Inference for linear regression

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Overview

Quick review of regression models

Inference on regression models

• Confidence intervals and predictions intervals

Regression diagnostics

If there is time: statistics for identifying unusual observations

Linear regression continued...

The process of building regression models

Hadley Wickham

5. Check Model Assumptions

4. Identify Significant Predictors

3. Perform Regression

2. Check Relationships (plots): make transformations

Sisyphus' Five Steps for

Simple Linear Regression

1. Identify Variables : response and predictor

Jonathan Reuning-Scherer

"All models are wrong, but some are useful"
- George Box

The process of building regression models

Choose the form of the model

- Identify the response variable (y) and explanatory variables (x's)
- For exploratory analyses, graphical displays can help suggest the model form

Fit the model to the data

Estimate model parameters, usually using least squares (minimize the SSRes)

Assess how well the model describes the data

- Analyze the residuals, compare to other models, etc.
- If model doesn't fit well, go to step 1.
 - This is as much an art as a science

Use the model to address questions of interest

- Make predictions
- Explore relationships between response variable (y) and explanatory variables (x)
- Keep in mind limitations of the model
 - e.g., can be difficult to make the claim that changes in x cause changes in y from observational data

Review of underlying models and inference

Review: Linear regression

In **linear regression** we fit a regression line to the predict a variable y, from other variables x

• e.g.,
$$\hat{y} = b_0 + b_1 \cdot x$$

Review: Linear regression underlying model

 $=\mu_Y+\epsilon$

Intercept

Slope

Parameters

True regression line: $\mu_Y=eta_0+eta_1x$ Error Observed data point: $Y=eta_0+eta_1x+\epsilon$

Errors ϵ are the difference between the **true** regression line μ_v and observed data points Y

•
$$\epsilon = Y - \mu_V$$

Review: Linear regression underlying model

Slope Intercept **Parameters**

True regression line:

$$\mu_Y = \beta_0 + \beta_1 x$$

Error

Observed data point:

$$Y = \beta_0 + \beta_1 x + \epsilon'$$

Estimated regression line: $\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

Errors ϵ are the difference between the **true regression line** μ_{v} and observed data points Y

•
$$\epsilon = Y - \mu_V$$

Residuals e; are the difference between the estimated regression line ŷ and observed data points Y

•
$$\mathbf{e_i} = \mathbf{Y} - \hat{\mathbf{y}}$$

Review: Standard deviation of the errors: σ_{ε}

The standard deviation of the errors is denoted $\sigma_{arepsilon}$

We can use the **standard deviation of residuals** as an estimate standard deviation of the errors σ_{ϵ} .

- $\hat{\sigma}_{\varepsilon}$ often called the "residual standard error"
- $\hat{\sigma}_{\varepsilon}$ we called it the "residual standard deviation"

$$\hat{\sigma}_{\epsilon} = \sqrt{\frac{1}{n-2} SSRes}$$

$$= \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Review: Hypothesis test for regression coefficients

We can run hypothesis tests to assess whether there is a relationship between y and x, and calculate p-values

- H_0 : $\beta_1 = 0$ (no linear relationship between x and y)
- H_A : $\beta_1 \neq 0$

One type of hypothesis test we can run is based on a tstatistic:

 The t-statistic comes from a t-distribution with n - 2 degrees of freedom

$$\hat{SE}_{\hat{\beta}_{1}} = \frac{\hat{\sigma}_{\epsilon}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \qquad \hat{SE}_{\hat{\beta}_{0}} = \hat{\sigma}_{\epsilon} \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}$$

$$t = \frac{\hat{\beta_1} - 0}{\hat{SE}_{\hat{\beta_1}}}$$

Review: Hypothesis test for regression coefficients

Step 4: Get a p-value by assessing whether our t-statistic comes from a null t-distribution

Review: Inference using parametric methods

When using parametric methods, we make the following (LINE) assumptions:

- **Linearity**: A line can describe the relationship between x and y
- Independence: each data point is independent from the other points
- Normality: errors are normally distributed
- Equal variance (homoscedasticity): constant variance of errors over the whole range of x values

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
$$\epsilon_i \sim N(0, \sigma_{\epsilon})$$

These assumptions are usually checked after the models are fit using 'regression diagnostic' plots.

Review: Simple linear regression in R

Faculty salaries...

```
lm_fit <- lm(salary_tot ~ log_endowment, data = assistant_data)
summary(lm_fit)</pre>
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-26761.7	3118.4	-8.582	<2e-16 ***
log_endowment	11350.1	410.6	27.646	<2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard er or: 13190 on 1173 degrees of freedom

Review: Step 5 - conclusions?

Inference for linear regression: confidence intervals

Inference for linear regression: confidence intervals

We can estimate three types of intervals for a regression:

- 1. Confidence intervals for the regression coefficients: eta_0 and eta_1
- 2. Confidence intervals for the full line $\mu_{v}(x)$

3. Prediction intervals where most of the data is expected

Confidence intervals for regression coefficients

For the slope coefficient , the confidence interval is: $\hat{eta}_1 \pm t^* \cdot SE_{\hat{eta}_1}$

Where:
$$SE_{\hat{\beta_1}} = \frac{\sigma_{\epsilon}}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}}$$

 β_1

 t^* is the critical value for the t_{n-2} density curve needed to obtain a desired confidence level

qt(.975, df) $\begin{array}{c}
N(0, 1) \\
df = 2 \\
df = 5 \\
df = 15
\end{array}$ $\begin{array}{c}
0.4 \\
0.3 \\
0.2 \\
0.1
\end{array}$

Confidence intervals for the regression line μ_{Y}

A confidence interval for the mean response for the *true regression line* μ_{γ} at the value of x^* is:

$$\hat{y} \pm t^* \cdot SE_{\hat{\mu}}$$
 where

$$SE_{\hat{\mu}} = \sigma_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Relationship between log endowment and salary

Note:

- There is more uncertainty at the ends of the regression line
- The confidence interval for the regression line μ_{γ} is different than the confidence interval for slope β_1

Prediction intervals

Confidence intervals give us a measure of uncertain about our the true relationship between x and y for:

- The true regression slope β_1
- The true regression line μ_{Y}

Prediction intervals give us a range of plausible values for y

• i.e., 95% of our y's with be within this range

Prediction intervals

A **prediction intervals** for the y can be calculated using:

$$\hat{y} \pm t^* \cdot SE_{\hat{y}}$$

where

$$SE_{\hat{y}} = \sigma_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Due to y's scattering around the true regression line

Due to uncertainty in where the true regression line is

Summary of confidence and prediction intervals

1. CI for Slope β

$$\hat{\beta}_1 \pm t^* \cdot SE_{\hat{\beta}_1} \qquad SE_{\hat{\beta}_1} = \sigma_{\epsilon} \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

β_1

2. CI for regression line μ_Y at point x^*

$$\hat{y} \pm t^* \cdot SE_{\hat{\mu}} \qquad SE_{\hat{\mu}} = \sigma_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

3. Prediction interval y

$$\hat{y} \pm t^* \cdot SE_{\hat{y}} \qquad SE_{\hat{y}} = \sigma_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Resampling methods for inference in regression

We can also use resampling methods to estimate run hypothesis tests and create confidence intervals for the regression coefficients

Bootstrap

Permutation test

Let's look at inference for simple linear regression in R

More faculty salary data!

• We will start at part 3

Dall-e 2022

Dall-e 2023

We use diagnostics to see if the assumptions/conditions for inference are met

• If they aren't met, we can adjust the model and try again

Choose

Fit

Assess

Use

Let's go through the 4 conditions that should be met when using parametric methods for inference:

- Linearity: A line can describe the relationship between x and y
- Independence: each data point is independent from the other points
- Normality: errors are normally distributed
- **Equal variance (homoscedasticity)**: constant variance of errors over the whole range of x values

Let's go through the 4 conditions that should be met when using parametric methods for inference:

- Linearity: A line can describe the relationship between x and y
- Independence: each data point is independent from the other points
- Normality: errors are normally distributed
- Equal variance (homoscedasticity): constant variance of errors over the whole range of x values

We can check linearity and homoscedasticity by plotting the residuals as a function of the fitted values

Checking linearity and homoscedasticity

Checking normality

Normality: residuals are normally distributed around the predicted value ŷ

We can check this using a Q-Q plot

The 'car' package has a nice function for making qqplots called qqPlot()

Checking Independence

To check whether each data point is independent requires knowledge of how the data was collected

- Simple random sample from the population is likely independent
- Time series often are not independent

We have basically been assuming independence for everything we have done in this class

• i.i.d. independent and identically distributed

Let's examine these diagnostic plots in R!

Statistics for unusual observations

Statistics for unusual observations

There are statistics that are useful for flagging usual observations

- Outliers (large residuals): unusual y values
- **High leverage points**: usual **x** values
- Influential points: both an outlier and a high leverage

Unusual observations can indicate:

- An error in data processing
- A need to modify the model
- An interesting phenomenon

Unusual observations can also have a big effect on the model fit

• E.g., a big effect on $\hat{\beta}_0$ $\hat{\beta}_1$

Leverage

High leverage points are predictors **x** that are far from the mean

We can calculate the leverage a data point has using the statistic:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2}$$

High leverage points can have a big impact on the model that is fit!!!

R: hatvalues()

$$\sum_{i=1}^{n} h_i = 2$$

Typical: $h_i = 2/n$

High: $h_i = 4/n$

Very high: $h_i = 6/n$

Outliers: standardized residuals

The **standardized residual** for the ith data point in a regression model can be computed using:

Makes residuals at the ends a bit larger to deal with the fact that they are 'overfit'

R: rstandard()

Outliers: studentized residuals

The **studentized residual** for the ith data point in a regression model can be computed using:

$$studres_i = \frac{y_i - \hat{y}}{\hat{\sigma}_{(i)}\sqrt{1 - h_i}}$$

Here $\hat{\sigma}_{(i)}$ is the an estimate of $\hat{\sigma}_{\epsilon}$ with the ith point removed

Q: Why might we want to remove the i^{th} point when calculating $\hat{\sigma}_{\epsilon}$?

A: Outliers could have a big effect on our estimate of $\hat{\sigma}_{\epsilon}$

R: rstudent ()

Cook's distance

The amount of influence a point has on a regression line depends on:

- The size of the residual e_i
- The amount of leverage h_i

Cook's distance is a statistic that captures how much influence a point has

on a regression line

$$D_i = \frac{(stdres_i)^2}{k+1} \frac{h_i}{1-h_i}$$

Larger for larger residuals (outliers)

Larger for high leverage points

Where *k* is the number of predictors in the model

R: cooks.distance ()

• For simple linear regression k = 1 (just a single predictor x)

Cook's distance

The amount of influence a point has on a regression line depends on:

- The size of the residual e_i
- The amount of leverage h_i

Cook's distance is a statistic that captures how much influence a point has on

a regression line

$$D_i = \frac{(stdres_i)^2}{k+1} \frac{h_i}{1-h_i}$$

Larger for larger residuals (outliers)

Larger for high leverage points

Rule of thumb:

- Moderately influential: $D_i > 0.5$
- Very influential: D_i > 1

R: cooks.distance ()

Cook's distances for salary ~ log₁₀ (endowment)

plot(lm_fit, 4)

Unusual points rules of thumb

Statistic	Moderately unusual	Very unusual
Leverage, h _i	Above 2(k + 1)/n	Above 3(k + 1)/n
Standardized residual	Beyond ± 2	Beyond ± 3
Studentized residual	Beyond ± 2	Beyond ± 3
Cook's D	Above 0.5	Above 1.0

Where:

- k is the number of explanatory variables
- n is the number of data points

Questions?