GATE 2007 MA

AI25BTECH11012 - UNNATHI GARIGE

Q.1-Q.20 carry one mark each.

1) Consider \mathbb{R}^2 with the usual topology. Let $S = \{(x, y) \in \mathbb{R}^2 : x \text{ is an integer}\}$. Then S is

GATE MA 2007

1

- a) open but NOT closed
- b) both open and closed
- c) neither open nor closed
- d) closed but NOT open
- 2) Suppose $X = \{\alpha, \beta, \delta\}$. Let

$$\mathcal{T}_1 = \{\emptyset, X, \{\alpha\}, \{\alpha, \beta\}\}\$$
 and $\mathcal{T}_2 = \{\emptyset, X, \{\alpha\}, \{\beta, \delta\}\}.$

Then GATE MA 2007

- a) both $\mathcal{T}_1 \cap \mathcal{T}_2$ and $\mathcal{T}_1 \cup \mathcal{T}_2$ are topologies
- b) neither $\mathcal{T}_1 \cap \mathcal{T}_2$ nor $\mathcal{T}_1 \cup \mathcal{T}_2$ is a topology
- c) $\mathcal{T}_1 \cup \mathcal{T}_2$ is a topology but $\mathcal{T}_1 \cap \mathcal{T}_2$ is NOT a topology
- d) $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology but $\mathcal{T}_1 \cup \mathcal{T}_2$ is NOT a topology
- 3) For a positive integer n, let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \begin{cases} \frac{1}{4n+5} & \text{if } 0 \le x \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\{f_n(x)\}$ converges to zero

GATE MA 2007

- a) uniformly but NOT in L^1 norm
- b) uniformly and also in L^1 norm
- c) pointwise but NOT uniformly
- d) in L^1 norm but NOT pointwise
- 4) Let P_1 and P_2 be two projection operators on a vector space.

Then

GATE MA 2007

- a) $P_1 + P_2$ is a projection if $P_1P_2 = P_2P_1 = 0$
- b) $P_1 P_2$ is a projection if $P_1P_2 = P_2P_1 = 0$
- c) $P_1 + P_2$ is a projection
- d) $P_1 P_2$ is a projection
- 5) Consider the system of linear equations

GATE MA 2007

$$x + y + z = 3, (5.1)$$

$$x - y - z = 4, (5.2)$$

$$-5y + kz = 6 \tag{5.3}$$

Then the value of k for which this system has an infinite number of solutions is

a)
$$k = -5$$

 b) k = 0 c) k = 1 d) k = 3 				
6) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ x & y & z \end{bmatrix}$ and let $V = \{(x, y, z) \}$	$0 \in \mathbb{R}^3 : \det(A) = 0$. The second is $A = 0$.	hen the dimension of	GATE MA 2007 V equals:	
a) 0	b) 1	c) 2	d) 3	
7) Let $S = \{0\} \cup \left\{\frac{1}{4n+1}\right\}$ vanish only on S is		the number of analy	ytic functions which GATE MA 2007	
a) infinite	b) 0	c) 1	d) 2	
8) It is given that $\sum_{n=1}^{\infty}$ the power series $\sum_{n=1}^{\infty}$	$a_n z^n$ converges at $z = \sum_{n=0}^{\infty} a_n z^n$ is:	3 + i4. Then the radi	us of convergence of GATE MA 2007	
a) ≤ 5	b) ≥ 5	c) < 5	d) > 5	
9) The value of α for v modulo 56 is:	which $G = \langle \alpha, 1, 3, 9, 19 \rangle$	9,27) is a cyclic group	under multiplication GATE MA 2007	
a) 5	b) 15	c) 25	d) 35	
10) Consider \mathbb{Z}_{24} as the 8 in the group \mathbb{Z}_{24}		24. Then the number	of elements of order GATE MA 2007	
a) 1	b) 2	c) 3	d) 4	
11) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = \begin{cases} 1, & \text{if } xy = 0, \\ 2, & \text{otherwise.} \end{cases}$				
If $S = \{(x, y) : f \text{ is}$ a) S is open b) S is connected c) $S = \emptyset$ d) S is closed	continuous at the poin		GATE MA 2007	
12) Consider the linear programming problem				
		$+ c_2 x_2, c_1, c_2 > 0,$		
	subject to			
	$x_1 + x_2 \le 3$			
	$2x_1 + 3x_2 \le 4$			
	$x_i > 0$			

Then: GATE MA 2007

a) the primal has an optimal solution but the dual does NOT have an optimal solution

