# Probing cosmology using dark matter microhalos

M. Sten Delos
University of North Carolina at Chapel Hill

Talk prepared for the Max Planck Institute for Astrophysics January 20, 2020

# Three questions in cosmology



# Signatures in the (linear) matter power spectrum



## Dark matter microhalos

The first dark matter halos are a powerful probe of subkiloparsecscale density variations.



- Nonperturbative dynamics: must use simulations
- Microhalos are too small and dense to simulate in full context We require (semi)analytic

We require (semi)analytic modeling.







# Modeling dark matter structure

### An ideal model:

- Includes substructure
- Standard Press-Schechter
- Is valid for arbitrary  $\mathcal{P}(k)$  Concentration mass relations
- Accounts for nonuniversal density profile:\*





 $10^{0}$ 

radius r

 $10^{-2}$ 

 $10^{-1}$ 

 $10^{1}$ 

## Note on universality

## An ideal model:

- Includes substructure
- Standard Press-Schechter
- Is valid for arbitrary  $\mathcal{P}(k)$  Concentration mass relations
- Accounts for nonuniversal density profile:\*

 $\rho \propto r^{-3/2}$  [direct collapse]

The first halos

NFW/Einasto [hierarchical assembly]

Later-generation halos

[uncompensated overdensity, e.g., PBH

Does not arise from Gaussian random field

## More detail on density profiles of the first halos Ishiyama, Makino, Ebisuzaki 2010 [arXiv:1006.3392] Anderhalden & Diemand 2013 [arXiv:1302.0003] Ishiyama 2014 [arXiv:1404.1650] Polisensky & Ricotti 2015 [arXiv:1504.02126] Ogiya, Nagai, Ishiyama 2016 [arXiv:1604.02866]

Gosenca, Adamek, Byrnes, Hotchkiss 2017 [arXiv:1710.02055]

Delos, Erickcek, Bailey, Alvarez 2018b [arXiv:1806.07389]

#### \*Consistent with:

Universality in the structure of dark matter haloes over twenty orders of magnitude in halo mass

Wang, J.<sup>1</sup>, Bose, S.<sup>2</sup>, Frenk, C. S.<sup>3</sup>, Gao, L.<sup>1</sup>, Jenkins, A.<sup>3</sup>, Springel, V.<sup>4</sup> & White, S. D. M.<sup>4</sup>



# (Micro)halos from density peaks

When studying the first (and smallest) halos, it is natural to consider the unfiltered density field.

[Contrast with Press-Schechter. Free-streaming cutoff tames divergence in  $\sigma$ .]



## Formation and growth of the first halos



## Halo structure from peak structure



### Slow accretion → use a secondary infall model

Gunn & Gott 1972; Gott 1975; Gunn 1977; Fillmore & Goldreich 1984; Bertschinger 1985; Hoffman & Shaham 1985; Ryden & Gunn 1987; White & Zaritsky 1992; Zaroubi & Hoffman 1993; Lokas & Hoffman 2000; Nusser 2001; Ascasibar, Yepes, Gottlöber, Müller 2004; Lu, Mo, Katz, Weinberg 2006; Ascasibar, Hoffman, Gottlöber 2007; Zukin & Bertschinger 2010a,b; Dalal, Lithwick, Kuhlen 2010

## Inner asymptote from peak structure



More detail: Delos, Bruff, Erickcek 2019 [arXiv:1905.05766]

# Halo formation prior to matter domination

Early-universe scenarios that boost  $\mathcal{P}(k)$  could induce collapse before matter dominates [t < 52 kyr].

Can halos form (or persist) during radiation domination? No net forces  $\implies$  no bound structures.

## But $\delta$ still grows during RD.

[Convergent DM drift sourced during horizon entry or EMDE]



## Halo evolution

Isolated halos maintain static  $\rho(r)$ ... but most microhalos do not remain isolated.



Can we understand how microhalos structurally evolve as they merge to produce larger objects?

Microhalo-microhalo mergers: a topic of future research.

Approximately,  $\sum_{\mathrm{halos}\ i} A_i^2 \simeq \mathrm{constant}$ 

Mass additive in mergers (approx.)

