Numerical Methods and Optimization Summary of the basics for chapter 3

10.10.2022

Content

Fixed Point Methods

- until now we have tried to solve SLE "exactly"
- \bullet "direct methods": LU or Cholesky decomposition with forward/backward substitution; complexity: n^3
- now we want to determine solutions approximatively (with a given precision)
- more generally: approximize zeros of given functions f(x) = 0
- for this we use "iterative methods":
- also useful for sparse matrices; LU quickly destroys sparseness
- reformulate: $f(x) = 0 \Leftrightarrow \Phi(x) = x$ (fixed point equation)
- idea: $x^{(k+1)} := \Phi(x^{(k)})$ for given $x^{(0)}$ (fixed point iteration)
- if Φ is continuous and if $x^{(k)} \to \hat{x}$:

$$\hat{x} = \lim x^{(k+1)} = \lim \Phi(x^{(k)}) = \Phi(\lim x^{(k)}) = \Phi(\hat{x})$$

Example of fixed point iteration

ullet example: sought: x s.t.

$$f(x) = e^x + x = 0 \Leftrightarrow \Phi(x) := -e^x = x$$

Axiom (completeness of the real numbers)

For all nonempty bounded $A \subset \mathbb{R}$ there exists a least upper bound.

Definition (real Cauchy sequences)

A real sequence (a_n) is called a Cauchy sequence if for any $\varepsilon>0$ there exists an $N(\varepsilon)\in\mathbb{N}$ s.t. for all $n,m\geq N(\varepsilon)$

$$|a_n - a_m| < \varepsilon.$$

Every Cauchy sequence in the real numbers has a limit. This is equivalent to (or also one definition of) the completeness of the real numbers. This may be generalized to \mathbb{R}^n :

Definition (Cauchy sequences in space)

A real sequence (a_n) in $(\mathbb{R}^n, \|\cdot\|)$ is called a Cauchy sequence if for any $\varepsilon > 0$ there exists an $N(\varepsilon) \in \mathbb{N}$ s.t. for all $n, m \geq N(\varepsilon)$

$$||a_n - a_m|| < \varepsilon.$$

Definition (completeness in space)

A nonempty subset $X\subset (\mathbb{R}^n,\|\cdot\|)$ is called complete, if any Cauchy sequence in X converges in X.

Proposition

Let (a_n) be a convergent sequence in \mathbb{R}^n . Then (a_n) is a Cauchy sequence.

PROOF: Let $a_n \to a$. Then

$$\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N} \forall n \ge N : ||a_n - a|| < \frac{\varepsilon}{2}.$$

Hence, for all $n, m \ge N$

$$||a_n-a_m|| = ||a_n-a+a-a_m|| \le ||a_n-a|| + ||a_m-a|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition (Lipschitz continuity)

Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on \mathbb{R}^n and \mathbb{R}^m respectively, and $D\subset\mathbb{R}^n$ be nonempty. A map $f\colon D\to\mathbb{R}^m$ is said to be Lipschitz continuous on D (wrt these norms) if there is a constant L (named Lipschitz constant) s.t. for all $x,y\in D$

$$||f(x) - f(y)||_2 \le L||x - y||_1.$$

Lipschitz continuity does not depend on the given norms (but L does). Geometric intuition:

• $f: \mathbb{R} \to \mathbb{R}$ with $\|\cdot\|_1 = \|\cdot\|_2 = |\cdot|$. Then

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le L$$

implies that L is an upper bound of the slope of any chord joining P = (x, f(x)) and Q = (y, f(y)).

Figure: Function with Lipschitz constant L=1

Figure: $\sqrt{\,\cdot\,}$ is not Lipschitz continuous on, say, [0,3]

• Geogebra files 015.ggb and 016.ggb (see LC)

Proposition

Let $\|\cdot\|$ be a norm on \mathbb{R}^n and $\|\cdot\|_*$ be any matrix norm that is compatible with $\|\cdot\|_*$. If $f\colon D\subset\mathbb{R}^n\to\mathbb{R}^n$ is (totally) differentiable on D, where $D\neq\emptyset$ is open and convex, then $\|Jf\|_*\leq L<\infty$ on D implies that f is Lipschitz with constant L.

 PROOF : Application of the mean value theorem (of differential calculus).

Examples:

• $\sin \colon \mathbb{R} \to \mathbb{R}$ is Lipschitz with constant L=1: Since $|\sin' x| = |\cos x| \le 1$ it follows

$$|\sin x - \sin y| = |\cos(\xi)(x - y)| \le 1 \cdot |x - y|.$$

Proposition

If $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous then f is also uniformly continuous on D.

PROOF: Assume that for all $x, y \in D$

$$||f(x) - f(y)|| \le L||x - y||.$$

Let $\varepsilon>0$ be arbitrary. Letting $\delta\coloneqq\frac{\varepsilon}{L}$, it follows that $\forall x,y\in D$ with $\|x-y\|<\delta$

$$||f(x) - f(y)|| \le L \underbrace{||x - y||}_{\le \delta} < L\delta = L \frac{\varepsilon}{L} = \varepsilon.$$