On the Instability of Fractional Reserve Banking

Heon Lee

Department of Economics University of Missouri

November 9, 2020

Introduction

Is fractional reserve banking particularly unstable?

- Yes:
 - ▶ Peel's Banking Act of 1844
 - ▶ Chicago plan of banking reform with 100% reserve requirement
 - ► Irving Fisher (1936)
 - Friedman (1959) supported the Chicago plan.
- No:
 - ▶ Becker (1956)
 - ► Adam Smith's the Wealth of Nations (Book II, chapter 2)
- Sargent (2011) summaries the historical debate on this.
- ➤ Still on going debate: Switzerland's national referendum of 100% reserve banking in 2018.

This paper

- ► Focuses on the instability as endogenous cycles (self-fulfilling prophecy)
 - not focusing on banking panic or bank run.
- Constructs a dynamic general equilibrium model of fractional banking by extending Berentsen et al. (2007, JET).
- Establishes the conditions of endogenous cycles, chaotic and stochastic dynamics.

Literature

- Money, credit and banking in the search model: Berentsen et al. (2007), Lotz & Zhang (2016), Gu et al. (2013a), Gu et al. (2016)
- ► Fractional reserve banking: Freeman & Huffman (1991), Freeman & Kydland (2000), Chari & Phelan (2014), Andolfatto et al. (2019)
- Endogenous fluctuations, chaotic dynamics, and indeterminacy:
 Baumol & Benhabib (1989), Azariadis (1993), Benhabib & Farmer (1999) Gu et al. (2013b), Gu et al. (2019)

- ► Time, goods
- ► Agents, banks, and the central bank
- Preferences

- ► Time, goods
 - 1. $t = 0, 1, 2..., \infty$
 - 2. Each period has three subperiod:
 - Centralized Goods Market (CM)
 - Centralized Financial Market (FM)
 - Decentralized Market (DM): bilateral trade, subject to anonymity, limited commitment
 - 3. Perishable DM/CM goods.
- Agents, banks, and the central bank
- Preferences

- ► Time, goods
- Agents, banks, and the central bank
 - 1. Agents: measure 1; maximize life time utility; with prob σ , buyer, with prob $1-\sigma$, seller in the DM; DM types are realized in the FM.
 - 2. Banks accept deposit and lend loan.
 - 3. The central bank control money supply M_t via lump-sum tax/transfer. Let γ money growth rate, $\gamma = M_t/M_{t-1}$
- Preferences

- ▶ Time, goods
- Agents, banks, and the central bank
- Preferences

$$U(X) - H + u(q) - c(q)$$

- CM consumption X; CM disutility for production H; DM consumption q; discount factor: β
- efficient DM consumption, q^* solves $u'(q^*) = c'(q^*)$.

CM problem

$$\begin{aligned} W_t(m_t, d_t, \ell_t) &= \max_{X_t, H_t, \hat{m}_{t+1}} U(X_t) - H_t + \beta G_{t+1}(\hat{m}_{t+1}) \\ \text{s.t. } \phi_t \hat{m}_{t+1} + X_t &= H_t + T_t + \phi_t m_t + (1 + i_{d,t}) \phi_t d_t - (1 + i_{l,t}) \phi_t \ell_t \end{aligned}$$

$$\tag{1}$$

- ▶ Standard results: $W_t(m_t, d_t, \ell_t)$ is linear in m_t , d_t , and ℓ_t
- ▶ FOC for \hat{m}_{t+1} :

$$\phi_t = \beta G'_{t+1}(\hat{m}_{t+1}) \tag{2}$$

DM trade

▶ DM value function for buyer

$$V_{b,t}(m_t - d_{b,t} + \ell_{b,t}, d_{b,t}, \ell_{b,t}) = \alpha[u(q_t) - p_t] + W(m_t - d_{b,t} + \ell_{b,t}, d_{b,t}, \ell_{b,t})$$
 where $p_t \leq m_t - d_{b,t} + \ell_{b,t}$.

► DM value function for seller

$$V_{s,t}(m_t - d_{s,t} + \ell_{s,t}, d_{s,t}, \ell_{s,t}) = \alpha_s[p_t - c(q_t)] + W_t(m_t - d_{s,t} + \ell_{s,t}, d_{s,t}, \ell_{s,t})$$

Trading Mechanism Derivatives of DM value functions

DM trade

- A general trading mechanism p = v(q), where $p \le z$ (Gu & Wright 2016). v'(q) > 0
- Let p^* be a payment to get q^* .
- ► Terms of trade are given by

$$p = \begin{cases} z & \text{if } z < p^* \\ p^* & \text{if } z \ge p^* \end{cases} \qquad q = \begin{cases} v^{-1}(z) & \text{if } z < p^* \\ q^* & \text{if } z \ge p^* \end{cases}$$

lacksquare $\lambda(q)=u'(q)/v'(q)-1$ if $p^*>z$ and $\lambda(q)=0$ if $z\geq p^*$

Trading Mechanism Derivatives of DM value functions

FM problem

► Types are realized at the FM.

$$G_t(m) = \sigma G_{b,t}(m) + (1 - \sigma)G_{s,t}(m)$$
(3)

► Type-*j* agent solves the following problem

$$G_{j,t}(m) = \max_{d_{j,t},\ell_{j,t}} V_{j,t}(m - d_{j,t} + \ell_{j,t}, d_{j,t}, \ell_{j,t})$$
 s.t $d_{j,t} \le m$ (4) where $j \in \{b, s\}$

► FOCs are:

$$\frac{\partial V_{j,t}}{\partial \ell_{j,t}} \le 0 \tag{5}$$

$$\frac{\partial V_{j,t}}{\partial d_{i,t}} - \lambda_d \le 0 \tag{6}$$

where λ_d is the Lagrange multiplier for $d_{i,t} \leq m$.

