Supervised Classification

[CLASSIFICATION]

Introduction

•00000000

[CLASSIFICATION]

Introduction

•00000000

What is a classification problem?

► The goal of classification is to understand why an observation belongs to a certain category

[CLASSIFICATION]

Introduction

•00000000

- ► The goal of classification is to understand why an observation belongs to a certain category
- ▶ The interest is on y that takes discrete values: 0/1, high school/prilmary school/no education; urban/rural

•00000000

- ► The goal of classification is to understand why an observation belongs to a certain category
- ▶ The interest is on y that takes discrete values: 0/1, high school/prilmary school/no education; urban/rural
- ightharpoonup There may be variables explaining why we observe that ybelongs to a particular category

•00000000

[CLASSIFICATION]

- ► The goal of classification is to understand why an observation belongs to a certain category
- ▶ The interest is on y that takes discrete values: 0/1, high school/prilmary school/no education; urban/rural
- ightharpoonup There may be variables explaining why we observe that ybelongs to a particular category
- ► A classifier is a tool that provides a classification for *y*

00000000

00000000

[SUPERVISED *vs* UNSUPERVISED CLASSIFICATION]

► In **supervised** classification, we observe the class for *y*

00000000

[SUPERVISED *vs* UNSUPERVISED CLASSIFICATION]

► In **supervised** classification, we observe the class for *y* One may learn from that information and estimate the impact of other variables on that classification (*e.g.* logit regression)

00000000

- ightharpoonup In **supervised** classification, we observe the class for ν One may learn from that information and estimate the impact of other variables on that classification (e.g. logit regression)
- ▶ In **unsupervised** classification, we observe a set of variables for each observation

00000000

- ightharpoonup In **supervised** classification, we observe the class for ν One may learn from that information and estimate the impact of other variables on that classification (e.g. logit regression)
- ▶ In **unsupervised** classification, we observe a set of variables for each observation The goal is to classify observations from those variables (clustering) without having any information of what a category means.

00000000

- ightharpoonup In **supervised** classification, we observe the class for ν One may learn from that information and estimate the impact of other variables on that classification (e.g. logit regression)
- ▶ In **unsupervised** classification, we observe a set of variables for each observation The goal is to classify observations from those variables (clustering) without having any information of what a category means.

- ▶ In **supervised** classification, we observe the class for *y* One may learn from that information and estimate the impact of other variables on that classification (*e.g.* logit regression)
- ▶ In unsupervised classification, we observe a set of variables for each observation
 The goal is to classify observations from those variables (clustering) without having any information of what a category means.
- ► We'll focus on **supervised** classification

00000000

[CLASSIFICATION: AN EXAMPLE]

00000000

[CLASSIFICATION: AN EXAMPLE]

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): *Education*.

00000000

[CLASSIFICATION: AN EXAMPLE]

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): Education.

000000000

[CLASSIFICATION: AN EXAMPLE]

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): *Education*.

► A classifier determines the value of *Education* that separate "Rural" from "Urban", typically with a threshold rule: "if $x \ge x_t$ then y is categorized as Urban"

000000000

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► You observe households that are either in *Urban* or *Rural* areas (colors) and two variables (features): Education and Income

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► You observe households that are either in *Urban* or *Rural* areas (colors) and two variables (features): Education and Income

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► A classifier will determine a **boundary** using both Education and Income to separate "Rural" from "Urban"

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

- ► A classifier will determine a **boundary** using both Education and Income to separate "Rural" from "Urban"
- ► The rule can be based on a linear relationship between Education and Income or can be non linear.

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

[CLASSIFICATION: A 2-D EXAMPLE]

Introduction

000000000

► The logit is an example of linear classifier

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► The logit is an example of linear classifier

000000000

Best classifier

► The logit is an example of linear classifier

▶ The rule that separated the two classes is $x'\beta \ge T_0$ with T_0 a known threshold

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► The logit is an example of linear classifier

- ► The rule that separated the two classes is $x'\beta \ge T_0$ with T_0 a known threshold
 - e.g. $\beta_1 Education + \beta_2 Income \geq T_0$

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

[CLASSIFICATION: A 2-D EXAMPLE]

Introduction

000000000

► The quadratic logit is an example of non-linear classifier

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► The quadratic logit is an example of non-linear classifier

