TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA SƯ PHẠM BỘ MÔN SỬ PHẠM TOÁN HỌC

MỘT SỐ PHƯƠNG PHÁP GIẢI GẦN ĐÚNG PHƯƠNG TRÌNH VI PHÂN THƯỜNG

Nhóm 3

Nguyễn Ngọc Đăng Duy B1700014 Lê Hữu Kiệt B1700024 Phan Thanh Tâm B1700038 Nguyễn Hiếu Thanh B1700039

Mục lục

1	Kiế	iến thức chuẩn bị							
	1.1	Một số	ố khái niệm về phương trình vi phân thường	1					
	1.2	Phươn	ng pháp Euler và Euler cải tiến	2					
		1.2.1	Phương pháp Euler	2					
		1.2.2	Phương pháp Euler cải tiến thứ nhất	4					
		1.2.3	Phương pháp Euler cải tiến thứ hai	5					
	1.3	Phươn	ng pháp Runge – Kutta	7					
		1.3.1	Nội dung phương pháp	7					
		1.3.2	Sơ đồ tính toán	10					
	1.4	Phươn	ng pháp Adams	10					
		1.4.1	Công thức ngoại suy Adams	11					
		1.4.2	Công thức nội suy Adams	12					
2	Ứng	g dụng		14					
3	Xâv	dưng	thuật toán	25					

Chương 1

Kiến thức chuẩn bị

1.1 Một số khái niệm về phương trình vi phân thường

Phương trình vi phân được nghiên cứu rộng rãi trong toán học thuần túy và ứng dụng, vật lý, các ngành kỹ thuật,... và đóng một vai trò cực kỳ quan trọng. Song trong thực tế, việc tìm ra công thức của hàm, hay nghiệm chính xác của phương trình cụ thể gặp nhiều khó khăn, đồng thời, người ta cũng chỉ quan tâm tới giá trị của hàm số tại các giá trị cụ thể của các biến độc lập. Tuy nhiên, có nhiều bài toán mà việc tìm ra giá trị chính xác của hàm số tại một điểm nào đó thì không khả thi, khi đó, việc tìm được một giá trị xấp xỉ giá trị chính xác là phương án tối ưu.

Đó là mục tiêu của chương Giải gần đúng phương trình vi phân thường.

Định nghĩa 1.1. Phương trình vi phân thường cấp n là phương trình có dạng:

$$F(x, y, y'(x), y''(x), \dots, y^{(n)}(x)) = 0$$
(1.1)

trong đó x là biến số độc lập, y = y(x) là hàm số phải tìm và $y'(x), y''(x), \ldots, y^{(n)}(x)$ là các đạo hàm của hàm số y = y(x).

- Cấp của phương trình là cấp của đạo hàm cao nhất có mặt trong phương trình.
- Nghiệm của phương trình là mọi hàm số y = y(x) thỏa mãn phương trình (1.1).
- Giải phương trình vi phân thường là tiến hành tìm tất cả các nghiệm của phương trình vi phân đó.

Đinh nghĩa 1.2. Xét phương trình vi phân cấp n có dạng:

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x))$$
(1.2)

Bài toán Cauchy đối với phương trình vi phân (1.2) là tìm hàm y = y(x) thỏa mãn phương trình (1.2) và các điều kiện ban đầu:

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \ \dots; \ y^{(n-1)}(x_0) = y_0^{(n-1)}$$

Bài toán Cauchy đối với phương trình vi phân cấp 1 là bài toán tìm nghiệm y=y(x) của phương trình

$$y' = f(x, y) \tag{1.3}$$

thỏa mãn điều kiên ban đầu

$$y(x_0) = y_0 \tag{1.4}$$

Phương trình vi phân (1.3) tương đương với phương trình tích phân:

$$y(x) = y_0 + \int_{x_0}^{x} f(s, y(s)) ds$$
 (1.5)

theo nghĩa mọi nghiệm của phương trình (1.3) là nghiệm liên tục của (1.5) và ngược lại.

Báo cáo này sẽ trình bài ba phương pháp sau:

- Phương pháp Euler và Euler cải tiến, gồm 3 phương pháp: Phương pháp Euler, Phương pháp Euler cải tiến thứ nhất và Phương pháp cải tiến thứ hai.
- Phương pháp Runge Kutta.
- Phương pháp Adams, gồm 2 phương pháp: Công thức nội suy Adams và Công thức ngoại suy Adams.

1.2 Phương pháp Euler và Euler cải tiến

1.2.1 Phương pháp Euler

Xét bài toán Cauchy

$$y' = f(x, y), \ y(x_0) = y_0$$
 (1.6)

Giả sử hàm f thỏa mãn điều kiện $|f(x,y_1)-f(x,y_2)| \leqslant L|y_1-y_2|$ và $\left|\frac{\mathrm{d}f}{\mathrm{d}x}\right| = \left|\frac{\partial f}{\partial x} + f\frac{\partial f}{\partial y}\right| \leqslant M$ trong hình chữ nhật:

$$D = \left\{ (x, y) \in \mathbb{R}^2 \middle| |x - x_0| \leqslant a, |y - y_0| \leqslant b \right\}$$

Giả sử x_0 là giá trị ban đầu và h là số dương cho trước đủ nhỏ với $x_i = x_0 + ih$, với $i = 0, 1, 2, \ldots, h$ được gọi là độ dài bước.

(1.6) tương đương với dy = f(x, y) dx, lấy tích phân hai vế ta được:

$$\int_{y_0}^{y_1} dy = \int_{x_0}^{x_1} dx \text{ hay } y_1 = y_0 + \int_{x_0}^{x_1} f(x, y) dx$$

Giả sử $f(x,y) \approx f(x_0,y_0)$ với $x_0 \leqslant x \leqslant x_1$, khi đó:

$$y_1 \approx y_0 + f(x_0, y_0)(x_1 - x_0)$$
 hay $y_1 \approx y_0 + hf(x_0, y_0)$

Tương tự, với $x_1 \le x \le x_2$, ta có $y_2 \approx y_1 + hf(x_1, y_1)$. Từ đó, ta có công thức tổng quát:

$$y_{n+1} = y_n + hf(x_n, y_n), n = 0, 1, 2, \dots$$
 (1.7)

Công thức (1.7) được gọi là phương pháp Euler.

Ví dụ 1.1. Bằng phương pháp Euler, giải phương trình gần đúng phương trình:

$$y' = 2xy + e^{x^2}, \ y(0) = 1$$

trong đoạn [0;1,5], so sánh với nghiệm chính xác $\varphi(x)=(x+1)\mathrm{e}^{x^2}$ của phương trình.

Giải

Với $x_0 = 0$, $y_0 = 1$, chọn h = 0.25.

