211: Computer Architecture Spring 2017

Instructor: Prof. David Menendez

Topics:

■ Digital Logic

Reading material available on Sakai

Logic Design

How does your processor perform various operations?

Logic Gates

Transition from representing information to implementing them

Logic gates are simple digital circuits

Take one or more binary inputs

- Produce a binary output
- Truth table: relationship between the input and the output

3

Not Gate

AND Gate

Two inputs, One output

Result is 1 only if both the inputs are 1.

l.	l	L
0	0	L
0	L	0
0	0	0
2	В	A

OR Gate

A	В	С
0	0	0
0	1	1
1	0	1
1	1	1

6

Logical Completeness

Can implement ANY truth table with AND, OR, NOT.

NAND and **NOR** Gate

Beneath the Digital Abstraction

A digital system uses discrete values

Represent it with continuous variables (eg, voltage), handle noise

Use transistors to implement logical functions: AND, OR, NOT

Digital symbols:

recall that we assign a range of analog voltages to each digital (logic) symbol

- assignment of voltage ranges depends on electrical properties of transistors
- typical values for "1": +5\, +3.3\, +2.9\
- Ve.2+ esu ll'ew no won morì •

Transistor: Building Block of Computers

Microprocessors contain millions (billions) of transistors

- Intel Pentium 4 (2000): 48 million
- IBM PowerPC 750FX (2002): 38 million
- IBM/Apple PowerPC G5 (2003): 58 million

Logically, each transistor acts as a switch

Combined to implement logic functions

AND, OR, NOT

Combined to build higher-level structures

Adder, multiplexer, decoder, register, ...

Combined to build processor

DeMorgan's Law

(TOM mort glad amos driw) AO of QMA gnifravnoO

Consider the following gate:

To convert AND to OR (or vice versa), invert inputs and output.

l	0 0	0	0	l	L
l	0	0 1 0	0	0	l
l	0	0	L	l	0
0	l	l	l	0	0
$\overline{A} \cdot \overline{A}$	Ā·Ā	B	A	В	A
			<u> </u>		_

Generally, DeMorgan's Laws:

$$5. \quad P + Q = \overline{P} \ \overline{Q}$$

NAND and NOR Functional Completeness

Any gate can be implemented using either NOR or NAND gates.

Why is this important?

 When building a chip, easier to build one with all of the same gates.

More than 2 Inputs?

AND/OR can take any number of inputs.

- .f all inputs are 1.
- .t si fuqni yns fi f = AO •
- Similar for NAND/NOR.

Can implement with multiple two-input gates or with single CMOS circuit.

Circuit Design

Have a good idea. What kind of circuit might be useful?

Derive a truth table for this circuit

Derive a Boolean expression for the truth table

Build a circuit given the Boolean expression

- Building the circuit involves mapping the Boolean expression to actual gates. This part is easy.
- Deriving the Boolean expression is easy. Deriving a good one is tricky.

Given a circuit, isolate the rows in which the output of the circuit should be true

Given a circuit, isolate that rows in which the output of the circuit should be true

A product term that contains exactly one instance of every variable is called a minterm

Given the expressions for each row, build a larger Boolean expression for the entire table.

■ This is a sum-of-products (SOP) form.

Canonical Forms

We have studied two canonical forms

- 1. Sum of Products (SoP)
- Product of Sums (PoS)

How to convert to SoP from PoS (multiple through)

How to convert to PoS from SoP (complement, multiply through, complement via DeMorgan's)

Note:
$$X' = \overline{X}$$

$$F = Y'Z' + XY'Z + XYZ'$$

$$F' = (Y+Z)(X'+Y+Z')(X'+Y'+Z)$$

$$= YZ + X'Y + X'Z \quad (after lots of simplification)$$

$$F = (Y'+Z')(X+Y')(X+Z')$$

Formal Definition of Minterms

e.g., Minterms for 3 variables A,B,C

truth table).
uncomplemented (i.e., an entry in the
appear once, either complemented or
A product term in which all variables

 Each minterm evaluates to 1 for exactly one variable assignment, 0 for all others.

