1. [2 punts]

- (a) (i) Sigui E un espai vectorial sobre \mathbb{R} i $S \subseteq E$. Digueu quines condicions ha de satisfer S perquè sigui subespai vectorial d'E.
 - (ii) Indiqueu si els conjunts següents són subespais de l'espai vectorial que s'indica (en aquest apartat responeu només sí o no en cada cas, no s'ha de justificar la resposta):

1)
$$S_1 = \left\{ \begin{pmatrix} 2a - b + 3c \\ a - c \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \subseteq \mathbb{R}^2.$$

2)
$$S_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : -x + y - 3z = 0, 2x + 3y - z + 2 = 0 \right\} \subseteq \mathbb{R}^3.$$

- 3) S_3 és el conjunt de les matrius triangulars superiors de l'espai vectorial $\mathcal{M}_4(\mathbb{R})$ de les matrius quadrades 4×4 .
- (b) Sigui f un endomorfisme d'un espai vectorial real E. Digueu què vol dir que u sigui vector propi de f de valor propi $\lambda \in \mathbb{R}$. Demostreu que si f té algun vector propi de valor propi 0, aleshores dim $\operatorname{Ker}(f) \geq 1$.
- 2. [2 punts] Considereu el subespa
iS de \mathbb{R}^4

$$S_a = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : x + y + z + 3t = 0, x - y + 2z - t = 0, x - y + az + (1 - a)t = 0 \right\}$$

- (a) Calculeu la dimensió de S_a segons el valor del paràmetre a.
- (b) Doneu una base de S_2 .
- 3. [2 punts] Considerem les bases $B = \{1 + x + x^2, x + x^2, 2 + x\}$ i $B' = \{1 + x^2, -1 + x, 2x + x^2\}$ de l'espai $P_2(\mathbb{R})$ de polinomis amb coeficients reals de grau com a molt 2.
 - (a) Doneu la matriu de canvi de base de B a B', $P_{B'}^B$.
 - (b) Doneu les coordenades del polinomi $1 + x x^2$ en la base B'.

4. [4 punts] Sigui
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - 2y \\ x - y \\ x + 2y - 3z \end{pmatrix}$.

- (a) Calculeu la dimensió i una base dels subespais nucli i imatge de f.
- (b) Doneu el polinomi característic i els valors propis de f. És f diagonalitzable?
- (c) Considerem l'aplicació lineal $g: \mathbb{R}^3 \to \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que $g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y & y+z \\ z+x & y \end{pmatrix}$. Digueu si l'aplicació $g \circ f$ és injectiva, exhaustiva i/o bijectiva.

• Cal que JUSTIFIQUEU TOTES LES RESPOSTES.

- Les inverses s'han de calcular amb el mètode de Gauss-Jordan.
- Els sistemes d'equacions lineals s'han de resoldre amb el mètode de Gauss.
- La durada de l'examen és de 2h.
- No es poden utilitzar apunts, llibres, calculadores, mòbils,...

Model de solució

- 1. [2 punts]
 - (a) (i) Sigui E un espai vectorial sobre \mathbb{R} i $S \subseteq E$. Digueu quines condicions ha de satisfer S perquè sigui subespai vectorial d'E.

Solució. S és subespai d'E si es compleixen les condicions següents:

- $S \neq \emptyset$;
- Per a tot $u, v \in E$, si $u, v \in S$, aleshores $u + v \in S$;
- Per a tot $u \in E$ i per a tot $\alpha \in \mathbb{R}$, si $u \in S$ aleshores $\alpha u \in S$.
- (ii) Indiqueu si els conjunts següents són subespais de l'espai vectorial que s'indica (en aquest apartat responeu només sí o no en cada cas, no s'ha de justificar la resposta):

1)
$$S_1 = \left\{ \begin{pmatrix} 2a - b + 3c \\ a - c \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \subseteq \mathbb{R}^2.$$

2)
$$S_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : -x + y - 3z = 0, 2x + 3y - z + 2 = 0 \right\} \subseteq \mathbb{R}^3.$$

3) S_3 és el conjunt de les matrius triangulars superiors de l'espai vectorial $\mathcal{M}_4(\mathbb{R})$ de les matrius quadrades 4×4 .

Solució. S és subespai d'E si es compleixen les dues condicions següents:

1) Sí (es pot veure fàcilment que
$$S_1 = \langle \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \end{pmatrix} \rangle$$
).

- 2) No $(S_2$ no conté el vector zero).
- 3) Sí (el conjunt de matrius triangulars superiors és no buit perquè conté, per exemple, la matriu nul·la; al sumar dues matrius triangulars s'obté una matriu triangular; al multiplicar una matriu triangular per un escalar, s'obté una matriu triangular).
- (b) Sigui f un endomorfisme d'un espai vectorial real E. Digueu què vol dir que u sigui vector propi de f de valor propi $\lambda \in \mathbb{R}$. Demostreu que si f té algun vector propi de valor propi 0, aleshores dim $\text{Ker}(f) \geq 1$.

