

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
	[»

Отчёт по лабораторной работе №4

Название:	Методология разработки и верификации			
ускорителей вычислений на платформе Xilinx Alveo				
Дисциплина	а: Архитектура	ЭВМ		
Студент	ИУ7-54Б (Группа)	—————————————————————————————————————	Л.Е.Тартыков (И.О. Фамилия)	
Преподаватель	, ,	(Подпись, дата)	А.Ю.Попов (И.О. Фамилия)	

Москва, 2021

Цель работы

Изучение архитектуры гетерогенных вычислительных систем и технологии разработки ускорителей вычислений на базе ПЛИС фирмы Xilinx.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- изучить основные сведения о платформе Xilinx Alveo U200;
- разработать RTL (Register Transfer Language, язык регистровых передач) описание ускорителя вычислений по индивидуальному варианту;
- выполнить генерацию ядра ускорителя;
- выполнить синтез и сборку бинарного модуля ускорителя;
- разработать и отладить тестирующее программное обеспечение на серверной хост-платформе;
- провести тесты работы ускорителя вычислений.

Основные теоретические сведе-

RNH

В ходе лабораторной работы будет использован базовый шаблон так называемого RTL проекта VINC, который может быть создан в IDE Xilinx Vitis и CAПР Xilinx Vivado. Шаблон VINC выполняет попарное сложение чисел исходного массива и сохраняет результаты во втором массиве. Проект VINC включает:

Проект ПО хоста, выполняющий инициализацию аппаратного ядра и его тестирование через OpenCL вызовы.

Синтезируемый RTL проект ядра ускорителя на языках Verilog и SystemVerilog.

Функциональный тест ускорителя VINC на языке SystemVerilog.

Все перечисленные проекты создаются автоматически посредством запуска мастера RTL проектов в IDE Xilinx Vitis, и могут далее модифицироваться как через тот же мастер, так и в ручном режиме в САПР Xilinx Vivado, или обычном текстовом редакторе. Ряд проектных процедур необходимо запустить из консоли ОС Linux.

Проект VINC представляет собой аппаратное устройство, связанное шиной AXI4 MM (Memory mapped) с DDR[i] памятью, и получающее настроечные параметры по интерфейсу AXI4 Lite от программного обеспечения хоста (рисунок 1). В рамках всей системы используется единое 64-х разрядное адресное пространство, в котором формируются адреса на всех AXI4 шинах.

Рисунок 1 — Размещение проекта на ПЛИС xcu200-fsgd2104-2-е карты Alveo U200

В каждой карте U200 имеется возможность подключить ускоритель к любому DDR[i] контроллеру в том регионе, где будет размещен проект. Всего для пользователя доступны 3 динамических региона: SLR0,1,2, для которых выделены каналы локальной памяти DDR[0], DDR[2], DDR[3] соответственно. Вся подключенная память DDR[0..3] доступна со стороны статического региона, в котором размещена аппаратная часть XRT.

Память DDR[1] доступна для использования как в статическом регионе, так и в динамическом регионе SLR1.

Предполагается, что эта память может служить для организации эффективной подсистемы памяти ускорительной карты: буферизации данных, передаваемых между хост-системой и ускорителем.

Копии экранов моделирования исходного проекта VINC (исходная программа)

По умолчанию, в диаграмму (которую необходимо получить в приложении Vivado) добавлены сигналы шины АХІ4 ММ, представляющие собой 5 независимых каналов передачи сообщений, которые представлены в таблице 1.

Таблица 1 – Результаты замеров времени.

Канал передачи	Группы сигналов
Канал чтения адреса от ведущего к ведомому	$m00_axi_ar^*$
Канал чтения данных от ведомого к ведущему	m00_axi_r*
Канал записи адреса записи от ведущего к ведомому	m00_axi_aw*
Канал запись данных от ведущего к ведомому	m00_axi_w*
Канал записи ответа от ведомого к ведущему	$m00_axi_b^*$

Каналы позволяют сформировать конвейерные транзакции чтения и записи. Последовательность событий транзакции чтения можно представить следующим образом: ARVALID→ ARREADY→ RVALID→ RREADY.

На рисунке 2 приведена транзакция чтения данных вектора на шине AXI4 MM из DDR памяти.

Рисунок 2 – Транзакция чтения данных вектора на шине AXI4 MM из DDR памяти

Последовательность событий транзакции записи: AWVALID \rightarrow AWREADY \rightarrow WVALID \rightarrow WREADY \rightarrow BVALID \rightarrow BREADY.

На рисунке 3 приведена транзакция записи результата инкремента данных на шине AXI4 MM.

Рисунок 3 — Транзакция записи результата инкремента данных на шине $\mathrm{AXI4}\ \mathrm{MM}$

Ha рисунке 4 приведен фрагмент кода модуля rtl_kernel_wizard_0_example_a с выполнением инкрементирования данных.

Рисунок 4 — Транзакция записи результата инкремента данных на шине $\mathrm{AXI4}\ \mathrm{MM}$

Копии экранов моделирования исходного проекта VINC (измененная программа)

В соответствии с вариантом 16 необходимо было изменить код проекта. Реализовать функцию по формуле (1):

$$R[i] = A[i] * 4 - 16 \tag{1}$$

На рисунке 5 приведен код измененнной программы.

```
76 :
77 : // Adder function
78 □ always @(posedge s_axis_aclk) begin
79 □ for (i = 0; i < LP_NUM_LOOPS; i = i + 1) begin
80 ; d2_tdata[i*C_ADDER_BIT_WIDTH+:C_ADDER_BIT_WIDTH] <= d1_tdata[C_ADDER_BIT_WIDTH*i+:C_ADDER_BIT_WIDTH] * 4 - 16;
81 □ end
82 □ end
```

Рисунок 5 – Измененный код модуля _adder.v

На рисунке 6 приведена транзакция чтения данных вектора на шине AXI4 MM из DDR памяти.

Рисунок 6 – Транзакция чтения данных вектора на шине AXI4 MM из DDR памяти

На рисунке 7 приведена транзакция записи результата инкремента данных на шине AXI4 MM.

Рисунок 7 – Транзакция записи результата инкремента данных на шине AXI4 MM

Сборка проекта

Для сборки проекта необходимо было написать конфигурационный файл. В конфигурационом файле указывается основная информация для работы компилятора v++:

- 1. Количество и условные имена экземпляров ядер.
- 2. Тактовая частота работы ядра.
- 3. Для каждого ядра: выбор области SLR (SLR[0..2]), выбор DDR (DDR[0..3]) памяти, выбор высокопроизводительной памяти PLRAM(PLRAM[0,1,2]).
- 4. Параметры синтеза и оптимизации проекта.

На рисунке 8 представлен конфигурационный файл для сборки проекта.

```
Alveo_lab1.cfg \( \text{L} \) host_example... \( \text{R} \) Alveo_lab1.cfg \( \text{L} \) host_example... \( \text{R} \) 1 [connectivity]

2 nk=rtl_kernel_wizard_0:1:vinc0

3

4 slr=vinc0:SLR2
5 sp=vinc0.m00_axi:DDR[3]

6

7 [vivado]
8 prop=run.impl_1.STEPSOPT_DESIGN.ARGS.DIRECTIVE=Explore
9 prop=run.impl_1.STEPS.PLACE_DESIGN.ARGS.DIRECTIVE=Explore
10 prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.IS_ENABLED=true
11 proprun.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=AggressiveExplore
12 prop=run.impl_1.STEPS.ROUE_DESIGN.ARGS.DIRECTIVE=Explore
```

Рисунок 8 – Конфигурационный файл

Содержимое файлов v++*.log и *.xclbin.info. приведено в приложениях.

Тестирование

Для того, чтобы запустить тесты, необходимо изменить условие проверки в автоматически созданном программном модуле host—example.cpp.

Часть кода модуля host_example.cpp приведена на рисунке 9. Было изменено условие проверки, на проверку, соответствующую моему варианту.

Рисунок 9 – Фрагмент кода host example.cpp

Тесты запускались с помощью команды Run->Run Configurations с настройкой параметров согласно условию лабораторной работы. По результатам на рисунке 10 можно увидеть, что все тесты выполнены успешно.

```
cterminated> (exit value: 0) SystemDebugger_Alveo_lab1_system_Alveo_lab1 [OpenCL]/iu_home/iu7136/workspace
[Console output redirected to file:/iu_home/iu7136/workspace/Alveo_lab1/Hardware/SystemDi
INFO: Found 1 platforms
INFO: Selected platform 0 from Xilinx
INFO: Found 1 devices
CL_DEVICE_NAME xilinx_u200_xdma_201830_2
Selected xilinx_u200_xdma_201830_2 as the target device
INFO: loading xclbin /iu_home/iu7136/workspace/vinc.xclbin
INFO: Test completed successfully.
```

Рисунок 10 – Выполнение тестов

Заключение

Изучены архитектуры гетерогенных вычислительных систем и технологии разработки ускорителей вычислений на базе ПЛИС фирмы Xilinx. Были выполнены следующие задачи:

- изучены основные сведения о платформе Xilinx Alveo U200;
- разработано RTL (Register Transfer Language, язык регистровых передач) описание ускорителя вычислений по индивидуальному варианту;
- выполнена генерация ядра ускорителя;
- выполнены синтез и сборка бинарного модуля ускорителя;
- разработано и отлажено тестирующее программное обеспечение на серверной хост-платформе;
- проведены тесты работы ускорителя вычислений.

Поставленная цель достигнута.

Контрольные вопросы

1. Назовите преимущества и недостатки XDMA и QDMA платформ.

Преимущества QDMA:

- позволяет передавать поток данных непосредственно в логику FPGA параллельно с их обработкой;
- предоставляет разработчикам прямое потоковое соединение с низкой задержкой между хостом и ядрами;
- включает высокопроизводительный DMA, который использует несколько очередей, оптимизированных как для передачи данных с высокой пропускной способностью, так и для передачи данных с большим количеством пакетов.

Недостатки XDMA:

• требует, чтобы данные сначала были полностью перемещены из памяти хоста в память FPGA (DDRx4 DIMM или PLRAM), прежде чем логика FPGA сможет начать обработку данных, что влияет на задержку на запуска задачи.

2. Назовите последовательность действий, необходимых для инициализации ускорителя со стороны хост-системы.

- 1. Хост получает все платформы.
- 2. Хост выбирает имя платформы Xilinx.
- 3. Хост получает Id устройства.
- 4. Хост получает информацию об устройстве.
- 5. Создается контекст для переменных.
- 6. Создается команда для устройста-ускорителя.

