MATLAB:

University of California, Davis

Computer LAB for Linear Algebra

Dr. Daddel

MATH 22AL

LAB # 10

13 Hermitian matrix:

A square matrix A is called **Hermitian** if

$$\overline{A^T} = A$$

Example:

The following matrix is hermitian because $\overline{A^T} = A$

Type the following matrix in MATLAB

$$A = \left[\begin{array}{cc} 2 & -4+7i \\ -4-7i & 3 \end{array} \right]$$

You should see:

$$\overline{A^T} = \overline{\left[\begin{array}{cc} 2 & -4-7i \\ -4+7i & 3 \end{array} \right]} = \left[\begin{array}{cc} 2 & -4+7i \\ -4-7i & 3 \end{array} \right] = A$$

It can be proved that the eigenvalues of a hermitian matrix are real numbers.

Since a hermitian matrix with real entries is symmetric, we can conclude that the eigenvalues of a symmetric matrix with real entries are real numbers.

In MATLAB the command htranspose(A)

returns the Hermitian transpose A^H of the matrix A (the complex conjugate of the transpose of A).

type	[W	<pre>V] =eig(A)</pre>	
------	-----	-----------------------	--