Biostats Lecture 1: Descriptive Statistics

Public Health 783

Ralph Trane University of Wisconsin–Madison

Fall 2019

Learning Objectives

- 1. Understand why descriptive statistics is important, and useful
- 2. Know the difference between discrete and continuous variables/data
- 3. Have some ideas of which summaries and figures are appropriate for different types of data

Descriptive Statistics

- What: the art of describing data with few important measures ('summary statistics')
- Why:
 - know your population!!
 - explore your data
- How: try to get an idea of the distributions of variables included
 - what's a distribution?!
 - what's a variable?!

Data Types

Two general data types:

- Discrete data
 - categorical
 - no natural ordering
 - examples: sex, race, blood type, political orientation, etc.
 - ordinal
 - naturally ordered
 - educational level, age groups, disease severity scales, etc.
 - summarized by
 - frequency counts
 - relative frequencies
- Continuous data
 - numerical
 - examples: age, height, weight, BMI, proportions, etc.
 - infinite (uncountable, actually...) number of potential values
 - summarized by
 - location measures
 - spread/variation measures

Example

Framingham Heart Study

What NOT to do with categorical data.

A.K.A. my least favorite chart of all time...

Why don't I like pie charts?

What we want from figures:

- 1. self-explanatory
- 2. important information should be easy to get
- 3. show trends (if available)
- 4. only as complicated as the data
- 5. free of unnecessary complexity
 - irrelavent decorations
 - ∘ 3D effects --(**BIG YIKES!!!!!**)

The pie chart violates 2, 4, and 5.

- 5: a bar chart is almost always more appropriate
- 2 and 4: pie charts compare angles. Humans are awful at comparing angles!

From Wikimedia Commons

For each of the following, rank the colors in terms of size:

For each of the following, rank the colors in terms of size:

"Only pie chart ever allowed:"

--- Me (24/9/2019)

That was two days ago, though. Things change... I guess.

"All pies might not be made equal.....?"

--- Me (25/9/2019)

Before using a pie chart, read this, this, and this. This Twitter thread is also great!

