Project 2: Random Processes & Complex Systems

Elias Rilegård • 2022-11-25

2.1: Polymers as Random 2D Walks

Organic polymers

Approximation and simulation using mathematical random walks

What's a random walk?

- Discrete: single/unit steps
- Steps in cardinal directions

Part a)

Custom RNG

$$r(n) = (a * r(n-1) + c) \mod m$$

Default:

$$r(0) = 1$$
, $a = 3$, $c = 4$, $m = 128$

Pseudo-random walk with 1000 unit steps in cardinal directions Parameters: r0=1, a=3, c=4, m=128

Other parameters

m = 129 (Shown on the right)

Still highly periodic

Random parameters?

Pseudo-random walk with 1000 unit steps in cardinal directions Parameters: r0=1, a=3, c=4, m=129

Pseudo-random walk with 1000 unit steps in cardinal directior Parameters: r0=8, a=10, c=17, m=181

Pseudo-random walk with 1000 unit steps in cardinal directions Parameters: r0=1, a=9, c=1, m=163

Part c)

Analysis

Root mean square end-to-end distance RMSD

Root mean square fluctuation RMSF

Standard Error Estimate SEE

Part c)

Part d)

Self avoiding walk

Real polymers cannot self intersect: Self avoiding walk

- Discard walk if it self intersects
- Improvement: allow only left, right, and straight ahead
- N = 35 reasonable limit

Part e)

RMSD for SAW

- Close to linear
- "Dumb" walk close to sqrt

Root Mean Squared end-to-end Distance 2500 iterations for every N

2.2: Traffic Model using Cellular Automata

Simulating car traffic

Cars driving on long road

Cellular automata

- Discrete: next state is completely determined by current state
- Periodic boundary conditions
- Simple set of rules that every "cell" obeys

Part a)

Fundamental diagram

- $v_max = 2, p = 0.5$
- Plot average flow rate vs car density

Statistical accuracy

- Standard error estimate
- N = 380 => SEE < 0.001

Equilibration time

- Standard error estimate
- All values of AFR sampled, including during equilibration period
- If only sampling equilibrium,
 N = 100 might be feasible
- N >= 200

Part c)

System size independence

- Fundamental diagram for multiple road lengths
- By a road length of >= 50,
 the diagram stops changing
- Integer rounding

Part d) and e)

Parameter tinkering

- Varying v_max (d) and p (e)
- Quantitative differences

What's about to come

- Fundamental diagrams for different v_max and p
- Cross sections at different car densities

Part d)

Part e)

Thank you!