— Module Analyse numérique—Fiche de TD—

Exercice 1. Décrire les méthodes de la dichotomie et les utiliser pour calculer le zéro de la fonction $f(x) = x^3 - 4x - 9$ dans l'intervalle [2, 3] avec une précision de 10^{-2} .

Correction:

La fonction f est continue sur [2,3] et vérifie f(2)f(3) = (-9)(6) < 0, donc elle admet un zéro $\alpha \in]2,3[$. De plus f est strictement croissante $(f'(x) = 3x^2 - 4 > 0, \forall x \in]2,3[)$, alors α est unique.

En partant de $I_0 = [a, b]$, la méthode de la dichotomie produise une suite de sous-intervalles $I_k = [a_k, b_k]$, $k \ge 0$, avec $I_k \subset I_{k-1}$, $k \ge 1$, et tels que $f(a_k)f(b_k) < 0$. Dans notre cas on a

$$k := 0$$

$$a_k := 2$$

$$b_k := 3$$

while
$$|b_k - a_k| > 10^{-2}$$
 do

$$x_k := \frac{a_k + b_k}{2}$$

$$k := k + 1$$

if
$$(a_k^3 - 4 * a_k - 9) * (x_k^3 - 4 * x_k - 9) < 0$$
 then

$$a_{k+1} := a_k$$

$$b_{k+1} := x_k$$

else

$$a_{k+1} := x_k$$

$$b_{k+1} := b_k$$

end if

end while

	enu	end winte							
	k	a_k	x_k	b_k	signe de $f(a_k)$	signe de $f(x_k)$	signe de $f(b_k)$		
	1	2.00000000	2.50000000	3.00000000	-	-	+		
	2	2.50000000	2.75000000	3.00000000	-	+	+		
Ì	3	2.50000000	2.62500000	2.75000000	-	-	+		
	4	2.62500000	2.687500000	2.75000000	-	-	+		
Ì	5	2.687500000	2.718750000	2.75000000	-	+	+		
Ì	6	2.687500000	2.703125000	2.718750000	-	-	+		

Exercice 2. Soit la fonction $g(x) = xe^x - 2x$, une fonction définie dans \mathbb{R} .

- 1. Montrer que g(x) admet un unique minimum dans [0,1].
- 2. Montrer que l'algorithme de Newton permet de déterminer une valeur approchée de ce minimum. Écrire l'algorithmes pour une convergence à 10⁻⁶ près.
- 3. Calculer le minimum de la fonction $g \ à \ 10^{-6}$ près.

Correction:

1. On pose $f(x) = g'(x) = (x+1)e^x - 2$. L'extremum de la fonction g est le zéro de la fonction f. la fonction f est continue sur [0,1] et vérifie f(0)f(1) = (-1)(2e-2) < 0, donc elle admet un zéro $\alpha \in]0,1[$. De plus f est strictement croissante $(f'(x) = g''(x) = (x+2)e^x > 0, \forall x \in]0,1[)$, alors α est unique. Le tableau des variations de g nous montre que l'extremum α est un minimum.

x	0	α	1
g'	-	0	+
g	0>	$g(\alpha)$	$\nearrow e-2$

2. Pour $x_0 = 1$ le processus de Newton défini par $x_{n+1} = x_n - f(x_n)/f'(x_n) = \frac{(x_n^2 + x_n - 1)e^{x_n} + 2}{(x_n + 2)e^{x_n}}$ converge.

En effet: La fonction f est de classe $C^2([0,1])$, f(0)f(1) < 0 et la première et la deuxième dérivée de f ne changent pas de signe $(\forall x \in [0,1], f'(x) = (x+2)e^x \neq 0$ et $f''(x) = (x+3)e^x \neq 0$).

Dans notre cas l'algorithme est donné par

$$x_0 = 1$$

$$k := 0$$

while
$$|x_{k+1} - x_k| < 10^{-6}$$
 do $x_{k+1} := ((x_k^2 + x_k - 1) * \exp(x_k) + 2)/(x_k + 2)/\exp(x_k)$

k := k + 1

end while

3. $\alpha = 0.3748225282$.

Exercice 3. On veut résoudre l'équation

$$f(x) = 2xe^x - 1 = 0. (1)$$

- 1. Monter que l'équation (1) admet une solution dans l'intervalle [0,1]
- 2. (a) Vérifier les conditions d'application de la méthode de Newton
 - (b) Ecrire l'algorithme de Newton, et calculer x_1, x_2, x_3 avec $x_0 = 1$.
- 3. (a) Vérifier que l'équation (1) peut s'écrire sous la forme de point fixe: $x = \frac{1}{2}e^{-x} = \phi(x)$
 - (b) Excrite l'algorithme de point fixe, et calculer x_1 , x_2 , x_3 avec $x_0 = 1$.
 - (c) Justifier la convergence de la méthode.

Correction:

On a
$$f(x) = 2xe^x - 1 = 0$$
 (1).

- 1. f est continue sur [0,1] et f(0)f(1) = (-1)(2e-1) = 1 2e < 0 alors $\exists \overline{x} \in]0,1[$ tel que $f(\overline{x}) = 0$ de plus, f est strictement croissante sur]0,1[(car $f'(x) = 2(x+1)e^x > 0$, $\forall x \in]0,1[$) donc \overline{x} est unique.
- 2. (a) Conditions d'application de la méthode de Newton
 - i. $f \in C^2([0,1])$.
 - ii. f(0)f(1) < 0
 - iii. $f'(x) = 2(x+1)e^x \neq 0, \forall x \in]0,1[$
 - iv. $f''(x) = 2(x+2)e^x \neq 0, \forall x \in]0,1[$
 - v. On pose $x_0 = 1$, on a f(1)f''(1) = 6e(2e-1) > 0 D'où l'algorithme de Newton est convergente vers \overline{x} .
 - (b) L'algorithme de Newton est donné par la suite suivante: $\begin{cases} x_0 = 1 donne, \\ x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)} = \frac{1 + 2e^{x_n}}{2(1 + x_n)e^{x_n}}, \\ x_1 = 0.5919698602, \ x_2 = 0.3938809001, \ x_3 = 0.3532291400. \end{cases}$
- 3. (a) $f(x) = 0 \Leftrightarrow x = \frac{1}{2e^x} = \frac{e^{-x}}{2} = \phi(x) \text{ car } e^x \neq 0.$
 - (b) L'algorithme du point fixe est donné par: $\begin{cases} x_0 = 1, donne \\ x_{n+1} = \phi(x_n) = \frac{e^{-x_n}}{2} \end{cases}$ $x_1 = 0.1839397206, \ x_2 = 0.4159929772$ et $x_3 = 0.3298424517$.

(c) Stabilité de Φ sur [0,1]: Φ est décroissante sur [0,1] alors on a $\phi([0,1]) \subset [\phi(1),\phi(0)] =$ $[0.18.., 0.5] \subset [0, 1]$ donc ϕ est stable dans [0, 1]. Φ est Contractante sur [0,1]: $|\phi'(x)| = \frac{1}{2e^x} \le \frac{1}{2} < 1$ donc ϕ estcontractante.

Exercice 4. Intégrer la fonction $f(x) = e^x$ dans l'intervalle [0,1] en utilisant la méthode des trapèzes composée avec 4 puis avec 8 intervalles. Comparer les résultats avec la valeur exacte.

Correction : Calcul de : $I = \int_{0}^{1} e^{x} dx$

1. (4 sous-intervalles)

On pose $x_0 = 0$, $x_1 = 1/4$, $x_2 = 1/2$, $x_3 = 3/4$ et $x_4 = 1$. On a

$$I_4 = \int_0^1 f(x)dx = \sum_{i=0}^3 \int_{x_i}^{x_{i+1}} f(x)dx \simeq \sum_{i=0}^3 (x_{i+1} - x_i) \frac{f(x_{i+1}) + f(x_i)}{2} = \sum_{i=0}^3 \frac{f(x_{i+1}) + f(x_i)}{8}$$

$$= \frac{1}{8} \left(f(x_0) + 2 \sum_{i=1}^{3} f(x_i) + f(x_4) \right) = \frac{1}{8} (1 + e + 2(e^{1/4} + e^{1/2} + e^{3/4})) = 1.727221905$$

