

1 Veröffentlichungsnummer: 0 522 419 A1

1

EUROPÄISCHE PATENTANMELDUNG

2) Anmeldenummer: 92111066.4

2 Anmeldetag: 30.06.92

10 Int. Cl.5: C08G 18/67, C08G 18/08, C09D 175/14, C09J 175/14, C09D 11/10

- Priorität: 05.07.91 DE 4122265
- 43 Veröffentlichungstag der Anmeldung: 13.01.93 Patentblatt 93/02
- Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB IT LI NL SE
- Anmeider: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 W-6230 Frankfurt am Main 80(DE)
- Erfinder: Klein, Heinz-Peter, Dr. Gross-Gerauer-Strasse 79 W-6500 Mainz-Laubenheim(DE) Erfinder: Schafheutle, Markus A., Dr. Schwedenstrasse 78 W-6203 Hochhelm(DE) Erfinder: Walz, Gerhard, Dr. Pfingstbornstrasse 99 W-6200 Wlesbaden(DE)

- Polyurethan-Dispersionen.
- Dolyurethan-Dispersionen hergestellt durch radikalisch initiierte Polymerisation von Polyurethan-Makromonomeren mit einem Gehalt an Carboxyl-, Phosphonsäure oder Sulfonsäuregruppen und lateralen Vinylgruppen sowie gegebenenfalls terminalen Vinyl-, Hydroxy-, Urethan-, Thiourethan- und/oder Harnstoffgruppen.

Diese Polyurethan-Dispersionen eignen sich zur Herstellung von Überzügen auf Substraten, als Klebemittel oder als Bindemittel in Druckfarben.

Rank Xerox (UK) Business Services

In EP 98 752 sind wäßrige Polyurethan-Dispersionen beschrieben. Diese Polyurethan-Dispersionen werden hergestellt, indem zunächst ein Diol. das ionische Gruppen enthält, ein Polyol-polyether oder Polyol-polyester und ein Überschuß eines Diisocyanats unter Bildung eines Präpolymeren umgesetzt werden. In der zweiten Stufe wird dieses Präpolymere, das freie Isocyanatgruppen enthält, dann mit einem Hydroxy-alkyl(meth)acrylat umgesetzt. Man erhält dabei ein zweites Präpolymer, das Vinylgruppen enthält und dieses Prapolymer wird dann zum Schluß in wäßriger Dispersion mit Radikale bildenden Initiatoren polymerisiert. Bedingt durch dieses Reaktionsschema entsteht dabei als zweites Präpolymer ein Produkt, das ausschließlich terminale Vinylgruppen enthält, Produkte mit lateralen Vinylgruppen sind dort nicht erwähnt.

Gegenstand der vorliegenden Erfindung sind Polyurethan-Dispersionen, hergestellt durch radikalisch initiierte Polymerisation von Polyurethan-Makromonomeren mit einem Gehalt an Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen und lateralen Vinylgruppen sowie gegebenenfalls terminalen Vinylgruppen, Hydroxyl-, Urethan-, Thiourethan- und/oder Harnstoffgruppen.

Diese Polyurethan-Dispersionen können im Prinzip auf verschiedenen Wegen hergestellt werden. Ein Weg besteht darin, daß ein Polyadditionsprodukt hergestellt wird durch Polyaddition von Polyhydroxy-Verbindungen aus der Gruppe Polyhydroxy-polyether, Polyhydroxy-polyester oder Polyhydroxy-polycarbonate, weiterhin Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren, sowie Polyisocyanaten und einem mindestens zwei Hydroxy- sowie mindestens eine Vinylgruppe enthaltenden Monomeren. Die Mengenverhältnisse der Reaktanten, insbesondere an Polyisocyanat, werden dabei so gewählt, daß ein Makromonomer mit terminalen Hydraxylgruppen entsteht. Dieses Makromonomer, das außerdem Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen und laterale Vinylgruppen enthält, wird nach Überführung in eine wäßrige Dispersion über die Vinylgruppen mit radikalbildenden Initiatoren polymerisiert unter Bildung der Polyurethan-Dispersion, wobei in diesem Fall das Polyurethan noch Hydroxylgruppen trägt.

Ein zweiter Weg besteht darin, daß zunächst, wie bei der zuvor genannten Verfahrensvariante satz zu der zuvor beschriebenen Verfahrensvariante wird hier das Mengenverhältnis an Polyisocyanat so gewählt, daß ein Makromonomer mit terminalen Isocyanatgruppen entsteht. Daneben enthält dieses Makromonomer noch Carboxyl-, Phosphonsäureoder Sulfonsäuregruppen sowie laterale Vinylgruppen. Die freien Isocyanatgruppen dieses Makromonomers werden dann mit primären oder sekundären Aminen, Alkoholen oder Thioalkoholen unter Bildung von Harnstoff-, Urethan- oder Thiourethangruppen umgesetzt. Das so modifizierte Makromonomer wird dann ebenfalls über die Vinylgruppen mit radikalbildenden Initiatoren polymerisiert.

Ein dritter Weg besteht darin, daß, wie bei der zweiten Verfahrensvariante, ein Polyadditionsprodukt hergestellt wird durch Reaktion von Polyhydroxy-Verbindungen aus der Gruppe Polyhydroxy-polyether, Polyhydroxy-polyester oder Polyhydroxy-polycarbonate sowie Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren und Polyisocyanaten und zusätzlich einem Monomeren, das mindestens eine Vinylgruppe und mindestens zwei Hydroxygruppen enthält. Auch hier wird ein Überschuß von Polyisocyanat genommen, so daß das entstehende Makromonomer laterale Vinylgruppen, Carboxyl-, Phosphonsäure- bzw. Sulfonsäuregruppen sowie terminale Isocyanatgruppen besitzt. Dieses Makromonomer wird dann mit einem Monomeren umgesetzt, das außer einer Vinylgruppe noch eine Gruppe enthält, die mit Isocyanatgruppen reagiert, wie etwa die Hydroxyl-, Amino- oder Mercaptogruppe. Diese Monomeren können allein verwendet werden, es ist aber auch möglich, diese Monomeren im Gemisch mit primären oder sekundären Aminen. Alkoholen oder Thioalkoholen einzusetzen. Auf diese Weise erhält man ein Makromonomer, das laterale Vinylgruppen sowie terminale Vinylgruppen enthält. Dieses Makromonomer wird dann in der letzten Stufe ebenfalls über die Vinylgruppen mit radikalbildenden Initiatoren polymerisiert.

Eine vierte Verfahrensvariante besteht darin, daß das Monomer, welches die Carboxyl-, Phosphonsäure- bzw. Sulfonsäuregruppe trägt, erst zum Schluß in das zuvor gebildete Makromonomer eingebaut wird. Bei dieser Verfahrensvariante wird zunächst ein Polyadditionsprodukt gebildet aus Polyhydroxy-polyestern oder Polyhydroxy-carbonaten, Polyisocyanaten und Monomeren, die sowohl mindestens eine Vinylande als auch mindestens zwei Hydroxylgruppen

ethem, Polyhydroxy-polyestem oder Polyhydroxypolycarbonaten, weiterhin Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren sowie Polyisocyanaten und einem mindestens zwei Hydroxy- sowie mindestens eine Vinylgruppe enthaltenden Monomeren. Im Gegen-

Makromonomer terminale Isocyanatgruppen enthält. Daneben enthält dieses Makromonomer dann noch laterale Vinylgruppen.

Zum anderen kann das gebildete Zwischenprodukt in der Kette verlängert werden, indem die

30

Isocyanatgruppen dieses Polyadditonsprodukts mit Diaminocarbonsäuren oder Diaminosulfonsäuren umgesetzt werden. Auch hier erfolgt abschließend dann eine radikalisch Initilerte Polymerisation der Vinylgruppen.

