Agrégation Externe

Anneaux principaux

On pourra consulter les ouvrages suivants.

- P. Boyer, J. J. Risler: Algèbre pour la licence 3. Groupes, anneaux, corps. Dunod (2006).
- F. Combes Algèbre et géométrie. Bréal (2003).
- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
 - D. Perrin. Cours d'algèbre. Ellipses (1996).
 - A. SZPIRGLAS. Mathématiques L3. Algèbre. Pearson (2009).

Pour ce problème, A désigne un anneau commutatif, unitaire, a priori intègre et on note :

- -0 et 1 les éléments neutres pour l'addition et la multiplication de \mathbb{A} , avec $0 \neq 1$;
- $\mathbb{A}^* = \mathbb{A} \setminus \{0\}$ l'ensemble des éléments non nuls de \mathbb{A} ;
- A[×] le groupe multiplicatif des éléments inversibles (ou des unités) de A.
- Deux éléments a, b de A sont dits associés s'il existe un élément inversible $u \in \mathbb{A}^{\times}$ tel que b = ua.
- Un élément p de A est dit irréductible si $p \neq 0$, p n'est pas inversible et :

$$(p = ab) \Rightarrow (a \text{ ou } b \text{ est inversible})$$

(les seuls diviseurs de p sont les éléments inversibles ou les éléments de \mathbb{A} associés à p).

- Un élément p de A est dit premier si $p \neq 0$, p n'est pas inversible et :

$$(p \text{ divise } ab) \Rightarrow (p \text{ divise } a \text{ ou } p \text{ divise } b)$$

Un élément premier dans \mathbb{A} est irréductible, la réciproque n'étant pas acquise en général. Pour les définitions qui suivent, l'anneau \mathbb{A} n'est pas nécessairement intègre.

– Un idéal de $\mathbb A$ est un sous-ensemble I de $\mathbb A$ tel que :

$$\left\{ \begin{array}{l} I \text{ est un sous-groupe de } (\mathbb{A},+) \\ \forall (a,b) \in I \times \mathbb{A}, \ ab \in I \end{array} \right.$$

(la deuxième condition se traduit en disant que I est absorbant pour le produit).

- Un idéal I de A est dit premier s'il est distinct de A et si ab ∈ I si, et seulement si, a ∈ I ou b ∈ I, ce qui équivaut à dire que l'anneau quotient A/I est intègre.
 Un idéal I de A est dit maximal s'il est distinct de A et si I et A sont les seuls idéaux de A qui
- Un idéal I de \mathbb{A} est dit maximal s'il est distinct de \mathbb{A} et si I et \mathbb{A} sont les seuls idéaux de \mathbb{A} qui contiennent I, ce qui équivaut à dire que l'anneau quotient $\frac{\mathbb{A}}{I}$ est un corps. Un idéal maximal est premier, la réciproque n'étant pas acquise en général.

- I - Exemples d'anneaux principaux

On dit que l'anneau \mathbb{Z} est principal, s'il est intègre et si tout idéal de \mathbb{A} est principal. Les anneaux \mathbb{Z} et $\mathbb{K}[X]$, pour \mathbb{K} corps commutatif, sont connus pour être euclidiens et principaux.

- 1. Un corps est-il un anneau principal?
- 2. Montrer que si l'anneau \mathbb{A} (a priori non intègre) est isomorphe à un anneau \mathbb{B} principal il est alors principal.

Ce résultat peut être commode pour montrer qu'un anneau est principal.

3. Soit \mathbb{K} un corps commutatif.

On se propose de montrer que l'anneau quotient $\frac{\mathbb{K}[X,Y]}{(Y-X^2)}$ est principal.

(a) Montrer que l'application :

$$\begin{array}{cccc} \varphi: & \mathbb{K}\left[X,Y\right] & \to & \mathbb{K}\left[X\right] \\ & P\left(X,Y\right) & \mapsto & P\left(X,X^2\right) \end{array}$$

est un morphisme d'anneaux surjectif et préciser son noyau.

