Отчет по части "Криптография на практике" курса "Основы кибербезопасности"

Стариков Данила Андреевич

Содержание

1	Целі	ь работы	3
2	Выполнение лабораторной работы		
	2.1	Введение в криптографию	4
	2.2	Цифровая подпись	7
	2.3	Электронные платежи	11
	2.4	Блокчейн	14
3	Выв	ОДЫ	16

1 Цель работы

Познакомиться со следующими понятиями: - Электронная подпись - Электронные платежи - Блокчейн

2 Выполнение лабораторной работы

2.1 Введение в криптографию

• Вопрос 1. В асимметричных криптографических примитивах(рис. 2.1):

Ответ: обе стороны имеют пару ключей.

Рис. 2.1: Скриншот выполнения задания

• Вопрос 2. Криптографическая хэш-функция(рис. 2.2):

Ответ: эффективно вычисляется, дает на выходе фиксированное число бит независимо от объема входных данных, стойкая к коллизиям.

Выберите все подходящие ответы из списка ✓ Правильно, молодец! Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в комментариях, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений. ✓ эффективно вычисляется обеспечивает конфиденциальность захэшированных данных ✓ дает на выходе фиксированное число бит независимо от объема входных данных ✓ стойкая к коллизиям Следующий шаг Решить снова Ваши решения Вы получили: 1 балл из 1

Рис. 2.2: Скриншот выполнения задания

• Вопрос 3. К алгоритмам цифровой подписи относятся(рис. 2.3):

Ответ: RSA, ECDSA, ГОСТ Р 34.10-2012.

К алгоритмам цифровой подписи относятся

Рис. 2.3: Скриншот выполнения задания

• Вопрос 4. Код аутентификации сообщения относится к(рис. 2.4):

Ответ: симметричным примитивам.

Код аутентификации сообщения относится к

Выберите один вариант из списка

Рис. 2.4: Скриншот выполнения задания

• Вопрос 5. Обмен ключам Диффи-Хэллмана - это(рис. 2.5):

Ответ: асимметричный примитив генерации общего секретного ключа.

Выберите один вариант из списка

Рис. 2.5: Скриншот выполнения задания

2.2 Цифровая подпись

• Вопрос 1. Протокол электронной цифровой подписи относится к(рис. 2.6):

Ответ: протоколам с публичным (или открытым) ключом.

Выберите один вариант из списка

Всё правильно.

Рис. 2.6: Скриншот выполнения задания

• Вопрос 2. Алгоритм верификации электронной цифровой подписи требует на вход(рис. 2.7):

Ответ: подпись, открытый ключ, сообщение.

Выберите один вариант из списка Правильно, молодец! подпись, открытый ключ подпись, секретный ключ, сообщение подпись, открытый ключ, сообщение подпись, секретный ключ Следующий шаг Решить снова Ваши решения Вы получили: 1 балл из 1

Рис. 2.7: Скриншот выполнения задания

• Вопрос 3. Электронная цифровая подпись не обеспечивает(рис. 2.8):

Ответ: конфиденциальность.

Выберите один вариант из списка

Рис. 2.8: Скриншот выполнения задания

• Вопрос 4. Какой тип сертификата электронной подписи понадобится для отправки налоговой отчетности в ФНС?(рис. 2.9):

Ответ: усиленная квалифицированная.

Рис. 2.9: Скриншот выполнения задания

• Вопрос 5. В какой организации вы можете получить квалифицированный сертификат ключа проверки электронной подписи?(рис. 2.10):

Ответ: в удостоверяющем (сертификационном) центре.

Рис. 2.10: Скриншот выполнения задания

2.3 Электронные платежи

• Вопрос 1. Выберите из списка все платежные системы.(рис. 2.11):

Ответ: MasterCard, МИР.

Выберите из списка все платежные системы.

Рис. 2.11: Скриншот выполнения задания

• Вопрос 2. Примером многофакторной аутентификации является(рис. 2.12):

Ответ: комбинация проверка пароля + код в sms сообщении, комбинация код в sms сообщении + отпечаток пальца .

Выберите все подходящие ответы из списка

✓ Отлично!

Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в комментариях, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений.

✓ комбинация проверки пароля + Капча

✓ комбинация проверка пароля + код в sms сообщении

✓ комбинация код в sms сообщении + отпечаток пальца

— комбинация РIN код + пароль

Следующий шаг

Решить снова

Примером многофакторной аутентификации является

Ваши решения Вы получили: 1 балл из 1

Рис. 2.12: Скриншот выполнения задания

• Вопрос 3. При онлайн платежах сегодня используется(рис. 2.13):

Ответ: многофакторная аутентификация покупателя перед банкомэмитентом.

При онлайн платежах сегодня используется

Выберите один вариант из списка

✓ Так точно!

многофакторная аутентификация покупателя перед банком-эмитентом
однофакторная аутентификация покупателя перед банком-эквайером
однофакторная аутентификация при помощи PIN-кода карты перед терминалом
многофакторная аутентификация покупателя перед банком-эквайером

Следующий шаг

Решить снова

Ваши решения
Вы получили: 1 балл из 1

Рис. 2.13: Скриншот выполнения задания

2.4 Блокчейн

• Вопрос 1. Какое свойство криптографической хэш-функции используется в доказательстве работы?(рис. 2.14):

Ответ: сложность нахождения прообраза.

Рис. 2.14: Скриншот выполнения задания

• Вопрос 2. Консенсус в некоторых системах блокчейн обладает свойствами(рис. 2.15):

Ответ: постоянства, консенсус, живучесть, открытость.

Рис. 2.15: Скриншот выполнения задания

• Вопрос 3. Секретные ключи какого криптографического примитива хранят участники блокчейна?(рис. 2.16):

Ответ: цифровая подпись.

Секретные ключи какого криптографического примитива хранят участники блокчейна?

Выберите один вариант из списка

Верно. Так держать!

обмен ключами
шифрование

цифровая подпись
хэш-функция

Следующий шаг

Решить снова

Ваши решения Вы получили: 1 балл из 1

Рис. 2.16: Скриншот выполнения задания

3 Выводы

В рамках третьего модуля познакомились с основами криптографии: электронной подписью, электронными платежами, блокчейном.