Incremental MPC for Flexible Robot Manipulators

Tian Zheng

Zwischenbericht/Abschlussbericht Diplomarbeit/Studienarbeit

Supervisor: S. Supervisor

Institute of Automatic Control Engineering

Technical University of Munich

Outline

- 1. Model
- 2. TDE
- 3. Incremental MPC
- 4. Simulation & Experiment
- 5. Possible Try
- 6. Timeline

The dynamic model of the robot with compliant joints

Model

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{G}(\mathbf{q}) + \mathbf{w}_l = \mathbf{\Gamma}$$

$$\mathbf{D}\ddot{oldsymbol{ heta}} + \mathbf{w}_m + oldsymbol{\Gamma} = oldsymbol{ au} (oldsymbol{ heta} - \mathbf{q})$$

$$\mathbf{\Gamma} = \mathbf{K}(\boldsymbol{\theta} - \mathbf{q})$$

TDE

Approximation of equations using Time-delayed Estimation

Two steps:

1. Separation

Introduce $\bar{\mathbf{M}}$ and $\bar{\mathbf{D}};$

Rewrite the equation of motion into known and unknown parts

2. Approximation

 $(\mathbf{unknownpart})_{(t-L)} \cong (\mathbf{unknownpart})_{(t)}$

with L is the delay time

Time-delayed Estimation

1. Introducing M, we have

Assuming sampling period L is sufficiently small:

$$\overline{D} \cdot \overset{\circ}{\theta} + \underbrace{(D - \overline{D}) \overset{\circ}{\theta} + k m + \overline{T}}_{H_2} = 7$$

Assuming sampling period L is sufficiently small: $H_2 \approx H_2(t-L) = T_0 - \overline{D} \cdot \dot{\theta}_0^*$

TDF

0000

Interim conclusion

Approximation based on TDE

Linear system

- 1. Let $\varepsilon_{\mathbf{x}} = 0$ and $\varepsilon_{\mathbf{q}} = 0$
- 2. Change continuous to discrete-time form
- 3. Use Euler method

Linear system

Let
$$\chi(k) = col(qck), q(k), \theta(k))$$
, then we have

$$\chi(k+1) = \begin{bmatrix} q(k+1) \\ q(k+1) \\ \theta(k+1) \end{bmatrix} = \begin{bmatrix} I & T_s \cdot I & O \\ O & 2I - M^{-1}kT_s^2 & M^{-1}kT_s^2 \end{bmatrix} \begin{bmatrix} q(k) \\ q(k) \\ \theta(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 & O \\ O & -I \end{bmatrix} \begin{bmatrix} q(k-1) \\ q(k-1) \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ D & T_s \end{bmatrix} \Delta^{-1}$$

$$\Rightarrow \overline{\chi}(k+1) = \begin{bmatrix} \chi(k+1) \\ \chi(k) \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \\ I & O \end{bmatrix} \begin{bmatrix} \chi(k) \\ \chi(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ O \end{bmatrix} \Delta^{-1}$$

Model O

TDE

000

Incremental MPC

Simulation & Experiment

Timeline

Reference

7

Incremental MPC 1. verison

Predicted joint dynamics error

$$\mathbf{e}\left(ec{\mathbf{x}}_{k+j+1|k}
ight) := \dot{ ilde{\mathbf{q}}}_{k+j+1|k} + \mathbf{K}_{\mathrm{P}} ilde{\mathbf{q}}_{k+j+1|k}$$

with $\tilde{\mathbf{q}} := \mathbf{q} - \mathbf{q}_d$ tracking error; $\mathbf{K}_P \succ 0$.

Cost function

$$\ell = \underbrace{\left\| \mathbf{e} \left(\vec{\mathbf{x}}_{k+j+1|k} \right) \right\|_{\mathbf{Q}}^{2}}_{\text{predicted joint dynamics error}} + \underbrace{\left\| \Delta \boldsymbol{\tau}_{k+j|k} \right\|_{\mathbf{P}}^{2}}_{\text{control signal}}$$

with $\mathbf{Q}, \mathbf{R} \succ 0$.

Optimization problem 1. version

$$\Delta \bar{\tau}^* = \arg\min_{\Delta \bar{\tau}} \sum_{j=0}^{N-1} \ell \left(\mathbf{q}_{k+j+1|k}, \dot{\mathbf{q}}_{k+j+1|k}, \Delta \boldsymbol{\tau}_{k+j|k} \right)$$
s.t.
$$\vec{\mathbf{x}}_{k+j+1|k} = \mathbf{A} \vec{\mathbf{x}}_{k+j|k} + \mathbf{B} \Delta \boldsymbol{\tau}_{k+j|k}$$

$$\mathbf{q}_{\min} \leq \mathbf{q}_{k+j+1|k} \leq \mathbf{q}_{\max}$$

$$\dot{\mathbf{q}}_{\min} \leq \dot{\mathbf{q}}_{k+j+1|k} \leq \dot{\mathbf{q}}_{\max}$$

$$\boldsymbol{\tau}_{\min} \leq \boldsymbol{\tau}_0 + \sum_{s=0}^{j} \Delta \boldsymbol{\tau}_{k+s|k} \leq \boldsymbol{\tau}_{\max}$$

Optimization problem

rewrite into

$$\Delta \bar{\tau}^* = \arg\min_{\Delta \bar{\tau}} \Delta \bar{\tau}^T Q \Delta \bar{\tau} + \Delta \bar{\tau}^T L$$

s.t.

$$G_1 = C_1 \Delta \bar{\tau} + D_1 \le 0$$

$$G_2 = C_2 \Delta \bar{\tau} + D_2 \le 0$$

$$G_3 = C_3 \Delta \bar{\tau} + D_3 \le 0$$

Incremental MPC 2. version

Predicted joint dynamics error

Cost function

with $\mathbf{Q}, \mathbf{R} \succ 0$.

Optimization problem 2. version

s.t.

Model

$$\vec{\mathbf{x}}_{k+j+1|k} = \mathbf{A}\vec{\mathbf{x}}_{k+j|k} + \mathbf{B}\Delta\boldsymbol{\tau}_{k+j|k}$$

$$\mathbf{q}_{\min} \leq \mathbf{q}_{k+i+1|k} \leq \mathbf{q}_{\max}$$

$$\dot{\mathbf{q}}_{\min} \leq \dot{\mathbf{q}}_{k+j+1|k} \leq \dot{\mathbf{q}}_{\max}$$

$$oldsymbol{ au}_{\min} \leq oldsymbol{ au}_0 + \sum_{k=1}^{J} \Delta oldsymbol{ au}_{k+s|k} \leq oldsymbol{ au}_{\max}$$

Reference

Recap

- 1. better tracking performance using simplified plant dynamics than using complete plant dynamics in Compliant Joint Toolbox
- 2. fluctuate at the beginning because bad select of reference trajectory (acceleration at t_0 not equal to 0)
- 3. no noises or damping added into plant yet
- 4. still using classic qpOASES solver

Timeline

change No.1

change plant dynamics into the complete one in toolbox by rewriting the equations instead of modify the block inn toolbox

Selected mechanical model

Fig1. Mechanical model

Fig2. Dynamic terms

TDE

Recap

change No.2

change of reference trajectory: change from sinus trajectory into 5th order polynomial

Fig3. reference trajectory

change No.3

Used dynamic parameters:

Motor rotor plus gear inertia [Nm] $I_m + I_q = 0.598$

Torsion bar inertia [Nm] $I_l = 1$

Torsion bar stiffness [Nm/rad] $K_b = 362$

Damping and noises added:

Motor Damping plus Gearbox damping [Nms/rad] $d_m + d_q = 2.2036$

Torsion bar damping [Nms/rad] $d_l = 1$

Torsion bar internal damping [Nms/rad] $d_a l = 1.0000$

added input noises $N(0, \sqrt{var_u}) \ var_u = 1e - 10$

added output noises $N(0, \sqrt{var_y})$: $var_y = 1e - 15$ ();

performance

Fig4. Compare desired and is q and qd

Fig5. motor Torque

TDE

Recap

performance

Fig6. error

TDE

Performance compare using different Horizon

Np=20; Nc=10

Np=20; Nc=20

Np=30; Nc=10

Np=30; Nc=30

Recap

Computing time compare using different Horizon

Fig7. Computing time using different Horizon

Recap

TDE

Performance compare using different Horizon

Fig8. Performance using different Horizon

TDE

step response (smooth step)

$$Q1 = 0$$
; $Q2 = 1000$

Fig9. Compare desired and is q and qd

Fig10. error

TDE

23

step response (smooth step)

Q1 = 10000; Q2 = 1000

Fig11. Compare desired and is q and qd

Fig12. error

TDE

Recap

Find out

maybe error formulation or coding regarding position error

Short summary

change to complete plant dynamics with damping and noises check step response

Next step: keep try on with other solvers

Recap

Timeline

- Linear System formulation using TDE: done
- Incremental MPC: Cost function and constraints formulation: still modifying
- Simulation: 01.Oktober ~20.November Integrate robot manipulator model into simulink Comparing the two solvers and different horizon (error and computation time)
- **Experiment:** 10.November ~10.December Comparing the two solvers and different horizon (error and computation time)

Recap

• Possible Try: 10.December ~30.December \bar{M} and \bar{D} online update

References

Recap

0