

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

بهبود کیفیت و سرعت یادگیری در سیستمهای چندعامله با استفاده از ماتریس ارجاع و انتگرال فازی

پایاننامه کارشناسی ارشد مهندسی کامپیوتر - هوشمصنوعی و رباتیک

داريوش حسنپور آده

استاد راهنما

دكتر مازيار پالهنگ

پاییز ۱۳۹۵

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

پایاننامه کارشناسی ارشد رشته مهندسی کامپیوتر – هوشمصنوعی و رباتیک آقای داریوش حسنپور آده

تحت عنوان

بهبود کیفیت و سرعت یادگیری در سیستمهای چندعامله با استفاده از ماتریس ارجاع و انتگرال فازی

در تاریخ ... توسط کمیته تخصصی زیر مورد بررسی و تصویب نهایی قرار گرفت:

۱_ استاد راهنمای پایاننامه دکتر مازیار پالهنگ

٣_استاد داور (اختياري) دكتر ...

۴_استاد داور (اختياري) دكتر ...

سرپرست تحصیلات تکمیلی دانشکده دکتر محمد رضا تابان

تشكر و قدرداني

پروردگار منّان را سپاسگزارم

کلیه حقوق مادی مترتب بر نتایج مطالعات، ابتکارات و نوآوریهای ناشی از تحقیق موضوع این پایاننامه متعلق به دانشگاه صنعتی اصفهان است.

دلتنگیهای آدمی را باد ترانهای میخواند رویاهایش را آسمان پر ستاره نادیده میگیرد و هر دانهی برفی به اشکی نریخته میماند. سکوت سرشار از سخنان ناگفته است؛ از حرکات ناکرده،

اعتراف به عشقهای نهان،

و شگفتی های به زبان نیامده،

دراين سكوت حقيقت ما نهفته است؛

حقیقت تو و من.

برای تو و خویش

چشمانی آرزو میکنم،

که چراغها و نشانهها را در ظلماتمان ببیند.

گوشی،

که صداها و شناسهها را در بیهوشی مان بشنود.

برای تو و خویش،

روحي،

که اینهمه را در خود گیرد و بپذیرد.

و زباني

که در صداقت خود ما را از خاموشی خویش بیرون کشد،

و بگذارد از آنچیزها که در بندمان کشیده است، سخن بگوییم.

پنجه درافکندهایم با دستهایمان

به جای رها شدن

سنگین سنگین بر دوش میکشیم

بار دیگران را

به جای همراهی کردنشان!

عشق ما نیازمند رهایی است نه تصاحب

در راه خویش ایثار باید نه انجام وظیفه...

بی اعتمادی دری است خودستایی، چفت و بست غرور است و تهی دستی، دیوار است و لولاست زندانی را که در آن محبوس رآی خویش ایم دلتنگیمان را برای آزادی و دلخواه دیگران بودن از رخنههایش تنفس میکنیم...

فهرست مطالب

ىفحە	<u>م</u>	عنوان
هشت	هرست مطالب	فز
ده	هرست تصاویر	فز
يازده	هرست جداول 	فز
١	ىكىدە	,
۲	اول: مرور کارهای پیشین	فصل
۲	_١ مقدمه	١
٣	۲ اشتراکگزاری اطلاعات	١
٣	ــ ۳ یادگیری مشترک	١
٣	ــ ۴ تقلید	١
۴	_۵ حافظه جمعی	١
۴	_ 9 پند	١
۵	_۷ یادگیری مشارکتی بر مبنای خبرگی	
۶	ـ ۸ یادگیری مشارکتی بر مبنای تخته سیاه	١
٧	ـــــــــــــــــــــــــــــــــــــ	١
٧		١
٨	_ _۱۱ تسریع یادگیری مشارکتی با بهره گیری از کوتاهترین فاصله تجربه شده	١
٩	ــــــــــــــــــــــــــــــــــــــ	
١.	دوم: مفاهیم علمی پیشنیاز پایاننامه	فصل
١.	_۱ اندازهگیری و انتگرال فازی	۲
۱۳	سوم: روش پیشنهادی	فصل
۱۳	۱_۱ مقدمه	٣
14	۲ معیار خبرگی _ ماتریس ارجاع و خاطره	٣
۱۸	q یادگیری مشارکتی q با استفاده از ماتریس ارجاع و انتگرال فازی q	٣
۱۸	۳-۳-۱ الگوريتم پيشنهادي	

$g(\cdot)$ تعیین توابع $g(\cdot)$ و $g(\cdot)$ در انتگرال فازی چوکت	۲۱
۳_۴ علت کارکرد انتگرال فازی چوکت در انتقال دانش	74
فصل چهارم: نتایج شبیهسازی و آزمایشها	۲۵
۱_۴ مقدمه	40
۲_۴ رفتار الگوریتمهای معرفی شده برای $g(\cdot)$ رفتار الگوریتمهای معرفی شده برای γ	49
۱_۲_۴ تعابیر مختلف انتگرال فازی چوکت از دادهها برمبنای $g(\cdot)$	**
۳_۴ مقایسهی روش پیشنهادی با روش کوتاهترین مسیر تجربه شده	44
۴_۳_۴ مقایسه در محیط پلکان مارپیچ	٣.
۲-۳-۴ مقایسه در محیط صید و صیاد	۴۱
۴_۴ بررسی تاثیر تعداد نواحی محیط در کیفیت و سرعت یادگیری عاملها در روش پیشنهادی 	۵۱
۴_۴_ محيط پلكان مارپيچ	۵۱
۴_۴_۲ محيط پلكان صيد و صياد	۵۱
فصل پنجم: نتیجه گیری و جمع بندی	۵۴
۵-۱ مقدمه	۵۴
۵_۲ نوآوریها و نتایج کلی پایاننامه	۵۵
۵-۳ راهکارهای آینده و پیشنهادها	۵۶
مر اج ع	۵۶
چکیده انگلیسی	۵۹

فهرست تصاوير

46	۴_۱ دو توزیع فرضی بجهت نمایش نحوهی رفتار الگوریتمهای ۴ تا ۷ بروی آنها
27	۲-۴ نمایش توزیعهای جدید بدست آمده بعد از اعمال الگوریتمهای ۴ تا ۷ بروی دو توزیع فرضی شکل ۴-۱
۲۸	های به ازای توابع $g(\cdot)$ های مختلف. $y=1$ و $y=2$ و $y=3$ به ازای توابع $y=3$ های مختلف. $y=4$
۳١	۴_۴ مقایسه در سرعت و کیفیت یادگیری با تابع بولتزمن با تابع بولتزمن در محیط پلکان مارپیچ
	۴ـ۵ مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلیثانیه با تابع بولتزمن در محیط
٣٢	پلکان مارپیچ
٣٣	۴_۶ نمودار باروری الگوریتمها مختلف با تابع بولتزمن در محیط پلکان مارپیچ
۳۵	۴_۷ مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع بولتزمن در محیط پلکان مارپیچ
34	۴_۸ مقایسه در سرعت و کیفیت یادگیری با تابع حریصانه در محیط پلکان مارپیچ
	۴_۹ مقایسه در پیچی <i>دگی</i> زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلیثانیه با تابع حریصانه در محیط
٣٧	پلکان مارپیچ
٣٨	۴_۱۰نمودار باروری الگوریتمها مختلف با تابع حریصانه در محیط پلکان مارپیچ
٣٩	۴_۱۱مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع حریصانه در محیط پلکان مارپیچ
47	۴_۲ امقایسه در سرعت و کیفیت یادگیری در محیط صید و صیاد با تابع بولتزمن با تابع بولتزمن در محیط صید و صیاد
	۴_۱۳مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلیثانیه با تابع بولتزمن در محیط
44	صيد و صياد
44	۴_۴ انمودار باروری الگوریتمها مختلف با تابع بولتزمن در محیط صید و صیاد
40	۴_۱۵مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع بولتزمن در محیط صید و صیاد
49	۴_۱۶مقایسه در سرعت و کیفیت یادگیری با تابع حریصانه در محیط صید و صیاد
	۴_۱۷مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلیثانیه با تابع حریصانه در محیط
41	صيد و صياد
۴۸	۴_۱۸نمودار باروری الگوریتمها مختلف با تابع حریصانه در محیط صید و صیاد
49	۴_۱۹مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع حریصانه در محیط صید و صیاد
۵۲	۴_۲۰تاثیر ناحیهبندی مختلف بروی کیفیت و سرعت یادگیری در محیط پلکان مارپیچ
۵۳	۴_۲۱ تاثیر ناحیهبندی مختلف بروی کیفیت و سرعت یادگیری در محیط صید و صیاد

فهرست جداول

4	یست اختصارهای استفاده شده در این فصل	1 1-4
۳١	<i>ه</i> ایسه در میزان بهبود کیفیت یادگیری در محیط پلکان مارپیچ با تابع بولتزمن	, Y_F
46	مقایسه در میزان بهبود کیفیت یادگیری در محیط پلکان مارپیچ با تابع حریصانه 	, ۳_۴
۴.	مقایسه در سرعت و کیفیت یادگیری نسبت کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن . . .	, 4_4
۴.	<i>مق</i> ایسه در نسبت میانگین پیچیدگی زمانی حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن	۰ ۵_۴
۴١	مقایسه در نسبت میزان باروری حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن 	, ₆₋ 4
۴١	مقایسه نسبت شیب تاثیر تعداد عاملها میزان کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن	, ^ _&
47	<i>مق</i> ایسه در میزان بهبود کیفیت یادگیری در محیط صید و صیاد با تابع بولتزمن	, Y_k
49	<i>مق</i> ایسه در میزان بهبود کیفیت یادگیری در محیط صید و صیاد با تابع حریصانه	, 9_4
۵٠	مقایسه در سرعت و کیفیت یادگیری نسبت کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن . . .	۰۱۰_۴
۵٠	<i>مق</i> ایسه در نسبت میانگین پیچیدگی زمانی حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن	۲۱۱-۴
۵٠	مقایسه در نسبت میزان باروری حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن 	۲-۲۱،
۵١	مقایسه در نسبت شیب تاثیر تعداد عاملها میزان کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن . .	۴_۳۲،

چکیده

معمولا در دنیایی واقعی هنگامی که افراد برای انتقال دانش گرد هم می آیند و از تجربیات خوب و بد گذشته خود سخن می گویند هرکسی متناسب با جایگاهی که دارد دارای دانشی می باشد و در این انتقال دانش ها تجربیات هیچ کسی را نمی توان نادیده گرفت ولی گاها پیش می آید که تجربیات و دانش فردی دارای بار محتویاتی بیشتری نسبت به اطرافیان خود می باشد، مردم معمولا از دانش فرد خبره تر بیشتر بهره می برند تا افراد دیگر. دستاوردهای این پژوهش بر مبنای همین فلسفه بنا شده است که سخن و دانش هرکسی باید شنیده شود – یعنی آزادی بیان! انتگرال فازی یکی از قوی ترین و منعطف ترین ابزارهای ریاضی برای مدل کردن آزادی بیان می باشد، لذا در این پژوهش از انتگرال فازی برای شنیدن بازتاب ندای دانش هر عامل در دانش جمعی استفاده شده است. ولی در این راه مشکلاتی نیز وجود داشت و آن این بود که چگونه منصفانه بفهمیم که کدام عامل خبره تر از دیگری می باشد؟ در گذشته روشهای متنوعی برای تخمین این معیار ارائه شد است که از شمارش میزان پاداشهای مثبت و منفی عامل ها گرفته تا محاسبات پیچیده ای چون معیارهای شوک و کوتاه ترین مسیر تجربه شده. در طی پژوهش که منجر به نگارش این پایان نامه گردید احساس شد که تمامی روشهای قبلی در یک چیز مشترکند: بسیار پیچیده و غیر منعطف!

وجود این فصل مشترک ناکارا انگیزهای شد که در صدد ارائهای معیاری برآیم که نه تنها ساده باشد بلکه در زندگی روزمره ما انسانها هم تجلی داشته باشد. در پی این هدف ما به ارائهی تئوری جامعی برای خبرگی پرداختیم که میتواند منشع بسیاری از تعاریف خبرگی، در آینده گردد؛ نهایتا با استفاده از تئوری خبرگی معرفی شده تعریفی برای یک معیار خبرگی جدید ارائه دادیم و نشان دادیم که تئوری و تعریف خبرگی جدید نسبت به تعاریف قبلی بسیار کارآمد بوده است.

واژههای کلیدی: ۱ _ سیستمهای چندعامله، ۲ _ یادگیری مشارکتی، ۳ _ یادگیری تقویتی، ۴ _ دانش غیرافزایشی، ۵ _ انتگرال فازی.

فصل اول

مرور کارهای پیشین

1_1 مقدمه

در سالهای گذشته پژوهش های فراوانی در سیستم های چند عامله انجام شده است. محققان سعی داشتند در این پژوهش ها مزایای کار گروهی در انسان را در رایانه نیز ایجاد نمایند. یکی از قابلیت های عامل های هوشمند که میتواند با کار گروه سریعتر و بهتر شود موضوع یادگیری است. در این زمینه هم کارهایی انجام شده که معمولا الگو برداری از عامل های انسانی بوده است. عامل های انسانی با تقلید از عامل هایی که دارای اطلاعات بیشتری هستند توانسته اند یادگیری خود را بهبود دهند. عامل های انسانی در شرایط بحرانی زندگی از عامل های با تجربه تر پند میگیرند، عامل های انسانی در مراتبی از خبرگی قرار دارند؛ همه این موارد الگوهایی مناسب بوده که توانسته یادگیری در سیستم های چند عاملی را بهبود بخشد.

۱-۱ اشتراک گزاری اطلاعات

برای اولین بار در ۱۰ اشتراک گزاری داده ها در سیستم های چند عامله مورد ارزیابی قرار گرفت. هدف این بررسی نمایش اثر اشتراک گزاری داده ها در مقابل سیستم های تک عاملی بود که آزمایش با تعداد عامل های یکسان انجام شد. نتیجه این پژوهش نشان داد که اگر اشتراک گزاری به خوبی انجام شود میتواند سرعت و کیفیت یادگیری را به صورت چشم گیری افزایش دهد. در این پژوهش سه نوع اشتراک گزاری مورد بررسی قرار گرفت در نوع اول که اشتراک گزاری ادراک نام گرفت عامل ها تنها نتایج مشاهدات خود را به اشتراک میگذاشتند، در نوع دوم اشتراک گزاری سه تایی حالت، عمل، کیفیت اشتراک گزاری شده و اشتراک گزاری واقعیت نامیده شد و نهایتا در نوع سوم اشتراک گزاری که اشتراک گزاری سیاست خوانده میشود اطلاعات داخلی عامل ها که منبع استخراج سیاست انهاست به اشتراک گذاشته شده است. اشتراک گزاری در این پژوهش با یک میانگین گیری ساده بین اطلاعات عامل ها انجام میشد. در این پژوهش که SA نامیده شد است ثابت شده ممکن است اشتراک گزاری سربارهایی در ترکیب داده ها به سیستم بیفزاید یا در شروع یادگیری از سرعت یادگیری بکاهد اما در طول یادگیری این سربارها جبران شده و اشتراک داده ها میتواند به صورت چشم گیری در افزایش سرعت سیستم های چند عامله موثر باشد.

۱_۳ یادگیری مشترک

در [۱۱] روشی تحت عنوان یادگیری مشترک مطرح میشود. در این روش اشتراک گزاری با در نظر گرفتن تنها یک سیاست برای تمام عامل ها انجام شد .نتایج این پژوهش نشان میدهد که در دسته بزرگی از مسائل روش های یادگیری مشترک میتواند مفید تر از روشهای یادگیری مستقل باشد. در این پژوهش یادگیری با منطق فازی ادغام شده است و نویسندگان سعی دارند اثر فازی کردن داده ها در یادگیری مشارکتی را نمایش دهند.

۱_۴ تقلید

انسان در طول زندگی برای رسیدن به یادگیری روشهای متفاوتی دارد. گاهی برای رسیدن به یادگیری باید آزمایش کرد گاهی تحلیل کرد و گاهی تجربه اما یک روش که انسان از آن مخصوصا در مراحل رشد بسیار بهره میبرد تقلید است. همین موضوع باعث شده که در یادگیری مشارکتی نیز به تقلید عامل ها از هم توجه شود. بر همین اساس در ۱۴ با ایده برداری از تقلید در انسان پیشنهاد شده که رابطه عامل ها از طریق تقلید از یکدیگر باشد. موضوع دیگری که در مورد تقلید عامل های انسانی باید در نظر گرفته میشد این است که عامل های انسانی از عامل های انسانی باید در پیاده سازی انجام شده نیز بر همین اساس

سه نوع تقلید پیشنهاد میشود. تقلید میتواند به صورت ساده باشد. پیشنهاد داده شده است که عامل ها همیشه از عامل های همسایه(همسایگی در این روش بر اساس همسایگی محلی است چرا که عامل هایی که در منطقه یکسانی قرار دارند کمک بیشری میتوانند به هم کنند) خود تقلید نمایند. این موضوع یک دور در عامل ها ایجاد میکند که هر عامل منتظر میماند تا عامل دیگر حرکتی انجام دهد. برای رفع این موضوع نوع دیگری از تقلید به نام تقلید شرطی مطرح میشود در تقلید شرطی عامل از کسانی تقلید میکند که عملکرد بهتری نسبت به او داشته اند در این حالت موضوع دور و انتظار عامل ها بر طرف شده است. اما در روش سوم که تقلید انطباقی نام دارد عامل همیشه تقلید نکرده و تقلید بر اساس یک احتمال انجام میشود.

