

»Лекционен курс

»Интелигентни системи

Предпоставки за възникване на дисциплината

- » Постижения преди възникване на ИИ, имащи отношение към дисциплината
 - > Философия
 - + Интелигентност може да бъде постигната чрез механични изчисление (напр. Аристотел)
 - > Чърч-Тюринг тезис (30-те години на миналия век)
 - + Всяка изчислима функция е изчислима от машина на Тюринг
 - > Реални компютри (40-те години на миналия век)
 - + Z-3, ABC/ENIAC

Исторически преглед

- » ИИ е млада научна дисциплина
 - > Историята и развитието й се характеризират с последователни възходи и спадове
- Условно историята на дисциплината можем да разделим на следните етапи:
 - > Първи етап: възникване и първи успехи
 - > Втори етап: системи, използващи знания
 - > Трети етап: модерен ИИ

Възникване и първи успехи

- » Възникване на ИИ: 1956 год.
 - > Работна среща (двумесечна, 10 участника) в Dartmouth College
 - > John McCarthy, Marvin Minsky
 - > Цел: общи принципи
- » Всеки аспект на обучението или всяка друга отличителна черта на интелигентността да може да бъде толкова точно описана, че да може да се конструира машина, която да ги симулира
 - > Самюел (1952): програми, които играят шах на аматьорско ниво
 - > Нюел & Симон: решаване на математически проблеми, използвайки търсене + евристики
 - + General Problem Solver (GPS)

Завладяващ оптимизъм

- » В следващите двадесет години машините ще бъде в състояние да правят всяко нещо, което могат хората (Herbert Simon)
- » В рамките на десет години проблемите на изкуствения интелект ще бъдат решени в значителна степен (Marvin Minsky)
- » Виждам времето, когато ще сме пристрастни към роботите, както сега към домашните си любимци (Claude Shannon)

Незадоволителни резултати

- » Пример: машинен превод
 - > Като резултат: 1966 год. правителството на САЩ спира финансирането на изследванията за машинен превод

The spirit is willing but the flesh is weak (Духът е готов, но плътта е слаба)

(Руски)

The vodka is good but the meat is rotten (Водка е добра, но месото е изгнило)

Обобщение (първи период)

» Приноси:

- > Лисп, garbage collection, деление на времето (J. McCarty)
- > Ключова парадигма: разделяне на моделирането (декларативна) от алгоритмите (процедурна)
 - + Програмата има вътрешен модел на външния свят
 - + Търсене на цел, използвайки модела

» Проблеми

- > Ограничена изчислителна мощ
 - + Пространството на търсене нараства експоненциално, значително надхвърляйки възможностите на хардуера
- > Ограничена информация
 - + Сложността на проблемите в ИИ (брой на думи, предмети, концепции в света)

Системи, използващи знания

- » Възникват и силно развитие през 70-те и 80-те години на миналия век
 - > Движещ мотив (девиз): "знанието е сила"
- » Експертни системи: извличане на специфични знания за определена приложна област знания от експерти под формата на правила
 - > if [предпоставки] then [заключение]
- » Примери:
 - > DENDRAL : прави заключения за молекулярната структура от мас-спектрометрия
 - > XCON: преобразуване поръчки от клиенти в спецификации за части
 - + Спестява на DEC \$ 40 милиона годишно от 1986

Обобщение (втори период)

» Приноси:

- > Първи реални приложения, оказващи влияние върху индустрията
- > Знанията помагат за ограничаване на експоненциалното нарастване (експоненциален взрив)

» Проблеми:

- > Знанията не са детерминистични правила, трябва да се моделира несигурността
- > Изисква се значителни ръчно усилие за създаване на правилата
 - + Трудно за поддържане

Модерен ИИ

- » От 90-те години на миналия век до наши дни
- » По-добри модели
 - > Pearl (1988): насърчава използване на вероятности
 - + Бейсови мрежи за моделиране на несигурности
 - > Разпознаване на говор чрез Скрит Модел на Марков
 - + Статистически модел: системата се приема, че е Марков процес с неизвестни параметри. Целта е да се определи скритият параметър от изследваните параметри. Извлечените параметри по модела могат после да бъдат използвани за по-нататъшни анализи. Всеки определен (наблюдаван) параметър е функция на вероятностите на дадено състояние.

