

2. Concepts in Security

Seongil Wi

What is Computer Security?

Computer Security

• The protection of computer systems from unauthorized access

Q. Is Your Computer Secure?

• Under what conditions can you say your computer is secure?

Secure Systems Satisfy the CIA Properties 6

Three most important properties of computer security

• CIA: Confidentiality, Integrity, and Availability

- Example: a bank system
 - Confidentiality?
 - Integrity?
 - Availability?

Secure Systems Satisfy the CIA Properties 6

- Confidentiality: information is not made available to unauthorized parties
- Integrity: information is not modified in an unauthorized manner
- Availability: information is readily available when it is needed

CIA (1): Confidentiality

- Avoidance of the unauthorized disclosure of information
 - -Protection of data
 - -Provide access for those who are allowed to see the data
 - -Disallow others from learning anything about the data

- How to achieve confidentiality?
 - Encryption: transformation of information
 - -Access control: gatekeeper
 - -Authentication: determination of identity

CIA (1): Confidentiality – Encryption

- Transformation of information using an encryption key
- Only be read by another user who has the decryption key
- Schemes: symmetric-key encryption, public-key encryption, etc
- Example:

• To be secure: make it **extremely difficult** to decrypt the data without the decryption key

"Delecnac si ssalc txen"

CIA (1): Confidentiality – Encryption

Easily Breakable Encryption

S

Can you decrypt the following ciphertext?

Delecnac si ssalc txen

The provided ciphertext "Delecnac si ssalc txen" is already decrypted when read backward. When reversed, it reads "next class is cancelled." It seems like the text has been encoded using a simple backward or reversal transformation.

CIA (1): Confidentiality – Access Control

- 10
- Rules and policies that limit access to confidential information
- Determine what users have permission to do
- Permission is determined by identity (e.g., name, serial) or role (e.g., professor, TA, student)
- Example: Linux file system

	/etc/passwd	/usr/bin	/home/prof/exam_problem/
root	rw	rwx	rwx
professor	r	rx	rwx
ta	r	rx	r
student1	r	rx	-
student2	r	rx	-

Students 1 and 2 are unable to read the exam problem!

CIA (1): Confidentiality – Access Control

Access Control Failure

CIA (1): Confidentiality – Authentication

- Determination of the identity or role
- Typical method
 - Something you are (Fingerprint, iris pattern, ...)
 - Something you know (Password, PIN, ...)
 - Something you have (Smart card, key, ...)

CIA (1): Confidentiality

Exercise: Internet Banking

- What mechanism is used to achieve confidentiality?
 - Visit the bank website and login
 - -ID and PW are sent to the server by your web browser using HTTPS
 - -The server allows you to access only your account

CIA (2): Integrity

- Information has not been altered in an unauthorized way
- Benign compromise: information altered by accident
 - E.g., bit flips in memory due to cosmic ray
- Malicious compromise: information altered by attackers
 - E.g., malicious code that changes some files in a system

CIA (2): Integrity

Ensuring Integrity

How to ensure the integrity of computer systems?

• Backups: periodic archiving of data

• Checksums: computation of a function that maps the data to a

numerical value

U	Ubuntu 22.04.1 LTS (Jammy Jellyfish)							
A full list of available files, including BitTorrent files, can be found below.								
If you need help burning these images to disk, see the Image Burning Guide.								
	Name	Last modified	Size	Description				
4	Parent Directory		-					
	SHA256SUMS	2022-08-11 11:07	202					
H	SHA256SUMS.gpg	2022-08-11 11:07	833					
0	ubuntu-22.04.1-desktop-amd64.iso	2022-08-10 16:21	3.6G	Desktop image for 64-bit PC (AMD64) computers (standard download)				

CIA (3): Availability

- Information is accessible and modifiable in a timely fashion
- Imagine a unbreakable and unopenable vault. Is it useful?

CIA (3): Availability

- Information is accessible and modifiable in a timely fashion
- Imagine a unbreakable and unopenable vault. Is it useful?
- How to achieve availability?
 - Physical protections: keep information available even in physical challenges (e.g., storms, earthquakes, or power outages)
 - Computational redundancies: computers that serve as fallbacks in the case of failure

Kakao's meltdown raises big questions about its management

Other properties?

· *

- Confidentiality
- Integrity
- Availability

Other properties?

