INT Zusammenfassung

Übertragungssysteme

Quellencodierung

- Reduktion der Menger digitaler Daten
- Entfernen überflüssiger Informationen
- Verlustfreie Codierung
- Verlustbehaftete Kompression (Bilder, Video, Audio)

Diskrete Informationsquellen

DMS (Discrete Memoryless Source)

X[n] unabhängig, besitzen identische Wahrscheinlichkeitsverteilung.

BMS (Binary Memoryless Source)

$$M = 2$$
, d.h. $P_x(x_1) = p$ und $P_x(x_2) = 1-p$

BSS (Binary Symmetric Source)

$$P_x(x_1) = P_x(x_2) = 0.5$$
 "coin-flipping"

Quellencodierungstheorem (Shannon, 1948)

Die Quelle kann verlustlos codiert werden, solange die Coderate (Durchschnitt. Codelänge) R \geq H.

Umgekehrt, wenn R < H, kann die Quelle auf keinen Fall verlustlos codiert werden.

Optimale Codierung

Mittlere Codewortlänge = Entropie

BSC - Binary Symmetric Channel

Kapazität
$$C = maxp(x)[H(Y) - H(Y|X)], C_{BSC} = 1 - h(\varepsilon)^{(Bit/Kanalben\"utzung)}$$

Kanaleigenschaften

- Rauschen im Kanal beschränkt nicht die Zuverlässigkeit der Übertragung, nur die Übertragungsrate
- Verschiedene Kanäle mit einer Zahl vergleichbar
- Je grösser die Blocklänge N, desto komplexer der decoder

AWGN-Kanal

(Additive White Gaussian Noise)

Coderate

$$R = \frac{\#Infobits}{\#Codebits}$$

Kapazität:

$$C_{AWGN} = B \bullet log2(1 + \frac{Signalle istung}{Bandbreite [Hz] \bullet Rauschle istungsdichte [W/Hz]}$$

Entropie

Symboldauer	T
Symbolrate	R = 1/T
Quellensymbol (Zufallsvariable)	X[n]
Alphabet	$A = (x_1, x_2, \dots, x_M)$
Wahrscheinlichkeit	$P(X = x_m) = P_X(x_m), m = 1,, M$
Wahrscheinlichkeitsverteilung von X	$\sum_{m=1}^{M} P_X(x_m) = 1$

Informationsgehalt

Der Informationsgehalt eines Ereignisses $X=x_m$ ist wie folgt definiert:

$$I_x(x_m) = \log_2\left(\frac{1}{P_X(x_m)}\right)$$
 [bit]

Für Ereignisse von 2 (oder mehreren) Zufallsvariablen X und Y gilt sinngemäss:

$$I_x(x_m) = \log_2\left(\frac{1}{P_{XY}(x_i, y_k)}\right) [\text{bit}]$$

Für 2 unabhängige Symbole X und Y gilt:

$$I_{XY}(x_i, y_k) = I_X(x_i) + I_Y(y_k)$$

Entropie

Datenübertragung: die maximale (verlustlose) Kompression = Entropie

Huffman Code

Eigenschaften

• Prefixfreier Code

- Huffman-Codes sind optimal
- Minimale mittlere Codewortlänge

Nachteile

- Huffman-Codes hängen stark von der Quellenstatistik ab
- Quellenstatistik muss im voraus bekannt sein (ev. zuerst "messen")
- Komplexität wächst exponentiell mit der Blocklänge n

Codierung von n Symbolen eine DMS:

$$H(X) \leq R \leq H(X) + \frac{1}{n}$$

Algorithmus

- 1. nach Wahrscheinlichkeiten ordnen
- 2. Zwei Symbole mit kleinster Wahrscheinlichkeit zusammenfassen, neuer Knoten hat Summe der Wahrscheinlichkeiten
- 3. -> Loop Schritt 1
- 4. Von der Wurzel aus bei jeder Verzweigung nach oben eine "0" und nach unten eine "1" eintragen (auch umgekehrt möglich) //Konstruktion Codebuch

mittlere Codewortlänge E[L], respektive Rate R

R = Warscheinlichkeit * Codelänge (bsp: 1 * 1/8 + (3 * 1/8) * 4 = 2)
$$R = E[L] = \sum_{m=1}^M P_X(x_m) \cdot L(x_m) \text{ mit der Wahrscheindlichkeit } P_X(x_m) \text{ und der Länge } L(x_m) \text{ für ein Zeichen}$$

Lempel-Ziv

Vorteile

- Unabhängig von der Quellenstatistik
- Universelle Anwendung
- \bullet Asymptotisch optimal, d.h. Codewortlänge R -> $\mathrm{H}(\mathrm{X})$ (von oben)

