ADS FINAL PROJECT

TEAM 8

RUI SHEN
HANAN ALSALAMAH
DIVYA MALVIYA
ADBHUT SANGAL

OBJECTIVES

PART 1:

Run neural networks on Prudential Insurance dataset

PART 2:

Fit Convolutional Neural Network (CNN) to Semeion Handwritten Digit Data by finding the optimum number of hidden layers and related nodes

PART 1

NEURAL NETWORK ON PRUDENTIAL DATASET

NEURAL NETWORKS

Neural Network is a non-linear model characterized by an activation function, which is used by interconnected information processing units to transform input into output.

The layers:

The input layer connects with hidden layer/s, which in turn connects to the output layer.

PRUDENTIAL DATA ANALYSIS

- ▶ The data contains 110 categorical variables, 13 continuous variables and 5 discrete variables
- Categorical variables contain a finite number of categories, such as (Product_Info_2)
- Discrete variables are numeric variables that have a countable number of values between two values, such as (Medical_History_10)
- Continuous variables are numeric variables that have an infinite number of values between two
 values, such as (BMI)

PREDICTIVE VARIABLES

description of the variables

DATA PREPARATION AND TRANSFORMATION

- Removing the columns that have more than or equal 70% of null values; and removing unnecessary Id column
- Replacing the null values in each column with the computed mean of that column
- Setting categorical columns to as a factor to get factors with n levels
- Converting the categorical columns into dummy variables using 1 to C method
- Fitting the linear regression model and taking the significant variables only

MODEL 1: NEURAL NETWORK MULTINOMIAL CLASSIFICATION

 Converting each level of "Response" categorical column into dummy variables using 1 to C method

```
# encoding/converting each level of "Response" categorical column to a separate column (converting the categorical columns into dummy variables using 1 to C method)
library(nnet)
Prudential_Data <- cbind(Prudential_final_Data[1:64], class.ind(as.factor(Prudential_final_Data$Response)))
# Set labels name
names(Prudential_Data) <- c(names(Prudential_final_Data)[1:64], "Response_1", "Response_2", "Response_4", "Response_5", "Response_6", "Response_6", "Response_7", "Response_8")</pre>
```

Scaling the 10 Continuous variables using Min-Max Normalization to be between 0 and 1

```
# Scaling the 10 Continuous variables using Min-Max Normalization to be between 0 and 1 scale <- function(x) { (x - min(x))/(max(x) - min(x)) } Prudential_Data[, 1:10] <- data.frame(lapply(Prudential_Data[, 1:10], scale))
```

Splitting dataset into train and test datasets using sample function

```
# running sample function to select randomly 80% index numbers of the dataset and u
sample_index <- sample(1:nrow(Prudential_Data),round(0.8*nrow(Prudential_Data))) #1
Prudential_train <- Prudential_Data[sample_index,] #80% of dataset is train data
Prudential_test <- Prudential_Data[-sample_index,] #20% of dataset is test data</pre>
```

MODEL 1: NEURAL NETWORK MULTINOMIAL CLASSIFICATION

▶ Fitting Neural Network on train dataset by choosing the hidden layer to be ¾ of the input size.

```
n <- names(Prudential_train)
f <- as.formula(paste("Response_1 + Response_2 + Response_3 + Response_4 + Response_5 + Response_6 + Response_7 + Response_8 ~",
paste(n[!n %in% c("Response_1", "Response_2", "Response_3", "Response_4", "Response_5", "Response_6", "Response_7", "Response_8")], collapse = " + ")))
#Fitting Neural Network model on train dataset
nn <- neuralnet(f,data=Prudential_train,hidden=c(27,15),linear.output=FALSE, act.fct = "logistic", err.fct ="sse", lifesign = "full", stepmax=1e6) # 'e'
# plot the neural network
plot(nn)</pre>
```

Plotting the results

MODEL 1: NEURAL NETWORK MULTINOMIAL CLASSIFICATION

- Computing predictions for multi-class classification.
- ▶ The typical approach is to have 'n' output neurons represent the different classes
- ▶ In the end, the neuron which has the highest prediction 'wins' and that class is predicted

```
pr.nn <- compute(nn,Prudential_test[,1:64])
# Extract results
pr.nn_ <- pr.nn$net.result</pre>
```

Computing the accuracy and the misclassification error

```
> #Computing accuracy
> actual_values <- max.col(Prudential_test[, 65:72]) # Find the maximum position for each row of a matrix.
> predicted_values <- max.col(pr.nn_) # Find the maximum position for each row of a matrix.
> Accuracy <- mean(predicted_values == actual_values)
> Accuracy
[1] 0.4
> #Computing Misclassification error
> Misclass_error <- 1-mean(predicted_values == actual_values)
> Misclass_error
[1] 0.6
```

MODEL 1: NEURAL NETWORK MULTINOMIAL CLASSIFICATION

Hidden Layers:

Hidden Layers	(27,15)	(23,19)
Accuracy	40%	41%
Misclassification Error	60%	59%

MODEL 2: NEURAL NETWORK REGRESSION

- Scale the dataset and split it into train and test data
- Set parameters and train the train dataset