2. (8 sous-intervalles)

On pose $x_i = ih = i/8$, i = 0, ..., 8 avec le pas h = 1/8. On a

$$I_8 = \int_0^1 f(x)dx = \sum_{i=0}^7 \int_{x_i}^{x_{i+1}} f(x)dx \simeq \sum_{i=0}^7 (x_{i+1} - x_i) \frac{f(x_{i+1}) + f(x_i)}{2} = \sum_{i=0}^7 \frac{f(x_{i+1}) + f(x_i)}{16}$$

$$= \frac{1}{16} \left(f(x_0) + 2 \sum_{i=1}^{7} f(x_i) + f(x_8) \right) = \frac{1}{16} (1 + e + 2(e^{1/8} + e^{1/4} + e^{3/8} + e^{1/2} + e^{5/8} + e^{3/4} + e^{7/8}))$$

$$I_8 = 1.720518592$$

3. I = 2.718281828, er4 = 0.008940077, er8 = 0.002236764 à 10^{-9}

Exercice 5. Intégrer la fonction $f(x) = \frac{1}{\sqrt{x}}$ dans l'intervalle [1,9] en utilisant la méthode de Simpson composée avec 6 intervalles. Comparer les résultats avec la valeur exacte.

Correction: Calcul de : $I = \int_{1}^{9} \frac{dx}{\sqrt{x}}$

1. (6 sous-intervalles)

On pose $x_i = 1 + ih = 1 + 4i/3$, avec h = 4/3 i = 0, ..., 6. On a $x_{i+1} - x_i = h = 4/3$ On a

$$I_6 \int_{0}^{1} f(x)dx = \sum_{i=0}^{5} f(x)dx \simeq \sum_{i=0}^{5} \frac{2}{9} \left(f(x_i) + 4f(\frac{x_i + x_{i+1}}{2}) + f(x_{i+1}) \right)$$

$$= \frac{2}{9}(1+3+2\sum_{i=1}^{5} f(x_i) + 4\sum_{i=0}^{5} \left(f(\frac{x_i + x_{i+1}}{2}) \right) = 16.18547766$$

ici n=3

$$I = \int_{0}^{1} \sqrt{x} dx.$$

- 1. Donner la valeur exacte de I.
- 2. Donner une approximation de I en utilisant la méthode de Simpson avec deux sous-intervalles.
- 3. Le théorème du cours permettait-il de prédire l'erreur commise?

Exercice 7. L'espérance de vie dans un pays a évoluée dans le temps selon le tableau suivant :

$Ann\'ee$	1990	1995	2000	2005
Espérance	72,8	74,2	75,2	76,4

Utiliser l'interpolation de Lagrange pour estimer l'espérance de vie en 1992, 1997 et 2003. La comparer avec une interpolation linéaire par morceaux.

Correction : Le polynôme d'interpolation de Lagrange de degré n sur l'ensemble des n+1 points $(x_i,y_i)_{i=0..n}=(x_i,f(x_i))_{i=0..n}$ s'écrit $p_n(x)=\sum_{i=0}^n y_i L_i(x)$ avec $L_i(x)=\prod_{j=0;j\neq i}^n \frac{x-x_j}{x_i-x_j}$.

$$p_3(x) = y_0 \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} + y_1 \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_0 - x_3)} + y_2 \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

$$p_3(x) = -\frac{184}{1875}x^3 + \frac{220616}{375}x^2 - \frac{88172414}{75}x + \frac{11746406728}{15}$$

$$p_3(1992) = 52.86826667$$

$$p_3(1997) = 57.99360000$$

$$p_3(2003) = 83.57440000$$

Exercice 8. 1. Calculer le polynôme p de LAGRANGE qui interpole la fonction $f(x) = \frac{4}{x}$ aux points d'abscisse $x_0 = 1$, $x_1 = 2$ et $x_2 = 4$. Tracer les graphes de f et de p pour $x \in [1, 4]$.