Nachteile

- Anzahl Strings / Grösse des Wörterbuchs beschränkt
- Schlechte Kompression bei kleinen Eingangsbitfolgen

Algorithmus

- 1. Eindeutige Unterteilung der Symbolfolge Strings variabler Länge, Unterscheidung nur in 1 Bit
- 2. Encoding eines Strings: [Position des Präfix, neues Bit]

Beispiel

 ${\rm Data:}\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ \dots$

Wörterbuch-Nr.	Input	Output
1	$0 ext{ -> neuer String; neues Bit} = 0$	[0 0000 0]
2	$1 ext{ -> neuer String; neues Bit} = 1$	[0000 1]
3	$00 \rightarrow 0$ gleich wie 1. String; neues Bit = 0	$[0001\ 0]$
4	001 -> 00 gleich wie 3. String; neues Bit = 1	[0011 1]
5	10 -> 1 gleich wie 2. String; neues Bit = 0	$[0010\ 0]$
6	000 -> 00 gleich wie 3. String; neues Bit = 0	[0011 0]
7	101 -> 10 gleich wie 5. String; neues Bit = 1	$[0101\ 1]$
8	0000 -> 000 gleich wie 6. String; neues Bit = 0	$[0110 \ 0]$
9	01 -> 0 gleich wie 1. String; neues Bit = 1	$[0001\ 1]$
10	010 -> 01 gleich wie 9. String; neues Bit = 0	$[1001\ 0]$
	•••	

Statisches Wörterbuch

Wie oft muss ein Wort im Wörterbuch sein, damit Kompressionsrate R<1?

- \bullet Anzahl der Wörter = N
- P sei die Wahrscheinlichkeit, dass ein Wort im Buch gefunden wird
- Mittlere Wortgrösse: 5 Bytes bzw. 40 Bit

LZ77

- 1. Erstes Symbol des Vorschau-Buffers im Such-Buffer suchen
 - (a) rückwärts von rechts nach links
- 2. Token der längsten (letzten) Übereinstimmung ausgeben
 - (a) Token = (Offset, Anzahl Zeichen, "Nächstes Zeichen")
 - (b) Token-Länge: $\log_2(S+1) + \log_2(L+1) + 8$ typisch : 11 + 5 + 8 = 24 Bit
 - (c) wenn keine Übereinstimmung: (0,0, nächstes Symbol)
- 3. 3. Schiebefenster um Länge +1 nach rechts verschieben

LZ78

LZW

Initialisierung I=[]

- 1. neues Symbol x zu String I hinzufügen => I = Ix setzen
 - (a) Ix im Wörterbuch verzeichnet? Wenn ja, dann zu step 1. sonst zu step 3.

2. -

- (a) $Output = W\"{o}rterbuch-Pointer von I$
- (b) Neuer Wörterbucheintrag mit Phrase Ix
- (c) I = "x" setzen

Beispiel Encoding

Text: ABBABABAC

Anfangswörterbuch: 1: A, 2: B, 3: C

Momentane Buchstaben	String I	verzeichnet	WB-Eintrag	Output
A	A	✓		
A	AB	×	4 : AB	1
В	В	✓		
В	BB	×	5 : BB	2
В	В	✓		
В	BA	×	6 : BA	2
A	A	✓		
AB	AB	✓		
AB	ABA	×	7 : ABA	4
A	A	✓		
AB	AB	✓		
ABA	ABA	✓		
ABA	ABAC	×	8 : ABAC	7
С	С	✓		
С	C,eof			3

Bsp Decoding (Lösung ist in String J)

68	68	82	99	77	65	82	256	82
D	E	R		M	A	R		R
	Input	St	ring	I S	tring	J	WB	
	68		D		D			
	69		D		Е		256: I	ÞΕ
	82		Е		R		257: E	CR
	95		R		_		258: B	t
	77		_		Μ		259: _	M
	65		Μ		Α		260: N	ſΑ
	82		A		R		261: A	ıR
	256		R		DE		262: F	RD
	82		DE		R		263: D	ER

RLE (Run-Length-Encoding)

- $3333333333 \rightarrow (@,9,3)$
- $@ \to (@,1,@)$

Wird nur gebraucht wenn Token nicht länger als Orginaltext.

