

Dating PGM

AUTHORS: RAJ PATEL & MIHIR CHAUHAN

Testing existing theories about people's social behavior's on a large scale.

DATA SOURCE:

Dating Experiment compiled by Columbia business school professors Raymond Fisman and Sheena Iyengar.

VARIABLES:

DEMOGRAPHICS

DATING HABITS

- LIFESTYLE
- **SELF PERCEPTION**
- **BELEIFS**
- **KEY ATTRIBUTES**

#Variables	70
#Links	123
#cpd's	48
#max. cpd	300000
#samples	6000
#cont. Var	23
#Disc. Var	47
#max Par.	10

VARIABLE ELIMINATION

$$P(m) = \sum_{d}^{d} P(m|d) \sum_{c}^{c} P(d|c) f_1(c)$$

$$P(m) = \sum_{i=1}^{n} P(m|d) f_2(d)$$

SAMPLING:

- Approximate Estimation
- Saving exponential calculations.
- More the samples higher accuracy

CREATING BAYESIAN NETWORK

- · Finding correlation
- · Causality on intuition

GENERATING CPD's

- · Frequentist approach
- Tabular CPD's
- Neural Network

Multi-Processing

INFERENCE

- · Exact Inference Variable Elimination Algorithm
- · Approximate Inference Sampling

how? inference

PROBABILITY QUERIES

MARGINAL MAP QUERIES

MOST PROBABLE EXPLANATION

PYTHON EXPERIMENTAION

GIVEN: PREFERENCES, RATING, AGE, GENDER, CHARACTERISTICS

dec	phi(dec)	dec_o	phi(dec_o)
dec_0 dec_1	0.6124 0.3876	dec_o_0 dec_o_1	0.9722 0.0278
	match	phi(match)	
	match_0 match_1	0.8916 0.1084	