CSCI 5451 Fall 2015 Week 4 Notes

Professor Ellen Gethner

September 7, 2015

We now study a special case of sequence comparisons, a problem that was inspired by molecular biology.

- We now study a special case of sequence comparisons, a problem that was inspired by molecular biology.
- ▶ **Problem.** Find the minimum number of *edit steps* required to change one string to another.

- We now study a special case of sequence comparisons, a problem that was inspired by molecular biology.
- ▶ **Problem.** Find the minimum number of *edit steps* required to change one string to another.
- The strings need not be the same length.

- We now study a special case of sequence comparisons, a problem that was inspired by molecular biology.
- ▶ **Problem.** Find the minimum number of *edit steps* required to change one string to another.
- ▶ The strings need not be the same length.
- ▶ **Set-up.** Let $A = a_1 a_2 a_3 \dots a_n$ and let $B = b_1 b_2 b_3 \dots b_m$.

- We now study a special case of sequence comparisons, a problem that was inspired by molecular biology.
- ▶ **Problem.** Find the minimum number of *edit steps* required to change one string to another.
- ▶ The strings need not be the same length.
- ▶ **Set-up.** Let $A = a_1 a_2 a_3 \dots a_n$ and let $B = b_1 b_2 b_3 \dots b_m$.
- Assume the universe of characters is finite.

- We now study a special case of sequence comparisons, a problem that was inspired by molecular biology.
- ▶ **Problem.** Find the minimum number of *edit steps* required to change one string to another.
- ▶ The strings need not be the same length.
- ▶ **Set-up.** Let $A = a_1 a_2 a_3 \dots a_n$ and let $B = b_1 b_2 b_3 \dots b_m$.
- ▶ Assume the universe of characters is finite.
- \blacktriangleright We want to change A, character by character, to B.

Operations on Strings

▶ We'll allow the following *edit steps* (and one more later).

- 1. **Insert.** Insert one character in the string.
- 2. **Delete.** Delete one character from the string.
- 3. **Replace.** Replace one character with another.

Operations on Strings

▶ We'll allow the following *edit steps* (and one more later).

- 1. **Insert.** Insert one character in the string.
- 2. **Delete.** Delete one character from the string.
- 3. **Replace.** Replace one character with another.
- ► Each edit step above is assigned a cost of 1.

Operations on Strings

We'll allow the following edit steps (and one more later).

- 1. **Insert.** Insert one character in the string.
- 2. **Delete.** Delete one character from the string.
- 3. **Replace.** Replace one character with another.
- ▶ Each edit step above is assigned a cost of 1.
- **Example.** Transform *abbc* into *babb*.

► Here goes.

- ▶ Here goes.
- ▶ $abbc \rightarrow abc$ by deleting a b.

- ▶ Here goes.
- ▶ $abbc \rightarrow abc$ by deleting a b.
- ▶ $abc \rightarrow babc$ by inserting a b at the beginning of the string.

- ► Here goes.
- ▶ $abbc \rightarrow abc$ by deleting a b.
- ▶ $abc \rightarrow babc$ by inserting a b at the beginning of the string.
- ▶ $babc \rightarrow babb$ by replacing the c with a b.

- ▶ Here goes.
- ▶ $abbc \rightarrow abc$ by deleting a b.
- ▶ $abc \rightarrow babc$ by inserting a b at the beginning of the string.
- ▶ $babc \rightarrow babb$ by replacing the c with a b.
- ▶ The cost of the above set of edit steps is 3.

- ▶ Here goes.
- ▶ $abbc \rightarrow abc$ by deleting a b.
- ▶ $abc \rightarrow babc$ by inserting a b at the beginning of the string.
- ▶ $babc \rightarrow babb$ by replacing the c with a b.
- ▶ The cost of the above set of edit steps is 3.
- But were we efficient?

- ▶ Here goes.
- ▶ $abbc \rightarrow abc$ by deleting a b.
- lacktriangledown abc
 ightarrow babc by inserting a b at the beginning of the string.
- ▶ $babc \rightarrow babb$ by replacing the c with a b.
- ▶ The cost of the above set of edit steps is 3.
- But were we efficient?
- No: abbc → abb → babb has a cost of 2, and is best possible. Why?

An aside

► The idea of using edit steps to convert one string into another has applications to *file comparisons* and *revisions*

An aside

► The idea of using edit steps to convert one string into another has applications to *file comparisons* and *revisions*

such as the diff file, which is based on today's (upcoming) algorithm.

Let's first set things up with the following notational help.

- Let's first set things up with the following notational help.
- ▶ Recall that $A = a_1 a_2 \dots a_n$ and $B = b_1 b_2 \dots b_m$.

- Let's first set things up with the following notational help.
- ▶ Recall that $A = a_1 a_2 \dots a_n$ and $B = b_1 b_2 \dots b_m$.
- ▶ Let $A(i) = a_1 a_2 \dots a_i$ (i.e. A(i) is the first i characters of string A), and

- Let's first set things up with the following notational help.
- ▶ Recall that $A = a_1 a_2 \dots a_n$ and $B = b_1 b_2 \dots b_m$.
- ▶ Let $A(i) = a_1 a_2 \dots a_i$ (i.e. A(i) is the first i characters of string A), and
- ▶ $B(i) = b_1 b_2 \dots b_i$ (i.e. B(i) is the first i characters of string B).

- Let's first set things up with the following notational help.
- ▶ Recall that $A = a_1 a_2 \dots a_n$ and $B = b_1 b_2 \dots b_m$.
- ▶ Let $A(i) = a_1 a_2 ... a_i$ (i.e. A(i) is the first i characters of string A), and
- ▶ $B(i) = b_1 b_2 \dots b_i$ (i.e. B(i) is the first i characters of string B).
- ▶ Restatement of the Problem. Change A(n) to B(m) with the minimum number of edit steps.

Put your induction cap on.

- Put your induction cap on.
- Suppose we know the best way to change A(n-1) to B(m) by induction.

- Put your induction cap on.
- ▶ Suppose we know the best way to change A(n-1) to B(m) by induction.
- Assume we only know one possible solution.

- Put your induction cap on.
- ▶ Suppose we know the best way to change A(n-1) to B(m) by induction.
- Assume we only know one possible solution.
- ▶ Then with one deletion, namely a_n from A(n), we know how to convert A(n) to B(m).

- Put your induction cap on.
- ▶ Suppose we know the best way to change A(n-1) to B(m) by induction.
- Assume we only know one possible solution.
- ▶ Then with one deletion, namely a_n from A(n), we know how to convert A(n) to B(m).
- ▶ But the above idea may not be the best way! What else can happen?

▶ It might be better to replace a_n with b_m .

- ▶ It might be better to replace a_n with b_m .
- ▶ Or it might be the case that character a_n is the same as character b_m .

- ▶ It might be better to replace a_n with b_m .
- ▶ Or it might be the case that character a_n is the same as character b_m .
- We need a systematic way of enumerating the choices. For now, concentrate only on the cost (and not the actual edit steps.

- ▶ It might be better to replace a_n with b_m .
- ▶ Or it might be the case that character a_n is the same as character b_m .
- We need a systematic way of enumerating the choices. For now, concentrate only on the cost (and not the actual edit steps.
- ▶ Let C(i,j) be the minimum cost of changing A(i) to B(j).

- ▶ It might be better to replace a_n with b_m .
- ▶ Or it might be the case that character a_n is the same as character b_m .
- We need a systematic way of enumerating the choices. For now, concentrate only on the cost (and not the actual edit steps.
- ▶ Let C(i,j) be the minimum cost of changing A(i) to B(j).
- ▶ **Goal.** Find a relation between C(n, m) and some of the C(i, j)'s for some smaller values of i and j.

Cost of individual edit steps

▶ Case 1: Delete. If a_n is deleted in a minimum change from A to B then C(n, m) = C(n - 1, m) + 1.

Cost of individual edit steps

- ▶ Case 1: Delete. If a_n is deleted in a minimum change from A to B then C(n, m) = C(n 1, m) + 1.
- ▶ Case 2: Insert. If the minimum change from A to B requires an insertion of a charcter to match b_m then C(n,m) = C(n,m-1) + 1.

Cost of individual edit steps

- ▶ Case 1: Delete. If a_n is deleted in a minimum change from A to B then C(n, m) = C(n 1, m) + 1.
- ▶ Case 2: Insert. If the minimum change from A to B requires an insertion of a charcter to match b_m then C(n,m) = C(n,m-1) + 1.
- ▶ That is, we find by induction the minimum change from A(n) to B(m-1) and then insert b_m at the end of the string.

Cost of individual edit steps

- ▶ Case 1: Delete. If a_n is deleted in a minimum change from A to B then C(n, m) = C(n 1, m) + 1.
- ▶ Case 2: Insert. If the minimum change from A to B requires an insertion of a charcter to match b_m then C(n,m) = C(n,m-1) + 1.
- ▶ That is, we find by induction the minimum change from A(n) to B(m-1) and then insert b_m at the end of the string.
- ▶ Case 3: Replace. If a_n is is replacing b_m then we first find the minimum cost of changing A(n-1) to B(m-1) and add 1 to the cost as long as $a_n \neq b_m$.

Cost of individual edit steps

- ▶ Case 1: Delete. If a_n is deleted in a minimum change from A to B then C(n, m) = C(n 1, m) + 1.
- ▶ Case 2: Insert. If the minimum change from A to B requires an insertion of a charcter to match b_m then C(n,m) = C(n,m-1) + 1.
- ▶ That is, we find by induction the minimum change from A(n) to B(m-1) and then insert b_m at the end of the string.
- ▶ Case 3: Replace. If a_n is is replacing b_m then we first find the minimum cost of changing A(n-1) to B(m-1) and add 1 to the cost as long as $a_n \neq b_m$.
- ▶ Case 4: Match. If $a_n = b_m$ then C(n, m) = C(n 1, m 1).

▶ Let

$$c(i,j) = \begin{cases} 0 & \text{if } a_i = b_j \\ 1 & \text{if } a_i \neq b_j \end{cases}$$

Let

$$c(i,j) = \begin{cases} 0 & \text{if } a_i = b_j \\ 1 & \text{if } a_i \neq b_j \end{cases}$$

In summary,

$$C(n,m) = min egin{cases} C(n-1,m)+1 & ext{delete } a_n \ C(n,m-1)+1 & ext{insert } b_m \ C(n-1,m-1)+c(n,m) & ext{possible match}, \end{cases}$$

► Let

$$c(i,j) = \begin{cases} 0 & \text{if } a_i = b_j \\ 1 & \text{if } a_i \neq b_j \end{cases}$$

In summary,

$$C(n,m) = min egin{cases} C(n-1,m)+1 & ext{delete } a_n \ C(n,m-1)+1 & ext{insert } b_m \ C(n-1,m-1)+c(n,m) & ext{possible match}, \end{cases}$$

• where C(i, 0) = i for i = 0, 1, ..., n, and

Let

$$c(i,j) = \begin{cases} 0 & \text{if } a_i = b_j \\ 1 & \text{if } a_i \neq b_j \end{cases}$$

In summary,

$$C(n,m) = min egin{cases} C(n-1,m)+1 & ext{delete } a_n \ C(n,m-1)+1 & ext{insert } b_m \ C(n-1,m-1)+c(n,m) & ext{possible match}, \end{cases}$$

- where C(i, 0) = i for i = 0, 1, ..., n, and
- C(0,j) = j for j = 0, 1, ..., m.

Let

$$c(i,j) = \begin{cases} 0 & \text{if } a_i = b_j \\ 1 & \text{if } a_i \neq b_j \end{cases}$$

In summary,

$$C(n,m) = min \begin{cases} C(n-1,m)+1 & \text{delete } a_n \\ C(n,m-1)+1 & \text{insert } b_m \\ C(n-1,m-1)+c(n,m) & \text{possible match,} \end{cases}$$

- where C(i, 0) = i for i = 0, 1, ..., n, and
- $C(0,j) = j \text{ for } j = 0, 1, \dots, m.$
- Have we captured all possibilities for the edit steps?

▶ The character a_n must be handled.

- ▶ The character a_n must be handled.
- ▶ If a_n is deleted, then this is Case 1.

- ▶ The character a_n must be handled.
- ▶ If a_n is deleted, then this is Case 1.
- ▶ If a_n becomes b_m then this is either Case 3 or Case 4.

- ▶ The character a_n must be handled.
- ▶ If a_n is deleted, then this is Case 1.
- ▶ If a_n becomes b_m then this is either Case 3 or Case 4.
- ▶ If a_n is mapped to an earlier character, then this is Case 2.

▶ The idea is sound, BUT

- ▶ The idea is sound, BUT
- ▶ we have reduced one problem of size *n* to three problems of similar size,

- ▶ The idea is sound, BUT
- we have reduced one problem of size n to three problems of similar size,
- so the faux algorithm is exponential.

- ▶ The idea is sound, BUT
- we have reduced one problem of size n to three problems of similar size,
- so the faux algorithm is exponential.
- ▶ **Reality.** There are only $(n+1) \times (m+1)$ subproblems so we should keep track of information as we acquire it.

- ▶ The idea is sound, BUT
- we have reduced one problem of size n to three problems of similar size,
- so the faux algorithm is exponential.
- ▶ **Reality.** There are only $(n+1) \times (m+1)$ subproblems so we should keep track of information as we acquire it.
- ▶ To do so, we'll use an n+1 by m+1 array such that the (i,j)th entry contains information about C(i,j).

Artist's interpretation of the array

C(i,j) is computed from information in the red area and in an implementation you maintain an array C such that C[i,j] contains information about the problem C(i,j).

Algorithm MinEdDis(A, n, B, m)

- ▶ **Input** A (string of length n) and B (string of length m)
- ▶ **Output** *C*, the $n + 1 \times m + 1$ cost matrix.
- begin
- **for** i = 0 **to** n **do** C[i, 0] = i
- **for** j = 0 **to** m **do** C[0, j] = j
- for i = 1 to n do
- for j = 1 to m do
- y = C[i, j-1] + 1
- if $a_i = b_i$ then z = C[i 1, j 1]
- else z = C[i 1, j 1] + 1
 - C[i,j] = min(x,y,z)
- end

Complexity of Algorithm MinEdDis

▶ The run time is O(mn) (as is storage).

Complexity of Algorithm MinEdDis

▶ The run time is O(mn) (as is storage).

Another moral of the story is that Dynamic Programming is speedy but uses up memory.

Complexity of Algorithm MinEdDis

▶ The run time is O(mn) (as is storage).

Another moral of the story is that Dynamic Programming is speedy but uses up memory.

► Exercise. Think about how you would keep track of each edit step.

When faced with several choices, make one that is

- When faced with several choices, make one that is
- best possible at this point, even though it may lead to a non-optimal solution.

- ▶ When faced with several choices, make one that is
- best possible at this point, even though it may lead to a non-optimal solution.
- ▶ In other words, be greedy at each step.

- When faced with several choices, make one that is
- best possible at this point, even though it may lead to a non-optimal solution.
- ▶ In other words, be greedy at each step.
- Greedy Algorithms are typically designed for optimization problems, where

► **Greedy Algorithms** are typically designed for optimization problems, where

- ► **Greedy Algorithms** are typically designed for optimization problems, where
- there are several possible legal solutions,

- Greedy Algorithms are typically designed for optimization problems, where
- there are several possible legal solutions,
- there is a value (usually numerical) associated with each solution, and

- Greedy Algorithms are typically designed for optimization problems, where
- there are several possible legal solutions,
- there is a value (usually numerical) associated with each solution, and
- we want to find a legal solution with the minimum or maximum possible value, depending on the context of the problem.

Scheduling

- Scheduling
- ▶ **Set-up.** We are given *n* jobs to execute;

- Scheduling
- ▶ **Set-up.** We are given *n* jobs to execute;
- ▶ The *i*th job has start time s_i and finish time f_i .

- Scheduling
- ▶ **Set-up.** We are given *n* jobs to execute;
- ▶ The *i*th job has start time s_i and finish time f_i .
- ▶ Goal. Find a maximum set of nonoverlapping jobs,

- Scheduling
- ▶ **Set-up.** We are given *n* jobs to execute;
- ▶ The *i*th job has start time s_i and finish time f_i .
- ▶ **Goal.** Find a maximum set of nonoverlapping jobs,
- ▶ where job i and job j are considered to be nonoverlapping iff $[s_i, f_i) \cap [s_j, f_j) = \emptyset$.

- Scheduling
- **Set-up.** We are given *n* jobs to execute;
- ▶ The *i*th job has start time s_i and finish time f_i .
- ▶ **Goal.** Find a maximum set of nonoverlapping jobs,
- where job i and job j are considered to be nonoverlapping iff $[s_i, f_i) \cap [s_j, f_j) = \emptyset$.
- ▶ Alternatively, jobs i and j are nonoverlapping as long as either $s_i \ge f_j$ or $s_j \ge f_i$.

▶ Here are three jobs with start and finish times, respectively, s_1 , f_1 , s_2 , f_2 , and s_3 , f_3 .

▶ Here are three jobs with start and finish times, respectively, s_1 , f_1 , s_2 , f_2 , and s_3 , f_3 .

▶ Here are three jobs with start and finish times, respectively, s_1 , f_1 , s_2 , f_2 , and s_3 , f_3 .

Impossible to see.

► Here are three jobs with start and finish times, respectively, s_1 , f_1 , s_2 , f_2 , and s_3 , f_3 .

- Impossible to see.
- ▶ Here's a slight tweak so you can see all three jobs.

▶ We can see that jobs 1 and 2 overlap as do jobs 2 and 3.

- ▶ We can see that jobs 1 and 2 overlap as do jobs 2 and 3.
- ▶ But jobs 1 and 3 do not overlap.

- ▶ We can see that jobs 1 and 2 overlap as do jobs 2 and 3.
- But jobs 1 and 3 do not overlap.
- Next, an algorithm to maximize the number of non-overlapping jobs...

Algorithm GreedySched(S)

- ▶ **Input:** $S = \{(s_1, f_1), (s_2, f_2), \dots, (s_n, f_n)\}.$
- Output: A largest set of non-overlapping jobs.
- Sort jobs by finish time: $f_1 \le f_2 \le \cdots \le f_n$
- $A=\varnothing$
- for i = 1 to n do
- ▶ **if** job *i* does not overlap any job in *A*
- **then** $A = A \cup \{f_i\}$
- return A

Notation. Let G(S) be the set of jobs produced by algorithm GreedySched with input S.

- **Notation.** Let G(S) be the set of jobs produced by algorithm GreedySched with input S.
- ▶ And let OPT(S) be any set of optimal jobs given input S.

- **Notation.** Let G(S) be the set of jobs produced by algorithm GreedySched with input S.
- ▶ And let OPT(S) be any set of optimal jobs given input S.
- ► That is, *OPT*(*S*) is a largest set of non-overlapping jobs from *S*. Then

- **Notation.** Let G(S) be the set of jobs produced by algorithm GreedySched with input S.
- ▶ And let OPT(S) be any set of optimal jobs given input S.
- ► That is, *OPT*(*S*) is a largest set of non-overlapping jobs from *S*. Then

▶ Theorem

The algorithm GreedySched produces an optimal set of nonoverlapping jobs. In particular, |G(S)| = |OPT(S)| where OPT(S) is some largest set of nonoverlapping jobs in S.

Proof.

- Proof.
- ▶ It suffices to show that both $|G(S)| \le |OPT(S)|$ and $|OPT(S)| \le |G(S)|$ are true.

- Proof.
- ▶ It suffices to show that both $|G(S)| \le |OPT(S)|$ and $|OPT(S)| \le |G(S)|$ are true.
- ▶ Note that trivially we have $|G(S)| \le |OPT(S)|$. Why?

- Proof.
- ▶ It suffices to show that both $|G(S)| \le |OPT(S)|$ and $|OPT(S)| \le |G(S)|$ are true.
- ▶ Note that trivially we have $|G(S)| \le |OPT(S)|$. Why?
- ▶ So it remains to show that $|OPT(S)| \le |G(S)|$.

Proof.

- ▶ It suffices to show that both $|G(S)| \le |OPT(S)|$ and $|OPT(S)| \le |G(S)|$ are true.
- ▶ Note that trivially we have $|G(S)| \le |OPT(S)|$. Why?
- ▶ So it remains to show that $|OPT(S)| \le |G(S)|$.
- ▶ To that end, suppose BWOC that |OPT(S)| > |G(S)|.

Proof that Algorithm GreedySched is correct, continued

▶ Suppose BWOC that |OPT(S)| > |G(S)|.