(b) Montrer que l'anneau quotient $\frac{\mathbb{K}[X,Y]}{(Y-X^2)}$ est principal.

4.

(a) Montrer que tout sous-anneau A de Q est principal.

- (b) Montrer que l'anneau $\mathbb{D} = \left\{ \frac{a}{10^m} \mid (a, m) \in \mathbb{Z} \times \mathbb{N} \right\}$ des nombres décimaux est principal.
- 5. On désigne par \mathbb{K} le corps des fraction de l'anneau intègre \mathbb{A} . On se donne une partie S de \mathbb{A}^* qui contient 1 et qui est stable pour le produit.
 - (a) Montrer que l'ensemble :

$$S^{-1}\mathbb{A} = \left\{ \frac{a}{s} \mid a \in \mathbb{A} \text{ et } s \in S \right\}$$

est un sous-anneau du corps K qui contient A.

- (b) Montrer que si \mathbb{A} est principal, il en est alors de même de $S^{-1}\mathbb{A}$.
- (c) Montrer que l'anneau D des nombres décimaux est principal.
- (d) Soit \mathbb{K} un corps commutatif.

Montrer que l'anneau
$$\mathbb{D} = \left\{ \frac{P(X)}{X^n} \mid P \in \mathbb{K}[X] \text{ et } n \in \mathbb{N} \right\}$$
 est principal.

6. Soit \mathbb{K} un corps commutatif.

On se propose de montrer que l'anneau quotient $\frac{\mathbb{K}[X,Y]}{(XY-1)}$ est principal.

(a) Montrer que l'application :

$$\varphi: \mathbb{K}[X,Y] \to \mathbb{K}(X)$$

$$P(X,Y) \mapsto P\left(X,\frac{1}{X}\right)$$

est un morphisme d'anneaux, puis préciser son noyau et son image.

- (b) Montrer que $\frac{\mathbb{K}[X,Y]}{(XY-1)}$ est principal.
- 7. Soit \mathbb{K} un corps commutatif.

Montrer que les idéaux non réduit à $\{0\}$ de $\mathbb{K}[[X]]$ sont principaux de la forme (X^n) . Donc $\mathbb{K}[[X]]$ est principal.

- 8. Soit $\mathbb A$ un anneau principal.
 - (a) Montrer qu'un élément $p \in \mathbb{A}^* \setminus \mathbb{A}^\times$ est irréductible si, et seulement si, il est premier.
 - (b) Montrer que, pour tout $p \in \mathbb{A}^* \setminus \mathbb{A}^{\times}$, on a :

$$((p) \text{ premier}) \Leftrightarrow (p \text{ premier}) \Leftrightarrow (p \text{ irréductible}) \Leftrightarrow ((p) \text{ maximal})$$

9. Soit $\mathbb A$ un anneau commutatif, unitaire et intègre. Montrer que :

$$(\mathbb{A}\left[X\right] \text{ est principal}) \Leftrightarrow (\mathbb{A} \text{ est un corps})$$

10. On se donne un entier naturel $n \ge 1$ et on note :

$$\mathbb{Z} \lceil i\sqrt{n} \rceil = \mathbb{Z} + i\sqrt{n}\mathbb{Z} = \left\{ a + ib\sqrt{n} \mid (a,b) \in \mathbb{Z}^2 \right\}$$

Pour n = 1, il s'agit de l'ensemble $\mathbb{Z}[i]$ des entiers de Gauss.

- (a) Montrer que $\mathbb{Z}[i\sqrt{n}]$ est un sous-anneau de \mathbb{C} stable par l'opération de conjugaison complexe.
- (b) Déterminer l'ensemble $\mathbb{Z}\left[i\sqrt{n}\right]^{\times}$ des éléments inversibles de $\mathbb{Z}\left[i\sqrt{n}\right]$.
- (c) Quels sont les entiers naturels $p \geq 2$ qui sont premiers dans \mathbb{N} et réductibles dans $\mathbb{Z}[i\sqrt{n}]$?