۱_۵ حافظه جمعی

در ۱۷ ایده جدید با عنوان یادگیری حافظه جمعی مطرح میشود. در یادگیری حافظه جمعی که برگرفته از شناخت توزیع شده در علوم اجتماع می باشد عامل ها تجارب خود را در یک حافظه مشترک نگهداری میکنند. هر عامل در زمان بر خورد با مشکلات میتواند با بهره گیری از این تجارب راه درست را پیدا کند. این روش در دو دیدگاه مورد ارزیابی قرار گرفته است. در دیدگاه اول عامل ها الگوهای موفق خود در طول یادگیری را در حافظه مشترک نگهداری می کنند تا در زمان نیاز تمام عامل ها با استفاده از این الگو ها بتوانند راه حل مشکلات خود را پیدا کنند. در دیدگاه دیگر احتمال موفقیت عامل ها نگه داری میشود که با بهره گیری از این داده میتوان میزان موفقیت عامل ها در اعمال مختلف را ارزیابی کرده و در جهت بهبود طراحی سیستم مورد ارزیابی قرار داد. در در شده اسزی این روش آورده شده است. حافظه جمعی را میتوان در دو حالت حافظه مرکزی و حافظه توزیع شده بین عامل ها مورد ارزیابی قرار داد.

1_9 يند

در ۲۰ روشی با عنوان پند دهی مطرح میشود. در جوامع انسانی پند دادن بسیار رواج داشته و در زمان مشکلات بسیار کارا میباشد. یک عامل انسانی در زمان برخورد با مشکلات از عامل هایی که اطلاعات بیشتری دارند پند گرفته و مشکلات خود را حل میکند. عاملی انسانی که دارای اطلاعاتی است هم اطلاعات خود را با تجربه کردن و یا گرفتن پند در زمان های دیگر به دست میاورد. مشخصا یادگیر تقویتی در حالت معمول با تجارب به یادگیری میرسد. اگر هر تجربه را بازخوردی از محیط در نظر بگیریم هر پند را نیز میتوان بازخوردی از عامل های دیگر حتی نیازی نیست که عامل ها از روشهای یکسانی در یادگیری بهره ببرند زیرا پند دادن به عامل ها را میتوان فارق از روش یادگیری پیاده سازی کرد. ایده پردازان پند در ۲۲ کار قبل خود

را کامل تر کرده و این ایده را به صورتی که عامل ها در یک محیط به تعامل میپرداختند پیاده سازی کردند. هر عامل بعد از رسیدن به هر حالت موقعیت خود را به عامل های دیگر ارسال مینماید. عامل های که تجربه مشابهی داشته اند در پاسخ به مقداری را به عامل ارسال میکنند عامل از این مقادیر همانند پاداش دریافتی از محیط بهره میبرد.

۱-۷ یادگیری مشارکتی بر مبنای خبرگی

تشریح یادگیری مشارکتی بر مبنای خبرگی را با یک سوال میتوان آغاز کرد. آیا عامل ها در شناخت محیط از خبرگی یکسانی برخوردار هستند؟ مسلما چنین نیست، در ۲۴ ایده یادگیری مشارکتی بر مبنای خبرگی با عنوان WSS مطرح میشود. همان طور که در تشریح روش SA مطرح شد در این روش با میانگین گیری از اطلاعات عامل ها ترکیب انجام میشود. در این میانگین گیری تمام عامل ها به یک اندازه سهیم هستند. ایده پردازان WSS با طرح این موضوع که میزان خبرگی عامل ها یکسان نیست سعی کردند هر عامل در ترکیب داده ها به میزان توانایی و خبرگی خودش موثر باشد.

نویسندگان با ارائه معیار هایی میزان خبرگی عامل ها را سنجیده و بر همین اساس داده ها با هم ترکیب میشوند. در WSS روال یادگیری به دو فاز یادگیری مستقل و یادگیری مشارکتی شکسته شده است. در یادگیری مستقل هر عامل به طور مستقل به یادگیری میپردازد این یادگیری منجر به کسب اطلاعاتی میشود که در فاز یادگیری مشارکتی با هم ترکیب میشوند. یادگیر در فاز یادگیری مستقل چندین چرخه یادگیری را تجربه میکند. تعداد این چرخه ها میتواند در بین عامل ها یکسان و یا متفاوت باشد. اما باید در انتخاب تعداد چرخه های یادگیری هر فاز یادگیری مستقل دقت کرد چرا که اگر این تعداد کم در نظر گرفته شود عامل اطلاعات کافی را جمع اوری نکرده است و اگر زیاد در نظر گرفته شود از تاثیر یادگیری مشارکی خواهد کاست.

در فاز دوم یادگیری عامل ها باید به یادگیری مشارکتی بپردازند. در آغاز این فاز میزان خبرگی عامل ها سنجیده میشود و پس از ان داده ها ترکیب شده و جداول Q عامل ها بروز رسانی میشود. در ۲۴ روشهایی جهت ترکیب دادها ارائه شده در روشی پیشنهاد شده که جدول تمام عامل ها با بهره گیری از میزان خبرگی میانگین گیری شده و جدول تولید شده به تمام عامل ها داده شود که در صورت انجام این کار بعد از فاز یادگیری مشارکتی تمام عامل ها جدول Q یکسانی خواهند داشت. در روش دیگری پیشنهاد شده که هر عامل جدول جدید خود را با ترکیب جدول خود با جدول عامل های خبره تر از خودش تولید کند. در این ترکیب نیز هر عامل به میزان خبرگی خودش در ترکیب داده ها سهم خواهد داشت.

در WSS یا در نظر گرفتن خبرگی عامل ها تاثیر زیادی در بهبود یادگیری مشارکتی داشته است اما نکته ای

که در نظر گرفته نشده است اینجاست که میزان خبرگی عامل ها در دامنه های مختلف بسیار متفاوت بوده و بهتر است که در ترکیب داده ها این دامنه ها هم در نظر گرفته شود. در ۲۶ با در نظر گرفتن دامنه خبرگی عامل ها سعی شده تا نقصان WSS برطرف شود. بعد از آن در ۲۹ سعی شده تا استفاده از جدول Q یک عامل در ترکیب داده ها قطعی نباشد. در این راستا در فاز ترکیب برای اطلاعات هر عامل احتمالی در نظر گرفته شده است که نشان دهنده احتمال حضور اطلاعات ان عامل در تركيب داده ها است. ميزان اين احتمال نيز بر اساس تفاوت میزان خبرگی عامل ها محاسبه شده است. در ادامه تعدادی از معیار های خبرگی معرفی شده در ۲۴ خواهد امد. معیار خبرگی معمولی: در این معیار میزان خبرگی عامل ها بر اساس مجموع یاداش های دریافتی آنها در نظر گرفته شده است. در نتیجه عاملی که میزان یاداش منفی کمتر و میزان یاداش مثبت بیشتری گرفته است را عامل خبره تر میداند. معیار خبرگی مثبت: در این معیار سعی شده با شمارش پاداش ها مثبت عامل ها میزان خبرگی اندازه گیری شود. ایده انتخاب این معیار این بوده که عاملی که یاداش مثبت بیشتری گرفته است از خبرگی بالاتری برخوردار است. معیار خبرگی منفی: این معیار برعکس معیار خبرگی مثبت با این ایده که عاملی که پاداش منفی بیشتری دارد نقاط بحرانی بیشتری را میشناسد عمل شده و تعداد پاداش های منفی عامل یادگیری را شمارش مینماید. معیار خبرگی قدر مطلق: در معیار خبرگی قدر مطلق میزان خبرگی عامل با محاسبه مجموع قدر مطلق یاداش ها دریافتی او انجام میشود. در نتیجه به یاداش های منفی و مثبت ارزش یکسانی داده شده است. معیار خبرگی گرادیان: در این معیار ماننده معیار اول عمل میشود با این تفاوت که جمع پاداشها از ابتدای اخرین چرخه یادگیری مستقل انجام میشد. در نتیجه میشود گفت میزان خبرگی به دست امده عامل در اخرین فاز یادگیری مستقل شمارش میشود. معیار خبرگی تعداد قدم ها: این معیار بر عکس پنج معیار دیگری به جای تاکید بر روی پاداش ها مجموع تعداد قدم های عامل در چرخه های یادگیری را معیار میداند. این انتخاب با این ایده انجام شده که عامل های خبره تر با تعداد قدم های کمتر چرخه های یادگیری را به اتمام میرسانند.

۱-۸ یادگیری مشارکتی بر مبنای تخته سیاه

در ۳۲ مکانیزم تخته سیاه مطرح شد. تخته سیاه یک حافظه مرکزی است که تمام عامل ها به ان دسترسی دارند. در این روش عامل ها به طور مستقیم با هم ارتباط نداشته و ارتباطات از طریق همین تخته سیاه انجام میشود. هر عامل میتواند بر روی تخته نوشته و یا از ان بخواند. در روش پیشنهاد شده در ۳۲ به این شکل است که عامل بعد از رسیدن به هر موقعیت حالت خود را به تخته سیاه اعلام میکند و تخته سیاه عملی را بر اساس حالت جاری به عامل برمیگرداند. عامل بعد از انجام ان عمل و دریافت بازخورد از محیط این بازخورد را به تخته سیاه بر میگرداند.

تخته سیاه دو دسته از داده ها را نگه داری میکند. دسته اول داده ها همان جدول Q عامل ها است و دسته دوم از داده ها عمل های انجام شده توسط هر عامل است. همان طور که مشخص است در این روش بروز رسانی جدول Q و انتخاب عمل از عامل به تخته سیاه منتقل شده و مشخصا جدول Q باید در تخته سیاه انجام شود. اما دسته دوم اطلاعات صرفا جهت کمک به انتخاب عمل عامل ها انجام میشود. به عنوان مثال اگر عامل در حالتی قرار گیرد و عملی تجربه نشده باشد ان عمل پیشنهاد میشود. پس ذخیره سازی دسته دوم اطلاعات در جهت مدیریت اکتشاف و بهره برداری عامل ها از اطلاعات است. در شکل زیر مکانیسم تخته سیاه نمایش داده شده است.

۱-۹ یادگیری مشارکتی بر مبنای پختگی سیاست

در ۳۳ روشی با عنوان یادگیری مشارکتی بر مبنای خبرگی چند معیاره ارائه شده است. این روشی تا حدودی ترکیب روش تخته سیاه با WSS میباشد. در این روش عامل ها حافظه مرکزی خود یا تخته سیاه را دارند که وجود تخته سیاه عامل ها را از شکستن بازه یادگیری به دو فاز بی نیاز میسازد. در روشی چون WSS یادگیری به دو باز یادگیری مستقل و یادگیری مشارکتی شکسته میشد تا عامل ها دادهای خود را به اشتراک بگزارند اما زمانی که عامل ها دائما میتوانند دادهای خود را بر روی تخته سیاه نوشته و بخوانند ارتباط از طریق همین تخته سیاه انجام خواهد شد.

اما عامل ها در عکس روش تخته سیاه ارتباط در اینجا از ارتباط مستقیم هم در تصمیم گیری ها و انتخاب اعمال بهره میبرند. عاملی که در وضعیت انتخاب عامل قرار گرفته میتواند در انتخاب عمل از عامل های دیگر بیاموزد. در این روش جهت شناخت عامل هایی که اطلاعات خوبی دارند و میتوانند اموزگار باشند از معیار های خبرگی ارائه شده در WSS استفاده شده است. با این کار عامل از عامل هایی می اموزد که واقعا از خبرگی بالاتری برخوردار هستند. این کار باعث میشود که در شروع یادگیری که عامل ها داده کمی دارند نیز عامل اموزگاری پیدا نکرده و با کمک اطلاعات و دستورات تخته سیاه عمل کند و بعد طی مراحلی از یادگیری که عامل ها دادهای زیادی کسب کردند با بهره برن از نظرات انها انتخاب بهتری داشته باشد.

۱-۱۱ یادگیری مشارکتی بر مبنای خبرگی چند معیاره

پاکیزه و همکاران در فلان با نقد از روش WSS روش جدید ارائه کردند. ایشان با اشاره به این موضوع که خبرگی در یک رشته نبوده در کار خود از ترکیب ۶ معیار خبرگی WSS در کنار هم بهره برده اند. ایشان تاکید دارند که عامل های انسانی در زمینه های مختلف خبرگی های متفاوتی دارند و این موضوع در عامل های هوشمند

نیز وجود دارد. ایشان هر یک از معیار های ارائه شده در WSS را مانند یک زمینه در عامل انسانی دانسته و در روش خود از تمام این معیار ها در کنار هم بهره برده اند.

ایشان مانند مانند WSS یادگیری را در دو فاز یادگیری مستقل و یادگیری مشارکتی تقسیم مینمایند عامل ها در فاز یادگیری مشترک از هر معیار برای ترکیب دادا های جدول Q بهره میبرند و بعد از ترکیب جدول به وسیله هر معیار q جدول مشارکتی تولید میشود که هر یک بر اساس یک معیار خبرگی است. ایشان برای ترکیب این جدوال انها را با هم جمع میکنند. اما موضوعی که وجود دارد این است که جدول تولید شده به وسیله ی جمع چندین جدول دیگر خواص جدول Q را ندارد.

پاکیزه در کار خود برای رفع این مشکل این جدول را نه در جایگزینی با جدول عاملQ ها بلکه در کنار جدول Q عامل نگه داری مینمایند. پس در کار خانم پاکیزه هر عامل دو جدول دارد یک جدول Q که بر اساس یادگیری تقویتی است و جدول دیگر که جدول مشارکتی عامل ها است. خانم پاکیزه پیشنهاد کردند که از جدول مشارتی که خواص جدول Q عامل ها را ندارد صرفا برای انتخاب عمل استفاده شود و عامل بر اساس این جدول عمل را انتخاب کرده انجام دهد سپس جدول Q خود را بروز رسانی نماید.

۱-۱۱ تسریع یادگیری مشارکتی با بهره گیری از کوتاهترین فاصله تجربه شده

میرزایی در فلان جهت تسریع در یادگیری مشارکتی دو معیار جدید را ارائه داده است. معیار اول یک معیار مکاشفه است که کوتاهترین فاصله تجربه شده توسط عامل از هر حالت و عمل را شمارش میکند. ایشان نام این معیار را SET گذاشته است. معیار دیگر که شوک نام گزاری شده است میزان شناخت عامل از هر حالت و عمل را محاسبه مینماید.

میرزایی بر خلاف دیگران فقط در فاز ترکیب داده های یادگیری مشارکتی ویرایش ایجاد نکرده است. ایشان در فاز انتخاب عمل توسط عامل های مشارکتی نیز از جدول SEP در کنار جدولQ استفاده کرده است. استدلال ایشان در انجام این کار چنین بوده که عامل های یادگیری تقویتی در فاز های اول یادگیری داده زیادی ندارند و از انجایی که جدولSEP با سرعت بیشتری بروزرسانی میشود بهتر است انتخاب اعمال در فازهای اولیه یادگیری بیشتر بر اساس SEP انجام شود. ایشان با استفاده از شوک که نمایشی از میزان شناخت عامل از هر حالت و عمل است تعادلی بین بهره برداری از جدول SEP و جدول Q برقرار کرده است. در شروع یادگیری که شناخت عامل کمتر است بیشتر انتخاب بر اساس SEP انجام میشود و در طول یادگیری با افزایش میزان شناخت عامل از محیط انتخاب عمل بر اساس جدول Q افزایش می یابد.

ایشان همچنین در فاز ترکیب داده ها نیز ویرایش ایجاد کرده است. از انجایی که ایشان یک جدول جدید به

سیستم افزوده است در فاز ترکیب داده ها جدول SEP عامل ها را ترکیب مینماید. ایشان جداول SEP عامل ها را تنها با یک حداقل گیری با هم ترکیب کرده و به عامل ها بر میگرداند. سپس ترکیب جداول Q عامل ها را به صورت محلی انجام میشد به این صورت که هر سطر از جدول که نمایش یک حالت از محیط است به صورت جداگانه بروز رسانی میشود. ایشان در ترکیب داده های هر سطر عامل ها را به دو گروه تقسیم نموده و داده های هر گروه را جداگانه ترکیب مینماید. این تقسیم بندی بر اساس رابطه بین سیاست های استخراج شده از جدول Q و SEP عامل در یک حالت میباشد. ایشان عامل هایی که سیاست استخراج شده از جدول Q و و عامل هایی که سیاست استخراج شده از مینان شناخت عامل از پیشنهاد میکنند را در گروه دیگر قرار داده است. ترکیب داده های هر گروه با استفاده از میزان شناخت عامل از ان حالت (شوک) انجام میشود به این صورت که داده های عملی که شناخت بیشتری دارند بیشتر مورد استفاده قرار میگیرند. در فصل بعد روش محاسبه جدوال SEP و شوک تشریح شده و مورد بررسی قرار میگیرد.

۱-۱۱ نتیجه گیری

فصل دوم

مفاهيم علمي ييشنياز ياياننامه

۱_۲ اندازه گیری و انتگرال فازی

برای درک روش پیشنهادی نیاز به داشتن اطلاعات پایه در مورد اندازهگیریهای فازی و انتگرال فازی داریم که با هدف جمع آوری اطلاعات ارائه شده اند. اندازهگیریهای فازی پیش زمینه ای بر انتگرالهای فازی هستند که قبل از آنکه آشنایی با انتگرالهای فازی نیاز به معرفی اندازهگیریهای فازی داریم. اگر فرض کنیم که تعداد منبع اطلاعاتی با انتگرالهای فازی نیاز به معرفی اندازهگیریهای فازی داریم، اگر فرض کنیم که این منابع اطلاعاتی اطلاعاتی از سنسورها، پاسخهای داده شده به یک پرسشنامه و غیره باشند. اندازهگیری فازی میزان ارزش اطلاعاتی این منابع را در اختیار ما میگذارد. معمولا اندازهگیری فازی توسط تابع $g:2^{|X|} \to [0,1]$ تعریف میشود که ورودی آن یک زیرمجموعه ای از منابع اطلاعاتی میباشد و خروجی آن یک مقدار مابین صفر و یک که میزان ارزش اطلاعاتی که آن زیرمجموعه از منابع اطلاعاتی ورودی تابع را مشخص میکند.

