Cálculo em Várias Variáveis Derivada Direcional

ICT-Unifesp

2 Exercícios

Mais detalhes na Seção 14.5 do livro do Stewart. Recurso disponível online pela Biblioteca do ICT.

Relembrando...

Derivadas parciais de f(x, y) num ponto (x_0, y_0) :

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k},$$

desde que os limites existam.

Relembrando...

Derivadas parciais de f(x, y) num ponto (x_0, y_0) :

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k},$$

desde que os limites existam.

Taxas de variação de f no ponto (x_0, y_0) na direção positiva dos eixos x e y, ou seja, nas direções e sentidos dos versores $\vec{i}=(1,0)$ e $\vec{j}=(0,1)$, respectivamente.

Como determinar a taxa de variação de f em um ponto (x_0, y_0) numa direção qualquer?

Definição

A derivada direcional de f em (x_0, y_0) na direção do vetor unitário $\vec{u} = (a, b)$ é

$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \lim_{h\to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$

desde que esse limite exista. Notação:

$$D_{\vec{u}}f(x_0,y_0)=\frac{\partial f}{\partial \vec{u}}(x_0,y_0).$$

Definição

A derivada direcional de f em (x_0, y_0) na direção do vetor unitário $\vec{u} = (a, b)$ é

$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \lim_{h\to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$

desde que esse limite exista. Notação:

$$D_{\vec{u}}f(x_0,y_0)=\frac{\partial f}{\partial \vec{u}}(x_0,y_0).$$

Exemplo

$$\frac{\partial f}{\partial \vec{i}}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = \frac{\partial f}{\partial x}(x_0, y_0)$$

Teorema

Se f é uma função diferenciável, então f tem derivada direcional na direção de qualquer vetor $\vec{u} = (a, b)$, e

$$\frac{\partial f}{\partial \vec{u}}(x, y) = \frac{\partial f}{\partial x}(x, y) a + \frac{\partial f}{\partial y}(x, y) b.$$

Teorema

Se f é uma função diferenciável, então f tem derivada direcional na direção de qualquer vetor $\vec{u} = (a, b)$, e

$$\frac{\partial f}{\partial \vec{u}}(x, y) = \frac{\partial f}{\partial x}(x, y) a + \frac{\partial f}{\partial y}(x, y) b.$$

Observação

Se o vetor unitário \vec{u} faz um ângulo θ com a direção positiva do eixo x, podemos escrever $\vec{u} = (\cos(\theta), \sin(\theta))$, e obtemos

$$\frac{\partial f}{\partial \vec{\mu}}(x, y) = \frac{\partial f}{\partial x}(x, y) \cos(\theta) + \frac{\partial f}{\partial y}(x, y) \sin(\theta).$$

Exemplo

Seja $f(x, y) = x^3 - 3xy + 4y^2$. Determine a derivada direcional de f no ponto (1, 2) e na direção do vetor unitário \vec{u} determinado pelo ângulo $\theta = \pi/6$.

Pela fórmula do slide anterior, temos

$$D_{\vec{u}}f(x,y) = f_x(x,y)\cos\left(\frac{\pi}{6}\right) + f_y(x,y)\sin\left(\frac{\pi}{6}\right)$$

= $(3x^2 - 3y)\frac{\sqrt{3}}{2} + (-3x + 8y)\frac{1}{2}$.

Portanto,
$$D_{\vec{u}}f(1,2) = \frac{13 - 3\sqrt{3}}{2}$$
.

Figura: Stewart, J.; Cálculo - Volume 2

Será que a existência das derivadas direcionais de f em qualquer direção num determinado ponto (x_0, y_0) implica que f é contínua em (x_0, y_0) ?

Exemplo

Seja

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{se } (x, y) \neq (0, 0) \\ 0, & \text{se } (x, y) = (0, 0). \end{cases}$$

Mostre que f tem derivadas direcionais no ponto (0, 0) na direção de qualquer vetor unitário $\vec{u} = (a, b)$, mas f não é contínua em (0, 0).

Vamos calcular a derivada direcional na direção do vetor u=(a,b). Temos,

$$\frac{\partial f}{\partial u}(0,0) = \lim_{h \to 0} \frac{f(0+ha, 0+hb) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{ab^2h^3}{h^3(a^2+b^4h^2)} = \frac{b^2}{a},$$

para $a \neq 0$. Para a = 0, isto é, para u = (0, b), temos

$$\frac{\partial f}{\partial u}(0,0) = \lim_{h \to 0} \frac{f(0,hb) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{0}{b^4 h^4} = 0.$$

Assim, a derivada direcional existe no ponto (0,0), em qualquer direção u=(a,b).

Por outro lado, f não é contínua m (0,0), pois ao longo da curva $x=y^2$, temos:

$$\lim_{y\to 0} f(y^2, y) = \lim_{y\to 0} \frac{y^4}{y^4 + y^4} = \frac{1}{2} \neq 0 = f(0, 0).$$

Exercícios

Seção 14.6 do Stewart: 4-7, 13-19, 21-25.