# KTH ei1110 Elkretsanalys (utökad kurs) CELTE, TEN2 2021-03-19 kl 08-13.

Hjälpmedel: enkel miniräknare (ej grafräknare).

- Var noga med hur du definierar dina strömmar och spänningar. Använd passiv teckenkonvention. Polariteten på spänningarna och riktningarna på strömmarna påverkar tecknen och man får lätt teckenfel om man inte är noga.
- Alla källor ska antas vara stationära växelströmskällor om inget annat explicit anges.
- De numeriska värdena för varje fråga slumpas för varje student. Tänka på att skriva ner din krets (för dig själv) när du räknar innan du använder värdena. Avrunda och svara med en decimals noggrannhet. Du kan svara med både "." och ", " som kommatecken.
- Tänk efter innan du lämnar in eftersom du inte kan ändra dina svar sen.

Betygsgränserna är: 50% (E), 60% (D), 70% (C), 80% (B), 90% (A). För (Fx) krävs att maximalt 1 poäng drar ner resultatet under godkänt.

Examinator: Daniel Månsson (08 790 9044)

Lycka till och ta det lugnt!

Bestäm den aktiva effekten, P, (toppvärdesskala) som utvecklas i V1 om R = [R], Zc = -j[Zc], V1 = [a] + j([b]) I1 = [x] + j([y]).  $\rightarrow P = Re\left\{\frac{1}{2}V_1I_1^*\right\}$ 



# Q2

Bestäm den reaktiva effekten, Q, (toppvärdesskala) som utvecklas i V1 om R = [R], Zc = -j[Zc], V1 = [a] + j([b]) I1 = [x] + j([y]).  $\rightarrow Q = Im\left\{\frac{1}{2}V_1I_1^*\right\}$ 



# Q3

Bestäm den aktiva effekten, P, (toppvärdesskala) som utvecklas i kondensatorn, C, om R = [R], Zc = -j[Xc], V1 = [a] + j([b]), I1 = [x] + j([y]).  $\rightarrow P = 0$ 



Bestäm den reaktiva effekten, Q, (toppvärdesskala) som utvecklas i kondensatorn, C, om R = [R], Zc = -j[Xc], V1 = [a] + j([b]), I1 = [x] + j([y]).  $\rightarrow Q = Im\left\{\tfrac{1}{2}Z_cI_1I_1^*\right\} = Im\left\{\tfrac{1}{2}Z_c|I_1|^2\right\}$ 



# Q5

Bestäm realdelen av spänningsfallet över I1 om det följer passiv teckenkonvention med avseende på riktningen på I1. Antag att R = [R], Zc = -j[Xc], V1 = [y], I1 = [a] + j([b]).  $\rightarrow Re\{V_{I_1}\} = Re\{-V_1 - Z_cI_1 - RI_1\}$ 



Bestäm imaginärdelen av spänningsfallet över I1 om det följer passiv teckenkonvention med avseende på riktningen på I1. Antag att R = [R], Zc = -j[Xc], V1 = [y], I1 = [a] + [a]



# Q7

Antag att en spole, ZL = j[XL], kopplas parallellt med R. Bestäm realdelen av strömmen som går upp genom R. Antag att R = [R], Zc = -j[Xc], V1 = [x] + j([y]), I1 = [a].

 $\rightarrow Re\left\{I_R\right\} = Re\left\{I_1 \frac{RZ_L}{R + Z_L} \frac{1}{R}\right\}$ 



#### Q8

Antag att en spole, ZL = j[XL], kopplas parallellt med R. Bestäm imaginärdelen av strömmen som går upp genom R. Antag att R = [R], Zc = -j[Xc], V1 = [x] + j([y]), I1

$$\rightarrow Im\left\{I_R\right\} = Im\left\{I_1 \frac{RZ_L}{R + Z_L} \frac{1}{R}\right\}$$



Bestäm den aktiva effekten, P, som utvecklas i II. Antag att de komplexa effekterna som utvecklas i V1, R, och C är Sv = [a1] + j([b1]), Sr = [a2], Sc = -j[b3].

$$\rightarrow P = Re \left\{ -S_v - S_r - Sc \right\}$$



Q10

Bestäm den reaktiva effekten, Q, som utvecklas i I1. Antag att de komplexa effekterna som utvecklas i V1, R, och C är Sv = [a1] + j([b1]), Sr = [a2], Sc = -j[b2].

$$\rightarrow Q = Im \left\{ -S_v - S_r - Sc \right\}$$



Antag att i en komponent mäter man den komplexa effekten till S = [a] + j([b]). Kommer denna då förbruka eller leverera aktiv effekt, P, enligt passiv teckenkonvention? Skriv nedan (utan citationstecken) "0" om förbrukar och "1" om levererar.

 $\rightarrow$  levererar om P = [a] < 0, levererar och förbrukar om  $\rightarrow P = [a] > 0$ .

#### Q12

Antag att i en komponent mäter man den komplexa effekten till S = [a] + j([b]). Kommer denna då förbruka eller leverera reaktiv effekt, Q, enligt passiv teckenkonvention? Skriv nedan (utan citationstecken) "0" om förbrukar och "1" om levererar.

 $\rightarrow$ levererar om Q=[b]<0,levererar och förbrukar om  $\rightarrow Q=[b]>0.$ 

#### Q13

Om det i en generell impedans Z utvecklas den komplexa effekten S = [a] + j([b]) bestäm då effektfaktorn (som vi kallade "pf") häri.

$$\rightarrow pf = cos(\phi) = P_{|S|}$$

#### Q14

Om det i en generell impedans Z utvecklas den komplexa effekten S = [a] + j([b]) bestäm då fasvinkeln (i radianer) mellan spänning och ström i Z (dvs argumentet av Z).  $\rightarrow \phi = tan^{-1}(b/a)$ .

#### Q15

Bestäm den aktiva effekten, P, (toppvärdesskalan) som utvecklas i den beroende källan (enligt passiv teckenkonvention).

$$\to S_{kv_x} = \frac{1}{2}kv_x(I_1 + I_2)^* = \frac{1}{2}k(R_1I_2)(I_1 + I_2)^* \to P = Re\{S_{kv_x}\}.$$



Bestäm den reaktiva effekten, Q, (toppvärdesskalan) som utvecklas i den beroende källan 

$$\to S_{kv_x} = \frac{1}{2}kv_x(I_1 + I_2)^* = \frac{1}{2}k(R_1I_2)(I_1 + I_2)^* \to Q = Im\{S_{kv_x}\}$$



# Q17

Beräkna realdelen av spänningen över kondensatorn, 
$$v_c$$
.  $\rightarrow v_c = k v_x Z_c = k V_1 \frac{R_1}{R_1 + Z_L} Z_c \rightarrow Re \left\{ k V_1 \frac{R_1}{R_1 + Z_L} Z_c \right\}$ .



Beräkna imaginärdelen av spänningen över kondensatorn, 
$$v_c$$
.  $\rightarrow v_c = k v_x Z_c = k V_1 \frac{R_1}{R_1 + Z_L} Z_c \rightarrow Im \left\{ k V_1 \frac{R_1}{R_1 + Z_L} Z_c \right\}$ .



#### Q19

Beräkna realdelen av strömmen genom spolen,  $i_x$ .

 $\rightarrow$  Vi definierar noden (a) så att vi får en KCL:  $\frac{v_a - V_1 - 0}{R_1} + \frac{v_a}{Z_L} - I_1 = 0 \rightarrow v_a = \frac{\left(I_1 + \frac{V_1}{R_1}\right)}{\frac{Z_L + R_1}{Z_T R_1}} \rightarrow$ 



#### Q20

Beräkna imaginärdelen av strömmen genom spolen,  $i_x$ .

$$\rightarrow \text{Vi definierar noden } (a) \text{ så att vi får en KCL: } \frac{v_a - V_1 - 0}{R_1} + \frac{v_a}{Z_L} - I_1 = 0 \rightarrow v_a = \frac{\left(I_1 + \frac{V_1}{R_1}\right)}{\frac{Z_L + R_1}{Z_L R_1}} \rightarrow$$



# Q21 + Q22

Beräkna realdelen/imaginärdelen av Theveninimpedansen sett in i porten (a-b). ightarrow Eftersom vi bara har oberoende källor kan vi nollställa källorna (spänningskällan kortsluts och strömkällan får ett avbrott)  $\rightarrow Z_{TH} = R_1 + j * 0$ 



# Q23

Beräkna realdelen av Theveninspänningen sett in i porten (a-b). Följande gäller  $V_{TH}$ 



Beräkna imaginärdelen av Nortonströmmen sett in i porten (a-b). Följande gäller  $V_{TH} = v_a - v_b$ .

#### Q25

Bestäm den maximala aktiva effekten, P, (effektivvärdesskalan) som kan utvecklas i en last Z, som har kopplats till en Theveninekvivalent.

$$\rightarrow P = \frac{|V_{TH}|^2}{4R_{TH}}$$

#### **Q26**

Bestäm den reaktiva effekten, Q, (effektivvärdesskalan) som utvecklas i en last Z, som har kopplats till en Theveninekvivalent, om Z är sådan att maximalt med aktiv effekt utvecklas i denna.

$$\rightarrow$$
I detta fallet har vi strömmen  $I=\frac{V_{TH}}{Z_{TH}+Z}=\frac{V_{TH}}{2R_{TH}}\rightarrow Q_Z=Im\left\{(R_{TH}-jX_{TH})|I_Z|^2\right\}=-X_{TH}\frac{|V_{TH}|^2}{4R_{TH}^2}$ 

#### Q27

För kretsen nedan, visa hur du skulle göra för att bestämma Theveninekvivalenten sett in i porten (a-b). Du ska tydligt ange ekvationerna som ska lösas och berätta hur du skulle använda dem, men du behöver inte lösa dem.

