

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

## Teknologia Elektronikoa Saila

# KONPUTAGAILUEN ARKITEKTURA 80c552 mikro-kontroladorea

Kudeaketa eta Informazio Sistemen Informatikaren Ingenieritzako Graduaren 3. maila

Irakaslea: Alain Sanchez (alain.sanchez@ehu.eus)

2019-2020, 1. lauhilabetea

## **HELBURUAK**

80c552 familia ezagutzea

80c51-arekiko, 80c552-ak dauzkan ezberdintasunak ulertzea

Zelakoa da 80c552 mikro-kontroladorea?



Zelakoa da 80c552 mikro-kontroladorea?







Zelakoa da 80c552 mikro-kontroladorea?

P0-tik P5 era, byte bateko sei aldagai erabili daitezke

Askoz funtzio gehiago, beraz, askoz pin gehiago

### Zelakoa da 80c552 mikro-kontroladorea?



BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE RII BAO

## 80c552 mikro-kontroladorea

#### 8XC552 OVERVIEW

The 8XC552 is a stand-alone high-performance microcontroller designed for use in real-time applications such as instrumentation, industrial control, and automotive control applications such as engine management and transmission control. The device provides, in addition to the 80C51 standard functions, a number of dedicated hardware functions for these applications.

The 8XC552 single-chip 8-bit microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 8XC552 uses the powerful instruction set of the 80C51. Additional special function registers are incorporated to control the on-chip peripherals. Three versions of the derivative exist although the generic term "8XC552" is used to refer to family members:

83C552: 8k bytes mask-programmable ROM, 256 bytes RAM

87C552: 8k bytes EPROM, 256 bytes RAM

80C552: ROMless version of the 83C552

The 8XC552 contains a nonvolatile  $8k \times 8$  read-only program memory, a volatile  $256 \times 8$  read/write data memory, five 8-bit I/O

#### Differences From the 80C51

#### **Program Memory**

The 8XC552 contains 8k bytes of on-chip program memory which can be extended to 64k bytes with external memories (see Figure 1). When the  $\overline{EA}$  pin is held high, the 8XC552 fetches instructions from internal ROM unless the address exceeds 1FFFH. Locations 2000H to FFFFH are fetched from external program memory. When the  $\overline{EA}$  pin is held low, all instruction fetches are from external memory. ROM locations 0003H to 0073H are used by interrupt service routines.

#### Data Memory

The internal data memory is divided into 3 sections: the lower 128 bytes of RAM, the upper 128 bytes of RAM, and the 128-byte special function register areas. The lower 128 bytes of RAM are directly and indirectly addressable. While RAM locations 128 to 255 and the special function register area share the same address space, they are accessed through different addressing modes. RAM locations 128 to 255 are only indirectly addressable, and the special function registers are only directly addressable. All other aspects of the internal RAM are identical to the 8051

The stack may be located anywhere in the internal RAM by loading the 8-bit stack pointer. Stack depth is 256 bytes maximum.

#### Special Function Registers

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

## 80c552 mikro-kontroladorea

#### 8XC552 OVERVIEW

The 8XC552 is a stand-alone high-performance microcontroller designed for use in real-time applications such as instrumentation, industrial control, and automotive control applications such as engine management and transmission control. The device provides, in addition to the 80C51 standard functions, a number of dedicated hardware functions for these applications.

The 8XC552 single-chip 8-bit microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 8XC552 uses the powerful instruction set of the 80C51. Additional special function registers are incorporated to control the on-chip peripherals. Three versions of the derivative exist although the generic term "8XC552" is used to refer to family members:

83C552: 8k bytes mask-programmable ROM, 256 bytes RAM

87C552: 8k bytes EPROM, 256 bytes RAM

80C552: ROMless version of the 83C552

The 8XC552 contains a nonvolatile  $8k \times 8$  read-only program memory, a volatile  $256 \times 8$  read/write data memory, five 8-bit I/O

#### Differences From the 80C51

#### **Program Memory**

The 8XC552 contains 8k bytes of on-chip program memory which can be extended to 64k bytes with external memories (see Figure 1). When the  $\overline{EA}$  pin is held high, the 8XC552 fetches instructions from internal ROM unless the address exceeds 1FFFH. Locations 2000H to FFFFH are fetched from external program memory. When the  $\overline{EA}$  pin is held low, all instruction fetches are from external memory. ROM locations 0003H to 0073H are used by interrupt service routines.

#### Data Memory

The internal data memory is divided into 3 sections: the lower 128 bytes of RAM, the upper 128 bytes of RAM, and the 128-byte special function register areas. The lower 128 bytes of RAM are directly and indirectly addressable. While RAM locations 128 to 255 and the special function register area share the same address space, they are accessed through different addressing modes. RAM locations 128 to 255 are only indirectly addressable, and the special function registers are only directly addressable. All other aspects of the internal RAM are identical to the 8051

The stack may be located anywhere in the internal RAM by loading the 8-bit stack pointer. Stack depth is 256 bytes maximum.

#### Special Function Registers

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE RII BAO

## 80c552 mikro-kontroladorea

#### 8XC552 OVERVIEW

The 8XC552 is a stand-alone high-performance microcontroller designed for use in real-time applications such as instrumentation, industrial control, and automotive control applications such as engine management and transmission control. The device provides, in addition to the 80C51 standard functions, a number of dedicated hardware functions for these applications.

The 8XC552 single-chip 8-bit microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 8XC552 uses the powerful instruction set of the 80C51. Additional special function registers are incorporated to control the on-chip peripherals. Three versions of the derivative exist although the generic term "8XC552" is used to refer to family members:

83C552: 8k bytes mask-programmable ROM, 256 bytes RAM

87C552: 8k bytes EPROM, 256 bytes RAM

80C552: ROMless version of the 83C552

The 8XC552 contains a nonvolatile  $8k \times 8$  read-only program memory, a volatile  $256 \times 8$  read/write data memory, five 8-bit I/O

#### Differences From the 80C51

#### Program Memory

The 8XC552 contains 8k bytes of on-chip program memory which can be extended to 64k bytes with external memories (see Figure 1). When the  $\overline{EA}$  pin is held high, the 8XC552 fetches instructions from internal ROM unless the address exceeds 1FFFH. Locations 2000H to FFFFH are fetched from external program memory. When the  $\overline{EA}$  pin is held low, all instruction fetches are from external memory. ROM locations 0003H to 0073H are used by interrupt service routines.

#### Data Memory

The internal data memory is divided into 3 sections: the lower 128 bytes of RAM, the upper 128 bytes of RAM, and the 128-byte special function register areas. The lower 128 bytes of RAM are directly and indirectly addressable. While RAM locations 128 to 255 and the special function register area share the same address space, they are accessed through different addressing modes. RAM locations 128 to 255 are only indirectly addressable, and the special function registers are only directly addressable. All other aspects of the internal RAM are identical to the 8051

The stack may be located anywhere in the internal RAM by loading the 8-bit stack pointer. Stack depth is 256 bytes maximum.

#### Special Function Registers

Zelakoa da 80c552 mikro-kontroladorearen programa memoria?



Zelakoa da 80c552 mikro-kontroladorearen programa memoria? 4kbyte-tik, 8kbyte-era.

(FFFFH) 64K 80c552 80c51 EXTERNAL BYTES (2000H) 8192 **EXTERNAL** BYTES EXTERNAL (1FFFH) 8191 1000 AND INTERNAL **EXTERNAL** 0FFF (EA = 1)(EA = 0)4k BYTES INTERNAL 0000 0000 (0000H) 0 PROGRAM MEMORY

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE RILBAO

## 80c552 mikro-kontroladorea

#### 8XC552 OVERVIEW

The 8XC552 is a stand-alone high-performance microcontroller designed for use in real-time applications such as instrumentation, industrial control, and automotive control applications such as engine management and transmission control. The device provides, in addition to the 80C51 standard functions, a number of dedicated hardware functions for these applications.

The 8XC552 single-chip 8-bit microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 8XC552 uses the powerful instruction set of the 80C51. Additional special function registers are incorporated to control the on-chip peripherals. Three versions of the derivative exist although the generic term "8XC552" is used to refer to family members:

83C552: 8k bytes mask-programmable ROM, 256 bytes RAM

87C552: 8k bytes EPROM, 256 bytes RAM

80C552: ROMless version of the 83C552

The 8XC552 contains a nonvolatile  $8k \times 8$  read-only program memory, a volatile  $256 \times 8$  read/write data memory, five 8-bit I/O

#### Differences From the 80C51

#### **Program Memory**

The 8XC552 contains 8k bytes of on-chip program memory which can be extended to 64k bytes with external memories (see Figure 1). When the  $\overline{EA}$  pin is held high, the 8XC552 fetches instructions from internal ROM unless the address exceeds 1FFFH. Locations 2000H to FFFFH are fetched from external program memory. When the  $\overline{EA}$  pin is held low, all instruction fetches are from external memory. ROM locations 0003H to 0073H are used by interrupt service routines.

#### Data Memory

The internal data memory is divided into 3 sections: the lower 128 bytes of RAM, the upper 128 bytes of RAM, and the 128-byte special function register areas. The lower 128 bytes of RAM are directly and indirectly addressable. While RAM locations 128 to 255 and the special function register area share the same address space, they are accessed through different addressing modes. RAM locations 128 to 255 are only indirectly addressable, and the special function registers are only directly addressable. All other aspects of the internal RAM are identical to the 8051

The stack may be located anywhere in the internal RAM by loading the 8-bit stack pointer. Stack depth is 256 bytes maximum.

#### Special Function Registers

Zelakoa da 80c552 mikro-kontroladorearen datu memoria?



Zelakoa da 80c552 mikro-kontroladorearen datu memoria? SFR-ko helbideak, memoria bezala erabili ahal.

80 c 5 1

INTERNAL

FF

DIRECT ADDRESSING ONLY

AND

AND

AND

0000

DRIECT AND INDIRECT

ADDRESSING





BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

## 80c552 mikro-kontroladorea

#### 8XC552 OVERVIEW

The 8XC552 is a stand-alone high-performance microcontroller designed for use in real-time applications such as instrumentation, industrial control, and automotive control applications such as engine management and transmission control. The device provides, in addition to the 80C51 standard functions, a number of dedicated hardware functions for these applications.

The 8XC552 single-chip 8-bit microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 8XC552 uses the powerful instruction set of the 80C51. Additional special function registers are incorporated to control the on-chip peripherals. Three versions of the derivative exist although the generic term "8XC552" is used to refer to family members:

83C552: 8k bytes mask-programmable ROM, 256 bytes RAM

87C552: 8k bytes EPROM, 256 bytes RAM

80C552: ROMless version of the 83C552

The 8XC552 contains a nonvolatile  $8k \times 8$  read-only program memory, a volatile  $256 \times 8$  read/write data memory, five 8-bit I/O

#### Differences From the 80C51

#### **Program Memory**

The 8XC552 contains 8k bytes of on-chip program memory which can be extended to 64k bytes with external memories (see Figure 1). When the  $\overline{EA}$  pin is held high, the 8XC552 fetches instructions from internal ROM unless the address exceeds 1FFFH. Locations 2000H to FFFFH are fetched from external program memory. When the  $\overline{EA}$  pin is held low, all instruction fetches are from external memory. ROM locations 0003H to 0073H are used by interrupt service routines.

#### Data Memory

The internal data memory is divided into 3 sections: the lower 128 bytes of RAM, the upper 128 bytes of RAM, and the 128-byte special function register areas. The lower 128 bytes of RAM are directly and indirectly addressable. While RAM locations 128 to 255 and the special function register area share the same address space, they are accessed through different addressing modes. RAM locations 128 to 255 are only indirectly addressable, and the special function registers are only directly addressable. All other aspects of the internal RAM are identical to the 8051

The stack may be located anywhere in the internal RAM by loading the 8-bit stack pointer. Stack depth is 256 bytes maximum.

#### Special Function Registers



## Zelakoa da 80c552 mikro-kontroladorearen SFR-a?

## 80c51

8 BYTES



BIT ADDRESSABLE



BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA

## 80c552 mikro-kontroladorea

### Zelakoa da 80c552 mikro-kontroladorearen SFR-a?

# 80c51

BIT ADDRESSABLE









Zelakoa da 80c552 mikro-kontroladorearen PSW-a?

## 80c51

PSW: PROGRAM STATUS WORD, BIT ADDRESSABLE.

| CY AC | F0 | RS1 | RS0 | OV | - | Р |
|-------|----|-----|-----|----|---|---|
|-------|----|-----|-----|----|---|---|

Zelakoa da 80c552 mikro-kontroladorearen PSW-a?

## 80c51

PSW: PROGRAM STATUS WORD, BIT ADDRESSABLE.

| PSW*   | Program status word  | D0H | CY | AC | F0 | RS1 | RS0 | OV | F1 | Р |
|--------|----------------------|-----|----|----|----|-----|-----|----|----|---|
| 1 0 11 | i logiam status word | 001 | 5  | 7  | 0  | 101 | 100 | 0  |    | _ |

Zelakoa dira 80c552 mikro-kontroladorearen interrupzioak?

80c51

IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

| EA | ES | ET1 | EX1 | ET0 | EX0 |  |
|----|----|-----|-----|-----|-----|--|
|----|----|-----|-----|-----|-----|--|

IP: INTERRUPT PRIORITY REGISTER, BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt has a lower priority and if the bit is 1 the corresponding interrupt has a higher priority.

| - | - | _ | PS | PT1 | PX1 | PT0 | PX0 |
|---|---|---|----|-----|-----|-----|-----|

Zelakoa dira 80c552 mikro-kontroladorearen interrupzioak?

80c51

IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

| EA | - | - | ES | ET1 | EX1 | ET0 | EX0 |
|----|---|---|----|-----|-----|-----|-----|
|----|---|---|----|-----|-----|-----|-----|

IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt has a lower priority and if the bit is 1 the corresponding interrupt has a higher priority.

|  | PS | PT1 | PX1 | PT0 | PX0 |
|--|----|-----|-----|-----|-----|
|--|----|-----|-----|-----|-----|

| UU C   | JJL                  |     |     |      |      |      |      |      |      |      |           |
|--------|----------------------|-----|-----|------|------|------|------|------|------|------|-----------|
| IEN0*# | Interrupt enable 0   | A8H | EA  | EAD  | ES1  | ES0  | ET1  | EX1  | ET0  | EX0  | 00H       |
|        |                      |     | EF  | EE   | ED   | EC   | EB   | EA   | E9   | E8   |           |
| IEN1*# | Interrupt enable 1   | E8H | ET2 | ECM2 | ECM1 | ECM0 | ECT3 | ECT2 | ECT1 | ECT0 | 00H       |
|        |                      |     | BF  | BE   | BD   | ВС   | BB   | BA   | B9   | B8   |           |
| IP0*#  | Interrupt priority 0 | B8H | -   | PAD  | PS1  | PS0  | PT1  | PX1  | PT0  | PX0  | x0000000B |
|        |                      |     | FF  | FE   | FD   | FC   | FB   | FA   | F9   | F8   |           |
| IP1*#  | Interrupt priority 1 | F8H | PT2 | PCM2 | PCM1 | PCM0 | PCT3 | PCT2 | PCT1 | PCT0 | 00H       |
|        | •                    |     |     |      |      | -    |      |      | -    |      | •         |

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE RIL BAO

# 80c552 mikro-kontroladorea



## **HELBURUAK**

80c552 familia ezagutzea

80c51-arekiko, 80c552-ak dauzkan ezberdintasunak ulertzea



BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

## Teknologia Elektronikoa Saila

# KONPUTAGAILUEN ARKITEKTURA 80c552 mikro-kontroladorea

Kudeaketa eta Informazio Sistemen Informatikaren Ingenieritzako Graduaren 3. maila

Irakaslea: Alain Sanchez (alain.sanchez@ehu.eus)

2019-2020, 1. lauhilabetea