

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/622,259	07/18/2003	Steven Michael Hausman	2002P20760US01	3269
7590 12/08/2009 Siemens Corporation Intellectual Property Department			EXAMINER	
			HASSAN, AURANGZEB	
170 Wood Avenue South Iselin, NJ 08830			ART UNIT	PAPER NUMBER
10000			2182	
			MAIL DATE	DELIVERY MODE
			12/08/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/622 259 HAUSMAN ET AL. Office Action Summary Examiner Art Unit AURANGZEB HASSAN 2182 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 04 September 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-32 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-32 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

U.S. Patent and Trademark Office PTOL-326 (Rev. 08-06)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Information Disclosure Statement(s) (FTO/SB/08)

Attachment(s)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application.

Page 2

Application/Control Number: 10/622,259

Art Unit: 2182

DETAILED ACTION

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 2. Examiner has provided a summary in order to better follow the rejection.

Claims 1 – 9, 11, 12, 14 – 22 and 26 – 28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas et al (US Patent Number 5,649,001 hereinafter "Thomas") in view of Boggs et al (US Publication Number 2001/0037491 hereinafter "Boggs") further in view of Evans et al. (US Patent Number 6,307,880, hereinafter "Evans").

Claim 10 is rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas in view of Boggs further in view of Cisco Systems.

Claims 13 and 29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas in view of Boggs further in view of Rostoker et al. (US Patent Number 6,978,319)

Claims 23 – 25 and 30 – 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas in view of Boggs further in view of Al-Ali (US Publication Number 2003/0167391).

(Emphasis has been added to claim limitations that recite terminology that require the ability to carry out a certain function, however the claim limitations do not necessitate that the function be completed, i.e. the terms couplable and connectable do not necessitate a coupling or connection but merely recite the ability to be coupled or connected.)

3. Claims 1 – 9, 11, 12, 14 – 22 and 26 – 28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas et al (US Patent Number 5,649,001 hereinafter "Thomas") in view of Boggs et al (US Publication Number 2001/0037491 hereinafter "Boggs") further in view of Evans, III (US Patent Number 6,307,880, hereinafter "Evans").

Application/Control Number: 10/622,259
Art Unit: 2182

4. As per claim 1, Thomas teaches a system comprising: a cellular telephone modem (cellular phone system, column 3, lines 8 – 15); and a programmable cable (communication adapter cable, element 22, figure 1) comprising a first end connectable to a computer (communication interface device, element 20, figure 1) and a second end connectable to said cellular telephone modem (communication network/device, element 28, figure 1, cellular phone system, column 3, lines 8 – 15); said programmable cable adapted to store at least one of a plurality of configuration parameters comprising a PIN number (identification code, column 6, lines 15 – 20) a memory of said programmable cable distinct from said PLC (32, figure 1, column 9, lines 34 – 41); said programmable cable adapted to, in an operative embodiment, automatically configure said cellular telephone modem by communicating at least one of the configuration parameters to said cellular telephone modem (column 6, lines 15 – 25 and lines 38 – 46).

Thomas fails to specify the type of computer as being a PLC and a Freeport mode and PPI mode.

Boggs teaches the plurality of configuration parameters comprising a mode switch parameter adapted to cause a mode switch of said programmable cable (PLC attached to cable, paragraph [0331]) connectable to a programmable logic controller (PLC) to select between a Freeport mode and a PPI mode (paragraphs [0263 – 0268] describe switching between the two modes).

It would have been obvious to one or ordinary skill in the art to combine the above teachings with Boggs. One of ordinary skill in the art would be motivated to

Art Unit: 2182

make such modifications in order to provide higher performance in communications (paragraph [0027]).

Thomas teaches a cable with a memory means to store a plurality of operating values which correspond to operating characteristics of the given communication network (column 9, lines 34 – 41). Boggs teaches operational parameters to communicate a mode switch (paragraphs [0263 – 0268] describe switching between the two modes).

All of the component parts of Thomas and Boggs were known at the time of the applicant's claimed invention the only difference is the combination if the known elements in a single adapter cable thus it would have been obvious to one of ordinary skill in the art to combine all the elements in a single memory adapter cable to yield a predictable result of allowing communication between connectable devices.

The combination of Thomas and Boggs does not teach a PIN number associated with enabling the cellular telephone modem.

Evans teaches a PIN number utilized in the identification of a cellular device that allows for enabling the device to function therein (92, figure 3).

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the PIN number of Thomas/Boggs in order to allow for verification in enabling the cellular telephone modem as seen in the above teachings of Evans. One of ordinary skill would be motivated to make such modification in order to enhance connectivity of the cellular device (column 3, lines 16 – 27).

Art Unit: 2182

The examiner notes that the applicant in the specification background, paragraph 2, lines 1 and 2, states that a PLC is a type of **computer** (emphasis added) utilized in control systems.

5. As per claim 2, Thomas teaches a device comprising: a programmable cable (communication adapter cable, element 22, figure 1) comprising a first end connectable to a PLC (communication interface device, element 20, figure 1) and a second end connectable to a network communications device (communication network/device, element 28, figure 1), the network communications device further couplable to a user interface device (cellular phone system, column 3, lines 8 – 15); said programmable cable adapted to store at least one of a plurality of configuration parameters; in an operative embodiment, said programmable cable adapted to automatically configure the network communications device by communicating at least one of a plurality of configuration parameters to the network communications device comprising a PIN number (communication adapter cable identification code stored on communication adapter cable, column 10, lines 47 – 59).

Thomas does not disclose a Freeport mode and PPI mode.

Boggs teaches the plurality of configuration parameters comprising a mode switch parameter adapted to cause a mode switch of said programmable cable (PLC attached to cable, paragraph [0331]) **connectable** to a programmable logic controller (PLC) to select between a Freeport mode and a PPI mode (paragraphs [0263 – 0268] describe switching between the two modes).

Art Unit: 2182

It would have been obvious to combine Thomas and Boggs for the same reason discussed in claim 1.

The combination of Thomas and Boggs does not teach a PIN number associated with enabling the cellular telephone modem.

Evans teaches a PIN number utilized in the identification of a cellular device that allows for enabling the device to function therein (92, figure 3).

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the PIN number of Thomas/Boggs in order to allow for verification in enabling the cellular telephone modem as seen in the above teachings of Evans. One of ordinary skill would be motivated to make such modification in order to enhance connectivity of the cellular device (column 3, lines 16 – 27).

6. As per claims 9, Thomas teaches a device comprising: a programmable cable comprising, a first end **connectable** to a network (**couplable** to a PLC), and a second end **connectable** to a network communications device (communication network/device, element 28, figure 1); the network communications device further **couplable** to a user interface device (cellular phone system, column 3, lines 8 – 15); and said programmable cable programmable to store at least one of a plurality of configuration parameters comprising: a communication language (adapt the modern to a particular country's telephone network, column 1, lines 63 – 67, column 3, lines 1 – 2) and an identifying PIN number (communication adapter cable identification code stored on communication adapter cable, column 10, lines 47 – 59, emphasis added).

Art Unit: 2182

Thomas does not disclose a Freeport mode and PPI mode.

Boggs teaches the plurality of configuration parameters comprising a mode switch parameter adapted to cause a mode switch of said programmable cable (cable, paragraph [0331]) to select between a Freeport mode and a PPI mode (paragraphs [0263 – 0268] describe switching between the two modes).

It would have been obvious to combine Thomas and Boggs for the same reason discussed in claim 1.

The combination of Thomas and Boggs does not teach a PIN number associated with enabling the cellular telephone modem.

Evans teaches a PIN number utilized in the identification of a cellular device that allows for enabling the device to function therein (92, figure 3).

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the PIN number of Thomas/Boggs in order to allow for verification in enabling the cellular telephone modem as seen in the above teachings of Evans. One of ordinary skill would be motivated to make such modification in order to enhance connectivity of the cellular device (column 3, lines 16 – 27).

The Examiner asserts that the claim limitations only require the capability to communicate to the PLC but do not necessitate such limitations. Accordingly the programmable cable of Thomas communicates with a computer and network.

Application/Control Number: 10/622,259
Art Unit: 2182

7. As per claim 14, Thomas teaches a method comprising the activities of: providing a programmable cable comprising a first end and a second end, the first end connectable to a PLC (communication interface device, element 20, figure 1), the second end connectable to a cellular telephone modem (communication network/device, element 28, figure 1), a user interface device couplable to a network comprising the programmable cable, the PLC, and the cellular telephone modem (cellular phone system, column 3, lines 8 – 15); said programmable cable adapted to store at least one of a plurality of configuration parameters (communication adapter cable identification code stored on communication adapter cable, column 10, lines 47 – 59); and automatically configuring the cellular telephone modem by the programmable cable (handshaking and connectivity via communication interface device upon automatic verification of the identification code, column 6, lines 15 – 48).

Thomas does not disclose a Freeport mode and PPI mode.

Boggs teaches the plurality of configuration parameters comprising a mode switch parameter adapted to cause a mode switch of said programmable cable (cable, paragraph [0331]) to select between a Freeport mode and a PPI mode (paragraphs [0263 – 0268] describe switching between the two modes).

It would have been obvious to combine Thomas and Boggs for the same reason discussed in claim 1.

The combination of Thomas and Boggs does not teach a PIN number associated with enabling the cellular telephone modem.

Art Unit: 2182

Evans teaches a PIN number utilized in the identification of a cellular device that allows for enabling the device to function therein (92, figure 3).

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the PIN number of Thomas/Boggs in order to allow for verification in enabling the cellular telephone modem as seen in the above teachings of Evans. One of ordinary skill would be motivated to make such modification in order to enhance connectivity of the cellular device (column 3, lines 16 – 27).

8. As per claim 26, Thomas teaches a method comprising the activities of: providing a programmable cable comprising a first end **connectable** to a network (communication interface device, element 20, figure 1) and a second end **connectable** to a network communications device (communication network/device, element 28, figure 1), a user interface device **couplable** to a network (cellular phone system, column 3, lines 8 – 15); and automatically communicating from the programmable cable to the network communicating device a PIN number and at least one of a plurality of configuration parameters (handshaking and connectivity via communication interface device upon automatic verification of the identification code, column 6, lines 15 – 48, communication adapter cable identification code stored on communication adapter cable in use for cellular telephone network, column 10, lines 47 – 59).

Thomas does not disclose a Freeport mode and PPI mode.

Boggs teaches the plurality of configuration parameters comprising a mode switch parameter adapted to cause a mode switch of said programmable cable (cable,

Art Unit: 2182

paragraph [0331]) to select between a Freeport mode and a PPI mode (paragraphs [0263 – 0268] describe switching between the two modes).

It would have been obvious to combine Thomas and Boggs for the same reason discussed in claim 1.

The combination of Thomas and Boggs does not teach a PIN number associated with enabling the cellular telephone modem.

Evans teaches a PIN number utilized in the identification of a cellular device that allows for enabling the device to function therein (92, figure 3).

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the PIN number of Thomas/Boggs in order to allow for verification in enabling the cellular telephone modem as seen in the above teachings of Evans. One of ordinary skill would be motivated to make such modification in order to enhance connectivity of the cellular device (column 3, lines 16 – 27).

The Examiner elaborates that Thomas teaches a programmable cable **couplable** to a network. Thomas teaches a general network and as the claim limitations stand in claim 26, the term **couplable** does not necessitate all the proceeding elements but rather puts forth a capability to be coupled to such a network. As claim 26 is a method the claim limitation **couplable** does not necessitate the particular network comprising particular network elements but rather necessitates the capability of coupling to a network in general which is Thomas' cellular phone system.

Application/Control Number: 10/622,259 Page 11

Art Unit: 2182

9. Thomas modified by the teachings of Boggs as applied in claim 2 above as per claims 3, 4, 6 – 8, Thomas teaches a device wherein the network interface device comprises a multitude of end interfaces (cellular phone system: column 3, lines 8 – 15; telephone network: column 1, lines 65 – 67, column 2 lines 1 – 2; network and Internet: column 8, lines 42 – 59; cellular phone system: column 3, lines 8 – 15).

- 10. Thomas modified by the teachings of Boggs as applied in claim 2 above as per claim 5, Thomas teaches a device wherein the configuration parameters further comprise a setup string for the network interface device (column 8, lines 45 58).
- 11. As per claim 11, Thomas teaches a device wherein in an operative embodiment, said programmable cable adapted to automatically configure the network communications device by communicating at least one of the plurality of configuration parameters to the network communications device (column 8, lines 45 58).
- As per claim 12, Thomas teaches a device wherein said second end of said programmable cable comprises an RS232 network connector (communication over an RS232 serial port, column 1, lines 31 – 37).
- 13. Thomas modified by the teachings of Boggs as applied in claim 14 above as per claims 15 and 16, Thomas teaches a method wherein said automatically configuring activity occurs during/after a power-cycling of the programmable cable (power-cycling).

Art Unit: 2182

through connection and interchanging of adapter cables and automatically configuring through periodic polling, column 4, lines 17 – 63).

- 14. Thomas modified by the teachings of Boggs as applied in claim 14 above as per claim 17, Thomas teaches a method comprising automatically communicating, from the programmable cable to the network communications device at least one of the plurality of configuration parameters (column 8. lines 42 59).
- 15. As per claims 18 and 27, Thomas teaches a method comprising: via the user interface device through the network, setting at least one of the plurality of programmable cable configuration parameters comprising a communication language (adapt the modem to a particular country's telephone network, column 1, lines 63 67, column 3, lines 1 2) and an identifying PIN number (communication adapter cable identification code stored on communication adapter cable, column 10, lines 47 59).

Boggs teaches said programmable cable programmable to store at least one of a plurality of configuration parameters comprising: a mode of operation, a PPI protocol, and a data transfer speed (PPI, mode, and baud rates, paragraph [0251]). (Emphasis added)

16. Thomas modified by the teachings of Boggs as applied in claim 14 above as per claims 19 – 21, Thomas teaches a method further comprising initializing the programmable cable using the user interface device through the network by setting at

Application/Control Number: 10/622,259 Page 13

Art Unit: 2182

least on of the plurality of configuration parameters comprising a network communications device setup string and a PIN number (communication adapter cable identification code stored on communication adapter cable, column 10, lines 47 – 59).

- 17. Thomas modified by the teachings of Boggs as applied in claim 14 above as per claim 22, Thomas teaches a method wherein said activity of automatically configuring the cellular telephone modem by the programmable cable further comprises communicating at least one of a plurality of configuration parameters, comprising cellular telephone modem setup string and a PIN number, to the cellular telephone modem (handshaking and connectivity via communication interface device upon automatic verification of the identification code, column 6, lines 15 48, communication adapter cable identification code stored on communication adapter cable in use for cellular telephone network, column 10, lines 47 59).
- 18. As per claim 28, Thomas teaches a method wherein the configuration parameters communicated to the network communications device further comprise a network communications device setup string (column 8, lines 45 – 58).
- Claim 10 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Thomas in view of Boggs further in view of Cisco Systems.

Art Unit: 2182

20. Thomas modified by the teachings of Boggs and Cisco as applied to claim 9 above, as per claim 10, Thomas teaches a device comprising: a programmable cable comprising, a first end connectable to a network (couplable to a PLC), and a second end connectable to a network communications device (communication network/device, element 28, figure 1, emphasis added)

Thomas in view of Boggs does not explicitly teach token holding.

Cisco teaches a device wherein said programmable cable further adapted to, in an operative configuration, serve as a token holding master on the network adapted to multiplex networked communications with the PLC (each station holding token, Section: Token Ring Operation).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to modify the combination of Thomas and Boggs with the above teachings of Cisco Systems. One of ordinary skill in the art would have been motivated to make such modification in order to allow reduce collisions of data on network (Section: Review Questions).

 Claims 13 and 29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas in view of Boggs further in view of Rostoker et al. (US Patent Number 6,978,319). Application/Control Number: 10/622,259
Art Unit: 2182

22. As per claim 13, Thomas teaches a device wherein said second end of said programmable cable comprises a connector (can be utilized with wide variety of communication protocols and a variety of networks, column 3, lines 47 – 54).

Thomas fails to teach a connector that which comprises a USB network connector.

Rostoker et al. analogously teaches a device wherein said second end of said programmable cable comprises a connector comprising a USB network connector (column 5, lines 4 – 11).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to modify the combination of Thomas and Boggs with the above teachings of Rostoker et al. One of ordinary skill in the art would have been motivated to make such modification in order to allow for "plug-and-play" further allowing transparency on the user end (column 2, lines 63 – 67).

23. Thomas modified by Boggs further modified by the teachings of Rostoker et al. as applied to claim 13 above, as per claim 29, Rostoker et al. teaches a method further comprising monitoring data traffic through the programmable cable using a set of status indicators (status of data present through protocols where the controller notes indication, figure 8).

Page 16

Application/Control Number: 10/622,259

Art Unit: 2182

24. Claims 23 – 25 and 30 – 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Thomas in view of Boggs further in view of Al-Ali (US Publication Number 2003/0167391).

25. As per claims 23 – 25 and 30 – 32, the combination of Thomas and Boggs teaches a method further comprising communications between the user interface device and the PLC (Thomas: computer, column 3, lines 47 – 54: Boggs: PLC paragraph [0331]), between the programmable cable and the PLC and between the programmable cable and the user interface device (Thomas: figure 1).

The combination of Thomas and Boggs fails to explicitly teach the limitation of encryption along the communication lines lying therein between.

Al-Ali teaches analogously a method comprising encryption along a cable communicating between interfaces (encryption interface cable, element 700, figure 6).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to modify the combination of Thomas and Boggs with the above teachings of Al-Ali. One of ordinary skill in the art would have been motivated to make such modification in order to allow for exclusive compatibility between interfaces without the necessity of hardware modifications (paragraph [0027]).

Response to Arguments

 Applicant's arguments filed 9/4/2009 have been fully considered but they are not persuasive. The Applicant argues that the PIN number in the claim limitations is not

Art Unit: 2182

taught by Evans. With respect to Applicant's arguments the Examiner respectfully disagrees. The PIN number of Evans is stored in the cable and utilized by the cable modem to identify and interface communication therein. The claim limitations necessitate a PIN number stored on a cable memory associated with the cellular telephone modem. Applicant's arguments fail to comply with 37 CFR 1.111(b) because they amount to a general allegation that the claims define a patentable invention without specifically pointing out how the language of the claims patentably distinguishes them from the references. The PIN number of the claims is merely associated with the model and is utilized in enabling the modem to function. The PIN of Evans as agreed upon by the Applicant teaches the same limitation of being identifiable by the modem and utilized in enabling communication and function.

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time
policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

Art Unit: 2182

the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to AURANGZEB HASSAN whose telephone number is (571)272-8625. The examiner can normally be reached on 9-5.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tariq Hafiz can be reached on 571-272-6729. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

ΑН

/Tariq Hafiz/ Supervisory Patent Examiner, Art Unit 2182