Symmetric Cryptography Protocols

Thierry Sans

Let us consider confidentiality, integrity and availability

Example

Ensuring confidentiality with encryption

Ensuring integrity with an HMAC

Security mechanisms

	Encryption	MAC	Authenticated Encryption
Confidentiality			
Integrity			

Authenticated Encryption (2013)

Alice an Bob share a key K

Encrypt-and-MAC (E&M)	$AE_k(m) = E_K(m) \parallel H_K(m)$	e.g SSH
MAC-then-Encrypt (MtE)	$AE_k(m) = E_K(m \parallel H_K(m))$	e.g SSL
Encrypt-then-MAC (EtM)	$AE_k(m) = E_K(m) \parallel H_K(E_K(m))$	e.g IPsec

Ensuring confidentiality and integrity with Authenticated Encryption

 $AD_k("15qcK3Xcdwd...")$

Replay attacks

Replay attack

Counter replay attacks

Several solutions:

- use a nonce (random number)
- use sequence numbers
- use timestamps
- have fresh key for every transaction (key distribution problem)

Defeat replay attack with a nonce (not fully secured)

Replay attack on the response!

Defeat replay attack with a double nonce

The challenge of key exchange

The big challenge with symmetric cryptosystems?

Naive Key Management

 $A_1, A_2 \dots A_5$ want to talk

- \rightarrow Each pair needs a key: n(n-1)/2 keys
- Keys must be exchanged physically using a secure channel

(Better) centralized solution

A₁, A₂ ... A₅ can talk to the KDC (Key Distribution Center)

- → When A_i and A_j want to talk, the KDC can generate a new key and distribute it to them
- We still have n keys to distribute somehow using a secure channel
- The KDC must be trusted
- The KDC is a single point of failure
- → The is how Kerberos works

The Needham-Shroeder Symmetric Key Protocol

Assumptions

- 4 principals : Alice, Bob, Mallory, Key Distribution Server
- S shares a key with A, B and M respectively Kas, Kbs, Kms
- A, B, M and S talk to each other using the same protocol

Goals

When two parties want to engage in the communication, they want to

- I. make sure that they talk to the right person (authentication)
- 2. establish a session key

The vulnerable Needham-Shroeder Symmetric Key Protocol (1978)

Breaking the Needham-Shroeder Symmetric Key Protocol (1981)

Assuming K_{ab} has been compromised somehow, it can be reused

Fixing the Needham-Shroeder Symmetric Key Protocol (1987)

