

DEUTSCHES PATENTAMT

P 35 40 377.2 Aktenzeich n: 14. 11. 85 Anmeldetag:

21. 5.87 Offenlegungstag:

C 07 D 495/04 A 61 K 31/535 A 23 K 1/16 C 07 D 333/38 C 07 D 333/42

Behördeneigentum

(71) Anmelder:

Bayer AG, 5090 Leverkusen, DE

2 Erfinder:

Hallenbach, Werner, Dr., 4018 Langenfeld, DE; Lindel, Hans, Dr., 5090 Leverkusen, DE; Berschauer, Friedrich, Dipl.-Agr.-Ing. Dr.; Scheer, Martin, Dr.; Jong, Anno de, Dipl.-Agr.-Ing. Dr., 5600 Wuppertal,

(A) Thienooxazinone, Verfahren zu ihrer Herstellung und ihre Verwendung als Leistungsförderer

Die vorliegende Erfindung betrifft Thienooxazinone der Formell

(1)

 ${\sf R}^1$ und ${\sf R}^2$ gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten Thiophenring stehen, R3 für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

R⁴ für gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alke-

nyl, Aryl steht.

R3 und R4 gemeinsam mit dem angrenzenden Stickstoffatom für einen gegebenenfalls substituierten gesättigten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann.

Verfahren zu ihrer Herstellung und ihre Verwendung als Leistungsförderer bei Tieren.

Patentansprüche.

1. Thienooxazinone der Formel I

R² NR3R4

20

25

35

40

55

65

R1 und R2 gemeinsam mit den angrenzenden C-Atomen für einen gegegebenenfalls substituierten Thiophenring stehen,

R³ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

R4 für gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht.

R³ und R⁴ gemeinsam mit dem angrenzenden Stickstoffatom einen gesättigten Heterocyclus, der gegebenenfalls weitere Heteroatome enthalten kann, bilden.

Die Thienooxazinone der Formel I können dabei in Form ihrer Isomeren der Formel Ia sowie als Gemische beider isomerer Formen vorliegen

- R4

(Ia)

2. Verfahren zur Herstellung der neuen Thienooxazinone der allgemeinen Formel

 NR^3R^4

in welcher

Rt und R2 gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten Thiophenring stehen.

R3 für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

R4 für gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

R³ und R⁴ gemeinsam mit dem angrenzenden Stickstoffatom für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann, dadurch gekennzeichnet, daß man

a) Thienylharnstoffe der Formel II

COOH NHCONR3R4

(II)

oder II a

COOH NR3CONHR4

(lla)

in welcher

R5 und R6 für gleiche oder verschiedene Reste aus der Gruppe Wass rstoff, Halogen, Nitro, CN, Alkyl, Alkoxy, Alkylthio, Aryl, Alkylcarbonyl, Alkoxycarbonyl, Arylcarbonyl, Aryloxycarbonyl, die gegebenenfalls substituiert sein können stehen,

R⁵ und R⁶ können auch gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten

gesättigten oder ungesättigten carbocyclischen Ring stehen, R³ und R⁴ die oben angegebene Bedeutung hat, und die Reste -COOH, -NHCONR³R⁴ oder -NR3CONHR4 benachbart zueinander stehen, mit Kondensationsmitteln umsetzt, oder b) Aminothiophene der Formel III COOH (III) in welcher R5 und R6 die oben angegebene Bedeutung haben und die Reste COOH und NH2 benachbart zueinander stehen; mit mindestens 1 Mol (pro Mol Aminothiophen der Formel III) der Verbindungen der Formel IV in welcher R4 die oben angegebene Bedeutung hat umsetzt, oder c) indem man Verbindungen der Formel V COOR' NHCONR3R4 oder ihre Isomeren der Formel Va COOR7 (Va) NR3CONHR4 in welcher R³, R⁴, R⁵, R⁶ die oben angegebene Bedeutung besitzen und R⁷ für tertiäre Alkylreste, Benzyl steht, mit sauren Kondensationsmitteln in Mischung mit wasserentziehenden Mitteln umsetzt. 3. Verbindungen der Formeln II und IIa COOH (11)NHCONR³R⁴ oder II a COOH (Ila) 60 NR³CONHR⁴ R3 für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht, 65 R4 für gegebenenfalls substituiertes Alkyl, Cycloalykyl, Alkenyl, Aryl steht, R⁵ und R⁶ für gleiche oder verschiedene Reste aus der Gruppe Wasserstoff, Halogen, Nitro, CN, Alkyl, Alkoxy, Alkylthio, Aryl, Alkylcarbonyl, Alkoxycarbonyl, Arylcarbonyl, Aryloxycarbonyl, die gegebenenfalls

substituiert sein können stehen,

R⁵ und R⁶ können auch gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten gesättigten oder ungesättigten carbocyclischen Ring, mit Ausnahme des unsubstituierten Phenylringes,

4. Verfahren zur Herstellung der Verbindungen der Formeln II und IIa gemäß Punkt 3 (oben), dadurch gekennzeichnet, daß man

a) Verbindungen der Formeln V und Va

in welchen R3, R4, R5, R6, R7 die unter Punkt 2c (oben) angegebenen Bedeutungen besitzen, mit starken Säuren umsetzt oder

b) Verbindungen der Formel VI

$$\begin{array}{c|c}
R^{5} & C \\
C & C \\
C & C \\
R^{6} & R^{8}
\end{array}$$

in welcher

10

R5 und R6 die unter Punkt 3 angegebene Bedeutung besitzen, R8 für Wasserstoff oder gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

mit Aminen der Formel VII

in welcher

R3 und R4 die unter Punkt 3 angegebene Bedeutung besitzen,

unter der Voraussetzung, daß für den Fall, daß

R8 für gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht, der Rest

R³ für Wasserstoff steht,

umsetzt.

40

5. Mittel zur Leistungsförderung von Tieren gekennzeichnet durch einen Gehalt an Thenooxazinonen der Formel I gemäß Anspruch 1.

6. Tierfutter, Trinkwasser für Tiere, Zusätze für Tierfutter und Trinkwasser für Tiere gekennzeichnet durch

einen Gehalt an Thienooxazinon der Formel I gemäß Anspruch 1.

7. Verwendung von Thienoxazinonen der Formel I gemäß Anspruch 1 zur Leistungsförderung von Tieren. 8. Verfahren zur Herstellung von Mitteln zur Leistungsförderung von Tieren, dadurch gekennzeichnet, daß man Thienooxazinone der Formel I gemäß Anspruch 1 mit Streck- und/oder Verdünnungsmitteln vermischt.

9. Verfahren zur Herstellung von Tierfutter, Trinkwasser für Tiere oder Zusätze für Tierfutter und Trinkwasser für Tiere, dadurch gekennzeichnet, daß man Thienoxazinone der Formel I gemäß Anspruch 1 mit

Futtermitteln oder Trinkwasser und gegebenenfalls weiteren Hilfsstoffen vermischt.

Beschreibung

Die vorliegende Erfindung betrifft Thienooxazinone, Verfahren zu ihrer Herstellung und ihre Verwendung als 50 leistungsfördernde Mittel bei Tieren.

Benzoxazinone sind bekannt (vgl. DE-OS 23 15 303). Thienooxazinone stellen eine strukturell völlig neuartige Verbindungsklasse dar und können werder von ihrer Struktur noch von ihren Eigenschaften mit Benzoxazinonen verglichen werden.

Es wurde nun gefunden:

1. Neue Thienooxazinone der Formel I

$$R^1$$
 O O R^2 N N R^3 R^4

(I)

in welcher

R! und R2 gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten Thiophenring

R3 für Wass rstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

R4 für gegebenenfalls substituiert s Alkyl, Cycloalkyl, Alkenyl, Aryl steht. R³ und R⁴ gemeinsam mit dem angrenzenden Stickstoffatom für einen gegebenenfalls substituierten gesättigten Heterocyclus stehen, der gebenenfalls weitere Heteroatome enthalten kann.

