

DOCUMENT GSM-AUS-CPL.032

AUS OPERATIONS, FLIGHT PLANNING AND PERFORMANCE

CHAPTER 1 ECHO MKIV PILOT OPERATING MANUAL

The data in this book has been compiled for examination and training purposes only

Version 1.0 January 2013

This is a controlled document. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission, in writing, from the Chief Executive Officer of Flight Training Adelaide.

CHAPTER 1 ECHO MKIV PILOT OPERATING MANUAL

AUS OPERATIONS, FLIGHT PLANNING AND PERFORMANCE

CONTENTS	RODUCTION CTION 1 GENERAL AEROPLANE SPECIFICATIONS CTION 2 OPERATING INSTRUCTIONS CTION 3 OPERATING LIMITATIONS CTION 4 PERFORMANCE DATA:	PAGE
INTRODUCTI	ON	3
SECTION 1	GENERAL AEROPLANE SPECIFICATIONS	4
SECTION 2	OPERATING INSTRUCTIONS	5
SECTION 3	OPERATING LIMITATIONS	7
SECTION 4	PERFORMANCE DATA:	8
SECTION 5	WEIGHT AND BALANCE DATA:	10
SECTION 6	PERFORMANCE TABLES & GRAPHS:	12

AUS OPERATIONS, FLIGHT
PLANNING AND
PERFORMANCE

INTRODUCTION

This manual contains information extracted from the "Australian Flight Manual" and the associated "Pilot's Operating Handbook". The "Australian Flight Manual" states –

"It is the responsibility of the pilot in command to be familiar with the contents of this manual and to comply with all the directions complained herein relating to the operation of the aeroplane

Figures in the performance tables, which have been obtained from flight test data and by calculation, are presented to a degree of accuracy that facilitates interpolation. Round off fuel figures to values that on the "safe side" - not necessarily the nearest - of the values extracted from the tables. The rounding off is best done after all calculations have been made.

The dimensional units used in this manual comply with the Department's metrication policy and the ICAO Annex 5 Blue table. Units relating to the engines are those currently used in Pilot's Operating Handbooks. ALL FUEL QUANTITIES ARE GIVEN IN US GALLONS.

Conversion factors -

1 inch = 25.4 mm 1 foot = 0.305 metre 1 lb = 0.454 Kg

1 Imp gal = 1.201 US gal = 4.546 litres

GENERAL AEROPLANE SPECIFICATIONS SECTION 1

- The ECHO Mk IV aeroplane is a twin engine aeroplane with maximum take-off weight of 2950 Kg providing cabin accommodation for one pilot and five passengers, fully instrumented for IFR operations and with sufficient oxygen for all flights at any level. Four separate cargo or baggage compartments are available, the capacities and locations of which are given in SECTION 5.
- 1.2 The aeroplane is fitted with retractable landing gear and two "ZULU Mk XV" turbo-supercharged engines coupled to constant speed, fully feathering propellers.
- 1.3 Two main and two auxiliary fuel tanks are fitted, the location and capacity of which are -

	Usable fuel (US gal)	Unusable fuel (US gal)	Total fuel (US gal)
MAIN TANKS:			
Left	50	2	52
Right	50	2	52
AUXILIARY TANKS:			
Left	40	3	43
Right	40	3	43
TOTAL (US gal)	180	10	190

The grade of fuel to be used is 100/130 aviation gasoline with SPECIFIC GRAVITY 0.71. The weight of unusable fuel is included in the basic empty weight

The oil tank capacity for each engine is 3 US gal. The weight of all oil is included in the basic empty 1.4 weight of the aeroplane.

GSM-AUS-CPL.032 4 of 19 Version: 1.0 © FTA 2005 Date: Jan 13

SECTION 2 OPERATING INSTRUCTIONS

- 2.1 The aeroplane shall be operated within the limits given in this manual. Unless otherwise specified, all flight shall be planned in accordance with the following data
 - Start-up and taxi fuel......3 gal
 - An allowance for take-off and landing fuel is included in the Cruise-climb and Cruise-decent charts
 - Climb will be made along track. Cruise-climb performance is given in chart No.;3, page 9.
 - Cruise: (Top of climb to top of descent) Cruise to be conducted as specified in the examination paper.
 - Cruise data are given in Cruise Performance and Engine performance charts Charts Nos. 5 & 6, pages 10 & 11.
 - Descent: Unless otherwise instructed, assume all descents are made along track in accordance with Cruise-descent chart – Chart No. 4, page 9.
 - Total flight fuel is the fuel for take-off, climb, cruise and descent. It does not include taxi fuel.