Bank's problem

- ▶ A representative bank accepts nominal deposit and lends nominal loan.
- The bank maximizes profit

$$\max_{d,\ell} \quad (i_l \ell - i_d d) \quad s.t. \quad \chi \ell \le d \tag{7}$$

► FOCs are

$$0 = i_I - \lambda_L \tag{8}$$

$$0 = -i_d + \lambda_L/\chi \tag{9}$$

For $\lambda_L > 0$, we have

$$i_l = \chi i_d$$

Definition of equilibrium

Given (γ, χ) , an equilibrium consists of the sequences of

- ▶ real balances $\{m_t, \ell_{b,t}, \ell_{s,t}, d_{b,t}, d_{s,t}\}_{t=0}^{\infty}$, and
- ▶ allocations $\{q_t, X_t, \ell_t\}_{t=0}^{\infty}$ satisfying the following:
 - ▶ Agents solve CM and FM problems: (1) and (4)
 - A representative bank solves its profit maximization problem: (7)
 - Markets clear in every period:
 - 1. Deposit Market: $\sigma d_{b,t} + (1 \sigma)d_{s,t} = d_t$
 - 2. Loan Market: $\sigma \ell_{b,t} + (1-\sigma)\ell_{s,t} = \ell_t$
 - 3. Money Market: $m_t = M_t$

Equilibrium

Proposition

Given (γ, χ) , an equilibrium can be summarizes into the following difference equation:

$$z_t = f(z_{t+1}) \equiv \frac{z_{t+1}}{1+i} \left[\frac{1-\sigma+\sigma\chi}{\chi} \alpha L(z_{t+1}) + 1 \right]$$
 (10)

where $1 + i \equiv \gamma/\beta$, $z_t = \phi_t m_t (1 - \sigma + \sigma \chi)/\sigma \chi$, and $L(z) \equiv \lambda \circ v^{-1}(z)$ is liquidity premium.

Stationary Equilibrium

Cycles

$$z_t = f(z_{t+1}) \equiv \underbrace{\frac{z_{t+1}}{1+i}}_{ ext{increasing in } z_{t+1}} \underbrace{\left[\frac{1-\sigma+\sigma\chi}{\chi} \alpha \mathit{L}(z_{t+1}) + 1 \right]}_{ ext{decreasing in } z_{t+1}}$$

- ▶ $f(z_{t+1})$ is generally nonmonotone.
- If the second term dominates the first term, we can have $f'(\cdot) < -1$ which is a standard condition for the existence of cyclic equilibria

Proposition (Monetary Cycle)

If $f'(z_s) < -1$, there exist a two-period cycle with $z_1 < z_s < z_2$.

Cycles

Figure 1: A Two-period Cycle under Fractional Reserve Banking

Cycles

Corollary

Assume that the buyer makes a take-it-or-leave-it offer to the seller in the DM. Let $-qu''(q)/u' = \eta$ and c(q) = q. If $\chi \in (0, \chi_m)$, where

$$\chi_m \equiv \frac{\alpha \eta (1 - \sigma)}{\eta (1 - \alpha \sigma) + (2 - \eta)(1 + i)} \tag{11}$$

then $f'(z_s) < -1$.

More cycles

Figure 2: A Three-period Cycle under Fractional Reserve Banking

More cycles

Proposition (Three-period Monetary Cycle and Chaos)

There exists a three-period cycle with $z_1 < z_2 < z_3$ if $\chi \in (0, \hat{\chi}_m)$, where

$$\hat{\chi}_m \equiv \frac{(1-\sigma)\alpha L\left(\frac{p^*}{1+i}\right)}{(1+i)^3 - 1 - \sigma\alpha L\left(\frac{p^*}{1+i}\right)}$$

- Three-period cycle implies cycles of all periods (Sharkovskii 1964)
- ► Three-period cycle implies chaos (Li & Yorke 1975)

More theoretical results

Sunspot cycles

► Lowering reserve requirement can induce stochastic cycles which are independent from the fundamental.

Endogenous unsecured credit

- Allow agent can trade using endogenous credit limit arise from the voluntary repayments
- ▶ Basline model result still hold: lowering reserve requirement can induce cyclic, chaotic dynamics

Self-Fulfilling bubble and burst equilibria

 There exist endogenous bubble and burst arising from multiple equilibria when reserve requirement is lower than some threshold

Money demand

Figure 3: US M1 Money Demand and M1J

To fit money demand, I use M1J proposed by Lucas & Nicolini (2015)

Parameterization and calibrated parameter

- Buyer makes take-it-or-leave-it offer to seller in the DM.
- ▶ Matching function, $\mathcal{M}(\mathcal{B}, \mathcal{S}) = \frac{\mathcal{B}\mathcal{S}}{\mathcal{B}+\mathcal{S}}$ where \mathcal{B} and \mathcal{S} denotes the measure of buyers and sellers.

$$u(q) = \frac{q^{1-\eta}}{1-\eta}, \qquad c(q) = q, \qquad U(X) = B\log(X)$$

Table 1: Annual Model (1934-2007)

Parameter	Value	Target
DM utility curvature, η	0.179	elasticity of z/y wrt i
CM utility level, B	1.653	avg. z/y
fraction of buyers, σ	0.771	avg. m/y

Calibrated Examples: DM surplus

Figure 4: DM surplus at the stationary equilibrium

Calibrated examples

Figure 5: χ_m

Other applications

Calibrated examples based on the model with endogenous credit limit.