Bevorzugt arbeitet man in der Weise, daß man die Di-hydroxyvinylverbindung nicht gleichzeitig mit dem Polyol bei der Polyaddition einbaut, sondern indem man zunächst ein Präpolymer allein aus Polyol, Polyisocyanat und gegebenenfalls Polyhydroxysäure zu einem OH- oder NCO-terminierten Präpolymeren umsetzt. In einer zweiten Stufe wird dieses Präpolymer dann mit der Di-hydroxyvinylverbindung und weiterem Polyisocyanat zu dem Vinylgruppen enthaltenden OH- oder NCO-terminierten Makromonomer umgesetzt.

In folgenden sollen die für die Herstellung der erfindungsgemäßen Polyurethan-Dispersionen benötigten Ausgangsverbindungen Im einzelnen näher beschrieben werden.

Als Polyhydroxy-polyether kommen Verbindungen der Formel

H -[- O - (CHR)n-]m OH

infrage, in der

- R Wasserstoff oder ein niedriger Alkylrest, gegebenenfalls mit verschiedenen Substituenten, ist,
- n eine Zahl von 2 bis 6 und
- m eine Zahl von 10 bis 120 ist.

Beispiele sind Poly(oxytetramethylen)glykole, Poly-(oxyethylen)glykole und Poly(oxypropylen)glykole. Die bevorzugten Polyhydroxy-polyether sind Poly-(oxypropylen)glykole mit einem Molekulargewicht im Bereich von 400 bis 5000.

Die Polyhydroxy-polyester werden hergestellt durch Veresterung von organischen Polycarbonsäuren oder ihren Anhydriden mit organischen Polyolen. Die Polycarbonsäuren und die Polyole können aliphatische oder aromatische Polycarbonsäuren und Polyole sein.

Die zur Herstellung verwendeten Polyole schließen Alkylenglykole wie Ethylenglykol, Butylenglykol, Neopentylglykol, Hexandiol-1,6 und andere Glykole wie Dimethylolcyclohexan, 2,2-Bis(4-hydroxycyclohexyl)propan sowie Trishydroxyalkylalkane, wie z.B. Trimethylolpropan und Tetrakishydroxyalkylalkane, wie z.B. Pentaerythrit ein.

Die Säurekomponente des Polyesters besteht in erster Linie aus niedermolekularen Polycarbonsäuren oder ihren Anhydriden mit 2 bis 18 Kohlenstoffatomen im Molekül. Geeignete Säuren sind beispielsweise Phthalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Hexahydrophthalsäure, Bernsteinsäure, Adipinsäure, Azelainsäure, Sebazinsäure, Maleinsäure, Glutarsäure, Hexachlorheptandicarbonsäure, Alkyl- und

Alkenylbernsteinsäure, z.B. n-Octenylbernsteinsäure, n- und Iso-Dodecenylbernsteinsäure, Tetrachlorphthalsäure, Trimellitsäure und Pyromellitsäure. Anstelle dieser Säuren können auch ihre Anhydride, soweit diese existieren, verwendet werden. Als Polycarbonsäuren lassen sich auch Dimer- und Trimerfettsäuren einsetzen.

Unter den Begriffen Polyhydroxy-polyether und Polyhydroxy-polyester sind auch solche Produkte dieser Art zu verstehen, die Monomeren mit Carboxyl-, Phosphonsäure- oder Sulfonat-Gruppen enthalten.

Ferner lassen sich bei der Erfindung auch Polyhydroxypolyester, die sich von Lactonen ableiten, benutzen. Diese Produkte erhält man beispielsweise durch die Umsetzung eines ¿-Caprolactons mit einem Polyol. Solche Produkte sind in der US-PS 3 169 945 beschrieben.

Die Polylactonpolyole, die man durch diese Umsetzung erhält, zeichnen sich durch die Gegenwart einer endständigen Hydroxylgruppe und durch wiederkehrende Polyesteranteile, die sich von dem Lacton ableiten, aus. Diese wiederkehrenden Molekülanteile können der Formel

$$- c - (CHR)_n - CH_2O -$$

entsprechen, in der n bevorzugt 4 bis 6 ist und der Substituent Wasserstoff, ein Alkylrest, ein Cycloalkylrest oder ein Alkoxyrest ist, wobei kein Substituent mehr als 12 Kohlenstoffatome enthält.

Das als Ausgangsmaterial verwendete Lacton kann ein beliebiges Lacton oder eine beliebige Kombination von Lactonen sein, wobei dieses Lacton mindestens 6 Kohlenstoffatome in dem Ring enthalten sollte, zum Beispiel 6 bis 8 Kohlenstoffatome und wobei 2 Wasserstoffsubstituenten an dem Kohlenstoffatom vorhanden sein sollten, das an die Sauerstoffgruppe des Rings gebunden ist. Das als Ausgangsmaterial verwendete Lacton kann durch die folgende allgemeinen Formel dargestellt werden:

in der n und R die bereits angegebene Bedeutung haben.

Die bei der Erfindung bevorzugten Lactone sind die «Caprolactone, bei denen n den Wert 4 hat. Das am meisten bevorzugte Lacton ist das

THE RELEASE OF THE PERSON ASSESSED AS A SECOND SECO

unsubstituierte є-Caprolacton, bei dem n den Wert 4 hat und alle R-Substituenten Wasserstoff sind. Dieses Lacton wird besonders bevorzugt, da es in großen Mengen zur Verfügung steht und Überzüge mit ausgezeichneten Eigenschaften ergibt. Außerdem können verschiedene andere Lactone einzeln oder in Kombination benutzt werden.

Beispiele von für die Umsetzung mit dem Lacton geeigneten aliphatischen Polyolen sind Ethylenglykol, 1,3-Propandiol, 1,4-Butandiol, Hexandiol-1,6, Dimethylolcyclohexan, Trimethylolpropan und Pentaerythrit.

Als Ausgangsverbindungen kommen weiterhin Polycarbonatpolyole bzw. Polycarbonat-diole in Frage, die der allgemeinen Formel

entsprechen, worin R einen Alkylenrest bedeutet. Diese OH-funktionellen Polycarbonate lassen sich durch Umsetzung von Polyolen wie Propandiol-1,3, Butandiol-1,4, Hexandiol-1,6, Diethylenglykol, Triethylenglykol, 1,4-Bishydroxymethylcyclohexan,2,2-Bis(4-

Bishydroxymethylcyclohexan,2,2-Bis(4hydroxycyclohexyl)propan, Neopentylgiykol, Trimethylolpropan, Pentaerythrit, mit Dicarbonaten, wie Dimethyl-, Diethyl- oder Diphenylcarbonat, oder Phosgen herstellen. Gemische solcher Polyole können ebenfalls eingesetzt werden. Mischungen von Polyhydroxy-polyethern, Polyhydroxy-polyestern und Polyhydroxy-polycarbonaten sind ebenfalls möolich.

Die zuvor beschriebenen Polyhydroxy-polyether, Polyhydroxy-polyester und Polyhydroxy-polycarbonate können allein oder gemeinsam eingesetzt werden. Darüberhinaus können diese Polyhydroxyverbindungen auch zusammen mit unterschiedlichen Mengen an niedermolekularen, isocyanatreaktiven Polyolen, Polyaminen oder Polymercaptanen eingesetzt werden. Als Verbindungen dieser Art kommen beispielsweise Ethylenglykol, Butandiol, Hexandiol-1,6, Dimethylolcyclohexan, 2,2-Bis(4-hydroxycyclohexyl)propan, Pentaerythrit, Trimethylolpropan, Ethylendiamin, Propylendiamin, Hexamethylendlamin in Frage.

Als weiterer Baustein für die Herstellung der

pionsäure, Dimethylolbuttersäure, Dihydroxybernsteinsäure, Dihydroxybenzoesäure oder 3-Hydroxy-2-hydroxymethylpropansulfonsäure, 1,4-Dihydroxybutansulfonsäure.

