

UNIVERSIDADE SÃO TOMÁS DE MOÇAMBIQUE FACULDADE DE CIÊNCIAS E TECNOLOGIAS DE INFORMAÇÃO

Curso de Lógica de Programação Ficha 3 – Introdução ao VISUAL G

Introdução ao Visual G

Ficha 3 – Curso de Lógica de Programação

1 Introdução ao VISUAL G

O **VisualG** é um aplicativo que permite a edição e execução de pseudocódigo, criado com objectivo de introduzir os estudantes ao mundo das linguagens de programação de uma forma "suave". Tendo em conta a existência de várias linguagens de programação e cada uma com suas regras, umas mais complicadas que outras, numa primeira fase seria de pouco valor procurar aprender uma dessas linguagens sem antes perceber a lógica por detrás da programação [no geral].

O **VisualG** permite representar os algoritmos [na forma de pseudocódigo] bem como executá-los passo-a-passo, permitindo uma melhor compreensão do processo de escrita e de execução de programas. A seguir é apresentada a essência do editor de pseudocódigo **VisualG**.

Apresentação do ambiente

O **VisualG** é um editor semelhante a maioria dos editores de texto baseados em janelas. Ele é composto de menus, botões, áreas de edição, etc. A tela do VisualG tem aparência ilustrada na figura abaixo.

Figura 1 - Apresentação do editor Visual G

Conforme se pode notar, esta tela é composta por 4 grandes áreas, a saber (1) A área dos menus e botões de comandos; (2) a área de edição [de pseudocódigo]; (3) a área da visualização das variáveis e (4) a área da visualização dos resultados.

A seguir são apresentados com detalhe cada componente mencionado:

(1) A BARRA DE MENUS E COMANDOS

A barra de menus possui os comandos básicos de um editor de texto, nomeadamente:

- Comando de arquivo (para criar um novo documento, para abrir documento, para gravar documento);
- 2. Comandos de edição (copiar, colar, localizar, substituir, etc.). Para além destes comandos, a barra de menus possui também comandos de manipulação de pseudocódigo. A seguir está representada a barra de menus e comandos.

Figura 2 - Comandos de manipulação de pseudocódigo

(2) A ÁREA DE EDIÇÃO DE PSEUDOCÓDIGO

A área de edição de pseudocódigo [marcada na figura com o número 2], é onde se faz a edição do pseudocódigo. O VisualG permite apenas a edição de um ficheiro de cada vez e não é possível ter dois ficheiros abertos ao mesmo tempo. Sempre que um novo ficheiro for criado/aberto o que estiver a ser editado será fechado e deve se ter sempre o cuidado de gravar o ficheiro corrente antes da abertura/criação do novo.

(3) A ÁREA DE VISUALIZAÇÃO DAS VARIÁVEIS

Esta área permite visualizar o estado de todas as variáveis declaradas no algoritmo; esta área é bastante importante pois permite acompanhar a evolução do processo de execução do algoritmo.

(4) A ÁREA DE VISUALIZAÇÃO DO RESULTADO FINAL

Esta área visualiza o resultado da execução do algoritmo. A interacção com o utilizador acontece dentro de uma tela do DOS; é nesta tela que são apresentadas as mensagens para o utilizador e é nesta tela que o utilizador digita os dados para o algoritmo

Estrutura de um algoritmo

```
1 Algoritmo
             "semnome"
     Disciplina
                  : [Curso de Lógica de Programação]
     Professor
                : Dercio Nacare
     Descrição : Aqui você descreve o que o programa faz! (função) 2
     Autor(a)
                  : Nome do (a) aluno (a)
     Data atual
                  : 01/12/2020
9 Var
10
   // Seção de Declarações das variáveis
                                                                       3
11
12
13
14 Inicio
15
   // Seção de Comandos, procedimento, funções, operadores, etc...
16
                                                                       4
17
18
19 Fimalgoritmo
```

Figura 3 - Estrutura de um algoritmo

Nesta estrutura destacam-se os 4 elementos do algoritmo, a saber, (1) O nome do algoritmo, (2) a área dos comentários; (3) A área da declaração de variáveis globais e (4) área do das instruções do algoritmo.

Exemplo de um algoritmo

```
1 Algoritmo "HelloWorld"
 3 // Disciplina : [Curso de Lógica de Programação]
 4 // Professor : Dercio Nacare
 5 // Descrição : Aqui você descreve o que o programa faz! (função) 6 // Autor(a) : Nome do(a) aluno(a)
 7 // Data atual : 01/12/2020
9 Var
10
11 // Seção de Declarações das variáveis
12
13
14 Inicio
15
         Escreval ("Hello World")
16
17
18 Fimalgoritmo
```

Figura 4 - Exemplo de um algoritmo

PALAVRAS RESERVADAS DO VISUALG

Palavra reservada é qualquer palavra com um significado especial na linguagem de programação. Uma palavra reservada não pode ser usada para um fim diferente daquele para o qual foi criado. Um exemplo de palavra reservada para o VisualG é "Algoritmo" que indica a definição de um algoritmo. Sempre que esta palavra aparecer em algoritmo, o VisualG entenderá que se trata da definição de um algoritmo.

A seguir são apresentadas algumas palavras reservadas do VisualG.

"ALGORITMO"

Esta palavra marca o início do algoritmo, a seguir a esta palavra deve se indicar o nome do algoritmo. O nome do algoritmo deve ser colocado entre "aspas". O nome pode ser combinação de quaisquer caracteres suportados pelo sistema operativo para representar o nome de ficheiro.

"VAR"

A palavra reservada "Var" marca o início da declaração de variáveis. Num algoritmo pode se declarar tantas variáveis quanto forem necessárias. A seguir apresenta-se um exemplo do bloco de declaração de variáveis.

```
nome: caractere
genro: caractere
anoNascimento: inteiro
```

"INICIO" E "FIMALGORITMO"

Estas duas palavras reservadas marcam respectivamente o início e o fim da sequência de instruções do algoritmo.

COMANDOS DE SAÍDA DE DADOS

Os comandos de saída de dados permitem visualizar mensagens na tela; O VisualG dispõe de dois comandos para visualizar dados na tela, a saber, (1) **escreva** e (2) **escreval**. A sintaxe dos dois comandos é semelhante e abaixo ilustra-se a aplicação genérica destes comandos.

```
Escreva(exp1, exp2,... expn)
Escreval(exp1, exp2,... expn)
```

Onde exp1, exp2, expn pode ser qualquer valor fixo, variável ou expressão.

A única diferença entre o "escreva" e o "escreval" consiste no facto de o "escreval" posicionar o cursor na linha seguinte logo após a mensagem ao passo que o "escreva" posiciona o cursor no fim da mensagem

Entrada de dados

O comando de entrada de dado usado pelo Visualg é o **leia**; este comando recebe como parâmetro a variável que irá receber o valor lido. A utilização deste comando é feita usando a sintaxe seguinte:

```
leia(identificador)
```

Exemplo 1

Crie um algoritmo que permita ler o nome de um individuo e de seguida visualizar na tela:

```
1 Algoritmo "ImprimeNome"
3 // Disciplina : [Curso de Lógica de Programação]
4 // Professor : Dercio Nacare
5 // Descrição : Aqui você descreve o que o programa faz! (função)
6 // Autor(a) : Nome do(a) aluno(a)
7 // Data atual : 01/12/2020
9 Var
10
11
     nome: caractere
12
13 Inicio
14
        Escreva ("Digite o seu nome: ")
15
16
        leia(nome)
17
        Escreval ("O seu nome é: ", nome)
18
19
20 Fimalgoritmo
```

Figura 5 - Exemplo de um algoritmo

2 OPERADORES E EXPRESSÕES COM OPERADORES

Uma expressão é uma combinação ordenada de valores, variáveis/constantes, operadores, e parênteses, que permite realizar operações aritméticas e lógicas. As expressões são interpretadas obedecendo às regras matemáticas (regras de operações aritméticas e regras de operações lógicas).

Tal como em matemática, em linguagens de programação, uma expressão envolve sempre um ou vários operadores. Os operadores são símbolos que indicam uma função a qual pode ser aritmética, relacional ou lógica.

A seguir apresenta-se os vários operadores que podem figurar de expressões em algoritmos, a apresentação é feita em grupos de operadores, a saber: aritméticos, relacionais e lógicos.

