

28. (A) (B) (C) (D) (E) 29. (A) (B) (C) (D) (E) 30. (A) (B) (C) (D) (E) 31. (A) (B) (C) (D) (E) 32. (A) (B) (C) (D) (E) 33. (A) (B) (C) (D) (E) 34. (A) (B) (C) (D) (E) 35. (A) (B) (C) (D) (E) 36. ABCDE 37. (A) (B) (C) (D) (E) 38. (A) (B) (C) (D) (E) 39. (A) (B) (C) (D) (E) 40. (A) (B) (C) (D) (E) 41. (A) (B) (C) (D) (E) 42. (A) (B) (C) (D) (E) 43. (A) (B) (C) (D) (E) 44. (A) (B) (C) (D) (E) 45. (A) (B) (C) (D) (E 46. (A) (B) (C) (D) (1 47. (A) (B) (C) (D) (48. A B C D 49. (A) (B) (C) (D)

ASSIGNMENT FOR FINAL EXAM: EVTOL AEROELASTIC ASSESSMENT

Course of Aeroelasticity of fixed and rotary wing aircraft

Prof. Giuseppe Quaranta AA. 2023/24

Agenda

- General Description
- Aiframe Structural characteristics
- Rotors characteristics
- Tasks

eVTOL

eVTOL

Type	Parameter	Value
Performance requirements	Stall speed Cruise speed Maximum speed Rate of climb Cruise altitude Hover time	11 m/s 15 m/s 22 m/s 2 m/s 120 m AGL 5 min
	Cruise endurance Payload mass	85 min 200 g
Design parameters	Take off mass Wing span Wing surface Wing airfoil Number of FWD flight motors Number of VTOL motors Battery capacity	4.8 kg 2.25 m 0.56 m ² Selig 2046 2 8 8500 mAh

Fuselage

Fuselage (Cont.)

Fuselage

ASA Black samples were printed with a 0.010 in. (0.254 mm) layer height on the F900. For the full test procedure please see Stratasys Materials Test Procedure (immediate download upon clicking the link).

Print Orientation

Parts created using FDM are anisotropic as a result of the printing process. Below is a reference of the different orientations used to characterize the material.

Tensile Curves

Due to the anisotropic nature of FDM, tensile curves look different depending on orientation. Below is a guide of the two types of curves seen when printing tensile samples and what reported values mean.

- A = Tensile at break, elongation at break (no yield point)
- B = Tensile at yield, elongation at yield
- C = Tensile at break, elongation at break

		XZ Orientation ¹	ZX Orientation ¹
Tensile Properties: ASTM	I D638		
Yield Strength	MPa	33 (1)	No yield
	psi	4750 (150)	No yield
Elongation @ Yield	%	2.52 (0.08)	No yield
Strength @ Break	MPa	30 (1)	28 (2)
Strength @ Break	psi	4630 (140)	4110 (310)
Elongation @ Break	%	5.9 (0.8)	1.8 (0.3)
Madulus (Floatio)	GPa	2.14 (0.07)	2.0 (0.2)
Modulus (Elastic)	ksi	310 (10)	300 (30)
Flexural Properties: ASTI	M D790, Procedure A		
Strength @ Break	MPa	No break	50 (1)
	psi	No break	7395 (200)
Ctronath @ E0/ Ctroin	MPa	60 (1)	ä
Strength @ 5% Strain	psi	8925 (150)	18
Strain @ Break	%	No break	3.9 (0.2)
Madulua	GPa	1.97 (0.05)	1.75 (0.03)
Modulus	ksi	285 (6)	255 (5)
Compression Properties:	ASTM D695		
Viold Strongth	MPa	75 (4)	190 (30)
Yield Strength	psi	10940 (545)	27200 (4075)
Madulua	GPa	2.04 (0.06)	2.4 (0.3)
Modulus	ksi	295 (8)	350 (40)

Mass component

Mass Component [g] Notes

Front Right Motor Tube 255 Tube Weight with

Cables Inserted

Front Left Motor Tube 223 Tube Weight with Cables

Inserted

Right Rear Motor Tube 192 Tube Weight with Cables Inserted

Left Rear Motor Tube 203 Tube Weight with Cables Inserted

Vertical Motor 164 Motor, ESC, Stand, Propeller

Horizontal Motor 87 Motor, ESC, Mount, Propeller

Vertical Tail 39 Tail, Rudder, Servo Motor

Horizontal tail 89 Tail, BCD, servo motor

Mass Component [g] Notes

Horizontal tail 89 Tail, BCD, servo motor

Servo Motor 15

Rib wing 11

Spar 26 A spar for each half-wing

Electronics 340 On-board electronics,

excluding battery

Battery 484 Weight of each battery

Fuselage 1156.574 Weight of the entire fuselage

Fuselage Covers 350.028 Fuselage Cover Weight

(Center & Sides)

