- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(No	ome)				ume	ro di	i ma	trice	ola)					

Α	В	С	D	Ε
4 1	$\boldsymbol{\mathcal{L}}$	\sim	$\boldsymbol{\mathcal{L}}$	

1	00000
2	00000
3	0000
4	00000
5	
6	
7	
8	00000
9	
10	00000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) < 0\}$$

valgono

A:
$$\{-\infty, N.E., 2\pi, 2\pi\}$$
 B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{-\pi, -\pi, +\infty, N.E.\}$ D: N.A. E: $\{0, 0, \pi, \pi\}$

2. La serie a termini non-negativi, definita per $\alpha \neq 0$,

$$\sum_{n=41}^{\infty} \left| \log \left| \log \left(\frac{1}{n^{\alpha}} \right) \right| \right|$$

converge per

A:
$$\alpha > 1$$
 B: $3 < \alpha < \pi$ C: $\alpha \ge 1$ D: $\alpha > 0$ E: N.A.

3. Per t>0le soluzioni dell'equazione differenziale $x'(t)=(t\log(t))^{-1}$ sono

A:
$$\log(\log(t)) + c$$
 B: N.E. C: $t \log(t) + c$ D: N.A. E: $\frac{t^2}{\log(t^2)} + c$

4. L'integrale

$$\int_{-2}^{1} |x+1| \, dx$$

vale

A:
$$\sqrt{2}$$
 B: 0 C: N.A. D: 3/2 E: 5/2

5. Il limite

$$\lim_{x \to +\infty} \frac{\log (x^3 + x \arctan(x))}{\log(x)}$$

vale

A: N.E. B:
$$1/3$$
 C: $+\infty$ D: N.A. E: 0

6. Modulo e argomento del numero complesso $z=i^{2011}$ sono

A:
$$(1, \pi/3)$$
 B: $(2, -\pi/2)$ C: N.A. D: $(1, -\pi/2)$ E: $(1, \pi)$

7. Data $f(x) = \log(\log(3x))$. Allora f'(e) è uguale a

A:
$$\frac{1}{e \log(3e)}$$
 B: $\log(3e)$ C: e^3 D: N.A. E: π

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x-1| è

A: derivabile ovunque B: iniettiva C: N.A. D: surgettiva E: convessa

9. La funzione
$$f(x) = \begin{cases} \pi/3 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$$

A: è continua e derivabile. B: è continua, ma non derivabile. C: è derivabile, ma non continua. D: non è né continua né derivabile. E: N.A.

10. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/12$ vale

A: N.A. B:
$$1+\sin(2x)(x-\pi/4)$$
 C: $2x+\frac{\pi}{12}$ D: $\sqrt{3}x-\frac{\pi}{4\sqrt{3}}+\frac{1}{2}$ E: $+\frac{1}{2}+2\sin(2x)\left(x-\frac{\pi}{12}\right)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(No	ome)			-	ume	ro d	i ma	tricc	ola)					

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	00000

- 1. Data $f(x) = \log(\log(3x))$. Allora f'(e) è uguale a A: e^3 B: $\log(3e)$ C: π D: N.A. E: $\frac{1}{e\log(3e)}$
- 2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x-1| è A: N.A. B: derivabile ovunque C: surgettiva D: iniettiva E: convessa
- 3. La retta tangente al grafico di $y(x)=\sin(2x)$ nel punto $x_0=\pi/12$ vale A: N.A. B: $1+\sin(2x)(x-\pi/4)$ C: $+\frac{1}{2}+2\sin(2x)\left(x-\frac{\pi}{12}\right)$ D: $2x+\frac{\pi}{12}$ E: $\sqrt{3}x-\frac{\pi}{4\sqrt{3}}+\frac{1}{2}$
- 4. Modulo e argomento del numero complesso $z=i^{2011}$ sono A: $(1,-\pi/2)$ B: $(1,\pi/3)$ C: $(2,-\pi/2)$ D: $(1,\pi)$ E: N.A.
- 5. L'integrale

$$\int_{-2}^{1} |x+1| \, dx$$

vale

A: 3/2 B: 5/2 C: N.A. D: 0 E: $\sqrt{2}$

6. La funzione $f(x) = \begin{cases} \pi/3 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: N.A. C: è derivabile, ma non continua. D: è continua, ma non derivabile. E: è continua e derivabile.

7. Il limite

$$\lim_{x \to +\infty} \frac{\log (x^3 + x \arctan(x))}{\log(x)}$$

vale

A: N.A. B: 1/3 C: $+\infty$ D: 0 E: N.E.