این تابع باید دارای شرایط مرزی تعریف شده و یکنوختی باشد که در ادامه به معرفی شرایط میپردازیم [۱]:

¹Fuzzy measures

²Aggregate Information

۱. شرایط مرزی: اگر اطلاعاتی در دست نداریم ارزش صفر را دارد و کلیه اطلاعاتی حداکثر ارزش ۱ را دارد.

$$g(\emptyset) = 0, \quad g(X) = 1 \tag{1-Y}$$

۲. یکنواختی _ غیر کاهشی: اگر اطلاعات بیشتری به دست آمد ارزش کلیه اطلاعات که شامل اطلاعات جدید میباشد حداقل به اندازه زمانی است که آن اطلاعات جدید بدست نیامده است.

$$A \subseteq B \subseteq X \Rightarrow g(A) \le g(B) \le 1$$
 $(Y - Y)$

مقادیر تابع g یا توسط کارشناس ارائه می شود یا توسط یک تابعی مدل می شود، یکی از توابع معروف برای تخمین مقادیر تابع g تابع اندازه گیری λ سوگنو می باشد که به صورت زیر تعریف می شود [۲].

$$g(\lbrace x_1, \cdots, x_l \rbrace) = \frac{1}{\lambda} \left[\prod_{i=1}^l (1 + \lambda g_i) - 1 \right]$$
 (Y-Y)

که در معادله ۲ – ۳ مقدار g_i مقادیر ارزش هریک از منابع اطلاعاتی است و χ بگونهای تعیین میگردد که g_i مقدار برابر با جواب معادله ی زیر باشد. $g_{\lambda}(X)=1$

$$\lambda + 1 = \prod_{i=1}^{n} (1 + \lambda g_i), \quad \lambda \in (-1, \infty)$$
 (F-Y)

نکته ای که در رابطه با تابع اندازهگیری λ سوگنو باید توجه کرد این است که به ازای مقادیر n مختلف باید ریشه یابی بروی متغییر λ صورت گیرد؛ این ویژگی باعث می شود که این تابع در بعضی از کاربردها کارایی نداشته باشد.

انتگرال فازی در واقع یک تعمیمی به روش میانگین وزنی میباشد بطوری که نه تنها مشخصههای مهم تک تک ویژگیها را در نظر میگیرد بلکه اطلاعات تعاملات بین ویژگیها را نیز در نظر میگیرید [۳]. از میان انتگرالهای فازی دو انتگرال سوگنو و چوکت از الگوریتمهایی هستند که میتوانند بروی هر اندازهگیری فازی مورد استفاده واقع شود [۴]. فرض کنیم که تابعی چون $h: X \to [0,1]$ وجود دارد که مقادیر منابع اطلاعاتی

¹Sugeno λ-Measure

²Weighted Arithmetic Mean

³Sugeno

⁴Choquet

را به بازهی [1,0] نگاشت میکند. در واقع h تابع پشتیبان منابع اطلاعاتی میباشد. انتگرال فازی سوگنو به صورت زیر تعریف می شود [4, 0]:

$$\int_{s} h \circ g = \mathcal{S}_g(h) = \bigvee_{i=1}^{n} h(x_{\pi_i^s}) \wedge g(A_i^s) \tag{2-1}$$

$$h \xrightarrow{\pi^s} h(x_{\pi_1^s}) \le h(x_{\pi_2^s}) \le \dots \le h(x_{\pi_n^s}) \tag{9-1}$$

$$A_i^s = \{ \pi_i^s, \pi_{i+1}^s, \cdots, \pi_n^s \}$$
 (V-Y)

در انتگرال سوگنو لازم است که مقادیر منابع اطلاعاتی را مرتب کنیم که π^s عملگر جایگشت انتگرال فازی سوگنو میباشد. انتگرال فازی چوکت به صورت زیر سوگنو میباشد. انتگرال فازی چوکت به صورت زیر تعریف می شود $\{\mathfrak{F},\mathfrak{F}\}$:

$$\int_{c} f \circ g = \mathcal{C}_{g}(f) = \sum_{i=1}^{n} \left(f(x_{\pi_{(i)}^{c}}) - f(x_{\pi_{(i-1)}^{c}}) \right) \cdot g(A_{i}^{c}) \tag{A-Y}$$

$$f \xrightarrow{\pi^c} f(x_{\pi_1^c}) \le f(x_{\pi_2^c}) \le \dots \le f(x_{\pi_n^c}) \tag{9-1}$$

$$A_i^c = \{\pi_i^c, \pi_{i+1}^c, \cdots, \pi_n^c\} \tag{1.-1}$$

$$\pi_0^c = 0, \quad x_{\pi_0^c} = 0$$
 (11_Y)

در رابطهی بالا $\mathbb{R} \to \mathbb{R}$ میباشد که از وجه تمایز انتگرال فازی چوکت با سوگنو میباشد و π^c عملگر جایگشت انتگرال فازی چوکت میباشد.

انتگرالهای فازی سوگنو و چوکت در حالت کلی دارای تفاوتهایی هستند که از جمله ی مهم ترین این ویژگیها تفاوت تعریف توابع h و f در این انتگرالها میباشد که باعث می شود انتگرال چوکت برای تبدیلهای مثبت خطی مناسب باشد؛ بدین معنی که تجمیع اعداد کاردینال (که اعداد دارای مفاهیم واقعی هستند) را انتگرال چوکت بهتر مدل می کند در حالی انتگرال سوگنو برای اعداد ترتیبی مناسب است [۷]. به همین علت در این پژوهش انتگرال فازی چوکت مورد استفاده قرار گرفته است زیرا که ورودی انتگرال اعداد کاملا معنی دار می باشد و اعمال تابع h بروی مقادیر منابع اطلاعاتی، معانی آنها را تغییر داده و اطلاعات بدرد نخوری را تولید خواهد کرد.

¹Support

²Positive Linear Transformation

³Cardinal Aggregation

⁴Ordinal Numbers

فصل سوم

روش پیشنهادی

٣_١ مقدمه

در این فصل جزییات روش پیشنهادی به طور مفصل معرفی خواهد شد، روش ارائه شده در حالت کلی از دو قسمت تشکیل شده است؛ اولین و مهمترین قسمت ارائه یک معیار خبرگی جدید به نام معیار خبرگی «ارجاع» که برای هر عامل در هر چرخه یادگیری محاسبه و در یک «ماتریس ارجاع» نگهداری می شود. دومین قسمت مربوط به ترکیب دانشهای عاملها هستند که با استفاده از یک مدل انتگرال فازی، صورت می گیرد. همانطور که در فصل بعدی نیز نشان داده خواهده شد استفاده از مدل انتگرال فازی به دلیل خواصی مهمی که این مدل دارد باعث می شود سرعت و کیفیت یادگیری به طرز چشم گیری افزایش یابد. در این فصل ابتدا به معرفی معیار «ارجاع» و دلیل استفاده از آن می پردازیم سپس یادگیری مشارکتی چندعامله با استفاده از ماتریس ارجاع و انتگرال فازی معرفی خواهد شد و در نهایت نشان داده خواهد شد که چرا استفاده از انتگرال فازی نتایج بهتری را نسبت به مدل های سنتی چون مدل مجموع وزنی را ارائه می دهد.

¹Weighted Sum

۲-۳ معیار خبرگی ـ ماتریس ارجاع و خاطره

در دنیای واقعی «خبرگی» تعاریف متعددی به خود گرفته است، در روانشناسی خبرگی به معنی عملکرد برتر عامل تلقی می شود. در جامعه شناسی خبره به فردی گفتی برچسب خبرگی توسط یک گروهی به فرد زده شده است و آن گروه به توانایی که آن فرد در اختیار دارد علاقه مند است. در فلسفه خبره به فردی گفته می شود که دانشی که فرد تازه کار در اختیار ندارد را دارا می باشد [۸]. اگر تعاریف مختلف «خبرگی» را بررسی کنیم می بینیم که همه ی تعاریف در واقع تعبیری از میزان کیفیت عمکرد عامل نسبت به دیگر عامل ها می باشد. این تعبیر کلی از «خبرگی» انگیزه ای شد که در صدد معرفی معیاری برآیم که در حالت کلی بتوان به کلیه ی تعاریف «خبرگی» قابل تعمیم باشد.

 $\mathcal{G}\subseteq\{g_1,g_2,\cdots,g_n\}$ فرض می کنیم عامل A در محیط \mathcal{B} در پی رسیدن به یک مجموعه اهداف فرض می کنیم عامل برای میزان تلاش عامل برای رسیدن به اهداف تعریف شده خود دارد.

طبق آنچه که در فرضیه بالا آورده شده است از بین چند عاملی که در یک محیط و یک مجموعه از اهداف فعالیت میکنند، عاملی خبرهتر است که تلاش کمتری برای رسیدن به آن مجموعه اهداف میکند. شاید این مساله در نگاه اول نامتعارف به ذهن برسد ولی در فعالیتهای روزمره ما انسانها نیز به کررات شاهد این امر میباشیم. به عنوان مثال رانندگی دو فرد مبتدی و حرفهای را در نظر بگیریم؛ فرد مبتدی هنگام رانندگی تمام حواس خود را معطوف به رانندگی میکند تلاش بسیار زیادی برای کنترل نسبت میزان کلاچ و گاز میکند و هنگام رانندگی به طور طبیعی رانندگی نمی کند و ... ولی فرد خبره کلیه موارد ذکر شده را بطور خود کار و طبیعی انجام می دهد بطوری که انگار رانندگی مانند دیگر رفتارهای طبیعی وی چون نفس کشیدن می باشد، که بصورت خودکار صورت میپذیرد. از این گونه مثالها از کاربرد فرضیه ۳_۱ در زندگی روزمره ما زیاد میتوان یافت. توجه شود که در فرضیه ۳_۱ عبارت «میزان تلاش» عامل میتواند در کاربردهای مختلف تعابیر مختلفی به خود بگیرد، مثلا در مثال رانندهی مبتدی و خبره میزان نسبت مسافت طی شده بر زمان رانندگی را میتوان به عنوان «میزان تلاش» عامل در نظر گرفت که در شرایط یکسان رانندهی خبرهتر به طور نسبی در زمان کوتاهتری یک مسافت مشخصی را طی خواهد کرد (در رد کردن پیچ و خمهای ترافیک و مدت زمان ترمز و ... زمان کمتری را تلف میکند). یا به عنوان مثال دیگر، دانشجوی قوی و دانشجوی ضعیف را مورد بررسی قرار دهیم، دانشجویی خبره هست که زمان کمتری را صرف حل صحیح یک مساله خاص کند (با فرض اینکه دانشجوها حتما باید مساله را حل کنند). همانطور که دیدیم کمیت «میزان تلاش» عامل برای مسائل مختلف معیار متفاوتی را دربر می گیرد ولی همگی از همان اصل معرفی شده در فرضیه ۳-۱ تبعیت می کنند.

¹Interested

در یادگیری مشارکتی با استفاده از فرضیه ۳_۱ میتوان با تعریف ۳_۱ یک معیار خبرگی جدید را معرفی کرد که مبنی و پایه ی دستآوردهای این پژوهش می باشد.

 \mathcal{E} قعریف \mathcal{E} امعیار خبرگی «میزان ارجاع»)، فرض میکنیم مجموعه ای از عاملها $\mathbb{A}=\{A_1,A_2,\cdots,A_m\}$ در معیار خبرگی «میزان ارجاع»)، فرض میکنیم مجموعه ای از عاملها $\mathcal{E}=\{a_1,a_2,\cdots,a_m\}$ در پی رسیدن به یک مجموعه اهداف $\mathcal{E}=\{a_1,a_2,\cdots,a_m\}$ میباشند. اگر ما به طور مجازی و دلخواه محیط $\mathcal{E}=\{a_1,a_2,\cdots,a_m\}$ میباشند و میباشند و دلخواه محیان ارجاع هر عامل در هر مانند و افراز کنیم بطوری که $\mathcal{E}=\{a_1,a_2,\cdots,a_m\}$ میباشند و خبر آن عامل را در آن ناحیه تعریف میکنیم.

در تشریح آنچه که در تعریف ۳-۱ آمده است می توان گفت که در سیستمهای چند عاملی که همگی عوامل در یک محیط به صورت مستقل در حال فعالیت هستند؛ محیط را به چند ناحیه دلخواه افراز می کنیم که اجتماع نواحی باهم کل محیط ع را تشکیل دهند و هیچ دو ناحیه ای اشتراکی باهم نداشته باشند [۹]. در این چنین افرازی از محیط، در هرناحیه عاملی که نسبت به بقیه خبره تر است، نسبت به بقیه عوامل در همان ناحیه میزان تمایل حضور کمتری را از خود نشان می دهند. به عبارت دیگر عاملی که خبره تر است تمایل دارد کوتاه ترین مسیر رسیدن به اهداف خود را طی کند که نهایتا منجر خواهد شد که میزان حضور عامل در هریک از نواحی محیط کمینه شود.

آنچه که در فرضیه ۱-۱ در مورد «میزان تلاش» عامل آمده است در تعریف ۱-۱ در به صورت «میزان حضور عامل در هر ناحیه عربی شده است. بطوری که طبق فرضیه مطرح شده میزان خبرگی عامل در هر ناحیه رابطه ی معکوسی با میزان حضور عامل در همان ناحیه را دارد. زیرا اگر عامل نسبت به محیط خود شناخت کاملتری داشته در هنگام تلاش برای رسیدن به اهداف خود به علت شناخت خوبی که از محیط دارد کمتر در محیط پرسه میزند (کمتر تلاش میکند) و با تعداد گام کمتری به سمت اهداف خود حرکت میکند – در واقع مسیر بهتری/کوتاهتری برای رسیدن به هدف را میشناسد. این موضوع در نهایت منجر میشود که عاملی که در هر ناحیه خبرهتر است در همان ناحیه میزان پرسه زدن (حضور/تلاش) کمتری نسبت به دیگر عاملها که از خبرگی نسبی کمتری برخوردار است را داشته باشد.

معیار تعریف شده در تعریف ۳_۱ قبلا به صورت جزیی توسط احمدآبادی و همکاران [۱۰] ارائه شده است: ولی معیار تعریف شده در این یژوهش تفاوتهایی با معیار احمدآبادی و همکاران دارد که به شرح زیر است:

1. چهارچوب: تعریف خبرگی ارائه شده در این پژوهش (تعریف ۳-۱) براساس چهارچوبی است که در فرضیه ی ۳-۱ آورده شده است، ولی معیار خبرگی احمدآبادی و همکاران براساس هیچ چهارچوبی تعریف شده است.

- ۲. میانگین تعداد قدمها: احمدآبادی و همکاران میانگین تعداد قدمهای رسیدن به هدف(یا طبق تعریف الله ۱-۳ میانگین میزان ارجاع عامل در کل محیط در زمانی که کل محیط را یک ناحیه در نظر بگیریم) را به عنوان معیار خبرگی در نظر گرفتهاند در حالی که در تعریف ۱-۲ حرفی از میانگین آورده نشده است. ایرادی که معیار احمدآبادی و همکاران دارد این است که هنگامی که میخواهیم خبرگی عاملها را بسنجیم صحیح نیست میانگین تعداد گامها در نظر بگیرم زیرا ممکن است عامل در ابتدا بسیار نادان بوده ولی بعد از طی مدتی به وسیلهی تجاربی خاص به عاملی بسیار دانا تبدیل شود و اگر میانگینگیری صورت گیرد آنگاه نادانی گذشته به میزان خبرگی کنونی تاثیر گذاشته و خبرگی عامل کمتر از میزان واقعی تخمین زده شود. در تعریف ۱-۲ خبرگی کنونی عامل مورد نظر است و کاری با مسیری که عامل برای کسب خبرگی کنونیاش طی کرده است نداریم.
- ۳. انعطاف: معیار احمدآبادی و همکاران از انعطاف برخوردار نیست و در خبرگی عاملها را بصورت میانگین خبرگی در کل محیط محاسبه میکند در حالی که طبق تعریف ۳-۱ خبرگی عامل در نواحی مختلف از محیط قابل محاسبه است و همانطور که بعدها خواهیم دید خبرگی عاملها در هر ناحیه به عنوان معیاری برای ترکیب دانش عاملها نسبت به آن ناحیه مورد استفاده واقع خواهد؛ زیرا که عاملی ممکن است در حالت کلی محیط را آنچنان نشناخته باشد ولی در یک یا چند ناحیه بخصوص این عامل شناخت کامل تری از آن نواحی داشته باشد که معیار احمدآبادی و همکاران نمی تواند این مساله را در نظر بگیرد.

تا به اینجا گفته شد که عاملی که از خبرگی بیشتری برخوردار است لزوما کمتر در محیط پرسه میزند و با طی کردن مسیر کوتاهتر به سمت اهداف خود، تلاش کمتری میکند ولی چند سوال در اینجا مطرح می شود که برای حل مساله نیازمند پاسخ به آنها هستیم.

