

Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 3

Aufgabe 1

Es sei $(Z_i)_{i\in\mathbb{N}}$ eine Folge zufälliger abgeschlossener Mengen in E so, dass gilt: Es gibt eine Folge $(G_i)_{i\in\mathbb{N}}$ offener, relativ kompakter Mengen in E mit cl $G_i \subset G_{i+1}$, $G_i \uparrow E$ sowie derart, dass

$$Z_m \cap \operatorname{cl} G_i \stackrel{d}{=} Z_i$$

für m > i gilt. Dann existiert eine zufällige abgeschlossene Menge Z in E mit

$$Z \cap \operatorname{cl} G_i \stackrel{d}{=} Z_i$$

für alle $i \in \mathbb{N}$.

Lösung: Für $i \in \mathbb{N}$ bezeichne $T_i := T_{Z_i}$ das Kapazitätsfunktional von Z_i . Sei $C \in \mathcal{C}$ und hierzu $i \in \mathbb{N}$ so, dass $C \subset \operatorname{cl} G_i$ gilt. Für m > i gilt dann

$$T_i(C) = \mathbb{P}(Z_i \cap C \neq \emptyset) = \mathbb{P}(Z_m \cap \operatorname{cl} G_i \cap C \neq \emptyset) = \mathbb{P}(Z_m \cap C \neq \emptyset) = T_m(C).$$

Wir definieren $T(C) := T_i(C)$ für ein $i \in \mathbb{N}$ mit $C \subset \operatorname{cl} G_i$. Dann gelten $0 \leq T \leq 1$ und $T(\emptyset) = 0$. Es sei $(C_i)_{i \in \mathbb{N}}$ eine Folge in C mit $C_i \downarrow C$. Dann existiert ein $m \in \mathbb{N}$ mit $C \subset \operatorname{cl} G_m$ und $C_i \subset \operatorname{cl} G_m$ für alle $i \in \mathbb{N}$. Damit folgt $T(C) = T_m(C)$ und $T(C_i) = T_m(C_i)$ für alle $i \in \mathbb{N}$ und somit $T(C_i) \to T(C)$ für $i \to \infty$

In analoger Weise erhält man $S_k(C_0; C_1, \ldots, C_k) \geq 0$ für $k \in \mathbb{N}_0$ und $C_0, C_1, \ldots, C_k \in \mathcal{C}$, wobei S_k wie in Proposition 1.3.2 definiert ist. Nach Satz 1.3.3 existiert eine zufällige abgeschlossene Menge Z in E mit $T_Z = T$. Es seien $C \in \mathcal{C}$, $i \in \mathbb{N}$ und m > i hinreichend groß. Dann gilt

$$T_{Z \cap \operatorname{cl} G_i}(C) = \mathbb{P}(Z \cap \operatorname{cl} G_i \cap C \neq \emptyset)$$

$$= T_Z(\operatorname{cl} G_i \cap C)$$

$$= T(\operatorname{cl} G_i \cap C)$$

$$= T_m(\operatorname{cl} G_i \cap C)$$

$$= \mathbb{P}(Z_m \cap \operatorname{cl} G_i \cap C \neq \emptyset)$$

$$= \mathbb{P}(Z_i \cap C \neq \emptyset)$$

$$= T_{Z_i}(C),$$

womit $Z \cap \operatorname{cl} G_i \stackrel{d}{=} Z_i$ folgt, was den Beweis beendet.

Aufgabe 2 (gerichtete Zerlegungen; siehe Bemerkung 2.1.4)

Es sei (X, ρ) ein separabler metrischer Raum. Zeigen Sie, dass in (X, ρ) eine (ausgezeichnete) gerichtete Folge von Zerlegungen existiert.

