ПРОТОКОЛ 4G-GPS JK-BMS

Техническая документация V3.2b

Аннотация

Протокол общения по UART через порт GPS между платой JK-BMS и терминалом мониторинга.

Вступление

Перевод официальной документации от JiKong на протокол обмена 4G-GPS, так он называется в некоторых документах. Обмен происходит через порт GPS (General Packet Service), который представляет собой RS232-TTL(UART) интерфейс с логическими уровнями 3.3B.

1. Содержание

Протокол связи 4G-GPS через порт GPS BMS, между платформой мониторинга и платой защиты BMS, а также формат сообщения, режим передачи, режим связи и т.д.

2. Справочные стандарты

Для связи используется передача TCP в 2G GPRS, CAT 1 в 4G, режим интерфейса SOCKET, последовательный порт RS232-TTL, пользовательский формат содержимого сообщения и скорость передачи данных 115200 бод.

3. Топология сети

Этот протокол представляет собой режим «точка-точка» или режим шины между BMS, GPS, Bluetooth PC-хостом и терминалом.

4. Содержание протокола

4.1. Правила коммуникации

В процессе связи оборудование имеет как активный отчетный кадр, так и пассивный ответный кадр. Подробности см. в <u>Формате данных связи</u>.

Интервал между пакетами должен составлять не менее 100 мс, а самый длинный ответный пакет не должен превышать 5 секунд при регулярной трансляции.

Если BMS находится в спящем режиме, отправьте команду активации на управляющую сторону. Активируйте BMS, а затем установите связь.

4.2. Формат кадра

Кадр — это базовая единица передачи информации. Он включает заголовок, длину, номер терминала, команду, источник кадра, тип передачи, информационное поле, номер записи, конечный идентификатор и контрольную сумму (таблица 4.1).

Если в единице данных нет обязательного описания, младший байт находится справа, а старший байт — слева. Отправка заключается в отправке сначала старшего байта, а затем младшего байта.

Таблица 4.1 Формат кадра

Номер	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57) в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд, таблица 4.2
5	Источник кадра	1	0x00: BMS, 0x01: Bluetooth, 0x02: GPS, 0x03: PC-хост
6	Тип передачи	1	0x00: запрос к BMS, 0x01: ответ от BMS, 0x02: запись данных в BMS
7	Информационный блок кадра	N	ID регистра и данные
8	Зарезервировано	1	Зарезервирован для шифрования
9	Номер записи	3	Это номер записи запроса/ответа.
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	2	Временно не используется
12	Контрольная сумма	2	Checksum16, (<u>раздел 4.2.10</u>)

4.2.1 Заголовок кадра

<u> 2 байта.</u>

0x4E(«N») – первый байт (старший) 0x57(«W») – второй байт (младший)

4.2.2 Длина кадра

2 байта.

Общее количество байт данных кадра, за исключением последних двух байт – контрольной суммы кадра.

4.2.3 Номер терминала BMS

<u> 4 байта.</u>

Имеет максимальный 8-битный административный резервный номер и младший 24-битный номер терминала. (Старший байт — значение по умолчанию 0x00, а младшие 3 байта — это одномерный идентификационный номер.)

4.2.4 Команды

Таблица 4.2 Описание команд

ID команды	Описание команды	Примечание
0x01	Активация BMS	Когда BMS переходит в спящий режим, сторона управления должна сначала отправить команду активации для связи с BMS. После ответа выполните другие действия.
0x02	Запись в регистр	Запись параметров BMS
0x03	Чтение из регистра	Чтение данных регистра BMS
0x05	Ввод пароля	Для изменения параметров или пароля командой 0x02, отправьте сначала корректный пароль, прежде чем параметры или пароль можно будет изменить. Пароль должен совпадать с паролем, хранящимся в регистре 0xB2.
0x06	Прочитать все регистры	Прочитать всю таблицу регистров

4.2.5 Источника кадра

1 байт.

0x00 - BMS

0x01 - Bluetooth

0x02 - GPS

0х03 - РС-хост (главный компьютер)

4.2.6 Тип передачи

1 байт.

