

ARJUNA NEET BATCH

VECTOR SUBTRACTION AND DOT PRODUCT

LECTURE - 02

ToDays Goal

-> Question Practice

-Dot Product

Find
$$\vec{A} + \vec{B} = \frac{79}{100}$$
.

$$\vec{A} = 10$$

$$\theta = 60^{\circ}$$

$$\vec{B} = 10$$

ARJUNA

Resultant of two vectors $R = 2A \left(\frac{0}{5} \right) \left(\frac{9}{2} \right)$ having some magnitude $\theta = 60^{\circ}$ $\theta = 90^{\circ}$ $\theta = 120$ $\theta = 180$ $\theta = 2A$ $\theta = \sqrt{3}A$ $\theta = \sqrt{2}A$ $\theta = 0$

$$|F_1 = 5N$$

$$|F_1 + F_2| = 5\sqrt{2} N Any$$

$$|F_2 = 5N$$

$$F_{2} = 10N$$

$$| F_{1} + F_{2} | = 10.5$$

A truck travelling due north at 20 ms⁻¹ turns west and travels with same speed. What are the changes in velocity?

 $20\sqrt{2} \text{ ms}^{-1} \text{ south-west}$

(b) $40 \text{ ms}^{-1} \text{ south-west}$

(c) $20\sqrt{2}$ ms⁻¹ north-west

(d) $40 \text{ ms}^{-1} \text{ north-west}$

Solⁿ change in velocity
$$dv = \overline{U_{f}} - \overline{U_{i}} = -20i - 20j \quad W$$

$$= \sqrt{5(-5)}$$

Two force of magnitude F and $\sqrt{3}$ F act at right angles to each other. Their resultant makes an angle β with F. The value of β is

(a) 30°

b) 45°

 $\{c\}$ 60

(d) 135°

POLYGON LAW OF VECTOR ADDITION

Same as Triungle law of vectors addition but for more than 2-vector

月十3十七十分=>> find

for given diagrom Consect oftion is.

$$(a)$$
 $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$

$$\mathcal{L} = \overline{\mathcal{B}} + \overline{\mathcal{C}} = -\overline{\mathcal{A}}$$

$$\mathcal{M} = \overline{A} + \overline{C} = -\overline{B}$$

$$SOI$$
 $A + B + C = O$
 $A + B + C = B$

(a)
$$9f \overrightarrow{A}^2 = 2i+2f$$
 then f ind V with V ector $0f \overrightarrow{A}$.

$$\overrightarrow{A} = A(\widehat{A})$$

$$(\widehat{A}) = \overline{A} = \frac{2\widehat{1} + 2\widehat{1}}{\int (2)^2 + (2)^2} = \left[\frac{2\widehat{1} + 2\widehat{1}}{2\widehat{2}}\right] = \frac{\widehat{1} + \widehat{1}}{\sqrt{2}}$$

Unit rector

$$\frac{501}{A} = \frac{A}{|A|} = \frac{2\hat{i} + 2\hat{j} + 2\hat{k}}{\sqrt{(2)^2 + (2)^2 + (2)^2}} = \frac{2\hat{i} + 2\hat{j} + 2\hat{k}}{2\int_{3}^{2}}$$

① 9
$$f(A) = 3i + 2f + 4k$$
 then find direction of A .

Sol'
$$\overrightarrow{A} = A \overrightarrow{A}$$

$$\overrightarrow{A}$$

(a) If $\vec{A} = 2\hat{\imath} + \sqrt{5}\hat{\jmath}$ and $\vec{B} = 5\hat{\imath} + \sqrt{5}\hat{\jmath}$ then find \vec{a} vector which is parallel of \vec{A} and magnitude equal to \vec{B} .

$$\pm \frac{1}{25+5}$$

$$= \sqrt{\frac{1}{25+5}}$$

$$= \sqrt{\frac{1}{25+5}}$$

$$= \sqrt{\frac{1}{25+5}}$$

$$= \sqrt{\frac{1}{25+5}}$$

$$(25+5)$$
 × $(2i+55)$ = $(30(2i+55)$
 $(4+5)$

A PROPAGATION OF A

$$\frac{B}{A} = \hat{R}$$

Bar

Sing = 2 B

$$Sind = \frac{8}{8} = \frac{1}{2}$$

$$2 = \frac{1}{2}$$

find angle 4w A3-B

Magnitude of vector sum of two vector is 8 but sum of their magnitude is 16 and resultant is perpendicular to smaller vector, find these vector.

(Let)
$$\chi^2 + 8^2 = (16-2)^2$$

 $\chi^2 + 64 = 256-32x + x^2$

Two vector \overrightarrow{A} and \overrightarrow{B} are given in the figure :

Then $\overrightarrow{A} - \overrightarrow{B}$ is given by

(d) None of these

VECTOR SUBTRACTION

$$\vec{\mathbf{D}} = \vec{\mathbf{A}} - \vec{\mathbf{B}}$$

find Magnith of D

magnitude of -B's

$$D = \sqrt{A^2 + B^2} - 2ABGOO$$

$$\theta = 0^{\circ}$$

$$D = A - B$$

$$\sqrt{A^2 + B^2} - 2ABGOO$$

$$180^{\circ}$$

$$D = A + B$$

$$\sqrt{A^2 + B^2} - 2ABGOO$$

$$A-B \leq R \leq A+B$$

$$A-B \leq D \leq A+13$$

\.....

$$\mathcal{D} = \sqrt{A^2 + B^2 - 2AB(0SD)}$$

 $\frac{1}{1 + \cos \theta = 2 \cos \theta_{2}}$ $\frac{1 - \cos \theta = 2 \sin^{2} \theta_{2}}{2 \sin^{2} \theta_{2}}$

9F mayritude OF A' = BI then.

$$D = \sqrt{2A^2 - 2A^2} \text{ (630)}$$

$$= \sqrt{2A^2 \left(1 - (630)\right)}$$

$$\mathcal{D} = \sqrt{2A^2(2\sin^2\theta_2)} = 2A\sin(\theta_2)$$

vector addition in a cose two vector of same magnitude.

If sum of two unit vector is also unit vector then find magnitude of vector subtraction.

$$\vec{A} + \vec{B} = \vec{R}$$
 and $\vec{A} - \vec{B} = \vec{D}$ then find angle between \vec{A} and \vec{B} if $\vec{R} = \vec{D}$.

F S Coso Force

7 7

 $(\mathcal{O}_{\mathcal{O}_{\mathcal{K}}}) = 0$ By m.R

 $= FS \cos 90$ $= FS \times 0$ = 0

SCALAR PRODUCT

[Dot. Product of Vector]

APPLICATION OF DOT PRODUCT

(i) Angle between vectors:

$$Cos\theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{AB}$$

THANK YOU