- 8. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = (t \log(t))^{-1}$ sono A: $t \log(t) + c$ B: $\log(\log(t)) + c$ C: N.E. D: $\frac{t^2}{\log(t^2)} + c$ E: N.A.
- 9. La serie a termini non-negativi, definita per $\alpha \neq 0$,

$$\sum_{n=41}^{\infty} \left| \log \left| \log \left(\frac{1}{n^{\alpha}} \right) \right| \right|$$

converge per

A:
$$\alpha > 0$$
 B: $3 < \alpha < \pi$ C: $\alpha > 1$ D: N.A. E: $\alpha \ge 1$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) < 0\}$$

valgono

$$\mathbf{A} \colon \{0,0,\pi,\pi\} \quad \mathbf{B} \colon \{-\infty,N.E.,2\pi,2\pi\} \quad \mathbf{C} \colon \{-\pi,-\pi,+\infty,N.E.\} \quad \mathbf{D} \colon \mathbf{N}.\mathbf{A}. \quad \mathbf{E} \colon \{-\infty,N.E.,+\infty,N.E.\}$$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(No	ome)				ume	ro di	i ma	trice	ola)					

1	0000
2	00000
3	0000
4	0000
5	0000
6	00000
7	
8	
9	0000
10	0000

1. Modulo e argomento del numero complesso $z=i^{2011}$ sono

A: N.A. B:
$$(2, -\pi/2)$$
 C: $(1, -\pi/2)$ D: $(1, \pi)$ E: $(1, \pi/3)$

2. L'integrale

$$\int_{-2}^{1} |x+1| \, dx$$

vale

A: N.A. B:
$$5/2$$
 C: 0 D: $\sqrt{2}$ E: $3/2$

3. Per t>0le soluzioni dell'equazione differenziale $x'(t)=(t\log(t))^{-1}$ sono

A:
$$\frac{t^2}{\log(t^2)} + c$$
 B: $\log(\log(t)) + c$ C: $t\log(t) + c$ D: N.A. E: N.E.

4. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + x \arctan(x))}{\log(x)}$$

vale

A: 0 B:
$$1/3$$
 C: N.E. D: $+\infty$ E: N.A.

5. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/12$ vale

A:
$$2x + \frac{\pi}{12}$$
 B: $1 + \sin(2x)(x - \pi/4)$ C: $\sqrt{3}x - \frac{\pi}{4\sqrt{3}} + \frac{1}{2}$ D: $+\frac{1}{2} + 2\sin(2x)\left(x - \frac{\pi}{12}\right)$ E: N.A.

6. Data $f(x) = \log(\log(3x))$. Allora f'(e) è uguale a

A:
$$\pi$$
 B: N.A. C: $\frac{1}{e \log(3e)}$ D: e^3 E: $\log(3e)$

7. La funzione
$$f(x) = \begin{cases} \pi/3 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$$

A: è continua, ma non derivabile. B: non è né continua né derivabile. C: è derivabile, ma non continua. D: N.A. E: è continua e derivabile.

8. La serie a termini non-negativi, definita per $\alpha \neq 0$,

$$\sum_{n=41}^{\infty} \Big| \log \big| \log \big(\frac{1}{n^{\alpha}}\big) \big| \Big|$$

converge per

A:
$$\alpha > 0$$
 B: N.A. C: $\alpha > 1$ D: $3 < \alpha < \pi$ E: $\alpha \ge 1$

9. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x-1| è

A: surgettiva B: N.A. C: derivabile ovunque D: iniettiva E: convessa

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) < 0\}$$

valgono

A:
$$\{0, 0, \pi, \pi\}$$
 B: $\{-\pi, -\pi, +\infty, N.E.\}$ C: N.A. D: $\{-\infty, N.E., 2\pi, 2\pi\}$ E: $\{-\infty, N.E., +\infty, N.E.\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)										(No	me)				ume	i ma	trice	ola)						

 $\mathrm{CODICE} = 280561$

A	В	С	D	Ε	

1	
2	
3	
4	
5	0000
6	
7	00000
8	00000
9	
10	

1. Il limite

$$\lim_{x \to +\infty} \frac{\log (x^3 + x \arctan(x))}{\log(x)}$$

vale

A: $+\infty$ B: 1/3 C: N.A. D: N.E. E: 0

2. La serie a termini non-negativi, definita per $\alpha \neq 0$,

$$\sum_{n=41}^{\infty} \left| \log \left| \log \left(\frac{1}{n^{\alpha}} \right) \right| \right|$$

converge per

A: $\alpha \ge 1$ B: N.A. C: $3 < \alpha < \pi$ D: $\alpha > 0$ E: $\alpha > 1$

3. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = (t \log(t))^{-1}$ sono A: $\log(\log(t)) + c$ B: $t \log(t) + c$ C: N.A. D: N.E. E: $\frac{t^2}{\log(t^2)} + c$