0x00 - запрос к BMS

0x01 -ответ от BMS

0x02 – запись данных в BMS

Если сначала будут запущены Bluetooth, GPS или PC-хост от BMS ответ будет равен 0x01.

4.2.7 Информационный блок кадра

<u>N – байт.</u>

Поле ID регистра и данных этого регистра, если эти данные есть. Зависит от регистра и действий над ним.

4.2.8 Номер записи

3 байта.

Это номер записи запроса/ответа. Номер записи ответа содержит такой же номер, который был у запроса.

4.2.9 Завершающий идентификатор

1 байт.

0x68 – идентификатор конца кадра, за которым следуют еще два зарезервированных байта и два байта контрольной суммы.

4.2.10 Контрольная сумма

2 байта.

Контрольная сумма определяется как сумма всех данных от начала и до конца – Checksum16.

4.2.11 Формат данных связи

Пример чтения данных:

Таблица 4.3 Запрос на чтение данных

Поле	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	0х03 – чтение регистра
5	Источник кадра	1	0x01 – Bluetooth 0x02 – GPS 0x03 – PC- хост
6	Тип передачи	1	0х00 - чтение данных
7	ID регистра	1	ID регистра данных (таблица 5.1), или прочитать все регистры (0x00)
8	Зарезервировано	1	Зарезервирован для шифрования
9	Номер записи	3	Номер записи запроса.
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	2	Временно не используется
12	Контрольная сумма	2	Checksum16, (<u>раздел 4.2.10</u>)

Таблица 4.4 Ответ на запрос чтения данных от BMS

Поле	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд.
5	Источник кадра	1	0x00 - BMS
6	Тип передачи	1	0x01 - ответный кадр от BMS
7	ID регистра + Данные(D)	1+D	ID регистра и данные этого регистра
8	Зарезервировано	1	Зарезервирован для шифрования
9	Номер записи	3	Номер записи ответа
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	2	Временно не используется
12	Контрольная сумма	2	Checksum16, (<u>раздел 4.2.10</u>)

Пример записи данных:

Таблица 4.5 Запрос на запись данных

Поле	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Номер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	0х02 – запись в регистр
5	Источник кадра	1	0x01 – Bluetooth 0x02 – GPS 0x03 – PC-хост
6	Тип передачи	1	0x02 - запись данных в BMS
7	ID регистра + Данные(D)	1+D	ID регистра и сами данные
8	Зарезервировано	1	Зарезервирован для шифрования
9	Номер записи	3	Номер записи ответа
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	2	Временно не используется
12	Контрольная сумма	2	Checksum16, (<u>раздел 4.2.10</u>)

Таблица 4.6 Ответ на запрос записи данных от BMS

Поле	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	0х02 – запись в регистр
5	Источник кадра	1	0x01 – Bluetooth
			0x02 – GPS
			0х03 – РС- хост
6	Тип передачи	1	0x01 - ответный кадр от BMS
7	ID регистра	1	ID регистра записанных данных (таблица 5.1);
8	Зарезервировано	1	Зарезервирован для шифрования
9	Номер записи	3	Номер записи ответа
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	2	Временно не используется
12	Контрольная сумма	2	Checksum16, (<u>раздел 4.2.10</u>)

Примечание по коду подписи: (идентификационный код фоновых данных 0х00 при чтении всех данных)

4.2.12 Формат расширенного ответа

Формат кадра расширенного ответа условно разбит на 4-е блока.

Начальный блок	Блок регистра напряжений	Блок регистров	Конечный блок
11 байт	3*N+2 байт	221 байт	9 байт
1	2	3	

Подробное рассмотрение примера смотрите в Разделе 6.

