Az informatika számítástudományi alapjai

1+E. Feladatsor

(Az elmaradt előadás miatt tovább gyakoroljuk az eddigieket)

1. Adjunk példát olyan L_1 és L_2 V ábécé feletti nyelvekre, amelyekre L_1 L_2 = L_2 L_1 . Keressünk nem triviális megoldást is.

Triviális megoldások:

- $L_1 = \emptyset$, $L_1 = \{\lambda\}$ vagy a szimmetria miatt L_2 -re teljesül az előző esetek egyike.
- $L_1 = L_2$.
- V ábécé egyelemű.
- Az egyik nyelvben benne szerepel λ , a másik nyelv pedig a V^* (univerzális nyelv).
- 2. Mivel egyenlő L^2 , ha

$$L = \{ a^n b^n | n > 0 \} ?$$

- 3. Adjuk meg az alábbi {0, 1} ábécé feletti nyelveket halmazok uniója, konkatenációja és tranzitív lezártja ("*") segítségével
- Azokból a szavakból áll, amelyek tartalmazzák a 010 résszót
- Azon szavakból áll, melyek tartalmazzák résszóként a 000 vagy az 111 szót
- azon 1-esre végződő szavakból áll, amelyek nem tartalmazzák részszóként a 00 szót!
- azon szavakból áll, melynek 3. betűje 0!
- azon szavakból áll, melyek 5-tel osztható 1-est tartalmaznak!

- 4. Adjuk meg az alábbi {0, 1} ábécé feletti nyelveket halmazok uniója, konkatenációja és tranzitív lezártja ("*") segítségével
- a. $\{w \mid w \text{ begins with a 1 and ends with a 0}\}$
- **b.** $\{w \mid w \text{ contains at least three 1s}\}$
- c. $\{w \mid w \text{ contains the substring 0101 (i.e., } w = x0101y \text{ for some } x \text{ and } y)\}$
- **d.** $\{w \mid w \text{ has length at least 3 and its third symbol is a 0}\}$
- e. $\{w | w \text{ starts with 0 and has odd length, or starts with 1 and has even length}\}$
- g. $\{w | \text{ the length of } w \text{ is at most } 5\}$
- i. $\{w | \text{ every odd position of } w \text{ is a 1} \}$

1.32. For a finite language L, let |L| denote the number of elements of L. For example, $|\{\Lambda, a, ababb\}| = 3$. This notation has nothing to do with the length |x| of a string x. The statement $|L_1L_2| = |L_1||L_2|$ says that the number of strings in the concatenation L_1L_2 is the same as the product of the two numbers $|L_1|$ and $|L_2|$. Is this always true? If so, give reasons, and if not, find two finite languages $L_1, L_2 \subseteq \{a, b\}^*$ such that $|L_1L_2| \neq |L_1||L_2|$.

- **1.36.** a. Consider the language L of all strings of a's and b's that do not end with b and do not contain the substring bb. Find a finite language S such that $L = S^*$.
 - b. Show that there is no language S such that S^* is the language of all strings of a's and b's that do not contain the substring bb.