6 Performance Evaluation [70 points]

Some fellow students are working on a project called *AwesomeMEM*, where their goal is to optimize the memory hierarchy (caches and DRAM) to enhance the performance of a multi-core system.

They evaluate two system configurations. First, the *Baseline* configuration constitutes a system with two processors, a last-level cache (LLC), and DRAM as main memory. Second, the *AwesomeMEM* configuration builds on top of the *Baseline* configuration by employing optimizations to the memory hierarchy.

The students evaluate the performance benefits of Awesome MEM in simulation as follows:

- 1. First, they collect performance metrics of four single-threaded applications $(App_1, App_2, App_3, App_4)$ running in isolation in the *Baseline* configuration.
- 2. Second, they create two-application mixes to perform a multi-program simulation, where two applications run concurrently in the *Baseline* configuration, each in a dedicated processor. They evaluate two application mixes: Mix_1 (consisting of App_1 and App_2); and Mix_2 (consisting of App_3 and App_4).
- 3. Third, they use the same two-application mixes as in the second step to perform a multi-program simulation, where two applications run *concurrently* in the *AwesomeMEM* configuration, each in a dedicated processor.

Table 1 summarizes the performance metrics the students collected for each step.

Execution	Application Mix	Configuration	Application	Executed	Executed	LLC	Branch	DRAM Bank
Mode				Instructions	Cycles	Miss Rate (%)	Misprediction Rate $(\%)$	Conflict Rate (%)
Single- threaded	N/A	Baseline	App_1	100,000	40,000	26%	1%	42%
			App_2	100,000	800,000	99%	1%	94%
			App_3	100,000	500,000	52%	1%	89%
			App_4	100,000	20,000	10%	1%	14%
Multi- programmed	Mix_1	Baseline	App_1	100,000	200,000	99%	1%	97%
			App_2	100,000	900,000			
		AwesomeMEM	App_1	80,000	100,000	65%	1%	55%
			App_2	80,000	400,000			
	Mix_2	Baseline	App_3	100,000	600,000	60%	1%	90%
			App_4	100,000	20,000			
		AwesomeMEM	App_3	80,000	400,000	50%	1%	45%
			App_4	100,000	20,000			

Table 1: Performance metrics the students collected.

Answer the following questions based on the performance metrics the students collected.

(a) [20 points] What is the Instructions Per Cycle (IPC) of each of the four applications when the application is executed *in isolation* in the *Baseline* configuration? Show your work.

 App_1 :

$$IPC=rac{\#instructions}{\#cycles}=rac{100,000}{40,000}=\mathbf{2.5}$$

 App_2 :

$$IPC = rac{\#instructions}{\#cycles} = rac{100,000}{800,000} = \mathbf{0.125}$$

 App_3 :

$$IPC = rac{\#instructions}{\#cycles} = rac{100,000}{500,000} = \mathbf{0.2}$$

 App_4 :

$$IPC = \frac{\#instructions}{\#cycles} = \frac{100,000}{20,000} = \mathbf{5}$$

Final Exam Page 13 of 28

To measure the system throughput of a multi-core system, the students use the weighted speedup metric, which sums the Instructions Per Cycle (IPC) slowdown experienced by each application compared to when it is run alone (IPC_i^{alone}) for the same number of instructions as it executed in the multi-programmed application mix (IPC_i^{shared}) :

System Throughput = Weighted Speedup =
$$\sum_i \frac{IPC_i^{shared}}{IPC_i^{alone}}$$

(b) [20 points] What is the IPC_i^{shared} , $i \in \{App_1, App_2, App_3, App_4\}$, of each of the four applications when they are executed *concurrently* in accordance with their multi-programmed application mix in the *Baseline* and *AwesomeMEM* configurations? Show your work.

 App_1 :

Baseline: For the Baseline: $IPC_{App_1}^{shared} = \frac{\#instructions}{\#cycles} = \frac{100,000}{200,000} = \mathbf{0.5}$

AwesomeMEM: For AwesomeMEM: $IPC_{App_1}^{shared} = \frac{\#instructions}{\#cycles} = \frac{80,000}{100,000} = \mathbf{0.8}$

 App_2 :

Baseline: For the Baseline: $IPC_{App_2}^{shared} = \frac{\#instructions}{\#cycles} = \frac{100,000}{900,000} = \mathbf{0.11}$

AwesomeMEM: $IPC_{App_2}^{shared} = \frac{\#instructions}{\#cycles} = \frac{80,000}{400,000} = \mathbf{0.2}$

