Package 'capl'

July 30, 2020

July 30, 2020
Title Compute and visualize CAPL-2 scores and interpretations
Version 1.32
Author Joel Barnes <j@barnzilla.ca> [aut, cre], Michelle Guerrero <mguerrero@cheo.on.ca> [aut]</mguerrero@cheo.on.ca></j@barnzilla.ca>
Maintainer Joel Barnes <j@barnzilla.ca></j@barnzilla.ca>
Description This package contains tools to compute and visualize CAPL-2 (Canadian Assessment of Physical Literacy, Second Edition; www.capl-eclp.ca) scores and interpretations from raw data.
License GPL-3
<pre>URL https://github.com/barnzilla/capl</pre>
BugReports https://github.com/barnzilla/capl/issues
Depends R (>= 2.10)
VignetteBuilder knitr
Encoding UTF-8
Language en
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.0
Imports dplyr, ggplot2, lubridate, magrittr, readxl, stats, writexl
Suggests klippy
R topics documented:
capitalize_character

2 capitalize_character

	get_adequacy_score	5
	get_binary_score	6
	get_camsa_score	7
	get_camsa_skill_time_score	7
	get_camsa_time_score	8
	get_capl	9
	get_capl_bar_plot	10
	get_capl_demo_data	11
	get_capl_domain_status	12
	get_capl_interpretation	14
	get_capl_score	15
	get_db_score	16
	get_fill_in_the_blanks_score	16
	get_intrinsic_motivation_score	18
	get_ku_score	19
	get_mc_score	20
	get_missing_capl_variables	21
	get_pacer_20m_laps	23
	get_pacer_score	24
	get_pa_competence_score	25
	get_pc_score	
	get_pedometer_wear_time	27
		28
		28
	get_self_report_pa_score	29
	get_step_average	30
		31
	import_capl_data	32
	rename_variable	34
	validate_age	35
	validate_character	36
	validate_domain_score	36
	validate_gender	37
	validate_integer	37
	validate_number	
	validate_scale	
		39
Index	-	41

 ${\tt capitalize_character} \quad \textit{Capitalize a character vector}.$

Description

This function capitalizes a character vector.

Usage

```
capitalize_character(x = NA)
```

capl_demo_data 3

Arguments

Χ

A character vector.

Details

Other capl functions called by this function include: validate_character().

Value

Returns a character vector (if valid) or NA (if not valid).

Examples

```
capitalize_character(c("beginning", "progressing", "achieving", "excelling"))
# [1] "Beginning" "Progressing" "Achieving" "Excelling"
```

capl_demo_data

CAPL demo raw data.

Description

A dataset containing CAPL-2 demo raw data.

Usage

```
capl_demo_data
```

Format

A data frame with 500 rows of data on 60 variables that are required to compute CAPL-2 scores and interpretations:

•••

Source

```
https://github.com/barnzilla/capl
```

4 get_24_hour_clock

export_capl_data

Export CAPL-2 data to an Excel workbook.

Description

This function exports CAPL-2 data to an Excel workbook on a local computer.

Usage

```
export_capl_data(x = NULL, file_path = NA)
```

Arguments

x A data frame.

file_path

A character vector representing the file path to a location on the user's local computer (e.g., "c:/users/user_name/desktop/file.xlsx") where x will be saved as an Excel workbook on the user's computer. The file path is not case-sensitive.

Details

Other capl functions called by this function include: validate_character().

get_24_hour_clock

Convert 12-hour clock values to 24-hour clock values.

Description

This function converts 12-hour clock values to 24-hour clock values.

Usage

```
get_24\_hour\_clock(x = NA)
```

Arguments

Χ

A character vector representing values in 12-hour clock format.

Details

Other capl functions called by this function include: validate_character() and validate_integer().

Value

Returns a 24-hour clock vector (if valid) or NA (if not valid).

get_adequacy_score 5

get_adequacy_score Co

Compute an adequacy score.

Description

This function computes an adequacy score (adequacy_score) for responses to items 2, 4 and 6 of the CSAPPA (Children's Self-Perceptions of Adequacy in and Predilection for Physical Activity; Hay, 1992) Questionnaire as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).

Usage

```
get_adequacy_score(csappa2 = NA, csappa4 = NA, csappa6 = NA)
```

Arguments

csappa2	A numeric (integer) vector representing a response to CSAPPA item 2 (valid values are integers between 1 and 4).
csappa4	A numeric (integer) vector representing a response to CSAPPA item 4 (valid values are integers between 1 and 4).
csappa6	A numeric (integer) vector representing a response to CSAPPA item 6 (valid values are integers between 1 and 4).

Details

Valid values (integers between 1 and 4) represent the following responses:

- 1 = REALLY TRUE for me for "some kids" statements
- 2 = SORT OF TRUE for me for "some kids" statements
- 3 = REALLY TRUE for me for "other kids" statements
- 4 = SORT OF TRUE for me for "other kids" statements

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric vector with values between 1.8 and 7.5 (if valid) or NA (if not valid).

```
get_adequacy_score(
  csappa2 = c(1:3, 0),
  csappa4 = c(4, 2, 1, "3"),
  csappa6 = c(4, 4, 2, 2)
)
# [1] 4.9 4.8 4.9 NA
```

6 get_binary_score

get_binary_score

Compute a binary score.

Description

This function computes a binary score (0 = incorrect answer, 1 = correct answer) for a response to a questionnaire item based on the value(s) set as answer(s) to the item.

Usage

```
get_binary_score(x, answer)
```

Arguments

х

A character or numeric vector representing a response to a questionnaire item.

answer

A character or numeric vector representing the correct answer(s) to the questionnaire item. The answer argument does not have to match x in case for a correct answer to be computed.

Details

This function is called by get_fill_in_the_blanks_score().

Value

Returns 1 (if correct), 0 (if incorrect) or NA (if not valid).

```
get_binary_score(
    x = c(1:4, NA, ""),
    answer = 3
)

# [1] 0 0 1 0 NA 0

get_binary_score(
    x = c("20 minutes", "30 minutes", "60 minutes or 1 hour", "120 minutes or 2 hours"),
    answer = "60 minutes or 1 hour"
)

# [1] 0 0 1 0

get_binary_score(
    x = c(1:5, "Heart", "hello, world", NA),
    answer = c(3, "heart")
)

# [1] 0 0 1 0 0 1 0 NA
```

get_camsa_score 7

get_camsa_score

Select the maximum CAMSA skill + time score.

Description

This function selects the maximum CAMSA (Canadian Agility and Movement Skill Assessment) skill + time score for two trials (camsa_score) and then divides by 2.8 so that the score is out of 10. This score is used to compute the physical literacy score (pc_score).

Usage

```
get_camsa_score(camsa_skill_time_score1 = NA, camsa_skill_time_score2 = NA)
```

Arguments

```
camsa_skill_time_score1
```

A numeric (integer) vector representing the skill + time score from trial 1 (valid values are between 1 and 28).

```
camsa_skill_time_score2
```

A numeric (integer) vector representing the skill + time score from trial 2 (valid values are between 1 and 28).

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples

```
get_camsa_score(
  camsa_skill_time_score1 = c(1, 5, 10, 28, 29),
  camsa_skill_time_score2 = c(5, 7, 12, NA, 27)
)
# [1] 5 7 12 NA NA
```

```
get_camsa_skill_time_score
```

Compute the CAMSA skill + time score.

Description

This function computes the CAMSA (Canadian Agility and Movement Skill Assessment) skill + time score (e.g., camsa_skill_time_score1) for a given trial. This score is used to compute the CAMSA score (camsa_score).

8 get_camsa_time_score

Usage

```
get_camsa_skill_time_score(camsa_skill_score = NA, camsa_time_score = NA)
```

Arguments

```
camsa_skill_score
```

A numeric (integer) vector representing the CAMSA skill score (valid values are between 0 and 14).

camsa_time_score

A numeric vector representing the CAMSA time score (valid values are between 1 and 14).

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric (integer) vector with values between 1 and 28 (if valid) or NA (if not valid).

Examples

```
get_camsa_skill_time_score(
  camsa_skill_score = c(0, 5, 10, 14, 15),
  camsa_time_score = c(1, 10, 12, 15, 30)
)
# [1] 1 15 22 NA NA
```

```
get_camsa_time_score Compute the CAMSA time score.
```

Description

This function computes the CAMSA (Canadian Agility and Movement Skill Assessment) time score based on the time taken (in seconds) to complete a trial.

Usage

```
get_camsa_time_score(camsa_time = NA)
```

Arguments

camsa_time

A numeric vector representing the time taken (in seconds) to complete a CAMSA trial (valid values are > 0).

Details

Other capl functions called by this function include: validate_number().

get_capl 9

Value

Returns a numeric vector with values between 1 and 14 (if valid) or NA (if not valid).

Examples

```
get_camsa_time_score(c(14, 12, 30, 25, 0))
# [1] 13 14  1  4 NA
```

get_capl

Compute all CAPL-2 scores and interpretations at once.

Description

This function is the main function in the capl package. It is a wrapper function that calls all other capl functions to compute all CAPL-2 scores and interpretations from raw data at once. If required CAPL-2 variables are missing, the function will create the variables and set values for these variables to NA so the function can proceed.

Usage

```
get_capl(raw_data = NULL, sort = "asis")
```

Arguments

raw_data A data frame of raw CAPL-2 data.

sort An optional character vector representing how the variables in the returned data

frame are to be sorted (valid values are "asis, "abc" and "zyx"; valid values are

not case-sensitive). This argument is set to "asis" by default.

Details

```
Other capl functions called by this function include: get_missing_capl_variables(), get_pacer_20m_laps(), get_pacer_score(), get_capl_interpretation(), get_plank_score(), get_camsa_time_score(), get_camsa_skill_time_score(), get_camsa_score(), get_pc_score(), get_capl_domain_status(), get_pedometer_wear_time(), validate_steps(), get_step_average(), get_step_score(), get_self_report_pa_score(), get_db_score(), get_predilection_score(), get_adequacy_score(), get_intrinsic_motivation_score(), get_pa_competence_score(), get_mc_score(), get_binary_score(), get_fill_in_the_blanks_score(), get_ku_score() and get_capl_score()
```

Value

Returns a merged data frame of raw data and CAPL-2 scores and interpretations.

```
get_capl(raw_data)
```

10 get_capl_bar_plot

get_capl_bar_plot	Render a bar plot for a given CAPL-2 domain score, grouped by
	CAPL-2 interpretative categories.

Description

This function renders a bar plot for a given CAPL-2 domain score, grouped by CAPL-2 interpretative categories.

Usage

```
get_capl_bar_plot(
    score = NA,
    interpretation = NA,
    x_label = "Interpretation",
    y_label = "Score",
    colors = c("#333376", "#00a79d", "#f26522", "#a6ce39")
)
```

Arguments

score	A numeric vector.
interpretation	A character vector representing CAPL-2 interpretative categories ("beginning", "progressing", "achieving", "excelling").
x_label	An optional character vector representing the x-axis label. This argument is set to "Interpretation" by default.
y_label	An optional character vector representing the y-axis label. This argument is set to "Score" by default.
colors	An optional character vector representing the color palette for the bars. This argument is set to CAPL-2 branding colors by default (c("#333376", "#00a79d", "#f26522", "#a6ce39", "#747474")).

Details

Other capl functions called by this function include: validate_character(), validate_number() and capitalize_character().

Value

Renders a ggplot2 bar plot (if valid).

```
capl_results <- get_capl_demo_data(n = 25)
get_capl_bar_plot(
  score = capl_results$capl_score,
  interpretation = capl_results$capl_interpretation,
  x_label = "Overall physical literacy interpretation",
  y_label = "Overall physical literacy score",
)</pre>
```

get_capl_demo_data 11

```
get_capl_demo_data Generate CAPL-2 demo (fake) raw data.
```

Description

This function generates a data frame of CAPL-2 demo (fake) raw data containing the 60 required variables that the capl package needs to compute scores and interpretations.

Usage

```
get_capl_demo_data(n = 500)
```

Arguments

n A numeric (integer) vector representing the number of rows of data to generate. By default, n is set to 500.