3. Какова процедура запуска задания на исполнения в ускорительном ядре VINC.

- 1. Данные из .xclbin копируются из ОЗУ в локальную память ускорителя посредством DMA.
- 2. В памяти устройства-ускорителя создается исполняемый файл.
- 3. Те данные, которые подлежат обработке, копируются из ОЗУ в локальную память усокрителя посредством DMA.
- 4. Указываются необходимые параметры и запускается программа на ускорителе.
- 5. В конце выполняется чтение готовых данных.

4. Опишите процесс линковки на основании содержимого файла v++*.log.

- 1. Анализ профиля устройства. Анализ конфигурационного файла. Поиск необходимых интерфейсов.
- 2. FPGA linking synthesized kernels to platform
- 3. FPGA logic optimization (оптимизация логики ПЛИС) для минимизации задержки.
- 4. FPGA logic placement (размещение логики ПЛИС, то есть выбор конкретного мета для определенного логического блока).
- 5. FPGA routing (маршрутизация Π ЛИС)
- 6. FPGA bitstream generation (генерация битового потока ПЛИС, то есть генерация файла [*.xclbin]).

Приложение А

Листинг 1 – Содержимое файла host example.cpp

```
// This is a generated file. Use and modify at your own risk
   3
5
  Vendor: Xilinx
6 Associated Filename: main.c
7
  #Purpose: This example shows a basic vector add +1 (constant) by manipulating
            memory inplace.
11 #include < fcntl.h>
12 #include < stdio.h>
13 #include <iostream>
14 #include < stdlib.h>
15 #include <string.h>
16 #include <math.h>
17 #ifdef _WINDOWS
18 #include <io.h>
20 #include <unistd.h>
21 #include <sys/time.h>
22 #endif
23 #include <assert.h>
24 #include <stdbool.h>
25 #include <sys/types.h>
26 #include < sys/stat.h>
27 #include <CL/opencl.h>
28 #include <CL/cl_ext.h>
29 #include "xclhal2.h"
30
   32
33 #define NUM WORKGROUPS (1)
34 #define WORKGROUP_SIZE (256)
35 #define MAX_LENGTH 8192
36 #define MEM ALIGNMENT 4096
37 #if defined (VITIS_PLATFORM) &&! defined (TARGET_DEVICE)
38 #define STR_VALUE(arg)
                              #arg
  #define GET STRING(name) STR VALUE(name)
40 #define TARGET_DEVICE GET_STRING(VITIS_PLATFORM)
41
  #endif
42
   43
44
45
   \verb|cl_uint load_file_to_memory| (\verb|const char *filename|, \verb|char **result|)
46
       cl_uint size = 0;
47
48
      FILE *f = fopen(filename, "rb");
      if (f == NULL) {
           *result = NULL;
50
           return -1; // -1 means file opening fail
51
52
53
       fseek\;(\;f\;,\quad 0\;,\;\;SEEK\_END)\;;
54
       size = ftell(f);
55
       fseek (f, 0, SEEK SET);
56
       *result = (char *) malloc(size+1);
       if (size != fread(*result, sizeof(char), size, f)) {
57
58
           free (* result);
           return -2; // -2 means file reading fail
59
60
       fclose(f);
61
62
       (\,*\,{\tt result}\,)\,\,[\,\,{\tt size}\,\,]\,\,=\,\,0\,;
63
       return size;
64
   int main(int argc, char ** argv)
67
68
       cl_int err;
                                              // error code returned from api calls
69
70
       cl_uint check_status = 0;
       const cl_uint number_of_words = 4096; // 16KB of data
71
72
73
```

```
cl_platform_id platform_id;
 74
                                                   // platform id
 7.5
         cl_device_id device_id;
                                                   // compute device id
 76
         cl_context context;
                                                   // compute context
 77
         cl_command_queue commands;
                                                   // compute command queue
                                                   // compute programs
 78
         cl_program program;
 79
         cl_kernel kernel;
                                                   // compute kernel
 80
 81
         cl uint * h data;
                                                                 // host memory for input vector
         char cl platform vendor[1001];
 82
         {\tt char target\_device\_name[1001]} = {\tt TARGET\_DEVICE};
 83
 84
         cl\_uint*\ h\_axi00\_ptr0\_output = (cl\_uint*) \ aligned\_alloc(MEM\_ALIGNMENT, MAX\_LENGTH * \ sizeof(cl\_uint*))
 85
              ; // host memory for output vector
         cl_mem d_axi00_ptr0;
                                                              // device memory used for a vector
 86
 87
 88
         if (argc != 2) {
 89
             printf("Usage: %s xclbin\n", argv[0]);
 90
             return EXIT FAILURE;
 91
         }
 92
 93
         // \ Fill \ our \ data \ sets \ with \ pattern
 94
         h_data = (cl_uint*)aligned_alloc(MEM_ALIGNMENT, MAX_LENGTH * sizeof(cl_uint*));
 95
         \label{eq:formula} \mbox{for} \; (\; \mbox{cl\_uint} \; \; i \; = \; 0 \; ; \; \; i \; < \; \mbox{MAX\_LENGTH}; \; \; i + +) \; \; \{
 96
             h_{data[i]} = i;
 97
             h_axi00_ptr0_output[i] = 0;
 98
 99
         }
100
         // Get all platforms and then select Xilinx platform
101
102
         cl_platform_id_platforms[16];
                                                 // platform id
103
         cl_uint platform_count;
104
         {\tt cl\_uint\ platform\_found\ =\ 0}\,;
105
         err = clGetPlatformIDs(16, platforms, &platform_count);
         if (err != CL SUCCESS) {
106
107
             printf("ERROR: Failed to find an OpenCL platform!\n");
             printf("ERROR: Test failed \n");
108
109
              return EXIT FAILURE;
110
         printf("INFO: Found \%d platforms \n", platform\_count);
111
112
113
          // Find Xilinx Plaftorm
114
          for \ (cl\_uint \ iplat=0; \ iplat < platform\_count; \ iplat++) \ \{
             err = clGetPlatformInfo(platforms[iplat], CL_PLATFORM_VENDOR, 1000, (void *)cl_platform_vendor,
115
116
              if (err != CL SUCCESS) {
                  printf("ERROR: clGetPlatformInfo(CL\_PLATFORM\_VENDOR) \ failed ! \ \ n");
117
                  printf("ERROR: Test failed\n");
118
                  return EXIT FAILURE;
119
120
              if \ (strcmp(cl_platform_vendor, \ "Xilinx") == 0) \ \{\\
121
122
                  printf("INFO: Selected platform \%d from \%s\n", iplat, cl_platform_vendor);\\
                  platform_id = platforms[iplat];
123
124
                  platform found = 1;
125
126
         if (!platform_found) {
127
             printf("ERROR: Platform Xilinx not found. Exit.\n");
128
             return EXIT FAILURE;
129
130
131
132
         // Get Accelerator compute device
133
         cl_uint num_devices;
         cl\_uint device\_found = 0;
134
         135
136
         char cl device name[1001];
         137
138
         i \; f \; \; (\; e \; rr \; \; != \; CL\_SUCCESS) \; \; \{ \;
139
140
             printf("ERROR: Failed to create a device group!\n");
141
             p \, \text{rintf} \, (\, \text{"ERROR: Test failed} \, \backslash \, \text{n} \, \text{"}) \, \, ;
142
              return -1;
143
144
         //iterate all devices to select the target device.
145
146
         \label{for devices} \mbox{for } (\mbox{cl\_uint} \ i = 0 \, ; \ i < \mbox{num\_devices} \, ; \ i + +) \ \{
              {\tt err} \ = \ {\tt clGetDeviceInfo} \ ( \ {\tt devices} \ [ \ i \ ] \ , \ \ {\tt CL\_DEVICE\_NAME}, \ \ 1024 \ , \ \ {\tt cl\_device\_name} \ , \ \ 0) \ ;
147
              if (err != CL SUCCESS) {
148
                  printf("ERROR: \ Failed \ to \ get \ device \ name \ for \ device \ \%d! \backslash n" \,, \ i) \,;
149
150
                  printf("ERROR: Test failed \n");\\
151
                  return EXIT FAILURE;
              printf ("CL DEVICE NAME %s\n", cl device name);
```

```
154
               if(strcmp(cl\_device\_name\,,\ target\_device\_name\,) == 0) \ \{\\
155
                   device_id = devices[i];
156
                    d\,e\,v\,i\,c\,e\,\_\,f\,o\,u\,n\,d\ =\ 1\,;
157
                    printf("Selected %s as the target device\n", cl device name);
158
               }
159
          }
160
          if (!device_found) {
    printf("ERROR: Target device %s not found. Exit.\n", target_device_name);
161
162
               {\tt return\ EXIT\_FAILURE}\,;
163
164
165
166
          // Create a compute context
167
168
          context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
169
          if (!context) {
170
              printf("ERROR: Failed to create a compute context!\n");
              printf("ERROR: Test failed\n");
171
               return EXIT_FAILURE;
172
          }
173
174
175
          // Create a command commands
176
         commands = clCreateCommandQueue(context, device\_id, CL\_QUEUE\_PROFILING\_ENABLE \mid
               CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
          if (!commands) {
178
               printf("ERROR: Failed to create a command commands! \n");
179
               printf("ERROR: code %i\n",err);
               printf("ERROR: Test failed\n");
180
               {\tt return\ EXIT\_FAILURE}\,;
181
182
          }
183
184
          cl_int status;
185
          // Create Program Objects
186
187
          // Load binary from disk
188
          unsigned char *kernelbinary;
          char *xclbin = argv[1];
189
190
191
          // x c l b i n
192
193
          p\, \texttt{rintf}\, (\,\texttt{"INFO}: \,\, \texttt{loading} \,\, \texttt{xclbin} \,\, \$s \, \texttt{\sc n} \,\texttt{"} \,\, , \,\, \texttt{xclbin} \,\, ) \,\, ;
194
195
          {\tt cl\_uint\ n\_i0\ =\ load\_file\_to\_memory(xclbin\ ,\ (char\ **)\ \&kernelbinary)\ ;}
196
          if (n_i0 < 0) {
197
              printf("ERROR: failed to load kernel from xclbin: %s\n", xclbin);
               printf("ERROR: Test failed \n");
198
               return EXIT_FAILURE;
199
200
          }
201
202
          size_t n0 = n_i0;
203
204
          // Create the compute program from offline
205
          program = clCreateProgramWithBinary(context, 1, &device id, &n0,
206
          (const unsigned char **) & kernelbinary, & status, & err);
207
          free (kernelbinary);
208
          i\;f \quad (\;(\;!\;program\;) \quad |\;| \quad (\;e\;rr\;!{=}CL\_SUCCESS)\;) \quad \{\\
209
               printf("ERROR: \ Failed \ to \ create \ compute \ program \ from \ binary \ \%d! \ \backslash n" \ , \ err);
210
               p\, \texttt{rintf}\, (\,\texttt{"ERROR}\colon \ T\, \texttt{est} \ faile\, d \setminus n\, \texttt{"}\,) \,\,;
211
212
               {\tt return\ EXIT\_FAILURE}~;
213
          }
214
215
216
          // Build the program executable
217
          {\tt err} \; = \; {\tt clBuildProgram} \, (\, {\tt program} \, , \; \; 0 \, , \; {\tt NULL}, \; {\tt NULL}, \; {\tt NULL}, \; {\tt NULL}) \, ;
218
          if \ (\,e\,rr \ != \,CL\_SUCCESS) \ \{\,
219
220
               size_tlen;
221
               char buffer [2048];
222
223
               printf("ERROR: \ Failed \ to \ build \ program \ executable! \ \ \ n");
               clGetProgramBuildInfo(program, device id, CL PROGRAM BUILD LOG, sizeof(buffer), buffer, &len);
224
225
               printf("%s\n", buffer);
226
               printf("ERROR: Test failed\n");
227
               return EXIT_FAILURE;
228
          }
229
230
          // Create the compute kernel in the program we wish to run
231
232
          \tt kernel = clCreateKernel(program, "rtl\_kernel\_wizard\_0", \&err);
          if (!kernel || err != CL_SUCCESS) {
233
               printf("ERROR: Failed to create compute kernel!\n");
234
```

```
printf("ERROR: Test failed \n");
235
236
              {\tt return\ EXIT\_FAILURE}~;
237
238
239
         // Create structs to define memory bank mapping
240
         cl_mem_ext_ptr_t mem_ext;
241
         mem ext.obj = NULL;
         mem_ext.param = kernel;
242
243
244
245
         mem\_ext.flags = 1;
         d_axi00_ptr0 = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_EXT_PTR_XILINX, sizeof(cl_uint)
246
               * number_of_words, &mem_ext, &err);
         if (err != CL_SUCCESS) {
247
248
              std::cout << "Return code for clCreateBuffer flags=" << mem_ext.flags << ": " << err << std::
                   endl;
249
         }
250
251
         if (!(d_axi00_ptr0)) {
252
              \overline{p\,ri\,n\,tf}\,\big(\,{}^{\shortparallel}ERROR\colon\ F\,ailed\ to\ allocate\ device\ memory\,!\,\backslash\,n\,"\,\big)\,;
253
254
              printf("ERROR: Test failed \n");
255
              return EXIT FAILURE;
256
257
258
         err = clEnqueueWriteBuffer(commands, d_axi00_ptr0, CL_TRUE, 0, sizeof(cl_uint) * number of words,
259
              h data, 0, NULL, NULL);
         if (err != CL SUCCESS) {
260
261
              printf("ERROR: \ Failed \ to \ write \ to \ source \ array \ h\_data: \ d\_axi00\_ptr0: \ \%d! \ \ , \ err);
262
              p \, \text{rintf} \, (\, \text{"ERROR} \colon \ T \, \text{est failed} \setminus n \, \text{"} \,) \,\,;
263
              return EXIT_FAILURE;
264
         }
265
266
267
         // Set the arguments to our compute kernel
268
         // cl\_uint vector\_length = MAX\_LENGTH;
269
         err = 0;
270
         cl\_uint d\_scalar00 = 0;
         err |= clSetKernelArg(kernel, 0, sizeof(cl_uint), &d_scalar00); // Not used in example RTL logic.
271
272
         \label{eq:err_larger} \texttt{err} \ \mid = \ \texttt{clSetKernelArg} \left( \, \texttt{kernel} \, , \, \, 1 \, , \, \, \, \texttt{sizeof} \left( \, \texttt{cl\_mem} \right) \, , \, \, \&\texttt{d\_axi00\_ptr0} \, \right) \, ;
273
274
         if (err != CL SUCCESS) {
275
              printf("ERROR: Failed to set kernel arguments! %d\n", err);
276
              printf("ERROR: Test failed\n");
              return EXIT_FAILURE;
277
278
         }
279
280
         size\_t global[1];
281
         size_t local[1];
282
         // Execute the kernel over the entire range of our 1d input data set
283
         // using the maximum number of work group items for this device
284
285
         global[0] = 1;
286
         local[0] = 1;
         err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, (size t*)&global, (size t*)&local, 0, NULL,
287
                NULL);
288
         if (err) {
              \label{eq:printf}  \text{printf}\left(\text{"ERROR: Failed to execute kernel! } \%d \backslash n\text{", err}\right);
289
290
              printf("ERROR: Test failed \n");
291
              return EXIT FAILURE;
292
293
294
         cl Finish (commands);
295
296
         // Read back the results from the device to verify the output
297
298
299
         cl_event readevent;
300
301
         err |= clEnqueueReadBuffer( commands, d axi00 ptr0, CL TRUE, 0, sizeof(cl uint) * number of words,
302
               h axi00 ptr0 output, 0, NULL, &readevent);
303
         i~f~(~e~rr~!=~CL\_SUCCESS)~\{
304
               \label{eq:printf} printf("ERROR: Failed to read output array! \%d\n", err);
305
               printf("ERROR: Test failed\n");
306
307
               return EXIT_FAILURE;
308
309
         clWaitForEvents(1, &readevent);
         // Check Results
311
```

```
312
313
            for \ (cl\_uint \ i = 0; \ i < number\_of\_words; \ i++) \ \{
                 if ((h_data[i] * 4 - 16) != h_axi00_ptr0_output[i]) {
    printf("ERROR in rtl_kernel_wizard_0::m00_axi - array index %d (host addr 0x%03x) - input=%
    d (0x%x), output=%d (0x%x)\n", i, i*4, h_data[i], h_data[i], h_axi00_ptr0_output[i],
314
315
                              h_axi00_ptr0_output[i]);
316
                       check_status = 1;
317
                  .//p \ rintf("i=\%d, \ input=\%d, \ output=\%d \ | \ n", \ i, \ h\_axi00\_ptr0\_input[i] \ h\_axi00\_ptr0\_output[i]);
318
319
           }
320
321
322
            // Shutdown and cleanup
323
324
            clReleaseMemObject(d_axi00_ptr0);
325
326
            \mathtt{free} \; (\; \mathsf{h} \; \_\mathtt{axi00} \, \_\mathtt{ptr0} \, \_\mathtt{output} \,) \; ;
327
            free(h_data);
328
            clReleaseProgram (program);
329
            clReleaseKernel (kernel);
330
331
            \mathtt{clReleaseCommandQueue} \, (\, \mathtt{commands}) \,\, ;
332
            clReleaseContext (context);
333
334
           if (check_status) {
    printf("ERROR: Test failed\n");
335
                 return EXIT_FAILURE;
336
337
           } else {
                 printf("INFO: Test completed successfully.\n");
338
                  return EXIT_SUCCESS;
339
340
341
342
343 } // end of main
```