Proof that Algorithm GreedySched is correct, continued

- ▶ Suppose BWOC that |OPT(S)| > |G(S)|.
- ▶ **Set-up.** Choose OPT(S) to be an optimal set of jobs that agrees with G(S) on the largest possible number of jobs.

Proof that Algorithm GreedySched is correct, continued

- ▶ Suppose BWOC that |OPT(S)| > |G(S)|.
- ▶ **Set-up.** Choose OPT(S) to be an optimal set of jobs that agrees with G(S) on the largest possible number of jobs.
- ▶ Since G(S) and OPT(S) are different sets, there exists a job i_0 that is not in both of the sets G(S) and OPT(S).

▶ Case 1. $i_0 \in G(S)$ (and thus $i_0 \notin OPT(S)$).

▶ Case 1. $i_0 \in G(S)$ (and thus $i_0 \notin OPT(S)$).

▶ Case 1. $i_0 \in G(S)$ (and thus $i_0 \notin OPT(S)$).

▶ Then the finish time of i_0 is less than or equal to the finish time of i'_0 because

▶ Case 1. $i_0 \in G(S)$ (and thus $i_0 \notin OPT(S)$).

- ▶ Then the finish time of i_0 is less than or equal to the finish time of i'_0 because
- otherwise algorithm GreedySched would have chosen i'_0 over i_0 .

▶ Case 1. $i_0 \in G(S)$ (and thus $i_0 \notin OPT(S)$).

- ▶ Then the finish time of i_0 is less than or equal to the finish time of i'_0 because
- otherwise algorithm GreedySched would have chosen i'_0 over i_0 .
- ▶ In that case, we simply replace i'_0 with i_0 in OPT(S) thus producing a new OPT(S) that agrees with one more job in G(S), a contradiction.

▶ Case 2. $i_0 \in OPT(S)$ (and thus $i_0 \notin G(S)$).

▶ Case 2. $i_0 \in OPT(S)$ (and thus $i_0 \notin G(S)$).

▶ Case 2. $i_0 \in OPT(S)$ (and thus $i_0 \notin G(S)$).

▶ Then the finish time of i'_0 is less than or equal to the finish time of i_0 because

▶ Case 2. $i_0 \in OPT(S)$ (and thus $i_0 \notin G(S)$).

- ► Then the finish time of i'_0 is less than or equal to the finish time of i_0 because
- otherwise algorithm GreedySched would have chosen i_0 over i'_0 .

▶ Case 2. $i_0 \in OPT(S)$ (and thus $i_0 \notin G(S)$).

- ► Then the finish time of i'_0 is less than or equal to the finish time of i_0 because
- otherwise algorithm GreedySched would have chosen i_0 over i'_0 .
- ▶ In that case, we simply replace i_0 with i'_0 in OPT(S) thus producing a new OPT(S) that agrees with one more job in G(S), a contradiction.

▶ We have shown that |G(S)| = |OPT(S)| and thus the algorithm GreedySched(S) produces a set of nonoverlapping jobs that is equal in cardinality to a largest set of nonoverlapping jobs.

- ▶ We have shown that |G(S)| = |OPT(S)| and thus the algorithm GreedySched(S) produces a set of nonoverlapping jobs that is equal in cardinality to a largest set of nonoverlapping jobs.
- ► Thus algorithm GreedySched is correct.

- ▶ We have shown that |G(S)| = |OPT(S)| and thus the algorithm GreedySched(S) produces a set of nonoverlapping jobs that is equal in cardinality to a largest set of nonoverlapping jobs.
- ► Thus algorithm GreedySched is correct.
- QED

- ▶ We have shown that |G(S)| = |OPT(S)| and thus the algorithm GreedySched(S) produces a set of nonoverlapping jobs that is equal in cardinality to a largest set of nonoverlapping jobs.
- Thus algorithm GreedySched is correct.
- QED
- Exercise: what is the run time of GreedySched?

- ▶ We have shown that |G(S)| = |OPT(S)| and thus the algorithm GreedySched(S) produces a set of nonoverlapping jobs that is equal in cardinality to a largest set of nonoverlapping jobs.
- Thus algorithm GreedySched is correct.
- QED
- Exercise: what is the run time of GreedySched?
- Exercise: what if you want to maximize the sum of the lengths of the nonoverlapping jobs? Can you think of a dynamic programming solution?

Next

Data Compression