日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 9月30日

2 7 MAY 2004

PCT

WIPO

出 願 番 号
Application Number:

特願2003-340228

[ST. 10/C]:

[JP2003-340228]

出 顯 人
Applicant(s):

東陶機器株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月 7日

【書類名】 特許願 【整理番号】 K1030950

【提出日】平成15年 9月30日【あて先】特許庁長官殿

【発明者】

【住所又は居所】 福岡県北九州市小倉北区中島2丁目1番1号 東陶機器株式会社

内

【氏名】 曾根崎 修司

【発明者】

【住所又は居所】 福岡県北九州市小倉北区中島2丁目1番1号 東陶機器株式会社

内

【氏名】 八木 晋一

【発明者】

【住所又は居所】 福岡県北九州市小倉北区中島2丁目1番1号 東陶機器株式会社

内

【氏名】 大神 有美

【特許出願人】

【識別番号】 000010087

【氏名又は名称】 東陶機器株式会社

【代表者】 木瀬 照雄

【先の出願に基づく優先権主張】

【出願番号】 特願2003- 94430 【出願日】 平成15年 3月31日

【手数料の表示】

【予納台帳番号】 017640 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【請求項1】

少なくとも表面の一部に二酸化チタンが存在する微粒子の表面がカルボキシル基を有する 親水性高分子により修飾された表面改質アナターゼ型二酸化チタン微粒子であって、該親 水性高分子のカルボキシル基と二酸化チタンがエステル結合で結合していることを特徴と する、表面改質アナターゼ型二酸化チタン微粒子

【請求項2】

前記親水性高分子が水溶性高分子であることを特徴とする請求項1記載の表面改質アナターゼ型二酸化チタン微粒子

【請求項3】

前記水溶性高分子がポリアクリル酸であることを特徴とする請求項1または2記載の表面 改質アナターゼ型二酸化チタン微粒子

【請求項4】

前記微粒子は、粒径が2~200nmの二酸化チタン粒子であることを特徴とする請求項1~3のいずれかに記載の表面改質アナターゼ型二酸化チタン微粒子

【請求項5】

前記微粒子は、磁性粒子と二酸化チタンからなる複合材であることを特徴とする、請求項 1~4のいずれかに記載の表面改質アナターゼ型二酸化チタン微粒子

【請求項6】

請求項1~5のいずれかに記載の表面改質アナターゼ型二酸化チタン微粒子が水系溶媒に 分散していることを特徴とする表面改質アナターゼ型二酸化チタン微粒子の分散液

【請求項7】

前記水系溶媒のpHが3~13であることを特徴とする請求項6記載の表面改質アナターゼ型 二酸化チタン微粒子の分散液

【請求項8】

前記水系溶媒が緩衝液であることを特徴とする請求項6または7記載の表面改質アナター ゼ型二酸化チタン微粒子の分散液

【請求項9】

アナターゼ型二酸化チタン微粒子表面に親水性高分子を結合する反応において、(1)アナターゼ型二酸化チタンゾルを溶媒に分散させる第1工程と、(2)親水性高分子を溶媒に分散させる第2工程と、(3)これらの分散液を混合する第3工程と、(4)この混合液を加熱する第4工程と、(5)表面改質アナターゼ型二酸化チタン微粒子と未結合親水性高分子とを分離する第5工程と、(6)該表面改質アナターゼ型二酸化チタン微粒子を精製する第6工程とからなる、表面改質アナターゼ型二酸化チタン微粒子の製造方法

【請求項10】

前記第1工程及び第2工程の溶媒が非プロトン系溶媒であることを特徴とする請求項9記載の表面改質アナターゼ型二酸化チタン微粒子の製造方法

【請求項11】

前記第1工程及び第2工程の溶媒がDMF, DMSO、ジオキサンのいずれかであることを特徴とする請求項9記載の表面改質アナターゼ型二酸化チタン微粒子の製造方法

【請求項12】

前記第4工程の加熱温度が80~220℃であることを特徴とする請求項9~11のいずれか に記載の表面改質アナターゼ型二酸化チタン微粒子の製造方法

【請求項13】

前記第5工程の分離する工程が、溶媒を減圧除去し、次いで水を添加して表面改質アナターゼ型二酸化チタン微粒子を分散させた後、溶液のpHを2.8以下にして該表面改質アナターゼ型二酸化チタン微粒子のみを凝集させて、遠心分離により未結合親水性高分子を分離することを特徴とする請求項9~12のいずれかに記載の表面改質アナターゼ型二酸化チタン微粒子の製造方法