Value

Returns a data frame containing the 60 required variables that the cap1 package needs to compute scores and interpretations.

```
capl_demo_data <- get_capl_demo_data(10000)</pre>
str(capl_demo_data)
# 'data.frame': 10000 obs. of 60 variables:
# $ age
                                  : int 9 10 8 8 11 9 12 NA 10 7 ...
# $ gender
                                  : chr "Girl" "Boy" "Boy" "Girl" ...
# $ pacer_lap_distance
# $ pacer_laps
                                 : num 20 15 20 20 15 15 15 20 15 20 ...
                                 : int 5 112 150 46 51 82 43 189 55 91 ..
# $ plank_time
                                 : int 238 66 95 173 299 172 169 33 277 152 ...
# $ camsa_skill_score1
# $ camsa_time1
                                 : int 9 3 7 NA 8 14 13 14 11 11 ...
# $ camsa_time1
                                 : int 17 33 26 22 31 28 NA 24 12 11 ...
# $ camsa_skill_score2
# $ camsa_time2
                                 : int 12 11 12 9 NA 9 7 10 14 11 ...
                                  : int 15 13 15 20 12 15 29 12 12 18 ...
                                  : int 29663 30231 3157 5751 23362 28283 ...
#
  $ steps1
#
  $ time_on1
                                  : chr
                                          "05:00" "5:13am" "07:00" "8:00am" ...
                                         "11:57pm" "10:57 pm" "10:57 pm" "11:57pm" ...
  $ time_off1
                                  : chr
  $ non_wear_time1
                                  : int 38 47 38 40 36 32 36 82 25 51 ...
#
#
                                  : int
                                         29703 9142 5424 23763 3645 28625 3019 ...
  $ steps2
                                          "07:00" "07:48am" "6:07" "06:00" ...
#
  $ time_on2
                                  : chr
                                   : chr "22:00" "21:00" "8:17pm" "10:57 pm" ...
#
  $ time_off2
  $ non_wear_time2
                                   : int 5 34 41 60 84 18 19 47 66 55 ...
#
                                  : int 20380 10987 5885 13518 14385 30680 14120 ...
#
  $ steps3
                                          "07:00" "06:00" "6:07" "8:00am" ...
#
  $ time on3
                                  : chr
                                  : chr "11:13pm" "11:57pm" "21:00" "08:30pm" ...
  $ time_off3
#
 $ non_wear_time3
                                  : int 54 70 16 36 72 16 89 86 26 81 ...
# $ steps4
                                  : int 13224 20817 19640 2326 16605 25783 23078 ...
# $ time_on4
                                  : chr "07:48am" "5:13am" "5:13am" "6:07" ...
# $ time_off4
                                 : chr "11:13pm" NA "22:00" "23:00" ...
# $ non_wear_time4
                                  : int 2 48 61 NA 81 81 2 30 35 14 ...
```

```
# $ steps5
                                : int 28408 8845 5802 6966 24499 18561 13771 ...
  $ time_on5
                                : chr
                                       "5:13am" NA "06:00" "6:07" ...
                                : chr "11:13pm" NA "11:57pm" "11:13pm" ...
  $ time_off5
  $ non_wear_time5
                                : int 75 10 70 45 77 75 90 61 17 72 ...
                                : int 9581 18237 6377 3282 16898 15649 19890 ...
  $ steps6
                                : chr "6:13" "6:07" "07:00" "8:00am" ...
  $ time_on6
                                : chr "11:57pm" "21:00" "10:57 pm" "8:17pm" ...
  $ time_off6
  $ non_wear_time6 : int 13 14 37 28 14 86 89 19 78 40 ...
  $ steps7
                               : int 8205 15351 16948 19442 4026 10830 4644 ...
  $ time_on7
                               : chr "05:00" NA "07:48am" "6:07" ...
                               : chr NA "22:00" "08:30pm" "08:30pm" ...
# $ time_off7
                               : int 84 40 42 34 13 58 67 86 64 46 ...
  $ non_wear_time7
# $ self_report_pa
                               : int 4 NA NA 7 1 1 6 7 6 6 ...
# $ csappa1
                                : int 2 1 1 1 2 1 4 3 3 3 ...
# $ csappa2
                                : int 3 3 1 4 4 2 3 1 4 4 ...
# $ csappa3
                                : int 1241241441...
# $ csappa4
                                : int 4 1 3 4 2 3 1 2 2 4 ...
# $ csappa5
                                : int 2 4 2 2 4 1 1 1 3 1 ...
# $ csappa6
                                : int 2 2 2 3 4 3 2 3 1 1 ...
#
  $ why_active1
                                : int 5255251151...
  $ why_active2
                                : int
                                       4 5 2 4 3 1 5 1 4 1 ...
                                : int 2 1 4 3 1 2 1 5 3 3 ...
  $ why_active3
                              : int
  $ feelings_about_pa1
  $ feelings_about_pa1
$ feelings_about_pa2
$ feelings_about_pa3
                                       4 1 5 3 4 4 4 5 4 5 ...
#
                                : int 5 3 4 4 1 2 5 2 1 3 ...
#
                                : int 3 4 3 5 1 1 4 2 1 4 ...
#
  $ pa_guideline
                                : int 1 3 3 1 4 1 1 4 4 2 ...
  $ crt_means: int 2 3 2 3 4 1 3 4 1 3 ...
#
  $ ms_means : int 1 1 4 2 4 4 2 1 1 3 ...
#
  $ sports_skill
                                : int 3 1 1 4 1 3 1 1 3 2 ...
#
  $ pa_is
                                : int 10 1 9 5 7 7 8 3 7 10 ...
  $ pa_is_also
                                : int 7 1 7 9 1 6 3 4 3 7 ...
 $ improve
                                : int 3 3 3 3 3 3 10 3 3 3 ...
                                : int 88104888988...
  $ increase
# $ when_cooling_down
                               : int 5 2 2 2 2 2 4 2 3 7 ...
# $ heart_rate
                               : int 497444457...
```

```
get_capl_domain_status
```

Compute the status of a CAPL domain.

Description

This function computes the status ("complete", "missing interpretation", "missing protocol" or "incomplete") of a CAPL domain (e.g., pc_status, db_status, mc_status, ku_status, capl_status).

Usage

```
get_capl_domain_status(x = NULL, domain = NA)
```

Arguments

x A data frame that includes the required variables for a given domain (see Details).

domain

A character vector representing one of the CAPL-2 domains (valid values are "pc", "db", "mc", "ku" and "capl")

Details

If the domain argument is set to "pc", the following variables must be included in the x argument:

- pc_score
- pc_interpretation
- pacer_score
- plank_score
- camsa_score

If the domain argument is set to "db", the following variables must be included the x argument:

- db_score
- db_interpretation
- step_score
- self_report_pa_score

If the domain argument is set to "mc", the following variables must be included the x argument:

- mc_score
- mc_interpretation
- predilection_score
- adequacy_score
- intrinsic_motivation_score
- pa_competence_score

If the domain argument is set to "ku", the following variables must be included the x argument:

- ku_score
- ku_interpretation
- pa_guideline_score
- crf_means_score
- ms_means_score
- sports_skill_score
- fill_in_the_blanks_score

If the domain argument is set to "capl", the following variables must be included the x argument:

- capl_score
- capl_interpretation
- pc_score
- db_score
- mc_score
- ku_score
- capl_score

Other capl functions called by this function include: validate_character() and validate_number().

Value

Returns a character vector with a value of "complete", "missing interpretation", "missing protocol" or "incomplete".

Examples

```
capl_demo_data <- get_capl_demo_data(3)

capl_results <- get_capl(capl_demo_data)

get_capl_domain_status(capl_results, "pc")

# [1] "complete" "missing interpretation"</pre>
```

```
get_capl_interpretation
```

Compute a CAPL-2 interpretation for a given CAPL-2 protocol or domain score.

Description

This function computes an age- and gender-specific CAPL-2 interpretation for a given CAPL-2 protocol or domain score (e.g., pc_interpretation).

Usage

```
get_capl_interpretation(age = NA, gender = NA, score = NA, protocol = NA)
```

Arguments

age	A numeric vector (valid values are between 8 and 12).
gender	A character vector (valid values currently include "girl", "g", "female", "f", "boy", "b", "male", "m").
score	A numeric vector. If the protocol argument is set to "pacer" or "steps", this argument must contain integers.
protocol	A character vector representing a CAPL protocol (valid values include "pacer", "plank", "camsa", "pc", "steps", "self_report_pa", "db", "mc", "ku", "capl"; valid

Details

Other capl functions called by this function include: validate_age(), validate_gender(), validate_character(), validate_number() and validate_scale(). This function will check whether a score for a given protocol is within a valid range; if not, NA will be returned.

values are not case-sensitive).

Value

Returns a character vector with values of "beginning", "progressing", "achieving" or "excelling" (if valid) or NA (if not valid).

get_capl_score 15

Examples

get_capl_score

Compute an overall physical literacy score.

Description

This function computes an overall physical literacy score (capl_score) based on the physical competence (pc_score), daily behaviour (db_score), motivation and confidence (mc_score), and knowledge and understanding (ku_score) domain scores. If one of the scores is missing or invalid, a weighted score will be computed from the other three scores.

