```
<110>
          LG CHEM, LTD.
<120>
          Poly(3-hydroxyalkanoate) Block Copolymer Having Shape Memory
<130>
          LC05PCT042
<150>
<151>
          KR 10-2005-0059907
2005-07-04
<160>
          18
<170>
          KopatentIn 1.71
<210>
          1
18
<211>
<212>
<213>
          DNA
          Artificial Sequence
<220>
<223>
          Choi3 (PCR Primer)
<400>
ccgccstgsa tcaagtac
                                                                                   18
<210>
          2
20
<211>
<212>
<213>
          Artificial Sequence
<220>
<223>
          Choi4 (PCR Primer)
<400>
                                                                                   20
gytsgtgsyg tcyycgttcc
          3
24
<210>
<211>
<212>
          Artificial Sequence
<213>
<220>
          HJ-PHB-N (PCR Primer)
<223>
<400>
caccatgctg agttgcgctc tagc
                                                                                   24
<210>
          27
<211>
<212>
<213>
          Artificial Sequence
<220>
<223>
         HJ-PHB-C (PCR Primer)
<400>
          4
```

tcadmsyt	2CF9214 ty acrtarcgkc ctggygc	27
<210> <211> <212> <213>	5 20 DNA Artificial Sequence	
<220> <223>	SCL-1 (PCR Primer)	
<400> gatcgata	5 cc aatctcaccg	20
<210> <211> <212> <213>	6 21' DNA Artificial Sequence	
<220> <223>	SCL-2 (PCR Primer)	
<400> caaagcca	6 gt ggttcgacgt a	21
<210> <211> <212> <213>	7 19 DNA Artificial Sequence	
<220> <223>	SCL-3 (PCR Primer)	
<400> ctgctgaa	7 ac tgttggagc	19
<210> <211> <212> <213>	8 47 DNA Artificial Sequence	
<220> <223>	SD-BA-N (PCR Primer)	
<400> gggggtac	8 ca ataaggagat atacatatgg gtactgcgag caatgcg	47
<210> <211> <212> <213>	9 28 DNA Artificial Sequence	
<220>	RA-C (PCR Primer)	

<400> 9 cccactagtt cagcgctcga tggccagc				28	
<210> <211> <212> <213>	10 28 DNA Artificial Sequence				
<220> <223>	SD-phbC-N (PCR Primer)				
<400> gggcatate	10 ga cccagaagaa caacagcg				28
<210> <211> <212> <213>	11 39 DNA Artificial Sequence				
<220> <223>	phbC-C (PCR Primer)				
<400> cccactag	11 ct cadmscttya crtaacgtcc	tggcgcygc			39
<210> <211> <212> <213>	12 756 DNA Pseudomonas sp. HJ-2				
<220> <221> <222> <223>	variation (482) n=A, C, G or T				
<400> atgggtact	12 g cgagcaatgc ggcacgtata	gctctggtca	ccggtggtat	gggcggtatc	60
ggtacggc	ga tcagccagcg cctgcatcgg	gatggcttca	ccgtggtggt	gggctgtaat	120
ccctactc	a gccgcaaggc ttcctggatt	gccacgcaac	tcgaggcggg	ctttcacttc	180
cactgcate	g actgcgacat caccgactgg	gatagcaccc	gccaggcctt	cgacatggtg	240
cacgagact	g tcggcccgat cgatgtattg	gtcaacaatg	ccggcatcac	ccgcgacggc	300
actttccg	a agatgtcccc ggaaaactgg	aaggcggtga	tcgataccaa	tctcaccggc	360
ctgttcaa	ca caaccaagca ggtcatcgag	ggcatgctgg	ccaagggctg	gggacgcgtc	420
atcaacat	ct cctcaatcaa tggccagcga	ggccagttcg	ggcagaccaa	ctactccgcg	480
gncaaggct	g gcattcatgg cttcagcatg	gccttggccc	gcgaggtgag	tggcaagggc	540
gtgaccgt	ca atacggtttc ccctggctac	atcaagaccg	acatgaccgc	ggcgattcgc	600
ccggacato	cc tcgaagacat gattactggc	attcccgtgg Page		ccagcccgag	660

