Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Отчет по лабораторной работе № 1

По дисциплине «Математическая статистика»

Выполнила студентка гр. 5030102/20101 Жученко А. Б.

Преподаватель: Баженов А. Н.

Отчёт по исследованию распределений

1. Цель работы

Изучить следующие распределения:

• **Нормальное:** N(0,1)

• Коши: C(0,1)

• Пуассон: $P(\lambda = 10)$

• **Равномерное:** $U(-\sqrt{3}, \sqrt{3})$

Необходимо:

- 1. Сгенерировать выборки размеров n = 10, 100, 1000, построить гистограммы и наложить теоретическую функцию плотности (или pmf для дискретных распределений).
- 2. Повторить генерацию выборок 1000 раз для размеров $n=20,\,100,\,1000;$ для каждой выборки вычислить следующие статистические характеристики:

$$\bar{x}$$
, med, z_R , z_Q ,

где:

- \bar{x} выборочное среднее,
- med выборочная медиана,
- $z_R = \frac{x_{\min} + x_{\max}}{2}$ полусумма крайних значений,
- $z_Q = \frac{Q_1 + Q_3}{2}$ полусумма квартилей (25% и 75%).
- 3. Для каждой статистики и каждого размера выборки оценить её среднее значение (по 1000 экспериментам) и дисперсию:

$$E(z) = \langle z \rangle, \quad D(z) = \langle (z - E(z))^2 \rangle.$$

4. Представить результаты в виде таблицы.

2. Теоретические сведения

2.1 Распределения

Нормальное распределение N(0,1)**:** Плотность распределения:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Матожидание: M(X) = 0, дисперсия: Var(X) = 1.

Распределение Коши C(0,1)**:** Плотность распределения:

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

У распределения Коши не существуют математическое ожидание и дисперсия (в классическом смысле) из-за тяжёлых хвостов.

1

Распределение Пуассона $P(\lambda = 10)$: Функция вероятностей (pmf):

$$P(X = k) = \frac{10^k e^{-10}}{k!}, \quad k = 0, 1, 2, \dots$$

Матожидание: M(X) = 10, дисперсия: Var(X) = 10.

Равномерное распределение $U(-\sqrt{3}, \sqrt{3})$: Плотность распределения:

$$f(x) = \begin{cases} \frac{1}{2\sqrt{3}}, & x \in \left[-\sqrt{3}, \sqrt{3}\right], \\ 0, & \text{иначе.} \end{cases}$$

Матожидание: M(X) = 0, дисперсия: Var(X) = 1.

2.2 Статистики

Пусть x_1, x_2, \ldots, x_n — выборка размера n. Тогда:

• Выборочное среднее:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

- Выборочная медиана (med) центральный элемент упорядоченной выборки (либо среднее двух центральных при чётном n).
- Полусумма крайних значений:

$$z_R = \frac{x_{\min} + x_{\max}}{2}.$$

Полусумма квартилей (25% и 75%):

$$z_Q = \frac{Q_1 + Q_3}{2},$$

где $Q_1-25\%$ -квантиль, $Q_3-75\%$ -квантиль.

По результатам 1000 повторных экспериментов для каждой статистики вычисляются её среднее значение и дисперсия:

$$E(z) = \langle z \rangle, \quad D(z) = \langle (z - E(z))^2 \rangle.$$

3. Гистограммы

Нормальное N(0,1): Гистограммы и теоретическая плотность/pmf

Рис. 1: Гистограмма нормального распределения

Коши C(0,1): Гистограммы и теоретическая плотность/pmf

Рис. 2: Гистограмма распределения Коши

Пуассон P(λ =10): Гистограммы и теоретическая плотность/pmf

Рис. 3: Гистограмма распределения Пуассона

Равномерное U(-√3, √3): Гистограммы и теоретическая плотность/pmf

Рис. 4: Гистограмма равномерного распределения

4. Таблицы статистик

1.1 Нормальное распределение N(0,1)

