

REMARKS

The Claim Amendments

Claims 1-30 were pending in the present application. Applicants have canceled claims 13 and 14 without prejudice. Applicants have canceled claims 3, 4, 28 and 29 without prejudice as drawn to a non-elected invention. In response to the restriction requirement set forth in the Office Action, Applicants have amended claims 5-8, 10, 15, 27 and 30 without prejudice to exclude non-elected subject matter, *i.e.*, compounds wherein A is alkyl, alkenyl, alkynyl, alkoxy, and aryloxy or B and A together form a 5-7 membered heterocyclic or heteroaryl ring. Claim 5 has been amended to exclude non-elected embodiments of group R and to delete reference to canceled claims 3 and 4. Claims 6 and 7 have been amended to exclude non-elected embodiments of group R. Claims 8, 10, 15 and 30 have been amended to delete reference to canceled claims 3 and 4. Claim 8 was also amended to correct a typographical error. Claim 27 has been amended to depend from claim 1 and to exclude non-elected subject matter. For clarity, Applicants have rewritten canceled claims 13 and 14 as newly added claims 31 and 32 to exclude non-elected subject matter. Support for the amended and newly added claims is found throughout the application and claims as originally filed. No new matter has been added.

Accordingly, upon entry of the instant amendments, claims 1, 2, 5-12, 15-27, and 30-32 will be pending in this application. For the Examiner's convenience, a copy of all claims pending after entry of this amendment is provided in the attached "Pending Claims After Entry Of Amendment."

The Restriction Requirement

The Office Action required restriction of the claims of this application under 35 U.S.C. § 121 into one of the following Groups:

Group 5: Claims 1, 2, 5-12, and 15, drawn to compounds limited to genus G3, wherein genus G3 is defined as those compounds in which variable A is limited to that which is defined in claims 1 and 2 and n is 1.

Group 6: Claims 3-12, 15 and 29, drawn to compounds limited to genus G4, wherein genus G4 is defined as those compounds in which variable A is limited to that which is defined in claims 3 and 4 and n is 1.

Group 7: Claims 16-26, drawn to a method of using the Group 5 compounds.

Group 8: Claims 16-26, drawn to a method of using the Group 6 compounds.

Group 9: Claim 27, drawn to compounds limited to genus G5, wherein genus G5 is defined as those compounds in which variable R¹⁴ is NH-R⁵⁶ or (CH₂)_q-aryl.

Group 10: Claims 27-28, drawn to compounds limited to genus G6, wherein genus G6 is defined as those compounds in which R¹⁴ can be whatever is permitted by claim 27, provided that genus G5 is excluded.

Group 11: Claim 30, drawn to a method of using compounds of Group 9.

Group 12: Claim 30, drawn to a method of using compounds of Group 10.

Group 13: Claim 30, drawn to a method of using compounds of claim 29.

Applicants elect the claims of Group 5 (claims 1, 2, 5-12 and 15) for examination on the merits. As stated above, Applicants have amended claim 27 to exclude non-elected subject matter and to depend from claim 1. Applicants respectfully request that claim 27, as amended, be included in Group 5. Applicants have also rewritten canceled claims 13 and 14 as newly added claims 31 and 32. These claims should also be included in Group 5. Accordingly, applicants request that Group 5 now include claims 27, 31 and 32.

As acknowledged in the Office Action, Applicants may request rejoinder of the corresponding methods claims with the elected group if and when any of the elected claims are found allowable. Accordingly, applicants have not canceled claims 16-26 and claim 30.

Because Applicants have elected Group 5, no species election is required.

Respectfully submitted,

Timothy J. Douros
Registration No. 41,716
Attorney for Assignee
Jill M. Mandelblatt
Registration No. 37,878
Patent Agent for Assignee

Dated: December 17, 2002

Customer No.: 34103
Cubist Pharmaceuticals, Inc.
65 Hayden Avenue
Lexington, Massachusetts 02421
Tel.: (781) 860-8660
Fax: (781) 861-0566

MARKED-UP VERSION OF CLAIMS

5. (Amended) The compound according to [any] either of claims 1 or 2[-4], wherein R is selected from the group consisting of:

wherein each of R^3 , R^4 , R^5 , and R^6 is independently selected from the group consisting of hydrido, alkyl, aryl, heterocyclyl and heteroaryl, and wherein $[R^{44}]$ is selected from the group consisting of alkyl, aryl, heterocyclyl and heteroaryl] R^{200} is selected from the group consisting of hydrido, aryl, heterocyclyl, and heteroaryl.

