

Gemeinsame Abituraufgabenpools der Länder

Pool für das Jahr 2021

Aufgaben für das Fach Mathematik

Kurzbeschreibung

Anforderungsniveau	Prüfungsteil	Sachgebiet ¹ digitales Hilfsmi	
erhöht	В	AG/LA (A2)	CAS

1 Aufgabe

Betrachtet werden die Pyramiden $ABCDS_k$ mit A(0|0|0), B(2|0|0), C(2|2|0), D(0|2|0) und $S_k(1|1|k)$ mit $k \in]1; + \infty[$. Die gemeinsame Grundfläche ABCD dieser Pyramiden ist quadratisch.

Die Abbildung zeigt beispielhaft eine dieser Pyramiden.

 $\hbox{\bf a} \ \ \, \text{Begründen Sie, dass jede der Pyramiden } \ \, \text{ABCDS}_k \ \, \text{gerade ist.} \\ \ \, \text{Berechnen Sie den Inhalt der Mantelfläche der Pyramide} \\ \ \, \text{ABCDS}_k \, . \\$

 $\textbf{b} \ \, \text{Begründen Sie, dass die Gleichung} \ \, \vec{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ $\text{mit } \ \, \lambda, \mu \in IR \ \, \text{keine Symmetrieebene der Pyramide ABCDS}_k$

mit $\lambda, \mu \in \mathbb{R}$ keine Symmetrieebene der Pyramide ABCDS, beschreibt. Geben Sie für eine Symmetrieebene der Pyramide ABCDS, eine Gleichung in Koordinatenform an.

(zur Kontrolle: $k \cdot x_2 - x_3 = 0$)

d Bestimmen Sie denjenigen Wert von k, für den die Seitenfläche ABS_k gegenüber der Grundfläche ABCD um einen Winkel der Größe 60° geneigt ist.

F_k G_k H_k

3

3

BE

5

3

¹ verwendete Abkürzungen: AG/LA - Analytische Geometrie/Lineare Algebra, AG/LA (A1) - Analytische Geometrie/Lineare Algebra (Alternative A1), AG/LA (A2) - Analytische Geometrie/Lineare Algebra (Alternative A2)

2021_M_erhoeht_B_AGLA(A2)_CAS.docx

Der abgebildete Punkt T ist der Schnittpunkt der Diagonalen der Grundfläche ABCD.

e Der Mittelpunkt der Strecke $\overline{TS_k}$ wird mit Q_k bezeichnet. Für einen Wert von k ist Q_k von der Grundfläche ABCD dreimal so weit entfernt wie von jeder der vier Seitenflächen der Pyramide ABCDS $_k$. Berechnen Sie diesen Wert von k.

- 4

Die Ebene mit der Gleichung $x_3 = 1$ schneidet die vier vom Punkt S_k ausgehenden Kanten der Pyramide ABCDS $_k$ in den Punkten E_k , F_k , G_k und H_k (vgl. Abbildung).

 ${f f}$ Bestimmen Sie die ${f x}_1$ - und die ${f x}_2$ -Koordinate von ${f F}_k$.

3

g Bestimmen Sie diejenigen Werte von k, für die das Verhältnis des Volumens der Pyramide $E_kF_kG_kH_kT$ zum Volumen der Pyramide ABCDS_k 1:8 beträgt.

-

25

2 Erwartungshorizont

Der Erwartungshorizont stellt für jede Teilaufgabe eine mögliche Lösung dar. Nicht dargestellte korrekte Lösungen sind als gleichwertig zu akzeptieren.

		ВЕ
a	Die Grundfläche liegt in der x_1x_2 -Ebene. Der Schnittpunkt ihrer Diagonalen hat die gleichen x_1 - und x_2 -Koordinaten wie S_k .	5
	Mit dem Mittelpunkt $M(2 1 0)$ von \overline{BC} ergibt sich für den Inhalt der Mantelfläche $4 \cdot \frac{1}{2} \cdot 2 \cdot \left \overline{MS_k} \right = 4 \cdot \sqrt{1 + k^2}$.	
b	$\vec{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \text{ mit } \lambda \in IR \text{ stellt die Gerade durch B und D dar. Der Vektor} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ ist}$ nicht parallel zu der Symmetrieebene, die diese Gerade enthält.} Gleichung einer Symmetrieebene: $x_1 = 1$	3
С		3
d	$ \text{Mit } \overrightarrow{m} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ und } \cos 60^\circ = \frac{ \overrightarrow{m} \circ \overrightarrow{n} }{ \overrightarrow{m} \overrightarrow{n} } \text{ ergibt sich für } k \in \left]1; + \infty\right[k = \sqrt{3} \ . $	3
е		4

f	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \sigma \cdot \begin{pmatrix} -1 \\ 1 \\ k \end{bmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} \text{ liefert } \sigma = \frac{1}{k} \text{ und damit } x_1 = 2 - \frac{1}{k} \text{ und } x_2 = \frac{1}{k}.$	3
	Aufgrund der Ähnlichkeit der Dreiecke ABS_k und $E_kF_kS_k$ gilt $\frac{\left \overline{E_kF_k}\right }{\left \overline{AB}\right }=\frac{k-1}{k}$.	4
	Für $k > 1$ liefert $\frac{\frac{1}{3} \overline{E_k F_k} ^2 \cdot 1}{\frac{1}{3} \overline{AB} ^2 \cdot k} = \frac{1}{8}$ damit $k_1 = 2$ und $k_2 = \sqrt{5} + 3$.	
		25

3 Standardbezug

Teilauf- gabe	BE
а	5
b	3
С	3
d	3
е	4
f	3
g	4

all	allgemeine mathematische Kompetenzen				
K1	K2	K3	K4	K5	K6
1	I		I	I	
Ш			Ш	1	
				П	
				Ш	
II	III		I	III	П
ı	Ш		I	I	I
Ш	III		II	II	

Anforderungsbereich			
I	=	III	
Х			
	Х		
	Х		
	Х		
		Х	
	Χ		
		Х	

4 Bewertungshinweise

Die Bewertung der erbrachten Prüfungsleistungen hat sich für jede Teilaufgabe nach der am rechten Rand der Aufgabenstellung angegebenen Anzahl maximal erreichbarer Bewertungseinheiten (BE) zu richten.

Für die Bewertung der Gesamtleistung eines Prüflings ist ein Bewertungsraster² vorgesehen, das angibt, wie die in den Prüfungsteilen A und B insgesamt erreichten Bewertungseinheiten in Notenpunkte umgesetzt werden.

² Das Bewertungsraster ist Teil des Dokuments "Beschreibung der Struktur", das auf den Internetseiten des IQB zum Download bereitsteht.

3