STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 6: Polynomials and Factors

Polynomials

- what shall we do if lack of fit exists?
- we could do nothing and just sit there and cry
- or we could improve our model
- Polynomial Regression: some terms are higher power of some predictors
- simplest example: quadratic regression

$$E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2$$

a natural question: use straight line or quadratic?

Polynomials - con't

- answer by F-test from multiple regression ANOVA
- in general:

$$E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_d x^d$$

- important question: how to choose d
- e.g. find the most desirable value of x that maximizes or minimizes E(Y|X) in quadratic regression
- for $E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2$, solving

$$\frac{dE(Y|X=x)}{dx} = 0 \quad \Rightarrow \quad x_M = \frac{-\beta_1}{2\beta_2}$$

Polynomials with Several Predictors

a special case of two predictors:

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$$

- the term X_1X_2 is called an interaction
- effect of X_2 cannot be kept constant if we change X_1
- if we only limit the highest order to 2, how many terms are there for k predictors?
- one intercept, k linear terms, k quadratic terms and $\frac{k(k-1)}{2}$ interaction terms
- e.g., k = 5, altogether 21 terms

Polynomials with Several Predictors - con't

• Y: palatability score; X_1 : baking time; X_2 : baking temp

FIG. 6.3 Estimated response curves for the cakes data, based on (6.7).

Polynomials with Several Predictors - con't

without interaction

FIG. 6.4 Estimated response curves for the cakes data, based on fitting with $\beta_{12} = 0$.

The Delta Method

- provides approximate standard errors for nonlinear combinations of parameter estimates
- e.g., what is $Var(\hat{x}_M)$ where $\hat{x}_M = \frac{-\hat{\beta}_1}{2\hat{\beta}_2}$?
- suppose $\hat{\theta} \stackrel{\circ}{\sim} N(\theta, \Sigma)$ and $g(\theta)$ is a continuous function of θ (θ may be a vector)
- ullet then, when n is large, we have

$$\begin{split} & \mathrm{E}[g(\hat{\boldsymbol{\theta}})] \; \approx \; g(\boldsymbol{\theta}) \\ & \mathrm{Var}[g(\hat{\boldsymbol{\theta}})] \; \approx \; \dot{g}(\boldsymbol{\theta})' \boldsymbol{\Sigma} \dot{\mathbf{g}}(\boldsymbol{\theta}) \\ & \text{where } \dot{g}(\boldsymbol{\theta}) \; = \; \frac{\partial g}{\partial \boldsymbol{\theta}} = (\frac{\partial g}{\partial \theta_1}, \cdots, \frac{\partial g}{\partial \theta_k})' \end{split}$$

• note: some authors use $\sigma^2 \mathbf{D}$ instead of $\mathbf{\Sigma}$

The Delta Method - con't

- back to the example for \hat{x}_M
- $m{eta}=(eta_0,eta_1,eta_2)'$ and $\hat{m{eta}}=(\hat{eta}_0,\hat{eta}_1,\hat{eta}_2)'$
- we know, for large n, $\hat{\boldsymbol{\beta}} \stackrel{\circ}{\sim} N(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$
- R function vcov(lm.fit) gives $\widehat{Cov}(\hat{\beta}) \approx \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$
- $g(\hat{\boldsymbol{\beta}}) = \frac{-\hat{\beta}_1}{2\hat{\beta}_2} \Rightarrow \dot{g}(\hat{\boldsymbol{\beta}}) = (0, \frac{-1}{2\hat{\beta}_2}, \frac{\hat{\beta}_1}{2\hat{\beta}_2^2})$

$$\operatorname{Var}(g(\hat{\boldsymbol{\beta}})) = \dot{g}(\hat{\boldsymbol{\beta}})' \widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}}) \dot{g}(\hat{\boldsymbol{\beta}})$$

$$= \frac{1}{4\hat{\beta}_{2}^{2}} \left(\operatorname{Var}(\hat{\beta}_{1}) + \frac{\hat{\beta}_{1}^{2}}{\hat{\beta}_{2}^{2}} \operatorname{Var}(\hat{\beta}_{2}) - \frac{2\hat{\beta}_{1}}{\hat{\beta}_{2}} \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{2}) \right)$$

• use z-test or z-interval, i.e., critical value from N(0,1)

The Delta Method - con't

- revisit cakes data: find optimal baking times given different baking temperatures
- x_1 : baking time; x_2 : baking temperature $E(Y|x_1,x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$
- solve for optimal baking time: $x_M = g(\beta; x_2) = -\frac{\beta_1 + \beta_5 x_2}{2\beta_3}$
- $\operatorname{Var}(\hat{x}_M) = \dot{g}(\hat{\boldsymbol{\beta}}; x_2)' \widehat{\operatorname{Cov}}(\hat{\beta}) \dot{g}(\hat{\boldsymbol{\beta}}; x_2)$
- $100(1-\alpha)$ % pointwise confidence interval for x_M :

$$\hat{x}_M \pm z_{\alpha/2} \sqrt{\dot{g}(\hat{\boldsymbol{\beta}}; x_2)' \widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}) \dot{g}(\hat{\boldsymbol{\beta}}; x_2)}$$