Parameterization of the model using 1934 to 2007 data. Numerical examples.

News shock

With lower reserve requirement, announcements on the future changes in monetary policy induce higher volatility.

Empirical evidence

- Cointegration between real inside money volatility, required reserve ratio, and interest rate.
- ► The real inside money volatility is high under the low required reserve ratio for given interest rate.

```
Calibrated examples News shock Empirical evidence Empirical robustness 1

Empirical robustness 2
```

Conclusion

- Lowering reserve requirement induce instability: more prone to exhibit endogenous cyclic, chaotic, and stochastic dynamics
- ➤ This result holds in the extended model with endogenous credit
- ► Lowering the reserve requirement increases the welfare at the steady state

THANK YOU!

Trading Mechanisms

- ▶ **Axiom 1**: (Feasibility) $\forall z$, $0 \le p \le z$, $0 \le q$.
- ▶ **Axiom 2**: (Individual Rationality) $\forall z, u \geq p$ and p > c.
- ▶ **Axiom 3**: (Monotonicity) $p(z_2) > p(z_1) \Leftrightarrow q(z_2) > q(z_1)$.
- ▶ **Axiom 4**: (Bilateral Efficiency) $\forall z, \nexists (p', q')$ with p' < z such that $u'(q') p' \ge u \circ q(z) p(z)$ and $p' c(q') \ge p(z) c \ge c \circ q(z)$ with one inequality strict.

DM Trade

DM trade

Differentiating $V_{b,t}$ yields

$$\frac{\partial V_{b,t}}{\partial m} = \phi_t[\alpha \lambda(q_t) + 1] \tag{12}$$

$$\frac{\partial V_{b,t}}{\partial m} = \phi_t [\alpha \lambda(q_t) + 1] \qquad (12)$$

$$\frac{\partial V_{b,t}}{\partial d} = \phi_t [-\alpha \lambda(q_t) + i_d] \qquad (13)$$

$$\frac{\partial V_{b,t}}{\partial \ell} = \phi_t [\alpha \lambda(q_t) - i_l] \qquad (14)$$

$$\frac{\partial V_{b,t}}{\partial \ell} = \phi_t [\alpha \lambda(q_t) - i_l] \tag{14}$$

where $\lambda(q) = u'(q)/v'(q) - 1$ if $p^* > z$ and $\lambda(q) = 0$ if $z \ge p^*$ Differentiating $V_{s,t}$ yields

$$\frac{\partial V_{s,t}}{\partial m_t} = \phi_t, \qquad \frac{\partial V_{s,t}}{\partial d} = \phi_t(1+i_{d,t}), \qquad \frac{\partial V_{s,t}}{\partial \ell} = -\phi_t(1+i_{l,t}).$$

Stationary Equilibrium

▶ Given $i \in [0, \bar{\iota})$ and $\chi \in (0, 1]$ with $\bar{\iota} = \alpha(1 - \sigma + \sigma \chi)L(0)/\chi$, an unique stationary monetary equilibrium exists satisfying

$$\chi i = (1 - \sigma + \sigma \chi) \alpha L(z_s)$$

- ightharpoonup where $z_s = v(q_s)$.
- lacktriangle Simple examples for $\bar\iota$ under the Inada condition $u'(0)=\infty$
 - ightharpoonup with the Nash bargaining we have $\bar{\iota}=\infty$
 - with the Kalai bargaining we have $\bar{\iota} = \theta \alpha (1 \sigma + \sigma \chi) / \chi (1 \theta)$

Endogenous Credit Limits

Assume the buyer makes a take-it-or-leave-it offer to the seller in the DM and c(q)=q

$$V_t^b(m_t + \ell_t, 0, \ell_t) = \alpha[u(q_t) - q_t] + W_t(m_t + \ell_t, 0, \ell_t)$$

- where $q_t = \min\{q^*, \phi_t(m_t + \ell_t) + \bar{b}_t\}.$
- ▶ Given \bar{b}_t , solving equilibrium yields

$$z_{t} = \begin{cases} \frac{z_{t+1}}{1+i} \left\{ \frac{1-\sigma+\sigma\chi}{\chi} \alpha \left[u'(q_{t+1}) - 1 \right] + 1 \right\} & \text{if } w_{t+1} < q^{*} \\ \frac{z_{t+1}}{1+i} & \text{if } w_{t+1} \ge q^{*}. \end{cases}$$
(15)

where
$$w_{t+1} = z_{t+1} + \bar{b}_{t+1}$$
 and $z_{t+1} = (1 - \sigma + \sigma \chi)\phi_{t+1}m_{t+1}/(\sigma \chi)$

