## Computational Statistics

Homework 3

Romane PERSCH

December 1, 2016

#### 5.15 Expectation-Maximization algorithm justification

Let f and g two density functions defined on  $\mathcal{X}$ .

Let KL(f|g) the Kullback-Leibler information of g at f (or the entropy distance between f and g with respect to f). Note that this "entropy distance" does not define a distance, as  $KL(f|g) \neq KL(g|f)$ .

(a)-1 Show that  $KL(f|g) \ge 0$ 

$$KL(f|g) = E_f[log(\frac{f(X)}{g(X)})]$$
 
$$KL(f|g) = E_f[-log(\frac{g(X)}{f(X)})]$$

As (-log) is convex, using Jensen's inequality<sup>1</sup>:

$$-log(E_f[\frac{g(X)}{f(X)}]) \le E_f[-log(\frac{g(X)}{f(X)})]$$

Which is equivalent to:

$$\begin{split} -log(E_f[\frac{g(X)}{f(X)}]) &\leq KL(f|g) \\ -log(\int \frac{g(x)}{f(x)}f(x)dx) &\leq KL(f|g) \\ -log(\int g(x)dx) &\leq KL(f|g) \end{split}$$

As q is a density:

$$-log(1) \le KL(f|g)$$
$$0 \le KL(f|g)$$

(a)-2 Show that 
$$KL(f|g) = 0 \Leftrightarrow f = g$$

Reminder - Jensen's Inequality corollary: If  $\phi$  is strictly convex, then:  $\phi(E[X]) = E[\phi(X)] \Leftrightarrow X$  is a constant variable equal almost surely to E(X).

As (-log) is strictly convex, applying Jensen's Inequality corollary :  $KL(f|g) = 0 \quad \Leftrightarrow \quad \frac{g(X)}{f(X)} \text{ is a constant variable equal almost surely to } E_f[\frac{g(X)}{f(X)}]$   $KL(f|g) = 0 \quad \Leftrightarrow \quad \frac{g(X)}{f(X)} = 1 \text{ almost surely}$ 

<sup>&</sup>lt;sup>1</sup>Jensen's inequality : If  $\phi$  is convex and X is an integrable random variable, then  $\phi(E[X]) \leq E[\phi(X)]$ 

 $KL(f|g) = 0 \Leftrightarrow g(X) = f(X)$  almost surely

 $KL(f|g) = 0 \Leftrightarrow g(x) = f(x) \quad \forall x \in Supp(f)^2 \text{ (except possibily on a finite set of points)}$ This implies  $\int_{Supp(f)} f(x)dx = \int_{Supp(f)} g(x)dx$  and, as f and g are densities, we know that  $\int_{\mathcal{X}} f(x)dx = \int_{Supp(f)} f(x)dx = 1$  and that  $\int_{\mathcal{X}} g(x)dx = 1$ .

So  $\int_{Supp(f)} g(x)dx = 1 = \int_{\mathcal{X}} g(x)dx$ . This implies, using Chasles relation, that  $\int_{\mathcal{X} \setminus Supp(f)} g(x)dx = 0$ . As g is a density, it is positive. Hence :  $\forall x \in \mathcal{X} \setminus Supp(f)$ , g(x) = 0 (except possibly on a finite set of

Thus:

$$KL(f|g) = 0 \Leftrightarrow f = g$$
 almost everywhere

#### (b) Show that this yields to Theorem 5.15

First, let us recall some notations. Assume we observe  $X_1, ..., X_n$  iid from  $g(x|\theta)$  and we want to compute the Maximimum Likelihood Estimator  $\hat{\theta} = argmax$   $L(\theta|x) = argmax$   $\prod_{i=1}^{n} g(x_i|\theta)$ . Assume there are latent variables Z (which we do not observe), such that  $X, Z \sim f(x, z|\theta)$  and note the conditional distribution of the latent Z given the observed data x (using Bayes theorem):

$$k(z|\theta, x) = \frac{f(x, z|\theta)}{g(x|\theta)}$$

Hence, the complete-data likelihood can be written as:

$$L^{c}(\theta|x,z) = \prod_{i=1}^{n} f(x_{i}, z_{i}|\theta) = \prod_{i=1}^{n} k(z_{i}|\theta, x_{i})g(x_{i}|\theta)$$

Thus:

$$\log L^{c}(\theta|x, z) = \sum_{i=1}^{n} \log k(z_{i}|\theta, x_{i}) + \log L(\theta|x)$$

Hence, using Linearity of Expectation and integrating with respect to  $Z = (Z_1, ..., Z_n)$  where  $\theta_0$  is assumed to be the true parameter (i.e.: integrating with respect to the joint density  $\prod_{i=1}^{n} k(z_i|\theta_0,x)$ ):

$$\forall \theta_0 \quad E_{\theta_0}(\log L(\theta|x)) = E_{\theta_0}(\log L^c(\theta|x,Z)) - E_{\theta_0}(\sum_{i=1}^n \log k(Z_i|\theta,x_i))$$

As  $\log L(\theta|x)$  does not depend on Z, we get :

$$\forall \theta_0 \quad \log L(\theta|x) = E_{\theta_0}(\log L^c(\theta|x, Z)) - \sum_{i=1}^n E_{\theta_0}(\log k(Z_i|\theta, x_i)) \tag{*}$$

Let denote the expected complete-data log-likelihood by:

$$Q(\theta|\theta_0, x) = E_{\theta_0}(\log L^c(\theta|x, Z))$$

The idea behind the EM-algorithm is, at each step, to compute:

$$\hat{\theta}_{(j+1)} = \underset{\theta}{\arg \max} Q(\theta | \hat{\theta}_{(j)}, x)$$

This should converge, under certain conditions, to a Maximum Likelihood Estimator (MLE). The purpose of this question is thus to understand why.

**Theorem 5.15:** The sequence  $(\hat{\theta}_{(j)})_j$  (in the Expectation-Maximization algorithm) satisfies:

$$L(\hat{\theta}_{(j+1)}|x) \ge L(\hat{\theta}_{(j)}|x)$$

In other words, Theorem 5.15 tells us that at each step of the EM-algorithm, the likelihood increases. Note that this does not always imply that the sequence  $(\theta_{(j)})_j$  converges to the MLE. However, it is obviously a first important justification to the EM-algorithm.

