Análisis Matemático para Inteligencia Artificial

Verónica Pastor (vpastor@fi.uba.ar), Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Clase 2

Espacios con Producto Interno: Definición

Sea $\mathbb{V} - \mathbb{K}$ e.v., donde $\mathbb{K} = \mathbb{R}$ o \mathbb{C} , un producto interno sobre \mathbb{V} es una función $\Phi : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ (o \mathbb{C}) que satisface:

- Para cada $\alpha \in \mathbb{R}$ (o \mathbb{C}), $u, v, w \in \mathbb{V}$.
 - $\Phi(u+v,w) = \Phi(u,w) + \Phi(v,w)$ $\Phi(\alpha \bullet u,v) = \alpha \bullet \Phi(u,v)$
- $\Phi(u,v) = \overline{\Phi(v,u)}$
- $\Phi(v,v) \ge 0, \ y \ \Phi(v,v) = 0 \ \text{sii} \ v = 0$

Notación: $\Phi(u, v) = \langle u, v \rangle$

Definición: A un espacio vectorial real (complejo) provisto de un producto interno se lo llama espacio euclídeo (espacio unitario).

Obs: El p.i. es una generalización del producto escalar en \mathbb{R}^n (o \mathbb{C}^n).

Z: a+:(-b)

Vn K=R=> 3(4, 1/2 / 2 (4, 1/2)=

También hay otros espacios con productos internos ...

Sea \mathcal{V} el espacio de las funciones continuas de valor real (o complejo) en el intervalo $-1 \le x \le 1$ (se nota $\mathcal{C}([-1,1])$) con p.i.

1) a) < f+g, h> = 13.3=1311= 6,49,30 $\langle f, g \rangle = \int_{-1}^{1} f(x) \overline{g(x)} dx$ J(f+9)(1)·h(x) d==

Verificar que cumple:

Para cada
$$\alpha \in \mathbb{R}$$
 $(o \ \mathbb{C})$, $f, g, h \in \mathbb{C}([-1, 1])$.

 $\Phi(f + g, h) = \Phi(f, h) + \Phi(g, h)$

=> < \(\frac{1}{2} \rightarrow \frac{1}{2} \rightarro 3) < f, f>= | f(x) · f(x) dx = [] | f(x) | dx > 0

Definición de Norma

Sea $(\mathbb{V}, \langle .,. \rangle)$ un e.v. real (complejo) con p.i.. Sea $v \in \mathbb{V}$, se define la norma de v asociada a $\langle .,. \rangle$.

Notación: $||v|| = \langle v, v \rangle^{1/2}$

Es la generalización de la longitud de un vector en \mathbb{R}^n (o \mathbb{C}^n).

Propiedades de la Norma

- $\forall v \in \mathbb{V}, \ ||v|| \ge 0, \ y \ ||v|| = 0 \ \text{sii} \ v = 0.$ Sean $\alpha \in \mathbb{R}(o \ \mathbb{C}). \ v \in \mathbb{V}$
- **3** Designaldad de Cauchy Schwartz: si $u, v \in \mathbb{V}$ entonces 1 4112. 11012 $|\langle u, v \rangle| \leq ||u|| \, ||v||$
- **4** Designaldad Triangular: si $u, v \in \mathbb{V}$ entonces

$$||u+v|| \le ||u|| + ||v||$$

Ortogonalidad

Def: $(\mathbb{V}, \langle .,. \rangle)$ un \mathbb{K} -EV (con $\mathbb{K} = \mathbb{R}$ o \mathbb{C}) con p.i. dos vectores $u, v \in \mathbb{V}$ se dicen ortogonales si $\langle u, v \rangle = 0$.

Teorema de Pitágoras: Si
$$u, v \in \mathbb{V}$$
 son ortogonales entonces $||u+v||^2 = ||u||^2 + ||v||^2$.

Def: $(\mathbb{V}, \langle .,. \rangle)$ un \mathbb{K} -EV (con $\mathbb{K} = \mathbb{R}$ o \mathbb{C}) con p.i.. Se dice que $\{v_1, ..., v_r\} \subset \mathbb{V}$ es un conjunto ortogonal si $\langle v_i, v_j \rangle = 0, \ \forall i \neq j$. Si $||v_i|| = 1, \ \forall i$ se dice que es un conjunto ortonormal.

