arm

Introduction to the Fujitsu A64FX

The 3rd Isambard hackathon - "Full Steam Ahead!"

Fabrice Dupros Fabrice. Dupros@arm.com

Conrad Hillairet Conrad. Hillairet@arm.com

Phil Ridley Phil Ridley@arm.com

23rd March 2021

Agenda

- Overview of Arm
- Current Arm-based HPC
- Introduction to the A64FX
- Execution
 - FMLA example
- Cache
 - Stream example

Arm's HPC Field Engineering Team (HPC-FE)

Porting, Tuning, Training, and Enablement

- Application performance engineering
 - Get help optimizing for maximum performance
- System tuning
 - Tune HPC system parameters for your workloads
- Hackathons and tutorials
 - Education, mentoring, and hands-on events to help jumpstart HPC developers

of the world's population uses

Arm technology

CPU Engagement Models with Arm

Arm IP is the basic building block for extraordinary solutions.

Core License

- Partner licenses complete microarchitecture
- CPU differentiation via:
 - Configuration options
 - Wide implementation envelope with different process technologies

Architecture License

- Partner designs complete microarchitecture
- Clean room, scratch
- Maximum design freedom:
 - Directly address needs of the target market
- Arm architecture validation preserves software compatibility

Pizza Engagement Models

The basic building blocks for an extraordinary pizza!

Architecture License

Current Arm-based HPC

The Cloud

Open access to server class Arm

Ampere® Altra™: The World's First Cloud Native Processor

Introduction to the A64FX

Fujitsu A64FX: Fastest Supercomputer on the Nov'20 Top500

A Leadership CPU from start to finish

Expect excellent performance; expect to have to work to get it

Commodity HPC

- Mainline design
- Common assumptions hold
- Significant fraction of peak without tuning

Leadership HPC

- Codesigned for specific application
- Common assumptions may hurt performance
- Significant tuning effort may be required

Fujitsu A64FX Key Features

Architecture License

https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet.pdf

- Arm v8.2-A with 512-bit SVE
- Custom Fujitsu u-arch
- 7nm CMOS FinFET
- 2.2GHz, 2.0GHz, 1.8GHz
 - Constant clock: no turbo, no downclock
- 4 Core Memory Groups (CMGs)
 - 12 cores (13 in the FX1000)
 - 64KB L1\$ per core
 - 256b cache line
 - 8MB L2\$ shared between all cores
 - 256b cache line
 - Zero L3\$
 - 8 GB HBM at 256GB/s

Example: FMLA

06_A64FX/01_fmla

See README.md for details

- Calculates peak per-core double precision flops
- Measures the wallclock time of a tight loop of fused multiply-add (FMLA) instructions.
- The code is written in Assembly, so the exact number of giga operations (GOP) is known.
- Performance in gigaflops (GFLOPS) is simply GFLOPS = GOP / SECONDS.

```
./fmla_neon128.exe
256000000 Flops in 0.021625 seconds
11.8382 GFlops
./fmla_sve512.exe
1024000000 Flops in 0.021627 seconds
47.3482 GFlops
./fmla_a64fx.exe
960000000 Flops in 0.016691 seconds
57.516 GFlops
```

wget https://gitlab.com/arm-hpc/training/arm-sve-tools/-/archive/sc20/arm-sve-tools-sc20.tar.gz

Fujitsu A64FX Execution Pipeline

https://github.com/fujitsu/A64FX/tree/master/doc

Fujitsu A64FX Execution Pipeline

https://github.com/fujitsu/A64FX/tree/master/doc

Example: Stream

06_A64FX/02_stream/01_stream_vanilla

See README.md for details

- A basic, untuned, out-of-box, "vanilla" implementation
 - Performance will most likely be very poor
 - Uses only a single core and does not consider NUMA or any architectural features

_	 _	_		_		
	4	1		Λ.	\sim Λ	
(- (- 1	- 1	on	/\	h/1	$\vdash x$
V 1 V	 - 1		()	$\overline{}$	いー	1 /

Function	Best Rate MB/s	Avg time	Min time	Max time
Copy:	40859.3	0.003931	0.003916	0.003981
Scale:	40796.5	0.003931	0.003922	0.003949
Add:	47235.1	0.005109	0.005081	0.005188
Triad:	47253.3	0.005096	0.005079	0.005114

wget https://gitlab.com/arm-hpc/training/arm-sve-tools/-/archive/sc20/arm-sve-tools-sc20.tar.gz

