METHOD TO MEASURE ELASTICITY OF DEMAND

Methods of Measuring Epd

 1. The Percentage Method: The price elasticity of demand is measured by its coefficient (E_p). This coefficient (E_p) measures the percentage change in the quantity of a commodity demanded resulting from a given percentage change in its price.

$$E_p = \frac{\% \text{ change in } q}{\% \text{ change in } p} = \frac{\Delta q / q}{\Delta p / p} = \frac{\Delta q}{\Delta p} \times \frac{p}{q}$$

• P Q Epd =
$$\frac{30}{10X100}$$
 = 1.5 > 1 $\frac{20}{10X100}$

10 40

30 10

2. The Midpoint Method: To calculate elasticity, we will use the average percentage change in both quantity and price. This is called the midpoint method for elasticity and is represented by the following equations:

```
percent change in quantity=Q2-Q1/(Q2+Q1)÷2×100

percent change in price=P2-P1/(P2+P1)÷2×100

= \Delta Q/(Q2+Q1)

\Delta P/(P2+P1)

= \Delta Q/\Delta P X (P2+P1)/(Q2+Q1)
```

3. The Total Outlay/Expenditure Method:

measure of elasticity. By comparing the total expenditure of a purchaser both before and after the change in price, it can be known whether his demand for a good is elastic, unity or less elastic.

Total outlay or expenditure is price multiplied by the quantity of a good purchased: Total Outlay = Price x Quantity Demanded.

Table. 3: Total Outlay Method

Price Rs. per K	g. Quantity in Kgs.	TE in Rs	Ер
(1)	(2)	(1×2)=3	(4)
9	2	18	
9 8	3	24	> 1
7	4	28 1	
6	5	30 }	
5	6	30 J	= 1
4	7.5	30	
3	8	24 }	
2	9	18	<
1	10	10	

Total Outlay Method

Unit Price (Rs)		Quantity	TE =P*Q (Rs)
A.	10	10	100
	5 ↓	25	125 ep>1
B.	10	10	100
	5 ↓	20	100 ep=1
C.	10	10	100
	5 ↓	15	75 ↓ ep<1

Case-1: With the change in price, there exist an inverse relationship between price and total expenditure (Epd >1)

Case-2: With the change in price, there is no change in total expenditure (Epd = 1)

Case-3: With the change in price, there exist a direct relationship between price and total expenditure (Epd <1)

4. The Arc Method: when elasticity is measured between two points on the same demand curve and they are nearer to each other, it is known as arc elasticity.

5.point method: With the help of the point method, it is easy to point out elasticity at any point along a demand curve.

Epd = Lower segment

Upper segment
at point N,Epd =
$$CN/DN = 1$$
at $M = CM/DM > 1$

$$P = PC/PL < 1$$

$$C = 0/QL = 0$$

$$L = QL/0 = 0$$