4. Data $f(x) = \log(\log(3x))$. Allora f'(e) è uguale a A: π B: e^3 C: N.A. D: $\log(3e)$ E: $\frac{1}{e\log(3e)}$

5. L'integrale

$$\int_{-2}^{1} |x+1| \, dx$$

vale

A: 3/2 B: N.A. C: $\sqrt{2}$ D: 0 E: 5/2

6. Modulo e argomento del numero complesso $z=i^{2011}$ sono

A:
$$(2, -\pi/2)$$
 B: $(1, \pi/3)$ C: $(1, -\pi/2)$ D: N.A. E: $(1, \pi)$

7. La funzione $f(x) = \begin{cases} \pi/3 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: è continua e derivabile. C: è derivabile, ma non continua. D: non è né continua né derivabile. E: è continua, ma non derivabile.

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x-1| è A: derivabile ovunque B: surgettiva C: N.A. D: iniettiva E: convessa

9. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/12$ vale A: $1+\sin(2x)(x-\pi/4)$ B: $+\frac{1}{2}+2\sin(2x)\left(x-\frac{\pi}{12}\right)$ C: N.A. D: $2x+\frac{\pi}{12}$ E: $\sqrt{3}x-\frac{\pi}{4\sqrt{3}}+\frac{1}{2}$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) < 0\}$$

valgono

A: $\{-\pi, -\pi, +\infty, N.E.\}$ B: $\{-\infty, N.E., 2\pi, 2\pi\}$ C: $\{0, 0, \pi, \pi\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)														(No	ome)				ume	ro di	i ma	trice	ola)			

Δ	R	C	D	\mathbf{E}
\boldsymbol{A}	D	\cup	ע	\mathbf{L}

1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	
3	
4	
5	
6	0000
7	
8	
9	
10	00000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) < 0\}$$

valgono

A: $\{0, 0, \pi, \pi\}$ B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{-\pi, -\pi, +\infty, N.E.\}$ D: N.A. E: $\{-\infty, N.E., 2\pi, 2\pi\}$

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x-1| è A: derivabile ovunque B: iniettiva C: convessa D: surgettiva E: N.A.

3. L'integrale

$$\int_{-2}^{1} |x+1| \, dx$$

vale

A: $\sqrt{2}$ B: 0 C: 5/2 D: 3/2 E: N.A.

4. Data $f(x) = \log(\log(3x))$. Allora f'(e) è uguale a A: π B: $\log(3e)$ C: N.A. D: $\frac{1}{e\log(3e)}$ E: e^3

5. La serie a termini non-negativi, definita per $\alpha \neq 0$,

$$\sum_{n=41}^{\infty} \left| \log \left| \log \left(\frac{1}{n^{\alpha}} \right) \right| \right|$$

converge per

A: $\alpha > 0$ B: $\alpha > 1$ C: $\alpha \ge 1$ D: N.A. E: $3 < \alpha < \pi$

6. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/12$ vale

A: $\sqrt{3}x - \frac{\pi}{4\sqrt{3}} + \frac{1}{2}$ B: $1 + \sin(2x)(x - \pi/4)$ C: $+\frac{1}{2} + 2\sin(2x)(x - \frac{\pi}{12})$ D: $2x + \frac{\pi}{12}$ E: N A

7. La funzione $f(x) = \begin{cases} \pi/3 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$

A: è continua e derivabile. B: N.A. C: è continua, ma non derivabile. D: è derivabile, ma non continua. E: non è né continua né derivabile.

8. Il limite

$$\lim_{x \to +\infty} \frac{\log \left(x^3 + x \arctan(x)\right)}{\log(x)}$$

vale

A: 1/3 B: $+\infty$ C: 0 D: N.A. E: N.E.

9. Modulo e argomento del numero complesso $z=i^{2011}$ sono

A: $(2, -\pi/2)$ B: $(1, \pi/3)$ C: $(1, -\pi/2)$ D: N.A. E: $(1, \pi)$

10. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = (t \log(t))^{-1}$ sono

A: $t \log(t) + c$ B: $\frac{t^2}{\log(t^2)} + c$ C: N.A. D: N.E. E: $\log(\log(t)) + c$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)														(N	ome)				ume	i ma	trice				

A	В	С	D	Ε	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	00000

1. L'integrale

$$\int_{-2}^{1} |x+1| \, dx$$

vale

A: 3/2 B: 0 C: 5/2 D: N.A. E: $\sqrt{2}$

2. Modulo e argomento del numero complesso $z=i^{2011}$ sono

A: N.A. B:
$$(1, \pi/3)$$
 C: $(1, -\pi/2)$ D: $(1, \pi)$ E: $(2, -\pi/2)$

3. Per t>0 le soluzioni dell'equazione differenziale $x'(t)=(t\log(t))^{-1}$ sono

A:
$$\log(\log(t)) + c$$
 B: N.E. C: N.A. D: $\frac{t^2}{\log(t^2)} + c$ E: $t \log(t) + c$

4. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x-1| è

A: derivabile ovunque B: surgettiva C: iniettiva D: N.A. E: convessa

5. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/12$ vale

A:
$$\sqrt{3}x - \frac{\pi}{4\sqrt{3}} + \frac{1}{2}$$
 B: N.A. C: $1 + \sin(2x)(x - \pi/4)$ D: $+\frac{1}{2} + 2\sin(2x)(x - \frac{\pi}{12})$ E: $2x + \frac{\pi}{12}$

6. Il limite

$$\lim_{x \to +\infty} \frac{\log (x^3 + x \arctan(x))}{\log(x)}$$

vale

A: 1/3 B: 0 C: $+\infty$ D: N.A. E: N.E.

7. La funzione $f(x) = \begin{cases} \pi/3 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: è derivabile, ma non continua. C: è continua e derivabile. D: non è né continua né derivabile. E: è continua, ma non derivabile.

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) < 0\}$$

valgono

A:
$$\{-\pi, -\pi, +\infty, N.E.\}$$
 B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{-\infty, N.E., 2\pi, 2\pi\}$ D: $\{0, 0, \pi, \pi\}$ E: N.A.

9. La serie a termini non-negativi, definita per $\alpha \neq 0$,

$$\sum_{n=41}^{\infty} \Big| \log \Big| \log \Big(\frac{1}{n^{\alpha}} \Big) \Big| \Big|$$

converge per

A: $3 < \alpha < \pi$ B: $\alpha > 0$ C: N.A. D: $\alpha > 1$ E: $\alpha \ge 1$

10. Data $f(x) = \log(\log(3x))$. Allora f'(e) è uguale a

A:
$$e^3$$
 B: $\log(3e)$ C: N.A. D: π E: $\frac{1}{e \log(3e)}$

10 febbraio 2011

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	\mathbf{E}	

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)														(N	ome)				ume	i ma	trice				

CODICE = 672944

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)														(N	ome)				ume	i ma	trice				

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

10 febbraio 2011

(Cognome)												-			(No	me)			-	ume	ro di	trice				

 $\mathrm{CODICE} = 280561$

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)												-			(No	me)			-	ume	ro di	trice				

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

																					L				
(Cognome)														(No	me)				ume	ma	trico	ola)			

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											_			(No	me)			(N	ume	ro di	ma	trico	ola)				

Α	В	С	D	Ε
	_	_	_	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	00000

1. La funzione
$$f(x) = \begin{cases} x\pi/2 & \text{per } x < 0\\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: N.A. B: non è né continua né derivabile. C: è derivabile, ma non continua. D: è continua, ma non derivabile. E: è continua e derivabile.

2. L'integrale

$$\int_{-1}^{2} |1 - x| \, dx$$

vale

A: N.A. B:
$$3/2$$
 C: $\sqrt{2}$ D: $5/2$ E: 0

3. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

A:
$$-\frac{3}{2}x + \frac{1}{2}(\frac{\pi}{6} + \sqrt{3})$$
 B: $1 + \cos(3x)(x - \frac{\pi}{6})$ C: N.A. D: $+\frac{1}{3} + 3\cos(3x)(x - \frac{\pi}{18})$ E: $3x + \frac{\pi}{18}$

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \cos(|x|) < 0\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: $\{0, 0, \pi, \pi\}$ C: $\{-\pi, -\pi, +\infty, N.E.\}$ D: $\{-\infty, N.E., 2\pi, 2\pi\}$ E: N.A.

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: convessa B: surgettiva C: N.A. D: iniettiva E: derivabile ovunque

6. Data $f(x) = \sqrt{e^{\cos x}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A: N.A. B:
$$\sqrt{e}$$
 C: $\frac{1}{2}$ D: $-\frac{1}{2}$ E: 1

7. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A:
$$t^2 e^{t^2} + c$$
 B: N.E. C: N.A. D: $e^t (t-1) + c$ E: $t \log(t) + c$

8. Modulo e argomento del numero complesso $z=\frac{1}{2}i^{2010}$ sono

A:
$$(2, \pi)$$
 B:

N.A. C:
$$(1, \frac{\pi}{2})$$
 D: $(\frac{1}{2}, \pi)$ E: $(2, -\frac{\pi}{2})$

9. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: 1 B: N.A. C: 0 D:
$$+\infty$$
 E: N.E.