Solució. Un vector $u \in E$ és vector propi de f de valor propi $\lambda \in \mathbb{R}$ si $u \neq O_E$ i $f(u) = \lambda u$. Si f té algun vector propi de valor propi 0, aleshores existeix un vector $u \neq 0_E$ tal que $f(u) = 0 \cdot u = 0_E$. Per tant, $0_E \neq u \in \operatorname{Ker} f$. Això implica que el subespai $\operatorname{Ker} f$ té algun vector no nul. Per tant, $\dim \operatorname{Ker}(f) \geq 1$.

2. [2 punts] Considereu el subespa
iS de \mathbb{R}^4

$$S_a = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : x + y + z + 3t = 0, x - y + 2z - t = 0, x - y + az + (1 - a)t = 0 \right\}$$

(a) Calculeu la dimensió de S_a segons el valor del paràmetre a.

Solució. La dimensió de S_a és el nombre de graus de llibertat del sistema, és a dir, 4 menys el rang de la matriu A de coeficients del sistema. Calculem el rang d'aquesta matriu fent transformacions elementals per files:

$$A = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 2 & -1 \\ 1 & -1 & a & 1-a \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 2 & -1 \\ 0 & 0 & a-2 & 2-a \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & 1 & -4 \\ 0 & 0 & a-2 & 2-a \end{pmatrix}.$$

2

El rang de A és igual a 3 si $a \neq 2$ i igual a 2 si a = 2. Per tant,

$$\dim S_a = \begin{cases} 4 - 3 = 1, & \text{si } a \neq 2\\ 4 - 2 = 2, & \text{si } a = 2 \end{cases}$$

(b) Doneu una base de S_2 .

Solució. Sabem de l'apartat anterior que dim $S_2 = 2$. Per a trobar una base, resolem el sistema d'equacions lineals homogeni que defineix el subespai S_2 . De l'apartat anterior tenim que per en aquest cas el sistema és equivalent al sistema que té per matriu de coeficients:

$$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & 1 & -4 \end{pmatrix}.$$

Fem transformacions elementals per resoldre el sistema:

$$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & 1 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & 1/2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3/2 & 1 \\ 0 & -1 & 1/2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & -1/2 & 2 \end{pmatrix}.$$

La solució del sistema és doncs:

$$x = -\frac{3}{2}z - t, y = \frac{1}{2}z - 2t, z, t \in \mathbb{R}.$$

Expressem la solució de forma paramètrica:

$$\begin{pmatrix} (-3/2)z - t \\ (1/2)z - 2t \\ z \\ t \end{pmatrix} = z \begin{pmatrix} -3/2 \\ 1/2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}.$$

Una base de S_2 és:

$$\left\{ \begin{pmatrix} -3/2\\1/2\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-2\\0\\1 \end{pmatrix} \right\}$$

- 3. [2 punts] Considerem les bases $B = \{1 + x + x^2, x + x^2, 2 + x\}$ i $B' = \{1 + x^2, -1 + x, 2x + x^2\}$ de l'espai $P_2(\mathbb{R})$ de polinomis amb coeficients reals de grau com a molt 2.
 - (a) Doneu la matriu de canvi de base de B a $B^\prime,\,P^B_{B^\prime}.$

Solució. La matriu $P_{B'}^B$ de canvi de base de B a B' té per columnes els vectors de B expressats en la base B'. Coneixem els vectors de B i de B' en la base $C = \{1, x, x^2\}$. Per tant, podem calcular $P_{B'}^B$ en funció d'aquestes matrius, concretament,

$$P_{B'}^B = P_{B'}^C P_C^B = (P_C^{B'})^{-1} P_C^B$$

on

$$P_C^B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} , P_C^{B'} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}.$$

Per tant,

$$P_{B'}^B = (P_C^{B'})^{-1} P_C^B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Calculem la inversa de $P_C^{B'}$ per Gauss-Jordan:

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & -1 & -1 & 1 \\ 0 & 0 & -1 & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & -1 & 2 \\ 0 & 1 & 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & -1 & 2 \\ 0 & 1 & 0 & -2 & -1 & 2 \\ 0 & 0 & 1 & 1 & 1 & -1 \end{pmatrix}.$$

La matriu $P_{B'}^B$ és doncs:

$$P_{B'}^{B} = (P_{C}^{B'})^{-1} P_{C}^{B} = \begin{pmatrix} -1 & -1 & 2 \\ -2 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -3 \\ -1 & 1 & -5 \\ 1 & 0 & 3 \end{pmatrix}$$

(b) Doneu les coordenades del polinomi $1 + x - x^2$ en la base B'.

Solució. Si $(p)_C$ i $(p)_B$ són les coordenades d'un polinomi $p \in P_2(\mathbb{R})$ en les bases C i B' respectivament, sabem que $P_{B'}^C$ $(p)_C = (p)_{B'}$. La matriu $P_{B'}^C$ és la matriu $(P_C^{B'})^{-1}$ calculada a l'apartat anterior. Per tant, les coordenades de $p = 1 + x + x^2$ en la base B' són:

$$(p)_{B'} = P_{B'}^{C} (p)_{C} = \begin{pmatrix} -1 & -1 & 2 \\ -2 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix}$$

- 4. [4 punts] Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x 2y \\ x y \\ x + 2y 3z \end{pmatrix}$.
 - (a) Calculeu la dimensió i una base dels subespais nucli i imatge de f.

