Harmonic Analysis

Ikhan Choi

July 24, 2022

Contents

Ι	Fourier analysis	3
1	Fourier series 1.1 Fourier series in L^p spaces	4 4
2	Fourier transform2.1 Fourier transform in L^p space2.2 Tempered distributions	5 5 5
3		6
II	Singular integral operators	7
4	Caldéron-Zygmund theory 4.1 Hilbert transform 4.2 Calderón-Zygmund operators of convolution type 4.3 L²-boundedness of truncated integrals 4.4 Calderón-Zygmund operators of non-convolution type	8 8 8 9
5	Littlewood-Paley theory5.1Littlewood-Paley decomposition5.2Multiplier theorems	10 10 10
6		11
III	I Oscillatory integral operators	12
7	Stationary phase	13
8	Restriction and Kekeya problems	14
9	Dispersive equations	15
IV	/ Pseudo-differential operators	16
10) 10.1	17 17

11 Semiclassical analysis	
11.1 Quantization	18
12 Microlocal analysis	19

Part I Fourier analysis

Fourier series

1.1 Fourier series in L^p spaces

1.1.

$$\|\widehat{f}\|_{\ell^1(\mathbb{Z})} \lesssim \|f\|_{W^{1,1+\varepsilon}(\mathbb{T})}.$$

Inversion theorem is an approximation problem given by $\mathcal{F}^*\mathcal{F} = \lim_{n \to \infty} \mathcal{F}_n^*\mathcal{F}$. The condition $\widehat{f} \in \ell^1(\mathbb{Z})$ is a condition just for defining $\mathcal{F}^*\widehat{f}$ without using distribution theory, and it does not affect the inversion phenomena. The approximation, in other words, can be seen as an extension method for $\mathcal{F}^*:\ell^1(\mathbb{Z})\to C(\mathbb{T})$ on $c_0(\mathbb{Z})$. Note that \mathcal{F}_n^* on $c_0(\mathbb{Z})$ cannot be bounded directly without distribution theory, but $\mathcal{F}_n^*\mathcal{F}$ on $L^p(\mathbb{T})$ can be bounded well.

- If \mathcal{F}_n^* is the standard partial sum, then $\mathcal{F}_n^*\mathcal{F}$ is the Dirichlet kernel.
- If \mathcal{F}_n^* is the Cesàro mean, then $\mathcal{F}_n^*\mathcal{F}$ is the Fejér kernel.
- If \mathcal{F}_r^* is the Abel sum, then $\mathcal{F}_r^*\mathcal{F}$ is the Poisson kernel.
- In Fourier transform, we often use the Gauss-Weierstrass kernel.

The injectivity of \mathcal{F} is not an easy problem, which comes from the inversion theorem.

1.2 Pointwise convergence of Fourier series

BV function: Dini, Jordan's criterion

1.2 (Riemann localization principle).

Exercises

- 1.3 (Gibbs phenomenon).
- 1.4 (Du Bois-Reymond function).

Fourier transform

2.1 Fourier transform in L^p space

2.1 (Riemann-Lebesgue lemma).

Lp extension

Gaussian function computation: differential equation method, contour integral method inversion theorem

2.2 (Plancherel theorem).

2.2 Tempered distributions

2.3 (Cauchy principal value). indented contour, imaginary shift, Feynman's trick

Exercises

2.4 (Sampling theorem).

$$\mathcal{F}\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(\xi) = \operatorname{sinc}(\xi/2)$$

 $\operatorname{sinc} \in L^{1+\varepsilon}(\mathbb{R}).$

2.5 (Poisson summation formula).

2.6 (Uncertainty principle).

Problems

1. Find all $\alpha > 0$ such that

$$\lim_{x \to \infty} x^{-\alpha} \int_0^x f(y) \, dy = 0$$

for all $f \in L^3([0, \infty))$.

Part II Singular integral operators

Caldéron-Zygmund theory

4.1 Hilbert transform

4.2 Calderón-Zygmund operators of convolution type

4.1 (Calderón-Zygmund decomposition of sets). Let $E_n f$ be the conditional expectation with repect to the σ -algebra generated by dyadic cubes with side length 2^{-n} . Let $Mf = \sup_n E_n |f|$ be the maximal function, and let $\Omega := \{x : Mf(x) > \lambda\}$ for fixed $\lambda > 0$. For $x \in \Omega$ let Q_x be the maximal dyadic cube such that $x \in Q_x$ and

$$\frac{1}{|Q_x|} \int_{Q_x} |f| > \lambda.$$

- (a) $\{Q_x : x \in \Omega\}$ is a countable partition of Ω .
- (b) We have an weak type estimate $|\Omega| \leq \frac{1}{\lambda} ||f||_{L^1}$.
- (c) $||f||_{L^{\infty}(\mathbb{R}^d\setminus\Omega)} \leq \lambda$.
- (d) For $x \in \Omega$

$$\frac{1}{|Q_x|} \int_{Q_x} |f| \le 2^d \lambda.$$

4.2 (Calderón-Zygmund decomposition of functions). Let

$$g(x) := \begin{cases} |f(x)| & , x \notin \Omega \\ \frac{1}{|Q_x|} \int_{Q_x} |f| & , x \in \Omega \end{cases}$$

and $b_i := (|f| - g)\chi_{Q_i}$ so that |f| = g + b where $b = \sum_i b_i$.

- (a) $||g||_{L^1} = ||f||_{L^1}$ and $||g||_{L^\infty} \lesssim_d \lambda$.
- (b) $||b||_{L^1} \le 2||f||_{L^1}$ and $\int b_i = 0$.

Proof. \Box

4.3 (Calderón-Zygmund operators of convolution type). Let $T: C_c^{\infty}(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ be a *singular* integral operator of convolution type in the sense that there is $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \cap \mathcal{D}'(\mathbb{R}^d)$ such that

$$Tf(x) = \int K(x - y)f(y) \, dy$$

for all $f \in \mathcal{D}(\mathbb{R}^d)$, whenever $x \notin \text{supp } f$. We say T is called a *Calderón-Zygmund* operator if

(i) T is L^2 -bounded: we have

$$||Tf||_{L^2} \lesssim ||f||_{L^2},$$

(ii) T satisfies the Hörmander condition: we have

$$\int_{|x|>2|y|} |K(x-y)-K(x)| \, dx \lesssim 1$$

for every y > 0.

Let $f = g + b = g + \sum_i b_i$ be the Calderón-Zygmund decomposition, and let $\Omega^* := \bigcup_i Q_i^*$ where Q_i^* is the cube with the same center as Q_i and whose sides are $2\sqrt{d}$ times longer.

(a) The L^2 -boundedness implies

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(b) The Hörmander condition implies

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(c)

Proof. (a) Using the Chebyshev inequality and the Hölder inequality,

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \le \frac{4}{\lambda^2} ||Tg||_{L^2(\Omega)}^2 \le \frac{4C}{\lambda^2} ||g||_{L^2(\Omega)}^2 \le \frac{4C}{\lambda^2} ||g||_{L^1(\Omega)} ||g||_{L^{\infty}(\Omega)}.$$

(b) Write

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \leq \frac{2}{\lambda} \int_{\mathbb{R}^d \setminus \Omega^*} |Tb(x)| \, dx \leq \frac{2}{\lambda} \sum_i \int_{\mathbb{R}^d \setminus Q_i^*} |Tb_i(x)| \, dx.$$

Since $x \in \mathbb{R}^d \setminus Q_i^*$ does not belong to supp $b_i \subset Q_i$ and $\int b_i = 0$, we have

$$Tb_i(x) = \int_{O_i} K(x - y)b_i(y) \, dy = \int_{O_i} [K(x - y) - K(x)]b_i(y) \, dy,$$

and

$$\int_{\mathbb{R}^d \setminus Q_i^*} |Tb_i(x)| \, dx = \int_{Q_i} |b_i(y)| \int_{\mathbb{R}^d \setminus Q_i^*} |K(x-y) - K(x)| \, dx \, dy \lesssim ||b_i||_{L^1}.$$

(We need to show it is valid even though b_i is not smooth)

(c)

4.3 L^2 -boundedness of truncated integrals

4.4 Calderón-Zygmund operators of non-convolution type

standard kernels

Exercises

4.4 (Gradient size condition). Let $|\nabla K(x)| \lesssim \frac{1}{|x|^{d+1}}$ for $x \neq 0$. Then, convolution with K is a Calderón-Zygmund operator.

9

Littlewood-Paley theory

- 5.1 Littlewood-Paley decomposition
- 5.2 Multiplier theorems

Part III Oscillatory integral operators

Stationary phase

Restriction and Kekeya problems

Dispersive equations

Part IV Pseudo-differential operators

10.1

 $S^m_{\rho,\delta}$

$$|D_x^{\alpha} D_{\xi}^{\beta} a(x,\xi)| \lesssim \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}.$$

Let a be a symbol on $M = \mathbb{R}^d_x \times \mathbb{R}^d_\xi$. Then, the associated ΨDO is

$$T_a\psi(x):=\frac{1}{(2\pi)^d}\int\int e^{i\langle x-y,\xi\rangle}a(x,\xi)\psi(y)\,dy\,d\xi.$$

For parameters $0 \le \lambda \le 1$ and h > 0, let

$$\widehat{a}\psi(x) := \frac{1}{(2\pi h)^d} \int \int e^{\frac{i}{h}\langle x-y,\xi\rangle} a((1-\lambda)x + \lambda y,\xi)\psi(y) \, dy \, d\xi.$$

For example, regardless of h and λ ,

$$\hat{\xi}\psi(x) = \frac{h}{i}\psi'(x)$$

and

$$\hat{H}\psi(x) = -h^2 \Delta \psi(x) + V(x)\psi(x),$$

where $V: \mathbb{R}^d_x \times \mathbb{R}^d_\xi \to \mathbb{R}$ and $H: \mathbb{R}^d_x \times \mathbb{R}^d_\xi \to \mathbb{R}$ such that

$$H(x,\xi) := |\xi|^2 + V(x).$$

$$\frac{d}{dt}a(t) = \{a(t), H\} = X_H a(t)$$

$$\frac{d}{dt}\hat{a}(t) = \frac{d}{dt}e^{\frac{i}{h}t\hat{H}}\hat{a}e^{-\frac{i}{h}t\hat{H}} = -\frac{i}{h}[\hat{a}(t), \hat{H}]$$

Semiclassical analysis

11.1 Quantization

11.1 (Composition of Weyl quantization).

Microlocal analysis