Algorytmy z powracaniem

Maciej Kaszkowiak, 151856

1 METODOLOGIA POMIARU WYDAJNOŚCI ALGORYTMÓW

Zmierzyłem czas wykonywania wybranych operacji dla następujących struktur danych:

- nieskierowana macierz sąsiedztwa
- skierowana lista następników

Zmierzone operacje dla powyższych struktur obejmowały:

- znalezienie cyklu Eulera (algorytm Hierholzera)
- znalezienie cyklu Hamiltona (algorytm Robertsa-Floresa)

Algorytmy zostały zaimplementowane w języku Python 3.8.10. Testy zostały uruchomione pod systemem Windows 10 21H1.

Dane wejściowe zostały wygenerowane w następujący sposób:

Graf o współczynniku nasycenia X * 10%, utworzony poprzez rozpatrywanie krawędzi
pomiędzy wierzchołkiem N a wierzchołka N+1, N+2, ... oraz dodawanie kolejno X
możliwych krawędzi i pomijanie 10-X następnych. W przypadku grafu skierowanego
krawędzie zastąpiono łukami.

Czas wykonywania algorytmów został zmierzony dla wszystkich permutacji:

- struktury danych służącej do reprezentacji grafu
- liczby wierzchołków
- stopnia nasycenia

Wykorzystane liczby wierzchołków wynoszą 3, 4, ..., 17, natomiast wykorzystane stopnie nasycenia wynoszą 10%, 20%, ..., 90%. Górna liczba wierzchołków została ograniczona do 17 ze względu na wykładniczą złożoność algorytmu Robertsa-Floresa.

Pomiary zostały wykonane z dokładnością do mikrosekund. Pominięto czas generowania danych wejściowych.

2 WYDAJNOŚĆ WYSZUKIWANIA CYKLI EULERA ORAZ HAMILTONA W ZALEŻNOŚCI OD LICZBY ELEMENTÓW

2.1 Podział ze względu na reprezentację grafu

$2.2~{ m Podział}$ ze względu na poszukiwany cykl

3 WYDAJNOŚĆ WYSZUKIWANIA CYKLI EULERA ORAZ HAMILTONA W ZALEŻNOŚCI OD STOPNIA NASYCENIA GRAFU

3.1 Podział ze względu na reprezentację grafu

$3.2~{ m Podział}$ ze względu na poszukiwany cykl

4 WYDAJNOŚĆ WYSZUKIWANIA CYKLI EULERA ORAZ HAMILTONA W ZALEŻNOŚCI OD LICZBY WIERZCHOŁKÓW I STOPNIA NASYCENIA GRAFU

4.1 Graf skierowany w postaci listy następników

4.2 Graf nieskierowany w postaci macierzy incydencji

Ze względu na błąd oprogramowania nie mogłem wykorzystać skali logarytmicznej w utworzonym wykresie.

5 Wnioski

Wyszukanie cyklu Eulera jest problemem rozwiązywalnym w czasie wielomianowym. Algorytm Hierholzera pozwala na znalezienie cyklu w czasie zależnym liniowo od liczby krawędzi - O(E). Znalezienie cyklu Hamiltona jest natomiast problemem NP-trudnym rozwiązywalnym w najgorszym przypadku w czasie O(V!).

Powyższą tezę udało się potwierdzić w pomiarach – wyszukiwanie cyklu Eulera rosło liniowo względem liczby krawędzi, natomiast wyszukiwanie cyklu Hamiltona osiągnęło swoją najgorszą złożoność wykładniczą. Czas wymagany na zakończenie algorytmu zależał w ogromnym stopniu od sposobu utworzenia danych. W wykonanych testach grafy o nasyceniu X*10% zostały wygenerowane poprzez tworzenie górnotrójkątnej macierzy incydencji (oraz odpowiednika dla listy sąsiedztwa), zawierając kolejno X możliwych do utworzenia krawędzi a następnie pomijając 10-X krawędzi. Inna metoda generowania grafu z pewnością wpłynęłaby drastycznie na wynik testów. Ze względu na brak losowości testy działają w sposób deterministyczny. Obecne dane pozwoliły skutecznie ukazać zarówno najgorszy jak i optymistyczny wariant algorytmu szukającego cykl Hamiltona.

Stopień nasycenia grafu również wpływa na wyniki eksperymentu. W przypadku cyklu Eulera wpływ jest niezauważalny, natomiast dla cyklu Hamiltona zauważalne są dwa odmienne kształty wykresów, w zależności od reprezentacji grafu. Powód kryje się w danych – generowanie grafu za pomocą macierzy górnotrójkątnej gwarantuje brak cyklu w przypadku grafu skierowanego. Liczba możliwych ścieżek rośnie wraz ze stopniem nasycenia, jednak żadna nie wygeneruje grafu zawierającego cykl Hamiltona. W przypadku grafu nieskierowanego identyczny sposób generowania danych może spowodować występowanie grafu z cyklem. Przy niskim nasyceniu rzędu 10-20 procent, cykl może się nie znajdywać w grafie przy stosunkowo małej liczbie krawędzi. Najwyższy czas wykonywania możemy zaobserwować przy średnim nasyceniu ze względu na potencjalnie najwyższą liczbę ścieżek które nie są cyklem Hamiltona. Wraz z wzrostem stopnia nasycenia czas wykonywania spada, ponieważ algorytm znajdzie cykl idąc niemal dowolną scieżką.

6 Spis treści

1	Met	odologia pomiaru wydajności algorytmów	. 1
2	Wyo	dajność wyszukiwania cykli Eulera oraz Hamiltona w zależności od liczby elementów	72
	2.1	Podział ze względu na reprezentację grafu	.2
	2.2	Podział ze względu na poszukiwany cykl	.3
3 gr		dajność wyszukiwania cykli Eulera oraz Hamiltona w zależności od stopnia nasyceni	
_	3.1	Podział ze względu na reprezentację grafu	.4
	3.2	Podział ze względu na poszukiwany cykl	.5
4 wi	·	dajność wyszukiwania cykli Eulera oraz Hamiltona w zależności od liczby łków i stopnia nasycenia grafu	.6
	4.1	Graf skierowany w postaci listy następników	.6
	4.2	Graf nieskierowany w postaci macierzy incydencji	.7
5	Wni	ioski	.8