$$u(x) = 1 - e^{-x}$$
 $0 \times - f_1(y) = e^{-y}$

200 chapter 9, Ex 1:

He should choose max & E[u(x)], E[u(Y)]}.

$$\begin{aligned}
O & E \left[u(x) \right] = \int (1 - e^{-x}) e^{-x} dx &= \int e^{-x} - e^{-2x} dx \\
&= \int e^{-x} - \int e^{-2x} dx &= \left[-e^{-x} \right]_0^{\infty} - \left[-\frac{e^{-2x}}{2} \right]_0^{\infty} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-t} \right]_0^{\infty} + e^{-t} \\
&= \left[\lim_{t \to \infty} t - e^{-$$

$$0 = \frac{2}{2[x]_0^2 - [-e^x]_0^2] = \frac{1}{2[2+(e^2-e^3)]}$$

$$= \frac{1}{2[1+e^2]} = [0.50767]$$

So E[u(Y)] > E[u(X)], choose investment 2.

EX2:

	X	P(X=4)	x. P(X=x)
ALLERS (A SECOND SERVICE AND SECOND S	25 10	10 50 10 10	-4 -40 10 100 10 100 25 100

this shows that this investment has a negative expected value: ELX] = -5 40.

A risk-averse individual would invest nothing on it.

So, the optimal value is a=0]

```
M451 - Enrique Areyon - Spring 2015 - HW 8
 EX3: In example 9.22 it was shown that
 the optimal value of & ( the fraction of wealth to muest) is:
   \chi = 2p - 1.
Now, if P \le \frac{1}{2}, then d = 2p - 1 \le 0 = \lambda \le 0.
Since & is a fraction of the investment it follows or >0.
to getner & so and & 70 inply & = 0}
E_{X} 5: r_{2} = .15, v_{1} = .20; r_{2} = .18, v_{2} = .25
  U(x)=1-e-0.0057 AND P=0
Since e = e(x,y) = \frac{cov(x,y)}{\sqrt{var(y)}} = 0 \Rightarrow cov(x,y) = 0, so c(x,y) = 0.
 By example 9.3b: w1=y, wz=100-y.
    E[w] = 118 - .034.
Var (w) = \( \frac{1}{2} \overline{W_i \circle{V_i}} + \frac{1}{2} \frac{1}{2} \overline{W_i \overline{W_j}} \circle{C(i,i)} \), where c(i,j) = (ov(R_i,R_j))^{-3}
Var(W) = (204)2 + (.25)2 (100-4)2 + 2w, w2 ((1,2)) =>
Vor (w) = 0.1025 y2-12.5 y +625
 we want to maximize: E[w] - \( \frac{1}{2} \text{Var(w)} = 118 - 0.03 \text{y} - 0.00 \( 25 \) \( \text{Var(w)} \)
             => f(y)=118-0.03y-0.0025[0.1025y2-12.5y+625]
\frac{df}{dy} = -0.03 - 0.0025 \left[ 2 \times 0.1025 \, y - 12.5 \right] = -0.03 - 0.0005 125 \, y + 0.03 125
 = y = \frac{0.00125}{0.0005125} = \frac{12500}{5125} = \frac{100}{41} = y
  The optimal portfolio is where y = \frac{100}{41}, i.e.,
  w_1 = y = \frac{100}{41} AND w_2 = 100 - y = 100 - \frac{100}{41} = \frac{4,000}{41} = w_2
```

Ex 7: Show that the percentage of one's wealth that should be invested in each security when attempting to maximize E[log(w)] does not depend on the amount of initial wealth.

<u>Sol</u>: Let Wn denote the wealth after the nth investment. Let Wo denote the initial wealth.

Let di be the percentage to invest in investment i.

And Xi be the R.V. Corresponding to investment i.

then, After one period we have $W_1 = \alpha_1 X_1 W_0$. After n periods: $W_1 = \alpha_n X_n \alpha_{n-1} X_{n-1} \cdots \alpha_1 X_1 W_0$. Apply $\log t_0$ both sides:

log (Wn) = log (dn Xn dn-1 Xn-1 - d, X, Wo) = log (Wo) + = log (d; Xi)

thus,

E[log(wn)] = E[log(wo) + \(\frac{2}{6}\) \left[log(\alphaixi)] \(\frac{2}{6}\) \\

E[log(\wn)] = \log(\wo) + \(\frac{2}{6}\) \[E[log(\alphaixi)] \, \wo is a constant.

When optimizing this quantity log(wo) will vanish as soon as we take the derivative. Therefore, the optimal di's do not depend on wo.

Ex 9: Does the percentage of one's wealth to be invested in each seawity when attempting to maximize the approximation (9.5) depend on initial wealth when $U(x) = \log(x)$?

801: (9.5): E[U(W)] ≈ U(E[W]) + U"(E[W]) Var(W)/Z,

where $W = W_0 \stackrel{\sim}{\leq} di Xi \Rightarrow E[W] = W_0 E[\stackrel{\sim}{\leq} di Xi]$. Also, $U(\chi) = \log(\chi)$.

