009427830 **Image available**
WPI Acc No: 1993-121346/199315

XRAM Acc No: C93-053954

New azetidinone derivatives, inhibiting platelet aggregation - are antiinflammatory and antiphlogistic agents e.g.

1-benzyl-4-difluoromethyl-2-azetidinone

Patent Assignee: YOSHITOMI PHARM IND KK (YOSH) Number of Countries: 001 Number of Patents: 001 Abstract (Basic): JP 5058993 A

Cpd. (I) is of the formula (A), where R1 and R2 are opt. different and are respectively H, alkyl or hydroxyalkyl and R3 is H or aryl or aralkyl with or without substitution or an acid-added salt. The prepn. of (I) and acid-added salt is effected by using a difluoroethane image cpd. of the formula: CHF2CH=N-R3.

USE/ADVANTAGE - The cpd. has anti-inflammatory activity, antalgic activity and platelet aggregation inhibiting activity and is useful as antalgic/antiphlogistic agent and drug for circulating system. The method can prepare (I) in a high yield.

In an example, 0.48 ml 2.5M hexane soln. of n-butyllithium is dropped to mixt. of 4 ml THF and 0.17 ml diisopropylamine at 78degC and the mixt is stirred for 20 min.. 0.12 ml ethyl acetate is dropped to it and the mixt. is stirred for 20 min.. Then, 0.77 g N-(2,2-difluoroethylidene) benzylamine is dropped to it and the mixt. is stirred for 30 min. and then 1N HCl is added to top the reaction. The organic layer is extracted with diethyl ether 2 or 3 times and purified by silica gel column chromatography (hexane/ethyl acetate=4:1 to give 0.15 g 1-benzyl-4-difluoromethyl-2(I) (Yield: 73%.

Dwg.0/0

Title Terms: NEW; AZETIDINONE; DERIVATIVE; INHIBIT; PLATELET; AGGREGATE; ANTIINFLAMMATORY; ANTIPHLOGISTIC; AGENT; BENZYL; DI; FLUOROMETHYL; AZETIDINONE

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-58993

(43)公開日 平成5年(1993)3月9日

(51)Int.Cl. ⁵ C 0 7 D 205/08	識別記号	庁内整理番号	FI		技術表示箇所
// A 6 1 K 31/395	AAH	•			
,,	ABE	7252-4C			
		7019-4C	C 0 7 D 205/ 08	J	
		7019-4C		K	
			審査請求 未請求 請求項の数3(全	9 頁)	最終頁に続く
(21)出願番号	特顯平3-246759		(71)出願人 000006725 吉富製薬株式会社		

(22)出願日

平成3年(1991)8月30日

大阪府大阪市中央区平野町2丁目6番9号

(72)発明者 北爪 智哉

東京都大田区南千束3丁目23番14 ヴィラ

ベール洗足池201号

(74)代理人 弁理士 高島 一

(54)【発明の名称】 アゼチジノン化合物およびその製造法

(57)【要約】

(修正有)

【構成】 下記式(1)

$$\begin{array}{c|c} CHF_{2} & \\ \hline & \\ N & \\ \hline & \\ O \end{array}$$

(式中、 R^1 、 R^2 は同一または異なって水素、アルキ ルまたはヒドロキシアルキルを、R3 は水素または置換 基を有していてもよいアリールまたはアラルキルを示 す。) により表されるアゼチジノン化合物およびその酸 付加塩および

下記式

CHF₂ CH=N-R³ (式中、R³ は水素または置換 基を有していてもよいアリールまたはアラルキルを示 す。) により表されるジフルオロエタンイミン化合物を 使用する上記アゼチジノン化合物およびその酸付加塩製 造法。

【効果】 この化合物は抗炎症作用、鎮痛作用、血小板

凝集抑制作用等の優れた薬理作用を有し、鎮痛消炎剤、 循環器用剤等として有用である。また、当該化合物は単 環式β-ラクタム、カルバペナム、1-カルバセフェム 等の抗生物質の中間体としても有用である。ジフルオロ エタンイミン化合物を使用することによって効率よく上 記化合物が製造される。

【特許請求の範囲】

【請求項1】 一般式(1)

【化1】

$$\begin{array}{c|c}
CHF_{2} & R^{1} \\
N & O
\end{array}$$

(式中、 R^1 、 R^2 は同一または異なって水素、アルキルまたはヒドロキシアルキルを、 R^3 は水素または置換基を有していてもよいアリールまたはアラルキルを示す。)により表されるアゼチジノン化合物またはその医薬上許容される酸付加塩。

【請求項2】 一般式

 $CHF_2 CH=N-R^3$ (II)