10. La serie a termini non-negativi

$$\sum_{n=52}^{\infty} \frac{n^n}{\left(n!\right)^{1+\alpha}}$$

converge per

A:
$$\alpha \ge -1$$
 B: $\alpha > -1$ C: $\alpha > 0$ D: N.A. E: $-1 < \alpha < 0$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)									(No	ome)				ume	ro di	i ma	trice	ola)								

A	В	С	D	Ε	

1	
2	
3	
4	00000
5	0000
6	00000
7	00000
8	00000
9	
10	00000

1. La funzione
$$f(x) = \begin{cases} x\pi/2 & \text{per } x < 0\\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: è continua e derivabile. B: è continua, ma non derivabile. C: è derivabile, ma non continua. D: non è né continua né derivabile. E: N.A.

2. Modulo e argomento del numero complesso $z=\frac{1}{2}i^{2010}$ sono

A:
$$(1, \frac{\pi}{2})$$
 B:

N.A. C:
$$(2, \pi)$$
 D: $(\frac{1}{2}, \pi)$ E: $(2, -\frac{\pi}{2})$

3. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

A:
$$1 + \cos(3x)(x - \frac{\pi}{6})$$
 B: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ C: $3x + \frac{\pi}{18}$ D: N.A. E: $-\frac{3}{2}x + \frac{\pi}{18}$

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \cos(|x|) < 0\}$$

valgono

$$\text{A:} \left\{0,0,\pi,\pi\right\} \quad \text{B:} \left\{-\infty,N.E.,2\pi,2\pi\right\} \quad \text{C: N.A.} \quad \text{D:} \left\{-\infty,N.E.,+\infty,N.E.\right\} \quad \text{E:} \left\{-\pi,-\pi,+\infty,N.E.\right\}$$

5. Data $f(x) = \sqrt{\mathrm{e}^{cosx}}.$ Allora $f'(\frac{\pi}{2})$ è uguale a

A: N.A. B:
$$\frac{1}{2}$$
 C: 1 D: \sqrt{e} E: $-\frac{1}{2}$

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: derivabile ovunque B: surgettiva C: convessa D: N.A. E: iniettiva

7. La serie a termini non-negativi

$$\sum_{n=52}^{\infty} \frac{n^n}{\left(n!\right)^{1+\alpha}}$$

converge per

A:
$$\alpha > 0$$
 B: $\alpha > -1$ C: $\alpha \ge -1$ D: $-1 < \alpha < 0$ E: N.A.

8. L'integrale

$$\int_{-1}^{2} |1 - x| \, dx$$

vale

A:
$$3/2$$
 B: N.A. C: 0 D: $\sqrt{2}$ E: $5/2$

9. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: N.E. B:
$$+\infty$$
 C: 0 D: N.A. E: 1

10. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A:
$$t \log(t) + c$$
 B: N.A. C: N.E. D: $e^{t}(t-1) + c$ E: $t^{2}e^{t^{2}} + c$

10 febbraio 2011

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(No	ome)				ume	ro di	i ma	trice	ola)						

A	В	С	D	\mathbf{E}	

1	
2	00000
3	0000
4	0000
5	0000
6	00000
7	00000
8	
9	0000
10	0000

1. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: N.A. B: 0 C: $+\infty$ D: 1 E: N.E.

2. Modulo e argomento del numero complesso $z=\frac{1}{2}i^{2010}$ sono

A:

N.A. B: $(2, \pi)$ C: $(1, \frac{\pi}{2})$ D: $(\frac{1}{2}, \pi)$ E: $(2, -\frac{\pi}{2})$

3. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: N.A. B: derivabile ovunque C: surgettiva D: iniettiva E: convessa

4. La serie a termini non-negativi

$$\sum_{n=52}^{\infty} \frac{n^n}{(n!)^{1+\alpha}}$$

converge per

A: $-1 < \alpha < 0$ B: $\alpha \ge -1$ C: $\alpha > -1$ D: $\alpha > 0$ E: N.A.

5. L'integrale

$$\int_{-1}^{2} |1 - x| \, dx$$

vale

A: 5/2 B: 0 C: 3/2 D: $\sqrt{2}$ E: N.A.

