1

Analog 12.7

EE:1205 Signals and System Indian Institute of Technology, Hyderabad

Prashant Maurya **EE23BTECH11218**

Question 15: A 100μ F capacitor in series with a 40Ω resistance is connected to a 110V, 60Hz supply.

- (a) What is the maximum current in the circuit?
- (b) What is the time lag between the current maximum and the voltage maximum?

Solution

Symbol	Value	Description
V	110 V	Voltage Supplied
ν	60Hz	Frequency
R	40 Ω	Resistance
С	100 μF	Capacitance
ω	$2\pi\nu$	Angular Frequency
φ	$tan^{-1}\frac{1}{\omega CR}$	Phase Angle
I_0	$\frac{V_0}{Z}$	Max Current
V_0	$V \sqrt{2}$	Peak Voltage
Z	$\sqrt{R^2 + \frac{1}{\omega^2 C^2}}$	Impedance
H(s)	$\frac{V(s)}{I(s)}$	Transfer Function

TABLE 1: Given Parameters

Fig. 1: RC Circuit

Fig. 2: RC Circuit

$$H(s) = R + \frac{1}{sC} \tag{1}$$

$$H(s) = R + \frac{1}{sC}$$

$$\implies H(j\omega) = R + \frac{1}{j\omega C}$$
(1)
(2)

$$=\sqrt{R^2+\frac{1}{\omega^2C^2}}\tag{3}$$

$$= \sqrt{R^2 + \frac{1}{\omega^2 C^2}}$$

$$= \sqrt{40^2 + \frac{1}{(120\pi)^2 \times (10^{-4})^2}}$$
 (4)

$$=48\tag{5}$$

$$\therefore I(s) = \frac{V(s)}{H(s)} \tag{6}$$

$$=\frac{110}{48}$$
 (7)

$$=2.29$$
 (8)

(a) Angular frequency:

$$\omega = 2\Pi v = 2\pi \times 60 \tag{9}$$

Current is given as:

$$\Rightarrow I = \frac{V}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$$

$$= \frac{110}{\sqrt{1600 + \frac{10^8}{\omega^2}}}$$
(10)

$$=\frac{110}{\sqrt{1600 + \frac{10^8}{\omega^2}}}\tag{11}$$

For maximum current

$$\frac{dI_0}{d\omega} = 0 \tag{12}$$

$$\frac{dI_0}{d\omega} = 0 \qquad (12)$$

$$\implies \frac{V_0}{\omega^3 c^2 \sqrt{R^2 + \frac{1}{(\omega^2 c^2)^3}}} = 0 \qquad (13)$$

$$\omega = \infty$$
 (14)

Fig. 3: Current vs ω

Maximum current at $\omega = 120\pi$:

$$\Rightarrow I_0 = \frac{V_0}{\sqrt{40^2 + \frac{1}{(120\pi)^2 \times (10^{-4})^2}}}$$

$$= 3.24 \tag{15}$$

(b) In a capacitor circuit, the voltage lags behind the current by a phase angle of ϕ . This angle is given by the relation:

$$tan\phi = \frac{1}{\omega CR}$$

$$= \frac{1}{120\pi \times 10^{-4} \times 40}$$
(17)

$$=\frac{1}{120\pi \times 10^{-4} \times 40} \tag{18}$$

$$\implies \phi = \frac{33.56\pi}{180} rad \tag{19}$$

$$\therefore Time \ lag = \frac{\phi}{\omega}$$
 (20)

$$=\frac{33.56\pi}{180 \times 120\pi} \tag{21}$$

$$=1.55ms$$
 (22)

Fig. 4: I_0 vs V_0

(c) Plot of Impedance vs Angular Frequency

Fig. 5: Impedance vs ω