Wybieranie Szemerediego - Gracz vs Komputer

Jakub Bezubik Hubert Grochowski Tomasz Kapelka

5 kwietnia 2020

Spis treści

1	Opi	s teoretyczny
	1.1	Podstawowe definicje i oznaczenia
	1.2	Wstęp
	1.3	Twierdzenia i definicje
_	~ .	
2	Stra	tegie
	2.1	Strategia losowa
	2.2	Strategia egoistyczna
	2.3	Strategia pojedynkowa

1 Opis teoretyczny

1.1 Podstawowe definicje i oznaczenia

Definicja 1.1. Niech $n \in N$. Zdefiniujemy zbiór [n] jako zbiór wszystkich liczb naturalnych od 1 do n tj. $[n] := \{1, 2, ..., n\}$.

Definicja 1.2. Niech $k \in \mathbb{N}$. Ciąg $(a_i)_{i=1}^k$ o wyrazach naturalnych nazwiemy ciągiem arytmetycznym, gdy istnieje liczba naturalna $r \in \mathbb{N}$, taka, że ciąg jest dany wzorem $a_j = a_1 + (j-1)r$ dla $j \in [k]$. Liczbę r nazywamy różnicą ciągu arytmetycznego.

Definicja 1.3. Niech $n, r \in N$. Kolorowaniem liczb ze zbioru [n] nazwiemy funkcję $\chi : [n] \to [r]$.

1.2 Wstęp

Podejmowana gra to Wybieranie Szemerediego. Na wstępie mamy ustalone liczby $n,k\in\mathbb{N}$. Każdy z dwóch graczy ma ustalony swój kolor. Celem jest utworzenie przez gracza k-elementowego ciągu arytmetycznego z liczb w swoim kolorze o wyrazach z [n].

W rundach parzystych jeden gracz losuje 2 niepokolorowane liczby ze zbioru [n], a drugi gracz wybiera, którą z tych dwóch liczb pokolorować na swój kolor. W rundach nieparzystych następuje zamiana ról. Gra toczy się dopóki nie pojawi się wyżej wspomniany ciąg arytmetyczny.

1.3 Twierdzenia i definicje

Twierdzenie 1.4 (Van der Waerden, 1927). Ustalmy dowolne $r, k \in \mathbb{N}$. Wtedy istnieje $n \in \mathbb{N}$ takie, że dla dowolnego kolorowania liczb $\chi : [n] \to [r]$ istnieje ciąg arytmetyczny w pewnym kolorze długości k.

Dowód. Udowodnimy szczególny przypadek tego twierdzenia - dla r=2 i k=3. Niech n=325. Weźmy dowolne $\chi:[325]\to[2]$. Zdefiniujemy $B_i:=\{5i+1,5i+2,5i+3,5i+4,5(i+1)\}$ dla $i\in[32]\cup\{0\}$. Nietrudno zauważyć, że dla dowolnego $i\in[32]\cup\{0\}$ blok B_i może być pokolorowany na 32 sposoby. Jest tak dlatego, bo # $B_i=5$, a każdą liczbę możemy pokolorować na 2 sposoby, a $32=2^5$. Bloków B_i jest jednak 33, więc będą istniały z zasady szufladkowej Dirichleta dwa bloki pokolorowane identycznie. Niech B_a i B_b takimi blokami. Ponieważ mamy 2 kolory, to w bloku B_a wśród liczb 5a+1,5a+2,5a+3 istnieją dwie pokolorowane tak samo. Niech 5a+x,5a+y pokolorowane w tym samym kolorze, gdzie $x,y\in[3]\land x< y$. Bez straty ogólności $\chi(5a+x)=\chi(5a+y)=1$. Jeśli $\chi(5a+2y-x)=1$, to koniec dowodu. Niech więc zatem $\chi(5a+2y-x)=2$. Ponieważ bloki B_a oraz B_b są pokolorowane identycznie, to też $\chi(5b+2y-x)=2$. Niech $\xi=2b-a\le 2\cdot 32-0=64$. Zatem $5\xi+2y-x\le 325$. Jeśli $\chi(\xi+2y-x)=1$, to $5a+x,5b+y,5\xi+2y-x$ tworzą ciąg arytmetyczny w tym samym kolorze. Jeśli $\chi(\xi+2y-x)=2$, to 5a+2y-x,5b+2y-x, tworzą ciąg

arytmetyczny w tym samym kolorze. Zatem istnieje ciąg arytmetyczny w tym samym kolorze długości 3.