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► The quadratic logit is an example of non-linear classifier

► The rule that separated the two classes is non linear in the variables *Education* and *Income*

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

[CLASSIFICATION: A 2-D EXAMPLE]

Introduction

000000000

► Other examples can be very non linear

wrap-up

[CLASSIFICATION: A 2-D EXAMPLE]

► Other examples can be very non linear

000000000

Best classifier

► Other examples can be very non linear

▶ It is hard to understand how the two classes are built using Education and Income

00000000

[CLASSIFICATION: A 2-D EXAMPLE]

[CLASSIFICATION: A 2-D EXAMPLE]

Introduction

00000000

► Other examples can be very non linear

00000000

[CLASSIFICATION: A 2-D EXAMPLE]

► Other examples can be very non linear

00000000

[CLASSIFICATION: A 2-D EXAMPLE]

► Other examples can be very non linear

► The boundary is very complex but uses *Education* and *Income* features.

[HOW TO SELECT THE RIGHT MODEL?]

Best classifier

[HOW TO SELECT THE RIGHT MODEL?]

► What is the goal?

[HOW TO SELECT THE RIGHT MODEL?]

► What is the goal?

Have the "best'" classification

Best classifier

[How to select the right model?]

► What is the goal? Have the "best" classification

Introduction

→ Need for a criterion to determine what is a good classifier

[HOW TO SELECT THE RIGHT MODEL?]

- ► What is the goal? Have the "best" classification
- → Need for a criterion to determine what is a good classifier
- ► Measures of fit in classification are different and specific

[MEASURES OF FIT IN CLASSIFICATION]

There are several popular measures of fit, differing in their spirit and their goal

There are several popular measures of fit, differing in their spirit and their goal

► Accuracy

There are several popular measures of fit, differing in their spirit and their goal

► Accuracy

Introduction

► Confusion matrix

There are several popular measures of fit, differing in their spirit and their goal

Accuracy

- ► Confusion matrix
- ► Specificty & sensitivity

There are several popular measures of fit, differing in their spirit and their goal

► Accuracy

- ► Confusion matrix
- ► Specificty & sensitivity
- Kappa

There are several popular measures of fit, differing in their spirit and their goal

► Accuracy

- ► Confusion matrix
- ► Specificty & sensitivity
- ► Kappa

There are several popular measures of fit, differing in their spirit and their goal

Accuracy

Introduction

- ► Confusion matrix
- ► Specificty & sensitivity
- ► Kappa

All answer to different questions and solve different problems

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

▶ where $\widehat{f}(\cdot)$ is the classifier.

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

- where $\widehat{f}(\cdot)$ is the classifier.
- \hookrightarrow We want the maximum possible accuracy.

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

- \blacktriangleright where $\widehat{f}(\cdot)$ is the classifier.
- \hookrightarrow We want the maximum possible accuracy.
- ▶ Equivalently, we may want to minimize the *error rate* or misclassification rate

$$\Pr\left[y_0 \neq \widehat{f}(x_0)\right]$$

[CONFUSION MATRIX & ACCURACY]

A classifier predicts in which class each observation should be:

[CONFUSION MATRIX & ACCURACY]

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Positive)	(True Negative)	

Table: Confusion Matrix

[CONFUSION MATRIX & ACCURACY]

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Positive)	(True Negative)	

Table: Confusion Matrix

► Accuracy is then the ratio:

$$Acuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{TruePositives + TrueNegatives}{N}$$

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Positive)	(True Negative)	

Table: Confusion Matrix

► Accuracy is then the ratio:

$$Acuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{TruePositives + TrueNegatives}{N}$$

► It is the proportion of accurate predictions

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

wrap-up

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

Introduction

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► Remember that here *Urban* is the "positive" class

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

- ▶ Remember that here *Urban* is the "positive" class
- ► Accuracy is then the ratio:

$$Acuracy = \frac{87 + 69}{87 + 69 + 28 + 24}$$
$$= \frac{156}{208} = 0.75$$

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

- ▶ Remember that here *Urban* is the "positive" class
- ► Accuracy is then the ratio:

$$Acuracy = \frac{87 + 69}{87 + 69 + 28 + 24}$$
$$= \frac{156}{208} = 0.75$$

▶ We have an accurate prediction in 75% of the cases.

