Outline

A software package for exact linear system identification

Ivan Markovsky, Jan C. Willems, and Bart De Moor

K.U.Leuven, ESAT-SISTA

SISTA

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

System identification: $w_d \mapsto \widehat{\mathscr{B}} \in \mathscr{M}$

Notation:

- $W_d = (u_d, y_d)$ given data, in this talk a vector time series
- $\widehat{\mathscr{B}}$ to be found model for w_d , in this talk an LTI system
- ullet model class, in this talk the set of LTI systems $\mathscr L$

System identification

- defines a mapping $w_d \mapsto \mathscr{B}$
- derives effective algorithms that realize the mapping, and
- develops efficient software that implements the algorithms

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Introduction: exact and approximate identification

Exact identification: two points of view

Find the true data generating system

- assume that $w_d \in \bar{\mathcal{B}} \in \mathcal{L}$
- find back $\bar{\mathscr{B}}$ from w_d (and an upper bound of the order)
- this is possible provided $\bar{\mathcal{B}}$ is controllable and an input component of w_d is persistently exciting

Find the least complex LTI system that fits w_d

- no assumption about w_d
- find $\widehat{\mathscr{B}} \in \mathscr{L}$ with minimal # of inputs and order, s.t. $w_d \in \widehat{\mathscr{B}}$
- $\widehat{\mathscr{B}}$ —most powerful unfalsified model (MPUM) for w_d in \mathscr{L}

SISTA

SISTA

Exact identification: not a practical SYSID problem

$w_{\rm d}$ can always be fitted exactly

- take all variables as inputs
- for finite $w_d \in (\mathbb{R}^w)^T$, take the order sufficiently large

Of interest is a nontrivial solutions, i.e., we want

 \mathcal{M} to be a set of bounded complexity LTI systems $\mathcal{L}_{m,n}$, $\leq m$ inputs and order $\leq n$.

However,

- $w_d \in \bar{\mathcal{B}} \in \mathcal{L}_{m,n}$ is a too restrictive assumption
- alternatively, the MPUM generically does not exist in $\mathcal{L}_{m,n}$.

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Software packag

Approximate identification: suboptimal methods

exact identification is more than an academic problem

it leads to suboptimal approximate identification methods

an exact ID method can be used for approximate SYSID by

MATLAB does this substitution automatically where necessary

Approximate identification: optimization point of view

- the model need not fit the data exactly
- choose a distance measure $M(w_d, \mathcal{B})$ between w_d and \mathcal{B}
- minimize $M(w_d, \mathcal{B})$ over all models in \mathcal{M}

Computing $M(w_d, \mathcal{B})$ is equivalent to

- finding the "best" approximation of w_d in \mathcal{B} ,
- smoothing or filtering (if causality is imposed) w_d by \mathscr{B} ,
- projecting w_d on \mathscr{B} .

 $M(w_d, \mathcal{B})$ can be computed in various ways: smoothing, spectral factorization, Cholesky factorization, . . .

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Software packag

LTI model representations

• Kernel representation (parameter $R(z) := \sum_{i=0}^{1} R_i z^i$)

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_1 w(t+1) = 0$$

• Impulse response represent (parameter $h: \mathbb{Z} \to \mathbb{R}^{p \times m}$)

$$w = \operatorname{col}(u, y), \qquad y(t) = \sum_{\tau = -\infty}^{t} h(\tau)u(t - \tau)$$

Input/state/output representation (parameter (A, B, C, D))

$$w = \operatorname{col}(u, y),$$
 $x(t+1) = Ax(t) + Bu(t)$
 $y(t) = Cx(t) + Du(t)$

p := dim(y) = row dim(R) is the # of outputs m := dim(u) is the # of inputs, 1 := degree(R) is the lag

Algorithms for exact identification

- 1. $W_d \mapsto R(z)$
- 2. $w_d \mapsto \text{impulse response } h$
- 3. $W_d \mapsto (A, B, C, D)$

(possibly balanced)

- 3.1 $W_d \mapsto R(\xi) \mapsto (A, B, C, D)$ or $W_d \mapsto H \mapsto (A, B, C, D)$
- 3.2 $W_d \mapsto \mathscr{O}_{1_{max}+1}(A,C) \mapsto (A,B,C,D)$
- 3.3 $w_d \mapsto (x_d(1), \dots, x_d(n_{max} + m + 1)) \mapsto (A, B, C, D)$

There are various ways to implement the mapping

$$w = \operatorname{col}(u, y) \mapsto (A, B, C, D).$$

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Conclusions

- · choice of representation
- decomposition of the identification problem into standard easy to solve subproblems
- various ways to achieve the mapping $w_d \mapsto \mathscr{B}$
- can be used as suboptimal approximate ID methods
- open question:

when w_d is not exact, which choice of representation and computational algorithm gives best approximate system?

Building blocks for the algorithms

Function	Description
w2r	from data (time series w) to a kernel repr.
r2pq	from a kernel repr. to an LMF representation
pq2ss	from an LMF repr. to an I/S/O representation
uy2h	from data to the impulse response
h2ss	from the impulse resp. to an I/S/O repr.
uy2y0	from data to sequential free responses
y02ox	from free responses to an observability
	matrix and a state sequence
h2ox	from the impulse response to an observability
	matrix and a state sequence
uy02ss	from data and an observability matrix to
	an I/S/O representation
uyx2ss	from data and a state seq. to an I/S/O repr.
hy02xbal	from the impulse response and sequential
	free responses to a balanced state sequence

SISTA

Introduction: exact and approximate identification

Introduction: exact and approximate identification

Algorithms for exact identification

Software package