【請求項14】

【請求項15】

前記第6工程の精製する工程が、表面改質アナターゼ型二酸化チタン微粒子を水系溶媒に 分散させた後に、微粒子を乾燥することを特徴とする請求項9~12のいずれかに記載の 表面改質アナターゼ型二酸化チタン微粒子の製造方法

【請求項16】

前記第6工程の精製する工程が、水系溶媒に分散する表面改質アナターゼ型二酸化チタン 微粒子に、少なくとも最終濃度500mM以上の塩と5%(W/V)以上のポリエチレングリコール6000を添加し、塩析により、表面改質アナターゼ型二酸化チタンのみを沈殿させる工程を含むことを特徴とする請求項9~11のいずれかに記載の表面改質アナターゼ型二酸化チタン微粒子の製造方法

【書類名】明細書

【発明の名称】表面改質アナターゼ型二酸化チタン微粒子およびその分散液とその製造方

【技術分野】

[0001]

本発明は、少なくとも表面の一部に二酸化チタンが存在し、カルボキシル基を有する親 水性高分子により表面を修飾された表面改質アナターゼ型二酸化チタン微粒子であって、 該親水性高分子のカルボキシル基と二酸化チタンがエステル結合で結合していることを特 徴とする、表面改質アナターゼ型二酸化チタン微粒子およびその分散液とその製造方法に 関する。

【背景技術】

[0002]

従来、アナターゼ型二酸化チタンの等電点はpH6.2といわれており、中性であるpH7.0に 非常近い等電点を持つアナターゼ型二酸化チタン微粒子は、粒子単独で中性の水系溶媒に 分散させることは困難と考えられていた。そのため、これまでにアナターゼ型二酸化チタ ン粒子を水系の分散媒に分散させる種々の工夫がなされてきた。例えば、チタンイソプロ ポキシドから水酸化チタンの沈殿を生成させ、硝酸酸性下で高温で解膠した硝酸酸性のア ナターゼゾルが提案されている(例えば、非特許文献1および2参照)。また、四塩化チ タン水溶液にアンモニア水を滴下して水酸化チタンの沈殿を生成させた後、過酸化水素水 を添加して100℃で6時間反応して、アナターゼ微粒子表面をペルオキソ基で修飾したペル オキソ基修飾アナターゼ型二酸化チタンゾルを得る方法(例えば、特許文献 1 参照)、ア ナターゼ型二酸化チタン粒子表面を多孔質シリカにより表面被覆することによりアルカリ 条件下に分散し安定化させた複合アナターゼ型二酸化チタン微粒子分散液を得る方法(例 えば、特許文献2参照)、分散剤であるポリカルボン酸またはその塩を含有することによ って、分散性を高めた二酸化チタンの水溶液を得る方法(例えば、特許文献3参照)等が 提案されている。

[0003]

また、光触媒粒子を水処理に用いる場合の分離・濃縮を容易にする目的で、磁性粒子と 二酸化チタンを複合させた粒子も提案されている。たとえば、鉄粉を担体として有機溶媒 に溶解したチタンアルコキシドを表面に被覆したような粒子(特許文献4)やFe304/Si02 に高温処理によってアモルファスの二酸化チタンを沈着させたり、結晶性の二酸化チタン を直接沈着させたりして調製する磁性粒子(非特許文献3)が提案されている。

[0004]

しかしながら、硝酸酸性のアナターゼゾルの場合、ゾルのpHを中性あるいはアルカリ性 にしたとき凝集あるいは沈殿が生じるなどの問題があり、ペルオキソ基修飾アナターゼ型 二酸化チタンゾルの場合でもゾルのpHは中性であるものの、ゾルに無機塩類を添加したと きに凝集あるいは沈殿が生じるなどの問題があった。また、多孔質シリカを表面被覆した 光触媒微粒子分散液の場合では、分散液のpHを中性あるいは酸性にしたとき凝集あるいは 沈殿が生じるなどの問題があり、分散剤を添加して分散性を高めた二酸化チタン水溶液の 場合も、分散剤が光触媒の活性により分解されたり光触媒の活性を低下させるなどの問題 点があった。二酸化チタン単独の微粒子だけでなく、表面の一部に二酸化チタンが存在す るような複合体においても同様の現象が生じ、やはり凝集・沈殿が問題となっている。

[0005]

【非特許文献 1】 Christophe. J. Barbeら:Journal of the American Ceramics Society, 80, 3157-3171, (1997)

【非特許文献 2 】 Danijela. Vorkapicら:Journal of the American Ceramics Society, 81, 2815-2820, (1998)

【非特許文献 3】 Syntehsis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. Journal of Photochemistry and Photobiology A: Chemistry 148 (2002)303313

