Assignment 2: Malware Analysis

Your assignment is on Malware Analysis, which is based on the Lectures and Previous labs. The assignment is an individual assignment and is worth 30% of the module marking. You will be assessed on your ability to carry out a successful memory forensics investigation and report the artefacts and malicious activities analysed.

Marks Breakdown

You will be given a malware sample and an infected memory dump and set the task of analysing these. You are required to submit a forensics investigation report on your findings. To help you with constructing your report, Task-1 guides you to cover the main points that should be included in the report. Once you have completed the task you need to submit one report that contains the results of your investigation in PDF format.

30 Marks For all tasks Which is broken down into:

- 3 Marks: For clarity of your description.
- 27 Marks: For Task-1 question (breakdown below)

Experimental Setup

We will use the same setup of Lab 2 (Memory Forensics) to work with Volatility and Analyse the memory samples below.

You can use any instance of the Lab 2 (Memory Forensics) VM you already have or you can create a new one. To create a new one pick or create a folder. Then on a university computer right-click the folder and select "DOS shell" and then "Vagrant". If you are using your own computer then right-click and select terminal. Once you have a command prompt you can:

git clone https://git.soton.ac.uk/rht1g21/Lab2.git

Task-1

You've been given a malware sample and an infected memory dump. The malware is allegedly part of a high-scale APT attack. The antivirus industry is calling it "jackal," but detailed information is currently scarce. You searched Twitter and found someone saying "jackal's c2 list is just base64 and xor" but he didn't provide any hashes so you're not even sure if he's talking about the same executable.

wget https://git.soton.ac.uk/rht1g21/jackall2/-/raw/main/jackal.exe.zip unzip jackal.exe.zip jackal.exe password: infected

wget https://git.soton.ac.uk/rht1g21/jackall2/-/raw/main/Vmem/jackal.vmem.7z sudo apt-get install p7zip-full

7za e jackal.vmem.7z

1. What is the relevant profile to be used to analyse the provided memory image? (1 Mark)

Answer:

Win7SP1x86_23418

2. Obtain an unpacked sample of the malware. Specifically, use procdump with and without the –memory option. Are the two output files the same? Why or why not? (4 Mark)

Answer:

No, the two output files are not the same.

Key differences:

Without -memory option:

volatility -f jackal.vmem --profile=Win7SP1x86_23418 procdump -p 3028 -D .

- It's MD5 checksum is as follows: 22b0a433375b9ea2bb5482118df8f8de
- Extractsthe on-disk executable (packed)
- Contains UPX packing signatures (UPX0, UPX1)
- Shows only basic API imports and minimal readable strings

With -memory option:

```
volatility -f jackal.vmem --profile=Win7SP1x86_23418 procdump --memory -p 3028 -D .
```

- It's MD5 checksum is as follows: 60a06e27f324572efaa4892eb692085c
- Captures the in-memory unpacked version
- Reveals actual malicious functionality:
 - C2 commands (exec, wget)
 - Network operations (URLDownloadToFileA)
 - Process manipulation (killproc)

The difference occurs because malware typically unpacks itself during execution. While the disk version remains packed to evade detection, the memory dump exposes the true malicious behavior, making it more detectable by security tools.

3. Analyse strings in the unpacked files. Make sure to use the -a flag to search the entire file and also check Unicode strings with -el. strings -a FILENAME strings -a -el FILENAME (3 Mark)

Answer:

The unpacked malware file contains clear indicators of malicious behavior:

- C2 Communication: Use of APIs such as URLDownloadToFileA and HttpOpenRequestA, along with a custom User-Agent string: The Jackal v4.2001.
- Persistence: Reference to a path: c:\windows\system32\jackal.exe, and a mutex named __Dassara__.
- Encoding: Multiple Base64-encoded strings (e.g., JyM9IiM9ISAqPSEiKzx5emBnPXlg) were found, aligning with external reports suggesting the use of XOR encoding techniques.

