15.1. The moduli space of elliptic curves.

Theorem. Given a be 1 than st = 12=

Theorem. Given $a,b\in C$ the s.t. $E:y^2=4x^3-ax-b$ is an elliptic curve, there exists a lattice Λ such that $g_2(\Lambda)=a$, $g_3(\Lambda)=b$.

Recall $g_2(\Lambda) = 6064(\Lambda) = 602 w^{-4}$ $0 \neq w \in \Lambda$ $g_3(\Lambda) = 14066(\Lambda) = 1602 w^{-6}$ $0 \neq w \in \Lambda$

Lemma. For any $C \in \mathbb{C}^{\times}$, $g_2(c\Lambda) = c^{-4}g_2(\Lambda)$ $g_3(c\Lambda) = c^{-6}g_3(\Lambda)$.

(Immediate by inspection)

We already cooked up curves $y^2 = 4x^3 - g_2x$ $y^2 = 4x^3 - g_3$

for some nonzero g_{2},g_{3} by choosing $\Lambda = \mathcal{K}[i]$, $\mathcal{K}[3_{6}]$. By above lemma, can scale to anything we want.

Def. The upper half plane is

(H:= { 7 e C: Im(7) > 0}.

Lemma. Any lattice $\Lambda \subseteq \mathbb{C}$ is homothetic to $\langle 1, \tau \rangle$ for some $\tau \in \mathbb{H}$.

(A and A' are homothetic if A = c A' for some c a A'.)

Proof. Let 7, 72 be a basis for Λ . Then $\Lambda \sim \langle 1, \frac{72}{71} \rangle$ and $\langle \frac{71}{72}, 1 \rangle$

and $lm(z) > 0 \Leftrightarrow lm(\frac{1}{7}) = 0$.

15.2.

Lemma. Homothetic lattices yield isomorphic elliptic weres.

Proof. Get
$$y^2 = 4x^3 - ax - b$$

 $y^2 = 4x^3 - ac^{-4}x - bc^{-6}$

and our isomorphism is $(x,y') \rightarrow (c^{-2}x,c^{-3}y)$.

Retsolvance he methodical attention

Bako

Lemma. If two elliptic curves are isomorphic their lattices must be homothetic.

Proof. Look at C/A, and C/Az.

There is a complex holo map $C/N_1 \longrightarrow C/N_2$ which is an isomorphism and as seen before must be $7 \longrightarrow 47$ for some 2. That's a homothety!

Def. If $\tau \in H$ write $g_2(\Delta \tau) = g_2(\langle 1, \tau \rangle)$ $g_3(\Delta \tau) = g_3(\langle 1, \tau \rangle)$.

In addition define the modular j-invoriant

$$\int_{0}^{1} (\tau) = \frac{1728 q_{2} (\pi)^{3}}{q_{2}(\tau)^{3} - 27 q_{3}(\tau)^{2}}.$$

Also, if $E: y^2 = 4x^3 - ax - b$ we define $j(E): \frac{1728a^3}{a^3 - b^2}$

Definition. Stz(72):= { [ab]: a,b,c,d = 76; invertible}

Proposition. SLz(26) acts (from the left) on IH by linear fractional transformations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \circ 7 = \frac{a^2 + b}{c^2 + d}.$$

Proof. Not hard. Must check: (1) always get south in H,

(2) [1 0] 07 = 7 (trivial)

Exercise. Prove (3).

Horder Exercise. Prove (3) in such a way that you understand why it's true,

[a b]

Now, if $g \in SL_2(2c)$, $g_2(g\tau) = g_2(\langle 1, \frac{a\tau+b}{c\tau+d} \rangle)$ = $(c\tau+d)^{-q}(\langle c\tau+d, a\tau+b \rangle)$.

But if $\langle 1, \tau \rangle$ is a basis for Λ_1 so is $\langle c\tau + d, a\tau + b \rangle$. So $g_2(g\tau) = (c\tau + d)^{-4}g_2(\tau)$.

This makes 92 a modulor form of weight 4.

