1 Sprzężenie zwrotne

Struktura jak na rys 1.1 nazywa się sprzężeniem zwrotnym. Ze względu na to, że w(t) = u(t) - y(t), mówimy, że sprzężenie jest ujemne. Dla w(t) = u(t) + y(t) sprzężenie byłoby dodatnie.

Rys. 1.1: System ze sprzężeniem zwrotnym.

O sytuacji jak na rys. 1.2, mówimy, że pętla sprzężenia zaostała otwarta. Sygnał wejściowy u(t) pokonuje transmitancję K(s) i na wyjściu pokazuje się sygnał y(t). Zatem K(s) jest transmitancją systemu otwartego. Przyjmujemy przy tym, że

$$K(s) = \frac{L(s)}{M(s)},$$

gdzie L(s) i M(s) są wielomianami.

Rys. 1.2: Otwarta pętla sprzężenia zwrotnego.

Aby wyznaczyć transmitancję

$$K_Z(s) = \frac{Y(s)}{U(s)}$$

systemu zamkniętego, zauważamy, że

$$\begin{cases} Y(s) = K(s)W(s) \\ W(s) = U(s) - Y(s), \end{cases}$$

dzięki czemu

$$K_{Z}(s) = \frac{K(s)}{1 + K(s)} = \frac{\frac{L(s)}{M(s)}}{1 + \frac{L(s)}{M(s)}}$$
$$= \frac{L(s)}{L(s) + M(s)}.$$
 (1.1)

Zgodnie z przyjętą wcześniej konwencją

$$K_Z(s) = \frac{L_Z(s)}{M_Z(s)},$$

skąd wynika

Własność 1.1 Wielomianem charakterystycznym systemu zamkniętego jest

$$M_Z(s) = L(s) + M(s).$$

Przykład 1.1 Dla transmitancji systemu otwartego

$$K(s) = \frac{5s+6}{s^3+2s^2+3s+4}$$

transmitancją układu zamkniętego jest

$$K_Z(s) = \frac{5s+6}{(s^3+2s^2+3s+4)+(5s+6)}$$
$$= \frac{5s+6}{s^3+2s^2+8s+10}.$$

2 Stabilność

Stabilność systemu zamkniętego zależy od pierwiastków jego równania charakterystycznego

$$L(s) + M(s) = 0,$$

czyli biegunów jego transmitancji $K_Z(s)$. Jest on stabilny wtedy i tylko wtedy, gdy leżą one w lewej półpłaszczyźnie. Aby stwierdzić, czy fakt ten ma miejsce można zastosować dowolne ze znanych nam kryteriów, czyli

- twierdzenie o znaku współczynników,
- kryterium Hurwitza,
- kryterium Michajłowa

co pokażemy na przykładach.

Przykład 2.1 (znak współczynników) System otwarty ma transmitancję

$$K(s) = \frac{s - 2}{(s + 1)^3}.$$

Z Własności 1.1 wynika, że wielomianem charakterystycznym systemu zamkniętego jest

$$M_Z(s) = (s+1)^3 + (s-2) = s^3 + 3s^2 + 4s - 1.$$

Ponieważ jego współczynniki są różnych znaków, z twierdzenia o znaku współczynników wynika, że system zamknięty jest niestabilny.

Przykład 2.2 (kryterium Hurwitza) Transmitacją układu otwartego jest

$$K(s) = \frac{1}{s^3 + 2s^2 + 3s + 4}$$

Wielomianem charakterystycznym układu zamkniętego jest zatem

$$M_Z(s) = (s^3 + 2s^2 + 3s + 4) + 1 = s^3 + 2s^2 + 3s + 5,$$

skąd wynika, że

$$\mathbf{H}_3 = \left[egin{array}{ccc} 2 & 5 & 0 \ 1 & 3 & 0 \ 0 & 2 & 5 \end{array}
ight], \mathbf{H}_2 = \left[egin{array}{ccc} 2 & 5 \ 1 & 3 \end{array}
ight], \mathbf{H}_1 = [2] \, .$$

System zamknięty stabilny, bowiem $\Delta_1 = 2 > 0$, $\Delta_2 = 1 > 0$, $\Delta_3 = 5 > 0$.

