Problem 7

Ha Vu Anh

Let (I) tangents to BC at X. Draw the diameter XX' of (I). Let M be the midpoint of BC, and let MI intersect DT at L. The line LX' meets BC at S.

Let TI intersect (O) at N, which is the midpoint of arc \widehat{BAC} of (O). Let H be the foot of the altitude from D in $\triangle DBC$.

The line NM intersects (O) again at K, which is the midpoint of the smaller arc \widehat{BC} of (O). We have:

$$KI^2 = KB^2 = KM \cdot KN$$

thus:

$$\angle IMK = \angle KIN$$

and consequently:

$$\angle IMX = \angle ANI = \angle IKT$$

Therefore, $\triangle IMX \sim \triangle IKT$, and $\triangle IMK \sim \triangle IXT$, which implies:

$$\angle IXT = \angle IMK = \angle DLI$$

Hence, quadrilateral LIXT is cyclic.

Let LX' intersect (I) again at U, then $\triangle SUX$ is right-angled. Since:

$$(SX, HM) = L(X'X, HI) = -1$$

it follows that XU is the bisector of $\angle HUM$.

Because ULXH is cyclic, we have:

$$\angle HUX = \angle HLX = \angle TIX = \angle DTN$$

We also have:

$$\angle DTN = \angle DTC - \angle NTC = \angle DBC - \angle NBC = \angle DBC - \left(90^{\circ} - \frac{\angle BDC}{2}\right) = \frac{\angle DBC - \angle DCB}{2}$$

Therefore:

$$\angle HUM = 2\angle HUX = \angle DBC - \angle DCB$$

which means that U lies on the Euler circle of $\triangle DBC$.

Since (I) is tangent to BC at X and passes through U, and UX is the bisector of $\angle HUM$, simple angle chasing yields that (I) is tangent to (UHM) at U, with (UHM) being the Euler circle of $\triangle DBC$. Therefore, the problem is proven.