Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior Secondary School Examination, 2023
SUBJECT: CHEMISTRY (043) (56/2/1)

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking scheme carries only suggested value points for the answers
 These are in the nature of Guidelines only and do not constitute the complete
 answer. The students can have their own expression and if the expression is
 correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME

Senior Secondary School Examination, 2023 CHEMISTRY (Subject Code-043)

[Paper Code: 56/2/1]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Mark
		S
	SECTION-A	
1.	(c)	1
2.	(b)	1
3.	(c)	1
4.	(b)	1
5.	(b)	1
6.	(a)	1
7.	(c)	1
8.	(a)	1
9.	(a)	1
10.	(a)	1
11.	(c)	1
12.	(b)	1
13.	(d)	1
14.	(b)	1
15.	(c)	1
16.	(a)	1
17.	(d)	1
18.	(a)	1
	SECTION- B	
19.	$p_{Total} = p_{X}^{\circ} \chi_{X} + p_{Y}^{\circ} \chi_{B}$ $\chi_{X} = \chi_{B} = 0.5$	1/2

	$p_{\text{Total}} = (120 \times 0.5) + (160 \times 0.5)$	
		1
	= 140 mm Hg	1/2
20.	(a)	
	(i) Because the overall reaction does not involve any ion in the solution whose	1
	concentration can change.	
	(ii) Because DC changes the composition of the electrolytic solution.	1
	OR	
	(b)	
	A Galvanic cell used to convert the energy of combustion of fuel directly into	
	electrical energy. For example, H ₂ -O ₂ fuel cell (or any other correct example)	1/ 4
21	• Advantages: High efficiency, and pollution free (or any other correct advantage)	½ x 4
21.	(a) 9 times	1
	(b) A reaction that appears to be of higher order but follows first-order kinetics.	1/ 1/
22	Example: Hydrolysis of an ester (or any other correct example)	1/2, 1/2
22.	(a)	
	(i) Pentaamminenitrito-O-cobalt(III) ion	
	(ii) Potassium tetrachloridonickelate(II)	1 x 2
	OR	1 X Z
	(b) (i)	
	 A complex formed by a didentate or a polydentate ligand. 	
		1/2, 1/2
	(ii)	
	Complexes in which a metal is bound to more than one kind of donor groups	
	or ligands.	
	• $[\text{Co (NH}_3)_4\text{C}\ell_2]^+$ (or any other suitable example)	1/2, 1/2
23.	(a)	
	OH Ō Na⁺ OH	
	CHCl ₃ + aq NaOH CHCl ₂ NaOH CHO H ⁺ CHO	1
		1
	QH OH	
	l	
	 	
	(ii) H ⁺	
	(b)	
	СООН СООН	
	OH OCOCH ₃	
	$+ (CH_3CO)_2O \xrightarrow{H^+} \bigcirc$	
	+ (C113CO)2O	1
	*	1

24.		
24.	(a) $ \begin{array}{c} CH_3CN \xrightarrow{CH_3MgBr} CH_3 - C = NMgBr \xrightarrow{H_2O} CH_3 - C = O \\ CH_3 & CH_3 \end{array} $	1
	(b) \sim COONa \sim COONa \sim COONa \sim COONa	1
25.	Sr. No. DNA RNA	
	 Double stranded Single stranded Thymine base is present Uracil base is present 	1 x 2
26	(Any other correct differences)	
26.	(a) (i)	
	CH₃-CH₂-Ö-H + H⁺ → CH₃-CH₂-Ö-H	1/2
	$CH_3-CH_2-\overset{\circ}{\bigcirc}-H + H \longrightarrow CH_3-CH_2-\overset{\circ}{\bigcirc}-H$ $CH_3CH_2-\overset{\circ}{\bigcirc}: + CH_3-\overset{\circ}{\bigcirc}CH_2-\overset{\circ}{\bigcirc}-CH_2CH_3 + H_2O$ $H \longrightarrow CH_3-CH_2-\overset{\circ}{\bigcirc}-H$	1
	$CH_3CH_2 \xrightarrow{\stackrel{\leftarrow}{\to}} CH_2CH_3 \longrightarrow CH_3CH_2-O-CH_2CH_3 + H^{\stackrel{\leftarrow}{\to}}$	1/2
	(ii) Due to intramolecular H-bonding in o-nitrophenol while p-nitrophenol has intermolecular H-bonding. OR	1
	(b) (i)	
	OCH_3 OCH_3 OCH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	
	$ \begin{array}{c} OH \\ \hline Na_2Cr_2O_7 \\ \hline H^+ \end{array} $	
	(iii) $\begin{array}{ccc} CH_3 & CH_2 \\ CH_3 - C - OH & \xrightarrow{Cu / 573 \text{ K}} & CH_2 \\ CH_3 & CH_3 - C - CH_3 \end{array}$	
	C11 ₃	1 x 3

