Recurrent Neural Networks

Feed-Forward Neural Networks

- Hierarchy of neurons
- Input layer, hidden layers, output layer
- Does not have a memory
- Independent of last decision

Recurrent Neural Networks

A Recurrent Neural Network (RNN) learns temporal correlations between arbitrarily distant events

RNNs Regress, classify, predict and generate sequential data in almost all machine learning domains

Recurrent Neural Networks

- Memory through recurrent connections
- Feedback information from last steps
- Loops in the network

A Different Perspective

- RNN can be seen as multiple ANN communicating
- Message sent between them
- Ideal for sequence learning (text, music, video)
- Time-series prediction

t+1

Interactive Robotics Lab

Backpropagation through Time

- The same as BP
- Use unfolded network
- Define maximum sequence length

Backpropagation through Time

- The same as BP
- Use unfolded network
- Define maximum sequence length

Backpropagation through Time (BBTT)

• Error function $E = \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} ||a_i^t - y_i^t||^2$

Simple RNNs Revisited

$$h_t = \phi(\mathbf{W_x} x_t + \mathbf{U_h} h_{t-1} + b)$$

 $\mathbf{W_x} - Input Weight Matrix$

 $h_{t-1} - Previous \, Hidden \, Output$

 $\mathbf{U_h}$ - Recurrent Weight Matrix

 $h_t - Hidden Output$

b - Bias Vector

 ϕ - Activation Function

 $x_t - Input Vector$

Hidden layer to hidden layer connections allow temporal information to flow through the RNN

⊙ Interactive Robotics Lab

BPTT Chain Rule

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_t}{\partial \theta}$$
 Partial derivative of loss with respect to output
$$\frac{\partial \mathcal{L}_t}{\partial \theta} = \sum_{k=1}^{t} \left(\frac{\partial \mathcal{L}_t}{\partial h_t} \cdot \frac{\partial h_t}{\partial h_k} \cdot \frac{\partial h_k^+}{\partial \theta} \right)$$
 Immediate partial derivative
$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k}^{t} \frac{\partial h_i}{\partial h_{i-1}}$$

The following term gives the relation of error through time where k < t

Vanishing and Exploding Gradients

Significant problem for learning long term dependencies

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k}^t \mathbf{W}_{rec} diag(\phi'(x_{i-1}))$$

Recurrent Weight Matrix Contribution

If the Eigen values of the recurrent weight matrix deviate below one, the contribution of "distant" events quickly converges to zero

Vanishing and Exploding Gradients

This problem occurs when the norm of the gradients during training vanish or explode

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k}^t \mathbf{W}_{rec} diag(\phi'(x_{i-1}))$$

Activation Function Contribution

If the gradient of the activation function deviates considerably from one, the product above explodes or vanishes as k << t

Sequence MNIST Benchmark

- Goal:
 - Classify handwritten digits by reading one pixel at a time
 - Proposed as benchmark RNN dataset by Le, Jaitly and Hinton
- Input tensor shape
 - (batch, pixel)
- Output tensor shape
 - (batch, one_hot_sz)
- Sequence length
 - 784 pixels in 1 image
- Cross entropy loss

[Source] http://yann.lecun.com/exdb/mnist/

PyTorch Dataset Class SeqMNIST

```
import torch
from torch.utils.data import Dataset
class SequentialMNIST(Dataset):
  def init (self, mode=MODE TRAIN, pixel wise=True, permute=False):
    #Initialize dataset here
  #Set the mode depending on train test or val
  def train(self):
    #self.mode = SequentialMNIST.MODE TRAIN
  def val(self):
    #self.mode = SequentialMNIST.MODE VAL
  def test(self):
    #self.mode = SequentialMNIST.MODE TEST
  def len (self):
    #Return size of dataset for train, test, or val
  def getitem (self, i):
    #Depending on the mode – train, val test
     return batch of elements
```


