

Graph Theory and Modeling

Chapter 1: Basic Notions of Graphs

Basic Terms

Graph A graph is defined as a pair of sets: (V, E), where V is the set of

nodes (vertices) and E is a set of pairs of members of V (edges). If the graph is directed, the edges are also known as arcs. An arc (v, u) is said to have a tail end at v and a head end at v. When \exists an

edge between nodes they are called adjacent.

Loop An edge (u, u) for some $u \in V$

Simple Graph A graph without loops

Subadjacent graph

Let G = (V, E) be a directed graph. Its subadjacent graph \bar{G} is an undirected graph that has an edge (u, v) for every arc (u, v). In the case of G having arcs (u, v) and (v, u), both are replaced by a single

edge (u, v).

Trail A succession (node, edge, node, edge, ...)

Circuit (Closed Trail)

A trail in which the first and last nodes are the same.

Path A trail where all nodes are distinct

Cycle (Simple circuit)

A circuit in which all nodes but the first and last are distinct.

Length The number of edges in a trail

Power Set The power set $\mathcal{P}(S)$ is the set of all subsets of S, including S

Adjacency Let G = (V, E) the adjacency function Γ is defined:

Function $\Gamma(u): V \to \mathcal{P}(V) = \{v \in V : (u, v) \in E\} \forall u \in V$

Adjacency Matrix $\begin{array}{l} \text{Let } G = (V,E) \text{ s.t. } V = \{v_1,v_2,\ldots,v_n\}. \text{ The adjacency matrix A is a} \\ \text{square matrix of size } n \times n \text{ such that } \forall a_{ij}, a_{ij} = \left\{ \begin{array}{ll} 1 & (v_i,v_j) \in V \\ 0 & (v_i,v_i) \notin V \end{array} \right. \end{array}$

Grade (not directed)

The grade of a node v, d(v) is the number of edges that are incident with it. *A loop adds two units to the grade, not one.

If the grade of a node is 0, it is called isolated.

The maximum degree of a graph G is written $\Delta(G)$, while the

minimum is written $\delta(G)$.

Grade (directed)

The indegree of a node v, $d^-(v)$, is the number of edge head ends

adjacent to it.

The outdegree, $d^-(v)$, conversely, is the number of edge tail ends

adjacent to it.

Obtaining degree from adjacency matrix The degree of a node i from an undirected graph can be obtained by summing either the column or row i of the graph's adjacency matrix, and adding 1 if the node has a loop.

If the graph is directed, the outdegree can be obtained by

summing the row i and the indegree can be obtained by summing

the column i.

Handshaking Lemma Let G = (V, E) be an undirected graph. $\sum_{v \in V} d(v) = 2\#E$.

: the number of nodes with an uneven grade is even.

Let G be now be a directed graph. $\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = \#E$

Subgraphs

Let G and H be graphs.

Subgraph H is a subgraph of $G \iff V(H) \subset V(G) \land E(H) \subset E(G)$

Spanning H is a spanning subgraph of $G \iff H$ is a subgraph of G

Subgraph $\wedge V(H) = V(G)$

 $\begin{array}{ll} \textbf{Induced} & \text{H is a subgraph of G induced by E' (H = G[E']) for some E' \subset E(G)} \\ \textbf{subgraph} & \Longleftrightarrow & E(H) = E' \land V(H) = \{v \in V(G) : v \text{ is and endpoint of some } e \in E\} \\ \end{array}$

H is a subgraph of G induced by V' (H = G[V']) for some $V' \subset V(G)$

 \iff V(H) = V' \land E(H) = {e \in E : the endpoints of e}

Subtraction

Let V' ⊂ V(G), E' ⊂ E(G).
• G − V' = (V − V', R − {e ∈ E :
$$e_1 ∈ V' \lor e_2 ∈ V'$$
})
• G − E' = (V, E − E')
• Let e ∈ E'. G − e = G − {e}

Graphic Sequences

Graphic Sequence

A sequence of integers is considered a graphic sequence \iff there exists an undirected graph such that the values of the sequence correspond to the degrees of its nodes.

Harvel-Hakimi Theorem

Let the following be a sequence of decreasing integers: $(s,t_1,t_2,\ldots,t_s,d_1,d_2,\ldots,d_r)$. $(s,t_1,t_2,\ldots,t_s,d_1,d_2,\ldots,d_r)$ is a graphic sequence \iff $(t_1-1,t_2-1,\ldots,t_s-1,d_1,d_2,\ldots,d_r)$ is also a graphic sequence.

Notable Graphs

Complete Graph (K_n)

Undirected simple graph of n nodes where any pair of nodes are adjacent.

k-regular Graph

A graph where $\forall v \in V$, d(v) = k or $\forall v \in V$, $d^+(v) = d^-(v) = k$.

Bipartite Graph

A graph G = (V, E) is bipartite $\iff \exists V', V'' \subset V \text{ s.t.}$ $\forall e \in E, e_1 \in V' \land e_2 \in V''.$ This equates to the graph not having any odd-length cycles.

