Blatt 12

Ausgabe: Di, 16.07.19 Besprechung: Di, 23.07.19

Übungsbetreuung: Seraina Glaus (seraina.glaus@kit.edu) (Raum 12/08 - Geb. 30.23)

Aufgabe 1: Hilbertraumvektoren

Für ein Teilchen der Ladung e und Masse m in einem Magnetfeld B in z-Richtung sei der folgende Hamiltonoperator in Matrixform gegeben:

$$\hat{H} = \left(\frac{e}{mc}\right) B\hat{S}_z$$
, wobei $\hat{S}_z = \frac{h}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$

- (a) \hat{H} habe die Eigenvektoren $|E_U\rangle = (1 \ 0)^T$ und $|E_D\rangle = (0 \ 1)^T$. Berechnen Sie die dazu gehörigen Eigenwerte λ_{E_U} und λ_{E_D} . Benutzen Sie in ihrer Rechnung die Definition $\mu = eBh/(2mc)$.
- (b) Der Zustand eines Teilchens sei durch den Hilbertvektor $|\Psi\rangle = N (1 \sqrt{3})^T$ beschrieben. Berechen Sie zunächst den Normierungsfaktor N. Schreiben Sie nun $|\Psi\rangle$ in Abhängigkeit von $|E_U\rangle$ und $|E_D\rangle$ in der Form $|\Psi\rangle = c_U|E_U\rangle + c_D|E_D\rangle$.
- (c) Berechnen Sie die Wahrscheinlichkeiten $P_U = |c_U|^2$ und $P_D = |c_D|^2$, bei einem Experiment, welches die Eigenwerte von \hat{H} im Zustand $|\Psi\rangle$ misst, den Eigenwert λ_{E_U} bzw. λ_{E_D} zu messen. Berechnen Sie auch den Mittelwert $\langle \hat{H} \rangle = \langle \Psi | \hat{H} | \Psi \rangle$ und erläutern Sie die Resultate im Kontext von P_U und P_D .

Aufgabe 2: Eigenvektoren und Eigenwerte eines Operators

Die Vektoren $\{|1\rangle, |2\rangle\}$ seien eine Orthonormalbasis eines zweidimensionalen Vektorraumes. Gegeben sei der Operator

$$\hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
 dargestellt in der Basis $\begin{pmatrix} a \\ b \end{pmatrix} = a|1\rangle + b|2\rangle$.

- (a) Ist $\hat{\sigma}_y$ hermitesch? Berechnen Sie die Eigenwerte und Eigenvektoren $|x_i\rangle$ bezüglich der angegebenen Basis.
- (b) Prüfen Sie die Orthogonalität und Vollständigkeit der Eigenvektoren in der Darstellung der Orthonormalbasis. Drücken Sie den Projektionsoperator $\hat{P} = \sum_i |x_i\rangle\langle x_i|$ durch die Orthonormalbasis aus und wenden Sie diesen auf die Eigenvektoren $|x_i\rangle$ an.

Aufgabe 3: Hilbertraum und allgemeine Unschärferelation

Leiten Sie für zwei beliebige Observable \hat{A} und \hat{B} die allgemeine Unschärferelation der Quantenmechanik her. Gehen Sie dabei wie folgt vor:

- (a) Definieren Sie sich zunächst einen Zustand $|\varphi\rangle = (\hat{A} + i\lambda \hat{B})|\psi\rangle$, mit beliebigem $\lambda \in \mathbb{R}$. Benutzen Sie dann $\langle \varphi | \varphi \rangle \geq 0$, um eine quadratische Ungleichung für λ in der Form $f(\lambda) \geq 0$ herzuleiten.
- (b) Die Funktion $f(\lambda)$ ist ein Polynom zweiten Grades, mit den Mittelwerten $\langle \hat{B}^2 \rangle$, $i \langle [\hat{A}, \hat{B}] \rangle$ und $\langle \hat{A}^2 \rangle$ als Koeffizienten, wobei $[\hat{A}, \hat{B}]$ wie üblich den Kommutator von \hat{A} und \hat{B} bezeichnet.
 - (i) Zeigen Sie, dass die Koeffizienten reell sind.
 - (ii) Bringen Sie das Polynom durch quadratische Ergänzung in die Form $f(\lambda) = (\lambda \lambda_0)^2 + D$. Was folgt aus der Ungleichung $f(\lambda) \ge 0$ für D?
- (c) Ersetzen Sie in Ihren Überlegungen nun $\hat{A} \to \Delta A = \hat{A} \langle \hat{A} \rangle$ und $\hat{B} \to \Delta B = \hat{B} \langle \hat{B} \rangle$. Zeigen Sie zunächst, dass $[\Delta A, \Delta B] = [\hat{A}, \hat{B}]$. Führen Sie dann die genannte Ersetzung in dem Resultat aus b) durch und bringen Sie das Ergebnis letztendlich in die Form

$$\left\langle (\Delta A)^2 \right\rangle \left\langle (\Delta B)^2 \right\rangle \ge \left(\frac{i}{2} \langle [\hat{A}, \hat{B}] \rangle \right)^2$$