Áp dụng công thức (1.7), ta có bảng giá trị:

n	x_n	y_n	$\varphi(x_n)$
0	0.0	1.0	1.0
1	0.25	1.25	1.3306
2	0.5	1.6724	1.926
3	0.75	2.4115	3.0713
4	1.0	3.7545	5.4366
5	1.25	6.3114	10.7341
6	1.5	11.4487	23.7193

Nếu ta chọn h = 0.1, ta cũng có bảng giá trị:

n	x_n	y_n	$\varphi(x_n)$	n	x_n	y_n	$\varphi(x_n)$
0	0.0	1.0	1.0	8	0.8	3.0338	3.4137
1	0.1	1.1	1.1111	9	0.9	3.7088	4.271
2	0.2	1.223	1.249	10	1.0	4.6012	5.4366
3	0.3	1.376	1.4224	11	1.1	5.7933	7.0423
4	0.4	1.568	1.6429	12	1.2	7.4031	9.2855
5	0.5	1.8108	1.926	13	1.3	9.602	12.4648
6	0.6	2.1203	2.2933	14	1.4	12.6404	17.0384
7	0.7	2.518	2.7749	15	1.5	16.8897	23.7193

Ví dụ 1.2. Bằng phương pháp Euler, giải gần đúng phương trình vi phân:

$$y' + 2y = 2 - e^{-4x}, y(0) = 1$$

với h = 0.1 cho trước.

Giải

Phương trình vi phân đã cho có nghiệm chính xác là:

$$y = 1 + \frac{1}{2}e^{-4x} - \frac{1}{2}e^{-2x}$$

Phương trình vi phân đã cho tương đương với: $y' = 2 - e^{-4x} - \frac{1}{2}e^{-2x} - 2y$. Với $x_0 = 0$, $y_0 = 1$ và h = 0.1. Khi đó ta có bảng giá trị:

n	x_n	y_n	$\varphi(x_n)$
0	0.0	1.0	1.0
1	0.1	0.9	0.925795
2	0.2	0.852968	0.889504
3	0.3	0.837441	0.876191
4	0.4	0.839834	0.876284
5	0.5	0.851677	0.883728

Nếu ta thay đổi độ dài bước lần lượt là $h=0.05,\,h=0.01,\,h=0.005$ và $h=0.001,\,$ ta có bảng giá trị của nghiệm gần đúng và nghiệm chính xác tại các thời điểm $x=1,\,x=2,\,x=3,\,x=4$ và x=5 là:

or.	Nghiệm chính xác		Nghiệm g	gần đúng	
	Ngmem ciiiii xac	h = 0.05	h = 0.01	h = 0.005	h = 0.001
1	0.9414902	0.9364698	0.9404994	0.9409957	0.9413914
2	0.9910099	0.9911126	0.9910193	0.9910139	0.9910106
3	0.9987637	0.9988982	0.9987890	0.9987763	0.9987662
4	0.9998323	0.9998657	0.9998390	0.9998357	0.9998330
5	0.9999773	0.9999837	0.9999786	0.9999780	0.9999774

Phần trăm sai số giữa nghiệm chính xác và nghiệm gần đúng được xác định bởi:

$$P = \frac{|n_{\text{exact}} - n_{\text{approx}}|}{n_{\text{exact}}} \times 100\%$$
 (1.8)

Áp dụng (1.8), ta có bảng tính toán phần trăm sai số giữa nghiệm chính xãc và nghiệm gần đúng:

x	h = 0.05	h = 0.01	h = 0.005	h = 0.001
1	0.53%	0.105%	0.053%	0.0105%
2	0.01%	0.0094%	0.00041%	0.00007%
3	0.013%	0.0025%	0.0013%	0.00025%
4	0.0033%	0.00067%	0.00034%	0.000067%
5	0.00064%	0.00013%	0.000068%	0.000014%

Nhận xét 1.1.

- Nếu độ dài bước h càng nhỏ, sai số giữa nghiệm gần đúng và nghiệm chính xác càng nhỏ.
- $\bullet\,$ Nói chung sai số giữa nghiệm gần đúng và nghiệm chính xác sẽ tăng nếu giá trị x tăng.

1.2.2 Phương pháp Euler cải tiến thứ nhất

Phương pháp Euler cải tiến thứ nhất là một phương pháp hiện trong đó giá trị tiếp theo của nghiệm, y_{n+1} được thực hiện thông qua việc tính toán các giá trị trung gian:

$$\begin{cases} x_{n+\frac{1}{2}} &= x_n + \frac{h}{2} \\ f_{n+\frac{1}{2}} &= f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f_n\right) \\ y_{n+1} &= y_n + h f_{n+\frac{1}{2}} \end{cases}$$
(1.9)

Ví dụ 1.3. Áp dụng phương pháp Euler cải tiến thứ nhất, giải phương trình vi phân sau:

$$y' = \frac{2y}{x} + x, \ y(1) = 1 \tag{1.10}$$

trên đoạn [1; 1.4] và độ dài bước h = 0.1.

Giải

Phương trình đã cho có nghiệm gần đúng là $\varphi(x) = x^2 + x^2 \ln x$.

Đặt $f(x,y) = \frac{2y}{x} + x$, ta có bảng giá trị:

n	x_n	y_n	$\varphi(x_n)$
0	1.0	1.0	1.0
1	1.1	1.324048	1.325325
2	1.2	1.699816	1.702543
3	1.3	2.12905	2.133396
4	1.4	2.613357	2.619486

1.2.3 Phương pháp Euler cải tiến thứ hai

Từ (1.7) ta có:

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n, y_n)]$$

Thay số hạng thứ hai $f(x_n, y_n)$ bởi $f(x_{n+1}, y_{n+1})$, ta được:

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

Tuy nhiên giá trị y_{n+1} bên vế phải cũng là giá trị cần tính, vì vậy ta tính $f(x_{n+1}, y_{n+1})$ với y_{n+1} được tính bởi phương pháp Euler (1.7). Khi đó ta có một phương pháp mới gọi là phương pháp Euler cải tiến thứ hai.

Để thực hiện việc tính giá trị y_{n+1} khi biết y_n ta thực hiện các bước tính toán:

$$\begin{cases} \tilde{y}_{n+1} &= y_n + hf(x_n, y_n) \\ y_{n+1} &= y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \right]. \end{cases}$$
(1.11)

 $\mathbf{V}\mathbf{i}$ dụ $\mathbf{1.4.}$ Áp dụng phương pháp Euler và Euler cải tiến thứ hai, giải phương trình vi phân sau:

$$y' = y - x, \ y(0) = \frac{1}{2}$$

trên đoạn [0,1] với độ dài bước h=0.1.

