A (very) brief introduction to Machine learning key concepts

Notebook: 08-Intro_ML/ML_intro_short.ipynb

© Xkcd - 1838

Supervised learning: Regression

Two main categories of ML:

- Regression
- Classification/clustering

ML requires a large training set

Science enters in big data era such that ML plays and will keep being important in the coming decade

(Un)-Supervised learning: Clustering

Unsupervised

Pattern learned from unlabeled data

Supervised

Two main categories of ML:

- Regression
- Classification/clustering

Large variety of ML algorithms:

- Regression trees
- K-nearest neighbours
- Support Vector Machine (SVM)
- Artificial neural Networks (ANN)
- Linear regression
- ...

Python: <u>scikit-learn</u>

© Wu 2019

One never trains a model on full data set

Training set: typically 50-70 % of data set **Cross-Validation** (CV): ½ remaining data set **Test set**: the other ½ of remaining data set

Quality of regression: Merit function / metric

MSE:
$$\epsilon = rac{1}{N} \sum_{i}^{N} (y_i - y_M(x_i))^2$$

BIC:
$$BIC \equiv -2 \ln [L^0(M)] + k \ln N$$

where $L^0(M) = Max$. Likelihood of the model

We can increase the degree of the polynomial

We can increase the degree of the polynomial

We can increase the degree of the polynomial

BIAS: How well we reproduce the data

Variance: How much the model changes if slightly perturbing the data points

How to choose the best model?

Use CROSS-VALIDATION to evaluate the best model

Use some merit function to evaluate the quality of the model: e.g. MSE, RMS error = MSE^{1/2}

$$\epsilon_{\text{cv/tr}} = \sqrt{\frac{1}{n} \sum_{i=1}^{N_{\text{cv/tr}}} \left[y_i - \sum_{m=0}^{d} \theta_0^{(n)} x_i^m \right]^2}$$

How to choose the best model?

Use **CROSS-VALIDATION** to evaluate the best model

K-fold cross validation

Example of advanced CV scheme

© Amidi and Amidi Cheat sheet

How to choose the best model?

RMS error
$$\epsilon_{
m cv/tr} = \sqrt{rac{1}{n} \sum_{i=1}^{N_{
m cv/tr}} \left[y_i - \sum_{m=0}^d heta_0^{(n)} x_i^m
ight]^2}$$

$$BIC \equiv -2\ln\left[L^0(M)\right] + k\,\ln N$$

Go to Notebook

Do we need more data?

To improve model fitting one can:

- Get more training data: does not guarantee a better fit
- Use more/less complicated model (especially if more training does not help)
- Use more/less regularization
- Increase the number of features (think of Tully-Fisher and fundamental plane)

Objective way to find out if more data help: Learning curve

Do we need more data? Learning curve

Learning curve:

Merit/Metric calculated as a *function* of # of data points

Warning: Use *TOTAL* N_{cv} for RMS error and vary only N_{train}

Training errors increase w. N_{train} (easier to fit less points)

CV errors decrease w. N_{train} (Overfitting less likely w. more points)

Classification

Generative classification: full model (predicting a pdf) for each class. Model 1 is better fit than model 2?

Discriminative classification: More like clustering. Decision boundary at x = 1.4.

Classification: confusion matrix

relevant elements false negatives true negatives true positives false positives retrieved elements

Classification: Completeness, contamination & friends

Name	Formula	Definition	Usage
Completeness or True Positive Rate (TPR) or sensitivity or recall	TP TP+FN	Fraction of positive instances correctly identified	ML, Astro
Contamination of False DISCOVERY rate	FP TP+FN	Fraction of positive instances correctly identified	Astro
False positive rate (FPR)	FP TP+FP	Fraction of negative instances falsely classified as positive	ML, Astro
Accuracy	TP+TN N	Fraction of instances correctly classified	ML, Astro
Precision or efficiency ≡ 1 - contamination	$\frac{\text{TP}}{\text{TP+FP}}$	Fraction of positive instances among the predicted positive	ML, Astro

How many retrieved items are relevant?

Precision =

How many relevant items are retrieved?

Go to Notebook for example

ROC (Receiver Operating Characteristic) Curve

$$TPR = \frac{TP}{TP + FN} = 1$$

Relevant elements

$$FPR = \frac{FP}{TP + FP} = ---$$

← What you retrieved

To move forward

