Звіт

до лабораторної роботи №1: «Методи розв'язання нелінійних рівнянь»

Нехай маємо рівняння f(x) = 0, x - його розв'язок, тобто $f(x) \equiv 0$. Задача розв'язання цього рівняння розпадається на етапи:

- 1. Існування та кількість коренів.
- 2. Відділення коренів, тобто розбиття числової осі на інтервали, де знаходиться один корінь.
 - 3. Обчислення кореня із заданою точністю є.

Ставиться задача, що для заданої функції f(x) вказані межі [a, b], де тільки один єдиний корінь.

Ціль лабораторної роботи: реалізувати п. 3 трьома різними методами та проаналізувати кожен із них, зробити висновки.

Завдання 1

Метод ділення навпіл (Дихотомії).

Завдання 2

Метод Ньютона (метод дотичних).

Завдання 3

Метод релаксації.

Теоретична частина

Частина 1

Нехай f(a) f(b) < 0. Припустимо, що f(a) > 0, f(b) < 0. Покладемо $x_1 = (a + b) / 2$ і підрахуємо $f(x_1)$. Якщо $f(x_1) < 0$, тоді шуканий корінь x^* знаходиться на інтервалі (a, x_1) . Якщо ж $f(x_1) > 0$, то $x^* \in (x_1, b)$. Далі з двох інтервалів (a, x_1) і (x_1, b) вибираємо той, на границях якого функція f(x) має різні знаки, знаходимо точку x_2 — середину вибраного інтервалу, підраховуємо $f(x_2)$ і повторюємо вказаний процес.

Частина 2

Припустимо, що рівняння f(x)=0 має простий дійсний корінь \overline{x} , тобто $f(\overline{x})=0$, $f'(\overline{x})\neq 0$. Нехай виконуються умови: $f(x)\in C^1[a,b]$, $f(a)\cdot f(b)<0$. Тоді

$$0=f(\overline{x})=f(x_k+\overline{x}-x_k)=f(x_k)+f'(\xi_k)(\overline{x}-x_k),$$
 де $\xi_k=x_k+\theta_k(\overline{x}-x_k)$, $0<\theta_k<1,\ \xi_k\approx x_k$. Тому наступне наближення виберемо з рівняння

$$f(x_k) + f'(x_k)(x_{k+1} - x_k) = 0.$$

Звідси маємо ітераційний процес

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0,1,2...$$
; x_0 -задане.

Метод Ньютона ще називають методом лінеаризації або методом дотичних.

Якщо в методі простої ітерації для рівняння $x = x + \tau f(x) \equiv \varphi(x)$ вибрати $\tau(x) = \tau = const$, то ітераційний процес приймає вигляд

$$x_{n+1} = x_n + \tau f(x_n), \tag{1}$$

k = 0,1,2,3... x_0 — задано. Метод можна записати у вигляді $\frac{x_{k+1} - x_k}{\tau} = f(x_k)$, k = 0,1,... Оскільки $\varphi'(x) = 1 + \tau f'(x)$, то метод збігається при умові

$$|\varphi'(x)| = |1 + \tau f'(x)| \le q < 1.$$

Нехай f'(x) < 0, тоді (3) запишеться у вигляді: $-q \le 1 + \tau f'(x) \le q < 1$. Звідси

$$\tau |f'(x_k)| \le 1 + q < 2, i \ 0 < \tau < \frac{2}{|f'(x)|}.$$

Поставимо задачу знаходження τ , для якого $q=q(\tau) \to \min$. Для того, щоб вибрати оптимальний параметр τ , розглянемо рівняння для похибки $z_k = x_k - \overline{x}$.

Підставивши $x_k = \overline{x} + z_k$ в (1), отримаємо

$$z_{k+1} = z_k + \tau f(\overline{x} + z_k).$$

В припущені $f(x) \in C^1[a,b]$ з теореми про середнє маємо

$$\begin{split} f(\overline{x} + z_k) &= f(\overline{x}) + z_k f'(\overline{x} + \theta z_k) = z_k f'(\overline{x} + \theta z_k) = z_k f'(\xi_k) \\ z_{k+1} &= z_k + \tau f'(\xi_k) \cdot z_k \\ \left| z_{k+1} \right| &\leq \left| 1 + \tau f'(\xi_k) \right| \cdot \left| z_k \right| \leq \max_{U} \left| 1 + \tau f'(\xi_k) \right| \left| z_k \right| \\ \left| z_{k+1} \right| &\leq \max_{U} \left| 1 - \tau M_1 \right|, \left| 1 - \tau m_1 \right| \right| z_k \\ m_1 &= \min_{[a,b]} \left| f'(x) \right|, \quad M_1 &= \max_{[a,b]} \left| f'(x) \right| \end{split}$$

