Занятие № 11. Непрерывные одномерные распределения и их преобразования.

 \bigcirc Составитель: ∂ . ϕ .-м.н., про ϕ . Рябов П.Е.

Желательно (а для некоторых студентов обязательно), там, где есть ответ, придумать способ док-ва статистической устойчивости полученного ответа.

- **11.1.** Плотность распределения случайной величины X имеет вид: $f(x) = ae^{-\lambda|x|}$. Найдите а) коэффициент a; б) функцию распределения случайной величины X; в) $\mathbb{E}(X)$ и $\mathbb{V}ar(X)$.
- **11.2.** Случайная величина X имеет плотность распределения $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ (стандартное распределение Коши Co(0;1)). Найдите вероятности: a) $\mathbb{P}(X\geqslant 1)$; б) $\mathbb{P}(|X|\geqslant 1)$.
- **11.3.** Пусть случайные величины X имеет показательное распределение с параметром $\lambda = \frac{1}{3}$. Найдите вероятности: а) $\mathbb{P}(X > 3)$; б) $\mathbb{P}(X > 6|X > 3)$; в) $\mathbb{P}(X > t + 3|X > t)$.
- **11.4.** Пусть X случайная величина, равномерно распределенная на [-1;1]. Найдите распределение случайной величины Y=|X|.
- **11.5.** Случайная величина X равномерно распределена на отрезке [0;1]. Найдите плотность распределения случайной величины: а) $Y=X^2$; б) $Y=\frac{1}{X}$; в) $Y=e^X$ и построить их графики.
- **11.6.** Плотность распределения случайной величины X равна $f(x)=\frac{1}{\pi}\frac{1}{1+x^2}$. Найдите распределение случайной величины $Y=\arctan(X)$.
- **11.7.** Случайная величина X равномерно распределена на отрезке [0;2]. Найдите функцию распределения случайной величины Y=|X-1|.
- **11.8.** Случайная величина X равномерно распределена на отрезке [a;b]. Найдите a и b, если $\mathbb{E}(X^2)=1$ и $\mathbb{E}(X)=-\mathbb{E}(X^3)$.
- **11.9.** Случайная величина X равномерно распределена на отрезке [0;1]. Найдите $\rho(X;X^3)$.
- **11.10.** Случайная величина X имеет стандартное распределение Коши, $X\sim Ca(0;1)$, то есть, плотность $f(x)=\frac{1}{\pi(1+x^2)}$. Найдите плотность распределения случайной величины $Y=\frac{X^2}{1+X^2}$
- **11.11.** Случайная величина X распределена по показательному закону с параметром $\lambda=1$. Найдите распределение случайной величины $Y=[X]^2$, где [x] обозначает целую часть x.
- **11.12.** Случайная величина X распределена по показательному закону. Найдите математическое ожидание $\mathbb{E}[(X-9)(10-X)]$, если дисперсия Var[10-4X]=9.

- **11.13.** Случайная величина X имеет распределение Коши с плотностью распределения $f(x)=\frac{b}{\pi[b^2+(x-a)^2]}$. Найдите плотность распределения случайной величины $Y=\frac{1}{X}$.
- **11.14.** Пусть с.в. $X \sim Ca(1;2)$. Найдите вероятность $\mathbb{P}\left(\frac{1}{X}>3\right)$ и покажите статистическую устойчивость полученной вероятности.

Ответ: $\frac{1}{2} - \frac{1}{\pi} \arctan(7) \approx 0.0451672353$.

- **11.15.** На окружности радиуса R берут две точки с равномерным распределением. Найдите функцию распределения расстояния γ между ними и вычислите $\mathbb{E}(\gamma)$. Используя инструментарий IPython, постройте график зависимости среднего значения расстояния от числа экспериментов для R=1. (Можно использовать генератор uniform.rvs(size=n) из библиотеки from scipy.stats import uniform).
- **11.16.** На отрезке [0;T] наудачу бросили две точки. Пусть γ расстояние между ними. Найдите функцию распределения γ и вычислите $\mathbb{E}(\gamma)$, $\mathbb{V}ar(\gamma)$, $\nu_k(\gamma) = \mathbb{E}(\gamma^k)$. Используя инструментарий IPython, постройте график зависимости среднего значения расстояния от числа экспериментов для T=1. (Можно использовать генератор uniform.rvs(size=n) из библиотеки from scipy.stats import uniform).
- **11.17.** Два человека договорились встретиться в промежутке времени [0;T]. Пусть au время, которое придется ждать одному из них до момента встречи. Найдите функцию распределения и вычислите $\mathbb{E} au$. Используя инструментарий IPython, постройте график зависимости среднего значения времени от числа экспериментов для T=1. (Можно использовать генератор uniform.rvs(size=n) из библиотеки from scipy.stats import uniform).
- **11.18.** Абсолютно непрерывная случайная величина X может принимать значения только в отрезке [4;7]. На этом отрезке плотность распределения случайной величины X имеет вид: $f(x) = C \left(1 + 3x^{0.5} + 6x^{0.7} + 9x^{0.9}\right)^{1.5}$, где C положительная константа. Найдите:
 - 1) константу C;
 - **2)** математическое ожидание $\mathbb{E}(X)$;
 - 3) стандартное отклонение σ_X ;
 - 4) квантиль уровня 0.8 распределения X.

Ответ: C = 0,000573; E(X) = 5,6608; $\sigma_X = 0,8521$; Квантиль= 6,5294.

11.19. Случайная величина X равномерно распределена на отрезке [4;8]. Случайная величина Y выражается через X следующим образом:

$$Y = (1 + 6X^{0.5} + 4X^{0.7} + 5X^{0.9})^{1.3}.$$

Найдите:

- 1) математическое ожидание $\mathbb{E}(Y)$;
- 2) стандартное отклонение σ_Y ;
- 3) асимметрию As(Y);
- 4) квантиль уровня 0.8 распределения Y .

Ответ: Математическое ожидание = 182,11;2) Стандартное отклонение = 33,056;3) Асимметрия = -0,00159;4) Квантиль = 216,4527.