

INSTITUTO TECNOLÓGICO DE CULIACÁN

Materia:

Tópicos de IA

Tarea 2:

" Modelo difuso para sistemas expertos "

Profesor:

Zuriel Dathan Mora Felix

Alumna:

Anette Leticia Robles Zamora

Modelo Difuso Para Sistemas Expertos

El modelo difuso para sistemas expertos es un enfoque basado en la lógica difusa para la toma de decisiones en sistemas expertos. A diferencia de los sistemas tradicionales que trabajan con valores estrictos de "verdadero" o "falso" (lógica booleana), el modelo difuso permite manejar incertidumbre e imprecisión al trabajar con valores intermedios entre 0 y 1.

Se caracteriza por:

Lógica difusa: Se basa en conjuntos difusos, donde una variable puede pertenecer a más de un conjunto con distintos grados de pertenencia.

Reglas difusas: Usa reglas del tipo "Si X es bajo y Y es alto, entonces Z es medio", permitiendo decisiones más flexibles.

Inferencia difusa: Utiliza métodos como el de Mamdani o el de Sugeno para obtener conclusiones a partir de reglas difusas.

Desfuzzificación: Convierte los resultados difusos en valores concretos para su interpretación en el mundo real.

Codigo ejemplo:

Control de temperatura de un aire acondicionado

import numpy as np

import skfuzzy as fuzz

import skfuzzy.control as ctrl

Definir el universo de discurso (rango de valores)

temperatura = ctrl.Antecedent(np.arange(0, 41, 1), 'temperatura') # Rango de 0 a 40°C

ventilador = ctrl.Consequent(np.arange(0, 101, 1), 'ventilador') # Rango de 0 a 100% de velocidad

```
# Definir funciones de membresía para la temperatura
temperatura['baja'] = fuzz.trimf(temperatura.universe, [0, 0, 20])
temperatura['media'] = fuzz.trimf(temperatura.universe, [10, 20, 30])
temperatura['alta'] = fuzz.trimf(temperatura.universe, [20, 40, 40])
# Definir funciones de membresía para la velocidad del ventilador
ventilador['lenta'] = fuzz.trimf(ventilador.universe, [0, 0, 50])
ventilador['media'] = fuzz.trimf(ventilador.universe, [25, 50, 75])
ventilador['rapida'] = fuzz.trimf(ventilador.universe, [50, 100, 100])
# Definir reglas difusas
regla1 = ctrl.Rule(temperatura['baja'], ventilador['lenta'])
regla2 = ctrl.Rule(temperatura['media'], ventilador['media'])
regla3 = ctrl.Rule(temperatura['alta'], ventilador['rapida'])
# Crear el sistema de control
controlador = ctrl.ControlSystem([regla1, regla2, regla3])
sistema = ctrl.ControlSystemSimulation(controlador)
# Probar el sistema con una temperatura de entrada de 25°C
sistema.input['temperatura'] = 25
sistema.compute()
```

Obtener el resultado

print(f"Para una temperatura de 25°C, la velocidad del ventilador es: {sistema.output['ventilador']:.2f}%")