- b) both the primal and the dual have optimal solutions
- c) the dual has an optimal solution but the primal does NOT have an optimal solution
- d) neither the primal nor the dual have optimal solutions
- 13) Let $f(x) = x^{10} + x 1$, $x \in \mathbb{R}$ and let $x_k = k$, k = 0, 1, 2, ..., 10. Then the value of the divided difference

$$f[x_0, x_1, x_2, \ldots, x_{10}]$$

is: GATE MA 2007

a) -1

b) 0

c) 1

- d) 10
- 14) Let *X*, *Y* be jointly distributed random variables having the joint probability density function

$$f(x, y) = \begin{cases} 1, & \text{if } 0 < x + y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then $P(Y \ge \max(X, 1 - X))$ is

GATE MA 2007

a) $\frac{1}{2}$

b) 1

c) $\frac{1}{4}$

- d) $\frac{1}{6}$
- 15) Let $X_1, X_2,...$ be a sequence of independent and identically distributed chi-square random variables, each having 4 degrees of freedom. Define

$$S_n = \sum_{i=1}^n X_i$$

If $\frac{S_n}{n} \to \mu$ as $n \to \infty$, then $\mu =$

GATE MA 2007

a) 8

b) 16

c) 24

- d) 32
- 16) Let $\{E_n : n = 1, 2, ...\}$ be a decreasing sequence of Lebesgue measurable sets on \mathbb{R} and let F be a Lebesgue measurable set on \mathbb{R} such that $E_n \cap F = \emptyset$. Suppose that F has Lebesgue measure 2 and the Lebesgue measure of E_n equals $\frac{2n+2}{3n+1}$, n = 1, 2, ...

Then the Lebesgue measure of the set $(\bigcap_{n=1}^{\infty} E_n) \cup F$ equals

GATE MA 2007

a) $\frac{5}{3}$

b) 2

- c) $\frac{7}{3}$
- d) $\frac{8}{3}$

17) The extremum for the variational problem

$$\int_0^{\frac{\pi}{8}} ((y')^2 + 2yy' - 16y^2) \, dx, \quad y(0) = 0, \ y\left(\frac{\pi}{8}\right) = 1,$$

occurs for the curve

b) $y = \sqrt{2}\sin(2x)$ c) $y = 1 - \cos(4x)$ d) $y = \frac{1 - \cos(8x)}{2}$

18) Suppose $y_p(x) = x \cos(2x)$ is a particular solution of

$$y'' + \alpha y = \sin(2x).$$

Then the constant α equals

GATE MA 2007

a) -4

b) -2

c) 2

d) 4

19) If $F(s) = \tan^{-1}(s) + k$ is the Laplace transform of some function f(t), $t \ge 0$, then k =**GATE MA 2007**

a) $-\pi$

b) $\frac{\pi}{2}$

c) 0

d) $\frac{\pi}{2}$

20) Let $S = \{(0, 1, 1), (1, 0, 1), (-1, 2, 1)\} \subseteq \mathbb{R}^3$. Suppose \mathbb{R}^3 is endowed with the standard inner product $\langle \cdot, \cdot \rangle$. Define $M = \{x \in \mathbb{R}^3 : \langle x, y \rangle = 0 \text{ for all } y \in S\}$. Then the dimension of M equals **GATE MA 2007**

a) 0

b) 1

c) 2

d) 3

Q.21-Q.75 carry one mark each.

21) Let X be an uncountable set and let

 $\tau = \{U \subseteq X : X \setminus U \text{ is countable or } X \setminus U \text{ is finite}\}.$

Then the topological space (X, τ)

GATE MA 2007

- a) is separable
- b) is Hausdorff
- c) has a countable basis
- d) has a countable basis at each point
- 22) Suppose (X, τ) is a topological space. Let $\{S_{\alpha}\}_{{\alpha} \in A}$ be a sequence of subsets of X. GATE MA 2007 Then
 - a) $(S_1 \cup S_2)^{"} = S_1^{"} \cup S_2^{"}$ b) $(\cap S_1^{"})^{"} = \cap S_1^{"}$ c) $(\cup S_2^{"})^{"} = \cup_{\alpha} S_1^{"}$ d) $(S_1 \cup S_2)^{"} = S_1 \cup S_2^{"}$
- 23) Let (X, d) be a metric space. Consider the metric ρ on X defined by

$$\rho(x, y) = \min(d(x, y), 1), \quad x, y \in X.$$

Suppose τ and τ_1 are topologies on X defined by d and ρ respectively. Then GATE MA 2007

a) τ_1 is a proper subset of τ_2

- b) τ_2 is a proper subset of τ_1
- c) neither τ_2 nor τ_1 is a subset of the other
- d) $\tau_1 = \tau_2$
- 24) A basis of the vector space $W = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z = 0, y + z + w = 0, 2x + y z + w = 0\}$ is GATE MA 2007
 - a) $\{(1, 1, 1, 1), (2, 1, 1, 1)\}$
 - b) $\{(1,-1,0,1),(0,1,-1,0)\}$
 - c) $\{(1,0,-1,0),(2,1,1,1)\}$
 - d) $\{(1,0,-1,0),(0,1,-1,0)\}$
- 25) Consider \mathbb{R}^3 with the standard inner product. Let

$$S = \{(1, 1, 1), (2, -1, 2), (-1, 2, 1)\}.$$

For a subset W of \mathbb{R}^3 , let L(W) denote the linear span of W in \mathbb{R}^3 . Then an orthonormal set T with L(S) = L(T) is GATE MA 2007

$$\begin{array}{lll} a) \ \left\{ \frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{6}}(1,0,-2), \frac{1}{\sqrt{2}}(1,-1,0) \right\} & c) \ \left\{ \frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,0,-1) \right\} \\ b) \ \left\{ (0,0,0), (0,1,0), (0,0,1) \right\} & d) \ \left\{ \frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,-1,0) \right\} \end{array}$$

26) Let *A* be a 3×3 matrix. Suppose that the eigenvalues of *A* are -1,0,1 with respective eigenvectors $(1,-1,0)^T$, $(1,1,-2)^T$ and $(1,1,1)^T$.

Then 6A equals

GATE MA 2007

a)
$$\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 5 & 3 \\ 5 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 d)
$$\begin{bmatrix} -3 & 9 & 0 \\ 9 & -3 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

27) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by

$$T((x, y, z)) = (x + y - z, x + y + z, y - z).$$

Then the matrix of the linear transformation T with respect to the ordered basis $B = \{(0, 1, 0), (0, 0, 1), (1, 0, 0)\}$ of \mathbb{R}^3 is GATE MA 2007

28) Let $Y(x) = (y_1(x), y_2(x))^T$ and let

$$A = \begin{bmatrix} -3 & 1 \\ k & -1 \end{bmatrix}.$$

Further, let *S* be the set of values of *k* for which all the solutions of the system of equations Y'(x) = AY(x) tend to zero as $x \to \infty$.

Then S is given by

GATE MA 2007

a) $\{k : k \le -1\}$

c) $\{k : k < -1\}$

b) $\{k : k \le 3\}$

d) $\{k : k < 3\}$

29) Let

$$u(x, y) = f(xe^y) + g(y^2 \cos y),$$

where f and g are infinitely differentiable functions. Then the partial differential equation of minimum order satisfied by u is GATE MA 2007

a) $u_x + xu_{xx} = u_y$

c) $u_y - xu_{xx} = u_x$

b) $u_y + xu_{xx} = xu_y$

- $d) \ u_y xu_{xx} = xu_y$
- 30) Let C be the boundary of the triangle formed by the points (1,0,0), (0,1,0), (0,0,1). Then the value of the line integral GATE MA 2007

$$\oint_C -2y \, dx + (3x - 4y^2) \, dy + (z^2 + 3y) \, dz$$

is

a) 0

b) 1

c) 2

d) 4

31) Let *X* be a complete metric space and let $E \subset X$.

Consider the following statements:

GATE MA 2007

- a) E is compact,
- b) E is closed and bounded,
- c) E is closed and totally bounded,
- d) Every sequence in E has a subsequence converging in E.

Which one of the above statements does NOT imply all the other statements?

a) a

b) b

c) c

d) d

32) Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin(nx).$$

Then the series

- a) converges uniformly on \mathbb{R}
- b) converges pointwise but NOT uniformly on $\ensuremath{\mathbb{R}}$

- c) converges in L^1 norm to an integrable function on $[0,2\pi]$ but does NOT converge uniformly on $\mathbb R$
- d) does NOT converge pointwise
- 33) Let f(z) be an analytic function. Then the value of

GATE MA 2007

$$\int_0^{2\pi} f(e^{it}) \cos(t) dt$$

equals

a) 0

- b) $2\pi f(0)$
- c) $2\pi f'(0)$
- d) $\pi f'(0)$
- 34) Let G_1 and G_2 be the images of the disc $\{z \in \mathbb{C} : |z+1| < 1\}$ under the transformations

$$w = \frac{(1-i)z+2}{(1+i)z+2}$$
 and $w = \frac{(1+i)z+2}{(1-i)z+2}$

respectively. Then

- a) $G_1 = \{ w \in \mathbb{C} : \text{Im}(w) < 0 \}$ and $G_2 = \{ w \in \mathbb{C} : \text{Im}(w) > 0 \}$
- b) $G_1 = \{ w \in \mathbb{C} : \text{Im}(w) > 0 \}$ and $G_2 = \{ w \in \mathbb{C} : \text{Im}(w) < 0 \}$
- c) $G_1 = \{ w \in \mathbb{C} : |w| > 2 \}$ and $G_2 = \{ w \in \mathbb{C} : |w| < 2 \}$
- d) $G_1 = \{ w \in \mathbb{C} : |w| < 2 \}$ and $G_2 = \{ w \in \mathbb{C} : |w| > 2 \}$
- 35) Let $f(z) = 2^z 2^{-z}$. Then the maximum value of |f(z)| on the unit disc $D = \{z \in \mathbb{C} : |z| \le 1\}$ equals

 GATE MA 2007
 - a) 1

b) 2

c) 3

d) 4

36) Let

GATE MA 2007

$$f(z) = \frac{1}{z^2 - 3z + 2}$$

Then the coefficient of $\frac{1}{z}$ in the Laurent series expansion of f(z) for |z| > 2 is

a) 0

b) 1

c) 3

- d) 5
- 37) Let $f: \mathbb{C} \to \mathbb{C}$ be an arbitrary analytic function satisfying f(0) = 0 and f(1) = 2. Then GATE MA 2007
 - a) there exists a sequence $\{z_n\}$ such that $|z_n| > n$ and $|f(z_n)| > n$
 - b) there exists a sequence $\{z_n\}$ such that $|z_n| > n$ and $|f(z_n)| < n$
 - c) there exists a bounded sequence $\{z_n\}$ such that $|f(z_n)| > n$
 - d) there exists a sequence $\{z_n\}$ such that $z_n \to 0$ and $f(z_n) \to 2$
- 38) Define $f: \mathbb{C} \to \mathbb{C}$ by

$$f(z) = \begin{cases} 0, & \text{if } \text{Re}(z) = 0 \text{ or } \text{Im}(z) = 0, \\ \frac{1}{z}, & \text{otherwise.} \end{cases}$$

Then the set of points where f is analytic is

c) $\{z : \text{Re}(z) \neq 0 \text{ or } \text{Im}(z) \neq 0\}$

d) $\{z : \text{Im}(z) \neq 0\}$

39) Let $U(n)$ be the set of all positive integers less than n and relatively prime to n . Then $U(n)$ is a group under multiplication modulo n . For $n = 248$, the number of elements in $U(n)$ is GATE MA 2007				
a) 60	b) 120	c) 180	d) 240	
	erated by the polynomia		tients and let $I = \langle x^2 + 1 \rangle$ be GATE MA 2007	
b) I is a prim	e ideal but NOT a max	ximal ideal		
c) I is NOT a	prime ideal			
 d) R[x]/I has zero divisors 41) Consider Z5 and Z20 as rings modulo 5 and 20, respectively. Then the number of homomorphisms φ: Z5 → Z20 is GATE MA 2007 				
a) 1	b) 2	c) 4	d) 5	
42) Let $\mathbb Q$ be the field of rational numbers and consider $\mathbb Z_2$ as a field modulo 2. Let				
	f(x) =	$x^3 - 9x^2 + 9x + 3.$		
Then $f(x)$ is GATE MA 2007 a) irreducible over \mathbb{Q} but reducible over \mathbb{Z}_2 b) irreducible over both \mathbb{Q} and \mathbb{Z}_2 c) reducible over \mathbb{Q} but irreducible over \mathbb{Z}_2 d) educible over both \mathbb{Q} and \mathbb{Z}_2 43) Let \mathbb{Q} be the field of rational numbers and consider \mathbb{Z}_2 as a field modulo 2. Let				
	f(x) =	$x^3 - 9x^2 + 9x + 3.$		
b) irreduciblec) reducible od) reducible o	over $\mathbb Q$ but reducible over both $\mathbb Q$ and $\mathbb Z_2$ over $\mathbb Q$ but irreducible over both $\mathbb Q$ and $\mathbb Z_2$	over \mathbb{Z}_2	GATE MA 2007	
44) Consider \mathbb{Z}_5 as a field modulo 5 and let GATE MA:				

 $f(x) = x^4 + 4x^3 + 4x^2 + 4x + 1.$

Then the zeros of f(x) over \mathbb{Z}_5 are 1 and 3 with respective multiplicity

a) $\{z : \text{Re}(z) \neq 0 \text{ and } \text{Im}(z) \neq 0\}$

b) $\{z : \text{Re}(z) \neq 0\}$

- a) 1 and 4
- b) 2 and 3
- c) 2 and 2
- d) 1 and 2

45) Consider the Hilbert space

GATE MA 2007

$$\ell^2 = \left\{ x = \{x_n\}; \ x_n \in \mathbb{R}, \ \sum x_n^2 < \infty \right\}.$$

Let

$$E = \left\{ x = \{x_n\} \mid |x_n| < \frac{1}{n} \text{ for all } n \right\}$$

be a subset of ℓ^2 . Then

- a) $E^{\circ} = \{x \mid |x_n| < \frac{1}{n} \text{ for all } n\}$
- b) $E^{\circ} = E$
- c) $E^{\circ} = \left\{ x \mid |x_n| < \frac{1}{n} \text{ for all but finitely many } n \right\}$ d) $E^{\circ} = \emptyset$
- 46) Let X be a normed linear space and let $E_1, E_2 \subseteq X$. Define

$$E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}.$$

Then $E_1 + E_2$ is:

GATE MA 2007

- a) open if E_1 or E_2 is open
- b) NOT open unless both E_1 and E_2 are open
- c) closed if E_1 or E_2 is closed
- d) closed if both E_1 and E_2 are closed
- 47) For each $a \in \mathbb{R}$, consider the linear programming problem:

Max.
$$z = x_1 + 2x_2 + 3x_3 + 4x_4$$
 subject to

GATE MA 2007

$$ax_1 + 2x_2 \le 1$$
$$x_1 + 2x_2 + 3x_3 \le 2$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Let $S = \{a \in \mathbb{R} : \text{the given LP problem has a basic feasible solution} \}$. Then:

a) $S = \emptyset$

c) $S = (0, \infty)$

b) $S = \mathbb{R}$

- d) $S = (-\infty, 0)$
- 48) Consider the linear programming problem:

Max. $z = x_1 + 5x_2 + 3x_3$

subject to

$$2x_1 - 3x_2 + 5x_3 \le 3$$
$$x_1 - x_2 \le 5$$
$$x_1, x_2, x_3 \ge 0$$

Then the dual of this LP problem:

- a) has a feasible solution but does NOT have a basic feasible solution
- b) has a basic feasible solution

- c) has infinite number of feasible solutions
- d) has no feasible solution
- 49) Consider a transportation problem with two warehouses and two markets. The warehouse capacities are $a_1 = 2$ and $a_2 = 4$, and the market demands are $b_1 = 3$ and $b_2 = 3$. Let x_{ij} be the quantity shipped from warehouse i to market j, and c_{ij} be the corresponding unit cost. Suppose that $c_{11} = 1$, $c_{21} = 1$, and $c_{22} = 2$. Then $(x_{11}, x_{12}, x_{21}, x_{22}) = (2, 0, 1, 3)$ is optimal for every: GATE MA 2007
 - a) $c_{12} \in [1,2]$

c) $c_{12} \in [1,3]$

b) $c_{12} \in [0,3]$

d) $c_{12} \in [2, 4]$

50) The smallest degree of the polynomial that interpolates the data

х	-2	-1	0	1	2	3
f(x)	-58	-21	-12	-13	-6	27
TABLE 50						

is:

GATE MA 2007

a) 3

b) 4

c) 5

- d) 6
- 51) Suppose that x_n is sufficiently close to 3. Which of the following iterations $x_{n+1} =$ $g(x_n)$ will converge to the fixed point x = 3? GATE MA 2007
 - a) $x_{n+1} = -16 + 6x_n + \frac{3}{x_n}$ b) $x_{n+1} = \sqrt{3 + 2x_n}$

c) $x_{n+1} = \frac{3}{x_n} - \frac{x_n}{2}$ d) $x_{n+1} = \frac{x_n^2 - 3}{2}$

- 52) Consider the quadrature formula:

$$\int_{x_1}^{x_2} f(x) \, dx \approx \frac{1}{2} \left[f(x_1) + f(x_2) \right],$$

where x_1 and x_2 are quadrature points. Then the highest degree of the polynomial **GATE MA 2007** for which the above formula is exact equals:

a) 1

b) 2

c) 3

d) 4

53) Let A, B and C be three events such that:

$$P(A) = 0.4$$
, $P(B) = 0.5$, $P(A \cup B) = 0.6$, $P(C) = 0.6$, and $P(A \cap B \cap C^c) = 0.1$.
Then $P(A \cap B \cap C) = 0.5$

a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$	d) $\frac{1}{5}$	11
and $5 - i + 1$ face of the d from the box	identical boxes B_1 and white balls. A fair die ie be N . If N is even B_1 ; otherwise, two batty that the two drawn	is cast. Let the number or 5, then two balls a alls are drawn with rep	er of dots shown on are drawn with replacement from the b	the top cement $oox B_2$.
a) $\frac{7}{25}$	b) $\frac{9}{25}$	c) $\frac{12}{25}$	d) $\frac{16}{25}$	

55) Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}.$$

Suppose for the standard normal random variable Z, $P(-0.1 < Z \le 0.1) = 0.08$. If $S_n = \sum_{i=1}^n X_i$, then

$$\lim P\left(\frac{S_n}{\sqrt{n}} > \frac{n}{10}\right) =$$
a) 0.42 b) 0.46 c) 0.5 d) 0.54

56) Let $X_1, X_2, ..., X_5$ be a random sample of size 5 from a population having standard normal distribution. Let

$$\bar{X} = \frac{1}{5} \sum_{i=1}^{5} X_i$$
 and $T = \sum_{i=1}^{5} (X_i - \bar{X})^2$.

