ÎNTREBĂRI CU RĂSPUNSURI MULTIPLE

1. Vectorul de poziție al unui punct material este: $\vec{r} = 3\vec{i} - 4\vec{j} + 5\vec{k}$. Alegeți propozițiile adevărate:

a) $r_z = 5;$ b) $\vec{r}_z = 5;$ c) $|\vec{r}| = 7,07;$ d) $|\vec{r}| = 4,24;$ e) $\vec{r}_x = 3\vec{i}$; f) $r_v = 4$.

 \mathbf{R} : a, c, e.

2. Legile parametrice ale mişcării unui punct material sunt: $x(t) = 7\sin 3t$ (m) şi $y(t) = 5\cos 3t$ (m).

Traiectoria mişcării este:

- a) o elipsă de semiaxe A = 7 m și B = 5 m;
- b) un cerc de rază R = 9.43 m;
- c) pe axa Ox, proiecția punctului se deplasează între punctele de coordonate $x_1 = 7 \text{ m}$ şi $x_2 = -7 \text{ m}$;
 - d) pe axa O_{y_1} projecția punctului se deplasează între punctele $y_1 = 5$ m

Şi $y_2 = -5 \text{ m};$

- e) o dreaptă, y = 8 + 3x;
- f) un arc de hiperbolă, $x \cdot y = 40$.

 \mathbf{R} : a, c, d.

- 3. Dacă mişcarea unidimensională unui punct material descrisă este de: $x = -2t^2 + 3t + 6$, (m), atunci:
 - a) traiectoria este o parabolă având coordonatele vârfului : $t_m=3/4$ s și $x_m=7,13$ m;
 - b) $a=-4 \text{ m/s}^2=\text{const.}$; c) $v_0=3 \text{ m/s}$;
 - d) $a=4 \text{ m/s}^2=\text{const.}$; e) $v_0=6 \text{ m/s}$; f) $x_0 = 6$ m.

R: a, b, c, e, f.

4. Miscarea unui punct material este descrisă de ecuațiile: $x(t) = 3 \sin 2t$ (m) și $y(t) = 3 \cos 2t$ (m). Unghiul dintre vectorii \vec{r} și \vec{a} , la orice moment, este :

a) 360 grd; b) $\pi/2$; c) π ;

- *d*) 180 grd; *e*) zero;

f) variabil.

. PROBLEME REZOLVATE

1. Să se studieze mișcarea unui punct material de masă m în lungul axei Ox, dacă asupra lui acționează o forță care se opune mișcării și a cărei mărime este proporțională cu pătratul vitezei momentane. Se cunosc condițiile inițiale: $x(t_0) = x_0$; $\dot{x}(t_0) = \dot{x}_0$.

Rezolvare:

Ecuația de mișcare:
$$m\ddot{x} = -k\dot{x}^2 \Leftrightarrow \frac{d\dot{x}}{\dot{x}^2} = -\frac{k}{m}dt$$
.

Dacă integrăm după timp obținem:
$$-\frac{1}{\dot{x}} = -\frac{k}{m}(t - t_0) + C$$
;

Din condițiile inițiale:
$$\dot{x}(t_0) = \dot{x}_0$$
. rezultă $C = -\frac{1}{\dot{x}_0}$.

Asfel, dependența vitezei de timp este:
$$\dot{x}(t) = \frac{\dot{x}_0}{1 + \frac{k\dot{x}_0}{m}(t - t_0)}$$
.

Integrând încă o dată după timp, se determină legea de mișcare:

$$x(t) = x_0 + \frac{m}{k} \ln \left[1 + \frac{k\dot{x}_0}{m} (t - t_0) \right].$$

Observație:
$$\lim_{t\to\infty} \dot{x}(t) = 0$$
; $\lim_{t\to\infty} x(t) = \infty$.

2Un corp cu masa m = 0.5 kg, se mişcă în planul orizontal xOy astfel încât vectorul său de poziție este :

$$\vec{r} = 2 \cos \omega t \cdot \vec{i} + 2 \sin \omega t \cdot \vec{j}$$
 (m), cu $\omega > 0$, const.
Se cere:

- 1) să se precizeze pe ce traiectorie se va deplasa particula;
- 2) să se determine viteza particulei la u moment oarecare t;
- 3) să se arate că forța care acționează asupra particulei este tot timpul orientată către originea sistemului de coordonate;
- 4) să se calculeze accelerația tangențială și accelerația normală într-un punct oarecare de pe traiectorie.

Rezolvare:

1)
$$\vec{r} = x \cdot \vec{i} + y \cdot \vec{j}; \ x = 2\cos\omega t; \ y = 2\sin\omega t;$$
$$\cos^2\omega t = x^2/4; \sin^2\omega t = y^2/4;$$

 $\cos^2 \omega t + \sin^2 \omega t = 1$, rezultă $x^2 + y^2 = 4$, traiectoria este un cerc de rază r = 2 (m).

