Application of Linear Regression

Protein Structural Similarity Prediction

Protein Structure Prediction (1D, 2D...3D)

EAEASICSEPKKVGRCKGYFPRFYFDSETGKCTPFIYGGCGGNGNNFETLHQCRAICRALG

structure = f (sequence)

Comparing protein 3D structure

How to Compute Similarity?

- We have to define a similarity (or distance) measure(s) to assess how different two conformations are.
- Usages:
 - Assessing the success of a folding algorithm.
 - Measure structural similarity between two different proteins which may be related
 - Measure the similarity (or complementarity) of the surfaces two potentially interacting molecules.
 - ...
- No one-size-fits-all quick fix ...

RMSD

- RMSD: Root Mean Squared Deviation
- The most popular distance measure between two conformations
- Average atomic distance
- given two conformations of a chain of N atoms, represent the conformations as two 3N vectors a and b
- RMSD(a,b) is the euclidean distance between a and b, averaged over the N atoms

$$\sqrt{\frac{1}{N}} \sum_{i=1}^{N} |a_i - b_i|^2$$
 where $a_i = (x_i^a, y_i^a, z_i^a), b_i = (x_i^b, y_i^b, z_i^b)$

Structural Superposition: Translation

- Optimal alignment of two chains after removal changes due to rigid body transformations
- Removing translation:
 - Simply align the centroids of the two conformations (centroid = average of all the coordinates).
 - Obtain $c_a = centroid(a)$ and $c_b = centroid(b)$
 - Then "drag" a to centroid of b through $a [c_a c_b]$
 - Check that the new c_a is now at c_y
 - Alternatively, can drag both a and b to have (0,0,0) as centroid

Structural Superposition: Rotation

 Generally, we need to find optimal transformation U that minimizes the distance E between b and the transformed a

$$E = \frac{1}{N} \sum_{i=1}^{N} |Ua_i - b_i|^2$$

- Finding the optimal transformation U:
- After some linear algebra:
- Some more linear algebra uses eigenvector decomposition to find U:

$$NE = \sum_{i=1}^{N} (a_i^2 + b_i^2) - 2Tr(B^T A')$$

Structural Superposition - Examples

Structural alignment demo 101M vs. 1MBA

TM-align: Global Quality Score

TM-score = Max
$$\left[\frac{1}{L_{\text{Target}}} \sum_{i}^{L_{\text{ali}}} \frac{1}{1 + \left(\frac{d_i}{d_0(L_{\text{Target}})}\right)^2} \right]$$

TM-align: Global Quality Score

https://zhanglab.ccmb.med.umich.edu/TM-align/

TM-align demo

Protein Similarity Prediction using Linear Regression...

Protein Structural Similarity Prediction

- We have real-values Y: TM-score
 - Continuous (Y)
- What about features (X)?
 - Overall PSSM for each proteins (20 + 20 = 40)
 - Overall secondary structure content (3 + 3 = 6)
 - Overall solvent accessibility content (2 + 2 = 4)

Position Specific Scoring Matrix (PSSM)

Run psiblast against non redundant (nr) sequence database blastpgp -d <nr_db> -j 3 -b 1 -a 80 -i protein.seq> -Q protein.pssm>

