MSO205 PRACTICE PROBLEMS SET 6

Question 1. Consider a continuous RV X with the p.d.f.

$$f_X(x) := \begin{cases} \frac{1}{2}, & \text{if } x \in (-1,0), \\ \frac{1}{3}, & \text{if } x \in (0,\frac{3}{2}), \\ 0, & \text{otherwise.} \end{cases}$$

Consider the RV $Y = X^4$.

- (a) First find the DF F_Y and then compute the p.d.f. f_Y .
- (b) First find the p.d.f. f_Y and then compute the DF F_Y .

Question 2. Consider a discrete RV X with the p.m.f.

$$f_X(x) := \begin{cases} \frac{1}{4} \left(\frac{3}{4}\right)^x, & \text{if } x \in \{0, 1, 2, \dots\}, \\ 0, & \text{otherwise.} \end{cases}$$

Compute the expectation $\mathbb{E}X$ and the variance Var(X), if these exist.

Question 3. Consider a continuous RV X with the p.d.f.

$$f_X(x) := \begin{cases} \frac{1}{2}, & \text{if } x \in (-1,0), \\ \frac{1}{3}, & \text{if } x \in (0,\frac{3}{2}), \\ 0, & \text{otherwise.} \end{cases}$$

Compute the expectation $\mathbb{E}X$ and the variance Var(X), if these exist.

Question 4. Let X be a continuous RV with p.d.f. f_X . Is |X| also a continuous RV?

Question 5. Let X be an RV with $\mathbb{E}|X| < \infty$.

- (i) If $\mathbb{P}(X \ge 0) = 1$ and $\mathbb{E}X = 0$, show that $\mathbb{P}(X = 0) = 1$.
- (ii) If $\mathbb{P}(X \ge 1) = 1$, then show that $\mathbb{E}X \ge 1$.
- (iii) If X is a discrete RV such that $\mathbb{P}(X \in \{0, 1, 2, \dots\}) = 1$ and $\mathbb{E}X < 1$, then show that $\mathbb{P}(X = 0) > 0$.

<u>Question</u> 6. Let X be an RV with $\mathbb{E}X^2 < \infty$. Show that Var(X) = 0 if and only if $\mathbb{P}(X = \mu_1') = 1$.

<u>Question</u> 7. Fix a positive integer n. Find examples of discrete/continuous RVs such that $\mathbb{E}X^n$ exists but $\mathbb{E}X^{n+1}$ does not exist.

<u>Question</u> 8. Let X be an RV with $\mathbb{E}|X-a|^n < \infty$, where n > 1 is some positive integer and a is some real number. Choose a positive integer m with $m \le n$ and let b be any real number. Show that $\mathbb{E}(X-b)^m$ exists. Is it true that

$$\mathbb{E}(X-b)^m = \sum_{k=0}^m \binom{m}{k} (-b)^{m-k} \mathbb{E}X^k ?$$

Question 9. Let X be a discrete RV with support $S_X \subset \{0, 1, 2, \cdots\}$.

- (a) If $\mathbb{E}X$ exists, evaluate the limit $\lim_{n\to\infty} n\mathbb{P}(X>n)$.
- (b) If $\mathbb{E}X^2$ exists, evaluate the limit $\lim_{n\to\infty} n^2 \mathbb{P}(X>n)$.

<u>Question</u> 10. Compute the MGF in each of the following cases and hence compute the mean and Variance.

(i) Fix $p \in (0,1)$ and let n be a positive integer. Consider a discrete RV X with the p.m.f.

$$f_X(x) := \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & \text{if } x \in \{0, 1, 2, \dots, n\}, \\ 0, & \text{otherwise.} \end{cases}$$

(ii) Fix $\lambda > 0$. Consider a continuous RV X with the p.d.f.

$$f_X(x) := \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$