 Denoted by mX where X corresponds to the variable assignment for which mX = 1.

mi <mark>nt</mark> erm	0	8	A
<u> </u>	0	0	0
O8Ā ∱m	ļ	0	0
ō8Ā Sm	0	L	0
DBĀ £m	Ļ	L	0
ÕãA ⊅m	0	0	ļ
OãA ∂m	Ļ	0	ļ
∑8A 9m	0	L	ļ
OBA 7m	Ļ	Ļ	L

Output = $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

Finally build the circuit.

- Problem: SOP forms are often not minimal.
- Solution: Make it minimal. We'll go over two ways.

First Approach: Algebraic

Simply use the rules of Boolean logic

The Result

Decoder

studtuo ns. , et notints

exactly one output is 1 for each possible input pattern

Decoder Circuits

Converts n-bit input to m-bit output, where $n \le m \le 2^n$

"Standard" Decoder: i^{th} output = 1, all others = 0, where i is the binary representation of the input (ABC)

Converts n-bit input to m-bit output, where $n \le m \le 2^n$

where i is the binary representation of the input (ABC)

"Standard" Decoder: Ith output = 1, all others = 0,

Internal 2:4 Decoder Design

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

2:4 Decoder from 1:2 Decoders

Can build 2:4 decoder out of two 1:2 decoders

Hierarchical 3:8 Decoder

Encoder: Inverse of Decoder

Inverse of decoder: converts m bit input to n bit output

Truth Table for Octal-to-Binary Encoder

$$(w => u)$$

9	Output)	siuqni							
o∀	ſΑ	SA	٥	ιa	DS	Β³	ρţ	D ^e	D ^e	۲a
0	0	0	Ţ	0	0	0	0	0	0	0
Ţ	0	0	0	Ţ	0	0	0	0	0	0
0	Ţ	0	0	0	Ţ	0	0	0	0	0
Ţ	Ţ	0	0	0	0	Ţ	0	0	0	0
0	0	Ţ	0	0	0	0	Ţ	0	0	0
Ţ	0	Ţ	0	0	0	0	0	Ţ	0	0
0	Ţ	Ţ	0	0	0	0	0	0	Ţ	0
Ţ	Ţ	Ţ	0	0	0	0	0	0	0	Ţ

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

□ TABLE 3-7

Multiplexer (MUX)

n-bit selector and 2^n inputs, one output

output equals one of the inputs, depending on selector

Multiplexers (Muxes)

Combinational circuit that selects binary information from many inputs to one output

Functions with Decoders or Muxes

• e.g.,
$$F = A\overline{C} + BC$$

Α	В	С	minterm	F
0	0	0	ABC	0
0	0	1	ĀBC	0
0	1	0	ĀBC	0
0	1	1	ABC	1
1	0	0	ABC	1
1	0	1	ABC	0
1	1	0	ABC	1
1	1	1	ABC	1

- Decoder: OR minterms for which F should evaluate to 1
- MUX: Feed in the value of F for each minterm

Can we do it a Smaller Mux?

Look at the rows below, A & B have the same value, C iterates between 0 & *

For the pair of rows, F either equals 0 or 1, C or not(C)

Another Example

• e.g.,
$$F = \overline{A}C + \overline{B}\overline{C} + A\overline{C}$$

Where are we?

We have already seen

- -- Basic gates: AND, NOT, OR
- -- Building blocks: Decoder and Multiplexer
- -- Implement circuits from truth tables
- -- We know: (a) minterm (b) Sum of products
- -- We know basic identities

Implement A+B

With Multiplexers

(1) Using 2:1 mux

(2) Using 4:1 mux

With Decoders

(1) Using a 2:4 decoder

Half Adder

Add two bits and produce a sum and a carry.

How do we go about building the circuit?

Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

A	В	\mathbf{C}_{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
			l	

Four-bit Adder

Karnaugh Maps or K-Maps

K-maps are a graphical technique to view minterms and how they relate.

The "map" is a diagram made up of squares, with each square representing a single minterm.

Minterms resulting in a "1" are marked as "1", all others are marked "0"

Α	В	Output
0	0	0
0	1	1
1	0	0
1	1	1

Ţ	1	1
0	0	_
τ	1	0
0	0	0
JudiuO	В	Α

Finding Commonality

Finding the "best" solution

Grouping become simplified products.

