JEE PYQ 1

EE24Btech11041 - Mohit

1) Let $f(x) = 3\sqrt{x-2} + \sqrt{4-x}$ be a real fur maximum values of f , then $\alpha^2 + 2\beta^2$ is equ		inimum and the (April-2024)
a) 44b) 42	c) 24 d) 31	
2) Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $B = I + \operatorname{adj}(A) + (\operatorname{adj}(A) + \operatorname{adj}(A))$. Then, the sum of all the elements of the magnitude.	(A)) ² + ··· + $(adj(A))$ ¹⁰ . atrix B is:	(April-2024)
a) -110 b) -88	c) 22 d) -124	
3) Let three real numbers a, b, c be in arithme. If $a > 10$ and the arithmetic mean of a, b and c is		
a) 316 b) 120	c) 128 d) 312	
 4) Let a relation R on N×N be defined as: (x₁, y₁) R (x₂, y₂) if and only if x₁ ≤ x₂ or Consider the two statments: a) R is reflexive but not symmetric. b) R is transitive Then which one of the following is true? 	$y_1 \leq y_2$.	(April-2024)
a) Neither (1) nor (2) is correct.b) Only (2) is correct.	c) Only (1) is correct.d) Both (1) and (2) are correct.	
5) Given that the inverse trigonometric funct real numbers in $[-1, 1]$ such that $\cos^{-1}(x)$ $x^2 - y^2 + 2xy \sin \alpha$ is		
a) -1 b) 0	c) $\frac{1}{2}$ d) $-\frac{1}{2}$	
6) If the function		
$f(x) = \begin{cases} \frac{72^x - 9^x - 8^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0\\ a \log 2 \log 3, & x = 0 \end{cases}$ is continious at $x = 0$, then the value of a		
is continious at $x = 0$, then the value of a	² is equal to	(April-2024)

a) 746b) 968	c) 1250 d) 1152	
circle C at the points P and Q	$\sqrt{10}$ units and centre at the origin. Let the line Q . Let MN be a chord of C of length 2 unit and e chords PQ and the chords MN is	
a) $2 - \sqrt{3}$ b) $\sqrt{2} + 1$	c) $\sqrt{2}-1$ d) $3-\sqrt{2}$	
8) If the mean of the following J	probability distribution of a radian variable X:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
is $\frac{46}{9}$, then the variance of the (April-2024)	distribution is	
a) $\frac{566}{81}$ b) $\frac{173}{27}$	c) $\frac{581}{81}$ d) $\frac{151}{81}$	
9) The area (in sq. units) of the S={ $\mathbf{z} \in \mathbb{C} : z-1 \le 2 ; (z+\overline{z})$	=	(April-2024)
a) $\frac{7\pi}{3}$ b) $\frac{7\pi}{4}$	c) $\frac{17\pi}{8}$ d) $\frac{3\pi}{2}$	
10) Let $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} + 4\hat{j} - \hat{k}$ If d is the unit vector in the dir	$-5\hat{k}$, and $\mathbf{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$. rection of $\mathbf{b} + \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is	equal to (April-2024)
a) 3 b) 6	c) 11 d) 9	
11) Let P be the point of interse shortest distance of P from the a) $\frac{\sqrt{14}}{7}$ b) $\frac{6\sqrt{14}}{7}$ c) $\frac{5\sqrt{14}}{7}$ d) $\frac{3\sqrt{14}}{7}$	ection of the lines $\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1}$ and $\frac{x-3}{2} = \frac{y-3}{3}$ are line $4x = 2y = z$ is	$\frac{z^{-2}}{3} = \frac{z-3}{2}$. Then, the (April-2024)
12) Let $y = y(x)$ be the solution o $(x^2 + 4)^2 dy + (2x^3y + 8xy - 2)^2 dy$	of the differential equation $(2) dx = 0$. If $y(0) - 0$, Then $y(2)$ is equal to	(April-2024)
a) $\frac{\pi}{32}$ b) $\frac{\pi}{8}$	c) $\frac{\pi}{16}$ d) 2π	
	between the vectors $\mathbf{a} = \hat{i} + \lambda \hat{j} - 3\hat{k}$ and $\mathbf{b} = 3\hat{i} - \hat{k}$ are mutually perpendicular, then the value of (

a) 40	c) 50
b) 25	d) 20

- 14) The area (in sq. units) of the region described by $\{(x,y): y^2 \le 2x, \text{and } y \ge 4x 1 \}$ is (April-2024)
 - a) $\frac{11}{32}$ c) $\frac{9}{32}$ d) $\frac{8}{9}$
- 15) Let PQ be a chord of parabola $y^2 = 12x$ and the midpoint of PQ be at (4, 1). Then ,which of the following points lies on the line passing through the points P and Q? (April-2024)
 - a) (3, -3)b) $(\frac{3}{2}, -16)$ c) $(\frac{1}{2}, -20)$ d) (2, -9)