:קורס

. חדוייא א (20406) סמסטר 2024

. 9.5.2024 תאריך הבחינה.

מועד הבחינה - מועד 97. מועד ב.

מבנה הבחינה:

בבחינה שני חלקים - חלק א וחלק ב .

עליכם לענות על:

שאלות 1-4 בחלק א וכן לענות על 3 שאלות מבין 5-8 בחלק ב.

כל חומר עזר מותר בשימוש

פתרון הבחינה

כתב: חזי נוימן

חלק ראשון - שאלות סגורות 1-4. משקל כל שאלה בחלק זה הוא 7 נקודות

סמנו מהי התשובה הנכונה בעמוד האחרון של המחברת במקום המיועד לכך.

לחילופין, ניתן לרשום את התשובות בעמוד הראשון של המחברת בצורה ברורה.

לא נדרש נימוק - רק סימון במחברת מהי התשובה הנכונה.

אם אינכם יודעים את התשובה כדאי לנחש. אנו סופרים רק תשובות נכונות ולא מורידים ניקוד על טעויות.

שאלה 1 – שאלה סגורה

. f(0) = 6 ו- (-1,1) רציפה בקטע וויך אינה פונקציה f(x)

מי מבין הטענות 1,2 היא טענה נכונה ?

$$\lim_{x \to 0} \frac{f(x)}{6} = 1 \quad (2)$$

 $f(\frac{\cos x}{3})$ רציפה לכל (1

כל הטענות הנכונות הן:

ד. שתי הטענות לא נכונות

ב. 2 (ג.) שתי הטענות נכונות

מרוו שאלה 1

(2)

entil axeu 1 x. 12 x 1> x 20 x 1 > 1 d levil 200 cel c Erel 1 lel 10 cel.

$$\lim_{x\to 0} \frac{f(x)}{6} = \lim_{x\to 0} \frac{f(x)}{6} = \frac{f(0)}{6} = \frac{6}{6} = 1 = 7$$
 $\lim_{x\to 0} \frac{f(x)}{6} = \lim_{x\to 0} \frac{f(x)}{6} = \frac{6}{6} = 1 = 7$

(C): (1):0

שאלה 2 – שאלה סגורה

.
$$\int_{2}^{4} (|x-3|+|1-x|)dx$$
 חשבו

2 .n 4 .T 5 (.)

8 .N

פתרון שאלה 2

שאלה 3 – שאלה סגורה

 $p(x) = 1 - 4x + 1000x^4$ מהן הטענות הנכונות $p(x) = 1 - 4x + 1000x^4$ מהן ממעלה ארבע:

- ע. יש מינימום מוחלט בקטע. p(x) ל
 - עולה בקטע הנתון. p(x) (2
 - . יש בדיוק שני שורשים p(x) ל

כל הטענות הנכונות הן:

r							
	1,2,3 .7	2,3 .1	1,3 ה.	ד. 2,1	3 .λ	ב. 2	1 (.)

פתרון שאלה 3

(3) DYTATIONS TO BY THE BOY OF SHOWS (5)

שאלה 4 – שאלה סגורה

ינכונה 1-2 הטור הוא טור חיובי מתכנס. מי מבין הטענות $\sum_{n=1}^\infty A_n$ הטור הטור הוא טור חיובי מתכנס.

2	טענה	טענה 1		
. מתכנס $\sum_{n=1}^{\infty} (-1)^n \cos(n!) A_n$	הטור	. מתכנס $\sum_{n=1}^{\infty} \frac{(n+1)\cdot A_n}{n^2+1}$ מתכנס		

סמנו :....

ד. 1,2 לא נכונות	1,2	(3)	2 2	1	۸.
ו. 2 נכון. לגבי 1 לא ניתן לקבוע כי An לא		ה. 1 נכון. לגבי 2 לא ניתן לקבוע כי An לא			
נתון בצורה מפורשת.			נתון בצורה מפורשת.		

(n+1) An < (n+n) An = 2 An (1) (1) (1) (1)

[(-1)n (co(n!) An = |Co(n!)| · An = An => 10" (10) (10)

חלק שני - שאלות פתוחות 5-8 . השיבו על 3 שאלות בחלק זה. משקל כל שאלה בחלק זה הוא 24 נקודות.

