

Draft Genome Sequences of Various Bacterial Phyla Isolated from the International Space Station

Anna C. Simpson, a Camilla Urbaniak, a Nitin K. Singh, a Jason M. Wood, a Marilyne Debieu, b Niamh B. O'Hara, b.c Christopher E. Mason, de Kasthuri Venkateswarana

^aJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

ABSTRACT Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health.

he International Space Station (ISS) is currently the only long-term human habitat in space. Microgravity disrupts human immune function (1), and close monitoring of the ISS microbiome for increased pathogenicity is thus an ongoing critical task. Here, we report the draft genomes of 96 bacterial strains that were isolated from the ISS (Table 1). Eleven of the 14 species found are common members of the human microbiome, and most can act as opportunistic human pathogens.

Four species from the phylum Actinobacteria were isolated, from the genera Pseudoclavibacter, Kocuria, and Micrococcus, all of which are common in both environmental and human microbiomes (2-5). Kocuria palustris and Micrococcus luteus are opportunistic pathogens (5, 6). M. luteus can survive in a dormant state under extreme oligotrophic conditions (7) and has increased growth and increased biomass yield in microgravity (8).

Multiple coagulase-negative staphylococci (CoNS) were also isolated. CoNS are normal components of human skin flora (9) and are often resistant to antibiotics because of their ability to form biofilms (10); all CoNS in this report are documented opportunistic pathogens (11-15).

Three species from the phylum Proteobacteria were identified. Acinetobacter pittii is a less common nosocomial pathogen that causes pneumonia and meningitis in intensive care patients (16), Pseudomonas fulva is a commensal plant endophyte (17) that can also infect immunocompromised patients (18, 19), and Pseudomonas granadensis is a recently discovered soil bacterium (20).

Two other species in this report that are not associated with the human microbiome are Cytobacillus horneckiae, a Gram-positive UV-resistant endospore-former that was isolated from a clean room at the Kennedy Space Center (21), and Methylobacterium organophilum, a facultative methylotroph (22).

All strains reported here were collected aboard the ISS over the course of five flight missions between June 2017 and December 2018 (Table 1). Premoistened polyester wipes were used to collect samples from eight predetermined surfaces during each flight (see Table 1 for locations). After transport to Earth, the wipes were agitated in sterile phosphate-buffered saline, and the buffer was concentrated with an InnovaPrep CP-150 concentrator. Concentrates were plated onto Reasoner's 2A (R2A) agar (25°C

Citation Simpson AC, Urbaniak C, Singh NK, Wood JM, Debieu M, O'Hara NB, Mason CE, Venkateswaran K. 2021. Draft genome sequences of various bacterial phyla isolated from the International Space Station. Microbiol Resour Announc 10:e00214-21. https://doi.org/ 10.1128/MRA.00214-21.

Editor David Rasko, University of Maryland School of Medicine

This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

Address correspondence to Kasthuri Venkateswaran, kasthuri.j.venkateswaran@jpl.nasa.gov.

Received 4 March 2021 Accepted 31 March 2021 Published 29 April 2021

bBiotia, New York, New York, USA

Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA

^dDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA

eWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA

 TABLE 1
 Accession numbers, sampling locations, and assembly details for bacterial strains isolated from the ISS

