Classic Networks

LeNet - 5

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

Alex Net

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

VGG - 16

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]

Motivation for inception network

[Szegedy et al. 2014. Going deeper with convolutions]

Using 1x1 convolution

Inception Module

Inception network

Residual Networks (ResNets)

Residual Block

$$a^{[l]} \longrightarrow \begin{bmatrix} \bigcirc \\ \bigcirc \\ \bigcirc \end{bmatrix} \xrightarrow{a^{[l+1]}} \begin{bmatrix} \bigcirc \\ \bigcirc \\ \bigcirc \end{bmatrix} \longrightarrow a^{[l+2]}$$

$$\mathbf{z}^{[l+1]} = W^{[l+1]} \mathbf{a}^{[l]} + \mathbf{b}^{[l+1]}$$
 $\mathbf{a}^{[l+1]} = g(\mathbf{z}^{[l+1]})$
 $\mathbf{z}^{[l+2]} = W^{[l+2]} \mathbf{a}^{[l+1]} + \mathbf{b}^{[l+2]}$
 $\mathbf{a}^{[l+2]} = g(\mathbf{z}^{[l+2]})$

Residual Block

$$\mathbf{z}^{[l+1]} = W^{[l+1]} \mathbf{a}^{[l]} + \mathbf{b}^{[l+1]}
\mathbf{a}^{[l+1]} = g(\mathbf{z}^{[l+1]})
\mathbf{z}^{[l+2]} = W^{[l+2]} \mathbf{a}^{[l+1]} + \mathbf{b}^{[l+2]}
\mathbf{a}^{[l+2]} = g(\mathbf{z}^{[l+2]})
\mathbf{a}^{[l+2]} = g(\mathbf{z}^{[l+2]})$$

[He et al., 2015. Deep residual networks for image recognition]

ResNet

