17/09/2025, 08:40 Radians — Isaac Science



STEM SMART Single Maths 29 - Radians & Small Angle Approximations

## Radians

A-level Maths Topic Summaries - Trigonometry

Fill in the blanks to complete the notes on radians below.

#### Part A

## Radians and degrees



Figure 1: Illustrating the definition of the radian.

| Radians are an alternative unit for measuring      | . The diagram above illustrates the definition of the radian.            |
|----------------------------------------------------|--------------------------------------------------------------------------|
| 1 radian is the angle at the centre of a circle of | radius $r$ that is subtended by a circular arc of length $\overline{}$ . |

The circumference of a circle is  $2\pi r$ . Hence, there are radians in one complete circle.

$$360^\circ =$$
 rad

To convert between degrees and radians, we can use the formulae

$$\theta \operatorname{rad} = \bigcirc \times \theta^{\circ}$$

$$heta^{\circ} =$$
  $imes heta$  rad

Items:

angles







| Pa | rt | R |
|----|----|---|
| Га | ıι | D |

## Table of common values

| Complete the table of common values |          |               |          |
|-------------------------------------|----------|---------------|----------|
| $	heta^\circ$                       | heta rad | $	heta^\circ$ | heta rad |
| 0                                   |          | 120           |          |
| 30                                  |          | 150           |          |
| 45                                  |          | 180           |          |
| 60                                  |          | 270           |          |
| 90                                  |          | 360           |          |

Items:



Created for isaacphysics.org by Jonathan Waugh



## Arcs, Sectors and Segments

A-level Maths Topic Summaries - Radians in Geometry

Fill in the blanks to complete the notes on arc length, sector area and segments below.

#### Part A

## Arc length and sector area



Figure 1: Arc length s and sector area A.

When angles are measured in \_\_\_\_\_\_, expressions for calculating arc length and sector area are particularly simple.

Arc length

Arc length, s=

Sector area

Sector area, A=

Sector perimeter

The perimeter of a segment is equal to the arc length plus twice the radius.

Sector perimeter =

Items:

## Part B

## **Segments**



Figure 2: A segment of a circle.

Calculations involving segments of a circle, such as that in Figure 2, are common.

## Segment area

The area of triangle ABC can be calculated using the formula  $Area = \frac{1}{2}ab\sin\theta$ . The area of the segment can be found by subtracting the area of triangle ABC from the area of the sector.

Area of triangle 
$$ABC =$$

## Segment perimeter

The length of the chord BC can be found using the cosine rule,  $c^2 = a^2 + b^2 - 2bc \cos A$ . The perimeter of the segment can be found by adding the lengths of the arc BC and the cord BC.

Length of chord 
$$BC =$$

Items:

$$\left[rac{1}{2}r^2\sin heta
ight] \; \left[\sqrt{2r^2-2r^2\cos heta}
ight] \; \left[rac{1}{2}r^2 heta-rac{1}{2}r^2\sin heta
ight] \; \left[r heta+\sqrt{2r^2-2r^2\cos heta}
ight]$$

Created for isaacphysics.org by Jonathan Waugh

Question deck:



## **Small Angle Approximations**

A-level Maths Topic Summaries - Trigonometry

Fill in the blanks to complete the notes on small angle approximations below.

When  $\theta$  is small, we can approximate  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$  using the following polynomial expressions.

 $\sin heta pprox ag{}$ 

 $\cos hetapprox 1-$ 

 $an hetapprox ag{}$ 

These expressions are only valid when heta is measured in

Items:

 $\left(\theta\right)\left(\frac{\theta^2}{2}\right)$  (degrees)

es radians

Created for isaacphysics.org by Jonathan Waugh

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle Approximations



## Radians-problems involving area 5ii

Subject & topics: Maths Stage & difficulty: A Level P1

Figure 1 shows a sector OAB of a circle, centre O and radius  $8\,\mathrm{cm}.$  The angle AOB is  $46\,^{\circ}.$ 



Figure 1: Sector AOB.



