## Evaluation de performances

# Cas de l'étude Dataset-M (disponible sur Arche)

- Introduction
- Présentation du cas de l'étude
- Implantation d'un processus de pronostic
- Résultats attendus

Phuc Do phuc.do@univ-lorraine.fr



#### Introduction

#### **Objectif:**

- Modéliser le processus de dégradation de trains de filtrage d'eaux industriel
- Estimer l'évolution du son indicateur de santé
- Estimer sa fiabilité et sa durée de vie résiduelle

#### Données et outils:

- Un jeu de données disponible sur Arche
  - > 14 trains donc chaque train est composé de 8 filtres élémentaires
  - Différentes actions de maintenance (permutation)

#### Modalité de l'évaluation:

- Travail en groupe ou seul(e)
- Compte rendu à déposer sur Arche pour le 21/05/2024





#### Présentation du cas de l'étude

### Mesures/indicateurs pour chaque train:

| Date 🔻     | Da <mark>▼</mark> | wee  ▼ | Train<br>Status<br>Code | Normalized DP<br>(bars) | Feed Volume (m³) | Brine<br>Volume<br>(m³) | Product<br>Volume<br>(m³) ▼ | Recovery (%) | к 💌 | Train Stat( 🔻 |
|------------|-------------------|--------|-------------------------|-------------------------|------------------|-------------------------|-----------------------------|--------------|-----|---------------|
| 07/11/2015 | 1                 | 0,14   | 5                       | 0,780                   | 21243            | 10375                   | 10867                       | 51,2         | 1,0 | Operation     |
| 08/11/2015 | 2                 | 0,29   | 5                       | 0,776                   | 30060            | 14709                   | 15351                       | 51,1         | 1,0 | Operation     |
| 09/11/2015 | 3                 | 0,43   | 5                       | 0,776                   | 30065            | 14712                   | 15353                       | 51,1         | 1,0 | Operation     |
| 10/11/2015 | 4                 | 0,57   | 5                       | 0,775                   | 29762            | 14562                   | 15201                       | 51,1         | 1,0 | Operation     |
| 11/11/2015 | 5                 | 0,71   | 5                       | 0,773                   | 29371            | 14352                   | 15019                       | 51,1         | 1,0 | Operation     |
| 12/11/2015 | 6                 | 0,86   | 5                       | 0,778                   | 29563            | 14443                   | 15120                       | 51,1         | 1,0 | Operation     |
| 13/11/2015 | 7                 | 1,00   | 5                       | 0,779                   | 11067            | 5411                    | 5656                        | 51,1         | 1,0 | Operation     |
| 14/11/2015 | 8                 | 1,14   | 5                       | 0,763                   | 16893            | 8256                    | 8637                        | 51,0         | 1,0 | Operation     |
| 15/11/2015 | 9                 | 1,29   | 5                       | 0,769                   | 29278            | 14038                   | 15240                       | 52,1         | 1,0 | Operation     |
| 16/11/2015 | 10                | 1,43   | 5                       | 0,769                   | 29215            | 14002                   | 15214                       | 52,1         | 1,0 | Operation     |
| 17/11/2015 | 11                | 1,57   | 5                       | 0,773                   | 29235            | 14001                   | 15234                       | 52,1         | 1,0 | Operation     |
| 18/11/2015 | 12                | 1,71   | 5                       | 0,775                   | 29761            | 14251                   | 15510                       | 52,1         | 1,0 | Operation     |









#### Etapes principales:

#### Pré-traitement

- Data clearing (nettoyage de données)
- Identifier l'indicateur de santé
- Identification des facteurs d'influence
- Identification des modes

## Apprentissage de modèles

- Modèles de comportement sans dégradation
- Estimation des paramètres
- Modèles de comportement avec dégradation
- Estimation des paramètres de dégradation

## Approches de pronostic

 Tester différentes approches/algorithmes de pronostic

## Vérification & Validation

- Evaluer la performance des approches choisies en utilisant des métriques de performance
- Comparer et valider les approches choisies





#### Prétraitement

- □ Data clearing (nettoyage de données)
  - Eliminer les données inutiles (périodes d'arrêt, points autour de redémarrage, ...)
  - Filtrer les bruits
- ☐ Identifier l'indicateur de performance: paramètres en sortie
  - Variation de pression (DP)
- ☐ Identification des facteurs <u>d'influence</u>: *paramètres en entrée*





#### Présentation du cas de l'étude

### Quelques exemples sur des données après nettoyage





| Train 1 |          |          |       |             |       |  |  |
|---------|----------|----------|-------|-------------|-------|--|--|
| Day     | Real age | Status   | DP    | Maintenance | delta |  |  |
| 1       | 1        |          | 0,78  |             |       |  |  |
| 610     | 497      |          | 3,526 | C3          |       |  |  |
| 620     | 503      | 234567N  | 1,835 | 1,691       | 0,62  |  |  |
| 835     | 682      |          | 2,008 | C1          |       |  |  |
| 858     | 701      |          | 1,527 | 0,481       | 0,39  |  |  |
| 1156    | 981      |          | 2,106 | C2          |       |  |  |
| 1188    | 999      |          | 1,948 | 0,158       | 0,12  |  |  |
| 1189    | 1000     |          | 2,745 | Permutation |       |  |  |
| 1349    | 1141     | 324N5678 | 1,897 | 0,847323784 | 0,43  |  |  |



#### Présentation du cas de l'étude

### Quelques exemples sur des données après nettoyage



| Train 3 |                     |               |               |             |       |  |  |
|---------|---------------------|---------------|---------------|-------------|-------|--|--|
| ပြုံDay | Real age            | \$tatus /     | DP V          | Maintenance | delta |  |  |
| 4-      | <b>√</b> 1          | <b>&gt;</b>   | 0,968         | -           |       |  |  |
| 484     | <i>/</i> 387        | لهما          | 2,813         | C1          |       |  |  |
| 503***  | 399                 |               | 2,480         | 0,333       | 0,18  |  |  |
| 680     | 506                 |               | 2,864         | Permutation |       |  |  |
| 704     | 520<br>200 400      | 8N34567N      | 2,32<br>1000  | 0,544       | 0,29  |  |  |
| 804     | 607                 | Operating day | 1,731         | C1          |       |  |  |
| 816     | 612                 |               | 1,461         | 0,270       | 0,35  |  |  |
| 926     | 716                 |               | 2,092         | C1          |       |  |  |
| 934     | 721                 |               | <b>1</b> ,731 | 0,362       | 0,32  |  |  |
| 1048    | 828                 |               | 2,611         | C2          |       |  |  |
| 1074    | 851                 |               | 2,011         | 0,600       | 0,37  |  |  |
| 1241    | 989                 |               | 2,102         | C2          |       |  |  |
| 1249    | 993                 |               | 2,017         | 0,085       | 0,07  |  |  |
| 1308    | 1044                |               | 2,363         | Permutation |       |  |  |
| 1319    | 1045                | 324N5678      | 1,754         | 0,609       | 0,44  |  |  |
| 1411    | 1 <mark>13</mark> 7 |               | 2,865         | C2          |       |  |  |
| 1425    | 1147                |               | 2,115         | 0,750       | 0,40  |  |  |
| 1426    | 1148                |               | 2,466         | Permutation |       |  |  |
| 1538    | 1237                | 234N5678      | 1,692         | 0,775       | 0,52  |  |  |

| Train 2 |          |          |                 |                    |           |  |  |
|---------|----------|----------|-----------------|--------------------|-----------|--|--|
| Day     | Real age | Status   | DP              | Maintenance        | delt<br>a |  |  |
| 1       | 1        |          | 0,732           |                    |           |  |  |
| 465     | 362      |          | 2,154           | C1                 |           |  |  |
| 491     | 372      |          | 1,826           | 0,328              | 0,23      |  |  |
| 640     | 492      |          | 2,479           | Permutation        |           |  |  |
| 647     | 495      | 8N34567N | 1,497           | 0,982              | 0,56      |  |  |
| 933     | 667      |          | 1,790           | C1                 |           |  |  |
| 942     | 672      |          | 1,558           | 0,232              | 0,22      |  |  |
| 1037    | 765      |          | 2,007           | C1                 |           |  |  |
| 1045    | 768      |          | 1,952           | 0,055              | 0,04      |  |  |
| 1290    | 96       |          | 2,131           | Permutation        |           |  |  |
| 1298    | 966      | 324N5678 | 1,49 <b>7</b> r | ain <b>3</b> 0,634 | 0,45      |  |  |
|         | и — — —  |          |                 |                    |           |  |  |





Apprentissage de modèles

#### Principe de base:

- 70% données pour la phase d'apprentissage
- 30% données restant pour le test
- Apprendre le modèle de comportement sur l'évolution de l'indicateur de santé identifié en fonction des facteurs d'influence identifiés
  - Modèle de régression: linéaire ou non-linéaire, machine learning
  - ✓ Estimation des paramètres sur la période [0 70%]
- Tester les paramètres estimés sur la période restant, e.g., [70% 100%]
  - √ R2 (coefficient de détermination)
  - ✓ RMSE (Écart quadratique moyen)





Approches de pronostic

#### Choisir deux approches/modèles à tester

- 1 ou 2 modèles de comportements (linéaire, non-linéaire)
- 1 ou 2 modèles de dégradation (eg., regression, processus de stochastique,
   ...)
- Autres





Vérification & Validation

- 1. Vérifier la cohérence les résultats de prédictions donnés par les approches choisies
- 2. Evaluation la performance de deux approches choisies
  - Tester avec des métriques performance (R2, RMSE, etc.)
  - Classer les deux approches choisies selon les critères utilisés





#### Résultats attendus

- Identifier clairement un ou plusieurs indicateurs de santé à suivre ainsi que leur seuil de défaillance
- 2. Proposer deux approches permettant de modéliser les comportements avec et sans dégradation du système
- 3. Estimation des paramètres des modèles proposés
- 4. Interprétation des résultats finaux donnés par la meilleure approche identifiée