Version: 1.0 5 of 19 GSM-AUS-CPL.032
Date: Jan 13 © 2005 FTA

CHAPTER 1 ECHO MKIV PILOT OPERATING MANUAL

AUS OPERATIONS, FLIGHT **PLANNING AND PERFORMANCE**

Reserves: (for all flights) Variable reserve fuel equal to 15% of total flight fuel (i.e. total fuel required for climb, cruise and descent) shall be carried.

Fixed reserve fuel for 15 you this gal shall be going.

2.2 Fuel Management:

Refuelling:

AUXILIARY TANKS are to be used only if fuel required for the flight cannot be accommodated in the MAIN TANKS in which case the MAIN TANKS must be full.

In the event of an aeroplane landing with usable fuel remaining in the AUXILIARY TANKS, fuel need not be transferred to MAIN TANKS and if desired, the next flight may depart with MAIN TANKS partly filled.

Flight Procedures

MAIN TANKS are to be used for taxi, take off, climb, descent and landings

At top of climb, change to AUXILIARY TANKS and use all the fuel from these tanks before changing back to the MAIN TANKS. If a landing is to be made before all usable AUXILIARY FUEL has been consumed, change to MAIN TANKS at top of descent.

Normally, LEFT TANKSare fed to the LEFT ENGINE and RIGHT TANKS to the RIGHT ENGINES. Cross-feed is used only in the case of a symmetric flight or fuel system malfunction.

GSM-AUS-CPL.032 6 of 19 Version: 1.0 © FTA 2005 Date: Jan 13

SECTION 3 OPERATING LIMITATIONS

3.1 Airspeeds (IAS):

Never Exc	eed	230 Kt
Normal Op	perating Limit (Maximum Structural Cruising)	199 Kt
Maximum		Wing Flap 15°
	156 Kt	
	- Wing Flap 15° to 45°	139 Kt
	- Landing Gear Extended	139 Kt
Minimum S	Single Engien Control	75 Kt
Manoeuvri	ng	160 Kt

3.2 <u>Power Plants:</u>

The following table gives the engine manufacturer's limitations for ZULU Mk XV engines

		Take-off Power for	Max Continuous
		Maximum of 3 min	Power
3.3	Maximum RPM	3200	3200
	Manifold pressure	37.4"Hg	34.5"Hg
Cro	Mixture	Rich	Rich
<u> </u>	Brake horsepower	375	340

SSW

ind Component:

The maximum permissible crosswind component for take-off and landing is 20 knots.

3.4 Tailwind Component:

The maximum permissible tailwind component for take-off and landing is 5 knots.

SECTION 4 PERFORMANCE DATA:

4.1 Take-off and Landing Performance:

TAKE-OFF and LANDING WEIGHT CHARTS – Chart No. 7 & 8 are included at pages 12 & 13.

These charts are to be used to determine -

- (a) the take-off or landing distance required for giving values of gross weight, pressure height, temperature, type of surface, runway gradient and wind component.
- (b) the maximum permissible gross weight for take-off or landing for given values of pressure height, take-off or landing distance available (TODA or LDA), temperature, runway gradient, type of surface and wind component.

Note:- (*i*)

- (i) Extrapolation outside the boundaries of the performance charts is not permitted. When temperature and/or pressure is below the lowest range shown on the charts, the aeroplane performance shall be assumed to be no better than the appropriate to this lowest range. The performance information is not valid when temperature and/or pressure height exceeds the maximum values for which the information is shown.
- (ii) Gross weight for take-off is the gross weight of the aeroplane when brakes are released fortake-off.
- (iii) For sealed and gravel take-off surfaces, the gross weight for take-off shall be determined as for a short dry grass surface.

4.2 <u>Maximum Climb Performance:</u>

The MAXIMUM CLIMB PERFORMANCE for TWO ENGINES or ONE ENGINE is given on chart 1 & 2, page 8.

These charts give the MAXIMUM rate of climb of the aeroplane for various conditions of weight and pressure height when using maximum continuous power.

Values for intermediate conditions of weight and pressure height may be obtained by interpolation.

4.3 <u>Cruise-Climb Performance:</u>

The CRUISE-CLIMB PERFORMANCE chart – Chart No. 3, page 9 gives the overall climb performance for TWO ENGINE operation maintaining 75% maximum continuous power, 120 Kt IAS and rich mixture. This chart, which is to be used for flight planning, gives values of time, fuel consumption and air distance to climb to selected pressure heights.

