Zadanie 3

Pierwszym krokiem będzie wygenerowanie macierzy $X_{100\times2}$, której wiersze będą iid losowymi wektorami z rozkładu $N(0,\Sigma/100)$, gdzie:

$$\Sigma = egin{bmatrix} 1 & 0.9 \ 0.9 & 1 \end{bmatrix}$$

oraz wygenerowanie wektora $Y=eta_1X_1+\epsilon$, gdzie $eta_1=3,X_1$ jest pierwszą kolumną X, $\epsilon\sim N(0,I).$

```
sigma = matrix(c(1, 0.9, 0.9, 1), 2, 2)
X = mvrnorm(100, c(0, 0), sigma/100)
B1 = 3
Y = B1 * X[,1] + rnorm(100)
```

Następnie, skonstruuję przedział ufności 95% dla eta_1 dla modelu $Y=eta_0+eta_1X_1+\epsilon$

i dla modelu $Y=eta_0+eta_1X_1+eta_2X_2+\epsilon$

Zauważając, że w przypadku obu modelu, 95% przedział ufności dla β_1 nie zawiera wartości 0, możemy stwierdzić, że dla testu:

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$

należy odrzucić hipotezę H_0 . Oznacza to, że istnieje liniowa relacja pomiędzy X_1 a wektorem odpowiedzi Y.

Zarówno β_0 (w obu modelach) jak i β_2 zawierają w swoich przedziałach ufności wartość 0, więc nie możemy odrzucić hipotez o nieistotności interceptu oraz X_2 .

Kolejnym krokiem będzie obliczenie odchylenia standardowego estymatora β_1 dla obu modeli.

Odchylenie dla modelu $Y=eta_0+eta_1X_1+\epsilon$:

```
s2 = 1/(100-2)*sum(base_model$residuals^2)
v = sum((X[,1] - mean(X[,1]))^2)
sigma_base = sqrt(s2/v)
sigma_base
[1] 1.00398
```

Odchylenie dla modelu $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$:

```
s2 = 1/(100-3)*sum((Y-predict(full_model))^2)
v = s2 * solve(t(X)%*%X)
sigma_full = sqrt(v[2,2])
sigma_full
[1] 2.988212
```

Następnie, policzymy moce testów dla β_1 dla obu modeli.

```
delta = B1/sigma_base

tc = qt(1-0.05/2, 100-2)

power_base = pt(-tc, 100-2, delta) + 1 - pt(tc, 100-2, delta)
```

Otrzymujemy wartości 0.841 dla zredukowanego modelu, 0.168 dla pełnego modelu. Wysoka wartość mocy testu dla zredukowanego modelu wynika ze sposobu generowania wektora odpowiedzi Y. Moc testu dla β_1 w pełnym modelu jest znacznie mniejsza, co spowodowane jest uwzględnieniem X_2 w modelu.

Ostatnim krokiem w trzecim zadaniu będzie wygenerowanie 1000 niezależnych kopii wektora ϵ , a następnie 1000 związanych z ϵ wektorów odpowiedzi.

Dla każdego z wektorów odpowiedzi estymujemy β_1 oraz wykonujemy test istotności β_1 (dla obu modeli).

```
base_model_b1_rejections = 0
full_model_b1_rejections = 0
b1s_base = c()
b1s_full = c()
for (i in 1:1000){
  error = rnorm(100, 0, 1)
  Y = 3 * X[, 1] + error
  base\_model = lm(Y\sim X[, 1])
  full_model = lm(Y \sim X[, 1] + X[, 2])
  interval_base = confint(base_model)
  interval_full = confint(full_model)
  if(interval\_base[2,1] >= 0 \mid interval\_base[2,2] <= 0){
    base_model_b1_rejections = base_model_b1_rejections + 1
  }
  if(interval_full[2,1] >= 0 \mid interval_full[2,2] <= 0){
    full_model_b1_rejections = full_model_b1_rejections + 1
  b1s_base[i] = base_model$coefficients[2]
  b1s_full[i] = full_model$coefficients[2]
}
```

Porównamy estymację odchylenia standardowego $s(\beta_1)'$ z obliczoną wcześniej wartością $s(\beta_1)$:

	model zredukowany	model pełen
$s(eta_1)'$	0.96784	2.816504
$s(eta_1)$	1.00398	2.988212

Oraz estymację mocy testu (π ') z otrzymanymi wcześniej wartościami (π):

	model zredukowany	model pełen
π'	0.862	0.174
π	0.841	0.168

Możemy zauważyć, że zarówno estymowane wartości odchylenia standardowego β_1 , jak i estymowane wartości mocy testu dla β_1 , są bardzo zbliżone do obliczonych wcześniej wartości teoretycznych.