	(a) Civilariantana /	
27.	(a) Cyclopentane /	
	(b) 2-Bromo-2-methylbutane < 2-Bromopentane < 1-Bromopentane	
	(c) Because para isomer fits well into the crystal lattice due to symmetry.	
	(d)	
	MgBr	
	A = B =	1 x 3
28.	$k = \frac{0.693}{}$	1/
	i t	1/2
	1/2	
	$k_1 = \frac{0.693}{30} \text{ min}^{-1}$	
	30	
	, 0.6931	
	$k_2 = \frac{0.693}{10} \text{ min}^{-1}$	
	. k ₂ Ea [1 1]	1/2
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303 \text{ R}} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	
	$\log 3 = \frac{\text{Ea}}{2.303 \times 8.314} \left[\frac{1}{300} - \frac{1}{320} \right]$	
		1
	$Ea = \frac{0.4771 \times 19.147 \times 300 \times 320}{20}$	1
	20	
	Ea = 43848 J mol^{-1} or $43.848 \text{ KJ mol}^{-1}$ or $43.85 \text{ k J mol}^{-1}$	1
	(Deduct ½ mark for incorrect or no unit)	
29.	$\Delta T_f = i K_f m$	1/2
	$= i K_f \frac{W_B}{M_B} \times \frac{1000}{W_A}$	
		1
	$1 = i \times 1.86 \times \frac{19.5}{78} \times \frac{1000}{500}$	4 /
	i = 1.075	1/2
	$\alpha = \frac{i-1}{n-1}$	1/2
	$=\frac{1.075-1}{2-1}=0.075$	1/2
30.	(a)	
50.		
	en Co	
	en Ço en	1
		1
	en Co en Cl Trans	1

	The trans isomer is not optically active because its mirror image is superimposable.	1
	(If the student writes charge $(+2/+1)$ over the isomers, award full marks).	
	(b) sp^3d^2 , paramagnetic.	1/2 , 1/2
	SECTION D	
31.	(a) Acetal(b) Because the carboxylate ion is more resonance stabilized than the phenoxide ion.(c) (i)	1 1
	H ₃ C O H ₃ C-C-CH ₃ < CH ₃ COCH ₃ < CH ₃ CHO H ₃ C	1
	(ii) (1) Add Iodine (I ₂), NaOH, and heat both the test tubes containing the given organic compounds. Propanone gives yellow precipitate (CHI ₃) while propanal will not give yellow precipitate.	1
	(or any other suitable chemical test)	
	OR	
32.	(ii) (ii) (a) Absence of free – CHO group. (b) Because being water soluble it is excreted through urine. (c) (i) -CONH- linkage between two amino acids. (ii) Loss of biological activity when protein is subjected to change in temperature, pH, etc.	1 x 2 1 1 1 1 x 2
	OR	
	 (c) (i) The isomers (carbohydrates) having a change in configuration at C-1(for aldoses) or C-2 (for ketoses). (ii) A linkage joining two monosaccharides through oxygen atom. 	1 x 2
	SECTION-E	
33.	(a) (I) (i) Cr ²⁺ changes from d ⁴ to stable half-filled t _{2g} ³ configuration while Mn ³⁺ changes to stable half-filled d ⁵ configuration.	1

