

ArcSoft Face Tracking

开发指导文档

目录

ARCSOFT FACE TRACKING	1
概述	3
1.1. 运行环境	3
1.2. 系统要求	3
1.3. 支持颜色空间格式	3
类描述	4
2.1. CLASS AFT_FSDKFACE	4
2.1.1. 功能描述	4
2.1.2. 构造函数	4
2.1.3. 成员函数	4
2.2. CLASS AFT_FSDKError	
2.2.1. 功能描述	5
2.2.2. 构造函数	5
2.2.3. 成员函数	5
2.2.4. <i>类常量</i>	5
2.3. CLASS AFT_FSDKVERSION	
2.3.1. 功能描述	6
2.3.2. 构造函数	6
2.3.3. 成员函数	6
2.4. CLASS AFD_FSDKENGINE	6
2.4.1. 功能描述	6
2.4.2. 构造函数	6
2.4.3. 成员函数	
2.4.4. 类常量	
示例代码	9

概述

虹软人脸跟踪引擎工作流程图:

1.1. 运行环境

• Android ARM 32

1.2. 系统要求

• Android 5.x 或以上

1.3. 支持颜色空间格式

支持图像的颜色格式: NV21

类描述

2.1. Class AFT_FSDKFace

2.1.1. 功能描述

这个类用来保存检测到的人脸信息

2.1.2. 构造函数

2.1.2.1. AFT_FSDKFace(AFT_FSDKFace self)

参数

AFT FSDKFace self 类对象,创建的对象和传入的对象数据一致

说明: 在一个 init/unit 过程中, 只支持相同分辨率的图像数据

2.1.2.2. **AFT_FSDKFace()**

2.1.3. 成员函数

2.1.3.1. Rect getRect()

返回值:

保存的人脸框(Rect(left, top, right, bottom))

2.1.3.2. int getDegree()

返回值:

保存的人脸角度(AFT_FOC_0, AFT_FOC_90等)

2.1.3.3. String toString()

返回值:

格式化人脸信息的字符串(String("Rect(left, top - right, bottom), Degree"))

2.1.3.4. AFT_FSDKFace clone()

返回值:

本对象的拷贝

2.2. Class AFT_FSDKError

2.2.1. 功能描述

这个类用来保存函数执行的错误信息.

2.2.2. 构造函数

2.2.2.1. AFD_FSDKError()

2.2.3. 成员函数

2.2.3.1. int getCode()

返回值:

错误码值(MOK, MERR_INVALID_PARAM 等)

2.2.4. 类常量

2.2.4.1. 错误码

引擎返回的错误值定义

MOK	0	成功
MERR_BASIC_BASE	0x0001	基础错误起始值
MERR_UNKNOWN	0x0001	未知错误
MERR_INVALID_PARAM	0x0002	参数错误
MERR_UNSUPPORTED	0x0003	输入了引擎不支持的参数或 者数据
MERR_NO_MEMORY	0x0004	内存不足
MERR_BAD_STATE	0x0005	状态错误(未初始化就调用 了接口)
MERR_BUFFER_OVERFLOW	0x0009	内存上溢
MERR_BUFFER_UNDERFLOW	0x000a	内存下溢
MERR_FSDK_BASE	0x7000	校验错误起始值
MERR_FSDK_INVALID_APP_ID	0x7001	非法 APPID
MERR_FSDK_INVALID_SDK_ID	0x7002	非法 SDKID
MERR_FSDK_INVALID_ID_PAIR	0x7003	SDKKEY 不是于当前 APPID 名下的

MERR_FSDK_MISMATCH_ID_AND_SDK	0x7004	SDKKEY 不是当前 SDK 所支持的
MERR_FSDK_SYSTEM_VERSION_UNSUPPORTED	0x7005	不支持的系统版本
MERR_FSDK_LICENCE_EXPIRED	0x7006	SDK 过期

2.3. Class AFT_FSDKVersion

2.3.1. 功能描述

这个类用来保存版本信息

- 2.3.2. 构造函数
- 2. 3. 2. 1. AFT_FSDKVersion ()
- 2.3.3. 成员函数
- 2.3.3.1. String toString()

返回值:

包含所有版本信息的字符串

2.4. Class AFD_FSDKEngine

2.4.1. 功能描述

这个类具体实现了人脸跟踪的功能

- 2.4.2. 构造函数
- 2.4.2.1. AFT_FSDKEngine()
- 2.4.3. 成员函数
- 2.4.3.1. AFT_FSDKError AFT_FSDK_InitialFaceEngine(String appid, String sdkkey, int orientsPriority, int scale, int maxFaceNum)

