Requisitos

Definición 1 (Conjunto acotado). Sea $X \subseteq \mathbb{R}^n$. Entonces, X es un conjunto acotado si existe M > 0 tal que para cada $a \in X$,

$$||a|| \leq M$$
.

Corolario 2. Sea $x \in \mathbb{R}^n$. Entonces,

$$||x||_{\infty} \le ||x|| \le ||x||_1. \tag{1}$$

Sucesiones en \mathbb{R}^n

Definición 3 (Sucesión en \mathbb{R}^n). Una sucesión en \mathbb{R}^n es una función $a: \mathbb{N} \to \mathbb{R}^n$. Para cada $k \in \mathbb{N}$, el valor de a en k, se llama k-ésimo término de la sucesión.

Identificamos cada término de la sucesión con un superíndice:

$$a(k) := a^k$$
.

Denotaremos a toda la sucesión por $(a^k)_{k\in\mathbb{N}}$.

Note que cada sucesión en \mathbb{R}^n determina n sucesiones en \mathbb{R} , pues para cada $k \in \mathbb{N}$,

$$a^k = (a_1^k, a_2^k, \dots, a_n^k),$$

donde, para cada $j \in \{1, ..., n\}$, a_j^k es la entrada j-ésima del k-ésimo término de la sucesión.

Ejemplo 4. En \mathbb{R}^2 , sea $(x^k)_{k\in\mathbb{N}}$ la sucesión tal que para cada $k\in\mathbb{N}$, $x^k\coloneqq\left(\frac{1}{k},\frac{k^2}{k+1}\right)$. En este caso, $(x_1^k)_{k\in\mathbb{N}}=\left(\frac{1}{k}\right)_{k\in\mathbb{N}}$ y $(x_2^k)_{k\in\mathbb{N}}=\left(\frac{k}{k^2+1}\right)_{k\in\mathbb{N}}$.

Definición 5. Sean $(a^k)_{k\in\mathbb{N}}$, $(b^k)_{k\in\mathbb{N}}$ $y \lambda \in \mathbb{R}$.

• Se define la sucesión suma $((a+b)^k)_{k\in\mathbb{N}}$, donde para cada $k\in\mathbb{N}$,

$$(a+b)^k := a^k + b^k.$$

• Se define la sucesión producto $((ab)^k)_{k\in\mathbb{N}}$, donde para cada $k\in\mathbb{N}$,

$$(ab)^k := a^k b^k$$
.

• Se define la sucesión producto por escalar $(\lambda a^k)_{k\in\mathbb{N}}$, donde para cada $k\in\mathbb{N}$,

$$(\lambda a)^k := \lambda a^k.$$

Sucesiones convergentes

Definición 6. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n . Decimos que $(x^k)_{k\in\mathbb{R}^n}$ es una sucesión convergente si existe $l\in\mathbb{R}^n$ tal que para cada $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que para todo n>N,

$$||x^n - l|| < \varepsilon.$$

En ese caso, decimos que l es el límite de la sucesión $(x^k)_{k\in\mathbb{N}}$.

Proposición 7. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R}^n . Entonces, su límite es único.

Demostración. Ejercicio.

Proposición 8. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R}^n . Entonces, la sucesión es un conjunto acotado en \mathbb{R}^n .

Demostración. Ejercicio.

Proposición 9. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n y $a\in\mathbb{R}^n$. Entonces, $(x^k)_{k\in\mathbb{N}}$ es convergente y su límite es a, si y solo si, para cada $j\in\{1,\ldots,n\}$, la sucesión $(a_j^k)_{k\in\mathbb{N}}$ es convergente en \mathbb{R} y su límite es a_j .

Demostración. \Longrightarrow) Supongamos que $(x^k)_{k\in\mathbb{N}}$ es convergente y su límite es a. Sea $\varepsilon > 0$. Entonces, existe $N \in \mathbb{N}$ tal que para todo n > N, $||x^n - l|| < \varepsilon$. Sea $j \in \{1, \ldots, n\}$. Por el corolario 2, tenemos

$$|x_j^n - l_j| \le ||x^n - l|| < \varepsilon.$$

Por lo tanto, la sucesión $(x_j^k)_{k\in\mathbb{N}}$ converge a l_j en \mathbb{R} .

 \iff Supongamos que para cada $j \in \{1, ..., n\}$, la sucesión $(a_j^k)_{k \in \mathbb{N}}$ es convergente en \mathbb{R} y su límite es a_j . Sea $\varepsilon > 0$. Entonces, existen $N_1, ..., N_n \in \mathbb{N}$ tales que para cada $j \in \{1, ..., n\}$, si $n > N_j$, se satisface

$$|x_n^k - l_j| < \frac{\varepsilon}{N_j}.$$

Haciendo $N := \max\{N_1, \dots, N_n\}$, si n > N, por el corolario 2,

$$||x^n - l|| \le \sum_{j=1}^n |x_j^k - l_j| < \varepsilon.$$

Proposición 10 (Propiedades de los límites). Sean $(a^k)_{k\in\mathbb{N}}$, $(b^k)_{k\in\mathbb{N}}$ sucesiones convergentes en \mathbb{R}^n , $(\lambda^k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R} . Entonces,

- i) $\lim_{k\to\infty} (a+b)_k = \lim_{k\to\infty} a_k + \lim_{k\to\infty} b_k$.
- $ii) \lim_{k\to\infty} (\lambda a)_k = \lim_{k\to\infty} \lambda_k \lim_{k\to\infty} a_k.$
- iii) Sea $\gamma \in \mathbb{R}$. Entonces, $\lim_{k \to \infty} (\gamma a)_k = \gamma \lim_{k \to \infty} a_k$.

