UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA MATEMÁTICA I. (Código 0826101T) LAPSO ACADÉMICO 2017-1.

UNIDAD 2

Ejercicios de Límites y Continuidad

En los ejercicios del 1 al 3 estimar por el procedimiento numérico y grafico el valor del límite.

1)
$$\lim_{x \to -\frac{3}{2}} |2x+3|$$
 R: 0

2)
$$\lim_{x\to 0} \left(x^3 - \frac{1}{2} \right)$$
 R: $-\frac{1}{2}$

3)
$$\lim_{x \to 2} \sqrt[3]{x + 25}$$
 R: 3

4) Sea
$$f(x) = \begin{cases} (x+1)^3 & x \le 0 \\ sen(x) + 1 & x > 0 \end{cases}$$

a) ¿Existe
$$f(0)$$
? R: existe; $f(0) = 1$

b) Estudiar numéricamente el comportamiento de
$$f$$
 alrededor de 0 R: $\lim_{x\to 0} f(x) = 1$

5) Sea
$$g(x) = \frac{-4}{x+3}$$

c) ¿Existe
$$g(-3)$$
? R: no existe

d) Estudiar numéricamente el comportamiento de *g* alrededor de -3

R:
$$\lim_{x \to -3^{-}} g(x) = +\infty$$
 y $\lim_{x \to -3^{+}} g(x) = -\infty$

 $\text{R:}\lim_{x\to -3^-}g(x)=+\infty \quad \text{y}\lim_{x\to -3^+}g(x)=-\infty$ En los ejercicios del 6 al 8 decir cuáles proposiciones son verdaderas y cuáles son falsas. En caso de ser falsa dar un contraejemplo.

6) Decir que
$$\lim_{x\to a} f(x) = L$$
 significa que $f(a) = L$ R: falso, indicar contraejemplo

7) Decir que
$$\lim_{x\to a} f(x)$$
 no existe significa que $f(a)$ no existe R: falso, indicar contraejemplo

8) Si
$$f(a)$$
 no existe, entonces $\lim_{x\to a} f(x)$ no existe R: falso, indicar contraejemplo

En los ejercicios 9 al 13 demostrar formalmente el límite que se indica.

9)
$$\lim_{x \to -6} \left(4x + \frac{3}{2} \right) = -\frac{45}{2}$$

10)
$$\lim_{x \to \frac{3}{4}} \left(\frac{x}{3} - \frac{2}{5} \right) = -\frac{3}{20}$$

11)
$$\lim_{x \to 7} (5-3t) = -16$$

12)
$$\lim_{x \to -2} (2 - 9x) = 20$$

13)
$$\lim_{x \to c} (kx+d) = kc+d \qquad k \neq 0$$

En los ejercicios comprendidos del 14 al 21 calcular el límite, aplicando límites básicos y propiedades de límites. Justificar cada paso

14)
$$\lim_{u \to 1} (3u^2 - u - 1)^3$$
 R: 1

15)
$$\lim_{x \to 5} \frac{-x^4 + 2x - 3}{x + 7}$$
 R:-\frac{103}{2}

16)
$$\lim_{x \to -\frac{3}{4}} \left(x^4 + 12x^3 + 54x^2 + 108x + 81 \right)$$
 R: $\left(\frac{9}{4} \right)^4$

17)
$$\lim_{t \to -6} ((2t+11)4^{(t+4)})$$
 R: $-\frac{1}{16}$

18)
$$\lim_{x \to 3} (3x^2 - 2x - 2)$$
 R: 19

19)
$$\lim_{x\to 0} \frac{x}{1+x^2}$$

20)
$$\lim_{x \to 1} \frac{(x-3)(x-2)(x-1)}{(x+3)(x+2)(x+1)}$$
 R: 0

21)
$$\lim_{x \to 0} \frac{(1+x)(1+2x)(1+3x)(1+4x)}{(1-x)(1-2x)(1-3x)(1-4x)}$$
 R: 1

En los ejercicios 22 al 28 calcule el límite indicado. Escriba el significado del valor calculado en cada caso.