2)
$$\vec{v} = \dot{\vec{r}} = -2\omega \sin \omega t \cdot \vec{i} + 2\omega \cos \omega t \cdot \vec{j}$$

$$|\vec{v}| = \sqrt{4\omega^2 \sin^2 \omega t + 4\omega^2 \cos^2 \omega t} = 2\omega (m/s).$$

3) $\vec{a} = \ddot{\vec{r}} = -2\omega^2 \cos \omega t \cdot \vec{i} - 2\omega^2 \sin \omega t \cdot \vec{j} = -\omega^2 \vec{r} \left(m/s^2 \right)$, accelerația este paralelă și opusă vectorului de poziție.

$$\vec{F} = m\vec{a} = -\frac{\omega^2}{2}\vec{r}$$
, forța este centripetă.

$$4)|\vec{a}_{n}| = \frac{|\vec{v}^{2}|}{r} = \frac{4\omega^{2}}{2} = 2\omega^{2}; \quad |\vec{a}| = \sqrt{4\omega^{4}(\sin^{2}\omega t + \cos^{2}\omega t)} = 2\omega^{2}; \quad |\vec{a}_{t}| = \sqrt{|\vec{a}|^{2} - |\vec{a}_{n}|} = 0.$$

3. Corpul cu masa m = 0.50 kg este lansat din originea axelor în câmpul gravitațional sub unghiul $\alpha_0 = 45^{\circ}$, cu viteza $v_0 = 15$ m/s, $(t_0 = 0)$.

Se cere:

- 1) ecuația mișcării $\vec{r} = f(t)$;
- 2) legile parametrice ale mișcării, x = f(t), y = f(t) și ecuația traiectoriei, f(x,y,z) = 0;

Rezolvare:

1) Cum scriem legea a doua a dinamicii în caz?

$$m\vec{g} = m\left(d^{2}\vec{r}/dt^{2}\right) = m\frac{d}{dt}\left(\frac{d\vec{r}}{dt}\right)$$

$$d\left(\frac{d\vec{r}}{dt}\right) = \vec{g} \cdot dt$$

$$\frac{d\vec{r}}{dt} = \vec{g} \cdot t + \vec{C}_{1}$$

$$\left(\frac{d\vec{r}}{dt}\right)_{t=t_{0}} = \vec{V}_{0} = \vec{C}_{1}; \quad \vec{v} = \vec{v}_{0} + \vec{g} \cdot t$$

$$d\vec{r} = \vec{g}t dt + \vec{v}_{0} dt$$

$$\vec{r} = \vec{v}_0 t + \frac{1}{2} \vec{g} t^2 + \vec{C}_2$$

$$\vec{r}(t_0 = 0) = 0 = \vec{C}_2$$

$$\vec{r} = \vec{v}_0 t + \frac{1}{2} \vec{g} t^2$$

Traiectoria mișcării punctului.

) și obținem:
$$\begin{cases} x = v_0 \cos \alpha_0 \cdot t \\ y = v_0 \sin \alpha \cdot t - \frac{1}{2} g t^2 \end{cases}$$

Eliminăm timpul din legile parametrice și obținem traiectoria:

$$y = x \cdot \text{tg } \alpha_0 - \frac{1}{2} \frac{g x^2}{v_0^2 \cos^2 \alpha}$$
 adică, o parabolă

PROBLEME PROPUSE

1. La momentul $t = t_0 = 6,1$ s viteza unui mobil este $v = v_0 = 8,3$ m/s. Știind că între viteză și spațiul parcurs până la atingerea vitezei există o dependență hiperbolică, se cere să se deducă expresiile dependențelor a = f(t), v = f(t), s = f(t) și v = f(s).

Indicație:
$$v \cdot t = v_0 \cdot t_0 = Const. = C = 50,6$$
 m;

R:
$$v = 50.6/t$$
; $a = -50.6/t^2$; $ds = v \cdot dt = C dt/t$; $s = C \cdot \ln(t/t_0)$; $s = 50.6 \cdot \ln(t/6, I)$; $v = v_0 e^{-s/C}$; $t/t_0 = e^{s/C} = v_0/v$; $v = v_0 e^{-s/C}$; $v = 5.4 \exp(-0.04s)$.

2. De la suprafața Pământului la $t_0 = 0$ este lansat pe verticală în sus un corp cu $v_0 = 20m/s$. Corpul se întoarce și după fiecare lovire a pardoselii viteza sa este fracțiunea f = 0.9 din viteza de cădere. Să se calculeze lungimea drumului parcurs de corp până la oprire.

Indicație:
$$h_0 = \frac{v_0^2}{g}$$
; $h_1 = f^2 \frac{v_0^2}{g}$; $h_2 = f^4 \frac{v_0^2}{g}$; $h = \frac{v_0^2}{g} (1 + f^2 + f^4 + ...) = \frac{v_0^2}{g} \frac{1}{1 - f^2}$

R: h = 214,7m.

3. La momentul inițial $t_0 = 0$, din originea axei Ox pleacă un corp de masă m = 1,5 kg cu viteza $v_0 = 4,5$ m/s. Mediul se opune mișcării cu o forță proporțională cu pătratul vitezei. Rezistența mecanică a mediului este r = 0,03 Ns²/m². Să se deducă dependențele a = f(t), v = f(t), x = f(t) și să se calculeze valorile mărimilor a, v și x la momentul t = 5,3 s.

Indicaţie:
$$rv^2 = -m \frac{dv}{dt}$$
; $\frac{dv}{v^2} = -\frac{r}{m} \cdot dt$

R:
$$v = \frac{mv_0}{m + rv_0 t};$$
 $a = -\frac{mrv_0^2}{(m + rv_0 t)^2};$

$$x = \frac{m}{r} \cdot \ln \left(\frac{m + rv_0 t}{m} \right)$$

v = 3,05 m/s; $a = -0,18 \text{ m/s}^2$; x = 19,50 m.