사이킷런으로 시작하는 머신러닝

머신러닝을 통한 복잡한 문제의 해결

머신 러닝(Machine Learning) 이란?

"머신 러닝 또는 기계 학습은 인공 지능의 한 분야로, 컴퓨터가 **명시적 프로** 그래밍 없이 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야 를 말한다." - 위키피디아

"Field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel, 1959

머신 러닝을 보다 형식화하여 정의하면 "환경(Environment, E)"과의 상호작 용을 통해서 축적되는 경험적인 "데이터(Data, D)"를 바탕으로 학습하여, "모 델(Model, M)"을 자동으로 구축하고 스스로 "성능(Performance, P)"을 향 상하는 시스템 이다 (Mitchell, 1997)

Performance(P)

■ 전통적인 프로그래밍 방식과 머신 러닝과의 차이점

-숨겨진 구조 찾기(특징, 패턴, 군집)

머신러닝(Machine Learning) 개념

■ 머신 러닝의 종류 - 지도학습, 비지도학습, 강화학습

지도학습 -분류된 데이터(Labeled Data) 이미 정답을 알고(다른 의미로는 레이블이 되어 있는 데이터) -직접적인 피드백 있는 Training Data(학습 데이터)를 이용하여 머신 러닝 모델 -예측(추론) 결과 (미래) 학습시키는 방식 [Xi(공부시간) 2시간 = Yi(시험성적) 80점] ex : 시험 성적 예측, 주가 예측 (Regression Model) Image Labeling, 스팸 메일 필터링 (Classification Model) Supervised 비지도 학습 정답을 모르는 Training 데이터(즉 레이블 되어 있지 않 주어진 문제의 답이 명확히 떨어지지 않지만,알고리즘이 Learning 은 데이터)를 이용, 학습하여 데이터에 내재된 유사한 수행한 결과에 따라서 보상(Reward)과 손실(Penalty)이 특성, 패턴, 구조 등을 발견, 분석 주어져, 이를 통해 보상(Reward)을 최대화 하는 방향 ex : 구글 뉴스 그룹핑(비슷한 뉴스 그룹핑) 으로 진행하는 학습 방법. 시행착오(trial and error) Unsupervised Reinforcement Word clustering (비슷한 단어끼리 적인 방법으로 적합한 행동을 탐색함 Clustering Model), ex: 게임, 제어 전략, 금융 시장의 매매 전략, Security -의사결정 프로세스 Robotics, 자율(Autonomous) 주행 차 -보상 제도 -분류가 안됨(No Labels) -행동(Action)시리즈 배우기 -피드백 없음

Supervised Learning(예시 : image label)

An example training set for four visual categories.

Unsupervised Learning(예시 : 군집화(Clustering))

162

Unsupervised Learning(예시 : Clustering)

- = 불법이라 단정(오탐 확률 존재)할 수 없으나 인출 패턴(이상 경향)이 이상 한 거래로 인식
- = 오탐(거래 중지)을 줄이고자, Protection 개념으로 보다 자세한 인출단계 요구 예 : "비밀번호"외에 추가로 "주민번호" 입력 要

163

머신러닝 용어 정의

- 피처(Feature), 속성
 - 피처는 데이터 세트의 일반 속성을 일컫는 말
 - 머신러닝은 2차원 이상의 다차원 데이터에서도 많이 사용되므로 타겟 값을 제외한 나머지 속성을 모두 피쳐로 지칭
- 레이블, 클래스, 타겟(값), 결정(값)
 - 타겟 값 또는 결정 값은 지도 학습 시 데이터의 학습을 위해 주어지는 정답 데이터
 - 지도 학습 중 분류의 경우에는 이 결정 값을 레이블 또는 클래스로 지칭

사이킷런 소개와 특징

- Scikit-learn 소개: https://scikit-learn.org/stable/
 - 파이썬 머신러닝 라이브러리 중 가장 많이 사용되는 라이브러리

■ 사이킷런의 특징

- 파이썬 기반의 다른 머신러닝 패키지도 사이킷런 스타일의 API를 지향할 정도로 가장 파이썬스러운 API 제공
- 머신러닝을 위한 매우 다양한 알고리즘과 개발을 위한 편리한 프레임워크와 API 제공
- 오랜 기간 실전 환경에서 검증되었으며, 매우 많은 환경에서 성숙한 라이브러리
- 주로 Numpy와 Scipy 기반 위에서 구축된 라이브러리

