B. Trójkąty

Dostępna pamięć: 128 MB

Dla danego zbioru A składającego się z n parami różnych punktów na płaszczyźnie znajdź trzy będące wierzchołkami trójkąta o najmniejszym obwodzie. Za trójkąt uważamy również trójkąt zdegenerowany, którego wszystkie wierzchołki leżą na jednej prostej.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się dodatnia liczba całkowita $n \in [3,500\,000]$, będąca liczbą punktów w zbiorze A. W każdym z kolejnych n wierszy znajdują się współrzędne kolejnego punktu, będące parą liczb całkowitych x_i, y_i oddzielonych pojedynczą spacją, gdzie $-10^7 \le x_i, y_i \le 10^7$.

Specyfikacja danych wyjściowych

Twój program powinien wypisać opis trójkąta o najmniejszym obwodzie, tj. trzy wiersze opisujące jego wierzchołki. W każdym wierszu powinny znaleźć się współrzędne jednego wierzchołka trójkąta oddzielone spacją (jak w danych wejściowych). Jeśli istnieje wiele trójkątów o najmniejszym obwodzie, Twój program może wypisać wierzchołki dowolnego z nich.

Przykład A

Wejście:	Wyjście:
4	0 0
0 0	0 1
0 1	1 0
1 0	
1 1	

Przykład B

Wejście:	Wyjście
5	0 0
0 0	1 1
0 3	2 2
1 1	
2 2	
3 3	

Przykład C

Wejście:	Wyjście:
5	-1 -1
1 -1	0 1
0 1	1 -1
0 3	
2 2	
-1 -1	