Emotion Detection with CNNs

Yair Haendler Michael Riedeman

Overview

- > Background
- > Problem Statement
- > Data Acquisition
- > Baseline
- > Preprocessing
- > Model Characteristics
- > Model Performance
- > Conclusions/Recommendations

Background

> Image Recognition

> Detecting Facial Features

Convolutional Neural Networks

Problem Statement

> Construct a model predicting human emotions by detecting facial expressions in images.

> Binary Classification of "happy" and "neutral"

> Emphasis on diversity

Data Acquisition

- > Image source
 - UTKFace online database of human faces
 - 20,000 images of people aged 0 to 116
 - Labeled by us.

BASELINE MODEL

Baseline - 50%

1000 happy faces

1000 neutral faces

PREPROCESSING

Data Augmentation

Train-Validation Split 10,727 training set 1893 test set

Rescaling

Model Characteristics

Layer	Activation	Normalization	Regularization
Conv2D (2)	ReLU	Batch	L2
SeparableConv2D	ReLU	Batch	L2
MaxPooling2D	-	-	-
SeparableConv2D	ReLU	Batch	L2
GlobalAveragePooling	-	-	-
Dense Output	Sigmoid	-	-

MODEL PERFORMANCE

Adjustments
Learning Rate
Epochs
Layers

MODEL PERFORMANCE

Baseline 50%

Training Data 98.8%

Validation Data 97.2%

Test Data 95.5%

MODEL PERFORMANCE

Race:

Asian - 95.0%

Dark Complexion- 90.0%

White - 96.6%

Age:

Elderly - 84.4%

Adults - 98.8%

Children - 96.7%

Babies - 95.5%

Conclusions/Recommendations

> Slightly Overfit 98.8% train vs. 97.2% validation

> Building block for further implementation

> Pretrained model

> Additional layers