00. Programma ed obiettivi del Corso

Corso di Python per il Calcolo Scientifico

Outline

- Informazioni utili
- Programma
- Modalità di Valutazione
 - Standard
 - Tema d'anno

Informazioni utili

- Indirizzo email: angelo.cardellicchio@stiima.cnr.it
- Svolgimento delle lezioni: le lezioni sono svolte in modalità ibrida. È
 comunque fortemente consigliata la frequenza in presenza.
- È obbligatorio, ai fini del superamento dell'esame, seguire almeno il 70% delle lezioni, in qualunque modalità.
- Materiale didattico: https://python.angelocardellicchio.it

Programma del corso

Parte 1 (fondamentali)

Data e ora	Argomenti trattati
21/04/2022, 16:00 – 19:00	Introduzione al Corso Introduzione a Python
28/04/2022, 16:00 – 19:00	Concetti sintattici fondamentali in Python Strutture dati
05/05/2022, 16:00 – 19:00	Classi, moduli e package in Python
12/05/2022, 16:00 – 19:00	Introduzione a NumPy Array in NumPy
19/05/2022, 16:00 – 19:00	Aritmetica ed algebra in NumPy
23/05/2022, 16:00 – 19:00	Operazioni polinomiali e statistica in NumPy

Programma del corso

Parte 2 (data analysis)

Data e ora	Argomenti trattati
25/05/2022, 16:00 – 19:00	Jupyterlab Visualizzazione dei risultati in Matplotlib e Seaborn
30/05/2022, 16:00 – 19:00	Introduzione a SciPy Pandas ed i dataframe
01/06/2022, 16:00 – 19:00	Introduzione a Scikit Learn Concetti fondamentali di data analysis
06/06/2022, 16:00 – 19:00	Scikit Learn: transformer e data preprocessing
08/06/2022, 16:00 – 19:00	Scikit Learn: clustering, classificatori e regressori (parte 1)
13/06/2022, 16:00 – 19:00	Scikit Learn: clustering, classificatori e regressori (parte 1) Concetti avanzati: pipeline, cross – validazione, ottimizzazione degli iperparametri
15/06/2022, 16:00 – 19:00	Analisi delle serie temporali: Statsmodels e Scikit Time
20/06/2022, 16:00 – 19:00	TensorFlow e Keras per il Deep Learning su dati strutturati
22/06/2022, 16:00 – 19:00	TensorFlow e Keras per il Deep Learning su immagini

Programma del corso

Parte 3 (esercitazioni e seminari)

Data e ora	Argomenti trattati
27/06/2022, 16:00 – 19:00	Esercitazione 1: classificazione e regressione con Scikit Learn
29/06/2022, 16:00 – 19:00	Esercitazione 2: analisi di dati strutturati con TensorFlow e Keras
30/06/2022, 16:00 – 19:00	Esercitazione 3: analisi di immagini con TensorFlow e Keras
04/07/2022, 16:00 - 19:00	Seminario didattico –Vito Renò, Ph.D., CNR – STIIMA
05/07/2022, 16:00 – 19:00	Seminario didattico –Angela Lombardi, Ph.D., Dipartimento Interateneo di Fisica, UniBa

Modalità di Valutazione

Modalità 1 - Colloquio orale

Consiste in un colloquio della durata indicativa di 30 minuti all'interno del quale saranno poste tre domande, una di natura teorica, e due di natura pratica. Per le domande di natura pratica sarà necessario disporre di una editor di testo.

Modalità 2 - Tema d'anno

Consiste nella stesura di un tema d'anno descrivente la soluzione ad un problema pratico scelto dagli studenti.

In tale modalità, saranno formati gruppi da 1 – 3 studenti, ognuno dei quali dovrà redarre:

- una relazione sintetica (massimo quattro pagine) delle attività svolte;
- una presentazione sintetica (massimo 12 slides) delle attività svolte, da discutere in sede di orale;
- il codice (funzionante) relativo alle attività svolte.

Il codice dovrà essere messo a disposizione mediante GitHub, secondo le modalità indicate dal docente.

Questa è la modalità suggerita.