- (d) Montrer que, pour $n \geq 3$, 2 est irréductible non premier dans $\mathbb{Z}[i\sqrt{n}]$. Donc les anneaux $\mathbb{Z}[i\sqrt{n}]$ ne sont pas principaux pour $n \geq 3$.
- 11. Soient \mathbb{A} un anneau principal et I=(a) un idéal non trivial de \mathbb{A} (i. e. $I\neq\{0\}$ et $I\neq\mathbb{A}$). Montrer que tous les idéaux de $\frac{\mathbb{A}}{I}$ sont principaux de la forme (\overline{b}) où $b\in\mathbb{A}$ est un diviseur de a et l'anneau $\frac{\mathbb{A}}{(a)}$ est principal si, et seulement si, a est premier ou encore irréductible.

- II - Anneaux euclidiens

On appelle stathme sur un anneau \mathbb{A} commutatif et intègre une application $\varphi: \mathbb{A}^* \to \mathbb{N}$.

On dit qu'un anneau commutatif et intègre \mathbb{A} est euclidien, s'il existe un stathme φ tel que pour tout couple (a,b) d'éléments de \mathbb{A} avec $b \neq 0$, il existe un couple (q,r) dans \mathbb{A}^2 tel que a = bq + r avec r = 0 ou $r \neq 0$ et $\varphi(r) < \varphi(b)$.

On dit que q est un quotient et r un reste dans la division euclidienne de a par b.

On notera (\mathbb{A}, φ) un tel anneau euclidien ou tout simplement \mathbb{A} , quand le stathme est fixé.

- 1. Montrer qu'un anneau euclidien (\mathbb{A}, φ) est principal. Précisément, pour tout idéal I de \mathbb{A} non réduit à $\{0\}$, il existe un élément a_0 dans $I \setminus \{0\}$ tel que $\varphi(a_0) = \min_{a \in I \setminus \{0_{\mathbb{A}}\}} \varphi(a)$ et $I = (a_0)$.
- 2. Montrer que l'anneau $\mathbb D$ des nombres décimaux est euclidien pour le stathme φ défini, en utilisant l'écriture canonique d'un nombre décimal, par :

$$\forall a = n2^p 5^q \in \mathbb{D}^*, \ \varphi(a) = |n|$$

- 3. Montrer que l'anneau $\mathbb{Z}[i\sqrt{n}]$ est euclidien uniquement pour n=1 ou n=2.
- 4. Effectuer la division euclidienne de u=11+7i par v=18-i dans $\mathbb{Z}\left[i\right]$.
- 5. L'anneau des entiers de Gauss peut être utilisé pour caractériser les entiers naturels qui sont sommes de deux carrés d'entiers.

On note Σ_2 l'ensemble des entiers naturels qui s'écrivent comme somme de deux carrés, soit :

$$\Sigma_2 = \{ n \in \mathbb{N} \mid \exists (a, b) \in \mathbb{Z}^2 ; n = a^2 + b^2 \}$$

- (a) Montrer que Σ_2 est stable pour le produit.
- (b) Montrer qu'un nombre premier $p \geq 2$ est réductible dans $\mathbb{Z}[i]$ si, et seulement si, il est somme de deux carrés.
- (c) Soit $p \geq 2$ un nombre premier. Montrer que s'il existe un entier naturel q premier avec p tel que $pq \in \Sigma_2$, alors p est dans Σ_2 .
- (d) Pour tout nombre premier impair p, on note :

$$C_p = \left\{ x^2 \mid x \in \mathbb{F}_p^* \right\}$$

l'ensemble des carrés de \mathbb{F}_p^* et :

$$\Sigma_p = \left\{ x \in \mathbb{F}_p^* \mid x^{\frac{p-1}{2}} - \overline{1} \right\}$$

l'ensemble des racines du polynôme $X^{\frac{p-1}{2}}-\overline{1}\in\mathbb{F}_{p}\left[X\right].$

- i. Montrer qu'il y a exactement $\frac{p-1}{2}$ carrés dans \mathbb{Z}_p^* et $C_p = \Sigma_p$.
- ii. Montrer que $-\overline{1}$ est un carré dans \mathbb{Z}_p si, et seulement si, p est congru à 1 modulo 4.