(式中、R³ は水素または置換基を有していてもよいア リールまたはアラルキルを示す。) により表されるジフ ルオロエタンイミン化合物と一般式

【化2】

(式中、 R^1 、 R^2)は同一または異なって水素、アルキルまたは保護基で保護された水酸基を有するアルキルを、 R^4 はアルキルを示す。)により表される化合物とを反応させ、水酸基の保護基を脱離させることを特徴とする一般式

【化3】

$$\begin{array}{c|c} CHF_2 & R^1 \\ N & O \end{array}$$

(式中、 R^1 、 R^2 は同一または異なって水索、アルキルまたはヒドロキシアルキルを示し、 R^3 は前記と同義である。)により表されるアゼチジノン化合物の製造法。

【請求項3】 一般式

 $CHF_2 CH = N - R^3 \qquad (II)$

(式中、R³ は水素または置換基を有していてもよいア リールまたはアラルキルを示す。) により表されるジフ ルオロエタンイミン化合物と一般式

【化4】

(式中、R¹)は水素、アルキルまたは保護基で保護された水酸基を有するアルキルを、R⁴ はアルキルを、Xはハロゲンを示す。)により表される化合物とを反応させ、水酸基の保護基を脱離させることを特徴とする一般式

【化5】

(式中、 R^1 は水素、アルキルまたはヒドロキシアルキルを、 R^3 は前記と同義である。) により表されるアゼチジノン化合物またはその医薬上許容される酸付加塩の製造法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、医薬またはその合成中間体として有用なジフルオロメチル基を有するアゼチジノン化合物およびその製造法に関する。

[0002]

【従来の技術および発明が解決しようとする課題】P. F. Bevilacquaらのジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.) 49, 1430(1984)および G. Guantiらのシンセシス(Synthesis) 1985, 609によりモノクロロメチル基、トリフルオロメチル基を有するアゼチジノン化合物が知られている。また、近年、分子内にジフルオロメチル基を有する化合物の生理活性が注目されており、その導入法、合成法の開発が強く望まれている。

[0003]

【課題を解決するための手段】本発明者はジフルオロメ チル基を分子内に有する出発物質としてジフルオロエタ ンイミン化合物を用いることによって、収率よくジフル オロメチル基を有する有用な新規アゼチジノン化合物が 得られることを見出し、本発明を完成した。

【0004】すなわち、本発明は

(1) 一般式(I)

【化6】

(式中、 R^1 、 R^2 は同一または異なって水素、アルキルまたはヒドロキシアルキルを、 R^3 は水素または置換基を有していてもよいアリールまたはアラルキルを示す。)により表されるアゼチジノン化合物またはその医

薬上許容される酸付加塩、

(2) 一般式(II)

 $CHF_2 CH = N - R^3$ (II)

(式中、 R^3 は前記と同意義。)により表されるジフルオロエタンイミン化合物と一般式(III)

【化7】

$$\begin{array}{c}
R^{1'} & \text{OLi} \\
R^{2'} & \text{OR}^4
\end{array}$$

(式中、 R^1 、 R^2 は同一または異なって水素、アルキルまたは保護基で保護された水酸基を有するアルキルを、 R^4 はアルキルを示す。)により表される化合物とを反応させ、水酸基の保護基を脱離させることを特徴とする上記一般式(I)により表されるアゼチジノン化合物の製造法、および

(3) 一般式

 $CHF_2 CH = N - R^3$ (II)

(式中、R³ は前記と同意義。) により表されるジフル オロエタンイミン化合物と一般式(IV)

【化8】

(式中、Xはハロゲンを示し、 R^1 および R^4 は前記と同意義。)により表される化合物とを反応させ、水酸基の保護基を脱離させることを特徴とする一般式(I')

【化9】

(式中、 R^1 および R^3 は前記と同義である。) により 表されるアゼチジノン化合物の製造法に関する。

【0005】上記定義中、アルキルは炭素数1~10個を有するアルキルであって、たとえばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第3級プチル、ペンチル、イソペンチル、第3級ペンチル、1ーエチルプロピル、1ーメチルブチル、ヘキシル、ヘブチル、オクチル、ノニル、デシルなどが挙げられる。

【0006】ヒドロキシアルキルとはヒドロキシメチル、1ーヒドロキシエチル、2ーヒドロキシエチル、1ーヒドロキシプロピル、2ーヒドロキシプロピル、3ーヒドロキシブロピル、1ーヒドロキシブチル、2ーヒドロキシブチル、3ーヒドロキシブチル、4ーヒドロキシブチルなどが挙げられ、また保護基で保護された水酸基を有するアルキルとはこれらヒドロキシアルキルの水酸基がトリアルキルシリル(トリメチルシリル、第3級ブチルジメチルシリルなど)、低級アルキル(メチル、エ

