SIA TP Nº1 -Métodos de Búsqueda

Integrantes:

- Catalán, Roberto José 59174
- Dell'Isola, Lucas 58025
- Galende, Lautaro 60287

Contenidos

01

Problema

02

Métodos de Búsqueda

03

Resultados

04

Conclusiones

01 Problema

Torre de Hanoi

El trabajo consiste en implementar estrategias de búsqueda para un generador de soluciones. Se desarrollaron 3 búsquedas informadas y 3 no informadas con 3 heurísticas (2 admisibles y una no admisible)

02

Métodos de Búsqueda y Heurísticas

Métodos de Búsqueda No Informados

BPA 1 2 BPP

Métodos de Búsqueda Informados

Local Heuristic

Global Heuristic

Heurística N°1

Admisible Cantidad de piezas en la última torre

h(n.s) = 7 - #piezas ultima torre

Heurística N°2

Admisible **Cantidad de posibles movimientos**

- Se toma como hipótesis que las piezas en la última torre en el orden correcto reducen el problema y por ende la cantidad de movimientos posibles.
- La cantidad de pasos para obtener la respuesta correcta es (2 ** #piezas)-1
- h(n.s) = (2**(#piezas #piezas_correctas 1))-1

Heurística N°3

No admisible **Cantidad de posibles movimientos**

- Se toma como hipótesis que las piezas en la última torre en el orden correcto reducen el problema y por ende la cantidad de movimientos posibles.
- Para cada disco su cantidad de posibles movimientos es 3 ** altura en pila.
- h(n.s) = Suma de todos los posibles movimientos de cada pieza en todas las torres.

03

Resultados

Heurísticas		Nodos expandidos	Tiempo de procesamiento	Costo
1	Piezas en la última torre	1866	0.127381375s	127
2	Posibles movimientos	1094	0.22475024999s	127
3	Pos. mov. (no adm.)	1067	0.2334891s	127

Heurística Global

Heurística		Nodos expandidos	Tiempo de procesamiento	Costo
1	Piezas en la última torre	1546	0.10329s	155
2	Posibles movimientos	1067	0.212843s	127
3	Pos. mov. (no adm.)	1067	0.23619s	127

Heurística Local

Heurística		Nodos expandidos	Tiempo de procesamiento	Costo
1	Piezas en la última torre	2102	0.13478475s	127
2	Posibles movimientos	2144	0.23619s	127
3	Pos. mov. (no adm.)	2144	0.158174417s	127

Métodos de Búsqueda No Informados

Método		Nodos expandidos	Tiempo de procesamiento	Costo
1	BPA	2145	0.144966s	127
2	BPP	1823	0.133624667s	729
3	BPPV	44756	3.7792s	127

04

Conclusiones

Algunas de nuestras conclusiones...

Para los 3 métodos de búsqueda informados, la heurística de la cantidad de discos en la última torre parece ser las más rapida

> En la mayoría de los casos se encuentra la solución óptima

Tradeoff entre nodos expandidos, tiempo y solución óptima

La abrumante diferencia en costos entre BPP y los otros métodos