22)
$$\lim_{x \to 7} (x^2 + 15)$$
 R: 3

23)
$$\lim_{x \to 3} \frac{\sqrt{x+6}-3}{x}$$
 R: 0
24) $\lim_{x \to 0} \sqrt{1+\sqrt{1-\sqrt{2-\sqrt{1+x}}}}$

24)
$$\lim_{x \to 0} \sqrt{1 + \sqrt{1 - \sqrt{2 - \sqrt{1 + x}}}}$$
 R: 1

25)
$$\lim_{x \to 3} (x+5)$$
 R: 8

26)
$$\lim_{x \to 2} \frac{x^2 + 3}{2x + 5}$$
 R: $\frac{7}{9}$

27)
$$\lim_{x \to -1} \frac{(3x+2)(x+1)(x^2+2)(2x+3)}{(x-1)(x-2)(x-3)}$$
 R: 0

28)
$$\lim_{x\to 0} \sqrt[3]{\frac{5x+16}{3x-2}}$$
 R: -2

En los ejercicios 29 al 185 calcule el límite indicado.

29)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$
 R: 6

30)
$$\lim_{x \to 1} \frac{x^2 - 9x + 8}{x^2 - 1}$$

31)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$
 R: -2

R: $-\frac{7}{2}$

32)
$$\lim_{x \to 1} \frac{x^2 + 10x - 11}{x^2 + 3x - 4}$$
 R: $\frac{12}{5}$

33)
$$\lim_{x \to -1} \frac{x^4 - 1}{x^3 + 1}$$
 R: $-\frac{4}{3}$

34)
$$\lim_{x \to 2} \frac{x^3 - 2x - 4}{x^3 - 8}$$
 R: $\frac{5}{6}$

35)
$$\lim_{x \to 1} \frac{x^3 + 12x^2 - 10x - 3}{x^3 + 9x^2 - 6x - 4}$$
 R: $\frac{17}{15}$

36)
$$\lim_{x \to 3} \frac{x^3 - 2x - 21}{x^4 - 27x}$$
 R: $\frac{25}{81}$

37)
$$\lim_{x \to 4} \frac{(x-4)^4 + 3(x-4)^2 + x^2 - 16}{x^3 - 64}$$
 R: $\frac{1}{6}$

38)
$$\lim_{x \to 1} \frac{x^5 + 3x^4 - 4x^3 + 8x^2 - 2x - 6}{x^4 + 5x^3 - 2x^2 - 2x - 2}$$
 R: $\frac{19}{13}$

39)
$$\lim_{x \to -1} \frac{x^{14} + x^2 - 2}{x^{12} + 4x^8 + x^2 - 6}$$
 R: $\frac{8}{23}$

40)
$$\lim_{x \to -1} \frac{x^{34} - 1}{x^{27} + 1}$$
 R: $-\frac{34}{27}$

41)
$$\lim_{x \to 1} \frac{x^{101} - x^{50} + x^{23} - 1}{x^{99} - 3x^{49} + 2}$$
 R: $-\frac{37}{24}$

42)
$$\lim_{x\to 0} \frac{\sqrt{x^2+16}-4}{x^2}$$
 R: $\frac{1}{8}$

43)
$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{6-x}}{x-2}$$
 R: $\frac{1}{2}$

44)
$$\lim_{x \to 1} \frac{\sqrt{15 + x} - \sqrt{17 - x}}{\sqrt{3 + x} - 2}$$
 R: 1

45)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + x + 7} - \sqrt{2x^2 + 10x - 3}}{\sqrt{x^2 + 1} - \sqrt{3x^2 - 1}}$$
 R: $\frac{11\sqrt{2}}{12}$

46)
$$\lim_{x \to 3} \frac{\sqrt{13 + x} - \sqrt{10 + 2x}}{\sqrt{19 + 2x} - 5}$$
 R: $-\frac{5}{8}$

47)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$
 R: $\frac{4}{3}$

48)
$$\lim_{x \to 2} \frac{\sqrt[3]{15 + 6x} - \sqrt[3]{25 + x}}{x^4 + 2x - 20}$$
49)
$$\lim_{x \to 1} \frac{\sqrt[3]{x + 26} - \sqrt[4]{80 + x}}{\sqrt{x + 8} - 3}$$
R: $\frac{1}{6}$

49)
$$\lim_{x \to 1} \frac{\sqrt[3]{x + 26} - \sqrt[4]{80 + x}}{\sqrt{x + 8} - 3}$$
 R: $\frac{1}{6}$

50)
$$\lim_{x\to 0} \frac{(1+x)(1+2x)(1+3x)-1}{x}$$
 R: 6

51)
$$\lim_{x\to 0} \frac{(1+x)^5 - (1+5x)}{x^2 + x^5}$$
 R: 10

52)
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 8x + 15}$$
 R: $-\frac{1}{2}$