שאלה 5

נגדיר
$$f(x) = xe^{-x} - x^2$$
 נגדיר $f(x) = xe^{-x} - x^2$

.
$$\lim_{x\to\infty}f(x)$$
 ; $\lim_{x\to\infty}f(x)$: חשבו (או הסבירו) את הגבולות הבאים (1 את הסבירו) חשבו (1 הסבירו)

- $-(-\infty,\infty)$ הוכיחו כי לפונקציה יש מקסימום מוחלט בקטע (2
- $(-\infty,\infty)$ הוכיחו כי לפונקציה אין מינימום מוחלט בקטע (3

{ סיוע: לסעיפים 2,3 יש קשר הדוק לסעיף 1

(9 נקי) (x_0, y_0) -ביסמן את נקודת המקסימום המוחלטת ב-

(נקודה זאת קיימת כפי שהוכחתם בסעיף הקודם)

 $x_0 > 0$, $y_0 > 0$: הוכיחו כי

$$\lim_{x\to\infty} xe^{-x} = \lim_{x\to\infty} \frac{x}{e^{x}} = \lim_{x\to\infty} \frac{1}{e^{x}} = \frac{1}{24} = 0$$

$$\lim_{x\to\infty} xe^{-x} = \lim_{x\to\infty} \frac{1}{e^{x}} = \lim_{x\to\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x\to\infty} xe^{-x} = \lim_{x\to\infty} \frac{1}{e^{x}} = 0$$

 $\lim_{x\to\infty} (xe^{-x}-x^2) = 0 - \omega^2 = -\infty! \lim_{x\to\infty} (xe^{-x}x^2) = (-\infty)(\infty) - \omega^2$ = - 69 /

7 4.50

f(x)=ex-x(2+ex): MIC o slown is sold on 15/7 7/2 X070 100 2000 0101100 131100 0100 100 /01

7 - 1 878 (0,76) 8672 pol flot o pel 7 - 138 (0,70) 81819.

NA 1878 - 157 - 157 (0,70) 81819 (0,

שאלה 6

. $\varphi(0)=1$; $\varphi(1)=0$ ומקיימת [0,1] ומקיימת $\varphi(x)$ פונקציה רציפה בקטע הסגור . $\varphi(2c)=3c$. פונקציה רציפה כך שמתקיים . $\varphi(2c)=3c$

.
$$\lim_{x \to 0} \frac{\frac{1}{\sqrt{1-x}} - \sqrt{1+x}}{\frac{1}{\sqrt{1+x}} - \sqrt{1-x}}$$
 חשבו את הגבול:

רמז: לא תמיד לופיטל היא הדרך הקצרה לחישוב גבול.

פתרון שאלה 6

K 3.80

. f(x)= 8/2x)-3x 750 Tp 5x ~5NNN 8/2c)=3c 18110N= :16.77 | 10,12] + G-7 1213 , f(x)

(XE [0,1] 'S) [0,1] 8GP> 12NUI A,30 2X 1/672 V

· [0, 2] 8677 AND 10213 9(x) / [0,17] 597 7073 8(x) V

[0, 2] 5672 NOS 00000 4/2X) 20000 NOS 1/61 (*)

1 1110 . f(20) = 3c = 0 0, 70 CE (0, \frac{1}{2}) \overline{0}, \pi \sigma \sigma \frac{1}{2} \overline{0}, \pi \sigma \sigma \frac{1}{2} \overline{0}, \pi \sigma \frac{1}{2} \overline{0}, \frac{1}{2} \overline{0}, \pi \sigma \frac{1}{2} \overline{0}, \frac{1}{2} \overline{0}, \pi \sigma \frac{1}{2} \overline{0}, \frac{1}{2} \overline{0} \overline{0}, \fr

1 Son 2X 15/c 10 2 Son P'-X -13.8 2000 PUX 18 14'0 . 8/2x) F 151 10 [1/c]

10 5, 0 st 15 vol

 $\mathcal{U}(4) = 2/2x / p = 5$ $\mathcal{U}(0) = 2 / p = 1 / p = 0$ $\mathcal{U}(1) = 2/2x / p = 0$ $\mathcal{U}(2) = 2$

4(0) = 2(0) = 1

~ 105> MISS 61= LEIX , WISS

(4)-4 / 1/10 / 3x 100) = 3x 100 / 3x 100) (2) (4) = 1/2 / 4/0) = 0 > 6 H'E

(5) -> C 21 | > /C -> /S ! ZIND PICT PAR 1 => 1-5 .3C= 8(20) 12/8 3C = U(0) 12/ (0/2)

 $\lim_{X\to 0} \frac{\frac{1}{\sqrt{1+x}} - \sqrt{1+x}}{\frac{1}{\sqrt{1+x}}} = \lim_{X\to 0} \frac{1-\sqrt{1-x^2}}{\frac{1-\sqrt{1-x^2}}{\sqrt{1+x}}} = \lim_{X\to 0} \frac{\sqrt{1+x}}{\sqrt{1+x}} = \lim_{$

