Exercícios de conjuntos.

- 1. (FATEC-88) Seja **n** um número natural. Se $A = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x \in IN \mid x \in IN \mid x = 2n\}$ e $A \cap B = \{x \in IN \mid x \in IN \mid$
- **2.** (UFRN) Se, *A*, *B* e *C* são conjuntos tais que: $n(A (B \cup C)) = 15$, $n(B (A \cup C)) = 20$, $n(A \cup B \cup C)) = 120$, $n(C (A \cup B)) = 35$ e então $n((A \cap B) \cup (A \cap C) \cup (B \cap C))$ é igual a:

 a) 40
 b) 50
 c) 60
 d) 70
 e) 80
- 3. (UFSC) Determine a soma dos números associados à(s) proposição(ões) CORRETA(S).
- 01. Dizer que a multiplicação de dois números negativos tem por resultado um número positivo é uma afirmação sem justificativa e que nada tem a ver com questões práticas.
- 02. O conjunto dos números racionais é suficiente para medir (com exatidão) todo e qualquer comprimento.
- 04. Seja x um número inteiro diferente de zero. A existência do inverso multiplicativo de x só é garantida no conjunto dos números reais e no conjunto dos números complexos (já que R \subset C)
- 08. Se no último aniversário de João, a soma de sua idade com a de seu pai e a de seu avô era 90 anos, e no dia de seu nascimento esta soma era 75 anos, então João está com 5 anos.
- 16. Os números como $\sqrt{2}$ e π (e outros irracionais) só estão relacionados a coisas abstratas e "distantes" da nossa realidade.
- 4. (ACAFE) Dados os seguintes conjuntos:

 $A = \{ x \mid x \in \text{número natural par menor que 10} \}$

 $B = \{ x \mid x \in \text{ multiplo natural de 3 e menor que 18} \}$

 $C = \{x \mid x \text{ \'e divisor natural de } 18\}$

O número de elementos do conjunto (A \cup B) – C, é:

- b) 9
- c) 6
- d) 5
- e) 4
- f) 8
- **5.**(UFGRS) O número de elementos do conjunto $P(A) \cup P(B)$, com A e B disjuntos e com dois elementos cada um, é:
- a) 2
- b) 4
- c) 5
- d) 7
- e) 8

 6. (UFV-MG) Um conjunto A tem 8 elementos distintos. O número de subconjuntos de A, com 5 elementos diferentes cada, é: a) 52 b) 54 c) 58 d) 56 e) 60
7. (UFPE) Considere os seguintes conjuntos: $A = \{1,2,\{1,2\}\} \qquad B = \{\{1\},2\} \qquad e \qquad C = \{1,\{1\},\{2\}\} $ Assinale abaixo a alternativa falsa: $a) A \cap B = \{2\}$ $b) B \cap C = \{\{1\}\} $ $c) B - C = A \cap B$ $d) B \subset A$ $e) A \cap P(A) = \{\{1,2\}\}, \text{ onde } P(A) \text{ \'e o conjunto dos subconjuntos de } A.$
8. (UFRN) Se n(A) = 3 e n(B) = 2,então (n(A x B)) ^{n(A \cap B)} é no máximo igual a: a) 1 b) 6 c) 12 d) 3 e) 36
 9. (FGV-SP) Numa Universidade com N alunos, 80 estudam Física, 90 Biologia, 55 Química, 32 Biologia e Física, 23 Química e Física, 16 Biologia e Química e 8 estudam nas 3 faculdade. Sabendo-se que esta Universidade somente mantém as 3 faculdades, quantos alunos estão matriculados na Universidade? a) 304 b) 162 c) 146 d) 154 e) 340
 10. (BAP – SC) Aos alunos do curso PASCAL em 1996, foram feitas estas duas perguntas: 1²) Você estuda no Domingo? 2²) Você estuda no Sábado? → 20% responderam sim apenas à 1². → 68% responderam sim à 2². → 43% responderam sim às duas. Então que porcentagem de calouros respondeu: a) Sim apenas à 2². b) Não às duas. c) Não à 1². d) Não à 2².
 11. (BAP – SC) Numa empresa foi realizado um concurso escrito constituído de dois problemas, 380 candidatos acertaram somente um problema, 320 acertaram o segundo, 120 acertaram os dois e 260 erraram o primeiro. Quantos candidatos fizeram a prova? a) 580 b) 1080 c) 560 d) 700 e) 500

12. Se A = [-5, 3[, B = [-2, 1[e C = [-3, -1[, então [(A - B) \cup C] \cap IN, terá como resultado:

- a) Ø
- b) {2}
- c) {1; 2}
- d) {0; 1}
- e) {0; 1; 2; 3}

13. Os conjuntos A, B e $A \cup B$ têm, respectivamente, 13, 9 e 17 elementos. Qual é o número de elementos de $A \cap B$?

