L'uso della logica modale per fornire una semantica classica alla logica intuizionista

Gabriele Vanoni

Politecnico di Milano

15 Dicembre 2016

Sommario

1 La logica intuizionista

2 La traduzione di Gödel-McKinsey-Tarski

Gabriele Vanoni (PoliMi)

Le motivazioni

Dalla seconda metà dell'800 le **dimostrazioni** hanno perso in generale contenuto **computazionale**.

Le dimostrazioni spesso non sono **costruttive**, provano l'esistenza di un oggetto ma non danno un **algoritmo** per costruirlo.

Brouwer capisce che questa mancanza è data dalla legge del **terzo escluso**:

$$\vdash p \lor \neg p$$

Esempio

Non possiamo asserire che $\forall n.f(n) = 0 \lor \exists n.f(n) \neq 0$.

La corrispondenza di Curry-Howard-Lambek (cenni)

- La logica intuizionista diventa fondamentale nel secondo dopoguerra nella teoria dei linguaggi di programmazione.
- Infatti viene stabilita una corrispondenza sintattica tra le dimostrazioni in deduzione naturale e i programmi del lambda-calcolo tipato semplice.
- La corrispondenza tra prove e programmi segna la nascita della moderna teoria dei tipi (Martin-Lof, Coquand), dei linguaggi funzionali (Lisp, Haskell) e dei proof-assistant (Coq, HOL).
- La corrispondenza viene poi estesa alla teoria delle categorie e in particolare alle Categorie Cartesiane Chiuse (CCC) aventi come oggetti i tipi (formule) e come morfismi i termini (dimostrazioni).

L'interpretazione BHK

- Una dimostrazione di $A \wedge B$ è data presentando una dimostrazione di A e una dimostrazione di B.
- Una dimostrazione di A ∨ B è data presentando una dimostrazione di A o una dimostrazione di B.
- Una dimostrazione di $A \to B$ è una costruzione che permette di trasformare qualsiasi dimostrazione di A in una dimostrazione di B.
- L'assurdo

 non ha dimostrazione.
- Una dimostrazione di $\neg A$ è una costruzione che trasforma ogni ipotetica dimostrazione di A in una dimostrazione di \bot (ovvero una dimostrazione di $A \rightarrow \bot$).

Ovviamente queste regole non forniscono una semantica formale, lasciando generici i concetti di dimostrazione e costruzione.

Un calcolo alla Hilbert per Int

Heyting e Kolmogorov proposero per **Int** un calcolo alla Hilbert con i seguenti schemi di assiomi:

$$Q \rightarrow P \lor Q$$

$$\bigcirc$$
 $\bot \rightarrow P$

e la regola di inferenza Modus Ponens.

La logica **Int** risulta quindi essere un sottoinsieme proprio della logica **L**, avendo questa come unico assioma in più il **principio del terzo escluso** $P \lor (P \to \bot)$.

La semantica di Kripke per Int

- Dobbiamo immaginare che se una proposizione p non è vera in un istante x, non è detto che non lo diverrà in un futuro y. La conoscenza evolve cioè da uno stato all'altro. Tuttavia ciò che è vero, ovviamente nel futuro rimane vero.
- Possiamo quindi formalizzare il ragionamento costruendo un frame di Kripke $\mathfrak{F}=<\mathfrak{W},\mathfrak{R}>$ con \mathfrak{W} insieme non vuoto dei mondi e $\mathfrak{R}\subseteq\mathfrak{W}\times\mathfrak{W}$ relazione di accessiblità fra i mondi, su cui verranno costruiti i relativi modelli $\mathfrak{M}=<\mathfrak{F},\mathfrak{V}>$ assegnando una funzione di valutazione $\mathfrak{V}:Var\mathcal{L}\to\mathcal{P}(\mathfrak{W}).$
- Richiediamo inoltre che la funzione di valutazione $\mathfrak V$ garantisca che la verità venga mantenuta "nel tempo", ovvero che se $x \in \mathfrak V(p)$ e $x\mathfrak R y$ allora $y \in \mathfrak V(p)$ per ogni $p \in Var\mathcal L$.