- ۱. میزان حضور عامل را در نواحی مختلف، که محیط از d-بعد تشکیل شده است چگونه مدل شود؟
- ۲. اگر عاملی که در هر چرخه یادگیری به یکی از نواحی کلا وارد نشد و میزان پرسه زدن عامل در آن ناحیه صفر شود؛ آیا این مقدار کمینه پرسه زدن، نشان دهنده ی خبرگی عامل در آن ناحیه است؟
- ۳. چگونه در معیار خبرگی ارائه شده باید مساله عدم حضور عامل در یکی از نواحی را مدل کرد، بگونهای که اثر سوئی بر تجربه ی دیگر عاملها در آن نواحی، در هنگام ترکیب دانش عاملها نداشته باشد؟

پاسخ به این سوالات برای حل مساله با استفاده از معیار خبرگی پیشنهادی (تعریف ۲-۱) ضروری است. در پاسخ به سوال اول، ما به ازای کلیهی نواحی یک ماتریسی به نام «ماتریس ارجاع» (یا به اختصار REFMAT)

¹Reference Matrix

در نظر میگیرم که در ابتدا صفر مقداردهی شدهاند و هر دفعه که عامل از موقعیتی به موقعیت دیگر می رود مقدار آن ناحیه ای که موقعیت جدید در آن واقع است را یک واحد افزایش می دهیم بدین وسیله میزان حضور عامل در نواحی مختلف را می شماریم. همانطور که در قسمت آزمایشات این پایان نامه نشان داده شده است میزان ریز یا درشت بودن این نواحی در کیفیت نتیجه تاثیرگذار نیست! یعنی عملا چه ما در حالت کلی، کل محیط را به عنوان یک ناحیه در نظر بگیریم و میزان حضور عامل در این ناحیه را بشماریم (که معادل می شود با تعداد گامهای عامل در طی رسیدن به هدف) یا در حالت جزئی به ازای هر موقعیت موجود را یک ناحیه در نظر بگیرم (که معادل می شود با تعداد ملاقات هر یکی از موقعیتها توسط عامل) به یک نتیجه می رسیم.

به همین دلیل در پاسخ به سوال دوم، اگر تعداد نواحی زیاد باشد (مثلا هر موقعیت یک ناحیه باشد – حداکثر تعداد نواحی) ممکن است عامل در طی رسیدن به هدف برخی از نواحی را کلا ملاقات نکند و مقدار ارجاع به آن نواحی صفر شود و از طرفی طبق تعریف ۳-۱ عاملی که تعداد حضور کمتری در نواحی مختلف داشته باشد از خبرگی بیشتری در آن نواحی برخوردار است و در این شرایط که مقدار ارجاع عامل به ناحیهای صفر باشد را نمی توان به خبرگی عامل در آن ناحیه نسبت داد زیرا که آن عامل در کل، آن ناحیه را ملاقات نکرده است که بخواهد تجربهای را در تعامل با آن ناحیه کسب کند تا بتواند خبرگی خود را در آن ناحیه افزایش دهد. برای حل این مشکل و پاسخ به سوال سوم، ماتریسی جدیدی به نام ماتریس خاطره (یا به اختصار RCMAT) را معرفی میکنیم. این ماتریس وظیفهی نگهداری آخرین ارجاعات غیر صفر عامل را به هرکدام از نواحی تعریف شده را دارد و در زمانهایی که مقدار یک ناحیه در ماتریس REFMAT صفر باشد مقدار آن ناحیه از ماتریس بروز رسانی می شود که میزان پرسه زدن عامل در آن ناحیه در آخرین باری عامل آن ناحیه را ملاقات کرده است را می دهد؛ در صورتی که مقدار پرسه زدن یک ناحیه در ماتریس REFMAT مقداری غیر صفر باشد مقدار ماتریس RCMAT با مقدار کنونی REFMAT آن ناحیه بروز رسانی می شود.

دلیل استفاده از ماتریس RCMAT این است که در یادگیری تقویتی عامل زمانی می توان دانش (سیاست/خبرگی) خود را نسبت به نحوه ی عمل در یک موقعیت بهبود ببخشد که آن موقعیت را ملاقات کند. حال اگر عامل موقعیتی را ملاقات نکند دانش وی در آن موقعیت ثابت خواهد ماند به همین دلیل اگر عامل ناحیه ای را ملاقات نکند و مقدار REFMAT آن ناحیه صفر باشد می دانیم که دانش (خبرگی) عامل در آن ناحیه در این چرخه یادگیری ثابت مانده است و در صورتی که دوباره در آن ناحیه قرار میگرفت، حدودا به همان میزان آخرین ملاقات در آن محیط پرسه خواهد زد. به عبارت دیگر در یک چرخه یادگیری اگر هر ناحیه ملاقات نشده، مورد ملاقات و اقع می شد.

¹Recall Matrix

۳-۳ یادگیری مشارکتی Q با استفاده از ماتریس ارجاع و انتگرال فازی

آنچه که تا به اکنون در مورد روش پیشنهادی این پژوهش آورده شده، معرفی یک معیار خبرگی که در برعکس بسیاری از معیارهای خبرگی که تا به کنون معرفی شده است $[\cdot 1 - 1]$ در تمامی موقعیتهای دنیای واقعی به وفور مشاهده می شود و آن ارائه این فرضیه است عامل خبره تر برای رسیدن به یک مجموعه از اهداف تلاش نسبی کمتری نسبت به دیگر عاملها با خبرگی کمتر در شرایط یکسان می کند. حال که معیاری برای میزان خبرگی عاملها در اختیار داریم چالش بعدی برای بهبود کیفیت و سرعت یادگیری مشارکتی ارائهی روشی برای ترکیب دانش های عاملها از محیط (جداول Q آنها) با استفاده از معیار ارائه شده می باشد. روش ترکیب باید بگونه ای باشد که کیفیت و سرعت یادگیری مشارکتی عاملها را در طی زمان نسبت زمانی که عاملها بدون مشارکت یاد می گیرند بهتر کند. همچنین کیفیت و سرعت یادگیری همبستگی مستقیمی داشته باشند با تعداد عاملهایی که دانش های خود را به درحال اشتراک گذاری هستند؛ به عبارت دیگر در صورت افزایش تعداد عاملهایی که دانش های خود را به اشتراک می گذارند مدل ترکیب کننده ی دانش های آن عاملها باید بتواند دانش بهتری تولید کند که نهایتا منجر به بهتر شدن کیفیت و سرعت کلی یادگیری عاملها شود.

در این پژوهش ما انتگرال فازی را به عنوان مدل ترکیب کننده ی دانشهای عاملها پیشنهاد میدهیم. دلیل انتخاب این مدل ویژگیهای منحصر به فردی است که این مدل کننده در اختیار دارد که مدل را کاملا مناسب برای ترکیب دانش عاملها میکند؛ که در بخشهای آتی فصل این ویژگیها و دلایل مناسب بودن آنها برای ترکیب دانش عاملها آورده شده است. لازم به یادآوری است که همانطور که در قسمت ۲-۱ این پایاننامه آورده شده است ما از به دلایل فنی از انتگرال فازی چوکت استفاده میکنیم که در بخش های بعدی این دلایل نیز بطور مفصل شرح داده میشود.

٣_٣_١ الگوريتم پيشنهادي

در این قسمت به معرفی الگوریتم پیشنهادی می پردازیم. آنچه که در الگوریتم ۱ آمده است به دو قسمت تشکیل شده است، یک قسمت که مربوط یادگیری مستقل (خطوط + تا +) و قسمت دیگری مربوط به یادگیری مشارکتی (خطوط + 1 تا +) می باشد. ورودی الگوریتم تعداد عاملها می باشد و در ابتدا ماتریسهای + و REFMAT مقداردهی می شود. سپس تا زمانی که یادگیری پایان نیافته است ابتدا عاملها در قسمت یادگیری مستقل به صورت جدا گانه در محیط فعالیت می کنند که رویههای آورده شده در خطوط + تا + همان الگوریتم یادگیری + متعارف می باشد + این تنها یک وظیفه و بسیار ساده را انجام می دهد و آن شمارش میزان حضور عامل شبه کد اضافه شده است و این تنها یک وظیفه و بسیار ساده را انجام می دهد و آن شمارش میزان حضور عامل

الكوريتم ۱ الكوريتم ييشنهادي يادگيري مشاركتي برمبناي ماتريس REFMAT و انتكرال فازي

```
1: procedure REFMAT-COOPERATIVE-LEARNING(m)
Require: m > 1
                                                                                                 ⊳ The number of agents.
Ensure: Intialize the Q matrix;
Ensure: Intialize the RCMAT \leftarrow 0;
Ensure: Intialize the REFMAT \leftarrow 0;
         while not End Of Learning do
             if In individual learning mode then
 3:
                 Visit the state s;
 4:
                 Select an action a based on an action selection policy;
 5:
                 Carry out the a and observe a reward r at the new state s';
                 Q[s,a] \leftarrow Q[s,a] + \alpha(r + \lambda \max_{i}(Q[s',a']) - Q[s,a]);
 7:
                 s \leftarrow s';
 8.
                 Increment REFMAT(\phi(s)) by one;
 9.
10:
             else if In cooperative learning mode then
                 \vec{K} \leftarrow \{\};
11:
                 \vec{R} \leftarrow \{\};
12:
                 for each agent i \leftarrow 1, m do
13:
                     REFMAT_i, RCMAT_i \leftarrow Conditional Swap(REFMAT_i, RCMAT_i);
14:
15:
                     K.add(Q_i);
                     \vec{R}.add(REFMAT<sub>i</sub>);
16:
                 Q \leftarrow \text{FCI Combiner}(\vec{K}, \vec{R});
17:
                 REFMAT \leftarrow 0;
18:
```

در هر کدام از نواحی از پیش تعیین شده است؛ $\phi(\cdot)$ یک تابع نگاشت از یک موقعیت به یک ناحیه از محیط میباشد.

بعد از طی یادگیری مستقل عاملها به قسمت اشتراک گذاری دانشهای خود (جداول Q) می رسند (خطوط IN PEFMAT و REFMAT). در قسمت یادگیری مشترک ابتدا طبق آنچه که در در قسمت آورده شده است جداول REFMAT و REFMAT به صورت مشترک بروزرسانی می شود و سپس جداول Q و REFMAT تمامی عاملها به مدل ترکیب کننده فازی معرفی شده در این پژوهش فرستاده می شود و مدل ترکیب کننده فازی وظیفه ی استخراج یک دانش جدید با در نظر گرفتن ورودی های آن برای جایگزینی دانش قابلی عاملها را دارد.

الگوریتم تابع (·)Conditional_Swap بسیار ساده میباشد و مقادیر غیر صفر ماتریس ارجاع را در ماتریس خاطره کپی میکند و مقادیر صفر ماتریس ارجاع را از ماتریس خاطره جایگزین میکند. این تابع در الگوریتم ۲ آمده است.

در این پژوهش در دوقسمت نوآوری صورت گرفته است، قسمت اول ارائهی معیاری جدید برای سنجش معیار خبرگی که طبق تعریف ۳_۱ این معیار در خط ۹ الگوریتم ۱ پیادهسازی شده است؛ نوآوری دوم نحوه ی ترکیب اطلاعات دانش عاملها با استفاده از انتگرال فازی که در خط ۱۷ الگوریتم ۱ و شرح جزییات پیادهسازی

الگوریتم ۲ تابع Conditional_Swap معرفی شده در الگوریتم ۱

```
1: \mathbf{procedure} Conditional_Swap(REFMAT, RCMAT)

Require: \operatorname{size}(\operatorname{REFMAT}) = \operatorname{size}(\operatorname{RCMAT})

2: \mathbf{for} each element r in REFMAT and its corresponding element c in RCMAT \mathbf{do}

3: \mathbf{if} \ r = 0 \ \mathbf{then}

4: Update r = c;

5: \mathbf{else}

6: Update c = r;

7: \mathbf{return} \ \operatorname{REFMAT}, \ \operatorname{RCMAT}
```

الگوریتم ۳ تابع FCI_Combiner معرفی شده در الگوریتم ۱

```
1: procedure FCI Combiner(\vec{K}, \vec{R})
Require: length(\vec{K}) = length(\vec{R}) = m
Ensure: Initialize CoQ<sub>FCI</sub>
           for each state s do
 3:
                \vec{f} \leftarrow \{\};
                                           ▷ Contains the normalized valued of REFMATs' value for state s for all agents
                for each REFMAT<sub>i</sub> in \vec{R} do
 4:
                     \vec{f}.add(REFMAT<sub>i</sub>(\phi(s)));
 5.
                \vec{A} \leftarrow 1 – normalize(\vec{f});
 6:
                for each possible action a in state s do
 7:
                     \vec{x} \leftarrow \{\};
                                                                       \triangleright Contains the Q values of action a in state s for all agents
 8:
                     for each Q_i in \vec{K} do
 9:
                          \vec{x}.add(Q_i[s,a]);
 10:
                     \operatorname{CoQ}_{\operatorname{FCI}}[s,a] \leftarrow \sum_{i=1}^{m} \left( f(x_{\pi_{(i)}}) - f(x_{\pi_{(i-1)}}) \right) \cdot g(\vec{A}_i)
                                                                                                                       11:
           return CoQ<sub>FCI</sub>;
12:
```

آن در الگوریتم ۳ آمده است.

ورودی های الگوریتم ۳ به ترتیب مجموعه ای از جداول Q و ماتریس های ارجاع (REFMAT) تمامی عامل ها می باشد بطوری که در ازای هر جدول Q یک ماتریس REFMAT متناظر وجود دارد. خروجی این الگوریتم یک جدول Q می باشد که از ترکیب جداول Q ورودی با درنظر گرفتن میزان خبرگی هرکدام از عامل ها که توسط ماتریس های REFMAT آن ها تعیین می شود. الگوریتم ۳ به ازای کلیه ی موقعیت ها (g ها در خط ۲) ابتدا مقادیر REFMAT کلیه ی عامل ها در ناحیه ای که آن موقعیت در آن واقع است (که توسط تابع نگاشت g) بدست می آید) را استخراج می کند و در برداری بنام g ذخیره می کند (خطوط ۴ و g) که در واقع میزان ارجاعات هرکدام از عامل ها در ناحیه ی g می باشد. بردار g معیاری برای سنجش میزان خبرگی کلی عامل ها در موقعیت g است، طبق آنچه که در تعریف g آمده است در هر ناحیه عاملی خبره تر است که مقدار REFMAT مربوط به آن ناحیه از دیگر عامل ها کمتر باشد. در نتیجه در خط g بعد از عادی سازی ۲ مقادیر REFMAT عامل ها

¹Factors

²Normalize

در ناحیهی $\phi(s)$ یک مکمل گیری صورت می گیرد تا عاملی که مقدار REFMAT کمتری دارد دارای بیشترین مقدار بعد از عادی سازی شود. در خط ۷ به ازای کلیه ی عملهای ممکن در موقعیت s ابتدا مقادیر g تک تک عاملها را در موقعیت s و عمل g در خطوط ۹ و ۱۰ در بردار g ذخیره می کنیم و در نهایت در خط ۱۱ با استفاده از انتگرال فازی چوکت معرفی شده در g مقدار g مشارکتی حاصل از میزان خبرگی بردار g و مقادیر g های تک تک عاملها در بردار g در موقعیت g و عمل g بدست محاسبه می شود.

تعیین توابع $f(\cdot)$ و $g(\cdot)$ در انتگرال فازی چوکت $f(\cdot)$

بطور خلاصه در الگوریتم ۳ دو بخش عمده دارد بخش اول مربوط استخراج میزان خبرگی عاملها بگونهای که عاملی که خبره تر از دارای مقدار خبرگی بیشتری باشد که این بخش در خطوط ۴ تا ۶ صورت می گیرد؛ بخش دیگر محاسبه ی مقادیر Q مشارکتی کلیه ی عملهای ممکن در یک موقیت با درنظر گرفتن میزان خبرگی عاملها و مقادیر Q آنها با استفاده از انتگرال فازی چوکت که در خطوط ۷ تا ۱۱ صورت می پذیرد.

آنچه که در خط ۱۱ الگوریتم ۳ مورد توجه واقع شود این است که توابع (\cdot) و (\cdot) و (\cdot) و گونه تعریف باید تعریف شوند؟ برای تعیین تابع (\cdot) منطقی که در این پژوهش استفاده کردیم بدین صورت است که از آنجایی که خروجی تابع (\cdot) یک مقدار عددی بدون واحد می باشد و همچنین برای اینکه خروجی انتگرال فازی خط ۱۱ را بتوان به عنوان مقادیر جدول (\cdot) مشارکتی جدید در نظر گرفت تا بتوانیم در خطوط ۱۷ الگوریتم ۱ به عنوان جدول (\cdot) تک عاملها جایگذاری کنیم باید خروجی انتگرال فازی خط ۱۱ الگوریتم ۳ از جنس جدولهای (\cdot) عاملها باشد در نتیجه تابع (\cdot) باید یک تابع خطی بصورت (\cdot) باشد تا خروجی انتگرال فازی همجنس مقادیر (\cdot) باشد.

$$f(\omega) = a\omega + b \tag{1-7}$$

متغییرهای a و b در a در a میتواند به عنوان پارامترهای سازگار a در میزان کیفیت جدول a مشارکتی خروجی الگوریتم a موثر واقع شود ولی با این حال در این پژوهش مقادیر a و a هردو به ترتیب مقادیر ثابت a و صفر در نظر گرفته شده اند که یعنی از تابع همانی به عنوان تابع a استفاده شده است.