Definicja 1.5. Niech $r,k\in\mathbb{N}$. Najmniejszą liczbę n spełniającą Twierdzenie 1.4 nazwiemy liczbą Van der Waerdena.

Przedstawimy teraz twierdzenie, które dają nam ograniczenie na liczby Van der Waerdena.

Twierdzenie 1.6. Niech $r, k \in \mathbb{N}$. Dla liczby Van der Waerdena w(r, k) zachodzi

$$w(r,k) \le 2^{2^{r^{2^{2^{k+9}}}}}$$

Twierdzenie 1.4 zostało uogólnione przez Szemerediego. Początkowo była to hipoteza, która potem została udowodniona.

Twierdzenie 1.7 (Szemeredi). Niech $\lambda \in (0,1]$ oraz $k \in \mathbb{N}$. Wtedy istnieje liczba naturalna $N(\lambda, k)$ taka, że dowolny podzbiór $[N(\lambda, k)]$ o mocy większej lub równej $\lambda \cdot N(\lambda, k)$ ma ciąg arytmetyczny długości k.

2 Strategie

W naszym modelu ma grać komputer z graczem. Przygotowaliśmy dla komputera trzy rodzaje strategii, które opisujemy poniżej. Nazwiemy je strategiami losowymi, pojedynkowymi i egoistycznymi.

2.1 Strategia losowa

W strategii losowej komputer wybiera losowo 2 wolne pola z dostępnych i podaje je przeciwnikowi.

2.2 Strategia egoistyczna

W dużym skrócie - polega na tym, aby przeciwnik nie odebrał komputerowi potencjalnych szans na zwycięstwo, skupia się na sobie. Niech X będzie zbiorem liczb z [n], które jeszcze nie zostały wybrane. Rozumowanie przedstawia poniższy pseudokod:

```
Algorytm egoistyczny suma=tab[index:X].wypełnij(0) //Utwórz tablice zer indeksowaną zbiorem X for x \in X do PC_x = \text{wszystkie podciągi arytmetyczne, do których należy } x  for c \in PC_x do \text{suma}[x]+=\text{Ile pól w ciągu } c \text{ jest pokolorowanych kolorem komputera} end for end for return (x_1, x_2) takie, że suma[x_i] najmniejsze i nie skończy się gra
```

Przedstawimy rozumowanie na przykładzie dla n=8 i k=3. Niech obecna plansza to:

$$(1,1), (2,0), (3,1), (4,2), (5,2), (6,0), (7,0), (8,0)$$

gdzie para (l,i) jest przedstawiana jako l - liczba, a i - kolor (0 to pole niepokolorowane, 1 to kolor gracza, a 2 to kolor komputera). Wtedy podciągi to:

- Dla 2: (1,2,3),(2,3,4),(2,4,6),(2,5,8), a suma[2]= 0+1+1+1=3
- Dla 6: (4,5,6), (5,6,7), (6,7,8), (4,6,8), (2,4,6), a suma[6] = 0+2+1+1+1=5
- Dla 7: (5,6,7), (6,7,8), (3,5,7), (1,4,7), a suma[7]=1+1+1+0=3
- Dla 8: (6,7,8), (4,6,8), (2,5,8), a suma[8]=0+1+1=2

Widzimy, że para minimalna to (2,8) lub (7,8). Wybór 2 da jednak ciąg arytmetyczny o długości 3 i różnicy 1 w kolorze gracza, więc nie jest to return z naszego algorytmu. Para (7,8) nie zakończy gry, a zatem komputer zwróci w tej strategii parę liczb (7,8).

Jeśli chodzi o rozumowanie służące wyborowi własnej liczby do pokolorowania, odbędzie się podobne rozumowanie mające zwrócić korzystniejszy wynik dla komputera.

2.3 Strategia pojedynkowa

W jej zamyśle chodzi o to, żeby komputer jak najbardziej utrudnił grę przeciwnikowi. Działa ona bardzo podobnie, co strategia egoistyczna, tylko, że w drugiej pętli dodajemy ilość pokolorowanych na kolor przeciwnika.