Die Thineooxazinone der Formel I können dabei in Form ihrer Isomeren der Formel Ia sowie als Gemische

beider isomerer Formen vorliegen

$$\begin{array}{c|c}
R^1 & O \\
\hline
R^2 & N \\
\hline
R^3 & N \\
\end{array}$$
(Ia)

2. Verfahren zur Herstellung der neuen Thienooxazinone der allgemeinen Formel

R¹ und R² gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten Thiophenring

R³ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht,

R4 für gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aryl steht, R³ und R⁴ gemeinsam mit dem angrenzenden Stickstoffatom für einen gegebenenfalls substituierten Heterocy-

clus stehen, der gegebenenfalls weitere Heteroatome enthalten kann, dadurch gekennzeichnet, daß man

a) Thienylharnstoffe der Formel II

35

55

oder II a

$$R^5$$
 COOH (IIa)

R⁵ und R⁶ für gleiche oder verschiedene Reste aus der Gruppe Wasserstoff, Halogen, Nitro, CN, Alkyl, Alkoxy, Alkylthio, Aryl, Alkylcarbonyl, Alkoxycarbonyl, Arylcarbonyl, Aryloxycarbonyl, die gegebenenfalls substituiert R⁵ und R⁶ können auch gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten gesättigten oder ungesättigten carbocyclischen Ring stehen,

R³ und R⁴ die oben angegebene Bedeutung hat, und die Reste - COOH, -NHCONR³R⁴ oder - NR³CONHR⁴ benachbart zueinander stehen,

in welcher R^5 und R^6 die oben angegebene Bedeutung haben und die Reste COOH und H2 benachbart zueinander stehen, mit mindestens 1 Mol (pro Mol Aminothiophen der Formel III) der Verbindungen der Formel IV

R⁴ für C₁₋₆-Alkyl, Cycloalkyl mit bis zu 8 C-Atomen, Phenyl, das gegebenenfalls durch Halogen, insbesondere Chlor, Nitro, substituiert ist, steht.

Insbesondere seien Verbindungen der Formel I genannt, in welcher

Insbesondere seien Verbindungen C-Atomen für einen Thiophenring stehen, der in 1,2-Stellung an

R¹ und R² gemeinsam mit den angrenzenden C-Atomen für einen Thiophenring stehen, der in 1,2-Stellung an den Oxazinonring ankondensiert ist und durch R⁵ und R⁶ substituiert ist. Bevorzugt steht

 $R^{s} \ f\"{u}r \ Wasserstoff, C_{i-4}-Alkyl, in sbesondere \ Methyl, Ethyl, t-Butyl, Acetyl, Phenyl, Nitro,$

R6 für die bei R5 angeführten Reste,

R⁵ und R⁶ gemeinsam für einen an den Thiophenring ankondensierten Cyclopentan-, Cyclohexan-, Cycloheptan-, Cyclooctan-, Cyclohexanon-, Benzolring, die gegebenenfalls durch C₁₋₄-Alkyl, insbesondere Methyl, Halogen, insbesondere Chlor, Nitro substituiert sein können,

R³für Wasserstoff,

10

 R^4 für C_{1-6} -Alkyl, insbesondere Methyl, Ethyl, Propyl, t-Butyl, Cycloalkyl mit bis zu 6 C-Atomen, Phenyl, das gegebenenfalls durch Halogen, insbesondere Chlor, substituiert ist.

Im einzelnen seien folgende Verbindungen der Formel I genannt:

			R ⁶	N NI	R³R⁴	· .	
20	. R ⁵	R ⁶		R ³		R ⁴	·
		CH ₃	-	January 1			
	Н	—сн	* +	÷ H	•	— C H ₃	*
25		CH ₃			•	СН₃	
	***	CH₃ ∕			· ,		•
30	Н ,	-СН	t .	Н		—СH	
-	in.	CH₃ CH₃				`CH₃	·
35	Н	—cн		Н		H	
		CH ₃		e			
40	Н	—сн		H	·		*
	•	CH ₃					
45		CH ₃	• 0	· .			
	Н	— с́н	•	Н		sec-Butyl	
50		СН	СН3				- · · · · · · · · · · · · · · · · · · ·
	Н	—СН₂—С <u>Т</u>	/	Н		— СН ₃	
, 55	* .		СН₃				
		4	CH ₃			CH ₃	
•	Н	—CH₂—CH	/ 	н		-сн	
- 60			CH ₃			СН₃	
65	Н	—CH₂—Cį́	CH ₃	- н		—(H)	
	•		CH ₃				

H	R ⁵	•	R ⁶		R.3	R ⁴	· ·
CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₇ CH ₇ H -CH ₂ -CH H -CH CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₃ CH ₄ CH ₃ CH ₃ CH ₃ CH ₄ CH ₄ CH ₄ CH ₅ CH ₄ CH ₄ CH ₅ CH ₅ CH ₅ CH ₆ CH ₆ CH ₇ CH ₈ CH ₁ CH ₁ CH ₁ CH ₁ CH ₁ CH ₁ CH ₂ CH ₃ CH ₁ CH ₁ CH ₁ CH ₂ CH ₃ CH ₁ CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄ CH ₅ C				СН₃			,
CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	Н	•	—сн₂—сн		Н		
H — CH ₂ —CH H sec-Butyl CH ₃ (CH ₂) (CH ₃) (CH ₂) (CH ₃)		· ·		CH3			10 -
CH ₃		٠,		CH₃			
H	H		—сн₁—сн	· · · · · · · · · · · · · · · · · ·	н	sec-Butyl	. 15
H		•		CH ₃		*	
H — CH ₃ — CH ₃ CH ₃ CH ₄ — CH	-		, ·	CH ₃	•		
CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₆ CH ₇ CH ₈ CH ₈ CH ₉ CH ₁ CH ₂ (CH ₂) (CH ₂	н		—CH₂—CH	/ [H	tertButyl	20
H — CH H H tertButyl. CH₃ — CH₃ — Et H — CH CH₃ — CH₂ — CH₃ — CH₂ — CH₂ — CH₂ — CH₂ — CH₃ — CH₂ — CH₂ — CH₃ — CH₃ — CH₃ — CH₃ — CH₂ — CH₃ — C				\	•		
H — CH H tertButyl CH ₃ — CH ₃ — Et H — CH (CH ₂) ₅			СН	City			
CH ₃ CH ₂ CH ₃ CH			. /		и	tert -Butvl	23
CH ₃ —CH ₃ —Et H CH ₃ (CH ₂) ₅ (CH ₂) ₆ (CH ₂) ₇ (CH ₂) (C	. H		· 📐 ·		11.	·	
CH ₃ —CH ₃ —EH (CH ₂) ₅ (CH ₂) ₆ (CH	-			•	u		21.
— Et H (CH₂)₃ H CH₃ (CH₂)₃ H i-Propyl (CH₂)₃ H n-Butyl (CH₂)₃ H Phenyl (CH₂)₃ H 4-Chlorphenyl (CH₂)₄ H CH₃ (CH₂)₄ CH₃ n-Butyl (CH₂)₄ CH₃ Cyclohexyl (CH₂)₄ CH₃ Cyclohexyl (CH₂)₄ CH₃ Phenyl (CH₂)₄ CH₃ Phenyl (CH₂)₄ CH₃ 4-Chlorphenyl (CH₂)₄ CH₃ 2-Methylphenyl (CH₂)₄ CH₃ 2-Methoxyphenyl (CH₂)₄ CH₃ n-Butyl (CH₂)₅ CH₃ n-Butyl (CH₂)₅ CH₃ i-Propyl	—CH₃		— Et				. 30
(CH ₂) ₃ H CH ₃ (CH ₂) ₄ (CH ₂) ₅ H i-Propyl (CH ₂) ₅ H n-Butyl (CH ₂) ₅ H Cyclohexyl (CH ₂) ₅ H Phenyl (CH ₂) ₅ H CH ₃ (CH ₂) ₄ H CH ₃ (CH ₂) ₄ CH ₃ n-Butyl (CH ₂) ₄ CH ₃ CH ₃ (CH ₂) ₄ CH ₃ Phenyl (CH ₂) ₅ CH ₃ Phenyl (CH ₂) ₆ CH ₃ Phenyl (CH ₂) ₇ CH ₉ Phenyl (CH ₂) ₈ CH ₉ Phenyl (CH ₂) Phenyl (CH ₂) Phenyl (CH ₂) Phenyl (CH				, ,		СН,	•
(CH ₂) ₃ (CH ₂) ₄ (CH ₂) ₅	—СH ₃	.*	—Et		Н		35
(CH ₂) ₃ H n-Butyl (CH ₂) ₃ H Cyclohexyl (CH ₂) ₃ H Phenyl (CH ₂) ₃ H Phenyl (CH ₂) ₃ H A-Chlorphenyl (CH ₂) ₃ H CH ₃ (CH ₂) ₄ H i-Propyl (CH ₂) ₄ CH ₃ n-Butyl (CH ₂) ₄ CH ₃ Cyclohexyl (CH ₂) ₄ CH ₃ CH ₃ CH ₃ (CH ₂) ₄ CH ₃ CH ₃ CH ₃ (CH ₂) ₄ CH ₃ CH ₃ CH ₃ (CH ₂) ₄ CH ₃ CH ₃ CH ₃ (CH ₂) ₄ CH ₃ CH ₃ Phenyl (CH ₂) ₄ CH ₃ A-Chlorphenyl (CH ₂) ₄ CH ₃ i-Propyl (CH ₂) ₄ CH ₃ 2-Methylphenyl (CH ₂) ₄ CH ₃ 2-Methoxyphenyl (CH ₂) ₄ CH ₃ n-Butyl (CH ₂) ₅ CH ₃ n-Butyl (CH ₂) ₅ CH ₃ i-Propyl		(CH ₂) ₃			Н	CH ₃	
(CH ₂) ₃ (CH ₂) ₄ (CH ₂) ₅				•	. H .	i-Propyl	
(CH ₂) ₃				•			- 40
(CH ₂) ₃ (CH ₂) ₄ (CH ₂) ₅		(CH ₂) ₃				*	
(CH ₂) ₄ (CH ₂) ₅		$(CH_2)_3$			H		
(CH ₂) ₄ (CH ₂) ₄ (CH ₃ n-Butyl (CH ₂) ₄ (CH ₃ Cyclohexyl (CH ₂) ₄ (CH ₂) ₅ CH ₃ (CH ₂) ₄ (CH ₂) ₆ (CH ₃ Phenyl (CH ₂) ₄ (CH ₂) ₆ (CH ₃ 4-Chlorphenyl (CH ₂) ₆ (CH ₂) ₇ (CH ₂) ₇ (CH ₂) ₈ (CH ₃ 2-Methylphenyl (CH ₂) ₈ (CH ₃ 2-Methoxyphenyl (CH ₂) ₈ (CH ₃ CH ₃ n-Butyl (CH ₂) ₈ (CH ₃ CH ₃ i-Propyl (CH ₂) ₈ (CH ₃ i-Propyl				- 			45
(CH ₂) ₄ (CH ₂) ₅ (CH ₂) ₆ (CH ₂) ₆ (CH ₂) ₇ (CH ₂) ₈			•				
(CH ₂) ₄ (CH ₂) ₅ (CH ₃)			•				
(CH ₂) ₄ (CH ₂) ₅	•				•		50
(CH ₂) ₄ CH ₃ Phenyl (CH ₂) ₄ CH ₃ 4-Chlorphenyl (CH ₂) ₄ C ₂ H ₅ i-Propyl (CH ₂) ₄ CH ₃ 2-Methylphenyl (CH ₂) ₄ CH ₃ 2-Methoxyphenyl (CH ₂) ₄ C ₂ H ₅ n-Butyl (CH ₂) ₅ CH ₃ CH ₃ (CH ₂) ₅ CH ₃ i-Propyl (CH ₂) ₅ C ₂ H ₅ CH ₃ (CH ₂) ₅ C ₂ H ₅ CH ₃					•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	٠					Phenyl	
(CH ₂) ₄ C ₂ H ₅ i-Propyl (CH ₂) ₄ CH ₃ 2-Methylphenyl (CH ₂) ₄ C ₂ H ₅ n-Butyl (CH ₂) ₅ CH ₃ CH ₃ (CH ₂) ₅ CH ₃ i-Propyl (CH ₂) ₅ C ₂ H ₅ CH ₃					CH ₃	4-Chlorphenyl	
(CH2)4 CH3 2-Methoxyphenyl $(CH2)4 C2H5 n-Butyl$ $(CH2)5 CH3 CH3$ $(CH2)5 CH3 i-Propyl$ $(CH2)5 C2H5 CH3$							
(CH2)3 C2H5 n-Butyl $(CH2)5 CH3 CH3$ $(CH2)5 CH3 i-Propyl$ $(CH2)5 C2H5 CH3$		$(CH_2)_4$					60
(CH ₂) ₅ CH ₃ CH ₃ (CH ₂) ₅ CH ₃ i-Propyl (CH ₂) ₅ C ₂ H ₅ CH ₃	٠.			,	*		
(CH ₂) ₅ CH ₃ i-Propyl (CH ₂) ₅ C ₂ H ₅ CH ₃						,	.·
(CH ₂) ₅ C ₂ H ₅ CH ₃							
CIV Protection							
$(CH_2)_5$ CH_3 n -Butyl					CH ₃	n-Butyl	