¹ Scalar

²Addaptive Parameters

الگوریتم ۴ الگوریتم Const-One برای تخمین تابع $g(\cdot)$ در الگوریتم الگوریتم

```
1: procedure Const-One(\vec{A_i})
2: if length(\vec{A_i}) \ge m then
3: return 1;
4: else if length(\vec{A_i}) = 0 then
5: return 0;
6: else
7: return 1;
```

باید دارای ویژگیهای زیر باشد:

- ۱. پویا باشد: از آنجایی که تابع $g(\cdot)$ میزان اندازهگیری غیرافزایشی منابع اطلاعاتی را در اختیار می گذارد $g(\cdot)$ میزان اندازه گیری غیرافزایشی منابع اطلاعاتی (در اینجا خبرگی عاملها) در کنار هم چه ارزش افزوده ای دارد؛ ولی از آنجایی که در حین یادگیری مشترک روشی برای تعیین این ارزش افزوده نداریم بنابراین باید تابع $g(\cdot)$ بصورت پویا بتواند مقادیر این ارزش افزوده را تخمین بزند.
- ۲. قابل گسترش " باشد: زیرا که تعداد عاملها در محیط متغیر است لذا باید تابع $g(\cdot)$ بگونهای باشد به ازای تغییر تعداد عاملها (که تغییر در تعداد اعضای بردار \vec{A} را در پی دارد) قابل گسترش باشد.

یکی از روش تخمین $g(\cdot)$ که دو ویژگی بالا را داشته باشد، تابع اندازهگیری λ سوگنو میباشد ولی این تابع نیاز به به ریشه یابی روی متغییر λ دارد که طبق آنچه که در ۲-۲ آمده است به ازای تعداد عاملهای مختلف نیاز به ریشه یابی معادلات غیر خطی دارد که بدلیل پیچدگی محاسباتی این ریشه یابی و همچنین طبق نتایج حاصل از دستاوردهای این پژوهش که در فصل نتیجهگیری آورده شده است، در آزمایشات صورت گرفته در این پژوهش از تابع اندازهگیری λ سوگنو به عنوان تابع $g(\cdot)$ استفاده نشده است. یک سری توابع در این پژوهش بجهت استفاده، آزمایش و نتیجهگیری به عنوان λ 0 معرفی شده است که این توابع در الگوریتمهای ۲ تا ۷ آمده اند.

در الگوریتم ۴ به ازای هر ورودی دلخواد مقدار ثابت ۱ به عنوان خروجی برگشت داده می شود، این بدین مساله معنی است که ارزش افزوده ی هرنوع ترکیب اطلاعاتی (خبرگی) برای ما دارای حداکثر ارزش می باشد و این مساله باعث می شود که نتیجه ی انتگرال فازی خط ۱۱ الگوریتم ۳ مقداری معادل با مقدار خبره ترین عامل (عاملی که کمترین پرسه را در محیط مربوطه داشته) را به عنوان مقدار جدید جدول Q مشارکتی تولید کند.

در الگوریتم α میزان خبرگی خبرهترین عامل به عنوان خروجی تابع $g(\cdot)$ برگشت داده می شود. در الگوریتم α خروجی، میانگین خبرگی عامل ها در نظر گرفته شده است و در الگوریتم α طبق رابطه ی نوشته شده میانگین

¹Dynamic

²Non-additive

³Expandable

الگوریتم $g(\cdot)$ در الگوریتم Max الگوریتم الگوریتم الگوریتم الگوریتم الگوریتم

```
1: procedure Max(\vec{A_i})

2: if length(\vec{A_i}) \ge m then

3: return 1;

4: else if length(\vec{A_i}) = 0 then

5: return 0;

6: else

7: return \max_{\vec{A_i}};
```

الگوریتم و الگوریتم Mean برای تخمین تابع $g(\cdot)$ در الگوریتم Mean الگوریتم

```
1: procedure \operatorname{Mean}(\vec{A_i})

2: if \operatorname{length}(\vec{A_i}) \geq m then

3: return 1;

4: else if \operatorname{length}(\vec{A_i}) = 0 then

5: return 0;

6: else

7: return \frac{\sum_{j=i}^{\operatorname{length}(\vec{B_i})+i} \vec{A_i(j)}}{\operatorname{length}(\vec{A_i})};
```

kام میزان خبرگیها به عنوان خروجی برمیگردد به طوری که بزرگترین خبرگی در عدد k و کوچکترین خبرگی در عدد k و میانگین عدد k و هر آنچه که مابین این دو خبرگی وجود دارد در اندیس ترتیب مرتب شده آنها ضرب می شود و میانگین این مجموع محاسبه می شود و برگشت داده می شود.

۳-۳ علت کارکرد انتگرال فازی چوکت در انتقال دانش

در این قسمت به بررسی شهودی اینکه چرا انتگرال فازی چوکت برای انتقال (ترکیب) دانشهای عاملها می تواند موثر واقع باشد می پردازیم. این شهود بعدها در آزمایشها نشان داده خواهد شد که صحت دارد. انتگرال فازی چوکت یک سری ویژگیها دارد که برای انتقال دانش مدل میکند. از مهم ترین ویژگیها را می توان به موارد زیر اشاره کرد [۵].

۱. محدود است: اگر شرایط مرزی و یکنوایی تابع $g(\cdot)$ برقرار باشد انتگرال فازی هیچگاه بیشتر از حداکثر مقدار $f(x_{\pi_i})$ ها و کمتر از حداقل مقدار آنها خروجی نمی دهد [۶]. یعنی دانش تولیدی خارج از محدوده ی دانش فعلی عاملها نمی باشد فقط ترکیب بهینه ای از این دانشها به عنوان خروجی برگشتت داده می شود که این در کاربرد یادگیری تقویتی به این معنی است که هیچگاه مقادیر جدول Q بیشتر یا کمتر از آنچه که تجربه شده نمی شود و این باعث می شود که ضمانت همگرایی یادگیری تقویتی Q با اعمال انتگرال فازی چوکت نقض نشود و الگوریتم حتما همگرا شود؛ ولی در صورتی که روشی خارج از دانش

الگوریتم $g(\cdot)$ در الگوریتم K-Mean برای تخمین تابع الگوریتم الگو

```
1: procedure K-Mean(\vec{A_i})

2: if length(\vec{A_i}) \geq m then

3: return 1;

4: else if length(\vec{A_i}) = 0 then

5: return 0;

6: else

7: \vec{B_i} = \text{Sort-Ascending}(\vec{A_i});

8: return \frac{\sum\limits_{j=i,k=1}^{\log \ln(\vec{B_i})+i,\log \ln(\vec{B_i})}{k \cdot \vec{B_i}(j)}}{\binom{\sum\limits_{j=i}}{j-1}};
```

كنوني عاملها خروجي دهد ضمانتي براي همگرايي عاملها وجود نخواهد داشت.

۲. می تواند اندازه گیری های غیرافزایشی مدل کند: معمولا روش هایی که تا به کنون در این زمینه ارائه شده است از میانگین وزنی خبرگی عامل ها برای بدست آوردن جدول Q مشترک استفاده کرده اند [۱۰-۱۰]. این درحال هست که میانگین وزن دار قسمتی از مدل اندازه گیری های غیرافزایشی می باشد. بنابرین با در نظر گرفتن مدل های غیرافزایشی که در ماهیت مساله هست قدرت و انعطاف بیشتری در اختیار داریم نسبت به روش هایی که فقط از میانگین وزنی استفاده کرده اند.

تعریف \mathbf{Y} (اندازهگیری های غیرافزایشی). اگر فرض کنیم (X,A) فضای قابل اندازهگیری باشد که X مجموعه ی مرجع و $\mu:A \to [0,1]$ و اندازهگیر غیرافزایشی میگویند هرگاه شرایط زیر را ارضا کند [۱۴].

- $\mu(\emptyset) = 0, \quad \mu(X) = 1$
- $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$

تورا و همکاران [۱۴] یک مجموعه جامعی در مورد اندازهگیریهای غیرافزایشی ایجاد کردهاند که جزئیات این مطلب خارج از حوصلهی این نوشتار است و در صورت تمایل به کسب اطلاعات بیشتر در مورد اندازهگیریهای غیرافزایشی و انتگرالهای فازی میتوانید به آن مراجعه نمایید.

¹Reference Set

فصل چهارم

نتایج شبیهسازی و آزمایشها

۲_۱ مقدمه

در این فصل به ارائه ی آزمایش های صورت گرفته بروی روش پیشنهادی می پردازیم و در طی این آزمایش ها روش پیشنهادی را با روش کوتاه ترین مسیر تجربه شده (یا به اختصار SEP) مقایسه می کنیم که آخرین و مدرن ترین روش ارائه شده در جهت بهبود یادگیری مشارکتی می باشد [۱۲]. آزمایش ها بروی دو محیط «پلکان مارپیچ» و «صید و صیاد» صورت گرفته است. آزمایش ها به دو دسته تقسیم بندی شده است؛ دسته اول آزمایش هایی که روش پیشنهادی را در مقابل روش SEP قرار می دهد و عملکرد روش پیشنهادی را مورد سنجش قرار می دهد. دسته دوم آزمایش ها مربوط به آزمون رفتار روش پیشنهادی در صورت تغییر در پارامترهای متخلف آن می باشد. همچنین اثر استفاده از سیاست های انتخاب عمل مختلف در الگوریتم ۱ نیز بررسی شده است. در روش های مرتبط مدرن قبلی [۱۲، ۱۲] که این پژوهش ادامه ی کار آن ها می باشد فقط از سیاست انتخاب عمل Boltzmann اشیده کرده اند؛ در این پژوهش علاوه بر Boltzmann تاثیر استفاده از روش greedy ε بروی هردو روش پیشنهادی کوده نیز مورد بررسی واقع گردیده است.

$g(\cdot)$ رفتار الگوریتمهای معرفی شده برای au_- ۴

در این قسمت به بررسی رفتار الگوریتمهای \mathfrak{g} تا \mathfrak{g} معرفی شده برای $\mathfrak{g}(\cdot)$ بروی دو توزیع فرضی خواهیم پرداخت، زیرا که در طی اجرای آزمایشهای مختلف نتایج تاثیر این توابع بر اجرای الگوریتم پیشنهادی $\mathfrak{g}(\cdot)$ آورده شده است، لذا بجهت درکت علت تاثیرات مختلف هرکدام ازین توابع بروی نتیجه ی الگوریتم پیشنهادی در آزمایشها، درک نحوه ی رفتار الگوریتمهای $\mathfrak{g}(\cdot)$ تا $\mathfrak{g}(\cdot)$ ست.

برای نمایش نحوه ی رفتار هرکدام از الگوریتمها دو توزیع فرضی شکل 1-1 فرض شده است. در صورت اعمال الگوریتمهای 1 تا 1 بروی دو توزیع آورده شده در شکل 1-1 توزیعهای جدیدی بصورت آنچه که در شکل 1-1 آمده است بدست میآیند. همانطور که در شکل 1-1 میبینیم اعمال الگوریتم Const-One بروی دو توزیع مقدار ثابت 1 را برمیگرداند. اعمال الگوریتم Max در هر نقطه حداکثر مقدار هر دو توزیع را برمیگرداند. الگوریتم Mean میانگین دو توزیع را در هر نقطه حساب میکند و در نهایت الگوریتم K-Mean میانگین 1ام هردو توزیع را محاسبه میکند که همانطور که میبینیم میانگین 1ام به سبب ماهیت الگوریتم به سمت بیشترین مقدار پیش قدر 1 میباشد.

¹Bias

شکل ۲-۲: نمایش توزیعهای جدید بدست آمده بعد از اعمال الگوریتمهای ۲ تا ۷ بروی دو توزیع فرضی شکل ۲-۱

$g(\cdot)$ تعابیر مختلف انتگرال فازی چوکت از دادهها برمبنای ۱-۲-۴

الگوریتمهای 4 تا 7 به تنهایی فقط در نقش یک عملگر بازی میکند ولی در هنگام ترکیب دانش با انتگرال فازی چوکت به دانش خروجی الگوریتم از دیدگاههای متفاوتی نگاه میکنند. از آنجایی که در فصلهای قبلی نیز آورده شد انتگرال فازی در واقع یک تعمیم الگوریتم دهندهی میانگین وزنی میباشد که علاوه بر ویژگیهایی که روش میانگین وزنی ارائه میدهد میتواند اندازهگیریهای غیرافزایشی را نیز مدل کند. لذا با تغییر تابع $g(\cdot)$ میتوان باعث شد که انتگرال فازی چوکت تعابیر مختلفی از دادههای ورودی خود ارائه دهد. از بین الگوریتمها فقط الگوریتم الگوریتمها دارای تعبیر صریح ریاضی میباشد که در 4 آمده است، بقیهی الگوریتمها دارای تعابیر صریح نیستند و فقط میتوانیم بر اساسی نمایشی که در شکل 4 آمده است شهودی از نحوهی تغییر رفتار انتگرال فازی به ازای هریک از الگوریتمها ارائه داد.

$$g = \text{Const-One}(\cdot) \equiv \begin{cases} g(X) &= 1 \\ g(\emptyset) &= 0 \Rightarrow \mathcal{C}_g(f) \equiv \max\{f(x_{\pi_{(1)}^c}), \cdots, f(x_{\pi_{(n)}^c})\} \\ g_{A \subset X}(A) &= 1 \end{cases} \tag{1-F}$$

برای نمایش شهودی نحوه ی تغییر رفتار انتگرال فازی چوکت در شکل $\mathbf{r}_{-}\mathbf{r}$ سه منبع اطلاعاتی با مقادیر $g = \begin{bmatrix} 0.1 & 0.4 & 0.3 \end{bmatrix}^T$ در نظر گرفته شده است و مقدار ارزش هرکدام از اینها به ترتیب y = 0.1

شکل ۴_۳: نمایش رفتار انتگرال فازی بروی منابع اطلاعاتی y=1 و y=2 و y=3 به ازای توابع $g(\cdot)$ های مختلف.

در نظر گرفته شده است. سپس انتگرال فازی چوکت را با در نظر گرفتن تابع همانی به عنوان تابع $f(\cdot)$ بروی این $\mathfrak T$ منبع اطلاعاتی اعمال کردیم و همانطور که میبینیم مقداری که انتگرال فازی چوکت به ازای $g=\text{Const-One}(\cdot)$ تولید میکند برابر با حداکثر مقدار منابع اطلاعاتی دریافتی میباشد. در حالت کلی هرچقدر میانگین تابع $g_{A\subseteq X}(A)$ به سمت مقدار ۱ متمایل باشد خروجی انتگرال فازی چوکت به سمت بیشینه مقدار منابع اطلاعاتی پیش قدر می شود و در صورتی که این میانگین به سمت صفر متمایل باشد خروجی به کمینه مقدار پیش قدر می شود.

۳-۴ مقایسهی روش پیشنهادی با روش کوتاهترین مسیر تجربه شده

در این قسمت به مقایسه ی روش پیشنهادی با روش «کوتاه ترین مسیر تجربه شده» که از بروزترین تکنیک ارائه شده در این شاخه از یادگیری مشارکتی میباشد می پردازیم [۱۲]. کلیه ی این آزمایشها در دو محیط «پلکان مارپیچ» و «صید و صیاد» صورت گرفته است. نتیجه ی هر آزمایش حاصل میانگین ۲۰ اجرای مستقل تمامی الگوریتمها میباشد. همچنین به غیر از مواردی که صراحتا قید شده است تعداد عاملها ۳ عدد میباشد – البته بدیهی است که یادگیری مستقل تک عامله (یا به اختصار ۱۲) شامل این قاعده نمیباشد. همچنین در کلیه ی

¹Individual Learning

فصل	در این	شده	استفاده	بتصارهاي	لبست اخ	:1_4	جدول

معنى	اختصار
روش پیشنهادی	REFMAT
یادگیری مستقل تک عامله	IL
روش كوتاهترين مسير تجربه شده	SEP
میانگین وزنی	wsum
$g(\cdot)$ الگوریتم Max به عنوان مدل کنندهی تابع	fci-max
$g(\cdot)$ الگوریتم Mean به عنوان مدل کننده ی تابع	fci-mean
$g(\cdot)$ به عنوان مدل کنندهی تابع K-Mean الگوریتم	fci-k-mean
$g(\cdot)$ به عنوان مدل کننده Const-One الگوریتم	fci-const-one
- جستجوی کاملا مکاشفانه محیط	Rand-Walk

آزمایشها عاملها از ۲۰۰ چرخه یادگیری بهره میبرند و در هر چرخه عامل ۵ بار تلاش میکند که در مجموع ازمایشها عاملها از ۲۰۰ چرخه یادگیری بهره میبرند و در هر چرخه عامل ۵ بار تلاش صورت میگیرد. کلیه ی پارامترهای مربوط قسمت یادگیری مستقل الگوریتم ۱ اعمال شده در آزمایشات این فصل منطبق بر پارامترهای تعریف شده در [۱۲] میباشد که نتایج قایل قیاس باشند. در ضمن در این فصل اختصارهای جدول ۴-۱ را نیز داریم.

در این فصل در حالت کلی ما در دو بخش سیاست انتخاب عمل «بولتزمن» و «3-حریصانه» (که از این به بعد، به اختصار «تابع بولتزمن» و «تابع حریصانه» خطاب خواهیم کرد.) به مقایسه ی نتایج می پردازیم. طبق آنچه که در ادامه مشاهده خواهیم کرد چه در صورت استفاده از تابع بولتزمن و چه تایع حریصانه روش پیشنهادی چه در سرعت یادگیری و چه در کیفیت یادگیری بهتر از روش SEP می باشد.

