Search for gauge-mediated supersymmetry in events with photons and a Z boson decaying to charged leptons at CMS

von

Sebastian Wuchterl

Masterarbeit in Physik

vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen

im xx 2018

 $\begin{array}{c} \text{angefertigt im} \\ \text{I. Physikalischem Institut B} \end{array}$

bei Prof. Dr. Lutz Feld

Contents

1	Introduction					
	1.1	1.1 System of units				
	1.2	The st	tandard model of particle physics	5		
		1.2.1	Indications for physics beyond the standard model			
	1.3	Super	symmetry	8		
		1.3.1	General gauge mediation	10		
		1.3.2	Signal scenarios	10		
		1.3.3	Status of SUSY searches at the LHC	13		
2	The	Experi	ment	17		
	2.1	The la	arge hadron collider	17		
	2.2	The co	ompact muon solenoid	17		
Bi	bliogr	aphy		19		

Chapter 1

Introduction

1.1 System of units

For simplicity, the unit system commonly used in particle physics is the natural unit system [1]. In natural units, the reduced Planck constant \hbar and the speed of light c are set to unity:

$$h = c = 1 \tag{1.1}$$

The observables used most frequently in particle physics are the energy, momentum, and mass. They are given in GeV in the natural unit system. For other variables, such as length and time, the metric unit system is used. Cross sections are given in barn $(1 \text{ b} = 10^{-28} \text{ m}^2)$. Integrated luminosities are therefore given in b^{-1} .

1.2 The standard model of particle physics

The standard model of particle physics (SM) is a gauge theory describing three of the four fundamental forces, namely the electromagentic, weak, and strong interaction [2]. The gravitional force is described within general relativity [3].

All fundamental particles can be devided into two subclasses: Particles of integer-spin, called bosons, and particles of half-integer spin, called fermions.

The SM is based on the symmetry group $SU(3) \otimes SU(2) \otimes U(1)$. The interactions are characterized via the exchange of spin-1 gauge fields, which are the bosons. In the case of the strong force these are 8 massles gluons, which couple to the color charge. The mediator of the electromagnetic interaction is the massles photon, coupling to the electric charge of particles. And for the weak interaction, these are the three massive bosons W^{\pm} and Z, which couple to weak charge.

While the bosons describe the mediation of the fundamental forces, the matter content is given by the fermions. Fermions are divided into two subgroups, called quarks and leptons. Leptons take part only in the electroweak interaction, while quarks carry also a color charge and can therefore interact via the strong force. There exist three generations of fermions, which include each two lepton and two quark flavours. The quark flavours are

namely the down, up, strange, charm, bottom, and top quarks, while the lepton flavours are made up of three electrically charged particles, the electron (e), the muon (μ), and the tau lepton (τ), and three electric neutral leptons, called neutrinos (ν_e, ν_μ, ν_τ). The latter are assigned the names of the charged leptons of the same generation. Of the quarks, there are up-type quarks carrying the electric charge of $+\frac{2}{3}e$, and down-type quarks carrying the electric charge of $-\frac{1}{3}e$.

An illustration of the total Sm particle content with its properties is shown in Figure 1.1. For each particle, a corresponding anti-particle exists with same mass and inversed quantum numbers. Troughout this thesis particles and antiparticles will be treated the same way, and will be labeled with the name of the particle.

Figure 1.1: Total particle content of the standard model. For each particle important properties such as mass, spin, and charges are given. The values are taken from [4].

The strong interaction between quarks and gluons is described in the quantum field theory of quantum chromodynamics (QCD). The corresponding mediators of the non-abelian gauge group $SU(2)_C$ are the eight gluons, which carry each the color-charge C of an anti-color and color, giving rise to the self coupling of gluons. Due to the confinement of quarks [5], quark-antiquark pairs will be produced out of the vacuum, if particles with color charge are being separated, since the potential energy density of the strong force includes constant terms, and the potential energy rises with increasing distance. The same principle leads to the existance of only color-neutral bound states of two (mesons), or three (baryons) quarks, called hadrons.