Lösung: Wir begründen zunächst, dass \mathbb{X} eine abzählbare Basis besitzt. Da \mathbb{X} separabel ist, existiert eine dichte abzählbare Teilmenge in \mathbb{X} . Deren Elemente seien mit s_i , $i \in \mathbb{N}$, bezeichnet. Für $i, k \in \mathbb{N}$ definieren wir

$$A_{i,k} := \{x \in \mathbb{X} : \rho(x, s_i) < 1/k\}.$$

Es sei $x \in \mathbb{X}$ und $U \subset \mathbb{X}$ eine offene Umgebung von x. Somit existiert ein $\varepsilon > 0$ mit

$$V := \{ y \in \mathbb{X} : \rho(x, y) < \varepsilon \} \subset U.$$

Da die Menge $\{s_i : i \in \mathbb{N}\}\$ dicht in \mathbb{X} liegt, existieren $i \in \mathbb{N}$ und $k \in \mathbb{N}$ mit $1/k < \varepsilon$, sodass

$$x \in A_{i,k} \subset V \subset U$$

gilt. Somit kann in den Mengen $A_{i,k}$, $i,k \in \mathbb{N}$, eine abzählbare Umgebungsbasis von x gefunden werden. Insgesamt bilden diese Mengen eine abzählbare Basis von \mathbb{X} .

Zur Vereinfachung der Notation nehmen wir an, dass die offenen Mengen B_n , $n \in \mathbb{N}$, eine abzählbare Basis von \mathbb{X} bilden. Insbesondere überdecken die Mengen B_n den Raum \mathbb{X} . Es sei $k \in \mathbb{N}$. Diejenigen Mengen B_n mit Durchmesser höchstens 1/k bilden ebenfalls eine abzählbare Basis von \mathbb{X} . Durch passendes Schneiden dieser Mengen erhalten wir eine Zerlegung von \mathbb{X} in disjunkte Mengen vom Durchmesser höchstens 1/k. Werden die Mengen dieser Zerlegung mit den Mengen der vorangegangenen Stufe k-1 geschnitten, erhalten wir die gewünschte verfeinerte Zerlegung.

Aufgabe 3

Es sei $\mu \in M(\mathbb{X})$ ein lokal endliches Maß. Nach Satz 2.1.8 besitzt μ die Darstellung

$$\mu = \mu_c + \sum_{i=1}^{\tau} a_i \delta_{x_i}$$

mit einem diffusen Maß μ_c , $\tau \in \mathbb{N}_0 \cup \{\infty\}$, $a_i > 0$ und (oBdA) paarweise verschiedenen $x_i \in \mathbb{X}$. Weiter gelte $\mu(A) \in \mathbb{N}_0 \cup \{\infty\}$ für alle $A \in \mathcal{X}$.

Zeigen Sie, dass $\mu_c = 0$ und $a_i \in \mathbb{N}$ gelten.

Lösung: Da μ_c diffus ist, erhalten wir $\mu_c(\{x_i\}) = 0$ und damit $\mu(\{x_i\}) = a_i \in \mathbb{N}$. Damit bleibt $\mu_c = 0$ zu zeigen. Es sei $A \in \mathcal{X}_b$. Dann gilt $\mu_c(A) < \infty$. Angenommen es gilt $\mu_c(A) \neq 0$. Wegen der Voraussetzungen der Aufgabe folgt $\mu_c(A) \geq 1$. Es sei $(\{B_{n,i} : i \in \mathbb{N}\})_{n \in \mathbb{N}}$ eine gerichtete Folge von Zerlegungen. Wegen

$$1 \le \mu_c(A) = \sum_{i \in \mathbb{N}} \mu_c(A \cap B_{1,i})$$

existiert ein $i_1 \in \mathbb{N}$ mit $\mu_c(A \cap B_{1,i_1}) > 0$, also insbesondere $\mu_c(A \cap B_{1,i_1}) \geq 1$. Wir wiederholen das Argument mit $A \cap B_{1,i_1}$ anstelle von A und $(B_{2,i})_{i \in \mathbb{N}}$ anstelle von $(B_{1,i})_{i \in \mathbb{N}}$ und gehen anschließend induktiv vor. Dieses Vorgehen liefert eine absteigende Folge beschränkter Mengen $A \cap B_{n,i_n}$ mit $\mu_c(A \cap B_{n,i_n}) \geq 1$ für alle $n \in \mathbb{N}$. Folglich gibt es ein $x_A \in A$ mit $\{x_A\} = A \cap \bigcap_{n \geq 1} B_{n,i_n}$ und $\mu_c(\{x_A\}) \geq 1$. Dies stellt einen Widerspruch zu den Eigenschaften von μ_c dar. Somit gilt $\mu_c(A) = 0$ und damit $\mu_c = 0$.

