110	120	30	40	50	60	70
10	,	2	3	ч	5	6

tanget = 70

$$5 tant = 0$$
, $end = 7$
 $med = (s+e) = \frac{0+7}{2} = 3$

$$mid = 5 + (e-5)/2$$

$$stant = 4$$
 , end = 7
 $mid = \frac{9+7}{2} = 5$

start = 6
end = 7
$$700 = 6+7 = 6$$

> return mid

with every iteration size reduce by half

$$\frac{n}{2^{\kappa}} = 1$$

$$n = 2^{\kappa}$$

$$1\log_2 n = 1$$

$$7 \quad | T \cdot C = 7 \quad O(\log n)$$

if (tanget < ans[mid]
$$e = mid - 1$$

5=0 e=8 mid=4

17 ans store

soight me chale jao

frost
$$occ = 2$$

Lost $occ = 2$

Pear element in a mountain array

i/p => array() = {10, 20, 50, 40, 30}

1111111

Observation

A

Pear sight me exist me exist h

 \Im $\operatorname{an}[i] > \operatorname{an}[i+1]$

Peak pom[†] J an[i-1] < an[e] > an[i+1] an[e] > an[e+1] an[e] > an[e-1]

an $[i] \times an [i+1] \rightarrow \widehat{D}$

B + Peak

veturn stantlend

$$5 = 0$$
 > $m/d = \frac{0+4}{2} = 2$

$$s=0 > mrd = \frac{0+2}{2} = 1$$

e= 2

$$S = mid + 1$$

$$S = mid$$

$$S = mid - 1$$

$$Enfinite \leftarrow U$$

$$U = mid$$

$$C = mid$$

Doy oun

$$5=0 > mid = \frac{0+7}{2} = 3$$

$$c = 7$$

an [mid] < an [mid+1]
20 < 90 -> tax -> oight

$$\frac{3}{30}$$
 $\frac{6}{90}$ $\frac{3}{2}$ $\frac{3}{3}$

$$5=2$$
 $e=3$ $mid=2$

$$5=3$$
 $e=3$
 $mid=3$

5 = 3c = 3mid = 3

90 270 -> T -> e=mid

5-190 Le

5=3 e=3 m'd=3

90 < 70 ->Tove

Infinite LOUP me bos gaye

condetion to overcome this infinite LOOP while (s Le)

H/w -> find pivot element

Voetvon (sle)