

Extracción y seguimiento del esqueleto de un cuerpo a partir de múltiples vistas

Alexander Pinzón Fernández, Eduardo Romero Ph.D

Antecedentes y justificación

El estudio y registro del movimiento del cuerpo humano, ha sido de interés en varias aéreas del conocimiento. Por ejemplo, la anatomía, la ingeniería y las artes. El registro de movimiento ha sido usado para resolver distintos tipos de problemas, como los son: el diagnostico de patologías asociadas a la marcha, la captura del movimiento de un actor para dar vida a un personaje animado, o el análisis ergonómico para el diseño de herramientas.

Identificación del problema

El seguimiento de movimiento se realiza convencionalmente con costosos sistemas de captura que varían entre los 150 y 400 millones de pesos. Presentando estos inconvenientes.

- alteran el gesto del movimiento. Además, se necesita de expertos para posicionarlos pues localizados estar deben puntos antropométricos específicos.
- Usan marcadores pegados al cuerpo, que 2. Los sistemas estereoscópicos que realizan una reconstrucción tridimensional manejan grandes volúmenes datos correspondientes a la geometría del cuerpo, con lo cual se requiere maquinas de alto rendimiento.

Metodología

 Los datos iníciales son adquiridos desde un sistema calibrado de cámaras

 De los videos son extraídas las siluetas y puntos clave

 Con las siluetas y puntos clave se realiza reconstrucción estereoscópica 3D del cuerpo[2].

 Con el cuerpo 3D se realiza una extracción del esqueleto mediante la contracción del volumen hacia una estructura 1D [1].

 Validación del método Calculando el error del esqueleto respecto al eje medio[3]

Objetivo

Desarrollar un método para el Seguimiento del movimiento del humano en cuerpo dimensiones.

- En la izquierda se observa el proceso de captura de video desde 6 video cámaras.
- 2. Segmentación de siluetas.
- 3. Reconstrucción estereoscópica 3D desde las siluetas.
- 4. Extracción del esqueleto.

Referencias

- Skeleton Extraction by Mesh Contraction. Au, Oscar Kin-Chung, y otros. 2008, ACM Transactions on Graphics, Vol. 27, pág. 10.
- 2. 3D reconstruction by combining shape from silhouette with stereo. Lin, Huei-Yung y Wu, Jing-Ren. 2008. págs. 1-4.
- 3. Skeleton Extraction of 3D Objects with Radial Basis Functions. Ma, Wan-Chun, Wu, Fu-Che y Ouhyoung, Ming. s.l.: IEEE Computer Society, 2003. pág. 207.

Objetivos específicos

- 1. Implementar un sistema de captura mediante video cámaras de un cuerpo en movimiento.
- 2. Adaptar e implementar el método $\sum -\Delta$ Sigma-Delta, para extraer la silueta del cuerpo desde los videos
- 3. Proponer un método para extraer marcadores de las relaciones fundamentales del cuerpo con lo cual se constituye un esqueleto que representa el cuerpo.
- Proponer un método para realizar el seguimiento del esqueleto en cada cuadro de video y validar los resultados obtenidos del análisis.
- Desarrollar un sistema de realidad aumentada que permita visualizar el movimiento del cuerpo, junto con el esqueleto estimado.

Contacto

Alexander Pinzón Fernández

apinzonf@gmail.com

Director

Eduardo Romero Castro Ph.D.

Grupo de Investigación Bioingenium

Biolngenium