* Chp. 5 Eigen-stuff

When T: V -> V is a lin. trans. Def: and we find a specific vector $\vec{x} \in V$ such that $\vec{x} \neq \vec{0}$ and T(x) = cx for some then we call $\tilde{\chi}$ an (eigenvector)

with (eigenvalue) c (often use c=2) $(\lambda can be 0, bit \vec{x} \neq \vec{0})$ (if T is just multiplying every vector by a constant, then every vector in V is an eigenvector, with that constant 2 its eigenvalue.) However, most lin, trans. T: V -> V have only certain eigenvectors and eigenvalues. Find them! Steps: 1) We work with A = [T] 2) Let $A\vec{x} = \lambda \vec{x}$ $(\vec{x} \neq \vec{0})$ then $\Rightarrow A\vec{x} = (\lambda \vec{I})\vec{x}$ $(\lambda \vec{I} = \begin{bmatrix} \lambda & 0 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda & 0 \end{bmatrix})$ $\Rightarrow A\vec{x} - (\lambda \vec{I})\vec{x} = \vec{0}$ $\Rightarrow (A - \lambda I) \vec{x} = \vec{0}$ $\vec{x} \neq \vec{o}$ and $\vec{x} \in N(A - \lambda I)$ de+(A-)I)=0 3) this gives us an algebraic equation to solve for A. Then plug back in to find 2.

	7 2 m2				
	$ex)$ Let $T: \mathcal{P}^2 \to \mathcal{P}^2$				
	be given by $T(f(x)) = 2xf'(x) + 3xf''(x)$				
	Find the eigenvalues and their corresponding				
	eigenvectors for Ti				
	ê; e E		f"(x)	T(e;)	
		0	0	0	
	×	.1	0	$\frac{2x}{4x^2+6x}$	
	χ^2 2χ		2.	4x2+6x	
	$A = [T] \stackrel{\mathcal{E}}{\varepsilon} = \left[(0)_{\varepsilon} \left[2x \right]_{\varepsilon} \left[4x^{2} + 6x \right]_{\varepsilon} \right] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{bmatrix}$				
1)	A = [T]	e = [0	$\int_{\mathcal{E}} \left(2x\right)_{\mathcal{E}}$	[4x2+6	$\left[x\right] = 026$
	$dex(A-\lambda I) = det(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 0 & \lambda \end{bmatrix}) = 0$				
2)	der (A-)	I) = de+	1 0 2 6	- 0	$\begin{pmatrix} \lambda & \delta & \delta \\ \lambda & \lambda & \delta \end{pmatrix} = 0$
197 G. N. P.	$= \det \left -\frac{\lambda}{2} \right = 0$				
	o 6 4-1 Phis is the called the				
	$= -\lambda(2-\lambda)(4-\lambda) = 0 \iff \text{called que characteristic} $				
	$= -\lambda(2-\lambda)(4-\lambda) = 0 $ $= \lambda = 0, 2, 4 $				
3)	Solve $(A-\lambda I)\vec{x} = \vec{0}$ (Polyting)				
-	$\lambda = 0$ $\lambda = 2$ $\lambda = 4$				
	[060]	07	[-2 0 0	67	[-4 0 0 0]
	0 2 6		000	0	0000
~	[0 0 0 0	6]	[100	0]	~ [0 0 0 0]
	001	0]	6 0 0	6	[0000]
	(x,=x, fr	ee	$(x_i=0)$		$(x_1 = 0)$
	$\begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$		X 2 = X 2		$\begin{cases} x_2 = 3x_3 \end{cases}$
	(X ₃ = 0		$(x_3 = 0)$		$(x_3 = x_3)$
	ž & Span {	613	x E span { (;		$x \in Span \left\{ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \right\}$
	= Span {	13	= Span {x}	}	$= Span \left\{ 3x + x^2 \right\}$

Note that the eigen vectors are found as spans. Indeed, for each eigen value love get a subspace of dom(T) called the Teigenspace Ez. We find a basis for E_{λ_0} , so $E_{\lambda_0} = span \{\vec{x}_1, \vec{\chi}_2, ... \vec{\chi}_k\}$. → We define the Igeometric multiplicity of lo as the dimension (number of basis vectors) k of Elo. There is also the [algebraic multiplicity] of low which is the power pon the factor (2,-2)? in the characteristic polynomial det (A-2). we can prove that for similar matrices A and B, B = P'AP, the eigenvalues are the same for both. - That's the for [T] and [T]e, two matrices for the same lin. trans. T: V -> V using two different bases, B and C. T is [diagonalizable] if there is a basis B such that [T] is a diagonal matrix (any entry not on the main diagonal is zero). -> Note that for a diagonal matrix, the eigenvalues are the diagonal entries.

Theorem: For T: V -> V eigen values 2, 2, ..., 2; if the algebraic multiplicity of each λ_i is equal to the corresponding geometric multiplicity of that λ_i , then T is diagonalizable, that is, there is a basis B such that [T] is diagonal. Moreover, the diagonal entries of [T] & are the eigenvalues of T, with deplicates according to their algebraic multiplicities. The basis B is the set of eigenvectors found by listing all the bases of the eigenspaces Ex: together. ex) T(f(x)) = 2xf(x) + 3xf'(x)λ= 0, alg.mult. = 1 = geom. mult. $\lambda_2 = 2$, alg. mult. = 1 = geom, mult. 23 = 4, alg. mult = 1 = geom. mult. diagonalizable! $B = \{1, x, 3x + x^2\}, [T]_B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

```
Note: if 1=0 is an eigenvalue of T
     then N(T) $ 0, and Tis not 1-1;
     not onto, and de+([T]_n^B) = 0
ex) T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2
  given by T(x) = \begin{pmatrix} 3x + 4y \\ 3y \end{pmatrix}
 diagonalizable?
A = \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} 3(1) + 0 & 3(0) + 1 \\ 3(0) & 3(1) \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}
\det (A - \lambda I) = \det \left( \begin{bmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{bmatrix} \right) = 0
                       = (3-\lambda)(3-\lambda) = 0
                   = (3-\lambda)^2 = 0
Find eigenspace for \lambda = 3; Solve (A - \lambda I)\vec{x} = \vec{0}.
              \exists \begin{cases} x, = x, \text{ free} \\ \chi_2 = 0 \end{cases} \vec{\chi} = \chi_1(1)
 That is E3 = Span { (o) } basis
So alg. mult. of \lambda = 3 is 2
      geom mult. of \lambda = 3 is
> Not diagonalizable.
```