Springer Tracts in Advanced Robotics Volume 73

Editors: Bruno Siciliano · Oussama Khatib · Frans Groen

Peter Corke

Robotics,
Vision and Control

Fundamental Algorithms in MATLAB®

With 393 Images

Additional material is provided at www.petercorke.com/RVC

Professor Bruno Siciliano, Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy, E-mail: siciliano@unina.it

Professor Oussama Khatib, Artificial Intelligence Laboratory, Department of Computer Science, Stanford University, Stanford, CA 94305-9010, USA, E-mail: khatib@cs.stanford.edu

Professor Frans Groen, Department of Computer Science, Universiteit van Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, E-mail: groen@science.uva.nl

Author

Peter Corke

Faculty of Built Environment and Engineering School of Engineering Systems Queensland University of Technology (QUT) Brisbane QLD 4000 Australia

e-mail: rvc@petercorke.com

ISBN 978-3-642-20143-1

e-ISBN 978-3-642-20144-8

DOI 10.1007/978-3-642-20144-8

Springer Tracts in Advanced Robotics IS

ISSN 1610-7438

Library of Congress Control Number: 2011934624

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Production: Armin Stasch and Scientific Publishing Services Pvt. Ltd. Chennai, India Typesetting and layout: Büro Stasch · Bayreuth (stasch@stasch.com)

Printed on acid-free paper

987654321

springer.com

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany Herman Bruyninckx, KU Leuven, Belgium Raja Chatila, LAAS, France Henrik Christensen, Georgia Tech, USA Peter Corke, Queensland Univ. Technology, Australia Paolo Dario, Scuola S. Anna Pisa, Italy Rüdiger Dillmann, Univ. Karlsruhe, Germany Ken Goldberg, UC Berkeley, USA John Hollerbach, Univ. Utah, USA Makoto Kaneko, Osaka Univ., Japan Lydia Kavraki, Rice Univ., USA Vijay Kumar, Univ. Pennsylvania, USA Sukhan Lee, Sungkyunkwan Univ., Korea Frank Park, Seoul National Univ., Korea Tim Salcudean, Univ. British Columbia, Canada Roland Siegwart, ETH Zurich, Switzerland Gaurav Sukhatme, Univ. Southern California, USA Sebastian Thrun, Stanford Univ., USA Yangsheng Xu, Chinese Univ. Hong Kong, PRC Shin'ichi Yuta, Tsukuba Univ., Japan

To my family Phillipa, Lucy and Madeline for their indulgence and support; my parents Margaret and David for kindling my curiosity; and to Lou Paul who planted the seed that became this book.

Foreword

Once upon a time, a very thick document of a dissertation from a faraway land came to me for evaluation. *Visual robot control* was the thesis theme and *Peter Corke* was its author. Here, I am reminded of an excerpt of my comments, which reads, *this is a masterful document, a quality of thesis one would like all of one's students to strive for, knowing very few could attain – very well considered and executed.*

The connection between robotics and vision has been, for over two decades, the central thread of Peter Corke's productive investigations and successful developments and implementations. This rare experience is bearing fruit in his new book on *Robotics, Vision, and Control*. In its melding of theory and application, this new book has considerably benefited from the author's unique mix of academic and real-world application influences through his many years of work in robotic mining, flying, underwater, and field robotics.

There have been numerous textbooks in robotics and vision, but few have reached the level of integration, analysis, dissection, and practical illustrations evidenced in this book. The discussion is thorough, the narrative is remarkably informative and accessible, and the overall impression is of a significant contribution for researchers and future investigators in our field. Most every element that could be considered as relevant to the task seems to have been analyzed and incorporated, and the effective use of Toolbox software echoes this thoroughness.

The reader is taken on a realistic walkthrough the fundamentals of mobile robots, navigation, localization, manipulator-arm kinematics, dynamics, and joint-level control, as well as camera modeling, image processing, feature extraction, and multi-view geometry. These areas are finally brought together through extensive discussion of visual servo system. In the process, the author provides insights into how complex problems can be decomposed and solved using powerful numerical tools and effective software.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical research developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and contribute to further advancements in this rapidly growing field.

Peter Corke brings a great addition to our STAR series with an authoritative book, reaching across fields, thoughtfully conceived and brilliantly accomplished.

Oussama Khatib Stanford, California July 2011

Preface

Tell me and I will forget. Show me and I will remember. Involve me and I will understand. Chinese proverb

The practice of robotics and machine vision involves the application of computational algorithms to data. The data comes from sensors measuring the velocity of a wheel, the angle of a robot arm's joint or the intensities of millions of pixels that comprise an image of the world that the robot is observing. For many robotic applications the amount of data that needs to be processed, in real-time, is massive. For vision it can be of the order of tens to hundreds of megabytes per second.