Usage

```
get_capl_score(pc_score = NA, db_score = NA, mc_score = NA, ku_score = NA)
```

Arguments

```
pc_score A numeric vector (valid values are between 0 and 30).

db_score A numeric (integer) vector (valid values are between 0 and 30).

mc_score A numeric vector (valid values are between 0 and 30).

ku_score A numeric vector (valid values are between 0 and 10).
```

Details

Other capl functions called by this function include: validate_number(), validate_integer() and validate_domain_score().

Value

Returns a numeric vector with values between 0 and 100 (if valid) or NA (if not valid).

```
get_capl_score(
  pc_score = c(20, 15, 12, 5, 31),
  db_score = c(20, 15, 6, 4.1, 25),
  mc_score = c(20, 20, 19, 15.4, 25),
  ku_score = c(11, 4, 5, 7.8, 10)
)
# [1] 66.66667 54.00000 42.00000 40.28571 85.71429
```

get_db_score

Compute a daily behaviour domain score.

Description

This function computes a daily behaviour domain score (db_score) based on the step and self-reported physical activity scores. This score is used to compute the overall physical literacy score (capl_score).

Usage

```
get_db_score(step_score = NA, self_report_pa_score = NA)
```

Arguments

step_score A numeric (integer) vector representing the pedometer steps score (valid values are integers between 0 and 25).

self_report_pa_score

A numeric (integer) vector representing the self-reported physical activity score (valid values are integers between 0 and 5).

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric (integer) vector with values between 0 and 30 (if valid) or NA (if not valid).

Examples

```
get_db_score(
  step_score = c(20, 6, 13, 5, NA, 4.5),
  self_report_pa_score = c(3, 2, 1, 4, 7, 3)
)
# [1] 23  8 14  9 NA NA
```

```
get_fill_in_the_blanks_score
```

Compute a fill in the blanks score.

Description

This function computes a score (fill_in_the_blanks_score) for responses to the fill in the blanks items (story about Sally) in the CAPL-2 Questionnaire. This score is used to compute the knowledge and understanding domain score (ku_score).

Usage

```
get_fill_in_the_blanks_score(
  pa_is = NA,
  pa_is_also = NA,
  improve = NA,
  increase = NA,
  when_cooling_down = NA,
  heart_rate = NA
)
```

Arguments

pa_is	A vector representing a response to the first fill in the blank item (correct answers are $1,7,$ "Fun" or "Good").	
pa_is_also	A vector representing a response to the second fill in the blank item (correct answers are 1, 7, "Fun" or "Good").	
improve	A vector representing a response to the third fill in the blank item (correct answers are 3 or "Endurance").	
increase	A vector representing a response to the fourth fill in the blank item (correct answers are $8\ or\ "Strength").$	
when_cooling_down		
	A vector representing a response to the fifth fill in the blank item (correct answers are 2 or "Stretches").	
heart_rate	A vector representing a response to the sixth fill in the blank item (correct answers are 4 or "Pulse").	

Details

The following integers represent the responses for the items/arguments in this function:

- 1 = Fun
- 2 = Stretches
- 3 = Endurance
- 4 = Pulse
- 5 = Breathing
- 6 = Flexibility
- 7 = Good
- 8 = Strength
- 9 = Bad
- 10 = Sport

Other capl functions called by this function include: get_binary_score().

Value

Returns a numeric (integer) vector with values between 0 and 5 (if valid) or NA (if not valid).

Examples

```
get_fill_in_the_blanks_score(
  pa_is = c(2, 3, "fun", 9),
  pa_is_also = c(2, 5, "Fun", 9),
  improve = c(1, 3, 10, "Endurance"),
  increase = c(2, 3.5, "strength", "strength"),
  when_cooling_down = c("stretches", 9, 2, ""),
  heart_rate = c(3, 9, 4, "pulse")
)
# [1] 0 1 3 1
```

get_intrinsic_motivation_score

Compute an intrinsic motivation score.

Description

This function computes an intrinsic motivation score (intrinsic_motivation_score) for responses to items 1-3 of the Behavioral Regulation in Exercise Questionnaire (BREQ) as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).

Usage

```
get_intrinsic_motivation_score(
  why_active1 = NA,
  why_active2 = NA,
  why_active3 = NA
)
```

Arguments

why_active1	A numeric (integer) vector representing a response to BREQ item 1 (valid values are integers between 1 and 5).
why_active2	a numeric (integer) vector representing a response to BREQ item 2 (valid values are integers between 1 and 5).
why_active3	a numeric (integer) vector representing a response to BREQ item 3 (valid values are integers between 1 and 5).

Details

Other capl functions called by this function include: validate_scale().

Valid values (integers between 1 and 5) represent the following responses:

- 1 = Not true for me
- 2 = Not really true for me
- 3 = Sometimes true for me
- 4 = Often true for me
- 5 = Very true for me

get_ku_score 19

Value

Returns a numeric vector with values between 1.5 and 7.5 (if valid) or NA (if not valid).

Examples

```
get_intrinsic_motivation_score(
  why_active1 = c(4, 3, 6, 5, "2"),
  why_active2 = c(1:5),
  why_active3 = c(1, 5, 4, 3, 3)
)
# [1] 3 5 NA 6 5
```

get_ku_score

Compute a knowledge and understanding domain score.

Description

This function computes a knowledge and understanding domain score (ku_score) based on the physical activity guideline (pa_guideline_score), cardiorespiratory fitness means (crf_means_score), muscular strength and endurance means (ms_score), sports skill (sports_skill_score) and fill in the blanks (fill_in_the_blanks_score) scores. If one of the scores is missing or invalid, a weighted domain score will be computed from the other four scores. This score is used to compute the overall physical literacy score (capl_score).

Usage

```
get_ku_score(
  pa_guideline_score = NA,
    crf_means_score = NA,
    ms_means_score = NA,
    sports_skill_score = NA,
    fill_in_the_blanks_score = NA)
```

Arguments

```
pa_guideline_score

A numeric (integer) vector (valid values are between 0 and 1).

crf_means_score

A numeric (integer) vector (valid values are between 0 and 1).

ms_means_score

A numeric (integer) vector (valid values are between 0 and 1).

sports_skill_score

A numeric (integer) vector (valid values are between 0 and 1).

fill_in_the_blanks_score

A numeric (integer) vector (valid values are between 0 and 6).
```

Details

Other capl functions called by this function include: validate_scale().

20 get_mc_score

Value

Returns a numeric vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples

```
get_ku_score(
  pa_guideline_score = c(1, 0, 1, 1, NA),
  crf_means_score = c(0, 1, "", 2, 1),
  ms_means_score = c(1, 1, 1, 0, 0),
  sports_skill_score = c(0, 0, 1, 0, 1),
  fill_in_the_blanks_score = c(5, 6, 3, 1, 2)
)
# [1] 7.000000 8.000000 6.666667 2.222222 4.444444
```

get_mc_score

Compute a motivation and confidence domain score.

Description

This function computes a motivation and confidence domain score (mc_score) based on the predilection (predilection_score), adequacy (adequacy_score), intrinsic motivation (intrinsic_motivation_score) and physical activity competence (pa_competence_score) scores. If one of the scores is missing or invalid, a weighted domain score will be computed from the other three scores. This score is used to compute the overall physical literacy score (capl_score).

Usage

```
get_mc_score(
  predilection_score = NA,
  adequacy_score = NA,
  intrinsic_motivation_score = NA,
  pa_competence_score = NA
```

Arguments

Details

Other capl functions called by this function include: validate_number().