Introduction

Accuracy is not the panacea and may be misleading

Pb 1: Imagine a data set where 95% of the observations are in class 1 and 5% in the remaining class

[CONFUSION MATRIX & ACCURACY]

- **Pb 1**: Imagine a data set where 95% of the observations are in class 1 and 5% in the remaining class
 - \hookrightarrow A classifier that predicts always class 1 will have an accuracy of 95%!

- **Pb 1**: Imagine a data set where 95% of the observations are in class 1 and 5% in the remaining class
 - \hookrightarrow A classifier that predicts always class 1 will have an accuracy of 95%!
 - Accuracy is not very useful with an imbalanced data set and one may prefer another indicator: kappa

- **Pb 1**: Imagine a data set where 95% of the observations are in class 1 and 5% in the remaining class
 - \hookrightarrow A classifier that predicts always class 1 will have an accuracy of 95%!
 - Accuracy is not very useful with an imbalanced data set and one may prefer another indicator: kappa
- **Pb 2**: One may be more interested in correctly predicting a particular outcome

- **Pb 1**: Imagine a data set where 95% of the observations are in class 1 and 5% in the remaining class
 - \hookrightarrow A classifier that predicts always class 1 will have an accuracy of 95%!
 - Accuracy is not very useful with an imbalanced data set and one may prefer another indicator: kappa
- **Pb 2**: One may be more interested in correctly predicting a particular outcome
 - \hookrightarrow This is often the case

- **Pb 1**: Imagine a data set where 95% of the observations are in class 1 and 5% in the remaining class
 - \hookrightarrow A classifier that predicts always class 1 will have an accuracy of 95%!
 - Accuracy is not very useful with an imbalanced data set and one may prefer another indicator: *kappa*
- **Pb 2**: One may be more interested in correctly predicting a particular outcome
 - \hookrightarrow This is often the case
 - ▶ One may need other measures, such as *Specificity* or Sensitivity

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

[SENSITIVITY OR True Positive Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► *Sensitivity* focuses on "positives" (here *Urban*), *i.e.* on predicted positives vs the observed positives

Sensitivity =
$$\frac{TP}{TP + FN}$$

= $\frac{87}{87 + 24}$ = 0.78

[SENSITIVITY OR True Positive Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► *Sensitivity* focuses on "positives" (here *Urban*), *i.e.* on predicted positives vs the observed positives

Sensitivity =
$$\frac{TP}{TP + FN}$$

= $\frac{87}{87 + 24}$ = 0.78

▶ On *Urban*, we correctly predict in 78% of the cases

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
1 Tealclea	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► Sensitivity focuses on negatives (Rural), i.e. on predicted positives vs the observed positives

Specificity =
$$\frac{TN}{TN + FP}$$

= $\frac{69}{69 + 28} = 0.71$

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► Sensitivity focuses on negatives (Rural), i.e. on predicted positives vs the observed positives

Specificity =
$$\frac{TN}{TN + FP}$$

= $\frac{69}{69 + 28} = 0.71$

▶ On *Rural*, we predict correctly in **only** 71% of the cases

[CONFUSION MATRIX & KAPPA (κ)]

Introduction

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the current classifier accuracy which is compared here with the accuracy of an uniformed classifier P_e

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the current classifier accuracy which is compared here with the accuracy of an uniformed classifier P_e

 P_e is the accuracy of a classifier that would operate purely by chance, using no information.

[CONFUSION MATRIX & KAPPA (κ)]

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the current classifier accuracy which is compared here with the accuracy of an uniformed classifier P_e

 P_{e} is the accuracy of a classifier that would operate purely by chance, using no information.

 $ightharpoonup P_o$ is simple (here = 0.75) while P_e is more complex to compute.

[CONFUSION MATRIX & KAPPA (κ)]

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the current classifier accuracy which is compared here with the accuracy of an uniformed classifier P_e

 P_{e} is the accuracy of a classifier that would operate purely by chance, using no information.