Giải

Phương trình đã cho có nghiệm gần đúng của phương trình vi phân đã cho có là $\varphi(x) = x + 1 - \frac{1}{2}e^x$.

Với h = 0.1 và $x_n = x_0 + nh = nh$.

Theo (1.7) nghiệm gần đúng của phương trình đã cho được tính theo phương pháp Euler:

$$\begin{cases} y_0 = y(0) = 1 \\ y_{n+1} = y_n + hf(x_n, y_n) = y_n + 0.1(y_n - x_n) = 1.1y_n - 0.1x_n \end{cases}$$

Theo (1.11) nghiệm gần đúng của phương trình đã cho được tính theo phương pháp Euler cải tiến:

$$\begin{cases} y_0 &= y(0) = 1\\ \tilde{y}_{n+1} &= y_n + hf(x_n, y_n) = y_n + 0.1(y_n - x_n) = 1, 1y_n - 0.1x_n,\\ y_{n+1} &= y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, \tilde{y}_{n+1})] = y_n + \frac{0.1}{2}[(y_n - x_n) + (\tilde{y}_{n+1} - x_n)]\\ &= y_n + \frac{0.1}{2}[(y_n - x_n) + (1, 1y_n - 0.1x_n - x_n)] = 1,06y_n - 0.105x_n \end{cases}$$

Từ đó ta có bảng nghiệm giá trị theo hai phương pháp:

n	x_n	\widetilde{y}_n	y_n (Euler cải tiến)	$\varphi(x_n)$
			- ,	/
0	0.0	0.5	0.5	0.5
1	0.1	0.55	0.5475	0.547415
2	0.2	0.595	0.589625	0.589299
3	0.3	0.6345	0.625831	0.625071
4	0.4	0.66795	0.65552	0.654088
5	0.5	0.694745	0.678034	0.675639
6	0.6	0.71422	0.692646	0.688941
7	0.7	0.725641	0.698561	0.693124
8	0.8	0.728206	0.694899	0.68723
9	0.9	0.721026	0.680695	0.670198
10	1.0	0.703129	0.654886	0.640859

Qua bảng giá trị, ta thấy phương pháp Euler cải tiến cho nghiệm tốt hơn phương pháp Euler.

 ${
m V}{
m i}$ ${
m d}{
m u}$ ${
m 1.5.}$ Sử dụng phương pháp Euler và Euler cải tiến, giải gần đúng phương trình

$$y' = \frac{y^2 - x}{1 + x}$$

trên đoạn [0; 0.2], với y(0) = 1 và h = 0.02.

Giải

Với $x_0 = 0$, $y_0 = 1$ và h = 0.02, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	y_n (Euler cải tiến 2)
0	0.0	1.0	1.0	1.0
1	0.02	1.02	1.020002	1.020004
2	0.04	1.040008	1.04002	1.040023
3	0.06	1.060039	1.060069	1.060074
4	0.08	1.080108	1.080164	1.080171
5	0.1	1.100231	1.100322	1.100329
6	0.12	1.120422	1.120557	1.120564
7	0.14	1.140696	1.140884	1.140889
8	0.16	1.161068	1.161318	1.161321
9	0.18	1.181552	1.181875	1.181874
10	0.2	1.202163	1.202569	1.202563

1.3 Phương pháp Runge – Kutta

1.3.1 Nội dung phương pháp

Xét bài toán Cauchy (1.3), (1.4), để giải bài toán này, xuất pháp từ giá trị y_n ta tìm được giá trị gần đúng y_{n+1} tại $x_{n+1} = x_n + h$ theo công thức:

$$y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i \tag{1.12}$$

trong đó

$$k_i = hf\left(x_n + c_i h, y_n + h \sum_{j=1}^s a_{ij} k_j\right)$$
 (1.13)

Công thức (1.12) và (1.13) xác định phương pháp Runge – Kutta tổng quát.

Các hệ số c_i , a_{ij} , b_i được chọn sao cho với m đủ lớn, hàm số $\varphi(h) = y(x_n + h) - y_n - \sum_{i=1}^s b_i k_i$ thỏa mãn

$$\varphi(0) = \varphi'(0) = \varphi''(0) = \dots = \varphi^{(m)}(0) = 0; \ \varphi^{(m+1)} \neq 0$$
 (1.14)

Khi đó sai số trong mỗi bước được đánh giá bởi:

$$R(h) = \frac{\varphi^{(m+1)}(\xi)}{(m+1)!} h^{(m+1)}, \ 0 < \xi < h$$
 (1.15)

Từ (1.14), với l = 0, 1, 2, ..., m ta rút ra:

$$y_n^{(l)} = \sum_{i=1}^s b_i k_i^{(l)}(0)$$
 (1.16)

Ta xét một số trường hợp đặc biệt:

a) Với s=1:

Theo (1.13),
$$\varphi(h) = y(x_n + h) - y(x_n) - b_1 h f(x_n, y_n)$$
.

Nên
$$\varphi'(h) = y'(x_n + h) - b_1 f(x_n, y_n) = (1 - b_1) f(x_n, y_n).$$

Ta thấy $\varphi'(h) = 0$ với mọi f khi và chỉ khi $b_1 = 1$. Từ đó, công thức Runge – Kutta khi s = 1 là:

$$y_{n+1} = y_n + h f(x_n, y_n) (1.17)$$

Rõ ràng (1.17) là công thức Euler.

b) Với s=2:

Theo (1.14) và (1.16), ta cũng có:

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + c_2h, y_n + a_{21}k_1)$$

$$\varphi(h) = y(x_n + h) - y_n - b_1k_1 - b_2k_2$$

$$y_n^{(l)} = b_1k_1^{(l)}(0) + b_2k_2^{(l)}(0)$$

Ta có: $k'_1(h) = f(x_n, y_n) \Rightarrow k'_1(0) = f(x_n, y_n).$

$$k'_{2}(h) = f(x_{n} + c_{2}h, y_{n} + a_{21}k_{1}) + h\left[\frac{\partial f}{\partial x}c_{2} + \frac{\partial f}{\partial y}k'_{1}(h)a_{21}\right]$$

nên $k'_2(0) = f(x_n, y_n)$.

Do đó: $y'_n = b_1 k'_1(0) + b_2 k'_2(0)$, nghĩa là $b_1 + b_2 = 1$.

Tiếp tục: $k_1''(h) = 0$.

$$k''_{2}(h) = 2\left[\frac{\partial f}{\partial x}c_{2} + \frac{\partial f}{\partial y}k'_{1}(h)a_{21}\right] + h\left[\frac{\partial f}{\partial x}c_{2} + \frac{\partial f}{\partial y}k'_{1}(h)a_{21}\right]$$

$$\Rightarrow k''_{2}(0) = 2\left[\frac{\partial f}{\partial x}c_{2} + \frac{\partial f}{\partial y}k'_{1}(h)a_{21}\right]$$

Do đó $\frac{\partial f_n}{\partial x} + \frac{\partial f_n}{\partial y} y' = y''_n = 2b_2 \left(\frac{\partial f_n}{\partial x} c_2 + \frac{\partial f_n}{\partial y} f_n a_{21} \right)$ cho nên ta có hệ phương trình:

$$\begin{cases} b_1 + b_2 &= 1\\ b_2 c_2 &= \frac{1}{2}\\ a_{21} b_2 &= \frac{1}{2} \end{cases}$$

Hệ phương trình trên có vô số nghiệm.

Với nghiệm $b_1 = 0$, $b_2 = 1$, $c_2 = a_{21} = \frac{1}{2}$, ta có công thức Runge – Kutta chính là công thức Euler cải tiến.

Với nghiệm $b_1 = b_2 = \frac{1}{2}$, $c_2 = a_{21} = 1$, ta có công thức Runge – Kutta 2 (RK2):

$$\begin{cases} Y_2 = y_n + h f(x_n, y_n) \\ y_{n+1} = y_n + \frac{1}{2} h \left[f(x_n, y_n) + f(x_n + h, Y_2) \right] \end{cases}$$

c) Với s=3:

Lập luận tương tự ta có hệ phương trình:

$$\begin{cases} b_1 + b_2 + b_3 = 1 \\ b_2 c_2 + b_3 c_3 = \frac{1}{2} \\ b_2 c_2^2 + b_3 c_3^2 = \frac{1}{3} \\ b_3 c_2 a_{32} = \frac{1}{6} \end{cases}$$

Một nghiệm của hệ phương trình thường dùng trong thực tế là:

$$b_1 = \frac{1}{6}, \ b_2 = \frac{2}{3}, \ b_3 = \frac{1}{6}.c_2 = a_{21} = \frac{1}{2}, \ c_3 = 1, a_{31} = -1.a_{32} = 2$$

d) Với s=4:

Hệ phương trình với các ẩn số là hệ số của công thức Runge – Kutta 4 (RK4) là:

$$\begin{cases} b_1 + b_1 + b_3 + b_4 = 1 \\ b_2c_2 + b_3c_3 + b_4c_4 = \frac{1}{2} \\ b_2c_2^2 + b_3c_3^2 + b_4c_4^2 = \frac{1}{3} \\ b_2c_2^3 + b_3c_3^3 + b_4c_4^3 = \frac{1}{4} \\ b_3a_{32}c_2 + b_4a_{42}c_2 + b_4a_{43}c_3 = \frac{1}{6} \\ b_3c_3a_{32}c_2 + b_4c_4a_{42}c_2 + b_4c_4a_{43}c_3 = \frac{1}{8} \\ b_3a_{32}c_2^2 + b_4a_{42}c_2^2 + b_4a_{43}c_3^2 = \frac{1}{12} \\ b_4a_{43}a_{32}c_2 = \frac{1}{24} \end{cases}$$

và

$$\begin{cases}
c_2 = a_{21} \\
c_3 = a_{31} + a_{32} \\
c_4 = a_{41} + a_{42} + a_{43}
\end{cases}$$

Hệ phương trình trên có vô số nghiệm, trong thực tế RK4 thông dụng có dạng sau:

$$\begin{cases} k_1 = hf(x_n \cdot y_n) \\ k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right) \\ k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right) \\ k_4 = hf(x_n + h, y_n + k_3) y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{cases}$$

Công thức RK4 có ước lượng sai số là : $R_4(h) = \frac{4\varphi^{(5)}\left(\xi\right)}{5!}h^5$.

1.3.2 Sơ đồ tính toán

n	x_n	y_n	$hf(x_n, y_n)$				
	x_0	y_0	$^{(0)}k_1$				
0	$x_0 + \frac{h}{2}$	$y_0 + \frac{^{(0)}k_1}{2}$	$^{(0)}k_2$				
	$x_0 + \frac{h}{2}$	$y_0 + \frac{{}^{(0)}k_2}{2} \\ y_0 + {}^{(0)}k_3$	$^{(0)}k_{3}$				
	$x_0 + h$	$y_0 + {}^{(0)}k_3$	$^{(0)}k_4$				
$y_1 = y_0 + \frac{1}{6} \left({^{(0)}k_1 + 2^{(0)}k_2 + 2^{(0)}k_3 + {^{(0)}k_4}} \right)$							
1	x_1	y_1	$^{(1)}k_1$				

1.4 Phương pháp Adams

Giả sử y(x) là nghiệm của bài toán Cauchy (1.3) – (1.4) và $y_m, y_{m-1}, \ldots, y_{m-k}$ là các nghiệm gần đúng của bài toán tại các điểm nút $x_m, x_{m-1}, \ldots, x_{m-k}$, với $x_{m-i} = x_m - ih$, $i = 0, 1, \ldots, k$ và h là độ dài bước, nghĩa là $y(x_{m-i}) \approx y_{m-i}$.

Ký hiệu: $f_i = f(x_i, y_i), i = m, m - 1, ... m - k$.

Gọi P(x) là đa thức nội suy nhận các giá trị tại các mốc nội suy $x_m, x_{m-1}, \ldots, x_{m-k}$, khi đó:

$$P(x) = \sum_{i=0}^{k} f_{m-i} P_i(x)$$

Đổi biến số: $x - x_m = th$ thì $P_i(x)$ trở thành $Q_i(t)$, khi đó từ công thức

$$y(x_{m+1}) = y(x_m) + \int_{x_m}^{x_{m+1}} f(x, y(x)) dx$$

ta có thể tính

$$y_{m+1} = y_m + \int_{x_m}^{x_{m+1}} P(x) dx = y_m + h \sum_{i=0}^k \beta_i f_{m-i}$$
 (1.18)

trong đó $\beta_i = \int_0^1 Q_i(t) dt$.

(1.18) được gọi là công thức ngoại suy Adams. Nếu trong quá trình xây dựng đa thức nội suy, ta sử dụng cả giá trị f_{m+1} thì công thức xây dựng được:

$$y_{m+1} = y_m + h \sum_{i=-1}^{k} \gamma_i f_{m-i}$$
 (1.19)

(1.19) được gọi là công thức nội suy Adams.

