代数结构第九周作业参考答案

6.7 **证明**: 由于 $H \in G$ 的正规子群,故对任意 $g \in G$,有 gH = Hg。已知 a 和 b 属于同一左陪集,即 aH = bH,故存在 $h_1 \in H$ 使得 $a = bh_1$;同理,c 和 d 属于同一左陪集,即 cH = dH,故存在 $h_2 \in H$ 使得 $c = dh_2$ 。因此:

$$a \cdot c = (bh_1) \cdot (dh_2) = b \cdot (h_1d) \cdot h_2.$$

由 H 的正规性,存在 $h_3 \in H$ 使得 $h_1d = dh_3$,代入得:

$$a \cdot c = b \cdot d \cdot h_3 \cdot h_2.$$

由于 $h_3h_2 \in H$, 故 $a \cdot c \in bdH$, 即 $a \cdot c = b \cdot d$ 属于同一陪集 bdH。

6.10 **证明**: 先证 $H_1 \cap H_2$ 是正规子群。对任意 $g \in G$, 有:

$$g(H_1 \cap H_2)g^{-1} \subseteq gH_1g^{-1} \cap gH_2g^{-1} = H_1 \cap H_2,$$

故 $H_1 \cap H_2$ 是正规子群。

再证 H_1H_2 是正规子群。首先验证 H_1H_2 为子群: 对任意 $h_1h_2, h_1'h_2' \in H_1H_2$,

$$(h_1h_2)(h_1'h_2')^{-1} = h_1h_2h_2'^{-1}h_1'^{-1}.$$

由 H_1, H_2 的正规性,存在 $h_1'' \in H_1$ 使得 $h_2 h_2'^{-1} h_1'^{-1} = h_1'' h_2 h_2'^{-1}$,故上式属于 $H_1 H_2$ 。再验证正规性: 对任意 $g \in G$,

$$gH_1H_2g^{-1} = (gH_1g^{-1})(gH_2g^{-1}) = H_1H_2,$$

故 H_1H_2 是正规子群。

6.11 **证明**:由 H_1 , N 均为 G 的正规子群,根据题 10 结论, H_1N 和 H_2N 均为 G 的正规子群。由于 $H_1 \subset H_2$,显然 $H_1N \subseteq H_2N$ 。任取 $k \in H_2N$ 和 $hn \in H_1N$,其中 $h \in H_1, n \in N$,则:

$$k(hn)k^{-1} = (khk^{-1})(knk^{-1}).$$

由 H_1 和 N 的正规性, $khk^{-1} \in H_1$ 且 $knk^{-1} \in N$,故 $k(hn)k^{-1} \in H_1N$ 。因此 H_1N 是 H_2N 的正规子群。