Training Script Continued

```
def run_sequence(seq, target):
  predicted_list = []
  y list = \Pi
  #Initialize memory states
  model.reset(batch_size=seq.size(0), cuda=args.cuda)
  #Execute inference on the model sequentially
  for i, input_t in enumerate(seq.chunk(seq.size(1), dim=1)):
     input t = input t.squeeze(1)
     p = model(input t)
     predicted list.append(p)
     y list append(target)
  #Return predicted values as well as their corresponding targets
  return predicted_list, y_list
```


Training Script SeqMNIST

```
def train(epoch, model, dset):
  model.train()
  dset.train()
  #total loss = 0.0, steps=0, n correct=0, n possible=0
  for batch idx, (data, target) in enumerate(data loader):
     if args.cuda:
       data, target = data.cuda().double(), target.cuda().double()
     data, target = Variable(data), Variable(target)
     predicted list, y list = run sequence(data, target) #Defined on next slide
     pred = predicted list[-1] #Take the final output from the RNN
     y = y list[-1].long() #Take the final batch of targets
     prediction = pred.data.max(1, keepdim=True)[1].long()
     n correct += prediction.eq(y .data.view as(prediction)).sum().cpu().numpy()
     n possible += int(prediction.shape[0])
     loss = F.nll loss(pred, y ) #Calculate batch loss
     loss.backward() #Calculate gradients
     optimizer.step() #Update NN weights
```


Training Script Continued

```
def run_sequence(seq, target):
  predicted_list = []
  y list = \Pi
  #Initialize memory states
  model.reset(batch_size=seq.size(0), cuda=args.cuda)
  #Execute inference on the model sequentially
  for i, input_t in enumerate(seq.chunk(seq.size(1), dim=1)):
     input t = input t.squeeze(1)
     p = model(input t)
     predicted list.append(p)
     y list append(target)
  #Return predicted values as well as their corresponding targets
  return predicted_list, y_list
```


Modern Solutions - Architecture

Modern RNN architectures have been proposed to address the vanishing and exploding gradient problem

Model	Description	Reference
LSTM	Most ubiquitous RNN architecture today. Adds gated computations and cell memory state for long term memory.	http://www.bioinf.jku .at/publications/olde r/2604.pdf
LSTM Forget Gates	Adds new gate to LSTM architecture that focuses on "forgetting" long-term dependencies that are no longer relevant.	https://pdfs.seman ticscholar.org/115 4/0131eae85b2e11d5 3df7f1360eeb6476e7 f4.pdf
Peephole LSTM	Uses previous cell state for gate computations instead of hidden state; accesses constant error carousel.	ftp://ftp.idsia.ch/ pub/juergen/TimeCou nt-IJCNN2000.pdf
GRU	Combines input and forget gates into single update gate and combines the cell and hidden memory states.	https://arxiv.org/pd f/1406.1078v3.pdf
IndRNN	Forces the recurrent weight matrix to be a vector that is multiplied element-wise by the previous hidden state.	https://arxiv.org/pd f/1803.04831.pdf
UGRNN RNN+	Modern architectures made to enhance trainability of deeply- stacked (RNN+) and shallow (UGRNN) models.	https://arxiv.org/pd f/1611.09913.pdf

Modern Solutions: Initialization

Eigenvalues of the recurrent weight matrix need to be equal to one in order to avoid the vanishing and exploding gradient problem

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k}^t \mathbf{W}_{rec} diag(\phi'(x_{i-1}))$$

Both of these matrices have Eigenvalues equal to one

In practice, soft constraints imposed on these matrices after initialization improves trainability of RNNs

Identity Initialization

$$\mathbf{W}_{rec} = egin{bmatrix} 1 & 0 & \dots \ dots & \ddots & \ 0 & 1 \end{bmatrix}$$

Orthogonal Initialization

$$\mathbf{W}_{rec} = \begin{bmatrix} 1 & 0 & \dots \\ \vdots & \ddots & \\ 0 & 1 \end{bmatrix} \qquad \mathbf{W}_{rec} = \begin{bmatrix} a_{11} & a_{12} & \dots \\ \vdots & \ddots & \\ a_{K1} & a_{KK} \end{bmatrix}$$

Modern Solutions: Activations

The derivative of the activation function is part of the product that causes the temporal gradient to vanish or explode