gagatcgcct cgatcgtggc ctggctggcc tccgatcagt ctgcctatgc caccggcgcc

720

gacttctcgg tgaatggcgg catgaacatg cagtga	756
<210> 13 <211> 1179 <212> DNA <213> Pseudomonas sp. HJ-2	
<220> <221> variation <222> (207) <223> n=A, C, G or T	
<220> <221> variation <222> (209) <223> n=A, C, G or T	
<400> 13 atgatcgaag tcgttatcgt cgccgccact cgcaccgcca tcggcgcttt ccaggggagc	60
ctggccggca ctcccgccgt tgaactgggc gccacggtga tccgccgcct gctcgaacag	120
accgctctgg atagcagtca ggtggatgaa gtgatactcg gccacgtact caccgccggt	180
gctggcagaa taccgctcgc caggcancng gtcatcgccg gcctgccaca cgccgtaccg	240
gcgatgaccc tgaacaaggt ctgtggctcc ggcctgaaag ccctgcacct gggcgcccag	300
gccatccgct gtggcgatgc cgaggtggtg attgccggtg gcatggagaa catgagcctg	360
tcgtcctatg tcctgcccaa ggcccgcacc ggcctgcgca tgggccacgc gcagctggtc	420
gacagcatga tcgtcgacgg cctgtgggac gccttcaacg actaccacat ggggatcact	480
gccgagaacc tggtagacaa gtacggcatc agccgcgaag cccaggacga attcgccgcc	540
gcctcgcagc agaaagccgt ggccgccatc gagaccggtc gcttccgcga cgagatcgtc	600
ccggtgagca ttccgcagcg caagggcgag gcgctgagct tcgacaccga cgaacagcca	660
cgcgccggca ccaccgccga gtcgctgggc aagctgaaac cggccttcaa gaacgacggc	720
agcgttactg ccggcaacgc ttccagtctc aacgacggcg ccgccgcggt actgctgatg	780
agtgcggcaa aggccgcagc gcttggtctg ccagtgctgg cgaagatcgc cgcctacgcc	840
aatgccggcg tcgacccggc gatcatgggt atcggaccgg tgtcggccac ccgcagttgc	900
ctggagaagg cgggctggag tctggcagag ctggatctga tcgaggccaa tgaagccttc	960
gcggcccagg ccctggccgt gggtcaggag ctgggctggg	1020
aacggcggcg ccatcgccct cggccacccc attggcgcct ccggctgccg cgtactggtc	1080
agcctgctgc atgaaatgct caggcgcgac gcgaaaaaaag gcctcgctac cctgtgtatc	1140
ggtggcggcc agggcgtggc gctggccatc gagcgctga	1179

