

4. Shooting Rubber Band

A Rubber Band may fly a longer distance if it is nonuniformly stretched when shot, giving it spin. Optimise the distance that a rubber band with spin can reach.

Rep: Nikoloz Burduli

Plan

- ☐ Explanation of the phenomenon
 - What is the cause of the rubber shot;
 - Why does a spinning rubber go farther;
- ☐ Experimental Part
 - Experimental setup;
 - What problems did we have during the experiments and how did we fix them;
 - > Tension of the rubber band;
 - Distance from the head to the point of tension;
 - Determination of rubber stiffness;
 - Different rubber bands;
- Conclusion
 - Important parameters;

Explanation of the phenomenon

What is the cause of the rubber shot

$$E_p = \frac{k\Delta x^2}{2} \longrightarrow E_k = \frac{mv^2}{2}$$

Why does the spinning rubber go farther

Non-Uniformly

Phenomenon explanation

Theoretical model

experiment

Conclusion

Experimental Part

Experimental Setup 1

Rubber Band Shooting Mechanism

Ruler

Observation of Experiments

phenomenon Theoretical model

experiment

conclusion

Distance from the head to the point of the stretch

Experimental Setup 2

$$F = \frac{k\Delta x^2}{2}$$

$$k = \frac{2F}{\Delta x^2}$$

A problem with multiple uses of rubber

Distance from the head to the point of the stretch

Delta x - constant

Uniformly VS Non-uniformly

- Uniformly
- Non-Uniformly

phenomenon Theoretical model

experiment

conclusion

Second type of shooting

Uniformly

Non-Uniformly

Conclusion

Important parameters

conclusion

- Rubber band Stiffness;
- > Rubber tension;
- ➤ The distance from the rubber head to the grip point;
- Air resistance;

phenomenon Theoretical model experiment

1 EXP - I was stretching from both sides

2 EXP - I was stretching only on one side

Thanks for your attention!

- < ▮
 - *

- 🗖 მოვლენის ახსნა
 - 🕨 რატომ ხდეგა რეზინის გასროლა;
- 🗖 თეორიული მოდელი
 - 🕨 პოტენციური და კინეტიკური ენერგია;
 - საწყისი სიჩქარე;
- 🗖 ექპსერიმენტული ნაწილი
 - 🕨 ექსპერიმენტული დანადგარი;
 - 🕨 რეზინის დაჭიმულობა;
 - 🕨 მანძილი სათავიდან დაჭიმვის ადგილამდე;
 - 🕨 რეზინის სიხისტის დადგენა;
 - რეზინის სიხისტის ცვლილება;
- 🗖 თეორიული და ექსპერიმეტნული შედეგების შედარება
 - 🕨 თეორიული და ექსპერიმენტული გრაფიკები;
- 🗖 დასკვნა
 - მნიშვნელოვანი პარამეტრები;
 - 🕨 მონაცემთა ანალიზი;

თეორიული მოდელი

კინეტიკური და პოტენციური ენერგია

$$E_{3} = \frac{mV_{m}^{2}}{2l}(l - \frac{2l_{0}}{3})$$

$$v = \frac{x}{l_0} V_m$$

$$E_{31} = \frac{\Delta l}{2l} m \frac{x^2 V_m^2}{l_0^2}$$

$$E_{31} = \frac{m V_m^2 l_0^2}{2l l_0^2 * 3} = \frac{m l_0 V_m^2}{6l}$$

$$E_{32} = \frac{l - l_0}{l} m \frac{V_m^2}{2}$$

$$E_3 = E_{31} + E_{32} = \frac{mV_m^2}{2l}(l - \frac{2l_0}{3})$$

$$E_3 = \frac{mV_m^2}{2l}(l - \frac{2l_0}{3})$$

$$E_3 = \frac{kl}{2l_0} x_0^2$$

$$V_m^2 = \frac{2kl^2x_0^2}{2ml_0(l - \frac{2l_0}{3})} = \frac{kl^2x_0^2}{ml_0(l - \frac{2l_0}{3})}$$

$$V_m = lx_0 \sqrt{\frac{k}{ml_0(l - \frac{2l_0}{3})}}$$

$$V_c = \frac{\sum m_i v_i}{m}$$

$$\sum m_i v_i = \int_0^{l_0} \frac{\Delta l}{l} m * \frac{x}{l_0} V_m + \frac{l - l_0}{l} m V_m = \frac{m V_m}{l l_0} * \frac{l_0^2}{2} + \frac{l - l_0}{l} m V_m = \frac{m V_m}{l} (l - \frac{l_0}{2})$$

$$V_c = \frac{V_m}{l}(l - \frac{l_0}{2})$$

$$V_m = lx_0 \frac{k}{ml_0(l - \frac{2l_0}{3})}$$

გასროლის სიჩქარის გამოკვლევა

რეზინის მრავალჯერადად გამოყენება

რეზინის სიხისტის ცვლილება

რეზინის სიგრძის ცვლილეზა

ექსპერიმენტული პროგრამეზი

