

SAMA5D3 Series Microcontroller Schematic Checklist

ARM-based Embedded MPU

Scope

This application note is a schematic review checklist for systems embedding the Atmel[®] ARM[®]-based SAMA5D3 series embedded MPU.

It provides the user with the requirements regarding the different pin connections that must be considered before starting any new board design. The application note also describes the minimum hardware resources required to quickly develop an application with the SAMA5D3. It does not consider PCB layout constraints.

It also provides recommendations regarding low-power design constraints to minimize power consumption.

This application note is not intended to be exhaustive. Its objective is to cover as many configurations of use as possible.

The checklist contains a column for use by designers, making it easy to track and verify each line item.

Table of Contents

Sc	ope		1
Tal	ble of (Contents	2
1.	Refer	rence Documents	3
2.	Schei	matic Checklist	4
3.	EBI a	and DDR2/LPDDR/LPDDR2 Hardware Interface	13
4.	Boot	Program Hardware Constraints	15
	4.1	Boot Program Supported Crystals (MHz)	15
		NAND Flash Boot	
		SD Card Boot	
	4.4	Serial and DataFlash® Boot	16
	4.5	TWI EEPROM Boot	16
	4.6	SAM-BA® Boot	16
5.	Revis	sion History	17

1. Reference Documents

Before starting to work with this application note, it is strongly recommended to check the latest documents available for the SAMA5D3 devices on the Atmel web site.

Table 1-1 gives the document titles that provide additional information to support this application note.

Table 1-1. Reference Documents

Information	Document Title
User Manual	
Electrical/Mechanical Characteristics	CAMAED2 Coving Detechant
Ordering Information	SAMA5D3 Series Datasheet
Errata	
Internal Architecture of Processor	
ARM/Thumb Instruction Sets	Cortex-A5 Technical Reference Manual
Embedded In-circuit Emulator	
Evaluation Kit User Guide	SAMA5D3 Series Evaluation Kit User Guide

2. Schematic Checklist

CAUTION: The board design must comply with power-up and power down sequence guidelines provided in the datasheet to guarantee reliable operation of the device.

Ø	Signal Name	Recommended Pin Connection	Description
			Powers the device.
	VDDCORE	1.2V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Decoupling/filtering capacitors must be added to improve start-up stability and reduce source voltage drop.
			Supply ripple must not exceed 20 mVrms.
	VDDIODDR	1.8V 1.2V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Powers the DDR2/LPDDR Interface I/O lines. Powers the LPDDR2 Interface I/O lines. Decoupling/filtering capacitors must be added to improve
			start-up stability and reduce source voltage drop.
			Powers the External Memory Interface I/O lines.
	VDDIOM	1.65V to 1.95V 3.0V to 3.6V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Dual voltage range is supported. The I/O drives are selected by programming the DRIVE0 and DRIVE1 fields in the SFR_ register.
			Decoupling/filtering capacitors must be added to improve start-up stability and reduce source voltage drop.
	VDDIOP0 VDDIOP1	1.65V to 3.6V Decoupling/filtering capacitors (100 nF) ⁽¹⁾⁽²⁾	Powers the peripheral I/O lines. Decoupling/filtering capacitors must be added to improve start-up stability and reduce source voltage drop.
		1.65V to 3.6V	Powers the Backup unit.
	VDDBU	Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	(Slow Clock Oscillator, On-chip RC and a part of the System Controller).
		1.2V	Powers the USB device, host UTMI+ core and part of the UTMI PLL.
	VDDUTMIC	Decoupling/filtering capacitors	Must always be connected even if the USB is not used.
		(100 nF and 2.2 μF) ⁽¹⁾⁽²⁾	Decoupling/filtering capacitors must be added to improve start-up stability and reduce source voltage drop.
			Powers the USB device and host UTMI+ interface.
	VDDUTMII	3.0V to 3.6V	Must always be connected even if the USB is not used.
	VBBCTWIII	Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Decoupling/filtering capacitors must be added to improve start-up stability and reduce source voltage drop.
			Powers the PLLA cell.
	VDDPLLA	Decoupling/filtering RLC circuit ⁽¹⁾	The VDDPLLA power supply pin draws small current, but it is noise sensitive. Care must be taken in VDDPLLA power supply routing, decoupling and also on bypass capacitors.
			Supply ripple must not exceed 10 mVrms.

