Note: I am accustomed to writing "The element $g \in G$ acting on the element $x \in S$ " as g.x instead of gx. I use the stated notation, as I feel it is clearer.

Problem 1:

Let G be a finite abelian group, with $n \in \mathbb{N}$ and $n \mid |G|$.

We know that for each $n \in \mathbb{N}$, n has a unique prime factorization; that is, $n = p_1^{a_1} p_2^{a_2} p_3 a_3 \dots p_k^{a_k}$ for some $p_1, p_2 \dots p_k$ each prime, and $a_1, a_2 \dots a_k$ each positive and nonzero.

Proceed as follows:

For each p_i , there is an element with order p_i in G:

We proceed by induction. If |G| = 1, then |G| has no prime divisors, so there is vacuously an element of order p in G if $p \mid |G|$.

Now, assume that there is an element of order p (with p prime) in G if $p \mid |G|$ for all G with order less than N. Let G be a group of order N, and let $p \mid N$ be a prime number. Pick an element of G, call it g, other than the identity. It has some order, m > 1. Either $p \mid m$ or not. If so, then take $g^{m/p}$; this element clearly has order p. If not, then consider $G/\langle a \rangle$ (this is well defined; G is abelian, so $\langle a \rangle$ is normal, because all subgroups are normal in abelian groups). We know that $p \mid |G/\langle a \rangle|$; $p \mid |G| = |G/\langle a \rangle||a|$, so because p is prime, we know that $p \mid |G/\langle a \rangle|$. So there's an element, b, of order p in $G/\langle a \rangle$. So there is an element with $\overline{c} = b$. Now, $c^p \in \langle a \rangle$;

$$c=ba^x$$
 for some $x\in\mathbb{Z}$, because $\overline{c}=b$ $c^p=b^pa^{px}$ $c^p=a^y$ for some $y\in\mathbb{Z}$, because $\overline{b}^p=e$ $c^p\in\langle a\rangle$

So, $c^p = a^l$ for some $l \in \mathbb{N}$. We know that a^l has a finite order, $|a^l|$. So clearly $c^l a^l$ has order p.

So in either case, there is an element of order p in G if p is prime and $p \mid |G|$.

Thus, there is a subgroup, H_1 , with order p_1 in G. This subgroup is normal, because G is abelian.

Consider the new group $G_1 = G/H_1$, along with $n_1 = n/p_1$. Note that $|G_1| = |G|/p_1$; this follows from the theorem that says |G/H| = |G|/|H| if H is normal.

We know that G_1 is abelian, by a theorem we probably discussed in class.

So by similar logic as above, if $a_1 > 1$, then there is a subgroup of order p_1 in G. Otherwise, we know that there is a subgroup of order p_2 in G.

Either way, there is a subgroup, $H'_2 < G_1$, with order p_1 (or p_2) in G_1 . This subgroup is normal in G_1 , because G_1 is abelian. Now, there's a subgroup of G containing H_1 that corresponds to H'_2 : call this subgroup H_2 . We know that H_2 is normal, because G is abelian.

Consider the group $G_2 = G_1/H_2'$. Note that $G_2 \cong G/H_2$, by the third isomorphism theorem. Moreover, $|G_2| = |G|/p_1^2$ (or $|G_2| = |G|/p_1p_2$).

We can proceed in the above manner a_i times for each p_i . Proceed until each prime factor is exhausted.

Consider $G_{a_1+a_2...+a_k}$; it has order |G|/n, by the construction above, and is isomorphic to $G/H_{a_1+a_2...+a_k}$ for some $H \leq G$. This means that |H| = n (because |G/H| = |G|/|H|...thus, |H| = |G|/|G/H|, or in this case, |H| = |G|/(|G|/n) = n.)

So G has a normal subgroup of order n if G is a finite abelian group with $n \mid |G|$.

Problem 2:

Let H < G with [G : H] finite. I can't figure this out. I give up.

