - 232u^{21} + 784u^{20} - 2224u^{19} + 5216u^{18} - 10568u^{17} + 18508u^{16} - 28364u^{15} + 37944u^{14} - 44324u^{13} + 44672u^{12} - 38328u^{11} + 27016u^{10} - 14640u^9 + 4908u^8 + 232u^7 - 1516u^6 + 800u^5 - 8u^4 - 232u^3 + 120u^2 - 16u - 38u^2 + 232u^2 + 120u^2 - 16u - 38u^2 + 232u^2 + 120u^2 - 16u - 38u^2 + 120u^2 + 120u^2$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	$(u^{24} + 5u^{23} + \dots - 4u + 1)^2$
c_2, c_5, c_8 c_{11}	$u^{48} - u^{47} + \dots + 36u + 61$
c_3, c_9	$(u^{24} + u^{23} + \dots - 44u + 8)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$(y^{24} + 23y^{23} + \dots - 16y + 1)^2$
c_2, c_5, c_8 c_{11}	$y^{48} + 17y^{47} + \dots - 19840y + 3721$
c_{3}, c_{9}	$(y^{24} + 9y^{23} + \dots - 1040y + 64)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.800271 + 0.533236I		
a = -0.422845 + 0.739232I	-0.96728 - 2.64620I	-16.0316 + 9.3014I
b = -0.509225 + 0.473403I		
u = 0.800271 + 0.533236I		
a = 0.167698 - 0.703293I	-0.96728 - 2.64620I	-16.0316 + 9.3014I
b = 0.732576 - 0.366110I		
u = 0.800271 - 0.533236I		
a = -0.422845 - 0.739232I	-0.96728 + 2.64620I	-16.0316 - 9.3014I
b = -0.509225 - 0.473403I		
u = 0.800271 - 0.533236I		
a = 0.167698 + 0.703293I	-0.96728 + 2.64620I	-16.0316 - 9.3014I
b = 0.732576 + 0.366110I		
u = 0.878799 + 0.336754I		
a = 0.630433 - 0.599955I	2.66736 - 1.66203I	-6.75738 + 1.82032I
b = 0.294705 - 0.322645I		
u = 0.878799 + 0.336754I		
a = -0.169737 + 0.432187I	2.66736 - 1.66203I	-6.75738 + 1.82032I
b = -0.756061 + 0.314940I		
u = 0.878799 - 0.336754I		
a = 0.630433 + 0.599955I	2.66736 + 1.66203I	-6.75738 - 1.82032I
b = 0.294705 + 0.322645I		
u = 0.878799 - 0.336754I		
a = -0.169737 - 0.432187I	2.66736 + 1.66203I	-6.75738 - 1.82032I
b = -0.756061 - 0.314940I		
u = 0.832655 + 0.672098I		
a = 0.367542 - 0.698741I	3.62403 - 3.95529I	-3.21624 + 9.39142I
b = 0.497125 - 0.651920I		
u = 0.832655 + 0.672098I		
a = 0.021153 + 0.765867I	3.62403 - 3.95529I	-3.21624 + 9.39142I
b = -0.775658 + 0.334786I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.832655 - 0.672098I		
a = 0.367542 + 0.698741I	3.62403 + 3.95529I	-3.21624 - 9.39142I
b = 0.497125 + 0.651920I		
u = 0.832655 - 0.672098I		
a = 0.021153 - 0.765867I	3.62403 + 3.95529I	-3.21624 - 9.39142I
b = -0.775658 - 0.334786I		
u = 0.086298 + 0.746831I		
a = 0.376144 - 1.063920I	7.62597 - 5.15237I	5.88005 + 4.48367I
b = 0.853689 - 1.098230I		
u = 0.086298 + 0.746831I		
a = 1.32079 + 1.29570I	7.62597 - 5.15237I	5.88005 + 4.48367I
b = -0.827028 - 0.189102I		
u = 0.086298 - 0.746831I		
a = 0.376144 + 1.063920I	7.62597 + 5.15237I	5.88005 - 4.48367I
b = 0.853689 + 1.098230I		
u = 0.086298 - 0.746831I		
a = 1.32079 - 1.29570I	7.62597 + 5.15237I	5.88005 - 4.48367I