Figure 1 confirms that the malware is packed when stored on disk, but reveals its true functionality once it is unpacked and executed in memory.

Evidence:

Figure 1: Partial output for strings -a -el executable.3028.exe

4. Based on the strings you see, describe the types of changes this malware may make to the running system's registry. Specifically, what key would you look for as an indicator of compromise? (1 Mark)

Answer:

The malware uses registry manipulation APIs including RegCreateKeyExW, RegSetValueExW, RegEnumValueW RegQueryInfoKeyW and RegCloseKey.

5. Was the malware actively accessing the key at the time of the memory dump? Note: you can specifically check for this using the handles plugin and filtering for open registry keys: (Use volatility -f <FILE> handles -p PID --object-type=Key) (3 Marks)

Answer:

Yes, the malware was actively accessing registry keys during the memory dump. Key evidence includes:

Open Handles:

- \REGISTRY\USER\[ID]\Software\Microsoft\Windows Player
- \REGISTRY\MACHINE\SOFTWARE\Microsoft\InternetSettings

These keys suggest the malware was modifying setting for persistence for Persistence/C2 communication. For a clear understanding Figure 2 shows terminal output screen.

vagrant@lab2:~\$ volatility -f jackal.vmemprofile=Win7SP1x86_23418 handles -p 3028object-type=Key									
Volatility Foundation Volatility Framework 2.6.1									
Offset(V)	Pid	Handle	Access Type	Details					
0x920cf200		0x18	0x20019 Key	MACHINE\SYSTEM\CONTROLSET001\CONTROL\NLS\SORTING\VERSIONS					
0x8649eaf8		0x20	0x20019 Key	MACHINE					
0x85f7af50		0x28	θx1 Key	MACHINE\SYSTEM\CONTROLSET001\CONTROL\SESSION MANAGER					
0x937d3428		0x78	0xf003f Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000					
0x85f5a250		0x7c	0xf003f Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS PLAYER					
0x9366e0f8		0xa8	0x2001f Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS					
0x91436f60		0xd4	0x1 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\EXPLORER					
0x85fc5f28		0x130	0x20019 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\POLICIES\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS					
0x95b76260	3028	0x134	0x20019 Key	MACHINE\SOFTWARE\POLICIES\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS					
0x8876e530		0x138	0x20019 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS					
0x95afbb28	3028	0x13c	0x20019 Key	MACHINE\SOFTWARE\POLICIES					
0x8da88c20	3028	0x140	0x20019 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\POLICIES					
0x920e8d20	3028	0x144	0x20019 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE					
0x85a34240	3028	0x148	0x20019 Key	MACHINE\SOFTWARE					
0x85a1f580	3028	0x14c	0x20019 Key	MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS					
0x8f295030	3028	0x184	0x20019 Key	MACHINE\SYSTEM\CONTROLSET001\SERVICES\WINSOCK2\PARAMETERS\PROTOCOL_CATALOG9					
0x85f7a740	3028	0x18c	0x20019 Key	MACHINE\SYSTEM\CONTROLSET001\SERVICES\WINSOCK2\PARAMETERS\NAMESPACE_CATALOG5					
0x937d7350	3028	0x19c	0x20019 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\INTERNET EXPLORER\MAIN					
0x93604bb8		0x1a0	0x20019 KeV	MACHINE\SOFTWARE\MICROSOFT\INTERNET EXPLORER\MAIN					
0x85f5a7a8		0x1a4	0xf003f Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000 CLASSES					
0x86447730		0x1b4	0x20019 Key	USER					
0x921283b0		0x1b8	θx3 Kev	USER\S-1-5-21-2833823845-3085568943-3082117713-1000					
0x87980dc8		0x1d8	0x20019 Key	MACHINE\SOFTWARE\MICROSOFT\TRACING\JACKAL_RASAPI32					
0x95bf8030		0x1f0	0x20019 KeV	MACHINE\SOFTWARE\MICROSOFT\TRACING\JACKAL RASMANCS					
0x85fc2300		0x248	0x20019 KeV	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS\ZONEMAP					
0x865206c0		0x24c	0x20019 Key	USER\S-1-5-21-2833823845-3085568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS\NT\CURRENTVERSION\NETWORK\LOCATION AWARENESS					
0x85a29580		0x258	0x9 Kev	MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION\IMAGE FILE EXECUTION OPTIONS					
0x8da179f0		0x25c	0x8 Kev	MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTYERSION\APPCOMPATFLAGS					
0x936a4b30		0x264	0x8 Key	USER\S-1-5-21-2833823845-30835568943-3082117713-1000\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION					
0x95a3dc80		0x268	0x20019 Key	MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS\ZONEMAP					
0x864a2d20	3028	0x270	0x20019 Key	MACHINE\SOFTWARE\MICROSOFT\INTERNET EXPLORER\MAIN\FEATURECONTROL\FEATURE_LOCALMACHINE_LOCKDOWN					
0x85f5e3b8		0x290	0x20019 Key	MACHINE\SOFTWARE\MICROSOFT\INTERNET EXPLORER\MAIN\FEATURECONTROL\FEATURE ZONE_ELEVATION					

