LPMS Note

1 General Linear Programming Problem

General LP Problem: Decision Variables: x_i parameters: a_{ij} , b_i , c_i Objective Function: f Constraints: subject to 后边的部分

LP problem can be written as:

maximize
$$f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 subject to
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$$

$$x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$$

We can also write the LP problem in matrix form:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
maximize $f = \mathbf{c}^T \mathbf{x}$
subject to $A\mathbf{x} \le \mathbf{b}$ $\mathbf{x} \ge 0$

Feasible Solution: If x satisfies all constraints (i.e. $Ax \le b$), then x is a feasible solution. (可行解) Optimal Sol: (最优解) (可多个) Find Optimal Solution: Graphical Method: 略. Vertex Enumeration: 所有顶点检查, 找出最优解. Simplex Method: 后面详述. Slack Variables: For each inequality constraint, we introduce a slack variable x_i (i > n) to convert it to an equation. (松弛变量)

LP problem can be written as: $ps: x_i \ge 0 \ (i > n)$. maximize $f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + x_{n+1} = b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + x_{n+2} = b_2$ \vdots $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + x_{n+m} = b_m$ $x_1 \ge 0, x_2 \ge 0, \dots, x_{n+m} \ge 0$

We can also write the LP problem in matrix form:

$$\overline{A} = [A \ I_m], \mathbf{b} = \mathbf{b}, \overline{\mathbf{c}} = \begin{pmatrix} \mathbf{c} \\ \mathbf{0}_{m \times 1} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} \mathbf{x} \\ \vdots \\ \chi_{n+m} \end{pmatrix}$$
maximize $f = \overline{\mathbf{c}}^T \mathbf{x}$
subject to $\overline{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$
Solving: $\mathbf{x} = \mathbf{x}_b + \mathbf{v}$ where $\overline{A}\mathbf{v} = 0$ and $\mathbf{x}_b = [\mathbf{0} \ \mathbf{b}]^T$

Feasible Region: It's the set *K* of the solutions to $\overline{A}\mathbf{x} = \mathbf{b}$ **Convex Set**: The set *K* is convex if $\forall \mathbf{x}, \mathbf{x}' \in K, \forall \theta \in [0, 1], \mathbf{x}_{\theta} = (1 - \theta)\mathbf{x} + \theta \mathbf{x}' \in K$.

Vertex on Convex Set: A vertex of the convex set K is a point $\mathbf{x} \in K$ which doesn't lie strictly inside any line segment connecting two points in K.

・**Theorem**: If LP has a unique optimal solution is a vertex. **Theorem**: If LP has a non-unique solution, \exists optimal solution at vertex **Basic solution**: 修改 x_i 顺序: $\overline{A} = [B\ N]$ with corresponding $\mathbf{x} = [\mathbf{x}_B\ \mathbf{x}_N]^T$, where B is $m \times m$ invertible matrix. $\overline{A}\mathbf{x} = \mathbf{b} \Leftrightarrow B\mathbf{x}_B + N\mathbf{x}_N = \mathbf{b}$ $\mathbf{x}_B = B^{-1}\mathbf{b}, \mathbf{x}_N = \mathbf{0}$ is basic sol.

• We use $\mathcal{B} = \operatorname{index} \operatorname{of} x_i \operatorname{in} B$. $\mathcal{N} = \operatorname{index} \operatorname{of} x_i \operatorname{in} N$ Basic Feasible Solution (BFS): If $\mathbf{x}_B \ge 0$, it is. + It's a vertex of K.