

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 40V, 10A, $R_{DS(ON).max}$ =16.5m Ω @ V_{GS} =10V
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 40V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & 16.5 m\Omega \\ I_D & 10A \end{array}$

SOP-8 Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{ extsf{DSS}}$	40	V
Continuous drain current (T _A = 25°C)		10	A
Continuous drain current (T _A = 100°C)	l _D	5.3	А
Pulsed drain current ¹⁾	І _{рм}	40	А
Gate-Source voltage	V_{GSS}	±20	V
Power Dissipation (T _A = 25°C)	P _D	2	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	R _{θJA}	62.5	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM10N04-S8	SOP-8	VSM10N04-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	1			I	<u> </u>	
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0	1.5	2.0	V
Drain-source leakage current		V _{DS} =40 V, V _{GS} =0 V, T _J = 25°C			1	μA
	I _{DSS}	V _{DS} =32 V, V _{GS} =0 V, T _J = 125°C			10	μА
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0V			-100	nA
Drain-source on-state resistance	_	V _{GS} =10 V, I _D =10A		13.5	16.5	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =5A		18	23	mΩ
Forward transconductance	g fs	V _{DS} =5 V , I _D =10A		35		S
Dynamic characteristics						
Input capacitance	C _{iss}			1060		pF
Output capacitance	Coss	V _{DS} = 20 V, V _{GS} = 0 V, F = 1MHz		126		
Reverse transfer capacitance	C _{rss}			101		
Turn-on delay time	t _{d(on)}			11.8		ns
Rise time	t _r	V _{DD} = 20V,V _{GS} =10V, I _D =10A		18.0		
Turn-off delay time	t _{d(off)}			46.6		
Fall time	t _f			15.7		
Gate charge characteristics						
Gate to source charge	Q _{gs}			5.8		
Gate to drain charge	Q _{gd}	V_{DS} =20V, I_{D} =10A, V_{GS} = 10 V		3.0		nC
Gate charge total	Qg			18.1		1
Drain-Source diode characteristic	s and Maxi	mum Ratings				1
Continuous Source Current	Is				10	А
Pulsed Source Current	I _{SM}]			40	А
Diode Forward Voltage ²⁾	V _{SD}	V _{GS} =0V, I _S =10A, T _J =25℃			1.2	V
Reverse Recovery Time	t _{rr}	I _S =10A,di/dt=100A/us, T _J =25℃		30.4		ns
Reverse Recovery Charge	Qrr			9.6		nC

Notes:

^{1:} Repetitive Rating: Pulse width limited by maximum junction temperature.

^{2:} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

