微积分 A(2) 第六次习题课题目(第九周)

1. 设有空间区域 Ω_1 : $x^2 + y^2 + z^2 \le R^2$, $z \ge 0$,

及 Ω_2 : $x^2 + y^2 + z^2 \le R^2, x \ge 0, y \ge 0, z \ge 0$, 则 ()。

(A)
$$\iiint_{\Omega_t} x dv = 4 \iiint_{\Omega_2} x dv$$

(B)
$$\iiint_{\Omega_{1}} y dv = 4 \iiint_{\Omega_{2}} y dv$$

(C)
$$\iiint_{\Omega_1} z dv = 4 \iiint_{\Omega_2} z dv$$

(A)
$$\iiint_{\Omega_{1}} x dv = 4 \iiint_{\Omega_{2}} x dv$$
 (B)
$$\iiint_{\Omega_{1}} y dv = 4 \iiint_{\Omega_{2}} y dv$$
 (C)
$$\iiint_{\Omega_{1}} z dv = 4 \iiint_{\Omega_{2}} z dv$$
 (D)
$$\iiint_{\Omega_{1}} x y z dv = 4 \iiint_{\Omega_{2}} x y z dv$$

2.选择题

(1) 己知
$$f \in C^3(\mathbb{R}^3)$$
,则 $\int_0^1 dx \int_0^x dy \int_0^y f(x, y, z) dz = ($

A.
$$\int_{0}^{1} dy \int_{0}^{y} dx \int_{0}^{y} f(x, y, z) dz$$

B.
$$\int_{0}^{1} dx \int_{0}^{x} dz \int_{0}^{z} f(x, y, z) dy$$

C.
$$\int_0^1 dy \int_0^y dz \int_y^1 f(x, y, z) dx$$

D.
$$\int_{0}^{1} dz \int_{0}^{z} dy \int_{y}^{1} f(x, y, z) dx$$

(2)
$$\int_0^1 dz \int_z^1 dy \int_y^1 \frac{\cos z}{1-z} dx = \mathbf{I}$$

A.
$$\frac{1-\cos 1}{2}$$
 B. $\frac{1-\sin 1}{2}$ C. $\frac{1}{2}$ D. $\frac{\sin 1 + \cos 1}{2}$

3. 交换积分次序:
$$\int_0^1 dx \int_0^{1-x} dy \int_0^{x+y} f(x, y, z) dz$$

(1) 先积 y ,再积 x ,最后积 z ; (2) 先积 x ,再积 z ,最后积 y .

4. 证明:
$$\int_0^1 dx \int_x^1 dy \int_x^y f(x) f(y) f(z) dz = \frac{1}{6} \left(\int_0^1 f(x) dx \right)^3$$
.

5. 求三重积分:
$$I = \iiint_{\Omega} (x+y+z) dv$$
 , 其中 $\Omega = \left\{ (x,y,z) \middle| \begin{cases} 0 \le z \le \sqrt{1-y^2-z^2} \\ z \le \sqrt{x^2+y^2} \end{cases} \right\}$

6. 求
$$\iiint_{\Omega} (1+x^2+y^2)z dx dy dz$$
, 其中 $\Omega = \{(x,y,z) | \sqrt{x^2+y^2} \le z \le H\}$.

(1)
$$I = \iiint_{\Omega} (x + 2y + 3z) dx dy dz$$
,其中积分区域 Ω 是由 0 % x % a , 0 % y % b , 0 % z % c 所确定。

(2) 计算
$$\iiint\limits_{x^2+y^2+z^2\leq 2z}(ax+by+cz)dxdydz$$

8. 设 Ω 由曲面 $x^2 < y^2$ N az 和曲面z N $2a > \sqrt{x^2 < y^2}$ (a O O) 所围成,将 f(x,y,z)dv 化成三类坐标系下的三次积分。

9.求下列体积

- (1) 求由曲面 $S: (x^2 + y^2)^2 + z^4 = z$ 所围立体 Ω 的体积。
- (2) 由六个平面 $3x-y-z=\pm 1$, $-x+3y-z=\pm 1$, $-x-y+3z=\pm 1$ 所围立体的体积为
- (3) 由 $z N x > y, z N 0, x^2 < y^2 N ax, (a 0 0)$ 围成立体体积;
- (4) 设 $A = (a_{ij})$ 为 3×3 实对称正定矩阵, $\sum_{i,j=1}^{3} a_{ij} x_i x_j = 1$ 表示三维空间的一个椭球面。证

明该椭球面所包围立体V 的体积为 $|V| = \frac{4f}{3\sqrt{\det A}}$ 。

10.令曲面S 在球坐标下方程为 $r=a(1+\cos_n)$, Ω 是S 围成的有界区域,计算 Ω 在直角坐标系下的形心坐标。

11.设
$$V = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$
, $h = \sqrt{a^2 + b^2 + c^2} > 0$, $f(u)$ 在区间 $[-h, h]$ 上连

续, 证明:
$$\iiint_V f(ax+by+cz)dxdydz = f\int_{-1}^1 (1-t^2)f(ht)dt$$
。

12. 设
$$f(t)$$
 在 $[0,+\infty)$ 上连续, $F(t) = \iiint_{\Omega} (z^2 + f(x^2 + y^2)) dx dy dz$,其中

$$\Omega = \{(x, y, z) \mid 0 \le z \le h, x^2 + y^2 \le t^2 \} \quad (t > 0) \cdot \vec{x} \lim_{t \to 0^+} \frac{F(t)}{t^2}.$$

13. 计算
$$I = \iint_D \frac{1}{\sqrt{x^2 + y^2}} \left(y \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial y} \right) d\dagger$$
, 其中 $D = \{(x, y) | x^2 + y^2 \le R^2 \}$.