برای اینکه نشان دهیم که استفاده از انتگرال فازی در بهبود نتیجه تاثیر بسزایی دارد از تابع میانگین وزنی (یا به اختصار wsum) نیز استفاده کردهایم. بدین صورت که بجای اینکه بعد از استخراج میزان خبرگی هر عامل جداول Q آنها را به نسبت خبرگیای که دارند باهم جمع میکنیم تا جدول Q مشارکتی تولید شود. تابع میانگین وزنی روشی است که در پژوهشهای اخیر به کررات از آن استفاده کردهاند [-17]. که یکی از اهداف ما در این پژوهش نمایش قدرت انتگرالهای فازی در کاربردهای مختلف میباشد به طوری که اگر در پژوهشهای قبلی به درستی از انتگرال فازی بهره برده می شد می توان به قطع گفت که می توانستند نتایج بهتری

¹Weighted Sum

را بدست بياورند.

۱_۳_۴ مقایسه در محیط پلکان مارپیچ

آزمایشهای مربوط به این قسمت در ۴ بخش صورت گرفته است؛ ۱. مقایسه در سرعت و کیفیت یادگیری، ۲. مقایسه در پیچیدگی زمانی، ۳. مقایسه در میزان باروری، ۴. مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری می باشد.

سياست انتخاب عمل «بولتزمن»

مقایسه در سرعت و کیفیت یادگیری: نتایج حاصل از اجرای الگوریتمها در محیط پلکان مارپیچ در شکل ۴-۴ آمده است. در این شکل محور افقی تعداد تلاشهای یادگیری عامل را نشان می دهد که در تلاش اول عامل بدون دانش اولیه شروع به تعامل با محیط می کند و در تلاش ۱۱۰۰م عامل به اجرای خود پایان می دهد. محور عمودی نموار میانگین تجمعی تعداد قدم های عامل را نشان می دهد. اعداد کناری برچسبها (گوشه بالا سمت راست) متوسط تعداد قدم در آخرین تلاش عامل می باشد که انتظار می رود عامل آگاهی نسبی کاملی از محیط دارد را نشان می دهد که این عدد هرچقدر کمتر باشد نشان می دهد که عامل در طی رسیدن به هدف تعداد گام کمتری برداشته است و در نتیجه دانش و شناخت بهتری از محیط دارد.

همانطور که مشاهده می شود روش SEP دارای ۲٪ بهبود نسبت به IL می باشد در حالی که روش پشنهادی در زمانی که از انتگرال فازی استفاده می کند در بدترین حالت دارای ۱۸٪ بهبود و در بهترین حالات دارای ۲۳٪ بهبود می باشد که نسبت به روش SEP تقریبا ۹ الی ۱۶ برابر نتیجه را بهبود داده است. در صورتی که از میانگین وزنی بجای انتگرال فازی استفاده شود نتایج با اختلاف اندکی (کمتر از ۱-٪) بدتر از یادگیری IL بوده است که نشان می دهد که استفاده از انتگرال فازی چقدر می تواند نسبت به روشهای سنتی و معمولی چون میانگین وزنی موثر واقع شود. نتایج این قسمت را می توان در جدول ۲-۲ خلاصه کرد.

مقایسه در پیچیدگی زمانی: در این قسمت به مقایسه ی پیچیدگی زمانی روش پیشنهادی با روش SEP مورد بررسی قرار می گیرد، برای محاسبه ی پیچیدگی زمانی به روش ریاضی کار بسیار دشوار و پرخطایی میباشد؛ در اینجا ما بجای محاسبه ی پیچیدگی زمانی ریاضی دو الگوریتم از مدت زمانی که طول می کشد برنامه در سیستم اجرا و خاتمه یابد استفاده می کنیم. در شکل ۴_۵ میانگین زمانی ۲۰ اجرای مستقل برحسب میلی ثانبه به ازای هریک از تعداد تلاش ها آورده شده است. همان طور که در این شکل مشاهده ی می شود الگوریتم II دارای حداکثر سرعت اجرا می باشد زیرا که هیچ سربار محاسباتی یادگیری مشترک را ندارد؛ هدف یادگیری اشتراکی این است

شکل ۴_۴: مقایسه در سرعت و کیفیت یادگیری با تابع بولتزمن با تابع بولتزمن در محیط پلکان مارپیچ

جدول ۲_۲: مقایسه در میزان درصد بهبود کیفیت یادگیری در محیط پلکان مارپیچ با تابع بولتزمن

					REFN	ИAT	
	IL	SEP	wsum	fci-mean	fci-max	fci-k-mean	fci-const-one
IL	0.0						
SEP	2.2	0.0					
wsum	-0.2	-2.3	0.0				
fci-mean	14.9	12.5	15.1	0.0			
fci-max	18.0	15.5	18.2	2.7	0.0		
fci-k-mean	24.0	21.4	24.2	7.9	5.1	0.0	
fci-const-one	33.6	30.7	33.8	16.2	13.2	7.7	0.0

شکل ۴_۵: مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلی ثانیه با تابع بولتزمن در محیط پلکان مارپیچ

که میخواهد در ازای یک سری سربار محاسباتی کیفیت و سرعت «یادگیری» عاملها را افزایش دهد. با در SEP نظر داشتن این موضوع همانطور که قبلا دیدیم روش پیشنهادی سرعت و کیفیت یادگیری را بیشتر از روش SEP نظر داشتن این موضوع همانطور که قبلا دیدیم روش پیچیدگی زمانی کمتری نسبت به روش SEP میباشد که نشان از بهینهگی روش پیشنهادی نسبت به روش SEP میدهد.

مقایسه در میزان باروری:

تعریف $\Psi_Q(\mathcal{E})$ وجود دارد که در محیط \mathcal{E} فعالیت می کند و دانش خود را در جدولی مانند Q ذخیره می کند، سرعت باروری الگوریتم $\psi_Q(\mathcal{E})$ را سرعت همگرایی حداکثر مقدار جدول Q به سمت حداکثر پاداش محیط قابل دریافت تعریف می کنیم.

تعویف $\psi_Q(\mathcal{E})$ که در محیط \mathcal{E} فعالیت می کند و دانش خود را در جدولی مانند \mathcal{E} ذخیره میکند، تعریف میکنیم.

فرضیه P_1 (معیاری جدید برای سرعت یادگیری) و طبق تعاریف P_1 و P_2 الگوریتمی میزان باروری بیشتری دارد که سریع تر مقادیر جدول P_2 خود را به سمت بیشنه مقداری که می توانند داشته باشد (یعنی بیشنه پاداشی که از محیط می توانند کسب کند) سوق دهد. معمولا این در الگوریتمهای یادگیری تقویتی P_2 این کار با تنظیم مقدار سرعت یادگیری P_3 صورت می گیرد که باعث

شكل ۴_9: نمودار باروري الگوريتمها مختلف با تابع بولتزمن در محيط پلكان مارپيچ

می شود الگوریتمها با سرعت بیشتری به یا دگیری نحوهی تعامل با محیط بپردازند. لذا در شرایط یکسان می توان گفت الگوریتمی بهتر عمل می کند که نحوهی تعامل با محیط را سریع تر نسبت به دیگر الگوریتمها یاد می گیرید و میزان باروری بیشتری داشته باشد.

در شکل 4 – 4 آورده شده است حداکثر میزان جدول Q روشها در هر تلاش آورده شده است. همانطور که قبلا در تعریف محیط پلکان مارپیچ آورده شده است حداکثر مقدار پاداش این محیط مقدار ۱۰ میباشد لذا همانطور که مشاهده می شود الگوریتمها با شیبهای متفاتی حداکثر مقدار جداول خود را به سمت حداکثر مقدار پاداش قابل دریافت از محیط سوق می دهند. در این شکل سرعت باروری شیب نمودار در هر تلاش می باشد و میزان باروری مساحت زیر نمودار می باشد.

در شکل 2 منظور از RAND-WALK حرکت کاملا تصادفی می باشد، به این صورت که عامل بعد از هر حرکت جدول Q خود را بروز رسانی می کند ولی هنگام انتخاب عمل در تابع بولتزمن مقدار $\infty+\to \tau$ در نظر گرفته می شود تا میزان احتمال تمامی حرکتها یکسان شود و در نتیجه حرکتی به صورت تصادفی انتخاب شود. همانطور که در قسمتهای قبل دیدیم روش پیشنهادی هم در کیفیت و هم در سرعت یادگیری بهبود چشمگیری دارد و از طرفی هم در نمودار 2 دارای بیشترین میزان باروری (مساحت زیرنمودار) حداکثر مقدار جدول Q می باشد که این مساله تایید کننده ی فرضیه 2 می باشد.

دلیل وجود نتایج آزمایش اجرای RAND-WALK در این قسمت این است که بررسی کنیم در صورتی که SEP عاملها اگر عامل بصورت کورکورانه حرکت کند روش معرفی شده و SEP چقدر در میزان بارور شدن جدول Q عاملها موثرند؟ به عبارت دیگر، در صورتی که استراتژی خاصی جهت انتخاب عمل وجود نداشته باشد، روشها چقدر قدرت باروری دارند؟ همانطور که در شکل P شاهده میکنیم روش معرفی شده در زمانی که به صورت تصادفی اقدام به انتخاب عمل میکند بیشتر از زمانی که P با استفاده از تابع بولتزمن اقدام به انتخاب عمل میکند جدول P را بارور میکند که از قدرت روش ارائه شده خبر می دهد. همچنین در مورد روش P میبینیم که در زمانی که بصورت تصادفی اقدام به عمل میکند باروری کمتری نسبت به روش پیشنهادی و P دارد؛ یعنی میزان باروری روش P وابستگی زیادی به سیاست انتخاب عمل دارد و در صورت نداشتن سیاست انتخاب عمل خاصی بشدت عملکردش کاسته می شود ولی در روش پیشنهادی میزان این وابستگی از شدت کمتری برخوردار است که از دیگر امتیازات مثبت روش پیشنهادی می باشد.

مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری: در این مقایسه سعی شده است که تاثیر یک فاکتور بنیادی سیستمهای چندعامله مشارکتی را مورد بررسی قرار دهیم، و آن میزان تاثیر پذیری روشهای مورد مقایسه با افزایش تعداد عاملها میباشد. در تئوری سیستمهای چندعامله مشارکتی دیدگاه معقول براین است که اثر تعداد عاملها در کیفیت و سرعت یادگیری مشارکتی باید مثبت باشد. درغیر این صورت سیستمهای چندعاملهای که تعداد عاملها تاثیری در خروجی سیستم نداشته باشد، دیگر ماهیت سیستمهای چند عامله را ندارد.

همانطور که در شکل + ۷ آمده است، روش پیشنهادی و روش SEP به ازای تعداد عاملهای + ۷، ۵، ۵، ۱۰ و ۲۰ عدد به تعداد + ۱۰ بار اجرا درآمده و میانگین اجراها به نمودار کشیده شده است. همانطور که میبینیم روش SEP در زمانی + ۱۰ عامل در حال یادگیری و اشتراک گذاری دانشهای خود هستند نسبت به زمانی که فقط + عامل در حال تعامل مشارکتی با محیط هستند فقط + ۱۰ در خروجی الگوریتم تاثیر مثبت داشته است. این در حالی است که در همین شرایط میزان بهبود نتیجهی روش پیشنهادی + ۵۶ میباشد. که نشان میدهد روش SEP نسبت به افزایش تعداد عاملها رفتاری تقریبا خنثی از خود نشان میدهد درحالی که روش پیشنهادی در ازای افزایش تعداد عاملها به دلیل اینکه دانش جمعی نیز افزایش میباید کیفیت خروجی آن نیز بهتر میشود.

نتیجه گیری: نتیجه ای که از مقایسه ی روش پیشنهادی در هر چهار مقایسه ی بالا می توان گرفت این است که روش پیشنهادی به روش SEP در محیط پلکان مارپیچ و سیاست انتخاب عمل بولتزمن داده است.

شکل ۴_۷: مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع بولتزمن در محیط پلکان مارپیچ

ε سیاست انتخاب عمل ε حریصانه

مقایسه در سرعت و کیفیت یادگیری: نتایج حاصل از اجرای الگوریتمها در محیط پلکان مارپیچ در شکل ۴_۸ آمده است. شرایط این آزمایش به مشابه شرایط آزمایش با تابع بولتزمن میباشد.

همانطور که مشاهده می شود روش SEP دارای 8 - 8 بهبود نسبت به II می باشد در حالی که روش پشنهادی در زمانی که از انتگرال فازی استفاده می کند در بدترین حالت دارای 8 /، بهبود و در بهترین حالات دارای 8 8 بهبود می باشد که نسبت به روش SEP تقریبا 8 الی 8 برابر نتیجه را بهبود داده است. در صورتی که از میانگین وزنی بجای انتگرال فازی استفاده شود نتایج با اختلافی حدود 8 - 8 بدتر از یادگیری II بوده است که نشان می دهد که استفاده از انتگرال فازی چقدر می تواند نسبت به روشهای سنتی و معمولی چون میانگین وزنی موثر واقع شود. البته در شکل 8 - 8 باید توجه کرد که روش SEP در همان ابتدای کار خود به شدت میانگین حرکت عاملها را کاهش داده ولی به دلیل ماهیت الگوریتم 8 اشباع جداول الگوریتم توانایی ادامه ی سرشکن کردن بیشتر میانگین حرکت عاملها را ندارد. میانگین نتایج این قسمت را می توان در جدول 8 - 8 خلاصه کرد.

شکل ۴_۸: مقایسه در سرعت و کیفیت یادگیری با تابع حریصانه در محیط پلکان مارپیچ

جدول ۴_٣: مقایسه در میزان درصد بهبود کیفیت یادگیری در محیط پلکان مارپیچ با تابع حریصانه

			REFMAT				
	IL	SEP	wsum	fci-mean	fci-max	fci-k-mean	fci-const-one
IL	0.0						
SEP	-3.0	0.0					
wsum	-7.3	-4.4	0.0				
fci-mean	0.6	3.7	8.5	0.0			
fci-max	12.2	15.6	20.9	11.5	0.0		
fci-k-mean	24.0	27.8	33.7	23.2	10.5	0.0	
fci-const-one	34.5	38.7	45.1	33.7	20.0	8.5	0.0

شکل ۴_۹: مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلیثانیه با تابع حریصانه در محیط پلکان مارپیچ

مقایسه در پیچیدگی زمانی: در شکل ۴_۹ میانگین زمانی ۲۰ اجرای مستقل برحسب میلی ثانبه به ازای هریک از تعداد تلاشها آورده شده است. همان طور که در این شکل مشاهده یی میشود الگوریتم IL دارای حداکثر سرعت اجرا می باشد زیرا که هیچ سربار محاسباتی یادگیری مشترک را ندارد؛ هدف یادگیری اشتراکی این است که میخواهد در ازای یک سری سربار محاسباتی کیفیت و سرعت «یادگیری» عاملها را افزایش دهد. با در نظر داشتن این موضوع همان طور که قبلا دیدیم روش پیشنهادی سرعت و کیفیت یادگیری را بیشتر از روش SEP می باشد که نشان افزایش می دهد و در اینجا نیز می بینیم که دارای پیچیدگی زمانی کمتری نسبت به روش SEP می باشد که نشان از بهینه گی روش پیشنهادی نسبت به روش SEP می دهد.

مقایسه در میزان باروری: در شکل ۲-۱۰ میزان باروری II از کلیهی روشها بهتر بوده (با اندک اختلاف نسبت روش پیشنهادی) ولی همچنان باروری روش پیشنهادی از روش SEP بیشتر بوده است و همچون آزمایش مشابه با تابع بولتزمن در اینجا نیز نشان داده شده است که روش SEP کاملا وابسته است به اینکه در هنگام انتخاب عمل بر اساس دانش عامل عمل شود و اگر عامل بدون درنظر گرفتن دانش عامل حرکتی اتخاذ کند میزان باروری عامل بشدت تحت تاثیر قرار میگیرد در حالی که در روش پیشنهادی در شرایط یکسان از کلیه الگوریتمها میزان

شكل ۴_۱۰: نمودار باروري الگوريتمها مختلف با تابع حريصانه در محيط پلكان مارپيچ

باروری بیشتری دارد.

مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری: همانطور که در شکل ۴-۱۱ آمده است، روش پیشنهادی و روش SEP به ازای تعداد عاملهای ۲، ۳، ۵، ۱۰ و ۲۰ عدد به تعداد ۲۰ بار اجرا درآمده و میانگین اجراها به نمودار کشیده شده است. همانطور که میبینیم روش SEP در زمانی ۲۰ عامل در حال یادگیری و اشتراک گذاری دانشهای خود هستند نسبت به زمانی که فقط ۲ عامل در حال تعامل مشارکتی با محیط هستند ۸-٪ در خروجی الگوریتم تاثیر منفی داشته است؛ بدین معنی که در زمانی که از تابع حریصانه استفاده شود روش SEP به افزایش تعداد عامل فقط منجر به بدتر شدن عملکرد عاملها در یادگیری مشارکتی میشود. این در حالی است که در همین شرایط میزان بهبود نتیجهی روش پیشنهادی «۹۲ میباشد. که نشان می دهد روش پیشنهادی در ازای افزایش تعداد عاملها به دلیل اینکه دانش جمعی نیز افزایش می یابد کیفیت خروجی آن نیز بطور چشمگیری بهتر می شود. در حالی که در روش SEP اگر کار نتایج بدتر نشود بهتر نمی شود که از ضعف بزرگ روش SEP خبر می دهد.