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k}^t \mathbf{W}_{rec} diag(\phi'(x_{i-1}))$$
 Sigmoid Activation

Sigmoid Activation

$$\sigma = \frac{1}{1 - e^{-x}}$$

$$\sigma' = (1 - \sigma)\sigma$$

Max value of df/dx is .25

Temporal gradient vanishes quickly with this activation function

$$.25^2 = .0625$$

$$.25^5 = 0.00097$$

Modern Solutions: Activations

Tanh Activation

$$tanh = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 $tanh' = 1 - tanh^2(x)$

Heavily used in modern gated recurrent architectures

The gradient vanishes more quickly the further x deviates from 0

ReLu Activation

$$ReLu = max(0, x) \quad ReLu' = \begin{cases} x > 0, & 1\\ x <= 0, & 0 \end{cases}$$

ReLu activation has desirable gradient behavior for values of x > 0

For x < 0 the temporal gradient does not exist

Custom RNN Cell Template PyTorch

```
class CustomRNNCell(nn.Module):
  def init (self, input size,
            # Define custom variables of interest - dropout ect
            hidden size):
     super(CustomRNNCell, self). init ()
     self.input size = input size
     self.hidden size = hidden size
     #Initialize global variables
     #Initialize parameters W, U, b ect.
     self.hidden state = None
  def reset(self, batch size=1, cuda=True):
     #Initialize Memory States h t, c t ect.
  def forward(self, X t):
     h t previous = self.hidden state #extract memory states (h_t-1, c_t-1)
     #Do computation here
    #Set memory states
     self.hidden state = y
     return y
```


IRNN in PyTorch

```
self.W x = nn.Parameter(torch.zeros(input_size, hidden_size))
self.W x = nn.init.xavier normal (self.W x)
                                                                  Identity matrix
#Identity recurrent weight matrix initialization
self.U_h = torch.nn.Parameter(torch.eye(hidden_size))
                                                                  initialization
self.b = nn.Parameter(torch.zeros(hidden size))
def forward(self, X t):
                                                                  F.relu – Rectified
     h t previous = self.hidden state
                                                                  linear unit activation
                                                                  function
     out = F.relu( torch.mm(X_t, self.W_x) +
       torch.mm(h_t_previous, self.U_h) +
self.b)
     self.hidden state = out
     return out
```


LSTM & Peephole Connections

```
Replace h t previous with
def forward(self, X t):
                                                               c t previous for Peephole LSTM
     h t previous, c t previous = self.states
                                                               variant
     f t = F.sigmoid(
       torch.mm(X_t, self.W_f) + torch.mm(h_t_previous, self.U_f) + self.b_f)
     i t = F.sigmoid(
       torch.mm(X_t, self.W_i) + torch.mm(h_t_previous, self.U_i) + self.b i)
     o t = F.sigmoid(
       torch.mm(X_t, self.W_o) + torch.mm(h_t_previous, self.U_o) + self.b_o)
     c hat t = F.tanh(
       torch.mm(X_t, self.W_c) + torch.mm(h_t_previous, self.U_c) + self.b_c)
    c t = (f t * c t previous) + (i t * c hat t)
     h t = o t * F.tanh(c t)
     self.states = (h t, c t)
     return h t
```


GRU

```
def forward(self, X_t):
    h_t_previous = self.recurrent_state

z_t = F.sigmoid(
    torch.mm(X_t, self.W_z) + torch.mm(h_t_previous, self.U_z) + self.b_z)

r_t = F.sigmoid(
    torch.mm(X_t, self.W_r) + torch.mm(h_t_previous, self.U_r) + self.b_r)

h_t = z_t * h_t_previous + ((z_t - 1) * -1) * F.tanh(
    torch.mm(X_t, self.W_h) + torch.mm((r_t * h_t_previous), self.U_h) + self.b_h)

self.recurrent_state = h_t

return h_t
```


UGRNN

Intersection RNN

```
def forward(self, X t):
     h t previous = self.states
     y in = F.tanh(
       torch.mm(X t, self.W yin) + torch.mm(h t previous, self.U yin) + self.b yin)
     h in = F.tanh(
       torch.mm(X t, self.W hin) + torch.mm(h t previous, self.U hin) + self.b hin)
     g y = F.sigmoid(
       torch.mm(X t, self.W gy) + torch.mm(h t previous, self.U gy) + self.b gy)
     g h = F.sigmoid(
       torch.mm(X t, self.W gh) + torch.mm(h t previous, self.U gh) + self.b gh)
     y t = g y * X t + ((g y - 1) * -1) * y in
     h t = g h * h t previous + ((g h - 1) * -1) * h in
     self.states = h t
     return y t
```


Exercise: RNN ZOO

Test novel RNN architectures on famous benchmark tasks Sequential MNIST and Permuted Sequential MNIST. Partial code is provided.

python train.py --hx=50 --layers=2 -model-type=lstm run "python train.py --help" for description of hyperparameters Students Task:

- Define weight matrix and recurrent weight matrix for vanilla RNN. See models/rnn.py
- Define LSTM forward method (LSTM secret sauce).
 See models/lstm.py
- Define how to reset recurrent states for GRU.
 See models/gru.py

Sequence MNIST

Goal

Classify handwritten digits by reading one pixel at a time Proposed as benchmark RNN dataset by Le, Jaitly and Hinton

- Input tensor shape: (batch, pixel)
- Output tensor shape:(batch, one_hot_sz)
- Sequence length:784 pixels in 1 image
- Cross entropy loss

Convolutional RNNs

Learns spatio-temporal correlations

X is a set of activation maps

X is commonly an RGB or RGBD image

 $\mathbf{X}_t \in \mathbb{R}^{C \times L \times W}$

H is a set of activation maps

H depends on multiple factors, including the number of filters in the hidden layer, stride, padding, ect.

$$\Rightarrow \mathbf{H}_t^1 \in \mathbb{R}^{C_h \times L_h \times W_h}$$

Convolutional RNNs

Feature extraction no longer occurs by fully connecting the input with its respective weight matrix; features are now extracted through convolutional layers

$$\mathbf{H}_t^n = \phi(conv(\mathbf{W}_x, \mathbf{X}_t^{n-1}) + conv(\mathbf{U}_h, \mathbf{H}_{t-1}^n) + \mathbf{B})$$

Be careful! Convolving **H** and **U** needs to produce the same shape tensor as convolving **W** and **X**

For recurrent convolutional layer

Set stride equal to one

Make the number of filters in **U** equal to the number of filters in **W**

Set proper padding – assuming stride of one

Dodge Ball

Can a robot dodge balls with a RGB video sensor?

Goal:

Successfully predict future collisions given a randomly initialized projectile

Solution:

Convolutional RNN that learns the mapping between video input and probability of collision

$$\begin{array}{ll} Input & -\mathbf{X} \in \mathbb{R}^{T \times C \times L \times W} \\ Output & -\hat{y} \in \mathbb{R}^1 \end{array}$$

Dodge Ball

Dodge Ball from Robot Perspective

Visualize Hidden Activation Maps in ConvLSTM

Activations for Layer 0 at Time 0

Visualize Cell State Activation Maps in ConvLSTM

Cell State 0 at Time 0

RNNs and Robotics

Goal

Utilize slip for dexterous in-hand manipulation of grasped objects

Solution

Predictive RNN model that estimates future poses of grasped object from **past experiences**

Predicted future poses for the next 20 time-steps

Ground truth captured by accelerometer

[Source] https://simonstepputtis.com/static/paper/icra2018.pdf

RNNs and Robotics

Play Video

Summary

- We introduced recurrent networks
- Most widely used are LSTMs and GRUs
- Critical for tasks that require memory
- Robot may take past states into account during decision-making
- ConvolutionalLSTMs can be used to extract visual features and track them over time

Development Team

The "Robot Learning" material was developed by

Trevor Barron

Trevor Richardson

Nambi Srivatsav

The development of this course was supported by an Intel AI Academy grant. We thank the sponsor for the continuing support of open-source efforts in research and education.