Progress in robots and machine vision has been, and continues to be, driven by more effective ways to process data. This is achieved through new and more efficient algorithms, and the dramatic increase in computational power that follows Moore's law. When I started in robotics and vision, in the mid 1980s, the IBM PC had been recently released – it had a 4.77 MHz 16-bit microprocessor and 16 kbytes (expandable to 256 k) of memory. Over the intervening 25 years computing power has doubled 16 times which is an increase by a factor of 65 000. In the late 1980s systems capable of real-time image processing were large 19 inch racks of equipment such as shown in Fig. 0.1. Today there is far more computing in just a small corner of a modern microprocessor chip.

Over the fairly recent history of robotics and machine vision a very large body of algorithms has been developed – a significant, tangible, and collective achievement of the research community. However its sheer size and complexity presents a barrier to somebody entering the field. Given the many algorithms from which to choose the obvious question is:

What is the right algorithm for this particular problem?

One strategy would be to try a few different algorithms and see which works best for the problem at hand but this raises the next question:

How can I evaluate algorithm X on my own data without spending days coding and debugging it from the original research papers?

Fig. 0.1.

Once upon a time a lot of equipment was needed to do vision-based robot control. The author with a large rack full of image processing and robot control equipment (1992) Two developments come to our aid. The first is the availability of general purpose mathematical software which it makes it easy to prototype algorithms. There are commercial packages such as MATLAB®, Mathematica and MathCad,▶ and open source projects include SciLab, Octave, and PyLab. All these tools deal naturally and effortlessly with vectors and matrices, can create complex and beautiful graphics, and can be used interactively or as a programming environment. The second is the open-source movement. Many algorithms developed by researchers are available in open-source form. They might be coded in one of the general purpose mathematical languages just mentioned, or written in a mainstream language like C, C++ or Java.

For more than fifteen years I have been part of the open-source community and maintained two open-source MATLAB® Toolboxes: one for robotics and one for machine vision. They date back to my own PhD work and have evolved since then, growing features and tracking changes to the MATLAB® language (which have been significant over that period). The Robotics Toolbox has also been translated into a number of different languages such as Python, SciLab and LabView.

The Toolboxes have some important virtues. Firstly, they have been around for a long time and used by many people for many different problems so the code is entitled to some level of trust. The Toolbox provides a "gold standard" with which to compare new algorithms or even the same algorithms coded in new languages or executing in new environments.

Secondly, they allow the user to work with real problems, not trivial examples. For real robots, those with more than two links, or real images with millions of pixels the computation is beyond unaided human ability. Thirdly, they allow us to gain insight which is otherwise lost in the complexity. We can rapidly and easily experiment, play what if games, and depict the results graphically using MATLAB®'s powerful display tools such as 2D and 3D graphs and images.

Fourthly, the Toolbox code makes many common algorithms tangible and accessible. You can read the code, you can apply it to your own problems, and you can extend it or rewrite it. At the very least it gives you a headstart.

The Toolboxes were always accompanied by short tutorials as well as reference material. Over the years many people have urged me to turn this into a book and finally it has happened! The purpose of this book is to expand on the tutorial material provided with the Toolboxes, add many more examples, and to weave it into a narrative that covers robotics and computer vision separately and together. I want to show how complex problems can be decomposed and solved using just a few simple lines of code.

By inclination I am a *hands on* person. I like to program and I like to analyze data, so it has always seemed natural to me to build tools to solve problems in robotics and vision. The topics covered in this book are based on my own interests but also guided by real problems that I observed over many years as a practitioner of both robotics and computer vision. I hope that by the end of this book you will share my enthusiasm for these topics.

I was particularly motivated to present a solid introduction to machine vision for roboticists. The treatment of vision in robotics textbooks tends to concentrate on simple binary vision techniques. In the book we will cover a broad range of topics including color vision, advanced segmentation techniques such as maximally stable extremal regions and graphcuts, image warping, stereo vision, motion estimation and image retrieval. We also cover non-perspective imaging using fisheye lenses and catadioptric optics. These topics are growing in importance for robotics but are not commonly covered. Vision is a powerful sensor, and roboticists should have a solid grounding in modern fundamentals. The last part of the book shows how vision can be used as the primary sensor for robot control.

This book is unlike other text books, and deliberately so. Firstly, there are already a number of excellent text books that cover robotics and computer vision separately and in depth, but few that cover both in an integrated fashion. Achieving this integration is a principal goal of this book.

Respectively the trademarks of The Mathworks Inc., Wolfram Research, and PTC. Secondly, software is a first-class citizen in this book. Software is a tangible instantiation of the algorithms described – it can be read and it can be pulled apart, modified and put back together again. There are a number of classic books that use software in this illustrative fashion for problem solving. In this respect I've been influenced by books such as LaTeX: A document preparation system (Lamport 1994), Numerical Recipes in C (Press et al. 2007), The Little Lisper (Friedman et al. 1987) and Structure and Interpretation of Classical Mechanics (Sussman et al. 2001). The many examples in this book illustrate how the Toolbox software can be used and generally provide instant gratification in just a couple of lines of MATLAB® code.

Thirdly, building the book around MATLAB® and the Toolboxes means that we are able to tackle more realistic and more complex problems than other books.

The emphasis on software and examples does not mean that rigour and theory are unimportant, they are very important, but this book provides a complementary approach. It is best read in conjunction with standard texts which provide rigour and theoretical nourishment. The end of each chapter has a section on further reading and provides pointers to relevant textbooks and key papers.

Writing this book provided a good opportunity to look critically at the Toolboxes and to revise and extend the code. In particular I've made much greater use of the ever-evolving object-oriented features of MATLAB® to simplify the user interface and to reduce the number of separate files within the Toolboxes.

The rewrite also made me look more widely at complementary open-source code. There is a lot of great code out there, particularly on the computer vision side, so rather than reinvent some wheels I've tried to integrate the best code I could find for particular algorithms. The complication is that every author has their own naming conventions and preferences about data organization, from simple matters like the use of row or column vectors to more complex issues involving structures – arrays of structures or structures of arrays. My solution has been, as much as possible, to not modify any of these packages but to encapsulate them with light weight wrappers, particularly as classes.

I am grateful to the following for code that has been either incorporated into the Toolboxes or which has been wrapped into the Toolboxes. Robotics Toolbox contributions include: mobile robot localization and mapping by Paul Newman at Oxford and a quadcopter simulator by Paul Pounds at Yale. Machine Vision Toolbox contributions include: RANSAC code by Peter Kovesi; pose estimation by Francesco Moreno-Noguer, Vincent Lepetit, Pascal Fua at the CVLab-EPFL; color space conversions by Pascal Getreuer; numerical routines for geometric vision by various members of the Visual Geometry Group at Oxford (from the web site of the Hartley and Zisserman book; Hartley and Zisserman 2003); the *k*-means and MSER algorithms by Andrea Vedaldi and Brian Fulkerson; the graph-based image segmentation software by Pedro Felzenszwalb; and the SURF feature detector by Dirk-Jan Kroon at U. Twente. The Camera Calibration Toolbox by Jean-Yves Bouguet is used unmodified.

Along the way I got interested in the mathematicians, physicists and engineers whose work, hundreds of years later, is critical to the science of robotic and vision today. Some of their names have become adjectives like Coriolis, Gaussian, Laplacian or Cartesian; nouns like Jacobian, or units like Newton and Coulomb. They are interesting characters from a distant era when science was a hobby and their day jobs were as doctors, alchemists, gamblers, astrologers, philosophers or mercenaries. In order to know whose shoulders we are standing on I have included small vignettes about the lives of these people – a smattering of history as a backstory.

In my own career I have had the good fortune to work with many wonderful people who have inspired and guided me. Long ago at the University of Melbourne John Anderson fired my interest in control and Graham Holmes encouraged me to "think before I code" – excellent advice that I sometimes heed. Early on I spent a life-direction-changing ten months working with Richard (Lou) Paul in the GRASP laboratory at the University of Pennsylvania in the period 1988–1989. The genesis of the Toolboxes was my

PhD research and my advisors Malcolm Good (University of Melbourne) and Paul Dunn (CSIRO) asked me good questions and guided my research. Laszlo Nemes provided sage advice about life and the ways of organizations and encouraged me to publish more and to open-source my software. Much of my career was spent at CSIRO where I had the privilege and opportunity to work on a diverse range of real robotics projects and to work with a truly talented set of colleagues and friends. Mid book I joined Queensland University of Technology which has generously made time available to me to complete the project. My former students Jasmine Banks, Kane Usher, Paul Pounds and Peter Hansen taught me a lot of about stereo, non-holonomy, quadcopters and wide-angle vision respectively.

I would like to thank Paul Newman for generously hosting me several times at Oxford where significant sections of the book were written, and Daniela Rus for hosting me at MIT for a burst of intense writing that was the first complete book draft. Daniela, Paul and Cédric Pradalier made constructive suggestions and comments on early drafts of the material. I would also like to thank the MathWorks, the publishers of MATLAB® for the support they offered me through their author program. Springer have been enormously supportive of the whole project and a pleasure to work with. I would specially like to thank Thomas Ditzinger, my editor, and Armin Stasch for the layout and typesetting which has transformed my manuscript into a book.

I have tried my hardest to eliminate errors but inevitably some will remain. Please email me bug reports as well as suggestions for improvements and extensions.

Finally, it can't be easy living with a writer – there are books and websites devoted to this topic. My deepest thanks are to Phillipa for supporting and encouraging me in the endeavour and living with "the book" for so long and in so many different places.

Peter Corke Brisbane, Queensland June 2011

Contents

1	Introdu	ıction	1
1.1	About t	he Book	6
	1.1.1	The MATLAB Software	7
	1.1.2	Audience and Prerequisites	8
	1.1.3	Notation and Conventions	9
	1.1.4	How to Use the Book	9
	1.1.5	Teaching with the Book	
	1.1.6	Outline	10
	Part I	Foundations	13
2	Repres	enting Position and Orientation	15
2.1	Represe	enting Pose in 2-Dimensions	19
2.2	Represe	enting Pose in 3-Dimensions	
	2.2.1	Representing Orientation in 3-Dimensions	25
	2.2.2	Combining Translation and Orientation	
2.3	Wrappi	ng Up	39
	Further	Reading	40
	Exercis	es	41
3	Time a	nd Motion	43
3.1	Trajecto	ories	
	3.1.1	Smooth One-Dimensional Trajectories	
	3.1.2	Multi-Dimensional Case	
	3.1.3	Multi-Segment Trajectories	
	3.1.4	Interpolation of Orientation in 3D	
	3.1.5	Cartesian Motion	
3.2	Time V	arying Coordinate Frames	
	3.2.1	Rotating Coordinate Frame	
	3.2.2	Incremental Motion	
	3.2.3	Inertial Navigation Systems	
3.3		ng Up	
		Reading	
	Exercis	es	56
	Part II	Mobile Robots	59
4		Robot Vehicles	
4.1		у	
4.2	Car-like	e Mobile Robots	
	4.2.1	Moving to a Point	
	4.2.2	Following a Line	
	4.2.3	Following a Path	
	4.2.4	Moving to a Pose	75

4.3	Flying Robots	78
4.4	Wrapping Up	84
	Further Reading	84
	Exercises	85
5	Navigation	87
5.1	Reactive Navigation	88
	5.1.1 Braitenberg Vehicles	
	5.1.2 Simple Automata	
5.2	Map-Based Planning	
	5.2.1 Distance Transform	
	5.2.2 D*	
	5.2.3 Voronoi Roadmap Method	
	5.2.4 Probabilistic Roadmap Method	
	5.2.5 RRT	
5.3	Wrapping Up	
3.3	Further Reading	
	Exercises	
	LACICISCS	. 100
6	Localization	107
6.1	Dead Reckoning	
0.1	6.1.1 Modeling the Vehicle	
	6.1.2 Estimating Pose	
6.2	Using a Map	
6.3	Creating a Map	
6.4	Localization and Mapping	
6.5	Monte-Carlo Localization	
6.6	Wrapping Up	
	Further Reading	
	Notes on Toolbox Implementation	
	Exercises	. 130
	Part III Arm-Type Robots	122
	Part III Arm-Type Robots	. 133
7	Robot Arm Kinematics	125
•		
7.1 7.2	Describing a Robot Arm	
1.2	Forward Kinematics 7.2.1 A 2-Link Robot	
7.3		
7.3		
	7.3.1 Closed-Form Solution	
	7.3.2 Numerical Solution	
	7.3.3 Under-Actuated Manipulator	
7.4	7.3.4 Redundant Manipulator	
7.4	Trajectories	
	7.4.1 Joint-Space Motion	
	7.4.2 Cartesian Motion	
	7.4.3 Motion through a Singularity	
	7.4.4 Configuration Change	
7.5	Advanced Topics	
	7.5.1 Joint Angle Offsets	
	7.5.2 Determining Denavit-Hartenberg Parameters	
	7.5.3 Modified Denavit-Hartenberg Notation	
7.6	Application: Drawing	. 162

7.7	Applicat	ion: a Simple Walking Robot	
	7.7.1	Kinematics	3
	7.7.2	Motion of One Leg	5
	7.7.3	Motion of Four Legs	6
7.8	Wrappir	ng Up	7
	Further	Reading	8
	The plot	t Method 16	8
	Exercise	s	0
8	Velocity	Relationships 17	1
8.1		lator Jacobian	
	8.1.1	Transforming Velocities	
		between Coordinate Frames	4
	8.1.2	Jacobian in the End-Effector Coordinate Frame	
	8.1.3	Analytical Jacobian	
	8.1.4	Jacobian Condition and Manipulability	
8.2	Resolved	d-Rate Motion Control	
	8.2.1	Jacobian Singularity	
	8.2.2	Jacobian for under-Actuated Robot	
	8.2.3	Jacobian for over-Actuated Robot	
8.3	Force Re	elationships	
0.0	8.3.1	Transforming Wrenches between Frames	
	8.3.2	Transforming Wrenches to Joint Space	
8.4		Kinematics: a General Numerical Approach	
8.5		ng Up	
0.0		Reading	
		reading 18	
	211010100	2	
9	Dynami	cs and Control	1
9 9.1		cs and Control	
		ns of Motion	1
	Equation	ns of Motion	1
	Equation 9.1.1	ns of Motion	1 3 5
	Equation 9.1.1 9.1.2	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19	1 3 5 6
	Equation 9.1.1 9.1.2 9.1.3	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19	1 3 5 6 7
	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19	1 13 15 16 17 18
9.1	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19	1 3 5 6 7 8
	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20	1 3 5 6 7 8 8
9.1	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20	1 3 5 6 7 8 8 0
9.1 9.2 9.3	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20	1 13 15 16 17 18 18 10 11 12
9.1	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20	13 15 16 17 18 10 11 12 14
9.1 9.2 9.3	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20	13 15 16 17 18 18 10 11 12 14 14
9.1 9.2 9.3	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20	1 3 5 6 7 8 8 0 1 2 4 4 4
9.1 9.2 9.3	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21	1356788012441
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21	1 3 5 6 7 8 8 0 1 2 4 4 1 3
9.1 9.2 9.3	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappin	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21	135678801244135
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappin	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21	1 3 5 6 7 8 8 0 1 2 4 4 4 1 3 5 6
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21	1 3 5 6 7 8 8 0 1 2 4 4 4 1 3 5 6
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further Exercise	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21 res 21	13567880124413567
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further Exercise	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21	13567880124413567
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further Exercise	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 rigular Place 21 Reading 21 res 21 Computer Vision 21	13567880124413567
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further Exercise Part IV	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21 rs 21 Computer Vision 21 and Color 22	135678801244413567 9 3
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further Exercises Part IV	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21 rs 21 Computer Vision 21 nd Color 22 Representation of Light 22	11 13 15 16 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
9.1 9.2 9.3 9.4	Equation 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Drive Tr 9.2.1 Forward Manipul 9.4.1 9.4.2 9.4.3 9.4.4 Wrappir Further Exercise Part IV	ns of Motion 19 Gravity Term 19 Inertia Matrix 19 Coriolis Matrix 19 Effect of Payload 19 Base Force 19 Dynamic Manipulability 19 rain 20 Friction 20 I Dynamics 20 lator Joint Control 20 Actuators 20 Independent Joint Control 20 Rigid-Body Dynamics Compensation 21 Flexible Transmission 21 ng Up 21 Reading 21 rs 21 Computer Vision 21 and Color 22	11 13 15 16 16 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19

1	0.2	Color .		
		10.2.1	Reproducing Colors	230
		10.2.2	Chromaticity Space	233
		10.2.3	Color Names	236
		10.2.4	Other Color Spaces	236
		10.2.5	Transforming between Different Primaries	238
		10.2.6	What Is White?	240
1	0.3	Advance	ed Topics	240
		10.3.1	Color Constancy	241
		10.3.2	White Balancing	
		10.3.3	Color Change Due to Absorption	
		10.3.4	Gamma	
		10.3.5	Application: Color Image	
1	0.4	Wrappin	ng Up	
			Reading	
			urces	
			28	
1	11	Image F	Formation	2.51
	1.1		tive Transform	
		11.1.1	Lens Distortion	
1	1.2	Camera	Calibration	
		11.2.1	Homogeneous Transformation Approach	
		11.2.2	Decomposing the Camera Calibration Matrix	
		11.2.3	Pose Estimation	
		11.2.4	Camera Calibration Toolbox	
1	1.3		respective Imaging Models	
		11.3.1	Fisheye Lens Camera	
		11.3.2	Catadioptric Camera	
		11.3.3	Spherical Camera	
1	1.4		Imaging	
-		11.4.1	Mapping Wide-Angle Images	2, 5
		111111	to the Sphere	2.76
		11.4.2	Synthetic Perspective Images	
1	15		ng Up	
-	1.5		Reading	
			Classes	
			28	
		LACTOISC		200
1	2	Image F	Processing	285
	2.1	_	ng an Image	
-	2.1	12.1.1	Images from Files	
		12.1.2	Images from an Attached Camera	
		12.1.3	Images from a Movie File	
		12.1.4	Images from the Web	
		12.1.5	Images from Code	
1	2.2		C Operations	
			Operations	
			Operations	
J	2.4			
		12.4.1	Convolution	
		12.4.2	Template Matching	
	2.5	12.4.3	Non-Linear Operations	
J	2.5		natical Morphology Noise Removal	317
		17.31	NOISE REHIOVAL	7/1

	12.5.2 Boundary Detection	
12.6	Shape Changing	 324
	12.6.1 Cropping	 324
	12.6.2 Image Resizing	 324
	12.6.3 Image Pyramids	
	12.6.4 Image Warping	
12.7	Wrapping Up	
	Further Reading	
	Sources of Image Data	
	MATLAB® Software Tools	
	General Software Tools	
	Exercises	 333
13	Image Feature Extraction	335
13.1	Region Features	
13.1	13.1.1 Classification	
	13.1.2 Representation	
	13.1.3 Description	
	13.1.4 Recap	
13.2	Line Features	
	Point Features	
1010	13.3.1 Classical Corner Detectors	
	13.3.2 Scale-Space Corner Detectors	
13.4	Wrapping Up	
	Further Reading	
	Exercises	
14	Using Multiple Images	 381
14.1	Feature Correspondence	 381 382
	Feature Correspondence Geometry of Multiple Views	 381 382 386
14.1	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix	 381 382 386 388
14.1	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix	 381 382 386 388 390
14.1	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix	 381 382 386 388 390 391
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography	 381 382 386 388 390 391 396
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision	 381 382 386 388 390 391 396 401
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo	 381 382 386 388 390 391 396 401 401
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching	 381 382 386 388 390 391 396 401 401 405
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement	 381 382 386 388 390 391 396 401 401 405 412
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction	381 382 386 388 390 391 396 401 405 412 413
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display	381 382 386 388 390 391 401 401 405 412 413 415
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs	381 382 386 388 390 391 401 405 412 413 415 416
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification	381 382 386 388 390 391 396 401 405 412 413 415 416 417
14.1 14.2	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting	381 382 386 388 390 391 396 401 405 412 413 415 416 417
14.1 14.2 14.3	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points	381 382 386 388 390 391 401 405 412 413 415 416 417 419 420
14.1 14.2 14.3	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion	381 382 386 388 390 391 396 401 405 412 413 415 416 417 419 420 422
14.1 14.2 14.3	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion Application: Perspective Correction	381 382 386 388 390 391 396 401 405 412 413 415 416 417 419 420 422 428
14.1 14.2 14.3 14.4 14.5 14.6	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion Application: Perspective Correction Application: Mosaicing	381 382 386 388 390 391 396 401 405 412 413 415 416 417 420 422 428 431
14.1 14.2 14.3 14.4 14.5 14.6 14.7	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion Application: Perspective Correction Application: Mosaicing Application: Image Matching and Retrieval	381 382 386 388 390 391 401 405 412 413 416 417 420 422 428 431 433
14.1 14.2 14.3 14.3 14.4 14.5 14.6 14.7 14.8	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion Application: Perspective Correction Application: Mosaicing Application: Image Matching and Retrieval Application: Image Sequence Processing	381 382 386 390 391 396 401 405 412 413 415 416 417 420 422 428 431 433 439
14.1 14.2 14.3 14.4 14.5 14.6 14.7	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion Application: Perspective Correction Application: Mosaicing Application: Image Matching and Retrieval Application: Image Sequence Processing Wrapping Up	381 382 386 390 391 396 401 405 412 413 415 416 422 428 431 433 439 442
14.1 14.2 14.3 14.3 14.4 14.5 14.6 14.7 14.8	Feature Correspondence Geometry of Multiple Views 14.2.1 The Fundamental Matrix 14.2.2 The Essential Matrix 14.2.3 Estimating the Fundamental Matrix 14.2.4 Planar Homography Stereo Vision 14.3.1 Sparse Stereo 14.3.2 Dense Stereo Matching 14.3.3 Peak Refinement 14.3.4 Cleaning up and Reconstruction 14.3.5 3D Texture Mapped Display 14.3.6 Anaglyphs 14.3.7 Image Rectification 14.3.8 Plane Fitting 14.3.9 Matching Sets of 3D Points Structure and Motion Application: Perspective Correction Application: Mosaicing Application: Image Matching and Retrieval Application: Image Sequence Processing	381 382 386 390 391 396 401 405 412 413 415 416 422 428 431 433 439 442 442

	Part V	Robotics, Vision and Control	451
15	Vision-E	Based Control	455
15.1	Position	n-Based Visual Servoing	456
15.2		Based Visual Servoing	
	15.2.1	Camera and Image Motion	
	15.2.2	Controlling Feature Motion	
	15.2.3	Depth	
	15.2.4	Performance Issues	
15.3		Other Image Features	
10.0	15.3.1		
	15.3.2		
15 /		ng Up	
13.4		Reading	
		Reading	
	Exercise	:5	4/0
16		ed Visual Servoing	
16.1		artitioned IBVS	
16.2		sing Polar Coordinates	
16.3		r a Spherical Camera	
16.4	Applicat	tion: Arm-Type Robot	488
16.5		tion: Mobile Robot	
	16.5.1	Holonomic Mobile Robot	489
	16.5.2	Non-Holonomic Mobile Robot	491
16.6	Applicat	tion: Aerial Robot	492
16.7	Wrappin	ng Up	494
	Further	Reading	494
	Exercise	es	495
	Append	dices	497
Λ.	المعدماانس	ng the Toolboxes	400
A B		ık®	
_			
C		B® Objects	
D	Linear F	Algebra Refresher	511
E	Ellipses	n Dan dan Wadahla	51/
F		n Random Variables	
G		ns	
H		Filter	
I .		eneous Coordinates	
J	Graphs		
K	Peak Fir	nding	539
	Bibliog	raphy	543
	Indev		552
		f People	
		•	
	General	f Functions, Classes and Methods	554 558

Nomenclature

The notation used in robotics and computer vision varies considerably from book to book. The symbols used in this book, and their units where appropriate, are listed below. Some symbols have multiple meanings and their context must be used to disambiguate them.

The elements of a vector $\boldsymbol{x}[i]$ or a matrix $\boldsymbol{x}[i,j]$ are indicated by square brackets. The elements of a time series $\boldsymbol{x}\langle k \rangle$ are indicated by angle brackets.

Symbol	Description	Unit
\hat{x}	an estimate of x	
\bar{x}	mean of x or relative value	
x^*	desired value of x	
$oldsymbol{v}$	a vector	
$\hat{m{v}}$	a unit-vector parallel to $oldsymbol{v}$	
v	scalar norm or length of the vector $oldsymbol{v}$	
4	scalar norm of the quaternion \mathring{q}	
$ ilde{oldsymbol{v}}$	homogeneous representation of vector $oldsymbol{v}$	
ν_x	a component of a vector	
$\boldsymbol{v}_1 \cdot \boldsymbol{v}_2$	dot, or inner, product, also $oldsymbol{v}_1^Toldsymbol{v}_2$	
$\boldsymbol{v}_1 \times \boldsymbol{v}_2$	cross, or vector, product	
\boldsymbol{A}	a matrix	
A^{-1}	inverse of A	
A^+	pseudo-inverse of A	
\boldsymbol{A}^T	transpose of A	
A^{-T}	transpose of inverse A	
$A_{i,j}$	the element (i, j) of A	
A[i, j]	the element (i, j) of A	
F(x)	a function of x	
$F_x(x)$	the derivative $\partial F/\partial x$	
В	viscous friction coefficient	N m s rad ⁻¹
e	configuration space of a robot	
C	camera matrix, $C \in \mathbb{R}^{3 \times 4}$	
$C(q,\dot{q})$	manipulator centripetal and Coriolis term	$kg m^2 s^{-1}$
\mathbb{C}	the set of complex numbers	
$\mathcal{D}(\cdot)$	manipulator dynamics function: $oldsymbol{Q},oldsymbol{q},oldsymbol{q}\mapsto\ddot{oldsymbol{q}}$	
$\Delta(\xi)$	maps incremental pose change to differential motion: $SE(3) \mapsto \mathbb{R}^6$	
$\Delta^{-1}(\delta)$	maps differential motion to incremental pose change: $\mathbb{R}^6 \mapsto SE(3)$	
E	illuminance (lux)	lx
f	focal length	m
f	force	N
f	vector of image features	

Symbol	Description	Unit
$F(\dot{q})$	friction torque	N m
ϕ	luminous flux (lumens)	lm
g	wrench, a vector of forces and moments $(f_x, f_y, f_z, m_x, m_y, m_z)$	N, Nm
G(q)	manipulator gravity loading term	N m
γ	robot steering angle	rad
Γ	3-angle representation of rotation, $\Gamma \in \mathbb{R}^3$	rad
$oldsymbol{\Gamma}$	body torque $\Gamma \in \mathbb{R}^3$	N m
$I_{n \times n}$	$n \times n$ identity matrix	
J	inertia	kg m ²
J	inertia tensor, 3×3 matrix	kg m ²
J	Jacobian matrix	
$^{A}J_{B}$	Jacobian transforming velocities in frame A to frame B	
k, K	constant	
K	camera calibration matrix	
K_i	amplifier gain (transconductance)	A V ⁻¹
$K_{\rm m}$	motor torque constant	N m A ⁻¹
$\mathcal{K}(\cdot)$	forward kinematics	
$\mathcal{K}^{-1}(\cdot)$	inverse kinematics	
L	luminance (nit)	nt
λ	wavelength	m
λ	an eigenvalue	
m_i	mass of link i	kg
$\mathbf{M}(q)$	manipulator inertia matrix	kg m ²
p -	an image plane point	
P	a world point	
\mathbb{P}^2	the projective space of all 2-D points, a 3-tuple	
\mathbb{P}^3	the projective space of all 3-D points, a 4-tuple	
$\mathcal{P}(\cdot)$	projection function: $\mathbb{R}^3 \mapsto \mathbb{R}^2$	
å °()	quaternion	
$\mathring{q}(v)$	pure quaternion of vector v	,
q	configuration, generalized coordinates	m, rad N, Nm
Q	generalized force	
ρ_w, ρ_h	pixel width and height	m
R	an orthonormal rotation matrix, $R \in SO(2)$ or $SO(3)$ set of real numbers	
\mathbb{R}^2		
\mathbb{R}^3	the space of all 2-D points the space of all 3-D points	
S	Laplace transform operator	
S	set of all angles in the circle $[0, 2\pi)$	
SE(n)	special Euclidean group (all poses) in n dimensions	
SO(n)	special orthogonal group, the set of all orientations in n dimensions	
S(v)	skew symmetric matrix of v	
s_i	COM of link i with respect to the link i coordinate frame	m
$oldsymbol{S}_i$	first moment of link i . $S_i = m_i s_i$	kg m
σ	standard deviation	0
σ	robot joint type, $\sigma = 0$ for revolute and $\sigma = 1$ for prismatic	
t	time	S

Symbol	Description	Unit
T	sample interval	s
T	temperature	K
T	optical transmission	
T	homogeneous transformation, $T \in SE(2)$ or $SE(3)$	
$^{A}T_{B}$	homogeneous transform representing frame $\{B\}$ with respect to frame $\{A\}$. If A is not given then assumed relative to world coordinate frame 0. Note that ${}^AT_B = ({}^BT_A)^{-1}$	
θ	angle	rad
θ	vector of angles, generally robot joint angles	rad
$\theta_r, \theta_p, \theta_y$	roll pitch yaw angles	rad
τ	torque	N m
$ au_{C}$	Coulomb friction torque	N m
u, v	camera image plane coordinates	pixels
$\overline{u}, \overline{v}$	normalized image plane coordinates, relative to the principal point	m
u_0, v_0	coordinates of the principal point	pixels
ν	velocity	m s ⁻¹
$oldsymbol{v}$	velocity vector	m s ⁻¹
ν	innovation	
ν	velocity screw, $\nu \in \mathbb{R}^6$, $\nu = (\nu_x, \nu_y, \nu_z, \omega_x, \omega_y, \omega_z)$	
ω	rotational rate	rad s ⁻¹
ω	angular velocity vector	rad s ⁻¹
X, Y, Z	Cartesian coordinates	
ξ	abstract representation of 3-dimensional Cartesian pose (pronounced ksi)	
A_{ξ_B}	abstract representation of 3-dimensional relative pose, frame $\{B\}$ with respect to frame $\{A\}$	
ν	Cartesian velocity screw (v_x , v_y , v_z , ω_x , ω_y , ω_z)	
\bar{x}, \bar{y}	normalized image-plane coordinates	
$0_{m \times n}$	an $m \times n$ matrix of zeros	
$1_{m \times n}$	an $m \times n$ matrix of ones	
\mathbb{Z}	the set of all integers	
\mathbb{Z}^+	the set of all integers greater than zero	
\sim	equivalence of representations	
\simeq	homogeneous coordinate equivalence	
\oplus	pose composition operator	
=	colormetric equivalence	
Θ	inverse of a pose (unary operator)	
•	transformation of a point by a relative pose, e.g. $\boldsymbol{\xi} \cdot \boldsymbol{p}$	
\ominus	smallest angular difference on a circle	rad
\otimes	convolution	
\oplus	morphological dilation	
\ominus	morphological erosion	
0	morphological opening	
•	morphological closing	
$\{F\}$	coordinate frame F	
[<i>a</i> , <i>b</i>]	interval a to b inclusive	
(<i>a</i> , <i>b</i>)	interval a to b , not including a or b	
[<i>a</i> , <i>b</i>)	interval a to b , not including b	
(<i>a</i> , <i>b</i>]	interval a to b exclusive, not including a	

MATLAB® Toolbox Conventions

- A Cartesian coordinate, a point, is expressed as a column vector.
- A set of points is expressed as a matrix with columns representing the coordinates of individual points.
- A robot configuration, a set of joint angles, is expressed as a row vector.
- Time series data is expressed as a matrix with rows representing time steps.