Review of Operating System Principle

Li-Xudong

Software College, Nankai Univ.

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

What is an operating system?

leexudong@nankai.edu.cn

OS Overview

- Computer hardware overview
- What is an operating system?
- The evolution of operating systems
- Operating system concepts
 - Process, address spaces, file, input/output
 - Protection, shell
 - -System calls
- The operating system categories
 - Batch, Interactive, Real-Time
- Operating system structures
- Operating system Evaluation

Key to Computer System Overview

- Computer hardware components
- John von Neumann Architecture
- CPU, Instruction
 - Kernel Mode: Privileged instruction
 - User Mode: Unprivileged instruction
- Memory Storage Architecture
- Cache Memory
- Bus
- Clock
- I/O Device
 - Disk, Tape, IDE, SATA, USB, SCSI
- Booting Operating System

leexudong@nankai.edu.cn

Key to Cont., Operating System Overview

- Viewpoints of OS
 - -Extended Machine
 - -Resource Manager
- OS development driving force
- Multi-programming, Time-sharing, Concurrent, Parallel, Multi-cores, Multi-processors
- Operating System Functions
- OS Characteristics
 - Concurrent, Shareable, Virtualization, Asynchronous
- System call, Trap, Library

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Processes And Threads

- Process Model
- Thread Model
- Process/Thread Scheduling
- Inter-Process Communication (IPC)
- Deadlock

leexudong@nankai.edu.cn

Kev to Process/Thread Model

- Process Running
 - Sequential Processes

 - Directed Acyclic Graph (DAG)
- Process Model
 - What is Process?
 - Process Characteristics
 - Dynamic, Concurrent,
 - Independence, Asynchronous
 - Process Creation, Termination, State
- Process Hierarchies
- Process Control Block (PCB), PID

leexudong@nankai.edu.cn

Key to Process/Thread Model

- Thread Model
 - What is Thread?
 - Thread Creation, Termination, State
- Thread Hierarchies
- Thread Control Block, TID, Private Stack
- Implementing Threads
 - User-level Thread, Kernel-level Thread
 - Hybrid Thread
 - Comparison of User-level and Kernel-level Thread
- Scheduler Activations
- Pop-up Threads
- Making Single-Threaded Code *Multithreaded*
- Comparison of processes and threads

Key to Scheduling

- 3+1 Scheduling
 - High Level Scheduling (Job)
 - Intermediate-Level Scheduling (Memory)
 - Low Level Scheduling (Process/thread)
- Process/Thread Scheduling
 - Process Behavior: Compute-bound, I/O-bound
 - Scheduler
 - Scheduling algorithm

 - When to Schedule?
- Scheduling Algorithm Goals

 - Fairness, Policy enforcement, Balance Throughput, Turnaround Time, CPU utilization
 - Response Time, Proportionality
 - Meeting deadlines, Predictability

Key to Scheduling

- Scheduling in Batch Systems
 - First Come First Served
 - Shortest Job First, Shortest Remaining Time
- Scheduling in Interactive Systems
 - Round-Robin Scheduling

 - Priority Scheduling, Multiple Queues Shortest Process Next, Guaranteed Scheduling
- Lottery Scheduling, Fair-Share Scheduling
 Scheduling in Real-Time Systems
 - Hard real time, soft real time Periodic, aperiodic
- Policy versus Mechanism
- Thread Scheduling

leexudong@nankai.edu.cn

Cont..

Key to IPC

- Race Conditions
- Critical Regions
- Mutual Exclusion with Busy Waiting
 - Disabling Interrupts
 - Lock Variables

 - Strict Alternation Peterson's Solution
 - TSL Instruction
 - Swap Instruction
- Primitives(原语):
 - -Sleep and Wakeup
- Priority Inversion Problem(优先权倒置)

leexudong@nankai.edu.cn

Cont.,

Cont.,

Kev to IPC

- Mutual Exclusion
 - Semaphore, Semaphores Set
 - Mutex
 - Event Counter
 - -Condition Variable
 - Monitor
 - Message Passing
- Synchronization
 - -Barriers
- Data Communication
- Pipe, Shared Memory, Message, Socket, Remote Procedure Call

leexudong@nankai.edu.cn

Kev to IPC

- Classical IPC Problems
 - -The Producer and Consumer Problem
 - (The Bounded-Buffer Problem)
 - -The Dining Philosophers Problem
 - -The Readers and Writers Problem
 - Readers Have Priority
 - Writers Have Priority
 - -The Sleeping Barber Problem

leexudong@nankai.edu.cn

Cont..