4.4 <u>Cruise Performance (Two engines):</u>

The CRUISE PERFORMANCE (TWO ENGINES) Chart - Chart No.5, page 10 shows the expected TAS for different percentages of maximum continuous power at various weights and pressure heights

CHAPTER 1 ECHO MKIV PILOT OPERATING MANUAL

AUS OPERATIONS, FLIGHT PLANNING AND PERFORMANCE

4.5 Engine Performance:

He ENGINE PERFORMANCE Chart - Chart No. 6, page 11 is the ZULU Mk XV engine performance table and gives the manifold pressure, RPM and mixture settings required to produce given percentages of maximum continuous power and the resultant fuel flow rates, <u>PER ENGINE</u>, in US GPH.

The recommended settings for cruise at tabulated pressure heights are enclosed within heavy lines.

4.6 <u>Cruise Performance (Single engine):</u>

See para 6-5, page 10.

4.7 <u>Cruise-Descent Performance:</u>

The CRUISE-DESCENT Chart – Chart No. 4, Page 9, gives the overall descent performance for the aeroplane at all weights. For flight planning purposes it is to be assumed that the descent to the destination aerodrome is made along track.

Version: 1.0 9 of 19 GSM-AUS-CPL.032
Date: Jan 13 © 2005 FTA

SECTION 5 WEIGHT AND BALANCE DATA:

5.1 Empty Aeroplane (fitted with 6 seats):

Aeroplane basic empty weight and moment are given in the examination paper.

5.2 Weight Limitations:

Aeroplane basic empty weight and moment are given in the examination paper.

Maximum take-off weight 2950 Kg

Maximum landing weight 2725 Kg

Maximum zero fuel weight...... 2630 Kg

Note:- All weight above Maximum Zero Fuel Weight must be made up of fuel.

5.3 Balance Data:

The Mean Aerodynamic Chord (MAC) data is as follows:

Length of chord 1900 mm

Location of leading edge 2190 mm aft of datum

Centre of gravity range:

2400 mm to 2680 mm at 2360 Kg or less

2560 mm to 2680 mm at 2950 Kg

Linear variation between the points given

5.4 Weight and Balance Charts:

The LOADING GRAPH – Chart No. 9, page 14 may be used when determining the balance of the aeroplane. Locate the weight (in Kg) of a particular load item on the vertical scale and move horizontally to the line representing that item. From that point drop vertically to read off the Moment index.

The CENTRE OF GRAVITY ENVELOPE diagram – Chart No. 10, page 15 is used to indicate whether or not the aeroplane is correctly loaded. Locate the Cross Weight of the loaded aeroplane (in Kg) on the vertical line representing the Total Moment Index of the loaded aeroplane. If the point of intersection, which represents the centre of gravity, falls in the shaded area, the aeroplane is correctly loaded

Note: The centre of gravity must lie in the shaded area at all stages of flight.

The Index numbers used on both charts represents the moment (in Kg mm) divided by 10,000.

5.4 Loading Data:

The location of seats and cargo or baggage compartments with corresponding loading arms (expressed as millimetres aft of datum) and the maximum permissible loads are shown in the following table –

Location	Maximum Permissible Load	Loading Arm (mm aft of datum)
Seating:		
Row 1 (Seats 1 & 2)	Pilot & 1 pass.	2290
Row 2 (Seats 3 & 4)	2 pass.	3300
Row 3 (Seats 5 & 6)	2 pass.	4300
Cargo & Baggage Compartments:		
Forward compartment	55 Kg	500
Left wing compartment	55 Kg	3550
Right wing compartment	55 Kg	3550
rear compartment	155 Kg	5000
Floor loading intensity (all	450 Kg/m²	
compartments)		
Fuel:		
Left main tank	50 gal	1780
Right main tank	50 gal	1780
left auxiliary tank	40 gal	2800
Right auxiliary tank	40 gal	2800

Note: All passenger seats weigh 5 Kg each and may be removed to permit the carriage of additional cargo or baggage in the cabin

The maximum permissible load in the area otherwise occupied by a passenger seat is 82 Kg.

If a passenger seat is removed, adjustment of the empty weight and empty moment will be necessary.

SECTION 6 PERFORMANCE TABLES & GRAPHS:

6.1 Maximum Climb Performance Tables:

Chart No. 1 gives Maximum Climb Performance 9TWO ENGINES) and Chart No. 2 the Maximum climb Performance (ONE ENGINE) when using Maximum Continuous Power at various pressure heights at standard temperatures.

To obtain the climb performance at a particular level, enter the table with the pressure height and gross weight of the aeroplane and extract the rate of climb and TAS.

If the temperature deviation from ISA is more than 5°C, density height should be used instead of pressure height.

