Master 2 MCCA

Théorie des nombres Examen du jeudi 13 février 2020 10h -12h

Dans le problème qui suit, on désignera par Z l'anneau des entiers relatifs et par Q le corps des nombres rationnels.

Il sera tenu compte de la clarté et de la concision de la rédaction.

Problème 1

Soit $\ell \neq 3$ un nombre premier. On note $\alpha := \sqrt[3]{\ell}$ une racine du polynôme $\varphi(X) := X^3 - \ell$ et on considère le corps de nombres $L := \mathbf{Q}(\alpha)$.

- A) On note \mathcal{O}_L l'anneau des entiers du corps L.

 1. Justifier que le polynôme $X^3 \ell$ est irréductible.

 2. Calculer le discriminant $D(\varphi)$ du polynôme $\varphi(X) = X^3 \ell$.
- √ B) montrer l'implication suivante :

$$\ell^3 \not\equiv \ell \pmod{9} \implies \mathcal{O}_L = \mathbf{Z}[\alpha].$$

~ C) Le but de cette partie du problème est de montrer l'implication inverse :

$$\mathcal{O}_L = \mathbf{Z}[\alpha] \implies \ell^3 \not\equiv \ell \pmod{9}.$$

- On suppose donc que $\mathcal{O}_L = \mathbf{Z}[\alpha]$.

 7
 1. Vérifier que $3\mathcal{O}_L = \mathcal{P}^3$ où $\mathcal{P} := (3, \alpha \ell)$ est un idéal premier de \mathcal{O}_L .

 2. Calculer la norme $N_{L/\mathbf{Q}}(\alpha \ell)$.
- → 3. conclure ?
- D) Généraliser l'équivalence précédente.
- \sqrt{E}) Donner la décomposition de 2 dans $L = \mathbf{Q}(\alpha)$.

Problème 2

Montrer que dans n'importe quel corps de nombres L, il y a une infinité de nombres premiers qui se décomposent totalement (indication : on peut se ramener au cas où l'extension L/\mathbb{Q} est galoisienne).