RETAIN: An Interpretable Predictive Model for Healthcare using <u>Re</u>verse <u>Time Attention Mechanism</u>

Choi et al., arXiv, Feb (2017)

Group 5: Emma Marriott, Ankit Jain

Outline

- Motivation
- Dataset
- Network Architecture
- Interpretability
- Implementation Details
- Experiments
- Critical Review

Motivation

- Most models have tradeoff between accuracy and interpretability, eg. RNN vs decision trees or clustering
- How to retain sequence level information and accuracy of RNNs but have parameters that can be understood?
- Attention-based models operate similar to a doctor focus on important events in a sequence with a lot of data
- Have model behave the same way as doctor, working from most recent to oldest encounter

Solution

Overall Dataset

- EHRs from Sutter Health
- 14 million visits 263,000 patients over an 8 year period
- Data includes encounter records, medication orders, and procedure orders
- From encounter records and medication/procedure orders, extracted codes for diagnosis (ICD-9), medication (GPI) and procedures (CPT)
- Dimensionality reduction via code grouping
 - ICD-9 using Clinical Classifications Software 14k → 283
 - GPI using Generic Product Identifier Drug Group 91k → 96
 - \circ CPT using Clinical Classifications Software 9k \rightarrow 238

Training Data Set

Positive Example Criteria (3,884 cases)

- 40 to 85 years of age at the time of HF diagnosis
- HF (heart failure) ICD-9 codes appeared in encounter diagnosis/medications for at least 3 distinct visits no further than a year apart

Negative Example Criteria (28,903 cases)

- 9 controls for every HF case
- Same sex, age, location as HF case
- 1st encounter within a year of HF patient's 1st encounter
- Did not meet heart failure diagnosis condition starting from time of diagnosis +
 182 days after

Network Architecture

Steps:

- 1: Embedding
- 2: Visit-level attention
- 3: Variable-level attentions
- 4: Context vector
- 5: Making Prediction

Network Architecture: Details

$$\mathbf{v}_{i} = \mathbf{W}_{emb}\mathbf{x}_{i}$$

$$\mathbf{g}_{i}, \mathbf{g}_{i-1}, \dots, \mathbf{g}_{1} = \mathrm{RNN}_{\alpha}(\mathbf{v}_{i}, \mathbf{v}_{i-1}, \dots, \mathbf{v}_{1}),$$

$$e_{j} = \mathbf{w}_{\alpha}^{\top}\mathbf{g}_{j} + b_{\alpha}, \quad \text{for} \quad j = 1, \dots, i$$

$$\alpha_{1}, \alpha_{2}, \dots, \alpha_{i} = \mathrm{Softmax}(e_{1}, e_{2}, \dots, e_{i})$$

$$\mathbf{h}_i, \mathbf{h}_{i-1}, \dots, \mathbf{h}_1 = \text{RNN}_{\boldsymbol{\beta}}(\mathbf{v}_i, \mathbf{v}_{i-1}, \dots, \mathbf{v}_1)$$

$$\boldsymbol{\beta}_i = \tanh(\mathbf{W}_{\boldsymbol{\beta}}\mathbf{h}_i + \mathbf{h}_{\boldsymbol{\beta}}) \quad \text{fo}$$

$$\boldsymbol{\beta}_j = \tanh\left(\mathbf{W}_{\boldsymbol{\beta}}\mathbf{h}_j + \mathbf{b}_{\boldsymbol{\beta}}\right) \quad \text{for} \quad j = 1, \dots, i,$$

$$\mathbf{c}_i = \sum_{j=1}^r \alpha_j \boldsymbol{\beta}_j \odot \mathbf{v}_j$$

$$\widehat{\mathbf{y}}_i = \operatorname{Softmax}(\mathbf{W}\mathbf{c}_i + \mathbf{b})$$

