# COMP30026 Models of Computation

Lecture 19: Decidable Languages (cont.) and Countable Sets

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

Some material from Michael Sipser's slides

### Where are we?

#### Last time:

Equivalence of variants of the Turing machine model

- Multi-tape TMs
- Nondeterministic TMs

Notation for encodings and TMs

Decision procedures for automata and grammars

$$A_{\mathrm{DFA}}$$
 ,  $A_{\mathrm{NFA}}$ ,  $E_{\mathrm{DFA}}$ 

**Today:** (Sipser §4.1-4.2)

Techniques for TM Construction

Decision procedures for automata and grammars

 $E\mathrm{Q}_{\mathrm{DFA}}$  ,  $A_{\mathrm{CFG}}$  ,  $E_{\mathrm{CFG}}$  are decidable

**Countable Sets** 

# Techniques for TM Construction

#### Simulation

Construct a TM that simulates another machine

- 1. Equivalence of variants of the Turing machine model
- e.g. multi-tape TMs



2. Decision procedures for automata and grammars

 $A_{\mathrm{DFA}}$ 

### Techniques for TM Construction

### Reduction/Reducibility

#### Suppose:

- Want a recogniser/decider M<sub>1</sub> for language L<sub>1</sub>
- Have a recogniser/decider M<sub>2</sub> for language L<sub>2</sub>

Then we can build  $M_1$  using a reduction



# Techniques for TM Construction

### Reduction/Reducibility

#### Suppose:

- Want to recognise/decide language  $A_{\rm NFA}$
- Have a recogniser/decider  $M_2$  for language  $A_{\mathrm{DFA}}$

Then we can obtain recogniser/decider  $M_1$  for  $A_{\rm NFA}$  using a reduction



### Equivalence problem for DFAs

Let  $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ 

Theorem:  $EQ_{\mathrm{DFA}}$  is decidable

Proof: Give TM  $D_{\mathrm{EQ-DFA}}$  that decides  $EQ_{\mathrm{DFA}}$  .

 $D_{\mathrm{EQ-DFA}} =$  "On input  $\langle A, B \rangle$  [IDEA: Make DFA C that accepts w where A and B c

- 1. Construct DFA C where  $L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$ .
- 2. Run  $D_{E-DFA}$  on  $\langle C \rangle$ .
- 3. Accept if  $D_{\rm E-DFA}$  accepts. Reject if  $D_{\rm E-DFA}$  rejects."

L

### Equivalence problem for DFAs

Let  $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ 

Theorem:  $EQ_{\mathrm{DFA}}$  is decidable

Proof: Give TM  $D_{\mathrm{EQ-DFA}}$  that decides  $EQ_{\mathrm{DFA}}$  .

 $D_{\mathrm{EQ-DFA}} =$  "On input  $\langle A, B \rangle$  [IDEA: Make DFA C that accepts w where A and B c

- 1. Construct DFA C where  $L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$ .
- 2. Run  $D_{E-DFA}$  on  $\langle C \rangle$ .
- 3. Accept if  $D_{\rm E-DFA}$  accepts. Reject if  $D_{\rm E-DFA}$  rejects."

L

# Equivalence problem for DFAs

Let  $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ 

Theorem:  $EQ_{\mathrm{DFA}}$  is decidable

Proof: Give TM  $\,D_{
m EQ-DFA}\,$  that decides  $EQ_{
m DFA}\,$  .

#### Check-in 19.1

Let  $EQ_{REX} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are regular expressions and } L(R_1) = L(R_2) \}$ 

Can we now conclude that  $EQ_{REX}$  is decidable?

- a) Yes, it follows easily from things we've already shown.
- b) Yes, but it would take significant additional work.
- c) No, intersection is not a regular operation.



### Acceptance Problem for CFGs

Let  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G)\}$ 

**Theorem:**  $A_{CFG}$  is decidable Brute-force search all possible derivations?

**Proof:** Give TM  $D_{A-CFG}$  that decides  $A_{CFG}$ .

 $D_{A-CFG}$  = "On input  $\langle G, w \rangle$ 

- 1. Convert *G* into CNF.
- 2. Try all derivations of length 2|w| 1.
- 3. Accept if any generate w. Reject if not.

**Corollary:** Every CFL is decidable.

**Proof:** Let A be a CFL, generated by CFG G.

Construct TM  $M_G$  = "on input w

- 1. Run  $D_{A-CFG}$  on  $\langle G, w \rangle$ .
- 2. Accept if  $D_{A-CFG}$  accepts Reject if it rejects."

Chomsky Normal Form (CNF) only allows rules:

 $S \rightarrow \epsilon$  (only rule producing  $\epsilon$ )

 $A \rightarrow BC$ 

 $B \rightarrow b$ 

**Lemma 1:** Can convert every CFG into CNF. Proof and construction in book.

**Lemma 2:** If H is in CNF and  $w \in L(H)$  then every derivation of w has 2|w|-1 steps. Proof: exercise.

### Acceptance Problem for CFGs

Let  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$ 

**Theorem:**  $A_{CFG}$  is decidable

**Proof:** Give TM  $D_{A-CFG}$  that decides  $A_{CFG}$ .

 $D_{A-CFG} = \text{"On input } \langle G, w \rangle$ 

- 1. Convert *G* into CNF.
- 2. Try all derivations of length 2|w| 1.
- 3. Accept if any generate w. Reject if not.