- 2. Vérifier que l'erreur $\epsilon(x) = |f(x) p(x)|$ prend sa valeur maximale en un unique point \overline{x} dans l'intervalle [2,4]. Calculer ensuite \overline{x} à 10^{-1} (par exemple en utilisant la méthode de dichotomie).
- 3. Comparer la fonction $\epsilon(x)$ avec l'estimation théorique de l'erreur.

Correction:

1. Le polynôme d'interpolation de Lagrange de degré 2 sur l'ensemble des 3 points $(x_i, y_i)_{i=0..n} = (1, 4), (2, 2), (4, 1)$ s'écrit

$$p_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$
$$p_3(x) = \frac{1}{2}x^2 - \frac{7}{2}x + 7$$

Le Tracé du graphe de f et de p pour $x \in [1, 4]$.

Figure 1:

2. D'après la figure 1, il est claire que $\epsilon(x) = |f(x) - p(x)| = \begin{cases} p(x) - f(x), & \text{si } 1 \leq x \leq 2; \\ f(x) - p(x), & \text{si } 2 \leq x \leq 4. \end{cases}$ On a $\epsilon'(x) = 0$ pour $\overline{x} = 3.077718305$, donc la valeur maximale est en point $\overline{x} \in [2, 4]$ et max $[1, 4]e(x) = e(\overline{x}) = .335503191$.

Exercice 9. On considère le système d'équations linéaires AX = b suivant:

$$\begin{cases} 2x_1 + x_2 + x_3 = 4, \\ x_1 + 2x_2 + x_3 = 4, \\ x_1 + 2x_3 + x_2 = 4. \end{cases}$$

- 1. Montrer que la matrice A est inversible.
- $2. \ \ D\'{e}terminer \ la \ matrice \ \widetilde{A} \ et \ d\'{e}duire \ son \ d\'{e}terminant, \ en \ utilisant \ la \ m\'{e}thode \ d'\'{e}limination \ de \ Gauss.$
- 3. Trouver l'inverse de la matrice A en utilisant cette méthode.
- 4. Déduire le déterminant de la matrice A^{-1} .
- 5. Déduire la solution X du système AX = b.

Correction : La matrice A et le vecteur b sont donnée par

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \text{ et le vecteur } b = (4, 4, 4)^t$$

1. On a $det(A) = 4 \neq 0$ donc la matrice A est inversible.

2.
$$\widetilde{A} = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3/2 & 1/2 \\ 0 & 0 & 4/3 \end{pmatrix}$$
 et $det(A) = 2\frac{3}{2}\frac{4}{3} = 4$.

3. Le calcul de A^{-1} , revient à résoudre trois systèmes triangulaires supérieurs. On a

$$AA^{-1} = I_3 \Leftrightarrow \widetilde{A}A^{-1} = \widetilde{I}_3 \Leftrightarrow A^{-1} = \widetilde{A}^{-1}\widetilde{I}_3$$

$$A^{-1} = \begin{pmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{pmatrix}.$$

- 4. $det(A^{-1}) = \frac{1}{4}$.
- 5. $X = A^{-1}b = (1, 1, 1)^t$.

Exercice 10. On donne la matrice A et le vecteur b, par:

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 5 & 8 \\ 2 & 8 & 14 \end{pmatrix}, \quad b = (1, 3, 6)^t.$$

- 1. Montrer que A est symétrique définie positive (SDP).
- 2. Donner la décomposition LU de la matrice A.
- 3. En utilisant la décomposition LU, résoudre le système "AX = b".

Correction:

1. La matrice A est symétrique car $A = A^t$. La matrice A définie positive.

En effet : On a :
$$det(A_1) = det[1] = 1 > 0$$
, $det(A_2) = det\begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix} = 4 > 0$ et $det(A) = 4 > 0$

2. La décomposition LU de la matrice A est donnée par:

$$A = LU = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{pmatrix}$$

Par identification on a

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 3/2 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{pmatrix}$$

3. On a

$$AX = b \Leftrightarrow LUX = b \Leftrightarrow \begin{cases} LY = b, \\ UX = Y, \end{cases}$$

D'où $X = (0, -1, 1)^t$.