Last pos:	itio	า–รp	ecif	ic	sco	rino	a m	atı	ix	cc	amo	ute	d,	we	ial	nte	d c	bse	erv	ed i	perc	enta	aes	rou	nde	d do	wn,	in	nfor	mat	ion	per	po	sit	ion	, an	nd r	elat:	ive	weia	ht o	f qa	ples	s re	al m	atc	hes to ps	eudocounts
·	Α	R.	N	D	С	o i	Ē	G	н	Ι	Ĺ	k	٠ ١	И	F	Р	S	Т	W	Υ	v	Α	R	N		D	C .	Q	Е		G	H	Ī	L	i	K	М	F	Р	S	Т	W	Υ .	V			•	
1 S	2	-2	2 -	- -3 -	3 -	2 -	- 2 -	3 -	-3 -	-4	-4	2	-:	3 –	· 5 -	-3	4	4	-5			16		1	2	- a	ā	_ e	a –	a	ā	a	_ 0	_	a ·	13	a	้ด	้ด	33	26	 A	a	. 0	0.7	a a	. 31	
2 K	- 7	4	3 -	.3 -	.6	2 -	- 1 –	. <u>.</u> -	-1.	-6	-6	7			٠4 -	.3	-2	-2	-6	-5		5	18	_	_	a	a	8	Ř	3	1	1	a		a i	47	a	1	1	1	1	a	a	9	1.0			
3 R	2	4	-2 -	. <u>.</u> -	2 -	1 -1	3	4	1.	-5	-4	0	-	4 -	5 -	-4	2	a	-5	-5	_	16	22		1	a	1	2	,	a	27	3	a		1	5	a	a	ā	15	6	a	a	a	0.6			
4 Y	-5	-6	-7 -	-7	1 -	6 -	, 7 –	7 -	-4	1	2	-6		i	6 -	7	-6	-5	5	_	-1	9	- 0		a	a	2	0	7	a	ā	a	8	2	1	a	1	36	a	9	a	7	22	3	1.4			
5 F	_	_	-8 -	, . o _	<u> </u>	R _	, R _	`	-6 ·	_/.	-3	_8	, . } –!	_	0 -	, . o	_8	-7	-1	_	-6	9	a		a	a	a	0	à	a	a	a	1		1	a	ø	96	a	a	a	1	1	0	3.3			
6 V		-7	-	′	5 -	7 -	5 7 –	_	-8		-2	-7			-	·7 ·	-6	-5	_ _ 7	-6	-	9	a		a	a	a	0	à	a	a	a	41		2	a	a	a	a	a	a	ā	ā	56	1.9			
7 T		-6	-	. 6 -	6 –	, . 6 –	, 6 _	_	_	_	-5	- 1		_	_	•	-3	8	_7	_	-3	10	a		a	a	a	0	à	a	a	a	1		1	a	a	a	a	a	87	a	a	1	2.3			
8 G	_	-7	-	-6 -	7 -	7 _	7	8 -	, . 7 .	_	-9			-	, 8 -	_	_	-6	-8		-8	3	e		0	a	a	0	à	a	97	a	ā		a	a	a	a	a	a	9	a	a	0	2.7			
9 T		-6	_		6 -	,		7 -	, 7.		-6	7			_	1	-3	8	_	-7	_	a	a		a	a	a	0	à	a	,, a	a	1		a	a	a	a	a	1	98	a	a	9	2.8			
10 D	•	-7	-	_	9 _	_ :	_	_	1		_g	_		_	_	_	_	-6	_		-3 8 -8	•	•	้ด	้ด	97	0	a 6	a	1	ິາ	0		α '	a	a	a	a	a		70 A	a	a	, e			0.99	
10 D		-6	-	•	•	6 -		_	_	Ţ,	٠.	- 7	. –		_	1	_	8		-7		1	, ,		a	a	a	, ,	a .	a	a	a	่ด	٠,	a	a	a	a	a	າ	OΩ	a	a	o`	2.8			
12 E		-2	-	-	7 -		-	-	_	_	-7	_			_	_	_	_	_	-6	-	6	2	1	1	29	a	0	, a 2	B B	23	a	a		a	a	a	a	a	2	70 A	a	a	0	1.0			
13 V	_	-7	_	•	1 -	-		.7 -	_		-3				_	7	Ξ	- 1		-5		Ω	0	_	a	<u>ر</u>	3	0	, ₂	a	20	a	17		a	a	a	a	a	2	a	a	a	_				
14 G	_	-8	-	-	8 -	_ :	_	•	•	- 1	_9	_		_	8 -	_	_			-8	- 1	a	0		a	a	a	0	à	0 0 1	100	a	1/		a	a	a	a	a	a	a	a	a	00	2.9			
15 K	_	-3	_		9 –	: '		_		-	-8				Ξ		•	٠.		-7		a	0		0	0	0	0	à	9 7	a	a	9		0 0 10	99	0	a	a	0	a	0	a	0	3.0			
16 T	_	-7	_	•	•		1	7 -	_	_	_	_	-		•	_	_		- 1	-7	_	a	0		a	a	a	0	à	a	a	a	a		0 1	a	a	a	a	1	99	a	a	0	2.9			
17 V	_	-3	-	-	-	-		•	1	2	1				-		-2 -4	1	2		-5 5	2	2		a	a	1	0	à	1	a	2	10	1	2	0	2	10	a	<u> </u>	77	2	0	37	0.6			
17 V	_	-6	-	-	1 -	-		_	-7	_	-3				4 -	-	-4 -1	_/.	_7	-4		19	0		a	a	2	0	à	a T	1	a	1/	1,	ა 1	0	9	10	a	5	a	a	a	57	1.3			
19 S	_	-5	-	•	1 -	-	_	4 -	1	-	-6					-5	- <u>+</u>	4	- <i>7</i>	- :	-4	20	0		a	0	1	0	a a	0	<u>а</u>	a	14		U T	0	0	a	a	52	25	0	a	1	1.4			
20 C	_	-5 4		_	_	2 -	-		_	_	-2					-	_		•	-5	-	24	20		0	0	10	1	,	0	5	0	1		<i>6</i>	2	0	a	a	11	7	0	0	4	0.7			
20 C	_	-2	-	•	1 -			2 -	-	_	-2			_	_					-6		63	20		1	0	17	1		0	14	0	7		4	1	0	0	0	11	,	0	0	2	1.1			
21 A 22 L	_	-2 -7		-	6 -	_	-	_	-4 · -7	-3 3	_	-3 -7			3 -	-	_			-6		03	2		<u>т</u>	0	, T	7	L	0	то	0	17	79	0	Τ.	9	1	0	2	0	0	0	1				
22 L 23 L	_	-/ -6	_	_	1 -	/ -0 6 -1				2	5			2 -	ï		-	-3	-6			15	0		0	0	1	0) a	1	0	9	11	6:		0	7	Т	0	0	1	0	0	5	1.1			
23 L 24 Q	_	2		•	-	6 -:		Ξ	-6		-4			_		_	-	_	_	-3 -2	-	11	12		2	1	1	27	,	7	2	16	11	0,	4	6	4	0	0	2	7	0	1	0	0.9			
	_	_		_	0	٠.	-	9	6 .	-5	-4 0	1	, -,	2 -	-	-	_		-0	-2			2		4	Τ.	7	3/		3	5	Τ0	1	1	T	2	1	2	0	٥,	7	1	Ξ.	5	0.5			
25 A	_	_	-3 -	-5	0 -	3 –	2	0	0.	-2	9	-1	:	2 - 1	-	-4	_	-1	_T	1	0	48	2		Τ.	0	2	7	L	Τ.	0	2	1	10	6 E	4	Τ.	10	0	4	4	1	2	_				
26 A	_	-6	-0 -	-/	0 -	0 -0	o –	0 -	-4	0	4	-0	,	L		-				-1		25	04	۱ ،	4	0	2	40	,	9	9	9	4	4	0	0	2	18	0	9	0	Τ.	Τ.	1	1.0			
27 K	_	4	2 -	-4 -	4	2 -	2 –		0 .	-1	-2	1		2 -	5 -	-3	0	0	-5	-4		23	21		1	0	0	10		9	3	2	4		3	8	1	0	1	5	4	0	0	4	0.4			
28 A	_	3	0 -	-1 -		3 :	, –	2	0.	-4	-2	2	-	2 -	· 5	-3	0	-1	-5		-4	20	16		4	3	9	16		9	3	2	1		5 I	12	1	Ø	9	5	2	0	0	Ø	0.4			
29 A	_	2	_	_	3	4 (0 -	2	4 .	-3	-1	1	. (o -	4 -	-4	-	-1	-5		-2	18	13		3	1	1	19		5	72	9	1		/	6	2	0	0	/	3	0	2	2	0.3			
30 G		-4	_	_	•	2 -	5	7	1 .	-/	-7	-2		4 -	. / -	-6	_	-6	- 1	-4	- 7	1	1		6	3	0	2	<u>.</u>	1	78	3	0		0	2	0	9	9	1	0	9	1	0	1.9			
31 Y	_	1	_		_	0 -2	2 -	4	2	1	2	1	. :	L	1 -		_	-2	1	_	1	2	8		1	b	1	4	+	1	1	6	8	2		10	2	5	1	1	1	1	12	10	0.3			
32 R	_		_	-	_	2 -			-	- 1	-4	_			_	-2	3		_	-5	_	2			/	6	2	8	3	1	Ø	3	1			11	Ø	0	1	20	11	0	0	2	0.5			
33 T	3	-5	-5 -	-6	0 -	5 -	5 –	5 -	-6	1	-4	-5	· -2	۷ -	4 -	-5	0	4	-6	-3	4	25	0	1	0	0	2	9)	Ø	Ø	Ø	8	(0	0	1	1	Ø	5	27	0	1	31	0.9	0 0	.51	

