The differential amplifiers shown in the following three figures use two matched BJT's Q_1 and Q_2 with $\beta=100$ and $V_A=\infty$.

Calculate:

- a. The value of collector current for Q₁ and Q₂.
- b. The differential mode gain A_{dm}.
- c. The common mode gain A_{cm}.
- d. The CMRR in decibel (dB).

for the left Half of the circuit

$$\frac{V_{01}}{V_{i1}} = ??$$

$$V\pi = \frac{V_{T}}{I_{D}} = \frac{26mV}{I_{D}} = V$$

$$g_{m} = \frac{13}{\sqrt{\pi}} V \Rightarrow B = g_{m} V_{\pi}$$

$$V_{0d} = V_{01} - V_{02}$$

$$= \frac{V_{id}A}{2} - \left(-\frac{V_{id}}{2}\right)A$$

$$= \left(\frac{V_{id}}{2} + \frac{V_{id}}{2}\right)A$$

$$V_{0d} = V_{id}A$$

$$A = \frac{V_{0d}}{V_{id}}$$

The differential amplifiers shown in the following three figures use two matched BJT's Q₁ and Q₂ with $\beta=100\,$ and $V_A=\infty$.

Calculate:

- a. The value of collector current for Q_1 and Q_2 .
- b. The differential mode gain A_{dm}.
- c. The common mode gain A_{cm}.
- d. The CMRR in decibel (dB).

ISERT.

The differential amplifiers shown in the following three figures use two matched BJT's Q₁ and Q₂ with $\beta=100\,$ and $V_A=\infty$.

Calculate:

- a. The value of collector current for Q_1 and Q_2 .
- b. The differential mode gain $A_{\mbox{\scriptsize dm}}$.
- c. The common mode gain A_{cm} .
- d. The CMRR in decibel (dB).

The differential amplifier shown in the following figure uses the current mirror current source Q₃ and Q₄ with $\beta=200$ and $V_{A3}=V_{A4}=120~V$.

- If $V_{A1}=V_{A2}=\infty$, Calculate: a. The value of collector current for Q_1 and Q_2 .
- b. The differential mode gain A_{dm}.
- c. The common mode gain A_{cm}.
- d. The CMRR in decibel (dB).

$$R_0 = r_0 = \frac{\sqrt{A}}{\Gamma c} \Rightarrow r_0 q = \frac{120}{\Gamma_0} = \sqrt{\frac{120}{A}}$$

For the differential amplifier shown in the following figure, calculate the voltage gain, input and output resistances. ($\beta = 100$,

$$\hat{l}_{bl} = \frac{\text{Vin}}{2RR + (1+B)RE} \rightarrow 2$$

$$R = \frac{VR}{IR} = (1+B) RE + for$$

The MOS differential amplifier shown in the following figure uses two matched MOSFET's M_1 and M_2 with K=2 mA/V² and $V_A=\infty$.

Calculate:

- a. The value of drain current for M_1 and M_2 .
- b. The differential mode gain A_{dm} .
- c. The common mode gain A_{cm}.
- d. The CMRR in decibel (dB).

$$\frac{G}{2}$$
 $\frac{V_{1d}}{V_{9s}}$
 $\frac{V_{1d}}{V_{9s}}$
 $\frac{V_{1d}}{V_{2d}}$
 $\frac{V_{2d}}{V_{2d}}$

$$Y_{as} = \frac{V_{A}}{I_{D}} = \infty$$

$$\frac{V_{od}}{2} = -gmVgsRD$$

$$V_{id/2} = VgS$$

$$V_{id/2} = -gmRdV_{id}$$

$$\frac{V_{od}}{2} = -gmRD = AJm$$

$$\frac{V_{oc}}{V_{ic}} = \frac{-9n \text{ Vgs} \text{ Rd}}{(1 + 9m 2 \text{ Rss}) \text{ Vgs}} = \frac{-9m \text{ Rd}}{1 + 29m \text{ Rss}} = Acm$$

The differential amplifier shown in the following figure uses the current mirror current source M_3 and M_4 with K=0.5 mA/V² and $V_{A3}=V_{A4}=120~V$.

If $V_{A1} = V_{A2} = \infty$, Calculate:

- a. The differential mode gain A_{dm} .
- b. The common mode gain A_{cm} .
- c. The CMRR in decibel (dB).

$$Iref = \frac{10 - VGS_3}{1015} = ID_3 = 1 - 0.1 VGS_3 \longrightarrow 0$$

M3 is in suturation region VDS > VGS - VT

$$V_{DS} = V_{GS}$$

$$\overline{L}_{D3} = \frac{1}{12} \left(V_{G53} - V_{T} \right)^{2} \longrightarrow \bigcirc$$

Where K=Kn=Kn. w and Kn=MnCox