Uniwersytet Jagielloński w Krakowie

Wydział Fizyki, Astronomii i Informatyki Stosowanej

Łukasz Kostrzewa

Nr albumu: 1080514

Wizualizacja, edycja i przetwarzanie grafów on-line

Praca magisterska na kierunku Informatyka stosowana

Praca wykonana pod kierunkiem dr hab. Barbary Strug Zakład Projektowania i Grafiki Komputerowej

Kraków 2017

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Kraków, dnia

Podpis autora pracy

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Kraków, dnia

Podpis kierującego pracą

Spis treści

W	stęp		4				
1	Wp	rowadzenie	5				
	1.1	Czym są grafy	5				
	1.2	Znane grafy	5				
	1.3	Zastosowania grafów	5				
2	Wymagania						
	2.1	Tworzenie grafów	6				
		2.1.1 Importowanie grafów	6				
		2.1.2 Generowanie grafów	8				
	2.2	Wizualizacja	9				
	2.3	Edycja	9				
	2.4	Przetwarzanie	9				
	2.5	Eksportowanie	10				
3	Istniejące rozwiązania						
	3.1	Aplikacje internetowe	11				
	3.2	Aplikacje desktopowe	11				
4	Pro	jekt i analiza	12				
	4.1	Biblioteki do wizualizacji grafów w JavaScript	12				
		4.1.1 Cytoscape.js	12				
		4.1.2 sigma.js	12				
		4.1.3 VivaGraph.js	12				
		4.1.4 Linkurious.js	12				
	4.2	Interfejs użytkownika	12				
	4.3	Część serwerowa	12				
5	Imp	olementacja	13				
6	Test	${f ty}$	14				

7 Wnioski	15
A Instrukcje dla użytkowników	16
B Instrukcje dla programistów	17
C Użyte narzędzia	18
Bibliografia	19

\mathbf{Wstep}

"This question is so banal, but seemed to me worthy of attention in that geometry, nor algebra, nor even the art of counting was sufficient to solve it¹". Tak w 1736 roku pisał Leonhard Euler w liście do Giovanniego Marinoniego, włoskiego matematyka i inżyniera, o jednym z pierwszych problemów w teorii grafów – problemie mostów królewskich. Banalny, ale warty uwagi.

W dzisiejszych czasach teoria grafów rozwiązuje wiele nietrywialnych problemów, a część z nich nadal pozostaje otwarta. Grafy znalazły praktyczne zastosowanie w wielu różnorodnych dziedzinach nauki, takich jak informatyka, ekonomia, socjologia, jak również chemia, lingwistyka, geografia czy nawet architektura. Bez wątpienia teoria grafów jest dziedziną matematyki i informatyki, która zasługuje na uwagę, co postaram się w niniejszej pracy przedstawić.

Głównym celem mojej pracy jest stworzenie aplikacji służącej do wizualizacji i edycji grafów w przeglądarce. W przeciągu kilku ostatnich lat mogliśmy zaobserwować gwałtowny wzrost znaczenia aplikacji internetowych. Co dziwne, na dzień dzisiejszy w sieci praktycznie nie ma rozwiązania, które pozwalałoby wczytać graf, wyświetlić, w łatwy sposób przetworzyć, a następnie wyeksportować do znanego formatu. Praca ta jest odpowiedzią na ów deficyt.

W pracy dokonam również przeglądu i analizy bibliotek JavaScript oraz technologii służących do wizualizacji grafów w przeglądarce.

¹Cytat zaczerpnięty z [HW04], wyróżnienie własne.

Wprowadzenie

- 1.1 Czym są grafy
- 1.2 Znane grafy
- 1.3 Zastosowania grafów

Wymagania

Rozdział ten zawiera wszystkie wymagania funkcjonalne, które powinna spełniać aplikacja, aby praca z grafami była możliwie przystępna.

2.1 Tworzenie grafów

Podstawowym i oczywistym wymaganiem jest, aby użytkownik mógł stworzyć nowy, pusty graf. Ponadto użytkownik powinien mieć możliwość zaimportowania istniejącego grafu oraz wygenerowania znanego grafu, np. cyklu lub grafu pełnego o zadanej ilości wierzchołków.

2.1.1 Importowanie grafów

Istnieje wiele formatów służących do opisu grafów. Do najpopularniejszych należą [MB04; Gep]

- ullet GraphML Graph Markup Language
- GEXF Graph Exchange XML Format
- JGF JSON Graph Format
- DOT format programu Graphviz
- GML Graph Modeling Language
- DGML Directed Graph Markup Language
- XGMML eXtensible Graph Markup and Modeling Language

Użytkownik powinien móc wczytać graf w formatach GraphML, GEXF oraz JGF.

Graph Markup Language (GraphML)

Listing 2.1: Przykład grafu w formacie GraphML

```
<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
    http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
    <graph id="G" edgedefault="undirected">
        <node id="1"/>
        <node id="2"/>
        <edge source="1" target="2"/>
        </graph>
</graph></graphml>
```

Graph Exchange XML Format (GEXF)

Listing 2.2: Przykład grafu w formacie GEXF

JSON Graph Format (JGF)

Listing 2.3: Przykład grafu w formacie JGF

DOT Graphviz

Listing 2.4: Przykład grafu w formacie DOT

```
graph graphname {
    a -- b -- c;
    b -- d;
}
```

2.1.2 Generowanie grafów

Użytkownik powinien mieć możliwość wygenerowania znanych grafów, dla zadanych parametrów wejściowych:

- Graf pusty
- Graf liniowy

- Graf cykliczny
- Koło
- Graf pełny (lub turniej)
- Graf pełny dwudzielny
- Graf Petersena
- Drzewa

Definicje i przykłady powyższych grafów znajdują się w sekcji 1.2. Ponadto przydatnym dodatkiem w aplikacji będzie możliwość wygenerowania grafu losowego – o danej ilości wierzchołków oraz parametrem prawdopodobieństwa określającym, czy pomiędzy dwoma wierzchołkami istnieje krawędź.

2.2 Wizualizacja

oddalanie, przybliżanie layouts (grid, circle, concentric, bfs) samodzielne ustawianie wierzchołków i force layout różne typy wierzchołków / kolory / ikony w wierzchołkach style / kolor krawędzi wyszukiwanie po danych

2.3 Edycja

osobny tryb edycji dodawanie/usuwanie wierzchołków/krawędzi dodawanie etykiet / własności grupowanie wierzchołków

2.4 Przetwarzanie

Podstawowe algorytmy:

- Wyszukiwanie najkrótszej ścieżki
- Minimalne drzewo rozpinające
- Page rank
- Spójne składowe
- Cykl Eulera
- Cykl Hamiltona

2.5 Eksportowanie

Użytkownik powinien mieć możliwość wyeksportowania do formatów, które zostały przedstawione w podsekcji 2.1.1. Ponadto przydatną funkcjonalnością będzie możliwość wyeksportowania obecnego widoku do pliku graficznego, np. PNG lub JPG.

Istniejące rozwiązania

3.1 Aplikacje internetowe

Graph Creator – Illuminations

```
http://illuminations.nctm.org/Activity.aspx?id=3550
http://graphonline.ru/en/
https://dl.dropboxusercontent.com/u/4189520/GraphJS/graphjs.html
https://yiboyang.github.io/graphrel/
https://visualgo.net/en/dfsbfs
http://crunchbase.linkurio.us/demo/
```

3.2 Aplikacje desktopowe

Projekt i analiza

4.1 Biblioteki do wizualizacji grafów w Java-Script

	Cytoscape.js	Sigma	VivaGraphJS
Licencja	MIT	MIT	BSD 3
Rozmiar	294	112,9	60,4
Renderowanie			
SVG	•	tak	•
HTML5 Canvas	•	tak	•
WebGL Canvas	•	tak	•
Obsługiwane formaty	•	•	•
Rozszerzalność	•	•	•
•	•	•	•

- 4.1.1 Cytoscape.js
- 4.1.2 sigma.js
- 4.1.3 VivaGraph.js
- 4.1.4 Linkurious.js
- 4.2 Interfejs użytkownika
- 4.3 Część serwerowa

Rozdział 5 Implementacja

Testy

Rozdział 7 Wnioski

Dodatek A Instrukcje dla użytkowników

Dodatek B Instrukcje dla programistów

Dodatek C Użyte narzędzia

Bibliografia

- [HW04] Brian Hopkins i Robin Wilson. "The Truth about Königsberg". W: College Mathematics Journal 35 (maj 2004), s. 198-207. URL: https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/hopkins.pdf (term. wiz. 29.04.2017).
- [MB04] S. Mohammed i M. Bernard. *Graph File Formats*. Spraw. tech. Mona, Kingston, Jamajka: Department of Mathematics and Computer Science, The University of the West Indies, 2004. URL: http://www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf (term. wiz. 29.04.2017).
- [Gep] Gephi. Supported Graph Formats. The Gephi Consortium. URL: https://gephi.org/users/supported-graph-formats/ (term. wiz. 29.04.2017).