#Use the MARS simulator to write and execute MIPS assembly code that will perform

#the high level language pseudocode assignment statements.

#Use this file as a base and perform each exercise in order according to the

#descriptions given in each comment.

#No pseudo instructions are allowed, use only the following basic MIPS instructions:

add - arithmetic add

sub - arithmetic subtract

and - bitwise and

or - bitwise or

slt - set on less than

nor - bitwise nor

addi - add with immediate data

#

#

#YOUR SUBMISSION WILL BE ASSIGNED A SCORE OF ZERO IF IT CONTAINS:

PSEUDOINSTRUCTIONS

SYNTAX ERRORS

INSTRUCTIONS NOT LISTED ABOVE

Example of how to perform exercises

#Variables A through C have the following register mapping:

A:\$16 B:\$17 C:\$18

#For temporary storage use registers \$13, \$14, or \$15 as needed for complex operations.

#Example Exercise:

Initial Variable Values: A = 50; B = 100; C = 150;

Assignment statement to perform: C = A + B - C;

addi \$16, \$0, 50#A = 50;

addi \$17, \$0, 100 #B = 100;

#Now for your assignment, complete the following exercises in order as they appear.

#The result of each exercise can depend on the result of previous exercises.

#Variables A through F have the following register mapping:

A:\$10 B:\$11 C:\$12 D:\$13 E:\$14 F:\$15 G:\$16 H:\$17 I:\$18

#For temporary storage use register \$1 through \$9 as needed for complex operations.

```
#Exercise 1: Complex Assignment statement
```

```
# Initial Variable Values: G = 10000; C = 12000; D = 5678;
```

Assignment statement to perform: H = G+(C-D)

addi \$16, \$0, 10000

addi \$12, \$0, 12000

addi \$13, \$0, 5678

sub \$1, \$12, \$13

add \$17, \$16, \$1

#Exercise 2: Sum of differences

Initial Variable Values: C = 2000; D = 1250; E = 5000; F = 3500;

Assignment statement to perform: I = (C-D)+(E-F)

addi \$12, \$0, 2000

addi \$13, \$0, 1250

addi \$14, \$0, 5000

```
sub $2, $14, $15
#Exercise 3: Add without adding
#
       Initial Variable Values: A = 25; B = 50
#
        Assignment statement to perform: G = A - (^B + 1);
nor $1, $0, $11
sub $16, $10, $2
#Exercise 4: Subtract without Subtracting
#
       Initial Variable Values: C = 1000; D = 750;
        Assignment statement to perform: F = C + (^D + 1)
#Exercise 5: Less Than Comparison
#
       Initial Variable Values: A = 20000; B = 30000
#
        Assignment statement to perform: E = (A<B) ? 1:0; //ternary operator
slt $14, $10, $11
#Exercise 6: Exclusive OR without XOR
       Initial Variable Values: B = 0x0F0F;
                                               C = 0x0FFF;
        Assignment statement to perform: D = (B & ~C) | (~B & C)
```

```
addi $11, $0, 0x0F0F
addi $12, $0, 0x0FFFf
nor $1, $0, $11
nor $2, $0, $12
and $3, $11, $2
```

JI \$15, \$5, \$4

Convert the following MIPS assembly code into machine language. Show details, show binary and hexadecimal values

MIPS Assembly	Binary	Hex
add \$t0, \$s0, \$s1	0000 0010 0001 0001 0100 0000 0010 0000	Ox02114020
lw \$t0, 0x20(\$t7)	1000 1101 1110 1000 0000 0000 0010 0000	0x8DE80020
addi \$s0, \$0, -10	0010 0000 0001 0000 1111 1111 1111 0110	0X2010FFF6
addi \$s0, \$0, 73	0010 0000 0001 0000 0000 0000 0100 1001	0x20100049
sw \$t1, -7(\$t2)	1010 1101 0100 1001 1111 1111 1111 1001	0XAD49FFF9
sub \$t1, \$s7, \$s2	0000 0010 1111 0010 0100 1000 0010 0010	0x02F24822

Convert the following program from machine language into MIPS assembly language.

The numbers on the left are the instruction addresses in memory, and the numbers on the right give the instruction at that address. Then reverse engineer a high-level program that would compile into this assembly language routine and write it. Explain in words what the program does. \$a0 is the input, and it initially contains a positive number, n. \$v0 is the output.