Operadores aritméticos

Operador	Descrição	Exemplo
+	Soma duas constantes ou dois valores contidos em variáveis.	1+1 x+x

-	Subtrai duas constantes ou dois valores contidos em variáveis.	3-1	n-n
*	Multiplica duas constantes ou dois valores contidos em variáveis.	3*1	x*1
/	Divide duas constantes ou dois valores	3/1	x/1
MOD	Acha o resto da divisão de duas variáveis ou expressões inteiras;	6 MOD 2	11 MOD 4
۸	Permite achar o valor da potência de uma base qualquer	4^2	3^4
\	Acha a divisão inteira de duas constantes ou valores contidos em variáveis	9\4	15\4

Operadores relacionais

Operador	Função	E	xempl	0
<	Compara duas variáveis ou expressões segundo a relação "maior do que" (o resultado é sempre um valor booleano, VERDADEIRO ou FALSO)	5> 1	X>2	X>Y
>	Compara duas variáveis ou expressões segundo a relação "menor do que" (o resultado é sempre um valor booleano, VERDADEIRO ou FALSO)	5<1	X<2	X <y< th=""></y<>
=	Compara duas variáveis ou expressões segundo a relação "igual a" (o resultado é sempre um valor booleano, VERDADEIRO ou FALSO)	5=1	X=2	X=Y
<>	Compara duas variáveis ou expressões segundo a relação "diferente de" (o resultado é sempre um valor booleano, VERDADEIRO ou FALSO)	5<>1	5<>2	X<>Y
>=	Compara duas variáveis ou expressões segundo a relação "maior ou igual a" (o resultado é sempre um valor booleano, VERDADEIRO ou FALSO)	5>=1	5>=2	Y>=Y

Compara duas variáveis ou expressões segundo a relação "menor ou igual a" (o resultado é sempre um valor booleano, VERDADEIRO ou FALSO)	5<=1	5<=2	Y>=Y	
---	------	------	------	--

Operadores lógicos

Operador	Função	Possíveis combinações
AND (E)	Relaciona duas variáveis ou expressões e o resultado da relação será VERDADEIRO (V) se ambas as expressões tiverem valor VERDADEIRO e FALSO (F) se uma das expressões tiver valor FALSO	V AND V = V V AND F = F F AND V = F F AND F = F
OR (OU)	Relaciona duas variáveis ou expressões e o resultado da relação será VERDADEIRO se uma das expressões tiver valor VERDADEIRO.	V OR V = V V OR F = V F OR V = V F OR F = F
NOT (NÃO)	Operador de negação; Altera o valor booleano de uma variável ou expressão	NOT V = F NOT F = V
XOR (XOU)	Operador de disjunção exclusiva; relaciona duas expressões ou variáveis e o resultado será VERDADEIRO somente se as duas expressões tiverem valores diferentes	V OR V = F V OR F = V F OR V = V F OR F = F

3 Exercícios

- 1. Considere as expressões apresentadas nas alíneas seguintes, diga qual é o resultado final de cada uma delas:
 - a) 12.0+1/2
 - b) 12*3\5
 - c) 2³+7
 - d) 8<9
 - e) 6>=5
 - f) (6=8) XOU (7<8)
 - g) (8>10) E (8<10)
 - h) 78 MOD 3
 - i) (55 <= 55) OU (7>9)
- 2. Crie um algoritmo que permita visualizar na tela o seu nome completo
- 3. Crie um algoritmo que permita visualizar na tela uma mensagem com a seguinte formatação
 - a. Titulo
 - b. Texto

Onde:

Titulo - deverá ser "A minha motivação para o curso de Lógica de Programação"

Texto - deverás informar as reias causas/motivações que contribuíram para que efectuasses a inscrição para o curso.

- 4. Crie um programa que leia pelo teclado o nome de um estudante, a nota do teste 1 e teste 2 e imprima na tela os dados lidos
- 5. Escreva um algoritmo que permite determinar a idade de um individuo; para tal o algoritmo deverá obter do utilizador o ano de nascimento e o nome do indivíduo. Depois de calcular a idade, o algoritmo deverá permitir a visualização da mensagem no seguinte formato:

NOME DO INDIVIDUO tem XYZ anos de idade

 Modifique o algoritmo do exercício 4, adicionando a funcionalidade de realização do cálculo da média final e imprima na tela. [Considere a formula para o cálculo: (teste1 + teste2) /2].

"NÃO É MERECEDOR DO FAVO DE MEL AQUELE QUE EVITA A COLMÉIA PORQUE AS ABELHAS TÊM FERRÕES"

__

WILLIAM SHAKESPEAR