· From. Jamie Miley To: Irena Borzym

Root Finding in One Dimension

Jamie Hiley

October 6, 2019

Contents

	1.1	Question 1	•
2	Bina		2 2
	2.1		_
	2.2	0	2
	4.4	Question 2	3
3	Fixe	ed-Point Iteration	
	3.1	D m i	3
	3.2	0 .: 0	3
	3.3		4
	0.0	Question 4	1
4	Nev		8
	4.1	Programming Task	8
	4.2	Question 5	8
5	Apr	pendix	1
	5.1	Introductions and definitions	1
	0.2	5.1.1 F.m	1
		5.1.2 poltF.m	_
	5.2	Binary Search	
		5.2.1 bisectionF.m	
		5.2.2 tablet.m	3
	5.3	Fixed-Point Iteration	3
		5.3.1 Friteration.m	4
		5.3.2 II.m	4
		5.3.3 plotCopweD.III	5
		5.3.4 Priterationz.m	15
		5.3.5 f2.m	15
	5.4	Newton-Raphson Iteration	15
		5.4.1 Friterations.m	16
			16
			17
			17
		5.4.5 plotNR.m	

1 Introduction and definitions

We study the roots of

$$F(x) \equiv 2x - 3\sin x + 5 = 0 \tag{\dagger}$$

and

$$F(x) \equiv x^3 - 8.5x^2 + 20x - 8 = 0.$$
 (†)

1.1 Question 1

Since

$$x > -1 \implies F(x) > 2 \cdot (-1) - 3 \cdot (1) + 5 = 0$$

and

$$x < -4 \implies F(x) < 2 \cdot (-4) - 3 \cdot (-1) + 5 = 0$$

we know for any root x_* of (\dagger) , $x_* \in (-4, -1)$.

Plotting F(x) on this domain in Figure 1 shows there is only one such root.

FIGURE 1.0

Now throughout this document the approximation $x_* \simeq -2.883236872558284$ returned by fzero.m, MATLAB's built in root finder, will been used when a measure of precision is necessary. It is accurate to at least 8 dp.

2 Binary Search

2.1 Programming Task

The program written is bisection F.m; it is a MATLAB function which takes input of 2 numbers. If x_* lies between these inputs a 2D vector **a** is output. Here a_1 is the approximation of x_* and a_2

is the number of iterations required.

To test the function, it was run for 2 random inputs $x_1, x_2 \in [-13, 7]$ several times. Inputs for which $F(x_1)F(x_2) > 0$ were excluded.

x_1 to 4 dp	$\begin{array}{c c} x_2 \\ \text{to 4 dp} \end{array}$	a_1 to 9 dp	a_2	$ x_* - a_1 $ to 8 dp (×10 ⁻⁷)
1.1209	-12.3633	-2.883236877	23	0.1
-11.0574	3.4692	-2.883236877	23	0.1
0.8966	-6.6580	-2.883235180	22	16.9
6.0044	-12.3111	-2.883236778	23	0.9
-4.0883	-0.0737	-2.883238623	21	17.5
-7.4795	0.5941	-2.883237372	22	5.0
0.1020	-9.7478	-2.883236786	22	0.8
6.1949	-6.1923	-2.883236990	23	1.1
-1.2946	-8.5238	-2.883237577	22	7.1
2.0253	-7.8981	-2.883237049	22	1.8

FIGURE 2.0

Hence we conclude bisectionF.m is working as intended, in particular to sufficient accuracy.

2.2 Question 2

If F(x) is calculated to be 0 for some $x \in (-\pi, \pi)$ then we have $|F(x)| < \delta$. Now since $F(x_*) = 0$,

$$\delta > |F(x) - F(x_*)|$$

= $|(x - x_*)F'(x_*)| + o(|x - x_*|)$

Now since F is continuous $|x - x_*|$ is small for sufficiently small δ . Therefore $o(|x - x_*|)$ terms are negligible. Furthermore as $x_* \in (-\frac{5\pi}{4}, -\frac{3\pi}{4})$, $|F'(x_*)| > 4$. So we conclude that for sufficiently small δ ,

 $\delta > 4|x - x_*| \quad \Rightarrow \quad |x - x_*| < \frac{\delta}{4}$

Hence we expect accuracy of at least $\frac{\delta}{4}$.

3 Fixed-Point Iteration

3.1 Programming Task

The program written is FPiteration.m; it is a MATLAB function which takes input of 3 numbers. It runs for an externally defined f. The inputs are ϵ , N_{max} and x_0 , in that order. It has a single output: the final approximation to x_* .

3.2 Question 3

(i) Running FPiteration(10⁻⁵, 10, -2) for k = 0 yields the data in Figure 3.0.
 Plots y = f(x) and y = x are included in Figure 3.1, as well as the relevant segments of x = x_n and y = f(x_n) for n = 0, 1, ... 10.

n	x_n
	to 8 dp
0	-2.00000000
1	-3.86394614
2	-1.50827169
3	-3.99706896
4	-1.36767492
5	-3.96916251
6	-1.39556627
7	-3.97702969
8	-1.38761535
9	-3.97490384
10	-1.38975706

FIGURE 3.0

Figures 3.0 and 3.1 demonstrate that for k = 0, x_n orbits indefinitely around (x_*, x_*) , approaching the period 2 solution to $x_n = f(x_n)$.

Let $\varepsilon_n = x_n - x_*$, then

$$\varepsilon_{n+1} = x_{n+1} - x_*
= f(x_n) - f(x_*)
= \varepsilon_n f'(x_*) + o(\varepsilon_n)
\Rightarrow |\varepsilon_{n+1}| = |\varepsilon_n||f'(x_*)| + o(\varepsilon_n)$$

Hence the criterion for convergence is $|f'(x_*)| < 1$ for x_0 sufficiently close x_* , while if $|f'(x_*)| > 1$, x_n will diverge [1, Thm 3.6].

Now for k = 0,

$$|f'(x_*)| = |\frac{3}{2}\cos x_*|$$

= 1.45...

so $f(x_n)$ will not converge to x_* .

(ii) Let $J=(-\pi\,,\,-\frac{\pi}{2})$. Using the mean value theorem, $\exists c\in(x_*\,,\,x_n)$ or $(x_n\,,\,x_*)$ such that

$$f'(c) = \frac{f(x_*) - f(x_n)}{x_* - x_n}$$

$$\Rightarrow \quad \varepsilon_{n+1} = \varepsilon_n f'(c)$$

If $x_n \in J$, then $c \in J$, therefore $\forall x \in J$, |f'(x)| < 1 is sufficient to say x_n converges.

$$|f'(x)| < 1$$

$$\Leftrightarrow \qquad -1 < \frac{3\cos x + k}{2+k} < 1$$

$$\Leftrightarrow \qquad 0 < (2+k)\left[1 - \frac{3}{2}\cos x\right] < (2+k)^2.$$

Now $1-\frac{3}{2}\cos x$ has range $(1,\frac{5}{2})$ on $x\in J$, so our inequalities are satisfied by

$$2+k>0 \quad \text{and} \quad (2+k)^2 > (2+k)\frac{5}{2}$$

$$\Leftrightarrow \quad 2+k>0 \quad \text{and} \quad 2+k>\frac{5}{2}$$

$$\Leftrightarrow \quad k>\frac{1}{2}$$

Hence we have convergence if $x_0 \in J$ and $k > \frac{1}{2}$.

[I've actually shown $|f'(x_*)| \Leftrightarrow k > 0.4502...$ which would give me a necessary condition as well as a sufficient one, but I can't work out if its possible to guarantee convergence $\forall x_0 \in J$ for these k.]

(iii) As before

$$\varepsilon_{n+1} = \varepsilon_n f'(x_*) + o(\varepsilon_n)$$

so, for sufficently small ε_n , $f'(x_*) > 0 \Rightarrow \varepsilon_n \varepsilon_{n+1} > 0$ and $f'(x_*) < 0 \Rightarrow \varepsilon_n \varepsilon_{n+1} < 0$.

Hence, once ε_n is sufficiently small, we have monotonic convergence for $f'(x_*) > 0$ and $k > \frac{1}{2}$, e.g. k = 4, and oscillatory convergence for $f'(x_*) < 0$ and $k > \frac{1}{2}$, e.g. k = 2.