Endogenous Credit Limits

- ightharpoonup Credit limit, \bar{b}_t , is determined by
- ▶ The incentive condition for voluntary repayment is

$$\underbrace{-b_t + W_t(0,0,0)}_{\text{value of honoring debts}} \geq \underbrace{(1-\mu)W_t(0,0,0) + \mu \underline{W}(0,0,0)}_{\text{value of not honoring debts}}.$$

where the value of autarky is $\underline{W}(0,0,0) = \{U(X^*) - X^* + T\}/(1-\beta)$

Equilibrium

The equilibrium can be collapsed in to a dynamic system satisfying (16)-(17).

$$z_{t} = \begin{cases} \frac{z_{t+1}}{1+i} \left\{ \frac{1-\sigma+\sigma\chi}{\chi} \alpha \left[u'(w_{t+1}) - 1 \right] + 1 \right\} & \text{if } w_{t+1} < q^{*} \\ \frac{z_{t+1}}{1+i} & \text{if } w_{t+1} \ge q^{*}. \end{cases}$$

$$(16)$$

$$\bar{b}_{t} = \begin{cases} \beta \bar{b}_{t+1} + \frac{\chi \mu \sigma[-\gamma z_{t} + \beta z_{t+1}]}{1 - \sigma + \sigma \chi} + \beta \alpha \mu \sigma S(w_{t+1}) & \text{if } w_{t+1} < q^{*} \\ \beta \bar{b}_{t+1} + \frac{\chi \mu \sigma[-\gamma z_{t} + \beta z_{t+1}]}{1 - \sigma + \sigma \chi} + \beta \alpha \mu \sigma S(q^{*}) & \text{if } w_{t+1} \ge q^{*} \end{cases}$$

$$(17)$$

where
$$z_{t+1} = (1 - \sigma + \sigma \chi)\phi_{t+1}m_{t+1}/(\sigma \chi)$$
, $w_{t+1} = z_{t+1} + \bar{b}_{t+1}$, and $S(z_{t+1} + \bar{b}_{t+1}) \equiv [u(z_{t+1} + \bar{b}_{t+1}) - z_{t+1} - \bar{b}_{t+1}]$.

Stationary Equilibrium

Let $r=1/\beta-1$. The debt limit at the stationary equilibrium, \bar{b} , is a fixed point satisfying $\bar{b}=\Omega(\bar{b})$ where

$$\Omega(\bar{b}) = \begin{cases}
\frac{\mu\sigma\alpha}{r} [u(\tilde{q}) - \tilde{q}] - \frac{i\mu\sigma\chi}{1 - \sigma + \sigma\chi} [\tilde{q} - \bar{b}] & \text{if } \tilde{q} > \bar{b} \ge 0 \\
\frac{\mu\sigma\alpha}{r} [u(\bar{b}) - \bar{b}] & \text{if } q^* > \bar{b} \ge \tilde{q} \\
\frac{\mu\sigma\alpha}{r} [u(q^*) - q^*] & \text{if } \bar{b} \ge q^*
\end{cases}$$
(18)

where \tilde{q} solves $u'(\tilde{q}) = 1 + i\chi/[\alpha(1 - \sigma + \sigma\chi)]$. Money and credit coexist if and only if $0 < \mu < \min\{1, \tilde{\mu}\}$, where

$$\tilde{\mu} \equiv \sigma \left\{ i \chi [(1 - \sigma + \sigma \chi)/\tilde{q} - 1] + (\alpha/r)(1 - \sigma + \sigma \chi)^2 [u(\tilde{q})/\tilde{q} - 1] \right\}$$

since they coexist when $\bar{b}<\tilde{q}$. The DM consumption is decreasing in i in the monetary equilibrium.

Cycles with Unsecured Credit

Proposition (Monetary Cycles with Unsecured Credit)

There exist two period cycles of money and credit with $w_1 < q^* < w_2$ if $\chi \in (0, \chi_c)$, where $w_j = z_j + \bar{b}_j$ and

$$\chi_c \equiv \frac{(1-\sigma)\alpha \left[u'\left(\frac{q^*}{1+\iota}\right)-1\right]}{(1+i)^2-1-\sigma\alpha \left[u'\left(\frac{q^*}{1+\iota}\right)-1\right]}.$$

There exist three period cycles of money and credit with $w_1 < q^* < w_2 < w_3$, if $\chi \in (0, \hat{\chi}_c)$, where

$$\hat{\chi}_c \equiv \frac{(1-\sigma)\alpha \left[u'\left(\frac{q^*}{1+\iota}\right)-1\right]}{(1+i)^3-1-\sigma\alpha \left[u'\left(\frac{q^*}{1+\iota}\right)-1\right]}.$$

Sunspot Cycles

- ▶ Consider a Markov sunspot variable $S \in \{1, 2\}$. This sunspot variable is not related with fundamentals.
- Let $Pr(S_{t+1} = 1 | S_t = 1) = \zeta_1$, $Pr(S_{t+1} = 2 | S_t = 2) = \zeta_2$
- ▶ The sunspot is realized in the CM.
- CM value function is written as

$$W_t^{S}(m_t, d_t, \ell_t) = \max_{X_t, H_t, \hat{m}_{t+1}} U(X_t) - H_t + \beta \left[\zeta_s G_{t+1}^{S}(\hat{m}_{t+1}) + (1 - \zeta_s) G_{t+1}^{-S}(\hat{m}_{t+1}) \right]$$

s.t.
$$\phi_t^S \hat{m}_{t+1} + X_t = H_t + T_t + \phi_t^S m_t + (1 + i_{d,t}) \phi_t^S d_t - (1 + i_{l,t}) \phi_t^S \ell_t$$
.

The first order condition can be written as

$$-\phi_t^S + \beta \zeta_s G_{t+1}^{S}(\hat{m}_{t+1}) + \beta (1 - \zeta_s) G_{t+1}^{S}(\hat{m}_{t+1}) = 0.$$
 (19)

$$G_{t+1}^{S}(m_{t+1}^{S}) = \phi_{t+1}^{S} \left[\frac{1 - \sigma + \sigma \chi}{\chi} \alpha L(z_{t+1}^{S}) + 1 \right]$$
Substituting (20) into (19) and multiplying
$$(1 - \sigma + \sigma \chi) m_{t+1} / (\sigma \chi) \text{ to the both sides yield}$$
(20)

$$(1 - \sigma + \sigma \chi) m_{t+1} / (\sigma \chi)$$
 to the both sides yield
$$-S = \frac{\zeta_s z_{t+1}^S}{1 - \sigma + \sigma \chi} \int_{0.175}^{0.175} \int_{0.175}$$

$$z_{t}^{S} = \frac{\zeta_{s} z_{t+1}^{S}}{1+i} \left[\frac{1-\sigma+\sigma \chi}{\chi} \alpha L(z_{t+1}^{S}) + 1 \right]$$

$$+\frac{(1-\zeta_s)z_{t+1}^{-S}}{1+i}\left[\frac{1-\sigma+\sigma\chi}{\gamma}\alpha L(z_{t+1}^{-S})\right]$$

$$+\frac{(1-\zeta_s)z_{t+1}^{-S}}{1+i}\left[\frac{1-\sigma+\sigma\chi}{\alpha}L(z_{t+1}^{-S})+1\right]$$

 $+\frac{(1-\zeta_s)z_{t+1}^{-S}}{1+i}\left[\frac{1-\sigma+\sigma\chi}{v}\alpha L(z_{t+1}^{-S})+1\right]$

$$+\frac{(1-\zeta_s)z_{t+1}}{1+i}\left[\frac{1-\sigma+\sigma\chi}{\chi}\alpha L(z_{t+1}^{-S})+1\right]$$

 $=\zeta_{5}f(z_{t+1}^{5})+(1-\zeta_{5})f(z_{t+1}^{-5})$

(21)

$$=\zeta_s f(z_{t+1}^3) + (1 - \zeta_s) f(z_{t+1}^{-3}) \tag{2}$$

Sunspot Cycles

Definition (Proper Sunspot Equilibrium)

A proper sunspot equilibrium consists of the sequences of real balances $\{z_t^S\}_{t=0,S=1,2}^{\infty}$, where z_1 is not equal to z_2 , and probabilities (ζ_1,ζ_2) , solving (21) for all t.

Proposition (Existence of Proper Sunspot Equilibrium)

If $f'(z_s) < -1$, there exist (ζ_1, ζ_2) , $\zeta_1 + \zeta_2 < 1$, such that the economy has a proper sunspot equilibrium in the neighborhood of z_s .

Self-Fulfilling Bubble and Burst Equilibria

- Assume the buyer makes a take-it-or-leave-it offer to the seller; the DM utility function and the cost function satisfies $-qu''(q)/u'(q) = \eta$ and c(q) = q.
- ► Consider the equilibria that real balance increases above the steady state until certain time, *T*, and crashes to zero.
 - More specifically, consider a sequence of real balance $\{z_t\}_{t=0}^{\infty}$ with $z_T \equiv \max\{z_t\}_{t=0}^{\infty} > q^*$ (bubble) that crashes to 0 (burst) as $t \to \infty$, where $T \ge 1$ and $z_T > z_0$.

Definition (Self-Fulfilling Bubble and Burst Equilibria)

For initial level of real balance $z_0 > 0$, a self-fulfilling bubble and burst is a set of sequence $\{z_t\}_{t=0}^{\infty}$ satisfying (22)

$$z_{t} = \frac{z_{t+1}}{1+i} \left[\frac{1-\sigma+\sigma\chi}{\chi} \alpha [u'(z_{t+1})-1]+1 \right]$$
 (22)

where $0 < z_s < z_T$, $\lim_{t \to \infty} z_t = 0$, $z_T = \max\{z_t\}_{t=0}^{\infty}$ with $T \ge 1$.

Self-Fulfilling Bubble and Burst Equilibria

Figure 6: Bubble and Burst Equilibria

- When $z_s > \bar{z}$, where \bar{z} solves $f'(\bar{z}) = 0$, there exist multiple equilibria.
- ▶ Then, if $f(\bar{z}) \ge q^*$, the self-fulfilling bubble and burst equilibria exist.

