Database Design Practice Test

1. (4 points) Compute the canonical cover for the following:

$$R = (A, B, C, D, E)$$
 $F = (AD \rightarrow C, C \rightarrow E, B \rightarrow A, A \rightarrow C)$

2. (1 point) Given the relation R = (A, B, C, D, E) and the functional dependencies: F = C \rightarrow BD, AD \rightarrow E, C \rightarrow A

Compute C^+ (i.e. Show your work):

3. (4 points) Give a BCNF, lossless join, dependency preserving decomposition of problem 2 (show your work).

4. (4 points) Given the following relation:
 R = (student_id, student_name, student_phone, dept_name,
 dept_phone, dept_chair_name, skill_id, skill_date,
 skill_level, skill_name)

and the functional dependencies:

F = student_id -> student_name student_phone dept_name
 dept_name -> dept_phone dept_chair_name
 student_id skill_id -> skill date skill_level

Give a 3NF decomposition of the relation.

5. (3 points) What is canonical cover for problem 2?

- 6. (2 points) Find the candidate keys for the following: R = (A, B, C, D) $F = CD \rightarrow AB$ $B \rightarrow D$
- 7. (2 points) Give a 3NF decomposition of the following:
 R = (studentID, class_no, class_room, text)
 F = class_no → class_room text
- 8. (2 points) With the tables: (A, C) (B, C) and $F = C \rightarrow B$

Show that these tables are a lossless join decomposition.

9. (1 point) Give a candidate key for problem 1. (04/30/15 PracticeFinal2016.odt)

10.(2 points) Give a BCNF decomposition of the following:

$$R = (S, A, M)$$

$$F = A \rightarrow M$$

11. (6 points) Give the best dependency preserving, lossless decomposition (3NF or BCNF) possible for the following (Note: show your work and indicate primary keys):

Attributes:

I, N, D, S, Y, B, E, W, X, C, T

Functional Dependencies:

 $I \rightarrow N$

 $S Y \rightarrow B E$

 $D \rightarrow W S Y$

 $W \rightarrow X$

 $I \quad C \quad D \quad \rightarrow \quad T$

- 12. Given a relation R = (A, B, C, D, E) and a set of functional dependencies, what does $(BC)^+$ mean?
 - a. Closure of functional dependencies
 - b. Canonical cover of functional dependencies
 - c. closure of an attribute set
 - d. Lossy join functional dependencies