チル、イソプロピル、第3級ブチルなど)、アリル、ア ラルキル(ベンジル、フェニルエチルなど)、アシル (ホルミル、アセチル、プロピオニル、ベンゾイルな ど)などの保護基で保護されたものを示す。

【0007】アリールとしてはフェニル、ナフチルが挙 げられ、アラルキルとしてはベンジル、2-フェニルエ チル、3-フェニルプロピルなどが挙げられる。また、 アリール、アラルキルは1~3個の置換基を有していて もよく、置換基としては、たとえばハロゲン、低級アル キル (たとえば、メチル、エチル、プロピル、イソプロ ピル、ブチル、イソブチル、第3級ブチルなどの炭素数 1~4個のアルキル)、低級アルコキシ(メトキシ、エ トキシ、プロポキシ、イソプロポキシ、ブトキシ、イソ ブトキシ、第3級ブトキシなどの炭素数1~4個のアル コキシ)、トリフルオロメチル、水酸基などが挙げられ る。また、ハロゲンとは塩素、フッ素、臭素、ヨウ素を 示す。本発明化合物の医薬上許容される酸付加塩として は、塩酸、臭化水素酸、リン酸、硫酸、硝酸などの無機 酸との塩、あるいは酢酸、酒石酸、コハク酸、リンゴ 酸、メタンスルホン酸、ベンゼンスルホン酸などの有機 酸との塩があげられる。

【0008】前記(2)の製造法において、一般式(II)の化合物と一般式(III)の化合物との反応は、テトラヒドロフラン、ジエチルエーテル、ハロゲン化炭化水素(四塩化炭素など)、芳香族炭化水素(ベンゼン、ニトロベンゼンなど)、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、アセトニトリル、ジオキサンなどの溶媒中、-78℃~0℃で1~10時間攪拌することにより進行する。なお、一般式(III)の化合物は一般式(V)

【化10】

$$R^{1'}$$
 CH-COOR⁴ (V)

(式中、各記号は前記と同義である。) により表される 化合物にリチウムジイソプロピルアミド (LDA) を作用させることによって得られる。

【0009】前記(3)の製造法において、一般式(II)の化合物と一般式(IV)の化合物との反応は、テトラヒドロフラン、ジエチルエーテル、ハロゲン化炭化水素(四塩化炭素など)、芳香族炭化水素(ベンゼン、ニトロベンゼンなど)、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、アセトニトリル、ジオキサンなどの溶媒中、亜鉛の存在下、1~10時間、60℃~100℃にて加熱還流することにより進行する。

【0010】 水酸基の保護基は加水分解などの通常の方法により除去することができる。

【0011】出発物質である一般式(II)のジフルオロエタンイミン化合物は一般式(VI)

【化11】

$$CHF_{2}-CH-OR^{5}$$

$$OH$$
(VI)

(式中、R⁵ はアルキルを示す。) のジフルオロアセト アルデヒド=アルキルヘミアセタールと一般式 (VII) $R^3 - NH_2$ (IIV)

(式中、 R^3 は前記と同義である。) の一級アミンを混 合し、80℃~150℃程度に加熱することにより容易 に合成することができる。

【0012】本発明の一般式(I)の化合物は、不斉炭 素原子が存在するため、本発明はそれに由来する光学異 性体、ジアステレオマー、エナンチオマーまたはラセミ 体をも包含する。また、立体異性体をも包含する。この ようにして得られる本発明化合物は再結晶法、カラムク ロマト法などの常法により単離精製することができる。

【0013】得られる生成物がラセミ体であるときは、 たとえば光学活性な酸との分別再結晶により、もしくは 光学活性な担体を充填したカラムを通すことにより所望 の光学活性体に分割することができる。個々のジアステ レオマーは分別結晶化、クロマトグラフィーなどの手段 によって分離することができる。これらは光学活性な原 料化合物などを用いることによっても得られる。また、 立体異性体は再結晶法、カラムクロマト法などにより単 離することができる。

[0014]

エチルヘミアセタール50molとベンジルアミン50mm olを入れ、油浴中110℃で加熱還流を行う。水が生成 するのでこれを系外へ除去し、水の生成が認められなく なった時点で、室温まで温度を下げる。無水硫酸マグネ シウムを入れ乾燥した後、減圧蒸留を行い、N-(2, 2-ジフルオロエチリデン) ベンジルアミン4.4g (収率52%)を得た。沸点55~57℃/0.5mmH

