

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Manufacturing Process

July 30, 2002

CMOS Process

A Modern CMOS Process

Dual-Well Trench-Isolated CMOS Process

Circuit Under Design

Its Layout View

The Manufacturing Process

For a great tour through the IC manufacturing process and its different steps, check

http://www.fullman.com/semiconductors/semiconductors.html

Photo-Lithographic Process

Patterning of SiO2

(d) After development and etching of resist, chemical or plasma etch of SiO

(e) After etching

(f) Final result after removal of resist

CMOS Process at a Glance

(a) Base material: p+ substrate with p-epi layer

(b) After deposition of gate-oxide apprificial nitride (acts as auffer layer)

(c) After plasma etch of irrepchasusing the inverse of the active area mask

(g) After polysilicon and deposition etch

(h) After n+ source/drain p+source/drain implants. steps: lso dope the polysilicon.

(i) After deposition of insulator and contact hole etch.

(j) After deposition and patterning of first Al layer.

(k) After deposition of insulator, etching of deposition and patterning second layer of Al.

Advanced Metallization

Advanced Metallization

Design Rules

3D Perspective

Design Rules

- ☐ Interface between designer and process engineer
- ☐ Guidelines for constructing process masks
- ☐ Unit dimension: Minimum line width
 - scalable design rules: lambda parameter
 - absolute dimensions (micron rules)

CMOS Process Layers

Layer	Colo	Representation
Well (p,n)	Yellow	
Active Area (n+,p+)	Green	
Select	Green	
(p+.n+) Polysilicon	Red	
Metal1	Blue	
Metal2	Magenta	
Contact To Poly	Black	
Contact To Diffusion	Black	
Via	Black	

Layers in 0.25 µm CMOS process

Intra-Layer Design Rules

Transistor Layout

Vias and Contacts

Select Layer

CMOS Inverter Layout

(a) Layout

(b) Cross-Section along A-A'

Layout Editor

Design Rule Checker

Sticks Diagram

- Dimensionless layout entities
- Only topology is important
- Final layout generated by "compaction" program

Stick diagram of inverter

Packaging

Packaging Requirements

- **□Electrical: Low parasitics**
- ☐ Mechanical: Reliable and robust
- ☐Thermal: Efficient heat removal
- □Economical: Cheap

Bonding Techniques

Wire Bonding

Tape-Automated Bonding (TAB)

(a) Polymer Tape with imprinted wiring pattern.

Flip-Chip Bonding

Package-to-Board Interconnect

(a) Through-Hole Mounting

(b) Surface Mount

Package Types

Package Parameters

Package Type	Capacitance (pF)	Inductance (nH)
68 Pin Plastic DIP	4	35
68 Pin Ceramic DIP	7	20
256 Pin Pin Grid Array	5	15
Wire Bond	1	1
Solder Bump	0.5	0.1

Typical Capacitances and Inductances of Various Package and Bonding Styles (from [Sze83])

Multi-Chip Modules

