Exercise 4.1. [20pts] Consider a Cartesian product $G = \mathbb{Z} \times \mathbb{Z} = \{ (\alpha, x) \mid \alpha, x \in \mathbb{Z} \}$ and a binary operation \cdot on G defined as follows:

$$(\alpha_1, x_1) \cdot (\alpha_2, x_2) = (\alpha_1 + \alpha_2, (-1)^{\alpha_2} x_1 + x_2)$$

- (1) [8pts] Prove that (G, \cdot) is a group.
- (2) [2pts] Is (G, \cdot) abelian?
- (3) [2pts] Is (G, \cdot) finite?
- (4) [2pts] Prove that every cyclic group is abelian. Then use (2) to prove that (G,\cdot) is not cyclic.
- (5) [2pts] Does (G, \cdot) have torsion?
- (6) [2pts] Is $\pi_1: G \to \mathbb{Z}$ defined by $(\alpha, x) \stackrel{\pi_1}{\mapsto} \alpha$ a homomorphism? [I want to emphasize that G is not the direct product of \mathbb{Z} and \mathbb{Z} .]
- (7) [2pts] Is $\pi_2: G \to \mathbb{Z}$ defined by $(\alpha, x) \stackrel{\pi_2}{\mapsto} x$ a homomorphism?

Solution: (1) (G, \cdot) is a group because

(G1) (0,0) is the identity element:

before Feb/16.

Joloa, d tin

$$(\alpha, x)(0, 0) = (\alpha, x) = (0, 0)(\alpha, x)$$

(G2) · is associative because for any elements $((\alpha_1, x_1), (\alpha_2, x_2)), (\alpha_3, x_3)$ we have

$$((\alpha_{1}, x_{1}) \cdot (\alpha_{2}, x_{2})) \cdot (\alpha_{3}, x_{3}) = (\alpha_{1} + \alpha_{2}, (-1)^{\alpha_{2}} x_{1} + x_{2}) \cdot (\alpha_{3}, x_{3})$$

$$= (\alpha_{1} + \alpha_{2} + \alpha_{3}, (-1)^{\alpha_{2} + \alpha_{3}} x_{1} + (-1)^{\alpha_{3}} x_{2} + x_{3})$$

$$(\alpha_{1}, x_{1}) \cdot ((\alpha_{2}, x_{2}) \cdot (\alpha_{3}, x_{3})) = (\alpha_{1}, x_{1}) \cdot (\alpha_{2} + \alpha_{3}, (-1)^{\alpha_{3}} x_{2} + x_{3})$$

$$= (\alpha_{1} + \alpha_{2} + \alpha_{3}, (-1)^{\alpha_{2} + \alpha_{3}} x_{1} + (-1)^{\alpha_{3}} x_{2} + x_{3}).$$

(G3)
$$(\alpha, x)^{-1} = (-\alpha, -(-1)^{-\alpha}x)$$
 because

$$(\alpha, x) \cdot (-\alpha, -(-1)^{-\alpha}x) = (0, (-1)^{-\alpha}x - (-1)^{-\alpha}x) = (0, 0).$$

(2) To show that G is not abelian it is sufficient to find a counterexample, like

$$(1,1) \cdot (1,2) = (2,-1+2) = (2,1),$$

 $(1,2) \cdot (1,1) = (2,-2+1) = (2,-1).$

- (3) G is infinite, it contains infinitely many elements.
- (4) If G is cyclic, then $G = \langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ for some $g \in G$. Then for any $a, b \in G$ we have $a = g^k$ and $b = g^m$. Hence,

$$ab = g^k g^m = g^{k+m} = g^m g^k = ba$$

and G is abelian. Therefore, if G is not abelian, then it is not cyclic. The given group is not abelian, hence, it is not cyclic.

(5) No, G is has no torsion because it has no nontrivial element of finite order. Indeed, for any $(\alpha, x) \in G$

$$(\alpha, x)^n = (0, 0)$$
 for some $n > 1$ \Rightarrow $(n \cdot \alpha, ...) = (0, 0)$
 $\Rightarrow n \cdot \alpha = 0$
 $\Rightarrow \alpha = 0$
 $\Rightarrow (0, x)^n = (0, n \cdot x) = (0, 0)$
 $\Rightarrow x = 0$.

