РАСПОЗНАВАНИЕ ЛИЦ Лекция 9.

Преподаватель: Сибирцева Елена elsibirtseva@gmail.com

В предыдущих сериях...

Преобразование Хафа

- Hough transform
 - Дискретизируем пространство параметров модели (разделим его на ячейки)
 - Для каждого точки из данных, голосуем за все ячейки в пространстве параметров, которые соответствуют моделям, которым эта точка удовлетворяет
 - Найдем ячейки с максимум голосов

Фазовое пространство

- Пространство параметров называют фазовым пространством
- Рассмотрим пример для линий
- Каждая линия на изображении соответствует точке в фазовом пространстве
- Необходимо, что всевозможные линии на изображении соответствовали ограниченной области в фазовом пространстве

Фазовое пространство

Через одну точку можно провести несколько прямых. Учитывая дискретность их будет конечное число.

Каждой прямой пространства (x, y) соответствует точка фазового пространства (R, 0). Прямые с левого рисунка образуют синусоиду.

- Дискретизируем фазовое пространство
- Счетчик ставится в соответствие каждой ячейке сетки [R_i, R_{i+1}] x [θ_i,θ_{i+1}]
- За эту ячейку «голосуют» точки (x, y), удовлетворяющие:
 x cosθ + y sinθ = R, где θ_i ≤ θ ≤ θ_{i+1}, R_i ≤ R ≤ R_{i+1}

Пример

6

Влияние шума

Шум приводит к «размытию» максимумов

РАСПОЗНАВАНИЕ ЛИЦ

finally (-_-)

Что можно делать с лицами

- Face Detection
- Face Recognition
- Segmentation
- Face Tracking
- Facial features localization
- Facial features tracking
- Morphing

- Digital photography
- Surveillance

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.

- Digital photography
- Surveillance
- Album organizati
- Person tracking/i
- Emotions and expressions

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
- Security/warfare
- Tele-conferencing
- Etc.

Eigenfaces and Fishfaces

- Principle Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)

References:

- Turk and Penland, Eigenfaces for Recognition, 1991
- Belhumeur, Hespanha and Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

Пространство лиц

- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}

Eigenfaces основная идея

- О Изображения в исходном множестве сильно коррелируют
- Значит, их можно сжать в мало-размерное подпространство, которое будет содержать характеристические особенности изображения.
- ОИспользовать **PCA** для расчёта подпространства (dimensionality reduction)
- О Сравнить два лица по отображению изображений в подпространстве и измерению **ЕВКЛИДОВОГО** расстояния между ними $\rho_{E}(x_{i},x_{j}) = \sqrt{\sum_{k=1}^{k} (x_{il}-x_{jl})^{2}} \; ,$

- Computes p-dim subspace such that the projection of the data points onto the subspace has the largest variance among all p-dim subspaces.
- · Maximize the scatter of the training images in face space

USE PCA for estimating the sub-space

 Computes p-dim subspace such that the projection of the data points onto the subspace has the largest variance among all p-dim subspaces.

USE PCA for estimating the sub-space

PCA (principal component analysis)

РСА – метод главных компонент

- Метод главных компонент (англ. principal component analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. (c) wiki
- Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных.
- *собственный вектор –определяется для квадратной матрицы или произвольного линейного преобразования как вектор, умножение матрицы на который или применение к которому преобразования даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение, называемое собственным значением.
- *матрица ковариаций это матрица, составленная из попарных ковариаций элементов двух случайных векторов.

Easy as pie

РСА на пальцах

0	0	1	0	0
0	1	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	1	1	1	0

Средняя цифра

0.3	0.7	0.9	0.9	0.3
0.5	0.2	0.2	0.2	0.5
0.5	0.2	0.3	0.3	0.4
0.3	0.3	0.5	0.6	0.3
0.4	0.2	0.3	0.1	0.7
0.5	0.2	0.1	0.2	0.5
0.1	0.9	0.8	0.8	0.1

0.3	0.7	0.9	0.9	0.3
0.5	0.2	0.2	0.2	0.5
0.5	0.2	0.3	0.3	0.4
0.3	0.3	0.5	0.6	0.3
0.4	0.2	0.3	0.1	0.7
0.5	0.2	0.1	0.2	0.5
0.1	0.9	0.8	0.8	0.1

Положение (столбец, строка)	0	1	2	3	4	5	6	7	8	9
(1,2)	1	0	1	0	0	1	0	0	1	1
(1,3)	1	0	0	0	0	1	1	0	1	1
(1,6)	1	0	0	1	0	1	1	0	1	0
(3,4)	0	1	0	0	0	0	1	1	1	1
(5,2)	1	0	1	0	0	0	0	1	1	1
(5,6)	1	0	0	1	0	1	1	0	1	0

Положение (столбец, строка)		0	1	2	3	4	5	6	7	8	9
	(1,2)	1	0	1	0	0	1	0	0	1	1
	(1,3)	1	0	0	0	0	1	1	0	1	1
	(1,6)	1	0	0	1	0	1	1	0	1	0
	(3,4)	0	1	0	0	0	0	1	1	1	1
	(5,2)	1	0	1	0	0	0	0	1	1	1
	(5,6)	1	0	0	1	0	1	1	0	1	0

Положение (столбец, строка)	0	1	2	3	4	5	6	7	8	9
(1,2)	1	0	1	0	0	1	0	0	1	1
(1,3)	1	0	0	0	0	1	1	0	1	1
(1,6)	1	0	0	1	0	1	1	0	1	0
(3,4)	0	1	0	0	0	0	1	1	1	1
(5,2)	1	0	1	0	0	0	0	1	1	1
(5,6)	1	0	0	1	0	1	1	0	1	0

Положение (столбец, строка)	0	1	2	3	4	5	6	7	8	9
(1,2)	1	0	1	0	0	1	0	0	1	1
(1,3)	1	0	0	0	0	1	1	0	1	1
(1,6)	1	0	0	1	0	1	1	0	1	0
(3,4)	0	1	0	0	0	0	1	1	1	1
(5,2)	1	0	1	0	0	0	0	1	1	1
(5,6)	1	0	0	1	0	1	1	0	1	0

PCA Mathematical Formulation

PCA = eigenvalue decomposition of a data covariance matrix

Define a transformation, W,

$$y_j = W^T \ x_j \qquad j = 1, 2 \dots N$$
 m-dimensional
$$0 \text{rthonormal } w \in \mathbb{R}^{n \times m} \text{ n-dimensional}$$

$$S_T = \sum_{j=1}^{N} (x_j - \overline{x})(x_j - \overline{x})^T$$
 = Data Scatter matrix

$$\widetilde{S}_T = \sum_{j=1}^{N} (y_j - \overline{y})(y_j - \overline{y})^T = W^T S_T W = \text{Transf. data scatter matrix}$$
Eigenvectors of S_T

$$W_{opt} = \arg\max_{W} \left| W^{T} S_{T} W \right| = \left[\overrightarrow{\mathbf{w}}_{1} \ \overrightarrow{\mathbf{w}}_{2} \ \dots \ \overrightarrow{\mathbf{w}}_{k} \right]$$

Eigenfaces

- PCA extracts the eigenvectors of S_T
 - Gives a set of vectors $v_1, v_2, v_3, ...$
 - -Each one of these vectors is a direction in face space:

Projecting onto the Eigenfaces

- The eigenfaces $v_1, ..., v_K$ span the space of faces
 - A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_{1}}_{a_{1}}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_{2}}_{a_{2}}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_{K}}_{a_{K}})$$

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_{1}\mathbf{v}_{1} + a_{2}\mathbf{v}_{2} + \dots + a_{K}\mathbf{v}_{K}$$

$$\longrightarrow$$

 a_1 **v**₁ a_2 **v**₂ a_3 **v**₃ a_4 **v**₄ a_5 **v**₅ a_6 **v**₆ a_7 **v**₇ a_8 **v**₈

 \mathbf{x}

Algorithm

Training

1. Align training images x₁, x₂, ..., x_N

Note that each image is formulated into a long vector!

- 2. Compute average face $u = 1/N \Sigma x_i$
- 3. Compute the difference image $\varphi_i = x_i u$

Algorithm

4. Compute the covariance matrix (total scatter matrix)

$$S_T = (1/N) \Sigma \varphi_i \varphi_i^T = BB^T, B = [\varphi_1, \varphi_2 \dots \varphi_N]$$

5. Compute the eigenvectors of the covariance matrix, W

Testing

1. Projection in Eigenface Projection $\omega_i = W(X - u), W = \{eigenfaces\}$

2. Compare projections

Illustration of Eigenfaces

The visualization of eigenvectors:

These are the first 4 eigenvectors from a training set of 400 images (ORL Face Database). They look like faces, hence called Eigenface.

Eigenfaces look somewhat like generic faces.

Reconstruction and Errors

- Only selecting the top P eigenfaces

 reduces the dimensionality.
- Fewer eigenfaces result in more information loss, and hence less discrimination between faces.

Summary for Eigenface

Pros

Non-iterative, globally optimal solution

Limitations

 PCA projection is optimal for reconstruction from a low dimensional basis, but may NOT be optimal for discrimination...

Limitations

Global appearance method: not robust

Limitations

 PCA assumes that the data has a Gaussian distribution (mean μ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components

http://www.youtube.com/watch?v=q4CrD_zfP08

Советую посмотреть. Толковый лысый коп рассказывает про распознавание лиц.

В следующих сериях...