 $<sup>^{2}</sup>Supp(f)$  is the support of f, i.e  $Supp(f) = \{x \in \mathcal{X}, f(x) \neq 0\}$ 

**Proof - Step 1:** The inequality in part (a) implies:

$$KL(f|g) \ge 0$$
 
$$E_f[log(\frac{f(X)}{g(X)})] \ge 0$$
 
$$E_f[log(f(X)) - log(g(X))] \ge 0$$

Using Linearity of Expectation:

$$E_f[log(f(X))] \ge E_f[log(g(X))]$$

**Proof - Step 2:** Let j be fixed. We can apply the inequality obtained in Step 1 to:

$$f(z) = k(z|\hat{\theta}_{(j)}, x)$$

$$g(z) = k(z|\hat{\theta}_{(j+1)}, x)$$

For each i = 1, ..., n this leads to :

$$E_{\hat{\theta}_{(j)}}[\log k(Z_i|\hat{\theta}_{(j)},x_i)] \ge E_{\hat{\theta}_{(j)}}[k(Z_i|\hat{\theta}_{(j+1)},x_i)]$$

If we sum over all i and multiply by (-1), we get :

$$-\sum_{i=1}^{n} E_{\hat{\theta}_{(j)}}[\log k(Z_i|\hat{\theta}_{(j)}, x_i)] \le -\sum_{i=1}^{n} E_{\hat{\theta}_{(j)}}[k(Z_i|\hat{\theta}_{(j+1)}, x_i)]$$
(A)

By definition of  $\hat{\theta}_{(j+1)}$ , we also have :

$$Q(\hat{\theta}_{(i)}|\hat{\theta}_{(i)}, x) \le Q(\hat{\theta}_{(i+1)}|\hat{\theta}_{(i)}, x)$$
 (B)

Hence, (A) and (B) imply that :

$$Q(\hat{\theta}_{(j)}|\hat{\theta}_{(j)},x) - \sum_{i=1}^{n} E_{\hat{\theta}_{(j)}}[\log k(Z_i|\hat{\theta}_{(j)},x_i)] \le Q(\hat{\theta}_{(j+1)}|\hat{\theta}_{(j)},x) - \sum_{i=1}^{n} E_{\hat{\theta}_{(j)}}[k(Z_i|\hat{\theta}_{(j+1)},x_i)] \le Q(\hat{\theta}_{(j+1)}|\hat{\theta}_{(j)},x) - \sum_{i=1}^{n} E_{\hat{\theta}_{(i)}}[k(Z_i|\hat{\theta}_{(j+1)},x_i)] \le Q(\hat{\theta}_{(j+1)}|\hat{\theta}_{(j+1)},x_i) - \sum_{i=1}^{n} E_{\hat{\theta}_{(i)}}[k(Z_i|\hat{\theta}_{(j+1)},x_i)] \le Q(\hat{\theta}_{(j+1)}|\hat{\theta}_{(j+1)},x_i)$$

Using (\*), this is equivalent to :  $L(\hat{\theta}_{(j)}|x) \le L(\hat{\theta}_{(j+1)}|x)$ 

## 5.9 Mixture model and EM-algorithm

Suppose that the random variable X has a mixture distribution; that is, the  $X_i$  are independently distributed as:

$$X_i \sim \theta g(x) + (1 - \theta)h(x) = p(x|\theta)$$

Where h and g are known. An EM algorithm can be used to find the ML estimator of  $\theta$ . Introduce  $Z_1, ..., Z_n$ , where  $Z_i$  indicates from which distribution  $X_i$  has been drawn, so:

$$X_i|Z_i=1\sim g(x)$$

$$X_i|Z_i=0\sim h(x)$$

#### (a) Complete-data likelihood

Let  $p(x_i, z_i | \theta)$  be the joint distribution of  $(X_i, Z_i)$  when the parameter is  $\theta$ . Thus, the complete-data likelihood is:

$$L^{c}(\theta|x,z) = \prod_{i=1}^{n} p(x_{i}, z_{i}|\theta)$$

Using Bayes theorem:

$$p(x_i, z_i | \theta) = p(x_i | z_i, \theta) p(z_i | \theta)$$

Where  $p(x_i|z_i,\theta)$  is the conditional distribution of  $X_i$  given  $Z_i$  and  $p(z_i|\theta)$  is the distribution of  $Z_i$ . As  $X_i|Z_i=1 \sim g(x)$  and  $X_i|Z_i=0 \sim h(x)$ , we have:

$$p(x_i|z_i,\theta) = z_i g(x_i) + (1-z_i)h(x_i)$$

In other words,  $p(x_i|z_i, \theta) = g(x_i)$  if  $z_i = 1$  and  $p(x_i|z_i, \theta) = h(x_i)$  if  $z_i = 0$ . Moreover, by definition  $Z_i$  is a Bernoulli variable of parameter  $\theta$ , so its distribution can be written as:

$$p(z_i|\theta) = \theta^{z_i}(1-\theta)^{1-z_i}$$

Hence:  $L^{c}(\theta|x,z) = \prod_{i=1}^{n} [z_{i}g(x_{i}) + (1-z_{i})h(x_{i})]\theta^{z_{i}}(1-\theta)^{1-z_{i}}$ 