53)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$
 R: $\frac{1}{2}$

54)
$$\lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$$
 R: 1

55)
$$\lim_{x \to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$$
 R: $\frac{1}{4}$

56)
$$\lim_{x \to 2} \frac{\left(x^2 - x - 2\right)^{20}}{\left(x^3 - 12x + 16\right)^{10}}$$
 R: $\left(\frac{3}{2}\right)^{10}$

57)
$$\lim_{x \to 1} \frac{x^{100} - 2x + 1}{x^{50} - 2x + 1}$$
 R: $\frac{49}{24}$

58)
$$\lim_{x\to 1} \frac{x^m-1}{x^n-1}$$
 m y n números naturales mayores o iguales a 2 R: $\frac{m}{n}$

59)
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
 R: $\frac{4}{3}$

60)
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}$$
 R: -2

61)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x} n$$
 número natural mayor o igual a 2

62)
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x - x^2} - 2}{x + x^2}$$
 R: $\frac{1}{4}$

63)
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$$
 R: $\frac{2}{27}$

64)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$
 R: $\frac{3}{2}$

65)
$$\lim_{x \to 0} \frac{\sqrt[m]{1+\alpha x} - \sqrt[n]{1+\beta x}}{x} \quad n \ y \ m \quad \text{números naturales mayores o iguales a 2}$$
 R: $\frac{\alpha}{m} - \frac{\beta}{n}$

66)
$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{m\sqrt{x}-1}{\sqrt{x}-1} n y m$$
 números naturales mayores o iguales 2

R:
$$\frac{n}{m}$$

67)
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{1+x}}{x^2 - 9}$$

R:
$$-\frac{1}{16}$$

68)
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6} + 2}{x^3 + 8}$$

R:
$$\frac{1}{144}$$

69)
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$

$$R:\frac{1}{4}$$

70)
$$\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{\sqrt[3]{x} - 2}$$

$$R: \frac{12}{5}$$

71)
$$\lim_{x \to 7} \frac{\sqrt{x+2} - \sqrt[3]{x+20}}{\sqrt[4]{x+9} - 2}$$

R:
$$\frac{112}{27}$$

72)
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + \frac{x}{3}} - \sqrt[4]{1 + \frac{x}{4}}}{1 - \sqrt{1 - \frac{x}{2}}}$$

R:
$$\frac{7}{36}$$

73)
$$\lim_{x \to 0} \frac{x^2}{\sqrt[5]{1+5x} - (1+x)}$$

R:
$$-\frac{1}{2}$$

74)
$$\lim_{x \to 0} \frac{sen(2x)}{2x}$$

75)
$$\lim_{x \to 0} \frac{sen(6x)}{8x}$$

R:
$$\frac{3}{4}$$

76)
$$\lim_{x \to 0} \frac{sen(2x)}{sen(9x)}$$

R:
$$\frac{2}{9}$$

77)
$$\lim_{x \to 0} \frac{tag(2x)}{sen(2x)}$$

78)
$$\lim_{x \to 0} \frac{tag(7x)}{3x}$$

R:
$$\frac{7}{3}$$

79)
$$\lim_{x \to 0} \frac{x^2}{sen^2 x}$$

80)
$$\lim_{x \to 0} \frac{x^3}{tag^3(3x)}$$

R:
$$\frac{1}{27}$$

81)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{\sin^2(2x)}$$

R:
$$\frac{9}{8}$$

82)
$$\lim_{x\to 0} \frac{tag^2(4x)}{1-\cos(5x)}$$

R:
$$\frac{32}{25}$$

83)
$$\lim_{x \to 0} \frac{\operatorname{sen} x \cos^3(4x)}{\operatorname{tag}(4x) \operatorname{sec}^2(7x)}$$

R:
$$\frac{1}{4}$$

84)
$$\lim_{x \to 0} \frac{sen \ x - tag \ x}{1 - \cos x}$$

85)
$$\lim_{x \to 0} \frac{sen \ x - tag \ x}{1 - \cos(3x)}$$

86)
$$\lim_{x \to 0} \frac{sen(2x) - tag(2x)}{sen(3x) - tag(3x)}$$

R:
$$\frac{8}{27}$$

87)
$$\lim_{x\to 0} \frac{1-\cos(2x)}{1-\cos(5x)}$$

R:
$$\frac{4}{25}$$

88)
$$\lim_{x\to 0} \frac{\operatorname{sen} x (1-\sec(4x))}{\operatorname{sen}(4x)(1-\sec(3x))}$$

