What is claimed is:

A multi-layer structure for a semiconductor device, comprising:
 a silicate interface layer; and
 a high-k dielectric layer overlying the silicate interface layer.

5

- 2. The multi-layer structure of claim 1, wherein the silicate interface layer has a dielectric constant greater than that of silicon nitride.
- 3. The multi-layer structure of claim 1, wherein the high-k dielectric layer has a dielectric constant greater than that of the silicate interface layer.
 - 4. The multi-layer structure of claim 1, wherein the silicate interface layer is formed of a metal silicate material $(M_{1-x}Si_xO_2)$.
- 15 5. The multi-layer structure of claim 4, wherein x is approximately 0.30-0.99.
 - 6. The multi-layer structure of claim 4, wherein the metal "M" is selected from the group consisting of hafnium (Hf), zirconium (Zr), tantalum (Ta), titanium (Ti) and aluminum (Al).

20

- 7. The multi-layer structure of claim 1, wherein the silicate interface layer is formed by an ALD technique, a MOCVD technique or a reactive sputtering technique.
- 8. The multi-layer structure of claim 1, wherein the silicate interface layer is formed to a thickness of approximately 5-10 angstroms.
 - 9. The multi-layer structure of claim 1, wherein the high-k dielectric layer is a metal oxide layer.

30

10. The multi-layer structure of claim 9, wherein the metal oxide layer is an HfO₂ layer, a ZrO₂ layer, a Ta₂O₃ layer, an Al₂O₃ layer, a TiO₂ layer, an Y₂O₃ layer, or a BST layer, a PZT layer, or combinations thereof.

10

- 11. The multi-layer structure of claim 9, wherein the metal oxide layer is formed using an ALD technique, a MOCVD technique or a reactive sputtering technique.
- 12. The multi-layer structure of claim 9, wherein the silicate interface layer is
 5 formed of a metal silicate material, and wherein the metal of the silicate interface layer is the same as the metal of the metal oxide layer.
 - 13. The multi-layer structure of claim 1, wherein the high-k dielectric layer comprises one or more ordered pairs of first and second layers.

14. The multi-layer structure of claim 13, wherein the first layer is formed of HfO₂, Ta₂O₃, Y₂O₃ or ZrO₂ and the second layer is formed of Al₂O₃.

- 15. The multi-layer structure of claim 13, wherein the first layer has a first fixed charge and the second layer has a second fixed charge opposite that of the first fixed charge.
 - 16. The multi-layer structure of claim 13, wherein the thickness of the second layer is approximately one half the thickness of the first layer.
 - 17. The multi-layer structure of claim 16, wherein the first layer is formed to a thickness of approximately 10 angstroms and the second layer is formed to a thickness of approximately 5 angstroms.
- 18. The multi-layer structure of claim 13, wherein a total thickness of the second layer is not more than approximately one third of the total thickness of the high-k dielectric layer.
 - 19. The multi-layer structure of claim 13, wherein the upper most layer is Al_2O_3 .

30

- 20. A multi-layer structure for a semiconductor device, comprising: a silicate interface layer having a dielectric constant greater than that of silicon nitride; and
 - a high-k dielectric layer overlying the silicate interface layer,
- wherein the high-k dielectric layer comprises one or more ordered pairs of first and second layers, and wherein the high-k dielectric layer has a dielectric constant greater than that of the silicate interface layer.
- 21. The multi-layer structure of claim 20, wherein the silicate interface layer is formed of a metal silicate material (M_{1-x}Si_xO₂), the metal "M" being selected from the group consisting of hafnium (Hf), zirconium (Zr), tantalum (Ta), titanium (Ti) and aluminum (Al).
- 22. The multi-layer structure of claim 20, wherein the first layer is formed of HfO₂, Ta₂O₃, Y₂O₃ or ZrO₂ and the second layer is formed of Al₂O₃.
 - 23. The multi-layer structure of claim 20, wherein the thickness of the second layer is approximately one half the thickness of the first layer.
- 24. The multi-layer structure of claim 20, wherein a total thickness of the second layer is not more than approximately one third of the total thickness of the high-k dielectric layer.
 - 25. The multi-layer structure of claim 20, wherein the upper most layer is Al₂O₃.
 - 26. A method of forming a multi-layer structure for a semiconductor device, comprising:

forming a silicate interface layer; and forming a high-k dielectric layer overlying the silicate interface layer.