Exercice 11. Soit le problème de Cauchy (P1) suivant

$$y' - y = e^{2t}$$

$$y(0) = 2$$

$$(2)$$

$$y(0) = 2 \tag{3}$$

- 1. En utilisant la méthode analytique résoudre le problème (P1).
- (a) En prenant h = 0.1, faire 3 itérations de la méthode d'Euler et calculer l'erreur commise sur y_3 en comparant les résultats avec la solution analytique y(0.3).

- (b) En prenant h = 0.05, faire 6 itérations de la méthode d'Euler et calculer l'erreur commise sur y_6 en comparant les résultats avec la solution analytique y(0.3).
- (c) Faire le ratio des erreurs commise en a) et b), et commenter le résultat en fonction de l'erreur de troncature locale liée à la méthode utilisée.

Correction:

1. La solution homogène de l'équation (3), c'est-à-dire de solution de l'équation : y' - y = 0 est donnée par $y_h(t) = Ke^t$. On peut vérifier facilement qu'une solution particulière sous forme exponentielle de 2t s'écrit $y_p(t) = e^{2t}$ (On peut la retrouver, en utilisant la méthode variation de la constante). Ce qui nous donne la solution générale sous forme $y_g(t) = y_p(t) + y_h(t) = e^{2t} + Ke^t$. En t = 0, y = 2 alors K = 1. D'où la solution du problème (P1)

$$y(t) = e^{2t} + e^t.$$

2. (a) On pose h = 0.1: alors on a $x_i = x_0 + hi$, $x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$ et $x_3 = 0.3$. L'algorithme de la méthode d'Euler est donné par

Pour
$$0 \le n \le N$$
: $y_{n+1} = y_n + hf(t_n, y_n)$
 $t_{n+1} = t_n + h$ (4)
Ecrire y_{n+1} et t_{n+1} — Arrêt

	$x_i \mid 0.0 \mid 0.1$		0.2	0.3	
y_i	2.000	2.3	2.652140276	3.066536773	

On a $y(0.3) = e^{0.6} + e^{0.3} = 3.171977608$ donc l'erreur commise sur y_3 est

$$err_{h=0.1} = |y(0.3) - y_3| = 0.105440835$$

(b) En prenant h = 0.05. La subdivision est : $x_i = x_0 + ih$ donc $x_0 = 0$, $x_1 = 0.05$, $x_2 = 0.10$, $x_3 = 0.15$. $x_4 = 0.2$, $x_5 = 0.25$ et $x_6 = 0.3$.

x_i	0.0	0.05	0.10	0.15	0.20	0.25	0.30
y_i	2.000	2.150	2.312758546	2.489466611	2.681432882	2.890095761	3.117036613

On a y(0.3) = 3.171977608 donc l'erreur commise sur $y_6 = 3.117036613$ est

$$err_{h=0.05} = |y(0.3) - y_3| = 0.054940995$$

(c) Le ratio des erreurs est de $\frac{err_{h=0.1}}{err_{h=0.05}} = \frac{0.105440835}{0.054940995} \simeq 1.92 \simeq 2^1$, ce qui confirme que la méthode est d'ordre 1.

Exercice 12. Refaire le même exercice avec la méthode de Runge-Kutta d'ordre 4.

Correction:

- 1. La solution analytique du problème (P1) est : $y(t) = e^{2t} + e^t$.
- 2. (a) On pose h = 0.1: la subdivision est $: x_i = x_0 + hi$, pour i = 0..3 on a $x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$ et $x_3 = 0.3$. L'algorithme de la méthode de Runge-Kutta d'ordre 4 est donnée par
 - Etant donné un pas h, une condition initiale (t_0, y_0) et un nombre max d'itération N

Pour
$$0 \le n \le N$$
:
 $k_1 = hf(t_n, y_n)$
 $k_2 = h(f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}))$
 $k_3 = h(f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}))$
 $k_4 = h(f(t_n + h, y_n + k_3))$
 $y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 $t_{n+1} = t_n + h$
Ecrire y_{n+1} et t_{n+1} — Arrêt