Приложение Б

Листинг 2 – Содержимое файла v++*.log

```
1 INFO: [v++ 60-1306] Additional information associated with this v++ link can be found at:
         Reports: /iu home/iu7136/ x/reports/link
          Log files: /iu_home/iu7136/_x/logs/link
   | INFO: [v++ 60-1548] Creating build summary session with primary output /iu_home/iu7136/workspace/vinc.
                            \verb|xclbin.link_summary|, | at Sat Dec 25 | 22:16:51 | 2021|
   5 \mid \text{INFO: [v++} \quad 60 - \overline{13} \\ 16 \mid \text{Initiating connection to rulecheck server, at Sat Dec } \\ 25 \mid 22 \\ :16 \\ :51 \mid 2021 \mid
   6 NFO: [v++ 60-1315] Creating rulecheck session with output '/iu_home/iu7136/_x/reports/link/v++
                              _link_vinc_guidance.html', at Sat Dec 25 22:17:08 2021
         INFO: [v++60-895] \\ Target platform: /opt/xilinx/platforms/xilinx_u200_xdma_201830_2/201830_2 \\ Target platform: /opt/xilinx_platforms/xilinx_u200_xdma_201830_2/201830_2 \\ Target platforms/xilinx_u200_xdma_201830_2/201830_2 \\ Target platforms/xilinx_u200_xdma_201830_2/201830_2 \\ Target platforms/xilinx_u200_xdma_201830_2 \\ Target platforms/xilinx_u200_xdma_20180_x \\ Target platforms/xilinx_u20
                          xilinx\_u200\_xdma\_201830\_2.xpfm
         INFO: [v++ 60-1578] This platform contains Device Support Archive '/opt/xilinx/platforms/
                          xilinx u200 xdma 201830 2/hw/xilinx u200 xdma 201830 2.dsa'
   9 INFO: [v++ 74-74] Compiler Version string: 2020.2
 10 \ | \ NFO: \ [v++\ 60-1302] \ Platform \ 'xilinx\_u200\_xdma\_201830\_2.xpfm' \ has been explicitly enabled for this also be a substitution of the control 
 11 INFO: [v++60-629] Linking for hardware target
 12 INFO: [v++ 60-423] Target device: xilinx_u200_xdma_201830_2
 13 INFO: [v++60-1332] Run 'run link' status: Not started
 14 NFO: [v++ 60-1443] [22:17:52] Run run_link: Step system_link: Started
 15 INFO: [v++ 60-1453] Command Line: system link —xo /iu home/iu7136/workspace/Alveo lab1 kernels/
                          vivado_rtl_kernel/rtl_kernel_wizard_0_ex/exports/rtl_kernel_wizard_0.xo —config_/iu_home/iu7136/_x/link/int/syslinkConfig.ini —xpfm_/opt/xilinx/platforms/xilinx_u200_xdma_201830_2/
                            xilinx_u200_xdma_201830_2.xpfm — target hw —output_dir /iu_home/iu7136/_x/link/int —temp_dir /
                            iu\_home/iu7136/\_x/link/sys\_link
 16 \left \lfloor \text{INFO} : \left \lfloor \text{v++} \right. 60 - 1454 \right \rfloor \right. \\ \text{Run Directory} : \left. / \text{iu\_home/iu} \\ 7136 / \_x / \text{link/run\_link} \right. \\ 
 17 INFO: [SYSTEM LINK 60-1316] Initiating connection to rulecheck server, at Sat Dec 25 22:18:03 2021
 18 NFO: [SYSTEM_LINK 82-70] Extracting xo v3 file /iu_home/iu7136/workspace/Alveo_lab1_kernels/
                             vivado_rtl_kernel/rtl_kernel_wizard_0_ex/exports/rtl_kernel_wizard_0.xo
 19 INFO: [SYSTEM_LINK 82-53] Creating IP database /iu_home/iu7136/_x/link/sys_link/_sysl/.cdb/xd_ip_db.xml
20 INFO: [SYSTEM_LINK 82-38] [22:18:05] build_xd_ip_db_started: /data/Xilinx/Vitis/2020.2/bin/build_xd_ip_db -ip_search 0 -sds-pf /iu_home/iu7136/_x/link/sys_link/xilinx_u200_xdma_201830_2.
                            hpfm -clkid 0 -ip /iu_home/iu7136/_x/link/sys_link/iprepo/
                            mycompany\_com\_kernel\_rtl\_kernel\_wizard\_0\_1\_0, rtl\_kernel\_wizard\_0\_o\_/iu\_home/iu7136/\_x/link/2000.
                             sys_link/_sysl/.cdb/xd_ip_db.xml
21 \ | \ INFO: \ [SYSTEM\_LINK \ 82-37] \ [2\,2:1\,8:3\,1] \ build\_xd\_ip\_db \ finished \ successfully
22 \mid \text{Time (s): cpu} = 00:00:27 \; \; ; \; \; \text{elapsed} = 00:00:26 \; \; . \; \; \text{Memory (MB): peak} = 1557.895 \; \; ; \; \; \text{gain} = 0.000 \; \; ; \; \; \text{free} = 1557.895 \; \; ; \; \; \text{gain} = 1557.895 \; ; \; \; \text{gain} = 1557.895 \; \; ; \; \; \text{gain} = 1557.895
                            physical = 207946 \;\; ; \;\; free \;\; virtual = 372608
 23 INFO: [SYSTEM_LINK 82-51] Create system connectivity graph
 24 NFO: [SYSTEM LINK 82-102] Applying explicit connections to the system connectivity graph: /iu home/
                          iu7136/_x/link/sys_link/cfgraph/cfgen_cfgraph.xml
 25 INFO: [SYSTEM LINK 82-38] [22:18:31] cfgen started: /data/Xilinx/Vitis/2020.2/bin/cfgen -nk
                            rtl_kernel_wizard_0:1:vinc0 -slr vinc0:SLR2 -sp vinc0.m00_axi:DDR[3] -dmclkid 0 -r /iu_home/iu7136
                             _x/link/sys_link/_sysl/.cdb/xd_ip_db.xml -o /iu_home/iu7136/_x/link/sys_link/cfgraph/
                            cfgen\_cfgraph.xml
26 INFO: [CFGEN 83-0] Kernel Specs:
 27 INFO: [CFGEN 83-0]
                                                                                       kernel: rtl_kernel_wizard_0, num: 1 {vinc0}
 28 INFO: [CFGEN 83-0] Port Specs:
 29 INFO: [CFGEN 83-0]
                                                                                      kernel: vinc0, k_port: m00_axi, sptag: DDR[3]
 30 INFO: [CFGEN 83-0] SLR Specs:
 31 INFO: [CFGEN 83-0]
                                                                                     instance: vinc0 . SLR: SLR2
32 NFO: [CFGEN 83-2228] Creating mapping for argument vinc0 axi00_ptr0 to DDR[3] for directive vinc0.
                          m00 axi:DDR[3]
 33 INFO: [SYSTEM_LINK 82-37] [22:18:53] cfgen finished successfully
 physical = 207787 \; ; \; free \; virtual = 372450
 35 INFO: [SYSTEM_LINK 82-52] Create top-level block diagram
         INFO: [SYSTEM_LINK 82-38] [22:18:53] cf2bd started: /data/Xilinx/Vitis/2020.2/bin/cf2bd ——linux -
                            trace_buffer 1024 —input_file_liu_home/iu7136/_x/link/sys_link/cfgraph/cfgen_cfgraph.xml —ip_db/iu_home/iu7136/_x/link/sys_link/_sysl/.cdb/xd_ip_db.xml —cf_name_dr —working_dir_liu_home/iu7136/_x/link/sys_link/_sysl/.xsd —temp_dir_liu_home/iu7136/_x/link/sys_link —output_dir_liu_home/iu7136/_x/link/sys_link/_sysl/.xsd —temp_dir_liu_home/iu7136/_x/link/sys_link —output_dir_liu_home/iu7136/_x/link/sys_link
iu_home/iu7136/_x/link/int — target_bd pfm_dynamic.bd

37 INFO: [CF2BD 82-31] Launching cf2xd: cf2xd -linux -trace-buffer 1024 -i /iu_home/iu7136/_x/link/
                            sys\_link/cfgraph/cfgen\_cfgraph.xml-r-/iu\_home/iu7136/\_x/link/sys\_link/\_sysl/.cdb/xd\_ip\_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip\_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/\_sysl/.cdb/xd_ip_db.xml-outlink/sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-link/_sys-
 38 INFO: [CF2BD 82-28] cf2xd finished successfully
         INFO: [CF2BD 82-31] Launching cf xsd: cf xsd -disable-address-gen -bd pfm dynamic.bd -dn dr -dp /
 iu_home/iu7136/_x/link/sys_link/_sys1/.xsd
40 INFO: [CF2BD 82-28] cf_xsd finished successfully
 41 INFO: [SYSTEM_LINK 82-37] [22:19:06] cf2bd finished successfully
 42 Time (s): cpu = 00:00:10 ; elapsed = 00:00:13 . Memory (MB): peak = 1557.895 ; gain = 0.000 ; free physical = 207580 ; free virtual = 372247
 43 INFO: [v++ 60-1441] [22:19:06] Run run_link: Step system_link: Completed
```

```
44 Time (s): cpu = 00:01:13 ; elapsed = 00:01:14 . Memory (MB): peak = 1585.129 ; gain = 0.000 ; free
             physical = 207612 ; free virtual = 372276
 45 INFO: [v++ 60-1443] [22:19:06] Run run_link: Step cf2sw: Started
 46 INFO: [v++ 60-1453] Command Line: cf2sw-sdsl /iu home/iu7136/ x/link/int/sdsl.dat -rtd /iu home/iu7136
               /\_x/link/int/cf2sw.rtd - nofilter /iu\_home/iu7136/\_x/link/int/cf2sw\_full.rtd - xclbin /iu\_home/iu7136/\_x/link/int/cf2sw\_full.rtd - xclbin /iu\_home/iu7136/\_x/link/int/cf2sw\_full.rtd - xclbin /iu\_home/iu7136/_x/link/int/cf2sw\_full.rtd - xclbin /iu\_home/iu7136/_x/link/int/cf2sw\_full.rtd - xclbin /iu_home/iu7136/_x/link/int/cf2sw\_full.rtd - xclbin /iu_home/iu7136/_x/link/int/cf2sw_full.rtd - xclbin /iu7136/_x/link/int/cf2sw_full.rtd - xclbin /iu7136/_x/link/int/cf2sw_full.rtd - xclbin /iu7136/_x/link/int/cf2sw_full.rtd - xclbin /iu7136/_x/link/int/cf2sw_full.rtd - xclbin /iu7136/_x/lin
              iu7136/_x/link/int/xclbin_orig.xml -o /iu_home/iu7136/_x/link/int/xclbin_orig.1.xml
 47 \left[ \text{INFO: } \left[ \text{v++} \ 60 - 1454 \right] \ \text{Run Directory: } / \text{iu\_home/iu} \\ 7136 / \_\text{x/link/run\_link} \right] \\
 48 INFO: [v++ 60-1441] [22:19:21] Run run link: Step cf2sw: Completed
 physical = 207583 ; free virtual = 372246
 50 NFO: [v++ 60-1443] [22:19:21] Run run_link: Step rtd2_system_diagram: Started
 51 NFO: [v++ 60-1453] Command Line: rtd2SystemDiagram
 52 NFO: [v++ 60-1454] Run Directory: /iu home/iu7136/ x/link/run link
 53 INFO: [v++ 60-1441] [22:19:31] Run run_link: Step rtd2_system_diagram: Completed
 54 \ \ \text{Time (s): cpu} = 00:00:00:00.02 \ ; \ \ \text{elapsed} = 00:00:09 \ . \ \ \text{Memory (MB): peak} = 1585.129 \ ; \ \ \text{gain} = 0.000 \ ; \ \ \text{free}
              physical = 207034; free virtual = 371697
 55 INFO: [v++ 60-1443] [22:19:31] Run run_link: Step vpl: Started
56 INFO: [v++ 60-1453] Command Line: vpl-t hw-f xilinx_u200_xdma_201830_2 —remote_ip_cache /iu_home/
              iu7136/.ipcache —output_dir_/iu_home/iu7136/_x/link/int —log_dir_/iu_home/iu7136/_x/logs/link -
               report_dir /iu_home/iu7136/_x/reports/link — config /iu_home/iu7136/_x/link/int/vplConfig.ini -k /
               iu_home/iu7136/_x/link/int/kernel_info.dat —webtalk_flag Vitis —temp_dir/iu_home/iu7136/_x/link
                --\text{no-info} \hspace{0.2cm} --\text{iprepo} \hspace{0.2cm} / \text{iu\_home/iu7136/\_x/link/int/xo/ip\_repo/}
               my company\_com\_kernel\_rtl\_kernel\_wizard\_0\_1\_0 ---messageDb / iu\_home/iu7136/\_x/link/run\_link/vpl.pb / (a.c., b.c., b.c
      iu_home/iu7136/_x/link/int/dr.bd.tcl
INFO: [v++ 60-1454] Run Directory: /iu_home/iu7136/_x/link/run_link
 59
       ***** vpl v2020.2 (64-bit)
 60 **** SW Build (by xbuild) on 2020-11-18-05:13:29
 61 ** Copyright 1986-2020 Xilinx, Inc. All Rights Reserved.
 62
 63 INFO: [VPL 60-839] Read in kernel information from file '/iu_home/iu7136/_x/link/int/kernel_info.dat'.
 64 INFO: [VPL 74-74] Compiler Version string: 2020.2
 65 INFO: [VPL 60-423] Target device: xilinx_u200_xdma_201830_2
 66 NFO: [VPL 60-1032] Extracting hardware platform to /iu_home/iu7136/_x/link/vivado/vpl/.local/
               hw_platform
      WARNING: /data/Xilinx/Vitis/2020.2/tps/lnx64/jre9.0.4 does not exist.
      [22:24:19] Run vpl: Step create_project: Started
 68
       Creating Vivado project.
 70 [22:24:39] Run vpl: Step create_project: RUNNING...
 71
      [\,2\,2\,:\,2\,4\,:\,4\,8\,] \ Run\ vpl:\ Step\ create\_project:\ Completed
 72 [22:24:48] Run vpl: Step create_bd: Started
 7.3
       [22:26:30] Run vpl: Step create bd: RUNNING..
       [22:28:08] Run vpl: Step create bd: RUNNING...
       [22:29:42] Run vpl: Step create_bd: RUNNING...
 75
      [22:31:31] Run vpl: Step create_bd: RUNNING...
       [22:32:57] Run vpl: Step create_bd: RUNNING...
 77
      [22:33:47] Run vpl: Step create_bd: Completed
 79
