Example Four feet of wire is to be used to form a square and a circle.

How much of the wire should be used for the square and how much should be used for the circle to enclose the maximum total area?

Sol:

Pewmeter Anea
$$4x$$
 $4x$ x^2 4 feet \Rightarrow $2\pi r$ πr^2

Personeter Condition:
$$4 = 4x + 2\pi r = 7$$
 $= 3x = \frac{4 - 2\pi r}{4} = 1 - \frac{1}{2}\pi r$.

Area
$$A(r) = \chi^2 + \pi r^2 = (1 - \frac{1}{2}\pi r)^2 + \pi r^2$$

$$= 1 - \pi r + \frac{1}{4}\pi^2 r^2 + \pi r^2$$

$$= 1 - \pi r + (\frac{1}{4}\pi^2 + \pi) r^2 \dots \textcircled{\$}$$

$$A'(r) = -\pi + (\frac{1}{2}\pi^2 + 2\pi) r = 0$$

$$r = \frac{1}{\frac{1}{2}\pi + 2} = \frac{2}{\pi + 4}.$$

 $\frac{q \operatorname{raph} d}{-\pi + (\frac{1}{2}\pi^2 + 2\pi)}$ + + +

So A(r) may have maximum

either at r=0 or $2\pi r=4$ (i.e. endposes) From a above, $(=) r=\frac{2}{\pi}$).

$$r = \frac{2}{\pi}$$
, $A(\frac{2}{\pi}) = 1 - \pi \cdot \frac{2}{\pi} + (\frac{1}{4}\pi^2 + \pi) + \frac{4}{\pi^2} = 1 - \pi \cdot \frac{2}{\pi} + \frac{4}{4}\pi^2 + \frac{4}{\pi^2}$

Hence the meximum area is oftended as $\frac{4}{\pi}$ when x=0 and $r=\frac{2}{\pi}$ (i.e. when the entere water is used to bound a circle).