Both are "correct". "A+B" is preferred.

Simplify Example

Simplify Example

- Note in higher maps, several variables occupy a given axis
- The sequence of 1s and 0s follow a Gray Code Sequence.
- Grey code is a number system where two successive values differ only by 1-bit

Out=
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C}$$

Out=
$$\overline{A}$$

Out= $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$

Out=
$$\overline{A}$$
+B

Back to our earlier example.....

The K-map and the algebraic produce the same result.

Up... up... and let's keep going

Few more examples

Rutgers University David Menendez 56

$$QB + \overline{D}B + Q\overline{A} + \overline{D}\overline{A} = JUO$$

Don't Care Conditions

• Let
$$F = AB + \overline{AB}$$

- Suppose we know that a disallowed input combo is A=1, B=0
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

	Α	В	F	Н	G
	0	0	1	1	1
Inputs will	0	1	0	0	0
not occur	1	0	0	X	1
	1	1	1	1	1

$$G = AB + \overline{B}$$

- Both F & G are appropriate functions for H
- G can substitute for F for valid input combinations

Don't Cares can Greatly Simplify Circuits

Sometimes "don't cares" greatly simplify circuitry

 $\overline{ABCD} + \overline{ABCD} + ABCD + ABC\overline{D}$ vs. $\overline{A} + C$

Design Example

<u> </u>					\cup	ut	pυ	ıt			
Va	W	Χ	Υ	Z	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
Χ	1	0	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	1	1	Χ	Χ	Χ	Χ	X	X	Χ

Design Example

Combinational Circuits

Stateless circuits

Outputs are function of inputs only

Design Example

We will do f, but you should be able to design a-e as well

Enabler Circuits

Output is "enabled" (F=A) only when input 'ENABLE' signal is asserted (EN=1)

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

How are Sequential Circuits different from Combinational Circuits?

Outputs of sequential logic depend on both current and prior values – it has memory

:snoitinitaQ

State: all the information about a circuit to explain its future

behavior

Latches and flip-flops: state elements that store one bit of state

Synchronous sequential elements: combinational logic followed by a bank of flip-flops

Bistable Circuits

Fundamental building blocks of other elements

No inputs

Two outputs (Q and Q')

Bistable Circuit Analysis

Consider all the cases

Consider the two possible cases:

Bistable circuit stores 1 bit of state (Q, or Q') But there are no inputs to control state

Set/Reset Latch

•
$$S = 1$$
, $R = 0$

•
$$S = 0$$
, $R = 1$

•
$$S = 0$$
, $R = 0$

S/R Latch Analysis

f = Q nad f = 0: then Q = 1

١N

 $\bullet S = 0$, R = 1: then Q = 0

Copyright @ 2007 Elsevier

reset

S/R Latch Analysis

• S = 0, R = 0: then $Q = Q_{prev}$

(memory!)

• S = 1, R = 1: then Q = 0 and Q = 0

Q=`Q Invalid state

Copyright © 2007 Elsevier

S/R Latch Symbol

Set operation – makes output 1 (S = 1, R = 0, Q = 1) Reset operation – makes output 0 (S = 0, R = 1, Q = 0) What about invalid state? (S = 1, R = 1)

D Latch

Two inputs (C and D)

C: controls when the output changes

D (data input): controls what the output changes to

When C = 1, D passes through to Q (transparent latch)

When C = 0, Q holds previous value (opaque latch)

D Latch Internal Circuit

Copyright © 2007 Elsevier

How to Coordinate with Multiple Components?

But how do we coordinate computations and the changing of state values across lots of different parts of a circuit?

We use CLOCKING (eg. 2.6GHz clock on Intel processors)

On each clock pulse, combinational computations are performed, and results stored in latches

How to introduce clocks into latches?