[0018] 【化13】

$$F_2 H_0 C_1 \rightarrow N$$
 $H_0 \rightarrow P h$

E:Z=1:1 $C_9H_9F_2N$

FW 169.17

 19 F-NMR (470MHz, CDCl₃, C₆F₆)

 δ 41.628 (dd, JCHaF₂=54.93Hz, JCFCHb=3.05Hz, E or Z)

【作用および発明の効果】本発明の一般式(1)の化合 物は抗炎症作用、鎮痛作用、血小板凝集抑制作用等の優 れた薬理作用を有し、鎮痛消炎剤、循環器用剤等として 有用である。また、当該化合物は単環式βーラクタム、 カルバペナム、1-カルバセフェム等の抗生物質の中間 体としても有用である。

【0015】なお、一般式(I)の化合物を合成するに あたり、出発物質として一般式 (II) のジフルオロエタ ンイミン化合物を用いた。このイミン化合物はジフルオ ロアセトアルデヒド=アルキルヘミアセタールから容易 に合成される。当該化合物は、一般式 (III)、(IV)など により表される求核剤と反応し、かくして収率よく相当 する一般式(I)の化合物を得ることができる。

[0016]

【実施例】以下、実施例により本発明を具体的に説明す るが、本発明はこれらに限定されるものではない。な お、実施例中の略号の意味は次の通りである。

Εt : エチル Ρh : フェニル i-Pr: イソプロピル : テトラヒドロフラン THF

n-BuLi: n-ブチルリチウム

: リチウムジイソプロピルアミド 【0017】実施例1(中間体の製造例1)

【化12】

$$-NH_2 \rightarrow \frac{CHF_2}{H} \rightarrow N \rightarrow Ph$$

δ 41.634 (dd, JCHaF₂=54.93Hz, JCFCHb=3.05Hz, E or

¹H-NMR (500MHz, CDCl₃)

δ 4.721 (m, 2H, Hc)

δ 6. 154 (dd, JC, Ha=54. 93Hz, JCHaCHb=5. 37Hz, 1H, H

 δ 7. 2 ~7. 4 (mp, 5H, Ph)

δ 7. 696 (dt, JCFCHb=3. 54Hz, JCHaCHb=5. 37Hz) 1H E, Z

δ 7. 704 (dt, JCFCHb=3. 54Hz, JCHaCHb=5. 37Hz)

13C-NMR (10MHz, CDCl₃)

 δ 64. 170 (s, C₃)

 δ 112. 956 (t, JC, F=238. 1Hz, C,)

δ 127.640 (s, Ph)

δ 123.188 (s, Ph)

δ 128.756 (s, Ph)

δ 136.893 (s, Ph)

 δ 156.019 (t, JC₂F=31.9Hz, C₂)

IR: 2900~3070cm⁻¹ (Ph)

【0019】実施例2(中間体の製造例2)ベンジルア ミンの代わりにp-アニシジンを用いて実施例1と同様 の反応および処理を行うことによって、N-(2, 2ジフルロオエチリデン) -4-メトキシアニリンを得た。

【0020】 【化14】

 $C_9H_9F_2NO$

FW 185.17

 13 C-NMR (470MHz, CDCl $_3$, C $_6$ F $_6$)

 δ 42.734 (dd, JCHaF=54.93Hz, JCFCHb=3.05Hz)

¹H-NMR (600MHz, CDCl₃)

δ 3.829 (s, 1H, Hc)

 $\delta\,6.\,096$ (dt, JCHaF=54.93Hz, JCHaCHb=5.25Hz, 1H, H

δ 6.90~7.30 (m, Ph)

 δ 7.845 (dt, JCHaCHb=5.25Hz, JCFCHb=2.56Hz, 1H, H $_{\mbox{\scriptsize L}}$

 $^{13}\text{C-NMR}$ (75MHz, CDCl₃) δ 55. 472 (s, C₃) δ 111. 788 (t, JC₁F=237. 1Hz, C₁) δ 114. 491 (s, Ph) δ 122. 783 (s, Ph) δ 141. 245 (s, Ph) δ 150. 883 (t, JC₂F=31. 9Hz, C₂) δ 159. 868 (s, Ph) IR: 3050cm^{-1} (Ph) [O O 2 1] 实施例3 [化 1 5]