b = -0.827028 + 0.189102I		
u = 0.001993 + 1.316790I		
a = -0.714558 - 0.020052I	2.66736 - 1.66203I	-6.75738 + 1.82032I
b = 1.42656 + 1.02275I		
u = 0.001993 + 1.316790I		
a = -0.778333 + 1.082180I	2.66736 - 1.66203I	-6.75738 + 1.82032I
b = -0.024981 + 0.940966I		
u = 0.001993 - 1.316790I		
a = -0.714558 + 0.020052I	2.66736 + 1.66203I	-6.75738 - 1.82032I
b = 1.42656 - 1.02275I		
u = 0.001993 - 1.316790I		
a = -0.778333 - 1.082180I	2.66736 + 1.66203I	-6.75738 - 1.82032I
b = -0.024981 - 0.940966I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.066677 + 1.368660I		
a = 0.347208 - 0.433644I	3.62403 + 3.95529I	-3.21624 - 9.39142I
b = -0.14080 - 2.27520I		
u = -0.066677 + 1.368660I		
a = 1.65342 - 0.18342I	3.62403 + 3.95529I	-3.21624 - 9.39142I
b = -0.570359 - 0.504124I		
u = -0.066677 - 1.368660I		
a = 0.347208 + 0.433644I	3.62403 - 3.95529I	-3.21624 + 9.39142I
b = -0.14080 + 2.27520I		
u = -0.066677 - 1.368660I		
a = 1.65342 + 0.18342I	3.62403 - 3.95529I	-3.21624 + 9.39142I
b = -0.570359 + 0.504124I		
u = -0.09853 + 1.41543I		
a = -0.177972 + 0.481724I	10.95020 + 8.21862I	4.30637 - 9.35603I
b = -0.57639 + 2.39043I		
u = -0.09853 + 1.41543I		
a = -1.70890 - 0.28826I	10.95020 + 8.21862I	4.30637 - 9.35603I
b = 0.664312 + 0.299373I		
u = -0.09853 - 1.41543I		
a = -0.177972 - 0.481724I	10.95020 - 8.21862I	4.30637 + 9.35603I
b = -0.57639 - 2.39043I		
u = -0.09853 - 1.41543I		
a = -1.70890 + 0.28826I	10.95020 - 8.21862I	4.30637 + 9.35603I
b = 0.664312 - 0.299373I		
u = 0.18804 + 1.48037I		
a = -0.334661 - 1.114890I	7.62597 - 5.15237I	5.88005 + 4.48367I
b = 0.773120 - 0.589137I		
u = 0.18804 + 1.48037I		
a = 0.326363 + 0.563705I	7.62597 - 5.15237I	5.88005 + 4.48367I
b = -1.58751 + 0.70507I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.18804 - 1.48037I		
a = -0.334661 + 1.114890I	7.62597 + 5.15237I	5.88005 - 4.48367I
b = 0.773120 + 0.589137I		
u = 0.18804 - 1.48037I		
a = 0.326363 - 0.563705I	7.62597 + 5.15237I	5.88005 - 4.48367I
b = -1.58751 - 0.70507I		
u = 0.28419 + 1.52691I		
a = -0.420040 - 0.724771I	5.70851 - 6.62112I	-4.00000 + 11.74539I
b = 1.181840 - 0.532265I		
u = 0.28419 + 1.52691I		
a = 0.197684 + 0.810796I	5.70851 - 6.62112I	-4.00000 + 11.74539I
b = -0.987293 + 0.847336I		
u = 0.28419 - 1.52691I		
a = -0.420040 + 0.724771I	5.70851 + 6.62112I	-4.00000 - 11.74539I
b = 1.181840 + 0.532265I		
u = 0.28419 - 1.52691I		
a = 0.197684 - 0.810796I	5.70851 + 6.62112I	-4.00000 - 11.74539I
b = -0.987293 - 0.847336I		
u = -0.372821 + 0.191675I		
a = 0.20434 + 2.08277I	5.70851 + 6.62112I	-4.18117 - 11.74539I
b = -0.66433 + 1.43354I		
u = -0.372821 + 0.191675I		
a = -2.97294 + 2.31667I	5.70851 + 6.62112I	-4.18117 - 11.74539I
b = 0.475400 + 0.737334I		
