ECEN325 Ref Sheet

© Josh Wright April 3, 2017

Metric Prefixes			
peta	Р	10^{15}	1 000 000 000 000 000
tera	Τ	10^{12}	1 000 000 000 000
giga	G	10^{9}	1 000 000 000
mega	Μ	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
deca	da	10^{1}	10
one		10^{0}	1
deci	d	10^{-1}	0.1
centi	\mathbf{c}	10^{-2}	0.01
milli	m	10^{-3}	0.001
micro	μ	10^{-6}	0.000 001
nano	n	10^{-9}	0.000 000 001
pico	р	10^{-12}	0.000 000 000 001
femto	f	10^{-15}	0.000 000 000 000 001
			T.7 T.7

Ohm's Law V = IR, $I = \frac{V}{R}$, $R = \frac{V}{I}$ Complex Numbers

- $z = x + iy = re^{i\theta} = r[\cos(\theta) + i\sin(\theta)]$
- $[r(\cos(\theta) + i\sin(\theta))]^n = r^n[\cos(n\theta) + i\sin(n\theta)]$
- $\bullet z^n = (re^{i\theta}) = r^n e^{in\theta}$
- $\bullet \frac{1}{i} = -i$
- $\sqrt[n]{z} = \sqrt[n]{r}e^{\frac{\theta}{n} + \frac{2k\pi}{n}}$ for $n \in N^*$ (ints ≥ 0)
- $\bullet e^{j\theta} = \cos(\theta) + j\sin(\theta)$
- $\bullet e^{-j\theta} = \cos(\theta) j\sin(\theta)$
- $\bullet \cos(\theta) = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$ $\bullet \sin(\theta) = \frac{1}{2j} (e^{j\theta} e^{-j\theta})$
- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$
- $\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$
- $\bullet \angle \frac{a}{b} = \angle a \angle b$

- $\bullet \cos^2(a) + \sin^2(a) = 1$
- $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$
- $\bullet \sin(2a) = 2\sin(a)\cos(a)$
- $\bullet \cos^2(a) = \frac{1}{2}(1 + \cos(2a))$
- $\bullet \sin^2(a) = \frac{1}{2}(1 \cos(2a))$

- **Diodes** • ideal:
- $*I_D(V_D < 0) = 0$
- $*I_D(V_D \ge 0) = \infty$
- constant drop model: (just the ideal model shifted right by 0.7V)
 - $*I_D(V_D < 0.7) = 0$
 - $*I_D(V_D \ge 0.7) = \infty$
- exponential model: $I_D = I_S(e^{\frac{v_D}{nV_T}} 1)$
- $*I_S = 10^{-12} \text{A (saturation current)}$
- $*V_T = 25 \text{mV}$
- small signal resistance: $R_d = \frac{nV_T}{I_D}$
- $*I_D$: average (DC) current through diode (due to forward bias)
- bridge rectifier shape: square/diamond with all the diodes point toward the + end of the output (away from ground)
- current goes \rightarrow from cathode (-) to anode (+)

Design an (unregulated) AC adapter

• V_S : AC voltage input

- *standard AC voltage is $110\sqrt{2}V \approx 155.563V$
- V_{S2} : output of transformer (still AC)
- V_p : peak DC output
- * V_r : peak-to-peak ripple voltage (maximum variation)
- $V_p = V_{S2}$ (diode voltage)
- *diode voltage = 0.7V for single wave rectifier or center-tapped transformer
- * diode voltage = 1.4V for full-wave rectifier
- *(corresponds to how many diodes you need)
- turns ratio = $n = \frac{V_S}{V_{S2}}$
- apparent load resistance: $R_L = \frac{V_o}{I_L}$
- ripple voltage: $V_r = \frac{f}{R_L C}$
- *f: actual ripple frequency (double for full-wave
- *C: filter cap size
- Peak Inverse Voltage: $PIV = V_{S2} 0.7V$
- avg diode current: $I_{Davg} = I_L \left(1 + \pi \sqrt{\frac{2}{V_r}} \right)$
- max diode current: $I_{Dmax} = I_L \left(1 + 2\pi \sqrt{\frac{2}{V_r}}\right)$ * only difference is $\pi \to 2\pi$

