$$\hat{A}_{g}^{gg} F_{g} = \lambda_{\chi} \int_{0}^{1} dz \left[\frac{1}{z} F_{g} \left(r; \frac{x}{z}, z p_{\perp}^{2}, z p^{2} \right) - \frac{1}{2} F_{g} (r; x, p_{\perp}^{2}, p^{2}) \right] \gamma_{g \to gg} (z, \epsilon) \ a_{g}(z, p^{2})
\hat{A}_{g}^{q\bar{q}} F_{g} = \lambda_{\chi} n_{f}(p^{2}) F_{g}(r; x, p_{\perp}^{2}, p^{2}) \int_{0}^{1} dz \, \gamma_{g \to q\bar{q}} (z, \epsilon) \ a_{g}(z, p^{2})
\hat{A}_{q}^{gq} F_{q+\bar{q}} = \lambda_{\chi} \int_{0}^{1} \frac{dz}{z} F_{q+\bar{q}} \left(r; \frac{x}{z}, z p_{\perp}^{2}, z p^{2} \right) \gamma_{q \to gq} (z, \epsilon) \ a_{q}(z, p^{2}) .$$
(51)

Here $\lambda_{\chi} \equiv \lambda_{\chi}(\chi(r)) = 1 - (\chi/\chi_0)^4 + O[(\chi/\chi_0)^6]$, and the function $a(z, p^2)$ is given by

$$a_{q,g}(z,p^2) := \frac{1}{2\pi} T_{q,g}(p^2) \alpha_s \left((1-z)p^2 \right) ,$$
 (52)

with a "life-time" factor $T_{q,g}(p^2)$ that expresses the probability for a parton of virtuality p^2 to decay (branch) within a time interval t in the laboratory frame,

$$T_{q,g}(p^2) = 1 - \exp\left[-\frac{t}{\tau_{q,g}(p^2)}\right],$$
 (53)

where $\tau(p^2) \propto E/p^2$ (explicit expressions can be found in Ref. [34]). Furthermore, α_s is the one-loop QCD coupling

$$\alpha_s(k^2) = \frac{12\pi}{(33 - 2n_f(k^2)) \ln[(k^2 + k_0^2) L_c^2]},$$
 (54)

and $n_f(k^2)$ is the effective number of quark flavors at k^2 ,

$$n_f(k^2) := \sum_f^{N_f} \sqrt{1 - \frac{4m_f^2}{k^2}} \,\theta \left(1 - \frac{4m_f^2}{k^2}\right) \,.$$
 (55)

In (54) we have assumed the correspondence $L_c \simeq \Lambda_{QCD}^{-1}$ to the intrinsic perturbative QCD scale, and k_0 is a parameter that prevents a divergence when $k^2 \to L_c^{-2}$, and defines a maximum value $\alpha_s(0)$. We will determine k_0 in Sec. 5 from the total parton multiplicity. The functions $\gamma(z,\epsilon)$ are are analogous to the standard branching kernels in the MLLA [29]. Note that the 4-gluon vertex vertex does not contribute in the MLLA in the gauge (42), because it is kinematically suppressed. As a consequence, the effect of the couplings $\kappa_L(\chi)$ and $\mu(\chi)$, eqs. (16) and (17), on the parton evolution reduces to 2-parton recombinations into color-singlet clusters — the terms proportional to \hat{B}, \hat{C} which will be given below.

The branching kernels $\gamma_{a\to bc}(z)$ are the familiar energy distributions for the branching $a\to bc$ with $z=x_b/x_a$ and $1-z=x_c/x_a$ the energy fractions of daughter partons:

$$\gamma_{q \to qg}(z, \epsilon) = C_F \left(\frac{1+z^2}{1-z+\epsilon} \right)$$