6. (Amended) The compound according to claim 5, wherein R is selected from

wherein R⁴ is selected from the group consisting of [alkyl, aryl-substituted alkyl,] substituted phenyl, heteroaryl, and heterocyclyl[, optionally substituted (C₈-C₁₄)-straight chain alkyl and ; wherein R⁷ is an alkyl group].

7. (Amended) The compound according to claim 6, wherein R is selected from the group consisting of

wherein X³ is chloro or trifluoromethyl and wherein q is 0[or 1].

8. (Amended) The compound according to [any] either of claims 1 or 2[- 4], wherein R¹ is selected from the group consisting of:

wherein R⁸ is selected from a natural amino acid side chain or an amino acid side chain that is not naturally occurring;

wherein each of R⁹, R¹⁰ and R¹¹ is selected from hydrido, alkyl, aryl, heterocyclyl and heteroaryl;

wherein R¹² is selected from the group [consisting] consisting of heterocyclyl, heteroaryl, aryl, and alkyl and

wherein R¹³ is selected from (C₁-C₃-alkyl) and aryl.

10. (Amended) The compound according to [any] either of claims 1 or 2[-4], wherein J is selected from the group consisting of hydrido, amino, azido and

wherein R¹⁷ and R¹⁸ taken together form a group selected from ketal,

or wherein R¹⁷ is hydroxyl when R¹⁸ is hydrido;

or wherein J, together with R¹⁷, forms a heterocyclyl ring.

15. (Amended) A pharmaceutical composition comprising the compound according to [any one] either of claims 1 or 2[-4] and a pharmaceutically acceptable carrier.

27. (Amended) [A] The compound of claim 1 having the formula (II):

[wherein R^{14} is selected from the group consisting of

wherein R⁵⁶ is an optionally substituted straight-chain C₈-C₁₄ alkyl group [and wherein q' is 0-3].

30. (Amended) A method of using the compound according to [any one of claims 27-29] claim 27 to make a compound according to [any one] either of claims 1 or 2[-4].

31. (New) The compound according to either of claims 1 or 2 wherein said compound is selected from

Cpd #	R	R ¹	R ²
1	NHCONH(CH ₂) ₇ CH ₃	NH ₂	
2	NHCONH(CH ₂) ₁₁ CH ₃	NH ₂	
3	NHCONH(CH ₂) ₁₀ CH ₃		
5			
17	NHCONH(CH ₂) ₁₁ CH ₃		

48	NHCONH(CH ₂) ₁₀ CH ₃	NH ₂	
56	NHCONH(CH ₂) ₇ CH ₃		
57	NHCONH(CH ₂) ₁₀ CH ₃		
58	NHCONH(CH ₂) ₁₁ CH ₃		
62	NHCONH(CH ₂) ₇ CH ₃		
63	NHCONH(CH ₂) ₁₀ CH ₃		
64	NHCONH(CH ₂) ₁₁ CH ₃		
69	NHCONH(CH ₂) ₇ CH ₃		
70	NHCONH(CH ₂) ₇ CH ₃		
71	NHCONH(CH ₂) ₇ CH ₃		
75	NHCONH(CH ₂) ₁₀ CH ₃		
76	NHCONH(CH ₂) ₇ CH ₃		
77	NHCONH(CH ₂) ₇ CH ₃		
78	NHCONH(CH ₂) ₇ CH ₃		
87	NHCONH(CH ₂) ₁₁ CH ₃		
88	NHCONH(CH ₂) ₁₁ CH ₃		
89	NHCONH(CH ₂) ₁₁ CH ₃		

108	NHCONH(CH ₂) ₁₀ CH ₃		
113	NHCONH(CH ₂) ₁₀ CH ₃		
114	NHCONH(CH ₂) ₁₀ CH ₃		
117	NHCONH(CH ₂) ₈ CH ₃	NHBoc	
118	NHCONH(CH ₂) ₈ CH ₃	NH ₂	
119	NHCONH(CH ₂) ₉ CH ₃	NHBoc	
120	NHCONH(CH ₂) ₉ CH ₃	NH ₂	

