Mathematics Linear Programming Problem Assignment

Student:

Abhiroop Mukherjee

Enrolment Number

Q) Given mi=1, ma=1, ma=1, ma=0 is a fexcible solution of the system of equations: mi + 2n2+ 4m3 + ma = 7 2n, - no+ 3ng - 2ng =4 Reduce the feasible solution to one base feasible solution. 1 - 6 - 6 - 8 67 (1,1,1,0) is a feasible solution, we Can say that 1 a, + 1 az + 1 az + 0 a4 = 0 where $a_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ $a_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $a_3 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $a_4 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ -> But this is not a Busic Feasible sulution as there are three non-zero variables. We have to reduce it [d]= { -to two non - zero veriable. > 25 na = 0 is already zero, ignoring at i we get []=[s] = n(+ 2n2+14n3 = 7 + 5 = 1 G + 2n 5 n2+ 3n3 = = 4 1 60 = 50 = 5 Here : a 1 22 , 03 are linearly madepondant, that is 1,2, + 12, 2+ 1, 13=3= 0 $\lambda_{1} + 2\lambda_{2} + 4\lambda_{3} = 0$ $2\lambda_{1} + 2\lambda_{2} + 3\lambda_{3} = 0$ $= 0 - \left(\frac{1}{2} + \frac{1}$ $\frac{\lambda_1}{6+4} = \frac{\lambda_2}{-(3-7)} = \frac{\lambda_3}{-1-4} = k \text{ (let)}$ Sie ne 3 Suin James milities halomating ...

for he=1, we get

$$\lambda_1 = 10$$
 $\lambda_2 = 5$
 $\lambda_3 = 5$

to we does the solution to a basic fear. ble solution,

to we does the solution to a basic fear. ble solution,

 $\lambda_1 = 10$
 $\lambda_2 = 5$
 $\lambda_3 = 5$

to we does at $j = 1$, hence we eliminate a,

from ans to reduce a to zero.

From ans to reduce a to zero.

A basic fear. ble solution $\left(1 = \frac{1}{10} \cdot \frac{10}{10}\right) = \frac{1}{10} \cdot \frac{1}{10}$

$$11m_1 + 2m_2 - 9m_3 + 4m_4 = 6$$

 $15m_1 + 3m_2 - 12m_3 + 6m_4 = 9$

Reduce the feasible solution to more than one Basic Solution and prove that one of them is non-degenerate and the others are a dequeral

- given
$$(1,2,1,0)$$
 solution to
$$11n_1 + 2n_2 - 9n_3 + 4n_4 = 6$$

$$15n_1 + 3n_2 - 12n_3 + 6n_4 = 9$$

ignaing king (as, it is already zero), we get
$$11 m_1 + 2m_2 - 9m_3 = 6$$

$$15m_1 + 3m_2 - 12m_3 = 0$$
linearly

> 35 the coefficient matrices are madependent, we get

$$11\lambda_1 + 2\lambda_2 - 9\lambda_3 = 0$$

$$15\lambda_1 + 3\lambda_2 - 12\lambda_3 = 0$$

$$\frac{\lambda_{1}}{-24+27} = \frac{\lambda_{2}}{-(-13+2+135)} = \frac{\lambda_{3}}{3.3-30} = k \text{ (let)}$$

of
$$x = 1$$
, we get
$$\lambda_1 = 3$$

$$\lambda_2 = -3$$

$$\lambda_3 = 3$$

CS Scanned with CamScanner

510519109

Lord of me side is dear along .

PERSONAL PROPERTY OF

```
Q) m=1, m=2, m=1, m=0 is a feasible solution
            11m, + 2m2 - 9m3 + 4m4 = 6
 15mit 3m2 - 12m3 + 6m4 = 9
       Reduce the feasible solution to more than one
  Basic Solution and prove that one of them is non-degenerate and the others are a degeneral
     given (1,2,1,0) solution to

11 m_1 + 2m_2 - 9m_3 + 4m_4 = 6
15n_1 + 3m_2 - 12m_3 + 6m_4 = 0
ignaine & mar ( as it is already zero), we get
      || n_1 + 2n_2 - 9n_3 = 6
|| 5n_1 + 3n_2 - 12n_3 = 0
       > 25 the coefficient matrices are madebendant, we
             get 0 1 + +0- f + f - + C
                   11\lambda_1 + 2\lambda_2 - 9\lambda_3 = 0
      (8 = 1) = \frac{\lambda_1}{-24 + 27} = \frac{\lambda_2}{-(-1342 + 135)} = \frac{\lambda_3}{-33 - 30} = k \text{ (let)}
      (0, for ker 1, we (ge by +1, (01) +1)
           \lambda_1 = 3
\lambda_2 = -3
\lambda_3 = 3
(0.0.5.8)
                 the Twee basic fearble can be found
    (0,0,5,8) La (0,5,6,0)
```

