PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: H01L 21/316	A1	 (11) International Publication Number: WO 00/55895 (43) International Publication Date: 21 September 2000 (21.09.00)
(21) International Application Number: PCT/KR0((22) International Filing Date: 14 March 2000 (14)		DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT
(30) Priority Data: 1999/8740 16 March 1999 (16.03.99)	ĸ	Published R With international search report. In English translation (filed in Korean).
(71) Applicant (for all designated States except US): GEN INC. [KR/KR]; 1694-5, Sinil-dong, Taedok-ku, 306-230 (KR).		
(72) Inventor; and (75) Inventor/Applicant (for US only): KOH, Won-Yong [K 105-605 Hanul Apt., 160-1, Shinsung-dong, Yusa Taejon 305-345 (KR).		
(74) Agent: HUH, Jin-Seok; J.S. Huh Patent Office, 206 Building, 1338-22, Seocho-dong, Seocho-ku, 137-070 (KR).		
•		

(54) Title: METHOD OF FORMING AN ALUMINUM OXIDE FILM

(57) Abstract

The present invention relates to a method of forming an aluminum oxide film for use in semiconductor devices on a substrate. Organo-aluminum compound and alcohol, which are sources for the aluminum oxide film formation, are first prepared as gas phases, respectively. Then the gas phase sources are sequentially applied to the substrate to form an aluminum oxide film. In general, alcohol can be evacuated faster than water vapor in a vacuum chamber, which significantly reduces time required for source supply cycle. Therefore, according to the present invention, the growth rate of the aluminum oxide film can be increased compared with prior art methods. In addition, the cost associated with semiconductor device fabrication can be reduced because the temperature of both gas supply unit and a reactor can be decreased.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	2W	Zimbabwe
C1	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Pederation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
BE	Estonia	LR	Liberia	SG	Singapore		

WO 00/55895 PCT/KR00/00204

METHOD OF FORMING AN ALUMINUM OXIDE FILM

TECHNICAL FIELD

The present invention relates to a method of forming an aluminum oxide film, and more particularly to a method of forming an aluminum oxide film on a substrate for semiconductor devices.

BACKGROUND ART

10

20

30

Aluminum oxide film is well known to be used widely not only for optical purposes but also for protection films, gate oxide films and optical lithography masks for semiconductor devices as shown in the reference 1. (reference 1: E. Fredriksson and J.O. Carlsson, *Journal of Chemical Vapor Deposition*, vol. 1, p. 333 (1993)) Furthermore, reference 2 reported the use of aluminum oxide film for protection from hydrogen diffusion by forming an ultra-thin aluminum oxide film on a PZT(PbZrTiO₃) dielectric layer of a FeRAM(Ferroelectric Random Access Memory) (reference 2: Sang Min Lee, Young Kwan Park, In Son Park, Chang Soo Park, Cha Young Ryu, Sang In Lee, Mun Yong Lee, *Abstract of the 5th Korean Semiconductor Society* p. 255 (1998)).

Compared to the conventional chemical vapor deposition method which provides source materials of a thin film simultaneously, the sequential supply of source materials on a substrate can form a thin film only by a chemical reaction on a substrate surface. Therefore, the latter method can grow a thin film of uniform thickness irrespective of uneven substrate surface, and can control precisely film thickness because the growth of film depends not on process time but on the number of source material supply cycles. It is well described in the "Atomic Layer Epitaxy" edited by T. Suntola and M. Simpson (reference 3: T. Suntola and M. Simpson eds. *Atomic Layer Epitaxy*, Blackie, London (1990)).

As an application of the latter method, the formation of aluminum oxide film having a uniform thickness on an uneven substrate surface by a sequential supply of trimethylaluminum and water vapor was proposed in the reference 4. (reference 4: Y. Kim, S. M. Lee, C. S. Park, S. I. Lee, and M. Y. Lee, *Applied Physics Letters*, vol. 71, p. 3604 (1997)). Referring to the reference 4, trimethylaluminum, argon, water vapor

ı

WO 00/55895 PCT/KR00/00204

and argon are sequentially supplied for 1, 14, 1, and 14 seconds, respectively in each cycle while keeping the substrate at a temperature of 370°C in a reactor heated at 150°C. In each source material supply cycle, the film grows by 0.19nm which makes the total film growth rate of 0.38nm/min. This growth rate is too slow to be applied to semiconductor device fabrication. In order to enhance the film growth rate, each source material supply cycle should be shortened. In the technology disclosed in the reference 4, water vapor is used in the film growth. However, the water vapor is difficult to evacuate in a vacuum chamber, which makes the decrease of material supply cycle time difficult.

Furthermore, in case of using water vapor for the formation of an aluminum oxide film, the reactor and the gas supply unit where the water vapor passes should be kept at high temperature because water vapor is easily condensed in a cold unit. It increases energy consumption and workers may get burned during the operation and maintenance of the equipment.

