Practical A-4

Create a Linear Regression Model using Python/R to predict home prices using Boston Housing #Dataset (https://www.kaggle.com/c/boston-housing). The Boston Housing dataset contains

#information about various houses in Boston through different parameters. There are 506 samples #and 14 feature variables in this dataset.

#The objective is to predict the value of prices of the house using the given features.

import pandas as pd df
pd.read_csv("/content/HousingData.csv")
df.head()

· •																
_		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	ш
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0	de
	10	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6	
	2 (0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	
	3 (0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	
	4 0	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN	36.2	

```
# crim: per capita crime rate by town
```

- # zn: proportion of residential land zoned for lots over 25,000 sq.ft.
- # indus: proportion of non-retail business acres per town.
- # chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- # nox: nitrogen oxides concentration (parts per 10 million).
- # rm: average number of rooms per dwelling.
- # age: proportion of owner-occupied units built prior to 1940.
- # dis: weighted mean of distances to five Boston employment centres.
- # rad: index of accessibility to radial highways.
- # tax: full-value property-tax rate per \$10,000.
- $\ensuremath{\text{\#}}$ ptratio: pupil-teacher ratio by town.
- # black: 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town.
- # 1stat: lower status of the population (percent).
- #: medv: median value of owner-occupied homes in \$1000s.

df.shape

₹ (506, 14)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505 Data
columns (total 14 columns):

Column Non-Null Count Dtype

0	CRIM 486 nor	n-null float64
1	ZN 486 non-null	float64 2 INDUS 486 non-null float64
3	CHAS	486 non-null float64
4	NOX	506 non-null float64
5	RM	506 non-null float64
6	AGE	486 non-null float64
7	DIS	506 non-null float64
8	RAD	506 non-null int64
9	TAX	506 non-null int64
10	PTRATIO) 506 non-null float64
11	В	506 non-null float64
12	LSTAT	486 non-null float64 13 MEDV 506 non-null float64 dtypes: float64(12),
inte	54(2) memory usa	ge: 55.5 KB

df.describe()

CRIPI ZN INDUS CHAS NOX KM AGE DIS KAD TAX PIKATIO	CRIM		INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
--	------	--	-------	------	-----	----	-----	-----	-----	-----	---------

count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000	506.000000	506.000000	506.000000	506.000000	506
mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519	3.795043	9.549407	408.237154	18.455534	356
std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513	2.105710	8.707259	168.537116	2.164946	91
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000	2.100175	4.000000	279.000000	17.400000	375
50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000	3.207450	5.000000	330.000000	19.050000	391
75% max	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000	5.188425	24.000000	666.000000	20.200000	396
	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396

Data Cleaning
df=df.fillna(df.mean())
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505 Data
columns (total 14 columns):

Column Non-Null Count Dtype

0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	int64
10	PTRATIO	506 non-null f	loat64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64 dtypes: float64(12), int64(2) memory usage: 55.5 KB

 ${\tt corr=df.corr}()$ #Find the correlation (relationship) between each column in the DataFrame ${\tt corr}$

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
CRIM	1.000000	-0.182930	0.391161	-0.052223	0.410377	-0.215434	0.344934	-0.366523	0.608886	0.566528	0.273384	-0.370163	0.434
ZN	-0.182930	1.000000	-0.513336	-0.036147	-0.502287	0.316550	-0.541274	0.638388	-0.306316	-0.308334	-0.403085	0.167431	-0.407
INDUS	0.391161	-0.513336	1.000000	0.058035	0.740965	-0.381457	0.614592	-0.699639	0.593176	0.716062	0.384806	-0.354597	0.567
CHAS	-0.052223	-0.036147	0.058035	1.000000	0.073286	0.102284	0.075206	-0.091680	0.001425	-0.031483	-0.109310	0.050055	-0.046
NOX	0.410377	-0.502287	0.740965	0.073286	1.000000	-0.302188	0.711461	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.572
RM	-0.215434	0.316550	-0.381457	0.102284	-0.302188	1.000000	-0.241351	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.602
AGE	0.344934	-0.541274	0.614592	0.075206	0.711461	-0.241351	1.000000	-0.724353	0.449989	0.500589	0.262723	-0.265282	0.574
DIS	-0.366523	0.638388	-0.699639	-0.091680	-0.769230	0.205246	-0.724353	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.483
RAD	0.608886	-0.306316	0.593176	0.001425	0.611441	-0.209847	0.449989	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.468
TAX	0.566528	-0.308334	0.716062	-0.031483	0.668023	-0.292048	0.500589	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.524
PTRATIO	0.273384	-0.403085	0.384806	-0.109310	0.188933	-0.355501	0.262723	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.373
В	-0.370163	0.167431	-0.354597	0.050055	-0.380051	0.128069	-0.265282	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.368
LSTAT	0.434044	-0.407549	0.567354	-0.046166	0.572379	-0.602962	0.574893	-0.483429	0.468440	0.524545	0.373343	-0.368886	1.000
MEDV	-0.379695	0.365943	-0.478657	0.179882	-0.427321	0.695360	-0.380223	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.721

