THEORETICAL PART

GB HW1
1 Function f, to york ?.
$f \text{ is } \text{ Ginvex} (=) \text{ for each } \text{x_1x_2}, \dots, \text{x_k} \in D $
Proof (induction):
\exists : for $k=1$: $d_1=1$ $f(d_1x_1)=f(x_1)=d_1$ $f(x_1)=f(x_1)$.
$k \rightarrow k+1$: We assume 1 holds
f(\(\frac{\x}{2}\d_1\times_1\) = f(\(\frac{\x}{2}\d_1\times_1\) + d_{k+1}\(\times_{k+1}\times_{k+1}\)
B= Edi - = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
=> f(p(\(\frac{1}{6}\)X;) + du+1 X\(\pi\) \(\frac{1}{6}\)X;) + du+1 F(X\(\pi\)) \(\frac{1}{6}\)X;) + du+1 F(X\(\pi\)) \(\frac{1}{6}\)X;
induction
$= \frac{distribution}{distribution} = \frac{2}{2}d_i f(x_i)$
E: Assumple of isn't concex.
Then there exist points x, y for which
$f(d_1 x + (1-d_2) y) > d_1 f(x) + (1-d_1) \cdot f(y)$
· lef of (non) anaxity

value. If we pick X=2 then for @ we can still get the largest possible value with y=-2 since the first 2 terms

=) ||Vf|| = || || || || (2,-2) = 20 + e + 8e + 32 + 4e + 20 =

1= 172 + ne + et = L

L-172+12e'te4

Will become positive, and the last one is sywell to it will remain positive.

