Strumenti per misurare gli angoli

Girodirezionale

Girodirezionale a movimentazione pneumatica

Pompa a vuoto

Meccanismo erettore

Precesssione apparente dovuta alla rotazione terrestre

Precessione apparente dovuta al trasporto sulla terra

Precessione complessiva di un girodirezionale

$$\omega_{p} = (\Omega \pm \frac{\mathbf{V} \operatorname{sen} \psi}{\mathbf{R} \operatorname{cos} \lambda}) \operatorname{sen} \lambda$$

$$\omega_{p}^{*} = \frac{\mathbf{V}\cos\psi}{\mathbf{R}}$$

I due termini di precessione apparente possono sommarsi algebricamente a effetti dovuti tipicamente alla precessione effettiva dovuta a momenti d'attrito agenti sui perni o a momenti dovuti alla posizione del baricentro non collocato sull'asse di rotazione.

Effetti della precessione di un girodirezionale

$$\omega_{p} = (\Omega \pm \frac{\mathbf{V} \operatorname{sen} \psi}{\mathbf{R} \cos \lambda}) \operatorname{sen} \lambda$$

In generale lo scostamento dal riferimento terrestre dovuto a ω_p non è recuperabile automaticamente, ma deve intervenire il pilota che, con regolarità, corregge le indicazioni del girodirezionale consultando la bussola magnetica.

Il girodirezionale si dice quindi che sia uno strumento di corto periodo mentre la bussola sia uno strumento di lungo periodo.

Effetti della precessione di un girodirezionale

$$\omega_{p}^{*} = \frac{\mathbf{V}\cos\psi}{\mathbf{R}}$$

In generale lo scostamento dal riferimento terrestre dovuto a $\omega_{\mathbf{p}}^{\star}$ è recuperabile automaticamente attraverso il sistema erettore, come pure l'eventuale contributo dovuto a un momento d'attrito attorno all'asse di rotazione del telaio esterno rispetto alla cassa dello strumento durante un mutamento di prua.

Quadrante di girodirezionale

Orizzonte artificiale

Figure 4.10 Principle of gyro horizon. I Symbolic aircraft, 2 rotor. 3 outer ring, 4 inner ring, 5 balance weight, 6 pivot point, 7 actuating pin, 8 horizon bar, 9 roll pointer and scale.

Orizzonte artificiale pneumatico

Figure 4.11 Pneumatic type of gyro horizon. 1 Sky plate,
2 inner gimbal ring, 3 resilient stop, 4 balance nut,
5 temperature compensator,
6 rotor, 7 actuating pin, 8 outer gimbal ring, 9 actuator arm,
10 pendulous vane unit,
11 buffer stops, 12 bank
pointer, 13 horizontal bar.

Sistema erettore

Sistema erettore

Orizzonte artificiale elettrico

Sistema erettore

Precessione apparente dovuta alla rotazione terrestre

Precessione apparente dovuta al trasporto sulla terra

Precessione apparente dell'orizzonte artificiale

Le precessioni apparenti che scosterebbero l'asse di spin dalla verticale locale vengono annullate dai sistemi erettori. I sistemi erettori, di tipo pendolare, tendono però a far allineare l'asse di spin con la verticale apparente locale, cioè la direzione risultante dalla composizione della forza peso con le forze di inerzia. Bisogna quindi neutralizzarli quando necessario.

Effetti delle manovre

Effetti delle manovre

Circuito di cut-out

Pitch-roll erection

Quadrante di orizzonte artificiale

Quadrante di orizzonte artificiale

