See Hammack's Book of Proof pages 3-13, 173-180, 194-198

1 Sets

Definition 1.1: Set

A **set** is a collection of things.

Definition 1.2: Elements

Elements are things in the *set*.

Example:

• {A, B, C, ..., Z}

A set can be **infinite** (e.g., whole numbers) or **finite** (e.g., the alphabet).

Two sets are **equal** if they contain the same elements:

• $\{1, 2, 3, 4\} = \{4, 3, 2, 1\}$

1.1 Notation

- A-Z: stands for sets (e.g. $A = \{1, 2, 3, 4\}$)
- ϵ : in (e.g. $2 \epsilon A$)
- N: set of natural numbers (positive whole numbers)
- \mathbb{Z} : set of integers
- \mathbb{R} : set of all real numbers
- |X|: cardinality (i.e., number of elements of a *finite set*)
- \emptyset : empty set $(|\emptyset| = 0)$
- {expression : rule}: set-builder notation

1.2 The Cartesian Product

Definition 1.3: Ordered Pair

An **ordered pair** is a list of two things (i.e., numbers, letters, sets, etc.) enclosed by two parentheses.

Unlike sets, order matters for an ordered pair/list (same idea in programming).

Definition 1.4: Cartesian Product

The **cartesian product** is a set of all ordered pairs from a group of sets.

Example:

- $A = \{1, 3, 5\}$
- $B = \{2, 4\}$
- $A \times B = \{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}$

Definition 1.5: Cartesian Powers

The **cartesian powers** states for any set A and positive integer n, the power $A^n is the cartesian product of A with itself n times.$

1.3 Subsets

Definition 1.6: Subset

A subset is if every element of B is in A (superset) (e.g., $A \supset B$, $B \subset A$).

Every set is a subset of itself (excluding empty sets). The empty set is a subset of every set

2 Relations

3 Functions