머신러닝의 종류

Supervised Learning(Model Type)

머신러닝의 종류

지도 학습(Supervised Machine Learning)

머신러닝의 종류

• 사이킷런의 지도 학습(Supervised Machine Learning)

머신러닝의 종류

비지도 학습(Unsupervised Machine Learning)

머신러닝의 종류

• 사이킷런의 비지도 학습(Unsupervised Machine Learning)

사이킷런 소개와 특징

- Scikit-learn algorithm cheat-sheet
 - https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

사이킷런 소개와 특징

- 사이킷런 모듈 및 기능
 - Sample dataset, Data preprocessing 기능 , Supervised learning, Unsupervised learning, 모델 평가 기능
 - 사이킷런은 다양한 머신러닝 알고리즘을 하나의 패키지 안에서 모두 제공해 준다는 점
- 사이킷런 패키지에서 제공하는 머신러닝 알고리즘(http://scikit-learn.org)

Supervised Learning	Unsupervised Learning
GeneralizedLinearModels	Gaussian mixture models
Linear and Quadratic Discriminant Analysis	Manifoldlearning
Kernelridgeregression	Clustering
SupportVectorMachines	Biclustering
StochasticGradientDescent	Decomposing signal sincomponents (matrix factorization problems)
NearestNeighbors	Covarianceestimation
GaussianProcesses	NoveltyandOutlierDetection
Crossdecomposition	DensityEstimation
NaiveBayes	Neuralnetworkmodels(unsupervised)
DecisionTrees	
Ensemblemethods	

사이킷런 소개와 특징

- 사이킷런의 기반 프레임워크 익히기 Estimator 클래스 및 fit(), predict() 메서드
 - Estimator 클래스
 - 지도학습의 모든 알고리즘을 구현한 클래스의 통칭
 - 분류 알고리즘을 구현한 클래스 Classifier, 회귀 알고리즘을 구현한 클래스 Regressor 제공
 - fit()과 predict()로 내부에서 구현
 - fit() 사이킷런의 ML 모델 학습
 - predict() 학습된 모델의 예측

분류 구현 클래스
DecisionTreeClassifier
RandomForestClassifier
GradientBoostingClassifier
GaussianNB

회귀 구현 클래스 LinearRegression Ridge Lasso RandomForestRegressor GradietnBoostingRegressor

사이킷런 소개와 특징

- 사이킷런의 기반 프레임워크 익히기 Estimator 클래스 및 fit(), predict() 메서드
- 사이킷런의 비지도 학습
 - 차원 축소, 클러스터링, 피처 추출(Feature Extraction)
 - fit()과 transform()을 적용
 - 비지도 학습에서 fit() 입력 데이터의 형태에 맞춰 데이터를 변환하기 위한 사전 구조를 맞추는 작업
 - transform() 입력 데이터의 차원 변환, 클러스터링, 피처 추출 등의 실제 작업

사이킷런 소개와 특징

■ 사이킷런 주요 모듈

분류	모듈명	설명
예제 데이타	sklearn.datasets	사이킷런에 내장되어 예제로 제공하는 데이타세트
데이터 분리, 검증 & 파라미터 튜닝	sklearn.model_selection	교차 검증을 위한 학습용/테스트용 분리, 그리드서치(Grid Search)로 최적 파라미터 추출 등의 API 제공
피처 처리	sklearn.preprocessing	데이터 전처리에 필요한 다양한 가공 기능 제공 (문자열을 숫자형 코드 값으로 인코딩, 정규화, 스케일링 등)
	sklearn.feature_selection	알고리즘에 큰 영향을 미치는 피처를 우선순위 대로 셀렉션 작 업을 수행하는 다양한 기능 제공
	sklearn.feature_extraction	텍스트 데이터나 이미지 데이터의 벡터화된 피쳐를 추출하는데 사용됨 예를 들어, 텍스트 데이터에서 Count Vectorizer나 tf-idf Vectorizer 등을 생성하는 기능 제공 텍스트 데이터 피처 추출은 sklearn.feature_extraction.text 모듈에 이미지 데이터의 피처 추출은 sklearn.feature_extraction.img 모듈에 지원 API가 있음
피처 처리 & 차원 축소	sklearn.decomposition	차원 축소와 관련된 알고리즘을 지원하는 모듈 PCA, NMF, Truncated SVD 등을 통해 차원 축소 기능 수행