<210> 14 <211> 1701 <212> DNA <213> Pseudomonas sp. HJ-2 (SCL-PHA synthase (phaC))	
<400> 14 atggacaacg gacacacctt tgctcactac tggtcgggtc aggcgccctt catcgc	cagc 60
ttcgtcctgc agcaactgcg cttatacgtg gcgcaaaata cttggttcag cgggca	cgac 120
caaagccagt ggttcgacgt acctgtcgag gcgttggagc aactgcaggc ggacta	ccaa 180
caacagtggg ccgaacttgg ccagcaattg ctgagctgcc agccgttcgc attcag	cgat 240
cgtcgcttcg ccagtggcaa ctggagcgaa ccgctgttcg gttccctggc tgcctt	ctac 300
ctgctgaatt ccggtttcct gctgaaactg ttggagcttc tccccatcga tgagca	gaag 360
ccccgccagc gcttgcgtta cttgatcgag caagcgattg ccgcaagcgc cccaag	taac 420
tttctgctga gcaaccctga tgccctgcaa cgcctagtgg aaacccaggg cgccag	ccta 480
ctaagtggcc tgttgcatct tgccagtgac ctgcaggcag gcaagttgcg ccaatg	tgac 540
ttgggcgatt tcgaagtcgg cgtgaatctg gccaccaccc ctggtgccgt ggtact	ggaa 600
acccctctgt tccagctgat ccagtattcg ccgctcagcg aaacgcaata ccagcg	gccg 660
atattcatgg tcccgccctg gatcaacaag tactacatcc ttgacctcgg gcccga	aaac 720
tctctaatcc gtcatctact ggagcgaggc catcaagttt ttctgatgtc ctggcg	caac 780
ttcactcagg aacaggccga catcacctgg gagcagatca tccaggacgg agtgat	cagc 840
gccctgcgca ctacccgggc catcagtggt gagcgccacc tgaactgttt gggttt	ctgc 900
atcggcggca ccatgctgag ttgcgctcta gcggtgctgg cagcgcgtgg cgacca	ggac 960
attgccagcc tgagtctatt cgccactttt cttgactacc ttgataccgg gccgat	cagc 1020
gtcttcgtcg atgagcaact ggtggcctac cgtgagcgca ccatcggtgg ccatgg	tggc 1080
aaatgtggcc tgttccgcgg tgaggacatg ggcaatacct tctccctgct gcggcc	caac 1140
gagctgtggt ggaactacaa cgtagacaaa tatctcaagg ggcagaagcc gctggc	tctg 1200
ggtctactgt tctggaacaa cgacagcacc aatctgccgg ggcccctgta ttgctg	gtat 1260
ctgcgccaca cctacctgca gaacgacctc aaatcggggg agttggatct gtgcgg	cgtc 1320
aagttggatc tgcgggccat agacgcacca gcctacatct tgggaaccca tgacga	ccac 1380
atcgtgccct ggcgaagcgc ctatgccagc acggaattgc tgggaggtcc aaagcg	ttt 1440
gtcctcggcg cctccggcca catcgccggg gtgatcaacc cgccagatag gaacaa	gcgc 1500
cattactggg tcaatgaaca catagcgccg gtagctgacg actggctgca gggagc	tcag 1560
cagcattccg gcagttggtg gggtgactgg ttcgcctggt tgaccggcta tgccgg	ccca 1620
cgcaagcctg ccatcactat gctgggcagt gccgagtacc ccccgcttga acatgc	gcca 1680

ggacgttatg tgaagctatg a	1701
<210> 15 <211> 3933 <212> DNA <213> Pseudomonas sp. HJ-2 (phb locus)	
<400> 15 gagctcaatg cgcgccagga ctggtgtgcg aggacaaccc ggcgtcaccc ggggacattg	60
ttcacatccg caaagcgcca gagacttgcc cgctgttcca aggtcttaat taacgaggaa	120
tggttaatgg gtactgcgag caatgcggca cgtatagctc tggtcaccgg tggtatgggc	180
ggtatcggta cggcgatcag ccagcgcctg catcgggatg gcttcaccgt ggtggtgggc	240
tgtaatccct actccagccg caaggcttcc tggattgcca cgcaactcga ggcgggcttt	300
cacttccact gcatcgactg cgacatcacc gactgggata gcacccgcca ggccttcgac	360
atggtgcacg agactgtcgg cccgatcgat gtattggtca acaatgccgg catcacccgc	420
gacggcactt tccgcaagat gtccccggaa aactggaagg cggtgatcga taccaatctc	480
accggcctgt tcaacacaac caagcaggtc atcgagggca tgctggccaa gggctgggga	540
cgcgtcatca acatctcctc aatcaatggc cagcgaggcc agttcgggca gaccaactac	600
tccgcggnca aggctggcat tcatggcttc agcatggcct tggcccgcga ggtgagtggc	660
aagggcgtga ccgtcaatac ggtttcccct ggctacatca agaccgacat gaccgcggcg	720
attcgcccgg acatcctcga agacatgatt actggcattc ccgtgggccg tctcggccag	780
cccgaggaga tcgcctcgat cgtggcctgg ctggcctccg atcagtctgc ctatgccacc	840
ggcgccgact tctcggtgaa tggcggcatg aacatgcagt gatgcgccat tcgcgccctc	900
gctcagccat gacatgaggt gttccagatg atcgaagtcg ttatcgtcgc cgccactcgc	960
accgccatcg gcgctttcca ggggagcctg gccggcactc ccgccgttga actgggcgcc	1020
acggtgatcc gccgcctgct cgaacagacc gctctggata gcagtcaggt ggatgaagtg	1080
atactcggcc acgtactcac cgccggtgct ggcagaatac cgctcgccag gcancnggtc	1140
atcgccggcc tgccacacgc cgtaccggcg atgaccctga acaaggtctg tggctccggc	1200
ctgaaagccc tgcacctggg cgcccaggcc atccgctgtg gcgatgccga ggtggtgatt	1260
gccggtggca tggagaacat gagcctgtcg tcctatgtcc tgcccaaggc ccgcaccggc	1320
ctgcgcatgg gccacgcgca gctggtcgac agcatgatcg tcgacggcct gtgggacgcc	1380
ttcaacgact accacatggg gatcactgcc gagaacctgg tagacaagta cggcatcagc	1440
cgcgaagccc aggacgaatt cgccgccgcc tcgcagcaga aagccgtggc cgccatcgag	1500
accggtcgct tccgcgacga gatcgtcccg gtgagcattc cgcagcgcaa gggcgaggcg	1560
ctgagcttcg acaccgacga acagccacgc gccggcacca ccgccgagtc gctgggcaag	1620