Figure 2: La ligne continue représente le graphe de la solution exacte f, les point représente la solution approché en prenant h = 0.1 et les Astérix représente la solution approché en prenant h = 0.05.

x_i	0.0	0.1	0.2	0.3
y_i	2.000	2.326573274	2.713226532	3.171976011

L'erreur commise sur $y_3 = 3.171976011$ est

$$err_{h=0.1} = |y(0.3) - y_3| = 0.1597 \times 10^{-5}$$

(b) En prenant h=0.05. La subdivision est : $x_i=x_0+ih$ donc $x_0=0, x_1=0.05, x_2=0.10, x_3=0.15.x_4=0.2, x_5=0.25$ et $x_6=0.3$.

x_i	0.0	0.05	0.10	0.15	0.20	0.25	0.30
y_i	2.000	2.156442002	2.326573649	2.511693007	2.713227393	2.932746603	3.171977500

On a y(0.3) = 3.171977608 donc l'erreur commise sur $y_6 = 3.171977500$ est

$$err_{h=0.05} = |y(0.3) - y_3| = 0.108 \times 10^{-6}$$

(c) Le ratio des erreurs est de $\frac{err_{h=0.1}}{err_{h=0.05}} = \frac{0.1597 \times 10^{-5}}{0.108 \times 10^{-6}} \simeq 14.78 \simeq 2^4$, ce qui confirme que la méthode de Runge-Kutta est d'ordre 4.

Figure 3: Les graphes de la solution exacte et les solutions approchés (pour h = 0.1 et h = 0.05) sont confondus, ce qui justifie la bonne précision de la méthode de Rung-Kutta

Algorithme 1 : Méthode d'Euler

- Etant donné un pas h, une condition initiale (t_0, y_0) et un nombre max d'itération N

Pour $0 \le n \le N$: $y_{n+1} = y_n + hf(t_n, y_n)$ $t_{n+1} = t_n + h$ Ecrire y_{n+1} et t_{n+1} — Arrêt (6)

Algorithme 2: Méthode de Taylor d'ordre 2

-Etant donné un pas h, une condition initiale (t_0, y_0) et un nombre max d'itération N

Pour
$$0 \le n \le N$$
: $y_{n+1} = y_n + hf(t_n, y_n) + \frac{h^2}{2} \left(\frac{\partial f(t_n, y_n)}{\partial t} + \frac{\partial f(t_n, y_n)}{\partial y} f(t_n, y_n) \right)$

$$t_{n+1} = t_n + h$$
Ecrire y_{n+1} et t_{n+1} — Arrêt

Algorithme 3: Méthode de d'Euler modifiée

- Etant donné un pas h, une condition initiale (t_0, y_0) et un nombre max d'itération N

$$\hat{y} = y_n + h f(t_n, y_n)
\text{Pour } 0 \le n \le N : \quad y_{n+1} = y_n + \frac{h^2}{2} (f(t_n, y_n) + f(t_{n+1}, \hat{y}))
t_{n+1} = t_n + h
\text{Ecrire } y_{n+1} \text{ et } t_{n+1} - \text{Arrêt}$$
(8)

Algorithme 4: Méthode du point milieu

-Etant donné un pas h, une condition initiale (t_0, y_0) et un nombre max d'itération N

Pour
$$0 \le n \le N$$
: $k_1 = hf(t_n, y_n)$
 $y_{n+1} = y_n + (f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}))$
 $t_{n+1} = t_n + h$
Ecrire y_{n+1} et t_{n+1} — Arrêt
$$(9)$$

Algorithme 5: Méthode de Runge-Kutta d'ordre 4

- Etant donné un pas h, une condition initiale (t_0,y_0) et un nombre max d'itération N

Pour
$$0 \le n \le N$$
: $k_1 = hf(t_n, y_n)$
 $k_2 = h(f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}))$
 $k_3 = h(f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}))$
 $k_4 = h(f(t_n + h, y_n + k_3))$
 $y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 $t_{n+1} = t_n + h$
Ecrire y_{n+1} et t_{n+1} — Arrêt