

Chapitre 1: Les intégrales généralisées

Résumé du cours

Présenté par: Mme BENAZZOU Salma

Les objectifs du chapitre

- Savoir calculer une intégrale généralisée en utilisant la définition ;
- 2- Connaissance de la nature des intégrales de Riemann $\int_{1}^{+\infty} \frac{1}{x} dx$ et $\int_{0}^{1} \frac{1}{x} dx$, avec $\alpha \in R$;
- 3- Détermination de la nature d'une intégrale généralisée d'une fonction continue et positive en appliquant les critères de convergences :
 - Critère de comparaison ;
 - Critère d'équivalence ;
 - Critère de négligence ;
 - Critère de Riemann.
- 4- Etude de la convergence absolue d'une intégrale généralisée.

Le plan

Les intégrales généralisées ou impropres

Définition

Intégrales de Riemann

Les critères de la convergence La convergence absolue

Intégrales de Riemann Critères de convergence

Convergence absolue

- Pour les intégrales simples, on a considéré des fonctions définies sur des intervalles I=[a, b]. On peut définir des extensions de ces intégrales pour des fonctions définies sur les intervalles: [a, b[,] a,b] ,] a, b [avec $a \in R \cup \{+\infty, -\infty\}$ $et b \in R \cup \{+\infty, -\infty\}$
- \square Si f est définie sur un intervalle [a, b[on écrit: $\int_a^b f(x)dx = \lim_{t \to b} \int_a^t f(x)dx$ avec $t \in [a, b[$
- \square Si f est définie sur un intervalle] a, b] on écrit: $\int_a^b f(x)dx = \lim_{t \to a} \int_t^b f(x)dx$ avec $t \in [a, b]$
- ☐ Si la limite est un réel, on dit que l'intégrale converge sinon on dit qu'elle diverge
- ☐ Si f est définie sur un intervalle] a, b [et c un élément quelconque de cet intervalle. On dit que l'intégrale de f sur] a, b [est convergente si chacune des intégrales sur] a, c] et [c ,b [convergent

Intégrales de Riemann Critères de convergence

Convergence absolue

Exemple:

On veut étudier la convergence de l'intégrale suivante en utilisant la méthode de définition: $\int_{1}^{+\infty} \frac{1}{x} dx$

- La fonction définie par f(x)=1/x est définie sur $[1,+\infty[$
- Soit $t \in [1, +\infty[$
- On va calculer $\int_1^t \frac{1}{x} dx$

$$\int_{1}^{t} \frac{1}{x} dx = [\ln x]_{1}^{t} = \ln t - \ln 1 = \ln t$$

- $\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to +\infty} \ln t = +\infty$
- On dit alors que $\int_{1}^{+\infty} \frac{1}{x} dx$ est divergente.

Intégrales de Riemann Critères de convergence

Convergence absolue

 $\int_{a}^{b} (\propto f(x) + \beta g(x)) dx$ converge

 $\int_{a}^{b} f(x) dx$ converge

 $\int_{a}^{b} g(x) dx$ diverge

 $\int_{a}^{b} (\propto f(x) + \beta g(x)) dx$ diverge

+

 $\int_{a}^{b} g(x)dx$ diverge

 $\int_{a}^{b} f(x)dx$ diverge

On ne peut rien conclure

Intégrales de Riemann Critères de convergence

Convergence absolue

Soit $\alpha \in R$;

-L'intégrale
$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$$
 converge si $\alpha > 1$ et diverge sinon.

-L'intégrale $\int_{0}^{1} \frac{1}{t^{\alpha}} dt$ converge si $\alpha \prec 1$ et diverge sinon.

Convergence

absolue

Intégrales de Riemann

Critères de convergence

Exemples:

• $\int_{1}^{+\infty} \frac{1}{x^3} dx$ est convergente car $\alpha = 3 > 1$

Définition

- $\int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx$ est divergente car $\alpha = 1/2 \le 1$
- $\int_0^1 \frac{1}{\sqrt{x}} dx$ est convergente car $\alpha = 1/2 < 1$
- $\int_0^1 \frac{1}{x^2} dx$ est divergente car $\alpha = 2 \ge 1$
- $\int_0^{+\infty} \frac{1}{x^4} dx = \int_0^1 \frac{1}{x^4} dx + \int_1^{+\infty} \frac{1}{x^4} dx$
 - $\Rightarrow \int_0^1 \frac{1}{x^4} dx$ est divergente car $\alpha = 4 \ge 1$
 - $\Rightarrow \int_{1}^{+\infty} \frac{1}{x^4} dx$ est convergente car $\alpha = 4 > 1$

Alors $\int_0^{+\infty} \frac{1}{x^4} dx$ est divergente

Intégrales de Riemann

Critères de convergence

Convergence absolue

ATTENTION: Cette partie ne concerne que les fonctions positives

Critère de comparaison

Critère d'équivalence

Critère de négligence

Critère de Riemann

Intégrales de Riemann

Critères de convergence

Convergence absolue

Critère de comparaison

Définition

Enoncé

Soit f et g deux fonctions à valeurs positives définies sur un intervalle [a, b[tel que $f(x) \le g(x)$

- ✓ Si $\int_a^b g(x)dx$ converge alors $\int_a^b f(x)dx$ converge
- ✓ Si $\int_a^b f(x)dx$ Diverge alors $\int_a^b g(x)dx$ Diverge

Exemple

• On veut montrer que $\int_{1}^{+\infty} e^{-x^2} dx$ est convergente.