ctgaaaccgg	ccttcaagaa	cgacggcagc	gttactgccg		cagtctcaac	1680
gacggcgccg	ccgcggtact	gctgatgagt	gcggcaaagg	ccgcagcgct	tggtctgcca	1740
gtgctggcga	agatcgccgc	ctacgccaat	gccggcgtcg	acccggcgat	catgggtatc	1800
ggaccggtgt	cggccacccg	cagttgcctg	gagaaggcgg	gctggagtct	ggcagagctg	1860
gatctgatcg	aggccaatga	agccttcgcg	gcccaggccc	tggccgtggg	tcaggagctg	1920
ggctgggatg	ctggcagggt	taacgtcaac	ggcggcgcca	tcgccctcgg	ccaccccatt	1980
ggcgcctccg	gctgccgcgt	actggtcagc	ctgctgcatg	aaatgctcag	gcgcgacgcg	2040
aaaaaaggcc	tcgctaccct	gtgtatcggt	ggcggccagg	gcgtggcgct	ggccatcgag	2100
cgctgagtga	cgctttcgcg	actctgccgg	acgtgccccc	ctgcacccgc	accgccaggc	2160
tggccgtgcg	cttacgtctc	gacatgatcg	caccgcgggc	gcggcttttg	ttttcatatt	2220
cctggagacg	ccatggacaa	cggacacacc	tttgctcact	actggtcggg	tcaggcgccc	2280
ttcatcgcca	gcttcgtcct	gcagcaactg	cgcttatacg	tggcgcaaaa	tacttggttc	2340
agcgggcacg	accaaagcca	gtggttcgac	gtacctgtcg	aggcgttgga	gcaactgcag	2400
gcggactacc	aacaacagtg	ggccgaactt	ggccagcaat	tgctgagctg	ccagccgttc	2460
gcattcagcg	atcgtcgctt	cgccagtggc	aactggagcg	aaccgctgtt	cggttccctg	2520
gctgccttct	acctgctgaa	ttccggtttc	ctgctgaaac	tgttggagct	tctccccatc	2580
gatgagcaga	agccccgcca	gcgcttgcgt	tacttgatcg	agcaagcgat	tgccgcaagc	2640
gccccaagta	actttctgct	gagcaaccct	gatgccctgc	aacgcctagt	ggaaacccag	2700
ggcgccagcc	tactaagtgg	cctgttgcat	cttgccagtg	acctgcaggc	aggcaagttg	2760
cgccaatgtg	acttgggcga	tttcgaagtc	ggcgtgaatc	tggccaccac	ccctggtgcc	2820
gtggtactgg	aaacccctct	gttccagctg	atccagtatt	cgccgctcag	cgaaacgcaa	2880
taccagcggc	cgatattcat	ggtcccgccc	tggatcaaca	agtactacat	ccttgacctc	2940
gggcccgaaa	actctctaat	ccgtcatcta	ctggagcgag	gccatcaagt	ttttctgatg	3000
tcctggcgca	acttcactca	ggaacaggcc	gacatcacct	gggagcagat	catccaggac	3060
ggagtgatca	gcgccctgcg	cactacccgg	gccatcagtg	gtgagcgcca	cctgaactgt	3120
ttgggtttct	gcatcggcgg	caccatgctg	agttgcgctc	tagcggtgct	ggcagcgcgt	3180
ggcgaccagg	acattgccag	cctgagtcta	ttcgccactt	ttcttgacta	ccttgatacc	3240
gggccgatca	gcgtcttcgt	cgatgagcaa	ctggtggcct	accgtgagcg	caccatcggt	3300
ggccatggtg	gcaaatgtgg	cctgttccgc	ggtgaggaca	tgggcaatac	cttctccctg	3360
ctgcggccca	acgagctgtg	gtggaactac	aacgtagaca	aatatctcaa	ggggcagaag	3420
ccgctggctc	tgggtctact	gttctggaac	aacgacagca	ccaatctgcc	ggggcccctg	3480
tattgctggt	atctgcgcca	cacctacctg	cagaacgacc Page		ggagttggat	3540