Self-Fulfilling Bubble and Burst Equilibria

Proposition (Existence of Self-Fulfilling Bubble and Burst Equilibria)

There exist self-fullfilling bubble and burst equilibria, $\{z_t\}_{t=0}^{\infty}$ if

$$0 < \chi < \min \left\{ \frac{(1-\sigma)\alpha\eta(1+i)}{(1-\eta)^2q^* + (1+i)[(1-\eta)(3+i-\eta) - \alpha\sigma\eta]}, Q(i) \right\}$$

where
$$Q(i) = \frac{(1-\sigma)\alpha\eta}{2+i(2-\eta)-\alpha\sigma\eta}$$

Money Demand

Figure 7: US M1 Money Demand

Two Different Strategy

Divide into two subperiod

▶ Ireland (2009, AER) and Alvarez & Lippi (2014, AEJ:macro), Berentsen et al. (2011, AER) and Berentsen et al. (2015, JMCB)

Using M1J

Wang et al. (2020, IER) and Bethune et al. (2020, RES).
 Lucas & Nicolini (2015, JME)

Adapt both

- Model 1: calibrate the model without unsecured credit using M1J
- ▶ Model 2: calibrate the model with unsecured credit using M1 and unsecured credit assuming there were structural break at 1980.

Figure 8: US Money Demand and Credit

Unsecured Credit Growth

Institutional Changes and Unsecured Credit Growth

Figure 9: Institutional Changes and Unsecured Credit Growth

Back to the calibration

Parameterization and Calibrated Parameter

- Buyer makes take-it-or-leave-it offer to seller in the DM.
- ▶ Matching function, $\mathcal{M}(\mathcal{B}, \mathcal{S}) = \frac{\mathcal{B}\mathcal{S}}{\mathcal{B}+\mathcal{S}}$ where \mathcal{B} and \mathcal{S} denotes the measure of buyers and sellers.

$$u(q) = \frac{q^{1-\eta}}{1-\eta}, \qquad c(q) = q, \qquad U(X) = B\log(X)$$

Table 2: Annual Model (1934-2007)

Parameter	Model 1	Model 2	Target
DM utility curvature, η	0.179	0.129	elasticity of z/y wrt i
CM utility level, B	1.653	0.952	avg. z/y
fraction of buyers, σ	0.771	0.790	avg. m/y
monitoring probability, μ	-	0.402	avg. b/y

Calibrated Examples

Figure 10: DM surplus at the stationary equilibrium

Calibrated Examples

Figure 11: χ_m and χ_c

Back to other applications

News Shock

$$z_T = f_T(z_T), \quad z_{T-1} = f_0(z_T), \quad z_{T-2} = f_0(z_{T-1}), \quad \dots \quad z_0 = f_0(z_0)$$

Let equations (16) and (17) be $z_t = \Phi(z_{t+1}, \bar{b}_{t+1})$ and $\bar{b}_t = \Gamma(z_{t+1}, \bar{b}_{t+1})$. The transitional dynamics of the equilibrium with unsecured credit also can be solved by backward induction.

$$z_T = \Phi_T(z_T, \bar{b}_T), \quad z_{T-1} = \Phi_0(z_T, \bar{b}_T), \quad z_{T-2}, \quad \dots \quad z_0 = \Phi_0(z_0, \bar{b}_0)$$

 $\bar{b}_T = \Gamma_T(z_T, \bar{b}_T), \quad \bar{b}_{T-1} = \Gamma_0(z_T, \bar{b}_T), \quad \bar{b}_{T-2}, \quad \dots \quad \bar{b}_0 = \Gamma_0(z_0, \bar{b}_0)$

Table 3: Quarterly Model (1934-2007)

Parameter	Model 1	Model 2	Target
DM utility curvature, η	0.179	0.129	elasticity of z/y wrt i
CM utility level, B	0.007	0.024	avg. z/y
fraction of buyers, σ	0.805	0.917	avg. m/y
monitoring probability, μ	-	0.474	avg. b/y

Figure 12: Phase Dynamics and Transition Paths for Known Policy Change: Model 1

Figure 13: Transition Paths for Known Policy Change: Model 2

Back to other applications

Inside Money Volatility

EMPIRICAL EVALUATION:

▶ Do data show high volatility of real balance of inside money under lower reserve requirement?

Data

- required reserve ratio is calculated as (required reserves)/(total checkable deposit): χ
- cyclical volatility in quarter t is calculated as the standard deviation of filtered log real total checkable deposit during a 41-quarter (10-year) window centered around quarter t: σ_t^{Roll}
 - 1. quarterly observations are averaged for each year
 - 2. the Hodrick-Prescott (HP) filter with 1600 smoothing parameter
 - 3. real total checkable deposit is caluculated using CPI
 - 4. sensitivity analysis using Core CPI, PCE, Core PCE
- federal funds rate: ffr
- ▶ sample period: $1960Q1-2017Q4 \Rightarrow 1965-2012$

- ▶ Unit test fail to reject the nonstationarity of χ , σ_t^{Roll} , and ffr \Rightarrow Spurious regression?
- ▶ Johansen test suggests that χ , σ_t^{Roll} , and ffr are cointegrated.
- With the cointegration relationship, we may not have to worry about a spurious relationship.
- Estimate cointegrating relationship using canonical cointegrating regression (CCR) and Fully Modified OLS (FMOLS)