La proyección ortogonal del vector v sobre el vector u es otro vector que notamos como $P_u(v)$, y se define:

$$P_{u}(v) = \frac{\langle u, v \rangle}{||u||} \frac{u}{||u||} = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$$

Proceso de Ortogonalización de Gram Schmidt

Def: Una base ortonormal (BON) de un E.V. es una base $B = \{v_1, ..., v_n\}$ que satisface:

$$\langle v_i, v_j \rangle = 0, \ \forall i \neq j$$

 $\langle v_i, v_i \rangle = 1, \ \forall i$

Obs: Si sólo se cumple que $\langle v_i, v_j \rangle = 0$, $\forall i \neq j$ se dice que es una base ortogonal.

Para transformar una base en una base ortonormal usamos el proceso de Gram-Schmidt:

$$k_{1} = v_{1}$$

$$k_{2} = v_{2} - Proy_{k_{1}}(v_{2})$$

$$\vdots$$

$$k_{n} = v_{n} - \sum_{i=1}^{n-1} Proy_{k_{i}}(v_{n})$$

Y así, $\tilde{B} = \{k_1, ..., k_n\}$ pidiendo que $||k_i|| = 1$ resulta una BON.

Complemento Ortogonal

Sea $\mathbb V$ un EV de dimensión $n<\infty$ y $S\subset\mathbb V$ un SEV de dimensión $m\le n$. El complemento ortogonal (S^\perp) es un SEV de de dimensión n-m que satisface:

Ejemplo:
$$S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle$$
 con prod.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$ con prod.
Escalar.
Since $S = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$ con prod.
Escalar.
Esc

Distancia

Sea \mathbb{V} - \mathbb{K} , (\mathbb{R} o \mathbb{C}) EV con p.i. $\langle .,. \rangle$ se define la distancia $d: \mathbb{V} \times \mathbb{V} \to \mathbf{K}$ como d(u,v) = ||u-v||.

Propiedades:

- $d(u,v) = 0 \Leftrightarrow u = v$

Observación: Existen distancias que no están asociadas a ninguna norma.

Matrices definidas positivas

Una matriz $A \in \mathbb{R}^{n \times n}$ se dice definida positiva si es simétrica y vale que:

$$x^T A x > 0, \ \forall x \in \mathbb{R}^n - \{0\}$$

Si vale que
$$x^T A x \ge 0$$
 se la llama semi definida positiva.
Ejemplo: $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \longrightarrow A^1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A \longrightarrow \text{Simetrice}$

$$\mathbb{Z}_{2}\binom{n}{2} \frac{1}{2}\binom{n}{2} = \left(2n+3n^{3} + 3n+3n^{3}\right)\binom{n}{2} = \left(2n^{2} + 6n^{2} + 3n^{2} + 3n^$$

$$= x^{2} + \left(x^{2} + 6xy^{2} + 6xy^{2}\right)^{2} = x^{2} + \left(x^{2} + 6xy^{2} + 6xy^{2}\right)^{2} > 0$$
Teorema: Sea \mathbb{V} un EV de dimensión finita, \mathbb{V} B una base de \mathbb{V} , vale que es

Teorema: Sea \mathbb{V} un EV de dimensión finita, y B una base de \mathbb{V} , vale que es un p.i. sii existe una matriz definida positiva tal que:

$$\langle x, y \rangle = \tilde{x}^T A \tilde{y}$$

donde \tilde{x} , \tilde{y} , son las representaciones de x, y en la base B.

Transformaciones

Sea $T: \mathbb{V} \to \mathbb{W}$ una transformación, donde \mathbb{V} , \mathbb{W} son dos conjuntos arbitrarios. Se dice que T es:

- Inyectiva: si $\forall x, y \in \mathbb{V} : T(x) = T(y) \rightarrow x = y$
- Suryectiva: si $T(\mathbb{V}) = \mathbb{W}$
- Biyectiva: si es inyectiva y suryectiva.

Transformaciones Lineales

Sean $\mathbb{V},\ \mathbb{W}$ dos EV, $L:\mathbb{V}\to\mathbb{W}$ es una transformación lineal si:

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y) \ \forall \alpha, \beta \in \mathbb{K}, \ \forall x, y \in \mathbb{V}$$

- Isomorfismo: $L: \mathbb{V} \to \mathbb{W}$ es lineal y biyectiva.
- Endomorfismo: si $L: \mathbb{V} \to \mathbb{V}$ es lineal.
- Automorfismo: $L: \mathbb{V} \to \mathbb{V}$ es lineal y biyectiva.