Diese Monomeren werden vorzugsweise vor der Umsetzung mit einem tertiären Amin wie beispielsweise Trimethylamin, Triethylamin, Dimethylanilin, Diethylanilin oder Triphenylamin neutralisiert. um eine Reaktion der Säuregruppe mit dem Isocyanat zu vermeiden. Ist die Wahrscheinlichkeit einer solchen Reaktion nur gering, können die Säuregruppen auch erst nach ihrem Einbau in das Polyurethan-Makromonomer neutralisiert werden. Die Neutralisation erfolgt dann mit wäßrigen Lösungen von Alkalihydroxiden oder mit Aminen, zum Beispiel mit Trimethylamin, Triethylamin, Dimethylanilin, Diethylanilin, Triphenylamin, Dimethylethanolamin, Aminomethylpropanol, Dimethylisopropanolamin oder mit Ammoniak. Daneben kann die Neutralisation auch mit Mischungen aus Aminen und Ammoniak vorgenommen werden.

Beispiele für geeignete Polyisocyanate sind Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat, Propylendiisocyanat, Ethylethylendiisocyanat, 2,3-Dimethylethylendiisocyanat, 1-Methyltrimethylendiisocyanat, 1,3-Cyclopentylendiisocyanat, 1,4-Cyclohexylendiisocyanat, 1,2-Cyclohexylendiisocyanat, 1,3-Phenylendiisocyanat, 1,4-Phenylendiisocyanat, 2,4-Toluylendiisocyanat, 2,6-Toluylendiisocyanat, 4,4'-Biphenylendiisocyanat, 1,5-Naphthylendiisocyanat, 1,4-Naphthylendiisocyanat, 1-Isocyanatomethyl-5-isocyanato-1,3,3-

trimethylcyclohexan, Bis-(4-isocyanatocyclohexyl)-methan, Bis-(4-isocyanatocyclophenyl)methan, 4,4'-Diisocyanatodiphenylether, 2,3-Bis-(8-isocyanatooctyl)-4-octyl-5-hexylcyclohexen. Trimethylhexamethylendiisocyanate, Tetramethylxylylendiisocyanate, Isocyanurate von obigen Diisocyanaten sowie Allophanate von obigen Diisocyanaten. Gemische solcher Di- oder Polyisocyanate können ebenfalls eingesetzt werden.

Es ist von besonderer Bedeutung für die erfindungsgemäßen Polyurethan-Dispersionen, daß die Makromonomeren, die zu diesen Dispersionen führen, laterale Vinylgruppen sowie gegebenenfalls auch terminale Vinylgruppen enthalten. Der Begriff terminale Vinylgruppen solle solche Vinylgruppen bezeichnen, die am Anfang oder Ende der Polymerkette hängen, laterale Vinylgruppen sind dagen am Anfang oder Ende der

eingesetzt, die weiterhin noch eine ionische Gruppe in Form der Carbonsäure-, Phosphonsäureoder Sulfonsäuregruppe enthalten. Beispiele für diese Gruppe von Monomeren sind a-C₂-C₁₀-Bishydroxycarbonsäuren wie z.B. Dihydroxypropionsäure, Dimethylolpropionsäure, Dihydroxyethylpro- Water office

Die lateralen Vinylgruppen erhält man durch den Einbau von solchen Monomeren in das Makromonomer, die mindestens zwei Hydroxylgruppen und mindestens eine Vinylgruppe aufweisen. Beispiele hierfür sind Trimethylolpropan-(TMP)derivate

Carried Control of Control of the Co

wie z.B. TMP-Monoallylether (2-Propenyloxy-2-hydroxymethyl-propanol), TMP-Mono(meth)acrylat (2-(Meth)acryloyloxy-2-hydroxymethyl-propanol)-; Glycerin-mono(meth)acrylat; Addukte von α , β -ungesättigten Carbonsäuren, wie (Meth)acrylsäure, an Diepoxide, z.Bsp. Bisphenol-A-diglycidylether, Hexandioldiglycidylether; Addukte von Dicarbonsäuren, wie z.Bsp. Adipinsäure, Terephthalsäure oder dgl. an (Meth)acrylsäure-glycidylester; Monovinylether von Polyolen.

Terminale Vinylgruppen erhält man durch die Reaktion der Isocyanat-Gruppen enthaltenden Makromonomeren mit Vinylverbindungen, die eine gegenüber Isocyanat-Gruppen reaktive Gruppe enthalten. Beispiele hierfür sind Umsetzungsprodukte aus Monoepoxiden und a.B-ungesättigten Carbonsäuren wie etwa Reaktionsprodukte aus Versaticsäureglycidylester und (Meth)acrylsäure, Umsetzungsprodukte aus α, β-ungesättigten Glycidylestem bzw. -ethern mit Monocarbonsäuren, beispielsweise Reaktionsprodukte aus Glycidyl(meth)acrylat und Stearinsäure oder Leinölfettsäure und fernerhin Hydroxyalkyl(meth)acrylate, Hydroxyethyl(meth)acrylat oder Hydroxypropyl-(meth)acrylat, sowie (Meth)acrylate mit Aminogruppen, z.B. t-Butylaminoethylmethacrylat.

Die aus diesen Monomeren aufgebauten Makromonomeren werden, soweit sie nach der zweiten bzw. dritten Verfahrensvariante hergestellt werden, zusätzlich noch mit Aminen, Alkoholen und/oder Thioalkoholen umgesetzt. Hierzu wird das in der ersten Stufe erzeugte Zwischenprodukt, das terminale Isocyanatgruppen und laterale Vinylgruppen, sowie Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen enthält, vollständig oder teilweise mit Aminen, Alkoholen und/oder Thioalkoholen umgesetzt. Hierfür kommen beispielsweise in Frage primäre Amine wie Propylamin, Butylamin, Pentylamin, 2-Amino-2-methylpropanol, Ethanolamin, Propanolamin; sekundäre Amine wie Diethanolamin. Dibutylamin, Diisopropanolamin; primäre Alkohole wie Methanol, Ethanol, Propanol, Butanol, Hexanol, Dodecanol, Stearylalkohol; sekundäre Alkohole wie Isopropanol, Isobutanol und die entsprechenden Thioalkohole.

Bei der vierten Verfahrensvariante werden die Isocyanatgruppen des Zwischenprodukts zum einen nach an sich bekannten Methoden mit Aminocarbonsäuren, Aminosulfonsäuren, Aminophosphonsäuren, Hydroxycarbonsäuren oder Hydroxysulfonsäuren weiter umgesetzt. Hlerfür kommen beispielsweise in Frage Aminocapronsäure, Aminoessigsäure, Aminobuttersäure, Aminolaurinsäure, Hydroxybuttersäure, Aminomethansulfonsäure, Aminoethansulfonsäure oder die analogen Aminophosphonsäuren, Salicylsäure, Hydroxystearinsäure, 2-Hydroxyethansulfonsäure.

Die Herstellung der Zwischenprodukte in den ersten Stufen erfolgt nach den üblichen und in der Urethan-Chemie bekannten Methoden. Hierbei können als Katalysatoren tertiäre Amine, wie z.B. Triethylamin, Dimethylbenzylamin, Diazabicyclooctan sowie Dialkylzinn (IV)-Verbindungen, wie z.B. Dibutylzinndilaurat, Dibutylzinndichlorid, Dimethylzinndilaurat, eingesetzt werden. Die Reaktion findet ohne Lösemittel in der Schmeize statt, in Anwesenheit eines Lösemittels oder in Anwesenheit eines sogenannten Reaktivverdünners. Als Lösemittel kommen solche in Frage, die späterhin durch Destillation entfernt werden können, beispielsweise Methylethylketon, Methylisobutylketon, Dioxan, Aceton, Tetrahydrofuran, Toluol, Xylol. Diese Lösemittel können ganz oder teilweise nach der Herstellung der Polyurethan-Makromonomeren oder nach der radikalischen Polymerisation abdestilliert werden. Daneben kann man auch wasserverdünnbare hochsiedende Lösemittel, zum Beispiel N-Methylpyrrolidon, einsetzen, die dann in der Dispersion verbleiben. Vor dem Dispergierprozeß können noch weitere Lösemittel, wie z.B. Glykolether oder deren Ester, zugegeben werden. Geeignete Glykolether sind Z.B. Butylglykol, Butyldiglykol, Methoxypropanol, Dipropylenglykolmonomethylether oder Diglykoldimethylether. Bei den Reaktivverdünnern handelt es sich um α, β-ungesättigte Monomere, die in der Endstufe mit den Vinylgruppen enthaltenden Makromonomeren copolymerisiert werden. Beispiele für solche Reaktivverdünner sind α , β ungesättigte Vinylmonomeren wie Alkylacrylate. methacrylate und -crotonate mit 1 bis 20 Kohlenstoffatomen im Alkylrest, Di-, Tri-, und Tetracrylate, -methacrylate, -crotonate von Glykolen, tri- und tetrafunktionellen Alkoholen, substituierte und unsubstituierte Acryl- und Methacrylamide, Vinylether, a, β-ungesättigte Aldehyde und Ketone, Vinylalkylketone mit 1 bis 20 Kohlenstoffatomen im Alkylrest. Vinylether, Vinylester, Diester von α, β-ungesättigten Dicarbonsäuren, Styrol, Styrolderivate, wie z.B. α-Methylstyrol.

