Trabalho Prático de Programação Natural Cubo Mágico

Gabriel de Biasi¹

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais
Av. Antônio Carlos, 6627 – Pampulha – Belo Horizonte – MG

biasi@dcc.ufmg.br

1. Descrição do Problema

O brinquedo "Cubo Mágico" ou *Rubik's Cube* foi criado por Rubik em 1974 e distribuído comercialmente em 1980. Possui um conjunto de 26 cubos menores, 6 faces com três tipos de cubos distintos: São 4 centros, 12 meios e 8 quinas. Cada tipo cubo possui um número específico de cores, onde os centros possui uma cor, meios possuem duas cores e as quinas possuem três cores.

É possível realizar movimentos em faces do cubo mágico sendo possível rotacionar os cubos desta face. Há 3 movimentos distintos que podem ser feitos em cada face, sendo eles: rotação horária, rotação anti-horária e dupla rotação. Logo, o cubo mágico tem um total de 18 movimentos possíveis. O objetivo do jogo é fazer com que todas as faces tenham a mesma cor. Na Figura 1 temos na esquerda um cubo em um estado "bagunçado" e outro no estado concluído.

Figura 1. Cubo mágico bagunçado e um cubo mágico resolvido

Neste trabalho, é proposto um algoritmo evolutivo que tenha capacidade de resolver uma dada instância de cubo mágico colocando-o no estado resolvido e ao mesmo tempo buscando minimizar a quantidade de movimentos necessários.

2. Metodologia

Para alcançar o objetivo do jogo, foi utilizado como base um método de resolução criado pelo professor *Morwen Thistlethwaite*, onde o espaço de buscas de soluções é categorizado e então o cubo precisa ser levado de uma categoria para a próxima utilizando apenas os movimentos permitidos da categoria atual.

2.1. Categorias do Cubo

Thistlethwaite criou 5 categorias, que descreve o tão próximo um cubo mágico está da solução. Os movimentos que são permitidos em cada categoria que permitem levar para a próxima são as seguintes:

Tabela 1. Movimentos permitidos em cada categoria

Categoria	Conjunto de Movimentos Permitidos
G0	(F, R, U, B, L, D)
G1	(F, R, U, B, L2, D2)
G2	(F, R, U2, B2, L2, D2)
G3	(F2, R2, U2, B2, L2, D2)
G4	Ø

[El-Sourani et al. 2010].

3. Descrição Geral da Implementação

lala

4. Execução dos Experimentos

lala

5. Conclusão

Neste trabalho.

Referências

[El-Sourani et al. 2010] El-Sourani, N., Hauke, S., and Borschbach, M. (2010). *An Evolutionary Approach for Solving the Rubik's Cube Incorporating Exact Methods*. EvoApplications.