u = -0.372821 - 0.191675I		
a = 0.20434 - 2.08277I	5.70851 - 6.62112I	-4.18117 + 11.74539I
b = -0.66433 - 1.43354I		
u = -0.372821 - 0.191675I		
a = -2.97294 - 2.31667I	5.70851 - 6.62112I	-4.18117 + 11.74539I
b = 0.475400 - 0.737334I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.30095 + 1.58206I		
a = 0.492521 + 0.743260I	10.95020 - 8.21862I	4.30637 + 9.35603I
b = -1.117930 + 0.448505I		
u = 0.30095 + 1.58206I		
a = -0.143867 - 0.733996I	10.95020 - 8.21862I	4.30637 + 9.35603I
b = 1.02766 - 1.00288I		
u = 0.30095 - 1.58206I		
a = 0.492521 - 0.743260I	10.95020 + 8.21862I	4.30637 - 9.35603I
b = -1.117930 - 0.448505I		
u = 0.30095 - 1.58206I		
a = -0.143867 + 0.733996I	10.95020 + 8.21862I	4.30637 - 9.35603I
b = 1.02766 + 1.00288I		
u = -0.335169 + 0.072286I		
a = -0.22517 - 2.55447I	-0.96728 + 2.64620I	-16.0316 - 9.3014I
b = 0.37071 - 1.47486I		
u = -0.335169 + 0.072286I		
a = 1.96371 - 3.97683I	-0.96728 + 2.64620I	-16.0316 - 9.3014I
b = -0.260123 - 0.839904I		
u = -0.335169 - 0.072286I		
a = -0.22517 + 2.55447I	-0.96728 - 2.64620I	-16.0316 + 9.3014I
b = 0.37071 + 1.47486I		
u = -0.335169 - 0.072286I		
a = 1.96371 + 3.97683I	-0.96728 - 2.64620I	-16.0316 + 9.3014I
b = -0.260123 + 0.839904I		

IV.
$$I_4^u = \langle 2u^{21} - 14u^{20} + \dots + b - 3, \ 3u^{21} - 19u^{20} + \dots + a - 4, \ u^{22} - 7u^{21} + \dots - 8u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3u^{21} + 19u^{20} + \dots - 34u + 4 \\ -2u^{21} + 14u^{20} + \dots - 20u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{20} + 7u^{19} + \dots + 30u - 8 \\ -u^{21} + 7u^{20} + \dots + 30u^{2} - 7u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{21} + 5u^{20} + \dots - 14u + 1 \\ -2u^{21} + 14u^{20} + \dots - 20u + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{21} + 12u^{20} + \dots - 26u + 3 \\ -2u^{21} + 14u^{20} + \dots - 21u + 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{21} - 8u^{20} + \dots + 21u - 5 \\ -u^{21} + 7u^{20} + \dots + 10u^{2} - 3u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{21} - 7u^{20} + \dots + 37u - 6 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{21} + 7u^{20} + \dots - 32u + 5 \\ u^{6} - 2u^{5} + 5u^{4} - 6u^{3} + 6u^{2} - 4u + 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $12u^{21} - 80u^{20} + 384u^{19} - 1324u^{18} + 3749u^{17} - 8823u^{16} + 17896u^{15} - 31489u^{14} + 48734u^{13} - 66430u^{12} + 80127u^{11} - 85246u^{10} + 79895u^{9} - 65373u^{8} + 46397u^{7} - 28047u^{6} + 14285u^{5} - 5940u^{4} + 2052u^{3} - 566u^{2} + 165u - 22$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_{12}	$u^{22} - 7u^{21} + \dots - 8u + 1$
c_2, c_5, c_8 c_{11}	$u^{22} + u^{21} + \dots - u + 1$
c_3, c_9	$(u^{11} + 2u^9 + 5u^7 + 2u^6 + 6u^5 + 3u^4 + 5u^3 + 2u^2 + u + 1)^2$
