Intro. To Machine Learning & Computer Vision

TABLE OF CONTENTS

01Environment Setup

02Recap of Computer Vision

03
MNIST Example

04Sign Language Project

01

Environment and Setup

Environment

Go, here: https://github.com/BigThinkAl-UMD/BitCamp/tree/main

Follow the read me if you haven't, and we will walk around and help you if you need

02

Recap of Computer Vision

What is Computer Vision?

- New development of Neural Networks pave way for computer vision
- Computer vision detects patterns and objects in images by identify each pixel to learn patterns
- Common applications are image segmentation, classification, object tracking, and detection

Examples:

How does it work?

- We are given photos. The model will analyze the photos by each pixel
- Each pixel has 3 channels (for RGB) that ranges from 0 255 in red, green and blue
- We then flatten the image to a single vector to feed into our model

03
MNIST Example

MNIST Dataset

- Contains 70,000 images of digits written by high school students and U.S.
 Census Bureau employees
- Often called the "Hello World" in Machine Learning due to frequent use in courses
- Original images were 128 by 128 binary images, later downscaled to 28 by 28 grayscale images
- Each image has a label of the digit it represents
- Problem: Classify digits in the images (Supervised since it's labeled)

04

Sign Language Project

What are we doing?

- Classifying the sign language alphabet in real time
- We will classify every letter except J and Z, because they are motions
- We have provided a dataset for the model to train on

Dataset:

B:

Demo

The Pipeline

- Step 1: Get your training data!
 - We won't do "J" or "Z" because they are motions
- Step 2: Create the dataset in python to feed into our model
 - Use the mediapipe library for hand detection
 - Normalize and flatten the dataset
 - Save the dataset using the pickle library
- Step 3: Train our model
 - Use the Scikit-Learn library to import RandomForestClassifier
 - Split our dataset into train and test sets
 - Evaluate and save our model
- Step 4: Use your model!

Coding!

Run collect_imgs.py

Make sure you create an empty data folder!

Join BigThink Al!