» Големи данни (big data)

- > Трилиони думи на английски език, милиарди изображения в уеб
- > Настройка на милиона параметри, чрез използване на статистически принципи, напр., максимална вероятност
- > Подход: използване на обучение за решаване на проблема с липсата на информация

Важни събития

» 1997

> IBM Deep Blue побеждава световния шампион по шах Гари Каспаров

» 2005

> Станфорд Стенли изминава 132 км в пустинята, за да спечели DARPA Grand Challenge

» 2011

- > IBM's Watson (суперкомпютър) побеждава хора в Jeopardy
 - + Американско телевизионно шоу-викторина любопитни факти в широк спектър от теми, включително историята, езика, литературата, изкуствата, науките, популярната култура, география

Роботика

- Възприятия: Сензорни измервания (камери, микрофони, лазерни далекомери, сонар, GPS)
- Действия: преместване, обръщане, хващане, ...

Бедствени райони: След земетресения, роботи търсят оцелели и разрушения на структурата

Robocup

Роботика

Google Car: Автономни автомобили (автомобил без волан и педали, с автоматично управление) - проектът се ръководи от Sebastian Thrun, директор на Лабораторията за изкуствен интелект в Станфорд и съизобретател на Google Street View. Екипът на Thrun в Станфорд създадоха роботизирано превозно средство Стенли, което спечели 2005 DARPA Grand Challenge

Хотел с персонал изцяло от роботи ще отвори врати това лято в Нагасаки, Япония ("Hen-na Hotel" - "странен хотел"). Роботите ще посрещат гостите, ще отнасят багажа им, ще почистват стаите и ще отговарят за рецепцията. Стаите разполагат със система за разпознаване на лица, така че гостите няма да използват ключ.

Роботика

Марсоходът "Кюриосити" на НАСА достигна основната си цел - планината Шарп, към която се придвижва от година и половина.

Учените се надяват там да открият информация дали на планетата, която прилича най-много на Земята в Слънчевата система, е имало условия за микробен живот.

Селфи на марсохода "Кюриосити"

Интернет на нещата

- Целта е да се създаде "един по-добър за хората свят", където предмети около нас знаят какво ни харесва, какво искаме и от какво се нуждаем и предприемат съответни действия без изрични инструкции
- Интернет на нещата позволява на свързване на хора и предмети: по всяко време, навсякъде, с всичко и всеки, използвайки някаква компютърна мрежа и услуга
- Приложение:
 - ✓ Интелигентни градове, околни среди, води, измервания
 - ✓ Сигурност и извънредни ситуации
 - ✓ Електронно здравеопазване
 - ✓ Търговия на дребно
 - ✓ Логистика
 - ✓ Индустриален контрол
 - ✓ Интелигентно селско стопанство и животновъдството
 - ✓ Автоматизация на бита и дома

Семантичен уеб

Следващо поколение уеб, което доставя

- Машинно-обработваеми данни да се намерят начини да се направят данните по-достъпни и по-обработваеми от компютрите
- Решаване на проблема с интеграция на приложения
- Инфраструктурата на следващата IT революция

Персонални асистенти

- Използваме приложение, наречено ПА (персонален асистент)
- ПА може да бъде обучен така, че да знае нашите интереси и да е в състояние да ни помага в нашата ежедневна работа
- По време на обучението си ПА имплицитно събира информация за нашите интереси

Обработка на естествени езици

- » Филтриране на спам
 - > 80-90% от всички съобщения са спам
- » Извличане на информация
 - > Класифициране на уеб страници, базирано на значението на заявките
- » Машинен превод
 - > Google Translate поддържа 64 езика
- » Разпознаване на реч
 - > Персонални асистенти, като напр.
 - > Siri интелигентен личен асистент и навигатор на знание (Apple iOS); използва потребителски интерфейс на естествен език; отговаря на въпроси и прави препоръки, чрез делегиране на заявки към уеб услуги
 - > Google Now интелигентен личен асистент и навигатор на знание (Android); използва потребителски интерфейс на естествен език; отговаря на въпроси и прави препоръки, чрез делегиране на заявки към уеб услуги

Всекидневна интелигентност

Успешно използване наличните средства

- Природата функционира често с прости средства
- Swarm Intelligence

2018

2018: Време е за изкуствен интелект

автор: TechNews.bg дата: 20/01/2018 21:19 коментари: 0

Накъде върви развитието на AI технологията и какви промени ще настъпят в тази сфера...

Какво е ИИ?