Figure 2: Active Registry Handles from Malicious Process

The open handle to \REGISTRY\USER\[ID]\Software\Microsoft\Windows Player suggests active modification of this key for persistence, as it stores Base64-encoded C2 configurations

6. Specifically, what values or data the malware add to the registry key? Is it possible using only the memory dump to find out? To query a cached registry key, use the printkey plugin like this: "volatility -f <FILE> printkey -K "Software\Microsoft\The\Key\To\Find"" (3 Marks)

Answer:

Using Volatility's printkey plugin, it is possible to retrieve this registry key and its values directly from memory, without requiring disk access.

The command used was:

```
volatility -f jackal.vmem --profile=Win7SP1x86_23418 printkey -K "Software\Microsoft\
Windows Player"
```

The memory dump analysis reveals the malware modified the registry key Software\Microsoft\WindowsPlayer, storing multiple Base64-encoded string values. These likely contain C2 payloads, supporting earlier reports of the malware using Base64/XOR encoding. Output is presented in Figure 3.

```
vagrant@lab2:~$ volatility -f jackal.vmem --profile=Win7SP1x86_23418 printkey -K "Software\Microsoft\Windows Player"
Volatility Foundation Volatility Framework 2.6.1
Legend: (S) = Stable (V) = Volatile
Registry: \??\C:\Users\Daniel\ntuser.dat
Key name: Windows Player (S)
Last updated: 2013-03-11 16:22:02 UTC+0000
 Values:
REG_SZ
REG_SZ
                                          DB1L
                                                                                               (S) IionPSEjKj0rKj0nIjxgdmF6fGA8e3J/cXZhPXtnfn8=
                                                                                              (S) ISEqPSY9ISAgPSEjJDxndnpqajxgY39meDlyYGM=
(S) ISEqPSY9ISAgPSEjJDxndnpqajxgY39meDlyYGM=
(S) IismPSEhKj0iJiQ9IiUrPHx9YXZwanZ7fDxldmFxcn89Z2tn
(S) IiUrPSsnPSIqKz0hJys8YHZ2fTxqdn9jPXtnfn8=
(S) Jic9IiAqPSIrIz0iICs8YXxyYWA8ZXJhenxmdzxyf2d2YX1yZ3p8fT17Z35/
(S) ISYgPSEhJz0iJCI9ICo8fXZkYDxwfH5+PWMYYw==
                                          WN33
 REG_SZ
                                          4H2N
 REG_SZ
REG_SZ
                                          MRRU
                                          HNFY
 REG_SZ
REG_SZ
REG_SZ
REG_SZ
                                           IEUH
                                                                                              (S) ISINPScIPSINIZOJSCI9ICUSTAZKTOKWTHSTPWNTYW==
(S) ISINPSCIPSINIZOJJIIQ8ZHJ6Z3P9dD1YYGM=
(S) ISINPSCIPSINIZOJJIEBYGNBYWEBEJJ9ZJDCMF3PXlg
(S) ISYNPSENKJOIKIA9ISEKPGBnfHB4PGdhcnd6fXQ9e2d+fw=
(S) ISAgPSIKITOIKYM9IIUgPGFyfXB7dmE8ZHp9d3xkYD1je2N
                                          1AUR
                                          47SG
                                                                                              (S) ISYNPSENKJOIKiA9ISEKPGBnfHB4PGdhcnd6fXQ9e2d+fw==
