

What is difference between precision and accuracy?

- what is the distance from San Jose to Oakland?
 - 60 km: accurate but not precise (65.5 km is correct)
 - 5900.1395 km: precise but not accurate
- why do we want to know?
 - precision rocketry
 - about how long to drive there?
- sometimes the last 10% of precision takes 90% of the time to work out

Decimal system

each digit represents a power of 10

Binary notation

- each digit (bit) represents a power of 2
- convert binary 10011010 to decimal: = 154

Base 10

Base 2

	Base 10
)	
	0.0625

Base 2

	2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2 ⁻³	
1	0	0	0	1	0.0625	0	0	0	
2	0	0	1	0	0.125	0	0	1	
3	0	0	1	1	0.1875	0	0	1	
4	0	1	0	0	0.25	0	1	0	
5	0	1	0	1	0.3125	0	1	0	
6	0	1	1	0	0.375	0	1	1	
7	0	1	1	1			_	_	
8	1	0	0	0	0.4375	0	1	1	
9	1	0	0	1	0.5	1	0	0	
10	1	0	1	0	0.5625	1	0	0	
					0.625	1	0	1	

convert decimal

0.1 to binary?

0

1

0

1

0

1

0

1

0

> 0.000110011 =0.096609375

Binary notation

 decimal and binary representations of the same number:

$$2^{15} \ 2^{14} \ 2^{13} \ 2^{12} \ 2^{11} \ 2^{10} \ 2^{9} \ 2^{8} \ 2^{7} \ 2^{6} \ 2^{5} \ 2^{4} \ 2^{3} \ 2^{2} \ 2^{1} \ 2^{0} \ 2^{-1} \ 2^{-2} \ 2^{-3} \ 2^{-4}$$

$$\downarrow \ \ \downarrow \ \ \downarrow \ \ \ \ \downarrow \ \ \downarrow \ \ \ \downarrow \ \ \ \downarrow \ \ \downarrow \ \ \downarrow \ \ \downarrow \ \ \ \downarrow$$

Floating point representation (scientific notation)

- #.#### × base p
 - #.#### is mantissa
 - -p is exponent (or characteristic)
- base 10: 8.45648×10^7
- base 2 : 1.25×2^2 = 1.01×10^{10}
- precision is number of (binary) digits in mantissa and exponent

Computer storage of floating-point numbers

- double precision example: 64 bits (8 bytes):
 - I bit for sign, I I bits for exponent, 52 for mantissa

- single precision has 32 bits (4 bytes: don't use!)
- exponent bias allows storage of big and small numbers:
 - 1 stored as 2^{1023} not 2^{0}
 - $\sim \! 10^{-308} \, \text{to} \sim \! 10^{308} \, \text{rather than} \, \, 10^0 \, \, \text{to} \, \, 10^{616}$

(down to $\sim 10^{-323}$ from denormalizing/subnormalizing)

- \bullet equal numbers of numbers stored from 0.1 to 1, to 10, 10 to 100
- binary representation has limitations: 0.1 + 0.2 = 0.3000000000000004

Python: formats and types

- Python "float" is double-precision (64-bit)
- use type () to see type of a variable
- can "cast" (convert) explicitly to other types, e.g.:

convert implicitly ('coercion') by mixing types:

```
>>> new vard = 1 * 2.0
```

Python: variables

- general variable types (objects):
 - numerical, string, list, tuple, set, dictionary
 - types assigned dynamically (not like C)
- numerical variable types:

```
- integer: |n| < 2^{31}
```

- long integer: 1234567890123456789L
- floating point real: 1.2e10 , 1.3E-11
- complex: 1.0 + 2.3j
- assign values:

$$-a = b = c = 1$$

$$-a$$
, b , $c = 1$, 8.5 , "test"

$$-a,b=b,a$$
 (swap values)

$$-a += b$$
 (same as $a = a + b$)

del a (delete variable)

Physics equations in Python

• examples:

$$E = mc^2$$
 $x(t) = x_0 + v_0 t + \frac{1}{2}gt^2$

$$T = \frac{1}{2} m v^2$$

 use some Python variables as "constants," others as "variables"

Python: math functions

be careful with integer division in v2:

```
("floors" the answer: =2; use // in \sqrt{3})
  >>> 8/3
  >>> 8.0/3.0 (force a float)
• >>> a = 12 % 8 (remainder, returns value of 4)
• >>> b = 2**3 (exponentiation, 2^3)
• basic math functions in math module (<u>numpy</u> better):
  - from math import *
  -sqrt(), sin(), cos(), tan(), asin(),
    acos(), atan(), sinh(), cosh(),
    tanh(), exp(), log(), log10(), pi, e,
    floor(), ceil(), abs(), erf(), erfc()
```

Dynamic range of number storage

computer cannot represent all real numbers

- errors can occur: overflow, underflow, round-off:
 - $-10^{308} + 10^{308} = inf$ (in Python)
 - $-10^{-323} 8 \times 10^{-324} = 0.0$
 - smallest value in mantissa is machine epsilon :
 - $1 + \varepsilon = 1$ (how do we figure out the value of ε ?)
 - $\varepsilon \approx 2^{-52} \approx 10^{-16}$ in double precision

see sys.float_info and np.finfo(float).eps (import sys)

Sources of numerical error

- truncation error due to approximation:
 - finite series expansion : $\sin(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + ...$
 - happens even with infinite dynamic range
- total/true error = truncation + round-off
 - loss of accuracy + precision
- relative error more important than absolute:

$$\Delta f = \frac{|f_{\text{num}} - f_{\text{true}}|}{f_{\text{true}}}$$

Fractional error

• relative/fractional error:
$$\Delta f = \frac{f_{\text{estimate}} - f_{\text{true}}}{f_{\text{true}}}$$

- example: leave enough water for your pet on a hot day
 - $-\underline{\text{cow}}$: $V_{\text{correct}} = 10 \text{ L}$, error of -0.5 L is $\Delta f = 0.05 = 5\%$, not a problem
 - hamster: $V_{\text{correct}} = 0.5 \text{ L}$, error of -0.5 L is $\Delta f = 100\%$, poor hamster!

Mathematical equivalence is not numerical equivalence

example:

$$-f_1 = x^3 - 6x^2 + 3x - 1$$
$$-f_2 = ((x - 6)*x + 3)*x - 1$$

- \triangleright check numerical difference in Python for x=3.82
- > which is better?
- more arithmetic operations mean more round-off error and longer run-time