Técnicas de Concepção de Algoritmos (1ª parte): algoritmos gananciosos

J. Pascoal Faria, R. Rossetti, L. Ferreira CAL, MIEIC, FEUP

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

2

Algoritmos gananciosos (greedy algorithms)

Algoritmos Gananciosos

- É qualquer algoritmo que aplica uma heurística de solução em que se tenta realizar uma escolha óptima local em todo e cada estágio da solução.
- Aplicável a problemas de optimização (maximização ou minimização)
- Em diversos problemas, a optimização local garante também a optimização global, permitindo encontrar a solução óptima de forma eficiente
- Subestrutura óptima: um problema tem subestrutura óptima se uma solução óptima p/ problema contém soluções óptimas para os seus subproblemas!

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

Estratégia Gananciosa

- Um algoritmo ganancioso funciona em fases. Em cada fase verifica-se a seguinte estratégia:
 - Pega-se o melhor que se pode obter no exacto momento, sem considerar as consequências futuras para o resultado final
 - 2. Por se ter escolhido um **óptimo local** a cada passo, espera-se por acabar a encontrar um **óptimo global!**
- Portanto, a opção que parece ser a melhor no momento é a escolhida! Assim,
 - Quando há uma escolha a fazer, uma das opções possíveis é a "gananciosa." Portanto, é sempre seguro optar-se por esta escolha
 - > Todos os subproblemas resultantes de uma alternativa gananciosa são vazios, excepto o resultado

Premissas

- Cinco principais características que suportam essa solução:
 - 1. Um conjunto de candidatos, de onde a solução é criada
 - 2. Uma função de selecção, que escolhe o melhor candidato a ser incluído na solução
 - 3. Uma função de viabilidade, que determina se o candidato poderá ou não fazer parte da solução
 - 4. Uma função objectivo, que atribui um valor a uma solução, ou solução parcial
 - 5. Uma função solução, que determinará se e quando se terá chegado à solução completa do problema

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

6

Algoritmo abstracto

- Inicialmente o conjunto de itens está vazio (i.e. conjunto solução)
- A cada passo:
 - Um item será adicionado ao conjunto solução, pela função de selecção
 - SE o conjunto solução se tornar inviável, ENTÃO rejeita-se os itens em consideração (não voltando a seleccioná-los)
 - SENÃO o conjunto solução ainda é viável, ENTÃO adiciona-se os itens considerados

Problema do troco

Saco / depósito / stock de moedas

extrair(8, {1, 1, 1, 2, 2, 2, 2, 5, 5, 10})

(com nº mínimo de moedas)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

Resol. c/ algoritmo ganancioso

Dá a solução óptima, se o sistema de moedas tiver sido concebido apropriadamente (caso do euro) e não existirem problemas de *stock*!

Implementação iterativa (Java)

```
static final int moedas[] = {1,2,5,10,20,50,100,200};

// stock[i] = n° de moedas de valor moedas[i]
public int[] select(int montante, int[] stock) {
  int[] sel = new int[moedas.length];
  for (int i=moedas.length-1; montante>0 && i>=0; i--)
    if (stock[i] > 0 && moedas[i] <= montante) {
      int n_moed=Math.min(stock[i],montante/moedas[i]);
      sel[i] += n_moed;
      montante -= n_moed * moedas[i];
    }
  if (montante > 0)
    return null;
  else
    return sel;
}
```

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018

Prova de optimalidade

- ◆ <u>Definição</u>: Um sistema de moeda diz-se *canónico*, se o algoritmo ganancioso encontra sempre uma solução ótima para o problema do troco (com stock ilimitado).^[1]
- A maioria dos sistemas de moedas são canónicos (USA, EU, etc.).
- ♦ Teorema: Sendo C = {1, c_2 , · · · · , c_n } as denominações do sistema de moedas, se o sistema for não canónico, o menor contra-exemplo situa-se na gama $c_3 + 1 < x < c_{n-1} + c_n$. [1]
 - > Logo basta fazer pesquisa exaustiva nesta gama para determinar se é canónico.
- ◆ Exemplo: Seja o sistema de moedas C = {1, 4, 5}.
 - ➤ Basta procurar contra-exemplos na gama de 6 < x < 9.
 - No caso x = 7, o algoritmo ganancioso dá a solução ótima (5,1,1).
 - No caso x = 8, o algoritmo ganancioso $\{5, 1, 1, 1\}$ mas o ótimo é $\{4, 4\}$).
 - Logo o sistema não é canónico.
 - [1] Xuan Cai (2009). "Canonical Coin Systems for CHANGE-MAKING Problems". Proc. of the Ninth International Conference on Hybrid Intelligent Systems.

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

10

...

