功率放大器

功率放大电路的分类以及特点:

放大电路类别	静态工作点位置	电流波形	电路特点	用途
甲类	i_c Q u_{ce}	i_c θ ωt	导通角θ=2π 静态电流大,管耗大 电路转化效率低 非线性失真小	用于小信号放大电路
乙类	i_c Q u_{ce}	$i_c \uparrow \qquad \omega t$	导通角θ=π 静态电流为零,管耗小 电路转化效率高 非线性失真大	用于功率放大电路
甲乙类	i_c Q u_{ce}	i_c ωt	导通角π<θ<2π 静态电流小,管耗小 电路转化效率高 非线性失真比甲类大比乙类小	用于功率放大电路

功率放大器

根据导通角进行分类

1、功率放大电路的分类:

甲类功率放大器:导通角θ=360°,整个周期有电流

乙类功率放大器:导通角θ=180°,半个周期有电流

甲乙类功率放大器:导通角θ=180°~360°,大于半个周期有电流

丙类功率放大器:导通角θ<180,小于半个周期有电流

2、乙类功率放大器输出波形存在(交越失真),(交越失真)的实质是(截止失真)

(交越失真) 是由于三极管的输入特性曲线存在(死区电压)导致的

甲乙类功率放大器消除了(交越失真)

- 3、功率放大器负载功率、功放管功率来源于(直流电源)
- 5、功放电路的能量转换效率主要和(电路类型)有关
- 7、乙类功率放大器的能量转换效率最高是78.5%
- 8、正常时,OCL功率放大器的中点电压是 V_{CC} ,OTL功率放大器的中点电压是 $\frac{V_{CC}}{2}$