R ⁵ .	R ⁶	R.3	R ⁴	
(C H ₂))s	CH ₃	Cyclohexyl	
(CH ₂)	•	C₃H₅	i-Propyl	
(CH ₂)	•	ĆH₃	Phenyl	
(CH ₂		C₂H₅	n-Butyl	• •
(0112	•		CH ₃	32
H	—СH ₃	Н	—ćн	
			CH ₃	• •
Н	— СН ₃	Н	—CH ₃	
* *	СН3	Н	—(H)	
H	сп;	••• •		
Н	—СH ₃	H	_	
CH ₃				
—cн	Н	H	—CH ₃	
CH ₃			7	
CH ₃		**		•
-сн	H	Н		
CH ₃	· · · · · · · · · · · · · · · · · · ·	. :		,
CH ₃			CH₃	
-сн	Н	Н	—ćн	
CH₃			CH ₃	
Н	Et	Н	-CH ₃	
		*.	CH ₃	
Н.	Et	Н	—ćн	
			СН₃	
			CH₃	
Н	—- Et	H *	—сн	
			СН	
C.		*		
Н	— Et	Н	~	-
H	Et	Н	tertButyl	
Н	—Et	<u>_H</u> _	$-CH_3$	
—Et	—СH ₃	H	—CH ₃	•
CH ₃	Н	Н	CH ₃	. •
CH ₃	Н	Н .	i-Propyl	
CH ₃	Н,	Н	i-Butyl	

R ⁵	R ⁶	R.1	R ⁴	
CH ₁	Н	H	Cyclopentyl	•
CH ₃	Н	Н	Cyclohexyl	
CH ₃	Н	Н	Phenyl	
CH ₃	H	Н	4-Methoxyphenyl	10
Н	n-C ₅ H ₁₁	Н	CH ₃	
Н	n-C ₅ H ₁₁	Н	l-Propyl	
Н	n-C ₅ H ₁₁	Н	1-Butyl	• 7
Н	n-C ₅ H _{II}	Н	Cyclopentyl	
Н	n-C₅H _{II}	H	Cyclohexyl	
Н	n-C ₅ H ₁₁	Н	Phenyl	20
Н	n-C₅H ₁₁	Н	4-Chlorphenyl	
Н	n-C ₅ H ₁₁	. Н	4-Methoxyphenyl	-
H.	Phenyl	Н	Cyclopropyl	2

Verwendet man 2-N'-Methylureido-3-carboxy-4,5-tetramethylen-thiophen als Ausgangsverbindung läßt sich der Reaktionsverlauf bei Verfahren 2a zur Herstellung der Thienooxazinone wie folgt darstellen:

COOH

$$S$$

NHCONHCH₃
 N

NHCH₃

Als Ausgangsverbindungen der Formel II werden bevorzugt diejenigen eingesetzt, in denen die Reste R³, R⁴, R⁵, R⁶ die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen.

Die Verbindungen der Formel II sind neu. Ihre Herstellung wird weiter unten beschrieben.

Im einzelnen seien folgende Verbindungen der Formel II genannt:

R ⁵ ·	R ⁶			R ³	R ⁴		
		CH ₃			¥ .		50
Н	—сн			Н	— С H ₃	,	
		CH ₃	* •				55
•	/	CH₃		•	CH₃		
Н	—СН		•	Н	—CH CH₃		- ຫຼື
:		CH₃ CH₃			C113		
Н	—cн			Н	- H		65
		CH ₃					

	R ⁵		R ⁶	R³	R ⁴	
i			СН			
٠.				- H		
	H	**	-СН	п		·
tir į	0	-	CH ₃			. *
	. :			H	sec-Butyl	•
:5	Н .		-СН	11	Soc-Duty!	•
. •	٠		CH ₃		i.	٠.
				Н	—СН3	:
20	H ,	•	—CH₂—CH	n		
			CH ₃		СН	
25				H	—CH	
	H		-CH2-CH	. n		
			CH ₃	de de la companya de La companya de la co	CH3	·
30				· ·	—(H)	
	Н		-CH₂-CH	H		•
بر	** *.		CH₃ CH₃		*	
				н		
	H		-CH₂-CH	••		• • • • • • • • • • • • • • • • • • • •
40			CH ₃			
	·*		СН₃		-	
15	H		—CH₂—CH	Н	sec-Butyl	
		•	CH ₃		- ***	
		•	CH,			*
50	H	•	—CH₂—CH	Н	tertButyl	
			CH ₃	1		Tr.
55		•.*	CH ₃		To the Double	
55 	H		—СН	H	tertButyl CH ₃	
			CH ₃	н	—сн	•
0 0	— CH ₃		— Et	n .		
					`CH₃	
. •	— C H ₃		—Et	Н		
נֿט		$(CH_2)_3$		н	CH ₃	•
	•	(CH ₂) ₃	•	Н .	i-Propyl	