Escalonamento de atividades

- Problema: dado um conjunto de atividades, encontrar um subconjunto com o maior número de atividades não sobrepostas!
- ♦ Input: Conjunto A de n atividades, a_1 , a_2 , ..., a_n .
 - > s_i = instante de início (start) da atividade i.
 - \rightarrow f_i = instante de fim (*finish*) da atividade *i*.
- Output: Subconjunto R com o número máximo de atividades compatíveis (i.e. não sobrepostas)

Escalonamento de atividades: abordagem gananciosa

Passos:

- > Considerar as atividades numa ordem específica
- > Escolher a "melhor opção" de atividade.
- > Descartar as atividades incompatíveis com a atividade escolhida.
- > Proceder da mesa forma para as atividades restantes.

♦ Estratégias:

- \succ "Earliest finishing time" -> ascendente em f_i
- "Earliest starting time" -> ascendente em s_i
- \rightarrow "Shortest interval" -> ascendente em f_i s_i
- "Fewest conflicts" -> para cada atividade, contar o número de conflitos e ordenar segundo este número.

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

14

Escalonamento de atividades: algoritmo ganancioso por fim mais cedo

Baseado na intuição de que, para realizar o maior nº de atividades sequencialmente, devemos começar pela que termina mais cedo!

$$\begin{split} &A = \{a_1, \ a_2, \ ..., \ a_i, \ ..., \ a_n\} \\ &R = \varnothing \\ &\text{While A} \neq \varnothing \\ &a \leftarrow a_i \mid \text{ earliest finishing time} \\ &R \leftarrow R \cup \{a\} \\ &A \leftarrow A \setminus \{a_j \in A \mid a_j \text{ não \'e compatível com } a_i\} \text{ (incl. } a_i) \\ &\text{EndWhile} \\ &\text{Return R} \end{split}$$

Escalonamento de atividades: prova de optimalidade do algoritmo

- No exemplo e algoritmo dados sejam:
 - > A conjunto inicial de atividades
 - \rightarrow a atividade selecionada com fim mais cedo (a_1)
 - > I conj. de atividades incompatíveis com $a(\{a_3, a_4, a_7\})$
 - \triangleright C conj. de atividades restantes ({ a_2 , a_5 , a_6 , a_8))
- ◆ Do conjunto {a} ∪ I, só pode ser selecionada no máximo uma atividade (pois são mutuamente incompatíveis)
- Desse conjunto, escolhemos uma, que é o máx. possível
- ◆ A atividade escolhida (a) não tem incompatibilidade com as restantes (C), logo a escolha de a permite maximizar o nº de atividades que se podem escolher de C

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018)

18

Escalonamento de atividades: minização tempo médio de conclusão

Variação do problema de escalonamento de atividades:

- ◆ Dados: tarefas (jobs) e tempo (duração)
- Objectivo: sequenciar tarefas minimizando o tempo médio de conclusão
- Método: tarefas mais curtas primeiro

Tarefa	Tempo
j1	15
j2	8
j3	3
j4	10

Tempo médio: 17.75

j3 j2 j4 j1 36

Prova de optimalidade

- ♦ Tarefas: $j_1, j_2, ..., j_n$ ordenadas por ordem de execução
- ◆ Durações: d₁, d₂, ..., d₂
- ♦ Instantes de conclusão (fim): $f_1=d_1$, $f_2=d_1+d_2$, ...
- ◆ Tempo médio de conclusão das tarefas (custo):

$$\frac{\sum_{i=1}^{n} f_i}{n} = \frac{\sum_{i=1}^{n} (n-i+1)d_i}{n} = \frac{(n+1)\sum_{i=1}^{n} d_i - \sum_{i=1}^{n} i d_i}{n}$$

- Se existe x > y tal que $d_x < d_{y'}$ troca de j_x e j_y diminui custo da solução
- ♦ Assim, custo é minimizado se tarefas forem ordenadas tal que $d_1 \le d_2 \le ... \le d_n$

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2017-2018

20

Outros Exemplos de Problemas

- Problemas em que se garante uma solução óptima:
 - Problema do troco, desde que não haja falta de stock e o sistema de moedas esteja bem concebido
 - > Problema de escalonamento
 - Árvores de expansão mínima (a ver mais tarde)
 - Dijkstra, para cálculo do caminho mais curto num grafo (a ver mais tarde)
 - Codificação de Huffman (a ver mais tarde)
- Problemas em que não garante uma solução óptima
 - > Problema da mochila (mas pode dar boas aproximações ...)

Referências

- Mark Allen Weiss. Data Structures & Algorithm Analysis in Java. Addison-Wesley, 1999
- ◆ Steven S. Skiena. The Algorithm Design Manual. Springer 1998
- ◆ Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992
- ◆ Slides de Maria Cristina Ribeiro