Flip-flops: Latches on a Clock

A straightforward latch is not safely synchronous (or predictably synchronous)

Flip-flops designed so that outputs will NOT change within a single clock pulse

D Flip-Flop

When CLK is 0

- master is enabled (N1 obtains the value input to the master)
- slave is disabled (Old output is still output)

When CLK is 1

- then master is disabled (N1 is the old value)
- Slave is enabled, it copies N1 into output

D Flip-Flop Summary

Two inputs: Clk, D

clock edde

Function

- The flip-flop samples D on rising clock edge
- When clock goes from 0 to 1, D passes through Q
- Otherwise, Q holds its value
- Q only changes on rising clock edge
- Flip-flop is called "edge-triggered" because it is activated only on the

Flip-Flop versus Latch

Latch outputs change at any time, flip-flops only during clock transitions

Registers

Copyright @ 2007 Elsevier

$$D^3$$
 D^5
 D^5
 D^4
 D^0
 D^0
 D^0
 D^0

Finite State Machines

FSM = State register + combinational logic

Stores the next state and loads the next state at clock edge

Computes the next state and computes the outputs

80

Traffic Light Controller Example

• Traffic sensors: TA, TB (TRUE when there is traffic)

FSM State Transition Diagram

States: Circles

Transitions: Arcs

FSM State Transition Table

State transitions from diagram can be rewritten in a state transition table

Reset Agreen A and A and

.₈: yellow

peı:∀7

(diagram reprinted for reference)

r^B: dıeeu

pəı :∀7

Encoded State Transition Table

After selecting a state encoding, the symbolic states in the transition table can be realized with current state/next state bits

	Encoding		
State	S1	S0	
AGreen	0	0	
AYellow	0	1	
BGreen	1	0	
BYellow	1	1	

Current State	Encoded Current State		Inputs		Next State	Encoded Next State	
s	S1	S0	TA	ТВ	S'	S1'	SO'
AGreen	0	0	0	X	AYellow	0	1
AGreen	0	0	1	X	AGreen	0	0
AYellow	0	1	X	X	BGreen	1	0
BGreen	1	0	X	0	BYellow	1	1
BGreen	1	0	X	1	BGreen	1	0
BYellow	1	1	X	X	AGreen	0	0

Computing Next State Logic

State	Encoded Next	Mext State	st	Encoded Current State Inputs		Current State	
08،	18	د،	8T	AT	08	IS	s
L	0	wolleYA	×	0	0	0	neenDA
0	0	neen∂A	×	l	0	0	пээтӘА
0	L	BGreen	×	X	ļ	0	wolleYA
L	L	WolleYB	0	X	0	L	BGreen
0	L	BGreen	L	X	0	L	BGreen
0	0	пээтдА	×	X	Ļ	L	BXellow

From K-maps, figure out expressions for the next state:

FSM Output Table

FSM output logic is computed in similar manner as next state logic

In this system, output is a function of current state (Moore machine)

Alternative – Mealy machine (output function of both current state and inputs, though we won't cover this in class)

output encoding

Output	Encoding		
Green	0	0	
Yellow	0	1	
Red	1	0	

output truth table

	State		LA		LB	
State	S1	S0	LA1	LA0	LB1	LB0
AGreen	0	0	0	0	1	0
AYellow	0	1	0	1	1	0
BGreen	1	0	1	0	0	0
BYellow	1	1	1	0	0	1
	•					

Compute output bits as function of state bits

State Register: Assume D-FF

state register

FSM: Figure out Next State Logic

FSM Example 2

Design an FSM that detects a stream of three or more consecutive 1s on an input stream

Input: 011101011011101...

Output: 0001000000100...

Finite State Machine for the 3 1's problem

FSM Truth Table

Truth Table for Next State (AN and BN are next states)

A	В	X	AN	BN
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Encoding

	A	В
S0	0	0
S1	0	1
S2	1	0
S3	1	1

We need two bits to encode 4 states (lets call these bits A & B)

0

NΑ

ВN

Truth Table for Output

FSM Circuit

Bsckup

n-type MOS Transistor

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

n-type

 when Gate has positive voltage, short circuit between #1 and #2

 when Gate has zero voltage, open circuit between #1 and #2

p-type MOS Transistor

CMOS Circuit

Complementary MOS

Uses both n-type and p-type MOS transistors

- p-type
 - Attached to + voltage
 - Pulls output voltage UP when input is zero
- n-type
 - Attached to GND
 - Pulls output voltage DOWN when input is one

MOS transistors are combined to form Logic Gates

For all inputs, make sure that output is either connected to GND or to +, but not both!

Inverter (NOT Gate)