c_4, c_{10}	$u^{22} + 7u^{21} + \dots + 8u + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$y^{22} + 21y^{21} + \dots + 12y + 1$
c_2, c_5, c_8 c_{11}	$y^{22} + 7y^{21} + \dots - 3y + 1$
c_3, c_9	$(y^{11} + 4y^{10} + \dots - 3y - 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.701458 + 0.669132I		
a = 0.159011 - 0.625712I	-0.42163 - 2.68760I	3.09765 + 11.77435I
b = 0.530223 - 0.332512I		
u = 0.701458 - 0.669132I		
a = 0.159011 + 0.625712I	-0.42163 + 2.68760I	3.09765 - 11.77435I
b = 0.530223 + 0.332512I		
u = 0.306394 + 1.001770I		
a = 0.712038 - 0.152788I	1.24246	-1.82703 + 0.I
b = 0.371222 + 0.666483I		
u = 0.306394 - 1.001770I		
a = 0.712038 + 0.152788I	1.24246	-1.82703 + 0.I
b = 0.371222 - 0.666483I		
u = 0.977693 + 0.488890I		
a = -0.508696 + 0.517538I	3.38298 - 2.17320I	3.73471 + 5.95234I
b = -0.750367 + 0.257297I		
u = 0.977693 - 0.488890I		
a = -0.508696 - 0.517538I	3.38298 + 2.17320I	3.73471 - 5.95234I
b = -0.750367 - 0.257297I		
u = 0.808804 + 0.951830I		
a = -0.230626 + 0.430869I	4.68143 - 4.04785I	8.87355 + 7.54462I
b = -0.596645 + 0.128972I		
u = 0.808804 - 0.951830I		
a = -0.230626 - 0.430869I	4.68143 + 4.04785I	8.87355 - 7.54462I
b = -0.596645 - 0.128972I		
u = 0.010703 + 1.336580I		
a = 0.974927 + 0.360971I	3.38298 + 2.17320I	3.73471 - 5.95234I
b = -0.472031 + 1.306930I		
u = 0.010703 - 1.336580I		
a = 0.974927 - 0.360971I	3.38298 - 2.17320I	3.73471 + 5.95234I
b = -0.472031 - 1.306930I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.083085 + 1.339270I		
a = -0.858696 - 0.249299I	10.02040 + 6.88319I	2.75997 - 4.69096I
b = 0.405223 - 1.129310I		
u = -0.083085 - 1.339270I		
a = -0.858696 + 0.249299I	10.02040 - 6.88319I	2.75997 + 4.69096I
b = 0.405223 + 1.129310I		
u = 0.088002 + 1.392780I		
a = -0.943305 - 0.633826I	4.68143 - 4.04785I	8.87355 + 7.54462I
b = 0.79977 - 1.36959I		
u = 0.088002 - 1.392780I		
a = -0.943305 + 0.633826I	4.68143 + 4.04785I	8.87355 - 7.54462I
b = 0.79977 + 1.36959I		
u = 0.23816 + 1.51409I		
a = -0.369383 - 0.803694I	6.38960 - 5.97093I	2.44763 + 4.64423I
b = 1.128900 - 0.750687I		
u = 0.23816 - 1.51409I		
a = -0.369383 + 0.803694I	6.38960 + 5.97093I	2.44763 - 4.64423I
b = 1.128900 + 0.750687I		
u = 0.33294 + 1.54797I		
a = 0.183469 + 0.728798I	10.02040 - 6.88319I	2.75997 + 4.69096I
b = -1.067070 + 0.526649I		
u = 0.33294 - 1.54797I		
a = 0.183469 - 0.728798I	10.02040 + 6.88319I	2.75997 - 4.69096I
b = -1.067070 - 0.526649I		
u = -0.135179 + 0.339713I		
a = 2.39203 - 0.69379I	6.38960 - 5.97093I	2.44763 + 4.64423I
b = -0.087661 + 0.906387I		
u = -0.135179 - 0.339713I		
a = 2.39203 + 0.69379I	6.38960 + 5.97093I	2.44763 - 4.64423I