On a $x \ge 1$ donc $x^2 \ge x$

Alors $-x^2 \le -x$

Donc $e^{-x^2} \le e^{-x}$ (Car $x \to e^x$ est croissante)

• Etudions maintenant la nature de $\int_1^{+\infty} e^{-x} dx$

Par définition on a :

$$\int_{1}^{+\infty} e^{-x} dx = \lim_{t \to +\infty} \int_{1}^{t} e^{-x} dx = \lim_{t \to +\infty} [-e^{-x}]_{1}^{t} = \lim_{t \to +\infty} -e^{-t} + e^{-1} = e^{-1}$$

Donc $\int_{1}^{+\infty} e^{-x} dx$ est convergente et d'après le critère de comparaison $\int_{1}^{+\infty} e^{-x^2} dx$ est convergente.

Intégrales de Riemann Critères de convergence

Convergence absolue

Critère d'équivalence

Enoncé

Soit f et g deux fonctions à valeurs positives définies sur un intervalle [a, b[tel que f~g au voisinage de b c'est-à-dire $\lim_{b} \frac{f(x)}{g(x)} = 1$, alors $\int_{a}^{b} f(x) dx$ et $\int_{a}^{b} g(x) dx$ sont de même nature.

Exemple

On veut montrer que $\int_1^{+\infty} \frac{1}{t\sqrt{1+t^2}} dt$ est convergente.

On sait qu' au voisinage de $+\infty$ on a : $1+t^2 \sim t^2$

Alors $\sqrt{1+t^2} \sim \sqrt{t^2}$ c'est-à-dire $\sqrt{1+t^2} \sim t$

Donc t $\sqrt{1+t^2} \sim t^2$

Alors $\frac{1}{t\sqrt{1+t^2}} \sim \frac{1}{t^2}$

Or $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est convergente car c'est une intégrale de Riemann $\alpha=2>1$

Donc d'après le critère d'équivalence $\int_1^{+\infty} \frac{1}{t\sqrt{1+t^2}} dt$ est convergente

Intégrales de Riemann Critères de convergence

Convergence absolue

Critère de négligence

Enoncé

Soit f et g deux fonctions à valeurs positives définies sur un intervalle [a, b[tel que f est négligeable devant g au voisinage de b c'est-à-dire $\lim_{b} \frac{f(x)}{g(x)} = 0$.

- ✓ Si $\int_a^b g(x) dx$ converge alors $\int_a^b f(x) dx$ converge
- ✓ Si $\int_a^b f(x)dx$ Diverge alors $\int_a^b g(x)dx$ Diverge

Exemple

On veut montrer que $\int_1^{+\infty} \frac{1}{t^2 \ln t} dt$ est convergente.

On sait que
$$\lim_{t \to +\infty} \frac{\frac{1}{t^2 \ln t}}{\frac{1}{t^2}} = \lim_{t \to +\infty} \frac{1}{\ln t} = 0$$
 (car $\lim_{t \to +\infty} \ln t = +\infty$)

Or $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente car c'est une intégrale de Riemann $\alpha=2>1$

Donc d'après le critère de négligence $\int_1^{+\infty} \frac{1}{t^2 \ln t} dt$ est convergente.

Intégrales de Riemann

Critères de convergence Convergence absolue

Critère de Riemann

Enoncé

f définie sur $[a,+\infty[$

f définie sur]a,b]

Exemple

f définie sur $[a,+\infty[$

$$\int_{1}^{+\infty} x^{2}e^{-x}dx$$
On sait que $\lim_{t \to -\infty} t^{\infty}e^{t} = 0$
Je prend $\infty = 2 > 1$
On a alors
$$\lim_{x \to +\infty} x^{2}x^{2}e^{-x} = 0$$
Donc $\int_{1}^{+\infty} x^{2}e^{-x}dx$ est convergente (D'après le critère de Riemann)

f définie sur]a,b]

 $\int_0^2 \ln x \, dx$ On sait que $\lim_{x \to 0} x^{\alpha} \ln x = 0$ Je prend $\alpha = 1/2 < 1$ On a : $\lim_{x \to 0} \sqrt{x} \ln x = 0$ Et donc $\int_0^2 \ln x \, dx$ est convergente (D'après le critère de Riemann)

Critères de convergence

Convergence absolue

<u>Définition</u>: Soit f une fonction définie sur un intervalle [a, b[. On dit que $\int_a^b f(x)dx$ est absolument convergente si $\int_a^b |f(x)| dx$ est convergente

<u>Critère de convergence absolue</u>: Soit f une fonction définie sur un intervalle [a, b[, s'il existe une fonction g à valeurs positives et définie sur [a,b[telle que :

- $|f(t)| \le g(t)$
- $\int_a^b g(t)dt$ converge

Alors $\int_a^b f(t)dt$ converge

Intégrales de Riemann Critères de convergence

Convergence absolue

Exemple:

On veut montrer que $\int_{1}^{+\infty} \frac{\sin t}{t^2} dt$ est convergente.

On sait que $|\sin t| \le 1$

Alors
$$|\frac{\sin t}{t^2}| \le \frac{1}{t^2}$$

Or $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est convergente car c'est une intégrale de Riemann $\alpha=2>1$

Alors d'après le critère de la convergence absolue $\int_1^{+\infty} \frac{\sin t}{t^2} dt$ est convergente