32. (New) The compound of claim 31 wherein said compound is selected from

Cpd #	R	R ¹	R ²
2	NHCONH(CH ₂) ₁₁ CH ₃	NH ₂	
3	NHCONH(CH ₂) ₁₀ CH ₃		
48	NHCONH(CH ₂) ₁₀ CH ₃	NH ₂	
89	NHCONH(CH ₂) ₁₁ CH ₃		
118	NHCONH(CH ₂) ₈ CH ₃	NH ₂	
120	NHCONH(CH ₂) ₉ CH ₃	NH ₂	

PENDING CLAIMS AFTER ENTRY OF AMENDMENT

1. A compound having the formula (I):

and salts thereof;

wherein R is:

wherein X and X" are independently selected from C=O, C=S, C=NH, C=NR^X, S=O or SO₂;

wherein n is 1;

wherein R^X is selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, hydroxyl, alkoxy, carboxy or carboalkoxy;

wherein B is X"R^Y, H, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl or heterocyclyl; and

wherein R^Y is selected from hydrido, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or hydroxyl;

wherein A is H, NH₂, NHR^A, NR^AR^B, heteroaryl, cycloalkyl or heterocyclyl;

wherein R^A and R^B are independently selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or carboalkoxy;

provided that when B is H and X is C=O, then A is other than

(a) a pyridinyl ring substituted with a single NHC(O)R^D substituent or

(b) a (C₅-C₆) saturated cycloalkyl ring substituted with a single NHC(O)R^D substituent, wherein R^D is (C₁-C₁₇) unsubstituted alkyl or (C₂-C₁₇) unsubstituted alkenyl;

wherein R¹ is

wherein X' and X'' are independently selected from C=O, C=S, C=NH, C=NR^{X'}, S=O or SO₂;

wherein m is 0 or 1;

wherein R^{X'} is selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, hydroxyl, alkoxy, carboxy or carboalkoxy;

wherein B' is X''R^{Y'}, H, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl or heterocyclyl;

wherein R^{Y'} is selected from hydrido, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or hydroxyl;

wherein A' is H, NH₂, NHR^{A'}, NR^{A'}R^{B'}, alkyl, alkenyl, alkynyl, alkoxy, aryloxy, aryl, heteroaryl, cycloalkyl or heterocyclyl;

wherein R^{A'} and R^{B'} are independently selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or carboalkoxy;

wherein when m is 0, then A' is additionally selected from the group consisting of:

wherein each of R⁵⁰-R⁵³ is independently selected from C₁-C₁₅ alkyl;
 alternatively, wherein B' and A' together form a 5-7 membered heterocyclic or heteroaryl ring;

wherein R² is

wherein K and K' together form a C₃-C₇ cycloalkyl or heterocyclyl ring or a C₅-C₁₀ aryl or heteroaryl ring;

wherein J is selected from the group consisting of hydrido, amino, NHR^J, NR^JR^K, alkyl, alkenyl, alkynyl, alkoxy, aryloxy, aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylamino, hydroxyl, thio, alkylthio, alkenylthio, sulfinyl, sulfonyl, azido, cyano, halo,

wherein each of R²⁴, R²⁵, and R²⁶ is independently selected from the group consisting of alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl; or R²⁴ and R²⁵ together form a 5-8 membered heterocyclyl ring;

wherein R^J and R^K are independently selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl or heterocyclyl; or

alternatively, wherein J, together with R¹⁷, forms a 5-8 membered heterocyclyl or cycloalkyl ring; or

alternatively, wherein J, together with both R¹⁷ and R¹⁸, forms a 5-8 membered aryl, cycloalkyl, heterocyclyl or heteroaryl ring; and

wherein each of R¹⁷ and R¹⁸ is independently selected from the group consisting of hydrido, halo, hydroxyl, alkoxy, amino, thio, sulfinyl, sulfonyl and

; or

wherein R¹⁷ and R¹⁸ taken together can form a group consisting of ketal, thioketal,

wherein each of R²² and R²³ is independently selected from the group consisting of hydrido and alkyl.

