Exercise 14.7

$$x = lmu$$
 $y = v \cdot e^{x}$ $y = v \cdot u$

$$J(u,v) = \left| \frac{\partial x}{\partial u} \right| \frac{\partial x}{\partial v}$$

$$\frac{\partial x}{\partial y} = \frac{1}{4} \qquad \frac{\partial x}{\partial y} = 0$$

Answer:

10· x=4 -	uv y= uv-uvw z= uvw
J(u, v,lo)	w8/x6 46/g6 06/x6/=
	dyldu dyldu dyldw
	dzldu dz/dv dz/dw
8x = 1-	V dx = -u dx =0
du	Jw Jw
dy = V - V	w dy=u-uw dy=-uv
<u></u> du	0 V
WY = XW	$\partial z = uw$ $\partial z = uv$
<i>Ju</i>	DV DW
J(u,v,w)=	1-v -u 0
	V-WV
	νω ιω αν
= 1-V	u-uw -uv +u v-vw -uv
	luw uv vw uv
= 1-v [u2v - u2vw + u2vw] + u [uv2-v2uw + uv2w]	
$= u^2 V - u^2 V^2 + u^2 V^2$	
$\frac{J(u,v,u)}{2} = u^2 v$	
7-01	Anweis

$\frac{f(x,y) = x-y e^{x^2-y}}{(a+b)(a-b) = a^2-b^2}$
$f(x,y) = \sqrt{e^{(x+y)(x-y)-x^2-y^2}}$
a,
u= x+9
$V = \chi - \gamma$
$x = u + v \qquad \partial x = v \partial x = 1$
2 24 2 20 2
y= w- v) dy = -1
2 2 200 2
J(4, v) = 1/2
1/2 -1/2
J(y,v) = -1 - 1 = -2 = -1
[] [Y. g. du glv
[4 [1. e 1 - 1 du dv
1 [4 4·V] dv

$$\frac{1}{2} \int_{1}^{4} (e^{v} - e^{o}) dv$$

$$\frac{1}{2} \int_{1}^{4} e^{v} dv - \frac{1}{2} \int_{1}^{4} dv$$

$$\frac{1}{2} \left[e^{v} \right]_{1}^{4} - \frac{1}{2} \left[v \right]_{1}^{4}$$

$$\frac{1}{2} \left[e^{v} - e^{-3} \right] - \frac{1}{2} \left(v \right)_{1}^{4}$$

$$\frac{1}{2} \left[e^{v} - e^{-3} \right]$$
Answer:

Vertices = (0,0),(2,0),(1,1)

