```
In [78]: from wordcount import nb_word_count
filename = "MSIN0143_2020_GROUP_E2.ipynb"
nb_word_count(filename)
```

Out[78]: 1998

Report Structure:

- 1. Introduction
- 2. Data Preparation
- 3. Exploratory and Descriptive Analysis
- 4. Predictive Analysis
- 5. Limitations
- 6. Conclusion

1. Introduction

Problem Statement

London housing is famously known for its extremely high price tag. Besides it being the capital, thereby contributing to house price, we would like to know what other influencing factors exist. Currently, there is no such platform/dataset offering transparent details on housing and related factors.

We aim to investigate how to gather insights from multiple datasets about the boroughs in London and how we can use predictive models to derive which factors are most important in influencing housing prices in London's 33 boroughs.

With this project, we support the government in helping first-time home buyers find their ideal house, by increasing their understanding of trends in different Boroughs.

Objective

Using historical data on house prices in London, we want to build a large dataset including various attributes influencing value and build a customisable search engine.

Based on our initial research, we have gathered a shortlist of variables that may contribute towards housing prices (Mason, 2017). We will then research the relevant dataset at Borough level to compile our dataset.

Our goal is to create a model transparently predicting house prices in different boroughs, whilst controlling for certain area characteristics and time. Different factors that influence the price shall be taken into consideration and analysed with regards to their influence on price.

```
In [1]: #Import necessary modules and codes
        from IPython.core.interactiveshell import InteractiveShell
        InteractiveShell.ast node interactivity = "all"
        import faculty.datasets as datasets
        import pandas as pd
        from pandas import DataFrame
        from functools import reduce
        import numpy as np
        from scipy.stats import skew
        import matplotlib.pyplot as plt
        import math
        import seaborn as sn
        from functools import reduce
        from scipy.stats import skew
        from sklearn import linear model
        import statsmodels.api as sm
        from linearmodels import PanelOLS
        from linearmodels import PooledOLS
        from linearmodels.panel import compare
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.model selection import train test split, cross val score, GridSearch
        CV, StratifiedKFold
        import xgboost as xgb
        import lightgbm as lgb
        from sklearn.linear model import LinearRegression, LogisticRegression, SGDRegresso
        r, RidgeCV
        from sklearn.ensemble import RandomForestRegressor
        import sklearn.model selection
        from sklearn import metrics
        from sklearn.metrics import r2 score, mean absolute error, mean squared error
        from sklearn import preprocessing
```

ModuleNotFoundError

Traceback (most recent call last)

<ipython-input-1-eb4abfac22d0> in <module>

- 16 from sklearn import linear model
- 17 import statsmodels.api as sm
- ---> 18 from linearmodels import PanelOLS
 - 19 from linearmodels import PooledOLS
 - 20 from linearmodels.panel import compare

ModuleNotFoundError: No module named 'linearmodels'

2. Data Preparation

This report will be based on 9 different datasets.

Datasets 1 to 7 contain information on each of London's 33 boroughs for a variable of interest, across different time periods. Whereas datasets 8 and 9 contain information on a variable of interest at one single point in time.

Upon completion of prepping the 9 datasets, 3 seperate merges will carried out:

- 1. Panel Data Merge Datasets 1 to 7 will be merged on the Area Code and Year Column
- 2. First Year Data Merge (2011) Datasets 1 to 7 with 8 and 9 will be merged on the Area Code Column
- 3. Last Year Data Merge (2017) Datasets 1 to 7 with , 8 and 9 will be merged on the Area Code Column

All 3 merged datasets will be used for Exploratory and Descriptive Analysis, and the merged panel dataset will be used for Predictive Analysis.

Data Prep

Dataset

Source of main dataset (Housing in London):

https://www.kaggle.com/justinas/housing-in-london?select=housing in london yearly variables.csv (https://www.kaggle.com/justinas/housing-in-london?select=housing in london yearly variables.csv)

House Prices

- · Source Kaggle
- Variable of Interest House Prices

```
In [2]: # Importing the House Price Dataset
        house price df= pd.read csv("01. Monthly House Price Data.csv", usecols=[0,1,2,3])
        house price df=house price df.sort values(by=["date","code"])
        house_price_df["date"]=house_price_df["date"].astype(str)
        # Filtering for relevant years (2011 to 2017)
        house_price_df=house_price_df[8644:12424]
        # Calculating the yearly average price
        house price df["year"]=house price df["date"].str[0:4]
        house price df=house price df.groupby(["code", "area", "year"]).mean()
        house price df["average price"]=house price df["average price"].astype(int)
        # Filtering for relevant area codes (London Borough Codes)
        house price df=house price df.sort values(by=["code", "year"])
        house price df=house price df[:231]
        # Renaming and coverting column types in preparation of merge
        house_price_df=house_price_df.reset_index(inplace=False)
        house_price_df = house_price_df.rename(columns={'area': 'Area','code': 'Code',
                                                         'year': "Year", 'average price':
        'House Price'})
        house_price_df["Year"]=house_price_df["Year"].astype(int)
```

In [3]: # Checking first 5 rows of dataset
house_price_df.head()

Out[3]:

	Code	Area	Year	House Price
0	E09000001	city of london	2011	463930
1	E09000001	city of london	2012	525327
2	E09000001	city of london	2013	570008
3	E0900001	city of london	2014	709385
4	E09000001	city of london	2015	760253

Crime

- Source Metropolitan Police
- Variable of Interest Recorded Offences

```
In [4]: # Importing the Crime dataset
        crime_df = pd.read_excel('01 New Crime data .xlsx',
                                    usecols=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
        18,19,20],
                                    header = 1,
                                    index col=0,
                                    sheet name="Crime Rates")
        # Dropping NAs and irrelevant columns
        crime df = crime df.dropna()
        crime df = crime df.drop(labels = ['Borough','1999-00','2000-01','2001-02','2002-
        03','2003-04','2004-05',
                                                  '2005-06','2006-07','2007-08','2008-09',
        2009-10', 2010-11', axis = 1
        # Renaming the columns name and dropping irrelevant areas (Codes outside of Londo
        crime df = crime df.rename(index=str,columns={'2011-12':'2011','2012-13':'2012',
        '2013-14':'2013'
                                    ,'2014-15':'2014','2015-16':'2015','2016-17':'2016','2
        017-18':'2017'})
        crime df = crime df.drop(['E12000007','E13000001','E13000002'],axis = 0)
        crime_df = crime_df.sort_values(by='Code')
        # Converting table into panel data format
        crime 2011 = crime df["2011"]
        crime 2012 = crime_df["2012"]
        crime 2013 = crime df["2013"]
        crime 2014 = crime df["2014"]
        crime 2015 = crime df["2015"]
        crime 2016 = crime df["2016"]
        crime_2017 = crime_df["2017"]
        crime df2 = pd.concat([crime 2011,crime 2012,crime 2013,crime 2014,crime 2015,cri
        me 2016, crime 2017]
                               ,axis = 0)
        crime df2 = pd.DataFrame(crime df2,columns = ['Crime Rates'])
        # Creating lists of Borough Codes and Years for crime df2
        codes = []
        for i in crime df.columns:
            for j in range(33):
                codes.append(i)
        years = []
        for j in range(7):
            for i in crime df.index:
                years.append(i)
        # Adding Borough codes to Borough Codes to crime df2
        years df = pd.DataFrame(codes,columns = ['Year'],index = years)
        crime df2 = pd.concat([years df,crime df2],axis = 1)
        crime df2 = crime df2.sort_values(by = ['Code','Year'])
        # Resetting the index and converting year values in preperation of merge
        crime df2.reset index(inplace=True)
        crime df2["Year"] = crime df2["Year"].astype(int)
```

Out[5]:

	Code	Year	Crime Rates
0	E09000001	2011	90.6
1	E0900001	2012	85.8
2	E0900001	2013	77.9
3	E09000001	2014	85.5
4	E09000001	2015	82.4

Education

- Source London Datastore
- Variable of Interest Schools

```
In [6]: # Each years data is held on a different worksheet in the excel file
        # Defining functions that will automatically clean a worksheet
        # For years 2011-2015
        def education cleaning1(year):
            education df = pd.read excel("01. Education Data.xls", header=1,
                                         usecols=[0,1,18],
                                         skiprows=[2,3,4,38,39,40,41,42,43,44,45,46,47,48
        ,49,50,51,52,53,54],
                                         sheet name=year)
            education df = education df.dropna()
            education df = education df.rename(columns={'All schools': 'Schools'})
            education df["Schools"]=education df["Schools"].astype(int) # change from flo
            education df.insert(2, "Year", year)
            return education df
        # Function for years 2016-2017, as "total" are in different columns in dataset
        def education cleaning2(year):
            education df = pd.read excel("01. Education Data.xls", header=1,
                                     usecols=[0,1,16],
                                     skiprows=[2,3,4,38,39,40,41,42,43,44,45,46,47,48,49,
        50,51,52,53,54],
                                     sheet name=year)
            education df = education df.dropna()
            education df = education df.rename(columns={'All schools': 'Schools'})
            education df["Schools"]=education df["Schools"].astype(int)
            education df.insert(2,"Year",year)
            return education df
        # Grouping all the dataframes together
        edu 2011 = education cleaning1("2011")
        edu 2012 = education cleaning1("2012")
        edu 2013 = education cleaning1("2013")
        edu 2014 = education cleaning1("2014")
        edu 2015 = education cleaning1("2015")
        edu 2016 = education cleaning2("2016")
        edu 2017 = education cleaning2("2017")
        edu_dataset = [edu_2011, edu_2012, edu_2013, edu 2014,edu 2015,edu 2016,
                       edu 2017]
        edu df = pd.concat(edu dataset)
        # Transforming dataframe into panel data format by ordering and renaming columns
        edu_df = edu_df.sort_values(by=["LA Code","Year"])
        edu df=edu df.rename(columns={"LA Code": 'Code'})
        # Converting year values and keeping relevant columns in preperation of merge
        edu_df["Year"]=edu_df["Year"].astype(int)
        edu_df = edu_df[["Code", "Year", "Schools"]]
```

```
In [7]: # Checking first 5 rows of dataset
   edu_df.head()
```