(Continued on next page)	(Continuea											
18,493,586	61.24	581.78	228,990	5,220,269	51	R2A, 25	Cupola	88	SRR13530756	JAFDQN0000000000	Pseudomonas fulva	F8_15_6B
16,604,570	61.24	522.35	212,004	5,220,771	20	R2A, 25	Cupola	F8	SRR13530757	JAFDQM00000000000	Pseudomonas fulva	F8_15_5B
18,927,008	61.24	595.41	212,004	5,219,467	20	R2A, 25	Cupola	F8	SRR13530758	JAFDQL000000000	Pseudomonas fulva	F8_15_4B
20,350,344	61.24	640.19	279,059	5,222,637	45	BA, 37	Cupola	F8	SRR13530760	JAFDQK0000000000	Pseudomonas fulva	F8_15_3P
16,765,304	61.24	527.41	271,973	5,219,879	49	BA, 37	Cupola	F8	SRR13530761	JAFDQJ0000000000	Pseudomonas fulva	F8_15_2P
23,764,838	61.24	747.60	212,004	5,220,099	52	BA, 37	Cupola	84	SRR13530762	JAFDQI0000000000	Pseudomonas fulva	F8_1S_1P
33,024,422	64.46	2,314.39	1,246,034	2,211,951	∞	BA, 37	ARED	P6	SRR13530775	JAFDPW0000000000	Pseudoclavibacter alba	F6_3S_P_6
23,133,344	73.03	1,387.39	49,739	2,458,603	103	BA, 37	Lab 3 overhead	F6	SRR13530765	JAFDQF0000000000	Micrococcus luteus	F6_7S_P_2
17,930,076	73.05	1,075.33	28,867	2,461,417	89	BA, 37	ARED	F6	SRR13530777	JAFDPU00000000000	Micrococcus luteus	F6_3S_P_1A
11,321,680	72.6	679.00	7,231	2,325,956	534	BA, 37	Lab 3 overhead	F5	SRR13530787	JAFDPL0000000000	Micrococcus Iuteus	F5_7S_P3
14,913,960	72.84	894.45	17,792	2,435,899	274	BA, 37	Lab 3 overhead	F5	SRR13530788	JAFDPK0000000000	Micrococcus luteus	F5_7S_P2C
11,956,220	72.61	717.06	32,991	2,662,630	163	BA, 37	Lab 3 overhead	F5	SRR13530791	JAFDPH0000000000	Micrococcus Iuteus	F5_7S_P1B
13,865,910	72.54	831.59	17,191	2,643,054	289	BA, 37	Lab 3 overhead	F5	SRR13530704	JAFDPG0000000000	Micrococcus Iuteus	F5_7S_P1A
8,779,392	72.95	526.53	21,893	2,437,588	249	BA, 37	Lab 3 overhead	F5	SRR13530770	JAFDPA0000000000	Micrococcus Iuteus	F5_7S_P11A
11,589,510	72.51	695.07	18,596	2,634,797	309	BA, 37	Lab 3 overhead	F5	SRR13530781	JAFDOZ000000000	organophilum Micrococcus luteus	F5_7S_P10B
23,633,880	71	525.12	73,806	7,153,721	219	PDA, 25	Overhead 4	F4	SRR13530793	JAFDOX0000000000	Methylobacterium	F4_5S_F1_F
11,335,110	70.54	595.66	191,187	2,843,704	34	R2A, 25	Lab 3 overhead	F6	SRR13530767	JAFDQD0000000000	Kocuria palustris	F6_7S_B_1
24,029,822	70.54	1,262.76	271,218	2,844,162	31	BA, 37	Cupola	F6	SRR13530778	JAFDPT0000000000	Kocuria palustris	F6_1S_P_2
12,340,212	70.54	648.47	130,397	2,843,644	49	BA, 37	Lab 3 overhead	F5	SRR13530779	JAFDPS0000000000	Kocuria palustris	F5_7S_P8
17,076,656	70.54	897.37	271,586	2,844,494	32	BA, 37	Lab 3 overhead	F5	SRR13530780	JAFDPR00000000000	Kocuria palustris	F5_7S_P7
20,950,750	70.54	1,100.95	262,144	2,843,686	32	BA, 37	Lab 3 overhead	F5	SRR13530789	JAFDPJ0000000000	Kocuria palustris	F5 7S P2B