The electromagnetic and weak force can be unified in the electroweak theory to obtain the electroweak interaction [6–9], represented by the gauge group $SU(2)_L \otimes U(1)_Y$. The

indices L and Y indicate that the weak isospin T couples only to lefthanded $SU(2)_L$ doublets of fermions, while the righthanded $SU(2)_L$ singlets carry no isospin, and Y is the hypercharge. The three mediators of the $SU(2)_L$ group are the W^1, W^2 , and W^3 bosons, and the gauge boson of the $U(1)_Y$ group is the B^0 boson. Due to the spontaneous symmetry breaking in the electroweak unification, these four bosons mix to the observed W^{\pm} and Z boson, and the photon γ :

$$\begin{pmatrix} \gamma \\ Z \end{pmatrix} = \begin{pmatrix} \cos(\theta_W) & \sin(\theta_W) \\ -\sin(\theta_W) & \cos(\theta_W) \end{pmatrix} \cdot \begin{pmatrix} B \\ W^3 \end{pmatrix}$$
 (1.2)

$$W^{\pm} = \frac{1}{\sqrt{2}} \left(W^1 \mp i W^2 \right) \tag{1.3}$$

The resulting weak interaction is parity violating. The W^{\pm} bosons only couple to left-handed fermions, while the neutral Z boson couples to both lefthanded and righthanded particles, but with different strength.

Because in this theory the gauge bosons are not allowed to have masses, the Higgs mechanism is introduced [10–12]. It predicts a complex scalar doublet Higgs field, which is symmetric, but has a non zero vacuum expectation value and is therefore responsable for the spontaneous symmetry breaking of the $SU(2)_L \otimes U(1)_Y$ gauge group. Since it has four degrees of freedom, but only three are used to give masses to the W^{\pm} and the Z bosons, a fourth spin-0 boson is postulated, namely the Higgs boson. Leptons aquire also masses in the SM via Yukawa couplings with the Higgs field. Such a spin-0 scalar boson has been observed in proton-proton collisions at the LHC in 2012 [13, 14], and its mass has been determined to be $125.09 \pm 0.24 \,\text{GeV}$. This theory earned validation in good agreement with SM predictions [15], and recently also couplings to the top quark [16], and decays to bottom quarks and tau leptons have been observed [17, 18], streightening the presumption, that the found boson is the postualed Higgs boson.

1.2.1 Indications for physics beyond the standard model

Although the SM describes all phenomena observed at high energy particle colliders successfully, different observations indicate that there must exist physics beyond the standard model (BSM).

Precise measurements of the cosmic microwave background and theoretical interpretations suggest, that only 4.9% of the universe consist of ordinary matter, while the remainder is composited of dark energy and dark matter [19]. The existence of dark matter is also observed in gravitational lensing effects [20], and in rotation curves of spiral galaxies [21]. But inside the SM there exists no particle, that could explain the total amount of dark matter in the universe.

It is assumed, that in the early age of the universe there was the same amount of matter and antimatter. But, today we observe the existence of much more matter than antimatter [22, 23]. Different conditions, such as CP-violation and baryon number violation, should be fulfilled [24], so that this discrepancy can be explained. However, there are no

known sources of violation effects large enough to give rise to such big differences. In the SM, neutrinos are assumed to be massles particles. But, the observation of neutrino oscillations are only explicable if neutrinos are massive particles [4, 25].

The observation of the Higgs boson in 2012 marks on the one hand the great success of the SM, but on the other hand directly leads to a big problem concerning the Higgs mass, what is known as the "Hierarchy Problem". The Higgs boson couples to all massive particles, and the coupling strength is proportional to their masses. But unlike for all other particles, the mass term for the Higgs boson is quadratically divergent, caused by virtual loop corrections from the fermion couplings. The cut-off scale for these corrections can be as large as the validity of the SM. Thus, the Higgs boson mass can be pushed to the order of the Planck scale ($10^{19} \, \text{GeV}$). Since its mass was measured at the LHC to be $\approx 125 \, \text{GeV}$, and the difference between the electroweak scale ($10^2 \, \text{GeV}$) and the Planck scale is that huge, these corrections terms need to cancel per coincidence. This is considered as "unnatural", leading to the expectation that new physics is hiding in the energy ranges up to the Planck scale.

Also, driven by the electroweak unification, the unification of all forces in a grand unified theory (GUT) is well motivated. Because the couplings of the forces in the SM do not lead to a unification at very high energies [4], a possible extension of the SM with additional new particles could explain such a unification of the electroweak and strong interaction. One of those theories is supersymmetry [26].