#### (b) EM sequence

 $E(Z_i|\theta,x_i)$  computation

$$E(Z_i|\theta, x_i) = \int_{\{0,1\}} zp(z|\theta, x_i)dz$$

Where we integrate with respect to the counting measure. Thus, using Bayes theorem:

$$= \int_{\{0,1\}} z \frac{p(x_i, z|\theta)}{p(x_i|\theta)} dz$$

$$= \int_{\{0,1\}} z \frac{[zg(x_i) + (1-z)h(x_i)]\theta^z (1-\theta)^{1-z}}{\theta g(x_i) + (1-\theta)h(x_i)} dz$$

$$= \sum_{z=0,1} z \frac{[zg(x_i) + (1-z)h(x_i)]\theta^z (1-\theta)^{1-z}}{\theta g(x_i) + (1-\theta)h(x_i)}$$

$$= 0 + 1 \times \frac{[g(x_i) + 0 \times h(x_i)]\theta^1 (1-\theta)^0}{\theta g(x_i) + (1-\theta)h(x_i)}$$

$$E(Z_i|\theta, x_i) = \frac{\theta g(x_i)}{\theta g(x_i) + (1-\theta)h(x_i)}$$

**EM Sequence** Keeping the same notations as in Problem 5.15, the EM sequence is defined by :

$$\hat{\theta}_{(j+1)} = \underset{\theta}{\operatorname{arg max}} Q(\theta|\hat{\theta}_{(j)}, x)$$

Where:

$$Q(\theta|\hat{\theta}_{(j)}, x) = E_{\hat{\theta}_{(j)}}(\log L^c(\theta|x, Z))$$

(Reminder :  $E_{\hat{\theta}_{(j)}}$  denotes the expectation with respect to  $p(z|\hat{\theta}_{(j)},x)$ ) In our context, using (a) :

$$Q(\theta|\hat{\theta}_{(j)}, x) = E_{\hat{\theta}_{(j)}}(\log(\prod_{i=1}^{n} [Z_i g(x_i) + (1 - Z_i) h(x_i)] \theta^{Z_i} (1 - \theta)^{1 - Z_i}))$$
(1)

$$= E_{\hat{\theta}_{(j)}} \left( \sum_{i=1}^{n} \log([Z_i g(x_i) + (1 - Z_i) h(x_i)] \theta^{Z_i} (1 - \theta)^{1 - Z_i}) \right)$$
 (2)

$$= E_{\hat{\theta}_{(j)}} \left( \sum_{i=1}^{n} \log(Z_i g(x_i) + (1 - Z_i) h(x_i)) + \sum_{i=1}^{n} \log(\theta^{Z_i} (1 - \theta)^{1 - Z_i}) \right)$$
(3)

$$= E_{\hat{\theta}_{(j)}}(\sum_{i=1}^{n} \log(Z_i g(x_i) + (1 - Z_i) h(x_i))) + E_{\hat{\theta}_{(j)}}(\sum_{i=1}^{n} \log(\theta^{Z_i} (1 - \theta)^{1 - Z_i}))$$
(4)

$$= E_{\hat{\theta}_{(j)}}(\sum_{i=1}^{n} \log(Z_i g(x_i) + (1 - Z_i)h(x_i))) + E_{\hat{\theta}_{(j)}}(\sum_{i=1}^{n} Z_i \log(\theta) + (1 - Z_i)\log(1 - \theta))$$
 (5)

The first expectation does not depend on  $\theta$ , hence :

$$\max_{\theta} Q(\theta|\hat{\theta}_{(j)}, x) \Leftrightarrow \max_{\theta} E_{\hat{\theta}_{(j)}}(\sum_{i=1}^{n} Z_{i} \log(\theta) + (1 - Z_{i}) \log(1 - \theta))$$

$$\Leftrightarrow \max_{\theta} \sum_{i=1}^{n} E_{\hat{\theta}_{(j)}}(Z_{i}) \log(\theta) + (1 - E_{\hat{\theta}_{(j)}}(Z_{i})) \log(1 - \theta)$$

$$\Leftrightarrow \max_{\theta} \sum_{i=1}^{n} E_{\hat{\theta}_{(j)}}(Z_{i})[\log(\theta) - \log(1 - \theta)] + n \log(1 - \theta)$$

As  $E_{\hat{\theta}_{(j)}}$  denotes the expectation with respect to  $p(z|\hat{\theta}_{(j)},x)$ :

$$\max_{\theta} Q(\theta|\hat{\theta}_{(j)}, x) \Leftrightarrow \max_{\theta} n \log(1-\theta) + [\log(\theta) - \log(1-\theta)] \sum_{i=1}^{n} E(Z_i|\hat{\theta}_{(j)}, x_i)$$

Let  $H(\theta) = [\log(\theta) - \log(1-\theta)] \sum_{i=1}^{n} E(Z_i|\hat{\theta}_{(j)}, x_i)$ . We are thus trying to maximize H wrt  $\theta$ .

$$H'(\theta) = -n\frac{1}{1-\theta} + \left[\frac{1}{\theta} + \frac{1}{1-\theta}\right] \sum_{i=1}^{n} E(Z_i|\hat{\theta}_{(j)}, x_i)$$
$$= -n\frac{1}{1-\theta} + \frac{1}{\theta(1-\theta)} \sum_{i=1}^{n} E(Z_i|\hat{\theta}_{(j)}, x_i)$$

Thus:

$$H'(\theta) = 0 \quad \Leftrightarrow \quad \frac{1}{\theta(1-\theta)} \sum_{i=1}^{n} E(Z_i | \hat{\theta}_{(j)}, x_i) = n \frac{1}{1-\theta}$$

$$\Leftrightarrow \quad \sum_{i=1}^{n} E(Z_i | \hat{\theta}_{(j)}, x_i) = n\theta$$

$$\Leftrightarrow \quad \frac{1}{n} \sum_{i=1}^{n} E(Z_i | \hat{\theta}_{(j)}, x_i) = \theta$$

Hence:

$$\hat{\theta}_{(j+1)} = \frac{1}{n} \sum_{i=1}^{n} E(Z_i | \hat{\theta}_{(j)}, x_i)$$

Using the previous result about  $E(Z_i|\hat{\theta}_{(j)},x_i): [\hat{\theta}_{(j+1)} = \frac{1}{n}\sum_{i=1}^n \frac{\hat{\theta}_{(j)}g(x_i)}{\hat{\theta}_{(j)}g(x_i) + (1-\hat{\theta}_{(j)})h(x_i)}]$ 

## (c) Show that $\hat{\theta}_{(i)}$ converges to $\hat{\theta}$ , a Maximum Likelihood Estimator of $\theta$

As explained in 5.15, the convergence of the sequence  $(\hat{\theta}_{(j)})$  to a MLE is not always guaranteed. Theorem 5.15 only garantees that the likelihood is increasing at each step j and :

**Theorem 5.16** If  $Q(\theta|\theta_0, x)$  is continuous in both  $\theta$  and  $\theta_0$ , then every limit point of an EM sequence  $(\hat{\theta}_{(j)})$  is a stationary point of  $L(\theta|x)$  and  $L(\hat{\theta}_{(j)}|x)$  converges monotonically to  $L(\hat{\theta}|x)$  for some stationary point  $\hat{\theta}$ .