Table 4: Empirical Evaluation
(a) Unit Root Test

	Phillips-Pe	erron test	ADF test
	$Z(\rho)$	Z(t)	Z(t) w/ lag 1
ffr	-6.766	-1.704	-2.362
χ	-1.518	-1.199	-1.363
σ_t^{Roll}	-4.708	-2.191	-2.090
Δffr	-28.373***	-5.061***	-6.357***
$\Delta \chi$	-31.783***	-4.794***	-3.682***
$\Delta \sigma_t^{Roll}$	-24.905***	-3.416**	-2.942**

(b) Johansen Test for Cointegration

Max rank	$\lambda_{trace}(r)$	5% CV	1% CV
0	35.6880	29.68	35.65
1	10.6820	15.41	20.04
2	4.5391	3.76	6.65
Max rank	$\lambda_{max}(r, r+1)$	5% CV	1% CV
		~~ ~=	0= =0
0	25.0060	20.97	25.52
0 1	25.0060 6.1429	20.97 14.07	25.52 18.63

Table 5: Empirical Evaluation

Table 6: Effect of Require Reserve Ratio

	OLS	CCR	FMOLS (3)
	(1) -0.283***	(2) -0.245***	-0.211***
χ	(0.031)	(0.002)	(0.003)
££	(0.031)	` ,	` ,
ffr		-0.109***	-0.248***
Constant	0.074***	(0.002) 0.074***	(0.003) 0.078***
	(0.004)	(0.000)	(0.000)
Obs.	49	49	49
R ²	0.706	0.637	0.144

Back to other applications

Table 7: Effect of Require Reserve Ratio: Robustness Check

(a) Benchmark: CPI

(b) Core CPI

	OLS	CCR	FMOLS
	(1)	(2)	(3)
X	-0.283***	-0.245***	-0.211***
	(0.031)	(0.002)	(0.003)
ffr		-0.109***	-0.248***
		(0.002)	(0.003)
Constant	0.074***	0.074***	0.078***
	(0.004)	(0.000)	(0.000)
Obs.	49	49	49
R^2	0.706	0.637	0.144

OLS	CCR	FMOLS
(1)	(2)	(3)
-0.267***	-0.221***	-0.192***
(0.027)	(0.003)	(0.003)
	-0.125***	-0.248***
	(0.003)	(0.004)
0.070***	0.071***	0.074***
(0.004)	(0.000)	(0.000)
49	49	49
0.734	0.663	0.133

(c) PCE

(d) Core PCE

	OLS (1)	CCR (2)	FMOLS (3)		OLS (1)	CCR (2)	FMOLS (3)
χ	-0.306***	-0.227***	-0.189***	χ	-0.307***	-0.220***	-0.182***
	(0.029)	(0.004)	(0.005)		(0.027)	(0.005)	(0.005)
ffr		-0.187***	-0.350***	ffr		-0.207***	-0.362***
		(0.004)	(0.005)			(0.004)	(0.006)
Constant	0.074***	0.075***	0.079***	Constant	0.073***	0.073***	0.077***
	(0.004)	(0.000)	(0.000)		(0.004)	(0.000)	(0.001)
Obs.	49	49	49	Obs.	49	49	49
R ²	0.746	0.664	0.121	R ²	0.769	0.680	-0.042

Table 9: Johansen Test for Cointegration: Robustness Check

(a) Benchmark: CPI

$\lambda_{trace}(r)$
35.6880
10.6820
4.5391
$\lambda_{max}(r, r+1)$
25.0060
6.1429
4.5391

(b) Core CPI

Max rank	$\lambda_{trace}(r)$	5% CV	1% CV
0	35.1449	29.68	35.65
1	10.0645	15.41	20.04
2	4.2011	3.76	6.65
Max rank	$\lambda_{max}(r, r+1)$	5% CV	1% CV
0	25.0804	20.97	25.52
4	5.8635	14.07	18.63
1			

(c) PCE

Max rank	$\lambda_{trace}(r)$
0	35.3667
1	9.8942
2	3.9605
Max rank	$\lambda_{max}(r, r+1)$

5.9337 3.9605

(d) Core PCE

Max rank	$\lambda_{trace}(r)$	5% CV	1% CV
0	35.0280	29.68	35.65
1	9.3450	15.41	20.04
2	3.6465	3.76	6.65
Max rank		-0/	
	$\lambda = (r r + 1)$	5% CV	1% CV
0	$\frac{\lambda_{max}(r, r+1)}{25.6830}$	5% CV 20.97	1% CV 25.52
0 1			

Table 10: Unit Root Test: Robustness Check

(a) Benchmark: CPI

(b) Core CPI

			-			
	Phillips-Perron test		ADF test	Phillips-P	Phillips-Perron test	
	$Z(\rho)$	Z(t)	Z(t) w/ lag 1	$Z(\rho)$	Z(t)	Z(t) w/ lag 1
σ_t^{Roll}	-4.708	-2.191	-2.090	-4.681	-2.189	-1.978
$\Delta \sigma_t^{Roll}$	-24.905***	-3.416**	-2.942**	-24.758***	-3.509***	-2.942***

(c) PCE

(d) Core PCE

	Phillips-Perron test		ADF test —	Phillips-Pe	rron test	ADF test
	$Z(\rho)$	Z(t)	Z(t) w/ lag T	$Z(\rho)$	Z(t)	Z(t) w/ lag 1
σ_t^{Roll}	-4.329	-2.038	-2.047	-4.076	-1.954	-1.930
$\Delta \sigma_t^{Roll}$ -2	23.691***	-3.330***	-2.842** _	-22.826***	-3.296**	-2.768**