Problem 3:

Let G be a group acting transitively on a finite set, S, with |S| > 1.

Now, the action has only one orbit; for all $x \in S$, $\overline{x} = S$. In other words, for every $x, y \in S$ there is a $g \in G$ such that g.x = y.

Before proceeding, I wish to point out that I use the following freely:

If g.x = x, then $g^{-1}.x = x$: This is clear by applying g^{-1} to both sides of the equation.

If g.x = y, then $g^{-1}.y = x$: This is clear by applying g^{-1} to both sides of the equation.

Assume that for all $g \in G$, there is an $x \in S$ such that g.x = x. We proceed by constructing an infinite set of points in S, by induction.

Because |S| > 1, there are at least two distinct points of S: call them x_0 and x_1 .

There is an element, g_2 , such that $g_2.x_0 = x_1$, by transitivity of the action.

There is an x_2 such that $g_2.x_2 = x_2$, by the assumption we made earlier.

Now, $x_2 \neq x_0$, else:

$$g_2.x_0 = g_2.x_2$$
$$x_1 = x_2 = x_0$$

which is a contradiction.

Also, $x_2 \neq x_1$, else:

$$g_2^{-1}.x_1 = g_2^{-1}.x_2$$
$$x_0 = x_2 = x_1$$

which is also a contradiction.

So x_2 is distinct from x_0 and x_1 .

Now, assume that we have the following: we have defined x_n for each $n \in \mathbb{N}$ such that n < N, and g_n for each $n \in \mathbb{N}$ such that n < N - 1 and $n \ge 2$, with the following properties: $g_n.x_n = x_n$ and $g_n.x_0 = x_{n-1}$.

Then there is a g_N such that $g_N.x_0 = x_{N-1}$, because the action is transitive.

Also, there is an x_N such that $g_N.x_N=x_N$, by the assumption we made earlier.

Now, $x_N \neq x_0$, else:

$$g_N.x_0 = g_N.x_N$$
$$x_{N-1} = x_N = x_0$$

which is a contradiction.

Also, $x_N \neq x_{N-1}$, else:

$$g_N^{-1}.x_{N-1} = g_N^{-1}.x_N$$

 $x_0 = x_N = x_{N-1}$

which is also a contradiction.

Further, $x_N \neq x_i$ for any i between 0 and N-1 (exclusive), else:

$$g_N g_i^{-1}.x_i = g_N.x_i$$
$$g_n x_0 = g_N.x_N$$
$$x_{N-1} = x_N$$

which is also a contradiction.

So x_N is distinct from each x_i with i < N.

So we have two distinct points, and if we have n distinct points in S, we can make n+1 distinct points in S; we can make infinitely many distinct points, thus S is infinite.

So, if for all $g \in G$, g has a fixed point, then S is infinite.

Or, in other words, because S is finite, there is a $g \in G$ that has no fixed point.

Problem 4:

Let G be a group such that G/Z(G) is cyclic.

Then there is an $a \in G$ such that for all $\overline{x} \in G/Z(G)$, $\overline{x} = \overline{a}^n$ for some $n \in \mathbb{N}$.

So for all $y \in G$, there is an $n \in \mathbb{N}$ and $b \in Z(G)$ such that $y = a^n b$; the left cosets of Z(G) partition G, and the set of these cosets is $\{a^n Z(G) : n \in \mathbb{N}\}$. So for all $y \in G$, $y \in a^n Z(G)$ for some $n \in \mathbb{N}$.

So for all $y, z \in G$, we have $y = a^n b$ and $z = a^m c$ for some $n, m \in \mathbb{N}$ and $b, c \in Z(G)$.

Now we have:

$$yz = a^{n}ba^{m}c$$

$$= a^{n}a^{m}bc$$

$$= a^{m}a^{n}bc$$

$$= a^{m}a^{n}cb$$

$$= a^{m}ca^{n}b$$

$$= zy$$

Note that this fails if G/Z(G) is only abelian:

Consider $D_8 = \langle r, s \rangle$. We note that the center of D_8 is $\{e, r^2\}$.