So the convergence is only guaranteed to a stationary point (this can be a local maximizer or a saddle point).

Step 1 -  $\hat{\theta}_{(j)}$  converges to a stationary point of  $L(\theta|x)$  In our case,  $Q(\theta|\theta_0,x)$  is obviously continuous in both  $\theta$  and  $\theta_0$ . This can be shown using equation (5) in (b), since:

- $\log(\theta)$  and  $\log(1-\theta)$  are continuous in  $\theta$  as  $0 < \theta < 1$
- $E(Z_i|\theta_0,x_i)$  is continuous (in  $\theta_0$ ) using the first result of (b) (indeed, the denominator never equals 0)

• we can easily show that  $E_{\theta_0}(\sum_{i=1}^n \log(Z_i g(x_i) + (1-Z_i)h(x_i)))$  is continuous in  $\theta_0$  by writing that it is equal to  $\sum_{i=1}^n \int \log(zg(x_i) + (1-z)h(x_i))p(z|\theta_0,x_i)dz$  and by doing a similar calculation as in the first part of (b).

Therefore, our EM-algorithm is guaranteed to converge to a stationary point of  $L(\theta|x)$ .

However, in our case, we are also able to show that all stationary points of  $L(\theta|x)$  are maximum likelihood estimators.

Step 2 -  $\hat{\theta}_{(j)}$  converges to a maximum likelihood estimator We will show that  $\log L(\theta|x)$  is concave. This will therefore imply that any stationary point will necessarily be a global maximizer of  $\log L(\theta|x)$ , and therefore be a maximum likelihood estimator.

$$\log L(\theta|x) = \sum_{i=1}^{n} \log p(x_i|\theta)$$

$$= \sum_{i=1}^{n} \log(\theta g(x_i) + (1-\theta)h(x_i))$$

$$= \sum_{i=1}^{n} \log[(g(x_i) - h(x_i))\theta + h(x_i)]$$

Lemma 1 - The sum of 2 concave functions remains concave Let f, g be two concave functions. Let  $\lambda \in [0,1]$ . Let x,y.

$$(f+g)(\lambda x + (1-\lambda)y) = f(\lambda x + (1-\lambda)y) + g(\lambda x + (1-\lambda)y)$$

As f is concave and g is concave :

$$\leq \lambda f(x) + (1 - \lambda)f(y) + \lambda g(x) + (1 - \lambda)g(y)$$
  
$$\leq \lambda (f + g)(x) + (1 - \lambda)(f + g)(y)$$

Thus f + g is concave.

**Lemma 2 -**  $\forall (a,b) \neq (0,0)$  such that  $b \geq 0$ ,  $x \mapsto \log(ax+b)$  is concave Let  $(a,b) \neq (0,0)$  such that  $b \geq 0$  be fixed. Let  $f(x) = \log(ax+b)$ .

If a = 0, then b > 0 and  $f(x) = \log(b)$ , so f is a constant function and is therefore concave.

If a > 0, f is twice differentiable on  $\left[ \frac{-b}{a}; +\infty \right[$ 

If a < 0, f is twice differentiable on  $\left| -\infty; \frac{-b}{a} \right|$ 

In both cases, we get:

$$f'(x) = \frac{a}{ax+b}$$
$$f''(x) = \frac{-a^2}{(ax+b)^2} \le 0$$

Hence, f is concave.

As  $\forall i$ ,  $h(x_i) \geq 0$  and as  $(h(x_i) = 0 \Rightarrow x_i)$  has been necessarily drawn from  $g \Rightarrow g(x_i) > 0$ , the condition " $(g(x_i) - h(x_i), h(x_i)) \neq (0, 0)$  and  $h(x_i) \geq 0$ " holds in our case. We can therefore apply Lemma 2 and we can conclude that  $x \mapsto \log[(g(x_i) - h(x_i))\theta + h(x_i)]$  is concave for all i.

Thus, using Lemma 1,  $\log L(\theta|x)$  is concave. Hence, any stationary point is necessarily a global maximizer of  $\log L(\theta|x)$ . In other words, any stationary point is necessarily a maximum likelihood estimator.

Conclusion :  $\hat{\theta}_{(j)}$  is guaranteed to converge to  $\hat{\theta}$ , a Maximum Likelihood Estimator of  $\theta$ 

## 6.9 Show that an aperiodic Markov chain on a finite state-space is irreducible if and only if its transition matrix is regular

Let P be the transition matrix of the studied Markov Chain  $(X_n)$  on a finite state-space. Let E be this finite state-space and M its cardinality. In the following statements, we will do as if E = 1, 2, ..., M, since we can always map all states to 1, 2, ..., M with a bijective function.

**Definition** P is regular if and only if there exists  $N \in \mathbb{N}$  such that  $P^N$  has no zero entries.

**Definition**  $(X_n)$  is *irreducible* if and only if for all states x, y there exists  $n_{x,y}$  such that  $P^{n_{x,y}}(x,y) > 0$ .

**Definition**  $(X_n)$  is aperiodic if and only if all states are of period 1. In other words,  $(X_n)$  is aperiodic if and only if for all states x GCD J(x) = 1 where  $J(x) = \{n \in \mathbb{N}^*, P^n(x, x) > 0\}$ .

 $(X_n)$  is assumed aperiodic.



Assume P is regular. Therefore, there exists  $N \in \mathbb{N}$  such that  $P^N$  has no zero entries. Thus, for all states  $x, y, P^N(x, y) > 0$ . The Markov chain is therefore irreducible.

$$P \text{ is regular} \Rightarrow (X_n) \text{ irreducible}$$

 $\Rightarrow$ 

Assume  $(X_n)$  is irreducible.

