Applications

1. Généralités

1.1. Terminologie

a) <u>Définition</u>: soient E et F deux ensembles. Une application de E dans F est un procédé qui à tout élément x de E associe un unique élément f(x) de F appelé image de x par f.

E est appelé ensemble de départ, F ensemble d'arrivée. On écrit

$$f: E \longrightarrow F$$
$$x \longmapsto f(x)$$

Notations : l'ensemble des applications de E dans F se note $\boxed{\mathcal{F}(E,F) \text{ ou } F^E}$

Remarque : égalité de deux applications f et g de $\mathcal{F}(E,F)$: $f = g \iff \forall x \in E, \ f(x) = g(x)$

b) Exemples:

Exemple 1: une fonction numérique définie sur l'intervalle I est une application de I dans \mathbb{R} :

$$f: I \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x)$$

L'ensemble des fonctions numériques définies sur I se note donc $\mathcal{F}(I,\mathbb{R})=\mathbb{R}^I$.

De même, une suite numérique est une application de $\mathbb N$ dans $\mathbb R:u:\mathbb N\longrightarrow\mathbb R$

$$n \longmapsto u(n) = u_n$$

L'ensemble des suites réelles se note donc $\mathcal{F}(\mathbb{N}, \mathbb{R}) = \mathbb{R}^{\mathbb{N}}$.

Exemple 2 : si E est un ensemble, on note $\mathrm{id}_E: E \longrightarrow E$, appelée **identité de** E, ou **applica** $x \longmapsto \mathrm{id}_E(x) = x$

tion identique de E.

c) Antécédents : soit $f: E \to F$ une application, et y un élément de F.

On appelle antécédent de y par f tout élément de E d'image y. L'ensemble des antécédents de y est donc

$$\boxed{\{x \in E \mid f(x) = y\}}$$

autrement dit l'ensemble des solutions de "l'équation" f(x) = y d'inconnue $x \in E$.

Exemple 1: antécédents de la fonction $f: x \mapsto \frac{1}{1+x^2}$ par $D: \mathcal{C}^1(\mathbb{R},\mathbb{R}) \longrightarrow \mathcal{C}^0(\mathbb{R},\mathbb{R})$ $f \longmapsto D(f) = f'$

Exemple 2: antécédents de
$$Y=\begin{pmatrix}1\\2\end{pmatrix}$$
 par l'application $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$
$$X=\begin{pmatrix}x\\y\\z\end{pmatrix}\longmapsto f(X)=\begin{pmatrix}x+y-z\\x-2y+z\end{pmatrix}$$

1

1.2. Composée

a) **Définition :** soient $f: E \to F$ et $g: F \to G$ deux applications. La **composée** $g \circ f$ est l'application :

$$g \circ f: E \longrightarrow G$$
$$x \longmapsto (g \circ f)(x) = g(f(x))$$

Remarque: $f \circ q$ n'a ici AUCUN SENS.

Exemple: soient $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ et $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ $X = \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x+y \\ x-y \end{pmatrix} \qquad X = \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} 3x-y \\ x+2y \\ 2x+y \end{pmatrix}$

Calculer $g \circ f$.

b) Propriétés:

- La composition est associative : $si f: E \to F, g: F \to G, h: G \to H, alors (h \circ g) \circ f = h \circ (g \circ f)$
- <u>Eléments neutres</u>: $si\ f: E \to F$, alors $f \circ id_E = f$ et $id_F \circ f = f$

1.3. Applications et sous-ensembles

a) Fonction caractéristique d'un sous-ensemble : soit E un ensemble et A un sous ensemble de E.

On appelle fonction caractéristique de A l'application :

$$\begin{array}{cc} 1\!\!1_A: & E \longrightarrow \{0,1\} \\ & x \longmapsto \left\{ \begin{array}{c} 1 \text{ si } x \in A \\ 0 \text{ si } x \not \in A \end{array} \right. \end{array}$$

On a alors

$$\begin{split} \text{(i)} \ 1\!\!1_{A\cap B} &= 1\!\!1_A \times 1\!\!1_B \\ \text{(ii)} \ 1\!\!1_{A\cup B} &= 1\!\!1_A + 1\!\!1_B - 1\!\!1_A \times 1\!\!1_B = \max \left(1\!\!1_A, 1\!\!1_B\right) \\ \text{(iii)} \ 1\!\!1_{\mathbb{C}A} &= 1 - 1\!\!1_A \end{split}$$

b) Image directe d'un sous ensemble de E: soit $f: E \to F$ et A un sous ensemble de E. On note

$$f \langle A \rangle = \{ f(x) \; , \; x \in A \} \subset F$$

le sous-ensemble de F formé des images de tous les élément de A, et appelé **ensemble image de** A **par** f. Ainsi

$$y \in f \langle A \rangle \iff \exists a \in A / y = f(a)$$

Cas particulier: $f \langle E \rangle$, ensemble de toutes les valeurs prises par f sur E, est appelé image de f.

Exemple 1: image de l'intervalle [-2,1] par l'application $f:x\to x^2$

Exemple 2: image de $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 + y^2$

Propriétés:

(i)
$$A \subset A' \Rightarrow f \langle A \rangle \subset f \langle A' \rangle$$

(ii) $f \langle A \cup A' \rangle = f \langle A \rangle \cup f \langle A' \rangle$
(iii) $f \langle A \cap A' \rangle \subset f \langle A \rangle \cap f \langle A' \rangle$

c) Parties stables: soit $f: E \longrightarrow E$ et A un sous ensemble de E.

On dit que A est **stable par** f lorsque $f \langle A \rangle \subset A$. Autrement dit

A est stable par
$$f \Longleftrightarrow \forall a \in A, \ f(a) \in A$$

Exemple: on considère $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $\forall X = (x, y, z), \ f(x, y, z) = (x, y, -z)$.

Si $P=\left\{ \left(x,y,0\right),\;\left(x,y\right)\in\mathbb{R}^{2}\right\}$ et $D=\left\{ \left(0,0,z\right),\;z\in\mathbb{R}\right\} ,$ montrer que P et D sont stables par f

d) Image réciproque d'un sous ensemble de F: soit B une partie de F. On note

$$f^{-1}\langle B\rangle = \{x / f(x) \in B\}$$

le sous ensemble de E formé des antécédents de tous les élément de B, et appelé **image réciproque de** B **par** f. Ainsi

$$x \in f^{-1}\langle B \rangle \iff f(x) \in B$$

Attention: cette notation n'a rien à voir avec la réciproque d'une bijection (f est ici quelconque).

Exemple: soit $\rho : \mathbb{C} \to \mathbb{R}_+$ définie par $\rho(z) = |z|$, et 0 < r < r': représenter $\rho^{-1}([r, r'])$

Cas particulier : si $y \in F$, alors $f^{-1}(\{y\})$ est l'ensemble des antécédents de y par f.

Exemple: soit $\mathbb{1}_A$ la fonction caractéristique de $A \subset E$. Que valent $\mathbb{1}_A^{-1} \langle \{1\} \rangle$ et $\mathbb{1}_A^{-1} \langle \{0\} \rangle$?

Propriétés :

(i)
$$B \subset B' \Rightarrow f^{-1} \langle B \rangle \subset f^{-1} \langle B' \rangle$$

(ii) $f^{-1} \langle B \cup B' \rangle = f^{-1} \langle B \rangle \cup f^{-1} \langle B' \rangle$
(iii) $f^{-1} \langle B \cap B' \rangle = f^{-1} \langle B \rangle \cap f^{-1} \langle B' \rangle$
(iv) $f^{-1} \langle \overline{B} \rangle = \overline{f^{-1} \langle B \rangle}$

- e) **Restrictions**: soit $f: E \longrightarrow F$ une application.
 - (i) Si A est un sous-ensemble de E, on appelle **restriction de** f à A l'application

$$f_{|A}: A \longrightarrow F$$

 $x \longmapsto f(x)$

 $\begin{array}{c} \textit{Exemple1:} \text{ la restriction de } \rho: \quad \mathbb{C} \longrightarrow \mathbb{R}_+ \\ \quad z \longmapsto \rho(z) = |z| \end{array} \text{ à \mathbb{R} est l'application "valeur absolue". }$

Exemple2: $\sin_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}$, restriction à $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ de la fonction \sin , est strictement croissante.

(ii) Application induite : si $f(A) \subset B$, on peut considérer $\tilde{f}: A \to B$ telle que $\forall x \in A, \ \tilde{f}(x) = f(x)$.

On dit que f induit l'application $\tilde{f}:A\to B.$

Exemple: comme $\sin{\langle \mathbb{R} \rangle} = [-1,1]$, $\sin{\text{induit}}$ une bijection $\widetilde{\sin}: \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$

(iii) si $f: E \longrightarrow E$ et si A est une partie de E stable par f, alors f induit une application $\tilde{f}: A \longrightarrow A$

Exemple: soit $\sigma: \mathbb{C} \longrightarrow \mathbb{C}$. \mathbb{R} et $i\mathbb{R}$ sont stables par σ . Identifier les applications induites. $z \longmapsto \sigma(z) = \bar{z}$

3

2. Injections, surjections, bijections

Trois cas de figure intéressants (patatoïdes)

2.1. Injections

a) **<u>Définition</u>**: $f: E \longrightarrow F$ est dite **injective** lorsque tout élément de F admet AU PLUS un antécédent.

