Data Mining & Machine Learning

CS57300 Purdue University

February 13, 2017

Classification

- In its simplest form, a classification model defines a decision boundary (h) and labels for each side of the boundary
- Input: $\mathbf{x} = \{x_1, x_2, ..., x_n\}$ is a set of attributes, function f assigns a label y to input \mathbf{x} , where y is a discrete variable with a finite number of values

Parametric vs. non-parametric models

- Parametric
 - Particular functional form is assumed (e.g., Binomial)
 - Number of parameters is fixed in advance
 - Examples: Naive Bayes, perceptron
- Non-parametric
 - Few assumptions are made about the functional form
 - Model structure is determined from data
 - Examples: classification tree, nearest neighbor

Example model: Naive Bayes classifiers

Classification as probability estimation

- Instead of learning a function f that assigns labels
- Learn a conditional probability distribution over the output of function f

•
$$P(f(x) | x) = P(f(x) = y | x_1, x_2, ..., x_p)$$

- Can use probabilities for the other two tasks
 - Classification
 - Ranking

Bayes rule for probabilistic classifier

$$P(Y|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$$

Bayes rule

$$= \frac{P(\mathbf{X}|Y)P(Y)}{[P(\mathbf{X}|Y=+)P(Y=+)] + [P(\mathbf{X}|Y=-)P(Y=-)]}$$

$$\propto P(\mathbf{X}|Y)P(Y)$$

Denominator: normalizing factor to make probabilities sum to 1 (can be computed from numerators)

Naive Bayes classifier

$$P(Y|\mathbf{X}) \propto P(\mathbf{X}|Y)P(Y) \qquad \begin{array}{c} \mathbf{Bayes} \\ \mathbf{rule} \end{array}$$

$$\propto \prod_{i=1}^m P(X_i|Y)P(Y)$$
 Naive assumption

Assumption: Attributes are conditionally independent given the class

Naive Bayes classifier

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$
$$= \frac{\prod_{i} p(x_{i}|y) p(y)}{\sum_{j} p(\mathbf{x}|y_{j})p(y_{j})}$$

Model space:

parameters in conditional distributions $p(x_i|y)$ parameters in prior distribution p(y)

NBC learning

$$\begin{split} P(BC|A,I,S,CR) &= \frac{P(A,I,S,CR|BC)P(BC)}{P(A,I,S,CR)} \\ &= \frac{P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC)}{P(A,I,S,CR)} \\ &\propto P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC) \end{split}$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

NBC parameters = Conditional Prob. Dist. (CPD), prior

Score function

Likelihood

• Let
$$D = \{x(1), ..., x(n)\}$$

Assume the data D are independently sampled from the same distribution:

$$p(X|\theta)$$

 The likelihood function represents the probability of the data as a function of the model parameters:

$$L(\theta|D) = L(\theta|x(1),...,x(n))$$

$$= p(x(1),...,x(n)|\theta)$$

$$= \prod_{i=1}^n p(x(i)|\theta)$$
 If instances are independent, likelihood is product of probs

Likelihood (cont')

- Likelihood is not a probability distribution
 - Gives relative probability of data given a parameter
 - Numerical value of *L* is not relevant, only the ratio of two scores is relevant, e.g.,:

$$\frac{L(\theta_1|D)}{L(\theta_2|D)}$$

- Likelihood function: allows us to determine unknown parameters based on known outcomes
- Probability distribution: allows us to predict unknown outcomes based on known parameters

NBCs: Likelihood

 NBC likelihood uses the NBC probabilities for each data instance (i.e., probability of the class given the attributes)

i = 1, j = 1

$$L(heta|D) = \prod_{i=1}^n p(y_i|\mathbf{x}_i; heta)$$
 General likelihood $\propto \prod_{i=1}^n p(\mathbf{x}_i|y_i; heta)p(y_i| heta)$ Bayes rule $\propto \prod_{i=1}^n \prod_{j=1}^n p(x_{ij}|y_i; heta)p(y_i| heta)$ Naive assumption

Search

Maximum likelihood estimation

- Most widely used method of parameter estimation
- "Learn" the best parameters by finding the values of heta that maximizes likelihood:

$$\hat{\theta}_{MLE} = \arg\max_{\theta} L(\theta)$$

Often easier to work with loglikelihood:

$$l(\theta|D) = log L(\theta|D)$$

$$= log \prod_{i=1}^{n} p(x(i)|\theta)$$

$$= \sum_{i=1}^{n} log p(x(i)|\theta)$$

Likelihood surface

If the likelihood surface is convex we can often determine the parameters that maximize the function analytically

