yanyg

Online Transfer with Heterogeneous Source

Yan Yuguang

South China University of Technology

May 11, 2015

OHT

The goal is to learn some prediction function $f(\mathbf{x}_t)$ on a target domain in an online fashion from a sequence of instances $\{(\mathbf{x}_t, y_t | t = 1, 2, \cdots, T\}$ in data space $\mathcal{X} \times \mathcal{Y}$.

Homogeneous source domain:

$$\mathcal{X} = \mathcal{X}^k, \mathcal{Y} = \mathcal{Y}^k$$

Heterogeneous source domain:

$$\mathcal{X} \cap \mathcal{X}^k = \emptyset, \mathcal{Y} = \mathcal{Y}^k$$

co-occurrence information (?, ?)

yanyg

$$\mathcal{X}_s = \mathcal{X}$$

HomOTL1.png

Resemble learning strategy:

Related Work

ОНТ

yanyg

HomOTL2.png

yanyg

$$\mathcal{X}_s \subset \mathcal{X}$$

HetOTL.png

Multi-view approach:

Methods

ОНТ

$$\hat{y}_t = \operatorname{sign}\left(\sum_{k=1}^N \alpha_t^k \Pi(z_t^k) + \alpha_t \Pi(z_t) - \frac{1}{2}\right)$$

$$\hat{y}_t = \operatorname{sign}\left(\sum_{k=1}^N \alpha_t^k \operatorname{sign}(z_t^k) + \alpha_t \operatorname{sign}(z_t)\right)$$

target domain & homogeneous source domain:

$$z_t = \mathbf{w}_t^{\top} \mathbf{x}_t, z_t^k = \mathbf{v}^{k^{\top}} \mathbf{x}_t$$

heterogeneous source domain:

$$z_t^k = \sum_{\mathbf{x}^k \in D^K} sim(\mathbf{x}^k, \mathbf{x}_t) y_i^k$$

where $sim(\mathbf{x}^k, \mathbf{x}_t)$ is calculated by co-occurrence information (?,?), and D^K is the set of K neast neighbors.

yanyg

Mistake bound

a3.jpg

a1.jpg

Experiments

ОНТ

yanyg

NUS-WIDE dataset

- Target domain: Image
- Heterogeneous source: Text
- Co-occurrence data: co-occurred image-tag pairs

Experiments Baseline Methods

ОНТ

yanyg

- Passive-Aggressive algorithms
 Do not exploit knowledge from the source domain
- Kernel function
 Gaussian Kernel
- Number of nearest neighbors K = 100

OHT

[!htb] [PA-II vs. OHT1-II]

[PA-II vs. OHT2-II]

OH.

[!htb] [Task 2]

Experiments Significant Test

ОНТ

5

Paired *t*-test ($\alpha = 0.01$)

OHT1 vs. PA: 44/0/1

■ OHT2 vs. PA: 42/2/1

Cohen's d value (d > 0.8 : large promotion, 0.2 < d < 0.8 : middle promotion)

■ OHT1: 41/3

■ OHT2: 40/3

yanyg

Figure : (a) The average rate of mistakes under varying values of K. (b) The average running time of different algorithms when all instances in heterogeneous source are considered.

OHT yanyg

THANK YOU FOR YOUR ATTENTION!