30mlニロフラスコを窒素で充填した後、テトラヒドロフラン4ml、ジイソプロピルアミン0.17ml(1.2 mmol)を入れる。-78℃に温度を下げ、nープチルリチウム(2.5M、ヘキサン溶液)0.48ml(1.2 mmol)をシリンジにより滴下し、20分攪拌した後、酢酸エチル0.12ml(1.2 mmol)をシリンジにより滴下し、やはり20分間程度攪拌する。20分後Nー(2,2ージフルオロエチリデン)ベンジルアミン0.77g(1.0 mmol)をシリンジにより滴下する。30分間攪拌し、温度を室温にまで上げ更に30分間攪拌後1N-塩酸を加え反応を終結する。ジエチルエーテルで2~3回有機層を抽出後、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製する。こうして1ーベンジルー4ージフルオロメチルー2ーアゼチジノン0.15g(収率73%)を得た。

[0022] [化16] $C \left\langle \begin{array}{c} \text{OLi} & \text{CHF}_2 \\ \text{OEt} & \text{Ph} \end{array} \right\rangle \begin{array}{c} \text{CHF}_2 \\ \text{Ph} \end{array} \right\rangle$

C₁₁H₁₁F₂NO

FW 211.21

 19 F-NMR (470MHz, CDCl₃, C₆F₆)

 δ 37.076 (ddd, JCF α F β =294.50Hz, JCHaF α =54.93H z, JCF α CHb=10.68Hz, F α)

δ 38. 144 (ddd, JCF α F β =294. 50Hz, JCHaF β =54. 93H z, JCF β CHb=7. 63Hz, F β)

¹H-NMR (500MHz, CDCl₃)

 δ 2. 904 (ddd, JCHcCHd=14. 89Hz, JCHbCHc=2. 44Hz, JCF CHc=0. 85Hz, 1H, Hc)

 δ 3. 055 (ddd, JCHcCHd=14. 89Hz, JCHbCHd=5. 37Hz, JCF CHd=0. 85Hz, 1H, Hd)

δ 3.672 (mp, 1H, Hb)

δ 4. 139 (d, JCHeCHf=14. 51Hz, 1H, He)

δ 4.709 (d, JCHeCHf=14.51Hz, 1H, Hf)

 δ 5. 732 (ddd, JCHaF α = JCHF β = 54. 61Hz, JCHaCHb=4.

27Hz, 1H, Ha) δ 128.513 (s, Ph) δ 7. 28 \sim 7, 36 (m, 5H, Ph) δ 128.936 (s, Ph) ¹³C-NMR (75MHz, CDCl₃) δ 135. 211 (s, Ph) δ 37. 9306 (t, JC₃F=3. 6Hz, C₃) δ 165.752 (s, C₄) IR: 1756cm⁻¹ (C=0) δ 45. 9528 (s, C₅) δ 50. 5112 (t, JC₂F=26. 2Hz, C₂) 2940~3036cm⁻¹ (Ph) δ 115. 312 (t, JC₁F=242. 4Hz, C₁) 【0023】 実施例4 δ 128. 044 (s, Ph) 【化17】

30mlニロフラスコに亜鉛3.0mmolを入れ、窒素で置換した後、テトラヒドロフラン5ml、αープロモ酢酸エチル2.2mmolおよびNー(2,2ージフルオロエチリデン)ベンジルアミン2.0mmolを加え、油浴中95℃で加熱還流を行う。2時間後室温にもどして1Nー塩酸を10ml加える。この後酢酸エチルで有機層を3回抽出し、減圧蒸留で溶媒を除く。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)により1ーベンジルー4ージフルオロメチルー2ーアゼチジノン0.19g(収率45%)を得た。NMR、IRのデータは実施例3と同じである。

【0024】上記実施例と同様にして、次に示す化合物が得られる。

実施例5

4ージフルオロメチルー1-(4-メトキシフェニル) -2-アゼチジノン

【化18】

C₁₁H₁₁F₂NO₂ FW 227.21

 19 F-NMR (470MHz, CDCl₃, C₆F₆)

 δ 36. 456 (ddd, JCF α F β =293. 74Hz, JCHaF α =54. 93H z, JCF α CHb=9. 16Hz, F α)

δ 38. 823 (ddd, JCF α F β =293. 74Hz, JCHaF β =54. 93H z, JCF β CHb=8. 39Hz, F β)

¹H-NMR (500MHz, CDCl₃)

 δ 3. 085 (dd, JCHcCHd=15. 26Hz, JCHbCHc=2. 45Hz, 1H, Hc)

δ 3. 236 (dd, JCHcCHd=15. 26Hz, JCHbCHd=5. 74Hz, 1H,

Hd)

δ 3.789 (s, 3H, Hc)

 δ 4. 280 \sim 4. 340 (m, Hb)

 δ 5. 964 (dt, JCHaF=55. 05Hz, JCHaCHb=3. 90Hz, 1H, H a)

 δ 6. 85~7, 40 (m, Ph)

¹³C-NMR (75MHz, CDCl₃)

 δ 37.417 (t, JC₃F=3.6Hz, C₃)

 δ 31. 247 (t, JC₂F=27. 2Hz, C₂)

 δ 55. 472 (s, C₅)

 δ 114.405 (s, Ph)

 δ 114. 536 (t, JC₁F=244. 4Hz, C₁)

 δ 130.634 (s, Ph)

δ 156.628 (s, Ph)

 δ 162.449 (s, C₄)

IR: 1748cm⁻¹ (C=0)

2842~2922cm⁻¹ (Ph)

【0025】実施例6

1 ーベンジルー4ージフルオロメチルー3ーメチルー2 ーアゼチジノン

【化19】

C₁₂H₁₃F₂NO FW 225. 24

d. r. =1:1

 19 F-NMR (470MHz, CDCl $_3$, C $_6$ F $_6$)

 δ 34. 983 (ddd, JCF α F β =296. 03Hz, JCHaF α =54. 93H

z, JCF α CHb=7.63Hz, F α)

 δ 39. 002 (ddd, JCF α F β =296. 03Hz, JCHaF β =54. 93H

z, JCF β CHb=10.68Hz, F β)

¹H-NMR (500MHz, CDCl₃)

 δ 1. 305 (d, JCHcCHd=7. 44Hz, 3H, Hd)

δ 3, 152 (dt. JCHcCHd=7, 34Hz, JCHbCHc=2, 15Hz, 1H, H δ 9. 156 (s, C₄) δ 35. 547 (s, C₆) δ 46. 298 (d, JC₃F α =6. 1Hz, C₃) δ 3. 259 (m, 1H, Hb) δ 53. 917 (dd $JC_2F\alpha = 29.3Hz$, $JC_2F\beta = 21.6Hz$, C_2) δ 4. 047 (d, JCHeCHf=14. 89Hz, 1H, He) δ 115. 634 (t, JC₁F=242. 9Hz, C₁) δ 4.729 (d, JCHeCHf=14.89Hz, 1H, Hf) δ 127.936 (s, Ph) δ 5.730 (dt, JCHaF=54.93Hz, JCHaCHb=4.76Hz, 1H, H δ 128.517 (s, Ph) a) δ 128. 773 (s, Ph) δ 7. 20 \sim 7, 40 (m, 5H, Ph) δ 135. 356 (s, Ph) ¹³C-NMR (75MHz, CDCl₃) δ 169.828 (s, C₅) δ 12.469 (s, C₄) IR: 1756cm⁻¹ (C=0) δ 45.577 (s, C₆) 2936~3036cm⁻¹ (Ph) δ 46.075 (t, JC₃F=3.5Hz, C₃) 【0027】実施例8 δ 58. 144 (dd JC₂F α = 26. 9Hz, JC₂F β = 24. 4Hz, C₂) 1-ベンジル-4-ジフルオロメチル-3,3-メチル δ 115. 358 (t, JC₁F=243. 3Hz, C₁) ー2ーアゼチジノン δ 128.981 (s, Ph) 【化21】 δ 128. 420 (s, Ph) δ 128.853 (s, Ph) δ 135.372 (s, Ph) δ 169.575 (s, C₅) IR: 1763cm⁻¹ (C=0) 2936~3036cm⁻¹ (Ph) MS: 225.0961 【0026】実施例7 C13H15F2NO 1ーベンジルー4ージフルオロメチルー3ーメチルー2 FW 239.27 ーアゼチジノン 19 F-NMR (470MHz, CDCl₃, C₆F₆) δ 41. 497 (dd, JCHaF=54. 93Hz, JCFCHb=9. 15Hz, 2F) 【化20】 ¹H-NMR (500MHz, CDCl₃) δ1.275 (s, 3H, Hd) $C_1 HF \alpha F \beta$ δ 1. 288 (t, JCFCHc=0. 91Hz, 3H, Hc) δ 3. 238 (dt, JCFCHb=8. 36Hz, JCHaCHb=6. 59Hz, 1H, H δ 4. 013 (dt, JCHeCHf=14. 90Hz, JCFCHe=1. 16Hz, 1H, H $C_{12}H_{13}F_{2}N0$ δ 4.757 (d, JCHeCHf=14.90Hz, 1H, Hf) FW 225.24 $^{19}\mathrm{F-NMR}$ (470MHz, CDCl $_3$, C $_6\mathrm{F}_6$) δ 5. 779 (dt, JCFHa=55. 18Hz, JCHaCHb=6. 59Hz, 1H, H δ 40.016 (ddd, JCF α F β =303.66Hz, JCHaF α =54.46H a) δ7.20~7.40 (m, 5H, Ph) z, JCF α CHb=10.68Hz, F α) δ 41. 847 (ddd, JCF α F β =303. 66Hz, JCHaF β =53. 41H ¹³C-NMR (75MHz, CDCl₃) z, JCF β CHb=6.10Hz, F β) δ 16.799 (s, C_{4}) δ 22.034 (s, C₅) ¹H-NMR (500MHz, CDCl₃) δ 45.318 (s, C₇) δ 1. 305 (dt, JCHcCHd=7. 69Hz, JCFCHd=1. 03Hz, 3H, H δ 52. 952 (t, JC₃F=3. 3Hz, C₃) δ 61. 296 (t, JC₂F=25. 5Hz, C₂) δ 3. 354 (dq. JCHcCHd=7. 69Hz, JCHbCHc=5. 58Hz, 1H, H δ 115. 938 (t, JC₁F=242. 5Hz, C₁) δ 127.945 (s, Ph) δ 3. 613 \sim 3. 671 (m, 1H, Hb) δ 128. 510 (s, Ph) δ 4. 07 (d, JCHeHf=14. 96Hz, 1H, He) δ 4.733 (d, JCHeHf=14.96Hz, 1H, Hf) δ 128.889 (s, Ph) δ 135. 469 (s, Ph) δ 5. 804 (ddd, JCHaF β =55. 57Hz, JCHaF β =54. 16Hz,