16 6 2 9 8 7 8	70.54	873.89	191,163	2,844,036	33 83	BA 37	lab 3 overhead	. T	SRR13530740	IAFDPIOOOOOOOO	Kocuria palustris	F5 75 P2A
16.418.232	68./8	1,412.10	245,667	2,803,211	77	BA, 3/ BA 37	AKEU I ah 3 ovorhoad	Р Р Г	SKK13530776 CPP13530748	JAFDPV0000000000	Kocuria Indica Kocuria paluetris	F6_3S_P_1B E5_7S_D11C
15,829,868	68.78	825.53	245,667	2,803,228	28	BA, 37	Lab 3 overhead	F5	SRR13530782	JAFDPQ0000000000	Kocuria indica	F5_7S_P6
											horneckiae	
14,551,974	37.7	397.27	329,620	5,324,298	44	BA, 37	WHC	F8	SRR13530754	JAFDQP000000000	Cytobacillus	F8_25_1P
24,000,022	38.75	939.87	150,211	3,997,028	71	BA, 37	Crew quarters	F8	SRR13530701	JAFDSL0000000000	Acinetobacter pittii	F8_8S_6P
26,555,916	38.74	1,039.96	150,204	3,994,221	70	BA, 37	Crew quarters	F8	SRR13530703	JAFDSJ0000000000	Acinetobacter pittii	F8_8S_2P
23,073,890	38.75	903.60	150,204	3,996,218	71	R2A, 25	Crew quarters	F8	SRR13530708	JAFDSF000000000	Acinetobacter pittii	F8_8S_12B
18,773,974	38.75	735.21	150,204	3,997,471	20	R2A, 25	Crew quarters	. 8 <u>.</u>	SRR13530709	JAFDSE000000000	Acinetobacter pittii	F8 85 11B
21.155.182	38.75	828.46	132,238	3.996.147	20	R2A. 25	Lab 3 overhead	2 8	SRR13530712	JAFDSB000000000	Acinetobacter pittii	F8 75 7B
28 484 452	38.75	1.115.49	150,212	3.996.573	67	RA 37	Lab 3 overhead	2 8	SRR13530713	IAFDSA000000000	Acinetobacter pittii	F8 75 6P
14 892,330	38.74	583.20	150,370	3,995,688	69	R2A, 23	Lab 3 overhead	0 8	SRR13530717 SRR13530716	IAFDRYDDDDDDDDD	Acinetobacter pittii	F8 75 5B
17,006,206	00.70	2013.02	150,209	2,005,600	60	72A, 23	Lab 3 overflead	0 0	CDD12520717	IAEDPY0000000000	Acinetobacter pittii	FO_/3_10D
18,321,172	38./5	717.48	150,203	3,996,521	69	K2A, 25	Lab 3 overhead	χ c	SRK13530725	JAF DRP0000000000	Acinetobacter pittii	F8_/5_1/B
19,625,886	38.75	768.58	150,378	3,996,494	29	R2A, 25	Lab 3 overhead	8 8	SRR13530727	JAFDRO00000000000	Acinetobacter pittii	F8_75_16B
17,354,664	38.74	679.63	132,238	3,995,502	70	R2A, 25	Lab 3 overhead	F8	SRR13530728	JAFDRN0000000000	Acinetobacter pittii	F8_7S_15B
23,208,680	38.75	908.88	150,379	3,996,346	89	R2A, 25	Lab 3 overhead	F8	SRR13530729	JAFDRM0000000000	Acinetobacter pittii	F8_7S_14B
18,785,602	38.75	735.67	150,376	3,995,968	71	R2A, 25	Lab 3 overhead	F8	SRR13530730	JAFDRL0000000000	Acinetobacter pittii	F8_7S_13B
23,547,006	38.75	922.13	150,281	3,996,855	99	R2A, 25	Lab 3 overhead	F8	SRR13530731	JAFDRK0000000000	Acinetobacter pittii	F8_7S_12B
reads	(%)	, ×	N_{50} (bp)	size (bp)	contigs	temp (${}^{\circ}C)^{b}$	Location ^a	no.	SRA accession no.	WGS accession no.	Bacterial species	Sample name
filtered	content	coverage		Genome	No. of	Medium,		Flight				
No. of	0+C	Depth of										