Then $E(T^2\bar{X}^2) =$

GATE MA 2007

- a) 3 b) 3.6 c) 4.8 d) 5.2
- 57) Let $x_1 = 3.5$, $x_2 = 7.5$ and $x_3 = 5.2$ be observed values of a random sample of size three from a population having uniform distribution over the interval $(\theta, \theta + 5)$, where $\theta \in (0, \infty)$ is unknown and is to be estimated. Then which of the following is NOT a maximum likelihood estimate of θ ?

 GATE MA 2007

58) The value of

$$\int_0^1 \int_{y}^1 x^2 e^{x^2} \, dx \, dy$$

equals GATE MA 2007

	a) $\frac{1}{4}$	b) $\frac{1}{3}$	c) $\frac{1}{2}$	d) 1	
59)	$\lim_{n\to\infty} \left[(n+1) \int_0^1$	$x^n \ln(1+x) dx \bigg] =$	GATE MA 2007	
	a) 0	b) ln 2	c) ln 3	d) ∞	
60	60) Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by				
		$f(x) = \begin{cases} x^4, \\ 2x^4 - 1, \end{cases}$	if <i>x</i> is rational, if <i>x</i> is irrational.		
	Let S be the set of	points where f is cor	ntinuous. Then	GATE MA 2007	
	a) $S = \{1\}$	b) $S = \{-1\}$	c) $S = \{-1, 1\}$	d) $S = \emptyset$	
61) For a positive real n on [0, 1] by	umber p , let $\{f_n : n = f_n(x) = \begin{cases} n^{p+1} \\ \frac{1}{n^p}, \end{cases}$	1,2,} be a sequence $x, 0 \le x \le \frac{1}{n}$ $\frac{1}{n} < x \le 1.$	e of functions defined	

Let $f(x) = \lim_{n \to \infty} f_n(x), x \in [0, 1]$. Then, on [0, 1], a) f is Riemann integrable

GATE MA 2007

- b) the improper integral $\int_0^1 f(x)dx$ converges for $p \ge 1$
- c) the improper integral $\int_0^1 f(x)dx$ converges for p < 1
- d) f_n converges uniformly
- 62) Which of the following inequality is NOT true for $x \in \left[\frac{1}{4}, \frac{3}{4}\right]$ GATE MA 2007

a)
$$e^{-x} > \sum_{j=0}^{\infty} \frac{(-x)^j}{j!}$$

b) $e^{-x} < \sum_{j=0}^{\infty} \frac{(-x)^j}{j!}$

c)
$$e^{-x} = \sum_{i=0}^{\infty} \frac{(-x)^{i}}{i!}$$

b)
$$e^{-x} < \sum_{j=0}^{\infty} \frac{(-x)^j}{j!}$$

c)
$$e^{-x} = \sum_{j=0}^{\infty} \frac{(-x)^j}{j!}$$

d) $e^{-x} > \sum_{j=0}^{10} \frac{(-x)^j}{j!}$

63) Let u(x, y) be the solution to the Cauchy problem

$$xu_x + u_y = 1$$
, $u(x, 0) = 2\ln(x)$, $x > 1$.

Then u(e, 1) =

a) -1 b) 0 c) 1 d) e 64) Suppose $y(x) = \lambda \int_{0}^{2\pi} y(t) \sin(x+t) dt, \ x \in [0, 2\pi]$ has eigenvalues $\lambda = \frac{1}{\pi}$ and $\lambda = -\frac{1}{\pi}$ with corresponding eigenfunctions $y_1(x) = \sin(x) + \cos(x)$ and $y_2(x) = \sin(x) - \cos(x)$, respectively. Then the integral equation $y(x) = f(x) + \frac{1}{\pi} \int_{0}^{2\pi} y(t) \sin(x+t) dt, \ x \in [0, 2\pi]$ has a solution when f(x) =GATE MA 2007 b) cos(x)a) 1 c) sin(x)d) $1+\sin(x)+\cos(x)$ 65) Consider the Neumann problem $u_{xx} + u_{yy} = 0$, $0 < x < \pi$, -1 < y < 1, $u_{\nu}(0, v) = u_{\nu}(\pi, v) = 0.$ $u_{\nu}(x, -1) = 0$, $u_{\nu}(x, 1) = \alpha + \beta \sin(x)$. The problem admits solution for