La semantica di Kripke per Int (continua)

La **valutazione** delle formule su un **mondo** x di un **modello** $\mathfrak{M}=<\mathfrak{F},\mathfrak{V}>$ costruito su un **frame** $\mathfrak{F}=<\mathfrak{W},\mathfrak{R}>$ procede per induzione sulla costruzione della formula:

- $(\mathfrak{M}, x) \models p \text{ sse } x \in \mathfrak{V}(p)$
- $(\mathfrak{M}, x) \models P \land Q$ sse $(\mathfrak{M}, x) \models P$ e $(\mathfrak{M}, x) \models Q$
- $(\mathfrak{M}, x) \models P \lor Q$ sse $(\mathfrak{M}, x) \models P$ o $(\mathfrak{M}, x) \models Q$
- $(\mathfrak{M},x)\models P\to Q$ sse per ogni y tale che $x\mathfrak{R}y$ se $(\mathfrak{M},y)\models P$ allora $(\mathfrak{M},y)\models Q$
- $(\mathfrak{M}, x) \not\models \bot$

segue quindi che $(\mathfrak{M}, x) \models \neg P$ sse per ogni y tale che $x\mathfrak{R}y$ $(\mathfrak{M}, y) \not\models P$.

Si verifica per induzione sulla complessità della formula che se P è vera in x e $x\Re y$ allora P è vera anche in y.

Esempio: il principio del terzo escluso

Esempio

Ci basta trovare un modello in cui $p \vee \neg p \equiv p \vee (p \to \bot)$ non sia valida. Consideriamo un frame con soli due mondi x e y, $\mathfrak{R} = \{(x, x), (x, y), (y, y)\},$ un'unica lettera proposizionale p e $\mathfrak{V}(p) = \{y\}$. Rappresentiamo a sinistra del mondo ciò che è vero mentre a destra ciò che non lo è (non è detto che sia falso!).

La traduzione di Gödel-McKinsey-Tarski

- Abbiamo fornito una semantica formale ad Int utilizzando un frame di Kripke con particolari proprietà, che intuitivamente rispecchiano il possibile aumento di conoscenza nel tempo.
- Vorremmo ora formalizzare l'interpretazione BHK che faceva invece riferimento alla dimostrabilità.
- L'idea è quella di utilizzare l'operatore **modale** □ con il significato di "è dimostrabile".
- Capiamo che per assegnare la corretta semantica all'operatore □, necessitiamo di una teoria più forte di **K**, in particolare avremo bisogno che la dimostrabiltà di A implichi A e che la dimostrabilità di A implichi la dimostrabilità della sua dimostrabilità, ovvero devono valere gli assiomi:
 - T: $\square A \rightarrow A$
 - 4: $\Box A \rightarrow \Box \Box A$
- Faremo vedere dunque una traduzione di **Int** in **S4**, ovvero la logica determinata dai frame riflessivi e transitivi.

Da Int a S4 e ritorno

Una nota sul concetto di dimostrabilità

La semantica che diamo all'operatore □ è quella di "dimostrabilità" in un senso informale, non in un particolare sistema formale S come potrebbe essere PA. Infatti avremmo che in S:

$$\Box (0 \neq 0) \rightarrow 0 \neq 0$$
 (assioma **T** e sostituzione)

da cui deriviamo

$$\neg \Box (0 \neq 0)$$
 (essendo il conseguente falso),

che asserisce la **coerenza** di **S**, andando contro il **secondo teorema di incompletezza**.

Per considerare la dimostrabilità in un **sistema formale S** dobbiamo considerare non **S4**, ma la logica **GL** in cui l'operatore □ ha le stesse proprità del predicato "è dimostrabile in **S**" definito nella dimostrazione dei **teoremi di incompletezza**.

La traduzione

Diamo quindi una **traduzione** T: $For\mathcal{L} \to For\mathcal{ML}$ ottenuta dall'**interpretazione BHK** sostituendo alla parola "dimostrazione" o "costruzione" l'operatore \square .