Le we get a basic tessible solution by

min $\left(\frac{\pi i}{\lambda j}, \lambda_j > 0\right) = \min_{j} \left(\frac{1}{3}, \frac{1}{3}\right) = \frac{1}{3}$: bfs= (11-13x3 2+1x(+3) 1-13x3,0) as one of the basic variable Varished, this solution is made degenerate swe get enother basic feasible solution by $\max_{j} \left\{ \frac{n_{j}}{\lambda_{j}} , \lambda_{j} < 0 \right\} = \frac{-2}{3} \int_{\infty} \int_{\infty} = 2$ = another bfs = (1 + 2 (3) , 2+ 2 (3) , 1+ 2(3) , 0) this solution is non-degenerate e we also chacking (5,0,-1) in the system 3= 3 - 0 + 61 in the existence selection for the existence - To. get more books selections, we set n. = 0 km 0 = , x (I system becomes: 2mitage

Qs) Show that m=5, $m_2=0$, $m_3=-2$ is a basic solution of the system of equation $m_1+2m_2+m_3=4$ $2m_1+m_2+5m_3=5$

Find other basic solution if there are any

Asset (Contract to 100)

we get;

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

(= , (= = here (Rank (A) = 2 = m + 1) = all mas

-: n-m = 3-2 = 1

: 1 zero must be present in solution for

 \Rightarrow so also checking (5,0,-1) in the system 5+0=1=4 10+0-5=5

: (5,0,-1) is a basic solution for the system

> To, get more basic solutions, we set n = 0 h = n = 0

I) n, = 0

575 tem becomes: 2n2+n3=4 n2+5n3=5

or $n_2 = \frac{5}{3}$ $n_3 = \frac{2}{3}$

" (0, 5, 3) is mother basic sol. II) n3=0 10 m + 2 m = 4 1 m p 2mit ni = B did and Ti, boil aldanas was a mad - mad = (2,1,0) is another basic solution. rough one state of as The solution above to daily for me as a

Q) The two linearly independent equations with those variables are given by

$$2n_1 - 3n_2 + 5n_3 = 10$$
 $4n_1 + n_2 + 10 m_3 = 20$

Find, if possible, a basic solution with ma as

To set me as non-besic variable, we do

so, the system becomes 2n, + 5n3=10

$$2n_1 + 5n_3 = 10$$

 $4n_1 + 10n_3 = 20$

as for these two lines:

$$\frac{21}{22} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{1}{2}$$

-> the times have no solution

.. The solution doesn't exist for no as a

Reduce the fessible colution

$$n_1 = 2, n_2 = 1, n_3 = 1 \text{ of the given system}$$

$$n_1 + 4 + n_2 - n_3 = 5$$

$$2n_1 + 3 + n_3 = 8$$
to be a bacic fessible solution.

35 the coefficient matrix of the given system are dependent,

$$\lambda_1 + 4 \lambda_2 - \lambda_3 = 0$$

$$2\lambda_1 + 3\lambda_2 + \lambda_3 = 0$$

$$2\lambda_1 + \lambda_2 + \lambda_3 = 0$$

$$2\lambda_1 + \lambda_2 + \lambda_3 = 0$$

$$2\lambda_1 + \lambda_2 + \lambda_3 = 0$$

Dlet B=[2, 22]=[-1] $B' = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ $M_0 = B^T b = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ 0 · ~ CB = [3 4] $Y_{i} = B_{i}^{2} = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ z,-c,= cBY,-c,= [34][1]-3=0 $Y_2 = \vec{B} = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 22-c2 = CBT2-c2 = [34][0] - 4 = 0 $\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix}$ $z_3 - c_3 = c_8 y_3 - c_3 - 1 z_3 + z_3 - 0 = -13 z_3$ Y4 = B = = = [3 1] [0] = 1 [1] 24-(4 = CB Y4-C4 = 1 [3 4] [1] = 7 7 25 Zz-cz is the minimum -ve ans, 723; will be inche the enterny vector 3 as both the values of Y3 are less than zero, there is no exiting vector , suggesting that the LPP has unbounded solution.

Q) Solve max z = 5m, + 2m2 + 2m3 n, + 2m2 - 2m3 <30 n, + 3m2+ m3 536 m, , m2, n3 70 converting LPP to standart form max Z = 5n, + 2n2+ 2n3 + On4+ Ons st $n_1 + 2m_2 - 2m_3 + m_4 + 0m_5 = 36$ $m_1 + 3m_2 + m_3 + 0m_4 + m_5 = 36$ e writing it in matrix form st $\begin{bmatrix} 1 & 2 & 2 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} a_1 & b_2 & b_3 & b_4 \\ a_2 & a_3 & b_4 & b_4 \\ a_4 & b_5 & b_6 & b_6 \end{bmatrix}$ will be instead the entering vector as with the values of Y3 are less there is no existing vector , suggesting that the [PP has in bounded solution.