شكل ۴_۱۱: مقايسه تاثير تعداد عاملها ميزان كيفيت و سرعت يادگيري با تابع حريصانه در محيط پلكان مارپيچ

نتیجه گیری: نتیجه ای که از مقایسه ی روش پیشنهادی در هر چهار مقایسه ی بالا می توان گرفت همچون نتیجه ای که از نتایج تابع بولتزمن، روش پیشنهادی بهبود چشمگیری به روش SEP در محیط پلکان مارپیچ و سیاست انتخاب عمل حریصانه داده است.

مقایسهی بین نتایج حاصل از سیاست انتخاب عمل بولتزمن و ε - حریصانه

در حالت کلی در محیط پلکان مارپیچ تابع بولتزمن نتایج یکنواتر و پایدارتری نسبت به تابع حریصانه از خود نشان داد و در هر دوی این توابع روش پیشنهادی نتیجه ی بهتری نسبت به روش SEP ارائه داد. در این قسمت به مقایسه ی نتایج بدست آمده توسط هر دو روش در هر دو سیاست انتخاب عمل می پردازیم.

مقایسه در سرعت و کیفیت یادگیری: مقایسه ی این قسمت را بطور خلاصه می توان در جدول ۱۰-۱۰ دید. که نسبت کیفیت نتیجه ی حاصل از تابع حریصانه نسبت به تابع بولتزمن همگی بزرگتر از ۱ می باشد، که نشان می دهد که استفاده از تابع حریصانه در کیفیت خروجی تاثیری منفی دارد.

¹Stable

جدول ۴_۴: مقایسه در سرعت و کیفیت یادگیری نسبت کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT
ε -greedy	SEP	7.27	9.42
ε -gr	REFMAT	5.20	6.79

جدول ۴_۵: مقایسه در نسبت میانگین پیچیدگی زمانی حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT	IL
Ŋ	SEP	1.64	2.05	10.23
-greedy	REFMAT	1.72	2.15	10.73
Ŵ	IL	0.56	0.70	3.49

مقایسه در پیچیدگی زمانی: در جدول ۱۱-۴ نسبت میانگین پیچیدگی زمانی روشها آمده است، قطر اصلی این جدول همگی مقادیر بزرگتر از ۱ دارد که نشان میدهد هر روش در زمانی که از تابع حریصانه استفاده میکند زمان بیشتری را تلف میکند(صرف جستجوی بیمورد محیط میکند) نسبت به زمانی که از تابع بولتزمن استفاده میکند. این مساله نشان میدهد که تابع بولزمن سریعتر عامل را به سمت اهداف هدایت میکند – که این نکته در قسمت «مقایسهی سرعت و کیفیت یادگیری» نیز قابل استنتاج است.

مقایسه در میزان باروری: همانطور که در جدول * ۱۲ آمده است همه ی مقادیر نسبتها بیشتر از ۱ میباشد که بدین معنی است که استفاده از تابع حریصانه با این حال که کیفیت و سرعت یادگیری کمتری نسبت به تابع بولتزمن دارد و عاملها در حالت کلی زمان زیادی صرف گشت و گذار در محیط میکند؛ به نسبت باعث باروری بیشتر جدول Q میشود.

مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری: در جدول ۴_۱۳ نسبت شیب تاثیر تعداد عاملها میزان کیفیت نتیجه ی حاصل از تابع حریصانه نسبت به تابع بولتزمن آمده است؛ همانطور که مشاهده می شود در زمانی که از تابع حریصانه استفاده می شود در روش پیشنهادی تاثیر تعداد عاملها به مراتب بیشتر از زمانی است که از تابع بولتزمن استفاده می کنیم. این در حالی می باشد که در روش SEP اضافه کردن عاملها به محیط تفاوت زیادی در دانش خروجی الگوریتم در هر دو تابع ایجاد نمی کند.

جدول ۴_9: مقایسه در نسبت میزان باروری حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT	IL
Ŋ	SEP	1.08	1.25	1.23
-greedy	REFMAT	1.03	1.20	1.18
ώ	IL	1.09	1.27	1.25

جدول ۴_٧: مقايسه نسبت شيب تاثير تعداد عاملها ميزان كيفيت نتيجهى حاصل از تابع حريصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT
reedy	SEP	0.59	0.09
arepsilon-gr	REFMAT	73.02	10.67

۲_۳_۴ مقایسه در محیط صید و صیاد

آزمایشهای مربوط به این قسمت در ۴ بخش صورت گرفته است؛ ۱. مقایسه در سرعت و کیفیت یادگیری، ۲. مقایسه در پیچیدگی زمانی، ۳. مقایسه در میزان باروری، ۴. مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری میباشد.

سياست انتخاب عمل «بولتزمن»

مقایسه در سرعت و کیفیت یادگیری: نتایج حاصل از اجرای الگوریتمها در محیط صید و صیاد در شکل ۴-۱۲ آمده است. در این شکل محور افقی تعداد تلاشهای یادگیری عامل را نشان میدهد که در تلاش اول عامل بدون دانش اولیه شروع به تعامل با محیط میکند و در تلاش ۱۰۰۰م عامل به اجرای خود پایان میدهد. محور عمودی نموار میانگین تجمعی تعداد قدمهای عامل را نشان میدهد. اعداد کناری برچسبها (گوشه بالا سمت راست) متوسط تعداد قدم در آخرین تلاش عامل میباشد که انتظار میرود عامل آگاهی نسبی کاملی از محیط دارد را نشان میدهد که این عدد هرچقدر کمتر باشد نشان میدهد که عامل در طی رسیدن به هدف تعداد گام کمتری برداشته است و در نتیجه دانش و شناخت بهتری از محیط دارد.

همانطور که مشاهده می شود روش SEP دارای ۳٪ بهبود نسبت به IL می باشد در حالی که روش پشنهادی در زمانی که از انتگرال فازی استفاده می کند در بدترین حالت دارای ۱۷٪ بهبود و در بهترین حالات دارای ۲۵٪ بهبود می باشد که نسبت به روش SEP تقریبا ۹ الی ۱۶ برابر نتیجه را بهبود داده است. در صورتی که از میانگین

شکل ۴_۱۲: مقایسه در سرعت و کیفیت یادگیری در محیط صید و صیاد با تابع بولتزمن با تابع بولتزمن در محیط صید و صیاد

جدول ۴_۸: مقایسه در میزان درصد بهبود کیفیت یادگیری در محیط صید و صیاد با تابع بولتزمن

			REFMAT				
	IL	SEP	wsum	fci-mean	fci-max	fci-k-mean	fci-const-one
IL	0.0						
SEP	3.3	0.0					
wsum	3.1	-0.2	0.0				
fci-mean	16.7	13.0	13.2	0.0			
fci-max	17.3	13.5	13.7	0.5	0.0		
fci-k-mean	19.0	15.2	15.4	2.0	1.4	0.0	
fci-const-one	24.9	20.9	21.1	7.0	6.4	4.9	0.0

SEP) مشاهده می شود (همانند (عمانند انتگرال فازی استفاده شود حدود 7 بهبود نسبت به یادگیری IL مشاهده می شود (همانند که نشان می دهد که استفاده از انتگرال فازی چقدر می تواند نسبت به روشهای سنتی و معمولی چون میانگین وزنی موثر واقع شود. نتایج این قسمت را می توان در جدول -1 خلاصه کرد.

مقایسه در پیچیدگی زمانی: در این قسمت به مقایسه ی پیچیدگی زمانی روش پیشنهادی با روش SEP مورد بررسی قرار میگیرد، برای محاسبه ی پیچیدگی زمانی به روش ریاضی کار بسیار دشوار و پرخطایی میباشد؛ در اینجا ما بجای محاسبه ی پیچیدگی زمانی ریاضی دو الگوریتم از مدت زمانی که طول میکشد برنامه در سیستم اجرا و خاتمه یابد استفاده میکنیم. در شکل ۴–۱۳ میانگین زمانی ۲۰ اجرای مستقل برحسب میلی ثانبه به ازای هریک از تعداد تلاشها آورده شده است. همانطور که در این شکل مشاهده ی میشود الگوریتم IL دارای حداکثر سرعت اجرا میباشد زیرا که هیچ سربار محاسباتی یادگیری مشترک را ندارد؛ هدف یادگیری اشتراکی این است که میخواهد در ازای یک سری سربار محاسباتی کیفیت و سرعت «یادگیری» عاملها را افزایش دهد. با در نظر داشتن این موضوع همانطور که قبلا دیدیم روش پیشنهادی سرعت و کیفیت یادگیری را بیشتر از روش SEP میباشد که نشان افزایش میدهد و در اینجا نیز میبینیم که دارای پیچیدگی زمانی کمتری نسبت به روش SEP میباشد که نشان از بهینهگی روش پیشنهادی نسبت به روش SEP می دهد.

مقایسه در میزان باروری: همانطور که در شکل 4 - 4 مشاهده میکنیم روش معرفی شده در زمانی که به صورت تصادفی اقدام به انتخاب عمل میکند بیشتر از زمانی که IL و SEP با بصورت تصادفی اقدام به انتخاب عمل میکند جدول Q را بارور میکند که از قدرت روش ارائه شده خبر می دهد. همچنین در مورد روش SEP می بینیم که در زمانی که بصورت تصادفی اقدام به عمل میکند باروری کمتری نسبت به روش پیشنهادی و II دارد؛ یعنی میزان باروری روش SEP وابستگی زیادی به سیاست انتخاب عمل دارد و در صورت نداشتن سیاست انتخاب عمل خاصی بشدت عملکردش کاسته می شود ولی در روش پیشنهادی میزان این وابستگی از شدت کمتری برخوردار است که از دیگر امتیازات مثبت روش پیشنهادی می باشد – همانند نتایج حاصله در محیط پلکان مارپیج.

مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری: همان طور که در شکل ۴ ـ ۱۵ آمده است، روش SEP در زمانی ۲۰ عامل در حال یادگیری و اشتراک گذاری دانشهای خود هستند نسبت به زمانی که فقط ۲ عامل در حال تعامل مشارکتی با محیط هستند فقط ۲٪ در خروجی الگوریتم تاثیر مثبت داشته است. این در حالی است که در همین شرایط میزان بهبود نتیجه ی روش پیشنهادی ۳۸٪ میباشد. که نشان می دهد روش SEP نسبت

شکل ۴_۱۳: مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلیثانیه با تابع بولتزمن در محیط صید و صیاد

شکل ۴_۱۴: نمودار باروری الگوریتمها مختلف با تابع بولتزمن در محیط صید و صیاد

شکل ۴_۱۵: مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع بولتزمن در محیط صید و صیاد

به افزایش تعداد عاملها رفتاری تقریبا خنثی از خود نشان میدهد درحالی که روش پیشنهادی در ازای افزایش تعداد عاملها به دلیل اینکه دانش جمعی نیز افزایش مییابد کیفیت خروجی آن نیز بهتر میشود.

نتیجه گیری: نتیجه ای که از مقایسه ی روش پیشنهادی در هر چهار مقایسه ی بالا می توان گرفت این است که روش پیشنهادی بهبود چشم گیری به روش SEP در محیط صید و صیاد و سیاست انتخاب عمل بولتزمن داده است.

ε سیاست انتخاب عمل «عـ ε صریصانه»

مقایسه در سرعت و کیفیت یادگیری: نتایج حاصل از اجرای الگوریتمها در محیط صید و صیاد در شکل ۴_۱۶ آمده است. شرایط این آزمایش به مشابه شرایط آزمایش با تابع بولتزمن میباشد.

همانطور که مشاهده می شود روش SEP دارای ۱ - ٪ بهبود نسبت به IL می باشد در حالی که روش پشنهادی در زمانی که از انتگرال فازی استفاده می کند در بدترین حالت دارای ٪۱۷ بهبود و در بهترین حالات دارای ٪۵۳ بهبود می باشد که نسبت به روش SEP تقریبا ۱۹ الی ۵۵ برابر نتیجه را بهبود داده است. در صورتی که از میانگین وزنی بجای انتگرال فازی استفاده شود نتایج با اختلافی حدود ٪۱۷ بهتر از یادگیری IL بوده است که

شکل ۱۶-۴: مقایسه در سرعت و کیفیت یادگیری با تابع حریصانه در محیط صید و صیاد جدول ۱۶-۴: مقایسه در میزان درصد بهبود کیفیت یادگیری در محیط صید و صیاد با تابع حریصانه

					REFN	ИAТ	
	IL	SEP	wsum	fci-mean	fci-max	fci-k-mean	fci-const-one
IL	0.0						
SEP	-1.3	0.0					
wsum	16.7	18.3	0.0				
fci-mean	31.7	33.4	12.8	0.0			
fci-max	36.8	38.6	17.2	3.9	0.0		
fci-k-mean	39.6	41.5	19.6	6.0	2.1	0.0	
fci-const-one	53.5	55.5	31.5	16.6	12.2	10.0	0.0

نشان می دهد که استفاده از انتگرال فازی چقدر می تواند نسبت به روشهای سنتی و معمولی چون میانگین وزنی موثر واقع شود. میانگین نتایج این قسمت را می توان در جدول ۴_۹ خلاصه کرد.

شکل ۴_۱۷: مقایسه در پیچیدگی زمانی روشها به ازای تعداد تلاشهای متفاوت برحسب میلی ثانیه با تابع حریصانه در محیط صید و صیاد

مقایسه در پیچیدگی زمانی: در شکل ۱۷-۴ نیز میبینیم که در محیط صید و صیاد نیز روش پیشنهادی دارای پیچیدگی زمانی کمتری نسبت به روش SEP میباشد که نشان از بهینهگی روش پیشنهادی نسبت به روش SEP میدهد.

مقایسه در میزان باروری: در شکل ۱۸-۱۸ میزان باروری II از کلیهی روشها بهتر بوده (با اندک اختلاف نسبت روش پیشنهادی) ولی همچنان باروری روش پیشنهادی از روش SEP بیشتر بوده است و همچون آزمایش مشابه با تابع بولتزمن در اینجا نیز نشان داده شده است که روش SEP کاملا وابسته است به این که در هنگام انتخاب عمل بر اساس دانش عامل عمل شود و اگر عامل بدون درنظر گرفتن دانش عامل حرکتی اتخاذ کند میزان باروری عامل بشدت تحت تاثیر قرار می گیرد در حالی که در روش پیشنهادی در شرایط یکسان از کلیه الگوریتمها میزان باروری بیشتری دارد.

مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری: همانطور که در شکل ۴_۱۹ آمده است، روش پیشنهادی و روش SEP به ازای تعداد عاملهای ۲، ۳، ۵، ۱۰ و ۲۰ عدد به تعداد ۲۰ بار اجرا درآمده و میانگین اجراها به نمودار کشیده شده است. همانطور که میبینیم روش SEP در زمانی ۲۰ عامل در حال

شکل ۴_۱۸: نمودار باروری الگوریتمها مختلف با تابع حریصانه در محیط صید و صیاد

یادگیری و اشتراک گذاری دانشهای خود هستند نسبت به زمانی که فقط ۲ عامل در حال تعامل مشارکتی با محیط هستند ۹-٪ در خروجی الگوریتم تاثیر منفی داشته است؛ بدین معنی که در زمانی که از تابع حریصانه استفاده شود روش SEP به افزایش تعداد عامل فقط منجر به بدتر شدن عملکرد عاملها در یادگیری مشارکتی میشود. این در حالی است که در همین شرایط میزان بهبود نتیجه یی روش پیشنهادی ۵۵٪ میباشد. که نشان میدهد روش پیشنهادی در ازای افزایش تعداد عاملها به دلیل اینکه دانش جمعی نیز افزایش میبابد کیفیت خروجی آن نیز بطور چشمگیری بهتر میشود. در حالی که در روش SEP اگر کار نتایج بدتر نشود بهتر نمیشود که از ضعف بزرگ روش SEP خبر میدهد.

نتیجه گیری: نتیجه ای که از مقایسه ی روش پیشنها دی در هر چهار مقایسه ی بالا می توان گرفت همچون نتیجه ای که از نتایج تابع بولتزمن، روش پیشنها دی بهبود چشم گیری به روش SEP در محیط صید و صیاد و سیاست انتخاب عمل حریصانه داده است.

شکل ۴-۱۹: مقایسه تاثیر تعداد عاملها میزان کیفیت و سرعت یادگیری با تابع حریصانه در محیط صید و صیاد

مقایسهی بین نتایج حاصل از سیاست انتخاب عمل بولتزمن و $-\varepsilon$ حریصانه

در حالت کلی در محیط پلکان مارپیچ تابع بولتزمن نتایج یکنواتر و پایدارتری نسبت به تابع حریصانه از خود نشان داد و در هر دوی این توابع روش پیشنهادی نتیجه ی بهتری نسبت به روش SEP ارائه داد. در این قسمت به مقایسه ی نتایج بدست آمده توسط هر دو روش در هر دو سیاست انتخاب عمل می پردازیم.

مقایسه در سرعت و کیفیت یادگیری: مقایسه ی این قسمت را بطور خلاصه می توان در جدول ۱۰-۱۰ دید. که نسبت کیفیت نتیجه ی حاصل از تابع حریصانه نسبت به تابع بولتزمن همگی بزرگتر از ۱ می باشد، که نشان می دهد که استفاده از تابع حریصانه در کیفیت خروجی تاثیری منفی دارد.

