1D Discrete Fourier Transform

Let x(n) be a signal of length N.

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp\left(-j\frac{2\pi}{N}kn\right)$$
$$x(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) \exp\left(j\frac{2\pi}{N}kn\right)$$

DFT may be regarded as Sampled DTFT...

DTFT
$$\{x\} = \sum_{n=0}^{N-1} x(n) \exp(-j \omega n).$$

Properties of 1D DFT

(1) Linearity

$$a x_1(n) + b x_2(n) \longleftrightarrow a X_1(k) + b X_2(k)$$

(2) Periodic Convolution

$$x_1(n) \circledast x_2(n) \longleftrightarrow \sqrt{N} X_1(k) X_2(k)$$

(3) Multiplication

$$\sqrt{N} x_1(n) x_2(n) \longleftrightarrow X_1(k) \circledast X_2(k)$$

(4) Shift

$$x(n-m) \longleftrightarrow X(k) \exp\left(-j\frac{2\pi}{N}km\right)$$

Properties of 1D DFT

(5) Parseval's Theorem

$$\sum_{n=0}^{N-1} |x(n)|^2 = \sum_{k=0}^{N-1} |X(k)|^2$$

(6) Symmetry for real x(n)

$$X(k) = X^*(N - k)$$

2D Discrete Fourier Transform

Let $x(n_1, n_2)$ be a signal of length $N_1 \times N_2$.

$$X(k_1, k_2) = \frac{1}{\sqrt{N_1 N_2}} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) \exp \left[-j \left(\frac{2\pi}{N_1} k_1 n_1 + \frac{2\pi}{N_2} k_2 n_2 \right) \right]$$

$$x(n_1, n_2) = \frac{1}{\sqrt{N_1 N_2}} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X(k_1, k_2) \exp \left[j \left(\frac{2\pi}{N_1} k_1 n_1 + \frac{2\pi}{N_2} k_2 n_2 \right) \right]$$

DFT may be regarded as Sampled DTFT...

$$\mathsf{DTFT}\left\{x\right\} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1,n_2) \, \exp\left[-j \, \left(\omega_1 \, n_1 + \omega_2 \, n_2\right)\right].$$

2D Discrete Fourier Transform

Notice that the DFT is a separable transform.

To obtain $X(k_1, k_2)$,

- (1) Apply (length N_1) 1D DFT on the first (horizontal) variable of $x(n_1, n_2)$ to get $\tilde{X}(k_1, n_2)$.
- (2) Apply (length N_2) 1D DFT on the second (vertical) variable of $\tilde{X}(k_1,n_2)$ to get $X(k_1,k_2)$.

Properties of 2D DFT

(1) Linearity

$$a x_1(n_1 + n_2) + b x_2(n_1 + n_2) \longleftrightarrow a X_1(k_1, k_2) + b X_2(k_1, k_2)$$

(2) Periodic Convolution

$$x_1(n_1, n_2) \circledast x_2(n_1, n_2) \longleftrightarrow \sqrt{N_1 N_2} \quad X_1(k_1, k_2) X_2(k_1, k_2)$$

(3) Multiplication

$$\sqrt{N_1 N_2} \quad x_1(n_1, n_2) \ x_2(n_1, n_2) \longleftrightarrow X_1(k_1, k_2) \circledast X_2(k_1, k_2)$$

(4) Shift

$$x(n_1-m_1, n_2-m_2) \longleftrightarrow X(k_1, k_2) \exp \left[-j\left(\frac{2\pi}{N_1}k_1 m_1 + \frac{2\pi}{N_2}k_2 m_2\right)\right]$$

Properties of 2D DFT

(5) Separability

$$x(n_1, n_2) = x_1(n_1) x_2(n_2) \iff X(k_1, k_2) = X_1(k_1) X_2(k_2)$$

(6) Parseval's Theorem

$$\sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} |x(n_1, n_2)|^2 = \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} |X(k_1, k_2)|^2$$

(7) Symmetry for real x(n)

$$X(k_1, k_2) = X^*(N_1 - k_1, N_2 - k_2)$$

1D Discrete Cosine Transform

Let x(n) be a signal of length N.

$$C(k) = \sum_{n=0}^{N} x(n) 2 \cos \left[\frac{\pi}{2N} k (2n+1) \right]$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N} C(k) w(k) \cos \left[\frac{\pi}{2N} k (2n+1) \right]$$

where

$$w(k) = \begin{cases} 1/2, & \text{if } k = 0, \\ 1, & \text{if } 1 \le k \le N. \end{cases}$$

Extension to 2D

Extends as a separable transform.

For an $N_1 \times N_2$ signal $x(n_1, n_2)$, to obtain $C(k_1, k_2)$,

- (1) Apply (length N_1) 1D DCT on the first (horizontal) variable of $x(n_1, n_2)$ to get $\tilde{C}(k_1, n_2)$.
- (2) Apply (length N_2) 1D DCT on the second (vertical) variable of $\tilde{C}(k_1,n_2)$ to get $C(k_1,k_2)$.

Basis functions for the 2D DCT (2×2)

Basis functions for the 2D DCT (3×3)

Basis functions for the 2D DCT (4×4)

Basis functions for the 2D DCT (8×8)

Block DCT

For an $N \times N$ image, one typically does not apply an $N \times N$ DCT.

Rather, the image is first cut into smaller blocks (like 8×8) and block-size DCT is applied to each block separately.

Advantage: This yields a more *local* transform.

Disadvantage: Blocking artifacts.

Why Use Different Transforms?

'Natural' Images

'Unnatural' Images

Decomposition into a Coarse and Detail Image

Iterate the Basic Block for a Multiresolution Decomposition

Reconstruction

Laplacian Pyramid of a Noise Image