Out[7]:

	Code	Year	Schools
0	E09000001	2011	5
0	E09000001	2012	5
0	E09000001	2013	5
0	E09000001	2014	5
0	E09000001	2015	5

Employment Opportunity

- Source London Datastore
- · Variable of Interest Job Density

```
In [8]: # Importing the Employment Opportunity Dataset
employment_opps_df = pd.read_excel("01. Employment Opportunity Data.xlsx", index_
col=0, sheet_name="Jobs Density")

# Dropping NAs, irrelevant areas (Codes outside of London) and years
employment_opps_df = employment_opps_df.dropna()
employment_opps_df = employment_opps_df[0:33]
employment_opps_df = employment_opps_df[[2011,2012,2013, 2014, 2015, 2016, 2017]]

# Converting the dataframe into panel data format
employment_df = employment_opps_df.stack()
employment_df = pd.DataFrame(employment_df)

# Renaming the Years and Job Density Columns
employment_df = employment_df.reset_index()
employment_df = employment_df.reset_index()
employment_df.rename(index=str, columns={"level_1": "Year", 0: "Job Density"}, in
place = True)
```

```
In [9]: # Checking first 5 rows of dataset
  employment_df.head()
```

Out[9]:

	Code	Year	Job Density
0	E09000001	2011	75.79
1	E09000001	2012	92.41
2	E09000001	2013	110.98
3	E09000001	2014	121.23
4	E09000001	2015	121.73

Wages

- Source London Datastore
- Variable of Interest Full-Time Annual Salary

```
In [10]: # Importing the Wages, Area Codes dataset
         wages df = pd.read excel("01. Wage Dataset.xlsx", index col=0, sheet name="Full-t
         ime, Weekly")
         area codes df = pd.read csv("01. Area Codes.csv")
         # Removing NAs and filtering for relevant areas
         wages df = wages df.dropna()
         wages df = wages df[0:33]
         # Merging Wages and London Area Codes Dataset (this adds the area codes for each
          borough)
         wages df = wages df.rename(columns={"Area": "Borough"})
         m wages df = pd.merge(wages df, area codes df, on = 'Borough')
         m_wages_df = m_wages_df.drop(["Borough"], axis = 1)
         #Select the year ranging from 2011 to 2017, whilst dropping any duplicated row
         m wages df = m wages df[["Area Code",2011,2012,2013, 2014, 2015, 2016, 2017]]
         m wages df = m wages df.set index("Area Code")
         m wages df = m wages df.drop duplicates()
         m_wages_df = m_wages_df.replace("#",0)
         #Since we used the weekly wage sheet, to get the annual salary we times weekly wa
         ges by 52
         m wages df[[2011,2012,2013, 2014, 2015, 2016, 2017]] = m wages df[[2011,2012,2013
         , 2014, 2015, 2016, 2017]]*52
         f_wages_df = m_wages_df[[2011,2012,2013, 2014, 2015, 2016, 2017]]
         #using the stack function we will transform the dataframe into a panel data
         f wages df = f wages df.stack()
         f wages df = f wages df.reset index()
         f wages df.rename(index=str, columns={"Area Code": "Code", "level 1": "Year", 0:
         "Annual Salary" }, inplace = True)
```

```
In [11]: # Checking first 5 rows of dataset
f_wages_df.head()
```

Out[11]:

	Code	Year	Annual Salary
0	E09000001	2011	52358.800000
1	E09000001	2012	52379.993605
2	E09000001	2013	55510.309047
3	E09000001	2014	55514.808380
4	E09000001	2015	55889.369644

Leisure & Entertainment

- Source London Datastore
- Variable of Interest Number of Pubs and Restaurants

```
In [12]: #importing the pubs (p) and restaurants (r) datasets
         leisure p df = pd.read excel("01. Leisure & Entertainment Data (Pubs).xls", sheet
         name="Pubs units", header = 3, skiprows = [4,5])
         leisure r df = pd.read excel("01. Leisure & Entertainment Data (Restaurants).xls"
         , sheet_name="Restaurants units", header = 3,skiprows = [4,5])
         # Dropping NAs
         leisure p df = leisure p df.dropna()
         leisure_r_df = leisure_r_df.dropna()
         # Renaming columns manually
         leisure p df = leisure p df.rename(columns={"Unnamed: 0":"Area Code", "Unnamed:
         1": "Area Name"})
         leisure p df = leisure p df.set index("Area Code")
         leisure_r_df = leisure_r_df.rename(columns={"Unnamed: 0":"Area Code", "Unnamed: 1"
         : "Area Name" })
         leisure r df = leisure r df.set index("Area Code")
         # Excluding years outside of 2011 - 2017
         leisure p df selected = leisure p df[[2011, 2012,2013,2014,2015,2016,2017]]
         leisure_r_df_selected = leisure_r_df[[2011, 2012,2013,2014,2015,2016,2017]]
         # Converting to panel data format
         panel leisure p df selected = leisure p df selected.stack()
         panel leisure p df selected = pd.DataFrame(panel leisure p df selected)
         panel leisure r df selected = leisure r df selected.stack()
         panel_leisure_r_df_selected = pd.DataFrame(panel_leisure_r_df_selected)
         # Renaming columns years and No. of Pubs/Restaurants
         panel leisure p df selected = panel leisure p df selected.reset index()
         panel_leisure_p_df_selected.rename(index=str, columns={"level_1": "Year", 0: "Num
         ber of Facilities"}, inplace = True)
         panel leisure r df selected = panel leisure r df selected.reset index()
         panel_leisure_r_df_selected.rename(index=str, columns={"level_1": "Year", 0: "Num
         ber of Facilities"}, inplace = True)
         # Merging Pubs and Restaurants into one Dataframe
         leisure df = pd.merge(panel leisure p df selected, panel leisure r df selected, l
         eft_index=True, right_index=True, how='outer')
         leisure df = leisure df.drop(['Area Code_y', 'Year_y'], axis=1)
         leisure df = leisure df.rename(index=str, columns={"Area Code_x":"Area Code", "Ye
         ar x": "Year", "Number of Facilities x": "Number of Pubs", "Number of Facilities
         y":"Number of Restaurants"})
         # Combining Bars and Restuarants Values and renaming Area Code Column in preparat
         ion of merge
         leisure df["Bars and Restaurants"] = leisure df['Number of Pubs'] + leisure df['N
         umber of Restaurants']
         leisure_df = leisure_df.drop(['Number of Restaurants', 'Number of Pubs'], axis=1)
         leisure_df = leisure_df.rename(columns={"Area Code":"Code"})
```

```
In [13]: # Checking first 5 rows of dataset
    leisure_df.head()
```

Out[13]:

	Code	Year	Bars and Restaurants
0	E09000001	2011	365.0
1	E09000001	2012	370.0
2	E09000001	2013	385.0
3	E09000001	2014	415.0
4	E09000001	2015	420.0

Healthcare

- Source NHS
- Variable of Interest Number of GP Practices

```
In [14]: # Importing the healthcare, mappings and area codes datasets
         healthcare df = pd.read csv("01. Healthcare Data.csv", names=["Practice Name", "P
         ostcode"], usecols= [1, 9])
         mappings df = pd.read csv('01. Postcodes to Borough Mappings.csv', usecols=[0,8])
         area codes df = pd.read csv("01. Area Codes.csv")
         # Dropping NAs from dataset
         healthcare df = healthcare df.dropna()
         # Merging Healthcare and Mappings Dataset
         mappings df = mappings df.rename(columns = {"District": "Borough"})
         m healthcare df = pd.merge(healthcare df, mappings df,on = ['Postcode'],how = 'in
         m healthcare df = m healthcare df[["Practice Name", "Borough"]]
         # Aggregating Dataframe by the number of Practices per Borough
         m healthcare df = m healthcare df['Borough'].value counts().rename axis('Borough'
         ).reset index(name='Healthcare Practices')
         # Merging Healthcare and London Area Codes Dataset (this drops practices out of L
         ondon)
         f healthcare df = pd.merge(m healthcare df, area codes df, on="Borough")
         f healthcare df = f healthcare df.set index("Area Code").sort values("Area Code")
         # Resetting index, renaming and dropping unneeded columns in preparation of merge
         f healthcare df=f healthcare df.reset index(inplace=False)
         f healthcare df.rename(columns={"Area Code":"Code"}, inplace = True)
         f healthcare df=f healthcare df.drop(columns="Borough")
```

In [15]: # Checking first 5 rows of dataset
f_healthcare_df.head()

Out[15]:

	Code	Healthcare Practices
0	E0900001	2
1	E09000002	65
2	E0900003	98
3	E09000004	46
4	E09000005	95

Transport

- Source Doogal
- Variable of Interest Number of TfL Transport Stations and Average of TfL Transport Zones (in Borough)

```
transport_df = transport_df[["Station", "Zone", "Postcode"]]
         transport_df = transport df.dropna()
         # Creating a Zone Column representing the most central transport zone
         zones = transport df["Zone"].str.split(",", expand = True)
         transport df["Zone"] = zones[0]
         # Merging Transport and Mappings Datasets
         mappings df = mappings df.rename(columns = {"District": "Borough"})
         m transport df = pd.merge(transport df, mappings df,on = ['Postcode'],how = 'inne
         r')
         m transport df = m transport df[["Station", "Zone", "Borough"]]
         # Aggregating Dataframe by the number of Stations per Borough
         f transport df = m transport df['Borough'].value counts().rename axis('Borough').
         reset_index(name='Transport Stations')
         # Creating a Zones dataset with a mean transport zone for each borough
         zones_df = m_transport_df[["Zone", "Borough"]].set_index('Borough')
         zones df["Zone"] = zones df["Zone"].astype(int)
         zones df = zones df.mean(level="Borough")
         # Merging the merged transport dataset with Zones dataset
         f transport df = pd.merge(f transport df, zones df, on = ['Borough'])
         f transport df.rename(columns={'Zone': 'Average of Transport Zones'}, inplace = T
         # Merging Transport and London Area Codes Dataset (this drops practices out of Lo
         ndon)
         f transport df = pd.merge(f transport df, area codes df, on="Borough")
         f_transport_df = f_transport_df.set_index("Area Code").sort_values("Area Code")
         # Resetting index, renaming and dropping unneeded columns in preparation of merge
         f transport df = f transport df.reset index(inplace=False)
         f transport df.rename(columns={"Area Code":"Code"}, inplace = True)
         f_transport_df = f_transport_df.drop(columns="Borough")
In [17]: # Checking first 5 rows of dataset
         f_transport_df.head()
Out[17]: ___
```

mappings df = pd.read csv('01. Postcodes to Borough Mappings.csv', usecols=[0,8])

	Code	Transport Stations	Average of Transport Zones
0	E09000001	13	1.000000
1	E09000002	7	4.714286
2	E09000003	18	3.833333
3	E09000004	12	5.166667
4	E0900005	27	3.148148

In [16]: # Importing the transport, mappings and area codes datasets
transport df = pd.read csv("01. Transport Data.csv")

area codes df = pd.read csv("01. Area Codes.csv")

Dropping NAs and keeping columns of interest

Data Merge

Panel Data

In [19]: # Checking first 5 rows of dataset
 final_dataset.head()

Out[19]:

	Code	Area	Year	House Price	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants
0	E0900001	CITY OF LONDON	2011	463930	90.6	5	75.79	52358.800000	365.0
1	E0900001	CITY OF LONDON	2012	525327	85.8	5	92.41	52379.993605	370.0
2	E0900001	CITY OF LONDON	2013	570008	77.9	5	110.98	55510.309047	385.0
3	E0900001	CITY OF LONDON	2014	709385	85.5	5	121.23	55514.808380	415.0
4	E0900001	CITY OF LONDON	2015	760253	82.4	5	121.73	55889.369644	420.0

First Year Data

```
In [20]: # Filtering Final Dataset for the first year (2011)
firstyr_dataset = final_dataset[final_dataset["Year"]==2011].drop(columns="Year")

# Merging Filtered Final Dataset with Transport and Healthcare Dataset
firstyr_dataset = pd.merge(firstyr_dataset, f_healthcare_df,on=("Code"))
firstyr_dataset = pd.merge(firstyr_dataset, f_transport_df,on=("Code"))
```

In [21]: # Checking first 5 rows of dataset
firstyr_dataset.head()

Out[21]: _

	Code	Area	House Price	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants	Healthcare Practices
0	E09000001	CITY OF LONDON	463930	90.600000	5	75.79	52358.8	365.0	2
1	E09000002	BARKING AND DAGENHAM	163465	100.652840	59	0.45	26041.6	55.0	65
2	E0900003	BARNET	338978	73.505474	154	0.62	32312.8	300.0	98
3	E09000004	BEXLEY	200672	52.273879	83	0.53	31668.0	190.0	46
4	E0900005	BRENT	298964	101.176960	103	0.53	25911.6	250.0	95

Last Year Data

```
In [22]: # Filtering Final Dataset for the last year (2017)
lastyr_dataset = final_dataset[final_dataset["Year"]==2017].drop(columns="Year")

# Merging Filtered Final Dataset with Transport and Healthcare Dataset
lastyr_dataset = pd.merge(lastyr_dataset, f_healthcare_df,on=("Code"))
lastyr_dataset = pd.merge(lastyr_dataset, f_transport_df,on=("Code"))
```

```
In [23]: # Checking first 5 rows of dataset
lastyr_dataset.head()
```

Out[23]:

	Code	Area	House Price	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants	Health Pract
0	E09000001	CITY OF LONDON	849790	92.200000	5	124.78	57328.122094	455.0	2
1	E09000002	BARKING AND DAGENHAM	287734	78.794325	64	0.49	28906.800000	55.0	65
2	E0900003	BARNET	538280	54.429232	161	0.70	35880.000000	350.0	98
3	E09000004	BEXLEY	335694	39.765179	84	0.59	32479.200000	205.0	46
4	E0900005	BRENT	487703	69.910019	98	0.71	29302.000000	260.0	95

3. Descriptive and Exploratory Analysis

Data type and Borough

Here, we introduce the datatypes of all variables and list all boroughs in London.

In [24]:	final_dataset.dtypes	
Out[24]:	Code	object
	Area	object
	Year	int64
	House Price	int64
	Crime Rates	float64
	Schools	int64
	Job Density	float64
	Annual Salary	float64
	Bars and Restaurants	float64
	dtype: object	

In [25]: table_borough = final_dataset[["Code","Area"]].drop_duplicates()
table_borough.set_index("Code")

	Area
Code	
E0900001	CITY OF LONDON
E0900002	BARKING AND DAGENHAM
E0900003	BARNET
E0900004	BEXLEY
E0900005	BRENT
E0900006	BROMLEY
E0900007	CAMDEN
E0900008	CROYDON
E0900009	EALING
E0900010	ENFIELD
E09000011	GREENWICH
E09000012	HACKNEY
E09000013	HAMMERSMITH AND FULHAM
E09000014	HARINGEY
E09000015	HARROW
E09000016	HAVERING
E09000017	HILLINGDON
E09000018	HOUNSLOW
E09000019	ISLINGTON
E09000020	KENSINGTON AND CHELSEA
E09000021	KINGSTON UPON THAMES
E09000022	LAMBETH
E09000023	LEWISHAM
E09000024	MERTON
E09000025	NEWHAM
E0900026	REDBRIDGE
E09000027	RICHMOND UPON THAMES
E09000028	SOUTHWARK
E09000029	SUTTON
E09000030	TOWER HAMLETS
E09000031	WALTHAM FOREST
E09000032	WANDSWORTH
E09000033	WESTMINSTER

Statistical Description of Data

We create a summary statistics table for our dataset:

```
In [26]: descriptive_table = final_dataset.describe()
    descriptive_table
```

Out[26]:

	Year	House Price	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants
count	231.000000	2.310000e+02	231.000000	231.000000	231.000000	231.000000	231.000000
mean	2014.000000	4.357631e+05	84.779510	93.536797	4.194805	33529.633135	326.645022
std	2.004343	2.126523e+05	34.024164	26.678557	18.972746	5366.229929	270.522240
min	2011.000000	1.634650e+05	39.765179	5.000000	0.390000	25906.400000	55.000000
25%	2012.000000	2.979545e+05	64.265730	78.500000	0.540000	30209.400000	187.500000
50%	2014.000000	3.769240e+05	77.847006	96.000000	0.650000	32219.200000	255.000000
75%	2016.000000	5.035330e+05	96.723957	108.000000	1.100000	35648.600000	370.000000
max	2017.000000	1.344539e+06	302.005629	164.000000	124.780000	57328.122094	1700.000000

We have 231 observations. Now we provide a snapshot of 2017's summary statistics:

```
In [27]: #Using describe to generate mean for all the variable in 2011 and create a Datafr
         last = lastyr dataset.describe()
         lastyr describe = pd.DataFrame(last)
         #Using describe to generate mean for all the variable in 2017 and create a Datafr
         ame
         first = firstyr dataset.describe()
         firstyr describe = pd.DataFrame(first)
         #using the following formula we can generate the percentage different over the 6
         years.
         ptc_df = round(((lastyr_describe - firstyr_describe)/(firstyr_describe))*100,2)
         #Dropping any non-relevant variable, since Healthcare Practice, Transport station
         and average transport zone didn't change between 2011 and 2017.
         ptc df = ptc df.drop(["Healthcare Practices", "Transport Stations", "Average of T
         ransport Zones"], axis = 1)
         #Dropping other non-relevant rows provided by the describe function
         ptc_df = ptc_df[1:2]
         #Adding percentage sign onto the values
         ptc df.astype(str).add("%").T
```

Out[27]:

	mean
House Price	62.59%
Crime Rates	-28.21%
Schools	4.14%
Job Density	51.12%
Annual Salary	7.3%
Bars and Restaurants	15.27%

Next, we vissualize the percentage change in summary statistics from 2011 to 2017.

```
In [28]: %matplotlib inline
  plt.figure(figsize=(16, 8))
  ptc_df.plot.bar()
```

Out[28]: <Figure size 1152x576 with 0 Axes>

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb920d2d4f0> <Figure size 1152x576 with 0 Axes>

Exploratory Analysis

Dependent Variable - House Price

We will now review house prices in detail, as it is our dependent variable in Section 4.

House Price Heatmap

In [1]: %%**HTML**

we didn't run the output because it cannot show correctly in PDF. However we to ok a screenshot to show what does it looks like. People can run it on faculty. <div class='tableauPlaceholder' id='viz1607777849491' style='position: relative'> <noscript><img alt=' ' src='https://public.tableau.com/st</pre> atic/images/SM/SMX2P7QYY/1 rss.png' style='border: none' /></ noscript><object class='tableauViz' style='display:none;'><param name='host_url'</pre> value='https%3A%2F%2Fpublic.tableau.com%2F' /> <param name='embed_code_version' v</pre> alue='3' /> <param name='path' value='shared/SMX2P7QYY' /> <param name='toolb ar' value='yes' /><param name='static image' value='https://public.tablea u.com/static/images/SM/SMX2P7QYY/1.png' /> <param name='anima te transition' value='yes' /><param name='display static image' value='yes' /><pa ram name='display_spinner' value='yes' /><param name='display_overlay' value='ye s' /><param name='display count' value='yes' /><param name='language' value='en' /><param name='filter' value='publish=yes' /></object></div> ipt type='text/javascript'> var divElement = document.getEleme ntById('viz1607777849491'); var vizElement = divElement.getEle mentsByTagName('object')[0]; vizElement.style.width='100%';viz Element.style.height=(divElement.offsetWidth*0.75)+'px'; criptElement = document.createElement('script'); scriptElemen t.src = 'https://public.tableau.com/javascripts/api/viz v1.js'; vizElement.parentNode.insertBefore(scriptElement, vizElement); </s cript>

we didn't run the output because it cannot show correctly in PDF. However we took a screenshot to show what does it looks like. People can run it on faculty.

Average House Price 287,734 1,344,539

Annual Salary and House Price Plot

Given high property prices in London, we compare the percentage change in Londoners' salaries and house prices.

Between 2013 and 2014, the percentage change in house prices increased by 8.11%, attributed to record low interest rates, driving up demand (Osborne, 2014). However, from 2016 to 2017 the percentage change in prices decreased by 3.19%, as uncertainty over Brexit take effect (Collinson, 2017).

London's problem of affordability is visualised above, by the disproportionate increases in house prices relative to annual salary. New home buyers face challenging times ahead.

Histogram

```
In [29]: #Selecting House Price to be plotted on the histogram
         house price =lastyr dataset["House Price"]
         # Creating a histogram based on 10 bins
         hist, bin edges = np.histogram(house price)
         # Dividing bin edges by 1000 and rounding for ease of reading on histogram
         tick labels = bin edges/1000
         tick labels = [int(label) for label in tick labels]
         # Calculating the skewness of the histogram
         skew_value = round(skew(house_price), 2)
         skew_text = "Skew = " + str(skew_value)
         # Plotting the histogram and adding text on it's skewness
         plt.figure(figsize=(16, 8))
         plt.hist(house price, bins=10)
         plt.title("London Boroughs' Average House Prices in 2017", fontsize = 20)
         plt.xticks(bin_edges, tick_labels, fontsize = 12)
         plt.yticks(fontsize = 12)
         plt.xlabel("Average House Price (£000s)", fontsize = 14)
         plt.ylabel("Count of Boroughs", fontsize = 14)
         plt.text(1180000, 11.5, skew text, fontsize = 18)
         plt.show()
```

```
Out[29]: <Figure size 1152x576 with 0 Axes>
Out[29]: (array([ 7., 12., 6., 3., 1., 2., 0., 1., 0., 1.]),
          array([ 287734., 393414.5, 499095., 604775.5, 710456., 816136.5,
                  921817., 1027497.5, 1133178., 1238858.5, 1344539. 1),
          <a list of 10 Patch objects>)
Out[29]: Text(0.5, 1.0, "London Boroughs' Average House Prices in 2017")
Out[29]: ([<matplotlib.axis.XTick at 0x7f058a3e5130>,
           <matplotlib.axis.XTick at 0x7f058a3e5100>,
           <matplotlib.axis.XTick at 0x7f05873b36d0>,
           <matplotlib.axis.XTick at 0x7f058aa84490>,
           <matplotlib.axis.XTick at 0x7f058aa84ca0>,
           <matplotlib.axis.XTick at 0x7f058aa84520>,
           <matplotlib.axis.XTick at 0x7f058aa5d430>,
           <matplotlib.axis.XTick at 0x7f058aa5d8e0>,
           <matplotlib.axis.XTick at 0x7f058aa5de50>,
           <matplotlib.axis.XTick at 0x7f058aac43a0>,
           <matplotlib.axis.XTick at 0x7f058aa35f10>],
          [Text(0, 0, '287'),
           Text(0, 0, '393'),
           Text(0, 0, '499'),
           Text(0, 0, '604'),
           Text(0, 0, '710'),
           Text(0, 0, '816'),
           Text(0, 0, '921'),
           Text(0, 0, '1027'),
           Text(0, 0, '1133'),
           Text(0, 0, '1238'),
           Text(0, 0, '1344')])
Out[29]: (array([ 0., 2., 4., 6., 8., 10., 12., 14.]),
          <a list of 8 Text major ticklabel objects>)
Out[29]: Text(0.5, 0, 'Average House Price (£000s)')
Out[29]: Text(0, 0.5, 'Count of Boroughs')
Out[29]: Text(1180000, 11.5, 'Skew = 1.99')
```


The House Prices histogram illustrates a positively skewed distribution, indicating that many boroughs average house prices are below London's total mean. This is an indication of London's high upper bound of house prices.

Independent Variables

Seaborn Heatmap

```
In [30]: %%capture
         # Creating a Seaborn Heatmap visualising the Density of Schools per Borough
         last = lastyr dataset
         last df = pd.DataFrame(last)
         school df = last df.drop(["Code","House Price","Bars and Restaurants","Crime Rate
         s", "Job Density", "Annual Salary", "Healthcare Practices", "Transport Stations", "A
         verage of Transport Zones"], axis = 1)
         school df['Area'] = school df['Area'].apply(lambda x: x.capitalize())
         school df = school df.set index("Area")
         fig, ax = plt.subplots(figsize=(20,20))
         heatmap school = sn.heatmap(school df,linewidth=1,square=True,vmin=5, vmax=175, c
         map="Blues",annot = True, fmt='.0f', yticklabels = False)
         # Creating a Seaborn Heatmap visualising the avg. Annual Salary per Borough
         last = lastyr dataset
         last df = pd.DataFrame(last)
         salary df= last df.drop(["Code", "House Price", "Schools", "Bars and Restaurants", "C
         rime Rates", "Transport Stations", "Job Density", "Healthcare Practices", "Average
          of Transport Zones"], axis = 1)
         salary_df['Area'] = salary_df['Area'].apply(lambda x: x.capitalize())
         salary df = salary df.set index("Area")
         fig, ax = plt.subplots(figsize=(20,20))
         heatmap_salary = sn.heatmap(salary_df,linewidth=1,square=True,vmin=20000, vmax=60
         000, cmap="winter r", annot = True, fmt='.0f', yticklabels = False)
         # Extreme outlier: City of London
         # Creating a Seaborn Heatmap visualising the Density of Leisure Opportunities per
         Borough
         last = lastyr_dataset
         last df = pd.DataFrame(last)
         bars rests df = last df.drop(["Code", "House Price", "Schools", "Crime Rates", "Job D
         ensity", "Annual Salary", "Healthcare Practices", "Transport Stations", "Average of
         Transport Zones"], axis = 1)
         bars_rests_df['Area'] = bars_rests_df['Area'].apply(lambda x: x.capitalize())
         bars rests df = bars rests df.set index("Area")
         fig, ax = plt.subplots(figsize=(20,20))
         heatmap leisure = sn.heatmap(bars rests df,linewidth=1,square=True,vmin=55, vmax=
         1000, cmap="Reds", annot = True, fmt='.0f', yticklabels = False)
         # extreme outlier: Westminster
         # Creating a Seaborn Heatmap visualising the Number of Tube Stations per Borough
         last = lastyr_dataset
         last df = pd.DataFrame(last)
         tfl_stations_df= last_df.drop(["Code","House Price","Schools","Bars and Restauran
         ts", "Crime Rates", "Annual Salary", "Job Density", "Healthcare Practices", "Average
         of Transport Zones"], axis = 1)
         tfl_stations_df['Area'] = tfl_stations_df['Area'].apply(lambda x: x.capitalize())
         tfl_stations_df = tfl_stations_df.set_index("Area")
         fig, ax = plt.subplots(figsize=(20,20))
         heatmap tfl stations = sn.heatmap(tfl stations df,linewidth=1,square=True,vmin=5,
         vmax=40, cmap="YlOrBr",annot = True, fmt='.0f', yticklabels = False)
         # Extreme outlier: Croydon
         # Creating a Seaborn Heatmap visualising the Density of Healthcare Practices per
         Borough
         last = lastyr dataset
         last df = pd.DataFrame(last)
         healthcare df= last df.drop(["Code", "House Price", "Schools", "Bars and Restaurant
         s", "Crime Rates", "Annual Salary", "Job Density", "Transport Stations", "Average of
         Transport Zones"], axis = 1)
         healthcare df['Area'] = healthcare df['Area'].apply(lambda x: x.capitalize())
```

```
healthcare_df = healthcare_df.set_index("Area")
fig, ax = plt.subplots(figsize=(20,20))
heatmap_health = sn.heatmap(healthcare_df,linewidth=1,square=True,vmin=2, vmax=9
5, cmap="autumn", annot = True, fmt='.0f', yticklabels = False)
# Extreme outlier: Croydon
# Creating a Seaborn Heatmap visualising the Density of Jobs per Borough
last = lastyr dataset
last_df = pd.DataFrame(last)
job density df= last df.drop(["Code", "House Price", "Schools", "Bars and Restaurant
s", "Crime Rates", "Annual Salary", "Healthcare Practices", "Transport Stations", "A
verage of Transport Zones"], axis = 1)
job_density_df['Area'] = job_density_df['Area'].apply(lambda x: x.capitalize())
job density df = job density df.set index("Area")
fig, ax = plt.subplots(figsize=(20,20))
heatmap_density = sn.heatmap(job_density_df,linewidth=1,square=True,vmin=0, vmax=
1.5, cmap="Purples",annot = True, fmt='.0f', yticklabels = False)
# extreme outlier: City of London
# Creating a Seaborn Heatmap visualising the Density of Crime Rate per Borough
last = lastyr dataset
last df = pd.DataFrame(last)
crime df = last df.drop(["Code", "House Price", "Schools", "Bars and Restaurants", "J
ob Density", "Annual Salary", "Healthcare Practices", "Transport Stations", "Averag
e of Transport Zones"], axis = 1)
crime df['Area'] = crime df['Area'].apply(lambda x: x.capitalize())
crime_df = crime_df.set_index("Area")
fig, ax = plt.subplots(figsize=(20,20))
heatmap crime = sn.heatmap(crime df,linewidth=1,square=True,vmin=35, vmax=100, cm
ap="Greens",annot = True, fmt='.0f', yticklabels = False )
# extreme outlier: Westminster
# The 7 heatmaps were merged externally.
```


The merged heatmap provides us with a snapshot of borough performance per variable in the final year. Central boroughs, e.g. City of London, Camden and Westminster, generally perform strongest.

Correlation Matrix

Using a correlation matrix enables us to see closely how variables interact with each other

```
In [31]: #first we set a size of this correlation matrix so that values are visible
    fig, ax = plt.subplots(figsize=(10,10))

#using the .corr() calculates the correlation matrix
    corr_table_firstyr = (firstyr_dataset.corr())

#using np.triu() can help use get a triangle matrix so that the top half of the d
    uplicated matrix is deleted
    matrix = np.triu(firstyr_dataset.corr())

#print Matrix
    sn.heatmap(corr_table_firstyr, annot = True, vmin=-1, vmax=1, center= 0, cmap =
    "coolwarm", square = True, mask = matrix, ax=ax)
    plt.show()
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0586ceeb50>

We identify that Crime Rate and Bars & Restaurants, are positively correlated with house prices.

Surprisingly, the number of Schools in a borough decreases, the higher the house price.

Oddly, the average transport zone variable is negatively correlated with house prices. As zones range from 1 to 6, we gather that more central boroughs closer have higher house prices.

We observe that the number of Schools in a borough is correlated with the amount of Healthcare Practices(0.81). An increase in Bars & Restaurants is correlated with a higher crime rate (0.9). Individuals living closer towards Central London (Zone 1), tend to have a higher salary (-0.61).

Some of the information may sound intuitive, yet demonstrating the correlations add to the general understanding of how the variables interact.

Scenario

One particular struggle, when looking for the right house, is finding the ideal area within a suitable range price. However, using the following function helps new home buyers understand borough traits.

House Price Finder

To use this function, users must simply input the letter corresponding to their ideal price range. As a result, borough code, name and prices within the range are presented.

```
In [32]: def house_price_finder():
             desired price=input("""Please indicate your desired house price range:
             A: £280,000-£380,000.
             B: £380,000-£480,000
             C: £480,000-£750,000.
             D: £750,000-£1,000,000.
             E: more than £1,000,000.
             """) # Ask for customers' input as a letter option.
             # in case customers enter lower-case letter.
             desired price=desired price.upper()
             # Below are the five scenarios and their output as a data frame
             if desired price=="A":
                 print ("These are the suitable boroughs.")
                 return lastyr dataset.loc[lastyr dataset["House Price"].between(280000,38
         0000),["Code", "Area", "House Price"]]
             elif desired price=="B":
                 print ("These are the suitable boroughs.")
                 return lastyr dataset.loc[lastyr dataset["House Price"].between(380000,48
         0000),["Code", "Area", "House Price"]]
             elif desired price=="C":
                 print ("These are the suitable boroughs.")
                 return lastyr dataset.loc[lastyr dataset["House Price"].between(480000,75
         0000),["Code", "Area", "House Price"]]
             elif desired price=="D":
                 print ("These are the suitable boroughs.")
                 return lastyr dataset.loc[lastyr dataset["House Price"].between(750000,10
         00000),["Code", "Area", "House Price"]]
             elif desired price=="E":
                 print ("These are the suitable boroughs.")
                 return lastyr dataset.loc[lastyr dataset["House Price"].between(1000000,1
         500000),["Code", "Area", "House Price"]]
             else: # if customers enter other letters or words
                 print("Please enter a valid option.")
         house_price_finder() # run the function
```

Please indicate your desired house price range:

A: £280,000-£380,000.

B: £380,000-£480,000

C: £480,000-£750,000.

D: £750,000-£1,000,000.

E: more than £1,000,000.

These are the suitable boroughs.

Out[32]:

	Code	Area	House Price
1	E09000002	BARKING AND DAGENHAM	287734
3	E09000004	BEXLEY	335694
7	E09000008	CROYDON	372554
15	E09000016	HAVERING	360479
24	E09000025	NEWHAM	362131
28	E09000029	SUTTON	376924

From this list of house prices, users can choose their ideal orough and proceed.

Borough Information Finder

Having narrowed it down to boroughs of interest, we take a closer look by entering the corresponding borough code illustrated above.

```
In [33]: def borough_information_finder():
    prompt = input("Please Enter Borough Name: ") #asking for user's input
    prompt=prompt.upper() # Change all input to upper case letter, because the ar
ea in final-year dataset are all in capital letter
    # Change the area name into lower case letter and check if the input is in.
    if prompt in str(lastyr_dataset["Area"]):
        # return the borough as a transposed data frame so it is easier for custo
mer to view
    return lastyr_dataset.loc[lastyr_dataset["Area"]==prompt].T
    else: # If customers enter other letters or words
        print ("Please enter a valid area name from the house price finder.")
borough_information_finder()
```

Please Enter Borough Name: city of london

Out[33]:

	0
Code	E0900001
Area	CITY OF LONDON
House Price	849790
Crime Rates	92.2
Schools	5
Job Density	124.78
Annual Salary	57328.1
Bars and Restaurants	455
Healthcare Practices	2
Transport Stations	13
Average of Transport Zones	1

As a result, users may use the customized table to check whether the borough satisfies their requirements.

Now that our users established the key attributes their dream borough should have, they want to know more about future prices in the area and which attributes are the most important in determining that price. Let us have a look.

4. Predictive Analysis

Regression Analysis

Pooled-OLS model, one-way fixed-effect model (with entity-effect) and two-way fixed effects model (with both entity and time effects) are generated for our dataset. The dependent variable of the regression model is house price, and the independent variables are all time-variant variables.

Since house prices take large values, a log dependent variable is created. We will use both house price and log house price as dependent variable for each model. Hence, six models will be generated.

```
In [34]: # Set code and year as index, prepared for regression analysis
    regression_df=final_dataset.set_index(["Code","Year"])

#log(House Price) is created
    regression_df["log_HousePrice"]=np.log(regression_df["House Price"])
    regression_df.head()

# Prepare Independent Variables for convenience and add a constant
    x=regression_df[["Schools","Bars and Restaurants","Crime Rates","Job Density","An
    nual Salary"]]
    x=sm.add_constant(x)
```

Out[34]:

		Area	House Price	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants	log_House
Code	Year								
E09000001	2011	CITY OF LONDON	463930	90.6	5	75.79	52358.800000	365.0	13.047489
	2012	CITY OF LONDON	525327	85.8	5	92.41	52379.993605	370.0	13.171776
	2013	CITY OF LONDON	570008	77.9	5	110.98	55510.309047	385.0	13.253406
	2014	CITY OF LONDON	709385	85.5	5	121.23	55514.808380	415.0	13.472154
	2015	CITY OF LONDON	760253	82.4	5	121.73	55889.369644	420.0	13.541407

```
In [35]: # 1 Pooled OLS
          # 1.1 linear OLS
         OLS 1 = PooledOLS(regression df["House Price"], x)
         OLS linear=OLS 1.fit()
           # 1.2 log-lin OLS
         OLS 2 = PooledOLS(regression df["log HousePrice"], x)
         OLS_log=OLS_2.fit()
         # 2 Area-FE model (include only entity effect)
           # 2.1 Linear Area-FE
         FE areal = PanelOLS(regression df["House Price"],x,entity effects=True,time effec
         ts=False)
         FE_area_linear = FE_area1.fit(cov_type="robust")
           # 2.2 log Area-FE
         FE area2 = PanelOLS(regression df["log HousePrice"], x, entity effects=True, time ef
         fects=False)
         FE area log = FE area2.fit(cov type="robust")
         # 3 Two way fixed effects
          # 3.1 Linear Version
         FE2 1 = PanelOLS(regression df["House Price"], x, entity effects=True, time effects=
         True)
         FE_2way_linear = FE2_1.fit(cov_type="robust")
         #3.2 Log version FE-two way
         FE2_1 = PanelOLS(regression_df["log_HousePrice"],x,entity_effects=True,time_effec
         ts=True)
         FE 2way log = FE2 1.fit(cov type="robust")
```

In [36]: # linear model comparision print(compare({'OLS-linear':OLS_linear,'FE-oneway':FE_area_linear,'FE-twoway':FE_ 2way_linear}))

Model Comparison

Model Compalison						
	OLS-linear	FE-oneway	FE-twoway			
Dep. Variable	House Price	House Price	House Price			
Estimator	PooledOLS	PanelOLS	PanelOLS			
No. Observations	231	231	231			
Cov. Est.	Unadjusted	Robust	Robust			
R-squared	0.6439	0.7169	0.4448			
R-Squared (Within)	0.1612	0.7169	0.3235			
R-Squared (Between)	0.7303	-0.5251	0.0461			
R-Squared (Overall)	0.6439	-0.3364	0.0883			
F-statistic	81.353	97.747	29.962			
P-value (F-stat)	0.0000	0.0000	0.0000			
=======================================	========	=========	========			
const	-6.851e+05	-6.253e+05	7.082e+05			
	(-5.6243)	(-2.1926)	(3.0933)			
Schools	-307.63	7229.5	216.77			
	(-0.7463)	(4.3389)	(0.2269)			
Bars and Restaurants	204.30	884.35	320.61			
	(2.9920)	(3.7813)	(3.3282)			
Crime Rates	321.28	-2759.9	-1381.5			
	(0.6997)	(-5.9658)	(-5.5374)			
Job Density	-4488.8	5037.3	4525.3			
	(-6.0549)	(4.5186)	(7.8500)			
Annual Salary	32.047	9.2113	-8.9268			
	(10.477)	(1.2750)	(-1.7111)			
Effects		Entity	Entity Time			

T-stats reported in parentheses

```
In [37]: # log-lin model comparision
    print(compare({'OLS-log':OLS_log,'FE-oneway-log':FE_area_log,'FE-twoway-log':FE_2
    way_log}))
```

Model Comparison

=======================================		==========	=========
=	OLS-log	FE-oneway-log	FE-twoway-lo
g			
_			
Dep. Variable e	log_HousePrice	log_HousePrice	log_HousePric
Estimator S	PooledOLS	PanelOLS	PanelOL
No. Observations	231	231	23
Cov. Est.	Unadjusted	Robust	Robus
t R-squared 6	0.6533	0.6334	0.038
R-Squared (Within)	0.3410	0.6334	-0.012
R-Squared (Between)	0.7365	-1.0353	0.106
R-Squared (Overall)	0.6533	-0.6839	0.081
F-statistic	84.778	66.682	1.501
P-value (F-stat)	0.0000	0.0000	0.191
=======================================	==========	==========	=========
const	10.614	9.2613	12.88
5	(45.046)	(15.399)	(62.64
9) Schools	0.0003	0.0198	-0.000
7	(0.4265)	(4.4236)	(-0.466
5) Bars and Restaurants	0.0005	0.0014	1.125e-0
6	(3.6189)	(2.6563)	(0.005
9) Crime Rates	-0.0005	-0.0046	0.000
3	(-0.5399)	(-3.5800)	(0.607
3) Job Density	-0.0081	0.0047	0.002
0	(-5.6618)	(2.9301)	(3.016
9)			
Annual Salary 6	6.455e-05	5.009e-05	1.221e-0
2)	(10.912)		
=			
Effects Y		Entity	Entit
e			Tim

The first table shows the linear function form models, while the second table shows the log-log models. It does not become clear which dependent variable we shall use, as most of them are statistically significant with similar R2. A Pearson's coefficient is calculated to check the skewness of the house price.

Out[38]: 11.465027368658653

Results suggest "House Price" is positively skewed. We shall use the log dependent variable. FE-twoway-log has an insignificant F-value, implying the model is insignificant overall, potentially because OLS contains insignificant variables.

Our best model is the one-way FE.

Max Obs:

	PanelOLS Est	imation Summary	
Dep. Variable:	log HousePrice	======================================	0.6334
Estimator:	PanelOLS	R-squared (Between):	-1.0353
No. Observations:	231	R-squared (Within):	0.6334
Date:	Mon, Dec 14 2020	R-squared (Overall):	-0.6839
Time:	23:37:24	Log-likelihood	170.70
Cov. Estimator:	Robust		
		F-statistic:	66.682
Entities:	33	P-value	0.0000
Avg Obs:	7.0000	Distribution:	F(5,193)
Min Obs:	7.0000		
Max Obs:	7.0000	F-statistic (robust):	101.41
		P-value	0.0000
Time periods:	7	Distribution:	F(5,193)
Avg Obs:	33.000		
Min Obs:	33.000		

33.000

Parameter Estimates

Upper CI	Parameter	Std. Err.	T-stat	P-value	Lower CI
const 10.447	9.2613	0.6014	15.399	0.0000	8.0751
Schools	0.0198	0.0045	4.4236	0.0000	0.0110
0.0287 Bars and Restaurants 0.0025	0.0014	0.0005	2.6563	0.0086	0.0004
Crime Rates	-0.0046	0.0013	-3.5800	0.0004	-0.0072
Job Density	0.0047	0.0016	2.9301	0.0038	0.0015
Annual Salary 7.528e-05	5.009e-05	1.277e-05	3.9229	0.0001	2.491e-05

======

F-test for Poolability: 21.058

P-value: 0.0000

Distribution: F(32,193)

Included effects: Entity

This model captures 63.34% of the dependent variable's variation.

If number of schools and number of leisure places increases by 1, house prices increase by 1.98% and 0.14% respectively. If crime rates (%) increase by 1%, house prices decrease by 0.46%. A 1 unit increase in job density (job availability/population), results in a 0.47% increase in prices. If a borough's average annual salary increases by £1,000, the borough's house prices increase by 5.009%.

The coefficients are statistically significant and signs are consistent with expectations and economic theories. The magnitude of change shows that annual salary (in £1,000) is the most important factor influencing house price.

Machine Learning Analysis

We would now like to use some our data to train and test the following models:

- 1. XGBoost
- 2. LightGBM
- 3. Random forest

By comparing the models we hope to find the model making the most accurate predictions. When training the model, we assign and modify the parameters of various models repeatedly to achieve greater accuracy, Overall, we aim to derive the following results: A comparison of all feature importance diagrams including a ranking on the average of importance in predicting house prices Three trained models including descriptive information (r2_score, mean_absolute_error, mean_squared_error). An overall comparison of different models and their respective outcomes. House price predictions

Out[40]:

	Year	House Price	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants
0	2011	463930	90.6	5	75.79	52358.800000	365.0
1	2012	525327	85.8	5	92.41	52379.993605	370.0
2	2013	570008	77.9	5	110.98	55510.309047	385.0
3	2014	709385	85.5	5	121.23	55514.808380	415.0
4	2015	760253	82.4	5	121.73	55889.369644	420.0

Retrieve Variable Importance

Now, we randomly assign our data to two parts, a training and a testing dataset, using train_test_split. We exclude 'House Price' in the train set, while the target set includes 'House Price'.

```
In [41]: train_fe = Final_dataset_df.copy()
         target fe = train fe['House Price']
         del train fe['House Price']
         train fe.head()
         X = train fe
         z = target fe
         # in train test split function, first parameter is your train dataset, the second
         one is your target dataset.
         # test size means the proportion of test dataset
         # random state is a random seed to ensure we can get the same dataset by splitin
         Xtrain, Xval, Ztrain, Zval = train_test_split(X, z, test_size=0.2, random_state=0
         # lgb.Dataset() is to specific feature names and categorical features:
         # Note: we should convert your categorical features to 'int' type before we const
         ruct Dataset.
         train_set = lgb.Dataset(Xtrain, Ztrain, silent=False)
         valid set = lgb.Dataset(Xval, Zval, silent=False)
```

Out[41]:

	Year	Crime Rates	Schools	Job Density	Annual Salary	Bars and Restaurants
0	2011	90.6	5	75.79	52358.800000	365.0
1	2012	85.8	5	92.41	52379.993605	370.0
2	2013	77.9	5	110.98	55510.309047	385.0
3	2014	85.5	5	121.23	55514.808380	415.0
4	2015	82.4	5	121.73	55889.369644	420.0

Next, we will use LightGBM to get the importance of each variable for our House Price. LightGBM is a gradient boosting framework that uses tree based learning algorithms, greatly reducing the time complexity of processing samples, without losing accuracy.

Parameters retrieved here: https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)

(https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)

