# SIMULATION OF A TIRE USING PARTICLES

Jeroen Huisen

Navid Saremi

# Initial modeling

- Tire with deformation based on air pressure
- Solid wheel base with attachments to the inside of the tire
- Spring connecting the tire system to the body of the car

- Removing collision between wheel-base, axel, and the tire
- The tire is the only object that interacts with the environment

#### Connections

- Intra-Tire: rigidity based on tire pressure
- Simulating pressure
- No expansion allowed only compression





Attachments to the axel







### Tire pressure

- Limiting the maximum length based on pressure
- Using air particles in the middle of tire
- Using rigidity as a pressure presentation
- Restricting expansion
- Inner circle should not compress (attachments)

## Spring simulation

- 4 springs all with dampening (theoretically)
- 1 object to represent the mass of the car





# Spring

• Formula

$$F_k = -K(l - l_0)$$

Convert

$$F_k = m * a$$

$$a = \frac{F_k}{m}$$

$$v_{new} = v_{old} + a * \Delta t$$





# Spring damping

- Infinitely oscillating
- Fdamp = C \* (V1 V2)
- Amplitude sinus decrease over time

# Questions?

