Transfer learning in paraphrase detection for English and Spanish languages

maks-ym Promotor: dr. inż Piotr Andruszkiewicz

Agenda

- Wstęp: parafraza, transfer learning, sieci neuronowe
- Cel i motywacja
- Architektura. Dane. Założenia eksperymentu
- Wyniki
- Podsumowanie
- Pytania

Parafraza

Zdanie ≈ Inne zdanie

"A man puts some cheese on a pizza." — "The man sprinkled cheese on the pizza." [Z danych testowych SemEval]

"The man sprinkled cheese on the pizza." "Mężczyzna posypał pizzę serem." "Чоловік посипав сиром піцу."

Parafraza

"A man puts some cheese on a pizza." — "The man sprinkled cheese on the pizza." [Z danych testowych SemEval]

"Drugi <u>stambulskie</u> oddycha <u>gorycze</u> Lub pije z chińskich ziół ciągnione treści."

A. Mickiewicz ("Zima miejska")

(swobodna przeróbka tekstu lub tłumaczenia) Peryfraza Jura stylistyczna, polega na zastąpieniu wyrazu przez szereg innych) _{ch}ka tekstu

No a czym jest "transfer learning"?

"Transfer learning is the improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned." [6]

Sieci neuronowe

Feed-forward [1]

^[1] https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7

^[2] https://rubikscode.net/2018/02/26/introduction-to-convolutional-neural-networks/

^[3] https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sieci neuronowe→ RNN

LSTM (Long Short-Time Memory) [4]

GRU (Gated Recurrent Unit) [5]

Cel i motywacja

Cel i motywacja

Parafrazy

Niejednoznaczność języka naturalnego: różne pytania mogą żądać tej samej odpowiedzi

Wykorzystanie już istniejących baz wiedzy

Wyszukiwarki i chat-boty

Transfer Learning

Ograniczona ilość danych dla zadania docelowego, ale dużo danych dla podobnego zadania

Danych dla języka angielskiego jest zwykle najwięcej, dla innych o wiele mniej, ale chcemy uzyskać w miarę dobrą jakość

Tworzenie nowych zbiorów danych wysokiej jakości często jest drogie

Sieci neuronowe

Maksymalnie zautomatyzowany sposób stworzenia systemu

Minimalne wykorzystanie predefiniowanych reguł językowych

Współczesny sprzęt pozwala na wytrenowanie prostej sieci nawet na komputerze personalnym

Architektura. Dane. Założenia eksperymentu

Architektura. Dane. Założenia eksperymentu

- Opiera się na pracy B. Rychalskiej "Sieci neuronowe w rozpoznawaniu podobieństwa semantycznego" (2016)
- Prosta liniowa architectura warstwy rekurencyjnej
- Wektorowa reprezentacja słów FastText
- Dane z konkursu SemEval różnych lat
- Języki: angielski i hiszpański
- Trenowanie na maszynie lokalnej
- python, jupyter notebook, keras (TensorFlow backend)

Architektura. Dane. Założenia eksperymentu

Architektura

Dane

	English	Spanish
Training	2234	1083
Test	350	350
Validation	1959	361

Wektory słów

- FastText
- 200000 słów dla każdego języka
- 300 długość jednego wektora

Sprzęt do obliczeń

PC:

- MSI GeForce 1060Ti, 6Gb
- 8 RAM
- Intel Pentium Gold
- MSI Z370

Wybór bramki RNN

Funkcja kosztu

Współczynnik korelacji Pearsona

· - · - · - GRU - validation

· · · · · · GRU - training

Wybór liczby iteracji

Epochs

Funkcja kosztu

Współczynnik korelacji Pearsona

* zbiór walidacyjny

Wybór liczby głównych składowych (PCA)

Funkcja kosztu

Współczynnik korelacji Pearsona

number	50	150	300
loss	1.50	1.55	1.48
correlati on coefficie nt	0.39	0.37	0.41
time	17 min 3 s	18 min 8 s	20 min 40 s
trainable paramet ers	23 056	48 756	87 306
total number of paramet ers	10 023 1 06	30 048 9 06	60 087 60 6
disk space occupied by	40.2 Mb	120.4 Mb	240.7 Mb

Wybór rozmiaru kroku (learning rate)

0.4

learning_rate=0,005
learning_rate=0,01
learning_rate=0,05
learning_rate=0,1

Epochs

Funkcja kosztu

learning_rate=0,005
learning_rate=0,01
learning_rate=0,05
learning_rate=0,1

Współczynnik korelacji Pearsona

Wybór spadku szybkości uczenia się (learning rate

Funkcja kosztu

decay=0	decay=0,001
decay=0,01	decay=0,1

Współczynnik korelacji Pearsona

learning rate decay	0	0,001	0,01	0,1
best loss value	1,512	1,503	1,601	1,656
best correlati on value	0,382	0,393	0,325	0,267

Eksperyment główny

Eksperyment główny

Eksperyment	Współczynnik Pearsona
EN -> ES	początek: 0.149 lepszy: 0.264
ES -> ES	początek: 0.253 lepszy: 0.256

Podsumowanie

Podsumowanie

Zrobione:

- sprawdzono czy transfer learning jest przydatny dla wykrywania parafraz
- wybrane optymalne parametry sieci dla otrzymania pozytywnych wyników eksperymentów
- sprawdzono czy da się zrobić prosty eksperyment na komputerze lokalnym
 Dalsze ulepszenia i badania:
- zwiększenie ilości danych, ulepszenie jakości danych
- poszukiwanie lub stworzenie lepszych reprezentacji wektorowych dla zadań z wieloma językami
- użycie bardziej skomplikowanej architektury sieci, dodatkowych modeli
 językowych lub baz wiedzy

Źródła

- •https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
- •https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- •Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [https://arxiv.org/pdf/1412.3555.pdf]
- •https://www.paraphrase-online.com/
- •https://pl.wikipedia.org/wiki/Parafraza
- •https://pl.wikipedia.org/wiki/Peryfraza
- •Handbook of Research on Machine Learning Applications, 2009

Dziękuję

© 2019 maks-ym