Fujitsu A64FX L1 Cache

https://github.com/fujitsu/A64FX/tree/master/doc

		For Instruction	For Data
L1 cache	Association method	4-way set associative	4-way set associative
	Capacity	64 KiB	64 KiB
			5 cycles(integer)
	Hit latency (load-to-use)	4 cycles	8 cycles (SIMD&FP / SVE in short mode)
			11 cycles (SIMD&FP / SVE in long mode)
	Line size	256 bytes	256 bytes
	Write method		Writeback
	Index tag	Virtual index and physical tag (VIPT)	Virtual index and physical tag (VIPT)
	Index formula	index_A = (A mod 16,384) / 256	index_A = (A mod 16,384) / 256
	Protocol	SI state	MESI state

Fujitsu A64FX L2 Cache

https://github.com/fujitsu/A64FX/tree/master/doc

		For instruction and data (by shared)
L2 cache (shared by instruction & data)	Association method	16-way set associative
	Capacity	8 MiB
	Hit latency (load-to-use)	37 to 47 cycles
	Line size	256 bytes
	Write method	Writeback
	Index and tag	Physical index and physical tag (PIPT)
	Index formula	index <10:0> = ((PA<36:34> xor PA<32:30> xor PA<31:29> xor PA<27:25> xor PA<23:21>) << 8) xor PA<18:8>
	Protocol	MESI state

06_A64FX/02_stream/02_stream_openmp

See README.md for details

- Uses OpenMP and numactl to improve memory/thread locality
 - On many systems, this implementation will be close to 80% of the theoretical peak bandwidth
 - Does not achieve 80% of peak on A64FX due to that system's memory architecture

GCC 11 on A64FX

Function	Best Rate MB/s	Avg time	Min time	Max time
Copy:	537948.0	0.032011	0.031936	0.032123
Scale:	537695.1	0.032026	0.031951	0.032179
Add:	597172.3	0.043259	0.043153	0.043500
Triad:	597324.1	0.043282	0.043142	0.044186

06_A64FX/02_stream/04_stream_zfill

See README.md for details

- Uses Arm's DC ZVA instruction to zero-fill cache lines
 - Dramatically improves the performance of systems with wide L2\$ lines and low L3\$

GCC 11 on A64FX

Function Best Rate MB/s Avg time Min time Max time Copy: 780579.1 0.022083 0.022009 0.022202 Scale: 780689.0 0.022146 0.022006 0.022576 Add: 788330.3 0.032902 0.032689 0.033698 Triad: 0.032704 787974.0 0.032808 0.033263

Unoptimized STREAM TRIAD

There is a hidden read before write of the result array a[] for cache registration

Use ZFILL to eliminate useless memory access

DC ZVA instruction maps cache without reading main memory

06_A64FX/02_stream/05_stream_fujitsu

See README.md for details

- Uses the Fujitsu compiler to maximize bandwidth on A64FX
 - No inline assembly
 - Compiler automatically inserts ZFILL instructions as needed

fcc 4.2.1 on Fujitsu A64FX

Function	Best Rate MB/s	Avg time	Min time	Max time
Copy:	755455.3	0.022814	0.022741	0.022887
Scale:	768704.5	0.022393	0.022349	0.022464
Add:	819550.3	0.031496	0.031444	0.031545
Triad:	815555.5	0.031672	0.031598	0.031754

Resources

- Fujitsu A64FX Microarchitecture Manual
 - https://github.com/fujitsu/A64FX/tree/master/doc
- Fujitsu A64FX Performance Monitor Unit (PMU) events
 - https://github.com/fujitsu/A64FX/tree/master/doc
- Hands-on Training Materials for Arm Compilers, Libraries and Tools Related to SVE
 - https://gitlab.com/arm-hpc/training/arm-sve-tools
- Cray Apollo 80 Hardware Description
 - https://pubs.cray.com/bundle/HPE_Cray_Apollo_80_Hardware_Guide_H-6220/page/Product_Description.html
- Fujitsu PRIMEHPC Documentation
 - https://www.fujitsu.com/global/products/computing/servers/supercomputer/documents/

arm

Thank You

Danke

Gracias

谢谢

ありがとう

Asante

Merci

감사합니다

धन्यवाद

Kiitos

شکرًا

ধন্যবাদ

תודה

© 2021 Arm

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks