Solutions to Pathria's Statistical Mechanics Chapter 3

SM-at-THU

March 17, 2016

- Problem 3.1
- Problem 3.2
- Problem 3.3
- Problem 3.4

Problem 3.5

Since the Helmholtz free energy A(N, V, T) has the property:

$$A(\lambda N, \lambda V, T) = \lambda A(N, V, T)$$

Differentiate with respect to λ and substitute $\lambda = 1$ immediately yields

$$N\left(\frac{\partial A}{\partial N}\right)_{V,T} + V\left(\frac{\partial A}{\partial V}\right)_{N,T} = A$$

- Problem 3.6
- Problem 3.7

Problem 3.11

Suppose $pV^n = C$, so the work done is

$$\Delta W = \int_{V_1}^{V_2} \frac{C}{V^n} dV = \frac{C}{n-1} (V_2^{1-n} - V_1^{1-n})$$
 (1)

The energy difference is given by

$$\Delta U = p_2 V_2 - p_1 V_1 = C(V_2^{1-n} - V_1^{1-n})$$
(2)

Therefore, the heat absorbed is

$$\Delta Q = C \frac{n-2}{n-1} (V_2^{1-n} - V_1^{1-n}) \tag{3}$$

Problem 3.12

The Hamiltonian of the classical system can be written as:

$$H = \sum_{i}^{N} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i}^{N} U(\mathbf{x}_{i})$$

$$\tag{4}$$

So the partition function of the system is:

$$Q(\beta, N, V) = \frac{1}{N!h^{3N}} \int \prod_{i=1}^{N} d^3x_i d^3p_i e^{-\beta H(x, p)}$$

$$= \frac{1}{N!} \left[\left(\frac{2\pi m \beta^{-1}}{h^2} \right)^{3N/2} \int \prod_i d^3x_i e^{-\beta U(\mathbf{x}_i)} \right]$$
(5)

So the Helmholtz potential is $A = -kT \ln Q$ and the entropy S is the derivative of free energy:

$$S = -\frac{\partial A}{\partial T}$$

$$= -\frac{\partial}{\partial T} \left\{ -kT \ln \left[\frac{1}{N!} \left(\frac{2\pi m k T}{h^2} \right)^{3N/2} \left(\int \prod_i d^3 x_i e^{-\beta U(\mathbf{x}_i)} \right) \right] \right\}$$

$$= -\frac{\partial}{\partial T} \left\{ -NkT \ln \left[\frac{1}{N} \left(\frac{2\pi m k T}{h^2} \right)^{3/2} \left(\int \prod_i d^3 x_i e^{-\beta U(\mathbf{x}_i)} \right)^{1/N} \right] - NkT \right\}$$

$$= Nk \ln \left[\frac{1}{N} \left(\frac{2\pi m k T}{h^2} \right)^{3/2} \left(\int \prod_i d^3 x_i e^{-\beta U(\mathbf{x}_i)} \right)^{1/N} \right] + \frac{3}{2}Nk + \frac{1}{T} \frac{\int \prod_i d^3 x_i \sum_i U(\mathbf{x}_i) e^{-\beta U(\mathbf{x}_i)}}{\int \prod_i d^3 x_i e^{-\beta U(\mathbf{x}_i)}} + Nk$$

$$= \frac{5Nk}{2} + Nk \ln \left[\frac{1}{N} \left(\frac{2\pi m k T}{h^2} \right)^{3/2} \left(\int \prod_i d^3 x_i e^{-\beta U(\mathbf{x}_i)} \right)^{1/N} \right] + \frac{\overline{U}}{T}$$

$$= \frac{5Nk}{2} + Nk \ln \left[\frac{1}{N} \left(\frac{2\pi m k T}{h^2} \right)^{3/2} e^{\frac{\overline{U}}{NkT}} \left(\int \prod_i d^3 x_i e^{-\beta U(\mathbf{x}_i)} \right)^{1/N} \right]$$

$$= Nk \left\{ \frac{5}{2} + \ln \left[\frac{\overline{V}}{N} \left(\frac{2\pi m k T}{h^2} \right)^{3/2} \right] \right\}$$
(6)

Up till now we have shown the entropy of such a system. So if the potential energy is just a constant, the "free volume" is the common volume of classical ideal gas.

Then consider about the hard sphere gas. The potential energy is:

$$U(\mathbf{x}_i) = \begin{cases} 0 & |\mathbf{x}_i - \mathbf{x}_j| > D \\ \infty & |\mathbf{x}_i - \mathbf{x}_j| < D \end{cases}$$

It is obvious that the average of potential energy is $\overline{U} = 0$, so the free volume is

$$\overline{V}^{N} = \int \prod_{i} d^{3}x_{i} e^{-\beta U(\mathbf{x}_{i})}$$

$$= \int d^{3}x_{N} \int d^{3}x_{N-1} \cdots \int d^{3}x_{1} e^{-\beta U(\mathbf{x}_{i})}$$

$$= V \left(V - \frac{4\pi}{3}D^{3}\right) \left(V - 2 \cdot \frac{4\pi}{3}D^{3}\right) \cdots \left(V - \frac{N-1}{3}4\pi D^{3}\right) \tag{7}$$

Define $v_0 = \pi D^3/6$ is the volume a sphere, so the gas-law will be:

$$P = \frac{NkT}{\overline{V}} \frac{\partial \overline{V}}{\partial V}$$

$$= kT \left(\frac{1}{V} + \frac{1}{V - 8v_0} \cdots \frac{1}{V + 8(N - 1)v_0} \right)$$

$$\simeq kT \left(\frac{N + N^2 \frac{4v_0}{V}}{V} \right)$$

$$= kT \frac{N}{V \frac{1}{1 + 4Nv_0/V}}$$

$$\simeq \frac{NkT}{V - 4Nv_0}$$
(8)

This result is the same as we have seen in Problem 1.4.

Problem 3.15

We have $Q_1(V,T) = \int g(\epsilon)e^{-\beta\epsilon}d\epsilon$. For 3-D extreme relativistic gas, $\epsilon = pc$, hence we have

$$g(p)dp = \frac{V}{h^3} 4\pi p^2 dp = \frac{4\pi V}{h^3} \frac{\epsilon^2}{c^2} \frac{d\epsilon}{c} = g(\epsilon)d\epsilon$$

$$\therefore g(\epsilon) = \frac{4\pi V}{(hc)^3} \epsilon^2$$

$$\therefore Q_1(V,T) = \int_0^\infty g(\epsilon)d\epsilon = \frac{4\pi V}{(hc)^3} \int_0^\infty \epsilon^2 e^{-\beta \epsilon} d\epsilon = 8\pi V \left(\frac{kT}{hc}\right)^3$$

 \therefore for N molecules,

$$Q_N(V,T) = \frac{1}{N!} \left\{ 8\pi V \left(\frac{kT}{hc} \right)^3 \right\}$$

From $Q_N(V,T)$, it's easy to calculate:

$$P = \frac{1}{\beta} \frac{\partial Q}{\partial V} = \frac{N}{V} kT$$

$$U = -\frac{1}{Q} \frac{\partial Q}{\partial \beta} = 3NkT$$

$$\gamma = \frac{4}{3}$$

Problem 3.21

(a) Classically, the harmonic equation of motion leads to $x=A\sin\omega t$. As a result, the kinetic energy and potential energy will be $m\omega^2A^2\cos^2\omega t/2$ and $m\omega^2A^2\sin^2\omega t/2$ respectively. Average them it's easy to see that $\bar{K}=\bar{U}=m\omega^2A^2/4$. Quantum-mechanically, $\psi=\sum_n c_n\psi_n$ where ψ_n is the *n*-th Hermitian polynomial. Using the recursive relations, we have

$$\bar{K} = -\frac{\hbar^2}{2m} \sum_{n} |c_n|^2 \int \psi^* \frac{d^2}{dx^2} \psi dx = \sum_{n} |c_n|^2 \frac{\hbar\omega(2n+1)}{4} = \frac{1}{2} \sum_{n} |c_n|^2 E_n$$
 (9)

$$\bar{U} = \frac{m\omega^2}{2} \sum_{n} |c_n|^2 \int \psi^* x^2 \psi dx = \sum_{n} |c_n|^2 \frac{\hbar\omega(2n+1)}{4} = \frac{1}{2} \sum_{n} |c_n|^2 E_n$$
 (10)

(b) In Bohr-sommerfeld model, a quantized orbits are hypothesized, namely $m_e v r = n\hbar$. In the *n*-th orbit, the total energy is $E_n = -Z^2 k^2 e^4 m_e / 2\hbar^2 n^2$. The radius of which is $r_n = n^2 \hbar^2 / Z k e^2 m_e$. By a naive calculation $\bar{U} = -Z^2 k^2 e^4 m_e / \hbar^2 n^2$ and $\bar{T} = Z^2 k^2 e^4 m_e / 2\hbar^2 n^2$.

In the Schroedinger hydrogen atom, $\psi_{nlm} = R_{nl}(r)Y_{lm}(\theta,\phi)$. The kinetic energy is given by

$$\bar{T} = \frac{\hbar^2}{2m} \int \psi_{nlm}^* \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2}\right) \psi_{nlm} r^2 \sin\theta dr d\theta d\phi
= \frac{\hbar^2}{2m} \int R_{nl}(r) \left(\frac{1}{n^2 a^2}\right) R_{nl}(r) r^2 dr
= \frac{e^2}{2an^2}$$
(11)

so $\bar{U} = -e^2/an^2$. a is the Bohr radius.

(c) This is also a central force case. The results are quite identical to (b).

Problem 3.22

Anharmonic Oscillator.

This anharmonic oscillator has the Hamiltonian:

$$H = \frac{p^2}{2m} + \frac{1}{4}kx^4$$

So the canonical partition function of the system is:

$$Q = \frac{1}{h} \int dp dx \, e^{-\beta \left(\frac{p^2}{2m} + \frac{1}{4}kx^4\right)} \tag{12}$$

Use the "equipartition theorem", we can get the following result:

$$\left\langle x \frac{\partial H}{\partial x} \right\rangle = kT \tag{13}$$

Thus because $\partial H/\partial x = kx^3$, we can get

$$x\frac{\partial H}{\partial x} = kx^4 = 4V$$

So the expectation value of the potential is $\langle V \rangle = kT/4$. For the same reason, we can get the mean value of the kinetic energy:

$$\langle K \rangle = \frac{1}{2} \left\langle p \frac{\partial H}{\partial p} \right\rangle = \frac{kT}{2}$$
 (14)

So clearly we can get $\langle K \rangle = 2 \langle V \rangle$.

Problem 3.31

"Partition function" for single particle is

$$Q_1 = 1 + e^{-\varepsilon/kT}. (15)$$

So a list of quatities can be obtained:

$$Q_N = (1 + e^{-\varepsilon/kT})^N \tag{16}$$

$$A = -NkT\ln(1 + e^{-\varepsilon/kT}) \tag{17}$$

$$\mu = -kT\ln(1 + e^{-\varepsilon/kT}) \tag{18}$$

$$p = 0 \tag{19}$$

$$S = Nk \ln(1 + e^{-\varepsilon/kT}) + \frac{N\varepsilon}{T} \frac{e^{-\varepsilon/kT}}{1 + e^{-\varepsilon/kT}}$$
(20)

$$U = N\varepsilon \frac{e^{-\varepsilon/kT}}{1 + e^{-\varepsilon/kT}} \tag{21}$$

$$C_p = C_V = \frac{N\varepsilon^2 e^{-\varepsilon/kT}}{kT^2 (1 + e^{-\varepsilon/kT})^2}$$
(22)

This specific heat is sometimes referred to Schottky anomaly.

Problem 3.32

(a) Since the distribution is given by canonical distribution, the probabilities are:

$$p_i = Q^{-1}g_i e^{-\beta \epsilon_i}$$

and the entropy should be:

$$S = -k \left[p_{1} \ln(p_{1}/g_{1}) + p_{2} \ln(p_{2}/g_{2}) \right]$$

$$= -k \left[\frac{g_{1}e^{-\beta\epsilon_{1}}}{Q} \ln \frac{e^{-\beta\epsilon_{1}}}{Q} + \frac{g_{2}e^{-\beta\epsilon_{2}}}{Q} \ln \frac{e^{-\beta\epsilon_{2}}}{Q} \right]$$

$$= k \ln Q + \frac{1}{T} \frac{g_{1}\epsilon_{1}e^{-\beta\epsilon_{1}} + g_{2}\epsilon_{2}e^{-\beta\epsilon_{2}}}{Q}$$

$$= k \ln g_{1} + k \ln \left(1 + \frac{g_{2}}{g_{1}}e^{-x} \right) + \frac{1}{T} \frac{g_{2}(\epsilon_{2} - \epsilon_{1})e^{-\beta\epsilon_{2}}}{Q}$$

$$= k \left[\ln g_{1} + \ln \left(1 + \frac{g_{2}}{g_{1}}e^{-x} \right) + \frac{g_{2}e^{-\beta\epsilon_{2}}x}{Q} \right]$$

$$= k \left[\ln g_{1} + \ln \left(1 + \frac{g_{2}}{g_{1}}e^{-x} \right) + \frac{x}{1 + \frac{g_{1}}{g_{2}}e^{x}} \right]$$

$$(23)$$

When $g_1 = g_2 = 1$, the situation is the same as Fermi oscillator with energy 0 and $\epsilon_2 - \epsilon_1$.

(b) The entropy is the derivative of the free energy, so we can get the entropy by the following process:

$$S = -\frac{\partial A}{\partial T}$$

$$= \frac{\partial}{\partial T} \{kT \ln Q\}$$

$$= k \ln Q + \frac{1}{T} \frac{g_1 \epsilon_1 e^{-\beta \epsilon_1} + g_2 \epsilon_2 e^{-\beta \epsilon_2}}{Q}$$

$$= k \left[\ln g_1 + \ln \left(1 + \frac{g_2}{g_1} e^{-x} \right) + \frac{x}{1 + \frac{g_1}{g_2} e^x} \right]$$
(24)

which is the same as we get in (a).

(c) Clearly from equation (23), when temperature is T=0, the entropy will be:

$$S = \lim_{x \to +\infty} k \left[\ln g_1 + \ln \left(1 + \frac{g_2}{g_1} e^{-x} \right) + \frac{x}{1 + \frac{g_1}{g_2} e^x} \right] = k \ln g_1$$
 (25)

From the distribution of canonical ensemble, we know that when the temperature is T=0, the system will stay on the ground state. Since the ground is g-fold degenerate, there are g_1 possible states. So the entropy is $S=k \ln g_1$.

Problem 3.41

The equilibrium temperature will be positive, since the energy of the whole system is not bounded from above. This case is a bit like the spin and lattice case. For the subsystem of spins, its energy is bounded from above, so it is possible to attain a negative temperature. While the subsystem of lattice, i.e. ideal gas in this problem, only has positive temperature. The whole system doesn't have a energy limit, so the temperature will only be positive. And energy may flow from the spin subsystem to the ideal gas.

Problem 3.42

Paramagnetic system.

For a given energy E, we can know that:

$$E = \mu_B H (N_{\uparrow} - N_{\downarrow}) \tag{26}$$

$$N = N_{\uparrow} + N_{\downarrow} \tag{27}$$

So the occupying number of up(down)-spin is

$$N_{\uparrow} = \frac{1}{2} \left(N + \frac{E}{\mu_B H} \right) \quad N_{\downarrow} = \frac{1}{2} \left(N - \frac{E}{\mu_B H} \right)$$

And the number of the possible states will be:

$$\Omega(N, E) = \mathcal{C}_N^{N_{\uparrow}} = \frac{N!}{N_{\uparrow}! N_{\downarrow}!} \tag{28}$$

So the entropy in micro canonical ensemble representation is:

$$S = k \ln \Omega(E, N)$$

$$= Nk \ln N - N_{\uparrow} k \ln N_{\uparrow} - N_{\downarrow} k \ln N_{\downarrow}$$

$$= Nk \ln N - k \frac{N\mu_{B}H + E}{2\mu_{B}H} \ln \frac{N\mu_{B}H + E}{2\mu_{B}H} - k \frac{N\mu_{B}H - E}{2\mu_{B}H} \ln \frac{N\mu_{B}H - E}{2\mu_{B}H}$$
(29)

This result is the same as (3.10.9) in Pathria's Book. Then the temperature:

$$\frac{1}{T} = \frac{\partial S}{\partial E}$$

$$= -\frac{k}{2\mu_B H} \ln \frac{N\mu_B H + E}{2\mu_B H} - \frac{k}{2\mu_B H} + \frac{k}{2\mu_B H} \ln \frac{N\mu_B H - E}{2mu_B H} + \frac{k}{2\mu_B H}$$

$$= \frac{k}{2\mu_B H} \ln \left(\frac{N\mu_B H - E}{N\mu_B H + E}\right) \tag{30}$$

And this result is also the same as equation (3.10.8).