Таким чином, задача вибору оптимального параметра зводиться до знаходження τ , для якого функція

$$q(\tau) = \max\{1 - \tau \mathbf{M}_1, |1 - \tau m_1|\}$$

прийма ϵ мінімальне значення: $q(\tau)
ightarrow \min$.

3 графіка видно, що точка мінімуму визначається умовою $\big|1-\tau M_1\big|=\big|1-\tau m_1\big|$. Тому

$$1 - \tau_0 m_1 = \tau_0 M_1 - 1 \Rightarrow \tau_0 = \frac{2}{M_1 + m_1} < \frac{2}{|f'(x)|}$$

При цьому значенні τ маємо

$$q(\tau_0) = \rho_0 = \frac{M_1 - m_1}{M_1 + m_1}.$$

Тоді для похибки вірна оцінка

$$\left|x_{n}-\overline{x}\right| \leq \frac{\left(\rho_{0}\right)^{n}}{1-\rho_{0}}(b-a) < \varepsilon$$

Постановка варіанту

Варіант 2

Функція:

$$f(x) = (x - e) * (x - Pi) * (x - e * Pi)$$

 $x^* \in [a, b] = [3, 5].$

Всюди була взята точність $\varepsilon = 1e-5$.

Графіки самої функції та її похідної:

Завдання 1

Як вже було згадано в теоретичній частині, ми з двох інтервалів (a, x_1) і (x_1, b) вибираємо той, на границях якого функція f(x) має різні знаки, знаходимо точку x_2 — середину вибраного інтервалу, підраховуємо $f(x_2)$ і повторюємо вказаний процес.

В результаті отримаємо послідовність інтервалів, що містять шуканий корінь \overline{x} , причому довжина кожного послідуючого інтервалу вдвічі менше попереднього.

Цей процес продовжується до тих пір, поки довжина отриманого інтервалу (a_n,b_n) не стане меншою за $b_n-a_n<2\varepsilon$. Тоді x_{n+1} , як середина інтервалу (a_n,b_n) , пов'язане з \overline{x} нерівністю

$$\left|x_{n+1} - \overline{x}\right| < \varepsilon. \tag{2}$$

Ця умова для деякого n буде виконуватись за теоремою Больцано – Коші. Оскільки

$$|b_{k+1} - a_{k+1}| = \frac{1}{2} |b_k - a_k|,$$

TO

$$\left|x_{n+1} - \overline{x}\right| \le \frac{1}{2^{n+1}}(b-a) < \varepsilon. \tag{3}$$

Звідси отримаємо нерівність для обчислення кількості ітерацій n для виконання умови (2):

$$n = n(\varepsilon) \ge \left\lceil \log \left(\frac{b-a}{\varepsilon} \right) \right\rceil + 1.$$

Степінь збіжності — лінійна, тобто геометричної прогресії з знаменником $q = \frac{1}{2}$.

Переваги методу: простота, надійність. Недоліки методу: низька швидкість збіжності; метод не узагальнюється на системи.

Скрін, що демонструє роботу методу дихотомії:

N X[n]	f(X[n])	$\{f(X[n]) - f(X[n-1])\}$	X[n] - X[n-1]	EPS
0 4	-4.9947804		i	1e-05
1 3.5	-1.4120002	3.5827802	0.5	1e-05
2 3.25	-0.30491169	3.5827802 1.1070885	0 25	1e-05
$\bar{3}$ $\bar{3}.\bar{1}\bar{2}\bar{5}$		0.3414532	0.125	
4 3.1875	-0.11529013	0.15183165	0.0625	1e-05
5 3.15625	-0.034559014	0.080731114	0.03125	1e-05
6 3.140625	0.0022065181	0.036765532	0.015625	
7 3.1484375	-0.015873862	0.01808038		1e-05
8 3.1445313	-0.0067578965	0.0091159654		1e-05
9 3.1425781	-0.002256723	0.0045011735		1e-05
10 3.1416016	-2.0358072e-05	0.0022363649	0.0009765625	1e-05
11 3.1411133	0.0010942665	0.0011146245	0.00048828125	1e-05
12 3.1413574	0.00053725076	0.00055701571	0.00024414063	1e-05
13 3.1414795	0.00025852048	0.00027873028	0.00012207031	1e-05
14 3.1415405	0.00011909974	0.00013942074	6.1035156e-05	1e-05
15 3.141571	4.9375466e-05	6.9724272e-05	3.0517578e-05	1e-05
16 3.1415863	1.4509855e-05	3.4865611e-05		1e-05
17 3.1415939	-2.9238189e-06	1.7433674e-05		1e-05
18 3.1415901	5.7930906e-06	8.7169095e-06		1e-05
x* = 3.14159				