Xopama

Рационалност

Мислене при хората

"Вълнуващо ново начинание, да накараме компютрите да мислят ... машини с разум в истинския смисъл на думата" [Haugeland, 1985]

"Автоматизиране на дейностите, които свързваме с мисленето при хората, като напр., решаване на проблеми, вземане на решение, учене, ..." [Bellman, 1978]

Рационално мислене

"Изследване на ментални способности посредством програмни модели" [Charniak & McDermott, 1985]

"Изследване на такива математически формализми, които правят възможни възприятия, логически заключения и действия" [Winston, 1992]

Процеси на мислене, логика

Действие при хората

"Изкуството за създаване на машини, които ще изпълняват действия, които ако се изпълняват от хора изискват интелигентност" [Kurzweil, 1990]

"Изследване за създаване на компютри, които ще правят неща, които в момента хората правят по-добре" [Rich & Knight] 1991]

Рационално действие

"Компютърната интелигентност (КИ) е изследване за създаване на интелигентни агенти" [Poole et al., 1998]

"КИ ... занимава се с интелигентното поведение на изкуствени машини" [Nilsson, 1998]

Поведение

Мислене при хората

- » Как мислят хората? три възможности за търсене на отговор:
 - > Интроспекция анализ на собствените мисли, по време на тяхното възникване
 - > Психологични експерименти наблюдения върху хора, когато са в действие
 - > Томография на мозъка наблюдения на активния мозък
- » Когато е налична една достатъчно точна теория за разбирането, е възможно нейното представяне като компютърна програма
 - Когнитивната наука интердисциплинарна област, обединяваща компютърните модели на ИИ и експерименталните техники на психологията за конструиране на такава теория

Действие при хората

- » Тест на Тюринг (Alan Turing, 1950)
- » Компютър със следните възможности:
 - > Обработка на естествени езици
 - > Обработка на знания
 - > Автоматични логически заключения
 - > Машинно обучение
 - > Компютърна визия
 - > Роботи

Рационално мислене

- » Аристител един от първите, опитващи се да формализират мисленето
 - > Силогизми еталони за структурата на аргументите, които водят винаги до коректни заключения, когато са зададени коректни предпоставки
- » Логика наука за коректното мислене
 - > Класическа логика съждителна и предикатна логика
 - > Модерни логики модални, темпорални, ...

Рационално действие

- » Теория за създаване на рационални агенти
 - > Агент с поведение, което му позволява да постигне (очаквано) най-добрия резултат
 - > Ограничена рационалност
 - + Работа при ограничени ресурси (напр., време)
 - > Архитектури
 - > Околни среди
 - > Взаимодействие между агенти

Агенти

Агент

Агенти

Агенти

Обща дефиниция

- » Агент може да бъде:
 - > Човек
 - > Машина
 - > Софтуерен модул
 - > Нещо друго ... което действа (оперира)
- За софтуерните технологии тази дефиниция е много обща

Формализирана дефиниция

Компютърна система, която може да оперира автономно в някаква околна среда.

Бележки към дефиницията

- » В много среди, които са по-сложни (комплексни) агентите нямат пълен контрол върху тях
 - > В най-добрия случай само частичен контрол
 - > Така едно действие, извършено повторно при идентични обстоятелства може да има напълно различен ефект в частност може да няма желания ефект
- » В общност приемаме, че средите са недетерминирани

Бележки към дефиницията

- » Обикновено един агент има множество от оператори
 - > Те определят възможностите му за въздействие върху околната среда
 - Не всички оператори могат да се прилагат при всички ситуации
 - > Обикновено операторите са свързани с кореспондиращи предусловия, които определят възможните ситуации за тяхното прилагане
- » Ключов проблем
 - > Кой оператор трябва да бъде приложен за удовлетворяване на проектните цели?

Примери за агенти

- » Контролни системи
 - > Напр. термостат
- » Софтуерни демони
 - > Hanp. Mail client

Но... това интелигентни агенти ли са?

Интелигентен агент

- » Компютърна система, която може да оперира гъвкаво и автономно в някаква околна среда за постигане на набелязаните си цели
- » Под гъвкавост разбираме:
 - > Реактивност
 - > Проактивност
 - > Социалност

Автономност

- » Агентите оперират без директна интервенция на хора или други идентичности
- » Имат някакъв контрол върху:
 - > Действията си
 - > Вътрешните си състояния

Реактивност

- > Агентите възприемат околната си среда
- > Която може да бъде:
 - Физическия свят
 - Потребител чрез графичен потребителски интерфейс
 - Множество от други агенти
 - Интернет
 - Комбинация от всички тях
- » Поддържат непрекъсната връзка с околната среда
- » Реагират на промените, които настъпват в средата (във времето когато носят отговорност)

Проактивност

- » Агентите не действат само в отговор на тяхната среда
- » Те са способни да показват целево-направлявано поведение посредством поемане на инициатива
- В общия случай ние искаме агентите да правят неща за нас
- Проактивност: генериране и опитване да се достигнат цели
 - Направлявано не само от събития
 - Поемане на инициатива
 - Оценяване на удобни възможности
 - Поведение, направлявано от цели

Социални способности

- » Агентите взаимодействат с други агенти (възможно също с хора) посредством някакъв език за комуникация между агенти и евентуално коопериране
- » В една мулти-агентна околна среда не можем да се опитваме да достигаме цели, без да се съобразяваме с другите агенти
- » Някои цели са достижими само посредством коопериране между агентите
- » Това важи и за много други компютърни среди
 - > напр. Интернет

