1.	(002716) 已知集合 $M = \{x x = 3m + 1, m \in \mathbf{Z}\}, N = \{y y = 3m + 2, m \in \mathbf{Z}\}, 若 x_0 \in M, y_0 \in N, 则 x_0 y$ 与集合 M, N 的关系是 ().		
	A. $x_0y_0 \in M$ 但 $x_0y_0 \notin N$	B. $x_0y_0 \in N$ 但 $x_0y_0 \notin M$	
	C. $x_0y_0 \notin M \to x_0y_0 \notin N$	D. $x_0 y_0 \in M$ $\coprod x_0 y_0 \in N$	
2.	$\mathbf{D}_{04781)}$ 已知集合 $A = \{x \frac{12}{5-x} \in \mathbf{N}, \ x \in \mathbf{Z}\}$,用列举法表示集合 A .		
	5 - x (004794) 已知非空集合 P 满足: ① P ⊆ {1,2,3,4,5}; ② 若 a ∈ P, 则 6 - a ∈ P. 符合上述要求的集合 P 的个		
ა.	(004794) 已知非至集合 P 满足: ① P ⊆ {1,2,3,4,5}; ② 数是 ().	$A \in P$, 则 $b - a \in P$. 符合	工还要水的集合 2 的个
	A. 4 B. 5	C. 7	D. 31
4.	(004770) 已知集合 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $B = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与 $A = \{x x^2 - 5x + 4 \le 0\}$ 与	$x^2 - 2ax + a + 2 \le 0, \ a \in \mathbf{R}$	满足 $B \subseteq A$, 求 a 的取
5.	(003501) 用 "⊆" 连接集合 Z、Q、R、C:		
6.	(002693) 已知 $P=\{y=x^2+1\},\ Q=\{y y=x^2+1,\ x\in\mathbf{R}\},\ E=\{x y=x^2+1,\ x\in\mathbf{R}\},\ F=\{(x,y) y=x^2+1,\ x\in\mathbf{R}\},\ G=\{x x\geq1\},\ H=\{x x^2+1=0,\ x\in\mathbf{R}\},\ $ 则各集合间关系正确的有 (答案可能不唯一) $(A)\ P=F\ (B)\ Q=E\ (C)\ E=F\ (D)\ Q\subseteq G\ (E)\ H\subsetneq P$		
7.	(002728) 设含有三个实数的集合既可以表示为 $\{a, \frac{b}{a}, 1\}$,又可以表示为 $\{a^2, a+b, 0\}$,那么 $a+b=$		
8.	(002714) 若集合 $M=[a-1,a+1], N=(-\infty,-1)\cup[2,+\infty]$	(∞) , 且 $M \cap N = \emptyset$, 则实数 a 的	取值范围为
9.	(002704)(1) 已知集合 $A=\{y y=x^2,\ x\in\mathbf{R}\}, B=\{y y=x^2\}$ (2) 已知集合 $A=\{(x,y) y=x^2,\ x\in\mathbf{R}\}, B=\{(x,y)\}$		
10.	(007684) 用适当的方法表示下列集合: (1) 方程 $x^2-2=0$ 的实数解组成的集合; (2) 两直线 $y=2x+1$ 和 $y=x-2$ 的交点组成的集合.		
11.	(002702) 若集合 $A = [2,3]$, 集合 $B = [a,2a+1]$. (1) 若 $A \subsetneq B$, 求实数 a 的取值范围; (2) 若 $A \cap B \neq \varnothing$, 求实数 a 的取值范围.		
12.	(004768) 已知集合 $U=\{x x$ 取不大于 30 的质数 $\},\ A,\ B$ $\mathbb{C}_A\cap B=\{11,19,29\},\ \mathbb{C}_UA\cap \mathbb{C}_UB=\{3,7\},\ 求\ A,\ B.$	3 是 U 的两个子集, 且满足。	$A \cap C_U B = \{5, 13, 23\},$
13.	(002700) 集合 $C=\{x x=rac{k}{2}\pmrac{1}{4},\ k\in\mathbf{Z}\}, D=\{x x=rac{k}{4},\ k\in\mathbf{Z}\},$ 试判断 C 与 D 的关系, 并证明.		
14.	(001014) 已知集合 $M = \{y y=x+1, \ x \in \mathbf{R}\}, \ N = \{y y=x+1, \ x \in \mathbf{R}\}$	$=-x^2+4x, \ x \in \mathbf{R}\}, \ M \cap$	$N = \underline{\hspace{1cm}}$.

- 15. (001015) 已知集合 $A = \{x \mid x^2 + px + q = 0\}, B = \{x \mid x^2 x + r = 0\}, 且 A \cap B = \{-1\}, A \cup B = \{-1, 2\}, 求$ 实数 p,q,r 的值.
- 16. (001016) 已知集合 $A = \{1, 2\}, B = \{x | mx^2 + 2mx 1 < 0, x \in \mathbf{R}\}.$ 已知 $A \cap B = \{1\},$ 求实数 m 的取值范围.
- 17. (002703) 设全集 $U = \mathbf{R}$, 集合 $A = \{x | f(x) = 0\}$, $B = \{x | g(x) = 0\}$, $C = \{x | h(x) = 0, x \in \mathbf{R}\}$, 则方程 $\frac{f^2(x) + g^2(x)}{h(x)} = 0$ 的解集是_____(用 U, A, B, C 表示).
- 18. (004769) 已知集合 $A = \{x|x^2 ax + a^2 19 = 0\}, B = \{x|x^2 5x + 6 = 0\}, C = \{x|x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, 求实数 a 的值.
- 19. (002710) 如图, U 为全集, M, P, S 是 U 的三个子集, 则阴影部分所表示的集合是 (
 - A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_U S$ D. $(M \cap P) \cup \mathcal{C}_U S$

- 20. (002712) 设集合 $A \cap \{-2,0,1\} = \{0,1\}, A \cup \{-2,0,2\} = \{-2,0,1,2\},$ 则满足上述条件的集合 A 的个数 为_____个.
- 21. (002697) 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}, C_U A = \{5\},$ 则实数 a = 1.
- 22. (007692) 已知 a 是常数, 集合 $M = \{x|x^2 + x 6 = 0\}$, 集合 $N = \{y|ay + 2 = 0\}$, 且 $N \subseteq M$, 求实数 a 的值.
- 23. (010021) 已知集合 $A = \{1\}$, $B = \{x|x^2 3x + a = 0\}$. 是否存在实数 a, 使得 $A \subset B$? 若存在, 求 a 的值; 若不 存在,说明理由.
- 24. (010026) 已知集合 $A = \{2, (a+1)^2, a^2 + 3a + 3\}$, 且 $1 \in A$. 求实数 a 的值.
- 25. (010027) 已知集合 $A = \{x | x = 2n + 1, n \in \mathbb{Z}\}$, $B = \{x | x = 4n 1, n \in \mathbb{Z}\}$. 判断集合 A = B 的包含关系, 并 证明你的结论.
- 26. (020028) 已知集合 A = {1}, B = {x|x ⊆ A}, 用列举法表示集合 B. 并指出 A 与 B 的关系.
- 27. (020030) 设常数 $a \in \mathbb{R}$. 若集合 $A = (-\infty, 5)$ 与 $B = (-\infty, a]$ 满足 $A \subseteq B$, 则 a 的取值范围是 证明: 1° 当 a ______ 时, 任取 $x \in A$, 则______, 所以 $x \in B$, 即 $A \subseteq B$. 2° 当 a_______, 所以 $x_1 \in A$ 且 $x_1 \notin B$. 由 1°、2° 可得结论.
- 28. (020034) 已知集合 $S = \{1, 2\}$, 集合 $T = \{x | ax^2 3x + 2 = 0\}$, 且 $S \supseteq T$, 求实数 a 的取值范围.
- 29. (020035) 证明: 集合 $A = \{x | x = 6n 1, n \in \mathbf{Z}\}$ 是 $B = \{x | x = 3n + 2, n \in \mathbf{Z}\}$ 的真子集.

- 30. (020040) 已知集合 $A = \{1, 1+d, 1+3d\}$, 集合 $B = \{1, q, q^2\}$, 其中 d、 $q \in \mathbf{R}$, 且 $d \neq 0$. 若 A = B, 求 q 的值.
- 31. (020041) 已知 $A=\{x|x=a+\sqrt{2}b,\ a,b\in \mathbf{N}\},$ 若集合 $B=\{x|x=\sqrt{2}x_1,\ x_1\in A\},$ 证明 $B\subset A.$
- 32. (020065) 用集合 $A \times B$ 的运算式表示图中的阴影部分:

