Tutorial 1 SCS 2212- Automata Theory

- 1. Define the following languages:
 - a) The language of all strings consisting of n 0's followed by n 1's, for some n>=0
 - b) The set of strings of 0's and 1's with an equal number of each.
 - c) The set of binary numbers whose value is prime
- 2. Let L1 = {a, ab} and L2 = { λ , a, c, ac} be two finite languages over the alphabet Σ = {a, b, c} Define the following languages:
 - a) L1 U L2
 - b) LI \(\Omega\) L2
 - c) L1.L2
 - d) L2L1
 - e) L1²
- 3. Let Σ = {0,1}. Define the following languages
 - a) Σ^0
 - b) Σ^1
 - c) Σ^2
 - d) Σ^3
 - e) Σ^*
 - f) Σ^+
- 4. Let $X = \{a, b, c\}$ and $Y = \{abb, ba\}$. Find the following:
 - a) XY
 - b) X⁰
 - c) X^1
 - d) X^2
 - e) X^3
- 5. Consider the following production rules. Note: the start symbol of the following grammar is <sentence>.
 - I. <sentence> → <noun-phrase> <verb-phrase>
 - II. <noun-phrase> → <proper-noun> | <determiner> <common-noun>
 - III. $\langle proper-noun \rangle \rightarrow John \mid Jill$
 - IV. <common-noun $> \rightarrow$ car | hamburger
 - V. $\langle determiner \rangle \rightarrow a \mid the$
 - VI. <verb-phrase>→ <verb> <adverb> | <verb>
 - VII. $\langle verb \rangle \rightarrow drives \mid eats$
 - VIII. $\langle adverb \rangle \rightarrow slowly \mid frequently$
 - a) Determine the set of non-terminals in the grammar by looking at the production rules
 - b) Determine the set of terminals in the grammar by looking at the production rules
 - c) Can the statement "Jill drives frequently" be derived from this grammar? Justify
 - d) Can the statement "Jill eats a hamburger slowly" be derived from this grammar? Justify

6. Consider the following grammar

$$G = (N, T, P, S)$$

$$N = \{S, A, B\}$$

$$T = \{a, b, c\}$$

P: $S \rightarrow aSa$

 $S \rightarrow aAa$

 $A \rightarrow bB$

 $B \rightarrow bB$

 $B \rightarrow c$ is

- a) is type 3
- b) is type 2 but not type 3
- c) is type 1 but not type 2
- d) is type 0 but not type 1

7. Consider the following grammar

$$G = (N, T, P, S)$$

$$N = {S, A, B, C, D, E}$$

$$T = \{a, b, c\}$$

$$P: S \rightarrow aAB$$

 $AB \rightarrow CD$

CD→CE

 $C \rightarrow aC$

C→b

bE→bc

a) is type 3

- b) is type 2 but not type 3
- c) is type 1 but not type 2
- d) is type 0 but not type 1

8.

Consider the following grammar

$$G = (N, T, P, S)$$

$$N = {S, A, B, C}$$

$$T = \{a, b, c\}$$

P:

 $S \rightarrow aS$

 $A \rightarrow bB$

 $B \rightarrow cC$

 $C \rightarrow a$

- a) is type 3
- b) is type 2 but not type 3
- c) is type 1 but not type 2
- d) is type 0 but not type 1

- 9. Prove that (wR)R = w for all $w \in \Sigma^*$ by using induction.
- 10. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* :

abaabaaabaa,

aaaabaaaa,

baaaaabaaaab,

baaaaabaa?

Write all the strings that belong to L4?

- 11. Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describe L'.
- 12. Let L be any language on a non-empty alphabet. Show that L and L' cannot both be finite.
- 13. Find grammars for $\Sigma = \{a, b\}$ that generate the sets of
 - (a) all strings with exactly one a.
 - (b) all strings with at least one a.
 - (c) all strings with no more than three a's.
- (d) all strings with at least three a's. In each case, give convincing arguments that the grammar you give does indeed generate the indicated language.
- 14. Give a simple description of the language generated by the grammar with productions
 - $S \longrightarrow aA$
 - $A \longrightarrow bS$
 - $S \longrightarrow \epsilon$
- 15. What language does the grammar with these productions generate?
 - $S \longrightarrow Aa$
 - $A \longrightarrow B$
 - $B \longrightarrow Aa$
- 16. Are the two grammars with respective productions

$$S \longrightarrow aSb |ab|\lambda$$

And

S →aAb |ab

 $A \longrightarrow aAb \mid \lambda$

equivalent? Assume that S is the start symbol in both cases.

17. Show that the grammar

$$S \longrightarrow aSb \mid bSa \mid SS \mid a$$

and

 $S \longrightarrow aSb \mid bSa \mid a$

are not equivalent.