Przykład 2.3 (kryterium Hurwitza) Transmitancją układu otwartego jest

$$K(s) = \frac{3}{s^3 + 2s^2 + 3s + 4}.$$

Wielomian charakterystyczny układu zamkniętego, to

$$M_Z(s) = s^3 + 2s^2 + 3s + 7.$$

Zatem

$$\mathbf{H}_{3} = \left[egin{array}{ccc} 2 & 7 & 0 \\ 1 & 3 & 0 \\ 0 & 2 & 7 \end{array}
ight], \mathbf{H}_{2} = \left[egin{array}{ccc} 2 & 7 \\ 1 & 3 \end{array}
ight], \mathbf{H}_{1} = \left[2 \right],$$

czyli $\Delta_1 = 2 > 0$, $\Delta_2 = -1 < 0$, $\Delta_3 = -7 < 0$. System zamknięty jest niestabilny.

Przykład 2.4 (kryterium Michajłowa) Dla systemu jak w Przykładzie 2.2,

$$M_Z(j\omega) = (-2\omega^2 + 5) + j(-\omega^3 + 3\omega).$$

Wykres Michajłowa pokazany jest na rys. 2.1. Ponieważ

$$\Delta \arg_{0 \le \omega < \infty} M_Z(j\omega) = 3\frac{\pi}{2},$$

system zamknięty jest stabilny.

Rys. 2.1: Wykres Michajłowa $M_Z(j\omega)$, Przykład 2.4.

Przykład 2.5 (kryterium Michajłowa) Dla systemu z Przykładu 2.3,

$$M_Z(j\omega) = (-2\omega^2 + 7) + j(-\omega^3 + 3\omega).$$

Z wykresu Michajłowa, rys. 2.2, wynika, że

$$\Delta \arg_{0 \le \omega < \infty} M_Z(j\omega) = -\frac{\pi}{2} \ne 3\frac{\pi}{2}.$$

System zamknięty jest niestabilny.

Rys. 2.2: Wykres Michajłowa, Przykład 2.5.

3 Kryterium Nyquista

Kryterium Nyquista, które teraz omówimy, zostało opracowane specjalnie dla systemu z ujemnym sprzężeniem zwrotnym. Podamy je dla dwóch odrębnych przypadków. W pierwszym system otwarty jest stabilny, w drugim oprócz stabilnych ma jeden biegun w punkcie s=0, czyli ma charakter całkujący.

W kryterium tym sporządza się wykres Nyquista, rys. 3.1, na którym przedstawiona jest

- charakterystyka amlitudowo-fazowa systemu otwartego, czyli wykres funkcji $K(j\omega)$ dla $\omega \in [0, \infty)$,
- oraz zaznaczony jest punkt (-1, j0).

Rys. 3.1: Przykładowy wykres Nyquista.

O stabilności układu zamkniętego wnioskuje się na podstawie usytuowania charakterystyki względem wspomnianego punktu.

Przypominamy jeszcze, że $M(s) = a_m s^m + \cdots + a_1 s + a_0$ i zakładamy, że

$$a_m > 0$$
 oraz $l < m$,

gdzie l jest stopniem wielomianu L(s).

W omawianym kryterium zasadniczą rolę odgrywa pojęcie przyrostu argumentu, który np., w odniesieniu do wielomianu $G(j\omega)$, definiujemy jak poniżej:

$$\Delta \underset{0 < \omega < \infty}{\operatorname{arg}} G(j\omega) = \lim_{\omega \to \infty} \operatorname{arg} G(j\omega) - \operatorname{arg} G(j0).$$

Zauważmy przy tym, że nie ma ono zastosowania w sytuacji, w której G(s) ma pierwiastek urojony. W powyższej definicji i dalszych rozważanich nawiązujemy do argumentacji stosowanej przy omawianiu kryterium Michajłowa.

Lemat 3.1 System zamknięty ma biegun na osi liczb urojonych wtedy i tylko wtedy, gdy istnieje rozwiązanie równania

$$1 + K(j\omega) = 0.$$

Dowód. Ponieważ

$$1 + K(s) = 1 + \frac{L(s)}{M(s)} = \frac{L(s) + M(s)}{M(s)},$$
 (3.1)

zatem pierwiastki równania charakterystycznego systemu zamkniętego L(s)+M(s)=0, czyli jego bieguny, są takie same jak równania 1+K(s)=0. Zatem ten sam pierwiatek urojony mają obydwa równania, co kończy dowód. \square

Lemat 3.2 Załóżmy, że system zamknięty nie ma żadnego bieguna na osi liczb urojonych. System zamknięty nie ma ponadto żadnego bieguna w prawej półpłaszczyźnie wtedy i tylko wtedy, gdy

$$\Delta \arg_{0 \leq \omega < \infty} \left[1 + K(j\omega) \right] = m \frac{\pi}{2} - \Delta \arg_{0 \leq \omega < \infty} M(j\omega).$$

