Análisis Aplicado Laboratorio Método Máximo Descenso

1. Introducción

Se prueba el método de direcciones de descenso en el caso en que se considera en cada iteración, k, el vector $-\nabla f(x_k)$,. En tal caso, el método lo llamaremos, **método de máximo descenso.**

Mostraremos que el método de másimo descenso puede tener convergencia lenta al mínimo local, aunque en teoría, este método converge.

Usaremos funciones cuadráticas en dos dimensiones con matrices simétricas y positivas definidas donde los dos valores propios puedan variar entre sí.

2. Funciones Cuadráticas

Una funcióm cuadrática es de la forma

$$f(x) = \frac{1}{2}x^T A x + b^T x, \tag{1}$$

donde $A \in \mathbb{R}^{nxn}$ es simétrica y $b \in \mathbb{R}^n$.

Suponemos que A es positiva definida, por lo cual A es no singular.

Tenemos que

$$\nabla f(x) = Ax + b, \quad \nabla^2 f(x) = A,$$

y la dirección de Newton es

$$p^{N} = -(\nabla^{2} f(x))^{-1} \nabla f(x) = -A^{-1} (Ax + b) = -(x + A^{-1}b),$$
an general $\nabla f(x) \neq n^{N}$ as decir

en general $\nabla f(x) \neq p^N$, es decir

$$Ax - b \neq -(x + A^{-1}b).$$

3. Funciones de Prueba

Se programa el método de máximo descenso con los parámetros:

ſ	tol	maxiter	maxjter	c_1
	10^{5}	300	30	10^{-1}

Se prueba el método de máximo descenso con variaciones de una función cuadrática:

$$f(x) = \frac{1}{2} [\lambda_1 (x_1 - 1)^2 + \lambda_2 (x_2 - 2)^2] + \psi, \tag{2}$$

donde $\lambda_1, \lambda_2 > 0$ son constantes, ψ es constante y $x^* = (1, 2)^T$ es el mínimo global de la familia de funciones (2).

El punto inicial, para nuestras iteraciones, es $(6, 8)^T$.

3.1. Valores Propios Similares

Consideramos $\lambda_1 = \lambda_2 = 10$, es decir

$$f(x) = \frac{1}{2} [10 * (x_1 - 1)^2 + 10 * (x_2 - 2)^2] + 10.$$
 (3)

Punto inicial en $(6, 8)^T$.

Los resultados se indican en la siguiente tabla

iter	$\ \nabla f(x)\ _2$
1	15.2069076897
2	3.8017269267
3	0.9504317312
4	0.2376079313
5	0.0594019825
6	0.0148504960
7	0.0037126250
8	0.0009281560
9	0.0002320390
10	0.0000580111
11	0.0000145023
12	0.0000217505
13	0.0000054367

 $f(x) = 100*(x_1 - 1)^2 + 10*(x_2 - 2)^2 + 10$

3.2. Valores Propios Diferentes

Consideramos $\lambda_1=100,\ \lambda_2=10,\ psi=100$ es decir

$$f(x) = \frac{1}{2} [100(x_1 - 1)^2 + 10(x_2 - 2)^2] + 100.$$
 (4)

Punto inicial en $(6, 8)^T$.

Los resultados se indican en la siguiente tabla

iter	$\ \nabla f(x)\ _2$
1	75.6766590123
2	53.1572039875
3	73.3697293214
4	45.2143057002
5	29.8271789966
6	47.4371558786
7	28.1728725168
8	17.5870217013
9	11.8015394080
10	18.0985878317
:	:
46	0.0034097860
47	0.0023192814
48	0.0034511
47	0.0023192814
48	0.0034519181
49	0.0020838350
50	0.0013346444
49	0.0020838350
50	0.0013346444

Convergencia puede ser lenta.

$f(x) = 100*(x_1 - 1)^2 + 10*(x_2 - 2)^2 + 100$