사이킷런 소개와 특징

■ 사이킷런 주요 모듈

분류	모듈명	설명
머신러닝 알고리즘	sklearn.ensemble	앙상블 알고리즘 제공 랜덤 포레스트, 에이타 부스터, 그래디언트 부스팅 등을 제공
	sklearn.linear_model	주로 선형 회귀, 릿지(Ridge), 라쏘(Lasso) 및 로지스틱 회귀 등 회귀 관련 알고리즘 지원
	sklearn.naïve_bayes	나이브베이즈 알고리즘 제공, 가우시안 NB, 다항 분포 NB 등
	sklearn.neighbors	최근접 이웃 알고리즘 제공, K-NN등
	sklearn.svm	서포트 벡터 머신 알고리즘 제공
	sklearn.tree	의사 결정 트리 알고리즘 제공
평가	sklearn.metrics	분류, 회귀, 클러스터링, 페어와이즈(Pairwise)에 대한 다양한 성능 측정 방법 제공 Accuracy, Precision, Recall, ROC-AUC, RMSE 등 제공
유틸리티	sklearn.pipeline	피처 처리 등의 변환과 ML 알고리즘 학습, 예측 등을 함께 묶어서 실행할 수 있는 유틸리티 제공

사이킷런 소개와 특징

■ 사이킷런 내장 예제 데이터 셋 - 분류 및 회귀용

API명	설명
datasets.load_boston()	회귀 용도, 미국 보스턴의 집 피처들과 가격에 대한 데이터 세트
datasets.load_breast_cancer()	분류 용도, 위스콘신 유방암 피처들과 악성/음성 레이블 데이터 세트
datasets.load_diabetes()	회귀 용도, 당뇨 데이터 세트
datasets.load_digits()	분류 용도, 0에서 9까지 숫자의 이미지 픽셀 데이터 세트
datasets.load_iris()	분류 용도, 붓꽃에 대한 피처를 가진 데이터 세트

사이킷런 소개와 특징

- 내장 예제 데이터 셋 구성
 - data, target, feature_names, target_names

홀드아웃(Hold Out)

- 홀드아웃(Hold Out)
 - 데이터를 훈련 데이터와 테스트 데이터로 나눔
 - 모형의 최종 성능을 객관적으로 측정하기 위한 방법으로 트레이닝에 사용되지 않은 새로운 데이터(테스트 데이터)를 사용해서 예측한 결과를 기반으로 성능을 계산
 - 일정한 비율로 Train/Test의 비율로 나누어 사용(7:3, 8:2, 6:4)

Original Set			
Training	Testing		
Training	Validation	Testing	

홀드아웃(Hold Out)

홀드아웃(Hold Out)

Given data Training set Validation set y_train x train Test set x_test y test 설명 데이타 정답(label) 181

10

사이킷런의 학습/테스트 데이터 분류: x_train, x_test, y_train, y_test

- Model Selection 모듈 학습 데이터와 테스트 데이터 분리하는 모듈
- 학습 데이터 세트와 테스트 데이터 세트

학습 데이터 세트	테스트 데이터 세트
 머신러닝 알고리즘의 학습을 위해 사용 데이터의 속성들과 결정값(레이블) 모두를 가지고 있으 	• 테스트 데이터 세트에서 학습된 머신러닝 알고리즘을 테스트
고 있음 • 학습 데이터를 기반으로 머신러닝 알고리즘이 데이터 속성과 결정값의 패턴을 인지하고 학습	 테스트 데이터는 속성 데이터만 머신러닝 알고리즘에 제공하며, 머신러닝 알고리즘은 제공된 데이터를 기반으로 결정값을 예측 테스트 데이터는 학습 데이터와 별도의 데이터 세트로 제공되어야 함

- 홀드아웃 : 학습 데이터와 테스트 데이터 분리 train_test_split()
 - sklearn.model_selection의 train_test_split() 함수

```
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target, test_size=0.3, random_state=0)
```

- test_size : 전체 데이터에서 테스트에서 테스트 데이터 세트 크기를 얼마로 샘플링 할 것인가를 결정, 디폴트는 0.25, 즉 25% 입니다.
- shuffle : 데이터를 분리하기 전에 데이터를 미리 섞을지를 결정, 디폴트는 True, 데이터를 분산시켜서 좀 더 효율적인 학습 및 테스트 데이터 세트를 만드는 데 사용
- random_state: 호출할 때마다 동일한 학습/데스트용 데이터 세트를 생성하기 위해 주어지는 난수 값, train_test_split()는 호출 시 무작위로 데이터를 분리하므로 random_state
 를 지정하지 않으면 수행할 때마다 다른 학습/테스트용 데이터를 생산한다.
 개현율을 보장받기 위해서는 옵션을 설정해야 한다.

- 홀드 아웃 : 학습 데이터와 테스트 데이터 분리 train_test_split()
 - 1) 데이터 로드

```
import pandas as pd
import numpy as np

# 데이터 로드
path = "../data/DataPreprocess.csv"

df1 = pd.read_csv(path)
df1.head()
```

	Country	Age	Salary	Purchased
0	France	44.0	72000.0	No
1	Spain	27.0	48000.0	Yes
2	Germany	30.0	54000.0	No
3	Spain	38.0	61000.0	No
4	Germany	40.0	NaN	Yes

```
1 df1.shape # 10개의 관측치, 4개 변수
(10, 4)
```

- 홀드 아웃 : 학습 데이터와 테스트 데이터 분리 train_test_split()
 - 2) 데이터와 레이블 나누기

```
|# 데이타와 레이블 나누기 - 종속변수(반응변수)와 독립변수(설명변수) 나누기
 2 | x = df1.values[:, :-1] # Glo/El
 3 | y = df1.values[:, -1] # 레이블(정답)
 4 x, y
(array([['France', 44.0, 72000.0],
       ['Spain', 27.0, 48000.0],
       ['Germany', 30.0, 54000.0],
       ['Spain', 38.0, 61000.0],
       ['Germany', 40.0, nan],
       ['France', 35.0, 58000.0],
       ['Spain', nan, 52000.0],
       ['France', 48.0, 79000.0],
       ['Germany', 50.0, 83000.0],
       ['France', 37.0, 67000.0]], dtype=object),
array(['No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes'],
      dtype=object))
```

- 홀드 아웃 : 학습 데이터와 테스트 데이터 분리 train_test_split()
 - 3) 학습 데이터와 테스트 데이터 분리

```
from sklearn.model selection import train test split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
    x_train.shape, x_test.shape
((8, 3), (2, 3))
    x train, x test
(array([['Germany', 40.0, nan],
        ['France', 37.0, 67000.0],
        ['Spain', 27.0, 48000.0],
        ['Spain', nan, 52000.0],
        ['France', 48.0, 79000.0].
        ['Spain', 38.0, 61000.0],
        ['France', 44.0, 72000.0],
        ['France', 35.0, 58000.0]], dtype=object),
array([['Germany', 30.0, 54000.0],
        ['Germany', 50.0, 83000.0]], dtype=object))
```

- 실습 문제) iris 데이타셋으로 학습 데이터와 테스트 데이터 분리
 - 1) 사이킷런의 train_test_split 이용하여 구현

```
from sklearn.model_selection import train_test_split
    from sklearn.datasets import load iris
 4 # iris 데이터셋 로드
   |iris data = load iris()
    # 학습/테스트 데이타 세트 분리
   x_train, x_test,y_train, y_test= train_test_split(iris_data.data, iris_data.target,
                                                      test size=0.3, random state=0)
    x_train.shape, x_test.shape
((105, 4), (45, 4))
  1 y_train.shape, y_test.shape
((105,), (45,))
```

- 실습 문제) iris 데이타셋으로 학습 데이터와 테스트 데이터 분리
- 2) 판다스 DataFrame의 슬라이싱을 이용하여 구현

```
import pandas as pd
iris_df = pd.DataFrame(iris_data.data, columns=iris_data.feature_names)
iris_df['target']=iris_data.target
iris_df.head(2)
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0

```
train = iris_df.iloc[:, :-1]
target = iris_df.iloc[:, -1]
x_train, x_test, y_train, y_test = train_test_split(train, target,
test_size=0.3, random_state=0)
```

```
print(type(x_train), type(x_test))
print(type(y_train), type(y_test))
```

```
<class 'pandas.core.frame.DataFrame'> <class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.series.Series'> <class 'pandas.core.series.Series'>
```

- 실습 문제) iris 데이타셋으로 학습 데이터와 테스트 데이터 분리
 - 3) 결정트리를 이용한 분류 및 정확도