30

20

27. The method of claim 26, wherein said forming the high-k dielectric layer comprises:

forming a first layer having a first predefined charge;

forming a second layer overlying the first layer, the second layer having a second predefined charge that is opposite that of the first layer.

- 28. The method of claim 27, wherein the first predefined charge is a negative fixed charge and the second predefined charge is a positive fixed charge.
- 10 29. The method of claim 27, which further comprises forming one or more first and second layers.
 - 30. The method of claim 29, wherein the upper most layer is Al₂O₃.
- 15 31. The method of claim 26, wherein said forming the high-k dielectric layer comprises:

forming a first layer having a first controlled thickness; and forming a second layer overlying the first layer, the second layer having a second controlled thickness, wherein the first and second controlled thicknesses are in the range of approximately 2-60 angstroms.

- 32. The method of claim 31, wherein a total thickness of the second layer is not more than approximately one third of the total thickness of the high-k dielectric layer.
- 25 33. The method of claim 31, wherein the second layer is approximately one half the thickness of the first layer.
 - 34. The method of claim 31, wherein the first layer is formed of HfO_2 , Ta_2O_3 , Y_2O_3 or ZrO_2 and the second layer is formed of Al_2O_3 .
 - 35. The method of claim 26, wherein the silicate interface layer is formed of a metal silicate material $(M_{1-x}Si_xO_2)$.

15

- 36. The method of claim 35, wherein x is approximately 0.30-0.99, and wherein the metal "M" is selected from the group consisting of hafnium (Hf), zirconium (Zr), tantalum (Ta), titanium (Ti) and aluminum (Al).
- 5 37. The method of claim 26, wherein said forming the silicate interface layer is performed by an ALD technique, a MOCVD technique or a reactive sputtering technique.
- 38. The method of claim 26, wherein the silicate interface layer is formed to a thickness of approximately 5-10 angstroms.
 - 39. The method of claim 26, wherein the high-k dielectric layer is a metal oxide layer selected from the group consisting of an HfO₂ layer, a ZrO₂ layer, a Ta₂O₃ layer, an Al₂O₃ layer, a TiO₂ layer, an Y₂O₃ layer, a BST layer, a PZT layer, and combinations thereof.
 - 40. The method of claim 39, wherein the metal oxide layer is formed using an ALD technique, a MOCVD technique or a reactive sputtering technique.
- 41. The method of claim 39, wherein the silicate interface layer is formed of a metal silicate material, and wherein the metal of the silicate interface layer is the same as the metal of the metal oxide layer.
 - 42. A transistor comprising:
- a substrate;
 - a silicate interface layer formed over the substrate; and
 - a high-k dielectric layer formed over the silicate interface layer;
 - a gate; and
 - a source/drain region formed adjacent the gate.
 - 43. The transistor of claim 42, wherein an upper most portion of the high-k dielectric layer is Al_2O_3 , and wherein said gate comprises poly-silicon.

- 44. A non-volatile memory, comprising:
 - a substrate;
 - a floating gate overlying the substrate;
 - a silicate interface layer formed over the floating gate;
- a high-k dielectric layer formed over the silicate interface layer; and
 - a control gate overlying the high-k dielectric layer.
 - 45. A capacitor for a semiconductor device, comprising;
 - a lower electrode;
- a silicate interface layer formed over the lower electrode;
 - a high-k dielectric layer formed over the silicate interface layer; and
 - an upper electrode.