Seminar: DNA Hybridization Detection

Chris Harris

Chemistry Department

University of Maine

March 21, 2006

Outline

Ruthenium project

General principles

Literature review

Experimental data

Future prospects

Conclusion

Role of messenger RNA in biological systems [5]

Transcription versus reverse transcription

Discovery of RNA interference (RNAi) [4]

Messenger RNA for purple color inserted in petunia seeds

Promise of RNA interference (RNAi)

Revolutionary drug therapy allows one to shut off genes in hereditary diseases:

Diabetes

Alzheimers

Breast Cancer

Depression

ElectroChemiLuminescence of Ru(bpy)₃⁺² [1]

$$Ru(bpy)_3^{+3} + Ru(bpy)_3^{+1} = 2 Ru(bpy)_3^{+2} + hv 620 nm$$

Catalytic effects on cyclic voltammograms of Ru(bpy)₃⁺² [1]

Glassy Carbon versus Platinum material

How DNA labeling works [2]

General methodology:

- 1) Attach probe ssDNA to magnetic bead
- 2) Attach target ssDNA to polystyrene bead
- 3) Hybridize DNA strands in aqueous media
- 4) Isolate hybridized pairs with magnet
- 5) Perform ECL in acetonitrile

Fluorescence of polystyrene beads [2]

(a) $Ru(bpy)_3^{2+}$; (b) $Ru(bpy)_3^{2+}$ + avidin

Scanning electron image [2]

Polystyrene balls surrounded by magnetic beads after hybridization

Electrochemical behavior [2]

(a) CV of $Ru(bpy)_3^{2+}$ + acetylnitrile + salt + tripropyl amine; (b) ECL response; (c) CV in the absence of tripropyl amine [I x 10]

ECL intensity as a function of tripropyl amine concentration [2]

Ru(bpy)₃²⁺, acetylnitrile, and salt present

ECL intensity as a function of trifluoroacetic acid addition: pH optimization [2]

Ru(bpy)₃²⁺, acetylnitrile, salt, and tripropyl amine present

Eradication of tripropyl amine ECL [2]

- (a) Tripropyl amine + salt + acetonitrile;
- (b) Add trifluoroacetic acid; (c) Add 1vol% water; (d) Salt + acetonitrile alone

ECL intensity in relation to $Ru(bpy)_3^{2+}$ concentration [2]

Tripropyl amine, trifluoroacetic acid, salt, acetonitrile, and water present

ECL intensity as a function of polystyrene ball quantity [2]

Ru(bpy)₃²⁺ labeling

ECL detection of DNA hybridization [2]

- (a) Small magnetic beads and high population ratio;
- (b) More favorable magnetic bead size and population ratio

Advantages over competing ECL techniques: [2]

- Dual phases: aqueous DNA coupling in combination with acetonitrile analysis.
- High selectivity/ low detection limit: starting as low as 1.0 fM concentration for target DNA.
- Unprecedented stability: once Ru(bpy)₃²⁺ label is released into acetonitrile, ECL measurement can be performed repeatedly.

Chemical processes involved in typical ECL systems [3]

 $Ru(bpy)_3^{+3} + TPA^{\bullet} = Ru(bpy)_3^{+2} + DPA + propyl aldehyde + hv 620 nm$

where: TPA = tripropyl amine

DPA = dipropyl amine

Cyclic voltammogram of Ru(bpy)₃²⁺

2nd Cycle

Scanrate= 200 mV/s

Interdigitated glassy carbon electrode

Cyclic voltammogram of Ru(bpy)₃²⁺

2nd Cycle Scanrate= 200 mV/s Glassy carbon film on Si electrode

Research Frontiers:

- Carbon rod or Pt electrode in acetonitrile using pulses.
- Rotating electrode in acetonitrile to find lifetime of Ru(bpy)₃⁺¹.
- Try vertically patterned electrodes rather than interdigitated configuration.

Vertically integrated electrodes

Deposition steps and top view of vertical matrix

Conclusions:

- Whole new drug development scheme on the horizon which identifies genes attributed to disease, then shuts off expression with messenger RNA.
- Relative to its rival fluorescence, ECL eliminates the excitation light required, enhancing sensitivity and reducing cost.
- With the base pair selectivity ECL offers,
 DNA matching could evolve into sequencing.

References

- [1] G. C. Fiaccabrino, et al., *Analytical Chemistry*, **70**, 4157 (1998).
- [2] W. Miao and A. J. Bard, *Analytical Chemistry*, **76**, 5379 (2004).
- [3] J. K. Leland and M. J. Powell, *Journal of Electrochemistry Society*, **137**, 3127 (1990).
- [4] C. Napoli, C. Lemieux, and R. Jorgensen, *Plant Cell*, 2, 279 (1990).
- [5] http://en.wikipedia.org