Representaciones

Teorema: Sea \mathbb{V} y \mathbb{W} , dos espacios vectoriales de dimensión finita son un isomorfismo sii $dim(\mathbb{V}) = dim(\mathbb{W})$.

Teorema: Sea $\mathbb V$ un EV, $dim(\mathbb V)=n<\infty$ tiene un isomorfismo con $\mathbb R^n$. Si consideramos la base $B=\{v_1,...,v_n\}$, todo $v\in\mathbb V$ puede escribirse como $v=\alpha_1v_1+...+\alpha_nv_n$. Luego las coordenadas de v en la base B resulta:

$$\alpha = (\alpha_1, ..., \alpha_n)^T \in \mathbb{R}^n$$

$$\mathcal{P}_{\lambda} [a]: \qquad \gamma = 3 a^{\lambda} - 5 a + 10$$

$$[\nabla]_{\beta} = (40, -5, 3) \in \mathbb{R}^3$$

Núcleo e Imagen de una transformación

Sea $L: \mathbb{V} \to \mathbb{W}$, se define:

- Núcleo (o Kernel) $Nu(L) = \{v \in \mathbb{V} : L(v) = 0_W\},\$
- Imagen $Im(L) = L(\mathbb{V}) = \{ w \in \mathbb{W} : \exists v \in \mathbb{V}, \ w = L(v) \}$

Teorema: Toda transformación lineal se puede representar de forma matricial.

• Espacio Nulo de A: es un subespacio de \mathbb{R}^n formado por todas las soluciones del sistema lineal homogéneo $Av=0,\ A\in\mathbb{R}^{m\times n}$.

$$N(A) = \{ v \in \mathbb{R}^{n \times 1} : Av = 0 \}$$

• Espacio columna de A: es el subespacio de \mathbb{R}^m generado por los n vectores columna de A:

$$EC(A) = \{\alpha_1(a_{11}, ..., a_{m1})^T + ... + \alpha_m(a_{1n}, ..., a_{mn})^T, \alpha_i \in \mathbb{R}\}$$

• Espacio fila de A: e el subespacio de R^n generado por los m vectores fila de A:

$$EF(A) = \{\alpha_1(a_{11},...,a_{1n}) + ... + \alpha_m(a_{m1},...,a_{mn}), \alpha_i \in \mathbb{R}\}$$

Veamos un ejemplo...

$$= \left(\frac{\{(u^{4} - J^{4})^{\frac{1}{2}} + \{(u^{4} - J^{4})^{\frac{1}{2}} + (u^{4} - J^{4})^{\frac{1}{2}} + \{(u^{4} - J^{4})^{\frac{1}{2}} + (u^{4} - J^{4})^{\frac{1}{2}} + (u^{4$$

Im(1)= < (1), (-1)>= |P2 > L >

$$= \begin{pmatrix} q^{n+1} + \beta x^{n} - q^{n} - \beta \beta^{n} \\ q^{n+1} + q^{n+1} + q^{n} - q^{n} \end{pmatrix}$$

survective ignorphisms
Les biyective

Seguimos con el ejemplo...

A:
$$L, TL, \exists A \in \mathbb{R}^{2+7} / L(M) = A \cdot M$$

$$A: (1 - 1) \Rightarrow A \cdot V^{2} (1 - 1) (1) = (2 + 1) = L(M)$$

$$N(A) = \{(0)\} \qquad \text{dim} (U(A)) = 0$$

$$E(A) = \{(1, 1), (1, -1)\} = \mathbb{R}^{2} \Rightarrow \text{dim} (E(A)) = 2$$

$$E(A) = \{(1, 1), (1, -1)\} = \mathbb{R}^{2} \Rightarrow \text{dim} (E(A)) = 2$$

Conclusiones ...

Teorema: Sea $A \in \mathbb{R}^{m \times n}$, dim(EC(A)) = dim(EF(A)) = r(A). Donde r(A) se denomina rango de la matriz.

Definición: Se denomina nulidad de una matriz A a la dimensión de su espacio nulo N(A), n(A) = dim(N(A)), siendo $N(A) = \{v \in \mathbb{R}^n, Av = 0\}$

Teorema de Rango-Nulidad: Para toda matriz $A \in \mathbb{R}^{m \times n}$ se verifica: