Семестриално контролно по "Дискретни структури" за КН, 1-ви поток, 21. 11. 2015 г.

Име: \_\_\_\_\_, ФН: \_\_\_\_, Група: \_\_\_\_\_

| Задача         | 1  | 2  | 3  | 4  | 5  | 6  | Общо |
|----------------|----|----|----|----|----|----|------|
| получени точки |    |    |    |    |    |    |      |
| максимум точки | 20 | 20 | 20 | 20 | 20 | 20 | 120  |

**Задача 1.** Докажете, че 
$$\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{3n+1}>1$$
 за всяко цяло  $n\geq 1.$ 

**Задача 2.** Разглеждаме релации, дефинирани над множеството на целите положителни числа. Известно е, че n-местните релации  $(n \ge 3)$  често могат да се представят като конюнкция (сечение) на бинарни релации. Пример:

числата 
$$x, y$$
 и  $z$  са наредени в нарастващ ред  $\iff$   $(x < y) \land (y < z)$ .

Обаче не винаги има такова представяне. Докажете, че не съществува бинарна релация  $R\,,$  за която да е в сила представянето

$$x^y$$
 дели  $z \Leftrightarrow xRy \wedge yRz$ .

Задача 3. Студентска конференция по висша математика се провежда в три секции — алгебра, геометрия и математически анализ. На конференцията присъстват общо 450 студенти от първи до четвърти курс, от различни университети. Измежду всеки осем студенти има поне двама от един и същ университет. Докажете, че в някоя от секциите на конференцията присъстват поне шестима студенти от един и същи курс на един и същ университет.

Упътване: Използвайте принципа на Дирихле.

Задача 4. Десет приятели искат да играят на футбол.

- а) По колко начина могат да се разделят на два отбора по пет души?
- б) Колко стават вариантите, ако всеки отбор си избира вратар и капитан?

Забележка: Пресметнете отговорите докрай.

**Задача 5.** Нека  $A = \{p, q, r, s, t\}$ ,  $B = \{x, y, z, u, v, w\}$ ,  $C = A \cup B$ . Намерете броя на релациите на строга линейна наредба в C, такива, че a < b за  $\forall a \in A$  и  $\forall b \in B$ . Забележка: Изчислете отговора докрай.

**Задача 6.** Постройте биекция между контурите на кръг и трапец, ако контурите и вътрешните области на двете фигури нямат обща точка.

## РЕШЕНИЯ

Задача 1 се решава с принципа на математическата индукция.

*База:* n=1. Трябва да проверим неравенството  $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1$ , тоест  $\frac{13}{12}>1$ , което е очевидно вярно.

Индуктивна стопка: Нека неравенството е изпълнено при n=k за някое  $k\geq 1$ , т.е. нека  $\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{3k+1}>1$ . Ще докажем, че в такъв случай неравенството важи и при n=k+1, т.е.  $\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+\cdots+\frac{1}{3k+1}+\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}>1$ . За целта е достатъчно да установим, че разликата на левите страни е неотрицателна:  $\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}>0$ . Това неравенство може да се провери чрез преобразуване в поредица от равносилни неравенства:

$$\frac{1}{3k+2} + \frac{1}{3k+4} > \frac{1}{k+1} - \frac{1}{3k+3} \iff \frac{1}{3k+2} + \frac{1}{3k+4} > \frac{3}{3k+3} - \frac{1}{3k+3} \iff \frac{1}{3k+2} + \frac{1}{3k+4} > \frac{2}{3k+3} \iff (3k+3)(3k+4) + (3k+3)(3k+2) > 2(3k+2)(3k+4) \iff (3k+3)\left[(3k+4) + (3k+2)\right] > 2(3k+2)(3k+4) \iff (3k+3)(6k+6) > 2(3k+2)(3k+4) \iff (3k+3)(3k+3) > (3k+2)(3k+4) \iff 9k^2 + 18k + 9 > 9k^2 + 18k + 8 \iff 9 > 8,$$
 което е безспорно.

**Задача 2.** Да допуснем противното: че съществува бинарна релация  $R\,,\,$  за която

$$x^y$$
 дели  $z \Leftrightarrow xRy \wedge yRz$ .

Заместваме x=1. Тъй като  $1^y=1$  дели z, то  $1Ry \wedge yRz$ , откъдето следва, че yRz за всички цели положителни числа y и z. Тогава xRy за всички цели положителни x и y. Ето защо  $xRy \wedge yRz$ , следователно  $x^y$  дели z за всички цели положителни числа x, y и z. Но това не е вярно: например  $2^3=8$  не дели 7. Полученото противоречие води до извода, че направеното допускане е неправилно. Тоест търсената бинарна релация не съществува.

Задача 3. Прилагаме принципа на Дирихле два пъти.

Първи път: щом измежду всеки осем студенти има поне двама от един и същ университет, то следва, че на конференцията са представени най-много седем университета.

Втори път: считаме наредените тройки < секция, университет, курс> за "чекмеджета". Според правилото за умножение броят на тези тройки е не по-голям от 3.7.4=84. Да поставим всеки студент в съответното му "чекмедже". Тъй като 450:84=5 и остатък 30, то ще се намери "чекмедже" с поне шестима студенти. Те са от един и същ университет, от един и същи курс и докладват в една и съща секция.

