10/18/24

IA 5

IAS An electric field in a region of vacuum is described by $\vec{E} = \hat{\chi} 1000 \cos(2\pi \times 20 \times 10^6 t - kz)$
a.) no the wave is not oniterim cerause f varies by a value of K in the positive
6.) it is a plane wave or plane.
c.) it travels in the +2 direction, and since it is in a vacoum it travels at the spead of light 3.108 m/s d.) k=22.20.106(3.10+8) = 3.77 (Chat says 4.19)
1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
E(z) = $\hat{x} _{000e^{-3\omega t}} + incorrect$ after checking Chot said $E(z) = \hat{x} _{000e^{-3\omega t}} + incorrect$ but in also not sure that is correct.
chat said E(z) = x 1600 e 6ut ina 2150 not sure that is correct.
According to the DUN W
According to the RHR the Magnetic field H is in the g direction.
So $\hat{H} = \frac{1}{2} 1000 \cos (2\pi \cdot 20 \cdot 10^6 + - kz) A/m$
$B = y 1000 \cos(2\pi, 20.10^6 t - kz) T$

Chat Conversation:

dont answer anything yet but this is the equation you will use for the quesions

Got it! Feel free to share the equation whenever you're ready.

An electric field in a region of vacuum is described by $E = xhat*1000*cos(2pi*(20*10^6)t-kz) (v/m)$

Thanks for sharing the equation! This is the expression for an electric field, \mathbf{E} , in a vacuum. It is described as a wave propagating in the z-direction with time t, and the field is oscillating in the x-direction.

The given equation is:

$$\mathbf{E}(t,z) = \hat{x}\,1000\cos(2\pi(20 imes10^6)t - kz)\,\mathrm{V/m}$$

where:

- \hat{x} is the unit vector in the x-direction.
- 1000 is the amplitude of the electric field in volts per meter (V/m).
- $\bullet~20\times10^6$ Hz is the frequency of the wave (20 MHz).
- ullet is time.
- k is the wavenumber (which relates to the wavelength).
- ullet z is the position in the direction of wave propagation.

Please go ahead with your questions related to anis equation!

The first 3 questions were simple and the answer was basically given in lecture so we did not feel the need to ask chat about them.

The wavenumber ${\pmb k}$ is related to the frequency ${\pmb f}$ and the speed of light c in vacuum by the following formula:

$$k=rac{2\pi f}{v_p}$$

Where:

- $f = 20 \times 10^6 \,\mathrm{Hz}$
- $ullet v_p = c = 3 imes 10^8\,\mathrm{m/s}$ (speed of light in vacuum)

Now, let's calculate k:

$$k = rac{2\pi(20 imes 10^6)}{3 imes 10^8}$$

Simplifying:

$$k = rac{2\pi imes 20 imes 10^6}{3 imes 10^8} = rac{40\pi}{3 imes 10}
onumber \ k pprox rac{125.66}{30} pprox 4.19 \, \mathrm{rad/m}$$

Conclusion:

The value of k is approximately **4.19 rad/m**, not $3.77\,\mathrm{rad/m}$.

Let's calculate the wavelength λ of the wave using the relationship between the wavenumber k and the wavelength:

$$k=rac{2\pi}{\lambda}$$

We already calculated $k pprox 4.19\,\mathrm{rad/m}$. Now let's find the wavelength λ :

$$\lambda=rac{2\pi}{k}$$

Substituting $k=4.19\,\mathrm{rad/m}$:

$$\lambda = rac{2\pi}{4.19} pprox rac{6.283}{4.19} pprox 1.5\,\mathrm{m}$$

Conclusion:

The wavelength λ is approximately **1.5 meters**, not 1.6 meters. However, 1.6 meters is a close approximation.

\$

The **phasor** representation of a wave provides a way to describe its time-varying nature as a complex exponential, focusing on its amplitude and phase. It simplifies the analysis of oscillating fields like the electric field in the given equation.

Given Wave Equation:

$$\mathbf{E}(t,z) = \hat{x}\,1000\cos(2\pi(20 imes10^6)t - kz)\,\mathrm{V/m}$$

To convert this into its **phasor** form, we follow these steps:

Phasor Representation:

The electric field in the time domain is expressed as a real cosine function. In phasor form, we use the complex exponential representation:

$$\cos(\omega t - kz) = \Re\left(e^{j(\omega t - kz)}
ight)$$

where:

- $ullet \ \omega = 2\pi f$ is the angular frequency,
- k is the wavenumber,
- ullet j is the imaginary unit, and
- $\Re(\cdot)$ denotes the real part.