Demostraci'on. Hacemos $l_1 := \lim_{k \to \infty} a_k$ y $l_2 := \lim_{k \to \infty} b_k$.

i) Sea $\varepsilon>0$. Entonces, existen $N_1,\,N_2\in\mathbb{N}$ tales que si $n>N_1$ y $j>N_2$, entonces

$$||a^k - l_1|| < \frac{\varepsilon}{2}, \qquad ||b^j - l_2|| < \frac{\varepsilon}{2}.$$

Sea $N := \max\{N_1, N_2\}$. Entonces, si $m \ge N$,

$$||a+b-l_1-l_2|| \le ||a-l_1|| + ||b-l_2|| < \varepsilon.$$

ii) Sea $\varepsilon > 0$. Si $\gamma = 0$, se tiene el resultado. Supongamos que $\gamma \neq 0$. Entonces, existe $N \in \mathbb{N}$ tal que si n > N,

$$||a^n - l_1|| \le \frac{\varepsilon}{|\gamma|}.$$

Luego, para cada n > N,

$$\|\gamma a^n - \gamma l_1\| = |\gamma| \|a^n - l_1\| < \varepsilon.$$

iii) Ejercicio.

Proposición 11. Sean $X \subseteq \mathbb{R}^n$ y $a \in \mathbb{R}^n$. Entonces, $a \in \overline{X}$ si y solo si existe una sucesión de elementos de X, $(x^k)_{k \in \mathbb{N}}$, tal que $\lim_{k \to \infty} x^k = a$.

 $Demostración. \Longrightarrow$) Supongamos que $a \in \overline{X}$. Entonces, para cada $m \in \mathbb{N}$,

$$X \cap B(a, \frac{1}{m}) \neq \varnothing.$$

Sean $\varepsilon > 0$ y $(x^k)_{k \in \mathbb{N}}$ una sucesión tal que para cada $k \in \mathbb{N}$, $x^k \in X \cap B(a, \frac{1}{m})$. Notemos que si $n \ge m$, entonces $B\left(a, \frac{1}{n}\right) \subseteq B\left(a, \frac{1}{m}\right)$.

Luego, por la propiedad arquimediana, existe $N\in\mathbb{N}$ tal que $\frac{1}{N}<\varepsilon.$ Por lo tanto, si n>N,

$$||x^n - a|| < \frac{1}{n} < \frac{1}{N} < \varepsilon.$$

3

 \Leftarrow Supongamos que existe una sucesión de elementos de X que converge a a, es decir, una sucesión $(x^k)_{k\in\mathbb{N}}$, tal que $\lim_{k\to\infty} x^k = a$. Entonces, por la definición de límite, para todo $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que si n > N,

$$||x^n - a|| < \varepsilon.$$

Esto es, $B(a,\varepsilon) \cap X \neq \emptyset$, pues todos los términos de la sucesión son elementos de X. Por lo tanto, $a \in \overline{X}$.

Corolario 12. Sea $X \subseteq \mathbb{R}^n$. Entonces, X es cerrado si y solo si existe una sucesión de elementos de X, $(x^k)_{k \in \mathbb{N}}$, tal que $\lim_{k \to \infty} x^k = a$.

1. Ejercicios

- 1. Demuestre que el conjunto de sucesiones en \mathbb{R}^n con las operaciones de la definición 5 es un espacio vectorial.
- 2. Escriba la definición de sucesión convergente en términos de la distancia euclidiana y de bolas en \mathbb{R}^n .
- 3. Determine si las siguientes son sucesiones convergentes. De ser así, proponga el límite y demuestre que la sucesión converge a este punto.
 - Sea $(x^k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R}^2 tal que para cada $k\in\mathbb{N}, x^k:=\left(\frac{1}{k},\frac{k}{k+1}\right)$.
 - Sea $(x^k)_{k \in \mathbb{N}}$ la sucesión en \mathbb{R}^2 tal que para cada $k \in \mathbb{N}$, $x^k := \left(\frac{k}{2k+1}, \frac{2k^2}{3k^2+1}\right)$.
 - Sea $(x^k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R}^3 tal que para cada $k\in\mathbb{N}, x^k:=\left(\frac{1-k}{2k},\frac{k}{k^2+1},\frac{2-k^2}{3+k^2}\right)$.
- 4. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R}^n y sea $p\in\mathbb{N}$. Definimos la sucesión $(y_k)_{k\in\mathbb{N}}$ de modo que para cada $k\in\mathbb{N}, y^k:=x^{p+k}$. Entonces, $\lim_{k\to\infty}y^k=\lim_{k\to\infty}x^k$.
- 5. Demuestre la proposición 7.
- 6. Demuestre la proposición 8.
- 7. Demuestre el corolario 12.
- 8. Sean $a, b \in \mathbb{R}$, tales que a < b. Demuestre que [a, b] es cerrado utilizando el corolario 12.