1.4.1 Công thức ngoại suy Adams

Giả sử trong công thức (1.18), ta xây dựng P(x) là đa thức nội suy Newton cuối bảng (dạng lùi), nghĩa là:

$$P(x) = f_m + \frac{t}{1!} \Delta f_{m-1} + \frac{t(t+1)}{2!} \Delta^2 f_{m-2} + \ldots + \frac{t(t+1)(t+2)\dots(t+k-1)}{k!} \Delta^k f_{m-k}$$

Từ đó

$$y_{m+1} = y_m + h \int_0^1 \left(f_m + \frac{t}{1!} \Delta f_{m-1} + \frac{t(t+1)}{2!} \Delta^2 f_{m-2} + \dots + \frac{t(t+1)(t+2)\dots(t+k-1)}{k!} \Delta^k f_{m-k} \right) dt$$

Vậy

$$y_{m+1} = y_m + h \left(f_m + a_1 \Delta f_{m-1} + a_2 \Delta^2 f_{m-2} + \dots + a_k \Delta^k f_{m-k} \right)$$
$$= y_m + h \sum_{i=0}^k a_i \Delta^i f_{m-i}$$

trong đó
$$a_i = (-1)^i \int\limits_0^1 (C^i_{-t}) \mathrm{d}t$$

Ta có bảng giá trị một số các a_i :

i	0	1	2	3	4	5	6	7
	1	1	5	3	251	95	19087	5257
a_i	1	$\overline{2}$	$\overline{12}$	$\frac{-}{8}$	$\overline{720}$	$\overline{288}$	$\overline{60480}$	17280

• Nếu k=1:

$$y_{m+1} = y_m + h(f_m + a_1 \Delta f_{m-1}) = y_m + \frac{h}{2}(3f_m - f_{m-1})$$

• Nếu k=2:

$$y_{m+1} = y_m + h(f_m + a_1 \Delta f_{m-1} + a_2 \Delta f_{m-2}) = y_m + \frac{h}{12} (23f_m - 16f_{m-1} + 5f_{m-2})$$

• Nếu k=3:

$$y_{m+1} = y_m + h(f_m + a_1 \Delta f_{m-1} + a_2 \Delta f_{m-2} + a_3 \Delta f_{m-3})$$
$$= y_m + \frac{h}{24} (55f_m - 59f_{m-1} + 37f_{m-2} - 9f_{m-3})$$

1.4.2 Công thức nội suy Adams

Nếu bắt đầu mốc nội suy x_{m+1} thì

$$P(x) = f_{m+1} + \frac{t}{1!} \Delta f_m + \frac{t(t+1)}{2!} \Delta^2 f_{m-1} + \dots + \frac{t(t+1)(t+2)\dots(t+k-1)}{k!} \Delta^k f_{m-k+1}$$

Do đó

$$y_{m+1} = y_m + \int_{x_m}^{x_{m+1}} P(x) dx$$

$$= y_m + h \int_{-1}^{0} \left(f_{m+1} + \frac{t}{1!} \Delta f_m + \frac{t(t+1)}{2!} \Delta^2 f_{m-1} + \dots + \frac{t(t+1)(t+2)\dots(t+k-1)}{k!} \Delta^k f_{m-k+1} \right) dt$$

Vây

$$y_{m+1} = y_m + h(f_{m+1} + b_1 \Delta f_m + b_2 \Delta^2 f_{m-1} + \dots + b_k \Delta^k f_{m-k+1})$$
$$= y_m + h \sum_{i=0}^k b_i \Delta^i f_{m-i+1}$$

trong đó
$$b_i = (-1)^i \int_{1}^{0} (C_{-i}^i) dt.$$

Ta có bảng giá trị một số các b_i :

i	0	1	2	3	4	5	6
b_i	1	$-\frac{1}{2}$	$-\frac{1}{12}$	$-\frac{1}{24}$	$-\frac{19}{720}$	$-\frac{3}{160}$	$-\frac{863}{60480}$

Nếu k=2:

$$y_{m+1} = y_m + h(f_{m+1} + b_1 \Delta f_m + b_2 \Delta f_{m-1}) = y_m + \frac{h}{12} (5f_{m+1} + 8f_m - f_{m-1})$$

Nếu k=3:

$$y_{m+1} = y_m + h(f_{m+1} + b_1 \Delta f_m + b_2 \Delta f_{m-1} + b_3 \Delta f_{m-2})$$
$$= y_m + \frac{h}{24} (9f_{m+1} + 19f_m - 5f_{m-1} + f_{m-2})$$

Nếu k=4:

$$y_{m+1} = y_m + \frac{h}{720} (251f_{m+1} + 646f_m - 264f_{m-1} + 106f_{m-2} - 19f_{m-3})$$

Ví dụ 1.6. Bằng phương pháp ngoại suy Adams ứng với k=3, giải gần đúng phương trình: $y'=f(x,y)=y-x^2$ biết y(0)=1 và độ dài bước h=0,1.

Giải

Công thức ngoại suy Adams ứng với k = 3:

$$y_{m+1} = y_m + \frac{h}{24}(55f_m - 59f_{m-1} + 37f_{m-2} - 9f_{m-3})$$

nghĩa là:

$$y_4 = y_3 + \frac{h}{24}(55f_3 - 59f_2 + 37f_1 - 9f_0)$$

trong đó các giá trị $f_i(x_i,y_i)$, i=0,1,2,3 và $y_i\approx y(x_i)$ được tính bằng phương pháp RK4 với các $x_0=0,\,x_1=0.1,\,x_2=0.2,\,x_3=0.3.$

$$f(0,1) = 1$$

$$f(0.1, 1.104829) = 1.094829$$

$$f(0.2, 1.218597) = 1.178597$$

$$f(0.3, 1.3402141) = 1.250141$$

Vậy,

$$y_4 = y_3 + \frac{h}{24} (55f_3 - 59f_2 + 37f_1 - 9f_0)$$

$$= 1.340141 + \frac{0.1}{24} [55(1.250141) - 59(1.178597) + 37(1.094829) - 9]$$

$$= 1.468179$$

Nghiệm chính xác của phương trình đã cho là $\varphi(x) = 2 + 2x + x^2 - e^x$ Ta có thể so sánh nghiệm gần đúng khi giải phương trình đã cho bằng phương pháp RK4 và phương pháp nội suy Adams với k=3 với nghiệm chính xác của phương trình theo bảng sau:

i	x_i	Adams	RK4	$\varphi(x_i)$
4	0.4	1.468179116	1.468174786	1.468175302
5	0.5	1.601288165	1.601278076	1.601278729
6	0.6	1.737896991	1.737880409	1.7378812
7	0.7	1.876270711	1.876246365	1.876247293
8	0.8	2.014491614	2.014458009	2.014459072
9	0.9	2.150440205	2.150395695	2.150396889
10	1.0	2.281774162	2.281716852	2.281718172

Chương 2

Ứng dụng

Câu 4. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp Euler:

a)
$$y' = 1 - y$$
, $y(0) = 0$, $h = 0.1$ trên đoạn $[0; 0.3]$.

b)
$$y' = \frac{y-x}{1+x}$$
, $y(0) = 1$, $h = 0.02$ trên đoạn $[0; 0.1]$.

c)
$$y' = 3x + \frac{1}{2}$$
, $y(0) = 1$, $h = 0.05$ trên đoạn $[0; 0.2]$.

d)
$$y' = x + y + xy$$
, $y(0) = 1$, $h = 0.02$ trên đoạn $[0; 0.1]$.

e)
$$y' = 1 + \ln(x + y), y(0) = 1, h = 0.1$$
 trên đoạn [0; 0.2].

f)
$$y' = (y+x)^2$$
, $y(0) = 1$, $h = 0.1$ trên đoạn $[0;1]$.

g)
$$y' = -5x^4y^2$$
, $y(0) = 1$, $h = 0.2$ trên đoạn $[0; 1]$.

Giải

c) $x_0=0,\,y_0=1,\,h=0.05,$ ta có bảng giá trị:

	n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
	0	0.0	1.0	1.0	1.0
Ī	1	0.05	1.05	1.051281	1.051313
Ī	2	0.1	1.102625	1.105444	1.105473
	3	0.15	1.158256	1.162892	1.162879
Ī	4	0.2	1.217294	1.224049	1.223946

d) $x_0=0,\,y_0=0,\,h=0.2,\,{\rm ta}$ có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến } 2)$
0	0.0	0.0	0.0	0.0
1	0.1	0.1	0.095	0.095
2	0.2	0.19	0.180975	0.18075
3	0.3	0.271	0.258782	0.258163

b) $x_0 = 0, y_0 = 1, h = 0.02,$ ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.02	1.02	1.019802	1.019804
2	0.04	1.039608	1.039212	1.039218

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
3	0.06	1.058831	1.058237	1.058248
4	0.08	1.077677	1.076885	1.076904
5	0.1	1.096152	1.095162	1.09519

c) $x_0=0,\,y_0=1,\,h=0.05,\,{\rm ta}$ có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.05	1.025	1.02875	1.02875
2	0.1	1.0575	1.065	1.065
3	0.15	1.0975	1.10875	1.10875
4	0.2	1.145	1.16	1.16

d) $x_0=0,\,y_0=1,\,h=0.02,\,{\rm ta}$ có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.02	1.02	1.020602	1.020604
2	0.04	1.041208	1.042445	1.042443
3	0.06	1.063665	1.065572	1.065559
4	0.08	1.087415	1.09003	1.089998
5	0.1	1.112503	1.115867	1.115807

e) $x_0=0,\,y_0=1,\,h=0.1,\,{\rm ta}$ có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.1	1.1	1.109531	1.109116
2	0.2	1.218232	1.237222	1.236081

f) $x_0=0,\,y_0=1,\,h=0.1$ ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.1	1.1	1.121	1.122
2	0.2	1.244	1.302048	1.300921
3	0.3	1.452514	1.579223	1.567124
4	0.4	1.759644	2.022661	1.974635
5	0.5	2.22605	2.787806	2.628147
6	0.6	2.969185	4.291918	3.754367
7	0.7	4.243093	8.059989	5.924101
8	0.8	6.686511	24.054293	10.920429
9	0.9	12.291295	335.318823	26.489364
10	1.0	29.692322	3586457.107023	111.099159

g) $x_0 = 0$, $y_0 = 1$, h = 0.2 ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.2	1.0	0.9999	0.9992
2	0.4	0.9984	0.991815	0.985642
3	0.6	0.972882	0.931885	0.911874
4	0.8	0.850216	0.747801	0.709949
5	1.0	0.554129	0.48468	0.453194

Câu 5. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp Euler cải tiến:

a)
$$y' = \frac{y-x}{1+x}$$
, $y(0) = 1$, $h = 0.02$ trên đoạn $[0; 0.1]$.

b)
$$y' = 3x + \frac{1}{2}y$$
, $y(0) = 1$, $h = 0.05$ trên đoạn $[0; 0.2]$.

c)
$$y' = x^2 + y$$
, $y(0) = 1$, $h = 0.05$ trên đoạn $[0; 0.2]$.

d)
$$y' = 1 + y^2$$
, $y(0) = 0$, $h = 0.2$ trên đoạn $[0; 0.6]$.

Giải

- a) (Câu 4b)
- b) (Câu 4c)
- c) $x_0 = 0$, $y_0 = 1$, h = 0.05, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.05	1.05	1.051281	1.051313
2	0.1	1.102625	1.105444	1.105473
3	0.15	1.158256	1.162892	1.162879
4	0.2	1.217294	1.224049	1.223946

d) $x_0 = 0$, $y_0 = 0$, h = 0.2, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	0.0	0.0	0.0
1	0.2	0.2	0.202	0.204
2	0.4	0.408	0.420737	0.424808
3	0.6	0.641293	0.67872	0.68398

Câu 6. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp RK4:

a)
$$y'=2+\sqrt{xy},\,y(1)=1,\,h=0.2$$
trên đoạn $[0;2]$

b)
$$y' = \frac{y}{x} - y^2$$
, $y(1) = 1$, $h = 0.2$ trên đoạn $[1; 2]$

c)
$$y'=x-\sin y,\,y(0)=0,\,h=0.1$$
trên đoạn $\left[0;\frac{\pi}{2}\right]$

d)
$$y' = x^2 + y^2$$
, $y(0) = 1$, $h = 0.1$ trên đoạn $[0; 1]$

e)
$$y' = x - \sqrt{y}, y(0) = 1, h = 0.2$$
 trên đoạn $[0; 1]$

Giải

a)
$$y' = 2 + \sqrt{xy}$$
, $y(1) = 1$, $h = 0.2$.