R ⁵		R ⁶			R ³	R ⁴ .	·	
	(CH ₂) ₃		`		Н	n-Butyl		. .
	(CH ₂) ₃	;			Н	Cyclohexyl		
	(CH ₂) ₃				Н	Phenyl		10
	(CH ₂) ₃				Н	4-Chlorphenyl	(*)	
	(CH ₂) ₄		· ,		Н	CH ₃		
	(CH ₂) ₄	•			H	i-Propyl		13
	(CH ₂) ₄			:	CH ₃	n-Butyl		
	(CH ₂) ₄				CH ₃	Cyclohexyl	•	
	(CH ₂) ₄		*		C2H5	CH ₃		
	(CH ₂) ₄				CH ₃	Phenyl	*	20
	(CH ₂) ₄				CH ₃	4-Chlorphenyl		
	(CH ₂) ₄	·		x - *	C ₂ H ₅	i-Propyl		
· .	(CH ₂) ₄		5		CH ₃	2-Methylphenyl	•	25
	(CH ₂) ₄		*	· .	CH ₃	2-Methoxyphenyl	•	
	(CH ₂) ₄				C₂H₅	n-Butyl		
. ; '	(CH ₂) ₅				CH ₃	CH ₃		30
	(CH ₂) ₅				CH ₃	i-Propyl	•	
-	(CH ₂) ₅		. .	•	C ₂ H ₅	CH ₃		
	(CH ₂) ₅			•	CH ₃	n-Butyl		35
			,	,	CH ₃	Cyclohexyl		
	(CH ₂) ₅ (CH ₂) ₅		•		C ₂ H ₅	i-Propyl		
			* *		СН	Phenyl		411
•	(CH ₂) ₅				C ₂ H ₅	n-Butyl		
	$(CH_2)_5$. •		-		CH ₃	, (c)	-50
					•	—CH		45
, H		—CH₃	-		Н			
•		, ,			-	CH ₃		
H	0	—СН3			Н	— CH;		50
Н		—СH ₃			Н	Н		
	The state of the s	—CH,	*		Н			
Н	*	—Сп;					1	. 35
	CH ₃	•	•					2
—(СН	H			Н	—СH ₃		
	СН							ώO
٠.	CH ₃							
		•			H		•	
. —	СH	Н		•	п			65
	CH ₃			·.				

Fortsetzung

R ^{\$}	R ⁶	R ³	R ⁴
CI	Н3		CH ₃
—сн	Н	Н	—сн
. CI	H ₁		СН₃
Н	— Et	Ĥ	— СН ₃
Н	—Et	Н	CH
-			CH ₃
			CH ₃
Н	—- Et	Н	—ćн
1,1		·	CH ₃
	*		
25	— Et	Н	
	— Et	Н	tertButyl
H	— Et	Н	— C H ₃
30 H	—СH,	Н	— C H ₃
—Et CH₃	н ~	н	CH ₃
~	H	н	î-Propyl
CH ₃	н	Н	i-Butyl
CH ₃	н	н	Cyclopentyl
CH.	Н	Н	Cyclohexyl
CH ₃	H ,	Н	Phenyl
CH ₃	Н	Н	4-Methoxyphenyl
	n-C ₅ H ₁₁	Н	CH ₃
45 H	n-C ₅ H ₁₁	Н	1-Propyl
H	n-C ₅ H ₁₁	Н	1-Butyl
H.	n-C ₅ H ₁₁	Н	Cyclopentyl
50 H	n-C ₅ H ₁₁	Н	Cyclohexyl
H	n-C ₅ H ₁₁	Н	Phenyl
H	n-C ₅ H ₁₁	H	4-Chlorphenyl
⁵⁵ H	n-C ₅ H ₁₁	Н	4-Methoxyphenyl
Н	Phenyl	Н	Cyclopropyl

Als Kondensationsmittel für die Umsetzung sind geeignet niedere aliphatische Carbonsäureanhydride z.B. Acatanhydrid, Propionsäureanhydrid, Buttersäureanhydrid; halogensubstituierte aliphatische Carbonsäureanhydride wie Trifluoressigsäureanhydrid; sowie ferner Dicyclohexylcarbondiimid.

Die Umsetzung kann im überschüssigen Kondensationsmittel selbst oder in Verdünnung mit einem geeigne-

ten Verdünnungsmittel durchgeführt werden.

Als Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester, wie Essigsäure-methylester und -ethylester, ferner Nitrile, wie z. B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril, Tetramethylensulfon und Hexamethylphosphorsäuretriamid. Darüber hinaus niedere aliphatische Carbonsäuren wie Essigsäure, Propionsäure, Buttersäure, Trifluoressigsäure.

Katalysatoren für die Cyclisierung sind nicht unbedingt erforderlich. In vielen Fällen wird jedoch durch Zugabe einer starken Säure ein Beschleunigung der Reaktion erreicht. Geeignete Säuren sind z. B. HCl, H2SO4,

Trifluoressigsäure, Toluolsulfonsäure.

Die Cyclisierung kann in einem Temperaturbereich von -20 bis +150° durchgeführt werden, bevorzugt im Temperaturbereich von 0-100°.

Normalerweise arbeitet man unter Normaldruck, jedoch kann es zweckmäßig sein, z. B. beim Einsatz niedrig

siedender Lösungsmittel unter Druck zu arbeiten.

Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man mindestens 1 Mol des Kondensationsmittels pro Mol Ureidothiophencarbonsäure ein. Bevorzugt beim Arbeiten in Verdünnungsmitteln ist ein molares Verhältnis von 1-3:1, insbesondere 1-1.5:1. Ist das Kondensationsmittel zugleich Reaktionsmedium, so sind 3-30 Mol, insbesondere 3-5 Mol Kondensationsmittel pro Mol Ureidothiophencarbonsaure anzuwenden.

Die Reaktionsprodukte werden isoliert, indem man aus den entsprechenden Lösungsmitteln direkt ausfallen-

de Produkte filtriert oder indem man das Lösungsmittel abdestilliert.

Verwendet man bei Verfahren 2b) 3-Amino-4-carboxy-5-methylthiophen und Phenylisocyaniddichlorid als Ausgangsverbindungen läßt sich der Reaktionsverlauf wie folgt darstellen:

Die Aminothiophene der Formel III sind bekannt oder lassen sich analog zu bekannten Verfahren darstellen (K. Gewald et. al Chem. Ber. 98 (1965) S. 3571; Chem. Ber. 99 (1966) S. 94; EP-OS 4 931).

Bevorzugt sind Aminothiophene der Formel III, in welcher die Reste R5 und R6 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen.

Im einzelnen seien genannt:

Verbindungen der Formel IV sind bekannt oder lassen sich analog zu bekannten Verfahren herstellen. Bevorzugt sind Verbindungen der Formel IV, in welcher R4 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzt.

13

Im einzelnen seien genannt:

Methylisocyaniddichlorid, Ethylisocyaniddichlorid, Propylisocyaniddichlorid, Isopropylisocyaniddichlorid, n-Butylisocyaniddichlorid, Isobutylisocyaniddichlorid, tert.-Butylisocyaniddichlorid, Cyclohexylisocyaniddichlorid, Phenylisocyaniddichlorid.

Die erfindungsgemäße Umsetzung zwischen den Aminothiophenen der Formel III und den Verbindungen der Formel IV führt man vorzugsweise in Gegenwart eines Verdünnungsmittels durch. Als solche eignen sich alle inerten organischen Lösungsmittel. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester, wie Essigsäuremethylester und -ethylester, ferner Nitrile, wie z. B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril, Tetramethylensulfon und Hexymethylphosphorsäuretriamid.

Die Umsetzung erfolgt in Gegenwart von Säureakzeptoren.

Als Säureakzeptoren können alle üblichen Säurebindemittel verwendet werden. Hierzu gehören vorzugsweise Alkalicarbonate, -hydroxide oder -alkoholate, wie Natrium- oder Kaliumcarbonat, Natrium- und Kaliumhydroxid, Natrium- und Kaliummethylat bzw. -ethylat, serner aliphatische, aromatische oder heterocyclische Amine, beispielsweise Trimethylamin, Triethylamin, Tributylamin, Dimethylanilin, Dimethylbenzylamin, Pyridin

und 4-Dimethylaminopyridin.

40

55

Zur Beschleunigung des Reaktionsverlaufs können Katalysatoren zugesetzt werden. Als solche können Verbindungen verwendet werden, welche gewöhnlich bei Reaktionen in Zweiphasensystemen aus Wasser und mit Wasser nicht mischbaren organischen Lösungsmitteln zum Phasentransfer von Reaktanden dienen (Phasentransferkatalysatoren). Als solche sind vor allem Tetraalkyl- und Trialkylaralkyl-ammoniumsalze mit vorzugsweise 1 bis 10, insbesondere 1 bis 8 Kohlenstoffen je Alkylgruppe, vorzugsweise Phenyl als Arylbestandteil der Aralkylgruppe und vorzugsweise 1 bis 4, insbesondere 1 oder 2 Kohlenstoffatomen im Alkylteil der Aralkylgruppen bevorzugt. Hierbei kommen vor allem die Halogenide, wie Chloride, Bromide und Iodide, vorzugsweise die Chloride und Bromide in Frage. Beispielhaft seien Tetrabutylammoniumbromid, Benzyl-triethylammoniumchlorid und Methyltrioctylammoniumchlorid genannt. Außerdem 4-Dimethylaminopyridin sowie 4-Pyrrolidino-pyri-

Die Reaktionstemperaturen können in einem größeren Temperaturbereich variiert werden. Im allgemeinen

arbeitet man zwischen 0°C und 120°C, vorzugsweise zwischen 20°C und 70°C.

Normalerweise arbeitet man unter Normaldruck, jedoch kann es zweckmäßig sein, z. B. beim Einsatz niedrig

siedender Isocyaniddichloride, in geschlossenen Gefäßen unter Druck zu arbeiten.

Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man mindestens 1 Mol der Verbindung der Formel IV pro Mol Aminothiophen ein. Bevorzugt ist ein molares Verhältnis von Verbindungen der Formel IV zu Aminothiophen wie 1-3:1, insbesondere 1-1,5:1. Die Säureakzeptoren werden mindestens in Mengen von 2 Mol Säureakzeptoren pro Mol Isocyaniddichlorid zugesetzt. Bevorzugt ist ein molares Verhältnis von Säureakzeptoren zu Isocyaniddichlorid wie 2-6:1, insbesondere 2-3:1.

Die Katalysatoren werden vorzugsweise in Mengen von 0,01 bis 0,1 Mol pro Mol Aminophen angewandt. Die Reaktionsprodukte werden isoliert, indem man aus den entsprechenden Lösungsmitteln direkt ausfallen-

de Produkte filtriert oder indem man das Lösungsmittel abdestilliert.

Verwendet man bei Verfahren 2c 2-N'-Isopropylureido-3-tertiär-butoxycarbonyl-4,5-dimethyl-thiophen und ein Gemisch aus Trifluoressigsäure und Trifluoressigsäureanhydrid so läßt sich der Reaktionsverlauf wie folgt darstellen:

Als Ausgangsverbindungen der Formel V und Va werden bevorzugt diejenigen eingesetzt, in denen die Reste R3, R4, R5, R6 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen.

R7 steht bevorzugt für t-Butyl oder Benzyl.

Im einzelnen seinen folgende Verbindungen der Formel V genannt:

$$\begin{array}{c|c}
COOt\text{-Butyl} \\
R^5 & COOt\text{-Butyl} \\
R^6 & S & N-C-NR^3R^4 \\
& | & | & | \\
& H & O
\end{array}$$

R ⁵	R ⁶		R ³	R ⁴		
	CH₃			-90-		. 15
Н	—cн		Н	— CH ₃		
	СН₃					
	СН			CH₃		20
Н	— с́н		Н .	—ćн		-
	CH ₃			СН		25
	CH,	* 8.				٠.
. Н	— с́н	1.	Н	— H	,	
	СН				4	361
	CH ₃	(1)				
, H	—ćн	;	Н			35
	`СН ₃				-	
	CH ₃			Dutul		
Н	—СН		H	sec-Butyl	*	40
• • • • • • • • • • • • • • • • • • • •	CH ₃	CU	•	*		
		CH₃	H	— CH ₃		45
H	—CH₂—CH			C1.,		
		CH₃ CH₃		СН,		
••	—CH₂—CH	,0,	Н	—сн		- 50
Н		CH ₃		СН₃		
	•	CH ₃	•		*	55
Н	—Сн₂—Сн	· . · · · · · · · · · · · · · · · · · ·	Н	-		
••		СН3			· ·	6 0
		CH ₃				O.
Н	—сн₂—сн	•	Н			
	<u> </u>	СН₃				b:

•	R ⁵	R ⁶	R ³	R ⁴
5		CH ₃		*
	Н	—CH₂—CH	Н	sec-Butyl
ļu .		СН	*	
,,,		CH₃		_
	H	—CH₂—CH	Н	tertButyl
5		СН₃		
		CH ₃		
	·. ·		**	tertButyl
o ·	Н	—СН	Н	CH ₃
		CH ₃		<u> </u>
	—CH ₃	— Et	Н	—СН
23	·			CH ₃
	—СH ₃	—Et	\mathbf{H}^{-1}	
	(CH ₂) ₃		н	CH,
ţı.	(CH ₂) ₃		Н	i-Propyl
	(CH ₂) ₃		Н	n-Butyl
	(CH ₂) ₃	*	H	Cyclohexyl
5.5	(CH ₂) ₃		Н	Phenyl
	(CH ₂) ₃		Н	4-Chlorphenyl
	(CH ₂) ₄		Н	CH ₃
40	(CH ₂) ₄		Н	i-Propyl
٠,	(CH ₂) ₄		CH ₃	n-Butyl
	(CH ₂) ₄		CH ₃	Cyclohexyl
45	(CH ₂) ₄		C₂H₅	CH ₃
	(CH ₂) ₄		CH ₃	Phenyl
•	(CH ₂) ₄		CH ₃	4-Chlorphenyl
50	(CH ₂) ₄		C₂H₅	i-Propyl
	(CH ₂) ₄		CH ₃	2-Methylphenyl 2-Methoxyphenyl
	(CH ₂)₄		CH ₃	n-Butyl
55	(CH ₂) ₄		C₂H₅ CH₃	CH ₃
	(CH ₂) ₅		CH ₃	i-Propyl
	(CH ₂) ₅ (CH ₂) ₅		C₁H₃	CH ₃
60 _.	(CH ₂₎₅		CH ₃	n-Butyl
	(CH ₂) ₅	4	CH₃	Cyclohexyl
	(CH ₂) ₅		C₂H₅	i-Propyl
กวิ	(0.112)3	,	-	

R ⁵	R ⁶		R ³	R ⁴	
(CH ₂) ₅	*		СН	Phenyl	3
(CH ₂) ₅	•		C ₂ H ₅	n-Butyl	
(CH ₂),	. • •		• н	n-Butyl	
(CH ₂) ₄			Н	Cyclohexyl	10
(CH ₂) ₄		-	H	Phenyl	
(CH ₂),			Н	4-Methoxyphenyl	
(CH ₂) ₅	÷		н	СН₃	15
(CH ₂) ₅			Н	i-Propyl	
(CH ₂) ₅		•	Н	Cyclohexyl	
(CH ₂) ₅	-		Н	Phenyl	20
(CH ₂) ₅			H	4-Chlorphenyl	
	,			CH₃	
Н	—CH₃	·	Н	—сн	. 25
•			`	СН	~
Н	—CH₃		Н	—СН3	, 30
н	—СН3		Н	\overline{H}	
н	—CH ₃		н		35
CH ₃		· · · · · · · · · · · · · · · · · · ·			
—ćн	Н	The state of the s	Н	— CH ₃	40
СН			. •		, ,
CH ₃					
—cн	Н	. •	H		45
СН					÷
CH ₃				СН₃	
—сн	H		Н	—ćн	30
CH ₃	•			CH ₃	·
H	—Et		H	—CH ₃	. 55
	**			CH ₃	
Н	—Et		Н	—сн	
				CH ₃	. 60
				СН	
Н	— Et	·	Н	—ćн	
				CH ₃	6 5
	—Et	•	Н		
H	— L t				

R ⁵	R ⁶	R ³	R ⁴
н.	—Et	Н	tertButyl
Н	—Et	. Н	— CH ₃
— Et	—CH₃	H	—CH ₃
CH ₃	Н	Н	CH ₃
CH ₃	H	Н	i-Propyl
	Н	H	i-Butyl
CH ₃	Н	Н	Cyclopentyl
CH ₃	H	Н	Cyclohexyl
CH ₃	•	Н	Phenyl
CH ₃	H	Н	4-Methoxyphenyl
CH ₃	Н	н	CH ₃
H	n-C ₅ H ₁₁	H	1-Propyl
. H	n-C ₃ H ₁₁	н	1-Butyl
Н	n-C ₅ H ₁₁	Н	Cyclopentyl
H	n-C ₅ H _{II}		Cyclohexyl
H	n-C ₅ H ₁₁	H	Phenyl
Н	n-C ₅ H ₁₁	H	4-Chlorphenyl
Н	n-C ₅ H ₁₁	H 	
H	n-C ₅ H ₁₁	Н	4-Methoxyphenyl
H	Phenyl	H	Cyclopropyl

Die Verbindungen der Formel V und Va sind z. T. bekannt und z. T. Gegenstand einer älteren nicht vorveröffentlichten deutschen Patentanmeldung der Anmelderin DE-P 35 17 706.3. Sie werden z. B. erhalten, indem man in an sich bekannter Weise entsprechend substituierte Thienylamine mit Isocyanaten oder mit Phosgen und Aminen umsetzt oder indem man entsprechend substituierte Thienylisocyanate mit Aminen umsetzt. Die Herstellung der Verbindungen der Formel V und Va kann auch analog zu den in DE-OS 21 22 636 und 26 27 935 beschriebenen Verfahren erfolgen.

Die Umsetzung erfolgt in Gegenwart saurer Kondensationsmittel in Kombination mit einem wasserentziehenden Mittel. Saure Kondensationsmittel sind z. B. konzentrierte anorganische Säuren wie z. B. Salzsäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, starke organische Säuren wie z. B. Trifluoressigsäure.

Wasserentziehende Mittel sind z. B. Trifluoracetanhydrid, Acetanhydrid, Carbodiimide wie z. B. Cyclohexyl-

carbodiimid.

Die Umsetzung erfolgt in Gegenwart von Verdünnungsmitteln. Als solche eignen sich alle inerten organischen Lösungsmittel. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Este, wie Essigsäure-methylester und -ethylester, ferner Nitrile, wie z. B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril, darüber hinaus Tetramethylensulfon und Hexamethylphosphorsäuretriamid.

Die Umsetzung erfolgt bei Temperaturen von -70° C bis +100° C, bevorzugt bei -10° C bis +60° C.

Die Umsetzung erfolgt bei Normaldruck.

Im allgemeinen setzt man pro Mol Verbindung der Fomel V oder Va 1 Mol Kondensationsmittel ein. Bevorzugt sind Trifluoracetanhydrid, Acetanhydrid.

Bevorzugt wird die Reaktion in einem Gemisch aus Trifluoressigsäure und Trifluoressigsäureanhydrid im Verhältnis 1:1 durchgeführt.

Die Aufarbeitung nach beendeter Reaktion erfolgt durch Eingießen in Wasser und Abfiltrieren, evtl. nach

vorheriger Neutralisation.

Verwendet man bei Verfahren 4a 5-Brom-4-tert.-butoxycarbonyl-2-(N'-isobutyl-ureido)-thiophen und Trifluoressigsäure als Ausgangssubstanz, läßt sich der Reaktionsverlauf (zur Herstellung der Verbindungen der Formeln II und IIa) wie folgt darstellen:

$$\begin{array}{c|c}
O \\
C - O - t.Butyl \\
+ F_3CCOOH \\
NH - C - NH - CH_2 - CH(CH_3)_2 \\
O \\
\hline
COOH \\
Br & NH - C - NH - CH_2 - CH(CH_3)_2 \\
O \\
\end{array}$$

Die tert-Butoxycarbonyl-ureidothiophene sind bekannt oder lassen sich analog zu bekannten Verfahren darstellen (vgl. Le A 23 725, 24 004).

Bevorzugt werden als Ausgangsverbindungen Ureidothiophene der Formeln V oder Va eingesetzt, in welchen die Reste R3, R4, R5, R6 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen und der Rest R7 für tert.-Butyl oder Benzyl steht.

.25

Im einzelnen seien die weiter oben genannten Verbindungen der Formel V genannt.

Die Abspaltung der Esterreste gelingt vor allem mit starken Säuren wie z. B. Salzsäure, Bromwasserstoff, Schwefelsäure, Toluolsulfonsäure, Methansulfonsäure, Trifluoressigsäure und Mischungen derselben mit niederen aliphatischen Carbonsäuren wie z. B. Ameisensäure, Essigsäure, Propionsäure.

Die Umsetzung kann in der verwendeten Säure als Reaktionsmittel oder in Gegenwart von Verdünnungsmit-

teln durchgeführt werden.

Als Verdünnungsmittel kommen alle inerten organsichen Lösungsittel in Frage. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester, wie Essigsäure-methylester und -ethylester.

Die Reaktionstemperatur wird zwischen etwa 0°C und 130°C, vorzugsweise zwischen etwa 20°C und 60°C gehalten. Das Verfahren wird vorzugsweise bei Normaldruck durchgeführt, jedoch kann es zweckmäßig sein,

z. B. bei Verwendung flüchtiger Säuren, unter Druck zu arbeiten.

Die Produkte werden isoliert, indem man aus den entsprechenden Lösungsmitteln ausgefallene Produkte

abfiltriert oder das Lösungsmittel abdestilliert.

Verwendet man bei Verfahren 4b 5-Methyl-thieno[2,3-d]-oxazin-dion und Isobutylamin, so läßt sich die Reaktion durch folgendes Schema darstellen:

Thienooxazinodione der Formel VI sind bekannt oder lassen sich nach bekannten Verfahren darstellen (vgl G. M. Coppola et al, J. Heterocycl. Chem. 19, 717 (1982), BE 8 52 328)).

Bevorzugt sind Thienooxazindione, in welchen die Reste R5 und R6 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen und R8 für Wasserstoff steht.

Im einzelnen seien folgende Verbindungen der Formel VI genannt:

R ⁵	R ⁶	
Н		— CH(CH ₃) ₂
Н		— C H ₃
Н	**	$-CH_2-CH(CH_3)_2$
CH₃		—СH ₃
—CH ₃	**	— C ₂ H ₅
—CH ₃		Н
Н	₩. •	
Н		— C₂H₅
	—(CH ₂) ₃ —	*
	—(CH ₂) ₄ —	, , , , , , , , , , , , , , , , , , ,
	—(CH ₂) ₅ —	

Verbindungen der Formel VII sind bekannt oder lassen sich nach bekannten Verfahren herstellen. Bevorzugt sind Verbindungen der Formel VII in welchen R3 und R4 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen.

Beispielhaft seien genannt:

Methylamin, Dimethylamin, Ethylamin, Diethylamin, n-Propylamin, Di-n-propylamin, Isopropylamin, Diisopropylamin, n-Butylamin, i-Butylamin, se.-Butylamin, t.-Butylamin, Cyclopentylamin, Cyclohexylamin, Anilin, 2-Chloranilin, 3-Chloranilin, 4-Chloranilin, 2-Nitroanilin, 3-Nitroanilin, 4-Nitroanilin, 2-Methylanilin, 3-Methylanilin, 4-Methylanilin, 2-Methoxyanilin, 3-Methoxyanilin, 4-Methoxyanilin, 2-Trifluormethylanilin, 3-Trifluormethylanilin, 4-Trifluormethylanilin.

Zur Herstellung der Thienylharnstoffe der Formel II und IIa werden die Thienoxazindione der Formel VI mindestens äquimolaren Mengen des Amins der Formel VII umgesetzt. Die Umsetzung kann mit oder ohne Verdünnungsmittel erfolgen. Beim Arbeiten ohne Verdünnungsmittel wird das Amin bevorzugt mit 3-30 Mol pro Mol Thienooxazindion, besonders bevorzugt 3-10 Mol eingesetzt. Wird in Gegenwart von Verdünnungsmittel gearbeitet, werden bevorzugt 1-3 Mol, besonders bevorzugt 1-2 Mol Amin pro Mol Thienooxazindion

angewendet.

10

20.

