Problemas da semana 7

Repetições aninhadas

Problema 1 - Estou com sorte (ou não)

A megasena é um jogo de aposta em que são sorteadas 6 dezenas e em cada cartela o jogador anota 6 dezenas (aposta mínima). Na lotomania, o jogador marca 50 dezenas e são sorteadas 20. Escreva um programa que leia um inteiro \mathbf{m} ($1 \le m \le 30$), um inteiro \mathbf{n} ($m \le n \le 50$), representando a quantidade de números sorteados e a quantidade de números de uma aposta, respectivamente. Em seguida deve ler os \mathbf{m} números sorteados, os \mathbf{n} números da aposta e escrever na tela quantos números o jogador acertou. Note que o intervalo dos números sorteados/apostados é desconhecido (vide exemplo 3). Assuma que um número não aparece mais de uma vez no mesmo sorteio nem na mesma aposta.

Exemplos

Input	Output
6 6	2
1 37 18 25 43 39	
4 28 14 1 55 37	
20 50	12
20 71 77 69 19 75 38 82 97 58 13 89 91 56 62 32 39 0 57 34	
52 40 84 73 66 82 11 88 30 71 9 50 94 38 19 13 10 47 20 60 0 64 69 14 96 8	
67 54 42 46 78 92 12 56 1 27 62 97 21 68 87 65 34 99 79 63 76 61 17 70	
$3\ 2$	0
120 200 1094	
119 3	
$4\ 4$	3
85 142 185 18	
142 85 20 18	

Problema 2 - Os dias mais chuvosos

Escreva um programa que leia 12 inteiros, representando a quantidade de chuva em cada um desses meses (de Janeiro até Dezembro). O programa deve em seguida escrever na tela um ranking ordenado do mês com mais chuva para o mês com menos chuva. Em cada linha da saída deve constar o mês e a quantidade de chuva. Você pode utilizar o arquivo q2inicial.c disponível no github como código inicial. Para simplificar a questão, você pode assumir que não há dois meses com a mesma quantidade de chuva.

Para ordenar, utilize um desses três algoritmos: bubble sort, selection sort ou insertion sort.

Exemplos

Input	Output
61 94 203 272 236 353 242 134 47 22 28 25	Junho 353
	Abril 272
	Julho 242
	Maio 236
	Marco 203
	Agosto 134
	Fevereiro 94
	Janeiro 61
	Setembro 47
	Novembro 28
	Dezembro 25
	Outubro 22

Problema 3 - Esse sim é piloto

Alguns pilotos de Fórmula 1 vez ou outra conseguem algumas façanhas. Em 1983, no grande prêmio do Oeste dos Estados Unidos, John Watson largou em 22º lugar e conseguiu terminar em primeiro! Você então resolveu escrever um programa que facilite a identificação de pilotos que conseguem ganhar muitas posições.

Escreva um programa que leia um número inteiro \mathbf{n} representando a quantidade de pilotos em uma corrida de Fórmula 1 ($1 \le n \le 20$). Em seguida faça a leitura de \mathbf{n} inteiros, representando a **ordem** de largada e, depois, \mathbf{n} inteiros, representando a **ordem** de chegada. Os pilotos são **identificados pelos números de 1** a \mathbf{n} . O programa deve em seguida escrever na tela o **identificador do piloto** que mais ganhou posições. Se houver empate entre vários pilotos ou se ninguém ganhou posições, escreva **empate**.

A imagem a seguir ilustra a ordem de largada do Exemplo 1: largou em primeiro o piloto #2, em segundo o piloto #5, em terceiro o piloto #3, em quarto o piloto #4 e, por fim, o piloto #1 largou em último. Terminaram a corrida na seguinte ordem: piloto #1 em primeiro, seguido do piloto #5, piloto #2, piloto #3 e piloto #4. Nesse primeiro exemplo, o piloto #1 foi o que mais ganhou posições: 4.

Figure 1: Imagem do exemplo 1

Exemplos

T ,	
Input	Output
5	1
$2\ 5\ 3\ 4\ 1$	
$1\ 5\ 2\ 3\ 4$	
4	4
1 3 2 4	
3 4 2 1	
5	empate
2 5 3 4 1	
$2\ 5\ 3\ 4\ 1$	
3	empate
1 2 3	
2 3 1	