(a)	HNO_3
(b)	$\mathbf{N}\mathrm{O}_2^-$
(c)	$ m CrO_4^{2-}$
(d)	$\mathrm{Cr}_2\mathrm{O}_7^{2-}$
(e)	$\mathrm{NH_4^+}$
(f)	\mathbf{N}_3^-
(g)	$\mathrm{C}_2\mathrm{H}_6$
(h)	${f C}_3{f H}_8$
(i)	$\mathbf{Al}(\mathrm{OH})_4^-$
(j)	$\mathbf{S}_2\mathrm{F}_{10}$
(k)	$\mathbf{N}_2\mathrm{O}_3$
(1)	HClO_4
(m)	HClO_3
(n)	$\mathbf{N}_2\mathrm{H}_5^+$
(o)	$\mathrm{NH_{2}OH}$
(p)	$C_2O_4^{2-}$
(q)	$\mathrm{K}_{2}\mathrm{UO}_{4}$
(r)	$\mathbf{C}_{3}\mathrm{H}_{6}\mathrm{O}$

3. Calculate the oxidation number of the atom in bold type.

- (s) S_8
- (t) $\mathbf{C}_4 \mathbf{H}_6$
- 4. Assign oxidation numbers to the bold species in each of the following unbalanced reaction equations. Then determine which species undergoes oxidation in each reaction.

(a)
$$ClO_2 + C \longrightarrow ClO_2^- + CO_3^{2-}$$

(b)
$$\mathbf{Sn}^{2+} + \mathbf{Cl}^- + \mathbf{BrO}_3^- \longrightarrow \mathbf{SnCl}_6^{2-} + \mathbf{Br}^-$$

(c)
$$\mathbf{MnO_4^-} + \mathbf{C}_2 \mathbf{O}_4^{2-} \longrightarrow \mathbf{MnO}_2 + \mathbf{CO}_2$$

(d)
$$NO_3^- + H_2 Te \longrightarrow NO + TeO_4^{2-}$$

5. Which of the following are redox reactions?

(a)
$$l_2 + 5 \text{ HOBr} + H_2O \longrightarrow 2lO_3^- + 5 \text{ Br}^- + 7 \text{ H}^+$$

(b)
$$4 \text{ Ag}^+ + \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O} \longrightarrow 2 \text{ Ag}_2\text{CrO}_4 + 2\text{H}^+$$

(c)
$$KHCO_3 + Hl \longrightarrow Kl + CO_2 + H_2O$$

(d)
$$2 H_2 O \longrightarrow 2H_2 + O_2$$

(e)
$$H_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2 HCl$$

$$(f) \ \mathrm{Fe} + \mathrm{H}_2 \mathrm{SO}_4 \quad \longrightarrow \quad \mathrm{FeSO}_4 + \mathrm{H}_2$$

6. (a) Which of Cl_2 , ClO_4^- , Cl^- , ClO_3^- , and Cl_2O can be produced by reducing ClO_2^- ?

(b) Which of NO_3^- , N_2 , NO_2^- , N_2O and N_2O_3 can be produced by oxidizing NO?