Weighted Observed Percentages Rounded

entag	es r	ound	ed do	own,	inf	orma	tion	per	pos	itio	n, a	nd r	elat:	ive	weigl	ht o	f gap	oles	s rea
Α	R	N	D	С	Q	Ε	G	Н	Ι	L	K	M	F	Р	S	Т	W	Υ	V
16	0	12	0	0	0	0	0	0	0	0	13	0	0	0	33	26	0	0	0
5	18	13	0	0	8	3	1	1	0	0	47	0	1	1	1	1	0	0	0
16	22	1	0	1	2	0	27	3	0	1	5	0	0	0	15	6	0	0	0
0	0	0	0	2	0	0	0	0	8	21	0	1	36	0	0	0	7	22	3
0	0	0	0	0	0	0	0	0	1	1	0	0	96	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	41	2	0	0	0	0	0	0	0	0	56
10	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	87	0	0	1
3	0	0	0	0	0	0	97	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	98	0	0	0
0	0	0	97	0	0	1	. 2	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	98	0	0	0
6	2	11	29	0	0	28	23	0	0	0	0	0	0	0	2	0	0	0	0
8	0	0	0	3	0	0	0	0	17	0	0	0	0	0	3	0	0	0	68
0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	99	0	0	0
2	2	0	0	1	0	1	0	3	10	13	0	2	10	0	0	8	3	8	37
19	0	0	0	2	0	0	1	0	14	1	0	0	0	0	5	0	0	0	57
20	0	0	0	1	0	0	0	0	0	0	0	0	0	0	52	25	0	0	1
24	20	0	0	19	1	0	5	0	1	4	3	0	0	0	11	7	0	0	4
63	2	1	0	1	1	0	16	0	2	5	1	0	0	0	2	5	0	0	2
0	0	0	0	0	0	0	0	0	17	79	0	2	1	0	0	0	0	0	1
15	0	0	0	1	0	1	0	0	11	62	0	4	0	0	0	1	0	0	5
11	12	2	1	1	37	3	3	16	0	1	5	1	0	0	3	2	0	1	0
48	2	1	0	2	1	1	5	2	1	10	4	1	2	0	4	4	1	5	5
25	0	0	0	2	0	0	0	0	4	45	0	2	18	0	0	0	1	1	1
23	21	11	0	0	10	1	3	2	4	3	8	1	0	1	5	4	0	0	4
20	16	4	3	0	16	9	3	2	1	5	12	1	0	0	5	2	0	0	0
18	13	3	1	1	19	5	2	9	1	7	6	2	0	0	7	3	0	2	2
1	1	6	3	0	2	1	78	3	0	0	2	0	0	0	1	0	0	1	0
2	8	1	0	1	4	1	1	6	8	23	10	2	5	1	1	1	1	12	10
2	25	7	6	2	8	1	0	3	1	1	11	0	0	1	20	11	0	0	2
25	0	0	0	2	0	0	0	0	8	0	0	1	1	0	5	27	0	1	31

Protein Structural Similarity Prediction using LR

- We have real-valued output (i.e. TM-score)
 - Continuous Y
- We can use PSSM, SS, SA as features (X)
 - From PSSM calculate avg. (PSSM_percentages) / 100 for each of the 20 aa's
 - Predict SS, SA from the sequences
 - SS(H) = #H / Ien; SS(E) = #E / Ien; SS(C) = #C / Ien
 - SA(E) = #E/ len; SA(B) = #B / len
- We can train LR to predict TM-score given two protein sequences
 - Estimate w's
 - Gradient descent algorithm
- Calculate accuracy to estimate performance
 - Mean squared error = (true TM-score predicted TM-score)²