What does it take for an AI to beat a score of 100 in Flappy Bird?

A Case Study on Flappy Bird Al

Arno Törö

LUT University

December 11, 2024

Introduction

Methodology

Results

4 Conclusion

Introduction

• Flappy Bird was a popular game in 2014 and it became infamous for its simple but challenging gameplay.

Introduction

- The motivation for this case study was to have an intuitive but relatively simple problem and try to develop an Al agent to solve it.
- The agent is trained in the game environment through trial and error, using a reinforcement learning algorithm called deep Q-learning algorithm.

Environment setup

- Created a game environment of Flappy Bird in Python, which handles the game logic (collisions, rendering more pipes, etc.).
- There are two possible actions in the game: flap or don't flap
- Return the game state information of each frame to the agent.

Information to agent

- Information gathered for the agent:
 - 1 Horizontal distance to next pipe
 - 2 Vertical distance to next center of pipe gap
 - 3 Bird's current speed

990

Deep Q-learning algorithm

- Utilized PyTorch
- Q-learning calculates a value for each possible action in a state.
- Deep Q-learning (DQN) uses neural networks to approximate Q-values for each possible action at given state.
- DQNs often utilize CNNs to approximate Q-values, but not used in this study.
- ϵ -greedy policy
 - Balance exploration and exploitation to prevent suboptimal results

Deep Q-learning algorithm structure

Used hyperparameters

- Hyperparameters used in this study
 - Learning rate: 0.001
 - γ: 0.95
 - Batch size: 128
 - Replay buffer size: 20 000
 - ϵ : decay form 1.0 to 0.1 over time.
- Rewards given for the agent:
 - Surviving: 0.01
 - Passing a pipe: 1
 - Failing: -10

Results

- Agent was trained for 250 iterations or until a score of 200 was achieved with two consecutive games.
- Training results of 10 agents:

Training Session	Iterations to Reach Goal or Fail
1	99
2	250
3	250
4	90
5	250
6	250
7	105
8	95
9	94
10	97
Average	158

Training session performance

 Agent's performance on one training session which lead to reaching a score of 100 points

Conclusions

- Agent is capable of reaching 100 points of score rather quickly.
- Sometimes fails to converge to a solution, the first pipe pass is the most important one. Can be based on luck.
- Improvements in hyperparameters or learning algorithm structure could help overcome this issue.

Demovideo