Address	Instruction	MIPS
0x00400000	0x20080000	addi \$t0, \$0, 0
0x00400004	0x20090001	addi \$t1, \$0, 1
0x00400008	0x0089502A	slt \$t2, \$a0, \$t1
Ox0040000C	0x15400003	bne \$t2, \$0, 0x0003
0x00400010	0x01094020	add \$t0, \$t0, \$t1
0x00400014	0x21290002	addi \$t1, \$t1, 2
0x00400018	0x08100002	j 0x0100002
0x0040001C	0x01001020	add \$v0, \$t0, 0
Ox00400020	0x03E00008	jr \$ra

Bkpt	Address	Code	Basic	Source
Lings.			addi \$16,\$0,50	
				29: addi \$17, \$0, 100#B = 100;
				30: addi {10, {0, 150#C = 150;
				31: add \$13, \$16, \$17#Temp - A + B:
				32: sub 418, 413, 418#C = A + B - C;
	0x00400014	0x20102710	addi \$16,\$0,1.	. 48: addi {16, \$0, 10000# G = 10000;
				. 49: addi \$12, \$0, 12000# C = 12000;
				B SO: addi 413, ¢0, 5678# D = 5678;
				S1: sub \$1, \$12, \$13# Temp = C - D;
				S2: add \$17, \$16, \$10 H = G + (C - D);
				0 S7: addi 412, €0, 2000# C = 2000;
				D 58: addi 413, ¢0, 1250# D = 1250;
				0 59: addi €14, €0, 5000# E = 5000;
				0 60: addi 615, 60, 3500# F = 3500;
				61: sub \$2, \$12, \$13# Temp = C - D;
				62: sub 63, 614, 615# Temp = E - F;
			add \$18,\$2,\$3	63: add 618, 62, 63# I = $(C - D) + (E - F)$;
			addi \$10,\$0,25	€8: addi 410, ¢0, 25# A = 25;
			addi \$11,\$0,50	69: addi 611, 60, 50# B = 50;
			nor \$4,\$0,\$11	70: nor \$4, \$0, \$11# invert bits, NOT operation, ~B;
			add1 \$5,\$4,1	71: addi 45, 44, 1# Temp = -B + 1;
			sub \$16,\$10,\$5	72: sub \$16, \$10, \$5# G = A - (~B + 1);
				0 77: addi €13, €0, 1000# C = 1000;
				78: add1 414, 40, 750# D = 750;
				79: nor 46, 40, 414# invert bits, NOT operation, -D;
			addi \$7,\$6,1	80: addi \$7, \$6, 1# Temp = ~D + 1; 81: add \$15, \$7, \$13# F = C + (~D + 1);
				88: add1 410, 47, 413# F = C + (-D + 1); 88: add1 410, 40, 20000# A = 20000;
				87: addi {11, {0, 30000# A = 20000;
				88: slt 414, 410, 411# set if less than, compares if one value is less than the other, set to register;
				5 93: add1 411, 40, 0x0F0F# B = 0x0F0F;
				5 54: addi 412, \$0, 0x0FFF# C = 0x0FFF;
			nor \$8,\$0,\$11	95: nor 48, 40, 411# invert bits, NOT operation, -B;
			nor \$9,\$0,\$12	S6: nor 49, 40, \$128 invert bits, NOT operation, -C;
			and \$1,\$11,\$2	57: and 41, 411, 42# Temp = B a ~C;
			and \$2,\$8,\$12	90: and 62, 60, 612# Temp = (-B & C;
			or \$13,\$1,\$2	59: or \$13, \$1, \$2# D = (B & -C) (-B & C);
4	200000000000000000000000000000000000000		120712712	

Addiess	value (+u)	Amine (+4)	Value (+8)	value (+c)	Value (+10)	Asine (+14)	A9008 (+19)	Asine (+1c)
0x10010000	0x00000000	0x000000000	0x00000000	0x00000000	0x000000000	0x00000000	0x000000000	0x0000000
0x10010020	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x0000000
0x10010040	0×00000000	0x00000000	00000000x3	0x00000000	0x000000000	0x00000000	0x00000000	0x0000000
0x10010060	0x00000000	0x00000000	0×00000000	0x000000000	0x00000000	0x00000000	0x00000000	0×0000000
0x10010080	0×000000000	0x00000000	00000000x3	Gx000000000	0x00000000	0x00000000	0x00000000	0x0000000
0x100100a0	0×00000000	0x000000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x0000000
0x100100c0	0×000000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x3000000
0x100100e0	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x0000000
0x10010100	0×000000000	0x00000000	0x00000000	0x000000000	0x00000000	0x00000000	0x00000000	0x0000000
0x10010120	0x00000000	0x00000000	0x00000000	0x00000000	Dx00000000	0x00000000	0x00000000	0×0000000
0x10010140	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0×0000000
0x10010160	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0×0000000
0x10010180	0×00000000	0x00000000	0x00000000	0x000000000	0x00000000	0x00000000	0x00000000	0×0000000
0x100101a0	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	Dx:0000000
0x100101c0	0x00000000	0x00000000	0x00000000	0x000000000	0x00000000	0x00000000	Dx00000000	0x0000000
0x100101e0	0×00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	Dx:00000000	0x0000000