

九十四學年第二學期 普通物理B 期末考試題 [Benson Ch. 33, 34, 39-41] 2006/06/20, 8:30AM - 10:00AM

- 0.【5分】依下面說明在答案卷上作答者,可得5分
- (i) 由第二張紙開始算起,第一頁依空格號碼順序寫下所有填充題答案,<u>寫在他頁不記分</u>
- (ii) 計算題之演算過程與答案依題號順序寫在第二頁以後,原則上一題寫一頁(兩頁以上需清楚 註記題號)。每題從新的一頁寫起。

------可利用答案卷多餘的頁面計算,但不可與答案區混淆-------

Part I. 填充題 (每格3%, 共45%)

- Give the ascending order of photon energy of visible light, ultraviolet (UV), and microwaves [1].
- The surface temperature of sun (viewed as a blackbody) is 6000 K and its thermal radiation peaks at 500 nm. For a blackbody at 300 K its thermal radiation peaks at [2].
- Write down briefly the Bohr's correspondence principle or alternatively give an example of radiation law or special relativity theory to explain the principle. [3].
- What is the minimum uncertainty in the position of each of the following particles if the speed is measured to an uncertainty of 0.1%? (a) An electron moving at $(10/27)\times10^7$ m/s, 4; (b) A 10-g bullet moving at $(5/3)\times10^2$ m/s, 5. Use $\frac{1}{2}$ use $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ use $\frac{1}{2}$ and $\frac{1}{2}$ use $\frac{1}{2}$ and $\frac{1}{2}$ use $\frac{1}{2}$ us
- A particle has momentum p, its de Broglie's wavelength is [6].
- Write down the two postulates of the theory of special relativity. [7] and [8].
- (a) In special relativity, mass is one form of energy. Given $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$, light speed $c = 3.0 \times 10^8 \text{ m/s}$ and the rest mass of electron $m_e = 9.1 \times 10^{-31} \text{ kg}$, then m_e is [8] MeV. (b) In an accelerator, an electron moves at a speed of 0.8 c, its total energy = [10] MeV and its kinetic energy = [11] MeV.
- The period of a pendulum is measured to be 1.00 s in the reference frame of the pendulum. What is the period when measured by an observer moving at a speed of 0.6 c relative to the pendulum? 12].
- A 10- Ω speaker, powered at 40 W rms, is connected via a transformer to an amplifier whose impedance is 1 k Ω . Under the condition of impedance matching, find: (a) the required turn ratio $N_2/N_1 = 131$, (b) the potential difference across the speaker 14.
- In the Ampere-Maxwell equation: $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0(I + I_D)$, I_D is the displacement current. Express I_D in terms of electrical flux [15].

Part II. 計算題 (共55%)

- 1. A particle of mass m moves in a one-dimensional box of length L. If the ground state wavefunction is given by $\psi(x) = A\sin(\pi x/L)$.
 - (a) What is the wavelength?
 - (b) Evaluate A by using the normalization condition.
 - (c) Calculate the probability to find the particle from L/4 to L/2.
 - (3%, 5%, 5%)
- 2. The electric field of a plane wave is given by $E_y = 60 \sin[\pi(0.8x + 2.4 \times 10^8 t)] \text{ V/m}$. Find:
 - (a) The average energy density of the plane wave;
 - (b) The amplitude and direction of the magnetic field;
 - (c) The amplitude and direction of the average Poynting vector;
 - (d) The average radiation pressure at normal incidence on a perfectly reflecting mirror.
 - $(\underline{\varepsilon_0} = 9 \times 10^{-12} \text{ F/m}). (4\% \text{ each})$
- 3. In the Bohr model of the hydrogen atom, use the third postulate the angular momentum of the electron orbital is quantized by $mvr = n\hbar - to$ obtain
 - (a) the electron radius of circular orbital r_n , and
 - (b) the electron total energy of the n-th orbital E_n in terms of m, k, e, n, and n. (5% each)
- 4. A resistor, an inductor, and a capacitor are in parallel with an ac source, as shown in the right figure.
 - (a) What is the relationship between the instantaneous potential differences across the elements?
 - (b) How are the instantaneous currents related?
 - (c) Use the phasor diagram for the currents drawn in the figure to find the resultant impedance.
 - (d) What is the resonance frequency at which the impedance is a maximum?
 - (4% each)

A:

[1]	[2]	[3] 0.51	[4] 0.85
[5] 0.34	[6] 1.25 s	【7】 0.1	[8] 20 V
[9] $\epsilon_0 \Phi_E/dt$	[10] microwave < visible < UV	【11】10µm	[12]
[13] 0.2µm	$[14] 4 \times 10^{-31} \text{ m}$	【15】 h/p	

[1]: All physical laws have the same form in all inertial frames.

[2]: The speed of light in free space is the same in all inertial frames.

[12]: In the limit the results of a new theory correspond to classical physics. For instances, Planck's radiation law reduces to the classical Rayleigh-Jeans formula when h approaches zero. In the special theory of relativity, the Lorentz transformation reduces to the Galilean transformation when $v \ll c$.

B:

[1] microwave < visible < UV	[2] 10µm	[3]	[4] 0.2µm
$[5] 4 \times 10^{-31} \text{ m}$	[6] h/p	[7]	[8]
[9] 0.51	【10】 0.85	[11] 0.34	【12】1.25 s
[13] 0.1	【14】20 V	[15] $\epsilon_0 \Phi_E/dt$	

[3]: In the limit the results of a new theory correspond to classical physics. For instances, Planck's radiation law reduces to the classical Rayleigh-Jeans formula when h approaches zero. In the special theory of relativity, the Lorentz transformation reduces to the Galilean transformation when $v \ll c$.

[7] : All physical laws have the same form in all inertial frames.

[8]: The speed of light in free space is the same in all inertial frames.

Part II

1. (a)
$$2L \circ$$

$$1 = \int_{0}^{L} \psi^{2} dx = A^{2} \int_{0}^{L} \sin^{2} \frac{\pi x}{L} dx = \frac{A^{2}}{2} \int_{0}^{L} (1 - \cos \frac{2\pi x}{L}) dx = \frac{A^{2}}{2} (x - \frac{L}{2\pi} \sin \frac{2\pi x}{L}) \Big|_{0}^{L} = \frac{A^{2}}{2} L$$

$$\therefore A = \sqrt{\frac{2}{L}}$$

$$P(\frac{L}{4} \to \frac{L}{2}) = \int_{L/4}^{L/2} \psi^2 dx = \frac{1}{L} \left(x - \frac{L}{2\pi} \sin \frac{2\pi x}{L} \right) \Big|_{L/4}^{L/2} = \frac{1}{4} + \frac{1}{2\pi}$$

$$= 0.41 \circ$$

2. (a)
$$u_{av} = \varepsilon_0 E_0^2 / 2 = 0.5 \times 9 \times 10^{-12} \times (60)^2 = 1.62 \times 10^{-8} \text{ (J/m}^3)$$

(b)
$$B_0 = E_0 / c = (60/3)x10^{-8} = 2x10^{-7}$$
 (T) and along -z axis \circ

(c)
$$S_{av} = u_{av}c = 1.62 \times 10^{-8} \times 3 \times 10^{8} = 4.86 \text{ (W/m}^2)$$
 and along -x axis \circ (d) $F_{av}/A = 2S_{av}/c = 2u_{av} = 3.24 \times 10^{-8} \text{ N/m}^2 \circ$

(d)
$$F_{av}/A = 2S_{av}/c = 2u_{av} = 3.24 \times 10^{-8} \text{ N/m}^2 \text{ s}$$

- 3. (a) $mv^2/r=ke^2/r^2$ and $mvr=n\hbar,$ thus $r=\hbar^2n^2/(mke^2)=r_n$ \circ
 - (b) total energy of electron $E=K+U=mv^2/2-ke^2/r=-ke^2/2r,$ thus $E_n=-ke^2/2r_n=-mk^2e^4/(2\hbar^2n^2)$ \circ
- 4. (a) $v_0 = v_R = v_C = v_L \circ$
 - (b) $i_0 = i_R + i_C + i_L \circ$

(c)
$$i_0^2 = i_{0R}^2 + (i_{0L} - i_{0C})^2 = (\frac{v_0}{R})^2 + (\frac{v_0}{X_L} - \frac{v_0}{X_C})^2$$

$$Z = \frac{v_0}{i_0} = \left\{ \frac{1}{R^2} + \left(\frac{1}{X_L} - \frac{1}{X_C} \right)^2 \right\}^{-1/2}, X_L = \omega L, X_C = \frac{1}{\omega C}$$

(d) when
$$X_L = X_C$$
, $Z = Z_{max}$, thus $\omega_0 = (LC)^{-1/2}$ \circ