Value

Returns a numeric vector with values between 0 and 30 (if valid) or NA (if not valid).

Examples

```
get_mc_score(
  predilection_score = c(7, 7.5, 5, 8, 4),
  adequacy_score = c(NA, 5, 3, 1, 4),
  intrinsic_motivation_score = c(5, 7.5, 4, 2, 3.5),
  pa_competence_score = c(6, 3, 6, 7, 2)
)
# [1] 24.0 23.0 18.0 NA 13.5
```

```
get_missing_capl_variables
```

Add required CAPL-2 variables to a data frame of raw data if they are missing.

Description

This function adds required CAPL-2 variables (see Details for a full list) to a data frame of raw data if they are missing. When missing variables are added, the values for a given missing variable are set to NA. This function is called within get_capl() so that CAPL-2 score and interpretation computations will run without errors in the presence of missing variables.

Usage

```
get_missing_capl_variables(raw_data = NULL)
```

Arguments

raw_data

a data frame of raw CAPL-2 data.

Details

The required CAPL-2 variables include:

- age
- · gender
- · pacer_lap_distance
- pacer_laps
- plank_time
- · camsa_skill_score1
- camsa_time1
- camsa_skill_score2
- camsa_time2
- steps1

- time_on1
- time_off1
- non_wear_time1
- steps2
- time_on2
- time_off2
- non_wear_time2
- steps3
- time_on3
- time_off3
- non_wear_time3
- steps4
- time_on4
- time_off4
- non_wear_time4
- steps5
- time_on5
- time_off5
- non_wear_time5
- steps6
- time_on6
- time_off6
- non_wear_time6
- steps7
- time_on7
- time_off7
- non_wear_time7
- self_report_pa
- csappa1
- csappa2
- csappa3
- csappa4
- csappa5
- csappa6
- why_active1
- why_active2
- why_active3
- feelings_about_pa1
- feelings_about_pa2
- feelings_about_pa3

get_pacer_20m_laps 23

- pa_guideline
- crt_means
- ms_means
- · sports_skill
- pa_is
- pa_is_also
- improve
- increase
- · when_cooling_down
- heart_rate

Examining the structure (see str()) of some CAPL-2 demo data (see get_capl_demo_data()) provides additional information about these variables.

Value

returns a merged data frame of raw data and missing required CAPL-2 variables (values are set to NA).

Examples

```
raw_data <- get_missing_capl_variables(raw_data)</pre>
```

get_pacer_20m_laps

Convert PACER shuttle run laps to their equivalent in 20-metre laps.

Description

This function converts PACER (Progressive Aerobic Cardiovascular Endurance Run) shuttle run laps to their equivalent in 20-metre laps (pacer_laps_20m). If laps are already 20-metre laps, they are returned unless outside the valid range (1-229). This variable is used to compute the PACER score (pacer_score).

Usage

```
get_pacer_20m_laps(lap_distance = NA, laps_run = NA)
```

Arguments

lap_distance A numeric (integer) vector (valid values are 15 or 20).

laps_run A numeric (integer) vector (if lap_distance = 15, valid values are integers

between 1 and 298; if lap_distance = 20, valid values are integers between 1

and 229).

Details

Other capl functions called by this function include: validate_integer() and validate_scale().

24 get_pacer_score

Value

Returns a numeric (integer) vector with values between 1 and 229 (if valid) or NA (if not valid).

Examples

```
get_pacer_20m_laps(
    lap_distance = c(15, 20, NA, "15", 20.5),
    laps_run = rep(100, 5)
)
# [1] 77 100 NA 77 NA
```

get_pacer_score

Compute a PACER score.

Description

This function computes a PACER (Progressive Aerobic Cardiovascular Endurance Run) score (pacer_score) based on the number of PACER laps run at a 20-metre distance. This score is used to compute the physical competence domain score variable (pc_score).

Usage

```
get_pacer_score(pacer_laps_20m = NA)
```

Arguments

```
pacer_laps_20m A numeric (integer) vector (valid values between 1 and 229).
```

Details

Other capl functions called by this function include: validate_scale() and validate_integer().

Value

Returns a numeric (integer) vector with values between 0 and 10 (if valid) or NA (if not valid).

```
get_pacer_score(c(1, 6, 12, 18, NA, 46, 31, 45.1))
# [1] 0 1 2 3 NA 9 6 NA
```

```
get_pa_competence_score
```

Compute a physical activity competence score.

Description

This function computes a physical activity competence score (pa_competence_score) for responses to items 4-6 of the Behavioral Regulation in Exercise Questionnaire (BREQ) as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).

Usage

```
get_pa_competence_score(
  feelings_about_pa1 = NA,
  feelings_about_pa2 = NA,
  feelings_about_pa3 = NA
)
```

Arguments

```
feelings_about_pa1
```

A numeric (integer) vector representing a response to BREQ item 4 (valid values are integers between 1 and 5).

```
feelings_about_pa2
```

A numeric (integer) vector representing a response to BREQ item 5 (valid values are integers between 1 and 5).

```
feelings_about_pa3
```

A numeric (integer) vector representing a response to BREQ item 6 (valid values are integers between 1 and 5).

Details

Other capl functions called by this function include: validate_scale().

Valid elements (integers between 1 and 5) represent the following responses:

- 1 = Not true for me
- 2 = Not really true for me
- 3 = Sometimes true for me
- 4 = Often true for me
- 5 = Very true for me

Value

Returns a numeric vector with values between 1.5 and 7.5 (if valid) or NA (if not valid).

26 get_pc_score

Examples

```
get_pa_competence_score(
  feelings_about_pa1 = c(4, 3, 6, 5, "2"),
  feelings_about_pa2 = c(1:5),
  feelings_about_pa3 = c(1, 5, 4, 3, 3)
)
# [1] 3 5 NA 6 5
```

get_pc_score

Compute a physical competence domain score.

Description

This function computes a physical competence domain score (pc_score) based on the PACER (Progressive Aerobic Cardiovascular Endurance Run), plank and CAMSA (Canadian Agility and Movement Skill Assessment) scores. If one protocol score is missing or invalid, a weighted domain score will be computed from the other two protocol scores. This score is used to compute the physical competence domain score (pc_score).

Usage

```
get_pc_score(pacer_score = NA, plank_score = NA, camsa_score = NA)
```

Arguments

pacer_score A numeric (integer) vector representing the PACER score (valid values are integers between 0 and 10).

plank_score a numeric (integer) vector representing the plank score (valid values are integers between 0 and 10).

camsa_score A numeric vector representing the best CAMSA skill + skill score divided by 2.8 (valid values are between 0 and 10).

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric vector with values between 0 and 30 (if valid) or NA (if not valid).

```
get_pc_score(
  pacer_score = c(1, 5, 8, 10, NA),
  plank_score = c(4, 5, 5, 6, 9),
  camsa_score = c(-1, 0, 6, 4, 3)
)
# [1] 7.5 10.0 19.0 20.0 18.0
```

```
get_pedometer_wear_time
```

Compute pedometer wear time in decimal hours for a given day.

Description

This function computes pedometer wear time in decimal hours for a given day (e.g., wear_time1). This variable is used to compute the step_average variable and the step score (step_score).