Volume 10 Issue 17 e00214-21 mra.asm.org **2**

Microbiology

Resource Advancements

\overline{c}	
ď)	
×	
=	
.⊨	
ᆂ	
\subseteq	
0	
ŭ	
_	
_	
ш	
_	
മ	
₹	
ᅩ	

										Depth of	0+C	No. of
				Flight		Medium,	No. of	Genome		coverage	content	filtered
Sample name	Bacterial species	WGS accession no.	SRA accession no.	no.	Location ^a	$temp\ (^{\circ}C)^{b}$	contigs	size (bp)	N ₅₀ (bp)	(x)	(%)	reads
F8_25_1B	Pseudomonas fulva	JAFDQ000000000000	SRR13530755	F8	WHC	R2A, 25	51	5,220,561	212,004	672.65	61.24	21,382,176
F8_25_2P	Pseudomonas fulva	JAFDQQ0000000000	SRR13530753	F8	WHC	BA, 37	51	5,220,953	212,004	504.33	61.24	16,031,608
F8_25_3P	Pseudomonas fulva	JAFDQR0000000000	SRR13530752	F8	WHC	BA, 37	51	5,219,857	266,892	746.18	61.24	23,719,826
F8_45_1B	Pseudomonas fulva	JAFDQS000000000	SRR13530751	F8	Dining table	R2A, 25	47	5,221,731	212,004	679.90	61.24	21,612,934
F8_5S_16B	Pseudomonas fulva	JAFDQT000000000	SRR13530750	F8	Overhead 4	R2A, 25	46	5,221,547	266,892	69.069	61.24	21,955,880
F8_6S_10B	Pseudomonas fulva	JAFDQU0000000000	SRR13530749	F8	PMM port 1	R2A, 25	43	5,222,049	276,378	692.43	61.24	22,011,252
F8_65_11B	Pseudomonas fulva	JAFDQV0000000000	SRR13530747	F8	PMM port 1	R2A, 25	45	5,221,141	272,009	763.66	61.24	24,275,474
F8_65_12B	Pseudomonas fulva	JAFDQW0000000000	SRR13530746	F8	PMM port 1	R2A, 25	47	5,220,530	212,004	553.11	61.24	17,582,460
F8_65_13B	Pseudomonas fulva	JAFDQX000000000	SRR13530745	F8	PMM port 1	R2A, 25	46	5,222,282	228,990	767.70	61.24	24,403,836
F8_65_14B	Pseudomonas fulva	JAFDQY000000000	SRR13530744	F8	PMM port 1	R2A, 25	165	5,214,942	53,221	58.63	61.25	1,863,658
F8_65_15B	Pseudomonas fulva	JAFDQZ000000000	SRR13530743	F8	PMM port 1	R2A, 25	45	5,221,469	212,004	644.90	61.24	20,500,186
F8_65_1P	Pseudomonas fulva	JAFDRA0000000000	SRR13530742	F8	PMM port 1	BA, 37	47	5,219,969	212,004	1,065.14	61.24	33,859,008
F8_65_3B	Pseudomonas fulva	JAFDRB0000000000	SRR13530741	F8	PMM port 1	R2A, 25	45	5,222,269	271,999	911.16	61.24	28,964,010
F8_65_3P	Pseudomonas fulva	JAFDRC000000000	SRR13530740	F8	PMM port 1	BA, 37	45	5,221,425	212,004	1,002.77	61.24	31,876,344
F8_6S_4B	Pseudomonas fulva	JAFDRD0000000000	SRR13530739	F8	PMM port 1	R2A, 25	47	5,220,883	212,004	587.52	61.24	18,676,250
F8_6S_5B	Pseudomonas fulva	JAFDRE0000000000	SRR13530738	F8	PMM port 1	R2A, 25	44	5,222,120	276,382	507.87	61.24	16,144,410
F8_6S_7B	Pseudomonas fulva	JAFDRF000000000	SRR13530736	F8	PMM port 1	R2A, 25	48	5,221,613	266,937	817.23	61.24	25,978,110
F8_65_8B	Pseudomonas fulva	JAFDRG0000000000	SRR13530735	F8	PMM port 1	R2A, 25	48	5,220,807	266,892	666.04	61.24	21,172,172
F8_6S_9B	Pseudomonas fulva	JAFDRH0000000000	SRR13530734	F8	PMM port 1	R2A, 25	47	5,221,098	266,892	857.16	61.24	27,247,530
F8_75_10B	Pseudomonas fulva	JAFDRI0000000000	SRR13530733	F8	Lab 3 overhead	R2A, 25	45	5,221,475	248,885	615.92	61.24	19,579,074