Key to Deadlock

- What is Deadlock?
- Resource
 - Preemptable and Nonpreemptable Resource
- Four Necessary Conditions for Deadlock
 - Mutual exclusion, Hold and wait, No preemption, *Circular wait*
- Deadlock Modeling: Resource allocation GraphsThe Ostrich(鸵鸟) Algorithm
- Deadlock Detection
 - Detection with One Resource of Each Type
 - Detection with Multi-Resources of Each Type
- Deadlock Recovery
 - Preemption, Rollback, Killing Process

Key to Deadlock

- Deadlock Avoidance
 - Resource Trajectories

 - -Banker Algorithm
- Deadlock Prevention
 - Attacking One of the Four Conditions
 - SPOOLing, Order resources numerically
- Other Issues
 - Two-Phase Locking
 - Non-resource Deadlock: semaphore
 - Starvation
 - Comparison of Deadlock and Starvation
 - Live Lock

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Memory Management

- Program Loading and Linking
- Memory hierarchy
- Memory Address Space
- Basic Memory Management
- Virtual Memory Management
- Paging System
 - Page Replacement Algorithms
 - Thrashing(抖动): Causes, How to Avoidance Design Issues for Paging System Implementation Issues for Paging System
- Segmentation System

leexudong@nankai.edu.cn

Key to Basic Memory Management

- Partition-Based Memory Management
 - Fixed Partition, Dynamic Partition
 - Relocation, Protection
 - *Dynamic Partition Allocation Algorithm
 - Free Partitions Management: Linked List
- Fragmentation
- Memory Compaction
- Swapping(交换), Overlay(覆盖)
- Basic Paging Management
 Page table, TLB, Multi-Level Page table
 Inverted Page Table
- Basic Segmentation Management
 - Segmentation table

leexudong@nankai.edu.cn

Key to Dynamic Partition Allocation Algorithm

- First Fit Allocation Algorithm
- Next Fit Allocation Algorithm
- Best Fit Allocation Algorithm
- Worst Fit Allocation Algorithm
- Buddy(伙伴式)Allocation Algorithm
- Quick Fit Allocation Algorithm

leexudong@nankai.edu.cn

Key to Virtual Memory Management

- Principle of Locality
 - Time Locality
 - Space Locality
- What is virtual memory?
 - -Required Paging
 - Required Segmentation
- MMU: Memory Management Unit
- Virtual Memory Characteristics
 - -Discrete, Many times, Swap in out, Virtual
 - Required Paging System
 - Required Segmentation System

Key to Page Replacement Algorithms

- The Optimal Page Replacement Algorithm
- The Not Recently Used Page Replacement Algorithm
- The First-In, First-Out Page Replacement Algorithm
- The Second-Chance Page Replacement Algorithm
- The Clock Page Replacement Algorithm
 The Least Recently Used (LRU) Page Replacement Algorithm
- Simulating LRU in Software
- The Working Set Page Replacement Algorithm
 The WSClock Page Replacement Algorithm
- Belady's Anomaly
- Stack-like Page Replacement Algorithm

leexudong@nankai.edu.cn

Kev to Design Issues For Paging Systems

- Local versus Global Allocation Policies
- Load Control
- Page Size
- Separate Instruction and Data Spaces
- Shared Pages
- Shared Libraries
- Mapped Files
- Cleaning Policy
- Virtual Memory Interface

leexudong@nankai.edu.cn

Key to Implementation Issues For Paging System

- Operating System Involvement with Paging
- Page Fault Handling
- Instruction Backup
- Locking Pages in Memory
- Backing Store
- Separation of Policy and Mechanism

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

File Systems

- - Logical Structure, Physical Structure(Index-node) File Control Block(FCB), file descriptor, handle
- Directories
 - Tree-Structured Directory
- File Share, File Protection, File ConfidentialityFile System Implementation
- - VFS, Log-Structured File System
- Storage Management
 - DISK, CD-ROM
- File System Backup
- File System Reliability
- RAID: RAIDO, RAID1, RAID5, RAID6, RAID10
- File System Performance
- Example File Systems

leexudong@nankai.edu.cn

Key to Storage Management

- Block Size
- Disk Quotas
 - -Soft file limit
 - -Hard file limit
- Free Space Management File Using Free Block
 - -Bitmap
 - -Free Block linked
 - Group Free Blocks linked (成组链接法)

Key to Disk

- Disk Hardware
- RATD
 - $-RAID 0, 1, 5, 1+0, \dots$
- Disk Formatting
- Disk Arm Scheduling Algorithms
 - First-Come First-Served (FCFS)
 - Shortest Seek First (SSF)
 - Elevator(电梯) Algorithm (SCAN)
- Error Handling