\overline{n}	Статистика	Среднее значение	Дисперсия
20	\bar{x}	0.00533	0.04954
20	Медиана	0.00242	0.06793
20	z_R	0.00684	0.14887
20	z_Q	0.00474	0.06026
100	$ar{x}$	0.00125	0.01065
100	Медиана	0.00233	0.01581
100	z_R	-0.00044	0.09097
100	z_Q	0.00097	0.01276
1000	$ar{x}$	-0.00171	0.00105
1000	Медиана	-0.00109	0.00168
1000	z_R	-0.00138	0.05854
1000	z_Q	-0.00169	0.00122

Таблица 1: Статистики для нормального распределения

1.2 Распределение Коши C(0,1)

\overline{n}	Статистика	Среднее значение	Дисперсия
20	$ar{x}$	0.28794	394.83630
20	Медиана	-0.00276	0.13782
20	z_R	2.58534	38885.55749
20	z_Q	0.02086	0.30331
100	$ar{x}$	3.01441	4726.20245
100	Медиана	-0.01349	0.02650
100	z_R	150.78337	11787248.17991
100	z_Q	-0.01227	0.05213
1000	$ar{x}$	0.01422	218.05180
1000	Медиана	-0.00180	0.00242
1000	z_R	-19.88220	51417854.57718
1000	z_Q	-0.00013	0.00503

Таблица 2: Статистики для распределения Коши

1.3 Распределение Пуассона $\lambda = 10$

\overline{n}	Статистика	Среднее значение	Дисперсия
20	\bar{x}	10.03075	0.49756
20	Медиана	9.87900	0.74460
20	z_R	10.47100	1.44510
20	z_Q	9.94712	0.61039
100	$ar{x}$	10.00203	0.09958
100	Медиана	9.85900	0.19081
100	z_R	10.90150	0.92948
100	z_Q	9.90250	0.14398
1000	$ar{x}$	9.99954	0.01032
1000	Медиана	9.99800	0.00200
1000	z_R	11.68850	0.75097
1000	z_Q	9.99462	0.00255

Таблица 3: Статистики для распределения Пуассона

1.4 Равномерное распределение $U(-\sqrt{3},\sqrt{3})$

\overline{n}	Статистика	Среднее значение	Дисперсия
20	\bar{x}	0.00151	0.05010
20	Медиана	-0.00360	0.12912
20	z_R	-0.00078	0.01337
20	z_Q	0.00534	0.07432
100	$ar{x}$	-0.00057	0.01079
100	Медиана	0.00100	0.03204
100	z_R	-0.00232	0.00061
100	z_Q	-0.00116	0.01598
1000	$ar{x}$	0.00052	0.00096
1000	Медиана	0.00173	0.00287
1000	z_R	-0.00003	0.00001
1000	z_Q	0.00082	0.00140

Таблица 4: Статистики для равномерного распределения

5. Заключение

В ходе работы:

- 1. Были сгенерированы выборки для четырёх распределений: нормального, Коши, Пуассона и равномерного.
- 2. Построены гистограммы для выборок размеров $n=10,\,100,\,1000$ с наложением теоретических функций плотности (или pmf для дискретного распределения Пуассона).
- 3. Проведены 1000 экспериментов для выборок размеров $n=20,\,100,\,1000$ с вычислением статистических характеристик: $\bar{x},\,\mathrm{med},\,z_R$ и z_Q .
- 4. Полученные средние значения и дисперсии статистик представлены в виде таблиц.

Результаты демонстрируют, что:

- При увеличении размера выборки гистограмма приближается к теоретической форме распределения.
- Для распределения Коши выборочное среднее оказывается очень неустойчивым изза экстремальных значений, а медиана более стабильной.
- Для распределения Пуассона при $\lambda = 10$ среднее и медиана стремятся к 10, а разброс уменьшается с ростом n.
- Для равномерного распределения все статистики в среднем равны нулю, однако полусумма крайних (z_R) имеет больший разброс из-за зависимости от крайних значений.