- $ightharpoonup P_o$ is simple (here = 0.75) while P_e is more complex to compute.
- ightharpoonup The larger κ is, the better the model for a given distribution of classes in a data set

[LOGIT AS YOU KNOW IT]

Introduction

[LOGIT AS YOU KNOW IT]

Introduction

When dealing with a discrete outcome *y* we cannot use a *direct* linear relationship between *y* and the explanatory variables *x* (*i.e. Education, Income*)

Logit

•00000000

When dealing with a discrete outcome *y* we cannot use a *direct* linear relationship between *y* and the explanatory variables *x* (*i.e. Education, Income*)

Logit

•00000000

Logit aims at estimating the probabilities $\pi = Probablity[y = 1]$, which are continuous ($\in [0, 1]$)

[LOGIT AS YOU KNOW IT]

Introduction

When dealing with a discrete outcome y we cannot use a *direct* linear relationship between y and the explanatory variables *x* (*i.e.* Education, Income)

- ► Logit aims at estimating the probabilities $\pi = Probablity[y = 1]$, which are continuous ($\in [0, 1]$)
- ► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

[LOGIT AS YOU KNOW IT]

When dealing with a discrete outcome *y* we cannot use a *direct* linear relationship between *y* and the explanatory variables *x* (*i.e. Education, Income*)

- Logit aims at estimating the probabilities $\pi = Probablity[y = 1]$, which are continuous ($\in [0, 1]$)
- ► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

► This can be transformed into:

$$\pi = \frac{exp(-x'\beta)}{1 + exp(-x'\beta)}$$

wrap-up

[LOGIT AS YOU **DON'T** KNOW IT]

Introduction

[LOGIT AS YOU **DON'T** KNOW IT]

From this equation

Introduction

$$\pi = \frac{exp(-x'\beta)}{1 + exp(-x'\beta)}$$

Logit

00000000

From this equation

Introduction

$$\pi = \frac{exp(-x'\beta)}{1 + exp(-x'\beta)}$$

Logit

00000000

one gets the linear nature of the logit:

$$log(\frac{\pi}{1-\pi}) = x'\beta$$

[Logit as You **Don't** know it]

From this equation

Introduction

$$\pi = \frac{exp(-x'\beta)}{1 + exp(-x'\beta)}$$

one gets the **linear** nature of the logit:

$$log(\frac{\pi}{1-\pi}) = x'\beta$$

where $\frac{\pi}{1-\pi}$ is the odd ratio $\in [0,\infty]$ with values indicating high or low probability that y=1

[LOGIT AS YOU **DON'T** KNOW IT]

From this equation

$$\pi = \frac{exp(-x'\beta)}{1 + exp(-x'\beta)}$$

Logit

one gets the **linear** nature of the logit:

$$log(\frac{\pi}{1-\pi}) = x'\beta$$

where $\frac{\pi}{1-\pi}$ is the odd ratio $\in [0,\infty]$ with values indicating high or low probability that y = 1

 \hookrightarrow "The logit models log of odd ratios as linear in x"

Introduction

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

Logit

Introduction

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

Logit

00000000

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Introduction

▶ Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a threshold provability, by default 1/2.

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

Logit

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a threshold provability, by default 1/2.

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

Logit

00000000

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a threshold provability, by default 1/2.

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

► If $t_0 \neq 1/2$:

$$x_i'\widehat{\beta} > T_0 \Leftrightarrow \widehat{y}_i = 1$$

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a threshold provability, by default 1/2.

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

► If $t_0 \neq 1/2$:

$$x_i'\widehat{\beta} > T_0 \Leftrightarrow \widehat{y}_i = 1$$

→ The logit classifier depends on the linear combination of the x's

[IMPORTANCE OF THE THRESHOLD]

[IMPORTANCE OF THE THRESHOLD]

▶ The rule $x'\beta \ge T_0$ defines the partition of the space

Logit

000000000

[IMPORTANCE OF THE THRESHOLD]

▶ The rule $x'\beta \ge T_0$ defines the partition of the space

[IMPORTANCE OF THE THRESHOLD]

▶ The rule $x'\beta \ge T_0$ defines the partition of the space

► This partition is sensitive to the choice of the threshold T_0 (and the t_0)

[IMPORTANCE OF THE THRESHOLD]

Introduction

[IMPORTANCE OF THE THRESHOLD]

 \blacktriangleright Changing t_0 will change the predictions & the classification

Logit

000000000

[IMPORTANCE OF THE THRESHOLD]

