ALGEBRE 03 EMD2. CORRIGÉ TYPE.

Exercice 1 (06 pts)

Soit le paramètre $m \in \mathbb{R}$, et soit le système :

$$(S_m): \begin{cases} x+y+(1-m)z &= m+2\\ (1+m)x-y+2z &= 0\\ 2x-my+3z &= m+2 \end{cases}$$

- 1. Pour quelles valeurs de $m \in \mathbb{R}$, le système est-il de Cramer?
- 2. Pour quelles valeurs de $m \in \mathbb{R}$, le système possède-t-il une infinité de solutions?
- 3. Pour quelles valeurs de $m \in \mathbb{R}$, le système n'est pas résoluble?

Exercice 2 (07 pts)

Soit f l'endomorphisme de \mathbb{R}^3 défini dans la base canonique $B = \{e_1, e_2, e_3\}$, par

$$\begin{cases} f(e_1) = e_1 - 2e_2 - 2e_3 \\ f(e_2) = -e_2 \\ f(e_3) = 2e_2 + 2e_3. \end{cases}$$

- 1. Ecrire la matrice A de f relativement à la base canonique.
- 2. Calculer le polynôme caractéristique de f, et vérifier que A est inversible.
- 3. En utilisant le théorème de Cayley-Hamilton, exprimer la matrice A^{-1} en fonction des matrices I_3 et A et A^2 (Justifier votre réponse).
- 4. Determiner les valeurs propres (en précisant leurs multiplicités) et les sous espaces propres de f.
- 5. Montrer que l'endomorphisme f est diagonalisable, et diagonaliser le en précisant les matrices de passage.

Exercice 3 (07 pts)

Soit g l'endomorphisme de \mathbb{R}^3 défini dans la base canonique $B = \{e_1, e_2, e_3\}$ par la matrice

$$C = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 2 \end{array}\right)$$

- 1. Ecrire le polynome caractéeristique de l'endomorphisme g.
- 2. Montrer que q possède deux valeurs propres (préciser leurs multiplicités).
- 3. Determiner les sous espaces propres de g.
- 4. L'endomorphisme g est-il diagonalisable? (Justifier votre réponse).
- 5. Trouver une base de \mathbb{R}^3 dans laquelle g est représenté par une matrice triangulaire supérieure T (on demande que la valeur propre simple de g soit en première ligne et en première colonne de T).

Exercice 1 (06 pts)

Soit le système :

$$(S_m): \begin{cases} x+y+(1-m)z &= m+2\\ (1+m)x-y+2z &= 0\\ 2x-my+3z &= m+2 \end{cases}$$

On a

$$det(S_m) = \begin{vmatrix} 1 & 1 & 1-m \\ 1+m & -1 & 2 \\ 2 & -m & 3 \end{vmatrix} = m(m-2)(m+2)$$

- 2) Pour $\underline{\mathbf{m}} = \mathbf{0}$, la matrice augmentée est

$$\widetilde{A}_0 = \left(\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 3 & 2 \end{array}\right)$$

On observe que le mineur $\Delta = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \neq 0$ et que le determinant de la matrice augmentée bordant de Δ qui est

$$\left| \begin{array}{ccc} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & 2 \end{array} \right| = 0$$

D'après Fonrenay Rouché le systeme (S_0) posède une infinité de solutions. 1 pt Pour $\mathbf{m}=-2$, la matrice augmentée est

$$\widetilde{A}_{-2} = \left(\begin{array}{ccc|c} 1 & 1 & 3 & 0 \\ -1 & -1 & 2 & 0 \\ 2 & 2 & 3 & 0 \end{array}\right)$$

3) Pour **m=2**, la matrice augmentée est

$$\widetilde{A}_2 = \left(\begin{array}{ccc|c} 1 & 1 & -1 & 4 \\ 3 & -1 & 2 & 0 \\ 2 & -2 & 3 & 4 \end{array}\right)$$

On observe que le mineur $\Delta=\left|\begin{array}{cc}1&1\\1&-1\end{array}\right|\neq 0$ et que le determinant de la matrice augmentée bordant de Δ qui est

$$\left| \begin{array}{ccc} 1 & 1 & 4 \\ 3 & -1 & 0 \\ 2 & -2 & 4 \end{array} \right| \neq 0.$$

D'après Fonrenay Rouché le systeme (S_2) ne possède pas de solutions. 2 pt

Exercice 2 (07 pts)

