CSE 105: Data Structures and Algorithms-I (Part 2)

Instructor
Dr Md Monirul Islam

Graphs and Trees: Representation and Search

Graph: Definition

- A graph is a pair (*V*, *E*), where
 - V is a set of nodes, called vertices
 - *E* is a collection of pairs of vertices, called edges
- V(G) and E(G) represent the sets of vertices and edges of G, respectively
- Example:

Graph: Definition

- A tree is a special type of graph!
- A tree is a graph that is connected and acyclic.

Applications

OElectronic circuits

- Printed circuit board
- Integrated circuit

OTransportation networks

- Highway network
- Flight network

OComputer networks

- Local area network
- Internet
- Web

ODatabases

• Entity-relationship diagram

What can we do with graphs?

- Find a path from one place to another
- Find the shortest path from one place to another
- Determine connectivity
- Find the "weakest link" (min cut)
 - check amount of redundancy in case of failures
- Find the amount of flow that will go through them

Edge and Graph Types

- ODirected edge
 - ordered pair of vertices (a, b)
 - first vertex a is the origin
 - second vertex **b** is the destination

Edge and Graph Types

- ODirected edge
 - ordered pair of vertices (a, b)
 - first vertex *a* is the origin
 - second vertex **b** is the destination
- OUndirected edge
 - unordered pair of vertices (a, b)

Edge and Graph Types

- ODirected edge
 - ordered pair of vertices (a, b)
 - first vertex *a* is the origin
 - second vertex **b** is the destination
- OUndirected edge
 - unordered pair of vertices (a, b)
- ODirected graph (Digraph)
 - all the edges are directed
- OUndirected graph
 - all the edges are undirected
- OMixed graph
 - some edges are undirected and some edges are directed

- End vertices (or endpoints) of an edge
 - *u* and *v* are the *endpoints* of *a*

- End vertices (or endpoints) of an edge
 - *u* and *v* are the *endpoints* of *a*
- Edges incident to a vertex
 - *a, d,* and *b* are *incident* to *v*

- End vertices (or endpoints) of an edge
 - *u* and *v* are the *endpoints* of *a*
- Edges incident to a vertex
 - *a, d,* and *b* are *incident* to *v*
- Adjacent vertices
 - *u* and *v* are *adjacent*

- End vertices (or endpoints) of an edge
 - *u* and *v* are the *endpoints* of *a*
- Edges incident to a vertex
 - *a*, *d*, and *b* are *incident* to *v*
- Adjacent vertices
 - \mathbf{u} , \mathbf{x} and \mathbf{w} are adjacent vertices of \mathbf{v}

- End vertices (or endpoints) of an edge
 - *u* and *v* are the *endpoints* of *a*
- Edges incident to a vertex
 - a, d, and b are incident to v
- Adjacent vertices
 - *u* and *v* are *adjacent*
- Degree of a vertex
 - x has degree 5

- Adjacent vertices
 - *u* and *v* are *adjacent*
- Degree of a vertex
 - *x* has *degree* 5
- Parallel edges
 - *h* and *i* are *parallel edges*
- Self-loop
 - *j* is a *self-loop*

- Outgoing edges of a vertex
 - (a, b) and (a, c) are outgoing edges of vertex a

- Outgoing edges of a vertex
 - (a, b) and (a, c) are outgoing edges of vertex a
- Incoming edges of a vertex
 - (b, c), (d, c) and (a, c) are incoming edges of vertex c

- Outgoing edges of a vertex
 - (a, b) and (a, c) are outgoing edges of vertex a
- Incoming edges of a vertex
 - (b, c), (d, c) and (a, c) are incoming edges of vertex c
- In-degree of a vertex
 - c has in-degree 3
 - b has in-degree 1

- Outgoing edges of a vertex
 - (a, b) and (a, c) are outgoing edges of vertex a
- Incoming edges of a vertex
 - (b, c), (d, c) and (a, c) are incoming edges of vertex c
- In-degree of a vertex
 - c has in-degree 3
 - b has in-degree 1
- Out-degree of a vertex
 - *a* has *out-degree* 2
 - b has out-degree 1

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V, b, X, h, Z)$ is a simple path

- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V, b, X, h, Z)$ is a simple path
 - $P_2=(U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple

• *Dense* graph: $|E| \approx |V|^2$; *Sparse* graph: $|E| \approx |V|$ or |E| << |V|

- Dense graph: $|E| \approx |V|^2$; Sparse graph: $|E| \approx |V|$ or |E| << |V|
- A weighted graph associates weights with either the edges or the vertices

- Dense graph: $|E| \approx |V|^2$; Sparse graph: $|E| \approx |V|$ or |E| << |V|
- A weighted graph associates weights with either the edges or the vertices
- A complete graph is a graph that has the maximum number of edges
 - for undirected graph with n vertices, the maximum number of edges is n(n-1)/2
 - for directed graph with n vertices, the maximum number of edges is n(n-1)

A complete undirected graph

• Cycle

• A cycle is a path whose start and end vertices are the same

• each edge is preceded and followed by its endpoints

• Cycle

- A cycle is a path whose start and end vertices are the same
- each edge is preceded and followed by its endpoints

• Simple cycle

• A cycle is simple if each edge is distinct and each vertex is distinct, except for the first and the last one

Examples

• $C_1 = (V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle

• Simple cycle

• A cycle is simple if each edge is distinct and each vertex is distinct, except for the first and the last one

Examples

• $C_1 = (V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle

• $C_2=(U, c, W, e, X, g, Y, f, W, d, V, a, U)$ is a cycle that is not simple

- A subgraph of G is a graph G' such that
 - V(G') is a subset of V(G) [$V(G') \subseteq V(G)$] and
 - E(G') is a subset of E(G) [$E(G') \subseteq E(G)$]

A subgraph, G'

- A subgraph of G is a graph G' such that
 - V(G') is a subset of V(G) [V(G') ⊆ V(G)] and
 - E(G') is a subset of E(G) $[E(G') \subseteq E(G)]$
- A spanning subgraph G' of G is a subgraph of G that contains all the vertices of G, that is
 - V(G') is equal to V(G) [V(G') = V(G)] and
 - E(G') is a subset of E(G) $[E(G') \subseteq E(G)]$

A spanning subgraph (tree)

- A subgraph of G is a graph G' such that
 - V(G') is a subset of V(G) [V(G') ⊆ V(G)] and
 - E(G') is a subset of E(G) $[E(G') \subseteq E(G)]$
- A spanning subgraph G' of G is a subgraph of G that contains all the vertices of G, that is
 - V(G') is equal to V(G) [V(G') = V(G)] and
 - E(G') is a subset of E(G) $[E(G') \subseteq E(G)]$
- A forest is a graph without cycles.
- A (free) tree is a connected forest, that is, a connected graph without cycles.
- A spanning tree of a graph G is a spanning subgraph that is a (free) tree.

A spanning subgraph (tree)

Properties

Property 1

For an undirected graph

$$\Sigma_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{m}$$

Proof: each edge is counted twice

Notation

n number of verticesm number of edgesdeg(v) degree of vertex v

Properties

Property 1

For an undirected graph

$$\Sigma_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{m}$$

Proof: each edge is counted twice

Property 2

For a directed graph

$$\Sigma_v \text{ indeg}(v) = \Sigma_v \text{ outdeg}(v) = m$$

Proof: each edge is counted once for in-degree and once for out-degree

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Properties

Property 2

For a directed graph

$$\Sigma_{v}$$
 indeg $(v) = \Sigma_{v}$ outdeg $(v) = m$

Proof: each edge is counted once for in-degree and once for out-degree

Property 3

If G is a simple undirected graph, then $m \le n (n-1)/2$, and if G is a simple directed graph, then $m \le n (n-1)$.

Proof: each vertex has degree at most (n - 1). Then use Property 1 and Property 2.

Notation

n number of verticesm number of edgesdeg(v) degree of vertex v

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

- Assume $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n x n matrix A:
 - A[i, j] = 1 if edge $(i, j) \in E$ (or weight of edge) = 0 if edge $(i, j) \notin E$

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0		0	0
4	0	0	1	0

- Assume $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n x n matrix A:
 - A[i, j] = 1 if edge $(i, j) \in E$ (or weight of edge) = 0 if edge $(i, j) \notin E$

				7	
	Α	1	2	3	4
	1	0	1	1	0
i	2	0	0	1	0
	_3	0	0	1 1 0	0
	4	0	0	1	0

Undirected Graph

Directed Graph

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Symmetric matrix

1 0 1 0 1 0 0 2 0 0 0 0 1 0	_
2 0 0 0 1 0)
)
3 0 0 0 0 1 1 4 0 1 0 0 0 0	
4 0 1 0 0 0 0)
5 0 0 0 1 0 0)
6 0 0 0 0 0 1	8

may **NOT** be symmetric

Pros:

- Simple to implement
- Easy and fast to tell if a pair (i, j) is an edge: simply check if A[i, j] is 1 or 0
- Can be very efficient for small graphs
- Good for dense graphs (why?)

Cons:

■ No matter how few edges the graph has, the matrix takes $O(n^2)$, i.e., $O(|V|^2)$ in memory

Adjacency Lists Representation

- A graph is represented by a one-dimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent to node i.
 - The nodes in the list L[i] are in NO particular order

Adjacency Lists Representation

Adjacency Lists Representation

Pros:

- Saves on space (memory): the representation takes O(|V|+|E|) memory.
- Good for large, sparse graphs (e.g., planar maps)

How to find whether there is an edge (4,1)?

Cons:

It can take up to O(n) time to determine if a pair of nodes (i, j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

Tree: Definition

- A tree is a special type of graph!
- A tree is a graph that is connected and acyclic.
- A tree consists of one or more nodes
- a free tree has NO special node.

- a rooted tree has a special node, e.g., first node or root.
- every node has a parent except the root
- every node has zero or more children

- a rooted tree has a special node, e.g., first node or root.
- every node has a parent except the root
- every node has zero or more children

degree of a node:

No. of children of a node

degree (c) = 3, degree (e) = 2, degree (d) = 1others have degree 0

- ◆Leaf nodes: nodes with degree 0: a, d, f, b
- ◆Internal nodes: other nodes: *c, e*

