Answer to Question 6 (Dr Forster's 'Nice' Structured Proof Exercises)

James Baker (jeb200)

April 4, 2013

1	$\forall x. \exists y. R(x,y)$	Assumption
2	actual sk_1	Assumption
3	$\exists y. R(sk_1,y)$	\forall – Elimination $(1,2)$
4	actual $sk_2, R(sk_1, sk_2)$	Assumptions
5	actual sk_3	Assumption
6	$(sk_1 = sk_3) \vee \neg (sk_1 = sk_3)$	Excluded Middle
7	$sk_1 = sk_3$	Assumption
8	$R(sk_1,sk_2)$	Line 4
9	$R(sk_3,sk_2)$	=-Substitution (8,7)
10	$sk_1 = sk_3$	Assumption
11	$sk_2 = sk_2$	Reflexivity
12	$sk_1 = sk_3 \Rightarrow sk_2 = sk_2$	\Rightarrow -Introduction (10 - 11)
13	$R(sk_3, sk_2 \land (sk_1 = sk_3 \Rightarrow sk_2 = sk_2)$	\wedge – Introduction $(9, 12)$
14	$R(sk_1, sk_2) \wedge R(sk_3, sk_2) \wedge (sk_1 = sk_3 \Rightarrow sk_2 = sk_2)$	\wedge – Introduction (8, 13)
15	$\exists y_2. (R(sk_1, sk_2) \land R(sk_3, y_2) \land (sk_1 = sk_3 \Rightarrow sk_2 = y_2))$	\exists – Introduction (14)
16	$\neg(sk_1 = sk_3)$	Assumption
17	$\exists y. R(sk_3,y)$	\forall – Elimination 1
18	actual $sk_4, R(sk_3, sk_4)$	Assumptions
19	$R(sk_1,sk_2)$	Line 4
20	$R(sk_3, sk_4)$	Line 18
21	$sk_1 = sk_3$	Assumption
22	\perp	\neg – Introduction (16, 21)
23	$sk_2 = sk_4$	\perp -Elimination (22)
24	$sk_1 = sk_3 \Rightarrow sk_2 = sk_4$	\Rightarrow -Introduction (21 – 23)
25	$R(sk_3, sk_4) \wedge (sk_1 = sk_3 \Rightarrow sk_2 = sk_4)$	\wedge – Introduction (20, 24)
26	$R(sk_1, sk_2) \wedge R(sk_3, sk_4) \wedge (sk_1 = sk_3 \Rightarrow sk_2 = sk_4)$	\wedge – Introduction (19, 25)
27	$\exists y_2. (R(sk_1, sk_2) \land R(sk_3, y_2) \land (sk_1 = sk_3 \Rightarrow sk_2 = y_2)$	\exists – Introduction (26)
28	$\exists y_2. (R(sk_1, sk_2) \land R(sk_3, y_2) \land (sk_1 = sk_3 \Rightarrow sk_2 = y_2))$	\exists – Elimination $(17, 18 - 27)$
29	$\exists y_2. (R(sk_1, sk_2) \land R(sk_3, y_2) \land (sk_1 = sk_3 \Rightarrow sk_2 = y_2))$	\vee - Elimination $(6, 7 - 15, 16 - 28)$
30	$\forall x_2. \exists y_2. (R(sk_1, sk_2) \land R(x_2, y_2) \land (sk_1 = x_2 \Rightarrow sk_2 = y_2))$	\forall – Introduction $(5,29)$
31	$\exists y_1. \forall x_2. \exists y_2. (R(sk_1, y_1) \land R(x_2, y_2) \land (sk_1 = x_2 \rightarrow y_1 = y_2))$	\exists – Introduction (30)
32	$\exists y_1. \forall x_2. \exists y_2 (R(sk_1, y_1) \land R(x_2, y_2) \land (sk_1 = x_2 \Rightarrow y_1 = y_2))$	\exists – Elimination $(3, 4 - 31)$
33	$\forall x_1.\exists y_1.\forall x_2.\exists y_2.(R(x_1,y_1) \land R(x_2,y_2) \land (x_1 = x_2 \Rightarrow y_1 = y_2))$	\forall – Introduction $(2-32)$
	$\forall x \exists u P(x, u) \rightarrow \forall x \exists u \forall x \exists u (P(x, u) \land P(x, u) \land (x, -x, -x, -x, -x))$	→ Introduction (1 22)

 $\exists 4 \quad \forall x. \exists y. R(x,y) \Rightarrow \forall x_1. \exists y_1. \forall x_2. \exists y_2. (R(x_1,y_1) \land R(x_2,y_2) \land (x_1=x_2 \Rightarrow y_1=y_2)) \quad \Rightarrow -\text{Introduction } (1-33)$