Evaluate the performance

```
MSE.nn <- rmse(pr.nn - test.r); MAE.nn <- mae(pr.nn - test.r)
print(MSE.nn)
#[1] 2.320669455
print(MAE.nn)
#[1] 1.925377265</pre>
```

MODELS AND SUMMARY

Models	▼ hidden layer ▼ rep	▼ learningrate ▼ th	reshold algorithm	MSE ▼	MAE 🔻
model1	11	1 minus = 0.5, plus = 1.2	0.23 rprop+	2.320669455	1.925377265
model2	c(10,5)	1 minus = 0.5, plus = 1.2	0.15 rprop+	2.324929278	1.927565246
model3	c(8,5)	1 minus = 0.5, plus = 1.2	0.1 rprop+	2.322958041	1.926729142
model4	8	1 minus = 0.5, plus = 1.2	0.1 rprop+	2.322529671	1.927285048
model5	c(10,3)	10 0.005	0.003 backprop	3.384031069	2.340350218

DEMO PLOT OUTPUT

PART 2

CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK

Convolutional neural network is a class of deep, feed-forward artificial neural networks that has successfully been applied to analyzing visual imagery.

A CNN consists of an input and an output layer, as well as multiple hidden layers

The layers of a CNN typically consist of

- Convolutional Layer
- Pooling Layer
- Dropout Layer
- Fully connected Layer

SEMEION DATA ANALYSIS

- Data Set Characteristics: Multivariate
- Number of Instances: 1593
- Number of Attributes: 256
- Associated Tasks: Classification

1593 handwritten digits from around 80 persons were scanned, stretched in a rectangular box 16x16 in a gray scale of 256 values.

Then each pixel of each image was scaled into a boolean (1/0) value using a fixed threshold.

Each person wrote on a paper all the digits from 0 to 9, twice- first time in the normal way and the second time in a fast way

PROCESS AND CODE

- Setup keras environment in R
- Read semeion dataset
- Split into train and test dataset
- Add CNN layers

```
##Define a keras sequential model
model <- keras_model_sequential()</pre>
##Add CNN layer - our input is a 1D array
layer_conv_1d(model, nb_filters, kernel_size, padding='same', activation='relu',
              input_shape = input_shape) ###Convolutional layer1
layer_max_pooling_1d(model, pool_size) ###Pooling layer1
layer_conv_1d(model, nb_filters, kernel_size, activation='relu') ###Convolution layer2
layer_max_pooling_1d(model, pool_size) ###Pooling layer1
layer_dropout(model, 0.25) ###Dropout (Pervent overfitting)
layer_conv_1d(model, nb_filters, kernel_size, activation='relu') ###Convolution layer3
layer_max_pooling_1d(model, pool_size) ###Pooling layer3
layer_flatten(model) ###Always flatten the model before going into fully connected layer
layer_dense(model, 128, activation='relu')###Fully connected layer1
layer_dropout(model, 0.35) ###Dropout (Pervent overfitting)
layer_dense(model, 50, activation='relu')###Fully connected layer2
layer_dense(model, nb_classes, activation = 'softmax')##Fully connected layer3
#Check model summary
summary(model)
#Complile the model
compile(model, optimizer='RMSprop', loss='mean_absolute_error', metrics='accuracy')
#Train the model
fit(model, x_train, y_train, batch_size, epochs, validation_data=list(x_test, y_test))
```