Ta có sơ đồ tính toán như sau:

n	x_o	y_o	$hf(x_n,y_n)$			
	1.0	1.0	0.6			
0	1.1	1.3	0.6392			
0	1.1	1.3196	0.6410			
	1.2	1.6410	0.6807			
3	$y_1 = 1.640150501121759$					
	1.2	1.6402	0.6806			
$\begin{vmatrix} 1 \end{vmatrix}$	1.3	1.9804	0.7209			
1	1.3	2.0006	0.7225			
	1.4	2.3627	0.7637			
y	$r_2 = 2$.36202158	847729593			
	1.4	2.3620	0.7637			
$ _{2}$	1.5	2.7439	0.8057			
	1.5	2.7649	0.8073			
	1.6	3.1693	0.8504			
?	$y_3 = 3$	3.1687160	03302697			
	1.6	3.1687	0.8503			
3	1.7	3.5939	0.8944			
3	1.7	3.6159	0.8959			
	1.8	4.0646	0.9410			
?	$y_4 = 4$.0640048	346121863			
	1.8	4.0640	0.9409			
4	1.9	4.5345	0.9870			
4	1.9	4.5575	0.9885			
	2.0	5.0525	1.0358			
1	$y_5 = 5$	$5.0\overline{519809}$	57085838			

Vậy nghiệm gần đúng của phương trình là $y_5 = 5.051980957085838$.

b)
$$y' = \frac{y}{x} - y^2$$
, $y(1) = 1$, $h = 0.2$ trên đoạn $[1; 2]$

n	,	x_o	y_o	$hf(x_n,y_n)$
		1.0	1.0	0.0000
\mid_{0}		1.1	1.0	-0.0182
0		1.1	0.9909	-0.0162

n	x_o	y_o	$hf(x_n,y_n)$	
	1.2	0.9838	-0.0296	
y	$y_1 = 0.9836006941450569$			
	1.2	0.9836	-0.0296	
1	1.3	0.9688	-0.0387	
1	1.3	0.9643	-0.0376	
	1.4	0.9460	-0.0438	
y	$_{2}=0$.94593900	018738288	
	1.4	0.9459	-0.0438	
$ _{2}$	1.5	0.9240	-0.0476	
	1.5	0.9222	-0.0471	
	1.6	0.8988	-0.0492	
y	$_{3}=0$.8988702	115243877	
	1.6	0.8989	-0.0492	
3	1.7	0.8743	-0.0500	
5	1.7	0.8739	-0.0499	
	1.8	0.8489	-0.0498	
į	$y_4 = 0$	0.8490516	517841853	
	1.8	0.8491	-0.0498	
4	1.9	0.8241	-0.0491	
4	1.9	0.8245	-0.0492	
	2.0	0.7999	-0.0480	
y	$_{5}=0$.7999961	579105562	

Vậy nghiệm gần đúng của phương trình là $y_5=0.7999961579105562. \label{eq:y5}$

c)
$$y' = x - \sin y$$
, $y(0) = 0$, $h = 0.1$.

			7.0/
n	x_o	y_o	$hf(x_n,y_n)$
	0.0	0.0000	0.0000
0	0.05	0.0000	0.0050
	0.05	0.0025	0.0048
	0.1	0.0048	0.0095
y_1	= 0.00	04837500	380164618
	0.1	0.0048	0.0095
1	0.15	0.0096	0.0140
1	0.15	0.0119	0.0138
	0.2	0.0187	0.0181
y_2	= 0.01	8730933	533350227
	0.2	0.0187	0.0181
$\frac{1}{2}$	0.25	0.0278	0.0222
	0.25	0.0298	0.0220
	0.3	0.0407	0.0259
y_3	= 0.04	10818909	363427004
	0.3	0.0408	0.0259

n	x_o					
-	0.35	$\frac{y_o}{0.0538}$	$\frac{hf(x_n, y_n)}{0.0296}$			
	$\frac{0.35}{0.35}$	0.0556	0.0290			
-	$\frac{0.35}{0.4}$	0.0330	0.0294			
0.070000707.40700000						
$y_4 = 0.07032359540590269$ $0.4 $						
-	$\frac{0.4}{0.45}$	0.0703	0.0363			
4	$\frac{0.45}{0.45}$	0.0885	0.0362			
-	$\frac{0.45}{0.5}$	0.0865	0.0302			
			0.0394 328749952			
y_5	$\frac{=0.1}{0.5}$	0.1065	0.0394			
-						
5	$\frac{0.55}{0.55}$	0.1262	0.0424			
-		0.1278	0.0423			
	0.6	0.1488	0.0452			
y_{ϵ}	<u></u>		39227904			
-	0.6	0.1489	0.0452			
6	0.65	0.1714	0.0479			
-	$0.65 \\ \hline 0.7$		0.0478			
		0.1967	0.0505			
$\frac{y_7}{}$		1	0.0505			
-	0.7	0.1967	0.0505			
7	0.75	0.2219	0.0530			
-	0.75	0.2232	0.0529			
	0.8	0.2496	0.0553			
y_8			239186969			
-	0.8	0.2496	0.0553			
8	0.85	0.2773	0.0576			
-	0.85	0.2784	0.0575			
	0.9	0.3071	0.0598			
y_9			88049683			
-	0.9	0.3072	0.0598			
9	0.95	0.3371	0.0619			
-	0.95	0.3381	0.0618			
	1.0	0.3690	0.0639			
y_{10}			670522175			
-	1.0	0.3690	0.0639			
10	1.05	0.4010	0.0660			
-	1.05	0.4020	0.0659			
	1.1	0.4349	0.0679			
y_{11}			238415795			
	1.1	0.4350	0.0679			
-	1.15	0.4689	0.0698			
11	1 1 -					
11	1.15	0.4699	0.0697			
$\frac{11}{y_{1:}}$	1.2	0.5047	0.0697 0.0716 76597383			

n	x_o	y_o	$hf(x_n,y_n)$
	1.2	0.5047	0.0716
12	1.25	0.5405	0.0735
12	1.25	0.5415	0.0735
	1.3	0.5782	0.0754
y_1	$_{13} = 0.$	57821902	92422908
	1.3	0.5782	0.0753
13	1.35	0.6159	0.0772
10	1.35	0.6168	0.0772
	1.4	0.6554	0.0791
y_1	$_{14} = 0.$	65541444	39285761
	1.4	0.6554	0.0791
14	1.45	0.6949	0.0810
14	1.45	0.6959	0.0809
	1.5	0.7363	0.0828
y	$y_{15} = 0$.73634991	14185467

Vậy nghiệm gần đúng của phương trình đã cho là $y_{15}=0.736349914185467$. d) $y'=x^2+y^2,\,y(0)=1,\,h=0.1$.

