ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет «Высшая школа экономики»

Московский институт электроники и математики им. А. Н. Тихонова

Кафедра компьютерной безопасности

Отчёт

по курсовой работе по дисциплине "Программирование алгоритмов защиты информации"

> Выполнил студент группы СКБ 172 Синицын Константин Алексеевич

Москва 2020

Содержание

1	Введение			2
2	Теоретическая часть			3
	2.1	- Квадр	оика Якоби	3
	2.2		метические операции	4
		2.2.1		4
		2.2.2		5
3	Работа с библиотекой libtommath. Описание функций.			7
4	Описание основных функций и структур			9
	4.1			9
	4.2 Основные функции		10	
		4.2.1	Функции, обеспечивающие арифметику по модулю	
			числа	10
		4.2.2	Функции инициализации основных структур	11
		4.2.3	Функции освобождения памяти, использующейся для	
			хранения основных структур	11
		4.2.4	Функции для вывода координат точки на экран	11
		4.2.5	Основные функции	12
5	Тестирование			12
	5.1	Установка и запуск реализации		
	5.2	Исходные данные		
	5.3	Результаты		
		_	Проверка на утечки памяти	
		5.3.2	Тестирование реализации	15
6	Ист	Использованная литература 1		

1 Введение

Данный отчет является результатом выполнения работы по созданию программной реализации алгоритма вычисления кратной точки на эллиптической кривой в форме квадрики Якоби.

Задание:

- Необходимо:
 - Построить/выбрать точку P на кривой;
 - Выбрать случайное значение k;
 - Реализовать алгоритм вычисления кратной точки Q = [k]P;
 - Провести тестирование программы.
- Для проведения тестирования необходимо:
 - Проверить, что результирующая точка Q лежит на кривой;
 - Проверить, что $[q]P = \mathcal{O}$, где q порядок группы точек;
 - Проверить, что [q+1]P = P и [q-1]P = -P;
 - Для двух случайных k_1, k_2 проверить, что $[k_1]P + [k_2]P = [k_1 + k_2]P$.

2 Теоретическая часть

2.1 Квадрика Якоби

Эллиптическая кривая в форме квадрики Якоби имеет следующий вид:

$$Y^2 = eX^4 - 2dX^2Z^2 + Z^4,$$

где e,d - некоторые коэффициенты, (X:Y:Z) - точка на данной кривой, заданная в проективных координатах; $e,d,X,Y,Z\in F_p$, где p - простое и p>3.

Кривая в краткой форме Вейерштрасса (афинная форма) имеет следующий вид:

$$y^2 \equiv x^3 - ax + b(modp),$$

где a,b - параметры кривой в краткой форме Вейерштрасса, (x,y) - точка на данной кривой, заданная в афинных координатах; $a,b,x,y\in F_p$ и $4a^3+27b^2\neq 0 (modp)$.

Для перехода от проективных координат (X:Y:Z) к афинным координатам (x,y) можно воспользоваться следующими формулами:

$$\begin{cases} x = \frac{X}{Z} \\ y = \frac{Y}{Z^2} \end{cases}$$

Чтобы найти параметры кривой в форме квадратики Якоби, необходимо воспользоваться переходами к ней от краткой формы Вейерштрасса:

$$\begin{cases} (\theta,0) \to (0:-1:1) \\ (x,y) \to (2(x-\theta):(2x+\theta)(x-\theta)^2 - y^2:y) \\ \mathcal{O} \to (0:1:1) \end{cases}$$

Здесь θ - координата точки второго порядка $(\theta,0)$, принадлежащей кривой в краткой форме Вейерштрасса. Зная значение θ , можно найти значения параметров e и d согласно формулам $e=\frac{-(3\theta^2+4a)}{16},\ d=\frac{3\theta}{4}.$

Определение 1. Нейтральный элемент - такая точка \mathcal{O} , что выполняются следующие свойства:

1.
$$\mathcal{O} + \mathcal{O} = \mathcal{O}$$

2.
$$\mathcal{O}+P=P+\mathcal{O}-P$$
, где P - точка на эллимптической кривой

Для эллиптической кривой в форме квадратики Якоби нейтральный элемент равен (0:1:1).

Определение 2. Обратным элементом κ точке (X:Y:Z) является (-X : Y : Z).