Thus, only (0,0) gives the trivial element (0,0) when raised to power n > 1.

(6) π_1 is a homomorphism because for any $(\alpha_1, x_1), (\alpha_2, x_2) \in G$ we have

$$\pi_1((\alpha_1, x_1) \cdot (\alpha_2, x_2)) = \pi_1((\alpha_1 + \alpha_2, (-1)^{\alpha_2} x_1 + x_2)) = \alpha_1 + \alpha_2$$

$$\pi_1((\alpha_1, x_1)) + \pi_1((\alpha_2, x_2)) = \alpha_1 + \alpha_2.$$

(7) To show that π_2 is not a homomorphism we find a counterexample

$$\pi_2((1,1)\cdot(1,1)) = \pi_2((2,0)) = 0$$

 $\pi_2((1,1)) + \pi_2((1,1)) = 1 + 1 = 2.$

Exercise 4.2. [5pts] Find |2| in U_{67} .

Solution: 2 is a unit in U_{67} and by Lagrange theorem its order divides $|U_{67}| = 66 = 2 \cdot 3 \cdot 11$. We can directly check all divisors starting from greater ones

$$2^{33} \equiv_{67} 66$$
 $2^{22} \equiv_{67} 37$ $2^{6} \equiv_{67} 64$.

Now it is obvious that |2| = 66.

Exercise 4.3. [5pts] Is 2 a primitive root modulo 31?

Solution: 2 is a unit in U_{31} and by Lagrange theorem its order divides $|U_{31}| = 30 = 2 \cdot 3 \cdot 5$. We can directly check all divisors starting from greater ones

$$2^{15} \equiv_{31} 1$$

and make a conclusion that 2 is not a primitive root of 31.

Exercise 4.4. [10pts] Consider a set $G = \{x_1, x_2, \dots, x_8\}$ of eight elements equipped with a binary operation \cdot defined by the multiplication table shown below. (G, \cdot) is a group.

•	x_4	x_3	x_7	$ x_1 $	$ x_2 $	x_6	x_5	x_8
x_4	x_2	x_6	x_5	x_8	x_4	x_3	x_7	x_1
x_3	x_6	x_4	x_8	x_7	x_3	x_2	x_1	x_5
x_7	x_5	x_1	x_4	x_6	x_7	x_8	x_2	x_3
x_1	x_8	x_5	x_3	x_4	x_1	x_7	x_6	x_2
x_2	x_4	x_3	x_7	x_1	x_2	x_6	x_5	x_8
x_6	x_3	x_2	x_1	x_5	x_6	x_4	x_8	x_7
$\overline{x_5}$	x_7	x_8	x_2	x_3	x_5	x_1	x_4	x_6
$\overline{x_8}$	x_1	x_7	x_6	x_2	x_8	x_5	x_3	x_4

- (1) Which element is the identity of G?
- (2) Is G abelian? Why?
- (3) Find $|x_3|$.
- (4) Find $\langle x_4 \rangle$.
- (5) Find the coset $x_6 \cdot \langle x_4 \rangle$.
- (6) Find x_5^{-1} .
- (7) Is x_7 a primitive element?
- (8) [3pts] Is G cyclic?

Solution:

- (1) x_2 is the identity of G, because $x_2x_i=x_i$ for every $i=1,\ldots,8$.
- (2) G is not abelian. For instance, $x_7x_3 = x_1 \neq x_8 = x_3x_7$.
- (3) $x_3^2 = x_4, x_3^3 = x_6, x_3^4 = x_2$. Hence, $|x_3| = 4$.
- $(4) \langle x_4 \rangle = \{x_2, x_4\}.$
- (5) $x_6 \cdot \langle x_4 \rangle = \{x_6, x_3\}.$
- (6) $x_5^{-1} = x_7$.
- (7) $|x_7| = 4$ and, hence, x_7 is not a primitive element.
- (8) [3pts] G is not cyclic because

$$|x_4| = 2$$
 $|x_3| = 4$ $|x_7| = 4$ $|x_1| = 4$ $|x_2| = 1$ $|x_6| = 4$ $|x_5| = 4$ $|x_8| = 4$.