*

- Confidentiality
- Integrity
- Availability

- + **Authentication**: the ability of a computer system to *confirm the* sender's identity
- + Non-repudiation: the ability of a computer system to confirm that the sender can not deny about something sent

Authentication

- Determination of the identity or role
- Typical method
 - Something you are (Fingerprint, iris pattern, ...)
 - Something you know (Password, PIN, ...)
 - Something you have (Smart card, key, ...)

2

Non-repudiation

- How to determine that statements, policies, and permissions are genuine?
- What happens if those can be faked?
 - "I did not make commitment. Maybe someone pretended to be me!"
- Non-repudiation by secure authentication: authentic statement cannot be denied
 - E.g., digital signature

Aspects of Security

- Consider three aspects of information security:
 - Security attack: Any action that compromises the security of information (e.g., DDoS)
 - Security service: A service which ensures adequate security of the systems or of data transfers (e.g., availability, confidentiality)
 - Security mechanism: A mechanism that is designed to detect, prevent, or recover from a security attack (e.g., firewall)

23

Security Attacks

Note terms

- Threat: a potential for violation of security
- Attack: an assault on system security, a deliberate attempt to evade security services

Passive Attacks

Observing the information from the system without affecting system resources

Active Attacks

- Try to alter system resources or affect their operation

Passive Attacks

24

Disclosure of message contents

Passive Attacks

25

*

• Disclosure of message contents (e.g., eavesdropping)

Passive Attacks

26

Traffic analysis

- Watching the Watchers: Practical Video Identification Attack in LTE Networks, *USENIX'22*

- Beauty and the Burst: Remote Identification of Encrypted Video Streams, *USENIX'17*

Observe pattern of messages

- Sending time: 7 pm
- Message length: 10 bytes
- Bit per second: 8Mbps

28

Passive Attacks – Lessons

- Difficult to detect (after they occurred)
 - -Because they do not involve any change of the data

Thus, they should be prevented rather than be detected

Active Attacks

- Creating illegitimate messages
 - -Masquerade (who)
 - -Replay (when)
 - Modification of messages (what)
- Denying legitimate messages
 - -Repudiation

Making system facilities unavailable

Active Attacks

30

- Masquerade
 - -One entity pretends to be a different entity

3

Active Attacks

- Replay
 - A message is captured and retransmitted later

Active Attacks

- Replay
 - A message is captured and retransmitted later

Active Attacks

33

- Modification of messages
 - A message is captured, modified, and transmitted

34

Active Attacks

- Repudiation
 - Denial of sending or receiving messages

Active Attacks

- Denial of Service (DoS)
 - Making system facilities unavailable

Active Attacks – Lessons

- Difficult to prevent
 - -Because of new/unknown vulnerabilities

 So, the goal is to detect active attacks and to recover as soon as possible

Security Mechanism

37

 Feature designed to detect, prevent, or recover from a security attack

E.g., Cryptography (encipherment, digital signatures)

Cryptography – Overview

 Cryptography is about confidentiality and integrity (+ authentication, non-repudiation)

What about availability?

Cryptographic Primitives

- Symmetric key encryption/decryption
- Asymmetric key encryption/decryption
- Digital signatures
- Hash functions
- Etc.

Symmetric Key Cryptography

- The same key is used to encrypt/decrypt messages
 - Also known as secret key algorithm

Shared secret key

Symmetric Key Cryptography

41

The same key is used to encrypt/decrypt messages

Symmetric Key Cryptography

- Pros?
 - Fast
 - Intuitive
- Cons?
 - Once the key is compromised, then the whole system becomes useless
 - Key sharing is difficult
 - Digital sign is difficult

Asymmetric Key Cryptography

Each party has two distinct keys: public key and private key

Also known as public-key algorithm

Asymmetric Key Cryptography

44

Each party has two distinct keys: public key and private key

- Also known as public-key algorithm

Asymmetric Key Cryptography

Each party has two distinct keys: public key and private key

Also known as public-key algorithm

Only Bob should have this key

Asymmetric Key Cryptography

Each party has two distinct keys: public key and private key

Asymmetric Key Cryptography

47

• Pros?

• Cons?

Digital Signature

Digital Signature

Summary

- The goal of security: understanding possible threats in computer systems
- The CIA triad: fundamental security properties
 - Confidentiality, Integrity, Availability
 - + Authentication, Non-repudiation
- Aspects of security:
 - Security attack, Security service, Security mechanism
- What should you do now in order to make your software/information/computer secure?
 - Learn how to use basic cryptographic primitives (next lecture)

Question?