Ø	Signal Name	Recommended Pin Connection	Description
	VDDOSC	1.65V to 3.6V Decoupling/filtering RLC circuit ⁽¹⁾	Powers the main oscillator cell and PLL UTMI. If PLL UTMI is used, the range is to be 3.0V to 3.6V. The VDDOSC power supply pin is noise-sensitive. Care must be taken in VDDOSC power supply routing, decoupling and also on bypass capacitors.
			Supply ripple must not exceed 30 mVrms.
	VDDANA	3.0V to 3.6V Decoupling/filtering RLC circuit ⁽¹⁾ Application-dependent	Powers the Analog to Digital Converter (ADC).
	VDDFUSE	2.25V to 2.75V	Powers the fuse box for Programming. It can be tied to ground with a 100Ω resistor for fuse reading only.
	GNDCORE	Core Chip ground	GNDCORE pins are common to VDDCORE pins. GNDCORE pins should be connected as shortly as possible to the system ground plane.
	GNDIODDR	DDR/LPDDR/LPDDR2 interface I/O lines ground	GNDIODDR pins should be connected as shortly as possible to the system ground plane.
	GNDIOM	NAND and SMC Interface I/O lines ground	GNDIOM pins should be connected as shortly as possible to the system ground plane.
	GNDIOP	Peripherals and ISI I/O lines ground	GNDIOP pins are common to VDDIOP0, VDDIOP1 pins. GNDIOP pins should be connected as shortly as possible to the system ground plane.
	GNDBU	Backup ground	GNDBU pin is provided for VDDBU pins. GNDBU pin should be connected as shortly as possible to the system ground plane.
	GNDUTMI	UDPHS and UHPHS UTMI+ Core and interface ground	GNDUTMI pins are common to VDDUTMII and VDDUTMIC pins. GNDUTMI pins should be connected as shortly as possible to the system ground plane.
	GNDPLL	PLLA cell ground	GNDPLL pin is provided for VDDPLLA pin. GNDPLL pin should be connected as shortly as possible to the system ground plane.
	GNDOSC	PLLUTMI and Oscillator ground	GNDOSC pin is provided for VDDOSC pin. GNDOSC pin should be connected as shortly as possible to the system ground plane.
	GNDANA	Analog ground	GNDANA pins are common to VDDANA pins. GNDANA pins should be connected as shortly as possible to the system ground plane.
	GNDFUSE	Fuse box ground	GNDFUSE pins are common to VDDFUSE pins. GNDFUSE pins should be connected as shortly as possible to the system ground plane.

Note: For more information please refer to the Core Power Supply POR Characteristics section of the SAMA5D3 series datasheet.

Ø	Signal Name	Recommended Pin Connection	Description		
	Clock, Oscillator and PLL				
	XIN XOUT 12 MHz Main Oscillator in Normal Mode	Crystals between 8 and 16 MHz USB High Speed (not Full Speed) Host and Device peripherals need a 12 MHz clock. Capacitors on XIN and XOUT (Crystal Load Capacitance dependent)	SAMA5D3 XIN XOUT GNDOSC CCRYSTAL CLEXT CLEXT		
	XIN XOUT 12 MHz Main Oscillator	XIN: external clock source XOUT: can be left unconnected USB High speed (not Full Speed) Host and Device peripherals need a 12 MHz clock.	VDDOSC square wave signal External clock source up to 50 MHz Duty Cycle: 40 to 60% Refer to the electrical specifications of the SAMA5D3 series datasheet.		
	in Bypass Mode XIN XOUT 12 MHz	XIN: can be left unconnected XOUT: can be left unconnected USB High Speed (not Full Speed)	Typical nominal frequency 12 MHz (Internal 12 MHz RC Oscillator) Duty Cycle: 45 to 55% Refer to the electrical specifications of the SAMA5D3		
	Main Oscillator Disabled	Host and Device peripherals need a 12 MHz clock.	series datasheet.		

Ø	Signal Name	Recommended Pin Connection	Description
	XIN32 XOUT32 Slow Clock Oscillator	32.768 kHz Crystal Capacitors on XIN32 and XOUT32 (Crystal Load Capacitance dependent)	Crystal load capacitance to check (C _{CRYSTAL32}). SAMA5D3 XIN32 C _{CRYSTAL32} C _{CRYSTAL32} Example: for a 32.768 kHz crystal with a load capacitance of C _{CRYSTAL32} = 12.5 pF, external capacitors are required: C _{LEXT32} = 19 pF. Refer to the electrical specifications of the SAMA5D3 series datasheet.
	XIN32 XOUT32 Slow Clock Oscillator in Bypass Mode	XIN32: external clock source XOUT32: can be left unconnected	VDDBU square wave signal External clock source up to 44 kHz Duty Cycle: 40 to 60% Refer to the electrical specifications of the SAMA5D3 series datasheet.
	XIN32 XOUT32 Slow Clock Oscillator Disabled	XIN32: can be left unconnected XOUT32: can be left unconnected	Typical nominal frequency 32 kHz (internal 32 kHz RC oscillator) Duty Cycle: 45 to 55% Refer to the electrical specifications of the SAMA5D3 series datasheet.