SAMPLE OUTPUT

MODELS AND SUMMARY

model	model shape	▼ batch size ▼ nb filters	▼ epochs ▼	c1 ~	c2 v	c3 =	fc1	fc2	▼ fc3 ▼	compile optimizer	▼ compile loss	▼ d1 ▼ d	12 V acc	u train ac	ccu test
	1 c-c-mp-d-mp-f-fc-d-fc	4	32 2) relu	relu		relu	softmax		adadelta	categorical crossentropy	0.2	0.2	0.9939	0.9434
	2 c-c-mp-d-mp-f-fc-d-fc	8	32 2) relu	relu		relu	softmax		adadelta	categorical crossentropy	0.2	0.2	0.9937	0.956
;	3 c-c-mp-d-mp-f-fc-d-fc	12	32 2) relu	relu		relu	softmax		adadelta	categorical crossentropy	0.2	0.2	0.9922	0.9591
	4 c-c-mp-d-mp-f-fc-d-fc	24	32 2) relu	relu		relu	softmax		adadelta	categorical_crossentropy		0.2	0.9945	0.9497
	5 c-c-mp-d-mp-f-fc-d-fc	32	32 2	relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.2	0.9929	0.9497
	6 c-c-mp-d-mp-f-fc-d-fc	12	6 2) relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.2	0.9624	0.9403
1	7 c-c-mp-d-mp-f-fc-d-fc	12	12 2) relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.2	0.9804	0.9465
	8 c-c-mp-d-mp-f-fc-d-fc	12	16 2) relu	relu		relu	softmax		adadelta	categorical crossentropy	0.2	0.2	0.9969	0.9465
	9 c-c-mp-d-mp-f-fc-d-fc	12	24 2) relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.2	0.9914	0.9686
10	0 c-c-mp-d-mp-f-fc-d-fc	12	48 2) relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.2	0.9929	0.9591
1	1 c-c-mp-d-mp-f-fc-d-fc	256	48 3	5 relu	relu		relu	softmax		adadelta	categorical crossentropy	0.2	0.35	0.9663	0.956
1:	2 c-c-mp-d-mp-f-fc-d-fc	256	32 3	5 relu	relu		relu	softmax		adadelta	categorical crossentropy	0.2	0.35	0.96	0.9528
13	3 c-c-mp-d-mp-f-fc-d-fc	256	24 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9459	0.9245
14	4 c-c-mp-d-mp-f-fc-d-fc	1275	48 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.8365	0.84
15	5 c-c-mp-d-mp-f-fc-d-fc	1275	24 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.84	0.8774
16	6 c-mp-d-c-mp-f-fc-d-fc	128	32 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.978	0.9434
1	7 c-mp-d-c-mp-f-fc-d-fc	128	48 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9851	0.9528
18	B c-mp-d-c-mp-f-fc-d-fc	256	32 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9616	0.9497
19	9 c-mp-d-c-mp-f-fc-d-fc	256	48 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9678	0.9371
20	0 c-mp-d-c-mp-f-fc-d-fc	12	24 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9851	0.9497
2	1 c-mp-d-c-mp-f-fc-d-fc	24	24 3	5 relu	relu		relu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9867	0.9528
2	2 c-mp-d-c-mp-f-fc-d-fc	128	48 3	5 elu	elu		elu	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9969	0.9434
23	3 c-mp-d-c-mp-f-fc-d-fc	128	48 3	5 LeakyReLU	LeakyReLU		LeakyReLU	softmax		adadelta	categorical_crossentropy	0.2	0.35	0.9937	0.9528
24	4 c-mp-d-c-mp-f-fc-d-fc	128	48 3	5 tanh	tanh		tanh	softmax		adadelta	categorical_crossentropy	0.2	0.35	1	0.9434
2	5 c-mp-d-c-mp-f-fc-d-fc	128	48 3	5 sigmoid	sigmoid		sigmoid	softmax		adadelta	categorical crossentropy	0.2	0.35	0.0965	0.0849
20	6 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 4) relu	relu	relu	relu	relu	softmax	adadelta	categorical_crossentropy	0.2	0.35	0.9851	0.9528
2	7 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 4	tanh	tanh	tanh	tanh	tanh	softmax	adadelta	categorical_crossentropy	0.2	0.35	0.9922	0.934
2	B c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 4	sigmoid	sigmoid	sigmoid	sigmoid	sigmoid	softmax	adadelta	categorical_crossentropy	0.2	0.35	0.0881	0.0863
29	9 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 4	hard_sigmoi	hard_sigmoi	d hard_sig	hard_sigmo	id hard_sign	noid softmax	adadelta	categorical_crossentropy	0.2	0.35	0.1122	0.0849
30	0 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 4) linear	linear	linear	linear	linear	softmax	adadelta	categorical_crossentropy	0.2	0.35	0.9867	0.9371
3	1 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 10) relu	relu	relu	relu	relu	softmax	SGD	categorical_crossentropy	0.2	0.35	0.9371	0.8902
33	2 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	64	128 10) relu	relu	relu	relu	relu	softmax	SGD	categorical crossentropy	0.2	0.35	0.9631	0.9403
33	3 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	128 10) relu	relu	relu	relu	relu	softmax	SGD	categorical_crossentropy	0.2	0.35	0.9278	0.9308
34	4 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	32 4) relu	relu	relu	relu	relu	softmax	RMSprop	categorical_crossentropy	0.2	0.35	0.9843	0.9654
3	5 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	64 4) relu	relu	relu	relu	relu	softmax	RMSprop	categorical_crossentropy	0.2	0.35	0.9914	0.9403
36	6 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	128 4) relu	relu	relu	relu	relu	softmax	RMSprop	categorical_crossentropy	0.2	0.35	0.9922	0.9465
	7 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128) relu	relu	relu	relu	relu		RMSprop	mean_squared_error	0.2	0.35	0.9867	0.9497
	8 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc) relu	relu	relu	relu	relu		RMSprop	mean_squared_error	0.2	0.35	0.9937	0.9497
	9 c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128) relu	relu	relu	relu	relu		RMSprop	mean_absolute_error	0.2	0.35	0.9671	0.956
40	c-mp-c-mp-d-c-mp-f-fc-d-fc-fc	128	128 4) relu	relu	relu	relu	relu	sortmax	RMSprop	mean_absolute_error	0.2	0.35	0.9765	0.9434

CONCLUSION & FUTURE WORK

NEURAL NETWORK:

MULTINOMIAL CLASSIFICATION	REGRESSION					
Takes longer time to process	Processes in shorter time					
Result is straightforward	Requires additional operations					

- Less variables reduce the runtime
- ► Each dataset has different parameters and algorithms that works best

CONVOLUTIONAL NEURAL NETWORK:

Data is the key

FUTURE WORK:

- deepnet and mxnet Package
- ► h20 package