R:
$$\frac{4}{9}$$

89)
$$\lim_{x\to 0} \frac{1-\cos^3 x}{4x^2}$$

R:
$$\frac{3}{8}$$

90)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

91)
$$\lim_{x \to \frac{\pi}{2}} \frac{1-sen \ x}{x-\frac{\pi}{2}}$$

92)
$$\lim_{x \to \frac{\pi}{2}} \frac{sen^2(2x)}{1-sen x}$$

93)
$$\lim_{x \to \pi} \frac{(x-\pi)^2}{sen^2 x}$$

95)
$$\lim_{x \to \pi} \frac{1 + \cos^3 x}{sen^2 x}$$

R:
$$\frac{3}{2}$$

96)
$$\lim_{x \to \pi} \frac{tag^2 x}{1 + \cos x}$$

97)
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos(2x)}$$

R:
$$\frac{\sqrt{2}}{2}$$

98)
$$\lim_{x \to 0} \frac{sen(5x)}{x}$$

99)
$$\lim_{x \to \pi} \frac{sen(mx)}{sen(nx)}$$
 n y m enteros

$$R: (-1)^{m-n} \left(\frac{m}{n}\right)$$

100)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

R:
$$\frac{1}{2}$$

101)
$$\lim_{x \to 0} \frac{tag \ x}{x}$$

$$102) \lim_{x \to 0} x \ ctg(3x)$$

R:
$$\frac{1}{3}$$

103)
$$\lim_{x \to 0} \frac{tag \ x - sen \ x}{sen^3 x}$$

R:
$$\frac{1}{2}$$

104)
$$\lim_{x \to 0} \frac{sen(5x) - sen(3x)}{sen x}$$

105)
$$\lim_{x \to 0} \frac{\cos x - \cos (3x)}{x^2}$$

106)
$$\lim_{x \to a} \frac{sen x - sen a}{x - a}$$

R:
$$cos(a)$$

107)
$$\lim_{x \to a} \frac{\cos x - \cos a}{x - a}$$

R:
$$-sen(a)$$

108)
$$\lim_{x \to a} \frac{tag \ x - tag \ a}{x - a}$$

R:
$$sec^2(a)$$

109)
$$\lim_{x \to a} \frac{ctg \ x - ctg \ a}{x - a}$$

R:
$$-csc^2(a)$$

110)
$$\lim_{x \to a} \frac{\sec x - \sec a}{x - a}$$

R:
$$sec(a)tan(a)$$

111)
$$\lim_{x \to a} \frac{\csc x - \csc a}{x - a}$$

R:
$$-csc(a)ctg(a)$$

112)
$$\lim_{x \to 2} \frac{3}{|x-2|}$$

113)
$$\lim_{x \to 2} \frac{1}{(x-2)^4}$$

114)
$$\lim_{x \to 0} \frac{\cos(3x)}{\sin(2x)}$$

R:
$$\lim_{x \to 0^{-}} f(x) = -\infty \text{ y } \lim_{x \to 0^{+}} f(x) = +\infty$$