Завдання 2

Скрін, що демонструє роботу методу Ньютона:

N X[n]	f(X[n])	$\{f(X[n]) - f(X[n-1])\}$	X[n] - X[n-1]	l EPS
	-4.9947804			1e-05
1 3.4202474	-1.0014024	3.993378	0.57975263	1e-05
2 3.2126885	-0.18724701	0.81415539	0.20755888	1e-05
3 3.1497971	-0.019082218	0.16816479	0.062891393	1e-05
4 3.1417337	-0.00032237995	0.018759838	0.0080634046	1e-05
5 3.1415927	-9.8889272e-08	0.00032228106	0.00014099307	1e-05
6 3.1415927	-9.1330614e-15	9.8889263e-08	4.3275835e-08	1e-05
x* = 3.14159				

Завдання 3

Скрін, що демонструє роботу методу релаксації:

N 0	X[n] 4	f(X[n]) -4.9947804		i	EPS 1e-05
1	3.1105154	0.06617965	5.06096	0.88948458	1e-05
2	3.1223009	0.042224798	0.023954852	0.011785459	1e-05
3	3.1298204	0.026209626	0.016015172	0.0075195111	1e-05
4	3.1344879	0.015983593	0.010226033	0.0046674841	1e-05
5	3.1373343	0.0096404882	0.0063431049	0.0028464034	1e-05
6	3.1390511	0.0057755683	0.0038649198	0.0017168053	1e-05
7	3.1400796	0.0034460434	0.0023295249	0.0010285295	1e-05
8	3.1406933	0.0020510934	0.00139495	0.00061368114	1e-05
9	3.1410586	0.0012190359	0.00083205756	0.0003652645	1e-05
10	3.1412756	0.00072388608	0.00049514978	0.00021708935	1e-05
11	3.1414046	0.00042963502	0.00029425106	0.00012891168	1e-05
$\overline{12}$	3.1414811	0.00025491531	0.00017471971	7.6510617e-05	1e-05
13	3.1415265	0.00015122135	0.00010369396	4.5396038e-05	1e-05
14	3.1415534	8.9698127e-05	6.1523222e-05	2.6929924e-05	1e-05
15	3.1415694	5.3201737e-05	3.649639e-05	1.5973695e-05	1e-05
16	3.1415788	3.1553805e-05	2.1647932e-05		1e-05
1 7	3.1415845	1.8714054e-05	1.2839751e-05		1e-05
$\overline{18}$	3.1415878	1.1098856e-05	7.6151982e-06	3.3326515e-06	1e-05
××	= 3.14159				

Висновок

Як бачимо, ми або ж економимо на дослідженні функції (менший аналіз) але виграємо у простоті, або ж економимо на кількості ітерацій, швидкості, але вимушені якось додатково аналізувати функцію (похідні).

Звіт

до лабораторної роботи №2:

«Методи розв'язання систем лінійних алгебраїчних рівнянь»

Нехай маємо систему лінійних алгебраїчних рівнянь (СЛАР). Задача:

- 1. Розв'язати дану СЛАР (для ітераційного методу точність $\varepsilon = 10^{-4}$).
- 2. Знайти матрицю обернену до даної (прямий метод).
- 3. Обчислити число обумовленості матриці (прямий метод).
- 4. Обчислити визначник матриці (прямий метод).

Ціль лабораторної роботи: реалізувати поставленні вище завдання прямим й ітераційним методами та проаналізувати кожен із них, зробити висновки.

Завдання 1

Метод Прогонки.

