Week 5 Notes: The Bootstrap

Antonio R. Linero University of Texas at Austin

Goals

- 1. Learn how to use the bootstrap to estimate the sampling distribution of (almost) any statistic $T = T(\mathcal{D})$.
- 2. Learn the distinction between various types of bootstraps (nonparametric and parametric bootstraps).
- 3. Get practice implementing the bootstrap and apply it to several problems.

Motivation

Goal: estimate the sampling distribution of a statistic

$$T = T(\mathcal{D})$$

Why? If T is a "good" estimator of a parameter ψ then

$$T \pm z_{\alpha/2} \times \text{std. error}(T)$$

will be a "good" confidence interval for ψ .

Motivation

Goal: estimate the sampling distribution of a statistic

$$T = T(\mathcal{D})$$

Why? If T is a "good" estimator of a parameter ψ then

$$T \pm z_{\alpha/2} \times \text{std. error}(T)$$

will be a "good" confidence interval for ψ .

Other types of intervals are of course possible, and bootstrap can help with those as well.

Assume we fit a GLM such that

$$g(\mu_i) = X_i^{\top} \beta$$

correctly describes the mean model. How does MLE behave?

Assume we fit a GLM such that

$$g(\mu_i) = X_i^{\top} \beta$$

correctly describes the mean model. How does MLE behave?

- 1. $\sqrt{N}(\hat{\beta} \beta_0) \to N(0, \Sigma) \ (\sqrt{N}\text{-consistent!})$
- 2. $\Sigma \neq$ the inverse Fisher information.

Problem: given $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$, what if I want a CI for

$$m_F = \text{median}(F)$$
?

Several ways to do this! But one is to use the fact that

$$M \stackrel{*}{\sim} \text{Normal}\{m_F, \sigma_M^2\}$$
 where $M = \text{median}(X_1, \dots, X_N)$.

But hard to estimate σ_M^2 !

Problem: given $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$, what if I want a CI for

$$m_F = \text{median}(F)$$
?

Several ways to do this! But one is to use the fact that

$$M \stackrel{*}{\sim} \text{Normal}\{m_F, \sigma_M^2\}$$
 where $M = \text{median}(X_1, \dots, X_N)$.

But hard to estimate σ_M^2 !

More generally: many estimators are asymptotically linear, meaning that

$$\widehat{\theta} = \theta_0 + \frac{1}{N} \sum_{i} \phi(X_i; \theta_0) + o_P(N^{-1/2})$$

for a mean-0 function $\phi(X_i; \theta_0)$ called the *influence function*. Implies a CLT, but may be difficult to estimate variance!

The Bootstrap Principle

The Bootstrap Principle:

Suppose that $\mathcal{D} \sim G$, $\psi = \psi(G)$ is a parameter of G we are interested in, and $T = T(\mathcal{D})$ is an estimator of ψ . Then we can approximate the sampling distribution of $T(\mathcal{D})$ by

- 1. estimating G with some \widehat{G} ; and
- 2. using the sampling distribution of $T^* = T(\mathcal{D}^*)$ to estimate the sampling distribution of T, where $\mathcal{D}^* \sim \widehat{G}$.

Suppose $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$.

■ Estimate $\mu \approx \bar{X}$ and $\sigma^2 \approx s^2 = \frac{\sum_i (X_i - \bar{X})^2}{N-1}$.

- Estimate $\mu \approx \bar{X}$ and $\sigma^2 \approx s^2 = \frac{\sum_i (X_i \bar{X})^2}{N-1}$.
- $\widehat{F} = \text{Normal}(\overline{X}, s^2).$

- Estimate $\mu \approx \bar{X}$ and $\sigma^2 \approx s^2 = \frac{\sum_i (X_i \bar{X})^2}{N-1}$.
- $\widehat{F} = \text{Normal}(\overline{X}, s^2).$
- $\mathcal{D}^{\star} = \{X_1^{\star}, \dots, X_N^{\star}\} \text{ with } X_i^{\star} \stackrel{\text{iid}}{\sim} \text{Normal}(\bar{X}, s^2).$

- Estimate $\mu \approx \bar{X}$ and $\sigma^2 \approx s^2 = \frac{\sum_i (X_i \bar{X})^2}{N-1}$.
- $\widehat{F} = \text{Normal}(\overline{X}, s^2).$
- $\mathcal{D}^{\star} = \{X_1^{\star}, \dots, X_N^{\star}\} \text{ with } X_i^{\star} \stackrel{\text{iid}}{\sim} \text{Normal}(\bar{X}, s^2).$
- From properties of normal $\bar{X}^* \sim \text{Normal}(\bar{X}, s^2/N)$.

- Estimate $\mu \approx \bar{X}$ and $\sigma^2 \approx s^2 = \frac{\sum_i (X_i \bar{X})^2}{N-1}$.
- $\widehat{F} = \text{Normal}(\overline{X}, s^2).$
- $\mathcal{D}^{\star} = \{X_1^{\star}, \dots, X_N^{\star}\} \text{ with } X_i^{\star} \stackrel{\text{iid}}{\sim} \text{Normal}(\bar{X}, s^2).$
- From properties of normal $\bar{X}^* \sim \text{Normal}(\bar{X}, s^2/N)$.
- Approximate sampling variance of \bar{X} is therefore s^2/N .

Suppose $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$. What is the distribution of $M = \text{median}(X_1, \ldots, X_N)$?

■ Estimate F with $\widehat{F} = \frac{1}{N} \sum_{i} \delta_{X_i}$.

Suppose $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$. What is the distribution of $M = \text{median}(X_1, \ldots, X_N)$?

- Estimate F with $\widehat{F} = \frac{1}{N} \sum_{i} \delta_{X_i}$.
- Approximate sampling distribution of M with $\operatorname{median}(X_1^{\star}, \dots, X_N^{\star})$ where $X_i^{\star} \stackrel{\text{iid}}{\sim} \widehat{F}$.

Suppose $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$. What is the distribution of $M = \text{median}(X_1, \ldots, X_N)$?

- Estimate F with $\widehat{F} = \frac{1}{N} \sum_{i} \delta_{X_i}$.
- Approximate sampling distribution of M with $\operatorname{median}(X_1^{\star}, \dots, X_N^{\star})$ where $X_i^{\star} \stackrel{\text{iid}}{\sim} \widehat{F}$.
- Cannot do this in closed form...

Suppose $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$. What is the distribution of $M = \text{median}(X_1, \ldots, X_N)$?

- Estimate F with $\widehat{F} = \frac{1}{N} \sum_{i} \delta_{X_i}$.
- Approximate sampling distribution of M with $\operatorname{median}(X_1^{\star}, \dots, X_N^{\star})$ where $X_i^{\star} \stackrel{\text{iid}}{\sim} \widehat{F}$.
- Cannot do this in closed form...
- So use Monte Carlo instead! Sample many new datasets, compute the median on each, and use the resulting empirical distribution of M!

Bootstrap Variance Estimation

The bootstrap can be used to approximate the variance (or standard deviation) of T as follows:

- 1. Draw $\mathcal{D}^* \sim \widehat{G}$ (for example, if $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} F$ then we take $X_1^*, \ldots, X_N^* \stackrel{\text{iid}}{\sim} \mathbb{F}$).
- 2. Compute $T^* = T(\mathcal{D}^*)$.
- 3. Repeat steps 1 and 2 B times to get $T_1^{\star}, \dots, T_B^{\star}$.
- 4. Let $v_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \left(T_b^{\star} \bar{T} \right)^2$ where $\bar{T} = \frac{1}{B} \sum_{b} T_b^{\star}$.

Pseudocode

```
## Let X be a vector of size N, sampled from F
T <- median(X)
Tboot <- numeric(N)
for(i in 1:B) {
    ## Sample N iid draws from the empirical distribution of X
    Xstar <- sample(x = X, size = N, replace = TRUE)
    ## Save the result
    Tboot[i] <- median(Xstar)
}
v_boot <- var(Tboot)
se_boot <- sqrt(v_boot)</pre>
```

The Normal Interval

For asymptotically linear statistics, it makes sense to use the interval

$$T \pm z_{\alpha/2} \times \mathrm{se}_{\mathrm{boot}}$$

Great if we are close to normality! Can also use a $t_{\alpha/2}$ interval if worried about Monte Carlo error...

Basic Percentile Method

Mimics Bayesian reasoning:

- 1. Sample many T^* 's according to the nonparametric bootstrap.
- 2. Use the interval $(T^{\star}_{\alpha/2}, T^{\star}_{1-\alpha/2})$ where T^{\star}_{γ} denotes the $100\gamma^{\text{th}}$ percentile of T^{\star} .

Why does this work?

Pivotal Intervals

- Don't approximate the sampling distribution of T with that of T^*
- Instead, approximate the sampling distribution of $\zeta = T \psi$ with $\zeta^* = T^* T$.
- Leads to the interval

$$\psi \in (T - \zeta_{1-\alpha/2}^{\star}, T - \zeta_{\alpha/2}^{\star}) = (2T - T_{1-\alpha/2}^{\star}, 2T - T_{\alpha/2}^{\star}).$$

Show on board why this works.

Pivotal Intervals

- Don't approximate the sampling distribution of T with that of T^*
- Instead, approximate the sampling distribution of $\zeta = T \psi$ with $\zeta^* = T^* T$.
- Leads to the interval

$$\psi \in (T - \zeta_{1-\alpha/2}^{\star}, T - \zeta_{\alpha/2}^{\star}) = (2T - T_{1-\alpha/2}^{\star}, 2T - T_{\alpha/2}^{\star}).$$

Show on board why this works.

Works best when $T - \psi$ is a **pivotal quantity**. Exact pivots are hard to get without strong assumptions, however...

Exercise

Exercise: Wasserman 8.1

Consider the following dataset:

which are LSAT scores (for entrance to law school) and GPA. Estimate the standard error of the correlation coefficient ρ using the bootstrap. Find a 95 percent confidence interval using the normal, pivotal, and percentile methods.

Exercise

Exercise: Wasserman 8.2

Conduct a simulation to compare the various bootstrap confidence interval methods. Let N=50 and let $\psi=\frac{1}{\sigma^3}\int (x-\mu)^3F(dx)$ be the skewness. Draw $Y_1,\ldots,Y_N\sim \text{Normal}(0,1)$ and set $X_i=e^{Y_i},\ i=1,\ldots,N$. Construct the three types of bootstrap 95 percent intervals for ψ from the data X_1,\ldots,X_N . Repeat this whole thing many times and estimate the true coverage of the three intervals.