b = -0.087661 - 0.906387I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.254113 + 0.202182I		
a = -1.51077 - 3.07819I	-0.42163 - 2.68760I	3.09765 + 11.77435I
b = 0.238449 - 1.087660I		
u = 0.254113 - 0.202182I		
a = -1.51077 + 3.07819I	-0.42163 + 2.68760I	3.09765 - 11.77435I
b = 0.238449 + 1.087660I		

$$\text{V. } I_5^u = \\ \langle -u^3 - au + u^2 + b - 2u + 1, \ u^3 a + u^3 + a^2 + 2au + 2u + 1, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + au - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3}a + u^{2}a - u^{3} - 2au + u^{2} + a - 3u + 1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - au + u^{2} + a - 2u + 1 \\ u^{3} + au - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2}a - u^{3} - au + u^{2} + a - u + 1 \\ -u^{2}a + 2u^{3} + au - u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3}a + u^{2}a - u^{3} - 2au - u^{2} + a - u \\ u^{3}a - u^{2}a + au + 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u^{2}a - u \\ u^{3} + au - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + u^{2} - u \\ -u^{2}a + au - a - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8u^3 8u^2 + 24u 6$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
c_2, c_5, c_8 c_{11}	$u^8 + u^7 - 2u^6 - 4u^5 + 9u^4 + u^3 - 7u^2 + u + 2$
c_3, c_9	$u^8 - 7u^7 + 30u^6 - 78u^5 + 137u^4 - 163u^3 + 131u^2 - 65u + 16$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_2, c_5, c_8 c_{11}	$y^8 - 5y^7 + 30y^6 - 68y^5 + 119y^4 - 127y^3 + 83y^2 - 29y + 4$
c_{3}, c_{9}	$y^8 + 11y^7 + 82y^6 + 116y^5 + 323y^4 + 145y^3 + 355y^2 - 33y + 256$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = -0.570974 + 0.808855I	1.22292 - 2.83021I	2.34652 + 9.81749I
b = -0.987376 + 0.750545I		
u = 0.395123 + 0.506844I		
a = 0.02355 - 1.92973I	1.22292 - 2.83021I	2.34652 + 9.81749I
b = 0.635568 - 0.030203I		
u = 0.395123 - 0.506844I		
a = -0.570974 - 0.808855I	1.22292 + 2.83021I	2.34652 - 9.81749I
b = -0.987376 - 0.750545I		
u = 0.395123 - 0.506844I		
a = 0.02355 + 1.92973I	1.22292 + 2.83021I	2.34652 - 9.81749I
b = 0.635568 + 0.030203I		
u = 0.10488 + 1.55249I		
a = 0.729106 + 1.111840I	15.2264 - 6.3279I	9.65348 + 5.12960I
b = -0.797853 + 0.337246I		
u = 0.10488 + 1.55249I		
a = -0.181683 - 0.526191I	15.2264 - 6.3279I	9.65348 + 5.12960I
b = 1.64966 - 1.24854I		
u = 0.10488 - 1.55249I		
a = 0.729106 - 1.111840I	15.2264 + 6.3279I	9.65348 - 5.12960I
b = -0.797853 - 0.337246I		
u = 0.10488 - 1.55249I		
a = -0.181683 + 0.526191I	15.2264 + 6.3279I	9.65348 - 5.12960I
b = 1.64966 + 1.24854I		

VI. $I_6^u = \langle u^3 - u^2 + b + 2u - 1, \ u^3 + a + 2u, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - 2u\\-u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - 1\\-u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u\\-u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\-u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u\\u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $8u^3 8u^2 + 24u 12$

