Практическое занятие ЧС на ПВОО (ГВС)

Тема: Оценка устойчивости функционирования объектов экономики и безопасности жизнедеятельности населения и персонала в прогнозируемых условиях чрезвычайных ситуаций: **поражающие факторы, возникающие в результате взрывов.**

Учебная цель: владеть методами защиты персонала объекта связи и населения в условиях чрезвычайных ситуаций.

Воспитательная цель:

- воспитывать профессиональные качества руководителя объекта связи;
- воспитывать гордость за обучение в ведущем вузе Россвязи и принадлежность к инфокоммуникационной отрасли.

Легенда:

В результате нарушения правил хранения на складе горюче-смазочных материалов (ГСМ) произошёл взрыв хранилища дизельного топлива на территории объекта — взрыв газовоздушной смеси (ГВС). В зоне бризантного действия продуктов взрыва ГВС взрываются пары топлива, скапливающиеся в свободном пространстве и смешивающиеся с кислородом воздуха. Бризантное действие в пределах облака ГВС.

Определить:

- избыточное давление во фронте ударной волны (УВ);
- мощность светового импульса (СИ);
- радиусы зон бризантного действия;
- место размещение склада ГСМ на топографической карте;
- сделать выводы;
- выработать предложения.

ПРИМЕР РАСЧЁТА

Исходные условия:

Хранилище ГСМ находится на территории объекта на расстоянии $R_2 = 0.8$ км от аварийной ДЭС и содержит Q = 100 т дизельного топлива. Емкости с топливом расположены открыто и частично под землей.

Решение:

1. Определяем коэффициент K:

$$K = 0.014 \times \frac{R_2}{\sqrt[3]{Q}}$$

где R_2 в метрах, Q в тоннах.

В результате вычислений значение коэффициента K=2,41

2. Определяем избыточное давление во фронте УВ $\Delta P_{\Phi}^{\rm rBc}$, кПа:

при *K* < 2

$$\Delta P_{\phi}^{\text{\tiny FBC}} = \frac{233,3}{\sqrt[2]{1+29,8 \times K^3} - 1}$$

при K > 2

$$\Delta P_{\phi}^{\text{\tiny TBC}} = \frac{22}{K \times \sqrt[2]{\log K + 0.158}}$$

В результате вычислений при K > 2:

$$\Delta P_{\Phi}^{\scriptscriptstyle \Gamma BC} = 12,4$$
 кПа

3. Определяем мощность СИ $U_{\rm rgc}$, кДж/м²

$$U_{\text{\tiny FBC}} = \left(74 \times \frac{Q}{R_2^2}\right) \times e^{-kR_2}$$

где Q – количество дизельного топлива в кт (1 кт = 1000 т);

 R_2 – расстояние от центра взрыва в км;

k — коэффициент ослабления светового излучения средой распространения, $1/\kappa m$ (для практических расчетов принимается совершенно чистый воздух k=0,1).

В результате вычислений мощность СИ:

$$U_{\text{гвс}} = 10,7 \text{ кДж/м}^2$$

4. Радиусы зон бризантного действия взрыва ГВС:

$$r_1 = 90 \text{ M}$$

 $r_2 = 1.7 \times r_1 = 153 \text{ M}$

- 5. Выводы:
- 5.1. Объект находится в зоне слабых разрушений ($\Delta P_{\Phi}^{\rm rBC} > 10~{\rm к}\Pi a$).
- 5.2. От воздействия ударной волны получат разрушения следующие объекты:
 - 3-х этажные здания из кирпича,
 - 2-х этажные коттеджи,
 - неукрепленные элементы РЭА.
 - 5.3. Открыто расположенные люди травм не получат.
 - 5.4. От воздействия СИ элементы объекта повреждений не получат.
- 5.5 Открыто расположенные люди ожогов не получат, но может иметь место временное ослепление людей при прямом взгляде незащищенными глазами на светящуюся область.
- 5.6. В зоне бризантного действия взрыва ГВС в радиусе $r_1 = 90$ м от точки взрыва имеет место избыточное давление 170 кПа и сплошной пожар за счет растекающегося горючего, а поэтому все элементы объекта будут разрушены и повреждены. В зоне действия продуктов взрыва с радиусом $r_2 = 90-153$ м избыточное давление уменьшится до 30 кПа на внешней границе и поэтому все элементы объекта получат разрушения и повреждения.

Прочностные характеристики объектов

Элементы объектов связи	Поражающие факторы		
	$\Delta P_{\Phi}^{\scriptscriptstyle \Gamma BC}$, кПа	$U_{ ext{\tiny FBC}}$, кДж/м 2	
2-х этажные здания, кирпичные	15	2500	
3-х этажные здания, кирпичные	10	2500	
2-х этажные коттеджи (низ – каменные, верх – деревянный)	8	250	
Антенные опоры для АФУ:			
- деревянные	20	250	
- металлические	20	>2500	
- железобетонные	20	>2500	
Кабель подземный	800		
Кабель наземный, фидеры АФУ	30	2000	
Изоляторы керамические		2000	
Изоляционные материалы		250	
Радиоэлектронная аппаратура (РЭА) не закреплена на своих	10	2000	
местах			
Оконные переплеты, дверные проемы, окрашенные в темные		250	
цвета			

Радиусы зон бризантного действия и продуктов взрыва ГВС

Радиус зоны действия УВ, м	Количество дизельного топлива Q , т			
	10	100	500	1000
r_1 – зона бризантного действия	40	90	150	190
r_2 – зона действия продуктов взрыва	68	153	255	323

Зоны разрушений

Зона полных разрушений. Избыточное давление на внешней границе зоны 50 кПа. Зона характеризуется поражением незащищенных людей от воздействия вторичных поражающих факторов, полным разрушением зданий, сооружений, частичным разрушением коммунально-энергетических сетей (КЭС), технологических сетей, части противорадиационных укрытий (ПРУ), в населенных пунктах образуются сплошные завалы, уничтожаются леса, возникают пожары.

Зона сильных разрушений. Избыточное давление на внешней границе зоны составляет 30 кПа, т.е. зона лежит в пределах 50-30 кПа. Зона характеризуется поражением незащищенных людей до 90% от воздействия вторичных поражающих факторов, зданий, сооружений в зависимости от прочностных характеристик. В населенных пунктах образуются местные и сплошные завалы, образуются завалы в лесах, в населенных пунктах возгораются 50% зданий и сооружений, сохраняются убежища и ПРУ.

Зона средних разрушений. Зона образуется между 30-20 кПа на границах зоны и характеризуется потерями людей до 20% от действия вторичных поражающих факторов, разрушениями зданий и сооружений в зависимости от прочностных характеристик, образованием местных и очаговых завалов, сплошными пожарами и сохранением коммунально-энергетических сетей, убежищ и ПРУ.

Зона слабых разрушений лежит в пределах **20-10** кПа и характеризуется отдельными разрушениями зданий, сооружений, возникновением отдельных пожаров.

Зоны поражения при взрывах ГВС

На взрывоопасных объектах в случаях разрушения емкостей с жидким топливом, при взрывах текстильной, древесной, угольной и другой пыли, при разрушении продуктопроводов возникают 3 зоны поражения.

I зона — зона бризантного действия в пределах облака ГВС с примерно одинаковым избыточным давлением во фронте УВ равным **170 кПа.** И имеет место сплошной пожар за счет разлива топлива.

II зона — зона действия продуктов взрыва, где избыточное давление во фронте УВ резко падает и на внешней границе составляет 30 кПа, а радиус этой зоны определяется соотношением $r_2 = 1.7 \times r_1$, м.

Ш зона – зона слабых разрушений с избыточным давлением во фронте УВ на внешней границе $10~\kappa\Pi a$, т.е. охватывает зоны средних и слабых разрушений, возникающих в случае взрыва ГВС.

Световой импульс

Световой импульс вызывает ожоги открытых участков тела человека:

I степень — наступает при величине светового импульса **100-200** $\kappa Дж/м^2$ и вызывает покраснение кожного покрова, небольшую её припухлость, болезненные ощущения, может быть незначительное повышение температуры тела;

II степень —наступает при величине светового импульса **200-400** $\kappa Д ж/м^2$ и вызывает появление пузырей на кожном покрове человека, сильные болезненные ощущения, повышение температуры тела;

III степень - наступает при величине светового импульса **400-600** кДж/м 2 и вызывает омертвение кожного покрова, появляются язвы.

Поражение глаз

I степень поражения — временное ослепление человека, возникающее в результате прямого взгляда незащищенными глазами на светящуюся область. Такое ослепление может длиться несколько минут. Особенно сильное воздействие на глаза оказывается в темное время суток.

II степень поражения – это ожоги глазного дна, наступающее при прямом и длительном взгляде на светящуюся область.

III степень поражения — ожоги роговицы и век глаз наступает при тех же условиях, что и ожоги кожного покрова, но следует брать минимальные значения светового излучения.