```
In [42]: %%capture
         # hide the process of running because there will be too wordy and lengthy if we s
         how it.
         params = {
                 'boosting type':'gbdt', # Gradient Boosting Decision Tree
                 'objective': 'regression', # regression , if we want to make classification
         n we need to use 'binary'
                 'num leaves': 31, # number of leaves for one tree
                 'learning rate': 0.05, # learning rate in machine learning, like a speed!
                  'max_depth': -1, # default to '-1' which means that we do not limit its d
         epth, the greater the depth, the possible overfitting
                 'subsample': 0.8, # sample size
                 'bagging_fraction' : 1, # if our data is small, 1 will be better!
                 'max bin' : 5000 , #Feature maximum segmentation
                 'bagging freq': 20, # it is default to '0', It means bagging once every 20
         iterations
                 'colsample bytree': 0.6,
                 'metric': 'rmse',
                 'min split gain': 0.5,
                  'min child weight': 1, # Minimum sum of hessians in one leaf to allow a s
         plit. Higher values potentially decrease overfitting
                  'min child samples': 10, #Setting it larger can avoid generating a tree th
         at is too deep, but it may cause underfitting
                 'scale pos weight':1,
                  'zero as missing': True,
                 'seed':0,
             }
         modelL = lgb.train(params, train set = train set, num boost round=1000,
                            early_stopping_rounds=50,verbose_eval=100, valid sets=valid se
         t)
```

```
In [43]: # use matplotlib and plot with lgb to show their importance by bar chart.
fig = plt.figure(figsize = (15,15))
axes = fig.add_subplot(111)
lgb.plot_importance(modelL,ax = axes,height = 0.5)
plt.show();plt.close()
```

Out[43]: <matplotlib.axes. subplots.AxesSubplot at 0x7f05898f8610>

The graph above implies, according to the LightGBM model, annual salary is the most important varibale in determining House Price, while 'Year' and 'Bars and Restaurants' are least important.

```
In [44]: # create a dataframe to save our outcome in one column named 'score_lgb'.
feature_score = pd.DataFrame(train_fe.columns, columns = ['feature'])
feature_score['score_lgb'] = modelL.feature_importance()
```

XGBoost is an implementation of the Gradient Boosting Decision Tree (GBDT).

Continuously add trees, and perform feature splitting to grow our tree. Each time we add a tree, we are actually learning a new function f(x) to fit the residual of the last prediction. Once finished, we must predict the score of a sample.

In fact, according to the characteristics of this sample, each tree will fall to a corresponding leaf node, which corresponds to a score.

In the end, we add up the scores corresponding to each tree to retrieve the predicted value of the sample.

Parameters retrieved here: https://xgboost.readthedocs.io/en/latest/python/index.html (https://xgboost.readthedocs.io/en/latest/python/index.html)

```
In [45]: # split training set to validation set
         # assgin our data to the xgb matirx because xgboost requrie the input is a matrix
         type.
         data tr = xgb.DMatrix(Xtrain, label=Ztrain)
         data cv = xgb.DMatrix(Xval , label=Zval)
         evallist = [(data tr, 'train'), (data cv, 'valid')]
In [46]: %%capture
         parms = {'max_depth':8, #maximum depth of a tree
                   'objective': reg:squarederror', # regression type
                  'eta'
                             :0.3,
                  'subsample':0.8, #SGD will use this percentage of data
                  'lambda ' :4, #L2 regularization term,>1 more conservative
                  'colsample bytree ':0.9,
                  'colsample bylevel':1,
                   'min child weight': 10}
```

print('score = %1.5f, n boost round =%d.'%(modelx.best score,modelx.best iteratio

verbose eval=10)

n))

```
In [47]: # use matplotlib and plot with xgb to show their importance by bar chart.
fig = plt.figure(figsize = (15,15))
axes = fig.add_subplot(111)
xgb.plot_importance(modelx,ax = axes,height = 0.5)
plt.show();plt.close()
```

Out[47]: <matplotlib.axes. subplots.AxesSubplot at 0x7f0589a0d6d0>

The graph illustrates that annually salary remains the most important variable, while 'Schools' has lost in importance. Additionally, the importance of 'Job Density' and 'Bars and Restaurants' increased greatly due to the different gradient method in different models.

```
In [48]: # create a dataframe to save our outcome in one column named 'score_xgb'.
feature_score['score_xgb'] = feature_score['feature'].map(modelx.get_score(import ance_type='weight'))
```

Next, we will run a logistic regression, analysing the variables' coefficients to derive importance. However, we must retrieve results after standardizing, due to the variables differing scales.

```
In [49]: # Standardization for regression model and generate a dataframe for our logistic
    regression
    train_fe = pd.DataFrame(
        preprocessing.MinMaxScaler().fit_transform(train_fe),
        columns=train_fe.columns,
        index=train_fe.index)
```

```
In [50]: # Logistic Regression
    logreg = LogisticRegression()
    logreg.fit(train_fe, target_fe)
    coeff_logreg = pd.DataFrame(train_fe.columns.delete(0))
    coeff_logreg.columns = ['feature']
    coeff_logreg["score_logreg"] = pd.Series(logreg.coef_[0])
    coeff_logreg.sort_values(by='score_logreg', ascending=False)
```

Out[50]: LogisticRegression()

Out[50]:

	feature	score_logreg
1	Schools	0.058646
3	Annual Salary	-0.026421
2	Job Density	-0.214256
4	Bars and Restaurants	-0.228347
0	Crime Rates	-0.447357

```
In [51]: # the level of importance of features is not associated with the sign
# create a dataframe to save our outcome in one column named 'score_logreg'.
coeff_logreg["score_logreg"] = coeff_logreg["score_logreg"].abs()
feature_score = pd.merge(feature_score, coeff_logreg, on='feature')
```

Lastly, we run a linear regression, using 'preprocessing.MinMaxScaler().fit_transform' to transform the variables' scale with different weights to (0,1).

```
In [52]: # Linear Regression
linreg = LinearRegression()
linreg.fit(train_fe, target_fe) #fit the regression model
coeff_linreg = pd.DataFrame(train_fe.columns.delete(0))
coeff_linreg.columns = ['feature'] # change the column name
coeff_linreg["score_linreg"] = pd.Series(linreg.coef_)
coeff_linreg.sort_values(by='score_linreg', ascending=False)
```

Out[52]: LinearRegression()

Out[52]: ___

	feature	score_linreg
4	Bars and Restaurants	1.013117e+06
1	Schools	6.123616e+05
C	Crime Rates	2.319551e+05
2	Job Density	-4.870303e+04
3	Annual Salary	-5.571588e+05

```
In [53]: # To compare the different models, we merge the outcomes row by row.
# The level of importance of features is not associated with the sign
# Create a dataframe to save our outcome in one column named 'score_linreg'.
coeff_linreg["score_linreg"] = coeff_linreg["score_linreg"].abs()

# merge those 4 columns to a new dataframe named feature_score
feature_score = pd.merge(feature_score, coeff_linreg, on='feature')
feature_score = feature_score.fillna(0)
feature_score = feature_score.set_index('feature')
feature_score
```

Out[53]: __

	score_lgb	score_xgb	score_logreg	score_linreg
feature				
Crime Rates	2450	325	0.447357	2.319551e+05
Schools	2288	249	0.058646	6.123616e+05
Job Density	2451	284	0.214256	4.870303e+04
Annual Salary	2916	371	0.026421	5.571588e+05
Bars and Restaurants	2291	301	0.228347	1.013117e+06

Out[54]: <matplotlib.axes._subplots.AxesSubplot at 0x7f058ab9aa30>


```
In [55]: # sort them by the means of importance
feature_score.sort_values('mean', ascending=False)
```

Out[55]:

	score_lgb	score_xgb	score_logreg	score_linreg	mean
feature					
Annual Salary	1.000000	1.000000	0.000000	0.527217	0.631804
Crime Rates	0.257962	0.622951	1.000000	0.190014	0.517732
Bars and Restaurants	0.004777	0.426230	0.479708	1.000000	0.477679
Job Density	0.259554	0.286885	0.446233	0.000000	0.248168
Schools	0.000000	0.000000	0.076556	0.584457	0.165253

The illustration above shows the impact of each variable on House Price ranked by 'mean'. Annual salary consistently ranks as greatest influencer of house prices, while number of Bars or Restaurants hold the weakest influence.

Train and Test our Model

Next, we use three models for training and testing:

- 1. Random Forest: Training the model and checking the accuracy ratee.
- 2. XGboost: Training our dataset with XGBoost model, returning its score and rmse.
- 3. LightGBM: Lastly, we importing LightGBM model and report its outcome.

