Physics of quark-gluon plasma and high-energy heavy-ion collisions

Xu-Guang Huang (黄旭光) Fudan University

July 29 – August 02, 2019

Content of the course

- Introduction to elementary particles and strong interaction
- Relativistic quantum mechanics and field theory
- Quantum chromodynamics (QCD)
- Hot and dense QCD phases
- Exploring the quark-gluon matter: heavy-ion collisions
- The properties of quark-gluon plasma
- Link to other subfields of physics: condensed matter, astrophysics, cosmology, and so on

Lecture 1: Introduction to particle physics

Matter in Our Macroscopic World

There are all forms of matter in our Nature. Matter changes forms. But WHY?

The Ancient Philosophers: the Greeks

Empedocles: four elements --fire, air, water, earth

Empedoctle's.

Democritus: atomic hypothesis

Reductionism (还原论)

The Ancient Philosophers: the Oriental

Reductionism (还原论)

N.B.: the standard model U(1)*SU(2)*SU(3)

The Final Triumph after ~2000 Years

Nobel Prize 2013

Standard Model of Elementary Particles

The natural units

$$h = c = k_B = 1.$$

 $\hbar = c = k_B = 1.$ Quantum, relativity, thermodynamics

Unit	Metric value	Derivation
1 eV ⁻¹ of length	1.97 × 10 ⁻⁷ m	$=rac{\hbar c}{1\mathrm{eV}}$
1 eV of mass	1.78 × 10 ⁻³⁶ kg	$=rac{1\mathrm{eV}}{c^2}$
1 eV ⁻¹ of time	6.58 × 10 ⁻¹⁶ s	$=rac{\hbar}{1\mathrm{eV}}$
1 eV of temperature	1.16 × 10 ⁴ K	$=rac{1\mathrm{eV}}{k_\mathrm{B}}$

If gravity, G=1

Fundamental Forces

Toward the "Invisible" Microscopic World

庄子: 一尺之捶, 日取其半, 万世不竭。 Leeuwenhoek (~1670):
using improved microscope,
he discovered a whole new world,
e.g. bacteria

Detection tool is crucial!

The Scale of Probing Tools

For visible light (optical probe): what scale does it probe?

How can we probe even smaller scale, e.g. toward SUB-ATOMIC scale?

At the Turn of the 20th Century

X-ray was later used to probe and reveal the crystal structure of solid.

Alpha, Beta, Gamma, ...

Radioactivity

- Unstable nuclei decay to more stable nuclei
- Can emit 3 types of radiation in the process

particlescle

particles

particles

particles

A positron (e^+) is the antiparticle of the electron (e^-)

Discovering the Nucleus

$$\left(\frac{d\sigma}{d\cos\theta}\right)_{R} = \frac{\pi}{2}Z^{2}\alpha^{2}\left(\frac{\hbar c}{KE}\right)^{2}\frac{1}{(1-\cos\theta)^{2}}$$

A beautiful experiment with many essential elements of modern high energy collision experiments

HW1: Derive Rutherford formula

Fusion and Fission

Structure of Nucleus

Mismatch between atomic number & atomic mass led to the conjecture and discovery of NEUTRON. (why was it difficult to find?)

A nucleus is made of Z protons + (A-Z) neutrons

Chadwick

What holds the NUCLEONS together?

The nuclear force: short range, very STRONG

Yukawa

There is yet another force...

Nuclear beta-decay was observed: $(Z,A) \longrightarrow (Z+1,A) + (e-) + ?$

* prediction of neutrino * a new type of force:WEAK FORCE

Pauli

Fermi

$$\sigma \approx G_{\rm F}^2 E^2$$

$$\frac{G_{\rm F}}{(\hbar c)^3} = \frac{\sqrt{2}}{8} \frac{g^2}{m_{\rm W}^2} = 1.16637(1) \times 10^{-5} \,{\rm GeV}^{-2}$$
.

Continuing Exploration of Strong Force

1950~1960: A burst of discovering new particles with strong interaction by virtue of particle accelerators & detectors (bubble chamber)

Fig. 15. Discovery of the K* (890).

- After the discovery of proton and neutron, physicists continued to look for new "elementary particles". In the 1950-60s, more than a hundred of "elementary particles" are found, question: are they all elementary?
- In chemistry, elements fill into the periodic table which was used to predict new elements and inspired the atomic model.

W. Lamb:" ...the finder of a new elementary particle used to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a \$10,000 fine"

Mendeleev mid-19th century

- So how about to make a "periodic table of elementary particles"?
- The eightfold way of Gell-Mann and Neemann (1961):
 - 1) spin=0, mesons; spin=1/2, baryons;
 - 2) put the particles on the plane of S-Q;
 - 3) they observe very regular patterns for the first eight lightets baryons and mesons

S: strangeness introduced by Gell-Mann to explain the "strange" behavior of some particles: they are produced always in pair and decay very slowly

Heavier baryons fit into a incomplete decuplet. Gell-Mann predicted:

there must be a baryon of Q=-1 and S=-3!

• Found in 1964, the Omega-minus baryon.

Gell-Mann

经验: Classification is the first stage in the development of any science——Griffiths

- Natural question: the periodic table of chemical elements are explained by more elementary constituents, electrons and nuclei; what can explain the eightfold way? What are the more elementary constituents?
- Quark model of Gell-Mann and Zweig (1964): 3 types (flavour) of quarks, spin-1/2.