**Lemma 1** Let  $k \in \mathbb{N}^*$  an arbitrary but fixed natural number. Then there is a natural number  $n_0 \ge 1$  such that  $\{n_0, n_0 + 1, n_0 + 2...\} \subset \{n_1k + n_2(k+1); (n_1, n_2) \in \mathbb{N}^2 \setminus \{(0, 0)\}\}.$ 

**Lemma 1 - Proof** Let  $n \ge k^2$ . Following the Euclidean division theorem,  $\exists m, d \in \mathbb{N}/n - k^2 = mk + d$  and d < k.

Hence:

$$n = k^2 + mk + d$$
  

$$n = (k + m - d)k + d(k + 1)$$

Note that k + m - d > 0 since d < k.

Therefore,  $\forall n \geq k^2, n \in \{n_1k + n_2(k+1); (n_1, n_2) \in \mathbb{N}^2 \setminus \{(0,0)\}\}$ . In other words,  $n_0 = k^2$  is the desired number.

**Lemma 2** Let  $x \in E$ . If  $a, b \in J(x)$ , then  $\forall (n_1, n_2) \in \mathbb{N}^2 \setminus \{(0, 0)\}, n_1 a + n_2 b \in J(x)$ . In other words,  $\{n_1 a + n_2 b; (n_1, n_2) \in \mathbb{N}^2 \setminus \{(0, 0)\}\} \subset J(x)$ .

**Lemma 2 - Proof** Let  $a, b \in J(x)$ . Let us first show that  $a + b \in J(x)$ .

$$P^{a+b}(x,x) = \sum_{z=1}^{M} P^{a}(x,z)P^{b}(z,x)$$

Since P is a transition matrix, all coefficients are positive and therefore all coefficients of powers of P are positive. Thus for all states  $z: P^a(x,z)P^b(z,x) \geq 0$ Hence:

$$P^{a+b}(x,x) = \sum_{z=1}^{M} P^{a}(x,z)P^{b}(z,x)$$
  
 
$$\geq P^{a}(x,x)P^{b}(x,x) > 0$$

Because  $a \in J(x) \Leftrightarrow P^a(x,x) > 0$  and  $b \in J(x) \Leftrightarrow P^b(x,x) > 0$ . So  $a + b \in J(x)$ .

Therefore, by recurrence,  $\forall (n_1, n_2) \in \mathbb{N}^2 \setminus \{(0, 0)\}, n_1 a + n_2 b \in J(x)$ .

**Lemma 3** Let  $x \in E$ . Then, J(x) contains two successive numbers. In other words,  $\exists k^{(x)} \in J(x)/(k^{(x)} + 1) \in J(x)$ .

Lemma 3 - Proof Let  $x \in E$ . As  $(X_n)$  is aperiodic, GCD J(x) = 1. Therefore, we can find a finite subset  $\{l_1, ..., l_n\} \subset J(x)$  such that GCD  $\{l_1, ..., l_n\} = 1$  (see Appendix for a proper proof of this statement). Following the generalization of Bézout's identity:  $\exists \alpha_1, ..., \alpha_n \in \mathbb{Z}$  such that  $1 = \alpha_1 l_1 + ... + \alpha_n l_n$  (\*). Let us take  $k = \sum_{i=1}^n |\alpha_i| l_i$ . Then,  $k \in \mathbb{N}$  and, using Lemma 2,  $k \in J(x)$  (since  $l_1, ..., l_n \in J(x)$ , since  $|\alpha_i| \in \mathbb{N}$  and since all  $|\alpha_i|$  cannot be simultaneously equal to 0 otherwise (\*) would not hold). Hence:  $k+1 = \sum_{i=1}^n (|\alpha_i| + \alpha_i) l_i$ . As  $(|\alpha_i| + \alpha_i) \geq 0$  and as they cannot be all equal to 0, using Lemma 2, this implies that  $k+1 \in J(x)$ .

Therefore, we found two consecutive numbers in J(x).

Main Proof - Step 1: Show that there exists a certain threshold depending on the considered state x such that all successive integers superior to this threshold belong to J(x) Let  $x \in E$ . Using Lemma 3,  $\exists k^{(x)} \in J(x)/(k^{(x)}+1) \in J(x)$ .

Using Lemma 3,  $\exists k^{(x)} \in J(x)/(k^{(x)}+1) \in J(x)$ . Hence, using Lemma 1:  $\exists n_0^{(x)} \geq 1$  such that  $\{n_0^{(x)}, n_0^{(x)}+1, n_0^{(x)}+2...\} \subset \{n_1k^{(x)}+n_2(k^{(x)}+1); n_1, n_2 \in \mathbb{N}\}$ . Hence, since  $k^{(x)} \in J(x)$  and  $k^{(x)}+1 \in J(x)$ , using Lemma 2:

$$\exists n_0^{(x)} \geq 1 \text{ such that } \{n_0^{(x)}, n_0^{(x)} + 1, n_0^{(x)} + 2...\} \subset J(x)$$

Main Proof - Step 2: Show that there exists a threshold depending on the states x and y such that for all successive integers superior to this threshold, the corresponding coefficient of P at this power is strictly positive Let  $x, y \in E$ . As  $(X_n)$  has been assumed irreducible, there exists  $n_{xy} \in \mathbb{N}^*$  such that  $P^{n_{xy}}(x,y) > 0$ .

Following Step 1, there exists  $n_0^{(y)}$  such that  $\forall n \geq n_0^{(y)}, P^n(y, y) > 0$ .

