Siddhardhan

Linear Regression - intuition

Experience in Years	0	2	4	5	6
Salary	2,00,000	4,00,000	8,00,000	10,00,000	12,00,000

What would be the **salary** of a person with **3 years of Experience?**

~ ₹ 650000 per Year

0

X	1	2	3	4	5
Y	5	7	9	11	13

Y = mX + c

X --> X value

Y --> Y value

m --> Slope c --> Intercept

X	1	2	3	4	5
Υ	5	7	9	11	13

Y = mX + c

X --> X value

Y --> Y value

m --> Slope

c --> Intercept

Inference: The above Line equation is a function that relates X and Y.

For a given value of X, we can find the corresponding value of Y

Equation of a Straight Line: Y = mX + c

Find the values of m and c:

Point P1 (2,7)

Point P2 (3,9)

Slope, m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 7}{3 - 2} = 2$$

$$m = 2$$

Intercept, c:

Point (4,11)

$$Y = 2X + c$$

$$11 = 2(4) + c$$

$$c = 3$$

What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one dependent variable based on two or more independent variables.

Advantages:

- 1. Very simple to implement
- 2. Performs well on data with linear relationship

Disadvantages:

- 1. Not suitable for data having non-linear relationship
- 2. Underfitting issue

Siddhardhan

Linear Regression - Mathematical Understanding

Loss Function

Loss function measures how far an estimated value is from its true value.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Loss Function

Randomly assigned Parameters: m = 3; c = 2

Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Loss Function

Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Loss =
$$[(10-8)^2 + (14-11)^2 + (18-14)^2 + (22-17)^2 + (26-20)^2] / 5$$

Loss =
$$[4+9+16+25+36]/5$$

Low Loss value → High Accuracy

Best Fit

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.

$$Y = m_1 X + C_1$$

 $(m_1 \& C_1)$ are the parameters of the line)

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.

$$Y = m_2 X + C_2$$

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.

$$Y = m_3 X + C_3$$

Hence, m₃ & C₃ are the best parameters

Siddhardhan

Gradient Descent for Linear Regression

Gradient Descent

Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the loss function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$m_{\mathbf{z}} = m_{\mathbf{l}} - LD_{m}$$

$$c_{\mathbf{z}} = c_{\mathbf{l}} - LDc$$

m --> slope

c --> intercept

L --> Learning Rate

 $D_{\rm m}\,$ --> Partial Derivative of loss function with respect to m

D_c --> Partial Derivative of loss function with respect to c

Gradient Descent

$$D_{m} = \frac{\partial(Cost Function)}{\partial m} = \frac{\partial}{\partial m} \left(\frac{1}{n} \sum_{i=0}^{n} (y_{i} - y_{i pred})^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial m} \left(\sum_{i=0}^{n} (y_{i} - (mx_{i} + c))^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial m} \left(\sum_{i=0}^{n} (y_{i} - (mx_{i} + c))^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial m} \left(\sum_{i=0}^{n} (y_{i}^{2} + m^{2}x_{i}^{2} + c^{2} + 2mx_{i}c - 2y_{i}mx_{i} - 2y_{i}c) \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial c} \left(\sum_{i=0}^{n} (y_{i}^{2} + m^{2}x_{i}^{2} + c^{2} + 2mx_{i}c - 2y_{i}mx_{i} - 2y_{i}c) \right)$$

$$= \frac{-2}{n} \sum_{i=0}^{n} x_{i} (y_{i} - (mx_{i} + c))$$

$$= \frac{-2}{n} \sum_{i=0}^{n} (y_{i} - y_{i pred})$$

$$= \frac{-2}{n} \sum_{i=0}^{n} (y_{i} - y_{i pred})$$