GATE MA 2007

a)
$$\alpha = 0, \ \beta = 1$$

b) $\alpha = -1, \ \beta = \frac{\pi}{2}$

c)
$$\alpha = 1, \ \beta = \frac{\pi}{2}$$

d) $\alpha = 1, \ \beta = -\pi$

66) The functional

$$\int_0^1 (1+x)(y')^2 dx, \quad y(0) = 0, \ y(1) = 1,$$

possesses

GATE MA 2007

- a) strong maxima
- b) strong minima
- c) weak maxima but NOT a strong maxima
- d) weak minima but NOT a strong minima
- 67) The value of α for which the integral equation

$$u(x) = \alpha \int_0^1 e^{xt} u(t) dt,$$

has a non-trivial solution is

GATE MA 2007

a) -2

b) -1

c) 1

d) 2

68) Let $P_n(x)$ be the Legendre polynomial of degree n and let

$$P_{n+1}(0) = -\frac{m}{m+1}P_{n-1}(0), \quad m = 1, 2, \dots$$

If
$$P_2(0) = -\frac{5}{16}$$
 then $\int_{-1}^{1} \left[P_2^2(x) \right] dx =$

a)
$$\frac{2}{13}$$

b)
$$\frac{2}{9}$$

c)
$$\frac{5}{16}$$

d)
$$\frac{2}{5}$$

69) For which of the following pair of functions $y_1(x)$ and $y_2(x)$, continuous functions p(x) and q(x) can be determined on [-1, 1] such that $y_1(x)$ and $y_2(x)$ give two linearly GATE MA 2007 independent solutions of

$$y'' + p(x)y' + q(x)y = 0, \quad x \in [-1, 1].$$

- a) $y_1(x) = x \sin(x)$, $y_2(x) = \cos(x)$ b) $y_1(x) = xe^x$, $y_2(x) = \sin(x)$ c) $y_1(x) = e^{-x}$, $y_2(x) = e^{-1}$ d) $y_1(x) = x^2$, $y_2(x) = \cos(x)$
- d) $v_1(x) = x^2$, $v_2(x) = \cos(x)$
- 70) Let $J_0(s)$ and $J_1(s)$ be the Bessel functions of the first kind of orders zero and one, respectively. If

$$\mathcal{L}(J_0)(s) = \frac{1}{\sqrt{s^2 + 1}},$$

then $\mathcal{L}(J_1)(s) =$

GATE MA 2007

a)
$$\frac{s}{\sqrt{s^2 + 1}}$$

b) $\frac{1}{\sqrt{s^2 + 1}}$

c)
$$1 - \frac{1}{\sqrt{s^2 + 1}}$$

d) $\frac{1}{\sqrt{s^2 + 1}} - 1$

b)
$$\frac{1}{\sqrt{s^2 + 1}}$$

d)
$$\frac{1}{\sqrt{s^2+1}} - 1$$

Common Data Questions

Common Data for Questions 71, 72, 73:

Let $P[0,1] = \{p : p \text{ is a polynomial function on } [0,1] \}$. For $p \in P[0,1]$, define

$$||p|| = \sup\{|p(x)| : 0 \le x \le 1\}.$$

Consider the map $T: P[0, 1] \rightarrow P[0, 1]$ defined by

$$(Tp)(x) = \frac{d}{dx}(p(x)).$$

Then P[0, 1] is a normed linear space and T is a linear map. The map T is said to be closed if the set $G = \{(p, Tp) : p \in P[0, 1]\}$ is a closed subset of $P[0, 1] \times P[0, 1]$.

71) The linear map T is

GATE MA 2007

a) one to one and onto

- c) onto but NOT one to one
- b) one to one but NOT onto
- d) neither one to one nor onto
- 72) The normed linear space P[0, 1] is

- a) a finite dimensional normed linear space which is NOT a Banach space
- b) a finite dimensional Banach space
- c) an infinite dimensional normed linear space which is NOT a Banach space
- d) an infinite dimensional Banach space
- 73) The map T is

- a) closed and continuous
- b) neither continuous nor closed
- c) continuous but NOT closed
- d) closed but NOT continuous

Common Data for Questions 74, 75:

Let X and Y be jointly distributed random variables such that the conditional distribution of Y, given X = x, is uniform on the interval (x - 1, x + 1). Suppose $\mathbb{E}(X) = 1$ and $\text{Var}(X) = \frac{5}{3}$.

74) The mean of the random variable Y is

GATE MA 2007

a) $\frac{1}{2}$

b) 1

c) $\frac{3}{2}$

d) 2

75) The variance of the random variable Y is

GATE MA 2007

a) $\frac{1}{2}$

b) $\frac{2}{3}$

c) 1

d) 2

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 & 77:

Suppose the equation

$$x^2y'' - xy' + (1 + x^2)y = 0$$

has a solution of the form

$$y = x^r \sum_{n=0}^{\infty} c_n x^n, \quad c_0 \neq 0.$$

76) The indicial equation for r is

a)
$$r^2 - 1 = 0$$

c)
$$(r+1)^2 = 0$$

d) $r^2 + 1 = 0$

b)
$$(r-1)^2 = 0$$
 d) $r^2 + 1 =$

77) For $n \ge 2$, the coefficients c_n will satisfy the relation

GATE MA 2007

a)
$$n^2c_n - c_{n-2} = 0$$

c)
$$c_n - n^2 c_{n-2} = 0$$

b)
$$c_n - n^2 c_{n-2} = 0$$

d)
$$c_n + n^2 c_{n-2} = 0$$

Statement for Linked Answer Questions 78 & 79:

A particle of mass m slides down without friction along a curve $z = 1 + \frac{x^2}{2}$ in the

xz-plane under the action of constant gravity. Suppose the z-axis points vertically upwards. Let \dot{x} and \ddot{x} denote $\frac{dx}{dt}$ and $\frac{d^2x}{dt^2}$ respectively.