Let  $n \ge n_0^{(y)}$ . Therefore, as P is a transition matrix of a Markov chain and hence all its coefficients are positive (implying that all coefficients of powers of P are positive):

$$P^{n_{xy}+n}(x,y) = \sum_{z=1}^{M} P^{n_{xy}}(x,z) P^{n}(z,y)$$
$$\geq P^{n_{xy}}(x,y) P^{n}(y,y) > 0$$

Main Proof - Step 3: Show that we can find a common threshold N to all states x and y such that all corresponding coefficient of P at this power N are strictly positive. Let  $N = \max\{n_{xy} + n_0^{(y)}; x, y \in E\}$ . (Note that we only choose one of the potential  $n_{xy}$  for each pair x, y and one of the potential  $n_0^{(y)}$  for each y. Hence,  $\{n_{xy} + n_0^{(y)}; x, y \in E\}$  is necessarily a finite set, since E is finite.)

$$\forall x,y \in E \quad P^N(x,y) = P^{n_{xy} + (N-n_{xy})}(x,y)$$

Since  $N \ge n_{xy} + n_0^{(y)}$ :  $N - n_{xy} \ge n_0^{(y)}$ . Therefore, using Step 2 with  $n = N - n_{xy}$ :

$$\forall x, y \in E \quad P^{N}(x, y) = P^{n_{xy} + (N - n_{xy})}(x, y) > 0$$

We thus showed that there exists N such that  $P^N$  has no zero entries.

$$(X_n)$$
irreducible  $\Rightarrow P$  is regular

# 6.7 Given a transition matrix P, examine whether the corresponding Markov chain is irreducible and aperiodic

Let

$$P = \begin{pmatrix} 0.0 & 0.4 & 0.6 & 0.0 & 0.0 \\ 0.65 & 0.0 & 0.35 & 0.0 & 0.0 \\ 0.32 & 0.68 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.12 & 0.88 \\ 0.0 & 0.0 & 0.0 & 0.56 & 0.44 \end{pmatrix}$$

We can therefore draw the graph corresponding to this Markov Chain (see Figure 1).

Figure 1 – Markov Chain graph in Problem 6.7



#### Irreducibility

**Definition**  $(X_n)$  is *irreducible* if and only if for all states x, y  $P_x(\tau_y < +\infty) > 0$  with  $\tau_y$  being the first positive time y is visited.

Therefore, using Figure 1, we directly see that the corresponding Markov Chain is **not irreducible**, as for example it is impossible to go from state 1 to state 5. In other words,  $P_1(\tau_5 < +\infty) = 0$ .

More generally, Figure 1 shows us that states 4 and 5 cannot be reached from states 1, 2 and 3 and conversely.

The corresponding Markov Chain is not irreducible.

#### Aperiodicity

**Definition**  $(X_n)$  is aperiodic if and only if all states are of period 1. In other words,  $(X_n)$  is aperiodic if and only if for all states x GCD J(x) = 1 where  $J(x) = \{n \in \mathbb{N}^*, P^n(x, x) > 0\}$ .

Let us compute the period of each state in our case.

#### Period of state 5

$$P^{1}(5,5) = 0.44 > 0$$
 therefore  $1 \in J(4)$ 

Hence, GCD J(5) is necessarily equal to 1, meaning that the period of state 5 is 1.

#### Period of state 4

$$P^{1}(4,4) = 0.12 > 0$$
 therefore  $1 \in J(4)$ 

Hence, GCD J(4) is necessarily equal to 1, meaning that the period of state 4 is 1.

**Period of state 3** Let us first show that  $2 \in J(3)$ .

As 
$$(X_2 = 3, X_1 = 1 | X_0 = 3) \subset (X_2 = 3 | X_0 = 3)$$
:

$$P^{2}(3,3) > P(X_{2} = 3, X_{1} = 1 | X_{0} = 3)$$

Thus, using Bayes' formula and the Markov property:

$$P^{2}(3,3) \ge P(X_{1} = 1 | X_{0} = 3) P(X_{2} = 3 | X_{1} = 1)$$

$$P^2(3,3) \ge 0.32 \times 0.6 > 0$$
 therefore  $2 \in J(3)$ 

Let us show that  $3 \in J(3)$ .

As 
$$(X_3 = 3, X_2 = 2, X_1 = 1 | X_0 = 3) \subset (X_3 = 3 | X_0 = 3)$$
:

$$P^{3}(3,3) > P(X_{3} = 3, X_{2} = 2, X_{1} = 1 | X_{0} = 3)$$

Thus, using Bayes' formula and the Markov property:

$$P^{3}(3,3) \ge P(X_{1} = 1 | X_{0} = 3)P(X_{2} = 2 | X_{1} = 1)P(X_{3} = 3 | X_{2} = 2)$$

$$P^3(3,3) \ge 0.32 \times 0.4 \times 0.35 > 0$$
 therefore  $3 \in J(3)$ 

Hence,  $2 \in J(3)$  and  $3 \in J(3)$ . GCD J(3) is thus necessarily equal to 1, as GCD  $\{2,3\} = 1$ . This means that the period of state 3 is 1.

**Period of state 2** Using the same method, let us first show that  $2 \in J(2)$ .

As  $(X_2 = 2, X_1 = 1 | X_0 = 2) \subset (X_2 = 2 | X_0 = 2)$ :

$$P^{2}(2,2) > P(X_{2} = 2, X_{1} = 1 | X_{0} = 2)$$

Thus, using Bayes' formula and the Markov property:

$$P^{2}(2,2) \ge P(X_{1} = 1|X_{0} = 2)P(X_{2} = 2|X_{1} = 1)$$

$$P^2(2,2) \ge 0.65 \times 0.4 > 0$$
 therefore  $2 \in J(2)$ 

Let us show that  $3 \in J(2)$ .

As  $(X_3 = 2, X_2 = 3, X_1 = 1 | X_0 = 2) \subset (X_3 = 2 | X_0 = 2)$ :

$$P^{3}(2,2) \ge P(X_3 = 2, X_2 = 3, X_1 = 1 | X_0 = 2)$$

Thus, using Bayes' formula and the Markov property :

$$P^{3}(2,2) \ge P(X_{1} = 1|X_{0} = 2)P(X_{2} = 3|X_{1} = 1)P(X_{3} = 2|X_{2} = 3)$$
  
 $P^{3}(2,2) \ge 0.65 \times 0.6 \times 0.68 > 0$  therefore  $3 \in J(2)$ 

Hence,  $2 \in J(2)$  and  $3 \in J(2)$ . GCD J(2) is thus necessarily equal to 1, as GCD  $\{2,3\} = 1$ . This means that the period of state 2 is 1.