MLE for multinomials

- Let $X \in \{1, ..., k\}$ be a discrete random variable with k values, where $P(X=j)=\theta_j$
- Then P(X) is a multinomial distribution:

$$P(X|\theta) = \prod_{j=1}^{k} \theta_j^{I(X=j)}$$

where I(X=j) is an indicator function

• The likelihood for a data set $D=[x_1, ..., x_N]$ is:

$$P(D|\theta) = \prod_{n=1}^{N} \prod_{j=1}^{k} \theta_j^{I(x_n=j)} = \prod_j \theta_j^{N_j}$$

• The maximum likelihood estimates for each parameter are: $\hat{\theta}_j =$ (using Lagrange multipliers)

In this case, MLE can be determined analytically by counting

Learning CPDs from examples

		X _I			
		Low	Medium	High	
V	Yes	10	13	17	
Y	No	2	13	0	

$$P[X_1 = Low | Y = Yes] = \frac{10}{(10+13+17)}$$

P[Y = No] =
$$\frac{(2+13)}{(2+13+10+13+17)}$$

NBC learning

				3
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

P(AIBC)

BC	A	θ
	<= 30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR I BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

NBC prediction

				"
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

$$P(BC = yes|A = 31..40, I = high, S = no, CR = exc)$$

$$\propto P(A = 31..40|BC = yes)P(I = high|BC = yes)$$

$$P(S = no|BC = yes)P(CR = exc|BC = yes)P(BC = yes)$$

P(BC)

BC	θ
yes	9/14
no	5/14

P(AIBC)

BC	A	θ
	<=30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

\Box BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR I BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

Zero counts are a problem

- If an attribute value does not occur in training example, we assign zero probability to that value
- How does that affect the conditional probability P[f(x) | x]?
- It equals 0!!!
- Why is this a problem?
- Adjust for zero counts by "smoothing" probability estimates

Smoothing: Laplace correction

		X _I		
		Low	Medium	High
Y	Yes	10	13	17
	No	2	13	0

$$P[X_1 = High | Y = No] =$$

$$\frac{0}{(2+13+0)+3}$$

Laplace correction

Numerator: **add 1**Denominator: **add k**,
where k=number of
possible values of X

Adds uniform prior

Is assuming independence a problem?

- What is the effect on probability estimates?
 - Over-counting evidence, leads to overly confident probability estimate
- What is the effect on classification?
 - Less clear...
 - For a given input x, suppose f(x) = True
 - Naïve Bayes will correctly classify if P[f(x) = True | x] > 0.5
 ...thus it may not matter if probabilities are overestimated

Naive Bayes classifier

- Simplifying (naive) assumption: attributes are conditionally independent given the class
- Strengths:
 - Easy to implement
 - Often performs well even when assumption is violated
 - Can be learned incrementally
- Weaknesses:
 - Class conditional assumption produces skewed probability estimates
 - Dependencies among variables cannot be modeled

NBC learning

- Model space
 - Parametric model with specific form

 (i.e., based on Bayes rule and assumption of conditional independence),
 - Models vary based on parameter estimates in CPDs
- Search algorithm
 - MLE optimization of parameters (convex optimization results in exact solution)
- Scoring function
 - Likelihood of data given NBC model form

Other predictive models

Nearest neighbor

- Instance-based method
- Learning
 - Stores training data and delays processing until a new instance must be classified
 - Assumes that all points are represented in p-dimensional space
- Prediction
 - Nearest neighbors are calculated using Euclidean distance
 - Classification is made based on class labels of neighbors

Nearest neighbor

Rule: find k closest (training) points to the test instance and assign the most frequently occurring class

1NN

• Training set: (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , ..., (\mathbf{x}_n, y_n) where $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{ip}]$ is a feature vector of p continuous attributes and y_i is a discrete class label

1NN algorithm

To predict a class label for new instance j: Find the training instance point \mathbf{x}_i such that $d(\mathbf{x}_i, \mathbf{x}_j)$ is minimized Let $f(\mathbf{x}_i) = y_i$

- Key idea: Find instances that are "similar" to the new instance and use their class labels to make prediction for the new instance
 - 1NN generalizes to kNN when more neighbors are considered

kNN model: decision boundaries

Source: http://cs231n.github.io/classification/

kNN

kNN algorithm

To predict a class label for new instance j: Find the k nearest neighbors of j, i.e., those that minimize $d(\mathbf{x}_k, \mathbf{x}_j)$ Let $f(\mathbf{x}_j) = g(\mathbf{y}_k)$, e.g., majority label in \mathbf{y}_k

- Algorithm choices
 - How many neighbors to consider (i.e., choice of k)?
 ... Usually a small value is used, e.g. k<10
 - What distance measure d() to use?
 ... Euclidean L2 distance is often used
 - What function g() to combine the neighbors' labels into a prediction?
 ... Majority vote is often used

1NN decision boundary

- For each training example i, we can calculate its **Voronoi cell**, which corresponds to the space of points for which i is their nearest neighbor
- All points in such a Voronoi cell are labeled by the class of the training point, forming a Voronoi tessellation of the feature space