مقایسه در پیچیدگی زمانی: در جدول ۱-۱۱ نسبت میانگین پیچیدگی زمانی روشها آمده است، قطر اصلی این جدول همگی مقادیر بزرگتر از ۱ دارد که نشان میدهد هر روش در زمانی که از تابع حریصانه استفاده میکند زمان بیشتری را تلف میکند(صرف جستجوی بیمورد محیط میکند) نسبت به زمانی که از تابع بولتزمن استفاده میکند. این مساله نشان میدهد که تابع بولزمن سریعتر عامل را به سمت اهداف هدایت میکند – که این نکته

¹Stable

جدول ۲-۱۰: مقایسه در سرعت و کیفیت یادگیری نسبت کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT
-greedy	SEP	8.07	9.75
ε -gr	REFMAT	5.19	6.27

جدول ۲۱۱؛ مقایسه در نسبت میانگین پیچیدگی زمانی حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT	IL
ly .	SEP	3.27	4.10	6.95
-greedy	REFMAT	2.74	3.44	5.83
ω	IL	1.31	1.65	2.79

در قسمت «مقایسهی سرعت و کیفیت یادگیری» نیز قابل استنتاج است.

مقایسه در میزان باروری: همانطور که در جدول 4 –۱۲ آمده است اکثر مقادیر نسبتها بیشتر از ۱ میباشد که بدین معنی است که استفاده از تابع حریصانه با این حال که کیفیت و سرعت یادگیری کمتری نسبت به تابع بولتزمن دارد و عاملها در حالت کلی زمان زیادی صرف گشت و گذار در محیط میکند؛ به نسبت باعث باروری بیشتر جدول Q می شود.

مقایسه تاثیر تعداد عامل ها میزان کیفیت و سرعت یادگیری: در جدول ۴_۱۳ نسبت شیب تاثیر تعداد عامل ها میزان کیفیت نتیجه ی حاصل از تابع حریصانه نسبت به تابع بولتزمن آمده است؛ همانطور که مشاهده می شود در زمانی که از تابع حریصانه استفاده می شود در روش پیشنهادی تاثیر تعداد عامل ها به مراتب بیشتر از زمانی است که از

جدول ۲-۲: مقایسه در نسبت میزان باروری حاصل از استفاده تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT	IL
arepsilon-greedy	SEP	1.19	0.82	1.07
	REFMAT	1.49	1.03	1.35
	IL	1.17	0.80	1.05

جدول ۲-۱۳: مقایسه در نسبت شیب تاثیر تعداد عاملها میزان کیفیت نتیجهی حاصل از تابع حریصانه نسبت به تابع بولتزمن

Boltzmann

		SEP	REFMAT
ε -greedy	SEP	-2.52	-0.07
	REFMAT	379.32	10.65

تابع بولتزمن استفاده میکنیم. این در حالی میباشد که در روش SEP اضافه کردن عاملها به محیط نه تنها به بهبود دانش خروجی الگوریتم کمکی نمیکند بلکه نتایج را بدتر نیز میکند!

نتیجه گیری: با مقایسه ی بین تاثیر توابع حریصانه و بولتزمن در خروجی الگوریتم ها به این نتیجه می توان رسید که تابع بولتزمن رفتاری مطمئن تر دارد و باعث می شود که روش ها سریع تر همگرا شود.

۴_۴ بررسی تاثیر تعداد نواحی محیط در کیفیت و سرعت یادگیری عاملها در روش پیشنهادی

همانطور که در تعریف ۳_۱ آورده شده است، بنا به معیار خبرگی معرفی شده در این پژوهش باید محیط به تعدادی ناحیه افزار شود و سپس میزان حضور عامل در هر ناحیه را سنجیده و خبرگی عامل معکوسی از میزان حضور عامل در این نواحی میباشد. لذا ضروری است که در این قسمت به بررسی تاثیر تعداد نواحی محیط در کیفیت و سرعت یادگیری عاملها در روش پیشنهادی بپردازیم.

۱_۴_۴ محیط یلکان مارییچ

ما محیط پلکان مارپیچ را به 9 ناحیه ی مختلف با اندازههای 1×1 ، 1×7 ، 2×9 (کل محیط) تقسیم بندی کرده ایم و همان طور که در شکل 1 - 7 آمده است اندازه ی این نواحی در کیفیت و سرعت یادگیری روش پیشنهادی تفاوتی ایجاد نمی کند و می توان برای کل محیط را یک ناحیه فرض کرد و میزان خبرگی کلی عامل برابر می شود با تعداد گامهایی که عامل برای رسیدن به هدف طی می کند.

۲-۴-۴ محیط پلکان صید و صیاد

همانند محیط پلکان مارپیچ را به چند ناحیهی مختلف با اندازههای ۱ × ۱ ۱۷۰۰۰ (کل محیط) تقسیم بندی کرده ایم و همان طور که در شکل ۲ ـ ۲ آمده است همچون محیط پلکان مارپیچ اندازه ی این نواحی در کیفیت و سرعت یادگیری روش پیشنهادی تفاوتی ایجاد نمی کند.

شکل ۴_۲۱: تاثیر ناحیهبندی مختلف بروی کیفیت و سرعت یادگیری در محیط صید و صیاد

فصل پنجم

نتیجه گیری و جمع بندی

1_0 مقدمه

معمولا در دنیایی واقعی هنگامی که افراد برای انتقال دانش گرد هم می آیند و از تجربیات خوب و بد گذشته خود سخن می گویند هرکسی متناسب با جایگاهی که دارد دارای دانشی می باشد و در این انتقال دانش ها تجربیات هیچ کسی را نمی توان نادیده گرفت ولی گاها پیش می آید که تجربیات و دانش فردی دارای بار محتویاتی بیشتری نسبت به اطرافیان خود می باشد، مردم معمولا از دانش فرد خبره تر بیشتر بهره می برند تا افراد دیگر. دستاوردهای این پژوهش بر مبنای همین فلسفه بنا شده است که سخن و دانش هرکسی باید شنیده شود – یعنی آزادی بیان!! انتگرال فازی یکی از قوی ترین و منعطف ترین ابزارهای ریاضی برای مدل کردن آزادی بیان می باشد، لذا در این پژوهش از انتگرال فازی برای شنیدن بازتاب ندای دانش هر عامل در دانش جمعی استفاده شده است. ولی در این راه مشکلاتی نیز وجود داشت و آن این بود که چگونه منصفانه بفهمیم که کدام عامل خبره تر از دیگری می باشد؟ در گذشته روشهای متنوعی برای تخمین این معیار ارائه شد است که از شمارش میزان پاداشهای میباشد؟ در گذشته روشهای متنوعی برای تخمین این معیارهای شوک و کوتاه ترین مسیر تجربه شده. در طی

پژوهش که منجر به نگارش این پایاننامه گردید احساس شد که تمامی روشهای قبلی در یک چیز مشترکند: بسیار پیچیده و غیر منعطف!

وجود این فصل مشترک ناکارا انگیزهای شد که در صدد ارائهای معیاری برآیم که نه تنها ساده باشد بلکه در زندگی روزمره ما انسانها هم تجلی داشته باشد. بعد از اندکی تفکر و تفحص در نهایت این معیار چیزی جز معیار «تنبلی» نبود! معیار تنبلی که در این پایاننامه با اصطلاح علمی «میزان ارجاع» ارائه شد میگوید که «عاملی هرچقدر تنبلتر خبرهتر»! در نگاه اول ممکن است این معیار چندان معقولانه به نظر نرسد ولی اگر کمی به زندگی روزمره خودمان توجه کنیم متوجه میشویم که این معیار در تار و پود معیارهایی که ما برای سنجش میزان خبرگی خودمان، دوستانمان و همکارانمان استفاده میکنیم، وجود دارد.

اگر اندکی به مسائلی که افراد انجام میدهند و ما آنها را در آن خبره میبینیم توجه کنیم متوجه خواهیم شد که زمانی که فردی در موردی خبره میشود بطور طبیعی انرژی نسبتا کمتری در انجام آن مصرف میکند. این معیار همان معیار تنبلی میباشد که میگوید عاملی در انجام وظیفهای خبره تر است که در طی انجام آن انرژی کمتری مصرف کند. این معیار که از فلسفه ی بسیار سادهای برخوردار است برخلاف معیارهای گذشته بسیار منعطف میباشد زیرا که در تعریف این معیار عبارت «میزان انرژی» میتواند تعابیر مختلفی به خود بگیرد و در هر مورد قابل استفاده باشد.

در این قسمت به مروری خلاصه بر هرآنچه که در این پژوهش صورت گرفته و ارائهی یک نتیجهگیری نهایی حاصل از این پژوهش و همچنین ارائهی مسیر پژوهشی پیشنهادی برای آیندگان این زمینه از یادگیری مشارکتی خواهیم پرداخت.

2-2 نوآوریها و نتایج کلی پایاننامه

در طی این پایانامه معیار جدیدی به نام معیار «میزان ارجاع» ارائه شد که میگوید عاملی که کمتر در محیط مورد تعاملش پرسه بزند از خبرگی بیشتری برخوردار است و سپس با استفاده از این معیار خبرگی به سنجش عاملهای فعال در محیط در هنگام مشارکت در دانش جمعی پرداختیم. در هنگام ترکیب دانش عاملها از انتگرال فازی چوکت استفاده شد که طبق آنچه که در فصل آزمایشها نشان داده شد در بهبود کیفیت و سرعت عاملها موثر واقع گردیده است.

در طی آزمایشات از میانگین وزنی نیز به جای انتگرال فازی استفاده شد و نشان داده شد که انتگراف فازی توانایی بهتری نسبت به میانگین وزنی برای بهبود کیفیت و سرعت یادگیری مشارکتی دارد. همچنین از \mathfrak{F} تابع به عنوان مدل کننده ی تابع $\mathfrak{g}(\cdot)$ استفاده شد، که هرکدام یک دیدگاهی نسبت به نحوه ی ترکیب دانش های ورودی

ارائه می دهد. از بین این ۴ تابع، تابع Const-One در کلیه ی آزمایشات نسبت به دیگر توابع برتریت قابل توجه ای از خود نشان داد؛ طبق آنچه که فصول قبلی این پایان نامه آورده شده این تابع معادل با حداکثرگیری بروی دانش عاملی را در عاملها بر اساس معیار خبرگی آنها می باشد. یعنی اینکه این تابع در واقع در هر ناحیه فقط دانش عاملی را در نظر می گیرد از همه خبره تر (تنبلتر) است که این امر تاییدی بر فرضیه -1 و متعاقبا تعریف -1 می باشد. در نهایت در انتهای فصل آزمایشات نشان داده شد که می توان معیار خبرگی ارائه شده در تعریف -1 را به کل محیط خلاصه کرد؛ یعنی عاملی خبره تر است که میزان حضور آن در کل محیط کمتر باشد – یعنی با تعداد گام کمتری به اهداف خود برسد. همین نتیجه گیری باعث می شود که آزمودن دیگر توابع برای مدل کردن -1 (مثلا تابع اندازه گیری -1 سوگنو) نیازی نباشد.

در این پژوهش تعادلی بین کلی و جزئی نگری به عملکرد عاملها در هنگام ادغام دانشهای آنها برقرار شد. همچنین تاثیر دیگر روشهای انتخاب عمل را در ترکیب با معیارهای ارائه شده را مورد بررسی قرار گرفته است و به این نتیجه رسیدیم که تابع بولتزمن نتیجه ی با کیفیت تری را تولید میکند. همچنین دستاوردهای این پژوهش را با در نظر گرفتن ماهیت غیرافزایشی بودن ذات مساله ارائه دادیم.

یکی از مزایای روش پیشنهادی این است که در عین کارایی و قدرت روشی ساده در مفهومی و پیادهسازی میباشد که این سادگی طبق آنچه که در آزمایشها آمده است نهایتا منجر شد که روش پیشنهادی از پیچیدگی کمتری برخوردار باشد. از دیگر مزیت روش پیشنهادی کلی بودن فرضیه خبرگیای که این پژوهش برمبنای آن ارائه شد، میباشد که می توان آن را به تمامی مسائل یادگیری مشارکتی به راحتی اعمال کرد.

۵_۳ راهکارهای آینده و پیشنهادها

همانطور که آزمایشات نشان دادند با توجه به معیار خبرگی ارائه شده در قسمت یادگیری مشارکتی اگر فقط دانش عامل خبره را در نظر بگیریم حداکثر نتیجه ی ممکن (در قالب روش پیشنهادی) را خواهیم گرفت. در طی این پژوهش دو مفهوم مهم ارائه شد: ۱. انتگرال فازی چوکت میتواند عملگر بسیار قویای نسبت به روشها سنتی چون میانگینگیری وزنی باشد. ۲. فرضیه خبرگی معرفی شده بخوبی میتواند هر نوع معیار خبرگی را توجیه کند. در این پژوهش سعی شده است که حداکثر نتیجه ی ممکن حاصل از استفاده از این دو مفهوم باهم را استخراج کنیم ولی پیشنهادات زیر میتواند شروع خوبی برای پژوهشهای آینده در این زمینه باشد.

- ۱. ارائهی معیار خبرگی جدیدی مبتنی بر فرضیه خبرگی معرفی شده در این پژوهش.
 - ۲. بررسی تاثیر استفاده از انتگرال فازی چوکت در پژوهشهای گذشته.

مراجع

- [1] V. Torra and Y. Narukawa, "The interpretation of fuzzy integrals and their application to fuzzy systems," *International journal of approximate reasoning*, vol. 41, no. 1, pp. 43–58, 2006.
- [2] K. Leszczyński, P. Penczek, and W. Grochulski, "Sugeno's fuzzy measure and fuzzy clustering," *Fuzzy Sets and Systems*, vol. 15, no. 2, pp. 147–158, 1985.
- [3] A. F. Tehrani, W. Cheng, and E. Hullermeier, "Preference learning using the choquet integral: The case of multipartite ranking," *IEEE Transactions on Fuzzy Systems*, vol. 20, no. 6, pp. 1102–1113, 2012.
- [4] L. M. De Campos and M. Jorge, "Characterization and comparison of sugeno and choquet integrals," *Fuzzy Sets and Systems*, vol. 52, no. 1, pp. 61–67, 1992.
- [5] M. Grabisch, "Fuzzy integral in multicriteria decision making," *Fuzzy sets and Systems*, vol. 69, no. 3, pp. 279–298, 1995.
- [6] T. Murofushi, M. Sugeno, and M. Machida, "Non-monotonic fuzzy measures and the choquet integral," *Fuzzy sets and Systems*, vol. 64, no. 1, pp. 73–86, 1994.
- [7] M. Grabisch, "The application of fuzzy integrals in multicriteria decision making," *European journal of operational research*, vol. 89, no. 3, pp. 445–456, 1996.
- [8] "Expert wikipedia." https://en.wikipedia.org/wiki/Expert. (Accessed on 11/12/2016).
- [9] E. Schechter, Handbook of Analysis and its Foundations, ch. 1, p. 16. Academic Press, 1996.
- [10] M. N. Ahmadabadi, M. Asadpur, S. H. Khodanbakhsh, and E. Nakano, "Expertness measuring in cooperative learning," in *Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on*, vol. 3, pp. 2261–2267, IEEE, 2000.
- [11] E. Pakizeh, M. Palhang, and M. M. Pedram, "Multi-criteria expertness based cooperative q-learning," *Applied intelligence*, vol. 39, no. 1, pp. 28–40, 2013.

- [12] M. ali mirzaei badizi, "Speed-up cooperative learning in multi-agent systems using shortest experimented path," Master's thesis, Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan University of Technology, Isfahan 84156-83111, Iran, 3 2015.
- [13] R. S. Sutton and A. G. Barto, *Reinforcement learning: An introduction*, vol. 1. MIT press Cambridge, 1998.
- [14] V. Torra, Y. Narukawa, and M. Sugeno, Non-Additive Measures, pp. 3-7. Springer, 2014.

Improvments in speed and quality of learning in multi-agent systems using the reference matrix and fuzzy integral

Dariush Hasanpour Adeh

d.hasanpoor@ec.iut.ac.ir

Fall 2016

Department of Electrical and Computer Engineering
Isfahan University of Technology, Isfahan 84156-83111, Iran
Degree: M.Sc.
Language: Farsi

Supervisor: Assoc. Prof. Maziar Palhang (palhang@cc.iut.ac.ir)

Abstract

In the real world, usually, peoples are coming together for sharing their knowledge and talking from their good and bad experiences and more or less everybody has something to say. Although we cannot ignore anybody's knowledge but it's common sense to assign more weight on the most experienced person's knowledge when we are going to decide what we need to do based on consultation from people. The achievements of this research have the same philosophy, that everybody needs to be heard, which is freedom of expression! Fuzzy integrals are one of the most powerful and flexible methods to demonstrate the freedom of expression. So we have used the fuzzy integrals for hearing everybody's knowledge and extract a knowledge which is useful for everybody.

One of the challenges is that how to fairly answer the "what is the agents' expertise and how to determine the most and least expert agent?" question. To answer this question, in this thesis, we have proposed «the theory of expertness» which defines a framework for "expertness criteria" definitions, and based on this framework we have introduced a new expertness criteria and showed that the defined framework and criteria are much more efficient that the state of the art criteria "Shortest Experienced Path". Also, the power of using fuzzy integrals for intelligence aggregation is demonstrated.

Kev Words:

Multi-agent Systems, Cooperative Learning, Reinforcement Learning, Non-additive Knowledges, Fuzzy Integral

Isfahan University of Technology

Department of Electrical and Computer Engineering

Improvments in speed and quality of learning in multi-agent systems using the reference matrix and fuzzy integral

A Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science

by Dariush Hasanpour Adeh

Evaluated and Approved by the Thesis Committee, on ...

- 1. Maziar Palhang, Assoc. Prof. (Supervisor)
- 2. ..., Prof. (Examiner)
- 3. ..., Prof. (Examiner)

Mohamad Reza Taban, Department Graduate Coordinator