1INF03 - Análisis de Datos

Lucio Cornejo

2022-04-08

Table of contents

Metodología KDD	4
¿Qué es un dato?	4
Descripción de la metodología KDD	4
Etapas de la metodología KDD	
Otras metodologías	9
Step 1: "Entendimiento del negocio"	10
Describir problema o situación a analizar	10
Definir los objetivos	10
Delimitar la población de análisis	11
Identificar recursos necesarios	11
Identificar limitaciones	
Output del paso 1: Ficha técnica del proyecto de análisis de datos	
Descripción	
Apuntes del curso Análisis de Datos , dictado en la <i>Pontificia Universidad Católica Perú</i> .	del

Clases

Semana 03/21

- Será necesario hacer un grupo con otros estudiantes del curso, con quienes se comparta afinidad de investigación, para el proyecto final del curso, el cual se irá desarrollando a lo largo del curso.
- Python y R son complementatios, no es que uno sea mejor que el otro.
- En el curso, usaremos Python en su mayoría, pero también se compartirá, después de clase, el código análogo ,en R, de lo que trabajemos.
- En la unidades 4 y 5, es donde más podremos contrastar el uso de Python y R. De esa manera, uno tendría más claro qué lenguaje escoger al momento de iniciar algún proyecto particular.
- Fechas de laboratorio

- 9 abril
- -23 abril
- 7 mayo
- 11 junio
- 25 junio
- Las dirigidas (perhaps a veces pcs) de IOP se me cruzan con todos los labs, excepto por el primero.

Metodología KDD

¿Qué es un dato?

- El dato es el valor de una característica/variable/atributo (edad, sexo, etc) de la población (población delimitada en espacio, tiempo, etc).
- Procesos paralelos

 $Variable \Rightarrow Variable aleatoria \Rightarrow Dato$

Población \Rightarrow Muestra \Rightarrow Observación

- La información parte de la unión de los datos recopilados.
 - Es de utilidad para tomar decisiones.
 - Un solo dato, por su cuenta, no nos da información.
- El **conocimiento** es un conjunto de informaciones aplicadas, que permite preveer y planificar.
 - La información asociada a un contexto y una experiencia se convierte en conocimiento.

Descripción de la metodología KDD

- KDD: Knowledge Discovery in Databases
- Algunas definiciones:

Knowledge Discovery in Databases is the non trivial process of identifying valid, novel, potentially useful, and utimately understandable patterns in data.

• Nivel bajo de datos se refiere a datos que no nos dice nada, pero que podría servir para generar conocimiento a partir de estos datos.

Etapas de la metodología KDD

- Esta metodología nos da pasos para cómo convertir datos en conocimiento.
- Estas etapas no son obligatorias ... sirven de **guía**.

Figure 1: Etapas de la metodología KDD

- En la etapa **selection**, se reduce la cantidad de data, quedándonos con la data que **nos va a servir** para lograr el objetivo de nuestro análisis.

 Implica filtrar filas y/o columnas/variables de la data (entendida como data frame).

 Requiere el entendimiento del objetivo del análisis.
- La parte de información surge en la etapa **Patterns** de la metodología KDD. Esa información requiere del bloque *interpretation/evaluation* (ver imagen) para convertirse en **knowledge**.
- El paso de **Transformed data** a patterns es vía "Descriptive methods".

Figure 2: Etapas (más a detalle) de la metodología KDD

- Las flechas verticales indican que, a medida que avanzamos en las etapas, podemos volver al inicio para poder obtener nueva data que haya surgido la necesidad de requerir para el análisis.
- El bloque **Active DM** (**Data Mining**) se refiere a que el proceso *Data mining* forma parte de TODO el proceso de 9 pasos (es otro enfoque).

 Regresar a cualquier paso es válido.

1. Paso 1

- Es el paso principal.
- Reunirse con los expertos del tema en que se va a trabajar. Se discuten cosas como
 - ¿Cómo sucede el fenómeno?
 - ¿Qué agentes intervienen con el fenómeno?
 - ¿Qué datos se recolectan (variables disponibles) o se pueden recolectar para el fenómeno?
 - ¿Para qué población se va a construir el proyecto?
- Se habla en lenguaje entendible para todos los expertos, no usando, por ejemplo, palabras particulares de Estadística.
- Se busca entender el negocio/problema.
- Se busca identificar la **meta** del proceso KDD desde la perspectiva del **customer**.
- Es más que nada un proceso *cualitativo* que servirá para formalizar el análisis futuro.
- Es recomendable crear una ficha resumen sobre este paso, donde se anota la información recopilada en la reunicón (o reuniones) con el customer.
 - Asignar un experto del negocio como encargado del proyecto. Esta persona debe ir validando el avance del proyecto, en cada uno de los 9 pasos.
 - Anotas una meta principal y las secundarias.
 - Una vez completa esta ficha resumen es que podemos pasar al siguiente paso;
 debe redactarse, quedar como evidencia.

2. Paso 2

- Creating a target data set.
- Filtramos la data para obtener un subconjunto, tanto en variables (columnas) y data samples (filas), al cual se le analizará durante pasos siguientes.
- No se trata de la selección de variable que se realiza con código, por ejemplo la que busca explicar un fenómeno con las variables *independientes*.
- Esta selección **no** tiene que ver con la **calidad de datos.** Esa selección ocurrirá más adelante.
- Formalmente, estos filtros se realizan en base a criterios de inclusión/exclusión.

