CS314: Recursive Algorithms 9/4/2013 Announ cenents - Homework I up (probably) tomorrow due next Friday written this time (HW2 will be oral grading - Turn in HWO now - Picnic next week!

(4pm next Wed)

Another (old) example: Merge Sort
According to Knuth, suggested by von Neumann around 1945. Wested by von Neumann
Ides: Osubdivide array into 2 parts.
(2) Recursively sort the 2 parts.
Drecursively sort the 2 parts. B Merge Hem back together.

 Input:
 S
 0
 R
 T
 I
 N
 G
 E
 X
 A
 M
 P
 L

 Divide:
 S
 0
 R
 T
 I
 N
 G
 E
 X
 A
 M
 P
 L

 Recurse:
 I
 N
 0
 S
 R
 T
 A
 E
 G
 L
 M
 P
 X

 Merge:
 A
 E
 G
 I
 L
 M
 N
 0
 P
 S
 R
 T
 X

Pers: If thinking recursively only step 3 is now-trivial!

 $\frac{\text{MergeSort}(A[1..n]):}{\text{if } (n > 1)}$ $m \leftarrow \lfloor n/2 \rfloor$ MergeSort(A[1..m]) MergeSort(A[m+1..n]) Merge(A[1..n], m)

(Again, avoid unvolling.)
not's my base case here?
Size 1 (or less)

How to merge? Input: S 0 R T I N G E X A Divide: S O R T I N | G E X A M P L Recurse: I N O S R T X E G L M Merge: 🛕 E G I L M TO PS

Proof of correctness: Actually, 2 of emma: MERGE results in Sorted order.

Pt: given 2 sorted Subarrays.

Induction on sizes of A[i.m] and

TS: Consider A[i...n] + A[i...n]
not base case, so neither is Since these are sorted, first element of one of them must be minimum (or else not sorted) Finds min a moves it to B.

d shrinks one of the subarrays
by I.H. correct on rest.

It that merge sort works. Base case: size o or I, de nothing It: works for lists of size k<n IS: Consider A[1...n] By IH, A[1.m] & A[mtl.n] are sorted. Now need to show A ends in Sorted order which it does since Merce works (by prev. lemma).

Runtine: Let M(n) = runtine on n elements of merge surt M(0) = M(1) = O(1) (1 compenson) $M(n) = 3 + M(\frac{1}{2}) + M(\frac{5}{2}) + (runtine)$ of morge $= 2M(\frac{\pi}{2}) + O(n)$ O(n)

 \rightarrow $M(n) = O(n \log n)$

Multiplication: Fundamental

04.44.5040				
31415962				
$\times 27182818$	0	\boldsymbol{x}	у	prod
251327696				0
31415962		123	+456	= 456
251327696		61	+912	= 1368
62831924		30	1824	
251327696		15	+3648	=5016
31415962		7	+7296	= 12312
219911734		3	+14592	= 26904
62831924		1	+29184	= 56088
853974377340916			L	

How fast? (n-but number)

Divide a conquer strategy! (10^m a + b) (10^m c+d) = (0²mac + 10^m (bc+ad) + bd 963,245 1 m=3 = 10³.963 + 245 to turn this into an algorithm? Psendo code

```
\frac{\text{MULTIPLY}(x, y, n):}{\text{if } n = 1}
\text{return } x \cdot y
\text{else}
m \leftarrow \lceil n/2 \rceil
a \leftarrow \lfloor x/10^m \rfloor; b \leftarrow x \mod 10^m
d \leftarrow \lfloor y/10^m \rfloor; c \leftarrow y \mod 10^m
e \leftarrow \text{MULTIPLY}(a, c, m)
f \leftarrow \text{MULTIPLY}(b, d, m)
g \leftarrow \text{MULTIPLY}(b, c, m)
h \leftarrow \text{MULTIPLY}(a, d, m)
return 10^{2m}e + 10^m (g + h) + f
q \rightarrow 0
q
```

Hrm... not better after all...

Another trick:

ac + bd - (a-b)(c-d) = bctad;

Why will this help?

Recall:

(0ma+b) (10mc+d) = 102mac+10m(bctad)+bd

Now, pseudo code only has 3 recursive

```
FASTMULTIPLY (x, y, n):

if n = 1

return x \cdot y

else

m \leftarrow \lceil n/2 \rceil

a \leftarrow \lfloor x/10^m \rfloor; b \leftarrow x \mod 10^m

d \leftarrow \lfloor y/10^m \rfloor; c \leftarrow y \mod 10^m

e \leftarrow \text{FASTMULTIPLY}(a, c, m)

f \leftarrow \text{FASTMULTIPLY}(b, d, m)

g \leftarrow \text{FASTMULTIPLY}(a - b, c - d, m) \leftarrow \text{return } 10^{2m}e + 10^m(e + f - g) + f
```

$$Kuntnee($$

$$T(n) = 3T(\frac{1}{2}) + O(n)$$

$$(4n)$$

$$T(n) = O(n^{1923})$$
 $\log_2 3 + 2$

Notes:

-In practice, this is done in binaryneplace ids with 2's.

-This idea can be broken down
recursively even further for
an eventual O(nlog n) time.

(Ever heard of Fast Fourier transforms?)