Nearest neighbor

- Strengths:
 - Simple model, easy to implement
 - Very efficient learning: O(1)
- Weaknesses:
 - Inefficient inference: time and space O(n)
 - Curse of dimensionality:
 - As number of features increase, you need an exponential increase in the size of the data to ensure that you have nearby examples for any given data point

k-NN learning

- Parameters of the model:
 - k (number of neighbors)
 - any parameters of distance measure (e.g., weights on features)

Model space

Possible tessellations of the feature space

Search algorithm

Implicit search: choice of k, d, and g uniquely define a tessellation

Score function

Majority vote is minimizing misclassification rate

Putting it all together: Classification

Inputs and choices

- Input:
 - Dataset
 - Task

- Choices
 - Knowledge representation
 - Scoring function
 - Evaluation

- Example:
 - Yelp data
 - Classification: predict goodForGroups (Y) using discrete attributes (X)
 - Naive Bayes
 - MLE w/smoothing
 - Zero-one loss, square-loss

Illustration

- Read in data
- Choose a data representation, e.g.,
 - In python the data can be represented as a list of lists (of strings): [['3', '?', 'alfa-romero', 'gas', 'std', 'two', 'convertible', 'rwd', 'front', '88.60', '168.80', '64.10', '48.80', '2548', 'dohc', 'four', '130', 'mpfi', '3.47', '2.68', '9.00', '111', '5000', '21', '27', '13495'], ['3', '?', 'alfa-romero', 'gas', 'std', 'two', 'convertible', 'rwd', 'front', '88.60', '168.80', '64.10', '48.80', '2548', 'dohc', 'four', '130', 'mpfi', '3.47', '2.68', '9.00', '111', '5000', '21', '27', '16500'], ...]
 - Or you can use separate structures to store the attributes and class labels (e.g., by assigning a unique id to each instance and using maps with the id as key)

- Split into training and test sets
- There are many ways to split the data into training and test sets...
- The primary goal is to ensure that training and test examples are disjoint. This prevents the evaluation from being biased.
- Simple example:

```
partition1 = []
partition2 = []
partition3 = []
i = 0
for item in trainDS.getItems():
    if i<65: partition1.append(item)
    elif i<130: partition2.append(item)
    elif i<195: partition3.append(item)
    i += 1
partitions = [partition1,partition2,partition3]</pre>
```

Step 2b

- Consider repeated subsamples of the datato plot learning curves
- For each < train_i, test_i >:
 - Learn model with train;
 - Apply model to test_i
- You will average results over the 10 trials for each TSS to plot learning curve

- From training data, create features (X')
 - Note: for your assignment you do not need to create features, just drop the continuous attributes, and use the discrete features as is
- Example:
 - Let X be the set of 10 nominal attributes
 - For each attribute X_i with k possible values, construct k binary features to to add to X', e.g.,
 - for $X_i=\{\text{red}, \text{ green}, \text{ blue}\}$ let $F_1=\{\text{red}, \text{ 7red}\}$, $F_2=\{\text{green}, \text{ 7green}\}$, $F_3=\{\text{blue}, \text{ 7blue}\}$ then $\textbf{X'}=\textbf{X'}+\{F_1, F_2, F_3\}$

Given training data, learn a model to predict Y given X

- Learn NBC model
 - Estimate class prior P(Y)
 - For each attribute estimate CPD P(X_i | Y)
 - Use smoothing for probability estimates

- Given test data, apply model M to predict Y given X
- For each example, calculate:

$$P'(Y = 1|\mathbf{X}) = \prod_{i} P(X_i = x_i|Y = 1)P(Y = 1)$$

$$P'(Y = 0|\mathbf{X}) = \prod_{i} P(X_i = x_i|Y = 0)P(Y = 0)$$

$$P(Y = 1|\mathbf{X}) = \frac{P'(Y = 1|\mathbf{X})}{P'(Y = 1|\mathbf{X}) + P'(Y = 0|\mathbf{X})}$$

$$P(Y = 0|\mathbf{X}) = 1 - P(Y = 1|\mathbf{X})$$

Predict class with max probability, i.e., if P(Y=1|X) > P(Y=0|X) then predict Y=1

- Given a set of predictions for test data, evaluate the model by comparing the predicted values to the true values
 - Zero-one loss measures the mismatches between predicted and true class label:

$$Loss_{0/1}(T) = \frac{1}{n} \sum_{i \in n} \left\{ \begin{array}{l} 0 & \text{if } y(i) = \hat{y}(i) \\ 1 & \text{otherwise} \end{array} \right\}$$

• Squared loss measures the quality of the probability estimates. Let p_i refer to the probability that the NBC assigns to example *i*'s true class value, then:

$$Loss_{sq}(T) = \frac{1}{n} \sum_{i \in n} (1 - p_i)^2$$