1) La matrice de l'endomorphisme f est

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 2 \\ -2 & 0 & 2 \end{pmatrix} \quad \dots$$
 0.5 pt

2)

$$P_A(\lambda) = (1+\lambda)(1-\lambda)(\lambda-2)$$
 **0.5 pt**

$$P_A(0) = -2 \neq 0 \implies A \text{ est inversible } \dots$$
 0.5 pt

3) On a

$$P_A(\lambda) = -\lambda^3 + 2\lambda^2 + \lambda - 2$$

D'après le Théorème de Cayley-Hamilton

$$P_A(A) = 0 \iff -A^3 + 2A^2 + A - 2I_3 = 0$$

 $\implies A^{-1} = \frac{1}{2} \{ I_3 + 2A - A^2 \}$ **0.5 pt**

4) Les valeurs propres de f sont simples $\begin{cases} \lambda = 1 \\ \lambda = -1 \\ \lambda = 2 \end{cases}$ **0.5 pt**

Les sous espaces prpres de f.

Pour $\lambda = 1$,

$$E_1 = \left\{ \overrightarrow{V} = x. \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad x \in \mathbb{R} \right\}$$

 E_1 est engendré par le vecteur propre $\overrightarrow{V}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ **1 pt**

Pour $\underline{\lambda = -1}$,

$$E_{-1} = \left\{ \overrightarrow{V} = y. \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad y \in \mathbb{R} \right\}$$

 E_{-1} est engendré par le vecteur propre $\overrightarrow{V}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ **1 pt**

Pour $\underline{\lambda} = 2$,

$$E_2 = \left\{ \overrightarrow{V} = y. \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}, \quad y \in \mathbb{R} \right\}$$

 E_2 est engendré par le vecteur propre $\overrightarrow{V}_3 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ **1 pt**

5) Du moment que les valeurs propres sont simples, alors f est diagonalisable 0.5 pt Les matrices de passage sont

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix} \qquad P^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & -2 \\ -2 & 0 & 1 \end{pmatrix} \quad \dots \qquad \boxed{\mathbf{0.5 pt}}$$

La matrice diagonale relativement à la base propre
$$B' = \{V_1, V_2, V_3\}$$
 est $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 0.5 pt

Exercice 3 (07 pts)

1) Le polynôme caractéristique de g est

$$P_g(\lambda) = (3 - \lambda)(1 - \lambda)^2$$
 1 pt

2) Les valeurs propres de g sont

$$\begin{cases} \lambda = 1 & \text{v.p double} \\ \lambda = 3 & \text{v.p simple} \end{cases}$$
 1 pt

3) Sous espaces propres de g.

$$E_1 = \left\{ \overrightarrow{V} = x. \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, x \in \mathbb{R} \right\} \dots$$
 1 pt

$$E_3 = \left\{ \overrightarrow{V} = x. \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad x \in \mathbb{R} \right\} \quad \dots \quad \boxed{1 \text{ pt}}$$

4) Comme $dim E_1 \neq 2$, alors g n'est pas diagonalisable **0.5 pt**

5) une base de
$$E_3$$
 est $\overrightarrow{V}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, Une base de E_1 est $\overrightarrow{V}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Completons la famille libre $\{\overrightarrow{V}_1, \overrightarrow{V}_2\}$ par le vecteur $\overrightarrow{V}_3 = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ **0.5 pt**

La matrice qui represente g dans la base $\left\{\overrightarrow{V}_1,\overrightarrow{V}_2,\overrightarrow{V}_3\right\}$ est

$$T = \left(\begin{array}{ccc} 3 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right)$$

Cherchons les coefficients a, b en resolvant le systeme

$$g(\overrightarrow{e_3}) = a\overrightarrow{V}_1 + b\overrightarrow{V}_2 + \overrightarrow{e}_3 \quad \dots \quad \boxed{\mathbf{0.5 pt}}$$

La solution de ce systeme donne $a=\frac{1}{2},b=\frac{1}{2}$ $\boxed{ \ \ \ \ \ \ \ \ \ \ }$ La matrice triangulaire qui represente g dans la base $\left\{\overrightarrow{V}_1,\overrightarrow{V}_2,\overrightarrow{V}_3\right\}$ est alors

$$T = \begin{pmatrix} 3 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \quad \dots \quad \boxed{1 \text{ pt}}$$