# Part B Arc length Find the length of the arc AB.

| Part C Area of | sector                  |  |  |
|----------------|-------------------------|--|--|
| Find the a     | area of the sector OAB. |  |  |
|                |                         |  |  |

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle
Approximations



## Radians-problems involving area 2ii

Subject & topics: Maths Stage & difficulty: A Level P1

Figure 1 shows two congruent triangles, BCD and BAE, where ABC is a straight line. In triangle BCD, BD  $= 8\,\mathrm{cm}$ , CD  $= 11\,\mathrm{cm}$  and angle CBD  $= 65\,^\circ$ . The points E and D are joined by an arc of a circle with centre B and radius  $8\,\mathrm{cm}$ .



Figure 1: Diagram of the triangles.



Find angle BCD. Give your answer in radians, correct to 3 significant figures.

# Part B Angle EBD

Find the angle EBD, giving your answer in radians correct to  $3\ {\rm significant}$  figures.

## Part C

## Area of shaded segment

Hence find the area (in  ${
m cm}^2$ ) of the shaded segment bounded by the chord ED and the arc ED, giving your answer correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle Approximations



## Radians-problems involving area 1ii

Subject & topics: Maths Stage & difficulty: A Level P1



Figure 1: The sector OAB.

A sector OAB of a circle of radius r cm has angle  $\theta$  radians. The length of the arc of the sector is 12 cm and the area of the sector is 36 cm $^2$  (see Figure 1).

# Part A First equation

By considering the length of the arc of the sector, write down an equation involving r and  $\theta$ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

#### Part B

## **Second equation**

By considering the area of the sector, write down another equation involving r and  $\theta$ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

#### Part C

## Values of r and $\theta$

Hence show that  $r=6\,\mathrm{cm}$  and find the value of  $\theta$ .

#### Part D

## Area of segment

Find the area of the segment bounded by the arc AB and the chord AB. Give your answer to 3 sf.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle

**Approximations** 



# Radians and Trig Functions 2i

Subject & topics: Maths Stage & difficulty: A Level P2

Figure 1 shows part of the curve  $y = \cos 2x$ , where x is in radians. The point A is the minimum point of this part of the curve.



Figure 1: The graph of  $y = \cos 2x$ .

# Part A Period

State the period of  $y=\cos 2x$ .

The following symbols may be useful: pi, t



# Part C $\text{The inequality} \cos 2x \leqslant \tfrac{1}{2}$

Solve the inequality  $\cos 2x \leqslant \frac{1}{2}$  for  $0 \leqslant x \leqslant \pi$ , giving your answer as a range of angles x.

Construct your answer from the items below.



Items:



Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle

**Approximations** 



## Radians and Trig Functions 2ii

Subject & topics: Maths Stage & difficulty: A Level P1

This question is about solving the equation  $2\cos x = \tan 2x$  for  $0 \leq x \leq \pi$ .

#### Part A

The equation  $2\cos x = \tan 2x$ 

Write down the exact values of  $\cos \frac{\pi}{6}$  and  $\tan \frac{\pi}{3}$  (where the angles are in radians).

• 
$$\cos \frac{\pi}{6} =$$

• 
$$\tan \frac{\pi}{3} =$$

To verify that  $x=rac{\pi}{6}$  is a solution of the equation  $2\cos x=\tan 2x$ , consider the two sides of the equation separately:

• When 
$$x=\frac{\pi}{6}$$
,  $2\cos x=$  \_\_\_\_\_\_\_.

$$ullet$$
 When  $x=rac{\pi}{6}$ ,  $an 2x=$ 

The left hand side and right hand side are equal when  $x=rac{\pi}{6}$ . Hence,  $x=rac{\pi}{6}$  is a solution of the equation  $2\cos x = \tan 2x$ .