Usage

```
get_pedometer_wear_time(time_on = NA, time_off = NA, non_wear_time = NA)
```

Arguments

time_on	A character vector representing the time (in 12- or 24-hour clock format) when the pedometer was first worn on a given day.
time_off	A character vector representing the time (in 12- or 24-hour clock format) when the pedometer was removed at the end of a given day.
non_wear_time	A numeric vector representing the total time (in minutes) the pedometer was not worn during waking hours on a given day.

Details

Other capl functions called by this function include: get_24_hour_clock() and validate_number().

Value

Returns a numeric vector with values >= 0 (if valid) or NA (if not valid).

```
get_pedometer_wear_time(
  time_on = c("6:23", "5:50 am", NA),
  time_off = c("21:37", "9:17pm", ""),
  c(60, 90, 0)
)
# [1] 14.23 13.95 NA
```

get_plank_score

Compute a plank score.

Description

This function computes a plank score (plank_score) based on the duration of time (in seconds) for which a plank is held. This score is used to compute the physical competence domain score (pc_score).

Usage

```
get_plank_score(plank_time = NA)
```

Arguments

plank_time

A numeric vector representing time (in seconds).

Details

Other capl functions called by this function include: validate_number().

Value

Returns a numeric vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples

```
get_plank_score(c(120.5, 75.6, 40, 10.99, 90))
# [1] 10 6 3 0 8
```

```
get_predilection_score
```

Compute a predilection score.

Description

This function computes a predilection score (predilection_score) for responses to items 1, 3 and 5 of the CSAPPA (Children's Self-Perceptions of Adequacy in and Predilection for Physical Activity; Hay, 1992) Questionnaire as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).

Usage

```
get_predilection_score(csappa1 = NA, csappa3 = NA, csappa5 = NA)
```

Arguments

csappa1	A numeric (integer) vector representing a response to CSAPPA item 1 (valid values are integers between 1 and 4).
csappa3	A numeric (integer) vector representing a response to CSAPPA item 3 (valid values are integers between 1 and 4).
csappa5	A numeric (integer) vector representing a response to CSAPPA item 5 (valid values are integers between 1 and 4).

Details

Valid values (integers between 1 and 4) represent the following responses:

- 1 = REALLY TRUE for me for "some kids" statements
- 2 = SORT OF TRUE for me for "some kids" statements
- 3 = REALLY TRUE for me for "other kids" statements
- 4 = SORT OF TRUE for me for "other kids" statements

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric vector with values between 1.8 and 7.5 (if valid) or NA (if not valid).

Examples

```
get_predilection_score(
  csappa1 = c(1:3, 0),
  csappa3 = c(4, 2, 1, "3"),
  csappa5 = c(4, 4, 2, 2)
)
# [1] 4.2 4.2 4.3 NA
```

```
get_self_report_pa_score
```

Compute a score for a response to the self-reported physical activity question.

Description

This function computes a score (self_report_pa_score) for a response to "During the past week (7 days), on how many days were you physically active for a total of at least 60 minutes per day? (all the time you spent in activities that increased your heart rate and made you breathe hard)?" in the CAPL-2 Questionnaire. This score is used to compute the daily behaviour domain score (db_score).

Usage

```
get_self_report_pa_score(x = NA)
```

30 get_step_average

Arguments

Χ

A numeric (integer) vector representing the self-reported physical activity question (valid values are integers between 0 and 7).

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric (integer) vector with values between 0 and 5 (if valid) or NA (if not valid).

Examples

```
get_self_report_pa_score(c(1, 8, 3, 4, 5, 2, 7))
# [1] 0 NA 2 3 4 1 5
```

get_step_average

Compute average daily steps taken.

Description

This function computes the daily arithmetic mean of a week of steps taken as measured by a pedometer (step_average). This variable is used to compute the step score (step_score).

Usage

```
get_step_average(raw_data = NULL)
```

Arguments

raw_data

A data frame that includes seven days of pedometer steps and their corresponding on and off times. See Details for how these variables must be named.

Details

This function will throw an error unless the following variables are found in the raw_data argument:

- steps1
- steps2
- steps3
- steps4
- steps5
- steps6
- steps7
- time_on1
- time_on2

get_step_score 31

- time_on3
- time_on4
- time_on5
- time_on6
- time_on7
- time_off1
- time_off2
- time_off3
- time_off4
- time_off5
- time_off6
- time_off7

There must be at least three valid days for an arithmetic mean to be computed. If only three valid days, one of the step values from a valid day will be randomly sampled and used for the fourth valid day before computing the mean.

Other capl functions called by this function include: $validate_steps()$ and $get_pedometer_wear_time()$.

Value

Returns a data frame with nine columns: steps1 (validated), steps2 (validated), steps3 (validated), steps4 (validated), steps5 (validated), steps6 (validated), steps7 (validated), valid_days and step_average. The steps are validated with the validate_steps() function.

Examples

```
capl_demo_data <- get_capl_demo_data(10)
get_step_average(capl_demo_data)$step_average
# [1] 18365 12655 15493 12966 11396 13954 18456 13589 17543 11276</pre>
```

get_step_score

Compute a step score.

Description

This function computes a step score (step_score) based on the average daily steps taken as measured by a pedometer. This score is used to compute the daily behaviour domain score (db_score).

Usage

```
get_step_score(step_average = NA)
```

Arguments

step_average A numeric vector representing average daily steps taken. See get_step_average().

32 import_capl_data

Details

Other capl functions called by this function include: validate_number().

Value

Returns a numeric (integer) vector with values between 0 and 25 (if valid) or NA (if not valid).

Examples

```
capl_demo_data <- get_capl_demo_data(10)
step_average <- get_step_average(capl_demo_data)$step_average
get_step_score(step_average)
# [1] 25 18 22 18 15 20 25 20 24 15</pre>
```

import_capl_data

Import CAPL-2 data from an Excel workbook.

Description

This function imports CAPL-2 data from an Excel workbook on a local computer.

Usage

```
import_capl_data(file_path = NA, sheet_name = NA)
```

Arguments

file_path A character vector representing the file path to an Excel workbook on the user's

local computer (e.g., "c:/users/user_name/desktop/file.xlsx"). The file path is

not case-sensitive.

workbook. If this argument is not set, the first sheet in the workbook will be

imported.

Details

Other capl functions called by this function include: validate_character().

Value

Returns a data frame if the Excel workbook sheet is successfully imported.

import_capl_data 33

```
capl_demo_data <- import_capl_data(</pre>
  file_path = "c:/users/joel/desktop/capl_demo_data.xlsx",
  sheet_name = "Sheet1"
str(capl_demo_data)
# tibble [500 x 60] (S3: tbl_df/tbl/data.frame)
# $ age
                                  : num [1:500] 8 9 9 8 12 10 12 10 12 9 ...
                                  : chr [1:500] "Male" "Female" "Male" "f" ...
# $ gender
# $ pacer_lap_distance
                                 : num [1:500] 15 20 20 15 20 15 15 15 15 NA ...
# $ pacer_laps
                                 : num [1:500] 23 31 169 50 63 15 32 143 43 182 ...
# $ plank_time
                                : num [1:500] 274 282 9 228 252 110 21 185 6 41 ...
# $ camsa_skill_score1
                                : num [1:500] 14 5 6 13 2 9 4 11 5 11 ...
# $ camsa_time1
                                : num [1:500] 34 27 13 35 21 NA NA 16 20 14 ...
# $ camsa_skill_score2
                               : num [1:500] 14 5 13 11 14 14 0 4 0 4 ...
                                : num [1:500] 35 23 14 35 23 23 33 30 29 18 ...
# $ camsa_time2
                                : num [1:500] 30627 27788 8457 8769 14169 ...
# $ steps1
                                : chr [1:500] "5:13am" "6:13" "6:07" "6:13" ...
# $ time_on1
                                : chr [1:500] "22:00" NA "21:00" "22:00" ...
# $ time_off1
                        : num [1:500] 25 31 33 25 83 67 20 10 49 64 ...
# $ non_wear_time1
# $ steps2
                                 : num [1:500] 14905 24750 30111 21077 15786 ...
# $ time_on2
                                 : chr [1:500] "06:00" "5:13am" "6:13" "6:13" ...
: chr [1:500] "21:00" "23:00" "11:13pm" "23:00" ...
# $ time_off3
                                : chr [1:500] "11:57pm" NA "08:30pm" NA ...
# $ non_wear_time3 : num [1:500] 6 79 23 65 34 15 72 76 60 40 ...
# $ steps4
                                : num [1:500] 28084 27369 14315 9963 6993 ...
                           : chr [1:500] "05:00" "6:13" "6:07" NA ...

: chr [1:500] "08:30pm" "10:57 pm" "22:00" "11:13pm" ...

: num [1:500] 32 38 74 20 75 22 84 59 42 22 ...
# $ time_on4
# $ time_off4
                             : num [1:500] 32 38 74 20 75 22 84 59 42 22 ...
# $ non_wear_time4
# $ steps5
                                : num [1:500] 14858 21112 16880 11707 20917 ...
# $ time_on5
                                 : chr [1:500] "6:07" "6:13" "06:00" "05:00" ...
# $ time_off5
                               : chr [1:500] "11:57pm" "23:00" "8:17pm" "8:17pm" ...
# $ non_wear_time5
                                : num [1:500] 61 64 73 23 82 42 66 38 55 18 ...
# $ steps6
                                : num [1:500] 17705 5564 16459 12235 27766 ...
# $ time_on6
                                : chr [1:500] "06:00" "06:00" NA "6:07" ...
# $ time_off6
                                : chr [1:500] "21:00" NA "10:57 pm" "08:30pm" ...
# $ non_wear_time6
                                 : num [1:500] 33 24 89 8 27 56 66 21 14 7 ...
                                 : num [1:500] 11067 13540 12106 18795 15039 ...
# $ steps7
# $ time_on7
                                  : chr [1:500] "6:07" "6:07" "8:00am" "06:00" ...
                            : chr [1:500] "08:30pm" "11:13pm" "8:17pm" "10:57 pm" ...
# $ time_off7
# $ non_wear_time7
                                 : num [1:500] 8 72 4 38 9 32 49 36 34 43 ...
# $ self_report_pa
                                  : num [1:500] NA 2 2 4 3 5 NA 7 6 7 ...
# $ csappa1
                                 : num [1:500] 1 2 4 2 2 2 3 2 2 3 ...
# $ csappa2
                                 : num [1:500] 3 2 1 1 1 1 4 1 4 3 ...
# $ csappa3
                                 : num [1:500] 2 3 2 1 NA 1 3 3 4 4 ...
# $ csappa4
                                 : num [1:500] 4 1 1 3 4 4 4 4 4 1 ...
# $ csappa5
                                 : num [1:500] 4 2 3 2 1 2 2 2 4 1 ...
# $ csappa6
                                 : num [1:500] 3 4 1 4 2 2 2 3 4 4 ...
# $ why_active1
                                : num [1:500] 4 3 5 3 1 5 4 1 1 2 ...
# $ why_active2
                                : num [1:500] 5 3 4 2 5 3 5 NA 5 NA ...
# $ why_active3
                                 : num [1:500] 3 3 1 4 2 3 4 4 5 3 ...
```

34 rename_variable

```
# $ feelings_about_pa1
                              : num [1:500] 4 3 2 2 1 1 3 4 4 2 ...
 : num [1:500] 2 3 4 1 2 4 3 2 2 2 ...
 $ pa_guideline
                              : num [1:500] 1 4 4 2 2 1 2 1 4 1 ...
 $ crt_means
                              : num [1:500] 3 2 1 2 3 1 1 2 4 2 ...
# $ ms_means
# $ sports_skill
                              : num [1:500] 2 4 4 1 3 1 3 1 4 3 ...
                             : num [1:500] 10 1 1 1 1 1 2 1 3 1 ...
# $ pa_is
# $ pa_is_also
                             : num [1:500] 5 1 4 4 1 7 2 7 2 8 ...
                             : num [1:500] 3 3 9 3 9 9 3 3 3 6 ...
# $ improve
# $ increase
                             : num [1:500] 2 8 3 8 8 1 3 3 8 8 ...
# $ when_cooling_down
                            : num [1:500] 4 2 4 2 2 2 2 5 2 2 ...
# $ heart_rate
                              : num [1:500] 5 6 4 4 4 9 4 8 7 4 ...
```

rename_variable

Rename variables in a data frame.

Description

This function renames variables in a data frame.

Usage

```
rename_variable(x = NULL, search = NA, replace = NA)
```

Arguments

x A data frame.

search A character vector representing the variable names to be renamed.

replace A character vector representing the new names for those variables identified in

the search argument.

Details

Other capl functions called by this function include: validate_character().

Value

Returns a data frame with the renamed variables (if variables in the search argument are successfully found and renamed).

```
capl_demo_data <- get_capl_demo_data(n = 25)
str(capl_demo_data[, 1:2])
# 'data.frame': 25 obs. of 2 variables:
# $ age : int 11 9 10 11 9 8 11 9 10 12 ...
# $ gender: chr "Female" "Girl" "Girl" "f" ...
capl_demo_data <- rename_variable(</pre>
```

validate_age 35

```
x = capl_demo_data,
search = c("age", "gender"),
replace = c("hello", "world")
)

str(capl_demo_data[, 1:2])

# 'data.frame': 25 obs. of 2 variables:
# $ hello: int 11 9 10 11 9 8 11 9 10 12 ...
# $ world: chr "Female" "Girl" "Girl" "f" ...
```

validate_age

Check whether an age is valid for CAPL-2.

Description

This function checks whether an age is valid (numeric and between 8 and 12). CAPL-2 scores and interpretations are valid for children between the ages of 8 and 12 years.

Usage

```
validate_age(x)
```

Arguments

Х

A numeric vector.

Details

If x contains a decimal value that is otherwise valid (e.g., 8.5, 10.1), this function will return the floor() of the value.

Other capl functions called by this function include: validate_number().

Value

Returns a numeric (integer) vector with a value between 8 and 12 (if valid) or NA (if not valid).

```
validate_age(c(7:13, "", NA, "12", 8.5))
# [1] NA 8 9 10 11 12 NA NA NA 12 8
```

validate_domain_score

validate_character

Check whether a vector is a character and not of length zero or "".

Description

This function checks whether a vector is a character and not of length zero or "".

Usage

```
validate_character(x)
```

Arguments

Х

A vector.

Value

Returns a character vector (if valid) or NA (if not valid).

Examples

```
validate_character(c("beginning", "progressing", "achieving", "excelling", "", NA, 7))
# [1] "beginning" "progressing" "achieving" "excelling" NA NA
# [7] "7"
```

validate_domain_score Check whether a CAPL-2 domain score is valid.

Description

This function checks whether a CAPL-2 domain score is numeric and within a valid range.

Usage

```
validate_domain_score(x = NA, domain = NA)
```

Arguments

x A vector representing a CAPL domain score.

domain A character vector representing domains within CAPL (valid values are "pc",

"db", "mc", "ku"; valid values are not case-sensitive).

Details

Other capl functions called by this function include: validate_number() and validate_integer().

Value

Returns a numeric vector (if valid) or NA (if not valid).

validate_gender 37

Examples

```
validate_domain_score(
   x = c(34, 15, 10, 12.5, 25),
   domain = "pc"
)
# [1] NA 15.0 10.0 12.5 25.0
```

validate_gender

Check whether a vector can be classified as "girl" or "boy".

Description

This function checks whether a vector can be classified as "girl" or "boy".

Usage

```
validate_gender(x)
```

Arguments

Χ

A vector (see Examples for valid values).

Value

Returns a character vector with values of "girl" or "boy" (if valid) or NA (if not valid).

Examples

```
validate_gender(c("Girl", "GIRL", "g", "G", "Female", "f", "F", "", NA, 1))
# [1] "girl" "girl" "girl" "girl" "girl" "girl" NA NA "girl"
validate_gender(c("Boy", "BOY", "b", "B", "Male", "m", "M", "", NA, 0))
# [1] "boy" "boy" "boy" "boy" "boy" "boy" NA NA "boy"
```

validate_integer

Check whether a vector is an integer.

Description

This function checks whether a vector is an integer.

Usage

```
validate_integer(x)
```

38 validate_number

Arguments

X

A vector.

Value

Returns a numeric (integer) vector (if valid) or NA (if not valid).

Examples

```
validate_integer(c(2, 6, 3.3, "", NA, "6", "hello, world"))
# [1] 2 6 NA NA NA 6 NA
```

 ${\tt validate_number}$

Check whether a vector is numeric.

Description

This function checks whether a vector is numeric.

Usage

```
validate_number(x)
```

Arguments

Х

A vector.

Value

Returns a numeric vector (if valid) or NA (if not valid).

```
validate_number(c(1:5, "5", "", NA, "hello, world!"))
# [1] 1 2 3 4 5 5 NA NA NA
```

validate_scale 39

validate_scale	Check whether a response to a given questionnaire item or scale is valid.

Description

This function checks whether a vector for a given questionnaire item or scale is valid.

Usage

```
validate_scale(x, lower_bound = NA, upper_bound = NA)
```

Arguments

х	A numeric (integer) vector representing the response to a questionnaire item (valid values are between the values set by the lower_bound and upper_bound argumetns).
lower_bound	A numeric (integer) vector representing the value below which x is invalid.
upper_bound	A numeric (integer) vector representing the value above which x is invalid.

Value

Returns a numeric (integer) vector (if valid) or NA (if not valid).

Examples

```
validate_scale(
  x = c(0:10, NA, "7"),
  lower_bound = 1,
  upper_bound = 7
)
# [1] NA  1  2  3  4  5  6  7 NA NA NA NA 7
```

validate_steps

Check whether daily steps as measured by a pedometer are valid.

Description

This function checks whether daily steps as measured by a pedometer are valid. The variables from this function are used to compute step_average and the step score (step_score).

Usage

```
validate_steps(steps = NA, wear_time = NA)
```

40 validate_steps

Arguments

steps A numeric (integer) vector representing the steps taken on a given day (valid

values are between 1000 and 30000).

wear_time A numeric vector representing the duration of time (in decimal hours) that a

pedometer was worn on a given day (valid values are >= 10.0 hours).

Details

Other capl functions called by this function include: validate_scale() and validate_number().

Value

Returns the steps argument (if valid) or NA (if not valid).

```
validate_steps(
   steps = c(5400, 11001, 999, 31000, 8796),
   wear_time = c(10.1, 12.6, 10.2, 10.9, 9.5)
)
# [1] 5400 11001 NA NA NA
```

Index

```
* datasets
                                                get_missing_capl_variables, 21
    capl_demo_data, 3
                                                get_missing_capl_variables(),9
                                                get_pa_competence_score, 25
capitalize_character, 2
                                                get_pa_competence_score(), 9
capitalize_character(), 10
                                                get_pacer_20m_laps, 23
capl_demo_data, 3
                                                get_pacer_20m_laps(), 9
                                                get_pacer_score, 24
export_capl_data, 4
                                                get_pacer_score(), 9
                                                get_pc_score, 26
floor(), 35
                                                get_pc_score(), 9
                                                get_pedometer_wear_time, 27
get_24_hour_clock, 4
                                                get_pedometer_wear_time(), 9, 31
get_24_hour_clock(), 27
                                                get_plank_score, 28
get_adequacy_score, 5
                                                get_plank_score(), 9
get_adequacy_score(), 9
                                                get_predilection_score, 28
get_binary_score, 6
                                                get_predilection_score(), 9
get_binary_score(), 9, 17
                                                get_self_report_pa_score, 29
get_camsa_score, 7
                                                get_self_report_pa_score(), 9
get_camsa_score(), 9
                                                get_step_average, 30
get_camsa_skill_time_score, 7
                                                get_step_average(), 9, 31
get_camsa_skill_time_score(), 9
                                                get_step_score, 31
get_camsa_time_score, 8
                                                get_step_score(), 9
get_camsa_time_score(), 9
get_capl, 9
                                                import_capl_data, 32
get_capl(), 21
get_capl_bar_plot, 10
                                                rename_variable, 34
get_capl_demo_data, 11
get_capl_demo_data(), 23
                                                str(), 23
get_capl_domain_status, 12
get_capl_domain_status(), 9
                                                validate_age, 35
get_capl_interpretation, 14
                                                validate_age(), 14
get_capl_interpretation(), 9
                                                validate_character, 36
get_capl_score, 15
                                                validate_character(), 3, 4, 10, 13, 14, 32,
get_capl_score(), 9
get_db_score, 16
                                                validate_domain_score, 36
get_db_score(), 9
                                                validate_domain_score(), 15
get_fill_in_the_blanks_score, 16
                                                validate_gender, 37
get_fill_in_the_blanks_score(), 6, 9
                                                validate_gender(), 14
get_intrinsic_motivation_score, 18
                                                validate_integer, 37
                                                validate_integer(), 4, 15, 23, 24, 36
get_intrinsic_motivation_score(), 9
get_ku_score, 19
                                                validate_number, 38
                                                validate_number(), 8, 10, 13-15, 20, 27, 28,
get_ku_score(), 9
get_mc_score, 20
                                                         32, 35, 36, 40
                                                validate_scale, 39
get_mc_score(), 9
```

INDEX

```
validate_scale(), 5, 7, 8, 14, 16, 18, 19, 23-26, 29, 30, 40 validate_steps, 39 validate_steps(), 9, 31
```