

- Functions:
 - Stores genetic information
 - Synthesizes RNA
 - Assembles ribosomes

Ribosomes

- Structure: Composed of mRNA and protein; consists small and large subunits
- Types:
 - Bound to ER (endoplasmic reticulum)
 - Cytoplasmic (free in cytoplasm)
- Function: Site of protein synthesis

Rough Endoplasmic Reticulum

- **Structure**: Membrane studded with ribosomes; attached to nuclear envelope
- Functions:
 - Synthesis of membrane bound proteins and secreted proteins
 - Cell compartmentalization
 - Mechanical support and intracellular transport

Smooth Endoplasmic Reticulum

- **Structure**: Folded, tubelike structure (cisternae)
- Functions:
 - Detoxification
 - Calcium storage
 - Lipid synthesis

Golgi Complex

- **Structure**: Flattened membrane bound sacs (cisternae)
- Functions:
 - Folding and chemical modification of proteins
 - Packaging proteins into vesicles ready for transport

Mitochondria

- **Structure**: Double membrane (inner membrane folded into cristae for more surface area, making it more efficient in the exchanging of materials)
- Functions:
 - Site of oxidative phosphorylation
 - Site of the Kreb's cycle

Chloroplast

- **Structure**: Double outer membrane, contains stacked thylakoid (stacks are called grana) and fluid (called stroma)
- Functions:
 - Site of photosynthesis
 - Light reactions occur in the thylakoid
 - Calvin-Benson cycle occurs in the stroma

Lysosome

- **Structure**: Membrane enclosed sacs containing hydrolytic enzymes (to break down the bacteria that they engulf)
- Functions:
 - Intracellular digestion
 - Recycling of cell materials
 - Programmed cell death (apoptosis)

- **Structure**: Membrane-bound sacs
- Functions:
 - Storage and release of macromolecules and cell waste
 - Central vacuole: water retention and turgor pressure
 - Contractile vacuole: osmoregulation in protists
 - Food vacuole: formed by phagocytosis, fuses with lysosome

Plasma Membrane

• Structure:

- Phospholipid bilayer
- Cholestrol (acts as a buffer to keep bilayer fluid during temperature changes)
- Channel proteins
- Glycolipids and glycoproteins

MEMBRANE TRANSPORT

Simple Diffusion

- Passive transport
- No energy required
- Moves down concentration gradient
- Small, nonpolar molecules can pass through

MEMBRANE TRANSPORT

Facilitated Diffusion

- Passive transport
- No energy required
- Carrier/channel protein required
- Moves down concentration gradient
- Small, polar molecules can pass through

MEMBRANE TRANSPORT

Active Transport

- Energy required
- Moves against concentration gradient
- Requires transport protein (usually carrier)

BULK TRANSPORT

Endocytosis

- Phagocytosis: Cellular eating
 - ingestion of large particles
- Pinocystosis: Cellular drinking
 - o internalization of extracellular fluids
- Receptor-mediated endocystosis
 - Ligands bind to receptor to allow materials in
 - Uses cell communication

BULK TRANSPORT

Exocytosis

- Export of materials
- Pathway:
 - Rough ER
 - \downarrow
 - Golgi complex
 - ,
 - Plasma membrane

OSMOSIS & TONICITY

Hypertonic Solution

- High solute concentration
- Low free water concentration
- Cell loses water to the hypertonic solutions

Hypotonic Solution

- Low solute concentration
- High free water concentration
- Cell gains water from hypotonic solutions

Isotonic Solution

- Equal solute concentration (as compared to other solution)
- Equal free water concentration