PN-Sequenzen

Pseude Noise Sequenzen

LSFR

- Periode $P \le 2^n 1$
- Pseudozufall
- Feedbackpolynom \rightarrow prim. Polynom zB:(3,1,0)

Für (Pseudo-)Randomgenerator

$$a_0 = (a_{18} + a_5 + a_2 + a_1) modulo 2$$

Zufallseigenschaften der m-Sequenzen

- m-Sequenzen sind fast ausgeglichen in der Anzahl "0" und "1"
- Häufigkeit von runs der Länge k beträgt $(1/2)^k$ für $k \leq (n-1)$ und $12^{(k-1)}$ für k=n. Ein "run" ist das Aufeinanderfolgen mehrere Nullen oder Einsen.
 - So weist zum Beispiel die Bitfolge ... 00110101000111001101... folgende runs auf: Run 1 kommt 6x vor, run 2 kommt 4x vor und run 3 kommt 2x vor.
- \bullet Die m-Sequenz der Länge P und die zyklisch verschobene Kopie haben fast 50 % übereinstimmende Bits und 50 % verschiedene Bits
- Maximallängensequenz \rightarrow PN-Sequenz
- PN-Sequenz → Maximallängensequenz

PrimitivePolynome

BlockCodes

- N: Anzahl Bits in einem Wort nach dem Encoding i.e [1,1,1,0,1,1] -> 6
- Coderate $R = \frac{K}{N}$
- Minimum Distance Encoding
 - wenige Fehler sind warscheinlicher als viele
 - Zuweisung and "nächstgelegenes" Codewort

Hamming-Gewicht $w_H(x)$

entspricht der Anzahl "1" im Codewort x

Hamming-Distanz $d_H(x_i, x_j)$

entspricht der Anzahl unterschiedlicher Positionen in x_i und x_j

Minimaldistanz d_{min}

$$d_{min}=min_{ij}d_H(x_i,x_j)=min_{ij}w_H(x_i+x_j)=min_kw_H(x_k)=w_{min}(i\neq j)$$
Für linearen (N,K) Block-Codes

Beispiel: (3,2)-Blockcode

```
Anzahl Informationsbits (Infowort u) = K=2, Länge eines Codewortes (x) = N=3
2^K=4 \text{ Infoworte}
\text{Coderate}=R=\frac{K}{N}
A=\{[00],[01],[10],[11]\}
even Parity
C=\{[000],[101],[110],[011]\} \text{(vorderstes Bit ist hier Paritybit)}
```

Begriff, systematischer Block-Code,

Infowort "enblock" in Codewort. Cw = Parity+Iw

Begriff, linearer (N,K) Block-Code C'

Falls die modulo-2 Summe zweier Codewörter wieder ein Codewort ergibt, dann ist der Block Code linear.

Begriff, linearer, zyklischer (N,K) Block-Code C'

Falls die zyklische Verschiebung eines Codeworts wieder ein Codewort ergibt, ist der Code ausser- dem zyklisch. Aufgrund dieser Eigenschaft sind die verschiedenen Codeworte sehr einfach mit Hilfe eines LFSR (Linear Feedback Shift Register) realisierbar.

Generator-Matrix

Für jeden linearen (N, K) Code gibt es eine $K \times N$ Generator-Matrix G

$$[x_0, \ldots, x_{N-1}] = [u_0, \ldots, u_{K-1}] \cdot G$$

Die Generator-Matrix hat die Form $G = [PI_K], I_K: K \times K$ -Einheitsmatrix

Parity-Check-Matrix

Jeder lineare (N, K) Code hat eine $(N - K) \times N$ Parity-Check-Matrix H

$$[x_0, \dots, x_{N-1}] \cdot H^T = [0, \dots, 0]$$

Wenn $G = [PI_K]$ in systematischer Form, dann $H = [I_{N-K}P^T]$

Syndrom

$$\vec{s} = [s_0, \dots, s_{N-K-1}] = \vec{y} \cdot H^T = (\vec{x} + \vec{e}) \cdot H^T = \vec{e} \cdot H^T$$

Wobei \vec{e} der Fehler ist und \vec{y} das neue Codewort mit dem Fehler addiert (also ein potenziell falsches Wort, falls $\vec{e} \neq \vec{0}$

Das Syndrom ist nur vom Fehler abhängig. Falls keine Fehler übertragen wurden ist $\vec{s}=\vec{0}.$

Fehlererkennung

alle Muster mit $\leq (d_{min} - 1)$ Fehler sind erkennbar

Fehlerkorrektur

$$t \leq \lfloor (d_{min} - 1)/2 \rfloor$$

(N,K,t)BC = NK-BC der t Fehler korrigieren Kann

$$P = \sum_{i=0}^{t} (N_{i}) \bullet \varepsilon^{i} \bullet (1-\varepsilon)^{N-i} = \sum_{i=0}^{t} (\frac{N!}{i! \bullet (N-i)!}) \bullet \varepsilon^{i} \bullet (1-\varepsilon)^{N-i}$$

Wahrscheinlichkeit für i Fehler pro Code Wort

$$\begin{pmatrix} N \\ i \end{pmatrix} \bullet \varepsilon^{i} \bullet (1 - \varepsilon)^{N-i} = \frac{N!}{i! \bullet (N-i)!} \bullet \varepsilon^{i} \bullet (1 - \varepsilon)^{N-i}$$