Tree

Introduction to Trees

a connected undirected graph with no simple circuits

Connected Graph

Connected Graph

Not a tree

Simple Circuits

Simple path that begins and ends at the same vertex.

Simple path: a sequence of vertices without repetition

Simple Circuit

Not a tree

Simple Circuit

Not a tree

Rooted Tree

one vertex is designated as the root and every edge is directed away from the root.

Rooted Tree

Parent

Parent of 0 =

Parent

Parent of 0 = 2

Siblings

Siblings of 0 =

Siblings

Siblings of 0 =

Siblings

Siblings of 0 = 3

Ancestor of a vertex

Ancestor of 0 = vertices in the path from root vertex 0 Excluding 0

Ancestor of a vertex

Ancestor of 0 = vertices in the path from root vertex 0 Excluding 0

Ancestor of a vertex

Ancestor of 0 = vertices in the path from root vertex 0 Excluding 0

4,2

Descendant of a vertex

Descendants of 2 = vertices whose ancestors are 2

Descendant of a vertex

Descendants of 2 = 0, 3, 6

Leaf Nodes

Vertices that have no children

Internal Nodes

Vertices that have children

Subtree rooted at a vertex

No of children of every internal vertex <= m

No of children of every internal vertex <= m

Vertex 4 = 2 Vertex 1 = 1 Vertex 2 = 2 Vertex 0 = 1

A 1- ary tree No A 2- ary tree y_{es} A 3- ary tree y_{es}

Full M-ary tree

No of children of every internal vertex = m

Vertex 4 = 2

Vertex 1 = 1

Vertex 2 = 2

Vertex 0 = 1

A Full 1- ary tree No

A Full 2- ary tree

No

Ordered Rooted Tree

the children of each internal vertex are shown in ordered from left to right.

First child of 2 = 0 (Left child)

Second child of 2 = 3 (Right child)

the length of the unique path from the root to this vertex.

the length of the unique path from the root to this vertex.

LEVEL OF ROOT = 0

the length of the unique path from the root to this vertex.

LEVEL OF 0 =

the length of the unique path from the root to this vertex.

LEVEL OF 0 =

the length of the unique path from the root to this vertex.

LEVEL OF 0 = 2

Height of a tree

= MAX (Level of vertices)

Height of a tree

= MAX (Level of vertices)

```
Level of
Vertex 4 = 0
Vertex 1 = 1
Vertex 2 = 1
Vertex 5 = 2
Vertex 0 = 2
Vertex 3 = 2
Vertex 6 = 3
```

Height = Max(0, 1, 1, 2, 2, 3) = 3

Balanced Tree

If height = h, all the leaves are at Level h or h-1

Level of

Vertex 4 = 0

Vertex 1 = 1

Vertex 2 = 1

Vertex 5 = 2

Vertex 0 = 2

Vertex 3 = 2

Vertex 6 = 3

Height = 3