#### Check-in 19.2

Can we conclude that  $A_{\rm PDA}$  is decidable?

- a) Yes.
- b) No, PDAs may be nondeterministic.
- c) No, PDAs may not halt.



Chomsky Normal Form (CNF) only allows rules:

 $S \rightarrow \epsilon$  (only rule producing  $\epsilon$ )

 $A \rightarrow BC$ 

 $B \rightarrow b$ 

**Lemma 1:** Can convert every CFG into CNF. Proof and construction in book.

**Lemma 2:** If H is in CNF and  $w \in L(H)$  then every derivation of w has 2|w|-1 steps. Proof: exercise.

### **Emptiness Problem for CFGs**

```
Let E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}
```

Theorem:  $E_{CFG}$  is decidable

Proof:

 $D_{\text{E-CFG}}$  = "On input  $\langle G \rangle$  [IDEA: work backwards from terminals]

- 1. Mark all occurrences of terminals in *G*.
- 2. Repeat until no new variables are marked Mark all occurrences of variable A if  $A \rightarrow B_1 B_2 \cdots B_k$  is a rule and all  $B_i$  were already marked.
- 3. Reject if the start variable is marked. Accept if not."

$$S \rightarrow RTa$$
 $R \rightarrow Tb$ 
 $T \rightarrow a$ 

Invariant: every marked symbol can generate non-empty string of terminals

### Equivalence Problem for CFGs

```
Let EQ_{CFG} = \{\langle G, H \rangle | G, H \text{ are CFGs and } L(G) = L(H) \}
```

Theorem:  $EQ_{\mathrm{CFG}}$  is NOT decidable

Proof: Next week.

Let  $AMBIG_{CFG} = \{\langle G \rangle | G \text{ is an ambiguous CFG } \}$ 

Theorem:  $AMBIG_{CFG}$  is NOT decidable

### Acceptance Problem for TMs

Let  $A_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$ 

Theorem:  $A_{TM}$  is not decidable

Proof: Coming up.

Theorem:  $A_{TM}$  is T-recognizable

Proof: The following TM U recognizes  $A_{\rm TM}$ 

 $U = \text{"On input } \langle M, w \rangle$ 

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. *Reject* if *M* halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Turing's original "Universal Computing Machine"



Von Neumann said U inspired the concept of a stored program computer.

# Acceptance Problem for TMs

Let  $A_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$ 

Proof uses the diagonalization method, so we will introduce that first.

### The Size of Infinity

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Informally, two sets have the same size if we can pair up their members.

**Defn:** Say that set A and B have the same size if there is a one-to-one and onto function  $f: A \to B$ 

$$x \neq y \rightarrow$$
 Range  $(f) = B$   
 $f(x) \neq f(y)$  "surjective"

We call such an f a <u>1-1 correspondence</u>



Apply it to infinite sets too.



### **Countable Sets**

Let 
$$\mathbb{N} = \{1,2,3,...\}$$
 and let  $\mathbb{Z} = \{...,-2,-1,0,1,2,...\}$ 

Show  $\mathbb N$  and  $\mathbb Z$  have the same size

$$\begin{array}{c|c}
n & f(n) \\
\mathbb{N} & \mathbb{Z}
\end{array}$$

Let 
$$\mathbb{Q}^+ = \{ m/n \mid m, n \in \mathbb{N} \}$$

Show  $\mathbb N$  and  $\mathbb Q^+$  have the same size

| $\mathbb{Q}^+$ | 1   | 2   | 3   | 4   |  |
|----------------|-----|-----|-----|-----|--|
| 1              | 1/1 | 1/2 | 1/3 | 1/4 |  |
| 2              | 2/1 | 2/2 | 2/3 | 2/4 |  |
| 3              | 3/1 | 3/2 | 3/3 | 3/4 |  |
| 4              | 4/1 | 4/2 | 4/3 | 4/4 |  |
| :              |     | :   |     |     |  |

$$\begin{array}{c|c}
n & f(n) \\
N & \mathbb{Q}^+
\end{array}$$

**Defn:** A set is <u>countable</u> if it is finite or it has the same size as  $\mathbb{N}$ .

Both  $\mathbb{Z}$  and  $\mathbb{Q}^+$  are countable.

Think of table as a grid graph and f(n) is the n th number in BFS traversal starting from top-left corner

### **Bonus: Countable Sets**

Construction similar to one for converting TM to enumerator and NTMs to DTMs

 $C_{t,i}$  = t-th configuration of TM M on  $w_i$ 

|   | $w_1$     | $W_2$                  | $W_3$     |  |
|---|-----------|------------------------|-----------|--|
| 1 | $C_{1,1}$ | $C_{1,2}$              | $C_{1,3}$ |  |
| 2 | $C_{2,1}$ | $C_{2,2}$              | $C_{2,3}$ |  |
| 3 | $C_{3,1}$ | $\left[C_{3,2}\right]$ | $C_{3,3}$ |  |
| 4 | $C_{4,1}$ | $C_{4,2}$              | $C_{4,3}$ |  |
| : |           | ÷                      |           |  |

# Quick review of today

- 1. Simulation and reduction
- 2. We showed the decidability of various problems about automata and grammars:

$$E_{
m DFA}$$
 ,  $A_{
m CFG}$  ,  $E_{
m CFG}$ 

- 3.  $A_{TM}$  is T-recognizable
- 4. Countable Sets