

COMMERCE MENTORSHIP PROGRAM

REVIEW SESSION

COMM204

Prepared by: Sang Nguyen and Tejsai Tagore

Instructed by: Tejsai Tagore

TABLE OF CONTENTS

- FLOWCHART
- KEY TERMS
- CAPACITY RATE, BOTTLENECK ANALYSIS
- LITTLE'S LAW
- GANTT CHART
- CRITICAL PATH (CRASHING ACTIVITIES)
- P-K FORMULA

Flow Chart

Linear

Task	Duration
A	10 mins
В	15 mins
С	12 mins
D	15 mins
E	8 mins

Key Terms

- Activity: A step in the process
- Resources: The performer of the activity
- Flow unit: The basic unit of analysis in any given scenario (customer, sandwich, phone calls, etc.)
- Theoretical Flow Time/Flow Time: The amount of time a flow unit spends in a business process from beginning to end.
- Unit load: Total amount of time that a resource needs to process a flow unit
- Capacity rate: Maximum output rate at which units can flow through a resource or process
- Bottleneck: Resource/activity with the slowest capacity rate in a process
- Throughput rate/flow rate: Actual output rate of the process.
- Utilization Rate = Throughput rate / Capacity Rate <= 100%

For a certain chemical test at a medical company the below activity-resource chart is provided. Based on the information calculation the following.

- The flow time of the process
 The flowtime of the bottleneck activity.
 Capacity rate of Person C
 Capacity rate of the process
 What happens to the capacity if there is another individual, Person F working alongside Person B?

Person	Activity	Flow Time
A	Identify Requirements	1 min
В	Testing Solutions	3 min
С	Preparing Solutions	2 min
D	Performing Reaction	5 min
E	Test Analysis	7 min

Little's Law

Establishes a relationship between average inventory, average throughput rate, and average flow time:

I = R * T

Average Inventory (I): Average number of units or customers in the system Average Throughput Rate (R): The average actual output rate Average Flow Time (T): The average for a unit to move through the system

Below is provided the inventory buildup diagram at Lululemon for a surprise flash sale outside the UBC bookstore.

- Using the diagram, calculate the average numbers of customers who visited the flash sale. What is the average waiting time given that the throughput rate is 6 customers/hour?

Gantt Chart

Critical Path

Critical path method:

- Identify all paths between the start node and the end node (Enumeration Method)
- For each path, add the activity times for all activities on that path
- This path is called the critical path
- This is the time required to finish the project
- Activity times are dependant on costs
- Crashing: refers to reducing the time it takes to complete the activity
- Crash time: the minimum possible time to complete an activity
- Crash cost: the cost associated with the crash time (in place of the normal cost)

The LA Clippers are building a new arena and the construction process activity timeline is shown below. Please help the team figure the critical path & duration of the process.

Activity	Predecessor	Time (weeks)
A		6
В	A	3
С	A	7
D	С	2
E	B, D	4
F	D	3
G	E, F	7

P-K Formula

P-K FORMULAS				
G/G/1	$I_q \cong \frac{\rho^2}{1-\rho} \times \frac{C_a^2 + C_s^2}{2}$	Inter-arrival times and service times are generally distributed. 1 server in queue.		
M/M/1	$I_q = \frac{\rho^2}{1 - \rho} = \frac{\lambda^2}{\mu(\mu - \lambda)}$	Inter-arrival times and service times are exponentially distributed. 1 server in queue		
M/D/1	$I_q = \frac{\rho^2}{1 - \rho} \times \frac{1}{2} = \frac{\lambda^2}{2\mu(\mu - \lambda)}$	Inter-arrival times are exponentially distributed. Service times are deterministic. 1 server in queue.		
G/G/c	$I_q = \frac{\rho^{\sqrt{2}(c+1)}}{1-\rho} \times \frac{C_a^2 + C_s^2}{2}$	Inter-arrival times and service times are generally distributed. There are c servers.		

Performance Measures			
Iq	Average Queue Length	$I_q = \lambda * T_q$	
l _s	Average # of customers being served	$I_s = \lambda * T_s = \lambda / \mu$	
$I = I_{s+}I_{q}$	Average # of customers in the process	I = λ * T	
T _q	Average waiting time in queue	$T_q = I_q / \lambda$	
T _s	Average service time (server)	$T_s = 1/\mu$	
$T = T_{s+}T_{q}$	Average Flow Time in the process	Τ=Ι/λ	

A shopkeeper installs an ATM and observes that the customers arrive at a rate of 15 customers per hour. The ATM has a fixed non-random service time of 3 minutes per customer.

- (a) Calculate the average time spent by a customer in this system
- (b) What is the percentage of time that the ATM is idle?

