Epidemic and Gossip Broadcast

Algorithmique répartie avancée - ARA Master2

Luciana Arantes

22/09/2024 ARA: Broadcast - Partie 2 1

Epidemic Broadcast

- The broadcast algorithms that we have seen till now are not scalable
 - > They consider a set of processes known by all processes from the beginning.
- Epidemic algorithms are effective solution for disseminating in large scale and dynamic systems.
 - > They do not provide deterministic broadcast guarantees but just make probabilistic claims about such guarantees.
- An epidemic broadcast uses a randomized approach where all the participants in the protocol should collaborate in the same manner to disseminate information.

Epidemic Broadcast

Diffusion Epidémique

22/09/2024 ARA: Broadcast - Partie 2

Epidemic Broadcast

- > When a process p whishes to send a broadcast message, it selects k processes at random and sends the message to them
 - \Box k is a typical configuration parameter called fanout.
- > Upon receiving a message from *p* for the first time, a process *q* repeats the same procedure of *p*'s : *q* selects *k* gossip targets processes and forwards the message to them.
 - If a node receives the message twice, it simply discards the message
 - Each process needs to keep track of which messages it has already seen and delivered. The size of this buffer is also a scalable constraints.
- The step consisting of receiving a message and forwarding it is called a round.
 - An epidemic algorithm usually performs a maximum number of rounds r for each message.

22/09/2024 ARA: Broadcast - Partic 2 3 22/09/2024 ARA: Broadcast - Partic 2

Epidemic broadcast

Epidemic broadcast can only be applied to applications that do not require full reliability.

- > The cost of full reliability is usually not acceptable in large scale systems.
- However, it is possible to build scalable randomized epidemic algorithms which provide good reliability guarantees.
- > It exhibit a very stable behavior even in the presence of failures.

22/09/2024 ARA: Broadcast - Partie 2

Epidemic Broadcast

Probabilistic Broadcast

> Properties

- Probabilistic validity: There is a given probability such that for any two correct processes p_i and p_j , every message broadcast by p_i is eventually delivered by p_j with this probability.
- No duplication: No message is delivered more than once by a process
- No creation: If a message m is delivered by some process p_i , then m was previously broadcast by some process p_i .

Epidemic Broadcast

Parameters associated with the configuration of gossip protocols:

- > Fanout (k): number of nodes that are selected as gossip targets by a node for each message that is received by the first time.
 - Tradeoff associated between desired reliability level and redundancy level of the protocol.
- > *Maximum rounds (r):* maximum number of times a given gossip message is retransmitted by nodes.
 - Each message carries a round value, which is increased each time the message is retransmitted.
 - \blacksquare Modes:
 - □ *Unlimited mode:* the parameter maximum round is undefined
 - $\ \square$ Limited mode: the parameter maximum round is defined with a value greater than 0.
 - Higher value: higher reliability as well as message redundancy.

22/09/2024 ARA: Broadcast - Partie 2 6

Epidemic Broadcast

Strategies

- > Eager push approach: Nodes send message to selected nodes as soon as they receive them for the first time
- Pull approach: Periodically, nodes query random selected nodes for information about recently received messages. When they receive information about a message they did not received yet, they explicitly request the message to their neighbors.
- Lazy push approach: When a node receives a message for the first time, it gossips only the message identifier. If a node receives a identifier of a message it has not received, it makes an explicitly pull request.
- Hybrid approach: First phase uses a push gossip to disseminate a message in best-effort manner. A second phase of pull gossip is used to recover messages not received in the first phase.

22/09/2024 ARA: Broadcast - Partie 2 7 22/09/2024 ARA: Broadcast - Partie 2

Eager Push Epidemic Broadcast

Algorithm

Init: delivered = Ø

Epid_broadcast (m)
 gossip(self, m, maxrounds);

upon recv (pi, <src,m, r>)
if (m ∉ delivered)
 delivered = delivered U {m}
 Epid_deliver(src,m)
if (r > 0)

gossip(self, m, maxrounds - 1);

Function chose-targets (ntargets) targets = \emptyset while (| targets| < ntargets) do candidate = random (Π) if ((candidate \emptyset targets) and (candidate != self)) targets = targets U {candidate}; return targets

procedure gossip (src,msg,round)
for i ε chose-targets(fanout) do
 send (i, msg, round);

22/09/2024 ARA: Broadcast - Partie 2

Epidemic Broadcast

- Ideally, one would like to have each participant to select gossip targets at random from the entire system, as shown in the previous example.
 - > Realistic if it is deployed within a moderate sized cluster.
 - > Such approach is not scalable:
 - High memory cost to maintain full membership information.
 - High cost of ensuring the update of such information.