Определение 3. Порядком точки P называется такое минимальное число q, что [q]P=0, а также выполняется следующее:

1.
$$[q+1]P = P$$

2.
$$[q-1]P = -P$$

2.2Арифметические операции

Поскольку точки данной кривой принадлежат аддитивной абелевой группе, для них можно определить операции сложения двух различных точек и ydeoehus одной точки. Для кривой в форме квадрики Якоби удвоение является операцией сложения точки с самой собой, поэтому можно обойтись только операцией сложения.

2.2.1Сложение

Для кривой в форме квадрики Якоби формулы сложения двух точек $(X_1:Y_1:Z_1)+(X_2:Y_2:Z_2)=(X_3:Y_3:Z_3)$ выглядят следующим образом:

$$\begin{cases} X_3 = X_1 Z_1 Y_2 + Y_1 X_2 Z_2 \\ Y_3 = (Z_1^2 Z_2^2 + e X_1^2 X_2^2)(Y_1 Y_2 - 2dX_1 X_2 Z_1 Z_2) + 2eX_1 X_2 Z_1 Z_2(X_1^2 Z_2^2 + Z_1^2 X_2^2) \\ Z_3 = Z_1^2 Z_2^2 - eX_1^2 X_2^2 \end{cases}$$

Алгоритм сложения двух точек:
$$\overline{T_1 \leftarrow X_1; T_2 \leftarrow Y_1; T_3 \leftarrow Z_1; T_4 \leftarrow} X_2; T_5 \leftarrow Y_2; T_6 \leftarrow Z_2$$

```
T_7 \leftarrow T_1 \cdot T_3
                                                                                                        (= X_1 Z_1)
T_7 \leftarrow T_2 + T_7
                                                                                                (= X_1 Z_1 + Y_1)
T_8 \leftarrow T_4 \cdot T_6
                                                                                                        (= X_2 Z_2)
                                                                                                (= X_2 Z_2 + Y_2)
T_8 \leftarrow T_5 + T_8
T_2 \leftarrow T_2 \cdot T_5
                                                                                                         (=Y_1Y_2)
T_7 \leftarrow T_7 \cdot T_8
                                                                           (= X_3 + Y_1Y_2 + X_1X_2Z_1Z_2)
T_7 \leftarrow T_7 - T_2
                                                                                       (= X_3 + X_1 X_2 Z_1 Z_2)
                                                                                                       (= X_1 X_2)
T_5 \leftarrow T_1 \cdot T_4
T_1 \leftarrow T_1 + T_3
                                                                                                    (= X_1 + Z_1)
T_8 \leftarrow T_3 \cdot T_6
                                                                                                        (=Z_1Z_2)
T_4 \leftarrow T_4 + T_6
                                                                                                    (=X_2+Z_2)
T_6 \leftarrow T_5 \cdot T_8
                                                                                                (= X_1 X_2 Z_1 Z_2)
T_7 \leftarrow T_7 - T_6
                                                                                                            (= X_3)
T_1 \leftarrow T_1 \cdot T_4
                                                                  (= X_1Z_2 + X_2Z_1 + X_1X_2 + Z_1Z_2)
T_1 \leftarrow T_1 - T_5
                                                                               (= X_1Z_2 + X_2Z_1 + Z_1Z_2)
                                                                                           (=X_1Z_2+X_2Z_1)
T_1 \leftarrow T_1 - T_8
                                                                   (=X_1^2Z_2^2+X_2^2Z_1^2+2X_1X_2Z_1Z_2)
T_3 \leftarrow T_1 \cdot T_1
                                                                                             (=2X_1X_2Z_1Z_2)
T_6 \leftarrow T_6 + T_6
                                                                                          (=X_1^2Z_2^2+X_2^2Z_1^2)
T_3 \leftarrow T_3 - T_6
T_4 \leftarrow e \cdot T_6
                                                                                            (=2eX_1X_2Z_1Z_2)
                                                                   (=2eX_1X_2Z_1Z_2(X_1^2Z_2^2+X_2^2Z_1^2))
T_3 \leftarrow T_3 \cdot T_4
                                                                                           (=2dX_1X_2Z_1Z_2)
T_4 \leftarrow d \cdot T_6
                                                                                (=Y_1Y_2-2dX_1X_2Z_1Z_2)
T_2 \leftarrow T_2 - T_4
T_4 \leftarrow T_8 \cdot T_8
                                                                                                        (=Z_1^2Z_2^2)
T_8 \leftarrow T_5 \cdot T_5
                                                                                                       (=X_1^2X_2^2)
T_8 \leftarrow e \cdot T_8
                                                                                                     (=eX_1^2X_2^2)
                                                                                        (=Z_1^2Z_2^2+eX_1^2X_2^2)
T_5 \leftarrow T_4 + T_8
                                                   (=(Z_1^2Z_2^2+eX_1^2X_2^2)(Y_1Y_2-2dX_1X_2Z_1Z_2))
T_2 \leftarrow T_2 \cdot T_5
T_2 \leftarrow T_2 + T_3
T_5 \leftarrow T_4 - T_8
                                                                                                            (= Z_3)
X_3 \leftarrow T_7; Y_3 \leftarrow T_2; Z_3 \leftarrow T_5
```

2.2.2 Нахождение кратной точки

Определение 4. $\Pi y cm v P$ - $moч ка на кривой, <math>mor \partial a \ [k] P = \underbrace{P + P + \cdots + P}_{k}$

- кратная точка, $k \in \mathbb{Z}, 0 \le k < q$.

Самый эффективный способ вычисления кратной точки это алгоритм "Лесенка Монтгомери".

Algorithm 1 Лесенка Монтгомери

```
1: получить двоичное представление k=(k_{n-1},\dots,k_0)=\sum_{n=0}^{n-1}k_i2^i
 2: определить Q = \mathcal{O}, R = P
 3: for i \leftarrow n-1 to 0 do
      if k_i = 0 then
 4:
        вычислить R = R + Q и Q = [2]Q;
 5:
      end if
 6:
      if k_i = 1 then
 7:
        вычислить Q=Q+R и R=[2]R;
 8:
      end if
 9:
10: end for
11: определить в качестве результата Q
```

3 Работа с библиотекой libtommath. Описание функций.

Основным типом данных в данной библиотеке является тип mp_int, предназначенный для хранения больших целых чисел. При написании реализации были использованы следующие функции библиотеки:

int mp_init(mp_int * a) - инициализирует структуру mp_int a и выделяет память для хранения большого числа.

int mp_init_multi(mp_int * mp, ..., NULL) - инициализирует несколько структур mp_int и выделяет память для хранения больших чисел.

int mp_init_set(mp_int * a, mp_digit b) - выделяет память и инициализирует mp_int a однозначным числом mp_digit b. В качестве аргумента также можно передавать небольшие числа (не более short int).

int mp_init_copy(mp_int * a, mp_int * b) - выделяет память и инициализирует mp_int a копией значения mp_int b.

void mp_clear(mp_int * a) - освобождает память, использующуяся для
xpaнeния структуры mp_int a.

int mp_clear_multi(mp_int *mp, ..., NULL) - освобождает память, использующиеся для хранения каждой из структур mp_int.

int mp_cmp(mp_int * a, mp_int * b) - производит знаковое сравнение чисел mp_int a и mp_int b. Возвращает MP_EQ в случае равенства, MP_GT, если a > b и MP_LT, если a < b.

int mp_add(mp_int * a, mp_int * b, mp_int * c) - записывает в с результат суммы a + b.

int mp_sub(mp_int * a, mp_int * b, mp_int * c) - записывает в с результат разности a - b.

int mp_neg(mp_int * a, mp_int * b) - записывает в b значение а с про-

тивоположным знаком (-а).

int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) - делит с остатком а на b и записывает частное в c, остаток в d (a = bc + d)). В случае ненадобности mp_int * c или mp_int * d может быть заменено на NULL (для получения, соответственно, только частного или только остатка).

int mp_mul(mp_int * a, mp_int * b, mp_int * c) - помещает результат умножения а на b в с.

int mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y) - возводит G в степень X и помещает результат по модулю P в Y $(Y \equiv GX(modP))$.

int mp_to_radix(const mp_int * a, char * str, size_t maxlen, size_t
* written, int radix) - помещает mp_int a в строковом виде в char
str. В radix указывается основание системы счисления (от 2 до 64), в
size_t maxlen - максимальный размер, который может занять число в
char str, в size_t written помещается размер реально записанного в
char str числа.