      [22:33:47] Run vpl: Step update_bd: Started
 80
       [\,2\,2:3\,3:5\,0\,] \ Run\ vpl:\ Step\ update\_bd:\ Completed
 81
       [\,2\,2\,:\,3\,3\,:\,5\,0\,]\ Run\ vpl:\ Step\ generate\_target:\ Started
       [22:35:29] Run vpl: Step generate_target:
 82
                                                                                   RUNNING
       [22:37:10] Run vpl: Step generate_target: RUNNING...
 84
       [22:38:42] Run vpl: Step generate target: RUNNING...
       [22:40:20] Run vpl: Step generate target: RUNNING...
       [\,2\,2:4\,1:5\,4\,]\ Run\ vpl:\ Step\ generate\_target:\ RUNNING\dots
      [\,2\,2:4\,3:3\,6\,]\ Run\ vpl:\ Step\ generate\_target:\ RUNNING\dots
 87
 88
      [\,2\,2:4\,4:1\,7\,]\ Run\ vpl:\ Step\ generate\_target:\ Completed
      [22:44:17] Run vpl: Step config_hw_runs: Started
 89
 90 [22:45:33] Run vpl: Step config_hw_runs: Completed
 91
       [22:45:33] Run vpl: Step synth: Started
       [22:47:42] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
 92
       [22:48:20] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
 93
       [22:48:58] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
 95
       [22:49:43] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
       \hbox{$[22:50:29]$ Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.}
 96
       [22:51:10] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
 97
       [22:51:54] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
 98
       \hbox{$[22:52:34]$ Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.}
 99
100
       [22:53:16] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
101
       \hbox{$[22:53:59]$ Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.}
       \hbox{$\left[\,2\,2:5\,4:4\,1\,\right]$ Block-level synthesis in progress, 0 of 66 jobs complete, 8}\\
102
                                                                                                                                        jobs running.
       [22:55:22] Block-level synthesis in progress, 5 of 66 jobs complete, 3 jobs running.
       [22:56:01] Block-level synthesis in progress, 6 of 66 jobs complete, 2 jobs running.
      [22:56:43] Block-level synthesis in progress, 6 of 66 jobs complete, 7 jobs running.
      [22:57:23] Block-level synthesis in progress, 6 of 66 jobs complete, 8 jobs running.
106
       [2\,2\,:\,5\,8\,:\,0\,4\,] \quad Block-level \quad synthesis \quad in \quad progress \;, \quad 8 \quad of \quad 66 \quad jobs \quad complete \;, \quad 6 \quad jobs \quad running \;.
107
       [22:58:47] Block-level synthesis in progress, 9 of 66 jobs complete, 7 jobs running.
108
109
       [22:59:29] Block-level synthesis in progress, 10 of 66 jobs complete, 6 jobs running.
110
       [2\,3:0\,0:0\,9]\ \ Block-level\ \ synthesis\ \ in\ \ progress\ ,\ 10\ \ of\ \ 66\ \ jobs\ \ complete\ ,\ 7\ \ jobs\ \ running\ .
       [23:00:50] Block-level synthesis in progress, 10 of 66 jobs complete, 8 jobs running.
111
       [23:01:30] Block-level synthesis in progress, 10 of 66 jobs complete, 8 jobs running.
       [23:02:11] Block-level synthesis in progress, 10 of 66 jobs complete, 8 jobs running.
```

```
[23:02:52] Block-level synthesis in progress, 10 of 66 jobs complete, 8 jobs running.
    [23:03:35] Block-level synthesis in progress, 10 of 66 jobs complete, 8 jobs running.
115
    [2\,3:0\,4:1\,6] Block-level synthesis in progress, 10 of 66 jobs complete, 8 jobs running.
116
117
    [23:04:57] Block-level synthesis in progress, 13 of 66 jobs complete, 5 jobs running.
    .
[23:05:37]
               Block-level synthesis in progress, 14 of 66 jobs complete, 4 jobs running.
118
               Block-level synthesis in progress, 14 of 66 jobs complete, 7
119
    [23:06:18]
                                                                               jobs running
               Block-level synthesis in progress, 15 of 66 jobs
    [23:06:57]
                                                                  complete, 7
                                                                              iobs running.
121
    [23:07:35]
               Block-level synthesis in progress, 17 of 66 jobs complete, 5 jobs running.
    [23:08:15] Block-level synthesis in progress, 18 of 66 jobs complete, 5 jobs running.
122
               Block-level synthesis in progress, 18 of 66 jobs complete, 6 jobs running.
123
    [23:08:53]
124
    [2\,3:0\,9:3\,2] Block-level synthesis in progress, 19 of 66 jobs complete, 7 jobs running.
    [23:10:10]
               Block-level synthesis in progress, 19 of 66 jobs complete, 7 jobs running.
125
    [23:10:54] Block-level synthesis in progress, 19 of 66 jobs complete, 8 jobs running.
126
    [23:11:32] Block-level synthesis in progress, 20 of 66 jobs complete, 7 jobs running.
127
128
    [23:12:17]
               Block-level synthesis in
                                         progress, 20 of 66 jobs
                                                                  complete, 7 jobs running.
               Block-level\ synthesis\ in\ progress\,,\ 20\ of\ 66\ jobs\ complete\,,\ 8\ jobs\ running\,.
    [23:12:57]
130
    [23:13:40]
               Block-level synthesis in progress, 20 of 66 jobs complete, 8 jobs running.
131
    [23 14 19]
               Block-level synthesis in progress, 21 of 66 jobs complete, 7
                                                                               jobs running.
               Block-level synthesis in progress, 22 of 66 jobs complete, 6 jobs running.
    [23:15:07]
132
    [23:15:47] Block-level synthesis in progress, 23 of 66 jobs complete, 5 jobs running.
133
    [23:16:31] Block-level synthesis in progress, 24 of 66 jobs complete, 6 jobs running.
134
135
    [23:17:09] Block-level synthesis in progress, 26 of 66 jobs complete, 6 jobs running.
136
    [23:17:52]
               Block-level synthesis in progress, 28 of 66 jobs complete, 4 jobs running
137
    [23:18:29]
               Block-level synthesis in progress, 28 of 66 jobs
                                                                  complete, 6 jobs running
    [23:19:10] Block-level synthesis in progress, 28 of 66 jobs complete, 8 jobs running.
139
    [23:19:48]
               Block-level
                            synthesis in progress, 31 of 66 jobs
                                                                  complete, 5 jobs running.
140
    [2\,3:2\,0:3\,6] Block-level synthesis in progress, 31 of 66 jobs complete, 6 jobs running.
    [23:21:15]
               Block-level synthesis in progress, 31 of 66 jobs complete, 8 jobs running.
141
    [23:21:58] Block-level synthesis in progress, 34 of 66 jobs complete, 5 jobs running.
142
               Block-level synthesis in progress, 34 of 66 jobs complete, 5 jobs running.
143
    [23:22:39]
    [23:23:31] Block-level synthesis in progress, 34 of 66 jobs complete, 8 jobs running.
144
145
    [23:24:11]
               Block-level synthesis in progress, 34 of 66 jobs complete, 8 jobs running.
146
    [23:24:57]
               Block-level synthesis in progress, 35 of 66 jobs
                                                                  complete, 7 jobs running.
    [23:25:38]
               Block-level synthesis in progress, 35 of 66 jobs
                                                                  complete, 7 jobs running.
147
148
    [23:26:20]
               Block-level synthesis in progress, 37 of 66 jobs
                                                                  complete, 6 jobs running.
    [23:26:57]
               Block-level synthesis in progress, 37 of 66 jobs complete, 6 jobs running.
    [23-27-37]
               Block-level synthesis in progress, 37 of 66 jobs complete, 8 jobs running.
150
    [23:28:15] Block-level synthesis in progress, 37 of 66 jobs complete, 8 jobs running.
151
               Block-level synthesis in progress, 38 of 66 jobs complete, 7 jobs running.
152
    [23:28:58]
    [23:29:36] Block-level synthesis in progress, 38 of 66 jobs complete, 7 jobs running.
153
    [23:30:19]
154
               Block-level synthesis in progress, 38 of 66 jobs complete, 8 jobs running.
155
    [23.30.56]
               Block-level synthesis in progress, 40 of 66 jobs complete, 6 jobs running.
    [23:31:36]
               Block-level synthesis in progress, 40 of 66 jobs complete, 6 jobs running.
156
    [23:32:15]
               Block-level
                            synthesis in progress, 40 of 66 jobs
                                                                  complete, 8 jobs running.
157
    [23:32:56]
               Block-level synthesis in progress, 40 of 66 jobs complete, 8 jobs running.
    [23:33:34]
               Block-level synthesis in progress, 40 of 66 jobs complete, 8 jobs running.
159
               Block-level synthesis in progress, 41 of 66 jobs complete, 7 jobs running.
160
    [23 34 18]
               Block-level synthesis in progress, 43 of 66 jobs complete, 5 jobs running.
161
    [23:34:56]
    [23\!:\!35\!:\!39] Block-level synthesis in progress, 43 of 66 jobs complete, 8 jobs running.
162
    [23:36:16] Block-level synthesis in progress, 43 of 66 jobs complete, 8 jobs running.
163
164
    [23:36:58] Block-level synthesis in progress, 44 of 66 jobs complete, 7 jobs running.
    [23:37:36]
               Block-level synthesis in progress, 44 of 66 jobs complete, 7 jobs running.
165
    [23:38:21]
               Block-level
                            synthesis in
                                         progress, 45 of 66 jobs
                                                                  complete, 7
166
                                                                               jobs running.
    [23:38:59]
               Block-level synthesis in progress, 45 of 66 jobs complete, 7 jobs running.
    [23:39:43]
               Block-level synthesis in progress, 46 of 66 jobs complete, 7
                                                                               jobs running.
    [2\,3:4\,0:2\,2] Block-level synthesis in progress, 46 of 66 jobs complete, 7 jobs running.
169
               Block-level synthesis in progress, 46 of 66 jobs complete, 8 jobs running.
    [23:41:06]
170
    [23:41:50] Block-level synthesis in progress, 46 of 66 jobs complete, 8 jobs running.
171
               Block-level synthesis in progress, 46 of 66 jobs complete, 8 jobs running.
172
    [23:42:36]
173
    [2\,3:4\,3:1\,9] Block-level synthesis in progress, 46 of 66 jobs complete, 8 jobs running.
    .
[23-44:09]
               Block-level synthesis in progress, 48 of 66 jobs complete, 6 jobs running.
174
    [23:44:50]
               Block-level synthesis in progress, 48 of 66 jobs
                                                                  complete, 6 jobs running
175
                                         progress, 49 of 66 jobs
               Block-level synthesis in
176
    [23:45:38]
                                                                  complete, 7 jobs running.