25

30

Als Verdünnungsmittel seien genannt:

Alle inerten organischen Lösungsmittel. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester, wie Essigsäure-methylester und -ethylester, ferner Nitrile, wie z. B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril, darüber hinaus Amide, wie z. B. Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon, sowie Dimethylsulfoxid, Tetramethylensulfon und Hexamethylphosphorsäuretri-

Zur Beschleunigung des Reaktionsverlaufs können Katalysatoren zugesetzt werden. Als solche sind geeignet: z. B. tertiäre Amine wie Pyridin, 4-Dimethylaminopyridin, Triethylamin, Triethylendiamin, Trimethylen-tetrahydropyrimidin; ferner Zinn-II und Zinn-IV-Verbindungen wie Zinn-II-octoat oder Zinn-IV-chlorid. - Die als Reaktionsbeschleuniger genannten tertiären Amine, z. B. Pyridin, können auch als Lösungsmittel verwendet

Die Reaktionstemperaturen können in einem größeren Temperaturbereich variiert werden. Im allgemeinen arbeitet man zwischen 0°C und 120°C, vorzugsweise zwischen 20°C und 70°C.

Normalerweise arbeitet man unter Normaldruck, jedoch kann es zweckmäßig sein, z. B. beim Einsatz niedrig siedender Amine, in geschlossenen Gefäßen unter Druck zu arbeiten.

Die Katalysatoren werden vorzugsweise in Mengen von 0,01 bis 0,1 Mol pro Mol der Reaktionskomponenten angewandt, jedoch sind auch größere Mengen, z. B. der tertiären Amine, anwendbar.

Die Reaktionsprodukte werden isoliert, indem man aus den entsprechenden Lösungsmitteln direkt ausfallende Produkte filtriert oder indem man das Lösungsmittel abdestilliert.

Die Wirkstoffe werden als Leistungsförderer bei Tieren zur Förderung und Beschleunigung des Wachstums, der Milch- und Wollproduktion, sowie zur Verbesserung der Futterverwertung, der Fleischqualität und zur Verschiebung des Fleisch-Fett-Verhältnisses zugunsten von Fleisch eingesetzt. Die Wirkstoffe werden bei Nutz-,

Zucht-, Zier- und Hobbytieren verwendet. Zu den Nutz- und Zuchttieren zählen Säugetiere wie z.B. Rinder, Schweine, Pferde, Schafe, Ziegen, Kaninchen, Hasen, Damwild, Pelztiere wie Nerze, Chinchilla, Geflügel wie z. B. Hühner, Puten, Gänse, Enten, Tauben, Fische wie z. B. Karpfen, Forellen, Lachse, Aale, Schleien, Hechte, Reptilien wie z. B. Schlangen und Krokodile.

Zu den Zier- und Hobbytieren zählen Säugetiere wie Hunde und Katzen, Vögel wie Papageien, Kanarienvö-

gel, Fische wie Zier- und Aquarienfische z. B. Goldfische. Die Wirkstoffe werden unabhängig vom Geschlecht der Tiere während allen Wachstums- und Leistungsphasen der Tiere eingesetzt. Bevorzugt werden Wirkstoffe während der intensiven Wachstums- und Leistungsphase eingesetzt. Die intensive Wachsums- und Leistungsphase dauert je nach Tierart von einem Monat bis zu 10

Die Menge der Wirkstoffe, die den Tieren zur Erreichung des gewünschten Effektes verabreicht wird, kann Tahren. wegen der günstigen Eigenschaften der Wirkstoffe weitgehend variiert werden. Sie liegt vorzugsweise bei etwa 0,001 bis 50 mg/kg insbesondere 0,01 bis 5 mg/kg Körpergewicht pro Tag. Die passende Menge des Wirkstoffs sowie die passende Dauer der Verabreichung hängen insbesondere von der Art, dem Alter, dem Geschlecht, dem Gesundheitszustand und der Art der Haltung und Fütterung der Tiere ab und sind durch jeden Fachmann leicht

Die Wirkstoffe werden den Tieren nach den üblichen Methoden verabreicht, die Art der Verarbreichung

hängt insbesondere von der Art, dem Verhalten und dem Gesundheitszustand der Tiere ab. Die Wirkstoff können einmalig verabreicht werden. Die Wirkstoffe können aber auch während der ganzen oder während eines Teils der Wachstumsphase temporär oder kontinuierlich verabreicht werden. Bei kontinuierlicher Verabreichung kann die Anwendung ein- oder mehrmals täglich in regelmäßigen oder unregelmäßigen

Die Verabreichung erfolgt oral oder parenteral in dafür geeigneten Formulierungen oder in reiner Form. Abständen erfolgen. Orale Formulierungen sind Pulver, Tabletten, Granulate, Doenche, Boli sowie Futtermittel, Prämixe für Futter-

mittel, Formulierungen zur Verabreichung über Trinkwasser. Die oralen Formulierungen enthalten den Wirkstoff in Konzentrationen von 0,01 ppm - 100%, bevorzugt

Parenterale Formulierungen sind Injektionen in Form von Lösungen, Emulsionen und Suspensionen, sowie von 0,01 ppm — 1%.

Die Wirkstoffe können in den Formulierungen allein oder in Mischung mit anderen Wirkstoffen, Mineralsal-

zen, Spurenelementen, Vitaminen, Eiweißstoffen, Farbstoffen, Fetten oder Geschmacksstoffen vorliegen. Die Konzentration der Wirkstoffe im Futter beträgt normalerweise etwa 0,01-500 ppm, bevorzugt

Die Wirkstoffe können als solche oder in Form von Prämixen oder Futterkonzentraten dem Futter zugesetzt

Beispiel für die Zusammensetzung eines Kükenaufzuchtfutters, das erfindungsgemäßen Wirkstoff enthält: 200 g Weizen, 340 g Mais, 361 g Sojaschrot, 60 g Rindertalg, 15 g Dicalciumphosphat, 10 g Calciumcarbonat, 4 g jodiertes Kochsalz, 7,5 g Vitamin-Mineral-Mischung und 2,5 g Wirkstoff-Prämix ergeben nach sorgfältigem Mischen 1 kg Futter.

In einem kg Futtermischung sind enthalten: 600 I.E. Vitamin A, 100 I.E. Vitamin, D₃, 10 mg Vitamin E, 1 mg Vitamin K₃, 3 mg Riboflavin, 2 mg Pyridoxin, 20 mcg Vitamin B₁₂, 5 mg Calciumpantothenat, 30 mg Nikotinsäure, 200 mg Cholinchlorid, 200 mg Mn $SO_2 \times H_2O$, 140 mg Zn $SO_4 \times 7$ H₂O, 100 mg Fe $SO_4 \times 7$ H₂O und 20 mg Cu $SO_4 \times 5$ H₂O.

2,5 g Wirkstoff-Prämix enthalten z. B. 10 mg Wirkstoff, 1 g DL-Methionin, Rest Sojabohnenmehl. Beispiel für die Zusammensetzung eines Schweineaufzuchtfutters, das erfindungsgemäßen Wirkstoff enthält: 630 g Futtergetreideschrot (zusammengesetzt aus 200 g Mais, 150 g Gerste-, 150 g Hafer- und 130 g Weizenschrot), 80 g Fischmehl, 60 g Sojaschrot, 60 g Tapiokamehl, 38 g Bierhefe, 50 g Vitamin-Mineral-Mischung für Schweine, 30 g Leinkuchenmehl, 30 g Maiskleberfutter, 10 g Sojaöl, 10 g Zuckerrohrmelasse und 2 g Wirkstoff-Prämix (Zusammensetzung z. B. wie beim Kükenfutter) ergeben nach sorgfältigem Mischen 1 kg Futter.

Die angegebenen Futtergemische sind zur Aufzucht und Mast von vorzugsweise Küken bzw. Schweinen abgestimmt, sie können jedoch in gleicher oder ähnlicher Zusammensetzung auch zur Fütterung anderer Tiere verwendet werden.

Beispiel A

Weibliche Laborraten 90-110 g schwer vom Typ SPF Wistar (Züchtung Hagemann) werden ad lib mit Standard Rattenfutter, das mit der gewünschten Menge Wirkstoff versetzt ist, gefüttert. Jeder Versuchsansatz wird mit Futter der identischen Charge durchgeführt, so daß Unterschiede in der Zusammensetzung des Futters die Vergleichbarkeit der Ergebnisse nicht beeinträchtig n können.

Jeweils 12 Ratten bilden eine Versuchsgruppe und werden mit Futter, das mit der gewünschten Menge Wirkstoff versetzt ist gefüttert. Eine Kontrollgruppe erhält Futter ohne Wirkstoff. Das durchschnittliche Körpergewicht sowie die Streuung in den Körpergewichten der Ratten ist in jeder Versuchsgruppe gleich, so daß eine Vergleichbarkeit der Versuchsgruppen untereinander gewährleistet ist.