The results of running FPiteration (10^{-5} , 20, -2) for k=4 and k=2 are shown in Figure 3.2 and Figure 3.3 respectively, demonstrating the expected behaviour.

n	x_n	$x_n - x_*$	$ \varepsilon_n/\varepsilon_{n-1} $
	to 6 dp	to 6 dp	to 6 dp
0	-2.000000	0.883237	n/a
1	-2.621315	0.261921	0.296547
2	-2.829437	0.053800	0.205403
3	-2.873180	0.010057	0.186930
4	-2.881387	0.001850	0.183911
5	-2.882898	0.000339	0.183379
6	-2.883175	0.000062	0.183283
7	-2.883225	0.000011	0.183265
8	-2.883235	0.000002	0.183262

n	x_n	$x_n - x_*$	$ \varepsilon_n/\varepsilon_{n-1} $
	to 6 dp	to 6 dp	to 6 dp
0	-2.000000	0.883237	n/a
1	-2.931973	-0.048736	0.055179
2	-2.872052	0.011184	0.229490
3	-2.885742	-0.002506	0.224022
4	-2.882672	0.000565	0.225348
5	-2.883364	-0.000127	0.225054
6	-2.883208	0.000029	0.225121
7	-2.883243	-0.000006	0.225106
8	-2.883235	0.000001	0.225109

FIGURE 3.2

FIGURE 3.3

(iv) Running FPiteration(10^{-5} , 50, -2) for k = 16 gives the results in Figure 3.4.

n	x_n	$x_n - x_*$	$ \varepsilon_n/\varepsilon_{n-1} $
	to 6 dp	to 6 dp	to 6 dp
0	-2.000000	0.883237	n/a
1	-2.207105	0.676132	0.765516
2	-2.373698	0.509539	0.753609
3	-2.503502	0.379735	0.745252
:	:	:	:
32	-2.883197	0.000040	0.727755
33	-2.883208	0.000029	0.727755
34	-2.883216	0.000021	0.727754

FIGURE 3.4

Define the truncation error $\delta = |\varepsilon_M| = |x_* - x_M|$ where M denotes N_{max} . Now we use the fact that FPiteration terminates when $|x_n - x_{n+1}| < \epsilon$ and that $\varepsilon_n \simeq \varepsilon_{n-1} f'(x_*)$ for small ε_n , to see

$$\epsilon \simeq |x_M - x_{M-1}|$$

$$= |\varepsilon_M - \varepsilon_{M-1}|$$

$$\simeq |\varepsilon_M| \left| 1 - \frac{1}{f'(x_*)} \right|$$

$$\Rightarrow |\varepsilon_M| \simeq \epsilon \left| \frac{f'(x_*)}{1 - f'(x_*)} \right|$$

So in the case of running FPiteration (10^{-5} , 50, -2) for k=16, we have $|\varepsilon_M| \simeq 10^{-5} \cdot 2.6731 \dots$ so should not expect the truncation error to be less than 10^{-5} .

(v) First order convergence requires

$$\lim_{n\to\infty}\left|\frac{\varepsilon_n}{\varepsilon_{n-1}}\right|=c$$

for some c < 1.

Figures 3.2, 3.3 and 3.4 demonstrate that this is indeed the case for values of k for which $x_n \to x_*$ so our results are consistent with first-order convergence.

In fact in these cases

$$\lim_{n \to \infty} \left| \frac{\varepsilon_n}{\varepsilon_{n-1}} \right| = \lim_{n \to \infty} \left| \frac{f(x_*) - f(x_{n-1})}{x_* - x_{n-1}} \right|$$
$$= |f'(x_*)|$$

and comparing Figures 3.2, 3.3 and 3.4 with Figure 3.5 confirms this.

k	$ f'(x_*) $ to 6 dp
4	0.183261
2	0.225109
16	0.727754

FIGURE 3.5

3.3 Question 4

The program used for this question is FPiteration2.m; it is a modified version of FPiteration.m to suit the new requirements of the question.

Running FPiteration2(10^{-5} , 1000, 4.5) results in termination at N = 736 and final approximation $x_{736} = 4.00753487$ to 8dp.

Note $f'(x_*) = 1 - F'(x_*)h'(F)$. Since at a multiple root of (\ddagger) $F'(x_*) = 0$, we have $f'(x_*) = 1$. Hence

$$\varepsilon_{n+1} = \varepsilon_n + \frac{\varepsilon_n^2}{2} f''(x_*) + o(\varepsilon_n^2)$$
 (*)

so changes to the error in consecutive terms are only to second order in ε_n , explaining the slow convergence observed for FPiteration2(10⁻⁵, 1000, 4.5).