Dowód. Z (3.1) wynika, że

$$\Delta \arg_{0 \le \omega \le \infty} [1 + K(j\omega)]$$

$$= \Delta \arg_{0 \le \omega \le \infty} \left[L(j\omega) + M(j\omega) \right] - \Delta \arg_{0 \le \omega \le \infty} M(j\omega).$$

Wartość $\Delta \arg_{0 \leq \omega < \infty} [L(j\omega) + M(j\omega)]$ jest poprawnie określona, bowiem na mocy założenia wielomian L(s) + M(s), jako wielomian charakterystyczny systemu zamkniętego, nie pierwiastka urojonego. Z kryterium Michajłowa wynika zatem, że system zamknięty nie ma bieguna w prawej półpłaszczyźnie wtedy i tylko wtedy, gdy

$$\Delta \arg_{0 \le \omega < \infty} \left[L(j\omega) + M(j\omega) \right] = m \frac{\pi}{2},$$

a to dlatego ponieważ m jest stopniem wielomianu L(s) + M(s), co kończy dowód.

3.1 System otwarty stabilny

Zakładamy teraz, że system otwarty jest stabilny. Z Lematów 3.1 i 3.1 wynika

Twierdzenie 3.1 (kryterium Nyquista) Załóżmy, że system otwarty jest stabilny. System zamknięty jest stabilny wtedy i tyko wtedy, gdy

$$1 + K(j\omega) \neq 0$$
 dla wszystkich $\omega \in [0, \infty),$ (3.2)

$$\Delta \arg_{0 \le \omega \le \infty} \left[1 + K(j\omega) \right] = 0. \tag{3.3}$$

Dowód. Z Lematu 3.1 wynika, że (3.2) jest równoważne temu, że system zamknięty nie ma bieguna na osi liczb urojonych. Można zatem zastosować Lemat 3.2.

Stabilność systemu otwartego jest równoznaczna równości

$$\Delta \arg_{0 \le \omega < \infty} M(j\omega) = \frac{\pi}{2},$$

co, dzięki Lematowi 3.2, jest równoznaczne brakowi biegunów w prawej półpłaszczyźnie. Teza została w ten sposób udowodniona. $\hfill\Box$

Kryterium polega na badaniu wykresu Nyquista, czyli wzajemnego usytuowania charakterystyki amplitudowofazowej systemu otwartego i punktu (-1,j0). Możliwe są trzy sytuacje przedstawione na rys. 3.2. Wykresy zaczynają się oczywiście w punkcie K(0), przy czym dla każdego z nich K(0)>0. Dla K(0)<0 analiza i wnioski są podobne.

Zaczniemy od sytuacji (a), z którą powiązany jest warunek (3.2), a raczej jego negacja. Jej istotą jest bowiem to, że wykres Nyquista, czyli wykres $K(j\omega)$, przechodzi przez punkt (-1,j0). System zamknięty jest więc niestabilny.

Rys. 3.2: Możliwe usytuowania charakterystyki amplitudowo-fazowej $K(j\omega)$ układu otwartego względem punktu $(-1,j0),\,K(0)>0.$

W sytuacjach (b) i (c) należy ustalić wartość $\Delta \arg_{0 \leq \omega < \infty} \left[1 + K(j\omega) \right]$. Do (b) odnosi się bezpośrednio rys. 3.3. Wektor zaznaczony na nim jako $1 + K(j\omega)$ jest de facto wektorem $1 + K(j\omega)$ przesuniętym równolegle w lewo o 1. Nas interesuje $\arg_{0 \leq \omega < \infty} [1 + K(j\omega)]$, który to kąt nie ulega zmianie przy tym przesunięciu. Dzięki temu w sytuacji jak na rysunku łatwo ustalić, że

$$\Delta \arg_{0 \le \omega \le \infty} \left[1 + K(j\omega) \right] = -2\pi \ne 0,$$

co oznacza niestabilność. W sytuacji (c), natomiast,

$$\Delta \arg_{0 < \omega < \infty} \left[1 + K(j\omega) \right] = 0,$$

skąd wynika, że system jest stabilny.

Dzięki temu, w formie uwagi, podamy teraz geometryczną wersję kryterium.

Rys. 3.3: Wykres Nyquista. Charakterystyka amplitudowofazowa $K(j\omega)$ układu otwartego nie przechodzi przez punkt (-1, j0).

Uwaga 3.1 Załóżmy, że system otwarty jest stabilny. System zamknięty jest stabilny wtedy i tyko wtedy, gdy charakterystyka amplitudowo-fazowa systemu otwartego

- $nie \ przechodzi \ przez \ punkt \ (-1, j0)$
- ani go nie obejmuje.

