IOT Project Framework

Needs and Resulting Architecture

Introduction

- Share our project start experience to help end of year project
- Discuss design choices, SW, and HW decisions
- Evaluate ultimate decisions and experiences
- Share new devices and discuss project potentials
- Give ideas and inspiration for some creative projects

My Project Needs

- Automation to care for plants remotely
 - Travel constantly, leave skiing on weekend
 - No one is around to care for the plants
- System Needs
 - System to access anywhere in world
 - See, sense environment, and care for plants
 - Scalable, reliable, easy to use, easy to repair
 - Dozens of sensors required
 - Capabilities to enable a commercial offering

Initial Product Thoughts

- Simple Phone App
- Light control
- Moisture sensors
- Temperature, CO2, humidity, lumens
- Pump Controls watering/fertilizing
- Cameras
 - Soil PH

- Support dozens of sensors and controllers (100's commercially)
- Multiples of each
- Low touch easy install
- Easy to diagnose and repair
- Send alerts
 - Email/SMS

Decisions to make

- Component Selection
- Processor selection
- SW Selection
- Technology to connect all devices
- Device topology
- Network topology and connections
- App environment

Component Selection

- Very low cost devices
- Commodity devices that draw limited power
- UL listed safe devices to avoid issues
- Ethernet enabled
 - Device scale, easy integration, securable
 - Readily available on low cost device

Processor/SW Selection

- Two classes of processor needed
 - Simple sensor controller integration (sensors/controllers)
 - Minimize cost of entire solution
 - GPIO control is pretty simple operation
 - Complex service oriented needs
 - PI Broker, camera services, other complex devices
 - Want to leverage Open Source SW available

•

Device Topology and Connection

- Needs to scale to 100's of devices
- Hot insert and remove
- Support in commodity SW and HW
- Needed to span 100's of square feet
- Secure and reliable
- Cost effective

System Block Diagram

Device Connection Strategy

- Simple Configuration
 - DHCP assigns all local devices
 - PI static 192.168.1.2
 - Devices register w/PI
 - Mac address is UID
 - Broker uses UID for pub/sub
 - Ques constant thru restart/power cycles

- Issues Encountered
 - 192.168.1.2 set in router
 - Persistent messages wreaked havoc
 - Have a more complex
 PI and device config,
 but not worth it now
 - Only have to port forward PI
 - Non static IP's

PI Broker Operation

- Subscribe to PI device namespace
- Set up device type node map on msg receipt
- Persist that node map
- Enable Restful server
- Start system services

- System Services
 - Light management
 - Pump Management
 - Sensor alert
 - Camera services
 - API services
 - Metric collection

All internet access in through the restful server

Sensor Show and Tell

- Pl Zero, camera
- Cell phone devices
- Wheat Stone Bridge
- Thermal imager
- Amazon Dash Button
- Amazon Alexa's
- ZWave controller
- Stepper motors
- Moisture Sensors
- Temperature
- Humidity

- GPS
- Motion Sensor
- Long range radio
- Short range radio
- Finger print scanner
- Door locks
- Light beam interrupt sensors
- Biometric scanners
- Touch screen
- Ton of GPIO sensors/actuators
- Your imagination!!

Brainstorming Ideas

Class Discussion