- 3 quarks form a baryon; 1 quark + 1 anti-quark form a meson*.
- Excise: Put the anti-triangle on to the triangle, one obtains the meson octet plus a singlet: 3x3=8+1. Put three triangles together, one obtains two baryon octets, a decuplet and a singlet: 3x3x3=10+8+8+1.

For example:

• In the language of group theory: $3 \otimes \overline{3} = 8 \oplus 1$

Let us make an introduction to Symmetry and Group theory

Symmetries play a central role in particle physics; one aim of particle physics is to discover the fundamental symmetries of our universe

Symmetries are usually divided to:

- * Space time: include rotations, boosts, translations $x \rightarrow x + a$, parity $x \rightarrow$
- -x, time reversal, scale invariance ...
- * Continous or discrete; Abelian or non-Abelian;
- * Internal, global and local (gauged).

For example: Mirror symmetry

Operation e: nothing changed

Operation I: reflection w.r.t mirror E

Symmetries can be composed:

* if T_1 , T_2 are symmetries, then $T_2 \circ T_1$ is also a symmetry.

* If T is a symmetry, then T^{-1} is also a symmetry.

* The identity $\phi \rightarrow \phi$ is a symmetry.

A group is a pair (G, \cdot) , where G is a set, \cdot is a product $G \times G \rightarrow G$:

- The product is associative, $\forall g1,g2,g3 \in G(g1 \cdot g2) \cdot g3 = g1 \cdot (g2 \cdot g3)$;
- There is an identity $e \in G$, such that $\forall g \in G \ e \cdot g = g \cdot e = g$;
- Every element $g \in G$ has inverse $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$.

For example: Mirror symmetry

Operation e: nothing changed

Operation I: reflection w.r.t mirror E

Operation e: =1

Operation I: =-1

Group product x := * (the normal product)

 $\{1,-1;*\}$ is a representation of Z_2

For example: Rotation

Denote a 3D rotation around \vec{n} by an angle ψ as $\mathscr{R}_{\vec{n}}(\psi)$

$$|\mathscr{R}_{\vec{n}}(\psi)\vec{x}| = |\vec{x}|$$

In the case of an infinitesimally small angle $|\delta\psi| \ll 1$, a Taylor expansion of the Rodrigues formula to first order gives

$$\mathscr{R}_{\vec{n}}(\delta\psi)\vec{x} = \vec{x} + \delta\psi\,\vec{n}\times\vec{x} + \mathcal{O}(\delta\psi^2). = \left[\mathbb{1}_3 - \mathrm{i}\delta\psi\,J_{\vec{n}} + \mathcal{O}(\delta\psi^2)\right]\vec{x}$$

The reader is invited to check the validity of this relation by drawing \vec{x} and $\mathcal{R}_{\vec{n}}(\delta\psi)\vec{x}$ in the plane orthogonal to the direction of \vec{n} .

Considering the infinitesimal rotations about the three axes of the coordinate system, i.e. about the unit vectors \vec{e}_1 , \vec{e}_2 , \vec{e}_3 , one finds a basis of $\mathfrak{so}(3)$, namely

$$J_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad , \quad J_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \quad , \quad J_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

i.e. the ij entry of the matrix J_k reads

$$(J_k)_{ij} = -\mathrm{i}\epsilon_{ijk}$$

where ϵ_{ijk} is the usual totally antisymmetric Levi-Civita^(x) symbol with $\epsilon_{123} = 1$

Such J's form a Lie algebra called so(3):

$$\left[[J_i, J_j] = \mathrm{i} \sum_{k=1}^3 \epsilon_{ijk} J_k \quad \text{for all } i, j \in \{1, 2, 3\}. \right]$$

A rotation around \vec{n} by an angle ψ

$$\mathscr{R}_{\vec{n}}(\psi) = e^{-i\psi(n_1J_1 + n_2J_2 + n_3J_3)}.$$

All such rotations form a Lie group called SO(3)

However, the Lie algebra so(3) generates a Lie group SU(2) which doubles SO(3), i.e., SO(3)=SU(2)/ \mathbb{Z}_2

Consider a representation of so(3) using the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

A SU(2) element is given by

$$\mathcal{U}_{\vec{n}}(\psi) = e^{-i\psi \, \vec{n} \cdot \vec{\sigma}/2} = e^{-i\psi(n_1\sigma_1 + n_2\sigma_2 + n_3\sigma_3)/2}.$$

Using the following to show that ψ is the same rotating angle is SO(3)

$$\left(\cos\frac{\psi}{2}\right)\mathbb{1}_2 - i\left(\sin\frac{\psi}{2}\right)\vec{n}\cdot\vec{\sigma} = e^{-i\psi\,\vec{n}\cdot\vec{\sigma}/2}$$

Thus, $U_{\vec{n}}(2\pi) = -1$, $U_{\vec{n}}(4\pi) = 1 = U_{\vec{n}}(0)$. One complete rotation in SU(2) gives two complete rotations in SO(3)

Quantum world often described by SU(2) rotation, e.g. the spin

Using the following to show that ψ is the same rotating angle is SO(3)

$$\left(\cos\frac{\psi}{2}\right)\mathbb{1}_2 - i\left(\sin\frac{\psi}{2}\right)\vec{n}\cdot\vec{\sigma} = e^{-i\psi\,\vec{n}\cdot\vec{\sigma}/2}$$

Thus, $U_{\vec{n}}(2\pi) = -1$, $U_{\vec{n}}(4\pi) = 1 = U_{\vec{n}}(0)$. One complete rotation in SU(2) gives two complete rotations in SO(3)

Quantum world often described by SU(2) rotation, e.g. the spin

A visualization of SU(2) rotation: the Dirac strings