Risk-Sensitive Energy Procurement with Uncertain Wind

Avinash N. Madavan Joint work with Subhonmesh Bose

Electrical and Computer Engineering Univeristy of Illinois, Urbana-Champaign

"Expecting uncertainty" in energy procurement

Source: Congressional Research Service

Wind energy is projected to grow rapidly.

Wind energy is inherently uncertain.

Source: NREL 2017

Source: Pinson 2009

The forward power procurement problem

Minimize procurement costs subject to engineering constraints of grid assets and the underlying power network.

$$rac{\mathcal{P}_{ ext{det}}: ext{minimize}}{G}: c^{\mathsf{T}}G,$$
 Forecasted wind supply subject to $\mathbb{1}^{\mathsf{T}}(G-D+\omega)=0,$ $H(G-D+\omega)\leq f^{\mathsf{L}},$ $\underline{G}\leq G\leq \overline{G},$

With uncertain renewable supply, generators must respond in realtime. For simplicity, we consider affine recourse policies,

$$oldsymbol{G}(oldsymbol{\omega})\coloneqq oldsymbol{G}^0+oldsymbol{G}^\omegaoldsymbol{\omega}$$

Random costs and constraints require measurable functions for optimization. We utilize the conditional value at risk (CVaR).

1

Understanding the conditional value at risk

For continuous loss distributions, the conditional value at risk parameterized by α measures the expected tail loss in worst $(1-\alpha)$ fraction of outcomes.

$$\text{CVaR}_{\alpha}\left[\chi\right] \coloneqq \mathbb{E}\left[\chi \mid \chi \geq F^{-1}(\alpha)\right]$$

Notice, CVaR_{α} is able to capture

- ho $\alpha = 0 \equiv$ expected value
- $ightharpoonup \alpha \uparrow 1 \equiv \text{worst-case (ess sup)}$

Additionally,

$$\mathrm{CVaR}_{\alpha}[\chi] \leq 0 \implies \mathbb{P}\{\chi \leq 0\} \geq 1 - \alpha$$

For general loss distributions, CVaR can be written as

$$\mathrm{CVaR}_{\alpha}[\chi] \coloneqq \min_{u} \left\{ u + \frac{1}{1-\alpha} \mathbb{E} \left[\chi - u \right]^{+} \right\}.$$

Rockafellar and Uryasev (2000, 2002)

The risk-sensitive forward energy procurement problem (\mathcal{P}_{risk})

Incorporating the affine recourse policy for generation and CVaR for the procurement problem gives the following.

Constraint enforced by

A generalization of $\mathcal{P}_{\mathrm{risk}}$ for optimization

$$\begin{split} \underline{\mathcal{P}^0} : & \underset{\boldsymbol{x} \in \mathbb{X}}{\text{minimize}} & & \text{CVaR}_{\alpha}[f_{\boldsymbol{\omega}}(\boldsymbol{x})], \\ & \text{subject to} & & \text{CVaR}_{\beta^i}[g^i_{\boldsymbol{\omega}}(\boldsymbol{x})] \leq 0, \ \ i = 1, \dots, p. \end{split}$$

From the definition of CVaR we have

$$\text{CVaR}_{\alpha}[f_{\omega}(\boldsymbol{x})] = \underset{u \in \mathbb{R}}{\text{minimum}} \mathbb{E}\left[\underline{u^f + \frac{1}{1-\alpha} \left[f_{\omega}(\boldsymbol{x}) - u^f\right]^+\right]}_{:=\psi_{\omega}^f(\boldsymbol{x}, u^f; \alpha)}.$$

A similar characterization for $\mathrm{CVaR}^i_\beta[g^i_{\boldsymbol{\omega}}(\boldsymbol{x})]$ for $i=1,\ldots p$, allows us to reformulate \mathcal{P}^0 as the following stochastic optimization problem

$$\label{eq:linear_equation} \begin{split} & \underset{\boldsymbol{x}, u^f, \boldsymbol{u}^g}{\text{minimize}} & & \mathbb{E}[\psi^f_{\boldsymbol{\omega}}(\boldsymbol{x}, u^f; \alpha)], \\ & \text{subject to} & & \mathbb{E}[\psi^{g^i}_{\boldsymbol{\omega}}(\boldsymbol{x}, u^{g^i}; \beta^i)] \leq 0, \ i = 1, \dots, p. \end{split}$$

I

A primal-dual stochastic subgradient algorithm to solve \mathcal{P}^0

Avinash N. Madavan and Subhonmesh Bose (2019). Subgradient Methods for Risk-Sensitive Optimization. URL: https://arxiv.org/abs/1908.01086

Algorithm 1:

Initialization: Choose $x_1 \in \mathbb{X}$, $z_1 = 0$, and a positive sequence $\{\gamma_k\}$ and number of iterations K.

for
$$k = 1, \dots, K$$
 do

Sample $\omega_k \in \Omega$. Update x, u^f , and u^g as

$$\begin{split} & \boldsymbol{x}_{k+1} \leftarrow \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{X}} \left\langle \frac{\nabla f_{\boldsymbol{\omega}_k}(\boldsymbol{x}_k)}{1-\alpha} \, \mathbb{I}_{\{f_{\boldsymbol{\omega}_k}(\boldsymbol{x}_k) \geq u_k^f\}} + \sum_{i=1}^m \frac{z_k^i \nabla g_{\boldsymbol{\omega}_k}^i(\boldsymbol{x}_k)}{1-\beta_i} \, \mathbb{I}_{\{g_{\boldsymbol{\omega}_k}^i(\boldsymbol{x}_k) \geq u_k^f\}}, \boldsymbol{x} - \boldsymbol{x}_k \right\rangle + \frac{1}{2\gamma_k} \, \|\boldsymbol{x} - \boldsymbol{x}_k\|^2 \,, \\ & u_{k+1}^f \leftarrow \operatorname*{argmin}_{\boldsymbol{u}^f \in \mathbb{U}^f} \left\langle 1 - \frac{1}{1-\alpha} \, \mathbb{I}_{\{f_{\boldsymbol{\omega}_k}(\boldsymbol{x}_k) \geq u_k^f\}}, \boldsymbol{u}^f - u_k^f \right\rangle + \frac{1}{2\gamma_k} \, \left\| \boldsymbol{u}^f - u_k^f \right\|^2 \,, \\ & \boldsymbol{u}_{k+1}^g \leftarrow \operatorname*{argmin}_{\boldsymbol{u}^g \in \mathbb{U}^g} \left\langle 1 - \operatorname{diag}(1-\boldsymbol{\beta})^{-1} \, \mathbb{I}_{\{g_{\boldsymbol{\omega}_k}(\boldsymbol{x}_k) \geq u_k^g\}}, \boldsymbol{u}^g - \boldsymbol{u}_k^g \right\rangle + \frac{1}{2\gamma_k} \, \|\boldsymbol{u}^g - \boldsymbol{u}_k^g\|^2 \,. \end{split}$$

Sample $\omega_{k+1/2} \in \Omega$. Update z as

$$\boldsymbol{z}_{k+1} \leftarrow \operatorname*{argmax}_{\boldsymbol{z} \in \mathbb{R}^m_1} \left\langle \boldsymbol{u}^{\boldsymbol{g}} + \operatorname{diag}(\mathbb{1} - \boldsymbol{\beta})^{-1} [\boldsymbol{g}_{\boldsymbol{\omega}_{k+1/2}}(\boldsymbol{x}_{k+1}) - \boldsymbol{u}^{\boldsymbol{g}}]^+, \boldsymbol{z} - \boldsymbol{z}_k \right\rangle - \frac{1}{2\gamma_k} \|\boldsymbol{z} - \boldsymbol{z}_k\|^2.$$

Implementation available at https://github.com/amadavan/stuka

т

Theorem. Convergence guarantee of the algorithm

Given $\varepsilon>0$ and let p_*^0 denote the optimal value of \mathcal{P}^0 , and K_* and $\gamma_k=\gamma_*/\sqrt{K_*}$ for $k=1,\ldots,K_*$, where K_* and γ_* satisfy the following with $y=1+\frac{P_2}{P_1P_2}$,

$$\gamma_*^2 = \frac{2P_3^{-1}}{2+y+\sqrt{y^2+8y}}, \qquad K_* = \frac{(P_1+P_2\gamma_*^2)^2}{16\gamma_*^2(1-P_3\gamma_*^2)^2\varepsilon^2}.$$

Letting $\bar{x}_{K_*} = \frac{1}{K_*} \sum_{k=1}^{K_*} x_k$, the iterates generated by the algorithm on \mathcal{P}^0 with parameters α and β satisfy

$$\mathbb{E}[\text{CVaR}_{\alpha}(f_{\omega}(\bar{\boldsymbol{x}}_{K_*+1}))] - p_*^0 \leq \varepsilon,$$

$$\mathbb{E}[\text{CVaR}_{\beta^i}(g_{\omega}^i(\bar{\boldsymbol{x}}_{K_*+1}))] \leq \varepsilon.$$

For $\alpha \approx 1$, the optimal iteration count grows as

$$K_*(\alpha,\beta) \sim \frac{1}{\varepsilon^2 (1-\alpha)^2}$$

An illustrative two-bus example

Wind data, (ω_1,ω_2) , was taken as samples from two nearby power plants in NREL's synthetic dataset for every 5 minutes in 2008-2011.

				Highest Dispatch	Worst-Case	Iterations	Runtime	
Aversion	α	β^{L}	β^{G}	Cost (\$)	Line (MW)	Generation (MW)	$(\times 10^{9})$	(s)
None	0	0	0	400	25	24	2.9	3767
Line capacity	0	0.6	0.2	402	0	50	9.2	21400
Dispatch cost	0.6	0.2	0.2	352	13	0	4.6	9660

Conclusions and future work

- Provided a convex CVaR-sensitive energy procurement formulation that captures aversion towards constraint violation and high costs.¹
- Proposed a rate-optimal primal-dual stochastic subgradient method with theoretical convergence guarantees.
- Observed high iteration complexity and has high runtime for even a small problem with low risk parameters.
- ► Wish to take advantage of smoothness or apply an iterative sample average approximation scheme to speed up the algorithm.

Questions?

¹ Avinash N. Madavan, Ye Guo, et al. (2019). "Risk-Sensitive Security-Constrained Economic Dispatch via Critical Region Exploration". In: *Power and Energy Society General Meeting*