 $\rightarrow$  Vi ställer upp ekvationerna först för  $V_{TH}$  och sen för  $I_N$ .

Först  $V_{TH}$ , då porten är öppen:

$$\frac{V_{TH}}{R_2} - I_1 + \frac{V_{TH} - kv_x}{Z_c} = 0$$

$$\frac{v_x}{Z_L} + \frac{v_x - kv_x}{R_1} + I_1 = 0$$

Två ekvationer och två obekanta kan lösas för  $V_{TH}$ .

Sen  $I_N$ , då porten kortsluts (tänk på att  $I_N$  riktas nedåt genom kortslutningen):

$$-I_1 + \frac{0 - kv_x}{Z_c} + I_N = 0$$
$$\frac{v_x - kv_x}{R_1} + \frac{v_z}{Z_L} + I_1 = 0$$

Två ekvationer och två obekanta kan lösas för  $I_N$ .



 $\rightarrow Z_{TH} = V_{TH}/I_N$ .

#### **Q28**

Ange numret på den figur nedan som visar förstärkningen som överensstämmer med överföringsfunktionen:

 $H(\omega) = \sqrt{100} \frac{(1+j\frac{\omega}{200})(1+j\frac{\omega}{2000})}{(1+j\frac{\omega}{2})}$  Om den inte är representerad av en figur ange "0" (utan citationstecken).



Ange numret på den figur nedan som visar förstärkningen som överensstämmer med överföringsfunktionen:

 $H(\omega) = \frac{(j\frac{\omega}{2})(1+j\frac{\omega}{1000})}{(1+j\frac{\omega}{20})(1+j\frac{\omega}{30})}$  Om den inte är representerad av en figur ange "0" (utan citation-stecken).



# Q30

Ange överföringsfunktionen som ger förstärkningen som visas nedan. Formen på överföringsfunktionen ska vara samma som gavs i uppgifterna ovan.



$$\to H(\omega) = \sqrt{100} \frac{(1 + \frac{\omega}{20})(1 + \frac{\omega}{2000})}{(1 + j\frac{\omega}{2})(1 + j\frac{\omega}{40000})}$$

Kommer det i nedanstående krets att bli samverkande flöde?

 $\rightarrow$  Om strömmarna, med tecken, båda går in i prickarna eller båda lämnar prickarna på samma sätt, blir det samverkande flöde.



Q32

Kommer det i nedanstående krets att bli samverkande flöde?

 $\rightarrow$  Om strömmarna, med tecken, båda går in i prickarna eller båda lämnar prickarna på samma sätt, blir det samverkande flöde.



#### Q33 + Q34

Beräkna realdelen av  $v_1$  respektive imaginärdelen av  $v_2$ .

 $\rightarrow$  Här får man titta på tecknen och riktning på  $I_1$  och  $I_2$  och om de båda går in i prickarna på samma sätt får man samverkande flöde ("+") annars motverkande ("-"):

$$v_1 = I_1 j\omega L_1 \pm I_2 j\omega M$$
$$v_2 = I_1 j\omega M \pm I_2 j\omega L 1$$



#### Q35

Är följande en beskrivning för en balanserad trefaskälla (antag att ev. generatorimpedanser är balanserade)?  $v_a=3\angle-120^\circ~v_b=\sqrt{9}\angle120^\circ~v_c=3\angle0^\circ$ 

 $\rightarrow$  Ja. Det står inget om ABC-sekvens så vi måste följa att amplituderna är lika och att fasförskjutningen är  $\pm 120^{\circ}$ .

#### Q36

Är följande en beskrivning för en balanserad trefaskälla (antag att ev. generatorimpedanser är balanserade)?  $v_a=3\angle 0^\circ~v_b=\sqrt 4\angle 120^\circ~v_c=\sqrt 9\angle -120^\circ$ 

 $\rightarrow$  Nej. Det står inget om ABC-sekvens och fasförskjutningen är  $\pm 120^\circ$ men amplituderna är inte lika.

Är följande en beskrivning för en balanserad trefaskälla (antag att ev. generatorimpedanser är balanserade)?  $v_a=1\angle 10^\circ~v_b=\sqrt{1}\angle 110^\circ~v_c=1\angle -110^\circ$ 

 $\rightarrow$  Nej. Det står inget om ABC-sekvens och amplituderna är lika men fasförskjutningen är inte  $\pm 120^{\circ}.$ 

#### Q38

Ett trefassystemet är balanserat vilket ger att den komplexa effekten som utvecklas i trefaslasten blir S=P+jQ. Hur stor är då den aktiva effekten, P, som utvecklas i en av trefaslastens faser ?

 $\rightarrow P/3$ .