115)
$$\lim_{x \to 1} \frac{9 - 8x - x^2}{x^2 - 2x + 1}$$

R:
$$\lim_{x \to 1^{-}} f(x) = +\infty$$
 y $\lim_{x \to 1^{+}} f(x) = -\infty$

116)
$$\lim_{x \to 0} \frac{3x^3 + 2x^2 + 9x}{-x^2}$$

R:
$$\lim_{x \to 0^{-}} f(x) = +\infty$$
 y $\lim_{x \to 0^{+}} f(x) = -\infty$

117)
$$\lim_{x \to 1} \frac{x^3 + 3x^2 - 2x - 2}{x^3 - 3x^2 + 3x - 1}$$

118)
$$\lim_{x \to 0} \frac{x}{sen^2(3x)}$$

119)
$$\lim_{x \to 0} \frac{sen x}{1 - \cos(2x)}$$

120)
$$\lim_{x \to 1} \frac{x^4 - x^3 + 2x^2 + 5x - 7}{3x^3 - 4x^2 - x + 2}$$

121)
$$\lim_{x \to 2} \frac{-4x^2 + 16}{x^2 - 4x + 4}$$

122)
$$\lim_{x \to \infty} \frac{2x^3 + 7x^2 + 11x + 12}{x^2 + 4x + 8}$$

123)
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$$

124)
$$\lim_{x\to\infty} \frac{1-x^3}{x^2+1}$$

125)
$$\lim_{x \to \infty} \frac{(2x+3)^2 (3x+2)^4}{12x^6 + 3x^3 + 7}$$

126)
$$\lim_{x \to \infty} \frac{7x^3 + x^2 - 5x + 2}{4x^3 - x}$$

127)
$$\lim_{x \to \infty} \frac{1000x^3}{x^4 - 1}$$

128)
$$\lim_{x \to \infty} \frac{x^3}{10 + x^2 \sqrt[3]{x}}$$

129)
$$\lim_{x \to \infty} \frac{(x+1) + (x+2)^2 + (x+3)^3}{(x^2 + 4x + 3)^2}$$

130)
$$\lim_{x \to \infty} \frac{(x+1) + (2x+1)^2 + (3x+1)^3}{(x-1) + (2x-1)^2 + (3x-1)^3}$$

131)
$$\lim_{x \to \infty} \frac{(x+1)(x+2)^2(x+3)^3(x+4)^4}{(x^5+x^4+x^3+x^2+x+1)^2}$$

132)
$$\lim_{x \to \infty} \frac{(x-1)(x-2)^2 ... (x-20)^{20}}{(x+1)(x+2) ... (x+210)}$$

133)
$$\lim_{x \to \infty} \frac{\left(x^2 + 3x + 2\right)^2 \left(x^3 + x + 1\right)^3}{\left(x^7 + x^2 + 3x + 12\right)^2}$$

134)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^4 + x + 2} + \sqrt[5]{x^3 + 3x^2 + x + 1}}{\sqrt[4]{x^6 + 3x + 2} + \sqrt[5]{x^2 + 4x + 7}}$$

R:
$$\lim_{x\to 0^{-}} f(x) = -\infty$$
 y $\lim_{x\to 0^{+}} f(x) = +\infty$

R:
$$\lim_{x\to 0^{-}} f(x) = -\infty$$
 y $\lim_{x\to 0^{+}} f(x) = +\infty$

R:
$$\lim_{x \to 1^-} f(x) = -\infty$$
 y $\lim_{x \to 1^+} f(x) = +\infty$

R:
$$\lim_{x \to 2^{-}} f(x) = +\infty$$
 y $\lim_{x \to 2^{+}} f(x) = -\infty$

R:
$$\frac{7}{4}$$

135)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^5 + 2x^3 + x + 7}}{\sqrt[4]{(x^5 + 3x + 2)(x^2 + 1)}} + \sqrt[5]{x^2 + x + 1}$$

136)
$$\lim_{x \to \infty} \frac{(x-1)(x-2)(x-3)(x-4)(x-5)}{(5x-1)^5}$$
 R: 5⁻⁵

137)
$$\lim_{x \to \infty} \frac{(2x-3)^{20} (3x+2)^{30}}{(2x+1)^{50}}$$
 R: $\left(\frac{3}{2}\right)^{30}$

R: 0

138)
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x} + \sqrt{x}}}{\sqrt{x + 1}}$$
 R: 1

139)
$$\lim_{x \to +\infty} \frac{\sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x}}{\sqrt{2x+1}}$$
 R: $\frac{\sqrt{2}}{2}$

140)
$$\lim_{x \to +\infty} \left[\sqrt{(x+a)(x+b)} - x \right]$$
 R: $\frac{1}{2}(a+b)$

141)
$$\lim_{x \to +\infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right]$$
 R: $\frac{1}{2}$

142)
$$\lim_{x \to -\infty} \left[\sqrt{x^2 - 4x} - \sqrt{x^2 + 1} \right]$$
 R: 2

143)
$$\lim_{x \to \infty} \left(\frac{x^2 + 2}{x} - x \right)$$
 R: 0

144)
$$\lim_{x \to +\infty} \left[\sqrt{x \left(x - \sqrt{x^2 - 1} \right)} \right]$$

145)
$$\lim_{x \to \infty} \left(\sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2} \right)$$
 R: 0

146)
$$\lim_{x \to \infty} \left(\frac{x^3 + 1}{x^2 + 3x + 1} - \frac{x^3 + x + 2}{x^2 + 6x + 1} \right)$$
 R: 3

147)
$$\lim_{x \to \infty} \left(\frac{x^5 + 2x^4 + 3x + 2}{x^2 + 3x + 1} - \frac{x^4 + x + 1}{x + 2} \right)$$
 R: $+\infty$

148)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 2} - \frac{x^2 + 10}{x + 1} \right)$$
 R: -1

