Bagging and Random Forests

David Rosenberg

New York University

February 25, 2015

Approximation Error and Estimation Error

Recall the excess risk decomosition:

Excess
$$\operatorname{Risk}(\hat{f}_n) = \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}}^*)}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}^*) - R(f^*)}_{\text{approximation error}}$$

- ullet Restricting the hypothesis space ${\mathcal F}$
 - leads to approximation error
 - but helps to reduce estimation error
- Now, we'll switch to the bias/variance terminology more common when discussing the topics of this lecture.

Bias and Variance

- ullet Restricting the hypothesis space ${\mathcal F}$ "biases" the fit
 - towards a simpler model and
 - away from the best possible fit of the training data.
- Full, unpruned decision trees have very little bias.
- Pruning decision trees introduces a bias.
- Variance describes how much the fit changes across different random training sets.
- Decision trees are found to be high variance.

Bias and Variance

- $\bullet \ \ {\rm Input \ space} \ {\mathfrak X}$
- Output space y
- $(X, Y) \sim P_{X \times Y}$
- From Homework #1, recall that for square error, the bayes prediction function is

$$f^*(x) = \mathbb{E}[Y \mid X = x]$$

- Let's consider a prediction function \hat{f} trained on a random set of data.
- \hat{f} is random because training data is random.

Excess Risk for Square Error

• Excess risk, conditional on X = x is

ExcessRisk
$$(\hat{f} \mid X = x)$$
 = $\mathbb{E}\left[\left(Y - \hat{f}(x)\right)^2 \mid X = x\right]$
Risk of \hat{f}
- $\mathbb{E}\left[\left(Y - f^*(x)\right)^2 \mid X = x\right]$
Risk of f^*

Can show

ExcessRisk
$$(\hat{f} \mid X = x) = \mathbb{E}\left[\left(\hat{f}(x) - f^*(x)\right)^2\right].$$

• What's random?

Bias-Variance Decomposition for Excess Risk

• Prediction $\hat{f}(x)$ for any fixed input x has bias and variance.

$$\operatorname{Bias}(\hat{f}(x)) = \mathbb{E}\left[\hat{f}(x)\right] - f^{*}(x)$$

$$\operatorname{Var}\left(\hat{f}(x)\right) = \mathbb{E}\left[\left(\hat{f}(x) - \mathbb{E}\left[\hat{f}(x)\right]\right)^{2}\right]$$

Can show bias-variance decomposition for excess risk:

$$\mathbb{E}\left[\left(\hat{f}(x) - f^*(x)\right)^2\right] = \left[\operatorname{Bias}(\hat{f}(x))\right]^2 + \operatorname{Var}\left(\hat{f}(x)\right)$$

• Could we reduce variance without increasing bias?

Variance of a Mean

- Let Z_1, \ldots, Z_n be independent r.v's with mean μ and variance σ^2 .
- Suppose we want to estimate μ .
- We could use any single Z_i to estimate μ .
- Variance of estimate would be σ^2 .
- Let's consider the average of the Z_i 's.
- Average has the same expected value but smaller variance:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \frac{\sigma^{2}}{n}.$$

• Can we apply this to reduce variance of prediction models?

Averaging Independent Prediction Functions

- Suppose we have B independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$ be the prediction models for each set.
- Define the average prediction function as:

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).$$

- The average prediction function has lower variance than an individual prediction function.
- But in practice we don't have B independent training sets...

Variability of an Estimator

- Suppose we have a random sample X_1, \ldots, X_n .
- Compute some function of the data, such as

$$\hat{\mu} = \phi(X_1, \ldots, X_n).$$

- We want to put error bars on $\hat{\mu}$, so we need to estimate $Var(\hat{\mu})$.
- Ideal scenario:
 - Attain B samples of size n.
 - Compute $\hat{\mu}_1, \ldots, \hat{\mu}_B$.
 - The sample variance of $\hat{\mu}_1, \dots, \hat{\mu}_B$ estimates $Var(\hat{\mu})$
- Again, we don't have B samples. Only 1.