Die nach den zuvor beschriebenen Verfahrensvarianten erhaltenen Makromonomeren werden dann neutralisiert, falls die sauren Gruppen in den Monomeren, die solche Gruppen tragen, nicht bereits von vornherein in neutralisierter Form eingesetzt wurden.

Die Neutralisation erfolgt mit wäßrigen Lösungen von Alkalihydroxiden oder mit Aminen, zum Beispiel mit Trimethylamin, Triethylamin, Dimethylanilin, Diethylanilin, Triphenylamin, Dimethylethanolamin, Aminomethylpropanol, Dimethylaminomethylpropanol, Dimethylisopropanolamin oder mit Ammoniak. Daneben kann die Neutralisation auch mit Mischungen aus Aminen und Ammoniak vorgenommen werden.

Zur Herstellung der erfindungsgemäßen

Polyurethan-Dispersionen werden die nach den zuvor beschriebenen Herstellvarianten erhaltenen Makromonomeren, die Vinylgruppen enthalten, durch Zugabe von Wasser in eine wäßrige Dispersion überführt und nach an sich bekannten Methoden durch radikalisch initiierte Polymerisation polymerisiert. Bei dieser Polymerisation können, falls nicht von vornherein als sogenannte Reaktivverdünner vorhanden, Monomere dieser Art, wie zuvor beschrieben, zugegeben werden, die dann mit dem Polyurethan-Makromonomeren copolymerisiert werden.

Weiterhin können unmittelbar vor oder während der radikalischen Polymerisation auch noch Carboxyl-, Hydroxyl-, Amino-, Ether- und Mercaptofunktionelle α, β-ungesättigte Vinylmonomeren zugegeben werden. Beispiele hierfür Hydroxylethyl(meth)acrylat, Hydroxylpropyl(meth)acrylat, Glycidyl(meth)acrylat, Dimethylaminoethylmethacrylat, t-Butylaminoethylmethacrylat, (Meth)acrylsäure oder Crotonsäure. Der Gehalt an copolymerisierten Vinylmonomeren beträgt 0 bis 95 Gew.-%, bevorzugt 5 bis 70 Gew.-%, bezogen auf den Feststoff der Polyurethan-Dispersion. Das Verhältnis von Weich- und Hartsegmenten in den Polyurethan-Makromonomeren beträgt 0,30 bis 6, besonders bevorzugt von 0,8 bis 3. Als Initiatoren für die Polymerisation kommen die bekannten radikalbildenden Initiatoren in Frage wie Ammoniumperoxidisulfat, Kaliumperoxidsulfat, Natriumperoxidsulfat, Wasserstoffperoxid, organische Peroxide, wie z.B. Cumolhydroperoxid, t-Butylhydroperoxid, Di-tert.-butylperoxid, Dioctylperoxid, tert.-Butylperpivalat, tert.-Butylperisononanoat, tert.-Butylperethylhexanoat, tert.-Butylperneodecanoat, Di-2-ethylhexylperoxydicarbonat, Diisotridecylperoxidicarbonat sowie Azoverbindungen, wie z.B. Azo-bis-(isobutyronitril), Azo-bis(4-cyanovaleriansäure), oder die üblichen Redoxsysteme, z.B. Natriumsulfit, Natriumdithionit, Ascorbinsäure und organische Peroxide oder Wasserstoffperoxid. Außerdem können noch Regler (Mercaptane), Emulgatoren, Schutzkolloide und andere übliche Hilfsstoffe zugegeben werden.

Erfolgte die Herstellung der Makromonomere in einem aus der wäßrigen Phase fraktionierbaren bzw. mit Wasser ein Azeotrop bildenden Lösemittel, beispielsweise in Aceton, Methylethylketon, Methylisobutylketon, Dioxan, Tetrahydrofuran, Toluol oder Xylol, so wird dieses Lösemittel abschile-

geben sich aus den folgenden allgemeinen Verfahrensbeschreibungen. Diese Verfahrensbedingungen stellen bevorzugte Ausführungsformen dar.

1. Lösemittelfrei

a. ohne Hiifslösemittel

a. mit terminalen OH-Gruppen

Bei Temperaturen von 100 bis 150 °C, besonders bevorzugt von 120 bis 135 °C, werden die Polyhydroxysäure und gegebenenfalls niedermolekulare Polyole in einem Polyol mit einem mittleren Molekulargewicht von 400 bis 5000 gelöst und mit einem Polyisocyanat oder Polyisocyanatmischungen zu einem OH-terminierten Produkt mit einem mittleren Molekulargewicht (Mn) von 500 bis 12000. besonders bevorzugt von 600 bis 8000, umgesetzt. Nach dem Abkühlen auf eine Temperatur von 30 bis 100 °C, besonders bevorzugt von 50 bis 80 C, werden ein nicht isocyanatreaktives Comonomer (Reaktivverdünner) sowie eine mindestens difunktionelle, NCO-reaktive Vinylverbindung zugegeben. Bei dieser Temperatur wird durch weitere Zugabe von Polyisocyanat, das im Unterschuß zu den OH-Komponenten vorliegt, zu einem OH-funktionellen Polyurethanmakromonomeren mit einem mittleren Molekulargewicht von 700 bis 24000, besonders bevorzugt von 800 bis 16000, umgesetzt. Diese so erhaltene Harzlösung wird nach Neutralisation mit Aminen oder anderen Basen in Wasser dispergiert. Zu der so erhaltenen Dispersion können noch weitere Vinyl-Comonomeren vor oder während der noch zu erfolgenden radikalischen Polymerisation gegeben werden. In der wäßrigen Dispersion werden dann mit radikalbildenden Initiatoren die freien Vinylverbindungen bei einer Temperatur von 0 bis 95 °C, besonders bevorzugt von 40 bis 95 °C, und bei Verwendung von Redoxsystemen bei einer Temperatur von 30 bis 70 °C polymerisiert. Dabei entsteht eine lösemittelfreie Polyurethan-Dispersion.

β. mit terminalen Urethan-, Thiourethan- oder Harnstoffgruppierungen

Bei Temperaturen von 100 bis 150 °C, besonders bevorzugt von 120 bis 135 °C, werden die Polyhydroxysäure und gegebenenfalls niedermole-

sionen. Die Säurezahlen dieser Polyurethan-Dispersionen liegen im Bereich von 5 bis 80, besonders bevorzugt im Bereich von 10 bis 40 Einheiten.

