Expectation Maximization for Mixtures of Gaussians

CS229: Machine Learning Carlos Guestrin Stanford University

©2022 Carlos Guestrin

Learning a Mixture of Gaussians

2

Summary of GMM Components

Observations

$$x^i \in \mathbb{R}^d, \quad i = 1, 2, \dots, N$$

- Hidden cluster labels $z_i \in \{1,2,\ldots,K\}, \quad i=1,2,\ldots,N$
- Hidden mixture means

$$\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \dots, K$$

- Hidden mixture covariances $\Sigma_k \in \mathbb{R}^{d imes d}, \quad k = 1, 2, \dots, K$
- Hidden mixture probabilities

$$\pi_k, \quad \sum_{k=1}^K \pi_k = 1$$

Gaussian mixture marginal and conditional likelihood :

$$p(x^i|\pi,\mu,\Sigma) = \sum_{z^i=1}^K \pi_{z^i} \ p(x^i|z^i,\mu,\Sigma)$$
 $p(x^i|z^i,\mu,\Sigma) = \mathcal{N}(x^i|\mu_{z^i},\Sigma_{z^i})$

3

But we don't see class labels!!!

- MLE:
 - argmax $\prod_i P(z^i, x^i)$

- But we don't know zi
- Maximize marginal likelihood:
 - argmax $\prod_i P(x^i)$ = argmax $\prod_i \sum_k P(z^i = k, x^i)$

Special case: spherical Gaussians and hard assignments

$$P(z^{i} = k, \mathbf{x}^{i}) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}^{i} - \mu_{k})^{T} \Sigma_{k}^{-1}(\mathbf{x}^{i} - \mu_{k})\right] P(z^{i} = k)$$

• If P(X|z=k) is spherical, with same σ for all classes:

$$P(\mathbf{x}^i \mid z^i = k) \propto \exp \left[-\frac{1}{2\sigma^2} \left\| \mathbf{x}^i - \mu_k \right\|^2 \right]$$

• If each xⁱ belongs to one class C(i) (hard assignment), marginal likelihood:

$$\prod_{i=1}^{N} \sum_{k=1}^{K} P(\mathbf{x}^{i}, z^{i} = k) \propto \prod_{i=1}^{N} \exp \left[-\frac{1}{2\sigma^{2}} \| \mathbf{x}^{i} - \mu_{C(i)} \|^{2} \right]$$

• Same as K-means!!!

EM: "Reducing" Unsupervised Learning to Supervised Learning

If we knew assignment of points to classes → Supervised Learning!

- Expectation-Maximization (EM)
 - Expectation: Guess assignment of points to classes
 - In standard ("soft") EM: each point associated with prob. of being in each class
 - Maximization: Recompute model parameters
 - Iterate

Imagine we have an assignment of each x^i to a Gaussian

Expectation: infer cluster assignments from observations

Posterior probabilities of assignments to each cluster *given* model parameters:

$$r_{ik} = p(z^i = k|x^i, \pi, \mu, \Sigma) =$$

ML Estimate of Mixture Model Params

Log likelihood

$$L_x(\theta) \triangleq \log p(\lbrace x^i \rbrace \mid \theta) = \sum_{i=1}^{N} \log \sum_{j=1}^{K} p(x^i, z = j \mid \theta)$$

Want ML estimate

$$\hat{\theta}^{ML} =$$

Neither convex nor concave and local optima

Maximization: If "complete" data were observed...

Assume class labels
$$z^i$$
 were observed in addition to x^i
$$L_{x,z}(\theta) = \sum_{i=1}^N \log p(x^i,z^i\mid \theta)$$

- Compute ML estimates
 - ☐ Separates over clusters *k*!
- Example: mixture of Gaussians (MoG)

Maximization: if inferred cluster assignments from observations

Posterior probabilities of assignments to each cluster *given* model parameters:

$$r_{ik} = p(z^i = k | x^i, \pi, \mu, \Sigma)$$

Expectation-Maximization Algorithm

- Motivates a coordinate ascent-like algorithm:
 - 1. Infer missing values z^i given estimate of parameters $\hat{ heta}$
 - 2. Optimize parameters to produce new $\hat{ heta}$ given "filled in" data z^i
 - 3. Repeat
- Example: MoG
 - 1. Infer "responsibilities"

$$r_{ik} = p(z^i = k \mid x^i, \hat{\theta}^{(t-1)})$$

2. Optimize parameters

max w.r.t. π_k :

max w.r.t. μ_k, Σ_k :

• This algorithm is REALLY USED. And in high dimensional state spaces, too.

Gaussian Mixture Example: Start

After first iteration

©2022 Carlos Guestrin

After 2nd iteration

©2022 Carlos Guestrin

After 3rd iteration

©2022 Carlos Guestrin

After 4th iteration

©2022 Carlos Guestrin

After 5th iteration

©2022 Carlos Guestrin

After 6th iteration

©2022 Carlos Guestrin

After 20th iteration

©2022 Carlos Guestrin

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

©2022 Carlos Guestrin