CPSC 202 PSET 9

CPSC 202 student

11/15/17 5pm

A.9.1: Quadrangle Closure

- 1. Show that every graph G has a unique quadrangle closure.
 - a. Define n s.t. there are n paths with 4 vertices:

```
a_{00}a_{01}a_{02}a_{03} \rightarrow \text{add } a_{03}a_{00}
a_{10}a_{11}a_{12}a_{13} \rightarrow \text{add } a_{13}a_{10}
```

. . .

 $a_{n0}a_{n1}a_{n2}a_{n3} \to \text{add } a_{n3}a_{n0}$

- b. Let's define H: $H = G \cup a_{01}, a_{02} \cup a_{11}, a_{12} \cup ... \cup a_{n0}, a_{n3}$
- c. Proof of uniqueness:
 - $\exists H' : \forall i \forall H' : a_{io}a_{i3} \in H'$, therefore, H is either a supergraph or equal to H'. Proof by contradiction:

 $G \subseteq H'$ s.t. H' is a supergraph of G, then H' would have to be the closer of G and $H \neq H'$, so $H \neq H' \cap H \nsubseteq H'$

For this to be true, then $\exists a_{i0}a_{i3} \in H \text{ s.t. } a_{i0}a_{i3} \neq H'$

However, then $a_{i0}a_{i1}a_{i2}a_{i3}$ isn't closed in H' is not closure. Therefore H has to be unique.

2. Show that the quadrangle closure of a bipartite graph is bipartite.

 $a_0 \in S, a_1 \in T, a_2 \in S, a_3 \in T$. The edges will always run from $S \to T$ or $T \to S$, therefore, the position of the first vertex doesn't matter.

A.9.2 Cycles

Show that G is a cycle.

a. Show G has the cycle C

 $C = V_0 V_1 V_2 ... V_n V_0$, since G was defined as any two vertices with simple paths with no edges in common.

If C weren't contained in G then there wouldn't be two paths between V_0 and V_1

b. G doesn't have any vertices or edges in C. Proof G=C by contradiction: If $\exists w_0$ s.t. $w_0 \in G$ and $w_0 \notin C$, then we would have 2 paths that go from any V_i in C to w_0 not in C, but then those paths would share an edge. w_0 cannot exist and C=G.

A.9.3 Deleting a Graph

Show that you can reduce a finite graph G_1 to the empty graph with no vertices by this process $\iff G_0$ is acrylic.

Prove every vertex of the cycle has degree of at least 2.

- a. If acrylic, it can be deleted: $\forall v \in C : d(v) \geq 2$
- b. If there are edge points out of the cycle they can be deleted: Proof by induction on |v|:

Base case: |v| = 1

It has a degree of 0 so it can be deleted. For an acrylic graph |v| = n - 1, there exists one vertex of degree 1.

Induction step: $|v| = 1 \rightarrow |v| = n$ |E| = |v| - 1 for an acrylic graph and $2|E| = \sum_{v \in V} d(v)$ If $\forall d(v) \geq 2$, then $2|E| = \sum_{v \in V} d(v) \geq \sum_{v \in v} 2$, so $2|E| \geq 2|v|$, and $|E| \geq |v|$. Therefore, \exists at least one vertex of degree 1.