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Input/Output

- I/O Management Task
- Principles of I/O hardware
- I/O Architecture, I/O Devices, Device Controllers
- Principles of I/O Software
 - Goals of the I/O Software
 - Ways of I/O Controlled
- I/O Software Layers
- (Disks)
- Clocks
- Power Management

leexudong@nankai.edu.cn

Key to Goals of I/O Software

- device independence
- uniform naming
- error handling
- synchronous vs. asynchronous
- buffer
- shareable vs. dedicated devices

leexudong@nankai.edu.cn

Key to Ways of I/O Controlled

- Programmed I/O
- Interrupt-Driven I/O
- I/O Using DMA
- I/O Using Channel
- Comparison of Above Four Ways

leexudong@nankai.edu.cn

Key to I/O Software Layers

- Interrupt Handlers
- Device Drivers
 - -Block Device, Character Device
- Device-Independent I/O Software
 - -Uniform Interfacing for Device Drivers
 - -Buffering
 - Error Reporting
 - Allocating and Releasing Dedicated Devices
- User-Space I/O Software
 - SPOOLing

leexudong@nankai.edu.cn

Key to Interrupt

- Interrupt Concept
 - Interrupt Controller
 - Interrupt Event
 - Outer Interrupt
 Inter Interrupt (trap)
 Interrupt Signal, PSW, Interrupt Vector
 Precise Interrupt, Imprecise Interrupt
- Interrupt Processing Disabled Interrupt

 - Interrupt Mask
 - Interrupt Priority
 - Interrupt Handler

Key to Clock

- Clock Hardware
 - -Crystal Oscillator
 - One-shot mode
 - Square-wave mode
 - -UTC: Universal Coordinated Time
- Clock Software
 - -Clock functions
- Soft Timer

leexudong@nankai.edu.cn

Key to User Interfaces

- Input Software
- -Keyboard Software
 - Canonical mode
 - Non-canonical mode
 - Mouse Software
- Output Software
 - Text Windows
 - GUT
 - The X Window System
 - Microsoft Windows
- Terminals
- THIN Clients

leexudong@nankai.edu.cn

Key to Power Management

- Hardware Issues
 - Disposable, Rechargeable
- Operating System Issues
 - The Display
 - The Hard Disk
 - The CPU, GPU
 - The Memory
 - Wireless Communication
 - Thermal(热) Management
 - Battery Management
- OS Driver Interface
 - Advanced Configuration and Power Interface, ACPI
- Application Program Issues
 - Degrade Performance to Save Energy

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- •Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Advanced Topics: Security

- The Security Environment
- Threats, Intruders, Accidental Data Loss Basics of Cryptography
- Protection Mechanisms
- Authentication
- Insider Attacks
 - Logic Bombs, Trap Doors, Login Spoofing
- Exploiting Code Bugs
 - Buffer Overflow Attacks, Format String
- Attacks,... Malware(恶意软件)
 - Trojan Horses, Viruses, Worms, Spyware
- Defenses

Security: Kev to Protection Domain

- Protection Domain
 - -Object
 - -Access Right
 - -Domain
- Principle
 - -Read to Know
- Access Matrix
 - Access Control List (ACL, 访问控制表)
 - -Access Capabilities(访问权限表)

leexudong@nankai.edu.cn

Advanced Topics: Virtualization and Cloud

- Requirements for Virtualization
- Sensitive Instructions
- Type 1 and Type 2 Hypervisors
- Key Technologies of Virtualization
- Virtual Appliances
- Cloud as a Service
- Cloud Computing

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- OS Case Studies

leexudong@nankai.edu.cn

Operating System Design

- Goals of OS Design
- Why is it hard to design an OS?
- Operating System Standards
- Interface Design
- Implementation
- Performance
- Evaluation of the operating system
- Project Management
- Trends in Operating System Design

leexudong@nankai.edu.cn

Key to Operating System Design

- Design & Runtime Architecture
 - Monolithic Systems
 - Layered Systems
 - Micro kernels
 - Client-Server Model
 - Object-Oriented
 - Exokernels
 - Monitor
 - Virtual Machines

leexudong@nankai.edu.cn

Cont..

Key to Operating System Design

- Implementation
 - Mechanism versus Policy
 - Static Versus Dynamic Structure
- Performance
 - Space-Time Trade-offs
- Evaluation of the operating system
 - Performance
 - Reliability, Availability, Maintainability MTBF 平均故障时间 MTTR 平均故障修复时间
 - Convenience
 - Portability

Key to Operating System Design

- Trends in OS Design
 - Multi-core
 - Virtualization
 - Large Address Space, Network
 - Parallel and Distributed Systems
 - Multimedia
 - Battery-Powered Computers
 - Embedded Systems
 - Sensor Nodes

leexudong@nankai.edu.cn

Key to Operating System Design

- Project Management
 - The Mythical Man Month No Silver Bullet 银弹

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design

leexudong@nankai.edu.cn

leexudong@nankai.edu.cn

Cont.,

OS Case Studies

- Linux
- Windows Research Kernel
- Open Solaris
- FreeBSD
- MacOS
- Android
- iOS
- . . .