,	
\$ 4	
Relations	
\$ 4.1	
Order Pairs	$\mathcal{R}^* = \mathcal{R} \times \mathcal{R} = \{ \times, y \mid x, y \in \mathcal{R} \}.$
<u> </u>	(x1, y1) = (x2, y2) i77 x1=x2, y1=y2.
Certion	e-f-(3,1) + (1,3)
Products	everything would be in the order pairs, not only numbers.
	De7 4.1.1.
	let A, B be sees, the Certesion Product?
	$A \times B = \{(a_1,b_1), (a_2,b_1) \leftarrow (a_{n,b_1}), (a_1,b_2) \leftarrow (a_{n,b_1})\}.$
	= {(a, 5) acA, 56B}.
	<u>'</u>
	Ex A= { R, G }
	13= {1, 2}
	$A \times B = \{(R, 1), (R, 2), (G, 1), (G, 2)\}$
	Note. if A, B are finite, then A×13 = 1A1-1B
	T 1
	but sets.
	Let P(x,y) that depends on x and on y, x6A and y6B,
	For co, b) in ser AxB, Pa,b) make sense. The truth set of
	Pis {ca,b)EAXB Pca,b) }. It is a subsect of AxB,
	Ex. AEZ, BEZ, let D(x,y) = x/y
	the truth set of Dis
	T= { (x, y) 622 D(x,y) }.
	in this case, (3,6) 6T, (6,3) &T.
	Ex2: A=B=R, let Pcx,y): y=2x-3. He truth set T= {(x,y) tR2
	=> then, you could get a graph. y=2x-3].
	7 . 1 . 1 . 2
	tx3: A= 3 mo courses 3
	B= "x teachers y"
	T= {(x,y) (Ax) (Q(x,y))}
	1 - 1 (4) ") CA (1) C (4) 4) 1 .

and the pair (Moth 21st, Pan) ET.

Facts: if 7 is a truth table of a statement Pix, y) for
ZEA, JOB, then
T S Axis.
(x,y)&17i-7 P(x,y).
if Pex, y) is a toutology, then Pex, y) = Axis,
else contradiction = \$\phi\$
if S is the truth set of Q(x,y), xeA, yeB, then
the truth set of Tax, y) Va(x,y) is TUS.
similarly A Ins.
Thm 4.1.3. Let A, B, C, D are sets, then
1. A×UBAC) = (A×B)ALA×C)
2. Ax (BUC) = (AxB) U (AxC)
3. (A1D) × (B1C) = (A×B) (C×D)
4. (AUD) x (BUC) = (AXB) U (CXD).
$5 A \times \phi = \phi = \phi \times A$
Proof 2: let PEAXIBUC), then P=(a,x), (acA) A (y6 BUC)
then (aGA) A (YEBV YEC) =>, hGAAY6B).
=> i7 PEB, +kn PEAXI3 = AX (BUC)
PGC, Hen PGAXC & AXBUC)
The other side: P=(AxB)U(Axc):
:7 P=A×B, then P=(a,b) form aGA and bok,
SO LEBUC, SO PEAXIBUCI
similarly, lee P= Axc
Proof of 5: suppose pEAXØ, p=(a,b), aEA, bb Ø, which is
a contradiction, so p does not exist and
$a \times \phi$ has no element, so $A \times \phi = \phi$.
Similarly, $\phi \times A$
A counter example for 4 not be an equal sign:
if one of A, D and one of 13, Lis empty,
$A \times D = \emptyset$, $B \times C = \emptyset$, $(A \times D) \cup (B \times C) = \emptyset$.
(AUD) X(BUC) = AUC/AUB/DUB/DUC

NOTE: The	re's <u>No</u>	ammunitive	law -	} ~	Certesion Product.