2. A compound having the formula (I):

and salts thereof;

wherein R is:

wherein X and X" are independently selected from C=O, C=S, C=NH,

C=NR^X, S=O or SO₂;

wherein n is 1;

wherein R^X is selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, hydroxyl, alkoxy, carboxy or carboalkoxy;

wherein B is X"R^Y, H, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl or heterocyclyl; and

wherein R^Y is selected from hydrido, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or hydroxyl;

wherein A is aryl;

provided that when B is H and X is C=O, then A is other than a phenyl ring substituted with either:

(a) —O-((C₈-C₁₅) unsubstituted alkyl), wherein said phenyl ring may be further optionally substituted with one substituent selected from halo, nitro, (C₁-C₃) alkyl, hydroxyl, (C₁-C₃) alkoxy or (C₁-C₃) alkylthio; or

(b) —NHC(O)R^D, wherein the phenyl ring may be further optionally substituted with 1-2 substituents independently selected from amino, nitro, (C₁-C₃) alkyl, hydroxyl, (C₁-C₃) alkoxy, halo, mercapto, (C₁-C₃) alkylthio, carbamyl or (C₁-C₃) alkylcarbamyl, wherein R^D is (C₁-C₁₇) unsubstituted alkyl or (C₂-C₁₇) unsubstituted alkenyl;

wherein R¹ is

wherein X' and X'" are independently selected from C=O, C=S, C=NH, C=NR^{X'}, S=O or SO₂;

wherein m is 0 or 1;

wherein R^{X'} is selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, hydroxyl, alkoxy, carboxy or carboalkoxy;

wherein B' is X''R^{Y'}, H, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl or heterocyclyl;

wherein R^{Y'} is selected from hydrido, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or hydroxyl;

wherein A' is H, NH₂, NHR^{A'}, NR^{A'}R^{B'}, alkyl, alkenyl, alkynyl, alkoxy, aryloxy, aryl, heteroaryl, cycloalkyl or heterocyclyl;

wherein R^{A'} and R^{B'} are independently selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl or carboalkoxy;

wherein when m is 0, then A' is additionally selected from the group consisting of:

wherein each of R⁵⁰-R⁵³ is independently selected from C₁-C₁₅ alkyl;

alternatively, wherein B' and A' together form a 5-7 membered heterocyclic or heteroaryl ring;

wherein R² is

wherein K and K' together form a C₃-C₇ cycloalkyl or heterocyclyl ring or a C₅-C₁₀ aryl or heteroaryl ring;

wherein J is selected from the group consisting of hydrido, amino, NHR^J, NR^JR^K, alkyl, alkenyl, alkynyl, alkoxy, aryloxy, aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylamino, hydroxyl, thio, alkylthio, alkenylthio, sulfinyl, sulfonyl, azido, cyano, halo,

wherein each of R²⁴, R²⁵, and R²⁶ is independently selected from the group consisting of alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl; or R²⁴ and R²⁵ together form a 5-8 membered heterocyclyl ring;

wherein R^J and R^K are independently selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl or heterocyclyl; or

alternatively, wherein J, together with R¹⁷, forms a 5-8 membered heterocyclyl or cycloalkyl ring; or

alternatively, wherein J, together with both R¹⁷ and R¹⁸, forms a 5-8 membered aryl, cycloalkyl, heterocyclyl or heteroaryl ring; and

wherein each of R¹⁷ and R¹⁸ is independently selected from the group consisting of hydrido, halo, hydroxyl, alkoxy, amino, thio, sulfinyl, sulfonyl and

wherein R¹⁷ and R¹⁸ taken together can form a group consisting of ketal, thioketal,

wherein each of R²² and R²³ is independently selected from the group consisting of hydrido and alkyl.

5. The compound according to either of claims 1 or 2, wherein R is selected from the group consisting of:

wherein each of R^3 , R^4 , R^5 , and R^6 is independently selected from the group consisting of hydrido, alkyl, aryl, heterocyclyl and heteroaryl, and wherein R^{200} is selected from the group consisting of hydrido, aryl, heterocyclyl, and heteroaryl.