CHART No. 1

MAXIMUM CLIMB PERFORMANCE (TWO ENGINES)

Pressure	GROSS WEIGHT										
Height	295	0 Kg	250	0 Kg	2000 Kg						
	TAS	R.o.C	TAS	R.o.C	TAS	R.o.C					
feet	Kt	fpm	Kt	fpm	Kt	fpm					
ZERO	101	1600	92	2250	82	2950					
5,000	109	1500	99	2100	88	2800					
10,000	118	1400	107	1950	95	2650					
15,000	128	1300	116	1800	104	2500					
20,000	139	800	126	1250	112	1800					

CHART No. 2

MAXIMUM CLIMB PERFORMANCE (ONE ENGINES)

Pressure	GROSS WEIGHT										
Height	2950	0 Kg	250	0 Kg	2000 Kg						
	TAS R.o.C		TAS	R.o.C	TAS	R.o.C					
feet	Kt	fpm	Kt	fpm	Kt	fpm					
ZERO	105	280	97	525	92	780					
5,000	112	200	103	450	98	700					
10,000	120	100	111	360	106	625					
15,000	129	20	119	270	115	530					

6.2 Cruise-Climb Performance Graph:

Chart No. 3 (page 9) shows the performance of the aeroplane when climbing with 75% maximum continuous power at varying weights and atmospheric conditions.

Entry arguments are -

- Gross weight at start of climb.
- Temperature and pressure height or start of climb.
- Temperature and pressure height at top of climb.

6.3 Cruise-Descent Performance Graph:

Chart No. 4 (page 9) shows the performance of the aeroplane during a normal enroute descent.

GSM-AUS-CPL.032 12 of 19 Version: 1.0 © FTA 2005 Date: Jan 13

AUS OPERATIONS, FLIGHT PLANNING AND PERFORMANCE

6.4 CHART No. 5 CRUISE PERFORMANCE (TWO ENGINES)

This chart tabulates the TAS to be expected when flying at various gross weights using different percentages of maximum continuous power at various pressure heights and temperatures.

			GROSS WEIGHT													
Press	Tem	2950 Kg						2500 Kg					2000 Kg			
Ht	р	75	65	55	45	35	75	65	55	45	35	75	65	55	45	35
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
SL		17	16	15	14	11	18	16	15	14	11	18	17	16	14	12
5,000		7	4	6	2	6	0	8	9	5	8	4	1	1	9	0
10,00		18	17	16	14	11	18	17	16	14	11	19	17	16	15	12
0		5	2	0	5	6	8	2	3	7	9	2	8	6	1	1
15,00	ISA	19	17	16	14	11	19	18	16	15	11	20	18	17	15	12
0	-20°	3	9	5	7	7	6	2	8	0	9	1	5	1	3	2
20,00		20	18	16	14	11	20	18	17	15	11	20	19	17	15	12
0		1	5	9	9	6	4	9	3	2	7	9	3	7	5	0
		20	19	17	15	-	21	19	17	15	-	21	20	18	15	-
		9	3	4	0		3	7	8	4		7	1	2	7	
SL		18	16	15	14	11	18	17	16	14	11	18	17	16	14	12
5,000		1	8	8	4	6	4	1	1	6	8	8	4	4	9	1
10,00		18	17	16	14	11	19	17	16	14	11	19	18	16	15	12
0		9	5	2	6	7	2	8	5	8	9	8	1	9	2	2
15,00	ISA	19	18	16	14	11	20	18	17	15	11	20	18	17	15	12
0	10/1	7	2	6	8	7	0	5	0	1	9	5	9	4	4	2
20,00		20	18	17	15	11	20	19	17	15	11	21	19	18	15	11
0		5	9	1	0	4	8	2	6	4	6	3	6	4	6	8
		21	19	17	15	-	21	20	18	15	-	22	20	18	15	-
		3	8	7	1		7	1	0	4		1	8	9	7	
SL		18	17	16	14	11	18	17	16	14	11	19	17	16	15	12
5,000		5	1	0	5	6	7	4	3	7	9	1	7	6	1	1
10,00		19	17	16	14	11	19	18	16	15	11	20	18	17	15	12
0		2	8	6	7	7	5	1	6	0	9	0	5	1	3	2
15,00	ISA	20	18	17	14	11	20	18	17	15	11	20	19	17	15	12
0	+20°	0	5	0	9	6	4	8	3	2	8	8	2	5	5	1
20,00		20	19	17	15	-	21	19	17	15	-	21	20	18	15	-
0		9	3	3	1	-	2	6	8	4	-	7	0	2	7	-
		21	20	17	14		22	20	18	15		22	20	18	15	
		6	1	9	9		1	5	3	2		5	9	6	5	

6.5 CRUISE PERFORMANCE (SINGLE ENGINES)

For single engine cruise, the aeroplane can be expected to cruise at 5000 feet with a TAS of 110 Kt and a fuel flow of 25 GPH..