Transistors

- $V_T = 25 \text{mV}$ at room temperature (according to textbook and prof),
- $V_T = 26 \text{mV}$ at room temperature (according to lab)
- β : a physical constant of the transistor. Usually about
- $I_B + I_C = I_E$, $I_C = \beta I_B$, $I_E = (1 + \beta)I_B$ $\alpha = \frac{\beta}{1+\beta}$, $I_C = \alpha I_E$
- $\bullet I_C = I_S(e^{\frac{V_{BE}}{nV_T}}),$
- AC (assumes correct DC bias): $g_m = \frac{1}{r_e} = \frac{I_C}{V_T}$

Current Mirror

- $\bullet\,\mathrm{Q}1$ has the base shorted to collector, $\mathrm{Q}2$ does not
- $R_{bias} = R_{ref}$: the current that is mirrored
- $\bullet I_{ref} = (V_{CC} 0.7)/R_{ref}$
- $\bullet R_{load}$ has the same current through it as R_{ref} does * that is, $I_{ref} = I_{load}$
- you can chain together multiple transistors (Q3,Q4...) all off of the same Q1 and they will all get the same current
- *In this case, each Q2,Q3... output is considered separate from each other in both DC and AC analysis
- only applies when transistors are matched! (we assume they are)

Transistor circuits by inspection

- this all assumes that the transistor is properly DC
- three types of amplifier circuits: common emitter, common base, common collector
 - *CE, CB, CC
- *the "common" pin is the one that is neither AC input nor output
- intrinsic gain: gain directly from the input pin of the transistor to the output, ignoring any source resistance or such things whatever

*when you chain multiple amplifiers together, this is the one you use

• when you're driving a finite-impedance load (a load other than open circuit), you have to consider R_o as

*this will change the gain, which is why it's often helpful to put a CC buffer at the end of an amplifier

• R_i : input impedance: impedance as seen from the input *includes the transistor, does not include R_s

*includes the transit
$$g_m = \frac{I_C}{V_T}$$
 $r_\pi = \frac{beta}{g_m}$
 $r_e = \frac{V_T}{I_E} = \frac{\alpha}{g_m} \approx \frac{1}{g_m}$
 $r_o = \frac{V_A}{I_C} \approx \infty$

• CE: Common Emitter

*intrinsic gain:
$$\frac{V_o}{V_b} = -\alpha \frac{R_C}{r_e + R_E} \approx -\frac{R_C}{r_e + R_E}$$

$$*R_i = (\beta + 1)(r_e + R_E)$$

*input: base; output: collector *intrinsic gain: $\frac{V_o}{V_b} = -\alpha \frac{R_C}{r_e + R_E} \approx -\frac{R_C}{r_e + R_E}$ * $R_i = (\beta + 1)(r_e + R_E)$ * $R_o = R_C$ *if you have a R_L then you have to put that in parallel with R_C when calculating $\frac{V_o}{V_i}$

• CB: Common Base
$$*\frac{V_o}{V_b} = \alpha \frac{R_C}{R_i} \approx \frac{R_C}{R_i}$$

$$*R_i = r_e + \frac{R_B}{\beta + 1}$$

$$*R_o = R_C$$

* $R_{o} = r_{e} + \frac{1}{\beta+1}$ * $R_{o} = R_{C}$ • CC: Common Collector * gain ≈ 1 because it's a buffer * $\frac{V_{o}}{V_{b}} = \frac{R_{E}}{r_{e}+R_{E}}$ * $R_{i} = (\beta+1)(r_{e}+R_{E})$ * $R_{o} = R_{E}||r_{e} = \frac{R_{E}*r_{e}}{R_{E}+r_{e}}$

$$*R_i = (\beta + 1)(r_e + R_E)$$

$$*R_o = R_E || r_e = \frac{R_E * r_e}{R_E + r_e}$$