Prüfungsrelevante Verfahren, Sätze und Rechenregeln

2 Diskrete Strukturen

2.1 Mengenlehre und Kombinatorik

- zwei Mengen A und B sind gleich wenn sie die selben Elemente haben, d.h. wenn $A \subseteq B \land B \subseteq A$
- Beachte z.B. dass $\{\{1,2\},7\} \nsubseteq \mathbb{N}$
- Schnitt und Vereinigung sind kommutativ, assoziativ, distributiv in beide Richtungen; für Beweise kann es nützlich sein sich die Definitionen dieser Operationen in Erinnerung zu rufen; $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
- $A \times B = \{(a,b) \mid a \in A \land b \in B\}$ heißt kartesisches Produkt oder Produktmenge; $|A \times B| = |A| \cdot |B|$
- **Potenzmenge** $\mathcal{P}(A)$ ist die Menge aller (auch unechten) Teilmengen von A, $|\mathcal{P}(A)| = 2^{|A|}$, es gilt stets $\emptyset \in \mathcal{P}(A)$
- $\bullet \ \binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Handschlaglemma: Anzahl der Teilnehmer einer Konferenz, die einer ungeraden Anzahl von Teilnehmern die Hand geben, ist immer gerade

2.2 Abbildungen

- für $f: A \to B, A' \subseteq A$ heißt $f[A'] = \{f(a) \mid a \in A'\}$ Bild von A' unter f
- injektiv: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ ("für jedes $b \in B$ existiert höchstens ein $a \in A$ mit f(a) = b") Beweise über Gegenbeispiel oder $f(a_1) = f(a_2)$ setzen
- surjektiv: f[A] = B ("für jedes $b \in B$ existiert mindestens ein $a \in A$ mit f(a) = b") Beweise über Gegenbeispiel oder Definitionsbereich der Umkehrfunktion untersuchen
- bijektiv: injektiv und surjektiv ("für jedes $b \in B$ existiert genau ein $a \in A$ mit f(a) = B")
- für f injektiv (!!) definieren wir $f^{-1}: f[A] \to A, b \mapsto f^{-1}(b) = a$ mit $f^{-1}(b) = a$ g.d.w. f(a) = b
- für $f: A \to B, g: B \to C$ ist **Komposition** $g \circ f: A \to C, x \mapsto g(f(x))$ (\Rightarrow von rechts nach links ausführen!!)

2.3 Permutationen

- **Permutation** von X ist bijektive Abbildung von X nach X, für $X = \{1, ..., n\}$ ist S_n Menge aller Permutationen und $\pi \in S_n$ mit $\pi = \begin{pmatrix} 1 & ... & n \\ \pi(1) & ... & \pi(n) \end{pmatrix}$ und $|S_n| = n!$
- **k-Zyklus** = k-Tupel der Form (a_1, \ldots, a_k) mit $\pi(a_k) = a_1, \pi(a_i) = a_{i+1}$, jedes Element von S_n kann als Komposition elementfremder Zyklen notiert werden: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (1, 2, 3) \circ (4, 5) = (123)(45)$
- bei elementfremden Zyklen ist Reihenfolge egal: (123)(45) = (45)(123); Elemente die auf sich selbst abgebildet werden heißen **Fixpunkte** und müssen nicht notiert werden: (123)(4) = (123); mit welchem Element im Zyklus angefangen wird ist Egal: (123)(45) = (312)(54)
- Transposition = 2-Zyklus, jedes Element von S_n kann mit Transpositionen geschrieben werden als: $(a_1, \ldots, a_k) = (a_1 a_2)(a_2 a_3) \ldots (a_{k-1} a_k)$ (nicht elementfremd \Rightarrow Reihenfolge wichtig!!)
- bei Komposition von Permutationen für jede Zahl von rechts nach links durchgehen: $\underbrace{(123)}_{(2)}\underbrace{(35)}_{(1)} = \underbrace{(1235)}_{(3)}$ 5 wird in (1) auf 3 abgebildet, in (2) wird 3 auf 1 abgebildet, also $5 \to 3 \to 1$ und damit $5 \to 1$ in (3)

2.4 Beweis mittels vollständiger Induktion (Beispiel)

Beweis. Die Aussage A_n sei $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ mit $n \in \mathbb{N}, q \in \mathbb{R}, q \neq 1$.

(IA):
$$n_0 = 0$$
: $\sum_{k=0}^{0} q^k = q^0 = 1 = \frac{1 - q^{0+1}}{1 - q}$ w.A. \Rightarrow Es gilt A_0

(IV):
$$\forall \tilde{n} : n_0 \le \tilde{n} \le n : \sum_{k=0}^{\tilde{n}} q^k = \frac{1 - q^{\tilde{n}+1}}{1 - q}$$

(IS):
$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1} \stackrel{\text{(IV)}}{=} \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q}$$
$$= \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q} = \frac{1 - q^{(n+1)+1}}{1 - q}$$

 \Rightarrow Damit ist die Behauptung für alle $n\in\mathbb{N}$ vollständig bewiesen

• "Die Aussage A_n sei..." nur in VL und AuD Skript, evtl. wird sonst aber z.Z.: erwartet; IV muss auch nicht unbedingt notiert werden

- alles nochmal mit (n+1)+1 hinschreiben ist nicht nötig
- Varianten: $A_n \Rightarrow A_{n+1}/$ aus A_n folgt A_{n+1} für alle $n \in \mathbb{N}$ w.A. /Folglich gilt A_n für alle $n \in \mathbb{N}, n \geq n_0$
- Beachte dass oft auch nur für $n \in \mathbb{N}, n \geq k$ bewiesen wird (kein \tilde{n})!! und $n_0 = 0$ nicht immer gelten muss

2.5 Zahlentheorie

- $n \in \mathbb{N}, n \ge 1$ kann eindeutig geschrieben werden als $n = \prod_{i=1}^k p_i^{\alpha_i}$ (p_i prim, $\alpha_i \in \mathbb{N}$, "PFZ") \Rightarrow #Teiler von $n = \prod_i (\alpha_i + 1)$
- für $a, b \in \mathbb{N}$ gilt $a \mid b \Leftrightarrow \exists k : k \in \mathbb{N} \land ak = b; \quad a \mid b_1 \land a \mid b_2 \Rightarrow a \mid (b_1 + b_2) \land a \mid (b_1 b_2)$
- für $m, n \in \mathbb{Z}$ mit n > 0 gilt $\exists q, r : (q, r \in \mathbb{Z} \land m = nq + r \land 0 \le r < n)$ $m \mod n := r$, für $a \mod n = b \mod n$ schreibe $a \equiv b \mod n$
- Homomorphieregel: $(a \mod n + b \mod n) \mod n = (a + b) \mod n$ (analog für ·)
- kgV(m,0) = kgV(0,n) = 0; $ggT(m,n) \cdot kgV(m,n) = m \cdot n \ (\Rightarrow kgV \text{ mit Euklid berechenbar})$
- Euklidischer Algorithmus: immer weiter $ggT(m, n) = ggT(n \mod m, m)$ berechnen; ggT(m, n) = m falls $m \mid n$; ggT(0, n) = n; m, n teilerfremd $\Leftrightarrow ggT(m, n) = 1$
- Lemma von Bézout: $m, n \in \mathbb{N} \Rightarrow \exists a, b : a, b \in \mathbb{Z} \land ggT(m, n) = am + bn$
- Erweiterter Euklidischer Algorithmus am Beispiel ("EEA", keine offizielle Abkürzung):

	1008	499	$-q_i$					
	\overline{m}	n = n				1008	499	$-q_i$
1008	1	0			1008	1	0	
499	0	1		,	499	0	1	
$1008 \mod 499 = 10$	1	$0 + 1 \cdot (-q_i) = -2$	$1008 = 499 \cdot 2 + 10 \Rightarrow -q_i = -2$	\Rightarrow	10	1	-2	-2
$499 \mod 10 = 9$	-49	$1 + (-2)(-q_i) = 99$	-49		9	-49	99	-49
$10 \bmod 9 = 1$	50	$-2 + 99(-q_i) = -101$	-1		1	50	-101	-1
$9 \bmod 1 = 0$					'		'	

in m Spalte wird analog zu n Spalte gerechnet, das ganze bis in der linken Spalte 0 stehen würde

$$\Rightarrow ggT(1008, 499) = 1 = 50 \cdot 1008 - 101 \cdot 499$$
 (Bézout Koeffizienten $a = 50, b = -101$)

