COMPUTER NETWORKS PROJECTS

- BY MANISH SRI SAI SURYA ROUTHU

PROJECT 1: NETWORK INTRUSION DETECTION

INTRODUCTION:

Brief overview of modern computer networks and their growth:

Modern computer networks are interconnected systems of computers, devices, and servers that enable the exchange of data and resources. They play a pivotal role in facilitating communication, data sharing, and access to information across various industries and sectors.

IoT, Wireless Connectivity, cloud computing, Software Defined Networks, Virtualization, Big-data, Cyber threats

problem of increasing network intrusions and their potential impact:

- 1. Cybersecurity Threats
- 2. Data Breaches
- 3. Financial Losses
- 4. Disruption of Critical Infrastructure
- 5. Ransomware Attacks
- 6. Intellectual Property Theft
- 7. Phishing and Social Engineering
- 8. Loss of Trust and Reputation

...CONTINUED

Our dataset ensures that there are enough samples for ML classifiers to achieve high F-Measure scores, uniquely. Our proposed dataset also ensures that there are no missing network metrics and that all data samples are filled.

Significance of machine learning in NIDS (Network Intrusion Detection Systems) –

- 1. Anomaly detection
- 2. pattern recognition
- 3. real-time monitoring
- 4. enhanced feature extraction
- 5. Automation in the system
- 6. threat intelligence and prediction

ABOUT THE DATASET

- •The dataset consists of 3 csv files: train_dataset.csv, test_dataset.csv, submission.csv
- train_dataset.csv 32 columns 31 features + 1 label | 5000 records
- The datatype of all the columns in Int64 no null values.
- A great difference is seen in variances and mean values of all the columns Standardization is a must.
- There are 11 features with value count = 1 and hence those columns are removed
- ['Packets Rx Dropped', 'Packets Tx Dropped', 'Packets Rx Errors', 'Packets Tx Errors', 'Delta Packets Rx Dropped', 'Delta Packets Rx Errors', 'Delta Packets Tx Errors', 'Is_valid', 'Table ID', 'Max Size']
- 21 features left.
- Features with value counts< 10 are also checked
- Labels: 0 Normal, 1 Blackhole, 2 TCP-SYN, 3 Port Scan, 4 Diversion, 5 Overflow

MACHINE LEARNING MODELS:

1. Decision Tree Classifier

test_evaluation:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.91	0.92	0.91	116
2	0.82	0.77	0.79	138
3	0.80	0.83	0.81	127
4	0.91	0.94	0.92	77
5	0.50	0.54	0.52	13
accuracy			0.93	1000
macro avg	0.82	0.83	0.83	1000
weighted avg	0.93	0.93	0.93	1000

2. Random forest Classifier

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	529
	1	0.94	0.89	0.91	125
	2	0.88	0.77	0.82	147
	3	0.84	0.86	0.85	128
	4	0.85	0.99	0.91	68
	5	0.21	1.00	0.35	3
accu	racy			0.93	1000
macro	avg	0.79	0.92	0.81	1000
weighted	avg	0.94	0.93	0.94	1000

3. Logistic Regression

test_evaluation:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.80	0.96	0.87	98
2	0.91	0.61	0.73	192
3	0.60	0.87	0.71	91
4	0.92	0.87	0.90	84
5	0.21	0.50	0.30	6
accuracy			0.90	1000
macro avg	0.74	0.80	0.75	1000
weighted avg	0.91	0.90	0.90	1000

4. Naïve Bayes Classifier

	precision	recall	f1-score	support
6	1.00	1.00	1.00	531
1	0.40	0.69	0.51	68
2	0.95	0.57	0.71	215
3	0.50	0.97	0.66	67
4	0.62	0.53	0.57	92
5	0.14	0.07	0.10	27
accuracy			0.81	1000
macro avg	0.60	0.64	0.59	1000
weighted avg	0.86	0.81	0.82	1000

5. KNN Classifier

test_evaluation:

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	530
	1	0.80	0.93	0.86	101
	2	0.74	0.65	0.69	146
	3	0.74	0.75	0.75	129
	4	0.90	0.84	0.87	85
	5	0.29	0.44	0.35	9
accur	acy			0.89	1000
macro	avg	0.74	0.77	0.75	1000
weighted	avg	0.89	0.89	0.89	1000

4. Support Vector Classifier

test_evaluation:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.83	0.96	0.89	102
2	0.95	0.60	0.74	204
3	0.52	0.91	0.66	75
4	0.90	0.83	0.86	86
5	0.14	0.50	0.22	4
accuracy			0.89	1000
macro avg	0.72	0.80	0.73	1000
weighted avg	0.93	0.89	0.89	1000

7. XGBoost Classifier

test_evaluation:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.94	0.96	0.95	116
2	0.84	0.78	0.81	138
3	0.85	0.85	0.85	131
4	0.95	0.95	0.95	79
5	0.43	0.86	0.57	7
accuracy			0.94	1000
macro avg	0.83	0.90	0.85	1000
weighted avg	0.94	0.94	0.94	1000

8. Adaboost

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	529
	1	0.05	0.19	0.08	32
	2	0.70	0.68	0.69	133
	3	0.53	1.00	0.69	69
	4	0.92	0.33	0.49	221
	5	0.50	0.44	0.47	16
accu	racy			0.77	1000
macro	avg	0.62	0.61	0.57	1000
eighted	avg	0.87	0.77	0.79	1000

9. MLP Classifier

test_evaluation:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.90	0.94	0.92	113
2	0.81	0.68	0.74	155
3	0.67	0.79	0.73	111
4	0.96	0.90	0.93	84
5	0.43	0.75	0.55	8
accuracy			0.91	1000
macro avg	0.80	0.84	0.81	1000
weighted avg	0.92	0.91	0.91	1000

10. Voting Classifier

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.92	0.95	0.93	114
2	0.91	0.72	0.80	165
3	0.76	0.88	0.81	112
4	0.92	0.95	0.94	77
5	0.21	1.00	0.35	3
accuracy			0.93	1000
macro avg	0.79	0.92	0.81	1000
weighted avg	0.94	0.93	0.93	1000

HYPER TUNING:

Hypertuning using 3 models:

- 1. Light GBM
- 2. RandomForestClassifier accuracy -
- 3. Artificial Neural Network accuracy 90%

Light GBM:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	529
1	0.93	0.95	0.94	116
2	0.86	0.83	0.85	133
3	0.87	0.84	0.85	136
4	0.92	0.99	0.95	74
5	0.57	0.67	0.62	12
accuracy			0.94	1000
macro avg	0.86	0.88	0.87	1000
weighted avg	0.95	0.94	0.94	1000

PROBLEMS:

1. Data imbalance: 0 - 2112, 5 - 57

To much imbalance of data – not much effect of "SMOTE" or "class_weight = 'balanced' " on the model

2. 20 features and 57 rows (for class 5)

Options: 1. Resampling: Oversampling/Undersampling

- 2. Class weight
- 3. Transfer Learning TabNet (accuracy- 65%)
- 3. Majority of the wrong predictions despite of being less samples are going to the final label.

CONCLUSION:

- 1. Final Model Light GBM which was giving 65% accuracy for the 5th Label.
- 2. Voting regressor did not perform well
- 3. Transfer Learning model was also not performing well because it may not be trained on that specific kind of data. [financial, customer, medical] and as we have data only 5000 samples with 20 features and 6 labels for training they are not sufficient for training very deep neural networks.

THANK YOU