- iii. Montrer qu'un nombre premier p est somme de deux carrés si, et seulement si, il est égal à 2 ou congru à 1 modulo 4.
- (e) Montrer que si $n \in \Sigma_2 \setminus \{0\}$ admet un diviseur premier p congru à 3 modulo 4, alors p^2 divise n et $\frac{n}{n^2} \in \Sigma_2$
- (f) Montrer qu'un entier naturel non nul n est somme de deux carrés si, et seulement si, les éventuels diviseurs premiers de n congrus à 3 modulo 4 qui apparaissent dans sa décomposition en facteurs premiers y figurent avec un exposant pair (théorème de Fermat).

- III - Les anneaux $\mathbb{Z}[\omega]$, où ω est un entier quadratique

On se donne un nombre complexe $\omega = x + iy$ non réel (i. e. avec $x \in \mathbb{R}$ et $y \in \mathbb{R}^*$) et on note :

$$\mathbb{Z}\left[\omega\right] = \mathbb{Z} + \mathbb{Z}\omega = \left\{a + b\omega \mid (a, b) \in \mathbb{Z}^2\right\}$$

On dit qu'un nombre complexe ω est un entier quadratique, s'il est racine d'un polynôme de degré 2 à coefficients entiers.

- 1. Montrer que $\mathbb{Z}[\omega]$ est un anneau si, et seulement si, ω est un entier quadratique et dans ce cas :
 - (a) $\mathbb{Z}[\omega]$ est stable par l'opération de conjugaison complexe $z \mapsto \overline{z}$;
 - (b) $\mathbb{Z}[\omega] = \mathbb{Z}[\overline{\omega}];$
 - (c) pour tout entier relatif n, on a $\mathbb{Z}[\omega] = \mathbb{Z}[n + \omega]$;
 - (d) il existe un nombre complexe $\omega' = x' + iy'$ tel que $x' \in [0, 1[, y' > 0 \text{ et } \mathbb{Z}[\omega] = \mathbb{Z}[\omega'];$
 - (e) l'application $\varphi: u \mapsto |u|^2$ définit un stathme sur $\mathbb{Z}[\omega]$.
- 2. Pour la suite, on suppose que $\omega = x + iy$ est un entier quadratique avec $x \in [0, 1]$, y > 0. Montrer que les seules valeurs possibles de ω sont :

$$\omega = i\sqrt{n}$$
 ou $\omega = \frac{1 + i\sqrt{4n - 1}}{2}$ avec $n \in \mathbb{N}^*$

- 3. Montrer que, pour $n \in \mathbb{N}^*$, $\mathbb{Z}[i\sqrt{n}]$ est isomorphe à l'anneau quotient $\frac{\mathbb{Z}[X]}{(X^2+n)}$ et $\mathbb{Z}\left[\frac{1+i\sqrt{4n-1}}{2}\right]$ est isomorphe à l'anneau quotient $\frac{\mathbb{Z}[X]}{(X^2 - X + n)}$
- 4. Montrer que pour tout nombre complexe z, il existe $q \in \mathbb{Z}[\omega]$ tel que :

$$|z - q|^2 \le \frac{1 + y^2}{4}$$

$$(y = \Im(\omega)).$$

5. Montrer que si $\omega = x + iy$ est un entier quadratique avec $x \in [0, 1[$ et $y \in]0, \sqrt{3}[$, l'anneau $\mathbb{Z}[\omega]$ est alors euclidien pour le stathme :

$$\varphi: u = a + b\omega \in \mathbb{Z}[\omega] \mapsto |u|^2$$

On a donc montré que $\mathbb{Z}[\omega]$ est euclidien pour :

$$\omega \in \left\{ i, \sqrt{2}i, \frac{1+i\sqrt{3}}{2}, \frac{1+i\sqrt{7}}{2}, \frac{1+i\sqrt{11}}{2} \right\}$$

et qu'il n'est pas principal, donc non euclidien pour $\omega = i\sqrt{n}$ avec $n \ge 3$. On peut montrer que $\mathbb{Z}[\omega]$ n'est pas euclidien pour $\omega = \frac{1+i\sqrt{4n-1}}{2}$ avec $n \ge 4$ (mais pour certaines valeurs de n, il peut être principal non euclidien, c'est le cas pour n = 5, soit pour $\omega = \frac{1 + i\sqrt{19}}{2}).$