Weitere Einzelheiten zur Herstellung der Makromonomeren und deren Polymerisation zu den erfindungsgemäßen Polyurethan-Dispersionen ergen zu einem OH-terminierten Produkt mit einem mittleren Molekulargewicht (Mn) von 500 bis 12000, besonders bevorzugt von 800 bis 8000, umgesetzt. Nach dem Abkühlen auf eine Temperatur von 30 bis 100 °C, besonders bevorzugt von 50 bis 80

*C, werden ein nicht isocyanatreaktives Comonomer (Reaktivverdünner) sowie eine mindestens difunktionelle, NCO-reaktive Vinylverbindung zugegeben. Bei dieser Temperatur wird durch weitere Zugabe von Polyisocyanat ein NCO-terminiertes Harz aufgebaut und anschließend mit einer monofunktionellen, NCO-reaktiven Verbindung zu einem Polyurethanmakromonomeren mit terminalen Urethan, Thlourethan oder Harnstoffgruppierungen und einem mittleren Molekulargewicht von 700 bis 24000, besonders bevorzugt von 800 bis 16000, umgesetzt. Diese so erhaltene Harzlösung wird nach Neutralisation mit Aminen oder anderen Basen in Wasser dispergiert. Zu der so erhaltenen Dispersion können noch weitere Vinyl-Comonomeren vor oder während der noch zu erfolgenden radikalischen Polymerisation gegeben werden. In der wäßrigen Dispersion werden dann mit radikalbildenden Initiatoren die freien Vinylverbindungen bei einer Temperatur von 0 bis 95 °C, besonders bevorzugt von 40 bis 95 °C, und bei Verwendung von Redoxsystemen bei einer Temperatur von 30 bis 70 °C polymerisiert. Dabei entsteht eine lösemittelfreie Polyurethan-Dispersion.

b. mit Hilfslösemittei

α. mit terminalen OH-Gruppen

Im Unterschied zu Verfahren 1.a. a werden hier alle Polyol-Komponenten - auch die NCO-reaktive Vinylverbindung - in einem aus der wäßrigen Phase fraktionierbaren bzw. mit Wasser ein Azeotrop bildendes Lösemittel gelöst und direkt mit Polyisocyanat oder Polyisocyanatmischungen zu einem OH-terminierten Polyurethan-Makromonomeren mit einem Molekulargewicht von 500 bis 30000, besonders bevorzugt von 700 bis 20000, umgesetzt. Der Lösemittelgehalt beträgt 1 bis 80 Gew.-%, besonders bevorzugt zwischen 10 bis 50 Gew.-%, bezogen auf den Festkörper des Polyurethan-Makromonomers. Die Temperatur für diesen Schritt liegt zwischen 30 und 100 °C, besonders bevorzugt zwischen 50 und 80 °C. Nach Neutralisation mit Aminen oder anderen Basen wird in Wasser dispergiert. Anschließend wird das Hilfslösemittel, eventuell unter leichtem Vakuum, aus der wäßrigen Phase destilliert. Zu dieser lösemittelfreien Dispersion können noch Comonomeren vor oder während der noch zu erfolgenden radikalischen Polymerisation gegeben werden. Danach wird mit radikalbildenden Initiatoren bei einer Temperatur zwischen 0 und 95 °C, besonders bevorzugt zwischen 40 und 95 °C, bei Verwendung von Redoxsystemen bei einer Temperatur von 30 bis 70 °C zu einer lösemittelfreien Polyurethan-Dispersion polymerisiert.

b. mit Hilfsi"semitt I

β. mit terminalen Urethan-, Thiourethan- der Harnstoffgrupplerungen

Im Unterschied zu Verfahren 1.a.ß werden hier alle Polyoi-Komponenten - auch die NCO-reaktive Vinylverbindung - in einem aus der wäßrigen Phase fraktionierbaren bzw. mit Wasser ein Azeotrop bildendes Lösemittel gelöst und direkt mit Polyisocyanat oder Polyisocyanatmischungen zum NCOterminierten Produkt umgesetzt. Der Lösemittelgehalt beträgt 1 bis 80 Gew.-%, besonders bevorzugt zwischen 10 bis 50 Gew.-%, bezogen auf den Festkörper des Polyurethan-Makromonomers. Die Temperatur für diesen Schritt liegt zwischen 30 und 100 °C, besonders bevorzugt zwischen 50 und 80 °C. Nach der weiteren Umsetzung mit einer monofunktionellen, isocyanatreaktiven Verbindung zu einem Polyurethan-Makromonomeren mit Urethan-, Thiourethan- oder Harnstoffgrupplerungen und einem Molekulargewicht von 500 bis 30000, besonders bevorzugt von 700 bis 20000. wird mit Aminen oder anderen Basen neutralisiert und in Wasser dispergiert. Anschließend wird das Hilfslösemittel, eventuell unter leichtem Vakuum. aus der wäßrigen Phase destilliert. Zu dieser lösemittelfreien Dispersion können noch Comonomeren vor oder während der noch zu erfolgenden radikalischen Polymerisation gegeben werden. Danach wird mit radikalbildenden Initiatoren bei einer Temperatur zwischen 0 und 95 °C, besonders bevorzugt zwischen 40 und 95 °C, bei Verwendung von Redoxsystemen bei einer Temperatur von 30 bis 70 °C zu einer löesemittelfreien Polyurethan-Dispersion polymerisiert.

Als Lösemittel kommen bei den Verfahren entsprechend 1.b.α und 1.b.β zum Beispiel Aceton, Tetrahydrofuran, Dioxan, Methylethylketon, Methylisobutylketon, Toluol oder Xylol in Frage.

2. Lösemitteihaltig

Bei Benutzung eines nichtdestillierbaren Hilfslösemittels wie zum Beispiel N-Methylpyrrolidon wird genauso wie in Verfahren 1.b. α und β vorgegangen, wobei aber nach dem Dispergieren die Destillation entfällt und gegebenenfalls vor oder während der radikalischen Polymerisation Vinylmonomere zugegeben werden können. Die Polymerisation wird wie in Verfahren 1.b. α und β durchgeführt. Der Lösemittelgehalt liegt im Bereich von 0,1 bis 30 Gew.-%, besonders bevorzugt von 1 bis 15 Gew.-%, bezogen auf die gesamt Bindemittel-Dispersion.

Aufgrund ihres chemischen Aufbaus sind die erfindungsgemäßen Polyurethan-Dispersionen • für eine vielseitige Anwendung geeignet, z.B. zur Herstellung von Beschichtungssystemen, unter anderem für die Beschichtung von Holz, als Bindemittel

für wasserverdünnbare Klebstoffe oder als Harze für Druckfarben.

Sie sind kombinierbar und im allgemeinen verträglich mit anderen wäßrigen Kunststoffdispersionen und -lösungen, z.B. Acryl- und/oder Methacrylpolymerisaten, Polyurethan, Polyharnstoff-, Polyester- sowie Epoxidharzen, Thermoplasten auf Basis von Polyvinylacetat, -vinylchlorid, -vinylether, -chloropren, -acrylnitril, Äthylen-Butadien-Styrol-Copolymerisaten. Sie lassen sich auch mit verdickend wirkenden Substanzen auf Basis von carboxylgruppenhaltigen Polyacrylaten bzw. Polyurethanen, Hydroxyethylcellulose, Polyvinylalkoholen sowie anorganischen Thixotropierungsmitteln, wie Bentonit, Natrium-Magnesium- und Natrium-Magnesium-Fluor-Lithium-Silikate, kombinieren.

Die erfindungsgemäßen Polyurethan-Dispersionen lassen sich auf die verschiedensten Substrate, z.B. Keramik, Holz, Glas, Beton, vorzugsweise Kunststoffe, wie Polycarbonat, Polystyrol, Polyvinylchlorid, Polyester, Poly(meth)acrylate, Acrylnitril-Butadien-Styrol-Polymerisate und dergleichen, sowie vorzugsweise auf Metall, wie Eisen, Kupfer, Aluminium, Stahl, Messing, Bronze, Zinn, Zink, Titan, Magnesium und dergleichen aufbringen. Sie haften auf den verschiedenen Unterlagen ohne haftvermittelnde Grundierungen bzw. Zwischenschichten.

Die erfindungsgemäßen Polyurethan-Dispersionen sind z.B. für die Herstellung von korrosionsschützenden Überzügen und/oder Zwischenbeschichtungen für die verschiedensten Anwendungsgebiete geeignet, insbesondere zur Herstellung von Metallic- und Unibasislacken in Mehrschicht-Lakkaufbauten für die Gebiete der Automobil- und Kunststofflackierung und zur Erzeugung von Grundlerungslacken für das Gebiet der Kunststofflackierung.

