Исследование дискретного управления системой Дуффинга

Капитонова Е. И., студентка магистратуры кафедры теоретической кибернетики СПбГУ, st015539@student.spbu.ru

Аннотация

В работе исследуется проблема синхронизации хаотической системы Дуффинга и заданной эталонной системы. Рассматривается решение этой задачи с помощью двух видов управления: непрерывного и дискретного. Было доказано, что дискретное управление, как и непрерывное, решает поставленную задачу. Также была показана зависимость качества синхронизации этих двух систем с помощью дискретного управления от выбранного шага дискретизации. Предлагаются результаты моделирования, подтверждающие полученный теоретически результат.

Введение

Рассматривается задача дискретного управления нелинейным дифференциальным уравнением 2-го порядка (моделью Дуффинга), описывающим ряд физических систем [3], например, движение частицы в плазме, динамику дефекта в твердом теле или, в большем масштабе, динамику продольного изгиба балки. При некоторых условиях система обладает хаотическим поведением. Исследуется возможность синхронизации системы Дуффинга с некоторой непрерывной эталонной системой. Ранее [1] было доказано, что с помощью непрерывного управления можно синхронизировать указанные системы. Однако при реализации на компьютере управление всегда дискретно. Поэтому важно найти условия, при которых дискретизованное управление также решает поставленную задачу.

Постановка задачи

Рассматривается уравнение Дуффинга с управлением:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -p_1 x_1 - x_1^3 - p x_2 + q \cos(\omega t) + u + f(t), \end{cases}$$
 (1)

где u-управление.

Эталонная модель, к которой хотим с помощью управления привести (1):

$$\begin{cases} \dot{x}_{1m} = x_{2m} \\ \dot{x}_{2m} = -p_1 x_{1m} - x_{1m}^3 - p x_{2m} + q_m \cos(\omega t). \end{cases}$$
 (2)

Цель управления при этом: $\|x_1(t)-x_{1m}(t)\|\to 0, \|x_2(t)-x_{2m}(t)\|\to 0$ при $t\to\infty$. В таком случае поведения управляемой модели и эталонной совпадают.

Будем рассматривать разность (1) и (2):

$$\begin{cases} \dot{e}_1 = e_2 \\ \dot{e}_2 = -p_1 e_1 - e_1^3 - p e_2 + (q - q_m) \cos(\omega t) - 3x_1 x_{1m} e_1 + u + f(t), \end{cases}$$
(3)

где $e_1 = x_1 - x_{1m}$, $e_2 = x_2 - x_{2m}$ и управление

$$u = -Ke_1 + 3x_1x_{1m}e_1 + (q_m - q)\cos(\omega t)$$
(4)

— предложено в [1], а $|f(t)| \leq \Delta_f$ — возмущение. Разность (3) будем называть уравнением ошибки.

Рассмотрим две системы вида (3): с непрерывным управлением

$$\dot{e}(t) = A(e(t), t) + u(t) \tag{5}$$

и с дискретным управлением

$$\dot{e}(t) = A(e(t), t) + u(t_k), \tag{6}$$

где $t_k=k\Delta t_k,\,\Delta t_k=t_{k+1}-t_k$ — шаг дискретизации и $k=0,1,\ldots$

Функция Ляпунова для системы Дуффинга с непрерывным управлением

Рассмотрим функцию Ляпунова для системы (5) [1].

$$V(e) = \frac{1}{2} \left((K + p_1)e_1^2 + \frac{1}{2}e_1^4 + e_2^2 \right).$$

$$\dot{V}(e) = -pe_2^2 + f(t)e_2.$$
(7)

Утверждение 1. Для любых положительных α_0 и α_1 таких, что

$$\alpha_1 > 2p, \alpha_0 > \frac{\Delta_f^2}{2p\alpha_1}$$

выполняется неравенство

$$\dot{V}(e) \le -\alpha_1 V(e) + \alpha_0. \tag{8}$$

Из этого следует, что при $t \to \infty$

$$V \le \frac{\alpha_1}{\alpha_0}$$
.

Обозначим $D=\{V\leq \frac{\alpha_1}{\alpha_0}\}$. Вне D известно, что $\dot{V}<0$, то есть V убывает и попадает в D, но покинуть D уже не сможет.

Утверждение 2. Система с непрерывным управлением (5) однажды попадает в область D и больше не покидает ее.

Возьмем некое малое $\delta > 0$.

$$V \le \frac{\alpha_1}{\alpha_0} + \delta \tag{9}$$

Теорема 1. Для некоторого положительного δ такого, что

$$\delta > \frac{1}{2\alpha_0} \Delta t_k \max_t \ddot{V}(t)$$

существует Δt_k такое, что (6) попадет в область $D_\delta=\{V\leq \frac{\alpha_1}{\alpha_0}+\delta\}$ и не покинет ее.

Получается, что размер области D_{δ} , которую можно назвать областью ошибки, можно регулировать, выбирая α_0 , α_1 и Δt_k .

Результаты моделирования

Для моделирования использовались параметры K=4, p=0.4, $p_1=-1.1$, $\omega=1.8$, q=1.8, $q_m=2.1$, время T=1000. Начальные условия $x_1(0)=x_{1m}(0)=x_{2m}(0)=0$, $x_2(0)=2$.

Рис. 1: Эталонная модель

Система Дуффинга с непрерывным управлением

Рис. 2: Система Дуффинга с непрерывным управлением

Рис. 3: Разность системы Дуффинга с непрерывным управлением и эталонной модели

Система Дуффинга с дискретным управлением

Будем рассматривать управление (4) такое, что при $t_k \leq t < t_{k+1}$: $u(t) = -Ke_1(t_k) + 3x_1(t_k)x_{1m}(t_k)e_1(t_k) + (q_m-q)\cos(\omega t_k)$ с разными шагами дискретизации Δt_k .

Рис. 4: Система Дуффинга с дискретным управлением с шагом 0.001

Рис. 5: Разность системы Дуффинга с дискретным управлением с шагом 0.001 и эталонной моделью

Рис. 6: Разность системы Дуффинга с дискретным управлением с шагом 0.01 и эталонной моделью

Рис. 7: Увеличенный график разности системы Дуффинга с дискретным управлением с шагом 0.1 и эталонной моделью

Таким образом моделирование подтверждает теоретический результат. Дискретное управление системой Дуффинга, как и непрерывное, решает поставленную задачу синхронизации. При этом выбор шага дискретизации влияет на итоговую ошибку.

Заключение

В результате в работе теоретически и с помощью компьютерного моделирования в Matlab показано, что актуальная проблема синхронизации системы Дуффинга и эталонной модели может быть решена посредством дискретного варианта предложенного в [1] управления. Также получена зависимость качества синхронизации от шага дискретизации управления. Таким образом поставленная изначально задача была выполнена.

Литература

[1] Alexander L. Fradkov, Alexander Yu. Pogromsky. Speed Gradient Control of Chaotic Continious-Time Systems. IEEE Transactions on Circuits and Systems — I: Fundamental Theory and Applications, 1996;3(11):907–913.

- [2] Д. П. Деревицкий, А. Л. Фрадков. Прикладная теория дискретных адаптивных систем управления; "Наука,", 1981.
- [3] Ivana Kovacic, Michael J Brennan. The Duffing Equation: Nonlinear Oscillators and their Behaviour; John Wiley & Sons, 2011.
- [4] А. Л. Фрадков. Кибернетическая физика: принципы и примеры. СПб.: Наука, 2003.