Zadanie 4

Zaczniemy od wygenerowania macierzy $X_{1000 \times 950}$, zawierającej elementy będące iid zmiennymi losowymi z rozkładu $N(0,\sigma=0.1)$

```
X = matrix(rnorm(1000*950, 0, 0.1), 1000, 950)
```

Następnie, wyznaczymy wektor odpowiedzi $Y = X\beta + \epsilon$, dla $\beta = (3,3,3,3,3,0,\dots)^T$.

```
B = rep(0, 950)
B[1:5] = 3
Y = X%*%B + rnorm(1000)
```

Korzystając z kolejno 1, 2, 5, 10, 50, 100, 500, 950 pierwszych kolumn macierzy planu, budować będziemy modele regresji liniowej. Będziemy chcieli znaleźć model, który będzie najlepiej dopasowany do danych. Obliczymy SSE, MSE, AIC, p-wartości odpowiadające pierwszym dwóm regresorom oraz liczbę zmiennych, które nie miały wpływu na wyznaczony wektor odpowiedzi Y, ale dla których hipoteza zerowa o braku istotności nie mogłaby zostać odrzucona na podstawie testu t Studenta (oznaczone jako FD).

```
k = c(1, 2, 5, 10, 50, 100, 500, 950)
SSE = rep(0, length(k))
MSE = rep(0, length(k))
AIC = rep(0, length(k))
p_vals = matrix(0, length(k), 2)
FD = rep(0, length(k))

for(i in 1:length(k)){
    model = lm(Y~x[,1:k[i]])
```

```
SSE[i] = sum(model$residuals^2)
MSE[i] = sum((model$fit - X%*%B)^2)
AIC[i] = AIC(model)
if (i==1){
   p_vals[i, 1] = summary(model)$coefficient[2,4]
}
else{
   p_vals[i,] = summary(model)$coefficient[2:3, 4]
}
if(k[i] > 5){
   FD[i] = sum(summary(model)$coefficient[7:k[i], 4] < 0.05)
}</pre>
```

Liczba kolumn	1	2	5	10	50	100	500	950
SSE	1338	1263	999	992	944	910	517	60
MSE	391	288	6	13	61	95	488	945
AIC	3135	3079	2851	2854	2884	2947	3182	1942
FD	0	0	0	0	2	2	20	19

Wszystkie p-wartości dla dwóch pierwszych zmiennych wyniosły mniej niż 0.05.

Na podstawie kryterium AIC, możemy stwierdzić, że model zawierający wszystkie 950 kolumn jest najlepiej dopasowany do danych. Wraz ze wzrostem liczby kolumn, maleje wartość SSE, co oznacza, że wzrasta dopasowanie modelu do danych. Dla MSE, wartości początkowo maleją, aż do minimum równego 6, osiąganego dla modelu otrzymanego z pierwszych pięciu kolumn. Następnie, wartości MSE wzrastają aż do 945 dla modelu zbudowanego na 950 kolumnach. FD wzrasta wraz z dodawaniem kolejnych kolumn, za wyjątkiem ostatniego modelu, gdzie wartość FD spadła z 20 do 19.

W kolejnym kroku dokonamy identycznej analizy, ale dla modeli, które będą budowane na podstawie kolumn, których estymowane współczynniki regresji są największe. Musimy więc zbudować model pełen i posortować współczynniki w kolejności malejącej ze względu na ich wielkość:

```
model = lm(Y~X[,1:950])
best_vars_idxs = order(abs(summary(model)$coefficient[2:951]), decreasing=TRUE)
```

Ponownie budujemy osiem różnych modeli. Otrzymujemy tabelę:

Liczba kolumn	1	2	5	10	50	100	500	950
SSE	1338	1336	1334	1241	1102	950	322	60
MSE	391	391	394	284	243	203	683	945
AIC	3135	3136	3140	3077	3039	2991	2710	1942
FD	0	0	0	0	7	15	295	17

Ponownie, p-wartości dla dwóch pierwszych zmiennych wyniosły mniej niż 0.05 dla każdego z modeli.