5. Регистры данных BMS

Таблица 5.1 Описание идентификаторов

R/W	ID регистра	Название	N* байт	Длина	Примечание
R	0x79	Напряжения ячеек (Cells Voltage)	0	1+3*N	За ID-регистра следует длина блока напряжений. Первый байт — номер ячейки, за которым следует значение напряжения в мВ (разрешение 0.001В). Далее 2 байта представляют напряжение ячейки. Пример: (0x140EF9) — напряжение на 0x14=20-й ячейке 0x0EF9=3833*0.001=3.833В
R	0x80	Температура MOSFET (MOS Temp)	0	2	Значение без знака. Все значения до 100°С передаются напрямую. Отрицательные значения — все, что больше 100°С. Диапазон от -40 до 100°С. Пример: 0x001B=27°С 0x0082=100-130=-30°С
R	0x81	Температура датчика 1 (Battery T1)	3	2	Описание см. регистр 0х80
R	0x82	Температура датчика 2 (Battery T2)	6	2	Описание см. регистр 0х80
R	0x83	Общее напряжение батареи	9	2	Общее напряжение на батарее в мВ (разрешение 0.01В). <u>Пример:</u> 0x0DAC=3500*0.01=35.00В

R	0x84	Ток батареи	12	2	Потребляемый ток батареи в мА, значение со знаком (разрешение 0.01А) Примечание. Старший бит — 0 означает разрядку, 1 означает зарядку Разряд батареи 20А, передаваемые данные 2000 (0x07D0) Заряд батареи 20А, передаваемые данные -2000 (0xF830)
R	0x85	Уровень заряда батареи (Remain Battery)	15	1	Уровень заряда батареи SOC 0 - 100% <i>Пример:</i> 0x47=71%
R	0x86	Количество датчиков NTC	17	1	Количество выносных датчиков температуры – 2, 4 <u>Пример:</u> 0x02=2 датчика
R	0x87	Количество циклов батареи (Cycle Count)	19	2	Количество полных циклов заряда-разряда батареи. Пример: 0xCE=206 циклов
	0x88	Не используется			
R	0x89	Общая, циклическая емкость батареи (Cycle Capacity)	22	4	Отданная емкость за весь период работы, значение в Ач (разрешение 1Ач) Пример: 0x00000296=662Ач
R	0x8A	Общее количество ячеек батареи	27	2	Количество ячеек, рядов, которые включены последовательно в батарее. Пример: 0x0014=20 ячеек, рядов
R	0x8B	Предупреждающие и аварийные сообщения	30	2 (маска)	Предупреждения батареи и BMS в битовом виде. В нормальном состоянии значение 0х0000, все биты равны 0. Побитовая расшифровка в таблице 5.2

R	0x8C	Информация о состоянии BMS	33	2 (маска)	Информация о состоянии BMS в битовом виде. Побитовая расшифровка в таблице 5.3
	0x8D	Не используется			
RW	0x8E	Общая защита от перенапряжения	36	2	Максимально допустимое напряжение на батарее в мВ (разрешение 0.01В, диапазон значений 1000 – 15000) Пример:
					0x20D0=8400*0.01=84.00B
RW	0x8F	Общая защита от пониженного напряжения	39	2	Минимально допустимое напряжение на батарее в мВ (разрешение 0.01В, диапазон значений 1000 – 15000) Пример:
					0x15E0=5600*0.01=56.00B
RW	0x90	Защита от перенапряжения ячейки	42	2	1000 – 4500мВ
RW	0x91	Напряжение восстановления перенапряжения ячейки	45	2	1000 – 4500мВ
RW	0x92	Задержка защиты от перенапряжения ячейки	48	2	1 — 60 сек
RW	0x93	Напряжение защиты от пониженного напряжения ячейки	51	2	1000 – 4500мВ
RW	0x94	Напряжение восстановления пониженного напряжения ячейки	54	2	1000 – 4500мВ
RW	0x95	Задержка защиты от пониженного напряжения ячейки	57	2	1 – 60 сек
RW	0x96	Значение защиты от разницы напряжений ячеек	60	2	0 — 1000мВ
RW	0x97	Значение защиты от сверхтока разряда	63	2	1 – 1000A
RW	0x98	Задержка перегрузки по току разрядки	66	2	1 – 60 сек

RW	0x99	Значение защиты от сверхтока зарядки	69	2	1 – 1000A
RW	0x9A	Задержка перегрузки по току зарядки	72	2	1 – 60 сек
RW	0x9B	Начальное напряжение балансировки	75	2	2000 — 4500мВ
RW	0x9C	Разница напряжений для включения балансировки	78	2	10 — 1000мВ
RW	0x9D	Управление активным балансиром	81	1	0 – выключен, 1 – включен <u>Пример:</u> 0x01 – включен; 0x00 - выключен
RW	0x9E	Значение температурной защиты MOSFET	83	2	0 – 100°C
RW	0x9F	Значение температурной защиты в батарейном отсеке	86	2	0 – 100°C
RW	0xA0	Значение температуры восстановления в батарейном отсеке	89	2	40 – 100°C
RW	0xA1	Разница температур батареи	92	2	40 – 100°C
RW	0xA2	Значение защиты от разницы температур батареи	95	2	5 – 20°C
RW	0xA3	Значение защиты от высоких температур при зарядке	98	2	0 – 100°C
RW	0xA4	Значение защиты от высоких температур при разрядке	101	2	0 – 100°C
RW	0xA5	Значение защиты зарядки от низкой температуры	104	2	-45 – 25°C (значение со знаком) <u>Пример:</u> 0x0005=5°C
RW	0xA6	Значение защиты восстановления заряда от низких температур	107	2	-45 – 25°С (значение со знаком) <u>Пример:</u> 0x000A=10°С

RW	0xA7	Значение защиты разрядки от низкой температуры	110	2	-45 – 25°C (значение со знаком) <u>Пример:</u> 0xFFEC=-20°C
RW	0xA8	Значение защиты восстановления разряда от низких температур	113	2	-45 – 25°C (значение со знаком) <u>Пример:</u> 0xFFF6=-10°C
RW	0xA9	Настройки количества ячеек батареи (Cell Count)	116	1	3 – 32 <u>Пример:</u> 0x14=20 ячеек/рядов
RW	0xAA	Настройки емкости батареи (Battery Capacity)	118	4	Установка емкости использованной батареи в Ач <u>Пример:</u> 0x00000069=105Ач
RW	0xAB	Управление MOSFET-ключами зарядки (Charge)	123	1	0 – выключен, 1 – включен <u>Пример:</u> 0x01 – включен; 0x00 - выключен
RW	0xAC	Управление MOSFET-ключами разрядки (Discharge)	125	1	0 – выключен, 1 – включен <u>Пример:</u> 0x01 – включен; 0x00 - выключен
RW	0xAD	Калибровка тока	127	2	Калибровка датчика тока в мА (разрешение 100мА, диапазон 100 – 20000мА)
RW	0xAE	Адрес защитной платы BMS	130	1	Настройка адреса платы BMS для работы по протоколам RS485 и CAN По умолчанию 1(0x01)
RW	0xAF	Тип батареи	132	1	0 – LFP(LiFePO4), 1 – NCM(LiNiCoMnO2), 2 – LTO(Li4Ti5O12)
RW	0xB0	Инициализация времени ожидания спящего режима	134	2	Устанавливается в секундах. Вторичные данные, для справки.
RW	0xB1	Значение сигнала тревоги при низкой емкости	137	2	Значение емкости батареи для включения сигнала тревоги. 0 – 80%

RW	0xB2	Пароль для изменения параметров	139	10	Пароль для изменения и сохранения параметров. По умолчанию пароль 123456 (0x3132 3334 3536 0000 0000) в кодировке UTF-8
RW	0xB3	Персональный переключатель зарядного устройства	150	1	0 – выключен, 1 – включен <u>Пример:</u> 0x01 – включен; 0x00 - выключен
RW	0xB4	Идентификационный код устройства	152	8 (текст)	Код устройства в кодировке UTF-8.
RW	0xB5	Дата производства	161	4 (текст)	Дата в кодировке UTF-8 Формат: две последние цифры года + месяц Пример: 0x3233 3035=2304 2023 год 04 месяц производства.
RW	0xB6	Время работы системы	166	4	На заводе установлено в 0. Единица измерения минута (разрешение 1мин.)
R	0xB7	Номер версии платы и программного обеспечения	171	15 (текст)	Номер версии в кодировке UTF-8. <u>Пример:</u> 0x31 312E 5857 5F53 3131 2E32 3631 5F5F= «11.XW_S11.261»
RW	0xB8	Калибровка тока	187	1	1 – начать калибровку 0 – отключить калибровку
RW	0xB9	Фактическая емкость батареи	189	4	Фактическая, посчитанная емкость батареи, значение в Ач (разрешение 1Ач)
RW	0xBA	Заводской идентификатор	194	24 (текст)	Кодировка UTF-8. Пример заводского идентификатора см. в таблице 5.4.
W	0xBB	Перезагрузка системы	-	1	Перезагрузка системы, код 0x01
W	0xBC	Восстановление заводских настроек	-	1	Восстановление заводских настроек, код 0x01
W	0xBD	Удаленное обновление регистра	-	1	Код для запуска 0х01 (дождитесь ответа регистра при публикации файла)