Structural components

Carbon fiber composite material for tubes

Name	Inner diameter [mm]	Outer Diameter [mm]
Anterior Motor	16	18
Posterior Motor	16	18
Wing Spar	14	16

Mate	rial type	Density ρ (kg/m³)	Tensile Strength σ_u (GPa)	Elastic Modulus E (GPa)	Breaking Length $\sigma_u/(\rho g)$ (km)
	Standard	1760	3.53	230	205
Carbon fiber	High strength	1820	7.06	294	396
	High modulus	1870	3.45	441	188
Steel	S355	7850	0.50	210	6
Steel	Wire	7850	1.77	210	23

Tail Balsa wood

Density of 150 kg/m3, Elastic Modulus of 3710 MPa, and a Poisson's Ratio of 0.26.

Engine - Propellers

Figure 2.7: Thrust against throttle and current against throttle (for the entire propulsive system): motor for vertical flight $KDE\,2315\,XF-2050,\,7x4.2$ propeller, powered with standard battery.

Engine - Propellers

Figure 2.8: Angular velocity against throttle: motor for vertical flight $KDE\ 2315\ XF - 2050$, 7x4.2 propeller, powered with standard battery.

Propellers

- CAD Model provided PropellerAssy
- Propeller model <u>Gemfan Flash 7042-2</u>
- Blade section geometry provided in «blade1_data.mat"
- Generate_DUST_input.m generates all blade data in format compatible with DUST. All airfoil coordinate are expressed starting from the leading edge

Mechanical Properties of ABS

Elongation at Break	10 - 50 %
Elongation at Yield	1.7 - 6 %
Flexibility (Flexural Modulus)	1.6 - 2.4 GPa
<u>Hardness Shore D</u>	100
Stiffness (Flexural Modulus)	1.6 - 2.4 GPa
Strength at Break (Tensile)	29.8 - 43 MPa
Strength at Yield (Tensile)	29.6 - 48 MPa
Toughness (Notched Izod Impact at Room Temperature)	200 - 215 J/m
Toughness at Low Temperature (Notched Izod Impact at Low Temperature)	20 - 160 J/m
Young Modulus	1.79 - 3.2 GPa

Controls

Figure 3.5: Simulink position control block.

Controller Gains

Controller	Proportional	Integral	Derivative
Roll rate	$K_P = 4.05$	$K_I = 0.05$	$K_D = 0$
Pitch rate	$K_P = 8.00$	$K_I = 1.40$	$K_D = 0$
Yaw rate	$K_P = 2.20$	$K_I = 0.25$	$K_D = 0$
Roll angle	$K_P = 3.55$		
Pitch angle	$K_P = 3.00$		
Yaw angle	$K_P = 1.20$		
$\overline{V_{North}}$	$K_P = 0.10$	$K_I = 0.01$	$K_D = 0$
V_{East}	$K_P = 0.10$	$K_I = 0.01$	$K_D = 0$
V_{Down}	$K_P = 0.90$	$K_I = 0.15$	$K_D = 0$
Pos_{North}	$K_P = 0.60$		
Pos_{East}	$K_P = 0.60$		
Pos_{Down}	$K_P = 0.60$		

There has been a necessity to notch the frequency 91.98 rad/s
For flight at low speed

$$N(s) = \frac{s^2 + 2 \cdot g \cdot d \cdot f \cdot s + f^2}{s^2 + 2 \cdot d \cdot f \cdot s + f^2},$$

f	g	d
91.98	0.0001	0.2

Possible themes

Basic problems

- Perform an aeroelastic assessment of the airframe part (NASTRAN, Flutter speed)
- Assess the rigid and aeroelastic stability derivatives and the impact on the flight dynamic model (NASTRAN + Matlab)
- Perform an aeroelastic assessment of the propellers (MBDyn)
- Assess the aeroservoelastic structural coupling problems at low speed, and high speed of the airframe (NASTRAN + Matlab)

Composite team problems

- Aero(servo)elastic structural coupling problems of the Full system (NASTRAN + Mbdyn)
- Whirl flutter (NASTRAN + Mbdyn)