

Static Timing Analysis (STA)

Lecture #13: Effect of Clock Skew on Setup & Hold Timing Equations

Video Lecture Link

Positive Clock Skew:

Both Clock and Data

Flow in same direction

OR

Launch Clock Path Delay
Is Less than Capture Clock
Path Delay

Positive Clock Skew

Setup Equation:

 $Clk_to_Q [REG1] + Comb Delay <= Clock Period + T_{skew} - T_{setup}[REG2]$

 $Clock \ Period >= Clk_to_Q[REG1] + Comb \ Delay + T_{setup}[REG2] - T_{skew}$

Here, Required Time = Clock Period + T_{skew} - T_{setup} [REG2] Arrival Time = Clk_to_Q [REG1] + Comb Delay

Hence, Setup Slack = Required Time – Arrival Time

Note: Positive skew improves the performance(Setup)

Positive Clock Skew

Hold Equation:

 $Clk_to_Q [REG1] + Comb Delay >= Hold_Check[0] + T_{hold} [REG2] + T_{skew}$

Here, Required Time = Hold_Check[0] + T_{hold} [REG2] + T_{skew} Arrival Time = Clk_to_Q [REG1] + Comb Delay Hence, Hold Slack = Arrival Time - Required Time

Note: Default Hold Check is at 0

Note: Positive skew improves the performance(Tsetup) but makes it harder to meet hold requirements

Negative Clock Skew:

Clock and Data
Flow in opposite direction
OR

Launch Clock Path Delay is Greater than Capture Clock Path

 T_{skew}

 T_{hold}

Negative Clock Skew

Note: $T_{\text{skew is}} < 0$

Setup Equation:

Clk_to_Q [REG1] + Comb Delay <= Clock Period - T_{skew} - T_{setup}[REG2]

Clock Period \geq Clk_to_Q[REG1] + Comb Delay + T_{setup}[REG2] + T_{skew}

Here, Required Time = Clock Period - T_{skew} - T_{setup} [REG2] Arrival Time = Clk_to_Q [REG1] + Comb Delay

Hence, Setup Slack = Required Time – Arrival Time

Note: Negative Clock skew Degrades the performance of Design

Negative Clock Skew:

Note: $T_{\text{skew is}} < 0$

Hold Equation:

 $Clk_to_Q [REG1] + Comb Delay >= Hold_Check[0] + T_{hold} [REG2] - T_{skew}$

Here, Required Time = Hold_Check[0] + T_{hold} [REG2] - T_{skew}

Arrival Time = Clk_to_Q [REG1] + Comb Delay Hence, Hold Slack = Arrival Time - Required Time

Note: Default Hold Check is at 0

Note: Negative Clock skew **Degrades** the performance(Tsetup) but makes it **EASY** to meet hold requirements

Best Free VLSI Content

- 1. Verilog HDL Crash Course Link
- 2. Static Timing Analysis (STA) Theory Concepts Link
- 3. Static Timing Analysis (STA) Practice/Interview Questions <u>Link</u>
- 4. Low Power VLSI Design Theory Concepts <u>Link</u>
- 5. Low Power VLSI Design (LPVLSI) Practice/Interview Questions Link
- 6. Digital ASIC Design Verilog Projects Link

Please Like, Comment, Share & Subscribe My Channel in Order to Reach Out the Content to a Larger Audience.

Thanks !!