

Task 6 - Room Access Monitoring

COMPLEX EMBEDDED SYSTEMS LAB

What is the Project About?

- Develop a system that monitors the number of people present in a room
- If a maximum number of people is exceeded, a step-by-step notification system should inform about the violation of this rule
- How to recognize not only when a person enters but also leaves the room to decrease the counter.

Phase One

The Hardware Setup

Phase One

The Design And Required Hardware

Phase One

Updated Hardware Setup

Phase Two

The Real Outlook

OUT **ELECTRI** LDR2 Visitor Counter Occupancy = 0

Phase Three

The Code

Merge #define DETECT LDR1 A0 // Setting Analog Pin A0 for LDR 1 #define DETECT LDR2 A1 // Setting Analog Pin A1 for LDR 2 #define speaker 9 // Setting Digital Pin 9 for BUZZER #include <Wire.h> #include <LiquidCrystal I2C.h> // Including I2C Library for our LCD LiquidCrystal I2C lcd(0x27,20,4); // sets the LCD address to 0x27 for a 16 chars and 2 line display // Initiazlizing Variables int count = 0; int threshold =300; int i = 0; // SET NUMBER OF VISITORS ALLOWED int warning = 3; // For Low Buzzing Sound We can change this int cuttoff = 6; // For High Buzzing Sound We can change this void setup() { Serial.begin (9600); pinMode (DETECT_LDR1, INPUT);//define detect input pin pinMode (DETECT_LDR2, INPUT)://define detect input pin pinMode (speaker, OUTPUT); //define BuZZer output pin lcd.init(); // initialize the LCD //lcd.init(); 1cd.backlight(); //େବର୍ଷ୍ୟ ପ୍ରତ୍ୟ ପର୍ୟ ପ୍ରତ୍ୟ ପର ପ୍ରତ୍ୟ ପର ପ୍ରତ୍ୟ ପର ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପର ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ ପ୍ରତ୍ୟ void loop() { int detected LDR1 = analogRead(DETECT LDR1);// read Laser sensor int detected LDR2 = analogRead (DETECT LDR2); // read Laser sensor // Main Algorithm: // If the Laser is cut first at LDR 1 detected by comparing the change of value with threshold // This Means A Person Just Entered And the Counter is Increased by 1 else keep the counter value // If the Laser is cut first at LDR 2 detected and LDR 1 Value is less then Threshold,

Phase Three

The Demo

What have We Achieved?

Working And Testing

- As shown in Demo everything works perfectly and all requirements have been met.
- The System has been tested many times and till yet NO Error has been found

Drawbacks of this Project

- Cannot fit this project to a door because of Low power of Lasers
- Will not work in real environments especially OUTDOORS
- This used strategy is just one of many ways to make Visitor Counter
- Proximity and IR sensors are obviously the Better Choice

Credits and Acknowledgments

@TU Ilmenau

- Mr. Maximilian Hammer for designing this Lab work and providing much needed support
- Prof Zimmermann for Teaching us Complex Embedded System Course

@The Internet

- Arduino IDE Example Codes and Community at: https://www.arduino.cc/en/Tutorial/LibraryExamples
- Instructables I2C LCD Setup at: https://www.instructables.com/Arduino-I2C-LCD-Driver-Library-and-PackMan/
- Lasers and Arduino at: https://create.arduino.cc/projecthub/projects/tags/lasers
- Bidirectional Counter and Automatic Light at:
- https://theiotprojects.com/bidirectional-visitor-counter-automaticlight-control-using-arduino/