149)
$$\lim_{x \to \infty} \left(\frac{x^2 + 3x + 1}{x + 2} - \frac{x^2 + 3x + 10}{x + 1} \right)$$
 R: -1

150)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{3 + x + 2x^2} \right)$$
 R: $+\infty$

151)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right)$$

152)
$$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+3} - \sqrt{x+2} \right)$$
 R: $\frac{1}{2}$

153)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2} - \sqrt{x^2 + 3} \right)$$

R: 0

154)
$$\lim_{x \to \infty} \left(\sqrt{2x+3} - \sqrt{3x+2} \right)$$

R: +∞

155)
$$\lim_{x\to\infty} \left(\sqrt{x+1} - \sqrt{x}\right)$$

R: 0

156)
$$\lim_{x \to \infty} \left(\frac{x+2}{2x-1} \right)^{x^2}$$

R: 0

157)
$$\lim_{x \to \infty} \left(\frac{3x^2 - x + 1}{2x^2 + x + 1} \right)^{\frac{x^2}{1 - x}}$$

R: +∞

158)
$$\lim_{n\to\infty} sen^n \left(\frac{2\pi n}{3n+1} \right)$$

R: 0

159)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x - 1}{x + 1}}$$

R: 1

160)
$$\lim_{x\to 0^+} \sqrt[x]{1-2x}$$

R: e^{-2}

161)
$$\lim_{x \to \infty} \left(\frac{x+a}{x-a} \right)^x$$

R: e^{2a}

162)
$$\lim_{x \to +\infty} \left(\frac{a_1 x + b_1}{a_2 x - b_2} \right)^x \quad a_1 > 0 , a_2 > 0$$
 R: $e^{\frac{b_1 - b_2}{a_1}} si \ a_1 = a_2; +\infty \ si \ a_1 > a_2; \ 0 \ si \ a_1 < a_2$

163)
$$\lim_{x \to 0} (1+x^2)^{\cot^2 x}$$

R: *e*

164)
$$\lim_{x \to 0^+} \left(\frac{1 + \tan x}{1 + \sec x} \right)^{\frac{1}{\sec x}}$$

R: 1

165)
$$\lim_{x \to 0^{+}} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\frac{1}{\sin^{3} x}}$$

R: \sqrt{e}

166)
$$\lim_{x \to a^{+}} \left(\frac{\sin x}{\sin a} \right)^{\frac{1}{x-a}}$$

R: $e^{\cot(a)}$

167)
$$\lim_{x \to 0} \left(\frac{\cos x}{\cos(2x)} \right)^{\frac{1}{x^2}}$$

R: $e^{\frac{3}{2}}$

168)
$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\tan(2x)}$$

 $R: \frac{1}{e}$

169)
$$\lim_{x \to \frac{\pi}{2}} (\operatorname{sen} x)^{\tan x}$$

R: 1

170)
$$\lim_{x \to 0^+} \left[\tan \left(\frac{\pi}{4} - x \right) \right]^{\cot x}$$

 $R: \frac{1}{e^2}$

171)
$$\lim_{x\to\infty} \left[sen\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right) \right]^x$$

172)
$$\lim_{x \to 0^+} \sqrt[x]{\cos\sqrt{x}}$$
 R: $\frac{\sqrt{e}}{e}$

R: *e*

173)
$$\lim_{x \to \infty} \left(\frac{n+x}{n-1} \right)^n$$
 R: e^{x+1}

174)
$$\lim_{x \to \infty} \cos^n \left(\frac{x}{\sqrt{n}} \right)$$
 R: $e^{\left(\frac{x^2}{2}\right)}$

175)
$$\lim_{x \to 0^+} \frac{\ln(1+x)}{x}$$
 R: 1

176)
$$\lim_{x \to +\infty} x [\ln(x+1) - \ln x]$$

177)
$$\lim_{x \to 0^{+}} \frac{\ln \left[\tan \left(\frac{\pi}{4} + ax \right) \right]}{\operatorname{sen}(bx)}, \ con \ b \neq 0$$
 R: $\frac{2a}{b}$

178)
$$\lim_{x \to 0^{+}} \frac{\ln(\cos(ax))}{\ln(\cos(bx))}$$
 R: $\left(\frac{a}{b}\right)^{2}$

179)
$$\lim_{x \to a} \frac{\ln(x) - \ln(a)}{x - a} \text{ con } a > 0$$
 R: $\frac{1}{a}$

180)
$$\lim_{x \to +\infty} log \left(\frac{100 + x^2}{1 + 100x^2} \right)$$
 R: -2

181)
$$\lim_{x \to +\infty} \frac{\ln(2 + e^{3x})}{\ln(3 + e^{2x})}$$
 R: $\frac{3}{2}$

182)
$$\lim_{x \to 2} \frac{-8}{|4-x^2|}$$
 R: $-\infty$

183)
$$\lim_{x \to 4} \frac{|x^2 - 16|}{x - 4}$$
 R: no existe

184)
$$\lim_{x \to 2} \frac{\llbracket x \rrbracket}{x+3}$$
 R: no existe

185)
$$\lim_{x \to \frac{1}{2}} \frac{[x]}{x+3}$$
 R: $\frac{1}{7}$

186)
$$\lim_{x \to \infty} \frac{sen x}{x}$$
 (usar teorema del encaje) R: 0

En los ejercicios 187-188 utilizar el Teorema del encaje para calcular $\lim_{x\to a} f(x)$

187)
$$c = 0$$
; $4 - x^2 \le f(x) \le 4 + x^2$

188)
$$c = a$$
; $b - |x - a| \le f(x) \le b + |x - a|$ R: b

En los ejercicios 189 al 196 determine si la función es continua en el punto indicado. En caso de no ser continua clasificarla y de ser posible redefinirla para que sea continua.

189)
$$f(x) = \begin{cases} \frac{\sqrt{1+x+x^2}-1}{x} & x < 0\\ \frac{\ln(x+1)+4}{8} & x \ge 0 \end{cases}$$
 R: continua

190)
$$f(x) = \begin{cases} \frac{3\cos^2 x + 2\cos x + 7}{1 + \cos x} & x \le 0\\ \frac{5\sin(6x)}{\sin(5x)} & x > 0 \end{cases}$$
 R: continua

191)
$$f(x) = \begin{cases} \frac{\sqrt{x-1}}{\sqrt[3]{x-1}} & x > 1 \\ e^{x+2} & x \le 1 \end{cases}$$
 R: discontinuidad esencial de salto

192)
$$f(x) = \begin{cases} 2\sqrt{1+4x} & x \ge 0 \\ 3x - \tan x & x < 0 \end{cases}$$
 En $x = 0$ R: discontinuidad esencial de salto

191)
$$f(x) = \begin{cases} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1} & x > 1 \\ e^{x+2} & x \le 1 \end{cases}$$
 R: discontinuidad esencial de salta 192) $f(x) = \begin{cases} 2\sqrt[3]{1 + 4x} & x \ge 0 \\ 3x - \tan x & x < 0 \end{cases}$ En $x = 0$

193) $f(x) = \begin{cases} \frac{4}{3 + 2x} & x \ne -\frac{3}{2} \\ 8 & x = -\frac{3}{2} \end{cases}$ En $x = -\frac{3}{2}$

R: discontinuidad esencial de salta R: discontinuidad esencial infinita

194)
$$f(x) = \begin{cases} \sec(x-5) & x > 5 \\ \frac{2}{5-x} & x = 5 \text{ En } x = 5 \\ \cos(x-5) & x < 5 \end{cases}$$
 R: discontinuidad removible

194)
$$f(x) = \begin{cases} \sec(x-5) & x > 5 \\ \frac{2}{5-x} & x = 5 \text{ En } x = 5 \\ \cos(x-5) & x < 5 \end{cases}$$
R: discontinuidad removible

195) $f(x) = \begin{cases} \log_3(x+3) & x > -2 \\ \frac{6}{4-x} & x = -2 \text{ En } x = -2 \\ 5^{x+2} - 1 & x < -2 \end{cases}$
R: discontinuidad removible

196) $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x < 1 \\ x^2 + 1 & x \ge 1 \end{cases}$
R: continua

196)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x < 1 \\ \frac{x^2 + 1}{x^2 + 1} & x > 1 \end{cases}$$
 R: continua

En los ejercicios 197 al 202, ¿En qué puntos si los hay, las funciones son discontinuas?

197)
$$f(x) = \frac{33-x^2}{x\pi + 3x - 3\pi - x^2}$$
 R: $x = 3$; $x = \pi$

198) $r(\theta) = \tan(\theta)$ R: $\theta = n\pi + \frac{\pi}{2} con n \in \mathbb{Z}$

199) $g(u) = \frac{u^2 + |u - 1|}{\sqrt[3]{u + 1}}$ R: $u = -1$

200) $h(x) = \frac{1}{\sqrt{4 - x^2}}$ R: $u = -2$ o $u = 2$

201)
$$g(x) = \begin{cases} x^2 & \text{si } x < 0 \\ -x & \text{si } 0 \le x \le 1 \\ x & \text{si } x > 1 \end{cases}$$

$$202) h(u) = \left[u + \frac{1}{2} \right]$$

$$R: u = n + \frac{1}{2} con n \in Z$$

En los ejercicios $\frac{1}{2}$ 03 al $\frac{2}{2}$ 05 encuentre el valor de a A para que la función sea continua en el punto indicado.