F8_75_11B	Pseudomonas fulva	JAFDRJ0000000000	SRR13530732	F8	Lab 3 overhead	R2A, 25	44	5,223,496	276,366	714.44	61.24	22,710,854
F8_75_1B	Pseudomonas fulva	JAFDRR000000000	SRR13530723	F8	Lab 3 overhead	R2A, 25	46	5,221,397	248,885	734.17	61.24	23,338,010
F8_75_1P	Pseudomonas fulva	JAFDRS0000000000	SRR13530722	F8	Lab 3 overhead	BA, 37	43	5,221,447	266,892	995.57	61.24	31,647,224
F8_75_2B	Pseudomonas fulva	JAFDRT0000000000	SRR13530721	F8	Lab 3 overhead	R2A, 25	46	5,221,320	248,885	792.01	61.24	25,176,512
F8_75_2P	Pseudomonas fulva	JAFDRU0000000000	SRR13530720	F8	Lab 3 overhead	BA, 37	48	5,221,068	211,998	726.98	61.24	23,109,428
F8_75_3B	Pseudomonas fulva	JAFDRV0000000000	SRR13530719	F8	Lab 3 overhead	R2A, 25	43	5,222,387	279,059	657.54	61.24	20,901,852
F8_75_3P	Pseudomonas fulva	JAFDRW00000000000	SRR13530718	F8	Lab 3 overhead	BA, 37	47	5,220,873	211,998	916.50	61.24	29,133,940
F8_75_6B	Pseudomonas fulva	JAFDRZ0000000000	SRR13530714	F8	Lab 3 overhead	R2A, 25	48	5,222,006	211,998	610.88	61.24	19,418,924
F8_75_8B	Pseudomonas fulva	JAFDSC000000000	SRR13530711	F8	Lab 3 overhead	R2A, 25	45	5,221,151	211,998	675.48	61.24	21,472,302
F8_75_9B	Pseudomonas fulva	JAFDSD0000000000	SRR13530710	F8	Lab 3 overhead	R2A, 25	43	5,221,838	248,885	817.24	61.24	25,978,556
F8_8S_13B	Pseudomonas fulva	JAFDSG0000000000	SRR13530707	8	Crew quarters	R2A, 25	48	5,220,177	276,366	396.21	61.24	12,594,644
F8_8S_1B	Pseudomonas fulva	JAFDSH00000000000	SRR13530706	F8	Crew quarters	R2A, 25	45	5,222,394	326,740	612.35	61.24	19,465,438
F8_8S_2B	Pseudomonas fulva	JAFDSI0000000000	SRR13530705	8	Crew quarters	R2A, 25	47	5,220,003	211,998	950.52	61.24	30,215,290
F8_8S_3B	Pseudomonas fulva	JAFDSK0000000000	SRR13530702	8	Crew quarters	R2A, 25	49	5,220,696	228,990	740.00	61.24	23,523,202
F8_8S_7P	Pseudomonas fulva	JAFDSM00000000000	SRR13530700	8	Crew quarters	BA, 37	48	5,221,111	212,004	877.89	61.24	27,906,690
F8_8S_8P	Pseudomonas fulva	JAFDSN0000000000	SRR13530699	F8	Crew quarters	BA, 37	20	5,221,099	212,004	1,153.25	61.24	36,659,886
F8_8S_9P	Pseudomonas fulva	JAFDSO0000000000	SRR13530698	F8	Crew quarters	BA, 37	44	5,216,552	212,004	725.04	61.25	23,047,660
F6_4S_P_1A	Pseudomonas	JAFDPY000000000	SRR13530773	F6	Dining table	BA, 37	32	6,075,880	499,949	543.50	60.13	21,534,088
	granadensis											
F6_4S_P_1B	Pseudomonas	JAFDPZ0000000000	SRR13530772	F6	Dining table	BA, 37	40	6,075,550	404,503	681.05	60.13	26,983,966
71 0 10	granaaensis Brandomonas		CDD13E30771	92	2400	70 70	96	100 170 3	111 755	37 363	60.13	9000000
70-43-7-	rseudomonus aranadensis	741704000000000	17705551446	2	Dilling table	DA, 37	00	0,074,001	411,733	320.73	60.13	20,010,320
F6_4S_P_2	Pseudomonas	JAFDQB0000000000	SRR13530769	F6	Dining table	BA, 37	36	6,075,345	409,624	849.89	60.13	33,673,758
	granadensis											