שאלה 7

(14 נקי) f(x) במונחי במונחי במונחי . f(x) במונחי במונחי f(x) במונחי

.
$$\int_{0}^{\pi} \frac{\cos x}{1 + \sin^2 x} dx = 0$$
 הוכיחו כי מתקיים (2

 $[t=rac{\pi}{2}-x]$ [סיוע: ניתן להיעזר בסעיף 1 או בהצבה נחמדה מהצורה

. מתכנס
$$\sum_{n=1}^{\infty} \frac{1+(-1)^n n^p}{n^{2p}}$$
 ב. יהי $p>0.5$ הוכיחו כי הטור ב. יהי

פתרון שאלה 7

$$\int \frac{Gx}{1+5in^2x} dx = \int \frac{dt}{1+t^2} = \arctan(t) + Co = \arctan(\sin x) + Co$$

$$\int t = \sin x$$

$$\int dt = \cos x dx$$

$$\int - c = \left[\arctan(\sin x)\right]^{\frac{\pi}{2}} = \arctan(0) - \arctan(0) = 0$$

שאלה 8

. $u(x) = |1-x| \cdot \sin(\pi x)$ נגדיר (0, ∞) נגדיר א. בקטע הפתוח

השיבו על משימה אחת מבין המשימות הבאות העוסקות בפונקציה שלנו.

משימה ראשונה

. בקטע בקטות כי הפונקציה הנתונה גזירה לכל x

משימה שנייה

 $(1,\infty)$ הוכיחו כי נגזרת הפונקציה מתאפסת אין סוף פעמים בקטע

[רמז: אפילו לא נדרש לגזור את הפונקציה על מנת לענות על משימה זאת]

. בעזרת שיטות האינטגרציה שלמדתם בקורס. $\int\limits_{1}^{\infty} \frac{\sin(\frac{\pi}{x})}{x^3} dx$ חשבו חשבו – חשבו – בעזרת שיטות האינטגרציה שלמדתם בקורס.

<u>פתרון שאלה 8</u>

 $U(x) = (1-x).5in(\pi x) \qquad i. xin Top ocxel = 1/5 \\
U(x) = (x-1).5in(\pi x) \\
U(x) = (x-1).5in(\pi x) \\
\[
U(x) = (x-1).5in(\pi x) \\
\[
\left(x) = \left(x-1).5in(\pi x) \\
\left(x) = \left(x-1).5in(\pi x) \\
\left(x) = \left(x-1).5in(\pi x) \\
\[
\left(x) = \left(x-1).5in(\pi x) \\
\left(x) = \left(x) = \left(x-1).5in(\pi x) \\
\left(x) = \left(x) =$

. X -> 0 -1) = m & GICIO SI'M (MX)/X 113N8 - 4

/ 20406 קורס / 97 מועד ב / מועד א / 9.5.2024 תאריך / 20406

= lim (-1). /h/. sin(72h). 72 = $\lim_{h\to 0} [-1] \cdot \lim_{h\to 0} [h] \cdot \lim_{h\to 0} \frac{\pi h}{\pi h} \cdot \lim_{h\to 0} \pi = 0$ 1/28 Sint =1 $\int_{1}^{\infty} \frac{\sin(b)}{x^{3}} dx = \int_{-\pi^{2}}^{\infty} \frac{\sin(b)}{t} dt = \frac{1}{\pi^{2}} \int_{0}^{\pi} t \sin t dt$ $\int_{1}^{\infty} \frac{t}{x^{3}} dx = \int_{0}^{\infty} \frac{\sin(b)}{t} dt = \frac{1}{\pi^{2}} \int_{0}^{\pi} t \sin t dt$ $\int_{0}^{\pi} \frac{t}{x^{3}} dx = \int_{0}^{\pi} \frac{\sin(b)}{t} dx$ $\int_{0}^{\pi} \frac{t}{x^{3}} dx = \int_{0}^{\pi} \frac{\sin(b)}{t} dx$ $\int_{0}^{\pi} \frac{t}{x^{3}} dx = \int_{0}^{\pi} \frac{t}{x^{3}} dx$ $\int_{0}^{\pi} \frac{t}{x^{3}} dx = \int_{0}^{\pi} \frac{t}{x^{3}} dx$ $\int_{0}^{\pi} \frac{t}{x^{3}} dx = \int_{0}^{\pi} \frac{t}{x^{3}} dx$

$$\begin{cases} \text{if } x=1 \text{ then } t=\frac{\pi}{2}=\frac{\pi}{2}=\pi \\ \text{if } x=\infty \text{ then } t=\frac{\pi}{2}=0 \end{cases} = 0 \qquad \begin{cases} \text{cop} \times \text{c$$

also see that:
$$\frac{dx}{x^3} = \frac{(dx)(1)}{x^2} = \frac{(dt)}{x} \cdot \frac{(t)}{x} = -\frac{t}{x^2}$$

END