- Prob 1) Evaluate $\sqrt{5}$ using the equation $x^2 5 = 0$ by applying the fixed-point iteration.
- Prob 2) Consider the equation $x^3 5x + 1 = 0$, which has a root in the interval (0, 1). We can write the equation in the form $\phi(x)$ and the corresponding iteration method in the following ways:
 - (i) $x = \frac{1}{5}(x^3 + 1)$ and $x_{k+1} = \frac{1}{5}(x_k^3 + 1)$.
 - (ii) $x = (5x 1)^{1/3}$ and $x_{k+1} = (5x_k 1)^{1/3}$.
 - (iii) $x = x^3 4x + 1$ and $x_{k+1} = x_k^3 4x_k + 1$.

Discuss the convergence of (i), (ii) and (iii).

- Prob 3) The equation $x^2 + ax + b = 0$ has two real roots α and β . Show that the method
 - (i) $x_{k+1} = -\frac{1}{x_k}(ax_k + b)$ converges to α if $|\alpha| > |\beta|$.
 - (ii) $x_{k+1} = -\frac{b}{x_k + a}$ converges to α if $|\alpha| < |\beta|$.
 - (iii) $x_{k+1} = -\frac{1}{a}(x_k^2 + a)$ converges to α if $2 \mid \alpha \mid < \mid \alpha + \beta \mid$.
- Prob 4) An iteration method is defined by

$$x_{n+1} = \frac{x_n}{2a}(3a - x_n^2), \ a > 0, n = 0, 1, 2, \dots$$

Find the quantity to which the method converges. Hence, determine the rate of convergence of the method. Also, obtain the asymptotic error constant.

Prob 5) Let $\phi : [a, b] \to [a, b]$ be differentiable on (a, b) and there exists a constant $L \in (0, 1)$ such that

$$|\phi'(x)| \le L$$
, for all $x \in (a, b)$.

Let r be a unique fixed point of ϕ in [a, b]. Show that, for any $x_0 \in [a, b]$, the sequence generated by $x_{k+1} = \phi(x_k), k \ge 0$ satisfies

$$|x_{n+1} - r| \le \frac{L}{1 - L} |x_{n+1} - x_n|.$$

Prob 6) Let $f:[a,b] \to \mathbb{R}$ be twice continuously differentiable and r is a **simple zero** of f. Then, there exists a neighborhood of r and a constant C such that if Newton-Raphson method is started in that neighborhood, the successive points become steadily closer to r and satisfy

$$|x_{n+1} - r| \le C |x_n - r|^2, (n \ge 0).$$

Prob 7) If r is a double zero of the function f and $f:[a,b]\to\mathbb{R}$ is twice continuously differentiable, then in Newton's method we shall have $\phi'(r)=1/2\neq 0$, where $\phi(x)=x-\frac{f(x)}{f'(x)}$. Determine the value of α such that the $\phi'(r)=0$ by re-defining ϕ as

$$\phi(x) = x - \alpha \frac{f(x)}{f'(x)}.$$

Lab Exercises

Ex 1) Write codes for solving the problems 2,3 and 4 and interpret the results graphically.