Overview of Parallel Programming in Java

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

- Understand the meaning of key parallel programming concepts
- Know when to apply parallelism
- Recognize the parallel programming frameworks supported by Java

See www.dre.vanderbilt.edu/~schmidt/frameworks.html

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools
 - Parallel streams

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools
 - Parallel streams
 - Completable futures

Completable futures also provide a reactive asynchrony programming model

 Java 7 introduced the objectoriented fork-join pool framework

 Java 7 introduced the object-DataSource oriented fork-join pool framework fork() Provides high performance, DataSource₁ DataSource₂ fine-grained task execution for data parallelism fork() fork() DataSource_{1.1} DataSource_{2 1} DataSource_{1,2} DataSource_{2,2} **Process Process Process Process** sequentially sequentially sequentially sequentially ioin joir join

See www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

- Java 7 introduced the objectoriented fork-join pool framework
 - Provides high performance, fine-grained task execution for data parallelism
 - Supports parallel programming by solving problems via "divide & conquer"

```
Result solve (Problem problem) {
  if (problem is small)
    directly solve problem
  else {
    a. split problem into
       independent parts
    b. fork new sub-tasks
      to solve each part
    c. join all sub-tasks
    d. compose result
      from sub-results
```

- Java 7 introduced the objectoriented fork-join pool framework
 - Provides high performance, fine-grained task execution for data parallelism
 - Supports parallel programming by solving problems via "divide & conquer"
 - Employs *work-stealing* to optimize multi-core processor performance

Java 8 added two new parallel functional programming frameworks

1. Parallel streams

Java 8 added two new parallel functional programming frameworks

1. Parallel streams

 Partitions a stream into multiple substreams that run independently & combine into a "reduced" result

Java 8 added two new parallel functional programming frameworks

1. Parallel streams

- Partitions a stream into multiple substreams that run independently & combine into a "reduced" result
- Chunks of data in the substreams can be mapped to multiple threads (& cores)

Java 8 added two new parallel functional programming frameworks

1. Parallel streams

- Partitions a stream into multiple substreams that run independently & combine into a "reduced" result
- Chunks of data in the substreams can be mapped to multiple threads (& cores)
- Leverages the common fork-join pool

 Java 8 added two new parallel functional programming frameworks

1. Parallel streams

- Partitions a stream into multiple substreams that run independently & combine into a "reduced" result
- Chunks of data in the substreams can be mapped to multiple threads (& cores)
- Leverages the common fork-join pool

Parallel streams provides fine-grained data parallelism functional programming

- Java 8 added two new parallel functional

 Task 1
 - 1. Parallel streams
 - 2. Completable futures

programming frameworks

- Java 8 added two new parallel functional programming frameworks
 - 1. Parallel streams
 - 2. Completable futures
 - Supports dependent actions that trigger upon completion of async operations

Task 1

- Java 8 added two new parallel functional programming frameworks
 - 1. Parallel streams

2. Completable futures

- Supports dependent actions that trigger upon completion of async operations
- Async operations can run in parallel in thread pools

- Java 8 added two new parallel functional programming frameworks
 - 1. Parallel streams

2. Completable futures

- Supports dependent actions that trigger upon completion of async operations
- Async operations can run in parallel in thread pools

Java completable futures & streams can be combined to good effects!!

 These Java frameworks often eliminate the use of synchronization or explicit threading when developing parallel apps!

Alleviates many accidental & inherent complexities of parallel programming

 Java parallel streams & completable future functional frameworks use the object-oriented fork-join pool framework by default

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

End of Overview of Parallelism in Java