

Teoria da Computação

Tarefa 3

O autómato finito não determinista com transições ϵ A escolhido para esta tarefa encontra-se na página 39 do capítulo 2 e está representado (com o software JFlap) na seguinte:

Formalmente este autómato não determinista é constituído por um quíntuplo ordenado $A = (Q, \Sigma, \delta, s, F)$ em que:

- $\bullet \quad Q \ = \ \{Q_{0'} \ Q_{1'} \ Q_{2'} \ Q_{3'} \ Q_4 \}$, conjunto finito não vazio de estados
- $\Sigma = \{a, b\}$, alfabeto de símbolos de entrada
- $s = \{Q_0\}$, estado inicial, tal que $s \in Q$
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to P(Q)$, função parcial de transição de estado tal que:

δ	3	а	b
$\rightarrow Q_0$	Ø	$\{Q_{1'}, Q_{2}\}$	\oslash
Q_{1}	$\{Q_{2}^{}\}$	0	$\{Q_{\overline{4}}\}$
Q_{2}	0	$\{Q_2^{}\}$	$\{Q_{1'}, Q_{2}\}$
* Q ₃	$\{Q_{\overline{4}}\}$	$\{Q_2^{}\}$	0
* Q ₄	$\{Q_{\overline{3}}\}$	$\{Q_3^{}\}$	0

Para a determinização do autómato foi primeiro calculado o fechoε do estado inicial e a partir do mesmo calculado posteriormente a tabela de transições:

	δ	а	b
$fecho\varepsilon(\{Q_0\}) = \{Q_0\}$	$\rightarrow \{Q_{_{0}}\}$	$\{Q_{1'}, Q_{2}\}$	0
$fechoe(\{Q_{1'}, Q_{2}\}) = \{Q_{1'}, Q_{2}\}$	$\{Q_{1'}, Q_{2}\}$	$\{Q_2^{}\}$	$\{Q_{1'}, Q_{2'}, Q_{3'}, Q_{4}\}$
$fechoe({Q_2}) = {Q_2}$	$\{Q_2^{}\}$	$\{Q_{2}^{}\}$	$\{Q_{1'}, Q_{2}\}$
$fechoe(\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\}) = \{Q_{1}, Q_{2}, Q_{3}, Q_{4}\}$	* {Q ₁ , Q ₂ , Q ₃ , Q ₄ }	$\{Q_{2'}, Q_{3'}, Q_{4}\}$	$\{Q_{1}^{'}, Q_{2}^{'}, Q_{3}^{'}, Q_{4}^{}\}$
$fechoe(\{Q_{2'}, Q_{3'}, Q_{4}\}) = \{Q_{2'}, Q_{3'}, Q_{4}\}$	* {Q ₂ , Q ₃ , Q ₄ }	$\{Q_{2'}, Q_{3'}, Q_{4}\}$	$\{Q_{1'}, Q_{2}\}$
	Ø	0	0

Sendo assim, a partir da tabela obtida podemos verificar que irão existir 6 estados (um deles é o estado "ratoeira") em $Q_0=\{Q_0\},\ Q_1=\{Q_1,\ Q_2\},\ Q_2=\{Q_2\},\ Q_3=\{Q_1,\ Q_2,\ Q_3,\ Q_4\}$ $Q_4=\{Q_2,\ Q_3,\ Q_4\}$ e $Q_5=\{\emptyset\}.$ O resultado final obtido e confirmado com o software JFlap encontra-se representado na figura seguinte:

É importante referir que o JFlap após o processo de determinização não considerou para o resultado final o estado "ratoeira" (estado $Q_{\scriptscriptstyle 5}$), logo na figura representada em cima apenas estão representados 5 estados. No entanto ao selecionar a opção "Add trap state" é possível verificar como ficaria o autómato com todos os 6 estados:

Finalmente falta apenas o processo de minimização do autómato. Para isso foi considerado o autómato determinista com o estado "ratoeira" e não apenas com os 5 estados. Sendo assim o primeiro passo é marcar os estados inicialmente distinguíveis {aceitação, rejeição} e obtemos assim o seguinte resultado:

Q1					
Q2					
*Q3	x	x	x		
*Q4	x	x	x		
Q5				x	x
	Q0	Q1	Q2	*Q3	*Q4

Seguidamente vamos para a primeira iteração do algoritmo de minimização:

- $(Q_0, Q_1) \rightarrow (Q_1, Q_2)$ não é distinguível
- $(Q_0, Q_1) \rightarrow^b (Q_5, Q_3)$ é distinguível
- $(Q_0, Q_2) \rightarrow (Q_1, Q_2)$ não é distinguível
- $(Q_0, Q_2) \rightarrow (Q_5, Q_1)$ não é distinguível
- $(Q_0, Q_5) \rightarrow {}^a(Q_1, Q_5)$ não é distinguível
- $(Q_0, Q_5) \rightarrow^b (Q_5, Q_5)$ não é distinguível
- $(Q_1, Q_2) \rightarrow^a (Q_2, Q_2)$ não é distinguível
- $(Q_1, Q_2) \rightarrow^b (Q_2, Q_1)$ é distinguível
- $(Q_1, Q_5) \rightarrow {}^a(Q_2, Q_5)$ não é distinguível
- $(Q_1, Q_5) \rightarrow^b (Q_3, Q_5)$ é distinguível
- $(Q_2, Q_5) \rightarrow^a (Q_2, Q_5)$ não é distinguível
- $(Q_2, Q_5) \rightarrow^b (Q_1, Q_5)$ é distinguível
- $\bullet \qquad (Q_{3'},\ Q_{4}) \rightarrow^a (Q_{4'},\ Q_{4}) \ \text{não \'e distingu\'el}$

• $(Q_{3'}, Q_4) \rightarrow^b (Q_{3'}, Q_1)$ é distinguível

Após a primeira iteração foram encontrados os seguintes estados distinguíveis:

Q1	X					
Q2		x				
*Q3 *Q4	X	x	x			
*Q4	X	x	x	x		
Q5		x	x	x	x	
	Q0	Q1	Q2	*Q3	*Q4	

Sendo assim passando para a segunda iteração, obtemos que:

- $(Q_0, Q_2) \rightarrow^a (Q_1, Q_2)$ é distinguível
- $(Q_0, Q_5) \rightarrow (Q_1, Q_5)$ é distinguível

Q1	x				
Q2	X	x			
*Q3 *Q4	x	x	X		
*Q4	x	x	X	x	
Q5	x	x	X	x	X
	Q0	Q1	Q2	*Q3	*Q4

E verificamos assim que todos os estados já são distinguíveis, ou seja, o autómato já é mínimo e não precisamos de prosseguir com o algoritmo. Resultado que foi evidentemente confirmado com o JFlap.