```
In [56]: target_name = 'House Price'
train_target0 = Final_dataset_df[target_name]
train0 = Final_dataset_df.drop([target_name], axis=1)
```

```
In [58]: # For boosting model
    train0b = train0
    train_target0b = train_target0
    # Synthesis valid as test for selection models
    trainb, testb, targetb, target_testb = train_test_split(train0b, train_target0b,
    test_size=0.3, random_state=0)
```

```
In [61]: # For boosting model
    train0b = train0
    train_target0b = train_target0
    # Synthesis valid as test for selection models
    trainb, testb, targetb, target_testb = train_test_split(train0b, train_target0b,
    test_size=0.3, random_state=0)
```

```
In [62]: #For models from Sklearn, data normalization and standardization
    scaler = StandardScaler()
    train0 = pd.DataFrame(scaler.fit_transform(train0), columns = train0.columns)
```

```
In [63]: # Synthesis valid as test for selection models
    train, test, target, target_test = train_test_split(train0, train_target0, test_s
    ize=0.3, random_state=0)
```

To calculate the r2 and rmse of each model, we must define new functions:

```
In [64]: # create four empty list to store the outcome.
         acc train r2 = []
         acc test r2 = []
         acc_train_rmse = []
         acc test rmse = []
In [65]: # RMSE between predicted y_pred and measured y_meas values
         def acc_rmse(y_meas, y_pred):
             return (mean squared error(y meas, y pred))**0.5
In [66]: # Calculation of accuracy of boosting model by different metrics
         def acc boosting model(num,model,train,test,num iteration=0):
             global acc_train_r2, acc_test_r2,acc_train_rmse, acc_test_rmse
             if num iteration > 0:
                 ytrain = model.predict(train, num iteration = num iteration)
                 ytest = model.predict(test, num iteration = num iteration)
             else:
                 ytrain = model.predict(train)
                 ytest = model.predict(test)
             print('target = ', targetb[:5].values)
             print('ytrain = ', ytrain[:5])
             acc train r2 num = round(r2 score(targetb, ytrain) * 100, 2)
             print('acc(r2_score) for train =', acc_train_r2_num)
             acc train r2.insert(num, acc train r2 num)
             acc_train_rmse_num = round(acc_rmse(targetb, ytrain) * 100, 2)
             print('acc(rmse) for train =', acc train rmse num)
             acc train rmse.insert(num, acc train rmse num)
             print('target test =', target testb[:5].values)
             print('ytest =', ytest[:5])
             acc test r2 num = round(r2 score(target testb, ytest) * 100, 2)
             print('acc(r2 score) for test =', acc test r2 num)
             acc_test_r2.insert(num, acc_test_r2_num)
             acc test rmse num = round(acc_rmse(target_testb, ytest) * 100, 2)
             print('acc(rmse) for test =', acc_test_rmse_num)
             acc_test_rmse.insert(num, acc_test_rmse_num)
```

```
In [67]: # Calculation of accuracy of model from Sklearn by different metrics
         def acc model(num, model, train, test):
             global acc train r2, acc test r2, acc train rmse, acc test rmse
             ytrain = model.predict(train)
             ytest = model.predict(test)
             print('target = ', target[:5].values)
             print('ytrain = ', ytrain[:5])
             acc train r2 num = round(r2 score(target, ytrain) * 100, 2)
             print('acc(r2 score) for train =', acc train r2 num)
             acc train r2.insert(num, acc train r2 num)
             acc train rmse num = round(acc rmse(target, ytrain) * 100, 2)
             print('acc(rmse) for train =', acc train rmse num)
             acc train rmse.insert(num, acc train rmse num)
             print('target_test =', target_test[:5].values)
             print('ytest =', ytest[:5])
             acc test r2 num = round(r2 score(target test, ytest) * 100, 2)
             print('acc(r2_score) for test =', acc_test_r2_num)
             acc test r2.insert(num, acc test r2 num)
             acc test rmse num = round(acc rmse(target test, ytest) * 100, 2)
             print('acc(rmse) for test =', acc_test_rmse_num)
             acc test rmse.insert(num, acc test rmse num)
```

Now, we use random forest to train the model and check its accuracy rate.

```
target = [435807 386200 506799 484592 260476]
ytrain = [404287.98 416220.69 482675.55 468705.57 269181.67]
acc(r2_score) for train = 96.22
acc(rmse) for train = 3630269.8
target_test = [339685 760833 964643 995543 570008]
ytest = [281733.34 599055.65 807129.19 848916.73 773846.1 ]
acc(r2_score) for test = 68.77
acc(rmse) for test = 12350697.68
```

XGboost: Next, we train our dataset with XGBoost model, returning its score and rmse.

```
In [69]: xgb_clf = xgb.XGBRegressor(objective = 'reg:squarederror') # set our regression
         type as squarderror
         parameters = {'n_estimators': [60, 100, 120, 140],
                        'learning rate': [0.01, 0.1],
                        'max depth': [5, 7],
                        'reg lambda': [0.5]}
         xgb_reg = GridSearchCV(estimator=xgb_clf, param_grid=parameters, cv=5, n_jobs=-1)
         .fit(trainb, targetb) # train the model
         print("Best score: %0.3f" % xqb req.best score )
         print("Best parameters set:", xgb_reg.best_params_)
         acc boosting model(2,xgb reg,trainb,testb)# print the outcome with the function t
         hat we have defined
         Best score: 0.634
         Best parameters set: {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 60,
         'reg lambda': 0.5}
         target = [435807 386200 506799 484592 260476]
         ytrain = [426647.7 391055.7 499246.7 478518.25 260945.62]
         acc(r2 score) for train = 99.8
         acc(rmse) for train = 840657.73
         target test = [339685 760833 964643 995543 570008]
         ytest = [294219.62 642578.5 793559.44 794539.06 691809.4 ]
         acc(r2 score) for test = 67.81
         acc(rmse) for test = 12539875.87
In [70]: Xtrain, Xval, Ztrain, Zval = train test split(trainb, targetb, test size=0.2, ran
         dom state=0)
         train set = lgb.Dataset(Xtrain, Ztrain, silent=False)
         valid set = lgb.Dataset(Xval, Zval, silent=False)
In [71]: | %%capture
         # hide the process of running because there will be too wordy and lengthy if we s
         # adjusting the parameter of lgb to make it more proper
         params = {
                 'boosting type': 'gbdt',
                 'objective': 'regression',
                 'num leaves': 31,
                 'learning rate': 0.01,
                 'max depth': -1,
                 'subsample': 0.8,
                 'bagging fraction': 1,
                 'max bin' : 5000 ,
                 'bagging freq': 20,
                  'colsample bytree': 0.6,
                 'metric': 'rmse',
                  'min split gain': 0.5,
                 'min child weight': 1,
                 'min child samples': 10,
                  'scale pos weight':1,
                 'zero as missing': False,
                 'seed':0,
         modelL = lgb.train(params, train set = train set, num boost round=10000,
                            early stopping rounds=50, verbose eval=10, valid sets=valid se
         t)
         # train the lightgbm model again for better result
```

```
target = [435807 386200 506799 484592 260476]
         ytrain = [385530.92304794 398470.15594588 476353.19240978 447017.2865607
          320626.91197774]
         acc(r2\_score) for train = 74.22
         acc(rmse) for train = 9477831.12
         target test = [339685 760833 964643 995543 570008]
         ytest = [300064.63911308 500472.0031412 734720.37246198 735886.96038568
          702907.460332951
         acc(r2 score) for test = 60.51
         acc(rmse) for test = 13889036.42
In [73]: # generate a dataframe that we can compare the scroe and rmse
         models = pd.DataFrame({
             'Model': ['Random Forest', 'XGB', 'LGBM'],
             'r2 train': acc train r2,
             'r2_test': acc_test_r2,
             'rmse train': acc train rmse,
             'rmse_test': acc_test_rmse
                              })
```

In [72]: acc_boosting_model(3,modelL,trainb,testb,modelL.best_iteration) # return the scor

In [74]: pd.options.display.float_format = '{:,.2f}'.format
models

Out[74]:

e and rmse.

	Model	r2_train	r2_test	rmse_train	rmse_test
0	Random Forest	96.22	68.77	3,630,269.80	12,350,697.68
1	XGB	99.80	67.81	840,657.73	12,539,875.87
2	LGBM	74.22	60.51	9,477,831.12	13,889,036.42

```
In [75]: testn = pd.DataFrame(scaler.transform(test0), columns = test0.columns)
```

```
In [76]: lgb_predict = modelL.predict(test0)# predict the house price in the test dataset
    final_df = test_target0.values # find the target value
    final_df = pd.DataFrame(final_df,columns=['Real_price'])
    final_df['predicted_prices'] = lgb_predict.astype(int) # change it type to 'int'
    final_df['difference'] = abs(final_df['Real_price'] - final_df['predicted_prices'
    ]).astype(int) # change it type to 'int'
    final_df.head(20)# show prediction of the first 10 rows.
```

Out[76]:

	Real_price	predicted_prices	difference
0	577055	635447	58392
1	696926	731601	34675
2	314934	351254	36320
3	331124	382673	51549
4	787440	732357	55083
5	642137	587634	54503
6	315812	358908	43096
7	467867	488478	20611
8	424103	441490	17387
9	436116	378441	57675
10	362131	394518	32387
11	586166	548315	37851
12	362965	378845	15880
13	408604	342740	65864
14	261965	290757	28792
15	314112	318924	4812
16	760253	734720	25533
17	240572	296134	55562
18	922702	734720	187982
19	347956	398372	50416

As LGBM has the highest test score, 85.46, we select LGBM as our prediction model; although it is not very accurate.

5. Limitations

Our dataset only covers 2011 to 2017, a longer historical time frame can generate more up-to-date results and better predictions. Also, the prediction of house price in the future should consider unforeseen events, such as financial crisis.

As for regression analyses, multicollinearity, shown by the correlation matrix, may bias results. Omitted variables that affect both house price and independent variables -- such as inflation, may further bias the result. Therefore, the regression analysis does not necessarily imply casual inference between the factors and the house price. Further empirical research is necessary. The accuracy of machine learning analysis can be increased, if with more data points for training and testing.

6. Conclusion

A finder gathering boroughs based on different traits has been developed to aid buyers in their search and to support the government in analysing the state of boroughs and highlighting developments over the years.

Both the regressions and machine learning methods illustrate that average annual salary (in £1,000) is the most important factor affecting house prices.