The Bootstrap Sample

Definition

A **bootstrap sample** from $\mathcal{D} = \{X_1, \dots, X_n\}$ is a sample of size n drawn with replacement from \mathcal{D} .

- \bullet In a bootstrap sample, some elements of ${\mathfrak D}$
 - will show up multiple times,
 - some won't show up at all.
- Each X_i has a probability $(1-1/n)^n$ of not being selected.
- Recall from analysis that for large n,

$$\left(1-\frac{1}{n}\right)^n \approx \frac{1}{e} \approx .368.$$

 \bullet So we expect ~63.2% of elements of ${\mathfrak D}$ will show up at least once.

The Bootstrap Method

Definition

A **bootstrap method** is when you *simulate* having B independent samples by taking B bootstrap samples from the sample D.

- Given original data \mathfrak{D} , compute B bootstrap samples D^1, \ldots, D^B .
- For each bootstrap sample, compute some function

$$\phi(D^1), \ldots, \phi(D^B)$$

- Work with these values as though D^1, \ldots, D^B were independent.
- Amazing fact: Things usually come out very close to what we'd get with independent samples.

The Bootstrap Method

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James. D. Witten, T. Hastie and R. Tibshirani.

Independent vs Bootstrap Samples

- Original sample size n = 100 (simulated data)
- $\hat{\alpha}$ is a complicated function of the data.
- Compare values of $\hat{\alpha}$ on
 - 1000 independent samples of size 100, vs
 - 1000 bootstrap samples of size 100

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Bagging

- Suppose we had *B* independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$ be the prediction models from each set.
- Define the average prediction function as:

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).$$

- But we don't have B independent training sets.
- Bagging is when we use B bootstrap samples as training sets.
- Bagging estimator given as

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}^{*}(x),$$

where \hat{f}_{b}^{*} is trained on the b'th bootstrap sample.

• Bagging proposed by Leo Breiman (1996).

Out-of-Bag Error Estimation

- Each bagged predictor is trained on about 63% of the data.
- Remaining 37% are called out-of-bag (OOB) observations.
- For ith training point, let

$$S_i = \{b \mid \mathcal{D}^b \text{ does not contain } i \text{th point}\}.$$

• The OOB prediction on x_i is

$$\hat{f}_{OOB}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b^*(x).$$

- The OOB error is a good estimate of the test error.
- For large enough B, OOB error is like cross validation.

Bagging Trees

- Input space $\mathfrak{X}=\mathsf{R}^5$ and output space $\mathfrak{Y}=\{-1,1\}.$
- Sample size N = 30 (simulated data)

Bagging Trees

 Two ways to combine classifications: consensus class or average probabilities.

From ESL Figure 8.10

Variance of a Mean of Correlated Variables

• For Z, Z_1, \ldots, Z_n i.i.d. with $\mathbb{E}Z = \mu$ and $\text{Var}Z = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if Z's are correlated?
- Suppose $\forall i \neq j$, $Corr(Z_i, Z_j) = \rho$. Then

$$\operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\rho\sigma^{2}+\frac{1-\rho}{n}\sigma^{2}.$$

• For large n, the $\rho\sigma^2$ term dominates – limits benefit of averaging.

Random Forest

Main idea of random forests

Use **bagged decision trees**, but modify the tree-growing procedure to reduce the correlation between trees.

- Key step in random forests:
 - When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size *m*.
- Typically choose $m \approx \sqrt{p}$, where p is the number of features.
- Can choose *m* using cross validation.

Random Forest: Effect of *m* size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Random Forest: Effect of m size

 See movie in Criminisi et al's PowerPoint: http://research.microsoft.com/en-us/um/people/antcrim/ ACriminisi_DecisionForestsTutorial.pptx