数模笔记

Noflowerzzk

目录

目录	一、 χ^2 分布	
第一部分 概率论	三、 F 分布	4
第一章 随机变量 § 1.1 随机变量的数值性质	1 第三章 参数估计 1 § 3.1 点估计	4
§ 1.2 大数定律		4
第二部分 数理统计	\$ 3.2 点估计的优良性判断标准 一、 无偏性	5 5
第二章 		
§ 2.2 三大分布	3 第三部分 数学建模	6

目 录 1

第一部分 概率论

第一章 随机变量

§ 1.1 随机变量的数值性质

定义 1.1.1

- 协方差 cov(X, Y) = E((X E(X))(Y E(Y)))
- 相关系数/标准化协方差 $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$
- 变异系数 $\delta_X = \frac{\sqrt{D(X)}}{|E(X)|}$
- k 阶原点矩 E(X^k)
- k 阶中心矩 $E((X E(X))^k)$

§ 1.2 大数定律

定理 1.2.1 (Chebyshev 不等式)

$$P(|X - E(X)| \ge \varepsilon) \le \frac{D(X)}{\varepsilon^2}$$

定义 1.2.1 (依概率收敛) $\exists c, \forall \varepsilon > 0, \lim_{n \to +\infty} P(|X_n - c| \leq \varepsilon) = 1$, 则称随机变量序列 $\{X_n\}$ 依概率收敛于 c, 记作 $X_n \xrightarrow{P} c$

定理 **1.2.2** (Chebyshev 大数定律) 随机变量序列 $\{X_n\}$ 两两不 (线性) 相关,且 $D(X_i)$ 有一致上界 c (即 $D(X_i) < c$),则有

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^{n} E(X_i)$$

定理 1.2.3 (相互独立同分布 (辛钦) 大数定律) $\{X_i\}$ 相互独立同分布, $E(X_i) = \mu$ 有限,则

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu$$

§ 1.3 中心极限定理

定理 1.3.1 (列维-林德伯格中心极限定理) $\{X_i\}$ 相互独立同分布, $D(X_i) = \sigma^2$ 有限, $E(X_i) = \mu$,则

$$\lim_{n\to\infty} P\left(\frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma}\right) = \Phi(x)$$

即当n充分大时,可以认为 $\sum_{i=1}^{n} X_i \overset{\text{近似}}{\sim} N(n\mu, n\sigma^2)$ 或者 $\overline{X} \overset{\text{近似}}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$

第二部分 数理统计

第二章 统计量

§ 2.1 无偏估计

一、样本方差

定义 **2.1.1** (X_1, X_2, \dots, X_n) 是取自总体的一个样本,称

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

为样本均值,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{m} (X_{i} - \overline{X})^{2}$$

为样本方差.

§ 2.2 三大分布

-、 χ^2 分布

定义 2.2.1 设 $\{X_i\}_{i=1}^n$ 为相互独立的标准正态分布随机变量,称随机变量 Y= $\sum_{i=1}^{n} X_i^2$ 服从自由度为 n 的 χ^2 分布,记为 $Y \sim \chi^2(n)$. $\frac{1}{i=1}$ χ^2 分布的密度函数为

$$f(y) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} e^{-\frac{y}{2}}, & y > 0\\ 0, & \sharp \dot{\Xi} \end{cases}$$

定理 **2.2.1** $Y \sim \chi^2(n)$ 有以下性质

- E(Y)=n, D(Y)=2n• 可加性, $X\sim \chi^2(m), Y\sim \chi^2(n), X, Y$ 相互独立,则 $X+Y\sim \chi^2(m+n)$

二、t分布(学生氏分布)

定义 2.2.2 设 X, Y 相互独立, $X \sim N(0,1), Y \sim \chi^2(n)$, 则称 $T = \frac{X}{\sqrt{Y/n}}$ 服从自 由度为n的t分布.

t 分布的密度函数为

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

t(n) 的密度函数与标准正态分布 N(0,1) 密度很相似, 它们都是关于原点对称, 单峰 偶函数, 在 x=0 处达到极大. 但 t(n) 的峰值低于 N(0,1) 的峰值, t(n) 的密度函数尾部 都要比 N(0,1) 的两侧尾部粗一些. 容易证明:

$$\lim_{n \to \infty} f(x) = \Phi(x)$$

三、F分布

定义 2.2.3 设 X, Y 相互独立, $X \sim \chi^2(m), Y \sim \chi^2(n)$,则称 $F = \frac{X/m}{Y/n}$ 服从 F 分布,记为 $F \sim F(m,n)$ 其中 m 称为第一自由度, n 称为第二自由度. F(m,n) 分布的概率密度函数为

$$f(y) = \begin{cases} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} y^{\frac{m}{2}-1} \left(1 + \frac{m}{n}y\right)^{-\frac{m+n}{2}}, & y > 0\\ 0, & \sharp \aleph$$

定理 2.2.2 记 $F_{\alpha}(m,n)$ 为 F 分布的第 α 分位数 (即 $P(F \leqslant F_{\alpha}(m,n)) = \alpha$) 有性质:

$$F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}}(n,m)$$

§ 2.3 正态总体的抽样分布

暂时略.