Table 11: Empirical Evaluation: Robustness Check (Quarterly)
(a) Unit Root Test

	Phillips-Pe	ADF test	
	$Z(\rho)$	Z(t)	Z(t) w/ lag 1
ffr	-8.900	-1.989	-2.219
χ	-1.263	-1.092	-1.150
σ_t^{Roll}	-3.946	-2.372	-2.227
Δ ffr	-136.820***	-10.679***	-10.179***
$\Delta \chi$	-160.164***	-12.130***	-9.804***
$\Delta \sigma_t^{Roll}$	-40.319***	-4.515**	-5.627**

(b) Johansen Test for Cointegration

Max rank	$\lambda_{trace}(r)$	5% CV	1% CV
0	35.5243	29.68	35.65
1	15.2586	15.41	20.04
2	4.0275	3.76	6.65
Max rank	$\lambda_{max}(r, r+1)$	5% CV	1% CV
0	20.2657	20.97	25.52
U	20.2031	20.51	
1	11.2311	14.07	18.63

Table 13: Empirical Evaluation: Robustness Check (Quarterly)

Table 14: Effect of Require Reserve Ratio

	OLS	CCR	FMOLS
	(1)	(2)	(3)
χ	-0.286***	-0.405***	-0.464***
	(0.016)	(0.000)	(0.000)
ffr		-0.120***	-0.279***
		(0.000)	(0.000)
Constant	0.074***	0.080***	0.077***
	(0.002)	(0.000)	(0.000)
Obs.	192	192	192
R^2	0.719	0.403	0.081

References

- Alvarez, F. & Lippi, F. (2014), 'Persistent liquidity effects and long-run money demand', *American Economic Journal: Macroeconomics* **6**(2), 71–107.
- Andolfatto, D., Berentsen, A. & Martin, F. M. (2019), 'Money, banking, and financial markets', *Review of Economic Studies*.
- Azariadis, C. (1993), 'Intertemporal macroeconomics'.
- Baumol, W. J. & Benhabib, J. (1989), 'Chaos: Significance, mechanism, and economic applications', *Journal of Economic Perspectives* **3**(1), 77–105.
- Benhabib, J. & Farmer, R. E. (1999), 'Indeterminacy and sunspots in macroeconomics', *Handbook of Macroeconomics* 1, 387–448.
- Berentsen, A., Camera, G. & Waller, C. (2007), 'Money, credit and banking', *Journal of Economic Theory* **135**(1), 171–195.

- Berentsen, A., Huber, S. & Marchesiani, A. (2015), 'Financial innovations, money demand, and the welfare cost of inflation', *Journal of Money, Credit and Banking* **47**(S2), 223–261.
- Berentsen, A., Menzio, G. & Wright, R. (2011), 'Inflation and unemployment in the long run', *American Economic Review* **101**(1), 371–98.
- Bethune, Z., Choi, M. & Wright, R. (2020), 'Frictional goods markets: Theory and applications', *The Review of Economic Studies* **87**(2), 691–720.
- Chari, V. & Phelan, C. (2014), 'On the social usefulness of fractional reserve banking', *Journal of Monetary Economics* **65**, 1–13.
- Freeman, S. & Huffman, G. W. (1991), 'Inside money, output, and causality', *International Economic Review* pp. 645–667.
- Freeman, S. & Kydland, F. E. (2000), 'Monetary aggregates and output', *American Economic Review* **90**(5), 1125–1135.

- Gu, C., Mattesini, F., Monnet, C. & Wright, R. (2013a), 'Banking: A new monetarist approach', *Review of Economic Studies* **80**(2), 636–662.
- Gu, C., Mattesini, F., Monnet, C. & Wright, R. (2013b), 'Endogenous credit cycles', *Journal of Political Economy* 121(5), 940–965.
- Gu, C., Mattesini, F. & Wright, R. (2016), 'Money and credit redux', *Econometrica* **84**(1), 1–32.
- Gu, C., Monnet, C., Nosal, E. & Wright, R. (2019), 'On the instability of banking and financial intermediation'.
- Gu, C. & Wright, R. (2016), 'Monetary mechanisms', *Journal of Economic Theory* **163**, 644–657.
- Ireland, P. N. (2009), 'On the welfare cost of inflation and the recent behavior of money demand', *American Economic Review* **99**(3), 1040–52.
 - Li, T.-Y. & Yorke, J. A. (1975), 'Period three implies chaos', *The American Mathematical Monthly* **82**(10), 985–992.

- Lotz, S. & Zhang, C. (2016), 'Money and credit as means of payment: A new monetarist approach', *Journal of Economic Theory* **164**, 68–100.
- Lucas, R. E. & Nicolini, J. P. (2015), 'On the stability of money demand', *Journal of Monetary Economics* **73**, 48–65.
- Sargent, T. J. (2011), 'Where to draw lines: Stability versus efficiency', *Economica* **78**(310), 197–214.

Sharkovskii, A. (1964), 'Cycles coexistence of continuous

transformation of line in itself', *Ukr. Math. Journal* **26**(1), 61–71.

Wang, L., Wright, R. & Liu, L. Q. (2020), 'Sticky prices and costly credit', *International Economic Review* **61**(1), 37–70.