Escuela Rafael Díaz Serdán

Ciencias y Tecnología: Física 2° de Secundaria (2022-2023)

Nom	hre	del	alun	uno.	

Soluciones propuestas

Fecha:

Instrucciones:

Lee con atención cada pregunta y realiza lo que se te pide. De ser necesario, desarrolla tus respuestas en el espacio determinado para cada pregunta o en una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la solución propuesta.

Aprendizajes a evaluar:

- Describe la generación, diversidad y comportamiento de las ondas electromagnéticas como resultado de la interacción entre electricidad y magnetismo.
- Describe cómo se lleva a cabo la exploración de los cuerpos celestes por medio de la detección de las ondas electromagnéticas que emiten.
- Describe algunos avances en las características y composición del Universo (estrellas, galaxias y otros sistemas).
- Describe las características y dinámica del Sistema Solar.
- Identifica algunos aspectos sobre la evolución del Universo.

Calificación:

Pregunta	Puntos	Obtenidos
1	10	
2	4	
3	20	
4	6	
5	20	
6	10	
7	10	
8	10	
9	10	
Total	100	

Frecuencia y longitud de onda

La frecuencia f de una onda electromagnética es:

$$f = \frac{\nu}{\lambda}$$
 y $\lambda = \frac{\nu}{f}$ (1)

donde ν es la velocidad de propagación de la onda ($\nu = 3 \times 10^8 \text{ m/s}$) y λ la longitud de onda.

Energía de un fotón

La energía E asociada a dicha onda es:

$$E = h \times f \tag{2}$$

donde h se conoce como constante de Planck $(h = 6.626 \times 10^{-34} \text{ Js}).$

Grupo formado por la Vía Láctea y unas 30 galaxias más. \square Grupo formado por la Vía Láctea y otras 14 galaxias gigantes que integra una estructura en forma de anillo. \square Grupo de galaxias cuyos tamaños típicos son de 2 a 3 Mpc. \square

Grupo formado por cúmulos de galaxias. \square

☐ Grupo local

- [4 puntos] Elige la respuesta correcta.
 - Indica que el Universo se expande.
 - A. El corrimiento al azul de la luz que emiten las galaxias.
 - B. El corrimiento al rojo de la luz que emiten las galaxias.
 - C. Todas las galaxias se alejan de la Vía Láctea.
 - D. La Teoría de la Relatividad General
 - La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.
 - A. Ley de Hook
 - B. Ley de Faraday
 - C. Ley de Hubble
 - **D.** Ley de Moore
- [20 puntos] Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)	
Rayos gamma	1.2×10^{-11}	2.5×10^{19}	1.6565×10^{-14}	
Luz visible	3×10^{-7}	1×10^{15}	6.262×10^{-19}	
Ondas de radio	1.5 $\times 10^5$	2×10^3	1.3252×10^{-31}	

Solución:

Rayos gamma:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1.2 \times 10^{-11}} = 2.5 \times 10^{19} \text{ 1/s} \qquad E = h \times f = 6.626 \times 10^{-34} \times 2.5 \times 10^{19} = 1.6565 \times 10^{-14} \text{ J}$$

Luz visible:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{15}} = 3 \times 10^{-7} \text{ m} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{15} = 6.262 \times 10^{-19} \text{ J}$$

Ondas de radio:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{2 \times 10^3} = 1.5 \times 10^5 \text{ m}$$
 $E = h \times f = 6.626 \times 10^{-34} \times 2 \times 10^3 = 1.3252 \times 10^{-31} \text{ J}$

- [6 puntos] Elige la respuesta correcta.
 - Células receptoras de luz capaces de percibir colores, pero para que funcionen es necesario que haya suficiente luz.
 - A. Bastones
 - B. Esferas
 - C. Conos
 - D. Rizos
 - Perturbación eléctrica que se genera cuando una neurona recibe un estímulo.
 - A. Impulso eléctrico
 - B. Impulso nervioso
 - C. Impulso magnético
 - D. Impulso atómico
 - Pulso eléctrico que se propaga a través de la neurona.
 - A. Potencial de acción
 - B. Potencial eléctrico
 - C. Potencial magnético
 - D. Energía potencial
- [20 puntos] El parsec (pc) puede definirse a partir del año luz: 1 pc = 3.26 años luz. Como no es muy diferente de él, en realidad lo práctico consiste en usar sus múltiplos, como el kiloparsec, 1 kpc = 10^3 pc, o el megaparsec, $1 \text{ Mpc} = 10^6 \text{ pc}$. El uso del parsec en la astronomía es una cuestión más bien de tradición.
 - ¿A cuántos metros equivale un parsec?