Tym razem również, według kryterium AIC, model zawierający wszystkie kolumny jest modelem najlepiej dopasowanym do danych. SSE znów jest malejące. MSE nie jest monotoniczne, a minimum osiąga dla modelu zbudowanego ze 100 zmiennych. FD ponownie osiągnęło maksymalną wartość dla modelu zbudowanego z 500 zmiennych.

W kolejnych zadaniach analizować będziemy dane z pliku CH06PR15.txt, które zawierają kolumny z: wiekiem, drastycznością przebiegu choroby, poziomem lęku oraz poziomem zadowolenia.

Zadanie 5

Zaczniemy od zbudowania modelu regresji liniowej, gdzie zmiennymi objaśniającymi są wiek (X_1) , drastyczność przebiegu choroby (X_2) oraz poziom lęku (X_3) , a zmienną objaśnianą jest poziom zadowolenia.

```
model = lm(satisfaction ~ age + severity + anxiety, data)
summary(model)
call:
lm(formula = satisfaction ~ age + severity + anxiety, data = data)
Residuals:
              1Q Median 3Q
     Min
-0.33589 -0.13333 -0.03347 0.12599 0.52022
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.053245 0.613791 1.716 0.09354 .
age -0.005861 0.003089 -1.897 0.06468.

        severity
        0.001928
        0.005787
        0.333
        0.74065

        anxiety
        0.030148
        0.009257
        3.257
        0.00223
        ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2098 on 42 degrees of freedom
Multiple R-squared: 0.5415, Adjusted R-squared: 0.5088
F-statistic: 16.54 on 3 and 42 DF, p-value: 3.043e-07
```

Otrzymujemy równanie $Y=1.053245-0.005861X_1+0.001928X_2+0.030148X_3$. Wartość \mathbb{R}^2 wyniosła 0.5415, zatem jedynie około 54% wariancji w Y jest wyjaśniona poprzez zmienne objaśniające.

Przetestujemy hipotezę:

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0 \text{ vs } H_1: \exists_{i \in 1,2,3} \beta_i \neq 0$$

```
msm = sum((model$fit - mean(data$satisfaction))^2)/3
mse = sum(model$residuals^2) / 42
f_stat = msm/mse
f_stat
tc = qf(1-0.05, 3, 42)
tc
```

```
p_val = 1 - pf(f_stat, 3, 42)
```

Wartość statystyki F wyniosła 16.53756. F^* będące kwantylem rzędu 0.95 z rozkładu Fishera-Snedecora o 3, 42 stopniach swobody wyniosło 2.82. Jest ono o wiele mniejsze od statystyki testowej F, więc możemy odrzucić hipotezę zerową o braku wpływu pomiędzy każdym z regresorów, a wektorem odpowiedzi. Istotnie, p-wartość wyniosła 3.04311e-07, co jest znacznie mniejsze od 0.05.

Zadanie 6

Korzystając z modelu zbudowanego w poprzednim zadaniu, podamy 95% przedziały ufności dla regresorów.

```
confint(model)[2:4,]

2.5 % 97.5 %

age -0.01209411 0.0003730895

severity -0.00974994 0.0136060385

anxiety 0.01146717 0.0488283055
```

Następnie, sprawdzimy statystyki testowe oraz p-wartość dla testów każdego z regresorów.

test	statystyka T	p-wartość
$H_0:eta_1=0 ext{ vs } H_1:eta_1 eq 0$	-1.897	0.065
$H_0:eta_2=0 ext{ vs } H_1:eta_2 eq 0$	0.333	0.741
$H_0:eta_3=0 ext{ vs } H_1:eta_3 eq 0$	3.257	0.002

Możemy wywnioskować, że zależność liniowa pomiędzy zmienną objaśniającą a zmienną objaśnianą zachodzi wyłącznie w przypadku zmiennej *anxiety* opisującej poziom lęku. Potwierdzają to zarówno przedziały ufności - jedynie przedział ufności dla poziomu lęku nie zawierał 0 - oraz wykonane testy, w przypadku których jedynie test $H_0: \beta_3 = 0 \text{ vs } H_1: \beta_3 \neq 0$ dawał p-wartość mniejszą od 0.05.

