МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ».

Физический факультет

	ОТЧЕТ О РАБОТЕ	
«Измерения с помо	шью пифрового запомина	ющего осниллографа»

Выполнил: студен	т гр. № 243	301
Высоцкий Максим	Юрьевич	
« <u></u> »	20	Γ.
Оценка		· · · · · · · · · · · · · · · · · · ·
Преподаватель Яп	<i>ұких А. А</i>	
«»	_20	_ Γ.

1. Теоретическое введение

Цель работы: понять основные принципы действия осциллографов и научиться использовать их для наблюдения и измерения характеристик электрических сигналов

Осциллограф — это прибор для наблюдения формы сигналов и измерения их амплитудных, фазовых и временных характеристик. Кроме этого, современные цифровые запоминающие осциллографы позволяют преобразовывать аналоговые сигналы в цифровую форму, запоминать их в виде файлов, производить над ними некоторые математические операции, а также передавать файлы через интерфейс в другие устройства (например, на компьютер) для последующего хранения и обработки.

Оборудование: цифровой осциллограф Tektronix TDS1012, генератор сигналов типа GFG 8255, набор панелей (макетов) со схемами для выполнения упражнений.

Задание 1. Фигуры Лиссажу.

В данном задании нужно подключить два генератора в СН1 и СН2 и в режиме ХҮ, ҮТ осциллографа снять показатели U_{x0} , U_{x} , U_{y0} , U_{y} при частотах 50 Гц, 1 кГц, 50 кГц. Данные приведены в таблице.

	Режим ХҮ		Режим ҮТ							
					Автоматический Кур			Курс	оры	
f	Ux0	Ux	Uy0	Uy	1	2	3	4	1	3
50 Гц	5,2	0,05	5,2	0,05	4,92	3,52	4,92	3,4	5,04	4,8
1 кГц	4,8	1,1	4,8	1,1	5	3,44	5,2	3,52	4,88	4,8
50 кГц	0,42	0,42	4,8	4,8	0,44	0,304	4,92	3,38	0,424	4,8

Таблица 1. Данные задания 1, где 1 — амплитуда напряжения U_{CH1} ; 2 — среднеквадратическое значение напряжения U_{CH1} ; 3 и 4 — то же для сигнала U_{CH2}

Задание 2. Коэффициент пульсации.

В данном задании нужно вычислить коэффициент пульсации, который определяется по формуле $K=\frac{U_n}{U_0}$. Нужно сделать при разных частотах от 50 Γ ц до 1 κ Γ ц.

	50 Гц	250 Гц	500 Гц	1 кГц
Un, B	1,2	0,4	0,2	0,002
U0, B	3,5	4,2	4,28	4,28
K	0,34	0,095	0,05	0,0005

Задание 3.1. Измерение параметров затухающих колебаний механической системы.

В данном задании нужно снять осциллограмму в режиме однократного запуска для макета. В нашем случае мы снимаем колебания линейки. Нужно снять собственную частоту f_0 , коэффициент затухания τ .

f0, Гц	13,9
тау, с	2,1
T = 1/f0	0,072

Задание 3.2. Измерение амплитудных и временных параметров разогрева нити накаливания.

В данном задании нужно воспользоваться соответствующим макетом. При разных токах снимаем напряжения холодной и разогретой лампочки.

Рис. 12. Макет "Лампочка накаливания": a — схема включения: K μ — кнопка (нормально разомкнутая); CT — стабилизатор тока; R — регулятор тока; δ — форма сигнала

I, A	0,09	0,135
Ux, B	0,24	0,48
Ur, B	1	2,24
Rx, Ом	2,67	3,56
Rг, Ом	11,11	16,59
τ, C	0,5	0,125