Contents

1	Introduction	2
2	The derivative	3
3	Secant Line	4
4	Tangent Line	5
5	Differentiability Implies Continuity	7

1 Introduction

The derivative of a function measures the sensitivity of the function to change; it is the instantaneous rate of change of the function. Geometrically, the derivative is the slope of the tangent line.

Wikipedia Article on Derivatives

Lecture Materials

• These notes: PDF

• Slides: Online

• Slides PDF

References: Calculus OpenStax

• 3.1: Defining the Derivative

• 3.2: The Derivative as a Function

2 The derivative

Definition

Let $f:(a,b)\to\mathbb{R}$ be a function, and let $x\in(a,b)$. Then f is differentiable at x provided the limit

 $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

exists. In that case, we call this limit the *derivative* of f at x.

There are several different ways of writing the derivative. These include,

- \bullet $\frac{df}{dx}$
- $\frac{d}{dx}f$
- f'
- *f*

Example

Show that

$$\frac{d}{dx}x = 1$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1 = 1$$

Example

Show that

$$\frac{d}{dx}x^2 = 2x$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} (2x + h) = 2x.$$

3 Secant Line

Definition

The secant line for f(x) between x_1, x_2 is the straight line though the points in the plane, $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

Definition

The difference in x is

$$\Delta x = x_2 - x_1.$$

The difference in f is

$$\Delta f = f(x_2) - f(x_1).$$

The character Δ is a Greek capital Delta. Presumably Δ is for the D in "Difference".

Definition

The quantity $\frac{\Delta f}{\Delta x}$ is called the difference quotient.

Lemma

The slope of the secant line is

$$\frac{\Delta f}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Example

Let $f(x) = x^2$ and let $x_1 = 2$, $x_2 = 3$. The secant line is the line through the points (2,4) and (3,9). It has slope

$$m = \frac{\Delta f}{\Delta x} = \frac{9 - 4}{3 - 2} = 5$$

To determine the equation of the line in the form y = mx + b, let us first choose any fixed point on the line - let's take (2,4). Then any point (x,y) on the line satisfies

$$\frac{y-4}{x-2} = 5.$$

Thus

$$y = 5x - 6$$

4 Tangent Line

Definition

The tangent line at x is the line through the point in the plane, (x, f(x)) with slope f'(x).

Lemma

$$f'(x_1) = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}.$$

Proof

Let $\Delta x = x_2 - x_1$. Then

$$x_1 + \Delta x = x_1 + (x_2 - x_1) = x_2$$

and

$$\Delta f = f(x_2) - f(x_1) = f(x_1 + \Delta x) - f(x_1).$$

Moreover,

$$\lim_{\Delta x \to 0} x_2 = \lim_{\Delta x \to 0} (x_1 + \Delta x) = x_1,$$

and conversely,

$$\lim_{x_2 \to x_1} \Delta x = \lim_{x_2 \to x_1} x_2 - x_1 = x_1 - x_1 = 0.$$

Letting $h = \Delta x$ we get that the derivative is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

$$= \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Theorem

The tangent line at x is the limit of the secant lines as $x_2 \to x_1$.

Proof

The slope of the secant line is $\frac{\Delta f}{\Delta x}$. Taking the limit $\Delta x \to 0$ is the same as taking the limit $x_2 \to x_1$. Thus by the previous lemma, the slopes of the secant lines converge to the slope of the tangent line as $x_2 \to x_1$. Since the tangent line, and all the secant lines pass through the point $(x_1, f(x_1))$, the secant lines converge to the tangent line as $x_2 \to x_1$.

Example

Let $f(x) = x^2$ and let $x_1 = 2$. For any $x_2 \neq 2$, let $\Delta x = x_2 - 2 \neq 0$. Then

$$\Delta f = f(2 + \Delta x) - f(2) = (2 + \Delta x)^2 - 2^2$$

= 4 + 4\Delta x + (\Delta x)^2 - 4
= 4\Delta x + (\Delta x)^2.

The secant line has slope

$$\frac{\Delta f}{\Delta x} = \frac{4\Delta x + (\Delta x)^2}{\Delta x} = 4 + \Delta x.$$

Taking the limit $\Delta x \to 0$, the tangent line has slope

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (4 + \Delta x)$$
$$= 4.$$

5 Differentiability Implies Continuity

Theorem

If f is differentiable at x_0 , then f is also continuous at x_0 .

Proof

The assumption is that the limit,

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. We want to show that

$$\lim_{x \to x_0} f(x) = f(x_0).$$

If we let $x = x_0 + h$, just as with the tangent line, taking the limit $h \to 0$ is the same as taking the limit $x \to x_0$.

Remember that when taking the limit $x \to x_0$, we assume that $x \neq x_0$. Thus $x - x_0 \neq 0$ and we can perform the following calculation:

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} [f(x) - f(x_0)] \frac{x - x_0}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} x - x_0$$

$$= \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \Delta x$$

$$= f'(x_0) \times 0 = 0.$$

But $\lim_{x\to x_0} [f(x)-f(x_0)]=0$ implies that $\lim_{x\to x_0} f(x)=f(x_0)$ and hence f is continuous at x_0 .