Zadanie 7

W tym zadaniu, wygenerujemy wykresy resiuduów vs satysfakcji oraz każdej ze zmiennych objaśniających.

```
data$residuals = model$residuals
data$prediction = model$fit
satisfaction_plot = ggplot(data) + geom_point(aes(prediction, residuals), shape
= 1, size = 2, )
age_plot = ggplot(data) + geom_point(aes(age, residuals), shape = 1, size = 2)
severity_plot = ggplot(data) + geom_point(aes(severity, residuals), shape = 1,
size = 2)
anxiety_plot = ggplot(data) + geom_point(aes(anxiety, residuals), shape = 1,
size = 2)
```


Możemy zauważyć brak zależności pomiędzy zmiennymi a wektorem residuów. Mają one strukturę losową, skupioną wokół 0, z niewielką liczbą obserwacji odstających.

Zadanie 8

Ostatnią częścią analizy danych pacjentów, będzie wykonanie testu Shapiro-Wilka w celu ustalenia, czy residua pochodzą z rozkładu normalnego.

```
shapiro.test(model$residuals)

Shapiro-wilk normality test

data: model$residuals
w = 0.96286, p-value = 0.1481
```

P-wartość wyniosła wartość 0.1481, więc nie możemy odrzucić hipotezy o normalności residuów.

W celu dalszego zbadania rozkładu residuów, możemy wykonać wykres kwantylowo-kwantylowy.

```
qqnorm(model$residuals)
qqline(model$residuals)
```


Zauważamy, że punkty układają się wokół prostej w sposób dość dobrze dopasowany, więc rozkład residuów jest bliski rozkładowi normalnego.

W kolejnych zadaniach przeanalizujemy dane pochodzące z pliki *csdata.dat* dotyczące studentów. Zawierają one kolumny: GPA, HSM, HSS, HSE, SATM, SATV, SEX.

Zadanie 9

Zbudujemy dwa modele regresji liniowej:

- 1) Model zredukowany przewidywanie GPA na podstawie HSM, HSS i HSE.
- 2) Model pełen przewidywanie GPA na podstawie HSM, HSS, HSE, SATM, SATV, SEX.

```
reduced_model = lm(GPA ~ HSM + HSS + HSE, data)
full_model = lm(GPA ~ HSM + HSS + HSE + SATM + SATV, data)
```

$$H_0: \beta_{SATM} = \beta_{SATV} = 0 \text{ vs } H_1: \beta_{SATM} \neq 0 \vee \beta_{SATV} \neq 0$$

```
sse_r = sum(reduced_model$residuals^2)
sse_f = sum(full_model$residuals^2)
dfe_r = length(data$id) - 4
dfe_f = length(data$id) - 6
mse_f = sse_f / dfe_f

F_stat = (sse_r - sse_f) / (dfe_r - dfe_f) / mse_f
F_stat
fc = qf(1-0.05, 2, dfe_f)
fc
```

Wyznaczyliśmy statystykę testową F, która wyniosła 0.95. Wartość F^* będącą kwantylem rzędu 0.95 ze stopniami swobody 2,218, wyniosła 3.04, co jest znacznie większe od F, więc nie możemy odrzucić hipotezy zerowej o braku istotności obu regresorów: SATM i SATV.

Porównamy otrzymane wyniki z wynikami funkcji anova.

```
anova(reduced_model, full_model)

Analysis of Variance Table

Model 1: GPA ~ HSM + HSS + HSE

Model 2: GPA ~ HSM + HSS + HSE + SATM + SATV

Res.Df RSS Df Sum of Sq F Pr(>F)

1 220 107.75
2 218 106.82 2 0.93131 0.9503 0.3882
```

Statystyka testowa F obliczona przez funkcje *anova* jest taka sama, jak wartość wyznaczona wcześniej. P-wartość wynosi 0.3882, więc ponownie - nie możemy odrzucić hipotezy zerowej o braku istotności regresorów SATM i SATV. Stopnie swobody wynoszą 2,218.