1.3 Supersymmetry

Supersymmetry (SM) [26, 27] is one of the most popular BSM models and was developed already in the 1970s. It is well motivated within theory, because it is the only possible extension of space time symmetry. Since then, many different SUSY models have been established, all based on the same principle: SUSY connects fermions with bosons and the other way around by introducing supersymmetric partners for each SM particle. These superpartners differ only in spin by $\pm 1/2$, all other quantum numbers are kept equal. With the help of generators Q_i , bosonic and fermionic states can be switched:

$$Q|fermion\rangle = |boson\rangle, + Q|boson\rangle = |fermion\rangle$$
 (1.4)

Some of the many advantages of SUSY are, that multiple models directly provide candidates for dark matter particles, solve directly the unification of forces, and solve the Hierarchy Problem without any "fine tuning".

The simplest form of SUSY is the minimal supersymmetric standard model (MSSM), where only exactly one pair of Q, $\dagger Q$ exists. So within the MSSM, for each fermion in the SM, a supersymmetric scalar boson is introduced. To differentiate between these two, the names of supersymmetric partners are those of the SM particles prepended with an "s-" (standing for scalar). The partners of fermions are called sfermions, and e.g. the partner of the electron is the selectron. The superpartners of the bosons are postpended with an "-ino", making them bosinos, and the partner of the gluon for example is called gluino. In general, the superpartners are called sparticles, and are labeled the same as their SM

counterparts, but with a tilde $(\mu \to \widetilde{\mu})$.

To give masses in the spontaneous symmetry breaking to all particles and sparticles, the SM higgs sector needs to be extended to two complex scalar doublets:

$$H_u = \begin{bmatrix} H_u^+ \\ H_u^0 \end{bmatrix}, \qquad H_d = \begin{bmatrix} H_d^0 \\ H_d^- \end{bmatrix} \tag{1.5}$$

The H_d gives masses to the down-type quarks and charged leptons, while the H_u is responsile for the masses of up-type quarks. Consistently four higgsinos as superpartners are introduced in the MSSM. With two doublets, in the spontaneous symmetry breaking there are eight degrees of freedom instead of four, giving rise to an expanded higgs sector consisting of five particles, the two neutral scalars h^0 and H^0 , the two charged scalars H^{\pm} , and the neutral pseudoscalar A^0 . The observed Higgs boson at the LHC can be identified as one of the two neutral scalars, where the lighter h^0 is chosen by convention.

The gauginos and higgsinos mix, similar to the mixing in the electroweak sector, to six mass eigenstates, which are the four neutral neutralinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, and $\tilde{\chi}_4^0$, and the two charged charginos $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{\pm}$.

The total particle content of the MSSM is shown in Figure 1.2. As an extension and to include gravity, the SM is extended by the graviton G, and the SUSY sector by its superpartner, the gravitino \tilde{G} .

Figure 1.2: The particle content of the MSSM extended with the graviton and gravitino. Mixings to mass eigenstates are indicates with the brackets.

Because in an unbroken symmetry the particles and their corresponding sparticles should posses the same masses, and those SUSY particles should have been found easily in the

past (considering e.g. an electron/selectron mass of $\approx 511\,\mathrm{keV}$), SUSY must be a broken symmetry. There have been many different theories developed over time to explain different breaking scenarios.

As mentioned, SUSY can provide Dark Matter candidates, if the lightest supersymmetric particle (LSP), is stable, electrically neutral, and uncolered. But, it is not fundamentally necessary, that the LSP is stable. In so-called R-Parity vioating scenarios, decays of all SUSY particles into SM particles are allowed. Hence, the conservation of the Baryon number B, and the lepton number L is violated. The R-parity

$$R = (-1)^{3B+L+S} (1.6)$$

is therefore introduced as a new quantum number, where S is the spin. The R-parity is -1 for sparticles, and +1 for particles respectively. R-parity conserving scenarios are motivated by many precision measurements, such as the life time measurement of the proton [28]. In this thesis, only R-parity conserving scenarios are considered.

1.3.1 General gauge mediation

The phenemenology of SUSY is very rich. While most of the popular models gravitiy is responsible for the SUSY breaking, a different approach, also motivating this search, is general gauge mediation (GGM) [29]. In these gauge mediated supersymmetry breaking (GMSB) models, an additional "hidden sector" is introduced, which is responsible for the breaking. This sector is mainly decoupled, and the possible interactions between the visible and the hidden sector are only achieved by messenger fields mediated by gauge interations. In GMSB, the LSP is typically the gravitino \tilde{G} , and this particle is assumed to be very light (\ll 1 GeV). Therefore, the next-to-lightest supersymmetric particle (NLSP), which can be basically any sparticle, decays promptly. Since the gravitino is stable because of R-parity conservation, electrically and color neutral, it will leave any detector undetected, causing an imbalance in the measured total transverse momentum in e.g. the proton-proton collisions of the LHC.