6. Data $f(x) = \sqrt{e^{\cos x}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A: \sqrt{e} B: $-\frac{1}{2}$ C: $\frac{1}{2}$ D: N.A. E: 1

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \cos(|x|) < 0\}$$

valgono

 $\mathbf{A} \colon \{-\infty, N.E., +\infty, N.E.\} \quad \mathbf{B} \colon \{-\pi, -\pi, +\infty, N.E.\} \quad \mathbf{C} \colon \mathbf{N}.\mathbf{A}. \quad \mathbf{D} \colon \{0, 0, \pi, \pi\} \quad \mathbf{E} \colon \{-\infty, N.E., 2\pi, 2\pi\}$

8. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

$$\text{A:} \ -\frac{3}{2}x + \frac{1}{2}\left(\frac{\pi}{6} + \sqrt{3}\right) \quad \text{B:} \ 3x + \frac{\pi}{18} \quad \text{C: N.A.} \quad \text{D:} \ 1 + \cos(3x)(x - \frac{\pi}{6}) \quad \text{E:} \ +\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$$

9. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A: $t \log(t) + c$ B: N.E. C: N.A. D: $t^2 e^{t^2} + c$ E: $e^t (t-1) + c$

10. La funzione $f(x) = \begin{cases} x\pi/2 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è continua, ma non derivabile. B: non è né continua né derivabile. C: N.A. D: è continua e derivabile. E: è derivabile, ma non continua.

10 febbraio 2011

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(No	ome)				ume	ro di	i ma	trice	ola)						

1	00000
2	
3	0000
4	0000
5	0000
6	00000
7	00000
8	00000
9	00000
10	0000

1. La serie a termini non-negativi

$$\sum_{n=52}^{\infty} \frac{n^n}{(n!)^{1+\alpha}}$$

converge per

A: N.A. B: $\alpha > 0$ C: $\alpha > -1$ D: $-1 < \alpha < 0$ E: $\alpha \ge -1$

2. Per t>0 le soluzioni dell'equazione differenziale $x'(t)=te^t$ sono

A: $t \log(t) + c$ B: N.A. C: N.E. D: $e^t(t-1) + c$ E: $t^2 e^{t^2} + c$

3. La funzione $f(x) = \begin{cases} x\pi/2 & \text{per } x < 0\\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: non è né continua né derivabile. C: N.A. D: è continua e derivabile. E: è continua, ma non derivabile.

4. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

B: N.E. C: N.A. D: 1 $A: +\infty$

5. L'integrale

$$\int_{-1}^{2} |1 - x| \, dx$$

vale

A: $\sqrt{2}$ B: 3/2 C: 5/2 D: N.A.

6. Data $f(x) = \sqrt{e^{\cos x}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A: $\frac{1}{2}$ B: N.A. C: \sqrt{e} D: $-\frac{1}{2}$ E: 1

7. Modulo e argomento del numero complesso $z = \frac{1}{2}i^{2010}$ sono

A: $(1, \frac{\pi}{2})$ B:

N.A. C: $(\frac{1}{2}, \pi)$ D: $(2, -\frac{\pi}{2})$ E: $(2, \pi)$

8. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

La retta tangente al grafico di
$$y(x) = \cos(3x)$$
 nel punto $x_0 = \frac{\pi}{18}$ vale

A: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ B: $-\frac{3}{2}x + \frac{1}{2}\left(\frac{\pi}{6} + \sqrt{3}\right)$ C: N.A. D: $3x + \frac{\pi}{18}$ E: $1 + \cos(3x)(x - \frac{\pi}{6})$

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: iniettiva B: convessa C: derivabile ovunque D: surgettiva E: N.A.

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \cos(|x|) < 0\}$$

valgono

A: $\{0, 0, \pi, \pi\}$ B: N.A. C: $\{-\infty, N.E., 2\pi, 2\pi\}$ D: $\{-\pi, -\pi, +\infty, N.E.\}$ E: $\{-\infty, N.E., +\infty, N.E.\}$

10 febbraio 2011

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(No	ome)				ume	ro di	i ma	trice	ola)						

1	
2	00000
3	0000
4	0000
5	0000
6	00000
7	00000
8	
9	0000
10	0000

1. La serie a termini non-negativi

$$\sum_{n=52}^{\infty} \frac{n^n}{(n!)^{1+\alpha}}$$

converge per

A: N.A. B: $\alpha \ge -1$ C: $\alpha > 0$ D: $-1 < \alpha < 0$ E: $\alpha > -1$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \cos(|x|) < 0\}$$

valgono

A: $\{-\pi, -\pi, +\infty, N.E.\}$ B: $\{0, 0, \pi, \pi\}$ C: $\{-\infty, N.E., 2\pi, 2\pi\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: N.A.

3. La retta tangente al grafico di $y(x)=\cos(3x)$ nel punto $x_0=\frac{\pi}{18}$ vale

A:
$$-\frac{3}{2}x + \frac{1}{2}\left(\frac{\pi}{6} + \sqrt{3}\right)$$
 B: $3x + \frac{\pi}{18}$ C: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ D: N.A. E: $1 + \cos(3x)(x - \frac{\pi}{6})$

4. Modulo e argomento del numero complesso $z=\frac{1}{2}i^{2010}$ sono

A:
$$(2, -\frac{\pi}{2})$$
 B: $(1, \frac{\pi}{2})$ C:

N.A. D:
$$(\frac{1}{2}, \pi)$$
 E: $(2, \pi)$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: iniettiva B: derivabile ovunque C: N.A. D: surgettiva E: convessa

6. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: N.E. B: 1 C: $+\infty$ D: 0 E: N.A.

