Lecture 24: Digital CMOS circuits (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Review of last lecture

- Numeric calculation can be done with a binary system.
- Inverters and NAND gates are important.
- And, the NMOS inverter was introduced.

 V_{in}

GIST Lecture on June 1, 2015 (Internal use only)

Noise margin

Verbatim

 "Noise margin is the maximum amount of degradation (noise) at the input that can be tolerated before the output is affected significantly."

3

Noise margin of CS stage

- Let's calculate NM_L .
 - In this case,

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

- Taking the differentiation w. r. t. V_{in} ,

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})$$

- At $V_{in} = NM_L$, the slope becomes -1,

$$NM_L = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_D} + V_{TH}$$

- (Stronger NMOS yields a reduces NM_L .)

Speed of inverter (1/3)

- VTC merely describes the dc behavior.
 - Input voltages with different frequencies (1 kHz, 1 MHz, 1 GHz, 1 THz, ...)
- Time-dependent behavior
 - Can a resistor introduce time-lagging effect?

Speed of inverter (2/3)

- A rapid transition of V_{in} from V_{DD} to 0
 - Then, the capacitor should be charged.
 - What is the electrical route to charge the capacitor?

Speed of inverter (3/3)

- Simply, it is a RC circuit.
 - Then, the solution is simply

$$V_{out}(t) = V_{out}(0^{-}) + [V_{DD} - V_{out}(0^{-})] \left(1 - \exp\frac{-t}{R_D C_L}\right)$$

- Since exp(-3) ≈ 0.05, after $3R_DC_L$, V_{out} reaches 0.95 V_{DD} .
- Yes, it takes time to get the stable output voltage...

Origin of C_L ?

- Consider an inverter chain.
 - Then, what is the load capacitance for the first stage?

Another origin

Interconnect

Standby(!) power

- The biggest problem in the NMOS inverter
 - When $V_{in} = 0$, no standby power
 - When $V_{in} = V_{DD}$, the power consumption is (approximately) $\frac{V_{DD}^2}{R_D}$.

Figure 16.14

- Passive "pull-up" device
 - (a) Degradation of output level

Too small R_D , when $V_{in} = V_{DD}$. In this case, large R_D is desirable.

(b) Risetime limitation

Too small current for 1 \rightarrow 0 transition. ($V_{in}=0$) In this case, a better capability to charge the C_L is desirable.

(c) Static power consumption

No ability to block the current, when $V_{in} = V_{DD}$. In this case, no current conduction is desirable.

 $- (a) & (c) \leftarrow \rightarrow (b)$

CMOS inverter

- Ideal "pull-up" should have the following properties.
 - When $V_{in} = V_{DD}$, no current conduction.
 - When $V_{in} = 0$, improved current conduction.
- PMOS can do those jobs!

Draw it! (Homework#3)

- Only 1 problem
- Same parameters as before

$$- \mu_n C_{ox} = 100 \ \mu\text{A/V}^2 , \ \mu_n C_{ox} = 75 \ \mu\text{A/V}^2 , \ V_{TH,n} = 0.5 \ \text{V}, \ V_{TH,p} = -0.5 \ \text{V}, \ \frac{W}{L} = \frac{10}{0.18}, \ \text{and} \ V_{DD} = 1.8 \ \text{V}$$

- Using the computer, draw the voltage transfer curve.
- Due: June 3rd (This Wednesday!)