We also note that $\frac{\varepsilon_{n+1}}{\varepsilon_n} = 1 + o(\varepsilon_n) \to 1$ as $n \to \infty$ so this is not an example of first order convergence.

Rewritting (*) gives

$$x_{n+1} - x_n \simeq \frac{\varepsilon_n^2}{2} f''(x_*)$$

$$\Rightarrow \qquad \varepsilon_n \simeq \pm \sqrt{\frac{2(x_{n+1} - x_n)}{f''(x_*)}}$$

So if the iteration terminates at $n=N_{fin}$, using the fact that for large n, $|\varepsilon_{n+1}|\simeq |\varepsilon_n|$ and that the termination criterion is $|x_{n+1} - x_n| < \epsilon$ we have

$$|arepsilon_{N_{fin}}| \simeq \sqrt{rac{2\epsilon}{|f''(x_*)|}}$$

Hence, noting $f''(x_*) = -\frac{7}{20}$, we have

$$|\varepsilon_{N_{fin}}| \simeq \sqrt{\frac{2 \cdot 10^{-5}}{7/20}} = 0.007559\dots$$

in the case of $\epsilon = 10^{-5}$. So we should not expect the truncation error to be less than 10^{-5} , which is reflected in our final approximation of x_* as $x_{736} = 4.007534... = x_* + 0.00753$ Dugierd

[not sure how to use, or even show, the fact $\varepsilon_n \sim \frac{40}{7n}$]

Newton-Raphson Iteration

Programming Task 4.1

The programs used are FPiteration3.m and FPiteration4.m. They are minor modifications of FPiteration.m which estimate the root(s) to (†) and (‡) respectively, using the Newton-Raphson Iteration method.

4.2 Question 5

Calculating x_* for (†) by running FPiteration3(10⁻⁵, 100, -4) and FPiteration3(10⁻⁵, 100, -1.3). yields the results in Figures 4.0 and 4.1 respectively.

n	x_n	ε_n	$\varepsilon_{n+1}/\varepsilon_n^2$
	to 14 dp	to 14 dp	to 6 dp
0	-4.000000000000000	-1.11676312744172	n/a
1	-2.66940179751675	0.21383507504153	0.171458
2	-2.88895936713309	-0.00572249457480	0.125149
3	-2.88323939429785	-0.00000252173957	0.077007
4	-2.88323687255878	-0.00000000000050	0.078215

FIGURE 4.0

n	x_n	$x_n - x_*$	$ \varepsilon_n/\varepsilon_{n-1}^2 $
	to 14 dp	to 14 dp	to 6 dp
0	-1.300000000000000	1.58323687255828	n/a
1	-5.71808687309944	-2.83485000054115	1.130937
2	-20.79034108581136	-17.90710421325308	2.228257
3	-9.83873225028047	-6.95549537772219	0.021691
4	-6.49231132526740	-3.60907445270911	0.074600
5	-14.36895020044105	-11.48571332788277	0.881792
6	-6.62739618976328	-3.74415931720500	0.028382
7	-15.41647512560112	-12.53323825304284	0.894035
8	-10.29262915701106	-7.40939228445277	0.047169
9	-5.75537161715424	-2.87213474459596	0.052317
10	-19.31167257761758	-16.42843570505929	1.991529
:	:	:	:
46	-2.88323687255828	-0.000000000000000	0.078741

FIGURE 4.1

So we see that x_n converges very rapidly for $x_0 = -4$ while it initially appears to diverge for $x_0 = -1.3$, converging only after substantially more terms.

In the latter case we show graphically what is occurring for the first few iterations by plotting y = F(x) and its tangents at $x = x_0, x_1, x_2$ in Figure 4.2.

FIGURE 4.2

Calculating the double root x_* of (‡) by running FPiteration4(10⁻⁵, 100, 5) yields the results in Figure 4.3.

n	x_n	$x_n - x_*$	$ \varepsilon_n/\varepsilon_{n-1} $
	to 6 dp	to 6 dp	to 6 dp
0	5.000000	1.000000	n/a
1	4.550000	0.550000	0.550000
2	4.292486	0.292486	0.531792
3	4.151673	0.151673	0.518565
:	:		:
15	4.000039	0.000039	0.500006
16	4.000019	0.000019	0.500002
17	4.000010	0.000010	0.499996

FIGURE 4.3

We analysis the convergence and error of this method by using (as before)

$$\varepsilon_{n+1} = \varepsilon_n f'(x_*) + \frac{\varepsilon_n^2}{2} f''(x_*) + o(\varepsilon_n^2)$$
 (**)

Now for the Newton-Raphson method $f(x) = x - \frac{F(x)}{F'(x)}$ so we have

$$f'(x) = \frac{FF''}{(F')^2}$$
 and $f''(x) = \frac{FF'F''' + (F')^2F'' - 2F(F'')^2}{(F')^3}$.

