prediction-using-machine-learning

February 1, 2024

1 Loan Eligibility prediction using Machine Learning Models in Python

I will develop a model that can predict whether or not one can get a loan aproval. the model will use past data of the applicant and information like gender, marital status and income etc to predict their probability of getting a loan

1.0.1 Importing Libraries

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import LabelEncoder, StandardScaler
  from sklearn import metrics
  from sklearn.svm import SVC
  from imblearn.over_sampling import RandomOverSampler

import warnings
  warnings.filterwarnings('ignore')
```

1.0.2 Loading the dataset

Saving loan_data.csv to loan_data.csv

```
[3]: # I will use this io.BytesIO(uploaded['loan_data.csv']) to read the csv file_

→ from the io that i uploaded the file.

import io

df = pd.read_csv(io.BytesIO(uploaded['loan_data.csv']),encoding = 'latin-1').

→dropna(axis = 1)
```

```
df.head()
[3]:
       Gender Married
                        ApplicantIncome
                                          LoanAmount Loan_Status
                                            128000.0
         Male
                  Yes
                                   4583
     1
         Male
                  Yes
                                   3000
                                             66000.0
                                                                Y
     2
         Male
                  Yes
                                   2583
                                            120000.0
                                                                Y
     3
         Male
                   No
                                   6000
                                            141000.0
                                                                Y
         Male
                  Yes
                                   5417
                                            267000.0
                                                                Y
[4]: ## Shape of the dataset
     df.shape
[4]: (577, 5)
[5]: # Info() About the data
     df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 577 entries, 0 to 576
    Data columns (total 5 columns):
         Column
                           Non-Null Count
                                            Dtype
         Gender
     0
                           577 non-null
                                            object
         Married
     1
                           577 non-null
                                            object
         ApplicantIncome
                           577 non-null
                                            int64
     3
         LoanAmount
                           577 non-null
                                            float64
         Loan_Status
                           577 non-null
                                            object
    dtypes: float64(1), int64(1), object(3)
    memory usage: 22.7+ KB
    To get values like the mean, count and min of the column
[6]: df.describe().T
[6]:
                       count
                                                                min
                                                                           25% \
                                       mean
                                                        std
                      577.0
     ApplicantIncome
                                5297.119584
                                               5853.236196
                                                              150.0
                                                                       2889.0
     LoanAmount
                       577.0
                             144968.804159
                                              82704.181660
                                                             9000.0
                                                                     100000.0
                            50%
                                       75%
                                                 max
     ApplicantIncome
                         3800.0
                                   5746.0
                                             81000.0
     LoanAmount
                       127000.0
                                 167000.0 650000.0
```

1.0.3 Exploratory Data Analysis

```
[7]: # Plot the piechart of loanStatus column
temp = df['Loan_Status'].value_counts()
plt.pie(temp.values, labels = temp.index, autopct = '%1.1f%%')
plt.show()
```


we have an imbalanced Dataset. I will have to balance it before training.

```
[8]: # I will Plot a CountPlot
plt.subplots(figsize = (15, 5))
for i, col in enumerate(['Gender', 'Married']):
    plt.subplot(1, 2, i+1)
    sns.countplot(data = df, x = col, hue = 'Loan_Status')

plt.tight_layout()
plt.show()
```


one observation we can see is that Chances of getting a loan approved for married people is quite low

```
[9]: plt.subplots(figsize=(15, 5))
for i, col in enumerate(['ApplicantIncome', 'LoanAmount']):
    plt.subplot(1, 2, i+1)
    sns.distplot(df[col])

plt.tight_layout()
plt.show()
```


Now to get the Outliers we use Boxplot

```
[10]: plt.subplots(figsize=(15,5))
    for i, col in enumerate(['ApplicantIncome', 'LoanAmount']):
        plt.subplot(1, 2, i+1)
        sns.boxplot(df[col])

    plt.tight_layout()
    plt.show()
```


1.0.4 We remove the Extreme outliers

```
[11]: df = df[df['ApplicantIncome'] < 25000]
df = df[df['LoanAmount'] < 400000]</pre>
```

1.0.5 Now lets see the mean amount of the loan granted to males as well as females

```
[12]: df.groupby('Gender').mean()['LoanAmount']
```

[12]: Gender

Female 118822.429907 Male 139289.823009

Name: LoanAmount, dtype: float64

nOW WE SEE the mean amount of the loan granted to Married, and gender

```
[13]: df.groupby(['Married','Gender']).mean()['LoanAmount']
```

[13]: Married Gender

No Female 116115.384615
 Male 126644.628099
Yes Female 126103.448276
 Male 143912.386707
Name: LoanAmount, dtype: float64

one more interesting observation in addition to the previous one that the married people requested loan amount is generally higher than that of the unmarried.

1.0.6 Function to perform a label encoding

```
[15]: def encode_labels(data):
    for col in data.columns:
        if data[col].dtype == 'object':
            le = LabelEncoder()
            data[col] = le.fit_transform(data[col])
        return data

# Applying the funtion in whole column
df = encode_labels(df)

# Generate Heatmap
sns.heatmap(df.corr() > 0.8, annot = True, cbar = False)
plt.show()
```


1.1 Data Preprocessing

here we will split the data for training and testing

[16]: ((447, 4), (616, 4))

1.1.1 nOW BY USING sTANDARD sCALING I WILL NORMALIZING THE DATA

```
[17]: scaler = StandardScaler()
    X = scaler.fit_transform(X)
    X_val = scaler.transform(X_val)
```

1.2 Model Development

Training Accuracy: 0.6136363636363635 Validation Accuracy: 0.4908403026682596

1.2.1 Model Evaluation

since its a clasification project we will be evaluating the model by using confusion matrix

I will first train the SVC model using the training data X and Y. Then, I will calculate the ROC AUC scores for both the training and validation datasets. The confusion matrix is built for the validation data by using the confusion_matrix function from sklearn.metrics. Finally, I will plot the confusion matrix using the plot_confusion_matrix function from the sklearn.metrics.plot_confusion_matrix submodule.

```
[20]: from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
    training_roc_auc = roc_auc_score(Y, model.predict(X))
    validation_roc_auc = roc_auc_score(Y_val, model.predict(X_val))

print('Training ROC AUC Score: ', training_roc_auc)
print('Validation ROC AUC Score: ', validation_roc_auc)
print()

cm = confusion_matrix(Y_val, model.predict(X_val))
```

Training ROC AUC Score: 0.6136363636363635 Validation ROC AUC Score: 0.4908403026682596

```
[21]: plt.figure(figsize=(6,6))
    sns.heatmap(cm, annot = True, fmt = 'd', cmap = 'Blues', cbar = False)
    plt.title('Confusion Matrix')
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
    plt.show()
```


1.2.2 Classification Report

[24]: from sklearn.metrics import classification_report
print(classification_report(Y_val, model.predict(X_val)))
print(by)

	precision	recall	f1-score	support
0 1	0.26 0.72	0.29 0.69	0.28 0.70	31 81
accuracy	0.49	0.49	0.58 0.49	112 112
macro avg weighted avg	0.49	0.49	0.49	112

Joseph Gathithi Wathome

As this dataset contains fewer features the performance of the model is not up to the mark maybe if we will use a better and big dataset we will be able to achieve better accuracy.