AMENDMENTS TO THE CLAIMS

The listing below of the claims will replace all prior versions and listings of claims in the present application:

Listing of Claims:

Claim 1 (canceled)

Claim 2 (currently amended): An actuator as claimed in claim 4 10, wherein the toothed rack is substantially cylindrical, and the first receptacle is substantially a hollow cylinder.

Claim 3 (currently amended): An actuator as claimed in claim 4 10, including an energy accumulator positioned between and in contact with the toothed rack and the housing, and wherein the toothed rack is movable in a first direction of movement that is opposite to a force imposed on the toothed rack by the energy accumulator, and is movable in a second direction by the force of the energy accumulator.

Claim 4 (original): An actuator as claimed in claim 3 wherein the energy accumulator contacts the toothed rack at a first protrusion extending outwardly from the toothed rack.

Claim 5 (original): An actuator as claimed in claim 4, wherein the first protrusion is a protruding ring.

Claim 6 (original): An actuator as claimed in claim 4, wherein the first protrusion is integrally formed with the toothed rack.

Claim 7 (original): An actuator as claimed in claim 3, wherein the energy accumulator contacts the housing at an inwardly-extending second protrusion within the housing.

Claim 8 (original): An actuator as claimed in claim 7, wherein the second protrusion is a protruding ring.

Claim 9 (original): An actuator as claimed in claim 7, wherein the second protrusion is integrally formed with the housing.

Claim 10 (currently amended): An actuator as claimed in claim 4, An actuator for actuating an automatic clutch or an automatic transmission, said actuator comprising: a housing that includes an axially-extending first receptacle; a toothed rack slidably received within the first receptacle for linear movement along a rack longitudinal axis; a second receptacle adjacent to the first receptacle and within which second receptacle a gear is rotatably carried, wherein a portion of the second receptacle intersects a portion of the first receptacle to define a

space that is common to both the first receptacle and the second receptacle, wherein the gear is in meshing engagement with the toothed rack for linearly moving the toothed rack within the first receptacle; and an electric motor drivingly connected with the gear, wherein the electric motor and the gear are provided as a pre-assembled unit that is removably connected with the housing, including an energy accumulator positioned between and in contact with the toothed rack and the housing, wherein the toothed rack is movable in a first direction of movement that is opposite to a force imposed on the toothed rack by the energy accumulator, wherein the energy accumulator contacts the toothed rack at a first protrusion extending outwardly from the toothed rack, and wherein the first protrusion is connected by one of an interlocking, a frictional locking, a force locking, or a material locking connection.

Claim 11 (currently amended): An actuator as claimed in claim 1 10, wherein the toothed rack is axially slidably received within the first receptacle.

Claim 12 (currently amended): An actuator as claimed in claim 4 10, wherein the toothed rack is supported in bearings carried adjacent end areas of the first receptacle.

Claim 13 (original): An actuator as claimed in claim 12, wherein the bearings are journal bearings that are carried by the first receptacle.

Claim 14 (currently amended): A clutch An actuator for actuating an automatic clutch or an automatic transmission, said actuator comprising: a housing that includes an axially-extending first receptacle; a toothed rack slidably received within the first receptacle for linear movement along a rack longitudinal axis; a second receptacle adjacent to the first receptacle and within which second receptacle a gear is rotatably carried, wherein a portion of the second receptacle intersects a portion of the first receptacle to define a space that is common to both the first receptacle and the second receptacle, wherein the gear is in meshing engagement with the toothed rack for linearly moving the toothed rack within the first receptacle; and an electric motor drivingly connected with the gear, wherein the electric motor and the gear are provided as a pre-assembled unit that is removably connected with the housing, wherein the toothed rack is supported in bearings carried adjacent end areas of the first receptacle and the bearings are journal bearings that are carried by the first receptacle, wherein one of the journal bearings defines a stop for an energy accumulator within the housing.

Claim 15 (canceled)

Claim 16 (currently amended): An actuator as claimed in claim 4 10, wherein the gear is a spur gear.

Claim 17 (canceled)

Claim 18 (currently amended): An actuator as claimed in claim 4 10, wherein the toothed rack is an elongated member and includes along one longitudinally-extending side of its outer surface a series of spaced, parallel, transversely-extending teeth that define a set of rectilinearly-extending gear teeth for engagement with a rotatable gear having exteriorly-positioned, complementary gear teeth.

Claim 19 (previously presented): An actuator as claimed in claim 18, wherein the toothed rack is a substantially cylindrical rod.

Claim 20 (previously presented): An actuator as claimed in claim 18, wherein the transversely-extending teeth extend around less than 360° of the outer surface of the toothed rack.

Claim 21 (currently amended): An actuator as claimed in claim 4 10, wherein the toothed rack slidably engages a major portion of a longitudinally-extending inner wall surface of the first receptacle.

Claim 22 (new): An actuator as claimed in claim 14, wherein the toothed rack is substantially cylindrical, and the first receptacle is substantially a hollow cylinder.

Claim 23 (new): An actuator as claimed in claim 14, wherein the toothed rack is axially slidably received within the first receptacle.

Claim 24 (new): An actuator as claimed in claim 14, wherein the gear is a spur gear.

Claim 25 (new): An actuator as claimed in claim 14, wherein the toothed rack is an elongated member and includes along one longitudinally-extending side of its outer surface a series of spaced, parallel, transversely-extending teeth that define a set of rectilinearly-extending gear teeth for engagement with a rotatable gear having exteriorly-positioned, complementary gear teeth.

Claim 26 (new): An actuator as claimed in claim 25, wherein the toothed rack is a substantially cylindrical rod.

Claim 27 (new): An actuator as claimed in claim 25, wherein the transversely-extending teeth extend around less than 360° of the outer surface of the toothed rack.

Claim 28 (new): An actuator as claimed in claim 14, wherein the toothed rack slidably engages a major portion of a longitudinally-extending inner wall surface of the first receptacle.