Welcome to Python!

PYTHON FOR SPREADSHEET USERS

Chris Cardillo

Data Scientist at DataCamp

What is Python?

- General purpose programming language
- Has code packages for data science
- Object-oriented

Object-oriented spreadsheets

Object-oriented spreadsheets

Object-oriented Python

In Python

math.SUM(2,3)

In Spreadsheets

The power of the dot

math.SUM()

- math is our package
- SUM is our function in the package
- The dot (.) lets us access the function inside the package

Scripts

A Recipe for Buttered Toast

- 1. Turn on toaster
- 2. Put bread in toaster for 1 minute
- 3. Take bread out of toaster
- 4. Put butter on toast

Importing packages

import math

Importing pandas

Importing pandas

import pandas

Loading Excel data

```
import pandas
pandas.read_excel('fruit.xlsx')
```

	Α	В	С
1	name	color	price_usd
2	Apple	red	0.88
3	Banana	yellow	0.23
4	Orange	orange	0.68
5	Watermelon	green	3.98
6	Plum	purple	0.96

• fruit.xlsx

(the kind of data pandas likes)

pandas as pd

before

```
import pandas
pandas.read_excel('fruit.xlsx')
```

after

```
import pandas as pd
pd.read_excel('fruit.xlsx')
```

Variable assignment

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
```

	Α	В	С
1	name	color	price_usd
2	Apple	red	0.88
3	Banana	yellow	0.23
4	Orange	orange	0.68
5	Watermelon	green	3.98
6	Plum	purple	0.96

fruit.xlsx

Looking at data with print()

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
print(fruit)
```

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	0range	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
5	Blueberries	blue	5.16
6	Dragonfruit	pink	5.27
7	Kiwi	brown	1.12

Script and console panes in DataCamp

```
# Import pandas library
import pandas as pd

# Import the data
fruit = pd.read_excel('fruit.xlsx')

# Print the data
print(fruit)
```

```
• SCRIPT.PY is the script
```

IPYTHON SHELL is the console

Your turn!

PYTHON FOR SPREADSHEET USERS

DataFrames and their methods

PYTHON FOR SPREADSHEET USERS

Chris Cardillo

Data Scientist at DataCamp

Where we left off

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
print(fruit)
```

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	0range	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
5	Blueberries	blue	5.16
6	Dragonfruit	pink	5.27
7	Kiwi	brown	1.12

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
_			

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
_	D 7	L 7	- 40

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
E	Dluchorrico	h l	E 16

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
5	Rlueherries	hlue	5 16

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
5	Blueberries	blue	5.16

DataFrame methods

```
.head().info().describe().sort_values()
```

The .head() method

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
print(fruit.head())
```

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	0range	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96

The .head() method

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
print(fruit.head(2))
name color price_usd
Apple red 0.88
1 Banana yellow 0.23
```

The .info() method

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
print(fruit.info())
```

The .describe() method

```
import pandas as pd
fruit = pd.read_excel('fruit.xlsx')
print(fruit.describe())
```

```
price_usd
         8.000000
count
         2.285000
mean
         2.135911
std
min
         0.230000
         0.830000
25%
           алаааа
50%
```

The .sort_values() method

```
import pandas as pd

fruit = pd.read_excel('fruit.xlsx')

fruit = fruit.sort_values('name')

fruit = fruit.reset_index(drop=True)

print(fruit)
```

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Blueberries	blue	5.16
3	Dragonfruit	pink	5.27
4	Kiwi	brown	1.12
5	0range	orange	0.68
6	Plum	purple	0.96
7	Watermelon	green	3.98

The .sort_values() method

```
import pandas as pd

fruit = pd.read_excel('fruit.xlsx')

fruit = fruit.sort_values('price_usd', ascending=False)
fruit = fruit.reset_index(drop=True)

print(fruit.head(3))
```

```
name color price_usd

O Dragonfruit pink 5.27

1 Blueberries blue 5.16
```


Your turn!