**Period of state 1** Using the same method, let us first show that  $2 \in J(1)$ .

As  $(X_2 = 1, X_1 = 3 | X_0 = 1) \subset (X_2 = 1 | X_0 = 1)$ :

$$P^{2}(1,1) \ge P(X_{2} = 1, X_{1} = 3 | X_{0} = 1)$$

Thus, using Bayes' formula and the Markov property:

$$P^{2}(1,1) \ge P(X_{1} = 3|X_{0} = 1)P(X_{2} = 1|X_{1} = 3)$$

$$P^{2}(1,1) > 0.6 \times 0.32 > 0$$
 therefore  $2 \in J(1)$ 

Let us show that  $3 \in J(1)$ .

As  $(X_3 = 1, X_2 = 2, X_1 = 3 | X_0 = 1) \subset (X_3 = 1 | X_0 = 1)$ :

$$P^3(1,1) \ge P(X_3 = 1, X_2 = 2, X_1 = 3 | X_0 = 1)$$

Thus, using Bayes' formula and the Markov property:

$$P^{3}(1,1) \ge P(X_{1} = 3|X_{0} = 1)P(X_{2} = 2|X_{1} = 3)P(X_{3} = 1|X_{2} = 2)$$
  
 $P^{3}(1,1) \ge 0.6 \times 0.68 \times 0.65 > 0$  therefore  $3 \in J(1)$ 

Hence,  $2 \in J(1)$  and  $3 \in J(1)$ . GCD J(1) is thus necessarily equal to 1, as GCD  $\{2,3\} = 1$ . This means that the period of state 1 is 1.

Hence, all states are of period 1.

The corresponding Markov Chain is thus aperiodic.

### 6.54 Show that several examples of Markov Chains are reversible

Before starting the exercise, see Problem 6.53 in Appendix to understand what a reverse Markov Chain is. A Markov Chain is reversible if  $P = \tilde{P}$ . In other words, it is reversible if  $P(X_n = i | X_{n-1} = j) = P(X_{n-1} = j | X_n = i) \quad \forall n :$  there is the same probability to go from one state to a new one and to come back from the new one to the previous one if we go back in time.

Hence, a Markov Chain is reversible if it satisfies :

$$p_{ij} = \frac{\pi_j p_{ji}}{\pi_i}$$

$$\pi_i p_{ij} = \pi_j p_{ji}$$

This last equation is called the the detailed balance condition.

Show that every two-state ergodic chain is reversible Let  $(X_n)$  an ergodic Markov Chain in a finite state space with cardinality equal to 2. Thus, its transition matrix P can be written:

$$P = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

As  $(X_n)$  is ergodic, there exists an invariant probability distribution  $\pi$ . Thefore,  $\pi$  verifies  $\pi P = \pi$  (1) and  $\sum_{i=1}^{2} \pi_i = 1$  (2).

(1) 
$$\Leftrightarrow$$
  $\begin{cases} a\pi_1 + c\pi_2 = \pi_1 \\ b\pi_1 + d\pi_2 = \pi_2 \end{cases} \Leftrightarrow \begin{cases} c\pi_2 = (1-a)\pi_1 \\ d\pi_2 = (1-b)\pi_2 \end{cases}$ 

Moreover, as P is a transition matrix, we have

$$(*) \begin{cases} a+b=1 \\ c+d=1 \end{cases} \Leftrightarrow \begin{cases} b=1-a \\ d=1-c \end{cases}$$

Let us now check if  $(X_n)$  verifies the detailed condition balance.

$$\pi_1 p_{12} = b \pi_1 = (1 - a) \pi_1$$
 using (\*)

$$\pi_1 p_{12} = c \pi_2$$
 using (1)

Hence:  $\pi_1 p_{12} = \pi_2 p_{21}$  Moreover,  $\pi_1 p_{11} = \pi_1 p_{11}$  and  $\pi_2 p_{22} = \pi_2 p_{22}$  are obviously verified. The detailed condition balance is therefore verified, which implies that  $(X_n)$  is reversible.

Show that an ergodic Markov Chain with symmetric transition matrix is reversible Let  $(X_n)$  an ergodic Markov Chain with symmetric transition matrix. Let P be the transition matrix and let m be the cardinality of the finite state space on which  $(X_n)$  is defined. As  $(X_n)$  is ergodic, there exists a unique invariant probability distribution  $\pi$ .

Let us first show that  $\pi$  is the uniform distribution. Let u be the uniform distribution on  $\{1, ..., m\}$ :  $u = (\frac{1}{m}, ..., \frac{1}{m})$ .

$$(uP)_i = \sum_{k=1}^m u_k p_{ki}$$

$$(uP)_i = \frac{1}{m} \sum_{k=1}^m p_{ki}$$

Since P is a transition matrix, the sum of each row is equal to 1. Therefore  $\sum_{k=1}^{m} p_{ik} = 1$ . However, as P is symmetric,  $p_{ik} = p_{ki}$ . Hence :  $\sum_{k=1}^{m} p_{ki} = 1$  (the sum of each column is also equal to 1). Therefore :

$$(uP)_i = \frac{1}{m} = u_i$$

Hence:

$$uP = u$$
 and  $\sum_{i=1}^{m} u_i = 1$ 

u is thus an invariant distribution. As the invariant distribution is unique, we necessarily have :  $\pi = u$ .

Let us now show that  $(X_n)$  is reversible by checking that the detailed balance condition is verified. Since P is symmetric:

$$\pi_i p_{ij} = \pi_i p_{ji}$$

Since  $\pi = u, \forall i, j \quad \pi_i = \frac{1}{m} = \pi_j$ . Therefore:

$$\pi_i p_{ij} = \pi_j p_{ji}$$

The detailed balance condition is thus verified.  $(X_n)$  is reversible.

