本节内容

控制器设计

硬布线控制器

本章总览

根据指令操作码、目前的机器周期、节 拍信号、机器状态条件,即可确定现在 这个节拍下应该发出哪些"微命令"

内容回顾

CU发出一个微命令,可完成对应微操作。如: 微命令1 使得 PCout、MARin 有效。

完成对应的<mark>微操作1 (PC)→MAR</mark>

To: 微操作1、微操作2

T₁: 微操作3 T₂: 微操作4

一个节拍内可以并行完成 多个"相容的"微操作

To: 微操作5、微操作2

T₁: 微操作6 T₂: 微操作7 同一个微操作可能在不同指令的不同阶段被使用

不同指令的执行周期所需 节拍数各不相同。为了简 化设计,选择定长的机器

周期,以可能出现的最大 节拍数为准(通常以访存

所需节拍数作为参考)

T₀: | T₁: 微操作8 | T₂: 微操作9、微操作6

T₀:

T₁: 微操作10 T₂: 微操作11 若实际所需节拍数较少, 可将微操作安排在机器周 期末尾几个节拍上进行

CLK $1 \rightarrow FE$ $1 \rightarrow IND$ $1 \rightarrow EX$ $1 \rightarrow INT$

王道考研/CSKAOYAN.COM

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令"

颤抖吧! 感受恐惧!

注:一般不考 电路, 莫慌~

很紧张对吧?

M (MAR) →MDR 微操作命令的逻辑表达式: $FE \cdot T_1 + IND \cdot T_1(ADD + STA + LDA + JMP + BAN) + EX \cdot T_1(ADD + LDA)$

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定 现在这个节拍下应该发出哪些"微命令"

硬布线控制器的设计

设计步骤:

确定哪些指令在什么阶段、在什么 条件下会使用到的微操作

- 1. 分析每个阶段的微操作序列(取值、间址、执行、中断四个阶段)
- 2. 选择CPU的控制方式

采用定长机器周期还是不定长机器周期?每个机器周期安排几个节拍?

3. 安排微操作时序

如何用3个节拍完成整个机器 周期内的所有微操作?

4. 电路设计

确定每个微操作命令的逻辑表达式, 并用电路实现 假设采用同步控制方式(定长机器周期), 一个机器周期内安排3 个节拍。

安排,必须安排

注:中断周期内的微操作序列 就不分析了,原理类似

分析每个阶段的微操作序列

取指周期(所有指令都一样)

 $PC \rightarrow MAR$

 $1 \rightarrow R$

 $M (MAR) \rightarrow MDR$

 $MDR \rightarrow IR$

 $OP(IR) \rightarrow ID$

 $(PC) + 1 \rightarrow PC$

间址周期(所有指令都一样)

 $Ad(IR) \rightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow Ad(IR)$

注: ID 是指令译码器 Instruction Decoder

罗列出所有指令在各个阶段的微操作序列,就可以知道 在什么情况下需要使用这个微操作

根据 指令操作码、目前的机器周期、节拍信号、机器状态条件, 即可确定现在这个节拍下应该发出哪些"微命令"

执行周期(各不相同)

注: 很多地方把 ACC简写为AC

CLA

 $0 \rightarrow AC$

clear ACC 指令 ACC清零

LDA X

取数指令,

把X所指内容

取到ACC

 $Ad(IR) \rightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow AC$

JMP X 无条件转移 Ad (IR) \rightarrow PC

负数符号位为1

BAN X

 $A_0 \bullet Ad (IR) + A_0 \bullet (PC) \rightarrow PC$

Branch ACC Negative 条件转移,当ACC为负时转移

王道考研/CSKAOYAN.COM

安排微操作时序的原则

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

- (1) PC \rightarrow MAR
- (2) 1 \rightarrow R
- (3) M (MAR) \rightarrow MDR
- (4) MDR \rightarrow IR
- (5) OP (IR) \rightarrow ID
- (6) (PC) + 1 \rightarrow PC