Thus, the time-dependent electric field can be expressed as:

$$\mathbf{E}(t,z) = \Re\left(\hat{x}\,1000e^{j(2\pi(20 imes10^6)t-kz)}
ight)$$

Phasor Form:

The phasor form represents only the spatial and amplitude dependence (removing the time factor), so the **phasor** $ilde{\mathbf{E}}(z)$ is:

$$ilde{\mathbf{E}}(z) = \hat{x}\,1000e^{-jkz}$$

- $\bullet\ \ \,$ The amplitude of the electric field is $1000\,V/m.$
- The phase shift is given by -kz, which describes how the wave varies as it propagates in the z-direction.

Summary of the Phasor:

- ullet Amplitude: $1000\,V/m$
- Phase shift: -kz
- **Direction**: The phasor is aligned with the x-axis (\hat{x}) and describes a wave propagating along the z-axis with a phase shift of -kz.

In phasor notation, the wave is simply $\tilde{\mathbf{E}}(z)=\hat{x}\,1000e^{-jkz}$, and the time-varying part can be introduced back by multiplying with $e^{j\omega t}$.

今日日日日日

since this is in a vacuum does H = B?

In a vacuum, the magnetic field ${\bf H}$ and the magnetic flux density ${\bf B}$ are related by the permeability of free space μ_0 , and they are **not equal**. The relationship between ${\bf H}$ and ${\bf B}$ is:

$$\mathbf{B} = \mu_0 \mathbf{H}$$

Where:

- **B** is the magnetic flux density in **teslas** (T),
- H is the magnetic field intensity in amperes per meter (A/m),
- $\mu_0 = 4\pi \times 10^{-7}\,\mathrm{H/m}$ is the permeability of free space.

Since μ_0 is a constant with a value $4\pi \times 10^{-7}\,\mathrm{H/m}$, the magnetic field intensity ${\bf H}$ and the magnetic flux density ${\bf B}$ are proportional but not equal.

Relation:

$$\mathbf{B} = (4\pi \times 10^{-7})\mathbf{H}$$

So, for any given \mathbf{H} , you would multiply by μ_0 to get \mathbf{B} .

Thus, $\mathbf{H} \neq \mathbf{B}$ in a vacuum, but they are related by the permeability of free space μ_0 .

We think chat is wrong here, we know they are not technically equal and are different vectors, but the permeability of free space does not matter in a vacuum so they should both just be the original formula in the y^ direction, with H being in A/m and B being in T as units. Chat seems to struggle with the vacuum concept. We will try arguing with it.

does permeability matter in a vacuum? it shouldnt

֍

Permeability does indeed matter in a vacuum, but it plays a specific role in understanding the relationship between the magnetic field intensity ${\bf H}$ and the magnetic flux density ${\bf B}$.

Key Points:

- 1. Vacuum Properties:
 - In a vacuum, the permeability μ_0 is a constant value given by $\mu_0 = 4\pi imes 10^{-7}\,\mathrm{H/m}.$
 - This constant characterizes how the magnetic field interacts with the vacuum itself, but it does not mean that magnetic fields do not exist in a vacuum.
- 2. Relationship Between \mathbf{H} and \mathbf{B} :
 - The relationship ${\bf B}=\mu_0{\bf H}$ indicates that the magnetic flux density ${\bf B}$ in a vacuum is proportional to the magnetic field intensity ${\bf H}$.
 - Thus, **B** and **H** are not the same, but they are directly related through the permeability constant.
- 3. Importance of μ_0 :
 - Even in a vacuum, the value of μ_0 is essential for calculations involving electromagnetic waves, especially in determining how electric and magnetic fields relate to one another in wave propagation.
 - It also plays a crucial role in determining the speed of electromagnetic waves in a vacuum, which is given by the relation $c=\frac{1}{\sqrt{\mu_0\epsilon_0}}$, where ϵ_0 is the permittivity of free space.

Maybe we were wrong, the free space implies a vacuum, I had a misunderstanding about that concept. The fields given by chat were:

• The magnetic field intensity ${f H}$ is:

$$\mathbf{H}(t,z)pprox\hat{y}\,2.65\cos(2\pi(20 imes10^6)t-kz)\,\mathrm{A/m}$$

• The magnetic flux density ${f B}$ is:

$${f B}(t,z)pprox \hat{y}\,3.33 imes 10^{-6}\cos(2\pi(20 imes 10^6)t-kz)\,{
m T}$$

Which seem correct now in hindsight. We will keep our above answers and the whole discussion in place though to show our process.