Exercise 11.11. Prove Eisenstein's criterion via the method indicated in the text.

Eisenstein's Criterion: Let f(x) be a polynomial of degree n > 1 in $\mathbb{Z}[x]$. Suppose that $f(x) = \sum_{i=0}^{n} a_{i}x^{i}$. Further, suppose there is a prime number p satisfying the following three conditions:

- (1) The coefficient a_n is not divisible by p;
- (2) every coefficient a_i with i < n is divisibly by p; and
- (3) the constant coefficient a_0 is not divisibly by p^2 .

Proof.

1. Suppose $f \in \mathbb{Z}[x]$ is such that $n := \deg(f) > 1$. Then $f(x) = \sum_{j=0}^{n} a_j x^j$ for some $\{a_j\}_{j=0}^n \subset \mathbb{Z}$. Suppose p is a prime satisfying the three conditions in Eisenstein's criterion.

In the spirit of contradiction, suppose that f(x) = g(x)h(x) where $g(x) = \sum_{j=0}^{k} g_j x^j$ and $h(x) = \sum_{j=0}^{\ell} h_j x^j$ where $1 \leq \ell, k < n$. Then,

(0.1)
$$f(x) = \sum_{j=0}^{n} a_j x^j = \sum_{j=0}^{n} x^j \left(\sum_{i+m=j} g_i h_m \right) \implies a_j = \sum_{i+m=j} g_i h_m \text{ for } j = 0, \dots, n.$$

2. By Equation (0.1) and condition (2) we observe that p divides $a_0 = g_0 h_0$ but by Equation (0.1) and condition (3) p^2 does not divide $a_0 = g_0 h_0$. Since p is prime, the first of these observations implies that

$$(0.2) p divides g_0 or p divides h_0.$$

The second observation, tells us that the "or" in Equation (0.2) is an exclusive or. So, without loss of generality, we assume that p divides g_0 but p does not divide h_0 .

3. We have shown that p divides g_0 and does not divide h_0 . Now, we make the inductive assumption that p divides g_j for all $j \leq i - 1 < k$, for some $i \in \mathbb{N}$. Then, by Equation (0.1), since $i \leq k < n$ it follows that

$$0 = a_i = \sum_{j+m=i} g_j h_m \implies g_i h_0 = -\sum_{\substack{j+m=i\\m\neq 0}} g_j h_m.$$

Since each p divides g_j for all j < i, it follows that the right hand side, and hence the left hand side of the above equation is divisible by p. Since p does not divide h_0 and p is prime, this consequently shows that p divides g_i . Hence, induction holds, and p divides g_i for all $i \le k$.

4. One last time using Equation (0.1), we deduce that

$$a_n = \sum_{i+m=n} g_i h_m = g_k h_\ell.$$

By Part 3, it follows that p divides g_k and consequently p divides a_n , contradicting condition (1) of Eisenstein's criterion.

Hence, there do not exist polynomials $g, h \in \mathbb{Z}[x]$ with positive degree that divide f.

Exercise 11.18. Use reduction modulo p to prove that $f(x) = x^5 + x^4 + 2x^3 + 2x + 2$ does not factor in $\mathbb{Z}[x]$ as a product of lower-degree polynomials.

Proof. We first note that if f(x) can be factor, it can without loss of generality be factored into monic polynomials since it is itself monic.

Next, observe that 3 does not divide 1, so we consider $[f](x) = x^5 + x^4 + 2x^3 + 2x + 2 \in \mathbb{F}_3[x]$. Moreover, we recall from Exercise 11.13 that the only monic polynomials in $\mathbb{F}_3[x]$ of degree less than or equal to 2 are:

$$(0.3) x^2 + 1, x^2 + x + 2, x^2 + 2x + 2.$$

Finally, we recall that if $g(x) \in K[x]$ is a polynomial of degree n, and there are no non-constant polynomials of degree less than or equal to $\frac{n}{2}$ in K[x] that divide g(x), then g(x) is irreducible in K[x].