int mp_radix_size(mp_int * a, int radix, int *size) - помещает в size целое число – размер, необходимый для помещения mp_int a в char. В radix указывается основание системы счисления (от 2 до 64).

int mp_read_radix(mp_int * a, char *str, int radix) - считывает число в строковом виде из char str и помещает в mp_int a. В radix указывается основание системы счисления (от 2 до 64).

int mp_prime_random(mp_int * a, int t, int size, int bbs, ltm_prime_callback cb, void * dat) - генерирует случайное простое число, превышающее 256^{size} и помещает его в mp_int a. При этом число должно пройти t тестов. В аргументах int bbs, ltm_prime_callback cb, void * dat указываются дополнительные флаги (не используется). Данная функция используется в программе для генерации случайного числа, поскольку библиотека Libtommath не содержит функций для генерации случайных чисел.

4 Описание основных функций и структур

Полные исходные коды можно найти в репозитории по ссылке https://github.com/kasinitsyn/JacobiQuadric. Ниже представлено описание основных функций и структур.

4.1 Основные структуры

Структура Point - точка в проективных координатах (X, Y, Z). Каждая из координат имеет тип mp_int.

```
struct Point
    mp int X;
    mp int Y;
    mp_int Z;
};
Структура Parameters содержит параметры, определенные стандартом
(подробное описание параметров см. Исходные данные)
struct Parameters
    mp int p;
    mp int q;
    mp int a;
    mp int b;
    mp int x base;
    mp_int y_base;
    mp int theta;
};
```

Стуктура JacobiQuadric содержит параметры квадрики Якоби: p - характеристика поля, e,d - параметры кривой, X,Y,Z - координаты порождающего элемента.

```
struct JacobiQuadric
{
         mp_int p;
         mp_int e;
         mp_int d;

         mp_int X;
         mp_int Y;
         mp_int Z;
};
```

4.2 Основные функции

4.2.1 Функции, обеспечивающие арифметику по модулю числа

В виду отсутствия в библиотеке Libtommath необходимых для математики эллиптических кривых функций, осуществляющих арифметику по модулю числа, в ходе выполнения данной работы были написаны соответствующие функции. Функции стилистически оформлены как функции библиотеки.

```
void mp_add_mod(mp_int * a, mp_int * b, mp_int * c, mp_int * mod)
- записывает в с результат суммы a + b по модулю числа p.

void mp_sub_mod(mp_int * a, mp_int * b, mp_int * c, mp_int * mod)
- записывает в с результат разности a - b по модулю числа p.

void mp_mul_mod(mp_int * a, mp_int * b, mp_int * c, mp_int * mod)
- записывает в с результат произведения a * b по модулю числа p.

void mp_neg_mod(mp_int * a, mp_int * b, mp_int * mod) - записывает в b значение a с противоположным знаком (-a) по по модулю числа p.
```

4.2.2 Функции инициализации основных структур

void InitPoint(struct Point * P, mp_int * x, mp_int * y, mp_int *
z) - инициализация точки Р с проективными координатами x, y, z.

void InitParameters(struct Parameters * Param, mp_int * p, mp_int
* q, mp_int * a, mp_int * b, mp_int * x_base, mp_int * y_base, mp_int
* theta) - инициализация структуры Param с параметрами.

void InitJacobiQuadric(struct JacobiQuadric * JQ, struct Parameters * Param) - инициализация структуры JQ с параметрами кривой.

4.2.3 Функции освобождения памяти, использующейся для хранения основных структур

void ClearPoint(struct Point * P) - освобождение памяти, использовавшейся для хранения точки в структуре P.

void ClearParameters (struct Parameters * Param) - освобождение памяти, использовавшейся для хранения параметров в струкрутре Param.

void ClearJacobiQuadric (struct JacobiQuadric * JQ) - освобождение памяти, использовавшейся для хранения параметров кривой Якоби в структуре JQ.

4.2.4 Функции для вывода координат точки на экран

void PrintPoint(struct Point * P) - вывести значения проективных координат точки P на экран.

void PrintPointAffine(struct Point * P, struct JacobiQuadric * JQ)

- вывести значения афинных координат точки Р на экран. Структура JQ
- данная кривая.

4.2.5 Основные функции

bool IsPointOnCurve(struct Point * P, struct JacobiQuadric * JQ) - проверка находится ли данная точка P на данной кривой JQ. Возвращает true, если точка находится на кривой и false в противном случае.

void Addition(struct Point * P1, struct Point * P2, struct Point * P3, struct JacobiQuadric * JQ) - сложение двух точек P1 + P2, результат записывается в третью точку P3. Структура JQ - данная кривая.

bool ArePointsEqual(struct Point * P1, struct Point * P2, struct JacobiQuadric * JQ) - проверка равенства двух точек P1 и P2 на кривой JQ.

void MontgomeryLadder(struct Point * P, mp_int * k, struct Point * Q, struct JacobiQuadric * JQ) - реализация алгоритма "лесенка Монтгомери где P - точка на кривой, k - степень точки, Q - результирующая точка Q = [k]P, JQ - данная кривая.

5 Тестирование

5.1 Установка и запуск реализации

Для установки библиотеки Libtommath следует воспользоваться официальной инструкцией по установке, приведенной в документации к библиотеке https://github.com/libtom/libtommath.

Для установки и запуска реализации следует выполнить следующие команды в командной строке из папки с проектом:

- 1. cmake CMakeLists.txt
- 2. make
- 3. ./JacodiQuadric

5.2 Исходные данные

Параметры для проверки работоспособности реализации и правильности ее выполнения были взяты из документа «Рекомендации по стандартизации. Параметры эллиптических кривых для криптографических алгоритмов и протоколов. Р 50.1.114 – 2016». Для проверки из предложенных наборов параметров был взят набор параметров id-tc26-gost-3410-2012-256-рагатSetA, содержащий следующие значения:

- $a = 87789765485885808793369751294406841171614589925193456909855962166505018127157_{10}$
- $b = 18713751737015403763890503457318596560459867796169830279162511461744901002515_{10}$
- $q = 28948022309329048855892746252171976963338560298092253442512153408785530358887_{10}$
- $x = 65987350182584560790308640619586834712105545126269759365406768962453298326056_{10}$
- $y = 22855189202984962870421402504110399293152235382908105741749987405721320435292_{10}$

Гле:

- р характеристика простого поля, над которым определятся эллиптическая кривая;
- а, b параметры эллиптической кривой в форме Вейерштрасса (параметр b в реализации не используется);
- q порядок циклической подгруппы группы точек эллиптической кривой;
- х, у координаты порождающего элемента в краткой форме Вейерштрасса (в реализации обозначаются как х base, у base).

В документе значения параметров приведены в шестнадцатиричной системе счисления. Для перевода параметров в десятичную систему использовалась программа Wolfram Mathematica. Также, с помощью данной программы были вычислена х-координата точки $(\theta, 0)$ второго порядка в форме Вейерштрасса (значение θ):

 $\theta = 454069018412434321972378083527459607666454479745512801572100703902391945898_{10}$

Ниже приведен фрагмент кода Wolfram Mathematica и результат выполнения вычислений:

Параметры из набора id-tc26-gost-3410-2012-256-рагамSetA переводим в десятичную систему:

5.3 Результаты

5.3.1 Проверка на утечки памяти

Вначале была осуществлена проверка утечек памяти с помощью средства поиска ошибок работы с памятью Valgrind.

Команда: valgrind —leak-check=full ./JacobiQuadric

Вывод:

- ==1756== HEAP SUMMARY:
- ==1756== in use at exit: 0 bytes in 0 blocks
- $==1756==\ {\rm total\ heap\ usage:\ }489{,}445\ {\rm allocs},\ 489{,}445\ {\rm frees},\ 55{,}656{,}115\ {\rm bytes}$
- allocated
- ==1756==
- ==1756== All heap blocks were freed no leaks are possible
- ==1756==
- ==1756== For counts of detected and suppressed errors, rerun with: -v
- ==1756== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0

from 0)

5.3.2 Тестирование реализации

Затем было проведено тестирование самой реализации:

Команда: ./JacobiQuadric

Вывод:

Посчитанные параметры квадрики Якоби:

d = 58236596382467423453264776066989548632384833192629416620907867531883358779083

e = 21881292613901449512659201470451780075363042554712173057987834765447108787084