14. Numa sala de aula com 60 alunos, 11 jogam xadrez, 31 são homens ou jogam xadrez e 3 mulheres jogam xadrez. Conclui-se, portanto, que:

- 01. 31 são mulheres
- 02. 29 são homens
- 04. 29 mulheres não jogam xadrez
- 08. 23 homens não jogam xadrez
- 16. 9 homens jogam xadrez

15. (UEL - PR) Seja n(E) o número de elementos de um conjunto **E**. Se **A** é o conjunto dos divisores naturais de 18 e **B** é o conjunto dos divisores naturais de 48, então $n(A \cup B)$ é um número:

- a) quadrado perfeito
- b) múltiplo de 5
- c) maior que 10
- d) menor que 6
- e) cubo perfeito

16. (UFSC) Dados os conjuntos: $A = \{x \in Z \mid 1 < x \le 17\}$, $B = \{x \in N \mid \text{\'e impar}\}\ e\ C = \{x \in R \mid 9 \le x \le 18\}$, determine a soma dos elementos que formam o conjunto: $(A \cap B) - C$.

17.(UFSC) Sejam os conjuntos: $A = \{x \in N \mid |x-2| \le 5\}$ e $B = \{x \in Z \mid |x+2| > 3\}$. A soma dos elementos de $A \cap B$ é...

18. (UFPE) Assinale a única alternativa que representa o gráfico do conjunto BxA, onde A = $\{1, 2, 3\}$ e B = $\{x \in R : 1 \le x \le 2\}$.

19. (FGV-SP) Numa pesquisa de mercado, foram entrevistadas varias pessoas acerca de suas preferências em relação a 3 produtos: A, B e C. Os resultados da pesquisa indicaram que: 210 pessoas compram o produto A. 210 pessoas compram o produto B. 250 pessoas compram o produto C. 20 pessoas compram os 3 produtos. 100 pessoas não compram nenhum dos 3 produtos. 60 pessoas compram os produtos A e B. 70 pessoas compram os produtos A e C. 50 pessoas compram os produtos B e C. Quantas pessoas foram entrevistadas? a) 670 970 b) c) 870 d) 610 e) 510 20.(FGV-SP) No problema anterior, calcular quantas pessoas compram apenas o produto A; apenas o produto B; apenas o produto C. 210; 210; 250 a) b) 150; 150; 180 c) 100; 120; 150 d) 120; 140; 170 e) 120; 100; 170

21.(PUC-SP) Em um exame vestibular, 30 % dos candidatos eram da área de Humanas. Dentre esses candidatos, 20 % optaram pelo curso de Direito. Do total dos candidatos, qual a porcentagem dos que optaram por Direito?

- a) 50%
- b) 20%
- c) 10%
- d) 6%
- e) 5%

22. (UFRN) Se A, B e C são conjuntos tais que C -- (A \cup B) = {6,7} e C \cap (A \cup B) = {4,5}, então C é igual a:

- a) {4,5}
- b) {6,7}
- c) $\{4,5,6\}$
- d) {5,6,7}
- e) {4,5,6,7}

23. (UFV-MG) Sejam A, B, C e D subconjuntos quaisquer do conjunto universo U, tais que (A \cap B) \cup (C - D) = Ø. Como conseqüência, pode-se afirmar obrigatoriamente que:

- a) $A \cap B = \emptyset e C D = \emptyset$
- b) $C D = \emptyset$
- c) $(A D) \cap (C \cap B) = \emptyset$
- d) $B \cap C = \emptyset$
- e) $A \cap B = \emptyset$

```
24. (FGV-SP) Dados os conjuntos A = \{a, b, c, d\}, B = \{b, c, d, e\}, C = \{a, c, f\}, então [(A - B) \cup
(B-C)\cup (A\cap B)]\cap [(A\cap C)\cup (B\cap A\cap C)] \ \acute{e} :
a) {a,b,c,d,e}
b) \{a,b,c,d\}
c) {a,c}
d) {a,b}
e) {b,c,d}
25. (UFU-MG) Dados os conjuntos A = \{0, -1, 1\}, B = \{1, 3, 4\} e C = \{0, 1\}, temos (A - B) \times (C - A)
B) igual a:
a) \{(0, 0); (0, -1)\}
b) \{(-1, 0); (0, 0)\}
c) \{(0, 0); (0, 1)\}
d) \{(0, 1); (0, -1)\}
e) Ø (vazio)
```

- **26.**(UEL- PR) Sejam os conjuntos $A \in B$ tais que $A \times B = \{(-1, 0), (2, 0), (-1, 2), (2, 2), (-1, 3), (-1, 2), (-1, 2), (-1, 3), (-1, 2), (-1, 3), (-1, 2), (-1, 3$ (2; 2)}. O número de elementos do conjunto $A \cap B$ é:
- a) 0
- b) 1 c) 2
- d) 3
- e) 4