

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Review of Sets

- A **set** can be thought of as a list of objects, called its **elements**:
 - We write $s \in \mathcal{S}$ to denote that s is an element of the set \mathcal{S} .
 - The **empty set**, i.e., the set with no elements, is denoted \emptyset .
- A set, S' is a **subset** of another set, S, denoted $S' \subseteq S$ if S contains all the elements of S'.
 - We say that \mathcal{S}' is a **proper subset** of \mathcal{S} , denoted $\mathcal{S}' \subset \mathcal{S}$, if \mathcal{S} contains at least one element not contained in \mathcal{S}' .
- The **power-set** of a set, S denoted P(S) is the set of all of S's subsets.

Review of Sets: Operations on Sets

- There are several operations we can perform on sets:
 - The **union** of two sets, S_1 and S_2 , denoted $S_1 \cup S_2$, is the set of elements contained in either S_1 or S_2 .
 - The **intersection** of two sets, S_1 and S_2 , denoted $S_1 \cap S_2$, is the set of elements contained in both S_1 and S_2 :
 - If $S_1 \cap S_2 = \emptyset$, we say that S_1 and S_2 are **disjoint**.
 - The **difference** beween two sets, S_1 and S_2 , denoted $S_1 \setminus S_2$, is the set of elements contained in S_1 but not in S_2 :
 - Whenever S_1 is obvious from context, we simply write $\neg S_2$ to denote $S_1 \setminus S_2$, and call it the **compliment** of S_2

Review of Sets: Operations on Sets

 Below are pictorial representations of the union, intersection, and difference operators.

Formalizing a Search Problem

- We define a search problem as follows:
- Definition: Search Problem
 - ullet Let ${\mathcal S}$ be a set of **states** that we want to search through.
 - From any given state, $s \in \mathcal{S}$, there exist a set of **actions**, A(s).
 - When an action, $a \in A(s)$, is applied to s, the result is a new state, denoted a(s).
 - A sequence of actions, $\langle a_1, \ldots, a_n \rangle$ defines a **path** between two states.
 - The **length** of the path is the number of actions that make it up.
 - Each action, a, may have an associated **cost**, c(a) > 0. In this case, the cost of the path is the cumulative cost of its actions.
 - Given some initial state, s_0 , we seek a path (often the shortest/cheapest one) to some state in a subset, $\mathcal{G} \subseteq \mathcal{S}$, called the **goal space**.

Search Problems: Example

Example: *N*-Queens Puzzle

- Given an N × N board with N queens on it, move them using the rules of Chess so that none of the queens attack each other.
- The search is over the set of all board configurations.
- The element we seek is the specific configuration in which none of the queens attack each other.
- Finding such board configurations is non-trivial.
- However, given a board configuration, it is easy to check that it is a valid solution.

Formulating a Search Algorithm

- One way to perform a search is as follows:
 - ① Check if the current state, s is the goal.
 - ② If not, perform an action, $a \in A(s)$, resulting in a new state, s' = a(s).
 - 3 Set the current state to s' and repeat until a goal is found.

Example: Searching in *N*-Queens

- In the N-queens puzzle, we define S as the set of all possible board configurations, and G as the subset in which no two queens attack each other.
- We can search for a goal by starting with an arbitrary placement of the queens, and move them one at a time to achieve the desired configuration.

General Search Algorithm: Pseudo-code

- We define a structure, \mathcal{F} , called the **frontier**, which stores discovered but unexplored states.
- To search, we remove a state, s, from \mathcal{F} . If s is the goal, the search is complete. Otherwise, we add the successors of s to \mathcal{F} and search again.

```
1: \mathcal{F} \leftarrow \{s_0\}
                                                                                                                                \triangleright initialize \mathcal{F} with s_0
2: procedure SEARCH(\mathcal{F})
           if \mathcal{F} = \emptyset then
3:
                                                                                                           by the search failed to find a goal
                 return NULL
4:
           s \leftarrow \text{Remove}(\mathcal{F})
5:
           if s \in \mathcal{G} then
6:
7:
                 return s
          \mathcal{F} \leftarrow \mathcal{F} \cup \mathcal{S}(s)
8:
                                                                                                                       \triangleright add s's successors to \mathcal{F}
           SEARCH(\mathcal{F})
9:
```

Formulating a Search Algorithm: Search Trees

• It turns out that the search takes place on a tree.

