MPSI 2

Programme des colles de mathématiques.

Semaine 10 : du lundi 13 au vendredi 17 décembre.

Liste des questions de cours

- 1°) Enoncer et démontrer la formule de Taylor avec reste intégral.
- $\mathbf{2}^{\circ}$) Pour $t \in \mathbb{R}$, développer e^t en série (entière).
- $\mathbf{3}^{\circ}$) Calculer $\sum_{k=0}^{n} \cos(kt)$.
- $\mathbf{4}^{\circ}$) Linéariser $\cos^3 \theta$ en utilisant les complexes.
- $\mathbf{5}^{\circ}$) Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique polynôme T_n tel que, pour tout $\theta \in \mathbb{R}$, $T_n(\cos\theta) = \cos n\theta.$
- 6°) Etablir différentes conditions de colinéarité ou d'orthogonalité de deux vecteurs, en fonction de leurs affixes.
- $\mathbf{7}^{\circ}$) Définir la similitude directe de centre $z_0 \in \mathbb{C}$, d'angle $\theta \in \mathbb{R}$ et de rapport $\lambda \in \mathbb{R}^*$. Préciser sa bijection réciproque, ses points fixes. Montrer qu'elle conserve les proportions et les angles.
- 8°) Déterminer les éléments géométriques de la transformation $z \mapsto az + b$ où $a, b \in \mathbb{C}$ avec $a \neq 0$.
- 9°) Montrer que l'ensemble des similitudes affines directes est un sous-groupe de $\mathcal{S}(\mathbb{C})$.

Le thème de la semaine : complexes (avec géométrie)

Les complexes

Le programme de colles précédent est à réviser, il pourra faire l'objet d'exercices.

$\mathbf{2}$ Complexes et géométrie

2.1 Distances et angles

Affixe d'un vecteur.

Traduction en termes de complexes de la distance entre 2 points et de l'angle entre deux vecteurs.

2.2 Orthogonalité et colinéarité

Propriété. Soit
$$\overrightarrow{u}$$
 et \overrightarrow{v} deux vecteurs non nuls d'affixes $u=a+ib$ et $v=c+id$.
$$-\overrightarrow{u} \ // \overrightarrow{v} \Longleftrightarrow \frac{u}{v} \in \mathbb{R} \Longleftrightarrow \operatorname{Im}(\overline{u}v) = 0 \Longleftrightarrow ad-bc \overset{\Delta}{=} \begin{vmatrix} a & c \\ b & d \end{vmatrix} \overset{\Delta}{=} \det(\overrightarrow{u}, \overrightarrow{v}) = 0.$$

 $\det(\overrightarrow{u}, \overrightarrow{v})$ est le déterminant (aussi appelé le produit mixte) des deux vecteurs \overrightarrow{u} et \overrightarrow{v} .

$$\begin{split} & - \overrightarrow{u} \perp \overrightarrow{v} \Longleftrightarrow \frac{u}{v} \in i \mathbb{R} \Longleftrightarrow \operatorname{Re}(\overline{u}v) = 0 \Longleftrightarrow ac + bd \stackrel{\Delta}{=} < \overrightarrow{u}, \overrightarrow{v} > = 0. \\ & < \overrightarrow{u}, \overrightarrow{v} > \operatorname{est le produit scalaire des deux vecteurs } \overrightarrow{u} \operatorname{et} \overrightarrow{v}. \end{split}$$

Corollaire. Conditions pour que trois points soient alignés, pour qu'ils forment un triangle rectangle.

2.3 Équation d'un cercle

Le cercle de centre $\alpha = a + ib \in \mathbb{C}$ et de rayon r > 0 a pour équation $|z - \alpha| = r \iff (z - \alpha)(\overline{z} - \overline{\alpha}) = r^2 \iff x^2 + y^2 - 2ax - 2by = r^2 - a^2 - b^2$. Réciproquement, un ensemble admettant une équation cartésienne de la forme $x^2 + y^2 - 2ax - 2by = c$ est un cercle éventuellement réduit à un point ou à l'ensemble vide.

2.4 Les similitudes directes

Définition. Une isométrie est une application qui conserve les distances.

Translations, rotations de centre z_0 et d'angle θ , homothéties, similitude directe de centre $z_0 \in \mathbb{C}$, d'angle $\theta \in \mathbb{R}$ et de rapport $\lambda \in \mathbb{R}^*$: étude des points fixes, conservation des proportions et des angles.

Définition. On dit que f est une similitude affine directe si et seulement si c'est une application de \mathbb{C} dans \mathbb{C} de la forme $z \longmapsto az + b$, où $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$.

Une similitude directe est ou bien une translation, ou bien une similitude définie par un centre, un angle et un rapport.

Propriété. L'ensemble S^+ des similitudes affines directes est un sous-groupe de $\mathcal{S}(\mathbb{C})$, dont l'ensemble des similitudes vectorielles directes est un sous-groupe.

Propriété. L'application qui à la similitude $z \mapsto az + b$ associe a (resp : |a|) est un morphisme de groupes, dont le noyau est le sous-groupe des translations (resp : des rotations et des translations).

Corollaire. Une composée, quel que soit l'ordre, de translations, de rotations dont la somme des angles est égale à θ et d'homothéties dont le produit des rapports est égal à λ est une similitude directe de la forme $z \longmapsto \lambda e^{i\theta}z + b$.

Propriété. Soit $(a, b, c) \in \mathbb{C}^3$ et $(a', b', c') \in \mathbb{C}^3$ deux triangles non aplatis. On dit qu'ils sont directement semblables si et seulement si ils vérifient l'une des propriétés équivalentes suivantes.

- 1. Il existe $s \in S^+$ telle que a' = s(a), b' = s(b) et c' = s(c);
- 2. $\frac{c-a}{b-a} = \frac{c'-a'}{b'-a'}$
- 3. Le quotient des longueurs des côtés du triangle (a,b,c) issues de a est égal au quotient des longueurs des côtés du triangle (a',b',c') issues de a' et les angles \widehat{bac} et $\widehat{b'a'c'}$ sont égaux;
- 4. Les triangles (a, b, c) et (a', b', c') ont les mêmes angles.

Les similitudes indirectes ont seulement été évoquées mais n'ont pas fait l'objet d'une étude détaillée.

Prévisions pour la semaine prochaine :

Groupes.