Conceptually:  $A^2 \sim \rho^2 r^3 \sim \rho M$ 

Recall  $ho = Ar^{-3/2}$  at small r

Characteristic density preserved (approx.)

Useful because DM annihilation rate  $\propto A^2$ 

Accretion onto larger (e.g., galactic) halos: Subhalo evolution.

- Tidal forces
- Encounters with other objects

## Tidal evolution

Given a subhalo orbit R(t), I modified GADGET-2 to apply the time-dependent tidal force directly:

$$F_{\text{tidal}}(\mathbf{r}) = -\frac{\mathrm{d}F}{\mathrm{d}R}(\mathbf{r}\cdot\hat{\mathbf{R}})\hat{\mathbf{R}} - F(R)\frac{\mathbf{r} - (\mathbf{r}\cdot\hat{\mathbf{R}})\hat{\mathbf{R}}}{R}$$

[Evades numerical artifacts associated with scale disparity between orbital and internal dynamics.]





## Host-subhalo system



More detail: Delos 2019a [arXiv:1906.10690]

# Modeling tidal evolution

Focus on the dark matter annihilation rate  $\propto J \equiv \int \rho^2 dV$ 

[Story is similar for other subhalo properties]

Evolution satisfies:

$$\frac{1}{J}\frac{\mathrm{d}J}{\mathrm{d}n} = -bn^{-c}, \quad n = \frac{t}{T}$$

Coefficient **b** depends on

- $\Delta E_{imp}/|E_b|$  [energy injection per orbit]
- $\bar{R}/R_s$  [direction of tidal forces]

Factor related to change in density profile shape; index c depends on  $r_a/r_t$  [tidal heating distribution]

Fixed by overall scale:

$$J|_{t/T=1} = AJ_{\text{init}}$$

Compression/stretching; depends on  $\bar{R}/R_S$  and  $\Delta E_{imp}/|E_b|$  [tidal force direction and strength]



## Stellar encounters

I modified Gadget-2 to apply  $\Delta \vec{v}$  induced by a series of stellar encounters...





# Application: Breaking a dark degeneracy

An early matter-dominated era (EMDE) broadens the range of viable parameters



# Application: Breaking a dark degeneracy

Annihilation signal from microhalos resembles DM decay.

Microhalo distribution ~ DM distribution



0.0

0.2

 $\theta$  (deg.)

0.3

## Application: The primordial power spectrum

Constraints on superhorizon curvature fluctuations (sourced by inflation):



# Summary: Microhalos as cosmological probes

#### Key cosmological questions

- What drove inflation?
- What happened after inflation?
- What is dark matter?

are connected to the small-scale (linear) matter power spectrum.



My research connects  $\mathcal{P}(k)$  to microhalos today, looking toward observational signatures



#### Peak-to-halo model

Predicts the density profiles of the first (micro)halos



Accurate for arbitrary  $\mathcal{P}(k)$ 

#### Subhalo evolution models





Predict microhalo evolution after accretion onto larger systems

## **Applications I have explored:**

- Constraints on thermal-relic dark matter that account for our ignorance of the early cosmic history
- Constraining the small-scale primordial power spectrum

# Supplemental

# Greater density profile from peak structure

Connect halo's mass profile M(r) to peak's mass-contrast profile  $\Delta(q)$  using a spherical infall model:



Simplest model:

$$r \propto q/\Delta(q)$$

$$M \propto (4\pi/3)q^3\bar{\rho}_0$$

Refinements, e.g., adiabatic contraction:

$$r \propto \frac{q}{\Delta(q)} \frac{1}{X(q)}$$

$$M \propto (4\pi/3)q^3 \bar{\rho}_0 X(q)$$

$$\frac{\mathrm{d} \ln X}{\mathrm{d} \ln q} = -\frac{3 - [3(3-s)\epsilon(q) - s](X-1)}{1 + (4-s)(X-1)}$$

$$\epsilon(q) = 1 - \delta(q)/\Delta(q)$$

Models not new, but application is.

# Supplemental

# Modeling stellar encounters





- $b/r_s$  (relative impact parameter)
- $t_{dyn}/(b/V)$  ("impulsiveness") typically  $\gg 1 \Longrightarrow$  irrelevant

