Algorytmy dla Problemów Trudnych Obliczeniowo Projekt 2023: Zagroda

Problem

Pewien farmer jest bardzo dumny ze swojego stada kur. Dzielny farmer chce wybudować dla swoich kur zagrodę a do dyspozycji ma obszar ziemi o wymiarach $m \times n$ metrów. Graficznie jego ziemię można przedstawić jako prostokątną planszę składającą się z $m \times n$ pól, gdzie każde pole to kwadrat o wymiarach $1m \times 1m$; obszar ma m kolumn i n wierszy. Zagroda ma być zbudowana z fragmentów płotu wykonanych z blachy falistej. Każdy fragment ma długość jednego metra (tj. taką samą jak długość boku pola) i musi być umieszczony na granicy między polami. Dodatkowo każde pole zawiera liczbę ze zbioru $\{0,1,2,3\}$, która mówi ile fragmentów płotu musi do tego pola przylegać (wynika to z dość zawiłych warunków zabudowy, jakie farmer uzyskał od miejscowego czarodzieja). Płot musi tworzyć jeden spójny, zamknięty obszar (inaczej to nie byłaby zagroda). Wolno wykorzystać dowolnie dużo fragmentów płotu. Przykładowa plansza o wymiarach 5×4 może wyglądać następująco:

1	2	3	2	0
3	1	0	2	1
2	1	0	1	1
1	2	1	2	1

Przykładowe rozwiązanie dla tej planszy to:

1	2	3	2	0
3	1	0	2	1
2	1	0	1	1
1	2	1	2	1

Zadanie polega na wyznaczeniu miejsc, w których należy postawić płot tak, by tworzył zagrodę i spełniał warunku zabudowy.

Wejście

Wejście składa się z jednego wiersza zawierającego po kolei liczby m i n oraz ciągu n wierszy, gdzie każdy zawiera m znaków ze zbioru $\{0,1,2,3\}$ opisujących plansze. Opis planszy z powyższego

przykładu jest następujący:

5 4

12320

31021

21011

12121

Wyjście

Wyjście składa się z dwóch wierszy. Pierwszy wiersz zawiera dwie liczby, x oraz y, które opisują pozycję początku płota (w tym miejscu farmer zaczyna układać płot). Drugi wiersz składa się z symboli ze zbioru {U, D, L, R}, które opisują drogę farmera podczas układania płota:

U – ruch o jeden metr (jedno pole) w górę,

D – ruch o jeden metr (jedno pole) w dół,

L – ruch o jeden metr (jedno pole) w lewo,

R – ruch o jeden metr (jedno pole) w prawo.

Układ współrzędnych został przedstawiony poniżej (współrzędne farmera są względem lewego górnego wierzchołka pola):

()]	L 2	2 3	3 4	1 5
0 -	1	2	3	2	0
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	3	1	0	2	1
3 -	2	1	0	1	1
3 - 1 -	1	2	1	2	1

Na powyższym rysunku przedstawiono także za pomocą kropki przykładową pozycję startową farmera oraz jego pierwszy krok. Całe rozwiązanie można zapisać następująco:

2 1 URDRDDDLLLUULURR

Oczywiście zapis rozwiązania nie jest jednoznaczny. Wybierając inny punkt startowy dostajemy inny zapis tego samego rozwiązania:

1 2 DDRRRUUULULDLLDR

0 + 1 + 2 + 3 + 2 + 0	
1 2 3 2 0)
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ \end{bmatrix}$ $\begin{bmatrix} 1 \\ \end{bmatrix}$ 0 $\begin{bmatrix} 2 \\ \end{bmatrix}$	L
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ \end{bmatrix}$	L
$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	L

Zadanie

Proszę zaimplementować program w języku C/C++, który wczytuje ze standardowego wejścia opis terenu farmera oraz wypisuje na standardowe wyjście opis rozwiązania (można założyć, że rozwiązanie zawsze istnieje). Program powinien spełniać następujące warunki:

- 1. Program jest jednowątkowy i jednoprocesowy (nie wykorzystuje w żaden sposób mechanizmów wielowątkowości).
- 2. Program nie odwołuje się do żadnych operacji wejścia/wyjścia (w tym dostępu do sieci i plików) innych niż czytanie ze standardowego wejścia i zapisywanie na standardowe wyjście.