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_9, c_{12}$	$u^4 - u^3 + 3u^2 - 2u + 1$
c_2, c_5, c_8 c_{11}	$u^4 - u^3 + u^2 + 1$
c_4, c_{10}	$u^4 + u^3 + 3u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_6, c_7, c_9 c_{10}, c_{12}	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_2, c_5, c_8 c_{11}	$y^4 + y^3 + 3y^2 + 2y + 1$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = -0.547424 - 1.120870I	-0.42201 - 2.83021I	-3.65348 + 9.81749I
b = 0.351808 - 0.720342I		
u = 0.395123 - 0.506844I		
a = -0.547424 + 1.120870I	-0.42201 + 2.83021I	-3.65348 - 9.81749I
b = 0.351808 + 0.720342I		
u = 0.10488 + 1.55249I		
a = 0.547424 + 0.585652I	13.5815 - 6.3279I	3.65348 + 5.12960I
b = -0.851808 + 0.911292I		
u = 0.10488 - 1.55249I		
a = 0.547424 - 0.585652I	13.5815 + 6.3279I	3.65348 - 5.12960I
b = -0.851808 - 0.911292I		

VII. $I_7^u = \langle -au - u^2 + b + u - 1, \ u^2a + a^2 - u^2 + a - 1, \ u^3 - u^2 + 2u - 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\au + u^{2} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2}a + au + u^{2} - a - u + 1\\1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -au - u^{2} + a + u - 1\\au + u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1\\u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + a - 1\\au \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2au + a\\-u^{2}a + au + u^{2} - u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au + u^{2} - a + 1\\-au \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{2}a + au + u^{2} - a + 1\\au - a - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-8u^2 + 8u 14$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	$(u^3 + u^2 + 2u + 1)^2$
c_2, c_5, c_8 c_{11}	$u^6 - u^5 - 2u^4 + 2u^2 + 2u - 1$
c_3, c_9	$(u+1)^6$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5, c_8 c_{11}	$y^6 - 5y^5 + 8y^4 - 6y^3 + 8y^2 - 8y + 1$
c_{3}, c_{9}	$(y-1)^6$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = 0.103733 - 1.107850I	7.69319 - 5.65624I	1.01951 + 5.95889I
b = 0.592989 - 0.847544I		
u = 0.215080 + 1.307140I		
a = 0.558626 + 0.545571I	7.69319 - 5.65624I	1.01951 + 5.95889I
b = -1.47043 + 0.10268I		
u = 0.215080 - 1.307140I		
a = 0.103733 + 1.107850I	7.69319 + 5.65624I	1.01951 - 5.95889I
b = 0.592989 + 0.847544I		
u = 0.215080 - 1.307140I		
a = 0.558626 - 0.545571I	7.69319 + 5.65624I	1.01951 - 5.95889I
b = -1.47043 - 0.10268I		
u = 0.569840		
a = 0.665586	-0.581975	-12.0390
b = 1.13416		
u = 0.569840		
a = -1.99030	-0.581975	-12.0390
b = -0.379278		

VIII.