Ø	Signal Name	Recommended Pin Connection	Description
			Bias Voltage Reference for USB
			To reduce as much as possible the noise on VBG pin please check the Layout consideration below:
			- VBG path as short as possible
			- ground connection to GNDUTMI
	VBG	0.9 - 1.1V ⁽⁵⁾	VBG can be left unconnected if USB is not used. Refer to the signal description of the SAMA5D3 series
			datasheet.
	,	ICE and JTAG	3)
	TCK	Pull-up (100 kOhm) ⁽¹⁾	This pin is a Schmitt trigger input.
	TOR	Pull-up (100 kOhm) ⁽¹⁾	No internal pull-up resistor.
	TMS	Pull-up (100 kOhm) ⁽¹⁾	This pin is a Schmitt trigger input.
		ор (100 политу	No internal pull-up resistor.
	TDI	Pull-up (100 kOhm) ⁽¹⁾	This pin is a Schmitt trigger input. No internal pull-up resistor.
	TDO	Floating	Output driven at up to $V_{VDDIOP0}$
	NTRST	Please refer to the pin description of the SAMA5D3 series datasheet.	This pin is a Schmitt trigger input. Internal pull-up resistor to $V_{VDDIOP0}$ (100 kOhm).
	JTAGSEL	In harsh environments ⁽⁴⁾ , it is strongly recommended to tie this pin to GNDBU if not used or to add an external low-value resistor (such as 1 kOhm).	Internal pull-down resistor to GNDBU (15 kOhm). Must be tied to V_{VDDBU} to enter JTAG Boundary Scan.

Ø	Signal Name	Recommended Pin Connection	Description
		Reset/Test	
			NRST is a bidirectional pin (Schmitt trigger input).
		Application dependent.	It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller.
	NRST	Can be connected to a push button for hardware reset.	By default, the User Reset is enabled after a General Reset so that it is possible for a component to assert low and reset the microcontroller.
			An internal pull-up resistor to V _{VDDIOP0} (100 kOhm) is available for User Reset and External Reset control.
		In harsh environments ⁽⁴⁾ , it is strongly recommended to tie this pin to	This pin is a Schmitt trigger input.
	TST	GNDBU if not used or to add an external low-value resistor (such as 10 kOhm).	Internal pull-down resistor to GNDBU (15 kOhm).
			Must be tied to $V_{VDDIOP0}$ to boot from Embedded ROM.
	BMS	Application dependent.	Must be tied to GNDIOP to boot from external memory
			(EBI Chip Select 0).
Shutdown/Wake-up Logic			
		Application dependent. A typical application connects the pin	This pin is a push-pull output.
	SHDN	SHDN to the shutdown input of the DC/DC Converter providing the main power supplies.	SHDN pin is driven low to GNDBU by the Shutdown Controller (SHDWC).
	WKUP	0V to V _{VDDBU}	This pin is an input-only. WKUP behavior can be configured through the Shutdown Controller (SHDWC).
		PIO	
			All PIOs are pulled-up inputs (100 kOhm) at reset except those which are multiplexed with the Address Bus signals that require to be enabled as peripherals:
	PAx PBx	Application dependent.	Refer to the column "Reset State" of the pin description table in the 324-ball LFBGA package pinout section of the SAMA5D3 series datasheet.
	PCx PDx PEx		Schmitt trigger on all inputs.
	1 6		To reduce power consumption if not used, the concerned
			PIO can be configured as an output, driven at '0' with
			internal pull-up disabled.

