

第二讲

- 二进制在计算机中的表示
 - □ 八卦图与二进制
 - □ 各种数制的表示
 - □ 不同数制之间的转换
 - 二进位制的致命弱点: 书写冗长
 - 110011101011?12位
 - 3307 4位

- 1、计算机都涉及哪些数制?
- 二进制 → 计算机
- 十进制 **>** 人
- 八进制 ➤ 协调人和计算机矛盾
- 十六进制
 - 二进位制的极大优势: 0, 1
 - 易于物理实现
 - 二进制运算规则简单
 - 机器可靠性高
 - 通用性强,可用于逻辑运算

- 2、各种数制的特征
 - 3307 是几进制数?
 - 12345
- 4x10 十进制
- 4x? 8 八进制
- 4x? 16 十六讲制

- 二进制数字符号:0、1;逢二进一例:0+1=1,1+1=10
- 八进制数字符号:0、1、2、3、4、5、6、7;逢八进一
 例:7+1=10,77+1=100。
- 十六进制 0、1、...、9、A、B、C、D、E、F; 逢十六进一
 例: 3F+1=40, AFF+1=B00。

3. 不同数制的标识?

两种标示识:

- 括号和下标(N)_r
- •特定的字母 (N)字母

4、基数

一个数制所包含的数字符号的个数

 $(6123.45)_2$ 6123.45B? $(6123.45)_{16}$ 6123.45H

数制:数的表示系统

基数: 数制所包含的符号的个数

十进制	一进制	八进制	十万进制
0	0	0	0
1	4	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	
16	10000	20	10

一进制一个进制一十分进制

十二世生山