Zadanie 10

Zbudujemy model przewidujący GPA na podstawie kolejno: SATM, SATV, HSM, HSE, HSS. Następnie, korzystając z funkcji *anova* i *Anova*, obliczymy sumy typu I i II.

```
model = lm(GPA ~ SATM + SATV + HSM + HSE + HSS, data)
anova(model)
Anova(model)
```

Zmienna	Suma typu I	Suma typu II	
SATM	8.583	0.928	
SATV	0.001	0.233	
HSM	17.726	6.772	
HSE	1.891	0.957	
HSS	0.442	0.422	

Powyższą wartość sumy typu I dla zmiennej HSM zweryfikujemy obliczając różnicę SSM dwóch modeli:

- 1) GPA przewidywane przez SATM, SATV, HSM
- 2) GPA przewidywane przez SATM, SATV

```
sat_hsm_model = lm(GPA ~ SATM + SATV + HSM, data)
sat_model = lm(GPA ~ SATM + SATV, data)

hsm_ssm = sum((mean(data$GPA) - sat_hsm_model$fit)^2) - sum((mean(data$GPA) - sat_model$fit)^2)
hsm_ssm
```

Otrzymujemy wartość 17.72647, czyli taką samą, jaką otrzymaliśmy przy pomocy funkcji *anova*.

Analizując tabelę sum typu I i II możemy zauważyć, że dla zmiennej HSS oba typy sum są takie same. Wynika to wprost z definicji, oba typy sum dla HSS zdefiniowane są jako SSM(HSS|SATM,SATV,HSM,HSE).

Zadanie 11

Wyznaczmy nową zmienną SAT, będącą sumą zmiennych SATM i SATV, a następnie zbudujmy model przewidujący GPA na podstawie SAT, SATM i SATV.

```
data$SAT = data$SATM + data$SATV
model = lm(GPA \sim SATM + SATV + SAT, data)
summary(model)
call:
lm(formula = GPA \sim SATM + SATV + SAT, data = data)
Residuals:
            1Q Median 3Q
    Min
                                      Max
-2.59483 -0.37920 0.08263 0.55730 1.39931
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.289e+00 3.760e-01 3.427 0.000728 ***
           2.283e-03 6.629e-04 3.444 0.000687 ***
SATM
          -2.456e-05 6.185e-04 -0.040 0.968357
SATV
                                  NA
                 NA NA
SAT
                                            NA
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7577 on 221 degrees of freedom

Multiple R-squared: 0.06337, Adjusted R-squared: 0.05489

F-statistic: 7.476 on 2 and 221 DF, p-value: 0.0007218
```

Możemy zauważyć, że zmienna SAT nie wprowadza żadnych nowych informacji do modelu. Wynika to z faktu, że jest ona kombinacją liniową pozostałych zmiennych. Zmieniając kolejność regresorów w wywołaniu funkcji *Im* na SAT, SATM, SATV, możemy zauważyć podobne zjawisko:

```
model = lm(GPA \sim SAT + SATM + SATV, data)
summary(model)
Call:
lm(formula = GPA \sim SAT + SATM + SATV, data = data)
Residuals:
    Min 1Q Median
                              3Q
                                      Max
-2.59483 -0.37920 0.08263 0.55730 1.39931
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.289e+00 3.760e-01 3.427 0.000728 ***
       -2.456e-05 6.185e-04 -0.040 0.968357
          2.307e-03 1.097e-03 2.104 0.036486 *
SATM
SATV
                NA NA NA NA
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7577 on 221 degrees of freedom
Multiple R-squared: 0.06337, Adjusted R-squared: 0.05489
F-statistic: 7.476 on 2 and 221 DF, p-value: 0.0007218
```

Tym razem, zmienna SATV nie wnosi żadnych nowych informacji do modelu zawierającego zmienne SAT i SATM. Ponownie, wynika to z faktu, że jest ona kombinacją liniową zmiennych SAT i SATM (SATV = SAT - SATM).