- chinesischer Restsatz: Seien $0 < n_1, \ldots, n_k \in \mathbb{N}$ teilerfremd und seien $a_1, \ldots, a_k \in \mathbb{Z}$. Dann existiert genau ein $x \in \{0, 1, \ldots, \prod_{i=1}^k n_i 1\}$ mit $x \equiv a_i \mod n_i$ für alle $i = 1, \ldots, k$
- für k = 2: Seien $0 < m, n \in \mathbb{N}$ teilerfremd und seien $a_1, a_2 \in \mathbb{N}$. Dann existiert genau ein $x \in \{0, 1, \dots, mn 1\}$ mit $x \equiv a_1 \mod m \land x \equiv a_2 \mod n$; anschaulich heißt das, dass ein $m \times n$ Spielbrett eindeutig wie in VL durchnummeriert werden kann wenn ggT(m, n) = 1

2.6 Gruppentheorie

- Gruppe (G, \circ) (auch $(G; \circ, ^{-1}, e)$; dann Definition einfach anders formulieren) besteht aus Menge G und innerer Verknüpfung $\circ: G \times G \to G$ so dass: \circ assoziativ, es existiert **neutrales Element** e ($a \circ e = a = e \circ a$ für alle $a \in G$), es existiert **Inverses** a^{-1} zu jedem $a \in G$ ($a \circ a^{-1} = e = a^{-1} \circ a$)
- Gruppe heißt abelsch/kommutativ, falls o kommutativ ist
- $\mathbb{Z}_n = \{0, \dots, n-1\}$ bildet mit Addition mod n eine Gruppe; Symmetrien eines Quadrates (" D_4 "/" D_8 ")/Dreiecks etc. bilden ebenfalls eine Gruppe (Komposition führt zu Drehungen, Spiegelungen und Identitätsabbildung)
- Nullteiler mod n sind $a \in \mathbb{Z}_n \setminus \{0\}$ für die $b \in \mathbb{Z}_n \setminus \{0\}$ existiert mit $a \cdot b \equiv 0 \mod n$ Einheiten mod n sind $a \in \mathbb{Z}_n$ für die $b \in \mathbb{Z}_n$ existiert mit $a \cdot b \equiv 1 \mod n$; 1 ist immer eine Einheit m ist Einheit mod $n \Leftrightarrow m$ ist kein Nullteiler mod $n \Leftrightarrow \operatorname{ggT}(m, n) = 1$
- Die Menge der Einheiten mod n heißt \mathbb{Z}_n^* und bildet eine Gruppe mit Multiplikation mod n; es gilt mit PFZ dass $\phi(n) := |\mathbb{Z}_n^*| = \prod_{i=1}^k (p_i^{\alpha_i} p_i^{\alpha_i-1}) = \#$ zu n teilerfremde Zahlen
- multiplikative Gruppe ist **zyklisch** falls $g \in G$ existiert mit $G = \{g^j \mid j \in \mathbb{Z}\}$ (Potenzrechengesetze ähnlich wie in \mathbb{N} , für additive Gruppen schreibe $G = \{jg \mid j \in \mathbb{Z}\}$); Erzeuger sind $g \in G$, |G| = n so dass $G = \{g^j \mid j \in \mathbb{Z}_n\}$; Erzeuger von \mathbb{Z}_n sind genau die Elemente von $\mathbb{Z}_n^* \Rightarrow \#$ Erzeuger $= \phi(n)$
- für p prim ist $(\mathbb{Z}_p^*, \cdot \text{ mod } n)$ zyklisch; # Erzeuger $= \phi(p-1)$; diese Erzeuger heißen **Primitivwurzeln**
- Isomorph=Strukturgleich ("man kann Elemente einfach umbenennen"), jede zyklische Gruppe ist isomorph entweder zu (\mathbb{Z} , +) oder einem (\mathbb{Z}_n , + mod n); als Beweis das zwei Gruppen nicht isomorph sind genügt z.B. " G_1 ist zyklisch, G_2 nicht "
- $U \subseteq G$ heißt Untergruppe von G falls $e \in U$; $a \circ b \in U$ für alle $a, b \in U$; $a^{-1} \in U$ für alle $a \in U$
- $\langle g \rangle := \{ g^i \mid i \in \mathbb{Z} \}$ ist von g erzeugte Untergruppe
- $g \circ U = \{g \circ u \mid u \in U\}$ ist eine (Links-)Nebenklasse ("LNK") von U, $|g \circ U| = |U|$, 2 LNK sind entweder gleich oder disjunkt \Rightarrow jedes $g \in G$ liegt in genau einer LNK (nämlich $g \circ U$)
- Satz von Lagrange: $|G| = |G:U| \cdot |U|$ (|G:U| = # LNK von U in G=Index von U in G) |G| heißt Ordnung von G, $o(g) := |\langle g \rangle|$ Ordnung von g
- Satz von Euler-Fermat: Seien $n \in \mathbb{N}, a \in \mathbb{Z}$ mit ggT(a, n) = 1. Dann gilt $a^{\phi(n)} \equiv 1 \mod n$. (bei kleinem Fermat gilt n prim)
- für Beweise bieten sich oft Verknüpfungstafeln an, folgende Methoden helfen beim effizient rechnen:

2.7 Effizient potenzieren mod n

- andere Form von Euler-Fermat: $a^m \equiv a^{m \mod \phi(n)} \mod n$, gilt aber auch nur für ggT(a,n) = 1!!
- einfach die Zahlen Stück für Stück mit mod zerlegen

2.8 Kryptographie

- für p prim und g Primitivwurzel von \mathbb{Z}_p^* ist der **diskrete Logarithmus** von $x \in \mathbb{Z}_p^*$ zur Basis g die Zahl $m \in \{0, \ldots, p-2\}$ mit $g^m \equiv x \mod p$ $(m = \log_g(x))$; m kann nicht effizient berechnet werden, x aus g^m schon
- Diffie-Hellman-Merkle:
 - 1. Alice und Bob einigen sich auf Primzahl p und Primitivwurzel g von \mathbb{Z}_p^*
 - 2. Alice wählt geheime Zufallszahl a und berechnet $a' = g^a \mod p$; Bob analog: $b' = g^b \mod p$
 - 3. beide teilen sich a' und b' mit und berechnen das Geheimnis $c = g^{ab} \mod p = (a')^b \mod p = (b')^a \mod p$

Um damit Nachricht $m \leq c$ zu verschlüsseln:

- 1. schreibe m und c binär als $m = m_1 \dots m_l, c = c_1 \dots c_k$
- 2. Alice verschickt $v_1 = m_1 + c_1 \mod 2, \dots, v_l = m_l + c_l \mod 2$; Bob berechnet $m_i = v_i + c_i \mod 2$

• RSA:

- 1. Bob wählt zufällig 2 Primzahlen p, q und berechnet n := pq
- 2. Bob wählt zufällig $d \in \mathbb{Z}_{\phi(n)}^*$ und berechnet $i, h \in \mathbb{Z}$ mit $i \cdot d + h \cdot \phi(n) = \operatorname{ggT}(d, \phi(n)) = 1$ (EEA)
- 3. n und i sind öffentliche Schlüssel und werden an Alice weitergegeben, d ist privater Schlüssel
- 4. Alice schickt $c = m^i \mod n$ an Bob mit Nachricht $m \ (0 \le m < n)$
- 5. Bob berechnet $m = c^d \mod n$

2.9 Ungerichtete Graphen

- $\bullet \ \ \mathbf{Komplementgraph} \ \overline{G} := \left(V, \binom{V}{2} \setminus E\right) \quad \text{ (statt } \binom{V}{2} \text{ scheint } \{X \subset V : |X| = 2\} \text{ sicherer zu sein)}$
- $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ sind **Isomorph**, wenn es eine Bijektion $f: V_1 \to V_2$ gibt, so dass $\{u, v\} \in E_1$ g.d.w. $\{f(u), f(v)\} \in E_2$ für alle $u, v \in V_1$. $(G_1 \cong G_2)$ ("sind G_1, G_2 gleich wenn man die Knoten in G_2 umbenennt?")
- Subgraph von G heißt ein Graph H mit $V(H) \subseteq V(G), E(H) \subseteq E(G)$. H heißt induzierter Subgraph wenn $E(H) = E(G) \cap \binom{V(H)}{2}$ (also wenn aus G nur Knoten und nur die damit verbundenen Kanten gelöscht wurden), wir schreiben H = G[V(H)]
- ein Graph ist k-färbbar, wenn die Knoten so in k Farben angemalt werden könnten, dass 2 benachbarte Knoten nie die gleiche Farbe haben (z.B. C_n immer 3-färbbar, 2-färbbar g.d.w. n gerade)
- G zweifärbbar (=bipartit) g.d.w. es in G keine ungeraden Kreise gibt; G ist bipartit g.d.w. wenn disjunkte A, B (Partitionsklassen) existieren, so dass $V(G) = A \cup B \wedge \binom{A}{2} \cap E = \binom{B}{2} \cap E = \emptyset$
- Graph ohne Kreise = Wald; zusammenhängender Graph ohne Kreise = Baum, für Bäume gilt |E| = |V| 1; Knoten mit deg = 1 heißen Blätter
- G ist k-fach zusammenhängend wenn $G \setminus X = G[V \setminus X]$ zusammenhängend ist für alle $X \subseteq V$ mit |X| = k-1; G k-fach Zusammenhängend $\Leftrightarrow G$ enthält für alle $a, b \in V$ mindestens k paarweise unabhängige Pfade von a nach b (unabhängig heißt haben nur Anfangs- und Endpunkt gemeinsam)
- ullet G ist zweifach zusammenhängend \Leftrightarrow G kann aus einem Kreis durch sukzessives Anhängen von Pfaden konstruiert werden kann \Leftrightarrow es gibt keine Gelenkpunkte in G
- Sei A Menge der Gelenkpunkte von G, \mathcal{B} Menge der Blöcke, dann ist $(A \cup \mathcal{B}, \{\{a, B\} \mid a \in A, B \in \mathcal{B}, a \in B\})$ der **Blockgraph** von G; Blockgraph ist ein Wald und für G zusammenhängend ein Baum
- Pfade sind **disjunkt** wenn sie keine Knoten gemeinsam haben und **kantendisjunkt** falls sie keine Kanten gemeinsam haben
- Satz von Menger: Seien $A, B \subseteq V$. Dann ist die maximale Anzahl von paarweise disjunkten A-B-Pfaden in G gleich der Mächtigkeit einer kleinsten Knotenmenge, die A von B in G trennt (aus der also jeder A-B-Pfad einen Knoten enthält)
- Kantengraph L(G) hat die Knotenmenge E und Kantenmenge $\{\{e,f\} \mid e,f\in E, |e\cap f|=1\}$. Ist (u_0,\ldots,u_n) Kantenzug/Pfad in G, so ist $(\{u_0,u_1\},\ldots,\{u_{n-1},u_n\})$ Kantenzug/Pfad in L(G)
- die maximale Anzahl von kantendisjunkten Pfaden von a nach b ist gleich der Mächtigkeit einer kleinsten Kantenmenge, die a von b trennt (trennt hat hier andere Bedeutung als bei Knoten: $F \subseteq E$ trennt a und b, wenn es in $(V, E \setminus F)$ keinen Kantenzug von a nach b gibt)
- G ist k-fach kantenzusammenhängend falls für alle $F \subseteq E$ mit |F| < k gilt $(V, E \setminus F)$ ist zusammenhängend; G k-fach kantenzusammenhängend \Leftrightarrow für je 2 $a, b \in V$ gibt es mindestens k kantendisjunkte Pfade von a nach b
- offener Eulerzug = Kantenzug, der jede Kante von G genau einmal durchläuft; (geschlossener) Eulerzug = Eulerzug bei dem Anfangs- und Endknoten gleich sind (Haus vom Nikolaus)
- es gibt einen Eulerzug in $G \Leftrightarrow \forall v \in V$: deg v gerade; es gibt einen offenen Eulerzug in $G \Leftrightarrow$ es gibt genau 2 Knoten von ungeradem Grad in G
- $M \subseteq E$ heißt **Paarung** von G, falls die Element von M paarweise disjunkt sind. Für **perfekte Paarungen** gilt 2|M| = |V|. M ist eine **Paarung von** $S \subseteq V$, falls M Paarung von G und jedes Element von S in einer Kante von M auftaucht.

- Pfad in G heißt **alternierend** bzgl. M, falls er abwechselnd über Kanten aus M und $E \setminus M$ läuft; ein alternierender Pfad P heißt **augmentierend** bzgl. M, falls Start- und Endpunkt von P in keiner Kante aus M liegen (P beginnt und endet also auf Kante aus $E \setminus M$)
- Lemma von Berge: Eine Paarung M von G ist genau dann größtmöglich, wenn es keinen augmentierenden Pfad in G bzgl. M gibt.
- für $S \subseteq V$ heißt $N(S) = \{n \in V \mid \exists s \in S \text{ mit } s \text{ Nachbar von } n\}$ die **Nachbarschaft** von S
- Heiratssatz von Hall: Sei $\{A, B\}$ Bipartition von G. Dann gibt es genau dann eine Paarung von A in G, wenn $|N(S)| \ge |S|$ für alle $S \subseteq A$. $\Rightarrow k$ -reguläre (=jeder Knoten hat deg k), bipartite Graphen haben eine perfekte Paarung
- Eine Überdeckung von G ist eine Teilmenge $U \subseteq V$, so dass jede Kante von G ein Element aus U enthält. Satz von König: Die größe einer minimalen Überdeckung ist gleich der Größe einer größten Paarung von G.
- Handschlaglemma für Graphen: $\sum_{v \in V} \deg v = 2|E|$ (=gerade!!, das ist wichtig für Beweise)

2.10 Gerichtete Graphen

- für gerichtete Graphen gilt $E \subseteq V \times V$; $G^{-1} = (V, E^{-1})$ mit $E^{-1} = \{(y, x) \mid (x, y) \in E\}$ (Pfeile umkehren)
- Für $u, v \in V$ schreibe $u \leq v$, falls es in G einen Pfad von u nach v gibt. $u \leq v \Leftrightarrow \exists$ Kantenzug von u nach v in G; \leq Quasiordnung, \leq Ordnung wenn es in G keine Kreise gibt
- Schreibe $u \sim v$ falls $u \leq v \wedge v \leq u$. Die Äquivalenzklassen von \sim heißen die **starken Zusammenhangskomponenten** von G ("SZK")

Algorithmen für gerichtete Graphen werden nicht geprüft

2.11 Aussagenlogik

- $\top/\bot = \text{wahr/falsch}; \land, \lor \text{ kommutativ}, \text{ assoziativ}, \text{ distributiv in beide Richtungen}$ **De Morgansche Gesetze:** $\neg(x \land y) = \neg x \lor \neg y, \neg(x \lor y) = \neg x \land \neg y$
- jeder **Ausdruck** A (=Verbindung von $\top, \bot, \neg, \wedge, \vee$, Variablensymbolen) definiert eine **boolsche Funktion** $f_A : \{0,1\}^n \to \{0,1\}; A$ heißt **tautologisch/Tautologie** wenn $f_A(a_1, \ldots, a_n) = 1$ für alle $a_1, \ldots, a_n \in \{0,1\}$
- schreibe $A \Rightarrow B$ für $\neg A \lor B, A \Leftrightarrow B$ für $(A \Rightarrow B) \land (B \Rightarrow A)$ (d.h. \Rightarrow ist immer war außer für $1 \Rightarrow 0$, \Leftrightarrow ist wahr für $1 \Leftrightarrow 1$ und $0 \Leftrightarrow 0$); es gilt $A \Rightarrow B$ äquivalent zu $\neg B \Rightarrow \neg A$ (Kontraposition)
- Ausdrücke A, B sind **äquivalent** wenn $f_A = f_B$ (d.h. wenn $A \Leftrightarrow B$ Tautologie); A **impliziert** B ($A \models B$) wenn $A \Rightarrow B$ Tautologie
- Darstellungssatz: für jede n-stellige boolsche Funktion f existiert Ausdruck A in n Variablen, so dass $f_A = f$
- disjunktive Normalform (DNF): $\bigvee_i \bigwedge_j L_{ij}$; konjunktive Normalform (KNF): $\bigwedge_i \bigvee_j L_{ij}$ Beispiel: Sei f gegeben durch Tabelle. Es gilt $f = f_A = f_B$.

a_1, a_2	$f(a_1,a_2)$			
0,0	0	_		
0,1	1	$A = (\neg X_1$	$\wedge X_2) \vee (X_1 \wedge X_2)$	$B = (X_1 \vee X_2) \wedge (\neg X_1 \vee X_2)$
1,0	0	Literal L_i		KNF
1,1	1	Enterur En	Klausei	IXIVI
	1		DNF	