So, $U'(x) = \frac{1}{x} =$ $U''(x) = \frac{1}{x^2}$. Replacing this:

MAXIMIZE: E[U(W)] is approximately egod to maximize:

log(E[w]) - Var(w) = log(wo E[Edixi]) - Var(w) 2.E[w]² = log(wo E[Edixi]) 1451 - Enrique Areyan - Spring 2015 - Hw 8 we wish to maximize: which does not depend on initial wearth wo in optimizing for ai. & Inot from book). LET P= x Rx + y Ry + Z Rz a) If (x,y,z) = (300,0,0), what are E[P] and Vair(P)? i) E[P] = E[xRx+yRy+ZPZ] = E[300Px+0Ry+0Rz]=300 E[Rx] = 300 - 0.11 = 33 (ii) Var (P) = Var (xRx+yRy+ZRZ) = Var (300Rx+0Ry+0RZ)=300 Var(Rx), where we know Var(Rx) = Cov(Rx, Rx) = 0.16. thus: Vor(P) = 90,000 · 0.16 = 14,400/ b) If (x,y,z) = (100,100,100), what are EEPJ and Var(P)? i) E[P] = E[xRx+yRy+ZRZ] = E[100Rx+100Ry+100Pz] = 100(E[Rx]+ E[Ry]+ E[Rz])=100 (0.16+0.04+0.04) $=100 \cdot 0.24 = 24$ ii) Var(P) = Var (xex+yey+zez) = Var (100 (ex+ey+ez)) = 1002 VOr (Px+Py+Pz) = 1002 [= Var(Pi) + = Cov(Pi, Pi)] =1002[0.24 +2Cov(Rx, Ry)+2Cov(Rx, Rz)+2Cov(Ry, Rz)] =10,000 [0.24+2×0,01+2×8+2×8]=10,000 [0.26]= 2,600

11451 - Enrique Areyon - Spring 2015 - HW 8

C) Of all vectors (x,y, Z) with 127,0, y7,0, Z7,0 and x+y+2=300, which one maximizes E[P]?

By definition, E[P] = E[xRx+yRy+ZRE] = XE[FX]+YE[FY]+ ZE[PZ] = 0.11 x + 0.10 y + 0.09 Z

So, we wish to solve the following - Linear- optimization problem:

max: 0.11x+0.10y+0092

Subject to: 270, 470, 270

X+y+z = 300.

this is a linear Programming problem. The solution is in the corners of the polyhedra formed by the constrains.

1(0,0,300) If y=0 then X+z=300 } If z=0 then X+y=300 (0,0,0). (300,0,0) Carcana Value

Corners	alve
(0,0,0)	0 0
(0,0,300) 3	0×0.09 (27)
(0,300,0)	0x0.10 30 0x0.10 33 -> MAX value, i.e., of all vectors (x,y,Z)
and the second s	00 x 0.11 33 - MAX VAIOCY TO SOO, 0,0

with 220, y20, 220 and x+y. MAXIMIZES E[P].

d) of all vectors (x,y, =) with x70, y70, =710, and x+y+==300, which one maximizes E[P] - Var(P)? (Note, this will be the max for an exponential utility function with b=1).

We know that E[P] = 0.11x + 0.10y + 0.09 Z.

We need to compute Var(P) = Var(xRx+yPy+ZRZ).

```
M451- Enrique Areyan- Spring 2015 - MW 8
 Var(P) = Var(*Rx +yRy + ZPZ)
          = Var(xRx) + Var(yRy) + Var(ZRZ) +2Cov(xRx1yRy)
                                              +2 COV(XRX, ZRZ)
                                              +2 Cov (yRy 12RZ)
         = x2 Var(ex)+y2 Var(ey)+22 Var(ez)+2xy Cov(ex) Ry) >0
                                                +2 x 2 (0x (PXTR 2) 0
+2 y 2 (0x (RyTR2)
        = \chi^2 0.16 + y^2 0.04 + z^2 0.04 + z \times y 0.01
        = 0.16 x2+ 0.04 y2+ 0.04 z2+0.02 xy
          E[P] - Var(P) = 0.11x+0.10y+0.09 = 0.08x2-0.02y2-0.02=0.01xy
So, we want to salve the following non-linear, constrained optimization:
   max: 0.11x+0.10y+0.09 2-0.08x2-0.02y2-0.0222-0.0124
           1270, 47,0, £7,0
            x+y+z=300.=> z=300-x-y.
Replace the constrain x+y+2=300 in the function to be optimated.
0.11 x +0.10 y + 0.09 (300 - x - y) - 0.08 x - 0.02 y - 0.02 (300 - x - y) - 0.01 x y = f(x,y)
SET GRADIENT EQUAL to Zevo:
\frac{\partial f}{\partial x} = 0.11 - 0.09 - 0.10 \times + 0.04 (300 - x - y) - 0.019
 \frac{\partial \mathcal{L}}{\partial x} = 12.02 - 0.20 \times -0.05 \text{ y} = 0 = >0.20 \times = 12.02 - 0.05 \text{ y} => \times = 60.1 - 0.25 \text{ y}
34 = 0.10 -0.09 -0.044 +0.04(300-x-y) -0.01 x
\frac{\partial f}{\partial y} = 12.01 - 0.08y - 0.05 \% = 0 = , 0.05 \% = 12.01 - 0.08 y = ) X = 240.2 - 1.6 y @
0=0=160.1-0.25y=240.2-1.6y=180.1=1.35y=19=193.407
                                              Z=300-76-y=>(Z=139.84485Z)
 X = 60.1 - 0.25(133.407) = > [X = 26.7481]
```