6.6 Engine Performance Chart:

This table represents the manifold pressure and RPM required to give a particular percentage of maximum continuous power at various pressure heights in the standard atmosphere with either rich or lean mixture. The <u>fuel flow per engine</u> for rich or lean mixture is shown in the right hand columns.

The manifold pressure required to obtain the desired power is found by reading down the column appropriate to the RPM and mixture to be used to the pressure height and the required percentage of maximum continuous power.

CHART No. 6 ZULU Mk XV ENGINE PERFORMANCE CHART

PRESSURE	POWER	3200	3000 2800 RPM		PM	2600 RPM		2400RPM		2200 RPM		POWER	FUEL	FLOW
HEIGHT	WER %	Rich	Rich	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	%	Rich	Lean
Feet	70	"Hg	"Hg	"Hg	"Hg	"Hg	"Hg	"Hg	"Hg	"Hg	"Hg		GPH	GPH
	100	34.5	-	-	-	-	-	-	-	-	-	100	31.7	-
	75	26.5	26.9	27.8	28.7	-	-	-	-	-	-	75	19.7	16.3
Zero	65	23.1	23.5	24.4	24.9	25.9	26.4	28.4	28.9	-	-	65	16.9	14.0
2610	55	19.9	20.3	21.2	21.5	22.7	23.0	25.2	25.5	-	-	55	14.1	11.8
	45	-	17.4	18.3	18.4	19.8	19.9	22.3	22.4	27.0	27.1	45	11.8	10.2
	35	-	-	-	-	16.4	16.5	18.9	19.0	23.6	23.7	35	9.3	8.6
	100	34.5	-	-	-	-	-	-	-	-	-	100	31.7	-
	75	26.0	26.4	27.3	28.2	-	-	-	-	-	-	75	19.7	16.3
5,000	65	22.6	23.0	23.9	24.4	25.4	25.9	27.9	28.4	-	-	65	16.9	14.0
5,000	55	19.4	19.8	20.7	21.0	22.2	22.5	24.7	25.0	-	-	55	14.1	11.8
	45	-	-	17.8	17.9	19.3	19.4	21.8	21.9	26.5	26.6	45	11.8	10.2
	35	-	-	-	-	15.9	16.0	18.4	18.5	23.1	23.2	35	9.3	8.6
	100	34.5	-	-	-	-	-	-	-	-	-	100	31.7	-
	75	25.5	25.9	26.8	27.7	-	-	-	-	-	-	75	19.7	16.3
10.000	65	22.1	22.5	23.4	23.9	24.9	25.4	27.4	27.9	-	-	65	16.9	14.0
10,000	55	18.9	19.3	20.2	20.5	21.7	22.0	24.2	24.5	-	-	55	14.1	11.8
	45	-	-	-	-	18.8	18.9	21.3	21.4	26.0	26.1	45	11.8	10.2
	35	-	-	-	-	15.4	15.5	17.9	18.0	22.6	22.7	35	9.3	8.6
	100	34.5	-	-	-	-	-	-	-	-	-	100	31.7	-
	75	25.0	25.4	26.3	27.2	27.8	28.7	-	-	-	-	75	19.7	16.3
45.000	65	21.6	22.1	22.9	23.4	24.4	24.9	26.9	27.4	-	-	65	16.9	14.0
15,000	55	18.4	18.8	19.2	20.0	21.2	21.5	23.7	24.0	-	-	55	14.1	11.8
	45	-	-	-	-	18.3	18.4	20.9	21.0	25.5	25.6	45	11.8	10.2
	35	-	-	-	-	-	-	17.4	17.5	22.1	22.2	35	9.3	8.6
	86.7	29.0	-	-	-	-	-	-	-	-	-	86.7	23.3	-
	75	24.6	25.0	-	-	-	-	-	-	-	-	75	19.7	-
20,000	65	21.2	21.7	22.5	23.0	-	-	-	-	_	-	65	16.9	14.0
	55	18.0	18.4	19.3	19.6	20.8	21.1	23.3	23.6	-	-	55	14.1	11.8
	45	-	-	-	-	17.9	18.0	20.5	20.6	-	-	45	11.8	10.2

Note: - The figures enclosed within the heavy lines in this chart are the settings recommended for cruise operation.

- Leaning is not permitted above 75% maximum continuous power.

CHART No. 7 TAKE-OFF WEIGHT CHART

CHART No. 8 LANDING WEIGHT

