class note 181229

Seanie Lee

December 2018

1.3 Subspace

Theorem. V is a vector space and W is subset of V. W is subspace of $(V, +, \cdot)$ if W is a vector space with the operations of addition and scalar multiplication defined on V.

Note. Restriction of the operations of addition and scalar multiplication.

$$egin{aligned} +: \mathbf{V} imes \mathbf{V} \longrightarrow \mathbf{V} \ +|_{\mathbf{W} imes \mathbf{W}} : \mathbf{W} imes \mathbf{W} \longrightarrow \mathbf{V} \ & \cdot: \mathbf{F} imes \mathbf{V} \longrightarrow \mathbf{V} \ & \cdot|_{\mathbf{F} imes \mathbf{W}} : \mathbf{F} imes \mathbf{W} \longrightarrow \mathbf{V} \end{aligned}$$

So **W** becomes a subspace \iff $+|_{\mathbf{W}\times\mathbf{W}}:\mathbf{W}\longrightarrow\mathbf{W}$ and $\cdot|_{\mathbf{F}\times\mathbf{W}}:\mathbf{F}\times\mathbf{W}\longrightarrow\mathbf{W}$ and denoted by $\mathbf{W}\leq\mathbf{V}$.

Theorem (Subspace Test). $\mathbf{W} \leq \mathbf{V} \iff \mathbf{x} + \mathbf{y} \in \mathbf{W} \ and \ c\mathbf{x} \in \mathbf{W} \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{W}, \forall c \in \mathbf{F}.$

Proof. \Longrightarrow It's trivial to show.

 $\Leftarrow \exists \mathbf{0_v} \in \mathbf{V} \text{ such that } \mathbf{0_v} + \mathbf{v} = \mathbf{v} + \mathbf{0_v} = \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{V}. \text{ We want to show } \mathbf{0_v} \in \mathbf{W}. \text{ Suppose } \mathbf{x} \in \mathbf{W}$ be given. Since $c\mathbf{x} \in \mathbf{W}, \mathbf{0_v} \in \mathbf{W}$. So define $\mathbf{0_w} \coloneqq \mathbf{0_v}$. Then we want to show that $-\mathbf{x} \in \mathbf{W}$. Since $c \in \mathbf{W}$ by the assumption, take c = -1. Then $-1 \cdot \mathbf{x} = -\mathbf{x} \in \mathbf{W}$. Thus $\forall \mathbf{x} \in \mathbf{W}, \exists -\mathbf{x} \in \mathbf{W}$ such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0_w}$. Since the binary operation and scalar multiplication are inherited from \mathbf{V} , associative, commutative, and distributive property hold for \mathbf{W} .

Example 1.

1.
$$\mathbf{P}_n(\mathbb{R}) \coloneqq \{ f(x) \in \mathbf{P}(\mathbb{R}) \mid \deg f(x) \le n \}, \ \mathbf{P}_n(\mathbb{R}) \le \mathbf{P}(\mathbb{R})$$

2.
$$C(\mathbb{R}) := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f : continuous \} \leq \mathcal{F}(\mathbb{R}, \mathbb{R})$$

3. $\mathbf{V} := \mathfrak{M}_{m \times n}(\mathbb{R})$, the following spaces are subspaces of \mathbf{V} .

(a)
$$\mathbf{U}_n(\mathbb{R}) := \{ A \in \mathfrak{M}_{m \times n}(\mathbb{R}) \mid a_{ij} = 0 \, \forall i > j \}$$

(b)
$$\mathbf{L}_n(\mathbb{R}) := \{ A \in \mathfrak{M}_{m \times n}(\mathbb{R}) \mid a_{ij} = 0 \, \forall i < j \}$$

(c)
$$\mathbf{D}_n(\mathbb{R}) := \{ A \in \mathfrak{M}_{m \times n}(\mathbb{R}) \mid a_{ij} = 0 \, \forall i \neq j \}$$

(d)
$$\operatorname{sl}_n(\mathbb{R}) := \{ A \in \mathfrak{M}_{m \times n}(\mathbb{R}) \mid trA := a_{11} + \dots + a_{nn} = 0 \}$$

Theorem. $\Lambda := (an \ index \ set), \ if \ \mathbf{W}_{\alpha} \leq \mathbf{V}, \alpha \in \Lambda, \ then \bigcap_{\alpha \in \Lambda} \mathbf{W}_{\alpha} \leq \mathbf{V}.$

Proof. If $\mathbf{v}, \mathbf{w} \in \bigcap_{\alpha \in \Lambda} \mathbf{W}_{\alpha}$, then $\mathbf{v}, \mathbf{w} \in \mathbf{W}_{\alpha}$ for all α in Λ . Since $\mathbf{W}_{\alpha} \leq \mathbf{V}$, $\mathbf{v} + \mathbf{w} \in \mathbf{W}_{\alpha}$. That is $\mathbf{v} + \mathbf{w} \in \mathbf{W}_{\alpha}$ for all $\alpha \in \Lambda$. So $\mathbf{v} + \mathbf{w} \in \bigcap_{\alpha \in \Lambda} \mathbf{W}_{\alpha}$. The scalar multiplication can be proved similarly. \square

Note. If $\mathbf{U}, \mathbf{W} \leq \mathbf{V}$, then $\mathbf{U} \cup \mathbf{W} \leq \mathbf{V}$? The answer is No. Here is the counter example. $\mathbf{V} := \mathbb{R}^2, \mathbf{U} := \{(x,0) \mid x \in \mathbb{R}\}, \mathbf{W} := \{(0,y) \mid y \in \mathbb{R}\}. \ (1,0) \in \mathbf{U}, (0,1) \in \mathbf{W},$ but $(1,0) + (0,2) = (1,2) \notin \mathbf{U} \cup \mathbf{W}$.

Definition. $W_1, W_2 \le V, W_1 + W_2 := \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}$ is the sum of W_1 and W_2 .

Definition. $\mathbf{W}_1 \bigoplus \mathbf{W}_2 := \text{the direct sum if it is the sum of } \mathbf{W}_1 \text{ and } \mathbf{W}_2 = \mathbf{V} \text{ with } \mathbf{W}_1 \cap \mathbf{W}_2 = \mathbf{O}$

Theorem. $W_1 + W_2 \leq V$

Proof. Since $\mathbf{w}_1 \in \mathbf{W}_1, \mathbf{w}_2 \in \mathbf{W}_2, \mathbf{W}_1 + \mathbf{W}_2 \subset \mathbf{V}$. Let $\mathbf{w}_1 + \mathbf{w}_2, \mathbf{w}_1' + \mathbf{w}_2' \in \mathbf{W}_1 + \mathbf{W}_2$ and $c \in \mathbf{F}$ be given. Then we want to show $\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_1' + \mathbf{w}_2' \in \mathbf{W}_1 + \mathbf{W}_2$. Since $\mathbf{w}_1 + \mathbf{w}_1' \in \mathbf{W}_1$ and $\mathbf{w}_2 + \mathbf{w}_2' \in \mathbf{W}_2$, $\mathbf{w}_1 + \mathbf{w}_1' + \mathbf{w}_2 + \mathbf{w}_2' \in \mathbf{W}_1 + \mathbf{W}_2$. Proof for scalar multiplication is similar.

Theorem. $\mathbf{V} = \mathbf{W}_1 \bigoplus \mathbf{W}_2 \iff [\text{Every } \mathbf{v} \in \mathbf{V} \text{ can be written as } \mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2 \text{ for a unique } \mathbf{w}_1 \in \mathbf{W}_1, \mathbf{w}_2 \in \mathbf{W}_2]$

Proof. \Longrightarrow For any $\mathbf{v} \in \mathbf{V}$, $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$ for some $\mathbf{w}_1 \in \mathbf{W}_1$, $\mathbf{w}_2 \in \mathbf{W}_2$ because $\mathbf{V} = \mathbf{W}_1 + \mathbf{W}_2$. We want to show the uniqueness. Suppose $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_1' + \mathbf{w}_2'$. Then $\mathbf{w}_1 - \mathbf{w}_1' = \mathbf{w}_2' = \mathbf{w}_2 \in \mathbf{W}_1 \cap \mathbf{W}_2 = \mathbf{O}$. That is $\mathbf{w}_1 - \mathbf{w}_1' = \mathbf{w}_2' - \mathbf{w}_2 = \mathbf{O}$.

 $\therefore \mathbf{w}_1 = \mathbf{w}_1'$ and $\mathbf{w}_2 = \mathbf{w}_2'$

 \Leftarrow $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$ $\mathbf{w}_1 \in \mathbf{W}_1, \mathbf{w}_2 \in \mathbf{W}_2$ and $\mathbf{w}_1, \mathbf{w}_2$ are unique. We want to show that $\mathbf{W}_1 \cap \mathbf{W}_2 = \mathbf{O}$. Let's assume that $\mathbf{W}_1 \cap \mathbf{W}_2 \neq \mathbf{O}$. That is $\exists \mathbf{w} \in \mathbf{W}_1 \cap \mathbf{W}_2$ such that $\mathbf{w} \neq \mathbf{0}$. Since $\mathbf{w} \in \mathbf{W}_1 \cap \mathbf{W}_2$, $\mathbf{w}_1 + \mathbf{w} \in \mathbf{W}_1$ and $\mathbf{w}_2 - \mathbf{w} \in \mathbf{W}_2$. Thus $\mathbf{v} = (\mathbf{w}_1 + \mathbf{w}) + (\mathbf{w}_2 - \mathbf{w}) = \mathbf{w}_1 + \mathbf{w}_2$. It contradicts to the assumption that \mathbf{v} can be uniquely written as sum of two vectors from $\mathbf{W}_1, \mathbf{W}_2$.

$$\therefore \mathbf{W}_1 \cap \mathbf{W}_2 = \mathbf{O}$$