n	x_o	y_o	$hf(x_n,y_n)$
	0. 0 000	1.0000	0.1000
0	0.0500	1.0500	0.1105
0	0.0500	1.0553	0.1116
	0.1000	1.1116	0.1246
	$y_1 = 1.1$	1146285617	787105
	0.1000	1.1115	0.1245
1	0.1500	1.1737	0.1400
1	0.1500	1.1815	0.1418
	0.2000	1.2533	0.1611
	$y_2 = 1.2$	5301517460	035345
	0.2000	1.2530	0.1610
$ _{2}$	0.2500	1.3335	0.1841
	0.2500	1.3451	0.1872
	0.3000	1.4402	0.2164
	$y_3 = 1.4$	4396659745	47582
	0.3000	1.4397	0.2163
3	0.3500	1.5478	0.2518
3	0.3500	1.5656	0.2574
	0.4000	1.6970	0.3040
	$y_4 = 1.0$	6960979037	22817
	0.4000	1.6961	0.3037
$\begin{vmatrix} 4 \end{vmatrix}$	0.4500	1.8479	0.3617
	0.4500	1.8770	0.3726

n	x_o	y_o	$hf(x_n,y_n)$			
	0.5000	2.0686	0.4529			
	$y_5 = 2.066961015450312$					
	0.5000	2.0670	0.4522			
5	0.5500	2.2931	0.5561			
0	0.5500	2.3450	0.5802			
	0.6000	2.6471	0.7367			
	$y_6 = 2.0$	6438601970	79332			
	0.6000	2.6439	0.7350			
6	0.6500	3.0114	0.9491			
0	0.6500	3.1184	1.0147			
	0.7000	3.6586	1.3875			
	$y_7 = 3.6$	55220035878	842087			
	0.7000	3.6522	1.3829			
7	0.7500	4.3436	1.9430			
'	0.7500	4.6237	2.1941			
	0.8000	5.8463	3.4819			
	$y_8 = 5.3$	8420133352	79946			
	0.8000	5.8420	3.4769			
8	0.8500	7.5805	5.8186			
	0.8500	8.7513	7.7308			
	0.9000	13.5728	18.5031			
	$y_9 = \overline{14}.$.0218200763	380461			
	0.9000	14.0218	19.7421			
9	0.9500	23.8929	57.1773			
	0.9500	42.6105	181.6554			
	1.0000		3829.0565			
	$y_{10} = 73$	35.09914334	136242			

Vậy nghiệm gần đúng của phương trình đã cho là $y_{10}=735.0991433436242.$

e)
$$y' = x - \sqrt{y}$$
, $y(0) = 1$, $h = 0.2$.

n	x_o	y_o	$hf(x_n,y_n)$		
	0.0000	1.0000	-0.2000		
0	0.1000	0.9000	-0.1697		
	0.1000	0.9151	-0.1713		
	0.2000	0.8287	-0.1421		
	$y_1 = 0.82$	29302241	6154283		
	0.2000	0.8293	-0.1421		
1	0.3000	0.7582	-0.1142		
1	0.3000	0.7722	-0.1158		
	0.4000	0.7135	-0.0889		
	$y_2 = 0.71415419659681$				
	0.4000	0.7142	-0.0890		

n	x_o	y_o	$hf(x_n,y_n)$
	0.5000	0.6696	-0.0637
	0.5000	0.6823	-0.0652
	0.6000	0.6489	-0.0411
	$y_3 = 0.64$	19509376	5790388
	0.6000	0.6495	-0.0412
3	0.7000	0.6289	-0.0186
3	0.7000	0.6402	-0.0200
	0.8000	0.6295	0.0013
	$y_4 = 0.62$	29987245	7446561
	0.8000	0.6300	0.0013
4	0.9000	0.6306	0.0212
4	0.9000	0.6406	0.0199
	1.0000	0.6499	0.0388
	$y_5 = 0.65$	0359365	1753093

Vậy ta có nghiệm gần đúng của phương trình đã cho là $y_5 = 0.6503593651753093$.

Câu 7. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp nội suy Adams và ngoại suy Adams tương ứng với k=4 và k=3 biết các giá trị đầu tiên được tìm bằng phương pháp RK4.

a)
$$y' = xy^3 - y$$
, $y(0) = 1$, $h = 0.1$ trên đoạn $[0; 1]$

b)
$$y^{\prime}=x-y,\,y(0)=1,\,h=0.1$$
trên đoạn $[0;1]$

c)
$$y'=1-x\sqrt[3]{y},\,y(0)=1,\,h=0.5$$
trên đoạn $[0;5]$

d)
$$y' = y - x^2 + 1$$
, $y(0) = 0.5$, $h = 0.2$ trên đoạn $[0; 2]$

e)
$$y' = xe^{3x} - 2y$$
, $y(0) = 0$, $h = 0.2$ trên đoạn $[0; 1]$

Giải

a)
$$y' = xy^3 - y$$
, $y(0) = 1$, $h = 0.1$

 \star Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.4	0.704867563	0.704859905
5	0.5	0.651066638	0.651062961
6	0.6	0.601924692	0.601922792
7	0.7	0.556622667	0.556621625
8	0.8	0.514582197	0.514581597
9	0.9	0.475392441	0.475392079
10	1.0	0.438760084	0.438759854

* Phương pháp ngoại suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.4	0.705130139	0.704859905
5	0.5	0.651205954	0.651062961
6	0.6	0.602004109	0.601922792
7	0.7	0.556670805	0.556621625
8	0.8	0.514613013	0.514581597
9	0.9	0.475413151	0.475392079
10	1.0	0.438774587	0.438759854

b)
$$y' = x - y$$
, $y(0) = 1$, $h = 0.1$

* Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.4	0.740640480	0.740640578
5	0.5	0.713061780	0.713061869
6	0.6	0.697623789	0.697623869
7	0.7	0.693171165	0.693171237
8	0.8	0.698658514	0.698658579
9	0.9	0.713139923	0.713139982
10	1.0	0.735759495	0.735759549

 \star Phương pháp ngoại suy Adams

Ta có:
$$y' = x - y$$
, $y(0) = 1$, $h = 0.1$

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.4	0.740646198	0.740640578
5	0.5	0.713066954	0.713061869
6	0.6	0.697628470	0.697623869
7	0.7	0.693175401	0.693171237
8	0.8	0.698662347	0.698658579
9	0.9	0.713143391	0.713139982
10	1.0	0.735762633	0.735759549

d)
$$y' = y - x^2 + 1$$
, $y(0) = 0.5$, $h = 0.2$

⋆ Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=3

như sau:

i	x_i	Adams	RK4
4	0.8	2.127205481	2.127202685
5	1.0	2.640824775	2.640822693
6	1.2	3.179895380	3.179894170
7	1.4	3.732340217	3.732340073
8	1.6	4.283408341	4.283409498
9	1.8	4.815082947	4.815085695
10	2.0	5.305358312	5.305363001

$\star \ Phương \ pháp \ ngoại \ suy \ Adams$

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.8	2.127289249	2.127202685
5	1.0	2.640927089	2.640822693
6	1.2	3.180020346	3.179894170
7	1.4	3.732492851	3.732340073
8	1.6	4.283594768	4.283409498
9	1.8	4.815310650	4.815085695
10	2.0	5.305636428	5.305363001

e)
$$y' = xe^{3x} - 2y$$
, $y(0) = 0$, $h = 0.2$

\star Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.8	1.332737617	1.332227617
5	1.0	3.222889913	3.221992603

⋆ Phương pháp ngoại suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.8	1.296385456	1.332227617
5	1.0	3.149614338	3.221992603

Chương 3 Xây dựng thuật toán