In all models considered thourghout this thesis, the NLSP is assumed to be the lightest neutralino ($\tilde{\chi}_1^0$). The mixing of the NLSP can include bino, wino, and higgsino components, each enabiling dfferent decay channels.

1.3.2 Signal scenarios

Given the theoretical background, the signal scenarios considered in this thesis are discussed in the following. All couplings of the SUSY particles are the same as of their SM partners. Hence, very different production channels, such as electroweak and strong production, are possible. In case of the LHC proton-proton collisions, SUSY particles are typically produced directly in the hard process, leading to cascade like decay structures down to the decays of the NLSP to the gravitino and a SM boson. The branching fractions of the lightest neutralino to different SM bosons depends on its mixing

$$\tilde{\chi}_1^0 = \sum_{i=1}^N N_1 \tilde{\psi}_i^0, \tag{1.7}$$

where $\widetilde{\psi}_i^0 = (\widetilde{B}, \widetilde{W}, \widetilde{H}_d^0, \widetilde{H}_u^0)$ [30]. The mass eigenstate vectors N_i are defined through four paramaters, the bino mass M_1 and wino mass M_2 at the messenger scale, the supersymmetric mass term for Higgs μ , and $\tan \beta$, the ratio between the two vacuum expectation values of the up- and down type Higgs. In general a neutralino NLSP has three possible decays, all involving the \widetilde{G} :

$$\Gamma\left(\tilde{\chi}_1^0 \to \tilde{G} + \gamma\right) = |N_{11}c_W + N_{12}s_W|^2 \mathcal{A} \tag{1.8}$$

$$\Gamma\left(\tilde{\chi}_{1}^{0} \to \tilde{G} + Z\right) = \left(|N_{12}c_{W} - N_{11}s_{W}|^{2} + \frac{1}{2}|N_{13}c_{\beta} - N_{14}s_{\beta}|^{2}\right) \left(1 - \frac{m_{Z}^{2}}{m_{\tilde{\chi}_{1}^{0}}^{2}}\right)^{4} \mathcal{A}$$
 (1.9)

$$\Gamma\left(\tilde{\chi}_{1}^{0} \to \tilde{G} + h\right) = \frac{1}{2}|N_{13}c_{\beta} + N_{14}s_{\beta}|^{2} \left(1 - \frac{m_{h}^{2}}{m^{2}}\right)^{4} \mathcal{A}$$
(1.10)

Here, c_W , s_W , c_β , and s_β are abbreviations for $\cos(\theta_{Weinberg})$, $\sin(\theta_{Weinberg})$, $\cos(\beta)$, and $\sin(\beta)$. The formulae hold in cases of on-shell Z and h production. A is a parameter responsible for the NLSP lifetime [31, 32]

$$\mathcal{A} = \frac{m_{\widetilde{\chi}_1^0}^5}{16\pi F_0^2} \approx \left(\frac{m_{\widetilde{\chi}_1^0}}{100 \,\text{GeV}}\right)^5 \left(\frac{100 \,\text{TeV}}{\sqrt{F_0}}\right)^4 \frac{1}{0.1 \,\text{mm}},\tag{1.11}$$

where F_0 is the scale of SUSY breaking, its range is given by $10\,\text{TeV} \lesssim \sqrt{F_0} \lesssim 10^6\,\text{TeV}$, and it is related to the gravitino mass via $m_{\widetilde{G}} = \frac{F_0}{\sqrt{3}M_{Planck}}$. Branching fractions for pure bino, wino and higgsino like NLSPs are shown in Figure 1.3.

Branching fractions for pure bino, wino and higgsino like NLSPs are shown in Figure 1.3. Since the final state investigated here consists of a Z boson and a photon, the search is sensitive in special to bino and wino like NLSP scenarios.

One scenario used in the development of this search, is a full GGM model, where the NLSP is the $\tilde{\chi}_1^0$, and it is assumed to be 100% bino like. The heavier neutralino $\tilde{\chi}_2^0$, and the lightest chargino $\tilde{\chi}_1^{\pm}$, are assumed to be 100% wino like. Therefore, the bino mass equals the mass of the lightest neutralino mass, while the $\tilde{\chi}_1^+$ and the $\tilde{\chi}_2^0$ are mass degenerate and their mass equals the wino mass. For simplification reasons higgsinos are decoupled, i.e. set to very high masses. Squarks and gluinos are also decoupled in this scenario, allowing only electroweak production modes. For the most dominant process a diagram is shown in Fig. Figure 1.4. The signal cross section depends only on the wino mass, since $\tilde{\chi}_1^0 \tilde{\chi}_1^+$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^+$ are by far the most dominant production scenarios. The branching fractions of the gauginos are given by the gaugino masses and their gauge eigenstates, and behave exactly like shown in Figure 1.3. The mass of the neutralinos and the lightest chargino directly influence the transverse momenta in the final state. As can be seen in Figure 1.4, larger mass differences between the NLSP mass and the wino mass lead to higher momenta of the produced bosons in the cascades. The mass of the the NLSP directly is responsible for the momenta of the final SM bosons and the gravitino, and therefore directly the missing transverse momementum in an event.

A very different approach besides analyzing full theoretical models, are simplified models (SMS)[33]. Here, only a limited particle content is assumed with simplified assumptions on

Figure 1.3: Branching fractions for pure bino (top left), wino (top right), and two higgsino like (bottom) NLPSs with different parameters. The parameter η is defined as $\mu = sgn(\mu)$.

the mixings and decay channels, providing a more model independent result via probing specifically distinct final states. These results can therefore be reinterpreted in various different general models, since fixed production channels and fixed branching fractions are used [34]. In this thesis, two simplified models are considered, one with electroweak production, and the other one with a strong production channel.

The used electroweak model is the TChiZG SMS, and in this model only neutralino-chargino and chargino-chargino production are assumed. The lightest chargino and lightest neutralino are set to have nearly the same mass, leading to soft emissions of off-shell W bosons in the decays of the charginos to the NLSP. The branching fractions of the lightest neutralino to a gravitino and a photon or a Z boson are fixed to 50% each $(\mathcal{BR}(\tilde{\chi}_1^0 \to \gamma))$

Figure 1.4: Diagram of the TChiZG scenario with chargino pair production, where the charginos decay to neutralinos under soft emission of offshell W bosons, (left). Also, the chargino-neutralino production is possible. The most dominant production process with a wino-like $\tilde{\chi}_1^+$ and $\tilde{\chi}_2^0$ and a bino-like $\tilde{\chi}_1^0$ of the full GMSB model, (right).

 $\mathcal{BR}(\tilde{\chi}_1^0 \to Z) = 0.5$). A diagram for the process can be found in Fig. 1.4. The squarks and gluinos are decoupled.

The strong model considered here is the T5bbbbZG SMS. A diagram can be found in Figure 1.5. In this model, gluino pairs are produced in the hard interaction, leading to decays to the NLSP under the emission of pairs of bottom quark pairs. The branching fractions for the $\tilde{\chi}_1^0$ to photons and Z bosons are again set to 50% each.

Figure 1.5: The Feynman diagram for the T5bbbbZG scenario with pair production of gluinos in the hard process, leading to decays to neutralinos under the emission of b quarks.

1.3.3 Status of SUSY searches at the LHC

Searches for SUSY have been performed since years at the LEP experiment [35], the Tevatron collider [36], and in the LHC RunI data [37]. Although some promising excesses have been observed for example in the opposite-sign dilepton channel [38], no clear evidences for SUSY or other BSM theories have been found. Currently SUSY is also constrained by precision measurements of the Higgs boson properties as mentioned above, and by the

observation of the $B_S^0 \to \mu^- \mu^+$ decay by the CMS and LHCb collaborations [39]. Direct searches for SUSY in terms of SMS interpretations excluded gluino pair production up to gluino masses of 2 TeV [40], squark pair production up to squark masses of 1500 GeV and sbottom (stop) masses of 1500 GeV [41] (1200 GeV [42]) respectively. The production of electroweakinos is exluded for chargino/neutralino masses up to $\approx 1.1 \,\text{TeV}$ [43]. Regarding GMSB scenarios, the currently most stringest exclusion limits obtained by the CMS collaboration [44] are shown in Figure 1.6. The presented results are based on the 2016

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe ${\bf up}$ to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Figure 1.6: TODO September 24, 2018: CAP+REF

proton-proton collision data recorded with the CMS detector in 2016, corresponding to an integrated luminosity of 36 fb⁻¹ with an center-of-mass energy of $\sqrt{s} = 13$ TeV. Searches

similar to the one presented in this thesis, exclude electroweakino production scenarios up to $\approx 900\,\mathrm{GeV}$, if final states tagged with a high energetic photon and large missing transverse momentum are analyzed [45]. Searches targeting the single lepton plus photon final state [46] have set lower limits. Strong exhusions for gluino and squark pair production scenarios are set by searches targeting events with large hadronic activity and photons [47], and photons in corresponding with high b-jet multiplicity [48] up to $\approx 2.2\,\mathrm{TeV}$. gluino masses and 1.8 TeV squark masses.

Despite the high exclusion limits set by CMS and ATLAS analyzes [49–51] in comparable ways, large regions of phasespace remain unexplored. But since supersymmetry is not one specific model, and the phenemenology of SUSY is ver rich, inluding scenarios with R-parity violation, compressed mass spectra, long-lived particles and displaced vertices, and all those described in different breaking scenarios, the search for SUSY stays interesting. Nevertheless, although the sparticle masses are not predicted by theory, natural SUSY scenarios without great finetuning should lead to sparticle masses in the order of $\mathcal{O}(\text{TeV})$, which are accesible at the LHC [52].

Chapter 2

The Experiment

- 2.1 The large hadron collider
- 2.2 The compact muon solenoid

- [1] F. Pisano and N. O. Reis, "Natural units, numbers and numerical clusters", arXiv:hep-ph/0112097.
- [2] A. Pich, "The Standard model of electroweak interactions", in *The Standard model of electroweak interactions*, pp. 1–49. 2008. arXiv:0705.4264. [,1(2007)].
- [3] A. Einstein, "The Foundation of the General Theory of Relativity", Annalen Phys. **49** (1916), no. 7, 769–822, doi:10.1002/andp.200590044,10.1002/andp.19163540702. [,65(1916)].
- [4] Particle Data Group Collaboration, "Review of Particle Physics", *Chin. Phys.* C40 (2016), no. 10, 100001, doi:10.1088/1674-1137/40/10/100001.
- [5] K. G. Wilson, "Confinement of quarks", Phys. Rev. D 10 (Oct, 1974) 2445–2459, doi:10.1103/PhysRevD.10.2445.
- [6] S. Weinberg, "Effects of a Neutral Intermediate Boson in Semileptonic Processes", Phys. Rev. D 5 (Mar, 1972) 1412–1417, doi:10.1103/PhysRevD.5.1412.
- [7] S. Weinberg, "A Model of Leptons", *Phys. Rev. Lett.* **19** (Nov, 1967) 1264–1266, doi:10.1103/PhysRevLett.19.1264.
- [8] A. Salam and J. Ward, "Electromagnetic and weak interactions", *Physics Letters* **13** (1964), no. 2, 168 171, doi:https://doi.org/10.1016/0031-9163(64)90711-5.
- [9] S. L. Glashow, "Partial-symmetries of weak interactions", *Nuclear Physics* **22** (1961), no. 4, 579 588, doi:https://doi.org/10.1016/0029-5582(61)90469-2.
- [10] P. W. Higgs, "Broken Symmetries and the Masses of Gauge Bosons", *Phys. Rev. Lett.* 13 (Oct, 1964) 508–509, doi:10.1103/PhysRevLett.13.508.
- [11] F. Englert and R. Brout, "Broken Symmetry and the Mass of Gauge Vector Mesons", Phys. Rev. Lett. 13 (Aug, 1964) 321–323, doi:10.1103/PhysRevLett.13.321.
- [12] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, "Global Conservation Laws and Massless Particles", *Phys. Rev. Lett.* 13 (Nov, 1964) 585–587, doi:10.1103/PhysRevLett.13.585.
- [13] CMS Collaboration, "Observation of a new boson at a mass of 125 GeV with the

- CMS experiment at the LHC", *Phys. Lett.* **B716** (2012) 30-61, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- [14] ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", *Phys. Lett.* **B716** (2012) 1–29, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- [15] CMS Collaboration, "Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV", Eur. Phys. J. C75 (2015), no. 5, 212, doi:10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662.
- [16] CMS Collaboration Collaboration, "Observation of $t\bar{t}H$ Production", Phys. Rev. Lett. 120 (Jun, 2018) 231801, doi:10.1103/PhysRevLett.120.231801.
- [17] CMS Collaboration, "Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector", *Phys. Lett.* **B779** (2018) 283–316, doi:10.1016/j.physletb.2018.02.004, arXiv:1708.00373.
- [18] CMS Collaboration, "Observation of Higgs boson decay to bottom quarks", Submitted to: Phys. Rev. Lett. (2018) arXiv:1808.08242.
- [19] Planck Collaboration, "Planck 2015 results. XIII. Cosmological parameters", Astron. Astrophys. 594 (2016) A13, doi:10.1051/0004-6361/201525830, arXiv:1502.01589.
- [20] R. Massey, T. Kitching, and J. Richard, "The dark matter of gravitational lensing", Rept. Prog. Phys. 73 (2010) 086901, doi:10.1088/0034-4885/73/8/086901, arXiv:1001.1739.
- [21] M. Persic, P. Salucci, and F. Stel, "The Universal rotation curve of spiral galaxies: 1. The Dark matter connection", Mon. Not. Roy. Astron. Soc. 281 (1996) 27, doi:10.1093/mnras/281.1.27,10.1093/mnras/278.1.27, arXiv:astro-ph/9506004.
- [22] L. Canetti, M. Drewes, and M. Shaposhnikov, "Matter and Antimatter in the Universe", New J. Phys. 14 (2012) 095012, doi:10.1088/1367-2630/14/9/095012, arXiv:1204.4186.
- [23] G. R. Farrar and M. E. Shaposhnikov, "Baryon asymmetry of the universe in the minimal Standard Model", Phys. Rev. Lett. 70 (1993) 2833–2836, doi:10.1103/PhysRevLett.71.210.2, 10.1103/PhysRevLett.70.2833, arXiv:hep-ph/9305274. [Erratum: Phys. Rev. Lett.71,210(1993)].
- [24] A. D. Sakharov, "Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe", *Pisma Zh. Eksp. Teor. Fiz.* **5** (1967) 32–35, doi:10.1070/PU1991v034n05ABEH002497. [Usp. Fiz. Nauk161,no.5,61(1991)].
- [25] M. C. Gonzalez-Garcia and Y. Nir, "Neutrino masses and mixing: Evidence and implications", Rev. Mod. Phys. 75 (2003) 345–402,

- doi:10.1103/RevModPhys.75.345, arXiv:hep-ph/0202058.
- [26] J. Wess and B. Zumino, "Supergauge Transformations in Four-Dimensions", Nucl. Phys. B70 (1974) 39–50, doi:10.1016/0550-3213(74)90355-1. [,24(1974)].
- [27] S. P. Martin, "A Supersymmetry primer", doi:10.1142/9789812839657_0001, 10.1142/9789814307505_0001, arXiv:hep-ph/9709356. [Adv. Ser. Direct. High Energy Phys.18,1(1998)].
- [28] SNO Collaboration, "Constraints on nucleon decay via 'invisible' modes from the Sudbury Neutrino Observatory", *Phys. Rev. Lett.* **92** (2004) 102004, doi:10.1103/PhysRevLett.92.102004, arXiv:hep-ex/0310030.
- [29] P. Meade, N. Seiberg, and D. Shih, "General Gauge Mediation", Prog. Theor. Phys. Suppl. 177 (2009) 143–158, doi:10.1143/PTPS.177.143, arXiv:0801.3278.
- [30] P. Meade, M. Reece, and D. Shih, "Prompt Decays of General Neutralino NLSPs at the Tevatron", JHEP 05 (2010) 105, doi:10.1007/JHEP05(2010)105, arXiv:0911.4130.
- [31] S. Dimopoulos, S. D. Thomas, and J. D. Wells, "Sparticle spectroscopy and electroweak symmetry breaking with gauge mediated supersymmetry breaking", *Nucl. Phys.* **B488** (1997) 39–91, doi:10.1016/S0550-3213(97)00030-8, arXiv:hep-ph/9609434.
- [32] S. Ambrosanio et al., "Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders", *Phys. Rev.* **D54** (1996) 5395–5411, doi:10.1103/PhysRevD.54.5395, arXiv:hep-ph/9605398.
- [33] D. Alveset al., "Simplified models for LHC new physics searches", Journal of Physics G: Nuclear and Particle Physics 39 (2012), no. 10, 105005.
- [34] CMS Collaboration Collaboration, "Interpretation of searches for supersymmetry with simplified models", Phys. Rev. D 88 (Sep, 2013) 052017, doi:10.1103/PhysRevD.88.052017.
- [35] S. Ask, "A Review of the supersymmetry searches at LEP", in 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories Les Arcs, France, March 15-22, 2003. 2003. arXiv:hep-ex/0305007.
- [36] X. P. Bueso, "Supersymmetry Searches at the Tevatron and the LHC Collider Experiments", in *Proceedings, 31st International Conference on Physics in collisions (PIC 2011): Vancouver, Canada, August 28-September 1, 2011.* 2011. arXiv:1112.1723.
- [37] C. Autermann, "Experimental status of supersymmetry after the LHC Run-I", Prog. Part. Nucl. Phys. **90** (2016) 125–155, doi:10.1016/j.ppnp.2016.06.001, arXiv:1609.01686.
- [38] CMS Collaboration, "Search for Physics Beyond the Standard Model in Events with

- Two Leptons, Jets, and Missing Transverse Momentum in pp Collisions at sqrt(s) = 8 TeV", JHEP **04** (2015) 124, doi:10.1007/JHEP04(2015)124, arXiv:1502.06031.
- [39] LHCb, CMS Collaboration, "Observation of the rare $B_s^0 \to \mu^+\mu^-$ decay from the combined analysis of CMS and LHCb data", Nature **522** (2015) 68–72, doi:10.1038/nature14474, arXiv:1411.4413.
- [40] CMS Collaboration, "Search for Physics Beyond the Standard Model in Events with High-Momentum Higgs Bosons and Missing Transverse Momentum in Proton-Proton Collisions at 13 TeV", *Phys. Rev. Lett.* **120** (2018), no. 24, 241801, doi:10.1103/PhysRevLett.120.241801, arXiv:1712.08501.
- [41] CMS Collaboration, "Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV", *JHEP* **03** (2018) 076, doi:10.1007/s13130-018-7845-2,10.1007/JHEP03(2018)076, arXiv:1709.08908.
- [42] CMS Collaboration, "Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s} = 13$ TeV", *Phys. Rev.* **D97** (2018), no. 3, 032009, doi:10.1103/PhysRevD.97.032009, arXiv:1711.00752.
- [43] CMS Collaboration, "Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV", JHEP 03 (2018) 166, doi:10.1007/JHEP03(2018)166, arXiv:1709.05406.
- [44] .
- [45] CMS Collaboration, "Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV", *Phys. Lett.* **B780** (2018) 118–143, doi:10.1016/j.physletb.2018.02.045, arXiv:1711.08008.
- [46] CMS Collaboration Collaboration, "Search for supersymmetry using events with a photon, a lepton, and missing transverse momentum in pp collisions at sqrt(s) = 13 TeV", Technical Report CMS-PAS-SUS-17-012, CERN, Geneva, 2018.
- [47] CMS Collaboration, "Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $\sqrt{s} = 13$ TeV", *JHEP* **12** (2017) 142, doi:10.1007/JHEP12(2017)142, arXiv:1707.06193.
- [48] CMS Collaboration Collaboration, "Search for supersymmetry in events with a photon, jets, and missing transverse momentum in proton-proton collisions at 13 TeV", Technical Report CMS-PAS-SUS-18-002, CERN, Geneva, 2018.
- [49] ATLAS Collaboration, "Search for supersymmetry in events with four or more leptons in $\sqrt{s} = 13$ TeV pp collisions with ATLAS", Phys. Rev. **D98** (2018), no. 3,

- 032009, doi:10.1103/PhysRevD.98.032009, arXiv:1804.03602.
- [50] ATLAS Collaboration, "Search for pair production of higgsinos in final states with at least three b-tagged jets in $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector", Submitted to: Phys. Rev. (2018) arXiv:1806.04030.
- [51] ATLAS Collaboration, "Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector", Phys. Rev. **D97** (2018), no. 9, 092006, doi:10.1103/PhysRevD.97.092006, arXiv:1802.03158.
- [52] J. L. Feng, "Naturalness and the Status of Supersymmetry", Ann. Rev. Nucl. Part. Sci. 63 (2013) 351-382, doi:10.1146/annurev-nucl-102010-130447, arXiv:1302.6587.