 \blacktriangleright Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y = 1category (Urban)

[IMPORTANCE OF THE THRESHOLD]

 \blacktriangleright Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y = 1category (Urban)

Logit

000000000

A lower t_0 will allocate more observations to the y = 1category

[IMPORTANCE OF THE THRESHOLD]

 \triangleright Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y=1category (Urban)

Logit

000000000

- A lower t_0 will allocate more observations to the y=1category
- ightharpoonup The choice of t_0 should be done according to the data and observed classes repartition

[IMPORTANCE OF THE THRESHOLD]

- \triangleright Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y=1category (Urban)
 - A lower t_0 will allocate more observations to the y=1category
- ightharpoonup The choice of t_0 should be done according to the data and observed classes repartition
- ightharpoonup Specificity and Sensitivity are affected by t_0

Introduction

► We want the *Specificity* and *Sensitivity* to be both **maximized** (ideally both would be 1)

- ► We want the *Specificity* and *Sensitivity* to be both maximized (ideally both would be 1)
- ► The ROC curve help visualize the best choice

- ► We want the *Specificity* and *Sensitivity* to be both maximized (ideally both would be 1)
- ► The ROC curve help visualize the best choice *Be careful of the axes*

wrap-up

[THE ROC CURVE]

- ► We want the *Specificity* and *Sensitivity* to be both **maximized** (ideally both would be 1)
- ► The ROC curve help visualize the best choice Be careful of the axes

Þ

The ROC represents values of 1- Specificity = FPR vsSensitivity = TPR for many values of the threshold t_0

The ROC represents values of 1- Specificity = FPR vsSensitivity = TPR for many values of the threshold t_0

Introduction

The ROC represents values of 1- Specificity = FPR vsSensitivity = TPR for many values of the threshold t_0

 \blacktriangleright (sometimes x is sensitivity with inverted x-axis)

Logit

000000000

[THE ROC CURVE: HOW TO READ?]

[THE ROC CURVE: HOW TO READ?]

Changing t_0 changes the classification of observations

[THE ROC CURVE: HOW TO READ?]

Changing t_0 changes the classification of observations

► Optimally, the curve should touch top-left corner

[THE ROC CURVE: HOW TO READ?]

Changing t_0 changes the classification of observations

► Optimally, the curve should touch top-left corner

[THE ROC CURVE: HOW TO READ?]

Changing t_0 changes the classification of observations

Optimally, the curve should touch top-left corner

▶ If t_0 \nearrow , more cases classified as *Negatives*, less *Positives*

[THE ROC CURVE: HOW TO READ?]

Changing t_0 changes the classification of observations

► Optimally, the curve should touch top-left corner

- ▶ If t_0 \nearrow , more cases classified as *Negatives*, less *Positives*
- ▶ If t_0 \nearrow , specificity \nearrow and sensitivity \searrow

[AUC AS A MEASURE OF FIT]

wrap-up

[Train & Validation set]

wrap-up

[CV ON MEASURES OF FIT]

[MODEL COMPARISON]

► In classification, the **Confusion matrix** is important

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - ► Sensitivity is accuracy restricted to the positives.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - ► Sensitivity is accuracy restricted to the positives.
 - ► Specificity is accuracy restricted to the negatives.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - ► Sensitivity is accuracy restricted to the positives.
 - ► Specificity is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - ► Specificity is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► Sensitivity is accuracy restricted to the positives.
 - ► Specificity is accuracy restricted to the negatives.
- ► When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.
- ▶ **Logit** is a benchmark parametric model for classification

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - ► Specificity is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.
- ▶ **Logit** is a benchmark parametric model for classification One may use the **ROC** to change the threshold parameter

wrap-up o●

[TAKEWAYS]

Introduction

Use Training-Validation set to select parameters within a model

- ► Use Training-Validation set to **select** parameters within a model
- ► Use Training-Validation set to **compare** models on the same criteria

- ► Use Training-Validation set to **select** parameters within a model
- ► Use Training-Validation set to **compare** models on the same criteria
- Several criteria / measures of fit / cost functions are available

- ► Use Training-Validation set to **select** parameters within a model
- ► Use Training-Validation set to **compare** models on the same criteria
- ➤ Several criteria / measures of fit / cost functions are available
- ► Time is the limit...