ctgtgcggcg tcaagt	tgga tctgcgggc	c atagacgcac c	agcctacat cttgggaacc	3600	
catgacgacc acatcg	tgcc ctggcgaag	oc gcctatgcca g	cacggaatt gctgggaggt	3660	
ccaaagcgct ttgtcc	tcgg cgcctccgg	c cacatcgccg g	ggtgatcaa cccgccagat	3720	
aggaacaagc gccatt	actg ggtcaatga	a cacatagcgc c	ggtagctga cgactggctg	3780	
cagggagctc agcagc	attc cggcagttg	g tggggtgact g	gttcgcctg gttgaccggc	3840	
tatgccggcc cacgca	agcc tgccatcac	t atgctgggca g	tgccgagta cccccgctt	3900	
gaacatgcgc caggac	gtta tgtgaagct	a tga		3933	
<210> 16 <211> 251 <212> PRT <213> Pseudomonas sp. HJ-2 (NADPH-dependent acetoacetyl-CoA reductase (phbB))					
<400> 16 Met Gly Thr Ala S 1	er Asn Ala Ala 5	Arg Ile Ala Lo 10	eu Val Thr Gly Gly 15		
Met Gly Gly Ile G 20	ly Thr Ala Ile	e Ser Gln Arg Lo 25	eu His Arg Asp Gly 30		
Phe Thr Val Val V 35	al Gly Cys Asn 40		er Arg Lys Ala Ser 45		
Trp Ile Ala Thr G 50	ln Leu Glu Ala 55		he His Cys Ile Asp 60		
Cys Asp Ile Thr A 65	sp Trp Asp Ser 70	Thr Arg Gln A	la Phe Asp Met Val 80		
	ly Pro Ile Asp 85	Val Leu Val As 90	sn Asn Ala Gly Ile 95		
Thr Arg Asp Gly T 100	hr Phe Arg Lys	Met Ser Pro G	lu Asn Trp Lys Ala 110		
Val Ile Asp Thr A 115	sn Leu Thr Gly 120		hr Thr Lys Gln Val 125		
Ile Glu Gly Met L 130	eu Ala Lys Gly 135		al Ile Asn Ile Ser 40		
Ser Ile Asn Gly G 145	ln Arg Gly Gln 150	Phe Gly Gln Tl 155	hr Asn Tyr Ser Ala 160		
	le His Gly Phe 65	Ser Met Ala Lo 170	eu Ala Arg Glu Val 175		
Ser Gly Lys Gly V 180	al Thr Val Asn	Thr Val Ser Pi 185	ro Gly Tyr Ile Lys 190		
Thr Asp Met Thr A 195	la Ala Ile Arg 200		eu Glu Asp Met Ile 205		
Thr Gly Ile Pro V 210	al Gly Arg Leu 215	Gly Gln Pro G 22 Page 8	lu Glu Ile Ala Ser 20		