Exemple 1: l'application qui, à une voiture, associe son numéro d'immatriculation est injective

Exemple 2: $\exp: \mathbb{R} \to \mathbb{R}$ est injective

b) Caractérisations de l'injectivité :

(i) $f: E \to F$ est injective \Leftrightarrow deux éléments distincts de E ont des images distinctes

$$f: E \to F \text{ est injective} \Leftrightarrow \forall (x, x') \in E^2, \ x \neq x' \Rightarrow f(x) \neq f(x')$$

Exemple 1: $\exp : \mathbb{C} \to \mathbb{C}$ n'est pas injective.

Exemple 2: Toute fonction $f: I \to \mathbb{R}$ strictement monotone sur I est injective.

(ii) Par contraposée:

$$f: E \to F \text{ est injective} \Leftrightarrow \forall (x, x') \in E^2, \ f(x) = f(x') \Rightarrow x = x'$$

 $\textit{Exemple}: F: \mathbb{R} \rightarrow \mathbb{R}^2 \text{ définie par } \forall t \in \mathbb{R}, \ F\left(t\right) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \text{ est injective}.$

c) Composée : la composée de deux injections est injective

2.2. Surjections

a) $\underline{\text{D\'efinition}}$: $f:E \to F$ est dite surjective lorsque tout élément de F admet AU MOINS un antécédent.

Exemple 1: l'application qui à tout français mineur associe son âge de 0 à 17 ans est surjective.

Exemple 2: soit E l'ensemble des polynômes non nuls. L'application degré $\deg: E \to \mathbb{N}$ est surjective

Exemple 3: exp: $\mathbb{C} \to \mathbb{C}^*$ est surjective

Remarque: certaines applications ne sont ni injectives ni bijectives (c'est le cas des applications constantes).

- b) Caractérisation: $f: E \to F$ est surjective si et seulement si f(E) = F
- c) Composée : La composée de deux surjections est surjective

2.3. Bijections

a) **Définitions**: $f: E \to F$ est dite **bijective** lorsque tout élément de F admet EXACTEMENT un antécédent.

Ainsi

$$f$$
 bijective $\Longleftrightarrow f$ est injective et surjective.

Alors si $y \in F$, son unique antécédent par f peut se noter sans ambiguité $f^{-1}(y)$, ce qui définit une application dite **réciproque de** f:

$$f^{-1}: F \to E$$

 $y \to f^{-1}(y) = x$, unique élément de E vérifiant $f(x) = y$

On a donc l'équivalence

$$\boxed{\forall \left(x,y\right) \in E \times F, \quad \left[y = f\left(x\right)\right] \Longleftrightarrow \left[x = f^{-1}\left(y\right)\right]}$$

et

- $(1) \quad \forall y \in F, \quad f(f^{-1}(y)) = y$
- $(2) \quad \forall x \in E, \quad f^{-1}(f(x)) = x$
- (1) et (2) se traduisent par

$$\begin{cases} f \circ f^{-1} = \mathrm{id}_F \\ f^{-1} \circ f = \mathrm{id}_E \end{cases}$$

Exemple 2: $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie, si $X = (x,y) \in \mathbb{R}^2$ par f(X) = (2x - 5y, x - 3y) est bijective et calculer f^{-1}

Remarque 1: id_E est bijective de réciproque id_E .

Remarque 2: f^{-1} est bijective, et $(f^{-1})^{-1} = f$.

b) Propriété: $si\ f: E \to F$ est injective, alors f induit une bijection $\tilde{f}: E \to f \langle E \rangle$

 $\textit{Exemple}: \text{soit } f:]-\pi,\pi] \rightarrow \mathbb{C} \text{ définie par } f\left(x\right) = e^{ix} \text{ induit une bijection }]-\pi,\pi] \rightarrow \mathbb{U}$

c) Réciproque d'une composée : la composée de deux bijections est une bijection

De plus, si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $(g \circ f)^{-1}: G \to E$

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

d) Caractérisation des bijections :

$$\boxed{ \text{Si } \exists g: F \to E \; / \; \left\{ \begin{array}{l} g \circ f = \mathrm{id}_E \\ f \circ g = \mathrm{id}_F \end{array} \right., \text{alors } f: E \to F \text{ est bijective et } f^{-1} = g. }$$

Exemple: on dit que $f: E \to E$ est une **involution**.lorsque $f \circ f = \mathrm{id}_E$.

Alors, f est bijective et $f^{-1} = f$