	OR	
	6	
	$\begin{array}{c} & & & & & & \\ R-NH_2 & + & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & $	
	$\begin{array}{c c} C & N-H \xrightarrow{KOH} & C & \bar{N}K^* \xrightarrow{R-X} & C & N-R \\ \hline O & O & & N-R \\ \hline O & O & & N-R \\ \hline O & O & & N-R \\ \hline O & O & & N-R \\ \hline O & O & & N-R \\ \hline O & O & N-R \\$	1
		1
	(II) (i) $R - NH_2 + CHCl_3 + NaOH \longrightarrow RNC + 3NaCl + H_2O$	1
	(ii) Combination of inductive effect and solvation effect.(iii) Because it forms a mixture of amines that is difficult to separate.	1
	(i) Aniline gets protonated and is deactivated / Aniline on protonation forms anilinium ion which is meta-directing.	1
34.	(a) (I) (i) Apilips sets protonated and is descriveded / Apilips on protonation forms apilipium	1
	(III) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 2 \operatorname{OH}^- \longrightarrow 2 \operatorname{Cr} \operatorname{O}_4^{2-} + \operatorname{H}_2 \operatorname{O}$	1
	radioactive. (or any other suitable similarity and difference)	1
	 oxidation state. Difference: Lanthanoids are mainly non-radioactive whereas Actinoids are 	1
	 (II) Similarity: Both Lanthanoids and Actinoids show contraction / stable in + 3 	1
	(i) Because of almost identical atomic radii. (ii) Because Ce ⁴⁺ changes to the common + 3 oxidation state.	1 1
	(b) (I)	
	(or any other suitable chemical equations of preparation) OR	
	$3 \text{ MnO}_4^{2-} + 4 \text{ H}^+ \longrightarrow 2 \text{ MnO}_4^- + \text{MnO}_2 + 2 \text{ H}_2\text{O}$	1
	(II) $2 \operatorname{MnO}_2 + 4 \operatorname{KOH} + \operatorname{O}_2 \longrightarrow 2 \operatorname{K}_2 \operatorname{MnO}_4 + 2 \operatorname{H}_2 \operatorname{O}$	1
	(iii) Because of comparable energies of 5f, 6d and 7s orbitals.	1
	(ii) Because of no unpaired electron in the d-orbital of Sc^{3+} whereas there is one unpaired electron in Ti^{3+}/Ti^{3+} to show d-d transition.	1

	(b) (I)	
	(i) CN COOH CONH ₂	
	A = $B = $ $C =$	½ x 3
	(ii) +	
	NH ₂ N ₂ CI	
	$\mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{C} \end{bmatrix}$	½ x 3
	(II) Because of the formation of salt with Lewis acid anhydrous AlCl ₃ .	1
	(III) $(C_2H_5)_3N < C_2H_5NH_2 < C_2H_5OH$	1
35.	(a)	17
	$\wedge_{\rm m} = \frac{k}{c} \times 1000 \mathrm{S cm}^2 \mathrm{mol}^{-1}$	1/2
	8×10^{-5}	
	$= \frac{8 \times 10^{-5}}{2 \times 10^{-3}} \times 1000 \mathrm{S cm^2 mol^{-1}}$	1/2
	$= 40 \text{ S cm}^2 \text{ mol}^{-1}$	1
		1
	$\alpha = \frac{\wedge_{m}}{\wedge_{m^{\circ}}}$	1/2
	$=\frac{40}{}$	
	404	
	= 0.099	1/2
	(b) $\Delta_r G^{\circ} = - nFE_{cell}^{\circ}$	1/2
	$= -2 \times 96500 \text{ C mol}^{-1} \times (0.80 + 0.25) \text{ V}$	
	$= -2 \times 96500 \times 1.05 \text{ J mol}^{-1}$	
	$= -202,650 \text{ J mol}^{-1} \text{ or } -202.65 \text{ kJ mol}^{-1}$	1/2
		1/-
	$\log K_{\rm c} = \frac{nE_{\rm cell}^{\circ}}{0.059}$	1/2
	$=\frac{2\times1.05}{0.059}=35.6$	1/2
	0.059	

* * *