

Deeplearning in production

the Data Engineer part

whoami

Scauglog
Data Engineer, Xebia

b

Part 1: Predict at scale

DataXDay 2019

Part 2: Training And Monitoring

init project

| Team Astro

Product Owner

Scrum Master

Data Scientists, Data Engineers, Machine Learning Engineers

Business

- ▼ Buy sponsored link on google adwords
- ▼ 10M Predictions in less than 1 hour (~2700/s)
- Bid each day
- ▼ Each bid should cost less than what we earn

Choose your model

And the winner is

XGBoost

| And the winner is

| What is Deep Learning?

What is a Deep Learning model?

| Deeplearning in Production at Scale

DL4J

Choose your Framework

- Distributed Prediction
- Can create complex network
- Documentation
- Community

And the winner is

| Wait

And the winner is

How to Deep Learn

| Train Workflow

| Predict Workflow

| Preprocessing

- ▼ Scaling (normalisation, min max, ...)
- Replace null
- Lagging

Train Workflow

| Predict Workflow

Training at scale

Retrain again and again and again...

- Model performance decline over time
- Hyperparameter tuning
- Deep Learning model rarely comes alone (clustering)

| Predict Workflow

| Train Workflow

- Create VPC
- Create Subnet associated to VPC
- Create an IGW associated to VPC
- Create a route table associated to IGW
- Create a Security Group associated to VPC
 - → Authorize ssh only for my IP
- Create a key pair
- Create EC2 server with EBS volume

- Add ssh keys of team members
- ▼ Install cuda, cudnn, nccl and configure them
- ▼ Deploy train jar to EC2 instance
- ▼ Deploy train pipeline to EC2 instance
- Deploy preprocessed data to EC2 instance
- ▼ Deploy auto shutdown script

- Ansible
- Transfert preprocess data to S3
- ▼ Store model in S3
- Check CPU vs GPU training time
- Keep track of training config and performance
- Share knowledge with Data Scientist
- ▼ Put your data in EBS volume if they fit

Training with DL4J: Lessons learned

- Beware of tensor shape
- Prefetch data in memory (InMemoryDatasetIterator)
- Add listener to monitor your training compute performance
- Use the UI

Keras to DL4J

- Data Scientist loves Keras
- Keras is easier to import on notebook
- ▼ Training on Keras is faster
- Keras is compliant with cloud training (Sagemaker, CloudML)

```
def execute(config: Config): Unit = {
  val kerasModel = KerasModelImport.importKerasModelAndWeights(
  config.kerasModelPath, false)
  ModelSaver.writeModel(kerasModel, config.outputModelPath)
}
```


| Workflow Train

Monitoring

| Monitoring: mlflow

| Monitoring: mlflow

- ▼ Ensure your training machine can reach mlflow server
- Keep track of your experiment
 - ▼ Training parameter
 - ∇ Performance
- Compare results
- (model repository, standardize model packaging, easy deployment)

| Monitoring: Zeppelin

| Monitoring: Zeppelin

- Already in HDP
- Authentication
- Scheduling
- Report View
- Auto shutdown
- ▼ Can mix sources (Scala, JDBC, C*, ...)
- ▼ API to automate deployment

Apache Zeppelin

Thank you for your attention

Any questions?

https://github.com/scauglog/prez