(S) ISAgPSIKITOiKyM9IiUgPGFyfXB7dmE8ZHp9d3xkYDIje2M=
(S) IiclPSshPSQkPSYqPGAqIioiIjx4f2B5ciIiPHV6f2d2YT1na2c=
(S) IiUlPSEjPSYgPSEiKjxRZmFxcn14PF9mcHp3PHlycHhgPXtnfn8=
(S) IiYqPSEgITOiIyE9IiYrPGNyYGB6fXQ8YHxmYXB2PHt8fnY9cmBj
(S) ISMNPSIQPSIqJDOiICI8fHBnfHF2YTxqcmdmYX09cWA=
                                          FAU1
  REG_SZ
                                          2LHL
 REG_SZ
REG_SZ
REG_SZ
                                          5WYY
                                          KYKG
                                          Q810
 REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
                                          M65P
                                                                                               (S) JSQ9KyY9IScrPSEmPGRyenVgPHlmfXw9e2d+fw==
(S) IiErPSIgJz0iJCU9IiElPHZremBnYDxDcmByd3Z9cj13fHA=
(S) IiMrPSIiJj0qKj0rJTxqdn9/fGR7cn5+dmE8YXZjfGFnYA==
                                          0GF9
                                          IYCD
                                           780I
  REG_SZ
                                          YBTI
                                                                                                          ICE9ISc9IScrPSIkKzx0fHx3emB7PHV2f398ZD17Z35/
                                                                                               (S) IiMmPSQiPSEgJD0iJTxgZmN2YT7xwf3JxcXXhYD1rfn8=
(S) KiM9ICY9ISAnPSEnKzx8YXp2fWc8cXJ4dmFgPXtnfn8=
(S) IiA9KyE9IiYiPSEiJjx/fGNjdmE8d2Z+cXF2f389Z2tn
(S) IiMiPSogPSohPSIIJDx8YGG2fWB8YW08ZHpweHZ3PHJ/
 REG_SZ
REG_SZ
REG_SZ
                                          THRG
                                          PXDT
                                          FYNO
                                                                                               (S) IiA9KyE9IiYiPSEiJjx/fGNjdmE8d2Z+cxF2f389Z2th
(S) IiMiPSogPSohPSIlJDx8YGd2fWB8YWo8ZHpweHZ3PHJ/fw==
(S) IiQrPSsmPSIqIj0mITx2dmNhfH48YHZldmF2PXtnfn8=
(S) ISIrPSIiID0iJCs9JCI8ZHZyZ3t2YT17Z35/
(S) ISEKPSEhPSImJD0mPGZgcjxgfHBwdmE9e2d+fw==
(S) JyY9IiYiPSIIJD0iJy08eHJge3ZhPEt2YXxren10PXlg
(S) ISEiPSIIJj0iJSc9JiU8Y2Z/f3FycHg8anZge3plcns9Z2tn
(S) ISMjPSInJz0mIz0hIiE8YXZgcn5jf3Z3PHF2dXxhdj17Z35/
(S) ISEIPSEJIJ0iJCA0JCSE3X8d2R6fXg8RXJ9cHxmZXZhPGV6YHpnPGBmfn52YT17Z35/
(S) JyM0IiM0ISAnPSFiKzx5emRnPXI
 REG_SZ
REG_SZ
                                           IWT5
                                          6NLE
XOJV
  REG_SZ
                                          XP8X
                                          3EDQ
  REG SZ
                                          ONON
                                          ZXU6
                                          A3D7
                                                                                                            JyM9IiM9ISAqPSEiKzx5emBnPXlg
```

Figure 3: Registry dump showing suspicious values under Windows Player key

After analysing the complete memory dump, it is not possible to fully interpret the values or data stored in the registry key alone, as they appear to be encrypted and require additional information for thorough analysis. The most that can be done at this stage is to decode the values, as I have demonstrated using CyberChef as shown in in Table 1. The Keys eg. DB1L, WN33, 4H2N, etc... were not possible to be decoded using the provided information.

Key Name IP Address Path DB1L194.209.89.41 /serios/halber.html WN33 229.5.233.207/teiyy/spluk.asp 4H2N185.229.157.168 /onrecyeho/verbal.txt MRRU 168.84.198.248 /seen/yelp.html **HNFY** 54.139.180.138/roars/varioud/alternation.html **IEUH** 253.224.171.39 /news/comm.php 1AUR 184.48.143.117/waiting.asp /sport/haphazard.js 47SG212.43.140.152FAU1 252.229.193.227/stock/trading.html 2LHL233.172.180.163/rancher/windows.php 5WYY/s91911/klsja11/filter.txt 146.82.77.59 **KYKG** 166.20.53.219 /Burbank/Lucid/jacks.html /passing/source/home.asp Q810 159.232.102.158 M65P202.19.197.131 /october/saturn.js 0GF9/waifs/juno.html 67.85.248.25IYCD 128.134.176.126/exists/Pasadena.doc /yellowhammer/reports 78OI 108.115.99.86 YBTI 32.24.248.178/goodish/fellow.html THRG 105.71.237.16 /super/clabbers.xml PXDT 90.35.234.248/orient/bakers.html **FYNO** 13.82.151.215/lopper/dumbbell.txt IWT5101.93.92.167/ostensory/wicked/all /eeprom/severe.html 6NLE 178.85.191.52 XOJV 218.113.178.71 /weather.html XP8X227.22.157.5/usa/soccer.html 45.151.183.1493EDQ /kasher/Xeroxing.js ONON 221.165.164.56 /pullback/yeshivah.txt ZXU6 /resampled/before.html 200.144.50.212 A3D7/hoodwink/Vancouver/visit/summer.html 226.201.173.72FRRM 40.10.239.218/jist.js

Table 1: Registry dump showing Base64-decoded values under Windows Player key.

Each value contained a Base64-encoded string, which likely stores configuration data, such as Command-and-control (C2) server URLs, File paths or script names and payload delivery

7. Are there any specific network artefacts that you would configure an Intrusion Detection System to look for? (2 Marks)

Answer:

Yes, configure the IDS to detect:

C2 Communications:

- HTTP requests with the unique User-Agent string: "The Jackal v4.2001"
- Base64 strings in network traffic matching the registry patterns

Suspicious Activity:

- Unusual outbound POST requests to unknown IPs or ports
- Connections originating from or targeting the malware path: c:\windows\system32\jackal.exe

8. What's the name of the mutex this malware uses? (3 Marks)

Answer:

The malware uses the mutex _Dassara_, identified via Volatility's mutantscan output tied to PID 3028 as shown in Figure 4. This non-standard name confirms malicious use for process synchronisation.