    [23:46:17]
               Block-level synthesis in progress, 49 of 66 jobs complete, 7
                                                                               jobs running.
    [2\,3:4\,7:0\,1] Block-level synthesis in progress, 50 of 66 jobs complete, 7 jobs running.
178
               Block-level synthesis in progress, 52 of 66 jobs complete, 5 jobs running.
179
    [23:47:41]
    [23:48:23] Block-level synthesis in progress, 53 of 66 jobs complete, 5 jobs running.
180
    [23:49:02]
               Block-level synthesis in progress, 54 of 66 jobs complete, 6 jobs running.
181
182
    [23 49 46]
               Block-level synthesis in progress, 55 of 66 jobs complete, 6 jobs running.
    [23:50:24]
183
               Block-level\ \ synthesis\ \ in\ \ progress\ ,\ 56\ \ of\ \ 66\ \ jobs\ \ complete\ ,\ 6\ \ jobs\ \ running\ .
    [23 51 07]
               Block-level synthesis in
                                         progress, 56 of 66 jobs complete, 7 jobs running.
184
    [23:51:51] Block-level synthesis in progress, 56 of 66 jobs complete, 7 jobs running.
185
186
    [23:52:32]
               Block-level synthesis in progress, 56 of 66 jobs complete, 7
                                                                               jobs running.
    [23:53:11] Block-level synthesis in progress, 56 of 66 jobs complete, 7 jobs running.
    [23:53:52]
               Block-level synthesis in progress, 57 of 66 jobs complete, 6 jobs running.
188
    [2\,3:5\,4:3\,4] Block-level synthesis in progress, 57 of 66 jobs complete, 6 jobs running.
189
    [23:55:17] Block-level synthesis in progress, 57 of 66 jobs complete, 6 jobs running.
190
    [2\,3:55:57] Block-level synthesis in progress, 57 of 66 jobs complete, 6 jobs running.
191
192
    [23\!:\!56\!:\!41] Block-level synthesis in progress, 57 of 66 jobs complete, 6 jobs running.
    [23:57:22] Block-level synthesis in progress, 58 of 66 jobs complete, 5 jobs running.
193
    [23:58:04] Block-level synthesis in progress, 60 of 66 jobs complete, 3 jobs running.
    [23:58:43] Block-level synthesis in progress, 60 of 66 jobs complete, 3 jobs running.
```

```
[23:59:24] Block-level synthesis in progress, 60 of 66 jobs complete, 5 jobs running.
197
    [00:00:03] Block-level synthesis in progress, 61 of 66 jobs complete, 4 jobs running.
198
    [0\,0:0\,0:4\,7] Block-level synthesis in progress, 62 of 66 jobs complete, 3 jobs running.
199
    [00:01:27] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:02:11] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
200
    [00:02:50] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:03:34] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
203
    [00:04:13] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:04:59] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
204
    [00:05:39] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
205
206
    [00:06:32] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:07:12] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
207
208
    [00:07:56] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:08:37] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
209
210
    [00:09:25] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:10:06] Block-level synthesis in progress, 63 of 66 jobs complete, 2 jobs running.
    [00:11:02] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
212
213
    [00:11:41] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
    [00:12:24] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
214
    [00:13:05] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
215
    [\,0\,0:1\,3:5\,4\,]\ Block-level\ synthesis\ in\ progress\,,\ 64\ of\ 66\ jobs\ complete\,,\ 1\ job\ running\,.
216
217
    [00:14:33] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
218
    [00:15:21] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
219
    [00:16:05] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
    [00:16:51] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
    [00:17:40] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
    [00:18:29] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
223
    [00:19:07] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
    [\,0\,0:1\,9:5\,3\,]\ Block-level\ synthesis\ in\ progress\,,\ 64\ of\ 66\ jobs\ complete\,,\ 1\ job\ running\,.
224
225
    [00:20:33] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
226
    [00:21:21] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
227
    [00:22:09] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
228
    [00:23:08] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
    [00:23:49] Block-level synthesis in progress, 64 of 66 jobs complete, 1 job running.
229
230
    [00:24:37] Block-level synthesis in progress, 65 of 66 jobs complete, 0 jobs running.
    [00:25:19] Block-level synthesis in progress, 65 of 66 jobs complete, 0 jobs running.
    [00:26:02] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
232
    \hbox{\tt [00:26:43] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.}
233
    \lceil 00:27:27 \rceil Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
234
    [00:28:08] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
235
236
    [00:28:51] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
237
    [00:29:29] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
    [00:30:13] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
238
    [00:30:52] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
239
    [00:31:37] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
    [00:32:16] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
241
    \lceil 00:33:02 \rceil Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
242
    [00:33:42] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
243
    [00:34:25] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
244
245
    [00:35:05] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
246
    [00:35:50] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
    [00:36:33] Block-level synthesis in progress, 66 of 66 jobs complete, 0 jobs running
247
    [00:37:18] Block-level synthesis in progress, 66 of 66 jobs complete, 0 jobs running.
248
    [00:37:59] Top-level synthesis in progress.
    [00:38:41] Top-level synthesis in progress.
    [00:39:21] Top-level synthesis in progress.
251
    [00:40:06] Top-level synthesis in progress.
252
    [00:40:44] Top-level synthesis in progress.
253
    \left[\,0.0:4.1:2.7\,\right]\  \  \, \text{Top-level synthesis in progress}\;.
254
255
    [00:42:04] Top-level synthesis in progress.
    [00:42:48] Top-level synthesis in progress.
256
    [00:43:29] Top-level synthesis in progress.
257
    [00:44:15] Top-level synthesis in progress.
258
    [00:44:55] Top-level synthesis in progress.
    [00:45:39] Top-level synthesis in progress.
260
    [00:46:18] Top-level synthesis in progress.
261
262
    [00:47:03] Top-level synthesis in progress.
    [00:47:45] Top-level synthesis in progress
263
264
    [\,0\,0:4\,8:4\,7\,]\ Run\ vpl:\ Step\ synth:\ Completed
265
    [\,0\,0:4\,8:4\,7\,]\ Run\ vpl:\ Step\ impl:\ Started
    [01:39:11] Finished 2nd of 6 tasks (FPGA linking synthesized kernels to platform). Elapsed time: 03h 19
266
268
    [01:39:11] Starting logic optimization...
    [01:44:43] Phase 1 Generate And Synthesize MIG Cores
269
    [02:18:03] Phase 2 Generate And Synthesize Debug Cores
270
    [02:41:11] Phase 3 Retarget
271
272
    [02:43:10] Phase 4 Constant propagation
    [02:45:09] Phase 5 Sweep
273
    [02:49:45] Phase 6 BUFG optimization
274
    [02:51:44] Phase 7 Shift Register Optimization
    [02:52:27] Phase 8 Post Processing Netlist
```

```
277 [03:08:04] Finished 3rd of 6 tasks (FPGA logic optimization). Elapsed time: 01h 28m 53s
278
279
      \hbox{\tt [03:08:04]} \ \ Starting \ \ logic \ \ placement..
280
       [03:13:00] Phase 1 Placer Initialization
281
       [03:13:00] Phase 1.1 Placer Initialization Netlist Sorting
       [03:27:17] Phase 1.2 IO Placement/ Clock Placement/ Build Placer Device
      [03:37:14] Phase 1.3 Build Placer Netlist Model
284
      [03:50:15] Phase 1.4 Constrain Clocks/Macros
      [03:51:42] Phase 2 Global Placement
285
      [03:51:42] Phase 2.1 Floorplanning
286
287
       [03:55:05] Phase 2.1.1 Partition Driven Placement
288
      [03:55:05] Phase 2.1.1.1 PBP: Partition Driven Placement
289
       [03:57:10] Phase 2.1.1.2 PBP: Clock Region Placement
       [04:02:07] Phase 2.1.1.3 PBP: Compute Congestion
290
291
       [04:02:07] Phase 2.1.1.4 PBP: UpdateTiming
       [\,0\,4:0\,4:4\,5\,]\quad Phase \quad 2.\,1.\,1.\,5\quad PBP\colon \ Add\ part\ constraints
293
      [04:05:28] Phase 2.2 Update Timing before SLR Path Opt
      [04:05:28] Phase 2.3 Global Placement Core
294
      [04:36:36] Phase 2.3.1 Physical Synthesis In Placer
295
      [04:49:43] Phase 3 Detail Placement
296
297
      [\,0\,4:4\,9:4\,3\,]\ Phase\ 3.1\ Commit\ Multi\ Column\ Macros
298
       [04:49:43] Phase 3.2 Commit Most Macros & LUTRAMs
299
      [04:55:15] Phase 3.3 Small Shape DP
300
       [04:55:15] Phase 3.3.1 Small Shape Clustering
       [04:57:18] Phase 3.3.2 Flow Legalize Slice Clusters
      [04:58:17] Phase 3.3.3 Slice Area Swap
      [05:02:32] Phase 3.4 Place Remaining
      [05:03:09] Phase 3.5 Re-assign LUT pins
304
      [05:05:12] Phase 3.6 Pipeline Register Optimization
305
306
      [05:05:12] Phase 3.7 Fast Optimization
307
       [05:09:09] Phase 4 Post Placement Optimization and Clean-Up
308
      [05:09:09] Phase 4.1 Post Commit Optimization
309
       [05:18:29] Phase 4.1.1 Post Placement Optimization
      [05:19:07] Phase 4.1.1.1 BUFG Insertion
310
311
       [05:19:07] Phase 1 Physical Synthesis Initialization
      [05:21:49] Phase 4.1.1.2 BUFG Replication
      [05:25:17] Phase 4.1.1.3 Replication
313
      [05:31:16] Phase 4.2 Post Placement Cleanup
314
315
      [05:31:59] Phase 4.3 Placer Reporting
       [05:31:59] Phase 4.3.1 Print Estimated Congestion
316
317
       [\,0\,5:3\,4:0\,1\,]\ Phase\ 4.4\ Final\ Placement\ Cleanup
318
       [06:40:35] Finished 4th of 6 tasks (FPGA logic placement). Elapsed time: 03h 32m 30s
319
       [06:40:35] Starting logic routing..
320
      [06:45:59] Phase 1 Build RT Design
      [06:56:42] Phase 2 Router Initialization
322
      [06:56:42] Phase 2.1 Fix Topology Constraints
323
      [06:57:26] Phase 2.2 Pre Route Cleanup
324
325
      [06:58:03] Phase 2.3 Global Clock Net Routing
326
      [07:00:51] Phase 2.4 Update Timing
327
       [\,0\,7:1\,3:2\,1\,] Phase 2.5 Update Timing for Bus Skew
      [07:13:21] Phase 2.5.1 Update Timing
328
       [07:18:50] Phase 3 Initial Routing
329
      [07:18:50] Phase 3.1 Global Routing
331
      [07:23:38] Phase 4 Rip-up And Reroute
332 [07:23:38] Phase 4.1 Global Iteration 0
      [07:46:32] Phase 4.2 Global Iteration 1
333
      [07:52:29] Phase 4.3 Global Iteration 2
334
335
      [\,0\,7\,:\,5\,6\,:\,3\,5\,] Phase 5 Delay and Skew Optimization
336