6. Montrer que l'ensemble des éléments inversibles de $\mathbb{Z}[\omega]$ est :

$$\mathbb{Z}\left[\omega\right]^{\times} = \left\{ u \in \mathbb{Z}\left[\omega\right] \mid |u|^2 = 1 \right\}$$

soit:

$$\mathbb{Z}[i]^{\times} = \{-1, 1, -i, i\}$$

$$\mathbb{Z}\left[\frac{1+i\sqrt{3}}{2}\right]^{\times} = \left\{-1, 1, \frac{1+i\sqrt{3}}{2}, -\frac{1+i\sqrt{3}}{2}, \frac{1-i\sqrt{3}}{2}, -\frac{1-i\sqrt{3}}{2}\right\}$$

et:

$$\mathbb{Z}\left[\omega\right]^{\times} = \{-1, 1\}$$

pour $\omega = i\sqrt{n}$ ou $\omega = \frac{1 + i\sqrt{4n - 1}}{2}$ avec $n \ge 2$.

- 7. Montrer que l'anneau $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ n'est pas euclidien.
- 8. Le résultat qui suit nous donne une pseudo division euclidienne dans $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$.
 - (a) Montrer que pour tout $z \in \mathbb{C}$, il existe $u \in \mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ tel que :

$$|z - u| < 1$$
 ou $|2z - u| < 1$

(b) Montrer que, pour u, v dans $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ avec $v \neq 0$, il existe q, r dans $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ tels que :

$$\begin{cases} u = qv + r \\ |r|^2 < |v|^2 \end{cases} \text{ ou } \begin{cases} 2u = qv + r \\ |r|^2 < |v|^2 \end{cases}$$

(c) Montrer que si 2 ne divise pas $u \in \mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$, il existe alors deux éléments u_1 et u_2 de $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ tels que :

$$2u_1 + u \cdot u_2 = 1$$

(relation de Bézout).

- 9. Montrer que l'anneau $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ est principal et non euclidien.
- 10. Montrer que l'anneau $\mathbb{K}[[X]]$ est euclidien pour le stathme :

$$\varphi: S \in \mathbb{K}\left[\left[X\right]\right] \setminus \{0\} \mapsto \varphi\left(S\right) = \operatorname{val}\left(S\right)$$

- 11. Montrer que si l'anneau \mathbb{A} est isomorphe à un anneau \mathbb{B} principal [resp. euclidien], il est alors principal [resp. euclidien].
- 12. Montrer que l'anneau quotient $\frac{\mathbb{C}[X,Y]}{(Y-X^2)}$ est euclidien (donc aussi principal et factoriel).
- 13. On désigne par \mathbb{K} le corps des fraction de l'anneau intègre \mathbb{A} . On se donne une partie S de \mathbb{A}^* qui contient 1 et qui est stable pour le produit, c'est-à-dire que pour tout (a,b) dans S^2 , le produit ab est dans S.

(a) Montrer que l'ensemble :

$$S^{-1}\mathbb{A} = \left\{ \frac{a}{s} \mid a \in \mathbb{A} \text{ et } s \in S \right\}$$

est un sous-anneau du corps K qui contient A.

- (b) Montrer que si \mathbb{A} est principal, il en est alors de même de $S^{-1}\mathbb{A}$.
- (c) Montrer que si \mathbb{A} est euclidien, il en est alors de même de $S^{-1}\mathbb{A}$.

14.