- eine Aussage in KNF (!!) heißt **Horn**, falls jede Klausel maximal ein positives Literal (L_{ij} der Form X) enthält
- Algorithmus für **Horn-SAT**:
 - 1. suche nach Klausel der Gestalt X, lösche dann alle Literale der Gestalt $\neg X$
 - 2. falls dadurch leere Klausel entsteht return NEIN
 - 3. gehe zu 1. solange noch etwas gelöscht werden kann; danach return JA

Beispiel: $A = (X_1 \vee \neg X_2 \vee \neg X_3) \wedge X_3$ Ausdruck ist Horn \Rightarrow Horn-SAT Algorithmus anwendbar X_3 ist eine Klausel $\Rightarrow \neg X_3$ streichen $A \Leftrightarrow (X_1 \vee \neg X_2) \wedge X_3 \Rightarrow JA$ (ist erfüllbar)

• Beweise in Aussagenlogik über Ausdrücke umformen oder Wertetabelle

2.12 Relationen

- $R \subseteq A \times B$ heißt Relation, wir schreiben $(a, b) \in R$ oder aRb
- mögliche Eigenschaften von $R \subseteq A \times A$: **reflexiv** $(aRA \text{ für alle } a \in A)$; **transitiv** $(aRb \wedge bRc \Rightarrow aRc \text{ für alle } a, b, c \in A)$; **symmetrisch** $(aRb \Rightarrow bRa \text{ für alle } a, b \in A)$; **antisymmetrisch** $(aRb \wedge bRa \Rightarrow a = b \text{ für alle } a, b \in A)$
- R ist eine Äquivalenzrelation ("ÄR") falls gilt R reflexiv, symmetrisch, transitiv; $R_1 \cap R_2$ ist immer Äquivalenzrelation
- $a/R := \{b \in A \mid (a, b) \in R\}$ heißt Äquivalenzklasse von a; $A/R := \{a/R \mid a \in A\}$ Menge der Äquivalenzklassen 2 Äquivalenzklassen sind entweder gleich oder disjunkt
- Partition ist eine Menge \mathcal{P} deren Elemente Teilmengen von A sind, so dass gilt $\bigcup_{X \in \mathcal{P}} X = A$ und alle X sind gleich oder disjunkt
- R ist eine **Ordnung** falls R reflexiv, antisymmetrisch, transitiv; **Quasiordnung** falls R reflexiv und transitiv Beispiele: Teilbarkeitsrelation auf \mathbb{Z} ; jede Äquivalenzrelation; \subseteq (i.A. nicht total)
- R ist **totale (Quasi-) Ordnung** falls R eine (Quasi-) Ordnung ist und je zwei Elemente x, y von A vergleichbar sind (d.h. $(x, y) \in R \lor (y, x) \in R$) Beispiele: \leq auf \mathbb{R} ; Äquivalenzrelationen mit nur einer Äquivalenzklasse; $R = \{(a, b) \in \mathbb{C} \times \mathbb{C} : |a| \leq |b|\}$
- für $M \subseteq A$ heißt $x \in M \dots$
 - maximales Element von M, falls xRy schon x=y impliziert für alle $y \in M$; minimales Element von M, falls yRx schon x=y impliziert für alle $y \in M$
 - größtest Element von M, galls yRx für alle $y \in M$; kleinstes Element von M, galls xRy für alle $y \in M$
- gibt es ein größtes Element von M, so ist es eindeutig bestimmt und auch das einzige maximale Element von M; analog für kleinstes
- für $R \subseteq A \times A$ ist $R \circ R = \{(a_1, a_3) \in A \times A \mid \text{ es gibt } a_2 \in A \text{ mit } (a_1, a_2) \in R \land (a_2, a_3) \in R\}; R^0 = \{(a, a) \mid a \in A\}, R^1 = R, R^2 = R \circ R \text{ etc. (im gerichteten Graph zu } R \text{ entspricht } R^k \text{ allen "Abkürzungen" der Länge } k)$
- Es existiert immer eine Quasiordnung auf A die R enthält. Sei R' die kleinste Quasiordnung die R enthält (Transitive reflexive Hülle). Dann gilt $R' = \bigcup_{i>0} R^i$
- Es existiert immer eine transitive Relation auf A die R enthält. Sei R' die kleinste transitive Relation die R enthält (transitive Hülle). Dann gilt $R' = \bigcup_{i>1} R^i$