       [07:56:35] Phase 5.1 Delay CleanUp
       [07:56:35] Phase 5.1.1 Update Timing
337
       [08:03:27] Phase 5.2 Clock Skew Optimization
338
       [08:04:05] Phase 6 Post Hold Fix
339
340
      [08:04:05] Phase 6.1 Hold Fix Iter
      [08:04:05] Phase 6.1.1 Update Timing
341
      [08:09:27] Phase 7 Route finalize
342
       [08:10:09] Phase 8 Verifying routed nets
343
344
       [08:10:47] Phase 9 Depositing Routes
345
       [08:14:50] Phase 10 Route finalize
346
      [08:14:50] Phase 11 Post Router Timing
347
       [08:22:13] Finished 5th of 6 tasks (FPGA routing). Elapsed time: 01h 41m 37s
348
      [08:22:13] Starting bitstream generation ..
350 [10:12:54] Creating bitmap ...
351
      [1\,1:0\,0:4\,5\,] \quad Writing \quad bitstream \quad ./pfm\_top\_i\_dynamic\_region\_my\_rm\_partial. \ bit \dots .
      352
353
      [11:04:59] Run vpl: Step impl: Completed
354
       [11:05:14] Run vpl: FINISHED. Run Status: impl Complete!
355 INFO: [v++ 60-1441] [11:05:42] Run run_link: Step vpl: Completed
       \text{Time (s): cpu = } 00:50:00 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{elapsed = } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 0.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 0.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 0.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 10.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 10.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 10.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 10.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} \text{Memory (MB): peak = } 1585.129 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{gain = } 10.000 \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm} \text{free (mB): } 12:46:11 \hspace*{0.2cm} . \hspace*{0.2cm} ; \hspace*{0.2cm
356
              physical = 120138 \; ; \; free \; virtual = 311996
357 INFO: [v++ 60-1443] [11:05:42] Run run link: Step rtdgen: Started
```

```
358 INFO: [v++ 60-1453] Command Line: rtdgen
359 INFO: [v++60-1454] Run Directory: /iu_home/iu7136/_x/link/run_link
360 NFO: [v++ 60-991] clock name 'clkwiz_kernel_clk_out1' (clock ID '0') is being mapped to clock name '
                     DATA CLK' in the xclbin
         INFO: [v++60-991] \ clock \ name \ 'clkwiz\_kernel2\_clk\_out1' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name \ 'name' \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ 'name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ (clock \ ID \ '1') \ is \ being \ mapped \ to \ clock \ name' \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ mapped \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is \ being \ (clock \ ID \ '1') \ is
361
                     KERNEL_CLK' in the xclbin
          INFO: [v++60-1230] The compiler selected the following frequencies for the runtime controllable kernel
                         clock(s) and scalable system clock(s): Kernel (DATA) clock: clkwiz kernel clk out1 = 300, Kernel
                      (KERNEL) \ clock: \ clkwiz\_kernel2\_clk\_out1 \ = \ 500
iu7136/\_x/link/int/sdsl.dat - xclbin / iu\_home/iu7136/\_x/link/int/xclbin\_orig.xml - rtd / iu\_home/iu7136/_x/link/int/xclbin\_orig.xml - rtd / iu\_home/iu7136/_x/link/int/xclbin_xclbin\_orig.xml - rtd / iu\_home/iu7136/_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbin_xclbi
                      iu7136/\_x/link/int/vinc.rtd -o /iu\_home/iu7136/\_x/link/int/vinc.xml
364 INFO: [v++60-1652] Cf2sw returned exit code: 0
365 NFO: [v++ 60-2311] HPISystemDiagram::writeSystemDiagramAfterRunningVivado, rtdInputFilePath:/iu.home/
                      iu7136/ x/link/int/vinc.rtd
          INFO: \ [v++\ 60-2312] \ HPISystem Diagram:: write System Diagram After Running Vivado\ ,\ system Diagram Output File Path Control of the C
                           /iu home/iu7136/ x/link/int/systemDiagramModelSlrBaseAddress.json
          INFO: [v++ 60-1618] Launching
368 INFO: [v++ 60-1441] [11:05:56] Run run link: Step rtdgen: Completed
         Time (s): cpu = 00:00:13 ; elapsed = 00:00:14 . Memory (MB): peak = 1585.129 ; gain = 0.000 ; free
369
                      physical \,=\, 120125 \quad ; \quad free \quad virtual \,=\, 311985
370 \left[ \text{INFO: [v++ 60-1443] [11:05:56] Run run\_link: Step xclbinutil: Started} \right]
371 NFO: [v++ 60-1453] Command Line: xclbinutil —add-section DEBUG IP LAYOUT: JSON:/iu home/iu7136/ x/link
                      /int/debug_ip_layout.rtd —add-section BITSTREAM:RAW:/iu_home/iu7136/_x/link/int/partial.bit
                                         target hw —key-value SYS:dfx_enable:true —add-section :JSON:/iu_home/iu7136/_x/link/int-
                     vinc.rtd —append-section: JSON:/iu_home/iu7136/_x/link/int/appendSection.rtd —add-section CLOCK_FREQ_TOPOLOGY: JSON:/iu_home/iu7136/_x/link/int/vinc_xml.rtd —add-section BUILD_METADATA: JSON:/iu_home/iu7136/_x/link/int/vinc_build.rtd —add-section EMBEDDED_METADATA:RAW:/iu_home/
                      iu7136/ x/link/int/vinc.xml —add-section SYSTEM_METADATA:RAW:/iu_home/iu7136/_x/link/int/
                       {	t systemDiagramModelSlrBaseAddress.json} —output /iu_home/iu7136/workspace/vinc.xclbin
372 \left\lceil \text{INFO} : \left\lceil \text{v} + + \ 60 - 1454 \right\rceil \right\rceil \text{Run Directory} : \ / \text{iu\_home/iu} \\ 7136 / \_\text{x/link/run\_link} \right\rceil
373 XRT Build Version: 2.8.743 (2020.2)
374
          Build Date: 2020-11-16 00:19:11
375 Hash ID: 77d5484b5c4daa691a7f78235053fb036829b1e9
376
          Creating a default 'in-memory' xclbin image.
          Section: 'DEBUG IP LAYOUT' (9) was successfully added.
378
          Size : 440 bytes
379
          Format : JSON
380
381
          File
                          : '/iu_home/iu7136/_x/link/int/debug_ip_layout.rtd'
382
383
          Section: 'BITSTREAM'(0) was successfully added.
                         : 42216130 bytes
384
          Size
385
          Format : RAW
386
          File : '/iu home/iu7136/ x/link/int/partial.bit'
387
          Section: 'MEM TOPOLOGY'(6) was successfully added.
388
          Format : JSON
389
390
          File
                           : 'mem topology'
391
392
          Section: 'IP_LAYOUT' (8) was successfully added.
          Format : JSON
393
394
                           : 'ip layout'
396
          Section: 'CONNECTIVITY' (7) was successfully added.
          Format : JSON
397
                           : 'connectivity'
398
          File
399
          Section: \ \ 'CLOCK\_FREQ\_TOPOLOGY'(11) \ \ was \ \ successfully \ \ added.
400
401
                          : 274 bytes
          Size
          Format : JSON
402
                          : '/iu_home/iu7136/_x/link/int/vinc_xml.rtd'
403
405
          Section: 'BUILD METADATA' (14) was successfully added.
          Size : 3070 bytes
406
          Format : JSON
407
                         : '/iu_home/iu7136/_x/link/int/vinc_build.rtd'
408
          File
409
410
          Section: 'EMBEDDED_METADATA'(2) was successfully added.
411
          Size
                         : 2759 bytes
412
          Format : RAW
          File : '/iu_home/iu7136/_x/link/int/vinc.xml'
414
          Section: 'SYSTEM METADATA' (22) was successfully added.
415
          Size : 5774 bytes
416
417
          Format : RAW
                          : '/iu home/iu7136/ x/link/int/systemDiagramModelSlrBaseAddress.json'
418
          File
419
420
          Section: 'IP\_LAYOUT'(8) was successfully appended to.
421
          Format : JSON
          File
                             : 'ip_layout'
          Successfully wrote (42238519 bytes) to the output file: /iu home/iu7136/workspace/vinc.xclbin
```

```
424 Leaving xclbinutil.
425 \, \Big| \, INFO \colon \, \left[ \, v + + \,\, 60 \, - 1441 \right] \, \, \left[ \, 11 \, : \, 05 \, : \, 58 \, \right] \, \, Run \, \, \, run \, \, \\ - \, link \, \colon \, \, Step \, \, \, \, xclbinutil \, \colon \, \, Completed \, \Big| \, \, run \, \, \\ - \, link \, \colon \, \, run \, \, \, \\ - \, link \, \colon \, \, run \, \, \, \\ - \, link \, \colon \, \, run \, \, \, \\ - \, link \, \colon \, \, run \, \, \\ - \, link \, \colon \, \, run \, \, \\ - \, link \, \colon \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, \, run \, \, \\ - \, link \, 
426 Time (s): cpu = 00:00:00.47 ; elapsed = 00:00:02 . Memory (MB): peak = 1585.129 ; gain = 0.000 ; free physical = 120036 ; free virtual = 311938
 427
           INFO: \ [v++\ 60-1443] \ [11:05:58] \ Run \ run\_link: \ Step \ xclbinutilinfo: \ Started
            INFO: [v++ 60-1453] Command Line: xclbinutil —quiet —force —info /iu_home/iu7136/workspace/vinc.
                          xclbin.info — input /iu home/iu7136/workspace/vinc.xclbin
429
           INFO: [v++60-1454] Run Directory: /iu_home/iu7136/_x/link/run_link
430 INFO: [v++ 60-1441] [11:06:01] Run run link: Step xclbinutilinfo: Completed
431 | Time (s): cpu = 00:00:02 ; elapsed = 00:00:03 . Memory (MB): peak = 1585.129 ; gain = 0.000 ; free
                         physical = 120075 ; free virtual = 311977
432 NFO: [v++ 60-1443] [11:06:01] Run run_link: Step generate_sc_driver: Started
433 INFO: [v++ 60-1453] Command Line:
 434 INFO: [v++ 60-1454] Run Directory: /iu_home/iu7136/_x/link/run_link
 435 INFO: [v++ 60-1441] [11:06:01] Run run_link: Step generate_sc_driver: Completed
436 \ | \ Time \ (s): \ cpu = 00:00:00:00 \ ; \ elapsed = 00:00:00:00.05 \ . \ Memory \ \overline{(MB)}: \ peak = 1585.129 \ ; \ gain = 0.000 \ ; \ free \ and \ an arrow \ an arrow \ and \ an arrow \ an arrow \ and \ an arrow \ and \ an arrow \ and \ an arrow \ an arrow \ and \ an arrow \ an arrow \ and \ an arrow \ and \ an arrow \ and \ an arrow \ an arrow \ and \ 
                          physical = 120056 \; ; \; free \; virtual = 311958
           INFO: [v++60-244] Generating system estimate report...
438 \ | \ INFO: \ [v++\ 60-1092] \ Generated \ system \ estimate \ report: \ /iu\_home/iu7136/\_x/reports/link/
                         system estimate vinc.xtxt
439 \left\lceil \text{INFO} : \left\lceil \text{v} + + \ 60 - 586 \right\rceil \right. \text{Created } / \text{iu\_home/iu} \\ 7136 / \text{workspace/vinc.ltx}
 440 INFO: [v++ 60-586] Created /iu_home/iu7136/workspace/vinc.xclbin
441 NFO: [v++60-1307] Run completed. Additional information can be found in:
            Guidance: \ /iu\_home/iu7136/\_x/reports/link/v++\_link\_vinc\_guidance.html
            Timing Report: /iu_home/iu7136/_x/reports/link/imp/
                          impl_1_xilinx_u200_xdma_201830_2_bb_locked_timing_summary_routed.rpt
             Vivado Log: /iu_home/iu7136/_x/logs/link/vivado.log
            Steps Log File: /iu home/iu7136/ x/logs/link/link.steps.log
445
446
447
           INFO: [v++60-2343] Use the vitis_analyzer tool to visualize and navigate the relevant reports. Run the
                              following command.
 448
            vitis\_analyzer \ /iu\_home/iu7136/workspace/vinc.xclbin.link\_summary
           INFO: [v++60-791] Total elapsed time: 12h 49m 34s
```

Приложение В

Листинг 3 – Содержимое файла vinc xclbin info

```
XRT Build Version: 2.8.743 (2020.2)
   Build Date: 2020-11-16 00:19:11
   Hash ID: 77d5484b5c4daa691a7f78235053fb036829b1e9
   xclbin Information
   Generated by:
                               \mathrm{v}{+}{+}\ (\,2\,0\,2\,0\,.\,2\,)\ \text{on}\ 2\,0\,2\,0\,{-}1\,1\,{-}1\,8\,{-}0\,5\,{:}\,1\,3\,{:}\,2\,9
                               2.8.743
10
   Kernels:
                               rtl_kernel_wizard_0
11 Signature:
                               B\,i\,t\,s\,t\,r\,e\,a\,m
12 Content:
                               b16544ed -74b8-4bc5-822a-5481923 f7 bf1
13 UUID (xclbin):
14 Sections: DEBUG_IP_LAYOUT, BITSTREAM, MEM_TOPOLOGY, IP_LAYOUT, 15 CONNECTIVITY, CLOCK_FREQ_TOPOLOGY, BUILD_METADATA,
16 EMBEDDED METADATA, SYSTEM METADATA, 17 GROUP CONNECTIVITY, GROUP TOPOLOGY
   Hardware Platform (Shell) Information
^{21}
22 Board:
                               u200
23 Name:
                               xdma
                               201830.2
24 Version:
                               Vivado\ 2018.3\ (SW\ Build:\ 2568420)
25 Generated Version:
26 Created:
                               Tue Jun 25 06:55:20 2019
27 FPGA Device:
                               x c u 200
28
   Board Vendor:
                               xilinx.com
29 Board Name:
                               xilin x . com : au 200 : 1 . 0
30 Board Part:
                               xilin x .com: au 200: part 0:1.0
31 Platform VBNV:
                              xilinx u200 xdma 201830 2
   Static UUID:
                               c102e7af-b2b8-4381-992b-9a00cc3863eb
32
33 Feature ROM TimeStamp: 1561465320
34
35
   Clocks
36
37
               {\rm DATA\_CLK}
38
39
                DATA
   Type:
   Frequency: 300 MHz
40
41
               KERNEL_CLK
42 Name:
43 Index:
               KERNEL
44 Type:
45 Frequency: 500 MHz
   Memory Configuration
48
50
   Index:
                  MEM DDR4
51
   Type:
52 Base Address: 0x4000000000
53 Address Size: 0x400000000
54 Bank Used:
                   Νo
55
56 Name:
                   bank1
57
   I\, n\, d\, e\, x\, :
                  MEM DDR4
   Type:
59 Base Address: 0x5000000000
   Address Size: 0x400000000
60
61 Bank Used:
                   Νo
62
63 Name:
                   bank2
64
   Index:
                  MEM DDR4
65 Type:
66 Base Address: 0x6000000000
   Address Size: 0x400000000
68 Bank Used:
69
70 Name:
                   bank3
71 Index:
                  MEM_DDR4
72 Type:
73 Base Address: 0x7000000000
```

```
74 Address Size: 0x400000000
  75 Bank Used
                                                   Yes
  76
  77
         Name:
                                                  PLRAM[0]
  78 Index:
                                                  MEM DRAM
  79
          Type:
  80 Base Address: 0x300000000
  81
          Address Size: 0x20000
  82 Bank Used:
                                                  Νo
  83
  84 Name:
                                                  PLRAM[1]
  85 Index
                                                   5
  86 Type:
                                                  MEM DRAM
  87 Base Address: 0x3000200000
          Address Size: 0x20000
  89 Bank Used:
  90
  91
          Name:
                                                  PLRAM [2]
          Index:
  92
                                                  MEM DRAM
  93
          Type:
  94 Base Address: 0x3000400000
  95
           Address Size: 0x20000
  96 Bank Used:
                                                  Nο
  97
           Kernel: rtl_kernel_wizard_0
  99
100
           Definition
101
           Signature: rtl kernel wizard 0 (uint scalar00, int* axi00 ptr0)
102
103
104
           Ports
105
106
           Port:
                                                      s_axi_control
107
         Mode:
108
           Range (bytes): 0x1000
           Data Width:
                                                      32 bits
110 Port Type:
                                                      addressable
111
          Port:
112
                                                      m00 axi
113
          Mode:
                                                      master
114
          115
          Data Width:
                                                      512 bits
116
          Port Type:
                                                      addressable
117
118
119
          Instance:
                                                          vinc0
          Base Address: 0x1e00000
120
121
122
           Argument:
                                                                  scalar00
          Register Offset:
123
                                                               0 \times 010
                                                                 s\,\_\,a\,x\,i\,\_\,c\,o\,n\,t\,r\,o\,l
124
           Port:
                                                                 < not applicable >
125
          Memory:
126
                                                                  \mathtt{a}\,\mathtt{x}\,\mathtt{i}\,0\,0\,\underline{\phantom{a}}\,\mathtt{p}\,\mathtt{t}\,\mathtt{r}\,0
           Argument:
128
           Register Offset:
                                                                 0 \times 018
129
           Port:
                                                                 m00 axi
                                                                 bank3 (MEM DDR4)
130
         Memory:
131
132
          Generated By
133
134 Command:
                                                      v++
135
                                                      2020.2 - 2020 - 11 - 18 - 05:13:29 (SW BUILD: 0)
           Version:
          Command Line: v++ -config /iu home/iu7136/workspace/Alveo lab1/Alveo lab1.cfg -connectivity.nk
                       rtl kernel wizard 0:1:vinc0 —connectivity.slr vinc0:SLR2 —connectivity.sp vinc0.m00 axi:DDR[3]
                        rtl_kernel_wizard_0_ex/exports/rtl_kernel_wizard_0.xo — link — optimize 0 — output /iu_home/iu7136/workspace/vinc.xclbin — platform xilinx_u200_xdma_201830_2 — report_level 0 — target hw — vivado.
                        prop - run.impl\_1.STEPS.OPT\_DESIGN.ARGS.DIRECTIVE = Explore - wivado.prop - run.impl\_1.STEPS.DIRECTIVE = Explore - wivado.prop - run.impl_1.STEPS.DIRECTIVE = wivado.prop - wivado.p
                       PLACE\_DESIGN.ARGS.DIRECTIVE = E \times plore --vivado.prop - run.impl\_1.STEPS.PHYS\_OPT\_DESIGN.IS\_ENABLED = true --vivado.prop --vivad
                               -vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=AggressiveExplore —vivado.prop run
                         . impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
                                                  -config /iu home/iu7136/workspace/Alveo lab1/Alveo lab1.cfg
138
              -connectivity.nk rtl kernel wizard 0:1:vinc0
139
               -connectivity.slr vinc0:SLR2
140
             -connectivity.sp_vinc0.m00_axi:DDR[3]
             -input_files /iu_home/iu7136/workspace/Alveo_lab1_kernels/vivado_rtl_kernel/rtl_kernel_wizard_0_ex/
141
                       exports/rtl\_kernel\_wizard\_0.xo
           —link
142
143
           —optimize 0
144
             -output /iu home/iu7136/workspace/vinc.xclbin
           —platform_xilinx_u200_xdma_201830_2
           —report level 0
```