Aufgrund von kurzen Ablüftzeiten der auf den erfindungsgemäßen Polyurethan-Dispersionen basierenden Basislacke kann die pigmentierte Basislackschicht ohne Einbrennschritt (Naß-in Naß-Verfahren) mit einem Klarlack überlackiert und anschließend zusammen eingebrannt oder forciert getrocknet werden. Basislacke, hergestellt mit den erfindungsgemäßen Polyurethan-Dispersionen, liefern weitgehend unabhängig von der Einbrennbzw. Trocknungstemperatur Lackfilme gleicher Qualität, so daß sie sowohl als Reparaturlack von Kraftfahrzeugen als auch als Einbrennlack bei der

Lacken mit den erfindungsgemäßen Polyurethan-Dispersionenn können die in der Lackindustrie üblichen Vernetzer, wie z.B. wasserlösliche oder emulgierbare Melamin- oder Benzoguanaminharze, Polyisocyanate oder Präpolymeren mit endständigen Isocyanatgruppen, wasserlösliche oder dispergierbare Polyaziridine und blockierte Polyisocyanate zugesetzt werden. Die wäßnigen Beschichtungssysteme können alle bekannten und in der Lacktechnologie üblichen anorganischen oder organischen Pigmente bzw. Farbstoffe, sowie Netzmittel, Entschäumer, Verlaufsmittel, Stabilisatoren, Katalysatoren, Füllstoffe, Weichmacher und Lösemittel enthalten.

Die erfindungsgemäßen Polyurethan-Dispersionen können auch unmittelbar zum Verkleben beliebiger Substrate verwendet werden. Zur Erzielung von speziellen Klebeeigenschaften können die erfindungsgemäßen Polyurethan-Dispersionen mit anderen Kunststoffdispersionen oder -lösungen (siehe oben) abgemischt werden. Ferner können zur Verbesserung der Wärmestand- und Schälfestigkeit Vernetzer, wie z.B. Polyisocyanate oder Präpolymere mit terminalen Isocyanatgruppen, wasserlösliche oder -emulgierbare Melamin- oder Benzoguanaminharze zugesetzt werden.

Die auf den erfindungsgemäßen PolyurethanDispersionen basierenden Klebstoffe können die in
der Klebstofftechnologie üblichen Zusatzstoffe, wie
Weichmacher, Lösungsmittel, Filmbindehilfsmittel,
Füllstoffe, synthetische und natürliche Harze enthalten. Sie eignen sich speziell zur Herstellung von
Verklebungen von Substraten in der Kraftfahrzeugindustrie, z.B. Verklebung von Innenausbauteilen,
und in der Schuhindustrie, z.B. zum Verkleben von
Schuhsohle und Schuhschaft. Die Herstellung und
Verarbeitung der auf den erfindungsgemäßen
Polyurethan-Dispersionen basierenden Klebstoffe
erfolgt nach den üblichen Methoden der Klebetechnologie, die bei wäßrigen Dispersions- und Lösungsklebstoffen angewendet werden.

Beispiel 1:

357 g eines Polyesters, hergestellt aus Hexandiol-1,6, Isophthal- und Adipinsäure, mit einer Hydroxylzahl von 84 und einer Säurezahl unter 4 werden zusammen mit 32,6 g Dimethylolpropionsäure und 5,6 g Butandiol-1,4 auf 130 °C erhitzt und bei dieser Temperatur gehalten, bis

filme mit einer guten Haltung auch auf der Originallacklerung und mit einer guten Beständigkeit gegenüber Schwitzwasser. Weiterhin wird die Brillanz der Lackschicht nach einem Schwitzwassertest nicht nennenswert verschlechtert.

Bei der Formulierung von wasserverdünnbaren

zudosiert und weiter bei 130 °C so lange gerührt, bis keine freien Isocyanatgruppen mehr vorliegen.

Nach Abkühlung auf 70 °C werden eine Lösung, bestehend aus 65,8 g Methylmethacrylat, 6,3 g Glycerinmonomethacrylat und 0,12 g 2,8-Di-tert.

butyi-4-methyiphenol rasch zugegeben und homogenisiert. Anschließend werden 24,3 g Tetramethylxylylendlisocyanat über einen Zeitraum von 30 Minuten zugegeben und bei 70 °C umgesetzt, bis der Gehalt an freien Isocyanatgruppen kleiner 0,05 Gew.-%, bezogen auf die Gesamteinwaage, beträgt. Nach Zugabe von 18,5 g Triethylamin wird 5 Minuten homogenisiert. Anschließend werden 1030 g Wasser mit einer Temperatur von 95 °C zu der Präpolymer-Lösung unter intensivem Rühren gegeben. Nach Abkühlung auf 80 °C wird eine weitere Stunde gerührt. Zu der so hergestellten Dispersion werden 10 Vol-% einer Ammoniumperoxodisulfat-Lösung, bestehend aus 0,8 g Ammoniumperoxodisulfat und 50 g Wasser, bei 80 °C zugegeben. Die restliche Menge der Ammoniumperoxodisulfat-Lösung wird über einen Zeitraum von 30 Minuten dosiert.

Anschließend wird die Temperatur für weitere 2 Stunden bei 78 bis 80 °C gehalten.

Nach Abkühlung auf Raumtemperatur wird die Dispersion durch ein 5 mm Filter filtriert. Die so erhaltene Dispersion besitzt einen Festkörpergehalt von 34,9 % und einen pH-Wert von 7,52.

Beispiel 2:

249,8 g eines Polyesters, hergestellt aus Neopentylglykol, Hexandiol-1,6, Isophthal- und Adipinsäure, mit einer Hydroxylzahl von 37 und einer Säurezahl unter 3 werden zusammen mit 24,7 g Dimethylolpropionsäure und 9,3 g Butandiol-1,4 in 150 g Aceton unter Rückfluß gelöst. Anschließend werden 0,1 g 2,6-Di-tert.-butyl-4-methylphenol und 16,6 g Glycerinmonomethacrylat zugegeben und homogenisiert. Nach Zugabe von 134,2 g Tetramethylxylylendiisocyanat wird bei Rückflußtemperatur so lange gerührt, bis der Isocyanatgehalt 1,08 Gew.-%, bezogen auf die Gesamteinwaage, beträgt.

In die so erhaltene Präpolymer-Lösung werden nun 15,5 g Diethanolamin rasch zugegeben und 30 Minuten homogenisiert. Nach Dosierung von 13,1 g Triethylamin werden 1108 g Wasser mit einer Temperatur von 80 °C zu der Polymerlösung unter intensivem Rühren gegeben. Das Lösemittel Aceton wird anschließend durch Vakuumdestillation von der erhaltenen Dispersion abgetrennt. Nach Zugabe von 51,1g Methylmethacrylat wird die Temperatur auf 80 °C erhöht und weitere 30 Minuten gerührt. Anschließend werden 10 Vol-% einer Ammoniumperoxodisulfat-Lösung, bestehend aus 0,8 g Ammoniumperoxodisulfat und 50 g Wasser, bei 80 °C zugegeben. Die restliche Menge der Ammoniumperoxodisulfat-Lösung wird über einen Zeitraum von 30 Minuten dosiert. Die Temperatur wird für weitere 2 Stunden bei 78 bis 80 °C Nach Abkühlung auf Raumtemperatur wird die Dispersion auf einen Festkörpergehalt von 30 % eingestellt und durch ein 5 mm Filter filtriert. Die resultierende Dispersion besitzt einen pH-Wert von 7,46.

