STA437/2005 Methods for Multivariate Data

Practice Problem set #1

Problem 1. Consider the following seven observations of three variables:

V1	V2	V3
5.1	3.3	1.7
6.8	2.8	4.8
5.8	2.7	3.9
6.9	3.1	4.9
5.7	2.5	5.0
5.8	2.8	5.1
6.4	3.2	4.5

- (a) Compute the sample mean
- (b) Compute the sample variance
- (c) Make z-transformation on V3 and investigate whether or not there are any anomalous observations. [Hint: Standardize and compare to 3 or 3.5 or any appropriate number]
- (d) Compute the χ^2 -statistic of the first observation and determine whether or not it is anomalously big. [Hint: Pick an appropriate high quantile point]
- (e) Assess a hypothesis $H_0: \mu = O$. [Hint: Use Hotelling's T^2 -statistic]
- (f) Assess whether or not V3 is normally distribute. [Hint: Interval test check up like $\#\{x_i: x_i \in \bar{x} \pm k\hat{\sigma}\} \approx \text{Binomial}(n, \Phi(k) \Phi(-k))$]

Problem 2.
$$X = (X_1, X_2, X_3)^{\top} \sim N_3(\mu, \Sigma)$$
 where $\mu = (1, 2, 3)^{\top}$ and $\Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$

- (a) Find the distribution of $2X_1 3X_2 + X_3$. [Hint: Linear sums of multivariate normal distributions are also normal]
- (b) Solve a and b so that X_1 and $aX_2 + bX_3$ are independent. [Hint: Joint multivariate normal random variables are independent if correlations are zero]
- (c) Solve a and b so that X_1 and $aX_2 + bX_3$ are independent as well as X_2 and $aX_1 + bX_3$ are independent. [Hint: Joint multivariate normal random variables are independent if correlations are zero]
- (d) Find the conditional distribution of X_3 given (X_1, X_2)

Problem 3. A set of two dimensional data is observed which is assumed to be $\mathbf{x}_j \sim N_2(\mu, \Sigma)$. Sample statistics are given by n = 40, $\bar{\mathbf{x}} = (0.7, 0.4)^{\top}$ and $S = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

- (a) Write the equation of 95% confidence region for μ and draw it roughly. [Hint: Solve a quadratic equation]
- (b) Assess a hypothesis $H_0: \mu = (1,0)^{\top}$. [Hint: Consider Hotelling's T^2 -statistic]
- (c) Assess a hypothesis $H_0: \mu_1 = 2\mu_2$. [Hint: Set $\psi = \mu_1 2\mu_2$ and test $H_0: \psi = 0$]
- (d) Find a 95% confidence interval for μ_2 . [Hint: Use t-distribution or asymptotic normal distribution]
- (e) Assess whether or not X_1 and X_2 are independent. [Hint: Fisher's z-transformation or Pearson's independence test for categorical data]

Problem 4. A $n \times p$ random matrix **X** and a random vector $Y \in \mathbb{R}^p$ has a relationship $Y = \mathbf{X}\beta + \boldsymbol{\epsilon}$ where $\beta \in \mathbb{R}^p$ is an unknown parameter, $\boldsymbol{\epsilon} \sim N_n(O, I_n)$ and **X** and $\boldsymbol{\epsilon}$ are independent.

- (a) Find the least square estimator $\hat{\beta}$ of β . [Hint: $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y$]
- (b) Show the consistency of $\hat{\beta}$. [Hint: Use Chebyschev's inequality being provided by $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ converges to zero.]
- (c) Show the asymptotic normality of $\hat{\beta}$. [Hint: It is normally distributed if **X** is given.]
- (d) Assess a hypothesis $H_0: \beta = O$. [Hint: Use asymptotic distribution in part (c)]
- (e) Write the required assumptions for (a)-(d). [Hint: For part (d) you need $\mathbf{X}^{\top}\mathbf{X}/n \to \Sigma_0$ in probability]

Problem 5. (a) Describe a procedure of detecting outliers.

- (b) Describe a procedure of assessing normality.
- (c) Describe Box-Cox transformation.