Traduzione GMT

- $\mathsf{T}(p) = \Box p$
- $\mathsf{T}(P \wedge Q) = \mathsf{T}(P) \wedge \mathsf{T}(Q)$
- $T(P \vee Q) = T(P) \vee T(Q)$
- $\mathsf{T}(P \to Q) = \Box(\mathsf{T}(P) \to \mathsf{T}(Q))$
- $T(\bot) = \Box \bot$

Ciò che vogliamo dimostrare è che per ogni formula $P \in For \mathcal{L}$:

 $P \in \mathbf{Int}$ se e solo se $\mathsf{T}(P) \in \mathbf{S4}$.

Abbiamo bisogno di alcune definizioni e lemmi preliminari.

Lemma

Sia \mathfrak{M} un modello costruito su un frame $\mathfrak{F} = <\mathfrak{W}, \mathfrak{R} >$ transitivo. Allora per ogni mondo x in \mathfrak{W} se $(\mathfrak{M}, x) \models \Box P$ allora per ogni y tale che $x\Re y$ $(\mathfrak{M}, y) \models \Box P$.

Dimostrazione.

Supponiamo per assurdo che in un mondo y tale che $x\Re y$ $(\mathfrak{M},y)\not\models \Box P$. Allora dovrebbe esistere un mondo z tale che $y\mathfrak{R}z$ in cui $(\mathfrak{M},z)\not\models P$. Per la transitività di \mathfrak{R} $x\mathfrak{R}z$ e dunque contraddirremmo l'ipotesi.

Frame skeleton

Definizione (relazione di cluster)

Dato un frame \mathfrak{F} transitivo $<\mathfrak{W},\mathfrak{R}>$ diciamo che per ogni $x,y\in\mathfrak{W}$ $x\approx y$ se e solo se o x=y o $x\mathfrak{R}y$ e $y\mathfrak{R}x$.

Definizione

Il frame quoziente di un frame transitivo $\mathfrak{F}=<\mathfrak{W},\mathfrak{R}>$ rispetto alla relazione di cluster \approx , cioè $<\mathfrak{W}/\approx$, $\mathfrak{R}/\approx>$ essendo:

- ullet $\mathfrak{W}/pprox$ l'insieme delle classi di equivalenza di \mathfrak{W} rispetto a pprox
- $C(x)\Re/\approx C(y)$ se e solo se $x\Re y$

è chiamato frame skeleton di \mathfrak{F} e indicato con $\rho\mathfrak{F}=<\rho\mathfrak{W},\rho\mathfrak{R}>$.

Risulta evidente che un frame skeleton è **antisimmetrico**, **transitivo** e mantiene l'eventuale **riflessività** di R.

Torniamo alla logica **S4**. Consideriamo un suo **modello** $\mathfrak{M} = \langle \mathfrak{F}, \mathfrak{V} \rangle$. Sappiamo che è costruito su un **frame** $\mathfrak{F} = \langle \mathfrak{W}, \mathfrak{R} \rangle$ transitivo e riflessivo (preordinato). Costruiamo il frame skeleton $\rho \mathfrak{F}$ (che è parzialmente ordinato, essendo transitivo, riflessivo e antisimmetrico) e assegnamogli la **valutazione** $\rho \mathfrak{V}$ così definita:

$$\rho\mathfrak{V}(p) = \{C(x) : (\mathfrak{M}, x) \models \Box p\}.$$

Osserviamo che per il lemma precedente la valutazione è trasparente rispetto alla scelta del mondo all'interno del cluster e che inoltre rispetta la proprietà per cui se $C(x) \in \rho \mathfrak{V}(p)$ e $C(X)\mathfrak{R}/\approx C(y)$ allora $C(y) \in \rho \mathfrak{V}(p)$ per ogni $p \in Var \mathcal{L}$.

Chiamiamo **skeleton** di \mathfrak{M} il **modello** $\rho \mathfrak{M} = \langle \rho \mathfrak{F}, \rho \mathfrak{V} \rangle$. $\rho \mathfrak{M}$ è dunque un **modello intuizionista**.

