

planetmath.org

Math for the people, by the people.

exotic R4's

Canonical name ExoticR4s

Date of creation 2013-03-22 15:37:33 Last modified on 2013-03-22 15:37:33

Owner $\frac{1}{2}$ whm22 (2009) Last modified by $\frac{1}{2}$ whm22 (2009)

Numerical id 21

Author whm22 (2009)
Entry type Definition
Classification msc 57R12
Classification msc 14J80

Related topic DonaldsonsTheorem

Related topic DonaldsonFreedmanExoticR4

If $n \neq 4$ then the smooth manifolds homeomorphic to a given topological n- manifold, M, are parameterized by some discrete algebraic invariant of M. In particular there is a unique smooth manifold homeomorphic to \mathbb{R}^n .

By contrast one may choose uncountably many open sets in \mathbb{R}^4 , which are all homeomorphic to \mathbb{R}^4 , but which are pairwise non-diffeomorphic.

A smooth manifold homeomorphic to \mathbb{R}^4 , but not diffeomorphic to it is called an exotic \mathbb{R}^4 .

Given an exotic \mathbb{R}^4 , E, we have a diffeomorphism $E \times \mathbb{R} \to \mathbb{R}^5$. (As there is only one smooth manifold homeomorphic to \mathbb{R}^5). Hence exotic \mathbb{R}^4 's may be identified with closed submanifolds of \mathbb{R}^5 . In particular this means the cardinality of the set of exotic \mathbb{R}^4 's is precisely continuum.

Historically, Donaldson's theorem led to the discovery of the Donaldson Freedman exotic \mathbb{R}^4 .