6. The compound according to claim 5, wherein R is selected from

wherein $R^{4\prime}$ is selected from the group consisting of substituted phenyl, heteroaryl, and heterocyclyl.

7. The compound according to claim 6, wherein R is selected from the group consisting of

wherein X³ is chloro or trifluoromethyl and wherein q is 0.

8. The compound according to either of claims 1 or 2, wherein R¹ is selected from the group consisting of:

wherein R⁸ is selected from a natural amino acid side chain or an amino acid side chain that is not naturally occurring;

wherein each of R⁹, R¹⁰ and R¹¹ is selected from hydrido, alkyl, aryl, heterocyclyl and heteroaryl;

wherein R¹² is selected from the group consisting of heterocyclyl, heteroaryl, aryl, and alkyl and

wherein R¹³ is selected from (C₁-C₃-alkyl) and aryl.

9. The compound according to claim 8, wherein R¹ is selected from the group consisting of:

wherein R⁸ is selected from tryptophan side chain and lysine side chain;
wherein each of R¹⁰ and R¹¹ is independently selected from hydrido and
alkyl;

wherein R¹² is selected from imidazolyl, N-methylimidazolyl, indolyl,
quinolinyl, benzyloxybenzyl, and benzylpiperidenylbenzyl; and
wherein X is selected from fluoro, and trifluoromethyl.

10. The compound according to either of claims 1 or 2, wherein J is selected from

the group consisting of hydrido, amino, azido and ;

wherein R¹⁷ and R¹⁸ taken together form a group selected from ketal,

or wherein R¹⁷ is hydroxyl when R¹⁸ is hydrido;
or wherein J, together with R¹⁷, forms a heterocyclyl ring.

11. The compound according to claim 10, wherein R² is selected from the group consisting of

and

wherein R¹⁷ and R¹⁸ taken together form a group selected from

and

, wherein R²² is selected from the group consisting of H and alkyl; and wherein R¹⁹ is selected from the group consisting of hydrido, amino,

azido and

12. The compound according to claim 11, wherein R² is

15. A pharmaceutical composition comprising the compound according to either of claims 1 or 2 and a pharmaceutically acceptable carrier.

16. A method of treating or preventing a bacterial infection in a subject, comprising the step of administering a therapeutically-effective amount of the pharmaceutical composition according to claim 15 to a subject in need thereof.

17. The method according to claim 16, wherein said subject is selected from the group consisting of a human, an animal, a cell culture or a plant.

18. The method according to claim 16, wherein said bacterial infection is caused by a gram-positive bacteria.

19. The method according to claim 18, wherein said bacteria is an antibiotic-resistant bacteria.

20. The method according to claim 19, wherein said antibiotic-resistant bacteria are resistant to an antibiotic selected from the group consisting of vancomycin, methicillin, glycopeptide antibiotics, penicillin and daptomycin.

21. The method according to claim 16, further comprising the step of co-administering more than one compound of Formula (I) to a subject in need thereof.

22. The method according to claim 16, further comprising the step of co-administering an antimicrobial agent other than a compound of Formula (I) to a subject in need thereof.

23. The method according to claim 22, wherein said antimicrobial agent is selected from the group consisting of penicillins and related drugs, carbapenems, cephalosporins and related drugs, aminoglycosides, bacitracin, gramicidin, mupirocin, chloramphenicol, thiamphenicol, fusidate sodium, lincomycin, clindamycin, macrolides, novobiocin, polymyxins, rifamycins, spectinomycin, tetracyclines, vancomycin, teicoplanin, streptogramins, anti-folate agents including sulfonamides, trimethoprim and its combinations and pyrimethamine, synthetic antibacterials including nitrofurans, methenamine mandelate and methenamine hippurate, nitroimidazoles, quinolones, fluoroquinolones, isoniazid, ethambutol, pyrazinamide, para-aminosalicylic acid (PAS), cycloserine, capreomycin, ethionamide, prothionamide, thiacetazone, viomycin, evemnomycin, glycopeptide, glycylcycline, ketolides, oxazolidinone; imipenem,

amikacin, netilmicin, fosfomycin, gentamicin, ceftriaxone, Ziracin, LY 333328, CL 331002, HMR 3647, Linezolid, Synercid, Aztreonam, and Metronidazole, Epioprim, OCA-983, GV-143253, Sanfetrinem sodium, CS-834, Biapenem, A-99058.1, A-165600, A-179796, KA 159, Dynemicin A, DX8739, DU 6681; Cefluprenam, ER 35786, Cefoselis, Sanfetrinem celexetil, HGP-31, Cefpirome, HMR-3647, RU-59863, Mersacidin, KP 736, Rifaxin; Kosan, AM 1732, MEN 10700, Lenapenem, BO 2502A, NE-1530, PR 39, K130, OPC 20000, OPC 2045, Veneprim, PD 138312, PD 140248, CP 111905, Sulopenem, ritipenam acoxyl, RO-65-5788, Cyclothialidine, Sch-40832, SEP-132613, micacocidin A, SB-275833, SR-15402, SUN A0026, TOC 39, carumonam, Cefozopran, Cefetamet pivoxil, and T 3811.

24. The method according to claim 22, wherein said antimicrobial agent is selected from the group consisting of imipenen, amikacin, netilmicin, fosfomycin, gentamicin, ceftriaxone, teicoplanin, Ziracin, LY333328, CL331022, HMR3647, Linezolid, Synercid, Aztreonam and Metronidazole.

25. The method according to claim 17, wherein said subject is selected from the group consisting of a human or an animal.

26. The method according to claim 25, wherein said subject is a human.

27. The compound of claim 1 having the formula (II):

wherein R⁵⁶ is an optionally substituted straight-chain C₈-C₁₄ alkyl group.

30. A method of using the compound according to claim 27 to make a compound according to either of claims 1 or 2.

31. The compound according to either of claims 1 or 2 wherein said compound is selected from

Cpd #	R	R ¹	R ²
1	NHCONH(CH ₂) ₇ CH ₃	NH ₂	
2	NHCONH(CH ₂) ₁₁ CH ₃	NH ₂	
3	NHCONH(CH ₂) ₁₀ CH ₃		
5			

17	NHCONH(CH ₂) ₁₁ CH ₃		
48	NHCONH(CH ₂) ₁₀ CH ₃	NH ₂	
56	NHCONH(CH ₂) ₇ CH ₃		
57	NHCONH(CH ₂) ₁₀ CH ₃		
58	NHCONH(CH ₂) ₁₁ CH ₃		
62	NHCONH(CH ₂) ₇ CH ₃		
63	NHCONH(CH ₂) ₁₀ CH ₃		
64	NHCONH(CH ₂) ₁₁ CH ₃		
69	NHCONH(CH ₂) ₇ CH ₃		
70	NHCONH(CH ₂) ₇ CH ₃		
71	NHCONH(CH ₂) ₇ CH ₃		
75	NHCONH(CH ₂) ₁₀ CH ₃		
76	NHCONH(CH ₂) ₇ CH ₃		
77	NHCONH(CH ₂) ₇ CH ₃		
78	NHCONH(CH ₂) ₇ CH ₃		
87	NHCONH(CH ₂) ₁₁ CH ₃		

88	NHCONH(CH ₂) ₁₁ CH ₃		
89	NHCONH(CH ₂) ₁₁ CH ₃		
108	NHCONH(CH ₂) ₁₀ CH ₃		
113	NHCONH(CH ₂) ₁₀ CH ₃		
114	NHCONH(CH ₂) ₁₀ CH ₃		
117	NHCONH(CH ₂) ₈ CH ₃	NHBoc	
118	NHCONH(CH ₂) ₈ CH ₃	NH ₂	
119	NHCONH(CH ₂) ₉ CH ₃	NHBoc	
120	NHCONH(CH ₂) ₉ CH ₃	NH ₂	

32. The compound according to claim 31 wherein said compound is selected from

Cpd #	R	R ¹	R ²
2	NHCONH(CH ₂) ₁₁ CH ₃	NH ₂	
3	NHCONH(CH ₂) ₁₀ CH ₃		
48	NHCONH(CH ₂) ₁₀ CH ₃	NH ₂	
89	NHCONH(CH ₂) ₁₁ CH ₃		

118	NHCONH(CH ₂) ₈ CH ₃	NH ₂	
120	NHCONH(CH ₂) ₉ CH ₃	NH ₂	