这个函数功能为初始化引擎,设置检测角度、范围,数量。创建对象后,必须先于其他成员函数调用,否则其他成员函数会返回 MERR_BAD_STATE。

参数:

String appid	用户申请 SDK 时获取的 App Id
String sdkkey	用户申请 SDK 时获取的 SDK Key
int orientsPriority	指定检测的角度(AFT_OPF_0_ONLY, AFT_OPF_90_ONLY 等)
int scale	指定支持检测的最小人脸尺寸,有效值范围[2,32],推荐值 16
int maxFaceNum	最多能检测到的人脸个数,有效值范围[1,50],推荐值 25

返回值:

返回 AFT_FSDKError 对象,具体错误信息参考 Class AFT_FSDKError

2.4.3.2. AFT_FSDKError AFT_FSDK_FaceFeatureDetect(byte[] data, int width, int height, int format, List<AFT_FSDKFace> list)

这个函数功能为检测输入的图像中存在的人脸、输出结果和初始化时设置的参数有密切关系。

参数:

byte[] data	输入的图像数据
int width	图像宽度
int height	图像高度
int format	图像格式
List <afd_fsdkface> list</afd_fsdkface>	检测到的人脸会 add 到此 list.注意 AFD_FSDKFace 对象引擎内部重复使用,如需保存,请 clone 一份 AFD_FSDKFace 对象或另外保存

返回值:

返回 AFT_FSDKError 对象,具体错误信息参考 Class AFT_FSDKError

2.4.3.3. AFT_FSDKError AFT_FSDK_UninitialFaceEngine()

这个函数功能为销毁引擎,释放占用的内存资源。

返回值:

返回 AFT_FSDKError 对象,具体错误信息参考 Class AFT_FSDKError

2.4.3.4. AFT_FSDKError AFT_FSDK_GetVersion(AFT_FSDKVersion version)

这个函数功能为获取版本信息

参数:

AFT_FSDKVersion	版本信息对象 参考 Class AFT_FSDKVersion
verion	

2.4.4. 类常量

2.4.4.1. 颜色格式

支持的颜色格式及其对齐规则

CP_PAF_NV21 0x802	8-bit Y 层,之后是 8-bit 的 2x2 采样的 U,V 交织层
-------------------	---------------------------------------

2.4.4.2. 检测角度

引擎初始化时输入的目标检测角度

AFT_OPF_0_ONLY	0x1	检测 0 度方向
AFT_OPF_90_ONLY	0x2	检测 90 度方向
AFT_OPF_270_ONLY	0x3	检测 270 度方向
AFT_OPF_180_ONLY	0x4	检测 180 度方向
AFT_OPF_0_HIGHER_EXT	0x5	检测 0, 90, 180, 270 四个方向,0 度更优先

2.4.4.3. 人脸角度

检测结果中的人脸角度

AFT_FOC_0	0x1	0度
AFT_FOC_90	0x2	90度
AFT_FOC_270	0x3	270度
AFT_FOC_180	0x4	180度

示例代码

```
AFT FSDKInterface engine = new AFT FSDKEngine();
// 用来存放检测到的人脸信息列表
List<AFT_FSDKFace> result = new ArrayList<>();
//初始化人脸跟踪引擎,使用时请替换申请的 APPID 和 SDKKEY
AFT_FSDKError err = engine.AFT_FSDK_InitialFaceEngine("APPID", "SDKKEY",
AFT_FSDKEngine.AFT_OPF_0_HIGHER_EXT, 16, 5);
Log.d("com.arcsoft", "AFT_FSDK_InitialFaceEngine =" + err.getCode());
//输入的 data 数据为 NV21 格式(如 Camera 里 NV21 格式的 preview 数据),其中 height 不能为奇
数,人脸跟踪返回结果保存在 result。
err = engine.AFT_FSDK_FaceFeatureDetect(data, width, height, AFT_FSDKEngine.CP_PAF_NV21,
result);
Log.d("com.arcsoft", "AFT_FSDK_FaceFeatureDetect =" + err.getCode());
Log.d("com.arcsoft", "Face=" + result.size());
for (AFT_FSDKFace face : result) {
   Log.d("com.arcsoft", "Face:" + face.toString());
}
//销毁人脸跟踪引擎
err = engine.AFT_FSDK_UninitialFaceEngine();
Log.d("com.arcsoft", "AFT_FSDK_UninitialFaceEngine =" + err.getCode());
```