Hence, it sufficies to show that none of the polynomials in (0.3) divides $[f](x) \in \mathbb{F}_3[x]$.

Indeed, by long division, we can check that the remainder of [f](x) divided by $x^2 + 1$ is x, the remainder of [f](x) divided by $x^2 + x + 2$ is 2x + 2 and the remainded of [f](x) divided by $x^2 + 2x + 2$ is 2x. Since none of these remainers are zero in $\mathbb{F}_3[x]$, the result follows: there are no divisors of [f](x) in $\mathbb{F}_3[x]$ and therefore by Theorem 11. 9 there are no non-constant divisors of f(x) in $\mathbb{Z}[x]$. \square

Exercise 12.7. Prove Theorem 12.12.

Theorem 12.12. Let K be a field. Suppose that a(x), b(x) are relatively prime polynomials in K[x], and suppose that $c(x) \in K[x]$ is such that a(x) divides b(x)c(x) in K[x]. Then a(x) divides c(x) in K[x].

Proof. Since a(x), b(x) are relatively prime, Theorem 12.10 guarantees the existence of $r(x), s(x) \in K[x]$ such that

$$1 = r(x)a(x) + s(x)b(x).$$

Multiplying both sides by c(x) yields

$$c(x) = r(x) \left(a(x)c(x) \right) + s(x) \left(b(x)c(x) \right).$$

Of course a(x) divides a(x). By assumption a(x) divides b(x)c(x). In particular, the right hand side of the above equation is divisible by a(x) and consequently a(x) divides c(x) as desired.

Exercise 13.4. Use Polar coordinates to prove that we can take square roots in \mathbb{C} .

Proof.

- 1. Fix $c \in \mathbb{C} \setminus \{0\}$ and write c = a + bi for $a, b \in \mathbb{R}$. Let |c| be the distance to the origin. Then $|c| = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$.
- 2. Show that every complex number c as above can be written as the product of a positive real number r and a complex number whose norm is 1.

We observe

$$c = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} + \frac{bi}{\sqrt{a^2 + b^2}} \right).$$

We note that

$$\left| \frac{a}{\sqrt{a^2 + b^2}} + \frac{bi}{\sqrt{a^2 + b^2}} \right| = \sqrt{\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}} = 1.$$

- 3. Suppose |c| = 1. Then, considering [c] = (a, b) as a point in the cartesian plane corresponding to c in the complex plane, we know that [c] must lie on the unit circle. The unit circle is parametrized by the set of points $\{(\cos(\theta), \sin(\theta)) \mid \theta \in [0, 2\pi)\}$. In particular, since c is on the unit circle, there exists some particular θ_c such that $[c] = (\cos(\theta), \sin(\theta))$ and consequently $c = \cos(\theta) + i\sin(\theta)$ as desired.
- 4. Combining (2) and (3), we deduce that an arbitrary (non-zero) $c \in \mathbb{C}$ can be written as

(0.4)
$$c = |c| \left(\cos(\theta) + i \sin(\theta) \right), \text{ for some } \theta \in [0, 2\pi).$$

5. Now, we recall from Chapter 7 that $(\cos(x) + i\sin(x))^n = \cos(nx) + i\sin(nx)$ for all $x \in \mathbb{R}$ and $n \in \mathbb{R}$. In particular:

$$\left(\pm\sqrt{r}\left(\cos(\frac{\theta}{2})+i\sin(\frac{\theta}{2})\right)\right)^2 = r\left(\cos(\frac{\theta}{2})+i\sin(\frac{\theta}{2})\right) = r\left(\cos(\theta)+i\sin(\theta)\right).$$

So, letting θ be as in (), it follows that

$$\pm\sqrt{|c|}\left(\cos(\theta/2)+i\sin(\theta/2)\right)$$
,

can both be the square root of c in \mathbb{C} .