Przykład 3.1 System otwarty o transmitancji $K(s) = 5/(s+1)^3$ jest oczywiście stabilny. Na rys. 3.4 przedstawiono jego charakterystykę amplitudowo-fazową oraz, w powiększeniu, jej fragment w pobliżu punktu (-1, j0). Nie obejmuje ona punktu (-1, j0), system zamknięty jest stabilny.

Rys. 3.4: Wykres Nyquista, (fragment w powiększeniu), Przykład 3.1.

Przykład 3.2 Niech teraz $K(s) = 15/(s+1)^3$. Ponieważ

$$\Delta \arg_{0 \le \omega < \infty} [1 + K(j\omega)] = -2\pi \ne 0,$$

system zamknięty nie jest więc stabilny.

Rys. 3.5: Wykres Nyquista, Przykład 3.2.

3.2 System otwarty ma element całkujący

Załóżmy teraz, że oprócz biegunów stabilnych, system otwarty ma jeden biegun, powiedzmy s_1 , w punkcie 0. Oznacza to, że wielomian M(s) ma jeden pierwiastek $s_1 = 0$, a pozostałe w lewej półpłaszczyźnie. Jest oczywiste, że system otwarty nie jest stabilny, zawiera on bowiem element całkujący.

Ponieważ

$$\Delta \arg_{0 \le \omega \le \infty} (s_1 - j\omega) = 0,$$

zatem argumentując jak w dowodzie kryterium Michajłowa, otrzymujemy

$$\Delta \arg_{0 \le \omega < \infty} M(j\omega) = (m-1)\frac{\pi}{2}.$$

Lematów 3.1 i 3.2 wynika więc, że warunkiem stabilności systemu zamkniętego jest

$$\Delta \arg_{0 \leq \omega < \infty} \left[1 + K(j\omega) \right] = m \frac{\pi}{2} - (m-1) \frac{\pi}{2} = \frac{\pi}{2},$$

skąd wynika poniższa wersja kryterium Nyquista:

Twierdzenie 3.2 (kryterium Nyquista) Załóżmy, że system otwarty ma jeden biegun w punkcie s=0 i pozostałe stabilne. System zamknięty jest stabilny wtedy i tylko wtedy, gdy

$$1 + K(j\omega) \neq 0$$
 dla wszystkich $\omega \in [0, \infty)$,

$$\Delta \arg_{0 \le \omega < \infty} \left[1 + K(j\omega) \right] = \frac{\pi}{2}.$$

Geometryczna forma kryterium ma postać jak poniżej:

Uwaga 3.2 Załóżmy, że system otwarty ma jeden biegun w punkcie s=0 i pozostałe stabilne. System zamknięty jest stabilny wtedy i tyko wtedy, gdy charakterystyka amplitudowo-fazowa systemu otwartego

- nie przechodzi przez punkt (-1, j0)
- ani go nie obejmuje.

Przykład 3.3 Niech $K(s) = 1/s(s+1)^3$ Transmitancja systemu otwartego ma zatem jeden biegun w punkcie s=0, a pozostałe w lewej półpłaszczyźnie. Ponieważ z rys. 3.6 wynika, że

$$\Delta \arg_{0<\omega<\infty}[1+K(j\omega)]=\frac{\pi}{2}.$$

System zamknięty więc jest stabilny.

Rys. 3.6: Charakterystyka amplitudowo-fazowa układu otwartego (fragment w powiększeniu), Przykład 3.3.

Przykład 3.4 Niech $K(s) = 4/s(s+1)^3$. System zamknięty jest niestabilny, ponieważ z rys. 3.7 wynika, że

$$\Delta \arg_{0<\omega<\infty}[1+K(j\omega)] = \frac{3}{2}\pi \neq \frac{\pi}{2}.$$

Rys. 3.7: Charakterystyka amplitudowo-fazowa układu otwartego, Przykład 3.4.

4 Podsumowanie

Kryterium Nyquista służy do badania stabilności systemów z ujemnym sprzężeniem zwrotnym. O stabilności decyduje położenie punktu (-1,j0) względem charakterystyki amplitudowo-fazowej systemu otwartego. Podaje ono warunek, który jest jednocześnie konieczny i wystarczający. Spełnienie warunku jest równoznaczne stabilności, brak spełnienia jest równoznaczny z niestabilnością. Jego geometryczną wersją może być stwierdzenie jak poniżej:

system zamknięty jest stabilny wtedy i tylko wtedy, gdy charakterystyka amplitudowo-fazowa systemu otwartego nie przechodzi przez punkt (-1, j0) ani go nie obejmuje.