15

20

25

30

10

DISCLOSURE OF INVENTION

Accordingly, it is an object of the present invention to provide a method of forming an aluminum oxide film by employing source materials which can be easily evacuated in a vacuum chamber and are less susceptible to condense in a reactor.

It is another object of the present invention is to provide a method which can form an aluminum oxide film faster than the method which employs water vapor.

In order to achieve the above objects, the method of forming an aluminum oxide film of the present invention comprises the steps of: preparing gases of organo-aluminum compound and alcohol for forming an aluminum oxide film; and contacting said gases sequentially and repeatedly onto a substrate.

The number of carbons in the alcohol molecule is preferably from 2 to 6, and more preferably the alcohol is isopropanol which is widely used in the semiconductor device fabrication.

Furthermore, the organo-aluminum compound is preferably trialkylaluminum, and more preferably the trialkylaluminum is trimethylaluminum.

REST MODE FOR CARRYING OUT THE INVENTION

WO 00/55895 PCT/KR00/00204

Preferred embodiment of the present invention will be described below.

First of all, trimethylaluminum and isopropanol are gasified and are supplied into a deposition chamber. Argon gas is provided as a purge gas between the supplies of the gasified trimethylaluminum and isopropanol. Because isopropanol has a high vapor pressure, it is supplied into the reactor directly using a carrier gas without an additional heating process. Trimethylaluminum gas, argon purge gas, isopropanol gas and argon purge gas are sequentially supplied for 2, 2, 2 and 2 seconds, respectively in each cycle which makes the gas supply period of 8 seconds. The trimethylaluminum decomposes above 300°C, so the source materials must be supplied at a temperature lower than 300°C to grow a film only by a surface reaction. When the film is grown on a substrate kept at 250 ~ 290 °C, the film growth rate by measuring the film thickness using an ellipsometer is determined to be 0.08nm per source material supply cycle or 0.60nm/min.

5

10

15

20

INDUSTRIAL APPLICABILITY

According to this invention, the temperature for gas supply unit and a reactor can be lowered compared to the previous methods. It can, therefore, simplify apparatus necessary for fabricating semiconductor devices and lower manufacturing cost. Furthermore, an aluminum oxide film with superior step coverage can be grown faster than prior art methods.

5

10

15

WHAT IS CLAIMED IS:

1. A method of forming an aluminum oxide film comprising the steps of:

preparing gases of organo-aluminum compound and alcohol for forming an aluminum oxide film; and

contacting said gases sequentially and repeatedly onto a substrate.

- 2. The method according to claim 1, wherein the number of carbons in said alcohol molecule is from 2 to 6.
 - 3. The method according to claim 2, wherein said alcohol is isopropanol.
- 4. The method according to any of claims 1 to 3, wherein said orgono-aluminum compound is trialkylaluminum.
 - 5. The method according to claim 4, wherein said trialkylaluminum is trimethylaluminum.
 - 6. The method according to claim 1, wherein the temperature of substrate is kept at $250 \sim 290$ °C at the step of contacting said gases sequentially and repeatedly onto a substrate.

INTERNATIONAL SEARCH REPORT

international application No. PCT/KR00/00204

A. CLAS	SIFICATION OF SUBJECT MATTER							
IPC7 H01L 21/316								
According to In	nternational Patent Classification (IPC) or to both natio	nal classification and IPC						
	DS SEARCHED							
Minimun docu IPC7 H01L 2	mentation searched (classification system followed by 21/316	classification symbols)						
Korean Paten	n searched other than minimun documentation to the extra stand applicatins for inventions since 1975 y models and applicatins for Utility models since 1975		fileds searched					
Electronic data KIPONET	a base consulted during the intertnational scarch (name	of data base and, where practicable, search to	rerms used)					
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.					
D, A	Applied Physics Letters, Vol 71, Page 3604, 1997		1,5					
	·••*							
Further	documents are listed in the continuation of Box C.	See patent family annex.						
"A" document	tegories of cited documents: defining the general state of the art which is not considered rticular relevence	"T" later document published after the internation date and not in conflict with the application the principle or theory underlying the inven	n but cited to understand					
"E" earlier app	olication or patent but published on or after the international	"X" document of particular relevence; the claims	ed invention cannot be					
"L" document	which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered to step when the document is taken alone						
special re	tablish the publication date of citation or other ason (as specified)	"Y" document of particular relevence; the claim considered to involve an inventive step wi						
"O" document means	referring to an oral disclosure, use, exhibition or other	combined with one or more other such doct being obvious to a person skilled in the art	ments, such combination					
1	published prior to the international filing date but later riority date claimed	"&" document member of the same patent family						
Date of the ac	tual completion of the international search	Date of mailing of the international search	report					
2	6 JUNE 2000 (26.06.2000)	29 JUNE 2000 (29.06.2000)						
1	ailing address of the ISA/KR	Authorized officer	Lan Carlo					
Government	strial Property Office Complex-Taejon, Dunsan-dong, So-ku, Taejon n City 302-701, Republic of Korea	SHIN, Chang Woo						
	92 42 472 7140	Telephone No. 82-42-481-5733	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					