第三章 参数估计

§ 3.1 点估计

一、矩估计

用样本原点矩估计总体原点矩.

设总体的 k 阶原点矩为 $\mu_k = E(X^k)$, 样本的 k 阶原点矩为 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, 用 A_k 估计 μ_k , 对某个依赖 $\mu_1, \mu_2, \cdots, \mu_n$ 的分布参数 $\theta = \theta(\mu_1, \mu_2, \cdots, \mu_n)$, 有 θ 的估计

$$\hat{\theta} = \theta(A_1, A_2, \cdots, A_n)$$

二、极大似然估计

定义设总体 X 有分布律 $P(X = x; \theta)$ 或密度函数 $f(x; \theta)$ (其中 θ 为一个未知 参数或几个未知参数组成的向量 $\theta = (\theta_1, \theta_2, \dots, \theta_k)$),已知 $\theta \in \Theta$, Θ 是参数空间. (x_1, x_2, \dots, x_n) 为取自总体 X 的一个样本 (X_1, X_2, \dots, X_n) 的观测值,将样本的联合分布律或联合密度函数看成 θ 的函数,用 $L(\theta)$ 表示,又称为 θ 的似然函数,则似然函数

$$L(\theta) = \prod_{i=1}^{n} P(X_i = x_i; \theta), \quad \overrightarrow{\mathbb{Q}}L(\theta) = \prod_{i=1}^{n} f(x_i; \theta),$$

称满足关系式 $L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta)$ 的解 $\hat{\theta}$ 为 θ 的极大似然估计量.

§ 3.2 点估计的优良性判断标准

一、无偏性

定义 3.2.1 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是 θ 的一个估计量, θ 取值的参数空间为 Θ ,若对任意的 $\theta \in \Theta$,有

$$E_{\theta}\left(\hat{\theta}(X_1, X_2, \cdots, X_n)\right) = \theta,$$

则称 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是 θ 的一个无偏估计(量),否则称为有偏估计(量). 如果有

$$\lim_{n\to\infty} E_{\theta}\left(\hat{\theta}(X_1, X_2, \cdots, X_n)\right) = \theta,$$

则称 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是 θ 的一个渐近无偏估计(量).

估计量的无偏性是指,由估计量得到的估计值相对于未知参数真值来说,取某些样本观测值时偏大,取另一些样本观测值时偏小。反复将这个估计量使用多次,就平均来说其偏差为0。如果估计量不具有无偏性,则无论使用多少次,其平均值也与真值有一定的距离,这个距离就是系统误差了。

二、有效性

定义 3.2.2 设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是 θ 的两个无偏估计,若对任意的 $\theta \in \Theta$,有 $D(\hat{\theta}_1) \leqslant D(\hat{\theta}_2)$,且至少有一个 $\theta \in \Theta$ 使得上述不等式严格成立,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效.

三、相合性(一致性)

定义 3.2.3 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是 θ 的一个估计量,若对 $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} P(|\hat{\theta} - \theta| \geqslant \varepsilon) = 0,$$

则称估计量 $\hat{\theta}$ 具有相合性 (一致性), 即 $\hat{\theta} \xrightarrow{P} \theta$, 或称 $\hat{\theta}$ 是 θ 的相合 (一致) 估计量.

相合性被视为对估计的一个很基本的要求,如果一个估计量,在样本量不断增大时,它不能把被估参数估计到任意指定的精度内,那么这个估计是不好的.通常,不满足相合性的估计一般不予考虑.

§ 3.3 区间估计

定义 3.3.1 设 (X_1, X_2, \dots, X_n) 是取自总体 X 的一个样本,总体 $X \sim f(x; \theta), \theta \in \Theta$ 未知,对于 $\forall 0 < \alpha < 1$,若统计量 $\underline{\theta} = \underline{\theta}(X_1, X_2, \dots, X_n) < \overline{\theta}(X_1, X_2, \dots, X_n) = \overline{\theta}$,使得

$$P(\theta \leqslant \theta \leqslant \overline{\theta}) = 1 - \alpha, \theta \in \Theta,$$

则称 $[\underline{\theta}, \overline{\theta}]$ 为 θ 的双侧 $1 - \alpha$ 置信区间, $\underline{\theta}, \overline{\theta}$ 分别称为 θ 的双侧 $1 - \alpha$ 置信区间的置信下限和置信上限, $1 - \alpha$ 为置信水平,一旦样本有观测值 (x_1, x_2, \dots, x_n) ,则称相应的 $[\underline{\theta}(x_1, x_2, \dots, x_n), \overline{\theta}(x_1, x_2, \dots, x_n)]$ 为置信区间的观测值。

第三部分 数学建模

证明: 当m < n时,

$$\sum_{k=0}^{n} (-1)^k (n-k)^m C_n^k = 0$$