203)
$$f(x) = \begin{cases} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}} & x > 4 \\ Ax + 3 & x \le 4 \end{cases}$$
 En $x = 4$ R: $A = -\frac{5}{6}$

204) $f(x) = \begin{cases} \frac{\sqrt{5 + x}}{2} & x > -2 \\ \cos(A) & x \le -2 \end{cases}$ En $x = -2 \cos 0 \le A \le \frac{\pi}{2}$ R: $A = \frac{\pi}{6} + n(2\pi) \cos n \in \mathbb{Z}$

205) $f(x) = \begin{cases} \frac{(x - \pi)}{senx} & x > \pi \\ -3A & x \le \pi \end{cases}$ En $x = \pi$ R: $A = \frac{1}{3}$

En los ejercicios 206 al 208 encuentre los valores de $A \lor B$ para que la función sea continua en lo

En los ejercicios 206 al 208 encuentre los valores de A y B para que la función sea continua en los puntos indicados.

206)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x + 2} & x < -2 \\ Ax + 3B & |x| \le 2 \text{ En } x = \pm 2 \end{cases}$$
 $R: A = \frac{7}{4}, B = -\frac{1}{6}$
207) $f(x) = \begin{cases} \frac{x^2}{sen^2 x} & x < 0 \\ 2A + Bx & 0 \le x \le 2 \text{ En } x = 0 \text{ y 2} \\ \frac{3x^4 - 4x^3 + 1}{(x - 1)^2} & x > 2 \end{cases}$ $R: A = \frac{1}{2}, B = 8$
208) $f(x) = \begin{cases} \frac{1}{x} & x < -2 \\ Ax + B & -2 \le x \le 1 \text{ En } x = -2 \text{ y 1} \\ \ln x & x > 1 \end{cases}$ $R: A = \frac{1}{6}, B = -\frac{1}{6}$

En los ejercicios del 209 al 216 analice la continuidad de la función en el intervalo indicado

209)
$$f(x) = \frac{1}{x}$$
 en el intervalo $(-2,5)$ R: discontinua 210) $f(x) = \frac{1}{x}$ en el intervalo $(2,5)$

211)
$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$$
 en el intervalo $[0,1]$

212)
$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$$
 en el intervalo $(0,1)$

R: continua 213) $f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$ en el intervalo $[-1,0]$

R: continua

213)
$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$$
 en el intervalo $[-1,0]$

214)
$$f(x) = \begin{cases} x+1 & x < 0 \\ x^2 & x \ge 0 \end{cases}$$
 en el intervalo $(-1,0)$

215)
$$f(x) = \frac{1}{x^2 - 1}$$
 en el intervalo $(-2, 2)$

216)
$$f(x) = \frac{1}{x^2 + 1}$$
 en el intervalo $(-2, 2)$

En los ejercicios 217 al 220 verifique que el teorema del valor intermedio es aplicable al intervalo indicado y encontrar el valor de c garantizado por el teorema.

217)
$$f(x) = x^2 + x - 1$$
, [0,5], $k = 11$

218)
$$f(x) = x^2 - 6x + 8$$
, [0,3], $k = 0$

219)
$$f(x) = x^3 - x^2 + x - 2$$
, [0,3], $k = 4$

220)
$$f(x) = \frac{x^2 + x}{x - 1}$$
, $\left[\frac{5}{2}, 4 \right]$, $k = 6$

Ejercicios tomados de:

DEMIDÓVICH, B. P.(1980). 5.000 problemas de análisis matemático. España: Thomson Editores. Novena edición. LARSON, R., HOSTETLER, R. P. y EDWARDS, B.H. (2006). Cálculo con geometría analítica. México: McGraw-Hill / Interamericana Editores S.A., volumen I. Octava edición.

PITA, C. (1998). Cálculo en una variable. México: Prentice Hall Hispanoamérica, S.A.

PURCELL, E., VARBERG, D. y RIGDON, S. (2001). Cálculo. México: Pearson Educación de Máxico, S. A. de C.V. Octava edición.