J) let
$$B = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$$
 $B^{\dagger} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$
 $A_{B} = B^{\dagger}b = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 30 \\ 3c \end{bmatrix} = \begin{bmatrix} 18 \\ 2 \end{bmatrix}$
 $C_{B} = \begin{bmatrix} 5 & 2 \end{bmatrix}$
 $Y_{1} = B^{\dagger}a_{1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$
 $Z_{2} - c_{1} = c_{8}Y_{1} - c_{1} = \begin{bmatrix} 5 & 23 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $Z_{2} - c_{2} = c_{8}Y_{2} - c_{2} = \begin{bmatrix} 5 & 23 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $Z_{3} - c_{3} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$
 $Z_{3} - c_{3} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix} = \begin{bmatrix} -36 \end{bmatrix}$
 $Z_{4} - c_{4} = c_{6}Y_{4} - c_{4} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ 13 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -1 \end{bmatrix}$
 $Z_{3} - c_{3} = \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 & 1 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -1 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -1 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -1 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$
 $Z_{5} - c_{5} = c_{8}Y_{5} - c_{5} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} - 0 = \begin{bmatrix} -8 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} =$

ID
$$B = \begin{bmatrix} a_1 & a_3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$Act B^{-1} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 34 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 34 \\ 2 \end{bmatrix}$$

, 25 none of the 2j-cj <0 , j=1,2,3,4,5 - the optimal solution for the LPP is 21=34 22 = 0 , i.e (34,0,2) with zmax = 174

Q solve LPP by by M method and brove that the problem has finite optimal colution with the second = 3m, + 5m2 st m,+ 2m2 718 3x, + 2m2 -> 12 5m, + 6m2 5 60 m11m2 70 John Livery William Land slack, sur plus, and artificial variables 3n, + 5n2 + On3 + On4 + Ong + M mo + M n7 2n2-n3 + On4 + Om5 + n2 + Om7 = 8 3m, + 2m2 = 60 Bm, 46m2 + ms... Simplex Table 0 35 NB max 2; - c; = 4 M-3 0 0 . .1. . 2 ·M. ..0 0 1 = st, enterny -1 3 .0. 30 12 , 1 60 95 - M 4M-5 4M-3 . do leaving 3-4 max 2;-cj = 4 M-3 古当 3 O. di nº 4 0 0 : do enter ... 0 3 0 4 29 M3 0. 1-1 Ain (3 ,6 , 15)=3 0 5 0 40 55 ... a exit 0 4M -3 13 -1 0 Key = 4 -3 + 0 5 0 2 22 3 1/2 2 0 一当 0 1 3 2, 2 mi ١ 0 ns 32 -9 -4 0 0 0 Zj-9 as all zj-cj <0 , optimal colution exist $m_1 = 2$ $m_2 = 3$ min Z=21

χ) U	/	M	ex T	-3	+ *		2n=	5	3	r Fr	suler:	
	w	st	2 = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 ack 0 m, + 1 + m	2m n2- 12 +	bles 2 + 2 2me	13 4 M	0~4	Media Media	is The	entre	
ca 1	B	MB	- P	81	22	31 2	24	52	Re	mark		
(8) 0 0 1 0 2 1	61 54 54	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7 3 25 4 3 25 4 3 25 5 5	1 - 3 - 6 - 7 - 0 0	1 Tr 0 - 0 0 - 0	-2 2 1 -4 2 3 -1 -1 -3 -4	0 0	0-1-0-17-4	min (-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-3 -3 -xit	(83 6 0
				e dies		s	0				2.5	
			0,	45						landia.		

is a	,	st	3.	m, +	ma .	+ 3~	12 +	5 MA	5	12
7.			3.		(Tab	5.	- +	4 74	<	15
õ				N1 + 2	m 2 T		3	70		
ï				100						The second second
	ntro	du	eing e	slack	Vavia	bles) La red			Ong + One
	11/27	7		211, 4	k ~	12 +	3~3	+ ~	4	0 ng + 0 ne = 12
	54	t	2	n1 + 2	N2+	m.	+ 42	14 +	MB	+me = 15
			i.	. N .	25	4105		a + 1.	-	5 d as 5 5
5.				12			3 13	- 7		1 P gr 50
CB	B	MB	CJ D	5,	-1 22	3	54	25	ac o	Remarks
0	25	w.	12	2	1 2	3	5	0	0	min - ve = 3-cj = -=
0	34	. M.E	2;-0	-	1	-3	-1		0	== =3 enter. $\frac{12}{3}$, $\frac{15}{1}$) = 4
		1 m	2 7			1.	7			- as exit
01		1 -	4-)		eference q		1,		ļ	3 key
0.0430	3	3	4	2 3		1	5/3	13	0	211 zj-cj 7/0
0	şτ	w.t.	* (m) -	3	2	76	3	3	0	= m1=0 1m2=01m2
a - 1	dive	* 6	Zjrj	0		0	1 0			share z,-c,=0 but
Tal.					£	-	17		3 -	a, not in basis
			, e les ,	-: i	å, 9	44	91.	3	2015	key 8
den l	-			7-1		-	1		-	3
200	3	23								min (4 1 7) = 3
2 :	E									: zi enter ac ex
3			47	0	구대	10	1	극	3	all zj-cj ≥0
	51	71	쫙	l .	7					n3=4 1 n4=0
			25-6	0	2	0	4	1	0	Zmax = 12
	300				1 .	l,	e		ı	