JCHaCHb=5.92, 1H, Ha)

¹³C-NMR (75MHz, CDCl₃)

 δ 172.963 (s, C₆)

IR: 1765cm⁻¹ (C=0)

2934~3036cm⁻¹ (Ph, CH₃)
MS: 239.1096
【0028】実施例9
1 ーペンジルー 3 ーエチルー 4 ージフルオロメチルー 2
ーアゼチジノン
【化22】

 $C_{13}H_{15}F_2NO$ FW 239.27

d. r. =88:12

 19 F-NMR (470MHz, CDCl₃, C₆F₆)

 δ 38. 614 (ddd, JCF α F β =297. 55Hz, JCHaF α =54. 94H z, JCF α CHb=7. 63Hz, 1F, F α)

δ 39. 420 (ddd, JCF α F β =297. 55Hz, JCHaF β =54. 94H z, JCF β CHb=10. 68Hz, 1F, F β)

¹H-NMR (500MHz, CDCl₃)

δ 0.969 (t, JCHfCHdHe=7.33Hz, 3H, Hf)

 δ 1.595 (ddq, JCHdCHe=14.24Hz, JCHcCHd=8.64Hz, JCH dCHf=7.32Hz, 1H, Hd)

 δ 1.805 (ddq, JCHdCHc=14.24Hz, JCHcCHe=6.22Hz, JCH eCHf=7.32Hz, 1H, He)

 δ 3. 070 (ddd, JCHcCHd=8. 64Hz, JCHcCHe=6. 22Hz, JCHb CHc=2. 42Hz, 1H, Hc)

 δ 3. 316 (dddd, JCF β CHb=9. 97Hz, JCF α CHb=7. 42Hz, JCHaCHb=4. 94Hz, JCHbCHc=2. 42Hz, 1H, Hc) δ 4. 067 (dd, JCHgHf =14. 89Hz, JCFCHg=0. 73Hz, 1H, H

 δ 4.750 (d, JCHgHf =14.89Hz, 1H, Hf)

 δ 5.730 (dt, JcHaF =54.93Hz, JCHaCHb=4.89Hz, 1H, H $_{\rm a})$

δ 7. 20~7. 40 (m, 5H, Ph)

13C-NMR (75MHz, CDCl₃)

 δ 11.162 (s, C₅)

 $\delta 20.867$ (s, C_4)

δ 45. 541 (s, C₇)

 δ 52.897 (t, JC₃F=3.1Hz, C₃)

 δ 56. 248 (dd, JC₂F α =26. 9Hz, JC₂F β =24. 8Hz, C₂)

 δ 115. 512 (t, JC₁F=243. 5Hz, C₁)

 δ 127.983 (s, Ph)

δ 128.515 (s, Ph)

δ 128.900 (s, Ph)

δ 135. 401 (s, Ph)

 δ 168.987 (s, C₆)

IR: 1760cm⁻¹ (C=0)

2892~3036cm⁻¹ (CH₃CH₂-, Ph)

