RISC-V Lab

Ex2: FPGA Protoyping

Content

- 1. Xilinx Series 7 (condensed)
- 2. FPGA design flow
- 3. Netlist simulation

Xilinx Series 7 (condensed)

Overview

- common architecture for all7 series
- columns with
 - o **|O**
 - o slice / CLB
 - Hard macros: DSP,
 BRAM, ...

IO Tile

- PAD: metal window
- IOB (IO Buffer): physical driver / receiver (logic <-> world)
- IDELAY2 / ODLEAY2 : programmable delays e.g. for data line delay matching
- I/OLOGIC I/OSERDES: fast shift registers, ...

IO Tile: IO Buffers

- IOBUF
 - on PCB set to 3.3V (!)

```
T I 0 IO
0 0 IO 0
0 1 IO 1
1 * Z/IO Z/IO
Note: rvlab wrapper inverts T!
```

IBUFDS / OBUFDS (HDMI)

from/details: "7 Series FPGAs Select1O Resources User Guide (UG471)"

Slice

- basic block for all logic!
- 4x 6 input or 8x 5 input LUT
- 8x D-FF
- add/sub: CR / 4 bit CLA
- (output) muxing
- alternatively: 32 / 2x16 bit shift register or 64bit RAM
- 1 CLB (configurable logic block) = 2 * slices

Slice: consequences

=> efficient logic should fit into a slice (-> no slow routing) (add / sub can span multiple slices due to dedicated CR lines)

Questions

- Q1: What is the maximum 1:N Mux for a 4 input LUT?
- Q2: How many % of a 6 input LUT does the function ~(a & ~b | c) occupy?

from / details: "7 Series FPGAs Configurable Logic Block User Guide UG474 (v1.8) September 27, 2016"

Hardcores

- DSP
 - 25x18 multiplier ---
 - o use cases: (adaptive) filters (FIR), FFT, ...
 - XC7A200T: 740
- PLLs / Mixed-Mode Clock Manager
 - frequency multiplication M/N
 - phase shift
 - N phase output (e.g. for high resolution PWMs)
- GBit Transceiver, PCIe, ...

Hardcores: Block rams (1)

- synchronous read & write
- true dual port
- 1x 36kb or 2x 18k
- aspect ratio configurable
- cascade: 2x32kx1 => 64kx1
- XC7A200T: 365 (13140 Kbit)

Hardcores: Block rams (2)

Table 1-13: Port Aspect Ratio for RAMB36E1 (in TDP Mode)

Port Data Width	Port Address Width	Depth	ADDR Bus	DI Bus DO Bus	DIP Bus DOP Bus
1	15	32,768	[14:0]	[0]	NA
2	14	16,384	[14:1]	[1:0]	NA
4	13	8,192	[14:2]	[3:0]	NA
9	12	4,096	[14:3]	[7:0]	[0]
18	11	2,048	[14:4]	[15:0]	[1:0]
36	10	1,024	[14:5]	[31:0]	[3:0]
1 (Cascade)	16	65536	[15:0]	[0]	NA

from / details: "7 Series FPGAs Memory Resources User Guide UG473 (v1.14) July 3, 2019"

How to Use

- 1. automatic inference by synthesis (preferred)
- 2. if synthesis fails instantiate "primitive" from library
- DSP slices (esp. MAC, mul always works)
- 3. instantiate "primitives" from library
- Block rams (try synthesis, but keep checking!)
- (global) buffers / routing ressources (BUGF, BUGH, ...)
- IOs (already provided in rvlab)
- PLLs

How to Use: Example

```
module iocell_bidir #(
    parameter int Width = 1
  inout wire [Width-1:0] pad,
  input logic [Width-1:0] oe,
  input logic [Width-1:0] out,
  output logic [Width-1:0] in
  generate
    genvar i;
    for (i = 0; i < Width; i++) begin : cellarray
      IOBUF #(
                     (4)
        .IBUF_LOW_PWR("TRUE"),
        .IOSTANDARD ("DEFAULT"),
                     ("SLOW")
       iocell (
        .0 (in[i]),
                    // Buffer output
        .IO(pad[i]), // Buffer inout port (connect directly to top-level port)
        .I (out[i]), // Buffer input
        .T (~oe[i]) // 3-state enable input, high=input, low=output
endmodule
```


How to Use (2)

Instance templates are in the: "Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide UG953 (v2021.2) October 22, 2021" (see Resources)

Hardware O(N)

```
+C, -C, +1, -1, +,-,*, /, <<, >>, |, &, ~, 1:N mux, M:N mux, sin,cos, >=, <=, ==
```

O(k):

O(n):

O(N log N):

O(N²):

don't use:

FPGA Design Flow

XDC (excerpt!)

```
# TO Placement
                                       IOSTANDARD LVCMOS33 } [get_ports { clk_100mhz_i }];
set_property -dict { PACKAGE_PIN R4
# Clock input
create_clock -add -name clk_100mhz -period 10.00 -waveform {0 5} [get_ports clk_100mhz_i]
create_generated_clock -name sys_clk [get_pin clkmgr_i/mmcm_i/CLKOUT0]
# JTAG via FT2232H
set_property -dict ...
create_clock -add -name tck -period 20.00 -waveform {0 10} [get_ports jtag_tck_i]
set_output_delay -clock tck 0.0 [get_ports "jtag_tdo_o"]
set_input_delay -clock tck 10.0 [get_ports "jtag_tdi_i jtag_tms_i"]
set_input_delay -clock tck 0.0 [get_ports "jtag_trst_ni"]
# Inputs without timing constraints; the following commands remove the warnings:
set_false_path -from [get_ports "jtag_trst_ni"]
# Inter-clock paths: tck, sys_clk and their derived clocks are asynchronous from all others
set_clock_groups -group [get_clocks tck] -asynchronous
set_clock_groups -group [get_clocks clk] -asynchronous
... (lots of IO placements)
```

Netlist simulation with Questa Sim

- Inputs
 - verilog netlist of the design (from P&R)
 - standard delay file (SDF) (from P&R)
 - verilog models of FPGA primitives (LUT, FFs, BRAM, ...)
 - (same as RTL simulation: test bench & tcl scripts)
- Outputs
 - value trace of all signals showing actual timing
 - timing (setup / hold) warnings of the FPGA primitives