(a) Montrer que l'ensemble :

$$\mathbb{A} = \left\{ \frac{P(X)}{X^n} \mid P \in \mathbb{C}[X] \text{ et } n \in \mathbb{N} \right\}$$

est un anneau euclidien.

(b) Montrer que l'anneau quotient $\frac{\mathbb{C}\left[X,Y\right]}{(XY-1)}$ est euclidien.

- IV -Anneaux factoriels

On dit que l'anneau \mathbb{A} est factoriel s'il est intègre et si tout élément a non nul et non inversible s'écrit de manière unique (à permutation et association près) comme produit d'éléments irréductibles.

- 1. Montrer que l'anneau A est factoriel si, et seulement si, il est intègre et :
 - (a) toute suite croissante d'idéaux principaux de A est stationnaire (un anneau factoriel est noethérien);
 - (b) tout élément irréductible de A est premier.
- 2. Montrer que dans un anneau factoriel, un élément est irréductible si, et seulement si, il est premier.
- 3. Montrer que les anneaux $\mathbb{Z}[i\sqrt{n}]$ ne sont pas factoriels pour $n \geq 3$.
- 4. Montrer qu'un anneau principal est factoriel.

- V -Anneaux à pgcd

L'anneau A est supposé intègre.

Soient $r \in \mathbb{N} \setminus \{0,1\}$ et a_1, \dots, a_r dans \mathbb{A}^* . On dit que ces éléments admettent un plus grand commun diviseur s'il existe $\delta \in \mathbb{A}^*$ tel que :

$$\begin{cases} \forall k \in \{1, \dots, r\}, \ \delta \text{ divise } a_k \\ \text{tout diviseur commun à } a_1, \dots, a_r \text{ divise } \delta \end{cases}$$

En cas d'existence, on note pgcd (a_1, \dots, a_r) ou $a_1 \wedge \dots \wedge a_r$ un plus grand commun diviseur de a_1, \dots, a_r .

Dans le cas où pgcd (a_1, \dots, a_r) est inversible, on dit que a_1, \dots, a_r sont premiers entre eux.

On dit que l'anneau commutatif, unitaire et intègre \mathbb{A} est un anneau à pgcd si deux éléments quelconques a, b de \mathbb{A}^* admettent un pgcd.

1. Montrer qu'un anneau principal \mathbb{A} est un anneau à pgcd. Précisément, pour toute famille $\{a_1, \dots, a_r\}$ de $r \geq 2$ éléments de \mathbb{A}^* , il existe un élément δ de \mathbb{A}^* tel que :

$$(a_1,\cdots,a_r)=(\delta)$$

cet élément s'écrit :

$$\delta = \sum_{k=1}^{r} u_k a_k \tag{1}$$

où u_1, \dots, u_r sont des éléments de \mathbb{A} et δ est un pgcd de a_1, \dots, a_r .

2. Soient $\mathbb A$ un anneau factoriel et a,b deux éléments non nuls et non inversibles de $\mathbb A.$ En notant :

$$a = u \prod_{k=1}^{r} p_k^{m_k}, \ b = v \prod_{k=1}^{r} P_k^{n_k}$$

les décompositions de a et b en facteurs irréductibles, où u, v sont inversibles, les p_k sont irréductibles deux à deux non associés et les n_k , m_k sont des entiers naturels (certains de ces entiers pouvant être nuls).

Montrer que:

$$(a \text{ divise } b) \Leftrightarrow (\forall k \in \{1, \dots, r\}, m_k \leq n_k)$$

3. Montrer qu'un anneau factoriel $\mathbb A$ est un anneau à pgcd . Précisément, pour :

$$a = u \prod_{k=1}^{r} p_k^{m_k}, \ b = v \prod_{k=1}^{r} P_k^{n_k}$$

dans \mathbb{A}^* , où u, v sont inversibles, les p_k sont irréductibles deux à deux non associés et les n_k , m_k sont des entiers naturels (certains de ces entiers pouvant être nuls), on a :

$$a \wedge b = \prod_{k=1}^{r} p_k^{\min(m_k, n_k)}$$