ТЕСТ 1: ПРОВЕРКА ПРИНАДЛЕЖНОСТИ НЕЙТРАЛЬНОГО ЭЛЕМЕНТА

Точка в проективных координатах:

X = 0

Y = 1

Z = 1

Точка в афинных координатах:

x = 0

y = 1

Нейтральный элемент Е принадлежит кривой

ТЕСТ 2: ПОРОЖДАЮЩИЙ ЭЛЕМЕНТ В АФИННЫХ КООРДИНА-

TAX

Точка в афинных координатах:

x = 26

y = 32588803023257230788452318859724590706198019287541469357859214741485052675122

Порождающий элемент Р base принадлежит кривой

TECT 3: E + P base = P base?

Точка в проективных координатах:

Точка в афинных координатах:

x = 26

y = 32588803023257230788452318859724590706198019287541469357859214741485052675122

Точка E + P_base принадлежит кривой

Точки E+P base и P base равны

ТЕСТ 4: Принадлежит ли точка P2 = (5:1:4) кривой

Точка в афинных координатах:

x = 28948022309329048855892746252171976963317496166410141009864396001978282409831

Точка (5:1:4) не принадлежит кривой

TECT 5: [q]P = E?

Точка в проективных координатах:

X = 0

Y = 40178936660781546849967672518756049964755243454469907618687078886735047096265

Точка в афинных координатах:

 $\mathbf{x} = 0$

v = 1

Точки [q]Р и Е равны

ТЕСТ 6: [q+1]P = P и [q-1] = -P

Точка в афинных координатах:

y = 32588803023257230788452318859724590706198019287541469357859214741485052675122

Точка в афинных координатах:

x = 115792089237316195423570985008687907853269984665640564039457584007913129639293

y = 32588803023257230788452318859724590706198019287541469357859214741485052675122

Точки [q - 1]Р и -Р равны

Точка в афинных координатах:

x = 26

 $\mathbf{y} = 32588803023257230788452318859724590706198019287541469357859214741485052675122$

Точка в афинных координатах:

x = 26

y=32588803023257230788452318859724590706198019287541469357859214741485052675122 Точки [q + 1]Р и Р равны

TECT 7: Вычисление [k]Р при k = 100

Точка в афинных координатах:

x=46114831014247229923266331647927557586696495636126505757008735063481431609683

Точка [k]Р принадлежит кривой

ТЕСТ 8: Вычисление [k]Р для случайного k из диапазона [0, q)

k = 991954433999604731829632709224396598341591234772024487906631

Точка в афинных координатах:

y = 94020197051731514972631394841409410785510879144286959132168853193003725895704

Точка [k]Р принадлежит кривой

TECT 9: [k1]P + [k2]P = [k1 + k2]P?

k1 = 1084845348725810821418535502021

k2 = 795405475617922960716810407137

k1 + k2 = 1880250824343733782135345909158

Точка в афинных координатах:

y = 52106396355070439400592651537488559251130145451034852674912273346313496501149

Точка [k1]Р принадлежит кривой

Точка в афинных координатах:

y = 6521473322108346065594065622514635457973368003972073332546242861921339483508

Точка [k2]Р принадлежит кривой

Точка в афинных координатах:

x = 100174933671734223955453094649162785325397815042489168097357339866005748107089

v = 84966962613761404393860727171805411782744711102320690988699985888828907160639

Точка [k1 + k2]Р принадлежит кривой

Точки [k1]P + [k2]P и [k1 + k2]P равны

ВСЕ ТЕСТЫ УСПЕШНО ПРОЙДЕНЫ

6 Использованная литература

- 1. Нестеренко А. Ю. Курс лекций «Методы программной реализации СКЗИ»;
- O. Billet, M. Joye. «The Jacobi model of an elliptic curve and sidechannel analysis, proceedings of AAECC-15, Lecture Notes in Computer Science» https://eprint.iacr.org/2002/125.pdf;
- 3. «Рекомендации по стандартизации. Параметры эллиптических кривых для криптографических алгоритмов и протоколов. Р 50.1.114 2016»;
- 4. Документация библиотеки libtommath «LibTomMath User Manual» https://github.com/libtom/libtommath.