## Задача 4.

а) Това подусловие допуска разнообразни решения. Например посочваме един от играчите по произволен начин и го оставяме да си избере четирима съотборници; това може да стане по  $C_9^4=126$  начина. Друг подход: ние избираме петима играчи за единия отбор, за което разполагаме с  $C_{10}^5=252$  възможности. Обаче всяка комбинация и нейното допълнение, например  $\left\{1,2,3,4,5\right\}$  и  $\left\{6,7,8,9,10\right\}$ , задават едно и също разпределение на играчите по отбори. Затова броят на възможните разпределения по отбори е половината от броя на комбинациите 5 от 10, т.е. 252:2=126.

Отговор: Играчите могат да се разпределят на отбори по 126 начина.

б) Всяка от наредените двойки <вратар, капитан> представлява вариация без повторение на два елемента от пет (играчите от един отбор). Броят на тези вариации е  $V_5^2=20$ , тоест всеки отбор може да избере вратар и капитан по 20 различни начина. За двата отбора общо начините са  $20 \cdot 20 = 400$ . Тези 400 начина съответстват на едно разпределение на играчите по отбори. От всичките 126 разпределения се получават  $126 \cdot 400 = 50400$  варианта.

**Отговор:** Има 50400 варианта играчите да се разпределят на два отбора и всеки отбор да си избере вратар и капитан.

Забележся: В условието на задачата се подразбира, че вратарят и капитанът са двама различни играчи, затова вариациите са без повторение. Ако се допуска възможността вратарят да е капитан, тогава вариациите ще бъдат със повторение и броят им ще бъде  $\widetilde{V}_5^2=25$ . За двата отбора вариантите ще бъдат 25. 25=625, а за всички разпределения на играчите по отбори ще има 126. 625=78750 възможности. При новото тълкуване този отговор също може да се приеме за верен.

Задача 5. Всяка релация на строга линейна наредба представлява едно възможно подреждане на елементите на множеството  $C=A\cup B$  в редица. По същество търсим броя на всички редици от елементи на C, в които редици елементите на A предхождат елементите на B. Тоест елементите на A заемат първите пет места, а елементите на B — последните шест места. Всяко разместване на елементите на A по местата им е пермутация на пет елемента. Броят на тези пермутации е  $P_5=5!=120$ . Аналогично, всяко разместване на елементите на B по местата им е пермутация на 6 елемента. Броят на тези пермутации е  $P_6=6!=720$ . По правилото за умножение получаваме 120.720=86400 за броя на възможните релации.

**Отговор:** Има 86400 релации на строга линейна наредба в C, такива, че a < b за  $\forall a \in A$  и  $\forall b \in B$ .

**Задача 6.** Има два начина за решаването на тази задача. И двата използват едно и също свойство на изпъкналите фигури: лъч, чието начало е вътрешна точка за дадена изпъкнала фигура, пресича контура на фигурата точно веднъж.

**Първи начин:** Избираме две точки:  $O_A$  — вътрешна за кръга;  $O_B$  — вътрешна за трапеца. На всяка точка A от контура на кръга съпоставяме мярката на ъгъла, който лъчът  $O_AA^{\rightarrow}$  сключва с посоката хоризонтално надясно (ъгълът се мери от посоката "хоризонтално надясно" към лъча  $O_AA^{\rightarrow}$  обратно на движението на часовниковата стрелка). Така дефинираното изображение от контура на кръга към интервала  $\left[0\,;\,2\pi\right)$  е биекция; това твърдение следва от цитираното свойство на изпъкналите фигури.



Аналогично, ако  $\varphi \in [0\,;\,2\pi)$ , то съществува единствен лъч с начало точката  $O_B$ , който сключва ъгъл  $\varphi$  с посоката "хоризонтално надясно" (ъгълът се мери, както бе обяснено по-горе). Този лъч пресича контура на трапеца в единствена точка B. По такъв начин е дефинирано изображение от интервала  $\left[0\,;\,2\pi\right)$  към контура на трапеца; то също представлява биекция, понеже и трапецът е изпъкнала фигура.

Композицията на двете биекции е биекция от контура на кръга към контура на трапеца. Ако точките B и A са съответно образ и първообраз при тази биекция, то лъчите  $O_AA^{\rightarrow}$  и  $O_BB^{\rightarrow}$  са еднопосочни, понеже сключват един и същ ъгъл  $\varphi$  с посоката "хоризонтално надясно". Това наблюдение ни позволява да дефинираме биекцията между двата контура по-кратко (без композиция): за всяка точка A от контура на кръга единственият лъч с начало т.  $O_B$ , който е еднопосочен с лъча  $O_AA^{\rightarrow}$ , пресича контура на трапеца в единствена точка B, която по определение е образът на точката A. Обратно, за всяка точка B от контура на трапеца единственият лъч с начало т.  $O_A$ , който е еднопосочен с лъча  $O_BB^{\rightarrow}$ , пресича контура на кръга в единствена точка A, която е първообразът на B. Твърденията за единственост на пресечните точки следват от цитираното свойство на изпъкналите фигури. От това, че всяка точка A има единствен образ B, следва, че изображението е коректно дефинирано. От това, че всяка точка B има единствен първообраз A, следва, че изображението е биекция.

**Втори начин:** Извършваме транслация на едната фигура така, че вътрешните области на фигурите да получат някаква обща точка O. На всяка точка A от контура на кръга съпоставяме единствената точка B, в която лъчът  $OA \xrightarrow{}$  пресича контура на трапеца. Това изображение е биекция, защото всяка точка B от контура на трапеца има единствен първообраз — онази точка A, в която лъчът  $OB \xrightarrow{}$  пресича контура на кръга.

