Does the function

$$f(x) = \begin{cases} 1/x & 0 < x \le 1 \\ 0 & x = 0 \end{cases}$$

have a maximum?

2c 0.5 5.25 0.10 6.61	2 4 10 100	2 1 0.5 0.25 0.1 0.01	1 2 4 10	0 0 5 1	
. 6	one at	z = 3 m at	L → = 0	$f(x)=1 \leq \frac{1}{x} \forall x \leq 1$ $(x \neq 0)$ $- \Rightarrow f(0) = 0 \leq 1 \leq \frac{1}{x}$	L .)

Let $f(x) = x^3$. What is f'(0)? Is f(0) a local maximum or local minimum?

$$f'(x) = 3x^2$$

The solution to $f'(x) = 0$
 $3x^2 = 0$
 $x = 0$

It seems that z=0 is a local max or local min.

z is not a maximum and not a minimum!

Let f(x) = |x|. Is f(0) a local maximum, global maximum, local minimum, or global minimum?

Ane \$100 = 0 is an absolute minimum.

Find the critical numbers of $f(x) = x^{3/5}(4-x)$.

$$\frac{1}{12} = (x^{3/5})^{1} (4-x) + x^{3/5} \cdot (-1)$$

$$= \frac{3}{5} x^{-2/5} (4-x) - x^{3/5}$$

$$= \frac{3 \cdot 4}{5} x^{-2/5} - \frac{3}{5} x^{3/5} - x^{3/5}$$

$$= \frac{12}{5} x^{-2/5} - 2^{3/5} \left(\frac{8}{5}\right)$$

$$= \frac{12 - 8x}{5x^{2/5}}$$

$$=\frac{4(3-2x)}{5x^{2/5}}$$

$$f'(x) = 0 \iff \frac{4(3-7x)}{5x^{2/5}} = 0$$

Answer critical numbers are 3/2 d 0

Find the absolute maximum and minimum values of the function $f(x) = x^3 - 3x^2 + 1$ on the interval [-1/2, 4].

$$\Leftrightarrow$$
 $x=2$ or $x=0$

We have
$$f(0) = 1 + f(2) = -3$$
.

$$a = \frac{-1}{a}$$
 $b = a$

$$\max_{\lambda} \{1, -3, \frac{1}{8}, \frac{17}{17} = 17$$

 $\min_{\lambda} \{1, -3, \frac{1}{8}, \frac{17}{17} = -3$

Show that the equation $x^3 + x - 1 = 0$ has at least one root.

Here
$$f(x) = x^3 + x - 1$$
.
 $f(0) = 0 + 0 - 1 = -1$ $a = 0$
 $f(1) = 1$ $b = 1$
So, $f(0) < 0$ $f(1) > 0$.
So, $\exists c \in (0,1)$ $o.t.$ $f(c) = 0$.
In other words, $c^3 + c - 1 = 0$.

Show that the equation $x^3 + x - 1 = 0$ has exactly one root.

Suppose that there are two different routs $a d b (a \neq b)$.

$$50, \quad f(\omega) = 0 = f(b).$$

. fis cont. on [a,6]

. is diff. on (a,b).

So, by Rolle's theorem, f'(c) = 0 for some $C \in (a_1b)$.

1 contradiction.

 $f'(x) = 3x^2 + 1 \ge 1$, so $f'(x) \ne 0$.

So, we mast conclude that there is only one root.

Consider $f(x) = x^2$.

- Find the slope of the secant line passing through Q = (0,0) and P = (2,4).
- Can you find a tangent line to $y = x^2$ with the same slope?

$$m_{PQ} = \frac{4-0}{22-21} = \frac{4-0}{2-0} = 2$$

$$f'(n) = 2 \qquad \iff 2n = 2$$

$$f(n) = 1$$

Find the numbers $c \in [0,2]$ such that the average of the function $f(x) = x^3 - x$ on the interval [0,2] is attained by f'(c).