- 存储器空闲即可
- 在(1)之后
- 在(3)之后
- 在(4)之后
- 在(1)之后

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

 T_0 (1) PC \rightarrow MAR

 T_0 (2) 1 \rightarrow R

T₁ (3) M (MAR) → MDR 在(1)之后

 T_1 (6) (PC) + 1 \rightarrow PC \pm (1)之后

T₂ (4) MDR → IR 在(3)之后

(5) OP (IR) → ID 在(4)之后

两个微操作占用时 间较短,根据原则 三安排在一个节拍

M(MAR)→MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

MDR → IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP (IR) → ID。也就是可以一次同时发出两个微命令。

存储器空闲即可

安排微操作时序-间址周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量安排在一个节拍内完成

并允许有先后顺序

- T_0 (1) Ad(IR) \rightarrow MAR
- T_0 (2) 1 \rightarrow R
- T_1 (3) M (MAR) \rightarrow MDR
- T_2 (4) MDR \rightarrow Ad(IR)

安排微操作时序-执行周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量安排在一个节拍内完成

并允许有先后顺序

```
1 CLA
                 T_0
clear
                T_2 0 \rightarrow AC
ACC清零
\bigcirc COM
complement T<sub>1</sub>
                       \overline{AC} \rightarrow AC
ACC取反
③ SHR
shift
                       L(AC) \rightarrow R(AC)
算术右移
                      AC_0 \rightarrow AC_0
4 CSL
                 T_0
cyclic shift
                      R(AC) \rightarrow L(AC), AC_0 \rightarrow AC_n
循环左移
⑤ STP
stop
                      0 \rightarrow G
停机
```

安排微操作时序-执行周期

(1) 非访存指令

- ① CLA T_0 clear T_1 T_2 $0 \rightarrow AC$
- ② COM T_0 complement T_1 ACC取反 T_2 $\overline{AC} \rightarrow AC$
- ③ SHR T_0 shift

 算术右移 T_1 T_2 L(AC) \rightarrow R(AC) T_2 AC $_0$ \rightarrow AC $_0$
- ④ CSL T_0 cyclic shift T_1 循环左移 T_2 R (AC) \rightarrow L (AC), AC $_0$ \rightarrow AC $_n$ 5 STP T_0
- stop 停机 T₂ 0 → G

(2) 访存指令

- ⑥ ADD X T_0 Ad (IR) → MAR, 1 → R
- 加法指令 T₁ M (MAR) → MDR
- 隐含ACC T_2 (AC)+(MDR)→AC
- \bigcirc STA X $_{10}$ Ad (IR) → MAR, 1 → W
- 存数指令 T₁ AC → MDR
- 隐含ACC T₂ MDR → M (MAR)
- ⊗ LDA X T_0 Ad (IR) \rightarrow MAR, 1 \rightarrow R
- 取数指令 T₁ M (MAR) → MDR
- 隐含ACC T₂ MDR → AC

(3) 转移指令

- ⑨ JMP X T₀
 jump T₁
 无条件转移 T₂ Ad (IR) → PC
- ① BAN X T_0 Branch ACC T_1 Negative T_2 $A_0 \bullet$ Ad (IR) + $\overline{A_0} \bullet$ (PC) \rightarrow PC \ast 件转移 王道考研/CSKAOYAN.COM

安排微操作时序-中断周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计

(1) a \rightarrow MAR

。 (2) 1 → W 存储器空闲即可

T₀ (3) 0 → EINT 硬件关中断

T₁ (4) (PC) → MDR 内部数据通路空闲即可

T₂ (5) MDR → M(MAR) 在(3)之后

T₂ (6) 向量地址 → PC 在(3)之后

这些操作由中断隐指令完成

注:中断隐指令不是一条指令,而是指一条指令的中断周期由硬件完成的一系列操作

中断周期的三个任务:

- 1. 保存断点
- 2. 形成中断服务程序的入口地址
- 3. 关中断

组合逻辑设计

设计步骤:

1. 列出操作时间表

列出在取指、间址、执行、中断周期,T0、T1、T2 节拍内有可能用到的所有微操作

- 2. 写出微操作命令的最简表达式
- 3. 画出逻辑图

组合逻辑设计

设计步骤:

1. 列出操作时间表

非访存指令

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	T	100	PC → MAR	1	1	1	1	1	1	1	1	1	1
	T_0		$1 \longrightarrow R$	1	1	1	1	1	1	1	1	1	1
	T_1		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
FE	11	C.	$(PC)+1 \longrightarrow PC$	1	_1	1	1	ì	1	1 1	1	_ 1	1
取指		in Marith	$MDR \rightarrow IR$	1	1	1	1	1	1	1	1	1	1
8	T_2	1 3 5 5 C	$OP(IR) \rightarrow ID$	1	1	12	1	1	1	1	1	1	1
	12	I	1→ IND		ŔĬ			V.	1	1	1	1	1
		Ī	$1 \longrightarrow EX$	1	1	1	1.	1	1,0	1	1	Ç 1	1

组合逻辑设计

设计步骤:

1. 列出操作时间表

非访存指令

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	т	100	$Ad(IR) \rightarrow MAR$						1	1	1	1	1
IND	T_0		$1 \longrightarrow R$					1634	1	1	1	1	1
间址	T_1		$M(MAR) \rightarrow MDR$	>~		**			1	1	1	1	1
	Т		$MDR \longrightarrow Ad(IR)$		~C				1	1	1	1	1
	T_2	IND	$1 \longrightarrow EX$			-ii)			1	1	1	1	1

间址周期标志

设计步骤:

组合逻辑设计

- 1. 列出操作时间表
- 2. 写出微 操作命令的 最简表达式

, [工作周期	节拍	状态 条件	微操作命令信号	CLA	COM	ADD	STA	LDA	JMP	BAN
7 7	标记	, 4,,	条件 							(6)	
	≪ .		≪	$Ad(IR) \rightarrow MAR$	<	K.	1	1	1		<i>y</i>
		T_0		$1 \rightarrow R$,		_ 1		1	, · · · · · · · · · · · · · · · · · · ·	C.
				$1 \rightarrow W$,(0) T	1			100
		т	Ž	$M(MAR) \rightarrow MDR$			1		1	X	3
	EX 地 行	T_1		$AC \longrightarrow MDR$	>			×1		****	
	执行	. (a		(AC)+(MDR)→AC			1	, off			
			2)	$MDR \longrightarrow M(MAR)$,			1			,0°
		All Control	X	MDR→AC		-1/1/1	4	- 1/3/X	1	X	ŽŽ
		T_2		$0 \longrightarrow AC$	1						
				$\overline{AC} \rightarrow AC$		• 1					
	9)	000		$Ad(IR) \rightarrow PC$	100402				000	1	.00°
	<u> </u>		A_0	$Ad(IR) \rightarrow PC$		测		<u>_=1/2/</u>		×	1

微操作信号综合

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	Т		$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
FE	T_0		1→ R	1	1	1	1	1	1	1	1	_ 1	1
取指	T_1		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
I IND	I ₁				 		 		2) _	. ×	*	 *	
间址	T_1		$M(MAR) \rightarrow MDR$					A THE	1	1	1	1	1
		-in Markit	EX Š	-/2/2	300	-7h		305	-737	4	<u>.</u>		-37
		Cotto do Los	执行 T ₁	///->	$(\longrightarrow W)$ (AR)	//2019			1	1	1		

 $M (MAR) \rightarrow MDR 微操作命令的逻辑表达式:$ FE·T₁ + IND·T₁ (ADD+STA+LDA+JMP+BAN) + EX·T₁ (ADD+LDA) = T₁ {FE+IND(ADD+STA+LDA+JMP+BAN)+EX(ADD+LDA)}

画出逻辑图

M (MAR) →MDR微操作命令的逻辑表达式: FE·T₁ + IND·T₁(ADD+STA+LDA+JMP+BAN) + EX·T₁(ADD+LDA) =T₁{FE+IND(ADD+STA+LDA+JMP+BAN)+EX(ADD+LDA)}

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令"

硬布线控制器的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统) 如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。 由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

△ 公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研