Zadanie 12

Zbudujemy model dla zmiennej objaśnianej GPA oraz zmiennych objaśniających HSM, HSS, HSE, SATM, SATV, SEX oraz przeanalizujemy **partial regression plots**. Są one używane do przeanalizowania wpływu dodania nowej zmiennej X_j do modelu, który zawiera już inne zmienne niezależne. Metoda ta polega na obliczeniu wektora residuów $e^{(Y)}$ dla modelu, w którym zmienną objaśnianą jest Y, a zmiennymi objaśnianymi są wszystkie X-y poza X_j oraz wektora residuów $e^{(X_j)}$ dla modelu, w którym zmienną objaśnianą jest X_j , a zmiennymi objaśniającymi są wszystkie X-y poza X_j . Następnie wykonuje się wykres $e^{(X_j)}$ vs $e^{(Y)}$. Brak wyraźnej struktury na wykresie wskazuje na brak nowych, istotnych informacji wnoszonych przez X_j do modelu. Natomiast relacja liniowa pomiędzy residuami wskazuje na fakt, że X_j wnosi dodatkową informację do modelu.

```
# HSM
gpa = lm(GPA ~ HSS + HSE + SATM + SATV + SEX, data)
hsm = lm(HSM ~ HSS + HSE + SATM + SATV + SEX, data)
plot(hsm$residuals, gpa$residuals, main="HSM vs GPA")
```


Obserwacje są skupione wokół punktu (0,0). Dane nie mają struktury losowej, relacja liniowa występuje, ale jest bardzo mało wyraźna. Może to sugerować, że zmienna HSM dostarcza istotnych informacji do modelu zawierającego pozostałe zmienne.

W analogiczny sposób wyznaczymy **partial regression plots** dla pozostałych zmiennych.

HSE vs GPA

SATM vs GPA

SATV vs GPA

SEX vs GPA

Pozostałe wykresy cechują się większą losowością w strukturze. Nie występuje relacja liniowa pomiędzy wektorami residuów. Może to sugerować, że pojedyncze zmienne, oprócz HSM, nie wnoszą żadnych istotnych informacji do modelu zawierającego pozostałe zmienne.

Zadanie 13

Przeanalizujemy studentyzowane residua - wewnętrznie i zewnętrznie.

```
model = lm(GPA~HSM + HSS + HSE + SATM + SATV + SEX, data)
p = 1:224
r = residuals(model)
r1 = rstandard(model) # studentyzacja wewnętrzna
r2 = rstudent(model) # studentyzacja zewnętrzna
cbind(r, r1, r2)
plot(p, r1, main="Studentyzacja wewnętrzna")
plot(p, r2, main="Studentyzacja zewnętrzna")
```

Studentyzacja wewnętrzna

Studentyzacja zewnętrzna

Residua oscylują wokół zera ze stałą wariancją. Nie zauważamy widocznych obserwacji odstających.

Zadanie 14

W tym zadaniu zajmiemy się miarą DFFITS. Jest ona dana wzorem:

$$DFFITS_i = rac{\hat{Y_i} - \hat{Y_{(i)i}}}{\sqrt{s_{(i)}^2 H_{ii}}},$$

co jest standaryzowaną różnicą pomiędzy predykcjami wartości Y_i uzyskanymi przez dwa modele: zbudowanym na danych zawierających i-tą obserwację, oraz na modelu niezawierającym i-tej obserwacji. DFFITS mierzy więc wpływ i-tej obserwacji na i-tą predykcję. Obserwacje mające wartość DFFITS przewyższającą $|s\sqrt{p/n}|$ należy poddać dokładniejszej analizie. Idealny zbiór danych służący do konstrukcji modelu liniowego powinien zawierać jak najmniej takich obserwacji.

Wykonamy analizę DFFITS dla modelu ze zmienną objaśnianą GPA i zmiennymi objaśniającymi HSM, HSS, HSE, SATM, SATV, SEX.

```
Observation = 1:224
DFFITS = dffits(model)
threshold = 2*sqrt(7/224)
plot(Observation, DFFITS, main="DFFITS value for every observation")
abline(h=threshold)
abline(h=-threshold)
```


Możemy zauważyć, że znaczna większość obserwacji (16 na 224, czyli 7.1%) nie przekracza progu $|s\sqrt{p/n}|$, co sugeruje, że zbiór danych jest odpowiednio zbalansowany.

