COMP-462 Embedded Systems

Lecture 11: Sampling, Analog-to-Digital Conversion

Agenda

- □Recap
 - Local Variables
 - Stack frames
 - Recursion
 - Fixed-point numbers
- □ Outline
 - Sampling, Nyquist theorem
 - Analog to Digital Conversion

Four limitations of digital sampling

- Finite precision (4096 alternatives)
- •Finite voltage range (0 to 3.3V)
- •Discrete time sampling, f_s
- •Finite number of samples, *N*

Voltage resolution = 3.3V/4096 = 0.8 mV

Frequency range = 0 to $\frac{1}{2} f_s$

Frequency resolution = f_s / N

10-3

Nyquist Theorem

- \square A bandlimited analog signal that has been sampled can be perfectly reconstructed from an infinite sequence of samples if the sampling rate f_s exceeds $2f_{max}$ samples per second, where f_{max} is the highest frequency in the original signal.
 - If the analog signal does contain frequency components larger than $(1/2)f_s$, then there will be an **aliasing** error.
 - Aliasing is when the digital signal appears to have a different frequency than the original analog signal.
- □ **Valvano Postulate**: If f_{max} is the largest frequency component of the analog signal, then you must sample more than ten times f_{max} in order for the reconstructed digital samples to look like the original signal when plotted on a voltage versus time graph.

Sampling (option 1)

□200Hz signal sampled at 2000Hz

http://www.ece.utexas.edu/~valvano/Volume1/Nyquist.xls

Sampling (option 1)

□1000Hz signal sampled at 2000Hz

http://www.ece.utexas.edu/~valvano/Volume1/Nyquist.xls

Sampling (option 1)

□2200Hz signal sampled at 2000Hz

http://www.ece.utexas.edu/~valvano/Volume1/Nyquist.xls

Sampling (option 2)

□100Hz signal sampled at 1600Hz

http://www.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/FFT16.xls

Sampling (option 2)

☐A signal with DC, 100Hz and 400Hz sampled at 1600Hz

http://www.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/FFT16.xls

Sampling (option 2)

□1500Hz signal sampled at 1600Hz

This is aliasing

http://www.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/FFT16.xls

Analog to Digital Converter (ADC)

- ☐ Successive approximation ADC
 - V_{IN} is approximated as a static value in a sample and hold (S/H) circuit
 - the successive approximation register (SAR) is a counter that increments each clock as long as it is enabled by the comparator
 - output of the SAR is fed to a DAC that generates a voltage to compare with V_{IN}
 - when the output of the DAC = V_{IN} the value of SAR is the digital representation of V_{IN}

Sample-And-Hold Circuit

□ Analog Input (AI) is sampled when the switch is closed and its value is held on the capacitor where it becomes the Analog Output (AO)

- ☐ Sampling Range/Resolution
 - ❖3.3V internal reference voltage
 - ♦ 0x000 at 0 V input
 - ♦ 0xFFF at 3.3 V
 - resolution = range/precision
 - = 3.3V/**4096** alternatives < 1mV
 - Actual resolution dominated by noise
- ☐ Improve signal to noise ratio (SNR)
 - Slow down ADC (take longer to sample)
 - Analog filtering, ground shield
 - Digital filtering (average multiple samples)

Twelve analog input channels
Single-ended and differential-input configurations
On-chip internal temperature sensor
Sample rate up to one million samples/second
Flexible, configurable analog-to-digital conversion
Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
Flexible trigger control
Controller (software) We will use software initiated trigger
❖ Timers
Analog Comparators (trigger if analog input crosses a threshold)
Pulse Width Modulator (another timer)
GPIO (input pin)
Continuous
Hardware averaging of up to 64 samples for improved accuracy
Converter uses an internal 3.3V reference

Bit 3 is done flag

IO	Ain	0	1	2	3	4	5	6	7	8	9	14
PB4	Ain10	Port		SSI2Clk		M0PWM2			T1CCP0	CAN0Rx		
PB5	Ain11	Port		SSI2Fss		M0PWM3			T1CCP1	CAN0Tx		
PD0	Ain7	Port	SSI3Clk	SSI1Clk	I ₂ C3SCL	M0PWM6	M1PWM0		WT2CCP0			
PD1	Ain6	Port	SSI3Fss	SSI1Fss	I_2C3SDA	M0PWM7	M1PWM1		WT2CCP1			
PD2	Ain5	Port	SSI3Rx	SSI1Rx		M0Fault0			WT3CCP0	USB0epen		
PD3	Ain4	Port	SSI3Tx	SSI1Tx				IDX0	WT3CCP1	USB0pflt		
PE0	Ain3	Port	U7Rx									
PE1	Ain2	Port	U7Tx									
PE2	Ain1	Port										
PE3	Ain0	Port										
PE4	Ain9	Port	U5Rx		I ₂ C2SCL	M0PWM4	M1PWM2	·		CAN0Rx	·	·
PE5	Ain8	Port	U5Tx		I ₂ C2SDA	M0PWM5	M1PWM3			CAN0Tx		

PE4=Ain9 used in book and ADCSWTrigger_4C123

Twelve different pins can be used to sample analog inputs.

☐TM4C ADC registers

Address	31-17	16	15-10	9	8		7-0		Name
0x400F.E100		ADC		MAXA	ADCSPD			SYSCTL_RCGC0_R	
	31-14	13-12	11-10	9-8	7-6	5-4	3-2	1-0	
0x4003.8020		SS3		SS2		SS1		SS0	ADC0_SSPRI_R
		31	-16		15-12	11-8	7-4	3-0	
0x4003.8014					EM3	EM2	EM1	EM0	ADC0_EMUX_R
		31	l-4		3	2	1	0	
0x4003.8000					ASEN3	ASEN2	ASEN1	ASEN0	ADC0_ACTSS_R
0x4003.80A0					MU	ADC0_SSMUX3_R			
0x4003.80A4					TS0	IE0	END0	D0	ADC0_SSCTL3_R
0x4003.8028					SS3	SS2	SS1	SS0	ADC0_PSSI_R
0x4003.8004					INR3	INR2	INR1	INR0	ADC0_RIS_R
0x4003.800C					IN3	IN2	IN1	IN0	ADC0_ISC_R
	-					-		-	
31-12					11-0				
0x4003.80A8			DATA				ADC0_SSFIFO3		

□TM4C123 ADC Operation

Value	Description
0x3	1M samples/second
0x2	500K samples/second
0x1	250K samples/second
0x0	125K samples/second

- ♦ select rate
- ♦ select sequencer
- ❖select trigger
- select channel
- select sample mode
 - o 0 not temperature
 - o 1 set completion flag
 - o 1 end sequence
 - o 0 not differential

Speed bits in ADC0_PC_R

Value	Event
0x0	Software start
0x1	Analog Comparator 0
0x2	Analog Comparator 1
0x3	Analog Comparator 2
0x4	External (GPIO PB4)
0x5	Timer
0x6	PWM0
0x7	PWM1
0x8	PWM2
0xF	Always (continuously sample)

EM3, EM2, EM1, and EM0 bits in ADC_EMUX_R

 $ADC0_SSCTL3_R = 0x06;$

- ☐ Initialization (11 steps)
- **Step 1.** We enable the port clock for the pin that we will be using for the ADC input.
- Step 2. Make that pin an input by writing zero to the DIR register.
- Step 3. Enable the alternative function on that pin by writing one to the AFSEL register.
- **Step 4.** Disable the digital function on that pin by writing zero to the **DEN** register.
- Step 5. Enable the analog function on that pin by writing one to the AMSEL register.
- Step 6. We enable the ADC clock by setting bit 16 of the SYSCTL RCGCO R register
- Step 7. Determine the rate using Bits 8 and 9 of the SYSCTL_RCGCO_R register
- **Step 8.** We will set the priority of each of the four sequencers (ADC0_SSPRI_R).

- ☐ Initialization (11 steps)
- Step 9. Disable sequencer 3, write a 0 to bit 3 (ASEN3) in the ADC_ACTSS_R re
- Step 10. We configure the trigger event for the sample sequencer in the ADC_EMUX_R register (0000 to bits 15-12 (EM3))
- Step 11. Configure the corresponding input source in the ADCSSMUXn register (3-0 in the ADC_SSMUX3_R)
- Step 12. Configure the sample control bits in the corresponding nibble in the ADCOSSCTLn register (0110)
 - Bit 3 is the **TS0** bit =0, not measuring temperature.
 - Bit 2 is the **IEO** bit =1, we want to the **RIS** bit to be set when the sample is complete.
 - Bit 1 is the **ENDO** bit, the last (and only) sample in the sequence.
 - Bit 0 is the **D0** bit, not using differential mode.
- Step 13. We enable the sample sequencer logic, write a 1 to bit 3 (ASEN3) in the ADC_ACTSS_R register.

```
void ADC0_InitSWTriggerSeq3_Ch9(void){ volatile unsigned long delay;
  SYSCTL_RCGC2_R |= 0x00000010; // 1) activate clock for Port E
  delay = SYSCTL_RCGC2_R;  // allow time for clock to stabilize
 GPIO_PORTE_DIR_R &= ~0x04; // 2) make PE4 input
GPIO_PORTE_AFSEL_R |= 0x04; // 3) enable alternate function on PE2
  GPIO_PORTE_DEN_R &= \sim 0 \times 04; // 4) disable digital I/O on PE2
  GPIO_PORTE_AMSEL_R |= 0x04; // 5) enable analog function on PE2
  SYSCTL_RCGCO_R \mid= 0x00010000; // 6) activate ADC0
  delay = SYSCTL RCGC2 R;
  SYSCTL RCGCO R &= \sim 0 \times 000003300; // 7) configure for 125K
  ADCO SSPRI R = 0x0123;
                                  // 8) Sequencer 3 is highest priority
  ADC0_ACTSS_R &= ~0x0008;
                                  // 9) disable sample sequencer 3
  ADC0_EMUX_R &= ~0xF000;
                                  // 10) seq3 is software trigger
  ADC0_SSMUX3_R &= ~0x000F;  // 11) clear SS3 field
                                        set channel Ain9 (PE4)
  ADCO SSMUX3 R += 9;
  ADCO SSCTL3 R = 0x0006;
                                  // 12) no TSO DO, yes IEO ENDO
  ADCO ACTSS R |= 0x0008; // 13) enable sample sequencer 3
```

Analog to digital conversion

- □ **Step 1.** The ADC is started using the software trigger. The channel to sample was specified earlier in the initialization.
- ☐ Step 2. The function waits for the ADC to complete by polling the RIS register bit 3.
- \square **Step 3.** The 12-bit digital sample is read out of sequencer 3.
- \Box **Step 4.** The RIS bit is cleared by writing to the ISC register.

ADC In

Start ADC

Status

↓ Done

Busy

Data Acquisition System

- □ Hardware
 - Transducer
 - Electronics
 - ***ADC**

- □ Software
- □ ADC device driver
- ☐ Timer routines
 - Output compare interrupts
- □ LCD driver
 - ☐ Measurement system
 - **♦** How fast to update
 - Fixed-point number system
 - Algorithm to convert ADC into position

Analog Input Device

□Transducer – A device actuated by power from one system that supplies power in the same or other form to another system.

Transducer Circuit

☐ Position to voltage

Data Acquisition System

Data Acquisition System

Thread Synchronization

Background thread

- ☐SysTick ISR
 - **♦** Sample ADC
 - Store in ADCmail
 - Set ADCstatus

Foreground thread

- □Main loop
 - Wait for ADCstatus
 - Read ADCmail
 - Clear ADCstatus
 - Convert to distance
 - ❖ Display on LCD

Sampling Jitter

- \square Definition of time-jitter, δt :
 - **Let n\Delta t** be the time a task is scheduled to be run and t_n the time the task is actually run
 - ♦ Then $\delta t_n = t_n n\Delta t$
- □Real time systems with periodic tasks, must have an upper bound, k, on the time-jitter
 - ♦- $k \le \delta t_n \le +k$ for all n

Measurement

- ☐ Resolution: Limiting factors
 - Transducer noise
 - Electrical noise
 - ADC precision
 - Software errors
- □Accuracy: Limiting factors
 - Resolution
 - Calibration
 - Transducer stability

Fixed-Point Revisited

■ Why: express non-integer values no floating point hardware support (want it to run fast) □ When: range of values is known range of values is small value \equiv integer • Δ ☐ How: 1) variable integer, called I. may be signed or unsigned may be 8, 16 or 32 bits (precision) 2) fixed constant, called Δ (resolution) value is fixed, and can not be changed not stored in memory specify this fixed content using comments

Fixed-Point Numbers

 \square The value of the fixed-point number: Fixed-point number $\equiv \mathbf{I} \cdot \mathbf{\Delta}$ Smallest value = $I_{min} \cdot \Delta$, where I_{min} is the smallest integer Largest value = $I_{max} \cdot \Delta$, where I_{max} is the largest integer \square Decimal fixed-point, $\Delta=10^{\rm m}$ Decimal fixed-point number = **I** • 10^m Nice for human input/output b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | b-1 | b-2 | b-3 | b-4 | b-5 | b-6 \square Binary fixed-point, $\Delta = 2^m$ Fixed binary point Binary fixed-point number = $I \cdot 2^m$ Easier for computers to perform calculations

Fixed-Point Math Example

Consider the following calculation.

$$C = 2*\pi*R$$

The variables C, and R are integers $2\pi \approx 6.283$

$$C = (6283*R)/1000$$

Fixed-Point Math Example

Calculate the volume of a cylinder

$$V = \pi R^2 L$$

The variables are fixed-point

$$R = I*2^{-4} cm L = J*2^{-4} cm$$

$$V = K*2^{-8} \text{ cm}^3 \quad \pi \approx 100*2^{-5}$$

$$K = (100*|*|*])>>9$$