Evidence:

0x000000001ebf3898	1	1	1	0x00000000	
0x000000001ebf3d18	2	1	1	0x00000000	3a886eb8-fe40-4d0a-b78b-9e0bcb683fb7
0x000000001ebf52c8	1	1	1	0x00000000	
0x000000001ebfb180	1	1	1	0x00000000	
0x000000001ebfe1f8	1	1	1	0x00000000	
0x000000001ebfe248	1	1	1	0x00000000	
0x000000001ef29030	1	1	1	0x00000000	
0x000000001ef2ad20				0x840f4d48	3028:3912Dassara
0x000000001ef2b650	2	1	1	0x00000000	PerfNet_Perf_Library_Lock_PID_584
0x000000001ef2b6b0	2	1	1	0x00000000	PerfDisk_Perf_Library_Lock_PID_584
0x000000001ef3b878	1	1	1	0x00000000	
0x000000001ef40a98	2	1	1	0x00000000	ServiceModelEndpoint 3.0.0.0_Perf_Library_Lock_PID_584
0x000000001ef40be0	1	1	1	0x00000000	
0x000000001ef431d8	1	1	1	0x00000000	
0x000000001ef43228	1	1	1	0x00000000	
0x000000001ef491a8	1	1	1	0x00000000	

Figure 4: Volatility mutantscan output

9. List as many IPs/hostnames used by the malware. Is the guy right about it using base64 and xor? (3 Marks)

Answer:

IPs/Hostnames Used by the Malware:

Primary C2 Server:

- 172.16.237.1 (Foreign Address)
- Connected to malware's listener on 172.16.237.134:9090 (State: ESTABLISHED/CLOSE_WAIT)
- Likely the attacker's machine or part of the C2 infrastructure

Malware-Controlled Host:

- 172.16.237.134 (Local Address)
- Actively listening on port 9090 (PID 3028: jackal.exe.exe)

IPv6 Address:

• fe80::bdff:e616:7b50:1e75

25+ decrypted IP address have been displayed in Table 1. It can be referenced to get further list of IPs/hostnames and paths used by the Malware. Also a screenshot has been presented in Figure 5 to demonstrate the way the IPs were decrypted.

Base64/XOR Validation:

Yes, the guy was correct, Jackal's C2 list is just base64 and xor:

Figure 5: Decoded registry values reveal a list of suspicious URLs and file paths and IP adderesses

10. Can you detect network activity from the malware and if so which network protocol is it using, on which local port and what is it doing (what is the state)? (4 Marks)

Answer:

A screenshot of the command volatility -f jackal.vmem --profile=Win7SP1x86_23418 netscan is presented in Figure 6. Which was used to get the readings presented below.

The malware uses multiple network protocols:

- TCPv4/TCPv6: For command-and-control (C2) communications
- UDPv4/UDPv6: For scanning and broadcast purposes

Key Local Ports and States:

Primary Malware Port:

- TCP 9090 (LISTENING) via PID 3028 (jackal.exe.exe)
- Connections to 172.16.237.1 in ESTABLISHED and CLOSE_WAIT states

Other Suspicious Ports:

- TCP 135, 445, 49152--49156 (potential lateral movement)
- UDP 137, UDP 138 (NetBIOS possible network scanning)
- UDP 5355 (mDNS service discovery)

State Analysis:

- LISTENING (TCP 9090): Persistent backdoor
- ullet ESTABLISHED (TCP 9090 \leftrightarrow 172.16.237.1): Active C2 session
- \bullet CLOSE_WAIT: Recent session termination
- UDP ports show broadcast/listening behavior

Operational Purpose:

• TCP 9090 is the primary C2 communication channel

- Other ports suggest:
 - Network reconnaissance (UDP)
 - Secondary persistence mechanisms (high-numbered TCP ports)
 - Possible lateral movement (SMB/NetBIOS ports)