Solución:

Usando la fórmula d = vt, donde d es la distancia, v es la velocidad y t es el tiempo, la distancia d que hay en un año

$$d = (3 \times 10^8 \text{ m/s})(365.25 \times 24 \times 60 \times 60 \text{ s})$$

= $9.46 \times 10^{15} \text{ m}$

Si 1 año luz equivale a 9.46×10^{15} m, entonces 1pc=3.26 años luz $\cdot9.46\times10^{15}$ m = 3.08×10^{16} m

La galaxia M31 está a 650 kpc de la Vía Láctea y se acerca a ella a una velocidad de unos 350 km/s. ¿En cuánto tiempo "chocará" con ella?

Solución:

Sabemos que 1 pc = 3.08×10^{13} km, entonces

650 kpc =
$$650 \times 10^3$$
 pc
= $650 \times 10^3 \times 3.08 \times 10^{13}$ km
= 2.002×10^{19} km

Usando la fórmula $t = \frac{d}{v}$, el tiempo t en segundos es:

$$t = \frac{2.002 \times 10^{19} \text{ km}}{350 \text{ km/s}}$$
$$= 5.72 \times 10^{16} \text{ s}$$
$$= 1,812.5 \text{ millones de años}$$

6 [10 puntos] Relaciona cada enunciado con su respuesta.	
Es un indicador de su distancia si se conoce cuán luminosa es una estrella. \Box	□ El color
Nos indica la temperatura de una estrella. \Box	□ Radiotelescopios
Radiación que emiten algunos cuerpos celestes que nos permite obtener nueva afirmación acerca de ellos. \Box	□ Electromagnética
Telescopios que permiten observar las ondas de radio emitidas por algunos cuerpos celestes. \Box	□ El brillo
7 [10 puntos] Elige la respuesta correcta a cada inciso.	
(7a) Longitud del diámetro del Universo.	
 A. Un millón de años luz. B. Cien mil millones de años luz. C. Un billón de años luz. D. Mil millones de años luz. 	
7b) Porcentaje de energía oscura que hay en el Universo.	
A. 4.9%	
B. 26.8 %	
C. 33.3 %	
D. 68.3 %	
7c Porcentaje de materia oscura que hay en el Universo.	
A. 4.9 %	
B. 26.8 %	
C. 33.3 %	
D. 68.3 %	
7d Porcentaje de materia ordinaria que hay en el Universo.	
$\mathbf{A.} \ 4.9 \%$	
B. 26.8 %	
C. 33.3%	
D. 68.3 %	
7e Antigüedad estimada del Universo.	
A. 14,800 millones de años	
B. 10,800 millones de años	

 \mathbf{C} . 15,800 millones de años D. 13,800 millones de años

- [10 puntos] Señala si son verdaderas o falsas las siguientes afirmaciones.
 - En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - A. Verdadero B. Falso
 - La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - A. Verdadero B. Falso
 - La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - A. Verdadero B. Falso
 - El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - A. Verdadero B. Falso
 - Cuando se viaja de norte a sur, o viceversa, la altura aparente de las estrellas cambia.
 - A. Verdadero B. Falso
- [10 puntos] Elige la respuesta correcta.
 - Instrumento gracias al cual es posible observar cuerpos celestes muy lejanos.
 - A. Microscopio
 - B. Estetoscopio
 - C. Telescopio
 - D. Electroscopio
 - Variación aparente de la posición de un objeto al cambiar la posición del observador.
 - A. Eclipse
 - B. Declinación
 - C. Transformación
 - D. Paralaje
 - Aparato que sirve para medir ángulos muy pequeños que ayudó a medir la distancia a la cual se encuentran algunos objetos celestes.
 - A. Vernier
 - B. Micrómetro
 - C. Astrolabio
 - D. Transportador
 - Técnica gracias a la cual se puede comparar el cambio en la posición de una estrella al transcurrir cierto período de tiempo.
 - A. Radiografía
 - B. Radiometría
 - C. Fotografía
 - D. Espectroscopía