Factors

- allow qualitative or categorical predictors
- different levels: male or female, eye colour, etc.
- use dummy variables in the regression model
- e.g., 0 for male and 1 for female, or -1, 1
- will give the same outcomes if you know what you are doing

Factors - Sleep Data

- sleep data sleeping patterns of 62 mammal species (4 missing at random, thus omitted)
- ullet response TS: total hours of sleep per day
- predictor D: danger indicator, 1 to 5, D=1 means least danger from other animals

The Factor Rule

the factor rule:

A factor with d levels can be represented by at most d dummy variables. If the intercept is in the mean function, at most d-1 of the dummy variables can be used in the mean function

• define the j^{th} dummy variable $U_j, j=1,\cdots,5$

$$u_{ij} = \begin{cases} 1 & \text{if } D_i = j^{th} \text{ category of } D \\ 0 & \text{otherwise} \end{cases}$$

the regression model is:

$$E(TS|D) = \beta_1 U_1 + \beta_2 U_2 + \beta_3 U_3 + \beta_4 U_4 + \beta_5 U_5$$

Two Models for the Same Thing

- β_j : can be interpreted as the population mean for all species with danger index j
- note that no intercept is there, why?
- now consider an equivalent model:

$$E(TS|D) = \eta_0 + \eta_2 U_2 + \eta_3 U_3 + \eta_4 U_4 + \eta_5 U_5$$

- $\eta_0 = \beta_1, \eta_0 + \eta_2 = \beta_2, \eta_0 + \eta_3 = \beta_3, \dots, \eta_0 + \eta_5 = \beta_5$
- this is called a one-way analysis of variance model fits a separate mean for each level

Model 6.1a

• (Table 6.1a) coefficient for U_j is the estimated mean for level j of D

	Esti	imate	Std. Error	t-value	Pr(> t)
(a) Mean func	tion (6.15)				
U_1	13.0833		0.8881	14.73	0.0000
U_2	11.7500		1.0070	11.67	0.0000
U_3	10.3100 8.8111		1.1915	8.65 7.02	0.0000
U_4			1.2559		
<i>U</i> ₅	4.	0714	1.4241	2.86	0.0061
	Df	Sum Sq	Mean Sq	F-value	Pr(>F)
\overline{D}	5	6891.72	1378.34	97.09	0.0000
Residuals	53	752.41	14.20		

Model 6.1b

(Table 6.1b) intercept: estimated mean for level 1 of D coefficient for U_j is the estimated difference between means for level 1 and level j, j > 1

	Estimate		Std. Error	t-value	Pr(> t)
(b) Mean func	tion (6.16)				
Intercept	13.0833		0.8881	14.73	0.0000
U_2	-1.3333		1.3427	-0.99	0.3252
U_3^-	-2.7733 -4.2722		1.4860	-1.87 -2.78	0.0675 0.0076
U_4			1.5382		
<i>U</i> ₅	-9.0119		1.6783	-5.37	0.0000
	Df	Sum Sq	Mean Sq	F-value	Pr(>F)
\overline{D}	4	457.26	114.31	8.05	0.0000
Residuals	53	752.41	14.20		

More on Models 6.1a and 6.1b

- how about the t-values?
- ANOVA Table 6.1a:

NH: all
$$\beta$$
's are zero or $E(TS|D) = 0$

ANOVA Table 6.1b:

NH:
$$E(TS|D) = \eta_0$$

- caution: identical RSS's, the ANOVA in Table 6.1a is not an exclusive decomposition, $SYY \neq SS_{reg} + RSS$
- the 1st is easier to interpret, the 2nd is more used
- let's add a continuous predictor, log(BodyWt)?

Adding a Continuous Term log(BodyWt)

- so two terms: D and log(BodyWt)
- four different cases

Model 1

- one regression line for each level of D
- $E[TS|log(BodyWt), D] = \sum_{j=1}^{5} (\beta_{0j}U_j + \beta_{1j}U_jx)$
- $E[TS|log(BodyWt), D] = \eta_0 + \eta_1 x + \sum_{j=2}^{5} (\eta_{0j}U_j + \eta_{1j}U_j x)$
- interactions between U_j and $\log(\text{BodyWt})$
- first one is more convenient for obtaining interpretable parameters
- second one is useful for comparing mean functions
- what is the difference between this and fitting 5 separate regressions?

Other Models

- Model 2: parallel regression
- same slope but different intercepts, no interaction between U_i and $\log(\mathrm{BodyWt})$
- when do we want to fit a model like this?
- Model 3: common intercept
- Model 4: coincident regression lines (no D)
- general F test: Model 1 as the model in AH
- NH: usually either Model 2 or 4
- what are the design matrices X for the above models?

Table 6.2

TABLE 6.2 Residual Sum of Squares and df for the Four Mean Functions for the Sleep Data

	df	RSS	F	P(>F)
Model 1, most general	48	565.46		
Model 2, parallel	52	581.22	0.33	0.853
Model 3, common intercept	52	709.49	3.06	0.025
Model 4, all the same	56	866.23	3.19	0.006

- exercise: compute F values from df and RSS
- more: ordinal factors sometimes may be treated as continuous, how to decide?