Automated Exploratory Data Analysis

In [19]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from pandas_profiling import ProfileReport
%matplotlib inline
```

Reading the CSV File

In [2]:

```
df=pd.read_csv(r'C:\Users\Prasath Kamalakannan\Desktop\Prasath\Ineuron_pythonProject\FSDS_B
```

In [3]:

```
df.head()
```

Out[3]:

	case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_of_
0	EZYV01	Asia	High School	N	N	_
1	EZYV02	Asia	Master's	Υ	N	
2	EZYV03	Asia	Bachelor's	N	Υ	
3	EZYV04	Asia	Bachelor's	N	N	
4	EZYV05	Africa	Master's	Υ	N	
4						•

Pandas Profiling

In [8]:

```
profile = ProfileReport(df, title="Pandas Profiling Report")
```

In [9]:

profile.to_widgets()

Generate report structure:

1/1 [00:02<00:00,

100% 2.62s/it]

erview	Variables	5	Interactions	Correlations	Missing valu	e Sample
Overview		Aler	ts (3)	Reproduction	on	
Number of variables		12		Categorical	6	
				Boolean	3	
Number of		2548	0	Numeric	3	
observatio		0				
Missing ce	elis	0				
Missing cells (%)		0.0%				
Duplicate rows		0				
		0.00/				
Duplicate rows (%)		0.0%				
Total size in memory		2.3 M	liB			
Average re	ecord size	96.0	В			
in memory	/					

Report generated by YData (https://ydata.ai/?

utm_source=opensource&utm_medium=pandasprofiling&utm_campaign=report).

In [11]:

profile.to_notebook_iframe()

Download config.json (data:text/plain;charset=utf-configuration 8,%7B%22title%22%3A%20%22Pandas%20Profiling%20Report%2:

Variables

case_id

Categorical

HIGH

CARDINALITY UNIFORM

UNIQUE

Distinct	25480
Distinct (%)	100.0%
Missing	0
Missing (%)	0.0%
Memory size	199.2 KiB

Length

Max length	9	
Median length	9	
Mean length	8.564481947	
Min length	6	

Characters and Unicode

In [13]:

```
profile.to_file("pandas_profiling.html")
```

Export report to file: 1/1 [00:00<00:00,

100% 47.94it/s]

Sweetviz

In [17]:

```
import sweetviz as sv
my_report = sv.analyze(df)
my_report.show_html()
```

Done! Use 'show' commands to display/save.

[100%] 00:00 -> (00:00 left)

Report SWEETVIZ_REPORT.html was generated! NOTEBOOK/COLAB USERS: the web bro wser MAY not pop up, regardless, the report IS saved in your notebook/colab files.

Dtale

In [20]:

```
import dtale
import dtale.app as dtale_app
dtale_app.USE_COLAB = True
dtale.show(df)
```

12	_training :	no_of_employees	yr_of_estab	region_of_employment	prevaili
25480	IV	000	2000	VVESL	
21	N	1706	2013	Midwest	1:
22	N	2878	1968	West	
23	N	1517	1884	Midwest	
24	N	241	1981	Midwest	
25	N	1100	1997	Midwest	!
26	N	756	1995	South	1
27	Υ	2889	2005	South	10
28	N	18	2004	Northeast	,
29	N	758	2009	Northeast	1
30	N	1408	1998	Midwest	
31	N	995	1880	South	1
32	N	2415	1963	Midwest	
33	N	2395	2000	South	

Out[20]:

Autoviz

In [24]:

from autoviz.AutoViz_Class import AutoViz_Class AV = AutoViz_Class() dft = AV.AutoViz(r'C:\Users\Prasath Kamalakannan\Desktop\Prasath\Ineuron_pythonProject\FSDS %matplotlib inline Shape of your Data Set loaded: (25480, 12) ############# ############# ############# Classifying variables in data set... Data cleaning improvement suggestions. Complete them before proceeding to ML modeling. **Data** Value cleaning **Nuniques** dtype Nulls Nullpercent NuniquePercent counts improvement Min suggestions combine rare categories, case_id 25480 object 0 0.000000 possible ID column: drop