Richiami di meccanica

· Grandezze fisiche

Scalare specificata attribuendole un numero reale

Veneviale composto di modulo, direzione e verso

= intensita

· Algebra dei vettori

- stesse direcione di a
- modulo mla
- Verso $\frac{}{}$ opposto and $\frac{3}{2}$ se m <0 concorde con $\frac{3}{2}$ se m > 0

VERSORE = Vettore di modulo
$$\Delta$$
 $|\vec{u}| = \Delta$

Qualunque vettore \vec{a} si puo esprimere come \vec{a} \vec{u}

~ SOMMA E DIFFERENZA TRA VETTORI

Somma
$$\overrightarrow{S} = \overrightarrow{a} + \overrightarrow{b}$$

(REGOLA DEL PARALLELOGRAMMA)

difference: $\vec{d} = \vec{a} + (-\vec{b})$

· Definizione analitica di un vettore

Siano Ur, us versori, posso esprimere à vettore:

Se ora prendo i versori i, j ortonormali

$$\vec{a} = \vec{a}_x + \vec{a}_y = \vec{a}_x \vec{i} + \vec{a}_y \vec{j}$$

componenti cortesione

(nd piono)

Quindi
$$\vec{S} = \vec{a} + \vec{b} = \vec{a} \times \vec{i} + \vec{a} \times \vec{j} + \vec{b} \times \vec{i} + \vec{b} \times \vec{j} = \vec{a} \times \vec{b} \times \vec{i} + \vec{b} \times \vec{i} + \vec{b} \times \vec{j} = \vec{a} \times \vec{b} \times \vec{i} + \vec{b} \times \vec{i} +$$

Allo stesso modo:
$$\vec{d} = \vec{a} - \vec{b} = a \times \vec{i} + ay \vec{j} - (b \times \vec{i} + by \vec{j}) =$$

$$= (a \times -b \times) \vec{i} + (ay -by) \vec{j}$$

· Prodotto scalare

Prendo a, b vettori

E uno scalare

$$3 = \overrightarrow{3} \cdot \overrightarrow{b} = 2 \cdot b \cdot \cos \theta$$

Quando
$$\theta = (2n+1)^{\frac{11}{2}} \rightarrow \cos\theta = 0$$

$$\theta = 0 , 2\pi \rightarrow \cos\theta = 1$$

Se faccio il prodotto scalare di un vetiore per se stesso:

$$\vec{a} \cdot \vec{a} = a \cdot a \cdot \cos 0 = a^2$$

Se lo faccio con un versore: $\vec{u} \cdot \vec{u} = 1$

Infaui, considerando i, j, k verson ORTONORMALI:

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$

$$\overrightarrow{i} \cdot \overrightarrow{j} = \overrightarrow{i} \cdot \overrightarrow{k} = \overrightarrow{j} \cdot \overrightarrow{k} = 1 \cdot 1 \cdot \cos \frac{11}{2} = 0$$

Definisco a = axi + ayj+ ax R e b = bxi + byj+ bx R

 $\Rightarrow \vec{a} \cdot \vec{b} = a_x \cdot b_x + \partial_y \cdot b_y + \partial_z \cdot b_z$

· Prodotto vettoriale

e' ancora un vettore!

$$\vec{x} = \vec{a} \times \vec{b}$$

modulo: v = 2.b. sent

direzione I piano in wi piacciono à e b verso: regola della mano destra

Cinematica

- · Punti materiali (dimensioni trascurabili)
- · sistema di riferimento

Accelerations (istantanea):
$$\vec{a} = \frac{\vec{v}(t+\Delta t) - \vec{v}(t)}{\Delta t} = \frac{\vec{\Delta v}}{\Delta t}$$

Accelerations (istantanea): $\vec{a} = 2iu$ amadia

- · Classifications dei problemi
 - · r(t) -> v(t), a(t)
 - a(t) \rightarrow $\vec{v}(t)$, $\vec{r}(t)$ (ho 2 condition) initiali)
- · Grandezze e Unita di misura

$$[r] = L (m)$$

$$[v] = L/T (m/s)$$

$$[a] = L/T^2 (m/s^2)$$

MOTO RETTILINED

$$\vec{a}(t) = a_{\times}(t) \cdot \vec{i}$$

$$\vec{v}(t) = v_{\times}(t) \cdot \vec{i}$$

$$\vec{x}(t) = x(t) \cdot \vec{i}$$

$$a_{x}(t) = a_{x}(t)$$

MOTO RETILINEO UNIFORMENENTE ACCELERATO

leggi orarie:
$$a_x(t) = a_0$$

 $x(t) = \frac{1}{2}a_0t^2 + x_0t + x_0$

MOTO CIRCOLARE UNIFORME

T: periodo

$$N_0 = \frac{2\pi R}{T} = \omega R$$
 $C = \frac{N_0^2}{R} = \omega^2 R$

accelerazione

centripeta

$$3c = \frac{10^2}{R} = \omega^2 R$$
 accelerations