For (†):

Since $F(x_*) = 0$ and $F'(x_*) \neq 0$ we get $f'(x_*) = 0$ and $f''(x_*) = \frac{F''(x_*)}{F'(x_*)} \approx -0.156409356534...$ So define $k = \frac{f''(x_*)}{2} \approx -0.078204678267...$ then (**) becomes

$$\varepsilon_{n+1} = k\varepsilon_n^2 + o(\varepsilon_n^2) \Rightarrow \left| \frac{\varepsilon_{n+1}}{\varepsilon_n^2} \right| = |k| + o(1) \to |k| \simeq 0.0782 \dots$$

which is sufficient for second-order convergence. The results in Figures 4.0 and 4.1 concur with this.

Now we have

$$\varepsilon_{n+1} \simeq k\varepsilon_n^2 \quad \Rightarrow \quad \varepsilon_n \simeq \frac{\varepsilon_{n+1} - \varepsilon_n}{k-1} = \frac{x_{n+1} - x_n}{k-1}.$$

So if the iteration terminates at n=M, using again that for large n, $\varepsilon_{n+1}\simeq k\varepsilon_n^2$ and that the termination criterion is $|x_{n+1}-x_n|<\epsilon$ we have

$$|\varepsilon_M| \simeq \left| \frac{k}{k-1} \right| \epsilon^2 \simeq \epsilon^2 \cdot 0.0725 \dots$$

We took $\epsilon = 10^{-5}$ so expect error of around 7.25 \cdot 10⁻¹², which is consistent with Figures 4.0 and 4.1.

[I believe what I've discussed is truncation error but I'm not sure how to work in rounding error or the hint. Decreasing ϵ just seems to increase accuracy arbitrarily well.

For (‡):

Since $F(x_*) = 0$ and $F'(x_*) = 0$ we instead get $f'(x_*) = \frac{1}{2}$ and $f''(x_*) = \frac{1}{7}$ (in the limit) and hence (**) becomes

$$\varepsilon_{n+1} = \frac{\varepsilon_n}{2} + o(\varepsilon_n) \quad \Rightarrow \quad \left| \frac{\varepsilon_{n+1}}{\varepsilon_n} \right| = \frac{1}{2} + o(1) \to \frac{1}{2} \quad \mathbb{C}$$

which is sufficient for first-order convergence. The results in Figure 4.3 concur with this.

Now note also

$$\varepsilon_{n+1} = \frac{\varepsilon_n}{2} + o(\varepsilon_n) \implies \varepsilon_{n+1} = \varepsilon_n = -\varepsilon_{n+1} + o(\varepsilon_n) \iff \varepsilon_{n+1} = -(x_{n+1} = x_n) + o(\varepsilon_n)$$

So if the iteration terminates at n = M, using the above and that the termination criterion is $|x_{n+1}-x_n|<\epsilon$ we have

$$|\varepsilon_M| \simeq \epsilon$$

 $|\varepsilon_M|\simeq\epsilon$ We took $\epsilon=10^{-5}$ so expect error of around 10^{-5} which is consistent with Figure 4.3 .

If we instead take $\epsilon=10^{-12}$, FPiteration4(10⁻⁵, 100, 5) gives $\varepsilon_M=4.76\cdot 10^{-8}$ which is much larger than what would be expected by the $|\varepsilon_M| \simeq \epsilon$ approximation. This is because for small enough ϵ rounding error due to MATLAB's inability to exactly calculate expressions dominates over truncation error.

New piege,

Appendix

All relevant MATLAB code written is included here

Introductions and definitions

5.1.1 F.m

Function F(x) as defined in (\dagger) .

```
function [F] = F(x)
2 \%F(x) = 2x - 3sinx +5
    F is the first function to be studied.
5 F = 2*x - 3*sin(x) + 5;
```

poltF.m

Used to generate Figure 1.0.

```
1 x = linspace(-4.5,-0.5,1000);
2 y = F(x);
3
4 plot(x,y)
5
6 title('y = F(x)')
7 xlabel('x')
8 ylabel('y')
9 grid on
10
11 ax = gca;
12 ax.XAxisLocation = 'origin';
```

5.2 Binary Search

5.2.1 bisectionF.m

Written for first programming task.

```
function [a] = bisectionF(x1,x2)
 2 %Uses bisection method to find the root of F(x) outputs root and # of
 8 %iterations used. Root must lie inbetween inputs.
 5 \text{ if } F(x1)*F(x2) < 0
 6 if x1 > x2
          xh=x1;
          x1=x2;
10
          xh=x2;
          xl=x1;
11
     end
12
13 elseif F(x1)*F(x2) > 0
    disp('root not between inputs, try different inputs');
14
      return
15
16 elseif F(x1)*F(x2) == 0
     disp('root is (approximately) one of your inputs')
18
19 end
20
21 \text{ xn} = (xh + x1)/2;
22 n=1;
23
24 while xh - xl > .5*10^{(-5)}
     t = F(xn);
25
26
      if t > 0
27
          xh=xn;
28
      elseif t < 0
29
          xl=xn;
30
      elseif t == 0
31
32
          fprintf('you found the root (within MATLAB''s error), the root is %10.10f'
      , xn)
          return
33
      end
34
35
     xn = (xh + x1)/2;
36
```

```
37    n=n+1;
38 end
39
40 fprintf('root is approximately %10.10f after %3i iterates.', xn, n)
41 a = [xn, n];
42 end
```

5.2.2 table1.m

Used to generate data for Figure 2.0.

```
1 seed = 1234;
2 rns = RandStream('mt19937ar', 'seed', seed);
3
4 t = zeros(10,5);
6 \text{ for } k = 1:10
8
      i1 = 0;
9
      i2 = 0;
10
      while F(i1)*F(i2) > 0
11
      i1 = -13 + rand(rns)*20;
12
13
          i2 = -13 + rand(rns)*20;
14
      end
15
      a = bisectionF(i1,i2);
16
      t(k,:) = [i1, i2, a(1), a(2), abs(-2.88323687-a(1))];
17
18
      vpa(t)
19 end
```

5.3 Fixed-Point Iteration

5.3.1 FPiteration.m

Written for second programming task.

```
function [x] = FPiteration(e, N, x0)
2 %Solves the problem F(x) = 0 iteratively using f1(x) = x
3 % Takes inputs: e, stopping difference; N, max iterates; x0, first guess.
5 x1=0;
6 x2=x0;
7 n=0;
9 x=fzero(@F,x0);
10 fprintf(' $n$ & $x_n$ & $\\eps_n$ & $\\eps_n$ \\\\ \\hline \n
11 fprintf('%5.i & %10.6f & %10.6f & n/a
                                           \\\\ \\hline \n', n, x2, x2-x)
12
13 while abs(x2 - x1) > e && n < N
  err = x2 - x;
14
    x1=x2;
15
16 x2=f1(x2);
```

5.3.2 fl.m

The function called in FPiteration.m for iteration.

```
1 function [f1] = f1(x)
2 %f(x) = (3*sin(x)+k*x - 5)/(2+k)
3 % A function st f(x)=x <=> F(x)=0. k must me editied within the code
4
5 k=0;
6 f1 = (3*sin(x)+k*x - 5)/(2+k);
7 end
```

5.3.3 plotCobweb.m

Used to generate Figure 3.1.

```
2 hold on
 3 a = linspace(-4.5, -0.5, 1000);
 5 x(1) = -2;
 6 line([x(1),x(1)], [0,f1(x(1))]);
 7 line([x(1),f1(x(1))], [f1(x(1)), f1(x(1))])
9 for i=1:10
      x(i+1)=f1(x(i));
       line([x(i+1),x(i+1)], [x(i+1),f1(x(i+1))]);
12
       line([x(i+1),f1(x(i+1))], [f1(x(i+1)), f1(x(i+1))]);
13 end
15 title (' ''Cobweb Diagram''')
16 xlabel('x')
17 ylabel('y')
18 grid on
19
20 h = plot(a,f1(a),a,a);
21 set(h(1),'LineStyle', '-', 'color', 'k')
22 set(h(2),'LineStyle', '--', 'color', 'k')
23 legend(h,' y = f(x)',' y = x')
24
25 ax = gca;
26 ax.XAxisLocation = 'bottom';
```

5.3.4 FPiteration2.m

Modified version of FPiteration.m for question 4.

```
1 function [x] = FPiteration2(e, N, x0)
2 %Solves the problem F(x) = 0 iteratively using f2(x) = x
3 % Takes inputs: e, stopping difference; N, max iterates; x0, first guess.
5 x1=0;
6 x2=x0;
7 n=0;
9 while abs(x2 - x1) > e && n < N
  x1=x2;
10
     x2=f2(x2);
11
12
      n=n+1;
13 end
15 fprintf('x_N = %10.8f and N =%i \n',x2 , n )
16 x=x2;
17 end
```

5.3.5 f2.m

The function called in FPiteration2.m for iteration.

```
function [f2] = f2(x)

2 \%f(x) = (1/20)*(-x^3 + 8.5*x^2 + 8)

3 \% A function st f(x)=x \iff F(x)=0.

4

5 f2 = (1/20)*(-x^3 + 8.5*x^2 + 8);

6 end
```

5.4 Newton-Raphson Iteration

5.4.1 FPiteration3.m

Modified version of FPiteration.m for solving (†) in question 5.

5.4.2 f3.m

The function called in FPiteration3.m for iteration.

```
function [f3] = f3(x)
f(x) = x - (2*x - 3*sin(x) + 5)./(2 - 3*cos(x))

A function st f(x)=x <=> F(x)=0.

f3 = x - (2*x - 3*sin(x) + 5)./(2 - 3*cos(x));
end
```

5.4.3 FPiteration4.m

Modified version of FPiteration.m for solving (‡) in question 5.

```
function [x] = FPiteration4(e, N, x0)
 2 %Solves the problem F(x) = 0 iteratively using f1(x) = x
 3 % Takes inputs: e, stopping difference; N, max iterates; x0, first guess.
 5 x1=0;
6 x2=x0;
7 n=0;
10 fprintf(' $n$ & $x_n$
                           & $\\eps_n$ & $\\eps_{n+1}/\\eps_n$ \\\\ \\hline \n
    ,)
n fprintf(' 0 & %10.6f & %10.6f & n/a
                                         \\\\ \\hline \n', x2, x2-x)
12
13 while abs(x2 - x1) > e && n < N
     err = x2 - x;
14
15
     x1=x2;
     x2=f4(x2);
16
17
     n=n+1;
      fprintf('%5.i & %10.6f & %10.30f & %10.6f \\\ \hline \n', n, x2, x2-x, abs
     ((x2 -x)/err))
20 end
21
22 x=x2:
23 end
```

5.4.4 f4.m

The function called in FPiteration4.m for iteration.

```
1 function [f4] = f4(x)

2 %f(x) = x - (x.^3 - 8.5*x.^2 + 20*x - 8)./(3*x.^2 - 17*x + 20)

3 % A function st f(x)=x <=> F(x)=0.

4

5 f4 = x - (x.^3 - 8.5*x.^2 + 20*x - 8)./(3*x.^2 - 17*x + 20);

6 end
```

5.4.5 plotNR.m

Used to generate Figure 4.2.

```
1 clf
 2 hold on
 3 = linspace(-4.5, -0.5, 1000);
 5 \times (1) = -2;
 6 line([x(1),x(1)], [0,f1(x(1))]);
 7 line([x(1),f1(x(1))], [f1(x(1)), f1(x(1))] )
9 for i=1:10
       x(i+1)=f1(x(i));
10
        line([x(i+1),x(i+1)], [x(i+1),f1(x(i+1))]);
        line([x(i+1),f1(x(i+1))], [f1(x(i+1)), f1(x(i+1))]);
12
13 end
14
15 title(' ''Cobweb Diagram''')
16 xlabel('x')
17 ylabel('y')
18 grid on
20 h = plot(a,f1(a),a,a);
21 set(h(1),'LineStyle', '-', 'color', 'k')
22 set(h(2),'LineStyle', '--', 'color', 'k')
23 legend(h,' y = f(x)',' y = x')
24
25 ax = gca;
26 ax. XAxisLocation = 'bottom';
```

References

[1] James F Epperson. An introduction to numerical methods and analysis. John Wiley & Sons, 2013.