78) The Lagrangian of the motion is

GATE MA 2007

a)
$$\frac{1}{2}m\dot{x}^2(1+x^2) - mg\left(1+\frac{x^2}{2}\right)$$

b) $\frac{1}{2}m\dot{x}^2(1+x^2) + mg\left(1+\frac{x^2}{2}\right)$

c)
$$\frac{1}{2}mx^2\dot{x}^2 - mg\left(1 + \frac{x^2}{2}\right)$$

d) $\frac{1}{2}m\dot{x}^2(1 - x^2) - mg\left(1 + \frac{x^2}{2}\right)$

79) The Lagrangian equation of motion is

GATE MA 2007

a)
$$\ddot{x}(1+x^2) = -x(g+\dot{x}^2)$$

b)
$$\ddot{x}(1+x^2) = x(g-\dot{x}^2)$$

c)
$$\ddot{x} = -gx$$

d)
$$\ddot{x}(1-x^2) = -x(g-\dot{x}^2)$$

Statement for Linked Answer Questions 80 & 81:

Let u(x,t) be the solution of the one dimensional wave equation

$$u_{tt} = 4u_{xx}, \quad -\infty < x < \infty, \ t > 0,$$

$$u(x,0) = \begin{cases} 16 - x^2, & |x| \le 4, \\ 0, & \text{otherwise,} \end{cases}$$
 and $u_t(x,0) = \begin{cases} 1, & |x| \le 2, \\ 0, & \text{otherwise.} \end{cases}$

80) For 1 < t < 3, u(2, t) =

GATE MA 2007

a)
$$\left[16 - (2 - 2t)^2\right]^+ + \frac{1}{2}\left[1 - \min\{1, t - 1\}\right]$$

b)
$$\left[32 - (2 - 2t)^2 - (2 + 2t)^2\right]^+ + t$$

c)
$$\left[32 - (2 - 2t)^2 - (2 + 2t)^2\right]^+ + 1$$

d)
$$\left[16 - (2 - 2t)^2\right]^+ + \frac{1}{2}\left[1 - \max\{1, t - 1\}\right]$$

81) The value of u(2,2)

- a) equals 15
- b) equals 16
- c) equals 0
- d) does NOT exist

Statement for Linked Answer Questions 82 & 83:

Suppose $E = \{(x, y) : xy \neq 0\}$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0, & \text{if } xy = 0, \\ y \sin\left(\frac{1}{x}\right) + x \sin\left(\frac{1}{y}\right), & \text{otherwise.} \end{cases}$$

Let S_1 be the set of points in \mathbb{R}^2 where f_x exists and S_2 be the set of points in \mathbb{R}^2 where f_y exists. Also, let E_1 be the set of points where f_x is continuous and E_2 be the set of points where f_v is continuous.

82) S_1 and S_2 are given by

GATE MA 2007

a)
$$S_1 = E \cup \{(x, y) : y = 0\}, \quad S_2 = E \cup \{(x, y) : x = 0\}$$

a)
$$S_1 = E \cup \{(x, y) : y = 0\}, \quad S_2 = E \cup \{(x, y) : x = 0\}$$

b) $S_1 = E \cup \{(x, y) : x = 0\}, \quad S_2 = E \cup \{(x, y) : y = 0\}$

c)
$$S_1 = S_2 = \mathbb{R}^2$$

d)
$$S_1 = S_2 = E \cup \{(0,0)\}$$

83) E_1 and E_2 are given by

GATE MA 2007

a)
$$E_1 = S_1$$
, $E_2 = S_1 \cap S_2$

b)
$$E_1 = S_1 \cap S_2 \setminus \{(0,0)\}, \quad E_2 = S_1$$

c)
$$E_1 = S_2$$
, $E_2 = S_1$

d)
$$E_1 = S_2$$
, $E_2 = S_2$

Statement for Linked Answer Questions 84 & 85:

Let

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 6 \end{bmatrix}$$

and let $\lambda_1 \ge \lambda_2 \ge \lambda_3$ be the eigenvalues of A.

84) The triple $(\lambda_1, \lambda_2, \lambda_3)$ equals

a)
$$(9,4,2)$$

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{bmatrix}$$

is

a)
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$
b)
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

$$c) \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$d) \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

END OF THE QUESTION PAPER