

60

5	S	8	10	15
	Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Tyr Iys Leu Lys			
	28	28	28	28
10	His Ile Val Trp Ala Ser Arg Glu Leu Gln Arg Phe Ala Val Asn Pro			
	28	48	48	48
15	Gly Leu Leu Glu Thr Ser Ser Glu Gly Cys Arg Glu Ile Leu Gly Gln Leu			
	58	58	68	68
20	Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn			
	68	78	78	88
25	Thr Val Ala Thr Ieu Tyr Cys Val His Gln Arg Ile Glu Ile Lys Asp			
	88	98	98	98
30	Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Gln Asn Lys Ser Lys			
	108	108	118	118
35	Lys Lys Ala Gln Gln Ala Ala Ala Asp Thr Gly His Ser Asn Gln Val			
	118	128	128	138
40	Ser Gln Asn Tyr Pro Ile Val Gln Asn Ile Gln Gly Gln Met Val His			
	138	138	148	148
45	Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Gln			
	148	158	158	168
50	Gln Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser			
	168	178	178	178
55	Gln Gly Ala Thr Pro Gln Asp Ieu Asn Thr Met Ieu Asn Thr Val Gly			
	178	188	188	198
60	Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Gln Glu			
	198	208	208	208
65	Ala Ala Gln Trp Asp Arg Val His Pro Val His Ala Gly Pro Ile Ala			
	218	228	228	238
70	Pro Gly Gln Met Arg Gln Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr			
	238	238	238	248
75	Ser Thr Ieu Gln Glu Glu Ile Gly Trp Met Thr Asn Asn Pro Ile			
	248	258	258	258
80	Pro Val Gly Glu Ile Tyr Iys Arg Trp Ile Ile Ieu Gly Leu Asn Iys			
	268	268	268	278
85	Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Arg Gln Gly			

81

	278	280	285
5	Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr Lys Thr Ieu 286 288 289		
10	Arg Ala Glu Gln Ala Ser Glu Glu Val Lys Asn Trp Met Thr Glu Thr 308 310 312 314		
15	Lys Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Iys Iys Ala 326 330 335		
20	Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly 346 348 350		
25	Val Gly Gly Pro Gly His Lys Ala Arg Val Leu Met Gly Pro Ile Ser 358 360 368		
30	Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro 370 378 380		
35	Iys Val Lys Glu Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val 388 390 392 400		
40	Gln Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly 408 410 412		
45	Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp 420 428 430		
50	Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg 438 440 442		
55	Thr Glu Asp Phe Trp Glu Val Glu Leu Gly Ile Pro Asn Pro Ala Gly 450 452 454		
60	Leu Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr 468 470 472 474		
65	Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr 488 490 492 494		
70	Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Glu Tyr Asn 508 510 512		
75	Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser 518 520 522		
80	Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Glu Asn Pro Asp Ile Val 538 538 540		
85	Ile Tyr Glu Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Ile Glu Ile		

82

5	S&S	S&S	S&S	S&S
	Gly Glu His Arg Thr Lys Ile Glu Glu Leu Arg Glu His Leu Leu Arg			
	626	678	678	
10	Trp Gly Ieu Thr Thr Pro Asp Lys Lys His Glu Iys Glu Pro Pro Phe			
	580	585	585	
	Leu Iys Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Glu Pro			
	595	600	600	
15	Ile Val Leu Pro Glu Iys Asp Ser Thr Val Asn Asp Ile Glu Lys			
	610	615	620	
20	Leu Val Gly Iys Leu Asn Trp Ala Ser Glu Ile Tyr Pro Gly Ile Lys			
	625	630	640	
25	Val Arg Glu Leu Cys Iys Leu Ieu Arg Gly Thr Iys Ala Leu Thr Glu			
	645	650	655	
30	Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg			
	660	665	670	
	Glu Ile Leu Iys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys			
	675	680	685	
35	Asp Leu Ile Ala Glu Ile Glu Iys Glu Gly Glu Glu Ile Trp Thr Tyr			
	690	695	700	
40	Glu Ile Tyr Glu Glu Pro Phe Lys Asn Leu Lys Thr Gly Iys Tyr Ala			
	705	710	720	
45	Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Glu Leu Thr Glu Ala			
	725	730	735	
50	Val Glu Iys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Iys Thr Pro			
	740	745	750	
	Lys Phe Iys Leu Pro Ile Glu Iys Glu Thr Trp Glu Thr Trp Trp Thr			
	755	760	765	
55	Glu Tyr Trp Glu Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr			
	770	775	780	
60	Pro Pro Leu Val Iys Leu Trp Tyr Glu Leu Glu Lys Glu Pro Ile Val			
	785	790	800	
65	Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Iys			
	805	810	815	
	Leu Gly Iys Ala Gly Tyr Val Thr Asn Arg Asp Asp Glu Lys Val Val			

83

	830	835	840
5	The Leu Thr Asp Thr Thr Asn Glu Lys Thr Glu Leu Glu Ala Ile Tyr 819 840 845		
10	Leu Ala Leu Glu Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser 850 855 860		
15	Gln Tyr Ala Leu Gly Ile Ile Gln Ala Glu Pro Asp Glu Ser Glu Ser 865 870 875 880		
20	Glu Leu Val Asn Glu Ile Ile Glu Glu Leu Ile Lys Lys Glu Lys Val 885 890 895		
25	Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Glu 895 905 910		
30	Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Met Val Gly 915 920 925		
35	Phe Pro Val Thr Pro Glu Val Pro Leu Arg Pro Met Thr Tyr Lys Ala 930 935 940		
40	Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Leu Glu Gly 945 950 955 960		
45	Ile Ile His Ser Glu Arg Arg Glu Asp Ile Leu Asp Leu Trp Ile Tyr 965 970 975		
50	His Thr Glu Gly Tyr Phe Pro Asp Trp Glu Asn Tyr Thr Pro Gly Pro 980 985 990		
55	Gly Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Tyr Lys Leu Val Pro 995 1000 1005		
60	Val Glu Pro Asp Lys Val Glu Glu Ala Asn Lys Gly Glu Asn Thr 1010 1015 1020		
65	Ser Ile Leu His Pro Val Ser Leu His Gly Met Asp Asp Pro Glu 1025 1030 1035		
70	Arg Glu Val Leu Glu Trp Arg Phe Asp Ser Arg Leu Ala Phe His 1040 1045 1050		
75	His Val Ala Arg Glu Leu His Pro Glu Tyr Phe Lys Asn Cys 1055 1060 1065		
80	<219> 3 <211> 4666 <232> DNA <213> HIV		

	stggggggggc cccgggttccg ggggggggggg agggggggccc ctggggggggc ttccgggggg	4140
5	gggggggggtt cccgggttccg ggggggggggg agggggggccc ctggggggggc ttccgggggg	4200
	ctttggggggg tttggggggg ggggggggggg ggggggggggg tttttttttt tttttttttt	4260
	cggtggggcc cgggggggggg ggggggggggg ggggggggggg ggggggggggg ggggggggg	4320
10	gggggggggg ggggggggggg octgggttccg aggggggggggg gggggggggat ttgggggggg	4380
	tgggggggggg accgggggggg ggccgggggggg ggggggggggg ggggggggggg ggggggggg	4440
15	gtgggggttcg ccctggggcc tttgggggggggg tttttttttt ggggggggggg ggggggggg	4500
	gggggggggggg ggggggggggg ggggggggggg ggggggggggg ggggggggggg ggggggggg	4560
	atgg	4620
20	cacagg	4680
	<210> 4	
25	<221> 1884	
	<221> PRY	
	<221> RIV	
	<400> 4	
30	Met Ala Ala Arg Ala Ser Ile Leu Ser Gly Gly Lys Leu Asp Ala Trp	
	1 8 10 18	
35	Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Tyr Arg Leu Lys	
	20 28 36	
	His Leu Val Trp Ala Ser Arg Glu Leu Asp Arg Phe Ala Leu Asn Pro	
40	35 43 45	
	Ser Leu Leu Glu Thr Thr Glu Gly Cys Gln Ile Met Asn Glu Leu	
	50 58 68	
45	Gln Pro Ala Val Lys Thr Gly Thr Glu Glu Ile Lys Ser Leu Phe Asn	
	65 73 75 83	
50	Tyr Val Ala Thr Leu Tyr Cys Val His Glu Arg Ile Asp Val Lys Asp	
	85 93 95	
55	Tyr Lys Glu Ala Leu Asp Lys Ile Glu Glu Ile Glu Asn Lys Ser Lys	
	105 108 110	
60	Gln Lys Thr Gln Gln Ala Ala Asp Thr Gly Asp Ser Ser Lys Val	
	118 120 128	
	Ser Gln Asn Tyr Pro Ile Ile Gln Asn Ala Gln Gly Gln Met Ile His	
	138 138 140	
65	Gln Asn Leu Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Ile Glu	
	148 150 152 160	

168 Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser
 169 170 171

5

Gly Gly Glu Thr Pro Gln Asp Leu Asn Val Met Leu Asn Ile Val Gly
 188 189 190

10

Gly His Glu Ala Ala Met Glu Met Leu Lys Asp Thr Ile Asn Glu Glu
 191 192 193

15

Ala Asn Glu Trp Asp Arg Leu His Pro Val Gln Ala Gly Pro Ile Pro
 210 211 212

20

Pro Gly Glu Ile Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr
 228 229 230 231 232 233 234 235 236

25

Ser Thr Pro Glu Glu Glu Leu Glu Trp Met Thr Gly Asn Pro Pro Ile
 248 249 250 251 252 253

30

Ile Val Arg Met Tyr Ser Pro Val Ser Ile Leu Asp Ile Lys Glu Gly
 278 279 280 281

35

Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Phe Lys Ala Leu
 298 300 301 302

40

Arg Ala Glu Glu Ala Thr Gln Asp Val Lys Gly Trp Met Thr Glu Thr
 328 329 330 331 332 333

45

Leu Leu Val Glu Asn Ala Asn Pro Asp Cys Lys Ser Ile Leu Lys Ala
 358 359 360 361 362

50

Leu Gly Ser Gly Ala Thr Leu Glu Met Met Thr Ala Cys Glu Gly
 388 389 390 391 392

55

Gln Ala Glu Glu Thr Asn Ile Met Met Gln Arg Gly Asn Phe Arg Gly
 398 400 401 402

60

Gln Lys Arg Ile Lys Cys Phe Asn Cys Gly Lys Glu Gly His Leu Ala
 428 429 430 431 432

65

Arg Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys
 468 469 470 471 472 473

Glu Gly His Glu Met Lys Asp Cys Thr Gln Arg Glu Ala Asn Phe Leu
 488 489 490 491 492

68

Gly Lys Ile Trp Pro Ser Ser Lys Gly Arg Pro Gly Asn Phe Pro Gln
 438 440 442
 5 Ser Arg Pro Glu Pro Thr Ala Pro Pro Ala Glu Leu Phe Gly Met Gly
 450 452 454
 10 Glu Gly Ile Ala Ser Leu Pro Lys Glu Gln Lys Asp Arg Gln Gln
 465 470 475 480
 15 Val Pro Pro Leu Val Ser Leu Lys Ser Leu Phe Gly Asn Asp Pro Leu
 485 490 495
 20 Ser Gln Gly Ser Pro Ile Ser Pro Ile Glu Thr Val Pro Val Thr Leu
 500 505 510
 25 Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Gln
 515 520 525
 30 Glu Lys Ile Lys Ala Leu Thr Glu Ile Cys Thr Gln Met Gln Lys Glu
 530 535 540
 35 Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp
 555 560 565
 40 Phe Arg Gln Leu Asn Lys Arg Thr Gln Asp Phe Trp Gln Val Gln Leu
 580 585 590
 45 Gly Ile Pro Gln Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val
 600 605 610
 50 Leu Asp Val Gln Asp Ala Tyr Phe Ser Val Pro Leu Asp Gln Asn Phe
 620 625 630
 55 Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Thr Asn Asn Gln Thr Pro
 645 650 655
 60 Gly Val Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gln Ser
 675 680 685
 65 Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Gln Pro Phe Arg
 690 695 700
 Ser Lys Asn Pro Glu Ile Ile Tyr Gln Tyr Met Ala Ala Leu Tyr
 725 730 735
 70 Val Gln Ser Asp Leu Gln Ile Gln Gln His Arg Thr Lys Ile Gln Gln
 750 755 760

Leu Arg Ala His Leu Leu Ser Trp Gly Phe Thr Thr Pro Asp Lys Lys
 703 713 723

5 His Glu Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Ileu His Pro
 725 735 745

10 Asp Lys Tyr Thr Val Glu Pro Ile Met Leu Pro Asp Lys Glu Ser Trp
 745 755 765

15 Thr Val Asn Asp Ile Glu Iys Leu Val Gly Iys Leu Asn Trp Ala Ser
 765 775 785

Gln Ile Tyr Ala Gly Ile Iys Val Iys Gln Leu Cys Arg Iea Leu Arg
 775 785 795

20 Gly Ala Iys Ala Leu Thr Asp Ile Val Thr Leu Thr Glu Glu Ala Glu
 795 805 815

25 Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Asp Pro Val His Glu
 805 815 825

30 Val Tyr Tyr Asp Pro Ser Lys Asp Leu Val Ala Glu Ile Glu Iys Gln
 825 835 845

35 Gly Glu Asp Glu Trp Thr Tyr Gln Ile Tyr Glu Glu Pro Phe Iys Asn
 845 855 865

40 Leu Iys Thr Gly Iys Tyr Ala Arg Iys Arg Ser Ala His Thr Asn Asp
 865 885 895

Val Arg Glu Leu Ala Glu Val Val Glu Iys Val Ala Met Glu Ser Ile
 895 905 915

45 Val Ile Trp Gly Iys Thr Pro Iys Phe Iys Leu Pro Ile Glu Iys Glu
 905 915 925

50 Thr Trp Glu Thr Trp Trp Met Asp Tyr Trp Gln Ala Thr Trp Ile Pro
 925 935 945

55 Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Glu
 945 955 965

60 Leu Glu Iys Asp Pro Ile Leu Gly Ala Glu Thr Phe Tyr Val Asp Gly
 965 975 985

Ala Ala Asn Arg Glu Thr Iys Leu Gly Iys Ala Gly Tyr Val Thr Asp
 985 995 1005

65 Arg Gly Arg Glu Lys Val Val Ser Leu Thr Glu Thr Thr Asn Glu Iys
 1005 1015 1025

Thr Glu Leu His Ala Ile Leu Leu Ala Leu Glu Asp Ser Gly Ser Glu
 580 585 590

5 Val Asn Ile Val Thr Asp Ser Glu Tyr Ala Leu Gly Ile Ile Glu Ala
 595 1000 1005

10 Glu Pro Asp Arg Ser Glu Ser Glu Leu Val Asn Glu Ile Ile Glu
 1010 1015 1020

15 Lys Leu Ile Gly Lys Asp Iys Ile Tyr Leu Ser Trp Val Pro Ala
 1025 1030 1035

20 His Lys Gly Ile Gly Gly Asn Glu Glu Val Asp Lys Leu Val Ser
 1040 1045 1050

25 Ser Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile Asp Lys Ala
 1055 1060 1065

30 Glu Glu Asp His Glu Arg Tyr His Ser Asn Trp Arg Thr Met Ala
 1070 1075 1080

35 Ser Asp Phe Asn Leu Pro Pro Ile Val Ala Lys Glu Ile Val Ala
 1085 1090 1095

40 Ser Cys Asp Lys Cys Glu Leu Lys Gly Glu Ala Met His Gly Glu
 1100 1105 1110

45 Val Asp Cys Ser Pro Gly Ile Trp Glu Leu Ala Cys Thr His Leu
 1115 1120 1125

50 His Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr
 1130 1135 1140

55 Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Glu Glu Thr Ala
 1145 1150 1155

60 Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Val Val
 1160 1165 1170

65 His Thr Ala Asn Gly Ser Asn Phe Thr Ser Ala Ala Val Lys Ala
 1175 1180 1185

70 Ala Cys Trp Trp Ala Asn Ile Glu Glu Phe Gly Ile Pro Tyr
 1190 1195 1200

75 Asn Pro Glu Ser Glu Gly Val Val Ala Ser Met Asn Lys Glu Leu
 1205 1210 1215

80 Lys Lys Ile Ile Gly Glu Val Arg Asp Glu Ala Glu His Leu Lys
 1220 1225 1230

Thr Ala Val Glu Met Ala Val Phe Ile His Asn Phe Lys Arg Lys
 1238 1242 1245
5
 Gly Gly Ile Gly Gly Tyr Ser Ala Gly Gln Arg Ile Ile Asp Ile
 1250 1255 1260
10 Ile Ala Thr Asp Ile Gln Thr Lys Glu Ieu Glu Lys Glu Ile Thr
 1265 1270 1275
15 Lys Ile Gln Asn Phe Arg Val Tyr Tyr Asp Asp Ser Arg Asp Pro
 1280 1285 1290
20
 Ile Trp Lys Gly Pro Ala Lys Ieu Leu Trp Lys Gly Glu Gly Ala
 1295 1300 1305
25
 Val Val Ile Glu Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg
 1310 1315 1320
30
 Lys Ala Lys Ile Leu Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp
 1325 1330 1335
35
 Asp Cys Val Ala Gly Arg Glu Asp Glu Asp Arg Ser Met Gly Gly
 1340 1345 1350
40
 Lys Trp Ser Lys Gly Ser Ile Val Gly Trp Pro Gln Ile Arg Glu
 1355 1360 1365
 Arg Met Arg Arg Ala Phe Ala Ala Ala Pro Gly Val Gly Ala Val
 1370 1375 1380
45
 Ser Gln Asp Leu Asp Lys His Gly Ala Ile Thr Ser Ser Asn Ile
 1385 1390 1395
50
 Asn Asn Pro Ser Cys Val Trp Leu Glu Ala Glu Glu Glu Glu Glu
 1400 1405 1410
55
 Val Gly Phe Pro Val Arg Phe Gln Val Pro Ieu Arg Pro Met Thr
 1415 1420 1425
60
 Tyr Lys Gly Ala Phe Asp Leu Ser His Phe Ieu Lys Glu Lys Gly
 1430 1435 1440
65
 Gly Leu Asp Gly Leu Ile Tyr Ser Arg Lys Arg Gln Glu Ile Leu
 1445 1450 1455
 Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln
 1460 1465 1470
70
 Asn Tyr Thr Pro Gly Phe Gln Val Arg Tyr Pro Leu Thr Phe Gly
 1475 1480 1485

	130	135	140	
8	Arg Glu Gly Met Lys Asn Cys Ser Phe Asn Met Thr Thr Glu Leu Arg 145	150	155	160
10	Asp Lys Lys Glu Glu Val Tyr Ser Leu Phe Tyr Arg Leu Asp Ile Glu 165	170	175	
	Lys Ile Asn Ser Ser Asn Asn Ser Glu Tyr Arg Leu Val Asn Cys 180	185	190	
15	Asn Thr Ser Ala Ile Thr Glu Ala Cys Pro Lys Val Thr Phe Glu Pro 195	200	205	
20	Ile Pro Ile His Tyr Cys Ala Pro Ala Glu Phe Ala Ile Leu Lys Cys 210	215	220	
25	Asn Asp Thr Glu Phe Asn Gly Thr Glu Pro Cys Lys Asn Val Ser Thr 225	230	235	240
	Val Glu Cys Thr His Glu Ile Lys Pro Val Val Ser Thr Glu Ieu Ieu 245	250	255	
30	Ieu Asn Glu Ser Leu Ala Glu Arg Glu Val Arg Ile Arg Ser Glu Asn 260	265	270	
35	Ile Ala Asn Asn His Lys Asn Ile Ile Val Glu Phe Ala Ser Pro Val 275	280	285	
40	Iys Ile Asn Cys Ile Arg Pro Asn Asn Asn Thr Arg Lys Ser Tyr Arg 290	295	300	
45	Ile Glu Pro Glu Glu Thr Phe Tyr Ala Thr Asp Ile Val Glu Asp Ile 305	310	315	320
	Arg Glu Ala His Cys Asn Val Ser Arg Thr Asp Trp Asn Asn Thr Ile 325	330	335	
50	Arg Leu Val Ala Asn Glu Leu Arg Lys Tyr Phe Ser Asn Lys Thr Ile 340	345	350	
55	Ile Phe Thr Asn Ser Ser Gly Glu Asp Leu Glu Ile Thr Thr His Ser 355	360	365	
60	Phe Asn Cys Glu Gly Glu Phe Phe Tyr Cys Asn Thr Ser Glu Ieu Phe 370	375	380	
65	Asn Ser Thr Thr Thr Thr Asn Asn Met Glu Glu Ser Asn Asp Thr Ser 385	390	395	400
	Asn Glu Thr Ile Thr Leu Pro Cys Asn Ile Ieu Glu Ile Ile Asn Met			

408	418	425
-----	-----	-----

5 Trp Cys Arg Val Gly Cys Ala Met Tyr Ala Pro Pro Ile Glu Gly Val
 420 425 430

10 Ile Arg Cys Glu Ser Asn Ile Thr Gly Leu Ile Ieu Thr Arg Asp Gly
 435 440 445
 Gly Asn Asn Ser Ala Asn Glu Thr Phe Arg Pro Gly Gly Asp
 450 455 460

15 Ile Arg Asp Asn Trp Arg Ser Glu Leu Tyr Lys Tyr Lys Val Val Iys
 465 470 475 480

20 Ile Glu Pro Leu Gly Val Ala Pro Thr Arg Ala Lys Arg Arg Val Val
 485 490 495

25 Glu Arg Glu Lys Arg Ala Val Gly Ile Gly Ala Val Phe Leu Gly Phe
 500 505 510

30 Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Ala Ser Ile Thr Leu Thr
 515 520 525

35 Val Glu Ala Arg Cys Ile Leu Ser Gly Ile Val Glu Glu Glu Ser Asn
 530 535 540

40 Leu Leu Arg Ala Ile Glu Ala Glu Glu Leu Leu Lys Leu Thr Val
 545 550 555 560

45 Trp Gly Ile Iys Glu Ile Glu Ala Arg Val Leu Ala Val Glu Arg Tyr
 565 570 575

50 Leu Arg Asp Glu Glu Leu Leu Gly Ile Trp Gly Cys Ser Gly Lys Leu
 580 585 590

55 Ile Cys Thr Thr Asn Val Pro Trp Asp Ser Ser Trp Ser Ser Lys Ser
 600 605 610

60 Tyr Asp Asp Ile Trp Cys Asn Met Thr Trp Leu Glu Trp Asp Lys Glu
 615 620 625

65 Ile Ser Asn Tyr Thr Asp Ile Ile Tyr Ser Leu Ile Glu Glu Ser Glu
 635 640 645

70 Asn Glu Glu Glu Lys Asn Glu Glu Asp Leu Leu Ala Leu Asp Lys Trp
 650 655 660

75 Ala Asn Leu Trp Asn Trp Phe Asp Ile Ser Lys Trp Leu Trp Tyr Ile
 665 670 675

Arg Ser

Met Lys Val Iys Glu Thr Arg Iys Asn Tyr Gln His Ieu Trp Arg Trp
 1 8 10 18
5
 Gly Thr Met Ieu Ieu Gly Met Ieu Met Ile Cys Ser Ala Ala Glu Gln
 28 28 30
10
 Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Iys Glu Ala Thr
 38 40 48
15
 Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr Glu Val
 58 58 60
20
 His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro
 68 70 78 80
25
 Glu Glu Val Val Leu Gly Asn Val Thr Glu Tyr Phe Asn Asn Met Trp Iys
 88 90 98
30
 Asn Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp
 108 108 116
35
 Glu Ser Leu Iys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu
 128 128 136
40
 Asp Cys Asp Asp Val Asn Thr Thr Asn Ser Thr Thr Thr Thr Ser Asn
 148 148 148
45
 Gly Tyr Thr Gly Glu Ile Arg Lys Gly Glu Ile Lys Asn Cys Ser Phe
 148 148 148 150
 Asn Ile Thr Thr Ser Ile Arg Asp Iys Val Glu Lys Glu Tyr Ala Leu
 168 170 178
50
 Phe Tyr Asn Leu Asp Val Val Pro Ile Asp Asp Asp Asn Ala Thr Thr
 188 188 196
55
 Iys Asn Iys Thr Thr Arg Asn Phe Arg Leu Ile His Cys Asn Ser Ser
 198 200 208
60
 Val Met Thr Glu Ala Cys Pro Lys Val Ser Phe Glu Pro Ile Pro Ile
 218 218 226
65
 His Tyr Cys Ala Pro Ala Gly Phe Ala Ile Leu Lys Cys Asn Asn Lys
 238 238 238 246
 Thr Phe Asp Gly Lys Gly Ieu Cys Thr Asn Val Ser Thr Val Glu Cys
 248 248 248
 Thr His Gly Ile Arg Pro Val Val Ser Thr Glu Ieu Ieu Leu Asn Gly
 268 268 276

Ser Leu Ala Glu Glu Glu Val Val Ile Arg Ser Asp Asn Phe Met Asp
 375 380 385

5
 Asn Thr Lys Thr Ile Ile Val Glu Leu Asn Glu Ser Val Ala Ile Asn
 390 395 396

10
 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly Pro
 398 400 402 403

15
 Gly Arg Ala Phe Tyr Ala Ala Arg Lys Ile Ile Gly Asp Ile Arg Glu
 408 410 412 413

Ala His Cys Asn Ile Ser Arg Ala Glu Trp Asn Asn Thr Leu Lys Glu
 420 422 423

20
 Ile Val Ile Lys Leu Arg Glu His Phe Gly Asn Lys Thr Ile Lys Phe
 428 430 432 433

25
 Asn Glu Ser Ser Gly Gly Asp Pro Glu Ile Val Arg His Ser Phe Asn
 438 439 440

30
 Cys Gly Gly Glu Phe Phe Tyr Cys Asp Thr Thr Glu Leu Phe Asn Ser
 448 450 452 453

35
 Thr Trp Asn Gly Thr Glu Gly Asn Asn Thr Glu Gly Asn Ser Thr Ile
 468 470 472 473

Thr Leu Pro Cys Arg Ile Lys Glu Ile Asn Met Trp Glu Glu Val
 480 482 484

40
 Gly Lys Ala Met Tyr Ala Pro Pro Ile Gly Gly Glu Ile Arg Cys Ser
 490 492 494

45
 Ser Asn Ile Thr Gly Leu Leu Leu Thr Arg Asp Gly Gly Thr Glu Gly
 500 502 504

50
 Asn Gly Thr Glu Asn Glu Thr Glu Ile Phe Arg Pro Gly Gly Asp
 518 520 522 524

55
 Met Arg Asp Asn Trp Arg Ser Glu Leu Tyr Lys Tyr Lys Val Val Lys
 535 536 538 540

Val Glu Pro Leu Gly Val Ala Pro Thr Arg Ala Lys Arg Arg Val Val
60 548 550 552

Glu Arg

65
 <210> 9
 <211> 3178
 <212> DNA

<213> *Mycobacterium tuberculosis*

<405>	9	
5		abducensca cypocampicis cypotacticis cypoteticae cypoteticae cypoteticae cypoteticae
		attracting cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
10		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
15		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
20		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
25		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
30		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
35		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
40		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
45		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
50		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
55		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
60		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae
65		cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae cypoteticae

	ggccggccgc ccccttcgtt ccgtttttttt gttttttttt tttttttttt	2040
5	tggatgttgtt tggatgttgtt cgtttttttt tttttttttt tttttttttt	2160
	ttttttttttt ttttttttttt tttttttttt tttttttttt tttttttttt	2160
	ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2178
10	<218> 10 <219> 728 <212> PRT <213> Mycobacterium tuberculosis	
15	<402> 10	
20	Met His His Thr Ala Ala Ser Asn Phe Gln Leu Ser Gln Gly Gly 1 8 16 18	
	Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln 28 28 30	
25	Ile Arg Ser Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala 35 46 48	
30	Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val 50 58 68	
35	Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr 58 70 78 88	
40	Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr 68 88 98	
	Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser 108 108 118	
45	Val Thr Trp Gln Thr Iys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr 118 120 128	
50	Leu Ala Gln Gly Pro Pro Ala Gln Phe Met Val Asp Phe Gly Ala Leu 138 138 148	
55	Pro Pro Glu Ile Asn Ser Ala Arg Met Tyr Ala Gly Pro Gly Ser Ala 158 158 168	
60	Ser Leu Val Ala Ala Ala Gln Met Trp Asp Ser Val Ala Ser Asp Leu 168 178 178	
	Phe Ser Ala Ala Ser Ala Phe Gln Ser Val Val Trp Gly Leu Thr Val 188 188 188	
65	Gly Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val Ala Ala Ser 198 208 208	

