Service Manual

Ver. 1.1

Contents

Technical data	l	3
Operation prin	ciple	.4
Main circuit		4 - 6
Troubleshootii	ng diagram	7
Main ciruit dia	ngrams	8
Block diagram	l	9
Operational te	sts / measurings	10
	Measurings	10, 11
	Main transformer T001 prim. voltage	12
	Main transformer T001 sec. voltage	13
	Voltage after sec. rectifier	14
	Auxiliary coil voltage	15
	Fan M001 voltage	16
	Pole voltage in OCV	16
	Measuring points in the flat cable	17
	Gate control, upper IGBTs	18
	Gate control, lower IGBTs	19
	Aux. voltage in DC-link	20
	Signal lamp H2 control / VRD ON	20
Main circuit ca	ard Z001 connectors	21
Main circuit ca	ard Z001 layout	22
Control card A	A001 layout	23
Structure		.24, 25
IGBT-transisto	or testing	.26
Sec. diode test	ing	26
3. T. /		27

Technical data

	Minarc 150	Minarc 150 VRD	Minarc 151
Supply voltage, 1~ 50/60 Hz	230 V ± 15%	230 V ± 15%	110 V ± 15%
Loadability			
35% ED (MMA)	140 A (7,5 kVA)	140 A (7,5 kVA)	140 A (7,5 kVA)
100% ED (MMA)	100 A (5,1 kVA)	100 A (5,1 kVA)	100 A (5,1 kVA)
35% ED (TIG)	150 A (5,0 kVA)	150 A (5,0 kVA)	150 A (5,0 kVA)
100% ED (TIG)	110 A (3,3 kVA)	110 A (3,3 kVA)	110 A (3,3 kVA)
Supply cable / fuses	2,5 mm ² S / 3,3 m 16 A	2,5 mm ² S / 3,3 m 16 A	6 mm ² S / 2,0 m 32 A
Welding current range (MMA)	10 A / 20,5 V140 A / 25,6 V	10 A / 20,5 V140 A / 25,6 V	10 A / 20,5 V140 A / 25,6 V
Suitable stick sizes	ø 1,53,25 mm	ø 1,53,25 mm	ø 1,53,25 mm
Welding power adj.	Stepless	Stepless	Stepless
OCV	~ + 85 V	~ + 30 V	~ + 85 V
Idling power	< 10W	< 10W	< 10W
Efficiency	0,8	0,8	0,8
Power factor	0,60 (140 A / 25.5 V)	0,60 (140 A / 25.5 V)	0,60 (140 A / 25.5 V)
Temperature class	B (130°C) / H (180°C)	B (130°C) / H (180°C)	B (130°C) / H (180°C)
Operation temperature range	-20+40°C	-20+40°C	-20+40°C
Stock temperature range	-40+60°C	-40+60°C	-40+60°C
Casing class	IP 23C	IP 23C	IP 23C
Norms	IEC 60974-1, -10	IEC 60974-1, -10	IEC 60974-1
	EN 50199	EN 50199	EN 50199
Dimensions			
Length		320 mm	320 mm
Width		123 mm	123 mm
Height	265 mm	265 mm	265 mm
Weight	4,0 (4,6) kg	4,0 (4,6) kg	4,4 (5,2) kg

Operation principle

Minarc power sources are "dual-Forward" inverters, controlled by PWM technology. Switching components are IGBT transistors. The operation frequency is $\sim 80 \text{ kHz}$. Below is a picture of the "dual-forward" inverter operation principle.

When IGBTs V1 and V2 are non-conductive no power is transferred. Power is altered by changing the transistor's timing (PWM).

Main circuit

Primary circuit connection, Minarc 150/150 VRD.

Main circuit

Primary circuit connection, Minarc 151.

Secondary circuit connection, Minarc 150/151.

Main circuit

Secondary circuit connection, Minarc 150 VRD.

General

This machine may be repaired only by authorized repair shops and persons!

The visual check must be done first, to find possible damages; loose wires, breaks and signs of overheating.

Troubleshooting diagram

DISTURBANCE	POSSIBLE CAUSE	REMEDY
Power source doesn't start; OCV ~ 0 V;	Cooling fan M001	Disconnect the fan connector X20 and start the power source again. If the power source starts and the OCV is ok, change the fan.
	The rectifier diodes are in short circuit.	Check the secondary diodes condition and change if needed. See the changing of secondary diodes, page 26.
	Faulty primary circuit power semiconductor.	Check the primary side power semiconductors. If the voltage over the PTC R30 is more than ~ 230 Vac then there is a short circuit in the primary circuit. Change the faulty power semiconductor. See the IGBT transistor testing on page 26.
	Faulty control card A001.	Change the control card A001.
The power source starts and the OCV rises up to ~85 V, after which the power source shuts down. The power source can not be loaded. The automatic fuses are blown during start up.	Relay K1	Check the relay operation.
Welding current can't be adjusted by potentiometer R001.	Faulty power adjustment potentiometer R001.	Check the potentiometer condition (R001 = $10 \text{ k}\Omega$)
	Faulty control card A001.	Change control card A001.