Завдання 2

Метод Зейделя.

Теоретична частина

Частина 1

Систему рівнянь A * x = f можна розв'язати методом прогонки, якщо матриця $A \in$ тридіагональною, та \in діагональна перевага (виконується умова стійкості).

$$\begin{pmatrix} c_0 & b_0 & 0 & & & 0 & 0 & 0 \\ a_1 & c_1 & b_1 & \cdots & & 0 & 0 & 0 & 0 \\ 0 & a_2 & c_2 & & & 0 & 0 & 0 & 0 \\ \vdots & & \ddots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & & & c_{n-3} & b_{n-3} & 0 & & & \\ 0 & 0 & 0 & \cdots & a_{n-2} & c_{n-2} & b_{n-2} & & & \\ 0 & 0 & 0 & & & 0 & a_{n-1} & c_{n-1} \end{pmatrix}$$

Умова стійкості:

 $|c_i| \ge |a_i| + |b_i|$ $(i = \overline{0, n-1})$, та хоча б одна з нерівностей строга.

Утворюється така система рівнянь:

така система рівнянь:
$$\begin{cases} -c_0y_0+b_0y_1=-f_0\\ a_1y_0-c_1y_1+b_1y_2=-f_1\\ \dots\\ a_iy_{i-1}-c_iy_i+b_iy_{i+1}=-f_i\\ \dots\\ a_{n-2}y_{n-3}-c_{n-2}y_{n-2}+b_{n-2}y_{n-1}=-f_{n-2}\\ a_{n-1}y_{n-2}-c_{n-1}y_{n-1}=-f_{n-1} \end{cases}$$

Власне, сам метод Прогонки:

$$\alpha_1 = b_0/c_0; \, \beta_1 = f_0/c_0$$

$$\begin{split} z_i &= c_i - \alpha_i * a_i \\ \alpha_{i+1} &= b_i/z_i; \ \beta_{i+1} = (f_i + a_i * \beta_i)/z_i \\ y_n &= \beta_{n+1} = (f_n + a_n * \beta_n)/(c_n - \alpha_n * a_n) \\ y_i &= \alpha_{i+1} * y_{i+1} + \beta_{b+1} \end{split}$$

Визначник тридіагональної матриці вираховується як добуток z_i.

Для знаходження числа обумовленості матриці A використовують формулу $cond(A) = ||A|| ||A^{-1}||$

Частина 2

Нехай маємо СЛАР A * x = f, $det(A) \neq 0$.

Тоді і-те рівняння системи можна представити у вигляді :

$$x_i = \frac{f_i - \sum_{j=1}^{i-1} a_{ij} * x_j - \sum_{j=i+1}^{n} a_{ij} * x_j}{a_{ii}}, \quad i = \overline{1, n}$$

Ітераційний процес методу Зейделя будується за формулою:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} * (f_i - \sum_{j=1}^{i-1} a_{ij} * x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} * x_j^{(k)}), \quad i = \overline{1,n},$$
 де k – номер ітерації.

Умова зупинки: $||x^{(k+1)} - x^{(k)}|| \le \varepsilon$ або $\max |x_i^{(k+1)} - x_i^{(k)}| \le \varepsilon$.

Подаємо матрицю А у вигляді:

$$A = A_{L} + D + A_{R}$$

$$A_{L} = \begin{cases} a_{ij}, i > j \\ 0, i \le j \end{cases} A_{R} = \begin{cases} 0, i \ge j \\ a_{ij}, i < j \end{cases} D = \{a_{ii}\}$$

Тоді формулу метода Зейделя можна подати у вигляді:

$$x^{(k+1)} = -D^{-1}A_L x^{(k+1)} - D^{-1}A_R x^{(k)} + D^{-1}f$$

Збіжність методу:

Метод Зейделя збігається тоді і тільки тоді, коли корені рівняння $\det((D + A_L)\mu + A_R) = 0$ такі, що $|\cdot| < 1$.

Достатня умова збіжності:

Або виконується діагональна перевага

$$(q_i+1) * |a_{ii}| = sum_{j=1}{}^n (|a_{ij}|), \, i=1..n$$

Якщо всі $q_i \le 1$

 $q = max(q_i) \\$

Або
$$A = A^T > 0$$

Апріорна оцінка (для нульового початкового наближення):

$$\frac{q^n}{1-q} < \varepsilon => n \ge \left\lceil \frac{\ln(\varepsilon(1-q))}{\ln q} \right\rceil + 1$$

Матриця для прямого методу, методу прогонки:

$$A = \begin{pmatrix} c_0 & b_0 & 0 \\ a_1 & c_1 & b_1 \\ 0 & a_2 & c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$
$$f = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Перевіркою переконуємось, що вона задовільняє умовам для подальшого розв'язку.

Матриця для ітераційного методу, методу Зейделя:

$$A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 2 & 0.5 \\ 1 & 0.5 & 3 \end{pmatrix}$$
$$f = \begin{pmatrix} 1 \\ 1.75 \\ 2.5 \end{pmatrix}$$

Для ітераційного методу Зейделя була взята точність $\varepsilon = 1\text{e-}4$.

Завдання 1

Скрін, що демонструє роботу методу прогонки:

Завдання 2 Скрін, що демонструє роботу методу Зейделя:

A * 3	x = f	1	1
-1	2	0.5	1.75
1	0.5	3	2.5
x *			
1	0.333333	1.04167	0.548611
2	0.497685	0.98669	0.50299
3	0.494567	0.996536	0.502388
4	0.498049	0.998427	0.500912
5	0.499172	0.999358	0.500383
6	0.499658	0.999733	0.500158
7	0.499858	0.99989	0.500066
8	0.499941	0.999954	0.500027

Для знаходження розв'язку даної СЛАР з точністю $\varepsilon = 1\text{e-}4$ знадобилося 8 ітерацій.

Висновок

Метод прогонки досить зручний і економічний. Він легко програмується. Підходить для тридіагональних матриць. Також слід відмітити, що метод прогонки можна використовувати і для знаходження визначника матриці. Серед недоліків методу: він підходить лише до СЛАР з тридіагональною відповідною матрицею.

Метод Зейделя досить швидко збігається, але для застосування цього методу необхідне виконання умови збіжності методу.

Звіт

до лабораторної роботи №3:

«Методи розв'язання систем нелінійних алгебраїчних рівнянь. Часткова проблема власних значень»

Нехай маємо систему нелінійних алгебраїчних рівнянь (СНЛАР). Задача: Розв'язати дану СНЛАР конкретним методом із заданою точністю ε.

Часткова проблема власних значень. Задача:

Знайти тах та тіп власні значення заданої матриці із заданою точністю є.

Ціль лабораторної роботи: реалізувати поставленні вище завдання відповідними методами та проаналізувати кожен із них, зробити висновки.

Завдання 1

Модифікований метод Ньютона.

Завдання 2

Степеневий метод.

Теоретична частина

Частина 1

Маємо систему: $\bar{F}(\bar{x}) = 0$, де \bar{x} , $\bar{F}(\bar{x})$ – n-вимірні вектор-аргумент та вектор-функція відповідно.

Похідна вектор-функції – матриця Якобі:

$$\bar{F}'(\bar{x}) = \left\{ \frac{\partial f_i(\bar{x})}{\partial x_j} \right\}_{i,j = \overline{1,n}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = A$$

Лінеаризація рівнянь із розвиненням вектор-функції $\bar{F}(\bar{x})$ у багатовимірний степеневий ряд Тейлора в околі $\overline{x^{(k)}}$ (на k-ому кроці, якщо представити $\overline{x^{(k)}} = \overline{x^{(k)}} + (\bar{x} - \overline{x^{(k)}})$) уможливлює обчислення наближеного значення кореня, а саме, якщо за \bar{x} у цьому розвиненні взяти значення кореня $\bar{\xi}$, то отримаємо

$$\bar{F}\big(\bar{x}^{(k)}\big) + \bar{F}'\big(\bar{\xi_k}\big)\big(\bar{x} - \bar{x}^{(k)}\big) \approx 0 \;, \quad \text{де} \quad \bar{\xi_k} = \bar{x}^{(k)} + \theta\big(\bar{x} - \bar{x}^{(k)}\big) \;, \;\; 0 < \theta < 1$$

Покладемо $\bar{\xi_k} = \bar{x}^{(k+1)}$ і припускаючи існування оберненої матриці Якобі прийдемо до рекурентних співвідношень методу Ньютона

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - \bar{F}'(\bar{x}^{(k)})^{-1} \bar{F}(\bar{x}^{(k)})$$

Для того, щоб реалізувати модифікований метод Ньютона ми знаходимо матрицю A_0 на 0-кроці, як $A_0 = \bar{F}'\big(\bar{x}^{(0)}\big)$ і позначимо $\bar{z}^{(k)} = \bar{x}^{(k)} - \bar{x}^{(k+1)}$ ітераційні кроки зводяться до наступних:

$$A_0 \bar{z}^{(k)} = \bar{F}(\bar{x}^{(k)}), \bar{x}^{(k+1)} = \bar{x}^{(k)} - \bar{z}^{(k)}$$

Умова припинення ітераційного процесу: $\|\bar{x}^{(k+1)} - \bar{x}^{(k)}\| \le \varepsilon$.

Достатні умови збіжності методу:

Нехай дано систему нелінійних рівнянь із дійсними коефіцієнтами, де вектор-функція $\bar{F}(\bar{x}) \in C^2(X)$ та $\bar{x}^{(0)} \in \Delta = \{\|\bar{x} - \bar{a}\| \le r\} \subset X$, причому виконуються такі умови:

- 1. Матриця Якобі $\bar{F}'(\bar{x})$ при $\bar{x}=\bar{x}^{(0)}$ має обернену матрицю до $A_0=\bar{F}'(\bar{x}^{(0)})$ і $\|A_0\|\leq a$.
- 2. $||A_0^{-1}\bar{F}(\bar{x}^{(0)})|| \le b \le \frac{r}{2}$.
- 3. $\sum_{k=1}^{n} \left| \frac{\partial^2 f_i}{\partial x_i \partial x_k} \right| \le c$, i, j = 1..n.
- 4. $nabc \leq \frac{1}{2}$.

Частина 2

Нехай маємо матрицю
$$A=\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

Тоді, для знаходження максимального та мінімального значення власних чисел матриці A, застосовуємо степеневий, ітераційний, метод. $A - \lambda E = 0$

Початкове наближення власного вектора $\mathbf{x} \neq \mathbf{0}$ (тотожно): $\bar{\mathbf{x}}^\mathbf{0} \neq \bar{\mathbf{0}}$

$$\bar{x}^0 = C_1 \bar{e}_1 + C_2 \bar{e}_2 + \dots + C_n \bar{e}_n$$

Ітераційний процес:

$$\bar{x}^{k+1} = A\bar{x}^k = A^k\bar{x}^0 = C_1\lambda_1^{k+1}\bar{e}_1 + C_2\lambda_2^{k+1}\bar{e}_2 + \dots + C_n\lambda_n^{k+1}\bar{e}_n$$

 $\mu_m^k = \frac{x_m^{k+1}}{x_m^k}$, m — m-та компонента \bar{x}^k (m = 1..n).

$$\mu_1^i \xrightarrow[i \to \infty]{} \lambda_{max}(A) = \lambda_1$$

Цей ітераційний процес збіжний, при виконанні умови:

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$

Умова зупинки: $\|\mu_1^{(k+1)} - \mu_1^{(k)}\| \le \varepsilon$.

Компоненти \bar{x}^k різко збільшуватимуться (зменш.), якщо $|\lambda_1| > 1$ ($|\lambda_1| < 1$)

Виконується нормування (одразу після знаходження самого $\bar{x}^k = A^{k-1}\bar{x}^0$):

$$\bar{x}^k \leftarrow \frac{\bar{x}^k}{\|\bar{x}^k\|}, \bar{x}^0 = (1, 1, ..., 1)$$

$$\lambda_{min}(A) = \lambda_{max}(A) - \lambda_{max}(B), B = \lambda_{max}(A)E - A$$

СНЛАР для Завдання 1:

$$\begin{cases} 2x - \sin\frac{x - y}{2} = 0\\ 2y - \cos\frac{x + y}{2} = 0 \end{cases}$$

Для обох методів була взята точність $\varepsilon = 1e-4$.

Завдання 1

Скрін, що демонструє роботу модифікованого методу Ньютона:

0	0	0
1	-0.166667	0.5
2	-0.160515	0.493103
3	-0.16051	0.493102

Для знаходження розв'язку даної СНЛАР з точністю $\varepsilon = 1e\text{-}4$ знадобилося всього 3 ітерації.