Ile Val Ala Trp Leu Ala Ser Asp Gln Ser Ala Tyr Ala Thr Gly Ala 225 235 240
Asp Phe Ser Val Asn Gly Gly Met Asn Met Gln 250

<210> 17 <211> 392

<212> PRT <213> Pseudomonas sp. HJ-2 (beta-ketothiolase (phbA)) <400> Met Ile Glu Val Val Ile Val Ala Ala Thr Arg Thr Ala Ile Gly Ala 1 5 10 15 Phe Gln Gly Ser Leu Ala Gly Thr Pro Ala Val Glu Leu Gly Ala Thr 20 25 30 Val Ile Arg Arg Leu Leu Glu Gln Thr Ala Leu Asp Ser Ser Gln Val 35 40 45 Glu Val Ile Leu Gly His Val Leu Thr Ala Gly Ala Gly Arg Ile 50 55 60 Pro Leu Ala Arg Xaa Xaa Val Ile Ala Gly Leu Pro His Ala Val Pro 65 70 75 80 Ala Met Thr Leu Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Leu His $85 \hspace{1cm} 90 \hspace{1cm} 95$ Leu Gly Ala Gln Ala Ile Arg Cys Gly Asp Ala Glu Val Val Ile Ala 100 105 110 Gly Gly Met Glu Asn Met Ser Leu Ser Ser Tyr Val Leu Pro Lys Ala 115 120 125 Arg Thr Gly Leu Arg Met Gly His Ala Gln Leu Val Asp Ser Met Ile 130 135 140 Val Asp Gly Leu Trp Asp Ala Phe Asn Asp Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Leu Val Asp Lys Tyr Gly Ile Ser Arg Glu Ala Gln Asp 165 170 175 Glu Phe Ala Ala Ala Ser Gln Gln Lys Ala Val Ala Ala Ile Glu Thr 180 185 190 Gly Arg Phe Arg Asp Glu Ile Val Pro Val Ser Ile Pro Gln Arg Lys 195 200 205 Gly Glu Ala Leu Ser Phe Asp Thr Asp Glu Gln Pro Arg Ala Gly Thr 210 220 Thr Ala Glu Ser Leu Gly Lys Leu Lys Pro Ala Phe Lys Asn Asp Gly 235 235 240 Ser Val Thr Ala Gly Asn Ala Ser Ser Leu Asn Asp Gly Ala Ala Ala 245 250 255 Val Leu Leu Met Ser Ala Ala Lys Ala Ala Ala Leu Gly Leu Pro Val

Page 9

270

LeuAlaLysIleAlaAlaTyrAlaAsnAlaGlyValAspProAlaIleMetGlyIleGlyProValSepsAlaThrArgSerCysLeuGluLysAlaGlyTrpSerLeuAlaGlyLeuAleIleGlyAlaAsnGluAlaPheAlaAlaGlnAlaLeuAlaValGlyGlyGlnGlyLeuGlyTrpAspAlaGlyAlaSerGlyAsnAsnGlyGlyAlaJaeAlaLeuGlyHisRogIleArgAlaSerGlyAlaLeuYalAlaLeuLeuLeuHisGlyGlyGlyGlyAlaAlaLeuAlaLeuArgAlaLeuCysJaeGlyGlyGlyGlyAlaAlaAlaLeuAlaArgArgLeuCysJaeGlyGlyGlyGly

<210> 18 <211> 566

<212> PRT <213> Pseudomonas sp. HJ-2 (SCL-PHA synthase (phaC))

Met Asp Asn Gly His Thr Phe Ala His Tyr Trp Ser Gly Gln Ala Pro 10^{-1} Phe Ile Ala Ser Phe Val Leu Gln Gln Leu Arg Leu Tyr Val Ala Gln Asn Thr Trp Phe Ser Gly His Asp Gln Ser Gln Trp Phe Asp Val Pro 10^{-1} Asp Val Pro

