SENSOR DATA FUSION

CONTENTS

CONTENTS

Slide structure

- 1. Introduction in data fusion
- 2. Preliminary notions
- 3. Problem to discuss
- 4. State Observer
- 5. Kalman Filter
- 6. Extended Kalman Filter

INTRODUCTION IN DATA FUSION

INTRODUCTION IN DATA FUSION Why?

- > Each sensor has its uncertainty (error in measurement)
 - i.e. GPS give position with an accuracy of 3 meter

- > Each sensor has its drawbacks
 - i.e. GPS does not work well in tunnels
 IMU (inertial measurement unit) accumulate error due to the integration process

- > Each estimation method does not meet exactly the process
 - i.e. A theoretical model works perfect, but the process has variation due to mechanical issues

INTRODUCTION IN DATA FUSION Why?

INTRODUCTION IN DATA FUSION

How?

- Which are the weights ?
- > Why we want this fusion?

INTRODUCTION IN DATA FUSION

How?

Measurement A > Why we want this fusion? **Weighted Average Fusioned Data** Uncertainty Measurement B Some "good" weights Which are the weights? Greater weight to better data

INTRODUCTION IN DATA FUSION **Example**

Which one you trust?

INTRODUCTION IN DATA FUSION **Example**

Good GPS – use A only for correction, position is based on B

Bad GPS – use A exclusively to predict from the other sensors

PRELIMINARY NOTIONS

Preliminary Notions Random Variable

Def.: A function which link a random event with a number.

<u>Example</u>: Roll two dices. One roll represents an event. The random number associated with this event is the sum of the number of dices. This sum is a random variable.

Preliminary Notions **Expected Value**

Take as random values the exam grades of all students from Control Engineering at math

Average of the students grades

Preliminary Notions **Variance**

Take as random values the exam grades of all students from Control Engineering at math

$$Var(X) = E[(\overline{x} - X)^{2}] = \frac{\sum_{i=1}^{N} (\overline{x} - x_{i})^{2}}{N}$$

$$[Var] = [X]^{2}$$

How far from an average student are the best and the worst student

Preliminary Notions **Standard Deviation**

Take as random values the exam grades of all students from Control Engineering at math

How far from an average student are the best and the worst student

Preliminary Notions Covariance

Take as random values the exam grades of all students from Control Engineering at math and English

$$Cov(X,Y) = E[(\overline{x} - X)(\overline{y} - Y)] = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} (\overline{x} - x_i)(\overline{y} - y_i)}{N+M}$$

Express a linear dependence between two dimensions

Preliminary Notions **Gaussian Distribution**

Take as random value the exam grade of all students from Control Engineering at math How we interpret this graph?

Preliminary Notions **Gaussian Distribution**

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \; e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Take as random value the exam grade of all students from Control Engineering at math How we interpret this graph?

Preliminary Notions White Noise

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \; e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

$$E[X_f] = \mu = 0$$

$$Var(X_f) = \sigma^2$$

$$\Rightarrow \text{Depends on the signal source}$$

$$\Leftrightarrow \text{how distorted is the signal}$$

A white noise is a deviation around the 0 which disturb the original signal Example: Ground variation from an oscilloscope

PROBLEM TO DISCUSS

PROBLEM TO DISCUSS

Vehicle tracking

- Assume that the trajectory is a line
- > You know the velocity of the car as input to the system
- > You measure the position of the car via GPS system

STATE OBSERVER

STATE OBSERVER

Introduction

$$x_{t+1} = A_t x_t + B_t u_t$$
$$y_t = H_t x_t$$

- \triangleright We measure the output y_t
- \triangleright What about the internal state x_t ? Can estimate the internal state?

Image taken from www.quora.com

STATE OBSERVER System estimator

$$x_{t+1} = A_t x_t + B_t u_t$$
$$y_t = H_t x_t$$

Is it the same?

Image taken from www.quora.com

STATE OBSERVER Optimal State Estimator

Real Physical System x_t Gain L_t unit u_t Model Corrected car's position

Feedback ensure the convergence of estimation error to 0

$$\hat{x}_{t+1} = A_t \, \hat{x}_t + B_t \, u_t + L_t (y_t - \hat{y}_t)$$

$$\hat{y}_t = H_t \, \hat{x}_t$$

- What about the noise ?
- ➤ How you handle it?
- ➤ How certain is the estimation?

Image taken from www.quora.com

Optimal State Estimator For Stochastic Systems

 $v_t = measurement noise$ $w_t = process noise$

- $\triangleright v_t, w_t$ is assumed to be white noises
- $\triangleright v_t = N(0, R_t), R_t$ is covariance of measurement noise
- $\triangleright w_t = N(0, Q_t), Q_t$ is covariance of process noise

Obs.: Process and measurement noise are uncorrelated

Optimal State Estimator For Stochastic Systems

$$x_{t+1} = A_t x_t + B_t u_t + w_t$$
$$y_t = H_t x_t + v_t$$

 $v_t = measurement noise$

 $w_t = process\ noise$

Optimal State Estimator For Stochastic Systems

Optimal State Estimator For Stochastic Systems

Optimal State Estimator For Stochastic Systems

$$\hat{x}_{t} = A\hat{x}_{t-1} + Bu_{t} + K_{t}(y_{t} - H(A\hat{x}_{t-1} + Bu_{t}))$$