Завдання 2

Скрін, що демонструє роботу степеневого методу:

Для знаходження максимального власного значення матриці A з точністю $\varepsilon = 1e-4$ знадобилося 12 ітерацій, а для мінімального - 24.

Висновок

Модифікований метод Ньютона швидко збігається. Але він потребує значення похідних.

Степеневий метод зручний для знаходження min та max власних значень матриці.

Звіт до лабораторної роботи №4: «Інтерполяція»

Нехай маємо n+1 точки $(x_0; y_0), (x_1; y_1), \dots, (x_n; y_n)$. Задача: Побудувати інтерполяційні многочлени Ньютона.

Ціль лабораторної роботи: реалізувати поставленні вище завдання відповідними методами та проаналізувати кожен із них, зробити висновки.

Завдання 1

Знайти 10 вузлів Чебишева на певному проміжку для заданої функції та побудувати інтерполяційний поліном у формі Ньютона для цих вузлів.

Завдання 2

Побудувати інтерполяційний поліном Ньютона для рівновіддалених вузлів на певному проміжку для заданої функції.

Теоретична частина

Частина 1

Нехай $x \in [a; b]$

Поліном Чебишева $T_n(x)$ має п коренів , які можна обчислити за формулою:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos \frac{2k+1}{2n} \pi$$
, $k = \overline{0, n-1}$

За отриманими вузлами будується інтерполяційний поліном.

Інтерполяційний поліном Ньютона:

Обчислюємо розділені різниці: $f(x, x_0) = \frac{f(x) - f(x_0)}{x - x_0}$, звідси

$$f(x) = f(x_0) + (x - x_0)f(x, x_0)$$

Наступна розділена різниця матиме вигляд: $f(x, x_0, x_1) = \frac{f(x, x_0) - f(x_0, x_1)}{x - x_1}$, тоді

$$f(x) = f(x_0) + (x - x_0)f(x, x_0) + (x - x_0)(x - x_1)f(x, x_0, x_1)$$

Загальний вигляд отримаємо: $f(x) = P_n(x) + R_n(x)$, де

 $P_n(x) = f(x_0) + (x - x_0)f(x, x_0) + (x - x_0)(x - x_1)f(x, x_0, x_1) + \cdots + (x - x_0) \dots (x - x_n)f(x, x_0, \dots, x_n)$ – формула Ньютона запису інтерполяційного полінома.

 $R_n(x)$ -залишковий член.

Частина 2

$$x_k = a + kh, k = \overline{0, n - 1}, h = \frac{b - a}{n - 1}$$

Інтерполяційний поліном Ньютона – див. Частина 1.

Функція:

$$f(x) = e^{-x^2}$$

Інтервал: $x \in [a; b] = [-1; 4]$

Для заданого інтервалу пораховано Чебишевські та рівновіддалені вузли (за відповідними формулами) у кількості 10.

Чебишевські:	X	Рівновіддалені:
-0.9692208514878446	x1	-1.0
-0.7275163104709197	x2	-0.444444444444444
-0.2677669529663689	x3	0.1111111111111116
0.3650237506511329	x4	0.666666666666666667
1.1089138373994227	x5	1.2222222222222
1.8910861626005766	x6	1.777777777777777
2.634976249348867	x7	2.33333333333333
3.267766952966369	x8	2.888888888888893
3.7275163104709197	x9	3.44444444444446
3.969220851487844	x10	4.0

Було обрано точку x = 1.5, так як вона не дуже близько до жодного з коренів вузлів (знаходиться відносно посередині інтервалу).

Завдання 1

Демонстрація підстановки точки х в поліном Ньютона побудованим на основі Чебишевських вузлів:

x = 1.5

f(x) = 0.10539922456186433

P(x) = 0.09956444977350562

R(x) = 0.0058347747883587125

Завдання 2

Демонстрація підстановки точки х в поліном Ньютона побудованим на основі рівновіддалених вузлів:

x = 1.5

f(x) = 0.10539922456186433

P(x) = 0.10409211182279374

R(x) = 0.0013071127390705956

Висновок

Інтерполяційний поліном у формі Ньютона досить точно відтворює функцію. При його побудові на основі Чебишевських вузлів ми отримуємо малу похибку на всьому інтервалі. В той час як при побудові на основі рівновіддалених вузлах на краях похибка буде значка, а ближче до середини інтервалу значно зменшуватись.