7. Data $f(x) = \sqrt{e^{\cos x}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A: N.A. B:
$$-\frac{1}{2}$$
 C: 1 D: \sqrt{e} E: $\frac{1}{2}$

8. La funzione $f(x) = \begin{cases} x\pi/2 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: è continua e derivabile. C: è continua, ma non derivabile. D: non è né continua né derivabile. E: è derivabile, ma non continua.

9. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A: N.A. B: N.E. C:
$$t \log(t) + c$$
 D: $t^2 e^{t^2} + c$ E: $e^t (t-1) + c$

10. L'integrale

$$\int_{-1}^{2} |1 - x| \, dx$$

vale

A: 5/2 B: 3/2 C: 0 D: N.A. E: $\sqrt{2}$

10 febbraio 2011

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 febbraio 2011

(Cognome)											(N	ome)				ume	i ma	trice							

A	В	С	D	\mathbf{E}	

1	00000
2	00000
3	0000
4	00000
5	
6	
7	
8	00000
9	
10	00000

1. L'integrale

$$\int_{-1}^{2} |1 - x| \, dx$$

vale

A: N.A. B: 0 C: $\sqrt{2}$ D: 5/2 E: 3/2

2. Modulo e argomento del numero complesso $z=\frac{1}{2}i^{2010}$ sono

A:

N.A. B: $(2, -\frac{\pi}{2})$ C: $(1, \frac{\pi}{2})$ D: $(\frac{1}{2}, \pi)$ E: $(2, \pi)$

3. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: convessa B: N.A. C: surgettiva D: derivabile ovunque E: iniettiva

4. La funzione $f(x) = \begin{cases} x\pi/2 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è continua, ma non derivabile. C: è derivabile, ma non continua. D: è continua e derivabile. E: N.A.

5. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A: N.A. B: $t^2e^{t^2} + c$ C: $t \log(t) + c$ D: N.E. E: $e^t(t-1) + c$

6. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

A:
$$-\frac{3}{2}x + \frac{1}{2}(\frac{\pi}{6} + \sqrt{3})$$
 B: $+\frac{1}{3} + 3\cos(3x)(x - \frac{\pi}{18})$ C: N.A. D: $1 + \cos(3x)(x - \frac{\pi}{6})$ E: $3x + \frac{\pi}{18}$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \cos(|x|) < 0\}$$

valgono

A:
$$\{-\infty, N.E., 2\pi, 2\pi\}$$
 B: N.A. C: $\{-\infty, N.E., +\infty, N.E.\}$ D: $\{0, 0, \pi, \pi\}$ E: $\{-\pi, -\pi, +\infty, N.E.\}$

8. Data $f(x) = \sqrt{\mathrm{e}^{\cos x}}.$ Allora $f'(\frac{\pi}{2})$ è uguale a

A: N.A. B:
$$\sqrt{e}$$
 C: $-\frac{1}{2}$ D: $\frac{1}{2}$ E: 1

9. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: $+\infty$ B: 0 C: 1 D: N.A. E: N.E.

10. La serie a termini non-negativi

$$\sum_{n=52}^{\infty} \frac{n^n}{(n!)^{1+\alpha}}$$

converge per

A: $\alpha > 0$ B: $\alpha \ge -1$ C: N.A. D: $\alpha > -1$ E: $-1 < \alpha < 0$

10 febbraio 2011

(Cognome)												(No	me)				ume	ma	trice	ola)					

CODICE = 276192

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

																					L				
(Cognome)												(No	me)				ume	ma	trico	ola)					

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)												(No	me)				ume	ma	trico	ola)					

A	В	С	D	Ε	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)										-			(No	me)			-	ume	ro di	trice					

CODICE = 425252

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)												(No	me)				ume	ma	trico	ola)					

A	В	С	D	Ε	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 febbraio 2011

(Cognome)									(Nome)								-	(Numero di matricola)														

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

PARTE B

1. Studiare, al variare del parametro $a \in \mathbb{R} \setminus \{0\}$, il grafico della funzione

$$f(x) = \log\left(\frac{x^2 + a}{ax}\right)$$
 per $x > 0$.