Example: Search Tree for *N*-Queens

Review of Graphs

- A **tree** is a structure that is best described as a special case of another strcture called a "graph".
- A **graph** is used to model relationships between elements of a set, V, called its **vertices** by connecting them through a set of **edges**, \mathcal{E} .
- An edge between two vertices, $u, v \in \mathcal{V}$ can be
 - **directed**, in which case, each edge is represented as a ordered-pair, (u, v)
 - **undirected**, in which case, each edge is represented as a pair, $\{u, v\}$, or two ordered pairs, (u, v) and (v, u).
- An ordered sequence of edges, e_1, \ldots, e_n , where $e_i = (v_i, v_{i+1})$ defines a **path** between v_1 and v_{n+1} .
- Two vertices are related if there exists at least one path between them.
 - If v follows u in a path, then u is an **ancestor** of v and v is a **successor** of u.
 - If v immediately follows u in a path, then u is a **parent** of v and v is a child of u.
- Each edge, e, may be associated with a weight w(e).

Review of Graphs: Examples

- Below is a graph with:
 - $V = \{A, B, C, D, E, F, G\}$
 - $\mathcal{E} = \{\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{C, D\}, \{E, G\}\}.$

Review of Graphs: Examples

- Below is a graph with:
 - $V = \{A, B, C, D, E\}$
 - $\mathcal{E} = \{(A, B), (A, C), (B, A), (B, C), (C, E), (D, C), (E, E)\}.$

Properties of Search Algorithms

- The order in which the successors are explored (i.e., the removal order) changes the search algorithm's properties.
- In the next chapter, we will consider three orderings:
 - first-in-first-out (breadth-first search / BFS)
 - first-in-last-out (depth-first search / DFS)
 - smallest cumulative cost first (uniform cost search / UCS)

Properties of Search Algorithms

- There are four properties of particular interest:
 - Time Complexity: the order of the number of states that must be generated before the algorithm terminates.
 - **Space Complexity**: the order of the maximum number of states that exist on the frontier at any given iteration.
 - Completeness: the algorithm always find a goal if one exists.
 - Optimality: the algorithm always finds the cheapest solution if multiple exists.
- The ideal search algorithm is complete, optimal, and minimizes the time and space complexity, but we will see that this is difficult to achieve.

Reducing Time/Space Complexities: Path Checking

- We can reduce the time/space complexity if we make the following assumption:
 - actions have positive costs, i.e., c(a) > 0.
- In this case, we can prune paths as follows:
 - When a path $p = (s_0, ..., s_n)$ is being expanded to $p' = (s_0, ..., s_n, s_{n+1})$ if $s'_n = s_i$ for some $i \neq n+1$, do not add p' to the frontier.
 - The rationale is that if actions have positive costs, then $p_{0:i}$ is a cheaper way to get to s_i than p', i.e., $c(p') \ge c(p_{0:i})$.
- This is called path checking.

Reducing Time/Space Complexities: Multiple-Path Checking

- We can reduce the time/space complexity even further if we make the following assumption:
 - the first time the search algorithm finds a path to a given state, s, the path is the cheapest one to s.
- In this case, we can prune paths as follows:
 - ① Define a list of already visited states, $S_{visited}$.
 - ② Initially, $S_{\text{visited}} = \emptyset$.
 - **3** Whenever we ever discover a path, $p = (s_0, ..., s_n)$:
 - If $s_n \in S_{\text{visited}}$, do not add p to the frontier.
 - If $s_n \not\in S_{\text{visited}}$, then add s_n to S_{visited} .
- This is called multiple-path checking.