A First Course in Modular Forms Caitlin Beecham

1 Chapter 1 Notes and Exercises

1.1 Chapter 1.1

Exercise 1.1.4

Let $k \geq 3$ be an integer and let $L' = \mathbb{Z}^2 - \{(0,0)\}.$

- (a) Show that the series $S = \sum_{(c,d) \in L'} (sup\{|c|,|d|\})^{-k}$ converges by considering the partial sums over expanding squares. Indeed we decompose the sum as $S_n = \sum_{c=-n}^n \sum_{d=-n}^n (sup\{|c|,|d|\})^{-k} = \sum_{c=-n}^n \sum_{d=-n}^n (sup\{|c|,|d|\})^{-k} = \sum_{c=-n}^n \sum_{d=-n}^n (sup\{|c|,|d|\})^{-k} = \sum_{c=0}^n \sum_{d=-n}^n |d|^{-k} + \sum_{c=-n}^n \sum_{d=0}^n |c|^{-k} + \sum_{(c,d) \in [-n,n]^2: c \neq 0 \neq d, |c| > |d|} |c|^{-k} + \sum_{(c,d) \in [-n,n]^2: c \neq 0 \neq d, |c| > |d|} |c|^{-k} + \sum_{(c,d) \in [-n,n]^2: c \neq 0 \neq d, |c| = |d|} |c|^{-k}.$ Thus, $S_n = 2 \sum_{d=2}^n (d-1)(d^{-k}) + 8 \sum_{d=1}^n d^{-k} = 2 \sum_{d=2}^n (d^{-k+1}) + \sum_{d=2}^n (-2(d^{-k})) + \sum_{d=1}^n 8d^{-k} = 2 \sum_{d=2}^n (d^{-k+1}) + 8 + \sum_{d=2}^n 6d^{-k}$. We want to show that as $n \to \infty$ we have that $S_n \to S$ where $S < \infty$. Well, note that $0 \le S_n \le 2 \sum_{d=2}^n (d^{-2}) + 8 + \sum_{d=2}^n 6d^{-2} \le 8 + \sum_{d=1}^n 8d^{-2}$. Of course, that means $0 \le S_n \le 8 + 8 \sum_{d=1}^n \frac{1}{d^2}$ and since $\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi}{6}$ we have that $0 \le \lim_{n\to\infty} S_n \le 8 + \frac{8\pi^2}{6} < \infty$. So, indeed, this sum is finite.
- (b) Fix positive numbers A, B and let $\Omega = \{ \tau \in \mathcal{H} : |Re(\tau)| \le A, Im(\tau) \ge B \}$. Prove that there is a constant C > 0 such that $|\tau + \delta| > Csup\{1, |\delta|\}$ for all $\tau \in \Omega$ and $\delta \in \mathbb{R}$. (More to come).
- (c)

Exercise 1.2.2

Let $N \in \mathbb{N}_{>0}$. Let $\gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})$ be given. Lift to matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z})$$

• (a) Show that gcd(c, d, N) = 1. Show that gcd(c', d') = 1 for some c' = c + sN and d' = d + tN where $s, t \in \mathbb{Z}$. First, note $\gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})$ means that

$$\gamma = \begin{pmatrix} [a] & [b] \\ [c] & [d] \end{pmatrix}$$

where $[a], [b], [c], [d] \in \mathbb{Z}/N\mathbb{Z}$ (meaning $a, b, c, d \in \mathbb{Z}$ are the corresponding representatives) and

$$[a][d] - [b][c] = [1]$$

or equivalently

$$ad - bc = 1 + rN$$

for some $r \in \mathbb{Z}$.

So, indeed by definition, since we have $a, -b, -r \in \mathbb{Z}$ such that

$$-bc + ad - rN = 1$$

we have that gcd(c,d,N)=1. (In particular, if c,d,N did have some common divisor $\alpha\in\mathbb{N}_{\geq 2}$ then we could factor $c=\alpha c',dd=\alpha d'$ and $N=\alpha N'$ which would then mean that for any numbers $B,A,R\in\mathbb{Z}$ we would have

$$\alpha \mid Bc + Ad + RN$$
.

(More to come).