Soluzione: Il dominio D si trova risolvendo $(x^2+a)(ax)>0$ che ha come soluzione, per x>0

$$S = \begin{cases} x > 0 & \text{per } a > 0 \\ \{x < -\sqrt{-a}\} \cup \{0 < x < \sqrt{-a}\} & \text{per } a < 0, \end{cases}$$

e dovendo studiare solo il caso x > 0 si ha

$$D = \begin{cases} x > 0 & \text{per } a > 0 \\ \{0 < x < \sqrt{-a}\} & \text{per } a < 0, \end{cases}$$

Nel caso a > 0 si ha

$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = +\infty.$$

Per studiare la crescenza e decrescenza calcoliamo la derivata prima

$$f'(x) = -\frac{a - x^2}{x^3 + ax}$$

Che per x>0 si annulla solo per $x=\sqrt{a}$. La funzione risulta decrescente per $x<\sqrt{a}$ e raggiunge il minimo assoluto per $x=\sqrt{a}$ e il minimo vale $m=f(\sqrt{a})=\log\left(\frac{2}{\sqrt{a}}\right)$. Per studiare la convessità calcoliamo la derivata seconda $f''(x)=\frac{-x^4+4ax^2+a^2}{x^2(x^2+a)^2}$ e la derivata seconda ha lo stesso segno del numeratore che è una biquadratica che si annulla, per x>0, solo per

$$x = \sqrt{\sqrt{5}a + 2a}$$

Nel caso a < 0 studiamo i limiti agli estremi del dominio

Figura 1: a = 1

$$\lim_{x \to 0^+} f(x) = +\infty$$

$$\lim_{x \to \sqrt{-a}^{-}} f(x) = -\infty.$$

Inoltre studiando la derivata prima ci si accorge che f'(x) < 0 per $0 < x < \sqrt{-a}$, quindi la funzione è sempre decrescente. Inoltre dallo studio del segno della derivata seconda la funzione risulta convessa per $x < \sqrt{2a - \sqrt{5}a}$ e concava per $x > \sqrt{2a - \sqrt{5}a}$.

Figura 2: a = -.1

2. Trovare la soluzione del problema di Cauchy

$$\begin{cases} y''(t) - 2y'(t) + y(t) = t + \cos(t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

Le soluzioni della equazione omogenea sono $y=c_1e^t+c_2te^t$. La soluzione particolare va cercata per $f_1=t$ della forma $y_{f_1}=at+b$, mentre per il termine $f_2=\cos(t)$ della forma $y_{f_2}=\alpha\cos(t)+\beta\sin(t)$. Svolgendo i calcoli si trova l'integrale generale

$$c_1 e^t + c_2 t e^t + \frac{1}{2} (2t - \sin(t) + 4)$$

e imponendo le condizioni iniziali si trova finalmente

$$y(t) = \frac{1}{2} \left(3e^{t}t + 2t - 4e^{t} - \sin(t) + 4 \right).$$

3. Studiare la convergenza della serie

$$\sum_{n=2}^{+\infty} \sin\left(\frac{(-1)^n}{\log(n)}\right)$$

Soluzione: Dato che la funzione seno è dispari osserviamo che

$$\sin\left(\frac{(-1)^n}{\log(n)}\right) = (-1)^n \sin\left(\frac{1}{\log(n)}\right)$$

quindi abbiamo una serie a segni alterni. Inoltre $1/\log(n) < \pi/2$, se $n \ge 2$ e la funzione seno è crescente nell intervallo $[0,\pi/2]$, e dato che $1/\log(n)$ è decrescente come funzione di n si ha che sin $\left(\frac{1}{\log(n)}\right)$ risulta decrescente. Dato che sin $\left(\frac{1}{\log(n)}\right)$ è anche infinitesima, per il criterio sulle serie alterne, la serie converge.

4. Siano z e w numeri complessi di modulo uguale ad uno. Dimostrare che

$$\left[(z-1)(\overline{w}-1) \right]^2 \overline{z}w \in \mathbb{R}.$$

Sotto quali ipotesi $\left[(z-1)(\overline{w}-1)\right]^2\overline{z}w$ è un numero strettamente positivo?

(Suggerimento: Cominciare a studiare la quantità $(\alpha - 1)^2 \overline{\alpha}$ con $\alpha \in \mathbb{C}$ e $|\alpha| = 1$.)

Soluzione: Se $|\alpha|=1$ allora $\alpha=\mathrm{e}^{i\theta}$ e sostituend otteniamo

$$(\alpha - 1)^2 \overline{\alpha} = (e^{i\theta} - 1)^2 e^{-i\theta} = e^{i\theta} - 2 + e^{-i\theta} = 2\cos(\theta) - 2 \in \mathbb{R}$$

Il prodotto $\left[(z-1)(\overline{w}-1)\right]^2\overline{z}w$ risulta pertanto non-negativo essendo un quadrato. Si può annullare solo se almeno uno dei due termini si annulla, cioè se z=1 o se w=1, che corrisponde a $\theta=0$.