3. Paso 3

- Data cleaning and preprocessing.
- Se le dice también remover el ruido. Donde, el ruido hace referencia a los datos atípicos.

- Se ve la forma de trabajar los datos perdidos.
 - Para construir un modelo, necesitamos lidiar primero con los datos perdidos.
 - Dependiendo del contexto, y requiriendo fundamento, se pueden imputar/reemplazar los datos vacíos por cero, la mediana de esa variable, etc.
 - Desde el punto de vista de la profesora, máximo se debería imputar el 30% de los valores vacíos de una misma variable (que tiene varios valores vacíos).
 Pues, sino, se estaría trabajando con una variable ficticia, y podría así generar ruido en los resultados obtenidos.
 - Pero eso **no es una regla**. La decisión de imputación dependerá del contexto/fenómeno, y debe estar fundamentada **numéricamente**, además de tener sentido respecto al negocio.
 - (Por ejemplo, si imputar una variable por cero tiene sentido en cierto contexto particular).
- Debido, en parte, a estas razones, es importante la comunicación constante con un experto del negocio.

4. Paso 4

- Data reduction and projection.
- La transformación de la data debe suceder después de la limpieza de esta.

Semana 03/28

- Step 4
 - Data reduction and projection.
 - Using methods to reduce the number of variables.
 - * Análisis factorial
 - * Análisis por componentes
 - * Etc
- Step 5
 - Resumir, clasificar, regresión, etc, para las variables.
- Step 6
 - Choosing the data mining algorithms
 - Se recomienda establecer mínimo tres modelos para poder compararlos tras su funcionamiento.
 - No escoger solo un módelo.
- Step 7
 - Data mining: Buscando patrones de interés

- Step 8
 - Identificar e interpretar los patrones encontrados.
 - La primera identificación es matemática/numérica/estadística.
- Step 9
 - Combinar la interpretación numérica del paso 8 junto a la expertise sobre el negocio, con el fin de poder darle utilidad a lo hallado.

Otras metodologías

Figure 3: Otras metodologías conocidas

Step 1: "Entendimiento del negocio"

Describir problema o situación a analizar

- El problema debe expresar una relación entre dos o más variables.
- Debe estar formulado claramente, sin ambigüedad, como pregunta.
- Debe implicar la posiblidad de realizar una prueba empírica o una recolección de datos.

Definir los objetivos

- ¿Qué se desea lograr?
- ¿Cómo ayudará al negocio?
- Principales áreas interesadas
- Otros objetivos a tener en cuenta.
- ¿Qué características debe tener para ser considerado factible?
- ¿Qué esperan recibir?
- ¿Cómo están pensando utilizar el resultado del análisis de datos?
- ¿Con cuánto tiempo contamos?
- Objetivos de analisis de datos
 - Traducir los objetivos del negocio en **objetivos para el análisis**.
 - Establecer las métricas o criterios de evaluación de resultados, que serán útiles para el negocio.
 - Diseñar un Plan de Análisis de Datos , considerando tiempos, hitos de desarrollo, responsables y fechas para presentación de avances.
 - Validar cada paso con el negocio.

Delimitar la población de análisis

- La delimitación principal es en espacio y tiempo.
- Uso de los siguientes criterios:
 - Caso retrospectivo:
 - * Inclusión: Características que deben reunir las unidades de observación.
 - * Exclusión: Características que deben estar ausentes en las unidades de observación.
 - Caso prospectivo:
 - * Eliminación: Son aquellas características que aparecen una vez que ya han sido selecctionadas las unidades de observación (surgen en la medida que se realiza el análisis)

Identificar recursos necesarios

- Personas
 - 1. Experto del negocio
 - 2. Líder analítico del proyecto
 - 3. Equipo especialista de analistas de datos
 - 4. Equipo de accesso e ingeniería de datos
- Datos
 - Identificar fuentes y dueños de los datos
 - Preguntar por la calidad de datos por recibir
 - * ¿Cómo se recolectaron los datos?
 - * ¿Cómo se guardaron los datos?
 - * ¿Cómo se llenó la tabla de datos?
- Herramientas
 - Softwares disponibles (libres o con licencia)
 - Entorno para selección y preprocesamiento
 - Entorno para entrenamiento de modelos
 - Entorno para despliegue de modelos

Identificar limitaciones

• Limitaciones del negocio

- Posibles restricciones de capacidad operativa
- Poder de acción para utilizar los resultados
- Normativas de la institución o empresa
- Limitaciones respecto a datos
 - Si tendremos acceso a todos los datos
 - ¿Se tendrá acceso a toda la población definida?
 - * Accesso para que el modelo pueda ser usado por los usuarios relevantes
- Limitaciones respecto al **tiempo**
 - Restricciones en el tiempo de análisis
 - Tiempo para el despliegue del modelo

Output del paso 1: Ficha técnica del proyecto de análisis de datos

- Archivo en Paideia
 - Las partes role y area no serán necesario llenarlas.
 - Problemática
 - * Colocar como pregunta, tipo, "¿Se puede blah ...?"
 - Importante plasmar las limitaciones.
 - Acciones de negocio con los resultados
 - * Cómo van a desplegar el modelo creado

Laboratorios

References