Volume 10 Issue 17 e00214-21

=
ě
.≧.
but
<u>Ů</u>
:
둤
₹

							,			Depth of	Q+C	No. of
				Flight		Medium,	No. of	Genome		coverage	content	filtered
Sample name	Sample name Bacterial species	WGS accession no. SRA a	SRA accession no.	no.	Location	temp ($^{\circ}$ C) $^{\rho}$	contigs	size (bp)	N_{50} (bp)	(×)	(%)	reads
F6_4S_P_5C	Pseudomonas aranadensis	JAFDQC000000000	SRR13530768	F6	Dining table	BA, 37	35	6,076,644	529,557	356.66	60.13	14,131,340
F6_7S_P_1	Staphylococcus capitis	JAFDQE000000000	SRR13530766	F6	Lab 3 overhead	BA, 37	23	2,502,093	1,289,580	716.11	32.83	11,624,446
F6_7S_P_4	Staphylococcus capitis	JAFDQG000000000	SRR13530764	F6	Lab 3 overhead	BA, 37	16	2,451,586	1,282,189	1,422.62	32.78	23,092,982
F5_7S_P12B	Staphylococcus	JAFDPE000000000	SRR13530726	F5	Lab 3 overhead	BA, 37	12	2,636,914	684,748	848.08	33.49	14,738,340
F6_3S_P_7	Staphylococcus epidermidis	JAFDPX0000000000	SRR13530774	F6	ARED	BA, 37	32	2,474,746	167,947	1,420.95	32.03	22,991,394
F5_7S_P10A	Staphylococcus	JAFDOY0000000000	SRR13530792	F5	Lab 3 overhead	BA, 37	27	2,660,926	711,481	814.84	32.99	14,003,764
F5_7S_P11B	Staphylococcus	JAFDPB0000000000	SRR13530759	F5	Lab 3 overhead	BA, 37	26	2,617,222	1,361,305	964.97	32.98	16,583,928
F5_7S_P12A	Staphylococcus	JAFDPD0000000000	SRR13530737	F5	Lab 3 overhead	BA, 37	27	2,663,655	707,529	1,202.62	32.99	20,668,282
F5_7S_P13	Staphylococcus	JAFDPF0000000000	SRR13530715	F5	Lab 3 overhead	BA, 37	24	2,662,145	711,479	1,165.31	32.99	20,027,056
F5_7S_P5A	saprophyticus Staphylococcus	JAFDPN0000000000	SRR13530785	F5	Lab 3 overhead	BA, 37	27	2,661,845	711,479	1,391.99	32.99	23,922,656
F5_7S_P5B	Staphylococcus	JAFDPO0000000000	SRR13530784	F5	Lab 3 overhead	BA, 37	27	2,661,424	711,481	76.686	32.99	17,013,600
F5_7S_P5C	Staphylococcus saprophyticus	JAFDPP0000000000	SRR13530783	F5	Lab 3 overhead	BA, 37	25	2,663,767	711,481	1,176.36	32.99	20,216,888
F6_7S_P_5	Staphylococcus	JAFDQH000000000 SRR13	SRR13530763	F6	Lab 3 overhead	BA, 37	23	2,664,922	711,479	1,502.54	32.99	25,822,574
F5_7S_P4	Staphylococcus warneri	JAFDPM000000000	SRR13530786	F5	Lab 3 overhead	BA, 37	26	2,558,875	420,301	813.75	32.46	13,169,560

 a WHC, waste and hygiene compartment, ARED, advanced resistive exercise device; PMM, permanent multipurpose module. b BA, blood agar.

for 7 days), potato dextrose agar (PDA) (25°C for 7 days), and blood agar (37°C for 2 days) using appropriate concentrations for microbial isolation. Isolated colonies were restreaked on tryptic soy agar (TSA) (25°C), and genomic DNA was extracted using the ZymoBIOMICS DNA MagBead kit according to the manufacturer's instructions. Libraries for whole-genome shotgun sequencing (WGS) were prepared using the Illumina Nextera DNA Flex library preparation kit as in previous studies (23) and were sequenced using the NovaSeq 6000 S4 flow cell paired-end 2 \times 150-bp platform.