Modello modale e lemma skeleton

Osserviamo che dato un **modello intuizionista** $\mathfrak{N}=<\rho\mathfrak{F},\mathfrak{U}>$ costruito come skeleton di un frame modale & possiamo costruire un **modello modale** M considerando la **valutazione**

$$\mathfrak{V}(p) = \{x : (p\mathfrak{N}, C(x)) \models p\}.$$

In particolare avremo $\rho \mathfrak{M}$ isomorfo a \mathfrak{N} . Inoltre se ogni **cluster** di \mathfrak{F} è singolo abbiamo che \mathfrak{F} è isomorfo a $\rho\mathfrak{F}$ e \mathfrak{M} è isomorfo ad \mathfrak{N} .

Lemma (skeleton)

Per ogni modello M modale costruito su un frame preordinato, per ogni mondo x di \mathfrak{M} e per ogni formula $P \in For \mathcal{L}$ $(\rho \mathfrak{M}, C(x)) \models P$ se e solo se $(\mathfrak{M}, x) \models T(P)$.

Dimostrazione.

La dimostrazione procede per induzione sulla complessità della formula.

Caso base (formula atomica): per la definizione di $\rho \mathfrak{V}$, $(\rho \mathfrak{M}, C(x)) \models p$ se e solo se $(\mathfrak{M}, x) \models \Box p$ e $T(p) = \Box p$. Supponiamo allora che per una formula con n connettivi Q valga $(\rho \mathfrak{M}, C(x)) \models Q$ se e solo se $(\mathfrak{M}, x) \models T(Q)$.

Dimostriamo che la proprietà vale aggiungendo l'n + 1esimoconnettivo. Distinguiamo i seguenti casi.

Caso $P = Q \to R$: $(\rho \mathfrak{M}, C(x)) \not\models P$ se e solo se $(\rho \mathfrak{M}, C(y)) \models Q$ e $(\rho \mathfrak{M}, C(y)) \not\models R$ in un qualche C(y) tale che $C(X) \mathfrak{R}/\approx C(y)$. È possibile per ipotesi di induzione se e solo se $(\mathfrak{M}, y) \models \mathsf{T}(Q)$ e $(\mathfrak{M},y)\not\models\mathsf{T}(R)$ con $y\in C(y)$ cioè se e solo se $(\mathfrak{M},x)\not\models\Box(\mathsf{T}(Q)\to\mathsf{T}(R))$ cioè $(\mathfrak{M},x)\not\models\mathsf{T}(P)$. Gli altri **casi** con \land e \lor si provano allo stesso modo.

15 Dicembre 2016

T è una traduzione di Int in S4

Corollario

Per ogni frame \mathfrak{F} quasi ordinato e ogni $P \in For \mathcal{L}$ $\rho \mathfrak{F} \models P$ se e solo se $\mathfrak{F} \models T(P)$.

Teorema

 $P \in \mathbf{Int}$ se e solo se $\mathsf{T}(P) \in \mathbf{S4}$.

Dimostrazione.

- (\Longrightarrow) Supponiamo che $\mathsf{T}(P) \notin \mathbf{S4}$. Allora esiste un frame \mathfrak{F} transitivo e riflessivo per cui $\mathfrak{F} \not\models \mathsf{T}(P)$. Per il corollario sopra allora $\rho \mathfrak{F} \not\models P$. Dunque $P \notin \mathbf{Int}$.
- (\Leftarrow) Supponiamo che $P \notin \mathbf{Int}$. Allora esiste un frame intuizionista \mathfrak{F} per cui $\mathfrak{F}\not\models P$. Possiamo allora considerare \mathfrak{F} come un frame modale isomorfo al suo skeleton, per cui per il corollario sopra $\mathfrak{F}\not\models \mathsf{T}(P)$ e quindi $\mathsf{T}(P)\notin \mathsf{S4}$.

Riferimenti bibliografici

Alexander Chagrov and Michael Zakharyaschev.

Modal Logic.

Clarendon Press. 1997.

Logica Intuizionista.

Note del corso di filosofia della matematica, 2013.

Molteplicità delle logiche e necessità delle traduzioni. Logica intuizionistica e logica classica a confronto.

Note.

Constrctive Logic.

Note della MAP Summer School, Trieste, August 2008.