Beispiel 3

g eines OH-terminierten Poly-(butanyladipiat)s (OH-Zahl: 139) werden in 200 g Aceton zusammen mit 21 g Dimethyloiproplonsäure, 0,1 g 2,6-Di-tert.-butyl-4-methylphenol, 18,1 g Glycerinmonomethacrylat, 7 g Ethylenglycol bei 70 *C vorgelegt. Zu dieser Mischung wid 133,2 g aufgeschmolzenes Methylendiphenyldiisocyanat (MDI) zugegeben und bis zu einem NCO-Gehalt von 1,1 % umgesetzt. In die warme Lösung werden 11,1 g Triethylamin eingerührt und anschlie-Bend mit 636 g entionisiertem Wasser dispergiert. Aus der Dispersion wird das Aceton unter leicht reduziertem Druck abdestilliert. In die lösemittelfreie Dispersion wird eine Mischung von 55 g Methylmethacrylat und 1 g tert.-Butylhydroperoxid eingerührt, bei 50 °C wird über 2 Stunden eine Lösung aus 1,74 g Ascorbinsäure und 100 g entionisiertem wasser zudosiert. Nach einer weiteren Stunde Rühren bei 50 °C wird die wäßrige Polyurethan-Dispersion erhalten.

Beispiel 4:

25

30

304,4 g Poly(butandioladipiat)diol mit einer OH-Zahl von 45 wird zusammen mit 23,1 g Dimethylolpropionsäure auf 130 °C erwärmt und bei dieser Temperatur mit 40,2 g Toluylendiisocyanat umgesetzt. Das Produkt wird zusammen mit 14,9 g Glycerinmonomethacrylat in 50 g stabilisiertem Methylmethacrylat gelöst und bei 65-70 °C mit 40,8 g Toluylendiisocyanat umgesetzt. Entsprechend dem freien NCO-Gehalt wird mit der äquimolaren Menge Diethanolamin umgesetzt. Anschließend wird mit 12,1 g Triethylamin neutralisiert und mit 674,6 g entionisiertem Wasser dispergiert. Zu dieser Dispersion wird bei 80 °C 51 g einer 2 Gew.-%-igen wäßrigen Lösung von Ammoniumperoxodisulfat zudosiert und anschließend 2 Stunden nachgerührt. Es entsteht eine Dispersion mit einem Feststoffgehalt von 40 Gew.-%, einem pH-Wert von 7,4 und einer dynamischen Viskosität von 352 mPas.

Beispiel 5:

299,2 g von Poly(butandioladipiat) mit einer OH-Zahl von 45 wird zusammen mit 23,1 g Dimethylolpropionsäure und 18,6 g Hexandiol-1,6 auf 130 °C erwärmt und bei dieser Temperatur mit 66 g Toluylendiisocyanat umgesetzt. Dieses Produkt wird zusammen mit 16,8 g Glycerinmonomethacry-

15

20

25

35

40

45

lat In 55 g stabilislertem Methylmethacrylat gelöst und bei 65-70 °C mit 16,3 g Toluylendilsocyanat umgesetzt. Anschlleßend wird mit 12,2 g Triethylamin neutralisiert und mit 681,8 g entionisiertem Wasser dispergiert. Zu dieser Dispersion wird bei 80 °C 51 g einer 2 Gew.-%-igen wäßrigen Lösung von Natriumperoxodisulfat zudosiert und anschließend 2 Stunden nachgerührt. Die erhaltene Dispersion weist einen Feststoffgehalt von 40 Gew.-%, einen pH-Wert von 7,3 und eine dynamische Viskosität von 18,2 mPas auf.

Patentansprüche

- Polyurethan-Dispersionen hergestellt durch radikalisch initiierte Polymerisation von Polyurethan-Makromonomeren mit einem Gehalt an Carboxyl-, Phosphonsäure oder Sulfonsäuregruppen und lateralen Vinylgruppen sowie gegebenenfalls terminalen Vinyl-, Hydroxy-, Urethan-, Thiourethan- und/oder Harnstoffgruppen.
- 2. Polyurethan-Dispersionen nach Anspruch 1, hergestellt durch Polymerisation Polyurethan-Makromonomeren, mit einem Gehalt an Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen sowie terminalen Hydroxylgruppen und lateralen Vinylgruppen, wobei die Polyurethan-Makromonomere erhalten werden durch Polyaddition von Polyhydroxypolyethern, Polyhydroxy-polyestern oder Polyhydroxy-polycarbonaten sowie Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren sowie Polyisocyanaten und mindestens zwei Hydroxy- sowie mindestens eine Vinylgruppe enthaltenden Monomeren.
- 3. Polyurethan-Dispersionen nach Anspruch 1, hergestellt durch Polymerlsation von Polyurethan-Makromonomeren, erhalten durch Polyaddition von Polyhydroxy-polyethern, Polyhydroxy-polyestern oder Polyhydroxy-polycarbonaten sowie Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren sowie Polyisocyanaten und einem mindestens zwei Hydroxy- sowie mindestens eine Vinylgruppe enthaltenden Monomeren unter Bildung eines Isocyanat- und Carboxyl- Phosphonsäure- oder Sulfonsäure-

minale und laterale Vinylgruppen sowie gegebenenfalls Urethan-, Thiourethan- oder Harnstoffgruppen enthaltenden Polyurethan-Makromonomeren, erhalten durch Polyaddition von Polyhydroxy-polyethern, Polyhydroxy-polyestern oder Polyhydroxy-polycarbonaten sowie Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren und Polyisocyanaten und Monomeren, die mindestens eine Vinylgruppe und mindestens zwei Hydroxygruppen enthalten, und anschlie-Bende Umsetzung mit einem Monomer, das außer-mindestens einer Vinylgruppe noch eine Gruppe enthält, die mit Isocyanatgruppen reagiert, gegebenenfalls zusammen mit primären oder sekundären Aminen, Alkoholen oder Thioalkoholen.

- 5. Polyurethan-Dispersionen nach Anspruch 1, hergestellt durch Polymerisation von Polyurethan-Makromonomeren, erhalten durch Polyaddition von Polyhydroxy-polyethern, Polyhydroxy-polyestern oder Polyhydroxy-polycarbonaten sowie Polyisocyanaten und einem mindestens zwei Hydroxy- sowie eine Vinylgruppe enthaltenden Monomeren unter Bildung eines Isocyanatgruppen sowie laterale Vinylgruppen enthaltenden Makromonomers und Umsetzung des so gebildeten Makromonomers mit Aminocarbonsäuren, Aminosulfonsäuren, Hydroxycarbonsäuren oder Hydroxysulfonsäuren.
- Polyurethan-Dispersionen nach Anspruch 1, dadurch gekennzeichnet, daß die Polyhydroxypolyether, Polyhydroxy-polyester oder Polyhydroxy-polycarbonate Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen enthalten.
- 7. Polyurethan-Dispersionen nach Anspruch 1, hergestellt durch radikalisch Initiierte Polymerisation in einem als Lösemittel dienenden, mit den Polyurethan-Makromonomeren copolymerisierbaren ungesättigten Monomeren, gegebenenfalls in Gegenwart weiterer copolymerisierbarer ungesättigter Monomeren.
- Polyurethan-Dispersionen nach Anspruch 1, hergestellt durch radikalisch initiierte Polymeri-

gebildeten Makromonomers mit Aminen, Alkoholen oder Thioalkoholen.

 Polyurethan-Dispersionen nach Anspruch 1, hergestellt durch Polymerisation von Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen, tersenheit von mit den Polyurethan-Makromonomeren copolymerisierbaren ungesättigten Monomeren, und gegebenenfalls Abdestillation des organischen Lösemittels vor oder nach der radikalischen Polymerisation.

10

20

25

30

40

45

50

55

- Verwendung der Polyurethan-Dispersionen nach Anspruch 1 zur Herstellung von Überzügen auf Substrate, als Klebemittel oder als Bindemittel in Druckfarben.
- Verwendung der Polyurethan-Dispersionen nach Anspruch 1 zur Herstellung von Metallicund Unibasislacken in Mehrschichtlackaufbauten.