W	0xBE	Базовое низкое напряжение выключения порта GPS	-	2	Значение напряжения, при котором отключится порт GPS, значение в мВ (разрешение 1мВ)
W	0xBF	Значения напряжения восстановления включения порта GPS	-	2	Значение напряжения, при котором включится порт GPS, значение в мВ (разрешение 1мВ)
R	0xC0	Номер версии протокола	219	1	Значение по умолчанию: 0x00. 0x01: переопределены данные тока для регистра 0x84 с разрешением 10 мА. Если разряд 20А, передаваемые данные 2000 (0x07D0) Если зарядка 20А, передаваемые данные 34768 (0x87D0)

[Примечание]

N* байт – позиция регистра в блоке, см. <u>4.2.12 Формат расширенного ответа</u>

W – на данный момент (прошивка V15) производитель заблокировал возможность изменять большинство регистров в целях безопасности. Это касается изменения через порт GPS и протокол 4G-GPS. Для изменения доступны только три регистра, подробно в разделе 7. Примеры доступных команд.

- 1. 0xBA регистр идентификатора производителя, это поле в основном используется для коммутационных шкафов, если есть необходимость в коммутационных шкафах, это поле необходимо добавить. Расшифровка в таблице 5.4.
 - 2. 0хВ4 Пример: 0х3630 3330 3030 3031 (60300001)
- 60 номинальное напряжение: определяется в соответствии с уровнем напряжения, например, 60 это серия 60В, 48 это серия 48В;
- 3 система материалов, в соответствии с системным определением материала батареи: 1 LFP(LiFePO4),
 - 2 NCM(LiNiCoMnO2),
 - 3 LTO(Li4Ti5O12);

00001 - серийный номер производства: в соответствии с группой n модели, произведенной производителем в текущем месяце, номер - n (например, группа 1 модели, n - 00001))

5.1. (0х8В) Предупреждающие и аварийные сообщения

Таблица 5.2 Расширенное описание регистра 0х8В

Бит	Название	Состояние
0	Низкая емкость батареи *	0 – нормально, 1 – предупреждение
1	Перегрев MOSFET	0 – нормально, 1 – тревога
2	Перенапряжение при зарядке	0 – нормально, 1 – тревога
3	Пониженное напряжение разряда	0 – нормально, 1 – тревога
4	Перегрев батареи	0 – нормально, 1 – тревога
5	Перегрузка по току зарядки	0 – нормально, 1 – тревога
6	Перегрузка по току разрядки	0 – нормально, 1 – тревога
7	Разница напряжений на ячейках/рядах	0 – нормально, 1 – тревога
8	Перегрев батарейного отсека	0 – нормально, 1 – тревога
9	Низкая температура батареи	0 – нормально, 1 – тревога
10	Перенапряжения ячейки/ряда	0 – нормально, 1 – тревога
11	Пониженное напряжение ячейки/ряда	0 – нормально, 1 – тревога
12	309_ А защита	0 – нормально, 1 – тревога
13	309_ В защита	0 – нормально, 1 – тревога
14	Зарезервировано	
15	Зарезервировано	

^{*} Только предупреждение

Примеры:

 $0x0002=b00000000\ 00000010$ — перегрев MOSFET. 0 $x0018=b00000000\ 00011000$ — перегрев батареи, перегрузка по току заряда.

5.2. (0х8С) Информация о состоянии ВМЅ

Таблица 5.3 Расширенное описание регистра 0х8С

Бит	Название	Состояние
0	Состояние зарядных MOSFET	0 – выключен, 1 – включен
1	Состояние разрядных MOSFET	0 – выключен, 1 – включен
2	Состояние внутреннего балансира	0 – выключен, 1 – включен
3	Состояние батареи	0 – отключена, 1 – подключена
4-15	Зарезервировано	

Пример:

0x000B=b00000000 0000<mark>1011</mark> – зарядные MOSFET вкл., разрядные MOSFET вкл., балансир откл., батарея подключена.

5.3. (0хВА) Заводской идентификатор

Расшифровка заводского идентификатора. Текстовая строка в формате UTF-8.

Таблица 5.4 Пример: ВТ 3 072 020 12 0000 20 05 21 001

Значение	Описание	Известные значения
ВТ	Название продукта	ВТ для батареи
3	Тип батареи	1 - LFP(LiFePO4), 2 - NCM(LiNiCoMnO2), 3 - LTO(Li4Ti5O12);
072	Значение напряжения	048 (48B), 060(60B), 072(72B).
020	Значение емкости	020 (20Ач)
04	Срок службы	04 (400 циклов), 12 (1200 циклов)
0000	Заводской код	0000-9999
20	Год производства	20 (2020), 21 (2021)
05	Месяц производства	01-12
21	Дата производства	01-31
001	Серийный номер производства	000-999

6. Разбор протокола на примере

Отправка запроса чтения всех данных (длина 21 байт):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4E	57	00	13	00	00	00	00	06	03	00	00	00	00	00	00	68	00	00	<mark>01</mark>	<mark>29</mark>

0x4E57 – заголовок кадра: «NW» в кодировке UTF-8.

0x0013 – длина кадра (19 байт), без контрольной суммы.

0x0000 0000 – номер терминала.

0x06 – командное слово (прочитать все данные).

0х03 – источник кадра (РС-хост).

0x00 – тип передачи (кадр запроса).

0x00 – идентификатор данных (прочитать все данные).

0х0000 0000 – номер записи (0-я запись), старший байт не используется.

0x68 – завершающий идентификатор.

0х0000 – зарезервировано и не используется.

0x0129 – контрольная сумма Checksum16.

Пример полученного ответа:

Цветами условно показаны 4-е блока, на которые разбит кадр (раздел 4.2.12).

4E 57 01 39 00 00 00 00 06 00 01 79 48 01 0E F9 02 0E F8 03 0F 01 04 0F 03 05 0F 02 06 0F 05 07 0F 02 08 0F 05 09 0E FB 0A 0E C8 0B 0E CB 0C 0E 9A 0D 0E C5 0E 0E C6 0F 0E CB 10 0E C1 11 0E CD 12 0E CB 13 0E BC 14 0E C2 15 0E 9A 16 0E C5 17 0E C6 18 0E CB 80 00 1B 81 00 1E 82 00 1E 83 1D BC 84 27 10 85 47 86 02 87 00 CE 89 00 00 02 96 8A 00 14 8B 00 00 8C 00 0B 8E 20 D0 8F 15 E0 90 10 68 91 10 36 92 00 04 93 0A F0 94 0B 54 95 00 04 96 01 2C 97 00 28 98 00 04 99 00 14 9A 00 04 9B 10 36 9C 00 64 9D 00 9E 00 64 9F 00 50 A0 00 50 A1 00 46 A2 00 14 A3 00 64 A4 00 64 A5 FF EC A6 FF F6 A7 FF EC A8 FF F6 A9 14 AA 00 00 00 28 AB 00 AC 00 AD 03 E8 AE 01 AF 01 B0 00 0A B1 14 B2 31 32 33 34 35 36 00 00 00 00 B3 01 B4 36 30 33 30 30 30 30 31 B5 32 30 30 34 B6 00 00 00 01 B7 31 31 2E 58 57 5F 53 31 31 2E 32 36 31 5F 5F B8 00 B9 00 00 00 69 BA 49 6E 70 75 74 20 55 73 65 72 64 61 4A 4B 5F 42 44 36 41 32 30 53 31 30 C0 01 00 00 00 00 68 00 00 59 98

Блок-1 – начальный информационный блок (длина 11 байт):

0	1	2	3	4	5	6	7	8	9	10
4E	57	01	39	00	00	00	00	06	00	01

0х4E57 – заголовок кадра: «NW» в кодировке UTF-8.

0x0139 – длина кадра ответа (313 байт), без контрольной суммы.

0х0000 0000 – номер терминала.

ОхОб – командное слово (прочитать все данные).

0x00 – источник кадра (BMS).

0x01 – тип передачи (кадр ответа).

Блок-2 – данные напряжений на ячейках (длина 26-74 байт):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
<mark>79</mark>	48	01	0E	F9	02	0E	F8	03	0F	01	04	0F	03	05	0F	02	06	0F	05	07
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
0F	02	80	0F	05	09	0E	FB	0A	0E	C8	0B	0E	СВ	O	0E	9A	0D	0E	C5	0E
42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62
0E	C6	0F	0E	СВ	10	0E	C1	11	0E	CD	12	0E	F9	13	0E	F9	14	0E	C2	15
63	64	65	66	67	68	69	70	71	72	73										·
0E	9A	16	0E	C5	17	0E	C6	18	0E	CB										

<mark>0х79</mark> – ID регистра.

Ох48: длина блока данных 72 байта (24 ячейки по 3 байта на ячейку).

Ох12: порядковый номер ячейки в НЕХ формате (18 в десятичном выражении).

0x0EF9: напряжение на ячейке в HEX формате (3833 мВ в десятичном выражении).

Длина блока равна 74 байта (1 байт идентификатор + 1 байт длины блока данных + 72 байта длина непосредственно данных).

Длина этого блока плавающая и зависит от количества используемых ячеек и рассчитывается по формуле:

$$L = N * 3 + 2$$

Где:

L – длина блока в байтах;

N – количество ячеек

Блок-3 – данные параметров и настроек (длина 221 байт):

^	4	2	2	1		^	7	0	^	40	4.4	40	40	4.4	4 -	40	17	40	40	20
0	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20
<mark>80</mark>	00	1B	<mark>81</mark>	00	1E	<mark>82</mark>	00	1E	<mark>83</mark>	1D	BC	<mark>84</mark>	27	10	<mark>85</mark>	47	<mark>86</mark>	02	<mark>87</mark>	00
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
CE	<mark>89</mark>	00	00	02	96	<mark>88</mark>	00	14	8B	00	00	8C	00	0B	8E	20	D0	8F	15	E0
42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62
<mark>90</mark>	10	68	<mark>91</mark>	10	36	<mark>92</mark>	00	04	<mark>93</mark>	0A	F0	<mark>94</mark>	0B	54	<mark>95</mark>	00	04	<mark>96</mark>	01	2C
63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83
<mark>97</mark>	00	28	<mark>98</mark>	00	04	<mark>99</mark>	00	14	9A	00	04	9B	10	36	<mark>9C</mark>	00	64	9D	00	9E
84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104
00	64	9F	00	50	A0	00	50	A1	00	46	A2	00	14	A3	00	64	A4	00	64	<mark>A5</mark>
105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125

FF	EC	A6	FF	F6	<mark>A7</mark>	FF	EC	<mark>8A</mark>	FF	F6	<mark>A9</mark>	14	AA	00	00	00	28	<mark>AB</mark>	00	AC
126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
00	AD	03	E8	ΑE	01	<mark>AF</mark>	01	B0	00	0A	B1	14	B2	31	32	33	34	35	36	00
147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
00	00	00	B3	01	B4	36	30	33	30	30	30	30	31	B5	32	30	30	34	<mark>B6</mark>	00
168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188
00	00	01	B7	31	31	2E	58	57	5F	53	31	31	2E	32	36	31	5F	5F	B8	00
189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209
B9	00	00	00	69	BA	49	6E	70	75	74	20	55	73	65	72	64	61	4A	4B	5F
210	211	212	213	214	215	216	217	218	219	220										
42	44	36	41	32	30	53	31	30	C0	01								•		

Расшифровка идентификаторов регистров и их значений указана в Таблице 5.1

Блок-4 – конечный информационный блок (длина 9 байт):

0	1	2	3	4	5	6	7	8
00	00	00	00	68	00	00	<mark>59</mark>	98

0х0000 0000 – номер записи (0-я запись), старший байт не используется.

0x68 – завершающий идентификатор.

0х0000 – зарезервировано и не используется.

0x5998 – контрольная сумма Checksum16.

7. Примеры доступных команд

Для записи и изменения доступны всего 3-и регистра. Остальные регистры через порт GPS можно только читать. Производитель сделал это в целях безопасности.

7.1 Управление зарядными MOSFET (регистр 0хАВ)

Включение зарядных MOSFET:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
4E	57	00	14	00	00	00	00	02	03	02	AB	01	00	00	00	00	68	00	00	01	D4

Выключение зарядных MOSFET:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
4E	57	00	14	00	00	00	00	02	03	02	AB	00	00	00	00	00	68	00	00	01	D3

Ответ от BMS на оба действия одинаковый:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
4E	57	00	14	00	00	00	00	02	00	01	AB	00	00	00	00	68	00	00	01	CE	

7.2 Управление разрядными MOSFET (регистр 0xAC)

Включение разрядных MOSFET:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
4E	57	00	14	00	00	00	00	02	03	02	AC	01	00	00	00	00	68	00	00	01	D5

Выключение разрядных MOSFET:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
4E	57	00	14	00	00	00	00	02	03	02	AC	00	00	00	00	00	68	00	00	01	D4

Ответ от BMS на оба действия одинаковый:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
4E	57	00	14	00	00	00	00	02	00	01	AC	00	00	00	00	68	00	00	01	CF	

7.3 Управление балансиром (регистр 0x9D)

Включение разрядных MOSFET:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
4E	57	00	14	00	00	00	00	02	03	02	9D	01	00	00	00	00	68	00	00	01	C6

Выключение разрядных MOSFET:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
4E	57	00	14	00	00	00	00	02	03	02	9D	00	00	00	00	00	68	00	00	01	C5

Ответ от BMS на оба действия одинаковый:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
4E	57	00	14	00	00	00	00	02	00	01	9D	00	00	00	00	68	00	00	01	C0	

Остальные регистры доступны только для чтения. Ниже примеры чтения некоторых регистров.

7.4 Чтение напряжений ячеек (регистр 0х79)

Запрос:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4E	57	00	13	00	00	00	00	03	03	00	79	00	00	00	00	68	00	00	01	9F

Ответ:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4E	57	00	2C	00	00	00	00	03	00	01	79	18	01	0D	72	02	0	72	03	0D
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
72	04	0D	72	05	0D	71	06	0D	72	07	0D	70	80	0D	70	00	00	00	00	68
42	43	44	45																	
00	00	05	E5																	

7.5 Чтение температуры MOSFET (регистр 0x80)

Запрос:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4E	57	00	13	00	00	00	00	03	03	00	80	00	00	00	00	68	00	00	01	A6

Ответ:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4E	57	00	15	00	00	00	00	03	00	01	80	00	1A	00	00	00	00	68	00	00
21	22																			
01	C0																			

8. Метод расчета Checksum16 на языке С

Исходный код функции для расчета контрольной суммы Checksum16 на языке C. Этот метод расчета указан в разделе 4.2.10.

- 1. Контрольная сумма представляет собой сумму данных всех байт кадра.
- 2. При необходимости меняем байты контрольной суммы местами.
- 3. Окончательное содержимое Checksum16.

```
uint16_t calculateChecksum16(uint8_t *data, size_t length) {
    uint16_t checksum = 0;
    for (size_t i = 0; i < length; i++) {
        checksum += data[i];
    }
    return checksum & 0xFFFF;
}</pre>
```

9. Порты BMS JK_B1A8S10PHC

BMS JK B1A8S10PHC:

1 - NTC_1, 2 - NTC_2, 3 - Дисплей, Кнопка, 4 - Balancer

5 - Внешний Buzzer, 6 - GPS (UART), 7 - CAN/RS485, 8 - Параллельный интерфейс

BMS JK_B1A8S10PHC

10. Внешний вид

JK-B2A8S20P

JK-B1A8S20P

JK-B1A8S10P

