A First Course in Optimization

Ishan Kapnadak

Autumn Semester 2022-23

Updated on: 2022-08-04

Abstract

Lecture Notes for the course EE 659: A First Course in Optimization taught in Spring 2022 by Prof. Vivek Borkar. Additional references include A first course in optimization by Rangarajan K. Sundaram, Optimization by vector space methods by David Luenberger, and Nonlinear programming by Dimitri P. Bertsekas

Contents

1 Lecture 1 2

§1. Lecture 1

Definition 1.1: Open Ball

The *open ball* of radius ϵ centered around $\mathbf{x}_0 \in \mathbb{R}^d$ is defined as

$$B_{\epsilon}(\mathbf{x}_0) := \left\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{x}_0\| < \epsilon \right\}.$$

Definition 1.2: Closed Ball

The *closed ball* of radius ϵ centered around $\mathbf{x}_0 \in \mathbb{R}^d$ is defined as

$$\overline{B}_{\epsilon}(\mathbf{x}_0) := \left\{ \mathbf{x} \in \mathbb{R}^d \colon ||\mathbf{x} - \mathbf{x}_0|| \le \epsilon \right\}.$$

Definition 1.3: Open and Closed Sets

A set $A \subset \mathbb{R}^d$ is said to be *open* if for all $\mathbf{x} \in A$, there exists an $\epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subset A$. A set A is said to be *closed* if A^{c} is open.

We have the following properties for open and closed sets.

1. Let \mathcal{I} be an arbitrary index set. If A_{α} is open for each $\alpha \in \mathcal{I}$, then

$$\bigcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

is open. In other words, open sets are closed under arbitrary unions.

2. Let \mathcal{I} be a finite index set. If A_{α} is open for each $\alpha \in \mathcal{I}$, then

$$\bigcap_{\alpha\in\mathcal{I}}A_{\alpha}$$

is open. In other words, open sets are closed under finte intersections.

3. Let \mathcal{I} be an arbitrary index set. If A_{α} is closed for each $\alpha \in \mathcal{I}$, then

$$\bigcap_{\alpha\in\mathcal{I}}A_{\alpha}$$

is closed. In other words, closed sets are closed under arbitrary intersections.

4. Let \mathcal{I} be a finite index set. If A_{α} is closed for each $\alpha \in \mathcal{I}$, then

$$\bigcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

is closed. In other words, closed sets are closed under finite unions.

Definition 1.4: Convergence of a sequence

Let $\langle \mathbf{x}_n \rangle$ be a sequence in \mathbb{R}^d . Then, $\langle \mathbf{x}_n \rangle$ converges to \mathbf{x}^* (written $\mathbf{x}_n \to \mathbf{x}^*$) if for all $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that

$$\mathbf{x}_n \in B_{\epsilon}(\mathbf{x}^*) \quad \forall n > n_0$$

 $\mathbf{x}_n \in B_\epsilon(\mathbf{x}^*) \quad \forall n > n_0.$ Equivalently, $\|\mathbf{x}_n - \mathbf{x}^*\| \to 0$.

Definition 1.5: Closure

Let $A \subset \mathbb{R}^d$. The *closure* of A (denoted \overline{A}) is the smallest closed set containing A. Equivalently, \overline{A} is the intersection of all closed sets containing A.

Definition 1.6: Interior

Let $A \subset \mathbb{R}^d$. The *interior* of A (denoted A°) is the largest open set contained in A. Equivalently, A° is the union of all open sets contained in A.

Note that by definition, we have $A^{\circ} \subset A \subset \overline{A}$.

Definition 1.7: Boundary

Let $A \subset \mathbb{R}^d$. The boundary of A is defined as $\partial A := \overline{A} \setminus A^{\rm o}.$

$$\partial A := A \setminus A^{\circ}$$

Note that for a closed set, $\overline{A} = A$, and for an open set, $A^{\circ} = A$.