df.rename(columns={'MEDV':'PRICE'}, inplace=True)

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 506 entries, 0 to 505
 Data columns (total 14 columns):
 # Column Non-Null Count Dtype

0 CRIM 506 non-null float64

```
float64
       1
           ZN
                    506 non-null
                                        float64 3 CHAS
                                                             506 non-null
                                                                                  float64
       2
           INDUS
                    506 non-null
                                        float64
       4
           NOX
                    506 non-null
       5
           RM
                    506 non-null
                                        float64
       6
           AGE
                    506 non-null
                                         float64
                                        float64
           DIS
                    506 non-null
       8
           RAD
                    506 non-null
                                        int64
       9
           TΔX
                    506 non-null
                                        int64
       10 PTRATIO 506 non-null
                                         float64
       11 B
                    506 non-null
                                         float64
       12 LSTAT
                    506 non-null
                                         float64
       13 PRICE
                    506 non-null
                                        float64
      dtypes: float64(12), int64(2) memory
      usage: 55.5 KB
x=df.drop('PRICE',axis=1) # Independent Columns
 y=df['PRICE'] #Target Column Price
x.head()
                                                                                                         \blacksquare
             CRTM
                    7N TNDUS
                                CHAS
                                        NOX
                                                RM
                                                    ΔGF
                                                            DIS RAD TAX PTRATIO
                                                                                          В
                                                                                                I STAT
       0.00632
                                 0.0 0.538 6.575
                                                   65.2 4.0900
                                                                               15.3 396.90
                                                                                              4.980000
                   18.0
                          2.31
                                                                    1 296
       1 0.02731
                    0.0
                          7.07
                                 0.0 0.469 6.421 78.9 4.9671
                                                                    2 242
                                                                               17.8 396.90
                                                                                              9.140000
       2 0 02729
                    0.0
                          7.07
                                 0.0
                                      0.469
                                            7.185
                                                   61.1
                                                         4.9671
                                                                    2 242
                                                                               17.8 392.83
                                                                                              4.030000
        3 0.03237
                    0.0
                          2.18
                                 0.0
                                      0.458
                                             6.998
                                                   45.8 6.0622
                                                                    3 222
                                                                               18.7 394.63
                                                                                              2.940000
        4 0.06905
                    0.0
                          2.18
                                 0.0 0.458 7.147 54.2 6.0622
                                                                    3 222
                                                                               18.7 396.90 12.715432
 y.head()
          PRICE
       0
           24.0
           21.6
       1
       2
           34 7
       3
           33.4
       4
           36.2
      dtype: float64
 from sklearn.model_selection import train_test_split
xtrain,\ xtest,\ ytrain,\ ytest=train\_test\_split(x,y,test\_size=0.2,\ random\_state=0)
xtrain.shape
 → (404, 13)
ytrain.shape
 (404,)
xtest.shape
 (102, 13)
ytest.shape
 (102,)
 from sklearn.linear_model import LinearRegression
 # Fitting Multi Linear regression model to training model
 regressor=LinearRegression()
                                      regressor.fit(xtrain,
 ytrain)
       ▼ LinearRegression ① ?
      LinearRegression()
```

predicting the test set results ypred=regressor.predict(xtest)

₹

from sklearn.metrics import mean_squared_error, mean_absolute_error mse = mean_squared_error(ytest, ypred) mae =

```
mean_absolute_error(ytest,ypred) print("Mean Square Error : ", mse)
print("Mean Absolute Error : ", mae)

→ Mean Square Error : 34.987389544238766
    Mean Absolute Error : 3.961621123959121

from sklearn.metrics import r2_score

r2=r2_score(ytest, ypred)

r2

→ 0.5703296053895559

# An R² of 0.57 (57%) suggests a moderate fit of the model.
#The model is reasonably good at explaining the variability in the data,
#but there is still a significant portion (43%) that is not explained by the model
```