Examine whether the matrix P is reversible

$$P = \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

Let us find first if there is an invariant distribution  $\pi$ , i.e if  $\exists \pi$  such that  $\pi P = \pi$  and  $\sum_{i=1}^{5} \pi_i = 1$ .

$$\begin{cases} \pi P = \pi \\ \sum_{i=1}^{5} \pi_{i} = 1 \end{cases} \Leftrightarrow \begin{cases} 0.5\pi_{2} = \pi_{1} \\ 0.5\pi_{3} = \pi_{2} \\ \pi_{1} + 0.5\pi_{2} + 0.5\pi_{4} + \pi_{5} = \pi_{3} \\ 0.5\pi_{3} = \pi_{4} \\ 0.5\pi_{4} = \pi_{5} \\ \sum_{i=1}^{5} \pi_{i} = 1 \end{cases} \Leftrightarrow \begin{cases} \pi P = \pi \\ \sum_{i=1}^{5} \pi_{i} = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_{2} = 2\pi_{1} \\ \pi_{3} = 4\pi_{1} \\ \pi_{1} + \pi_{1} + \pi_{1} + \pi_{1} = 4\pi_{1} \\ \pi_{4} = 2\pi_{1} \\ \pi_{5} = \pi_{1} \\ \sum_{i=1}^{5} \pi_{i} = 1 \end{cases} \Leftrightarrow \begin{cases} \pi P = \pi \\ \sum_{i=1}^{5} \pi_{i} = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_{2} = 2\pi_{1} \\ \pi_{3} = 4\pi_{1} \\ \pi_{4} = 2\pi_{1} \\ \pi_{3} = 4\pi_{1} \\ \pi_{4} = 2\pi_{1} \\ \pi_{5} = \pi_{1} \\ \pi_{1} + 2\pi_{1} + 4\pi_{1} + 2\pi_{1} + \pi_{1} = 1 \end{cases} \Leftrightarrow \begin{cases} \pi P = \pi \\ \sum_{i=1}^{5} \pi_{i} = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_{2} = \frac{2}{10} \\ \pi_{3} = \frac{4}{10} \\ \pi_{4} = \frac{2}{10} \\ \pi_{5} = \frac{1}{10} \\ \pi_{1} = \frac{1}{10} \end{cases} \end{cases}$$

$$\begin{cases} \pi P = \pi \\ \sum_{i=1}^{5} \pi_i = 1 \end{cases} \Leftrightarrow \pi = (0.1, 0.2, 0.4, 0.2, 0.1)$$

Let us now check if the detailed balance condition is verified.

$$\pi_2 p_{21} = 0.2 \times 0.5 = 0.1$$

$$\pi_1 p_{12} = 0.1 \times 0 = 0$$

Hence:

$$\pi_2 p_{21} \neq \pi_1 p_{12}$$

The detailed balance condition is thus not verified. The Markov Chain defined by P is not reversible

### **Appendix**

#### Appendix to 6.9

**Lemma** Let S a set (finite or infinite) such as GCD S = 1. Then, there exists a finite set S' such that GCD S' = 1.

Proof: In the case where S is finite, the statement is obvious. In the case where S is infinite: Let  $n \in S/n > 1$  (as S is infinite, such n necessarily exists).

Let d a divisor of n such that d > 1. Hence,  $\exists n_d \in S$  such that d does not divide  $n_d$  (otherwise, d would

be a common divisor of all elements in S, which is contradictory to GCD S=1). Let then D be the set of such divisors of n (all divisors of n that are > 1).

Let  $S' = \{n\} \cup \{n_d : d \in D\}.$ 

Hence : GCD S' = 1 and S' is finite.

#### Appendix to 6.54: Problem 6.53 - Understanding Reverse Markov Chains

Given a finite state-space Markov chain  $(X_n)$ , with transition matrix P, define a second transition matrix  $\tilde{P}$  by :

$$p_{ij}(n) = \frac{P_{\mu}(X_{n-1} = j)P(X_n = i|X_{n-1} = j)}{P_{\mu}(X_n = i)}$$

Where  $\mu$  is the initial distribution of the Markov Chain with transition matrix P.

N.B: There is a typo in the exercise: the denominator is  $P_{\mu}(X_n = i)$  and not  $P_{\mu}(X_n = j)$ .

(a) Show that  $\tilde{p}_{ij}(n)$  does not depend on n if the chain is stationary (i.e if  $\mu = \pi$ ) By definition and since  $\mu = \pi$ :

$$\tilde{p}_{ij}(n) = \frac{P_{\pi}(X_{n-1} = j)P(X_n = i|X_{n-1} = j)}{P_{\pi}(X_n = j)}$$

If  $\mu$  is equal to the invariant probability distribution  $\pi$ , then the chain is stationary. Indeed,  $X_n \sim \mu P^n = \pi P^n = \pi$  (by iteration, since  $\pi P = \pi$ ). Thus, all  $X_n$  have the same distribution  $\pi$ . Hence:

$$P_{\pi}(X_{n-1} = j) = P(X_0 = j) = \pi_j$$

$$P_{\pi}(X_n = i) = P(X_0 = i) = \pi_i$$

And by definition of a transition matrix:

$$P(X_n = i | X_{n-1} = j) = p_{ji}(n)$$

Since the Markov Chain is stationary:

$$P(X_n = i | X_{n-1} = j) = P(X_1 = i | X_0 = j) = p_{ii}(1) = p_{ii}$$

Where  $p_{ji}$  is the coefficient located at row j and column i of the matrix P. Hence:

$$\tilde{p}_{ij}(n) = \frac{\pi_j p_{ji}}{\pi_i}$$

Conclusion: If the chain is stationary,  $\tilde{p}_{ij}(n)$  does not depend on n

(b) Explain why in this case the chain with transition matrix  $\tilde{P}$  is called the reverse Markov Chain Using (a):

$$\tilde{p}_{ij} = \frac{\pi_j p_{ji}}{\pi_i} = \tilde{p}_{ij}(n) \quad \forall n$$

This is equivalent to:

$$\tilde{p}_{ij} = \frac{P_{\pi}(X_{n-1} = j)P(X_n = i|X_{n-1} = j)}{P_{\pi}(X_n = j)} \quad \forall n$$

Using Bayes' formula, this is also equivalent to:

$$\tilde{p}_{ij} = P(X_{n-1} = j | X_n = i) \quad \forall n$$

Therefore, the transition matrix  $\tilde{P}$  defines the "same" Markov chain as P but with time running backwards.