## Problems with Classical ML

- make assumptions / impose inductive biases on the data

- makes dealing with unstructured data a pain

- provides no guarantees to finding the true hypothesis

function

 $y \rightarrow f(X)$   $\Rightarrow find f$ 



## Enter Deep Learning

- no assumptions / inductive biases on data
- unstructured data can be used.
- by UAT (universal approximation theorem).

all possible functions can be approximated by a newal network architecture.

## Porceptron





$$Z = \omega_1 \propto_1 + \omega_2 \propto_2 + \omega_3 \propto_3 + \cdots + \omega_n \propto_n$$

## Real Life Example of Porception



Forward Pass - biases input hidden layer output

$$a = \sigma(z)$$

$$Z = \sum \omega_i x_i + b_i$$

$$a_2 = \sigma(Z_2)$$

$$Z_2 = \sum_i p_i x_i + b_2$$

Back propagation

- way to estimate weights for a newral network  $i \rightarrow i + 1$  th layer Wijk Tkth node of i+1th layer ith node of ith layer  $\omega'^{T} = \begin{bmatrix} \omega_{11}^{1} & \omega_{21}^{1} \\ \omega_{12}^{1} & \omega_{22}^{1} \\ \omega_{13}^{1} & \omega_{23}^{1} \end{bmatrix}$  $\left[ \begin{array}{ccc} w_1^2 & w_2^2 \end{array} \right]$  $w_3^2 = w^2$  $\hat{y} = \omega^2 \cdot h \rightarrow 1$  $h = \omega', \underline{x} \rightarrow 2$ Define a loss function  $L: \Sigma(y-\hat{y})$ 

 $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow 3$ 

Backpropagation

 $\omega^{1}$ ,  $\omega^{2}$ 

 $\mathcal{L}: \quad \sum (y - \hat{y})^2$ 

 $x_1$   $x_2$   $x_3$   $x_4$   $x_5$   $x_5$ 

Technique to update model with by calculating partial dv. of Loss from wrt, model evits; but also reusing earlier partial dvs. to speed up computation.

 $\hat{y} = \omega^2 \cdot h$  $\alpha - 2(y - \hat{y}) h \rightarrow easy$  $\partial w^{2T}$ -> repeat  $\partial \omega^{IT}$ computation reused new

from

earlier

component

Backpropogation

weight updating:

$$w^{1T} \rightarrow w^{1T} - \frac{\partial \mathcal{L}}{\partial w^{1T}} \cdot \gamma \rightarrow learning$$
rate

$$\phi:\phi(x,y,z)$$

$$\nabla \phi = \frac{\partial \phi \hat{i}}{\partial x} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k} : Gradient$$