Micro Empírica - Trabalho 02

Samuel Barbosa

Fevereiro 2018

1 Introdução

Neste trabalho estimamos a equação de salários de Mincer (1974) com a correção do viés de seleção no mercado de trabalho através do método proposto por Heckman (1979). Utilizamos os dados da PNAD 2015, considerando somente a subpopulação de indivíduos de 18 a 65 anos de idade.

2 Tratamento dos dados

Realizamos dois procedimentos adicionais de tratamento de dados. No primeiro criamos a variável número de filhos (n_filhos). Em cada unidade domiciliar (identificada nas variáveis v0101, v0102 e v0103) o número de filhos da Pessoa de referência e do Cônjuge (v0401 == 1 ou v0401 == 2) é dado pelo número de pessoas no domicílio com idade inferior a 18 anos e cuja condição na unidade domiciliar seja Filho (v0401 == 3).

Além disso identificamos na variável casal pessoas que vivem em companhia de cônjuge ou companheiro(a) (v4111 == 1).

3 Solução

Nesta seção apresentamos os resultados das análises realizadas.

3.1 Item (a)

Primeiro, desconsiderando o problema de seleção, estimamos a equação de salários por MQO, conforme a seguinte equação:

$$\log(\text{renda}) = \beta_0 + \beta_1 \text{anos_estudo} + \beta_2 \text{mulher} + \beta_3 \text{idade} + \beta_4 \text{idade}^2 + u \quad (1)$$

Os resultados desta regressão indicam que um ano adicional de estudo está associado a uma renda média aproximadamente 11,2% maior. Além disso, as mulheres teriam uma renda média (aproximadamente) 43% menor.

Tabela 1: Equação de Mincer (desconsidera viés de seleção)

	\log renda
anos_estudo	0.112*** (98.98)
mulher	-0.430*** (-91.49)
idade	0.0618*** (50.91)
$idade^2$	-0.000570*** (-37.03)
_cons	4.781*** (177.69)
N	152236
de la la la desta	a a solution and a

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

3.2 Item (b)

Antes de lidar com o problema de seleção, analisamos o seguinte modelo de previsão de estar ocupado no mercado de trabalho, onde a variável dependente assume o valor um se a pessoa tem trabalho remunerado (com salário positivo):

$$\mathbb{I}\{\text{renda} > 0\} = \gamma_0 + \gamma_1 \text{anos_estudo} + \gamma_2 \text{casal} + \gamma_3 \text{mulher} + \gamma_4 \text{casal} \times \text{mulher} + \gamma_5 \text{n_filhos} + \gamma_6 \text{n_filhos} \times \text{mulher} + u_2$$
(2)

Observamos na Tabela 2 que mulheres casadas estão menos propensas a participar do mercado de trabalho, propensão que se reduz quanto mais filhos tiverem. Corrigimos este viés de participação com o método de Heckman (1979).

Após realizar a correção, o coeficiente relacionado a *mulher* se reduz significativamente (Tabela 3), evidenciando a existência do viés de seleção existente na estimativa obtida na Tabela 1.

Tabela 2: Equação de seleção - Modelo Probit

	ind_renda
anos_estudo	0.103*** (50.22)
casal	0.341*** (14.11)
mulher	0.199*** (7.10)
$\operatorname{casal} \times \operatorname{mulher}$	-0.920*** (-28.41)
n_filhos	0.0173*** (9.61)
$mulher \times n_filhos$	-0.0178*** (-8.99)
_cons	0.778*** (28.49)
N	162570

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Tabela 3: Equação de Mincer (com correção de Heckman)

Tabela 5. Equação de Milice	er (com correção de neckman)
	\log _renda
anos_estudo	0.112
	(98.98)
mulher	-0.228
	(-91.49)
idade	0.0618
	(50.91)
$idade^2$	-0.000570
	(-37.03)
_cons	4.781
	(177.69)
Seleção	
ind_renda	17.61
	(5080.33)
anos_estudo	-0.0000286
	(-0.20)
casal	-0.00182
	(-0.78)
mulher	-0.00135
	(-0.66)
$casal \times mulher$	0.00138
	(0.65)
n_{-} filhos	-0.0000676
	(-0.59)
$mulher \times n_filhos$	0.0000440
	(0.44)
_cons	-8.795
	(-2117.82)
N	162570

Referências

Heckman, James, "Sample Selection Bias as a Specification Error," Econometrica, 1979, 47 (1), 153–61.

Mincer, Jacob, Schooling, Experience, and Earnings, National Bureau of Economic Research, Inc, 1974.