vagrant@lab2: Volatility Fo	*\$ volatility undation Volat	-f jackal.vmemprofile=Win7SP tility Framework 2.6.1	1x86_23418 netscan				
Offset(P)	Proto	Local Address	Foreign Address	State	Pid	Owner	Created
0x1e93c570	UDPv4	0.0.0.0:5355	*:*		1064	svchost.exe	2013-03-11 16:22:02 UTC+0000
0x1e93c570	UDPv6	:::5355	*:*		1064	svchost.exe	2013-03-11 16:22:02 UTC+0000
0x1e802838	TCPv4	0.0.0.0:49156	0.0.0.0:0	LISTENING	480	services.exe	
0x1e826500	TCPv4	172.16.237.134:9090	172.16.237.1:50645	ESTABLISHED	-1		
0x1e92b008	TCPv4	172.16.237.134:9090	172.16.237.1:50606	CLOSE_WAIT	-1		
0x1ef6b740	UDPv4	172.16.237.134:138			4	System	2013-03-11 15:00:22 UTC+0000
0x1ef6d450	UDPv4	172.16.237.134:137			4	System	2013-03-11 15:00:22 UTC+0000
0x1ea34940	TCPv4	172.16.237.134:139	0.0.0.0:0	LISTENING	4	System	
0x1eac1008	TCPv4	0.0.0.0:135	0.0.0.0:0	LISTENING	668	svchost.exe	
0x1eac1008	TCPv6	:::135	:::0	LISTENING	668	svchost.exe	
0x1eac2ca8	TCPv4	0.0.0.0:135	0.0.0.0:0	LISTENING	668	svchost.exe	
0x1eaf60d8	TCPv4	0.0.0.0:49155	0.0.0.0:0	LISTENING	820	svchost.exe	
0x1eb338c8	TCPv4	0.0.0.0:9090	0.0.0.0:0	LISTENING	3028	jackal.exe.exe	
0x1ebfa140	TCPv4	0.0.0.0:445	0.0.0.0:0	LISTENING	4	System	
0x1ebfa140	TCPv6	:::445	:::0	LISTENING	4	System	
0x1ebfc490	TCPv4	0.0.0.0:49156	0.0.0.0:0	LISTENING	480	services.exe	
0x1ebfc490	TCPv6	:::49156	:::0	LISTENING	480	services.exe	
0x1ef4b370	TCPv4	0.0.0.0:49153	0.0.0.0:0	LISTENING	756	svchost.exe	
0x1ef4b370	TCPv6	:::49153	:::0	LISTENING	756	svchost.exe	
0x1ef569f0	TCPv4	0.0.0.0:49154	0.0.0.0:0	LISTENING	488	lsass.exe	
0x1ef569f0	TCPv6	:::49154	:::0	LISTENING	488	lsass.exe	
0x1ef64c78	TCPv4	0.0.0.0:49154	0.0.0.0:0	LISTENING	488	lsass.exe	
0x1fa91520	UDPv4	0.0.0.0:0			1064	svchost.exe	2013-03-11 16:22:02 UTC+0000
0x1fa91520	UDPv6	:::0			1064	svchost.exe	2013-03-11 16:22:02 UTC+0000
0x1faa1280	UDPv4	0.0.0.0:5355			1064	svchost.exe	2013-03-11 16:22:02 UTC+0000
0x1faef990	UDPv6	fe80::bdff:e616:7b50:1e75:546			756	svchost.exe	2013-03-11 16:33:11 UTC+0000
0x1f7c3378	TCPv4	0.0.0.0:49153	0.0.0.0:0	LISTENING	756	svchost.exe	
0x1f7c9150	TCPv4	0.0.0.0:49152	0.0.0.0:0	LISTENING	384	wininit.exe	
0x1f7c9150	TCPv6	:::49152	:::0	LISTENING	384	wininit.exe	
0x1f7ca2a8	TCPv4	0.0.0.0:49152	0.0.0.0:0	LISTENING	384	wininit.exe	
0x1fa09f60	TCPv4	0.0.0.0:49155	0.0.0.0:0	LISTENING	820	svchost.exe	
0x1fa09f60	TCPv6	:::49155	:::0	LISTENING	820	svchost.exe	
0x1fb17b00	TCPv6	fe80::bdff:e616:7b50:1e75:4916		CLOSED	-1		
0x1fd8f008	TCPv6	fe80::bdff:e616:7b50:1e75:445	ff02::1:2:49168	CLOSED	-1		

Figure 6: Volatility netscan output showing active network connections from the memory dump.