Main circuit diagrams

Minarc 150/150 VRD

Minarc 151

Block diagram

Z001 A001 Power stage Controller (PWM) EMI-filter Gate buffer 16 DC-link charging Set value circuit Aux. voltages Voltage watch Voltage reserve circuit MMA ignition OCV controller MMA dynamics Overvoltage protection Temperature control Supply voltage watch Auxiliary voltage watch TIG-locking TIG-scaling Z002 Relaycard Minarc 151

Operational tests / measurings

Measuring point A. Main transformer T001 primary voltage

Measuring point B. Main transformer T001 secondary voltage

Measuring point C. Voltage after seconday rectifier

Measuring point D. Aux. coil voltage

Measuring point E. Fan M001 voltage

Measuring point F. Pole voltage

Measuring points on main circuit card Z001 (Minarc 150)

Α	Main transformer T001 primary
В	Main transformer T001 secondary
С	After the rectifier
D	Main transformer auxiliary coil
E	Fan M001

Measuring point A. Main transformer T001 primary voltage

Main transformer T001 primary voltage, min. (MMA)

Main transformer T001 primary voltage, max. (MMA)

Measuring point B. Main transformer T001 secondary voltage

Main transformer T001 secondary voltage, min. (MMA)

Main transformer T001 secondary voltage, max. (MMA)

Measuring point C. Voltage after secondary rectifier

Voltage after secondary rectifier, min. (MMA)

Voltage after secondary rectifier, max. (puikko)

Measuring point D. Auxiliary coil voltage

Auxiliary coil voltage, min. (MMA)

Auxiliary coil voltage, max. (MMA)

Measuring point E. Fan voltage

Idling

Min. load

Max. load

Measuring point F. Pole voltage on idling

Power adj. Potentiometer, min. Power adj. Potentiometer, max.

	X1/1	GND
	X1/2	Current info from primary
	X1/3	GND
	X1/4	Gate control, upper IGBTs
(G)	X1/5	Gate control, lower IGBTs
	X1/6	GND
	X1/7	Supply voltage watch
(H)	X1/8	Temperature watch (PTC:t)
	X1/9	GND
(I)	X1/10	Auxiliary voltage (+2030 V)
	X1/11	Signal lamp H2 control / VRD
	X1/12	Auxiliary voltage from DC-link
(J)	X1/13	GND
	X1/14	Auxiliary voltage +20 V
	X1/15	OCV control (~ +85 V)
	X1/16	GND

Measuring point G. Gate control, upper IGBTs

Gate pulse, min. (MMA)

Gate pulse, max. (MMA)

Measuring point H. Gate control, lower IGBTs

Gate pulse, min. (MMA)

Gate pulse, max. (MMA)

Measuring point I. Auxiliary voltage from DC-link

Measuring point J. Signal lamp H2 control / VRD ON

Main circuit card Z001 connectors (Minarc 150)

X1, X3	Supply voltage
X5	Protective earth
X6, X8	Main transformer T001 sec.
X 7	Sec. Choke L001 (+)
X9	X004 (-)
X10	X003 (+)
X11	Connection, A001
X12, X13	Main transformer T001 primary
X14, X15	Main transformer T001 auxiliary
	coil
X16, X17	PTC RT101
X18, X19	PTC RZ101
X20/1, 2	Fan M001
X21	X003 (+)
X22	X004 (-)

Main circuit card Z001 layout (Minarc 150)

Control card A001 layout

Structure

Structure

Extracting the control card A001

IGBT-transistor testing

Discrete-IGBTs (50 A, 600 V) can be tested with an IGBT tester.

When changing damaged IGBTs, the whole series must be changed, plus the gate resistors $(10\Omega)!!$

Discrete-IGBT's tightening torque to the heatsink is 0,6...1,2 Nm!

Secondary diode testing

When testing secondary diodes the other coil end of the main transformer (T001) must be disconnected. Main transformer cable connector's may break if bent!

If secondary diodes are in short circuit, then the power source will not start.

The tightening torque for the secondary diodes is 0,6...1,2 Nm!

The soldering must be done carefully, because they are stressed with high current, approximately 30 A/ leg!

Notes