Patentansprüche für folgenden Vertragsstaat : ES

- Verfahren zur Herstellung von Polyurethan-Dispersionen, dadurch gekennzeichnet, daß man Polyurethan-Makromonomere mit einem Gehalt an Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen und lateralen Vinylgruppen sowie gegebenenfalls terminalen Vinyl-, Hydroxy-, Urethan-, Thiourethan- und/oder Hamstoffgruppen mit radikalbildenden Initiatoren polymerisiert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man ein Polyurethan-Makromonomer mit einem Gehalt an Carboxyl-. Phosphonsäure- oder Sulfonsäuregruppen sowie terminalen Hydroxylgruppen und lateralen Vinylgruppen herstellt durch Polyaddition von Polyhydroxy-polyethern, Polyhydroxy-polyestern oder Polyhydroxy-polycarbonaten sowie Polyhydroxycarbonsäuren. Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren sowie Polyisocyanaten und mindestens zwei Hydroxy- sowie mindestens eine Vinylgruppe enthaltenden Monomeren, und das so erhaltene Polyurethan-Makromonomer mit radikalbildenden Initiatoren polymerisiert.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man ein Polyurethan-Makromonomer mit einem Gehalt an isocyanat- und Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen sowie lateralen Vinylgruppen herstellt durch Polyaddition von Polyhydroxy-polyethern. Polyhydroxy-polyestern Polyhydroxy-polycarbonaten sowie Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren sowie Polyisocyanaten und einem mindestens zwei Hydroxy- sowie mindestens eine Vinylgruppe enthaltenden Monomeren, das so gebildete Makromonomer mit Aminen, Alkoholen oder Thioalkoholen umsetzt und dieses Polyurethan-Makromonomer abschließend mit radikalbildenden Initiatoren polymerisiert.
- 4. Verfahren nach Anspruch 1, dadurch gekenn-

zeichnet, daß man Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen, terminale und laterale Vinylgruppen sowie gegebenenfalls Urethan-, Thiourethan- oder Hamstoffgruppen enthaltendes Polyurethan-Makromonomer herstellt durch Polyaddition von Polyhydroxy-polyethem, Polyhydroxy-polyestern oder Polyhydroxy-polycarbonaten sowie Polyhydroxycarbonsäuren, Polyhydroxyphosphonsäuren oder Polyhydroxysulfonsäuren und Polyisocyanaten und Monomeren, die mindestens eine Vinylgruppe und mindestens zwei Hydroxygruppen enthalten, das so gebildete Makromonomer mit einem Monomer umsetzt, das außer mindestens einer Vinylgruppe noch eine Gruppe enthält, die mit Isocyanatgruppen reagiert, gegebenenfalls zusammen mit primären oder sekundären Aminen, Alkoholen oder Thicalkoholen, und dieses Polyurethan-Makromonomer abschließend mit radikalbildenden Initiatoren polymerisiert.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man ein Isocyanatgruppen sowie laterale Vinylgruppen enthaltendes Polyurethan-Makromonomer herstellt durch Po-Ivaddition von Polyhydroxy-polyethern, Polyhydraxy-polyestern oder Polyhydraxy-polycarbonaten sowie Polyisocyanaten und einem mindestens zwei Hydroxy- sowie eine Vinyigruppe enthaltenden Monomeren, das so gebildete Makromonomer mit Aminocarbonsäuren, Aminosulfonsäuren, Hydroxycarbonsäuren oder Hydroxysulfonsäuren umsetzt und dieses Polyurethan-Makromonomer abschlie-Bend mit radikal-bildenden Initiatoren polymeri-
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Ausgangsverbindungen solche Polyhydroxy-polyether, Polyhydroxypolyester oder Polyhydroxy-polycarbonate nimmt die Carboxyl-, Phosphonsäure- oder Sulfonsäuregruppen enthalten.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die radikalisch initiierte Polymerisation in einem als Lösemittel dienenden, mit den Polyurethan-Makromonomeren copolymerisierbaren ungesättigten Monomeren, gegebenenfalls in Gegenwart weiterer copolymerisierbarer ungesättigter Monomeren, durchführt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die radikalisch initiierte Polymerisation in einem Gemisch aus Wasser und einem gegenüber Isocyanatgruppen iner-

ten organischen Lösemittel, gegebenenfalls In Anwesenheit von mit den Polyurethan-Makromonomeren copolymerisierbaren ungesättigten Monomeren durchführt und gegebenenfalls das organische Lösemittel vor oder nach der radikalischen Polymerisation abdestilliert.

 Verwendung der Polyurethan-Dispersionen, hergesteilt nach Anspruch 1 zur Herstellung von Überzügen auf Substrate, als Klebemittel oder als Bindemittel in Druckfarben.

 Verwendung der Polyurethan-Dispersionen, hergestellt nach Anspruch 1 zur Herstellung von Metallic- und Unibasislacken in Mehrschichtlackaufbauten.

10

15

20

25

30

35

40

45

50

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 1066 Sefte 1

	EINSCHLÄGIG	E DOKUMENTE		·	
Rategoric		ents mit Angube, soweit erforderlich,	Betrifft Approach	KLASSIFIKATION DER ANMELDUNG (Int. CLS)	
X	EP-A-0 033 899 (BAS * Ansprüche 1-7 *		1,7-9	C08G18/67 C08G18/08 C09D175/14 C09J175/14	
x .	EP-A-0 249 222 (TO) * Ansprüche 1-17 * * Seite 4, Zeile 11 * Seite 6, Zeile 18 * Seite 22, Zeile 1	- Zeile 53 * 3 - Zeile 37 *	1-9	C09D11/10	
X	EP-A-0 350 040 (PRE * Ansprüche 1-10,14 * Seite 4, Zeile 1 * Seite 5, Zeile 19	- Zeile 19 *	1,7-9		
X	EP-A-0 099 207 (THE * Ansprüche 1-7,9-1 * Seite 1, Zeile 2	PROCTER&GAMBLE CO.) 12 * - Zeile 5 *	1		
P,X	*		1-9	RECHERCHIERTE SACHGEBIETE (Int. CLS)	
P,X	* Beispiel 1 * EP-A-0 473 169 (PPC * Ansprüche 1-11 * * Seite 3, Zeile 6 * Seite 7, Zeile 22	- Seite 4, Zeile S2 *	1-9		
A	EP-A-0 146 897 (SOH * Ansprüche 1-3,14- * Seite 21, Absatz * * Seite 61, Absatz	·16 * 2 - Seite 22, Absatz	5		
Der ve		de für alle Patentansprüche erstellt Abschiebentag der Rockerche		Profes	
DEN HAAG		20 OKTOBER 1992	•	VAN PUYMBROECK M.	
X: von Y: von and A: tech O: nici	KATEGORIE DER GENANNTEN i besonderer Beseutung allein betrach besonderer Beseutung in Verbindun uren Veröffendlichung Serseiben Kat- nanlogischer Hilmergreis hatchrittliche Offenbarung sichenliteratie	tet B: Miteres Pate guilt einer D: in der Ann gorie L: aus andern	T: der Erfindung zugrunde liegende Theorien oder Grundskitze E: litteres Patentiokument, dus jedoch erst zus oder nach dem Anmeldelatum weröffentlicht worden ist D: in der Anmeldelatum weröffentlicht worden ist L: zus anders Gründen angeführtes Dokument L: zus anders Gründen angeführtes Dokument d: Mitglied der gleichen Patentiantlile, übereinstimmendes Dokument		

10/19/1999 09:27:50 Seite -13-

COMPANY CALLET (POSCO)

EUROPÄISCHER RECHERCHENBERICHT

EP 92 11 1066 Seite 2

	EINSCHLÄGIGE			
Kategorie	Kennzeichnung des Dokument der maßgebliche	: mit Angabe, soweit erforderlich, a Teile	Betrifft Anspruch	KLASSIPIKATION DER ANMELDUNG (Est. CL5)
A	EP-A-0 033 898 (BASF * Ansprüche 1,3-7 * * Seite 5, Zeile 1 -	Seite 8, Zeile 15 *	1	,
		·		
				RECHERCHIERTE SACHGERIETE (Int. Cl.5)
			·	
·				
De	r vorliegende Recherchenbericht wur			Profe
	Recherchemen	Abachi shistom ine Bacherche		VAN PHYMEROECK M.

- E : Eltere r annualisation verification worden ist D : in der Anneiden angeführtes Dokument L : aus andera Gründen angeführtes Dokument