Layered Label Propagation: A Coordinate-Free

Node Ordering Method for Graph Compression

Abstract

We present a summary of how Layered Label Propagation (LLP), a highly scalable, coordinate-free, **graph reordering algorithm**, uses community finding techniques to permute very large immutable graphs, with applications to **graph compression**.

Motivation/Problem

Large graphs (millions or billions of nodes) may not fit in main memory.

▶ Standard graph mining algorithms usually assume they do.

What it is

A graph node ordering algorithm.

Not a compression algorithm.

Why do we need it?

Most current algorithms are sensitive to the initial ordering of the graphs.

- Different compression ratios depending on how the dataset is originally presented.
- Layered Label Propagation (LLP) is efficient and coordinate-free.
 - ▶ Attains similar results independently of the initial ordering.

What does it try to acomplish?

- ▶ Effective **general** techniques to store and access graphs.
- Resulting compressed data structure must provide fast amortised random access to an edge.

General idea

- Combines with the Boldi and Vigna (BV) compression algorithm.
 - "de facto standard for handling large web-like graphs".
- Exploits the inner structure of the network to devise intrinsic orderings.
 - Approached as a community finding problem.

General idea

Layered Label Propagation

- Coordinate-free.
- Exploits similarity and locality.
 - similarity: nodes tend to have resembling sets of neighbours if they're close to each other in the ordering.
 - ▶ **locality**: most of the edges are shared between nodes close to each other in the ordering.

Standard Label Propagation

- ▶ One of a class of community finding algorithms.
- ▶ Fits this problem well because it is:
 - general (no a priori information is needed regarding the structure of the network).
 - efficient (requires only a few passes through the graph).

Label Propagation

- At the beginning each node is assigned a unique label.
- ▶ At each iteration, each node takes the label that most of its neighbours have.
 - Ties are resolved randomly.
- As the labels propagate, densely connected groups of nodes are formed.
- ▶ This iterative process goes on until every node in the graph is assigned a label equal to most of its neighbours.
- At the end, nodes with the same labels are grouped together as communities.

Absolute Potts Model (APM)

- Variant of label propagation, with new label update rule.
- ▶ Addresses the resolution limit problem in community detection by introducing a new weight parameter.
 - ▶ **Standard label propagation**: label chosen is the one that maximizes k_i (number of neighbours with label λ_i)
 - ▶ **APM**: maximize $k_i \gamma(v_i k_i)$
 - \triangleright v_i is the number of nodes in the network with label λ_i .

Absolute Potts Model (APM)

Algorithm 1 The APM algorithm. λ is a function that will provide, at the end, the cluster labels. For the sake of readability, we omitted the resolution of ties.

```
Require: G a graph, \gamma a density parameter
 1: \pi \leftarrow a random permutation of G's nodes
 2: for all x: \lambda(x) \leftarrow x, v(x) \leftarrow 1
 3: while (some stopping criterion) do
         for i = 0, 1, ..., n - 1 do
 4:
            for every label \ell, k_{\ell} \leftarrow |\lambda^{-1}(\ell) \cap N_G(\pi(i))|
 5:
            \hat{\ell} \leftarrow \operatorname{argmax}_{\ell}[k_{\ell} - \gamma(v(\ell) - k_{\ell})]
 6:
            decrement v(\lambda(\pi(i)))
 7:
            \lambda(\pi(i)) \leftarrow \hat{\ell}
 8:
            increment v(\lambda(\pi(i)))
 9:
         end for
10:
11: end while
```

Absolute Potts Model (APM)

Shortcomings

- lacktriangle no way to predetermine an "optimal" value for γ
- yields an enormous amount of huge-sized clusters.

LLP

- Starts with any initial ordering of the nodes.
- ▶ Applies APM iteratively, with different values of γ , computing a new ordering each time.

• γ values are picked uniformly randomly from the set $\{0\} \cup \{2^{-i}, i = 0, ..., K\}$.

Why is it good?

Host transition

$$HT(\mathcal{H}, \pi) = 1 - \frac{\sum_{i=1}^{|V_G|-1} \delta(\mathcal{H}[\pi^{-1}(i)], \mathcal{H}[\pi^{-1}(i-1)])}{|V_G|-1}$$

Variation of Information

$$VI(\mathcal{H}, \mathcal{H}_{|\pi}) = H(\mathcal{H}_{|\pi}) - H(\mathcal{H})$$
 $H(\mathcal{U}) = -\sum_{i=0}^{R} P(i) \log(P(i)), \quad P(i) = \frac{|\mathcal{U}_i|}{|\mathcal{V}_i|}$

Highly parallel

References

- P. Boldi, M. Rosa, M. Santini and S. Vigna. Layered Label Propagation: A MultiResolution Coordinate-Free Ordering for Compressing Social Networks. arXiv:1011.5425v2.
- U. Raghavan, R. Albert and S. Kumara. Near linear time algorithm to detect community structures in large-scale networks. arXiv:0709.2938v1.
- P. Ronhovde and Z. Nussinov. Local resolution-limit-free Potts model for community detection. arXiv:0803.2548v4.