測度論的確率論 2018 S1S2

Homework 3

経済学研究科現代経済コース修士 1 年 / 池上 慧 (29186009) / sybaster.x@gmail.com May 5, 2018

1 Ex2.3

両方向の包含関係が成立することを以下で示す。

1.1 $\mathcal{B}(\mathbb{R}^2) \subset \mathcal{B}^2$ を示す。

 $(a_1,b_1)\times(a_2,b_2)=\bigcup_{n=1}^{\infty}(a_1,b_1-\frac{1}{n}]\times(a_2,b_2-\frac{1}{n}]$ である。なぜなら、

$$\forall (x,y) \in (a_1,b_1) \times (a_2,b_2) \quad a_1 < x < b_1, a_2 < y < b_2 \Rightarrow \exists \ n_1, n_2 \text{ s.t. } x \leq b_1 - \frac{1}{n_1}, \ y \leq b_2 - \frac{1}{n_2}$$

なので、 $N = \max(n_1, n_2)$ とおけば、 $\forall n \geq N \ (x, y) \in (a_1, b_1 - \frac{1}{n}] \times (a_2, b_2 - \frac{1}{n}]$ となるので、 $(a_1, b_1) \times (a_2, b_2) \subset$

は、 $N = \max(h_1, h_2)$ このがは、N = 1 (a, y) このがは、N = 1 (a, y)

sigma field の定義より $(a_1,b_1) \times (a_2,b_2) \in (B)^2$ である。

ここで、「 \mathbb{R}^2 の任意の開集合は \mathbb{R}^2 の開区間の可算和でかける(主張 1)」とすると、 sigma field の性質から (a_1,b_1) × (a_2,b_2) の可算和で表現される任意の集合は $(B)^2$ に含まれているので、 $\mathcal{B}\left(\mathbb{R}^2\right)\subset\mathcal{B}^2$ が示された。

よって以下では(主張1)を証明する。to be written

$\mathcal{B}^2\subset\mathcal{B}\left(\mathbb{R}^2 ight)$ を示す。

まず、 $(a_1,b_1] imes(a_2,b_2]=igcap_{n=1}^\infty(a_1,b_1+\frac{1}{n}) imes(a_2,b_2+\frac{1}{n})$ を示す。左辺が右辺に含まれることは以下のように確認でる。 任意に $(x,y)\in(a_1,b_1] imes(a_2,b_2]$ をとると、

$$\forall n \ge 1 \begin{cases} a_1 < x < b_1 + \frac{1}{n} \\ a_2 < x < b_2 + \frac{1}{n} \end{cases} \Rightarrow \forall n \ge 1 \ (x, y) \in (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y$$

である。

逆向きの包含関係は以下のように確認できる。任意に $(x,y)\in \bigcap_{n=1}^\infty (a_1,b_1+\frac{1}{n})\times (a_2,b_2+\frac{1}{n})$ をとると、 $\forall n\geq 0$ $1(x,y) \in (a_1,b_1+\frac{1}{n}) \times (a_2,b_2+\frac{1}{n})$ である。この時、

$$a_1 < x < b_1 + \frac{1}{n} \implies a_1 < x \le \inf\left(b_1 + \frac{1}{n}\right) \implies a_1 < x \le b_1$$

である。y についても同様にできるので、 $(x,y) \in (a_1,b_1] \times (a_2,b_2]$ であることがわかる。

これより、 \mathcal{B}^2 を生成する集合の要素は \mathbb{R}^2 上の開区間全体を含む最小の sigma field に含まれることがわかる。これ はつまり、 \mathcal{B}^2 が \mathbb{R}^2 上の開区間全体を含む最小の sigma field に含まれることを意味する。また、 \mathcal{B} (\mathbb{R}^2) を生成する開集 合全体には明らかに \mathbb{R}^2 上の開区間全体が含まれているため、 \mathbb{R}^2 上の開区間全体を含む最小の sigma field は $\mathcal{B}(\mathbb{R}^2)$ に 含まれる。したがって $\mathcal{B}^2 \subset \mathcal{B}(\mathbb{R}^2)$ である。

$\mathbf{2}$ Ex2.5

両方向の包含関係が成立することを以下で示す。

2.1 $\mathcal{B}(X) \times \mathcal{B}(Y) \subset \mathcal{B}(X \times Y)$

開集合 $A \subset X$ を任意にとる。まず、 $A \times Y$ が $X \times Y$ の開集合であることを示す。まず、直積空間 $X \times Y$ 上に以下のように距離 (d) が定義できる。

let
$$x = (x_1, x_2), y = (y_1, y_2), \text{ where } x_1, y_1 \in X, x_2, y_2 \in Y \text{ then } d(x, y) \equiv d_1(x_1, y_1) + d_2(x_2, y_2)$$

すなわち $(X \times Y, d)$ は距離空間とできる。以下ではこの距離 d について $A \times Y$ が開集合であることを確認する。全体集合 Y が開かつ閉集合であることより、 $(p,q) \in A \times Y$ について以下の二つが成立する。

$$\exists \epsilon > 0 \text{ s.t. } \{x \in X \mid d_1(x, p) < \epsilon\} \subset A$$

 $\exists \eta > 0 \text{ s.t. } \{y \in Y \mid d_2(y, q) < \eta\} \subset Y$

ここで、上の集合に含まれる (x,y) について、

$$d((x,y),(p,q)) = d_1(x,p) + d_2(y,q) < \epsilon + \eta$$

が成立する。従って、(p,q) を任意にとっても、 $\{(x,y)\in X\times Y\mid d((x,y),(p,q))<\delta\}$ なる集合が δ を十分小さくすることによって $A\times Y$ に含まれることがわかる。これより $A\times Y$ は開集合である。

これより Borel sigma field の定義から、 $A \times Y \in \mathcal{B}(X \times Y)$ である。ここで、 $\mathcal{C} = \{A \subset X \mid A \times Y \in \mathcal{B}(X \times Y)\}$ とする。先の議論より任意の開集合 $A \subset X$ について $A \times Y \in \mathcal{B}(X \times Y)$ であるので、 $\{X \text{ の開集合全体 }\} \subset \mathcal{C}$ である。

また、 $\{c_i\}_{i=1}^\infty \in \mathcal{C}$ をとる。明らかに $\bigcup_{i=1}^\infty c_i \times Y$ が開集合であり、 $\mathcal{B}(X \times Y)$ に含まれることから、 \mathcal{C} は sigma field、それも X の開集合全体を含む sigma field である。Borel sigma field の定義より $\mathcal{B}(X) \subset \mathcal{C}$ である。

- 3 Ex2.6
- 4 Ex3.3
- 5 Ex3.4
- 6 Ex3.6
- $7 \quad \text{Ex} 3.15$
- 8 Ex3.16