Items:















# Part B **Sketch**

Sketch, on a single diagram, the graphs of  $y=2\cos x$  and  $y=\tan 2x$ , for x (radians) such that  $0\leqslant x\leqslant \pi$ .

Choose the correct graph from the three options below.



Option A





Figure 1: Options A, B and C.

( A

\_\_\_\_\_ B

( ) C

| Part C Other solutions                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Hence state, as a fraction of $\pi$ , the two other values of $x$ between $0$ and $\pi$ satisfying the equation $2\cos x = \tan 2x$ . |
| smaller root $=$ $\pi$                                                                                                                |
| larger root $=$ $\pi$                                                                                                                 |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle

**Approximations** 



# Radians and Trig Functions 1i

Subject & topics: Maths Stage & difficulty: A Level P2

A curve has equation  $y = \sin{(ax)}$ , where a is a positive constant and x is in radians.

# Part A Period

State the period of  $y=\sin{(ax)}$ , giving your answer in an exact form in terms of a.

The following symbols may be useful: a, pi, t

# Part B

 $\sin\left(ax\right) = k$ 

The two smallest positive solutions of  $\sin{(ax)}=k$ , where k is a positive constant, are  $x=\frac{1}{5}\pi$  and  $x=\frac{2}{5}\pi$ .

Find the exact values of a and k.

$$a = ($$

$$k = \bigcirc \checkmark \bigcirc$$

Part C

$$\sin\left(ax\right) = \sqrt{3}\cos\left(ax\right)$$

Given instead that  $\sin{(ax)} = \sqrt{3}\cos{(ax)}$ , find the two smallest positive solutions for x, giving your answers in an exact form.

Enter your answers in order from lowest value of  $\boldsymbol{x}$  to highest.

$$x=$$
  $\frac{\pi}{a}$  (lowest value)

$$x=$$
  $\frac{\pi}{a}$  (highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 29 - Radians & Small Angle

**Approximations** 



## Small Angle Approximations 1i

Subject & topics: Maths Stage & difficulty: A Level P2

The small angle approximation is used when measuring distances in astronomy.

The two stars Alpha Centauri A and Alpha Centauri B are in a binary pair (they orbit one another). The distance between them is an average of 11 Astronomical Units, and they are an average of 4.4 light years from Earth.

$$1 \, \mathrm{AU} = 1 \, \mathrm{Astronomical} \, \, \mathrm{Unit} = 149 \, 597 \, 870 \, 700 \, \mathrm{m}$$
   
  $1 \, \mathrm{ly} = 1 \, \mathrm{Light} \, \, \mathrm{Year} = 9.4607 \times 10^{15} \, \mathrm{m}$ 

Assume that a telescope is pointing straight at Alpha Centauri A with the geometry shown in Figure 1.



Figure 1: A telescope pointing straight at Alpha Centauri A

Use the small angle approximation to estimate  $\theta$ , the angular separation between the stars as seen by the telescope. Give your answer to 2 significant figures.

| 2025, 08:41                    | Small Angle Approximations 1i — Isaac Science                                              |
|--------------------------------|--------------------------------------------------------------------------------------------|
| Part A                         |                                                                                            |
| Radians                        |                                                                                            |
|                                |                                                                                            |
| Give the answer in radians     |                                                                                            |
| dive the answer in radians     | ·                                                                                          |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
| Part B                         |                                                                                            |
| Degrees                        |                                                                                            |
|                                |                                                                                            |
| Give the answer in degrees     | 5.                                                                                         |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
| Part C                         |                                                                                            |
| Arc Seconds                    |                                                                                            |
|                                |                                                                                            |
| Give the answer in Arc Sec     | conds. (Where $1$ arc second is one $\left(\frac{1}{3600}\right)^{	ext{th}}$ of a degree.) |
| and the answer min to see      | The second is one $(3600)$ of a degree.)                                                   |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
|                                |                                                                                            |
| lead with parmission from LICL | ES A-level Maths papers, 2003-2017.                                                        |