A priori State Estimation

Correction via Kalman Gain

Kalman Gain

> A posteriori estimation error:

$$\varepsilon = x_t - \widehat{x_t}$$
Is a stochastic variable due to process noise w_t

> Take the expected value of a posteriori error as an estimation's measure

$$f(K) = E[\varepsilon^T \varepsilon]$$

Kalman Gain

> Take the expected value of a posteriori error as an estimation measure

$$f(K) = E[\varepsilon^T \varepsilon]$$

Minimizing f with respect to K will give us the best K

$$\frac{df}{dK} = 0 \qquad \qquad K_t = \frac{P_t^- H^T}{HP_t^- H^T + R_t}, \text{ where } P_t^- \text{ is a priori error covariance}$$

$$P_t^- = \mathbb{E}[(x_t - \hat{x}_t^-)^T (x_t - \hat{x}_t^-)]$$

Updating the error covariance

> Starting from the definition of the a posteriori error covariance

$$P_t = E[\varepsilon^T \varepsilon]$$

> Expanding the above equation by using the model of a posteriori estimation we obtain that

$$P_t = (I - K_t H) P_t^-$$

Estimation of a priori error covariance

- > As we estimate a priori the state of the system, we must estimate the a priori error covariance in order to compute the Kalman gain
- > Starting from the definition of the a priori error covariance

$$P_t^- = \mathrm{E}[(x_t - \hat{x}_t^-)^T (x_t - \hat{x}_t^-)]$$

> By using the system transition model and considering the expected values of the independent signals to be 0 we obtain the a priori error covariance

$$P_t^- = AP_{t-1}A^T + Q_t$$

KALMAN FILTER **Summary**

Prediction

$$\hat{x}_t^- = A\hat{x}_{t-1} + Bu_{t-1}$$

$$P_t^- = AP_{t-1}A^T + Q_t$$

Update

$$\hat{x}_t = \hat{x}_t^- + K_t(y_t - H\hat{x}_t^-)$$

$$K_t = \frac{P_t^- H^T}{H P_t^- H^T + R_t}$$

$$P_t = (I - K_t H) P_t^-$$

Vehicle tracking

- > Assume that the trajectory is a line
- > You know the velocity of the car as input to the system
- > You measure the position of the car via GPS system

Vehicle tracking - solution

Vehicle tracking - solution

Vehicle tracking - solution

KALMAN FILTER Principal drawback

Kalman filter assume that the model of the system is linear

$$x_{t+1} = A_t x_t + B_t u_t$$
$$y_t = H_t x_t$$

➤ If we map an Gaussian distribution with a linear model we obtain another Gaussian distribution

KALMAN FILTER Principal drawback

> If model is nonlinear the Gaussian distribution is distorted

$$x_{t+1} = f(x_t, u_t)$$
$$y_t = g(x_t)$$

Nonlinear transformation

Model linearization

Nonlinear transformation

https://www.youtube.com/watch?v=VFXf1IIZ3p8

Model linearization

Nonlinear transformation

$$f(x) = f(x_k) + \frac{\partial f}{\partial x}(x_k - x)$$

For multidimensional function with multivariable input, here we have the Jacobian matrix

Model linearization

$$x_{t+1} = f(x_t, u_t)$$

$$y_t = g(x_t)$$

$$G_K = \frac{\partial g}{\partial x}|_{\hat{x}_k}$$
Jacobians

Jacobian Matrix

$$F_K = \frac{\partial f}{\partial x}|_{\hat{x}_{k-1}, \hat{u}_k}$$
$$G_K = \frac{\partial g}{\partial x}|_{\hat{x}_k}$$

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Modified Kalman Algorithm

Prediction

$$\widehat{x}_t^- = f(\widehat{x}_{t-1}, u_{t-1})$$

$$P_t^- = F P_{t-1} F^T + Q_t$$

Update

$$\hat{x}_t = \hat{x}_t^- + K_t(y_t - h(\hat{x}_t^-))$$

$$K_t = \frac{P_t^- G^T}{G P_t^- G^T + R_t}$$

$$P_t = (I - K_t G) P_t^-$$

At each step, Jacobians must be recomputed!!

Modified Kalman Algorithm - drawbacks

- > Jacobian matrix is difficult to compute analytically
- > Numerical computation of Jacobian has a high computational cost
- > If system has hard nonlinear parts the first order Taylor approximation fails
- > If system has hard nonlinear parts, the kalman filter is not an optimal approach

References

- https://ocw.mit.edu/courses/mechanical-engineering/2-160-identification-estimation-and-learning-spring-2006/lecture-notes/lecture_5.pdf
- https://ocw.mit.edu/courses/mechanical-engineering/2-160identification-estimation-and-learning-spring-2006/lecturenotes/lecture_6.pdf
- https://ocw.mit.edu/courses/mechanical-engineering/2-160identification-estimation-and-learning-spring-2006/lecturenotes/lecture_8.pdf

THANK YOU FOR YOUR ATTENTION