Ø	Signal Name	Recommended Pin Connection	Description		
	ADC				
		3.3V to VDDANA	ADVREF is a pure analog input.		
	TSADVREF	Decoupling/filtering capacitors	To reduce power consumption, if ADC is not used:		
		Application dependent.	connect ADVREF to GNDANA.		
		EBI			
	D0 - D15	Application dependent	Data Bus (D0 to D15)		
	D0 - D15	Application dependent.	All data lines are pull-up inputs to V _{VDDIOM} at reset.		
	A0 - A25	Application dependent	Address Bus (A0 to A25)		
		Application dependent.	All address lines are driven to '0' at reset.		
	HSMC - DDR2/LPDDR/LPDDR2 Controller - NAND Flash Support				
	S	See "EBI and DDR2/LPDDR/LPDDR2 Har	dware Interface" on page 13.		
		USB High Speed Host (UHPHS)/USB Hi	gh Speed Device (UDPHS)		
	HHSDPA/DHSDP	Application described (5)	D. II days a start of the said		
	HHSDMA/DHSDM	Application dependent ⁽⁵⁾ .	Pull-down output at reset.		
	HHSDPB/HHSDMB	Application dependent ⁽⁵⁾ .	Pull-down output at reset.		
	HHSDPC/HHSDMC	Application dependent ⁽⁵⁾ .	Pull-down output at reset.		

- Notes: 1. These values are given only as a typical example.
 - 2. Decoupling capacitors must be connected as close as possible to the microcontroller and on each concerned pin.

- 3. It is recommended to establish accessibility to a JTAG connector for debug in any case.
- 4. In a well-shielded environment subject to low magnetic and electric field interference, the pin may be left unconnected. In noisy environments, a connection to ground is recommended.

Example of USB High Speed Host connection:
 More details are in the USB Host High Speed Port (UHPHS) section of the SAMA5D3 series datasheet.

Typical USB High Speed Device connection:
 More details are in the USB High Speed Device Port (UDPHS) section of the SAMA5D3 series datasheet.

(1) The values shown on the 22 k Ω and 15 k Ω resistors are only valid with 3.3V supplied PIOs.

3. EBI and DDR2/LPDDR/LPDDR2 Hardware Interface

These tables detail the connections to be applied between the EBI/DDR2 pins and the external devices for each Memory Controller.

Table 3-1. EBI Pins and External Static Devices Connections

		Pins of the Interfaced Device	
Signals: EBI_	8-bit Static Device	2 x 8-bit Static Devices	16-bit Static Device
Controller		SMC	
D0 - D7	D0 - D7	D0 - D7	D0 - D7
D8 - D15	_	D8 - D15	D8 - D15
A0/NBS0	A0	-	NLB
A1	A1	A0	A0
A2-A22	A[2:22]	A[1:21]	A[1:21]
A23-A25	A[23:25]	A[22:24]	A[22:24]
NCS0	CS	CS	CS
NCS1	CS	CS	CS
NCS2	CS	CS	CS
NCS3/NANDCS	CS	CS	CS
NRD/NANDOE	OE	OE	OE
NWE/NWR0/NANDWE	WE	WE ⁽¹⁾	WE
NWR1/NBS1	-	WE ⁽¹⁾	NUB

Notes: 1. NWR0 enables lower byte writes. NWR1 enables upper byte writes.

Table 3-2. EBI Pins and External Device Connections

Signals:	Pins of the Inte	erfaced Device
EBI_	8-bit NAND Flash	16-bit NAND Flash
Controller	NF	FC
D0 - D7	NFD0 - NFD7	NFD0 - NFD7
D8 - D15	-	NFD8 - NFD15
A21/NANDALE	ALE	ALE
A22/NANDCLE	CLE	CLE
NRD/NANDOE	RE	RE
NWE/NWR0/NANDWE	WE	WE
NCS3/NANDCS	CE	CE
NANDRDY	R/B#	R/B#
A0/NBS0	-	-
A1 - A20	-	-
A23 - A25	-	-
NWR1/NBS1	-	-
NCS0	-	-
NCS1	-	-
NCS2	-	-
NWAIT	-	-

Table 3-3. DDR2 I/O Lines Usage vs Operating Modes

Signal Name	DDR2 Mode	LPDDR2 Mode	LPDDR
DDR_VREF	VDDIODDR/2	VDDIODDR/2	VDDIODDR/2
DDR_CALP	GND via 200Ω resistor	GND via 240Ω resistor	GND via 200Ω resistor
DDR_CALN	VDDIODDR via 200Ω resistor	VDDIODDR via 240Ω resistor	VDDIODDR via 200Ω resistor
DDR_CK, DDR_CKN	CLK and CLKN	CLK and CLKN	CLK and CLKN
DDR_CKE	CLKE	CLKE	CLKE
DDR_CS	CS	CS	CS
DDR_BA[20]	BA[20]	BA[20]	BA[20]
DDR_WE	WE	CA2	WE
DDR_RAS - DDR_CAS	RAS, CAS	CA0, CA1	RAS, CAS
DDR_A[130]	A[13:0]	CAx, with x>2	A[13:0]
DDR_D[310]	D[31:0]	D[31:0]	D[31:0]
DQS[30], DQSN[30]	DQS[3:0] DQSN connected to DDR_VREF	DQS[3:0] DQSN[3:0]	DQS[3:0] DQSN connected to DDR_VREF
DQM[30]	DQM[30]	DQM[30]	DQM[30]

4. Boot Program Hardware Constraints

See the Boot Strategies section of the SAMA5D3 series datasheet for more details on the boot program.

4.1 Boot Program Supported Crystals (MHz)

A 12 MHz crystal or external clock (in bypass mode) is mandatory in order to generate USB and PLL clocks correctly for the following boots.

4.2 NAND Flash Boot

Boot is possible if the first page contains a valid header or if it is ONFI compliant. For more details, refer to the section Nand Flash Boot of the SAMA5D3 series datasheet.

Table 4-1. Pins Driven during NAND Flash Boot Program Execution

Peripheral	Pin	PIO Line
EBI CS3 SMC	NANDOE	_
EBI CS3 SMC	NANDWE	_
EBI CS3 SMC	NANDCS	_
EBI CS3 SMC	NAND ALE	_
EBI CS3 SMC	NAND CLE	_
EBI CS3 SMC	Cmd/Addr/Data	_

4.3 SD Card Boot

SD Card Boot supports all SD Card memories compliant with SD Memory Card Specification V2.0. This includes SDHC cards.

Table 4-2. Pins Driven During SD Card Boot Program Execution

Peripheral	Pin	PIO Line
MCI0	MCI0_CK	PD9
MCI0	MCI0_D0	PD1
MCI0	MCI0_D1	PD2
MCI0	MCI0_D2	PD3
MCI0	MCI0_D3	PD4

4.4 Serial and DataFlash® Boot

Two kinds of SPI Flash are supported: SPI Serial Flash and SPI DataFlash.

The SPI Flash bootloader tries to boot on SPI0 Chip Select 0, first looking for SPI Serial Flash, and then for SPI DataFlash.

The SPI Flash Boot program supports:

- All SPI Serial Flash devices
- All DataFlash devices

Table 4-3. Pins Driven During Serial or DataFlash Boot Program Execution

Peripheral	Pin	PIO Line
SPI0	MOSI	PD11
SPI0	MISO	PD10
SPI0	SPCK	PD12
SPI0	NPCS0	PD13
SPI0	NPCS1	PD14

4.5 TWI EEPROM Boot

The TWI EEPROM Flash boot program searches for a valid application in an EEPROM memory.

TWI EEPROM boot supports all I²C-compatible EEPROM memories using 7-bit device (Address 0x50).

Table 4-4. Pins Driven During TWI EEPROM Boot Program Execution

Peripheral	Pin	PIO Line
TWI0	TWD0	PA30
TWI0	TWCK0	PA31

4.6 SAM-BA® Boot

The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port.

Table 4-5. Pins Driven During SAM-BA Boot Program Execution

Peripheral	Pin	PIO Line
DBGU	DRXD	PB30
DBGU	DTXD	PB31

5. Revision History

Doc. Rev	Comments	Change Request Ref.
11207B	Modified voltage range for "VDDIOM" and "VDDBU" on page 5. Modified details of I/O selection in description of "VDDIOM" and removed information on high drive mode selection for 3.3V memories. In description of "VDDBU", removed information on supply ripple. "VDDUTMII": updated description with USB information. "VDDUTMIC": updated description with USB information. In description of "VDDOSC", updated first line on powering the main oscillator cell and added detail on PLL UTMI use. Removed 'draws small current'. "VBG": updated description with USB information. Removed references to PLLA and VDDPLLA for "GNDOSC". Corrected typo in description of "TSADVREF". Changed graphics for notes ⁽⁵⁾ and ⁽⁶⁾ on page 12. Removed comments (1) and (2) below note ⁽⁶⁾ and removed comment (2) below note ⁽⁶⁾ . Modified all information in Table 3-2 "EBI Pins and External Device Connections". Inserted new Table 3-3 "DDR2 I/O Lines Usage vs Operating Modes". Table 4-3 "Pins Driven During Serial or DataFlash Boot Program Execution": Added new row with NPCS1 pin and PD14 PIO line.	9386 rfo rfo 8523 rfo, 8523 rfo 8523 rfo 9386 9386

Doc. Rev	Comments	Change Request Ref.
11207A	First issue.	

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 **Fax:** (+852) 2722-1369

Atmel Munich GmbH

Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 11207B-ATARM-22-Oct-13

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, SAM-BA® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM® and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.