```
from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy score
   |dt clf = DecisionTreeClassifier( ) # 모델 선택
 5 dt clf.fit(x train, y train) # 尊會
   pred = dt clf.predict(x test) # 예측
   |print('예측 정확도: {0:.4f}'.format(accuracy score(y test.pred))) # 모델평가 - 정확도
예측 정확도: 0.9778
    pred
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1,
      0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 2, 0, 2, 0,
      01)
    pred == v test
array([ True, True, True, True, True,
                                      True, True, True,
                                                         True.
       True, True, True, True,
                               True,
                                      True, True, True, True,
       True,
            True, True, True, True,
                                      True, True,
                                                   True, True,
       True, True, True, True, True,
                                      True, True,
                                                   True, True,
       True, False, True, True, True, True, True, True, True])
```

- 교차 검증(K-Fold Cross Validation)
 - K개의 Fold를 만들어서 진행, 총 데이터 개수가 적은 데이터 셋에 대하여 정확도를 향상시킬 수 있음
 - 기존의 Train/Validation/Test 세개의 집단으로 분류하는 것보다 Train/Test 셋만으로 분류된 학습 데이터 셋이 많기 때문
 - 데이터 수가 적은데 검증과 테스트에 데이터를 뺏기면 underfitting 되는 모델이 학습됨

사이킷런 모듈

- 교차 검증의 종류
 - 1) K-Fold 교차 검증
 - 가장 보편적으로 사용되는 교차 검증 기법
 - 먼저 K개의 데이터 폴드 세트를 만들어서 K번만큼 각 폴트 세트에 학습과 검증 평가를 반복적으로 수행하는 방법

2) Stratified K-Fold

- 불균형(imbalanced) 분포도를 가진 레이블(결정 클래스) 데이터 집합을 위한 K-폴드 방식
- 불균형한 분포를 가진 레이블 데이터 집합은 특정 레이블 값이 특이하게 많거나 매우 적어서 값의 분포가 한쪽으로 치우치는 것
- K-Fold가 레이블 데이터 집합이 원본 데이터 집합의 레이블 분포를 학습 및 테스트 세트에 제대로 분배하지 못하는 경우의 문제를 해결해 줌
- Stratified K-Fold는 원본 데이터의 레이블 분포를 고려한 뒤 이 분포와 동일하게 학습과 검증 데이터 세
 트를 분배
- (예) 대출 사기 데이터 데이터 1억건, 사기 대출 1,000건 전체의 0.0001%사기 대출

- 교차 검증의 종류
 - 3) cross_val_score() 함수 이용하여 교차검증을 보다 간편하게
 - cross_val_score() 함수 : 폴드 세트 추출, 학습/예측, 평가를 한번에 수행
 - cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', error_score=nan,)
 - 중요 파라메터 estimator, X, y, cv
 - 1) estimator
 - 사이킷런의 분류 알고리즘 클래스인 Classifier또는 회귀 알고리즘 클래스인 Regressor를 의미
 - classifier(분류)가 입력되면 Stratified K 폴드 방식으로 레이블 분포에 따라 학습/테스트 세트 분할
 - regressor(회귀)로 입력되면 Stratified K 폴드 방식으로 분할할 수 없으므로 K 폴드 방식으로 분할
 - 2) X 피처 데이터 세트
 - 3) y 레이블 데이터 세트
 - 4) cv 교차 검증 폴드 수
 - cross_val_score() 수행 후 반환 값 scoring 파라미터로 지정된 성능 지표 측정값을 배열형태로 반환

- 사이킷런의 교차검증(K-Fold Cross Validation)의 방법
 - K-Fold 클래스를 이용한 교차 검증 방법
 - (1) 폴트 세트 설정
 - (2) for 루프에서 반복적으로 학습/검증 데이터 추출 및 학습과 예측 수행
 - (3) 폴트 세트별로 예측 성능을 평균하여 최종 성능 평가

```
from sklearn.model_selection import KFold
    cv = KFold(n_splits=5, shuffle=True, random_state=0)
    for train_index, test_index in cv.split(x):
         print('train_index : ', train_index)
         print("." * 80)
 6
         print("test_index : ", test_index)
         print("=" * 80)
train_index :
               [0 1 3 4 5 6 7 9]
             [0 1 2 3 5 6 7 8]
train_index : [0 2 3 4 5 7 8 9]
               [0 1 2 4 5 6 8
               [1 2 3 4 6 7 8
```

■ 실습) iris 데이타셋으로 교차검증(K-Fold Cross Validation)

```
from sklearn.tree import DecisionTreeClassifier
  from sklearn.metrics import accuracy_score
  from sklearn.model_selection import KFold
   import numpy as np
  |iris = load iris()
   features = iris.data
   label = iris.target
   dt_clf = DecisionTreeClassifier(random_state=156)
11
  |# 5개의 폴드 세트로 분리하는 KFold 객체와 폴드 세트별 정확도를 담을 리스트 객체 생성.
   kfold = KFold(n_splits=5)
   |cv accuracy = []
   |print('붓꽃 데이터 세트 크기:',features.shape[0])
16
```

붓꽃 데이터 세트 크기: 150

■ 실습) iris 데이타셋으로 교차검증(K-Fold Cross Validation)

```
n_iter = 0
   #KFold객체의 split( ) 호출하면 폴드 별 학습용, 검증용 테스트의 로우 인덱스를 array로 반환
   for train_index, test_index in kfold.split(features):
      # kfold.split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
 5
      x_train, x_test = features[train_index], features[test_index]
 6
      y_train, y_test = label[train_index], label[test_index]
8
9
      #학습 및 예측
10
      dt_clf.fit(x_train , y_train)
      pred = dt_clf.predict(x_test)
11
12
      n iter += 1
13
14
      # 반복 시 마다 정확도 측정
15
      accuracy = np.round(accuracy score(y test,pred), 4)
      train size = x train.shape[0]
16
      test size = x test.shape[0]
17
      print('₩n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
18
19
            .format(n iter, accuracy, train size, test size))
      print('#f0) 검증 세트 인덱스:{1}'.format(n iter.test index))
20
21
22
      cv accuracy, append (accuracy)
23
   # 개별 iteration별 정확도를 합하여 평균 정확도 계산
   print('\n## 평균 검증 정확도:', np.mean(cv accuracy))
```

■ 실습) iris 데이타셋으로 교차검증(K-Fold Cross Validation)

```
#1 교차 검증 정확도 :1.0, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#1 검증 세트 인덱스: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 291
#2 교차 검증 정확도 :0.9667, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#2 검증 세트 인덱스:[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 591
#3 교차 검증 정확도 :0.8667, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#3 검증 세트 인덱스:[60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 891
#4 교차 검증 정확도 :0.9333, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#4 검증 세트 인덱스: [ 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
108 109 110 111 112 113 114 115 116 117 118 119]
#5 교차 검증 정확도 :0.7333, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#5 검증 세트 인덱스:[120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
138 139 140 141 142 143 144 145 146 147 148 149]
## 평균 검증 정확도: 0.9
```

데이터 분석의 실수

■ 과소적합(Under Fitting), 과대적합(Overfitting)

데이터 분석의 실수

- 과대적합(Overfitting)
 - 모델이 훈련 데이터에 너무 잘 맞지만 일반성이 떨어진다는 의미
 - 훈련 데이터에 잘 맞으면 좋은 것이라고 생각할 수도 있지만, "너무 잘 맞는 것"이 문제가 되는 것
 - 훈련 데이터에 너무 맞추어져 있기 때문에 훈련 데이터 이외의 다양한 변수에는 대응하기 힘들어짐 또한 모델의 복잡도가 필요 이상으로 높아짐
 - 과대적합(오버피팅) 해결 방법
 - 1) 훈련 데이터를 더 많이 모음
 - 2) 정규화(Regularization)
 - 규제(제약 조건), 드롭-아웃 등 다양한 방법을 이용해서 적당한 복잡도를 가지는 모델을 자동적으로 찿아주는 기법
 - 3) 훈련 데이터 잡음을 줄임(오류 수정과 이상치 제거)
- 과소적합(Underfitting)
 - 모델이 너무 단순해서 데이터의 내재된 구조를 학습하지 못할 때 발생
 - 과소적합(언더피팅) 해결 방법
 - 1) 파라미터가 더 많은 복잡한 모델을 선택
 - 2) 모델의 제약을 줄이기(규제 하이퍼 파라미터 값 줄이기)
 - 3) 조기종료 시점(overfitting이 되기 전의 시점)까지 충분히 학습

198

오버피팅 모델