Sequencing reads were quality filtered and trimmed, and adapter sequences were removed, using FastQC v0.11.7 (24) and fastp v0.20.0 (25). Scaffolds were assembled with SPAdes v3.11.1 (26). QUAST v5.0.2 (27) was used to determine assembly quality, including the number of contigs, genome size, and N_{50} value. Default settings were used for all steps except for fastp, which included 512 adapters screening. OrthoANlu (28) was used to confirm the species identity for each strain against the species type strain sequence, with a minimum average nucleotide identity of 95% for identification. Genomes were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (29).

Data availability. The WGS data and raw data have been deposited in GenBank under the BioProject accession number PRJNA690512. This project has also been deposited in the NASA GeneLab system (30) under the project number GLDS-361. The versions described in this paper are the first versions.

ACKNOWLEDGMENTS

Part of the research described was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under a contract with NASA. This research was funded by a 2014 Space Biology NNH14ZTT002N award (grant 80NSSC18K0113) to Crystal Jaing and K.V., which also partially funded postdoctoral fellowships for C.U. and J.M.W. Additionally, A.C.S. was supported by grant 80NM0018D0004, funded to K.V.

We thank astronauts Colonel Jack Fischer, Colonel Mark Vande Hei, Norishige Kanai, and Alexander Gerst for collecting samples aboard the ISS, the implementation team (Fathi Karouia) at NASA Ames Research Center for coordinating this effort, and Crystal Jaing (Lawrence Livermore National Laboratory), principal investigator of the team. We thank Ryan Kemp (Zymo Corp.) for extracting the DNA and Dan Butler (Weill Cornell Medicine) for generating the shotgun sequencing. The Jet Propulsion Laboratory supercomputing facility staff is acknowledged, notably, Narendra J. Patel (Jimmy) and Edward Villanueva, for continuous support in providing the best possible infrastructure for BIG-DATA analysis.

REFERENCES

- Taylor PW. 2015. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist 8:249–262. https://doi.org/10.2147/IDR.S67275.
- Lin Y-C, Uemori K, de Briel DA, Arunpairojana V, Yokota A. 2004. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 54:1669–1676. https://doi.org/10.1099/ijs.0.02741-0.
- Dastager SG, Tang S-K, Srinivasan K, Lee J-C, Li W-J. 2014. Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 64:869–874. https://doi.org/10.1099/ijs.0.052548-0.
- Lee K, Ganzorig M, Jung JY, Badaya SK, Lim JY. 2019. Complete genome sequence of *Kocuria indica* CE7, isolated from human skin. Microbiol Resour Announc 8:e00607-19. https://doi.org/10.1128/MRA.00607-19.
- Kooken JM, Fox KF, Fox A. 2012. Characterization of *Micrococcus strains* isolated from indoor air. Mol Cell Probes 26:1–5. https://doi.org/10.1016/j .mcp.2011.09.003.
- Mattern R, Ding J. 2014. Keratitis with Kocuria palustris and Rothia mucilaginosa in vitamin A deficiency. Case Rep Ophthalmol 5:72–77. https://doi .org/10.1159/000360391.
- Greenblatt CL, Baum J, Klein BY, Nachshon S, Koltunov V, Cano RJ. 2004. Micrococcus luteus-survival in amber. Microb Ecol 48:120–127. https://doi.org/10.1007/s00248-003-2016-5.
- Mauclaire L, Egli M. 2010. Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and

- earth isolates. FEMS Immunol Med Microbiol 59:350–356. https://doi.org/10.1111/j.1574-695X.2010.00683.x.
- Gowda A, Pensiero AL, Packer CD. 2018. Staphylococcus caprae: a skin commensal with pathogenic potential. Cureus 10:e3485. https://doi.org/ 10.7759/cureus.3485.
- Becker K, Heilmann C, Peters G. 2014. Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926. https://doi.org/10.1128/CMR.00109-13.
- Cameron D, Jiang J-H, Hassan K, Elbourne L, Tuck K, Paulsen I, Peleg A. 2015. Insights on virulence from the complete genome of *Staphylococcus capitis*. Front Microbiol 6:980. https://doi.org/10.3389/fmicb.2015.00980.
- Laurent F, Butin M. 2019. Staphylococcus capitis and NRCS-A clone: the story of an unrecognized pathogen in neonatal intensive care units. Clin Microbiol Infect 25:1081–1085. https://doi.org/10.1016/j.cmi.2019.03.009.
- Xu Z, Misra R, Jamrozy D, Paterson GK, Cutler RR, Holmes MA, Gharbia S, Mkrtchyan HV. 2018. Whole genome sequence and comparative genomics analysis of multi-drug resistant environmental *Staphylococcus epidermidis* ST59. G3 (Bethesda) 8:2225–2230. https://doi.org/10.1534/g3 .118.200314.
- 14. Raz R, Colodner R, Kunin CM. 2005. Who are you: *Staphylococcus saprophyticus*? Clin Infect Dis 40:896–898. https://doi.org/10.1086/428353.
- Campoccia D, Montanaro L, Visai L, Corazzari T, Poggio C, Pegreffi F, Maso A, Pirini V, Ravaioli S, Cangini I, Speziale P, Arciola CR. 2010. Characterization of 26 Staphylococcus warneri isolates from orthopedic infections. Int J Artif Organs 33:575–581. https://doi.org/10.1177/039139881003300903.
- 16. Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond

Volume 10 Issue 17 e00214-21 mra.asm.org **5**

- MB, Wenzel RP, Seifert H. 2012. Nosocomial bloodstream infections due to *Acinetobacter baumannii, Acinetobacter pittii* and *Acinetobacter nosocomialis* in the United States. J Infect 64:282–290. https://doi.org/10.1016/j.iinf.2011.12.008.
- 17. Adeniji AA, Aremu OS, Loots DT, Babalola OO. 2020. *Pseudomonas fulva* HARBPS9.1: candidate anti-*Fusarium* agent in South Africa. Eur J Plant Pathol 157:767–781. https://doi.org/10.1007/s10658-020-02035-4.
- Almuzara MN, Vazquez M, Tanaka N, Turco M, Ramirez MS, Lopez EL, Pasteran F, Rapoport M, Procopio A, Vay CA. 2010. First case of human infection due to *Pseudomonas fulva*, an environmental bacterium isolated from cerebrospinal fluid. J Clin Microbiol 48:660–664. https://doi.org/10 .1128/JCM.01849-09.
- Seok Y, Shin H, Lee Y, Cho I, Na S, Yong D, Jeong SH, Lee K. 2010. First report of bloodstream infection caused by *Pseudomonas fulva*. J Clin Microbiol 48:2656–2657. https://doi.org/10.1128/JCM.01609-09.
- Pascual J, García-López M, Bills GF, Genilloud O. 2015. Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Int J Syst Evol Microbiol 65:625–632. https://doi.org/10.1099/ijs.0.069260-0.
- Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S, McDowall A, Ruckmani A, Mayilraj S, Venkateswaran K. 2010. *Bacillus horneckiae* sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 60:1031–1037. https://doi.org/10.1099/iis.0.008979-0.
- Green PN. 2015. Methylobacterium. In DeVos P, Dedysh S, Hedlund B, Kämpfer P, Rainey F, Trujillo ME, Bowman JP, Brown DR, Glöckner FO, Oren A, Paster BJ, Wade W, Ward N, Busse H-J, Reysenbach AL (ed), Bergey's manual of systematics of archaea and bacteria. John Wiley & Sons, Hoboken, NJ. https://doi.org/10.1002/9781118960608.gbm00830.

- Be NA, Avila-Herrera A, Allen JE, Singh N, Checinska Sielaff A, Jaing C, Venkateswaran K. 2017. Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 5:81. https://doi .org/10.1186/s40168-017-0292-4.
- 24. Andrews S. 2011. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
- Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/ bty560.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.
- 28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4.
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/ nar/gkw569.
- 30. Ray S, Gebre S, Fogle H, Berrios DC, Tran PB, Galazka JM, Costes SV. 2019. GeneLab: Omics database for spaceflight experiments. Bioinformatics 35:1753–1759. https://doi.org/10.1093/bioinformatics/bty884.

Volume 10 Issue 17 e00214-21 mra.asm.org **6**