

MISMATCHED LETTERS PROBABILITIES

Why

Here's a nice (surprising) example of computing an event probability. Consider the following question: We have n letters to put into n addressed envelopes, but we randomly put them into envelopes. What's the chance that no letter is in the correct envelope?

Example

Let us first number the envelopes and letters. Next, suppose we model this uncertain outcome with the sample space $\Omega = S_n$. Here S_n denotes the symmetric group of degree n, as usual (see Permutations). We agree to interpret $\omega \in \Omega$ so that $\omega(i)$ is the number of the letter in the envelope numbered i, where i = 1, ..., n. Suppose we put a distribution $p : \Omega \to [0, 1]$ on Ω so that every permutation is equally likely:

$$p(\omega) = \frac{1}{n!}$$

We are interested in the event W defined by

$$W = \{ \omega \in \Omega \mid \omega(s) \neq s \text{ for all } s = 1, \dots, n \}$$

which we interpret as the event that no letter is in the correct envelope. To get a handle on this event, we express it as smaller events.

Define A_i by

$$A_i = \{ \omega \in \Omega \mid \omega(i) = i \}$$

so that A_i is the set of outcomes in which letter i is in envelope i. The even that at least one letter goes into the correct envelope is given

$$\bigcup_{i=1}^{n} A_i$$

We can compute this probability using the genrealized inclusion-exclusion formula.

First, notice that the event

$$\bigcap_{i=1}^{n} A_i$$

contains the single outcome in which all letters go into the correct envelope. More generally, for any r between 1 and n, $\bigcap_{i=1}^{n} A_i$ contains all outcomes in which the letters $1, \ldots, r$ go into the correct envelope. What is the size of $A_1 \cap \cdots \cap A_r$? Given that the $\omega(1) = 1, \omega(2) = 2, \ldots, \omega(r) = r$, there are n-r envelopes and n-r ways of assigning letters to them. Thus, by the fundamental principle of counting

$$|\cap_{i=1}^r A_i| = (n-r)!$$

Thus the probability of the event is

$$P(\cap_{i=1}^r A_i) = \sum_{\omega \in \cap_{i=1}^r A_i} p(\omega) = \frac{(n-r)!}{n!}.$$

where we have used the fact that $p(\omega) = 1/n!$ for every $\omega \in \Omega$. A similar argument holds for any distinct i_1, \ldots, i_r indices, where i_j are distinct integers between 1 and n. So $P(A_{i-1} \cap \cdots \cap A_{i_r}) = (n-r)!/n!$ Thus, each probability in the rth sum of the inclusion-exclusion formula is (n-r)!/n!, since the rth sum as $\binom{n}{r}$ terms, the rth sum is

$$\binom{n}{r} \frac{(n-r)!}{n!} = \frac{n!}{r!(n-r)!} \frac{(n-r)!}{n!} = \frac{1}{r!}$$

Finally, we apply the generalized inclusion-exclusian formula to obtain

$$P(A_1 \cup \dots \cup A_n) = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} + \dots + (-1)^{n-1} \frac{1}{n!}.$$

Hence, the probability that no letter goes into the correct envelope $W = \Omega - \bigcup_{i=1}^{n} A_i$ is

$$1 - P(A_1 \cup \dots \cup A_n) = 1 + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}$$

If we take $n \to \infty$, the above series series converges to $1/e \approx 0.37.1$

This is sometimes called the *secretary problem*.

¹Future editions will define e.