【特許文献1】特開平10-67516号公報

【特許文献 2】 特開平11-319577号公報

【特許文献3】特開平2-212315号公報

【特許文献 4 】特開平9-299810号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は上述した従来の技術における問題を解決するためになされたもので、その課題は各種応用に好適な中性の水系溶媒への分散性に優れ、少なくとも表面の一部に二酸化チタンが存在し、かつ安定な表面改質アナターゼ型二酸化チタン微粒子およびその分散液とその製造方法を提供することにある。

【課題を解決するための手段】

[0007]

本発明者らは上記課題を解決するために鋭意検討を行い、二酸化チタン微粒子表面に親水性高分子を結合させて表面改質することにより、幅広いpH領域で水系溶媒への分散性が極めて良好となることを見い出し、本発明を完成した。

[0008]

すなわち、本発明の表面改質アナターゼ型二酸化チタン微粒子は、その表面にエステル結合を介して親水性高分子を有しており、中性の水系溶媒中においても極めて良好な分散性を示すものである。さらに、この特質を利用した表面改質アナターゼ型二酸化チタン微粒子の分散液は、水または各種緩衝液を溶媒として利用可能であり、分散性の極めて良好で安定な分散液である。また、本発明の表面改質アナターゼ型二酸化チタン微粒子の製造方法は、2~200nmの少なくとも表面の一部に二酸化チタンが存在するアナターゼ型二酸化チタンゾルおよび水溶性高分子分散液を混合し、80~220℃の加熱により両者を結合させた後、未結合水溶性高分子を除去して、精製することを特徴とするものである。

【発明の効果】

[0009]

本発明は中性の水系溶媒への分散性に優れたアナターゼ型二酸化チタン微粒子に関し、アナターゼ型二酸化チタン微粒子表面にカルボキシル基を複数含有する親水性高分子をエステル結合で結合させることにより得られる、中性水溶液に優れた分散性を示す表面改質アナターゼ型二酸化チタン微粒子を提供する。本発明の表面改質アナターゼ型二酸化チタン微粒子は中性の水系溶媒はもちろんのこと、広い範囲のpHで水系溶媒に分散できる上にpHの変動や塩の添加に対しても安定である。また、他の機能性物質との複合化が容易であるため、新規な機能を付与した粒子を作製するのに有効である。また、紫外線などを照射し光触媒能の酸化還元作用を誘起することによって、種々の有機物を分解することが可能である。

【発明を実施するための最良の形態】

[0010]

本発明の実施の形態を図面に基づいて具体的に説明する。図1は本発明の表面改質アナターゼ型二酸化チタン微粒子を示す模式図である。本発明の表面改質アナターゼ型二酸化チタン微粒子は、アナターゼ型二酸化チタン微粒子表面に親水性高分子を有し、該親水性高分子のカルボキシル基とアナターゼ型二酸化チタンはエステル結合で結合していることを特徴とするものである。これは、アナターゼ型二酸化チタン微粒子表面の二酸化チタンが反応系中の水に水和されて水酸基が生成し、その水酸基と該親水性高分子のカルボキシル基とが反応してエステル結合を形成することによるものである。エステル結合の確認方法としては種々の分析方法が適用できるが、例えば赤外分光法によりエステル結合の吸収帯である1740cm⁻¹付近の赤外吸収の有無で確認することが可能である。この表面改質により、表面改質アナターゼ型二酸化チタン微粒子の等電点は、該親水性高分子のカルボキシル残基の等電点(pH2.8~2.9)付近となり、中性の水系溶媒中においても粒子間に電気的斥力が働くために良好な分散性を示すものである。

[0011]

また、本発明の表面改質アナターゼ型二酸化チタン微粒子は、前記親水性高分子が水溶 性高分子であることを特徴としている。これは、本発明が表面改質アナターゼ型二酸化チ タン微粒子を水溶液中に分散した状態で使用することを想定しており、したがって本発明 で用いる親水性高分子としては水溶性高分子が望ましいためである。この水溶性高分子の 例としては、カルボキシメチルデンプン、カルボキシメチルデキストラン、カルボキシメ チルセルロース、ポリアクリル酸などが挙げられるが、水溶性高分子の加水分解性および 溶解度の観点からポリアクリル酸がより好適である。さらに、本発明で用いるアナターゼ 型二酸化チタン粒子としては、その使用形態の自由度の観点から分散粒経が2~200nmであ ることが望ましい。これは、粒径が200mmよりも大きくなると微粒子に作用する重力によ る効果も大きくなるため、より沈降しやすくなるためである。

[0012]

また、本発明の表面改質アナターゼ型二酸化チタン微粒子の分散液は、前記表面改質ア ナターゼ型二酸化チタン微粒子が水系溶媒に分散していることを特徴とする。これは、水 系の分散媒体中に分散した表面改質アナターゼ型二酸化チタン微粒子表面上に存在するカ ルボキシル残基のプロトンが解離した状態になっており、粒子間に電気的斥力が働くため に凝集することなく、長期間にわたって安定に存在することによる。しかも、基本的にpH の変動や無機塩類の添加に対しても極めて安定である。さらに、本発明の表面改質アナタ -ゼ型二酸化チタン微粒子の等電点は、該親水性高分子のカルボキシル残基の等電点 (pH 2.8~2.9) 付近となっている。したがって、pH3以上の水系分散媒中ではpHが上昇するに つれて粒子間に働く電気的斥力が増大するため、pHが3~13の水系分散媒中で極めて良好 な分散性を示すものである。これらのことから、本分散液は前記水系溶媒として緩衝液を 利用することが可能である。すなわち、本発明の表面改質アナターゼ型二酸化チタン微粒 子は、pHが3~13の範囲であればいかなる緩衝成分が水系分散媒に含有されていても良好 な分散性を示すものである。ここで使用され得る好適な緩衝液としては、グリシン緩衝液 、酢酸緩衝液、リン酸緩衝液、炭酸緩衝液、マッキルベインの緩衝液、グッドの緩衝液、 ホウ酸緩衝液などが挙げられる。中性付近の緩衝液が使用できるということは、バイオテ クノロジー分野における応用に対して極めて有利である。

[0013]

また、本発明の表面改質アナターゼ型二酸化チタン微粒子の製造方法は、アナターゼ型 二酸化チタン微粒子表面に親水性高分子を結合させる反応において、(1)アナターゼ型二 酸化チタンゾルを溶媒に分散させる工程と、(2)親水性高分子を溶媒に分散させる工程と 、(3)これらの分散液を混合する工程と、(4)この混合液を加熱する工程と、(5)表面改質 アナターゼ型二酸化チタン微粒子と未結合親水性高分子とを分離する工程と、該表面改質 アナターゼ型二酸化チタン微粒子を精製する工程とからなることを特徴とする。

[0014]

本発明で用いるアナターゼ型二酸化チタンゾルとしては無機酸で解膠した酸性アナター ゼ型二酸化チタンゾルを使用することが可能である。一方、(1)、(2)で用いる溶媒はアナ ターゼ型二酸化チタンゾルおよび親水性高分子共に溶解できるものが好適である。アナタ ーゼ型二酸化チタンが溶媒中で凝集すると親水性高分子との結合反応が起こりうる表面積 が減少するため、反応終了後の水系溶媒に対する分散粒径が増大して分散性も悪化するか らである。さらに、ここで用いる溶媒としてアナターゼ型二酸化チタン粒子表面と反応性 を有するものは不適である。特に、水酸基を含有するアルコール類は加熱するとアナター ゼ型二酸化チタン粒子表面とエーテル結合を形成するため、目的とする親水性高分子との 結合反応を阻害する。この場合、アナターゼ型二酸化チタン粒子の表面特性は使用するア ルコールの特性に依存し、水系の分散媒に対する分散性が著しく低下する。本発明で使用 する溶媒は上記反応性の点から、非プロトン性極性溶媒であるジメチルホルムアミド、ジ オキサン、もしくはジメチルスルホキシドを使用することが好ましいが、溶媒の揮発性の 観点からジメチルホルムアミドを使用することがより好適である。次に、(3)該溶媒のア ナターゼ型二酸化チタン分散液と親水性高分子分散液とを混合後攪拌を行い、アナターゼ 型二酸化チタンと親水性高分子が均一に分散した分散液を作製する。この際、アナターゼ 型二酸化チタン分散液に直接親水性高分子を添加するとアナターゼ型二酸化チタンの凝集 を引き起こす場合があるので、各分散液をそれぞれ作製してから混合することが望ましい 。次いで、(4)分散液を加熱して結合反応を行うが、この際アナターゼ型二酸化チタンと 親水性高分子との比率を適宜選択すれば加圧しなくとも反応は進行する。しかしながら、 加圧すると反応がより促進されるため加圧下で反応を進行させる方が望ましい。本発明の 製造方法においては、前記加熱温度が80~220℃であることを特徴としている。加熱温度 が80℃よりも低い場合は親水性高分子の結合量が低下して水系溶媒への分散性が低下する 。また、加圧下で反応を行う場合にも加熱温度が220℃を超えると反応容器の密閉性の問 題から不適である。さらに、水の沸点以上の温度で反応を進行させる場合では、アナター ゼ型二酸化チタンゾルに含まれる水分が完全に反応系外に揮散されるとアナターゼ型二酸 化チタンが凝集するので、加圧下で反応を進行させる方が望ましい。

[0015]

次に、(5)表面改質アナターゼ型二酸化チタン微粒子と未結合親水性高分子を分離する 。分離する手段としては、透析、限外濾過、ゲル濾過クロマトグラフィー、沈殿法などが 好適であるが、透析や限外濾過で分離する場合では使用した親水性高分子の分子量に合致 した透析膜または限外濾過膜を使用する必要がある。いずれの方法でも分離可能であるが 、操作の簡便性から沈殿法を利用することが望ましい。沈殿法には、等電点を利用する方。 法と塩析を利用する方法があり、いずれも好適に用いることができる。

[0016]

等電点沈殿を利用する場合には、結合反応終了後エバポレータで反応溶媒を減圧除去し 、水を添加して攪拌すると表面改質アナターゼ型二酸化チタン微粒子は分散する。この分 散液に無機酸を添加して分散液のpHを2.8以下にすると、表面改質アナターゼ二酸化チタ ンは表面の負電荷を失い凝集する。一方、粒子と結合していない親水性高分子は凝集せず に分散液中に残存するため、この溶液を遠心して上清を除去すれば未結合親水性高分子を 除去することが可能となる。

[0017]

また、塩析を利用する場合には、結合反応終了後、分液漏斗に回収し、水系溶媒を添加 し、また、水と層分離する有機溶媒を添加し、攪拌混合を行う。層分離すると、上層には 表面改質アナターゼ型二酸化チタンが含まれ、下層には反応に用いた非プロトン系有機溶 媒が含まれる。上層の塩強度を高くし、ポリエチレングリコール等の高分子を適当量添加 すると、塩析により沈殿が起こる。この溶液を遠心して上清を除去すれば表面改質アナタ - ゼ型二酸化チタンが得られる。

次いで、(6)沈殿した表面改質アナターゼ型二酸化チタン微粒子を水を用いて洗浄後、 表面改質アナターゼ型二酸化チタン微粒子をpH3~13、より好ましくはpH5~12の水系溶媒 に懸濁する。ここで使用する水系溶媒としては、所望の緩衝液またはアルカリ性水溶液を 利用できる。

[0018]

この懸濁液を攪拌もしくは超音波照射により表面改質アナターゼ型二酸化チタン微粒子を 分散させ、脱塩後乾燥すると乾燥表面改質アナターゼ型二酸化チタン微粒子の粉体を得る ことができる。取扱いが簡便で安定な粉体を製造出来ることは、改質アナターゼ型二酸化 チタン微粒子を種々の用途に応用する際極めて有利である。

[0019]

さらに、上述した改質アナターゼ型二酸化チタンが少なくとも表面に存在すれば、たと えば磁性粒子と二酸化チタンとの複合体のようなものであっても、水溶液中での特性は近 似しているため、同様の製造法、精製法を適用することができる。

[0020]

本発明によれば、前記手法によりカルボキシル基を多数含有する親水性高分子をアナタ ーゼ型二酸化チタン微粒子にエステル結合させて表面改質することで、分散性に優れたア ナターゼ型二酸化チタン微粒子、および添加成分として分散剤を必要としない該アナター

[0021]

以下、本発明を以下の実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。

[0022]

(実施例1)

アナターゼ型二酸化チタン粒子へのポリアクリル酸の導入(その1)

チタンテトライソプロポキシド3.6gとイソプロパノール3.6gを混合し、氷冷下で60mlの 超純水に滴下して加水分解を行った。滴下後に室温で30分間攪拌した。攪拌後、12N硝酸 をlml滴下して、80℃で8時間攪拌を行い、ペプチゼーションした。ペプチゼーション終了 後、0.45μmのフィルターで濾過し、脱塩カラム(PD10;アマシャム・ファルマシア・バ イオサイエンス)を用いて溶液交換して固形成分1%のアナターゼ型二酸化チタンゾルを 調製した。この分散液を100mlのバイアル瓶に入れ、200Hzで30分間超音波処理を行った。 超音波処理を行う前と後での平均分散粒経はそれぞれ、36.4nm、20.2nmであった。超音波 処理後、溶液を濃縮して固形成分20%のアナターゼ型二酸化チタンゾルを調製した。得ら れたアナターゼ型二酸化チタンゾル0.75mlを20mlのジメチルホルムアミド(DMF)に分散さ せ、ポリアクリル酸(平均分子量:5,000、和光純薬)0.3gを溶解したDMF10mlを添加後、 攪拌して混合した。水熱反応容器(HU-50、三愛科学)に溶液を移し変え、180℃で6時間 合成を行った。反応終了後、反応容器温度が50℃以下になるまで冷却し、溶液を取り出し た後に水120mlを添加して攪拌混合した。エバポレータでDMFおよび水を除去した後に、再 度、水20mlを添加してポリアクリル酸結合アナターゼ型二酸化チタン水溶液とした。2Nの 塩酸lmlを添加して二酸化チタン微粒子を沈殿させ、遠心後に上清を除去することにより 未反応のポリアクリル酸を分離した。再度水を添加して洗浄を行い、遠心後に水を除去し た。50mMリン酸緩衝液 (pH7.0) を10ml添加後、200Hzで30分間超音波処理を行い、二酸化 チタン微粒子を分散させた。超音波処理後、0.45μmのフィルターで濾過し、固形成分1.5 %のポリアクリル酸結合アナターゼ型二酸化チタン水溶液を得た。作製したポリアクリル 酸結合アナターゼ型二酸化チタン微粒子の分散粒径を測定したところ、45.9nmであった。 得られたポリアクリル酸結合アナターゼ型二酸化チタン水溶液を脱塩カラムPD10で脱塩し 、100℃で乾燥してポリアクリル酸結合アナターゼ型二酸化チタン微粒子を得た。

[0023]

(実施例2)

アナターゼ型二酸化チタン粒子へのポリアクリル酸の導入(その2)

アナターゼ型二酸化チタンゾルとして硝酸酸性アナターゼゾルのGHN6(石原産業株式会社、固形分濃度:20%)を使用したこと以外、実施例1と全く同様の方法でポリアクリル酸結合アナターゼ型二酸化チタン微粒子を合成し、固形成分1.5%のポリアクリル酸結合アナターゼ型二酸化チタン水溶液を得た。作製したポリアクリル酸結合アナターゼ型二酸化チタン水溶液を得た。作製したポリアクリル酸結合アナターゼ型二酸化チタン水溶液を脱塩カラムPD10で脱塩し、100℃で乾燥してポリアクリル酸結合アナターゼ型二酸化チタン水溶液を脱塩カラムPD10で脱塩し、100℃で乾燥してポリアクリル酸結合アナターゼ型二酸化チタン微粒子を得た。

[0024]

(実施例3)

アナターゼ型二酸化チタン粒子へのポリアクリル酸の導入(その3)

合成温度を220℃にしたこと以外、実施例 2 と全く同様の方法でポリアクリル酸結合アナターゼ型二酸化チタン微粒子を合成し、固形成分1.5%のポリアクリル酸結合アナターゼ型二酸化チタン水溶液を得た。作製したポリアクリル酸結合アナターゼ型二酸化チタン微粒子の分散粒径を測定したところ、46.1nmであった。得られたポリアクリル酸結合アナターゼ型二酸化チタン水溶液を脱塩カラムPD10で脱塩し、100℃で乾燥してポリアクリル

酸結合アナターゼ型二酸化チタン微粒子を得た。

[0025]

(実施例4)

アナターゼ型二酸化チタン粒子へのポリアクリル酸の導入(その4)

合成温度を130℃にしたこと以外、実施例2と全く同様の方法でポリアクリル酸結合ア ナターゼ型二酸化チタン微粒子を合成し、固形成分1.5%のポリアクリル酸結合アナター ゼ型二酸化チタン水溶液を得た。作製したポリアクリル酸結合アナターゼ型二酸化チタン 微粒子の分散粒径を測定したところ、47.4nmであった。得られたポリアクリル酸結合アナ ターゼ型二酸化チタン水溶液を脱塩カラムPD10で脱塩し、100℃で乾燥してポリアクリル 酸結合アナターゼ型二酸化チタン微粒子を得た。

[0026]

(実施例5)

アナターゼ型二酸化チタン粒子へのポリアクリル酸の導入 (その5)

合成温度を80℃にしたこと以外、実施例2と全く同様の方法でポリアクリル酸結合アナ ターゼ型二酸化チタン微粒子を合成し、固形成分1.5%のポリアクリル酸結合アナターゼ 型二酸化チタン水溶液を得た。作製したポリアクリル酸結合アナターゼ型二酸化チタン微 粒子の分散粒径を測定したところ、47.9nmであった。得られたポリアクリル酸結合アナタ ーゼ型二酸化チタン水溶液を脱塩カラムPD10で脱塩し、100℃で乾燥してポリアクリル酸 結合アナターゼ型二酸化チタン微粒子を得た。

[0027]

(実施例6)

アナターゼ型二酸化チタン粒子へのポリアクリル酸の導入(その6)

チタンテトライソプロポキシド3.6gとイソプロパノール3.6gを混合し、氷冷下で60mlの 超純水に滴下して加水分解を行った。滴下後に室温で30分間攪拌した。攪拌後、12N硝酸 をlml滴下して、80℃で8時間攪拌を行い、ペプチゼーションした。ペプチゼーション終了 後、0.45μmのフィルターで濾過し、脱塩カラム (PD10;アマシャム・ファルマシア・バ イオサイエンス)を用いて溶液交換して固形成分1%のアナターゼ型二酸化チタンゾルを 調製した。この分散液を100mlのバイアル瓶に入れ、200Hzで30分間超音波処理を行った。 超音波処理を行う前と後での平均分散粒経はそれぞれ、36.4nm、20.2nmであった。超音波 処理後、溶液を濃縮して固形成分20%のアナターゼ型二酸化チタンゾルを調製した。得ら れたアナターゼ型二酸化チタンゾル0.75mlを20mlのジメチルホルムアミド(DMF)に分散さ せ、ポリアクリル酸(平均分子量:5,000、和光純薬)0.3gを溶解したDMF10mlを添加後、 攪拌して混合した。水熱反応容器(HU-50、三愛科学)に溶液を移し変え、180℃で6時間 合成を行った。反応終了後、反応容器温度が50℃以下になるまで冷却し、分液漏斗に溶液 を取り出した後、水10mlを添加して攪拌混合した。次いで、クロロホルムを40ml加え、攪 拌混合し下層を除去し、上層を回収した。このステップを2回繰り返し、DMFを除去した。 この溶液10mlに10mlの1.5MのNaCl、20%(w/v)ポリエチレングリコール6000(和光純薬)を 加え、遠心後に上澄を除去した。沈殿に2.5mlの水を加え、Sephadex G-25 カラムによ りゲルろ過を行いポリアクリル酸結合アナターゼ型二酸化チタン微粒子分散液を得た。

[0028]

(実施例7)

磁性粒子 - 酸化チタン複合体へのポリアクリル酸の導入

セパラブルフラスコ内にポリオキシエチレン(15)セチルエーテル(C-15:日本サーファ クタント工業)を45.16gを溶解させ、5min窒素置換した後、シクロヘキセン溶液(和光純 薬) 75mlを添加、0.67mol/lのFeCl2 (和光純薬) 水溶液3.6mlを添加し、250rpmで攪拌し ながら、30%アンモニア水溶液5.4mlを添加し、1時間反応させた。その後、50mMテト ラエチルオルソシリケイト水溶液(和光純薬工業)を0.4ml滴下し、1時間反応させた。そ の後、チタンテトライソプロポキシド(和光純薬工業)を最終濃度0.005Mになるように加 えた。50(w/v)%エタノール水溶液10mlを1mlずつ10分間隔で添加した。水溶液を遠心分離 し、沈殿物を350℃で2時間焼成した。焼成後、10mM硝酸水溶液に分散させ、超音波処理後 、0.1μmのフィルターでろ過した。得られた磁性粒子 - 酸化チタン複合体ゾル0.75mlを20 mlのジメチルホルムアミド(DMF)に分散させ、ポリアクリル酸 (平均分子量:5,000、和光 純薬)0.3gを溶解したDMF10mlを添加後、攪拌して混合した。水熱反応容器(HU-50、三愛 科学)に溶液を移し変え、180℃で6時間合成を行った。反応終了後、反応容器温度が50℃ 以下になるまで冷却し、分液漏斗に溶液を取り出した後、水10mlを添加して攪拌混合した 。次いで、クロロホルムを40ml加え、攪拌混合し下層を除去し、上層を回収した。このス テップを2回繰り返し、DMFを除去した。この溶液10mlに10mlの1.5MのNaCl、20%(w/v)ポリ エチレングリコール6000 (和光純薬) を加え、遠心後に上澄を除去した。沈殿に2.5mlの 水を加え、SephadexG-25カラムによりゲルろ過を行いポリアクリル酸結合磁性粒子 - 酸化 チタン複合体微粒子分散液を得た。

[0029]

(実施例7)

ポリアクリル酸結合アナターゼ型二酸化チタン微粒子のpH安定性の評価

実施例1~6で得られたポリアクリル酸結合アナターゼ型二酸化チタン微粒子を水に分 散させ、溶液のpHを塩酸と水酸化ナトリウムを使用してpH3からpH13までpH1刻みで変化さ せて、ポリアクリル酸結合アナターゼ型二酸化チタン微粒子の凝集あるいは沈殿が生じる。 かを観察した。pHを変化させた水溶液を4000rpmで遠心を行い凝集の有無を確認したが、 いずれの粒子においても粒子の凝集あるいは沈殿は観察されなかった。

[0030]

(実施例8)

ポリアクリル酸結合アナターゼ型二酸化チタン微粒子の光触媒活性の評価

実施例1~6で得られたポリアクリル酸結合アナターゼ型二酸化チタン微粒子を固形成 分が0.02%になる様に50mMリン酸緩衝液(pH7.0)で希釈した。メチレンブルー三水和物 (和光純薬)を40μMになる様に水溶液に添加した。攪拌しながら、本水溶液に波長340nm の紫外光を1.5mW/cm²になるように照射し、580nmにおける波長の吸収を紫外-可視光分光 光度計により測定した。結果を図2に示した。全ての試料で紫外線照射時間の経過と共に メチレンプルーの分解にともなう吸光度の減少が認められることから、実施例1~5で得 られたポリアクリル酸結合アナターゼ型二酸化チタン微粒子が光触媒活性を保持している ことは明らかである。また、紫外線を20時間照射した後でも、水溶液中にポリアクリル酸 結合二酸化チタン微粒子の凝集および沈殿は観察されなかった。

[0031]

(実施例9)

ポリアクリル酸結合アナターゼ型二酸化チタン微粒子の殺菌活性の評価

実施例1~6で得られたポリアクリル酸結合アナターゼ型二酸化チタン微粒子を固形成 分が1.0%になるように50mMリン酸緩衝液 (pH7.0) で調整した。

大腸菌をLBブロスで37℃、一晩培養した後、培養液を遠心分離し、菌体を50mMリン酸緩衝 液 (pH7.0) で洗浄し、培養液と等量の50mMリン酸緩衝液 (pH7.0) に懸濁した。これをさ らに50mMリン酸緩衝液 (pH7.0) で100倍希釈したものを試験用菌液とした。この試験用菌 液に上記ポリアクリル酸結合アナターゼ型二酸化チタン微粒子を最終濃度0.1%および0.0 1%になるように添加した。試験用溶菌液とポリアクリル酸結合アナターゼ型二酸化チタ ン微粒子の混合液を液深3mmになるように小型シャーレに入れ、ブラックライト照射(線 量:900μW/cm²) 下、室温で静置した。また、ポリアクリル酸結合アナターゼ型二酸化チ タン微粒子を添加しないものを対照1として同様にブラックライト照射した。照射前、照 射 2 時間後、 4 時間後に上記試験液の一部を採取し、LB寒天培地を用いた常法に従って菌 数を計数した。また、ポリアクリル酸結合アナターゼ型二酸化チタン微粒子を最終濃度0. 1%となるように試験溶菌液に加え、遮光して静置したものを対照2とし、上記と同様の 時間で菌数計数を行った。その結果を下表に示す。ポリアクリル酸結合アナターゼ型二酸 化チタン微粒子を添加してブラックライトを照射した系では経時的な菌数減少が認められ 、本微粒子が光触媒活性に付随する抗菌性を保持していることは明らかである。

[0032]

【表1】

	微粒子	微粒子	対照1	対照2
	0.01%	0.1%		
照射前	4.3×10^7	4.2×10^{7}	4.0×10^7	4.1×10^7
2時間後	2.3×10^7	5.6 × 10 ⁶	3.5×10^7	4.0×10^7
4時間後	8.0×10^{6}	2.6 × 10 ⁴	3.5×10^7	3.8×10^7
				(曹紫 (1)

(菌数/ml)

【図面の簡単な説明】

[0033]

. 【図1】本発明の表面改質アナターゼ型二酸化チタン微粒子を示す模式図である。

【図2】本発明の表面改質二酸化チタン微粒子の光触媒活性(メチレンブルーの分解 にともなう吸光度の減少として表示)を測定した結果を示す図である。図中○、●、 □、■、△は、それぞれ実施例1~5で作製したポリアクリル酸結合アナターゼ型二 酸化チタン微粒子を表している。

【要約】

表面の一部に二酸化チタンを含む、中性水溶液への分散性に優れた表面改質 【課題】 アナターゼ型二酸化チタン含有微粒子およびその分散液とその製造方法を提供する。

【解決手段】 アナターゼ型二酸化チタンを含む微粒子表面の二酸化チタンと、カルボ キシル基を複数含有する親水性高分子のカルボキシル基との間をエステル結合で結合する ことにより、中性水溶液への分散性と安定性に優れた表面改質アナターゼ型二酸化チタン 微粒子およびその分散液を得る。好ましくは前記親水性高分子は水溶性高分子であり、さ らに好ましくはポリアクリル酸である。

【選択図】 図1

特願2003-340228

出願人履歴情報

識別番号

[000010087]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

福岡県北九州市小倉北区中島2丁目1番1号

東陶機器株式会社 氏 名