Zadanie 15

Przeanalizujemy miarę tolerancji w rozpatrywanym modelu. Służy ona do badania wielkości zjawiska multikolinearności. Tolerancja mierzy, w jaki sposób zmienna X_k jest objaśniana przez pozostałe zmienne objaśniające. Na problemy z multikolinearnością wskazują wartości tolerancji mniejsze od 0.1.

```
vif_val = vif(model)
tolerance = 1/vif_val
tolerance
```

HSM	HSS	HSE	SATM	SATV	SEX
0.5188628	0.5088203	0.5429546	0.5745498	0.7310535	0.7742519

Tolerancja dla każdej ze zmiennych jest znacznie większa od 0.1, co sugeruje, że w naszych danych nie występuje problem multikolinearności.

Zadanie 16

W ostatnim zadaniu wybierzemy najlepszy model dla naszych danych na podstawie miar BIC i AIC (znajdziemy modele osiągające najmniejsze wartości BIC i AIC). W tym celu, skorzystam z funkcji *regsubsets* z biblioteki *leaps* oraz funkcji *dredge* z biblioteki *MuMin*.

```
require("leaps")
b<- regsubsets(GPA~HSM+HSS+HSE+SATM+SATV+SEX, nbest=1, data);
u<-summary(b);
cbind(u$bic, u$which)</pre>
```

Sugerując się miarą BIC, najlepszym modelem jest model zbudowany wyłącznie na podstawie zmiennej HSM. Sprawdzimy teraz, na jaki model wskazuje miara AIC.

```
require(MuMIn)

options(na.action="na.fail")
combinations <- dredge(model)

print(combinations)</pre>
```

12 0.3047 0.06572 481.4 0.58 0.081		0.0007467			5 -235.546
3 0.9077 481.8 1.00 0.066	0.2076				3 -237.838
8 0.5899 0.04510	0.1686 0.034	132			5 -235.877
482.0 1.24 0.058 15 0.4843		159 0.0006383			5 -236.009
482.3 1.51 0.051 16 0.2777 0.05060		311 0.0007323			6 -235.149
482.7 1.90 0.042 36 0.6440 0.06405	0 1819			-0 030240	5 -236.258
482.8 2.01 0.040		0.0006105		0.030210	
11 0.6657 482.8 2.06 0.039					4 -237.333
20 0.6212 0.06057 482.9 2.09 0.038			8.771e-06		5 -236.302
28 0.3484 0.07081 483.1 2.34 0.034		0.0009279	-3.476e-04		6 -235.368
39 0.7004 483.3 2.51 0.031	0.1747 0.054	102		0.032860	5 -236.510
23 0.7329	0.1755 0.053	337	2.062e-05		5 -236.566
483.4 2.62 0.029 44 0.2910 0.06476		0.0007642		0.009563	6 -235.542
483.5 2.69 0.028 19 0.8440			1.590e-04		4 -237.791
483.8 2.98 0.024 35 0.8760					4 -237.800
483.8 3.00 0.024					
47 0.3316 483.9 3.09 0.023		580 0.0007915		0.074940	6 -235.745
40 0.5980 0.04672 484.1 3.34 0.020		348		-0.011100	6 -235.872
24 0.6047 0.04543 484.1 3.35 0.020		165	-4.354e-05		6 -235.874
31 0.5287	0.1580 0.057	771 0.0007701	-2.654e-04		6 -235.904
484.2 3.41 0.020 32 0.3267 0.05529		591 0.0009436	-4.078e-04		7 -234.905
484.3 3.54 0.018 43 0.5340		0.0007456		0.066390	5 -237.128
484.5 3.74 0.017 48 0.2313 0.04648		536 0.0007881		0.031020	7 -235.109
484.7 3.95 0.015					
52 0.6490 0.06425 484.9 4.12 0.014					
27 0.6804 484.9 4.14 0.014		0.0006454	-7.121e-05		5 -237.325
60 0.3351 0.06989 485.2 4.46 0.012		0.0009446	-3.473e-04	0.009211	7 -235.364
55 0.6873 485.4 4.62 0.011	0.1744 0.053	365	3.418e-05	0.033340	6 -236.508
63 0.3733	0.1515 0.059	38 0.0009487	-2.995e-04	0.079060	7 -235.611
485.7 4.96 0.009 51 0.8041	0.2048		1.717e-04	0.029560	5 -237.746
485.8 4.98 0.009 56 0.6164 0.04730		378	-5.121e-05	-0.012370	7 -235.867
486.3 5.47 0.007 64 0.2786 0.05103					
486.4 5.61 0.007			2030 04	0.332370	2011002

59 0.5514	0.1884		0.0007948	-9.556e-05	0.067530	6 -237.114
486.6 5.83 0.006 14 0.2519 0.08091		0.08872	0.0016980			5 -242.470
495.2 14.43 0.000						
30 0.3366 0.08770 496.0 15.18 0.000		0.09123	0.0020200	-6.969e-04		6 -241.790
46 0.1131 0.06753		0.09365	0.0018340		0.093330	6 -242.123
496.6 15.85 0.000 45 0.2545		0 12730	0 0019010		0 162000	5 -243.404
497.1 16.30 0.000		0.12730	0.0013010		0.102000	3 243.404
13 0.5934		0.13090	0.0016520			4 -244.607
497.4 16.61 0.000 62 0.1982 0.07436		0.09614	0.0021550	-6.957e-04	0.093010	7 -241.444
497.4 16.62 0.000						
61 0.3332 498.3 17.55 0.000		0.13200	0.0021600	-5.511e-04	0.167200	6 -242.975
29 0.6747		0.13520	0.0018790	-4.993e-04		5 -244.257
498.8 18.00 0.000 10 0.3296 0.13690			0.0020120			4 -245.569
499.3 18.53 0.000			0.0020120			4 -245.509
26 0.4048 0.14410			0.0022980	-6.032e-04		5 -245.072
500.4 19.63 0.000 42 0.2648 0.13200			0.0020860		0.044930	5 -245.488
501.3 20.47 0.000						
6 1.1130 0.07636 501.8 21.02 0.000		0.11180				4 -246.810
58 0.3417 0.13930			0.0023680	-6.003e-04	0.043540	6 -244.996
502.4 21.59 0.000		0 15110				2 240 646
5 1.4130 503.4 22.62 0.000		0.15110				3 -248.646
22 1.0650 0.07521		0.11050		1.344e-04		5 -246.780
503.8 23.05 0.000 38 1.1140 0.07667		0.11170			-0 002135	5 -246.809
503.9 23.11 0.000		0.11170			0.002133	3 240.003
37 1.3170		0.15080			0.072230	4 -248.398
505.0 24.19 0.000 21 1.3140		0.14740		2.555e-04		4 -248.538
505.3 24.47 0.000						
54 1.0640 0.07504 505.9 25.16 0.000		0.11060		1.351e-04	0.001172	6 -246.780
53 1.2020		0.14680		2.832e-04	0.075830	5 -248.266
506.8 26.02 0.000						2 251 744
2 1.4260 0.14940 509.6 28.81 0.000						3 -251.744
18 1.2750 0.14350				3.942e-04		4 -251.491
511.2 30.38 0.000 34 1.4680 0.15710					-0.077460	4 -251.494
511.2 30.38 0.000					01077100	. 232.131
50 1.3310 0.15100				3.426e-04	-0.067210	5 -251.307
512.9 32.10 0.000 41 0.8479			0.0025540		0.197400	4 -252.528
513.2 32.45 0.000			0.0000			
9 1.2840 514.5 33.68 0.000			0.0022710			3 -254.181
57 0.8660			0.0026050	-9.949e-05	0.198500	5 -252.515
515.3 34.52 0.000 25 1.2890			0 0022830	-2 4560 DE		4 -254.180
516.5 35.76 0.000			0.0022630	2.4308-03		7 234.100

17 2.1490	9.635e-04	3 -260.034
526.2 45.39 0.000 1 2.6350		2 -261.512
527.1 46.29 0.000		
49 2.0120	9.928e-04 0.0900	060 4 -259.688
527.6 46.77 0.000	0.077	200 2004 255
33 2.5300	0.0779	970 3 -261.255
528.6 47.83 0.000 Models ranked by AICc(x)		
Moders ranked by AICC(x)		

Miara AIC osiąga najmniejszą wartość dla modelu zbudowanego ze zmiennych HSM i HSS.