Interpretability

- Contributing visits: largest α_i
- Contributing variables:

$$\begin{aligned} p(\mathbf{y}_i|\mathbf{x}_1,\dots,\mathbf{x}_i) &= p(\mathbf{y}_i|\mathbf{c}_i) = \operatorname{Softmax}\left(\mathbf{W}\mathbf{c}_i + \mathbf{b}\right) \\ p(\mathbf{y}_i|\mathbf{x}_1,\dots,\mathbf{x}_i) &= p(\mathbf{y}_i|\mathbf{c}_i) = \operatorname{Softmax}\left(\mathbf{W}\left(\sum_{j=1}^i \alpha_j \boldsymbol{\beta}_j \odot \mathbf{v}_j\right) + \mathbf{b}\right) \\ &= \operatorname{Softmax}\left(\mathbf{W}\left(\sum_{j=1}^i \alpha_j \boldsymbol{\beta}_j \odot \sum_{k=1}^r x_{j,k} \mathbf{W}_{emb}[:,k]\right) + \mathbf{b}\right) \\ &= \operatorname{Softmax}\left(\sum_{j=1}^i \sum_{k=1}^r x_{j,k} \alpha_j \mathbf{W}\left(\boldsymbol{\beta}_j \odot \mathbf{W}_{emb}[:,k]\right) + \mathbf{b}\right) \\ &\omega(\mathbf{y}_i,x_{j,k}) = \underbrace{\alpha_j \mathbf{W}(\boldsymbol{\beta}_j \odot \mathbf{W}_{emb}[:,k])}_{\text{Contribution coefficient}} \underbrace{x_{j,k}}_{\text{Input value}} \end{aligned}$$

Implementation and Hyperparameters Tuning

<u>Implementation</u>: Adadelta with mini-batch of 100 patients. Intel Xeon E5, 256 GB RAM, two Nvidia Tesla K80.

m, p, q =
$$|v|$$
, $|g|$, $|h|$

- m, p, q sampled randomly from (32, 64, 128, 200,256)
- L₂ regularization coefficient on embedding and context-vector weights sampled from (0.1, 0.01, 0.001, 0.0001)
- Dropouts on embedding weights and context-vector weights sampled from (0.0, 0.2, 0.4, 0.6, 0.8)

Tuned hyperparameters:

m, p, q = 128, L_2 coefficient = 0.0001, dropouts = 0.6

Experiments: Results $RNN + \alpha R$ **RNN** Logistic Regression $\boldsymbol{x_i}$ \boldsymbol{x}_i \boldsymbol{x}_i $RNN + \alpha M$ **MLP** \boldsymbol{x}_i

Table 2: Heart failure prediction performance of RETAIN and the baselines

Model	Test Neg Log Likelihood	AUC	Train Time / epoch	Test Time
LR	0.3269 ± 0.0105	0.7900 ± 0.0111	0.15s	0.11s
MLP	0.2959 ± 0.0083	0.8256 ± 0.0096	0.25s	0.11s
RNN	0.2577 ± 0.0082	0.8706 ± 0.0080	10.3s	0.57s
$RNN+\alpha_M$	0.2691 ± 0.0082	0.8624 ± 0.0079	6.7s	0.48s
RNN+ α_R	0.2605 ± 0.0088	0.8717 ± 0.0080	10.4s	0.62s
RETAIN	0.2562 ± 0.0083	0.8705 ± 0.0081	10.8s	0.63s

Visualization

Critical Review

- Neat approach with RNN only for attention weights generation
- Used AUC to take care of class imbalance
- Extended the implementation for Encoder Sequence Modeling (ESM) and for including timestamps
- Logistic regression or MLP with aggregate features: not a fair comparison
- Selectively presented calculation time only for learning to diagnose case where prediction are made only at the end of time sequence
- 1:9 ratio for positive:negative is not realistic
- How about (MLP + RNN α) or (MLP + RNN β)?
- Bi-directional RNNs
- Negative examples and model limitations?

Thanks You Questions?