Mining Time Series

Mining Massive Datasets
Prof. <u>Carlos Castillo</u>
Topic 27

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) tutorial by Keogh Eamonn [alt. link]
- Time Series Data Mining (2006) slides by Hung Son Nguyen

Why do we mine time series? Examples

Seismic data

- Observations = earthquakes
- Goal: characterize when peeks occur

Liquid metal droplets

- = length of hot
 metal droplet
- = droplet release (chaotic, noisy)

Goal: prediction of release

Stock prices

Video data / gestures

- Series of angles of articulations in the body
- Temporal patterns can reveal gestures

Applications

- Clustering
- Classification
- Motif discovery
- Event detection
- •

- 1)All require a reasonable definition of the **similarity** between two time series
- 2)All can be done in **real-time** or **retrospectively**

Context vs Behavior

Contextual attribute(s)

- $-x(i) = t_i = timestamp is the typical one$
- Sometimes other attributes providing context

Behavioral attribute(s)

- $y^{j}(i)$ = temperature, angle, price, sensor reading, ... $j \in 1 \dots d$

What are the difficulties?

- High sampling rate of many series over extended periods of time means ...
 - Tons of data
 - Things are bound to fail at several points (missing data, noisy data)
- Subjectivity

Preparing a time series

Notation: multivariate time series

- Length n, timestamps $t_1, t_2, ..., t_n$
- Values at time t_i : $(y_i^1, y_i^2, ..., y_i^d)$
- If series is univariate we drop the superscript

Missing values: linear interpolation

• Let
$$t_i < t_x < t_j$$

$$y_x = y_i + \left(\frac{t_x - t_i}{t_j - t_i}\right) \cdot (y_j - y_i)$$

• Example: make an irregular series regular

Missing values: splines

Cubic polynomials between y_i , y_{i+1} that have the same slope at those points as the original curve.

Noise removal: binning

 Replace series by average of values in bins (subsequences) of length k

$$y'_{i+1} = \frac{1}{k} \sum_{r=1}^{k} y_{i \cdot k + r}$$

Noise removal: moving average smoothing

 Equivalent to overlapping bins

$$y_i' = \frac{1}{k} \sum_{r=1}^{k} y_{i-r+1}$$

- Larger k leads to smoother series, but losses more information
- Use smaller k for first k-1 items

Noise removal: exponential smoothing

 Combine previously smoothed point with current point

$$y_i' = \alpha \cdot y_i + (1 - \alpha) \cdot y_{i-1}'$$

Recursively substituting

$$y'_{i} = (1 - \alpha)^{i} \cdot y'_{0} + \alpha \sum_{j=1}^{i} y_{j} \cdot (1 - \alpha)^{i-j}$$

Noise removal: exponential smoothing

 Combine previously smoothed point with current point

$$y_i' = \alpha \cdot y_i + (1 - \alpha) \cdot y_{i-1}'$$

Recursively substituting

$$y'_{i} = (1 - \alpha)^{i} \cdot y'_{0} + \alpha \sum_{j=1}^{i} y_{j} \cdot (1 - \alpha)^{i-j}$$

Moving average vs exponential smoothing

Answer in Google Spreadsheet

Exercise

• Given the following series:

t	1	2	3	4	5	6	7	8	9	10
y(t)	2	4	12	2	1	-2	0	15	3	3
1. y'(t)										
2. y'(t)										

- 1. Moving average with k=3
- 2. Exponential average with alpha=0.5

Summary

Things to remember

- Series preparation
 - Interpolation
 - Smoothing

Exercises for TT27-TT29

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 14.10 → 1-6