Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

CIRCUITOS DIGITALES AVANZADOS

Practica 2 Circuito Secuenciales de los Modelos Moore y Mealy

Docente: Lara Camacho Evangelina

Alumnos:

Gómez Cárdenas Emmanuel Alberto 1261509 León Romero Pablo Constantino 1253171

22/OCT/2020

Gómez Cárdenas Emmanuel Alberto León Romero Pablo Constantino

INDICE

OBJETIVO	3
EQUIPO	3
FUNDAMENTO TEORICO	3
DESARROLLO	
Modelo Mealy	4
Diagrama de estados (Entrada/Salida)	4
Tabla 1. Asignación de estados	4
Tabla 2. Transición de estados	4
Mapas de Karnaugh	5
Circuito implementado en Logisim	
Modelo Moore	
Diagrama de estados (Entrada/Salida)	7
Tabla 1. Asignación de estados	7
Tablas de Transición de estados	7
Mapas de Karnaugh	8
Circuito implementado en Logisim	
CONCLUSIONES	10
Video de Practica	10

OBJETIVO

Diseñar y construir circuitos detectores de secuencia modelos Moore y Mealy utilizando flip-flops D.

EQUIPO

Computadora personal con el software Logisim.

FUNDAMENTO TEORICO

Continuando con la definición de máquinas de estado (autómatas finitos deterministas) presentada en la Práctica 1, además de la función de transición δ , existe la función de salida ω que puede ser de dos tipos:

- Modelo Mealy: $z = \omega (r, a)$.
- Modelo Moore: $z = \omega(r)$.

Sea r un estado de Q y sea a un símbolo del alfabeto Σ . Si el autómata es Mealy y está en el estado r y lee el símbolo a, entonces la salida es $z = \omega$ (r, a). Si el autómata es Moore y está en el estado r, entonces la salida es $z = \omega(r)$.

Al implementar la máquina de estados, la función de salida ω es una función combinacional que depende del estado actual y si es tipo Mealy también depende de la entrada. La Fig. 1 muestra los bloques funcionales de una máquina de estados. En una máquina Moore, la salida ${\bf z}$ solo depende del estado actual ${\bf r}$, en una Mealy, ${\bf z}$ también depende de la entrada ${\bf a}$.

Figura 1. Bloques funcionales de una máquina de estados.

DESARROLLO

Diseñe un detector de secuencia con una entrada X y dos salidas, Z1 y Z2, que detecte la aparición de las secuencias 11011 y 11001 en la entrada. La salida Z1 es 1 cada vez que se recibe la secuencia 11011, mientras que la salida Z2 es 1 cada vez que 11001 es recibida. El detector debe ser con traslape. Utilice flip-flops D en su diseño.

Diseñe el detector de secuencia descrito como una máquina de estados modelo Mealy y Moore.

Modelo Mealy

Diagrama de estados (Entrada/Salida)

Tabla 1. Asignación de estados.

Estado	q2q1q0
S0	000
S1	001
S2	010
S3	011
S4	100
S5	101

Tabla 2. Transición de estados.

Estad	do actual	SIGUIENTE ESTADO / SALIDA	ESTADO
NUMERICO	BINARIO	X= 0	X=1
S0	000	000/0	001/0
S1	001	000/0	010/0
S2	010	011/0	010/0
S3	011	100/0	101/0
S4	100	000/0	001/1
S5	101	000/0	010/1
S6	110	000/0	00/0
S7	111	000/0	000/0

Mapas de Karnaugh

D0	50,2	Y		
	00	01	11	10
<i>S2,S1 00</i>	0	1	0	0
01	1	0	1	0
11	0	0	0	0
10	0	1	0	0

Las Ecuaciones obtenidas con los mapas son:

Para los flip-flops

D0 (S2, S1, S0, X) = S1'S0'X + S2'S1S0'X' + S2'S1S0X

D1 (S2, S1, S0, X) = S1'S0X + S2'S1S0' + S1S0'X D2 (S2, S1, S0, X) = S2'S1S0

Para las salidas

Z0 (S2, S1, S0, X) = S2S1'S0XZ1 (S2, S1, S0, X) = S2S1'S0'X

Circuito implementado en Logisim

Nos hemos tomado la libertad de agregarle un latch a cada salida de esta manera los leds permanecerán encendidos durante todo un ciclo de reloj.

Modelo Moore

Diagrama de estados (Entrada/Salida)

Secuencia 11011 y 11001 Con Traslape

Moore

S7
10

S6
00

S7
10

S8
00

Tabla 1. Asignación de estados.

Estado	q2q1q0
S0	000
S1	001
S2	010
S3	011
S4	100
S5	101
S6	110
S7	111

Tablas de Transición de estados.

Flip-Flop D0

Flip-Flop D1

Transicion de estados		
Y0	X = 0	X = 1
Y2Y1Y0	Y0	Y0
000	0	1
001	0	0
010	1	0
011	0	0
100	0	1
101	1	0
110	0	1
111	0	0

Transicion de estados		
Y1	X = 0	X = 1
Y2Y1Y0	Y1	Y1
000	0	0
001	0	1
010	1	1
011	1	0
100	0	0
101	1	1
110	0	1
111	0	1

Flip-Flop D2

Transicion de estados		
Y2	X = 0	X = 1
Y2Y1Y0	Y2	Y2
000	0	0
001	0	0
010	0	0
011	1	1
100	0	1
101	0	0
110	0	1
111	0	0

Salida

Salida		
Actual	Salida	
Q2 Q1 Q0	Z1 Z0	
000	00	
001	00	
010	00	
011	00	
100	00	
101	01	
110	00	
111	10	

Mapas de Karnaugh

Las Ecuaciones obtenidas con los mapas son:

Para los flip-flops

Y2 (Y2, Y1, Y0, X) = Y2'Y1Y0 + Y2Y0'X Y1 (Y2, Y1, Y0, X) = Y1'Y0X + Y2'Y1X' + Y2Y1'Y0 + Y2'Y1Y0' + Y2Y1X Y0(Y2, Y1, Y0, X) = Y1'Y0'X + Y2'Y1Y0'X' + Y2Y1'Y0X' + Y2Y0'X

Para las salidas

Z1(Y2, Y1, Y0) = Y2Y1Y0Z0(Y2, Y1, Y0) = Y2Y1'Y0

Circuito implementado en Logisim

CONCLUSIONES

Gómez Cárdenas Emmanuel Alberto:

En esta práctica aprendimos lo sencillo unir dos detectores de secuencias, siempre y cuando las secuencias sean lo más parecido posible, ya que la dificultad comienza a duplicarse desde el momento que estas difieren. Lo más complicado de esta práctica fue crear el diagrama de estados, después de esto el procedimiento fue exactamente igual que las anteriores.

Pablo Constantino León romero:

En esta practica se aplicaron conocimientos de practicas anteriores, pero agregando más funcionalidades como el poder detectar múltiples secuencias en un solo circuito. También se pudo observar que, al realizar ambos circuitos, el modelo Moore utilizó mas estados y mas compuertas para poder realizarse en comparación al modelo Mealy.

Video de Practica

https://drive.google.com/file/d/1paW2aquDvxqmta8dpm0R12gwOAfcYe42/view?usp=sharing