Solució. Calculem primer la matriu associada en la base canònica, M. Serà una matriu 3×3 , ja que \mathbb{R}^3 té dimensió 3. La imatge dels vectors de la base canònica és

$$f\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}2\\1\\1\end{pmatrix}, f\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}-2\\-1\\2\end{pmatrix}, f\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}0\\0\\-3\end{pmatrix},$$

per tant,

$$M = \begin{pmatrix} 2 & -2 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & -3 \end{pmatrix}.$$

La dimensió de la imatge és el rang de M. Caculem el rang de M fent transformacions elementals per files:

$$\begin{pmatrix} 2 & -2 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Per tant, $\dim \operatorname{Im} f = \operatorname{rang} M = 2$. Una base de la imatge està formada per dues columnes de M linealment independents. Veiem que les dues primeres columnes no són proporcionals,

per tant, una base de la imatge és: $\left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} -2\\-1\\2 \end{pmatrix} \right\}$.

La dimensió del nucli la calculem sabent que és la dimensió de l'espai de sortida menys la dimensió de la imatge:

$$\dim \text{Ker} f = 3 - 2 = 1.$$

Una base del nucli la trobem resolent el sistema d'equacion lineal homogeni que té per matriu de coeficients la matriu M:

$$\begin{pmatrix} 2 & -2 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}.$$

El conjunt de solucions del sistema és

$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = z, y = z, z \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} z \\ z \\ z \end{pmatrix} : z \in \mathbb{R} \right\} = \left\{ z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : z \in \mathbb{R} \right\} = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rangle$$

Per tant, una base del nucli és $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$

(b) Doneu el polinomi característic i els valors propis de f. És f diagonalitzable?

Solució. El polinomi característic és

$$p_f(x) = \det(M - xI) = \det\begin{pmatrix} 2 - x & -2 & 0\\ 1 & -1 - x & 0\\ 1 & 2 & -3 - x \end{pmatrix} = (-3 - x) \det\begin{pmatrix} 2 - x & -2\\ 1 & -1 - x \end{pmatrix}$$
$$= (-3 - x) ((2 - x)(-1 - x) - (-2)) = (-3 - x)(x^2 - x) = x(x - 1)(-3 - x)$$

els valors propis de f són les arrels de $p_f(x)$, és a dir, 0, 1 i -3. L'endomorfisme f diagonalitza perquè té 3 valors propis diferents i la dimensió de l'espai on està definit f és 3.

(c) Considerem l'aplicació lineal $g: \mathbb{R}^3 \to \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que $g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y & y+z \\ z+x & y \end{pmatrix}$. Digueu si l'aplicació $g \circ f$ és injectiva, exhaustiva i/o bijectiva.

Solució. Podem determinar si $g \circ f$ és injectiva o exhaustiva a partir del rang de la matriu associada a $g \circ f$. Calculem la matriu associada a $g \circ f$ en les bases canòniques respectives

tenint en compte que
$$M(g \circ f) = M(g)M(f)$$
, i $M(f) = M$. Tenim que $M(g) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,

ja que
$$g \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, g \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, g \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Per tant,

$$M(g \circ f) = M(g)M(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -2 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -3 & 0 \\ 2 & 1 & -3 \\ 3 & 0 & -3 \\ 1 & -1 & 0 \end{pmatrix}$$

Veiem que les files primera i quarta són proporcionals, per tant,

$$rgM(g \circ f) = rg \begin{pmatrix} 2 & 1 & -3 \\ 3 & 0 & -3 \\ 1 & -1 & 0 \end{pmatrix} = rg \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -3 \\ 1 & 0 & -1 \end{pmatrix} = rg \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -3 \\ 0 & 1 & -1 \end{pmatrix}$$
$$= rg \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = 2$$

Aleshores $g \circ f$ no és injectiva perquè el rang de $M(g \circ f)$ és diferent de la dimensió de l'espai de sortida (dim $\mathbb{R}^3 = 3$), i no és exhaustiva perquè el rang és diferent de la dimensió de l'espai d'arribada (dim $\mathcal{M}_{2\times 2}(\mathbb{R})=4$). I no és bijectiva perquè no és injectiva i exhaustiva alhora.

Solució alternativa. Observem que $g \circ f$ és una aplicació de \mathbb{R}^3 en $\mathcal{M}_{2\times 2}(\mathbb{R})$. L'aplicació $g \circ f$ no és bijectiva perquè els espais vectorials de sortida i d'arribada tenen dimensions diferents (3 i 4, respectivament) i no és exhaustiva perquè la dimensió de l'espai d'arribada és més gran que la dimensió de l'espai de sortida. Comprovem ara si és injectiva. Hem vist

que en apartats anetriors que $f\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}$, i la imatge del vector zero per una aplicació lineal és també el vector zero. Per tant, no és injectiva perquè el nucli de $g\circ f$ conté almenys

un vector no nul:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \operatorname{Ker}(g \circ f) \neq \Big\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Big\}.$$