MATH214 Homework 1

Tianzong Cheng

February 2023

1 Exercise 1

1.1 Question 1

Let (S,*) and (S',*') and (S'',*'') be three algebraic structures. Suppose $f: S \to S', g: S' \to S''$ and $h = f \circ g: S \to S''$.

Then we have
$$\begin{cases} f(x*y) = f(x)*'f(y) \\ g(f(x)*'f(y)) = g \circ f(x)*''g \circ f(y) \end{cases}$$

Thus we have $g \circ f(x * y) = g \circ f(x) *'' g \circ f(y)$, namely h(x * y) = h(x) *'' h(y). So the composition of f and g is a homomorphism.

1.2 Question 2

According to the definition of isomorphisim, an isomorphism is a bijection. Let f be an isomorphism from S to S' and $a \in S$, $a' \in S'$. Since f is a bijection, we have f(a) = a' and $f^{-1}(a') = a$. We can easily observe that f^{-1} is also bijective because f is the inverse function of f^{-1} . Next we need to show that f^{-1} is a homomorphism. $\forall x', y' \in S'$,

$$f^{-1}(x'*'y') = f^{-1}(f(x)*'f(y))$$

$$= f^{-1}(f(x*y))$$

$$= x*y$$

$$= f^{-1}(x')*f^{-1}(y)$$

1.3 Question 3

- a) homomorphism
- b) endomorphism
- c) automorphism
- d) automorphism
- e) homomorphism

2 Exercise 2

Set 3, 4, 6 are vector subspaces meeting the requirments.

3 Exercise 3

3.1 Question 1

 $\forall \alpha \in V \text{ and } \forall k \in \mathbb{R}, \text{ we have } k \cdot \alpha = k \cdot (x, y, z) = (kx, ky, kz).$ It's obvious that kx - 2ky + 3kz = k(x - 2y + 3z) = 0. So V is a subspace of \mathbb{R}^3 .

3.2 Question 2

A set is a collection of distinct objects.

A vector space is a mathematical structure that consists of a set of vectors, together with operations of addition and scalar multiplication.

3.3 Question 3

Since $B \subset C$, we only need to prove $C \subset B$, namely $\forall c \in C$, $c \in B$. Since A + B = A + C, $\forall a \in A$ and $b \in B$, we have

$$\begin{cases} a+b \in A+C \\ a+c \in A+B \end{cases}$$

A is a subspace of V, so $0 \in A$. If a = 0, then $c \in A + B$. Since $c \in C$, $c \in B$. That is, $C \subset b$, B = C.

3.4 Question 4

First, show that $A \cap (B + (A \cap C)) \subset (A \cap B) + (A \cap C)$. $\forall x \in A \cap (B + (A \cap C))$, we have

$$\begin{cases} x \in A \\ x \in (B + (A \cap C)) \end{cases}$$

3.5 Question 5

I'm afraid this is beyond me.

4 Exercise 4

I'm afraid this is beyond me.