Celestini 2019

Section - E

i) 100 balls are tossed independently and at random into 50 bins. Let X be a random variable representing the number of empty boxes. Find the expected value of random variable X, i.e. E(X).

Answer:

We need to find the exhected number of empty bins

If x is the total no. of bins that ends with Zeno balls

then

$$E(x) = E(x_1 + x_2 + x_3 - ... x_{49} + x_{50})$$

$$= E(x_1) + E(x_2) + E(x_3) - ... E(x_{50})$$
Let $x_i = 1$ if bin i has zero balls
$$x_i = 0$$
 if btherwise

Thus
$$P(x_i = 1) = \left(\frac{49}{50}\right)^{100}$$

$$So E(x) = E(x_1) + E(x_2) + ... E(x_{49}) + E(x_{50})$$

$$= 50 \times \left(\frac{49}{50}\right)^{100}$$
Answer: $50 \times \left(\frac{49}{50}\right)^{100}$

ii) Binary communication channel

The per bit error rate over a certain binary communication channel is 10^{-10} . No other statistics are known about the channel or the data.

ii) a) What is the expected number of erroneous bits in a block of 1000 bits?

Answer:

According to the ques, let

$$N_i = 1$$
 with probability = 10^{-10}
 0 with probability = $1-10^{-10}$

Hence $E(n_i) = 1 \times 10^{-10} + 0 \times (1-10^{-10})$
 $= 10^{-10}$

Let $N = n_0 \cdot of$ errors in ablock of 1000 bits

 $E(N) = 1000 \times E(n_i) = 1000 \times 10^{-10}$
 $= 10^{-7}$

Answer: 10^{-7}

ii) b) Find an upper bound on the probability that a block of 1000 bits has 10 or more erroneous bits.

Answer:

The apperbound can be found using Markov's inequality which gives an apperbound for the probability that a ron negative function of a rondom variable is greater than or equal to some positive constant.
$$P(x \ge a) \le E(x)$$
So,
$$P\{N \ge 10 \text{ y} \le E(X) = 10^{-8}$$
Answer: 10^{-8}

iii) Alina gambles against Gina. Each night Alina draws a card from a deck (with replacement). If it is a spade or a queen, Alina wins \$4. If not, Alina loses \$1. What is Alina's total expected winnings after 30 nights?

Answer:

