Лабораторная работа № 04 ДО

ВОЛЬТАМПЕРНЫЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ БИПОЛЯРНОГО ТРАНЗИСТОРА

Часть 1. Исследование вольтамперной характеристики стабилитрона

Снять входную характеристику биполярного транзистора $U_{69}(I_6)$ при 4.1. фиксированном значении напряжения U_{κ_2} =5В.

$$M = 8$$
, $N = 4$, $n = (80+4) mod(25) = 9$. Вариант №9.

Коэффициент усиления тока β = 120

4.2. По вольтамперным характеристикам для схемы усилительного каскада ОЭ с параметрами элементов, заданными в табл. 1, графически определить базовый ток транзистора I_6 , напряжение U_{69} . Результаты занести в табл. 2.

4.3. Для рабочей точки по входной ВАХ определить входное сопротивление транзистора $h_{11_9} = \Delta U_{6_9}/\Delta I_{6}$.

$$\Delta U_{69} = (U692 - U69) = (835.483 - 833.989)*10^{-3} = 1.494 \text{ мВ}$$

$$h_{119} = \Delta U_{69} / \Delta I_6 = 1.494 *10^{-3} / (4.997*10^{-6}) = 298.98 \ O_M.$$

4.4. Снять семейство выходных характеристик $I_{\kappa}(U_{\kappa})$.

4.5. По вольтамперным характеристикам для схемы усилительного каскада ОЭ с параметрами элементов, заданными в табл. 1, графически определить коллекторный ток транзистора I_{κ} , напряжение U_{κ} . Результаты занести в табл. 2.

4.6. Для рабочей точки определить коэффициент усиления транзистора $h_{212} = \Delta I_{\kappa}/\Delta I_{6}$.

4.7. Собрать схему однокаскадного усилителя на биполярном транзисторе с общим эмиттером. Параметры элементов каскада установить в соответствии с вариантом.

No	Епит, В	R ₁ , кОм	R ₂ , кОм	R _K , OM	R _э , Ом	β
9	15	36	6.2	390	91	120

$$C_1 = 5$$
 мк Φ , $C_2 = 5$ мк Φ , $C_3 = 50$ мк Φ , $C_4 = 1$ н Φ , $R_5 = 2$ к O м.

4.8. С помощью программы OrCad определить рабочий режим транзистора: базовый I_6 и коллекторный I_{κ} ток и напряжения база-эмиттер $U_{\kappa 9}$ и коллектор-эмиттер $U_{\kappa 9}$. Результаты записать в таблицу 2.

Расчет напряжений

$$U_{69} = (U6 - U_9) = (1.759 - 0.92533) = 833.67 \text{ mB}$$

$$U_{\kappa 9} = (U\kappa - U_9) = (11.07 - 1.759) = 9.311 \text{ B}$$

Параметр	I_{κ} , mA	I_{6} , мк A	$U_{\kappa 9}$, B	U бэ, м ${ m B}$
Теоретический расчет	11.071	92.257	9.6665	0.7
Эксперимент п. 4.3	10.087	84.065	9.311	833.989
Эксперимент п. 4.6	10.081	84.04	10.148	833.67

4.9. Снять АЧХ каскада при наличии конденсатора в цепи эмиттера и при его отсутствии. По характеристикам определить коэффициент усиления каскада $K_{u0} = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ и граничные частоты полосы пропускания. Результаты записать в таблицу 3. Сделать вывод.

 $K_{u0} = 10^{(\text{Ku}))/20} = 10^{(42.067)/20} = 126.867$

Таблица 3

	При наличии C_9	При отсутствии C_9	
K_{u0} (расчет)	144.525	3.5864	
K_{u0} (эксперимент)	126.867	3.459	
$f_{\scriptscriptstyle m H}$, Гц	1382.5	17.392	
$f_{\scriptscriptstyle m B}$, к Γ ц	489.357	486.619	

Вывод: По таблице 3 видно, что наличие конденсатора на эмиттере, которые нужен для шунтирования напряжения на сопротивлении эмиттера, сильно влияет на коэффициент усиления каскадного усилителя.