Proposition 1.8

A set $A \subset \mathbb{R}^d$ is closed if and only if $\mathbf{x}_n \to \mathbf{x}^*, \mathbf{x}_n \in A \forall n \implies \mathbf{x}^* \in A.$

$$\mathbf{x}_n \to \mathbf{x}^*, \mathbf{x}_n \in A \forall n \implies \mathbf{x}^* \in A.$$

Proof. Let $A \subset \mathbb{R}^d$ be closed, $\mathbf{x}_n \in A$ for all n, and $\mathbf{x}_n \to \mathbf{x}^*$. Assume to the contrary that $\mathbf{x}^* \notin A$. Then, $\mathbf{x}^* \in A^{\mathsf{c}}$, which is open by assumption. Thus, $\exists \epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}^*) \subset A^{\mathsf{c}}$. This implies that $\mathbf{x}_n \notin B_{\epsilon}(\mathbf{x}^*)$ for all n, and thus $\mathbf{x}_n \not\to \mathbf{x}^*$, a contradiction. To prove the converse, assume that A is not closed. Thus, there exists a $\tilde{\mathbf{x}} \in \partial A$ such that $\tilde{\mathbf{x}} \notin A$. Then, for all $\epsilon > 0$, $B_{\epsilon}(\tilde{\mathbf{x}}) \cap A \neq \emptyset$. Let $\epsilon_n \downarrow 0$ and let $\mathbf{x}_n \in B_{\epsilon_n}(\tilde{\mathbf{x}}) \cap A$. Then, $\mathbf{x}_n \to \tilde{\mathbf{x}} \notin A$, a contradiction.

Definition 1.9: Limit Point

Let $\langle \mathbf{x}_n \rangle$ be a sequence in \mathbb{R}^d . $\tilde{\mathbf{x}}$ is a *limit point* of $\langle \mathbf{x}_n \rangle$ if there exists a subsequence $\langle \mathbf{x}_{n_k} \rangle$ such that $\mathbf{x}_{n_k} \to \tilde{\mathbf{x}}$.

Proposition 1.10

 $\langle \mathbf{x}_n \rangle$ converges if and only if $\langle \mathbf{x}_n \rangle$ has a unique limit point.

Definition 1.11: Supremum and Infimum

Let
$$A \subset \mathbb{R}$$
 be bounded. Then,
$$\sup A := \text{ smallest } x \in \mathbb{R} \cup \{+\infty\} \text{ such that } y \in A \implies y \leq x,$$

$$\inf A := \text{ largest } x \in \mathbb{R} \cup \{-\infty\} \text{ such that } y \in A \implies y \geq x.$$

Definition 1.12: Cauchy Sequence

A sequence $\langle \mathbf{x}_n \rangle$ is said to be Cauchy if $\lim_{m,n\uparrow\infty} \|\mathbf{x}_m - \mathbf{x}_n\| = 0$.

Proposition 1.13

Cauchy sequences are bounded.

Proof. Let $\langle \mathbf{x}_n \rangle$ be a Cauchy sequene and let $\epsilon > 0$. Pick N large enough such that

$$n, m > N \implies \|\mathbf{x}_m - \mathbf{x}_n\| < \epsilon.$$

We then have

$$\mathbf{x}_n \in B_{\epsilon}(\mathbf{x}_m) \quad \forall n > N$$

 $\implies \langle \mathbf{x}_n \colon n > N \rangle \text{ is bounded}$

 $\implies \langle \mathbf{x}_n \rangle \text{ is bounded.}$

Cauchy sequences have at most one limit point.

Proof. Suppose $\langle \mathbf{x}_n \rangle$ is a Cauchy sequence having two limit points, $\tilde{\mathbf{x}}$ and $\bar{\mathbf{x}}$. Then,

there exist subsequences $\mathbf{x}_{\tilde{n}_k} \to \tilde{\mathbf{x}}$ and $\mathbf{x}_{\overline{n}_l} \to \overline{\mathbf{x}}$. We then have

$$\lim_{\tilde{n}_k, \overline{n}_l \uparrow \infty} \|\mathbf{x}_{\tilde{n}_k} - \mathbf{x}_{\overline{n}_l}\| = 0 \implies \tilde{\mathbf{x}} = \overline{\mathbf{x}}.$$

Definition 1.15: Complete Space

A metric space is *complete* if every Cauchy sequence converges.

Theorem 1.16: Bolzano-Weierstrass Theorem

Every bounded sequence has a convergent subsequence.