# Arranjos Bidimensionais Introdução

#### Rafael Beserra Gomes

Universidade Federal do Rio Grande do Norte

Material compilado em 20 de março de 2017. Licença desta apresentação:



http://creativecommons.org/licenses/



- Arranjos (array): conjunto de elementos identificáveis por um índice
- Arranjos unidimensionais: vetores (aula anterior)
- Arranjos bidimensionais: matrizes

#### Representações de matrizes:

Matematicamente:

$$M = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{1m} \\ \dots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

os elementos são indexados por dois índice  $(M_{ij})$  e esses começam do índice 1

#### Representações de matrizes:

- Computacionalmente:
  - Em geral há um armazenamento contíguo na memória<sup>1</sup>
  - Os elementos são indexados por dois índices (geralmente m[i][j])
  - O usual é primeiro índice para linha e segundo índice para coluna!
  - Geralmente começam do índice 0

<sup>&</sup>lt;sup>1</sup>Veremos em alocação dinâmica que outras formas são possíveis (₹ ) (₹ ) (₹ ) (₹ ) (₹ )

# Representação de matrizes na memória

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

A matriz M pode ser representada da seguinte forma na memória:

| Endereço   |   |   |   |   |   |   |   |   | valor | tipo          | identificação |
|------------|---|---|---|---|---|---|---|---|-------|---------------|---------------|
| 0xbffff22c | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5     | inteiro curto | valorIndice   |
| 0xbffff22d | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | В     | caractere     | letra1        |
| 0xbffff22e | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | С     | caractere     | letra2        |
| 0xbffff22f | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1     | inteiro curto | M[0][0]       |
| 0xbffff230 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2     | inteiro curto | M[0][1]       |
| 0xbffff231 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3     | inteiro curto | M[0][2]       |
| 0xbffff232 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4     | inteiro curto | M[1][0]       |
| 0xbffff233 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5     | inteiro curto | M[1][1]       |
| 0xbffff234 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 6     | inteiro curto | M[1][2]       |
| 0xbffff235 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 2     | caractere     | letra1        |

### **Aplicações**

Jogos





Jogos



transformações no espaço n-dimensional:



<sup>&</sup>lt;sup>2</sup>By Cmglee - Own work, CC BY-SA 3.0, 



 resolução de outros problemas matemáticos, exemplo: regressão por mínimos quadrados



Regressão linear:

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$

#### imagens digitais



- qualquer conjunto de dados n-dimensionais
  - Exemplo: um conjunto de n coordenadas no plano cartesiano pode ser representada em uma matriz n × 2 ou 2 × n:

ou

#### Matrizes em C

#### Declarando uma matriz em C

#### Opções:

```
1 #include <stdio.h>
2
3 int main() {
4
5    int matriz1[5][8];
6    int m[][4] = {{1, 2, 3, 4}, {6, 7, 8, 9}, {11, 12, 13, 14}};
7
8    return 0;
9 }
```

#### Acesso ao elemento

Basta identificar o elemento usando seus **índices** entre [] (lembre-se de que começa com 0):

```
1 #include <stdio.h>
2
3 int main() {
4
5   int m[][4] = {{1, 2, 3, 4}, {6, 7, 8, 9}, {11, 12, 13, 14}};
6
7   printf("%d\n", m[2][3]);
8
9   return 0;
10 }
```

### Exemplo

#### Implementar o Jogo da Vida (Conway)

- matriz composta por células: 0 (morta) ou 1 (viva)
- células com menos de 2 vizinhos vivos morrem
- células com 2 ou mais vizinhos vivos sobrevivem
- células com mais de 3 vizinhos morrem
- células mortas com exatamente 3 vizinhos vivos renascem