PYTHON FOR SPREADSHEET USERS

Filtering rows and creating columns

PYTHON FOR SPREADSHEET USERS

Chris Cardillo

Data Scientist at DataCamp

Filtering in spreadsheets

Accessing a single column

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
_			

Accessing a single column

```
Apple
fruit['name']
                                        Banana
                                        Orange
                                    Watermelon
                                           Plum
                                   Blueberries
                                   Dragonfruit
                                          Kiwi
                             Name: name, dtype: object
```


Comparison operators

- == (equal to)
- != (not equal to)
- (less than)
- (greater than)
- <= (less than or equal to)</p>
- >= (greater or equal to)

Comparisons

```
fruit['name'] == "Apple"
fruit['name']
            Apple
                                       True
                                      False
           Banana
           Orange
                                      False
      Watermelon
                                      False
              Plum
                                      False
     Blueberries
                                      False
     Dragonfruit
                                      False
             Kiwi
                                      E - 7 - -
```

Filtering

```
fruit[fruit['name'] == "Apple"]
```

```
name color price_usd
Apple red 0.88
```

Filtering

```
fruit[fruit['price_usd'] > 1]
```

	name	color	price_usd
3	Watermelon	green	3.98
5	Blueberries	blue	5.16
6	Dragonfruit	pink	5.27
7	Kiwi	brown	1.12

Filtering

```
fruit[fruit['price_usd'] > 1].reset_index(drop=True)
```

	name	color	price_usd
0	Watermelon	green	3.98
1	Blueberries	blue	5.16
2	Dragonfruit	pink	5.27
3	Kiwi	brown	1.12

Basic filtering pattern

```
df[df['this_column'] == 'that value']
```

Basic filtering pattern

fruit[fruit['name'] == "Apple"]

In Python

```
name color price_usd
0 Apple red 0.88
```

In Spreadsheets

	name	color	price_usd
0	Apple	red	0.88
1	Banana	yellow	0.23
2	Orange	orange	0.68
3	Watermelon	green	3.98
4	Plum	purple	0.96
_			

fx	=C5*2			
	Α	В	С	D
1	name	color	price_usd	cost
2	Apple	red	0.88	1.76
3	Banana	yellow	0.23	0.46
4	Orange	orange	0.68	7.96 × 1.36
5	Watermelon	green	3.98	=C5*2
6	Plum	purple	0.96	1.92

Mathematical operators

- + (addition)
- (subtraction)
- * (multiplication)
- / (division)

```
fruit['cost'] = fruit['price_usd'] * 2
```

	name	color	price_usd	cost
0	Apple	red	0.88	1.76
1	Banana	yellow	0.23	0.46
2	Orange	orange	0.68	1.36
3	Watermelon	green	3.98	7.96
4	Plum	purple	0.96	1.92
_				

	name	color	price_usd	quantity
0	Apple	red	0.88	3
1	Banana	yellow	0.23	2
2	0range	orange	0.68	2
3	Watermelon	green	3.98	1
4	Plum	purple	0.96	0
5	Blueberries	blue	5.16	1
6	Dragonfruit	pink	5.27	1
\neg	12.1	1	4 40	-4

$$f_X = D5 * C5$$

	Α	В	С	D	E
1	name	color	price_usd	quantity	cost
2	Apple	red	0.88	3	2.64
3	Banana	yellow	0.23	2	0.46
4	Orange	orange	0.68	2	3.98 × 1.36
5	Watermelon	green	3.98		=D5*C5
6	Plum	purple	0.96	0	0
7	Blueberries	blue	5.16	1	5.16

```
fruit['cost'] = fruit['price_usd'] * fruit['quantity']
```

	name	color	price_usd	quantity	cost
0	Apple	red	0.88	3	2.64
1	Banana	yellow	0.23	2	0.46
2	Orange	orange	0.68	2	1.36
3	Watermelon	green	3.98	1	3.98
4	Plum	purple	0.96	0	0.00
5	Blueberries	blue	5.16	1	5.16
6	Dragonfruit	nink	5 27	1	5 27

Your turn!

PYTHON FOR SPREADSHEET USERS