Solution:

> Gossip-based (epidemic) broadcast protocols rely on *partial view*, instead of full membership information.

Eager Push Epidemic Broadcast

Execution example

Fanout = 3; Maxround = 3

22/09/2024 ARA: Broadcast - Partie 2

Epidemic Broadcast: Partial view

Partial view

- A process just knows a small subset of the entire system membership, from which it can selects nodes to whom relay gossip messages
- The membership protocol establishes neighboring association among nodes.
 - It must maintain the partial view at each node in face of dynamic changes in the system membership.
 - □ Joining of new nodes, crashes of nodes, etc.
- A partial view must be a tradeoff between scalability against reliability
 - Small views scale better, while large views reduce the probability that processes become isolated or that network partitions occur.

> Overlay

Partial views of all nodes of the system define a graph

22/09/2024 ARA: Broadcast - Partie 2 11 22/09/2024 ARA: Broadcast - Partie 2 12

Epidemic Broadcast: Partial view

- Partial View Properties : related to the graph properties of the overlay defined by the partial view of all nodes
 - > Connectivity: the overlay should be connected: there should be at least one path from each node to all other nodes.
 - > Degree Distribution: number of edges of the node.
 - In-degree of node n: number of nodes that have n in their partial view. It provides a measure of *reachability*.
 - Out-degree of node n: number of nodes in n's view: measure of the importance of that node to maintain the overlay.
 - > Average Path Length: the average of all shortest paths between all pair of nodes in the overlay.

22/09/2024 ARA: Broadcast - Partie 2 13

Epidemic Broadcast: Partial view

CYCLON: Cyclic strategy

exchange of view periodically among neighbors (shuffling operation), at a fixed period ΔT .

Partial View $2 = \{0,1,3,6,9\}$ Partial View $9 = \{0,4,5,7\}$

Exchange: $2 \rightarrow 9 : \{2,0,6\}$ $9->2:\{0,5,7\}$

Partial View $2 = \{0,1,3,5,7\}$ Partial View $9 = \{0, 2, 4, 6\}$

Epidemic Broadcast: Partial view

Strategies to maintain partial view

- > Reactive strategy: a partial view only changes in response to some external event such as a joining of a node, a crash of a node, etc.
- \rightarrow Cyclic strategy: A partial view is update every ΔT units of time, as a result of some periodic process that usually involves the exchange of information with one or more neighbors.
- > Mixing strategy: the partial view membership is included in the epidemic broadcast protocol
 - ☐ Whenever a process forwards a message, it also includes in it a set of processes it knows. Process that receives this message can update its own list of known processes.
 - ☐ It does not introduce extra communication to maintain membership.

22/09/2024 ARA: Broadcast - Partie 2 14

Gossip protocol in ad hoc Networks

■ An ad hoc network is a multi-hop wireless network with no fixed infrastructure

- > Node broadcasts a message which is received by all nodes within one hop (neighbors)
- Gossiping protocol Gossip(p)[HHL06]
 - \rightarrow A source node sends the message m with probability 1.
 - > Upon reception of m
 - first time.
 - \Box it broadcasts m with probability p
 - \Box it discards *m* with probability 1-p
 - Otherwise it discards m

22/09/2024 ARA: Broadcast - Partie 2 15 22/09/2024 ARA: Broadcast - Partie 2 16

Gossip protocol in ad hoc Networks

- If the source has few neighbors, chance that none of them will gossip and the algorithm dies.
 - > Solution : Gossip (p,k)
 - Gossip with probability 1 for the k hops before continuing to gossip with probability p.
 - \Box Gossip (1,1) is equivalent to flooding.
 - \Box Gossip (p,0): even the source gossips with probability p.

Bibliographie

- R. Guerraoui, L. Rodrigues. Reliable Distributed Programming, Springer, 2006.
- J. C. A. Leitão. *Gossip-based broadcast protocols*. Master thesis's. 2007.
- P.Eugster, R.Guerraoui, A. Kermarrec and L. Massoulié. *From Epidemics to Distributed Computing*. IEEE Computer, 37,pages 60-67.
- S. Voulgaris, D. Gavidia, M. Stten. Cyclon: Inexpensive membership management for unstructured p2p overlays. Journal of Network and System Management. Vol 13, pages 197-217, 2005.
- Z.J.Haas, J. Halpern, L. Li. Gossip-Based Ad Hoc Routing. IEEE Transactions on Network, Vol. 14, N. 13, pages 479-491, 2006

22/09/2024 ARA: Broadcast - Partie 2 17 22/09/2024 ARA: Broadcast - Partie 2 18