Während des 13-tägigen Versuchs werden Gewichtszunahmen und Futterverbrauch bestimmt. Es werden die aus der Tabelle ersichtlichen Ergebnisse erhalten:

Tabelle: Ratten-Fütterungsversuch

Wirkstof	f Dosis 25 ppn	n Gewichtszunahme
Kontrolle, ohne Wirkstoff		100
16		104
19		104
21	•	102
4 .		119
5		113

Herstellung der Verbindungen der Formel I gemäß Verfahren 2c:

Beispiel 1(c)

In eine Mischung von 7,34 g (35 mmol) Trifluoracetanhydrid und 32 ml Trifluoressigsäure wurden 11 g (32 mmol) 4,5-Dimethyl-3-tert.-butoxycarbonyl-2-N'-phenylureidothiophen unter Rühren bei Raumtemperatur eingetragen und anschließend noch eine Stunde nachgerührt. Zur Aufarbeitung wurde unter gutem Rühren in 500 ml gesättigte NaHCO₃-Lösung eingetropft und Niederschlag abgesaugt.

Zur Reinigung wird aus Toluol umkristallisiert. Ausbeute: 5,2 g (60% der Theorie) Schmelzpunkt 227°C (wird sofort wieder fest).

Analog werden die folgenden Beispiele erhalten:

R⁵ O NHR⁴

	1.11			·
BspNr.	R ⁵	R ⁶	R ⁴	Fp
2	CH ₃	CH ₃	CH ₃	198 °C (Zers.)
3	CH ₃	CH ₃	i-C ₃ H ₇	200 °C (Zers.
4 :	CH ₃	CH ₃	i-C₄H ₉	172
,				
Ren -Nr	R ⁵	R ⁶	R ⁴	Fp (°C)

BspNr.	R ⁵	R ⁶	R ⁴	Fp (°C)
5	Н	H	-CH ₃	196 (Zers.)
6	H	Н	i-Propyl	172
7.	Н	Н	i-Butyl	162
8	Н	н		185
9	H	H	t-Butyl	168
10	Н	CH ₃	-CH ₃	210 (Zers.)
11	H	CH ₃	i-Propyl	190
12 (c)	Н	CH ₃	i-Butyl	172

55

60

10

15

20

BspNr.	R ⁴	R ⁵ – R ⁶	Fp (°C)
13	CH ₃	(CH ₂) ₄	195
14.	i-C ₃ H ₇	(CH ₂) ₃	206
15	t-C ₄ H ₉	(CH ₂) ₃	167
16	2-CH ₃ O-C ₆ H ₄	(CH ₂) ₃	206
17	t-C ₄ H ₉	(CH ₂) ₄	209
18	2-CH ₃ O-C ₆ H ₄	(CH ₂) ₄	182-3
<u> وا</u>	i-C ₃ H ₇	(CH ₂) ₅	226
20	t-C ₄ H ₉	(CH ₂) ₅	191
21	i-C ₃ H ₇	(CH ₂) ₄	203
22	n-C ₄ H ₉	$(CH_2)_3$	185

Herstellung der Verbindungen der Formel I gemäß Verfahren 2b:

Beispiel 1(b)

1,15 g (6,7 mmol) 4,5-Dimethyl-2-aminothiophen-3-carbonsaure wurden in 20 ml trockenem Chloroform gelöst und 1,7 g (16,9 mml) Triethylamin sowie 1,27 g (7,3 mmol) Phenylisocyaniddichlorid zugegeben. Anschlie-Bend wurde 8 Stunden unter Rückfluß gekocht. Zur Aufarbeitung wurden 100 ml Wasser zugegeben, die organische Phase abgetrennt und noch dreimal mit je 100 ml 5%iger NaH2PO4-Lösung gewaschen. Das Lösungsmittel wurde im Vakuum abdestilliert und der Rückstand an Kieselgel mit Dichlormethan als Laufmittel chromatographiert.

Ausbeute: 190 mg (10,4° der Theorie)

Schmelzpunkt: 226-7°C (wird sofort wieder fest).

Herstellung der Verbindungen der Formel gemäß Verfahren 2a:

Beispiel 12(a)

Eine Suspension von 588 mg (2,3 mmol) 3-Carboxy-5-methyl-2-(N'-isobutylureido)-thiophen und 0,26 g (2,5 mmol) Acetanhydrid in 5 ml trockenem Toluol wurde 8 Stunden unter Rühren auf 60°C erwärmt. Zur Aufarbeitung wurden 50 ml CHCl₃ zugegeben, zweimal mit NaHCO₃-Lösung gewaschen und bis zur beginnenden Kristallisation eingedampft. Es wurden 50 ml Petrolether zugegeben, 15 Minuten stehen gelassen und abgesaugt.

Ausbeute: 300 mg (54,8% der Theorie)

Schmelzpunkt: 173°C.

Herstellung der Ausgangsprodukte

Beispiel a)

Herstellung der Verbindungen der Formel II gemäß Verfahren 4a

800 mg (256 mmol) 3-t-Butoxycarbonyl-2-(N'-isobutyl-ureido)-5-methyl-thiophen wurden zu einer Mischung aus 2 ml Trifluoressigsäure und 5 ml Dichlormethan gegeben und über Nacht gerührt. Danach wurde im Vakuum eingedampft, zuletzt an der Ölpumpe.

Ausbeute: 643 mg (98% der Theorie) Schmelzpunkt: 188-9°C (Zersetzung).

Beispiel b)

Herstellung der Verbindungen der Formel II gemäß Verfahren 4b

5 g (27,3 mmol) 5-Methylthieno[2,3-d]-3-H-oxazin-2,7-dion und 3,5 g (59 mmol) Isopropylamin werden in 30 ml trockenem DMF gelöst und 2 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wird auf 200 ml Wasser gegossen, mit verdünnter HCl angesäuert und mit CHCl3 extrahiert. Das Lösungsmittel wird im Vakuum abdestilliert und der Rückstand aus Toluol umkristallisiert.

Ausbeute: 1,39 g (21% der Theorie) Schmelzpunkt: 181°C (Zersetzung)

HErstellung der Verbindungen der Formel V

65

Beispiel c1)

4.5-Dimethyl-4-tert.-butoxycarbonyl-2-N-isobutyl-ureido-thiophen

Zu 16 g (70,5 mmol) 4,5-Dimethyl-3-tert.-butoxy-carbonyl-7-aminothiophen in 200 ml trockenem Pyridin wurden 14,3 g (0,144 mol) Isobutylisocyanat zugegeben und 18 Stunden bei 50°C gerührt. Nach Abkühlung wurde in 12,5 N wäßrige Salzsäure eingerührt und der fest anfallende Harnstoff abgesaugt.

Die Reinigung erfolgte durch Umkristallisieren aus Ethanol.

Ausbeute: 6,9 g (30% der Theorie)

Schmelzpunkt: 173°C

10

15

30

35

40

45

55

60

65

Beispiel c2)

4,5-Dimethyl-3-tert.-butoxycarbonyl-2-N%-Phenylureido-thiophen

Zu einer Lösung von 10 g (44 mmol) 4,5-Dimethyl-3-tert.-butoxycarbonyl-2-aminothiophen und 9,8 g (97 mmol) Triethylamin in 200 ml trockenem Chloroform wurden bei —10°C 24 ml (46 mmol) einer 1,93 M Phosgenlösung in Toluol zugetropft. Nach beendeter Zugabe wurde noch 15 Minuten ohne Kühlung gerührt, dann 4,5 g (48 mmol) Anilin zugetropft und noch eine Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wurde auf 1 l Wasser gegossen, die organische Phase abgetrennt und zweimal mit je 200 ml 5%iger wäßriger NaH₂PO₄-Lösung gewaschen. Nach Trocknung mit Na₂SO₄ wurde das Lösungsmittel im Vakuum abdestilliert und der Rückstand aus Toluol umkristallisiert.

Ausbeute: 11,8 g (77% der Theorie)

Schmelzpunkt: 218°C

Analog einem dieser Verfahren wurden die folgenden Verbindungen erhalten:

$$R^2$$
 $CO_2C(CH_3)_3$
 R^1 S $NH-C-NHR$

BspNr.	R ^I	R ²	R ³	Fp
c3	CH ₃	CH ₃	CH ₃	149
c4	CH ₃	CH ₃	i-C ₃ H ₇	186
c 5	Ĥ	Н	CH ₃	160
с6	Н	Н	i-C ₃ H ₇	207
c7	(CH ₂) ₃		i-C₃H ₇	182
c8	(CH ₂) ₄		CH ₃	150
с9	(CH ₂) ₄		i-C ₃ H ₇	182
c10	(CH ₂) ₅	240	i-C ₃ H ₇	193