(We freely use the identity $sr = r^3 s$ in the following).

We know that e commutes with every element, trivially.

Now, r^2 commutes with e, r, r^2 , and r^3 trivially;

Also, r^2 commutes with s, sr, sr^2 , and sr^3 :

$$r^{2}s = rsr^{3} = sr^{3}r^{3} = sr^{2}$$

 $r^{2}sr = r^{2}r^{3}s = rs = sr^{3} = srr^{2}$
 $r^{2}sr^{2} = r^{2}sr^{2}$
 $r^{2}sr^{3} = r^{2}rs = sr = sr^{5} = sr^{3}r^{2}$

However, r and s do not commute with each other, and r^3 and s do not commute with each other:

$$rs = sr^3$$

Also, sr, sr^2 , and sr^3 do not commute with r:

$$rsr = sr^{3}r = s \neq sr^{2}$$

$$rsr^{2} = sr^{3}r^{2} = sr \neq sr^{3}$$

$$rsr^{3} = sr^{3}r^{3} = sr^{2} \neq sr^{3}r = s$$

So every element other than e and r^2 fails to commute with something. So

Also, $D_8/\langle r^2 \rangle$ is abelian:

Observe that this group must have order 4, and that $\{\overline{e}, \overline{r}, \overline{s}, \overline{sr}\}$ are all distinct elements of this group (and thus this represents all elements in the quotient group).

Clearly, \overline{e} commutes with everything. We proceed by exhaustion:

$$\overline{rs} = \overline{sr} = \overline{r^3s} = \overline{rs} = \overline{rs}$$

$$\overline{rsr} = \overline{rsr} = \overline{sr^3r} = \overline{s} = \overline{sr^2} = \overline{srr}$$

$$\overline{ssr} = \overline{s^2r} = \overline{r} = \overline{rss} = \overline{sr^3s} = \overline{srs} = \overline{srs}$$

But we know from an earlier homework that D_8 is not abelian. So in general, G/Z(G) being abelian does not imply that G is abelian.

Problem 5:

Let p be prime, and let G be a group of order p^2 . We know that Z(G) is a subgroup of G; so Z(G) has order 1, p, or p^2 .

We know that Z(G) does not have order 1, from the discussion in class.

If Z(G) has order p, then G/Z(G) is cyclic (as it is a group of order $p^2/p=p$); we know that G is abelian, from problem 4.

If Z(G) has order p^2 , then the center is the entire group; that is, G is abelian.

So in all cases, G is abelian.

Problem 6:

Let p be prime, and let G be a group of order p^n for some $n \in \mathbb{N}$. Let $H \subseteq G$ with $H \neq \{e\}$.

Now, G acts on H by conjugation. By the class equation,

$$|H| = |\{h \in H : \forall g \in G, ghg^{-1} = h\}| + \sum |\overline{x_i}|$$

$$= |H \cap Z(G)| + \sum |[G : G_{x_i}]| \text{ Because the order of the orbit is the index of the stabilizer}$$

We know that $p \mid |H|$, because H is a nontrivial subgroup of a p-group. Also, $p \mid [G:G_{x_i}]$ because each G_{x_i} is a subgroup of G, and none are trivial (because none of those orbits contain only one element; if there was an element whose orbit had only one element, then it would be in the set $\{h \in H: \forall g \in G, ghg^{-1} = h\}$).

So we know that $p \mid |H \cap Z(G)| + \sum |[G:G_{x_i}]|$. So because $p \mid \sum |[G:G_{x_i}]|$, we know that $p \mid |H \cap Z(G)|$.

So because $p \mid |H \cap Z(G)|$, we know that $|H \cap Z(G)| \neq 1$; that is $H \cap Z(G)$ is not the trivial subgroup.