Val Glu Ala Leu Glu Gln Leu Gln Ala Asp Tyr Gln Gln Gln Trp Ala 50 60

Glu Leu Gly Gln Gln Leu Leu Ser Cys Gln Pro Phe Ala Phe Ser Asp 65 70 75 80

Arg Arg Phe Ala Ser Gly Asn Trp Ser Glu Pro Leu Phe Gly Ser Leu 85 90 95

Ala Ala Phe Tyr Leu Leu Asn Ser Gly Phe Leu Leu Lys Leu Leu Glu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Leu Leu Pro Ile Asp Glu Gln Lys Pro Arg Gln Arg Leu Arg Tyr Leu 115 120 125

Ile Glu Gln Ala Ile Ala Ala Ser Ala Pro Ser Asn Phe Leu Leu Ser 130 140

Asn Pro Asp Ala Leu Gln Arg Leu Val Glu Thr Gln Gly Ala Ser Leu 145 150 155 160

Leu Ser Gly Leu Leu His Leu Ala Ser Asp Leu Gln Ala Gly Lys Leu 165 170 175 Arg Gln Cys Asp Leu Gly Asp Phe Glu Val Gly Val Asn Leu Ala Thr 180 185 190 Thr Pro Gly Ala Val Val Leu Glu Thr Pro Leu Phe Gln Leu Ile Gln
195 200 205 Ser Pro Leu Ser Glu Thr Gln Tyr Gln Arg Pro Ile Phe Met Val 210 215 220 Pro Pro Trp Ile Asn Lys Tyr Tyr Ile Leu Asp Leu Gly Pro Glu Asn 235 240 Ser Leu Ile Arg His Leu Leu Glu Arg Gly His Gln Val Phe Leu Met 245 250 255 Ser Trp Arg Asn Phe Thr Gln Glu Gln Ala Asp Ile Thr Trp Glu Gln 260 265 270 Ile Ile Gln Asp Gly Val Ile Ser Ala Leu Arg Thr Thr Arg Ala Ile 275 280 285 Ser Gly Glu Arg His Leu Asn Cys Leu Gly Phe Cys Ile Gly Gly Thr 290 295 300 Met Leu Ser Cys Ala Leu Ala Val Leu Ala Ala Arg Gly Asp Gln Asp 305 310 315 320 Ile Ala Ser Leu Ser Leu Phe Ala Thr Phe Leu Asp Tyr Leu Asp Thr 325 330 335 Gly Pro Ile Ser Val Phe Val Asp Glu Gln Leu Val Ala Tyr Arg Glu 340 345 350 Arg Thr Ile Gly Gly His Gly Gly Lys Cys Gly Leu Phe Arg Gly Glu 355 360 365 Asp Met Gly Asn Thr Phe Ser Leu Leu Arg Pro Asn Glu Leu Trp Trp 370 380Asn Tyr Asn Val Asp Lys Tyr Leu Lys Gly Gln Lys Pro Leu Ala Leu 385 390 395 400 Gly Leu Leu Phe Trp Asn Asn Asp Ser Thr Asn Leu Pro Gly Pro Leu 405 410 415 Tyr Cys Trp Tyr Leu Arg His Thr Tyr Leu Gln Asn Asp Leu Lys Ser 420 425 430 Gly Glu Leu Asp Leu Cys Gly Val Lys Leu Asp Leu Arg Ala Ile Asp 435 440 445 Ala Pro Ala Tyr Ile Leu Gly Thr His Asp Asp His Ile Val Pro Trp 450 460 Arg Ser Ala Tyr Ala Ser Thr Glu Leu Leu Gly Gly Pro Lys Arg Phe 465 470 475 480 Val Leu Gly Ala Ser Gly His Ile Ala Gly Val Ile Asn Pro Pro Asp 485 490 495

Arg Asn Lys Arg His Tyr Trp Val Asn Glu His Ile Ala Pro Val Ala
Asp Asp Trp Leu Gln Gly Ala Gln Gln His Ser Gly Ser Trp Trp Gly
Asp Trp Phe Ala Trp Leu Thr Gly Tyr Ala Gly Pro Arg Lys Pro Ala
Ile Thr Met Leu Gly Ser Ala Glu Tyr Pro Pro Leu Glu His Ala Pro
560

Gly Arg Tyr Val Lys Leu 565