Aufgabe 4

Es seien $(\mathbb{X}, \mathcal{X})$ ein messbarer Raum und μ ein Maß auf \mathbb{X} , das nur die Werte 0 oder 1 annimmt und $\mu(\mathbb{X}) = 1$ erfüllt.

Zeigen Sie:

- (a) Im Allgemeinen gibt es kein $x \in \mathbb{X}$ mit $\mu = \delta_x$. **Hinweis:** Setzen Sie $\mathbb{X} := \mathbb{R}$ und betrachten Sie die kleinste σ -Algebra auf \mathbb{R} , die die endlichen Teilmengen enthält.
- (b) Ist \mathbb{X} ein vollständiger separabler metrischer Raum mit Borelscher σ -Algebra, so gibt es ein $x \in \mathbb{X}$ mit $\mu = \delta_x$.

Lösung:

(a) Es seien $X := \mathbb{R}$ und

 $\mathcal{X} := \{ A \subset \mathbb{R} : A \text{ abzählbar oder } A^c \text{ abzählbar} \}.$

Für $A \in \mathcal{A}$ definieren wir

$$\mu(A) := \begin{cases} 0, & A \text{ abz\"{a}hlbar}, \\ 1, & A^c \text{ abz\"{a}hlbar}. \end{cases}$$

Damit ist μ ein Maß auf $(\mathbb{X}, \mathcal{X})$ (Übung!) und es gilt $\mu(A) \in \{0, 1\}$ für alle $A \in \mathcal{X}$. Allerdings existiert kein $x \in \mathbb{X}$ mit $\mu = \delta_x$.

(b) Die Aussage folgt mit Aufgabe 3.

Aufgabe 5 (zufällige Maße; siehe Definition 2.1.11)

Es sei (X, ρ) ein separabler metrischer Raum und $\eta \colon \Omega \to M(X)$ eine Abbildung. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (a) η ist ein zufälliges Maß auf X.
- (b) Für jedes $B \in \mathcal{X}$ ist $\eta(B)$ eine Zufallsvariable.

Lösung:

(a) \Rightarrow (b) Es sei η ein zufälliges Maß auf X. Die Abbildungen

$$\pi_B: M(\mathbb{X}) \to \mathbb{R}, \quad \mu \mapsto \mu(B), \quad B \in \mathcal{X},$$

sind nach Definition der σ -Algebra $\mathcal{M}(\mathbb{X})$ messbar. Damit ist auch $\eta(B) = \pi_B \circ \eta$, als Verkettung messbarer Abbildungen, messbar.

(b) \Rightarrow (a) Nach Definition wird die σ -Algebra $\mathcal{M}(\mathbb{X})$ durch $\{\{\mu \in M(\mathbb{X}) : \mu(B) \in A\} : B \in \mathcal{X}, A \in \mathcal{B}(\mathbb{R})\}$ erzeugt. Ist $\eta(B)$ für jedes $B \in \mathcal{X}$ eine Zufallsvariable, so gilt

$$\eta^{-1}(\{\mu \in M(\mathbb{X}) : \mu(B) \in A\}) = \{\omega \in \Omega : \eta(\omega)(B) \in A\} = \{\eta(B) \in A\} \in \mathcal{A},$$

für jedes $B \in \mathcal{X}$ und jedes $A \in \mathcal{B}(\mathbb{R})$. Also ist η ein zufälliges Maß.