Similarly 93 (97) = (c+d) = (c+d) = 93(T),

and $j(g\tau) = \frac{1728 (c\tau + d)^{-12} g_2(\tau)^3}{(c\tau + d)^{-12} g_2(\tau)^3 - (c\tau + d)^{-12} g_3(\tau)^2} = j(\tau).$

Therefore j(gT) = j(T) for all g = S12(2) and T+H.

Properties. (1) j(T) is holomorphic.

If we add a "point at intinity", get a holomorphic map

SL2(72) IH - IP'(C).

Can prove. The function is bijective.

In porticular, given an EC $y^2 = 4x^3 - ax - b$. As before, we can scale by homotheties, and we can assume $a \cdot b \neq 0$.

SO WLOG assume b=1.

Then $j(E) = j(\Lambda_E) = j(\tau_E) = \frac{1728a^3}{a^3 - 27}$ where $\Lambda_E = \langle 1, \tau_E \rangle$

We have $1728a^3 = j(a^3 - 27)$ (Note: j70,1728 by assumption.) $a^3(1728 - j) = -j \cdot 27$ $a^3 = \frac{27j}{j - 1728}$

Since the j-function is sujective, can get any value of a3 we want.

15.5.

Moreover,
$$g_2(5_6\tau) = 5_6^{-4} g_2(\tau)$$

 $g_3(5_7) = g_3(\tau)$

so we can get any value of a.

Other properties of of

Since $\pi i(2) = \tau(2+1)$, it has a Fourier series expansion

$$Tij(7) = \sum_{n=-\infty}^{\infty} a(n) e^{2\pi i n 7} = \sum_{n=-\infty}^{\infty} a(n) q^n, q^{i} = e^{2\pi i n 8}$$

In fact, we have
$$j(x) = \sum_{n=-1}^{\infty} a(n) q^n$$

$$=\frac{1}{9}+744+1968849+...$$

Smollest a such that the "Monster" injects into GLuce) is 196883. This is "monstrous moonshine".

We also have
$$\int \left(\frac{1+\sqrt{-163}}{2}\right) = -640320^3$$
.

It is not obvious that this should be an integer.

By CM theory, known to be an alg. integer in an extension of Q of degree h(-103) = 1.

Now, if $n \ge 1$ is a positive integer, $e^{\frac{1+\sqrt{1-103}}{2}}$) n

consequence: e TV 163 sis within 10-12 of an integer.

16.1. Recop: Elliptic Curves Over C. Whot we learned that's important.

(1) Elliptic curves are complex tori. Given E/C, there is a unique lattice Λ (uniqueness up to homothety) with $C/\Lambda \longrightarrow E$.

The reverse can be written down too, and the opened weps preserve the group law.

(2) The C/A formulation lets us understand points of finite order easily.

E(4) [n] 3 (7/n) always, and indeed this is the source of Galois repins

which are a major object of study.

(3) Maps between E('s (isogenies) are most easily understood on the C/A side. We have an equivalence between:

* isogeniec $\phi: E_1 \longrightarrow E_2$

* holo waps $\phi: C/\Lambda_1 \longrightarrow C/\Lambda_2$

* {q + C : q /, \ \ \ \ \ and this is easy to understand.

Indeed, usually there are no nonzero such maps (it E, # Ez).

In case $\Lambda_1 = \Lambda_2$, the isogenies form a ring, End(E) the endomorphism ring of E.

Usually End(E) = 76 (multiplication by n)

but we can have $\Phi \Lambda_0 = \Lambda$ for $\Phi \neq \mathcal{H}$ if Λ is contained in a quadratic field K.

In this case End(E) is a subring of K and E has CM (complex multiplication).

(4) Elliptic curves are parametrized by their j-invariants $j(y^2 = 4x^3 - ax - b) = \frac{1728a^3}{a^3 - d7b^2}$

If we regard j as a function on # lattices, up to homothety, and then # Al, up to linear frac transformations, it is a modular function of weight o.

It gives a homeomorphism of Riemann surfaces

Scz(72) H - P(C)

and makes Scz (72) It the moduli space of elliptic curves. It is an algebraic curve (just P') but its finite covers are more interesting.