MS: 239.1094

【0029】実施例10

1-ベンジルー4-ジフルオロメチルー3-ヘプチルー

2-アゼチジノン

【化23】

 $C_{18}H_{25}N0$

FW 271.40

 19 F-NMR (470MHz, CDCl₃, C₆F₆)

 δ 38. 641 (ddd, JCF α F β =296. 02Hz, JCHaF α =54. 93H z, JCF α CHb=7. 63Hz, 1F, F α)

δ 39. 404 (ddd, JCF α F β =296. 02Hz, JCHaF β =54. 93H z, JCF β CHb=9. 15Hz, 1F, F β)

¹H-NMR (500MHz, CDCl₃)

δ 0.871 (t, JCH₂CH₃=7.02Hz, 3H, CH₃)

 δ 1. 20 \sim 1. 80 (m, 12H, Hd)

 δ 3. 102 (ddd, JCHcCH=8.66Hz, JCHcCH=6.35Hz, JCHbCH c=2.19Hz, 1H, Hc)

δ 3. 20~3. 30 (m, 1H, Hb)

 δ 4.065 (dd, JCHeHf=14.89Hz, JCFCHe=0.48Hz, 1H, H e)

δ 4.741 (d, JCHeHf=14.89Hz, 1H, Hf)

a)

a)

 δ 7. 20 \sim 7. 40 (m, 5H, Ph)

¹³C-NMR (50MHz, CDCl₃)

δ 14.070, 22.617, 26.8752, 27.720, 29.004, 29.231,

31.685 (s, C₂)

 δ 45.568 (s, C₆)

 δ 51.580 (t, JC₃f=3.1Hz, C₃)

 δ 56. 583 (dd, $JC_2F\alpha = 26.5Hz$, $JC_2F\beta = 25.0Hz$, C_2)

δ 115. 526 (t, JC, F=243. 6Hz, C,)

δ 127. 999, 128. 531, 128. 909, 135. 403 (s, Ph)

 δ 169. 218 (s, C₅)

【0030】実施例11

1 ーベンジルー 4 ージフルオロメチルー 3 ープロピルー 2 ーアゼチジノン

【化24】

 $C_{14}H_{17}F_{2}N0$

FW 253.29

d. e. =4. 2:1

 19 F-NMR (470MHz, CDCl₃, C₆F₆)

 δ 42. 080 (ddd, JCF α F β =296. 02Hz, JCHaF α =54. 94H

z, JCF α CHb=7.63Hz, 1F, F α)

 δ 42.856 (ddd, JCF α F β =296.02Hz, JCHaF β =55.69H

z, JCF β CHb=9. 92Hz, 1F, F β)

¹H-NMR (500MHz, CDCl₃)

 $\delta\,0.\,913$ (t, JCHfCHg=7.32Hz, 3H, Hg)

 δ 1. 30~1. 50 (m, 2H, Hf)

 δ 1.50 \sim 1.80 (m, 2H, Ha, He)

 δ 3. 116 (ddd, JCHcCHe=8. 68Hz, JCHcHf=5. 98Hz, JCHbC

Hc=2. 54Hz, 1H, Hc)

δ 4.070 (dd, JCHhHi=14.90Hz, JCHF=0.61Hz, 1H, Hh)

 δ 4.735 (d, JCHhHi=14.90Hz, 1H, Hi)

 δ 5. 660 (ddd, JCHaF α =55. 05Hz, JCHaF β =55. 55Hz,

JCHaCHb=4.76Hz, 1H, Ha)

 δ 7. 20 \sim 7. 40 (m, 5H, Ph)

¹³C-NMR (125MHz, CDCl₃)

 δ 13.724 (s, C₁)

 δ 20. 225 (s, C₅)

 δ 29.827 (s, C₄)

 δ 45.579 (s, C₃)

 δ 51. 377 (dd, $JC_3F\alpha = 3.82Hz$, $JC_3F\beta = 2.29Hz$, C_3)

δ 56. 887 (dd, $JC_2Fα = 27.27Hz$, $JC_2Fβ = 24.22Hz$, C_2)

 δ 115. 498 (t, JC₁F=243. 56Hz, C₁)

 δ 128.001 (s, Ph)

δ 128.541 (s, Ph)

δ 128.924 (s, Ph)

δ 135.419 (s, Ph)

 δ 169. 209 (s, Ph)

【0031】実施例12

1ーベンジルー3ー (1ーヒドロキシエチル) -4ージ

フルオロメチルー2-アゼチジノン

【化25】

【0032】実施例13

4-ジフルオロメチル-2-アゼチジノン

【化26】

 $C_4H_5F_2NO$

フロントページの続き

(51) Int. Cl. ⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 K 31/395 ABN

ACB

A STATE OF THE PARTY OF THE PAR