Here,
$$a=0$$
, $b=a$.
 $f(x) = 3c^3 - 3c$ - $a=0$, continuous an ivizing continuous an ivizing continuous.

$$f'(x) = 3x^2 - 1$$
 $f(x) - f(0) = \frac{6 - 0}{2} = 3$

$$50$$
, $3c^2-1=3$

$$\Rightarrow 3c^{2} = 4$$

$$\Rightarrow (c^{2} = \sqrt{4/3})$$

$$\Rightarrow |C| = \sqrt{4/3}$$

$$\Rightarrow C = + \sqrt{4/3} \text{ or } -\sqrt{4/3}$$

The slope of the tangent line is the same us the slope of the secont if $\frac{1}{3}$ clues not $\frac{1}{3}$ or $\frac{1}{3}$ = $\frac{2}{3}$ or $\frac{1}{3}$ = $\frac{1}{3}$

$$\chi_1 = -2 \quad -2 < -1 \implies (-2)^2 \quad (-1)^2$$

$$2(2 = -1) \quad \qquad \downarrow$$

$$4 \qquad > 1$$
Suppose $\chi_1 > 0$, $\chi_2 > 0$ and $\chi_1 < \chi_2$.

$$2c_1^2 < \chi_2^2 \Rightarrow f(\chi_1) < f(\chi_2)$$

So, f is increasing when $\chi > 0$.

If $f(x) = x^3 - x$, find where it is increasing and where it is decreasing. Go to Desmos

$$f'(bx) = 3x^2 - 1 = (\sqrt{3} x - 1)(\sqrt{3} x + 1)$$

$$a^2 - b^2 = (a + b)(a - b)$$

Hue
$$f(x) = 0$$
 \iff $\sqrt{3} \times -1 = 0$ or $\sqrt{3} \times +1 = 0$

$$\implies \propto = 1/\sqrt{3} \text{ or }$$

$$\approx 2 = -1/\sqrt{3}$$

x		-1/53		1/1/3	
132+1	1	٥	+	+	+
13x-1	_	_		٥	+
7'61)	+	0	_	٥	+

$$2 < -1/\sqrt{3}$$
 -D $\sqrt{3} \times 2 < -1 + D / 3 \times +1 < 0$
 $2 < 1/\sqrt{3}$ -D $\sqrt{3} \times 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 < 0$
 $3 < 1 <$

(1/13,00) - + is increasing there. Also, f'(x) <0 when x is in (-1/vs, 1/vs)

-> of decreases there.

Let $f(x) = x^4 - 2x^3$. Find the local maximum and minimum values of f.

Go to Desmos

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

 $\chi = 0$ is not a local minimum or local max. = 3/2 is a local minimum.

$$f(\frac{3}{2}) = \frac{3^4}{2^4} - 2 \cdot \frac{3^3}{2^3} = \boxed{\phantom{\frac{3^4}{2^4}}}$$

Sketch a possible graph of a function f that satisfies the following conditions:

- f(0) = 0, f(2) = 3, f(4) = 6, and f'(2) = 0.
- f'(x) > 0 for 0 < x < 2 and f'(x) > 0 for 2 < x < 4.
- f''(x) < 0 for x < 2 and f''(x) > 0 for x > 2.

Let $f(x) = x^4 - 4x$.

- Find the region where the function is concave upward, concave downward.
- Find the inflection points and the local maxima/minima.
- Use this information to sketch the curve

$$\frac{Zeros}{}$$
. $f(x) = 0 \Leftrightarrow x^4 - 4x = 0$
 $\Leftrightarrow x = 0 \text{ or } x = \sqrt[5]{4}$

Derivative: $f'(x) = 4x^3 - 4 = 4(x^3 - 1)$. Now, $f'(x) = 0 \iff x^3 - 1 = 0 \iff x = 1$ We also write: $x^3 - 1 = (x - 1)(x^2 + x + 1)$ $\Rightarrow f'(x) = 4(x - 1)(x^2 + x + 1)$. where $x^2 + x + 1$ is never zero and x > 0.

2nd derivative: $f''(x) = 12x^2$. So $f'(x) = 0 \iff x = 0$. We write $f''(x) = 12 \cdot x \cdot x$.

We remark that f''(1) = 12 > 0. So x=1 is a local minimum. Also, f''(5i) > 0 $\forall 2c \neq 0 \Rightarrow x=1$ is an abs. max.

Table for 1'

	X			1		
	4 22-1		+	+	+	
_			_	0	+	
	+264 1		+	+	+	
7	122		_	D	+	
٧	ve t	are	もいとの	=>	7	
h	re h	are	f' (>1) >0	- >	4	(ter,1) increasing on

Table In1"

x		D	
12	+	+	+
α	_	D	_
z	_	0	_
2 12 2 2 1"/2)	+	O	+

We have f''(x) > 0 on both sides of 0. So x=0 is not an influxion point. Three is no influxion point.

Sketch:

