Chapter 14 Even Answers

```
2. (a) 2.50 \times 10^{-5} N (b) between the masses and 0.245 m from the 500 kg mass
```

- 4. 2.00 kg and 3.00 kg
- **6.** $\rho_{\rm M}/\rho_{\rm E} = 2/3$
- 8. (a) 1.02×10^3 m/s (b) 1.35 mm
- 10. $2.67 \times 10^{-7} \text{ m/s}^2$
- 12. (a) 3.46×10^8 m (b) 3.34×10^{-3} m/s² toward the Earth
- **14.** (a) 4.23×10^7 m (b) 0.285 s
- **16.** $M = 2v^3T/\pi G$
- **18.** 35.2 A.U.
- **20.** Planet *Y* has gone through 1.30 revolutions
- **22.** $1.63 \times 10^4 \, \text{rad/s}$
- **24.** (a) 1.31×10^{17} N (b) 2.62×10^{12} N/kg
- **26.** $GMr(a^2 + r^2)^{-3/2}$ toward center of ring
- **28.** $4.17 \times 10^{10} \,\mathrm{J}$
- **30.** 2.52×10^7 m
- **32.** $2.82 \times 10^9 \,\mathrm{J}$
- **34.** (a) 42.1 km/s (b) $2.20 \times 10^{11} \text{ m}$ (1.47 A.U.)

36. (a)
$$2\pi \sqrt{\frac{(R_E + h)^3}{GM_E}}$$
 (b) $\sqrt{\frac{GM_E}{R_E + h}}$ (c) $GM_E m \left[\frac{R_E + 2h}{2R_E(R_E + h)} \right] - \frac{2\pi^2 R_E^2 m}{(86400 \text{ s})^2}$

- **38**. 469 MJ
- **40.** (a) 10.0 m/s^2 (b) 21.8 km/s
- **42.** 11.8 km/s
- **46.** (b) 1.81 h (c) the moon's core is not molten

48. (a)
$$\frac{Gmm_1a}{R_1^3}$$
 toward the center (b) $\frac{Gmm_1}{b^2}$ toward the center

(c)
$$\frac{Gm(m_1 + m_2)}{c^2}$$
 toward the center

50.
$$\frac{2}{3}\sqrt{\frac{GM}{R}}$$
 for $M, \frac{1}{3}\sqrt{\frac{GM}{R}}$ for $2M$

- **52.** (c) 1.85×10^{-5} m/s²
- **54.** v = 492 m/s
- **56.** $\omega = 0.0572 \text{ rad/s (or 1 rev in 110 s)}$
- **58.** (a) $G^{1/2}c^{-3/2}h^{1/2}$ (b) $\sim 10^{-34}$ m

60. (a)
$$\frac{dg}{dr} = 4\pi G \left[\rho(r) - \frac{2}{3} \rho_{av}(r) \right]$$

(b) the value of g increases as one descends into the Earth

62. (a)
$$2.93 \times 10^4$$
 m/s (b) $K = 2.74 \times 10^{33}$ J, $U = -5.40 \times 10^{33}$ J

- (c) $K = 2.57 \times 10^{33} \text{ J}$, $U = -5.22 \times 10^{33} \text{ J}$
- **64.** (a) 850 MJ (b) 2.71×10^9 J
- **66.** (a) 2.26×10^8 yr (b) ~ 10^{11} solar masses, ~ 10^{11} stars

68.
$$v = \sqrt{2MG\left(\frac{1}{R} + \frac{1}{r}\right)} = \sqrt{2R^2g\left(\frac{1}{R} + \frac{1}{r}\right)}$$

70. (a) 2.77 m/s^2 (b) 3.70 m/s^2

2 Chapter 14 Even Answers