$$I_1^v = \langle a, \ b+1, \ v-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	u
c_2, c_3, c_5 c_8, c_9, c_{11}	u-1

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	y
c_2, c_3, c_5 c_8, c_9, c_{11}	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	1.64493	6.00000
b = -1.00000		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_{12}	$u(u^{3} + u^{2} + 2u + 1)^{2}(u^{4} - u^{3} + \dots - 2u + 1)(u^{4} + u^{3} + \dots + 2u + 1)^{2}$ $\cdot (u^{15} - 3u^{14} + \dots - 6u + 3)(u^{22} - 7u^{21} + \dots - 8u + 1)$ $\cdot ((u^{24} + 5u^{23} + \dots - 4u + 1)^{2})(u^{42} - 8u^{41} + \dots - 40u + 5)$
c_2, c_5, c_8 c_{11}	$(u-1)(u^{4}-u^{3}+u^{2}+1)(u^{6}-u^{5}-2u^{4}+2u^{2}+2u-1)$ $\cdot (u^{8}+u^{7}+\cdots+u+2)(u^{15}+u^{14}+\cdots-7u^{2}+1)$ $\cdot (u^{22}+u^{21}+\cdots-u+1)(u^{42}-13u^{40}+\cdots-u+1)$ $\cdot (u^{48}-u^{47}+\cdots+36u+61)$
c_3, c_9	$(u-1)(u+1)^{6}(u^{4}-u^{3}+3u^{2}-2u+1)$ $\cdot (u^{8}-7u^{7}+30u^{6}-78u^{5}+137u^{4}-163u^{3}+131u^{2}-65u+16)$ $\cdot (u^{11}+2u^{9}+5u^{7}+2u^{6}+6u^{5}+3u^{4}+5u^{3}+2u^{2}+u+1)^{2}$ $\cdot (u^{15}-6u^{14}+\cdots-24u+8)(u^{21}+3u^{20}+\cdots-u-5)^{2}$ $\cdot (u^{24}+u^{23}+\cdots-44u+8)^{2}$
c_4, c_{10}	$u(u^{3} + u^{2} + 2u + 1)^{2}(u^{4} + u^{3} + 3u^{2} + 2u + 1)^{3}$ $\cdot (u^{15} - 3u^{14} + \dots - 6u + 3)(u^{22} + 7u^{21} + \dots + 8u + 1)$ $\cdot ((u^{24} + 5u^{23} + \dots - 4u + 1)^{2})(u^{42} - 8u^{41} + \dots - 40u + 5)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	$y(y^{3} + 3y^{2} + 2y - 1)^{2}(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{3}$ $\cdot (y^{15} + 17y^{14} + \dots + 6y - 9)(y^{22} + 21y^{21} + \dots + 12y + 1)$ $\cdot ((y^{24} + 23y^{23} + \dots - 16y + 1)^{2})(y^{42} + 40y^{41} + \dots + 100y + 25)$
c_2, c_5, c_8 c_{11}	$(y-1)(y^{4} + y^{3} + 3y^{2} + 2y + 1)(y^{6} - 5y^{5} + \dots - 8y + 1)$ $\cdot (y^{8} - 5y^{7} + 30y^{6} - 68y^{5} + 119y^{4} - 127y^{3} + 83y^{2} - 29y + 4)$ $\cdot (y^{15} - 11y^{14} + \dots + 14y - 1)(y^{22} + 7y^{21} + \dots - 3y + 1)$ $\cdot (y^{42} - 26y^{41} + \dots - 127y + 1)(y^{48} + 17y^{47} + \dots - 19840y + 3721)$
c_3, c_9	$(y-1)^{7}(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)$ $\cdot (y^{8} + 11y^{7} + 82y^{6} + 116y^{5} + 323y^{4} + 145y^{3} + 355y^{2} - 33y + 256)$ $\cdot ((y^{11} + 4y^{10} + \dots - 3y - 1)^{2})(y^{15} - 6y^{14} + \dots + 224y - 64)$ $\cdot ((y^{21} + 9y^{20} + \dots - 319y - 25)^{2})(y^{24} + 9y^{23} + \dots - 1040y + 64)^{2}$