 App_3 :

Baseline: For the Baseline: $IPC_{App_3}^{shared} = \frac{\#instructions}{\#cycles} = \frac{100,000}{600,000} = \mathbf{0.16}$

AwesomeMEM: $IPC_{App_3}^{shared} = \frac{\#instructions}{\#cycles} = \frac{80,000}{400,000} = \mathbf{0.2}$

 App_4 :

Baseline: For the Baseline: $IPC_{App_4}^{shared} = \frac{\#instructions}{\#cycles} = \frac{100,000}{20,000} = 5$

AwesomeMEM: For AwesomeMEM: $IPC_{App_4}^{shared} = \frac{\#instructions}{\#cycles} = \frac{100,000}{20,000} = \mathbf{5}$

(c) [10 points] What is the weighted speedup of each of the two application mixes when it is executed in the Baseline configuration? Show your work.

 Mix_1 :

 $\begin{aligned} \text{Weighted Speedup} &= \sum_{i} \frac{IPC_{i}^{shared}}{IPC_{i}^{alone}} = \frac{IPC_{App_{1}}^{shared}}{IPC_{App_{1}}^{alone}} + \frac{IPC_{App_{2}}^{shared}}{IPC_{App_{2}}^{alone}} \\ \text{Weighted Speedup} &= \frac{0.5}{2.5} + \frac{0.11}{0.125} = \textbf{1.08} \end{aligned}$

Final Exam Page 14 of 28

 Mix_2 :

Weighted Speedup =
$$\sum_{i} \frac{IPC_{i}^{shared}}{IPC_{i}^{alone}} = \frac{IPC_{App_{3}}^{shared}}{IPC_{App_{3}}^{alone}} + \frac{IPC_{App_{4}}^{shared}}{IPC_{App_{4}}^{alone}}$$
Weighted Speedup =
$$\frac{0.16}{0.2} + \frac{5}{5} = \mathbf{1.8}$$

(d) [10 points] What is the weighted speedup of each of the two application mixes when it is executed in the Awesome MEM configuration? Show your work.

 Mix_1 :

Weighted Speedup =
$$\sum_{i} \frac{IPC_{i}^{shared}}{IPC_{i}^{alone}} = \frac{IPC_{App_{1}}^{shared}}{IPC_{App_{1}}^{alone}} + \frac{IPC_{App_{2}}^{shared}}{IPC_{App_{2}}^{alone}}$$
Weighted Speedup =
$$\frac{0.8}{2.5} + \frac{0.2}{0.125} = 1.92$$

 Mix_2 :

Weighted Speedup =
$$\sum_{i} \frac{IPC_{i}^{shared}}{IPC_{i}^{alone}} = \frac{IPC_{App_{3}}^{shared}}{IPC_{App_{3}}^{alone}} + \frac{IPC_{App_{4}}^{shared}}{IPC_{App_{4}}^{alone}}$$
Weighted Speedup =
$$\frac{0.2}{0.2} + \frac{5}{5} = \mathbf{2}$$

The students do *not* want to reveal the primary technique behind *AwesomeMEM*. When asked, they provided the following list of architectural techniques and told you that some of them could be the reason behind *AwesomeMEM*'s system throughput improvement:

- (i) Awesome MEM increases the LLC capacity by $2 \times$ that of the Baseline.
- (ii) AwesomeMEM randomizes main memory requests to reduce DRAM bank conflicts.
- (iii) Awe some MEM employs a perfect branch predictor that always predicts a branch's direction correctly.
- (iv) AwesomeMEM employs an efficient hardware prefetcher.
- (e) [10 points] Which of the above explanations **cannot** possible be a reason for *AwesomeMEM*'s higher performance over the *Baseline*? Explain your reasoning based on the data in Table 1.

Option (iii) cannot possible be a reason for Awe some MEM's performance improvement compared to the Baseline.

Explanation:

- (iii) is not possible since the branch misprediction rate n the AwesomeMEM configuration is the same for Mix_1 and Mix_2 compared to the Baseline configuration.
- (i) is possible since LLC miss rate in the AwesomeMEM configuration drops for Mix_1 and Mix_2 compared to the Baseline configuration.
- (ii) is possible since bank conflicts in the AwesomeMEM configuration drops for Mix_1 and Mix_2 compared to the Baseline configuration.
- (iv) is possible since LLC miss rate in the AwesomeMEM configuration drops for Mix_1 and Mix_2 compared to the Baseline configuration.

Final Exam Page 15 of 28