Density Estimation Using Real NVP

Presenter: Zhengyuan Cui

Data space \mathcal{X}

Latent space Z

$$x \sim p_X$$
$$z = f(x)$$

Generation

$$z \sim p_Z$$
$$x = f^{-1}(z)$$

$$p_X(x) = p_Z(f(x)) \left| \det \left(\frac{\partial f(x)}{\partial x^T} \right) \right|$$

$$\log (p_X(x)) = \log \left(p_Z(f(x)) \right) + \log \left(\left| \det \left(\frac{\partial f(x)}{\partial x^T} \right) \right| \right),$$

Coupling layer

$$y_{1:d} = x_{1:d}$$

 $y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}),$

$$\frac{\partial y}{\partial x^{T}} = \begin{bmatrix} \mathbb{I}_{d} & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^{T}} & \operatorname{diag}\left(\exp\left[s\left(x_{1:d}\right)\right]\right) \end{bmatrix}$$

Coupling Layer

```
\begin{cases} y_{1:d} &= x_{1:d} \\ y_{d+1:D} &= x_{d+1:D} \odot \exp \left( s(x_{1:d}) \right) + t(x_{1:d}) \end{cases}
\Leftrightarrow \begin{cases} x_{1:d} &= y_{1:d} \\ x_{d+1:D} &= \left( y_{d+1:D} - t(y_{1:d}) \right) \odot \exp \left( - s(y_{1:d}) \right), \end{cases}
```

Another expression

$$y = b \odot x + (1 - b) \odot \left(x \odot \exp \left(s(b \odot x) \right) + t(b \odot x) \right).$$

Combining coupling layers

$$\frac{\partial (f_b \circ f_a)}{\partial x_a^T}(x_a) = \frac{\partial f_a}{\partial x_a^T}(x_a) \cdot \frac{\partial f_b}{\partial x_b^T}(x_b = f_a(x_a))$$
$$\det(A \cdot B) = \det(A) \det(B).$$

$$(f_b \circ f_a)^{-1} = f_a^{-1} \circ f_b^{-1}.$$

Multi-scale architecture

$$h^{(0)} = x$$

$$(z^{(i+1)}, h^{(i+1)}) = f^{(i+1)}(h^{(i)})$$

$$z^{(L)} = f^{(L)}(h^{(L-1)})$$

$$z = (z^{(1)}, \dots, z^{(L)}).$$

Batch Normalization

$$x \mapsto \frac{x - \tilde{\mu}}{\sqrt{\tilde{\sigma}^2 + \epsilon}}$$

$$\left(\prod_{i} \left(\tilde{\sigma}_{i}^{2} + \epsilon\right)\right)^{-\frac{1}{2}}$$

Experiment

- Multi-scale architecture (repeated recursively until the input of the last recursion is a 4 * 4 * c tensor)
- Deep convolutional residue network in coupling layer
- Optimizer: ADAM
- L2 regularization on weight scale parameters

Result

Dataset	PixelRNN [46]	Real NVP	Conv DRAW [22]	IAF-VAE [34]
CIFAR-10	3.00	3.49	< 3.59	< 3.28
Imagenet (32×32)	3.86 (3.83)	4.28 (4.26)	< 4.40 (4.35)	9.
Imagenet (64×64)	3.63 (3.57)	3.98 (3.75)	< 4.10 (4.04)	
LSUN (bedroom)		2.72 (2.70)		
LSUN (tower)		2.81 (2.78)		
LSUN (church outdoor)		3.08 (2.94)		
CelebA		3.02 (2.97)		

Results

Results

Smooth semantically consistent meaning

$$z = \cos(\phi) \left(\cos(\phi') z_{(1)} + \sin(\phi') z_{(2)} \right) + \sin(\phi) \left(\cos(\phi') z_{(3)} + \sin(\phi') z_{(4)} \right)$$

Pros and cons

Performance: Competitive but has lots of room for improvement

• Pros:

- Allow tractable and exact log likelihood
- Flexible functional form allows fast and exact sampling from model distribution
- Does not require the use of fixed form reconstruction cost
- Able to learn a semantically meaningful latent space

• Cons:

- Latent space does not reduce number of dimensions
- Need much more space, too much networks

Discussion points

- In the multi-scale architecture, the factoring operation factors out lots of positions without going through enough transformation. Would this be a factor that hurts the final performance of the model?
- What other masks we can use besides the checkerboard mask and the channel-wise mask?

Useful resources

- https://www.youtube.com/watch?v=6GUSrmo9Qpw&t=458s The author of this paper talking about the model
- https://www.youtube.com/watch?v=u3vVyFVU_II Introduction to normalizing flow
- https://arxiv.org/abs/1908.09257 Introduction to lots of flow methods: "Normalizing Flows: An Introduction and Review of Current Methods"