Pro Tyr Val Ala Thr Met Ser Val Thr Ala Gly Glu Ala Glu Leu Thr
 210 215 220

5

Ala Ala Gln Val Arg Val Ala Ala Ala Tyr Glu Thr Ala Tyr Gly
 225 230 235 240

10

Ieu Thr Val Pro Pro Val Ile Ala Gln Asn Arg Ala Glu Leu Met
 245 250 255

15

Ile Leu Ile Ala Thr Asn Ieu Ieu Gly Gln Asn Thr Pro Ala Ile Ala
 265 265 270

20

Val Asn Gln Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala
 275 280 285

25

Met Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu
 295 300 305

Pro Thr Glu Gln Ala Pro Glu Ser Thr Ser Ala Gly Gly Leu Leu Glu
 305 310 315

30

Gln Ala Ala Ala Val Gln Gln Ala Ser Asp Thr Ala Ala Asn Gln
 325 330 335

35

Leu Met Asn Asn Val Pro Gln Ala Leu Gln Gln Ieu Ala Gln Pro Thr
 345 345 350

40

Gln Gly Thr Thr Pro Ser Ser Lys Ieu Gly Gly Leu Trp Lys Thr Val
 355 360 365

45

Ser Pro His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn
 375 375 380

His Met Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser
 385 390 395

50

Ser Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Gln Ala Val Gln
 405 410 415

55

Thr Ala Ala His Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser
 425 430 435

60

Ieu Gly Ser Ser Gly Lee Gly Gly Val Ala Ala Asn Leu Gly Arg
 445 445 445

65

Ala Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala Trp Ala Asn Ala
 455 455 460

Asn Gln Ala Val Thr Pro Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu
 475 475 480

Thr Ser Ala Ala Glu Arg Gly Pro Gly Ala Met Leu Gly Gly Ieu Pro
 485 486 487 488
5
 Val Gly Gln Met Gly Ala Arg Ala Gly Gly Gly Leu Ser Gly Val Leu
 503 504 505 506
10 Arg Val Pro Pro Arg Pro Tyr Val Met Pro His Ser Pro Ala Ala Gly
 515 520 525
15 Asp Ile Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro
 530 535 540
 Ala Leu Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Gly Pro Gln
 545 550 555 560
20
 Val Val Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala
 565 570 575
25
 Gly Thr Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn
 580 585 590
30 His Val Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser
 595 600 605
35 Gly Gln Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp
 610 615 620
40
 Val Ala Val Leu Gln Ieu Arg Gly Ala Gly Gly Ieu Pro Ser Ala Ala
 625 630 635 640
 Ile Gly Gly Gly Val Ala Val Gly Ile Pro Val Val Ala Met Gly Asn
 645 650 655
45
 Ser Gly Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val
 660 665 670
50 Ala Leu Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Gln
 675 680 685
55 Gln Thr Leu Asn Gly Ieu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly
 690 695 700
60 Asp Ala Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met
 705 710 715 720
 Asn Thr Ala Ala Ser
 725
65
 <210> 11
 <211> 1049
 <212> DNA

84

66	70	75	80
----	----	----	----

5 Asn Asn Gly Asp Asn Gly Arg Glu Gly Lys Asp Glu Asp Lys Arg Asp
 65 66 68 69

Gly Asn Asn Glu Asp Asn Glu Lys Leu Arg Lys Pro Lys His Lys Lys
 100 102 104

10 Leu Lys Gln Pro Ala Asp Gly Asn Pro Asp Pro Asn Ala Asn Pro Asn
 115 118 120

15 Val Asp Pro Asn Ala Asn Pro Asn Val Asp Pro Asn Ala Asn Pro Asn
 130 135 140

20 Val Asp Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 145 150 155 160

25 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 165 170 175

30 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 180 185 190

35 Val Asp Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 195 200 205

40 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 210 215 220

45 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 225 230 235 240

50 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn
 245 250 255

55 Glu Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Lys Asn Asn Gln
 260 265 270

60 Gly Asn Gly Gln Gly His Asn Met Asp Asn Asp Pro Asn Arg Asn Val
 275 280 285

65 Asp Glu Asn Ala Asn Ala Asn Ser Ala Val Lys Asn Asn Asn Asn Glu
 290 295 300

70 Glu Pro Ser Asp Lys His Ile Lys Glu Tyr Leu Asn Lys Ile Gln Asn
 305 310 315

75 Ser Leu Ser Thr Glu Trp Ser Pro Cys Ser Val Thx Cys Gly Asn Gly
 320 325 330

Ile Gln Val Arg Ile Lys Pro Gly Ser Ala Asn Lys Pro Lys Asp Glu

三

333 333 333

Leu Asp Tyr Ala Asn Asp Ile Glu Iys Iys Ile Cys Lys Met Glu Lys
 355 356 357

Cys Ser Ser Val Phe Asn Val Val Asn Ser Ala Phe Gly Ile
370 371 372 373 374 375 376 377 378 379

10

<210> D
 <211> L279
 <212> RNA
 <213> *Plasmodium falciparum*

	13	atgttgtgttc cccgcctca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	60
20		aatccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	120
25		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	180
30		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	240
35		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	300
40		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	360
45		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	420
50		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	480
55		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	540
60		atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa atccatgt cccacccca tggaaatccc aatggaaaac ccaccccaaa ccggaaatggaa	600

<310> 14
 <311> 824
 <312> PRT
 <313> *Plasmodium falciparum*
 <400> 14

26

	Met Met Ala Pro Asp Pro Asn Ala Asn Pro Asp Ala		
1	3	10	15
5	Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala		
	20	25	30
10	Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala		
	25	30	35
15	Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala		
	30	35	40
20	Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala		
	35	40	45
25	Asn Asn Glu Glu Asn Gly Glu Lys Asn Met Trp Asn Asp Pro Asn		
	35	40	45
30	Arg Asn Val Asp Glu Asn Ala Asn Asn Ser Ala Val Lys Asn Asn		
	45	50	55
35	Ile Glu Asn Ser Leu Ser Thr Glu Trp Ser Pro Cys Ser Val Thr Cys		
	50	55	60
40	Gly Asn Gly Ile Glu Val Arg Ile Lys Pro Gly Ser Ala Asn Lys Pro		
	55	60	65
45	Ile Asp Glu Leu Asp Tyr Ala Asn Asp Ile Glu Lys Lys Ile Cys Lys		
	60	65	70
50	Leu Glu Pro Val Thr Asn Met Glu Asn Ile Thr Ser Gly Phe Ile Gly		
	70	75	80
55	Phe Leu Leu Val Leu Glu Asn Gly Phe Phe Leu Leu Thr Arg Ile Leu		
	75	80	85
60	Thr Ile Pro Glu Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu		
	85	90	95
65	Gly Gly Ser Pro Val Cys Leu Gly Glu Asn Ser Gln Ser Pro Thr Ser		
	90	95	100
70	Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp		
	95	100	105

Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys
225 230 235

6 Leu Ile Phe Leu Leu Val Ieu Ieu Asp Tyr Glu Gly Met Ieu Pro Val
 228 229 230

10 Cys Pro Leu Ile Pro Gly Ser Thr Thr Thr Asn Thr Gly Pro Cys Lys
328 332 333 334 335 336 337 338 339

Tyr Cys Thr Thr Pro Ala Glu Gly Asn Ser Ser Val Pro Ser Cys Cys
328 330 332

Cys Thr Iys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser
 349 355 356

Ser Trp Ala Phe Ala Tyr Tyr Leu Trp Glu Trp Ala Ser Val Arg Phe
ser Tyr Glu
~~ser~~ ~~Tyr~~ ~~Glu~~

25 Ser Thr Ieu Ser Ieu Ieu Val Pro Phe Val Gln Trip Phe Val Gly Ieu
 323 324 325 326 327 328

30 Ser Pro Thr Val Trp Leu Ser Ala Ile Trp Met Ser Trp Tyr Trp Gly
328 329 330 331 332

35 Pro Ser Ieu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu Ieu Pro Ile
36 ASP GLY GLU GLY GLY

Phe Phe Cys Ile Thr Val Tyr Glu
428

<2010> 20

~~403.1 x 343.2~~

For more information about the study, please contact Dr. Michael J. Koenig at (314) 747-2146 or via e-mail at koenig@dfci.harvard.edu.

$\times 800 \times 18$

⁵⁰ *Entomophagous insects as reservoirs of human diseases*, 1970.

Scyphacidae *Scyphacidae* *Scyphacidae* *Scyphacidae* *Scyphacidae*

60 *secaatccc* *caatccgggt* *ggggaggata* *tatcaggagggt* *ggatccatct* *ggggacca*

septostegite ectostegite mesostegite stactoglypta laevigata occasione

65 *eccteaggg actabgttgc ecgtatgtat sageccccbc yggcggggc ggtatccc*

scattered vegetations among which vegetation dominated by grasses.

	ccccccccc	atatttttttgc	tctgttgttttc	tccatcatccc	gggggtttttt	tccgggtttttt	gggg	2760
5	cggaaatccac	ccccccccc	agggtttttttc	tatcccccggc	ccatcccccggc	gttttttttttt	tttttttttttt	2820
	ctgggttttttt	ttggatccgg	ccgggttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	2880
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	2940
10	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3000
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3060
15	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3120
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3180
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3240
20	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3300
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3360
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3420
25	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3480
	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	3540
	<210> 16							
	<211> 1136							
30	<212> PBT							
	<213> HIV							
	<400> 16							
35	Met Val Ile Val Gln Asn Ile Gln Gly Gln Met Val Ile Gln Ala Ile	3	8	16	24	32	40	
	Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu Glu Lys Ala	26	35	44	53	62	71	
40								
	Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Ile Ser Glu Gly Ala	38	46	55	64	73	82	
45	The Pro Glu Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His Gln	56	64	73	82	91	100	
50	Ala Ala Met Gln Asn Ile Lys Lys Glu Thr Ile Asn Gln Glu Cys Ala Glu	62	70	78	86	94	102	
55	Tyr Asp Arg Val His Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln	68	76	84	92	100	108	
60	Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Ser Thr Leu	100	108	116	124	132	140	
	Gln Glu Glu Ile Gly Tyr Met Thr Asn Asn Pro Pro Ile Pro Val Gly	112	120	128	136	144	152	
65	Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg	128	136	144	152	160	168	

Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Arg Glu Gly Pro Lys Glu
 245 160 165 360
5
 Pro Asn Arg Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu
 166 170 175
10 Gln Ala Ser Gln Glu Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val
 180 185 190
15 Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro
 185 200 205
 Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly
 210 215 220
20
 Pro Gly His Lys Ala Arg Val Leu His Met Gly Pro Ile Ser Pro Ile
 225 230 235 240
25
 Glu Thr Val Ser Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val
 245 250 255
30 Lys Gln Trp Pro Leu Thr Glu Glu Iys Ile Lys Ala Leu Val Gln Ile
 260 265 270
35 Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu
 275 280 285
 Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr
 290 295 300
40
 Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln
 305 310 315 320
45
 Asp Phe Trp Glu Val Glu Leu Gly Ile Pro His Pro Ala Gly Leu Lys
 325 330 335
50 Iys Lys Iys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser
 340 345 350
55 Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro
 355 360 365
60 Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu
 370 375 380
 Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Cys Met Thr
 385 390 395 400
65 Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr
 405 410 415

Glu Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Glu
 470 475 480

5
 His Arg Thr Lys Ile Glu Leu Arg Glu His Leu Leu Arg Trp Gly
 485 490 495

10
 Leu Thr Thr Pro Asp Lys Lys His Glu Lys Glu Pro Pro Phe Leu Lys
 500 505 510

15
 Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Glu Pro Ile Val
 515 520 525

20
 Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Glu Lys Leu Val
 530 535 540

25
 Gly Lys Leu Asn Trp Ala Ser Glu Ile Tyr Pro Gly Ile Lys Val Arg
 545 550 555

30
 Glu Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile
 560 565 570

35
 Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile
 575 580 585

40
 Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu
 590 595 600

45
 Ile Ala Glu Ile Glu Lys Glu Gly Glu Trp Thr Tyr Glu Ile
 605 610 615

50
 Tyr Glu His Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met
 620 625 630

55
 Arg Gly Ala His Thr Asn Asp Val Lys Glu Leu Thr Glu Ala Val Glu
 635 640 645

60
 Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe
 650 655 660

65
 Lys Leu Pro Ile Glu Lys Glu Thr Trp Glu Thr Trp Thr Glu Tyr
 665 670 675

70
 Trp Glu Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro
 680 685 690

75
 Leu Val Lys Leu Trp Tyr Glu Leu Glu Lys Glu Pro Ile Val Glu Ala
 695 700 705

80
 Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys Leu Glu
 710 715 720

Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu
 680 685 700

5 Thr Asp Thr Thr Asn Glu Lys Thr Glu Leu Glu Ala Ile Tyr Leu Ala
 700 710 715 720

10 Ile Glu Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser Glu Tyr
 725 730 735

15 Ala Leu Gly Ile Ile Glu Ala Glu Pro Asp Glu Ser Glu Ser Glu Leu
 740 745 750

20 Val Asn Glu Ile Ile Glu Glu Leu Ile Lys Lys Glu Ile Val Tyr Leu
 755 760 765 770

25 Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Glu Val Asp
 775 780 785

30 Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Ala Met Gly Gly Lys
 790 795 800

35 Trp Ser Lys Ser Ser Val Val Gly Trp Pro Thr Val Arg Glu Arg Met
 805 810 815

40 Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp
 820 825 830

45 Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn
 835 840 845

50 Ala Ala Cys Ala Trp Leu Glu Ala Glu Glu Glu Glu Val Gly Phe
 850 855 860

55 Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Ala Ala
 865 870 875 880

60 Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu
 885 890 895

65 Ile His Ser Glu Arg Arg Glu Asp Ile Leu Asp Leu Trp Ile Tyr His
 900 905 910

70 Thr Glu Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly
 915 920 925

75 Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Tyr Lys Leu Val Pro Val
 930 935 940

80 Glu Pro Asp Lys Val Glu Glu Ala Asn Lys Gly Glu Asn Thr Ser Leu
 945 950 955

93

Leu His Pro Val Ser Leu His Gly Met Asp Asp Pro Glu Arg Glu Val
 946 973 975

5

Leu Glu Trp Arg Phe Asp Ser Arg Leu Ala Sce His His Val His Arg
 980 982 980

10

Glu Leu His Pro Glu Tyr Phe Lys Asn Cys Asp Pro Met Gly Ala Arg
 995 1000 1005

15

Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp Glu Lys Ile
 1010 1015 1020

20

Arg Leu Arg Pro Gly Gly Lys Lys Tyr Lys Leu Lys His Ile
 1025 1030 1035

25

Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro Gly
 1040 1045 1050

30

Leu Leu Glu Thr Ser Glu Gly Cys Arg Glu Ile Leu Gly Glu Leu
 1055 1060 1065

35

Gln Arg Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr
 1070 1075 1080

40

Asn Thr Val Ala Thr Leu Tyr Cys Val His Gln Arg Ile Glu Ile
 1085 1090 1095

45

Lys Asp Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Glu Asn Ser
 1100 1105 1110

50

Lys Ser Lys Lys Ala Gln Gln Ala Ala Ala Asp Thr Gly His
 1115 1120 1125

55

55

All references referred to in this application, including patent and patent applications, are incorporated herein by reference to the fullest extent possible.

6

Throughout the specification and the claims which follow, unless the context requires otherwise, the word 'comprise', and variations such as 'comprises' and 'comprising', will be understood to imply the inclusion of a stated integer, step, group of integers or group of steps but not to the exclusion of any other integer, step, group of integers or group of steps.

10

The application of which this description and claims forms part may be used as a basis for priority in respect of any subsequent application. The claims of such subsequent application may be directed to any feature or combination of features described herein. They may take the form of product, composition, process, or use claims and may include, by way of example and 15 without limitation, the following claims:

Claims

1. A method of raising an immune response against a pathogen which comprises administering (i) one or more first immunogenic polypeptides derived from said pathogen; (ii) 5 one or more adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more second immunogenic polypeptides derived from said pathogen; and (iii) an adjuvant; wherein the one or more first immunogenic polypeptides, the one or more adenoviral vectors and the adjuvant are administered concomitantly.
2. A method of raising an immune response against a pathogen which comprises 10 administering (i) one or more first immunogenic polypeptides derived from said pathogen co-formulated with an adjuvant; and (ii) one or more adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more second immunogenic polypeptides derived from said pathogen; wherein one or more immunogenic polypeptides and adjuvant, and one or more adenoviral vectors are administered concomitantly.
3. A method of stimulating the production of pathogen-specific CD4+ and/or CD8+ T-cells 15 and/or antibodies in mammals which comprises administering to said mammal (i) one or more first immunogenic polypeptides derived from a pathogen; (ii) one or more adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more second immunogenic polypeptides derived from said pathogen; and (iii) an adjuvant; wherein the one or more first immunogenic polypeptides, the one or more adenoviral vectors and the adjuvant are administered concomitantly, for example by administering an immunologically effective amount 20 of an aforesaid composition.
4. A method of raising an immune response against a pathogen which consists of (a) administering (i) one or more first immunogenic polypeptides derived from said pathogen; (ii) 25 one or more adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more second immunogenic polypeptides derived from said pathogen; and (iii) an adjuvant; wherein the one or more immunogenic polypeptide, the one or more adenoviral vector and the adjuvant are administered concomitantly; and (b) optionally repeating the steps of (a).
5. A method of raising an immune response against a pathogen which comprises 30 administering (i) one or more first immunogenic polypeptides derived from said pathogen; (ii) one or more adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more second immunogenic polypeptides derived from said pathogen; and (iii) an adjuvant; wherein the one or more first immunogenic polypeptides, the one or more adenoviral vectors and the adjuvant are administered concomitantly; and wherein the method does not 35 involve administering any priming dose of immunogenic polypeptide or polynucleotide encoding immunogenic polypeptide.

6. A method according to any one of claims 1 to 5 wherein one or more immunogenic polypeptides, one or more adenoviral vectors and an adjuvant are co-formulated.

7. A method according to any one of claims 1 to 6 wherein production of pathogen specific CD4+ T-cells and CD8+ T-cells and antibodies is stimulated.

5 8. A vaccine composition comprising (i) one or more first immunogenic polypeptides derived from a pathogen; (ii) one or more adenoviral vectors comprising one or more heterologous polynucleotide encoding one or more second immunogenic polypeptides derived from said pathogen; and (iii) an adjuvant.

9. A method or vaccine composition according to any one of claims 1 to 8 wherein one or 10 more of said one or more first immunogenic polypeptides is substantially the same as one or more of said one or more second immunogenic polypeptides.

10. A method or vaccine composition according to any one of claims 1 to 8 wherein one or more of said one or more first immunogenic polypeptides contains at least one antigen which is substantially the same as an antigen contained in one or more of said one or more second 15 immunogenic polypeptides.

11. A method or vaccine composition according to any one of claims 1 to 10 wherein one or more the first immunogenic polypeptides comprises at least one T cell epitope.

12. A method or vaccine composition according to any one of claims 1 to 11 wherein the one or more first immunogenic polypeptide comprises at least one B cell epitope.

20 13. A method or vaccine composition according to any one of claims 1 to 12 wherein one or more of said one or more first immunogenic polypeptides and one or more of said one or more second immunogenic polypeptides share one or more identical B-cell and/or T-cell epitopes.

14. A method or vaccine composition according to any one of claims 1 to 8 wherein none of the one or more of said one or more first immunogenic polypeptides is substantially the same as 25 or contains any antigen in common with one or more of said one or more second immunogenic polypeptides.

15. A method or vaccine composition according to any one of claims 1 to 14 wherein one or more of the adenoviral vectors is derived from a human adenovirus.

30 16. A method or vaccine composition according to claim 15 wherein the human adenovirus serotype is selected from Ad1, Ad2, Ad4, Ad5, Ad6, Ad11, Ad 24, Ad34 and Ad35.

17. A method or vaccine composition according to any one of claims 1 to 14 wherein one or more of the adenoviral vectors is derived from a non-human primate adenovirus.

35 18. A method or vaccine composition according to claim 17 wherein the non-human primate adenovirus serotype is selected from chimpanzee adenovirus serotypes Pan5, Pan8, Pan7 and Pan9.

19. A method or vaccine composition according to any one of claims 1 to 18 wherein the pathogen is HIV.

20. A method or vaccine composition according to claim 19 wherein the immunogenic polypeptides contain HIV derived antigens which are selected from Env, Nef, Gag, and Pol and immunogenic derivatives thereof and immunogenic fragments thereof.
21. A method or vaccine composition according to claim 20 wherein a first immunogenic polypeptide is p24-RT-Nef-p17.
22. A method or vaccine composition according to claim 20 or claim 21 wherein a second immunogenic polypeptide is Gag-RT-Nef.
23. A method or vaccine composition according to any one of claims 1 to 18 wherein the pathogen is *Plasmodium falciparum* and/or *Plasmodium vivax*.
- 10 24. A method or vaccine composition according to claim 23 wherein the immunogenic polypeptides contain antigens derived from *Plasmodium falciparum* and/or *Plasmodium vivax* which are selected from circumsporozoite (CS) protein, MSP-1, MSP-3, AMA-1, LSA-1, LSA-3 and immunogenic derivatives thereof or immunogenic fragments thereof.
- 15 25. A method or vaccine composition according to claim 24 wherein a/the immunogenic polypeptide is the hybrid protein RTS.
26. A method or vaccine composition according to claim 25 wherein RTS is presented in the form of a mixed particle known as RTS,S.
- 20 27. A method or vaccine composition according to any one of claims 24 to 26 wherein a/the immunogenic polypeptide encoded by a polynucleotide is the CS protein from *Plasmodium falciparum* or immunogenic fragment thereof.
28. A method or vaccine composition according to any one of claims 1 to 18 wherein the pathogen is *Mycobacterium tuberculosis*.
29. A method or vaccine composition according to any one of claims 1 to 28 wherein the adjuvant comprises a preferential stimulator of Th1 responses.
- 25 30. A method or vaccine composition according to claim 29 wherein the adjuvant comprises QS21 and/or 3D-MPL and/or CpG.
31. A method or vaccine composition according to claim 30 wherein the adjuvant comprises QS21 and 3D-MPL.
32. A method or vaccine composition according to any one of claims 1 to 31 wherein the adjuvant contains an oil-in-water emulsion.
33. A method or vaccine composition according to any one of claims 1 to 31 wherein the adjuvant contains liposomes.
34. A method of stimulating an immune response in a mammal which comprises administering to a subject an immunologically effective amount of a vaccine composition according to any one of claims 8 to 33.
- 35 35. Use of a vaccine composition according to any one of claim 8 to 33 in the manufacture of a medicament for stimulating an immune response in a mammal.

98

36. A vaccine composition according to any one of claims 8 to 33 for use in stimulating an immune response in a mammal.

37. A kit comprising (i) one or more first immunogenic polypeptides derived from a pathogen; (ii) one or more adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more second immunogenic polypeptides derived from said pathogen; and (iii) an adjuvant.

38. A kit comprising (i) one or more first immunogenic polypeptides derived from a pathogen and an adjuvant; and (ii) one or more second adenoviral vectors comprising one or more heterologous polynucleotides encoding one or more immunogenic polypeptides derived from said pathogen.

39. A method, or vaccine, or kit, or use according to any preceding claim wherein the first immunogenic polypeptide comprises p24-RT-Nef-p17, the adjuvant comprises 3D-MPL and QS21 in a liposome such as adjuvant B-heskin, and the adenoviral vector comprises a chimpanzee adenovirus serotype Pan7 vector comprising a polynucleotide encoding the immunogenic polypeptide Gag-RT-Nef, optionally codon optimised.

40. A method, or vaccine, or kit, or use according to any preceding claim wherein one, or two, or all of the polypeptide, adenoviral vector and adjuvant components are combined with a pharmaceutically acceptable excipient.

20

25

27

ଫିଲେଟ୍

2/27

三

Figure 2b CD4 response

27

Figure 3

5/27

Figure 3b

Figure 4

7/27

Figure 5

Figure 6

9/27

Figure 7

10/27

Figure 8

三

Figure 9

42/27

Figure 10

Figure 14
13/27

14/27

Figure 12a

232

Figure 12b

Figure 13

17/27

Figure 14

18/27

Figure 15A**Figure 15B**

二〇

Figure 15C

20/27

Figure 16

21/27

Figure 17A

22/27

Figure 17B

C7-GRN Adjacent to TepII

2327

Figure 4

24/27

Figure 18

Figure 19

25/27

Figure 20

Figure 21

2627

Figure 22

Figure 23

Figure 24
27/27

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP2008/052448

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K14/16 C07K14/445 C12N15/861 A61K39/00

According to International Patent Classification (IPC) or in both national classification and IPC

B. FIELDS SEARCHED

The following documentation searched (classification system followed by classification systems)
C07K A61K C12N

Documentation consulted other than literature documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, EMBASE, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Description of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2004/110482 A (ISIS INNOVATION [GB]; HILL ADRIAN [GB]; MOORE ANNE C [GB]; NICOLL CLAI) 23 December 2004 (2004-12-23) the whole document	1-15, 19, 28, 34-38, 40
Y		16-18, 20-27, 29-33
Y	WO 02/22080 A (MERCK & CO INC [US]; EMINI EMILIO A [US]; YOUNG RIMA [US]; BETT ANDREW) 21 March 2002 (2002-03-21) page 22, lines 4-17 the whole document	16-18
Y	WO 2006/120034 A (GLAXO GROUP LTD [GB]; ERTL PETER FRANZ [GB]; TITE JOHN PHILIP [GB]; VA) 16 November 2006 (2006-11-16) the whole document	16-18, 20, 22
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Specific categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *B* earlier document but published on or after the international filing date
- *C* document which may show design or novelty claimed or which is cited to establish the publication date of another citation or other special reason (as specified)
- *D* document referring to an oral disclosure, use, exhibition or other means
- *E* document published prior to the international filing date but later than the priority date claimed

F later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

G document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

H document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

I document member of the same patent family

Date of the actual completion of the international search

29 May 2008

Date of mailing of the international search report

16/06/2008

Name and mailing address of the ISA

European Patent Office, P.O. 3018 Patentamt 2
RI, 02290 DE-10385
Tel. (+49-70) 309-2040, Tx. 31 653 spe 46
Fax. (+49-70) 309-3018

Authorized officer

Irion, Andrea

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/052448

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Character of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 2006/013106 A (GLAXOSMITHKLINE BIOLOGICA SA [BE]; ABRECHT HELGE [BE]; DELCHAMBRE MARTINE) 9 February 2006 (2006-02-09) the whole document	20, 21, 29-33
Y	WO 2007/003384 A (GLAXOSMITHKLINE BIOLOGICA SA [BE]; COHEN JOSEPH D [BE]) 11 January 2007 (2007-01-11) the whole document	23-27, 29-33
Y	GANNE V ET AL: "Enhancement of the efficacy of a replication-defective adenovirus-vectored vaccine by the addition of oil adjuvants" VACCINE, BUTTERWORTH SCIENTIFIC, GUILDFORD, GB, vol. 12, no. 13, 1 January 1994 (1994-01-01), pages 1190-1196, XP002393618 ISSN: 0264-410X the whole document table 1	32

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/EP2008/052446**Box No. II - Observations where certain claims were found unsearchable (Continuation of Item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.:**
because they relate to subject matter not required to be searched by the Authority, namely:

Although claims 1-7, 9-34, 39, and 40 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. **Claims Nos.:**
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. **Claims Nos.:**
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III - Observations where unity of invention is lacking (Continuation of Item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, the Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention that mentioned in the claim(s) it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2008/052448

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2004110482	A	23-12-2004	US	2006240039 A1		26-10-2006
WO 0222080	A	21-03-2002	AU	9456201 A		26-03-2002
			CA	2422882 A1		21-03-2002
			EP	1320621 A2		25-06-2003
			JP	2004508054 T		18-03-2004
WO 2006120034	A	16-11-2006	AE	053275 A1		26-04-2007
			AU	2006245920 A1		16-11-2006
			CA	2608316 A1		16-11-2006
			EP	1880012 A1		23-01-2008
			KR	20080021659 A		07-03-2008
			NO	20075648 B		07-02-2008
WO 2006013106	A	09-02-2006	AR	050102 A1		27-09-2006
			AU	2005268856 A1		09-02-2006
			BR	PI0514108 A		27-06-2008
			CA	2575398 A1		09-02-2006
			CN	101035897 A		12-09-2007
			EP	1773999 A2		18-04-2007
			JP	2008507987 T		21-03-2008
			KR	20070041765 A		19-04-2007
			US	2007243203 A1		18-10-2007
WO 2007003384	A	11-01-2007	AR	055069 A1		01-08-2007
			AU	2006265329 A1		11-01-2007
			CA	2613057 A1		11-01-2007
			EP	1896060 A1		12-03-2008