Характеристика на агентите

Слаба дефиниция за агент

- » **Автономност**
- » Проактивност (целевоориентирана)
- » Реактивност
- » Социални способности (комуникативност)

Строга дефиниция за агент

Слаба дефиниция +

- Мобилност
- Правдивост
- Доброжелателност
- Рационалност

Агенти като съзнателни системи

- » Когато се обясняват човешките дейности често се правят заявления като следното:
 - > Мария взема чадъра си, понеже тя вярва, че ще вали
 - > Георги работи усилено, понеже иска да защити дипломната си работа
- » Тези заявления използват народопсихология, чрез която човешкото поведение се предсказва и обяснява посредством ментални свойства като:
 - > Вяра
 - > Очакване
 - > Надежда
 - > Опасение и т.н.
- » В народо-психологията се наричат съзнателни понятия

Видове разсъждения

- » В много случаи е очевидно, че за да решим какво да правим, не използваме чисто логически разсъждения
- » Този модел е подходящ при разработване на рационално опериращи агенти
- » Съществено е да различаваме двата вида разсъждения:
 - > Теоретични разсъждения направлявани от "вярата" (beliefs)
 - > Практически разсъждения директно насочени към действия

Рационалност

- » Рационалността зависи от различни неща, като напр. следните:
 - > Оценка на постижението, която дефинира критерия за успех
 - > Предварителни знания за околната среда на агента
 - > Действията, които може да извърши агента
 - > Последователност на досегашните възприятия на агента
- » Дефиниция за рационален агент:
 - > За всяка възможна последователност от възприятия избере действие, от което се очаква да максимира оценката за постижение, при което се вземат предвид неговата последователност от възприятия и предварителните му знания

Практически разсъждения

- » Практически модел за вземане на решения
 - > Разсъждения, насочени към действия
 - > Процес на изчисляване какво да се прави
 - > Въпрос на претегляне на конфликтни съображения за и против конкуриращи се опции, където уместните съображения са представени като желания, оценки, грижа и вяра на агентите
- » Едно практическо разсъждение се състои от най-малко две различни дейности:
 - > Обмисляне (deliberation) решаване какво състояние на проблема искаме да постигнем
 - > Планиране (means-ends reasoning) решаване как искаме да това състояние

Практическите разсъждения като процес

- » Практическите разсъждения са изчислителни процеси
 - > Т.е., в агентите обмислянето и планирането се извършват с ограничени ресурси (оперативна памет, процесор, време, ...)

Ограничена рационалност

- » За ограничените ресурси можем да направим два съществени извода:
 - > Изчислението е полезен ресурс за агенти, разположени в среди с реално време
 - + Способността за добро опериране ще се определя (наймалко частично) чрез способността за ефективно използване на наличните изчислителни ресурси
 - + Т.е., един агент трябва да контролира разсъжденията си ефективно, ако иска да оперира добре.
 - > Агентите не могат да обмислят безкрайно
 - + Те трябва да прекратят обмислянето в някакъв момент, избирайки някакво състояние на проблема и ангажирайки се с постигане на това състояние
 - + Може да бъде продължено обмислянето за фиксиране на друго състояние

Тест: неочаквана среща

Рационално действие ли е пресичане на улицата за неочаквана среща с добра приятелка?

Тест: неочаквана среща

?

"Всезнайност (перфектност)" \equiv "Рационалност"?

Тест: неочаквана среща

? Действа ли агентът "рационално"? Избор на действие "оглеждане" преди "пресичане" води до

BDI архитектура

» На рационален агент

> B: Beliefs

> D: Desires

> I: Intentions

Michael Georgeff

PRS

PRS (Procedural Reasoning System): M. Georgeff, A. Lansky — пъровначално разработена в Stanford Research Institute

- Първата агента архитектура, реализираща BDI парадигмата до днес найтрайната архитектура
- Вградена в няколко от най-съществените мултиагентни приложения:
 - ✓ OASIS контрол на въздушния трафик
 - ✓ SWARMM симулационна система за военно въздушните сили на Австралия
 - ✓ SPOC управление на бизнес-процеси
- Явно представяне на структури данни, кореспондиращи с менталните състояния

PRS архитектура

Оценяване

- » Текуща оценка:
 - > По време на упражненията

Литература

http://www.izkustva.net/new books.html

Литература

- » S.Russell, P.Norvig, Artificial Intelligence. A Modern Approach, Prentice Hall
- » N.Nilssen, Artificial Intelligence
- » P.H. Wiston, Artificial Intelelligence, Addison-Wesley

